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Characterising quasi-isometries of the free group

ANTOINE GOLDSBOROUGH
STEFANIE ZBINDEN

We introduce the notion of mixed subtree quasi-isometries, which are self-quasi-isometries of regular
trees built in a specific inductive way. We then show that any self-quasi-isometry of a regular tree is
at bounded distance from a mixed-subtree quasi-isometry. Since the free group is quasi-isometric to a
regular tree, this provides a way to describe all self-quasi-isometries of the free group. In doing this, we
also give a way of constructing quasi-isometries of the free group.
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1 Introduction

Quasi-isometries are the most fundamental maps in geometric group theory. However, for most metric
spaces, very little is known about their quasi-isometry groups and there are no known tangible ways to
describe all quasi-isometries, except in some cases where quasi-isometric rigidity is known. Notable
exceptions to this are Baumslag—Solitar groups, which are described in [Whyte 2001] and 3—dimensional
solvable Lie groups, which have been studied by Eskin, Fisher and Whyte [Eskin et al. 2007; 2012; 2013].

With this paper, we add the free group [F», or more generally regular trees, to the list of spaces where
all quasi-isometries up to bounded distance can be described. In particular, we introduce the notion of a
D-mixed subtree quasi-isometry which is a type of quasi-isometry from regular trees to themselves. While
a precise definition can be found in Section 3, the main idea behind them is the following; having defined
the quasi-isometry for vertices v at distance n D from the root, one next defines what the quasi-isometry
does on the next level, that is, vertices at distance (n+1) D from the root. Moreover, the valid choices of
extending the map to the vertices at distance (n+1) D only depend on which of the vertices of distance n.D
are mapped to the same vertex, but is otherwise independent of the choices made previously.

Our main theorem below states that a map from a regular tree to itself is a quasi-isometry if and only if it
is at bounded distance from a mixed-subtree quasi-isometry.

Theorem 1.1 Let T be a regular tree of degree at least 3, rooted at vy. Let f: T — T be a C —quasi-
isometry such that f(vg) = vo. Then there is a constant D only depending on C and a D—deep mixed
subtree quasi-isometry g: T — T such that f and g are at bounded distance from each other.
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5212 Antoine Goldsborough and Stefanie Zbinden

Since regular trees of degree at least 3 and nonelementary free groups are quasi-isometric, the theorem
above describes quasi-isometries of the free group IF,.

Thanks to this independence mentioned above, mixed-subtree quasi-isometries are a useful tool to
construct quasi-isometries with certain desired properties. For example, this technique was used in
[Goldsborough and Zbinden 2024], where the authors built a self-quasi-isometry of [, with the property
that the push-forward of a simple random walk by this quasi-isometry does not have a well-defined drift.

We suspect that there might be other applications of this construction. For instance, one might want to
consider “random quasi-isometries” of ', and properties of a “generic”’ quasi-isometry. Further, this
characterisation might allow one to better understand the quasi-isometry group QI(FF»).

Outline

In Section 2 we introduce the relevant notation and prove some of the technical results about quasi-
isometries of trees. In particular, we extend a result of [Nairne 2023] and show that any quasi-isometry is
at bounded distance from an order-preserving quasi-isometry. In Section 3 we describe mixed-subtree
quasi-isometries and prove Theorem 1.1, which states that a map from a rooted tree of degree at least 3 to
itself is a quasi-isometry if and only if it is at bounded distance from a mixed-subtree quasi-isometry.
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2 Preliminaries

In this section, we introduce the relevant notation and some preliminary lemmas. Throughout this paper,
we will view [F5 as a rooted tree. Therefore, our results will cover self-quasi-isometries of rooted trees.

Definition 2.1 Let (X, d) be a metric space, we say that a map f: X — X is a C—quasi-isometric
embedding for a constant C > 1 if

d(x,y)
C

—C=d(f(x), f(y) =Cd(x.y)+C
forall x,y € X.

Further, we say that a C—quasi-isometric embedding f: X — X is a C—quasi-isometry if there exists a
constant D such that for all y € X there exists x € X such that d(y, f(x)) < D.

Definition 2.2 Let (X, d) be a metric space. Two maps f, g: X — X are C-bounded it d( f(x), g(x))<C
for all x € X. They are bounded if they are C—bounded for some constant C.

