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Cartesian fibrations of .1; 2/–categories

ANDREA GAGNA

YONATAN HARPAZ

EDOARDO LANARI

We introduce four variance flavors of (co)cartesian fibrations of1–bicategories with1–bicategorical
fibers, in the framework of scaled simplicial sets. Given a map p W E ! B of 1–bicategories, we
define p–(co)cartesian arrows and inner/outer triangles by means of lifting properties against p, leading
to a notion of 2–inner/outer (co)cartesian fibrations as those maps with enough (co)cartesian lifts for
arrows and enough inner/outer lifts for triangles, together with a compatibility property with respect to
whiskerings in the outer case. By doing so, we also recover in particular the case of1–bicategories
fibered in1–categories studied in previous work. We also prove that equivalences of such fibrations can
be tested fiberwise. As a motivating example, we show that the domain projection d W Fungr.�1;C/! C is
a prototypical example of a 2–outer cartesian fibration, where Fungr.X;Y / denotes the1–bicategory of
functors, lax natural transformations and modifications. We then define 2–inner and 2–outer flavors of
(co)cartesian fibrations of categories enriched in1–categories, and we show that a fibration p W E!B of
such enriched categories is a (co)cartesian 2–inner/outer fibration if and only if the corresponding map
Nsc.p/ W NscE! NscB is a fibration of this type between1–bicategories.
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Introduction

This paper is part of an ongoing series of works on the theory of .1; 2/–categories. We will generally
refer to these as1–bicategories, and identify them with scaled simplicial sets satisfying suitable extension
properties. Our goal here is to set up the fundamentals of a theory of (co)cartesian fibrations E!B of
1–bicategories, whose fibers encode a family of1–bicategories Eb depending functorially on b 2B.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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4732 Andrea Gagna, Yonatan Harpaz and Edoardo Lanari

When E and B are 1–categories the corresponding notion of (co)cartesian fibration was set up by
Lurie in [12]. Generalizing classical work of Grothendieck, Lurie showed that such fibrations over a base
1–category B are in complete correspondence with functors B! Cat1 in the cocartesian case, and
contravariant such functors in the cartesian case. This Grothendieck–Lurie correspondence plays a key
role in higher category theory, as it permits the handling of highly coherent pieces of structure, such as
functors, in a relatively accessible manner.

When coming to consider the1–bicategorical counterpart, an immediate difference presents itself: here
we have not just two different variances, but four, depending on whether or not the functorial dependence
on 2–morphisms is covariant or contravariant. This additional axis of symmetry is already visible when
the base is an 1–bicategory and the fibers Eb are 1–categories, since Cat1 itself has a nontrivial
1–bicategorical structure. A thorough treatment of this case was taken up in our previous work [6],
where we have used the term inner (co)cartesian fibrations to indicate those cases where the dependence
on 2–morphisms matches the one on 1–morphisms, and outer (co)cartesian fibration for those where these
two dependencies have opposite variance. The division into these two types is also visible on the level
of mapping1–categories: when both variances match (the inner case) the induced functor on mapping
1–bicategories is a right fibration, and when they don’t (the outer case) the induced functor on mapping
1–categories is a left fibration. One of the main results of [6] is an1–bicategorical Grothendieck–Lurie
correspondence for all the four variances. The proof crucially relies on the work of Lurie [13] in the inner
cocartesian case, and the straightening–unstraightening Quillen equivalence he proved in that setting.

Our goal in the present paper is to extend these notions of fibrations to the setting where both the base B

and the fibers Eb are 1–bicategories. This requires defining, in addition to a notion of (co)cartesian
1–morphisms, a suitable notion of (co)cartesian 2–morphism. Working in the setting of scaled simplicial
sets, such 2–morphisms are determined by triangles, though this correspondence is not perfect (the same
2–morphism can be encoded by different triangles corresponding to different factorizations of the target
1–morphism), and one needs to be a bit more careful about how to define this. To match with the notation
for fibrations, we use the terms inner and outer to describe triangles which roughly correspond to cartesian
and cocartesian 2–morphisms. For somewhat technical reasons one needs to separate those further into
two types, which we call left and right inner/outer triangles. This distinction turns out to behave slightly
differently in the inner and outer cases, an issue due to the built-in asymmetry of triangles, which encode
a 2–morphism together with a factorization of its target 1–morphism, but not of its domain.

In the future continuation of the present work we plan to establish a complete Grothendieck–Lurie
correspondence for such fibrations over a fixed base B, showing that they encode the four possible
variances of functors B ! BiCat1. Though we will not arrive to this goal yet here, we do lay the
foundations and prove the basic properties we expect to need, based on our current work in progress in
that direction. In particular, we prove that equivalences between such fibrations are detected on fibers,
and construct a certain universal example in the form of the domain projection Fungr.�1;B/!B, where
Fungr.�1;B/ is the 1–bicategory of arrows in B and lax squares between them. We then establish

Algebraic & Geometric Topology, Volume 24 (2024)



Cartesian fibrations of .1; 2/–categories 4733

a comparison between the notions of inner/outer (co)cartesian fibrations and an analogous one in the
setting of categories enriched in marked simplicial sets. Such a comparison played an important role
in [6] by implying that the .Z=2�Z=2/–symmetry of the theory of1–bicategories switched between the
four types of fibrations. This allowed one to reduce the Grothendieck–Lurie correspondence in [6] to
the inner cocartesian case, and we expect a similar role to be played in a future generalization of that
correspondence to fibrations.

After finishing the work on the present paper, we became aware of independent work of Abellán García
and Stern [1], which investigates the outer variant of these fibrations using a model category structure on
marked biscaled simplicial sets. By contrast, our approach here consistently covers all four variances, and
also interacts well with the framework we set up in [6], a property we expect would be useful in a future
proof of a complete1–bicategorical Grothendieck–Lurie correspondence for inner/outer (co)cartesian
fibrations. Finally, let us also note that a Grothendieck–Lurie type correspondence for outer cartesian
fibrations is sketched by Gaitsgory and Rozenblyum in [9, Appendix], though the argument relies in
various parts on unproven statements. The extensive treatment of derived algebraic geometry developed
in the body of their volumes [9; 10] based on that appendix makes for a powerful motivation for obtaining
the1–bicategorical Grothendieck–Lurie correspondence rigorously. We also plan to pursue the study of
inner/outer locally (co)cartesian fibrations, which encode lax/oplax 2–functors from an1–bicategory B

to BiCat1, as we defined in [7, Section 3]. This will enable one to compare that last definition with
that of [9; 10], which should also allow for the comparison of the two notions of Gray products, thus
establishing many key unproven statements involving Gray products made in the appendix of loc. cit.
The results of the present work are fundamental preliminaries for all these applications.

Organization of the paper

We begin with a preliminary section where we give pointers to the necessary definitions and results
concerning marked and scaled simplicial sets, and recall the framework of inner/outer (co)cartesian
fibrations set up in [6], which we rename 1–inner/outer (co)cartesian fibration in order to better distinguish
between them and the type of fibrations introduced in the present paper. Next, we introduce the main
concepts of this paper, namely those of left/right inner/outer triangles and the corresponding notions of
fibrations. We establish fundamental results concerning closure properties of inner/outer triangles, as
well as stability properties and a fiberwise criterion to test equivalences of fibrations. Finally, we prove
Theorem 3.0.7, which concerns the domain projection on an1–bicategory and provides a prototypical
example of a 2–outer cartesian fibration.

In Section 4 we briefly recall the theory of (co)cartesian fibrations for ordinary 2–categories, as developed
by Buckley in [5], as a motivation for its enhancement to the setting of categories enriched in marked
simplicial sets. We then provide an extension of the results of [6, Section 3], by showing that enriched
2–inner/outer (co)cartesian fibrations identify via the coherent nerve functor with the respective notion of
fibrations between1–bicategories; see Theorem 4.2.4 for the precise statement.

Algebraic & Geometric Topology, Volume 24 (2024)



4734 Andrea Gagna, Yonatan Harpaz and Edoardo Lanari

Vistas and applications

A theory of fibrations provides the backbone to define symmetric monoidal .1; 2/–categories, as a
suitable class of inner cocartesian fibrations over Fin�. We expect symmetric monoidal1–bicategories to
play a fundamental role as their 1–dimensional counterpart, providing extra expressive power thanks to the
2–dimensional structure. For instance, they can be used to encode the relevant dualities of Ind-coherent
sheaves of (derived) schemes of finite type, as in [9, Chapter 9].

Furthermore, inner/outer (locally) (co)cartesian fibrations are used as a tool in [9, Chapters 11 and 12] to
establish an adjoint theorem that plays a crucial role in extending the quasicoherent sheaves functor from
derived affine schemes to derived prestacks; see [9, Chapter 11, Sections 3.1.1 and 3.2.1].

Finally, the theory of fibrations can be used to define a simplicial version of the notion of (relative) .1; 2/–
operad; see Batanin [2; 3]. Possible applications in this direction come from symplectic geometry, and in
particular from the functoriality of the Fukaya category; see for instance Bottman and Carmeli [4].

Acknowledgements Gagna and Lanari gratefully acknowledge the support of Praemium Academiae
of M Markl and RVO:67985840. Lanari is also grateful to Rune Haugseng and Nick Rozenblyum for
fruitful conversations during his stay at MSRI.

1 Preliminaries

In this section we establish notation and recall some preliminary definitions and results that will be used.

1.1 Marked simplicial sets and enriched categories

Recall that a marked simplicial set is a pair .X;EX / where X is a simplicial set and EX is a collection
of edges in X , called the marked edges, containing all degenerate edges. A map of marked simplicial sets
f W .X;EX /! .Y;EY / is a map of simplicial sets f WX ! Y satisfying f .EX /�EY . When denoting
an explicit marked simplicial set we will often omit the reference to the degenerate edges. For example,
we will write .�n; �f0;1g/ for the marked simplicial set whose underlying simplicial set is the n–simplex
and whose marked edges are all the degenerate edges together with the edge �f0;1g. The category of
marked simplicial sets will be denoted by SetC

�
. It is locally presentable and cartesian closed. For more

background on marked simplicial sets we refer the reader to the comprehensive treatment in [12].

We will denote by SetC
�

–Cat the category of categories in enriched in SetC
�

with respect to the cartesian
product on SetC

�
, to which we will refer as marked simplicial categories. For a marked simplicial category

C and two objects x;y 2 C, we will denote by C.x;y/ 2 SetC
�

the associated mapping marked simplicial
set. By an arrow e W x! y in a marked simplicial category C we will simply mean a vertex e 2 C.x;y/0

in the corresponding mapping object.

Algebraic & Geometric Topology, Volume 24 (2024)



Cartesian fibrations of .1; 2/–categories 4735

We will generally consider SetC
�

–Cat together with its associated Dwyer–Kan model structure; see
[12, Section A.3.2]. In this model structure the weak equivalences are the Dwyer–Kan equivalences,
that is, the maps which are essentially surjective on homotopy categories and induce marked categorical
equivalences on mapping objects. The fibrant objects are the enriched categories C whose mapping
objects C.x;y/ are all fibrant, that is,1–categories marked by their equivalences. The model category
SetC
�

–Cat is then a presentation of the theory of .1; 2/–categories, and is Quillen equivalent to other
known models; see Section 1.2 below.

We say that E 2 SetC
�

–Cat is a Cat1–category if it is fibrant in the Dwyer–Kan model structure, ie if it is
enriched over1–categories, with marking given by equivalences. A fibration of Cat1–categories is a
fibration between fibrant objects in the Dwyer–Kan model structure on SetC

�
–Cat.

1.2 Scaled simplicial sets and 1–bicategories

Definition 1.2.1 [13] A scaled simplicial set is a pair .X;TX / where X is a simplicial set and TX is a
subset of the set of triangles of X , called thin triangles, containing the degenerate ones. A map of scaled
simplicial sets f W .X;TX /! .Y;TY / is a map of simplicial sets f WX ! Y satisfying f .TX /� TY .

We will denote by Set sc
�

the category of scaled simplicial sets. It is locally presentable and cartesian closed.
When denoting an explicit scaled simplicial set we will often omit the reference to the degenerate edges.
For example, we will write .�n; �f0;1;ng/ for the scaled simplicial set whose underlying simplicial set is
the n–simplex and whose thin triangles are all the degenerate triangles together with the triangle �f0;1;ng.

Definition 1.2.2 The set of generating scaled anodyne maps S is the set of maps of scaled simplicial
sets consisting of

(i) the inner horns inclusions

.ƒn
i ; f�

fi�1;i;iC1g
gjƒn

i
/! .�n; f�fi�1;i;iC1g

g/ for n� 2 and 0< i < nI

(ii) the map
.�4;T /! .�4;T [f�f0;3;4g; �f0;1;4gg/;

where
T

def
D f�f0;2;4g; �f1;2;3g; �f0;1;3g; �f1;3;4g; �f0;1;2ggI

(iii) the set of maps�
ƒn

0

a
�f0;1g

�0; f�f0;1;ngg

�
!

�
�n

a
�f0;1g

�0; f�f0;1;ngg

�
for n� 3:

A general map of scaled simplicial set is said to be scaled anodyne if it belongs to the weakly saturated
closure of S .

Definition 1.2.3 An1–bicategory is a scaled simplicial set C which admits extensions along all maps
in S .

Algebraic & Geometric Topology, Volume 24 (2024)



4736 Andrea Gagna, Yonatan Harpaz and Edoardo Lanari

To avoid confusion we point out that scaled simplicial sets as in Definition 1.2.3 are referred to in [13] as
weak1–bicategories, while the term1–bicategory was used to designate the stronger property of being
fibrant in the bicategorical model structure on Set sc

�
constructed in loc. cit., whose cofibrations are the

monomorphisms, and which serves as a model for the theory of .1; 2/–categories. It is related to the
model of marked simplicial categories mentioned above via a Quillen equivalence

Set sc
�

Csc

))

Nsc

ii ? SetC
�

–Cat;

in which the right functor Nsc is called as the scaled coherent nerve. Nonetheless, as we have shown
in [8], the weak and strong notions of1–bicategory in fact coincide. In particular, the fibrant objects in
the bicategorical model structure can be characterized by the extension property of Definition 1.2.3, and
the notion of weak1–bicategory will not be further mentioned in the present paper.

Notation 1.2.4 We will refer to the weak equivalences in the bicategorical model structure as bicategorical
weak equivalences. Since all the objects in the bicategorical model structure are cofibrant, the left Quillen
equivalence Csc preserves and detects weak equivalences.

Notation 1.2.5 In a drawing, every 2–simplex filled by a 2–cell with the equivalence symbol, or simply
filled by an equivalence symbol such as in the triangles

� �

�

' and
� �

�

'

is a thin 2–simplex. As for 3–simplices, we will often draw them as planarized tetrahedra

0

1 2

3

01

12

2302

03

012

023

0

1 2

3

01

12

2313

03

013

123

where an additional equivalence symbol can appear in some of the triangles to indicate their thinness.

Definition 1.2.6 Given a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

'

� 0

x0

x1 x2

x3

f

'

�

we will say that � exhibits � 0 as the left whiskering of � by f .

Algebraic & Geometric Topology, Volume 24 (2024)
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Similarly, a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

�

'

x0

x1 x2

x3

f

� 0

'

will be said to exhibit � 0 as the right whiskering of � by f .

Notation 1.2.7 Let X be a simplicial set. We will denote by X[D .X; deg2.X // the scaled simplicial set
where the thin triangles of X are the degenerate 2–simplices, and by X] D .X;X2/ the scaled simplicial
set where all the triangles of X are thin. The assignments

X 7!X[ and X 7!X]

are left and right adjoint, respectively, to the forgetful functor Set sc
�
! Set�.

Definition 1.2.8 Given a scaled simplicial set X , we define its core to be the simplicial set X th spanned
by those n–simplices of X whose 2–dimensional faces are all thin triangles. The assignment X 7!X th is
then right adjoint to the functor .�/] W Set�! Set sc

�
.

Warning 1.2.9 In [14, Tag 01XA], Lurie uses the term pith in place of core, and denotes it by Pith.C/.

Remark 1.2.10 If C is an1–bicategory then its core Cth is an1–category.

Definition 1.2.11 Let C be an1–bicategory. We will say that an edge in C is invertible if it is invertible
when considered in the 1–category Cth, that is, if its image in the homotopy category of Cth is an
isomorphism. We will sometimes refer to invertible edges in C as equivalences. We will denote by
C'� Cth the subsimplicial set spanned by the invertible edges. Then C' is an1–groupoid (that is, a Kan
complex), which we call the core groupoid of C. It can be considered as the1–groupoid obtained from C

by discarding all noninvertible 1–cells and 2–cells. If X is an arbitrary scaled simplicial set then we will
say that an edge in X is invertible if its image in C is invertible for any bicategorical equivalence X ! C

such that C is an1–bicategory. This does not depend on the choice of the1–bicategory replacement C.

Notation 1.2.12 Let C be an1–bicategory and let x;y 2 C be two vertices. In [13, Section 4.2], Lurie
gives an explicit model for the mapping1-category from x to y in C that we now recall. Let HomC.x;y/

be the marked simplicial set whose n–simplices are given by maps f W�n��1�!C such that fj�n�f0g is
constant on x, fj�n�f1g is constant on y, and the triangle fj�f.i;0/;.i;1/;.j ;1/g is thin for every 0� i � j � n.
An edge f W�1��1 �! C of HomC.x;y/ is marked exactly when the triangle fj�f.0;0/;.1;0/;.1;1/g is thin.
The assumption that C is an1–bicategory implies that the marked simplicial set HomC.x;y/ is fibrant
in the marked categorical model structure, that is, it is an1–category whose marked edges are exactly
the equivalences.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 1.2.13 We will denote by Cat1 the scaled coherent nerve of the (fibrant) marked simplicial
subcategory .SetC

�
/ı � SetC

�
spanned by the fibrant marked simplicial sets. We will refer to Cat1 as the

1–bicategory of1–categories.

Definition 1.2.14 We define BiCat1 to be the scaled coherent nerve of the (large) marked simplicial
category BiCat� whose objects are the1–bicategories and whose mapping marked simplicial set, for
C;D 2 BiCat�, is given by BiCat�.C;D/ WD Funth.C;D/\. Here Funth.C;D/ is the core1–category of
the internal hom scaled simplicial set Fun.C;D/, which happens to be an1–bicategory whenever D is
(see [13, Proposition 3.1.8 and Lemma 4.2.6]), and by .�/\ we mean the associated marked simplicial
set in which the marked arrows are the equivalences. We will refer to BiCat1 as the1–bicategory of
1–bicategories.

Since the scaled coherent nerve functor Nsc is a right Quillen equivalence, it determines an equivalence

(1) .SetC
�

–Cat/1
'
�! BiCatth1

between the1–category associated to the model category SetC
�

–Cat and the core1–category of BiCat1.
In the model SetC

�
–Cat the .Z=2/2–action on the theory of .1; 2/–categories can be realized by an action

of .Z=2/2 on SetC
�

–Cat via model category isomorphisms: the operation C 7! Cop, which inverts only
the direction of 1–morphisms, is realized by setting Cop.x;y/D C.y;x/, while the operation C 7! Cco of
inverting only the direction of 2–morphisms is realized by setting Cco.x;y/D C.x;y/op, where the right-
hand side denotes the operation of taking opposites in marked simplicial sets. Through the equivalence (1)
these two involutions induce a .Z=2/2–action on the core1–category BiCatth1, which we then denote by
the same notation. In particular, we have involutions

.�/op
W BiCatth1! BiCatth1 and .�/co

W BiCatth1! BiCatth1;

the first inverting the direction of 1–morphisms and the second the direction of 2–morphisms.

Remark 1.2.15 The .Z=2/2–action on BiCatth1 does not extend to an action of .Z=2/2 on the 1–
bicategory BiCat1. Instead, it extends to a twisted action, that is, .�/co and .�/op extend to equivalences
of the form

.�/co
W BiCat1

'
�! BiCat1 and .�/op

W BiCat1
'
�! BiCatco

1:

1.3 Join and slice

In [8, Section 2.2] and [6, Section 2.1] we used join and slice constructions in the setting of marked scaled
simplicial sets, that is, simplicial sets X endowed both with a distinguished collection EX �X1 of marked
edges and a distinguished collection TX �X2 of thin triangles. The category of marked scaled simplicial
sets will be denoted by SetC;sc

�
. Though we will need only a limited amount of the generality used in [6],

let us recall the construction and terminology used there for the sake of consistency. Given two marked
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scaled simplicial sets .X;EX ;TX /; .Y;EY ;TY /, their join is the scaled simplicial set .X � Y;TX �Y /

whose underlying simplicial set X � Y is the usual join of simplicial sets and the collection of thin
triangles is

TX �Y WD ŒTX �Y0�[ ŒEX �EY �[ ŒX0 �TY �� ŒX2 �Y0�[ ŒX1 �Y1�[ ŒX0 �Y2�D .X �Y /2:

For a fixed marked scaled simplicial set .Y;EY ;TY /, the functor .X;EX ;TX / 7! .X �Y;EX �Y / is a
colimit-preserving functor from marked scaled simplicial sets to scaled simplicial sets under .Y;TY /,
and admits a right adjoint, that is, an associated slice construction. Given a marked scaled simplicial set
.K;EK ;TK / and a map of scaled simplicial set p W .K;TK /! .Z;TZ /, we will denote by .Z;TZ /=p,
or simply Z=p for brevity, the valued of this right adjoint at p. In particular, Z=p is the marked scaled
simplicial set characterized by the property that maps of marked scaled simplicial sets .X;EX ;TX /!Z=p

correspond to maps of scaled simplicial sets .X �K;TX �K /! .Z;TZ / under .K;EK ;TK /. We then
write Z=p for the underlying scaled simplicial set of Z=p , obtained by forgetting the marking. To avoid
confusion, let us emphasize that the thin triangles in Z=p do depend on the marking EK of K, and not
only on the map of scaled simplicial sets p. Similarly, we denote by Zp= the marked scaled simplicial set
representing the functor

.X;EX ;TX / 7!Map.Set sc
�
/.K;TK /=

..K �X;TK�X /;TX �K ; .Z;TZ //;

and by Zp= its underlying scaled simplicial set.

We will mostly be interested in the case where the target Z is an 1–bicategory C, and K is either
�0 or ]�1, the latter being the 1–simplex endowed with the maximal marking and the (unique) trivial
scaling. In the latter case we will sometimes make use of [6, Notation 2.3.4], which we now recall for the
convenience of the reader.

Notation 1.3.1 Given a scaled simplicial set .Z;TZ / and an edge e W x! y in Z, we will denote by
Z=e] 2 SetC;sc

�
the result of the slice construction above applied to the marked scaled simplicial set ]�1

and the map of scaled simplicial sets �1
[
! .Z;TZ / determined by e. Explicitly, the set of n–simplices

in Z=e] is given by
.Z=e]/n

def
D f˛ W [�n

�
]�1
!Z j ˛j�fnC1;nC2g D eg;

where [�n denotes the n–simplex with minimal marking and minimal scaling. The marked edges of
Z=e] are those which factor through ]�1 � ]�1, and the thin triangles are those which factor through
.�2/[

]
� ]�1, where .�2/[

]
is the 2–simplex with minimal marking and maximal scaling, that is, its unique

nondegenerate triangle is thin. As above, we will write Z=e] for the underlying scaled simplicial set
of Z=e] .

When KD�0 the map p corresponds to a vertex y 2 C, and we will denote the associated marked scaled
slice by C=y . The fiber .C=y/x of the projection C=y ! C over a vertex x of C is then a marked scaled
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simplicial set all of whose triangles are thin. Its underlying marked simplicial set, denoted by HomFC.x;y/
in [7, Section 2.3], is fibrant in the marked categorical model structure, so that one can treat it as an
1–category (marked by its equivalences). As such, it is a model for the mapping 1–category of C;
see [8, Proposition 2.23]. We then write HomFC.x;y/ for the underlying simplicial set of HomFC.x;y/.

1.4 1–Inner/outer (co)cartesian fibrations

The theory of inner and outer (co)cartesian fibrations of 1–bicategories was developed in [6] as an
analogue of the usual notion of (co)cartesian fibrations of1–categories. As in the latter case, such a
fibration encodes the data of a family of1–categories functorially parametrized by the base B, only that
in the1–bicategorical setting there are four different variance flavors for this functorial dependence one
can consider. Specifically, inner (resp. outer) cocartesian fibrations encode a covariant dependence on
the 1–morphisms of B and a covariant (resp. contravariant) dependence on the level of 2–morphisms.
Similarly, inner (resp. outer) cartesian fibrations encode a contravariant dependence on the 1–morphisms
of B and a contravariant (resp. covariant) dependence on the level of 2–morphisms.

Below we recall the main definitions. We refer the reader to loc. cit. for a comprehensive treatment.

Definition 1.4.1 We will say that a map of scaled simplicial sets X ! Y is a weak fibration if it has the
right lifting property with respect to the following types of maps:

(i) All scaled inner horn inclusions of the form

.ƒn
i ; f�

fi�1;i;iC1g
gjƒn

i
/� .�n; f�fi�1;i;iC1g

g/ for n� 2 and 0< i < n:

(ii) The scaled horn inclusions of the form�
ƒn

0

a
�f0;1g

�0; f�f0;1;nggjƒn
0

�
�

�
�n

a
�f0;1g

�0; f�f0;1;ngg

�
for n� 2:

(iii) The scaled horn inclusions of the form�
ƒn

n

a
�fn�1;ng

�0; f�f0;n�1;ng
gjƒn

n

�
�

�
�n

a
�fn�1;ng

�0; f�f0;n�1;ng
g

�
for n� 2:

Remark 1.4.2 The maps appearing in Definition 1.4.1 are all trivial cofibrations with respect to the
bicategorical model structure. This means that any bicategorical fibration E!B is in particular a weak
fibration. For example, if E is an1–bicategory then the terminal map E!�0 is a weak fibration.

Definition 1.4.3 Given a weak fibration f WX ! Y , we will say that f is

� a 1–inner fibration if it detects thin triangles and the underlying map of simplicial sets is an inner
fibration, that is, satisfies the right lifting property with respect to inner horn inclusions;
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� a 1–outer fibration if it detects thin triangles and the underlying map of simplicial sets satisfies the
right lifting property with respect to the inclusions

ƒn
0

a
�f0;1g

�0
��n

a
�f0;1g

�0 and ƒn
n

a
�fn�1;ng

�0
��n

a
�fn�1;ng

�0 for n� 2:

Note that the collection of 1–inner fibrations is closed under the .�/op duality, and the same holds for the
collection of 1–outer fibrations.

Remark 1.4.4 In [8] and [6] we used the terms inner and outer fibration for what we called above 1–inner
and 1–outer fibrations, respectively. The reason for the terminology update is the desire to more clearly
distinguish between these notions and those of 2–inner and 2–outer fibrations introduced in the present
paper. In principle, 1–inner and 1–outer fibrations between1–bicategories are the functors which induce
right and left fibrations, respectively, on the level of mapping1–categories. The notions of 2–inner and
2–outer fibration between 1–bicategories correspond in turn to functors which induce cartesian and
cocartesian fibrations on the level of mapping1–categories, together with the condition that composition
of arrows preserves cocartesian edges; see Section 4.2.

Remark 1.4.5 In [14, Tag 01WF], Lurie uses the term interior fibration to encode what we just defined
as 1–outer fibrations. Our choice in [6] (which already appeared in [8]) is motivated by the intent of
highlighting that special outer horns admit fillers against such maps.

Definition 1.4.6 Let p WX ! Y be a weak fibration. We will say that an edge e W�1!X is p–cartesian
if the dotted lift exists in any diagram of the form

.ƒn
n; f�

f0;n�1;nggjƒn
n
/

�
//

��

.X;TX /

p

��

.�n; f�f0;n�1;ngg/

66

// .Y;TY /

with n� 2 and �j�fn�1;ng D e. We will say that e is p–cocartesian if eop W�1!X op is pop–cartesian.

As in [6, Definition 2.3.1], we will also say that the edge e W�1!X is strongly f –(co)cartesian if it is a
(co)cartesian edge with respect to the underlying map of simplicial sets.

Remark 1.4.7 If p W E! B is weak fibration between1–bicategories, then any equivalence in E is
both p–cartesian and p–cocartesian, see [6, Corollary 2.3.10]. On the other hand, if e W x! y is either a
p–cartesian or p–cocartesian edge in E such that pe is an equivalence in B then e is an equivalence. To
see this, let g W y! x be an inverse to pe in B, equipped with thin triangles of the following forms:

px px

y
pe g

'

py py

px

g pe
'
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If e is p–cartesian then we can lift the right-hand side triangle to a triangle in E of the form

y y

x
g0 e

'

producing in particular a right inverse g0 to e. But then g0 is also p–cartesian by [6, Lemma 2.3.8], and
since pg0 D g is invertible in B we deduce from the same argument that g0 also has a right inverse in E.
It then follows from standard arguments (which can be applied on the level of the core1–category Cth)
that e and g0 are homotopy inverses, and in particular e is an equivalence. If e is assumed instead to be
p–cocartesian then one proceeds in the same manner by lifting the left-hand side triangle to E.

Remark 1.4.8 If p W E!B is a weak fibration and e; e0 W�1! E are two arrows which are equivalent
in Fun.�1;E/, then e is p–cartesian if and only if e0 is. To see this, note that in this case one has both
an equivalence going from e to e0 and an equivalence going from e0 to e, and so it will suffice to show
that if we have an equivalence e ) e0 and e0 is p–cartesian, then e is p–cartesian. Indeed, such an
equivalence is given by a map H W�1

[
��1

[
! E such that H j�1

[
��f0g D e and H j�1

[
��f1g D e0. Since

p–cartesian edges are closed under composition [6, Lemma 2.3.9] and every equivalence is p–cartesian
(Remark 1.4.7), we get that H sends the diagonal edge �f.0;0/;.1;1/g ��1 ��1 to a p–cartesian edge.
Then, from the partial two-out-of-three property for p–cartesian edges of [6, Lemma 2.3.8], we get that
e is p–cartesian.

Passing to opposites, we also obtain from this argument that e is p–cocartesian if and only if e0 is. In
addition, if p is a 1–outer fibration then by [6, Proposition 2.3.7] the collection of strongly p–(co)cartesian
arrows coincides with that of p–(co)cartesian arrows, and hence e is strongly p–(co)cartesian if and only
if e0 is so — alternatively, when p is a 1–outer fibration the statements of [6, Lemmas 2.3.8 and 2.3.9]
also apply to strongly p–(co)cartesian arrows, so that the above argument can simply be carried out
verbatim.

Definition 1.4.9 Let f W X ! Y be a weak fibration of scaled simplicial sets. We will say that f
is a cartesian fibration if for every x 2 X and an edge e W y ! f .x/ in Y there exists a f –cartesian
edge ze W zy ! x such that f .ze/ D e. Dually, we will say that f W X ! Y is a cocartesian fibration if
f op WX op! Y op is a cartesian fibration.

Definition 1.4.10 Let f WX ! Y be a weak fibration of scaled simplicial sets. We will say that f is a
1–inner (resp. 1–outer) cartesian fibration if it is both a 1–inner (resp. 1–outer) fibration and a cartesian
fibration. Dually, we will say that f is a 1–inner (resp. 1–outer) cocartesian fibration if pop is a 1–inner
(resp. 1–outer) cartesian fibration.

Remark 1.4.11 The classes of weak fibrations, 1–inner/outer fibrations and 1–inner/outer (co)cartesian
fibrations are all closed under base change.
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Example 1.4.12 If C is an 1–bicategory, then the projection C=x ! C is an example of a 1–outer
cartesian fibration, where the cartesian edges are exactly those whose corresponding triangle in C is thin
(equivalently, those corresponding to marked edges in C=x); see [6, Corollary 2.4.7]. Similarly, Cx=! C

is a 1–outer cocartesian fibration, with the cocartesian edges again corresponding to thin triangles. More
generally, for any map of scaled simplicial sets p W .K;TK /! C, the associated slice projections C=p! C

and Cp=! C are 1–outer cartesian and cocartesian fibrations, respectively.

Proposition 1.4.13 Any (co)cartesian fibration between1–bicategories is a fibration in the bicategorical
model structure on Set sc

�
.

Proof We prove the cartesian case, from which the cocartesian case can be deduced by passing to
opposites. Let p WE!B be a cartesian fibration between1–bicategories. To show that p is a bicategorical
fibration we need to produce the dotted lift in any square of the form

(2)
K

f
//

��

E

��

L
g
//

>>

B

such that K!L is a bicategorical trivial cofibration of scaled simplicial sets. Since E is an1–bicategory
it is in particular fibrant in the bicategorical model structure (see discussion in Section 1.2), and hence we
can extend f to a map h WL!E. This is not yet a solution to the above lifting problem since the composite
ph might be different from g. The two maps ph and g agree however on K by construction. Since the
bicategorical model structure is cartesian closed and B is fibrant, we may solve the lifting problem

ŒK ��1
[
�
`

K�@�1 ŒL� @�1� //

��

B

L��1
[

66

yielding a natural transformation H WL��1
[
!B from g and ph which is constant on K. Since K!L

is a trivial cofibration and B is fibrant the induced functor Fun.L;B/! Fun.K;B/ is an equivalence of
1–bicategories, and since the arrow in Fun.L;B/ associated to H maps to an identity arrow in Fun.K;B/
we deduce that it must be invertible in Fun.L;B/. In particular, the restriction of H to flg ��1

[
is an

invertible arrow of B for every vertex l 2L. Now since p is a cartesian fibration we can choose for each
l 2 L0 nK0 a p–cartesian lift el W flg ��

1
[
! E of H jflg��1

[
. Then each el is a p–cartesian lift of an

equivalence, and is hence itself an equivalence, see Remark 1.4.7. Let L0 �L be the scaled simplicial
subset whose underlying simplicial set is that of L and whose thin triangles are only those thin triangles
which are contained in K. Applying [8, Proposition 2.38] we may solve the lifting problem

ŒK ��1
[
�
`

K��f1g ŒL
0 ��f1g� //

��

E

��

L0 ��1
[

G

55

H
// B
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to yield a natural transformation G WL0 ��1
[
! E such that Gjflg��1

[
D el for every l 2L0 nK0, where

we point out that the assumption made in [8, Proposition 2.38] that p detects thin triangles is not needed
since L0 does not contain any thin triangles that are not in K, see [8, Remark 2.40]. In particular, G is
a levelwise invertible natural transformation. We wish to show that GjL0��f0g extends to L��f0g, thus
providing a solution to the original lifting problem (2). Indeed, if � W�2

[
!L0 is a triangle that is thin

in L then the composed map
H� W�

2
[ ��

1
[

��id
��!L0 ��1

[

G
�! E

is a levelwise invertible natural transformation between two triangles, one of which is thin (since GjL0��f1g

extends to L��1
[

by construction), and hence the other one is thin as well by [8, Corollary 3.5].

Over a fixed base B, the collection of 1–inner cocartesian fibrations, and cocartesian edges preserving
functors between them, can be organized into an1–bicategory coCarinn.B/. This1–bicategory can be
presented by a suitable model structure on the category of marked simplicial sets over the underlying
simplicial set of B, developed in [13, Section 3.2] using the machinery of categorical patterns. Lurie then
constructs in loc. cit. a straightening-unstraightening Quillen equivalence between this model structure
and the projective model structure on Fun.Csc.B/; SetC

�
/. In [6] we used this to establish the following

1–bicategorical form of the Grothendieck–Lurie correspondence, for both cartesian and cocartesian,
inner and outer flavors of fibrations:

Theorem 1.4.14 [6, Corollary 3.3.3] For an1–bicategory B 2 BiCat1 there are natural equivalences
of1–bicategories

coCarinn.B/' Fun.B;Cat1/; coCarout.B/' Fun.Bco;Cat1/;

Carinn.B/' Fun.Bcoop;Cat1/; Carout.B/' Fun.Bop;Cat1/:

2 2–Inner/outer cartesian fibrations

In this section we will define the principal notion of this paper, namely that of 2–inner/outer (co)cartesian
fibrations, and study their basic properties.

2.1 Inner and outer triangles

Definition 2.1.1 Let p W E!B be a weak fibration of1–bicategories and � W�2! E a triangle.

� We will say that � is left p–inner if the corresponding arrow in E=�.2/ is strongly cartesian with
respect to the projection E=�.2/! E�BB=p�.2/.

� We will say that � is right p–inner if the corresponding arrow in E�.0/= is strongly cocartesian
with respect to the projection E�.0/=! E�BBp�.0/=.

� We will say that � is left p–outer if the corresponding arrow in E=�.2/ is strongly cocartesian with
respect to the projection E=�.2/! E�BB=p�.2/.
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� We will say that � is right p–outer if the corresponding arrow in E�.0/= is strongly cartesian with
respect to the projection E�.0/=! E�BBp�.0/=.

Remark 2.1.2 Unwinding the definitions, we see that � is left p–inner if and only if, for n� 3, every
commutative square of the form

(3)

�fn�2;n�1;ng

ƒn
n�1

E

�n B

�

p

admits a diagonal filler as displayed by the dotted arrow, and right p–inner if the same holds for diagrams
as above where ƒn

n�1
is replaced by ƒn

1
and �fn�2;n�1;ng by �f0;1;2g. On the other hand, � is left

p–outer if and only if every commutative square of the form

(4)

�f0;1;ng

ƒn
0

E

�n B

�

p

admits a diagonal filler as displayed by the dotted arrow, and right p–outer if and only if the same holds
for diagrams as above where ƒn

0
is replaced by ƒn

n and �f0;1;ng by �f0;n�1;ng.

Remark 2.1.3 It follows from Remark 2.1.2 that any thin triangle in E is both left and right p–inner.
On the other hand, any thin triangle whose left leg is p–cocartesian is left p–outer and any thin triangle
whose right leg p–cartesian is right p–outer.

Remark 2.1.3 admits a type of a converse statement:

Proposition 2.1.4 Let p WE!B be a weak fibration of1–bicategories. Suppose � W�2!E is a triangle
such that p.�/ is thin in B. If � is either left or right p–inner then � is thin in E. The same holds if we
assume that � is left p–outer and left-degenerate or that � is right p–outer and right-degenerate.

Proof Write x D �.0/; z D �.2/. Suppose first that � is left p–inner. The condition that p.�/ is thin
means that the arrow determined by p.�/ in B=pz is cartesian with respect to the projection B=pz!B;
see Example 1.4.12. By base change it then follows that the arrow determined by � in E�B B=pz is
cartesian with respect to the projection E�BB=pz! E. At the same time, the arrow determined by � in
E=z is cartesian with respect to the projection E=z! E�BB=pz (by the definition of being left p–inner)
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and so we conclude that the arrow determined by � in E=z is cartesian with respect to the composed
projection E=z ! E. By Example 1.4.12 we then get that � is thin. The dual argument using Ex= and
Bpx= applies to the case where � is right p–inner.

Now suppose that � is left p–outer and left-degenerate. Then p� is left-degenerate and since p� is
assumed thin it follows that the arrow in B=pz determined by p.�/ is invertible (indeed, by Example 1.4.12
it is a cocartesian arrow with respect to the 1–outer fibration B=pz!B lying over an equivalence). Since
� is left-degenerate we then have that the arrow determined by � in E �B B=pz is invertible as well.
Since � is left p–outer it now follows that the arrow in E=z determined by � is a cocartesian lift of an
equivalence along the 1–outer fibration E=z! E�BB=pz , and is hence itself an invertible arrow E=z . As
such, this arrow is in particular cocartesian with respect to the projection Ez=! E (Remark 1.4.7), and so
we conclude that � is thin by Example 1.4.12. The dual argument using Ex= and Bpx= applies to the case
where � is right p–outer and right-degenerate.

Remark 2.1.5 By [6, Lemma 2.3.9 and Lemma 2.3.8] the collection of strongly (co)cartesian arrows in
a given 1–outer fibration is closed under composition and has a partial two-out-of-three property. More
precisely, if C!D is a 1–outer fibration of1–bicategories and

y

x z

g

h

f

'

is a thin triangle in C such that g is strongly cartesian then f is strongly cartesian if and only if h is
strongly cartesian. Dually, if f is strongly cocartesian then g is strongly cocartesian if and only if h is
strongly cocartesian. Now for any weak fibration p W E!B of1–bicategories, both Ex=! E�BBx=

and E=x! E�BB=x are 1–outer fibrations for every x 2 E by Remark 1.4.11 and Example 1.4.12. The
above partial two-out-of-three property for strongly (co)cartesian edges then translates to a certain partial
two-out-of-three property for inner/outer triangles. More precisely, suppose given a 3–simplex � W�3! E

of the form
x0

x1 x2

x3

f

�

�

x0

x1 x2

x3

f

�

�

If � is thin then we may consider � as encoding a thin triangle in E=x3
exhibiting the edge associated to �

as the composite of those associated to � and �, whereas if � is thin then we may consider � as encoding
thin a triangle in Ex0= exhibiting the edge associated to � as the composite of those associated to � and � .
We hence conclude the following:

(i) If � is thin and � is left p–inner then � is left p–inner if and only if � is.

(ii) If � is thin and � is right p–inner then � is right p–inner if and only if � is.
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(iii) If � is thin and � is left p–outer then � is left p–outer if and only if � is.

(iv) If � is thin and � is right p–outer then � is right p–outer if and only if � is.

Combining this with Remark 2.1.3, we conclude that the collection of left p–inner triangles in E is closed
under left whiskering with 1–morphisms and the collection of right p–inner triangles is closed under right
whiskering with 1–morphisms. On the other hand, the collection of left p–outer triangles is only closed
under left whiskering with p–cocartesian 1–morphisms and the collection of right p–outer triangles is
only closed under right whiskering with p–cartesian arrows.

Combining Remark 2.1.5(4) with Remark 2.1.3 we get that if

x0

x1 x2

x3

g

�

'

x0

x1 x2

x3

g

�

'

is a 3–simplex such that g is p–cartesian then � is right p–outer if and only if � is. The “only if” direction
of this implication also holds for right p–inner triangles by Remark 2.1.5(2) and Remark 2.1.3. The
following lemma shows that on the other hand, the “if” direction of this implication actually holds for left
p–inner and left p–outer triangles:

Lemma 2.1.6 Let p W E!B be a weak fibration. Given a 3–simplex � W�3! E as above with g being
p–cartesian , if � is left p–inner or left p–outer then so is � .

Proof Consider the commutative diagram

E=x2
E=g] E=x3

E�BB=px2
E�BB=pg] E�BB=px3

B=pg] B=px3

q2

'

q2;3 q3

'

in which the left-pointing horizontal arrows are trivial fibrations by [6, Lemma 2.4.6]. Now since the
two faces of � leaning on g are thin we have that the 3–simplex � determines an arrow e in E=g] , whose
image in E=x2

is the arrow associated to � . We conclude that � is left p–inner (resp. left p–outer) if and
only if e is q2;3–cartesian (resp. q2;3–cocartesian). Now the image of e in E=x3

is the arrow associated
to � , and since � is assumed to be left p–inner (resp. left p–outer) its associated arrow is q3–cartesian
(resp. q3–cocartesian) in E=x3

. At the same time, the assumption that g is p–cartesian implies that the
vertical external square on the right is homotopy cartesian by [6, Lemma 2.3.6], and since the bottom right
square is also cartesian we get from the pasting lemma that the top right square is homotopy cartesian.
We hence conclude that e is q2;3–cartesian (resp. q2;3–cocartesian), as desired.
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Remark 2.1.7 Inner and outer lifts in a given weak fibration are unique up to equivalence (once they
exist). For example, suppose we have two left p–inner triangles ˛; ˛0 in E whose restrictions to ƒ2

1
and

whose images under p coincide. By Remark 2.1.2 (applied for � 0 and nD 3) we can find a 3–simplex H

of the form
�

� �

�

f

gf

h

D

˛

�

� �

�

f

gh0

h

ˇ

˛0

H

where ˇ lives over a degenerate triangle in B. By Remark 2.1.5 we then have that ˇ is left p–inner
as well, and hence thin by Proposition 2.1.4. We may consider H as exhibiting an equivalence between ˛
and ˛0: its leftmost leg is invertible, the two faces leaning on this leg are thin, and the remaining two faces
are ˛ and ˛0. In a very similar manner, if ˛ and ˛0 are assumed instead to be right p–outer and such that
their restrictions to ƒ2

2
and images under p coincide, then we construct the same type of 3–simplex H ,

only that this time we will take its �f0;1;3g–face to be degenerate and extend H from its right outer horn
using the right p–outerness of ˛. Replacing p with pop W Eop!Bop we get the analogous statements for
the uniqueness of right inner and left outer lifts.

Remark 2.1.8 Let p W E! B be a weak fibration of1–bicategories. For given x; z 2 E, if we base
change the weak fibration E=z! E�BB=pz along the map fxg �BB=pz! E�BB=pz then we get the
map of maximally scaled simplicial sets, whose underlying map of simplicial sets is

pFx;z W HomFE.x; z/! HomFB.px;pz/;

which is a model for the induced map on mapping1–categories by [8, Section 2.3]; see in particular
[8, Proposition 2.23]. Since base change maps detect (co)cartesian edges, it follows that for a triangle
� W�2! E such that � j�f0;1g is degenerate, we have:

� If � is left p–inner then the corresponding edge of HomFE.x; z/ is pFx;z–cartesian.

� If � is left p–outer then the corresponding edge of HomFE.x; z/ is pFx;z–cocartesian.

2.2 2–Inner and 2–outer fibrations

Definition 2.2.1 Let p W E!B be a weak fibration and � W�2!B a triangle.

� We say that � has a sufficient supply of left (resp. right) p–inner lifts if for every � Wƒ2
1
! E lifting

� jƒ2
1

there exists a left (resp. right) p–inner triangle � W�2! E such that p� D � and � jƒ2
1
D �.

� We say that � has a sufficiently supply of left p–outer lifts if for every � W ƒ2
0
! E lifting � jƒ2

0

and such that �j�f0;1g is p–cocartesian, there exists a left p–outer triangle � W�2! E such that
p� D � and � jƒ2

0
D �.
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� We say that � has a sufficient supply of right p–outer lifts if for every � Wƒ2
2
! E lifting � jƒ2

0
and

such that �j�f1;2g is p–cartesian, there exists a right p–outer triangle � W�2! E such that p� D �

and � jƒ2
2
D �.

Definition 2.2.2 A weak fibration of scaled simplicial sets p W E!B is said to be a 2–inner fibration if
every triangle in B admits both a sufficient supply of left p–inner lifts and a sufficient supply of right
p–inner lifts.

We say that p is a 2–inner cartesian fibration if it is both a 2–inner fibration and a cartesian fibration (in
the sense of Definition 1.4.9). We say that p is a 2–inner cocartesian fibration if pop W Eop! Bop is a
2–inner cartesian fibration.

Definition 2.2.3 A weak fibration of scaled simplicial sets p W E!B is said to be a 2–outer fibration if
the following conditions are satisfied:

(i) Every triangle in B admits both a sufficient supply of left p–outer lifts and a sufficient supply of
right p–outer lifts.

(ii) The collection of left p–outer triangles in E is closed under right whiskering and the collection of
right p–outer triangles is closed under left whiskering.

We say that p is a 2–outer cartesian fibration if it is both a 2–outer fibration and a cartesian fibration (in
the sense of Definition 1.4.9). Dually, we say that p is a 2–outer cocartesian fibration if pop W Eop!Bop

is a 2–outer cartesian fibration.

Remark 2.2.4 For the previously introduced classes of fibrations, the class of 2–inner/outer (co)cartesian
fibrations is readily seen to be closed under base change.

Definition 2.2.5 Given 2–inner/outer (co)cartesian fibrations q WD!A and p W E!B, a morphism of
2–inner/outer (co)cartesian fibrations from q to p is a commutative square

D E

A B

q

g

p

f

such that g sends q-(co)cartesian arrows to p–(co)cartesian arrows and left/right p–inner/outer triangles
to left/right q–inner/outer triangles.

Proposition 2.2.6 Let p W E!B be a weak fibration of 1–bicategories. Then:

(i) If p is a 2–inner fibration then the induced map px;y WHomFE.x;y/!HomFB.px;py/ is a cartesian
fibration of 1–categories for every x;y 2 E.

(ii) If p is a 2–outer fibration then the induced map px;y W HomFE.x;y/! HomFB.px;py/ is a cocarte-
sian fibration of 1–categories for every x;y 2 E.
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Proof The condition that p is a weak fibration implies that the induced map E=y ! E�B B=py is a
1–outer fibration (see Remark 1.4.11 and Example 1.4.12), and hence its base change .E=y/x! .B=py/px

is a 1–outer fibration as well, and in particular a weak fibration. This last map is between1–bicategories
in which every triangle is thin, and hence its underlying map of simplicial sets

px;y W HomFE.x;y/! HomFB.px;py/

is an inner fibration between1–categories. We also note that arrows in HomFB.px;py/ correspond to
triangles � W�2!B such that � j�f0;1g is degenerate on px and � j�f2g D py. More precisely, these are
arrows from � j�f0;2g to � j�f1;2g , considered as vertices in HomFB.px;py/.

Now if p is a 2–inner fibration, then for any choice of an edge g W x! y in E lifting � j�f1;2g , there exists
a left p–inner triangle � such that � j�f0;1g is degenerate, � j�f1;2g D g and p� D � . By Remark 2.1.8
the triangle � determines a px;y–cartesian lift with target g of the arrow in HomFB.px;py/ determined
by � . Since g was arbitrary we conclude that px;y is a cartesian fibration. Similarly, if p is a 2–outer
fibration we have that for any choice of an edge g W x! y in E lifting � j�f0;2g , there exists a left p–outer
triangle � such that � j�f0;1g is degenerate, � j�f0;2g D g and p� D � . By Remark 2.1.8, the triangle �
determined a px;y–cocartesian lift with domain g of the arrow in HomFB.px;py/ determined by � , and
so px;y is a now a cocartesian fibration.

2.3 Congruent triangles

Our goal in the present subsection is to establish some preliminary results showing that for most questions
about 2–outer (co)cartesian fibrations between1–bicategories, one may restrict attention to left/right
outer triangles which are left/right-degenerate in the following sense:

Definition 2.3.1 We say that a triangle � W �2 ! X is left degenerate if the edge � j�f0;1g of X is
degenerate. The triangle � is said to be right degenerate if the edge � j�f1;2g is degenerate.

Warning 2.3.2 To avoid confusion, let us emphasize that left (or right) degenerate triangles in the sense
of Definition 2.3.1 are not necessarily themselves degenerate. This terminology is also used in [1].

We will make use of the following construction.

Definition 2.3.3 Let X be a scaled simplicial set. Given a 3–simplex � W�3!X of the form

x0

x1 x2

x3

f

'

�

x0

x1 x2

x3

f

� 0

'

we say that � exhibits � as left congruent to � 0, and � 0 as right congruent to � .
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Lemma 2.3.4 Let p W E!B be a weak fibration and let � and � 0 be two triangles in E such that � is
left congruent to � 0 via a 3–simplex � as in Definition 2.3.3. Then the following holds:

(i) The triangle � is left/right p–inner if and only if � 0 is.

(ii) If f is p–cocartesian and � 0 is left p–outer , then � is left p–outer.

(iii) If f is p–cartesian and � is right p–outer , then � 0 is right p–outer.

(iv) If f is an equivalence , then � is left/right p–outer if and only if � 0 is.

Proof The first three statements follows directly from the partial two-out-of-three properties elaborated
in Remark 2.1.5 together with the fact that thin triangles are always left and right p–inner and that
thin triangles with p–cocartesian left leg are left p–outer, while thin triangles with p–cartesian right
leg are right p–outer; see Remark 2.1.3. To prove the last claim, we note that if f is an equivalence
then the 3–simplex � determines in particular an equivalence between the arrows associated to � and � 0

in Ex0=, where x0D �.0/D �
0.0/, and hence each of these arrows is strongly cartesian with respect to the

projection Ex0=! E�BBpx0= if and only if the other is so; see Remark 1.4.8. Similarly, � determines
an equivalence between the arrows associated to � and � 0 in E=x3

, where x3 D �.2/D �
0.2/, and hence

each of these arrows is strongly cocartesian with respect to the projection E=x3
! E�B B=px3

if and
only if the other is so.

Lemma 2.3.5 Let p W E! B be a weak fibration between 1–bicategories and let � and � 0 be two
triangles in B such that � is left congruent to � 0. Then the following holds:

(i) If the left leg of � 0 admits a sufficient supply of p–cocartesian lifts and � 0 admits a sufficient
supply of left p–outer lifts , then � admits a sufficient supply of left p–outer lifts.

(ii) If the right leg of � admits a sufficient supply of p–cartesian lifts and � admits a sufficient supply
of right p–outer lifts , then � 0 admits a sufficient supply of right p–outer lifts.

Proof We prove the first claim, the second claim then follows by applying the first claim to Eop and
switching the roles of � and � 0. Let � W�3! E be a 3–simplex as above exhibiting � as left congruent
to � 0. In particular, � D �j�f0;2;3g . We need to show that for every pair of arrows

y0

e0;3
//

e0;2
!!

y3

y2

of E lifting � j�f0;2g and � j�f0;3g , respectively, with e0;2 being p–cocartesian, there exists a left p–outer
triangle lifting � :

y0 y3

x2

e0;2

e0;3

e2;3
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Now by assumption, the left leg of � 0 admits a p–cocartesian lift e0;1 W y0! y1. Since � 0 is assumed to
have a sufficient supply of left p–outer lifts, we may now find a left p–outer lift � 0 of � 0, depicted as

y0 y3

y1

e0;3

e0;1 e1;3

At the same time, since �j�f0;1;2g is thin and e0;1 is p–cocartesian the pair e0;1; e0;2 extends to a thin
triangle � W�f0;1;2g! E such that p� D �j�f0;1;2g . Set e1;2 D � j�f1;2g . By the two-out-of-three property
for p–cocartesian edges — eg the dual of [6, Lemma 2.3.8] — we get that e1;2 is p–cocartesian. Since
�j�f1;2;3g is thin we may now lift it to a triangle � W�f1;2;3g! E extending e1;2 and e1;3. The triangles � 0,
� and � now glue to give a map ˛ W ƒ3

1
! E lifting �jƒ3

1
, where ˛ sends �f0;1;2g and �f1;2;3g to thin

triangles by construction. Since p is a weak fibration we may extend ˛ to a map ˇ W�3! E lifting �, so
that � WD ˇj�f0;2;3g gives in particular a triangle lifting � and extending e0;2; e0;3. The 3–simplex ˇ now
exhibits � as left congruent to � 0 and hence � is left p–outer by Lemma 2.3.4(2).

Remark 2.3.6 In the proof of Lemma 2.3.5(1) we have complete freedom in choosing the p–cocartesian
lift e0;1 of � 0j�f0;1g . We may consequently slightly weaken the assumption on � 0: it suffices to assume
that for every choice of lift of e1;3 of � 0j�f1;2g there exists some left p–outer lift � 0 of � 0 such that
� j�f1;2g D e1;3 and � j�f0;1g is p–cartesian (as opposed to assuming this for any choice of p–cocartesian
lift of � j�f0;1g). For example, if � 0 is left degenerate then it suffices to assume that it has a sufficient supply
of left degenerate left p–outer lifts (that is, for each choice of a lift of � 0j�f1;2g). A similar statement
holds for the right p–outer case of Lemma 2.3.5(2).

Lemma 2.3.7 Let B be an 1–bicategory. Then the following holds:

(i) Any triangle � in B is left congruent to a left degenerate triangle � 0.

(ii) Any triangle � 0 in B is right congruent to a right degenerate triangle � .

Proof We prove the first claim. The second claim then follows by applying the first statement to Bop

and switching the roles of � and � 0. Let us depict � as

x0 x3

x2

f

h

g

Let K ��3 be the simplicial subset spanned by the faces �f0;2;3g and �f0;1;2g and let � WK!B be the
map which sends �f0;2;3g to � and �f0;1;2g to the degenerate triangle whose left leg is degenerate and
whose other two legs are f . We may then visualize � as

x0 x3

x1 x2

f

h

f

D
g
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Now since B is an1–bicategory we may extend � to a map �0 Wƒ3
2
!B which sends the triangle�f1;2;3g

to a thin triangle, and then proceed to extend �0 to a full 3–simplex �3!B, which we can depict as

x0

x1 x2

x3

f

gf

h

D

�

x0

x1 x2

x3

f

g

h

� 0

'

This 3–simplex then exhibits � as left congruent to � 0, and � 0 is left degenerate, as desired.

Corollary 2.3.8 Let p W E!B be a weak fibration. If every left degenerate triangle in B has a sufficient
supply of left p–outer lifts , then every triangle in B has a sufficient supply of left p–outer lifts. Similarly ,
if every right degenerate triangle in B has a sufficient supply of right p–outer lifts then every triangle
in B has a sufficient supply of right p–outer lifts.

Proof Combine Lemma 2.3.7 with Lemma 2.3.5 using the fact that any degenerate arrow in B has a
sufficient supply of (co)cartesian lifts.

Using Remark 2.3.6 we may also obtain the following strengthening of Corollary 2.3.8:

Corollary 2.3.9 Let p W E!B be a weak fibration. If every left degenerate triangle in B has a sufficient
supply of left degenerate left p–outer lifts , then every triangle in B has a sufficient supply of left p–outer
lifts. Similarly , if every right degenerate triangle in B has a sufficient supply of right-degenerate right
p–outer lifts then every triangle in B has a sufficient supply of right p–outer lifts.

2.4 Homotopy invariance of fibrations

Our goal in this section is to prove the following homotopy invariance property for (co)cartesian fibrations.

Proposition 2.4.1 Let
D E

A B

q

'

p

'

be a commutative diagram of 1–bicategories whose vertical maps are both bicategorical fibrations and
whose horizontal maps are bicategorical equivalences. Then p is a 2–inner/outer (co)cartesian fibration
if and only if q is. In addition , an edge in D is q–(co)cartesian if and only if its image in E is p–
(co)cartesian , and similarly a triangle in D is left/right q–inner/outer if and only if its image in E is so
with respect to p.
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The proof of Proposition 2.4.1 will require a couple of lemmas, and will be given at the end of the section.

Lemma 2.4.2 Let
D E

A B

q

'

p

'

be a commutative diagram of 1–bicategories whose vertical maps are both bicategorical fibrations and
whose horizontal maps are bicategorical equivalences. Then an arrow in D is q–(co)cartesian if and only
if its image in E is p–(co)cartesian.

Proof By [6, Proposition 2.3.7] we may replace the property of being cartesian with that of being weakly
(co)cartesian. The desired claim now follows from the characterization [6, Proposition 2.3.3] of weakly
(co)cartesian arrows in terms of mapping spaces.

In any weak fibration p W E! B between1–bicategories, the collection of p–(co)cartesian arrows is
closed under equivalences in the arrow category; see [6, Remark 2.3.12]. We now show that a similar
property holds for inner/outer triangles:

Lemma 2.4.3 Let p W E! B be a weak fibration between1–bicategories , and let H W �1
[
��2

[
! E

be levelwise invertible natural transformation between triangles. Then �0 WD H j�f0g��2 is left/right
p–inner/outer if and only if �1 WDH j�f1g��2 is so.

Proof To fix ideas we prove the left inner and left outer cases, the right inner and right outer cases then
follow by replacing p with opposite. In addition, it will suffice to prove that �0 is left p–inner/outer as
soon as �1 is such, since we can get the other direction by replacing H by the inverse equivalence. We
hence assume that �1 is left p–inner/outer.

For i D 0; 1; 2, let �i W�
3!�1 ��2 be the 3–simplex given by

�i.j /D

�
.0; j / if j � i;

.1; j � 1/ if j > i:

We may then write H�0 as

�

� �

�

'

'

�

�

� �

�

'

'

�1

for some triangle � . Since �1 is left p–inner/outer we get from the two-out-of-three properties of
Remark 2.1.5 that � is left p–inner/outer (in the outer case, we also point out that the triangle H�0j�f0;1;3g
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is left p–outer by Remarks 2.1.3 and 1.4.7, since it is thin and its left leg is an equivalence). We now
write H�1 as

�

� �

�

'

'

�

�

� �

�

'

� 0

'

for some triangle � 0. Since � is left p–inner/outer we now get from Points (1) and (4) of Lemma 2.3.4
that � 0 is left p–inner/outer. Finally, we may write H�2 as

�

� �

�

'

�0

'

�

� �

�

'

� 0

'

and so by Lemma 2.1.6 we conclude that �0 is left p–inner/outer as well, as desired.

Proof of Proposition 2.4.1 We first note that since both vertical arrows are fibrant and cofibrant in the
arrow category (with respect to the projective model structure), the existence of a levelwise equivalence
from q to p implies the existence of a levelwise equivalence from p to q. It will hence suffice to show
that if p is a 2–inner/outer (co)cartesian fibration then so is q. Now since weak equivalences between
fibrant objects are preserved under base change along fibrations it follows from the two-out-of-three
property that the map D! E�BA is an equivalence of1–bicategories. The map E0 WD E�BA!A is
then again a 2–inner/outer (co)cartesian fibration (Remark 2.2.4). We now factor the weak equivalence
D
'
�! E0 as a composite

D
'
�!D0

'
�! E0;

where the first map is a trivial cofibration and the second a trivial fibration. Then D0! E0! A is a
composite of a 2–inner/outer (co)cartesian fibration and a trivial fibration of scaled simplicial sets, and is
hence itself again a 2–inner/outer (co)cartesian fibration. On the other hand, since D!D0 is a trivial
cofibration and D!A is in particular a bicategorical fibration we may solve the lifting problem

D

��

D

��

D0 //

>>

A

so that we obtain a retract diagram of arrows

D

q

��

i
// D0

q0

��

r
// D

q

��

A A A
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Now by Lemma 2.4.2 the map D0!D preserves (co)cartesian arrows over A, and hence the fact that D0

has a sufficient supply of q0–(co)cartesian edges implies that D has a sufficient supply of q–(co)cartesian
edges. It is thus left to show that D also has a sufficient supply of left/right q–inner/outer triangles.
Solving a lifting problem of the form

Œ�1 �D�
`
@�1�D0 Œ@�

1 �D� //

��

D0

q0

��

D0 ��1 //

H

66

A

we obtain a natural transformation H over A from i ı r WD0!D0 to the identity idD0 , whose restriction
to D is constant on i . Since i is a trivial cofibration, it is in particular essentially surjective, and so the
natural transformation H is levelwise invertible. We now prove the inner case. Suppose we are given
a triangle � W �2 ! A and a lift � W ƒ2

1
! D of � jƒ2

1
. Since q0 is a left/right inner fibration we may

extend i� to a left/right q0–inner triangle � W�2!D0 lifting � . Evaluating the levelwise invertible natural
transformation H at � we obtain an equivalence i r�) � covering the identity transformation on � and
restricting to the identity transformation from i� to itself on ƒ2

1
. By Lemma 2.4.3 we deduce that i r� is

also q0–inner. Since i admits a retraction and by the explicit description of left/right inner triangles in
terms of lifting properties as in Remark 2.1.2, we then deduce that r� itself is a left/right q–inner extension
of � lifting � . In the outer case, the argument for the existence of a sufficient supply of left/right q–outer
triangles is completely analogous, but one also needs to show the closure of q–outer triangles under
whiskering as required in Definition 2.2.3(2). But this again follows from the corresponding property
for q0 and the fact that i WD!D0 detects left/right outer triangles, as it admits a retraction over A.

2.5 Equivalences of cartesian fibrations

This section is devoted to the proof of a fiberwise criterion to test equivalences of fibrations.

Theorem 2.5.1 Consider a morphism of 2–inner/outer (co)cartesian fibrations (in the sense of Definition
2.2.5) given by a commutative diagram of the form

(5)
E E0

B B0

p

r

q

f

where p and q are 2–inner/outer cartesian fibrations between 1–bicategories. Suppose that f is an
equivalence of 1–bicategories. Then r is an equivalence if and only if the induced map rb W Eb! E0

f .b/

on the level of fibers is an equivalence of 1–bicategories for all b 2B.

Before proving this, we need a preliminary result, generalizing [12, Proposition 2.4.4.2]. Here we make
use of the results from [6] involving the slice1–bicategories associated with marked scaled simplicial
sets; see Section 1.3 and Notation 1.3.1.
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Lemma 2.5.2 Let p W C!D be a 2–inner/outer cartesian fibration of 1–bicategories. Let x;y 2 C be
two objects , xe W px ! py an arrow between their images in D, and e W x0! y a p–cartesian lift of xe.
Then the (homotopy) fiber of the map

� W HomFC.x;y/! HomFD.px;py/

at xe is naturally equivalent to the mapping1–category HomFCpx
.x;x0/, where Cpx denotes the (homotopy)

fiber of p over px.

Proof To begin with we note that the map � is a cartesian (or cocartesian in the outer case) fibration
of 1–categories by Proposition 2.2.6 and hence the homotopy fiber in question is equivalent to the
corresponding strict fiber. We now consider the following diagram

C=e]

'

vv

'

''

C=x0 �D=px0
D=xe] C=y �D=py

D=xe]

where the left diagonal map is a trivial fibration by [6, Lemma 2.4.6] and the right diagonal map is a
trivial fibration by [6, Lemma 2.3.6] and the assumption that e is p–cartesian (and is hence in particular
weakly p–cartesian, in the sense of loc. cit.). Taking fibers over .x; s1.xe// 2 C�D D=xe] we thus get a
zig-zag of equivalences

C=e] �C�DD=xe] f.x; s1.xe//g

'

uu

'

((

HomFCp.x/
.x;x0/] ��1.xe/]

relating the fiber of � over xe to HomFCp.x/
.x;x0/, as desired.

Proof of Theorem 2.5.1 We prove the 2–inner cartesian case. The proof for the remaining three
variance flavors proceeds in exactly the same manner. Let us begin by proving the “only if” direction
of the statement. Every object in the square (5) is fibrant, and the vertical maps are fibrations by
Proposition 1.4.13, therefore every pullback along these maps is automatically a homotopy pullback.
Consider the following commutative cube:

Eb E0
f .b/

E E0

�0 �0

B B0

rb

r

p
qfbg

ff .b/gf
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The front face and the side faces are homotopy pullbacks by assumption, so that the back one must also
be such. Since the bottom horizontal map is an equivalence, the map rb must be an equivalence as well.

Assume now that r is a fiberwise equivalence, and let us prove it is essentially surjective on objects and
fully faithful. To see that r is essentially surjective, factor it as a composite E! E0 �B0 B! E0, where
the first map is essentially surjective since rb W Eb! E0

f b
is essentially surjective for every b 2B, and the

second is essentially surjective because f WB!B0 is so. Concerning full-faithfulness, we consider the
following commutative square of1–categories:

(6)

HomFE.x;y/ HomFE0.rx; ry/

HomFB.px;py/ HomFB0.qrx; qry/

p

r

q

f

Here, we have used the fact that qr D fp, and we denoted the induced action between the1–categories
of morphisms with the same letter as that of the map between the relevant1–bicategories. Now, the
vertical maps are cartesian fibrations of1–categories by Proposition 2.2.6, and the bottom horizontal
map is an equivalence since f is fully faithful. Therefore, the top horizontal map is an equivalence if and
only if the square (6) is a homotopy pullback, which happens precisely if the maps induced between the
(strict) fibers of the vertical maps are equivalences. Thanks to Lemma 2.5.2, the fiber of the left-hand side
map over xe W p.x/! p.y/ coincides with HomFEpx

.x;x0/ for some p–cartesian 1–simplex e W x0! y that
lifts xe. Since r is assumed to preserve cartesian edges we have that re W rx0! ry is a q–cartesian lift
of f xe, and so the fiber of q over f .xe/ is given by HomF

E0qr x
.rx; rx0/. We can now finish the proof by

observing that the induced map

HomFEpx
.x;x0/! HomF

E0qr x
.rx; rx0/

is an equivalence of 1–categories, since Epx ! E0
fpx
' E0qrx is assumed to be an equivalence of

1–bicategories.

3 The domain projection

In this section we analyze a key example of a 2–outer cartesian fibration: the domain projection
d WFungr.�1;C/!C induced by the inclusion f0g ,!�1, where Fungr.�1;C/ is the1–bicategory whose
objects are the arrows in C and whose morphisms are the lax-commutative squares. It is characterized by
the property that for every scaled simplicial set .K;TK /, maps .K;TK /! Fungr.�1;C/ correspond to
maps of scaled simplicial sets

�1
[ ˝ .K;TK /! C;

where ˝ denotes the Gray product of scaled simplicial sets [7, Definition 2.1]. Explicitly, �1
[
˝ .K;TK /

is the scaled simplicial set whose underlying simplicial set is the cartesian product �1 �K, and where a
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triangle � W�2!�1 �K is thin if and only if its image in K belongs to TK and either � j�f0;1g maps to
a degenerate edge in K or � j�f1;2g maps to a degenerate edge in �1. Here, we have used the fact that all
the triangles in �1

[
are thin, otherwise the additional condition of projecting to a thin triangle in the first

factor would have been necessary.

Remark 3.0.1 By the main result of [7] the functor �˝� is a left Quillen bifunctor. It then follows
that for any1–bicategory C, the domain projection

d W Fungr.�1;C/! C

is a bicategorical fibration of1–bicategories, and in particular a weak fibration; see Remark 1.4.2.

Our argument to show that the domain fibration is a 2–outer cartesian fibrations is based on the following
extension lemma.

Lemma 3.0.2 Let C be an 1–bicategory, and for n� 2 suppose we are given an extension problem of
the form �

Œ�1 �ƒn
n�

a
@�1�ƒn

n

Œ@�1
��n�;T 0

�
��

�
// C

.�1 ��n;T /

66

where

T D f�f.0;n�1/;.0;n/;.1;n/g; �f.0;0/;.1;n�1/;.1;n/g
g

and T 0 is its restriction to the top left corner. If � sends �f1g ��fn�1;ng to an invertible edge in C, then
the dotted extension exists.

Proof We define a sequence of scaled maps

�1; : : : ; �n�1 W .�
n; �f0;n�1;ng/! .�1

��n;T /

in the following manner:

�i.j /D

�
.0; j / if j < i;

.1; j / if j � i:

Set K0 WD
�
Œ�1�ƒn

n�
`
@�1�ƒn

n
Œ@�1��n�;T 0

�
and Ki WDKi�1[�i for 1� i � n�1, so that for every

1� i � n� 1 we have pushout diagrams of the form

.ƒn
n; f�

f0;n�1;ngg/ Ki�1

.�n; f�f0;n�1;ngg/ Ki
�i
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These all have the property that the edge �fn�1;ng is mapped to an equivalence in C. All these maps
admit lifts against C by [6, Corollary 2.3.10], and so we can extend the map � to a map �0 WKn�1! C.
Consider now the .nC 1/–simplices �0; : : : ; �n W�

nC1!�1 ��n defined as

�i.j /D

�
.0; j / if j � i;

.1; j � 1/ if j > i:

Observe that �0; : : : ; �n�1 can be promoted to maps

.�nC1; f�f0;n;nC1g
g/! .�1

��n;T /

whereas �n can be promoted to a map

.�nC1; f�fn�1;n;nC1g
g/! .�1

��n;T /

We now set KnCk DKn�1Ck [ �n�k for 0 � k � n, and observe that K2n D .�
1 ��n;T /. We then

have a pushout diagram of the form

.ƒnC1
n ; f�fn�1;n;nC1ggj

ƒ
nC1
n

/ Kn�1

.�nC1; f�fn�1;n;nC1gg/ Kn
�n

and, for every k > 0, there are pushout diagrams of the form

.ƒnC1
nC1

; f�f0;n;nC1gg/ Kn�1Ck

.�nC1; f�f0;n;nC1gg/ KnCk
�n�k

where the corresponding image of the edge �fn;nC1g in C is an equivalence. As before, this is enough to
prove the existence of an extension to C.

Remark 3.0.3 Applying Lemma 3.0.2 to Cop one obtains the following dual form of its statement, which
we spell out for the convenience of the reader: suppose given an extension problem of the form�

Œ�1 �ƒn
0
�
a

@�1�ƒn
0

Œ@�1
��n�;T 0

�

��

�
// C

.�1 ��n;T /

66

where
T D f�f.0;0/;.1;0/;.1;1/g; �f.0;0/;.0;1/;.1;n/gg

and T 0 is its restriction to the top left corner. If � sends �f1g ��f0;1g to an invertible edge in C then the
dotted lift exists.
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We now consider the question of cartesian 1–simplices for the domain projection.

Lemma 3.0.4 Let C be an 1–bicategory and consider the domain projection d W Fungr.�1;C/ ! C

as above. Then a 1–simplex ˛ W �1 ! Fungr.�1;C/ is d–cartesian if its transpose y̨ W �1 ˝�1 ! C

corresponds to a commutative square (ie both its nondegenerate triangles are thin) with the side y̨.f1g��1/

being an equivalence in C. Pictorially, y̨ looks like

a x

b y

kg '

l

'

'

Proof Consider a 1–simplex ˛ W�1! Fungr.�1;C/, as described above. Given n� 2 and a solid square
of the form

�fn�1;ng

.ƒn
n; ƒ

n
n\�

f0;n�1;ng/ Fungr.�1;C/

.�n; �f0;n�1;ng/ C

˛

d

we have to exhibit a filler as indicated by the dotted arrow. Note that this lifting problem corresponds to
one of the form

(7)

�
�1 �ƒn

n

a
�f0g�ƒn

n

�f0g ��n;T 0
�

C

.�1 ��n;T /

f

in which �1 ��fn�1;ng is mapped to y̨ under the adjunction �1˝� a Fungr.�1;�/. Here T is the
union of the triangles which are thin in �1

[
˝ .�n; f�f0;n�1;ngg/, together with �f.0;n�1/;.0;n/;.1;n/g, and

T 0 � T is the subset of those triangles which are contained in the domain of the vertical arrow in (7).
Since the edge �f1g ��fn�1;ng maps to an invertible edge of C by our assumption on ˛ and T contains
�f1g ��f0;n�1;ng we can extend the map f in (7) to a map

f 0 W
�
Œ�1
�ƒn

n�
a

@�1�ƒn
n

Œ@�1
��n�;T 00

�
! C;

where T 00 is the intersection of T with the triangles in Œ�1 � ƒn
n�
`
@�1�ƒn

n
Œ@�1 � �n�. Let S D

T 00[f�f.0;n�1/;.0;n/;.1;n/g; �f.0;0/;.1;n�1/;.1;n/gg. Then S is contained in T and by Lemma 3.0.2 we may
extend f 0 to .�1��n;S/. When n�3 we have that T DT 00DS and so the proof is complete. In the case
nD2, one needs to additionally verify that the resulting extension sends�f.0;0/;.1;0/;.1;1/g to a thin triangle.
Indeed, this follows from [8, Proposition 3.4] since S contains �f.0;0/;.1;1/;.1;2/g; �f.0;0/;.1;0/;.1;2/g and
�f.1;0/;.1;1/;.1;2/g, and �f.1;1/;.1;2/g maps to an invertible edge in C by assumption.
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Lemma 3.0.5 The domain projection

d W Fungr.�1;C/! C

of an1–bicategory C has enough cartesian edges.

Proof A lifting problem of the form

�f1g Fungr.�1;C/

�1 C

h

d

f

corresponds to the following data in C:
x

y z

f

h

This can be extended to a 1–simplex in Fungr.�1;C/, depicted as

x z

y z

f

hf

hf

h

'

D

where the bottom triangle is given by an extension along ƒ2
1
!�2

]
and the upper triangle is degenerate.

Such a 1–simplex is then d–cartesian by Lemma 3.0.4.

Lemma 3.0.6 Let ˛ W�2! Fungr.�1;C/ be a triangle with transpose y̨ W�1˝�2! C.

(i) If y̨j�f1g��2 is thin and ˛j�f1;2g satisfies the assumption of Lemma 3.0.4 (so that it is d–cartesian
by that lemma), then ˛ is right d–outer.

(ii) If y̨j�f1g��2 is thin and ˛j�f0;1g is invertible , then ˛ is left d–outer.

Proof We first prove (i). By Remark 2.1.2 we need to consider a lifting problem of the form

�
f0;n�1;ng

[

.ƒn
n/[ Fungr.�1;C/

�n
[

C

˛

d

for n� 3, where we have to exhibit a diagonal filler as indicated by the dotted arrow.
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We obtain an equivalent lifting problem of the form�
�1 �ƒn

n

a
�f0g�ƒn

n

�f0g ��n;T
�

C

.�1 ��n;T /

f

where T is the set of thin triangles in �1
[
˝�n

[
together with �f.0;n�1/;.0;n/;.1;n/g and �f1g��f0;n�1;ng

(all of whom are contained in the top left corner, since n� 3). Our assumption on ˛ implies that the edge
�f1g ��fn�1;ng is invertible in C and so by [6, Corollary 2.3.10] we can extend the map f to a map

f 0 W
�
�1
�ƒn

n

a
@�1�ƒn

n

@�1
��n;T

�
! C:

Now since T contains �f.0;0/;.1;0/;.1;n�1/g, �f.0;0/;.1;0/;.1;n/g and �f1g ��f0;n�1;ng and C is an 1–
bicategory, the map f 0 must also send �f.0;0/;.1;n�1/;.1;n/g to a thin triangle; see [13, Remark 3.1.4]. We
may consequently apply Lemma 3.0.2 in order to extend f 0 to all of .�1 ��n;T /, as desired.

We now prove (ii). By Remark 2.1.2 we now need to consider a lifting problem of the form

�
f0;1;ng

[

.ƒn
0
/[ Fungr.�1;C/

�n
[

C

˛

d

with n� 3. We obtain an equivalent lifting problem of the form�
�1 �ƒn

0

a
�f0g�ƒn

0

�f0g ��n;T
�

C

.�1 ��n;T /

f

where T is the set of thin triangles in�1
[
˝�n

[
together with�f.0;0/;.0;1/;.1;1/g and�f1g��f0;1;ng. Since

the image of the edge �f1g ��f0;1g is invertible in C we can extend the map f to a map

f 0 W
�
Œ�1
�ƒn

0�
a

@�1�ƒn
0

Œ@�1
��n�;T

�
! C:

Now since T contains�f.0;0/;.1;0/;.1;1/g,�f.0;0/;.1;0/;.1;n/g and�f1g��f0;1;ng and C is an1–bicategory,
the map f 0 must also send �f.0;0/;.1;1/;.1;n/g to a thin triangle. Since f 0 also sends �f.0;0/;.0;1/;.1;1/g and
�f.0;1/;.1;1/;.1;n/g to thin triangles, the same holds for �f.0;0/;.0;1/;.1;n/g. We may consequently apply the
dual form of Lemma 3.0.2 (see Remark 3.0.3), in order to extend f 0 to all of .�1��n;T /, as desired.
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Finally, we are ready to prove the main result of this section.

Theorem 3.0.7 Given an 1–bicategory C, the domain projection

d W Fungr.�1;C/! C

is a 2–outer cartesian fibration , whose p–cartesian 1–simplices are those described in Lemma 3.0.4. In
addition , the right p–outer triangles whose right legs are cartesian are those described in Lemma 3.0.6(1),
and the left p–outer triangles whose left leg is invertible are those described in Lemma 3.0.6(2).

Proof By Remark 3.0.1, the map d is a weak fibration and by Lemma 3.0.4 it has a sufficient supply of
d–cartesian lifts for 1–morphisms. By the essential uniqueness of d–cartesian lifts we deduce that all
d–cartesian arrows are of the form described in Lemma 3.0.4.

We now show that the triangles in C have a sufficient supply of right p–outer lifts. This translates into a
lifting problem of the form

ƒ2
2

Fungr.�1;C/

�2 C

�

d



with �j�f1;2g a d–cartesian edge, and so (as argued just above) of the form described in Lemma 3.0.4.
This means in particular that �j�f1;2g corresponds to a map �1

[
˝�

f1;2g

[
! C which sends both triangles

to thin triangles and the edge �f1g ��f1;2g to an invertible edge in C. Solving this lifting problem in a
way that produces a triangle of Fungr.�1;C/ of the form described in Lemma 3.0.6(1) then corresponds
to solving a lifting problem of the form

(8)

�
�1 �ƒ2

2

a
�f0g�ƒ2

2

�f0g ��2;T 0
�

C

.�1 ��2;T /

y�[

where T 0 is obtained by intersection from T , which in turn contains all triangles which are thin in�1
[
˝�2

[

as well as �f1g ��2 and �f.0;1/;.0;2/;.1;2/g, and y� sends �f1g ��f1;2g to an invertible edge in C. Since
C is an1–bicategory we may then extend y�[  to a map

g W
�
�1
�ƒ2

2

a
@�1�ƒ2

2

@�1
��2;T 00

�
! C;

where T 00 is obtained from T by intersection. Applying Lemma 3.0.2 we may extend g to a map
g0 W .�1 ��2;T 00 [ f�f.0;0/;.1;1/;.1;2/gg/! C. We then observe that there is exactly one triangle in T

which is not in T 00[f�f.0;0/;.1;1/;.1;2/gg, and that is the triangle�f.0;0/;.1;0/;.1;1/g. But this triangle is sent
by g to a thin triangle in C by [8, Proposition 3.4], since T contains �f.0;0/;.1;1/;.1;2/g, �f.0;0/;.1;0/;.1;2/g

and �f.1;0/;.1;1/;.1;2/g, and g sends �f1g ��f1;2g to an invertible edge.
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We now show that the triangles in C have a sufficient supply of left p–outer lifts. Invoking Corollary 2.3.8,
it will suffice to test this only for triangles in B whose left leg is degenerate. This then translates into a
lifting problem of the form

ƒ2
0

Fungr.�1;C/

�2 C

�

d



with �j�f0;1g a d–cocartesian lift of an identity, and hence an invertible edge of Fungr.�1;C/. This means
in particular that �j�f0;1g corresponds to a map �1

[
˝�

f0;1g

[
! C which sends both triangles to thin

triangles and the edges �f0g ��f0;1g and �f1g ��f0;1g to invertible edges in C. Solving this lifting
problem in a way that produces a triangle of Fungr.�1;C/ of the form described in Lemma 3.0.6(2) then
corresponds to solving a lifting problem of the form

(9)

�
�1 �ƒ2

0

a
�f0g�ƒ2

0

�f0g ��2;T 0
�

C

.�1 ��2;T /

y�[

where T 0 is obtained by intersection from T , which in turn contains all triangles which are thin in�1
[
˝�2

[

as well as the triangles �f1g��2 and �f.0;0/;.0;1/;.1;1/g, and y� sends �f"g��f0;1g to an invertible edge
in C for "D 0; 1. Since C is an1–bicategory we may then extend y�[  to a map

g W
�
�1
�ƒ2

0

a
@�1�ƒ2

0

@�1
��2;T 00

�
! C;

where T 00 is obtained from T by intersection. Applying the dual of Lemma 3.0.2 (Remark 3.0.3) we
may extend g to a map g0 W .�1 ��2;T 00 [ f�f.0;0/;.0;1/;.1;2/gg/! C. We then observe that there are
exactly two triangles in T which are not in T 00, namely, �f.0;0/;.1;1/;.1;2/g and �f.0;1/;.1;1/;.1;2/g. To
finish the proof we will show that these two triangles are sent by g to thin triangles in C. For the first
one, we note that since g sends �f.0;0/;.1;0/;.1;1/g, �f.0;0/;.1;0/;.1;2/g and �f1g ��2 to thin triangles,
then it must also send �f.0;0/;.1;1/;.1;2/g to a thin triangle. Then, since g also sends �f.0;0/;.0;1/;.1;1/g

and �f.0;0/;.0;1/;.1;2/g to thin triangles, and the edge �f.0;0/;.0;1/g to an equivalence, then it must send
�f.0;1/;.1;1/;.1;2/g to a thin triangle as well; see [8, Proposition 3.4].

Having provided sufficiently many left and right d–outer lifts of the form appearing in Lemma 3.0.6,
the uniqueness of d–outer lifts, as expressed for example in Remark 2.1.7, shows that all right d–outer
triangles whose right leg is cartesian are of the form described in 3.0.6(1), and all left d–outer triangles
whose left leg is invertible are of the form described in 3.0.6(2). To show that the collection of right
(resp. left) d–outer triangles is closed under right (resp. left) whiskering, it will hence suffice to show
that the collection of triangles ˛ W�2! Fungr.�1;C/ whose adjoint y̨ W�1˝�2! C sends �f1g ��2
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to a thin triangle, is closed under both left and right whiskering. Indeed, this is exactly the preimage in
Fungr.�1;C/ under the codomain projection of the collection of thin triangles in C, and the collection of
thin triangles is closed under whiskering from both sides.

Remark 3.0.8 Passing to opposites, Theorem 3.0.7 implies that the codomain projection

cod W Funopgr.�1;C/! C

is 2–outer cocartesian fibration, whose cocartesian arrows and outer triangles admit similar descriptions.
Note that we have switched not only from domain to codomain but also from Fungr to Funopgr. If we only
switch from domain to codomain then the resulting projection

cod W Fungr.�1;C/! C

is a 2–inner cocartesian fibration. This claim does not formally follow from the outer statement, but
its proof can be obtained using a completely analogous argument, replacing the key extension result of
Lemma 3.0.2 with one involving the pushout product of @�1!�1 and a suitable inner horn inclusion.
Similarly, the projection

d W Funopgr.�1;C/! C

is a 2–inner cartesian fibration.

4 Enriched cartesian fibrations

In this section we define the notion of cartesian fibration in the context of marked simplicial categories.
The definition is motivated by the one given for 2–categories by Buckley in [5], which we recall in
Section 4.1.

4.1 Recollection: fibrations of 2–categories

Fibrations of 2–categories were initially introduced by Hermida [11]. A suitably modified definition was
later given by Buckley [5], who also proved an (un)straightening-type result. In what follows we give a
concise summary of the main results of loc. cit., to be considered as a motivation for the discussion of
simplicial categories in Section 4.2.

Definition 4.1.1 Let p W E!B be a 2–functor between 2–categories.

� A 1–cell f W x! y in E is p–cartesian if the following square is a pullback of categories for every
a 2 E:

E.a;x/ E.a;y/

B.pa;px/ B.pa;py/

f ı�

pa;x pa;y

p.f /ı�

� A 2–cell ˛ W f ) g W x! y in E is p–cartesian if it is cartesian with respect to the induced functor
px;y W E.x;y/!B.px;py/.
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The notion of cartesian fibration for 2–categories amounts to the existence of enough cartesian lifts, as in
the 1–dimensional case, but it also requires an additional property: cartesian 2–cells must be closed under
horizontal composition.

Definition 4.1.2 A 2–functor between 2–categories p W E!B is called a 2–fibration if it satisfies the
following properties:

(i) For every object e 2 E and every 1–cell f W b! p.e/ there exists a p–cartesian 1–cell h W a! e

in E such that p.h/D f .

(ii) For every pair of objects x;y in E, the map px;y W E.x;y/!B.px;py/ is a cartesian fibration of
categories.

(iii) Cartesian 2–cells are closed under horizontal composition, ie for every triple of objects .x;y; z/
in E, the functor ıx;y;z W E.y; z/ � E.x;y/ ! E.x; z/ sends py;z � px;y–cartesian 1–cells to
px;z–cartesian ones.

Replacing cartesian lifts for 1–cells by cocartesian lifts and similarly for 2–cells one may obtain four
different variants of fibration, corresponding to the four possible types of variance for pseudofunctors
B! 2–Cat.

Remark 4.1.3 Condition (iii) of Definition 4.1.2 is equivalent to requiring that given 1–cells in E of the
form f W w! x and g W y! z, the whiskering functors

�ıf WE.x;y/! E.w;y/ and g ı�W E.x;y/! E.x; z/

preserve cartesian 2–cells. This follows from the fact that horizontal composition can be obtained from
vertical composition and whiskering composition.

The following result appears as Theorem 2.2.11 in [5].

Theorem 4.1.4 There exists an equivalence of 3–categories between 2Fibs.B/ and ŒBop
co ; 2–Cat�, the

former being the 3–category of fibrations equipped with a choice of cartesian lifts compatible with
composition , while the latter is the 3–category of (strict) 2–functors into 2–Cat, natural transformations
and modifications.

In the same paper, the author proves several weakenings of this statement, by looking at fibrations without
a choice of lifts (which correspond to pseudofunctors) and fibrations of bicategories.

4.2 Cartesian fibrations of enriched categories

We now consider cartesian fibrations in the setting of Cat1–categories. All definitions and statements
can be dualized to the case of cocartesian fibrations by replacing all Cat1–categories by their opposites.
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Definition 4.2.1 Let p W E!B be a map of marked simplicial categories. A morphism h 2 E.e0; e/0 is
said to be p–cartesian if the induced square

E.a; e0/ E.a; e/

B.pa;pe0/ B.pa;pe/

hı�

pa;e0 pa;e

p.h/ı�

is a homotopy pullback for the model structure on marked simplicial sets.

Definition 4.2.2 Let p W E!B be a fibration of Cat1–categories. We say that p is an enriched cartesian
fibration if for any e 2 E and any morphism f 2 B.a;p.e//0 there exists a p–cartesian morphism
h 2 E.e0; e/0, for some e0 2 E, such that p.h/D f .

Definition 4.2.3 Let p W E!B be a fibration of Cat1–categories. We say that p is an enriched 2–inner
(resp. 2–outer) fibration if it satisfies the following properties:

(i) For every pair of objects .x;y/ in E, the map px;y W E.x;y/!B.px;py/ is a cartesian (resp. co-
cartesian) fibration on the level of underlying simplicial sets.

(ii) For every pair of 0–simplices u W y! z and v W w! x in E, the commutative squares

E.x;y/ E.x; z/ E.x;y/ E.w;y/

B.px;py/ B.px;pz/ B.px;py/ B.pw;py/

uı�

px;y px;z

�ıv

px;y pw;y

p.u/ı� �ıp.v/

are morphisms of cartesian (resp. cocartesian) fibrations, ie the top horizontal maps in both squares
preserve cartesian (resp. cocartesian) edges.

We will say that p is an enriched 2–inner (resp. 2–outer) cartesian fibration if it is an enriched 2–inner
(resp. 2–outer) fibration and an enriched cartesian fibration.

Our goal in the present section is to prove the following:

Theorem 4.2.4 Let p W E!B be a fibration of Cat1–categories. Then p W E!B is an enriched 2–inner
(resp. 2–outer) cartesian fibration in the sense of Definition 4.2.2 if and only if

Nsc.p/ W NscE! NscB

is a 2–inner (resp. 2–outer) cartesian fibration of 1–bicategories.

The remainder of this section is devoted to the proof of Theorem 4.2.4.
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Definition 4.2.5 We will denote by �n D .�1/n the simplicial n–cube and by @�n its boundary, so that
the inclusion @�n ��n can be identified with the pushout-product of @�1 ,!�1 with itself n times.
For i D 1; : : : ; n we denote by un;i

" ,!�n the iterated pushout-product

Œ@�1 ,!�1�� � � ��Œ�f"g ,!�1�� � � ��Œ@�1 ,!�1�;

where " 2 f0; 1g and Œ�f"g ,!�1� appears in the i th factor.

Lurie introduces in [12, Definition 3.1.1.1] the class of cartesian anodyne morphisms (called marked
anodyne in loc. cit.), which is the smallest weakly saturated class generated by a certain set of monomor-
phisms of marked simplicial sets listed in [12, Definition 3.1.1.1], which contain, in particular, the
collection of all (minimally marked) inner horn inclusions, as well as the marked outer horn inclusion
.ƒn

n; f�
fn�1;ngg/ ,! .�n; f�fn�1;ngg/. Dually, we shall call cocartesian anodyne maps the smallest

weakly saturated class generated by the opposites of those maps (or simply those maps whose opposites
are cartesian anodyne). By [12, Proposition 3.1.2.3], (co)cartesian anodyne maps are closed under
pushout-product with monomorphisms.

Lemma 4.2.6 For " 2 f0; 1g, n � 1 and 1 � i � n let Ei
" � .�n/1 be the set of all degenerate edges

together with the edge ."; : : : ; "/��1 � ."; : : : ; "/, where �1 sits in the i th place. Then the inclusion
of marked simplicial sets .un;i

1
;Ei

1
/ ,! .�n;Ei

1
/ is cartesian anodyne , and the inclusion of marked

simplicial sets .un;i
0
;Ei

0
/ ,! .�n;Ei

0
/ is cocartesian anodyne.

Proof We note that the "D 0 and "D 1 statements imply each other by passing to opposites. We hence
just prove the cartesian case. Ignoring the order of factors, we may identify the map un;i

1
,!�n with the

box product of @�n�1 ,!�n�1 and �f1g ,!�1. The nondegenerate m–simplices of �n�1 which are
not in @�n�1 correspond to maps of posets Œm�! Œ1�n�1 whose projection to each factor Œ1� is surjective.
It then follows that the initial vertex of such an m–simplex must be .0; : : : ; 0/, and the final vertex must
be .1; : : : ; 1/. Adding these nondegenerate simplices one by one in an order that respects dimensions
(that is, first all the 1–dimensional ones, then all the 2–dimensional ones, etc, up to dimension n� 1)
results in a factorization of the map .un;i

1
;Ei

1
/ ,! .�n;Ei

1
/ into a finite composite of pushouts of maps

of the form �
�f1g ��m

a
�f1g�@�m

�1
� @�m; f�1

��fmgg
�
! .�1

��m; f�1
��fmgg/

for m� 1. It will hence suffice to show that each of these maps is cartesian anodyne. For `D 0; : : : ;m, let

�` W�
mC1
!�1

��m

be the map given on vertices by the formula

�`.j /D

�
.0; j / if j � `;

.1; j � 1/ if j > `;
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and for k D 0; : : : ;mC 1 let Zk � .�
1 ��m; f�1 ��fmgg/ be the marked simplicial subset obtained

as the union of Œ�1 � @�m�
`
�f1g�@�m Œ�f1g ��m� and the simplices �` for 0� ` < k. Set

Z0
def
D

�
Œ�1
� @�m�

a
�f1g�@�m

Œ�f1g ��m�; f�1
��fmgg

�
:

We then have an ascending filtration of marked simplicial sets

Z0 �Z1 � � � � �ZmC1 D .�
1
��m; f�1

��fmgg/:

For each k D 0; : : : ;m� 1 we then find a pushout square of marked simplicial sets

.ƒmC1
kC1

/[ //

��

Zk

��

.�mC1/[ // ZkC1

so that Zk!ZkC1 is inner anodyne, and in particular cartesian anodyne. Finally, in the last step k Dm

we find a pushout square of the form

.ƒmC1
mC1

; f�fm;mC1gg/ //

��

Zm

��

.�mC1; f�fm;mC1gg/ // ZmC1

so that Zm!ZmC1 is cartesian anodyne, as desired.

We recall the comparison of the notion of (co)cartesian 1–cells between the enriched and scaled models:

Proposition 4.2.7 [6, Proposition 3.1.3] Given a fibration p W E!B of Cat1–categories , an arrow in
E is p–cartesian if and only if the corresponding 1–simplex of NscE is Nsc.p/–cartesian.

Since the morphisms in a given Cat1–category are in bijection with the edges of its scaled coherent
nerve we readily obtain:

Corollary 4.2.8 A fibration p WE!B of Cat1–categories is cartesian if and only if Nsc.p/ is a cartesian
fibration of 1–bicategories (in the sense of Definition 1.4.9).

We now consider the analogous question on the level of triangles.

Remark 4.2.9 Let E be a Cat1–category and consider two 2–simplices ˛ and ˛0 of NscE. If a 3–simplex �
of NscE exhibits ˛ as left-congruent to ˛0 (cf Definition 2.3.3) in the form

x

x y

z

g

hg

f

D

˛

x

x y

z

g

hi

f

˛0

'
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then the 2–simplex �� of E.x; z/ corresponding to � goes from the 1–simplex ˛� of E.x; z/ corresponding
to ˛ to the composition of the 1–simplex .˛0/� corresponding to ˛0 followed by an equivalence. Hence, in
the arrow1–category of E.x; z/ the 3–simplex � induces an equivalence between ˛� and the composition
of .˛0/� with an arrow of E.x; z/ which is an equivalence.

Lemma 4.2.10 Let p W E!B be a fibration of Cat1–categories. Then a triangle ˛ W�2! NscE of the
form

x

y

z

f g

h

˛

is left Nsc.p/–inner if and only if the corresponding 1–simplex ˛� W h! gf in E.x; z/ is px;z–cartesian
and maps to a px0;z–cartesian arrow in E.x0; z/ after precomposing with any arrow x0!x. Similarly, ˛ is
right Nsc.p/–inner if and only if the corresponding 1–simplex ˛� W h! gf in E.x; z/ is px;z–cartesian
and maps to a px;z0–cartesian arrow in E.x; z0/ after postcomposing with any arrow z! z0.

Proof We prove the left inner case. The proof for right inner triangles is completely analogous. Suppose
first that ˛� is px;z–cartesian in E.x; z/ and maps to a px0;z–cartesian arrow in E.x0; z/ after precomposing
with any arrow x0!x. By Remark 2.1.2 we have to provide a solution for every lifting problem of the form

�fn�2;n�1;ng

ƒn
n�1

NscE

�n NscB

˛

Nsc.p/

for n� 3. Transposing along the adjunction Csc a Nsc, this corresponds to a lifting problem of the form

(10)

Csc�fn�2;n�1;ng

Cscƒn
n�1

E

Csc�n B

˛�

f

p

g

where we have committed a small abuse of language denoting by ˛� also the transpose map Csc�2! E

induced by ˛. As a straightforward calculation shows, the lifting problem in (10) corresponds, at the
level of marked simplicial sets, to the lifting problem

.u
n�1;n�1
1

/[ E.x0; z/

.�n�1/[ B.px0;pz/

px0;z
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where x0 WD f .0/. Moreover, the edge .1; : : : ; 1/ ��1 is mapped by the top horizontal map to the
whiskering of the 1–simplex ˛� by a sequence of 0–simplices connecting x0 and x, and it is therefore
px0;z–cartesian in E.x0; z/. The desired lift hence exists by Lemma 4.2.6.

We now prove the “only if” direction, and so we assume that ˛ is left p–inner. By Lemma 2.3.7 we
may find a left degenerate triangle ˛0 such that ˛ is left congruent to ˛0, so that ˛0 is also left p–inner by
Lemma 2.3.4. Then ˛0 has the same first and last vertex as ˛ and hence determines an edge .˛0/� in E.x; z/.
Furthermore, as pointed out in the previous remark the 3–simplex exhibiting ˛0 as left congruent to ˛ also
determines an equivalence in the arrow1–category of E.x; z/ between the edge ˛� and the edge given
by .˛0/� followed by an equivalence. Since every equivalence is px;z–cartesian and moreover the property
of being px;z–cartesian is invariant under equivalences we may replace ˛ by ˛0, so that we may simply
assume that ˛ is left degenerate. We now consider the commutative diagram of marked simplicial sets

(11)

HomFNscE.x; z/
'
//

pFx;y

��

HomNscE.x; z/

��

E.x; z/
'
oo

px;y

��

HomFNscB.x; z/
'
// HomNscB.x; z/ B.x; z/

'
oo

in which the horizontal maps are marked categorical equivalences and the vertical maps are fibra-
tions between fibrant objects in the marked categorical model structure. Here, the horizontal equiva-
lences in the right column are given by the canonical isomorphism HomNscE.x; z/Š Unsc E.x; z/, see
[13, Remark 4.2.1], and the horizontal equivalences in the left column are established in [8, Proposi-
tion 2.33]. The triangle ˛ determines arrows in both the top left and top right marked simplicial sets, and
the images of these two arrows coincides in HomNscE.x; z/ by direct inspection. We hence obtain that
the arrow ˛� is px;z–cartesian in E.x; z/ if and only if the arrow determined by ˛ in HomFNscE.x; z/ is
pFx;z–cartesian. The latter, and hence the former, indeed holds when ˛ is left p–inner by Remark 2.1.8.
The desired implication is now a consequence of the closure of left p–inner triangles under left whiskering;
see Remark 2.1.5.

We now come to the outer counterpart of Lemma 4.2.10.

Lemma 4.2.11 Let p WE!B be a fibration of Cat1–categories. Let ˛� be a triangle in NscE of the form

x

y

z

f g

h

˛�

Then the following holds:

(i) If the associated 1–simplex ˛� W h! gf is px;z–cocartesian in E.x; z/ and f W x! y is Nsc.p/–
cocartesian , then ˛ is left Nsc.p/–outer.

(ii) If the associated 1–simplex ˛� W h! gf is px;z–cocartesian in E.x; z/ and g W y! z is Nsc.p/–
cartesian , then ˛ is right Nsc.p/–outer.
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(iii) If ˛ is left Nsc.p/–outer and f is a degenerate edge , then ˛� is px;z–cocartesian.

(iv) If ˛ is right Nsc.p/–outer and g is a degenerate edge , then ˛� is px;z–cocartesian.

Proof Statements (iii) and (iv) follow from Remark 2.1.8 by using the commutative diagram (11) as
in the proof of Lemma 4.2.10, and statements (i) and (ii) imply each other by passing to opposites. We
now prove (i). Suppose that f is Nsc.p/–cocartesian and that ˛� is px;z–cocartesian in E.x; z/, and let
us prove that ˛ is left Nsc.p/–outer. By Remark 2.1.2 we have to provide a solution for every lifting
problem of the form

(12)

�f0;1;ng

ƒn
0

NscE

�n NscB

˛�

Nsc.p/

Transposing along the adjunction Csc a Nsc we obtain an equivalent lifting problem of the form

Csc�f0;1;ng

Cscƒn
0

E

Csc�n B

˛�

f

p

g

A simple combinatorial analysis shows that this amounts to compatibly solving the lifting problems
determined by the back and front faces of the cube

(13)

u
n�1;1
0

E.x; z/

@�n�2 E.y; z/

�n�1 B.px;pz/

�n�2 B.py;pz/

f0;n

px;z

�ıf0;1g

f1;n

�ıf

g0;n

�ıf0;1g

g1;n

�ıp.f /

py;z

where we have identified

Csc�n.0; n/D�n�1; Cscƒn
0.0; n/Du

n�1;1
0

; Csc�n.1; n/D�n�2; Cscƒn
0.1; n/D @�

n�2:

Equivalently, we may consider this as a lifting problem in the arrow category of marked simplicial sets,
involving the morphism between arrows encoded by the left square against the morphism between arrows
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encoded by the right square. We may endow this arrow category with the projective model structure,
so that cofibrations are Reedy cofibrations and fibrations are levelwise. We then find that in the lifting
problem encoded by the above cube, the left arrow constitutes a cofibration between cofibrant objects,
while the right arrow is a fibration between fibrant objects (by our assumption that p is a fibration of
Cat1–categories).

Now, it is a general fact concerning model categories that the lifting property in a given square involving
a cofibration between cofibrant objects against a fibration between fibrant objects is a homotopy invariant
property, that is, it does not change if one replaces the given square by a levelwise weakly equivalent one
of the same nature. In particular, in proving the existence of a lift we may as well replace the cube (13)
with a levelwise weakly equivalent one, as long as we make sure it also has the property that its left
square is Reedy cofibrant and its right square is levelwise fibrant with vertical legs fibrations. We now
choose to make such a modification by simply replacing the corner E.y; z/ with the fiber product

X WD E.x; z/�B.px;pz/B.py;pz/;

which is also a homotopy fiber product since the vertical legs are fibrations between fibrant objects. The
map E.y; z/! X is an equivalence: indeed, by Proposition 4.2.7, f 2 E.x;y/0 is a cocartesian arrow,
and hence the right square in (13) is homotopy cartesian. We conclude that the new cube is levelwise
equivalent to the old one, while clearly still keeping the same property of having its left square Reedy
cofibrant and its right square levelwise fibrant with vertical maps fibrations. At the same time, by its
construction, the data of a lift in the modified cube is the same as a lift in its back square

u
n�1;1
0

E.x; z/

�n�1 B.px;pz/

px;z

where the edge corresponding to�1�.0; : : : ; 0/ in un�1;1
0

is sent to a px;z–cocartesian edge in E.x; z/ by
assumption. A solution therefore exists by Lemma 4.2.6, thus concluding the proof of the proposition.

Proposition 4.2.12 Let p W E! B be a fibration of Cat1–categories. Then p is an enriched 2–inner
(resp. 2–outer) fibration if and only if

Nsc.p/ W NscE! NscB

is a 2–inner (resp. 2–outer) fibration of 1–bicategories.

Proof We first note that since p is a fibration between fibrant objects the same holds for Nsc.p/, and so
the latter is always a weak fibration. We now recall that the vertices in Nsc.E/ correspond exactly to the
objects of E, and the edges f W x! y in Nsc.E/ correspond exactly to a pair of objects x;y 2 E and a
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vertex f 2 E.x;y/. In addition, triangles
y

g

��

x

f
??

h
// z

correspond bijectively to triples of objects x;y; z 2 E, triples of vertices f 2 E.x;y/, g 2 E.y; z/,
h 2 E.x; z/ and an edge � W h) g ıf in E.x; z/.

Considering inner lifts of triangles, it follows directly from Lemma 4.2.10 that the triangles in Nsc.B/

admits a sufficient supply of left (resp. right) Nsc.p/–inner lifts if and only if each px;y WE.x;y/!B.x;y/

has a sufficient supply of cartesian lifts, and these cartesian lifts are closed under precomposition
(resp. postcomposition) in E. We may then conclude that Nsc.p/ is an 2–inner fibration if and only if E is
a 2–inner fibration of Cat1–categories.

We now consider the outer case. By Corollary 2.3.9 we may restrict attention to triangles in B with
one leg degenerate and lifts whose same leg is degenerate in E. We then deduce from Lemma 4.2.11
that the triangles in Nsc.B/ admits a sufficient supply of left (resp. right) p–outer lifts if and only if
each px;y W E.x;y/!B.x;y/ has a sufficient supply of cocartesian lifts. Since the definition of 2–outer
fibration contains explicitly the closure under left/right whiskering (which corresponds, up to equivalence,
to pre/post composition), we can conclude that Nsc.p/ is a 2–outer fibration if and only if E is an enriched
2–outer fibration of Cat1–categories, as desired.

We can now deduce our main result of interest:

Proof of Theorem 4.2.4 Our goal is to compare enriched 2–inner cartesian fibrations of Cat1–
categories with 2–inner cartesian fibrations of1–bicategories. The cartesian fibrational part is given by
Corollary 4.2.8 while the 2–inner fibrational part is dealt with by Proposition 4.2.12. Combining the two
results the theorem is thereby proven.

We finish this section by collecting a few corollaries which can be easily deduced from the comparison of
Theorem 4.2.4.

Corollary 4.2.13 Let p W E!B be a 2–inner (co)cartesian fibration. Then a triangle � W�2! E is left
p–inner if and only if it is right p–inner.

Proof Since Nsc is a right Quillen equivalence there exists a fibration q W C!D of Cat1–categories
which fits in a commutative diagram of the form

(14)
E NscC

B NscD

p

'

Nscq

'

where the horizontal maps are equivalences of 1–bicategories. Now the right vertical arrow is a
bicategorical fibration, being the image under a right Quillen functor of a Dwyer–Kan fibration, while the
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left vertical arrow is a bicategorical fibration by Proposition 1.4.13. Applying Proposition 2.4.1 we now
obtain that the right vertical map is a 2–inner/outer (co)cartesian fibration and that the top horizontal map
preserves and detects left/right inner triangles. It will hence suffice to prove the left and right Nsc.p/–inner
triangles coincide in Nsc.C/. By Lemma 4.2.10 this amounts to showing that for every x;y 2 C and
morphism e 2 C.x;y/1 in the mapping 1–category, the condition that e is cartesian with respect to
qx;y W C.x;y/! D.qx; qy/ and remains cartesian after postcomposing with any morphism y ! z is
equivalent to the condition that e is qx;y–cartesian and remains cartesian after precomposing with any
morphism w! x. Indeed, by Theorem 4.2.4 we have that q W C!D is an enriched 2–inner cartesian
fibration of Cat1–categories, and so both conditions are equivalent to e simply being qx;y–cartesian.

Corollary 4.2.14 Let E and B two1–bicategories.

(i) A given 2–inner (co)cartesian fibration p W E!B is equivalent to a 1–inner (co)cartesian fibration
if and only if every triangle is left and right inner.

(ii) A given 2–outer (co)cartesian fibration p W E!B is equivalent to a 1–outer (co)cartesian fibration
if and only if every triangle whose left leg is p–cocartesian is left outer and every triangle whose
right leg is p–cartesian is right outer.

Proof From the explicit description of Remark 2.1.2 one immediately finds that if p is a 1–inner
(co)cartesian fibration then every triangle is both left and right p–inner. Similarly, if p is a 1–outer cartesian
fibration then any (co)cartesian arrow is automatically strongly (co)cartesian by [6, Proposition 2.3.7]
(and its dual), and so every triangle whose left leg is p–cocartesian is left p–outer and any triangle whose
right leg is p–cartesian is right p–outer.

To prove the “if” direction, we now invoke the fact that Nsc is a right Quillen equivalence to deduce the
existence of fibration q W C!D of Cat1–categories which fits in a commutative diagram of the form

(15)
E NscC

B NscD

p

'

Nscq

'

whose horizontal maps are equivalences of1–bicategories. Now the right vertical arrow is a bicategorical
fibration, being the image under a right Quillen functor of a Dwyer-Kan fibration, while the left vertical
arrow is a bicategorical fibration by Proposition 1.4.13. Applying Proposition 2.4.1 we now obtain that
the right vertical map is a 2–inner/outer (co)cartesian fibration, and hence by Theorem 4.2.4 the functor
q WC!D is an enriched 2–inner/outer (co)cartesian fibration of Cat1–categories. For every x;y 2E with
images x0;y0 2 NscC (which we can identify with objects of C) we may then consider the commutative
diagram

(16)

HomFE.x;y/

��

'
// HomFNscC.x

0;y0/
'

//

��

HomNscC.x
0;y0/

��

C.x0;y0/
'

oo

��

HomFB.px;py/
'
// HomFNscD.qx0; qy0/

'
// HomNscD.qx0; qy0/ D.qx0; qy0/ ;

'
oo
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in which all vertical arrows are cartesian fibrations in the inner case and cocartesian fibrations in the outer
case. Our assumption implies in particular that every left degenerate triangle in E is left p–inner/outer,
which by Remark 2.1.8 implies that the leftmost vertical map in (16) is a left fibration in the outer
case and a right fibration in the inner case. The same consequently holds for all vertical maps in (16),
which implies that q W C! D is an enriched 1–inner/outer (co)cartesian fibration of Cat1–categories.
By [6, Proposition 3.1.3] this means that Nscq W NscC! NscD is a 1–inner/outer (co)cartesian fibration.
Since the square (15) is an equivalence between two bicategorical fibrations between fibrant objects, these
two fibrations satisfy the same right lifting properties. Applying this to the right lifting properties of
Definition 1.4.3, we conclude that if the right one is a 1–inner fibration then so is the left, and if the
right one is a 1–outer fibration then so is the left. We may consequently deduce that p W E! B is a
1–inner/outer (co)cartesian fibration, as desired.
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On the profinite distinguishability of hyperbolic Dehn fillings
of finite-volume 3–manifolds

PAUL RAPOPORT

We use the Culler–Shalen machine and tools from model theory to study the profinite rigidity of residually
finite groups, especially 3–manifold groups. We borrow a transfer principle from model theory to apply
to C–character varieties in order to study cofinite collections of Fp–character varieties and prove that
under certain finiteness conditions weaker than non-Hakenness, they all have the same (finite) cardinality.
We prove that residually finite groups satisfying a niceness property are almost relatively profinitely
distinguishable within a geometrically relevant class, and we finish up by applying that result to knot
complements in S3 in particular.

20F65, 57M07; 03C07, 03C52

1 Introduction

One of the foundational lines of research in modern geometry has been the study of 3–manifold topology;
some relevant recent progress has been made primarily through teasing out differences between different
manifolds through appeal to their fundamental groups; see for example Wise [34], Agol [1], Wilton and
Zalesskii [32] and Przytycki and Wise [22].

It is well known that fundamental groups of finite-volume hyperbolic 3–manifolds are finitely presented,
and additionally that they are residually finite; see Maltsev [18]. Thus it arises as a natural line of
inquiry to try to distinguish the fundamental groups of finite-volume 3–manifolds by looking at their
finite quotients. This leads us to ideas of profinite equivalence and distinguishability; compare Noskov,
Remeslennikov and Romankov [21], Reid [23] and Wilton and Zalesskii [33], among many others. In
particular, Wilton and Zalesskii [32, Theorem 8.4] show that the profinite completion of a geometric
3–manifold group determines its geometry, and further, in [33], they show that the profinite completion
of a 3–manifold group also determines the JSJ decomposition of the manifold.

The study of finite-volume hyperbolic 3–manifolds is itself a central area within 3–manifold topol-
ogy: among 3–manifolds, the possession of a hyperbolic structure is the “generic” case, as we see by
Thurston’s hyperbolic Dehn surgery theorem [30, Theorem 2.6], and which is explored in more formal
and precise detail by Maher in [17]. We recall further that the study of Dehn fillings is fundamental to
3–manifold topology, and that the volumes of the Dehn fillings Mp=q — notation which is defined later
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on in Definition 2.6 — of a hyperbolic 3–manifold M are strictly less than and converge to vol M,1 by
[10, Thurston’s theorem]. Additionally, Mostow’s rigidity theorem says that geometric invariants of a
complete and finite-volume hyperbolic 3–manifold M , such as volume, are topological invariants, and
thus give invariants of their fundamental groups. Accordingly, we have even further reason to suspect
that the study of finite-volume hyperbolic 3–manifolds might be fruitful. Mostow rigidity implies that
the fundamental groups �1.Mp=q/ are different, and it becomes a natural question whether the profinite
completions of these groups are also distinguishable. This is a question that we answer in the affirmative
in cofinitely many cases.

It is an open question as to whether all finite-volume hyperbolic 3–manifold groups are absolutely
profinitely rigid, and furthermore, it is also currently unknown whether there exists some pair of noniso-
metric hyperbolic manifolds that are not profinitely distinguishable. In particular, we have the following
theorem, proved in Section 4, with the precise definition of the notation j�I

C.�/j we use for character
varieties in the theorem below found in Definition 2.12:

Theorem A Let � be any finitely generated residually finite group with j�I
C.�/j<1, and let M be an

oriented finite-volume hyperbolic 3–manifold with a single cusp. Then ƒD �1.Mm=n/ has y� 6Š yƒ for
all but finitely many choices of orbifold surgery coefficient m=n with hyperbolic Dehn filling Mm=n.

Our journey takes us through representation theory, as well: it turns out to be easier to look at the
SL.2; k/–representations of 3–manifold groups over careful choices of field k rather than at the groups
themselves, and in turn at the character variety of a given representation rather than at the representation
itself. By a result of Culler and Shalen [8, Proposition 1.5.2], which here is Proposition 2.13, a point in
the character variety of a 3–manifold group picks out an irreducible representation up to conjugacy, and
by a result of [8] — Theorem 2.14 here — the character variety of a non-Haken 3–manifold group is in
fact finite.

The “special sauce” here is our use of model theory as described by Marker [19], employing a Lefschetzian
transfer principle rather than algebraic geometry in order to transport statements between the zero-
and positive-characteristic cases of algebraically closed fields. We carefully construct model-theoretic
predicates which we use to represent matrices, representations, and even character varieties, permitting us
to bring otherwise totally unfamiliar compactness results from logic to bear on questions more at home
in geometric group theory. In particular, we follow Culler and Shalen in observing that the conjugacy
classes of representations of HomI .�;SL.2; k// correspond to the points of V�.k/, and then noting that
the defining equations for V�.k/ arise from the defining relations for � , of which we may assume that
there are only finitely many; this gives us a robust, mostly bidirectional link between definable sets and
affine algebraic varieties.

Most importantly, this framework ensures that we can pass back and forth between SL.2;C/ and
SL.2;Fp/–representations as needed, which is crucial, as both have desirable properties: SL.2;Fp/ is

1In fact, the order type of the set of all volumes of Dehn fillings of all 3–manifolds is !! !
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locally finite, which we find useful in controlling profinite extensions of maps in both Lemmas 2.19
and 4.6, but by contrast, representations into SL.2;C/ are both much better understood and more directly
connected to more concrete geometric applications. In particular, any finite-volume hyperbolic manifold
corresponds naturally to a finite-covolume lattice within .P/SL.2;C/, and this gives us a canonical
representation. This model-theoretic approach allows us to give a much cleaner and more elementary
proof of the following result than existing ones, and to prove a result like the one that follows it:

Theorem 1.1 The equality j�I
C.�/j D n holds if and only if j�I

p.�/j D n for cofinitely many p as well.

Corollary 1.1.1 Let M be a one-cusped , finite-volume , hyperbolic 3–manifold. Suppose Mm=n is a
hyperbolic Dehn filling of M with (orbifold ) surgery coefficients m=n and with finite character variety
(for instance , a non-Haken such filling), and let � D �1.Mm=n/. Let M� be the set of all Dehn fillings
Mm0=n0 , and let ƒ� be the set of all fundamental groups of those manifolds. Then � is profinitely almost
distinguishable within ƒ�.

Acknowledgements We owe a debt of gratitude to Bridson, McReynolds, Reid and Spitler [5], who
have used representation theory to think about profinite distinguishability of specific 3–manifold groups
in a different way. Additionally, while this paper was still in thesis form, Liu’s [14] appeared on the
arXiv, and proves a more general version of Corollary 1.1.1 using sophisticated methods more closely
hewing to orthodox geometric group theory, and which as a consequence concerns itself purely with
3–manifold groups; by contrast, our borrowing from model theory has the major advantage of being a
more elementary approach, which also permits the study of more general objects.

We thank the referee for an extremely thorough referee report, greatly improving this paper, and for
pointing out the applicability of several of our results to orbifold surgeries; Daniel Groves, who was
the author’s advisor when this paper was still a thesis and who provided copious editing feedback; and
Alan Reid, who provided key insights for the strengthening of the main theorem to discuss more general
residually finite groups, along with the initial proof sketch of how to extend it from the original result.

2 Preliminaries

2.1 Hyperbolic geometry and Dehn surgery

For a very readable treatment of foundational concepts in 3–manifold topology, see Hatcher [12].

Definition 2.1 Let M be a 3–manifold, S a compact surface properly embedded in M . Suppose there
exists some disk D �M such that D\S D @D, with the intersection being transverse. If @D bounds no
disk in S , then we call D a nontrivial compressing disk, and S is a compressible surface. Otherwise, if
S neither has a nontrivial compressing disk nor is an embedded 2–sphere, then S is an incompressible
surface.
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Definition 2.2 Let M be a connected 3–manifold. We call M prime if there exist no 3–manifolds
N1;N2 6Š S3 such that N1 # N2 ŠM . We call M irreducible if every S2 �M bounds a 3–ball.

Lemma 2.3 [20, Lemma 1] Let M be a prime 3–manifold. Then either M is irreducible or M Š

S2 �S1.

Definition 2.4 Let M be a compact, orientable, prime 3–manifold. Then we say that M is Haken if it
has at least one properly embedded two-sided incompressible surface; if it has none, we call it non-Haken.

Definition 2.5 Let M be a connected Riemannian manifold. We say that M is a hyperbolic 3–manifold
if it is complete and everywhere locally isometric to the hyperbolic 3–space H3.

We may note here that many knot complements S3nK have hyperbolic structure; a notable family of
exceptions is the set of torus knots. For example, the figure-eight knot has a complement with hyperbolic
structure; on the other hand, the trefoil knot does not. Additionally, we note (after Benedetti and
Petronio [4, Chapter D]) that the boundary components of finite-volume hyperbolic 3–manifolds always
comprise zero or more tori.

Definition 2.6 Let M be a 3–manifold such that @M consists of a single torus T Š S1 � S1, with
H1.@T / generated by choices of longitude l and meridian m. For p=q 2Q[1, with p coprime to q,
the Dehn filling of M along T with slope p=q is given by M [T 0

p=q
for T 0 a solid torus T 0 Š B2 �S1,

where the union is a gluing along T such that the meridian of T 0 maps to a corresponding curve in @T
homotopic to q � Œm�Cp � Œl �, and where T 01 D¿. We denote the resulting manifold by Mp=q .

Remark If gcd.p; q/¤ 1, then we instead have the orbifold Dehn surgery of M along T with slope
p=q. The result will be similar to the manifold case above, except that the nature of T 0

p=q
is much more

complex, in general depending primarily on gcd.p; q/.

For a more complete description and characterization of manifold Dehn fillings as a special case of
orbifold Dehn surgeries, we recommend referring to Cooper and Futer [7, Section 2.4] or to Thurston’s
notes [29].

Theorem 2.7 (one-cusp case of Thurston’s hyperbolic Dehn surgery theorem [30, Theorem 2.6]) Let
M be a hyperbolic 3–manifold with a single cusp , and let M.p=q/ be the manifold obtained through
applying a hyperbolic Dehn filling with surgery coefficient p=q to that cusp. Then if p=q differs from
finitely many exceptional slopes , Mp=q is also hyperbolic.

Proposition 2.8 (adapted from the orbifold version of Thurston’s hyperbolic Dehn surgery theorem
[9, Theorem 5.3]) Let M be a compact 3–manifold whose interior admits a complete hyperbolic struc-
ture such that @M consists of a single torus. Then there is a neighborhood U of 1 in S2 such that for all
p=q 2 U , the manifold Mp=q also admits a hyperbolic structure.

Algebraic & Geometric Topology, Volume 24 (2024)



On the profinite distinguishability of hyperbolic Dehn fillings of finite-volume 3–manifolds 4783

We note that the groups SL.2;C/ and PSL.2;C/ show up frequently in this paper. This is due to
the fact that IsomC.H3/ Š PSL.2;C/: for an orientable finite volume hyperbolic 3–manifold M ,
� D �1.M /, we can define M as H3=� , where � is a subgroup of IsomC.H3/Š PSL.2;C/, so that
since zM D H3, PSL.2;C/ itself acts by deck transformations on M . What is more, the inclusion
representation � W � ! PSL.2;C/ lifts to the discrete faithful representation y� W � ! SL.2;C/, while
other hyperbolic Dehn surgeries yield representations of � that are discrete but no longer faithful; for
more on this, refer to MacLachlan and Reid in [16] on pages 111–112. In particular:

Proposition 2.9 Let M be an orientable finite volume hyperbolic 3–manifold with a single cusp , with
� D �1.M /. Let �p=q D �1.Mp=q/. Then the discrete faithful representation of �p=q into SL.2;C/ is
also a nonfaithful but still discrete SL.2;C/–representation of � .

2.2 Representation theory

Definition 2.10 Let � be a discrete subgroup of SL.2;C/. The trace field of � , TF.�/, is the field
generated by all traces of all elements of � , which can also be written equivalently as Q.tr�/. The degree
of the trace field is the degree of the extension of TF.�/ over Q.

We’ll write Q.tr�/ whenever we want to emphasize the trace field’s nature as a number field, and TF.�/
otherwise.

Theorem 2.11 [16, Theorem 3.1.2] Let M be a finite-volume orientable hyperbolic 3–manifold , so
that � D �1.M / is Kleinian. Then Q.tr�/ is a finite-degree extension of Q.

Next, we define notation to be used for the sake of clarity and concision for the rest of the paper.

Definition 2.12 Let G be a group, and k a field. Let HomIrr.G;SL.2; k// be the set of irreducible
representations of G in SL.2; k/. We define

�I
k.�/ WD HomIrr.�;SL.2; k//=�;

where � denotes the conjugacy relation. In particular,

�I
C.�/ WD HomIrr.�;SL.2;C//=� and �I

Fp
.�/ WD HomIrr.�;SL.2;Fp//=�:

This last we write as �I
p.�/ for the sake of further concision.

Proposition 2.13 [8, Proposition 1.5.2] Let … be a finitely generated group , and let � and � be
representations of … into SL.2;C/ with corresponding characters �� and �� . Let �� D �� , and assume
that � is an irreducible representation. Then � and � are conjugate.

Proposition 2.13 gives us a bijection between the set of irreducible characters, and the set of irreducible
representations up to conjugacy. Since traces (and thus characters) are invariant under conjugation, trace
is in fact a complete invariant of conjugacy classes of irreducible representations. It thus suffices to
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consider the trace field of any choice of character within each conjugacy class. Accordingly, we call
�I

C.�/ the C–character variety of � . A natural way to think about the image of the character is therefore
to look at its trace field, and the degree of the trace field over Q is one of several natural measures of
complexity. Keeping this framing in mind, we make use of the following corollary:

Corollary 2.13.1 [8, Corollary 1.4.5] �I
C.�/ is a closed algebraic set.

We remark that this corollary illuminates an important part of our approach: not only are we fine with
reducible varieties, but we explicitly anticipate that our character varieties might be reducible, and that
its irreducible components give us important information about the structure of HomIrr.G;SL.2;C//. In
particular, the number of irreducible components (in fact, the number of points) is the key invariant.

The Culler–Shalen machine associates locally separating incompressible surfaces of a manifold to
positive-dimensional components of its character variety; consequently whenever a manifold has a
positive-dimensional character variety, we know it to be Haken. This gives us the following corollary,
which is an important finiteness result:

Theorem 2.14 [25, Lemma 2.2] Let M be a non-Haken 3–manifold of finite volume , with �D�1.M /.
Then j�I

C.�/j is finite and � has finitely many representations into SL.2;C/ up to conjugacy.

2.3 Profinite groups

We now introduce the other aspect of geometric group theory that we make use of in this paper. For a
more complete and formal treatment of the elementary characterizing properties of profinite completions
of groups, we recommend reading through [23].

Keeping in mind the fact that any group can be made into a topological group by endowing it with the
discrete topology, we remind the reader of the following definition:

Definition 2.15 A profinite group is a topological group isomorphic to some inverse limit of an inverse
system of finite groups with the discrete topology. Equivalently, profinite groups are compact, Hausdorff,
totally disconnected topological groups, as per Ribes and Zalesskii in [26, Theorem 1.1.12].

The profinite completion of a group G, which we denote by yG, is that profinite group whose choice of
finite groups is the set of all G=N , where N ranges over the normal subgroups of G of finite index, and
the homomorphisms are given by the partial ordering of reverse containment of normal subgroups.

We care about the profinite completion of a residually finite group G primarily because it packages
together all data on maps from G to its quotient groups of finite order.

We may think of residual finiteness as the capacity for at least one of the finite-index (normal) subgroups
of G to tell an arbitrary g 2Gnf1g apart from the identity, and we may think of the profinite completion
of a group yG to be the packaging together of all of this finite-index information.
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Lemma 2.16 [26, adapted from Lemma 1.1.7] Let G be a group , with yG its profinite completion. Let
� WG! yG given by g 7! .Œg�i/i2I be the canonical map sending g to the I–indexed tuple of equivalence
classes of g under quotienting by the normal subgroups fNigi2I . Then � has dense image.

The following proposition is well-known: see for example Reid [24, Section 2.2] as well as Ribes and
Zalesskii [26, page 78] .

Proposition 2.17 Given a group G, denote by N.G/ the set of all finite-index normal subgroups of G.
Then the following are equivalent :

� G is residually finite.

�

\
N2N.G/

N D f1g.

� The natural homomorphism � WG! yG is injective.

Lemma 2.18 [26, Lemma 3.2.1, page 79] This canonical map � satisfies the universal property that for
any profinite group H and group map f WG!H , there exists a unique g W yG!H such that g ı �D f .

Lemma 2.19 The group SL.2;Fp/ is locally finite. Furthermore , for G a finitely generated group ,
� WG!SL.2;Fp/ a representation , im � is also finite , and � extends uniquely to a map y� W yG!SL.2;Fp/.

Proof It suffices to show that every finitely generated subgroup H of SL.2;Fp/ has jH j finite. To see
this, we note that some generator of H must have an entry h such that the minimal Fpk it belongs to is
maximal among all entries of all generators of H , and that neither addition nor matrix multiplication can
increase that k for any element of H ; finally, every group of the form SL.2;Fpk / is finite.

Definition 2.20 We say that two groups G;H are profinitely equivalent if yG Š yH .

Definition 2.21 Let G be a residually finite group, and S a set of groups. We say that a residually finite
group G is almost profinitely distinguishable within S if there are at most finitely many residually finite
groups H 2 S such that yG Š yH , we have G ŠH .

3 Model theory and its uses

What could model theory be doing in a paper on geometric group theory and representation theory? Well,
we use it as a means to prove the following theorem, whose proof can be found in Section 4.1:

Theorem 1.1 The equality j�I
C.�/j D n holds if and only if j�I

p.�/j D n for cofinitely many p as well.

Where model theory comes in is its ability to permit us to pass back and forth between working over C

and over cofinite collections of Fp — this is an example of a transfer principle. For early examples of this,
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see Lefschetz [13], Weil [31] or Seidenberg [28]; for their context in a more general logical framework, see
Ax [2] in his proof of the Ax–Grothendieck theorem, Barwise and Eklof [3], or Robinson and Tarski [27];
and for the earliest modern form of the principle as used here, see Chapter 2 of Cherlin [6]. Subsequently,
the aim of Section 4.1 is to apply techniques as found in Marker [19, Section 1] to weld together algebraic
varieties over fields and the definable sets they coincide with, and then use these techniques to interpret
character varieties �I

C.�/ in terms of the first-order theory of C, also called ACF0.2 We remark more
formally on this in a remark in Section 4.1 but for now, the motivating slogan to keep in mind is this:
“The relations of our groups are equally validly affine algebraic conditions, and conjugacy classes of
representations correspond to points of the resulting variety”.

In any case, if for whatever reason you want to blackbox this, you can simply use Theorem 1.1. Otherwise,
however, we first need a few closely related definitions and a pair of results from model theory, which we
detail later on in Section 4.1; for a background reference not only for the model-theoretic techniques we
use here but also introductory model theory as a whole, refer to [19]. First, though, a few of the important
basics of the language and notation of model theory:

Definition 3.1 The arity of a function or predicate is the number of arguments (zero or more) that that
function or predicate accepts. For example, addition is a function of arity 2; we describe it as being 2–ary
or as having arity 2. A nullary (0–ary) function is a constant, and a nullary predicate is either truth (>) or
falsehood (?).

The alphabet of first-order logic consists of the quantifiers 8; 9, the logical symbols �;^;_;!;$,
disambiguating punctuation like parentheses and brackets, infinitely many variables (which we may notate
as we choose, as long as it is clear that they are variables), the equals symbolD, any number of predicates
of any arity, and any number of functions of any arity.

A term, which represents an object, is always either a variable or a function of any arity, and its arguments
can themselves can be either variables or functions, to finite depth.

A formula, which represents a statement, is always finitely long, and consists of one or more predicates of
any arity (including binary equality), possibly modified or joined by logical symbols, with zero or more
of its variables quantified, or bound. An unbound variable is said to be free. A sentence in first-order
logic, or L1–sentence, is a formula with no free variables.

A signature of a first-order theory T is the set of zero or more functions or relations, each of any arity,
that we choose to represent important constants, functions, operations, and relations of our structure of
interest.

A first-order theory is a set of axioms, which are sentences whose symbols come from the ordinary
alphabet of first-order logic along with symbols from the theory’s signature. A sentence S is said to hold

2This is not, strictly speaking, true, as we’re about to see. However, C is, up to isomorphism, the unique algebraically closed
field of characteristic 0, and transcendence degree over Q (and thus also cardinality) given by c.
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in a first-order theory T , or equivalently that T models S , if S can be proven from the axioms of T . We
use the symbol ˆ to represent that, that is, T ˆ S .

A first-order theory T is said to be consistent if there exists no statement s for which T ˆ s and also
T ˆ� s, that is, no false statement can be proven from its axioms.

A first-order theory T is said to be semantically complete, or just complete, if for every statement s,
.T ˆ s/! .T ` s/, that is, every statement true within T is also provable in T . In fact, by Gödel’s
completeness theorem, every first-order theory is complete.

Definition 3.2 The first-order theory of fields has signature given by the constants 0; 1 and the binary
functions C;�. It has the axioms that addition makes the set into an abelian group, multiplication is
associative, commutative and distributive with identity 1, :0D 1, and removing 0 makes the set into an
abelian group under multiplication.

Definition 3.3 The first-order theory of algebraically closed fields, ACF, extends the first-order theory
of fields by appending countably many axioms, one for each natural number, each of the form that every
nontrivial polynomial of degree n has at least one root.

Definition 3.4 The first-order theory of algebraically closed fields of characteristic p, ACFp, extends
ACF by appending the additional axiom that

p copies of 1‚ …„ ƒ
1C 1C � � �C 1D 0:

Definition 3.5 The first-order theory of algebraically closed fields of characteristic 0, ACF0, extends
ACF by appending countably many axioms, one for each prime p, each of the form

:

p copies of 1‚ …„ ƒ
1C 1C � � �C 1D 0:

Remark ACF models all and only those statements true of (or in) every algebraically closed field.
Because all of the ACFp and ACF0 both extend the axioms defining ACF, anything that ACF models,
every ACFp and ACF0 also model, though the reverse need not be true — for instance, trivially

ACF5 ˆ 1C 1C 1C 1C 1D 0;

but
ACF;ACF0 6ˆ 1C 1C 1C 1C 1D 0:

Similarly, if ACF models a statement, then that statement also holds of any specific algebraically closed
field, but the reverse need not be true.
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Lemma 3.6 [19, Corollary 1.2] Let ACF0 be the first-order theory of algebraically closed fields of
characteristic 0, and for rational prime p, let ACFp be the first-order theory of algebraically complete
fields of characteristic p. Let † be an L1–sentence. Then the following are equivalent :

(i) ACF0 ˆ†.