Algebraic € Geometric Topology, Volume 24 (2024)
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2.1 Notation on trees

Let T be a rooted tree and w € T a vertex. We assume throughout that trees have edge length exactly 1.
We denote the subtree rooted at w by 7Ty,. Further the subtree T£ C Ty is the induced subtree of all
vertices v € Ty, with d(w, v) <k. Vertices v € Ty, are called descendants of w and w is called an ancestor
of v. Further, a vertex v € Ty, is a D—child of w if d(v, w) = D and we say that w is the D—parent of v.
We denote the (1-)parent of a vertex v € T by p(v) and say that the parent of the root is itself.

We will view a path between vertices u and v as a sequence of neighbouring vertices u =ug, uy,..., Uy =0,
denoted by (ug, ..., uy). If a path (uo, ..., u,) is geodesic (or equivalently nonbacktracking) we also
denote it by [ug, Un].

Definition 2.3 For a subset U C T of a rooted tree T based at v, we define the lowest common ancestor
of U as the (unique) vertex v € T furthest away from vg such that every vertex u € U is a descendant
of v. We will denote this vertex v as LCA(U).

Observe that if v = LCA(U), then there exists a pair of vertices x, y € U such that v lies on [x, y].

Definition 2.4 Let S be a finite subtree of a rooted tree 7. We say that the boundary of S, denoted
by a8, is the set of vertices v € T\ S whose parent p(v) is in S.

Remark 2.5 If T is a d-regular tree rooted at vg, then one can easily show by induction that [0.S| =
|S|(d—2)+1ifvg &S and |0S| = |S|(d —2)+2if vy € S.

Definition 2.6 Let T be a tree rooted at vg. A map f: T — T is order-preserving if for every pair of
vertices u, v € T with v € T, we have that f(v) € Ty(,).

Nairne [2023] showed that every (1, C)—quasi-isometry between spherically homogeneous trees is at
bounded distance from an order-preserving quasi-isometry. In Lemma 2.8 we extend this result and
show that any C—quasi-isometry of a rooted tree to itself is at bounded distance from an order-preserving

quasi-isometry.
2.2 Properties of quasi-isometries of trees

We state and prove three key technical lemmas about quasi-isometries of trees.

The following lemma states that the image of the geodesic [u, v] under a quasi-isometry f coarsely
surjects onto the geodesic [ f(u), f(v)].

Lemma 2.7 LetT beatreeandlet f:T — T be a C—quasi-isometry. For every pair of verticesu,v € T
and vertex a € [ f(u), f(v)] there exists a vertex b € [u, v] such that d( f(b),a) <C.

Algebraic € Geometric Topology, Volume 24 (2024)
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X1 Xj+1
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fy n a i £(v)

Xj
Figure 1: Images of geodesics coarsely surject onto the geodesic.

Proof Let[u,v]=(ug,...,u,). For0<i <n,define x; = f(u;) and let y; be the closest point projection
of x; onto [ f(u), f(v)]. This is depicted in Figure 1. Let j be the largest index such that y; € [ f(u), a].
Then the path [x;, y;][y;. ¥j+1][yj+1,Xj+1] is nonbacktracking and hence a geodesic from x; to x; 11
going through a. Since f is a C—quasi-isometry, d(x;,a) + d(a,x;+1) = d(xj,x;+1) < 2C. So
min{d(x;,a) +d(a,xj+1)} < C. |

The following lemma states that every quasi-isometry between a rooted tree and itself is at bounded
distance from an order-preserving quasi-isometry. This extends the result of [Nairne 2023] where this is
shown for (1, C')—quasi-isometries between spherically homogeneous trees.

Lemma 2.8 Let T be a tree rooted at vy and let f: T — T be a C—quasi-isometry. The map f is
at bounded distance from an order-preserving quasi-isometry. Moreover, if f(vg) = vo, then f is at
K -bounded distance from an order-preserving (2K +C)—quasi-isometry for some K depending only on C.

Proof It suffices to show the moreover part with K = 3C3 + 2C. Define g: T — T via g(v) :=
LCA(f(Ty)). Clearly, g is order-preserving. It remains to show that g is at K-bounded distance from f
since it then follows that g is a (2K +C)—quasi-isometry.