(ii) ACFp ˆ† for cofinitely many choices of p.

(iii) ACFp ˆ† for infinitely many choices of p.

(iv) C ˆ†.

Lemma 3.7 Let S.k/ be a first-order statement in the theory of a field k. Then S.Fp/ holds for infinitely
(in fact , cofinitely) many choices of p if and only if S.C/ holds.

Proof Assume that S.C/ holds. By Lemma 3.6, this means that ACF0ˆS , and thus also that ACFpˆS

for cofinitely many p, that is, S.Fp/ holds for those p. On the other hand, assume that S.C/ does not
hold. Then by Lemma 3.6 again we must have ACF0ˆ:S , and thus also that ACFp ˆ:S for cofinitely
many p, that is, S.Fp/ does not hold for those p.

4 Main result

4.1 More model theory

With the preliminaries well in hand, we can begin to discuss the specific way we apply tools from model
theory to the study of profinite rigidity.

Whenever we want to leave the decision of which field we’re working over until later, we will just write
ACF. Fixing k to be some arbitrary algebraically closed field,3 we start by looking at how we can use
ACF to talk about matrices in SL.2; k/. Let x1;x2;x3;x4 be variables in ACF. Then we define the
predicate

M.x1;x2;x3;x4/

to be
x1 �x4�x2 �x3 D 1:

The attentive reader may notice that this is exactly the defining relation for the determinant of a matrix
in M.2; k/ to be 1 in terms of its elements. More subtly, and perhaps more powerfully, one may note a
tactic that will be used throughout this section: namely, that we will make our predicates complex and
full of equations, so that they can do the heavy lifting that a mere abstract tuple cannot do. More simply,
though, we bundle 4–tuples of variables that satisfy M and notate them as matrices A 2 SL.2;C/ unless
we really do need access to the entries.

3This still works for k an arbitrary ring instead, but in that case, many of the properties below might be much weaker or have
otherwise misleading names.
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To write that a given matrix is the identity is actually even easier. We define the predicate

Id.x1;x2;x3;x4/

to be
x1 D 1^x2 D 0^x3 D 0^x4 D 1:

We can also just write Id.A/, when we have a 4–tuple as mentioned above.

Before we can look at how to extend our method for talking about matrices of SL.2; k/ in ACF to a
method for talking about representations �!SL.2; k/, we are going to need to be able to write predicates
that verify that each relation of � is satisfied. Consider how, for some finitely presented group

� D hLjRi;

one might describe a new representation � W � ! SL.2; k/. It suffices to specify what the map does
to a given choice of generators of � , .li/ 7! �.li/. It is worth noting that this gives us a natural map
Hom.�;SL.2; k//! k4l determined by which element of SL.2; k/ that particular � 2Hom.�;SL.2; k//
sends the ordered l–tuple of generators of � to, interpreted by reading off the matrix entries. This is
certainly injective — different elements of Hom.�;SL.2; k// send at least one generator of � to different
matrices. What [8] gives us is the conceptualization of the image as also some vanishing set V�.k/,
and then additionally, using the next few results (when we have proven them), that we can also can
recognize which points of k4l are in V�.k/ and are thus true representations by understanding V�.k/ as
the vanishing set of the polynomial relations in R, along with the polynomials ensuring that the generators
map to elements of SL.2; k/. But to make use of all this, we have to tackle the challenge of how to
communicate all of the machinery used here in ACF first. Bringing this to ACF, let .Ai/ WDA1; : : : ;Al

be 4–tuples such that
lV

iD1
M.Ai/:

That is, the vector in k4l can be thought of more helpfully as a l–tuple of 4–tuples, each of which we
conceptualize as a matrix. As such, we write the l–tuple .Ai/

l
iD1

as EA. A couple of lemmata on the
relation between the entries of matrices and those of their products and inverses mean we can use ACF to
talk about the satisfaction of relations:

Lemma 4.1 Let A;B 2 SL.2; k/. Then the entries of AB and A�1 are polynomial in the entries of A

and B.

Corollary 4.1.1 Let FhLi be the set of freely reduced words on some finite set of letters and their
inverses , and let l D jLj and r 2 FhLi. Let fr W k

4l ! k4 be the map treating successive 4–tuples of the
argument as matrix elements of a generating set , interpreting concatenation as matrix multiplication , and
inverses of letters as inverses of generators , to take r to its image under this choice of assignment. Then
for all Ez 2 k4l , fr .Ez/ is polynomial in the zi .

In particular, we use this in the case where the zi represent elements of SL.2;C/.
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Now that we have ensured that nothing goes horribly wrong when we talk about matrix inversions, matrix
products, and free reduction in SL.2; k/, we can now figure out how to use ACF to write that a relationship
r 2R is satisfied by some l–tuple of matrices. For r 2R, we define the predicate SATr . EA/ to be

Id.fr . EA//:

That is, the fr map reads off the word r and takes the l–tuple it spells out from the Ai to the identity, as
is required by the fact that the r 2R are the relations of � .

Perhaps the most important immediate idea of this section is that we can use these previous predicates to
write a statement in first-order logic that says whether or not a given 4l–tuple is a representation of �
into SL.2; k/. In particular, we define REP�. EA/ to be�

lV
iD1

M.Ai/

�
^

� V
r2R

SATr . EA/

�
;

where the � subscript reminds us that we started by fixing � and a presentation for � once and for all, and
where the assumption of finite presentation ensures that the sentence is of finite length. Half-translating
towards prose, this says that a 4l–tuple A corresponds to a representation of � if all l of the 4–tuples are
matrices of SL.2; k/, and that all of the relations r 2R of � are satisfied.

Proposition 4.2 [8, Corollary to Proposition 1.4.1] Let � be a finitely presented group , with finite
presentation � D hLjRi, and let V�.k/ D f EA j REP�. EA/g D f EA j V .fr . EA/� I2/;M.Ai/

l
iD1
g � k4l .

Then the map ˆ� W V�!Hom.�;SL.2; k// taking points in V� to the representations that they determine
is well-defined and is a bijection.

Remark The Hilbert basis theorem permits us to assume finite generation without loss of generality,
rather than the stronger condition of finite presentation, and, in proofs, to pass to the case of finite
presentation rather than finite generation.

Proof We start by noting that the first part of REP� uses the M predicate to check that the 4l–tuple
genuinely is an l–tuple of matrices in SL.2; k/. Thinking once more of EA as a 4l–tuple v, this defines a
map  v WL! SL.2; k/; ai 7!Ai . Then by the universal property of free groups, this extends to a map
{ v W F.L/! SL.2; k/ under multiplication and inverses:

L� F.L�/ �

SL.2; k/

 v
{ v

�v

Subsequently, the second part of REP� uses each SAT.r/ to check that each relation of � is satisfied, and
by the universal property of groups defined by presentations, this uniquely determines a representation
�v W �! SL.2; k/. But then that means that ˆ�.v/D �v.
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Remark After [8, Section 1], we call V�.k/� k4l the definable k–points of the SL.2; k/–representation
variety of � , or (trading precision for readability by abusing notation once again) simply the SL.2; k/–
representation variety of � . We justify this deliberate confusion as Culler and Shalen do: by observing
that the conjugacy classes of representations of HomI .�;SL.2; k// correspond to the points of V�.k/ in
the natural4 way, and subsequently recalling that the defining equations for V�.k/ arise from the defining
relations for � , of which (by the Hilbert basis theorem) we may assume without loss of generality that
there are only finitely many.

Now that we have established that we can talk about whether a given 4l–tuple corresponds to a repre-
sentation of � , we can talk about whether that representation is irreducible. As it turns out, though, it
is much easier to start with reducibility. We recall that a representation into SL.2; k/ is reducible if the
action by all of the images of the generators on k2 fix some line through the origin: more formally, for
some generator-dependent � 2 k, �

a b

c d

��
v1

v2

�
D

�
�v1

�v2

�
;

where
�

a
c

b
d

�
ranges over the images of all generators of � . We can therefore define the predicate RED. EA/

to be

REP�. EA/^9a 9b
lV

iD1
9�i W ..a; b/¤ .0; 0//^Ai � ha; bi D �iha; bi;

where we treat ha; bi as a column vector, and matrix and scalar multiplication are accordingly appropriately
defined.

Proposition 4.3 For all 4l–tuples .Ai/, ACFˆRED. EA/ if and only if ˆ. EA/ is a reducible representation.

We can then talk about irreducibility, defining the predicate IRREP. EA/ to be

REPG. EA/^:RED. EA/:

With a little more work, we can also talk about whether two representations are conjugate. We recall that
two representations �; � W �! SL.2; k/ are conjugate if there exists some matrix M such that for all i ,
M�.xi/M

�1 D �.xi/, where xi is the i th generator of G under some fixed choice of ordering. We can
represent this in model theory by defining the predicate CONJ. EA; EB/ to be

REP�. EA/^REP�. EB/^
�
9C WM.C /^

lV
jD1

.CAj C�1
D Bj /

�
:

Remark If ACFˆCONJ. EA; EB/, then ACFˆREP�. EA/ and ACFˆREP�. EB/, so that ˆ. EA/ and ˆ. EB/
are both defined.

4By taking each point in V� .k/ to correspond to the representation whose images under the representation are exactly the
successive 4–tuples of coordinates of that point.
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Proposition 4.4 For all pairs EA; EB of 4l–tuples , ACF ˆ CONJ. EA; EB/ if and only if ˆ. EA/ � ˆ. EB/,
that is , there exists some C 2 SL.2; k/ with �C ıˆ. EA/Dˆ. EB/, where �C is the inner automorphism of
SL.2; k/ that C defines.

The whole point of this section, of course, was to be able to talk about the number of irreducible
representations of a given finitely generated group G into SL.2; k/, up to conjugacy. However, this
certainly is not a proper sentence in first-order logic. We might think of the “half-translated” version of
†�;n as the following:

There exist n irreducible representations up to conjugacy of � into SL.2; k/, they are not
conjugate to each other, and any other irreducible representation of G into SL.2; k/ must be
conjugate to one of the n representations previously mentioned.

We now have all the tools we need to write the previously mentioned sentence †�;n; this will be
almost exactly a predicate-by-predicate, symbol-by-symbol calque of what was written above as the
half-translation, making use of the predicates we have constructed here. We write the first-order sentence
†�;n as

nV
jD1
9 EA.j/ W IRREP. EA.j//^

�
nV

j ;j 0D1
j¤j 0

:CONJ. EA.j/; EA.j
0//

�
^8 EB W

�
IRREP. EB/)

nW
jD1

CONJ. EB; EA.j//
�
:

Theorem 4.5 Let � be a finitely generated group. Then the above sentence , †�;n, is a sentence in ACF
saying that for all algebraically closed fields k, †�;n.k/ is true if and only if j�I

k
.�/j D n.

Proof Assume first that � is finitely presented.

.(/ Suppose that j�I
k
.�/j D n. Then by completeness of first-order logic, to verify that ACFˆ†�;n,

it suffices to carefully step through the sentence itself to verify its meaning. We cut the sentence †�;n
into three parts along the two conjunctions. The first clause asserts that there exists some family of n

tuples of appropriate length f EA.i/gn
jD1

, each of which corresponds to an irreducible representation in
itself. The second clause asserts that any distinct pair of those representations is nonconjugate. The final
clause asserts that for all tuples EB of the same length as the EA.j/, if B corresponds to an irreducible
representation, then that representation must be conjugate to the representation corresponding to one of
the EA.j/. Taken in sum, the sentence asserts that j�I

k
.�/j D n, and since we know it to be the case, ACF

models it.

.)/ Suppose that ACFˆ†�;n. Since from the previous part we know that†�;n asserts that j�I
k
.�/jDn

within ACF, by consistency of first-order logic we know that j�I
k
.�/j D n.

Now if � is merely finitely generated and not finitely presented, we must invoke the Hilbert basis
theorem: using it, we have that there exists a finitely presented z�; � W z�! � such that the induced map
�� W �I

k
.�/! �I

k
.z�/ is a bijection. This z� is generated by any generating set for � , and its relations are
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the finitely many relations that correspond to the finitely many equations that the Hilbert basis theorem
gives us. Then the sentence †z�;n for z� also works for � .

Theorem 1.1 The equality j�I
C.�/j D n holds if and only if j�I

p.�/j D n for cofinitely many p as well.

Proof This follows immediately from Lemma 3.6 and Theorem 4.5. We recall that we can use †�;n in
ACF0 and ACFp to encode the finiteness property we care about. Using this, we can now apply transfer
principles: since j�I

C.�/j D n, j�I
p.�/j D n for infinitely many p, and thus by Lemma 3.6, for cofinitely

many p.

4.2 Constraints on profinite completions

Now that we have established that we can relate (and thus constrain) information about representations
into SL.2;C/ and into SL.2;Fp/, we can start to get a sense of what this means for the profinite
distinguishability of groups.

Lemma 4.6 Let � and ƒ be two finitely generated groups such that y� Š yƒ. Suppose that j�I
p.�/j D n

for cofinitely many p. Then j�I
p.�/j D j�

I
p.ƒ/j D n for those p.

Proof Consider the commutative diagram

� SL.2;Fp/

y� D yƒ ƒ

i�

iƒ

y�Dy�

�

�

We note that by the universal property of profinite completions, any representation � W � ! SL.2;Fp/

extends profinitely to a representation y� W y� ! SL.2;Fp/ by the local finiteness of SL.2;Fp/, as in
Lemma 2.19. By the commutativity of the diagram, any representation from �I

p.�/ must factor as a
composition of the canonical injection into y� and a representation from �I

p.
y�/, so that j�I

p.�/j D j�
I
p.
y�/j.

Looking at the other half of the diagram, we note that since y� D yƒ, the same argument applies in reverse:
compositions of the canonical injection of ƒ into yƒ with representations from �I

p.
yƒ/ must yield all of

�I
p.ƒ/, so that j�I

p.ƒ/j D j�
I
p.
yƒ/j.

Theorem 4.7 Let � and ƒ be two finitely generated groups with y� Š yƒ and j�I
C.�/j D n for some

n 2N. Then j�I
C.ƒ/j D j�

I
C.�/j D n.

Proof Since j�I
C.�/j D n, by Theorem 1.1 we know that j�I

p.�/j D n for cofinitely many p. By profinite
equivalence and Lemma 4.6, we know that j�I

p.ƒ/j D j�
I
p.�/j D n. Finally, by another application of

Theorem 1.1, j�I
C.ƒ/j D n.
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Theorem 4.8 Let � D �1.M /, where M is a compact hyperbolic 3–manifold. If deg.TF.�//� d for
some d 2N, then j�I

C.�/j � d .

Proof Let � be the fundamental group of a finite-volume hyperbolic 3–manifold. Let k D Q.tr�/
be its trace field, so that A0� D

˚P
i<n aii j n 2 N; ai 2 Q.tr�/; i 2 �

	
is the quaternion algebra

over � that k generates. Let � W � ,! A0� be the natural inclusion, let � W A0� ! SL.1;A0�/ be any
irreducible representation, and let f�igW k ,! C be a family of distinct embeddings of the trace field.
Then we may extend the scalars of � by tensoring over the different images of k, taking A0�˝�i .k/C

and the corresponding y�i W A0� ! SL.1;A0� ˝�i .k/ C/; we know that A0� ˝�i .k/ C also extends a
quaternion algebra over C and is thus split, so that SL.1;A0�˝�i .k/C/ is isomorphic to SL.2;C/.

Then the result will follow if �i D
y�i ı � is a representation �i W �! SL.2;C/, and if for i ¤ j , �i and

�j are nonconjugate.

To see this, recall that k is a number field by [16, Theorem 3.1.2], and that k, being the trace field of � ,
is generated by traces. Denote its degree over Q as d D deg.k/, so that the f�ig

d
iD1
W k ,! C are its

d embeddings. Then since the maps f�igW k!C are all different, and are all embeddings, they cannot
agree on every  2 �: there must exist some  2 � such that y�i ı �. /¤ y�j ı �. /.

But then given that �i D y�i ı� and �j D y�j ı� , for tr W SL.2;C/!C the trace map, tr ı�i. /¤ tr ı�j . /.
Thus  represents a witnessing element of � on which the representations �i and �j have different traces,
which by Proposition 2.13 tells us that the two representations cannot be conjugate.

Having shown that profinite equivalence means that the number of representations up to conjugacy into
SL.2; k/ (if finite) are the same between the profinitely equivalent groups, the goal is now to attack the
main theorem.

5 Main theorem

We need one last result from Long and Reid in [15].5

Theorem 5.1 [15, Theorem 3.2] Let M be an orientable hyperbolic 3–manifold of finite volume and
with a single cusp , and d 2 N. Then there are only finitely many surgery coefficients m=n such that
tr.�.�1.Mm=n// 2 k, where deg.k=Q/� d as an extension.

Theorem A Let � be any finitely generated residually finite group with j�I
C.�/j<1, and let M be an

oriented finite-volume hyperbolic 3–manifold with a single cusp. Then for all but finitely many choices of
orbifold surgery coefficient m=n with hyperbolic Dehn filling Mm=n, ƒD �1.Mm=n/ has y� 6Š yƒ.
5We may remark that p; q need not be coprime; that is, orbifold surgeries are covered by the quoted result.
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Proof It suffices to show that y� Š yƒ only for finitely many ƒ; we thus assume that y� Š yƒ. By
assumption, j�I

C.�/j <1; let j�I
C.�/j D d . However, by Theorem 4.7, we know that since y� Š yƒ,

j�I
C.�/j D j�

I
C.ƒ/j. Now, by Theorem 5.1, we know that there are at most finitely many choices of

surgery coefficient resulting in a manifold with degree of trace field of fundamental group with at most a
given degree dC1, and by Theorem 4.8, we know that if deg.TF.ƒ// > d , then j�I

C.ƒ/j> d as well, so
that it is exactly these finitely many choices of surgery coefficient where it is even possible for us to have
j�I

C.ƒ/j D d . Finally, we recall that by Proposition 2.13, irreducible representations with the same trace
are always conjugate, so we know that it suffices to check that the characters of the two groups differ.

The above result thus lends itself to the following more geometrically focused corollary:

Corollary 1.1.1 Let M be a one-cusped , finite-volume , hyperbolic 3–manifold. Suppose Mm=n is a
hyperbolic Dehn filling of M with (orbifold ) surgery coefficients m=n and with finite character variety
(for instance , a non-Haken such filling), and let � D �1.Mm=n/. Let M� be the set of all Dehn fillings
Mm0=n0 , and let ƒ� be the set of all fundamental groups of those manifolds. Then � is profinitely almost
distinguishable within ƒ�.

Proof We may start by passing without loss of generality to the case where Mm0=n0 has hyperbolic
structure, thanks to [32, Theorems A and 8.4]. By assumption, j�I

C.�/j<1, so Theorem A applies.

Remark Liu in [14] proves a more general version of this case using completely different methods.

We can extend this to the question that actually motivated this entire line of inquiry, with a little help
from [11].

Definition 5.2 A knot K is small if its complement S3nK contains no closed incompressible surface.

Theorem 5.3 [11, unnumbered theorem from pages 373–374] Let K be a small knot. Then all but
finitely many of its Dehn fillings Mm=n D fS

3nKgm=n are non-Haken.

This allows us to narrow in on the trailhead for this line of thought: that we can use all of this to say
something interesting about hyperbolic Dehn fillings of small knots.

Corollary 5.3.1 Let K be a small knot such that S3nK DM is a one-cusped , finite-volume , hyperbolic
3–manifold. Let � D �1.Mm=n/ be the fundamental group of a non-Haken hyperbolic Dehn filling of M

with (orbifold ) surgery coefficients m=n. Let M� be the set of all Dehn fillings Mm0=n0 , and letƒ� be the
set of all fundamental groups of those manifolds. Then � is profinitely almost distinguishable within ƒ�.

Proof This follows from Theorems 2.14 and 5.3 as a special case of Theorem A.
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Index-bounded relative symplectic cohomology
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We study the relative symplectic cohomology with the help of an index-bounded contact form. For a
Liouville domain with an index-bounded boundary, we construct a spectral sequence which starts from
its classical symplectic cohomology and converges to the relative symplectic cohomology of it inside a
Calabi–Yau manifold.
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1 Introduction

Given a closed symplectic manifold .M;!/ and a compact subsetD ofM, the relative symplectic cohomol-
ogy SHM .D/ is a Floer-theoretic invariant, which captures both dynamical and topological information
of the pair .M;D/. Its construction by Varolgunes [2018] is based on the Hamiltonian Floer theory of
M with more algebraic ingredients. Roughly speaking, one considers a family of increasing Hamiltonian
functions that go to zero on D while going to positive infinity on M �D. Then SHM .D/ is defined as the
homology of a completed telescope of Floer complexes, given by this family of Hamiltonian functions.

The idea of using Hamiltonian functions “localized at a subset” may date back to work of Cieliebak, Floer
and Hofer [Cieliebak et al. 1995] and Viterbo [1990]. Recently there have been several new versions of
Hamiltonian Floer theories related to this idea and aimed at various local-to-global problems. Besides
[Varolgunes 2018], let us mention an incomplete list: [Groman 2023; McLean 2020; Venkatesh 2018].
A priori, the definitions in these papers are different, depending on whether M is open or closed, taking
completion with the action filtration or the Novikov filtration, and the orders of taking different limits. It
would be interesting to compare these theories to attack particular problems. But in this article we mainly
focus on the version of SHM .D/ by Varolgunes.
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Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Along its definition in [Varolgunes 2018], several good properties of this invariant SHM .D/ have been
established, including the Hamiltonian isotopy invariance, a Künneth formula, a displaceability criterion
and the Mayer–Vietoris property. These properties indicate that this invariant would play an important
role in symplectic topology and mirror symmetry. One motivation of it comes from mirror symmetry
suggested in [Seidel 2012] and the family Floer program. On the other hand, some symplectic topological
applications have already appeared in [Tonkonog and Varolgunes 2023; Dickstein et al. 2024]. Also see
its relation with quantum cohomology by Borman, Sheridan and Varolgunes [Borman et al. 2022].

Here we study a computational side of this invariant, and provide some applications to symplectic topology.
The main goal is to construct a filtration on the underlying complex of this cohomology and look at
the induced spectral sequence. Now we set up notation and state our results. Let .M;!/ be a closed
symplectic manifold. We say M is symplectic Calabi–Yau if c1.TM/D 0. A convex domain .D; �/ in M
is a compact codimension–0 symplectic submanifold of M, with a boundary @D and a 1–form � locally
defined near @D, such that the restriction of � to @D is a contact form and the local Liouville vector field
points outward. A Liouville domain .D; �/ in M is a convex domain in M such that the 1–form � is
defined on all of D and the restriction of ! on D is d� . We will focus on a special family of convex
domains, whose restrictions of � to @D are index-bounded contact forms; see Definition 2.2.

For a Liouville domain in M we will equip it with an auxiliary form Q! which represents a class in
H 2.M;DIR/, see Lemma 3.1. If Œ Q!� has integral values on H2.M;DIZ/, then we say it is integral.
This auxiliary form Q! will be used to characterize how far a Floer solution travels outside D.

Let ƒ0 be the Novikov ring and ƒE be the truncated Novikov ring; see Section 2 for the notation. Our
main result is the following.

Theorem 1.1 Let .M;!/ be a closed symplectic Calabi–Yau manifold and D be a Liouville domain
in M with an index-bounded boundary. Suppose that Œ Q!� is integral. Given any positive number E, there
is a truncated invariant SHM .DIƒE / such that :

(1) There is a spectral sequence that starts from the classical symplectic cohomology SH.DIƒE / with
coefficient ƒE and converges to SHM .DIƒE /.

(2) If the class Œ Q!� vanishes on H2.M;D/, then the above spectral sequence degenerates at the first
page , which shows that SHM .DIƒE /Š SH.DIƒE /.

(3) For an increasing sequence E1 < E2 < � � � that goes to positive infinity, the inverse limit of the
truncated invariant recovers the relative symplectic cohomology�

lim
 ��
Ei

SHkM .DIƒEi /
�
˝ƒ0 ƒŠ SHkM .D/˝ƒ0 ƒ:

Remark 1.2 In the definition of an index-bounded contact form, we assume that it is nondegenerate. We
will give a perturbative method in Section 5 that works for Morse–Bott nondegenerate contact forms.

Algebraic & Geometric Topology, Volume 24 (2024)
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The proof of the above theorem draws much inspiration from [McLean 2020] and its usage of the
index-bounded condition. Now we sketch the proof. The Hamiltonian functions we are using to compute
SHM .D/ are approximately zero on D and positive infinity outside D, as a direct limit. The nonconstant
periodic orbits of our interest lie around the boundary of D; see Figure 1. We call the integral of the
Hamiltonian function over a periodic orbit the level of the orbit. Then the levels of these orbits can go to
either zero or positive infinity. We first define a valuation on the free module generated by these orbits.
However, due to the completion procedure, there will be elements with a negative infinite valuation which
comes from limits of orbits going to infinite high level. Then we use the index-bounded condition to
ignore these high limits of orbits. As a consequence, the original underlying complex of this relative
invariant is quasi-isomorphic to a new complex without the high limits. And the same valuation on the
new complex gives an exhaustive filtration, which will induce a convergent spectral sequence.

An important class of examples fitting into the above theorem comes from simply connected Lagrangian
submanifolds in Calabi–Yau manifolds. Let L be a simply connected Lagrangian submanifold in a
Calabi–Yau manifold M. Take D as a Weinstein neighborhood of L, which is isomorphic to a disk
bundle DrT �L of the cotangent bundle of L, with respect to some Riemannian metric g on L. There is
a correspondence between the geodesics of g and the Reeb orbits on the cosphere bundle of T �L. Hence
the index-bounded condition for the contact form on the cosphere bundle will be satisfied if the metric g
satisfies some relations between the length of closed geodesics and their Morse indices. For many simply
connected manifolds, the existence of such a nice Riemannian metric is known. (In Section 5 we show it is
true when g has a positive Ricci curvature.) Then we obtain a spectral sequence starting from SH.DIƒE /
and converging to SHM .DIƒE /. Note that SHM .DIƒ/˝ƒ0ƒ detects the displaceability ofD insideM
(Theorem 2.4), and it does not depend on r in the index-bounded case [Tonkonog and Varolgunes 2023,
Proposition 1.13]. Hence we can let r! 0 to detect the displaceability of L itself inside M. On the other
hand, the usual invariant to detect the displaceability of L, the self-Lagrangian Floer cohomology HF.L/
may not be defined due to possible holomorphic disks on L with Maslov index 0. Moreover, by using the
Mayer–Vietoris property, we can also study the complement of Lagrangian submanifolds. We present
one sample application of Theorem 1.1.

Proposition 1.3 Let .M;!/ be a symplectic Calabi–Yau manifold with dimension greater than 4 and
! represents an integral class in H 2.M/. For a simply connected Lagrangian S in M and a Weinstein
neighborhood U of S , we have that M �U is not stably displaceable in M.

Proof (See a more detailed proof in Proposition 5.9.) By using our spectral sequence we can show that
SH2nM .U /˝ƒ0ƒD 0, where 2n is the dimension of M. Hence the result follows from the stable displace-
ment criterion (Theorem 2.4) and the Mayer–Vietoris property of the relative symplectic cohomology.

Remark 1.4 This proposition can be regarded as an analogue of a result of Ishikawa [2016, Theorem 1.1]:
if U is a round ball in a Calabi–Yau manifold M then M � U is not stably displaceable; see also

Algebraic & Geometric Topology, Volume 24 (2024)
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[Tonkonog and Varolgunes 2023, Corollary 1.15]. Ishikawa’s proof uses computations of spectral invari-
ants of certain distance functions, which shows that M �U is always a super-heavy set.

The outline of this article is as follows. In Section 2 we review backgrounds about Hamiltonian Floer
theories. In Sections 3 and 4 we construct the filtration and show its properties to prove Theorem 1.1. In
Section 5 we discuss some extensions of the theorems as well as applications.

Remark 1.5 We focus on the case that M is Calabi–Yau and D is index-bounded. More local-to-global
results of SHM .D/ in other interesting cases can be found in [Borman et al. 2022; Groman and Varolgunes
2023].

Acknowledgments

The author acknowledges Mark McLean for his generous guidance on this project. The author also
acknowledges Umut Varolgunes for helpful discussions.

2 Background

Now we review the construction of symplectic cohomology theories. First we specify the ring and field
that will be used. The Novikov ring ƒ0 and its field ƒ of fractions are defined by

ƒ0 D

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R�0; �i < �iC1; lim

i!1
�i DC1

�
;

ƒD

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R; �i < �iC1; lim

i!1
�i DC1

�
;

where T is a formal variable. The maximal ideal of ƒ0 is defined by

ƒC D

� 1X
iD0

aiT
�i
ˇ̌̌
ai 2C; �i 2R>0; �i < �iC1; lim

i!1
�i DC1

�
:

There is a valuation v Wƒ!R[fC1g by setting

v

� 1X
iD0

aiT
�i

�
WDmin

i
f�i j ai ¤ 0g and v.0/ WD C1;

which makes ƒ0 a complete valuation ring. When we say the completion of a ƒ0–module we mean the
completion with respect to this valuation. We write

ƒ�r WD v
�1.Œr;C1�/ and ƒ>r WD v

�1..r;C1�/ for all r 2 .�1;C1/;

which are ideals of ƒ0. So ƒ0 is a short notation for ƒ�0 and ƒC for ƒ>0. Later when we fix an energy
bound E > 0, we just write ƒE WDƒ0=ƒ�E .

Algebraic & Geometric Topology, Volume 24 (2024)
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2.1 Hamiltonian Floer theory on closed manifolds

Now we set up the background on Hamiltonian Floer theory. We work with a closed symplectic Calabi–Yau
manifold .M;!/. Hence foundational details can be found in [Hofer and Salamon 1995; Salamon 1999].

A smooth functionH WM!R determines a smooth vector fieldXH such that dH. � /D!.XH ; � /. We say
H is a Hamiltonian function and XH is the associated Hamiltonian vector field. Let LM WDC1.S1;M/

be the space of free loops in M, where we always view S1 DR=Z and write t as the coordinate of S1.
We call t the time variable.

Moreover, we can consider a family of functions Ht W M � S1 ! R parametrized by S1. Then we
have time-dependent Hamiltonian vector fields XHt . Integrating it we obtain a family of Hamiltonian
symplectic diffeomorphisms �t W M ! M. A loop  2 LM is called a time–1 Hamiltonian orbit if
 0.t/D XHt . In this article, we only consider the component L0M which contains contractible loops.
Hence from now on, all Hamiltonian orbits are assumed to be contractible. We write

CPHt D f 2 L0M j 
0.t/DXHt g

as the set of contractible 1–periodic orbits of Ht . An orbit is nondegenerate if the Poincaré return map

d�1 W T.0/M ! T.0/M

does not have eigenvalue 1. And we say a Hamiltonian Ht is nondegenerate if all of its 1–periodic orbits
are nondegenerate.

Next we assign an index CZ./ to each orbit  , the Conley–Zehnder index; see [Salamon 1999, Lecture 2].
By the Calabi–Yau condition, this index does not depend on choices of cappings. We grade our orbits by
setting

(2-1) �Ht ./ WD nCCZ./;

where 2n is the real dimension of M. (Our grading is different from that in [Salamon 1999], since we use
cohomology instead of homology.) When we say a degree–k or an index–k orbit we mean an orbit 
with �Ht ./D k. We remark that for a constant orbit of a C 2–small Morse function, its degree defined
above equals its Morse index.

Therefore CPHt becomes a graded set
CPHt D

M
k2Z

CPkHt ;

where CPkHt is the set of orbits with index k.

Then for a nondegenerate Hamiltonian Ht , we define

(2-2) CFk.Ht Iƒ0/D
�X
iD1

cii

ˇ̌̌
ci 2ƒ0; i 2 CPkHt

�
;
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which is the free ƒ0–module generated by index–k orbits. Similarly we can define

(2-3) CFk.Ht Iƒ/D
�X
iD1

cii

ˇ̌̌
ci 2ƒ; i 2 CPkHt

�
;

which is the ƒ–vector space generated by index–k orbits. We don’t grade the formal variable T.

By using a family of compatible almost-complex structures Jt , we can study the solutions of the Floer
equation

(2-4) @suCJt .@tu�XHt /D 0

for u WR�S1!M. Here s is the R–coordinate and t is the S1–coordinate on the domain. For two orbits
�; C and a homotopy class A 2 �2.M I �[ C/, consider the solution space

(2-5) M.�; CIA/D
˚
u WR�S1!M j @suCJt .@tu�XHt /D 0; u.�1; t /D �;

u.C1; t /D C; Œu�D A 2 �2.M I �[ C/
	
=� :

There is an R–action on this space by translating the s–coordinate of a solution u, and � is the quotient
of this R–action. The L2–energy of a solution u is

0�E.u/D

Z
j@suj

2
D

Z
u�!C

Z
C

Ht �

Z
�

Ht :

For generic pairs .Ht ; Jt /, the solution space is an l–dimensional manifold where

�Ht .C/��Ht .�/D l C 1:

We call a pair .Ht ; Jt / satisfying the above condition a regular pair. By the Gromov–Floer compactness
theorem, when �; C; A are fixed, the above solution spaces admit compactifications by adding broken
Floer trajectories and J –holomorphic sphere bubbles. The bubbles can be ruled out by using the Calabi–
Yau condition when the moduli space is 0– or 1–dimensional; see [Hofer and Salamon 1995]. There are
also coherent orientations on these moduli spaces. In particular, when the moduli space is 0–dimensional,
we can count the signed number of elements, which we denote by n.�; CIA/.

Then we define an operator
d W CFk.Ht /! CFkC1.Ht /;

with either ƒ0– or ƒ–coefficients, by setting

(2-6) d.�/ WD
X
C

X
Œu�DA

n.�; CIA/ � C �T

R
u�!C

R
C

Ht�
R
�
Ht
:

The right-hand side is summed over all C with �Ht .C/ � �Ht .�/ D 1 and all classes A are in
�2.M I �[ �/. It may not be a finite sum, but it converges as an element in CFk.Ht /, by the Gromov
compactness theorem. Then we extend this operator ƒ0 or ƒ–linearly to CFk.Ht /.

By the analysis of codimension–1 boundaries of M.�; CIA/ with

�Ht .C/��Ht .�/D 2;
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a big theorem in Hamiltonian Floer theory shows that d2 D 0. Then we write the resulting cohomology
groups as HFk.Ht ; Jt Iƒ0/ and HFk.Ht ; Jt Iƒ/.

Another theorem shows that HFk.Ht ; Jt Iƒ/ is independent of the choices of generic pairs .Ht ; Jt /.
Hence we can call it the Hamiltonian Floer cohomology of M. This invariance result is proved by
considering continuation maps between different choices of .Ht ; Jt /. We sketch it here since we will use
it later to define symplectic cohomology; see [Salamon 1999, Section 3.4] for a full proof.

For simplicity we only vary Ht . The case for Jt can be handled in the same way. Let H˛
t and Hˇ

t be
two nondegenerate Hamiltonians. Assume that both .H˛

t ; Jt / and .Hˇ
t ; Jt / are regular for a fixed Jt .

Then we choose a homotopy H˛ˇ
s;t of Hamiltonians to connect H˛

t and Hˇ
t . That is,

(2-7) H
˛ˇ
s;t WR�S

1
�M !R; H

˛ˇ
s;t D

�
H˛
t ; s � �1;

H
ˇ
t ; s � 1:

Then we consider the s–dependent Floer equation

(2-8) @suCJt .@tu�XH˛ˇ
s;t
/D 0

and the moduli space

M.˛�; 
ˇ
C
IA/D

˚
u WR�S1!M j @suCJt .@tu�XH˛ˇ

s;t
/D 0;

u.�1; t /D ˛�; u.C1; t /D 
ˇ
C
; Œu�D A 2 �2.M I 

˛
� [ 

ˇ
C
/
	
:

Note that now the equation is s–dependent; hence there is no R–action. For a generic pathH˛ˇ
s;t , the above

moduli space is a manifold of dimension �
H
ˇ
t
.C/��H˛

t
.�/. And it admits a similar compactification

by adding broken trajectories. When �
H
ˇ
t
.C/D �H˛

t
.�/, we define an operator

(2-9) f ˛ˇ W CFk.H˛
t /! CFk.Hˇ

t /

by setting

f ˛ˇ .˛�/ WD
X

ˇ
C

X
Œu�DA

n˛ˇ .˛�; 
ˇ
C
IA/ � 

ˇ
C
�T

R
u�!C

R
@s.H

˛ˇ
s;t .u.s;t///;

where n˛ˇ .˛�; 
ˇ
C
IA/ is a signed count of elements of the above moduli space. Note that the weight

(2-10)
Z
u�!C

Z
@s.H

˛ˇ
s;t .u.s; t///D

Z
j@suj

2
C

Z
@H

˛ˇ
s;t

@s
.u.s; t//

is not necessarily nonnegative; hence we need to use ƒ–coefficients now. We call this weight the
topological energy of a Floer solution. (It is nonnegative if the family of Hamiltonian functions satisfies
that

R
@sH

˛ˇ
s;t � 0.) Then one can show that f ˛ˇ is a chain map and moreover f ˛ˇ ı f ˇ˛ is chain

homotopy equivalent to the identity map.

We add one more lemma here which will be used frequently in later sections.
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Lemma 2.1 Let M be a Calabi–Yau manifold and Ht be a nondegenerate Hamiltonian function on M.
For a constant �> 0, suppose that we have a homotopy fH s

t gs2Œ0;1� such that H s
t DHt C s�. Then the

continuation map between CF.H 0
t / and CF.H 1

t / is a multiplication by T�. In particular , when �D 0,
this shows that the continuation map of a constant homotopy is the identity map.

Proof Since our Hamiltonian functions are just a translation of a fixed one, the Floer equation of the
continuation map (2-8) does not depend on s. Therefore any solution of it still carries an R–action. By
using the Calabi–Yau condition, we can pick a regular family Jt for Ht . For two different orbits 
and  0 with index k, any Floer solution of the continuation map equation connecting  and  0 carries an
R–action. So the corresponding moduli space is at least 1–dimensional, contradicting that both  and  0

have index k.

Then the continuation maps only exist when  D  0 and it will be a constant map. One can directly check
that the constant map is regular and has contribution 1. Hence the continuation map between CF.H 0

t /

and CF.H 1
t / is an identity matrix, weighted by the change of the Hamiltonian function which is T�.

2.2 Liouville domain and contact cylinder

Let .C; ˛/ be a contact manifold with a contact form ˛. The Reeb vector field of ˛ is the unique vector
field R˛ on C such that

d˛.R˛; � /D 0; ˛.R˛/D 1:

Then a Reeb orbit of length � > 0 is a map

.t/ WR=�Z! C;
d

dt
.t/DR˛:

We write �˛;� � C for the set formed by Reeb orbits of length � and �˛ WD
S
�>0 �˛;�. We say a Reeb

orbit is nondegenerate if the Poincaré return map of the Reeb flow does not have eigenvalue 1. And we
say a contact form ˛ is nondegenerate if all of its orbits are nondegenerate. We say ˛ is Morse–Bott
nondegenerate if, for all � > 0, the set �˛;� is a closed submanifold in C, the rank of d˛ j�˛;� is locally
constant, and Tp�˛;� D ker.Tp��� id/ for all p 2 �˛;�, where �t is the Reeb flow. For a Morse–Bott
nondegenerate contact form, one can define a Conley–Zehnder index of its Reeb orbits; see [Cieliebak
and Mohnke 2018, Section 2.1] for more details on Reeb orbits and their indices. Then we have the
following definition.

Definition 2.2 [Tonkonog and Varolgunes 2023, Definition 1.12] Suppose .M;!/ is Calabi–Yau. A
contact hypersurface .C; ˛/ in M is called index-bounded if:

(1) ˛ is a nondegenerate contact form.

(2) All of its Reeb orbits are contractible inside M.

(3) For any integer k, the lengths of the Reeb orbits of Conley–Zehnder index k are bounded from
above.
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Similarly, we call a Liouville domain .D; �/ in M index-bounded if its boundary .@D; ˛ D � j@D/ is
index-bounded.

Let .D; �/ be a Liouville domain in .M;!/. For small � > 0 there is an embedding

C D Œ1� �; 1C ��� @D!M

such that @D is the image of f1g � @D. We do not distinguish C from its image. Then C is called a
contact cylinder associated to the Liouville domain D if ! jCD d.r˛/, where r is the coordinate on
Œ1� �; 1C ��. And we will write D1C� DD[C as a compact neighborhood of D. The 1–form � on D
smoothly extends to a 1–form � on D1C� such that ! jD1C�D d� .

2.3 Relative symplectic cohomology of a Liouville domain

The relative symplectic cohomology is the homology of a suitable limit of complexes derived from
Hamiltonian Floer theory of M. The whole construction [Varolgunes 2018] of relative symplectic
cohomology defines a module SHM .D/ over the universal Novikov ring ƒ0 for any compact subset D
of a closed symplectic manifold M. Now we briefly review its definition when D is a convex domain in a
symplectic Calabi–Yau manifold M.

The following data is called an acceleration data for D:

(1) H1;t � H2;t � � � � a monotone sequence of nondegenerate Hamiltonian functions such that
Hi;t .x/! 0 on D and Hi;t .x/!C1 on M �D.

(2) Monotone homotopies of Hamiltonians fHs;tgs2Œi;iC1� for all i , which means that Hs;t .x/ �
Hs0;t .x/ if s � s0 and Hs;t DHi;t if s D i .

(3) A family of almost-complex structures fJs;tg.s;t/2Œ1;C1/�S1 such that, for each i , .Hi;t ; Ji;t / is a
regular pair, and, for each i , .Hs;t ; Js;t /s2Œi;iC1� is a regular homotopy.

From an acceleration data, we obtain a sequence of chain complexes over ƒ0

CF k D CFk.H1;t /! CFk.H2;t /! � � �

which are connected by continuation maps. Here each CFk.Hi;t / is the degree–k Floer complex of the
Hamiltonian Hi;t . Since Hi;t �HiC1;t are connected by a monotone family of Hamiltonians, the weight
(2-10) in the continuation map is nonnegative.

Then the relative symplectic cohomology module SHkM .DIƒ0/ is defined as the cohomology

(2-11) H.btel.CF k/Iƒ0/

of the completion btel.CF k/ of the telescope

tel.CF k/D
M
n2ZC

.CnŒ1�˚Cn/:
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Here we write Cn D CFk.Hn;t /. Another algebraic way to define it is that

(2-12)
SCkM .DIƒ0/ WD lim

 ��
r�0

lim
��!
n

Cn˝ƒ0 ƒ0=ƒ�r ;

SHkM .DIƒ0/ WDH.SCkM .D/Iƒ0/:

For the equivalence of these two definitions, see [Varolgunes 2018, Section 2]. And it is also shown that
the definition of SHkM .DIƒ0/ is independent of various choices.

Proposition 2.3 [Varolgunes 2018, Proposition 3.3.4] (1) Let Hs and H 0s be two different acceleration
data. Then H.SCM .D;Hs//ŠH.SCM .D;H 0s// canonically. Therefore we simply denote this invariant
by SHM .D/.

(2) Let � W M ! M be a symplectomorphism. There exists a canonical isomorphism SHM .D/ D
SHM .�.D// by relabeling an acceleration data by the map �.

(3) ForD �D0, there exist canonical restriction maps SHM .D0/! SHM .D/. This satisfies the presheaf
property.

Hence we can write this invariant as SHM.D/ WDSHM.DIƒ0/ and its torsion-free part SHM.DIƒ0/˝ƒ0ƒ.
This invariant has many good properties. Notably it satisfies the Mayer–Vietoris exact sequence in some
settings. Another property we will keep using here is the stably displaceability condition.

Theorem 2.4 [Varolgunes 2018, Theorem 4.0.1 and Remark 4.3.1] If the compact subset D �M is
stably displaceable then SHM .DIƒ0/˝ƒ0 ƒD 0.

In practice when D is a convex domain, with a nondegenerate contact form on its boundary, we will use
a particular class of acceleration data to compute the relative symplectic cohomology. For small � > 0 we
fix a contact cylinder C associated to D and write D1C� DD[C as a compact neighborhood of D. We
introduce the notion of S–shaped Hamiltonian functions; see Figure 1.

Definition 2.5 A time-independent Hamiltonian function H WM !R is called an S–shaped Hamilton-
ian if:

(1) H is cylindrical on the region
�
1� �

4
; 1C 3�

4

�
� @D � C. That is, H.x/DH.x0/ if r.x/D r.x0/,

where r is the cylindrical coordinate. So we can write H.x/D h.r.x// for some h W
�
1� �

4
; 1C 3�

4

�
!R

on the cylinder region.

(2) h0.r/ is concave and h.r/D �r Cm on
�
1C �

4
; 1C �

2

�
� @D � C for some constants � > 0 and m.

(3) The linear slope � is not in the action spectrum of the contact form.

(4) H is a C 2–small Morse function on D1��=4, and it is a Morse function on M �D1C3�=4 with small
derivatives such that it only has constant orbits outside

�
1� �

4
; 1C 3�

4

�
� @D.
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r
1� �

4 1

1C �
4
1C �

2 1C
3�
4
1C�

Figure 1: Hamiltonian functions in the cylindrical coordinate.

By this special shape of our Hamiltonian functions, we have further description of their 1–periodic orbits.
First in the region where the Hamiltonians have small derivatives, there are only constant orbits. Hence
all nonconstant orbits lie in the contact cylinder C. By a direct computation we have that

XHn;t .r0; c0/D�@rHn;t .r0/ �R˛.c0/ for all .r0; c0/ 2 C D Œ1� �; 1C ��� @D:

That is, the Hamiltonian vector field is proportional to the Reeb vector field with the negative slope as the
ratio. Hence any �–periodic Reeb orbit gives rise to a 1–periodic Hamiltonian orbit in r0�@D if and only if

� D

ˇ̌̌̌Z 1

0

@rHn;t .r0/ dt

ˇ̌̌̌
:

Since the Hamiltonian is linear in the middle of the cylindrical region, with a slope which is not in the
action spectrum of the contact form, there are no orbits in this region. Hence all the nonconstant 1–periodic
Hamiltonian orbits can be separated into two groups. One group is located in the region

�
1� �

4
; 1C �

4

�
�@D

and we call them lower orbits. The other group is located in the region
�
1C �

2
; 1C 3�

4

�
� @D and we call

them upper orbits.

Previously, an S–shaped Hamiltonian function is time-independent. So the nonconstant orbits appear in
S1–families. Now we use small time-dependent perturbations to make them nondegenerate by using the
technique in [Cieliebak et al. 1996].

Proposition 2.6 [Cieliebak et al. 1996, Lemma 2.1 and Proposition 2.2] Let H be a time-independent
S–shaped Hamiltonian function and let  be a nonconstant 1–periodic orbit of H such that  is transver-
sally nondegenerate. Pick U to be a neighborhood of  which does not contain other 1–periodic orbits.
Then there exists a time-dependent function Ht such that :

(1) The support of H �Ht is in U.

(2) There are exactly two 1–periodic orbits ˙ of Ht in U.

(3)
R
�� D

R
�
C
� D

R
��� , where � is the Liouville 1–form in the cylindrical region.

(4) The difference between the Conley–Zehnder indices of  and ˙ is bounded by 1.
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Note that the orbit  is both a Hamiltonian orbit of H and a Reeb orbit of the contact form. One can
compute its index in two ways. The following lemma relates these two indices.

Lemma 2.7 [McLean 2020, Lemma 5.25] Let C D Œ1� �; 1C ���C be an index-bounded contact
cylinder with cylindrical coordinate r and associated contact form ˛ and let � W C ! C be the natural
projection map. Let f W Œ1� �; 1C ��! R be a smooth function , R�;Œ�m;m� be the set of Reeb orbits
of length � and index in Œ�m;m� and O�;Œ�m;m� be the set of 1–periodic orbits of f .r/ contained in
fr D .f 0/�1.�/g of index in Œ�m;m� which are null homologous in M. Then the map

O�;Œ�m;m�!R�;Œ�m�1=2;mC1=2�

sending  WR=Z! C to � ı  ı b� is well-defined , where

b� W Œ0; ��! Œ0; 1�; b�.t/ WD t=� for all t 2 Œ0; ��:

Hence we can use the index-bounded condition, which was previously defined for Reeb orbits, in the
setting of Hamiltonian orbits. Let D be a convex domain with an index-bounded boundary in a Calabi–
Yau manifold. We start with a time-independent S–shaped Hamiltonian function and perturb it. Before
perturbation, a nonconstant orbit  satisfies the index-length relation in Definition 2.2 since it comes from
a Reeb orbit. After perturbation, by the above proposition and lemma, the index-length relation still holds
for new orbits ˙.

Now we say a time-dependent function Ht is a time-dependent S–shaped Hamiltonian function if it is a
perturbation of a time-independent S–shaped Hamiltonian function as in Proposition 2.6. Note that we
only perturb the region where nonconstant orbits lie, so we can still talk about upper and lower orbits
after the perturbation.

Definition 2.8 Let D be a convex domain in a Calabi–Yau manifold M. A time-dependent S–shaped
Hamiltonian function Ht is called index-bounded if, for any integer k, there exists a constant �k > 0
such that

R
�� < �k for all degree–k 1–periodic orbits of Ht .

The above discussion says that if D is a convex domain with an index-bounded boundary, then we can
always find time-dependent nondegenerate S–shaped Hamiltonian functions which are index-bounded.
In practice we will use families of time-dependent nondegenerate S–shaped Hamiltonian functions to
compute SHM .D/.

2.4 Hamiltonian Floer theory on manifolds with convex boundary

Now we review the construction of Hamiltonian Floer theory on convex manifolds, and fix our notation
along the way. Symplectic cohomology was first introduced by Cieliebak, Floer and Hofer [Cieliebak
et al. 1995] and Viterbo [1999] in the exact setting, and by Ritter [2010] in the nonexact setting.

Let .M;! D d�/ be a Liouville domain, and let ˛ WD � j@M be the contact form. Then we can attach a
cylindrical end to M to get an open symplectic manifold

yM WDM [ .@M � Œ1;C1//:
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Let r be the coordinate on Œ1;C1/. We equip the manifold yM with a smooth symplectic form O!, where
O! D ! on M and O! D d.r˛/ on @M � Œ1;C1/. And . yM; O!/ will be called the completion of M. In the
following we assume that ˛ on @M is nondegenerate.

Now we define admissible Hamiltonian functions we will use. A Hamiltonian function Ht W S1� yM !R

is called admissible if:

(1) It is a negative time-independent Morse function on M.

(2) All its contractible 1–periodic orbits in yM are nondegenerate.

(3) It is a linear function just depending on r with a positive slope on @M � ŒR0;C1/ for some R0 > 1.

(4) The slope of the linear part is not an element in Spec.˛/.

For an admissible Hamiltonian function, there are only finitely many 1–periodic orbits. Next with an
admissible Hamiltonian Ht , we consider the degree–k Floer complex CFk.Ht / as in (2-2) and (2-3).
Then for suitably chosen almost-complex structures, we can use moduli spaces of Floer solutions to define
differentials and continuation maps as in the closed case.

For a monotone family Hi;t such that Hi;t �HiC1;t and the linear slope of Hi;t goes to positive infinity,
we have a sequence of complexes

CF k D CFk.H1;t /! CFk.H2;t /! � � �

connected by continuation maps. Here all Floer differentials and continuation maps are weighted by the
topological energy; see (2-10). Since the symplectic form on our Liouville domain is exact, the images of
an orbit under Floer differentials and continuation maps are finite sums of other orbits. Hence we can
both define the classical symplectic cohomology over C or over ƒ0. The former theory can be defined by
the latter one by setting T D 1.

The classical symplectic cohomology of M over ƒ0 is defined as

SHk.M Iƒ0/ WDH.tel.CF k//:

An essential difference between this definition and that of the relative symplectic cohomology is that the
classical one does not complete tel.CF k/ before taking homology.

The classical symplectic cohomology of M over C is defined as

SHk.M IC/ WDH.tel.CF k/ jTD1/:

In other words, all differentials and continuation maps are defined without weights. Since .M; d�/ is an
exact symplectic manifold, this reduction to T D 1 is well-defined.
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2.5 Lower semicontinuous Hamiltonian functions

Defining the classical SHk.M IC/ via taking a direct limit is equivalent to the definition via a single
Hamiltonian function that is quadratic at infinity; see [Seidel 2008, Section 3]. Similarly, we will see that
the relative symplectic cohomology SHM .D/ is related to a kind of Hamiltonian Floer theory for a lower
semicontinuous Hamiltonian function FD0 , where FD0 jDD 0 and FD0 jM�DDC1. A general study of
Hamiltonian Floer theory of lower semicontinuous functions can be found in [Groman 2023; McLean
2020]. Now we will discuss a special case of it for our purpose.

Fix a closed symplectic Calabi–Yau manifold M and let F WM �S1! R be a lower semicontinuous
function. Pick a monotone sequence fHn;tg of nondegenerate Hamiltonian functions such that

H1;t �H2;t � � � � �Hn;t � � � � ! F:

The Hamiltonian Floer cohomology HF.F / is defined as

(2-13) H.btel.CF.H1;t /! CF.H2;t /! � � � //:

Also we have an equivalent definition in terms of (2-12).

From its definition, we can see that the lower semicontinuous Hamiltonian Floer cohomology HF.F / is a
generalization of the relative symplectic cohomology. For a domain D in M, we have

SHM .D/Š HF.FD0 /:

This indicator-type function FD0 is a very degenerate one, since it is identically zero on D. In practice,
it is often more handy to replace its part on D by a fixed nondegenerate Hamiltonian function f . And
our main result of this subsection is the following isomorphism, which shows that the choice f does not
matter if we work over the Novikov field.

Proposition 2.9 LetD be a domain inM. Let F WM �S1!R be a lower semicontinuous function such
that F is a smooth negative nondegenerate Hamiltonian function f on D �S1 and F DC1 otherwise.
Then we have

SHM .D/˝ƒ0 ƒŠ HF.F /˝ƒ0 ƒ:

Proof Pick a cofinal family fHn;tg of nondegenerate Hamiltonian functions such that

H1;t �H2;t � � � � �Hn;t � � � � ! FD0

and a cofinal family fKn;tg of nondegenerate Hamiltonian functions such that

K1;t �K2;t � � � � �Kn;t � � � � ! F:

By the nondegeneracy of f in D �S1, we can choose Kn;t such that Kn;t .x/D f .x; t/ for all n 2N,
.x; t/ 2D�S1. Moreover, since F is negative on D we can choose above families such that Hn;t �Kn;t
for all n. Moreover, we can assume that

max
.x;t/2M�S1

.Hn;t �Kn;t /D max
.x;t/2D�S1

.Hn;t �Kn;t / for all n 2N:
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Kn;t

Kn;tC�

Hn;t

Figure 2: A sandwich of Hamiltonian functions.

Consider the continuation map

CF.Ki;t /! CF.Hi;t /

over ƒ0 for each i . These continuation maps induce a ƒ0–module map

HF.F /! HF.FD0 /Š SHM .D/:

Next we set � WD �min.x;t/2D�S1 K1;t , and set F C� to be the lower semicontinuous function such
that it is f C� on D �S1 and positive infinity otherwise. Note that the family fKn;t C�g is a cofinal
family for the function F C�, so on D �S1 we have that Kn;t C� �K1;t C� � 0 �Hn;t for all n.
On the other hand, since Hn;t �Kn;t takes maximum on D �S1, we have Kn;t C��Hn;t globally on
M �S1, see Figure 2. This gives the second ƒ0–module map in

HF.F /! HF.FD0 /! HF.F C�/! HF.FD0 C�
0 /:

Similarly we can find some other constant �0 to define the third map. (For example, we can take �0 D�.
What we need is that Hn;t C�0 � Kn;t C� for all n.) Since the data to define HF.F C�/ is just a
translation of the data to define HF.F /, the composition of the first two maps is the multiplication by T�,
by Lemma 2.1. By the same reason, the composition of the last two maps is the multiplication by T�

0

.
After tensoring with the Novikov field, these compositions become isomorphisms, which shows that the
three ƒ0–modules HF.F /, HF.FD0 / and HF.F C�/ are all isomorphic over ƒ.

Therefore if we only care about the relative symplectic cohomology over the Novikov field, we can relax
the condition of the acceleration data of Hamiltonian functions we used for computations. That is, the
Hamiltonian functions converge to a fixed negative Morse function on D, instead of converging to zero.

Algebraic & Geometric Topology, Volume 24 (2024)



4814 Yuhan Sun

3 A filtration on the completed telescope

Let .M;!/ be a closed Calabi–Yau symplectic manifold and letD�M be a Liouville domain. Recall that
the relative symplectic cohomology SHM .D/ is the homology of the completion btel.CF/ of the telescope

tel.CF/D
M
i2N

.Ci Œ1�˚Ci /:

Now we will define a filtration on btel.CF/ which is compatible with the differentials.

3.1 Auxiliary symplectic forms

First we define some auxiliary symplectic forms with respect to our Liouville domainD. The boundary @D
is a contact hypersurface in M and for small � > 0 we write D1C� DD[ .Œ1; 1C ��� @D/ as a compact
neighborhood of D. That is, we fix a choice of a contact cylinder associated to D. On D1C� there is a
1–form � such that d� D !. Then we can interpolate ! from D1C3�=4 to M �D1C�.

Lemma 3.1 There exists a global 2–form Q! and a 1–form Q� on M such that :

(1) ! D Q!C d Q� on M .

(2) The support of Q� is in D1C� and Q� D � in D1C3�=4.

(3) The support of Q! is in M �D1C3�=4 and Q! D ! in M �D1C�.

Proof Let �.r/ W Œ1; 2�!R be a smooth increasing function such that

�.r/D

�
0; 1� r � 1C 3

4
�;

1; 1C � � r:
Next we define

Q! jx D

8<:
0; x 2D1C3�=4;

d.�.r/�/; x 2D1C� �D1C3�=4;

!; x 2M �D1C�;

Q� jx D

8<:
�; x 2D1C3�=4;

.1� �.r//�; x 2D1C� �D1C3�=4;

0; x 2M �D1C�:

Then we can check that Q! and Q� satisfy the conditions we need; see Figure 3.

By the definition of Q!, it represents a cohomology class Œ Q!�2H 2.M;D/. The exact sequence of de Rham
cohomology

� � � !H 1.D/!H 2.M;D/
j
�!H 2.M/!H 2.D/! � � �

says that j.Œ Q!�/ D Œ!�. So we also call Œ Q!� a lift of Œ!�. In the case that Œ Q!� takes integral values on
H2.M;DIZ/, we say Œ Q!� is an integral lift of Œ!�. From now on, our Liouville domain D is always
equipped with such an auxiliary form Q! and we assume it represents an integral class.
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1 1C3
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Figure 3: Cut-off functions for Q! and Q� .

Example 3.2 If D is simply connected, then H 1.D/D 0 and we have a unique lift Œ Q!� of Œ!�. Moreover,
the map H2.M/!H2.M;D/ is surjective. Hence if Œ!� represents an integral class in H 2.M/ then
Œ Q!� is automatically integral. A similar conclusion holds when the map �1.D/! �1.M/ is injective.

For a Hamiltonian vector field which is small on M �D1C3�=4, the Floer equation becomes very close
to the genuine Cauchy–Riemann equation on that region. This implies the positivity of the !–energy
of solutions on that region. To prove this first we recall the following computation for a solution to the
Floer equation. Let H be a Hamiltonian function and J be a compatible almost-complex structure. Let
g. � ; � / WD !. � ; J � / be the induced Riemannian metric. For a solution u with finite energy we have

!.Œu�/D

Z
u�! D

Z
!.@su; @tu/D

Z
j@suj

2
g C

Z
!.@su;XH /:

For the second term we haveZ
!.@su;XH /D�

Z
dH.@su/

D�

Z C1
�1

@

@s

Z 1

0

H.u/ dt ds D�

�Z 1

0

H.u.C1; t // dt �

Z 1

0

H.u.�1; t // dt

�
� �kHk;

where kHkD
R 1
0 .maxx2M H.x; t/�minx2M H.x; t// dt is the Hofer norm of H. When we restrict our

function to some region of M, the relative Hofer norm is defined in a similar way by taking the max and
min on that region.

Lemma 3.3 Let .M;!/ be a closed symplectic manifold and D be a Liouville domain in M. Let Q! be an
auxiliary form constructed above. We assume that Œ Q!� is an integral lift of Œ!�. Then for any nondegenerate
Hamiltonian function H with kHkM�D1C3�=4 < 1, for any finite-energy solution u W S1 �R!M of the
Floer equation

@suCJ.@tu�XH /D 0;

the integral
R
u� Q! � 0. Here J is a cylindrical almost-complex structure compatible with D.
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Proof We prove this lemma by computation. By the definitions of Q! and a cylindrical almost-complex
structure J , we know that Qg. � ; � / WD Q!. � ; J � / defines a Riemannian metric on the region where Q! ¤ 0.
Then by the above computation we have thatZ

u� Q! D

Z
Q!.@su; @tu/�

Z
j@suj

2
Qg �kHkM�D1C3�=4 � �kHkM�D1C3�=4 :

Since Q! is supported in M �D1C3�=4, we only need to consider the relative Hofer norm kHkM�D1C3�=4 .
In particular, if the image of u does not intersect M �D1C3�=4, then

R
u� Q! D 0.

Since the nonconstant orbits of H are in D1C3�=4, the cylinder u represents a relative homology class
in H2.M;D/. By our assumption that the number

R
u� Q! is an integer, when kHkM�D1C3�=4 < 1, the

number
R
u� Q! is nonnegative.

Note that Lemma 3.3 also works for a family of Hamiltonian fHt;sg under small perturbations. That is, if
kHt;s �Ht;s0kM�D1C3�=4 < 1 for any s; s0 then we still have positivity of solutions of the parametrized
Floer equation.

3.2 A filtration which is not exhaustive

The computation in the last subsection tells that when the Hamiltonian functions have small relative
Hofer norms outside the Liouville domain, the outside part of the corresponding Floer solutions carry
nonnegative Q!–energy. Now we use this fact to define a filtration on the telescope, which is the underlying
complex of the relative symplectic cohomology.

First we consider the case of a single S–shaped Hamiltonian H such that kHk < 1 on M �D1C3�=4.
We define a valuation of a single element

a �  2 CFk.H/D
M

2CPk.H/

ƒ0 � 

by setting

(3-1) �.a � /D v.a/�

Z


H �

Z


Q�;

where v.a/ is the valuation on ƒ0. If  is a constant orbit, the integral
R

Q� is zero. For a general sum

x D
P
i aii we define the valuation as

(3-2) �.x/ WD inf
i
f�.aii /g D inf

i

�
v.ai /�

Z
i

Hi �

Z
i

Q�

�
:

Lemma 3.4 For the valuation � we have

�.d.a � //� �.a � /:

Hence it induces a filtration

(3-3) F � CFk.H/D fx 2 CFk.H/ j �.x/� �g

on the complex CFk.H/.
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Proof We prove this lemma by a direct computation. First from our definition

d.a � /D a �
X
 0;A

n.;  0IA/ �  0 �T !.A/�
R
 HC

R
0 H ;

where A is the homotopy class represented by a solution u connecting  and  0. Hence we have

(3-4) �.d.a � //D �

�
a �
X
 0;A

n.;  0IA/ �  0 �T !.A/�
R
 H

R
0 H

�
D inf
 0;A

�
v.a/C!.A/�

Z


H C

Z
 0
H �

Z
 0
H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C!.A/�

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/C d Q�.A/�

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/C

Z
 0

Q� �

Z


Q� �

Z


H �

Z
 0

Q�

�
D inf
 0;A

�
v.a/C Q!.A/�

Z


Q� �

Z


H

�
D inf
 0;A
f�.a � /C Q!.A/g � �.a � /:

Here we use that ! D Q! C d Q� and the Stokes formula to compute d Q�.A/. The last inequality uses
Lemma 3.3.

Similarly we can check that �.dx/ � �.x/ for a sum x D
P
i aii . Hence this valuation � induces a

decreasing filtration on CF.H/.

The above computation also works for a 1–parameter family of Hamiltonian functions if the variation of
these functions is sufficiently small outside the Liouville domain. More precisely, we pick a monotone
1–parameter family of Hamiltonian functions Hn;t which form an acceleration data to compute the
relative symplectic cohomology of D such that:

(1) The relative Hofer norm of Hn;t on M �D1C3�=4 is less than 1 for each n.

(2) The relative Hofer norm of Hn;t �HnC1;t on M �D1C3�=4 is less than 1 for each n.

Then each of the continuation maps also satisfies the above lemma. Therefore the telescope given by

CF WD CF.H1;t /! CF.H2;t /! � � � ! CF.Hn;t /! � � �

satisfies that its differentials and continuation maps are compatible with � . We write btel.CF/ as the
completion of the telescope of this 1–ray. For a general element x D

P
i aii 2

btel.CF/ we define
� W btel.CF/!R[f�1g by

(3-5) �.x/ WD inf
i
f�.aii /g D inf

i

�
v.ai /�

Z
i

Hi;t �

Z
i

Q�

�
:
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This valuation gives a filtration on btel.CF/. The differentials of the completed telescope are sums of the
differentials and continuation maps in the Floer complex. Hence the differential of btel.CF/ is compatible
with this filtration, which makes btel.CF/ a filtered differential graded module. The homology of btel.CF/
is the relative symplectic cohomology.

Note that for a fixed Hamiltonian H this valuation takes values strictly in R since H is bounded and
there are finitely many periodic orbits. But for a general element in the completion of the telescope the
valuation can be negative infinity. Therefore the induced filtration is not exhaustive. That is,[

�

F � btel.CF/¤ btel.CF/;

which is one main reason that the induced spectral sequence sometimes does not converge. We also
remark that this filtration is weakly convergent since\

�

F � btel.CF/D f0g:

Now we recall two foundational theorems on spectral sequences from [McCleary 2001], one on the
existence and the other on the convergence.

Definition 3.5 Let R be a commutative ring with unit. An R–module A is called a filtered differential
graded module if:

(1) A is a direct sum of submodules, AD
L1
nD0A

n.

(2) There is an R–linear map d W A! A satisfying d ı d D 0.

(3) A has a filtration F and the differential d respects the filtration, that is, d W F pA! F pA.

Theorem 3.6 [McCleary 2001, Theorem 2.6] Each filtered differential graded module .A; d; F / deter-
mines a spectral sequence , fE�;�r ; drg, r D 1; 2; : : : , with dr of bidegree .r; 1� r/ and

E
p;q
1 ŠHpCq.F pA=F pC1A/:

Theorem 3.7 [McCleary 2001, Theorem 3.2] Let .A; d; F / be a filtered differential graded module
such that the filtration is exhaustive and weakly convergent. Then the associated spectral sequence with
E
p;q
1 ŠHpCq.F pA=F pC1A/ converges to H.A; d/, that is ,

Ep;q1 Š F pHpCq.A; d/=F pC1HpCq.A; d/:

4 The induced spectral sequence

Previously we constructed a filtration on btel.CF/ by using a special family of Hamiltonian functions that
have small variations outside D. However, the induced spectral sequence does not always converge since
the filtration is not exhaustive. Now we study the particular case that D is a Liouville domain with an
index-bounded boundary in a symplectic Calabi–Yau manifold M.
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First, we give an outline of the proof in this section. For a fixed degree k, we will study SHkM .D/.
In practice we will study the Hamiltonian Floer cohomology of a lower semicontinuous function such
that it is a fixed nondegenerate Hamiltonian function on D �S1 and it is positive infinity outside. It is
isomorphic to SHkM .D/ over the Novikov field. Abusing the notation, we still write it as SHkM .D/. Letbtel.CF/ be the completed telescope, constructed by a special family of Hamiltonian functions as in the
previous section. Pick a sequence

0 < E1 <E2 < � � �<El < � � �

of positive numbers going to infinity. We have a sequence of telescopes tel.CF/˝ƒ0 ƒEl , which form
an inverse system by using projection maps. The homology

SHkM .DIƒEl / WDH
k.tel.CF/˝ƒ0 ƒEl /

is called the truncated symplectic cohomology. Since projections are chain maps, we have an inverse
system in the homology level

� � �  SHkM .DIƒEl�1/ SHkM .DIƒEl / � � � :

The inverse limit
lim
 ��
l

SHkM .DIƒEl /

is called the reduced symplectic cohomology in [Groman and Varolgunes 2023]. The relation between
this reduced symplectic cohomology and the relative symplectic cohomology can be studied by verifying
certain Mittag-Leffler condition of the above inverse systems.

The goal of this section is the following:

(1) For each El , we will construct two chain models which both compute SHkM .DIƒEl /. They are
defined by using particular Hamiltonians, which depend on El . The first chain model is a telescope, on
which the filtration defined in the previous section is exhaustive. Hence we have a convergent spectral
sequence for this chain model to compute SHkM .DIƒEl /. This will establish (1), (2) in Theorem 1.1.

(2) The second chain model is a direct limit. It helps us to show SHkM .DIƒEl / is finitely generated,
and the number of generators is independent of El , thanks to the index-bounded condition. By using this,
we can verify a finite homological torsion criterion in [Groman and Varolgunes 2023], which shows that
the reduced symplectic cohomology is isomorphic to the relative symplectic cohomology. This proves (3)
in Theorem 1.1.

4.1 Ignoring upper orbits and convergence

For a monotone family of S–shaped Hamiltonian functions, the orbits form two groups: upper orbits
and lower orbits. And the Floer differentials/continuation maps have four components: upper-to-upper,
upper-to-lower, lower-to-upper and lower-to-lower. The next lemma says that, under the index-bounded
condition, any lower-to-upper Floer trajectory has a big topological energy.

Algebraic & Geometric Topology, Volume 24 (2024)



4820 Yuhan Sun

Lemma 4.1 Given any energy bound E > 0 and an integer k, there exists an S–shaped Hamiltonian
function such that any lower-to-upper Floer differential with degree–k input has topological energy greater
than E.

Proof First, we choose an S–shaped Hamiltonian function Ht with kHkM�D1C3�=4 less than 1. For a
Floer differential with degree–k input  and degree–.kC1/ output  0, the energy weight isZ

u�! �

Z


Ht C

Z
 0
Ht D�

Z


Q� C

Z
 0

Q� C

Z
u� Q! �

Z


Ht C

Z
 0
Ht :

By the index-bounded condition, the difference �
R

Q� C

R
 0
Q� is a bounded number which only depends

on k. The computation in Lemma 3.3 says that
R
u� Q! is nonnegative. Therefore if we choose an S–shaped

Hamiltonian function such that its upper level is high enough, then the above energy weight is larger
than E.

Note that this estimate is uniform for all degree k orbits; hence we can make a subcomplex which only
contains lower orbits, which gives the following lemma.

Lemma 4.2 For any integer k and an energy bound E > 0, let H be a Hamiltonian function which
satisfies Lemma 4.1 for all three integers k�1, k, kC1 forE. Let CFk;L.H/ be the subspace of CFk.H/
which only contains lower orbits. Let d be the restriction of the Floer differential to CFk;L.H/. Then

0! CFk�1;L.H/ d
�! CFk;L.H/ d

�! CFkC1;L.H/! 0

satisfies that d ı d D 0 over ƒE .

Proof Take  2 CFk�1;L.H/. The usual argument to show d ı d./ D 0 is to look at broken Floer
trajectories. In our case, if it breaks along an upper orbit, then the energy weight is greater than E by
Lemma 4.1, which is automatically zero over ƒE . Hence we can ignore the upper orbits’ contributions.

The above two lemmas tell us for any fixed energy bound E and degree k, we can use only lower orbits to
form a homology theory. By the same argument, lower-to-upper continuation maps have big topological
energy for particular Hamiltonians.

Lemma 4.3 Given any energy bound E > 0 and an integer k, there exists a family of nondegenerate
S–shaped Hamiltonian functions fHngn2N such that :

(1) H1 �H2 � � � � �Hn �HnC1 � � � � .

(2) H1 DH2 D � � �Hn D � � � on S1 �D.

(3) H1 satisfies the above two lemmas.

(4) Any lower degree–k orbits are inside D.

(5) Any continuation map from a lower degree–k orbit to an upper degree–k orbit has topological
energy greater than E.
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Hn;t

HnC1;t

1
2

Figure 4: Hamiltonian functions with fixed lower parts and small variations outside.

Proof Take H1 as a function which satisfies the above two lemmas. Then we construct H2 in the
following way:

(1) H1 DH2 on D.

(2) H1C
1
2
DH2 on M �D1C3�=4.

(3) Near @D, the function H2 is obtained from a cylindrical function by adding time-dependent
perturbations. We assume the perturbation is small such that H1 �H2 globally; see Figure 4.

Then we repeat this process inductively to get HnC1 from Hn. Hence the items (1)–(4) are satisfied, and
we can connect Hn with HnC1 by a monotone homotopy. If we have a continuation map from a lower
degree–k orbit  of Hn to an upper degree–k orbit  0 of HnC1, then it is weighted by an energyZ
u�! �

Z


HnC

Z
 0
HnC1C

Z
.@sHs/D

Z
u� Q! �

Z


Q� C

Z
 0

Q� �

Z


HnC

Z
 0
HnC1C

Z
.@sHs/:

By the construction, we have that kHn�HnC1kM�D1C3�=4 < 1; hence the first term is nonnegative. The
monotonicity of @sHs shows the last term is nonnegative and the index-bounded condition shows the
second and third terms are bounded. So the whole energy is larger than E because the difference between
the lower levels of Hn and the upper level of HnC1 are big enough.

Therefore by using the above family of Hamiltonian functions, we are computing the Hamiltonian Floer
cohomology of a semi-lower-continuous function, which is a nondegenerate Hamiltonian function on D
and is positive infinity outside D. By Proposition 2.9, the resulting invariant is isomorphic to the relative
symplectic cohomology over the Novikov field.

Now we consider two direct systems

CF k D CFk.H1;t /! CFk.H2;t /! � � � ;

CF k;L D CFk;L.H1;t /! CFk;L.H2;t /! � � �

overƒE , induced by Hamiltonian functions defined in the above lemma. For each n, we have an inclusion
of a subcomplex CFk;L.Hn;t /! CFk.Hn;t / over ƒE . We recall the following algebraic property of a
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telescope of subcomplexes. Suppose that we have a commutative diagram of chain complexes

C0 WD C 01 C 02 C 03 � � �

C WD C1 C2 C3 � � �

where horizontal maps are chain maps (which we call continuation maps) and vertical maps are inclusion
maps of subcomplexes. Then we have an induced map between telescopes tel.C0/! tel.C/.

Lemma 4.4 [Borman et al. 2022, Lemma A.1] Suppose that for every  2 Cn there exists N./ > 0
such that under continuation maps  lands in C 0

nCN./
. Then tel.C0/! tel.C/ is a quasi-isomorphism.

This lemma can be applied to our lower Floer complexes.

Proposition 4.5 For any integer k and energy boundE>0, there exists a family of Hamiltonian functions
such that

tel.CF k;L/! tel.CF k/

is a quasi-isomorphism over ƒE .

Proof For any integer k and energy bound E > 0, we pick Hamiltonian functions as above to get a
commutative diagram between CFk;L.Hn;t / and CFk.Hn;t / such that horizontal maps are continuations
and vertical maps are inclusions. Next we check the condition in Lemma 4.4.

Pick  2 CFk.Hn;t /. If it is a lower orbit, then its images under continuation maps are always lower, by
Lemma 4.3(5). So we assume  is an upper orbit, and we will show after several continuation maps,
it becomes lower or zero. Let T E11 be the image of  under the continuation map CFk.Hn;t /!
CFk.HnC1;t /. Then

E1 D�

Z


Q� C

Z
1

Q� C

Z
u�1 Q! �

Z


Hn;t C

Z
1

HnC1;t :

If 1 is a lower orbit, then we are done. Otherwise we consider T E22 as the image of T E11 under the
continuation map CFk.HnC1;t /! CFk.HnC2;t /. We have

E2 DE1C

�
�

Z
1

Q� C

Z
2

Q� C

Z
u�2 Q! �

Z
1

HnC1;t C

Z
2

HnC2;t

�
D�

Z


Q� C

Z
2

Q� C

Z
u�1 Q!C

Z
u�2 Q! �

Z


Hn;t C

Z
2

HnC2;t :

By the index-bounded condition, the first two terms are bounded. Moreover, our Hamiltonian functions
have small variations outside; the Q!–energy terms are nonnegative. If 2 is still an upper orbit, we will
consider its image under the third continuation map. Therefore after N compositions of continuation
maps, either  is sent to a lower orbit, or EN >E, since �

R
 Hn;t C

R
N
HnCN;t becomes arbitrarily

large. This completes the proof by applying Lemma 4.4.
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We call the process to get this quasi-isomorphism ignoring upper orbits. And we define the truncated
symplectic cohomology as

SHkM .DIƒE / WDH.tel.CF k;L/IƒE /DH.tel.CF k/IƒE /:

Therefore Proposition 4.5 gives two ways to compute the truncated symplectic cohomology: by using
tel.CF k;L/ or tel.CF k/. The former has the advantage that all generators of the underlying complex
are local and the differentials are global. Moreover, the filtration on tel.CF k/ constructed in Section 3
becomes exhaustive when restricted to tel.CF k;L/. Hence we will get a convergent spectral sequence to
compute the truncated symplectic cohomology. This will be discussed in next subsection. Now we study
how this truncated symplectic cohomology is related to the usual relative symplectic cohomology.

First, note that a telescope is quasi-isomorphic to a direct limit. Hence we also have

SHkM .DIƒE /DH.tel.CF k;L/IƒE /DH
�
lim
��!
n

CF k;LIƒE
�
:

The following lemma shows that the direct limit has a simpler description in our index-bounded case.

Lemma 4.6 For a fixed degree k, the direct limit lim
��!n

CF k;L which contains lower orbits is a finite-
dimensional free ƒE–module.

Proof By the index-bounded condition and nondegeneracy of the contact form, for each fixed Hamiltonian,
CFk;L.Hn;t / is a finite-dimensional free ƒE–module, generated by degree–k orbits. On the other hand,
the lower parts of the Hamiltonian functions Hn;t are fixed. Hence we have a canonical identification
between CFk;L.Hn;t / for different n. Next we study the continuation maps between CFk;L.Hn;t /.
After identifying the generators of CFk;L.Hn;t / for different n, the continuation maps can be written as
l � l matrices fanij g with entries anij 2ƒE , where l is the dimension of CFk;L.Hn;t /.

Let u be a Floer cylinder contributing to the continuation maps, and assume u is contained in the region
where the Hamiltonian function is fixed. Then by regularity it can only be the identity map; see Lemma 2.1.
There may be other Floer cylinders that travel outside D and contribute to the continuation maps, which
have nontrivial topological energy. Hence the continuation maps, viewed as a matrix, have the following
properties:

(1) The entries on the diagonal are anjj D 1C b
n
jj , with v.bnjj / > 0.

(2) The off-diagonal entries have strictly positive valuations.

Note that the determinant of the matrix fanij g has a constant term 1, which says that the matrix is invertible.
Hence each continuation map is an isomorphism of ƒ0–modules. So the direct limit lim

��!n
CF k;L is

isomorphic to CFk;L.Hn;t /, which is a finite-dimensional free ƒE–module.

To effectively use the truncated symplectic cohomology, there are two options: to show it is an invariant
with good properties, or to relate it with the original relative symplectic cohomology SHkM .D/.
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For the first option, we expect the following is true:

Proposition 4.7 The truncated symplectic cohomology SHkM .DIƒE / is a finite-dimensional ƒE–
module. Let � > 0 be the smallest number such that

T � �SHkM .DIƒE /D 0:

Then the displacement energy of D is not less than �.

Proof The finite-dimensionality follows from the above lemma. We expect the proof of the energy
relation is similar to [Varolgunes 2018, Remark 4.2.8] in the original relative symplectic cohomology
setting. The full proof will be pursued in the future.

The number � is an analogue of the torsion threshold of the Lagrangian Floer cohomology (see [Fukaya
et al. 2009, Theorem J]), which is related to the displacement energy of a Lagrangian submanifold. Since
the energy boundE can be as large as one needs, this proposition is useful for most displacement problems.

For the second option, we have the following:

Proposition 4.8 The inverse limit of the truncated symplectic cohomology recovers the original relative
symplectic cohomology. That is ,�

lim
 ��
E

SHkM .DIƒE /
�
˝ƒ0 ƒŠ SHkM .D/˝ƒ0 ƒ:

Here the inverse limit is taken as E goes to infinity.

To prove the proposition, first we recall some results in homological algebra.

Definition 4.9 An inverse system
C D C1 C2 � � �

is said to satisfy the Mittag-Leffler condition if, for each n 2N, there exists i � n such that, for all j � i ,
we have

Im.Cj ! Cn/Š Im.Ci ! Cn/:

The Mittag-Leffler condition shows the vanishing of the lim
 ��

1 of an inverse system.

Proposition 4.10 [Weibel 1994, Proposition 3.5.7] If an inverse system C satisfies the Mittag-Leffler
condition , then lim

 ��

1.C/D 0.

Proposition 4.11 [Weibel 1994, Proposition 3.5.8] For an inverse system

C D C1 C2 � � �

of complexes , which satisfies the degreewise Mittag-Leffler condition , we have a short exact sequence

0! lim
 ��

1H�.Cn/!H�.lim
 ��

Cn/! lim
 ��

H�.Cn/! 0:
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Now we begin the proof of Proposition 4.8.

Proof Fix a sequence of positive numbers

0 < E1 <E2 < � � �<El < � � �

going to infinity. Let fGng be a fixed acceleration data we used in Proposition 4.5 and Lemma 4.6. Then
we have

SHkM .D/˝ƒ0 ƒDH
�
lim
 ��
El

tel.CFk.Gn/˝ƒ0 ƒEl /
�
˝ƒ0 ƒ:

The complexes tel.CFk.Gn/˝ƒ0 ƒEl / form an inverse system over El . Note that the Hamiltonian
functions are independent of El , so the maps in this system are given by projection. Since projections are
surjective, this inverse system satisfies the degreewise Mittag-Leffler condition. Hence we have a short
exact sequence

0! lim
 ��

1H.Cl/!H.lim
 ��

Cl/! lim
 ��

H.Cl/! 0;

where Cl WD tel.CFk.Gn/˝ƒ0ƒEl /. In this short sequence, the middle term is what we need to compute
and the right term is the inverse limit of truncated symplectic cohomology. Hence it suffices to show the
vanishing of the left term.

In Lemma 4.6, we have showed that H
�
lim
��!n

CF k;LIƒEl
�

is finite-dimensional by using acceleration
datum depending on El . On the other hand, the quasi-isomorphisms before Lemma 4.6 shows that

H.Cl/DH
�
lim
��!
n

CF k;LIƒEl
�
:

So H.Cl/ is finite-dimensional for any El . Moreover, for different El the defining Hamiltonians for
CF k;L have the same fixed lower part. Hence the dimensions of H.Cl/ have a uniform upper bound,
independent of l , given by the number of lower degree–k orbits of Hamiltonian functions with a fixed
lower part. Therefore H.Cl/ over l is an inverse system of finite-dimensional modules with a uniform
upper bound on ranks. In the following we will show it satisfies the degreewise Mittag-Leffler condition,
which completes the proof.

Now we prove that H.Cl/ over l is an inverse system which satisfies the degreewise Mittag-Leffler
condition, by using the finite torsion criterion in [Groman and Varolgunes 2023].

Let V be a ƒ0–module. For any element v 2 V we define

�.v/ WD inff�� 0 j T �v D 0g

and we define the maximal torsion of V as

�.V / WD sup
v2V;�.v/<C1

�.v/I

see [Groman and Varolgunes 2023, Definition 6.15]. The following is a combination of Lemma 6.19
and Proposition 6.12 in [loc. cit.]. The invariant SHkM;�.D/ in [loc. cit.] is our truncated invariant
SHkM .DIƒE // with E D �.
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Proposition 4.12 If SHkM .D/ has finite maximal torsion , then H.Cl/ over l is an inverse system which
satisfies the degreewise Mittag-Leffler condition.

Next we verify that SHkM .D/ has a finite maximal torsion. Suppose SHkM .D/ has an infinite maximal
torsion. Then we have a sequence of elements xn; yn in the completed telescope such that

d.xn/D 0; d.yn/D T
�nx; 0 < �1 < �2 � � �< �n < � � � ! C1:

This shows that as l goes to infinity, the number of xn’s with valuations less than El goes to infinity.
Hence the rank of H.Cl/ also goes to infinity, which contradicts that their ranks are uniformly bounded
from above.

4.2 The first page of the spectral sequence

We showed that the truncated symplectic cohomology recovers the relative symplectic cohomology. Now
we study how to compute the truncated symplectic cohomology.

For any integer k and energy bound E > 0, we have three chain models

tel.CF k/; tel.CF k;L/; lim
��!
n

CF k;L

given by a particular family of Hamiltonian functions. They are all quasi-isomorphic; hence they all
compute the truncated symplectic cohomology over ƒE . Now we equip the second chain model with
the filtration defined in (3-5). Recall that for a general element x D

P
i aii 2 tel.CF k;L/ we define

� W tel.CF k;L/!R[f�1g by

(4-1) �.x/ WD inf
i

�
v.ai /�

Z
i

Hi;t �

Z
i

Q�

�
:

And for any p 2R we define

(4-2) F p tel.CF k;L/ WD fx 2 tel.CF k;L/ j �.x/� pg:

By the computations in Section 3, we know that the differentials in the telescope are compatible with this
filtration, which makes tel.CF k;L/ a filtered differential graded module. Moreover, since all generators in
tel.CF k;L/ are lower orbits, the Hamiltonian terms in �.x/ are uniformly bounded. By the index-bounded
condition, the integrals of Q� in �.x/ are also uniformly bounded. Hence �.x/ > �1 for any x. This
shows that the filtration is exhaustive. (Actually this filtration is bounded from below by some number.)
Therefore Theorems 3.6 and 3.7 give us a spectral sequence which converges to the truncated symplectic
cohomology. This proves the convergence part in Theorem 1.1(1). In the following we will compute the
first page of this spectral sequence.

First we observe that by using the special family of S–shaped Hamiltonians, all Floer cylinders which are
not contained in the Liouville domain have positive Q!–energy, given that the asymptotic boundaries of
the cylinders are lower orbits.
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This will be proved via Abouzaid and Seidel’s integrated maximum principle. We follow [Borman
et al. 2022, Section 3.4] and recall the setup now. Let .K; !/ be a symplectic manifold with a concave
boundary .Y; ˛/. That is, there is a symplectic embedding .Y � Œc; cC �/; d.r˛// onto a neighborhood
of Y in K, where r is the Liouville coordinate. We will consider maps u W .†; @†/! .K; Y / solving the
Floer equation with respect to a certain class of almost-complex structures and Hamiltonian perturbations.
Here .†; @†/ is a general Riemann surface with boundary.

To define our Floer equation, we choose a family of compatible almost-complex structures Jz parametrized
by z 2 †, and a Hamiltonian-valued 1–form � 2 �1.†IC1.K//. Note that we may interpret � as a
1–form on †�K. The de Rham differential has a decomposition

d WD d†�K D d†C dK :

Then the nondegeneracy of ! gives us a Hamiltonian-vector-field-valued 1–form X� 2�
1.†IC1.T W //.

The Floer equation in consideration is

.du�X�/
0;1
D 0:

Proposition 4.13 [Borman et al. 2022, Proposition 3.9] Suppose that :

(1) Jz is of contact type along Y for all z 2 @†, that is , dr ıJz D�r˛.

(2) There exist 1–forms ˇ1; ˇ2 2�1.†/ such that � D ˇ1 � r Cˇ2 in a neighborhood of Y .

(3) d†� �f�; �g� dˇ2 � 0.1

Then any smooth map u W .†; @†¤∅/! .K; Y / solving .du�X�/0;1 D 0, will satisfy thatZ
†

u�! �

Z
@†

u�.c˛/� 0;

with equality if and only if u is contained in Y.

Next we apply the above proposition to our setting. We make two more assumptions on the S–shaped
Hamiltonian functions which are used to define the telescope:

(1) Near the boundary of D1C3�=4, the function H1 is a function of the radial coordinate with small
positive slope.

(2) All Hn’s and all homotopies connecting them are given by translations in the s–coordinate outside
D1C3�=4. That is, we choose a smooth nondecreasing function �.s/ WR!R such that

�.s/D 0 for all s � 0; �.s/D 1
2

for all s � 1:

Then define HnDH1C n
2

and define the homotopy between Hn and HnC1 to be Hs DHnC�.s/
outside D1C3�=4.

1Here f�; �g lives in �2.†IC1.K// and is defined by f�; �g.v; w/ WD f�.v/; �.w/g by the Poisson bracket.
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Proposition 4.14 Let D be a Liouville domain in M. Assume that Œ Q!� is integral ; see the paragraph
after Lemma 3.1. And assume our acceleration data satisfies the above conditions. Let �; C be two
1–periodic orbits of H�;HC in the telescope which are lower orbits. Let u be a Floer solution connecting
�; C. If Im.u/\.M �D1C3�=4/¤∅, then Q!.u/> „, where „ is a positive number independent ofH˙.

Proof Suppose that Im.u/\ .M �D1C3�=4/¤∅. We pick a number �0 which is slightly greater than �
and @D1C3�0=4 intersects Im.u/ transversally. The intersection is a disjoint union of circles in R�S1,
which is nonempty when �0 is close to �.

Then we set M �D1C3�0=4 to be the concave manifold K in Proposition 4.13, and c D 1C 3�0

4
. By the

transversal intersection we get a new map u0 W .†; @†¤∅/! .K; Y / solving the Floer equation. We will
check the hypotheses in Proposition 4.13. First in our definition of the telescope we did use contact-type
almost-complex structures in the cylindrical region. Hence .1/ is satisfied.

In our case the 1–form satisfies � DHs dt . Near Y it is given by linear Hamiltonian functions, in terms
of the r–coordinate: � D .arCbC�.s// dt . Hence .2/ is satisfied, with ˇ1D a dt , ˇ2D .bC�.s// dt .

Next we verify .3/. Since there is no ds term in �, we have that f�; �g.@s; @t /D 0. Moreover, we can
compute that

d†� � dˇ2 D @sHs ds dt � dˇ2

D �0.s/ ds dt � @s.bC�.s// ds dt

D �0.s/ ds dt ��0.s/ ds dt D 0:

Therefore all hypotheses in Proposition 4.13 are satisfied and we get

0 <

Z
†

u0�! �

Z
@†

u0�.c˛/D

Z
†

u0�! �

Z
@†

u0� Q�:

By our integrality assumption, the right-hand side of the equation is an integer. On the other hand, since
the support of Q! is outside D1C3�=4, the integralZ

u� Q! D

Z
u�! �

Z
u� d Q�

can be approximated by Z
†

u0�! �

Z
@†

u0� Q� D

Z
†

u0�! �

Z
@†

u0�.c˛/ > 0

as �0 tends to �. This shows that if Im.u/\ .M �D1C3�=4/¤∅, then Q!.u/� 1. Finally, for example,
we can set „ D 1

2
.

Remark 4.15 The above proposition is an analogue of [Borman et al. 2022, Proposition 5.10]. However,
our situation is easier since we can assume the Hamiltonian functions are translations of a fixed one
outside D1C3�=4.

Now we can use this positive number „ to construct a Z–valued filtration out of the R–valued filtration
(4-2). And for any l 2 Z we define

(4-3) F l tel.CF k;L/ WD fx 2 tel.CF k;L/ j �.x/� l„g:
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Then this new filtration induces a convergent spectral sequence. Its first page is calculated by using all
differentials of which the change of the Q!–energy are less than „. On the other hand, Floer solutions that
are not contained in D are weighted by a positive Q!–energy greater than „. Hence the first page of this
spectral sequence is calculated by all differentials and continuation maps that are in D. Since in D our
Hamiltonian function is a fixed function, the continuation maps are identity maps and the differentials
give the classical symplectic cohomology SHk.DIƒE /. In particular, when Œ Q!�D 0 2H 2.M;DIZ/,
there will not be outside contributions; hence the spectral sequence degenerates at its first page. Now we
have completed the proofs of .1/ and .3/ in Theorem 1.1.

5 Examples and extensions

We now discuss some applications of our spectral sequence, and how to construct perturbations in the
Morse–Bott case.

Example 5.1 Let B be a round ball symplectically embedded in a Calabi–Yau manifold M 2n with
an integral symplectic form. Then the boundary @B carries the standard contact structure on an odd-
dimensional sphere, which is Morse–Bott index-bounded. After perturbing, the nondegenerate Reeb
orbits on the sphere all have positive Conley–Zehnder indices. Our Hamiltonian flow is the reverse of
the Reeb flow in the cylindrical region. Hence the degrees of nonconstant Hamiltonian orbits are all less
than 2n. Moreover, we can choose the fixed lower part of our Hamiltonians so that they do not have
degree–2n constant orbits. So the only degree–2n constant orbits are upper constant orbits. Then we
apply the ignoring-upper-orbits process to get that SH2nM .B/˝ƒ0 ƒD 0. Finally, the Mayer–Vietoris
sequence shows that any neighborhood of M �B has nonvanishing relative symplectic cohomology;
hence it is not stably displaceable. This fact is already known in [Ishikawa 2016, Theorem 1.1] and
[Tonkonog and Varolgunes 2023, Corollary 1.15] by using different methods (with stronger conclusions).
We put our argument here to motivate Proposition 5.9.

5.1 Simply connected Lagrangians in Calabi–Yau manifolds

Let .L; g/ be a Riemannian manifold and let T �L be its cotangent bundle with the standard symplectic
form. The unit disk bundle D1T �L, with respect to the metric g, is a Liouville domain with the unit
sphere bundle ST �L being its contact boundary. A closed geodesic q.t/ in L lifts to a Reeb orbit
.t/ D .q.t/; q0.t// in ST �L. Pick a trivialization ˆ of the contact distribution along  . There is a
Conley–Zehnder index CZˆ./. On the other hand, the trivialization ˆ also gives a trivialization of the
symplectic vector bundle T T �L along q. Hence there is a Maslov index �ˆ.q/ of q, viewed as a loop
in L. The relation between these two indices is the following lemma.

Lemma 5.2 [Cieliebak and Mohnke 2018, Lemma 2.1] In the above notation , we have

CZˆ./C�ˆ.q/D ind.q/;

where ind.q/ is the Morse index of q as a geodesic.

Algebraic & Geometric Topology, Volume 24 (2024)



4830 Yuhan Sun

Now we consider a Lagrangian submanifold L in a Calabi–Yau manifold M. Let D be a Weinstein
neighborhood of L, which is isomorphic to D1T �L for some metric g on L. Then @D is a contact
hypersurface in M. In particular, when L is simply connected we can use trivializations induced by disk
cappings to compute these indices. The Maslov index is always zero and we have CZˆ./D ind.q/� 0.

Similar to the index-bounded condition, we can consider the following relation between the Morse index
and the length of a closed geodesic.

Definition 5.3 A Riemannian metric g is called index-bounded if, for every m> 0, there exists �m > 0
such that

flength.q/ j �m< ind.q/ < mg � .0; �m/

for all closed geodesics. And the metric is called (Morse–Bott) nondegenerate if the length functional is
(Morse–Bott) nondegenerate.

Hence if L admits an index-bounded Riemannian metric g then any Lagrangian embedding of L into a
Calabi–Yau manifold admits an index-bounded neighborhood. This is true for Riemannian manifolds
with a positive Ricci curvature.

Lemma 5.4 [Milnor 1963, Theorems 19.4 and 19.6] Let .L; g/ be a closed Riemannian manifold of
dimension n whose Ricci curvature satisfies Ricg � .n� 1/C for some positive real number C. Then
any closed geodesic on L with length � has Morse index greater than �

p
C=� � 1. In particular , g is

index-bounded.

Proof Let  be a closed geodesic on L with length �. For the constant C there exists an integer l such
that

l�=
p
C < �� .l C 1/�=

p
C :

We cut  into lC1 segments such that each of the first l segments has length slightly greater than �=
p
C .

Then by the proof of [Milnor 1963, Theorem 19.6], any geodesic segment with length greater than �=
p
C

is unstable. Hence each of these l segments has index at least 1, and the index of  is at least l .

Now let  be a closed geodesic with index k and length �, we know that k > �
p
C=� � 1, which shows

that � < .kC 1/�=
p
C . Hence g is index-bounded.

Remark 5.5 The positivity of the Ricci curvature of a metric g is preserved under C1–small perturba-
tions. Hence we obtain a nondegenerate index-bounded metric g� after perturbation.

Let .L; g�/ be a closed Riemannian manifold with a positive Ricci curvature. Then g� is a nondegenerate
index-bounded metric. Suppose there is a Lagrangian embedding L!M into a Calabi–Yau manifold M.
Another consequence of the Bonnet–Myers theorem [Milnor 1963, Theorem 19.6] is that L has a finite
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fundamental group. Hence L is a Lagrangian submanifold of M with a vanishing Maslov class. Now
let U be a Weinstein neighborhood of L induced by the metric g�. The above lemma tells us that U
is a Liouville domain with a nondegenerate index-bounded boundary in M. In conclusion, our spectral
sequence works for computing SHM .U /, given the integrality condition on Q!.

If we have two Riemannian manifolds both with positive Ricci curvature, then the product manifold also
admits a metric with positive Ricci curvature. Hence we can also study Lagrangian submanifolds of
product type.

Now we present the example of spheres, to demonstrate the above method. Let Sn be a sphere with
dimension n � 3, and let gR be the round metric on Sn. It is known that gR is a Morse–Bott non-
degenerate index-bounded metric. Next let g� be a C1–small generic perturbation of gR such that it is a
nondegenerate index-bounded metric.

The above discussion tells us that for any Lagrangian sphere S D Sn with n � 3 in a Calabi–Yau
manifold M with an integral symplectic form, a Weinstein neighborhood U of S induced by the metric g�
has a nondegenerate index-bounded contact boundary. Hence our spectral sequence works for computing
SHM .U /.

Lemma 5.6 For .M; S; U / as above , we have SHM .U /˝ƒ0 ƒ¤ 0.

Proof For a given energy bound E > 0, there is a convergent spectral sequence which starts from the
symplectic cohomology SH.T �SnIƒE / and converges to SHM .U IƒE /. In our degree notation (2-1),
the usual symplectic cohomology SH.T �SnIC/ is nonzero and 1–dimensional in degrees

fng[ fi.1�n/Cn; i.1�n/Cn� 1 j i 2 ZCg:

(Note that our Hamiltonian flow is the reverse of the Reeb flow in the cylindrical region.) The nonzero
element in degree n cannot be killed in the spectral sequence when n � 3, since the differential only
changes the degree by 1.

Hence for any energy bound E > 0, the truncated invariant satisfies that

SHnM .U IƒE /ŠƒE :

Then by taking the inverse limit over E, we have that SHM .U /˝ƒ0 ƒ¤ 0.

So any Lagrangian sphere with dimension n� 3 in a Calabi–Yau manifold is stably nondisplaceable. This
is known by using the Lagrangian Floer cohomology of S ; see [Fukaya et al. 2009, Theorem L]. But by
using the Mayer–Vietoris property, we can get more from the above lemma. Note that SH2M .U / is zero,
and hence it cannot be isomorphic to the quantum cohomology of M. Pick a Weinstein neighborhood V
of S , also induced by the same g� but with a smaller radius in the fiber direction, compared with U. Then
.M �V /[U DM and the boundaries of U; V do not intersect. The Mayer–Vietoris property says that
SH2M .M �V /˝ƒ0 ƒ¤ 0.
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Lemma 5.7 For .M; S; U / as above , we have that M �U is stably nondisplaceable.

Proof Suppose that M �U is stably displaceable. Then a neighborhood K of M �U is also stably
displaceable. We can choose V as above such thatM�V �K, contradicting SH2M .M�V /˝ƒ0ƒ¤0.

This result is new and it contrasts the case where the ambient space is not Calabi–Yau: a Weinstein
neighborhood U of a Lagrangian sphere can be compactified to be a quadric hypersurface Qn �CP nC1.
Note thatQn is a monotone symplectic manifold, and the complement of U inQn is a small neighborhood
of a divisor Qn�1, which is stably displaceable.

Example 5.8 Let LD S2 �S3 be a Lagrangian submanifold in a Calabi–Yau manifold M. Then there
exists a Weinstein neighborhood of L which is a Liouville domain with a nondegenerate index-bounded
boundary. So it’s possible to use our spectral sequence to compute SHM .L/, which could determine the
displaceability of L. However, due to the S2–factor, we don’t have an immediate nonvanishing result,
compared with the case of spheres with dimension larger than 2. Hence SHM .L/ may depend on the
ambient space.

On the other hand, the Lagrangian Floer cohomology of L may have obstructions to be defined. The
obstruction lies in H 2.LIQ/; see [Fukaya et al. 2009, Theorem L].

Another application of the geodesic-Reeb orbit correspondence is a generalization of Lemma 5.7. If we
only care about the complement of the Lagrangian, then no index-bounded Riemannian metric is needed.

Proposition 5.9 Let .M 2n; !/ be a symplectic Calabi–Yau manifold with n > 2 and ! represents an
integral class in H 2.M/. For a simply connected Lagrangian S in M and a Weinstein neighborhood U of
S , we have that M �U is not stably displaceable in M.

Proof When nD 3, the only simply connected 3–manifold is the 3–sphere which has been discussed.
So in the following we assume n > 3.

Let g be a nondegenerate Riemannian metric on S . By the discussion after Lemma 5.2, the Reeb orbits
on the boundary of U DD1T �S all have nonnegative Conley–Zehnder indices. Then we pick a family
of S–shaped Hamiltonian functions to be our acceleration data such that all the lower constant orbits
have degrees less than nC 1. This can be achieved since U D D1T

�S . Note that the Hamiltonian
flow is in the opposite direction of the Reeb flow, in the cylindrical region. From a Reeb orbit to its
corresponding Hamiltonian orbit, the index is changed by a sign, plus a error term bounded by 1; see
Lemma 2.7. Hence the Conley–Zehnder indices of nonconstant Hamiltonian orbits are all less than 2.
Their degrees, defined as CZ./Cn, are all less than nC 3 after time-dependent perturbations. So these
Hamiltonian functions are index-bounded in degree 2n, since all degree–2n generators are upper constant
orbits. Then the ignoring upper orbits process says that SH2nM .DIƒE /D 0 for any E > 0. Finally we
apply the Mayer–Vietoris argument in Lemma 5.7 to complete the proof.
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The disk cotangent bundle can be regarded as a Liouville domain with a smooth Lagrangian skeleton. On
the other hand, certain Brieskorn manifolds are Liouville domains of which the Lagrangian skeletons are
chains of spheres modeled by trees. In [Kwon and van Koert 2016], the Reeb orbits of many Brieskorn
manifolds have been studied explicitly. Hence one can use the calculation of indices therein to get more
applications, like the rigidity of symplectic embeddings of Brieskorn manifolds into Calabi–Yau manifolds.

5.2 Perturbation of Morse–Bott orbits

Let D be a Liouville domain with a contact boundary .C; ˛/ in a closed Calabi–Yau manifold M such
that ˛ is Morse–Bott index-bounded. Then a time-independent S–shaped Hamiltonian function H has
nondegenerate constant orbits, and nonconstant 1–periodic orbits that are Morse–Bott degenerate, given by
the Reeb orbits of ˛. Now we will perturb H to get a nondegenerate S–shaped Hamiltonian function Ht
such that it is index-bounded. We remark that we are perturbing the Hamiltonian function instead of
perturbing the contact form, since the index-bounded condition may be destroyed by the latter perturbation.

Let Y be the set of l–periodic Reeb orbits of ˛. By the Morse–Bott condition, Y is a closed smooth
submanifold of C. It may have several connected components, and we will construct our perturbation
componentwisely. For simplicity, we assume that l D 1. The general case is similar. Our perturbation is a
modification of the case of a time-independent Hamiltonian function with transversally nondegenerate
orbits, where Y D S1.

There is an S1–action on Y induced by the Reeb flow �t . For a Morse function g W Y !R, we twist it by
the S1–action to get a time-dependent function on Y :

gt .y/ WD g.�
1�t .y//; t 2 Œ0; 1�; y 2 Y:

Next letN be the normal bundle of Y inM. We extend gt to be a function Qgt onN which is supported near
the zero section. We also require that Qgt does not depend on the fiber direction in a small neighborhood
of the zero section.

Now for a time-independent S–shaped Hamiltonian function H WM !R, it has degenerate 1–periodic
orbits in the cylindrical region, which form the submanifold Y. Define G�t W S

1 �M !R as

G�t .m/ WH.m/C � Qgt .m/; m 2M:

Our main result of this subsection is:

Proposition 5.10 For small � > 0, the 1–periodic orbits of G�t in a small neighborhood of Y are in
one-to-one correspondence with critical points of g. Let  be a 1–periodic orbit of H on Y and � be a
1–periodic orbit of G�t near Y. We have that :

(1)
R
 � D

R
� � , where � is the Liouville 1–form on D.

(2) jCZ./�CZ.�/j � dimR Y.
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Proof This proposition, which is known to experts, is a modification of [Cieliebak et al. 1996, Lemma 2.1
and Proposition 2.2].

Let J be a compatible almost-complex structure on M which is cylindrical near C. By the construction,
the Hamiltonian vector field of G�t is

XG�t .m/DXH .m/C �Jr Qgt .m/:

Here the gradient is computed with respect to the metric !. � ; J � /. Let p 2 Y be a critical point of g.
Then �t .p/ is a 1–periodic orbit of H on Y. We can also check that it is also a 1–periodic orbit of G�t .
Hence each critical point of g gives a 1–periodic orbit of G�t . Next we will show there is no other
1–periodic orbit.

Let U be a neighborhood of Y in M which does not contain other 1–periodic orbits of H disjoint from Y.
Then, for any open set V �U with Y � V, there exists �0 > 0 such that for any 0 < � < �0 the 1–periodic
orbits ofG�t in U are also in V. This is due to the compactness result in [Cieliebak et al. 1996, Lemma 2.2].
Hence when � is small, any 1–periodic orbit of G�t is close to a 1–periodic orbit of H on Y, particularly
in the W 1;2–topology.

Next consider a nonlinear operator

A WW 1;2.S1; N /! L2.S1; TN /

given by
A.x.t// WD �J.x0.t/�XH .x.t///:

By the Morse–Bott nondegeneracy, the linearization of A is nondegenerate in the normal direction of Y.
More precisely, there exists a constant c > 0 such that for any 1–periodic orbit x0.t/ of H on Y and a
vector field y.t/ along x0.t/ with y.t/ … T Y for some t , we have

kDA.x0/ �y.t/k � cky.t/k:
Now define another operator

f WW 1;2.S1; N /! L2.S1; TN /

given by
f .x.t// WD Qg0t .x.t//:

Note that the kernel of the operator AC �f is the set of all 1–periodic orbits of G�t in N. Since any
1–periodic orbit of G�t is close to a 1–periodic orbit x0.t/ of H on Y, we can write it as x0Cy.t/ with a
vector field y.t/ along x0.t/.

Then we use the Taylor expansion to calculate that

.AC �f /.x0Cy/D A.x0/CDA.x0/ �yC �f .x0/C �Df .x0/ �yCO.kyk2/:

Note that A.x0/D 0 and kDA.x0/ �yk � ckyk. So we have that

k.AC �f /.x0Cy/k � ckykC �kf .x0/k� �c
0
kykCO.kyk2/

� c00kykC �kf .x0/k
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when � and kyk are sufficiently small. Hence .AC �f /.x0Cy/D 0 if and only if y D 0 and f .x0/D 0,
which are the orbits given by critical points of g. Geometrically these perturbed orbits are the same orbits
which start at critical points of g. So the integrations of the Liouville 1–form do not change.

The proof of .2/ will be a direct computation to relate the Conley–Zehnder index with the Morse index,
similar to that in [Cieliebak et al. 1996].

Therefore, given a Liouville domain D with a contact boundary .C; ˛/ in M such that ˛ is Morse–Bott
index-bounded, we can create nondegenerate index-bounded S–shaped Hamiltonian functions associated
with D. Then we can use them to construct the spectral sequence as we did in the Morse index-bounded
case.
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We describe a formula for the H1–action on the knot Floer homology of knotifications of links in S3.
Using our results about knotifications, we are able to study complex curves with noncuspidal singularities,
which were inaccessible using previous Heegaard Floer techniques. We focus on the case of a transverse
double point, and give examples of complex curves of genus g which cannot be topologically deformed
into a genus g� 1 surface with a single double point.
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1 Introduction

1.1 General context

Let C be a complex curve in CP 2. The curve C is called rational if C is irreducible and there exists a
continuous degree one map from S2 to C. The curve C is called cuspidal if all its singularities have one
branch (ie their links have one component).

Fernandez de Bobadilla, Luengo, Melle-Hernandez and Némethi [Fernández de Bobadilla et al. 2006]
indicated a connection between Seiberg–Witten invariants and rational cuspidal curves. As a consequence
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of these connections, they stated a conjecture binding coefficients of Alexander polynomials of singular
points of a rational cuspidal curve. A variant of this conjecture was proved in [Borodzik and Livingston
2014]; the proof used the relation of semigroups of singular points with Vs–invariants of knots together
with the Ozsváth–Szabó d–invariant inequality.

The methods of [Borodzik and Livingston 2014] were later generalized by Bodnár, Celoria and Golla
[Bodnár et al. 2016] and Borodzik, Hedden and Livingston [Borodzik et al. 2017] to the case of nonrational
cuspidal curves. Their result does not generalize immediately to the case where C has noncuspidal
singularities. In this case, the boundary of a suitably defined tubular neighborhood of C can be presented
as a surgery on a connected sum of links of cuspidal singularities and knotifications of links of noncuspidal
singularities of C.

Knotification is an operation described by Ozsváth and Szabó [2008a], which transforms an n–component
link L in S3 into a knot yL� #n�1 S2 �S1. The knot Floer homology HFK�.yL/ admits an action of
the exterior algebra over Z on n�1 generators, which is identified with ƒ�H1

�
#n�1 S2�S1

�
. To apply

the strategy of [Bodnár et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014] to noncuspidal
singularities, one must compute explicitly the action of ƒ�H1

�
#n�1 S2�S1

�
on the knot Floer complex

of the knotification. Performing explicit computations is often challenging, since computing the action of
ƒ�H1

�
#n�1 S2 �S1

�
involves counting pseudoholomorphic curves in a symmetric product Symd .†/

of a surface † in a Heegaard decomposition of #n�1 S2 �S1, which is used to compute the knot Floer
complex. In this paper, we prove a general result which relates the homology action on the knotified link
to counts of pseudoholomorphic curves on a Heegaard diagram for the original link in S3. In many cases,
this is more practical, since it allows us to compute pseudoholomorphic curves in a symmetric product of
lower index d . For the links we consider, we are able to reduce the computations to Sym1.S2/, which is
completely combinatorial.

1.2 Main results

Given an n–component link L� S3, we use Heegaard Floer TQFT to recover the knot Floer complex of
the knotification yL of L together with the action of ƒ�H1

�
#n�1 S2 �S1

�
on it. This result builds on

recent developments in the Heegaard Floer TQFT due to the third author as well as many others; see
[Hendricks et al. 2018; Juhász 2016; Zemke 2015; 2017; 2019c; 2019b]. Our main result concerning
knotifications is Proposition 2.10, which describes the action of ƒ�H1

�
#n�1 S2 �S1

�
on the knot Floer

homology of a knotification in terms of a link diagram for L.

Using this general result, we compute the knot Floer complexes of the knotifications of the .2; 2n/–torus
link and of its mirror, as well as the action of H1.S2 �S1/. In particular, we are able to compute the
invariants V bot

s and V top
s of these knots. To the best of our knowledge, these computations have not

appeared in the literature before. For the reader’s convenience, we present the precise result for the
knotification of the torus link T2;2n. For more details about its mirror, see Proposition 2.41.
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Proposition 2.40 Let yT2;2n be the knotification of the torus link T2;2n. The pair

.CFK�.S2 �S1; yT2;2n/; A /

has a model where CFK�.S2 � S1; yT2;2n/ is equal to Sn
˚
1
2
; 1
2

	
˚ Sn�1

˚
�
1
2
;�1

2

	
and A maps Sn

to Sn�1 on the chain level. Here we recall that fi; j g denotes a shift in the .grw ; grz/–grading by .i; j /,
and Sn and Sn�1 are the chain complexes in Definition 2.28.

Our main application is concerned with general curves in CP 2. To generalize the results of [Bodnár et al.
2016; Borodzik et al. 2017] to the setting of complex curves C �CP 2 with noncuspidal singularities,
we take a precisely defined “tubular” neighborhood N of C. The boundary Y D @N can be described as
a surgery on a link L in #� S2 �S1, where L is a suitable connected sum of knotifications of links of
singularities and Borromean knots, and � can be expressed in terms of the topology of C. As in [Bodnár
et al. 2016; Borodzik et al. 2017], the manifold Y bounds a four-manifold X D CP 2 nN with trivial
intersection form. Using Ozsváth and Szabó’s d–invariant inequality in the version proved by Levine and
Ruberman [2014], we obtain restrictions on V top

s .L/ and V bot
s .L/.

The main case we focus on is curves C with some finite number of cuspidal singularities as well as
singularities whose links are .2; 2n/–torus links. We obtain the following result:

Theorem 6.4 Let C be a reduced curve of degree d and genus g. Suppose that C has cuspidal singular
points p1; : : : ; p� whose semigroup counting functions are R1; : : : ; R� , respectively. Assume that , apart
from these � points , the curve C has , for each n� 1,mn � 0 singular points whose links are .2; 2n/–torus
links and no other singularities. Define

�C D

1X
nD1

mn and �C D

1X
nD1

nmn:

For any k D 1; : : : ; d � 2,

max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

Here R denotes the infimal convolution of the functions R1; : : : ; R� .

Although complex curves cannot have singularities whose links are (nonalgebraic) .2;�2n/–torus links,
our techniques also obstruct smooth (nonalgebraic) surfaces with these singularities. See Theorem 6.8.

The technical statement in Theorem 6.4 is best understood by comparing the obstruction in the case of a
single transverse double point to the genus g D 1 obstruction from [Bodnár et al. 2016; Borodzik et al.
2017]. We do this in Proposition 6.14, which we now summarize. Let C be a degree d curve, and define
the quantity �k D 1

2
.kC 1/.kC 2/ for k D 1; : : : ; d � 2. Write R for the semigroup counting function.

Algebraic & Geometric Topology, Volume 24 (2024)
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If C has genus 1, then the genus bound from [Bodnár et al. 2016; Borodzik et al. 2017] implies that, for
each k 2 f1; : : : ; d � 2g,

.1.1/ R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g:

In this case, the only constraint on R.kd/ is that it lies between R.kd � 1/ and R.kd C 1/, and hence
R.kd/ 2 f�k � 1; �k; �kC 1g.

On the other hand, our bounds from Theorems 6.4 and 6.8 give a slightly stronger obstruction than the
bound for genus 1 curves in (1.1), based on the value of R.kd/. Since double points may be smoothed
topologically, (1.1) must also hold for genus 0 curves C with a single double point. If C is a genus 0
curve with a single positive double point, then our bound implies

R.kd/� �k :

If instead C is a smooth curve with a negative double point, then we prove that R.kd/� �k .

We compare our obstruction with known examples, focusing on the question of deforming a genus 1
surface into a surface with one double point. In Section 6.5 we provide concrete obstructions. For existing
curves (ie curves that we can construct), there are obstructions to trading genus for negative double points;
see Example 6.15.

We also compare our obstruction to the obstruction for genus 1 curves from [Borodzik et al. 2017]. In
[loc. cit., Theorem 9.1], there is a list of genus one curves with a singularity whose link is the .p; q/–torus
knot with p and q coprime. The curves in the list pass the obstruction provided in [loc. cit.], but it is not
known whether these complex curves exist. We apply our bound to this list of potential examples. There
is a remarkable case of a degree 27 curve with a .10; 73/ singularity, where the genus cannot be traded
for either a positive or a negative double point; see Table 1. While the curve passes all known criteria, we
do not have a recipe to construct it.

1.3 Further applications and perspectives

There has been recent interest in the question of “trading genus for double points”. To be more precise,
given a surface of genus g, one can ask whether it is possible to deform it to a genus g�1 surface with an
extra positive or negative double point. In the context of the surfaces in a four-ball with fixed boundaries,
this question is related to studying the difference between the clasp number and the smooth four-ball
genus; see [Daemi and Scaduto 2024; Feller and Park 2022; Juhász and Zemke 2020; Kronheimer and
Mrowka 2021; Owens and Strle 2016]. We deal with a variation of this question, which concerns trading
genus of a closed surface in CP 2 for double points, while preserving the remaining singularities.

In Section 6.6, we consider another infinite family of higher genus curves constructed by Bodnár, Celoria
and Golla. We show that the genus cannot be traded for a negative double point for any member of the
family.

Algebraic & Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4841

As a perspective and a possibility for future research, we indicate that the methods can be used to study
line arrangements in CP 2. The only missing ingredient is the computation of the Heegaard Floer chain
complex of the .d; d/–torus link for d > 2, and understanding the H1–action on the knotification of these
links.

Organization

Section 2 reviews Heegaard Floer theory. After recalling various known definitions and results, we show
how to obtain the knot Floer chain complex of the knotification of links, as well as the H1=Tors–action.
A detailed construction of the Heegaard Floer chain complex of the Hopf link is presented in Section 2.5.
The generalization to knotifications of arbitrary .2; 2n/–torus links is given in Section 2.6. We conclude
Section 2 with Section 2.7, where we recall the computations of the Heegaard Floer chain complex of the
Borromean knot B0.

Section 3 is devoted to a detailed study of correction terms. We recall the Levine–Ruberman versions of
d–invariants and recall definitions of Vs–invariants.

Section 4 contains some important computations that happen behind a scene. We recall the computation
of the Heegaard Floer chain complex of L–space knots, and in particular of algebraic knots, in Section 4.2.
We show how to recover the Vs–invariant of a product of positive and negative staircases. A precise
statement is given in Proposition 4.18. We show that the assumptions in the second item of that proposition
are necessary in Section 4.4.

Next we consider tensor products of knot Floer chain complexes in manifolds with b1 > 0. It turns out
that most of the knots that we encounter share a property, which greatly facilitates our computations,
namely they have split towers; see Definition 4.29.

Section 5 constructs a tubular neighborhood N of a singular curve and presents the boundary Y of this
neighborhood as a surgery on a link L in #� S2 �S1, where � is the first Betti number of C. We then
compute homological invariants of Y, N and CP 2 nN. In particular, we study which Spinc structures
on Y extend over CP 2 nN. These computations are slight generalizations of calculations of [Bodnár
et al. 2016; Borodzik et al. 2017; Borodzik and Livingston 2014].

Section 6 contains the proofs of Theorems 6.4 and 6.8. The main technical result is Proposition 6.3,
which computes the d–invariants of Y in terms of the semigroup counting functions of knots of cuspidal
singularities. We also compare Theorems 6.4 and 6.8 with bounds for cuspidal curves of higher genus in
Section 6.4. Sections 6.5 and 6.6 provide explicit examples of curves for which our obstruction can be
applied.
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2 Review of Heegaard Floer theory

2.1 Heegaard Floer complexes with multiple basepoints

Definition 2.1 A multipointed Heegaard diagram for a 3–manifold Y is a quadruple .†;˛;ˇ;w/ where:

� † is a genus g surface, which splits Y into two genus g handlebodies, U˛ and Uˇ , and w D
.w1; : : : ; wn/ is a nonempty set of basepoints in †.

� ˛D .˛1; : : : ; ˛gCn�1/ and ˇ D .ˇ1; : : : ; ˇgCn�1/ are collections of simple closed curves on †,
where nD jwj. Each curve in ˛ bounds a compressing disk in U˛, and each curve in ˇ bounds a
compressing disk in Uˇ . Furthermore, the curves in ˛ are pairwise disjoint, and similarly for ˇ.

� The curves ˛ and ˇ are transverse.

� The curves in ˛ are linearly independent in H1.† nw/, and similarly for ˇ.

Let T˛;Tˇ � SymgCn�1.†/ be two half-dimensional tori

T˛ D ˛1 � � � � �˛gCn�1 and Tˇ D ˇ1 � � � � �ˇgCn�1:

Ozsváth and Szabó [2004b, Section 2.6] describe a map

sw W T˛ \Tˇ ! Spinc.Y /:

Given a Heegaard diagram of Y with a Spinc structure s, we define a Floer chain complex CF�.Y;w; s/
over F ŒU1; : : : ; Un�, where FDZ=2Z. The chain complex is generated over F ŒU1; : : : ; Un� by intersection
points in T˛ \Tˇ satisfying sw.x/D s.

For any x 2 T˛ \Tˇ , the differential is defined by

.2.2/ @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#.M.�/=R/U
nw1 .�/

1 � � �U
nwn.�/
n y:

Here, �2.x;y/ denotes the set of homotopy classes of maps of a complex unit disk D to SymgCn�1.†/
such that point �i is mapped to x, the point i is mapped to y , @D\fRe.z/ < 0g is mapped to Tˇ and
@D\fRe.z/>0g is mapped to T˛ . The quantity �.�/ is the Maslov index of the disk. The space M.�/ is
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the moduli space of Js–holomorphic disks representing � (for some 1–parameter family of almost complex
structures Js on SymgCn�1.†/). The condition that �.�/D 1 implies that M.�/=R is generically a finite
set of points. The integers nwi .�/ are intersection numbers of fwig �SymgCn�2.†/� SymgCn�1.†/
with the image of �.

The homology group HF�.Y;w; s/ of CF�.Y;w; s/ has the structure of an F ŒU1; : : : ; Un�–module.

If c1.s/ is torsion, then CF�.Y;w; s/ admits an absolute Q–valued grading, which we denote by grw .
The differential decreases the grading by 1, so the grading descends to HF�.Y;w; s/. Multiplication by
any of the Ui decreases the grading by �2.

Formally inverting the variables U1; : : : ; Un in CF�.Y;w; s/ gives a chain complex CF1.Y;w; s/ over
F ŒU1; U�11 ; : : : ; Un; U

�1
n �. The associated homology group is denoted by HF1.Y;w; s/.

2.2 The link Floer complex

For links in S3, Ozsváth and Szabó [2008a] introduced the link Floer homology, which generalizes the
knot Floer homology defined separately in [Rasmussen 2003; Ozsváth and Szabó 2004a]. We presently
recall their construction.

Definition 2.3 An oriented multipointed link L D .L;w; z/ in a closed 3–manifold Y is an oriented
link L with two disjoint collections of basepoints w D fw1; : : : ; wng and z D fz1; : : : ; zng such that,
as one traverses L, the basepoints alternate between w and z. Furthermore, each component of L has
a positive (necessarily even) number of basepoints, and each component of Y contains at least one
component of L.

Analogously to Definition 2.1, we have the following:

Definition 2.4 A multipointed Heegaard link diagram for LD .L;w; z/ in Y is a tuple .†;˛;ˇ;w; z/
satisfying the following:

� .†;˛;ˇ;w/ and .†;˛;ˇ; z/ are embedded Heegaard diagrams for .Y;w/ and .Y; z/, respectively,
in the sense of Definition 2.1.

� L\†Dw[ z, and furthermore L intersects † positively at z and negatively at w.

� L\U˛ (resp. L\Uˇ ) is a boundary-parallel tangle in U˛ (resp. Uˇ ).

Given a multipointed Heegaard link diagram .†;˛;ˇ;w; z/ for .Y;L/, the link Floer chain complex is
defined as follows. Let

R� D F ŒU ;V �; R1 D F ŒU ;U �1;V ;V �1�:

Algebraic & Geometric Topology, Volume 24 (2024)
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Let s be a Spinc structure on Y. We define the chain complex CFL�.†;˛;ˇ;w; z; s/ to be the free
R�–module generated by x 2 T˛ \Tˇ with sw.x/D s. The differential is given by

.2.5/ @x D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

#.M.�/=R/U nw1 .�/C���Cnwn .�/V nz1 .�/C���Cnzn .�/ �y;

extended R�–equivariantly. The differential @ squares to 0.

There is a larger version of the link Floer complex, which we call the full link Floer complex, denoted by
CFL�full.Y;L; s/. As a module, CFL�full.Y;L; s/ is freely generated over the ring F ŒU1; : : : ;Un;V1; : : : ;Vn�

by T˛ \Tˇ . The differential is similar to (2.5), except we use the weight nwi .�/ for the variable Ui ,
and the weight of nzi .�/ for the variable Vi . In general, CFL�full.Y;L; s/ is a curved chain complex, ie
@2 D !L � id for some !L 2 F ŒU1; : : : ;Un;V1; : : : ;Vn�; see [Zemke 2017, Lemma 2.1].

2.3 Homological actions

Ozsváth and Szabó [2004b, Section 4.2.5] describe an action of ƒ�.H1.Y /=Tors/ on the homology
group HF�.Y;w; s/. For a multipointed 3–manifold .Y;w/, there is an analogous action of the relative
homology group H1.Y;w/ on CF�.Y;w; s/ [Zemke 2015]. In this section, we recall the construction
and describe some analogs on link Floer homology.

If .†;˛;ˇ;w/ is a multipointed Heegaard diagram, and � is a path which connects two distinct basepoints
w1; w2 2 w, then there is a relative homology action A�, which is an endomorphism of CF�.Y;w; s/
and satisfies

.2.6/ A�@C @A� D U1CU2:

See [Zemke 2015, Lemma 5.1].

The map A� is defined via the formula

.2.7/ A�.x/D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

a.�; �/ #.M.�/=R/U
nw1 .�/

1 � � �U
nwn .�/
n �y:

Here a.�; �/2F is a quantity determined as follows. Homotope the path � so that it is an immersed curve
in †, transverse to the ˛ and ˇ curves. We write D.�/ for the domain of the class �, which is a 2–chain
on † with boundary in ˛[ˇ. We write @D.�/D @˛.�/C @ˇ .�/. Then we set a.�; �/D #.@˛.�/\�/.
Compare [Zemke 2015, Section 5.1]. Up to chain homotopy, the map A� only depends on the relative
homology class of � in Y, relative to its boundary. In particular, the map A� does not depend on the
choice of representative on the surface †. See [Ni 2014, Lemma 2.4] for a proof in a related context, or
[Zemke 2015, Lemma 5.6] for a similar proof in the present context.
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If .†;˛;ˇ;w; z/ is a multipointed Heegaard link diagram, and � connects two basepoints w1 and w2,
there is an analogous map A� on the link Floer homology. In contrast to (2.6), we have

.2.8/ A�@C @A� D U1V1CU2V2;

where V1 denotes the variable for the basepoint z1 which immediately follows w1 with respect to the
ordering of basepoints on the link, and similarly V2 is the variable for the basepoint z2 which immediately
follows w2. The proof follows the same strategy as [Zemke 2015, Lemma 5.1]: One counts the ends of
index 2 families of holomorphic disks. There are two types of ends: pairs of index 1 holomorphic disks
as well as index 2 boundary degenerations. Pairs of index 1 holomorphic disks contribute to the left-hand
side of (2.8), while the count of boundary degenerations, weighted by a.�; �/, constitutes the right-hand
side.

If zi 2 z, then there is an endomorphism of CFL�full.Y;L; s/ defined by

‰zi .x/D V �1i

X
y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

nzi .�/ #.M.�/=R/U
nw1 .�/

1 � � �U
nwn .�/
n V

nz1 .�/

1 � � �V
nzn .�/
n �y:

We call ‰zi the basepoint action of zi . Note that, since the contribution of each disk class � is multiplied
by nzi .�/ in the sum, the additional factor of V �1i never results in negative powers of Vi , and hence the
formula induces a well-defined endomorphism of CFL�full.Y;L; s/.

Given wi 2w, there is an analogous endomorphism ˆwi . The map ‰zi satisfies

‰zi@C @‰zi D Uj CUjC1;

where wj and wjC1 are the w basepoints adjacent to zi on the link. In particular, if we identify all of
the Ui variables to a single U, then ‰zi is a chain map. See [Sarkar 2011, Lemma 4.1] or [Zemke 2017,
Lemma 3.1]. Similarly, if zi is on a link component which has only one other basepoint, then ‰zi is also
a chain map.

2.4 Heegaard Floer homology of a knotification

Definition 2.9 (knotification) Let LD L1[ � � � [Ln be a null-homologous link in a 3–manifold Y.

(1) A partial knotification of L with respect to components Li and Lj is a .n�1/–component null-
homologous link Lij in Y # S2 � S1 obtained by connecting Li and Lj with an oriented band
going across the S2 �S1 summand.

(2) A knotification of L is a knot yL in Y # #n�1 S2�S1 obtained by consecutive partial knotifications.

The isotopy type yL does not depend on the feet of the bands [Ozsváth and Szabó 2004a, Proposition 2.1].

Suppose L D .L;w; z/ is an n–component link in #m S2 � S1, equipped with 2n basepoints, and L0

is a multipointed link in #mC1 S2 � S1, obtained by knotifying the components Ln�1 and Ln of L.
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Furthermore, we assume that the basepoints on the link components L1; : : : ; Ln�2 are unchanged in L0,
and on L0n�1 we have only the two basepoints wn and zn�1. There are two natural maps

F W CFL�
�
#m S2 �S1;L

�
! CFL�

�
#mC1 S2 �S1;L0

�
;

G W CFL�
�
#mC1 S2 �S1;L0

�
! CFL�

�
#m S2 �S1;L

�
:

The map F is the link cobordism map for a 4–dimensional 1–handle, followed by a saddle which
crosses over the 1–handle. The decoration on the saddle consists of an arc, which connects the two link
components of L. Outside of the saddle region, the decoration consists of “vertical” arcs which connect L

to L0. See the left-hand side of [Zemke 2019a, Figure 5.1]. The map G is the map for the link cobordism
obtained by reversing the orientation and turning around the above cobordism for F.

The following is a key lemma which we use to compute the H1–action for knotified links:

Proposition 2.10 Suppose L, L0, F and G are as above. Let � be an arc in #m S2 �S1 which connects
the w basepoints of Ln�1 and Ln. Let  be the unique element of H1

�
#mC1 S2 � S1

�
obtained by

joining the ends of � across the 1–handle used in knotification. We have the following:

(a) F and G are homogeneously graded chain homotopy inverses.

(b) The map F satisfies

F.A�CU ˆwn/' F.A�CV ‰zn/' AF:

Proof To simplify the notation, we will describe the case when L is a link in S3 with two components
L1 and L2. We begin with claim (a). The proof is formally identical to the proof of [Zemke 2019a,
Proposition 5.1] and follows from two 4–dimensional surgery relations [Zemke 2019a, Propositions 5.2
and 5.4].

We now move onto claim (b). We first show that

.2.11/ F.A�CV ‰z2/' AF:

By definition, we may take

.2.12/ F D S�w2;z1F
w
B F1;

where F1 is the 1–handle map, S�w2;z1 is a quasidestabilization map, and Fw
B is a type-w saddle map; see

[Zemke 2019c] for precise definitions of the relevant maps. Here B denotes the band (ie saddle) which
crossed over the 1–handle used in the knotification operation.