Let u € T be a vertex. We will show that d(f(u),g(u)) < K. We have f(u) € Tg(,). Thus by
Lemma 2.7, there exists w € [vg, u] such that d( f(w), g(u)) < C. This is depicted in Figure 2. Since
g(u) = LCA(f(T,)), there exist vertices x, y € T;, such that g(u) € [ f(x), f(y)]. Again by Lemma 2.7,
there exists a vertex z € [x, y] C T,, with d(g(u), f(z)) < C. In particular, d( f(w), f(z)) <2C.

Observe that u € [w, z]. Hence, d(u, z) < d(w, z) < 3C?. Therefore,
d(g(u), f(u)) <d(g), f(2)) +d(f(2), f() <3C>+2C =K. m

The following lemma states that if f is an order-preserving quasi-isometry and two vertices u, v have
the same distance from the root, then f(u) cannot be a descendant of f(v), unless they are close. This
lemma is a key ingredient in the proof of Lemma 3.2.

Lemma 2.9 Let T be a tree rooted at vy and let f: T — T be an order-preserving C —quasi-isometry.
Letu,v € T be vertices such that d(vo,u) = d(vo,v) and f(u) € Ty). Thend(f(u), f(v)) < K and
d(u,v) < K for some constant K depending only on C.

Algebraic € Geometric Topology, Volume 24 (2024)
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Figure 2: Quasi-isometries are at bounded distance from order-preserving quasi-isometries.
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Figure 3: Illustration of the proof of Lemma 2.9.

Proof Let w = LCA({u,v}). Since f is order-preserving, f(v) lies on [ f(u), f(w)]. This is depicted
in Figure 3. By Lemma 2.7, there exists a vertex x € [u, w] such that d( f(x), f(v)) < C. Thus d(w, v) <
d(x,v) <2C?. Since d(vo,u) = d(vg,v), we have d(u,v) = 2d(w, v) and hence d( f(u), f(v)) <
4C3 4 C. So choosing K = 4C3 + C works. O

3 Quasi-isometries of regular trees
Notation For the rest of this section, T denotes a regular tree of degree d > 3 rooted at a vertex vg.

In this section, we describe a way of building quasi-isometries, which we call mixed-subtree quasi-
isometries, of regular trees to themselves. We further show that any quasi-isometry is at bounded distance
from a mixed-subtree quasi-isometry. The key idea behind mixed-subtree quasi-isometries is that they are
quasi-isometries which are defined iteratively for vertices further and further away from the root. Moreover,
at each step, the allowed choices are in some sense independent from the choices for earlier vertices.

Construction Let D > 1 be a natural number. For all natural numbers i > 0 we inductively construct
functions f;: Tlf(? — T. Define fy(vg) = vo. Assuming we have defined f;, we define f;+1 as follows:

e For all vertices x € Tlf(l)) define fi+1(x) = fi(x).

Algebraic € Geometric Topology, Volume 24 (2024)



5216 Antoine Goldsborough and Stefanie Zbinden

Figure 4: The definition of f”.

e [terate through all vertices x € T with d(vg,x) = iD. If we have not yet defined f;y; for any
descendants of x, do the following:

— Denote f;(x) by v and let X = {x1,...,xg} be the set of vertices that satisfy f;(x;) = v and
d(vo,xj) =iD. Define B, as the set of all D—children of vertices x; € X. We now define f;11(h)
for all vertices /1 € By,.

— Choose any function f,: B, — T, satisfying the following properties (see Figure 4):

(1) Im(f,) = dSy for some finite subtree S, of T}, containing v.
(2) If f(w) = fy(w’), then w and w’ are D—children of the same vertex x; € X.

~ Define fi11lz, = f;.
— Forall x; € X, define f;41(w) = v for all vertices w € Tx[;_l.

We first argue that there always exists at least one function f satisfying (1) and (2). In other words,
we have to show that there exists a subtree S, rooted at v such that | X| < [dS,| < |By|. If D =1 and
|X| = 1, then one can choose S, = {v} to get |By| = |0Sy]|. Otherwise |By| — |X| > d — 1; hence by
Remark 2.5 we can find a subtree S, rooted at v with | X| <|9S,| <|By]|.