We now have

.2.13/ F1.A�CV ‰z2/D .A�CV ‰z2/F1
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by the same argument as Ozsváth and Szabó’s proof that the 1–handle is a chain map [Ozsváth and Szabó
2006, Section 4.3]. Analogously, the computation of the quasistabilized differential in [Zemke 2017,
Proposition 5.3] implies that

AS
�
w2;z1

D S�w2;z1A :

Hence, it is sufficient to show that

Fw
B .A�CV ˆz1/D AF

w
B :

We recall the definition of the map Fw
B . We pick a Heegaard triple .†;˛;ˇ;ˇ0;w; z/ subordinate to the

band [Zemke 2019c, Defintion 6.2]. The diagram .†;ˇ;ˇ0;w; z/ contains two canonical intersection
points, ‚w

ˇ;ˇ 0
and ‚z

ˇ;ˇ 0
, where ‚o

ˇ;ˇ 0
is the top degree generator with respect to the gro–grading for

o 2 fw; zg. By definition,
Fw
B .x/D F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0/:

Counting the ends of Maslov index 1 families of holomorphic triangles, weighted by a.�;  /, we obtain
the relation

F˛;ˇ;ˇ 0.A�.x/;‚
z
ˇ;ˇ 0/CA�.F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0//DF

A
� .@x; ‚

z
ˇ;ˇ 0/CF

A
� .x; @‚

z
ˇ;ˇ 0/C@F

A
� .x; ‚

z
ˇ;ˇ 0/I

see [Zemke 2015, Lemma 5.2]. Here FA
�

counts index 0 holomorphic triangles with an extra factor of
a.�;  /. Note that one might expect an extra term involving F˛;ˇ;ˇ 0.x; A�.‚z

ˇ;ˇ 0
//; however, this term

vanishes since A� weights disks based on their changes across the ˛ curves and ‚z
ˇ;ˇ 0
2Tˇ \Tˇ 0 . Since

@‚z
ˇ;ˇ 0
D 0, we obtain that

.2.14/ Fw
B ıA�CA� ıF

w
B ' 0:

Similarly, counting the ends of index 1 families of holomorphic triangles, weighted by nz2. /, we obtain

F˛;ˇ;ˇ 0.V ‰z2.x/;‚
z
ˇ;ˇ 0/CF˛;ˇ;ˇ 0.x;V ‰z2.‚

z
ˇ;ˇ 0//CV ‰z2.F˛;ˇ;ˇ 0.x; ‚

z
ˇ;ˇ 0//

D F 0.@x; ‚z
ˇ;ˇ 0/CF

0.x; @‚z
ˇ;ˇ 0/C @F

0.x; ‚z
ˇ;ˇ 0/;

where F 0 counts index 0 triangles weighted by a factor of nz1. /. The above equation implies that

.2.15/ Fw
B ıV ‰z2 CV ‰z2 ıF

w
B ' F˛;ˇ;ˇ 0.�;V ‰z2.‚

z
ˇ;ˇ 0//:

We claim now that the map F˛;ˇ;ˇ 0.�;V ‰z2.‚
z
ˇ;ˇ 0

// is null-homotopic. To establish this, it is sufficient
to show that

.2.16/ ŒV ‰z2.‚
z
ˇ;ˇ 0/�D 0;

where the brackets denote the induced element of homology. Indeed, assuming the existence of an
� 2 CFL�.†;ˇ;ˇ0;w; z/ such that @�D V ‰z2.‚

z
ˇ;ˇ 0

/, associativity of holomorphic triangles implies
that

F˛;ˇ;ˇ 0.x;V ‰z2.‚
z
ˇ;ˇ 0//D @F˛;ˇ;ˇ 0.x; �/CF˛;ˇ;ˇ 0.@x; �/;

so

.2.17/ F˛;ˇ;ˇ 0.�;V ‰z2.‚
z
ˇ;ˇ 0//' 0:
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w1 z2
w2

z1

‚w
ˇ;ˇ 0

‚z
ˇ;ˇ 0

ˇˇ0

Figure 1: An unknot with four basepoints. The dashed arc is �.

We will now demonstrate (2.16). We observe that the map ‰z2 commutes with the homotopy equivalences
associated to changing Heegaard diagrams by [Zemke 2017, Lemma 3.2]. Furthermore, the homology
class Œ‚z

ˇ;ˇ 0
� is also preserved by these homotopy equivalences by [Zemke 2019c, Lemma 3.7], since it

is the unique generator in its grading. In particular, we may verify (2.16) for any convenient choice of
Heegaard diagram for an unknot with four basepoints. We perform the computation using the genus 0
Heegaard diagram shown in Figure 1. On this diagram, ‰z2.‚

z
ˇ;ˇ 0

/D 0.

Combining (2.14) and (2.15) with (2.17), we obtain

.2.18/ Fw
B .A�CV ‰z2/' .A�CV ‰z2/F

w
B :

Next, consider a path �0 from w1 to w2, which is a subarc of L0. We choose �0 so that it is oriented from
w1 to w2. There are two such subarcs of L0, and we pick the one so that the portion of �0 nearest to w1 is
in the beta-handlebody (equivalently, we pick the one which goes over the band B before arriving at a z
basepoint). Without loss of generality, we may assume that �0 crosses over z2. See Figure 2. We define

 WD ���0;

where � denotes concatenation.

On the Heegaard diagram, we may choose �0 to cross only the alpha curves between w1 and z2, and only
the beta curves between z2 and w2. Clearly,

a.�0; �/D nw2.�/�nz2.�/:

�0w1

z1

z2

w2

B

Figure 2: The configuration of the band B, the basepoints and the arc �0 � L0.
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Hence, A�0 D U ˆw2 CV ‰z2 , or, equivalently,

.2.19/ V ‰z2 D A�0 CU ˆw2 :

Combining (2.18) and (2.19), we obtain

.2.20/ F.A�CV ‰z2/' S
�
w2;z1

.A�CA�0 CU ˆw2/F
w
B F1

' S�w2;z1.A CU ˆw2/F
w
B F1

' AS
�
w2;z1

Fw
B F1:

The second line of (2.20) follows from the relation A 'A�CA�0 . The final line follows from (2.13), as
well as the relation that S�w2;z1ˆw2 'S

�
w2;z1

SCw2;z1S
�
w2;z1

' 0 by [Zemke 2019c, Lemmas 4.11 and 4.13],
completing the proof of (2.11).

Finally, to see that
F.A�CU ˆw2/' AF;

it is sufficient to show that V ‰z2 ' U ˆw2 on CFL�.L/. To see this, we note that on a diagram for L,
we can consider a shadow of the link component L2. The arc L2 n fw2; z2g contains two subarcs, one
of which intersects only the alpha curves, and one of which intersects only the beta curves. Hence
a.L2; �/D nw2.�/�nz2.�/ for any class of disks �. On the other hand, this implies that the homology
action associated to 0D ŒL2� 2H1.S3/ satisfies

0' AL2 D U ˆw2 CV ‰z2 :

The homology action on full knotifications may be computed by iterating the above result, via the
following lemma:

Lemma 2.21 Let L, L0, F and G be as in Proposition 2.10.

(1) Suppose that  2H1
�
#m S2 �S1

�
. Write  also for the induced element of H1

�
#mC1 S2 �S1

�
.

Then A commutes with F and G up to chain homotopy.

(2) If � is an arc in #m S2 �S1 which connects two components of L1; : : : ; Ln�2, then the relative
homology map A� commutes with F and G up to chain homotopy.

(3) If w and z are basepoints on one of the link components L1; : : : ; Ln�2, then ˆw and ‰z commute
with F and G up to chain homotopy.

The proof of Lemma 2.21 is similar to the proof of Proposition 2.10 (though strictly easier), and hence
we omit it. We refer the reader to [Zemke 2015, Section 5; 2019c, Section 4] for related results.

2.5 The Hopf link

Our next goal is to describe the CFL�–complexes for the .2; 2n/–torus links, denoted by T2;2n, their
mirrors and their knotifications. As the calculations are rather involved, we begin by describing the Floer
chain complex for the link T2;2 (ie. the positive Hopf link), leaving the general case to Section 2.6. While
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˛

ˇ

ha
hb hc

hd

� e

w1 z2 z1 w2

Figure 3: A genus 0 Heegaard diagram for the Hopf link. The thick (red) curve is the ˛ curve, the
thin (blue) curve is the ˇ curve. The dotted curve is used to compute the action ofH1.S2�S1IZ/
on the knotification of the Hopf link.

the complex CFL�.T2;2/ is well known (it can be computed explicitly using a very simple diagram), to
the best of our knowledge, the calculation of the action of H1.S2 �S1/ on the knot Floer chain complex
of the knotification of T2;2 is new.

As our main focus will eventually be the knotification of T2;2, we restrict our attention to the link Floer
complex over the ring R� D F ŒU ;V �, as opposed to the version with a variable for each basepoint.

Consider the diagram for the Hopf link, as in Figure 3. The complex CFL�.T2;2/ is generated over R�

by four elements, ha, hb , hc and hd , which correspond to the intersections of the ˛ and ˇ curves in
Figure 3. The gradings are

.2.22/
.grw.ha/; grz.ha//D

�
1
2
;�3

2

�
; .grw.hb/; grz.hb//D

�
�
1
2
;�1

2

�
;

.grw.hc/; grz.hc//D
�
�
3
2
; 1
2

�
; .grw.hd /; grz.hd //D

�
�
1
2
;�1

2

�
:

The differential in the complex is computed by counting holomorphic disks of Maslov index 1. Counting
bigons shows that

.2.23/ @ha D @hc D 0; @hb D @hd D U haCV hc :

The homology of CFL1.T2;2/ is a direct sum of two copies of R1. One copy is spanned by ŒhbC hd �;
the other copy is spanned by ha or hc .

We now describe the homology action A on CFK�. yT2;2/, where yT2;2 denotes the knotification of T2;2,
and  is a generator of H1.S2 �S1/. We will use Proposition 2.10. The formula therein involves the
relative homology action A� on CFL�.T2;2/, which we compute now. In our present case, the arc � has
only one intersection with an alpha curve, which occurs at a point labeled e in Figure 3. The map A�
counts holomorphic disks of Maslov index 1, with weights corresponding to changes along the alpha
boundary of a disk; see (2.7). Counting bigons with these weights, we obtain

.2.24/ A�.ha/D V .hbC hd /; A�.hb/D 0; A�.hc/D U .hbC hd /; A�.hd /D U ha:
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We recall that, in Section 2.4, we defined a knotification map

F W CFL�.T2;2/! CFK�. yT2;2/;

which is a homotopy equivalence. In Proposition 2.10, we showed that

F.A�CU ˆw2/' AF:

Hence, as a model for the pair .CFK�. yT2;2/; A /, we may use .CFL�.T2;2/; A�CU ˆw2/. Hereafter,
by a model for a chain complex (possibly with extra structure) defined up to chain homotopy equivalence,
we mean a concrete chain complex in the class of an appropriate (usually bifiltered) chain homotopy
equivalence. Abusing notation slightly, we will write A for the endomorphism of CFL�.T2;2/ given by
A WD A�CU ˆw2 . One easily computes

ˆw2.hd /D ha;

and ˆw2 vanishes on the other generators. Hence,

.2.25/ A .ha/D V .hbC hd /; A .hb/D U ha; A .hc/D U .hbC hd /; A .hd /D U ha:

With a change of basis h0
d
D hbC hd , we obtain the following presentation of .CFK�. yT2;2/; A /:

.2.26/
ha hb

h0
d

hc

V
U

U

V

U

In (2.26), the dashed arrows denote differentials, and the solid arrows denote the action of A .

We may obtain a simpler model of the homology action by replacing A with A C Œ@; F �, where F is
the R�–equivariant map which satisfies

F.ha/D ha and F.hb/D F.hc/D F.hd /D 0:

The resulting model for .CFK�. yT2;2/; A / is

.2.27/
ha hb

h0
d

hc

V

U

V

U

2.6 The torus link T2;2n

Before we start our computation of the Floer chain complex of the .2; 2n/–torus link and its knotification,
we introduce a family of complexes Sn for n 2 Z, which play a prominent role in the present paper.

Definition 2.28 Let n� 1. We write Sn for the complex generated by elements x0; y1; : : : ; y2n�1; x2n
with differential @.x2i /D 0 and

@.y2iC1/D U x2i CV x2iC2:
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The bigradings are given by .grw.xj /; grz.xj // D .�j; j � 2n/ if j is even. The same formula holds
for yj if j is odd.

The complex S�n is defined as the dual complex to Sn. More specifically, it is generated by elements
x0; y1; : : : ; y2n�1; x2n with differential @.y2iC1/D 0, @.x2i /D V y2i�1CU y2iC1, and the convention
that y�1 D y2nC1 D 0. For j even, the grading of xj is .j; 2n� j /, and an analogous formula holds for
the grading of yj if j is odd.

Remark 2.29 The complex Sn is the CFK�–complex of the positive torus knot T2;2nC1, while S�n

is the complex for the negative torus knot T2;�.2nC1/. Hence, we also call Sn a staircase complex. For
details of staircase complexes, see Section 4.1.

Recall that T2;2n � S3 denotes a 2–component .2; 2n/–torus link. In this subsection, we study the Floer
chain complex CFL�.T2;2n/ as an R�–module. This gives the Floer chain complex CFK�.S2�S1; yT2;2n/,
where yT2;2n is the knotification of T2;2n.

The Heegaard diagram of the link T2;2n in S3 is shown in Figure 4 and the Floer chain complex is in
Figure 5. The Heegaard diagram displayed therein is obtained from a doubly pointed open book whose
page is a disk and whose monodromy is n, where  denotes a Dehn twist parallel to the boundary.

x0

x1

x2

x3

x4

x5

x6

x7

w1 w2

Figure 4: A Heegaard diagram for T2;4 from a doubly pointed open book. The dashed line is an
arc � connecting w1 and w2.
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y1 y2 y3

y0 y4

y7 y6 y5

V

U

U

V

V

U

U

V

V

U

U

V U

V

V

U

U

V

V

U

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V U

V

U

V

U

V

U

V

U

V

U

V

U

V

V
U

Figure 5: The chain complexes for T2;4 (top) and T2;6 (bottom).

It is easy to see that there are 4n generators y0; : : : ; y4n�1 of the complex CFL�.T2;2n/. By counting
bigons, one obtains formulas for the differential

.2.30/

@yi D @y4n�i D V .yi�1Cy4n�iC1/CU .yiC1Cy4n�i�1/ if 2� i � 2n� 2;

@y1 D @y4n�1 D V y0CU .y2Cy4n�2/;

@y2n�1 D @y2nC1 D U y2nCV .y2n�2Cy2nC2/;

@y0 D @y2n D 0:

A� D

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

U

U U U U

U

V

U
U U U U

V

ˆw2 D

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

1 1

1

1

1 1

1

1

1

Figure 6: Figure 5 continued. The map A� on the complex for T2;6 (top) and the map ˆw2 (bottom).
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It is convenient to do the following bigraded change of basis to the complex CFL�.T2;2n/. Namely we
consider the basis y1; : : : ; y2n�1; x0; : : : ; x2n, where

.2.31/ xi D yi Cy4n�i if 1� i � 2n� 1; x0 D y0; x2n D y2n:

With this change of basis, the differential takes the form

.2.32/ @yi D V xi�1CU xiC1 if 1� i � 2n� 1; @xi D 0:

The gradings of the generators in CFL�.T2;2n/ are summarized in the following lemma:

Lemma 2.33 If 1� i � 2n� 1, then

.grw.yi /; grz.yi //D .grw.xi /; grz.xi //D
�
1
2
� 2nC i; 1

2
� i
�
:

If i D 0 or i D 2n, then the same formula holds for xi .

Proof Recall that @ has .grw ; grz/–bigrading .�1;�1/, and that U and V have bigradings .�2; 0/
and .0;�2/, respectively. Using the description in Figure 6, it is easy to check that the formula holds up
to an overall additive constant. That is, the formula holds for the relative grw– and grz–gradings. Hence,
it is sufficient to show the absolute grw–grading is correct for one of the generators, and similarly for the
grz–grading. To check the absolute gradings, we note that, if we set V D 1 and U D 0, then we recover
the Heegaard Floer complex for �CF.S3; w1; w2/, which is homotopy equivalent to F1=2˚ F�1=2 as a
grw–graded chain complex. In this case, the complex has generators x2n�1 and x2n, which pins down
their grw–grading. A similar argument computes the grz–gradings.

We now compute the homology action A on the complex of the knotification of T2;2n. In order to use
Proposition 2.10, we need to compute A� and ˆw2 . For a choice of arc on the Heegaard surface as in
Figure 4, by counting bigons we obtain that A� has the form

.2.34/
A�.y0/D U .y1Cy4n�1/; A�.yi /D U yiC1 if 0 < i < 2n;

A�.y2n/D V .y2n�1Cy2nC1/; A�.yi /D U y4n�iC1 if 2nC 1 < i < 4n:

By (2.31), we have

.2.35/
A�.x0/D U x1; A�.xi /D U xiC1 if 0 < i < 2n� 1

A�.x2n/D V x2n�1; A�.x2n�1/D 0:

Next, we need to understand the map ˆw2 . Counting bigons on diagrams like those shown in Figure 4
implies that ˆw2 takes the form

.2.36/
ˆw2.y2i /D y2iC1 if 0 < i < n; ˆw2.y2i /D y4n�2iC1 if n < i < 2n;

ˆw2.y2iC1/D y2i Cy4n�2i if n < i < 2n; ˆw2.y2nC1/D y2n;

and ˆw2 vanishes on all other generators.
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Finally, we combine Proposition 2.10 with (2.35) and (2.36) to obtain the following formula for A '
A�CU ˆw2 on the knotified complex, which we write in terms of the basis from (2.31):

.2.37/

A .y2iC1/D U x2iC2CU y2iC2 if 0� i < n� 1;

A .y2i /D U x2iC1 if 0 < i < n� 1;

A .x2i /D U x2iC1 if 0� i < n;

A .x2n/D V x2n�1;

and A vanishes on all other generators. The example of T2;6 is shown below:

.2.38/ A D

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V U

U

U

V

U

U

U

V

U

U

U U U

V

V

U

U V

U

U

The dashed lines denote the differential and the solid lines denote the A–action. It is convenient to
modify the map A by a further chain homotopy, so that it takes one staircase summand to the other, with
no self-arrows, as follows. Define a function ı WN! F by

ı.n/D 1
2
n.n� 1/ mod 2:

Conceptually, it is easier to think of ı.n/ as the sequence 0; 0; 1; 1; 0; 0; 1; 1; : : : . We define a homotopy F
as follows. On the first staircase summand, we define F via

F.x2i /D ı.2i/ � x2i if 0� i � n; F.y2iC1/D ı.2i C 1/ �y2iC1 if 0� i < n:

On the second staircase summand, we define F via

F.x2iC1/D ı.2i/ � x2iC1 if 0� i < n; F.y2i /D ı.2i � 1/ �y2i if 0 < i < n:

Writing A0 for A C Œ@; F �, we compute that

A0 .x2i /D U x2iC1 if 0� i < n;

A0 .y2iC1/D U y2iC2 if 0� i < n� 1;

A 0.x2n/D V x2n�1:
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Continuing our running example of T2;6, (2.38) becomes

.2.39/ A C Œ@; F �D

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V U

U

V U

U

V U

U U U

V

V U V U

We summarize the above computation as follows:

Proposition 2.40 The pair .CFK�.S2 �S1; yT2;2n/; A / has a model where CFK�.S2 �S1; yT2;2n/ is
equal to Sn

˚
1
2
; 1
2

	
˚ Sn�1

˚
�
1
2
;�1

2

	
and A maps Sn to Sn�1 on the chain level. Here , we recall that

fi; j g denotes a shift in the .grw ; grz/–grading by .i; j /, and Sn and Sn�1 are the chain complexes in
Definition 2.28.

We now consider the mirror of the .2; 2n/–torus link, which we denote by T2;�2n. We denote its
knotification by yT2;�2n. On the level of Floer complexes, taking the mirror amounts to replacing the link
Floer complex by the dual complex over the ring R�. In practice, this amounts to reversing all the arrows
in the differential and multiplying the .grw ; grz/–bigrading by an overall factor of �1. The homology
action on the mirror is also the dual. We summarize this as follows:

Proposition 2.41 The pair .CFK�.S2 �S1; yT2;�2n/; A / has a model where CFK�.S2 �S1; yT2;�2n/
is equal to S�n

˚
�
1
2
;�1

2

	
˚S�.n�1/

˚
1
2
; 1
2

	
and A maps S�.n�1/ to S�n on the chain level.

2.7 The Borromean knot B0

Let B0 � #2 S2 �S1 be the Borromean knot, that is, the knot obtained from the Borromean rings by a
zero-framed surgery on two of its components. The Heegaard Floer chain complex of B0 is described in
[Ozsváth and Szabó 2004a, Proposition 9.2]. We adapt the calculation of [Borodzik et al. 2017, Section 5;
Bodnár et al. 2016, Section 4] to the present context.

The chain complex CFK�.B0/ is homotopy equivalent to F4˝F R�, with vanishing differential. We
write 1, x, y and xy for the generators of F4, which we can think of as being generators of H�.T2/.
The bigradings are

.2.42/

.grw.1/; grz.1//D .1;�1/;

.grw.x/; grz.x//D .grw.y/; grz.y//D .0; 0/;

.grw.xy/; grz.xy//D .�1; 1/:
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Up to an overall grading-preserving isomorphism, the H1
�
#2 S2�S1

�
–module structure is uniquely

determined by the formal properties of the action. In detail, if we write x� and y� for the two generators
of H1

�
#2 S2 �S1

�
, then the module structure takes the form (up to overall isomorphism)

Ay� D

xy

x y

1

V U

VU

Ax� D

xy

x y

1

VU

V U

For the explicit description of the top and bottom towers of CFK�.B0/, see [Borodzik et al. 2017,
Section 5].

3 Correction terms

3.1 Generalized correction terms of Levine and Ruberman

Suppose Y is an oriented closed three-dimensional manifold. The module HF1.Y / is standard if, for
each torsion Spinc structure s,

HF1.Y; s/Šƒ�H 1.Y IZ/˝Z F ŒU; U�1�

as ƒ�.H1.Y IZ/=Tors/˝ZF ŒU �–modules. Any manifold Y for which the triple cup product vanishes
is standard; see [Lidman 2013] (and also [Levine and Ruberman 2014, Theorem 3.2]). In particular,
a connected sum of finitely many copies of S1 � S2 has standard HF1. Hence, a large surgery on a
null-homologous knot in # S1 �S2 has standard HF1; see [Ozsváth and Szabó 2003]. This means that
essentially all 3–manifolds we are going to consider have standard HF1.

There is an action (up to homotopy) of ƒ�.H1.Y /=Tors/ on CF�.Y; s/. Expanding on work of Ozsváth
and Szabó [2003], Levine and Ruberman [2014] associate a d–invariant to any primitive subspace G
of H1.Y /=Tors (recall that a primitive subspace is a free submodule whose quotient is free) and any
Spinc structure s on Y whose first Chern class is torsion as long as HF1.Y / is standard. We denote this
invariant by d.Y; s; G/. For our purposes, the two most important instances are the invariants

dbot.Y; s/ WD d.Y; s;H1.Y /=Tors/; dtop.Y; s/ WD d.Y; s; f0g/;

which correspond approximately to the kernel and cokernel, respectively, of the H1.Y /=Tors–action.

The key property of these invariants is the following inequality, generalizing the Ozsváth–Szabó inequality:

Theorem 3.1 [Levine and Ruberman 2014, Theorem 4.7] Suppose X is a connected four-manifold
such that bC2 .X/D 0 and @X D Y. Suppose s is a Spinc structure on Y that extends to a Spinc structure t
on X. Then

d.Y; s; G/� 1
4
.c21.t/C b

�
2 .X//C

1
2
b1.Y /� rkG

if G contains the kernel of the inclusion map from H1.Y /=Tors to H1.X/=Tors.
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3.2 V –invariants

The aim of this section is to gather several definitions of Vs–invariants. In the context of Heegaard Floer
theory, all these definitions lead to the same invariants.

The first definition recalls the classical Vs–invariant for knots. The assumptions on C� in Definition 3.2
are modeled on a knot Floer complex CFK�.

Definition 3.2 (Vs–invariants for complexes over F ŒU; U�1�) Suppose C� is a filtered chain complex
of free F ŒU �–modules (with multiplication by U decreasing the filtration level by 1 and the grading by 2)
such that the homology of the localized complex U�1C� is equal to F ŒU; U�1�. For s 2 Z, the invariant
Vs.C�/ is such that �2Vs.C�/ is the maximal grading of an element x 2 C� at filtration level at most s
such that the class of U kx is nonzero in H�.C�/ for all k � 0.

Next we define the Vs–invariants of a bigraded R�–module, where R� D F ŒU ;V �. The definition is
essentially taken from [Zemke 2019b, equation (10.3)]. Suppose C� is a bigraded chain complex over R�

such that multiplication by U changes the grading by .�2; 0/, multiplication by V changes the grading
by .0;�2/, and the differential changes the grading by .�1;�1/. Let .grw ; grz/ denote the bigrading. It
is not hard to see that the differential and multiplication by U V preserves the difference grw � grz .

Definition 3.3 (Vs–invariants over R�) Suppose C� is a chain complex over R� such that

.3.4/ .U ;V /�1 �H�.C�/ŠR1 D F ŒU ;V ;U �1;V �1�

as bigraded groups. (Here .U ;V /�1� denotes localization at the nonzero monomials of R�.) We
write As.C�/ for the subcomplex of C� which has grw � grz D 2s. We can view As.C�/ as a complex
over F ŒU �, where U acts by U V . We define d.As.C�// for the maximal grw–grading of a homogeneously
graded, F ŒU �–nontorsion element of H�.As.C�//. We define

Vs.C�/D�
1
2
d.As.C�//:

Remark 3.5 Suppose M is a graded module over R� such that .U �1;V �1/ �M Š R1 as bigraded
groups. We define Vs.M/ to be Vs.C�/, with C� the chain complex with the same underlying module
structure as M but trivial differential.

Remark 3.6 If C� is the chain complex CFL�.S3; K/ for a knot K � S3, Vs.C�/ is the classical
V –function of the knot K. In this case, we also denote it by Vs.K/ if the context is clear. See [Zemke
2019b, Section 1.5] for translating between the chain complex CFL�.S3; K/ and CFK�.S3; K/.

Suppose C� is as in Definition 3.3. Let a; b 2 Z. The chain complex C�fa; bg is defined as the chain
complex equal to C�, but with grading shifted by .a; b/. That is, if x 2 C� has bigrading .c; d/, then
x 2 C�fa; bg has bigrading .aC c; bC d/.
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Lemma 3.7 Suppose C� is a bigraded chain complex over R� and let D� D C�fa; bg be the chain
complex with shifted grading. Then VsC.a�b/=2.D�/D Vs.C�/� 1

2
a.

Proof We use the fact that As.C�/D AsC.a�b/=2.D�/.

In our computations, we will need to show that Vs–invariants of locally equivalent complexes are the
same. We recall the relevant definition:

Definition 3.8 Two chain complexes C� and D� are locally equivalent if there exist grading-preserving,
R�–equivariant chain maps f W C�!D�, g WD�! C� such that both f and g induce the identity map
on .U ;V /�1 �C� Š .U ;V /�1 �D�.

As an example, we quote the following result of Hedden, Kim and Livingston (note that �C–equivalence
is equivalent to local equivalence; see [Hom 2017, Proposition 3.11]):

Proposition 3.9 [Hedden et al. 2016, Theorem B.1] The tensor product Sk˝S` is locally equivalent
to SkC` for any integers k and l .

For the following result, see [Zemke 2019a, Section 2], [Hom 2017] or [Kim and Park 2018, Section 3]:

Proposition 3.10 (a) If C� is locally equivalent to D�, then Vs.C�/D Vs.D�/ for all s.

(b) If C� is locally equivalent to D� and E� is locally equivalent to F�, then C� ˝ E� is locally
equivalent to D�˝F�.

We now extend Definition 3.3 to the case of chain complexes with a group action. Suppose C� is a
bigraded chain complex over R� and H is a free abelian group such that the ring ƒ�H acts on H�.C�/,
and the action of H has degree .�1;�1/. Let Tors�H�.C�/ denote the R�–torsion submodule. Define

Htop
D coker

�
H ˝ .H�.C�/=Tors/! .H�.C�/=Tors/

�
;

Hbot
D

\
2H

ker
�
 W .H�.C�/=Tors/! .H�.C�/=Tors/

�
:

By analogy with (3.4), we require that

.U ;V /�1 �Htop
ŠR1 Š .U ;V /�1 �Hbot

as relatively bigraded R�–modules. Let Htop
s (resp. Hbot

s ) denote the F ŒU �–submodule generated by
homogeneously graded elements x 2 Htop (resp. x 2 Hbot/ such that grw.x/ � grz.x/ D 2s (recall
U acts by U V ). We define d top

s .C�/ to be the maximal grw–grading of a homogeneously graded,
F ŒU �–nontorsion element of Htop

s , and we define d bot
s .C�/ analogously.

Definition 3.11 We set

V
top
s .C�/ WD �

1
2
d

top
s .C�/ and V bot

s .C�/D�
1
2
d bot
s .C�/:
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Remark 3.12 If K is a null-homologous knot in a closed, oriented connected 3–manifold Y with
standard HF1.Y /, for simplicity we write As.K/ for As.CFL�.Y;K//, and V top

s .K/D�1
2
d

top
s .K/ and

V bot
s .K/D�1

2
d bot
s .K/ for V top

s .CFL�.Y;K// and V bot
s .CFL�.Y;K//, respectively.

3.3 Large surgery formula

To set up the notation, we recall the large surgery formula [Ozsváth and Szabó 2004b, Section 4] and
relate the d–invariants of the surgery on a knot to its Vs–invariants. We first recall the description of
Spinc structures on a surgery.

Definition 3.13 Suppose Y is a closed 3–manifold and K � Y is a null-homologous knot. Let s 2
Spinc.Y / and q 2Z>0. For anym2

�
�
1
2
q; 1
2
q
�
\Z we denote by sm the unique Spinc structure on Yq.K/

such that sm extends to a Spinc structure tm on W uniquely characterized by the properties that tmjY D s

and hc1.tm/; F iC q D 2m, where W is the trace of the surgery on K and F is the generator of H2.W /
obtained by gluing a Seifert surface for K with the core of the two-handle.

With this notation, we state Ozsváth and Szabó’s large surgery theorem [2004b, Theorem 4.1]:

Theorem 3.14 Suppose K � Y is a null-homologous knot in a closed 3–manifold. Suppose q > 2g3.K/
is an integer. For a Spinc structure sm on Y as in Definition 3.13, there exists a quasi-isomorphism
between CF�.Yq.K/; sm/ and Am, where Am is the F ŒU �–subcomplex of CFL�.Y;K; s/ of elements
x with grading grw.x/� grz.x/ D 2m. If s is torsion , then the quasi-isomorphism shifts the grading
(Maslov grading on CF�.Yq.K/; sm/ and grw–grading on Am) by ..q� 2m/2� q/=4q.

From this theorem we obtain the following well-known equalities:

Theorem 3.15 Suppose K � Y is as in Theorem 3.14 and q > 2g3.K/.

(a) If Y is a rational homology sphere , then d.Yq.K/; sm/D ..q� 2m/2� q/=4q� 2Vm.K/;

(b) If b1.Y / > 0 and HF1.Y / is standard , then d top.Yq.K/; sm/D ..q� 2m/
2� q/=4q� 2V

top
m .K/

and d bot.Yq.K/; sm/D ..q� 2m/
2� q/=4q� 2V bot

m .K/.

4 Staircase complexes and their tensor products

In this section, we introduce staircase complexes. Next we compute the correction terms of certain tensor
products of staircase complexes.

4.1 Staircase complexes

A positive staircase complex P is a bigraded chain complex over R� with generators x0; y1; x2; : : : ,
y2n�1; x2n for some n > 0 with differential given by @y2iC1 D U ˛i � x2i C V ˇi � x2iC2, @x2j D 0,
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extended equivariantly over R�, for some positive integers ˛i and ˇi . We assume that @, U and V have
bigradings .�1;�1/, .�2; 0/ and .0;�2/, respectively. We assume that ˛i D ˇn�i�1. Furthermore, we
assume the gradings are normalized so that H�.P=.U � 1//Š F ŒV � has generator with grz–grading 0,
and H�.P=.V � 1//Š F ŒU � has generator with grw–grading 0. A negative staircase complex is the dual
complex of a positive staircase complex.

Example 4.1 The complex Sn of Definition 2.28 is a positive staircase complex for all n > 0. It is a
negative staircase complex if n < 0.

Lemma 4.2 Suppose that P D .P1! P0/ is a positive staircase complex, viewed as a complex of free
R�–modules , where P1 is spanned by yi and P0 is spanned by xi .

(1) H�.P/ is torsion-free as an R�–module.

(2) There is a .grw ; grz/–grading-preserving chain map

F W P!R�

which sends R�–nontorsion cycles to R�–nontorsion cycles. Furthermore , F may be taken to
map each generator of P0 to a nonzero monomial in R�, and vanish on P1.

Proof For the first claim, using the grading properties of P it is sufficient to show that U iV j � Œx�¤ 0

if Œx� ¤ 0 2 H�.P/ when x is a homogeneously graded cycle in P. Since the map from P1 to P0
is injective, there are no cycles with a nonzero summand in P1. Hence, it is sufficient to see that, if
x 2 P0 and U iV j � x 2 im.P1/, then x 2 im.P1/. To see this, suppose that y 2 P1 is homogeneously
graded and not a multiple of U or V . We may write y as an R� linear combination of y1; : : : ; y2n�1.
Let m (resp. M ) be the minimal (resp. maximal) index which is supported by y. Hence, we may write
y D amymC � � �C aMyM for am; : : : ; aM 2R�. We observe that

.4.3/ grw.yi /� grw.yiC2/ and grz.yi /� grz.yiC2/

for all i . Since y is homogeneously graded, it follows that am is not a multiple of V : if it were, then
all other ai would need to be a multiple of V for y to be homogeneously graded, which contradicts
our assumption. Similarly, aM is not a multiple of U. We write am D U jm and aM D V jM for some
jm; jM 2N. Then U jmC˛.m�1/=2xm�1 and V jMCˇ.MC1/=2xMC1 are summands of @.y/, and hence it
is not a multiple of any element of R�.

For the second claim, if xi 2 P0 is a generator, we define F.xi / to be the unique nonzero element
of R� in the same homogeneous grading as x. It follows from our normalization of the gradings of
H�.P=.U � 1// Š F ŒV � and H�.P=.V � 1// Š F ŒU � as well as (4.3) that each generator of P has
.grw ; grz/–bigrading in Z�0 �Z�0, so this map is well defined. We leave it to the reader to verify that
this map is a chain map and sends R�–nontorsion cycles to R�–nontorsion cycles.
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Definition 4.4 We call a complex P a positive multistaircase if it is the tensor product of a nonzero
number of positive staircase complexes. We call N a negative multistaircase if it is the tensor product of
a nonzero number of negative staircases.

The dual of a positive multistaircase is a negative multistaircase, and vice versa.

By construction, a positive staircase P has a Z–filtration with two levels, and we write P D .P1! P0/.
Hence, a positive multistaircase with n factors has a Z–filtration with nC 1 nontrivial levels, for which
we write

.4.5/ P D .Pn! Pn�1! � � � ! P1! P0/:

If P D .Pn ! � � � ! P0/ is a positive multistaircase, we say that P is an exact multistaircase if the
following sequence is exact:

0! Pn! � � � ! P0:

In particular, an exact multistaircase is a free resolution of its homology.

Remark 4.6 In general, the sequence in (4.5) will not be exact. As a concrete example, consider
CD CFK�.T2;3/ and the tensor product PD C˝C˝C. Write PD .P3!P2!P1!P0/. Following our
conventions, write x0, y1 and x2 for the generators of the left-most factor of C, where @.y1/DU x0CV x2.
One easily computes that

y1jx2jx0C x2jy1jx0C x2jx0jy1C x0jx2jy1Cy1jx0jx2C x0jy1jx2 2 P1

is a cycle. In the above, bars denote tensor products. It is not a boundary, since the differential has image
in im.U /C im.V /.

Lemma 4.7 (1) Every positive staircase is exact.

(2) The tensor product of two positive staircases is exact.

Proof Exactness of a positive staircase P D .P1! P0/ amounts to the claim that the map P1! P0 is
injective, which is easy to verify.

Next suppose P D .P1! P0/ and D D .D1!D0/ are staircases. We claim that their tensor product
is also exact. Let E D .E2 ! E1 ! E0/ denote this tensor product. Clearly the map E2 ! E1 is
injective, so it is sufficient to show that H1.E/D 0. The homology H�.E/ decomposes as the direct sum
H2.E/˚H1.E/˚H0.E/. Since every R�–nontorsion element contains a nonzero summand of H0.E/, it
follows that H1.E/ consists only of R�–torsion elements. Since E is bigraded, each element Œx� 2H1.E/
satisfies U iV j �Œx�D 0 for some i and j. In particular, if x 2E1 is a cycle, then U iV j �x 2 im.E2!E1/

for some i; j. In order to show that H1.E/D 0 it is sufficient to show that, if U iV j � x 2 im.E2!E1/,
then x 2 im.E2! E1/. We argue as follows. Note first that the map from E2 to E1 is the sum of the

Algebraic & Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4863

maps P1˝D1! P1˝D0 and P1˝D1! P0˝D1. Suppose that U iV j � x 2 im.E2!E1/. Write
U iV j � x D @.y/. We may assume that x and y are homogeneously graded. Write x D x0;1C x1;0,
where x1;0 2 P1˝D0 and x0;1 2 P0˝D1. Then U iV j � x0;1 2 im.P1! P0/˝D1. Since P is exact
and D1 is free, we conclude that x0;1 2 im.P1! P0/˝D1. Hence there is some y0 2 P1˝D1 such
that the map from P1˝D1 to P0˝D1 maps y0 to x0;1. Since the map from P1˝D1 to P0˝D1 is
injective, we conclude that U iV jy0 D y, so @.y0/D x0;1C x1;0 and x0;1C x1;0 2 im.E2!E1/.

4.2 The staircase complexes for L–space knots

A knot K � S3 is called an L–space knot if there is a positive integer q such that S3q .K/ is an L–space, ie
HF�.S3q .K/; s/Š F ŒU � for each s 2 Spinc.S3q .K//. All algebraic knots are L–space knots; see [Hedden
2009, Theorem 1.10].

There is a simple description of Floer chain complexes of L–space knots, due to Ozsváth and Szabó
[2005, Theorem 1.2]. (Note that, therein, only bHFK.K/ is described, but the algorithm actually produces
a description of CFK1.K/.) We describe their algorithm presently. Let K be an L–space knot. Ozsváth
and Szabó prove that the Alexander polynomial of K, which we denote by �K.t/, has the form

.4.8/ �K.t/D t
a0 � ta1 C � � �C ta2r ;

where 0D a0 < a1 < � � �< a2r ; that is, we use the normalization of � starting at degree 0. Define the
gap function

ˇi WD ai � ai�1

for 1� i � 2r .

We now describe the complex CFK�.K/ over the ring R�. The complex CFK�.K/ is freely generated
over R� by elements

x0; y1; x2; : : : ; y2r�1; x2r :

The differential takes the form

.4.9/ @.x2i /D 0 and @.y2iC1/D U ˇ2iC1x2i CV ˇ2iC2x2iC2:

The .grw ; grz/–bigradings are determined by the normalization that grw.x0/ D 0 and grz.x2r/ D 0.
Recall that the variable U has bigrading .�2; 0/ and the variable V has bigrading .0;�2/.

The gradings can be expressed in the following way. Write

�K D 1C .t � 1/.t
m1 C � � �C tms /

for some positive integers m1 < � � �<ms . Note that the integers ˇi compute the number of consecutive
integers or consecutive gaps (depending on i ) of the sequence m1; : : : ; ms; see [Borodzik and Livingston
2014, Lemma 4.2]. Define SK D Z�0 n fm1; : : : ; msg, and

.4.10/ RK.t/D #SK \ Œ0; t/ if t 2 Z:
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With this notation, the gradings of the generator x2i are grw.x2i / D �2RK.a2i / and grz.x2i / D
2RK.a2i / � 2g3.K/; compare [Borodzik and Livingston 2014, Section 4]. Note that, with our nor-
malization, 2g3.K/ D a2r D ms C 1. If the context is clear, we sometimes write R instead of RK to
simplify the notation.

Example 4.11 If K is the .2; 2nC1/–torus knot, then the above procedure produces the complex Sn of
Definition 2.28.

Remark 4.12 If K is an algebraic knot, the set SK turns out to be a semigroup (note that, if K is only
an L–space knot, SK need not be a semigroup). In fact, this is the semigroup of that singular point. The
function RK is the semigroup counting function. See [Wall 2004, Section 4] for details on semigroups.

The next corollary is a compilation of [Borodzik and Livingston 2014, Proposition 5.6 and Lemma 6.2]:

Corollary 4.13 The Vs–invariants of an L–space knot satisfy V�g3.K/Cj .K/DRK.j /� j Cg3.K/.

The Künneth formula for the knot Floer chain complex allows us to compute the Vj –invariants of a
connected sum of L–space knots. The following result is given in [Borodzik and Livingston 2014,
formula (6.3)]:

Proposition 4.14 Let K1; : : : ; Kn be L–space knots. Set K DK1 # � � � #Kn and let g D g3.K/. Then

Vj .K/C j DRK.gC j /;

where RK DRK1 ˘ � � � ˘RKn is the infimal convolution of RK1 ; : : : ; RKn .

We recall that, if I; J W Z! Z are two functions bounded from above, their infimal convolution is given
by I ˘J.m/DminiCjDm I.i/CJ.j /.

4.3 Vs–invariants of tensor products of staircases

In this subsection, we compute the Vs–invariants of certain tensor products of staircases. We wish to
understand the Vs–invariants of tensor products of staircases where some factors are positive and some
negative. Of course, we may group factors and write such a complex as a tensor product of N ˝P, where
N is a negative multistaircase and P is a positive multistaircase. Clearly,

N ˝P Š HomR�.N_;P/;

where HomR�.N
_;P/ denotes the chain complex of R�–module homomorphisms from N_ to P. In

particular, to understand the Vs–invariants of arbitrary tensor products of positive and negative staircases,
it is sufficient to understand the morphism complex between two positive multistaircases.
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It is also helpful to note that, if N and P are multistaircases (of either sign), then a cycle � 2
HomR�.N_;P/ is R�–nontorsion as a morphism if and only if � maps R�–nontorsion cycles to
R�–nontorsion cycles.

The following result is by now classical (see [Borodzik and Livingston 2014, Proposition 5.1]):

Proposition 4.15 Let P D .Pn! � � � ! P0/ be a positive multistaircase and let s 2 Z. Then

Vs.P/D min
x2G.P0/

max.˛.x/; ˇ.x/� s/;

where ˛.x/ D �1
2

grw.x/, ˇ.x/ D �
1
2

grz.x/ and G.P0/ denotes the set of homogeneously graded
generators of P0.

Proof Lemma 4.2 implies that a homogeneously graded element x 2 P is an R�–nontorsion cycle
if and only if its summand in P0 may be written as an R�–linear combination of an odd number of
distinct elements in the generating set G.P0/ with nonzero, homogeneously graded coefficients in R�.
In particular, the individual elements of G.P0/ determine the correction terms Vs . The expression
�2max.˛.x/; ˇ.x/ � s/ is the maximal grw–grading of an element of the form U mV nx such that
m; n� 0 and x 2 As . Taking the minimum over all x 2 G.P0/ gives the result.

We now pass to studying Vs–invariants of products of positive and negative multistaircases. We begin
with the following statement, where we write H0.P/ for P0=imP1 for a multistaircase:

Proposition 4.16 Suppose that P D .Pm! � � � ! P0/ and Q D .Qn! � � � !Q0/ are two positive
multistaircases.

(1) In general , Vs.HomR�.P;Q//� Vs
�
HomR�.H�.P/;H�.Q//

�
D Vs

�
HomR�.H0.P/;H0.Q//

�
.

(2) If Q is exact , then Vs.HomR�.P;Q//D Vs
�
HomR�.H�.P/;H�.Q//

�
.

Proof There is a grading-preserving map of R�–modules

H�HomR�.P;Q/! HomR�.H0.P/;H0.Q//;

which sends R�–nontorsion elements to R�–nontorsion elements. Then the inequality of part (1) follows
since the map sends R�–nontorsion elements in As.HomR�.P;Q// to R�–nontorsion elements in
As
�
HomR�.H0.P/;H0.Q//

�
. The equality in part (1) follows since H�.P/ decomposes as a direct sum

nM
sD0

.ker.Pi ! Pi�1/=im.PiC1! Pi //;

and H0.P/D P0=imP1 is the only summand which contains R�–nontorsion elements.
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We now consider the second claim. Suppose that Q is exact. We will show

.4.17/ Vs
�
HomR�.H0.P/;H0.Q//

�
� Vs.HomR�.P;Q//:

Suppose � WH0.P/!H0.Q/ is an R�–module homomorphism which maps R�–nontorsion elements
to R�–nontorsion elements. It suffices to extend � to obtain a commutative diagram

Pm � � � P2 P1 P0 H0.P/

� � � Q2 Q1 Q0 H0.Q/

�2 �1 �0 �

since this extension gives an R�–nontorsion element in As.HomR�.P;Q// corresponding to any R�–
nontorsion element in As

�
HomR�.H0.P/;H0.Q//

�
. The construction of the maps �i follows from the

same procedure as in [Weibel 1994, Theorem 2.2.6] and the discussion below it. We briefly summarize
the construction. The map �0 may be chosen since P0 is free, and hence projective, and Q0!H0.Q/
is surjective. Having constructed �0, we next construct �1. Using exactness of Q, we may factor
�0 ı .P1! P0/ into im.Q1!Q0/. Using the fact that P1 is projective and Q1! im.Q1!Q0/ is
surjective, we obtain a map �1. We repeat this process until we exhaust P. This gives (4.17).

Proposition 4.18 Suppose N D .N0!� � �!Nn/ is a negative multistaircase , and PD .Pm!� � �!P0/

is a positive multistaircase. Write G.Pi / for the generators of Pi , and similarly for G.Ni /.

(1) In general ,

.4.19/ Vs.N ˝P/� �1
2

min
x2G.N0/

max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y/C 2s/:

(2) If P D .P1! P0/ is a positive staircase , then (4.19) is an equality.

Proof We dualize, and consider the isomorphism N ˝P Š Hom.N_;P/. For the first claim, suppose
� 2 Hom.N_;P/ is an R�–nontorsion cycle which is of homogeneous grading .d; d � 2s/, where
d D d

�
As.Hom.N_;P//

�
. Note � 2 As.Hom.N_;P//. For each x_ 2 G.N_0 /, �.x

_/ is an R�–
nontorsion cycle, and hence must contain a summand of the form f � y for some nonzero monomial
f 2R� and y 2 G.P0/. By the definition of the grading of a morphism, we have

grw.y/� grw.x
_/C grw.f /D d and grz.y/� grz.x

_/C grz.f /D d � 2s:

Since grw.f /� 0 and grz.f /� 0, and .grw.x
_/; grz.x

_//D .�grw.x/;�grz.x//, for each x,

d
�
As.Hom.N_;P//

�
� max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y/C 2s/:

Taking the minimum over x 2 G.N0/ gives the statement.

We now consider the second claim. Suppose that PD .P1!P0/ is a positive staircase. Using Lemma 4.7
and Proposition 4.16, we know that

Vs.N ˝P/D Vs
�
HomR�.H0.N_/;H0.P//

�
:

Algebraic & Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4867

Fix s � 0. Let ıs denote the right-hand side of (4.19) without the factor of �1
2

. For each x_ in G.N_0 /,
we pick a yx 2 G.P0/ so that

grw.yx/� grw.x
_/� d and grz.yx/� grz.x

_/� d � 2s:

We set �0 WN_0 ! P0 to be the map which takes x_ to fx �yx , where fx 2R� is the unique monomial
such that �0 has bigrading .d; d � 2s/. By composition, we obtain a map �0 WN_0 !H0.P/.

Claim The map �0 vanishes on im.N_1 /.

Given the claim, we quickly conclude the proof. In fact, we obtain a map � from H0.N / to H0.P/.
Hence, we may use the second part of Proposition 4.16 to conclude that

d
�
As.Hom.N_;P//

�
� ıs;

which completes the proof modulo the claim.

It remains to prove the claim. Let y1 2N_1 . We consider the element v D @.y1/ 2N_0 . We can write v
as a sum

P
x_2G.N_0 /

fx �x
_, where each fx is a monomial. Tensoring the maps from the second part of

Lemma 4.2, we obtain a chain map from N_ to R�, which is nonzero only on N_0 and, furthermore,
maps each generator of N_0 to a monomial. Using the fact that this map is a chain map, we see that the
number of x_ 2 G.N_0 / where fx is nonzero is even. It follows immediately that �0.v/ is an R�–torsion
cycle. By Lemma 4.2, H�.P/ is torsion-free, so Œ�0.v/�D 0 2H�.P/D P0=im.P1/. This proves the
claim and completes the proof of Proposition 4.18.

4.4 A counterexample

We give an example indicating that the second statement of Proposition 4.18 need not hold if P is a
product of more than one positive staircase, even if P is exact.

Let P1 and P2 be the staircases of torus knots T6;7 and T4;5, respectively. As described in Section 4.2, the
generators of P1 are at bigradings .�30; 0/, .�30;�2/, .�20;�2/, .�20;�6/, .�12;�6/, .�12;�12/,
.�6;�12/, .�6;�20/, .�2;�20/, .�2;�30/ and .0;�30/. We denote these generators by x0;y1; : : : ;x10.
We have @x2iD0 and @y2iC1DU ˛ix2iC2CV ˇix2i , where ˛i and ˇi are nonnegative integers determined
by the condition that @ preserve the grading. In particular, the generators with odd index generate P11 ,
while the generators with even index span P10 .

Likewise, there are generators x00; y
0
1; : : : ; x

0
6 for P2 with bigradings .�12; 0/, .�12;�2/, .�6;�2/,

.�6;�6/, .�2;�6/, .�2;�12/ and .0;�12/.

Lemma 4.20 Let P D P1˝P2. The only elements x in P such that grw.x/D grz.x/ > �18 are linear
combinations of U iV jx4˝x

0
4 with .i; j /D .0; 1/; .1; 2/ and U i 0V j 0x6˝x

0
2 with .i 0; j 0/D .1; 0/; .2; 1/.

Proof This is by direct inspection.
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Now let N be the negative staircase complex of the mirror of the trefoil. It is generated by elements
c0, c1 and c2 at bigradings .2; 0/, .2; 2/ and .0; 2/, respectively. The differential is given by @c0 D V c1,
@c2 D U c1 and @c1 D 0. That is, c0; c2 2N0 and c1 2N�1.

Lemma 4.21 There is no cycle z 2 A0.N ˝P/ such that grw.z/� �12 and z ¤ 0.

Proof Any such cycle would be a linear combination of elements of type U iV j � xk ˝ x
0
`
˝ cm. By

Lemma 4.20, unless .k; `/ D .4; 4/ or .6; 2/, the grw–grading of such a combination is at most �14.
Hence, if z 2 A0.N ˝P/ and z ¤ 0 has grw.z/� �12, then z has to be a linear combination of

x4˝4˝c0 and x6˝ x
0
2˝ c2:

But then z is not a cycle.

Corollary 4.22 We have V0.N ˝P/� 7.

The following result shows that the right-hand side of (4.19) is strictly smaller than 7:

Lemma 4.23 The expression

�
1
2

min
x2G.N0/

max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y//

is equal to 6.

Proof For x D c0, the expression

.4.24/ max
y2G.P0/

min.grw.x/C grw.y/; grz.x/C grz.y//

is equal to �12 with the equality attained at yD x4˝x04. For xD c2, (4.24) attains its maximal value �12
for y D x6˝ x02.

4.5 More on the Vs–invariants of tensor products of staircases

In this subsection, we highlight some special cases of Propositions 4.15 and 4.18 which will be useful for
our purposes.

Corollary 4.25 Suppose P is a positive multistaircase and , for i 2 f1; : : : ; rg, let Sni denote the staircase
complex of Definition 2.28 with

P
ni � 0. Then

Vs.P˝Sn1 ˝ � � �˝Snr /D min
0�j�

P
ni

.VsC2j�
P
ni .P/C j /:

Proof By Proposition 3.9, we know that Sn1 ˝ � � �˝Snr is locally equivalent to Sn, where nD
P
ni ,

so, by Proposition 3.10, it suffices to prove the result when i D 1. Write a1; : : : ; am for the generators
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of C0, and write x0; x2; : : : ; x2n for the generators of Sn0 . Then ai˝x2j forms a basis of homogeneously
graded elements of .P˝Sn/0. By Proposition 4.16,

Vs.P˝Sn/D min
1�i�m
0�j�n

max.˛.ai /C˛.x2j /; ˇ.ai /Cˇ.x2j /� s/:

We note that ˛.x2j /D j and ˇ.x2j /D n� j, so we conclude that

Vs.P˝Sn/D min
1�i�m
0�j�n

max.˛.ai /C j; ˇ.ai /Cn� j � s/

D min
0�j�n

min
1�i�m

�
max.˛.ai /; ˇ.ai /Cn� 2j � s/C j

�
D min
0�j�n

.VsC2j�n.P/C j /:

We have the following corollary of Proposition 4.18:

Corollary 4.26 Suppose P is a positive staircase and , for i 2 f1; : : : ; rg, let Sni denote the staircase
complexes of Definition 2.28. Assume

P
ni < 0. Then

Vs.P˝Sn1 ˝ � � �˝Snr /D max
0�j�n

.Vs�2jCn.P/� j /;

where nD�
P
ni .

Remark 4.27 In contrast to Corollary 4.25, where P was allowed to be a positive multistaircase (ie a
tensor product of positive staircases), in Corollary 4.26 we require that P be a positive staircase.

Proof of Corollary 4.26 As in the proof of Corollary 4.25, Sn1 ˝� � �˝Snr is locally equivalent to S�n

for some n > 0, so it is sufficient to consider the case when i D 1. Write a1; : : : ; aq for the generators
of C0, and Qx0; Qx2; : : : ; Qx2n for the generators of the 0–level of S�n. According to Proposition 4.18,

.4.28/ Vs.P˝S�n/D max
0�i�n

min
1�j�q

max.˛.aj /C˛. Qx2i /; ˇ.aj /Cˇ. Qx2i /� s/

D max
0�i�n

min
1�j�q

max.˛.aj /� i; ˇ.aj /�nC i � s/

D max
0�i�n

min
1�j�q

�
max.˛.aj /; ˇ.aj /�nC 2i � s/� i

�
D max
0�i�n

.Vs�2iCn.P/� i/:

4.6 Knots with split towers

We now introduce the notion of a knot complex with split towers. The correction terms of a knot complex
with split towers have a relatively simple form. An important example of a knot with split towers is
connected sums of knotifications of positive and negative .2; 2n/–torus links.
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Definition 4.29 (split towers) Let K be a knot in Y D #m S2 � S1, and let C be a chain complex
which is free and finitely generated over R� and is homotopy equivalent to CFK�.Y;K; s0/, where s0

is the trivial Spinc structure on Y. We say that C has split towers if there exists a basis 1; : : : ; m of
H1
�
#m S2 � S1IZ

�
and subcomplexes CI� � C, indexed over subsets I � f1; : : : ; mg, such that the

following are satisfied:

(a) C D
L
I�f1;:::;mg

CI.

(b) If i … I, then Ai takes H�.CI / to H�.CI[fi g/, and becomes an isomorphism after inverting U

and V . If i 2 I, then Ai vanishes on H�.CI /, after inverting U and V .

Abusing notation slightly, we say a knot K has split towers if there is a representative of CFK�.Y;K/
which has split towers. Note that, in many of our examples, the homology action actually respects the
splitting on the chain level, ie Ai maps CI to CI[fi g if i … I, and Ai vanishes on CI if i 2 I.

Example 4.30 � Any knot K in S3 has split towers (trivially).

� The knotification of the .2; 2n/–torus link has split towers. See Proposition 2.40.

� The Borromean knot does not have split towers.

Lemma 4.31 If K and K 0 have split towers , then K #K 0 has split towers.

Proof This is a direct consequence of the Künneth formula.

Proposition 4.32 Suppose K is a knot in #m S2 �S1 with split towers. Write

Ctop
D C∅ and Cbot

D C1;:::;m :
Then

V
top
s .K/D Vs.Ctop/ and V bot

s .K/D Vs.Cbot/:

Suppose , additionally, that n > 0 and B0 is the Borromean knot. Then

V
top
s

�
K # #n B0

�
D�

1
2
nC min

0�j�n
.VsC2j�n.Ctop/C j /;

V bot
s

�
K # #n B0

�
D�

1
2
nC max

0�j�n
.VsC2j�n.Cbot/C j /:

Proof We consider first the proof that V top
s .K/D Vs.Ctop/. It is sufficient to show that

.4.33/ d
top
s .K/D d.Ctop

s /;

where Ctop
s denotes the subcomplex of Ctop in Alexander grading s, and these d–invariants are defined

in Definitions 3.3 and 3.11. By definition, d top
s .K/ is the maximal grading of a homogeneously graded

element of H�.As.K// which maps to an element of U�1H�.As.K// having nontrivial image in Htop.
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Since K has split towers, by Definition 4.29 the cokernel Htop is spanned by U�1H�.C
top
s /, and H�.CIs /

has trivial image for I ¤∅, equation (4.33) follows.

The claim about d bot is similar. In this case, d bot
s .K/ is defined as the maximal grading of a homogeneous

element in H�.As.K//=Tors which is in the image of Hbot. This is clearly d.Cbot
s /.

We pass now to the second part of the proof. An analogous argument appeared in [Bodnár et al. 2016;
Borodzik et al. 2017]; we recall it for completeness. The complex CFK�.B0/ is described in Section 2.7.
Since CFK�.B0/ has vanishing differential, we obtain

H�.CFK�.K/˝ CFK�.B0/˝n/ŠHFK�.K/˝F B˝n;

where B is the 4–dimensional vector space spanned by 1, x, y and xy, whose bigradings are shown
in (2.42).

We first consider the claim about V bot
s . Using the H1–action on CFK�.B0/ described in Section 2.7,

one easily obtains the following: a cycle x 2 As
�
K # #n B0

�
is of homogeneous grw–grading d , is

F ŒU �–nontorsion, and maps to the kernel of the H1–action in U�1H�.As.K #B#n// if and only if it has
the form X

fa1;:::;ang2f�1;1gn

xa1;:::;an ˝ �a1 ˝ � � �˝ �an ;

where ��1 D 1 2 B and �1 D xy 2 B with grw D 1 and �1, respectively. Moreover, each

xa1;:::;an 2 C
bot
sC

P
ai
.K/

is an F ŒU �–nontorsion cycle of homogeneous grw–grading d C
P
ai . Noting that

P
ai can be any

integer of the form n� 2j for 0� j � n, we obtain that

d bot�As�K # #n B0
��
D min
0�j�n

.d.Cbot
sCn�2j /�nC 2j /:

Multiplying by �1
2

and switching j to n� j yields the statement.

The proof for d top is analogous. The cokernel of the H1–action on U�1H�
�
As
�
K # #n B0

��
is spanned

by any element of the form x ˝ �a1 ˝ � � � ˝ �an where �ai are as above and x 2 Ctop
sC

P
ai
.K/ is a

homogeneously graded, F ŒU �–nontorsion element. Furthermore, any homogeneous element generating
U�1H�

�
As
�
K # #n B0

��
is a sum of an odd number of such elements. The same argument as before

shows that

d top�As�K # #n B0
��
D max
0�j�n

.d.Ctop
sCn�2j /�nC 2j /:

Multiplying by �1
2

and switching j to n� j yields the statement.
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5 Topology of complex curves and their neighborhoods

In this section we give a precise definition of the notion of a tubular neighborhood of a possibly singular
curve in CP 2. We describe the boundary of this neighborhood in terms of the surgery on a link. We
perform several helpful algebrotopological computations.

As the main focus of our article is on algebraic curves, we present the construction using the language of
complex geometry. In Section 5.4 we will show how to generalize our results to the smooth category.

5.1 “Tubular” neighborhood of a complex curve

Let C �CP 2 be a reduced complex curve of degree d . We do not insist that C be irreducible. We write
C1; : : : ; Ce for the irreducible components of C and let d1; : : : ; de (resp. g1; : : : ; ge) denote their degrees
(resp. genera). Hereafter, by the genus g.C / of a complex curve, we mean the genus of its normalization,
that is, the geometric genus. From the topological perspective, the geometric genus of a singular curve
is the sum of genera of connected components of the smooth locus of the curve, regarded as an open
surface. We set g D g1C � � �Cge.

We denote by p1; : : : ; pu the singular points of C. For each such singular point pi , we denote by ri the
number of branches. Here, recall that a branch of C at pi is a connected component of Bi \ .C n fpig/
for a sufficiently small ball Bi �C2 centered at pi . We write Li for the link of singularity at pi , whose
components are Li1; : : : ; Liri . We choose once and for all pairwise disjoint closed balls B1; : : : ; Bu with
centers p1; : : : ; pu, respectively, and such that C \ @Bi is the link Li and C \Bi is homeomorphic to a
cone over Li .

As the curve C is not smoothly embedded at its singular points, the notion of a tubular neighborhood
of C requires some clarification. The following is an extension of the construction of [Borodzik and
Livingston 2014].

Take a tubular neighborhood N0 in CP 2 n .B1[ � � � [Bu/ of the smooth part C0 WD C n .B1[ � � � [Bu/.
Note that all components C1; : : : ; Ce intersect each other; hence, C is connected. On the other hand, the
balls B1; : : : ; Bu contain all the intersection points between various curves C1; : : : ; Ce . Hence, C0 has e
connected components, which are Ci n .B1 [ � � � [Bu/ for i D 1; : : : ; e. We define N to be the union
of N0 and B1; : : : ; Bu. With g D g1C � � �Cge, set

.5.1/ �D 2g� eC 1C

uX
iD1

.ri � 1/D b1.C /D dimH1.C IQ/:

To see that dimH1.C IQ/D �, we consider the normalization C 0 of C. It is a surface of genus g with
e connected components. So �.C 0/D 2e � 2g. Next, C arises from C 0 by gluing ri–tuples of points
(corresponding to singular points of C ) for i D 1; : : : ; u. Hence �.C /D 2e�2g�

P
.ri �1/. Now C is

connected, and dimH2.C IQ/D e. From this, we recover the formula for dimH1.C IQ/.
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Observe thatC0 arises from the normalizationC 0 by removing
P
ri disks. The first disk for each connected

component of C 0 kills an element in H2, and all of the subsequent disks create a basis element in H1.
That is to say, dimH1.C0IQ/D 2gC

P
ri �eD �Cu�1. By duality, dimH1.C0; @C0IQ/D �Cu�1.

We now provide a surgery-theoretical description ofN and its boundary Y. We first define a 3–manifoldZ
containing a link L, as follows. We begin with the disjoint union L0 WDL1t� � �tLu inZ0 WDS3t� � �tS3.
Next, we pick a collection of pairwise disjoint and properly embedded arcs �1; : : : ; ��Cu�1 on C0 which
form a basis of H1.C0; @C0/. Such a collection of arcs cuts C0 into a union of e disks, one for every
connected component of C0. We let Z D #� S2 �S1 be the boundary of the 4–manifold � obtained by
attaching �Cu�1 4–dimensional 1–handles to @.B1[� � �[Bu/DZ0, each containing a 2–dimensional
band (corresponding to a �i ), which we attach to L0. We let L�Z be the resulting link. By construction,
L is a link inside of the connected sum of � copies of S1 �S2. Furthermore, each component of L is
null-homologous. The number of components of L is the number of disks C0 n .�1 [ � � � [ ��Cu�1/.
That is, L has e components, denoted henceforth by L1; : : : ; Le , corresponding to connected components
of C0, ie to irreducible components of the complex curve C.

We have the following (compare [Borodzik et al. 2017, Theorem 3.1; Bodnár et al. 2016, Lemma 3.1]):

Proposition 5.2 The 3–manifold Y D @N is the surgery on L�Z with surgery coefficients .d21 ; : : : ; d
2
e /.

The 4–manifold N is obtained by attaching e 2–handles to the boundary connected sum of � copies
of D3 �S1.

Proof The fact that N is obtained by attaching e 2–handles to � along L follows from the fact that the
complement C0 n .�1; : : : ; ��Cu�1/ is a collection of disks C 01; : : : ; C

0
e (we know that this complement

has e components). The thickening of C 0i is a 2–handle in N. Upon renumbering, we may and will assume
that C 0i is a subset of Ci and @C 0i D Li , the component of L. In particular, we know that N is the effect
of a surgery on L. It remains to determine the framing.

In order to do this, we recall that, if a 2–handle A is attached to B4 along a knot K � S3 D @B4, the
framing of the 2–handle is determined as a self-intersection number of the surface F obtained by capping
the core C of the 2–handle with a Seifert surface for K. We note that the self-intersection number does
not depend on the choice of the Seifert surface. Moreover, instead of a Seifert surface, we can take any
smooth compact surface in B4 whose boundary is K.

The same procedure applies for surgeries on null-homologous knots in #� S2�S1. In the present context,
when we calculate the surgery coefficient at Li , the role of the surface F is played by the union of C 0i and
a surface in � D #� B3 �S1 bounding Li . A possible choice for F is then a smoothing of Ci , which
essentially replaces Ci \ � by a smooth compact surface in � with boundary Li . That is to say, the
self-intersection number of F is exactly the self-intersection number of Ci , which is d2i .

Remark 5.3 If e D 1, L is a knot. This knot can be obtained as a connected sum of yL1; : : : ; yLu and g
copies of the Borromean knot. Here the hat denotes knotification.
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5.2 Algebraic topology

In this section, we describe some basic algebrotopological facts about the tubular neighborhood N, and
its boundary Y. Our description of Spinc structures is similar to that in [Manolescu and Ozsváth 2010,
Section 11.1].

Recall that, if N is a manifold obtained by gluing e handles along a null-homologous link to a four-
manifold � with H2.�IZ/D 0, we can speak not only of a framing of handles, but of a framing matrix.
An argument using the Mayer–Vietoris sequence reveals that H2.N IZ/DZe is generated by the cores of
the handles capped by Seifert surfaces of the components of the link. The framing matrix, denoted by „,
is the matrix of the intersection form H2.N IZ/�H2.N IZ/! Z. In particular, the diagonal entries are
surgery coefficients. The off-diagonal terms are linking numbers of the corresponding links (these are
well defined as long as the components are null-homologous).

In the present situation, by Proposition 5.2, the surgery coefficients are .d21 ; : : : ; d
2
e /. The same argument

shows that the off-diagonal terms are given by the intersection number of Ci with Cj . That is, the framing
matrix has the form

„D fdidj g
e
i;jD1:

Note that this construction in particular reveals that lk.Li ; Lj /Ddidj . We letWƒ.L/ denote the 2–handle
cobordism from Z to Y. Recall that N is the union of the 1–handlebody � and Wƒ.L/.

There is a map

.5.4/ F WH 2.Wƒ.L//! Ze˚H 2.Z/;

given by
F.c/D .hc; Œ yF1�i; : : : ; hc; Œ yFe�i; cjZ/:

Here yFi is the surface obtained by capping a Seifert surface for Li in Z with the core of the 2–handle.
An easy argument involving the Mayer–Vietoris sequence on the handle attachment regions in Z shows
that F is an isomorphism.

Dually, we may view Wƒ.L/ as being obtained by attaching 2–handles to a link L� in Y. We consider the
Mayer–Vietoris sequence obtained by viewing Wƒ as the union of Œ0; 1��Y and e 2–handles. A portion
of this exact sequence reads

H 1.L�/!H 2.Wƒ.Y //!H 2.Y /! 0:

In particular, H 2.Y / is the quotient of H 2.Wƒ.Y // by the image of H 1.L�/. Furthermore, from the
definition of the coboundary map in the Mayer–Vietoris exact sequence, an element of H 1.L�/ acts by
the Poincaré duals of the cores of the 2–handles attached along L. Using the isomorphism F from (5.4),
we thus obtain

.5.5/ H 2.Y /Š .Ze=im.„//˚H 2.Z/:

Algebraic & Geometric Topology, Volume 24 (2024)



Heegaard Floer homology, knotifications of links, and plane curves with noncuspidal singularities 4875

There are analogous descriptions for Spinc structures on Y and Wƒ.L/, as follows. Consider the map

.5.6/ TW W Spinc.Wƒ.L// ,!Qe
�Spinc.Z/;

given by

TW .s/D
�
1
2
.hc1.s/; Œ yF1�i � Œ yF � � Œ yF1�/; : : : ;

1
2
.hc1.s/; Œ yFe�i � Œ yF � � Œ yFe�/; sjZ

�
;

where Œ yF � is the sum of the Œ yFi �. Similar to the argument for cohomology, an easy application of
Mayer–Vietoris shows that TW is an isomorphism onto its image. Since c1.s/ is a characteristic
vector, hc1.s/; Œ yFi �i � Œ yFi �2 is even as well. Using this, it is not hard to identify the image of TW
as H.L/�Spinc.Z/, where H.L/ is the affine lattice in Qe generated by tuples .a1; : : : ; ae/ where

ai �
1
2

lk.Li ;L nLi / 2 Z for all i:

The linking number is computed as

.5.7/ lk.Li ;L nLi /D di .d1C d2C � � �C de/� d2i :

A similar argument as for cohomology implies Spinc.Y / is isomorphic to the quotient of Spinc.Wƒ.L//
by the action of the Poincaré duals of the cores of the 2–handles attached to L. This translates into the
isomorphism

.5.8/ TY W Spinc.Y /Š .H.L/=im.„//�Spinc.Z/:

With respect to the isomorphisms F and TW , the Chern class map takes the simple form

c1.s1; : : : ; se; t/D .2s1C Œ yF � � Œ yF1�; : : : ; 2seC Œ yF � � Œ yFe�; c1.t//:

Since Z D #� S2 � S1 bounds the 1–handlebody � � N, we know that ı.H 1.Z// D f0g � H 2.N /.
Hence, a Mayer–Vietoris argument identifies Spinc.N / with the set of Spinc structures on Wƒ.L/ which
extend over � , or equivalently the ones which have torsion restriction to Z. Hence,

Spinc.N /ŠH.L/:

The following is helpful for understanding H 2.Y /:

Lemma 5.9 Suppose „ D faij gei;jD1 is a matrix such that aij D didj , for some nonzero integers di .
Then Ze=im.„/Š Ze�1˚Z=�2, where � D gcd.d1; : : : ; de/.

Proof Recall that

„D

0BBB@
d1d1 d1d2 � � � d1de
d2d1 d2d2 � � � d2de
:::

:::
: : :

:::

ded1 ded2 � � � dede

1CCCA :
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It is clear that im.„/ is the span of �.d1; : : : ; de/T, by considering the image of the standard basis in Rn.
By module theory over a principal ideal domain, Ze=im.„/Š Ze�1˚Tors.Ze=im.„//. By definition,
Tors.Ze=im.„// is generated by the set of vectors v in Ze such that nŒv�DmŒ�.d1; : : : ; de/T � for some
integers n and m. Clearly, Tors.Ze=im.„// is generated by the vector .d1=�; : : : ; de=�/T, which has
order �2.

Combining Lemma 5.9 with (5.5), we conclude that

.5.10/ b1.Y /D e� 1C b1.Z/D e� 1C �:

If j 2 2ZC 1, let cj denote the Spinc structure on CP 2 which satisfies

.5.11/ hc1.cj /; Ei D j;

where E is a complex line. In terms of the isomorphism in (5.8),

.5.12/ TY .cj jY /D
�
1
2
.jd1� d1.d1C � � �C de//; : : : ;

1
2
.jde � de.d1C � � �C de//; 0

�
:

We now let X denote the complement of the interior of N in CP 2.

Lemma 5.13 (1) X has trivial intersection form.

(2) Suppose s is a torsion Spinc structure on Y. Then s extends over X if and only if it extends
over CP 2.

Proof The proof follows arguments identical to those in [Borodzik et al. 2017, Sections 3 and 4]; therefore,
we provide only a sketch. Claim (1) follows from the fact that the inclusion map H2.X/!H2.CP 2/

vanishes, since all elements of H2.X/ are disjoint from C.

Claim (2) is proven as follows. A Spinc structure on Y always extends over Wƒ.L/. Furthermore, the iso-
morphisms in (5.6) and (5.8) are clearly compatible with the natural restriction maps from Spinc.Wƒ.L//
to Spinc.Y / and Spinc.Z/. A Spinc structure on Wƒ.L/ extends over N if and only if it restricts to the
torsion Spinc structure on Z. Hence, a Spinc structure on Y extends over N if and only if the Spinc factor
on Spinc.Z/ in (5.8) is torsion. In particular, any torsion Spinc structure on Y extends over N. Since a
Spinc structure on Y extends over CP 2 if and only if it extends over both X and N, the claim follows.

5.3 d–invariant inequalities for the neighborhood of C

We are now in position to prove an inequality for the d–invariants of boundaries of neighborhoods of
complex curves in CP 2 as in Section 5.1. With the notation from that subsection, we have the following
result:

Proposition 5.14 For any Spinc structure s on Y that extends over X and whose first Chern class is
torsion ,

dbot.Y; s/� �
1
2
.�C e� 1/; dtop.Y; s/�

1
2
.�C e� 1/:
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Proof By (5.10), we know that b1.Y /D �Ce�1. The intersection form on X is trivial by Lemma 5.13.
From Theorem 3.1, we obtain

dbot.Y; s/D d.Y; s;H1.Y /=Tors/� �1
2
.�C e� 1/;

since the terms involving c21 and b�2 .X/ vanish.

Since the intersection form on X vanishes, we may reverse the orientation of X and Y and appeal to the
same argument to get that

.5.15/ dbot.�Y; s/D d.�Y; s;H1.Y /=Tors/� �1
2
.�C e� 1/:

It follows from [Levine and Ruberman 2014, Proposition 4.2] and the fact that d�.Y; s;H1.Y /=Tors/D
dtop.Y; s/ (see [loc. cit., page 6]) that

dbot.�Y; s/D�dtop.Y; s/:

Combining this with (5.15), we conclude that

dtop.Y; s/�
1
2
.�C e� 1/:

5.4 Singular curves in smooth category

The methods we use in this article work in a smooth category. The term “smooth surface with singularities”
might be misleading; therefore, we make precise our terminology. The definition we give is quite general.

Definition 5.16 A singular curve in the smooth category C �CP 2 is a closed subset of CP 2 such that
there exist finitely pairwise disjoint closed ballsB1; : : : ;Bu in CP 2 such that, withC0DC n.B1[� � �[Bu/,

� C is connected;

� the subset C0 is a smoothly embedded surface whose boundary belongs to B1[ � � � [Bu;

� the intersection Bi \C is a link (we call it Li ).

The definition means that we do not have to control any possible pathological behavior of C inside balls.
We let C01; : : : ; C0e be the connected components of C0. The quantity e plays the same role as the
number of irreducible components of an algebraic curve.

Choose j D 1; : : : ; e. For any i D 1; : : : ; u such that Lij WD Bi \C0j ¤∅, let Sij be a minimal genus
surface in Bij whose boundary is Lij . Let zCj be a closed surface obtained by removing Bi \ C0j ,
gluing Sij and possibly smoothing corners. The surface zCj is called a smooth model of C0j .

Note that zCj determines a class in H2.CP 2IZ/. If Sij and S 0ij are two choices of minimal genus surfaces
for Lij , then Sij [�S 0ij is homologically trivial (as a surface in the ball Bij ). Hence, the class of zCj does
not depend on the particular choice of Sij . We let dj be the integer such that Œ zCj �D dj �1 2H2.CP 2IZ/,
where we write 1 for the class of a line. We call dj the smooth degree of Cj .

Definition 5.17 A singular curve is the smooth category is called adjunctive if, for all j D 1; : : : ; e, we
have g. zCj /D 1

2
.dj � 1/.dj � 2/.
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Definition 5.18 Let C be an adjunctive singular curve in the smooth category.

� C is of algebraic type if all links Li are algebraic links.

� C is of weakly algebraic type if all links Li are either algebraic links or their mirrors.

Remark 5.19 The distinction between the requirements that Li be an algebraic link or an L–space
link is motivated by applications in algebraic geometry. In our paper, we never use the fact that the
links Li are algebraic links, instead of merely L–space links. We note that there are some nontrivial
differences between L–space knots and algebraic knots. For example, the set SK defined in Section 4.2
is not necessarily a semigroup if K is merely an L–space knot. We recall that SK is used to define the
function RK , which is referred to as the semigroup counting function. In our theory, we never need SK to
be a semigroup, so the mathematical part of the theory goes through.

We now define the analogs of �, Y and N from Section 5.1 in the case of a singular curve in the smooth
category. First set gj to be the genus ofC0j (not of zCj ). Set gDg1C� � �Cge and �D2g�eC1C

P
.ri�1/,

where ri is the number of components of Li .

We now repeat the procedure from Section 5.1, omitting the proofs if they are the same as in that
subsection. We pick �1; : : : ; ��Cu�1 to be arcs on C0 which form a basis of H1.C0; @C0IZ/. We let �
be the 4–manifold obtained by attaching �Cu� 1 4–dimensional 1–handles to @.B1[ � � � [Bu/ as in
Section 5.1. We set Z D @�; then Z D #� S2 �S1. Finally, LD C \Z. This is an e–component link.
The set C n� is a disjoint union of e disks C 001; : : : ; C

0
0e. Reindexing these disks if necessary, we may

and will assume that C 00i is a subset of C0i . Let N be the handlebody � with attached 2–handles whose
cores are C 001; : : : ; C

0
0e. The manifold Y D @N is the surgery on L with framings equal to d21 ; : : : ; d

2
e .

With these definitions, the results of Sections 5.2 and 5.3 hold for singular curves in smooth category.

6 Nonrational noncuspidal complex curves

6.1 General estimates

We now pass to the main applications of our paper. Suppose C �CP 2 is a degree d curve. We mostly
focus on the case where C is complex curve, but also consider the case where C is only a smooth surface,
embedded away from a finite set of singular points, as in Definition 5.16. We further assume that the
singularities of C are restricted to the following:

� There are � cuspidal (unibranched) singular points p1; : : : ; p� . We write K1; : : : ; K� for their
links, and set K DK1 # � � � #K� .

� There are mn singular points whose link is T2;2n.

� There are mn singular points whose link is �T2;2n.
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Define
�C D

X
n

nmn; �� D
X
n

nmn; �C D
X
n

mn; �� D
X
n

mn:

Additionally, we assume that the curve is adjunctive (see Definition 5.17); that is, its genus g is given by

.6.1/ g D g.C /D 1
2
.d � 1/.d � 2/�g3.K/� .�CC ��/:

For algebraic curves, �� D 0 and (6.1) is the adjunction formula. If C is a singular curve in the smooth
category of algebraic type (ie �� D 0; see Definition 5.18), the adjunction inequality implies that g.C / is
greater than or equal to the right-hand side of (6.1). If C is of weak algebraic type (see Definition 5.18),
the relation between g.C / and the right-hand side of (6.1) can be more involved, so the condition (6.1) is
a significant restriction on g.C /.

We define

.6.2/ KC DK # #nmn yT2;2n; K� D#nmn yT2;�2n; zK DKC #K�; yK D zK # #g B0;
where yT2;2n denotes the knotification of the torus link T2;2n and yT2;�2n denotes the knotification of its
mirror.

Since the knots K1; : : : ; K� are algebraic knots and so, in particular, L–space knots, their knot Floer
complexes are staircase complexes, which we denote by C.Ki /. In particular,

CFK�.K/D C.K1/˝ � � �˝ C.K�/

is a positive multistaircase complex. Note that, by Proposition 2.40 and Example 4.30, the knots KC, K�
and zK have split towers. The following relations follow from Proposition 2.40, the Künneth theorem for
connected sums, and Proposition 3.9, where we write Š for homotopy equivalence of chain complexes
and 'loc for local equivalence, and the brackets denote an overall grading shift:

Ctop.KC/Š Ctop.K/˝
O
n

.Sn/˝mn
˚
1
2
�C;

1
2
�C
	
;

Cbot.KC/Š Cbot.K/˝
O
n

.Sn�1/˝mn
˚
�
1
2
�C;�

1
2
�C
	
;

Ctop.K�/Š
O
n

.S�.n�1//˝mn
˚
1
2
��;

1
2
��
	
;

Cbot.K�/Š
O
n

.S�n/˝mn
˚
�
1
2
��;�

1
2
��
	
;

Ctop. zK/Š Ctop.KC/˝ Ctop.K�/'loc C.K/˝S�C�.�����/
˚
1
2
.�CC ��/;

1
2
.�CC ��/

	
;

Cbot. zK/Š Cbot.KC/˝ Cbot.K�/'loc C.K/˝S�C��C���
˚
1
2
.�CC ��/;

1
2
.�CC ��/

	
:

We set
ı1 WD �C� .��� ��/; ı2 WD .�C� �C/� ��:
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Whether the staircases in Ctop. zK/ and Cbot. zK/ are positive or negative depends on the signs of ı1 and ı2.
The following proposition is the main tool towards Theorems 6.4 and 6.8:

Proposition 6.3 Suppose K, zK and yK are as above and let R D RK be the infimal convolution of the
semigroup counting functions for knots K1; : : : ; K� .

(a) If ı1 � 0, then

V
top
s . zK/D�1

4
.�CC ��/C min

0�j�ı1
.VsC2j�ı1.K/C j /;

V
top
s . yK/D�1

2
g� 1

4
.�CC ��/C min

0�j�ı1Cg
.VsC2j�ı1�g.K/C j /

D�
1
2
g� 1

4
.�CC ��/C min

0�j�ı1Cg

�
R.g3.K/C sC 2j � ı1�g/� .sC j � ı1�g/

�
:

(b) If ı2 � 0, then

V bot
s . zK/D 1

4
.�CC��/C min

0�j�ı2
.VsC2j�ı2.K/Cj /;

V bot
s . yK/D 1

4
.�CC��/�

1
2
gC max

0�i�g
min

0�j�ı2
.VsC2jC2i�g�ı2.K/CiCj /

D�
1
2
gC1

4
.�CC��/C max

0�i�g
min

0�j�ı2

�
R.g3.K/CsC2jC2i�g�ı2/�.sCiCj�g�ı2/

�
:

(c) If ı1 < 0 and C.K/ is a positive staircase (not just a positive multistaircase), then

V
top
s . zK/D�1

4
.�CC��/C max

0�j��ı1
.Vs�2j�ı1.K/�j /;

V
top
s . yK/D 1

2
g�1

4
.�CC��/C min

0�i�g
max

0�j��ı1
.Vs�2j�2iCg�ı1.K/�i�j /

D
1
2
g�1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j�2iCg�ı1/�.s�i�jCg�ı1/

�
:

(d) If ı2 < 0 and C.K/ is a positive staircase , then

V bot
s . zK/D 1

4
.�CC ��/C max

0�j��ı2
.Vs�2j�ı2.K/� j /;

V bot
s . yK/D 1

2
gC 1

4
.�CC ��/C max

0�j�g�ı2
.Vs�2jCg�ı2.K/� j /

D
1
2
gC 1

4
.�CC ��/C max

0�j�g�ı2

�
R.g3.K/C s� 2j Cg� ı2/� .s� j Cg� ı2/

�
:

Proof The proof is similar in all cases and consists of gathering Corollaries 4.25 and 4.26, Propositions
4.32 and 4.14, and Lemma 3.7. For the reader’s convenience, we present details of the computations of
V top for cases (a) and (c).

If ı1 � 0, then by Corollary 4.25 and Lemma 3.7,

V
top
s . zK/D�1

4
.�CC ��/C min

0�j�ı1
.VsC2j�ı1.K/C j /:

Combining this with Proposition 4.32, we obtain

V
top
s . yK/D�1

2
g� 1

4
.�CC ��/C min

0�j�ı1Cg
.VsC2j�ı1�g.K/C j /:
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By Proposition 4.14,

V
top
s . yK/D�1

2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j �2iCg�ı1/�.s�i�jCg�ı1/

�
:

This proves item (a). If ı1 < 0 and C.K/ is a positive staircase, then, by Corollary 4.26,

V
top
s . zK/D�1

4
.�CC ��/C max

0�j��ı1
.Vs�2j�ı1.K/� j /:

Combining Propositions 4.32 and 4.14, we have

V
top
s . yK/D 1

2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1
.Vs�2j�2iCg�ı1.K/� i�j /

D
1
2
g� 1

4
.�CC��/C min

0�i�g
max

0�j��ı1

�
R.g3.K/Cs�2j �2iCg�ı1/�.s� i�j Cg�ı1/

�
:

This proves item (c).

Proposition 6.3 allows us to express the d–invariants of the boundary Y D @N of the tubular neighborhood
of C in terms of the RK–functions of singular points. In our applications, we will focus on two cases:

(1) Algebraic case We assume that C has only algebraic singularities; that is, mn D 0 for all n > 0.
This corresponds to items (a) and (b) of Proposition 6.3.

(2) Single knot case We assume that � D 1, so K is a positive staircase and mn D 0 for all n > 0.
We will use items (c) and (d) of Proposition 6.3.

The first case is considered in Section 6.2. The second is addressed in Section 6.3.

6.2 Curves with no negative double points

For the reader’s convenience, we repeat the statement from the introduction of the next result.

Theorem 6.4 Let C be a reduced curve with degree d and genus g. Suppose that C has cuspidal singular
points p1; : : : ; p� whose semigroup counting functions are R1; : : : ; R� , respectively. Assume that , apart
from these � points , the curve C has , for each n � 1, mn � 0 singular points whose links are T2;2n
(A2n�1 singular points) and no other singularities. Define

�C D
X
n

mn and �C D
X
n

nmn:

For any k D 1; : : : ; d � 2,

.6.5/
max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

Here R denotes the infimal convolution of the functions R1; : : : ; R� .

Proof Let Y be the boundary of a tubular neighborhood of C. Then Y is the result of a d2–surgery on
yK � #� S2 � S1 obtained as in Section 6.2, where we readily compute from (5.1) that � D 2gC �C.

Note that, by (6.1), the genus g3.K/ is less than or equal to 1
2
.d � 1/.d � 2/ < 1

2
d2. Hence, the surgery
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coefficient is greater than twice the genus of K. In particular, the large surgery formula can be applied
[Ozsváth and Szabó 2008b, Theorem 4.10].

Let sj for j 2
�
�
1
2
d2; 1

2
d2
�
\Z denote the Spinc structures on Y as in Definition 3.13. By Lemma 5.13,

sj extends to CP 2nN if and only if sj is a restriction of ch for some h, where ch is as in (5.11). By (5.12),
we infer that this holds if and only if j Dmd withm2Z if d is odd andm2 1

2
CZ if d is even. Compare

with [Borodzik and Livingston 2014, Lemma 3.1].

By Proposition 5.14, for any md 2
�
�
1
2
d2; 1

2
d2
�

such that mC 1
2
.d � 1/ is an integer,

.6.6/ dbot.Y; smd /� �
1
2
�C�g; dtop.Y; smd /�

1
2
�CCg:

By Theorem 3.15, (6.6) translates to the inequalities

.6.7/
V

top
md
. yK/� 1

8
.d � 2mC 1/.d � 2m� 1/� 1

4
�C�

1
2
g;

V bot
md .
yK/� 1

8
.d � 2mC 1/.d � 2m� 1/C 1

4
�CC

1
2
g:

We compute V top
md

and V bot
md

from Proposition 6.3. Using g3.K/D 1
2
.d � 1/.d � 2/�g� �C, we rewrite

the equations of Proposition 6.3(a)–(b) as

V
top
md
. yK/D�1

2
g� 1

4
�CC min

0�j��CCg

�
R
�
1
2
.d �1/.d �2/CmdC2j �2�C�2g

�
�.mdCj ��C�g/

�
;

V bot
md .
yK/D�1

2
gC 1

4
�CC max

0�i�g
min

0�j��C��C

�
R
�
1
2
.d � 1/.d � 2/Cmd C 2j C 2i � 2g� 2�CC �C

�
� .md C i C j �g� �CC �C/

�
:

Comparing this with (6.7), we obtain

min
0�j��CCg

R
�
1
2
.d�1/.d�2/CmdC2j �2�C�2g

�
�.mdCj ��C�g/�

1
8
.d�2mC1/.d�2m�1/

and

max
0�i�g

min
0�j��C��C

R
�
1
2
.d�1/.d�2/CmdC2iC2j�2.�C��C/��C�2g

�
�.mdCj��CC�C�2g/

�
1
8
.d � 2mC 1/.d � 2m� 1/Cg:

With a change j 7! �CCg� j in the first inequality and i 7! g� i and j 7! �C��C� j in the second,
we obtain

min
0�j��CCg

R
�
1
2
.d�1/.d�2/Cmd�2j

�
�mdCj � 1

8
.d�2mC1/.d�2m�1/;

max
0�i�g

min
0�j��C��C

R
�
1
2
.d�1/.d�2/Cmd�2i�2j ��C

�
�mdCj � 1

8
.d�2mC1/.d�2m�1/Cg:

With mD k� 1
2
.d � 3/, after straightforward calculations we obtain

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/;

max
0�j�g

min
0�i��C��C

.R.kd C 1� �C� 2i � 2j /C i C j /�
1
2
.kC 1/.kC 2/Cg:
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6.3 Negative double points

We now specialize to the case where C is a surface which has a single algebraic singularity and mn � 0
singular points whose links are .2;�2n/–torus links (which are not algebraic).

Theorem 6.8 Suppose C is a genus g degree d singular curve in the smooth category as in Section 5.4
with a cuspidal singular point p, mn singularities whose link is �T2;2n for each n � 1, and no other
singular points. Suppose further that C is adjunctive.

Then , for any k D 1; : : : ; d � 2,

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�i�g

max
0�j������

.R.kd C 1� 2i � 2j � ��/C i C j /�
1
2
.kC 1/.kC 2/C ��� ��;

where R is the semigroup counting function for the singular point p and �� D
P
mn and �� D

P
mnn.

Remark 6.9 With the assumptions on the singularities of C, the condition that C be adjunctive (spelled
out in Definition 5.17) is equivalent to saying that the genus of C is given by (6.1).

Proof The beginning of the proof is exactly the same as in the proof of Theorem 6.4. The boundary Y of
the tubular neighborhood ofC is a result of a surgery with coefficient d2 on the knot yK in #2gC�� S2�S1.
In particular, (6.7) holds with �� replacing �C:

.6.10/
V

top
md
. yK/� 1

8
.d � 2mC 1/.d � 2m� 1/� 1

4
���

1
2
g;

V bot
md .
yK/� 1

8
.d � 2mC 1/.d � 2m� 1/C 1

4
��C

1
2
g:

With g3.K/D 1
2
.d � 1/.d � 2/�g� ��, the equations of Proposition 6.3(c)–(d) take the form

V
top
md
. yK/D 1

2
g� 1

4
��C min

0�i�g
max

0�j������

�
R
�
1
2
.d � 1/.d � 2/Cmd � 2j � 2i � ��

�
� .md � i � j CgC ��� ��/

�
;

V bot
md .
yK/D 1

2
gC 1

4
��C max

0�j�gC��

�
R
�
1
2
.d � 1/.d � 2/Cmd � 2j

�
� .md � j CgC ��/

�
:

Comparing this with (6.10), after changes analogous to in Section 6.2, we arrive at

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�i�g

max
0�j������

.R.kd C 1� 2i � 2j � ��/C i C j /�
1
2
.kC 1/.kC 2/C ��� ��:

6.4 Special cases of Theorems 6.4 and 6.8

The bounds in Theorems 6.4 and 6.8 are fairly general, but clarity is the price. To illustrate these bounds,
we provide several special cases.
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Corollary 6.11 (a) Suppose C is a genus g, degree d curve with singular points p1; : : : ; p� and �C
positive double points. Assume also that C has no other critical points. Then , for k D 1; : : : ; d �2,

max
0�j�g

.R.kd C 1� �C� 2j /C j /�
1
2
.kC 1/.kC 2/Cg;

min
0�j�gC�C

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/;

where R denotes the infimal convolution of the functions RK1 ; : : : ; RK� .

(b) Suppose C is a genus g, degree d curve with a singular point p and �� negative double points.
Assume that C has genus as in (6.1). Then , for k D 1; : : : ; d � 2,

max
0�j�gC��

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/CgC ��;

min
0�j�g

.R.kd C 1� ��� 2j /C j /�
1
2
.kC 1/.kC 2/;

where R is the semigroup counting function for the singular point p.

Proof Items (a) and (b) follow from Theorems 6.4 and 6.8, respectively, noting that �C D �C and
�� D ��.

Specifying further �C D 0 in Corollary 6.11(a) recovers the following result of [Bodnár et al. 2016;
Borodzik et al. 2017]:

Corollary 6.12 Suppose C is a cuspidal curve of genus g and degree d . Let R be the convolution of
semigroup counting functions of the singular points of C. Then

.6.13/
max
0�j�g

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/Cg;

min
0�j�g

.R.kd C 1� 2j /C j /� 1
2
.kC 1/.kC 2/:

We now compare the cases g D 0 and �C D 1, g D 0 and �� D 1, and g D 1 and �C D �� D 0.

Proposition 6.14 Let C be a degree d curve with one cuspidal singular point , whose semigroup counting
function is denoted by R. Assume C has at most one ordinary double point (�CC �� � 1) and no other
singularities. For all k D 1; : : : ; d � 2, set �k D 1

2
.kC 1/.kC 2/.

(a) If g D 1 and �C D �� D 0, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g.

(b) If g D 0 and �C D 1, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g, but also

R.kd/� �k :

(c) If g D 0 and �� D 1, then R.kd � 1/ 2 f�k � 1; �kg and R.kd C 1/ 2 f�k; �kC 1g, but also

R.kd/� �k :
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Proof Item (a) is an immediate consequence of (6.13).

For item (b), note that Corollary 6.11(a) implies thatR.kd/��k andR.kdC1/��k , R.kd�1/��k�1.
Since R.j C 1/�R.j / 2 f0; 1g for all j, the statement follows trivially.

The proof of item (c) is analogous. Corollary 6.11(c) implies that R.kd C 1/� �kC 1, R.kd � 1/� �k
and R.kd/� �k . Again, the statement follows trivially.

Proposition 6.14 can be interpreted as follows. Suppose C is a genus one curve with a single cusp-
idal singular point. Then the semigroup counting function R satisfies the constraints of item (a) of
Proposition 6.14. If, for some k D 1; : : : ; d � 2, we have R.kd/D �kC 1, then the function R does not
satisfy the constraints of item (b). That is, C cannot be deformed to a curve with genus 0 and the same
(topological type of) cuspidal singularity. That is, we cannot “trade genus for a positive double point”.

If, for some k, we have R.kd/D �k � 1, then the same argument shows that we cannot “trade genus for
a negative double point”.

6.5 Unicuspidal curves of genus 1

We will now check, for concrete examples, whether the genus can be traded for double points.

Example 6.15 Let �0 D 0, �1 D 1, �n D �n�1 C �n�2 be the Fibonacci sequence. Borodzik et al.
[2017, Proposition 9.12], based on a construction of Orevkov [2002], constructed a family of genus 1
cuspidal curves Cn of degree �4n with a single singularity whose link is the .�4n�2; �4nC2/–torus knot
for nD 2; 3; : : : .

By Proposition 6.14(c), we deduce that the genus cannot be traded for negative double points. Indeed, a
classical identity on Fibonacci numbers, �k�2C�kC2D3�k , shows that the semigroup generated by �4n�2
and �4nC2 has precisely nine elements in the interval Œ0; 3�4n/: 0; �4n�2; : : : ; 7�4n�2 and �4nC2. In
fact, 7�4n�2 < 3�4n < 8�4n�2 (we leave the proof of this to the reader) and �4nC2C�4n�2 D 3�4n.

In particular, R.3�4n/D 9 < 10D �3 D 1
2
.3C 1/.3C 2/.

Borodzik et al. [2017, Theorem 9.1] gave a complete list of candidates for curves of genus 1 with one
singularity whose link is a torus link Tp;q . The list contains one infinite family (Orevkov curves) and a
finite list of special cases. We apply our obstructions to these curves and obtain the following result:

Proposition 6.16 Suppose C is a genus one , degree d curve , having a single singularity, whose link is a
.p; q/–torus knot. Then either C is the Orevkov curve (of Example 6.15), or the values of .p; q/ and d
are one of

(a) d D 4 and .p; q/D .2; 5/;

(b) d D 5 and .p; q/D .2; 11/;
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case .d; p; q/ positive negative existence

(a) .4; 2; 5/ passes passes exists
(b) .5; 2; 11/ passes passes exists
(c) .6; 3; 10/ passes k D 1

(d) .15; 6; 37/ passes k D 2

(e) .24; 9; 64/ passes k D 3

(f) .27; 10; 73/ k D 12 k D 8

(g) .33; 12; 91/ k D 7 k D 8

(h) .3p; p; 9pC 1/ passes fails if p � 3

Table 1: Curves of Proposition 6.16 and the criteria of Proposition 6.14. “Positive” refers to
item (b) of the proposition, “negative” refers to item (c). If the curve does not pass the criteria, we
indicate the minimal k for which R.kd/ > �k (case (b)) or R.kd/ < �k (case (c)).

(c) d D 6 and .p; q/D .3; 10/;

(d) d D 15 and .p; q/D .6; 37/;

(e) d D 24 and .p; q/D .9; 64/;

(f) d D 27 and .p; q/D .10; 73/;

(g) d D 33 and .p; q/D .12; 91/;

(h) d D 3p and .p; q/D .p; 9pC 1/ for p D 2; : : : ; 11.

By definition, all cases satisfy the statement of Proposition 6.14(a). We applied the criteria of Proposition
6.14(b)–(c). The results are in Table 1. We indicate that some of the examples predicted by Proposition 6.16
have not been either effectively constructed or obstructed by other means.

6.6 Generalized Orevkov curves

Bodnár et al. [2016] constructed a family of curves generalizing Orevkov’s construction. Their work can
be regarded as a generalization of the construction of [Borodzik et al. 2017, Proposition 9.12]. To begin
with, fix k � 2. The Lucas sequence is the sequence Lki defined recursively via Lk0 D k � 1, Lk1 D 1,
LkiC1 D L

k
i CL

k
i�1. Here i is allowed to take all integer values.

Theorem 6.17 (BCG family; see [Bodnár et al. 2016, Theorem 1.7]) For any i � 2, there exists a genus
1
2
k.k� 1/ curve of degree Lk4i�1 with precisely one singularity whose link is the .Lk4i�3; L

k
4iC1/–torus

knot.

For any j � 1, there exists a genus 1
2
k.k�1/ curve of degree �Lk

�4j�1 with singularity whose link is the
.�Lk

�4jC1;�L
k
�4j�3/–torus knot.
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Now we apply Corollary 6.11.

Proposition 6.18 None of the curves of the BCG family can be transformed into a curve with genus one
less and one negative double point.

Proof We follow the same strategy as in Example 6.15. We begin with the first family. Suppose i � 2.
Let S be the semigroup associated with the .Lk4i�3; L

k
4iC1/–torus knot, and letR be the counting function

for it. The recursive formula for Lucas numbers implies that Lks CL
k
sC4 D 3L

k
sC2 for all s. Moreover,

.6.19/ LksC4 D L
k
sC3CL

k
sC2 D 2L

k
sC2CL

k
sC1 D 3L

k
sC1C 2L

k
s D 5L

k
s C 3L

k
s�1 < 8L

k
s

as long as s � 0. In particular, 3LksC1 < 9L
k
s . Therefore, all possible elements in S \ Œ0; 3Lk4j�1� are

0; : : : ; 8Lk4j�3 and Lk4jC1. Hence, R.3Lk4j�1/� 9, violating the second inequality in Corollary 6.11(b).

As for the second family, write zLki D .�1/
iC1Lk

�i for i > 0 and note that zLkiC1D zL
k
i C
zLki�1. Moreover,

for i > 0, zLki is an increasing sequence of positive numbers. We have zLksC4C zL
k
s D 3

zLksC2 and, for s
odd, zLksC4 < 8zL

k
s by the same argument as in (6.19). We conclude as in the first case.

It is unknown whether it is possible to trade genus for positive double points in any curves in the BCG
family.
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We prove that the set of concordance classes of sections of an1–sheaf on a manifold is representable,
extending a theorem of Madsen and Weiss for sheaves of sets. This is reminiscent of an h–principle in
which the role of isotopy is played by concordance. As an application, we offer an answer to the question:
what does the classifying space of a Segal space classify?
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1 Introduction

Let F be an1–sheaf (alias homotopy sheaf; see Definition 2.15) on Man, the site of finite-dimensional
smooth manifolds without boundary and smooth maps. For a manifold M, an element of F.M �R/ is
called a concordance. Two elements �0 and �1 in F.M/ are said to be concordant (and we write �0�c �1)
if there exists a concordance whose restriction to M � fkg is �k for k D 0; 1.

Concordance is an equivalence relation, and a familiar one in many situations. Here are three examples.
When F D C1.�; N /, maps are concordant if and only if they are smoothly homotopic. For the
sheaf of closed differential n–forms, two sections (ie closed n–forms) are concordant if and only if
they are cohomologous. For the stack of vector bundles, a pair of vector bundles are concordant if and
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only if they are isomorphic. In these three cases, concordance classes have a well-known description
in terms of homotopy classes of maps into a space, namely the space underlying N, the Eilenberg–
Mac Lane space K.R; n/ and the space BO.n/, respectively. In this paper we generalize these classical
representability results: concordance classes of sections of any1–sheaf F is represented by a space BF,
which we call the classifying space of F.

We now assemble the ingredients to state our results precisely. We denote by An the smooth extended
simplex, that is, the subspace of RnC1 whose coordinates sum to one. By varying n, this defines a
cosimplicial object in Man. Define a presheaf

BF.M/ WD jŒk� 7! F.M �Ak/j

with values in spaces (ie simplicial sets), where j�j denotes the homotopy colimit of the simplicial space.
The construction B is a form of localization; it is the universal way to render the mapsF.M/!F.M�A1/

invertible for all M and F. It is a familiar construction in the motivic literature, for example in the work
of Morel and Voevodsky [1999] (who call it Sing), but it has also appeared in the context of geometric
topology in [Waldhausen 1985; Weiss and Williams 1995; Madsen and Weiss 2007]. The link between
BF and the concordance relation �c is the bijection �0BF.M/Š �0F.M/=�c .

Define the classifying space BF as a Kan complex replacement of BF.�/ and denote by SingM the
usual singular simplicial set of M. Our main result is:

Theorem 1.1 Let F be an1–sheaf on Man. There is an evaluation map

.BF /.M/!Rmap.SingM;BF /;

which is a natural weak equivalence of spaces for every manifold M.

It is not difficult to show — essentially by a variant of Brown’s representability theorem; see Section 2 —
that Theorem 1.1 is equivalent to the following:

Theorem 1.2 If F is an1–sheaf , then BF is an1–sheaf.

These statements may be regarded as analogues of the h–principle, where the usual relation of isotopy is
replaced by that of concordance. Here we have in mind the strand of the h–principle that gives conditions
(eg microflexibility) which guarantee that an isotopy-invariant functor (eg a sheaf) is an1–sheaf. The
relation of concordance is more severe than that of isotopy, and this explains why the hypotheses are less
restrictive than those of typical h–principles, eg there are no dimension restrictions, open versus closed
manifolds, etc.

Just as with the h–principle, the key step in our proof involves verifying certain fibration properties. As
such, a significant part of the paper is a study of weak lifting properties for maps of simplicial spaces.

Algebraic & Geometric Topology, Volume 24 (2024)
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We introduce the notion of weak Kan fibration of simplicial spaces and simplicial sets. A crucial result
shows that weak Kan fibrations are realization fibrations (see Definition 3.14 and Theorem 3.17); this
implies that geometric realization is stable under homotopy pullback along weak Kan fibrations.

We emphasize that these results — and hence Theorem 1.2 — do not follow from formal considerations.
There are simple counterexamples in the category of schemes, as in the A1–homotopy theory of [Morel
and Voevodsky 1999, Section 3, Example 2.7]. The1–sheaf property is a homotopy limit condition
whereas B involves geometric realization, a homotopy colimit. Commuting these is a subtle issue. This
is where we use the weak Kan property to prove Theorem 1.2. The verification that BF is weak Kan and
certain restriction maps are weak Kan fibrations follows from a geometric argument about smooth maps
(Lemma 4.21). We also rely on the existence of partitions of unity.

Our main results improve on prior work of others, although the techniques we use differ. The �0–statement
of Theorem 1.1 is due to Madsen and Weiss [2007, Appendix A] when F is a sheaf of sets (or of discrete
categories). Although our theorem does extend the result of Madsen and Weiss from �0 to �n in the
case of sheaves of sets, the main objective of our work is to extend it from sheaves of sets to1–sheaves
of spaces. The argument of Madsen and Weiss shares some features with ours (in that certain locally
constancy conditions along simplices of a triangulation are enforced), but does not extend to1–sheaves.
Moreover, unlike theirs, our arguments apply in the topological or PL category too: Theorem 1.1 remains
true if we consider topological or PL manifolds instead of smooth manifolds. In fact, our arguments
simplify significantly in those cases (see Section 4 for explanations).

Bunke, Nikolaus and Völkl [2016, Section 7] have proved a version of Theorem 1.1 for1–sheaves on
compact manifolds with values in spectra. From the point of view of Theorem 1.2, this case is essentially
formal since, in a stable setting, homotopy pullback squares are homotopy pushout squares, and so (for
finite covers) the problem of commuting homotopy pullbacks with geometric realization disappears. It
has also been pointed out to us by John Francis that Ayala, Francis and Rozenblyum [2019, 2.3.16 and
2.4.5] gave related results that are proved in the context of stratified spaces. As we understand it, these
results are both more general (they apply to stratified spaces) and less general than ours and those of
Madsen and Weiss (they apply to a certain class of isotopy sheaves on groupoids). This restricted class
of sheaves is, from the point of view of Theorem 1.1, too severe as it excludes many1–sheaves, even
set-valued ones.

Applications of Theorem 1.1 abound. This stems from the fact that we not only prove abstract repre-
sentability, but also give a formula for the representing space. This formula can be identified with classical
constructions. Two illustrative examples, connecting back to the beginning of this introduction, are the
classical de Rham theorem and the classification of vector bundles (with or without connection). These are
obtained by applying the main theorem to the sheaf of differential n–forms and the stack of vector bundles
(sheaves of sets and stacks are examples of1–sheaves). In Section 6, we discuss a further application:
a classification of C –bundles, where C is a Segal space. More recently, Pavlov [2024, Theorem 13.8]

Algebraic & Geometric Topology, Volume 24 (2024)
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proved a generalization of Theorem 1.1 for presheaves with values in model categories Quillen equivalent
to model categories of algebras over simplicial algebraic theories (such as chain complexes, connective
spectra, and various flavors of connective ring spectra).

We mention here another consequence of Theorem 1.1. Let D denote the full subcategory of Man spanned
by Rn with n � 0. The1–categories Sh.Man/ and Sh.D/ of1–sheaves on Man and D, respectively
(with respect to the usual open covers by codimension zero embeddings), are examples of1–toposes,
as are the slice1–categories Sh.Man/=F for an1–sheaf F on Man, and Sh.D/=F for an1–sheaf F
on D.

Proposition 1.3 The functor B from Sh.Man/ to spaces is homotopy left adjoint to the functor which
sends a space to the constant 1–sheaf on that space. Moreover , B is homotopy left adjoint to the
inclusion of the1–category of constant 1–sheaves on Man into Sh.Man/. These two statements also
hold if Man is replaced by D, in which case we can also formulate the adjunction using1–presheaves
instead of 1–sheaves. In particular , the inclusion �! D is a homotopy initial functor (hence also an
initial functor), ie the functor B computes the homotopy colimit over Dop.

Proof By a constant 1–sheaf, we mean the homotopy sheafification of a constant presheaf. Every
constant presheaf on D is an 1–sheaf, and, for a space K, the canonical functor from the constant
1–sheaf to the mapping space1–sheaf, constK !map.�; K/, is an objectwise weak equivalence. On
the other hand, a constant presheaf on Man is in general not an1–sheaf. However, since every open cover
can be refined by a good open cover, the homotopy sheafification of a presheaf on Man is determined by
its restriction to D. Therefore, constK !map.�; K/ is also a weak equivalence in Sh.Man/.

If F is a representable presheaf, represented by a manifold M, then BF 'M. From this it follows that

map.F; constK/'map.BF;K/

for F a representable, and, extending by colimits, the same is true for any presheaf F, and then for any
1–sheaf (the mapping space on the left is computed in the1–category of1–sheaves or, equivalently,
since constK is an1–sheaf, in the1–category of presheaves).

As for the second statement, we have by Theorem 1.1 that BF is a constant1–sheaf on Man for any
1–sheaf F. Then, by Yoneda, map.BF; constK/' map.BF;K/, which, by the first part, implies the
statement.

The argument for D remains valid for1–presheaves because the constant1–presheaf is an1–sheaf in
this case. This also implies the claim about homotopy initiality of �! D.

In other words, BF is the shape of Sh.Man/=F as in [Lurie 2009, Chapter 7], or, equivalently, the
fundamental 1–groupoid of F in the sense of [Schreiber 2013, Section 3.4], and BF is the shape
modality of F in the sense of [Schreiber 2013, Definition 3.4.4]. For a different proof, see also [Pavlov
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2024, Proposition 12.10]. The statement about the homotopy adjunction continues to hold if1–sheaves
on Man are replaced by1–presheaves on Man, and B precomposed with the associated1–sheaf functor
is weakly equivalent to B, ie the shape of the associated1–sheaf of an1–presheaf of F can be computed
as the shape of F [Pavlov 2024, Proposition 13.9].

The following formal consequence of Theorem 1.1 proved to be useful in applications. Sati and Schreiber
[2021, Theorem 3.3.53] proposed the name “smooth Oka principle” for Proposition 1.4, in analogy to
the Oka principle in complex geometry, and also gave an alternative derivation of Proposition 1.4 from
Theorem 1.1.

Proposition 1.4 Let F be an1–sheaf on Man. There is an evaluation map

BHom.M;F /!RHom.BM;BF /

which is a natural weak equivalence of 1–sheaves for every manifold M. Here Hom denotes the internal
hom of 1–sheaves , whereas RHom is the derived internal hom (Hom.M;�/ is automatically derived ).

Proof The left side BHom.M;F / is a concordance-invariant1–sheaf because B lands in concordance-
invariant presheaves by Corollary 2.11 and1–sheaves by Theorem 1.2. The right side Hom.BM;BF /
is a concordance-invariant1–sheaf because the left Bousfield localization that produces concordance-
invariant 1–sheaves is a cartesian localization (since open covers are closed under products with a
fixed manifold) and derived internal homs in cartesian left Bousfield localizations preserve local objects.
Therefore, the map under consideration is a map between concordance-invariant1–sheaves, so it is a
weak equivalence if and only if its evaluation at the point is a weak equivalence. Evaluating at the point
gives the map

.BF /.M/!Rmap.BM;BF /'Rmap.BM;BF /DRmap.SingM;BF /;

which is a weak equivalence by Theorem 1.1.

Another application of this work is a construction of classifying spaces of field theories. This has recently
been done in [Grady and Pavlov 2020]; see in particular Theorem 8.2.9 there. Stolz and Teichner [2011]
have conjectured that concordance classes of particular classes of field theories determine cohomology
theories. By Brown representability, this conjecture requires concordance classes of field theories to
define a representable functor. In brief, they define field theories as functors out of a category of bordisms
equipped with a smooth map to a fixed manifoldM. When the relevant bordism category is fully extended,
field theories are an1–sheaf evaluated on M. The main result of this paper then shows that concordance
classes of fully extended field theories are representable. Furthermore, we identify a formula for the
classifying space of field theories.

Algebraic & Geometric Topology, Volume 24 (2024)
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2 The concordance resolution is concordance-invariant

Notation 2.1 Throughout, space will mean simplicial set. The category of such is denoted by S. A
simplicial space is a simplicial object in spaces, and the category of such is denoted by sS. Of course, this
is the same as a bisimplicial set, though the terminology emphasizes that there is a preferred simplicial
direction. A simplicial set is often viewed as a simplicial discrete space, by regarding a set as a discrete
(or constant) simplicial set. We denote the diagonal of a bisimplicial set X by jX j; this is our preferred
model for homotopy colimits of simplicial spaces.

Definition 2.2 We write �n for the representable simplicial set and �Œn� for the corresponding simplicial
discrete space. Similarly, we write @�n and ƒn

k
for the simplicial set boundary and kth horn, respectively,

and @�Œn� and ƒkŒn� for the corresponding simplicial spaces.

Definition 2.3 We denote by Man the (discrete) category of smooth manifolds (of any dimension) and
smooth maps, equipped with the Grothendieck topology of open covers.

Definition 2.4 A presheaf F W Manop
! S is concordance-invariant if, for all manifolds M, the map

F.M/! F.M �R/ induced by the projection M �R!M is a weak equivalence.

Definition 2.5 Set
A W�!Man; An D

n
x 2RnC1

ˇ̌ P
i

xi D 1
o
:

Given a presheaf F WManop
! S, denote by BF the presheaf

BF WManop
! S; BF.M/ WD jŒk� 7! F.M �Ak/j;

where j�j denotes the diagonal of a bisimplicial set.
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In this section we show that BF is always concordance-invariant. Furthermore, if BF is an1-sheaf,
then it is representable. The arguments are largely formal, so to make this structure more transparent
we begin the discussion for an arbitrary category enriched over S and later specialize to the category of
manifolds. These results are mostly a repackaging of [Morel and Voevodsky 1999]; see also [Herrmann
and Strunk 2011].

Notation 2.6 Let D0 be a discrete category with products and A� a cosimplicial object in D0. This
data defines a category enriched in spaces, denoted by D, by declaring the set of n–simplices of the
mapping space mapD.X; Y / to be homD0

.X �An; Y /. The example that will be of interest to us here is
D0 DMan.

In this setting it makes sense to talk about concordance-invariant presheaves on D0.

Definition 2.7 Given a category D0 as in Notation 2.6, a presheaf F WDop
0 ! S is concordance-invariant

if the map induced by the projection

F.X/! F.X �A1/

is a weak equivalence of spaces for all X 2D0.

A functor on D0 that can be enriched, ie lifted to a functor on D, necessarily sends smooth homotopies
to simplicial homotopies and smooth homotopy equivalences to simplicial homotopy equivalences. As
such, it is automatically concordance-invariant. In Proposition 2.13 below, we will prove the converse.

Definition 2.8 Given a category D0 as in Notation 2.6, the concordance resolution of a functor
F W .D0/

op! S is the functor

F.��A�/ W .D0/
op
! sS; X 7! F.X �A�/:

We denote the homotopy colimit of F.��A�/ by

BF.X/ WD hocolim
Œn�2�op

F.X �An/D jF.X �A�/j:

Here we use the diagonal of a bisimplicial set as a model for the homotopy colimit over �op.

For the case D0 DMan this definition of BF coincides with Definition 2.5.

Proposition 2.9 Given a category D0 as in Notation 2.6, for any presheaf F W Dop
0 ! S, the functor

F.��A�/ lifts to an enriched functor Dop! sS.

Proof We will define a simplicial map

map.X; Y /!map.F.Y �A�/; F .X �A�//:
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Let g WX�An! Y be a morphism in D0. Given a morphism ˛ W Œk�! Œn� in �, consider the composition

F.Y �Ak/
F.g�idAk /
�������! F.X �An �Ak/

F.idX�A˛�idAk /
������������! F.X �Ak �Ak/

F.idX�d/
�������! F.X �Ak/;

where d WAk!Ak �Ak is the diagonal map. This is functorial in g and ˛ and so defines a map between
hom sets

.2.10/ hom.X �An; Y /! hom.F.Y �A�/��Œn�; F.X �A�//

for each n� 0. Therefore, F.��A�/ is enriched over spaces.

Corollary 2.11 Given a category D0 as in Notation 2.6, for any presheaf F WDop
0 ! S, the presheaf BF

is enriched over spaces and is concordance-invariant.

Proof To see that BF is enriched, and hence concordance-invariant, postcompose (2.10) with the
homotopy colimit functor (alias geometric realization or diagonal) and use the fact that it commutes with
products.

Remark 2.12 The functor B is homotopy left adjoint to the discretization functor

i� W PSh.D/! PSh.D0/;

given by the restriction along the inclusion i WD0!D. This follows from the fact that B is a left adjoint
functor whose value on a representable presheaf on X 2D0 is the representable presheaf on i.X/ 2D.

The following proposition implies that the category of enriched presheaves on D and the category of
concordance-invariant presheaves on D0 have equivalent homotopy theories:

Proposition 2.13 Given a category D0 as in Notation 2.6, a presheaf F W Dop
0 ! S is concordance-

invariant if and only if the map F.X/! i�BF.X/ is a weak equivalence for all X.

Proof If F is concordance-invariant then the simplicial object F.X �A�/ is homotopically constant
with value F.X/. For the converse, consider the diagram

F.X/ i�BF.X/

F.X �A1/ i�BF.X �A1/

The horizontal maps are weak equivalences by assumption. The vertical map on the right is a weak
equivalence since BF is concordance-invariant. Thus, by the two-out-of-three property, the left map is a
weak equivalence.
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Corollary 2.14 The restriction functor

i� W PSh.D/! PSh.D0/

is a right Quillen equivalence , where PSh.D/ is equipped with the projective model structure and
PSh.D0/ is equipped with the A1–invariant projective model structure , ie the left Bousfield localization
of the projective model structure with respect to the map A1!A0.

2a Concordance-invariant 1–sheaves on manifolds are representable

Definition 2.15 A presheaf F W Manop
! S is an 1–sheaf if, for every manifold M and open cover

fUi !M gi2I , the canonical map from F.M/ to the homotopy limit (over �) of the cosimplicial spaceY
i02I

F.Ui0/
 
 
 

Y
i0;i12I

F.Ui0 \Ui1/� � � �

is a weak equivalence of spaces.

Any1–sheaf F satisfies F.¿/' �. This is implied by the descent condition for the empty cover of the
empty manifold.

Remark 2.16 A set-valued sheaf is an1–sheaf of sets, and conversely. Indeed, the (homotopy) limit of
a cosimplicial discrete space is, by initiality, computed by the limit of its truncation to its 1–coskeleton. A
stack is a groupoid-valued1–sheaf [Hollander 2008]. Common alternative terminologies for1–sheaves
include1–stacks and homotopy sheaves.

The following proposition is due to [Morel and Voevodsky 1999; Dugger 2001]:

Proposition 2.17 Given a presheaf F WManop
! S, the presheaf BF is an1–sheaf if and only if the

evaluation map
BF.M/!map.map.�;M/; BF /

is a weak equivalence for every M, where the evaluation map is the adjoint to the simplicial map

map.�;M/!map.BF.M/;BF.�//!map.BF.M/;BF /

gotten by the enrichment afforded by Corollary 2.11 and the map BF.�/! BF being the Kan complex
replacement of BF.�/. Here map.�;M/ is weakly equivalent to SingM, the singular simplicial set of M.

Proof Take a good open cover fUigi2I of M and let U� W�
op!Man denote its Čech nerve. There is a

commutative square

BF.M/ Rmap.SingM;BF.�//

holimn2�BF.Un/ holimn2�Rmap.Sing Un;BF.�//
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where Sing denotes the singular simplicial set functor. The right-hand vertical arrow is an equivalence
since hocolimn2�Un 'M. The lower horizontal arrow is an equivalence since BF.V /' BF.�/ for
V contractible (by concordance-invariance of BF ). The statement now follows by the two-out-of-three
property.

2b Homotopy groups of BF

In this section, we explain how to compute the homotopy groups of BF. For a basepoint b in the
d–dimensional sphere Sd and x 2 F.�/, let BF.Sd /x denote the homotopy fiber of

BF.b/ WBF.Sd /!BF.�/

over the image of x in BF.�/.

Proposition 2.18 Let F WManop
! S be a presheaf satisfying the1–sheaf property with respect to finite

covers , and let x 2 F.�/. The map

�0BF.S
d /x! �d .BF.�/; x/D �d .BF; x/

is an isomorphism.

Proof Under the assumption on F, the conclusion of Theorem 1.1 holds for any compact manifold M.
This will be shown in Corollary 5.10. Therefore, the top map in the commutative square

BF.Sd / Rmap.Sd ;BF.�//

BF.�/ Rmap.�;BF.�//

BF.b/ Rmap.b;BF.�//

is a weak equivalence. The bottom map is a weak equivalence by construction. Thus the induced map of
vertical homotopy fibers over a point x 2 F.�/ is a weak equivalence. Taking �0 of the map between
homotopy fibers, we obtain the result.

Remark 2.19 Elements in �0BF.Sd /x are concordance classes of sections of F over Sd which restrict
to x on b 2 Sd . We postpone the explanation to Lemma 4.13.

Remark 2.20 In the special case when F is a concrete sheaf of sets, ie a diffeological space in the sense
of [Souriau 1980], Proposition 2.18 resolves in the affirmative a conjecture of [Christensen and Wu 2014,
Section 1] on the isomorphism of smooth homotopy groups of a diffeological space with the simplicial
homotopy groups of its smooth singular complex. Christensen and Wu [2014, Theorem 4.11] proved this
conjecture for projectively fibrant diffeological spaces, whereas Proposition 2.18 proves it for arbitrary
simplicial presheaves satisfying the1–sheaf property for finite covers, a much bigger class that includes
all sheaves of sets, in particular all diffeological spaces.
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3 Weak Kan fibrations

As a warmup to the ideas in this section, we will prove that the concordance relation �c is an equivalence
relation when F is an1–sheaf. This generalizes the standard fact that smooth homotopy is an equivalence
relation, but the core of the argument is identical: gluing a pair of smooth maps along an open submanifold
yields a smooth map.

Lemma 3.1 If F WManop
! S is an1–sheaf , then �c is an equivalence relation on F.M/0, the set of

0–simplices in F.M/.

Proof Reflexivity and symmetry are obvious. To establish transitivity, suppose �0, �1 and �2 are such
that �0 �c �1 and �1 �c �2. Let ik denote the inclusion of M � fkg into M �A1 and pick sections �01
and �12 over M �A1 such that i�0 �01 D �0, i�1 �01 D i

�
0 �12 D �1 and i�1 �12 D �2. Take a smooth map

r WA1!A1 which fixes 0 and 1 and maps the complement of a small neighborhood of 1
2

to f0; 1g. The
sections r��01 and r��12 over M �A1 are such that the restriction of r��01 to an open neighborhood
of Œ1;1/ agrees with the restriction of r��12 to an open neighborhood of .�1; 0�. So, using the sheaf
property and reparametrizing, we may glue these sections to obtain a section �012 over M �A1 with
i�0 �012 D �0 and i�1 �012 D �2, ie �0 �c �2.

The fact that �c is an equivalence relation is a shadow of an important property possessed by the
concordance resolution: it is a 0–weak Kan complex (Definition 3.9). Informally, the weak nature can be
seen in the proof of transitivity at the point where sections �01 and �12 are replaced by r��01 and r��12.
This step is essential since sections cannot be glued along closed sets. The failure of gluing along closed
sets also means that concordance resolution does not satisfy the usual Kan condition as it does not have
the right lifting property with respect to ƒ21!�2. Similar features of smooth geometry allow us to show
that certain restriction maps for the concordance resolution have analogous weak fibrancy properties. The
key definition formalizing this property is that of a weak Kan fibration.

3a Kan fibrations and weak Kan fibrations of simplicial spaces

In this section, we define and investigate weak Kan fibrations of simplicial spaces (or sets). These
generalize Kan fibrations and are related to (and inspired by) Dold fibrations [1963] of topological spaces.
We refer the reader to the appendix for background on simplicial spaces.

The following definition is discussed by Lurie [2011; 2018, Definition A.5.2.1]. Our definition is
essentially the same, except that we formulate it for Reedy fibrant simplicial spaces, to avoid mentioning
Reedy fibrant replacements.

Definition 3.2 Let f WX! Y be a Reedy fibration between Reedy fibrant simplicial spaces. We say that
f is a Kan fibration if it has the right lifting property with respect to all horn inclusions (Definition 2.2).
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That is, for every solid square

ƒkŒn� X

�Œn� Y

f

there is a lift as pictured, where n� 1 and 0� k � n. Similarly, we say that f is a trivial Kan fibration if
it has the right lifting property with respect to @�Œn�!�Œn� for all n� 0.

Unfortunately, Definition 3.2 is not applicable in the situations of interest to us. In particular, none of
the maps in the crucial Propositions 4.1, 4.2 and 4.3 satisfy Definition 3.2, so a result like [Lurie 2018,
Theorem A.5.4.1] is not applicable. An explicit counterexample is provided by Example 4.10. Therefore,
we relax Definition 3.2 to Definition 3.8. First, we define an appropriate generalization of the right lifting
property.

Definition 3.3 Let f W X ! Y be a Reedy fibration between Reedy fibrant simplicial spaces. We say
that f has the weak right lifting property (weak RLP) with respect to a map i W A ,! B (and i has the
weak LLP with respect to f ) if for every commutative square

A X

B Y

ˇ

˛

i f
z̨

there is a lift z̨ as pictured, making the lower triangle commute strictly and the upper triangle commute
up to a specified vertical homotopy. Such a homotopy consists of a map of simplicial spaces

H W A��Œ1�!X

subject to the requirement that H0D ˇ, H1D z̨ı i and f ıH D ˛ ı i ı� , where � denotes the projection
of A��Œ1� onto A.

Remark 3.4 It will be useful to have some reformulations of Definition 3.3. Under the Reedy fibrancy
hypothesis above, the map f W X ! Y has the weak RLP with respect to i W A! B if and only if for
every commutative square in the background of

A X

M.i/

B Y

B

i f
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there exists a map from the mapping cylinder M.i/DBti .A��Œ1�/ to X making the diagram commute
strictly. Here the map in the foreground M.i/! B collapses A��Œ1� to A; we denote it by �.i/.

To put it differently, consider the category sSŒ1� D Fun.0! 1; sS/ whose objects are maps of simplicial
spaces and morphisms are commutative squares. Then the requirement above is that the map induced by
precomposition

map

 
M.i/
#

B

;
X
#

Y

!
!map

 
A
#

B

;
X
#

Y

!
(with the square on the left in the diagram above) is surjective on 0–simplices. Here map denotes the
space of morphisms in sSŒ1�.

The Reedy model structure appears in the previous definitions as an artifact that guarantees homotopy-
invariance with respect to degreewise weak homotopy equivalences of simplicial spaces. But it is possible
(and worthwhile) to formulate a more homotopical definition of the weak RLP.

Definition 3.5 A map f W X ! Y between arbitrary simplicial spaces satisfies the weak right lifting
property (weak RLP) with respect to a map i W A! B if

Rmap.�.i/; f /!Rmap.i; f /

is surjective on �0, where Rmap refers to the derived mapping space computed in the category sSŒ1� with
objectwise weak equivalences.

Remark 3.6 We emphasize the homotopy-invariance properties of this definition: a map f has the weak
RLP with respect to a map i if and only if it has the weak RLP with respect to any map (degreewise)
weakly equivalent to i . Also, if a map f has the weak RLP with respect to i , then so does any map
(degreewise) weakly equivalent to f.

Proposition 3.7 A Reedy fibration f satisfies the weak RLP in the sense of Definition 3.3 if and only if
it satisfies the weak RLP in the sense of Definition 3.5.

Proof Equip sS with the Reedy (= injective) model structure and, relative to it, also equip sSŒ1� with
the injective model structure. In this model structure on sSŒ1�, all objects are cofibrant. Cofibrations
are morphisms which are objectwise Reedy cofibrations of simplicial spaces, ie degreewise injections.
Fibrant objects are Reedy fibrations between Reedy fibrant simplicial spaces.

The morphism i ! �.i/, ie the commutative diagram

A M.i/

B B

Algebraic & Geometric Topology, Volume 24 (2024)



4904 Daniel Berwick-Evans, Pedro Boavida de Brito and Dmitri Pavlov

is a cofibration since the horizontal maps are degreewise injections. Also, the map f is a fibrant object
in sSŒ1�. Therefore, the induced map

map.�.i/; f /!map.i; f /

is a fibration between Kan complexes, which is weakly equivalent to

Rmap.�.i/; f /!Rmap.i; f /:

The result now follows, since a fibration of simplicial sets is surjective on �0 if and only if it is surjective
on 0–simplices.

Definition 3.8 A map X ! Y between simplicial spaces is a weak Kan fibration if it has the weak right
lifting property with respect to the maps

hi W Sdi .ƒkŒn�/ ,! Sdi .�Œn�/

for each i � 0, n� 1 and 0� k � n. Here the functor Sd W sS! sS is as in Definition A.12.

The definition also makes sense for maps X ! Y of simplicial sets by regarding them as simplicial
discrete spaces.

Note that every simplicial space is a weak Kan complex, in the sense that the map X ! � is a weak
Kan fibration. This may seem odd at first, but it makes sense in light of Section 3b, as every space is
tautologically quasifibrant. A more interesting variation is:

Definition 3.9 Given l � �1, a l-weak Kan complex is a simplicial space X such that the terminal map
X ! � is a weak Kan fibration in which the vertical homotopies preserve the l–skeleton of the horn
inclusions hi .

So a .�1/–weak Kan complex is simply a weak Kan complex, ie a simplicial space, and a1–weak Kan
complex is a Kan complex (in the usual sense, as in Definition 3.2). For a 0–weak Kan complex X, the
image of �0X1! �0X0 ��0X0 is an equivalence relation (cf Lemma 3.1). We will not make use of the
notion of l–weak Kan complex for l > 0, and for l D 0 we will use it in Lemma 5.13.

Example 3.10 A Kan fibration (Definition 3.2) is a weak Kan fibration. Of course, the usual definition
of a Kan fibration does not mention subdivisions; this is because a map satisfying the strict RLP against
all horn inclusions ƒkŒn�!�Œn� automatically satisfies the same property against all subdivisions of
those, since these subdivided horn inclusions can be presented using cobase changes and the strict LLP is
stable under cobase change, so the strict LLP for horn inclusions implies the strict LLP for subdivided
horn inclusions. The same is not true for the weak RLP, so we need to take subdivisions seriously.

Likewise, if X is a l–weak Kan complex and K ,!L is an inclusion of simplicial sets, it does not follow
automatically that XL!XK is a weak Kan fibration.

Algebraic & Geometric Topology, Volume 24 (2024)



Classifying spaces of infinity-sheaves 4905

Lemma 3.11 Kan’s Ex functor (see Definition A.12) preserves weak Kan fibrations and so does Ex1.

Proof The functor Ex is right adjoint to the subdivision functor, so we are investigating a square of the
form

.3.12/

SdiC1ƒkŒn� X

SdiC1�Œn� Y

Since f is a weak Kan fibration, there is a lift as shown, and a homotopy H W SdiC1ƒkŒn���Œ1�!X.
Since there is always a map from the subdivision of the product to the product of the subdivisions, we
can precompose H with

Sd.Sdi ƒkŒn���Œ1�/! SdiC1ƒkŒn��Sd�Œ1�! SdiC1ƒkŒn���Œ1�:

This gives the required homotopy for the upper triangle which is vertical over Y, proving the result. The
case of Ex1 follows automatically since a map from a finite-dimensional simplicial space to Ex1X
factors through some finite Exi X.

Remark 3.13 Weak Kan fibrations are stable under various operations. They are stable under homotopy
base change (with respect to degreewise weak equivalences of simplicial spaces). In other words, weak
Kan fibrations that are moreover Reedy fibrations between Reedy fibrant objects are stable under pullback.

Weak Kan fibrations are also stable under fiberwise homotopy retracts (that is, if g WW ! Y is a homotopy
retract over Y of a weak Kan fibration f WX ! Y then g is a weak Kan fibration). In particular, weak
Kan fibrations are stable under fiberwise homotopy equivalences. Moreover, if we allow subdivisions of
the vertical homotopies in the definition of the weak lifting property, ie if we replace �Œ1� by Sdi �Œ1�
for i � 0 in Definition 3.3, then a composition of two weak Kan fibrations is also a weak Kan fibration.
(Although, the resulting notion would presumably be weaker than the one we are using.) Since these
properties will not be used in what follows, and the proofs are not particularly difficult, we omit further
explanations.

3b Weak Kan fibrations are realization fibrations

Definition 3.14 [Rezk 2014] A map f W X ! Y of simplicial spaces is a realization fibration if for
every Z! Y the induced map

.3.15/ jX �hY Zj ! jX j �
h
jY j jZj

is a weak equivalence of spaces. The vertical bars refer to the diagonal simplicial set, which models the
homotopy colimit over �op.
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Remark 3.16 Realization fibrations are related to quasifibrations in the sense of [Dold and Thom 1958].
For example, if a map f WX ! Y between simplicial sets is a realization fibration, then the map (3.15)
with Z a point is identified with the inclusion of the fiber of f into the homotopy fiber. That is, f is a
quasifibration. On the other hand, not all quasifibrations are realization fibrations: realization fibrations
are stable under homotopy pullback, whereas quasifibrations need not be.

We now turn to the main technical result of the section.

Theorem 3.17 A weak Kan fibration is a realization fibration.

As we already emphasized, the subdivisions of simplices and horns in the definition of a weak Kan
fibration are important for a number of reasons. Lemma 3.11 is one such reason, that will be exploited
later on. Below is another.

Example 3.18 This is an example of a map which has the weak right lifting property against the
(nonsubdivided) map .h0/ but is not a realization fibration. Suppose X is the union of three nondegenerate
1–simplices as in the picture

� �

� �

and Y D�Œ1�. Let f WX! Y be the projection in the vertical direction. This is not a Kan fibration: there
are 2–horns ƒkŒ2� in X that cannot be filled. On the other hand, f has the weak right lifting property
with respect to the map .h0/. But f is not a quasifibration, since at one point the fiber is disconnected
while the homotopy fiber is not. Hence f cannot be a realization fibration. This is not a contradiction:
f is not a weak Kan fibration as it does not have the weak right lifting property for .h2/, the second
subdivision of the horn inclusion.

Proposition 3.19 Suppose f W X ! Y is a Reedy fibration between Reedy fibrant simplicial spaces.
Then f is a weak Kan fibration of simplicial spaces if and only if jf jW jX j ! jY j is a weak Kan fibration
of simplicial sets. The vertical bars denote the diagonal functor.

Proof Let us denote by � the map sdi ƒn
k
! sdi �n for i � 0. Write ı for the functor which sends

a simplicial set K to the corresponding simplicial discrete space Œn� 7! Kn. Recall the commutative
square of spaces � ! �.�/ where �.�/ is the projection of mapping cylinder M.�/ onto sdi �n. By
Definition 3.8, the map f is a weak Kan fibration if and only if

Rmap
�
ı.�.�//; f

�
!Rmap.ı.�/; f /

is surjective on �0.

The realization (ie diagonal) functor has a left adjoint dŠ W S! sS, and there is a natural transformation
dŠ! ı which is a weak equivalence (Lemma A.8). Therefore, f is a weak Kan fibration if and only if

Rmap.dŠ�.�/; f /!Rmap.dŠ�; f /
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is surjective on �0. Regarding sSŒ1� with the injective model structure, the map dŠ� ! dŠ�.�/ is a
cofibration between cofibrant objects (since dŠ sends monomorphisms to monomorphisms), and the
target f is fibrant by hypothesis. As such, the above holds if and only if the Kan fibration between Kan
simplicial sets

map.dŠ�.�/; f /!map.dŠ.�/; f /

is surjective. By adjunction, this holds if and only if jf j has the weak RLP with respect to �. (Note
that jf j, being a map between simplicial discrete spaces, is automatically a Reedy fibration between
Reedy fibrant objects, and so a fibrant object in sSŒ1�.)

Remark 3.20 The same proof, with � of the form ƒn
k
! �n and with �.�/ replaced by the identity

�n ! �n, shows that a Reedy fibration between Reedy fibrant simplicial spaces f is a (trivial) Kan
fibration if and only if jf j is a (trivial) Kan fibration.

In order to prove that weak Kan fibrations are realizations fibrations, we will use the following criterion:

Theorem 3.21 [Rezk 2014] A map f WX ! Y of simplicial spaces is a realization fibration if and only
if , for all maps �Œm�! Y and �Œ0�!�Œm�, the induced map on pullbacks

X �hY �Œ0�!X �hY �Œm�

is a weak equivalence after realization.

Proof of Theorem 3.17 Let f W X ! Y be a weak Kan fibration. We will verify that f satisfies the
condition in Theorem 3.21. We may assume, without loss of generality, that f is a Reedy fibration
between Reedy fibrant simplicial spaces. Then the homotopy pullbacks above become pullbacks. Using
the fact that realization and Ex1 commute with finite limits, our task is then to show that

Ex1 jX j �Ex1 jY j Ex1�0! Ex1 jX j �Ex1 jY j Ex1�m

is a weak equivalence of Kan complexes. Since f is a weak Kan fibration, the same can be said of jf j
by Proposition 3.19 and of Ex1 jf j by Lemma 3.11. To simplify the notation, let us write g W U ! V for
Ex1 jf jW Ex1 jX j ! Ex1 jY j.

In view of Proposition A.1 (and Corollary A.2 and Example A.5), we will show that for every solid
diagram

@�n U �V �
0

@�n ��1 t@�n�f1g�
n

ƒnC1 U �V Ex1�m

ƒnC1 ��1 tƒnC1�f1g�
nC1

i
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there are dashed maps as pictured. Let us write A! B for the middle vertical arrow. Consider the map

.3.22/ ƒnC1 t@�n�f0gA! Ex1�m

determined by the lower horizontal map in the diagram above and by the map A!�0!Ex1�m. Since
the terminal map Ex1�m!�0 is a trivial Kan fibration, the map (3.22) extends along the inclusion

ƒnC1 t@�n�f0gA ,! B:

Next, we want to define a map B! U which is compatible with the composition

B! Ex1�m! V

of the map we have just constructed. This will give us the lower dashed map in the diagram above.
Consider the diagram

ƒnC1 U

�nC1 V

g

where the lower map is the composition �nC1! B! Ex1�m! V. Since g is a weak Kan fibration,
we obtain a lift and vertical homotopy, ie the required map B! U. Therefore, we have defined a map
B! U �V Ex1�m, whose restriction to A factors through U �V �0.

4 Weak Kan fibrancy of the concordance resolution

Let F WManop
! S be an1–sheaf. In this section and the next, we apply the general theory developed

in the previous sections to prove Theorem 1.2. The goal of this section is to prove the following three
propositions:

Proposition 4.1 For any1–sheaf F WManop
! S, the simplicial space Œn�! F.An/ is a 0–weak Kan

complex.

Proposition 4.2 For any1–sheaf F WManop
! S, the map of simplicial spaces

F.A� �A1/! F.A� � @A1/

is a weak Kan fibration. Here @A1 DA0 tA0 is the disjoint union of two points.

Proposition 4.3 Let � ,! Sn be an inclusion of a basepoint into the smooth n–dimensional sphere. For
any1–sheaf F WManop

! S, the induced map of simplicial spaces

F.A� �Sn/! F.A�/

is a weak Kan fibration.
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We use these to prove Theorem 1.2 in Section 5, and the reader may wish to jump directly to that section
to see these propositions in action. In fact, in that section and in the remainder of the paper, we will only
need Propositions 4.2 and 4.3. We include Proposition 4.1 because its proof anticipates much of the proof
of the other two propositions.

The proofs of these propositions are based on the following simple observation. If one were to try to prove
that F.A�/ is a Kan complex in the sense of Definition 3.2, an obvious approach would be to construct a
deformation retraction from the simplex An to its horn. This is possible in the topological and PL settings,
but not possible smoothly, and a rigorous proof of this is provided in Example 4.10. However, the basic
idea can be salvaged if one only asks for F.A�/ to be 0-weak Kan, which roughly translates into asking
for a retraction up to a suitable homotopy. This parallels the proof that concordance is an equivalence
relation (Lemma 3.1): we modify smooth maps between manifolds (via homotopies) to achieve certain
constancy properties. A relative version of this line of reasoning applies to the maps in Propositions 4.2
and 4.3.

4a The sheaf associated to a simplicial set

Definition 4.4 Denote by
k�kpre W sS! PSh.Man; S/

the simplicial left adjoint functor that sends �Œn� to the representable presheaf of An, hom.�;An/. The
corresponding simplicial right adjoint functor is

PSh.Man; S/! sS; F 7! .n 7! F.An//:

For a simplicial space K, the presheaf kKkpre WManop
! S is given by the coend

Kn˝Œn�2� hom.�;An/:

If K is a simplicial set (ie a simplicial discrete space), then kKkpre is a presheaf of sets.

Remark 4.5 The adjunction of Definition 4.4 is Quillen if both categories are equipped with the projective
model structure or with the injective model structure. Therefore, there is a weak equivalence

Rmap.kKkpre; F /!Rmap.K; F.A�//

natural in the simplicial space K and the presheaf F.

Remark 4.6 Note that kKkpre is usually not a sheaf of sets. For a simple example illustrating this, take
kƒ21k which is the pushout

hom.�;A1/thom.�;A0/ hom.�;A1/

and pick an open cover of R1 by two open sets and compatible sections over each that do not lift to a
section over R1.
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Definition 4.7 Given a simplicial set K, denote by kKk the associated sheaf of sets of kKkpre.

Recall that, for presheaves of sets, the notions of a sheaf and1–sheaf coincide (Remark 2.16). For such
presheaves, sheafification and1–sheafification also agree. A reference is Dugger, Hollander and Isaksen
[2004, Proposition A.2]. (One can also prove this directly by comparing the usual sheafification formula,
given by the so-called plus construction, to its1–counterpart applied to a presheaf of sets.) If we tried to
define kKk for simplicial spaces K, we would have had to use1–sheafification from the start.

Remark 4.8 Since sheafification is left adjoint to the inclusion of sheaves into presheaves, for F an
1–sheaf the weak equivalence above lifts to a weak equivalence

Rmap.kKk; F / '�!Rmap.K; F.A�//

natural in the simplicial space K and the1–sheaf F.

Remark 4.9 To be more concrete, suppose K is the simplicial set associated to a simplicial complex
with vertex set V and take X to the union of affine subspaces spanned by the simplices of K. Then
kKk.M/ is the set of smooth maps M !RV that land in X.

Example 4.10 Consider the sheaf of sets F D kƒ1Œ2�k. The simplicial object n 7! F.An/ is not a Kan
complex in the sense of Definition 3.2. Indeed, consider the horn ƒ1Œ2�! .n 7! F.An// given by the
adjoint map of the identity map on F. This horn does not admit a filling by �Œ2�. Indeed, such a filling has
to be a section s 2F.A2/ that restricts to the identity map on kƒ1Œ2�k. Since kƒ1Œ2�k is the sheafification
of the sheaf of sets kƒ1Œ2�kpre, in some neighborhood of the vertex 1 2 A2, the section s must factor
through one of the two 1–dimensional faces ofƒ1Œ2�. However, possessing such a factorization means that
s cannot restrict to the identity map on any neighborhood of the vertex 1 in kƒ1Œ2�k. Thus, n 7! F.An/

is not a Kan complex in the sense of Definition 3.2.

Proposition 4.11 Let F be an injectively fibrant object of PSh.Man; S/. Then the maps in Propositions
4.2 and 4.3 are Reedy fibrations between Reedy fibrant simplicial spaces.

Proof We show that the map in Proposition 4.2 is a Reedy fibration. The argument for the one in
Proposition 4.3 is similar. Let A! B be a trivial Reedy cofibration of simplicial spaces, ie a map of
simplicial spaces which is a degreewise monomorphism and a degreewise weak equivalence. Using the
adjunction of Definition 4.4, denote by Q the pushout of presheaves

.4.12/

kAkpre � @A1 kBkpre � @A1

kAkpre �A1 Q
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By adjunction, F.A� �A1/! F.A� � @A1/ has the right lifting property with respect to A! B if and
only if every solid diagram of presheaves

Q F

kBkpre �A1

has a lift as pictured. The existence of this lift is part of the so-called pushout–product axiom, which
holds for the category of presheaves on Man. But we’ll provide a short argument here. The top horizontal
map in square (4.12) is a trivial cofibration since k�kpre is a left Quillen functor. Since trivial cofibrations
are stable under cobase change, the lower horizontal map is also a trivial cofibration. But the composition

kAkpre �A1!Q!kBkpre �A1

is also a trivial cofibration by hypothesis, and so, by two-out-of-three, the right-hand map is a weak
equivalence. The right-hand map is also an injective cofibration, as can be checked directly. Since F is
injectively fibrant, we conclude that the dashed map exists.

Lemma 4.13 Let F WManop
! S be a presheaf satisfying the1–sheaf property with respect to finite

covers and let x 2 F.�/. Let F.Sd /x denote the homotopy fiber over x of the map F.Sd /! F.�/

induced by a choice of basepoint in the d–sphere Sd . There is a canonical isomorphism

.�0F.S
d /x/=�! �0BF.S

d /x;

where � is the equivalence relation of concordance and BF.Sd /x is the homotopy fiber of BF.Sd /!

BF.�/ as in Proposition 2.18. Therefore , the quotient of �0F.Sd /x by the equivalence relation of
concordance is isomorphic to �d .BF.�/; x/.

Proof By Proposition 4.3, the map induced by a choice of basepoint in Sd ,

F.A� �Sd /! F.A�/;

is a weak Kan fibration. Applying the homotopy colimit functor to this map and then taking its homotopy
fiber over x 2 F.A0/ yields the space BF.Sd /x , by definition.

Let Z� WD hofiberx.F.A� �Sd /! F.A�//. The canonical map

jZ�j !BF.Sd /x

is a weak equivalence since weak Kan fibrations are realization fibrations (Theorem 3.17). Moreover, weak
Kan fibrations are stable under base change, so Z� is a 0–weak Kan complex and, as such, the relation on
�0Z0 determined by the faces �0Z1! �0Z0 ��0Z0 is an equivalence relation (cf Lemma 3.1). This
equivalence relation is the concordance relation on �0Z0 D �0F.Sd /x .

The second statement follows from Proposition 2.18.
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4b Closed simplices

Definition 4.14 Denote by �n WManop
! Sets the subsheaf of the representable sheaf of sets hom.�;An/

consisting of sections X !An whose image is contained in the closed simplex RnC1
�0 \An �An.

Definition 4.15 Given a simplicial set K, denote by kKkWManop
! Sets the subsheaf of sets of kKk

consisting of smooth maps U ! M that factor locally through some closed simplex of K in M. In
formulas,

kKk D L.kKkpre/D L.Kn˝Œn�2��n/;

where �n is as in Definition 4.14, L.W / denotes the associated sheaf of a presheaf of sets W, and kKkpre

denotes the left adjoint functor of F 7!map.��; F / applied to the simplicial set K.

Concretely, if K is a triangulation of a smooth manifold N, a section of kKk over a manifold M is a
smooth map M !N which factors locally through some simplex of the triangulation.

Lemma 4.16 Let K be a simplicial set for which faces of nondegenerate simplices are nondegenerate.
Then the sheaf kKk weak deformation retracts onto kKk. That is , there is a map h W kKk�A1!kKk

whose restriction to kKk� f0g is the identity, whose restriction to kKk� f1g factors through kKk, and
h.kKk�A1/� kKk. Moreover , for any subcomplex L of K, h restricts to a weak deformation retraction
of kLk onto kLk.

Proof Consider a homotopy
�n WAn � Œ0; 1�!An

that in barycentric coordinates is constructed as follows. Fix c W A1! Œ0;1/ a smooth function with
c � 0 on .�1; 0� and strictly increasing on Œ0;1/. Then we set

�n..x0; : : : ; xn/; t/D .y0=Ct ; : : : ; yn=Ct /;

where yi D tc.xi /C .1� t /xi and Ct D
Pn
iD0 yi . Extend �n to An �A1 by precomposing �n with

id� f W An �A1! An � Œ0; 1�, where f is a smooth function which takes value 0 on a neighborhood
of .�1; 0� and 1 on a neighborhood of Œ1;1/. This gives a weak deformation retraction h WAn�A1!An

of An onto the subsheaf �n for each fixed n.

The map � is functorial with respect to injections Œm�! Œn�. And we may replace the category � in the
coend defining kKkpre with the subcategory �inj of injective maps. To see this, we can express the coend
over � (respectively �inj) as a colimit over the category simp.K/ of simplices of K (respectively the
subcategory ndsimp.K/ of nondegenerate simplices). The inclusion ndsimp.K/! simp.K/ is terminal
(alias final) under the assumption that each face of a nondegenerate simplex ofK is nondegenerate. Hence,
� defines a weak deformation retraction h W kKkpre �A1!kKkpre of kKkpre in kKkpre.
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Now, composing h with the sheafification we obtain a map kKkpre �A1!kKk which, by the universal
property, factors through kKk �A1. This factorization is the required weak deformation retraction of
kKk onto kKk.

Proposition 4.17 For any manifold M and any presheaf F WManop
! S, the restriction map

Rmap.M �A�; F /!Rmap.M ���; F /

is a weak equivalence after realization.

Proof We can assume F to be injectively fibrant, so Rmap can be replaced with map. By replacing F
with map.M;F / we can assume M DR0. We will verify the conditions of Proposition A.9 and show
that every square

@�Œn� Ex1 F.A�/

�Œn� Ex1map.��; F /

admits a lift making the upper and lower triangles commute up to homotopy, and such that these two
homotopies are compatible on @�Œn�. For a finite-dimensional simplicial compact space K, ie having a
compact space of nondegenerate simplices, a map K! Ex1 Y factors through some finite stage, and so
it corresponds to a map Sdi K! Y. Then, by adjunction, the square above amounts to a map P ! F,
where

P WD kSdi @�Œn�kt
kSdi @�Œn�k

kSdi �Œn�k:

By Lemma 4.16, there is a self-homotopy H of kSdi �Œn�k such that H0 D id, H1 factors through

kSdi �Œn�k! kSdi �Œn�k

and H preserves kSdi @�Œn�k, kSdi @�Œn�k and kSdi �Œn�k. This defines a map

kSdi �Œn�k! P ! F

and a self-homotopy of P, giving the lift and homotopies that were needed.

4c Smooth maps with prescribed constancy conditions

Let K be a subdivision of the standard n–simplex; that is, K is an ordered (locally finite) simplicial
complex, jKj D�n �An and every simplex of K is contained (affinely) in a simplex of �n. We have a
map

j W kKk!An

that is linear on each simplex. Note, however, that j is not induced by a simplicial map. The map j is
not an inclusion but its restriction to kKk is, and its image is �n.
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Proposition 4.18 The inclusion of sheaves j W kKk ,!�n admits a weak deformation retraction. More
precisely, there is a map r W�n!kKk and a smooth homotopy

fht WA
n
!Angt2Œ0;1�

which restricts to a homotopy �n �A1!�n between the identity and jr , and to a homotopy

kKk�A1!kKk

between the identity and rj.

This is a consequence of the lemma below:

Lemma 4.19 Given a subdivision K of the n–simplex �n as in Proposition 4.18, there exists a smooth
homotopy fht WAn!Angt2Œ0;1� such that

(i) h0 is the identity,

(ii) ht maps each closed simplex �n � kKk to itself for all t , and

(iii) each closed simplex �n � kKk �An has a neighborhood in An which gets mapped to that same
simplex by h1.

Proof We use the following terminology during this proof: for a simplex � of K, a homotopy of maps
.ft W An! An/t2Œc;d� satisfies property (iii)� if � has a neighborhood in An which gets mapped to �
by fd .

Fix some k with �1 � k � n and suppose per induction that we have already constructed a smooth
homotopy .ht WAn!An/t2Œ0;a� for some a<1 satisfying conditions (i), (ii) and (iii)� for every simplex �
of dimension at most k.

We want to extend this to a smooth homotopy .ht WAn!An/t2Œ0;b�, where b > a, that satisfies conditions
(i), (ii) and (iii)� for every simplex � of dimension at most kC 1.

For a closed k–simplex � , let W� be a neighborhood of � in An which gets mapped to � by ha. This
exists by the inductive assumption. We shall define a homotopy

.gt WA
n
!An/t2Œ0;b�a�;

where g0 D id, gt maps each simplex of kKk to itself for all t , and gb�a maps an appropriate subset of
the interior of each .kC1/–simplex in An to that same simplex. Appropriate means it should be large
enough so that its union with the W� , over all boundary faces � � � , contains � , and small enough so
that the various open subsets for different .kC1/–simplices are disjoint. Once the homotopy gt is given,
we can simply define .ht /t2Œ0;b� as the concatenation of .ht /t2Œ0;a� and .gt�aha/t2Œa;b�. (In order for
the concatenation to be smooth, we may arrange so that the homotopy .ht /t2Œ0;a� is stationary for t close
to a and the homotopy .gt / is stationary for t close to 0.)
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To describe gt we first choose, for each .kC1/–simplex � , a small tubular neighborhood U.�/ of int.�/
in An such that, for each point x 2 int.�/ and every closed simplex � of kKk, the intersection U.�/x \ �
is a linear cone in An. That is, there exist linearly independent vectors v1; : : : ; vl such that points in
U.�/x \ � are of the form c0v0C c1v1C � � �C clvl with ci � 0. By shrinking if necessary, we may also
assume that U.�/\U.� 0/ is empty if � and � 0 are distinct .kC1/–simplices.

Pick an open subset V.�/ of the interior of each .kC1/–simplex � , with compact closure, whose union withS
face � W� \� is the closed simplex � . Then use the linear coordinates on the tubular neighborhood U.�/

to obtain a map
 W U.�/! U.�/

over int.�/ satisfying the following conditions: for x close to the boundary of � ,  x is the identity; for x
in V.�/,  x.v/D 0 for v 2 U.�/x and jvj small and  x.v/D v for jvj large. Extend by the identity to
obtain a map g�1 W A

n! An. Linearly interpolate between the identity and g�1 to get a homotopy .g�t /
and concatenate the .g�t / for all � , to obtain the homotopy .gt /.

Proof of Proposition 4.18 The lemma gives us a smooth homotopy h on An. Condition (ii) implies that
h restricts to a homotopy fht W kKk! kKkg. Condition (iii) gives the required factorization of h1 as

�n r
�! kKk

j
�!�n

in the category of sheaves of sets, where the factorization of h1 through kKk defines r .

Remark 4.20 Lemma 4.19 admits a more general version which applies to arbitrary manifolds M
equipped with a suitable triangulation, though we will not require that level of generality. This is claimed
in [Madsen and Weiss 2007, Appendix A.1].

An inclusion of simplicial complexes L ,!K is called a relative horn inclusion if K is obtained from L

by attaching a simplex along a horn in L (we assume that the horn is embedded in L). The following
lemma will be crucial to the proof of Proposition 4.1:

Lemma 4.21 Let B be a subdivision of �n. Given a sequence of relative horn inclusions

AD A0 ,! A1 ,! � � � ,! Al ;D B;

there exists a weak deformation retraction of kBk onto kAk. That is , a homotopy H W kBk�A1!kBk

such that H restricts to a homotopy kAk�A1!kAk, H0 D id and H1 factors through kAk.

We introduce some terminology in preparation for the proof of this lemma. Let 0 < k � l . A homotopy

H .k/
W kBk�A1!kBk

is said to have property .�k/ if H .k/ restricts to a homotopy kAkk�A1!kAkk, H0D id and H1 factors
through kAkk.
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Proof Before tackling the lemma in full generality, we prove it for the easy case of A0 ,! A1 D B

for a single horn inclusion ƒ ,! �n. Choose a subdivision T of �n which is the simplicial cone on
a subdivision of �n�1. For concreteness, we take T to be the simplicial cone of sd�n�1, the first
barycentric subdivision of �n�1. (That is, T is the nerve of the category obtained by adjoining a terminal
object v to the poset of nondegenerate simplices of the standard .n�1/–simplex.) We refer to T as the
cone-subdivision of the n–simplex. Here is a picture for nD 3:

�
�

�

�
c �

�

v

By Proposition 4.18, we have a weak deformation retraction

h W�n �A1!�n

of �n onto kT k. Let T 0 be the simplicial complex obtained from T by discarding the vertex c 2 T
corresponding to the top simplex in �n�1. (To obtain a simplicial complex, we must also discard all the
simplices in T that have c as a face.) Then T 0 is a subdivision of the n–dimensional horn and h restricts
to a weak deformation retraction of kƒk onto kT 0k.

The inclusion i W T 0 ,! T admits a retraction r W T ! T 0, essentially given by collapsing c onto v. This is
a simplicial map; it is the application of the appropriate degeneracy map on each simplex of T. Moreover,
we can construct a homotopy on each simplex of T between the identity and said degeneracy map. This
can be done by linear interpolation, for example. Thus we obtain a deformation retraction

h0 W kT k�A1!kT k

of kT k in kT 0k. Clearly, the composition (concatenation) of h and h0 gives a homotopy H satisfying the
conditions of the lemma, ie having property .�0/.

With this special case in hand we proceed to the general one, arguing by induction. Suppose we have
constructed a homotopy H .k/ having property .�k/. We now construct a homotopy H .k�1/ having
property .�k�1/ as follows. Firstly, take a subdivision K of Ak (and hence a subdivision of Ak�1) that
restricts to the cone triangulation on the simplex attached to Ak�1. Lemma 4.19 gives us a homotopy
on �n that restricts to a homotopy

f W kAkk�A1!kAkk

with f0 D id and which factors through kKk at time 1.
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Now, by collapsing the cone subdivision of the attached simplex to the (subdivided) horn using the
simplicial map from the case of a single horn inclusion, we obtain a homotopy

g W kKk�A1!kKk � kAkk

with g0 D id and which factors through kAk�1k at time 1. Compose (concatenate) the homotopies f
and g to obtain a homotopy h on kAkk. Then define H .k�1/ to be composition of H .k/ and h. For this
composition to be smooth, we emphasize that it is important to first apply Lemma 4.19 to the whole
of kAkk, not just the on the simplex that we are collapsing. This completes the induction.

Corollary 4.22 The extended-simplices version of Lemma 4.21 holds. Namely, under the conditions of
that lemma , kBk weak deformation retracts onto kAk. That is , there exists a homotopy G W kBk�A1!

kBk such that G restricts to a homotopy kAk�A1!kAk, G0 D id and G1 factors through kAk.

Proof Starting from the homotopy H W kBk�A1!kBk of Lemma 4.21, we obtain a homotopy

zH W kBk�A1 �
�! kBk�A1 H

�! kBk i
�! kBk;

where i is the inclusion and � is the map constructed in Lemma 4.16. It is clear that zH restricts to a
homotopy on kAk, zH0 D �i and zH1 factors through kAk. Now define G as the concatenation of the
homotopy on kBk from Lemma 4.16 (between the identity and �i ) with the homotopy zH.

4d Proof of Propositions 4.1, 4.2 and 4.3

For concreteness, we assumeF to be injectively fibrant (by replacing it if necessary) so that Proposition 4.11
applies.

Proof of Proposition 4.1 Let I W A ,! B denote the map

hi W Sdi .ƒkŒn�/ ,! Sdi .�Œn�/

with i � 0, n� 1 and 0� k� n, as in Definition 3.8. We write �DkIkpre. By adjunction of Definition 4.4,
it suffices to find weak liftings

kAkpre F

kBkpre

f

�
z̨

together with a homotopy H W kAkpre�k�
1kpre!F between z̨� and f. Indeed, this gives us the required

homotopy A��Œ1�! F.A�/ by precomposing H with kA��1kpre!kAkpre �k�
1kpre and applying

the adjunction again. It also suffices to solve the above problem with k�kpre replaced by k�k everywhere.
This is allowed since F is an1–sheaf and the map k�kpre!k�k is by definition a sheafification.
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The strategy is to find a homotopy retraction of �, ie a map r W kBk ! kAk together with a homotopy
kAk � k�1k ! kAk between r� and the identity. In fact, we construct this homotopy on kAk as the
restriction of a homotopy on kBk. (We will need this stronger statement in the proof of Proposition 4.2.)
This is achieved by a direct application of Corollary 4.22. More precisely, we choose a sequence of
relative horn inclusions from AD sdi ƒn

k
to B D sdi �n for each i � 0, n > 0 and 0� k � n, and apply

Corollary 4.22. (A proof that such a sequence exists can be found in [Moss 2020, Proposition 19].) That
the resulting homotopy preserves the 0–simplices of each horn follows directly from its construction.

Proof of Proposition 4.2 We keep the notation I W A ,! B for the map hi as in Definition 3.8. As
in the proof of Proposition 4.1, we use the adjunction of Definition 4.4 and the natural transformation
k�kpre!k�k to reduce the problem to constructing certain maps of sheaves of sets.

Let P denote the pushout of sheaves of sets

kAk�A1 tkAk�@A1 kBk� @A
1:

To verify the weak RLP with respect to kIk, it suffices to prove that, for any map ˛ W P ! F, there is a
dashed map z̨ as in

P F

kBk�A1

˛

�
z̨

making the diagram commute up to a homotopyH WP �A1!F from ˛ to z̨� which is fixed on kBk�@A1

pointwise. Being fixed pointwise means that the restriction of H to .kBk � @A1/�A1 factors as the
projection to kBk� @A1 followed by ˛. The result now follows from the lemma below.

Lemma 4.23 Suppose I W A ,! B is the map hi as in Definition 3.8 and P is the pushout of sheaves
of sets kAk �A1 tkAk�@A1 kBk � @A

1. Then kBk �A1 weak deformation retracts onto P, relative to
kBk� @A1.

Proof We need to show that there is a homotopy H W .kBk�A1/�A1!kBk�A1 such that

(1) H restricts to a homotopy P �A1! P which fixes kBk� @A1 pointwise;

(2) H0 is the identity and H1 factors through P.

Choose a bump function c WA1! Œ0; 1��A1 with c � 0 in an open neighborhood of .�1; 0�[ Œ1;1/,
and c � 1 in a open neighborhood J of 1

2
, c.t/ increasing for t � 1

2
and decreasing for t � 1

2
. Then

choose a function f WA1!A1 with f .t/� 0 when c ¤ 1 and t � 1
2

and f .t/� 1 when c ¤ 1 and t > 1
2

.
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Let HB W kBk�A1!kBk be the weak deformation retraction constructed in the proof of Proposition 4.1.
Define maps R1; R2 W .kBk�A1/�A1!kBk�A1 as

R1.x; t; s/D
�
HB.x; s � c.t//; t

�
and R2.x; t; s/D .x; s �f .t/C .1� s/t/

for x 2 kBk and t; s 2A1. Then define H as

.x; t; s/ 7!

�
R1.x; t; 2s/ for s � 1

2
;

R2.R1.x; t; 1/; 2s� 1/ for s > 1
2
:

Now R1 and R2 separately satisfy condition (1), so H does as well. As for property (2), we have that
H.x; t; 1/D .x0; t 0/, where x0 DHB.x; c.t// and t 0 D f .t/. If t 2 J then c D 1 and so x0 2 kAk, and if
t … J then f .t/ 2 @A1. Therefore, H1 factors through P.

Proof of Proposition 4.3 The proof is of the same sort as that of Proposition 4.2, using the adjunction
of Definition 4.4 and the natural transformation k�kpre! k�k to reduce the problem to constructing
certain maps of sheaves of sets. Let I W A ,! B be the map hi as in Definition 3.8. Consider the pushout

P WD Sn �kAkt��kAk ��kBk:

The same manipulations as before show that, to verify the weak RLP with respect to i , it suffices to prove
that, for any map ˛ W P ! F, there is a map z̨ as in

P F

Sn �kBk

˛

�
z̨

making the diagram commute up to a homotopy P �A1! F from ˛ to z̨� which is fixed on ��kBk
pointwise. The result now follows from a lemma analogous to Lemma 4.23, below.

Lemma 4.24 Suppose I W A ,! B is the map hi as in Definition 3.8 and P is the pushout of sheaves of
sets Sn �kAkt��kAk ��kBk. Then kB �Snk weak deformation retracts onto P, relative to kBk��.

Proof As before, we need to show that there is a homotopy H W .kBk�Sn/�A1!kBk�Sn such that

(1) H restricts to a homotopy P �A1! P which fixes kBk�� pointwise;

(2) H0 is the identity and H1 factors through P.

Let �2D� �Dı �Sn be open disk neighborhoods of radii � and ı with � < ı. Choose a smooth function
c W Sn! Œ0; 1��A1 such that cjSnnD� � 0 and c.�/D 1. For example, we can choose c to be a bump
function with support in D� that is 1 at the basepoint.

Also choose a homotopy h WA1�Sn!Sn such that h.1;�/jD� is constant to �2Sn and h.t;�/jSnnDı D
id. In words, this homotopy collapses a neighborhood of the basepoint to itself.
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Let HB W kBk�A1!kBk be the map constructed in the proof of Proposition 4.1. We construct H as
the composition of two homotopies. Define

R1 W S
n
�kBk�A1! Sn �kBk; R1.z; x; t/D

�
z;HB

�
x; t.1� c.z//

��
;

and

R2 W S
n
�kBk�A1! Sn �kBk; R2.z; x; t/D .h.t; z/; x/:

The first homotopy collapses Sn�kBk onto Sn�kAk outside a neighborhood N �D� of the basepoint.
The second collapses D� �kBk to ��kBk. The composition of these homotopies satisfies the claimed
properties.

5 The shape functor preserves the 1–sheaf property

In this section we assemble the previous results to prove Theorem 1.2. Our approach uses the following
characterization of1–sheaves:

Theorem 5.1 A presheaf F WManop
! S is an1–sheaf if and only if F.¿/' � and

(1) for all manifolds M and open covers of M with two elements fU; V g, the commutative square

F.M/ F.V /

F.U / F.U \V /

is a homotopy pullback square; and

(2) if M is a (possibly infinite) disjoint union of submanifolds Ui , then F.M/!
Qh
i F.Ui / is a weak

equivalence.

This is probably well known and is similar to a special case of [Weiss 1999, Theorem 5.2; Boavida de
Brito and Weiss 2013, Theorem 7.2]. For completeness, we provide a proof below. In preparation, we
record the following:

Lemma 5.2 A presheaf F WManop
! S is an1–sheaf if and only if , for every open cover fUigi2I , the

canonical map

F.M/! holim
S�I

F.US /

is a weak equivalence , where the homotopy limit ranges over all finite , nonempty subsets S � I and US
is notation for

T
i2S Ui .
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Proof For the duration of this proof we will write n for the set f0; : : : ; ng to distinguish it from the total
ordered set Œn� WD f0� � � � � ng.

We need to show that

.5.3/ holim
Œn�2�

Y
i0;:::;in2I

F.Ui0 \ � � � \Uin/' holim
S�I

F.US /:

First suppose that I is finite and pick a total order on I. We can then replace the homotopy limit on the left
by replacing the product over sequences i0; : : : ; in with the product over ordered sequences i0 � � � � � in.
To see this, view the left-hand side of the display as a homotopy limit of a (covariant) functor from D to
spaces, where D is the category whose objects are sequences i0; : : : ; in and morphisms are induced by �
and correspond to merging repeated elements or adding new ones. More precisely, an object is a map
i W n! I and a morphism from t Wm! I to i W n! I is an order-preserving map � Wm! n such that
t D � i .

Let D0 be the full subcategory of D consisting of ordered sequences i0 � � � � � in, ie functors Œn�! I.
There is a canonical functor o WD!D0 that orders each sequence. Namely, for a sequence i0; : : : ; in, ie
a map i W n! I, precompose with the unique bijection f W n! n such that if is order-preserving and
the restriction of f to .if /�1.j / is order-preserving for each j 2 I. Given a morphism � in D from
t Wm! I to i W n! I, its image under o is the morphism from o.t/D gt to o.i/D if in D0 given by
f �1�g W Œm�! Œn� (this is indeed order-preserving since g reverses the order of two elements if and only
if f does).

We claim that this functor o, sending i to if, is homotopy initial. That is, for each ordered sequence Œi � WD
.i0�� � �� in/, the comma category o=Œi � is contractible. To prove this, we show that the identity map on the
classifying space of o=Œi � is null-homotopic by considering functorsA; const Wo=Œi �!o=Œi �. The functorA
sends an object in o=Œi �, ie a morphism o.a0; : : : ; ak/! Œi � inD0, to the object o.i0; : : : ; in; a0; : : : ; ak/!
Œi � which merges all repetitions. The functor const sends all objects to the identity o.i0; : : : ; in/! Œi �.
For each object o.a0; : : : ; ak/! Œi �, there are morphisms in o=Œi �,

o.a0; : : : ; ak/! o.i0; : : : ; in; a0; : : : ; ak/ o.i0; : : : ; in/;

induced by faces in �, ie adding new elements. These define natural transformations id) A( const,
proving the claim.

Secondly, given an ordered sequence, we can forget its ordering and view it as a finite subset of I. This
construction defines a functor � from D0 to the category of nonempty subsets of I. Then, for each S � I,
the comma category �=S is contractible since it is the category of simplices of the nerve of S (viewed
as a poset with respect to the total ordering induced from the inclusion S � I ). In other words, � is
homotopy initial.

We have shown that, for a finite set I, the map induced by �o gives a weak equivalence (5.3). It is clear
that this is natural with respect to inclusions of finite sets I 0 � I. So, to prove (5.3) for a general indexing
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set I, we can reduce to the finite case by taking the homotopy limit of weak equivalences (5.3) over all
finite subsets of I. In more detail, we have a commutative square

holimS�I F.US / holimJ�I holimS�J F.US /

holimi W n!I F.Ui0 \ � � � \Uin/ holimJ�I holimi W n!J F.Ui0 \ � � � \Uin/

where the first homotopy limits in the right column run over finite subsets J � I. We have shown that
the right-hand map is a weak equivalence. The horizontal maps are also weak equivalences, which we
can see by identifying the double homotopy limits with a single homotopy limit over a Grothendieck
construction (Thomason’s homotopy colimit theorem). We will explain this briefly for the lower map; the
upper one is similar and almost identical to an argument in the proof of Theorem 5.1. In that case, the
double homotopy limit is identified with the homotopy limit over the category whose objects are pairs
n! J � I with J finite, and morphisms are maps of such. The forgetful functor from this category
to D, sending a pair n! J � I to its composite n! I, is homotopy initial since the relevant comma
categories have a terminal object.

Proof of Theorem 5.1 If F is an 1–sheaf then conditions (1) and (2) are immediate in view of
Lemma 5.2.

To show the converse, suppose first that M is a compact manifold and take an open cover fUigi2I of M.
For every finite subcover fUj gj2J with J � I of fUigi2I , the homotopy limit

holim
S�J

F.US /

is indexed over a finite category (a cube) and so it is equivalent to an iterated homotopy pullback.
Condition (1) applied inductively shows that this iterated homotopy pullback is F.M/. Then consider the
square

F.M/ holimJ�I F.M/

holimS�I F.US / holimJ�I holimS�J F.US /

'

'

'

where the outer homotopy limits in the right column are indexed by finite refinements, ie finite subsets
J � I such that fUj gj2J is still a cover. The right-hand map is a weak equivalence by the observation
just made. The poset of finite refinements is filtered, and hence contractible, and so the top horizontal
map in the square is also a weak equivalence. As for the lower horizontal map, one can, by Thomason’s
homotopy colimit theorem, express the double homotopy limit as a homotopy limit over the category —
call it P — whose objects are pairs S � J � I and morphisms are inclusions of such. The forgetful map
� from P to the poset of finite, nonempty subsets S � I is homotopy initial since, for each S � I, the
overcategory �=S is the filtered poset of all refinements J containing S.
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To prove the noncompact case, we will assume for the moment that F satisfies the following condition,
which implies condition (2):

(20) For any manifold M and an open cover fVigi�0 by a nested sequence of open sets with Vi � ViC1,
the canonical map

F.M/D F

�[
i

Vi

�
! holim

i
F.Vi /

is a weak homotopy equivalence.

Assuming F satisfies (1) and (20), we will now prove that it satisfies the 1–sheaf condition for any
noncompact manifold. So let M be a noncompact manifold, and take an exhaustion of M by interiors of
compact manifolds V0 � V1 � � � � with M D

S
Vi . Such an exhaustion can be obtained by picking a

smooth proper map f WM ! R and setting Vi to be the interior of f �1..�1; i �/. Then, for an open
cover fUi !M gi2I ,

.5.4/ holim
S�I

F.US /' holim
S�I

holim
j�0

F.Vj \US /

by (20) applied to the covers fUS \Vj ! USgj for each S. Now commute the homotopy limits and use
that the cover fVj \Ui ! Vj gi (for a fixed j ) has a finite subcover to conclude, using (1), that (5.4) is
weakly equivalent to

holim
j�0

F.Vj /:

By invoking (20) again, this homotopy limit is weakly equivalent to F.M/.

We are left to show that conditions (1) and (2) jointly imply condition (20). Suppose fVig is an open
cover as in (20). Let W0 be the disjoint union of VkC2 nVk , taken over k even, and let W1 be the disjoint
union of VkC2 nVk , taken over k odd. Then W0 and W1 form an open cover of M so, by (1), we have an
equivalence

F.M/! holim.F.W0/! F.W0\W1/ F.W1//:

By (2), the target is equivalent to

holim
�
holim
i

F.W0\Vi /! holim
i

F.W0\W1\Vi / holim
i

F.W1\Vi /
�
;

which, by commuting homotopy limits and using (1), is equivalent to holimi F.Vi /.

Remark 5.5 In a previous iteration of this paper, Theorem 5.1 had a stronger condition (2). The referee
kindly pointed out to us that our proof implied the new (weaker) statement and suggested the simple
argument of the last paragraph of the proof.

Remark 5.6 The same proof works for topological manifolds. The main observation for the noncompact
case is that there exists a proper map M ! R for M a topological manifold (the requirement is that
partitions of unity exist). For generalizations of these statements, see [Pavlov 2022].
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We shall tackle properties (1) and (2) for BF separately below. We call them the finite and noncompact
cases, respectively.

5a The finite case

Theorem 5.7 Let F WManop
! S be an1–sheaf and M a smooth manifold with U and V two open

subsets of M such that U [V DM. Then the commutative square

BF.M/ BF.V /

BF.U / BF.U \V /

is homotopy cartesian.

Proof The (homotopy) pullback

.BF.U /�BF.V //�map.@�1;BF.U\V // map.�1;BF.U \V //

is identified with

.5.8/ .BF.U /�BF.V //�h
BF.U\V�@A1/BF.U \V �A1/

since BF is concordance-invariant. By Proposition 4.2, we may commute the homotopy pullback with
geometric realization, and thus (5.8) is identified with the geometric realization of the simplicial space

.5.9/ .F.U �A�/�F.V �A�//�h
F .U\V�@A1�A�/ F.U \V �A1 �A�/:

To prove that the map from F.M �A�/ to (5.9) is a weak equivalence after realization, we first refine the
cover in a convenient way using a partition of unity subordinate to fU; V g. So let fU WM ! Œ0; 1� and
fV WM ! Œ0; 1� with fU C fV � 1, and supp.fU /� U and supp.fV /� V. Take U 0 D f �1U

�
2
3
; 1
�

and
V 0 D f �1V

�
2
3
; 1
�
. Notice that U 0\V 0 D∅, and fU 0; V 0; U \V g covers M. Let c WA1!A1 be a cutoff

function with cj.�1;1=3/ � 0 and cj.2=3;1/ � 1, and define f WD c ıfV jU\V , so that f W U \V !A1.

Rearrange (5.9) as an iterated homotopy pullback and consider the maps

F.U �A�/�h
F .U\V�A�/ F.U \V �A1 �A�/�h

F .U\V�A�/ F.V �A�/

F.U 0 �A�/�h
F .U 0\V�A�/ F.U \V �A1 �A�/�h

F .U\V 0�A�/ F.V
0 �A�/

F.U 0 �A�/�h
F .U 0\V�A�/ F.U \V �A�/�h

F .U\V 0�A�/ F.V
0 �A�/

res

pr� f �

The restriction map from F.M � A�/ to the last space is a weak equivalence since fU 0; U \ V; V 0g
coversM and F is an1–sheaf. Similarly, the map res is a levelwise weak equivalence since fU 0; U \V g
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covers U and fV 0; U \V g covers V. The arrow pr� is induced by the projection pr W .U \V /�A1!U \V.
We obtain a map U \ V ! .U \ V /�A1 from f W U \ V ! A1, defined in the previous paragraph.
By construction, f jU 0\V D 0 and f jU\V 0 D 1, which is precisely the compatibility condition required
to extend to a map on sections in the fibered product, which we denote by f �. Notice that, since
pr ı .idU\V ; f /D idU\V , we have .idU\V ; f /� ı pr� D id. It remains to show that pr� ı .idU\V ; f /�

is homotopic to the identity.

We consider the interpolation h W ..U \ V / �A1/ �A1 ! A1 between f ı pr and the projection map
q W .U \V /�A1!A1, given by

h.t/D .1� t / � qC t � .f ı pr/

and extend it to a smooth homotopy

H D .idU\V ; h/ W ..U \V /�A1/�A1! ..U \V /�A1/:

Since F.��A�/ sends smooth homotopies to simplicial homotopies (Proposition 2.9) and the mapH fixes
.U \V /� @A1 pointwise, the map H induces the required simplicial homotopy from pr� ı .idU\V ; f /�

to id.

Corollary 5.10 Let F be a presheaf on Man which satisfies the1–sheaf condition with respect to finite
covers. Then the evaluation map

BF.M/!map.SingM;BF /

is a natural weak equivalence of spaces for every compact manifold M.

Proof This follows from Theorem 5.7 and the proof of Proposition 2.17 applied to a finite good open
cover of M.

The beginning of the proof of Theorem 5.7 has the following obvious generalization, which is just a
consequence of Proposition 4.2:

Definition 5.11 For a diagram F !G H of1–sheaves, define the geometric homotopy pullback to
be the1–sheaf whose value at a manifold M is the homotopy pullback of the diagram

G.M �A1/

F.M/�H.M/ G.M/�G.M/

endpoints

Then, by Proposition 4.2, the classifying space functor B sends geometric homotopy pullbacks of
1–sheaves to homotopy pullbacks of spaces.
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5b The noncompact case

Theorem 5.12 Let fUigi�0 be a collection of manifolds (possibly noncompact). For an 1–sheaf
F WManop

! S, the natural map

BF

�G
i

Ui

�
!

Y
i

hBF.Ui /

is a weak equivalence.

We deduce this from the lemma below, by setting Fi D F.Ui ��/:

Lemma 5.13 Let fFigi2I be a collection of 1–sheaves indexed over a possibly infinite set I. Then the
map

.5.14/

ˇ̌̌̌Y
i

h Fi .A
�/

ˇ̌̌̌
!

Y
i

h
jFi .A

�/j

is a weak equivalence of spaces. In other words , the functor B preserves small homotopy products.

We use the symbol
Q
h for the homotopy product, ie the derived functor of the product. This has a

different meaning in simplicial spaces (with degreewise weak equivalences) and simplicial sets (with the
usual weak equivalences). In the simplicial space case, it means: replace each factor by a degreewise
fibrant simplicial space and then compute the product; in the simplicial set case, it means: replace each
factor by a Kan complex and then compute the product. The homotopy product (of spaces or of simplicial
spaces) agrees with the nonderived product when the indexing set is finite. In general, they do not agree
when the set is infinite but Lemma 5.13 says they agree for the concordance resolution.

Proof of Lemma 5.13 The following elegant argument was suggested to us by a referee. Without loss of
generality, we can assume Fi to be injectively fibrant, by performing an injective fibrant replacement
if necessary. Thus, Fi is valued in Kan complexes and the homotopy product

Q
i
h Fi can be computed

as the ordinary product
Q
i Fi . It then suffices to show that the map (5.14) induces an isomorphism on

homotopy groups for all degrees and basepoints.

We have
�n

�Y
i

jFi .A
�/j; x

�
Š

Y
i

�n.jFi .A
�/j; xi /Š

Y
i

�0Fi .S
n/xi=�;

where Fi .Sn/xi is the fiber Fi .Sn/! Fi .�/ over xi and � is the equivalence relation of concordance.
The second isomorphism follows from Lemma 4.13. On the other hand, appealing again to Lemma 4.13
but now for the1–sheaf

Q
i Fi , we have that

�n

�ˇ̌̌̌Y
i

Fi .A
�/

ˇ̌̌̌
; x

�
Š �0

�Y
i

Fi .S
n/xi

�.
�Š

�Y
i

�0Fi .S
n/xi

�.
�;
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where in this case � is the equivalence relation of componentwise concordance. The canonical mapY
i

�0Fi .S
n/xi=�!

�Y
i

�0Fi .S
n/xi

�.
�

is indeed a bijection since, in the category of Sets, infinite products commute with taking quotients by
equivalence relations.

6 What does the classifying space of an 1–category classify?

In this section, we suggest an answer to the question in the title. This expands on earlier questions and
earlier answers in [Moerdijk 1995; Weiss 2005]. Even earlier results on concordance classification of
C –bundles on manifolds (or paracompact spaces) for a topological category C (or even just a simplicial
space) are due to [Segal 1978; Stasheff 1972]. Our point of view is particularly close to Segal’s.

Throughout this section, we will take C to be a Segal space, although the discussion holds more generally
for any simplicial space. For convenience, we assume that C is Reedy fibrant as a simplicial space;
otherwise, the mapping spaces below need to be derived. (For definitions and more explanations, see
[Rezk 2001].) For example, C could be the (Reedy fibrant replacement of the) nerve of a (topological)
category. Informally, the following data should produce something deserving the name of a C –bundle on
a manifold M :

� an open cover UD fUig of M and a total order on its indexing set I,

� maps f�i W Ui ! C0 D ob.C /g,

� maps f�i<j W Ui \Uj ! C1 Dmor.C /g,

� etc.

These data are then required to satisfy compatibility conditions; eg for a point x 2 Ui \Uj , �i<j .x/ is a
morphism in C from �i .x/ to �j .x/. As everywhere else in this paper, space means simplicial set, so in
the above a map from Ui is taken to mean a map of simplicial sets from the singular simplices of Ui to a
given simplicial set.

We make the above informal description a C –bundle precise, as follows:

Definition 6.1 A C –bundle is an open cover UD fUi !M gi2I (we stress that here we do not require
that I be totally ordered) with a simplicial space map NU! C, where NU denotes the nerve of the
following topological poset. The space of objects isG

¿¤S�I

US ;
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where the coproduct runs over nonempty finite subsets S of I and US WD
T
s2S Us . Given objects .R; x/

and .S; y/ with x 2 UR and y 2 US , there is a morphism .R; x/! .S; y/ if and only if R � S (so that
US � UR) and x D y. Therefore, the space of morphisms isG

¿¤R�S

US :

We view NU as a simplicial space. Since NU is Reedy cofibrant, the mapping space map.NU;C /

agrees with the derived mapping space Rmap.NU;C /.

Remark 6.2 The informal description can be viewed as a special case of the definition by setting the
images of certain morphisms — prescribed according to the ordering of I — to be identities. Conversely,
given a C –bundle, it is sometimes possible to construct a C –bundle as in the informal description above
by adding to the collection U all finite intersections of open sets in the original cover and choosing a total
ordering on the resulting collection.

We now build a space of C –bundles. First, a definition:

Definition 6.3 For a manifold M, we define a simplicially enriched category Cov.M/ of open covers U

of M and their refinements. Recall that a refinement U! V is a choice of function ˛ W I ! J between
the indexing sets of the covers such that Ui � V˛.i/ for each i 2 I. We define a k–simplex in the space of
morphisms of Cov.M/,

map.U;V/;

to be a .kC1/–tuple of refinements ˛0; : : : ; ˛k WU! V. The face and degeneracy maps are clear.

The space map.U;V/ may of course be empty. If it is nonempty, it is the nerve of a groupoid, and for
every pair of objects ˛0; ˛1 there is by construction a unique morphism ˛0! ˛1. It follows that every
k–sphere in map.U;V/ has an unique filler for every k � 0. Therefore, map.U;V/ is either empty or
contractible. As such, Cov.M/ is equivalent (as a simplicially enriched category) to the preorder of open
covers U of M with order relation U� V if U refines V.

The assignment U 7!NU defines a simplicially enriched functor from Cov.M/ to the category of simplicial
spaces, since map.U;V/ is a subspace of the space map.NU; NV/ of simplicial space maps. Indeed,
each refinement U! V defines a map of simplicial spaces NU! NV. For each pair of refinements
˛0; ˛1 WU! V, the relations Ui � V˛0.i/ and Ui � V˛1.i/ imply that Ui � V˛0.i/\V˛1.i/ and, as such,
define a simplicial map NU��Œ1�!NV. More generally, a choice of refinements ˛0; : : : ; ˛k WU! V

implies the relation Ui � V˛0.i/\ � � � \V˛k.i/ and so defines a map NU��Œk�!NV.

Definition 6.4 The1–sheaf of C –bundles is the functor which to a manifold M associates the space

C .M/ WD hocolim
U!M

map.NU;C /
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given by the homotopy colimit of the enriched functor U 7!map.NU;C / on Cov.M/. This functor is
indeed enriched since, on morphisms, it is the restriction of the canonical map of spaces

map.NU; NV/!mapS.map.NV;C /;map.NU;C //

to mapCov.M/.U;V/.

The formula in this definition applies even if M has corners. So we may view C as a functor on the
larger category of manifolds with corners and smooth maps. In this setting, the subsheaf of sets �n �An

of Section 4b is representable.

Proposition 6.5 There is a canonical weak equivalence of simplicial spaces Ex1C ! C .��/.

Proof Let Cov denote the category Cov.�n/ of open covers of �n and refinements. Let Covsd be the full
subcategory of Cov spanned by open covers by open stars of the vertices of some barycentric subdivision
of �n �An. The set of objects of Covsd is therefore identified with the nonnegative integers: for each
i � 0, the corresponding open cover U.i/ of �n is indexed by the set of vertices of the i th barycentric
subdivision of �n. The simplicial space NU.i/ is degreewise weakly equivalent to the simplicial discrete
space SdiC1�Œn�. To see this, note that, for a subset S � Sdi �Œn�0, the space US is the open star of
the unique nondegenerate simplex in Sdi �Œn� with vertex set S, if that simplex exists, and otherwise is
empty; and the 0–simplices of SdiC1�Œn� are by definition the nondegenerate simplices of Sdi �Œn�.

For each i � 0, there is a contractible choice of morphisms U.i C 1/!U.i/ in Covsd. Among these, we
are interested in a specific morphism, namely the one whose underlying function between indexing sets
SdiC1�Œn�0D Sd.Sdi �Œn�/0! Sdi �Œn�0 is the last vertex map. The corresponding functor N!Covsd

that selects these morphisms is an equivalence of simplicial categories.

Write j W Covsd ,! Cov for the inclusion. Clearly, every open cover of �n can be refined by one in Covsd.
That is to say, for every open cover V of �n, the comma category j=V is nonempty. The category j=V

is equivalent to the discrete category (preorder) of open covers U.i/ in Covsd such that U.i/� V with
refinement relation �. Clearly, U.i/ �U.i 0/ if and only if i � i 0. From this description it is clear that
j=V is contractible. This shows that j is homotopy final, ie that the homotopy colimit defining C .�n/

may be indexed by the smaller Covsd.

To summarize, we have weak equivalences

hocolim
i>0

map.Sdi �Œn�;C /! hocolim
U2Covsd

map.NU;C /
j�
�! C .�n/

which are functorial in n, and so the result follows.

Theorem 6.6 For every smooth manifold M, the natural map

BC .M/!Rmap.M;BC /

is a weak equivalence. Here BC denotes the classifying space of C, ie the geometric realization of C

viewed as a simplicial space , and BC is the functor B applied to the1–sheaf in Definition 6.4.

Algebraic & Geometric Topology, Volume 24 (2024)



4930 Daniel Berwick-Evans, Pedro Boavida de Brito and Dmitri Pavlov

Proof This is immediate from Theorem 1.1, together with the identification of jC .��/j with jEx1C j

from Proposition 6.5, and jEx1C j with BC D jC j from Proposition A.13.

Remark 6.7 Clearly, if C ! D is a map inducing a weak equivalence between classifying spaces
BC ! BD, then BC .M/!BD.M/ is a weak equivalence for every manifold M. This is the case, for
example, if C !D is a Dwyer–Kan equivalence of Segal spaces.

Appendix Technical lemmas on simplicial sets and spaces

This appendix contains characterizations of weak equivalences in simplicial sets and simplicial spaces
in the form that is needed in the paper. For simplicial sets, this is classical but we could not find the
statements that we need in the literature (Examples A.5 and A.6). For simplicial spaces, this is less
standard, although it may well be known.

Aa Special criteria for simplicial weak equivalences

Proposition A.1 [Dugger and Isaksen 2004, Proposition 4.1] A map f WX!Y between Kan complexes
is a weak equivalence if and only if for every n� 0 and every commutative square

@�n X

�n Y

f

there is a lift as pictured making the upper triangle commute and the lower triangle commute up to a
homotopy H W�n ��1! Y which is fixed on @�n.

In Dugger and Isaksen’s terminology, a map f solving the lifting problem of this proposition is said to
have the relative homotopy lifting property (RHLP) with respect to @�n!�n.

It will be useful to think of these lifting properties in the following way. Let SŒ1� denote the category
whose objects are maps of simplicial sets and morphisms are commutative squares. Let � denote the
morphism in SŒ1�

@�n �n

�n �n ��1 t@�n��1 @�
n

i j

(with source i and target j ). Proposition A.1 then reads: a map f between Kan complexes is a weak
equivalence if and only if �� Wmap.j; f /!map.i; f / is a surjection.
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Corollary A.2 Let � 0 W i 0! j 0 be a commutative square weakly equivalent to � . (That is , � 0 is related to
� by a zigzag of weak equivalences of squares.) A map f WX! Y of simplicial sets is a weak equivalence
if and only if

Rmap.j 0; f /!Rmap.i 0; f /

is a surjection on �0, where Rmap refers to the homotopy function complex in SŒ1� relative to objectwise
weak equivalences.

Proof Since derived mapping spaces are invariant by weak equivalences by definition or construction, it
suffices to prove that f is a weak equivalence if and only if

.A.3/ Rmap.j; f /!Rmap.i; f /

is a surjection on �0. To interpret the derived mapping spaces, let us equip SŒ1� with the projective model
structure. In this model structure, an object (ie map) is fibrant if source and target are Kan simplicial sets.
Without loss of generality, we may assume that f is fibrant. Cofibrant objects are simplicial maps that
are cofibrations (between cofibrant objects, which is no condition here). Cofibrations are commutative
squares

A A0

B B 0

i j

(with source i and target j ) where the top map and the map

A0 tAB! B 0

are cofibrations of simplicial sets. It is not difficult to see that the morphism � is then a cofibration
between cofibrant objects. It follows that

�� Wmap.j; f /!map.i; f /

is identified with (A.3) and is a Kan fibration. Since a Kan fibration is surjective if and only if it is
surjective on �0, the result follows.

Below are three examples which give rise to equivalent lifting problems:

Example A.4 Let � 0 be the morphism in SŒ1�

@�n @�n ��1 t@�n�f1g�
n

�n �n ��1

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.
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Example A.5 Let � 0 be the morphism in SŒ1�

@�n @�n ��1 t@�n�f1g�
n

ƒnC1 ƒnC1 ��1 tƒnC1�f1g�
nC1

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.

Example A.6 Let D be the simplicial set defined as the quotient �2=d0 where d0 W�1!�2 is the face
that misses 0. The two remaining faces d1; d2 give two inclusions �1! D. Let � 0 be the morphism
in SŒ1�

@�n �n t@�n @�
n ��1

�n �n ��1 t@�n��1 @�
n �D

i 0 j 0

Then � 0 is weakly equivalent to � and is a projective cofibration.

So, in view of the previous result, a map f WX ! Y between Kan complexes is a weak equivalence if
and only if

.� 0/� Wmap.j 0; f /!map.i 0; f /

is surjective for � 0 W i 0! j 0 as in the examples above.

Ab Criteria for realization weak equivalences

Definition A.7 A simplicial space is a contravariant functor from � to spaces (alias simplicial sets).

A simplicial space Œm� 7!Xm may be viewed as a bisimplicial set, ie a contravariant functor from ���

to Sets. However, the two � directions play different roles and it is important to distinguish them.

A map X ! Y between simplicial spaces is a (degreewise) weak equivalence if, for each m � 0, the
map Xm ! Ym is a weak equivalence of spaces. We write Rmap.X; Y / for the homotopy function
complex with respect to degreewise weak equivalences. This may be computed as map.Xc ; Y f / in
a model structure on simplicial spaces with levelwise weak equivalences, for a cofibrant replacement
Xc!X and a fibrant replacement Y ! Y f. There are two canonical choices for such a model structure:
the Reedy (= injective) model structure and the projective model structure.

The diagonal functor d W sS! S has a left adjoint dŠ which is the unique colimit-preserving functor with
dŠ.�

n/D�n˝�Œn�. (For a simplicial set K and a simplicial space X, the tensor K˝X is the simplicial
space with n–simplices K �Xn.)
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There is another colimit-preserving functor ı W S! sS defined by ı.�n/D�Œn�, ie pullback along the
projection onto the first factor ���!�. The projection �n˝�Œn�!�0˝�Œn� induces a natural
transformation dŠ! ı.

Lemma A.8 For each simplicial set X, the natural map dŠ.X/! ı.X/ is a degreewise weak equivalence
of simplicial spaces.

Proof For representables, this is clear. A general simplicial setX is a filtered colimit of finite-dimensional
simplicial sets Xi and filtered colimits of simplicial spaces are homotopy colimits, so it is enough to prove
the statement for finite-dimensional simplicial sets. Suppose that we have proved the statement for all
simplicial sets of dimension < n. We want to prove the statement for a simplicial set X of dimension n.
Let skn�1X denote the .n�1/th skeleton of X, so that we have a pushoutF

Xn
@�n skn�1X

F
Xn
�n X

Since dŠ and ı are colimit-preserving, the result follows by induction and the case of representables.

Proposition A.9 Let f W X ! Y be a map between Reedy fibrant simplicial spaces which satisfy the
Kan condition. Then jf jW jX j ! jY j is a weak equivalence if and only if every square

@�Œn� X

�Œn� Y

has a lift as pictured making the lower triangle commute up to a given homotopy �Œn���Œ1�! Y and
making the upper triangle commute up to a given homotopy @�Œn���Œ1�!X. These two homotopies
are required to be homotopic as maps @�Œn� � �Œ1� ! Y and the homotopy should be constant on
@�Œn�� @�Œ1�.

Proof Since X and Y are Kan complexes and d preserves Kan fibrations (Remark 3.20), jX j and jY j
are Kan complexes. In view of Proposition A.1, Example A.6 and the remarks that follow it, jf j is a
weak equivalence if and only if the map

� 0
�
Wmap.i 0; jf j/!map.j 0; jf j/

is surjective (using the notation from Example A.6). By adjunction, this is equivalent to saying that

.A.10/ .dŠ�
0/� Wmap.dŠi 0; f /!map.dŠj 0; f /
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is surjective. Since f is a map between Reedy fibrant simplicial spaces, it is a fibrant object in sSŒ1� with
the projective model structure on the category of functors Œ1�! sS, where sS is equipped with the Reedy
model structure. Since dŠ preserves monomorphisms, dŠ� is a cofibration between cofibrant objects in
that same model structure (see the proof of Corollary A.2). Therefore, the map (A.10) is a fibration and
as such it is surjective if and only if it is surjective on �0. These considerations also lead us to identify
(A.10) with the map on derived mapping spaces

.dŠ�
0/
�
WRmap.dŠi 0; f /!Rmap.dŠj 0; f /;

which by Lemma A.8 is identified with

ı.� 0/� WRmap.ı.i 0/; f /!Rmap.ı.j 0/; f /:

Since ı.� 0/ is also a cofibration between cofibrant objects, this map is identified with

ı.� 0/� Wmap.ı.i 0/; f /!map.ı.j 0/; f /:

The surjectivity of this last map is equivalent to the existence of the lift in the statement of the proposition.

Corollary A.11 Let f W X ! Y be a map between Reedy fibrant simplicial spaces. Suppose that for
every j � 0 and every square

Sdj @�Œn� X

Sdj �Œn� Y

there is a lift as pictured making the lower triangle commute up to a given homotopy Sdj �Œn���Œ1�! Y

and making the upper triangle commute up to a given homotopy Sdj @�Œn� ��Œ1�! X. These two
homotopies are required to be homotopic as maps Sdj @�Œn���Œ1�! Y and the homotopy should be
constant on Sdj @�Œn�� @�Œ1�. Then jf jW jX j ! jY j is a weak equivalence.

Proof Apply Proposition A.9, replacing X and Y by the simplicial spaces Ex1X and Ex1 Y, which
satisfy the Kan condition by Proposition A.13.

Ac Properties of subdivisions of simplicial spaces

Recall the simplicial subdivision sd�n, ie the nerve of the poset of nonempty subsets of Œn�D f0; : : : ; ng.

Definition A.12 Denote by
Sd W sS! sS

the simplicial left adjoint functor that sends �Œn� to sd�n viewed as a simplicial discrete space. Denote
by

Ex W sS! sS

the simplicial right adjoint functor of Sd.

Algebraic & Geometric Topology, Volume 24 (2024)



Classifying spaces of infinity-sheaves 4935

Every simplicial discrete space is Reedy cofibrant, so, replacing X by a Reedy fibrant simplicial
space Xf, we may write the right derived functor of Ex evaluated at X as the (honest) mapping space
map.Sd�Œn�; Xf /.

There is a natural map  W Sd�Œn�!�Œn�, sending a subset fi0; : : : ; ikg � Œn� to ik (the last vertex). The
colimit

X �
�! ExX �

�! Ex2X ! � � �

is denoted by Ex1X. The map  has a section �Œn�! Sd�Œn� so if X is Reedy fibrant, all the maps in
the tower are degreewise cofibrations and so the colimit computes the homotopy colimit.

We collect the important properties of the Ex1 endofunctor below. These parallel (or, rather, include) the
well-known ones for simplicial sets.

Proposition A.13 For a simplicial space X :

(1) Ex1X is a Kan simplicial space.

(2) X ! Ex1X is a weak equivalence after geometric realization.

(3) For each i , including i D 1, Exi preserves (trivial ) Kan fibrations , zero simplices and finite
homotopy limits

Proof By construction, the functor Exi for 0� i �1 sends weak equivalences of simplicial spaces to
weak equivalences. If X is Reedy fibrant then

map.Sd�Œn�; X/!map.Sd @�Œn�; X/

is a fibration (since Sd @�Œn�! Sd�Œn� is a degreewise monomorphism, hence a cofibration). Therefore,
ExX is Reedy fibrant. By standard compactness arguments, it follows that Ex1X is also Reedy fibrant.
Hence, in proving .1/, .2/ and .3/, we may assume from the outset that X is Reedy fibrant.

The arguments to prove .1/ and .3/ are identical to the classical ones for simplicial sets, so we do not
reproduce them here. As for .2/, take a trivial Kan fibration X 0!X, where X 0 is a simplicial set (see
[Lurie 2011, Proposition 7]), and consider the square

X 0 ExX 0

X ExX

Since the diagonal preserves trivial Kan fibrations, the vertical maps are weak equivalences after applying
the diagonal (for the right-hand one, use part .3/). The top horizontal map is a weak equivalence; see eg
[Goerss and Jardine 1999, Chapter III, Theorem 4.6]. We conclude that the diagonal of the lower map is
a weak equivalence.
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1 Introduction

The celebrated Hirzebruch–Riemann–Roch theorem (HRR) [Hirzebruch 1954] is a generalization of the
classical Riemann–Roch theorem for holomorphic line bundles on compact Riemann surfaces. In HRR,
the setting of a line bundle on a Riemann surface is generalized to an arbitrary holomorphic bundle E on
a smooth projective variety X over the complex numbers. The main tool in proving HRR is a resolution
of the diagonal X!X �X, thought of as a coherent sheaf on X �X, by a finite chain complex of vector
bundles.

The Atiyah–Singer index theorem [1968], and the theory of elliptic and pseudoelliptic differential operators,
can further be thought of as a far-reaching generalization of HRR and other high-powered theorems, such
as the Gauss–Bonnet theorem, to a much vaster context. For example, using the Atiyah–Singer index
theorem one can readily extend HRR to holomorphic bundles on even compact complex manifolds that
are not necessarily algebraic (see for example [Freed 2021] for an exposition).

Unfortunately, such techniques, found in work by Atiyah, Bott and Patodi [1973] as well as by Gilkey
[1973], use differential geometric methods that heavily rely on an auxiliary choice of a Hermitian metric
on the manifold as well as the bundle. For example, one uses the metric to establish a heat flow and
smooth out the diagonal de Rham current X!X �X into a differential form (the heat kernel). However,
generally, in complex geometry choosing a metric can be thought of as unnatural and out of context
unless within the very specialized realm of Kähler geometry.

Casting this as a deficiency is not only a matter of taste but concerns applications of these ideas to settings
where local automorphisms are involved, such as the equivariant as well as the “stacky” discussion. One
would therefore desire an intrinsic complex geometric discussion, whereby one establishes HRR, and
similar theorems, for general complex manifolds and holomorphic vector bundles outside metric geometry.

Toledo and Tong [1976; 1978a; 1978b; 1986] and O’Brian, Toledo and Tong [1981a; 1981b; 1981c] made
several remarkable conceptual breakthroughs by providing local Čech cohomological proofs of HRR
[1981b] and Grothendieck–Riemann–Roch (GRR) [1981a]. Through the modern lens, one may interpret
their work as a hands-on theory of infinity stacks, which only much more recently has been made into a
full-fledged mathematical theory. One of the key constructions by O’Brian, Toledo and Tong [1981c] is
that of the Chern class for a coherent analytic sheaf on a complex manifold. While their construction is
the one we focus on here, there is also another approach to calculating Chern classes for coherent analytic
sheaves, as shown in [Green 1980; Toledo and Tong 1986] and later formalized by Timothy Hosgood
[2020; 2023; 2024].

To get a taste for the type of math Toledo and Tong invented and utilized, consider the question of resolving
the diagonal X ! X �X, or more generally an arbitrary coherent sheaf, on a complex manifold, by a
finite chain complex of vector bundles. One knows that when the complex manifold admits a positive line
bundle such resolutions always exist (see [Griffiths and Harris 1978, page 705]). While in the algebraic
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setting the canonical line bundle provides such a line bundle, general complex manifolds may not support
them. Toledo and Tong obviated such difficulties by resolving the problems in a homotopical setting
in which strict identities are replaced with a coherent infinite system of homotopies. For instance, as a
complex vector bundle is a bunch of transition functions satisfying the familiar cocycle conditions, they
showed that, by requiring the cocycle condition to hold up to an infinite system of homotopies, not only
could every coherent sheaf on a complex manifold be resolved by these more general objects, but also all
of the necessary complex geometric arguments would remain valid.

Let us be more specific and start with a coherent sheaf on a complex manifold. Choose a good Stein
cover for the manifold on which the coherent sheaf can be locally resolved by a chain complex of vector
bundles; such a cover always exists. By restricting these resolutions to double intersections, we obtain
two resolutions for the same coherent sheaf on that intersection which, by the uniqueness of resolutions
over Stein manifolds, are then related by a quasi-isomorphism. On triple intersections, the three relevant
quasi-isomorphisms may not fit to give you a chain complex of vector bundles, but the discrepancy
can be killed by a homotopy. These assigned homotopies to triple intersections may not satisfy the
required compatibilities on quadruple intersections but the discrepancy can be killed by a higher homotopy.
Repeating this pattern ad infinitum gives rise to an infinite system of homotopies.

Historically, the use of coherent infinite systems of homotopy in a different context was known to some
algebraic topologists almost 30 years prior but even there it was considered rather esoteric. Jim Stasheff
[1963a; 1963b] showed how the based loop space of a pointed space was an A1 monoid. Nowadays
these mathematical objects are inescapable and it is common knowledge among a large group of algebraic
topologists that A1 algebras are just as good as differential associative algebras and have the same
homotopy theories [Lefèvre-Hasegawa 2003]. Similarly, Toledo and Tong showed that these generalized
objects are just as good as chain complexes of vector bundles as far as coherent cohomologies were
concerned. While they did not make a formal claim about their corresponding homotopy theories, they
showed how Ext and Tor of such generalized objects can be defined, calculated and, subsequently, be
used to prove duality theorems à la Grothendieck and establish HRR and GRR.

Surprisingly, since their work very little has been done to formalize the homotopy theory of these objects.
For example, in Descente pour les n–champs, André Hirschowitz and Carlos Simpson [1998] write:

Dans les travaux de O’Brian, Toledo et Tong consacrés à une autre question issue de SGA 6, celle
des formules de Riemann–Roch, on trouve des calculs de Čech qui sont certainement un exemple
de situation de descente pour les complexes. Un meilleur cadre général pour ces calculs pourrait
contribuer à notre compréhension des formules de Riemann–Roch.

This roughly translates to the following:

In the work of O’Brian, Toledo and Tong devoted to another question arising from SGA 6 regarding
the Riemann–Roch formulas, one can find Čech calculations that are an example of descent for
complexes. A better general framework for these calculations could contribute to our understanding
of the Riemann–Roch formulas.
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Here we have taken the first step in providing a homotopy-theoretic framework for some of Toledo and
Tong’s mathematical objects. By simply finding the right homotopy-theoretic setting, their constructions
extend far beyond what they had intended and point to new and exciting advances. For example, their
construction of a Chern character for coherent sheaves in Hodge cohomology is easily generalized to the
equivariant setting, or even to the setting of stacks. In addition, secondary and higher Chern characters
are now an inseparable part of the discussion.

The inherent inclusion of these higher Chern characters points to the possibility of proving a version of
GRR as a commutative diagram of spaces such that, after applying �0 to the diagram, one would obtain a
diagram of sets which is O’Brian, Toledo and Tong’s GRR. Note that classical objects such as K–groups
and cohomology groups are sets with additional algebraic structures.

In Section 2 we begin by defining the simplicial presheaves IVB and �, which will be the domain and
codomain of our Chern map, respectively. For a fixed complex manifold U 2CMan, we first consider
the dg-category Perfr.U / of finite chain complexes of holomorphic bundles with connection,1 where
there is no requirement that morphisms be compatible with connections. Taking the maximal Kan
complex of the dg-nerve, we obtain a simplicial set Perf.U /. Applying this construction objectwise over
CMan and noting that maps f 2CManop.U; V / induce maps of Kan complexes Perf.U / f

�

�! Perf.V /
via pullbacks, we obtain a simplicial presheaf Perf which is fibrant in the (global) projective model
structure. Since the simplices Perf.U /n D sSet.�n;Perf.U // lack the cyclic structure we will need later
on to construct our trace map, we define a weakly equivalent (see Proposition 2.10) simplicial presheaf
IVB.U /n WD sSet.y�n;Perf.U // given by mapping the cyclic sets y�n into Perf.U /. Here, y�n is the
nerve of the category whose set of objects is Z=.nC 1/Z and all hom-sets have a single morphism (see
Example 2.8). Next, we define � in the same way we did in our previous paper [2022]; more precisely,
�.U / is the simplicial set whose k–simplices are decorations of all i–dimensional faces of the standard
k–simplex with sequences of forms, all even for i even, and all odd for i odd, in such a way that the
alternating sum of all forms sitting on the .i�1/–dimensional faces of any i–dimensional face add up
to 0.

The Chern map Ch W IVB!� is then defined in Section 3 as follows. An n–simplex in IVB.U /n consists
of nC1 dg-bundles with connection .Ei ; di ;ri /, and a set of maps gDf.g.i0:::ik/ WEik!Ei0/g.i0;:::;ik/2y�n
satisfying the Maurer–Cartan condition (see Definition 3.3). First, in Definition 3.7, we define a trace
map Trg similar to that of O’Brian, Toledo and Tong [1981c, Proposition 3.2], satisfying the condition

(3-8) Trg ı . OıCDC Œg;��/D ı ıTrg :

Using this trace map, Ch is then defined (in Definition 3.13) by assigning to an n–simplex in IVB.U /n
as above decorations of the nondegenerate k–faces of �n given by the elements in �.U /n

(3-11) Trg.Ak/˛ �
uk

kŠ
DTrg

�
.r.dCg//k

�
˛
�
uk

kŠ
D

X
˙tr.g �r.dCg/ �r.dCg/ � � � r.dCg//˛ �

uk

kŠ

1The use of Perfr is meant to allude to the study of perfect complexes.
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for k > 0 and for k D 0 we assign the Euler characteristic. Our first main result is that this provides a
map of (objectwise Kan) simplicial presheaves:

Theorem 3.14 The Chern character Ch W IVB!� defined above is a map of simplicial presheaves.

In Section 4 we construct what we call the Čech sheafification, ChL� W IVBL� ! �
L� of the Chern map.

Given a simplicial presheaf F, the idea is that, for each open cover .Ui !X/i2I , we can form the Čech
nerve simplicial presheaf, {NU�, and then compute the homotopy limit induced by the simplicial mapping
space sPre. {NU�;F /D holimi

Q
˛0;:::;˛i

F .U˛0:::˛i / by taking the totalization of the induced cosimplicial
simplicial set F . {NU�/ defined in (4-1). The Čech sheafification F L� is then defined (Definition 4.1) by
taking the colimit over all covers:

(4-2) F
L�.X/ WD colim

.U�!X/2 {S

Tot.F . {NU�//:

As the construction is functorial in simplicial presheaves and preserves Kan complexes, we obtain a
sheafified Chern map, ChL� W IVBL�!�

L�, which is a map of Kan complexes. The rest of the section is
devoted to showing how ChL� is related to the Chern character map of O’Brian, Toledo and Tong [1981c],
which begins with Theorem 4.9, stating that the twisting cochains of [loc. cit.] include into the vertices
of IVBL�. The full correspondence is given in Theorem 4.18, which shows that, if we restrict IVB to
the simplicial presheaf CohSh considering only nonpositively graded chain complexes whose homology
is concentrated in degree zero, then we fully recover the data from the Chern map in [loc. cit.] by the
connected components of our sheafified Chern map:

Theorem 4.18 For a given coherent sheaf , the formula for the Chern character (4-15) from [loc. cit.] is
given by the terms in the formula (4-14) of the Chern character map

(4-16) fisomorphism classes of coherent sheavesg'�0.CohShL�/ �0.ChL�/
�����!�0.�

L�/'
M
p;q

pCq even

Hp.�q/

applied to the corresponding twisting cochain interpreted (by Theorem 4.9) as a 0–simplex in CohShL�.

Section 5 upgrades the results from the previous section to statements about (hyper)sheaves. Recall that
a simplicial presheaf is a (hyper)sheaf if it is objectwise Kan and satisfies descent with respect to all
hypercovers. By restricting our attention to simplicial presheaves of finite homotopy type taking values in
Kan complexes, we prove in Proposition 5.2 that the aforementioned Čech sheafification construction
computes the (hyper)sheafification. In particular, Proposition 5.12 states that, if we restrict to complex
manifolds of bounded dimension, and restrict the homotopy type of IVB, then ChL� W IVB

L�
�n!�

L� is a
map of hypersheaves. If instead we consider again CohSh, we see that its sheafification is a classifying
stack for coherent sheaves, RHom.X;CohSh/' CohShL�:

Theorem 5.11 The simplicial presheaf CohSh is a classifying prestack for coherent sheaves.
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Once again restricting to manifolds of bounded dimension, Theorem 5.13 states that our sheafified Chern
map ChL� WCohShL�!�

L� is a map of (hyper)sheaves whose connected components yields the Chern map
from [loc. cit.]. Finally, Remark 5.14 describes how our Chern character map generalizes to all stacks,
with an eye towards future work in the equivariant setting.

Notation 1.1 The simplicial category is denoted by �. It has objects Œn�D f0; : : : ; ng for n 2N0, and
morphisms � 2 �.Œk�; Œn�/ that are nondecreasing maps � W Œk�! Œn�, ie �.i/ � �.j / for i � j. The
morphisms are generated by face maps ıj W Œn�! ŒnC1� (the injection that skips the element j in ŒnC1�)
and degeneracies �j W Œn�! Œn� 1� (the surjection that maps j and j C 1 to j ).

Simplicial objects in a category C are functors �op!C, where the induced face and degeneracy morphisms
are denoted by dj and sj , respectively. We denote the category of simplicial sets by sSet D Set�

op
.

Cosimplicial objects in a category C are functors �! C.

Given an objectX in a locally small category C, we can consider its representable presheaf yX WD C.�; X/
given by the Yoneda embedding. Further, given a presheaf F on C, we can consider its simplicially
constant presheaf cF defined by cF.Y /n WD F.Y /. When context is clear we may drop the “y” or “c”.
For example, for an object X we might write X for the simplicial presheaf defined by X.Y /n WD C.Y;X/.

Acknowledgements Tradler was partially supported by a PSC-CUNY grant. Glass would like to thank
the Max Planck Institute for Mathematics in Bonn, Germany, for their hospitality during his stay. Zeinalian
would like to thank Julien Grivaux and Tim Hosgood for insightful conversations about Toledo and Tong’s
work.

2 The simplicial presheaves IVB and �

We define two simplicial presheaves on the site of complex manifolds; first, IVB WCManop
! sSet is the

presheaf which will later give rise to infinity vector bundles (see Definition 4.4), and � WCManop
! sSet

is the presheaf of holomorphic forms. In the next section we will then define the Chern character map as
a map of simplicial presheaves Ch W IVB!�.

Let CMan be the category whose objects consist of complex manifolds, and morphisms are holomorphic
maps. Furthermore, denote by dgCat the category of differential graded categories, ie categories C such
that, for any two objects C1 and C2 of C, the space of morphisms Hom.C1; C2/ is a cochain complex,
with the composition being a cochain map and the identity morphisms being closed.

Definition 2.1 Let Perf W CManop
! dgCat be given by setting Perf.U / to be the dg-category whose

objects E D .E�; d;r/ 2 Perf.U / are finite chain complexes of holomorphic vector bundles E�! U

over U with differential d W E� ! E�C1, and with a holomorphic connection r on E�. Morphisms
Hom.E ; E 0/ consist of graded morphisms of vector bundles f WE�!E 0

�
which need not have any special
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compatibility with respect to the connections r and r 0. The dg structure on Hom.E ; E 0/ is the induced
one by the differential and gradings on E and E 0; in particular, the differential of an f 2 Hom.E ; E 0/ is
defined to be D.f / WD f ı d � .�1/jf jd 0 ıf.

A holomorphic map ' W U ! U 0 induces a functor Perf.'/ W Perf.U 0/! Perf.U / by pulling back bundles
via '.

Since Perf.U / is a dg-category, we can apply the dg-nerve dgN .Perf.U //, which gives a simplicial set.

Note 2.2 Explicitly, we can describe the simplicial structure of the dg-nerve dgN .C/ of a dg-category C
(for us, it will always be CD Perf.U /) as follows; see [Lurie 2017, 1.3.1.6; Faonte 2017, Definition 2.2.8]:

(1) A 0–simplex in dgN .C/0 consists of an object E of C.

(2) A 1–simplex in dgN .C/1 consists of .E1; E0; g01/, ie two objects E0 and E1 of C and a morphism
g01 W E1! E0 in C of degree 0, which is closed, ie Dg01 D 0, where we denoted the differential
in HomC by D. (In the case of C D Perf.U /, the internal differential D is given by the differentials
d and d 0 on E and E 0, respectively, via Df D f ıd � .�1/jf jd 0 ıf, so that Dg01D 0 means that
g01 is a chain map of dg-vector bundles.)

(3) A 2–simplex in dgN .C/2 consists of .E0; E1; E2; g01; g12; g02; g012/, ie three objects E0, E1 and E2
of C, three morphisms gij W Ej ! Ej of degree 0, where i; j 2 f0; 1; 2g with i < j, and another
morphism g012 W E2! E0 of degree �1 satisfying Dg012 D g01 ıg12�g02.

(4) An n–simplex in dgN .C/n consists of nC 1 dg-vector bundles E0; : : : ; En and morphisms

gi0:::ik W Eik ! Ei0

of degree 1� k for each sequence i0; : : : ; ik 2 f0; : : : ; ng with i0 < � � �< ik and k � 1 such that

(2-1) D.gi0:::ik /D

k�1X
jD1

.�1/j�1gi0:::O{j :::ik C

k�1X
jD1

.�1/k.j�1/C1gi0:::ij ıgij :::ik :

(5) For a morphism � W Œn�! Œm� in �, there is an induced map �]dgN WdgN .C/m!dgN .C/n, given by
mapping .Ei ; gi0:::ik /all indices 2 dgN .C/m to .E�.i/; Qgi0:::ik /all indices 2 dgN .C/n, which is defined
by either Qgi0:::ik D g�.i0/:::�.ik/ if � is injective on fi0; : : : ; ikg, or Qgi0i1 D idE�.i0/ if �.i0/D�.i1/,
or Qgi0:::ik D 0 in all other cases, ie when k � 2 and �.ip/D �.ipC1/ for some p D 0; : : : ; k� 1.

In the later sections, we will use the dg-nerve of U as local building blocks of chain complexes of vector
bundles on a complex manifold. To obtain a reasonable gluing, we will want the chain maps gi0i1 to be
homotopy equivalences. This can be achieved in a natural way by taking the maximal Kan subcomplex
dgN .Perf.U //ı of dgN .Perf.U //; see [Joyal 2002, Corollary 1.5].

Definition 2.3 Let Perf WCManop
! sSet be the simplicial presheaf given by Perf.U / WDdgN .Perf.U //ı,

ie the maximal Kan subcomplex of the dg-nerve of Perf.U /.
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We have the following characterization of the simplices of dgN .Perf.U //ı via [Joyal 2002, Theorem 2.2],
for example:

Lemma 2.4 An n–simplex in dgN .Perf.U //ı consists precisely of an n–simplex in dgN .Perf.U // as
described in Note 2.2(4) above , with the extra condition that all morphisms gi0i1 W Ei1! Ei0 are homotopy
equivalences.

Now, all chain maps gi0i1 on the edges of all simplices of dgN .Perf.U //ı are homotopy equivalences.
In order to be able to define the Chern character below, we will need to find homotopy inverses of these
together with compatible higher homotopies. This can be achieved as follows. First, using the Yoneda
lemma for simplicial sets, we know that the n–simplices of a simplicial set X� are precisely the simplicial
set maps from �n WD�.�; Œn�/ into X�, ie Xn DX.Œn�/ŠNat.�.�; Œn�/; X/D sSet.�n; X/. Thus, we
define Perf� WCManop

! sSet by setting

(2-2) Perf�.U /n WD dgN .Perf.U //ın D sSet
�
�n; dgN .Perf.U //ı

�
:

More generally, we define:

Definition 2.5 Let Q be a cosimplicial simplicial set, ie Q W�! sSet. In more detail, we denote by
Qn D Q.Œn�/ 2 sSet the image of Œn� 2 � under Q, which is itself a simplicial set, Qn

�
W �op ! Set,

Qn
k
WDQn.Œk�/ 2 Set. Then, define PerfQ WCManop

! sSet by setting

(2-3) PerfQ.U /n WD sSet
�
Qn; dgN .Perf.U //ı

�
:

Since fQngn is a cosimplicial object in sSet, this induces, for each .f W Œn� ! Œm�/ 2 �, a map
PerfQ.U /m! PerfQ.U /n, making PerfQ.U / into a simplicial set.

For a holomorphic map ' W U ! U 0, the induced map PerfQ.U 0/! PerfQ.U / is given by composition
with the map Perf.U 0/! Perf.U / from Definition 2.1, ie by pulling back via '.

We are mainly interested in the following Examples 2.6 and 2.8.

Example 2.6 Let � W�! sSet be given by �n WD�.�; Œn�/ be the standard simplicial n–simplex given
by morphisms of � into Œn�, ie its k–simplices � 2�n

k
D�.Œk�; Œn�/ are nondecreasing maps from Œk�

to Œn�, ie if we set ij WD �.j /, these are sequences of indices .i0 � � � � � ik/ with i0; : : : ; ik 2 f0; : : : ; ng.
Face maps are dj W �nk ! �n

k�1
that remove the j th index ij , and degeneracies sj W �nk ! �n

kC1
that

repeat the j th index ij .

By Yoneda, any simplicial set map �n!X is completely determined by the image of its nondegenerate
n–simplex. Thus, by (2-2), Perf�.U / has n–simplices given as described precisely by Lemma 2.4, ie by
Note 2.2 with homotopy equivalences on edges.

Before we give our second main example for PerfQ, we record a useful lemma about simplicial set maps
into the dg-nerve PerfQ.U /.
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Lemma 2.7 Let X� be a simplicial set , and let C be a dg-category (for us , C D Perf.U /). Then a
simplicial set map X ! dgN .C/ is precisely given by the following data:

(1) For each 0–simplex ˛ 2X0, we have an object E˛ of C.

(2) For each nondegenerate k–simplex ˛ 2Xk with k � 1, there is a morphism g˛ W E˛.k/! E˛.0/ of
degree 1� k satisfying the compatibility condition

(2-4) D.g˛/D

k�1X
jD1

.�1/j�1g˛.0;:::; O|;:::;k/C

k�1X
jD1

.�1/k.j�1/C1g˛.0;:::;j / ıg˛.j;:::;k/:

Here , for a disjoint union decomposition f0; : : : ; kg D fi0; : : : ; ipg t fj0; : : : ; jqg with i0 < i1 < � � �< ip
and j0 < j1 < � � �< jq , we denote by ˛.i0; : : : ; ip/ WD dj0 ı � � � ıdjq .˛/ 2Xp the face of ˛ corresponding
to indices fi0; : : : ; ipg � f0; : : : ; kg.

In particular , a simplicial set map X ! dgN .Perf.U //ı has the same data as given above with the extra
condition that the maps g˛ for ˛ 2X1 are homotopy equivalences.

Proof Let F W X ! dgN .C/ be a map of simplicial sets and, for l � 0, let ˛ 2 Xl be an l–simplex.
Thus, F.˛/ 2 dgN .C/l , and, by Note 2.2, there are dg-vector spaces E˛0 ; : : : ; E

˛
l

, and for all i0; : : : ; ik 2
f0; : : : ; lg, k � 1 with i0 < � � �< ik , there are maps g˛i0:::ik W E

˛
ik
! E˛i0 satisfying (2-1). We claim that the

data of the highest maps g�0:::p for all nondegenerate � 2Xp is sufficient to recover all other maps g˛i0:::ik :
For ˛ 2Xl and i0; : : : ; ik 2 f0; : : : ; lg with i0 < � � �< ik with k < l , we use the commutative diagram for
� W Œk�! Œl �, �.p/ WD ip,

Xl dgN .C/l

Xk dgN .C/k

Fl

�
]
X

�
]
dgN

Fk

mapping the i0< � � �<ik–component g˛i0:::ik of Fl.˛/ under �]dgN to Qg0:::kDg˛i0:::ik (by Note 2.2(5), since
� is injective). Now, �D ıjq ı� � �ııj0 for fi0; : : : ; ikgtfj0; : : : ; jqgD f0; : : : ; kg with j0<j1< � � �<jq ,
so that the left vertical map �]X maps �]X .˛/ D dj0 ı � � � ı djq .˛/ D ˛.i0; : : : ; ik/. Then, Fk maps
this to the 0 < � � � < k–component g˛.i0;:::;ik/

0:::k
. By the commutativity of the diagram, we get that

g˛i0:::ik D g
˛.i0;:::;ik/

0:::k
. This shows that the maps g˛ WD g˛0:::l for all ˛ 2 Xl for l � 1 together with the

implicit dg-vector spaces E˛ D F0.˛/ for all 0–simplices ˛ 2X0 give the complete data of the map of
simplicial sets F WX ! dgN .C/. Equation (2-1) for g˛

0:::l
using a fixed ˛ 2Xl becomes precisely (2-4)

via the identifications g˛ D g˛0:::l and g˛i0:::ik D g
˛.i0;:::;ik/
0:::k

.

Note moreover, by a similar argument, that degenerate simplices map to either the identity gsj .˛/ D idE˛
for ˛ 2X0, or gsj .˛/ D 0 for ˛ 2Xl with l � 1.

Finally, F W X ! dgN .Perf.U //ı lands in dgN .Perf.U //ı precisely if all maps g˛ given by F.˛/ for
˛ 2X1 are homotopy equivalences by Lemma 2.4.
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Example 2.8 Let y� W�! sSet be given as follows. Let y�n 2 sSet be the nerve of the category EZCat
nC1,

whose objects are elements of ZnC1 D Z=.nC 1/Z, and which has exactly one morphism between any
two objects. More explicitly, y�n D EZnC1 D N .EZCat

nC1/ has k–simplices given by a sequence of k
composable morphisms ŒŒi0��! ŒŒi1��! � � � ! ŒŒik�� where ŒŒi0��; : : : ; ŒŒik�� 2 ZnC1, or, more concisely, the
k–simplices y�n

k
are sequences .i0; : : : ; ik/ of indices i0; : : : ; ik 2 f0; : : : ; ng, ie y�n

k
Š f0; : : : ; ngk . Face

maps dj W y�nk! y�
n
k�1

remove the j th index ij , and degeneracies sj W y�nk! y�
n
kC1

repeat the j th index ij .

For example, for the simplicial set y�1 a k–simplex consists of a sequence .i0; : : : ; ik/ of 0’s and 1’s; a
k–simplex is degenerate if and only if any two adjacent indices are equal, ij D ijC1; thus there are exactly
two nondegenerate k–simplices: .0; 1; 0; 1; : : : / and .1; 0; 1; 0; : : : / for any k. The geometric realization
of y�1 is thus S1.

By Lemma 2.7, any simplicial set map y�n! dgN .Perf.U // is given by nC1 holomorphic dg-vector bun-
dles with holomorphic connections E0; : : : ; En together with maps gi0:::ik WEik!Ei0 for a nondegenerate
k–simplex ˛ D .i0; : : : ; ik/ 2 y�nk D f0; : : : ; ng

k without directly repeating indices, satisfying (2-4):

(2-5) gi0:::ik ı d C .�1/
k
� d ıgi0:::ik DD.gi0:::ik /

D

k�1X
jD1

.�1/j�1gi0:::O{j :::ik C

k�1X
jD1

.�1/k.j�1/C1gi0:::ij ıgij :::ik :

Note furthermore that, for a degenerate simplex .i0; : : : ; ik/ of y�n where the two consecutive indices
ij D ijC1 are equal, we also have a map gjj D idEj or gi0:::jj :::ik D 0 when k � 2 satisfying (2-5).

For a morphism � W Œn�! Œm� in � we get an induced map of simplicial sets �� W y�n� ! y�
m
�

by mapping
�k W y�

n
k
! y�m

k
, �k.i0; : : : ; ik/ D .�.i0/; : : : ; �.ik//. This gives the cosimplicial simplicial set y�. In

particular, we can use Definition 2.5 to get the simplicial set Perfy�.U /, whose n–simplices are precisely
Perfy�.U /n D sSet

�
y�n; dgN .Perf.U //ı

�
, ie simplicial set maps from y�n to dgN .Perf.U //ı, which

were described explicitly in the previous paragraph.

We note that, for the simplicial presheaf Perfy�, the “maximal Kan” condition follows automatically.

Lemma 2.9 Simplicial set maps from y�n to dgN .Perf.U // take values in its maximal Kan subsimplex,
ie

(2-6) Perfy�.U /n D sSet
�
y�n; dgN .Perf.U //ı

�
D sSet

�
y�n; dgN .Perf.U //

�
:

Proof Any edge gi0i1 is automatically a homotopy equivalence with chain homotopy inverse gi1i0 ,
since we have the homotopies gi0i1i0 ı d C d ı gi0i1i0 D gi0i0 � gi0i1 ı gi1i0 D idEi0 � gi0i1 ı gi1i0 and
gi1i0i1 ıdCd ıgi1i0i1 Dgi1i1�gi1i0 ıgi0i1 D idEi1 �gi1i0 ıgi0i1 . The claim follows from Lemma 2.4.

Note that there is a map of cosimplicial simplicial sets �! y�, given by �n
k
! y�n

k
, �n

k
D�.Œk�; Œn�/ 3

� 7! .i0; : : : ; ik/ WD .�.0/; : : : ; �.k// 2 y�
n
k

. We thus get an induced map of simplicial sets Perfy�.U /!
Perf�.U /.
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Proposition 2.10 For an object U 2CMan, the map of simplicial sets Perfy�.U /! Perf�.U / is a weak
equivalence.

Proof Since dgN .Perf.U //ı is (by definition) a Kan complex, and by Definition 2.5 both Perfy�.U / WD
sSet

�
y��; dgN .Perf.U //ı

�
and Perf�.U / D sSet

�
��; dgN .Perf.U //ı

�
, the proposition follows from

Proposition A.1.

In the later sections we mainly use PerfQ for QD y�, and we therefore make the following definition:

Definition 2.11 Denote by IVB WD Perfy� WCManop
! sSet, ie by (2-3),

(2-7) IVB.U /n D Perfy�.U /n D sSet
�
y�n; dgN .Perf.U //ı

�
:

For a motivation of this notation, see Definition 4.4.

The reason why we want to consider the cosimplicial simplicial set y� is that it has an important additional
cyclic structure which � is lacking, as we will explain now.

Definition 2.12 Let �C be the cyclic category; see [Loday 1992, 6.1.1]. More precisely, �C has
the same objects Œn�D f0; : : : ; ng for n 2N0 as �, and has morphisms generated by face maps ıj and
degeneracy maps �j (as in �; see Notation 1.1), together with an additional cyclic operator �n W Œn�! Œn�;
see [Loday 1992, 6.1.1] for more details. It is convenient to represent morphisms � 2�C.Œk�; Œn�/ by
set maps � W Œk�! Œn� such that there exists a nondecreasing function Q� W f0; : : : ; kg ! N0 satisfying
Q�.k/� Q�.0/Cn and �.j /� Q�.j / .mod Zn/.

Then a cyclic object in a category C is a functorX W�C op! C. Since �C Š�C op are isomorphic [Loday
1992, 6.1.11], cyclic objects in C are cocyclic objects in C and vice versa. We denote the category of cyclic
sets X W�C ! Set by cSet. Note that there is functor �!�C, which makes every cyclic object into a
simplicial object by precomposition .�C op X

�! C/ 7! .�op!�C op X
�! C/, and similarly every cocyclic

object is a cosimplicial object. In particular, every cosimplicial cyclic set is a cosimplicial simplicial set.

Remark 2.13 The canonical cyclic sets �C n WD�C.�; Œn�/ assemble for various n to a cocyclic cyclic
set �C � W �C ! cSet. In particular, this is also a cosimplicial cyclic set � ! �C �C �

��! cSet, so
that we also have a third example of a simplicial presheaf Perf�C using our setup from Definition 2.5.
By Lemma 2.7, an n–simplex in Perf�C .U / is given by maps gi0:::ik for any “cyclic set of indices”
i0 D �.0/; : : : ; ik D �.k/ for some � 2�C.Œk�; Œn�/ (for example, for nD 9 we would have maps such
as g457034 WE4!E4). Unfortunately, the analog of Proposition 2.10 does not hold, ie Perf�C .U / and
Perf�.U / are in general not weakly equivalent. (For example, the nondegenerate simplices of �C 1 as
sequences of indices are .0/, .1/, .0; 1/, .1; 0/, .0; 1; 0/, .1; 0; 1/ but no higher ones due to cyclicity, so
that the geometric realization of �C 1 is the 2–sphere S2.)

Now, while�n is not a cyclic set, y�n is a cyclic set, and we will need to use the additional cyclic structure
of y� below to define our Chern character map.
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Lemma 2.14 The simplicial set y�n as described in the first paragraph of Example 2.8, together with
the operator tk W y�nk! y�

n
k

given by tk.i0; : : : ; ik�1; ik/D .ik; i0; : : : ; ik�1/, makes y�n into a cyclic set.
This , in turn , makes y� into a cosimplicial cyclic set.

Proof One checks that tk has the correct compatibility (see [Loday 1992, 6.1.2(b)–(c)]) with the face
and degeneracy maps dj and sj . For a morphism � W Œn�! Œm� in �, the induced map of simplicial
sets �� W y�n� ! y�

m
�

, �k W y�nk! y�
m
k

, �k.i0; : : : ; ik/D .�.i0/; : : : ; �.ik//, respects not only the face and
degeneracy maps, but also the tk operator, ie y� W�! cSet is a cosimplicial cyclic set.

We have thus defined the simplicial presheaf IVB D Perfy�, which will be the domain of our Chern
character map for holomorphic dg-vector bundles over U with connection. As for the range of the Chern
character map, we use the same presheaf � that we used in our previous work [2022, Definition 2.3]
(for the Chern character map of holomorphic vector bundles that were not differential graded). For
completeness sake, we will briefly review the definition of � WCManop

! sSet.

Definition 2.15 For an object U 2 CMan, consider the (nonnegatively graded) cochain complex of
holomorphic forms ��hol.U / on U with zero differential d D 0. Let u be a formal variable of degree
juj D �2, denote by ��hol.U /Œu� polynomials in u, and by ��hol.U /Œu�

��0 its quotient by its positive
degree part ��hol.U /Œu�

�>0. Applying the Dold–Kan functor to this chain complex gives a simplicial
abelian group DK.��hol.U /Œu�

��0/, for which we consider its underlying simplicial set, denoted by an
underline, ie �.U /D DK.��hol.U /Œu�

��0/:

� WCManop ��hol.�/Œu�
��0

���������! Ch�0
DK
��! sSet:

Since holomorphic forms pull back via a holomorphic map ' WU!U 0, this assignment defines a simplicial
presheaf � WCManop

! sSet by � WD DK.��hol. � /Œu�
��0/ WCManop

! sSet.

Note 2.16 If C D .C ��0; dC / is a nonpositively graded chain complex, then the Dold–Kan functor
DK.C / 2 Ab�op

, which is a simplicial abelian group, can be described as follows; see our previous work
[2022, Appendix B]. For n � 0, we may define DK.C /n to be the abelian group (under addition) of
cochain maps from the normalized cells of the standard simplex �n to C, ie we may set

(2-8) DK.C /n WD Chain.N.Z�n/; C /:

Thus, this means that an element of DK.C /n is given by a labeling of the nondegenerate cells of the
standard simplex �n by elements of C in such a way that, for a k–cell ˛ of �n whose boundary
.k�1/–cells are dj .˛/, we have

(2-9) dC .˛/D

kX
jD0

.�1/j � dj .˛/:

In the situation of Definition 2.15, the chain complex C D��hol.U /Œu�
��0 has a zero internal differential,

ie dC D 0.
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3 Chern character ChW IVB!�

We now define a map of simplicial presheaves Ch W IVB!�, where IVBD Perfy� from Definition 2.11
and � is from Definition 2.15. We start by defining cochains on a simplicial set X with values in a
dg-category C (for us C D Perf.U /), and, in the case when X is a cyclic set, its trace map. The main
example to keep in mind for the following definitions is the cyclic set X D y�n.

Definition 3.1 A labeling of a simplicial set X by a dg-category C is a set map from the vertices of X to
the objects of C, L WX0! Obj.C/, ie a choice of an object E˛ WD L.˛/ of C for each ˛ 2X0.

Definition 3.2 Let X be a simplicial set, let C be dg-category, and let L W X0! Obj.C/ be a labeling
such that we have a choice of objects E˛ for each ˛ 2X0. We define the cochains on X with values in C
to be

(3-1) C �L.X; C/ WD
Y
p�1

Y
˛2Xp

Hom�C.E˛.p/; E˛.0//;

where we used notation from Lemma 2.7 to denote the first and last vertices of ˛ 2Xp by ˛.0/ and ˛.p/,
respectively. In components, we will write f 2C �L.X; C/ as f D ff˛g˛2X , where, for ˛ 2Xp and p � 1,
we have f˛ 2 Hom�C.E˛.p/; E˛.0//.

Note that C �L.X; C/ is a dg-algebra:

(1) A cochain f of bidegree .p; q/ assigns to a p–cell ˛2Xp a degree q map f˛ 2HomqC.E˛.p/; E˛.0//,
and is zero elsewhere; in this case the total degree of f is jf j D pC q.

(2) A differential Oı W CpL .X; C/! C
pC1
L .X; C/ is induced by the face maps di WXpC1!Xp , so that

if ˛ 2XpC1 is a .pC1)-simplex of X, then the deleted Čech differential of f, denoted by Oıf, is
defined by

(3-2) . Oıf /˛ WD

pX
iD1

.�1/ifdi .˛/ D

pX
iD1

.�1/if˛.0;:::;O{;:::;pC1/:

Note that d0 and dpC1 are not used in the differential, which ensures the terms in the sum are all
maps in HomqC.E˛.pC1/; E˛.0//.

(3) An internal differential D W C �L.X; C/! C �L.X; C/ is induced by the dg structure on C, so that,
if ˛ 2 Xp is a p–simplex and f˛ 2 HomqC.E˛.p/; E˛.0//, then .Df /˛ WD .�1/pCqC1 �D.f˛/ D
.�1/p � .d ıf˛ � .�1/

q �f˛ ı d/ as a homomorphism in HomqC1.E˛.p/; E˛.0//.
(4) There is a product f � g on C �L.X; C/, which, for ˛ 2 XpCr is the extension of the maps

HomqC.E˛.p/; E˛.0//�HomsC.E˛.pCr/; E˛.p//! HomqC.E˛.pCr/; E˛.0//,

(3-3) .f˛.0;:::;p/; g˛.p;:::;pCr// 7! .f �g/˛.0;:::;pCr/ WD .�1/
q�r
�f˛.0;:::;p/ ıg˛.p;:::;pCr/;

on the components of C �L.X; C/ to all of C �L.X; C/.

We note that, in particular, Df D d �f � .�1/jf jf �d DW Œd; f �. It is well known (and straightforward to
check) that with these definitions the cochains on X with values in C, C �L.X; C/, becomes a dg-algebra.
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Definition 3.3 Given a simplicial setX, a dg-category C and a labelingL, we say an element g2C �L.X; C/
is a Maurer–Cartan element if

(3-4) OıgCDgCg �g D 0

Definition 3.4 Let X� be a simplicial set, and let C be a dg-category. Then, by Lemma 2.7, a simplicial
set map F WX ! dgN .C/ induces objects E˛ for each 0–simplex ˛ 2X0, and maps g˛ W E˛.p/! E˛.0/
for every ˛ 2Xp with p � 1 (for degenerate simplices, we take g˛ D idE˛.0/ when ˛ 2X1, and g˛ D 0
when ˛ 2 Xp for p � 2). Thus, we can define a labeling L WD F0 W X0 ! dgN .C/0 D Obj.C/ of X
by C via L.˛/ WD E˛ for ˛ 2 X0. Moreover, the g˛ for ˛ 2 Xp for p � 1, assemble to an element
g D fg˛g˛2X 2 C

�

L.X; C/.

Corollary 3.5 The element g 2 C �L.X; C/ from Definition 3.4 is a Maurer–Cartan element , ie g satisfies
(3-4). Moreover , g has components of bidegree .p; 1�p/ for p � 1, so that g is of total degree 1.

Proof Each g˛ for ˛ 2 Xp is of bidegree .p; 1�p/; see Lemma 2.7(2). For ˛ 2 XpCr with p; r � 1,
we have g˛.0;:::;p/ �g˛.p;:::;pCr/D .�1/.1�p/.r�p/g˛.0;:::;p/ ıg˛.p;:::;pCr/, and since .�1/.1�p/.r�p/D
.�1/.rCp/.p�1/, we see that (3-4) becomes exactly (2-4).

Now consider the case C D Perf.U /. In this case, C �L.X; C/ becomes a direct product of holomorphic
sections, ie

C �L.X;Perf.U //D
Y
p�1

Y
˛2Xp

�hol.U;Hom.E˛.p/; E˛.0///;

since morphisms HomC.E1; E2/, which are bundle maps, are in correspondence with holomorphic
sections of the Hom.E1; E2/–bundle. Since we want to include higher holomorphic forms as well,
we will include this dg-algebra in a larger dg-algebra of all holomorphic forms C �L.X;Perf.U // ,!
C �L.X;�.U /

y̋ Perf.U //, defined as follows.

Definition 3.6 LetX be a simplicial set and consider the dg-category Perf.U /. LetL WX0!Obj.Perf.U //
be a labeling as in Definition 3.2, ie E˛ D L.˛/. We define the dg-algebra

(3-5) C �L.X;�.U / y̋ Perf.U // WD
Y
p�0

Y
˛2Xp

��hol.U;Hom�.E˛.p/; E˛.0///;

where we again denoted the first and last vertices of ˛2Xp by ˛.0/ and ˛.p/, respectively. In components,
we will write f 2 C �L.X;�.U / y̋ Perf.U // as f D ff˛g˛2X , where, for ˛ 2 Xp, we have f˛ 2
��hol.U;Hom�.E˛.p/; E˛.0///. Note that in (3-5) we included the 0–simplices (p D 0) when compared
to (3-1).

The dg-algebra structure on C �L.X;�.U / y̋ Perf.U // is defined as follows:
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(1) f 2C �L.X;�.U /
y̋ Perf.U // has triple degree .k;p;q/ if it assigns to ap–cell ˛2Xp a holomorphic

k–form with values in the appropriate Hom-bundle of degree q, f˛ 2�khol.U;Homq.E˛.p/;E˛.0///,
and vanishes elsewhere; in this case the total degree of f is jf j D kCpC q.

(2) A differential Oı WC �L.X;�.U / y̋ Perf.U //!C �L.X;�.U /
y̋ Perf.U //, the deleted Čech differential,

is defined just as in Definition 3.2(2), ie for f 2 C �L.X;�.U / y̋ Perf.U //,

(3-6) . Oıf /˛ WD

pX
iD1

.�1/ifdi .˛/ D

pX
iD1

.�1/if˛.0;:::;O{;:::;pC1/:

(3) A differential D W C �L.X;�.U / y̋ Perf.U //! C �L.X;�.U /
y̋ Perf.U //, the internal differential,

is defined similarly to Definition 3.2(3), ie if f˛ 2�khol.U;Homq.E˛.p/; E˛.0///, then .Df /˛ 2
�khol.U;HomqC1.E˛.p/; E˛.0///,

.Df /˛ WD .�1/
p
� .d˛.0/ ıf˛ � .�1/

kCq
�f˛ ı d˛.p//;

where di denotes the differential of Ei .

(4) There is a product f �g similar to Definition 3.2(4). More explicitly, consider the maps

(3-7) �khol.U;Homq.E˛.p/; E˛.0///��lhol.U;Homs.E˛.pCr/; E˛.p///

!�kClhol .U;Homq.E˛.pCr/; E˛.0///;

.f˛.0;:::;p/; g˛.p;:::;pCr// 7! .f �g/˛.0;:::;pCr/ WD .�1/
.kCq/�r

�f˛.0;:::;p/ ıg˛.p;:::;pCr/;

where ı denotes wedging forms and composing Hom-spaces, and extend them from the components
of C �L.X;�.U / y̋ Perf.U // to the whole space.

We note that, again,Df Dd �f �.�1/jf jf �d D Œd; f �. Just as in Definition 3.2, C �L.X;�.U / y̋ Perf.U //
becomes a dg-algebra, and the inclusion C �L.X;Perf.U // ,! C �L.X;�.U /

y̋ Perf.U // is a dg-algebra
morphism. Note that this inclusion consists of two separate inclusions of holomorphic functions into
holomorphic forms, �hol.�/ ,!�hol.�/, as well as nonzero simplices into all simplices,

Q
p�1.�/ ,!Q

p�0.�/. Note further, that Df D d �f �.�1/jf jf �d , where d Dfd˛g˛2X 2C �L.X;�.U / y̋ Perf.U //
is given by the differentials d˛ D dE˛ for ˛ 2X0 and d˛ D 0 for all other ˛.

Finally we remark that every Maurer–Cartan element in C �L.X;Perf.U // is also a Maurer–Cartan element
in the larger dg-algebra C �L.X;�.U / y̋ Perf.U //.

Now, for a vector bundle E, there is a trace map tr WHom.E;E/!C. Following ideas of O’Brian, Toledo
and Tong [1981c, page 238], we will define a trace mapY

p�0

Y
˛2Xp

��hol.U;Hom�.E˛.p/; E˛.0///!
Y
p�0

Y
˛2Xp

��hol.U;C/:

Note that the left-hand side is C �L.X;�.U / y̋ Perf.U //. We denote the right-hand side by C �.X;�hol.U //.
To fit this into our current setting, we need an additional cyclic structure on X.
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Definition 3.7 Let X be a cyclic set. Let ˛ 2Xp be a p–simplex, ie by our convention ˛D ˛.0; : : : ; p/,
then, using the additional operator �p W Œp� ! Œp�, we denote the induced map tp W Xp ! Xp by
˛.p; 0; : : : ; p� 1/ WD tp.˛/.

Now let L WX0!Obj.Perf.U // be a labeling, and let g be a Maurer–Cartan element of C �L.X;Perf.U //.
Then we define the trace map

Trg W C �L.X;�.U / y̋ Perf.U //! C �.X;�hol.U //;

.Trg.f //˛2Xs WD
X

0�k�l�s

.�1/.kC1/�sCl�k � tr.g˛.l;:::;s;0;:::;k/ ıf˛.k;:::;l//:

Note that the trace on the right makes sense, since it is applied to Hom.E˛.l/; E˛.l//.

The following proposition follows the arguments from [loc. cit., Proposition 3.2]:

Proposition 3.8 Let X be a cyclic set with labeling L, and let g be a Maurer–Cartan element in
C �L.X;Perf.U //. Then the trace map Trg satisfies

(3-8) Trg ı . OıCDC Œg;��/D ı ıTrg ;

where ı is the (full ) Čech differential including first and last term , ie .ıf /˛ WD
PpC1
jD0 .�1/

jf˛.0;:::; O|;:::;pC1/

for ˛ 2XpC1.

Proof Let f 2 C �L.X;�.U / y̋ Perf.U //, and let ˛ 2Xs . Then

�
ı.Trg.f //

�
˛
D

sX
jD0

.�1/j �Trg.f /˛.0;:::; O|;:::;s/ D ACBCC

equals the sum of the three terms

A WD
X

0�k�l�s

l�1X
jDkC1

.�1/jC.kC1/.s�1/Cl�k�1 � tr.g˛.l;:::;s;0;:::;k/ ıf˛.k;:::; O|;:::;l//;

B WD
X

0�k�l�s

k�1X
jD0

.�1/jCk.s�1/Cl�k � tr.g˛.l;:::;s;0;:::; O|;:::;k/ ıf˛.k;:::;l//;

C WD
X

0�k�l�s

sX
jDlC1

.�1/jC.kC1/.s�1/Cl�k � tr.g˛.l;:::; O|;:::;s;0;:::;k/ ıf˛.k;:::;l//:

The first term A in the above sum is equal to

AD
X

0�k�l�s

l�1X
jDkC1

.�1/jC.kC1/sCl � tr.g˛.l;:::;s;0;:::;k/ ıf˛.k;:::; O|;:::;l//

D

X
0�k�l�s

.�1/.kC1/sCl�k � tr.g˛.l;:::;s;0;:::;k/ ı . Oıf /˛.k;:::;l//D
�
Trg. Oı.f //

�
˛
:
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To evaluate BCC, note that

(3-9)
X

0�k�l�s

.�1/.kC1/sC1 � tr.. Oı.g//˛.l;:::;s;0;:::;k/ ıf˛.k;:::;l//

D

X
0�k�l�s

sX
jDlC1

.�1/.kC1/sC1Cj�l � tr.g˛.l;:::; O|;:::;s;0;:::;k/ ıf˛.k;:::;l//

C

X
0�k�l�s

k�1X
jD0

.�1/.kC1/sC1Cs�lC1Cj � tr.g˛.l;:::;s;0;:::; O|;:::;k/ ıf˛.k;:::;l//

D C CB:

We claim that this is equal to
�
Trg.D.f /C Œg;��.f //

�
˛

, which we evaluate now. By Definition 3.6, we
may write D.f /D d �f � .�1/jf jf � d D Œd; f �, where jf j denotes the total degree of f. Thus, if we
define Qg WD dCg, ie for ˛ 2X0, Qg˛D d˛ , and for ˛ 2Xk with k� 1, Qg˛D g˛ , thenD.f /C Œg;��.f /D
Œd C g; f � D Œ Qg; f �. With this, we write .Trg.Œ Qg; f �//˛ D

�
Trg. Qg � f � .�1/j Qgj�jf jf � Qg/

�
˛
D E C F,

which are given as follows. First,

E WD Trg. Qg �f /˛ D
X

0�j�l�s

.�1/.jC1/sCl�j � tr.g˛.l;:::;s;0;:::;j / ı . Qg �f /˛.j;:::;l//

D

X
0�j�k�l�s

.�1/.jC1/sCl�jC.1�kCj /.l�j / � tr.g˛.l;:::;s;0;:::;j / ı Qg˛.j;:::;k/ ıf˛.k;:::;l//;

where we used that the .de Rham; Čech;Hom/–triple degree of Qg˛.j;:::;k/ is .0; k�j; 1�kCj /. For the
second term, we get

F WD Trg.�.�1/j Qgj�jf jf � Qg/˛

D

X
0�k�j�s

.�1/jf jC1C.kC1/sCj�k � tr.g˛.j;:::;s;0;:::;k/ ı .f � Qg/˛.k;:::;j //

D

X
0�k�l�j�s

.�1/jf jC1C.kC1/sCj�kC.jf j�lCk/.j�l/ � tr.g˛.j;:::;s;0;:::;k/ ıf˛.k;:::;l/ ı Qg˛.l;:::;j //

D

X
0�k�l�j�s

.�1/jf jC1C.kC1/sCj�kC.jf j�lCk/.j�l/C.jf jC1�1�sCj�l/.1�jCl/

� tr. Qg˛.l;:::;j / ıg˛.j;:::;s;0;:::;k/ ıf˛.k;:::;l//;

where we used that tr.h ı k/ D .�1/a�b � tr.k ı h/ when the .Hom-degree/ C .de Rham degree/ D
.total degree/ � .Čech degree/ of h and k is a and b, respectively, and that the Čech-degree of any
h˛.j;:::;s;0;:::;l/ is 1C s� j C l . With this, we obtain

(3-10)
X

0�k�l�s

.�1/.kC1/s � tr.. Qg � Qg/˛.l;:::;s;0;:::;k/ ıf˛.k;:::;l//

D

X
0�k�l�j�s

.�1/.kC1/sC.1�jCl/.1Cs�jCk/ � tr. Qg˛.l;:::;j / ıg˛.j;:::;s;0;:::;k/ ıf˛.k;:::;l//

C

X
0�j�k�l�s

.�1/.kC1/sC.l�s�j /.k�j / � tr.g˛.l;:::;s;0;:::;j / ı Qg˛.j;:::;k/ ıf˛.k;:::;l//

D F CE;
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where we used that Qg D d C g and d � d D 0, and that the .de Rham; Čech;Hom/–triple degree of
g˛.l;:::;s;0;:::;j / is .0; 1C s � l C j; l � s � j /. Comparing the left-hand sides of (3-9) and (3-10), and
using that g is a Maurer–Cartan element, so that Oıg D�.DgCg �g/D� Qg � Qg, we obtain that

BCC D (3-9)D (3-10)DECF D .Trg.Œ Qg; f �//˛ D
�
Trg.D.f /C Œg;��.f //

�
˛
:

Remark 3.9 The trace map of O’Brian, Toledo and Tong [1981c, Section 3] satisfies some additional
properties which carry over to our trace map from Definition 3.7 . For example, following the algebraic
proof from [loc. cit., Proposition 3.8], Trg vanishes on graded commutators: for a Maurer–Cartan
element g and cocycles u; v 2 C �L.X;�.U / y̋ Perf.U //, Trg.u � v/ and Trg.v �u/ are cohomologous (up
to sign) in C �.X;�hol.U //.

We have one further structure on C �L.X;�.U / y̋ Perf.U // coming from the holomorphic connections r
of the objects E of Perf.U /. Note that there is an induced connection on the Hom-bundle Hom�.E;E 0/ of
two graded bundles E and E 0 with connections, which we also denote by r W��hol.U;Hom�.E;E 0//!
��C1hol .U;Hom�.E;E 0//, and which is a graded derivation with respect to the wedge composition ı using
the total degree of ��hol.U;Hom�.E;E 0//.

Definition 3.10 Define r W C �L.X;�.U / y̋ Perf.U //! C �L.X;�.U /
y̋ Perf.U // to be given in com-

ponents by the maps .�1/p � r W �khol.U;Homq.E˛.p/; E˛.0///! �kC1hol .U;Homq.E˛.p/; E˛.0///. More
explicitly, for f 2 C �L.X;�.U / y̋ Perf.U //, f D ff˛g˛2X , we define rf D f.rf /˛g˛2X to be given
by .rf /˛ WD .�1/p � r.f˛/ when ˛ 2Xp.

One can check that r ı Oı D�Oı ır, and that r.f � g/Dr.f / � gC .�1/jf jf � r.g/, where jf j is the
total degree of the triple grading.

Definition 3.11 Let X be a cyclic set and let F W X ! dgN .Perf.U // be a simplicial set map. By
Definition 3.4, we get a labeling L WX0! Obj.Perf.U //, and a Maurer–Cartan element

g 2 C �L.X;Perf.U // ,! C �L.X;�.U / y̋ Perf.U //:

For a vertex ˛ 2X0, denote by dE˛ the internal differential of the chain complex of vector bundles E˛,
out of which we build the element d D fd˛g˛2X 2 C �L.X;�.U / y̋ Perf.U //, given by d˛ WD dE˛ , and
which has triple degree .0; 0; 1/. Then d Cg 2 C �L.X;�.U / y̋ Perf.U //, and we call

A WD r.d Cg/ 2 C �L.X;�.U / y̋ Perf.U //

the Atiyah class, which is concentrated in degrees .1; k; 1� k/ for k � 0.

Proposition 3.12 We have . OıCDC Œg;��/.A/D 0, and thus

ı.Trg.Ak//D 0 for all k � 0:
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Proof We apply r to the Maurer–Cartan equation (3-4), ie to OıgCDgCg �gD 0. Using r OıgD�Oırg,
and r.g �g/Drg �g�g � rg D�Œg;rg� together with

rDg Dr.d �gCg � d/Drd �g� d � rgCrg � d �g � rd D�D.rg/� Œg;rd�;

we obtain

0Dr. OıgCDgCg �g/D�Oı.rg/�D.rg/� Œg;rd�� Œg;rg�D�. OıCDC Œg;��/.rgCrd/:

In the last equality, we also used that Oı.rd/ D 0 (since the deleted Čech differential vanishes on 0–
simplices), and from d2 D 0 it follows that 0D r.d � d/D rd � d � d � rd D �D.rd/. This shows
that, for ADr.d Cg/, we have . OıCDC Œg;��/.A/D 0.

Since . Oı CD C Œg;��/ is a derivation on C �L.X;�.U / y̋ Perf.U //, the kth powers of a also satisfy
. OıCDC Œg;��/.Ak/D 0. Thus,

ı.Trg.Ak//
(3-8)
D Trg.. OıCDC Œg;��/.Ak//D 0:

We are now ready to define our Chern character map Ch W IVB ! �, which is a map of simplicial
presheaves, as shown in Theorem 3.14 below.

Definition 3.13 We define the Chern character as a map Ch W IVB!�; that is, for a complex manifoldU
and k � 0, we define a map Ch.U /n W IVB.U /n!�.U /n.

For an n–simplex F 2 IVB.U /nD sSet
�
y�n; dgN .Perf.U //

�
, we have (by Definition 2.5 and Example 2.8)

the data of nC1 dg-vector bundles E0; : : : ; En, and maps gi0:::ik WEik!Ei0 , so gDfg.i0:::ik/g.i0;:::;ik/2y�n
satisfies the Maurer–Cartan equation by Corollary 3.5. To this we associate Ch.U /n.F/ 2�.U /n, which
is a labeling of the nondegenerate cells of �n by elements in ��hol.U /Œu�

��0 (by Definition 2.15 and
Note 2.16). Consider a nondegenerate k–cell of�n given by the vertices i0; : : : ; ik of�n with i0< � � �<ik .

If kD 0, then we assign the Euler characteristic �.Ei0/ to this cell. If k >0, then we use ˛D .i0; : : : ; ik/2
y�n
k

to assign the following expression to this cell:

(3-11) Trg.Ak/˛ �
uk

kŠ
DTrg

�
.r.dCg//k

�
˛
�
uk

kŠ
D

X
˙tr.g �r.dCg/ �r.dCg/ � � � r.dCg//˛ �

uk

kŠ
:

For example, here are the assignments for simplicial degrees 0, 1 and 2:

n D 0 A 0–simplex F 2 IVB.U /0 is just the data of one object E D .E ! U;r/ of Perf.U /. Then
Ch.U /0.F/ is the labeling of the �0 by Euler characteristic of E, denoted by �.E/ 2�0hol.U /Œu�

��0.

nD 1 A 1–simplex F 2 IVB.U /1 consists of bundles E0 and E1 and sequences of morphisms g0101:::
and g1010:::. Then Ch.U /1.F/ is the labeling of �1 given by �.Ei / on the vertices of �1, and on the
edge of �1 we place the labeling Trg.r.d Cg//.0;1/ �u 2�1hol.U /Œu�

��0, where .0; 1/ 2 y�1:

�.E0/ �.E1/Trg.r.d Cg//.0;1/ �u
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Explicitly, the trace has terms (using gi D dEi for the internal differential of Ei )

Trg.r.d Cg//.0;1/ D tr.g101rg1�g010rg0Cg10rg01/

n D 2 A 2–simplex F 2 IVB.U /2 consists of bundles E0, E1 and E2 and sequences of morphisms
gi0i1:::ip for p � 1 and il 2 f0; 1; 2g for any 0 � l � p. Then, Ch.U /2.F/ is the labeling of �2 given
by �.Ei / 2�0hol.U /Œu�

��0 on the vertices, Trg.r.d Cg//.i;j / �u 2�1hol.U /Œu�
��0 on the edge of �1 we

place the labeling Trg.r.d Cg/ � r.d Cg//.0;1;2/ �u2=2Š 2�2hol.U /Œu�
��0 on the nondegenerate 2–cell,

where .0; 1; 2/ 2 y�2:

�.E0/

�.E1/

�.E2/

Trg.r.d Cg//.0;1/ �u Trg.r.d Cg//.1;2/ �u

Trg.r.d Cg//.0;2/ �u

Trg.r.d Cg/ � r.d Cg//.0;1;2/ �u2=2Š

Explicitly, we have (again using gi D dEi for the internal differential of Ei )

Trg.r.d Cg/ � r.d Cg//.0;1;2/ D tr.g20rg0rg012Cg20rg01rg12Cg20rg012rg2/

� tr.g201rg1rg12Cg201rg12rg2/

� tr.g120rg0rg01Cg120rg01rg1/

C tr.g2012rg2rg2Cg1201rg1rg1Cg0120rg0rg0/:

Theorem 3.14 The Chern character Ch W IVB!� defined above is a map of simplicial presheaves.

Proof We use the notation from Definition 3.13. First, we note that Ch.U /n.F/ is a well-defined element
of �.U /n, ie we still need to show that the labeling satisfies (2-9). Since the internal differential vanishes
for ��hol. � /Œu�

��0, this amounts to showing that, for each p–cell given by ˛ D .i0; : : : ; ip/, the sum of
the labelings on the boundary cells vanishes. This follows since

kX
jD0

.�1/j � dj

�
.Trg.Ak//˛ �

uk

kŠ

�
D

kX
jD0

.�1/j � .Trg.Ak//˛.0;:::; O|;:::;k/ �
uk

kŠ
D ı

�
.Trg.Ak//˛

�
�
uk

kŠ
D 0;

using Proposition 3.12 for the last equality. Next, we show that Ch.U / W IVB.U /!�.U / is a map of
simplicial sets, ie that it respects the face and degeneracy maps. If ıj W Œn�! ŒnC1� is the j th face map, then
dj W IVB.U /nC1! IVB.U /n is given by precomposition with y�n! y�nC1, f0; : : : ; ngk 3 .i0; : : : ; ik/ 7!
.ıj .i0/; : : : ; ıj .ik// 2 f0; : : : ; nC 1g

k . Thus, for F 2 IVB.U /nC1 with corresponding Maurer–Cartan
element g, we have Ch.U /n ı dj .F/j˛D.i0<���<ik/ D Trg.Ak/.ıj .i0/<���<ıj .ik// � u

k=kŠ. This is equal to
taking Ch.U /nC1.F/2DK.C /nC1DChain.N.Z�nC1/; C /, where C D��hol.U /Œu�

��0, after applying
dj W DK.C /nC1! DK.C /n to it, and looking at the labeling of the cell i0 < � � �< ik of �n. Similarly, if
�j W Œn�! Œn� 1� is the j th degeneracy, and sj W IVB.U /n�1! IVB.U /n is the induced map, then, for
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F 2 IVB.U /n�1 with corresponding Maurer–Cartan element g, we get Ch.U /n ı sj .F/j˛D.i0<���<ik/ D
Trg.Ak/.�j .i0/������j .ik// �u

k=kŠ. Now, if � is injective on fi0; : : : ; ikg, then, by Note 2.2(5), this is equal
to Trg.Ak/.�j .i0/<���<�j .ik// �u

k=kŠ, which is the labeling of sj ıCh.U /n�1.F/ at i0 < � � �< ik . In the
case where �j is not injective on fi0; : : : ; ikg, we get that g�j .i0/:::�j .ik/ is either the identity or zero, so,
in either case, rg�j .i0/:::�j .ik/ D 0, and thus Ch.U /n ı sj .F/j˛D.i0<���<ik/ D 0, which is equal to the
degeneracy sj W DK.C /n�1! DK.C /n applied to Ch.U /n�1.F/ at the cell i0 < � � �< ik .

Finally, we show that Ch W IVB!� is a map of simplicial presheaves, ie that under a holomorphic map
' W U ! U 0, the following diagram commutes:

IVB.U 0/ �.U 0/

IVB.U / �.U /

Ch.U 0/

IVB.'/ �.'/

Ch.U /

This follows, since both compositions are given by pullback via ', ie for F 0 2 IVB.U 0/ with induced
Maurer–Cartan element g0 and induced differential d 0 on E 0˛, we have

Ch.U /n ı IVBn.'/.F 0/j˛D.i0<���<ik/ D Tr'�g 0
��
.'�r/.'�.d 0Cg0//

�k�
˛
�
uk

kŠ

D '�
�
Trg 0

�
.r.d 0Cg0//k

�
˛

�
�
uk

kŠ

D�.'/n ıCh.U 0/n.F 0/j˛D.i0<���<ik/:

4 A higher Chern character for coherent sheaves

In this section, we apply a construction, which we will call Čech sheafification, to the Chern character map
Ch W IVB!� from Definition 3.13. More precisely, an endofunctor on simplicial presheaves F 7! F

L�

is defined as the colimit over all Čech covers of the totalization of the presheaf applied to the cover (see
Definition 4.1), and then an explicit interpretation is offered for the induced map ChL� W IVBL� ! �

L�.
Theorem 4.9 states that 0–simplices of IVBL� are twisting cochains (up to equivalence) in the sense
of O’Brian, Toledo and Tong [1981c], and Theorem 4.18 states that the induced Chern character ChL�

recovers the Chern character from [loc. cit.].

To fix some notation, let .Ui !X/i2I be an open cover, which is a particular diagram in CMan. To this
cover we associate the augmented simplicial presheaf {NU�!X whose p–simplices are coproducts of
representable presheaves given by .pC1/–fold intersections of the cover,

{NUp D
a

i0;:::;ip2I

yUi0;:::;ip ;

where yU denotes the Yoneda functor applied toU, ie yU WCManop
!Set, V 7!CMan.V; U /, interpreted

as a constant simplicial set. Given another simplicial presheaf F we abuse notation by writing F . {NU�/

Algebraic & Geometric Topology, Volume 24 (2024)



4960 Cheyne Glass, Micah Miller, Thomas Tradler and Mahmoud Zeinalian

for the cosimplicial simplicial set with

(4-1) F . {NU�/
l
p WD

Y
i0;:::;il

F .Ui0;:::;il /p:

Definition 4.1 Given a simplicial presheaf F WCManop
! sSet, define its Čech sheafification on a test

manifold X 2CMan to be the simplicial set given by

(4-2) F
L�.X/ WD colim

.U�!X/2 {S

Tot.F . {NU�//;

where {S is the category of all Čech covers, and Tot is the totalization, which is reviewed in Appendix B.
(For further details about the totalization, see our previous paper [2022, Appendix D.1] and [Hirschhorn
2003, Definition 18.6.3]; specific examples of Tot are worked out in Note 4.5 below, as well as in our
previous paper [2022, Proof of Proposition 3.16].)

While F
L� may not be a hypersheaf in general, Section 5 discusses the sheaf property and there the above

definition is justified.

Proposition 4.2 If F is a simplicial presheaf which takes values in Kan complexes , then its Čech
sheafification is a Kan complex.

Proof By Proposition C.1, for an open cover U� of X, Tot.IVB. {NU�// is a Kan complex. Now, since
our colimit over Čech covers is directed once we pass to simplicial presheaves {NU�, one can check by
hand that the colimit in IVBL�.X/ sends a diagram of projectively fibrant objects to a projectively fibrant
object (ie IVBL� takes values in Kan complexes).

Definition 4.3 The Čech sheafified Chern character map ChL� W IVBL� ! �
L� is the map obtained by

applying Čech sheafifications to the Chern character map from Definition 3.13.

4.1 Čech sheafification of IVB as twisting cochains

In this subsection, the vertices of the simplicial presheaf, IVBL�, are examined and shown in Theorem 4.9
to be precisely the twisting cochains of O’Brian, Toledo and Tong [1981c] up to equivalence. We thus
define:

Definition 4.4 An infinity vector bundle over a complex manifold X is a 0–simplex of IVBL�.X/.