Further note that with this definition, for every i, j € N, f; and f; agree if they are both defined. Hence
we can define f: T — T via f(v) = f;(v) for some i where v is in the domain of f;. We call any map f

constructed this way a D—deep mixed-subtree quasi-isometry.

The following lemma shows that mixed-subtree quasi-isometries are indeed quasi-isometries.

Lemma 3.1 For any choice of functions f,), the map f constructed is an order-preserving C —quasi-
isometry, where C only depends on D and T.

Proof It follows directly from the definition that f is order-preserving. Let K = d P, where d is the
degree of T and let C = 2K?. We will show that f is a C—quasi-isometry.

Claim 1 If vertices b, b’ are D(i+1)—children of vy, then f(b) # f(b’) unless the D—parents of b
and b’ are the same. Furthermore, if f(b) # f(b’), then Ty and Tryy are disjoint.

Algebraic € Geometric Topology, Volume 24 (2024)
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Proof of Claim 1 We prove this by induction on i. For i = 0, b and b’ have the same D—parent,
namely vg. The furthermore part follows from (1). Assume the statement is true for i ; we want to show
that it holds for i 4+ 1. Let x and x’ be the D—parents of b and b’ respectively. If f(x) # f(x'), then Tr(y)
is disjoint from T,y by the induction hypothesis. Hence f(b) # f(b’) and Ty (p) is disjoint from Tr(y.
If f(x)= f(x') and x # x’, then (2) implies that f(b) # f(b’). Moreover, (1) implies that Tr() and
Tr(y are disjoint. Lastly, if x = x’, we only have to show the furthermore part, which follows from (1). O

Claim 2 For any i, the number of Di—children of vy whose images under f coincide is at most K.

Proof of Claim 2 This follows from Claim 1 together with the fact that every vertex has at most K
D—children. |

Claim 3 If b is the D—child of a vertex x which in turn is a Di—child of vg, then 1 <d(f(b), f(x)) < K2.

Proof of Claim 3 Let v = f(x). We use the notation from the construction of f; 4. By Claim 2, the
set B, contains at most K2 vertices, so [Im(f;)| < K2. In other words the subtree S, from (1) has at
most K2 leaves, implying that d(v, v’) < K? for any vertex v’ € 3S, (see Remark 2.5). Consequently
d(f)(b), f(x)) < K?, which concludes the proof. |

Claim 4 The map f is K%—coarsely surjective.

Proof of Claim 4 First observe that whenever a vertex v is in the image of f, there exists a Di—child x
of vy with f(x) =v.

Let v’ € T be a vertex. We show that d(v’, Im( f)) < K2. Let v be the lowest ancestor of v’ which is in
the image of f. We have that v = f(x) for some vertex x which is a Di child of vg. If v’ = v, we are
done. If v’ € Sy, then d(v,v’) < K? as in the proof of Claim 3. If v/ ¢ S, there exists w € 39S, which is
a descendant of v and an ancestor of v’. Since w € 3S,, it is in the image of f, a contradiction with the
definition of v. O

It remains to show that
d(u,v)

C
for all vertices u,v € T. To show the right half of the inequality, it is enough to show that for all
neighbours u, v € T, we have d(f(u), f(v)) < C. This follows directly from the definition of f and
Claim 3. Next we show the left half of the inequality. Let u, v € T be vertices and let n = | d(vo, u)/D |,
m = |d(vg,v)/D]. Define ug = vo and for i <n define u; as the Di—child of vy which is an ancestor

—C=d(f(u), f(v)) =Cd(u,v)+C

of u. Define v; analogously. Let k be the maximal index such that u; = vg. Claim 1, together with
f being order-preserving, yields that f(u;) and f(v;) lie on the geodesic from f(u) to f(v) for all
k+2<i<nandk+2<j<m. Hence,d(f(u), f(v)) > (n—k—2)+ (m—k —2). On the other hand
du,v) <Dm—k+ 1)+ D(m—k + 1). The statement follows. O
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We are now ready to prove the following lemma which together with Lemma 3.1 states that a map
g: T — T is a quasi-isometry if and only if it is at bounded distance from a mixed-subtree quasi-isometry.
The lemma is a slightly more detailed version of Theorem 1.1.