The following note looks at the k–simplices of IVBL�.X/ in general, before focusing more specifically on
the 0–simplices:

Note 4.5 Fix a complex manifold X. Definition 4.1 applied to F D IVB yields

(4-3) IVBL�.X/D colim
.U�!X/2 {S

Tot.IVB. {NU�//:
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Now fix a Čech cover, U�!X, and denote by K�
�

the cosimplicial simplicial set whose l–cosimplices
are given by

Kl WD IVB. {NUl/D Perfy�. {NUl/:

Following (B-2), a k–simplex in Tot.K/ consists of a collection fx.k;l/gl�0 with

x.k;l/ 2 sSet.�k ��l ; Kl/ D sSet.�k ��l ;Perfy�. {NUl//
(2-3)
D sSet

�
�k ��l ; sSet

�
y�; dgN .Perf. {NUl//ı

��
D sSet

�
colim

�p!�k��l
y�p; dgN .Perf. {NUl//ı

�
;

where in the last equality the calculation from (B-8) is used. Thus, according to Appendix B, page 4985,
these are given by p–cells

(4-4) x
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

� 2 dgN .Perf. {NUl//ıp

for certain paths
�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
in the .k C 1/ � .l C 1/ grid (ie for any path within the indices of a

nondecreasing path). Given such a path
�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
, and a choice of a component i0; : : : ; il 2 {NUl

describing an .lC1/–fold intersection, the p–cell (4-4) decorates each index
�
j̨

ǰ

�
with a bundle-with-

connection
E
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

�
j̨

ǰ

�
I i0; : : : ; il

! Ui0;:::;il ;

and decorates subpaths
� z̨0
ž
0

ˇ̌
���

���

ˇ̌ z̨q
ž
q

�
of these indices with maps between them. To be precise, before

taking into account any simplicial or coherence conditions, the p–cell (4-4) is itself (by Example 2.8 and
Lemma 2.9) given by the data

(4-5) x.k;l/ D fx
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�g;

where we vary over the components i0; : : : ; il of {NUl and

x
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

� D
�
E
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

�
j̨

ǰ

�
I i0; : : : ; il

! Ui0;:::;il ;r
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

�
j̨

ǰ

�
I i0; : : : ; il

;

g
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

"
z̨0 � � � z̨q

ž
0 � � �

ž
q

#
I i0; : : : ; il

WE
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

"
z̨q

ž
q

#
I i0; : : : ; il

!E
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�
I

"
z̨0

ž
0

#
I i0; : : : ; il

�
I

here the g’s are associated to any subsequence
� z̨0
ž
0

ˇ̌
���

���

ˇ̌ z̨q
ž
q

�
for q � 0, of the indices from

�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
.

Moreover, these g’s satisfy the relations from (2-5). Since the simplices of x.k;l/ fit together via the
simplicial set relations, the above data (4-5) does not depend on the chosen p–cell determined by�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
, and thus x.k;l/ is given by the data

(4-6) x.k;l/ D

�
E
.k;l/�
˛

ˇ

�
I i0; : : : ; il

! Ui0;:::;il ;r
.k;l/�
˛

ˇ

�
I i0; : : : ; il

; g
.k;l/"
z̨0 � � � z̨q

ž
0 � � �
ž
q

#
I i0; : : : ; il

WE
.k;l/"
z̨q

ž
q

#
I i0; : : : ; il

!E
.k;l/"
z̨0

ž
0

#
I i0; : : : ; il

�
:
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For example, for k D 2 and l D 0; 1, some of this data is visualized below, where both the nablas and the
open set indices i0; : : : ; il are suppressed for better readability:

on Ui0 for each fixed i0 on Ui0;i1 for each fixed i0 and i1

E
.2;0/�
0

0

�

E
.2;0/�
1

0

�

E
.2;0/�
2

0

�

g
.2;0/�
1 0

0 0

�g
.2;0/�
1 0

0 0

�

g
.2;0/�
1 2

0 0

�g
.2;0/�
1 2

0 0

�

g
.2;0/�
0 2

0 0

�g
.2;0/�
0 2

0 0

�g
.2;0/�
0 1 2

0 0 0

�g
.2;0/�
0 1 2

0 0 0

�

E
.2;1/�
0

0

�

E
.2;1/�
1

0

�

E
.2;1/�
2

0

�

E
.2;1/�
0

1

�

E
.2;1/�
1

1

�

E
.2;1/�
2

1

�

g
.2;1/�
0 0 2

0 1 1

�

g
.2;1/�
0 1 2

0 0 0

�

g
.2;1/�
0 2

0 0

�g
.2;1/�
0 2

0 0

�

g
.2;1/�
1 2 2

0 0 1

�

g
.2;1/�
1 1 2

0 1 1

�

g
.2;1/�
0 0 1

0 1 1

�

g
.2;1/�
0 1 1

0 0 1

�
g
.2;1/�
0 1 2

1 1 1

�

g
.2;1/�
0 1

0 0

�g
.2;1/�
0 1

0 0

�

g
.2;1/�
1 2

0 0

�g
.2;1/�
1 2

0 0

�

g
.2;1/�
0 0

0 1

�g
.2;1/�
0 0

0 1

�

g
.2;1/�
2 2

0 1

�g
.2;1/�
2 2

0 1

�
g
.2;1/�
0 2 2

0 0 1

�

g
.2;1/�
0 2

1 1

�g
.2;1/�
0 2

1 1

�g
.2;1/�
1 2

0 1

�g
.2;1/�
1 2

0 1

�

g
.2;1/�
1 1

0 1

�g
.2;1/�
1 1

0 1

�

g
.2;1/�
0 1

0 1

�g
.2;1/�
0 1

0 1

�
g
.2;1/�
0 1

1 1

�g
.2;1/�
0 1

1 1

�

g
.2;1/�
1 2

1 1

�g
.2;1/�
1 2

1 1

�

g
.2;1/�
0 2

0 1

�g
.2;1/�
0 2

0 1

�

Now, by the compatibility relations (B-7) in Tot.K/, the data given by the right-hand side of (4-6) is
determined by the lowest l for which a given set of indices

� z̨0
ž
0

ˇ̌
���

���

ˇ̌ z̨q
ž
q

�
can be obtained via a face map.

For example,

E
.k;lC1/�
˛

ıj .ˇ/

�
I i0; : : : ; ilC1

(B-7)
D .component of d j .x.k;l///DE.k;l/�

˛

ˇ

�
I i0; : : : ; O{j ; : : : ; ilC1

jUi0;:::;ilC1
;

where d j acts by pulling back a bundle to a subset (by Definitions 2.5 and 2.1), ie by restricting the
vector bundle to this subset. In particular,

E
.k;l/�
˛

ˇ

�
I i0; : : : ; il

DE
.k;0/�
˛

0

�
I iˇ

jUi0;:::;il
;

and similar statements apply to the g’s.

Thus, the data of a k–simplex in Tot.K/ is given by (suppressing the tildes)

(1) chain complexes of holomorphic vector bundlesE˛Ii WDE
.k;0/�
˛

0

�
I i

!Ui with differential g�˛
0

�
I i
Dg

.k;0/�
˛

0

�
I i

for any index
�
˛
0

�
on the .kC 1/� .0C 1/ grid;

(2) connections r˛Ii WD r
.k;0/�
˛

0

�
I i

on E˛Ii ;

(3) maps

g�˛0 � � � ˛q
ˇ0 � � � ˇq

�
I i0; : : : ; il

WD g
.k;l/�
˛0 � � � ˛q
ˇ0 � � � ˇq

�
I i0; : : : ; il

WE˛q Iiˇq jUi0;:::;il
!E˛0Iiˇ0 jUi0;:::;il
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for l � 1 and for any ˇ’s which include all the indices from 0 to l , ie for fˇ0; : : : ; ˇqg D f0; : : : ; lg;
this is because if there was a j 2f0; : : : ; lgwith j …fˇ0; : : : ; ˇqg, then the map g.k;l/�

˛0 � � � ˛q
ˇ0 � � � ˇq

�
I i0; : : : ; ij ; : : : ; ilwould, according to (B-7), just be the restriction

g
.k;l�1/�
˛0 � � � ˛q
0 � � � q

�
I i0; : : : ; O{j ; : : : ; il

ˇ̌
Ui0;:::;ij ;:::;il

;

where ˇi D ıj .i / for all i , and so the data could be recovered from the map g.k;l�1/�
˛0 � � � ˛q
0 � � � q

�
I i0; : : : ; O{j ; : : : ; ilvia restriction.

Of course, as before, the sequence of indices
�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛q
ˇq

�
has to come from a nondecreasing set of indices

on a .kC 1/� .l C 1/ grid (see Section B.3). Sometimes we simply write g�˛0 � � � ˛q
ˇ0 � � � ˇq

� when the context of
the open set Ui0;:::;il is clear.

In particular note that:

� Using the fact that we land in the maximal Kan subcomplex dgN .Perf.U //ı of dgN .Perf.U //,
for q D 1, the maps on 1–cells g�˛0 ˛1

ˇ0 ˇ1

�
I i0; i1

are all quasi-isomorphisms.

� Finally, these maps satisfy the relations from (2-5) on Ui0;:::;il :

(4-7) g�˛0 � � � ˛q
ˇ0 � � � ˇq

� ıg�˛q
ˇq

�C .�1/q �g�˛0
ˇ0

� ıg�˛0 � � � ˛q
ˇ0 � � � ˇq

�

D

q�1X
jD1

.�1/j�1g"˛0 � � � y̨j � � � ˛q
ˇ0 � � � y̌j � � � ˇq

#C
q�1X
jD1

.�1/q.j�1/C1g�˛0 � � � j̨

ˇ0 � � � ǰ

� ıg�
j̨ � � � ˛q

ǰ � � � ˇq

�:

The above note is applied below to the case of 0–simplices, in order to relate them to twisting cochains
defined by O’Brian, Toledo and Tong [1981c, Definition 1.3], which we now briefly review.

Note 4.6 Let .Ui !X/i2I be a given cover, and let E�i ! Ui be graded holomorphic vector bundles
over Ui . Then, according to [loc. cit.], a is a twisting cochain if a D

P
j�0 a

j;1�j with aj;1�j 2
C j .U ;Hom1�j .E;E//, which is given by a collection of bundle morphisms on intersections of open
sets, aj;1�j D fai0;:::;ij WEij jUi0;:::;ij !Ei0 jUi0;:::;ij

gi0;:::;ij2I , satisfying conditions [loc. cit., (1.5)] on
each Ui0;:::;iq

(4-8)
q�1X
jD1

.�1/jai0;:::;O{j ;:::;iq C

qX
jD0

.�1/.1�j /.q�j /ai0;:::;ij ı aij ;:::;iq D 0:

Note that, compared to the data of a k–simplex in IVBL�.X/ (see Note 4.5(1)–(3)), there is a priori no
chosen connection. A version of IVBL�.X/ is also provided then without connection. Recall from (2-7)
that IVB.U /n D sSet

�
y�n; dgN .Perf.U //ı

�
.

Definition 4.7 Define ePerf WCManop
! dgCat by setting ePerf.U / to be the dg-category of finite chain

complexes of holomorphic vector bundles, just as in Definition 2.1, but with the difference that we do not
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choose any connection on E�. Analogously to IVB from Definition 2.11, define eIVB WCManop
! sSet

by setting eIVB.U /n WD sSet
�
y�n; dgN .ePerf.U //ı

�
.

For a Čech cover .U�!X/, Note 4.5 can be repeated to obtain an explicit description of Tot.eIVB. {NU�//.
Indeed the data of a k–simplex of Tot.eIVB. {NU�// is given by the data of chain complexes of holomorphic
vector bundles E˛Ii as in (1) together with maps g�˛0 � � � ˛q

ˇ0 � � � ˇq

�
I i0; : : : ; il

as in (3), but without any connections
as stated in (2).

The following lemma relates the above definition to the one with connections:

Lemma 4.8 The dg-functor Perf ! ePerf that forgets the connection induces a map of simplicial
presheaves IVB ! eIVB, which after applying the Čech sheafification (Definition 4.1) yields an iso-
morphism of simplicial sets IVBL�.X/ Š�! eIVBL�.X/.

Proof For a fixed cover .U�! X/, the forgetful map Tot.IVB. {NU�//! Tot.eIVB. {NU�// forgets the
information of the connections as stated in (2) in Note 4.5. Taking colimit over covers, this descends to a
well-defined map IVBL�.X/! eIVBL�.X/ which is surjective, since every complex manifold has a (Stein)
open cover such that, for every open set of the cover, there exists a connection on the corresponding
bundles.

It remains to check injectivity. Assume that two k–simplices x; x0 2 IVBL�.X/k are mapped, respectively,
to Qx; Qx0 2 eIVBL�.X/k by forgetting the connections, and that these are equal, ie Qx D Qx0. This means that
there is a zigzag of refinements and extensions with respect to the colimit over covers which connects
Qx and Qx0 in eIVBL�.X/k . Since every k–simplex in eIVBL�.X/ has a refinement which is in the image of
IVBL�.X/ under the forgetful functor, (ie it has a choice of connections on the bundles for each open set,)
it is enough to consider the case where Qx and Qx0 are both refinements of Qy 2 eIVBL�.X/k , where Qy may
not be in the image of the forgetful functor. In order to prove injectivity, it is enough to show that there
exists a Qz for which both Qx and Qx0 are refinements, and which is in the image of the forgetful functor,
so that taking a preimage z of Qz shows that x and x0 are equal in IVBL�.X/k . To this end, note that, if
x and x0 are represented on fixed covers U� and U 0

�
, respectively. Then we define Qz represented on the

cover U� tU 0� as follows. To define the bundle data (1) for Qz, if V is an open set in the cover U� or U 0
�

pick the bundle for that open set from Qx or Qx0, respectively, which we note to be equal to bundles from Qy
appropriately restricted. To define the maps g from (3) for Qz, if V1; : : : ; Vl are open sets from U�tU

0
�
, we

have bundles over Vi coming from the data Qy, and so we take the maps of bundles as provided by Qy. Note
that Qx and Qx0 both extend Qz, and, moreover, Qz is in the image of the forgetful functor by the extension z
of x and x0, since there are connections on each of the bundles coming from the data (2) provided by x
and x0.

With this definition, the main theorem of this section is stated below.
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Theorem 4.9 The equivalence classes of O’Brian, Toledo and Tong [1981c] of twisting cochains inject
into the vertices of IVBL�.X/.

Proof By Lemma 4.8, we may forget about the connections, and simply inject twisting cochains into
vertices of eIVBL�.X/. By Note 4.6, a twisting cochain on a cover .Ui !X/i2I with holomorphic vector
bundles E�i ! Ui is given by a collection aD fai0;:::;ij gi0;:::;ij2I;j�0 satisfying (4-8). To this, we assign
the data of a 0–simplex in IVBL�.X/ as stated in (1) and (3) from page 4962 as follows. First, the
E0Ii ! Ui from (1) are just the given Ei . As for the g’s in (1) and (3), define

(4-9) g
.k;l/�
0 � � � 0

ˇ0 � � � ˇq

�
I i0; : : : ; il

WD aiˇ0 ;:::;iˇq :

Note that the twisting cochain equations (4-8) imply (4-7). Moreover, the equivalence of twisting cochains
is generated by refinements and extensions (see [loc. cit., page 232, above Proposition 1.10]), which
identifies the corresponding infinity vector bundles (due to the colimit in (4-3)).

To check injectivity, we give a map in the opposite direction, which is a left-inverse to the above map.
Explicitly, for a 0–simplex in eIVBL�.X/ represented by a cover .Ui !X/i and bundles E�i with maps g
as in (1) and (3), we define the twisting cochain

(4-10) ai0;:::;ij WD g
.k;l/�
0 0 � � � 0

0 1 � � � j

�
I i0; : : : ; ij

;

which preserves the twisting cochain equations (4-8) due to (4-7). The colimit construction implies
equivalence of twisting cochains. The composition of these two constructions, which maps twisting
cochains to eIVBL�.X/0 via (4-9) and then back to twisting cochains via (4-10), is the identity on twisting
cochains.

As a final remark, we note that there are different (nonequivalent) choices for a left-inverse other than (4-10).
In fact, equation (4-9) assigns the same homotopy aj0;:::;jq to any

(4-11) g�˛0 � � � ˛q
ˇ0 � � � ˇq

�
I i0; : : : ; il

with iˇ0 D j0; : : : ; iˇq D jq;

while in eIVBL�.X/0 these maps (4-11) may generally be different. Therefore, any choice (consistent
within the Maurer–Cartan equation (4-7)) may thus be used as a left-inverse for (4-9).

To end this subsection, consider the restriction of the simplicial presheaf IVB to the one which only
utilizes chain complexes of vector bundles whose homology is concentrated in degree zero. Below we
show that the associated simplicial presheaf contains (after sheafification) all of the data of isomorphism
classes of coherent sheaves in its vertices.

Note 4.10 For the reader’s convenience, we review here a construction from [Toledo and Tong 1978a,
Section 2]. Let X 2CMan and a� be a twisting cochain for a cover .U�!X/ with holomorphic vector
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bundles E�
�

(see O’Brian, Toledo and Tong [1981c] or Note 4.6 above). Consider the locally defined
sheaf of OX–modules, Hi WDH�.�.Ei /; ai /, given by the homology of sections of E�i with differential
ai over Ui . Since each ai;j gives a quasi-isomorphism on the level of complexes, there is an induced
isomorphism of sheaves on homology ai;j W Ui;j jHj

��! Ui;j jHi . Taking the colimit2 of the Hi over the
diagram induced by these aij produces a sheaf on X which we will call the homology sheaf and denote
by H. This construction further produces a map3 of simplicial presheaves

(4-12) IVBL� H
�!N .ShO�/;

where N denotes the nerve, and ShO� is the category of sheaves of graded OX–modules (without
differential) with morphisms given by isomorphisms. The relevance of this construction to coherent
sheaves is recorded in the following definition and proposition.

Definition 4.11 The simplicial presheaf CohSh ,! IVB is the subsimplicial presheaf defined by consider-
ing the full subpresheaf of dg-categories, Perfcoh ,! Perf utilizing only chain complexes of bundles whose
homology is concentrated in degree zero and then taking CohSh.X/n WD sSet

�
y�n; dgN .Perfcoh.U //

ı
�
.

Lemma 4.12 Given a manifold M and a coherent sheaf F , there exists an open cover by relatively
compact Stein open submanifolds on which F is locally resolved by a chain complex of vector bundles.

Proof M admits a cover fUigi2I by Stein open subsets. For each Stein submanifold Ui , it admits
an open cover by relatively compact open sets fVi;j gi2I;j2Ji . Now, for each relatively compact open
submanifold Vi;j , we cover it one final step further by open Stein setsWi;j;k . As eachWi;j;k is a subset of
a relatively compact open Stein manifold Ui , then, by [Field 1982, Theorem 7.2.6], F admits a resolution
by vector bundles on Wi;j;k .

Proposition 4.13 The set of isomorphism classes of coherent sheaves onX is in bijective correspondence
with the connected components of CohShL�.X/.

Proof Recall the map H W IVBL�.X/!N .ShO�X / from Note 4.10. But, since CohSh requires the local
chain complex’s homology to be concentrated in degree zero, the map’s image lands in N .ShOX / ,!
N .ShO�X /, where N .ShOX / is the nerve of the category of sheaves of OX–modules (concentrated in
degree 0). Since the image of our map is precisely an OX which satisfies the properties of a coherent
sheaf, then the map factors through the nerve of the groupoid of coherent sheaves with isomorphisms,
H WCohShL�.X/!N .CohShOX / ,!N .ShOX / which in turn is well defined as a map which sends con-
nected components of CohShL� to connected components of N .CohShOX /, ie precisely the isomorphism
classes of CohShOX .

2Here we mean the concrete set-theoretic colimit given by a coproduct of Hi and then mod out by the equivalence generated by
ai;j on Ui;j .
3Which, importantly, is not coming from a map of complexes or even graded modules.
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To observe injectivity, we consider the image of two vertices x; y 2CohShL�.X/0, represented by cocycle
data on some common refinement by a Stein cover, .U�!X/, whose images H.x/;H.y/2N .CohShOX /
are connected by an edge. In particular, this means that the global homology sheaves for x and y are
isomorphic as O–modules. In order to construct an edge z 2 CohShL�.X/1 connecting x and y, we
first need local quasi-isomorphisms connecting the local resolutions for the chain complexes of bundles
x and y, respectively. These maps are given by recalling that these complexes over a Stein space are
projective resolutions [Forstnerič 2011, Corollary 2.4.5] and so maps on homology induce chain maps
between the complexes [Hilton and Stammbach 1971, Theorem 4.1]. So far, these quasi-isomorphisms
produce the edge data for z on Ui , and the 1–skeleton of the edge data for z on higher intersections. To
move up to the 2–skeleton, say on Ui;j , we see that we now have two quasi-isomorphisms between the
complexes for x and y: one restricted from the quasi-isomorphism over Ui and the other from Uj . Again
appealing to [Hilton and Stammbach 1971, Theorem 4.1] we now know these two quasi-isomorphisms are
chain-homotopic and this provides all of the data for z on Ui ’s, Ui;j ’s, and the 2–skeleton of the data on
higher intersections. Now, by O’Brian, Toledo and Tong [1981c, Lemma 1.6] and the ensuing discussion
there, one uses an inductive argument for how our higher homotopies of z would be constructed to satisfy
the Maurer–Cartan equation and since their constructions include into ours (see our proof of Theorem 4.9),
one indeed can construct an edge z connecting x and y to prove injectivity.

For surjectivity, applying Lemma 4.12 and then following [Toledo and Tong 1978a, Propsoition 2.4], for
a coherent sheaf F there exists a Stein open cover .Ui ,!X/i2I , so we can choose a twisting cochain
class in CohShL�.X/0 by locally/projectively resolving the coherent sheaf by a complex of vector bundles,
coherent on intersections Ui;j up to quasi-isomorphisms, and further coherent on Ui0;:::;ip by higher
homotopies which again exist by virtue of Lemma 1.6 of O’Brian, Toledo and Tong [1981c] and the
discussion which follows it. It follows that the map H is surjective on connected components since in the
proof of Theorem 4.9, we show how their constructions include into ours.

4.2 Čech sheafification of the Chern map Ch

This section continues the study of the Čech sheafified Chern character map ChL� W IVBL�!�
L� (where

F
L�.X/D colim

.U�!X/2 {S
Tot.F . {NU�// was defined in (4-2)). In Theorem 4.9 twisting cochains à la

[loc. cit.] were already interpreted as 0–simplices of IVBL�. Next, in Note 4.16, �
L� is explicitly described

as well as the map ChL� for the case of 0–simplices. Comparing the formulas for the Čech sheafified
Chern character map ChL� with the Chern character map from [loc. cit.] for a coherent sheaf (which is
reviewed in 4.17), shows, that these are given by precisely the same formulas. This result is stated in
Theorem 4.18.

The following note reviews Tot.�. {NU�//:

Note 4.14 Fix a Čech cover .U� ! X/. Then Tot.�. {NU�// is the totalization of the cosimplicial
simplicial set �. {NU�/D DK.��hol.

{NU/Œu���0/. Recall from Note 2.16 that the n–simplices of Dold
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and Kan applied to the chain complex ��hol.V /Œu�
��0 for some open set V, are decorations of the standard

n–simplex, ie they assign to each l–simplex, polynomials a 2��hol.V /Œu�
��0 of total degree �l ,

(4-13) aD

�P1
jD0 a

2j �ul=2Cj when l is even,P1
jD0 a

2jC1 �ulC1=2Cj when l is odd,

where ap 2�phol.V /. The condition (2-9) imposed for these decorations is that the alternating sum of the
faces of a l–simplex agrees with applying the chain complex’s differential to the data of the l–simplex:

0D dC .a/D

lX
jD0

.�1/jdj .a/;

where C is the complex C D��hol.V /Œu�
��0 with zero differential dC D 0, (see Definition 2.15).

Now, from Sections B.1 and B.2, 0–simplices of the totalization Tot.�. {NU�//0 consist of coherent
decorations of the standard n–simplex by data coming from �. {NUn/:

� on each Ui , a 0–simplex in DK.��hol.Ui /Œu�
��0/, ie a polynomial ai as in (4-13) with l D 0:

ai D
P1
jD0 a

2j
i �u

j,

� on each Ui0;i1 , a 1–simplex in DK.��hol.Ui0;i1/Œu�
��0/, ie a polynomial ai0;i1 as in (4-13) with

l D 1: ai0;i1 D
P1
jD0 a

2jC1
i0;i1

�ujC1,

� on each Ui0;:::;il , an l–simplex in DK.��hol.Ui0;:::;il /Œu�
��0/, ie a polynomial ai0;:::;il as in (4-13).

These polynomials satisfy the conditions

0D

lX
jD0

.�1/jdj .ai0;:::;il /D

lX
jD0

Ui0;:::;il jai0;:::;O{j ;:::;il
;

where the last equality follows from (B-5) and Example B.1.

Recall from [Grothendieck 1966] that the Hodge cohomology
L
p;qH

p.X;�q/ is given by a sum over
the pth sheaf cohomology of the sheaf of holomorphic q forms (see also “Hodge theory” or “Hodge
decomposition” [Frölicher 1955]). O’Brian, Toledo and Tong [1981c, Section 4] defined the Chern
character as an element in

L
kH

k.X;�k/. Below we see how our �
L� relates to the Hodge cohomology.

Proposition 4.15 The set of connected components of �
L�.X/ forms a ring which is isomorphic to the

even part of the Hodge cohomology ring ,

�0.�
L�.X//'

M
p;q

pCq even

Hp.X;�q/:

Proof The proof follows first from a direct observation that the vertices of Tot.�. {NU�// are precisely
(since the differentials are all zero) a direct sum of Čech l–cocycles of holomorphic forms (even degree
forms for l even and odd degree forms for l odd), and then from the observation that edges in Tot.�. {NU�//
correspond to Čech coboundaries.
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We next illustrate our sheafified Chern map ChL�.

Note 4.16 Consider a Čech cover .U�!X/, and a vertex in Tot.IVB. {NU//0 as provided by Note 4.5,
ie the data of holomorphic bundles E0Ii with

� differentials d D g�0
0

�
I i

from (1);

� connections r0Ii from (2); and

� maps g� 0 � � � 0

ˇ0 � � � ˇq

�
I i0; : : : ; il

from (3).

Then our sheafified Chern character map IVBL� ChL�
��!�

L� simply applies the Chern character Ch W IVB!�

from Definition 3.13 locally to the data in our vertex by allowing the indices from that definition to be
given by the indices of the open cover. To clarify, the vertex above gets mapped to the following vertex in
Tot.�. {NU//0:

� On each Ui , assign the Euler characteristic of E0Ii , denoted by �.E0Ii / �u0 2�0hol.Ui /Œu�
��0.

� On each Ui0;i1 , using g D fg� 0 � � � 0

ˇ0 � � � ˇq

�
I i0; i1
g
.ˇ0;:::;ˇq/2y�1

, assign the monomial

Trg.r.d Cg//.0;1/ �u 2�
1
hol.Ui0;i1/Œu�

��0;

and restrict the Euler characteristic above on the vertices (see Definition 3.13):

Ui0;i1 j�.E0Ii0 /
Ui0;i1 j�.E0Ii1 /Trg.r.d Cg//.0;1/ �u

� For each Ui0;i1;:::;il , using g D fg� 0 � � � 0

ˇ0 � � � ˇq

�
I i0; i1; : : : ; il

g
.ˇ0;:::;ˇq/2y�l

, assign the monomial

(4-14) Trg
�
.r.d Cg//l

�
.0;1;:::;l/

�
ul

lŠ
2�lhol.Ui0;i1;:::;il /Œu�

��0

to the top cell and to each face assign appropriate restrictions of the monomials defined for lower
intersections.

The above formula is now compared to the one provided by O’Brian, Toledo and Tong for the Chern
character map of a coherent sheaf.

Note 4.17 O’Brian, Toledo and Tong [1981c] construct characteristic classes for coherent sheaves via
the following four steps:

(i) Given a coherent sheaf, a twisting cochain a is constructed using [loc. cit., below Lemma 1.6].
This construction is well defined with respect to equivalences of twisting cochains; see [loc. cit.,
Proposition 1.10].

(ii) Connection data is chosen for a so that we obtain a twisting cochain with holomorphic connection
data; see [loc. cit., above Proposition 4.4].
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(iii) The Atiyah class is represented by the class ra in [loc. cit., Proposition 4.4].

(iv) The Chern character is defined [loc. cit., above Proposition 4.5] using the trace map �a to be given
by

(4-15) ch WD
X
k�0

chk WD
X
k�0

1

kŠ
�a..ra/

k/:

Note that the trace map �a from [loc. cit., above Proposition 3.2] is defined in the same way as our
trace map Trg in Definition 3.7.

Comparing the formulas (4-14) and (4-15) for the Chern character, these involve the same trace terms,
and so we obtain the following theorem:

Theorem 4.18 For a given coherent sheaf , the formula for the Chern character (4-15) from [loc. cit.] is
given by the terms in the formula (4-14) of the Chern character map

(4-16) fisomorphism classes of coherent sheavesg'�0.CohShL�/ �0.ChL�/
�����!�0.�

L�/'
M
p;q

pCq even

Hp.�q/

applied to the corresponding twisting cochain interpreted (by Theorem 4.9) as a 0–simplex in CohShL�.

Proof A twisting cochain a defines the Maurer–Cartan element via (4-9). With this, the terms in the
traces in (4-14) and (4-15) coincide. (We note that the additional factor ul in (4-15) does not add any
extra information, as the power l is precisely the “Čech degree” given by the number of intersections
in Ui0;:::;il .). Finally, the left and right isomorphisms in (4-16) are given by Propositions 4.13 and 4.15,
respectively.

Note, in particular, that our sheafified ChL� provides not only a Chern character to resolutions of coherent
sheaves but also provides invariants for morphisms and higher homotopies between these resolutions.

Remark 4.19 A version of the Chern–Simons invariant for the straight line path between connections
is computed by �1.ChL�/ as we outline here. In the case where Vect ,! CohSh is the full subcategory
of vector bundles, a loop representing a class in �1.VectL�/ is given by a vector bundle E ! X and
locally chosen connections f.Ei ! Ui ;ri /g, along with a bundle automorphism f W E ! E. Then
ChL� sends the vertex of this loop to the Chern character ChL�

�
f.Ei ;ri ; gij /g

�
and the edge induced

by f is sent to an odd Čech–Hodge form, which we denote by ChL�.f /, whose differential is the
difference between ChL�

�
f.Ei ;ri ; gij /g

�
and ChL�

�
f.Ei ; f

�ri ; gij /g
�
. Since ChL�

�
f.Ei ;ri ; gij /g

�
D

ChL�
�
f.Ei ; f

�ri ; gij /g
�
, f is sent to a closed odd form in the Čech–Hodge complex. Moreover, if two

loops f and f 0 in VectL� are homotopic, then the difference between ChL�.f / and ChL�.f 0/ is exact, and
so �1.ChL�/ indeed computes a higher invariant.
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5 The induced map on classifying stacks

In this section we show that the previously considered Čech sheafified Chern character map (Definition 4.3)
is a map of simplicial sheaves when we restrict IVBL� (see Definition 4.1 and Note 4.5) to the subsimplicial
sheaf IVB

L�
�n which considers complexes of vector bundles of a fixed length, n (see Definition 5.4).

Moreover, each of these simplicial presheaves contains a subsimplicial presheaf which considers complexes,
CohShL� and CohSh

L�
�n respectively (see Definition 4.11), whose homology is concentrated in degree

zero, yielding the commutative diagram

CohSh�n CohSh

CohSh
L�
�n CohShL�

IVB
L�
�n IVBL�

IVB�n IVB

(see Proposition 4.13 for a justification of our notation CohSh). As such we offer in Theorem 5.13 an
upgrade on the statement of Theorem 4.18 to a statement about sheaves.

5.1 Sheaves in the local projective model structure

This section’s main goal is to sort out which of the (maps of) presheaves in this paper are in fact (maps
of) sheaves.

Given the Verdier site à la Dugger, Hollander and Isaksen [2004, Section 9] of complex manifolds
and holomorphic maps, CMan, the category of simplicial presheaves sPre.CMan/ has multiples model
structures. One particular choice is the (global) projective model structure whose weak equivalences are
objectwise weak equivalences of simplicial sets and whose fibrations are objectwise fibrations of simplicial
sets [Blander 2001, Theorem 1.5]. Further this model structure forms a (proper simplicial cellular)
simplicial model category when we use the simplicial mapping space sPre.X; Y /n WD sPre.X ˝�n; Y /.
After localizing this simplicial category over the class of maps induced by hypercovers, we further obtain
the local projective (proper simplicial cellular) model structure sPre.CMan/proj;loc [loc. cit., Theorem 1.6].
The relevant criteria in this structure for us is that an object in sPre.CMan/proj;loc is fibrant if it is fibrant
in the projective model structure and satisfies descent with respect to any hypercover thanks to Dugger,
Hollander and Isaksen [2004]. Such an object is referred to below as a (hyper)sheaf.

In presenting a classifying stack (ie classifying hypersheaf) for coherent sheaves, one could produce a
simplicial presheaf, F 2 sPre.CMan/, and prove (at the very least) that for any manifold X 2CMan, the
set of equivalence classes of coherent sheaves coincides with the connected components of the derived
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mapping space, RHom.X;F /. Since we are working with the local projective simplicial model category
of simplicial presheaves this mapping space can be computed by cofibrantly approximatingX with zX!X

(which in this case is the identity since X is representable and thus cofibrant), fibrantly approximating
F by F ! yF, and defining the right derived mapping space (ie the homotopy function complex from
[Hirschhorn 2003, Section 17]) as the simplicial mapping space on the replacements:

(5-1) RHom.X;F / WD sPre. zX; yF /D sPre.X; yF /:

Thus yF would provide a more concrete description of this classifying stack and any map of simplicial
presheaves F !� provides cohomological invariants by inducing a map between fibrant replacements
yF ! y�; offering more explicit, cocycle-level cohomological invariants.

It is not immediate that our Čech sheafification computes the fibrant replacement. Below we first show
that if F is already a hypersheaf then F

L� is again a hypersheaf, even though this result is not used in this
paper.

Proposition 5.1 If F is a hypersheaf , then F
L� is a hypersheaf and the natural map F ! F

L� is an
objectwise weak equivalence.

Proof By construction, we have already shown in the proof of Proposition 5.2 that Čech sheafification
preserves objectwise fibrancy without any assumptions on the homotopy type of F. To see that there is
an objectwise weak equivalence, we compute

F
L�.X/D colim

.W!X/2S
sPre.W;F /;

where S is a full subcategory of the overcategory CMan=X, whose objects are hypercovers W ! X.
Since F already satisfies descent, ie sPre.W;F / � � sPre.X;F /,

F
L�.X/ � � colim

.W!X/2S
sPre.X;F / � � sPre.X;F /D F .X/:

Now, to show that the Čech sheafification preserves hyperdescent, we choose a hypercover U !X and
argue that the natural map sPre.X;F L�/! sPre.U ;F L�/ is a weak equivalence of simplicial sets. On the
one hand, we have

sPre.X;F L�/D F
L�.X/ � � F .X/;

while, on the other hand, we have

sPre.U ;F L�/ ��! sPre
�

hocolim
i2�

a
i;˛i

Ui;˛i ;F
L�

�
D holim

i2�

Y
i;˛i

sPre.Ui;˛i ;F
L�/

D holim
i2�

Y
i;˛i

F
L�.Ui;˛i /

� � holim
i2�

Y
i;˛i

F .Ui;˛i /D sPre.U ;F / � � F .X/;
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where the last weak equivalence follows from F already satisfying descent. After repeated application of
the two-out-of-three property for weak equivalences, we see that F

L� satisfies descent as well.

Under a modest boundedness condition on a simplicial presheaf F which takes values in Kan complexes,
its Čech sheafification (Definition 4.1) is a sheaf; this result is key to the rest of this paper.

Proposition 5.2 Let F 2 sPre.CMan/ be a projectively fibrant simplicial presheaf whose homotopy
groups are all trivial above level n. Then F

L� is a fibrant approximation of F in the local projective model
structure of simplicial presheaves on complex manifolds.

Proof Given a projectively fibrant simplicial presheaf F 2 sPre.CMan/ we can consider its fibrant
replacement in the local projective model structure F ��! F 0 2 sPre.CMan/loc. By [Lurie 2017, Remark
6.2.2.12], we see that in general we can compute this fibrant replacement on a test manifold X 2CMan
with the hypersheafification of F, written F �, by taking a homotopy colimit of the simplicial mapping
space sPre.U ;F / over all hypercovers .U ! X/. Below, as is standard, we identify the manifold X
with its representable simplicial presheaf, ie with the functor Y 7!CMan.Y;X/, postcomposed by the
functor which sends sets to simplicially constant simplicial sets. Thus, if S denotes the category of all
hypercovers,

F �.X/ WD hocolim
.U!X/2S

sPre.U ;F /:

More formal references for this fact include [Anel and Subramaniam 2020, Example 3.4.9; Low 2015,
Proposition 6.6]. We can now follow a series of steps to rewrite the above sheafification up to weak
equivalence: Starting with

(5-2) F �.X/ WD hocolim
.U!X/2S

sPre.U ;F /D hocolim
.U!X/2S

sPre
�

hocolim
i2�

Ui ;F
�
;

pulling the homotopy colimit out as a homotopy limit, and then using the fact that F is of bounded
homotopy type so F ��! cosknF with both of these projectively fibrant,

F �.X/D hocolim
.U!X/2S

holim
i2�

sPre.Ui ;F / ��! hocolim
.U!X/2S

holim
i2�

sPre.Ui ; cosknF /:

Now, using the skeleton–coskeleton adjunction and then that we can change the indexing set of hypercovers
to also be n–skeletal,

F �.X/ ��! hocolim
.U!X/2S

holim
i2�

sPre.sknUi ;F /D hocolim
.U!X/2S�n

holim
i2�

sPre.sknUi ;F /:

Now, since Čech covers are cofinal in bounded hypercovers on a paracompact manifold [Schreiber 2013,
Proposition 3.6.63], denoting by {S the category of Čech covers,

hocolim
.U!X/2S�n

holim
i2�

sPre.sknUi ;F / � � hocolim
. {NU�!X/2 {S

holim
i2�

sPre.skn {NUi ;F /

D hocolim
. {NU�!X/2 {S

holim
i2�

sPre. {NUi ; cosknF / � � hocolim
. {NU�!X/2 {S

holim
i2�

sPre. {NUi ;F /:
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Next we apply a simplicial Yoneda lemma and then use the fact that Tot computes holim when the
cosimplicial simplicial set is Reedy fibrant [Hirschhorn 2003, Theorem 18.7.4] to obtain

hocolim
. {NU�!X/2 {S

holim
i2�

sPre. {NUi ;F /D hocolim
. {NU�!X/2 {S

holim
i

Y
˛0;:::;˛i

F .U˛0;:::;˛i /

��! hocolim
. {NU�!X/2 {S

Tot.F . {NU�//;

and finally we use the fact that the colimit over Čech covers is a filtered colimit to compute hocolim with
a colim to obtain

hocolim
. {NU�!X/2 {S

Tot.F . {NU�// ��! colim
. {NU�!X/2 {S

Tot.F . {NU�//D F
L�.X/:

By Proposition 4.2, F
L� is already globally projectively fibrant (ie takes values in Kan complexes). Now

it remains to show that F
L� satisfies hyperdescent. Given a hypercover, U !X, we use the commutative

square

(5-3)

sPre.X;F �/D F �.X/ sPre.U ;F �/

sPre.X;F L�/D F
L�.X/ sPre.U ;F L�/

where the equalities are given by Yoneda. Since F � satisfies descent, the top horizontal map is a weak
equivalence by definition of descent. The left vertical map was proven to be an equivalence above. With
U projectively cofibrant it follows that the simplicial mapping spaces preserve the weak equivalence
F � ��! F

L� between projectively fibrant objects and so the right vertical map is a weak equivalence.
Thus, by the two-out-of-three property afforded to our model category, we have shown that the bottom
horizontal map is a weak equivalence. Since we have shown that F

L� is projectively fibrant, satisfies
hyperdescent, and that F ��! F

L�, then F
L� is a fibrant replacement of F in the local projective model

structure.

Lemma 5.3 Let Ch�0.A/ be the dg–category of nonpositively graded chain complexes over some
additive category A, where the hom-complex Ch�.E;E 0/ consists of chain maps and (higher) chain
homotopies from E to E 0, and let Q ,! Ch�0.A/ be a full subcategory which only considers complexes
of height at most m for some fixed m 2 N. Then the simplicial set dgN .Q/ ' coskmC1 dgN .Q/ is
.mC1/–coskeletal.

Proof For any two objects in Q and for an integer k > mC 1, we have Qk.E;E 0/ D 0 due to the
restricted height of all complexes in our dg-category. Thus the only way to decorate a k–simplex with
k > mC 1 is to have the boundary data all satisfy the condition OıgCg �g D 0 and then uniquely assign
a 0–homotopy to the .mC1/–simplex. But recall that, whenever each decorated boundary simplex has
a unique filler, this means the simplicial set is isomorphic to its coskeleton, so in our case we have
dgN .Q/' coskmC1 dgN .Q/, as required.
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Definition 5.4 Define Perf�n WCManop
! dgCat by setting Perf�n.U / to be the dg-category of finite

chain complexes of holomorphic vector bundles just as in Definition 2.1, but with the difference that we
require the complexes to be trivial above level n. Analogously to IVB from Definition 2.11, we then
define IVB�n WCManop

! sSet by setting IVB�n.U /n WD sSet
�
y�n; dgN .Perf�n.U //ı

�
.

Corollary 5.5 The fibrant replacement of IVB�n in the local projective model structure can be computed
by its Čech sheafification , IVB�n ��! IVB

L�
�n.

Proof By construction, IVB�n is still (globally) projectively fibrant, while combining Lemma 5.3 and
Proposition A.1 gives us that IVB�n is (globally) a homotopy-.nC1/ type.

Lemma 5.6 Let Ch�0.A/ be the dg–category of nonpositively graded chain complexes over some
additive category A, where the hom-complex Ch�.E;E 0/ consists of chain maps and (higher) chain
homotopies from E to E 0, and let Q ,! Ch�0.A/ be a full subcategory which only considers complexes
with homology concentrated in degree zero. Then the (Kan replacement of the) simplicial set dgN .Q/ is
a 1–type.

Proof If necessary, first replace dgN .Q/ with its maximal Kan subcomplex which only uses quasi-
isomorphisms on edges. We will prove that �n.dgN .Q// is trivial for n� 2. A class in �n consists of
an n–simplex in dgN .Q/ whose entire boundary is in the image of a single vertex. Thus the vertices
are given by the same chain complex, E0 DE; : : : ; En DE, the quasi-isomorphisms on the edges are
the identity maps, and any homotopy decorating a k < n face is the zero homotopy. By the definition
of dgN .Q/, this data satisfies the condition Oı.g/CDgCg �g D 0 using the notation of Definition 3.3.
Since in this case Oı.g/C g � g is an alternating sum of compositions of 0–homotopies and/or identity
maps, one can show that the above condition reduces to Dg D 0. However, since E is a complex whose
homology is concentrated in degree zero and g 2Q1�n.E;E/ with n� 2, g is exact. From here we can
fill this n–sphere with a higher homotopy and kill the class representing g in �n.

By a similar argument for Corollary 5.5 we can use the above lemma to see that CohSh is a 1–type and
thus CohShL� is a sheaf, but without needing to further restrict the height of any chain complexes.

Corollary 5.7 The simplicial presheaf CohSh is a 1–type and its fibrant replacement in the local
projective model structure can be computed by its Čech sheafification , CohSh ��! CohShL�.

Remark 5.8 Now that under the right circumstances the Čech sheafification can act as a fibrant replace-
ment functor, we can briefly present a different argument for Lemma 4.8 which makes use of equivalences
being preserved under the various constructions we use to pass from the dgCat–valued presheaf Perfr

to the simplicial presheaf IVBL�. The main idea used in the proof for Lemma 4.8 is that for a complex
manifold X, and a point x 2 X, there exists an (Stein) open subset x 2 U � X on which we have an

Algebraic & Geometric Topology, Volume 24 (2024)



4976 Cheyne Glass, Micah Miller, Thomas Tradler and Mahmoud Zeinalian

equivalence of dg-categories, Perfr.U / ��!ePerfr.U /, where the tilde again means we forget connection
data. Since the dg-nerve construction preserves (weak) equivalences, we then obtain an equivalence
of simplicial sets, IVB.U / ��! eIVB.U /. We claim this then says that we have a weak equivalence for
each stalk IVBx ��! eIVBx and thus a local weak equivalence of simplicial presheaves à la Jardine,
IVB ��! eIVB. The local weak equivalences for the local projective model structure happen to coincide
with those of Jardine and thus we obtain a weak equivalence in the local projective model structure
which is necessarily preserved under our (Čech) fibrant replacement functor if we restrict appropriately:

IVB
L�
�n

��! eIVB
L�

�n.

Remark 5.9 At this point, we’d like to take stock and summarize the relationships amongst some
of the different constructions involving IVB. By the functoriality of our constructions, we obtain two
commutative cubes of simplicial presheaves which actually fit together to form a commutative hypercube
via the inclusion CohSh ,! IVB:

IVB
L�
�n

eIVB
L�

�n

IVB�n eIVB�n

IVB eIVB

IVBL� eIVBL�

�

�

�
loc � loc

�

�

CohSh
L�
�n

BCohSh
L�

�n

CohSh�n BCohSh�n

CohSh BCohSh

CohShL� BCohShL�

�

�

�
loc � loc

�

� loc �
loc

�

where the hypersheaves are highlighted with boxes; we used� to denote a global projective (ie objectwise)
weak equivalence and �loc to denote a local projective weak equivalence. Recall that the global weak
equivalences are preserved in the local model structure.
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Recall that in Proposition 4.13 we showed that CohShL� stands a chance of classifying coherent sheaves
since the correspondence is bijective on connected components. We know, however, that N .ShO�X / is
a 1–type and so, if we knew that CohShL� was also a 1–type, then it would only remain to prove the
correspondence on �1.

Lemma 5.10 Given F 2 sPre.CMan/ which is objectwise an n–type (ie F ��! coskn F for some n),
F
L� is again an n–type.

Proof We begin by noting that, if F ��! coskn F, then

F
L�.X/D colim

.U�!X/2 {S

sPre. {NU�;F / ��! colim
.U�!X/2 {S

sPre. {NU�; coskn F /

��! colim
.U�!X/2 {S

Tot.coskn F . {NU�//
��! colim

.U�!X/2 {S

coskn Tot.F . {NU�//;

where we used that Tot computes the homotopy limit in this case and then we commuted the right adjoint
coskn across this concrete limit, and now again using that Tot computes the holim,

colim
.U�!X/2 {S

coskn Tot.F . {NU�// � � colim
.U�!X/2 {S

coskn sPre. {NU�;F /:

While we would love to commute this coskeleton across the colimit, we must proceed differently. Recall
that filtered colimits commute with finite limits, and, since each homotopy group can be written as a finite
limit, we have, for m> n,

�m.F
L�.X//' �m

�
colim

.U�!X/2 {S

coskn sPre. {NU�;F /
�

' colim
.U�!X/2 {S

�m.coskn sPre. {NU�;F //D colim
.U�!X/2 {S

0D 0:

Theorem 5.11 The simplicial presheaf CohSh is a classifying prestack for coherent sheaves.

Proof Recall from [Hirschhorn 2003, Section 17] that the derived mapping space RHom.A;B/ in a
simplicial model category C can be computed by considering the simplicial mapping space C. zA;B 0/,
where we use the cofibrant replacement zA ��! of A and the fibrant replacement B ��! B 0 of B. Then,
since Corollary 5.7 tells us that CohSh is a 1–type whose (local projective) fibrant replacement is given
by its Čech sheafification, we can compute the (local projective) derived mapping space from a manifold
X 2CMan (via its cofibrant representable presheaf) into CohSh as

RHom.X;CohSh/ WD sPre. zX;CohSh0/' sPre.X;CohShL�/D CohShL�.X/:

After combining Proposition 4.13 and Lemma 5.10, it remains to be shown that the map H WCohShL�.X/!
N .ShOX / is an isomorphism of fundamental groups. The ideas used to prove this fact are analogous
to those of Proposition 4.13 but we will summarize them here for ease of reading. Given a vertex E D
.U�; E�; g�/ 2CohShL�.X/0 and the coherent sheaf F WDH.E/ 2N .CohShOX /0, we want to prove that
there is an isomorphisms of based homotopy groups, �1.CohShL�.X/; E/ �1.H/����! �1.N .CohShOX /;F/.
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To prove injectivity, if two loops in CohShL�.X/1, a�; b� W E! E have connected images in N .CohShOX /,
then by definition of the nerve of a groupoid, we have a commutative square of isomorphisms in CohShOX
where all four corners are the coherent sheaf F. Lifting this commutative square to a homotopy in
CohShL�.X/1 once again uses the fact that chain maps which induce the same map on homology are
homotopic [Hilton and Stammbach 1971, Theorem 4.1] (and then the discussion of O’Brian, Toledo
and Tong [1981c, near Lemma 1.6]). To prove surjectivity, a loop f W F D H.E/ ! F D H.E/ in
N .CohShOX /1 is lifted to a loop in CohShL�.X/ on E by using the fact that an isomorphism on homology
lifts to a quasi-isomorphism of chain complexes [Hilton and Stammbach 1971, Theorem 4.1] (and then,
again, the discussion of O’Brian, Toledo and Tong [1981c, near Lemma 1.6]).

If we knew that � somehow used complexes of bounded height, then our Čech sheafified Chern map
from Definition 4.3 could be seen to restrict to a map of sheaves ChL� W IVB

L�
�n!�

L� out of infinity vector
bundles of bounded complex height. One way to resolve this is by restricting our site as recorded below:

Proposition 5.12 On the site CMan�n of complex manifolds of dimension at most n, the Čech sheafifi-
cation of the restricted Chern map ,

ChL� W IVB
L�
�n!�

L�;

is a map of hypersheaves.

Proof By Corollary 5.5, IVB
L�
�n is already a sheaf. Now that we have restricted the site to CMan�n,

� only makes use of chain complexes of length at most n and so it is coskeletal and, by Proposition 5.2,
its sheafification is a hypersheaf.

By different application of the same ideas above, we end with an upgrade on Theorem 4.18:

Theorem 5.13 On the site CMan�n of complex manifolds of dimension at most n, the Čech sheafification
of the Chern map restricted to coherent sheaves ,

ChL� W CohShL�!�
L�;

is a map of hypersheaves which restricts on �0 to the Chern character (4-15) from O’Brian, Toledo and
Tong [1981c].

Proof By Theorem 5.11, CohShL� is already a sheaf. Now that we have restricted the site to CMan�n,
� only makes use of chain complexes of length at most n and so it is coskeletal and, by Proposition 5.2,
its sheafification is a hypersheaf. The fact that on �0 it recovers the Chern map from O’Brian, Toledo and
Tong [1981c] was already recorded in Theorem 4.18.

Remark 5.14 For an arbitrary stack (ie hypersheaf) F, recall as in (5-1) that the right derived mapping
space

RHom.F ;G / WD sPre. zF ; yG /
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for a simplicial model category can be computed by taking the simplicial mapping space between a cofibrant
replacement of F and a fibrant replacement of G. Letting G1 D IVB and G2 D�, Proposition 5.12 says
that our presheafified Chern map Ch W IVB!� from Definition 3.13 induces a map of fibrant (ignoring
the restrictions of sites and homotopy types for the moment) replacements ChL� W IVBL�!�

L�, and thus a
map of right derived mapping spaces:

(5-4) RHom.F ; IVB/D sPre. zF ; IVBL�/ ChL�
��! sPre. zF ;�L�/DWRHom.F ;�/:

When F D X is the representable simplicial presheaf for a complex manifold, the above is explicitly
calculated using Note 4.16. However, (5-4) suggests a reasonable definition for a generalized Chern
character map. In a sequel to this paper, we will study this map for the case when a Lie group G acts on
the complex manifold X and Fn DX �G

�n (see our previous paper [2022, Definition 5.1]), extending
this paper to the equivariant setting.

Appendix A A weak equivalence sSet. y��; K/! sSet.��; K/

In this appendix, we prove Proposition A.1:

Proposition A.1 If K is a Kan complex , then there exists a weak equivalence F ] W sSet.y��; K/ !
sSet.��; K/.

In order to define F ], we first establish some notation. Recall from Example 2.6 that �n is the simplicial
set whose k–simplices are nondecreasing sequences .i0 � � � � � ik/ with i0; : : : ; ik 2 f0; : : : ; ng, and
recall from Example 2.8 that y�n is the simplicial set whose k–simplices are any sequences .i0; : : : ; ik/
with i0; : : : ; ik 2 f0; : : : ; ng. Both �n and y�n have face maps dj given by removing the j th index ij , and
degeneracy maps sj given by repeating the j th index ij . Furthermore both �� and y�� are cosimplicial
simplicial sets, so that for � W Œn�! Œm� in � we get an induced map of �� W z�n� ! z�

m
�

via �k W z�nk! z�
m
k

,
�k.i0; : : : ; ik/ D .�.i0/; : : : ; �.ik//, where z�� is either �� or y��. Thus, there is an induced map of
cosimplicial simplicial sets F � W��! y��, .i0 � � � � � ik/ 7! .i0; : : : ; ik/. For any simplicial set X, both
X D sSet.��; X/ and

a
X WD sSet.y��; X/ are simplicial sets, and there is an induced map F ] W

a
X !X by

precomposition with F.

Our first step towards proving Proposition A.1 is to show that
a
K is also a Kan complex:

Proposition A.2 If K is a Kan complex, then
a
K is a Kan complex.

To begin with, here is a useful lemma:

Lemma A.3 A map c W�n!
a
KD sSet.y��; K/ is determined by the element NcD c.0�� � ��n/ W y�n!K.

Then ıi .c/D c ııi W�n�1Š ıi .�n�1/��n
c
�!

a
K is determined by ıi . Nc/D c ııi W y�n�1Š ıi .y�n�1/�

y�n c
�!K.
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Proof Note that ıi .�n�1/��n are sequences that do not include i , which are generated by the .n�1/–
simplex .0 � � � � � i � 1 � i C 1 � � � �n/ D di .0 � � � � � n/ 2 �nn�1. Thus ıi .c/ is determined by the
image of the simplex di .0� � � � � n/. Now c.di .0� � � � � n//D di .c.0� � � � � n//D di . Nc/D c ı ıi .

Proof of Proposition A.2 Denote by ƒni WD
S
j¤i ıj�

n�1 the i th horn of �n, which is a subsimplicial
set of �n. Similarly, denote by yƒni WD

S
j¤i ıj

y�n�1 the i th horn of y�n, which is a subsimplicial set
of y�n. As noted before, a simplicial set map �n!

a
K is the same as an element

a
Kn, ie a simplicial

set map y�n ! K. Similarly, a simplicial set map ƒni !
a
K is given by n maps ıj�n�1 !

a
K, ie n

maps y�n�1!K (see Lemma A.3), which are compatible at their common boundary, ie whose induced
common boundary maps y�n�2!K coincide, and thus this is the same as a simplicial set map yƒni !K.
Thus, the Kan condition for

a
K (left side of (A-1)) becomes equivalent to lifting a horn yƒni !X to a map

y�n!X (right side of (A-1)):

(A-1)

ƒni
//

��

a
K

��

�n //

??

�

()

yƒni
//

��

K

��
y�n //

??

�

Since K is a Kan complex, we have such a lift if yƒni ! y�
n is an trivial cofibration, ie if this map is

injective and a weak equivalence. Clearly, yƒni ! y�
n is injective, and the weak equivalence follows

since both yƒni and y�n are contractible, ie they have zero homotopy groups. First, it is well known that
EG for any group G is contractible, since it has an extra degeneracy s�1.g0; : : : ; gk/D .e; g0; : : : ; gk/;
see for example [Goerss and Jardine 1999, Lemma III.5.1 and Example III.5.2]. Thus, y�n D EZnC1
is contractible, and, from the explicit extra degeneracy, we can see that it preserves yƒn0 . Thus, yƒn0 is
contractible as well. Now, there is a ZnC1–action on EZnC1, which, in particular, can be used to map
yƒn0 isomorphically to any other yƒni , showing that indeed all yƒni are contractible. (Or, alternatively, one
obtains that the extra degeneracy s�1.i0; : : : ; ik/D .i; i0; : : : ; ik/ of y�n preserves yƒni .)

In order to prove Proposition A.1, we need one more ingredient. Denote by y‚n WD
�S

all j ıj
y�n�1

�
[�n the

subsimplicial set of y�n generated by all y�n�1 boundary components, together with �nŠF n.�n/� y�n.

Lemma A.4 y‚n is contractible.

Proof For a subset A � f0; : : : ; ng, denote by y‡nA WD
�S

j2A ıj
y�n�1

�
[ �n the subsimplicial set

y‡nA �
y�n, given by �n with “thickened” boundary components determined by A. In particular, y‡n

fg
D�n

and y‡n
f0;:::;ng

D y‚n. (Note that y‡nA may be explicitly described to have p–simplices given by sequences
.i0; : : : ; ip/ 2 f0; : : : ; ng

p such that either i0 � � � � � ip, or there exists an element i 2 A such that
i0 ¤ i; : : : ; ip ¤ i , or both.) We show that the j y‡nA j are contractible for all n and A. Since all j y‡nA j are
CW–complexes, this is equivalent to showing that the j y‡nA j are connected and have zero homotopy groups.

We will repeatedly use the fact that, if X, Y, X \Y and X [Y are CW–complexes, and X, Y and X \Y
are contractible, then X [Y is also contractible (which follows since X [Y is certainly connected, has
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vanishing �1 due to van Kampen, vanishing homology groups due to Mayer–Vietoris, and thus vanishing
homotopy groups due to Hurewicz).

When nD 1, using that y�0 D�0, we have for any A� f0; 1g that y‡1A D�
1, and j�1j is contractible.

Now, for n > 1, assume by induction, that the j y‡kB j are contractible for all k < n and all B � f0; : : : ; kg.
We perform a second induction on the number of elements of A� f0; : : : ; ng. First, note that y‡n

fg
D�n,

and j�nj is contractible. Thus, assume by induction that all j y‡nA j with jAj< l are contractible. Now, let
AD fi1; : : : ; ilg � f0; : : : ; ng be an l–element set with, say, i1 < � � �< il . Writing

y‡n
fi1;:::;ilg

D y‡n
fi1;:::;il�1g

[ ıil
y�n�1;

we know by induction that j y‡n
fi1;:::;il�1g

j is contractible, and also jıil y�
n�1j�j y�n�1j is contractible (which

was reviewed in the proof of Proposition A.2). Furthermore, y‡nfi1;:::;il�1g\ ıil
y�n�1 D ıil

y‡n�1
fi1;:::;il�1g

Š

y‡n�1
fi1;:::;il�1g

, and, by the first induction, j y‡n
fi1;:::;il�1g

j \ jıil
y�n�1j D j y‡n�1

fi1;:::;il�1g
j is contractible as well.

Thus, by the above fact, j y‡n
fi1;:::;ilg

j D j y‡n
fi1;:::;il�1g

j [ jıil
y�n�1j is also contractible.

We are now ready to prove Proposition A.1.

Proof of Proposition A.1 Since both K and
a
K are Kan complexes, it suffices to show that F ] W

a
K!K

induces isomorphisms on all simplicial homotopy groups (since these coincide with the homotopy groups
of their geometric realizations; see [May 1967, Theorems 16.1 and 16.6]).

First, for nD 0, F induces a map �0.
a
K/! �0.K/ which is onto since y�0 D �0 and thus

a
K0 D K0.

To see that the induced map �0.
a
K/! �0.K/ is one-to-one, assume a; b 2K0 are equivalent a � b in

�0.K/. Since K is a Kan complex, this means that (instead of a sequence of 1–simplices) there exists
a single c 2 K1 such that d0.c/ D a and d1.c/ D b. We need to check that a � b in �0.

a
K/, ie there

exists a a
c 2

a
K1 with d0.

a
c /D a and d1.

a
c /D b. Thus we need a simplicial set map �1!

a
K, ie a map

y�1!K making the following diagram commute:

y‚1 D�1[ ı0 y�
0[ ı1 y�

0 c[a[b
//

��

K

��
y�1 //

55

�

Note that the top arrow is well defined, and, since the left map is a trivial cofibration (ie injective and a
weak equivalence) and K is a Kan complex, it follows that it lifts to a map y�1!K, as needed.

Now, for n� 1, F induces a map �n.
a
K;�/! �n.K;�/ which is onto: if c 2Kn with di .c/D� for all i ,

represents an element of �n.K;�/, then we want to produce a a
c 2

a
Kn, ie a

c W y�n!K, with di .
a
c /D �

for all i and which restricts to c under F. Thus, we need to find a lift making the following diagram
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commute:
y‚n D�n[ ı0 y�

n�1[ � � � [ ın y�
n�1 c[�[���[�

//

��

K

��
y�n //

33

�

Again, the top arrow is well defined, since c restricts trivially to its boundaries. Just as before, we can
find a lift, because y‚n! y�n is a trivial cofibration and K is a Kan complex. Finally, we need to check
that F induces a map �n.

a
K;�/! �n.K;�/, which is one-to-one. Since this map is a map of groups,

it suffices to check that the kernel is trivial. More explicitly, we need to show that if a
c 2 Kn with

di .
a
c /D� for all i represents a class of �n.

a
K;�/, which maps to c D a

c ıF n W�n F
n

�! y�n
ac
�!K which

is trivial in �n.K;�/, then a
c is trivial in �n.

a
K;�/. For c to be trivial in �n.K;�/ means that there is an

.nC1/–simplex q 2KnC1 such that d0.q/D c and di .q/D � for all i � 1. We thus have the setup for
the diagram

y‚nC1 D�nC1[ ı0 y�
n[ ı1 y�

n[ � � � [ ın y�
n q[ac [�[���[�

//

��

K

��
y�nC1 //

33

�

Since y‚nC1 ! y�nC1 is a trivial cofibration and K is a Kan complex, there exists a lift a
q 2

a
KnC1

with d0.
a
q /D

a
c and di .

a
q /D � for all i � 1. This shows that a

c does indeed represent the trivial class
in �n.

a
K;�/.

Appendix B Explicit description of totalization

We now review the notion of totalization of a cosimplicial simplicial set.

B.1 Totalization

We recall from our previous work [2022, Definition D.1] and [Hirschhorn 2003, Definition 18.6.3]]
the definition of totalization. Let K� W�! sSet be a cosimplicial simplicial set, ie Kl WD K.Œl�/ is a
simplicial set Kl DKl

�
. Then, the totalization Tot.K�

�
/ of K is defined as the simplicial set, which is the

equalizer of the maps

(B-1) Tot.K�
�
/!

Y
Œl�2Obj.�/

.Kl/�
l �

 
�!
�!

Y
� W Œn�!Œm�

.Km/�
n

Here, by definition, .Kp/�
q

is the simplicial set whose n–simplices are simplicial set maps ..Kp/�
q

/nD

sSet..�n ��q/�; Kp� /. Then a k–simplex in the totalization is given by some collection

(B-2) fx.k;l/gl�0; where x.k;l/ 2 sSet.�k ��l ; Kl/;
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satisfying the coherence condition that they are in the above equalizer. Explicitly, for a fixed j D
0; : : : ; l C 1 the map ıj W Œl �! Œl C 1� which skips j induces the maps

x.k;lC1/ 2 sSet.�k ��lC1; KlC1/ dj�! sSet.�k ��l ; KlC1/;(B-3)

x.k;l/ 2 sSet.�k ��l ; Kl/ dj
�! sSet.�k ��l ; KlC1/:(B-4)

Then, for x.k;lC1/ and x.k;l/ as above,

(B-5) dj .x
.k;lC1//D d j .x.k;l//:

Thus, a k–simplex, fx.k;l/glD0;1;:::, in the totalization of a cosimplicial simplicial set, Tot.K�
�
/ is given

by maps x.k;l/ 2 sSet..�k ��l/�; Kl�/ for each l D 0; 1; : : : , which can be thought of as a coherent
“decoration” of the simplicial sets �k ��l , for l D 0; 1; : : : , by simplices in Kl

�
.

B.2 Simplices of �k ��l

We now recall that there is a nice book-keeping device for the simplices of �k ��l . In fact, the p–
simplices of �k ��l can be described by nondecreasing paths with pC 1 vertices in a .kC 1/� .lC 1/
grid; we also call this a p–path. For example, the maximally nondegenerate .4C7/–simplices of �4��7

can be labeled by paths4 through a .4C1/� .7C1/ grid, necessarily starting from
�
0
0

�
and ending at

�
4
7

�
.

For example, the following path of labels, which we denote by
�
0
0

ˇ̌
1
0

ˇ̌
1
1

ˇ̌
1
2

ˇ̌
2
2

ˇ̌
3
2

ˇ̌
4
2

ˇ̌
4
3

ˇ̌
4
4

ˇ̌
4
5

ˇ̌
4
6

ˇ̌
4
7

�
, labels an

element of .�4 ��7/11:

(B-6)

�
0
0

�
�
1
0

�
�
2
0

�
�
3
0

�
�
4
0

�

�
0
1

�
�
1
1

�
�
2
1

�
�
3
1

�
�
4
1

�

�
0
2

�
�
1
2

�
�
2
2

�
�
3
2

�
�
4
2

�

�
0
3

�
�
1
3

�
�
2
3

�
�
3
3

�
�
4
3

�

�
0
4

�
�
1
4

�
�
2
4

�
�
3
4

�
�
4
4

�

�
0
5

�
�
1
5

�
�
2
5

�
�
3
5

�
�
4
5

�

�
0
6

�
�
1
6

�
�
2
6

�
�
3
6

�
�
4
6

�

�
0
7

�
�
1
7

�
�
2
7

�
�
3
7

�
�
4
7

�
We can apply x.4;7/ 2 sSet.�4 ��7; K7/ to this path, which will give an element

x
.4;7/�
0 1 1 1 2 3 4 4 4 4 4 4

0 0 1 2 2 2 2 3 4 5 6 7

� 2K711
(note the simplicial degree 11 comes from the 11–path with 12 vertices). Note that, just as the simplices of
the standard n–simplex have direction, these paths must be nondecreasing in both directions. Additionally,
the faces of a p–simplex of �k ��l given by a path would consist of subsequences of that path, eg�
1
0

ˇ̌
1
2

ˇ̌
2
2

ˇ̌
4
3

ˇ̌
4
4

ˇ̌
4
6

�
describes a 5–simplex in .�4 ��7/5 which is a lower face of the above 11–simplex.

Degenerate simplices are described by paths where at least one of the indices is repeated, eg
�
1
2

ˇ̌
2
2

ˇ̌
4
3

ˇ̌
4
3

ˇ̌
4
6

�
.

4Informally, this path might be referred to as a “taxi-cab”path as it only moves in a rectangular fashion.
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Using this notation, the coherence condition (B-5) can be stated more precisely as follows. Let K�
�

be a cosimplicial simplicial set and let ıj W Œl �! Œl C 1� be the map that skips j. We have the coface
maps, d j W Kl

�
! KlC1

�
, as well as the maps dj in (B-3) given by precomposition with �l

�
! �lC1

�
.

Then we can explicitly describe the k–simplices of the totalization, Tot.K�
�
/k , as collections fx.k;l/ 2

sSet.�k ��l ; Kl
�
/glD0;1;:::, which, applied to p–simplices of �k ��l labeled by the paths

�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
with 0�˛0� � � � � p̨ � k and 0�ˇ0� � � � � p̌ � l as described above, assign elements x.k;l/�

˛0 � � � p̨

ˇ0 � � � p̌

� 2Klp ,
satisfying

(B-7) x
.k;lC1/�
˛0 � � � p̨

ıj .ˇ0/ � � � ıj . p̌/

� D d j .x.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

�/ 2KlC1p :

For example, for k D 2, we have the assignments, for l D 0; 1,

x
.2;0/�
0

0

�

x
.2;0/�
1

0

�

x
.2;0/�
2

0

�

x
.2;0/�
1 0

0 0

�x
.2;0/�
1 0

0 0

�

x
.2;0/�
1 2

0 0

�x
.2;0/�
1 2

0 0

�

x
.2;0/�
0 2

0 0

�x
.2;0/�
0 2

0 0

�x
.2;0/�
0 1 2

0 0 0

�x
.2;0/�
0 1 2

0 0 0

�

x
.2;1/�
0

0

�

x
.2;1/�
1

0

�

x
.2;1/�
2

0

�

x
.2;1/�
0

1

�

x
.2;1/�
1

1

�

x
.2;1/�
2

1

�

x
.2;1/�
0 0 2

0 1 1

�

x
.2;1/�
0 1 2

0 0 0

�

x
.2;1/�
0 2

0 0

�x
.2;1/�
0 2

0 0

�

x
.2;1/�
1 2 2

0 0 1

�

x
.2;1/�
1 1 2

0 1 1

�

x
.2;1/�
0 0 1

0 1 1

�

x
.2;1/�
0 1 1

0 0 1

�
x
.2;1/�
0 1 2

1 1 1

�

x
.2;1/�
0 1

0 0

�x
.2;1/�
0 1

0 0

�

x
.2;1/�
1 2

0 0

�x
.2;1/�
1 2

0 0

�

x
.2;1/�
0 0

0 1

�x
.2;1/�
0 0

0 1

�

x
.2;1/�
2 2

0 1

�x
.2;1/�
2 2

0 1

�
x
.2;1/�
0 2 2

0 0 1

�

x
.2;1/�
0 2

1 1

�x
.2;1/�
0 2

1 1

�x
.2;1/�
1 2

0 1

�x
.2;1/�
1 2

0 1

�

x
.2;1/�
1 1

0 1

�x
.2;1/�
1 1

0 1

�

x
.2;1/�
0 1

0 1

�x
.2;1/�
0 1

0 1

�
x
.2;1/�
0 1

1 1

�x
.2;1/�
0 1

1 1

�

x
.2;1/�
1 2

1 1

�x
.2;1/�
1 2

1 1

�

x
.2;1/�
0 2

0 1

�x
.2;1/�
0 2

0 1

�

As an example, for ı0 W Œ0�! Œ1�, equation (B-7) yields x.2;1/�
0 1 2

1 1 1

� D d0.x.2;0/�
0 1 2

0 0 0

�/, which relates the cells for
different l’s.

Note that, for a fixed k and l , the

x
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

� 2Klp
are in fact determined by the maximal paths

x
.k;l/�
˛0 � � � ˛kCl
ˇ0 � � � ˇkCl

� 2KlkCl ;

since each p–path is a subpath of a maximal path and so the p–cell is in the image of some face map
Kl
kCl
!Klp for some map Œp�! ŒkC l �.
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Example B.1 For example, for a simplicial presheaf F WCManop
! sSet, and an open cover U DfUigi2I

of X 2CMan, we take

Klp D Fp. {NUl/D
Y

i0;:::;il2I

Fp.Ui0;:::;il /:

In this case a p–cell in x 2Klp is given by xDfxi0;:::;il g, where, for each .lC1/–fold intersection Ui0;:::;il ,
xi0;:::;il 2 Fp.Ui0;:::;il / is a p–cell. Note that the map d j WKl !KlC1 in (B-4) and (B-7) is induced by
the inclusions incl W Ui0;:::;ilC1 ,! Ui0;:::;O{j ;:::;ilC1 as Fp.incl/ W Fp.Ui0;:::;O{j ;:::;ilC1/! Fp.Ui0;:::;ilC1/. In
particular, continuing the example from the figure above, x.2;0/�

0 1 2

0 0 0

� and x.2;1/�
0 1 2

1 1 1

� have components

x
.2;0/�
0 1 2

0 0 0

�
Ii
2 F2.Ui /; x

.2;1/�
0 1 2

1 1 1

�
Ii0i1
2 F2.Ui0i1/;

respectively and the compatibility of (B-7) now yields,

x
.2;1/�
0 1 2

1 1 1

�
Ii0i1
D d0.x

.2;0/�
0 1 2

0 0 0

�/D Ui0i1 jx.2;0/�
0 1 2

0 0 0

�
Ii1

:

B.3 Totalization for the case K D sSet. y�; zK/

We are interested in the totalization of K�
�
D Perfy�. {NU/ D sSet.y�;Perf. {NU//. Thus, assume now

that we have a cosimplicial simplicial set K�
�
, which is of the form Klp WD sSet.y�p; zKl/ for some other

cosimplicial simplicial set zK�
�
. By rewriting simplicial sets as colimits of their simplices, and using

continuity of the hom-functor in the category sSet, we see that

(B-8) sSet.�k ��l ; Kl/D sSet
�

colim
�p!�k��l

�p; Kl
�
D lim
�p!�k��l

sSet.�p; Kl/

D lim
�p!�k��l

Klp D lim
�p!�k��l

sSet.y�p; zKl/

D sSet
�

colim
�p!�k��l

y�p; zKl
�
:

We see from the above identification that decorations of simplicial sets �k ��l by simplices in Kl
�

is
equivalent to first gluing the simplicial sets y�n along the corresponding �n sitting inside �k ��l , and
then decorating this colimit made of various y�n by simplices in zKl . Using the description of y� from
Example 2.8, it now follows that the k–simplices of Tot.K�

�
/ are in fact given by

x
.k;l/�
˛0 � � � p̨

ˇ0 � � � p̌

� 2 zKlp;

where this time the path described by
�
˛0
ˇ0

ˇ̌
���

���

ˇ̌
˛p
ˇp

�
is now permitted to move horizontally and vertically in

each direction in the grid, ie possibly decreasing, but within the indices of a nondecreasing path. For
example, in the .2C 1/� .3C 1/ grid of vertices, take the 5–cell given by the map �5 ,! �2 ��3
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whose nondecreasing path is
�
0
0

ˇ̌
0
1

ˇ̌
0
2

ˇ̌
1
2

ˇ̌
1
3

ˇ̌
2
3

�
. Then, for the corresponding y�5, there is a nondegenerate

9–simplex

(B-9) x
.2;3/�
0 0 1 0 0 1 0 2 1 2

0 1 3 1 2 2 1 3 3 3

� 2 zK39 ;

which is both increasing and decreasing using the indices of the 5–path
�
0
0

ˇ̌
0
1

ˇ̌
0
2

ˇ̌
1
2

ˇ̌
1
3

ˇ̌
2
3

�
in �2 ��3.

Thus, in the totalization Tot.K/, a 2–simplex x D fx.2;l/g needs to assign such an element in zK39 to the
9–path from (B-9). However, note that there is no assignment to the path

�
0
0

ˇ̌
1
0

ˇ̌
0
1

ˇ̌
1
1

�
, because every map

�n!�k ��l is necessarily nondecreasing in both components and so one can never obtain both
�
0
1

�
and

�
1
0

�
in the same path. To summarize, a cell in Tot.K/ has to assign elements in zK exactly to any

path which uses the indices of a nondecreasing path.

Finally, note that the coherence condition on these simplices of the totalization is the same as expressed
in (B-7).

Appendix C Totalization and fibrant objects

The purpose of this appendix is to prove Proposition C.1.

Proposition C.1 If F is a projectively fibrant simplicial presheaf (such as F D IVB) then Tot.F . {NU�//
is a Kan complex.

We start with the following lemma:

Lemma C.2 The totalization functor (see Appendix B) Tot W .Set�
op
/�! Set�

op
is a right adjoint.

Proof We prove this directly by defining the left adjoint L. For any simplicial set X�, let L.X�/ be the
cosimplicial simplicial set n 7!X� ��n, where �n is the standard n–simplex.

To show that these functors form an adjoint pair, let X� be a simplicial set and Y �
�

be a cosimpli-
cial simplicial set. Since Set�

op
is a simplicial model category (under the usual Quillen structure),

Set�
op
.X � �n; Y n

�
/ is in bijection with Set�

op
.X; .Y n

�
/�
n

/. Since Tot.Y �
�
/ D .Y �

�
/�, we have our

bijection.

Lemma C.3 The functors .L;Tot/ form a Quillen adjunction between the Reedy model structure
[Hirschhorn 2003, Section 15] of cosimplicial simplicial sets and the usual Quillen model structure on
simplicial sets.

Proof It is enough to show that L preserves cofibrations and trivial cofibrations. Suppose f WX�! Y �

is a cofibration of simplicial sets, ie a levelwise monomorphism. By [Hirschhorn 2003, Theorem 15.9.9],
to show that L.f / is a Reedy cofibration, it is enough to show that L.f / is a monomorphism that
takes the maximal augmentation of L.X�/ isomorphically onto the maximal augmentation of L.Y �/.
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Since L.f /D f � Id and f is a levelwise monomorphism, L.f / is a monomorphism. The maximal
augmentation of L.X�/ and L.Y �/ are empty. So L preserves cofibrations.

Suppose f WX�! Y � is a trivial cofibration. We need to show that L.f / W L.X�/! L.Y �/ is a Reedy
weak equivalence. Since L.f /D f � Id, then LnF WX� ��n! Y � ��n is a weak equivalence.

Lemma C.4 Let X be a Reedy fibrant cosimplicial simplicial set. Then Tot.X/ is a Kan complex.

Proof Since Tot is a right adjoint, it preserves fibrations and terminal objects. So Tot preserves fibrant
objects.

Lemma C.5 Let V be a manifold and U� be an open cover of V. Let F be a simplicial presheaf that
takes values in Kan complexes. Then F . {NU�/ W�! Set�

op
(see (4-1)) is a Reedy fibrant cosimplicial

simplicial set.

Proof This proof uses some conventions from [Hirschhorn 2003, Section 15] for the Reedy model
structure and is analogous to that of Block, Holstein and Wei [2017, Proposition 4.3]. We need to show
that the matching map F . {NUn/!Mn.F . {NU�// is a fibration for each n, where

F . {NUn/ WD sPre
� a
i0;:::;in

yUi0;:::;in ;F

�
D

Y
i0;:::;in

F .Ui0;:::;in/:

Write {NUn as the coproduct

{NUn D
a

i0;:::;in
ij¤ijC1

yUi0;:::;inq

� na
kD1

a
i0;:::;in

ij1Dij1C1;:::;ijkDijkC1

yUi0;:::;in

�

and apply F to get Y
i0;:::;in
ij¤ijC1

F .Ui0;:::;in/�

nY
kD1

� Y
i0;:::;in

ij1Dij1C1;:::;ijkDijkC1

F .Ui0;:::;in/

�
:

First note that the right side of this cartesian product is the matching object at n, MnF . {NU/. This is
seen directly by showing that this product is the terminal object in the category of cones under F . {NU/

restricted to the matching category @.Œn� # E�/ (see [Hirschhorn 2003, Definition 15.2.3.2]). The product

nQ
kD1

� Q
i0;:::;in

ij1Dij1C1;:::;ijkDijkC1

F .Ui0;:::;in/
�

**((vvss

F . {NUn�1/ // F . {NUn�2/ // � � � // F . {NU1/ // F . {NU0/
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is a cone under F . {NU/, where F . {NUn�j / D
Q
i0;:::;in�j

F .Ui0;:::;in�j / and the vertical maps are
projections.

Now, suppose we have a cone under F . {NU/:

(C-1)

Y

fn

**
fn�1 ##

f2zz

f1

tt

F . {NUn�1/ // F . {Nn�2/ // � � � // F . {NU1/ // F . {NU0/

Then, to define the map Y into the product, send y to .f1.y/; f2.y/; : : : ; fn.y//.

Finally, we see that the matching map F . {NUn/ �Mn. {NU/! Mn. {NU/ is the projection onto the
second factor. Since F . {NUn/ is a Kan complex, the projection is a fibration.

Applying Lemma C.4 to Lemma C.5 proves Proposition C.1.
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Derived character maps of group representations

YURI BEREST

AJAY C RAMADOSS

We define and study (derived) character maps of finite-dimensional representations of1–groups. As
models for1–groups we take homotopy simplicial groups, ie the homotopy simplicial algebras over
the algebraic theory of groups (in the sense of Badzioch (2002)). We introduce cyclic, symmetric and
representation homology for “group algebras” kŒ�� of such groups and construct canonical trace maps
(natural transformations) relating these homology theories. We show that, in the case of one-dimensional
representations, our trace maps are of topological origin: they are induced by natural maps of (iterated)
loop spaces known in stable homotopy theory. Using this topological interpretation, we deduce some
algebraic results on representation homology: in particular, we prove that the symmetric homology of
group algebras and one-dimensional representation homology are naturally isomorphic, provided the base
ring k is a field of characteristic zero. We also study the stable behavior of the derived character maps of
n–dimensional representations as n!1, in which case we show that these maps “converge” to become
isomorphisms.
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1 Introduction

If � is a finite group and k is a field of characteristic zero, every finite-dimensional k–linear representation
% W � ! GLn.k/ is semisimple and determined (up to equivalence) by its character: the trace function
hgi 7! TrnŒ%.g/� defined on the set h�i of conjugacy classes of elements of �; moreover, for each
n� 0, there are finitely many equivalence classes of such representations. These well-familiar facts from
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4992 Yuri Berest and Ajay C Ramadoss

representation theory of finite groups generalize to arbitrary groups by means of algebraic geometry.
For any discrete group � , the set of all n–dimensional representations of � can be naturally given
the structure of an affine algebraic variety (more precisely, an affine k–scheme) Repn.�/ called the
representation variety of � . The equivalence classes of n–dimensional representations of � are classified
by the orbits of the general linear group GLn that acts algebraically on Repn.�/ by conjugation. The
classes of semisimple representations correspond to the closed orbits1 and are parametrized by the affine
quotient scheme

Repn.�/ ==GLn.k/ WD SpecOŒRepn.�/�
GLn

called the character variety of � . Now, the characters of representations assemble into a linear map

(1-1) Trn.�/ W kh�i !OŒRepn.�/�
GLn

defined on the k–vector space spanned by the conjugacy classes of elements of � . A well-known theorem
of C Procesi [59] asserts that the characters of � , ie the images of the map (1-1), generate OŒRepn.�/�

GLn

as a commutative k–algebra, and thus, by Nullstellensatz, detect the semisimple representations of �
when k is algebraically closed. In general, the equivariant geometry of Repn.�/ is closely related to
representation theory of � , the geometric structure of GLn–orbits in Repn.�/ determining the algebraic
structure of representations. Since the late 1980s this relation has been extensively studied and exploited
in many areas of mathematics, most notably in geometric group theory and low-dimensional topology;
see eg Lubotzky and Magid [50] and Sikora [66].

Derived algebraic geometry allows one to extend — and in some sense to complete — this beautiful
connection between representation theory and geometry. For any affine algebraic group G defined over
a commutative ring k (eg G D GLn.k/), the classical representation scheme RepG.�/ parametrizing
the representations of � in G admits a natural derived extension DRepG.�/ called the derived G–
representation scheme2 of � . This derived scheme is represented by a simplicial commutative k–algebra
OŒDRepG.�/� whose homotopy groups �iOŒDRepG.�/� are nonabelian homological invariants of � (or
its classifying space B�). Following [13; 14], we set

(1-2) HR�.�;G.k// WD ��OŒDRepG.�/�

and call (1-2) the representation homology of � with coefficients in G. By definition, HR�.�;G.k// is a
graded commutative algebra, whose degree zero part is canonically isomorphic to the coordinate ring of
RepG.�/:

(1-3) HR0.�;G.k//ŠOŒRepG.�/�:

1At least when � is finitely generated.
2The first construction of this kind, the derived moduli space RLocG.X / of G–local systems over a pointed connected space X ,
was introduced by Kapranov [43]. In recent years, several other constructions and generalizations of RLocG.X / have been
studied in derived algebraic geometry; most notably, in the work of Toën and Vezzosi [69], but see also Pridham [58], Pantev,
Toën, Vaquié and Vezzosi [55], Pantev and Toën [54] and Toën [68]. A brief review and comparison of these constructions can be
found in Berest, Ramadoss and Yeung [12, Appendix].
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Apart from groups, representation homology can be also defined for various kinds of algebras (eg associa-
tive and Lie algebras, see Berest, Ramadoss et al. [9; 11; 7; 8]) as well as for topological spaces [14; 13; 12].
What is surprising perhaps is that, in the case of discrete groups, the representation homology admits a
simple interpretation in terms of classical (abelian) homological algebra: namely, as shown in [14], there
is a natural isomorphism

(1-4) HR�.�;G.k//Š TorG� .kŒ��;O.G//;

where G is the (skeletal) category of f.g. free groups on which the group algebra kŒ�� of the group �
and the coordinate algebra O.G/ of the algebraic group G are represented by monoidal functors: G!
Modk (contravariant and covariant, respectively). In the present paper, we will use formula (1-4) to
define representation homology for homotopy simplicial groups, which are natural (“up to homotopy”)
generalizations of the usual (“strict”) simplicial groups; see Badzioch [4]. In addition, we will also define
cyclic and symmetric homology for such groups, extending the original approach of Connes [25] and
Fiedorowicz and Loday [31].

Now, returning to the classical character map (1-1), we observe that its domain can be identified with the
0th cyclic homology of the group algebra kŒ��:

(1-5) HC0.kŒ��/Š kh�i:

With identifications (1-3) and (1-5), we can rewrite (1-1) in the form

(1-6) Trn.�/ W HC0.kŒ��/! HR0.�;GLn.k//
GLn ;

which suggests that there might exist a natural extension of this map to higher cyclic homology with
values in representation homology of �:

(1-7) Trn.�/� W HC�.kŒ��/! HR�.�;GLn.k//
GLn :

The maps (1-7) do exist, and we call them the derived character maps of n–dimensional representations
of � . Our goal is to define and study such maps for an arbitrary homotopy simplicial group � and an
arbitrary affine algebraic group G; see Definition 3.15.

In the case of associative algebras, the derived character maps were originally constructed in [9], using
nonabelian homological algebra. This construction was extended to Lie algebras in [8], where it was
shown, among other things, that the derived character maps of Lie algebra representations are Koszul
dual (in an appropriate sense) to the classical Loday–Quillen–Tsygan maps [49; 70]. The case of groups
that we treat in this paper is special for several reasons. First, as mentioned above, the representation
homology of groups admits a natural interpretation in terms of functor homology that is parallel to
A Connes’ well-known interpretation of cyclic homology. We will show that behind this “parallelism”
there is actually a connection: a simple formula for the derived character maps (1-7) relating cyclic
homology to representation homology via standard homological algebra; see Section 3.4.

Algebraic & Geometric Topology, Volume 24 (2024)



4994 Yuri Berest and Ajay C Ramadoss

Second, the cyclic homology of group algebras has a natural topological realization that goes back to the
work of Goodwillie, Burghelea, Fiedorowicz and others (see Loday [47, Chapter 7]): specifically,

(1-8) HC�.kŒ��/Š H�.ES1
�S1 L.B�/I k/;

where the right-hand side is the S1–equivariant homology of the free loop space L.B�/ WDMap.S1;B�/

of the classifying space of � . In fact, the isomorphism (1-8) is just one on a list of several classical
isomorphisms relating the algebraic homology theories associated with so-called crossed simplicial groups
(see Fiedorowicz and Loday [31]) to (stable) homotopy theory:

(1-9)

HH�.kŒ��/Š H�.L.B�/I k/;

HC�.kŒ��/Š H�.ES1
�S1 L.B�/I k/;

HS�.kŒ��/Š H�.��1†1.B�/I k/;

HB�.kŒ��/Š H�.�2†.B�/I k/;

HO�.kŒ��/Š H�.E.Z=2/C ^Z=2��
1†1.B�/I k/;

where �, † and �1†1 denote the based loop, the (reduced) suspension, and the stable homotopy
functors, respectively. The first two of the above isomorphisms (for Hochschild and cyclic homology) are
well known: they were originally established in Goodwillie [33] and Burghelea and Fiedorowicz [20], and
their proofs appear in Loday’s textbook [47], see also his [48] for a nice self-contained exposition. The
last three (for the symmetric HS�, braided HB� and hyperoctahedral HO� homologies) are less known:
they were discovered by Fiedorowicz [30] in the early 1990s, but detailed proofs were published only
recently; see Ault [2] and Graves [37].

The second (and perhaps, the main) goal of this paper is to extend the above list of isomorphisms by adding
to it representation homology. To be precise, for any commutative ring k, let HR�.kŒ��/ WD HR�.�; k�/
denote the one-dimensional representation homology of � . We prove (see Lemma 4.1 and Theorem 4.2):

Theorem 1.1 For any homotopy simplicial group � , there is a natural isomorphism

(1-10) HR�.kŒ��/Š H�.�SP1.B�/I k/;

where SP1.B�/ denotes the Dold–Thom space of the classifying space of � .

Apart from the Hochschild and cyclic theories, most interesting on the list (1-9) is the symmetric homology
theory HS� introduced by Fiedorowicz [30] and studied by Ault [2; 3]. Roughly speaking, HS� is defined3

in the same way as HC�, with Connes’ cyclic category �C replaced by the symmetric category �S ,
where the family of the symmetric groups fSop

nC1
gn�0 is used instead of the cyclic groups fCnC1gn�0.

Now, the natural inclusions of groups CnC1 ,! SnC1 extend to a functor � W�C op ,! �S , which, in turn,

3See Sections 3.3 and 4.2 for precise definitions of HC�.kŒ��/ and HS�.kŒ��/ in the context of homotopy simplicial groups.

Algebraic & Geometric Topology, Volume 24 (2024)
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induces a natural map HC�.kŒ��/!HS�.kŒ��/. It turns out that, with identifications (1-9), this last map
is induced (on homology) by a map of topological spaces

(1-11) CSB� WES1
�S1 L.B�/!��1†1.B�/:

The map (1-11) is actually defined as a natural transformation CSX on the (homotopy) category of all
pointed spaces; it was originally constructed by Carlsson and Cohen [21], and its relation to symmetric
homology was noticed in [30]. We will refer to (1-11) as the Carlsson–Cohen map for B� .

We can now state our second observation that provides a topological interpretation of the derived character
maps (1-7) for one-dimensional representations. To shorten notation we will write the maps (1-7) for
nD 1 as

(1-12) Tr.�/� W HC�.kŒ��/! HR�.kŒ��/:

The next theorem encapsulates the main results of Section 4.3 (see Proposition 4.8 and Corollary 4.10),
Section 5.2 (see Proposition 5.2) and Section 5.3 (see Proposition 5.3).

Theorem 1.2 With isomorphisms (1-9) and (1-10), the derived character maps (1-12) are induced on
homology by a natural map of topological spaces

(1-13) CRB� WES1
�S1 L.B�/!�SP1.B�/:

The map (1-13) factors (as a homotopy natural transformation) through the Carlsson–Cohen map (1-11):

(1-14) ES1
�S1 L.B�/ CSB�

���!��1†1.B�/
SRB�
���!�SP1.B�/;

where the induced map SR is the (looped once) canonical natural transformation �1†1! SP1 relating
stable homotopy to (reduced ) singular homology of pointed spaces.

Theorem 1.2 shows that, for any homotopy simplicial group � , the derived character map (1-12) factors
through symmetric homology, and the induced map

(1-15) SRB�;� W HS�.kŒ��/! HR�.kŒ��/

is determined by a map of spaces that is well known in topology. Using topological results, we then
conclude (see Corollary 5.5 and Remark 5.6):

Corollary 1.3 If k is a field of characteristic 0, the map (1-15) is an isomorphism , at least when B� is a
simply connected space.

The results stated above are all concerned with derived characters of one-dimensional representations.
For higher-dimensional representations (n> 1), the maps (1-7) are more complicated: in particular, they
do not seem to factor through HS�.kŒ��/, and in general, the relation between symmetric homology and
representation homology remains mysterious. However, when n!1, things become more tractable.
Assuming that k is a field of characteristic 0, we can naturally pass to the projective limit

HR�.�;GL1.k//GL1 WD lim
 ��

n

HR�.�;GLn.k//
GLn

Algebraic & Geometric Topology, Volume 24 (2024)



4996 Yuri Berest and Ajay C Ramadoss

and construct the stable character maps

(1-16) Tr1.�/� W HC�.kŒ��/! HR�.�;GL1.k//GL1 ;

where HC stands for the reduced cyclic homology. In this case, we have the following result, the proof of
which is parallel to [11] and outlined in the last section of the paper; see Theorem 6.2.

Theorem 1.4 Let � be a homotopy simplicial group such that B� is a simply connected space of finite
(rational ) type. Then the stable character maps (1-16) induce an algebra isomorphism

(1-17) ƒTr1.�/� Wƒk ŒHC�.kŒ��/�
�
�! HR�.�;GL1/GL1 ;

whereƒk ŒHC�.kŒ��/� is the graded symmetric algebra generated by the reduced cyclic homology of kŒ��.

We close this introduction by mentioning one application of stable character maps in derived Poisson
geometry. If � is a simplicial group model of a simply connected closed manifold X of dimension d

(so that X 'B�), then, by (1-9), we can identify HC�.kŒ��/ with the reduced S1–equivariant homology
HS1

� .L.X /I k/ of the free loop space of X . Thanks to the work of Chas and Sullivan, the latter is known
to carry the so-called string topology Lie bracket, making the symmetric algebra ƒk ŒHC�.kŒ��/� Š
ƒk ŒHS1

� .L.X /I k/� a graded Poisson algebra. On the other hand, the representation homology ring
HR�.�;GL1/GL1 acquires a .2�d/–shifted graded Poisson structure from the Poincaré duality pairing
on (the cohomology of) X . As an application of Theorem 1.4, we show that under the isomorphism (1-17),
these two Poisson structures agree, ie the map (1-17) is an isomorphism of graded Poisson algebras; see
Corollary 6.3.

The paper is organized as follows. In Section 2, we review basic facts from abstract homotopy theory
concerning homotopy colimits. The new result proved in this section is Proposition 2.6, which we refer
to as the “Shapiro Lemma for model categories”. This proposition provides a key step for proofs of
main theorems in Section 4 and may be of independent interest. In Section 3, after reviewing basic
theory of homotopy simplicial groups (Section 3.1), we define representation homology (Section 3.2),
and cyclic homology (Section 3.3) for such groups and construct the derived character maps relating the
two (Section 3.4). In Section 4, we prove Theorem 1.1 (Section 4.1) and then, after defining symmetric
homology for homotopy simplicial groups (Section 4.2), we prove part of Theorem 1.2 (see Proposition 4.8
and Corollary 4.10 in Section 4.3). The proof of Theorem 1.2 is completed in Section 6, where we
study the maps (1-13) and (1-14) in topological terms, using Goodwillie homotopy calculus and classical
operads; see Propositions 5.2 and 5.3. Finally, in Section 6, we describe the stabilization procedure for
the derived character maps as n!1 and sketch the proofs of Theorem 1.4 and Corollary 6.3. Each of
the six sections begins with a short introduction that provides more details about its contents.

Acknowledgements Berest was partially supported by NSF grant DMS 1702372 and the Simons
Collaboration grant 712995. Ramadoss was partially supported by NSF grant DMS 1702323.
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2 Shapiro Lemma for model categories

In this section, we prove one general result in abstract homotopy theory concerning homotopy colimits
that will provide a key step for our Theorem 1.1. We call this result (Proposition 2.6) the “Shapiro Lemma
for model categories” as it appears to be a nonabelian generalization of the classical Shapiro Lemma in
the context of model categories. We begin with a brief overview of the theory of homotopy colimits. The
standard reference for this material is the last two chapters of Hirschhorn’s book [39] but many results
that we mention are classical and go back to Bousfield and Kan [19] and Quillen [61]. Our exposition is
inspired by Cisinski’s beautiful paper [24] that treats homotopy colimits axiomatically by analogy with
derived direct image functors in algebraic geometry (unlike [24], however, we do not use the language of
Grothendieck derivators). With the exception of Proposition 2.6, which (to the best of our knowledge)
is new, all results in this section are known.

2.1 Notation and conventions

Throughout this section, M will denote a fixed model category which we assume to be cofibrantly
generated and having all small limits and colimits. Unless stated otherwise, A;B; C; : : : will denote small
categories that we will use to index diagrams in M. For a small category A, the category of A–diagrams
in M (ie all functors A!M) will be denoted by MA. As usual, Cat will stand for the category of all
small categories with morphisms being arbitrary functors.

2.2 Homotopy colimits

For any small category A, the category MA has a projective (aka Bousfield–Kan) model structure inherited
from M: the weak equivalences and fibrations are defined in this model structure objectwise, while the
cofibrations are determined by the lifting axiom of model categories (specifically, as morphisms having
the left lifting property with respect to fibrations which are also weak equivalences in MA). Since M
is cofibrantly generated, such a model structure on MA always exists and is cofibrantly generated; see
[39, Theorem 11.6.1].

Any functor f W A! B (a morphism in Cat) defines the pullback functor on the diagram categories
f � WMB!MA, which is obtained by restricting diagrams B!M along f . This pullback functor pre-
serves objectwise weak equivalences and fibrations and, since M has small colimits, admits a left adjoint

(2-1) f! WMA�MB
Wf �

defined on a diagram X W A!M as the left Kan extension f!.X / WD Lanf .X / of X along f . Thus,
the functors (2-1) form a Quillen pair between the model categories MA and MB. Then, by Quillen’s
adjunction theorem [39, Theorem 8.5.8], they admit total (left and right) derived functors

(2-2) Lf! W Ho.MA/� Ho.MB/ Wf �

that form an adjunction between the homotopy categories of diagrams induced by (2-1).

Algebraic & Geometric Topology, Volume 24 (2024)



4998 Yuri Berest and Ajay C Ramadoss

The derived pushforward functor Lf! is called the homotopy left Kan extension along f . It is a general-
ization of the classical homotopy colimit functor hocolimA W Ho.MA/! Ho.M/ that corresponds to the
trivial map A!�, where � denotes the one-point category (the terminal object in Cat). In this last case,
we will use the classical notation writing hocolimA.X / instead of L.A!�/!.X / for X WA!M. We
summarize the main properties of this construction in the following theorem.

Theorem 2.1 [24] Let M be a model category with all small limits and colimits.

(1) 2–Functoriality The pullback functors f � fit together to give a strict , weakly product-preserving
2–functor4 Catop

! CAT that takes a small category A 2 Cat to the homotopy category Ho.MA/.
By adjunction , this implies , in particular , the existence of natural weak equivalences

(2-3) L.fg/! 'Lf!Lg!

for any composable morphisms f and g in Cat.

(2) Reflexivity For any A2Cat, the functor i� W Ho.MA/! Ho.MAı / corresponding to the inclusion
of the underlying discrete subcategory Aı �A is conservative , ie reflects the weak equivalences
in MAı.

(3) Base change For any f WA! B and any object b 2 B, the 2–commutativity of the fiber square

f # b

p

��

�
// A

f

��

(

�
b

// B

induces a change-of-base natural transformation that is a natural weak equivalence

Lp!�
� �
�! b�Lf!:

For a diagram X WA!M, this simply says that

(2-4) Lf!X.b/' hocolimf #b.�
�X /;

where f # b is the comma category of the functor f WA! B over the object b 2 B.

Remark 2.2 In terminology of [24, Definition 1.6, pages 205–206], the properties (1)–(3) of Theorem 2.1
can be summarized by saying that the 2–functor Ho.M�/ W Catop

! CAT is a weak left derivator (un
dérivateur faible à gauche) associated to the model category M.

The properties of homotopy colimits listed in Theorem 2.1 are essentially formal. The next result —
called the cofinality theorem — gives a deeper property of homotopy-theoretic nature that is very useful

4Here, Catop stands for the opposite 2–category of small categories, while CAT denotes the “2–category” of all (not necessarily
small) categories.
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in computations. To state this result we recall that a functor f WA! B is right homotopy cofinal if its
comma category b # f under each object b 2B is (weakly) contractible, ie B.b # f /' pt. As an example,
we point out that every right adjoint functor is right homotopy cofinal: indeed, if f WA! B admits a left
adjoint, say g W B! A, then each comma-category b # f has an initial object (namely, .b; �b/, where
�b W b! fg.b/ is the unit of the adjunction evaluated at b 2 B), hence b # f is contractible for any b 2 B.

Theorem 2.3 (Cofinality) If f WA! B is right homotopy cofinal , then the natural map

hocolimA.f
�X / ��! hocolimB.X /

is a weak equivalence for any diagram X W B!M.

For the proof of Theorem 2.3 we refer to [39, Theorem 19.6.7]. As an application, we prove one simple
lemma that we will need for our computations. Given a functor f W A ! B, we recall that its fiber
category f �1.b/ over an object b 2 B is the subcategory of A consisting of all objects a 2A such that
f .a/D b and all morphisms ' 2HomA.a; a

0/ such that f .'/D Idb . Note that the fiber inclusion functor
i W f �1.b/ ,! A factors through the comma-category f # b over b:

(2-5)

f �1.b/

j

��

� � i
// A

f # b

�

<<

defining the “comparison” functor

(2-6) j W f �1.b/! f # b; a 7!
�
a; f .a/D b

Id
�! b

�
:

Recall that a functor f W A! B is precofibered if (2-6) has a left adjoint for every object b 2 B; see
[60, Section 1]).

Lemma 2.4 If f WA! B is precofibered , then , for any diagram X WA!M,

.Lf!X /.b/' hocolimf �1.b/.i
�X /:

Proof By assumption, the inclusion functor j W f �1.b/! f # b is right adjoint, hence right homotopy
cofinal. By the base change formula (2-4) and Cofinality Theorem 2.3, we conclude

.Lf!X /.b/' hocolimf #b.�
�X /' hocolimf �1.b/.j

���X /D hocolimf �1.b/..�j /�X /

D hocolimf �1.b/.i
�X /;

where the last identification follows from (2-5).

In practice, precofibered functors arise from the so-called Grothendieck construction; see [67]. Given a
functor F W C! Cat (ie a strict diagram of small categories), its Grothendieck construction is defined to
be the small category C s F with Ob.C s F / WD f.c;x/ j c 2 C;x 2 F.c/g and morphism sets

(2-7) HomC
R

F ..c;x/; .c
0;x0// WD f.'; f / j ' 2 HomC.c; c

0/; f 2 HomF.c0/.F.'/x;x
0/g:

Algebraic & Geometric Topology, Volume 24 (2024)
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The composition in C
R

F is given by .'; f / ı .'0; f 0/D .''0; fF.'/f 0/. The category C
R

F comes
equipped with a natural (forgetful) functor

p W C s F ! C; .c;x/ 7! c;

which is precofibered (in fact, cofibered) over C. Notice that p�1.c/D F.c/ for any object c 2 C. Hence,
by Lemma 2.4, for any functor X W C

R
F !M,

(2-8) .Lp!X /.c/' hocolimF.c/ŒX.c/�;

where X.c/ WD i�c X is the restriction of X to F.c/ via the inclusion functor

ic W F.c/! C s F; x 7! .c;x/; .x
f
�! x0/ 7! .Idc ; f /:

By 2–functoriality of homotopy Kan extensions (see (2-3)), equation (2-8) implies the weak equivalence

(2-9) hocolimC s F .X /' hocolimc2C
�
hocolimF.c/X.c/

�
;

which is known as Thomason’s formula for homotopy colimits over C
R

F ; see [23, Theorem 26.8].

An important special case arises when we apply the Grothendieck construction to a set-valued functor
F W C! Set, regarding sets as discrete categories (ie by embedding Set ,! Cat). In this case, the category
C
R

F is usually denoted by CF and called the category of elements of F as its object set Ob.CF / can
be identified with

`
c2C F.c/ (we will still write the objects of CF as pairs .c;x/, where c 2 C and

x 2 F.c/). The Hom-sets in CF are given by HomCF
..c;x/; .c0;x0//D f' 2HomC.c; c

0/ j F.'/x D x0g;
cf (2-7). If we take MD sSet to be the category of simplicial sets (equipped with standard Quillen model
structure) and apply Thomason’s formula (2-9) to the trivial diagram X W CF ! � in M, then for any
functor F W C! Set, we get

(2-10) hocolimC.F /ŠN�.CF /;

where N�.CF / denotes the simplicial nerve of the category CF . Formula (2-10) is known as the Bousfield–
Kan construction for homotopy colimits in sSet; see [19].

2.3 Homotopy coends

Homotopy coends are special kinds of homotopy colimits defined for bifunctors, ie the diagrams of the
form Cop�C!M. There is a broader range of techniques for manipulating with such homotopy colimits,
which makes them more accessible for computations. The homotopy coends are defined in terms of the
so-called twisted arrow category F.C/ introduced by Quillen [61]. It can be described as the category of
elements of the bifunctor Hom W Cop � C! Set of the given category C:

(2-11) F.C/ WD .Cop
� C/ s Hom:
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We will actually be dealing with the opposite category F.C/op which can be explicitly described as follows:
the objects of F.C/op are the morphisms f' W c! dg in C, and the Hom–sets are commutative squares

(2-12)
d d 0

ˇ
oo

c

'

OO

˛
// c0

'0

OO

ie HomF.C/op.'; '0/ consists of the pairs of morphisms .˛; ˇ/ in C such that 'Dˇ'0˛, with compositions
defined in the obvious way. Note that F.C/op 6' F.Cop/ in general. Now, there are two natural functors

sop
W F.C/op

! C; .c
'
! d/ 7! c;(2-13)

top
W F.C/op

! Cop; .c
'
! d/ 7! d;(2-14)

called the (opposite) source and target functors, respectively. We have:

Lemma 2.5 (Quillen) The functors (2-13) and (2-14) are both right homotopy cofinal.

Proof Since F.C/ is defined by Grothendieck construction (2-11), the canonical (forgetful) functor

s � t W F.C/! Cop
� C

is precofibered. It follows (cf [61, Example, page 94]) that both s W F.C/! Cop and t W F.C/! C are
precofibered. Hence the inclusions s�1.c/ ,! s # c and t�1.d/ ,! t # d induce weak equivalences of
classifying spaces

(2-15) B.s�1.c//' B.s # c/; B.t�1.d//' B.t # d/:

On the other hand, by inspection, s�1.c/ D c # C and t�1.d/ D .C # d/op are the slice and coslice
categories respectively. Since both c # C and .C # d/op have initial objects, they are contractible for all
c; d 2 C. To complete the proof it remains to note that .c # sop/D .s # c/op and .d # top/D .t # d/op,
where sop and top are the functors (2-13) and (2-14). Hence

B.c # sop/D B.s # c/op
' B.s # c/' B.s�1.c//' pt;

and similarly B.d # top/' pt. This shows that sop and top are right homotopy cofinal.

In view of Lemma 2.5, for any diagrams X W Cop!M and Y W C!M Theorem 2.3 gives two natural
weak equivalences

s� W hocolimF.C/op.s�Y / ��! hocolimC.Y /;(2-16)

t� W hocolimF.C/op.t�X / ��! hocolimCop.X /:(2-17)

These equivalences can be used to express arbitrary homotopy colimits over C and Cop as homotopy
coends which we introduce next. Set

�op
WD top

� sop
W F.C/op

! Cop
� C;
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and for a bifunctor D W Cop � C!M, define its homotopy coend by

(2-18)
Z c2C

L

D.c; c/ WD hocolimF.C/op.��D/;

where ��D WDD ı�op W F.C/op!M. This is indeed the (left) derived functor of the classical coend
functor, which is usually denoted by

(2-19)
Z c2C

D.c; c/ WD colimF.C/op.��D/:

The notation (2-18) is very convenient as it suggests the analogy with (definite) integrals in calculus. For
example, for a bifunctor D W .A�B/e!M defined on a product of two small categories .A�B/e WD
Aop �Bop �A�B there is a natural weak equivalenceZ .a;b/2A�B

L

D.a; bI a; b/'

Z a2A

L

Z b2B

L

D.a; bI a; b/;

which is analogous to the classical Fubini theorem in calculus (and thus called the Fubini theorem for
homotopy coends). Another useful formula that we will need is

(2-20)
Z c2C

L

LF ŒD.c; c/�'LF

� Z c2C

L

D.c; c/

�
;

where F is a left Quillen functor between model categories. This formula is a consequence of a more
general (well-known) result that the derived functors of left Quillen functors preserve homotopy colimits
(for a short proof, see eg [74, Proposition 3.15]).

We are now in a position to state the main result of this section.

Proposition 2.6 (Shapiro Lemma for model categories) Let M be a model category , C a small category,
and F W C! Set a set-valued functor on C. For any contravariant diagram X W Cop!M such that X.c/ is
cofibrant in M for all c 2 C, there is a natural weak equivalence

(2-21) hocolimCop
F
.p�X /'

Z c2C

L

X.c/˝F.c/;

where CF is the category of elements of F , and˝ denotes the natural (tensor) action5 of Set on M.

For the proof of Proposition 2.6, we need the following observation.

Lemma 2.7 For any set-valued functor F W C! Set, the functor F.p/op W F.CF /
op! F.C/op induced by

the canonical projection p W CF ! C is precofibered.

Proof The proof is by direct verification: we give some details in order to introduce notation and make a
few observations that we will use later. We set f WD F.p/op and describe first the fiber category f �1.'/

5That is,˝ is the bifunctor M�Set!M defined by A˝S D
`

S A, where
`

S A is the coproduct of copies of A indexed by
the elements of S .
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for .' W c! d/ 2 F.C/op. The objects of f �1.'/ are the morphisms in CF of the form .c;x/
'
�! .d;y/

such that y D F.'/.x/. We will write the object .c;x/ '
�! .d;F.'/.x// of F.CF /

op as .';x/. Thus,

Ob.f �1.'//D f.';x/ j x 2 F.c/g:

Further, the morphisms .';x/! .';y/ in f �1.'/ are precisely the morphisms in F.CF /
op, ie commuta-

tive diagrams of the form
.d;F.'/.x// .d;F.'/.y//

ˇ
oo

.c;x/

'

OO

˛
// .c;y/

'

OO

mapped to the identity by f . This last condition implies that ˛ D Idc and ˇ D Idd . Hence,

Homf �1.'/

�
.';x/; .';y/

�
D

�
fIdg if x D y;

¿ otherwise.

Hence, f �1.'/Š F.c/, where the set F.c/ is viewed as a discrete category.

Next, for .' W c! d/ 2 F.C/op, the objects of f # ' are given by

Ob.f # '/D fŒ W k! l; z; ˛; ˇ� j . ; z/ 2 F.CF /
op; .˛; ˇ/ 2 HomF.C/op. ; '/g;

while the morphisms Œ ; z; ˛; ˇ�! Œ 0; z0; ˛0; ˇ0� in f # ' are the commutative diagrams in CF of the
form

.l;F. /.z// .l 0;F. 0/.z0//
ı

oo

.k; z/

 

OO


// .k 0; z0/

 0

OO

such that

l l 0
ı

oo

d
ˇ

cc

ˇ0

;;

k

˛ ##

 

OO


// k 0

˛0zz

 0

OO

c

'

OO

commutes in C. In particular, a morphism Œ ; z; ˛; ˇ�! Œ';x; Idc ; Idd � in f # ' is represented by

.l;F. /.z// .d;F.'/.x//
ˇ
oo

.k; z/

 

OO

˛
// .c;x/

'

OO

Such a diagram exists if and only if x D F.˛/.z/, in which case it is unique. Hence,

Homf #'.Œ ; z; ˛; ˇ�; Œ';x; Idc ; Idd �/D

�
f.˛; ˇ/g if x D F.˛/.z/;

¿ otherwise,

where .˛; ˇ/ is viewed as a morphism . ; z/! .';x/ in F.CF /
op (rather than F.C/op).

Now, consider the assignment

ˆ W f # '! f �1.'/; Œ ; z; ˛; ˇ� 7! .';F.˛/.z//:
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If .; ı/ W . ; z/! . 0; z0/ is a morphism in f # ', then z0 D F. /.z/ and ˛0 ı  D ˛. Hence, letting ˆ
map .; ı/ to the identity on .';F.˛/.z// makes ˆ a functor. We then note that

Homf �1.'/.ˆ.Œ ; z; ˛; ˇ�/; .';x//D Homf �1.'/..';F.˛/.z//; .';x//D

�
fIdg if x D F.˛/.z/;

¿ otherwise.

Hence, there is a natural bijection

Homf �1.'/.ˆ.Œ ; z; ˛; ˇ�/; .';x//Š Homf #'.Œ ; z; ˛; ˇ�; Œ';x; Idc ; Idd �/;

showing that ˆ is left adjoint to the canonical inclusion

f �1.'/ ,! f # '; .';x/ 7! Œ';x; Idc ; Idd �:

This shows that f is precofibered, as desired.

Proof of Proposition 2.6 By formula (2-17) (applied to the category CF ), there is a natural weak
equivalence

t� W hocolimF.CF /op.t�p�X / ��! hocolimCop
F
.p�X /;

where
t�p�X W F.CF /

op top
�! Cop

F

pop
�! Cop X

�!M:

On the other hand, by definition (2-18),Z c2C

L

X.c/˝F.c/D hocolimF.C/op Œ��.X ˝F /�;

where
��.X ˝F / W F.C/op �op

�! Cop
� C X�F
��!M�Set ˝�!M:

To prove the desired proposition we thus need to show that

(2-22) hocolimF.CF /op.t�p�X /' hocolimF.C/op Œ��.X ˝F /�:

By Theorem 2.1(1) (see (2-3)), it suffices to show that there is an weak equivalence of F.C/op–diagrams

(2-23) Lf!.t
�p�X /' ��.X ˝F /;

where f W F.CF /
op! F.C/op is the functor induced by the canonical projection p W CF ! C . Thanks

to Lemma 2.7, we can use Lemma 2.4 to evaluate the homotopy Kan extension in (2-23) in terms of
homotopy colimits over fiber categories. Specifically, for any ' 2 F.C/op, we have

Lf!.t
�p�X /.'/' hocolimf �1.'/.i

�t�p�X /;

where i W f �1.'/ ,! F.CF /
op. In the proof of Lemma 2.7, we have described the fiber category f �1.'/:

namely, f �1.'/ is isomorphic to the discrete category F.c/ for any .' W c! d/ 2 F.C/op. Now, since
i�t�p�X D i�f �t�X D .f i/�t�X D t�X.'/DX.d/ and since X is objectwise cofibrant in M, we have

hocolimf �1.'/.i
�t�p�X /'

La
F.c/

X.d/'
a
F.c/

X.d/;
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which is precisely the value of ��.X ˝F / at '. Thus, Lf!.t
�p�X /' ' ��.X ˝F //' in M for all

' 2 F.C/op. By Theorem 2.1(2), this implies (2-23). Summing up, we have constructed the pullback–
pushforward diagram

hocolimF.CF /op.t�p�X /

t�

vv

Lf!

))

hocolimCop
F
.p�X / hocolimF.C/op Œ��.X ˝F /�

each arrow in which is a weak equivalence. This shows that the objects in both sides of (2-21) are weakly
equivalent in M, as claimed by the proposition.

Remark 2.8 The proof of Proposition 2.6 shows that the additional assumption on the diagram X to be
objectwise cofibrant in M is not needed if the coproducts in M preserve weak equivalences, eg if M is a
cofibrant model category such as the category sSet of simplicial sets with Quillen model structure.

In the special case, if we take M D Ch.Modk/ to be the category of chain complexes of k–modules
equipped with standard projective model structure (see [40, Theorem 2.3.11]), Proposition 2.6 implies the
following classical result in homological algebra.

Corollary 2.9 (Shapiro Lemma) Let k be a commutative ring , C a small category, and Modk.Cop/ the
(abelian) category of Cop–diagrams of k–modules. Then , for any functor F W C! Set, and for any module
X 2Modk.Cop/ such that X.c/ is k–projective for all c 2 C, there is a natural isomorphism

TorCF
� .p

�X; k/Š TorC�.X; kŒF �/;

where kŒF � W C F
�! Set

kŒ–�
��!Modk is the k–linear functor generated by F .

The Shapiro Lemma appears in [47, Appendix C.12], where it is proven in the special case X D k (the
constant Cop–diagram valued at k); in the general form, the result of Corollary 2.9 is stated, for example,
in [26].

As another immediate consequence of Proposition 2.6, we get a derived version of the classical “coend
formula” for left Kan extensions; see [51, Theorem X.4.1].

Corollary 2.10 Let f WA! B be a functor between small categories. Let X WA!M be an A–diagram
in a model category M such that X.a/ is cofibrant for all a 2A. Then , for all objects b 2 B,

(2-24) Lf!.X /.b/'

Z a2A

L

HomB.f .a/; b/˝X.a/:

Proof To apply Proposition 2.6 take C D Aop and F D HomB.f .�/; b/ W C! Set. Then Cop
F
Š f # b

and the equivalence (2-24) is obtained as a combination of (2-4) and (2-21).

The result of Corollary 2.10 must be well known to experts, although we could not find an exact reference
in the literature.
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3 Representation and cyclic homology of homotopy simplicial groups

In this section, we define representation homology of groups with coefficients in a commutative Hopf
algebra H, following the approach of [13; 14]. Taking HDO.G/, where G is an affine algebraic group,
we then construct the derived character maps for G–representations of � . In the case when G D GLn,
these maps specialize to the character maps (1-7) announced in the Introduction. Unlike in [13; 14], we
will work here with homotopy simplicial groups (in the sense of Badzioch [4]), which are more general
and flexible objects than the usual (strict) simplicial groups. In Section 3.1, we define the classifying
spaces for such groups, and in Section 3.3, the cyclic bar construction and cyclic homology, both of
which may be of independent interest. We begin by reviewing the main results of [4] specializing to the
algebraic theory of groups.

3.1 Homotopy simplicial groups

LetG be the small category whose objects hni are the finitely generated free groups FnDFhx1;x2; : : : ;xni,
one for each n� 0 (with convention that h0i is the trivial group), and the morphisms are arbitrary group
homomorphisms. Every discrete group � defines a contravariant functor � WGop! Set, hni 7! �n, which
is simply the restriction of the Yoneda functor Hom.–; �/ W Grop

! Set to G� Gr. More generally, every
simplicial group � 2 sGr (ie a simplicial object in Gr) defines a functor

(3-1) � WGop
! sSet; hni 7! �n;

where �n denotes the product of n copies of the underlying simplicial set of � . The functors (3-1) can be
characterized by the property of being product-preserving. To make it precise, observe that the category G

carries a (strict) monoidal structure
`
WG�G!G given by the coproduct (free product) of free groups:

hni
`
hmi D hnCmi. The opposite category Gop is thus equipped with the dual monoidal structure,

which we simply denote by… WGop�Gop!Gop. Every object hnio 2Gop comes equipped with n natural
projections

(3-2) pn;k W hni
o
! h1io for 16 k 6 n

that correspond to the canonical inclusions in;k W h1i ,!hni given by x1 7! xk in G. We say that a functor
F WGop! sSet is product-preserving if the maps induced by (3-2),

(3-3) F.pn/ WD

nY
kD1

F.pn;k/ W Fhni ! .Fh1i/n;

are isomorphisms in sSet for all n> 0. It is easy to show that assigning to a simplicial group � 2 sGr the
functor (3-1) defines an equivalence of categories

(3-4) sGr ��! sSetG
op

˝ ;
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where sSetG
op

˝ denotes the full subcategory of product-preserving functors in the diagram category sSetG
op

.
We will use (3-4) to identify sGr D sSetG

op

˝ , thus regarding the simplicial groups as functors of the
form (3-1). Now, the homotopy simplicial groups are obtained by replacing the assumption that the
maps (3-3) are isomorphisms in sSet with that of being weak equivalences, which is a more natural
condition from the point of view of homotopy theory. Precisely:

Definition 3.1 (Badzioch [4]) A homotopy simplicial group is a functor F WGop! sSet that is weakly
product-preserving in the sense that the maps (3-3) are weak equivalences in sSet for all n> 0 (with the
convention that Fh0i ' pt).

The category of homotopy simplicial groups (ie the full subcategory of all weakly product-preserving
functors in sSetG

op
) does not carry any model structure as it is not closed under colimits. Instead, as

suggested in [4], one can put a new model structure on the diagram category sSetG
op

in which the homotopy
simplicial groups are exhibited as fibrant objects; cf [4, Proposition 5.5]. We call this model structure the
Badzioch model structure and denote it by sGrh. To be precise, sGrh is defined by localizing (ie taking
the left Bousfield localization of) the standard projective model structure on sSetG

op
with respect to the

set of maps

S D

�
in W

na
kD1

HomG.–; h1i/! HomG.–; hni/
�

n�0

induced by the natural inclusions in;k W h1i ! hni in G. By definition, the underlying category of sGrh is
that of sSetG

op
but its class of weak equivalences is larger: in addition to all weak equivalences of sSetG

op

(which are objectwise equivalences of diagrams of simplicial sets), the weak equivalences of sGrh include
the set S and are thus called the S–local weak equivalences. There is a canonical localization functor
LS W sSetG

op
! sGrh that takes a diagram � 2 sSetG

op
to its functorial fibrant replacement in the model

structure sGrh. In this way, one can make any diagram in sSetG
op

a homotopy simplicial group. On the
other hand, the model category of (strict) simplicial groups sGr is related to sGrh by a Quillen adjunction

(3-5) K W sGrh� sGr WJ

which is obtained by localizing (at S ) the Quillen adjunction K W sSetG
op � sGr WJ between sGr and the

model category of all diagrams sSetG
op

. In particular, the right adjoint functor in (3-5) is given by the
inclusion J.�/D � (see (3-1)), while the left adjoint — called the rigidification functor — is described
explicitly in Lemma 3.5 below. Now, the main result of [4] reads:

Theorem 3.2 (Badzioch) The adjunction (3-5) is a Quillen equivalence.

Remark 3.3 Theorem 3.2 was proved in [4, Theorem 6.4] for an arbitrary one-sorted algebraic theory.
It was extended to all multisorted theories in [17], and further to limit theories and to diagrams in model
categories other than sSet in [63].
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Next, recall that there is a classical adjunction, called the Kan loop group construction [42], that relates
the model category sGr of (strict) simplicial groups to that of (reduced) simplicial sets:

(3-6) G W sSet0� sGr WW :

The left adjoint G is called the Kan loop group functor, and the right adjoint W is the classifying complex
functor on simplicial groups. The properties of these functors are well known and discussed in detail, for
example, in [32, Chapter V]; see also [14, Section 2.2]. Here, we mention only two important facts: first,
the pair (3-6) is a Quillen equivalence, both G and W being homotopy invariant functors; see [32, V.6.4].
Second, for any reduced simplicial set X , there is a weak homotopy equivalence (see [32, V.5.11])

(3-7) jG.X /j '�jX j;

where �jX j is the (Moore) based loop space of the geometric realization of X . The equivalence (3-7)
clarifies the topological meaning of the Kan loop group functor G (and justifies its name). Combining
now Badzioch’s theorem (Theorem 3.2) with Kan’s construction, we get natural equivalences of homotopy
categories

(3-8) Ho.sGrh/
LK
��! Ho.sGr/ W

�! Ho.sSet0/
j– j
��! Ho.Top0;�/

induced by the above indicated functors. This leads us to the following definition.

Definition 3.4 For a homotopy simplicial group � 2 sGrh, we define its classifying space B� by

(3-9) B� WD jW LK.�/j

where LK W Ho.sGrh/! Ho.sGr/ is the derived rigidification functor; see (3-11).

Note that if � is a (strict) simplicial group, ie � D J.�/, then B� Š jW �j, since LK ıJ Š Id. Thus
the above definition is a natural extension of Kan’s definition of classifying spaces for simplicial groups
(which is, in turn, an extension of the classical definition of B� for ordinary discrete groups).

We conclude this section by giving a simple formula for the Badzioch rigidification functor that did not
seem to appear explicitly in [4].

Lemma 3.5 The functor K W sGrh
! sGr in (3-5) is given by the coend

(3-10) K.�/D

Z hni2G
�hni˝Fhni;

where F WG ,! sGr given by hni 7! Fn is the natural inclusion functor , and˝W sSet� sGr! sGr is the
standard simplicial tensor action on the category of simplicial groups.

It follows from Lemma 3.5 that the derived functor LK can be written as the homotopy coend

(3-11) LK.�/D

Z hni2G
L

�hni˝Fhni:
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For the proof of Lemma 3.5 and formula (3-11) (in the general setting of [4]) we refer to our forthcoming
paper [10].

3.2 Representation homology

Let k be a commutative ring. Recall that, for a small category C, we denote by Modk.C/ and Modk.Cop/

the categories of all covariant and contravariant functors from C to Modk , respectively. It is well known
that these are abelian categories with sufficiently many projective and injective objects. Recall also (see
eg [47, Appendix C.10]) that there is a natural biadditive functor

–˝C – WModk.Cop/�Modk.C/!Modk

called the functor tensor product. Explicitly, for M W C!Modk and N W Cop!Modk , it is defined by

(3-12) N ˝C M WD
�M

c2C

N .c/˝k M.c/

�
=R

where R is the k–submodule spanned by elements of the form N .'/x˝y�x˝M.'/y for all x 2N .c0/,
y 2M.c/ and ' 2 HomC.c; c

0/. The functor (3-12) is right exact (with respect to each argument),
preserves sums, and is left balanced. Its classical (left) derived functors with respect to each argument
are canonically isomorphic and their common value is denoted by TorC�.N ;M/. More generally, we
can extend the bifunctor (3-12) to chain complexes of C–modules, ie the categories Ch.Modk.Cop// and
Ch.Modk.C//, and define

(3-13) TorC�.N ;M/ WD H�.N ˝L
C M/

for any N 2Ch.Modk.Cop// and M2Ch.Modk.C//. Note that N˝L
C;kM is an object in the (unbounded)

derived category D.k/DD.Modk/ of k–modules, and (3-13) is just the usual hyper-Tor functor on chain
complexes. Next, observe that there is a natural functor

(3-14) sSetC
op kŒ–�
��! sModk.Cop/

N
,�! Ch.Modk.Cop//

transforming the Cop–diagrams in sSet (simplicial presheaves on C) to chain complexes over Modk.Cop/.
Here N stands for the classical Dold–Kan normalization functor that identifies simplicial objects in
Modk.Cop/ with nonnegatively graded chain complexes in Ch.Modk.Cop//. Abusing notation, we will
write the functor (3-14) simply as kŒ–�.

We are now in a position to define representation homology of homotopy simplicial groups with coefficients
in commutative Hopf algebras. We recall the well-known fact (see eg [62, Proposition 14.1.6]) that every
such algebra H defines a covariant functor (a left G–module) by the rule

(3-15) H WG!Modk ; hni 7!H˝n:

In particular, if G is an affine algebraic group (eg G D GLn.k/) with coordinate ring HDO.G/, then
(3-15) can be written in the form hni 7!OŒRepG.hni/�, which makes the functoriality clear.
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Definition 3.6 The representation homology of a homotopy simplicial group � 2 sGrh with coefficients
in H is defined by

HR�.�;H/ WD TorG� .kŒ��;H/;

where kŒ�� and H are viewed as chain complexes of G–modules and Tor stands for the hyper-Tor functor
over G defined by (3-13).

In the special case when G is an affine algebraic group over k and HDO.G/, we simply write HR�.�;G/
instead of HR�.�;O.G//.

The next lemma shows that the above definition agrees with the Badzioch model structure on sGrh.

Lemma 3.7 If two homotopy simplicial groups � and � 0 are weakly equivalent in sGrh, then

(3-16) HR�.�;H/Š HR�.� 0;H/

for any commutative Hopf algebra H.

Proof By [4, Proposition 5.6], if two homotopy simplicial groups � and � 0 are S–locally weakly
equivalent, then their underlying diagrams are, in fact, weakly equivalent in sSetG

op
. It therefore suffices

to show that (3-16) holds for any objectwise weak equivalent diagrams �; � 0 WGop! sSet. To this end,
observe that the linearization functor

(3-17) kŒ–� W sSetG
op
! sModk.G

op/

is left Quillen with respect to the projective model structures (its right adjoint is the forgetful functor).
Since the weak equivalences in sSetG

op
are defined objectwise and the model structure on sSet is cofibrant,

being left Quillen, the functor (3-17) is actually homotopy invariant: ie it maps weakly equivalent
objects in sSetG

op
to weakly equivalent objects in sModk.G

op/, which, in turn, are transformed by the
normalization functor N to quasi-isomorphic complexes in Ch.Modk.G

op//. Thus if � ' � 0 in sSetG
op
,

then kŒ��˝L
G;k

H' kŒ� 0�˝L
G;k

H in D.k/, which implies (3-16).

Remark 3.8 Recall that the category sGrh is obtained from sSetG
op

via a left Bousfield localization: its
objects are arbitrary diagrams of simplicial sets � WGop! sSet (not just homotopy simplicial groups).
The result of Lemma 3.7 does not hold for arbitrary diagrams in sGrh, since the functor (3-17) does not
map all S–local weak equivalences to objectwise weak equivalences in sSetG

op
. This last fact can be

easily seen by evaluating (3-17) on representable simplicial presheaves on G.

An important consequence of Lemma 3.7 is that the representation homology of a homotopy simplicial
group � depends only on the homotopy type of its classifying space B� (Definition 3.4). In fact, we have

(3-18) HR�.�;H/Š HR�.B�;H/;
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where the HR on the right-hand side stands for representation homology of topological spaces as defined
in [14], using a (nonabelian) derived representation functor. Indeed, by Badzioch [4, Theorem 3.1], every
homotopy simplicial group � is weakly equivalent to a strict one, say � 0; hence

(3-19) B� ' B� 0 'W � 0:

On the other hand, by [14, Theorem 4.2], HR�.� 0;H/Š HR�.W � 0;H/, which together with (3-19) and
the isomorphism (3-16) of Lemma 3.7 implies (3-18).

We conclude this section by briefly explaining how our approach (Definition 3.6) relates to derived
algebraic geometry (DAG). For a model of DAG, we will take the simplicial presheaf model developed
in [69]. Given a homotopy simplicial group � 2 sGrh and an affine algebraic group (scheme) G over k

with coordinate algebra HDO.G/, we introduce the derived representation scheme of � in G:

(3-20) DRepG.�/ WD RSpec.kŒ��˝L
G O.G//:

Here, RSpec denotes the Toën–Vezzosi derived Yoneda functor that assigns to a (homotopy) simplicial
commutative algebra A — a derived ring in terminology of [69] — the simplicial presheaf (prestack)

RSpec.A/ W dAffop
k
WD sCommk ! sSet; B 7!Map.QA;B/;

where QA is a cofibrant replacement of A and Map is the simplicial mapping space (function complex)
in sCommk . The prestack RSpec.A/ satisfies the descent condition for étale hypercoverings and hence
defines a derived stack (which is a derived affine scheme in the sense of [69]). On the other hand, for
any pointed space (simplicial set) X , we can define the pointed mapping stack Map�.X;BG/ to be the
homotopy fiber of the canonical map in the (homotopy) category of derived stacks:

(3-21) Map�.X;BG/ WD hofibŒMap.X;BG/! BG�;

where Map.X;BG/ stands for the (unpointed) derived mapping stack defined in [69, 2.2.6.2]. This last
mapping stack is a basic object of derived algebraic geometry that plays an important role in applications;
see eg [55]. Now, its relation to representation homology is clarified by the following:

Proposition 3.9 [12] There is a (weak ) equivalence of derived stacks

DRepG.�/'Map�.B�;BG/:

For a detailed proof of Proposition 3.9 and more explanations we refer to [12, Appendix A.1].

3.3 Cyclic homology

We now define cyclic homology for homotopy simplicial groups. To this end, we will associate to each
� 2 sGrh a cyclic module kŒBcyc�� that generalizes the classical cyclic bar construction C�.kŒ��/ when
� is an ordinary discrete group. We begin by recalling basic definitions.
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Let � denote the (co)simplicial category whose objects are finite ordered sets Œn�D f0< 1< � � �< ng and
morphisms are (nonstrictly) order-preserving maps. The category � is generated by two families of maps,

d i
n W Œn� 1�! Œn� for 06 i 6 n and n> 1;

sj
n W ŒnC 1�! Œn� for 06 j 6 n and n> 0;

called the (co)face and (co)degeneracy maps, respectively. These maps satisfy the standard (co)simplicial
relations listed, for example, in [47, Appendix B.3]. Connes’ cyclic category �C is a natural extension
of � that has the same objects and is generated by the morphisms of � and the cyclic maps �n W Œn�! Œn�,
n> 0, satisfying �nC1

n D Id; see [47, 6.11]. Formally, the category �C can be characterized by the two
properties

(Cyc1) For each n> 0, Aut�C .Œn�/Š CnC1, where CnC1 D Z=.nC 1/Z, and

(Cyc2) any morphism f W Œn� ! Œm� in �C can be factored uniquely as f D g ı ', where g 2

Hom�.Œn�; Œm�/ and ' 2 Aut�C .Œn�/.

These show that it is a crossed simplicial category associated to the family of cyclic groups fCnC1gn>0;
see [47, 6.3.0]. Recall that a cyclic set (resp. a cyclic module) is defined to be a contravariant functor on
�C , ie �C op! Set (resp. �C op!Modk), while a cocyclic set (resp. a cocyclic module) is a covariant
functor �C ! Set (resp. �C !Modk).

Now, if � is an ordinary discrete group, there is a natural functor

(3-22) B
cyc
� � W�C op

! Set

called the cyclic bar construction of � that has the property that kŒB
cyc
� ��Š C�.kŒ��/, where C�.kŒ��/

is the standard cyclic module associated to kŒ�� as an associative k–algebra. Explicitly, the functor (3-22)
is defined (see [47, 7.3.10]) by

di.g0; : : : ;gn/D

�
.g0; : : : ;gi�1;gigiC1; : : : ;gn/ if 06 i < n;

.gng0;g1; : : : ;gn�1/ if i D n;

sj .g0; : : : ;gn/D .g0; : : : ;gj ; 1;gjC1; : : : ;gn/;

tn.g0; : : : ;gn/D .gn;g0;g1; : : : ;gn�1/;

where .g0; : : : ;gn/ 2 �
nC1. Clearly, � 7! B

cyc
� � gives a functor B

cyc
� W Gr! Set�C op

. If we identify
GrD SetG

op

˝ as in (3-4), then it turns out that B
cyc
� coincides with the pullback functor for a certain natural

map ‰cyc W�C !G in Cat. Specifically,

(3-23) ‰cyc W�C !G

is defined on objects by

‰cyc.Œn�/ WD hnC 1i D Fhx0; : : : ;xni;
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and on morphisms by the formulas

(3-24)

‰cyc.d
i
n/ W hni �! hnC 1i;

.x0;x1; : : : ;xn�1/ 7!