Lemma 3.2 Letg:T — T be a C—quasi-isometry. There exist a constant D > 0 and a D—deep mixed
subtree quasi-isometry f such that g and f are at bounded distance. Moreover, if g(vg) = vo, then D
only depends on T" and C.

Proof By Lemma 2.8, which states that all quasi-isometries are at bounded distance from order-preserving
quasi-isometries, it suffices to show the moreover part for an order-preserving quasi-isometry. So we
assume in the following that g is order-preserving.

Let K be the constant of Lemma 2.9 and let D = [C(C + K) + 1]. We will show that there is a D—deep
mixed subtree quasi-isometry f at distance K + CD + C from g.

Assume that we have defined f;: Tlfé) — T, as in the construction, such that
(1) d(fi(u), g(u)) <K for all u with d(vg,u) = Di,
(i) g(u) € Tf,(y) for all u with d(vo,u) = Di,
(i) d(fi(w).g(w)) <K +CD+C forallw e TP,
We show that we can define a function f;4; such that
@ d(fi+1(u), g(u)) < K for all u with d(vg,u) = D@ + 1),
(b) g() €Ty, ) for all u with d(vo, u) = D(i + 1),
© d(fir1(w),gw)) <K+CD +C forall we TP

Let x be a Di child of vg, let v = f;(x) and let X = fi_l(v). Observe that, for all x’ € X, d(vg, x") = Di.
Let By be the set of all D—children of elements of X and let A, = g(By). By (ii), Ay C Ty. For b € By,
define f, () as the vertex a € Ay closest to vo which satisfies g(b) € T,. Observe that g(b) € Ty py; in
other words, (b) is satisfied.

Note that £,/ (b) = g(b’) for some b’ € By. It follows from Lemma 2.9 that d( £, (b), g(b)) < K for all
b € By, which proves (a). Therefore, g|p, and f, are at K-bounded distance. By (i), d(fi (x"), g(x")) <K
for all x’ € X. Hence for a k—child w of some x’ € X for k < D we have f;4+(w) = v, and hence

d(fi+1(w), g(w)) <d(v, g(x")) +d(g(x"), g(w)) < K+ CD +C,
which, together with (iii), proves (c).

It only remains to show that f, as defined above is a valid choice; that is, f, satisfies (1) and (2). For (1),
define Sy ={y € Ty|y € T, forall a € A,}. If w € 3S,, then w € Ty, for some a,, € A, while its parent
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is not in 7, . It follows that w = ay,. Further, for any b € g~!(a,,) we have that f;/(b) € [ay, vo] but
fy(b) € Sy. Hence f,(b) = ay, implying that a,, € Im(f)).

Thus 35S, = Im(f,) is finite. If Sy, is infinite, there exists a vertex u € S, which is further away from vy
than all points in the finite set d.5,. Consequently, 7, C S,. Since g is a quasi-isometry (and hence
coarsely surjective), there exists a vertex u’ € T with d(vg,u’) > (i +1)D and g(u’) € T,,. We have that
u’ is the descendant of some Di—child x’ of vg. By Claim 1 from the proof of Lemma 3.1 either x" € X or
Ty, (x) is disjoint from 7). By (ii) the latter cannot be the case. Consequently, u’ € T}, for some b € B, and
since g is order-preserving, g(u’) € T4 (p). This is a contradiction to g(u’) € Sy. Thus S, is indeed finite.

In order to prove (1), it remains to show that v € Sy, or in other words, that v & A,,. Let b € B, be a
D—child of some vertex x” € X. By (i) and the fact that g is a C—quasi-isometry,

d(g(b),v) > d(g(b), g(x") —d(g(x"), fi(x")) > d(g(b), g(x")) — K >0,
so indeed g(b) # v. Since this is true for all b € By, it follows that v & A,.

Next we prove (2). Let b be a D—child of x and b’ be a D—child of x” with x # x’ € X. We have
d(b,b') > 2D. Thus d(g(b), g(b")) =2D/C — C > 2K + C, which implies that d( f,,(b), f,(b")) > C.
In particular, f,/(b) # f,(b’). O
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