�
.x0; : : : ;xi�1;xixiC1; : : : ;xn/ if 0� i < n;

.xnx0;x1; : : : ;xn�1/ if i D n;

‰cyc.s
j
n / W hnC 2i �! hnC 1i; .x0; : : : ;xnC1/ 7! .x0; : : : ;xj ; 1;xjC1; : : : ;xn/;

‰cyc.�n/ W hnC 1i �! hnC 1i; .x0;x1; : : : ;xn/ 7! .xn;x0;x1; : : : ;xn�1/:

where .x0;x1; : : : ;xn/ is an ordered sequence of generators of the free group Fhx0; : : : ;xni.

Lemma 3.10 For any discrete group � there is a natural isomorphism of cyclic sets

Bcyc� Š‰�cyc.�/;

where � WGop! Set is the functor corresponding to � under the identification (3-1).

Proof Straightforward.

Remark 3.11 The functor (3-23) was defined in [16] on a slightly larger — the so-called epicyclic —
category �‰, which is an extension of �C describing the Adams operations on cyclic modules.

Lemma 3.10 motivates the following definition.

Definition 3.12 For a homotopy simplicial group � 2 sGrh, we define its cyclic bar construction by

(3-25) Bcyc� WD‰�cyc.�/ W�C op
! sSet;

and its cyclic homology by

(3-26) HC�.kŒ��/ WD Tor�C op

� .k; kŒBcyc��/Š Tor�C
� .kŒBcyc��; k/:

The same argument as in (the proof of) Lemma 3.7 shows that HC�.kŒ��/ depends only on the homotopy
type of � in the Badzioch model category sGrh, and hence, on the homotopy type of its classifying
space B� . In view of Lemma 3.10, the above definition of HC�.kŒ��/ for � an ordinary discrete group
coincides with the classical (Connes’) definition of cyclic homology of group algebras; see [47, 6.2.8].

3.4 Derived character maps

Next, we will construct a family of natural transformations relating the cyclic homology to representation
homology of a homotopy simplicial group � . In the special case when HDO.GLn/, this family contains
a distinguished element determined by the usual trace Trn, that gives the derived character map (1-7)
announced in the introduction. With our current definitions of representation and cyclic homology the
construction is actually very simple. It is based on two lemmas. The first one is a standard result of
homological algebra that simply exhibits the naturality of derived tensor products (3-13).
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Lemma 3.13 Let f WA!B be a functor between small categories. For any complexes N 2Ch.ModkBop/

and M 2 Ch.ModkB/, there is a natural map f �N ˝L
A;k f

�M! N ˝L
B;k M in the derived category

D.k/ of k–modules that induces

f � W TorA� .f
�N ; f �M/! TorB�.N ;M/:

To apply this lemma in our situation we recall that every commutative Hopf k–algebra H defines the
covariant functor H W G!Modk by formula (3-15). Restricting this functor via the morphism (3-23)
gives rise to a cocyclic k–module that we denote by

BcycH WD‰�cyc.H/ W�C !Modk :

On the other hand, by Definition 3.12, ‰�cyc.kŒ��/D kŒBcyc.�/� for any homotopy simplicial group � .
Thus, by Lemma 3.13, the functor ‰cyc induces a canonical map

(3-27) ‰�cyc W Tor�C
� .kŒBcyc��;BcycH/! TorG� .kŒ��;H/:

The target of this map is precisely HR�.�;H/ (see Definition 3.6), while the domain differs from
HC�.kŒ��/ in the second argument of Tor (cf Definition 3.12). To connect the two Tors we will use the
following lemma, which we state in the language of affine algebraic groups.

Lemma 3.14 Let G be an affine algebraic group defined over k, and let O.G/ be its coordinate algebra.
There is a natural isomorphism

(3-28) HomModk.�C /.k;BcycŒO.G/�/ŠO.G/G ;

where O.G/G denotes the invariant subalgebra of O.G/ under the adjoint G–action.

Proof For m�0, denote by �m W Œ0�! Œm� the composition of maps d0
md0

m�1
� � � d0

1
in�C . It follows from

(3-24) that‰cyc.�m/ W h1i!hmC1i is the homomorphism of groups taking the generator x of Fhxi to the
product of generators x0x1 : : :xm in Fhx0; : : : ;xmi. The corresponding map ŒBcycO.G/�.�m/ WO.G/!
O.G/˝.mC1/ can thus be identified with the m–fold coproduct in O.G/,

(3-29) �
.m/
G
WO.G/!O.GmC1/; P 7! Œ.g0;g1; : : : ;gm/ 7! P .g0g1 � � �gm/�:

Now, it is easy to check that, for a fixed P 2O.G/G , the maps �.m/
G
.P / W k!O.GmC1/ taking 1 2 k

to �.m/
G
.P / assemble to a morphism of cocylic modules �G.P / W k! BcycŒO.G/�, the commutativity

with cyclic operators �m being a consequence of the G–invariance of P . We claim that the assignment
P 7!�G.P / defines a k–linear isomorphism

(3-30) �G WO.G/G �
�! HomModk.�C /.k;BcycŒO.G/�/:

The inverse of (3-30) can be constructed as follows. Let ' 2 HomModk.�C /.k;BcycŒO.G/�/. Note that,
for all Œm� 2 �C , its components 'Œm� W k ! O.G/˝.mC1/ Š O.GmC1/ are k–linear maps. Define
T ' WD 'Œ0�.1/ 2O.G/, where 1 2 k. Since ' is a natural transformation,

'Œm�.1/D fŒBcycO.G/�.�m/g.'Œ0�.1//D fŒBcycO.G/�.�m/g.T '/D�
m.T '/;
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where �m is defined in (3-29). Similarly, applying BcycŒO.G/� to the cyclic operators �m in �C , we have

'Œm�.1/D fŒBcycO.G/�.�m/g.'Œm�.1//;

from which it follows that T '.g0 � � �gm/DT '.gmg0 � � �gm�1/ for all g0; : : : ;gm2G. This is equivalent
to the assertion that T ' 2O.G/G . Thus T defines a k–linear map

HomModk.�C /.k;BcycŒO.G/�/!O.G/G ; ' 7! T ':

It is clear from its construction that the above map is the inverse of (3-30).

We can now make the following definition.

Definition 3.15 Let � 2 sGrh be a homotopy simplicial group. For an affine algebraic group G and an
Ad G–invariant polynomial P 2O.G/G , we define the derived G–character map of � associated to P by

(3-31) �G;P .�/� W HC�.kŒ��/
.�GP/�
�����! Tor�C

� .kŒBcyc��;BcycŒO.G/�/
‰�cyc
���! HR�.�;G/;

where .�GP /� is a linear map induced by the map of cocyclic modules �GP W k ! BcycŒO.G/� (see
(3-29) and (3-30)), and ‰�cyc is the map (3-27) defined for HDO.G/.

Explicitly, if we choose a projective resolution Q �
�! kŒ�� of kŒ�� in the (abelian) category Modk.G

op/,
applying the functor‰�cyc gives a projective resolution‰�cycQ

�
�!kŒBcyc�� of the cyclic module kŒBcyc��

in Modk.�C op/. The map (3-31) is then induced by a map of chain complexes

(3-32) �G;P .�/� W .‰
�
cycQ/˝�C k!Q˝G O.G/

which, in turn, is induced by the following map (see (3-12))

(3-33)
M

Œm�2�C

QhmC 1i !
M
hni2G

Qhni˝O.G/˝n; vmC1 7! vmC1˝�
.m/
G
.P /;

where vmC1 2QhmC 1i and �.m/
G
.P / 2O.G/˝.mC1/ is defined by (3-29).

In the special case when G D GLn.k/ and P D Trn 2 O.GLn/ is the usual trace function on .n� n/–
matrices, we denote the map (3-31) by

(3-34) Trn.�/� W HC�.kŒ��/! HR�.�;GLn.k//;

and call it the derived character map of n–dimensional representations of � . In the rest of the paper, we
will study the maps Trn.�/� in two extreme cases: nD 1 and nD1. In the first case, we will give a
topological realization of Tr.�/� WD Tr1.�/� by showing that this map is induced on homology by a
natural map of topological spaces; in the second case, we will show that Tr1.�/� WD lim

 ��
Trn.�/� extends

to an isomorphism between the graded symmetric algebra generated by HC�.kŒ��/ and the GL1–invariant
subalgebra of the stable representation homology HR�.�;GL1.k//. We close this section with a general
remark linking the above construction to earlier work.
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Remark 3.16 If � is an ordinary discrete or (strict) simplicial group, then kŒ�� is naturally a simplicial
associative k–algebra. By (a monoidal version of) the classical Dold–Kan correspondence (see [64]), we
can therefore view kŒ�� as a differential-graded (DG) associative k–algebra. For such algebras (defined
over a field k of characteristic 0), the derived character maps of n–dimensional representations were
constructed in [9]. One can show that these maps agree with (3-34) in the case of group algebras, although
the comparison is not entirely trivial as the methods used in [9] and the present paper are quite different.
We will address this question in our forthcoming paper [10] in greater generality.

4 Topological realization of derived character maps

In this and the next sections, we will prove our main results (Theorems 1.1 and 1.2) stated in the
introduction. Here we will construct the required spaces and maps simplicially: in terms of homotopy
colimits of small diagrams of simplicial sets and associated natural maps. Then, in the next section, we will
reproduce these maps in topological terms, using Goodwillie homotopy calculus and topological operads.
The connection between the two approaches seems instructive and deserves a further investigation.

4.1 The space X�

Recall that G denotes the skeleton of the category of finitely generated free groups. There is a natural
abelianization functor

(4-1) Z WG! Set; hni 7! Zn;

that takes the free group hni D Fn to (the underlying set of) its abelianization hniabDZn. As in Section 2,
we can form the category of elements of (4-1), using the Grothendieck construction

(4-2) GZ WDG s Z:

The objects of GZ are given explicitly by

Ob.GZ/D f.hniI k1; : : : ; kn// j hni 2G; .k1; : : : ; kn/ 2 Zn
g

and the morphism sets are

HomGZ..hniI k1; : : : ; kn/; .hmiI l1; : : : ; lm//D f' 2 HomG.hni; hmi/ j 'ab.k1; : : : ; kn/D .l1; : : : ; lm/g:

Note that the abelianized map 'ab W Zn ! Zm above is represented by an integral .m � n/–matrix,
'ab 2Mm�n.Z/, and its action on n–tuples of integers is simply given by matrix multiplication. The
category (4-2) comes together with the canonical (forgetful) functor

(4-3) p WGZ!G; .hniI k1; : : : ; kn/ 7! hni:

Given a homotopy simplicial group � WGop! sSet, we now define

(4-4) X� WD jhocolimG
op
Z
.p��/j;

where p� is the pullback functor sSetG
op
! sSetG

op
Z associated to (4-3). The relation of the space (4-4) to

representation homology becomes clear from the following observation.
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Lemma 4.1 For any � and any commutative ring k, there is a natural isomorphism

(4-5) H�.X� ; k/Š HR�.�; k�/;

where k� D GL1.k/ denotes the multiplicative group of the ring k.

Proof We have the sequence of natural isomorphisms

H�.X� ; k/Š Tor
G

op
Z
� .k; kŒp���/Š TorGZ

� .kŒp���; k/D TorGZ
� .p�kŒ��; k/Š TorG� .kŒ��; kŒZ�/;

where the first two are standard (see eg [47, Appendix C.10]) and the last one follows from the classical
Shapiro Lemma (see Corollary 2.9). To complete the proof it remains to note that kŒZ� can be identified
with OŒk�� as a commutative Hopf algebra.

As in the introduction, we shorten notation for one-dimensional representation homology, writing

(4-6) HR�.kŒ��/ WD HR�.�; k�/:

Our next goal is to identify the homotopy type of the space X� in terms of the classifying space of � .
The following theorem is one of the main results of the present paper.

Theorem 4.2 For any homotopy simplicial group � , there is a weak equivalence in Top�:

(4-7) X� '�SP1.B�/;

where B� is the classifying space of � (Definition 3.4).

Before proving this theorem, we recall a few basic facts about the Dold–Thom space and related
constructions; see eg [38, Chapter 4.K]. For any pointed connected CW complex X , the Dold–Thom
space SP1.X / is defined as the infinite symmetric product: namely,

(4-8) SP1.X /D lim
��!

n

SPn.X /;

where SPn.X / WDX n=Sn with Sn acting on X n the natural way (by permuting the factors). The maps
SPn.X /! SPnC1.X / along which the inductive limit (4-8) is taken are induced by the natural inclusion

X n ,!X nC1; .x1; : : : ;xn/ 7! .x1; : : : ;xn;�/;

where � stands for the basepoint of X . The Dold–Thom Theorem asserts that, for all i � 1, there are
isomorphisms of abelian groups

�i ŒSP1.X /�ŠHi.X;Z/

that are natural in pointed connected CW complexes X . In fact, this classical theorem provides a
topological realization for the Hurewicz homomorphisms, in the sense that the natural map of spaces

(4-9) X D SP1.X / ,! SP1.X /

induces the homomorphisms of groups: �i.X /! Hi.X;Z/ for all i > 1.
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Now, let FX denote the homotopy fiber of the inclusion map (4-9) so that we have a homotopy fibration
sequence

(4-10) FX !X ! SP1.X /:

There is an alternative way to obtain this fibration sequence, using Kan’s simplicial group model G.X /

of the space6 X . Namely (see eg [5, Section 7]), (4-10) arises from the short exact sequence of simplicial
groups

(4-11) 1!G2.X /!G.X /!A.X /! 1

by applying the classifying space functor B D jW .–/j. Here G2.X / WD ŒG.X /;G.X /� denotes the
commutator subgroup of the Kan loop group G.X / and A.X / its abelianization:

(4-12) A.X / WD .GX /ab WDG.X /=G2.X /

Thus, we have SP1.X /' BA.X /D jW A.X /j, which, by Kan’s theorem (see (3-7)), implies

(4-13) �SP1.X /'�jW A.X /j ' jGW A.X /j ' jA.X /j:

Note that for any reduced simplicial set X , A.X /Š zZŒX � is just the reduced free simplicial abelian group
generated by X . After these preliminary remarks we can proceed with:

Proof of Theorem 4.2 As a first step we apply Proposition 2.6 to express the homotopy colimit (4-4) as
a homotopy coend:

(4-14) hocolimG
op
Z
.p��/'

Z hni2G
L

�hni �Zn:

Next, observe that the bifunctor

(4-15) � �Z WGop
�G! sSet; .hni; hmi/ 7! �hni �Zm;

that appears in the homotopy coend (4-14) can be factored as

Gop
�G

�˝F
���! sGr .– /ab

���! sAb forget
���! sSet

where the first arrow is precisely the bifunctor � ˝ F that appears in formula (3-10) of Lemma 3.5,
expressing the rigidification functor K. This last bifunctor takes an object .hni; hmi/ 2Gop �G to the
simplicial group

`
�hni Fm, which is given, in each simplicial degree, by a free product of copies of the

free group Fm indexed by the components of the simplicial set �hni. Hence � ˝ F is an objectwise
cofibrant diagram in sGr, and therefore

(4-16) L.�˝F/ab ' .�˝F/ab Š � �Z;

6Abusing notation, we will use the same symbol X for a (pointed connected) space and its (reduced) simplicial set model.
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where L. – /ab stands for the (left) derived functor of the abelianization functor . – /ab W sGr! sAb. Since
the abelianization functor is left Quillen, its derived functor commutes with homotopy coends; see (2-20).
Hence, combining (3-11) with (4-16), we get

(4-17) LŒLK.�/�ab '

Z hni2G
L

L.�hni˝Fhni/ab '

Z hni2G
L

.�hni˝Fhni/ab '

Z hni2G
L

�hni �Zn:

On the other hand, LŒLK.�/�ab ' ŒGW LK.�/�ab DA.W LK.�//, hence, by (4-13), we have

(4-18) jLŒLK.�/�abj ' jA.W LK.�//j '�SP1.B�/:

Combining now (4-14), (4-17) and (4-18), we get the desired equivalence X� '�SP1.B�/.

Note that Theorem 4.2 combined with Lemma 4.1 implies Theorem 1.1 stated in the introduction.

4.2 Symmetric homology

In Section 3.3, we defined cyclic homology of homotopy simplicial groups by associating to each � 2 sGrh

a cyclic bar construction Bcyc� W �C op ! sSet; see Definition 3.12. In this section, we introduce an
analogue of this construction for symmetric groups. Recall that the symmetric crossed simplicial category
�S is defined to be an extension of � that has the same objects as � (and �C ) with morphisms
characterized by the two properties (cf [47, 6.1.4]):

(Sym1) For each n> 0, Aut�S .Œn�/Š S
op
nC1

, where SnC1 is the .nC 1/th symmetric group.

(Sym2) Any morphism f W Œn�! Œm� in �S can be factored uniquely as the composite f D g ı � with
g 2 Hom�.Œn�; Œm�/ and � 2 Aut�S .Œn�/Š S

op
nC1

.

There is an inclusion functor (a morphism in Cat)

(4-19) � W�C op �
�!�C ,!�S;

where the first arrow is an isomorphism of categories (called Connes’ duality) and the second one is
induced by the natural inclusion of groups CnC1 ,! SnC1(cf [47, 6.1.11]). Explicitly, the functor (4-19)
is given on objects by �.Œn�/D Œn� and on generators by the following formulas

(4-20)

�.dn
i /D

�
si
n�1

if 0� i < n

s0
n�1
ı .n; 0; 1; : : : ; n� 1/ if i D n;

�.sn
j /D d

jC1
nC1

;

�.tn/D .n; 0; 1; : : : ; n� 1/;

where dn
i W Œn�! Œn�1�, sn

j W Œn�! ŒnC1� and tn W Œn�! Œn� denote the generators of �C op dual (opposite)
to the generators d i

n, s
j
n and �n of �C , respectively.
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Lemma 4.3 The functor ‰op
cyc W�C op!Gop defined by (3-23) and (3-24) extends through �, giving a

commutative diagram of small categories

(4-21)
�C op ‰

op
cyc
//

_�

�
��

Gop

�S
‰sym

;;

Proof In order to construct the functor ‰sym it is convenient to use the following notation for morphisms
in �S ; cf [2, Section 1.1]. Any morphism f W Œn�

�
�! Œn�

g
�! Œm� in �S can be written uniquely as

a “tensor product” of mC 1 noncommutative monomials X0;X1; : : : ;Xm in nC 1 formal variables
fx0;x1; : : : ;xng:

(4-22) f DX0˝X1˝ : : :˝Xm;

where each Xi is the product xi1
xi2

: : :xir
of r D jf �1.i/j variables whose indices ik occur in the fiber

f �1.i/ and that are ordered in the same way as numbers in f�.0/; : : : ; �.n/g, ie �.i1/<�.i2/< � � �<�.ir /.
For example, if f W Œ4�! Œ3� is given by the composition g ı� in �S , where g 2Hom�.Œ4�; Œ3�/ is defined
by g.0/D g.1/D 0, g.2/D g.3/D 1 and g.4/D 3 and � 2 Aut�S .Œ4�/D S

op
5

is the permutation

� D

�
0 1 2 3 4

1 0 4 2 3

�
then f is represented by x1x0˝x3x4˝ 1˝x2. The composition of morphisms f1 ı f2 is defined by a
natural substitution rule: for example, if f1 W Œ3�! Œ3� and f2 W Œ4�! Œ3� in �S are represented by

f1 D 1˝x0˝ 1˝x3x2x1; f2 D x2x1˝x4˝ 1˝x0x3;

then f1 ıf2 W Œ4�! Œ3� can be computed as

f1 ıf2 D .1˝X0˝ 1˝X3X2X1/ ı .

X0‚…„ƒ
x2x1 ˝

X1‚…„ƒ
x4 ˝

X2‚…„ƒ
1 ˝

X3‚…„ƒ
x0x3 /

D 1˝x2x1˝ 1˝ .x0x3/ � 1 � .x4/D 1˝x2x1˝ 1˝x0x3x4:

With this notation, we define the functor

(4-23) ‰sym W�S !Gop

on objects by
‰sym.Œn�/D hnC 1i;

and on morphisms by the following formula: if f 2 Hom�S .Œn�; Œm�/ is represented by

f D .xi1
: : :xir

/˝ � � �˝ .xk1
: : :xks

/;

then

(4-24) ‰sym.f / W hmC 1i ! hnC 1i; X0 7! xi1
� � �xir

; : : : ; Xm 7! xk1
� � �xks

;

where
hmC 1i D FhX0; : : : ;Xmi and hnC 1i D Fhx0; : : : ;xni:
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Note that the maps (4-20) can be rewritten in this tensor notation as

�.dn
i /D

�
x0˝ : : :˝xi�1˝xixiC1˝xiC2˝ : : :˝xn if 0� i < n;

xnx0˝x1˝ : : :˝xn�1 if i D n;

�.sn
j /D x0˝ : : :˝xj ˝ 1˝xjC1˝ : : :˝xn;

�.�n/D xn˝x0˝x1˝ : : :˝xn�1:

The commutativity of (4-21) can now be checked by a trivial calculation that we leave to the reader.

With the functor ‰sym W�S !Gop in hand, we can now define a symmetric bar construction in the same
way as we defined the cyclic bar construction in Definition 3.12.

Definition 4.4 For a homotopy simplicial group � 2 sGrh, its symmetric bar construction is the functor

(4-25) Bsym� WD‰
�
sym� W�S ! sSet;

and its symmetric homology is defined by

(4-26) HS�.kŒ��/ WD Tor�S
� .k; kŒBsym��/:

Remark 4.5 The same argument as (in the proof of) Lemma 3.7 shows that HS�.kŒ��/ depends only on
the homotopy type of � in sGrh and hence on the homotopy type of the space B� .

Remark 4.6 For � an ordinary discrete group, the definition (4-25) agrees with Fiedorowicz’s original
definition of the symmetric bar construction; see [30] and also [2]. In this case, formula (4-26) defines
the symmetric homology of the group algebra kŒ��. Note that, unlike Bcyc� (see (3-25)), the functor
Bsym� W�S ! sSet is covariant on �S (which we emphasize by writing sym as a subscript).

Remark 4.7 To study symmetric homology it is often convenient to work with the augmented symmetric
category �SC, which is defined by adding to �S the initial object Œ�1� and morphisms Œ�1�! Œn�, one
for each n> �1; see [2]. It is easy to see that the map ‰sym defined in Lemma 4.3 extends to �SC,

(4-27) ‰sym;C W�SC!Gop;

by letting ‰sym;C.Œ�1�/ WD h0i. Now, the category �SC is isomorphic to the category of so-called finite
associative sets, F.as/, introduced in [57]; see also [62, Section 15.4] for a detailed discussion. The latter
is known to be a permutative category (PROP) that describes the associative unital algebras; see [56] and
also [62]. Its opposite category F.as/op describes the coassociative counital coalgebras. If we identify
�SC D F.as/, the restriction functor ‰�sym;C WModk.G/!Modk ŒF.as/op� associated to the opposite of
(4-27) takes commutative Hopf algebras viewed as functors (3-15) on G to the underlying coassociative
coalgebras viewed as functors on F.as/op. In other words, the morphism ‰

op
sym;C is isomorphic to a

morphism of PROPs, F.as/op!G, that “forgets” the algebra structure on commutative Hopf algebras.
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4.3 Symmetric homology vs representation homology

Recall that in Section 3.4, we constructed the derived character map Tr.�/� relating the cyclic homology
of � to its (one-dimensional) representation homology:

(4-28) Tr.�/� W HC�.kŒ��/! HR�.kŒ��/:

On the other hand, as a consequence of Lemma 4.3, we have a restriction map

(4-29) �� W HC�.kŒ��/D Tor�C op

� .k; kŒBcyc��/! Tor�S
� .k; kŒBsym��/D HS�.kŒ��/

induced by the isomorphism of cyclic spaces

(4-30) Bcyc� Š ��Bsym�:

The next proposition shows that the derived character map (4-28) factors through (4-29), thus relating
representation homology to symmetric homology.

Proposition 4.8 For any homotopy simplicial group � 2 sGrh, there is a natural map

(4-31) z‰�sym W HS�.kŒ��/! HR�.kŒ��/

such that

(4-32)

HC�.kŒ��/

�� ''

Tr.�/�
// HR�.kŒ��/

HS�.kŒ��/
z‰�sym

77

Proof As our notation suggests, the map (4-31) is actually induced by a morphism z‰sym in Cat. We
construct z‰sym by lifting the functor ‰sym of Lemma 4.3 to the (opposite) category of elements of the
abelianization functor (4-1):

(4-33)

G
op
Z

pop

��

�C op �
// �S

z‰sym
::

‰sym
// Gop

The existence of such a lifting is a consequence of the following observation. Consider the composition
of functors

(4-34) �Sop ‰
op
sym

���!G
.–/ab
���! Ab

that takes an object Œn� 2�S to the abelian group ZnC1. If we represent a morphism f W Œn�! Œm� in �S

using the tensor notation (4-22), then ‰op
sym.f /ab WZmC1!ZnC1, the value of (4-34) on f , is represented

by an integral .nC1/� .mC1/–matrix whose rows are indexed by 06 i 6 n and columns by 06 j 6m,
and the j th column consists entirely of 0s and 1s, with the 1s occurring in positions indicated by the
elements of f �1.j /.
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For example, if f W Œ4� ! Œ3� in �S is represented by the product x1x0 ˝ x3x4 ˝ 1 ˝ x2, then
‰

op
sym.f /ab W Z4! Z5 is given by

‰op
sym.f /ab D

0BBBBB@
1 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

1CCCCCA:

Observe that for any morphism f in �S , the matrix ‰op
sym.f /ab thus defined has exactly one nonzero

entry in each row and that entry is 1. Hence ‰op
sym.f /ab maps the vector .1; 1; : : : ; 1/t 2 ZmC1 to the

vector .1; 1; : : : ; 1/t 2 ZnC1. This shows that there is a well-defined functor

(4-35) z‰sym W�S !G
op
Z ; Œn� 7! .hnC 1iI 1; 1; : : : ; 1/;

that makes the diagram (4-33) commutative. It follows from (4-33) that

kŒBsym��D‰
�
sym.kŒ��/D

z‰�sym.kŒp
���/:

Hence, by Lemma 3.13, the functor (4-35) induces a natural map

(4-36) HS�.kŒ��/D Tor�S
� .k; kŒBsym��/

z‰�sym
��! Tor

G
op
Z
� .k; kŒp���/:

We claim that if the target of the map (4-36) is identified with the representation homology of kŒ�� via the
Shapiro isomorphism (see Corollary 2.9), then the required factorization property (4-32) holds. To verify
this we fix a projective resolution Q �

�! kŒ�� of kŒ�� in Modk.G
op/. Then p�.Q/ ��!p�kŒ��D kŒp���

gives a projective resolution of kŒp��� in Modk.G
op
Z /, and the Shapiro isomorphism

TorGZ
� .kŒp���; k/ ��! TorG� .kŒ��;p!.k//

is induced by the composition

p�.Q/˝GZ k
id˝"k
���! p�.Q/˝GZ p�p!.k/

p�
�!Q˝G p!.k/;

where the first map is given by the adjunction unit " W id! p�p! and the second is the restriction map
via p. Explicitly, using the definition (3-12) of functor tensor products, we can represent the above
composite map as

(4-37)
M

.hniIk1;:::;kn/2GZ

Qhni!
M
hni2G

Qhni˝kŒZn�; .vn/.hniIk1;:::;kn/2GZ
7! .vn˝.k1; : : : ; kn//hni2G;

where vn 2Qhni and the subscripts denote the indices of the corresponding components of direct sums.
Now, using the same resolution Q, we can write explicitly the composition of maps (4-29) and (4-36):

‰�cyc.Q/˝�C k
��
�!‰�sym.Q/˝�Sop k

z‰�sym
��! p�.Q/˝GZ k:
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At the level of chain complexes, this last composition is induced by the map

(4-38)
M

Œm�2�C

QhmC 1i !
M

Œm�2�Sop

QhmC 1i !
M

.hniIk1;:::kn/2GZ

Qhni;

.vmC1/Œm�2�C 7! .vmC1/Œm�2�Sop 7! .vmC1/.hmC1iI1;1;:::;1/2GZ
:

Combining (4-37) and (4-38), we see that the resulting mapM
Œm�2�C

QhmC 1i !
M
hni2G

Qhni˝ kŒZn�; .vmC1/Œm�2�C 7! .vmC1˝ .1; 1; : : : ; 1//hmC1i2G;

coincides exactly with the map (3-33) representing the derived character �GL1;Tr1
.�/� D Tr.�/�. This

finishes the proof of the proposition.

Remark 4.9 The proof of Proposition 4.8 shows that, apart from (4-35), any functor of the form

(4-39) z‰.m/sym W�S !G
op
Z ; Œn� 7! .hnC 1iIm;m; : : : ;m/;

where m 2Z is a fixed integer, satisfies the lifting property (4-33). It is easy to see that there are no other
solutions to this lifting problem. Among (4-39) the functor z‰.0/sym corresponding to mD 0 is the only one
that factors through Gop: z‰.0/sym D sop ı‰sym, where s WG ,! GZ is the zero section of p.

Next, we observe that the linear maps factoring Tr.�/� in (4-32) arise (on homology) from the natural
maps of topological spaces induced by the functors (4-19) and (4-35) (cf Lemma 4.1):

(4-40) jhocolim�C op.Bcyc�/j
��
�! jhocolim�S .Bsym�/j

z‰�sym
��! jhocolimG

op
Z
.p��/j:

(Here, abusing notation, we denote these topological maps by the same symbols as the corresponding
linear maps.) By Theorem 4.2, we know that

(4-41) jhocolimG
op
Z
.p��/j '�SP1.B�/:

On the other hand, by theorems of Goodwillie (see [47, Theorem 7.2.4]) and Fiedorowicz [30] (see
[2, Section 5.3]),

jhocolim�C op.Bcyc�/j 'ES1
�S1 L.B�/;(4-42)

jhocolim�S .Bsym�/j '��
1†1.B�/;(4-43)

where L.B�/ WD Map.S1;B�/ and �1†1.B�/ WD hocolimn!1�
n†n.B�/ denote the free loop

space and the infinite loop space of B� , respectively.

Combining (4-40) with equivalences (4-41)–(4-43), we can thus refine the result of Proposition 4.8 as
follows:
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Corollary 4.10 The derived character map

Tr.�/� W HC�.kŒ��/
��
�! HS�.kŒ��/

z‰�sym
��! HR�.kŒ��/

is induced on homology by a natural map of topological spaces in Ho.Top�/:

(4-44) ES1
�S1 L.B�/ CSB�

���!��1†1.B�/
SRB�
���!�SP1.B�/:

In the next section, we will describe the maps CS and SR in topological terms in two ways: using the
classical “little cubes” operads and the Goodwillie calculus of homotopy functors.

4.4 Generalization to monoids

All results of this section generalize naturally to (simplicial) monoids. We briefly outline this generalization
as we will need it in Section 5.3. Instead of G, we start with the category M�Mon whose objects are
finitely generated free monoids7 hni, one for each n� 0. In this case, the abelianization functor reads

N WM! Set; hni 7!Nn;

where N is the set of natural numbers, ie the underlying set of the free abelian monoid of rank one.
The associated category of elements MN WDM s N has an explicit description similar to that of GZ:
its objects are .hniI k1; : : : ; kn//, where hni is the free monoid on n generators and .k1; : : : ; kn/ 2Nn.
Any simplicial monoid M gives a functor M W Mop ! sSet that restricts to M

op
N via the canonical

projection p WMN !M. The analogue (generalization) of Theorem 4.2 says:

Proposition 4.11 For any simplicial monoid M , there is a weak equivalence in Top�:

(4-45) jhocolimM
op
N
.p�M /j '�SP1.BM /;

where BM is the classifying space of M.

Proof The same argument as in the proof of Theorem 4.2 — based on Proposition 2.6 — shows

hocolimM
op
N
.p�M /'L.M /ab;

where L.� /ab denotes the derived abelianization functor on simplicial monoids. To compute this
last functor, instead of the Kan loop group, we will use the 2–sided (simplicial) bar resolution (5-22):
B�.C1; C1;M / ��!M in sSet�, where C1 is the monad associated to the (simplicial analogue of) little
1–cube operad; see (5-24). Since .C1.X //ab D C0.X /, we have

jL.M /abj ' jB�.C1; C1;M /abj ' jB�.C0; C1;M /j '�SP1.BM /;

where the last equivalence is a result of Lemma 5.4 below; see (5-27).

7Abusing notation, we will use the same symbols to denote the objects of M and G.
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The relation between monoids and groups is determined by the canonical (group completion) functor
l WM!G. This last functor extends naturally to a functor zl WMN!GZ, and the maps ‰sym W�S!Gop

and z‰sym W �S ! G
op
Z defined by (4-23) and (4-35) factor through l and zl respectively, giving the

commutative diagram

(4-46)
M

op
N

p

��

zl
// G

op
Z

p

��

�C op �
// �S

z‰sym
::

‰sym
// Mop l

// Gop

As a consequence of Proposition 4.11, we get:

Corollary 4.12 For any homotopy simplicial group � 2 sGrh, there is a weak equivalence

jhocolimM
op
N
.p�l��/j '�SP1.B�/:

Proof Apply Proposition 4.11 to the simplicial group LK.�/ viewed as a simplicial monoid.

Remark 4.13 Corollary 4.12 can be also deduced from Theorem 4.2 if we notice that the natural map

hocolimM
op
N
.p�l��/ ��! hocolimG

op
Z
.p��/

is a weak equivalence for any � . This last fact follows from Theorem 2.3, the assumptions of which hold
thanks to the known properties of the group completion functor; cf [14, Lemma 3.2].

5 Topological character maps via Goodwillie calculus and operads

In this section, we will describe the maps CS and SR explicitly in topological terms, using Goodwillie
calculus and classical operads. The latter approach is based on ideas of Fiedorowicz [30] that were
developed by Ault in [2]. The former is inspired by results of Biedermann and Dwyer that appeared
in [18]. The interpretation in terms of Goodwillie derivatives leads to a natural nonlinear (polynomial)
generalization of topological character maps that deserves a further study; see Section 5.4.

5.1 Goodwillie homotopy calculus

Goodwillie calculus provides a universal approximation (“Taylor decomposition”) of arbitrary homotopy
functors in terms of polynomial homotopy functors. This method, introduced by T Goodwillie in the
series of papers [34; 35; 36], has been studied extensively in recent years and has found many interesting
applications; see eg the survey papers [1] and [45].

Recall that by a homotopy functor we mean a functor on topological spaces that preserves weak homotopy
equivalences. A homotopy functor F W Top�! Top� is called n–excisive (or polynomial of degree � n) if
it takes any strongly co-Cartesian .nC 1/–dimensional cubical diagram in Top� to a Cartesian diagram;
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see [1, Definition 1.1.2]. For nD 0, this simply means that F is homotopically constant: ie F.X /'F.�/

for any X 2 Top�. For nD 1, this is the usual Mayer–Vietoris property: a functor F is 1–excisive if and
only if it maps homotopy pushout squares to homotopy pullback squares in Top�; see [1, Example 1.1.4].
For n > 1, F enjoys a higher-dimensional version of the Mayer–Vietoris property that reduces to the
usual one inductively in n.

The main construction of Goodwillie calculus can be described as follows (cf [36, Theorem 1.8]).

Theorem 5.1 (Goodwillie) For any homotopy functor F W Top�! Top� on pointed spaces , there exists
a natural tower

(5-1)

:::

p3

��

P2F.X /

p2

��

P1F.X /

p1

��

F.X /

ı2

BB

ı1

99

ı0
// P0F.X /

of functors (fibrations) under F , satisfying the following properties: for all n� 0,

(1) PnF W Top�! Top� is an n–excisive functor , and

(2) ın W F ! PnF is the universal weak natural transformation to an n–excisive functor.

The last property needs an explanation. By a weak natural transformation ı W F ! P one means a
pair (“zig-zag”) of natural transformations F

ı0
�! G

ı00

 � P , where ı00 is a natural weak equivalence,
ie ı00

X
WG.X / � �P .X / is a weak homotopy equivalence for all spaces X 2Top�. Note that if F and P are

homotopy functors, a weak natural transformation ı WF!P induces a well-defined natural transformation
between the corresponding functors on the homotopy category Ho.Top�/. Property (2) of Theorem 5.1
then says that the weak natural transformation ın W F ! PnF is homotopically initial among all natural
transformations from F to n–excisive functors.

Given a homotopy functor F W Top�! Top�, we define its nth layer to be the homotopy fiber

(5-2) DnF.X / WD hofibfPnF.X /
pn
�! Pn�1F.X /g;

where pn is the canonical projection at the nth stage of the Goodwillie tower (5-1). A remarkable fact
discovered in [36] (see [1, Example 1.2.4]) is that all layers of a homotopy functor F are naturally infinite
loop spaces. More precisely, for each n> 0, there is a spectrum @nF equipped with a (naïve) action of
the symmetric group Sn such that

(5-3) DnF.X /'�1.@nF ^ .†1X /^n/hSn
;
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where .†1; �1/ are the suspension spectrum and the infinite loop space functors, respectively. The
spectrum @nF is called the nth Goodwillie derivative of F (at the basepoint �).

5.2 The map CS

Recall that, by Corollary 4.10, the derived character map Tr.�/� is induced by the composition of natural
maps in Ho.Top�/:

(5-4) ES1
�S1 L.X /

CSX
�!��1†1.X /

SRX
�!�SP1.X /;

where X DB� . Since the classifying space functor on homotopy simplicial groups induces an equivalence
Ho.sGrh/Š Ho.Top0;�/, the maps (5-4) are defined on (the homotopy types of) all pointed connected
spaces. To analyze these maps we introduce the notation

‚.X / WDES1
�S1 L.X /DES1

�S1 Map.S1;X /;

and define x‚ W Top�! Top� by

(5-5) x‚.X / WD‚.X /=‚.�/ŠES1
�S1 L.X /=BS1

ŠES1
C ^S1 L.X /:

Note that (5-5) is a reduced homotopy functor, so that P0
x‚.X /' x‚.�/D f�g and P1

x‚.X /ŠD1
x‚.X /

for any space X 2 Top�; see (5-2).

The next proposition shows that the natural transformation CS in (5-4), relating cyclic to symmetric
homology, essentially coincides with the first Goodwillie layer of the functor (5-5). We deduce this from
results of Carlsson and Cohen [21] by elaborating on a remark of Fiedorowicz [30].

Proposition 5.2 The map CS in (5-4) is represented by

ES1 �S1 L.X /
CSX

// ��1†1.X /

o

��

‚.X /
can

// // x‚.X /
ı1;X

// D1
x‚.X /

where the right vertical arrow is a natural weak equivalence and ı1 is the first layer of the functor (5-5).

Proof As noticed in [30, Remark 1.4], the map CSX factors in the homotopy category as

(5-6) ES1
�S1 L.X / can

��!ES1
C ^S1 L.X /

fX
�!��1†1.X /;

where fX is a certain natural map constructed in [21]. We review the construction of fX and compare it
to a well-known general formula for the first Goodwillie layer of a reduced homotopy functor.

First, we recall a standard stabilization construction due to Waldhausen [72]. For a pointed space X ,
denote by CX DX^I and†X DX^S1 the reduced cone and the reduced suspension of X , respectively.
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The latter can be obtained by gluing two copies of the former along a common base which is identified
with X : this yields the natural pushout square in Top�:

(5-7)

X

��

// CX

j0

��

CX
j1
// †X

Applying the given functor F to (5-7) and taking the homotopy pullback along the maps j0 and j1 induces
a natural map

(5-8) F.X /! holimŒF.CX /! F.†X / F.CX /�:

Since the functor F is homotopic and reduced, we have F.CX /' F.�/' f�g, which implies that the
homotopy colimit in (5-8) is equivalent to �F.†X /. Thus we get a natural map s W F.X /!�F.†X /.
This last map can be iterated any number of times:

(5-9) sn W F.X /!�nF.†nX /; n� 0;

and eventually stabilized, defining the map

(5-10) s1 W F.X /! lim
��!

n

�nF.†nX /D�1F†1.X /:

In particular, (5-10) exists for our functor F D x‚; see (5-5).

Next, for each n> 0, define †nX ! x‚†n.†X / to be the composition of the natural maps

†nX
"
�!�†.†nX /D�.†nC1X / ,! L.†nC1X /'ES1

�L.†nC1X /

�ES1
C ^S1 L.†nC1X /D x‚†n.†X /;

where " W id!�† is the adjunction unit of .†;�/. Looping n times yields an inductive system of maps

(5-11) in W�
n†nX !�n x‚†n.†X / for all n� 0;

which, by [21, Lemma 4.1], induce in the limit a homotopy equivalence

(5-12) i1 W�
1†1X �

�!�1 x‚†1.†X /:

Finally, we note the canonical identifications

(5-13) �1 x‚†1.X / WD lim
��!

n

�n x‚†n.X /D lim
��!

n

�nC1 x‚†nC1.X /D lim
��!

n

�Œ�n x‚†n.†X /�

Š� lim
��!

n

Œ�n x‚†n.†X /�D��1 x‚†1.†X /:

The Carlsson–Cohen map fX that appears in (5-6) can now be represented by the zig-zag of natural
transformations

(5-14) x‚.X /
s1
�!�1 x‚†1.X /

(5-13)
Š ��1 x‚†1.†X /

�i1
 �����1†1.X /;
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where the leftmost arrow is the Waldhausen stabilization map (5-10) for x‚ and the rightmost arrow is
a natural weak equivalence induced by (5-12). To complete the proof we note that P1.F /'�

1F†1

for any reduced homotopy functor F , and the universal natural transformation ı1 W F ! P1F DD1F

coincides (up to homotopy) with the stabilization map (5-10); see eg [45, Example 5.3].

5.3 The map SR

We now turn to the second map SRX in (5-4) that relates symmetric homology to representation homology.
In this section, we construct this map topologically by a method similar to that of Proposition 5.2; its
relation to Goodwillie calculus will be discussed in Section 5.4. Our starting point is the well-known
fact that the Dold–Thom functor SP1 W Top�! Top� factors through the category of abelian topological
monoids — in fact, SP1.X / is the free abelian topological monoid generated by the space X ; see eg [53].
This implies that SP1 is a linear (ie 1–excisive) functor. The latter can be seen directly as follows.
Consider the natural maps (5-9) for the functor F D SP1 constructed in the proof of Proposition 5.2:

(5-15) sn W SP1.X /!�nSP1†n.X / for n� 0:

The maps (5-15) are all weak equivalences, which follows immediately from the commutative diagrams

�iSP1.X /
�i .sn/

//

o
��

�i�
nSP1†n.X /

o
��

zHi.X /
�

// zHiCn.†
nX /

where the vertical arrows are isomorphisms by the Dold–Thom theorem. Thus, in the limit, we get

(5-16) s1 W SP1.X / ��!�1SP1†1.X /;

showing that SP1 ' P1.SP1/'D1.SP1/, whence the linearity of SP1.

On the other hand, for all n� 0, we have canonical maps †nX ! SP1.†nX / inducing the Hurewicz
homomorphisms; see (4-9). Applying loop functors to these maps yields an inductive system of maps

(5-17) in W�
n†n.X /!�nSP1†n.X / for n� 0

which, in the limit, induces

(5-18) i1 W�
1†1.X /!�1SP1†1.X /:

Unlike the analogous map (5-12) for the functor x‚, (5-18) is not a weak equivalence in general. Never-
theless, looping it once and combining with (5-16), we get the pair of natural transformations

(5-19) ��1†1.X /
�i1
��!��1SP1†1.X /

�s1
 ���SP1.X /;

where the rightmost one is a natural weak equivalence. Our goal is to prove the following analogue of
Proposition 5.2.
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Proposition 5.3 The map SR is represented by the weak natural transformation (5-19). Thus , in the
homotopy category, SRX is equivalent to the map

(5-20) .�s1/
�1.�i1/ W��

1†1.X /!�SP1.X /

which is the (once looped ) canonical natural transformation relating stable homotopy to (reduced ) singular
homology of pointed spaces.

To prove this proposition we will reinterpret the map (5-20) in terms of (topological) operads. The
standard reference for the background material that we need is [52] (for a brief introduction, see also
[62, Chapter 12]).

Recall that an operad C in Top� is a collection of pointed spaces fC.j /gj�0 with C.0/ WD f�g such that
each C.j / carries a right Sj –action and there are composition laws

C.k/� C.j1/� � � � � C.jk/! C.j1C � � �C jk/

satisfying natural associativity and unitality conditions. If C is an operad, a C–space is a pointed space X

equipped with an action of C, which is given by a sequence of Sj –equivariant maps �j W C.j /�X j !X ,
with �0 W C.0/ ,! X being the basepoint inclusion, that satisfy associativity and unitality conditions
compatible with those of C. Every operad C determines a monad C on Top� (ie a monoid with respect to ı
in the category of endofunctors Top�! Top�) in such a way that the notion of a C–space is equivalent to
that of C–algebra. Explicitly, given an operad C, the corresponding monad C W Top�! Top� is defined by

(5-21) C.X / WD
a
j�0

.C.j /�Sj X j /=�

where the equivalence relation is of the form

.c;x1; : : : ;xi�1;�;xiC1; : : : ;xj /� .�i.c/;x1; : : : ;xi�1;xiC1; : : : ;xj /

for certain natural maps �i W C.j /! C.j � 1/; see [52, Construction 2.4]. A C–algebra is then defined
to be a space A 2 Top� with an action map � W C.A/! A satisfying natural associativity and unitality
conditions. Opposite to the notion of a C–algebra is that of a C–functor, which is a functor F on Top�
equipped a morphism F ı C ! F defining a right action of C on F . Associated to a triple .F; C;A/,
there is a two-sided bar construction B.F; C;A/ defined as the geometric realization of a simplicial space
B�.F; C;A/ 2 sTop� with components

(5-22) Bn.F; C;A/ WD FCn.A/ for n� 0;

where the faces di W Bn! Bn�1 and degeneracies sj W Bn! BnC1 are determined by the structure maps
of A and F ; see [52, Construction 9.6].

Now, our main examples will be the so-called little cubes operads fC0; C1; C2; : : :g originally introduced
by Boardman and Vogt; see [52, Section 4]. The C0 and C1 are discrete operads8 defined by C0.j / WD f�g

8These operads are denoted in [52] by N and M, respectively.
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and C1.j / WD Sj for all j � 0, with the Sj –action being trivial in the former case, and induced by
multiplication in Sj in the latter. A C0–space is just an abelian monoid in Top�, and the monad associated
to C0 is precisely the Dold–Thom functor

(5-23) C0.X /Š SP1.X /:

A C1–space is just a monoid in Top� (ie an associative H–space with 1), and the monad associated to C1

yields the classical James functor

(5-24) C1.X /Š J.X /;

where J.X /D .
`

n�0 X n/=� is the free topological monoid generated by X . For n� 2, the operad Cn

is not discrete: for j � 1, the space Cn.j / can be represented by the j –tuples of “little n–cubes” (ie linear
embeddings In ,! In with parallel axes and disjoint interiors) with the natural (permutation) Sj –action.
Thus, for n� 2, each Cn.j / is homotopy equivalent to confj .Rn/, the configuration space of unordered j –
tuples of points in Rn equipped with the canonical free Sj –action. Natural inclusions of cubes In ,! InC1

induce the embeddings of spaces Cn.j / ,! CnC1.j /, and hence the maps of operads Cn ,! CnC1 for
all n� 2. This allows one to define the operad C1 WD lim

��!n
Cn. Since �i ŒCn.j /�Š �i Œconfj .Rn/�D 0 for

i � n� 2, each component C1.j / of C1 is contractible, and as the Sj –action on C1.j / (induced from
Cn.j /) is free, C1 is an E1–operad. Finally, we recall May’s approximation theorem [52, Theorem 2.7],
that asserts that the natural map of monads ˛n W Cn.X /! Cn�

n†n.X /!�n†n.X / gives a homotopy
equivalence

(5-25) Cn.X /'�
n†n.X / for all nD 1; 2; : : : ;1;

whenever X is connected.

We can now state the following result, which is probably well known to experts.

Lemma 5.4 (cf [30]) For any topological monoid M , there are natural homotopy equivalences

B.C1; C1;M /'��1†1.BM /;(5-26)

B.C0; C1;M /'�SP1.BM /;(5-27)

and the map (5-20) for X D BM is equivalent to the map

(5-28) B.C1; C1;M /! B.C0; C1;M /

induced by the canonical (unique) morphism of operads C1! C0.

Proof The equivalence (5-26) was originally proved by Fiedorowicz (see [30, Proposition 1.7] and also
[2, Lemma 39]); the proof of (5-27) is similar. We describe these equivalences in both cases. First,

B.C1; C1;M /' B.�1†1; C1;M /' B.��1†1†; C1;M /'��1†1B.†; C1;M /

'��1†1.BM /;
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where the first equivalence is induced by (5-25), the second is obvious, the third is a formal property of
the bar construction (see [52, Lemma 9.7]), and the last one follows from a theorem of Fiedorowicz (see
[29, Corollary 9.7]) that yields B.†; C1;M /' BM for any topological monoid M . Similarly,

B.C0; C1;M /Š B.SP1; C1;M /' B.�SP1†; C1;M /'�SP1B.†; C1;M /'�SP1.BM /;

where the first identification follows from (5-23), the second is induced by the equivalence (5-15), which
is a consequence of the Dold–Thom theorem, the third follows from [52, Lemma 9.7], and the last one is
[29, Corollary 9.7]. The last statement of the lemma is now deduced by comparing the above equivalences
with the construction of the map (5-20) given in the beginning of Section 5.3.

Proof of Proposition 5.3 For any topological monoid M , consider the diagram of spaces

(5-29)

jhocolim�SC.BsymM /j
f1
//

z‰�sym
��

B.C1; C1;M /

can
��

(5-26)
// ��1†1.BM /

(5-20)
��

jhocolimM
op
N
.p�M /j

f0
// B.C0; C1;M /

(5-27)
// �SP1.BM /

In this diagram all horizontal maps are natural weak equivalences: f1 is the equivalence constructed by
Fiedorowicz in [30] (see [2, Theorem 38]), f0 is the equivalence (4-45) of Proposition 4.11, and (5-26)
and (5-27) are the equivalences described in Lemma 5.4. The map z‰�sym is induced by the functor z‰sym

defined in (4-46). To prove the proposition we need to show that the diagram (5-29) commutes. By
Lemma 5.4, we already know that the rightmost square of (5-29) commutes; thus it suffices to prove the
commutativity of the leftmost square. For this, we shall describe the maps f1 and f0 explicitly.

The map f1 is explicitly constructed in the proof of [2, Lemma 36]. As in loc. cit. we let N WTop�!Top�
denote the functor defined as the coend

N .X / WD
Z Œn�2�SC

N.Œn� #�SC/�BsymJ.X /Œn�:

By [2, Lemma 36], there is an equivalence of functors ‚ WN ' C1, inducing an equivalence of bar con-
structions B.N ; C1;M /' B.C1; C1;M /. The identification jhocolim�SC.BsymM /j ' B.N ; C1;M /

by [52, Lemma 9.7] then yields f1.

The map f0 can be constructed in a similar way. Let P W Top�! Top� denote the functor

P.X / WD
Z .hniIk1;:::;kn/2M

op
N

N..hniI k1; : : : ; kn/ #M
op
N /�p�J.X /.hniI k1; : : : ; kn/:

Identifying J.X /.hni/D HomMon.hni;J.X // and recalling that C0.X /D SP1.X / is the abelianization
of J.X /, we note that the mapa

N..hniI k1; : : : ; kn/ #M
op
N /�p�J.X /.hniI k1; : : : ; kn/! C0.X /D SP1.X /;

y �' 7! 'ab.k1; : : : ; kn/;
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descends to the coend to yield a natural equivalence

ƒ W P.X /' C0.X /;

which, in turn, yields an equivalence of bar constructions

B.P; C1;M /' B.C0; C1;M /:

Composing this with the identification jhocolimM
op
N
.p�M /j ' B.P; C1;M / by [52, Lemma 9.7] yields

the map f0.

It can be easily verified that the diagram

N

z‰�sym
��

‚
// C1

can
��

P ƒ
// C0

commutes. It follows that the first square in the diagram (5-29) commutes. Finally, we note that in the
case when M D � , a simplicial group, the map z‰�sym in the diagram (5-29) may be identified with the
corresponding map in (4-40) by Corollary 4.12 (also see Remark 4.13). This completes the proof of the
desired proposition.

Corollary 5.5 Let � be a (homotopy) simplicial group such that X D B� has homotopy type of a
simply connected CW complex which is of (locally) finite rational type. If k is a field of characteristic
zero , then the map SRX induces an isomorphism

HS�.kŒ��/Š HR�.kŒ��/:

Proof As mentioned above, the natural map i1 W�
1†1.X /! SP1.X /, defined by composing (5-18)

with the inverse of (5-16) in Ho.Top�/, is not an equivalence in general. However, it is known that for
any connected CW complex X , this map induces an isomorphism of cohomology rings

(5-30) i�1 WH
�.SP1.X /; k/ ��!H�.�1†1.X /; k/

provided the coefficients are taken in a field k of characteristic zero; see eg [22, Section 7.3]. Now, under
our assumption on X , both SP1.X / and �1†1.X / are simply connected spaces of finite rational
type. Hence, there is a natural (Cotor) spectral sequence with E2–term E

�;�
2
.Z/D Ext�H �.Z;k/.k; k/

that converges to H�.�Z; k/ for any simply connected space Z; see eg [22, Section 5.5, (5.13)].
By naturality, the map (5-30) induces an isomorphism E

�;�
2
.�1†1X / ��! E

�;�
2
.SP1X / of such

spectral sequences for Z D�1†1.X / and Z D SP1.X /. This last isomorphism is compatible with
the map �i1 WH�.��

1†1.X /; k/!H�.�SP1.X /; k/ which, by Proposition 5.3, coincides with
SRX W HS�.kŒ��/! HR�.kŒ��/ for X D B� . Thus, by the Comparison Theorem for spectral sequences
(see [73, Theorem 5.2.12]), we conclude that SRX is an isomorphism.

Remark 5.6 We expect that the result of Corollary 5.5 holds for any homotopy simplicial group � ,
including the usual (discrete) groups, for which B� is a K.1; �/–space, ie certainly not simply connected.
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5.4 Polynomial extensions

There is a natural way to describe and generalize the map SR via Goodwillie calculus. As we have seen
above, the Dold–Thom functor SP1 is 1–excisive, hence there is a canonical (up to homotopy) natural
transformation ˇ1 W P1.id/! SP1, where P1.id/DD1.id/ is the first layer of the functor id. The latter
is known to be the stable homotopy functor P1.id/'�1†1 and ˇ1 ' i1. Thus SR'�ˇ1. It turns
out that the map ˇ1 can be extended naturally to higher layers — and in fact, to the entire Goodwillie
tower of the functor id. This is based on results of the paper [18] that compares the Goodwillie tower of
the identity with the lower central series of the Kan loop group.

Recall that, for any connected space X , we can identify SP1.X /' BŒA.X /�, where A.X / WDG.X /ab

is the abelianization of the Kan loop group G.X / of (a reduced simplicial set representing) X ; see (4-12).
Now, instead of just abelianization, consider the lower central series of G.X /,

� � � !G.X /=GnC1.X /!G.X /=Gn.X /! � � � !G.X /=G2.X /DA.X /;

where Gn.X / are the simplicial subgroups of G.X / defined inductively by

G1.X / WDG.X / and GnC1.X / WD ŒG.X /;Gn.X /� for n� 1:

It is shown in [18] that the functor X 7! BŒG.X /=GnC1.X /� is n–excisive for each n � 1, and there
exists a canonical (up to homotopy) morphism of towers

(5-31)

� � � // Pn.id/.X /

ˇn

��

// Pn�1.id/.X /

ˇn�1

��

// � � � // P1.id/.X /

ˇ1

��

:::

� � � // BŒG.X /=GnC1.X /� // BŒG.X /=Gn.X /� // � � � // BŒA.X /�

where the rightmost vertical arrow is precisely the map ˇ1 W P1.id/! SP1. This morphism induces
natural maps on the layers of the Goodwillie tower

(5-32) ˇn WDn.id/.X /! BŒGn.X /=GnC1.X /� for n� 1;

that we can describe in explicit terms. First of all, by a theorem of B Johnson [41] (cf [1, Example 1.2.5]),
all Goodwillie derivatives of the identity functor are known: for n� 1, the spectrum @n.id/ is equivalent
to a wedge of .n�1/! copies of the .1�n/–sphere spectrum S1�nD†1�n.S0/. Hence, by formula (5-3),
we have

(5-33) Dn.id/.X /'�1
� _
.n�1/!

†1�n.†1X /^n

�
hSn

:

On the other hand, the Kan simplicial group G.X / is (degreewise) free for any X . Hence, by classic
PBW Theorem (see eg [65, I.4.3]), for all n � 1, there are natural isomorphisms of simplicial abelian
groups

(5-34) Gn.X /=GnC1.X /Š Lien.AX /;
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where Lien denotes (the simplicial extension of) the degree n graded component of the free graded Lie
algebra functor Lie�.A/D

L
n�1 Lien.A/ on abelian groups A. Thus, with identifications (5-33) and

(5-34), the morphism of towers (5-31) (looped once) induces on layers natural maps

(5-35) SR.n/
X
W��1

� _
.n�1/!

†1�n.†1X /^n

�
hSn

! jLien.AX /j for n� 1:

These can be viewed as nonlinear (polynomial) extensions of our topological trace map SR: in fact, for
nD 1, the map (5-35) coincides with (5-20) under identification (4-13):

SR.1/
X
W��1†1.X /! jA.X /j '�SP1.X /;

while for nD 2, it reads

SR.2/
X
W��1†�1.†1X ^†1X /hZ2

! jLie2.AX /j

since the Z2–action on the spectrum @2.id/'S�1 is known to be trivial; see [1, Example 1.2.5]. It would
be interesting to see whether the maps (5-35) for n� 2 can be naturally represented by homotopy colimits
(similar to SRB� '

z‰�sym for nD 1, see (4-40)), and, in particular, whether the induced maps SR.n/
B�;�

can
be described in terms of functor homology (extending the result of Corollary 4.10). The existence of such
a description might lead to an interesting link between Goodwillie calculus and homological algebra of
polynomial functors (as developed recently in [26; 28; 27; 71]).

6 Stable character maps and derived Poisson brackets

In this section, we study the behavior of the derived character maps (1-7) in the limit as n!1. We show
that, on simply connected spaces, these maps stabilize, inducing an isomorphism between the graded
symmetric algebra generated by the S1–equivariant homology of the free loop space of X DB� and the
invariant part of the representation homology in the projective limit lim

 ��
HR�.�;GLn/

GLn . This result
is a topological counterpart of a stabilization theorem proved for representation homology of algebras
in [11]. In case when X represents a closed manifold, so that its S1–equivariant homology carries the
Chas–Sullivan bracket, we show that the stable character map is an isomorphism of Lie algebras, where
the Lie bracket on representation homology is induced by a natural derived Poisson structure on the
Quillen model of X .

6.1 Stabilization of derived character maps

For this section, let k be a field of characteristic 0. The (homotopy) group homomorphisms � ! f1g
and f1g ! �) induce morphisms of cyclic modules kŒBcyc��! kŒBcycf1g�D k and k D kŒBcycf1g�!

kŒBcyc��, respectively. In this way, the trivial cyclic module k is a direct summand of kŒBcyc�� yielding
a direct sum decomposition

kŒBcyc��Š k˚ kŒBcyc��:
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The reduced cyclic homology HC�.kŒ��/ is defined by

HC�.kŒ��/ WD Tor�C
� .kŒBcyc��; k/;

so that
HC�.kŒ��/Š HC�.k/˚HC�.kŒ��/:

On the other hand, the homomorphism of group schemes GLn ,! GLnC1 (given by padding with 1 on
the bottom right corner) induces a morphism of commutative Hopf algebras O.GLnC1/!O.GLn/, and
hence, a morphism of left G–modules O.GLnC1/!O.GLn/. This induces a morphism on representation
homologies

(6-1) �nC1;n W HR�.�;GLnC1/D TorG� .kŒ��;O.GLnC1//! HR�.�;GLn/D TorG� .kŒ��;O.GLn//:

It is not difficult to verify that (6-1) restricts to a morphism on the invariant part of the representation
homologies

(6-2) �nC1;n W HR�.�;GLnC1/
GLnC1 ! HR�.�;GLn/

GLn :

Lemma 6.1 The following diagram commutes for all n:

HC�.kŒ��/

Trn.�/ ))

TrnC1.�/
// HR�.�;GLnC1/

GLnC1

�nC1;n

��

HR�.�;GLn/
GLn

Proof Since any homotopy simplicial group is weakly equivalent to a cofibrant strict simplicial group,
we may assume without loss of generality that � is a cofibrant strict simplicial group. Continuing to
denote the map kŒ��˝�C k! kŒ��˝G O.GLn/ induced by �GLn

tr by Trn.�/, we then need to verify
that the following diagram commutes

(6-3)

kŒ��˝�C k

Trn.�/ ))

TrnC1.�/
// kŒ��˝G O.GLnC1/

�nC1;n

��

kŒ��˝G O.GLn/

By (the proof of) [44, Theorem 4.1], Trn.�m/ is induced (in each simplicial degree m) by the composite
map

�m
�n
�! GLn.OŒRepn.�m/�/ ,!Mn.OŒRepn.�m/�/

Tr
�!OŒRepn.�m/�Š kŒ�m�˝G O.GLn/;

where �n denotes the universal n–dimensional representation. A similar argument shows that the diagram

�m

�nC1
//

�n

��

GLnC1.OŒRepnC1.�m/�/

�nC1;n

��

GLn.OŒRepn.�m/�/
� � // GLnC1.OŒRepn.�m/�/
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commutes. Here, the lower horizontal arrow is given by padding by 1 on the bottom right. It follows that

Trn.�m/.h i � 1/D �nC1;n ıTrnC1.�m/.h i � 1/

for every conjugacy class h i in �m. This shows commutativity of the diagram (6-3) in every simplicial
degree, proving the desired lemma.

By Lemma 6.1, the family of maps fTrn.�/gn>1 yields a k–linear map

(6-4) Tr1.�/ W HC�.kŒ��/! HR�.�;GL1/GL1 WD lim
 ��

n

HR�.�;GLn/
GLn ;

where the inverse limit is taken along the maps (6-2). The map Tr1.�/, which we call the stable character
map, induces a morphism of graded commutative k–algebras

(6-5) ƒTr1.�/ Wƒk ŒHC�.kŒ��/�! HR�.�;GL1/GL1 :

Next, recall that a simplicial group � is said to be a simplicial group model of a pointed, connected
topological space X if � maps to X under (3-8), ie jW .�/j is weakly equivalent to X . In this case, it is
well known that

(6-6) HC�.kŒ��/Š HS1

� .LX I k/;

where LX is the free loop space of X , and the representation homology HR�.�;G/, which is an invariant
of (the homotopy type of) X by Lemma 3.7 is denoted by HR�.X;G/. The isomorphism (6-6) restricts
to an isomorphism of graded k–modules

(6-7) HC�.kŒ��/Š HS1

� .LX I k/:

Here, HS1

� .LX I k/ stands for the reduced S1–equivariant homology of LX , ie

H
S1

� .LX I k/ WD KerŒ�� W HS1

� .LX /! HS1

� .pt/�:

The map �� is induced on S1–equivariant homology by the map LX ! pt. The derived character map
Trn.X / WD Trn.�/ is thus a morphism of graded k–vector spaces

(6-8) Trn.X / W HS1

� .LX I k/! HR�.X;GLn/
GLn ;

and the stable character map becomes

(6-9) Tr1.X / W HS1

� .LX I k/! HR�.X;GL1/GL1 :

The following theorem is the main result of this section.

Theorem 6.2 Let X be a simply connected space of finite (rational ) type. The stable character map (6-9)
induces an isomorphism of graded commutative algebras

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/� ��! HR�.X;GL1/GL1 :
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If, moreover, X is a simply connected manifold of dimension d then HS1

� .LX I k/ is equipped with the
Chas–Sullivan bracket (also called the string topology bracket), a graded Lie bracket of (homological)
degree 2�d . This Lie bracket arises out of a derived Poisson structure (in the sense of [15, Section 3.1]) on
an algebra weakly equivalent to kŒ��. On the other hand, the representation homologies HR�.X;GLn/

GLn

are equipped with graded, (.2�d/–shifted) Poisson structures arising from the Poincaré duality pairing
on the cohomology of X . Passing to the inverse limit, one obtains a graded (.2�d/–shifted) Poisson
structure on HR�.X;GL1/GL1 . As an application of Theorem 6.2, we obtain the following corollary
which allows us to express the Chas–Sullivan bracket in terms of a graded Poisson bracket.

Corollary 6.3 The map

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/� ��! HR�.X;GL1/GL1

is an isomorphism of graded .2�d/–shifted Poisson algebras.

6.2 Proofs of Theorem 6.2 and Corollary 6.3

The shortest way to prove Theorem 6.2 and Corollary 6.3 is to apply the results of the paper [11] that deals
with stabilization of representation homology and derived character maps for (augmented) associative
algebras. These results being applicable in our case follows from Remark 3.16. In what follows we
outline key steps and necessary modifications of the arguments of [11], leaving details for interested
readers.

Sketch of proof of Theorem 6.2 Let LX denote a (cofibrant) Quillen model of X . Since X is of finite
rational type, LX may be chosen to be semifree, and finitely generated in each homological degree. By
Remark 3.16, if suffices to prove the assertions of this theorem working with ULX instead of kŒ��. Further,
since X is simply connected, the generators of LX are in positive homological degree. Theorem 6.2
follows from (a minor modification of the proof of) [11, Theorem 7.8]. Indeed, since RD ULX is freely
generated by finitely many generators in each homological degree, and since all its generators are in
positive homological degree, the arguments of [11, Section 7.4] go through to show that for each k > 0,
the map

(6-10) z�nC1;n WR
GL;6k
nC1

!RGL;6k
n

is an isomorphism for n sufficiently large (ie for all n>N.k/, for some N.k/ which possibly depends
on k). Here RGL

n is the representation DG algebra as in [11, formula (2.10)], whose homology is
isomorphic to HR�.R; n/GLn Š HR�.X;GLn/

GLn and R
GL;6k
n stands for the (brutal) truncation of RGL

n

to homological degrees 6 k. The map (6-10) is defined as in [11, Section 4] (where it is denoted by
�nC1;n). On homologies, (6-10) induces the map �nC1;n W HR�.X;GLnC1/

GLnC1 ! HR�.X;GLn/
GLn .

As in the proof of [11, Theorem 7.8] (see also [11, Proposition 7.5], which is the crux thereof), it then
follows that the map

ƒTr1.X / Wƒk ŒH
S1

� .LX I k/�! H�ŒRGL
1 �
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is an isomorphism of graded commutative algebras, where RGL
1 D lim

 ��n
RGL

n . The desired verification
is thus complete once we check that H�ŒRGL

1 � Š lim
 ��n

H�ŒRGL
n �. By (6-10), the inverse system fRGL

n g

is Mittag-Leffler. Equation (6-10) further implies that for each k, the inverse system fHkC1.R
GL
n /g

stabilizes, ie becomes constant for large n, and is thus Mittag-Leffler. It follows that lim1
n HkC1.R

GL
n /D 0.

That H�ŒRGL
1 � Š lim

 ��n
H�ŒRGL

n �, as desired, then follows from [73, Theorem 3.5.8]. This outlines the
proof of Theorem 6.2.

Sketch of proof of Corollary 6.3 Moreover (see [15, Section 4.2] for example), LX may be chosen
so that its universal enveloping algebra ULX is equipped with a derived Poisson structure inducing the
Chas–Sullivan bracket on its (reduced) cyclic homology (which is isomorphic to HS1

� .LX I k/). More
precisely, LX may be chosen to be Koszul dual to the (graded linear dual of) the Lambrechts–Stanley
model of X (see [46]), which is equipped with a cyclic pairing. Now, if � is a simplicial group model of X ,
then kŒ�� is weakly equivalent to ULX . By Remark 3.16, if suffices to prove the assertions of this theorem
working with ULX instead of kŒ��. In this setting, it follows immediately from [15, Theorem 5.1] (also
see [6, Theorems 2 and 3.1]) that the cyclic pairing on (the graded linear dual of) the Lambrechts–
Stanley model of X yields a graded (.2�d/–shifted) Poisson structure on HR�.X;GLn/

GLn such
that the derived character map Trn W HS1

� .LX I k/! HR�.X;GLn/
GLn is a homomorphism of graded

Lie algebras. Moreover, the maps �nC1;n W HR�.ULX ; nC 1/GLnC1 ! HR�.ULX ; n/
GLn are easily

seen to be homomorphisms of graded Poisson algebras in the setting of [15, Section 5]. Hence,
HR�.X;GL1/GL ŠHR�.ULX ;1/

GL acquires the structure of a graded Poisson algebra. It follows that
Tr1.X / W HS1

� .LX I k/! HR�.X;GL1/GL1 is a homomorphism of grade Lie algebras, which implies
that ƒTr1.X / Wƒk ŒHS1

� .LX I k/�!HR�.X;GL1/GL1 is a homomorphism of graded Poisson algebras,
where the Poisson structure in the left-hand side is obtained by extending the Chas–Sullivan bracket using
the Leibniz rule. That it is an isomorphism of graded Poisson algebras then follows from Theorem 6.2.
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Instanton knot invariants with rational holonomy parameters
and an application for torus knot groups

HAYATO IMORI

There are several knot invariants in the literature that are defined using singular instantons. Such invariants
provide strong tools to study the knot group and give topological applications, for instance, the topology
of knots in terms of representations of fundamental groups. In particular, it has been shown that any
traceless representation of the torus knot group can be extended to any concordance from the torus knot to
another knot. Daemi and Scaduto proposed a generalization that is related to a version of the slice-ribbon
conjecture for torus knots. Our results provide further evidence towards the positive answer to this
question. We use a generalization of Daemi and Scaduto’s equivariant singular instanton Floer theory
following Echeverria’s earlier work. We also determine the irreducible singular instanton homology of
torus knots for all but finitely many rational holonomy parameters as Z=4–graded abelian groups.
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1 Introduction

1.1 Background

Floer homology is an infinite-dimensional analog of Morse homology. In the context of gauge theory,
instanton Floer homology (see Floer [14]), Heegaard Floer homology (see Ozsváth and Szabó [37]) and
monopole Floer homology (Kronheimer and Mrowka [30]) have provided strong topological invariants
for low-dimensional manifolds. Knot invariants have also been developed in Floer theories. This list of
knot invariants includes knot Floer homology introduced by Ozsváth and Szabó [36] and Rasmussen [40]
in Heegaard Floer theory, and Kronheimer and Mrowka [31] in monopole Floer theory. In the field of
instanton Floer theory, invariants of knots were constructed by Floer [15] and Braam and Donaldson [1]
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via framed surgery of knots. It is conjectured that their instanton knot invariants are related to knot
invariants in Ozsváth and Szabó [36] and Rasmussen [40] by Kronheimer and Mrowka [31]. Collin
and Steer [3] and Kronheimer and Mrowka [32] developed other type invariants for knots. While knot
invariants in [15; 1] are related to invariants of 3–manifolds via surgery along knots, knot invariants
in [3; 32] are related to 3–manifold invariants via branched covering.

The advantage of instanton invariants is that they are directly related to fundamental groups of the knot
complement. For example, Kronheimer and Mrowka [29] show that the knot group �1.S3 nK/ for a
nontrivial knot K � S3 admits nonabelian representation �1.S3 nK/! SU.2/. This is a refinement of
the result by Papakyriakopoulos [38] which states that K � S3 is unknot if only if �1.S3 nK/ is infinitely
cyclic. A concordance analog of the result of Kronheimer and Mrowka [29] was given by Daemi and
Scaduto [8] using a version of instanton Floer theory. Daemi and Scaduto [8] also show the following
statement which is specific to torus knots:

Theorem 1 [8, Theorem 8] Let S W Tp;q ! K be a given smooth concordance. Then any traceless
SU.2/–representation of �1.S3 nTp;q/ extends over the concordance complement.

Here Tp;q denotes the .p; q/–torus knot in S3, where p and q are positive coprime integers. An SU.2/–
traceless representation of �1.S3nK/ is an SU.2/–representation of �1.S3nK/ which sends a homotopy
class of meridian �K of K to a traceless element in SU.2/. The motivation of this theorem is related to a
version of the slice-ribbon conjecture. A concordance S WK!K 0 is called ribbon concordance if the
projection S3 � Œ0; 1�� S ! Œ0; 1� is a Morse function without any local maximums. Consider a knot
K which is concordant to the unknot U . The slice-ribbon conjecture proposed by Fox [16] states that
there is a ribbon concordance from U to K under this assumption. A generalization of the slice-ribbon
conjecture by Daemi and Scaduto [8] is:

Conjecture 2 [8, Question 2] Let K be a knot which is concordant to the .p; q/–torus knot Tp;q . Then
there is a ribbon concordance from Tp;q to K.

A necessary condition to show that a concordance S W K ! K 0 is ribbon can be stated in terms of
representations of knot groups. For a topological space X , we write R.X;SU.2// for the SU.2/–character
variety of X (ie the space of conjugacy classes of SU.2/–representations of �1.X/).

Theorem 3 (Gordon [21, Lemma 3.1] and Daemi, Lidman, Vela-Vick and Wong [7, Proposition 2.1])
Let S WK!K 0 be a ribbon concordance between two knots. Then the inclusion i W S3 nK! S3 � Œ0; 1�

induces a surjection i� WR.S3 � Œ0; 1� nS;SU.2//!R.S3 nK;SU.2//.

Hence Theorem 1 gives a piece of evidence towards Conjecture 2. The traceless condition on representa-
tions of �1.S3nTp;q/ arises from the specific type of knot invariants developed by Daemi and Scaduto [9].
In light of Theorem 3 and Conjecture 2, it is natural to ask the following question:

Question 4 Can we drop the traceless condition in Theorem 1?

Algebraic & Geometric Topology, Volume 24 (2024)
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We will affirmatively solve this question. To explain our strategy, let us describe the technical background
of Daemi and Scaduto’s work. It mainly consists of three ingredients: singular gauge theory, equivariant
Floer theory and the Chern–Simons filtration.

Firstly, let us explain the notion of singular connections. Let K � Y be a knot in a 3–manifold. Roughly
speaking, an SU.2/–singular connection A is an SU.2/–connection defined over the knot complement
with the holonomy condition

(1-1) lim
r!0

Hol�.r/.A/�
�
e2�i˛ 0

0 e�2�i˛

�
;

where �.r/ is a radius-r meridian ofK � Y and ˛ is a fixed parameter in
�
0; 1
2

�
. Here� indicates that the

two matrices are conjugate in SU.2/. The parameter ˛ is called the holonomy parameter of the singular
connection A. In particular, a singular flat SU.2/–connection corresponds to an SU.2/–representation of
�1.Y nK/ which sends the meridian �K of knotK to an element which is conjugate to the matrix in (1-1).
Kronheimer and Mrowka developed a singular version of Yang–Mills gauge theory in [27; 28; 32]. These
Floer homology theories constructed via singular connections are called singular instanton homology.
Singular gauge theory has different features compared to nonsingular. In fact, singular Floer homology
cannot be defined over the coefficient ring Z for a general holonomy parameter ˛. To be more precise,
singular instanton Floer homology is defined over Z only for ˛ D 1

4
. This is called the monotonicity

condition. Most of the works in singular instanton homology including [9; 8] impose the monotonicity
condition. This is why the statement of Theorem 1 includes the traceless condition.

Next, we discuss the equivariant Floer theory. Frøyshov developed the homology cobordism invariant
in [18; 19] based on the equivariant Floer theory for integral homology 3–spheres, which was introduced
by Donaldson [10]. The equivariant Floer theory introduced by Daemi and Scaduto [9] produces invariants
for a knotK in an integral homology 3–sphere Y , and this can be regarded as the counterpart of Frøyshov’s
work in singular gauge theory. Daemi and Scaduto’s construction uses in a crucial way the U.1/–reducible
singular flat connection � which corresponds to the conjugacy class of the representation

�1.Y nK/!H1.Y nKIZ/! SU.2/

whose image of the meridian �K of K � Y is trace-free. Here �1.Y nK/ ! H1.Y nKIZ/ is the
abelianization. In this situation, the construction which is similar to Floer’s instanton homology [14]
produces a chain complex C�.Y;K/ for a knot in an integral homology 3–sphere. Its homology group
I�.Y;K/ can be interpreted as a categorification of the knot signature for the case Y D S3. Daemi and
Scaduto [9] also introduced chain complexes which have the form

zC�.Y;K/ WD C�.Y;K/˚C��1.Y;K/˚Z:

Such objects are called S–complexes. This can be interpreted as a version of S1–equivariant Floer theory.
Let B.Y;K/ be the configuration space of singular connections over .Y;K/ with a holonomy parameter
˛D 1

4
. Then there is a configuration space B.Y;K/0 of framed connections. The Chern–Simons functional

Algebraic & Geometric Topology, Volume 24 (2024)
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on B.Y;K/ lifts to B.Y;K/0 in an equivariant way. An S–complex zC�.Y;K/ is related to the lifted
S1–equivariant Chern–Simons functional on B.Y;K/0.

Another feature of Daemi and Scaduto’s construction is the Chern–Simons filtration of S–complexes.
While the usual instanton Floer theory is the analog of Morse theory on the configuration space, its filtered
version can be seen the Morse theory on the universal covering of the configuration space. The Chern–
Simons filtration gives more refined structures on S–complexes. The counterpart idea in nonsingular
instanton Floer theory was used by Daemi [5] and Nozaki, Sato and Taniguchi [35], which provided
homology cobordism invariants.

Any of the above versions of singular instanton Floer theories can be extended to arbitrary holonomy
parameters if the integer coefficient ring is replaced with a Novikov ring ƒ by Echeverria’s work [12].
To be more precise, the holonomy parameter should satisfy the technical condition �.Y;K/.e4�i˛/¤ 0,
where �.Y;K/ is the Alexander polynomial for K � Y . One of the flavors of Echeverria’s Floer homology
is a categorification of the Levine–Tristram signature when Y DS3. For a knotK in an integral homology
3–sphere Y , the Levine–Tristram signature is given by

�˛.Y;K/ WD signŒ.1� e4�i˛/V C .1� e�4�i˛/V T �;

where V is a Seifert matrix form of K � Y . For the case Y D S3, we omit Y from the notation.

Our strategy to drop the traceless condition from Theorem 1 is constructing a family of S–complexes for
general holonomy parameters.

1.2 Summary of results

First we state our main theorem, which gives the positive answer to Question 4:

Theorem 1.1 For a given knot K and a smooth concordance S W Tp;q!K, any SU.2/–representation of
�1.S

3 nTp;q/ extends to an SU.2/–representation of �1..S3 � Œ0; 1�/ nS/.

The proof of Theorem 1.1 requires the special property that all generators of singular instanton homology
for torus knots have odd gradings. The outline of the proof is as follows. After extending the condition
of Daemi and Scaduto [9], we define analogous knot Floer theory of [9] for all ˛ 2 I, where I is a
dense subset of

�
0; 1
2

�
. This means that all SU.2/–representations of �1.S3 nTp;q/ with the holonomy

parameter ˛ 2 I extend to the concordance complement. The limiting argument shows that this extension
property is true for all SU.2/–representations of �1.S3 nTp;q/ with any holonomy parameter ˛ 2

�
0; 1
2

�
.

As described above, singular instanton knot homology (see Echeverria [12]) and its equivariant counterparts
are key tools for the proof, so we review the essential properties of these objects we use. We consider the
Novikov ring ƒZŒT�1;T �� which is given by

ƒZŒT�1;T ��
WD

�X
r2R

pr�
r
ˇ̌̌
pr 2 ZŒT �1; T ��; 8C > 0; #fpr ¤ 0gr>C <1

�
:
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Let ˛ be a parameter in
�
0; 1
2

�
. We introduce the subring R˛ of ƒZŒT�1;T ��

R˛ WD

�
ZŒ�˙1˛ �ŒŒ��1; �� if ˛ � 1

4
;

ZŒ�˙1�ŒŒ��1˛ ; �˛� if ˛ > 1
4
;

where �˛ D �2˛T 2. The geometric aspect of the subring R˛ is described in Section 3.2.

Theorem 1.2 Let S be an algebra over R˛. Let K � Y be an oriented knot in an integral homology
3–sphere. Choose a holonomy parameter ˛ 2 Q \

�
0; 1
2

�
so that �.Y;K/.e4�i˛/ ¤ 0. Then we can

associate a Z=4–graded module I˛� .Y;KI�S / over S to this parameter. Moreover , if S is an integral
domain , we can associate a Z=4–graded S–complex . zC ˛� .Y;KI�S /; Qd; �/ to a given triple .Y;K; ˛/
with �.Y;K/.e4�i˛/¤ 0, up to S–chain homotopy equivalence.

The precise definition of an S–complex can be seen in Section 3.1. We call I˛� .Y;KI�S / the irreducible
singular instanton knot homology over S with the holonomy parameter ˛. For the case Y D S3, we drop
Y from the notation. The difference between the construction of our Floer homology I˛� .Y;KI�S / and
I�.Y;K; ˛/ introduced by [12] is the choice of local coefficients. The construction of .C ˛� .Y;K/; d/ and
. zC ˛� .Y;K/;

Qd; �/ depends on additional data (metric and perturbation), however their chain homotopy
classes in the sense of S–complexes are independent of such choices.

Remark 1.3 To be more precise, we need to specify the choice of positive integer � 2 Z>0, called the
cone angle, to define the invariant I˛� .Y;K;�S /. The details are included in Remark 3.9. As conjectured
in [12], we expect that the invariant I˛� .Y;K;�S / does not depend on the choice of cone angle � 2Z>0,
and hence it is reasonable to drop � from the notation. Similar remarks are applied to the dependence
of invariants zC ˛� .Y;K;�S / and h˛S .Y;K/ which appear later. For a given holonomy parameter ˛, we
always assume that the cone angle � is a large enough integer.

Remark 1.4 For the coefficient S D R˛, we consider underlying groups of C ˛� .Y;KI�S / and
zC ˛.Y;K;�S / as Z–modules. Then if we fix the choice of auxiliary data, there exists a functional
giving the .Z�R/–bigraded structure on sets of generators of these underlying groups. Moreover, they
have a filtered structure induced from the R–grading. The precise descriptions of the .Z�R/–bigrading
and the filtered structure are contained in Sections 3.2 and 3.4.

The following statement describes the behavior of S–complexes under the connected sum:

Theorem 1.5 Let S be an integral domain over R˛ . Let K � Y and K 0 � Y 0 be two oriented knots in
integral homology 3–spheres. Fix a holonomy parameter ˛ 2Q\

�
0; 1
2

�
such that

�.Y;K/.e
4�i˛/�.Y 0;K0/.e

4�i˛/¤ 0:

Then there is a chain homotopy equivalence of S–complexes

zC ˛� .Y #Y 0; K #K 0I�S /' zC
˛
� .Y;KI�S /˝S

zC ˛� .Y
0; K 0I�S /:

Algebraic & Geometric Topology, Volume 24 (2024)
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The precise definition of a chain homotopy equivalence of S–complexes can be seen in Definition 3.3.
This is a generalization of the connected sum theorem by Daemi and Scaduto [9]. The method of the
proof of [9, Theorem 6.1] cannot be directly adapted to prove Theorem 1.5 since we have to deal with the
nonmonotonicity situation which arises for general holonomy parameters.

As described in [9], we can associate an integer-valued invariant which is called the Frøyshov type
invariant to a given S–complex. Our construction of S–complexes provides an integer-valued invariant
h˛S .Y;K/ for a knot in a homology 3–sphere .Y;K/. We call h˛S .Y;K/ the Frøyshov invariant for
.Y;K/ over S with the holonomy parameter ˛ . We drop Y from the notation when Y D S3. Note that
Echeverria [12] also introduced the Frøyshov type invariant denoted by h.Y;K; ˛/, which is constructed
from singular instanton Floer homology with a different local coefficient system from our setting. The
invariant h˛S .Y;K/ satisfies the following properties:

Theorem 1.6 Let .Y;K/ and .Y 0; K 0/ be two pairs of integral homology 3–spheres and knots. Assume
that ˛ 2Q\

�
0; 1
2

�
satisfies �.Y;K/.e4�i˛/¤ 0 and �.Y 0;K0/.e4�i˛/¤ 0. Then

h˛S .Y #Y 0; K #K 0/D h˛S .Y;K/C h
˛
S .Y

0; K 0/:

Moreover , if .Y;K/ and .Y 0; K 0/ are homology concordant , then

h˛S .Y;K/D h
˛
S .Y

0; K 0/:

Let us consider a knot in S3. It has been shown that the Frøyshov type invariant in [9] reduces to knot
signature (see Daemi and Scaduto [8, Theorem 7]). The invariant h˛S reduces to the Levine–Tristram
signature as follows:

Theorem 1.7 Let S be an integral domain over R˛ . For any knot K �S3 and for a holonomy parameter
˛ 2

�
0; 1
2

�
\Q with �K.e4�i˛/¤ 0, the following equality holds:

h˛S .K/D�
1
2
�˛.K/:

For a given knot K � S3 and integer l , we define a knot lK � S3 so that

lK WD

8<:
#lK if l > 0;
U (unknot) if l D 0;
#�l.�K/ if l < 0;

where �K is the mirror ofK with the reverse orientation. More strongly, S–complexes have the following
structure theorem:

Theorem 1.8 Let S be an integral domain over R˛. Then for a knot K in S3 and for a holonomy
parameter ˛ 2 Q \

�
0; 1
2

�
with �K.e

4�i˛/ ¤ 0, there is a two-bridge torus knot T2;2nC1 such that
�T2;2nC1.e

4�i˛/¤ 0, �˛.T2;2nC1/D�2 and the relation

zC ˛� .KI�S /' zC
˛
� .lT2;2nC1I�S /

holds , where l D�1
2
�˛.K/.
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For the proof of Theorem 1.8, it is essential to observe behaviors of morphisms of S–complexes induced
from cobordisms between pairs .Y;K/ and .Y 0; K 0/. In [8], techniques demonstrated by Kronheimer [25]
are used to describe behaviors of morphisms of S–complexes for the case ˛D 1

4
. However, such techniques

do not directly adapt to prove Theorem 1.8 because of the lack of the monotonicity condition.

Theorems 1.5 and 1.8 imply the Euler characteristic formula

(1-2) �.I˛.K;�S //D
1
2
�˛.K/

(see Section 5.1). Since our grading convention of generators coincides with that of Echeverria [12], the
above argument also gives an alternative proof of the Euler characteristic formula in [12, Theorem 17] for
the case Y D S3.

Next, we focus on .p; q/–torus knot Tp;q in the 3–sphere. We always assume that p and q are positive
coprime integers. The following is a characteristic property of the torus knot and a key lemma for the
proof of Theorem 1.1. Let R˛.Y nK;SU.2// be the space of conjugacy classes of SU.2/–representations
of �1.Y nK/ with the holonomy parameter ˛. Let R�˛.Y nK;SU.2// be its irreducible part.

Theorem 1.9 For any ˛ 2
�
0; 1
2

�
with �Tp;q .e

4�i˛/¤ 0,

jR�˛.S
3
nTp;q;SU.2//j D �1

2
�˛.Tp;q/:

Here jS j for a set S denotes the size of this set. In [23], Herald introduced the signed count of elements
in the character variety R�˛.S3 nK;SU.2// for a general knot K with a fixed holonomy parameter. One
first perturbs R�˛.S3 nK;SU.2// into a discrete set R�;h˛ .S3 nK;SU.2// and then associates a sign to
each element of this set. The sum of these signs is Herald’s signed count of R�˛.S3 nK;SU.2//, which
we denote by #R�˛.S3 nK;SU.2//. In general:

#R�˛.S
3
nK;SU.2//D�1

2
�˛.K/:

See Herald [23, Corollary 0.2] and Lin [33] for the case ˛ D 1
4

. In the case K D Tp;q , the character
variety R�˛.S3 nTp;q;SU.2// is already discrete and one does not make any perturbation. Theorem 1.9
implies that all elements of R�˛.S3 nTp;q;SU.2// have positive signs.

Theorem 1.9 implies that C ˛� .Tp;qI�S / is supported only on the odd graded components. In particular,
its homology groups are isomorphic to chain complexes,

I˛� .Tp;qI�S /Š C
˛
� .Tp;qI�S /;

since all differentials of chain complexes are trivial. This can be interpreted as the counterpart of the
computation of instanton homology of Brieskorn homology 3–spheres; see Fintushel and Stern [13].

Theorem 1.7 implies that rankC ˛� .Tp;qI�S /D h
˛
S .Tp;q/, and by the definition of the invariant h˛S :
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Theorem 1.10 Let S be an algebra over R˛. For ˛ 2
�
0; 1
2

�
\Q with �Tp;q .e

4�i˛/¤ 0, there is an
isomorphism

I˛� .Tp;qI�S /ŠS
d��˛.Tp;q/=4e

.1/
˚S

b��˛.Tp;q/=4c

.3/

as a Z=4–graded abelian group.

Theorem 1.10 describes the grading of generators of the Floer chain and it is independent of the choice
of local coefficient system. A similar structure theorem holds for singular instanton knot homology
introduced by Echeverria [12].

Theorem 1.8 implies that S–complexes for knots are determined by the Levine–Tristram signature without
the .Z�R/–grading structure. On the other hand, the R–grading from the Chern–Simons filtration can
be expected to have stronger information on the knot concordance. In upcoming work of Daemi, Sato,
Scaduto, Taniguchi and the author [6], relying on the results here, we will introduce a generalization of
the �–invariant of Daemi and Scaduto [9] for rational holonomy parameters, which can be regarded as a
gauge-theoretic refinement of the Levine–Tristram signature. Our techniques are also used in the future
work of Daemi and Scaduto to construct families of hyperbolic knots that are minimal with respect to the
ribbon partial order; see Gordon [21, Conjecture 1.1].

1.3 Outline

In Section 2, we review the background of SU.2/–singular gauge theory for rational holonomy parameters.
We also introduce the generalized definition of negative definite cobordism. In Section 3, we construct
Floer chain groups and S–complexes parametrized by holonomy parameters ˛, and introduce the Frøyshov
type invariant. The argument is almost parallel to [9; 8], however, we need a careful choice of local
coefficient system if we introduce the bigraded structure on the Floer chain complex. We also prove
Theorem 1.6. In Section 4, we prove the Levine–Tristram signature formula for torus knots (Theorem 1.9).
In the proof of Theorem 1.9, we use the correspondence of singular flat connections and nonsingular flat
connections over the branched covering space. We also use the pillowcase picture of the SU.2/–character
variety for the knot complement space. We prove Theorems 1.7, 1.8 and 1.10 in Section 5.1, and finally, we
give the proof of our main theorem (Theorem 1.1) in Section 5.2. The bigraded structure of S–complexes
plays an important role in the proof of the main theorem. The appendix consists of the proof of the
connected sum theorem (Theorem 1.5).

Acknowledgments The author would like to thank Aliakbar Daemi for his introduction to singular
instanton knot homology, helpful suggestions and answering many questions on papers [9; 8]. The author
would also like to thank Kouki Sato and Masaki Taniguchi for their helpful discussions. This work is
supported by JSPS KAKENHI grant JP21J20203.
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2 Background on singular instantons

In this section, we review singular gauge theory, mainly developed by Kronheimer and Mrowka [32].
We also give a generalization of the setting of singular SU.2/–gauge theory adopted by Daemi and
Scaduto [9; 8].

2.1 The space of singular connections

We review the construction of singular instantons over a closed pair of a 4–manifold and a surface. Let X
be a closed and oriented smooth 4–manifold and S be a closed and oriented embedded surface in X .
Let N be a tubular neighborhood of S in X . We identify N with a disk bundle over S and @N with
a circle bundle over S . Let � be a connection 1–form on a circle bundle @N . This means that � is
U.1/–invariant. We fix a decomposition of the SU.2/–bundle E!X over the embedded surface S as
EjS D L˚L

�, where L is a U.1/–bundle over S . This decomposition extends to N . We define two
topological invariants,

k D c2.E/ŒX� and l D�c1.L/ŒS�:

Here k is called the instanton number, and l is called the monopole number.

Next, we fix a connection A0 over X of the form

A0jN D

�
b 0

0 �b

�
:

Here b is a connection over L. This means that A0 reduces to a U.1/–connection over S . We give the
polar coordinates .r; �/ 2D2 on each fiber of N . Let � be a 1–form obtained by a pulled-back 1–form on
@N which coincides d� on each fiber, and  be a cutoff function supported on N . We define the singular
base connection A˛ by

A˛ D A0C i 

�
˛ 0

0 �˛

�
�;

where ˛ 2
�
0; 1
2

�
. Here ˛ is called the holonomy parameter. Recall that � is defined only on N nS , but

extends by 0 to X nS after cutting off by  . A˛ is a connection over X nS . Let gE be the adjoint bundle
of E. For a 2�1.X nS; gE /, A˛C a is called a singular connection.

Before defining the space of singular connections, we have to introduce functional spaces. We fix an
orbifold metric on X , which can be written in the form

g� D du2C dv2C dr2C
r2

�2
d�2

on N , where .u; v/ is a local coordinate of S . We say that this orbifold metric has cone angle 2�=�. Then
.X; g�/ has a local structure U=Z� near the singular locus S , where U is an open set in R4. The model
connection A˛ induces an SO.3/–adjoint connection on gE . We define the covariant derivative LrA˛ on
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the bundle ƒm˝ gE using the adjoint connection of A˛ and the Levi-Civita connection with respect to
the metric g� . Let F !X be an orbifold vector bundle. The Sobolev space LLpm;A˛ .X nS; F / is defined
as the completion of the space of smooth sections of F !X by the norm

ksk
p

LL
p

m;A˛

D

mX
iD0

Z
XnS

j LrA˛sj
p dvolg� :

If we use orbifold metrics, the “Fredholm package” works. Let dCA˛ W�
1.X nS; gE /!�C.X nS; gE / be

the linearized anti-self-dual operator defined by the metric g� , and d�A˛ W�
1.X nS; gE /!�0.X nS; gE /

be the formal adjoint of the covariant derivative for the metric g� . Consider the elliptic operator DA˛ D
�d�A˛ ˚ d

C

A˛ acting on the Sobolev space

(2-1) LL
p
m;A˛ .X nS;ƒ

1
˝ gE /! LL

p
m�1;A˛ .X nS; .ƒ

0
˚ƒC/˝ gE /:

Proposition 2.1 Let ˛ be a rational holonomy parameter of the form ˛ D p=q 2
�
0; 1
2

�
\Q. Choose a

cone angle 2�=� of orbifold metric so that 2�p=q 2 Z. Then the operator DA˛ and its formal adjoint are
Fredholm , and the Fredholm alternative holds.

Let A˛ad be the adjoint of the singular connection A˛ and � WU !U=Z� be an orbifold chart with respect
to the orbifold metric g� . If � 2 Z>0 is chosen as in Proposition 2.1, the lift of the adjoint connection of
��A˛ has the asymptotically trivial holonomy along a small linking of the singular locus. Thus ��A˛

extends smoothly over U . This means that A˛ad defines an orbifold connection. All analytical argument
reduces to the orbifold setting. From now on, we always fix � as in Proposition 2.1 for a given rational
holonomy parameter.

Assume that m> 2. The space of singular connections with a holonomy parameter ˛ 2
�
0; 1
2

�
is given by

A.X; S; ˛/D fA˛C a j a 2 LL2m;A˛ .X nS;ƒ
1
˝ gE /g:

This is an affine space as the nonsingular case. Notice that A.X; S; ˛/ is independent of the choice of the
base connection A˛. We also introduce the group of gauge transformations,

G.X; S/D fg 2 Aut.E/ j g 2 LL2mC1;A˛ .X nS;End.E//g:

There is the smooth action of G.X; S/ on A.X; S; ˛/, and we can take the quotient.

B.X; S; ˛/DA.X; S; ˛/=G.X; S/:

A singular connection with the 0–dimensional stabilizer for the action of G.X; S/ is called an irreducible
connection. A singular connection is called reducible if it is not irreducible. The quotient space B.X; S; ˛/
has a smooth Banach manifold structure except for orbits of reducible connections. The set of gauge
equivalence classes of solutions for the anti-self-dual equation

M ˛.X; S/D fŒA� 2 B.X; S; ˛/ j FCA D 0g
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is called the moduli space of singular anti-self-dual connections. M ˛.X; S/d denotes the subset of
M ˛.X; S/ with expected dimension d . For a generic orbifold metric with a fixed cone angle, the
irreducible part of M ˛.X; S/d is a smooth manifold of dimension d D ind.d�A ˚ d

C

A /, where ŒA� 2
M ˛.X; S/d . If M ˛.X; S/d consists of reducible connections, we modify the dimension of the moduli
space so that d D ind.d�A ˚ d

C

A /C dimH 0
A , where H i

A is an i thcohomology group of the deformation
complex. The index of the ASD-operator d�A ˚ d

C

A is given by

ind.d�A ˚ d
C

A /D 8kC 4l � 3.1� b
1
C bC/� 2.g.S/� 1/;

where g.S/ is the genus of the surface S . The index formula for the closed pair .X; S/ does not depend on
the holonomy parameter ˛. On the other hand, the energy integral �.A/DkFAk LL2 for an ASD-connection
A is given by

�.A/D kC 2˛l �˛2S �S:

We always assume that an integer � > 0 is chosen large enough for a fixed holonomy parameter ˛ 2
Q\

�
0; 1
2

�
, under the condition 2˛� 2Z. Such choice of � is related to the bubbling and compactification

of moduli spaces. The details are described in [27; 28].

2.2 The Chern–Simons functional

We discuss singular connections over 3–manifolds. Let Y be an oriented integral homology 3–sphere and
K be an oriented knot in Y . Let E be an SU.2/–bundle over Y . This is always topologically trivial. We
fix a reduction of E to a line bundle over K as EjK D L˚L�, and fix orbifold metric g� along K as in
Section 2.1. For a fixed ˛ 2Q\

�
0; 1
2

�
, we choose � as in Proposition 2.1. We can similarly define the

spaces of singular connections and gauge transformations:

A.Y;K;˛/DfA˛Ca ja2 LL2m;A˛ .Y nK;gE /g; G.Y;K/Dfg2Aut.E/ jg2 LL2mC1;A˛ .Y nK;End.E//g:

We define the quotient
B.Y;K; ˛/DA.Y;K; ˛/=G.Y;K/:

We use the notation Am.Y;K; ˛/ if we wish to emphasize that the space of singular connection is defined
by the completion of the Sobolev norm LL2m.

We describe the topology of G.Y;K/ and B.Y;K; ˛/. There are two other kinds of groups of gauge
transformations,

GK D fg 2 Aut.LjK/g and GK.Y;K/D fg 2 Aut.E/ j gjK D idg:

Then there is the exact sequence

1! GK.Y;K/! G.Y;K/! GK ! 1:

There is the map G.Y;K/ ! Z ˚ Z given by d.g/ D .k; l/, where k D deg.g W Y ! SU.2// and
l D deg.gjK WK! U.1//, and this map induces the isomorphism

�0.G.Y;K//Š Z˚Z:
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Using the homotopy exact sequence induced from the fibration G.Y;K/!A.Y;K; ˛/! B.Y;K; ˛/, we
also have the isomorphism

�1.B.Y;K; ˛//Š Z˚Z:

We define an L2–inner product on tangent spaces of A.Y;K; ˛/ as follows:

ha; bi D

Z
Y nK

� tr.a^�b/:

The �–operator is given by the orbifold metric g� . The Chern–Simons functional CS WA.Y;K; ˛/!R is
given by the formal gradient

grad.CS/A D
1

4�2
�FA

with respect to the aboveL2–inner product on TA.Y;K; ˛/. This uniquely determines CS up to a constant.
A 2A.Y;K; ˛/ is a critical point of CS if only if FA D 0. The critical point set of CS is a space of flat
connections on Y nK such that their holonomy along the meridian is conjugate to�

e2�i˛ 0

0 e�2�i˛

�
:

Let Crit be the critical point set of the Chern–Simons functional CS W A.Y;K; ˛/ ! R and Crit� D
Crit\A�.Y;K; ˛/. Let C.Y;K; ˛/ and C�.Y;K; ˛/ be images of Crit and Crit� by the natural projection
A.Y;K; ˛/! B.Y;K; ˛/. Then

C.Y;K; ˛/DR˛.Y nK;SU.2// and C�.Y;K; ˛/DR�˛.Y nK;SU.2//

by the holonomy correspondence of flat connections and representations of the fundamental group.

We have to perturb the Chern–Simons functional to achieve transversality. This is done by introducing a
cylinder function associated with a perturbation � 2 P

f� WA.Y;K; ˛/!R;

which we will construct in Section 2.4. Let Crit� be the critical point set of CSCf� and Crit�� D
Crit� \A�.Y;K; ˛/. Their orbits of gauge transformations are denoted by C�.Y;K; ˛/ and C��.Y;K; ˛/.

We define (perturbed) topological energy E�./ of a path  W Œ0; 1�!A.Y;K; ˛/ as

(2-2) E�./D 2f.CSCf�/..1//� .CSCf�/..0//g:

We also define the (perturbed) Hessian of A 2A.Y;K; ˛/ as

HessA;�.a/D �dAaCDV� jA.a/;

where V� is a gradient of f� , and DV� jA is its derivative at A.

For each A 2A.Y;K; ˛/, we can regard the Hessian as the operator,

HessA;� W LL2m;A˛ .Y nK;ƒ
1
˝ gE /! LL

2
m�1;A˛ .Y nK;ƒ

1
˝ gE /:

Definition 2.2 A 2 Crit�� is called nondegenerate if HessA;� jKer.d�A/
is invertible.
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This means that the Hessian is nondegenerate to the vertical direction of the gauge orbit. For irreducible
critical points of the unperturbed Chern–Simons functional, there is the following criterion for the
nondegeneracy condition:

Proposition 2.3 [32, Lemma 3.13] A critical point A 2 Crit� is nondegenerate if only if the kernel of
the map

H 1.Y nKI ad �/!H 1.�K I ad �/

is zero , where this map is induced by the natural embedding �K ,! Y nK and � W �1.Y nK/! SU.2/ is
the representation corresponding to the flat connection A.

We say that ŒA� 2 C� is nondegenerate if one of its representatives A 2 Crit� (and hence all) are
nondegenerate.

The nondegeneracy condition at the reducible critical point is given by a constraint on the holonomy
parameter. Let �˛ be the gauge equivalence class of the reducible flat connection corresponding to
the conjugacy class of an SU.2/–representation of �1.Y nK/ which factors through the abelianization
H1.Y nK;Z/ and has a holonomy parameter ˛. Since Y is an integral homology 3–sphere, such �˛
uniquely exists. The following is obtained as a corollary of [32, Lemma 3.13]:

Proposition 2.4 [12, Lemma 15] The unique flat reducible �˛ is isolated and nondegenerate if only if
�.Y;K/.e

4�i˛/¤ 0.

Let us fix the definition of the Chern–Simons functional. We fix a reducible flat connection Q�˛ which
represents �˛ and put the condition CS. Q�˛/D 0. Then the R–valued functional CS is determined up to
the choice of a representative of �˛. From now on, we fix a representative Q�˛ for each pair .Y;K/.

2.3 The flip symmetry

The flip symmetry is an involution that acts on a family of configuration spaces
S
˛2.0;1=2/\Q B.Y;K; ˛/.

The flip symmetry changes holonomy conditions as ˛ 7! 1
2
�˛. The 4–dimensional version is introduced

in [27], and the 3–dimensional version is similarly defined in [9]. We generalize the 3–dimensional version
of the flip symmetry as follows. Let � 2H 1.Y nK;Z2/Š Z2 be a generator. Since H 1.Y nK;Z2/D

Hom.�1.Y nK/;Z2/, we can regard � as a representation � W �.Y nK/! Z2. The representation �
satisfies �.�K/D�1, and forms a flat line bundle L� over Y nK with a flat connection corresponding
to �. Since L� is a trivial line bundle and there is an isomorphism EjY nK ŠEjY nK ˝L�, we regard a
connection A˝� on EjY nK˝L� as a connection on EjY nK . Thus the action of � 2H 1.Y nK;Z2/ onS
˛2.0;1=2/\Q B.Y;K; ˛/ is defined by

�ŒA�D ŒA˝��:
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This action is called the flip symmetry, and gives the identification

B.Y;K; ˛/Š B
�
Y;K; 1

2
�˛

�
:

In particular, it defines the involution on B
�
Y;K; 1

4

�
.

The flip symmetry can be restricted to the space
S
˛2.0;1=2/\Q R˛.Y nK;SU.2//. In this case, the action

of � 2 H 1.Y nK;Z2/ is simply described as �Œ�� D Œ� � �� where � � � W �1.Y nK/! SU.2/ is the
SU.2/–representation defined as .� ��/.g/ WD �.g/�.g/ for g 2 �1.Y nK/. If � satisfies

�.�K/�

�
e2�i˛ 0

0 e�2�i˛

�
;

then

.� ��/.�K/�

�
e2�i.1=2�˛/ 0

0 e�2�i.1=2�˛/

�
:

2.4 Holonomy perturbations

In this subsection, we review the construction and properties of the perturbation term of the Chern–Simons
functional introduced by Floer [14] and Braam and Donaldson [1], and here we follow the notation of
Kronheimer and Mrowka [32] and Daemi and Scaduto [9].

Let q W S1 �D2! Y nK be a smooth immersion of a solid torus. Then .s; z/ 2 S1 �D2 denotes its
coordinates, regarding S1 as R=Z and D2 as the unit disk in C. Let GE ! Y be the bundle of the
group whose sections are gauge transformations of E. This is defined by GE D P �SU.2/ SU.2/, where
P is the corresponding SU.2/–bundle, and SU.2/ acts in the obvious way on P and by conjugation
on the SU.2/–factor. Holq.A/ W D2 ! q�.GE / is a section of q�.GE / which assigns the holonomy
Holq.�;z/.A/ of connection A 2A.Y;K; ˛/ along the loop q.�; z/ W S1! Y nK to each z 2D2. Next,
we repeat the above constructions for an r–tuple of smooth immersions of solid tori

q D .q1; : : : ; qr/:

Assume that there is a positive number � > 0 such that

(2-3) qi .s; z/D qj .s; z/ for all .s; z/ 2 Œ��; ���D2:

Then there are identifications
q�i .GE /Š q

�
j .GE /

over Œ��; ���D2, and q�.GrE / denotes the fiber product of q�1 .GE /; : : : ; q
�
r .GE / over Œ��; ���D2.

Then we can construct a section Holq.A/ WD2! q�.GrE / which assigns

.Holq1.�;z/.A/; : : : ;Holqr .�;z/.A// 2 SU.2/r

for each z2D2. Next, we choose a smooth function on SU.2/r which is invariant under the diagonal action
of SU.2/ on SU.2/r by the adjoint action on each factor. This smooth function induces h W q�.GE /!R.
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Definition 2.5 Holq.A/ and h are as above. Let � be a 2–form on D2 such that
R
D2 �D 1. A smooth

function f WA.Y;K; ˛/!R of the form

f .A/D

Z
D2
h.Holq.A//�

is called a cylinder function.

Cylinder functions are determined by the choice of an r–tuple q and a function h. Note that the construction
of cylinder functions is gauge invariant. Let P be the space of perturbations; see [32] for details. For each
� 2 P , we can associate a cylinder function f� . We call f� the holonomy perturbation and CSCf� the
perturbed Chern–Simons functional.

Proposition 2.6 There is a residual subset of the Banach space of perturbations P 0 �P such that , for any
sufficiently small � 2 P 0, the perturbed Chern–Simons functional CSCf� has the nondegenerate critical
point set Crit�� and its image C�� in B�.Y;K; ˛/ is a finite point set. Moreover , the reducible critical point
�˛ is unmoved under the perturbation and is nondegenerate if �.Y;K/.e4�i˛/¤ 0.

Proof The finiteness property follows from a similar argument as in [32, Lemma 3.8]. The nondegeneracy
condition follows from the fact that f� is dense in C1.S/ for any compact finite-dimensional submanifold
S � B�.Y;K; ˛/; see [10, Section 5] for details. The argument in [9, Subsection 2.4] is adapted to show
that, for a suitable choice of an SU.2/–invariant smooth function h, the unique flat reducible �˛ is
unmoved under small perturbations. By Proposition 2.4, the unique flat reducible �˛ is still isolated and
nondegenerate for such perturbations under the condition �.Y;K/.e4�i˛/¤ 0.

2.5 The moduli space over the cylinder

We discuss trajectories for the perturbed gradient flow. Let .Z; S/DR� .Y;K/ be a cylinder equipped
with a product metric g�Y C dt . We introduce moduli spaces of instantons over the cylinder. E denotes
the pullback of the SU.2/–bundle E! Y by the projection R�Y ! Y . Consider a connection A on E

of the form AD B.t/CCdt , where B.t/ is a t–dependent singular connection on Y nK. Let ˇ0 and ˇ1
be elements in C�� , and let B0 and B1 be their representatives in gauge equivariant classes. Consider a
singular connection A0 over the cylinder .Z; S/ such that

A0j.Y nK/�ftg D B1 for t � 0 and A0j.Y nK/�ftg D B0 for t � 0:

A0 defines a path  WR! B.Y;K; ˛/ by sending t to ŒB.t/�, and z denotes its relative homotopy class in
�1.B.Y;K; ˛/Iˇ0; ˇ1/.

Then we define the space of singular connection indexed by z:

Az.Z; S IB0; B1/D fA j A�A0 2 LL2m;A0.Z nS;ƒ
1
˝ gE/g:
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We also define the group of gauge transformations:

Gz.Z; S/D fg 2 Aut.E/ j rkA0g 2
LL2.Z nS;End.E//; k D 1; : : : ; mC 1g:

The group Gz.Z; S/ acts on Az.Z; S/. Taking the quotient gives the configuration space Bz.Z; S Iˇ0; ˇ1/.
We introduce the moduli space of (perturbed) instantons over the cylinder associated with the perturbed
Chern–Simons functional CSCf� . This is the moduli space of solutions of the perturbed ASD-equation

M�
z .ˇ0; ˇ1/D fŒA� 2 Bz.Z; S Iˇ0; ˇ1/ j F

C

A C
yV�.A/D 0g:

Here yV� is a term arising from the perturbation f� . The perturbed version of the ASD-complex is given by

�0.Z nS; gE/
dA��!�1.Z nS; gE/

d
C

A CD
yV�

�������!�C.Z nS; gE/:

We consider the Fredholm operator

DA;� W LL
2
m;A0

.Z nS;ƒ1˝ gE/! LL
2
m�1;A0

.Z nS; .ƒ0˚ƒC/˝ gE/

given by DA;� D�d�A ˚ .d
C

A CD
yV�/ and define the relative Z–grading for ˇ0; ˇ1 2 C��.Y;K; ˛/ as

grz.ˇ0; ˇ1/D ind.DA;�/;

where z is a path represented by A. Note that indDA;� is independent of the choice of perturbation �
since the term D yV� is a compact operator. The following proposition gives the well-defined mod-4
grading on the critical point set:

Proposition 2.7 [32, Lemma 3.1] Let z 2 �1.B.Y;K; ˛// be a homotopy class represented by a path
which connects B and g�.B/, where ˇ D ŒB� and d.g/ D .k; l/. For ˇ 2 C� and a homotopy class
z 2 �1.B.Y;K; ˛/Iˇ/, we have

grz.ˇ; ˇ/D 8kC 4l:

The mod-4 value of the Z–grading is independent of the choice of the homotopy class z, and hence we
can write

gr.ˇ0; ˇ1/� grz.ˇ0; ˇ1/ mod 4:

We also define the absolute Z–grading by

grz.ˇ; �˛/D ind.DA;� W � LL2m! � LL2m�1/;

where � LL2m is a weighted Sobolev space with a weight function � which agrees with e�ıjt j over two ends
of the cylinder. Here ı > 0 is chosen to be small enough. Similarly, we can define the mod-4 grading

gr.ˇ/� grz.ˇ; �˛/ mod 4:

The moduli spaceM�
z .ˇ0; ˇ1/ is called regular if the operatorDA;� is surjective for all ŒA�2M�

z .ˇ0; ˇ1/.
For a generic choice of perturbation, the moduli space M�

z .ˇ0; ˇ1/ is a regular and smooth manifold
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of dimension grz.ˇ0; ˇ1/. We explicitly write M�
z .ˇ0; ˇ1/d if the moduli space M�

z .ˇ0; ˇ1/ has
dimension d , and write MM�

z .ˇ0; ˇ1/d�1DM
�
z .ˇ0; ˇ1/d=R. The argument in [10, Section 5] is adapted

to our situation, and we have the following properties:

Proposition 2.8 Let ˛ 2
�
0; 1
2

�
be a holonomy parameter with �K.e4�i˛/¤ 0 and �0 2 P 0 be a small

perturbation such that C�0 D f�˛g tC
�
�0

consists of finitely many nondegenerate points. Then there is a
small perturbation � 2 P 0 such that

(i) f� D f�0 in a neighborhood of C�0 ,

(ii) C� D C�0 ,

(iii) M�
z .ˇ1; ˇ2/ is regular for all homotopy classes z and critical points ˇ1 and ˇ2.

Proof First, we fix a perturbation �0 2 P as in Proposition 2.6. Then for each homotopy class z, we can
find a perturbation �z 2 P which is supported away from critical points and the corresponding moduli
space is regular. This essentially follows from the argument in [10, Section 5]. Since the subset Pz of
regular perturbations as above forms an open dense subset in P , we can find a desired perturbation � in
the countable intersection

T
z Pz .

From now on, we assume that the perturbation � 2 P always satisfies the properties in Proposition 2.8
and we drop � from the notation M�

z .ˇ1; ˇ2/.

2.6 Compactness

Consider a relative homotopy class z 2 �1.B.Y;K; ˛/; ˇ1; ˇ2/. If ˇ1 D ˇ2 then we assume that z is a
nontrivial homotopy class. Elements in MMz.ˇ1; ˇ2/ are called unparametrized trajectories.

Definition 2.9 A collection .ŒA1�; : : : ; ŒAl �/ 2 MMz1.ˇ1; ˇ2/� � � � �
MMzl .ˇl�1; ˇl/ of unparametrized

trajectories is called an unparametrized broken trajectory from ˇ1 to ˇl . If the composition of paths
z1 ı � � � ı zl is contained in the homotopy class z, then MMCz .ˇ1; ˇl/ denotes the space of unparametrized
broken trajectories from ˇ1 to ˇl .

The compactness property of moduli spaces is as follows; see also [32, Proposition 3.22].

Proposition 2.10 Let ˇ1; ˇ2 2 C� and assume that dimMz.ˇ1; ˇ2/ < 4. Then the space of un-
parametrized broken trajectories MMCz .ˇ1; ˇ2/ is compact.

We can assign the energy E�.z/ to a homotopy class z. In singular gauge theory for general holonomy
parameters, the counting #

S
z
MMz.ˇ1; ˇ2/ with grz.ˇ1; ˇ2/ D 1 can be infinite. Instead, we use the

following finiteness result:

Proposition 2.11 [32, Proposition 3.23] For a given constant C > 0, there are only finitely many
critical points ˇ1 and ˇ2 and homotopy classes z 2 �1.BIˇ1; ˇ2/ such that the moduli space Mz.ˇ1; ˇ2/

is nonempty and E�.z/ < C .
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Thus [
z

E� .z/<C

MMz.ˇ1; ˇ2/0

is a finite point set for any C > 0.

The gluing formula of the index tells us

(2-4) grz.ˇ0; �˛/C 1C grz0.�˛; ˇ1/D grz0ız.ˇ0; ˇ1/

since �˛ has a stabilizer S1. From this relation, we conclude that any broken trajectories in MCz .ˇ0; ˇ1/d
do not factor through �˛ if the dimension of Mz.ˇ0; ˇ1/d is less than 3.

2.7 Cobordisms

Let .W; S/ be a pair of an oriented 4–manifold and an embedded oriented surface such that @W DY 0t.�Y /
and @S DK tK 0. We call .W; S/ the cobordism of pairs and write .W; S/ W .Y;K/! .Y 0; K 0/. Set

.W C; SC/ WDR�0 � .Y;K/[ .W; S/[R�0 � .Y
0; K 0/:

We fix a metric onW CnSC with a cone angle 2�=� and cylindrical forms on each end. Let ˇ2B.Y;K; ˛/
and ˇ02B.Y 0; K 0/ be given connections and choose a singular SU.2/–connectionA0 on .W C; SC/which
has a limiting connection ˇ or ˇ0(up to gauge transformations) on each end of .W C; SC/. Here z denotes
the homotopy class of A. We define the space of connections and the group of gauge transformations as
follows:

Az.W; S Iˇ; ˇ0/ WD fA j A�A0 2 LL2m�1;A0.W
C
nSC; gE ˝ƒ

1/g;

Gz.W; S/ WD fg 2 Aut.E/ j riA0g 2
LL2.W C nSCIEnd.E//; i D 1; : : : ; mg:

We also define the quotient

Bz.W; S Iˇ; ˇ0/ WDAz.W; S Iˇ; ˇ0/=Gz.W; S/:

B.W; S Iˇ; ˇ0/ denotes the union of Bz.W; S Iˇ; ˇ0/ for all paths. The perturbed ASD equation on .W; S/
has the form FCA CU�W D 0 where U�W is a t–dependent perturbation. More concretely this can be
described as the following (the argument is based on [32]): Let �; �0 2PY be two holonomy perturbations
on R� .Y;K/. The perturbed ASD equation on R�0 � .Y;K/ has the form

FCA C .t/
yV� C 0.t/ yV�0 D 0;

where  .t/ is a smooth cutoff function such that  .t/D 1 if t < �1 and  .t/D 0 at t D 0. Then  0
is a smooth function supported on .�1; 0/ � Y . We choose � 2 P so that C� satisfies properties in
Propositions 2.6 and 2.8. The perturbation term can be described similarly on another end. For generic
choices of �0 and � 00 2 PY 0 , the irreducible part of the perturbed ASD-moduli space

Mz.W; S Iˇ; ˇ
0/� Bz.W; S Iˇ; ˇ0/

Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5063

is a smooth manifold. Consider the ASD-operator

(2-5) DA D�d
�
A ˚ d

C

A W �
LL2m;A0.W nS; gE ˝ƒ

1/! � LL2m�1;A0.W nS; gE ˝ .ƒ
0
˚ƒC//;

where � is a weight function. If a limiting connection of A0 is irreducible then we choose � � 1 on
that end of .W C; SC/. If A0 has a reducible limiting connection then we choose � D e�ıjt j on that end,
where ı > 0 is small enough. M.W; S Iˇ; ˇ0/d denotes the union of the moduli spaces Mz.W; S Iˇ; ˇ

0/

with indDA D d .

Definition 2.12 We define the topological energy of A 2 B.W; S Iˇ; ˇ0/ as

�.A/ WD
1

8�2

Z
WCnSC

Tr.FA ^FA/

and the monopole number of A as

�.A/ WD
i

�

Z
SC

�� 2˛S �S;

where

FAjSC D

�
� 0

0 ��

�
:

For the cylinder .W; S/D Œ0; 1�� .Y;K/ and the trivial perturbation � D 0, the topological energy � is
related to the energy E of the Chern–Simons functional as 2�.A/D E.A/. Consider an SU.2/–connection
B on .Y;K/, a connection A over the cylinder R� .Y;K/ which is asymptotic to B at �1, and a fixed
reducible flat connection Q�˛ such that CS. Q�˛/D 0 at1. Then CS.B/D �.A/ by construction.

Similarly we define an R–valued function holK WA.Y;K; ˛/!R as follows:

Definition 2.13 Let A be an SU.2/–connection over the cylinder Œ0; 1�� .Y;K/ as above. We define
holK.B/ WD ��.A/.

If z is a path on .W; S/ which is represented by a connection A, then we write �.z/ for �.A/ and �.z/
for �.A/ since these numbers are independent of the choice of A.

Let .X;†/ be a pair of a 4–manifold and an embedded surface with boundary @X DY and @†DK where
K is an oriented knot in an oriented integral homology 3–sphere Y . We assume that Œ†�D 0. Let ‚˛ be
a singular flat reducible connection with a holonomy parameter ˛ D n=m and whose lift to the m–fold
cyclic branched covering zXm is the trivial connection. We write H i .X n†I‚˛/ for the i th cohomology
of X n† with the local coefficient system twisted by ‚˛. Let HC.X n†I‚˛/ and H�.X n†I‚˛/ be
the space of self-dual and anti-self-dual harmonic 2–forms on X n† twisted by ‚˛, respectively.

Lemma 2.14 We define �.X n†I‚˛/D
P
i .�1/

i dimH i .X n†I‚˛/ and

�.X n†I‚˛/D dimHC.X n†I‚˛/� dimH�.X n†I‚˛/:

Then
�.X n†I‚˛/D �.X/��.†/ and �.X n†I‚˛/D �.X/C �˛.Y;K/:
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Proof Consider a rational holonomy parameter of the form ˛ D n=m 2Q. We take an m–fold branched
covering � W zXm!X whose branched locus is †. The pullback of singular flat connection ‚˛ extends
as the trivial flat connection over zXm. Let � W zXm! zXm be a generator of covering transformations. Then
its induced action Q� on the pulled-back bundle C is multiplication by e4�in=m. The index of the twisted
de Rham operator

d‚˛ C d
�
‚˛
W�even.X n†I‚˛/!�odd.X n†I‚˛/

coincides with the index of

(2-6) d C d� W�even. zXmIC/
Q�
!�odd. zXmIC/

Q� ;

where ��. zXmIC/Q� D f! 2��. zXmIC/ j !.�.x//D Q�.!.x//g. The index of (2-6) is given by �.X/�
�.†/. This can be seen by taking cell complex C�. zXm/ of zXm in �–equivariant way. Then there are
decompositions of the underlying groups of the chain complex

C�. zXm/D C�.†/˚C�. zXm n†/; C�. zXm n†/D

nM
iD1

Ci ;

where each Ci is isomorphic to a copy of C�.X n†/. Since �� acts as the identity on C�.†/ and in a
cyclic way on C�. zXm n†/D

Ln
iD1 Ci , all eigenspaces of the action �� on C�. zXm n†/ are isomorphic.

On the other hand, there is the identity �. zXm/Dm�.X/� .m� 1/�.†/. Thus the �–invariant index of
the de Rham operator is given by �.X/��.†/.

Similarly, the index of the signature operator twisted by the local coefficient ‚˛ coincides with the index
of the signature operator over zXm which is restricted to e4�in=m–eigenspaces. This signature is equal to
�.X/C �n=m.Y;K/ by the formula in [41].

Proposition 2.15 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a cobordism of pairs and ŒA� be an element of
B.W; S I �˛; � 0˛/. Then the index of the ASD operator DA is given by

indDAD 8�.A/C2.4˛�1/�.A/� 32.�.W /C�.W //C�.S/C8˛
2S �SC�˛.Y;K/��˛.Y

0; K 0/�1:

Proof Let X be a compact 4–manifold with @X D Y and † � Y be a Seifert surface of the knot K.
Pushing † into the interior of X , we obtain a pair .X;†/ whose boundary is .Y;K/. Moreover Œ†�D 0
in H2.X IZ/. Similarly we can construct another pair .X 0; †0/ such that .@X 0; @†0/D .Y 0; K 0/.

Set
.W ; S/ WD .X;†/[.Y;K/ .W; S/[.Y 0;K0/ .X

0; †0/:

Then .W ; S/ is a closed pair of a 4–manifold and an embedded surface. Let A1 and A2 be singular
flat reducible connections over .X;†/ and .X;†0/ which are extensions of �˛ and � 0˛, respectively.
Let A be a connection which represents an element of B.W; S I �˛; � 0˛/. We consider the connection
A0 D A1 #�˛ A #� 0˛ A2 over .W ; S/ obtained by the gluing.

Using the gluing formula for the index, we have

indDA0 D indDA1 C indDAC indDA2 C 2;
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where A0 is a singular connection on the closed pair .W ; S/ obtained by gluing A1, A2 and A. Since A1 is
reducible, there is the decomposition A1D 1˚B˛ with respect to the decomposition of the adjoint bundle
R˚L˝2, where 1 denotes the trivial connection. The deformation complex for DA1 decomposes into

(2-7) �0.X/ d�!�1.X/ d
C

��!�C.X/

and

(2-8) �0.X n†I adB˛/
dB˛���!�1.X n†I adB˛/

d
C

B˛���!�C.X n†I adB˛/:

The index of (2-7) is given by �1
2
.�.X/C�.X//� 1

2
. On the other hand, the index of (2-8) is given by

��.Xn†IB˛/��.Xn†IB˛/. Using two formulae �.Xn†IB˛/D�.X/C�˛.Y;K/ and �.Xn†;B˛/D
�.X/��.†/ in Lemma 2.14, we obtain

indDA1 D�
3
2
.�.X/C�.X//� �˛.Y;K/C�.†/�

1
2
:

Similarly, we have

indDA2 D�
3
2
.�.X 0/C�.X 0//C �˛.Y

0; K 0/C�.†0/� 1
2

since �˛.�Y 0; K 0/D��˛.Y 0; K 0/. The index formula for a closed pair in [27] gives

indDA D 8�.A/C 2.4˛� 1/�.A/�
3
2
.�.W /C�.W //C�.S/C 8˛2S �S C 2:

Hence we have the desired formula:

indDAD8�.A/C2.4˛�1/�.A/� 32.�.W /C�.W //C�.S/C8˛
2S �SC�˛.Y;K/��˛.Y

0; K 0/�1:

Remark 2.16 (i) The index formula in Proposition 2.15 recovers [9, Lemma 2.26] when ˛ D 1
4

.

(ii) For a cobordism of pairs .W; S/ W .Y;K/! .Y 0; K 0/, we define the integers

k.L/D�c1.L/
2ŒW � and l.L/D�c1.L/ŒS�:

Then the Chern–Weil formula gives us another expression of the index formula in Proposition 2.15 as

indDAL D 8k.L/C 4l.L/�
3
2
.�.W /C�.W //C�.S/C �˛.Y;K/� �˛.Y

0; K 0/� 1:

Assume that the cobordism of pairs .W; S/ satisfies b1.W /D bC.W /D 0. Then there exists a unique
singular reducible instanton AL corresponding to a decomposition E D L˚L�.

Definition 2.17 We call AL minimal if it minimizes indDAL among all line bundles L.

Our definition of minimal reducible coincides with [8, Subsection 2.3] if ˛ D 1
4

.

Let us describe relations between CS and �, and � and holK over cobordisms. Consider a connection
A over a cobordism .W; S/ W .Y;K/! .Y 0; K 0/ whose limiting connections are B on .Y;K/ and B 0 on
.Y 0; K 0/. Then the following statement holds:

Lemma 2.18 Fix a reducible connection AL over .W; S/. Then there exist k; l 2 Z such that

�.A/� �.AL/D CS.B/�CS.B 0/C kC 2˛l and �.A/� �.AL/D holK0.B 0/� holK.B/� 2l:
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Proof Recall that R–valued functions CS and hol are fixed by choosing reducible flat connections Q�˛ and
Q� 0˛ over pairs .Y;K/ and .Y 0; K 0/. If we choose a reducible connection AL0 so that it has two reducible
limits Q�˛ and Q� 0˛, then we have

�.A/CCS.B 0/D CS.B/C �.AL0/ and �.A/� holK0.B 0/D� holK.B/C �.AL0/

by construction. If we change AL to other homotopy classes of reducible connections, terms kC2˛l and
�2l appear by gauge transformations.

For a cobordism of pairs .W; S/ and a fixed holonomy parameter ˛, we introduce real values �0.W; S; ˛/
and �0.W; S; ˛/ as follows:

Definition 2.19 We define

�0.W; S; ˛/ WD minf�.AL/ j AL minimal reducibleg;

�0.W; S; ˛/ WD

�
�.AL/; where AL is a minimal reducible with �0 D �.AL/ if ˛ ¤ 1

4
;

minf�.AL/ j AL is a minimal reducibleg if ˛ D 1
4
:

Note that the homotopy class of the path z W �˛ ! � 0˛ represented by a minimal reducible AL with
�0D �.AL/ is uniquely determined when ˛¤ 1

4
. If ˛D 1

4
then homotopy classes of paths represented by

minimal reducibles are not unique, but only finitely many exist. In particular, �0.W; S; ˛/ is well defined.

Remark 2.20 If the cobordism of pairs .W; S/ has a flat minimal reducible with a holonomy parameter ˛,
then �0.W; S; ˛/D �0.W; S; ˛/D 0.

We write �0 D �0.W; S; ˛/ and �0 D �0.W; S; ˛/ for short.

Definition 2.21 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a cobordism of pairs where K and K 0 are oriented
knots in integral homology 3–spheres Y and Y 0. Let S be an integral domain over R˛ . A cobordism of
pairs .W; S/ is called negative definite over S if

(1) b1.W /D bC.W /D 0,

(2) the index of the minimal reducibles is �1,

(3) we have the nonzero element in S

�˛.W; S/ WD
X

AL minimal

.�1/c1.L/
2

��0��.AL/T �.AL/��0 :

Remark 2.22 Our definition of the negative definite cobordism coincides with that of [8] when ˛ D 1
4

,
since instantons have minimal energy if only if they have minimal index.

Let .W1; S1/ W .Y1; K1/! .Y 0; K 0/ and .W2; S2/ W .Y 0; K 0/! .Y2; K2/ be negative definite cobordisms.
Note that their composition .W2ıW1; S2ıS1/ W .Y1; K1/! .Y2; K2/ is also a negative definite cobordism.
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Figure 1: Positive (left) and negative (right) crossings of a knot.

A cylinder Œ0; 1� � .Y;K/ and a homology concordance .Y;K/! .Y 0; K 0/ are examples of negative
definite cobordisms. The following is also a basic example of negative definite cobordisms. Let KC be a
knot in S3 which has at least one positive crossing. Let K� be a knot which is obtained by replacing one
positive crossing in the knot KC by one negative crossing; see Figure 1.

Since S3 is simply connected, KC and K� are homotopic. Approximating homotopy from K� to KC
by a smooth map, we get a smoothly immersed surface S � Œ0; 1�� S3 such that S \ f0g � S3 D KC
and S \ f1g � S3 D KC. Furthermore, we assume that S has a transverse self-intersection point. Let
S 0 W KC ! K� be an inverse cobordism of S . S has a positive self-intersection point in Œ0; 1� � S3.
Blowing up this self-intersection point, we obtain a new cobordism of pairs

(2-9) .CP2 # .Œ0; 1��S3/; S/ W .S3; K�/! .S3; KC/:

S is an embedded surface in CP2 # .Œ0; 1��S3/ obtained by resolving the self-intersection of S , and it
represents a homology class

2e 2H 2.CP2IZ/ŠH 2.CP2 # .Œ0; 1��S3/IZ/;

where e is an element represented by the exceptional curve. Similarly, we obtain a cobordism of pairs

(2-10) .CP2 # .Œ0; 1��S3/; S 0/ W .S3; KC/! .S3; K�/:

Cobordisms of pairs .W; S/ W .S3; K�/! .S3; KC/ and .W 0; S 0/ W .S3; KC/! .S3; K�/ constructed as
above are called the cobordism of positive/negative crossing change, respectively.

Proposition 2.23 Fix a holonomy parameter ˛ 2
�
0; 1
2

�
\Q with �KC.e

4�i˛/¤ 0 and �K�.e
4�i˛/¤ 0.

Let S be an integral domain over R˛. We assume that �˛.KC/ D �˛.K�/. Then the cobordism of
positive and negative crossing change are negative definite over S .

Proof Firstly, we show that (2-9) is a negative definite pair. Put W D CP2 # .Œ0; 1� � S3/. Then it
is clear that W satisfies Definition 2.21(1) since H 1.W IZ/ D 0 and H 2.W IZ/ D Z. Let Am be a
U.1/–reducible instanton corresponding to an element m 2 ZDH 2.W IZ/. Then

N�.Am/D�.c1.Lm/C˛S/
2
D .mC 2˛/2;

where Lm is a line bundle such that c1.Lm/Œe�D�m. We also have

�.Am/D 2c1.Lm/ŒS�D�4m:
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The index computation yields that

ind.DAm/D 8.mC 2˛/
2
C 2.4˛� 1/.�4m/� 32˛2C �˛.KC/� �˛.K�/� 1

D 8m.mC 1/C �˛.K�/� �˛.KC/� 1:

Thus m D 0;�1 minimize indDAm , and this means that A0 and A�1 are minimal reducibles. Since
�˛.KC/D �˛.K�/ by our assumption, the index for minimal instantons is �1 for the first case. Thus
.W; S/ satisfies Definition 2.21(2). Since N�.Am/Dm2C 4˛mC 4˛2, we have

�˛.W; S/D

�
1��4˛�1T 4 if ˛ � 1

4
;

�1�4˛T �4� 1 if ˛ > 1
4
:

Since 1� �4˛�1T 4 is invertible when ˛ ¤ 1
4

and nonzero when ˛ D 1
4

by assumption, �˛.W; S/ is
nonzero in S . Hence .W; S/ satisfies Definition 2.21(3) and .W; S/ is a negative definite pair.

It is also obvious that .W; S 0/ satisfies Definition 2.21(1). Since S 0 has the trivial homology class in
H2.W IZ/, minimal reducibles are only trivial with index �1. Hence �˛.W; S 0/D 1¤ 0 2S .

Next, we discuss the transversality of moduli spaces at reducibles. Following [26; 4], we introduce the
perturbation supported on the interior of the cobordism. Let I be an infinite countable set of indexes and
consider the following data:

� a collection of embedded 4–balls fBigi2I in W C nSC,

� a collection of submersions qi W S1 �Bi !W C nSC such that qi .1; � / is the identity,

� for any x 2W nS , the set fqi;x j i 2 I; x 2 Big is a C 1–dense subset in the space of loops based
at x 2W nS .

For each i 2 I, consider a self-dual 2–form !i on Bi with supp.!i /�Bi . These self-dual 2–forms !i can
be regarded as self-dual 2–forms onW CnSC. We define V!i WAz.W; S Iˇ; ˇ0/!�C.W CnSCI su.2// as

V!i .A/ WD �.!i ˝Holqi .A//;

where � W SU.2/! su.2/ is a map given by g 7! g� 1
2

tr.g/1. The argument similar to [26] shows that
there are constants Kn;i and differentials of V!i which satisfy the inequality

kDnV!i j .a1; : : : ; an/k LL2m;A0
�Kn;ik!kC l

nY
iD1

kaik LL2m;A0
;

where A0 is a singular connection which represents the homotopy class z and l � 3. We choose a family
of positive constants fCig so that

Ci � supfKn;i j 0� n� ig:

Consider a family of self-dual 2–forms f!ig such that
P
i2I Cik!ikC l converges. For such a choice

of f!ig, V! WD
P
i2I V!i!i defines a smooth map

Az.W; S Iˇ; ˇ0/! � LL2m.W
C
nSC; ƒC˝ su.2//

between Banach manifolds.
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We define J WD f.i; j / 2 I � I j i ¤ j; Bi;j WD Bi \Bj ¤∅g and qi;j W Bi;j !W C nSC by

qi;j jfxg�S1 WD qi;x � qj;x � q
�1
i;x � q

�1
j;x

for each .i; j / 2 J . We choose a family of constants fCi;j g.i;j /2J as before. Let !i;j be a self-dual
2–form on Bi;j . We introduce a Banach space W which consists of sequences of self-dual 2–forms
! D f!igi2I [f!i;j g.i;j /2J with the following weighted l1–norm:

k!kW WD
X
i2I

Cik!ikC l C
X

.i;j /2J

Ci;j k!i;j kC l :

For each ! 2W , we define a perturbation term

V!.A/ WD
X
i2I

V!i .A/˝!i C
X

.i;j /2J

V!i;j .A/˝!i;j

which defines a smooth map V! WAz.W; S Iˇ; ˇ0/! LL2m;�.W C nSC; ƒC˝ su.2//. We call

FCA CU�W .A/CV!.A/D 0

the secondary perturbed ASD-equation over the cobordism of pairs .W; S/ W .Y;K/! .Y 0; K 0/. Then
M�W ;!.W; S Iˇ; ˇ0/ denotes the moduli space of solutions for the secondary perturbed ASD-equation.

Proposition 2.24 Let .W; S/ be a cobordism of pairs such that b1.W /D bC.W /D 0. Assume that the
perturbation �W is chosen so that the perturbed ASD-equation

FCA CU�W .A/D 0

cuts out the irreducible part of the moduli space transversely. Let Aad D 1˚B be the adjoint connection
of abelian reducible ASD connection ŒA� 2 M.W; S I �˛; � 0˛/2dC1 with ind.d�B ˚ d

C

B / � 0. Then for
a small generic perturbation ! 2 W , the secondary perturbed ASD-equation cuts out the irreducible
part of the moduli space transversely. Moreover , M�W;! .W; S I �˛; �

0
˛/2dC1 is regular at ŒA� and has a

neighborhood of ŒA� which is homeomorphic to a cone on˙CPd .

Proof For each connected componentM�W ;!
z .W; S Iˇ; ˇ0/ of moduli spaces, the argument [4, Section 7]

is adapted to our case and reducible points are regular for generic perturbations. Taking countable
intersections of these subsets of regular perturbations in W , we can find a generic perturbation ! 2W
such that the statement holds. The claim about local structures around reducibles can be refined using the
standard argument; see [11, Proposition 4.3.20], for example.

Essentially the same argument is used in [8]. From now on, we assume that perturbations over the
cobordism of pairs .W; S/ are chosen so that they satisfy the statement of Proposition 2.24.

2.8 Orientation

We see the orientation of moduli spaces over the cylinder based on [32; 9]. Consider a reference connection
A0 on .W C; SC/ as described in Section 2.7 and the ASD-operator (2-5). If the weight function � has
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the form e�ıjt j on one end, the functional space � LL2m;A0 consists of exponential decaying functions on
that end. On the other hand, if the weight function � has the form eıjt j on one end, the functional space
� LL2m;A0 allows exponential growth functions. The index of the operator DA depends on these choices
of weighted functions. To distinguish these two situations, �˛;˙ denote reducible flat limits �˛ with
weighted functions e˙ıjt j. Let z be a path along .W; S/ between two critical limits ˇ and ˇ0 on .Y;K/
and .Y 0; K 0/. The family index of DfAg defines a trivial line bundle det ind.DA/ on each Bz.W; S; ˇ; ˇ0/.
Let OzŒW; S Iˇ0; ˇ1� be the two-point set of the orientation of the determinant line bundle det ind.DfAg/.
Then OzŒW; S Iˇ; ˇ

0� is the set of orientation of the moduli space M ˛
z .W; S Iˇ; ˇ

0/. There is a transitive
and faithful Z2–action on OzŒW; S Iˇ; ˇ

0�. For a composition of cobordisms .W2; S2/ ı .W1; S1/, there
is a pairing

ˆ W Oz1 ŒW1; S1Iˇ; ˇ
0�˝Z2 Oz2 ŒW2; S2Iˇ

0; ˇ00�! Oz2ız1 ŒW2 ıW1; S2 ıS1Iˇ; ˇ
00�

which is induced from the gluing formula of the index. If we consider the gluing operation along the
reducible connection �˛ , we choose ˇ0 D �˛;C at the first component and �˛;� at the second component.
Since there is a natural isomorphism between OzŒW; S Iˇ; ˇ

0� and Oz0 ŒW; S Iˇ; ˇ
0�, we omit z from the

above notation. We call an element of OŒW; S I �˛C; �
0
˛�� a homology orientation of .W; S/. For a given

knot in an integral homology 3–sphere .Y;K/, we use the notation

OŒˇ� WD OŒY � I;K � I Iˇ; �˛��

if ˇ is irreducible, and
OŒ�˛� WD OŒY � I;K � I I �˛C; �˛��:

There is an isomorphism

OŒW; S I �˛;C; �˛;��jŒA0� Šƒ
top.H 1.W /˚HC.W //;

and an element oW 2 OŒW; S I �˛;C; �˛;�� is called a homology orientation.

Now we describe how the orientation of the moduli space M.W; S Iˇ; ˇ0/ is defined. Let oW 2
OŒW; S I �˛;C; �˛;�� be a given homology orientation for .W; S/. We fix elements oˇ 2 OŒˇ� and
oˇ 0 2 OŒˇ0�. Then the orientation o.W;S Iˇ;ˇ 0/ 2 OŒW; S Iˇ; ˇ0� is fixed so that

ˆ.oˇ ˝ oW /Dˆ.o.W;S Iˇ;ˇ 0/˝ oˇ 0/:

The moduli space MMz.ˇ0; ˇ1/ is oriented in the following way. First, we fix orientations oˇ0 2 OŒˇ0�

and oˇ1 2 ƒŒˇ1�. Then the orientation of M.ˇ0; ˇ1/ is determined as above. Note that there is an
R–action on Mz.ˇ1; ˇ2/. Let �s.t; y/ D .t � s; y/ be the transition on the cylinder .Y;K/�R. Then
the R–action on M.ˇ0; ˇ1/ is given by the pullback ŒA� 7! Œ��A�. Finally, we orient MM.ˇ1; ˇ2/ so that
R� MM.ˇ1; ˇ2/DM.ˇ1; ˇ2/ is orientation preserving.

The boundary of moduli spaces is oriented so that the outward normal vector sits in the first place in the
tangent space.
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3 S–complexes and Frøyshov type invariants

In this section, we extend the construction of S–complexes zC�.Y;K/ for .Y;K/ in [9] to general holonomy
parameters. We also introduce Z�R–bigrading of S–complexes with rational holonomy parameters for
the specific choice of coefficient and its filtered subcomplex based on [35].

3.1 A review on S–complexes and Frøyshov invariants

The S–complex and Frøyshov type invariant introduced by [9; 8] are defined using purely algebraic objects:

Definition 3.1 Let R be an integral domain, and zC� be a finitely generated and graded free R–module.
The triple . zC�; Qd; �/ is called an S–complex if

(1) Qd W zC�! zC� is a degree �1 homomorphism,

(2) � W zC�! zC� is a degree C1 homomorphism,

(3) Qd and � satisfy
� Qd2 D 0, �2 D 0, and Qd�C� Qd D 0,
� Ker.�/= Im.�/ŠR.0/, where R.0/ is a copy of R in zC0.

If .C�; d / is a given chain complex with the coefficient ring R, we can form an S–complex

(3-1) zC� D C�˚C��1˚R; Qd D

24d 0 0

v �d ı2
ı1 0 0

35 ; �D

240 0 01 0 0

0 0 0

35 ;
where ı1 W C� ! R, ı2 W R ! C��1 and v W C� ! C��2. Since there are conditions on Qd and � in
Definition 3.1, the components in Qd and � have to satisfy the following relations:

(3-2) ı1d D 0; dı2 D 0 and dv� vd � ı2ı1 D 0:

Conversely, if the S–complex . zC ; Qd; �/ is given then there is a decomposition zC� D C�˚C��1˚R.
The reader can find the details in [9, Section 4.1].

There is also the notion of an S–morphism, which is a morphism of S–complexes.

Definition 3.2 Let . zC�; Qd; �/ and . zC 0�; Qd
0; �0/ be S–complexes. Fix decompositions zC�DC�˚C��1˚R

and zC 0 D C 0�˚C
0
��1˚R. A chain map zm W zC�! zC 0� is called an S–morphism if it has the form

(3-3) zmD

24m 0 0

� m �2
�1 0 �

35 ;
where �¤ 0 2R.

The condition that zm is a chain map is equivalent to the following relations:

md � dmD 0; �1d C �ı1� ı
0
1mD 0; d 0�2� ı

0
2�Cmı2 D 0;

�d Cmv��2ı1� v
0mC d 0�� ı02�1 D 0:
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Definition 3.3 Let zm; zm0 W zC� ! zC 0� be two S–morphisms. An S–chain homotopy of zm and zm0 is a
degree 1 map Qh W zC�! zC 0� such that

Qd 0 QhC Qh Qd D zm� zm0; �0 QhC Qh�D 0:

Two S–complexes zC� and zC 0� are called S–chain homotopy equivariant if there are S–morphisms
zm W zC�! zC

0
� and zm0 W zC 0�! zC� such that zm zm0 and zm0 zm are S–chain homotopic to the identity.

Remark 3.4 Consider S–morphisms zm W zC�! zC 0� and zm0 W zC 0�! zC�. If there are unit elements c and c0

in the coefficient ring R, and two S–chain homotopies

zm0 zm� c id zC� and zm zm0 � c0 id zC 0� ;

then the two S–complexes zC� and zC 0� are S–chain homotopy equivalent since both c�1 zm and c0�1 zm are
S–chain homotopic to the composition c�1c0�1 zm zm0 zm.

The Frøyshov type invariant, defined from an S–complex, assigns an integer h. zC�/ to each S–complex zC�.

Definition 3.5 [9, Proposition 4.15] � h. zC�/ > 0 if and only if there is an element ˇ 2 C� such that
dˇ D 0 and ı1ˇ ¤ 0.

� If h. zC�/D k > 0 then k is the largest integer such that there exists ˇ 2 C� satisfying

dˇ D 0; ı1v
k�1.ˇ/¤ 0; ı1v

iˇ D 0 for i � k� 2:

� If h. zC�/D k � 0 then there are elements a0; : : : ; a�k 2R and ˇ 2 C� such that

dˇ D

�kX
iD0

viı2.ai /:

The followings are basic properties of the Frøyshov type invariant:

Proposition 3.6 [9, Corollary 4.14] If there is an S–morphism zm W zC�! zC 0� then h. zC�/� h. zC 0�/.

Given two S–complexes . zC�; Qd; �/ and . zC 0�; Qd
0; �0/, the product S–complex . zC˝� ; Qd

˝; �˝/ is defined as

zC˝� D
zC�˝ zC

0
�;

Qd˝ D Qd ˝ 1C �˝ Qd 0 and �˝ D �˝ 1C �˝�0;

where � W zC 0� ! zC
0
� is given by �.ˇ0/ D .�1/deg.ˇ 0/ˇ0 on elements of homogeneous degree. Let d˝,

v˝, ı˝1 and ı˝2 be components of Qd˝ with respect to the splitting zC˝ D C˝� ˚C
˝
��1˚R. Using the

decomposition C˝� D .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0, these maps are represented by

d˝ D

2664
d ˝ 1C �˝ d 0 0 0 0

��v˝ 1C �˝ v0 d ˝ 1� �˝ d 0 �˝ ı02 �ı
0
2˝ 1

�˝ ı01 0 d 0

ı01˝ 1 0 0 d 0

3775 ; v˝ D

2664
v˝ 1 0 0 ı2˝ 1

0 v˝ 1 0 0

0 0 v 0

0 ı1˝ 1 0 v0

3775 ;
ı˝1 D Œ0; 0; ı1; ı

0
1�; ı˝2 D Œ0; 0; ı2; ı

0
2�

T:

The Frøyshov type invariant behaves additively for the product of S–complexes:
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Proposition 3.7 [9, Corollary 4.28] h. zC˝� /D h.
zC�/C h. zC

0
�/.

3.2 Floer homology groups with local coefficients

In this subsection, we construct the summand C� in an S–complex as a Floer chain group with local
coefficients. Let .Y;K/ be an oriented knot in an integral homology 3–sphere. We fix a holonomy
parameter ˛ so that �.Y;K/.e4�i˛/ ¤ 0 to isolate the unique flat reducible connection �˛. We assign
an abelian group �ŒB� for each elements ŒB� in the configuration space B.Y;K; ˛/ and an isomorphism
�z W �ŒB0� ! �ŒB1� for each homotopy class z 2 �1.B.Y;K; ˛/; ŒB0�; ŒB1�/. If this assignment is
functorial, a Floer chain complex with the local coefficient � is defined as follows:

C ˛� .Y;K;�/D
M

ˇ2C�� .Y;K;˛/

�ˇOŒˇ� and hd.ˇ0/; ˇ1i D
X

z W ˇ0!ˇ1

X
Œ MA�2 MMz.ˇ0;ˇ1/

�.Œ MA�/˝�z :

The Z=4–grading of C ˛� .Y;K;�/ is defined by mod-4 grading for critical points. Consider a subring R˛

in the Novikov ring ƒZŒT�1;T ��, which is introduced in Section 1.2.

Lemma 2.18 enables us to define a local coefficient system �D�R˛ as follows:

�R˛;ŒB� WDR˛�
CS.B/T holK.B/ and �R˛;z WD # MMz.ˇ; ˇ1/0�

��.z/T �.z/:

Note that this definition is independent of choices of representatives of ŒB� and �˛ . Write C ˛� .Y;KI�R˛ /

for a chain complex with the local coefficient system over R˛ . For any algebra S over R˛ , we can extend
the above construction to the coefficient S .

Definition 3.8 Let .Y;K/ be an oriented knot in an integral homology 3–sphere and S be an algebra
over R˛. Fix ˛ 2

�
0; 1
2

�
\Q so that �.Y;K/.e4�i˛/ ¤ 0. The homology group of the Z=4–graded

chain complex .C ˛� .Y;KI�S /; d/ is denoted by I˛� .Y;KI�S /. We call I˛� .Y;KI�S / the irreducible
singular instanton knot homology over the local coefficient S with the holonomy parameter ˛.

Let .W; S/ W .Y;K/! .Y 0; K 0/ be a negative definite cobordism over S . We define an induced morphism
mDm.W;S/ W C

˛
� .Y;KI�S /! C ˛� .Y

0; K 0I�S / by

m.ˇ/D
X

ˇ 02C�.Y;K;˛/

X
z W ˇ!ˇ 0

#Mz.W; S Iˇ; ˇ
0/0�

�0��.z/T �.z/��0ˇ0:

Counting the boundary of 1–dimensional moduli space MCz .W; S Iˇ; ˇ
0/1 for each homotopy class z, we

obtain the relation
dm�md 0 D 0:

We remark that:

� For a composition of negative definite cobordisms .W; S/ WD .W0; S0/ ı .W1; S1/, there is a map �
such that

d� ��d Dm.W1;S1/ ım.W0;S0/�m.W;S/;

where metrics and perturbation data on .W; S/ are given by the composition of those of .W0; S0/ and
.W1; S1/.
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� If m.W;S/ and m0
.W;S/

are defined by different perturbations and metric data on an interior domain of
.W; S/, they are chain homotopic.

� If .W; S/D Œ0; 1�� .Y;K/ then m.W;S/ is chain homotopic to the identity map.

Thus C ˛� .Y;KI�S / is an invariant of .Y;K/ up to chain homotopy. We write I˛� .Y;KI�S / for its
homology group, and this is an invariant for .Y;K/.

Remark 3.9 The above argument shows that the chain homotopy type of C ˛� .Y;K;�S / is independent
of the choice of orbifold metric with the same cone angle � 2 Z>0. Hence, more precisely, the module
I˛� .Y;K;�S / should be denoted by I˛� .Y;K; �;�S /. We implicitly assume that the cone angle � is
chosen as a large enough number so that gauge theory on the orbifold setup described in Section 2 works.

Next, we introduce the filtered construction for the Floer chain complex based on Nozaki, Sato and
Taniguchi [35]. For the filtered construction, we have to introduce the lift of critical points. Let G.0;0/ be
a normal subgroup of the gauge group G.Y;K/ which is given by

G.0;0/ WD fg j k.g/D l.g/D 0g:

Consider the quotient of the space of singular connections

zB.Y;K; ˛/ WDA.Y;K; ˛/=G.0;0/:

The Chern–Simons functional descends on zB.Y;K; ˛/ as an R–valued function, and we still use the
same notation. The normal subgroup G.0;0/ is a connected component of the full gauge group G.Y;K/
which corresponds to .0; 0/ 2 Z˚ZŠ �0.G.Y;K//. Thus there is an action of �0.G.Y;K//Š Z˚Z

on zB.Y;K; ˛/ as a covering transformation, and hence zB.Y;K; ˛/ is a covering space over B.Y;K; ˛/
with a fiber Z˚Z.

Definition 3.10 A lift of ŒB� 2 B.Y;K; ˛/ to the covering space zB.Y;K; ˛/ is called a lift of ŒB�, and
denoted by fŒB�.
For a fixed lift fŒB� of ŒB� 2 B.Y;K; ˛/, the fiber of the projection zB.Y;K; ˛/! B.Y;K; ˛/ over a point
ŒB� can be described as

LŒB� WD fg
�.fŒB�/ 2 zB.Y;K; ˛/ j g 2 �0.G.Y;K//g:

The fiber LŒB� can be seen as the set of lifts of the element ŒB�. There is another description of lifts:
Let Q�˛ be a lift of reducible flat connections �˛. Then a lift Q̌ of ˇ 2 C�� is fixed by choosing a path
z W ˇ! �˛ of connections over the cylinder whose endpoint is Q�˛.

We again choose the coefficient ring R˛ and fix a lift Q̌ for each critical points ˇ 2 C�.Y;K; ˛/.

Then we modify the local coefficient system �R˛ so that

�R˛;ˇ DR˛�
CS. Q̌/T holK. Q̌/
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with the same map �R˛;z . Once we fix an orientation of ˇ, each summand �ˇOŒˇ� in the chain complex
is generated (over Z) by the elements of the form �k�l˛

Q̌ D �kC2˛lT 2l Q̌ where .k; l/ 2 Z˚Z. The
action of �k�l˛ corresponds to the action of the gauge transformation with d.g/D .k; l/. Such elements
can be identified with the set of lifts Lˇ of the critical point ˇ. Hence the chain complex C ˛� .Y;KI�R˛ /

can be seen as a Z–module generated by the all lifts of C�.Y;K; ˛/ under the modification as above.

Once we fix lifts of generators, the chain complex C ˛� .Y;KI�R˛ / admits a .Z�R/–bigrading as in [8],
that is we can associate a pair of values which is defined as follows:

For a lift Q̌ of the critical point ˇ 2 C� , we define degZ.
Q̌/ WD grz.ˇ/ where z is a path corresponding to

the lift Q̌. Then we extend degZ as

degZ.�
i�j˛
Q̌/D 8i C 4j C degZ.

Q̌/:

Next we define degR. For a lift Q̌ of a critical point ˇ 2 C� , we define degR.
Q̌/ WD CS. Q̌/. This extends

to elements of the form �i�
j
˛
Q̌ as

(3-4) degR.�
i�j˛
Q̌/D i C 2 j̨ C degR.

Q̌/:

In general, an element  2 C ˛� .Y;K; ˛/ has the form  D
P
i aii where i 2

S
ˇ2C�

Lˇ . This is
possibly an infinite sum. We define

degR./DmaxfdegR.i / j ai ¤ 0g

for  ¤ 0 and degR.0/D�1.

In summary, we have the following proposition:

Proposition 3.11 Once we fix lifts of critical points of the Chern–Simons functional , the chain complex
.C ˛� .Y;K;�R˛ /; d/ admits the .Z�R/–bigrading.

We write C ˛� .Y;KI�R˛ /
Œ�1;1� for the chain complex C ˛� .Y;KI�R˛ / with the .Z�R/–bigrading.

Let C � �R be a subset defined by C � WD CS.Crit�/. For R 2R nC �, we define a subset

C ˛� .Y;KI�R˛ /
Œ�1;R�

WD f 2 C ˛� .Y;KI�R˛ /
Œ�1;1�

j degR./ < Rg:

This defines a subcomplex of C ˛� .Y;KI�R˛ /
Œ�1;1�. For two numbers R0; R1 2 .RnC �/[f˙1g such

that R0 �R1, we define a quotient complex as follows:

C ˛� .Y;KI�R˛ /
ŒR0;R1� WD C ˛� .Y;KI�R˛ /

Œ�1;R1�=C ˛� .Y;KI�R˛ /
Œ�1;R0�:

Definition 3.12 For R0; R1 2 R [ f˙1g such that R0 � R1 and R0; R1 … C � [ C 0
�, we call

C ˛� .Y;KI�R˛ / a ŒR0; R1�–filtered chain complex.

Consider a negative definite cobordism .W; S/ W .Y;K/! .Y 0; K 0/ with �0D 0. A cobordism mapm.W;S/
on C ˛� .Y;KI�R˛ / induces a map

C ˛� .Y;KI�R˛ /
Œ�1;R�

! C ˛� .Y
0; K 0I�R˛ /

Œ�1;R�
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degZ

degR

U�1

degZ D i � 4 degZ D i degZ D i C 4

U
Z
Q̌

Z�1

Q�˛

Figure 2: Dots represent lifts of the irreducible flat connection ˇ and squares represent lifts of the
reducible flat connection �˛ .

by the restriction, and hence this induces a map

(3-5) m
ŒR0;R1�

.W;S/
W C ˛� .Y;KI�R˛ /

ŒR0;R1�! C ˛� .Y
0; K 0I�R˛ /

ŒR0;R1�:

As described before, the covering transformation on zB.Y;K; ˛/ is generated by multiplications of elements
�˙1and �˙1˛ . We also introduce other generators which fit the .Z�R/–bigrading on C ˛� .Y;KI�R˛ /. Let
us introduce two operators on C ˛� .Y;KI�R˛ /

Œ�1;1�,

(3-6) Z˙1 WD .�1�4˛T �4/˙1 and U˙1 WD .�2˛T 2/˙1:

These operators change the .Z�R/–bigrading as

degZ.Z
i Q̌/D degZ.

Q̌/ and degR.Z
i Q̌/D degR.

Q̌/C .1� 4˛/i for the operator Z;(3-7)

degZ.U
i Q̌/D degZ.

Q̌/C 4i and degR.U
i Q̌/D degR.

Q̌/C 2˛i for the operator U:(3-8)

See Figure 2 for the case ˛ < 1
4

. Since � D ZU 2, actions of the two operations Z and U (and their
inverses) on lifted critical points generate C ˛� .Y;KI�R˛ /

Œ�1;1�.
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3.3 Maps ı1, ı2,�1 and�2

We introduce operators which are defined by counting instantons on a cylinder or a cobordism with the
reducible limit. We remark that the sign convention of counting moduli spaces in this subsection is the
same as that of [9]. Let .Y;K/ and .Y 0; K 0/ be two knots in integral homology 3–spheres. Let S be an
integral domain over R˛ . In this subsection, we assume that the holonomy parameter ˛ is chosen so that
�.Y;K/.e

4�i˛/¤ 0 and �.Y 0;K0/.e4�i˛/¤ 0.

Definition 3.13 We define S –linear chain maps ı1 WC ˛� .Y;KI�S /!S and ı2 WS !C ˛
�2.Y;KI�S /

as follows.

For ˇ 2 C��.Y;K; ˛/,
ı1.ˇ/ WD

X
z W ˇ!�˛

# MMz.ˇ; �˛/0�
��.z/T �.z/

and
ı2.1/ WD

X
ˇ2C�� .Y;K;˛/

gr.ˇ/�2

X
z W �˛!ˇ

# MMz.�˛; ˇ/0�
��.z/T �.z/ˇ:

Since the compactified 1–dimensional moduli space MMCz .ˇ; �˛/1 has oriented boundaries[
2C��

gr./�1

[
z1;z2

z1ız2Dz

MMz1.ˇ; /0 �
MMz2.; �˛/0;

it is straightforward to check that d ı ı1 D 0. Similarly, ı2 ı d D 0 holds.

Next, we define �1 W C ˛� .Y;KI�S / ! S and �2 W S ! C ˛� .Y
0; K 0I�S / for a cobordism of pairs

.W; S/ W .Y;K/! .Y 0; K 0/:

Definition 3.14 We have

�1.ˇ/ WD
X
z

#Mz.W; S Iˇ; �
0
˛/0�

�0��.z/T �.z/��0 ;

�2.1/ WD
X

ˇ 02C�� .Y 0;K0;˛/

X
z

#Mz.W; S I �˛; ˇ
0/0�

�0��.z/T �.z/��0ˇ0:

Proposition 3.15 Let m D m.W;S/ W C ˛� .Y;KI�S /! C ˛� .Y
0; K 0I�S / be a cobordism map induced

from the negative definite pair .W; S/ W .Y;K/! .Y 0; K 0/. Then the relations

(i) �1 ı d C �ı1� ı
0
1 ımD 0,

(ii) d 0 ı�2� ı
0
2�Cm ı ı2 D 0,

hold , where �D �˛.W; S/ and 0 denotes corresponding maps for the pair .Y 0; K 0/.

Algebraic & Geometric Topology, Volume 24 (2024)



5078 Hayato Imori

Proof The relation (i) is given by counting the ends of each component of the 1–dimensional moduli
space Mz.W; S Iˇ; �

0
˛/1 as in [9, Proposition 3.10]. The boundary components of Mz.W; S Iˇ; �

0
˛/1 with

the induced orientation are given by

�

[
ˇ12C

�
�

[
z1;z2

z1ız2Dz

MMz1.ˇ; ˇ1/0 �Mz2.W; S Iˇ1; �
0
˛/0;(a)

[
 02C0��

[
z1;z2

z1ız2Dz

Mz1.W; S Iˇ; ˇ
0/0 � MMz2.ˇ

0; �˛/0;(b)

�

[
z1;z2

z1ız2Dz

MMz1.ˇ; �˛/0 �Mz2.W; S I �˛; �
0
˛/0:(c)

Note that product orientations of MMz1.ˇ; /0 �Mz2.W; S I ; �
0
˛/0 and MMz0.ˇ; �˛/0 �M.W; S I �˛; �

0
˛/0

are opposite to orientations induced as the boundaries of Mz.W; S Iˇ; �˛/1. The signed counting of
the boundary components of types (a) and (b) contribute to ��1 ı d.ˇ/ and ı01 ım.ˇ/, respectively.
Since M.W; S I �˛; � 0˛/0 consists of minimal reducible elements, the counting of (c) gives ��ı1.ˇ/. This
proves (i). The relation (ii) can be similarly proved considering the ends of the 1–dimensional moduli
space Mz.W; S I �˛; ˇ

0/1.

3.4 Maps v and �

In this subsection, we introduce maps induced from the cobordism of pairs .W; S/ with an embedded
curve  � S . Our assumptions for the choice of holonomy parameter ˛ and the coefficient S are the
same as the previous subsection. We remark that the sign convention of moduli spaces in this subsection
is also the same as that of [9]. In particular, if f WM !N is a smooth map between oriented manifolds
then f �1.y/ for a regular value y 2N is oriented so that

TxM DNxf
�1.y/˚Txf

�1.y/

is orientation preserving, where Nxf �1.y/ is a fiber of the normal bundle for f �1.y/ and its orientation
is induced from that of N . The mapping degree deg.f / is defined by using this orientation.

Assume that  W Œ0; 1�! S is a smoothly embedded loop. Fix a regular neighborhood N .�/ of  in W
with radius � > 0 and fix a basepoint x0 2 @N .�/. We take a Seifert framing z� � @N .�/ of  so that it
passes through the basepoint x0. The bundle decomposition E D L˚L� over S �W extends to N .�/,
and the holonomy of the adjoint connection of ŒA� 2 B.W; S Iˇ; ˇ0/ yields Holz� .A

ad/ 2 S1. Put

h


ˇˇ 0
.A/ WD lim

�!0
Holz� .A

ad/:

The construction above gives a map

(3-9) h


ˇˇ 0
W B.W; S; ˛Iˇ; ˇ0/! S1:

Note that this map itself depends on the choice of the Seifert framing of  and orientations of K and S .
However, such dependence on auxiliary data can be ignored to define the following map:
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Definition 3.16 Let ˇ and ˇ0 be irreducible critical points of the (perturbed) Chern–Simons functional on
.Y;K/ and .Y 0; K 0/, respectively. We define a map �D�.W;S;/ WC ˛� .Y;KI�S /!C ˛� .Y

0; K 0I�S / by

�.ˇ/D
X

ˇ 02C�� .Y;K;˛/

X
z W ˇ!ˇ 0

deg.h
ˇˇ 0
jMz.W;S Iˇ;ˇ 0/1/�

�0��.z/T �.z/��0ˇ0

for each ˇ 2 C��.Y;K; ˛/.

The map � satisfies the following relation:

Proposition 3.17 d 0 ı��� ı d D 0:

Proof Consider the compactified 2–dimensional moduli space MCz .W; S Iˇ; ˇ
0/2 which has oriented

boundary of the types

�

[
ˇ12C

�
� .Y;K;˛/

[
z0ız00Dz

MMCz0 .ˇ; ˇ1/i�1 �M
C
z00.W; S Iˇ1; ˇ

0/2�i ;

[
ˇ 012C

�
� .Y 0;K0;˛/

[
z0ız00Dz

MCz0 .W; S Iˇ; ˇ
0
1/2�i �

MMCz00.ˇ
0
1; ˇ
0/i�1;

where i D 1 or 2. Count the boundary of the 1–dimensional submanifold .h
ˇˇ 0
/�1.s/�MC.W; S Iˇ; ˇ0/

for a regular value s 2 S1. Since the closed loop  is supported on a compact subset of S , .h
ˇˇ 0
/�1.s/

intersects faces of the boundary of MCz .W; S Iˇ; ˇ
0/ with i D 1. Thus

#..h
ˇˇ 0
/�1.s/\ @MCz .W; S Iˇ; ˇ

0/2/D d
0
ı��� ı d D 0:

We consider the case when .W; S/ D R� .Y;K/ and  � S is a curve R� fy0g where y0 is a fixed
basepoint in K. Taking holonomy along  , we obtain a map

hˇ1ˇ2 W B.Y;K; ˛Iˇ1; ˇ2/! S1

similarly to (3-9), where ˇi for i D 1; 2 are irreducible critical points of the Chern–Simons functional.

The holonomy map hˇ1ˇ2 is modified to extend broken trajectories as in [10]. Such modification of hˇ1ˇ2
near the broken trajectories gives the map

Hˇ1ˇ2 W
MM.ˇ1; ˇ2/d ! S1

with the following properties:

(i) Hˇ1ˇ2 D hˇ1ˇ2 on the complement of a small neighborhood of @ MMC.ˇ1; ˇ2/d .

(ii) Hˇ1ˇ3.ŒA1�; ŒA2�/DHˇ1ˇ2.ŒA1�/Hˇ2ˇ3.ŒA2�/ on unparametrized broken trajectories

MMC.ˇ1; ˇ2/i�1 � MM
C.ˇ2; ˇ3/d�i ;

where ˇ2 is irreducible.

(iii) Hˇ1ˇ2 D 1 if dim MM.ˇ1; ˇ2/D 0.
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Definition 3.18 We define the v–map v W C ˛� .Y;KI�S /! C ˛� .Y;KI�S / by

v.ˇ1/D
X
ˇ22C

�
�

X
z W ˇ1!ˇ2

deg.Hˇ1ˇ2 j MMz.ˇ1;ˇ2/1/�
��.z/T �.z/ˇ2:

The v–map does not commute with the differential of the chain complex. However, the following relation
holds:

Proposition 3.19 dv� vd � ı2ı1 D 0:

Proof We consider the 1–dimensional moduli space

MM;z.ˇ1; ˇ2/1 WD MMz.ˇ1; ˇ2/2\ .Hˇ1ˇ2/
�1.s/

for a generic s 2 S1 n f1g. As in the argument in the proof of [9, Proposition 3.16], the boundary of
MMz.ˇ1; ˇ2/ consists of unparametrized broken trajectories of the form

aD .ŒA1�; ŒA2�/;

and there are the following cases:

(I) a 2
S
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � MMz00.ˇ3; ˇ2/1 where ˇ3 2 C��.Y;K; ˛/,

(II) a 2
S
z0ız00Dz

MMz0.ˇ1; ˇ3/1 � MMz00.ˇ3; ˇ2/0 where ˇ3 2 C��.Y;K; ˛/,

(III) ŒA� 2 MMz.ˇ1; ˇ2/ factors through the reducible critical point �˛.

For (I), the corresponding oriented boundary components of .Hˇ1ˇ2/
�1.s/\ MMCz .ˇ1; ˇ2/2 are

.Hˇ1ˇ2/
�1.s/\�

� [
ˇ32C

�
� .Y;K;˛/

[
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � MMz00.ˇ3; ˇ2/1

�
D�

[
ˇ32C

�
� .Y;K;˛/

[
z0ız00Dz

MMz0.ˇ1; ˇ3/0 � .Hˇ3ˇ2/
�1.s/\ MMz00.ˇ3; ˇ2/1;

since Hˇ1ˇ3 D 1. This contributes the term �hvd.ˇ1/; ˇ2i. For (II), the similar argument shows that this
contributes to the term hdv.ˇ1/; ˇ2i. Case (III) requires gluing theory at the reducible. Let U be an open
subset of MM.ˇ1; ˇ2/ which is given by

U D fŒA� 2 MM.ˇ1; ˇ2/ j kA��
��˛kL21..�1;1/�.Y nK//

< �g:

Uz denotes the restriction of U to Mz.ˇ1; ˇ2/. There is the “ungluing” map

MMz.ˇ1; ˇ2/� Uz
 
�! .0;1/�

[
z0ız00Dz

MMz0.ˇ1; �˛/0 �S
1
� MMz00.�˛; ˇ3/0:

For T > 0 large enough, consider a subset Uz;T D  �1.f.t; ŒA1�; s; ŒA2�/ 2 Uz j t > T g/ of Uz . Then

 .Mz.ˇ1; ˇ2/\Uz;T /D .T;1/�
[

z0ız00Dz

MMz0.ˇ1; �˛/� fsg � MMz00.�˛; ˇ2/:
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Thus corresponding boundaries of 1–manifold H�1
ˇ1ˇ2

.s/\ MMC.ˇ1; ˇ2/2 with induced orientations are
given by

�

[
z0ız00Dz

MMz0.ˇ1; �˛/0 � MMz00.�˛; ˇ2/0:

The sign counting of this contributes to the term �hı2ı1.ˇ1/; ˇ2i. Finally, we obtain the relation
h.dv� vd � ı2ı1/.ˇ1/; ˇ2i D 0.

Next, we consider a negative definite pair .W; S/ W .Y;K/! .Y 0; K 0/with an embedded curve  W Œ0; 1�!S

such that .0/D p 2K and .1/D p0 2K 0. We identify  with its image. We define

C D .�1; 0�� fpg[  [ Œ0;1/� fp0g � SC:

Assume that ˇ 2 C��.Y;K; ˛/ and ˇ0 2 C��.Y
0; K 0; ˛/. For each A 2A.W; S Iˇ; ˇ0/, taking the holonomy

of Aad along the path C, we obtain a map

h


ˇˇ 0
W B.W; S Iˇ; ˇ0/! S1;

and its modification
H


ˇˇ 0
WMC.W; S Iˇ; ˇ0/d ! S1

so that H 

ˇˇ 0
D 1 on 0–dimensional unparametrized broken trajectories.

Definition 3.20 We define a map �D �.W;S;/ W C ˛� .Y;KI�S /! C ˛� .Y
0; K 0I�S / by

�.ˇ/D
X

ˇ 02C�� .Y 0;K0;˛/

X
z W ˇ!ˇ 0

deg.H 

ˇˇ 0
jMz.W;S Iˇ;ˇ 0/1/�

�0��.z/T �.z/��0ˇ0:

Proposition 3.21 Let .W; S/ W .Y;K/! .Y 0; K 0/ be a negative definite pair , and let m and � denote its
corresponding maps as above. Then

d 0�C�d C�2ı1� ı
0
2�1� v

0mCmv D 0;

where the prime denotes corresponding maps for the pair .Y 0; K 0/.

Proof Consider a 2–dimensional moduli space MCz .W; S Iˇ; ˇ
0/2 and its codimension 1 faces. Firstly,

there are two types of ends of Mz.W; S Iˇ; ˇ
0/2 in which ŒA� 2M.W; S Iˇ; ˇ0/2 is broken at irreducible

critical points,

MMCz0 .ˇ; ˇ1/i�1 �M
C
z00.W; S Iˇ1; ˇ

0/2�i ;(I)

MCz0 .W; S Iˇ; ˇ
0/2�i � MM

C
z00.ˇ1; ˇ

0/1�i ;(II)

where i D 1; 2. Since

.H


ˇˇ 0
/�1.s/\

[
ˇ1

[
z0ız00Dz

MMz.ˇ; ˇ1/0 �M
C
z00.W; S Iˇ1; ˇ

0/1

D

[
ˇ1

[
z0ız00

MMz0.ˇ; ˇ1/0 � .H


ˇ1ˇ 0
/�1.s/\Mz00.W; S Iˇ1; ˇ

0/1;
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the signed counting of points in @..H 

ˇˇ 0
/�1.s/\MC.W; S Iˇ; ˇ0/2/which are contained in codimension 1

faces of type (I) with i D 1 contributes to the term �h�d.ˇ/; ˇ0i. Next, we consider the case of type (I)
with i D 2. Since

.H


ˇˇ 0
/�1.s/\

[
ˇ1

[
z0ız00Dz

MMz0.ˇ; ˇ1/1 �Mz.W; S Iˇ1; ˇ
0/0

D

[
ˇ1

[
z0ız00Dz

.Hˇˇ1/
�1.s/\ MMz0.ˇ; ˇ1/1 �M.W; S Iˇ1; ˇ

0/0;

the signed counting of points in @..H 

ˇˇ 0
/�1.s/\MC.W; S Iˇ; ˇ0/2/which are contained in codimension 1

faces of type (I) with i D 2 contributes to the term �hmv.ˇ/; ˇ0i. Similarly, a collection of codimension 1
faces of type (II) contributes to the term �hd 0�.ˇ/; ˇ0i if i D 1 and hv0m.ˇ/; ˇ0i if i D 2. Finally, we
consider the ends of Mz.W; S Iˇ; ˇ

0/2 which break at reducibles. Such ends are described as in the poof
of Proposition 3.19 and contribute to the term �h.�2ı1� ı2�1.ˇ/; ˇ0i.

Corollary 3.22 We have . zC ˛� .Y;KI�S /; Qd; �/, where

zC ˛� .Y;KI�S /DC
˛
� .Y;KI�S /˚C

˛
��1.Y;KI�S /˚S ; Qd D

24d 0 0
v �d ı1
ı2 0 0

35 and �D

240 0 0
1 0 0
0 0 0

35
form an S–complex. Moreover , if .W; S/ W .Y;K/! .Y 0; K 0/ is a given negative definite cobordism and
˛ satisfies �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0, then

zm.W;S/ D

24m 0 0
� m �2
�1 0 �

35
defines an S–morphism zm.W;S/ W zC ˛� .Y;KI�S /! zC

˛
� .Y

0; K 0I�S /.

Proof The arguments in Section 3.3 and Proposition 3.19 show that . zC ˛� .Y;KI�S /; Qd; �/ is an S–
complex. For a generic perturbation, moduli spaces over the negative definite pair .W; S/ are regular at
reducible points by Proposition 2.24, and hence the counting of reducibles �D �˛.W; S/ is well defined.
The arguments in Section 3.2 and Propositions 3.15, and 3.21 show that zm.W;S/ is an S–morphism.

The S–complex zC ˛� .Y;KI�S / itself depends on the choices of metric and perturbation. However, the
standard argument (see [9, Theorem 3.33]) shows that its S–chain homotopy class is a topological invariant
of pairs .Y;K; p/ with �.Y;K/.e4�i˛/ ¤ 0, where K � Y is an oriented knot in an integer homology
3–sphere and p 2 K is a basepoint. The S–chain homotopy type of an S–complex itself depends on
the choice of basepoint, however, there is a canonical isomorphism between two homology groups of
S–complexes which are defined by different choices of basepoints.

Definition 3.23 We call
h˛S .Y;K/ WD h.

zC ˛� .Y;KI�S //

the Frøyshov invariant for .Y;K/ over S with a holonomy parameter ˛.
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The S–complex zC ˛� .Y;KI�S / admits the following connected sum theorem:

Theorem 3.24 Let .Y;K/ and .Y 0; K 0/ be two oriented knots in integral homology spheres and ˛ be a
holonomy parameter such that �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0. Then

zC ˛� .Y #Y 0; K #K 0I�S /' zC
˛
� .Y;KI�S /˝S

zC ˛� .Y
0; K 0I�S /;

where' denotes an S–chain homotopy equivalence.

The strategy of proof (found in the appendix) is essentially the same as [9, Section 6].

The following corollary gives the proof of Theorem1.6:

Corollary 3.25 Let .Y;K/ and .Y 0; K 0/ be knots in integral homology 3–spheres and ˛ be a holonomy
parameter such that �.Y;K/.e4�i˛/�.Y 0;K0/.e4�i˛/¤ 0. Then

h˛S .Y #Y 0; K #K 0/D h˛S .Y;K/C h
˛
S .Y

0; K 0/:

Moreover , if there are two negative definite cobordisms

.W; S/ W .Y;K/! .Y 0; K 0/ and .W 0; S 0/ W .Y 0; K 0/! .Y;K/;

then
h˛S .Y;K/D h

˛
S .Y

0; K 0/:

Proof The first statement follows from Theorem 3.24 and Proposition 3.7. The second follows from
Corollary 3.22 and Proposition 3.6.

The filtered construction can be applied to an S–complex for the coefficient R˛. A fixed lift Q�˛ of a
reducible flat connection can be identified with 1 2R˛ , and R˛ itself can be identified with the set of all
lifts of �˛. We extend the R–grading to zC ˛� .Y;KI�R˛ /. First, we define

degR.ı/D

�
maxfr j ar ¤ 0g if ı ¤ 0;
�1 if ı D 0;

for ıD
P
r ar�

r 2R˛ , ar 2ZŒT �1; T ��. Then for .ˇ; ; ı/2C ˛� .Y;KI�R˛ /˚C
˛
��1.Y;KI�R˛ /˚R˛ ,

we define
edegR.ˇ; ; ı/ WDmaxfdegR.ˇ/; degR./; degR.ı/g:

Obviously, we have the following proposition:

Proposition 3.26 If we fix a lift of each critical point of the Chern–Simons functional , then the S–
complex zC ˛� .Y;KI�R˛ / admits the .Z�R/–grading.

Note that the R–grading of S–complexes extends to tensor products of S–complexes in a natural way.

The filtered S–complex zC ˛� .Y;KI�R˛ /
ŒR0;R1� for R0; R1 2 .R[ f˙1g/ n C � with R0 < R1 can be

defined as follows. Put zC ˛� .Y;KI�R˛ /
Œ�1;R� WD f.ˇ; ; ı/ 2 zC ˛� .Y;KI�R˛ / j

edegR.ˇ; ; ı/ < Rg and

zC ˛� .Y;KI�R˛ /
ŒR0;R1� WD zC ˛� .Y;KI�R˛ /

Œ�1;R1�= zC ˛� .Y;KI�R˛ /
Œ�1;R0�

for R0 <R1.
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3.5 Cobordism maps for immersed surfaces

Let .W; S/ W .Y;K/! .Y 0; S 0/ be a cobordism of pairs where S is possibly immersed. Blowing up all
double points of S , we obtain a cobordism of pairs .W ; S/ where S is an embedded surface.

Definition 3.27 We say .W; S/ is negative definite if its blowup .W ; S/ is negative definite. We define a
cobordism map for a negative definite cobordism .W; S/ where S is possibly immersed surface as

zm.W;S/ WD zm.W ;S/:

We describe the relation between operations on immersed surface cobordisms and induced S–morphisms:

Proposition 3.28 Let S be an integral domain over the ring R˛. Assume that .W; S/ is a negative
definite pair over S where S is a possibly immersed surface. Let S� be a surface obtained from S by a
positive or negative twist move , or a finger move. Then zm.W;S�/ is S–chain homotopic to zm.W;S/ up to
the multiplication of a unit element in S .

The definition of positive twist, negative twist and finger moves can be found in [17].

Proof Since the monotonicity condition cannot be assumed in our setting, we have to modify the
argument in [25].

(i) (positive twist move) Consider the blowup at the positive self-intersection point .W ; S�/ D
.W; S/ # .CP2; S2/, where S2 is an embedded sphere whose homology class is �2e 2 H2.CP2IZ/.
Note that R˛.S3 n S1;SU.2//D f�˛g for ˛ 2

�
0; 1
2

�
. Assume that .W; S�/ has a metric gT such that

.S3; S1/ has a neighborhood which is isometric to Œ�T; T �� .S3; S1/, where T > 0 is large enough.
Let AT be an instanton on f.W; S�/; gT g which is contained in the 0–dimensional moduli space. A1
denotes the limiting instanton of AT with respect to T !1, and A1 and A2 denote its restriction to
components obtained by attaching cylindrical ends on .W; S/ and .CP2; S2/, respectively. Then we have

indDA1 C 1C indDA2 D indDA1 � 0:

The last inequality essentially follows from [27, Corollary 8.4] and our assumption. The index formula
for the closed pair .CP2; S2/ shows that indDA2 � �1 mod 4, and we have indDA2 D �1. By the
perturbation, the instantonA2 on CP2 satisfiesH 1

A2
DH 2

A2
D0, and the gluing along R˛.S3nS1/Df�˛g

is unobstructed. The moduli space M.W; S�Iˇ; ˇ0/0 is diffeomorphic to

M.W; S Iˇ; ˇ0/0 �M
˛.CP2; S2/0:

Note that there is a diffeomorphism M ˛.CP2 nD4; S2 nD2I �˛/0 ŠM ˛.CP2; S2/0 by the removable
singularity theorem. Since indDA2 D�1, A2 is a minimal reducible. Moreover, minimal reducibles on
.CP2; S2/ define elements in M ˛.CP2; S2/0. Counting elements in the moduli space M.W; S Iˇ; ˇ0/0
defined by the limiting metric limT!1 gT contributes the relation

h zm1
.W ;S�/

ˇ; ˇ0i D �˛.CP2; S2/h zm.W;S/ˇ; ˇ
0
i:
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Since

�˛.CP2; S2/D

�
1��4˛�1T 4 if ˛ � 1

4
;

�1�4˛T �4� 1 if ˛ > 1
4
;

�˛.CP2; S2/ is a unit in S . Considering the 1–parameter family of moduli spaces gives an S–chain
homotopy between zm1

.W ;S�/
and zm.W ;S�/. In particular, �˛.CP2; S2/ has the top term 1, and hence the

statement follows.

(ii) (negative twist move) In this case, we change S2 in the above argument to an embedded sphere S0
whose homology class is trivial. Thus we obtain �˛.CP2; S0/D 1.

(iii) (finger move) Consider the decomposition .W; S/D .W1; S1/[ .W2; S2/ where W2 DD4 and
S2 DD

2 tD2. Let .W ; S�/D .W1; S1/[ .W 02; S
0
2/ be the double blowup of .W; S�/. In this case, W2

is a 4–manifold obtained by removing a disk from CP2 # CP2 and S2 is two disjoint disks. Note that
R˛ WDR˛.S3n.S1tS1/;SU.2//Š Œ0; �� for fixed ˛2

�
0; 1
2

�
, the interior of R˛ consists of irreducible flat

connections and two endpoints are reducible. Moreover, the endpoint map r1 WM.W1; S1Iˇ; ˇ0/0!R˛
has its image in the irreducible part of R˛. See [25, Lemma 3.2] for details.

We claim that the counting of the two moduli spaces M.W1; S1Iˇ; ˇ0/0 and M.W; S Iˇ; ˇ0/0 can be
identified up to multiplication by a unit element in S . Firstly, we define an S–morphism zm.W1;S1/ as

hm.W1;S1/ˇ; ˇ
0
i D

X
z

#Mz.W1; S1Iˇ; ˇ
0/��0��.z/T �.z/��0ˇ0;

and similarly for other components in zm.W1;S1/. Here �.z/, �0, �.z/ and �0 are similarly defined as
in Section 2.7. We have to modify the argument in [25] which is related to the unobstructed gluing
along the pair .S3; S1 t S1/. For � 2 R˛ which is in the image of r1, we take its extension A� to
.D4;D2 tD2/. Consider the double .S4; S2 tS2/D .D4;D2 tD2/[.S3;S1/ .D

4;D2 tD2/. Then
indDA�#A� D 2 indDA�C1 by the gluing formula. Consider the pair of connected sum .S4; S2tS2/D

.S4; S2/ #.S3;∅/ .S
4; S2/. Then indDA�#A� D 2 indDA�#A� j.S4;S2/C 3 and the left-hand side is equal

to 1. Hence we have indDA� D 0. Thus the relation

indDA� C dimH 1
� D� dimH 0

A�
C dimH 1

A�
� dimH 2

A�

tells us that H 2
A�
D 0 since dimH 0

A�
D 0 and dimH 1

A�
D 1. Here H 1

� is the cohomology with the local
coefficient system associated with the flat connection �. Thus the Morse–Bott gluing of instantons over
.W1; S1/ and .W2; S2/ is unobstructed. For a metric on .W; S/ with a long neck along the cylinder
Œ0; 1�� .S3; S1 tS1/, we have the diffeomorphism,

M.W; S Iˇ; ˇ0/0 ŠM.W1; S1Iˇ; ˇ
0/0 r�r 0M

˛.D4;D2 tD2/1

where
r WM.W1; S1Iˇ; ˇ

0/0!R˛
and

r 0 WM ˛.D4;D2 tD2/1!R˛

Algebraic & Geometric Topology, Volume 24 (2024)



5086 Hayato Imori

are restriction maps. For simplicity, we consider the case ˛ � 1
4

. Since flat connections on .S3; S1tS1/
uniquely extend to .D4;D2 tD2/, the induced cobordism map has the form

zm.W;S/ D

�
1C

X
k>0

ckZ
�k

�
zm.W1;S1/;

where ck 2 Z and Z D �1�4˛T �4. Thus zm.W;S/ and zm.W1;S1/ differ by the multiplication of a unit
element in S .

Assume that the cobordism of pairs .W ; S�/ is equipped with a metric such that .W ; S�/ has a long
neck along .S3; S1 tS1/. Then the moduli space M.W ; S�Iˇ; ˇ0/0 decomposes into a union of fiber
products

M.W1; S1; ˇ; ˇ
0/d r1�r2M

˛.W 02IS
0
2/d 0

with d C d 0 D 1, where

r1 WM.W1; S1; ˇ; ˇ
0/d !R˛ and r2 WM

˛.W 02; S
0
2/d 0 !R˛

are restriction maps. Since d 0 � 1 mod 4 by the index formula, we have d D 0 and d 0 D 1. Thus there is
the coefficient c 2S such that zm.W ;S�/ D c zm.W;S/. Consider the special case of a finger move which is
the composition of one positive twist move and one negative twist move. In this case, the coefficient c
turns out to be 1��4˛�1T 4 for ˛ � 1

4
and �1�4˛T �4� 1 for ˛ > 1

4
by the argument above. Finally, we

conclude that there is a unit element c 2S such that zm.W;S�/ and c zm.W;S/ are S–chain homotopic.

4 Nondegeneracy of the representation variety

In this section we will discuss conjugacy classes of representations

� W �1.Y nK/! SU.2/;

with the condition

�.�K/�

�
e2�i˛ 0

0 e�2�i˛

�
:

We write Œ�� for its conjugacy class to distinct elements in Hom.�1.Y nK/;SU.2// and R.Y nK;SU.2//.
Firstly, we introduce the method of taking cyclic branched coverings. Considering a knot in an integral
homology 3–sphere .Y;K/, we can take a cyclic branched covering zYr.K/ over Y branched along K. Let
N.K/ be a tubular neighborhood of K � Y , and V D Y n int.N.K// be its exterior. zV denotes the r–fold
unbranched covering over V with �1. zV / being a kernel of �1.Y nK/!H1.Y nK;Z/!Z=rZ. N.K/
and zV have a torus boundary, and let h W @N.K/! @ zV be a gluing map which sends �K a meridian of K
to its lift Q�K . Then the r–fold cyclic branched covering over Y is defined by

zYr.K/DN.K/[h zV :
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Let � W zYr! zYr be a covering transformation. We define an induced action of �1. zYr ; p/ with a basepoint p
missing the fixed point set of the �–action on zYr . For this, we fix another basepoint q inside the fixed point
set and a path connecting p and q. Such a choice of path defines a (noncanonical) isomorphism between
�1. zYr ; p/ and �1. zYr ; q/. Since � induces a natural action on �1. zYr ; q/, we define an induced action ��
on �1. zYr ; p/ via the above isomorphism. The �–action induces the action �� on Hom.�1. zYr ; p/;SO.3//
by ��.�/ D � ı ��. This also defines an action on R�. zYr ;SO.3// by ��Œ�� D Œ��.�/�. We define the
following subsets:

R�;� . zYr ;SO.3//D fŒ�� 2R�. zYr ;SO.3// j ��Œ��D Œ��g;

R�;� . zY ;SU.2//D fŒ�� 2R�. zY ;SU.2// j AdŒ�� 2R�;� . zY ;SO.3//g:

Since a different choice of basepoints of fundamental groups induces a canonical isomorphism on
R�. zYr ;SO.3//, we may omit the choice of basepoints and a path between them from the notation here.

The aim of Section 4.1 is giving the construction of the lifting map

… W
G

1�l�r�1

R�l=.2r/.Y nK;SU.2//!R�;� . zYr ;SU.2//;

which sends singular flat connections to nonsingular flat connections on a cyclic branched covering of the
knot K � Y . We will see that the lifting map … satisfies the following proposition.

Proposition 4.1 Assume that the r–fold cyclic branched covering zYr of a knot K in an integral homology
3–sphere Y is an integral homology 3–sphere. Then the lifting map … gives a two-to-one correspondence

… W
G

1�l�r�1

R�l=.2r/.Y nK;SU.2//!R�;� . zYr ;SU.2//:

This is a generalization of the argument in [2].

LetX.K/ be the complement of a tubular neighborhood of the knotK�S3. Its boundary @X.K/ is a torus.
In Section 4.2, we will show that the restriction map r WR�.S3 nTp;q;SU.2//!R.@X.Tp;q/;SU.2// is
a smooth immersion of a 1–manifold without any perturbation of flat connections, using the setting of
gauge theory by Herald [22] and computations of the group cohomology of �1. In Section 4.3, we will
give a proof of Theorem 1.9 using the results in Section 4.1.

4.1 The construction of the lifting map

We assign the second Stiefel–Whitney class w 2H 2.Y;Z2/ to Œ�� 2R.Y;SO.3//. We can construct a
flat bundle E D zY �� R3 from an SO.3/–representation � and define w.Œ��/ WD w2.E/ 2 H 2.Y;Z2/,
where w2.E/ is the second Stiefel–Whitney class of E. If w.�/D 0 then the SO.3/–bundle E lifts to an
SU.2/–bundle F . Let P and Q be the corresponding principal bundles of E and F , respectively. The
natural map p WQ! P is a fiberwise double covering map. Let �� be a connection form on P which
corresponds to the flat connection �. Then p��� defines a flat connection on Q. Thus each element of
R.Y;SO.3// lifts to R.Y;SU.2// if its second Stiefel–Whitney class vanishes.
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Proposition 4.2 Let X be Y or Y nK. Then there is an action of H 1.X;Z2/ on R.X;SU.2// and the
map Ad WR.X;SU.2//!R0.X;SO.3// induces a bijection

R.X;SU.2//=H 1.X;Z2/ŠR0.X;SO.3//:

Here R0.X;SO.3// denotes the set of conjugacy classes of SO.3/–representations whose second Stiefel–
Whitney class vanishes.

Proof Let � W �1.X/! SO.3/ be a representation whose second Stiefel–Whitney class vanishes and
Q� W �1.X/! SU.2/ be its SU.2/–lift. Consider another lift Q�0 W �1.X/! SU.2/. Then there is a map
� W �1.X/! f˙1g such that Q�0.g/ D �.g/ Q�.g/ for any g 2 �1.X/. We can directly check that � is
a homomorphism and determine an element � 2 Hom.�1.X/;Z2/ D H 1.X;Z2/. Conversely, two
SU.2/–representation �1; �2 W �.X/! SU.2/ such that there exists � 2 Hom.�1.X/;Z2/ and satisfying
�1.g/D �.g/�2.g/ for any g 2 �1.X/ induces the same SO.3/–representation. We define an action of
H 1.X;Z2/ on Hom.�1.X/;SU.2// by � 7! � � � , where .� � �/.g/ D �.g/�.g/ for g 2 �1.X/. The
action of � commutes with the conjugacy action and descends to R.X;SU.2//.

Note that the action of H 1.Y nK;Z2/ coincides with the flip symmetry. From Proposition 4.2, we get
the following corollary:

Corollary 4.3 For an integral homology 3–sphere Y , all elements in R.Y;SO.3// have a unique lift in
R.Y;SU.2//.

Proof Since H 2.Y;Z2/D 0, the second Stiefel–Whitney class of Œ�� 2 R.Y;SO.3// vanishes, and �
lifts to an SU.2/–representation. By Proposition 4.2, this lift is unique since H 1.Y;Z2/D 0.

If Œ�� 2R.Y nK;SU.2// satisfies

�.�K/�

�
e2�i˛ 0

0 e�2�i˛;

�
then the induced SO.3/–representation satisfies

(4-1) Ad �.�K/�

241 0 0

0 cos.4�˛/ �sin.4�˛/
0 sin.4�˛/ cos.4�˛/

35 :
Let R˛.Y n K;SO.3// be a subset of R.Y n K;SO.3// whose elements are represented by SO.3/–
representations of �1.Y nK/ such that their images of �K are conjugate to the right-hand side of (4-1).

Before proceeding with the argument, we introduce the orbifold fundamental group of Y nK. (It appears
in [2; 3], for example.)

Definition 4.4 The orbifold fundamental group of Y nK is �V1 .Y;KI r/ WD �1.Y nK/=h�
r
Ki.

Proposition 4.5 The orbifold fundamental group �V1 .Y;KI r/ admits the split short exact sequence

1! �1. zYr/! �V1 .Y;KI r/! Z=r! 1:
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Proof Let zK � zYr be the branched locus. Then there is the exact sequence

1! �1. zYr n zK/! �1.Y nK/! Z=r! 1:

since zYr n zK! Y nK is a regular covering. Applying the van Kampen theorem to zYr n intN. zK/[N. zK/,
we have �1. zYr/D �1. zYr n zK/=h� zKi. Since �1. zYr n zK/! �1.Y nK/ maps � zK to �rK , this induces 1!
�1. zYr/!�V1 .Y;KI r/. Since �1.Y nK/!Z=r maps �rK to 1, this induces �V1 .Y;KI r/!Z=r which
sends �K to a generator of Z=r . The spitting Z=r! �V1 .Y;KI r/ sends a generator of Z=r to �K .

Lemma 4.6 There is a natural one-to-one correspondence

R�.�V1 .Y;KI r/;SO.3//Š
r�1G
lD1

R�l=.2r/.Y nK;SO.3//:

Proof Let � W �1.Y nK/! SO.3/ be a representation with Œ�� 2R�
l=.2r/

.Y nK;SO.3//. Then it factors
through �V1 .Y;KI r/. Conversely, any representation � W �V1 .Y;KI r/! SO.3/ satisfies

�.�K/�

241 0 0

0 cos.4�˛/ �sin.4�˛/
0 sin.4�˛/ cos.4�˛/

35 ;
where ˛ D l=.2r/ for some 0 < l < r . Thus � defines the desired representation of �1.Y nK/.

Proposition 4.7 There is a bijection
r�1G
lD1

R�l=.2r/.Y nK;SO.3//ŠR�;� . zYr ;SO.3//:

Proof Since there is the natural one-to-one correspondence in Lemma 4.6, we only have to construct

R�.�V1 .Y;KI r/;SO.3// Š�!R�;� . zYr ;SO.3//:

This is induced from �1. zYr/
i
�! �V1 .Y;KI r/ in the short exact sequence in Proposition 4.5. We claim that

if � W �V1 .Y;KI r/! SO.3/ is irreducible then � ı i is also irreducible. Since zYr is an integral homology
sphere, any reducible SO.3/–representation of �1. zYr/ is the trivial representation. If �ı i is trivial, then �
factors through �V1 .Y;KI r/=i.�1. zYr//Š Z=r , and hence is reducible. This is a contradiction.

We will construct the inverse correspondence of the above. Let � be an SO.3/–representation of �1. zYr/
which represents an element in R�;� . zYr ;SO.3//. Since the conjugacy class of � is fixed by the induced
action of � , there is a matrix A 2 SO.3/ such that

���.u/D A�.u/A�1

for any u 2 �1. zYr/. A is uniquely determined since � is irreducible and has the trivial stabilizer f1g in
SO.3/, and A is conjugate to the matrix of the form

(4-2)

241 0 0

0 cos.2�l=r/ �sin.2�l=r/
0 sin.2�l=r/ cos.2�l=r/

35 :
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Since � has order r , we get the relation

�.u/D Ar�.u/A�r

for any u 2 �1. zYr/, and we get Ar D 1 using the irreducibility of � . Thus we can assign a unique order-r
element A� 2 SO.3/ for each � . Finally, we assign a representation

(4-3) N� W �V1 .Y;KI r/Š �1.
zYr/ÌZ=r! SO.3/; .u; tk/ 7! �.u/ �Ak� ;

to a given representation � , where t 2 Z=r is a generator. This satisfies N�.�K/ D A� . The above
construction gives the inverse of R�.�V1 .Y;KI r/;SO.3// 3 Œ�� 7! Œ� ı i � 2R�;� . zYr ;SO.3//.

We write

…0 W

r�1G
lD1

R�l=.2r/.Y nK;SO.3// Š�!R�;� . zYr ;SO.3//

for the bijection constructed above.

Definition 4.8 Let K be a knot in an integral homology 3–sphere Y , and assume that zYr is also an
integral homology 3–sphere. Then … W

Fr�1
lD1R

�
l=.2r/

.Y nK;SU.2//!R�;� . zYr ;SU.2// is given by the
following composition:

r�1G
lD1

R�l=.2r/.Y nK;SU.2// Ad
�!

r�1G
lD1

R�l=.2r/.Y nK;SO.3// …
0

��!R�;� . zYr ;SO.3// Ad�1
���!R�;� . zYr ;SU.2//:

We call ….Œ��/ a lift of Œ��.

An SU.2/–representation that factors through Pin.2/ subgroups is called a binary dihedral representation.
An SO.3/–representation that factors through O.2/ subgroups is called a dihedral representation. Note
that O.2/ is embedded in SO.3/ as �

A 0

0 detA

�
2 SO.3/;

where A2O.2/. The adjoint representation of a binary dihedral representation is a dihedral representation.
In the proof of Proposition 4.1, which is an important property of the lift …, we use the following lemma:

Lemma 4.9 [39] The fixed point set of the H 1.Y nK;Z2/–action on R.Y nK;SU.2// consists of
conjugacy classes of binary dihedral representations.

Proof Let Œ�� 2R.Y nK;SU.2// be a fixed point of the action of H 1.Y nK;Z2/. We regard this as a
representation � W �1.Y nK/! SU.2/ such that there exists A 2 SU.2/ and .� � �/.u/D A�.u/A�1 for
any u 2 �1.Y nK/. Here � 2H 1.Y nK/ is a generator. Since � has order 2, �.u/D A2�.u/A�2. If
� is reducible then its image is contained in a circle in SU.2/ and is a binary dihedral representation.

Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5091

Assume that � is irreducible and consider two cases, A2 D 1 and A2 D �1. We regard SU.2/ as the
unit sphere in the quaternions. Then Pin.2/ D S1 [ jS1. If A2 D 1 then A D ˙1 and ��.u/ D �.u/
for some u 2 �1.Y nK/. This cannot happen in SU.2/. If A2 D �1 then we can assume that A D i
after a conjugation, and then �.u/ D ˙i�.u/i�1 for any u 2 �1.Y n K/. If �.u/ D i�.u/i�1 then
�.u/ 2 S1 D faC big. If �.u/ D �i�.u/i�1 then �.u/ 2 jS1 D fcj C dkg. Thus the image of � is
contained in S1[ jS1.

Lemma 4.10 Let r 2 2Z. If � W �V1 .Y;KI r/! SO.3/ is a dihedral representation , then its pullback
�1. zYr/! SO.3/ by the orbifold exact sequence in Proposition 4.5 is a reducible representation.

Proof Since � factors through O.2/, we have a representation �0 W �V1 .Y;KI r/! O.2/. Composing
with det W O.2/! Z=2, we have a representation det ı�0 W �V1 .Y;KI r/! Z=2. Since det ı�0 factors
through the abelianization �V1 .Y;KI r/D �1.Y nK/=h�K

ri
Ab
�! ZŒ�K �=h�Kri, we have the diagram

�1. zYr/
i
// �V1 .Y;KI r/

�0
//

Ab

%%

O.2/
det
// Z=2

Z=r

<<

where �1. zYr/
i
�! �V1 .Y;KI r/ is the inclusion map in the orbifold exact sequence. By construction, Ab

coincides with the map �V1 .Y;KI r/! Z=r in the orbifold exact sequence. Thus Ab ıi is the trivial
representation, and hence det ı�0 ı i is also the trivial representation. This implies that the image of �0 ı i
is contained in SO.2/. Thus � ı i W �1. zYr/! SO.3/ factors through SO.2/, and this means that � ı i
is reducible.

The following proposition gives the proof of Proposition 4.1:

Proposition 4.11 Let K � Y be a knot in an integral homology 3–sphere whose r–fold cyclic branched
covering zYr is also an integral homology 3–sphere. For each Œ�� 2R�;� . zY ;SU.2//, …�1.Œ��/ consists of
two elements which correspond to each other by the flip symmetry.

Proof Applying Proposition 4.2 to the 3–manifold Y nK, we have a bijection

(4-4) R.Y nK;SU.2//=H 1.Y nK;Z2/ŠR.Y nK;SO.3//:

Note that R.Y nK;SO.3//DR0.Y nK;SO.3// sinceH 2.Y nK;Z2/D0. We restrict this correspondence
to elements with holonomy parameter ˛ D l=.2r/ for l D 1; : : : ; r � 1. Note that H 1.Y nK;Z2/ acts on
R�˛.Y nK;SU.2//[R�

1=2�˛
.Y nK;SU.2// since the flip symmetry changes the holonomy parameter as

˛ 7! 1
2
�˛, and the bijection (4-4) is restricted to

(4-5)
� r�1G
lD1

R�l=.2r/.Y nK;SU.2//
�.

H 1.Y nK;Z2/Š
r�1G
lD1

R�l=.2r/.Y nK;SO.3//:
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Fix Œ�� 2R�;� . zYr ;SU.2//. The compositionG
0<l<r

R�l=.2r/.Y nK;SO.3// …
0

��!R�;� . zYr ;SO.3// Ad�1
���!R�;� . zYr ;SU.2//

is bijective. Thus we have a unique element Œ�0� 2
F
0<l<r R

�
l=.2r/

.Y nK;SO.3// which corresponds
to Œ��. …�1.Œ��/ is the inverse image of Œ�0� by the map

r�1G
lD1

R�l=.2r/.Y nK;SU.2// Ad
�!

r�1G
lD1

R�l=.2r/.Y nK;SO.3//:

Finally, we prove that Ad�1.Œ�0�/ consists of two elements. Let Œ�� 2 Ad�1.Œ�0�/ be an element
contained in R�

l=.2r/
.Y n K;SU.2//. If r is odd then l=.2r/ ¤ 1

2
� l=.2r/, and thus Œ�� ¤ �Œ�� inF

0<l<r R
�
l=.2r/

.Y nK;SU.2// since � and �� have different holonomy parameters, where � is a generator
of H 1.Y nK;Z2/ŠZ2. This means that the H 1.Y nK;Z2/–action on

S
0<l<r Rl=.2r/.Y nK;SU.2//

is free and Ad�1.Œ��/ consists of two elements. If r is even and 2l ¤ r , then Ad�1.Œ��/ consists of two
elements by the same reason. If 2l D r thenH 1.Y nK;Z2/ acts on R�

1=4
.Y nK;SU.2//. The fixed points

of the H 1.Y nK;Z2/–action on R�
1=4
.Y nK;SU.2// are binary dihedral representations by Lemma 4.9.

We show that …�1.Œ��/ does not contain a binary dihedral representation. Let � 0 W �1.Y nK/! SU.2/
be a binary dihedral representation with holonomy parameter ˛ D 1

4
. Then Ad � 0 defines a dihedral

representation �V1 .Y;KI r/! SO.3/. Then the induced representation Ad � 0 ı i W �1. zYr/! SO.3/ is
reducible by Lemma 4.10 and its SU.2/–lift is also reducible. This means that …�1.Œ��/ does not contain
any binary dihedral representation. Thus H 1.Y nK;Z2/ acts freely on …�1.Œ��/, and hence …�1.Œ��/
consists of two elements which are related by the flip symmetry.

4.2 Nondegeneracy results

The purpose of this subsection is to associate the nondegeneracy property of the critical point set C
of the singular Chern–Simons functional and the transversality of the moduli space of irreducible flat
connections R�.Y nK;SU.2//. Let us recall the setting of the gauge theory used in [22; 23] to deal with
the “pillowcase picture” of perturbed flat connections. In this subsection, Y denotes a (general) oriented
closed 3–manifold and K is a knot in Y . Let E be an SU.2/–bundle over X D Y nN.K/. We fix a
Riemannian metric on X . We introduce the space of SU.2/–connections over X and @X D T 2 as follows:

AX D L22.X; su.2/˝ƒ
1/; AT 2 D L

2
3=2.T

2; su.2/˝ƒ1/:

Here we fix a trivialization of the SU.2/–bundle over X and @X , and identify the trivial connection to
zero elements in each functional space. We also introduce spaces of gauge transformations:

GX D fg 2 Aut.E/ j g 2 L23g; GT 2 D fg 2 Aut.EjT 2/ j g 2 L
2
5=2g:

The action of gauge transformations on connections and su.2/–valued p–forms are given in obvious
ways. GX and GT 2 have Banach Lie group structures and act smoothly on AX and AT 2 , respectively. A
connection whose stabilizer of gauge transformations is f˙1g is called irreducible. A�X denotes the subset
of irreducible connections.
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We introduce the following spaces of p–forms with boundary conditions:

�p� .X; su.2//D f! 2�
p.X; su.2// j �!j@X D 0g; �p� .X; su.2//D f! 2�

p.X; su.2// j !j@X D 0g:

We define the L2–inner product on �p.X; su.2// by the formula

ha; bi D �

Z
X

tr.a^�b/:

For each A 2AX , the slice of the action of GX on AX is given by

XA D ACKer d�A \L
2
2�

1
�.X; su.2//:

For each flat connection A 2A, the space of harmonic p–forms is given by

Hp.X I adA/D f! 2�p� .X; su.2// j dA! D 0; d
�
A! D 0g;

Hp.X; @X I adA/D f! 2�p� .X; su.2// j dA! D 0; d
�
A! D 0g:

The holonomy perturbation h defines a compact perturbation term Vh WAX!�1.X; su.2// and a perturbed
flat connection can be defined as a solution of the equation

(4-6) �FACVh D 0:

R�;h.X;SU.2// denotes gauge equivalence classes of irreducible solutions for (4-6). Consider the
restriction map r WR�;h.X;SU.2//!R.T 2;SU.2//. For a generic perturbation h, R�;h.X;SU.2// is a
smooth 1–manifold. Moreover, the restriction map r is a smooth immersion of R�;h.X;SU.2// to the
smooth part of the pillowcase. The detailed argument is contained in [22]. Put

S˛ WD f� 2R.T 2;SU.2// j tr �.�K/D 2 cos.2�i˛/g:

This is a vertical slice in the pillowcase. Note that R˛.X;SU.2// D r�1.S˛/\R.X;SU.2// and we
define R�;h˛ .X;SU.2// WD r�1.S˛/\R�;h.X;SU.2//.

Proposition 4.12 Let K � Y be a knot in a closed 3–manifold , and ˛ be an arbitrary holonomy
parameter in

�
0; 1
2

�
. Assume that Œ�� 2 R�˛.Y n K;SU.2// is a nondegenerate critical point. We

also assume that the image of R�.Y nK;SU.2// by the restriction map r is contained in the smooth
part of the pillowcase. Then R�.Y n K;SU.2// is smooth near Œ��. Moreover , the restriction map
r WR�.Y nK;SU.2//!R.T 2;SU.2// is an immersion to the smooth part of the pillowcase at Œ��.

For the proof of Proposition 4.12, we need gauge theory on 3–manifolds with the boundary described above.

Lemma 4.13 Let B0 be an abelian SU.2/–flat connection on a torus T 2. Then the su.2/–valued harmonic
form h 2H1.T 2I adB0/ has the diagonal form

hD

�
ai 0

0 �ai

�
;

where a 2�1.T 2/.
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Proof Since B0 is an abelian flat connection, it defines a splitting of the SU.2/–bundle E over T 2 into
EDL˚L�, whereL is the trivial line bundle. Then the adjoint bundle ofE has a splitting gE DR˚L˝2.
Let dB0 D d ˚ dC be the covariant derivative induced on �p.T 2; gE /D�p.T 2;R/˚�p.T 2; L˝2/.
Any section ! 2�p.T 2; gE / has the form

! D

�
ai b

�Nb �ai

�
;

where a 2 �p.T 2/ and b 2 �p.T 2; L˝2/. The space of harmonic forms Hp.T 2I adB0/ splits into
Hp.T 2IR/˚Hp.T 2IL˝2/ with respect to the decomposition of .�p.T 2; gE /; dB0/. Let us compute
H1.T 2I adB0/ usingH 1.�1.T

2/I ad �/, where � is an abelian SU.2/–representation corresponding toB0.
Let � and � be canonical generators of �1.T 2/. Then the space of 1–cocycles consists of the element
 W �1.T

2/! su.2/ŠR3 such that

.1�Ad�.�//.�/D .1�Ad�.�//.�/;

since � and � commute. Let F WR3˚R3!R2 be a linear map given by

F.x1; x2/D .1�A�/x1� .1�A�/x2;

where A� WD Ad�.�/ and A� WD Ad�.�/. Since A� and A� are SO.3/–linear transformations acting
on R3, they have 1–dimensional axes of rotation R� and R�, respectively. Let C� and C� be their
orthogonal complement spaces. Then Im.1 � A�/ D C� and Im.1 � A�/ D C�, and hence F is
surjective. Thus the space of 1–cocycles is isomorphic to R4. On the other hand, the space of 1–
coboundaries is spanned by Im.1�Ad�.g// for all g 2 �1.T 2/, and this is 2–dimensional since � is
reducible. Thus H1.T 2I adB0/ Š H 1.�1.T

2/I ad �/ Š R2. Therefore H 1.T 2IL˝2/ vanishes since
H1.T 2IR/ Š H 1.T 2IR/ Š R2. This means that if ! 2 �1.T 2; gE / is a harmonic form then b D 0.
Thus h 2H1.T 2I adB0/ has only diagonal components.

Since B0 is a reducible connection with U.1/–stabilizer, H0.T 2I adB0/ D Ker dB0 Š R. We fix a
generator 0 2H0.T 2I adB0/.

Lemma 4.14 There is a GT 2–invariant neighborhood NB0 of B0 2 AT 2 and GT 2–invariant map
� WNB0 !�0.T 2; su.2// such that

(1) �.B0/D 0,

(2)
R
T 2 tr.FB ^ �.B//D 0 for all B 2NB0 .

Proof Take a small neighborhood of B0 in the slice of the action of GT 2 on AT 2 as

XB0;� D fB0C b j b 2 L
2
3=2�

1.T 2; su.2//; d�B0b D 0; kbkL23=2
< �g;

where � > 0 is small enough. Firstly, we define an �0.T 2; su.2//–valued map � on the slice XB0;� and
then extend it to a gauge-invariant neighborhood. For B D B0C b 2XB0;�, define

�.B/ WD 0:
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Then Z
T 2

tr.FB ^ 0/D
Z
T 2

tr..dB0bC b ^ b/^ 0/D
Z
T 2

tr.dB0b ^ 0/C
Z
T 2

tr.b ^ b ^ 0/:

Using Stokes’ theorem and the condition dB00 D 0,Z
T 2

tr.dB0b ^ 0/D
Z
T 2
d tr.b ^ 0/D 0:

Thus

(4-7)
Z
T 2

tr.FB ^ �.B//D
Z
T 2

tr.b ^ b ^ 0/:

Since d�B0b D 0, we have h 2H1.T 2I adB0/ and ! 2�2.T 2; su.2// such that

(4-8) b D hC d�B0!:

Using (4-7) and (4-8),Z
T 2

tr.FB ^ �.B//

D

Z
T 2

trŒ.hC d�B0!/^ .hC d
�
B0
!/^ 0�

D

Z
T 2

tr.h^ h^ 0/C
Z
T 2

tr.d�B0! ^ h^ 0/C
Z
T 2

tr.h^ d�B0! ^ 0/C
Z
T 2

tr.d�B0! ^ d
�
B0
! ^ 0/:

Note that,Z
T 2

tr.�dB0 �! ^ h^ 0/D
Z
T 2

tr.dB0 �! ^�h^ 0/

D�

Z
T 2

tr.�! ^ dB0 � h^ 0/C
Z
T 2

tr.�! ^�h^ dB00/D 0:

Here we use Stokes’ theorem at the second equality. Similarly,Z
T 2

tr.h^ d�B0! ^ 0/D�
Z
T 2

tr.dB0 � h^�! ^ 0/�
Z
T 2

tr.�h^�! ^ dB00/D 0;Z
T 2

tr.d�B0! ^ d
�
B0
! ^ 0/D�

Z
T 2

tr.d2B0 �! ^�! ^ 0/�
Z
T 2

tr.dB0 �! ^�! ^ dB00/D 0:

Hence Z
T 2

tr.FB ^ �.B//D
Z
T 2

tr.h^ h^ 0/:

Since 0 2H0.T 2I adB0/ is an element of the Lie algebra of the stabilizer of B0, Stab.B0/D U.1/ and
it has the pointwise form

0.x/D

�
ri 0

0 �ri

�
2 su.2/;

where r 2R. Similarly, h 2H1.T 2I adB0/ has the form

h.x/D

�
ai 0

0 �ai

�
by Lemma 4.13. By the pointwise computation of tr.h^ h^ 0/, we obtain

tr.h^ h^ 0/.x/D tr
��

ai0

0� ai

�
^

�
ai0

0� ai

�
^

�
ri0

0� ri

��
D tr

�
�ra^ ai0

0ra^ ai

�
D 0:
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Thus � W XB0;� ! �0.T 2; su.2// satisfies
R
T 2 tr.FB ^ �.B// D 0 for all B 2 XB0;�. Define NB0 WD

GT 2 �XB0;� and extend � to NB0 in a gauge-equivariant way (ie �.g�.B//D g�1�.B/g).

Let A0 be a flat irreducible SU.2/–connection on X . We can assume that A0jT 2 is a noncentral flat
connection on T 2 by the assumption of Proposition 4.12, and we write A0jT 2 D B0. Let UA0 be a gauge
invariant neighborhood of A0 in A�X . We define Q� W UA0 ! �0.X; su.2// as a smooth extension of �
which satisfies

Q�.A/j@X D �.Aj@X /:

Here we assume that the extension Q� satisfies dA0 Q�.A0/ 2 H1.X; @X I adA0/; this is possible by the
following lemma:

Lemma 4.15 For � 2H0.T 2I adB0/ there is an extension Q� on X such that dA0 Q� 2H1.X; @X I adA0/.

Proof For � 2H0.T 2; adB0/, we take an arbitrary smooth extension Q� to X . Then

dA0 Q� 2 Ker dA0 j�1� .X;su.2// D dA0�
0
� .X; su.2//˚H1.X; @X I adA0/:

Let dA0 Q� be the dA0�
0
� .X; su.2//–component of dA0 Q�. Then dA0. Q� � Q�/ 2 H1.X; @X I adA0/ with

. Q�� Q�/j@X D �. Hence we can choose an extension Q� of � as dA0 Q� 2H1.X; @X I adA0/.

We define a map
ˆ W UA0 �L

2
2�

0
� .X; su.2//�R! L21.X; su.2/˝ƒ

1/

by ˆ.A; �; t/D �FAC dA�C tdA Q�.A/. The linearized operator of ˆ at .A0; 0; 0/ has the form

Dˆ.A0;0;0/.a; �; t/D �dA0aC dA0�C tdA0 Q�.A0/:

CokerDˆ.A0;0;0/ is H1.X; @X I adA0/\ .dA0 Q�.A0//
? by the Hodge decomposition.

Lemma 4.16 ˆ.A; �; t/D 0 if only if FA D 0, � D 0 and t D 0.

Proof Assume that ˆ.A; �; t/D 0. Then

kFAk
2
L2
D�

Z
X

tr.FA ^�FA/D
Z
X

tr.FA ^ dA�/C t
Z
X

tr.FA ^ dA Q�.A//:

Using Stokes’ theorem and the Bianchi identity,Z
X

tr.FA ^ dA�/D
Z
X

d tr.FA ^ �/�
Z
X

tr.dAFA ^ �/D
Z
T 2

tr.FAj
T2
^ �jT 2/:

The last term vanishes by the boundary condition on �. Consider the remaining term

(4-9)
Z
X

tr.FA ^ dA Q�.A//:

Using Stokes’ theorem and the Bianchi identity, this is equal toZ
T 2

tr.FB ^ �.B//;
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where B D AjT 2 . By Lemma 4.14, this is equal to zero and we have FA D 0. Thus 0 D �FA D
�dA.� C t Q�.A// by our assumption. Since A is an irreducible connection, dA has trivial kernel and
� D�t Q�.A/. Restricting this to the boundary T 2, we have the relation t�.B/D 0. Since �.B/D 0 is a
generator of H0.T 2I adB0/, we have �.B/¤ 0. Hence t D 0 and � D 0 follow.

Conversely, if we assume that FA D 0, � D 0 and t D 0, then clearly ˆ.A; �; t/D 0.

Lemma 4.16 means that the two equations FA D 0 and ˆ.A; �; t/ D 0 have the same zero set near an
irreducible flat connection A0. Hence ˆD 0 defines the space of flat connections near A0.

Proof of Proposition 4.12 Natural embeddings �K ,! @X ,!X induce maps on cohomology groups
with a local coefficient system,

(4-10) H 1.X I ad �/ j�!H 1.@X I ad �/!H 1.�K I ad �/:

The nondegeneracy condition on Œ�� is equivalent to the condition that the composition (4-10) is injective
by Proposition 2.3. This implies that j is also injective. Thus the restriction map R�.X;SU.2//!
R.T 2;SU.2// to the pillowcase is an immersion at Œ�� if we show that R�.X;SU.2// has a smooth
manifold structure near Œ��. Next, we show that R�.X;SU.2// is a smooth manifold near Œ��. Consider
the long exact sequence of cohomology with local coefficient associated to the pair .X; @X/,

� � � !H 0.@X I ad �/ @�!H 1.X; @X I ad �/!H 1.X I ad �/ j�!H 1.@X I ad �/! � � � :

The cokernel of the connecting homomorphism @ is zero since j is injective. Using the harmonic
representative of the cohomology with local coefficient, the connecting homomorphism @ is given
by 0 7! dA0 Q�.A0/, where A0 is an SU.2/–flat connection corresponding to �. Thus Coker @ D
H1.X; @X I adA0/ \ .dA0 Q�.A0//

? D 0. This means that the equation ˆ.A; �; t/ D 0 has a surjective
linearization map at .A0; 0; 0/. Thus there is a neighborhood VA0 of A0 2ˆ�1.0/ which has a smooth
structure by the implicit function theorem. Since A0 is irreducible, the quotient singularity by gauge
transformations GX does not occur. Thus R�.X;SU.2// has a smooth manifold structure near Œ��.

By Proposition 2.3, the following shows that the singular Chern–Simons functional for a .p; q/–torus
knot has nondegenerate irreducible critical points without perturbations:

Proposition 4.17 For any Œ�� 2R�.S3 nTp;q;SU.2//, the natural map

(4-11) H 1.S3 nTp;qI ad �/!H 1.�Tp;q I ad �/

is injective.

Proof Firstly, we compute H 1.S3 nTp;qI ad �/ using the group cohomology of �1.Y nK/. Since the
fundamental group �1.S3nTp;q/ has a presentation hx; y jxpDyqi, 1–cocycles  W�1.S3nTp;q/! su.2/

satisfy the relation

.I CAxC � � �CA
p�1
x /.x/D .I CAy C � � �CA

q�1
y /.y/
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where Ax WDAd�.x/ and Ay WDAd�.y/. Since Ax and Ay are SO.3/–linear transformation acting on R3,
they have 1–dimensional axis of rotation Rx and Ry , respectively. Let Cx and Cy denote their orthogonal
complement spaces. Then Im.I � Ax/ D Cx and Im.I � Ay/ D Cy . Note that �.x/ and �.y/ are
contained in different great circles in SU.2/Š S3 since � is an irreducible SU.2/–representation. Thus
� satisfies �.x/p D �.y/q D˙1 and hence Apx D A

q
y D I . Thus Ker.I CAxC � � �CA

p�1
x /DCx and

Ker.I CAy C � � �CA
q�1
y /DCy . Since � is irreducible, Rx and Ry are independent in R3. Consider a

linear map L WR3˚R3!R3 defined by

L.x1; x2/D .I CAxC � � �CA
p�1
x /x1� .I CAy C � � �CA

q�1
y /x2:

This has rank 2, and the space of 1–cocycles has dimension 4. On the other hand, the space of 1–
coboundaries is a subspace of R3 spanned by Im.I �Ad�.g// for all g 2�1.S3nTp;q/, and this coincides
with R3 itself. Therefore H 1.S3 nTp;qI ad �/ŠR4=R3 ŠR.

Next we compute H 1.�Tp;q I ad �/. Here the space of 1–cocycles is isomorphic to R3 since its elements
are determined by choosing .�/ 2 su.2/ŠR3. The space of 1–coboundaries is Im.I �Ad�.�//ŠC.
Thus H 1.�I ad �/ŠR3=C ŠR.

Finally, we prove that the map (4-11) is surjective. If  W�1.S3nTp;q/!su.2/ represents a nonzero element
inH 1.S3nTp;qI ad �/ then .g/… Im.I�Ad�.g// for any g2�1.S3nTp;q/. Thus .�/… Im.I�Ad�.�//
for the meridian � 2 �1.S3 n Tp;q/, and this means that the image of Œ� 2 H 1.S3 n Tp;qI ad �/ in
H 1.�Tp;q I ad �/ is a nonzero element.

Consider a knotK in S3. Note that the image of the restriction map r WR�.S3nK;SU.2//!R.T 2;SU.2//
is contained in the smooth part of the pillowcase. By Propositions 4.17 and 4.12 we get the following
statement:

Corollary 4.18 The natural restriction map R�.S3 nTp;q;SU.2//!R.T 2;SU.2// to the smooth part
of the pillowcase is an immersion of a smooth 1–manifold.

In fact, it is known that the irreducible representation variety R�.S3 nTp;q;SU.2// is a disjoint union of
1
2
.p� 1/.q� 1/ segments; see [24].

4.3 Levine–Tristram signature and representation variety

The following statement relates the size of the set of singular flat connections over S3 nTp;q and the set
of flat connections over the cyclic branched covering.

Lemma 4.19 Let p, q and r be relatively coprime positive integers and †.p; q; r/ be a Brieskorn
homology sphere. Then

2jR�.†.p; q; r/; SU.2//j D
r�1X
lD1

jR�l=.2r/.S
3
nTp;q;SU.2//j:
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Proof We apply Proposition 4.1 to the r–fold cyclic branched covering †.p; q; r/ of Tp;q � S3. Note
that the covering transformation � induces the trivial action on R�.†.p; q; r/; SU.2// by [2], and hence
there is a two-to-one correspondenceG

l

R�l=.2r/.S
3
nTp;q;SU.2// Š�!R�.†.p; q; r/; SU.2//:

The nondegeneracy condition at irreducible critical points can be interpreted in the pillowcase as follows:

Lemma 4.20 Let ˛ 2
�
0; 1
2

�
be a fixed holonomy parameter. Assume that Œ�� 2R�˛.S3 nK;SU.2// is

nondegenerate. Then S˛ and the image of R�.S3 nK;SU.2// by the restriction map

r WR�.S3 nK;SU.2//!R.T 2;SU.2//

intersect transversely at r.Œ��/.

Proof Consider the natural map p W R.T 2;SU.2// ! R.�K ;SU.2// induced from the embedding
�K ,! T 2. Let Œ�� 2R.�K ;SU.2// be an element such that tr.�.�K//D 2 cos.2˛�/. Then p�1.Œ��/D
S˛ �R.T 2;SU.2// by definition. Note that S˛ is contained in the smooth part of the pillowcase, and
Œ�� is also contained in the smooth part of R.�K ;SU.2// since the quotient singularity by the conjugacy
action of SU.2/ does not happen when ˛ ¤ 0; 1

2
. Thus the kernel of the map

dpŒ� 0� W TŒ� 0�R.T 2;SU.2//DH 1.T 2I ad �/! TŒ��R.�K ;SU.2//DH 1.�K I ad �/

induced on their tangent spaces is TŒ��S˛, where Œ� 0�D r.Œ��/. Note that R�.S3 nK;SU.2// is smooth
near Œ�� by Proposition 4.12. The composition of the natural maps

(4-12) TŒ��R.S3 nK;SU.2//DH 1.S3 nKI ad �/ j�!H 1.T 2I ad �/!H 1.�K I ad �/

is injective by our nondegeneracy assumption. Thus the image of H 1.S3 nKI ad �/ in H 1.T 2I ad �/
is independent of Ker.H 1.T 2I ad �/!H 1.�K I ad �//. This means that r.R�.S3 nK;SU.2/// and S˛
intersect transversely at r.Œ��/.

There is a relation between �˛.K/ and R�˛.S3 nK;SU.2//. We use the following inequality in the proof
of Proposition 4.22:

Lemma 4.21 Let K be a knot in S3. Assume that R�˛.S3 nK;SU.2// is nondegenerate. Then

j�˛.K/j � 2jR�˛.S
3
nK;SU.2//j

for ˛ 2
�
0; 1
2

�
with �K.e4�i˛/¤ 0.

Proof By Proposition 4.12, R�.S3 nK;SU.2//!R.T 2;SU.2// is an immersion to the smooth part
of the pillowcase. By Proposition 4.17 and Lemma 4.20, the immersed image of R�.S3 nK;SU.2//
intersects transversely to S˛. After taking a small perturbation, the image of R�;h.S3 n K;SU.2//
intersects to S˛ transversely and the number of intersection points do not change,

(4-13) jR�.S3 nK;SU.2//\ r�1.S˛/j D jR�;h.S3 nK;SU.2//\ r�1.S˛/j:
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If �K.e4�i˛/¤ 0 and the perturbation h is chosen so that it satisfies the conditions in [23, Lemma 5.1]
then the signed counting #R�;h˛ .S3 nK;SU.2/// can be defined, and

#R�;h˛ .S3 nK;SU.2//D�1
2
�˛.K/

holds by [23, Corollary 0.2]. On the other hand, the left side of (4-13) is just the size of the set
R�˛.S3 nK;SU.2// by definition.

Since K D Tp;q satisfies the assumption of Lemma 4.21, j�˛.Tp;q/j � 2jR�˛.S3 nTp;q;SU.2//j holds for
˛ 2

�
0; 1
2

�
with �Tp;q .e

4�i˛/¤ 0.

Proposition 4.22 Let p, q and r be positive and relatively coprime integers. The formula

�
1
2
�l=.2r/.Tp;q/D jR�l=.2r/.S

3
nTp;q;SU.2//j

holds for 1� l � r � 1 with �Tp;q .e
2�il=r/¤ 0.

For the proof we use the similar argument as in the proof of [2, Theorem 3.4].

Proof Consider a 4–ball B4 and a torus knot in its boundary Tp;q �S3D @B4, and take a Seifert surface
S for Tp;q as S � B4 and S \ @B4 D @S . The r–fold cyclic branched covering of B4 branched along S
is the Milnor fiber

M.p; q; r/D f.z1; z2; z3/ j z
p
1 C z

q
2 C z

r
3 D �g\B

6
�C3;

where � >0 is small enough. Furthermore, @M.p; q; r/D†.p; q; r/ is an r–fold cyclic branched covering
of @B4 D S3, branched along Tp;q . There is the following formula (see [13, Corollary 2.9]):

�
1
4
�.M.p; q; r//D jR�.†.p; q; r/; SU.2//j:

Using the signature formula in [41], Lemma 4.19 and decomposition of �.M.p; q; r// into the equivariant
signature �.M.p; q; r/I i

r
/, we have

�
1

2

r�1X
lD1

�l=.2r/.Tp;q/D

r�1X
lD1

jR�l=.2r/.S
3
nTp;q;SU.2//j:

Note that �l=.2r/.Tp;q/� 0 since Tp;q is a positive knot. If we assume that the inequality in Lemma 4.21
is strict for some l , then �1

4
�.M.p; q; r// < jR�.†.p; q; r//j, and this is a contradiction.

Proof of Theorem 1.9 When ˛ D 0 or 1
2

, �Tp;q D 0 and R�˛.S3 n Tp;q;SU.2// is empty. So we
consider the case ˛ 2

�
0; 1
2

�
with �Tp;q .e

4�i˛/ ¤ 0. Since the image of R�.S3 n Tp;q;SU.2// in the
pillowcase intersects S˛ transversely, there is a small � > 0 such that for any ˛0 2 .˛� �; ˛C �/ we have
�Tp;q .e

4�i˛/¤ 0 and

jR�.S3 nTp;q;SU.2//\ r�1.S˛/j D jR�.S3 nTp;q;SU.2//\ r�1.S˛0/j:
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Thus jR�˛.S3 n Tp;q;SU.2//j D jR�˛0.S
3 n Tp;q;SU.2//j. The Levine–Tristram signature is piecewise

constant and jumps at the roots of the Alexander polynomial. Hence �Tp;q .e
4�i˛/ D �Tp;q .e

4�i˛0/ if
� > 0 is small enough. We can find a positive integer r which is coprime to p and q, and a positive integer
l such that l=.2r/ 2 .˛� �; ˛C �/. Then

�
1
2
�l=.2r/.Tp;q/D jR�l=.2r/.S

3
nTp;q;SU.2//j

by Proposition 4.22. Thus we have

�
1
2
�˛.Tp;q/D jR�˛.S

3
nTp;q;SU.2//j:

5 Properties of instanton knot invariants and their applications

In this section, we give the proof of Theorem 1.1, our main theorem. The important consequence of
Section 5.1 is that the Floer chain C ˛� .Tp;qI�S / is supported only on the odd graded part. The key
argument is that the Frøyshov invariant of a knot K � S3 for an appropriate choice of coefficient S

reduces to the Levine–Tristram signature. This is a generalization of the corresponding result in [8] and
the argument is parallel. Section 5.2 gives the proof of Theorem 1.1 using this specific property of the
Floer chain complex zC ˛� .Tp;qI�S / and the Frøyshov knot invariant.

5.1 The Frøyshov knot invariant and the structure theorem

LetW be a compact oriented smooth 4–manifold with b1.W /D bC.W /D 0, whose boundary @W DY is
an integral homology 3–sphere. LetK�Y be an oriented knot and S�W be an embedded oriented surface
with @S DK. Throughout this subsection, we assume that S is an integral domain over R˛ . We define

K.A/ WD �.A/C
�
˛� 1

4

�
�.A/C˛2S �S and d˛.W; S/ WD 4K.Amin/�g.S/�

1
2
�˛.Y;K/� 1

for each holonomy parameter ˛ 2
�
0; 1
2

�
\Q. Here Amin is a minimal reducible, and note that K.Amin/ is

independent of the choice of minimal reducibles. Moreover d˛.W; S/ is an integer by the index theorem.
The value of the Frøyshov knot invariant is evaluated by the following proposition:

Proposition 5.1 Let .W; S/ and .Y;K/ be as above and ˛ 2
�
0; 1
2

�
\Q satisfy �.Y;K/.e4�i˛/¤ 0. If

d WD d˛.W; S/� 0 then there is a cycle c˛.W; S/ 2 C ˛
2dC1

.Y;KI�S / satisfying

ı1v
j .c˛.W; S//D

�
0 if 0� j < d;
�˛.W; S/ if j D d:

Proof We define c˛.W; S/ 2 C ˛
2dC1

.Y;KI�S / by

hc˛.W; S/; ˇi D
X

ŒA�2M.W;S Iˇ/0

�.A/��0��.A/T �.A/��0 ;

where M.W; S; ˇ/0 is a zero-dimensional moduli space. Since dc˛.W; S/ corresponds to the counting
of the boundary of the 1–dimensional moduli space M ˛.W; S Iˇ0/C1 , we have dc˛.W; S/ D 0. Let
M.W; S; �˛/2dC1 be the moduli space of instantons A over .W; S/ which are asymptotic to �˛ and
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satisfy �.A/D �.Amin/. If d � 0 then we can perturb the ASD equation so that each reducible connection
in Mz.W; S I �˛/2dC1 has a neighborhood which is homeomorphic to the cone of CPd . Removing
small .2dC1/–balls of each reducible point from Mz.W; S I �˛/2dC1, we get a .2dC1/–manifold M 0z
whose boundary is

F
.˙CPd /, where the sign˙ is determined by the orientation of each reducible point.

Cutting downM 0z by codimension 2 divisors fVig1�i�d associated to d points in S ,M 0z\V1\� � �\Vd is a
1–manifold with boundary. Then

P
z #@.M 0z\V1\� � �\Vd /�

�0��.z/T �.z/��0 D �˛.W; S/. On the other
hand,M 0z\V1\� � �\Vd has ends arising from the sliding end of instantons. Define  2C1.Y;KI�S / by

hˇ; i D
X
z

X
ŒA�

�.ŒA�/��0��.A/T �.A/��0 ;

where ŒA� runs through all elements in #.Mz.W; S Iˇ/2d \ V1 \ � � � \ Vd / for each z. Then  and
vdc˛.W; S/ are homologous. Since ı1 D �˛.W; S/, we have ı1vdc˛.W; S/ D �˛.W; S/. If j < d ,
Mz.W; S I �˛/2jC1 does not contain reducible points and we have ı1vj c˛.W; S/D 0.

Before the proof of Theorem 1.8, we state Lemma 5.2 and Proposition 5.3 related to two-bridge torus knots.

Lemma 5.2 For any ˛ 2
�
0; 1
2

�
there exists an integer k > 0 such that �˛.T2;2kC1/ D �2 and

�T2;2kC1.e
4�i˛/¤ 0.

Proof Consider the case ˛ � 1
4

. By [34, Proposition 1], �˛.T2;2kC1/ is given by

�˛.T2;2kC1/D n1�n2;

where n1 is the number of lattice points
˚
.1;m/ j

�
kC 1

2

�
.1C 4˛/ < m < 2kC 1

	
and n2 is the number

of lattice points
˚
.1;m/ j 0 < m <

�
kC 1

2

�
.1C 4˛/

	
. Thus �˛.T2;2kC1/D�2 if only if 1=.8kC 4/ <

˛ < 3=.8kC 4/. Moreover, note that the interval .1=.8kC 4/; 3=.8kC 4// does not contain any root of
�T2;2kC1.t/. Thus, for any ˛� 1

4
, we can find k>0 such that �˛.T2;2kC1/D�2 and�T2;2kC1.e

4�i˛/¤0.
For the case ˛ > 1

4
, it follows that �˛.T2;2kC1/D�2 if only if 1

2
�3=.8kC4/ < ˛ < 1

2
�1=.8kC4/ by

the flip symmetry.

Proposition 5.3 For any ˛ 2Q\
�
0; 1
2

�
, there is an integer k > 0 such that �T2;2kC1.e

4�i˛/¤ 0 and
h˛S .T2;2kC1/D 1.

Proof By Lemma 5.2, we can find an integer k>0 such that �˛.T2;2kC1/D�2 and�T2;2kC1.e
4�i˛/¤0.

Consider a cobordism of pairs .Wk; Sk/ obtained by the composition

.Wk; Sk/ W .S
3; U /! .S3; T2;3/! � � � ! .S3; T2;2k�1/! .S3; T2;2kC1/;

where .S3; T2;2i�1/! .S3; T2;2iC1/ is obtained by the crossing change of the knot. Put .W k; Sk/ WD

.D4;D2/[.S3;U / .Wk; Sk/. Then it is easy to see that b1.W k/D b
C.W k/D 0 and d˛.W k; Sk/D 0

by the similar argument as in Proposition 2.23. Applying Proposition 5.1 to the pair .W k; Sk/, we obtain
a cycle c˛.W k; Sk/ 2 C

˛
1 .T2;2kC1/ such that ı1c˛.W k; Sk/¤ 0. This implies that h˛S .T2;2kC1/¤ 0.

Since rankC ˛� .T2;2nC1/D 1, we have h˛S .T2;2kC1/D 1.
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Proof of Theorem 1.8 Consider a knot K � S3 and a holonomy parameter ˛ 2 Q \
�
0; 1
2

�
with

�K.e
4�i˛/¤ 0. Since K � S3 is homotopic to any knot, it can be deformed into lT2;2nC1 by positive

and negative crossing changes, where l D �1
2
�˛.K/. This operation defines a cobordism of pairs

.Œ0; 1��S3; S/ W .S3; K/! .S3; lT2;2nC1/ where S is an immersed surface with normal self-intersection
points. Let S 0 W lT2;2nC1 ! K be the inverse cobordism of S . Since �˛.K/ D �˛.lT2;2nC1/, two
cobordisms S and S 0 induce negative definite cobordisms. Let zmS W zC ˛� .KI�S /! zC

˛
� .lT2;2nC1I�S /

and zmS 0 W zC ˛� .lT2;2nC1I�S /! zC
˛
� .KI�S / be induced cobordism maps on S–complexes. Since two

immersed cobordisms S 0 ı S and S ı S 0 can be deformed into product cobordisms by finitely many
finger moves, their induced maps zmS 0ıS and zmSıS 0 are S–chain homotopic to the identity up to the
multiplication of unit elements by Proposition 3.28. By the functoriality of S–morphisms, zmS 0 ı zmS and
zmS ı zmS are S–chain homotopic to the identity up to the multiplication of unit elements. The proof is
completed by Remark 3.4.

The proof of Theorem 1.7 immediately follows from Theorem 1.8:

Proof of Theorem 1.7 Comparing Frøyshov invariants for both sides of

zC ˛� .KI�S /' C
˛
� .lT2;2kC1I�S /;

we obtain h˛S .K/D lh
˛
S .T2;2kC1/ where l D�1

2
�.K/. Since h˛S .T2;2kC1/D 1 by Proposition 5.3, we

obtain the desired formula.

Remark 5.4 Since S–chain homotopy equivalence of two S–complexes zC�' zC 0� implies chain homotopy
equivalence between C� and C 0�, assume that �˛.K/ � 0. Then Theorems 1.5 and 1.8 imply the
S–chain homotopy equivalence zC ˛� .KI�S / ' zC

˛
� .T2;2nC1I�S /

˝l , and hence we have the Euler
characteristic formula

�.C ˛� .KI�S //D l�.C
˛
� .T2;2nC1I�S //:

If �˛.K/ > 0 then there is an S–chain homotopy equivalence zC ˛� .KI�S /' zC
˛
� .�T2;2nC1I�S /

˝�l

and we have
�.C ˛� .KI�S //D�l�.C

˛
� .�T2;2nC1I�S //:

By Proposition 5.3, �.C ˛� .T2;2nC1I�S //D�1. On the other hand, �.C ˛� .�T2;2nC1I�S //D 1 since
if we reverse the orientation of the 3–manifold, the Z=4–grading of the chain complex changes so that
gr�Y .ˇ/� 3� grY .ˇ/, which follows from (2-4). In any case,

�.C ˛� .KI�S //D
1
2
�˛.K/:

Note that this formula for the Euler characteristic is independent of the choice of the coefficient S .

Proof of Theorem 1.10 Consider an arbitrary knotK �S3. For any holonomy parameter ˛ 2
�
0; 1
2

�
\Q

with�K.e4�i˛/¤0, the Floer chain complex C ˛� .KI�S / is defined and the relation h˛S .K/D�
1
2
�˛.K/

holds. By the definition of the Frøyshov knot invariant, we have lower bounds of Floer homology groups

rank I˛1 .KI�S /�
˙
�
1
4
�˛.K/

�
and rank I˛3 .KI�S /�

�
�
1
4
�˛.K/

˘
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for any knot K � S3 with �˛.K/� 0. In particular, K D Tp;q satisfies this condition. Using the equality
rank I�.Tp;q/D�12�˛.Tp;q/, we obtain

rank I˛1 .Tp;qI�S /D
˙
�
1
4
�˛.Tp;q/

�
; rank I˛3 .Tp;qI�S /D

�
�
1
4
�˛.Tp;q/

˘
:

Since I˛� .Tp;q/ is supported only on the odd graded part, we obtain the statement.

5.2 An application to knot concordance

In this subsection, we complete the proof of our main theorem (Theorem 1.1).

The operators Z˙1 and U˙1 extend to the S–complex zC� in the obvious way. We also introduce
the operator

Wi;j;k WD ı1v
iU kZj W zC�! zC�:

If degR.Z/ > degR./, the operator Z does not act on the filtered chain complex C Œ�1;R�� , and Wi;j

does not directly induce a map on zC Œ�1;R�� . For this reason, we introduce the map V Œ�1;R�
i;j;k

on the filtered
chain complex by the composition

zC
Œ�1;R�
� ,! zC

Œ�1;1�
�

Wi;j;k
����! zC

Œ�1;1�
� :

We also introduce the operator W ŒR0;R�

i;j;k
on the quotient filtered S–complex zC ŒR

0;R�
� by the composition

zC
ŒR0;R�
� ,! zC

Œ�1;1�
�

Wi;j;k
����! zC

Œ�1;1�
� � zC

ŒR0;1�
� :

Here, the last map is a natural quotient map.

Proposition 5.5 Let S WTp;q!Tp;q be a given self-concordance. Then there is a dense subset I �
�
0; 1
2

�
such that all elements in R˛.S3 n Tp;q;SU.2// extend to elements in R˛..S3 � Œ0; 1�/ n S;SU.2// for
any ˛ 2 I.

Proof We choose a dense subset I �
�
0; 1
2

�
such that Theorem 1.10 holds for Tp;q . Since all irreducible

critical points of the Chern–Simons functional of Tp;q are nondegenerate by Proposition 4.17, we can
choose a perturbation � so that it is supported away from flat connections. In particular, we can assume
that the chain complex C ˛� .Tp;qI�S / is generated by R�˛.S3 n Tp;q;SU.2//. Since the assertion for
˛ D 1

4
is proved in [8], we assume that ˛ ¤ 1

4
. In particular, we consider the case ˛ < 1

4
for a while.

Since the unique flat reducible �˛ with the holonomy parameter ˛ on S3 n Tp;q always extends to the
concordance complement, it is enough to consider the extension problem for irreducibles. We choose a
field S WDR˛˝Q. By Theorems 1.7 and 1.10 we have

h˛S .Tp;q/D�
1
2
�˛.Tp;q/D d;

where d WD rankC ˛� .Tp;qI�S /. This implies that there is a cycle ˇ0 2 C ˛� .Tp;qI�S / such that
ı1v

k.ˇ0/ D 0 if k < d � 1 and ı1vd�1.ˇ0/ ¤ 0. Put ˇi WD vi .ˇ0/ for 0 � i � d � 1. The chain
complex C ˛� .Tp;qI�S˛ / admits a .Z�R/–bigrading by fixing lifts Q�1; : : : ; Q�d of singular flat connections
�1; : : : ; �d 2R�˛.S3nTp;q;SU.2//. In particular, we may assume that degZ. Q�i /D1 or 3 by Theorem 1.10.

Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5105

degR

degZ

degZ D 2d � 1degZ D 2d � 3degZ D 5degZ D 3degZ D 1degZ D 0

R

ı1

v

v

v

v

v

Ǒ
0

Ǒ
1

Ǒ
d�3

Ǒ
d�2

Ǒ
d�1

Q�˛

Figure 3: Elements Ǒ0; : : : ; Ǒd�1 and their .Z�R/–gradings.

Using properties of elements ˇ0; : : : ; ˇd�1, we fix elements Ǒ0; : : : ; Ǒd�1 2 C ˛� .Tp;qI�S˛ /
Œ�1;1� in

the following way. Firstly, there exists a cycle Ǒd�1 such that degZ.
Ǒ
d�1/D 1 and satisfying

ı1. Ǒd�1/D
X
k�0

ckZ
k Q�˛

with c0 ¤ 0 since ı1.ˇd�1/¤ 0. Next, choose an element Ǒi . Then Ǒi�1 is defined as a cycle satisfying

v. Ǒi�1/D Ǒi :

Finally, we obtain cycles Ǒ0; : : : ; Ǒd�1 by induction.

Note that degZ.
Ǒ
i / D 2.d � 1/� 2i and 0 � degR.

Ǒ
i�1/ � � � � � degR.

Ǒ
0/. We fix R > 0 so that it

satisfies degR.
Ǒ
0/ < R and R … C �; see Figure 3.

Let �� < 0 be a small negative number such that an interval Œ��; 0/ does not contain any critical value of
the Chern–Simons functional CS. Our aim is to show that the cobordism map mS on the quotient filtered
chain zC ˛� .Tp;qI�S /

Œ��;R� is an isomorphism.
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Since zmS preserves the Z–grading, it is enough to show that zmS is an isomorphism onC ˛1 .Tp;qI�S /
Œ��;R�

and C ˛3 .Tp;qI�S /
Œ��;R�. We claim that C ˛1 .Tp;qI�S /

Œ��;R� and C ˛3 .Tp;qI�S /
Œ��;R� are generated by

elements of the form

fZjU 2kC1�.d�1/ Ǒ2kC1 j k;m2kC1 � j � n2kC1g or fZjU 2k�.d�1/ Ǒ2k j k;m2k � j � n2kg

over Q. To see this, consider the linear combination

(5-1)
X

0�i�d�1

X
mj�j�ni

ci;jZ
jU i�.d�1/ Ǒi D 0;

where ci;j are rational coefficients. Then we consider applying operators W Œ��;R�

i;j;k
to (5-1). Firstly,

we apply the operator for .i; j; k/D .0;�nd�1; 0/. Then we get c0;nd�1ı1. Ǒd�1/D 0 with ı1. Ǒd�1/
nonzero. Since S is an integral domain, cd�1;nd�1 D 0. Next, we apply the operator W Œ��;R�

.i;j;k/
for

.i; j; k/D .0;�nd�1C 1; 0/ to (5-1). Then we obtain cd�1;nd�1�1 using cd�1;nd�1 D 0. Inductively,
we obtain

cd�1;nd�1 D � � � D cd�1;md�1 D 0

by applying operators W Œ��;R�
0;�nd�1;0

; : : : ;W Œ��;R�
0;�md�1;0

. We repeat a similar arguments using the operators
fW Œ��;R�

1;j;1 gmd�2�j�nd�2 , and obtain

cd�2;nd�2 D � � � D cd�2;md�2 D 0:

Inductively, we conclude that
ci;ni D � � � D ci;mi D 0

for all 0� i � d � 1. So fZjU i�.d�1/ Ǒig for 0� i � d � 1 and mi � j � ni are linearly independent.

Put Ǒ0i WD mS . Ǒi /. Since the induced cobordism map zmS on an S–complex satisfies the relations
in Proposition 3.15, the elements Ǒ0; : : : ; Ǒd�1 have the same properties, and the same technique
shows that fZjU i�.d�1/ Ǒ0ig for 0 � i � d � 1 and mi � j � ni are linearly independent. Moreover,
degR.

Ǒ
i / D degR.

Ǒ0
i / by the construction of elements f Ǒig. We conclude that the map mS is an

isomorphism on C ˛1 .Tp;qI�S˛ /
Œ��;R� and C ˛3 .Tp;qI�S˛ /

Œ��;R�.

Note that the chain complex C ˛� .Tp;qI�S / is generated by those irreducible singular flat connections.
Then the degree 1 part C ˛1 .Tp;qI�S /

Œ��;R� of the quotient filtered chain complex is generated by elements
of the forms fZj Q�1gm1�j�n1 ; : : : ; fZ

j Q�lgml�j�nl over Q. We order these generators by values of the
Chern–Simons functional. Then the cobordism map mS can be represented by the form

(5-2)

26666664
L1 O � � �

L2 O � � �

: : : O � � �

: : : O

Lk

37777775 ;

where diagonal blocks Li are components that correspond to the basis with the same value of the Chern–
Simons functional. Note that components in Li are defined by counting (perturbed) flat connections
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over the concordance complement. Since mS is an isomorphism on the degree 1 part, the matrix (5-2) is
invertible over Q. Hence each diagonal block Li is also invertible. In particular, they do not contain any
zero-column. Since the regular condition on moduli space is an open condition with respect to choices of
perturbation, all flat connections �1; : : : ; �l extend to flat connections over the concordance complement.
The similar argument works for �lC1; : : : ; �d , and thus all elements in R�˛.S3 nTp;qI�S / extend to the
concordance complement.

Finally, we consider the case ˛ > 1
4

. Here we only change the above argument at the following point:
We apply the operator W Œ��;R�

0;�md�1
on (5-1) the first time. Then we obtain cd�1;md�1 D 0. Next we apply

the operator W Œ��;R�
0;�md�1C1;0

and obtain cd�1;md�1�1 D 0. We inductively obtain cd�1;nd�1 D � � � D
cd�1;md�1 D 0. The rest of the argument proceeds similarly, and finally all coefficients in (5-1) vanish.

Proof of Theorem 1.1 Let S W Tp;q ! K be a given concordance. Then we can construct a concor-
dance S ı S W Tp;q ! K ! Tp;q by the composition, where S is the opposite concordance of S . By
Proposition 5.5 there exists a dense subset I�

�
0; 1
2

�
such that there is a extension R˛.S3nTp;q;SU.2//!

R˛..S3 � Œ0; 1�/ nS ıS;SU.2// for any ˛ 2 I. Let ˛ 2
�
0; 1
2

�
be any holonomy parameter and consider

the representation � W �1.S3 nTp;q/! SU.2/ with

�.�Tp;q /�

�
e2�i˛ 0

0 e�2�i˛

�
:

Then we can choose a sequence f˛ig � I such that limi!1 ˛i D ˛ and SU.2/ representations �i of
�1.S

3 nTp;q/ with

�i .�Tp;q /�

�
e2�i˛i 0

0 e�2�i˛i

�
;

since �i extends to an SU.2/ representation ˆi W �1..S3 � Œ0; 1�/ nS ıS/! SU.2/ and we can choose a
convergent subsequence of fˆig with the limiting representation ˆ1 W �1..S3� Œ0; 1�/nS ıS/! SU.2/.
(Since SU.2/ is compact, we can choose a convergent subsequence fˆi .xj /gi for each generator xj of
�1..S

3 � Œ0; 1�/ nS ıS/, and limi!1ˆi .xj / defines a limiting representation ˆ1.) By restriction, we
get a representation �1..S3 � Œ0; 1�/ nS/! SU.2/ which is the extension of �.

Appendix The connected sum theorem

In this section, we give the proof of the connected sum theorem. The connected sum theorem for
nonsingular settings was proved in [20], and the singular setting with ˛ D 1

4
was proved in [9]. We use

an argument similar to [9] to prove our connected sum theorem (Theorem 3.24). Let us recall the settings
which are introduced in [9, Section 6]. Let .Y;K/ and .Y 0; K 0/ be two given knots in integral homology
3–spheres. Fixing basepoints p 2K and p0 2K 0, we take a pair of the connected sum .Y #Y 0; K #K 0/
at these basepoints. We also fix a basepoint p# 2K #K 0. Construct a cobordism

.W; S/ W .Y tY 0; K tK 0/! .Y #Y 0; K #K 0/
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by attaching a pair of 1–handles .D1�D3;D1�D1/ to the product cobordism Œ0; 1��.Y tY 0; KtK 0/. Let

.W 0; S 0/ W .Y #Y 0; K #K 0/! .Y tY 0; K tK 0/

be a cobordism of the opposite direction. We define three oriented piecewise smooth paths  ,  0 and
#on S �W . Assume that these paths intersect the boundaries of the cobordism only at their edge points.
The path  starts from p 2 Y and ends at the basepoint p# 2 Y # Y 0. Similarly,  0 starts from p0 2 Y 0

and ends at p#, and # starts from p 2 Y and ends at p0 2 Y 0. Let us define the paths � , � 0 and �# in S 0

as mirrors of  ,  0 and #, respectively. We use the notation ˇ, ˇ0 and ˇ# (and their indexed versions)
for critical points of the perturbed Chern–Simons functional on .Y;K/, .Y 0; K 0/ and .Y #Y 0; K #K 0/,
respectively. Let �˛; � 0˛ and �#

˛ denote unique flat reducibles on .Y;K/, .Y 0; K 0/ and .Y #Y 0; K #K 0/,
respectively. We use the reduced notation for d–dimensional moduli spaces as follows:

Mz.ˇ; ˇ
0
Iˇ#/d WDMz.W; S Iˇ; ˇ

0; ˇ#/d and Mz.ˇ
#
Iˇ; ˇ0/d WDMz.W

0; S 0Iˇ#; ˇ; ˇ0/d :

We drop z from the notation above if we consider all unions of z. We define maps

H 
W B.W; S Iˇ; ˇ0; ˇ#/! S1 and H  0

W B.W; S Iˇ; ˇ0; ˇ#/! S1

as in Section 3.4. The moduli spaces cut down by these maps are defined by

M;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH

 .ŒA�/D sg;

M 0;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH

 0.ŒA�/D s0g;

M 0;z.ˇ; ˇ
0
Iˇ#/d WD fŒA� 2Mz.ˇ; ˇ

0
Iˇ#/dC1 jH

 .ŒA�/D s; H  0.ŒA�/D s0g;

where s 2 S1 is a generic point. The orientation of moduli spaces over .W; S/ is defined in the following
way. Let oW 2OŒW; S I �˛C; �

0
˛C; �

#
˛�� be the canonical homology orientation of .W; S/, and oˇ 2OŒˇ�,

oˇ 0 2 OŒˇ0� and oˇ # 2 OŒˇ#� be given orientations for generators. Then oˇ;ˇ 0Iˇ # 2 OŒW; S Iˇ; ˇ0Iˇ#� is
fixed so that the relation

ˆ.oˇ ˝ oˇ 0 ˝ oW /Dˆ.oˇ;ˇ 0Iˇ # ˝ oˇ #/

holds.

The argument of the proof consists of the following steps:

(I) A cobordism of pairs .W; S/ W .Y tY 0; K tK 0/! .Y #Y 0; K #K 0/ induces an S–morphism

zm.W;S/ W zC
˛
� .Y;K/˝

zC ˛� .Y
0; K 0/! zC ˛� .Y #Y 0; K #K 0/:

(II) A cobordism of pairs .W 0; S 0/ W .Y #Y 0; K #K 0/! .Y tY 0; K tK 0/ induces an S–morphism

zm.W 0;S 0/ W zC
˛
� .Y #Y 0; K #K 0/! zC ˛� .Y;K/˝ zC

˛
� .Y

0; K 0/:

(III) Put zC # WD zC ˛� .Y #Y 0; K #K 0/. The composition zm.W;S/ ı zm.W 0;S 0/ is S–chain homotopic to id zC #

up to the multiplication of a unit element in S .

(IV) The composition zm.W 0;S 0/ ı zm.W;S/ is S–chain homotopic to id zC˝ .
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A.1 Step I

We define a map zm.W;S/ as follows. Using the decomposition of the Floer chain group

C˝ D .C ˝C 0/�˚ .C ˝C
0/��1˚C�˚C

0
�;

we define four maps:

mD Œm1; m2; m3; m4� W .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0
�! C #

� ;

�D Œ�1; �2; �3; �4� W .C ˝C
0/�˚ .C ˝C

0/��1˚C�˚C
0
�! C #

� ;

�1 D Œ�1;1; �1;2; �1;3; �1;4� W .C ˝C
0/0˚ .C ˝C

0/�1˚C0˚C
0
0!S ;

�2 WS ! C #
�1:

Each component of the above maps is defined as follows:

hm1.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M#;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

hm2.ˇ˝ˇ
0/; ˇ#

i D
P
z

#Mz.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

hm3.ˇ/; ˇ
#
i D

P
z

#Mz.ˇ; �
0
˛Iˇ

#/0�
��.z/T �.z/; hm4.ˇ

0/; ˇ#
i D

P
z

#Mz.�˛; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�1.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M 0;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�2.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M;z.ˇ; ˇ
0
Iˇ#/0�

��.z/T �.z/;

h�3.ˇ/; ˇ
#
i D

P
z

#M;z.ˇ; �
0
˛Iˇ

#/0�
��.z/T �.z/;

h�4.ˇ
0/; ˇ#

i D
P
z

#M 0;z.�˛; ˇ
0
Iˇ#/0�

��.z/T �.z/;

�1;1.ˇ˝ˇ
0/D

P
z

#M#;z.ˇ; ˇ
0
I �#
˛/0�

��.z/T �.z/; �1;2.ˇ˝ˇ
0/D

P
z

#Mz.ˇ; ˇ
0
I �#
˛/0�

��.z/T �.z/;

�1;3.ˇ/D
P
z

#Mz.ˇ; �
0
˛I �

#
˛/0�

��.z/T �.z/; �1;4.ˇ
0/D

P
z

#Mz.�
0
˛; ˇ
0
I �#
˛/0�

��.z/T �.z/;

h�2.1/; ˇ
#
i D

P
z

#Mz.�˛; �
0
˛Iˇ

#/0�
��.z/T �.z/:

As described in [9, Remarks 6.10 and 6.11], notice that

� H�1
ˇˇ1
.s/\H�1

ˇˇ 0
.s0/\M.ˇ; ˇ1/2 D∅ for distinct regular values s; s0 2 S1,

� #M .ˇ; ˇ
0Iˇ#/� #M 0.ˇ; ˇ

0Iˇ#/D #M#.ˇ; ˇ0Iˇ#/.

Proposition A.1 There are the following relations:

d #
ımDm ı d˝;(A-1)

ı#
1 ımD�1 ı d

˝
C ı˝1 ;(A-2)

m ı ı˝2 D ı
#
2� d

#
ı�2;(A-3)

d #
ı�C� ı d˝ D v#

ım�m ı v˝C ı#
2 ı�1��2 ı ı

˝
1 :(A-4)

Algebraic & Geometric Topology, Volume 24 (2024)



5110 Hayato Imori

Proof The identity (A-1) decomposes into the following four relations:

d #m1 Dm1.d ˝ 1/Cm1.�˝ d
0/�m2.�v˝ 1/Cm3.�˝ v

0/Cm3.�˝ ı
0
1/Cm4.ı1˝ 1/;(A-5)

d #m2 Dm2.d ˝ 1/�m2.�˝ d
0/;(A-6)

d #m3 Dm3.�˝ ı
0
2/Cm3d;(A-7)

d #m4 D�m2.ı2˝ 1/Cm4d
0:(A-8)

The identity (A-5) is obtained by counting the boundary of the compactified moduli spaceMC
#;z

.ˇ;ˇ0Iˇ#/1

for each path z. In fact, the oriented boundary of MC
#;z

.ˇ; ˇ0Iˇ#/1 consists of the following types of
codimension 1 faces:

M#;z0.ˇ; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.ˇ; ˇ1/0 �M#;z00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; ˇ01/0 �M;z00.ˇ; ˇ

0
1Iˇ

#/0;

.�1/gr.ˇ/C1.H�1ˇˇ1.s/\Mz0.ˇ; ˇ1/1/�Mz00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/.H�1
ˇ 0ˇ 01

.s/\Mz0.ˇ
0; ˇ01/1/�Mz00.ˇ; ˇ

0
1Iˇ

#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; � 0˛/0 �Mz00.ˇ; �

0
˛Iˇ

#/0; MMz0.ˇ; �˛/0 �Mz00.�˛; ˇ
0
Iˇ#/0:

The identities (A-6)–(A-8) are obtained by counting the compactified moduli spaces MCz .ˇ; ˇ
0Iˇ#/1,

MCz .ˇ; �
0
˛Iˇ

#/1 andMCz .�˛; ˇ
0Iˇ#/1, respectively. We list up codimension 1 faces of each moduli space:

� codimension 1 faces of @MCz .ˇ; ˇ
0Iˇ#/1:

Mz0.ˇ; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.ˇ; ˇ1/�Mz00.ˇ1; ˇ
0
Iˇ#/0;

.�1/gr.ˇ/ MMz0.ˇ
0; ˇ01/0 �Mz00.ˇ; ˇ

0
1Iˇ

#/0;

� codimension 1 faces of @MCz .ˇ; �
0
˛Iˇ

#/1:

Mz0.ˇ; �
0
˛Iˇ

#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; .�1/gr.ˇ/ MMz0.�
0
˛; ˇ
0/0 �Mz00.ˇ; ˇ

0
Iˇ#/0;

MMz0.ˇ; ˇ1/�Mz00.ˇ1; �
0
˛Iˇ

#/0;

� codimension 1 faces of @MCz .�˛; ˇ
0Iˇ#/1:

Mz0.�˛; ˇ
0
Iˇ#
1/0 �

MMz00.ˇ
#
1; ˇ

#/0; MMz0.�˛; ˇ/0 �Mz00.ˇ; ˇ
0
Iˇ#/0;

MMz0.ˇ
0; ˇ01/0 �Mz00.�˛; ˇ

0
1Iˇ

#/0:

The relation (A-2) decomposes into the following four identities:

ı#
1m1 D�1;1.d ˝ 1/C�1;1.�˝ d

0/��1;2.�v˝ 1/C�1;2.�˝ v
0/C�1;3.�˝ ı

0
1/C�1;4.ı1˝ 1/;

ı#
1m2 D�1;2.d ˝ 1/��1;2.�˝ d

0/;

ı#
1m3 D�1;2.�˝ ı

0
2/C�1;3d C ı1;

ı#
1m4 D��1;2.ı2˝ 1/C�1;4d

0
C ı01:

Each relation is obtained by counting the boundaries of the compactified 1–dimensional moduli spaces
MC
#;z

.ˇ; ˇ0I �#
˛/1, MCz .ˇ; ˇ

0I �#
˛/1, MCz .�˛; ˇ

0I �#
˛/1 and MCz .ˇ; �

0
˛I �

#
˛/1 for each path z, and the
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argument is similar to the previous case. Note that M.�˛; � 0˛I �
#
˛/0 consists of the unique reducible

connection. The relation (A-3) reduces to

m3ı2Cm4ı
0
2 D ı

#
2� d

#�2;

and this reduces to the counting of the boundary of MCz .�˛; �
0
˛Iˇ

#/1 whose codimension 1 faces are

MMz0.�˛; ˇ/0 �Mz00.ˇ; �
0
˛Iˇ

#/0; MMz.�
0
˛; ˇ
0/0 �Mz00.ˇ; ˇ

0
I �#
˛/0;

MMz0.�˛; �
0
˛I �

#
˛/0 �

MMz00.�
#
˛; ˇ

#/0; Mz0.�˛; �
0
˛Iˇ

#
1/�

MMz00.ˇ
#
1; ˇ

#/:

The relation (A-4) reduces to four identities:

d #�1C�1.d ˝ 1/C�1.�˝ d
0/��2.�v˝ 1/C�2.�˝ v

0/C�3.�˝ ı
0
1/C�4.ı1˝ 1/

D v#m1�m1.v˝ 1/C ı
#
2�1;1;

d #�2C .d ˝ 1/��2.�˝ d
0/D v#m2�m2.v˝ 1/Cm4.ı1˝ 1/;

d #�3C�2.�˝ ı
0
2/C�3d D v

#m3�m3vC ı
#
2�1;3��2ı1;

d #�4��2.ı2˝ 1/C�4d
0
D v#m4�m1.ı1˝ 1/�m4v

0
C ı#

2�1;3��2ı
0
1:

These are obtained by counting the boundaries ofMC 0;z.ˇ; ˇ
0Iˇ#/1, MC;z.ˇ; ˇ

0Iˇ#/1, MC;z.ˇ; �
0
˛Iˇ

#/1

and MC 0 .�˛; ˇ
0Iˇ#/1; see also [9, Remark 6.11].

A.2 Step II

We have
m0 D Œm01; m

0
2; m

0
3; m

0
4�

T
W C #
�! .C ˝C 0/�˚ .C ˝C

0/��1˚C�˚C
0
�;

�0 D Œ�01; �
0
2; �
0
3; �
0
4�

T
W C #
�! .C ˝C 0/�˚ .C ˝C

0/��1˚C�˚C
0
�;

�01 W C
#
1 !S :

�02 D Œ�
0
2;1; �

0
2;2; �

0
2;3; �

0
2;4�

T
WS ! .C ˝C 0/�1˚ .C ˝C

0/�2˚C�1˚C
0
�1;

Each component of the above maps is defined as follows:

hm01.ˇ
#/; ˇ˝ˇ0i D

P
z

#Mz.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

hm02.ˇ
#/; ˇ˝ˇ0i D

P
z

#M�;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

hm03.ˇ
#/; ˇi D

P
z

#Mz.ˇ
#
Iˇ; � 0˛/0�

��.z/T �.z/; hm04.ˇ
#/; ˇ0i D

P
z

#Mz.ˇ
#
I �˛; ˇ

0/0�
��.z/T �.z/;

h�01.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M�;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

h�02.ˇ˝ˇ
0/; ˇ#

i D
P
z

#M�� 0;z.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/;

h�03.ˇ/; ˇ
#
i D

P
z

#M�;z.ˇ
#
Iˇ; � 0˛/0�

��.z/T �.z/;

h�04.ˇ
0/; ˇ#

i D
P
z

#M� 0;z.ˇ
#
I �˛; ˇ

0/0�
��.z/T �.z/;

h�01.1/; ˇ
#
i D

P
z

#Mz.ˇ
#
I �˛; �

0
˛/0�

��.z/T �.z/;
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�02;1.ˇ˝ˇ
0/D

P
z

#Mz.ˇ
#
Iˇ; ˇ0/0�

��.z/T �.z/; �02;2.ˇ˝ˇ
0/D

P
z

#M�;z.�
#
˛Iˇ; ˇ

0/0�
��.z/T �.z/;

�02;3.ˇ/D
P
z

#Mz.�
#
˛Iˇ; �

0
˛/0�

��.z/T �.z/; �02;4.ˇ
0/D

P
z

#Mz.�
#
˛I �
0
˛; ˇ
0/0�

��.z/T �.z/:

Proposition A.2 There are the following relations:

d˝ ım0 Dm0 ı d #;(A-9)

ı˝1 ım
0
D�01 ı d

#
C ı#

1;(A-10)

m0 ı ı#
2 D ı

˝
2 � d

˝
ı�02;(A-11)

d˝ ı�0C�0 ı d #
D v˝ ım0�m0 ı v#

C ı˝2 ı�
0
1��

0
2 ı ı

#
1:(A-12)

Proof The proof is similar to that of Proposition A.1. In this case, we consider the opposite cobordism
.W 0; S 0/.

A.3 Step III

Put .W o; So/ WD .W ıW 0; S ı S 0/. We define compositions of paths �# WD # ı �#, � WD  ı � and
�0 WD  0 ı � 0; see Figure 5. We regard the configuration space of connections over .W o; So/ as the
quotient of the space of SO.3/–adjoint connections by the determinant 1 gauge group G. Then there is an
exact sequence

G ,! Ge�H 1.W o
IZ2/;

where Ge is an SO.3/–gauge transformation and the second map gives the obstruction to lifting an
SO.3/–automorphism to an SU.2/–automorphism over the 1–skeleton. There is an action of Ge=G Š
H 1.W o;Z2/Š Z2 on the configuration space. In particular, there is an involution on the moduli space
M.W o; SoIˇ#; ˇ#

1/d and we denote its quotient by M.W o; SoIˇ#; ˇ#
1/
e
d

. We define

M�#Iz.W
o; SoIˇ#; ˇ#

1/
e
0 WD fŒA� 2Mz.W

o; SoIˇ#; ˇ#
1/
e
1 jH

�#
.ŒA�/D sg;

M�#�Iz.W
o; SoIˇ#; ˇ#

1/
e
0 WD fŒA� 2Mz.W

o; SoIˇ#; ˇ#
1/
e
2 jH

�#
.ŒA�/D s;H �.ŒA�/D s0g:

The cardinality of these moduli spaces is half of that of the usual ones. Assume that .W o; So/ is equipped
with a Riemannian metric with a long neck along the cylinder Œ0; 1�� .Y tY 0; K tK 0/. Then we have a
good gluing relation

M�#.W o; SoIˇ#; ˇ#
1/
e
0 D

F̌
;ˇ 0
M�#.W 0; S 0Iˇ#; ˇ; ˇ0/0 �M.W; S Iˇ; ˇ

0
Iˇ#
1/0

t
F̌
;ˇ 0
M.W 0; S 0Iˇ#; ˇ; ˇ0/0 �M#.W; S Iˇ; ˇ0Iˇ#

1/0

t
F

ˇ 02C0�
M.W 0; S 0Iˇ#; �˛; ˇ

0/0 �M.W; S I �˛; ˇ
0
Iˇ#
1/0

t
F
ˇ2C�

M.W 0; S 0Iˇ#; ˇ; �˛/0 �M.W; S Iˇ; �
0
˛Iˇ

#
1/0:
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Figure 4: The family of metrics Go.

Let zm.W o;So;�#/ W
zC #
�!

zC #
� be an S–morphism whose components mo, �o, �o1 and �o2 are defined by

hmo.ˇ#/; ˇ#
1i D

P
z

#M�#;z.W
o; SoIˇ#; ˇ#

1/
e
0�
��.z/T �.z/;

h�o.ˇ#/; ˇ#
1i D

P
z

#M�#�;z.W
o; SoIˇ#; ˇ#

1/
e
0�
��.z/T �.z/;

�o1.ˇ
#/D

P
z

#M�#;z.W
o; SoIˇ#; �#

˛/
e
0�
��.z/T �.z/;

�o2.1/ˇ
#
D
P
z

#M�#;z.W
o; SoIˇ#; �#

˛/
e
0�
��.z/T �.z/:

Proposition A.3 We have that zm.W;S/ ı zm.W 0;S 0/ is S–chain homotopic to zm.W ıW 0;SıS 0I�#/.

Proof LetGo be the 1–parameter family of metrics which stretch the cobordism .W o; So/ as in Figure 4.
We modify the definition of the S–chain homotopy in [9, Proposition 6.16] in the following way:

hKo.ˇ#/; ˇ#
1i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; ˇ#
1/
e
0 jH

�#
.ŒA�/D s

o
���.z/T �.z/;

hLo.ˇ#/; ˇ#
1i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; ˇ#
1/
e
0 jH

�#
.ŒA�/D s;H �.ŒA�/D t

o
���.z/T �.z/;

hM o
1 .ˇ

#/; 1i D
P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoIˇ#; �#/e0 jH
�#
.ŒA�/D s

o
���.z/T �.z/;

hM o
2 .1/; ˇ

#
i D

P
z

#
n
ŒA� 2

S
g2Go

M g
z .W

o; SoI �#
˛; ˇ

#/e0 jH
�#
.ŒA�/D s

o
���.z/T �.z/:

The rest of the argument is similar to [9, Proposition 6.16], and we can check that

H o
D

24Ko 0 0

Lo �Ko M o
2

M o
1 0 0

35
gives an S–chain homotopy from zm.W o;So/ to zm.WtW 0;StS 0/.

��#

Figure 5: Paths on .W o; So/.
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Proposition A.4 We have that zm.W ıW 0;SıS 0I�#/ is S–chain homotopic to id zC # , up to the multiplication
of a unit element in S .

Proof As in the proof of [9, Proposition 6.17], we consider the decomposition,

.W o; So/D .W c ; Sc/[ .S1 �D3; S1 �D1/

along .S1�S2; S1�2pt/. We arrange the perturbation data on .S1�D3; S1�D1/ and the gluing region
so that it is supported away from the moduli space of flat connections. Define the map zmC as zm.W o;So;�#/,
but using the metric on .W o; So/ which is stretched along the gluing region .S1 � S2; S1 � 2pt/. We
write mC, �C, �C1 and �C2 for corresponding components of zmC.

Let �1 be a generator of the S2n2pt factor and �2 be a generator of the S1 factor in �1.S1�S2nS1�2pt/.
The equivalence classes of the critical point set C of the Chern–Simons functional on .S1�S2; S1�2pt/
can be identified with

R˛.S1 �S2 nS1 � 2pt/D fˇ 2 Hom.�1;SU.2// j trˇ.�1/D 2 cos.2�˛/g=SU.2/

by the holonomy correspondence. The character variety R˛.S1 � S2 n S1 � 2pt/ is identified with
S1 as follows. Let �1 be a generator of �1.S1 � .S2 n 2pt// arising from the S2 n 2pt factor, and �2
be another generator arising from the S1 factor. Since trˇ.�1/ D 2 cos.2�i˛/, there is an element
gˇ 2 SU.2/ with gˇˇ.�1/g�1ˇ D e2�i˛ 2 S1. Since �1 and �2 commute and ˛ ¤ 0; 1

2
, there is

�.ˇ/ 2 Œ0; 2�/ and we have gˇˇ.�2/g�1ˇ D ei�.ˇ/ 2 S1. The correspondence ˇ 7! ei�.ˇ/ gives a
bijection R˛.S1 �S2 nS1 � 2pt/Š S1.

Let A be a singular flat connection which is the extension of � 2 C over .S1 �D3; S1 �D1/. Since all
elements in C have U.1/–stabilizer, dimH 0.S1 �D3 nS1 �D1I adA/D 1. Also,

dimH 1.S1 �D3 nS1 �D1I adA/D 1

by the computation of group cohomology of �1.S1 � .D3 nD1//. Thus the critical point set C D
R˛.S1 � .S2 n 2pt// is Morse–Bott nondegenerate. Consider the closed pair .S1 � S3; S1 � S1/ D
.S1 �D3; S1 �D1/[.S1�S2;S1�2pt/ .S

1 �D3; S1 �D1/. Then the gluing of the index formula is

2 indDAC dimCC dim Stab.�/D indDA#�A:

Since dimCD dim Stab.�/D 1 and indDA#�A D 0 by the index formula for a closed pair, indDA D�1.
This implies that

dimH 2.S1 �D3 nS1 �D1I adA/D 0;

and hence the gluing theory is unobstructed at the flat connection. Morse–Bott gluing theory tells us that
the moduli space M�#.W o; SoIˇ#; ˇ#

1/0 has the structure of the union of fiber products as follows:

M.W c ; Sc Iˇ#; ˇ#
1/d �CM�#.S1 �D3; S1 �D1/irred

d 0 for d C d 0 D 1;

M.W c ; Sc Iˇ#; ˇ#
1/1 �CM�#.S1 �D3; S1 �D1/red:

The first case is excluded for index reasons.

Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5115

Consider the restriction map
r 0 WM�#.S1 �D3; S1 �D1/red

! C:

By the holonomy condition H �#
.ŒA�/D 1 on the moduli space M.S1 �D3; S1 �D1/, the image of r 0

consists of two points �; � 02C. Hence, if the metric on .W o; So/ has a long neck along .S1�S2; S2�2pt/,
the moduli space M�#.W o; SoIˇ#; ˇ#

1/ is two copies of

M.W c ; Sc Iˇ#; �; ˇ#
1/0 �M.S

1
�D3; S1 �D1I �/red:

In particular,P
z

#M�#;z.W
o; SoIˇ#; ˇ#

1/0�
��.z/T �.z/

D2
P
z

P
z0ız00Dz

#Mz0.S
1
�D3; S1�D1I �/red���.z

0/T �.z
0/#Mz00.W

c ; Sc Iˇ#; �; ˇ#
1/0�

��.z00/T �.z
00/

D2
� P
k�0

ckZ
k
�P
z00

#Mz00.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z00/T �.z

00/:

Since flat connections on .S1 �S2; S1 � 2pt/ uniquely extend to .S1 �D3; S1 �D1/, we have c0 D 1.

Since 2#M�#.W o; SoIˇ#; ˇ#
1/
e
0 D #M�#.W o; SoIˇ#; ˇ#

1/0, there is a unit element C1 2S and we have

hmC.ˇ#/; ˇ#
1i D C1

P
z

#Mz.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z/T �.z/:

The same argument withM�#�.W
o;SoIˇ#;�;ˇ#

1/0,M�#.W o;SoIˇ#;�;�#
˛/0 andM�#.W o;SoI�#

˛;�;ˇ
#
1/0

instead of M�#.W o; SoIˇ#; ˇ#
1/0 gives

h�C.ˇ#/; ˇ#
1i D C1

P
z

#M�;z.W
c ; Sc Iˇ#; �; ˇ#

1/0�
��.z/T �.z/;

h�C1 .ˇ
#/; 1i D C1

P
z

#Mz.W
o; SoIˇ#; �; �#

˛/0�
��.z/T �.z/;

h�C2 .1/; ˇ
#
1i D C1

P
z

#Mz.W
o; SoI �#

˛; �; ˇ
#
1/0�

��.z/T �.z/:

Replacing the pair .S1 �D3; S1 �D1/ with .D2 � S2;D2 � 2pt/, we obtain the product cobordism
Œ0; 1�� .Y #Y 0; K #K 0/. By stretching the metric on Œ0; 1�� .Y #Y 0; K #K 0/ along the attaching domain,
the moduli space M.Œ0; 1�� .Y #Y 0; K #K 0/ˇ#; ˇ#

1/0 has the structure of the union of fiber products

(A-13) M.W c ; Sc Iˇ#; ˇ#
1/�CM.D

2
�S2;D2 � 2pt/red:

Let A0 be an extended flat connection on .D2�S2;D2� 2pt/ of the flat connection � . Such A0 uniquely
exists. Moreover, it can be checked that the point ‚ is unobstructed as follows. Consider the closed pair

.S4; S2/ WD .D2 �S2;D2 � 2pt/[.S1�S2;S1�2pt/ .S
1
�D3; S1 �D1/

and the glued reducible flat connection A0 #� A on .S4; S2/. Then we have

indDA0#�A D indDA0 C dim Stab.�/C dimCC indDA:

Since b1.X/D bC.X/D 0 and S Š S2, the index formula for a closed pair shows that indDA0#A D�1.
Moreover, indDA D�1 by the previous argument. Thus indDA0 D�2.
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Y

Y 0

#
�# Q�

Q�0 N� N�0

Figure 6: Paths on .W I ; SI /.

Since dimH 0.D2 � .S2 n 2pt/I adA0/D 1 and dimH 1.D2 � .S2 n 2pt/I adA0/D 0 by the computation
of group cohomology, dimH 2.D2 � .S2 n 2pt/I adA0/ vanishes.

Now, the fiber product structure (A-13) implies that there is a unit element C2 2S and

hmC.ˇ#/; ˇ#
1i D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; ˇ#
1/0�

��.z/T �.z/:

Similarly

h�C.ˇ#/; ˇ#
1i D C2

P
z

#M�;z.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; ˇ#
1/0�

��.z/T �.z/;

�C1 .ˇ
#/D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/Iˇ#; �#
˛/0�

��.z/T �.z/;

h�C2 .1/; ˇ
#
i D C2

P
z

#Mz.Œ0; 1�� .Y #Y 0; K #K 0/I �#
˛; ˇ

#
1/0�

��.z/T �.z/:

Finally, there is a unit element c 2S and we have

zmC D c zmŒ0;1��.Y #Y 0;K#K0/:

The right-hand side is S–chain homotopic to the identity since it is induced from the product cobordism.
By construction, the unit element c has the top term 1, and hence zm.W ıW 0;SıS 0I�#/ is S–chain homotopic
to the identity up to the multiplication of a unit element in S .

A.4 Step IV

Set N� WD � ı  , N�0 WD � 0 ı  0, Q� WD � 0 ı  and Q�0 WD � ı  0; see Figure 6.

Proposition A.5 We have that zm.W 0;S 0/ ı zm.W;S/ is S–chain homotopic to zm.W 0ıW;S 0ıS/.

Proof Let GI be a 1–parameter family of metrics stretching .W I ; SI / WD .W 0 ıW;S 0 ı S/ along
.Y #Y 0; K #K 0/. Let zm.W I ;SI / be the cobordism map for .W I ; SI /. We claim that there is an S–chain
homotopy H I such that

Qd˝H I
CH I Qd˝ D zm.W 0;S 0/ ı zm.W;S/� zm.W I ;SI /:

Let us write each components of H I as

H I
D

24KI 0 0

LI �KI M I
2

M I
1 0 0

35 ;
Algebraic & Geometric Topology, Volume 24 (2024)



Instanton knot invariants with rational holonomy parameters and an application for torus knot groups 5117

where KI and LI are 4�4 matrices. Before defining each component of these matrices, we introduce the
notation

mIz .ˇ; ˇ
0; ˇ1; ˇ

0
1/ WD #

S
g2GI

M g
z .W

I ; SI ; ˇ; ˇ0Iˇ01; ˇ
0
1/�1;

mIı1;:::;ıd Iz.ˇ; ˇ
0; ˇ1; ˇ

0
1/

WD #
n
ŒA� 2

S
g2GI

M g
z .W

I ; SI ; ˇ; ˇ0Iˇ01; ˇ
0
1/d�1 jH

ı1.ŒA�/D s1; : : : ;H
ıd .ŒA�/D sd

o
;

where ı1; : : : ; ıd are elements in the set of paths f#; �#; N�; N�0; Q�; Q�0g. Then each component of KI , LI ,
M I
1 and M I

2 is given as follows:

� components of KI

hKI11.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI12.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIz .ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI13.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mIz .ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI14.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIz .�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI21.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI#;�#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI22.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI23.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mI�#Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI24.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hKI31.ˇ˝ˇ
0/; ˇ1i D

P
z
mI#Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI32.ˇ˝ˇ
0/; ˇ1i D

P
z
mIz .ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI33.ˇ/; ˇ1i D
P
z
mIz .ˇ; �

0
˛Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI34.ˇ
0/; ˇ1i D

P
z
mIz .�˛; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hKI41.ˇ˝ˇ
0/; ˇ01i D

P
z
mI#Iz.ˇ; ˇ

0
I �˛; ˇ

0
1/�
��.z/T �.z/;

hKI42.ˇ˝ˇ
0/; ˇ01i D

P
z
mIz .ˇ; ˇ

0
I � 0˛; ˇ

0
1/�
��.z/T �.z/;

hKI43.ˇ/; ˇ
0
1i D

P
z
mIz .ˇ; �

0
˛I �
0
˛; ˇ
0
1/�
��.z/T �.z/;

hKI44.ˇ
0/; ˇ01i D

P
z
mIz .�˛; ˇ

0
I � 0˛; ˇ1/�

��.z/T �.z/;
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� components of LI

hLI11.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI12.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIN�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI13.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mIN�Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/
��.z/

�
T �.z/;

hLI14.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mIN�0Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI21.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI22.ˇ˝ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�Iz.ˇ; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI23.ˇ/; ˇ1˝ˇ
0
1i D

P
z
mI�#; N�Iz.ˇ; �

0
˛Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI24.ˇ
0/; ˇ1˝ˇ

0
1i D

P
z
mI�#; N�0Iz.�˛; ˇ

0
Iˇ1; ˇ

0
1/�
��.z/T �.z/;

hLI31.ˇ˝ˇ
0/; ˇ1i D

P
z
mI#; N�Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI32.ˇ˝ˇ
0/; ˇ1i D

P
z
mIN�Iz.ˇ; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI33.ˇ/; ˇ1i D
P
z
mIN�0Iz.ˇ; �

0
˛Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI34.ˇ
0/; ˇ1i D

P
z
mI
Q�0Iz.�˛; ˇ

0
Iˇ1; �

0
˛/�
��.z/T �.z/;

hLI41.ˇ˝ˇ
0/; ˇ01i D

P
z
mI#; N�0Iz.ˇ; ˇ

0
I �˛; ˇ

0
1/�
��.z/T �.z/;

hLI42.ˇ˝ˇ
0/; ˇ01i D

P
z
mI
Q�Iz.ˇ; ˇ

0
I � 0˛; ˇ

0
1/�
��.z/T �.z/;

hLI43.ˇ/; ˇ
0
1i D

P
z
mI
Q�Iz.ˇ; �

0
˛I �
0
˛; ˇ
0
1/�
��.z/T �.z/;

hLI44.ˇ
0/; ˇ01i D

P
z
mIN�0Iz.�˛; ˇ

0
I � 0˛; ˇ1/�

��.z/T �.z/;

� components of M I
1

M I
1;1.ˇ˝ˇ

0/D
P
z
mI#Iz.ˇ; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

M I
1;2.ˇ˝ˇ

0/D
P
z
mIz .ˇ; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

M I
1;3.ˇ/D

P
z
mIz .ˇ; �

0
˛I �˛; �

0
˛/�
��.z/T �.z/; M I

1;4.ˇ
0/D

P
z
mIz .�˛; ˇ

0
I �˛; �

0
˛/�
��.z/T �.z/;

� components of M I
2

hM I
2;1.1/; ˇ˝ˇ

0
i D

P
z
mIz .�˛; �

0
˛Iˇ; ˇ

0/���.z/T �.z/;

hM I
2;2.1/; ˇ˝ˇ

0
i D

P
z
mI�#Iz.�˛; �

0
˛Iˇ; ˇ

0/���.z/T �.z/;

hM I
2;3.1/; ˇi D

P
z
mIz .�˛; �

0
˛Iˇ; �

0
˛/�
��.z/T �.z/; hM I

2;4.1/; ˇ
0
i D

P
z
mIz .�˛; �

0
˛I �˛; ˇ

0/���.z/T �.z/:
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component of (A-14) corresponding family of moduli spaces

(1, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/0 jH

#
.ŒA�/D s

	
(1, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/0

(1, 3)
S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; ˇ
0
1/0

(1, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; ˇ

0
1/0

(2, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/2 jH

#
.ŒA�/D s;H�#

.ŒA�/D t
	

(2, 2)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; ˇ
0
1/1 jH

�#
.ŒA�/D s

	
(2, 3)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; ˇ
0
1/1 jH

�#
.ŒA�/D s

	
(2, 4)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; ˇ

0
1/1 jH

�#
.ŒA�/D s

	
(3, 1)

˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; �
0
˛/1 jH

#
.ŒA�/D s

	
(3, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0Iˇ1; �
0
˛/0

(3, 3)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛Iˇ1; �
0
˛/1 jH

N�0.ŒA�/D t
	

(3, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0Iˇ1; �

0
˛/0

(4, 1)
˚
ŒA� 2

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0I �˛; ˇ
0
1/1 jH

#
.ŒA�/D s

	
(4, 2)

S
g2GI M

g
z .W

I ; SI Iˇ; ˇ0I � 0˛; ˇ
0
1/0

(4, 3)
S
g2GI M

g
z .W

I ; SI Iˇ; � 0˛I �
0
˛; ˇ
0
1/0

(4, 4)
S
g2GI M

g
z .W

I ; SI I �˛; ˇ
0I � 0˛; ˇ1/0

Table 1

Then we can check that there are the following identities:

d˝KI CKId˝ Dm0m�mI ;(A-14)

v˝KI � d˝LI C ı˝2 M
I
1 CL

Id˝�KIv˝CM I
2 ı
˝
1 D �

0mCm0�C�02�1��
I ;(A-15)

ı˝1 K
I
CM I

1 d
˝
D�01mC�1��

I
1 ;(A-16)

�d˝M I
2 �K

I ı˝2 Dm
0�2C�

0
2��

I
2 :(A-17)

The identities above are proved by counting oriented boundaries of corresponding moduli spaces. For
example, such moduli spaces for identity (A-14) are given in Table 1. Other identities can be proved in
similar ways.

Proposition A.6 We have that zm.W 0ıW;S 0ıS/ is S–chain homotopic to id zC˝ .

Proof Consider a family of metrics G0I on .W I ; SI / which stretch the cobordism along .S3; S1/ as in
Figure 7. Let zmI be the map defined by a long stretched metric on .W I ; SI /. The family of metrics G0I

gives an S–chain homotopy between zm.W I ;SI / and zmI . Let .W c0 ; Sc
0

/ be a disjoint union

.Y � Œ0; 1� nD4; K � Œ0; 1� nD2/t .Y 0 � Œ0; 1� nD4; K 0 � Œ0; 1� nD2/:

We can also define zmI by counting instantons on .W c0 ; Sc
0

/. We will show that zmI is an isomorphism of
S–complexes. We obtain a pair of cylinders Œ0; 1�� .Y tY 0; K tK 0/ by gluing back two pairs of disks
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Figure 7: Family of metrics G0I .

.D4;D2/ to .W c0 ; Sc
0

/. Consider the character variety C0 with the holonomy parameter ˛ on .S3; S1/.
For 0 < ˛ < 1

2
, C0 is a one-point set which consists of the unique flat reducible �˛ , and the moduli space

M.D4;D2I �˛/0 also consists of one element ‚˛ which is the unique extension of �˛ to D4 nD2. The
computation of group cohomology of �1.S3 nS1/ shows that dimH 1.S3 nS1I ad �˛/D 0. Taking the
double of .D4;D2/, we have the relation of indices

2 indD‚˛ C 1D indD‚˛#‚˛ :

Moreover, indD‚˛#‚˛ D �1 by the index formula for the closed pair .S4; S2/. Thus indD‚˛ D �1
and H 2.D4 nD2I ad‚˛/D 0. In particular, the gluing along C0 is unobstructed. The Morse–Bott gluing
argument shows that

M.Œ0; 1��Y; Œ0; 1��KIˇ; ˇ1/d DM.Œ0; 1��Y nD
4; Œ0; 1��K nD2Iˇ; �˛; ˇ

0/d ;

and similarly for the pair .Y 0; K 0/. Thus

#M g1

z .W I ; SI ; ˇ; ˇ0Iˇ1; ˇ
0
1/D#Mz0.W

I ; SI Iˇ; �˛; ˇ1/#Mz00.W
I ; SI Iˇ0; �˛; ˇ

0
1/

D#Mz0.Y �Œ0; 1�;K�Œ0; 1�Iˇ; ˇ1/#Mz00.Y
0
�Œ0; 1�;K 0�Œ0; 1�Iˇ0; ˇ01/:

Therefore zm.W I ;SI / is S–chain homotopic to the morphism zmprod which is induced from the product
cobordism .Y t Y 0; K tK 0/� Œ0; 1�. The S–morphism zmprod is an isomorphism of S–complexes (see
[9, Lemma 6.29]), and in fact S–chain homotopic to the identity by the formal argument.
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On the invariance of the Dowlin spectral sequence

SAMUEL TRIPP

ZACHARY WINKELER

Given a link L, Dowlin constructed a filtered complex inducing a spectral sequence with E2–page
isomorphic to the Khovanov homology Kh.L/ and E1–page isomorphic to the knot Floer homology
1HFK.m.L// of the mirror of the link. We prove that the Ek–page of this spectral sequence is also a link
invariant, for k � 3.

57K18

1 Introduction

Dowlin [2024] associated a filtered chain complex to a link L. The spectral sequence this filtered complex
gives rise to has E2–page isomorphic to the (reduced) Khovanov homology Kh.L/ and converges to the
knot Floer homology 1HFK.m.L// of the mirror of the link. The fact that the E2– and E1–pages of the
spectral sequence are link invariants, independent of the diagram used to construct the filtered complex,
suggests that the same may be true of all the higher pages of the spectral sequence. This is the main result
of this paper.

Theorem 1.1 For k � 2, the Ek–page of Dowlin’s spectral sequence does not depend on the diagram
used to construct the filtered complex, and is thus a link invariant.

This theorem provides a whole family of link invariants fEk.L/g
1
kD2

. The invariance of these higher
pages of the Dowlin spectral sequence helps us further decipher the connection between Khovanov
homology and knot Floer homology.

This result opens several research directions. The first is to find knots (or families of knots) which have
the same Khovanov homology and knot Floer homology, but are distinguished by these higher page
invariants. The ranks of Khovanov homology and knot Floer homology tend to coincide for knots with
few crossings [Rasmussen 2005], so finding such examples may be computationally difficult.

A second direction is to consider implications in the study of transverse links. Plamenevskaya [2006]
identified an invariant of transverse links  .L/ 2 Kh.L/, which we can think of as residing in the E2

page of the Dowlin spectral sequence. One could hope to define a countable family of transverse link
invariants f k.L/g

1
kD2

by taking the image of  on each higher page Ek for k � 2, in the style of
Baldwin [2011]. It might prove interesting to compare these invariants, especially the image of  on the
E1 page 1HFK.m.L// with known transverse link invariants [Baldwin et al. 2013].

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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A third direction for future work would be the investigate potential relationships between the s invariant
in Khovanov homology [Rasmussen 2010] and the � invariant in knot Floer homology [Ozsváth and
Szabó 2003]. For many knots, these invariants are related by the equation s D 2� ; however, we also know
of knots that break this rule [Hedden and Ording 2008]. Perhaps the spectral sequence could be used to
explain this (lack of a) pattern.

Organization

We begin by reviewing the construction of C�
2
.L/ in Section 2; as originally defined by Dowlin [2024],

this filtered complex induces the spectral sequence from Kh.L/ to 1HFK.m.L// for a given link L. In
Section 3, we prove that the homotopy type of this complex is invariant under a diagrammatic change
we call “relabeling vertices”. We then discuss MOY moves, another set of operations on diagrams, and
define maps associated to these moves in Section 4. With these in hand, we prove invariance of the higher
pages of the spectral sequence in Section 5.

Conventions

There are a few homological algebra conventions that we need to establish.

� We call our complexes chain complexes, despite the fact that our differentials usually have degree 1

with respect to the homological grading.

� Our filtrations are descending, which is to say that FiM � Fj M when i � j .

� A filtered quasi-isomorphism f WA!B is a filtered chain map which induces a quasi-isomorphism
between the associated graded complexes gr.f / W gr.A/ ! gr.B/. In other words, a filtered
quasi-isomorphism induces a quasi-isomorphism between E0–pages of spectral sequences, and
equivalently induces isomorphisms between E1–pages. If A and B are connected by a zigzag of
filtered quasi-isomorphisms, then they have the same weak filtered homotopy type, a relationship
which we denote by A' B.

� Because the E1–page of the filtered complex C�
2

is isomorphic to the Khovanov complex, and
not the Khovanov homology, we need to work with invariance maps which are not filtered quasi-
isomorphisms. Instead, they only induce quasi-isomorphisms on the E1–pages, or equivalently
induce isomorphisms on the E2–pages. We call these maps E1–quasi-isomorphisms (terminology
from [Cirici et al. 2020]). As above, we write A'1 B to denote that A and B are connected by a
zigzag of E1–quasi-isomorphisms.

� Since we work with two different notions of weak equivalence, we also need two different mapping
cones for a filtered map f W A ! B, denoted by cone.f / and cone1.f /. Both of them have
the same underlying unfiltered complex, but differ in the definition of the filtration. The former
filtration is defined to be Fi.cone.f // D FiA˚FiB, whereas the latter filtration is given by
Fi.cone1.f //D FiA˚Fi�1B.

Algebraic & Geometric Topology, Volume 24 (2024)
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2 The spectral sequence

In this section, we review the construction of the spectral sequence from Kh.L/ to 1HFK.L/ for a link L,
as originally defined by Dowlin [2024]. The spectral sequence arises from a filtered chain complex
C�

2
.D/ constructed from a partially singular braid diagram D associated to an unoriented link L. In

Section 2.A, we define these diagrams, and in Section 2.B we associate a filtered chain complex to each
such diagram. Finally, in Section 2.C, we discuss how to associate a partially singular braid diagram to
an unoriented link L, and we characterize the set of moves connecting any two such partially singular
braid diagrams.

2.A Partially singular braid diagrams

In this section, we define the types of diagrams we need to construct the spectral sequence.

We start by establishing some conventions regarding braid diagrams. If D is a closed braid diagram, we
can consider it as a 4–valent graph embedded in R2 with vertices V .D/ the set of crossings, and edges
E.D/ the set of arcs connecting these crossings. This agrees with the usual way of representing link
diagrams as graphs. Given a graph G, recall that a subdivision H of G is a graph obtained by adding
2–valent vertices along edges of G.

Definition 2.1 A (closed) partially singular braid diagram is an oriented graph embedded in R2 which
can be obtained as a subdivision of a closed braid diagram, equipped with the following extra information:

� a labeling of every 4–valent vertex as “positive”, “negative”, or “singular”,

� a further labeling of every singular vertex as either “fixed” or “free”, and

� exactly one distinguished edge, which is called the “decorated” edge.

An open partially singular braid diagram is defined identically to a closed one, except that it also has
2n 1–valent vertices (assuming n strands) corresponding to the endpoints of the strands. When drawing
partially singular braid diagrams, we indicate fixed singular vertices by drawing a circle around them, as

positive negative free fixed

Figure 1: The different types of vertices in a partially singular braid diagram.
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bivalent vertex decorated edge

Figure 2: Other features that can occur in a braid diagram.

in Figure 1; 2–valent vertices are drawn simply as dots on the strands, and the decorated edge is denoted
by two small lines, as in Figure 2.

Throughout, we assume the decorated edge is leftmost in the diagram. We also assume a fixed ordering
of the vertices whenever we consider a partially singular braid diagram D. We let Fixed.D/ denote the
set of fixed singular vertices of D and Free.D/ denote the set of free singular vertices of D.

A (fully) singular braid diagram is a partially singular braid diagram with no crossings. This type of
diagram may arise from resolving a partially singular braid diagram D in the following sense. Let D

be a partially singular braid diagram, with c.D/ the set of crossings of D; then a resolution, a function
I W c.D/ ! f0; 1g, gives a fully singular braid diagram DI by resolving each crossing according to
Figure 3. In words, the 0–resolution of a positive crossing is a singular vertex, and the 1–resolution is the
oriented smoothing with two subdivided edges. The 0– and 1–resolutions of a negative crossing are the
1– and 0–resolutions of a positive crossing, respectively. If a fully singular braid diagram S arises as a
complete resolution of a partially singular braid diagram D, then Fixed.S/D Fixed.D/, and Free.S/
contains all crossings in Free.D/ as well as those which were singularized in the resolution.

2.B The filtered complex C�

2
.D/

In this section, we recall Dowlin’s construction of the filtered chain complex C�
2
.D/ which gives rise to

the spectral sequence connecting Khovanov homology to knot Floer homology. Throughout, let D be a

0 1

1 0

Figure 3: The 0– and 1–resolutions of positive and negative crossings.
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a b

c d

Figure 4: The local edge labels around a vertex.

partially singular braid diagram and I a resolution of D giving rise to the fully singular braid diagram DI .
We first construct C�

2
.DI / for each resolution I , then combine these into a cube complex C�

2
.D/ by

adding “edge maps”.

To begin, label each edge of D by a unique integer from 1 to kD jE.D/j, and let R.D/DQŒU1; : : : ;Uk �

be the polynomial ring over Q generated by one variable for each edge. Note that, whenever crossings in
D are resolved to get a diagram D0, there is a natural bijection between edges in D and edges in D0, so we
can extend our edge labels to any resolution of D. To each vertex v 2V .D/ we associate two polynomials,
L.v/ and LC.v/. Label the adjacent edges to each vertex v 2 V .D/ as in Figure 4; if we draw the vertex
such that all edges are oriented upwards, then we label the edge in the top left by a, the remaining edges
by b, c, and d as we traverse clockwise from the edge labeled a. Define L.v/DUaCUb �Uc �Ud and
LC.v/D UaCUbCUc CUd .

One factor of C�
2
.DI / does not depend on the specific resolution but only on D; we denote this factor

by LC
D

. Let

LC
D
WD

O
v2Fixed.D/

R.D/
L.v/

//
R.D/

LC.v/

oo :

It should be noted that LC
D

is not a chain complex, but rather a matrix factorization (or curved complex).
A matrix factorization is a module M equipped with an endomorphism @ WM !M such that @2D! idM

for some potentially nonzero scalar !, which is called the potential of the matrix factorization. Despite
the fact that @ does not square to zero, we may still refer to it as a differential on M ; this is hopefully
clear from context. In the case of LC

D
, ! D

P
v2Fixed.D/L.v/LC.v/, which is often nonzero in R.D/.

Matrix factorizations are well-studied algebraic objects, but for our purposes we only need a few facts
about them; these can be found in Section 3.

The other factor of C�
2
.DI /, which is not the same for every I and depends on the specific resolution,

is the R.D/–module Q.DI / D R.D/=.L.DI /CN.DI //. Here, L.DI / and N.DI ) are two ideals
of R.D/. The first of these is the linear ideal L.DI /, defined as

L.DI / WD
X

v2Free.DI /

.L.v//:

The second is the nonlocal ideal N.DI /. Let � be a smoothly embedded disk in R2 that does not contain
the decorated edge, and such that the boundary only intersects D transversely at edges. Let In.�/ (resp.
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Out.�/) denote the set of edges that intersect the boundary of � and are oriented inward (resp. outward).
We define N.�/ to be the polynomial

N.�/ WD
Y

i2Out.�/

Ui �

Y
j2In.�/

Uj :

The nonlocal ideal N.DI / is then generated by N.�/ for all such embedded disks �:

N.DI / WD
X
�

.N.�//:

With the above definitions in hand, the complex C�
2
.DI / is then defined as

C�2 .DI / WDQ.DI /˝LC
D

WDR.D/=.L.DI /CN.DI //˝

� O
v2Fixed.D/

R.D/
L.v/

//
R.D/

LC.v/

oo

�
:

It is shown in [Dowlin 2024, Lemma 2.4] that the potential ! of LC
D

is contained in L.DI /CN.DI /,
and thus is zero in Q.DI /. Thus, the endomorphism of C�

2
.DI / induced by LC

D
squares to 0, so it is

truly a differential; we denote it by d0.

As a module, define
C�2 .D/ WD

M
I2f0;1gc.D/

C�2 .DI /:

The differential on C�
2
.D/ is defined as a sum d0C d1, where d0 is induced by the differential d0 on the

summands C�
2
.DI /, and d1 is induced by edge maps that we have yet to define. In order to do so, we

must first restrict the set of partially singular braid diagrams we are working with.

Definition 2.2 [Dowlin 2024, Definition 2.2] The set DR contains all partially singular braid diagrams
D satisfying the following conditions for all I 2 f0; 1gc.D/:

� DI is connected, and

� the linear terms L.v/ for v 2 Free.DI / form a regular sequence1 over R.D/=N.DI /.

The latter condition is an algebraic restriction which is used in the proof of Theorem 3.1. It is equivalent to
the existence of an ordering v1; : : : ; vk of the vertices in Free.DI / such that L.vj / is not a zero divisor in
R.D/=.N.DI /C .L.v1/; : : : ;L.vj�1/// for each 1� j � k. Since R.D/ is a graded ring and the linear
terms L.v/ are homogeneous of positive degree, if this condition is true for one ordering of Free.DI /, it
is true for every ordering.

For the rest of the definition of C�
2
.D/, we assume D 2 DR. Let I and J be two resolutions with I � J ,

ie I and J agree on all crossings except a single c 2 c.D/, where I.c/D 0 and J.c/D 1. Let v be the
vertex corresponding to c, and label the edges adjacent to v according to Figure 4.

1The R in DR likely stands for “regular”.
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The edge map dI;J W C�2 .DI /! C�
2
.DJ / depends on whether c is a positive or negative crossing. If I

and J differ at a positive crossing, let �C WQ.DI /!Q.DJ / be the unique R.D/–module map such that
�C.1/D 1, and define the edge map dI;J W C�2 .DI /! C�

2
.DJ / to be dI;J D �C˝ idLC

D
. Else, I and J

differ at a negative crossing v. In this case, let �� WQ.DI /!Q.DJ / be the unique R.D/–module map
such that ��.1/DUb�Uc , and define the edge map dI;J W C�2 .DI /! C�

2
.DJ / to be dI;J D ��˝ idLC

D
.

We may occasionally overload notation by referring to the edge map dI;J as �˙ when there is no risk of
confusion.

Combining all of these maps together into a single map induces d1 W C�2 .D/! C�
2
.D/, given by

d1 WD

X
I�J

�.I;J /dI;J :

Here, �.I;J / is a sign assignment, which is a labeling of the edges of the cube of resolutions by f˙1g

satisfying the property that every square face has an odd number of �1–labeled edges. Such a sign
assignment ensures that .d1/

2 D 0, and any two choices of � result in isomorphic complexes. As one
example, we may let �.I;J /D .�1/k , where k is the number of 1’s that come before the place at which
I and J differ, as in [Bar-Natan 2002]. We further abuse notation by referring to d1, the signed sum of
the edge maps dI;J for all I � J , itself as an edge map.

Consider C�
2
.D/ as a chain complex with total differential d0C d1. We filter C�

2
.D/ by weight in the

cube of resolutions, ie the filtration on C�
2
.D/ is given by

FpC�2 .D/ WD
M

w.I /�p

C�2 .DI /;

where w.I/D
P

c2c.D/ I.c/ is the weight of I , ie the number of 1–resolved crossings of DI . Note that
d0 preserves the weight, and d1 increases it by 1, so the differential on C�

2
.D/ is indeed filtered with

respect to this decomposition.

Remark 2.3 We could have alternately defined C�
2
.D/ by first defining C�

2
.S/ for fully singular braid

diagrams S , then defining C�
2
.D/ to be the mapping cone

C�2 .D/ WD cone1.�˝LC
D
/D .C�2 .D0/! C�2 .D1//;

where D0 and D1 above are the 0– and 1–resolutions of a particular crossing, and � WQ.D0/!Q.D1/

is the associated map of quotient modules. Iterating this construction produces a filtered complex that is
isomorphic to the one that we defined previously.

2.C Diagrams associated to a link

Each partially singular braid diagram gives rise to an unoriented link by taking the unoriented smoothing.

Definition 2.4 Let D be a partially singular braid diagram. The unoriented smoothing sm.D/ is the
unoriented link obtained from D by smoothing each singular vertex in the way that does not respect the
orientation.

Algebraic & Geometric Topology, Volume 24 (2024)



5130 Samuel Tripp and Zachary Winkeler

sm
��!

Figure 5: Unoriented smoothing of a crossing.

Figure 5 shows a local picture of smoothing a singular vertex, and Figure 6 gives an example of a partially
singular braid diagram and the link obtained by taking the unoriented smoothing.

When sm.D/ is an `–component link, we can construct a “reduced” version of C�
2
.D/. First, choose a

set of edges e1; : : : ; e` 2E.D/ such that each ei is on a distinct component of sm.D/. Then, let

yC2.D/ WD C�2 .D/˝
O

ei

.R.D/
Uei��!R.D//:

We define the differentials given by multiplication by Uei
to have weight filtration degree 1. Therefore, we

get a weight filtration on yC2.D/ induced by the above definition as a tensor product of filtered complexes.
This is the filtered complex that is used to define the spectral sequence relating Khovanov homology and
knot Floer homology.

Theorem 2.5 [Dowlin 2024, Theorem 1.6] Let D 2 DR be a partially singular braid diagram with
sm.D/DL. The spectral sequence induced by the weight filtration on yC2.D/ has E2–page isomorphic
to Kh.L/ and converges to 1HFK.L/.

Dowlin [2024] proves that every link can be realized as the unoriented smoothing of a diagram in DR

by first considering a braid whose plat closure is the desired link, then turning that braid into a partially
singular braid diagram. We go about things similarly, but instead choose a different way of embedding
braid closures into DR that better fits our particular invariance proofs.

sm
��!

Figure 6: A diagram D and its unoriented smoothing sm.D/.
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Figure 7: The partially singular braid diagram In in the case nD 3.

Proposition 2.6 Let L be an unoriented link. There is a partially singular braid diagram D 2 DR such
that sm.D/DL.

To prove Proposition 2.6, we make use of a special partially singular open braid diagram which we denote
by In. This open diagram In consists of 2n upward oriented strands with 2n�1 layers of singular vertices.
The layers are symmetric, meaning layer i has singular vertices between the same strands as layer 2n� i

for 1 � i < n. The first layer has a singular vertex between the strands n and nC 1. The second layer
has two singular vertices; one between strands n� 1 and n and one between strands nC 1 and nC 2. In
general, the i th layer has i consecutive singular vertices, beginning with one between strands nC 1� i

and nC 2� i and ending with one between strands n� 1C i and nC i . We let Fixed.In/ be the singular
vertices in layers n and nC 1, and let Free.In/ be the rest of the singular vertices. See Figure 7 for In in
the case nD 3.

Definition 2.7 Given a braid ˇ 2 Bn, let In.ˇ/ denote the partially singular braid diagram D built by
putting n downward-oriented strands to the right of ˇ, and putting In above and taking the braid closure.

Proof of Proposition 2.6 Given an unoriented link L, let ˇ be a braid with braid closure cl.ˇ/ isotopic
to L, the existence of which is guaranteed by Alexander’s theorem [1923]. The unoriented smoothing
sm.In.ˇ// is isotopic to the braid closure cl.ˇ/ of ˇ itself, so D D In.ˇ/ is a partially singular braid
diagram with sm.D/ isotopic to L. That D 2DR is an application of [Dowlin 2024, Lemma 7.1]. More
specifically, D contains a vertically mirrored copy of the open braid diagram S2n defined in [Dowlin
2024], where it is proven that any such diagram is in DR.

See Figure 8 for an example of the process of constructing a partially singular braid diagram with specified
unoriented smoothing.

Let DB D fIn.ˇ/ j ˇ 2 Bn; n 2 Zg be the set of partially singular braid diagrams constructed as above.2

Then we have the following classification theorem.

2Here, the B in DB stands for “braid”.
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�! �!

Figure 8: The process of constructing a partially singular braid diagram with smoothing isotopic
to a given knot.

Theorem 2.8 Two diagrams in DB have the same unoriented smoothing if and only if the under-
lying braids are connected by a finite sequence of Reidemeister II moves , Reidemeister III moves ,
(de)stabilizations , and conjugations.

Proof This is just Markov’s theorem [1936], repackaged.

Since DB �DR, we can construct the complex C�
2
.D/ for any D 2DB. We overload notation by writing

C�
2
.ˇ/ instead of C�

2
.In.ˇ// for ˇ 2Bn. We prove invariance of C�

2
.ˇ/ under the moves in Theorem 2.8

in Section 5 using maps defined in Section 4.

3 Vertex relabeling

Before we continue towards a proof of invariance, we detour to comment on a quirk of the construction
of C�

2
.D/. One natural question to ask is why C�

2
.D/ treats fixed and free singular vertices differently. It

turns out that, in order for H�.C�2 .D// to be isomorphic to 1HFK.sm.D//, our diagram D needs to be
in DR, which means satisfying the regular sequence condition. This condition cannot be satisfied unless
D contains sufficiently many fixed vertices in a sufficiently nice arrangement. On the other hand, we
only know how to define the edge maps dI;J on free vertices, so we cannot make all of our vertices fixed
either.

As a sort of compromise, we choose some of the vertices to be fixed and some to be free. We do not
need to worry about which choice we have made when proving invariance under Reidemeister moves II
and III in Section 5, since they only involve local pictures of diagrams which contain some crossings but
no singular vertices. While not a local move, we define stabilization to be compatible with our vertex
labeling as well. Conjugation, however, requires us to change which vertices are fixed and which are free;
this is what motivates the following theorem.
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While it is not immediately obvious, it turns out that the homotopy type of C�
2
.D/ does not depend on

the particular labeling of vertices as fixed or free in the following sense:

Theorem 3.1 If D;D0 2DR are identical partially singular braid diagrams up to relabeling of fixed and
free vertices , then C�

2
.D/' C�

2
.D0/.

To prove this, we need to introduce a slight variation on the technique of “excluding a variable” from
[Rasmussen 2015, Lemma 3.8] or [Khovanov and Rozansky 2008a, Proposition 9]. Both sources are also
good references for the relevant details on matrix factorizations, including the statement below on the
effect of change of basis on matrix factorizations.

We include the necessary details on matrix factorizations below. Let R be a ring. For a; b 2R, let fa; bg
denote the matrix factorization

fa; bg WDR
b
//
R

a
oo :

For Ea; Eb 2Rn, let

fEa; Ebg D

0BBB@
a1 b1

a2 b2
:::

:::

an bn

1CCCA
denote the matrix factorization

fEa; Ebg WD

nO
iD1

fai ; big D

nO
iD1

R
bi
//
R

ai

oo :

We have already seen a matrix factorization of this form; if we let Ea D .LC.v1/; : : : ;L
C.vn// and

Eb D .L.v1/; : : : ;L.vn// for a partially singular braid diagram D with Fixed.D/ D fv1; : : : ; vng, then
LC

D
D fEa; Ebg. By definition, the potential ! associated to the matrix factorization fEa; Ebg is

Ea � Eb D a1b1C � � �C anbn:

Starting with a matrix factorization fEa; Ebg, we can perform a change of basis operation to get an isomorphic
one. Specifically, sending Eei to Eei C c Eej for standard basis vectors Eei and Eej of Rn has the effect of
replacing the matrix factorization by fEa0; Eb0g, where

Ea0k D

�
Eak C cEaj if k D i;

ak otherwise;

and
Eb0k D

�
Ebk � c Ebi if k D j ;

bk otherwise:

For more details, see [Khovanov and Rozansky 2008a; Rasmussen 2015].
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Let C D fEa; Ebg be any matrix factorization over R. We can decompose

C D C 0
b1
//
C 0

a1

oo ;

where C 0 D fEa0; Eb0g is the factorization obtained by omitting the first components of Ea and Eb. Define
� W C ! C 0˝R=.b1/ by �..c1; c2//D c2˝ 1. Before proving Theorem 3.1, we first prove that if the
potential of C is 0 and b1 is a nonzero divisor in R, then � is a quasi-isomorphism.

Lemma 3.2 If the potential of C is 0 and b1 is a nonzero divisor in R, then � is a quasi-isomorphism of
chain complexes.

Proof It is clear that � is surjective; since b1 is a nonzero divisor, multiplication by b1 is injective, so
we have the following short exact sequence:

0 C 0 C 0 0 0

0 C 0 C 0 C 0˝R=.b1/ 0

1

1 b1

b1

a1b1 a1

Let C 00 denote the first nonzero column in this sequence, the matrix factorization

C 0
1
//
C 0

a1b1

oo :

By the corresponding long exact sequence in homology, it suffices to show that C 00 is acyclic in order to
prove that � is a quasi-isomorphism. We write C 00 in matrix form, then apply our above remarks about
change of basis: 0BBB@

a1b1 1

a2 b2
:::

:::

an bn

1CCCA�
0BBB@

a1b1C a2b2 1

a2 0
:::

:::

an bn

1CCCA�
0BBB@
! 1

a2 0
:::
:::

an 0

1CCCA :
Since we know that the potential ! D 0, we see that

C 00 D fEa0; E0g
1
//
fEa0; E0g

0
oo ;

and therefore is acyclic.

With this lemma, we can now prove that C�
2
.D/ is independent of vertex labeling for D 2 DR:

Proof of Theorem 3.1 Let S 2 DR be a fully singular braid diagram, and let w 2 Fixed.S/ be some
fixed vertex such that if w were instead free, the new diagram S 0 would still be in DR. Note that
R.S 0/DR.S/, and Q.S 0/DQ.S/=.L.w//. Since C�

2
.S/DQ.S/˝LC

S
, we may consider C�

2
.S/ as

the matrix factorization fEa; Ebg over R D Q.S/ with Ea D .LC.v//v2Fixed.S/ and Eb D .L.v//v2Fixed.S/.
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Assume without loss of generality that b1 DL.w/. Since S 0 2 DR, we know that the linear terms L.v/

for v 2 Free.S 0/ form a regular sequence over R.S 0/=N.S 0/DR.S/=N.S/, and in particular, L.w/ is
a nonzero divisor in Q.S/, since w 2 Free.S 0/. We then get that

C�2 .S/DQ.S/˝R.S/ LC
S

Š fEa; Ebg

'Q.S/=.L.w//˝Q.S/ .Q.S/˝R.S/ fEa
0; Eb0g/ (by Lemma 3.2)

'
�
Q.S/=.L.w//˝Q.S/Q.S/

�
˝R.S/ fEa

0; Eb0g (by associativity of ˝)

'Q.S/=.L.w//˝R.S/ fEa
0; Eb0g

ŠQ.S 0/˝R.S/ LC
S 0

ŠQ.S 0/˝R.S 0/ LC
S 0

(since R.S/DR.S 0/)

D C�2 .S
0/:

Therefore, we see that changing a fixed vertex to a free one in a fully singular diagram does not change
the homotopy type of C�

2
.�/ as long as both diagrams are in DR.

Now, we need to extend this result. Let D;D0 2 DR be partially singular braid diagrams that differ
only on the labeling of a single vertex w 2 Fixed.D/\Free.D0/. We know that C�

2
.DI /' C�

2
.D0

I
/ for

all I 2 f0; 1gc.D/. In particular, we have a map in one direction: � W C�
2
.DI /! C�

2
.D0

I
/ is a filtered

quasi-isomorphism inducing the above equivalence. Therefore, it suffices to show that � commutes with
the edge map d1, which is the sum of dI;J . Since � is linear over Q.S/, we get that it is additionally
R.S/–linear via the natural quotient map, and therefore commutes with scalar multiplication by elements
of R.S/. Since the edge maps dI;J are defined via scalar multiplication by 1 or Ub �Uc , we see that
� does in fact commute with the edge maps, and therefore extends to a filtered quasi-isomorphism
� W C�

2
.D/! C�

2
.D0/ by Lemma A.4.

Given any two diagrams D0;D00 2DR that differ only by some number of vertex labels, we can construct
a diagram D 2 DR with Fixed.D/D Fixed.D0/[Fixed.D00/, and therefore get that

C�2 .D
0/' C�2 .D/' C�2 .D

00/;

thus proving the general case.

4 MOY moves

Murakami, Ohtsuki, and Yamada [Murakami et al. 1998] studied local operations on singular diagrams
(“MOY moves”). While originally formulated for oriented planar trivalent graphs, they are relevant to
us because one can think of singular vertices in our braids and braid resolutions as pairs of trivalent
vertices instead. Two of these moves, MOY I and MOY III, represent planar isotopy when applied to the
unoriented smoothing of a diagram, and thus are useful to make up for the fact that we cannot isotope
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1 2

3 2 1

1

�I

�0
I

Figure 9: An MOY I move.

singularized crossings in the same ways that we can smoothed ones. The MOY II move corresponds to a
cup/cap cobordism, but is rather more limited in its application. Nevertheless, these three moves suffice
to define Reidemeister moves (and others) in Section 5. The maps that we choose to realize these moves
are inspired by those used in [Khovanov and Rozansky 2008a; 2008b].

In this section, we construct filtered chain maps relating C�
2
.D/ and C�

2
.D0/, where D and D0 are partially

singular braid diagrams connected by an MOY I, II, or III move.

4.A MOY I

Suppose D and D0 are partially singular braid diagrams that differ by an MOY I move, as illustrated
in Figure 9. In words, there is a fixed vertex v in D that meets the same edge e twice; without loss of
generality, e is to the right of v. The diagram D0 is then obtained from D by removing the edge e and
relabeling v as a bivalent vertex.

Theorem 4.1 There exist R.D0/–linear filtered quasi-isomorphisms

�I W C�2 .D/! C�2 .D
0/; �0I W C

�
2 .D

0/! C�2 .D/:

Under the identification E1.C�2 .�// Š CKh�.sm.�//, these maps induce the expected isomorphisms
corresponding to planar isotopy.

First, suppose S and S 0 are fully singular braid diagrams that differ by an MOY I move, as illustrated in
Figure 9. Specifically, S contains a fixed singular vertex v that meets the same edge twice. We would
like to construct filtered chain maps �I W C�2 .S/! C�

2
.S 0/ and �0I W C

�
2
.S 0/! C�

2
.S/. To start, let us

characterize C�
2
.S/ and C�

2
.S 0/.

Without loss of generality, assume that the edge which is deleted by the MOY I move is to the right of
the vertex. Label this edge with the variable U2, label the top left edge U1, and label the bottom left edge
with U3, again as in Figure 9.

Let R be the polynomial ring over all edges not shown in the local diagram; thus, R.S 0/DRŒU1� and
R.S/DR.S 0/ŒU2;U3�. We relate the associated quotient rings by the following proposition:

Proposition 4.2 As R.S 0/ modules , Q.S 0/ŠQ.S/=.U1CU2/.
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Proof We expand the right-hand side as a quotient of a free R.S 0/–module:

Q.S/=.U1CU2/ŠQ.S/˝R.S/R.S/=.U1CU2/

ŠR.S/=.L.S/CN.S//˝R.S/=.U1CU2/

ŠR.S/=.L.S/CN.S/C .U1CU2//

ŠR.S 0/ŒU2;U3�=.L.S/CN.S/C .U1CU2//

ŠR.S 0/ŒU2;U3�=.L.S/C zN .S/C .U2�U3/C .U1CU2//

ŠR.S 0/=.L.S/C zN .S//:

In the above, zN .S/ is the sum of the nonlocal relations other than U1�U3; this is exactly equal to N.S 0/,
as any region intersecting these local diagrams can be made to avoid U2 and any intersections with U3

can be isotoped to intersect U1 instead. Further, L.S/DL.S 0/. Thus,

Q.S/=.U1CU2/ŠR.S 0/=.L.S/C zN .S//DR.S 0/=.L.S 0/CN.S 0//DQ.S 0/;

as desired.

Proposition 4.3 The chain complexes C�
2
.S/ and C�

2
.S 0/ are quasi-isomorphic as complexes over R.S 0/.

Proof We can use Proposition 4.2 to expand C�
2
.S/:

C�2 .S/DQ.S/˝R.S/ LC
S

DQ.S/˝

�
R.S/

U1�U3
//
R.S/

U1C2U2CU3

oo ˝ zLC
S

�

ŠQ.S/˝R.S/
0

//
R.S/

2U1C2U2

oo ˝ zLC
S

(using relation U1�U3 in N.S/)

'Q.S/˝R.S/=.U1CU2/˝ zL
C

S
(replacing 2U1C 2U2 by the cokernel)

Š
�
Q.S/˝R.S/=.U1CU2/

�
˝ zLC

S

ŠQ.S 0/˝R.S 0/ LC
S 0

(by Proposition 4.2)

D C�2 .S
0/:

In the above, let

zLC
S
D

O
w2Fixed.D/nfvg

R.D/
L.w/

//
R.D/

LC.w/

oo ;

and note zLC
S
D LC

S 0
. Note that we may replace the mapping cone of 2U1C 2U2 by its cokernel in the

fourth line only after checking that 2U1C 2U2 is not a zero divisor in Q.S/; by the logic in the proof of
Proposition 4.2, we may choose a generating set of relations for N.S/CL.S/, none of which contain
a term with a nonzero power of U2. Therefore, Q.S/ is isomorphic to a free polynomial ring over U2;
since 2U1C2U2 is a unit multiple (over Q) of a monic polynomial in U2, we therefore get that it is not a
zero divisor in Q.S/.
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Figure 10: An MOY II move.

Let �I W C�2 .S/! C�
2
.S 0/ be the quotient map implied by the above calculations. Explicitly on a simple

tensor, �I.Œr �˝ .a; b/˝ Qs/D Œrb�˝ Qs. Let �0I W C
�
2
.S 0/! C�

2
.S/ be the splitting of �I given by inclusion

into the first R.S/ summand in the equivalence of R.S/=.U1CU2/ and

R.S/
0

//
R.S/

2U1C2U2

oo

in the above proof. Explicitly on a simple tensor, �0I.Œr �˝ Qs/D Œr �˝ .0; 1/˝ Qs.

For partially singular braid diagrams D and D0 related by an MOY I move, we extend both maps to the
cube of resolutions by defining �I W C�2 .DI /! C�

2
.D0

I
/ and �0I W C

�
2
.D0

I
/! C�

2
.DI / as above for each

I 2 f0; 1gc.D/.

Proof of Theorem 4.1 It is clear that �I and �0I are filtered maps, since they are defined componentwise
on the cube of resolutions.

We need to check that �I and �0I are chain maps, ie that they commute with the edge map d1. Let
I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then dI;J is given by

�C˝LC
D
D 1˝LC

D
:

Otherwise, dI;J is given by �� ˝LC
D
D .Ub � Uc/˝LC

D
. Either way, the edge maps are given by

multiplication by an element of R.D0/. Since �II and �0II were defined to be R.D0/–linear, we get that
they commute with d1.

4.B MOY II

Suppose D and D0 are partially singular braid diagrams with D0 the result of applying an MOY II move to
D and reducing the number of crossings, as shown in Figure 10. In words, D contains a free vertex v1, a
fixed vertex v2, and two edges e5 and e6 from v2 to v1. The diagram D0 is obtained from D by removing
e5 and e6 and merging v1 and v2 into a single fixed vertex.

Theorem 4.4 There exists a direct sum decomposition C�
2
.D/Š C�

2
.D0/˚C�

2
.D0/ as filtered chain

complexes over R.D0/. Define �II W C�
2
.D/ ! C�

2
.D0/ to be projection onto the second summand ,
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and define �0II W C�
2
.D0/ ! C�

2
.D/ to be inclusion into the first summand. Under the identification

E1.C�2 .�//Š CKh�.sm.�//, the maps �II and �0II induce the maps on Khovanov homology correspond-
ing to the cobordisms which delete and introduce a circle , respectively.

To start, let S and S 0 be fully singular braid diagrams again with S 0 the result of applying an MOY II
move to S reducing the number of crossings. Let R be the polynomial ring over all edges not shown in
the local diagrams, so that R.S 0/DRŒU1;U2;U3;U4�, and R.S/DR.S 0/ŒU5;U6�.

Proposition 4.5 As an R.S 0/–module , Q.S/ŠQ.S 0/h1i˚Q.S 0/hU6i.

Proof First, note that Q.S/DQ.S 0/ŒU5;U6�=.U5CU6 �U1 �U2;U5U6 �U1U2/. We do not need
to consider any other nonlocal relations, as any region � intersecting these diagrams can be isotoped
away from U5 and U6 to give an equivalent or stronger relation. We want to prove that f1;U6g is a
basis for Q.S/ over Q.S 0/. To see that f1;U6g is a generating set, it is enough to note that in Q.S/,
U5 D U1CU2�U6, and that .U1CU2�U6/U6�U1U2 D 0, so U 2

6
D .U1CU2/U6�U3U4. Linear

independence follows from the fact that U 2
6
� .U1CU2/U6CU1U2 is a monic polynomial of degree 2

in U6.

Using this proposition, we can decompose

C�2 .S/ŠQ.S/˝R.S/ LC
S

ŠQ.S/˝R.S/

� O
v2Fixed.S/

R.S/
L.v/

//
R.S/

LC.v/

oo

�

ŠQ.S/˝R.S/

� O
v2Fixed.S 0/

R.S/
L.v/

//
R.S/

LC.v/

oo

�

Š

O
v2Fixed.S 0/

Q.S/
L.v/

//
Q.S/

LC.v/

oo

Š

O
v2Fixed.S 0/

Q.S 0/h1i˚Q.S 0/hU6i

L.v/
//
Q.S 0/h1i˚Q.S 0/hU6i

LC.v/

oo

Š

� O
v2Fixed.S 0/

Q.S 0/h1i
L.v/

//
Q.S 0/h1i

LC.v/

oo

�
˚

� O
v2Fixed.S 0/

Q.S 0/hU6i

L.v/
//
Q.S 0/hU6i

LC.v/

oo

�
Š .Q.S 0/h1i˝R.S 0/ LC

S 0
/˚ .Q.S 0/hU6i˝R.S 0/ LC

S 0
/

Š C�2 .S
0/h1i˚C�2 .S

0/hU6i:

Define �II W C�2 .S/! C�
2
.S 0/ to be projection onto the second summand in the above decomposition,

and define �0II W C
�
2
.S 0/! C�

2
.S/ to be inclusion into the first summand. For partially singular braid

Algebraic & Geometric Topology, Volume 24 (2024)



5140 Samuel Tripp and Zachary Winkeler

1 2

5 6

3 4

1 2

3 4

1 2

5 6

3 4

1 2

3 4

�II

�0II

�II

�0II

Figure 11: Variations of the MOY II move.

diagrams D and D0 related by an MOY II move, we extend both maps to the cube of resolutions by
defining �II W C�2 .DI /! C�

2
.D0

I
/ and �0II W C

�
2
.D0

I
/! C�

2
.DI / as above for each I 2 f0; 1gc.D/.

Proof of Theorem 4.4 It is clear that �II and �0II are filtered maps, since they are defined componentwise
on the cube of resolutions. Next, we need to check that �II and �0II are chain maps, ie that they commute
with the edge map d1. Let I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then
dI;J is given by �C˝LC

D
D 1˝LC

D
. Otherwise, dI;J is given by ��˝LC

D
D .Ub �Uc/˝LC

D
. Either

way, the edge maps are given by multiplication by an element of R.D0/. Since �II and �0II were defined
to be R.D0/–linear, we get that they commute with d1.

We used a direct sum decomposition of C�
2
.S/ to define these maps on complete resolutions. We can

see this direct sum decomposition on the cube of resolutions as well. Specifically, we have a split exact
sequence:

0 C�
2
.D0/ C�

2
.D/ C�

2
.D0/ 0

�0II �II

1˝LC
D

.U6�U1/˝LC
D

Finally, we want to show that these maps induce the correct morphisms on the Khovanov complex. The
cobordism corresponding to the introduction of a circle is induced by multiplication by 1 [Bar-Natan
2005]. This should correspond to �0II, which we can see also induces multiplication by 1 on homology.
The cobordism corresponding to the deletion of a circle should send 1 7! 0 and X 7! 1, where X is a
variable associated to the shrinking circle. In our case, �II maps 1 7! 0 and U6 7! 1, inducing this same
map on homology.

One can repeat the same argument to show that we also have similar MOY II decompositions for the
cases in Figure 11.

4.C MOY III

Suppose D and D0 are fully singular braid diagrams with D0 the result of applying an MOY III move to D

and reducing the number of crossings, as shown in Figure 12. In words, D contains a fixed vertex v1, free
vertices v2 and v3, and edges e7 W v2! v1, e8 W v3! v1, and e9 W v3! v2. The diagram D0 is obtained
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Figure 12: An MOY III move.

from D by removing the edges e7, e8, and e9, merging v1 and v3 into a single fixed vertex, removing v2,
and merging e6 into e3.

Theorem 4.6 There exist R.D0/–linear filtered quasi-isomorphisms �III W C�
2
.D/ ! C�

2
.D0/ and

�0III W C
�
2
.D0/! C�

2
.D/. Furthermore , C�

2
.D0/ is isomorphic to a direct summand of C�

2
.D/. Under the

identification E1.C�2 .�//ŠCKh�.sm.�//, these maps induce the expected isomorphisms corresponding
to planar isotopy.

Analogously to the MOY I and II cases, we again start by defining these maps on fully singular braid
diagrams, then extending them to the cube of resolutions. Let S and S 0 be fully singular braid diagrams
with S 0 the result of applying an MOY III move to S reducing the number of crossings as in Figure 12.
Below, our goal is to prove that C�

2
.S/ŠC�

2
.S 0/˚‡L, where ‡L is some acyclic complex. Furthermore,

the MOY III move has a nontrivial horizontal mirroring. We also prove that in the case where S and S 0

are connected by an MOY III move which is the mirror of Figure 12, we have C�
2
.S/Š C�

2
.S 0/˚‡R.

While it is true that ‡R D‡L, we neither need this fact nor prove it in this paper. Nevertheless, we may
refer to the complex as ‡ all the same.

We construct a map �III W C�2 .S
0/! C�

2
.S/ and another map �0III W C

�
2
.S/! C�

2
.S 0/ which splits �III,

thus proving that C�
2
.S 0/ is a direct summand of C�

2
.S/. Let S 00 be the fully singular braid diagram

1 2 3

4 5 6

7

8

9

Figure 13: The fully singular diagram S 00 used in the definitions of �III and �0III.

Algebraic & Geometric Topology, Volume 24 (2024)



5142 Samuel Tripp and Zachary Winkeler

1 2 3

4 5 6

7

8

9

1 2 3

34 5

1 2 3

4 5 6

7

8

9

1 2 3

34 5

�III

�0III

�III

�0III

Figure 14: Variations of the MOY III move.

where the middle singular vertex v2 is replaced by the oriented smoothing as in Figure 13, so that we
may define the map 1˝LC

S
W C�

2
.S/! C�

2
.S 00/. We may then apply an MOY II move �II to the left two

strands in S 00 to get a map �II W C�2 .S
00/! C�

2
.S 0/. Therefore, we define �III D �II ı .1˝LC

S
/. We can

also reverse the order of these operations to define �0III D ..U9�U3/˝LC
D
/ ı�0II. Note that the maps

1˝LC
S

and .U9�U3/˝LC
S

are well defined since if v2 were replaced by a positive or negative crossing,
these would simply be multiples of the edge maps corresponding to resolutions of that crossing.

Proposition 4.7 �III splits �0III, ie �III ı�
0
III D idC�

2
.S 0/.

Proof We expand out the definitions of �III and �0III to get

�III ı�
0
III D �II ı .1˝LC

S
/ ı ..U9�U3/˝LC

S
/ ı�0II

D �II ı ..U9�U3/˝LC
S
/ ı�0II

D
�
0 1

� ��U3 �U4U5

1 U4CU5�U3

��
1

0

�
˝LC

S

D
�
1
�
˝LC

S

D idC�
2
.S 0/ :

Therefore, we get a direct sum decomposition C�
2
.S/Š‡h1i˚C�

2
.S 0/hU9�U3i. For partially singular

braid diagrams D and D0 related by an MOY III move, we extend both maps to the cube of resolutions
by defining �III W C�2 .DI /! C�

2
.D0

I
/ and �0III W C

�
2
.D0

I
/! C�

2
.DI / as above for each I 2 f0; 1gc.D/.

Proof of Theorem 4.6 It is clear that �III and �0III are filtered maps, since they are defined componentwise
on the cube of resolutions. Furthermore, we can extend our proof of Proposition 4.7 to partially singular
braid diagrams since both the edge maps and MOY II maps are defined on such diagrams, so C�

2
.D0/

really is a summand of C�
2
.D/.
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We also need to check that �III and �0III are chain maps, ie that they commute with the edge maps d1.
Let I;J 2 f0; 1gc.D/ with I � J . If I and J differ at a positive crossing, then dI;J is given by
�C ˝ LC

D
D 1˝ LC

D
. Otherwise, dI;J is given by �� ˝ LC

D
D .Ub � Uc/˝ LC

D
. Either way, the

edge maps are given by multiplication by an element of R.D0/. Since �III and �0III were defined to be
R.D0/–linear, we get that they commute with d1.

As before, a similar argument shows that we also have MOY III decompositions for the cases in Figure 14.

5 Invariance

In this section, we prove that C�
2
.ˇ/ is an invariant of the braid closure cl.ˇ/ by showing that it is invariant

under each of the four moves of Theorem 2.8. The first two moves, Reidmeister II and III, apply to any
partially singular braid diagram D, whereas the second two moves, stabilization and conjugation, are
specific to diagrams of the form D D In.ˇ/.

5.A Reidemeister II

We begin by proving invariance under Reidemeister II moves. There are two distinct such moves, but
they are mirror images of each other, and their proofs are almost identical. We prove one of the cases in
detail below.

Theorem 5.1 If D and D0 are two partially singular braid diagrams that differ by a Reidemeister II move ,
then C�

2
.D/'1 C�

2
.D0/ over R.D0/.

Proof Let D and D0 be the diagrams in Figure 15, with D0 the result of eliminating two crossings from
D0 by means of a Reidemeister II move. We use Lemma A.1 to simplify C�

2
.D/ and C�

2
.D0/ to see they

have the same homotopy type. Label the edges of D with variables U1; : : : ;U6 as in Figure 15, and order
the crossings from top to bottom. Let �1 D �C D 1 be the edge map corresponding to the top (positive)

3 4

1 2

5 6

1

1

2

2

Figure 15: A Reidemeister II move.
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vertex, and let �2 D �� DU6�U3 be the edge map corresponding to the bottom (negative) vertex. Then,
fixing a sign assignment without loss of generality, we expand the cube of resolutions for C�

2
.D/ as:

C�
2
.D00/ C�

2
.D10/

C�
2
.D01/ C�

2
.D11/

�1

�2 ��2

�1

Note that C�
2
.D10/ is isomorphic to C�

2
.D0/ via the removal of bivalent vertices, so our goal is to show that

C�
2
.D/'1 C�

2
.D10/ as a filtered chain complex over R.D0/. We work over the larger ring R.D0/ŒU3;U4�,

but do not enforce linearity with respect to U5 or U6. First, note that C�
2
.D00/ŠC�

2
.D11/. We see that we

can apply the MOY II decomposition from Section 4.B to write C�
2
.D01/DC�

2
.D11/h1i˚C�

2
.D00/hU6i.

We compute the maps induced by �1 and �2 on these decompositions to get an isomorphic cube of
resolutions:

C�
2
.D00/ C�

2
.D10/

C�
2
.D11/h1i˚C�

2
.D00/hU6i C�

2
.D11/

1

�
�U3

1

�
U3�U2

.1 U2/

This is the first of several times we use Lemma A.1 to simplify a cube of resolutions in this paper. This
key lemma allows us to effectively cancel out isomorphisms of direct summands in cubes. In this case, it
yields the E1–quasi-isomorphic complex:

0 C�
2
.D10/

0 0

We conclude by noting that C�
2
.D10/Š C�

2
.D0/ as chain complexes over R.D0/ŒU3;U4�. This proves

invariance under one type of Reidemeister II move; the proof of the mirror-image move is analogous.

5.B Reidemeister III

We aim to prove invariance under the Reidemeister III move shown in Figure 16, which corresponds
to sliding a strand over a positive crossing. In terms of the braid group, it represents the relation
�i�iC1�i D �iC1�i�iC1. All other variations of the Reidemeister III move follow from this one plus the
Reidemeister II invariance result from Theorem 5.1.

Theorem 5.2 If D and D0 are two partially singular braid diagrams that differ by a Reidemeister III
move , then C�

2
.D/'1 C�

2
.D0/.

Proof Let D be the diagram on the left and D0 the diagram on the right in Figure 16. We aim to use
Lemma A.1 to simplify C�

2
.D/ and C�

2
.D0/ to see they have the same homotopy type.
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Figure 16: A Reidemeister III move.

To start, label the edges of D with variables U1; : : : ;U9 as in Figure 16, and order the crossings from top
to bottom. We expand the cube of resolutions for C�

2
.D/ as:

C�
2
.D100/ C�

2
.D110/

C�
2
.D000/ C�

2
.D010/ C�

2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/

��

�
�

Since our local picture of D consists of only positive crossings, all edge maps in this cube are given by
�C D 1 up to a sign assignment, which we take to be the one in the above cube of resolutions without
loss of generality.

By Theorem 4.6, we note C�
2
.D000/Š C�

2
.D110/˚‡ , where ‡ is acyclic. By a slight generalization of

Lemma A.3, we get an E1–quasi-isomorphic cube after replacing C�
2
.D000/ by C�

2
.D110/. Furthermore,

Theorem 4.4 gives us that C�
2
.D010/Š C�

2
.D110/h1i˚C�

2
.D110/hU9i. Therefore, the above cube is

E1–quasi-isomorphic to:

C�
2
.D100/ C�

2
.D110/

C�
2
.D110/ C�

2
.D110/h1i˚C�

2
.D110/hU9i C�

2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/

��

˛

ˇ

�
�
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We compute the induced maps in the above cube to be

˛ D

�
�U3

1

�
; ˇ D

�
1 U2

�
:

By Lemma A.1, we can cancel the isomorphisms of direct summands in the above cube to obtain the
E1–quasi-isomorphic complex:

C�
2
.D100/ 0

0 0 C�
2
.D101/ C�

2
.D111/

C�
2
.D001/ C�

2
.D011/



�

Removing the trivial complexes in the above cube, and noting that the map  induced by cancellation is
given by multiplication by 1, we get the complex:

C�
2
.D100/ C�

2
.D101/

C�
2
.D111/

C�
2
.D001/ C�

2
.D011/

�

Now, recalling that we have a second diagram D0 to work with, we may go through the same steps to
simplify C�

2
.D0/ to get the complex:

C�
2
.D0

100
/ C�

2
.D0

101
/

C�
2
.D0

111
/

C�
2
.D0

001
/ C�

2
.D0

011
/

�

We conclude by noting that the reduced complexes for C�
2
.D/ and C�

2
.D0/ are isomorphic via the map

that reflects the complexes about a horizontal axis, ie swaps the 100– and 001–resolutions, swaps the
101– and 011–resolutions, and fixes the 111–resolution. This map is a chain map since all the edge maps
are ˙1, and therefore C�

2
.D/'1 C�

2
.D0/.
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ˇ

� � � � � �

In

� � �� � �

� � � � � �

D: stabilized/original

ˇ

� � � � � �

In�1

� � �� � �

� � � � � �

D0: original/destabilized

Figure 17: Diagrams related by a positive stabilization. Depending on context, we either consider
the diagram D and its destabilization D0, or we consider the diagram D0 and its stabilization D.

5.C Stabilization

Let ˇ 2 Bn�1 be an element of the braid group for n � 2, and consider ˇ as an element of Bn via the
natural inclusion Bn�1 ,!Bn adjoining a straight strand to the right of ˇ. Let �n�1 2Bn be the generator
which introduces a positive crossing between strands n� 1 and n. The positive stabilization of ˇ is the
braid �n�1ˇ 2 Bn. Analogously, the negative stabilization of ˇ is the braid ��1

n�1
ˇ 2 Bn. For a braid

ˇ D �˙1
n�1

ˇ0 2 Bn in the image of one of these operations, we say that ˇ0 2 Bn�1 is the destabilization
of ˇ.

Theorem 5.3 The E1–homotopy type of the filtered complex C�
2
.ˇ/ is invariant under positive and

negative (de)stabilization , ie C�
2
.�n�1ˇ/'1 C�

2
.��1

n�1
ˇ/'1 C�

2
.ˇ/.

We note that ˇ, �n�1ˇ, and ��1
n�1

ˇ all have isotopic braid closures. Before we prove stabilization invari-
ance, we need to relate diagrams containing the open braid diagrams In and In�1, as the (de)stabilization
operations alter the number of strands of our partially singular braid diagrams. Therefore, we first note
that we can see In�1 as a subdiagram of In by ignoring the rightmost vertices in every row. Equivalently,
we can build In inductively from In�1 as in Figure 18.

Consider In.�n�1ˇ/, as shown in Figure 19. Let R be the polynomial ring over all edges not labeled in
Figure 19, and label the rest of the edges accordingly, so that R.In.�n�1ˇ//DRŒU1;U2;U3;U4;U5�.

Let � D �C D 1 be the edge map corresponding to the positive crossing of �n�1. We write the one-
dimensional cube of resolutions corresponding to resolving the crossing

C�2 .In.�n�1ˇ/0/
�
�! C�2 .In.�n�1ˇ/1/:

The diagrams corresponding to these resolutions are illustrated in Figure 20.

Our goal now is to use MOY moves to modify both resolutions so that they can be represented using a
common diagram, tracking the effect on the complexes. By an abuse of notation, we denote this common
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In

: : :

� � �

„ƒ‚…
2n

2n‚…„ƒ
In�1

: : : : : :

� � � � � �

„ ƒ‚ …
n�1

n�1‚ …„ ƒ n�2‚…„ƒ

„ ƒ‚ …
n�1

Figure 18: Constructing In from In�1 by adding two more strands and marking two new vertices
as fixed.

diagram I 0n.ˇ/, which is gotten analogously to In.ˇ/: we place a straight strand to the right of ˇ, place n

straight strands to the right of that, top this diagram with I 0n, and take the braid closure. It remains to
define I 0n. We let I 0n be In, without the singular vertex between strands n and nC 1 in the first layer. As
for In, we can also define I 0n by building on In�1, as in Figure 21.

With this definition in mind, we now see that In.�n�1ˇ/0 is one MOY III move away from I 0n.ˇ/, and
In.�n�1ˇ/1 is one MOY II move away from I 0n.ˇ/. On the one-dimensional cube of resolutions, then,
we get

C�2 .I
0
n.ˇ//hU3�U5i˚‡

�
�! C�2 .I

0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i:

ˇ

� � � � � �

� � �� � �

� � � � � �

:::In

1 2

3 4

5

Figure 19: Relevant edge labels near �n�1. Note that the top vertex is fixed only when nD 2, and
is otherwise free for n� 3. For this reason, we use a dashed circle to indicate that the top vertex
may be fixed or free.
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ˇ

� � � � � �

� � �� � �

� � � � � �

:::

ˇ

� � � � � �

� � �� � �

� � � � � �

:::

�

Figure 20: The mapping cone decomposition induced by �n�1.

Since ‡ is acyclic, we can ignore it by Lemma A.2. We compute the map induced by � on the summands
as

C�2 .I
0
n.ˇ//hU3�U5i

�
U1CU2�U5
�1

�
��������! C�2 .I

0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i:

Since the �1 entry represents an isomorphism of C�
2
.I 0n.ˇ// summands, we can cancel it by Lemma A.1.

This proves the following lemma.

Lemma 5.4 The complexes C�
2
.�n�1ˇ/ and C�

2
.I 0n.ˇ// have the same E1–homotopy type.

Therefore, to prove conjugation invariance, it remains to prove the following proposition.

Proposition 5.5 The complexes C�
2
.I 0n.ˇ// and C�

2
.ˇ/ have the same E1–homotopy type.

I 0n

: : :

� � �

„ƒ‚…
2n

2n‚…„ƒ
In�1

: : : : : :

� � � � � �

„ ƒ‚ …
n�1

n�1‚ …„ ƒ n�2‚ …„ ƒ

„ ƒ‚ …
n�2

Figure 21: Building I 0n from In�1.
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In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

Figure 22: Shifting vertices in I 0n.ˇ/.

Proof To begin, we note that I 0n.ˇ/ and In�1.ˇ/ are really braid closures, so for ease of understanding
the upcoming MOY moves, we replace our usual depiction of I 0n.ˇ/ with a shifted version, as in Figure 22.

In this shifted version, we identify the local picture on the left in Figure 23, consisting of a pair of
intersecting strands and n� 2 other strands which intersect both. We can apply n� 2 MOY III moves to
simplify this part of the diagram to the local picture on the right in Figure 23, consisting of n� 2 straight
strands and one pair of intersecting strands. By Theorem 4.6, each of these preserves the E1–homotopy
type of the complex. The global picture at this stage can be seen on the left in Figure 24. To arrive at the
diagram for In�1.ˇ/, we apply two MOY I moves to the two remaining fixed vertices outside of In�1. By
Theorem 4.1, each of these preserves the E1–homotopy type of the complex. This leads to the diagram
on the right in Figure 24, which is exactly the diagram for In�1.ˇ/.

� � �

: : :

n�3‚…„ƒ

„ƒ‚…
n�3

� � �

: : :

n�3‚…„ƒ

„ƒ‚…
n�3

Figure 23: Local pictures of diagrams related by a sequence of n� 2 MOY III moves.
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In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

In�1

� � � � � �

� � � � � �

n�1‚ …„ ƒ n�3‚…„ƒ

ˇ

„ ƒ‚ …
n�1

„ƒ‚…
n�3

Figure 24: The last step in simplifying I 0n.ˇ/ in the proof of Proposition 5.5.

Proof of Theorem 5.3 We have shown that C�
2
.�n�1ˇ/ ' C�

2
.I 0n.ˇ// ' C�

2
.ˇ/. We can simplify

C�
2
.��1

n�1
ˇ/ to C�

2
.I 0n.ˇ// as well. Using the same edge labels and notation as before, we write the cube

of resolutions for C�
2
.ˇ/ as

C�2 .In.ˇ/0/
�
�! C�2 .In.ˇ/1/

where this time � D �� D U3 �U5. Applying an MOY II move to In.ˇ/0 and an MOY III move to
In.ˇ/1 to write our complexes in terms of C�

2
.I 0n.ˇ// gives us the complex

C�2 .I
0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i

�
�! C�2 .I

0
n.ˇ//hU3�U5i˚‡:

Again, excluding ‡ and computing the map induced by �, we get

C�2 .I
0
n.ˇ//h1i˚C�2 .I

0
n.ˇ//hU4i

.1 U4/
����! C�2 .I

0
n.ˇ//hU3�U5i:

As before, we may cancel the 1 in the above matrix to see that C�
2
.��1

n�1
ˇ/'1 C�

2
.I 0n.ˇ// as well. The

rest of the proof follows from Proposition 5.5. Since we have covered both the positive and negative
cases, this suffices to show invariance under stabilization.

5.D Conjugation

Conjugation invariance is the following statement:

Theorem 5.6 For any ˛; ˇ 2 Bn, we have that C�
2
.˛�1ˇ˛/'1 C�

2
.ˇ/.

To begin, we prove a lemma relating complexes associated to diagrams that locally look like the pictures
in Figure 25.

Lemma 5.7 Let A and A0 be partially singular braid diagrams that are identical outside of a specific
region , where they look like the diagrams in Figure 25, ie A has two opposite crossings whereas A0 has
oriented smoothings. Then C�

2
.A/'1 C�

2
.A0/.
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b0

b1 bn�1b2

c1 c2 cn�1

e0 f0 e1 f1 en�1 fn�1

� � �

� � �

� � �

an

bn�2

A

� � �

� � �

� � �

A0

Figure 25: Local pictures of diagrams with equivalent C�
2
.�/. As before, the dashed circles

indicate that the vertices may be fixed or free.

Proof Let �1 D �C D 1 be the edge map corresponding to the left (positive) crossing, and let
�2 D �� D an � en�1 be the edge map corresponding to the right (negative) crossing. We expand
the cube of resolutions for C�

2
.A/ as follows:

C�
2
.A00/ C�

2
.A10/

C�
2
.A01/ C�

2
.A11/

�1

�2 �2

�1

The diagrams for these four partial resolutions look like Figure 26.

We can use MOY III moves to simplify three of the four corners of this cube. For A00, we can start with
a MOY III move on the left, simplifying the diagram. Each MOY III move we apply allows us to perform
another, until we have done n� 1 such moves moving left-to-right. We denote the resulting diagram A00

00
;

it is shown in Figure 27. By Theorem 4.6, A00 and A0
00

are E1–quasi-isomorphic.

Similarly, we can simplify A11 to A0
11

by performing n� 1 MOY III moves right-to-left, and we can
simplify A01 to A0

01
by performing n�1 MOY III moves left-to-right. In each case, Theorem 4.6 ensures

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�1

�2 �2

�1

Figure 26: The cube of resolutions for diagram A in Figure 25.
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� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

˚‡ � � �

� � �

� � �

�1

�2 �2

�1

Figure 27: The reduced cube of resolutions.

we are preserving the E1–quasi-isomorphism type. The resulting diagrammatic cube of resolutions is
shown in Figure 27. Thus we obtain the complex

C�
2
.A00

00
/hxi C�

2
.A10/

C�
2
.A00

01
/hxi˚‡ C�

2
.A00

11
/hxi

�1

�2 �2

�1

This cube ignores the ‡ summands in A00 and A11 by Lemma A.3, but retains the ‡ WD‡1˚� � �˚‡n�1

summand in A01. Further, as every vertex in the middle row is free, we may choose

x D .b1� c1/ � � � .bn�1� cn�1/

to be the generator for all three complexes modulo the linear ideal L.

We further decompose A00
01

via an MOY II move on the right into two copies of A00
00

, generated by x

and anx. Additionally, we see that A00
00

and A00
11

are isomorphic. We can compute the maps induced by
�1 and �2 and write our complex as

C�
2
.A00

00
/hxi C�

2
.A10/

C�
2
.A00

00
/hxi˚C�

2
.A00

00
/hanxi˚‡ C�

2
.A00

00
/hxi

�1

0BB@
�en�1

1

�

1CCA �2�
1 fn�1 �

�

We may cancel the 1’s in the above matrices to reduce the complex by Lemma A.1 to obtain

0 C�
2
.A10/

‡ 0
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ˇ 

� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D

ˇ 

� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D0

Figure 28: When  D 1, the diagram D is the result of conjugating the braid ˇ in D0 by a
generator of the braid group.

Since ‡ is a direct sum of E1–acyclic complexes, we see that the E2–page of the above complex is
isomorphic to that of C�

2
.A10/, which is isomorphic to C�

2
.A0/, thereby proving Lemma 5.7 in the case

of a positive crossing on the left and a negative one on the right.

The opposite case is analogous; applying the same moves (mirrored horizontally) results in the complex

C�
2
.A00

00
/hxi C�

2
.A00

00
/hxi˚C�

2
.A00

00
/hb0xi˚‡

C�
2
.A01/ C�

2
.A00

00
/hxi

0BB@
f0

�1

�

1CCA

�2

�
1 e0 �

�
�1

which we can simplify to get that the E2–page is the same as that of C�
2
.A01/ and therefore C�

2
.A0/.

With this lemma in hand, we are now prepared to prove conjugation invariance.

Proof of Theorem 5.6 It suffices to prove this in the case that ˛ D �˙1
i is any generator of the braid

group (or its inverse). Therefore, let �i 2Bn be the generator which introduces a positive crossing between
strands i and i C 1.

Graphically, we would like to show that C�
2
.D/'1 C�

2
.D0/, where D and D0 are the partially singular

braids depicted in Figure 28, when  D 1. In order to prove this, we instead show that

C�2 .D
00/'1 C�2 .D

0/'1 C�2 .D
000/

for a generic  2 Bn, where D00 and D000 are the diagrams in Figure 29.

Since we are considering the case ˛ D �i , note that in D00, the positive crossing occurs between strands i

and i C 1. If we decompose In, we see that for any i , we locally get a picture like Figure 25, where the
top row of vertices is fixed if i D 1, and free if i > 1. Therefore, we may apply Lemma 5.7 directly to see
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ˇ

In

� � � � � �� � �

� � � � � � � � � � � �

� � �

� � �� � � � � � � � �



D00

ˇ 

� � � � � �

In

� � � � � �

� � �

� � � � � �

� � �

� � �

� � � � � � � � �

D000

Figure 29: Alternate diagrams for proving conjugation invariance.

ˇ ˇ ˇ

ˇ ˇ

ˇ

Figure 30: The steps to prove conjugation invariance for nD 2 and ˛ D �1.

that C�
2
.D00/'1 C�

2
.D0/. Additionally, note that in D000, the negative crossing occurs between strands i

and i C 1. If we decompose In, we see that for any i , we locally get a picture like Figure 25, except that
the bottom row of vertices is fixed if i D 1, and free if i > 1. In the latter case, this is not an issue and we
may proceed as before to use Lemma 5.7 to prove that C�

2
.D000/'1 C�

2
.D0/. If i D 1, then we first use

Theorem 3.1 to relabel the top row of vertices as free and the bottom row as fixed; this diagram is still in
DR as it contains the open braid S2n from [Dowlin 2024] as a subdiagram, so we may proceed with the
rest of the proof as usual.

Therefore, we can prove the desired equivalence C�
2
.D/ '1 C�

2
.D0/ when  D 1 by first perform-

ing a Reidemeister II move to add two crossings to the right side of D, then using the equivalences
C�

2
.D00/'1 C�

2
.D0/ and C�

2
.D000/'1 C�

2
.D0/ to simplify the diagram to D0. This proves Theorem 5.6

in the case of ˛ D �i . We illustrate these steps for the case nD 2 and ˛ D �1 in Figure 30. The proof for
˛ D ��1

i is analogous, from which the proof for general ˛ 2 Bn follows.

Appendix Homological algebra

In this section we review a few lemmas in homological algebra to aid in our calculations. We note that all
four lemmas are true for filtered complexes, replacing maps with filtered maps and quasi-isomorphisms
with filtered quasi-isomorphisms. Additionally, if we instead assume that filtered maps have filtration
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degree 1, then these lemmas still hold, replacing cone.f / with cone1.f / and filtered quasi-isomorphism
with E1–quasi-isomorphism.

Lemma A.1 [Bar-Natan 2007, Lemma 4.2] If ' W A! B is an isomorphism of complexes , then the
double complexes

C

�
˛
ˇ

�
��!A˚D

�
'

ı
�

�
����! B˚E

.� �/
����! F

and
C

ˇ
�!D

��'�1ı
������!E

�
�! F

are quasi-isomorphic.

This lemma is proved for the very general case of additive categories in [Bar-Natan 2007], and is well
known in the specific case of free modules over a ring as the “cancellation lemma” or “reduction algorithm”.
We require it to prove invariance in Section 5, as it greatly simplifies calculations involving cubes of
resolutions.

Lemma A.2 Let f WA! B be a map of complexes , and suppose that AŠA0˚A00 and B Š B0˚B00,
where A00 and B00 are acyclic. Let � WA0 ,!A and � W B � B0 be the associated inclusion and projection
maps , respectively. Then cone.f /' cone.� ıf ı �/.

Proof First, we note that cone.�/ is acyclic. One way to see this is via a cancellation argument: we have
that cone.�/Š .A0!A0˚A00/, which is quasi-isomorphic to A00 by Lemma A.1. Similarly, we get that
cone.�/, being quasi-isomorphic to B00, is acyclic as well.

For any two maps ˛ W X ! Y and ˇ W Y ! Z of complexes, we have a long exact sequence relating
the homology groups of cone.˛/, cone.ˇ/, and cone.ˇ ı ˛/ (for example, via the octahedral axiom
for triangulated categories applied to the derived category of R–modules). Therefore, we get that
cone.f /' cone.f ı �/' cone.� ıf ı �/.

Lemma A.3 Let A, B, C , and D be complexes , and suppose that A Š A0˚A00 and D Š D0˚D00,
where A00 and D00 are acyclic. Let � WA0 ,!A and � WD � D0 be the associated inclusion and projection
maps , respectively. Then the following two cube of resolutions complexes have the same homotopy type:

A B A0 B

C D C D0

f1

g1 g2

f1ı�

g1ı� �ıg2

f2 �ıf2

Proof We know that the inclusion cone.g1ı �/ ,! cone.g1/ and the projection cone.g2/� cone.� ıg2/

are quasi-isomorphisms by the proof of Lemma A.2:

A0 A B B

C C D D0

�

g1ı� g1

idB

g2 �ıg2

idC �
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We can also view the maps f1 WA!B and f2 WC!D as components of a map f W cone.g1/! cone.g2/.
Therefore, we can compose f with the inclusion and projection to get a single map

f 0 W cone.g1 ı �/! cone.� ıg2/:

By the same long exact sequence logic as before, the cone of this map has the same homotopy type as f ,
ie

cone.f 0/D cone.cone.g1 ı �/! cone.� ıg2//' cone.cone.g1/! cone.g2//D cone.f /:

We conclude by noting that the complex on the left in Lemma A.3 is cone.f /, and the complex on the
right is cone.f 0/.

While the above lemma is phrased only for squares, it can be iterated to reduce summands of higher-
dimensional cubes as well.

Since our complexes in this paper are often constructed as mapping cones, it helps to know when a
quasi-isomorphism is induced by maps on the components of the cone.

Lemma A.4 Suppose that we have the following commutative diagram of chain maps:

A0 A1

B0 B1

g

f0 f1

g0

Let AD cone.g/ and B D cone.g0/, so that we get a map f WA! B with components f0 and f1. If f0

and f1 are quasi-isomorphisms , then so is f .

Proof By properties of the mapping cone, f induces a map of short exact sequences (with grading shifts
suppressed):

0 A1 A A0 0

0 B1 B B0 0

f1 f f0

We can look at the induced map of long exact sequences in homology

� � � H�.A1/ H�.A/ H�.A0/ � � �

� � � H�.B1/ H�.B/ H�.B0/ � � �

H�.f1/ H�.f / H�.f0/

to conclude that H�.f / must be an isomorphism as well, so f is a quasi-isomorphism.

To prove the filtered generalizations of Lemma A.4, one replaces H�.�/ with E1.�/ or E2.�/ (see
[Weibel 1994, Exercise 5.4.4]).
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Monoidal properties of Franke’s exotic equivalence

NIKITAS NIKANDROS

CONSTANZE ROITZHEIM

Franke’s reconstruction functor R is known to provide examples of triangulated equivalences between
homotopy categories of stable model categories, which are exotic in the sense that the underlying model
categories are not Quillen equivalent. We show that, while not being a tensor-triangulated functor in
general, R is compatible with monoidal products.

55P42; 18N55

1 Introduction
For several decades, Franke’s exotic equivalence has been fascinating to homotopy theorists, as it is a
rare example of a machinery that provides an equivalence up to homotopy between two model categories
which are not Quillen equivalent. In practice, the known situations where Franke’s construction can be
applied to obtain the equivalence

R W D.Œ1�;1/.A/! Ho.M/

link an algebraic model category (D.Œ1�;1/.A/ is the derived category of a flavour of chain complexes in a
suitable abelian category A) with a stable model category M which is not necessarily algebraic. Key
examples include

� A the category of ��.R/–modules for a ring spectrum R and M the category of modules over R,
together with some extra assumption on the projective dimension of ��.R/ as well as ��.R/ being
concentrated in degrees that are multiples of some N > 1,

� A the category of E.1/�E.1/–comodules and M the category of K–local spectra at an odd prime.

In this paper, we will always assume that R exists and is an equivalence.

Both the algebraic side D.Œ1�;1/.A/ and the topological side Ho.M/ are equipped with monoidal structures
derived from the monoidal model category structures on C.Œ1�;1/.A/ and M, so it is only natural to consider
whether R is compatible with these. But as R is not derived from a Quillen functor C.Œ1�;1/.A/!M,
this problem requires a different approach working closely with the construction of R itself.

The example of K–local spectra at p D 3 tells us that we cannot expect R to be a monoidal functor in
general: the preimage of the mod-3 Moore spectrum is a chain complex that is a monoid, whereas the
mod-3 Moore spectrum has no associative multiplication [Ganter 2007, Remark 1.4.2]. However, we
obtain the following, which is the main result of this article.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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5162 Nikitas Nikandros and Constanze Roitzheim

Theorem 1.0.1 Let .M;^/ be a simplicial stable monoidal model category and let .A;˝/ be a hereditary
abelian monoidal category with enough projectives such that Franke’s reconstruction functor R exists and
is an equivalence. Then

R W .D.Œ1�;1/.A/;˝L/! .Ho.M/;^L/

commutes with the respective monoidal products up to a natural isomorphism

R.M�˝L N�/ŠR.M�/^L R.N�/:

The reconstruction functor R rebuilds M from algebraic data in the following way. Firstly, part of the
assumptions on A is that it splits into shifted copies of a smaller abelian category B. This is then used to
split an object of C.Œ1�;1/.A/ into pieces, which are placed in certain crown-shaped diagram CN . Using
this piecewise data, one then constructs a CN –shaped diagram in M. Finally, the homotopy colimit over
CN is applied to get to Ho.M/. Specifically, R is the composite

R W D.Œ1�;1/.A/
Q�1

���! L� Ho.MCN /
hocolimCN
�������! Ho.M/:

We therefore take the diagram

D.Œ1�;1/.A/�D.Œ1�;1/.A/

˝L

��

R^LR
// Ho.M/�Ho.M/

^L

��

D.Œ1�;1/.A/ R
// Ho.M/

which we would like to show to be commutative and refine it in the way below in order to deal with the
different components of R separately:

(1.0.2)

D.Œ1�;1/.A/�D.Œ1�;1/.A/

�˝L�

��

// Ho.MCN /�Ho.MCN / //oo

^L Š

��

Ho.M/

Ho.MCN�CN /

L pr!DHo Lanpr
��

hocolim
44

Ho.MDN /

i�

��

hocolimDN

99

D.Œ1�;1/.A/
Q�1

// Ho.MCN /
Q

oo
hocolimCN

// Ho.M/

Here, DN denotes a suitable modification of the crown-shaped diagram CN together with an inclusion
i W CN !DN . (All the ingredients will of course be defined in detail where appropriate.) The outline of
our proof roughly follows the key points of [Ganter 2007]; however, we choose to work in a setting of
model categories, which makes our exposition more explicit and straightforward. Overall, we have relied
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Monoidal properties of Franke’s exotic equivalence 5163

on contemporary methods and we refer to modern literature. Our techniques put Ganter’s theorem in firm
rigorous footing and in better context with other existing literature, as well as hopefully making it more
adaptable to future generalisations.

This paper is organised as follows.

In Section 2 we recall the background and tools that we need for our main result and proof, namely
simplicial replacements, homotopy Kan extensions, monoidal structures on diagram model categories, a
specific mapping cone construction, calculating homotopy colimits using the homology of a category
with coefficients in a functor, as well as a recap of the construction of Franke’s functor.

In Section 3 we will begin by setting up one of our main results, which involves working out the middle
vertical part of the diagram (1.0.2). The key ingredient is given by a spectral sequence argument calculating
the vertices of the functor L pr!.X ^Y /. We will then feed this into the definition of Franke’s functor Q
in order to obtain the necessarily formulas for monoidality on the left hand side of (1.0.2), dealing with
underlying graded modules of the twisted chain complexes and the differentials separately.

Section 4 now wraps up the right hand side of the diagram (1.0.2) which mostly involves standard
properties of homotopy colimits. We can finally assemble these results into the proof of the main theorem
and finish with some examples.

Acknowledgements

This paper is based on the PhD thesis of Nikandros under the supervision of Roitzheim. We would like to
acknowledge EPSRC grant EP/R513246/1 for funding this project. Furthermore, we would like to thank
Nora Ganter, Irakli Patchkoria and Neil Strickland for helpful comments and support.

2 Preliminaries

In this section we will introduce some of the terminology that we need for our result. We assume that the
reader is familiar with the basic background regarding simplicial sets, homological algebra and model
categories.

The category of simplicial sets is denoted by sSet. For n� 0, �n denotes the standard n–simplex. For an
arbitrary category C, the notation sC stands for the simplicial objects in C, ie sC D Fun.�op; C/. We have
I D �1 and IC D �

1 [� and S0 D �0 [�. Similarly, S1 stands for the simplicial circle I=.0 � 1/,
that is, �1=@�1.

We will let A be a graded (Z–graded) abelian category, which means that A possesses a shift functor Œ1�
which is an equivalence of categories, and Œn� denotes the n–fold iteration of Œ1�. The graded global
homological dimension of A, gl:dimA, is the supremum of the projective dimensions of objects in A.
An abelian category A is called hereditary if gl:dimAD 1. There are other, equivalent descriptions of
hereditary abelian categories but this one suits our purposes best.

Algebraic & Geometric Topology, Volume 24 (2024)



5164 Nikitas Nikandros and Constanze Roitzheim

2.1 Model categories

We will now set up our background on model categories. We write any cofibrant replacement functor
Q WM!M that comes with a natural weak equivalence q WQ! 1M.

Convention 2.1.1 We let Ho.M/ denote the category McofŒW�1�, where Mcof denotes the full subcate-
gory of cofibrant objects of M, and we denote the set of morphisms in Ho.M/ by ŒX;Y �.

Convention 2.1.1 allows us to provide a very simple description of the left derived functor LF of a left
Quillen functor F WM!N . Indeed, the functor

F jMcof WMcof!Ncof

preserves weak equivalences and, therefore, it induces a functor between the localization. This functor is
precisely LF with our convention.

Finally, an important class of model categories is the class of simplicial model categories. These are model
categories which are enriched, tensored and cotensored over sSet and which satisfy the pushout-product
axiom (SM7). If a simplicial model category is pointed, ie the terminal object is isomorphic to the initial
one, then M is enriched over the category sSet� of pointed simplicial sets. In particular, we have functors

� ˝ � W sSet� �M!M; MapM.�; �/ WM
op
�M! sSet�;

and the adjunction
HomM.K ^X;Y /Š HomsSet.K;MapM.X;Y //;

see [Barnes and Roitzheim 2020, Definition 6.1.28; Riehl 2014, Section 11.4].

2.1.1 Diagram categories We will use model structures on diagram categories throughout the paper.
Below we introduce the definition of a direct category which is a generalization of the concept of a poset;
see [Hovey 1999, Definition 5.1.1] for further details.

Definition 2.1.2 Let ! denote the poset category of the ordered set f0; 1; 2; : : :g. A small category J is
called direct if there is a functor f W J ! ! that sends nonidentity morphisms to nonidentity morphisms.
We refer to f .j / as the degree of the object j . Dually, J is an inverse category if there is a functor
J op! ! that sends nonidentity morphisms to nonidentity morphisms

Any finite poset J is a direct category, and dually J op is an inverse category. We provide some examples
that will be useful later on.

Definition 2.1.3 Suppose M is a small category with small colimits, J a small category, z an object
in J and Jz the category of all nonidentity morphisms with codomain z. The latching space functor
Lz WMJ !M is the composition

MJ
!MJz

colim
���!M;

Algebraic & Geometric Topology, Volume 24 (2024)
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where the first arrow is the restriction functor. Equivalently the latching space of a diagram X is given by

LzX D colim.Jz ,! J
X
�!M/;

where Jz ,! J is the inclusion.

Note that we have a natural transformation LzX !Xz for any fixed object z 2 J .

We can now describe the projective model structure on MJ ; see [Hovey 1999, Theorem 5.1.3].

Proposition 2.1.4 Given a model category M and a direct category J , there is a model structure on
MJ in which a morphism f W X ! Y is a weak equivalence (resp. fibration) if and only if the map
fz WXz! Yz is a weak equivalence (resp. fibration) for all z 2 J . Furthermore , f WX ! Y is an (acyclic)
cofibration if and only if the induced map

Xz

a
Lz X

LzY ! Yz

is an (acyclic) cofibration for all z 2 J .

We will now give the finite posets J that are going to play a central role throughout this paper.

Example 2.1.5 By Œ1� we denote the poset 0� 1. We are aware that early in this section we also denoted
the shift functor on graded objects. Both are standard notation, and from our use of the poset 0� 1 there
is vanishingly little danger of confusing those two.

Example 2.1.6 Consider the poset

.0; 0/ //

��

.1; 0/

.0; 1/

denoted by p. Let � W Œ1�! p be the map of posets which sends 0 to .0; 0/ and 1 to .1; 0/. In other words, �
includes the interval Œ1� to the top horizontal line. Furthermore, consider the product of the interval posets
Œ1�� Œ1�. It is the poset

.0; 0/

��

// .1; 0/

��

.0; 1/ // .1; 1/

and we let ip W p! Œ1�� Œ1� be the inclusion.

Algebraic & Geometric Topology, Volume 24 (2024)
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Example 2.1.7 Let N � 2 be a natural number. The poset CN consists of elements fˇi ; �i j i 2Z=N Zg

such that ˇi < �i and ˇi < �iC1 for i 2 Z=N Z, ie

�0 �1 : : : �N�1

ˇ0

OO >>

ˇ1

OO >>

: : :

<<

ˇN�1

OO
jj

Then X 2MCN is cofibrant if and only if the canonical map LzX !Xz is a cofibration in M, ie if and
only if the Xˇi

;X�i
are cofibrant and the induced morphism

Xˇi�1
_Xˇi

!X�i

is a cofibration, where _ is the coproduct in M. We will refer to an object X 2MCN as a crowned
diagram due to the crown shape of the diagram CN .

Example 2.1.8 Let DN be the poset consisting of elements fˇn; n; �n j n 2 Z=N Zg such that

ˇn � n � �n and ˇn � nC1 and n � �nC1;

ie
�0 �1 : : : �N�1

0

OO >>

1

OO >>

: : :

OO

N�1

OO
jj

ˇ0

OO >>

ˇ1

OO >>

: : :

OO

ˇN�1

OO
jj

Remark 2.1.9 In what follows, when we have a direct category I and a model category M, the category
of diagrams MI will always have the model structure defined in Proposition 2.1.4 without further mention.
If not, we will explicitly say so.

It follows that for any model category M and direct category J , there is a Quillen adjunction

colim WMJ �M Wconst :

(Note that when we write an adjunction, the top arrow will always denote the left adjoint.)

Definition 2.1.10 The left derived functor of colim WMJ !M is called the homotopy colimit and is
denoted by

hocolim W Ho.MJ /! Ho.M/:

Algebraic & Geometric Topology, Volume 24 (2024)
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If J D p, then the homotopy colimit is called homotopy pushout. A particular example of homotopy
pushout is the homotopy cofiber which is the homotopy pushout of a diagram of the form

X
f
//

��

Y

�

and we write

(2.1.11) hocofib.f / WD hocolim.� X
f
�! Y /:

In general, for notational convenience sometimes a homotopy pushout is denoted by

hocolim.Z X ! Y / WDZ

ha
X

Y:

2.1.2 Homotopy colimits in simplicial model categories In Definition 2.1.10 we recalled the definition
of the homotopy colimit as a derived functor. Here, we will present an alternative construction via
simplicial techniques. After introducing some definitions we briefly explain how this method provides a
good theory of homotopy colimits; see also [Riehl 2014, Chapters 4, 5; Shulman 2006, Section 7].

Let M be a model category and consider the category of simplicial objects sMDM�op
. We consider

sM as a simplicial category with tensors defined objectwise, ie for K 2 sSet and X 2 sM we have

.K˝X /n DK˝Xn:

Now, let M be a simplicial model category. Given a simplicial object X 2 sM we can construct an object
in M via geometric realization, see [Hirschhorn 2003, Definition 18.6.2].

Definition 2.1.12 (geometric realization) Let X 2M�op
. The geometric realization of X , denoted as

jX j, is defined as the coequalizer

coeq
� a
� W Œn�!Œk�2�

�k
˝Xn�

a
Œn�2�

�n
˝Xn

�
:

This is an example of a functor tensor product (coend). In this case, the geometric realization is the
functor tensor product of X W�op!M and the functor �� W�! sSet, Œn� 7!�n. In other words, the
realization jX j is the object

��˝�op X D

Z n

�n
˝Xn:

The following theorem is the cornerstone of our exposition of homotopy colimits using geometric realiza-
tions; see [Goerss and Jardine 1999, VII 3.6; Hirschhorn 2003, 18.4.11; Riehl 2014, Corollary 14.3.10].
For details for the Reedy model structure on sM, see [Goerss and Jardine 1999, Definition 2.1].
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Theorem 2.1.13 If M is a simplicial model category, then

j�jWM�op
!M

is a left Quillen functor with respect to the Reedy model structure. In particular , j�j sends Reedy cofibrant
simplicial objects to cofibrant objects and preserves objectwise weak equivalences between them.

At this level of generality, this is the strongest result possible. It is not true that geometric realization
preserves all objectwise weak equivalences. However, the above will suffice for our purposes. We can now
start to work our way to the homotopy colimit of a diagram X 2MJ in a simplicial model category M.

Our first definition towards this goal is the simplicial replacement functor. That is to say, given any
diagram F W I !M we can replace it with simplicial object in M with good properties.

Definition 2.1.14 (simplicial replacement) Let I be a small category and consider a diagram X 2MI .
The simplicial replacement of X is the simplicial object in M, denoted srep X given in simplicial degree
Œn� by

.srep X /n D
a

.i0!i1!���!in/2N.I /n

Xi0
:

The coproduct is indexed over the set of n–chains

� D Œi0! i1! � � � ! in�

over the nerve of I . If 0� k < n, then

dk W .srep X /n! .srep X /n�1

maps the term Xin
indexed on � to the term Xin

indexed on

�.k/D Œi0! i1! ik�1! ikC1! � � � ! in�

via the identity, while for k D n, the map dn sends the term Xin
to Xin�1

indexed on

�.n/D Œi0! i1! � � � ! in�1�

via the induced map X.in! in�1/. The degeneracy maps

sj W .srep X /n! .srep X /nC1; 0� j � n

are easier to define. Each sj sends the summand Xin
corresponding to the summand

Œi0! i1! � � � ! in�

to the identical summand Xin
corresponding to the chain in which one has inserted the identity map

ij ! ij .
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In other words, the simplicial replacement is the following simplicial object,a
i0

Xi0

a
i0!i1

Xi0
oo
oo

a
i0!i1!i2

Xi0
� � �oo

oo
oo

;

where degeneracy maps are omitted. Note that this is can also be found in literature as the simplicial bar
construction or Bousfield–Kan construction denoted by B.�; I;X /.

Remark 2.1.15 The colimit of a diagram X 2MI , if it exists, agrees with the colimit of srep.X / 2 sM.
Indeed, consider the colimit of the diagram srep.X / as the coequilizera

i

Xi�
a

j i

Xi ;

but this is precisely the colimit of X . Therefore in this case, srep.X / has the augmentation

srep.F /! colim
I

F;

where we regard the object colimI F as a constant simplicial object.

We therefore reach the following result.

Lemma 2.1.16 Given a diagram X 2MI and its simplicial replacement srep.X / 2M�op
, there is a

canonical isomorphism
colim

I
X Š colim

�op
.srep.X //:

The proof can be found in [Riehl 2014, Lemma 4.4.2]. The following lemma will also be of importance,
see [Riehl 2014, Lemma 5.1.2; Shulman 2006, Lemma 8.7].

Lemma 2.1.17 Let I be a small category and let M be a simplicial model category. If F 2MI is
objectwise cofibrant , then srep.F / 2 sM is Reedy cofibrant.

The above Lemma 2.1.16 and Theorem 2.1.13 essentially mean that geometric realization of objectwise
cofibrant diagrams is a good model for calculating homotopy colimits. For details see [Riehl 2014,
Theorem 6.6.1].

2.2 Homotopy Kan extensions

In this subsection we will introduce homotopy Kan extensions, the homotopy invariant version of ordinary
Kan extensions, see eg [Hirschhorn 2003, Section 11.9].

Now, let M be a model category. Furthermore, let I;J be direct categories and f W I ! J a functor. The
pullback functor

f � WMJ
!MI

preserves weak equivalences, so it defines a functor between homotopy categories, which we denote by
the same letter. Recall the functor Lanf D f!, left adjoint to f �. We have the following proposition.
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Proposition 2.2.1 Let M be a model category and let f W I ! J be a map of direct categories. Then the
adjunction

f! WMI �MJ
Wf �

is a Quillen adjunction.

Proof This follows from the definition of the projective model structure; see Proposition 2.1.4. The
functor f � is a right adjoint by construction. It preserves weak equivalences and projective fibrations,
which means that f � is also a right Quillen functor.

Thus, the derived functors of the adjoint pair .f!; f
�/ define an adjoint pair on the level of homotopy

categories
LLanf WD Lf! W Ho.MI /� Ho.MJ / WRf �:

A useful fact about homotopy Kan extensions is that they does not change the homotopy colimit of a
diagram, which is similar to the properties of ordinary Kan extensions.

Corollary 2.2.2 Let M be a model category , f W I ! J a map of direct categories and let X 2MI .
Then there is a canonical isomorphism in Ho.M/

hocolim
J

Lf!X Š hocolim
I

X:

Proof This follows from the fact that for every pair of left Quillen functors F and G there is a natural
isomorphism

LF ıLG! L.F ıG/;

see [Hovey 1999, Theorem 1.37], together with the natural isomorphism

colim
J

Lanf X Š colim
I

X:

To conclude this section, we will shortly discuss how one calculates the values and edges of a homotopy
Kan extension. Recall the notion of a slice category for given posets C and D and a functor f W C !D,
namely

(2.2.3) f=d D fc 2 C j f .c/� dg

for d 2D. The following is [Cisinski 2009, Proposition 1.14], which tells us that homotopy Kan extensions
can be computed pointwise.

Proposition 2.2.4 Let f W I ! J be a map of posets and let X be any functor I !M. For any object
j 2 J there is a canonical isomorphism in Ho.M/

.Lf!F /j Š hocolim.f=j
�
�! I

X
�!M/:
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2.3 Monoidal model categories

Let us now turn to some results concerning monoidal model categories, see eg [Hovey 1999, Definition
4.2.6], [Barnes and Roitzheim 2011, Definition 6.1.9] or [Riehl 2014, Definition 11.4.6] for definitions.

Remark 2.3.1 Let .C;^/ be a closed symmetric monoidal category and let f WX0!X1 and g W Y0! Y1

be maps in C. The pushout-product map is the universal arrow

f �g WX0 ^Y1

a
X0^Y0

X1˝Y0!X1 ^Y1:

Another way to see the pushout-product map is as a left Kan extension. Again, consider a cocomplete,
(closed) monoidal category .C;^/. Let Œ1�D f0� 1g. Furthermore, consider the following map of posets.

pr W Œ1�� Œ1�! Œ1�; .0; 0/; .1; 0/; .0; 1/ 7! 0;

.1; 1/ 7! 1:

Now let f and g be morphisms in C. We can consider them as objects in the arrow category f;g2CŒ1�. The
functors f W Œ1�! C and g W Œ1�! C give rise to their objectwise tensor product f ^g, see Definition 2.3.2.
That is, the functor

f ^g W Œ1�� Œ1�! C

is the following commutative diagram:

X0 ^Y0
//

��

X1 ^Y0

��

X0 ^Y1
// X1 ^Y0

Note that the slice category pr=0 is the poset p and the slice pr=1 is the whole square. It follows that the
map

colim
p
.f ^g/! colim

Œ1��Œ1�
.f ^g/

induced by the inclusion p,! Œ1�� Œ1� is exactly the map

f �g WX0 ^Y1

a
X0^Y0

X1 ^Y1!X1 ^Y1:

So indeed, .Lanpr.f ^g//D pr!.f ^g/D f �g.

2.3.1 Smash products for diagram categories A monoidal category .M;^/ gives rise to more
monoidal categories by considering diagrams from small categories into M. In our next example we
discuss how this is related to model category theory.
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Definition 2.3.2 Let .M;^/ be a monoidal category and let I and J be direct categories. We define the
external product, which is the bifunctor

� ^ � WMI
�MJ

!MI�J

sending .X;Y / to the diagram

X ^Y W I �J !M; .i; j / 7!Xi ^Yj :

The external product is part of a two-variable adjunction. Since we do not use the extra structure will not
define the other two functors in the two-variable adjunction. We have the following proposition.

Proposition 2.3.3 Let .M;^/ be a monoidal model category. Then , the bifunctor

� ^ � WMI
�MJ

!MI�J

is a Quillen bifunctor , that is to say, it has a total left derived functor

� ^
L
� W Ho.MI /�Ho.MJ /! Ho.MI�J /:

Proof Suppose that the injective model structures MI
inj;M

J
inj and MI�J

inj exist, eg if M is a combinatorial
model category. Since in the injective model structures the cofibrations are the objectwise cofibrations,
the above proposition follows directly. The universal property of � ^L � implies that up to canonical
isomorphism both constructions give the same result.

We have the following corollary.

Corollary 2.3.4 In the context of Proposition 2.3.3, there is a functor isomorphism

hocolim
I�J

.X ^L Y /Š .hocolim
I

X /^L .hocolim
J

Y /:

Proof From Proposition 2.3.3, it follows that the external product preserves diagram cofibrant objects
and preserves trivial diagram cofibrations between diagram cofibrant objects. The result now follows
from the strict formula

colim
I�J

.X ^Y /Š .colim
I

X /^ .colim
J

Y /

as all the objects involved are cofibrant.

As a consequence of Proposition 2.3.3, we also obtain the following.

Example 2.3.5 Let .M;^/ be a monoidal model category and let J be a direct category. Consider
the diagram category MJ with the model structure of Proposition 2.1.4. The category MJ inherits a
monoidal structure

MJ
�MJ

!MJ; .X;Y / 7!X ^Y;

where X ^Y is the diagram j 7!Xj ^Yj . By a proof analogous to that of Proposition 2.3.3, .MJ ;^/ is
a monoidal model category.
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Corollary 2.3.6 Let .M;^/ be a pointed symmetric monoidal model category , and let f WX ! Y and
g W U ! V be morphisms in M. There is a canonical isomorphism

hocofib.f /^L hocofib.g/Š hocofib.f �L g/:

We will provide a proof since it is important to our exposition. A different proof can be found in [Hovey
2014, Proposition 4.1].

Proof We may assume that X;Y;U;V are cofibrant in M. By definition,

hocofib.f /^L hocofib.g/D hocolim.� X
f
�! Y /^L hocolim.� U

g
�! V /:

By Corollary 2.3.4, this is isomorphic to

(2.3.7) hocolim

0BBBBBBBB@

� X ^Voo // Y ^V

�

OO

��

X ^Uoo

��

//

OO

Y ^U

OO

��

� �oo // �

1CCCCCCCCA
:

We denote the above underlying p�p–diagram by Z . We define the following map of posets

pr W p�p! p; ..1; 0/; .1; 0// 7! .1; 0/;

..0; 0/; .0; 0//; ..0; 0/; .1; 0//; ..1; 0/; .0; 0// 7! .0; 0/;

else 7! .0; 1/;

and consider the homotopy left Kan extension

(2.3.8) Lpr! W Ho.Mp�p/! Ho.Mp/:

Applying the formula Proposition 2.2.4 to the diagram Z we obtain .Lpr!Z/.1;0/ D Y ^V . Next, for the
object .0; 0/ the slice category pr=.0; 0/ is just the poset p and we have

.Lpr!Z/.0;0/ D hocolim

0BBB@
X ^U

1^g
��

f^1
// Y ^U

X ^V

1CCCA
and finally, .Lpr!Z/.0;1/ Š �. Note that

.Lpr!Z/.0;0/! .Lpr!Z/.1;0/ D f �L g:
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Hence, the homotopy left Kan extension (2.3.8) of the underlying diagram (2.3.7) is the following
p–diagram:

X ^V
`

X^U Y ^U

��

// Y ^V

�

It follows directly that the homotopy colimit of this diagram is

hocofib.f �L g/:

2.3.2 Stable model categories and triangulated categories Recall that the homotopy category Ho.M/

of a pointed model category M supports a suspension functor

† W Ho.M/! Ho.M/

given by
†X WD hocolim.� X !�/;

with a right adjoint functor
� W Ho.M/! Ho.M/

given by
�X D holim.�!X  �/:

Definition 2.3.9 A stable model category is a pointed model category for which the functors † and �
are inverse equivalences.

Example 2.3.10 The prototypical example of a stable model category is the category of spectra, Sp.
There are of course many variants of spectra, but as our result does not depend on a choice of suitable,
monoidal model category, we will not need to specify this further.

Example 2.3.11 Let A be a graded abelian category with enough projectives, and let C.Œ1�;1/.A/ denote
the category of twisted .Œ1�; 1/–chain complexes or differential objects. An object of C.Œ1�;1/.A/ is a pair
.M�; d/ with M� 2A together with a morphism (the differential)

d WM�!M�Œ1�;

such that d Œ1� ı d D 0. The category C.Œ1�;1/.A/ admits a stable model structure, the projective model
structure, where the weak equivalences are the homology isomorphisms and the fibrations are the
surjections. In particular, the cofibrant objects are the projective objects of A. We let D.Œ1�;1/.A/ denote
the homotopy category of C.Œ1�;1/.A/. For an object .M�; d/ 2 C.Œ1�;1/.A/ we define the homology
H.M /D ker d= im d , and so we have the homology functor

H� W D.Œ1�;1/.A/!A:

In the following we will let .A;˝; 1/ be an abelian symmetric monoidal category with enough projectives.
In this case .C.Œ1�;1/.A/;˝/ is a monoidal stable model category. Finally, we mention the homology
functor H� W D.Œ1�;1/.A/!A is a lax symmetric monoidal functor via the Künneth morphism.
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We note that our methods throughout this paper also work in a setting where A does not have enough
projectives. In the case of ADE.1/�E.1/-comod, C.Œ1�;1/.A/ can be equipped with a model structure
where the cofibrant twisted chain complexes are degreewise projective as E.1/�–modules. This relative
projective model structure is also monoidal; see [Barnes and Roitzheim 2011, Section 5].

If M is a pointed simplicial model category, then the suspension functor

† W Ho.M/! Ho.M/

admits a simple description. Indeed, by the simplicial model category axioms, the functor

S1
^�WM!M

defined using the tensor with simplicial sets is a left Quillen functor. Then, † can be defined as the left
derived functor of S1 ^ � , ie

†X WD S1
^

L X D S1
^QX I

see [Hovey 1999, 6.1.1]. Note that if M is stable, then the homotopy category Ho.M/ is a triangulated
category with † a shift functor; see [Barnes and Roitzheim 2011, Theorem 4.2.1; Hovey 1999, 7.1.6].

In a simplicial model category M we can choose a particular model for the homotopy cofiber (2.1.11) of
a morphism, which will help with computations. It is called the mapping cone construction.

Definition 2.3.12 Suppose M is a simplicial stable model category and f WX ! Y a morphism in Mcof.
Let cone.f / be the pushout of f along the canonical morphism

incl˝1 W S0
˝X ! .I; 0/˝X D CX;

that is, cone.f / comes with the pushout square

X
f

//

incl˝1
��

Y

��

CX // conef

Here CX D .I; 0/˝X denotes the cone of X . The natural map

� W .I; 0/˝X ! S1
˝X

and the trivial map
�W Y ! S1

˝X

induce, using the universal property of pushout, a map @ W cone.f /! S1˝X .

The fact that the mapping cone construction represents the homotopy cofiber and further details can be
found in [Barnes and Roitzheim 2020, Section 4.3].
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Definition 2.3.13 Let M be a simplicial stable model category and f W X ! Y a morphism in Mcof.
The elementary triangle associated to f is the triangle

X
f
�! Y

�
�! cone.f /

@
�! S1

˝X:

A triangle .f;g; h/

A
f
�! B

g
�! C

h
�!†A

in Ho.M/ is called distinguished if it is isomorphic to an elementary one.

2.4 Homology of a category with coefficients in a functor

In this subsection we will introduce one our main tools, namely homology of a category with coefficients
in a functor. It is a particular case of functor homology that assigns the groups TorI

�.F;G/ to functors
F W I !A and G W I op!A with A an abelian category. Since we do not need such generality, we will
introduce it in a more down-to-earth way using simplicial techniques that dates back to Quillen. Traditional
references include [Oberst 1967; 1968], more contemporary references include [Gálvez-Carrillo et al.
2013; Richter 2020, Chapters 15, 16].

Before we define the homology of a category with coefficients in a functor we will define the associated
complex of a simplicial object in an abelian category.

Definition 2.4.1 Let D 2 sA be a simplicial object in A. We define the associated complex .C�.U /; @/ 2
Ch�0.A/ by

Cn.D/DDn; @n D

nX
iD0

.�1/ndi W Cn.D/! Cn�1.D/:

Note that the simplicial identities imply @2 D 0, so C�.D/ is indeed a chain complex. Moreover, this
evidently defines a functor C W sA! Ch�0.A/. In other words, the associated complex to a simplicial
object D 2 sA is the following chain complex:

(2.4.2) D0

d0�d1
 ����D1

d0�d1Cd2
 �������D2 � � � :

Definition 2.4.3 Let I be a small category and consider a diagram D W I ! A. The homology of the
category I with coefficients in the functor D is defined as the homology of the complex C�.D/, ie the
homology of the associated complex of the simplicial replacement srep.D/ 2 sA.

So, unwinding the definition, we start by first taking the simplicial replacement srep.D/ W�op!A of D,
see Definition 2.1.14, that is, the diagramM

i0

Di0

M
i0!i1

Di0
oo
oo

M
i0!i1!i2

Di0
� � �oo

oo
oo

:

Then, we consider the associated chain complex (2.4.2) of C�.D/. Then we defined Hp.I ID/ to be the
pth homology group of the chain complex C�.D/.
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Now we will investigate how these constructions help us calculate homotopy colimits. First, recall the
following.

Definition 2.4.4 We call a functor F� W Ho.M/!A homological if it satisfies the following conditions:

(i) F� is a graded functor, that is to say, it commutes with suspensions, so there are natural equivalences

F�.†X /Š F�.X /Œ1� WD F��1.X /

which are part of the structure.

(ii) F� is additive, ie it commutes with arbitrary coproducts.

(iii) F� converts distinguished triangles into long exact sequences.

(iv) Furthermore, if .M;^/ is a monoidal model category and .A;˝/ is a monoidal abelian category,
we require that F� is lax symmetric monoidal, that is, there is a natural Künneth morphism

�X ;Y W F�X ˝F�Y ! F�.X ^
L Y /:

Now let M be a simplicial stable model category, let I be a direct category and let X 2Ho.MI /. Further,
let

F� W Ho.M/!A

be a homological functor into an (graded) abelian category. Then there is a spectral sequence

(2.4.5) E2
pq DHp.I IFqX /) FpCq.hocolim

J
X /I

see [Richter 2020, 16.3.1]. The construction of the spectral sequence (2.4.5) arises from the skeletal
filtration of a simplicial object. This spectral sequence will play a central role in our calculations for the
monoidal properties of Q in Section 3.

2.5 Franke’s realization functor

In this subsection we will recall the construction of Franke’s equivalence

R W D.Œ1�;1/.A/! Ho.M/:

For a detailed exposition we refer to [Patchkoria 2012, Section 3.3; Roitzheim 2008]. Recall that CN is the
crown-shaped poset from Example 2.1.7, and that the category D.Œ1�;1/.A/ above is the derived category
of twisted chain complexes from Example 2.3.11, where A is a graded symmetric monoidal hereditary
abelian category with enough projectives, M is a simplicial stable model category, and F W Ho.M/!A
is a homological functor. Also, we assume A splits into shifted copies of another abelian category B,

AD
N�1M
iD0

BŒi �

for N > 1. Under these assumptions, R exists and is an equivalence.
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For an object X 2MCN we have the structure morphisms of X ,

li WXˇi
!X�i

; ki WXˇi�1
!X�i

; i 2 Z=N Z:

Furthermore, let

Z.i/.X /D F�.X�i
/; B.i/.X /D F�.Xˇi

/; C .i/.X /D F�.cone.ki//;

�.i/ W D F�li W B
.i/.X /!Z.i/.X /; i 2 Z=N Z;

where cone.ki/ denotes the cone construction from Definition 2.3.12. We will now list some additional
assumptions that we need in order to assemble the C .i/ into a chain complex C�.

Definition 2.5.1 Consider the full subcategory L of Ho.MCN / consisting of those diagrams X 2

Ho.MCN / which satisfy the following conditions:

(i) The objects Xˇi
and X�i

are cofibrant in M for any i 2 Z=N Z.

(ii) The objects F�.Xˇi
/ and F�.X�i

/ are contained in BŒi � for any i 2 Z=N Z.

(iii) The map �.i/ W F�.Xˇi
/! F�.X�i

/ is a monomorphism for any i 2 Z=N Z.

Next we construct a functor
Q W L! C.Œ1�;1/.A/:

Let X be an object of L. As the functor

F� W Ho.M/!A

is homological, the distinguished triangles

Xˇi�1

ki
�!X�i

! cone.ki/!†Xˇi�1

induce long exact sequences

� � � ! B.i�1/.X /!Z.i/.X /
�.i/

��! C .i/.X /
�.i/

��! B.i�1/.X /Œ1�!Z.i/.X /Œ1�! � � � :

Note that B.i�1/.X / 2 BŒi � 1� and Z.i/.X / 2 BŒi � for all i 2 Z=N Z, since X 2 L. Therefore, the
morphisms B.i�1/.X /!Z.i/.X / and B.i�1/.X /Œ1�!Z.i/.X /Œ1� are zero. As a consequence, for any
i 2 Z=N Z we actually obtain short exact sequence in A,

(2.5.2) 0!Z.i/.X /
�.i/

��! C .i/.X /
�.i/

��! B.i�1/.X /Œ1�! 0:

Now consider the following objects in A.

C�.X /D C .0/.X /˚C .1/.X /˚ � � �˚C .N�1/.X /;

Z�.X /DZ.0/.X /˚Z.1/.X /˚ � � �˚Z.N�1/.X /;

B�.X /D B.0/.X /˚B.1/.X /˚ � � �˚B.N�1/.X /:
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The morphisms �.i/; �.i/; �.i/; i 2 Z=N Z, induce morphisms between the direct sums

� W B�.X /!Z�.X /; �D �.0/˚�.1/˚ � � �˚�.N�1/;

� WZ�.X /! C�.X /; �D �.0/˚ �.1/˚ � � �˚ �.N�1/;

� W C�.X /! B�.X /Œ1�; �D �.0/˚ �.1/˚ � � �˚ �.N�1/:

After summing up, we get a short exact sequence of objects in A

(2.5.3) 0!Z�.X /
�
�! C�.X /

�
�! B�.X /Œ1�! 0:

Splicing this short exact sequence with its shifted copy gives an object in C.Œ1�;1/.A/. More precisely,
define

d D �Œ1��Œ1�� W C�.X /! C�.X /Œ1�:

We have d2 D 0 by construction and therefore we get a .Œ1�; 1/–twisted complex. We have now arrived at
the definition

Q W L! C.Œ1�;1/.A/; Q.X /D
� M

i2Z=N Z

F�.cone.ki//; d

�
D .C�.X /; d/:

It can be shown that Q is in fact an equivalence of categories. The composite

(2.5.4) C.Œ1�;1/.A/
Q�1

���! L
hocolim
����! Ho.M/:

factors over D.Œ1�;1/.A/!Ho.M/, which is Franke’s realization functor R. It follows from the construc-
tion of R that it commutes with suspensions and that F� ıRŠH�.

3 Monoidal properties of Q

In this section, we will examine properties of the bifunctor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

via Theorem 3.1.5, which is one of the main ingredients of the diagram (1.0.2).

3.1 Preliminaries on crowned diagrams

Recall the poset CN from Example 2.1.7 (the crown shape with two rows) and the poset DN from
Example 2.1.8 (the crown shape with three rows). We will be interested in two functors between these
two categories. The first functor is the projection functor

(3.1.1) pr W CN �CN !DN ; .ˇi ; ǰ / 7! ˇiCj ; .�i ; �j / 7! �iCj ;

.�i ; ǰ / 7! iCj ; .ˇi ; �j / 7! iCj :

Note, that we really should be writing ˇi .mod N / and iCj.modN / etc, but we commit a small abuse of
notation and avoid this. The other functor that we will be interested in is the functor

(3.1.2) i W CN !DN ; �n 7! �n; ˇn 7! n;
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which is the inclusion of the crown shape CN into the bottom two rows of DN . Since weak equivalences in
the diagram categories are given objectwise, the functor i� WMDN !MCN preserves weak equivalences.
Thus, it defines a functor on the homotopy categories, which we denote by the same letter, that is,

i� W Ho.MDN /! Ho.MCN /:

Next, recall the external smash product for diagrams X 2MI and Y 2MJ for I and J direct categories
from Definition 2.3.2. By choosing I D J D CN , it follows formally that we have the bifunctor

(3.1.3) � ^ � WMCN �MCN !MCN�CN :

By Proposition 2.3.3, the external product has a total left derived functor

(3.1.4) � ^
L
� W Ho.MCN /�Ho.MCN /! Ho.MCN�CN /:

Given diagrams X;Y 2Ho.MCN /, we can define the homotopy left Kan extension of the external smash
product X ^L Y 2 Ho.MCN�CN / along the projection functor pr W CN �CN !DN , that is,

E D Lpr!.X ^
L Y / 2 Ho.MDN /:

Now that we have all the necessary ingredients we can finally state the following theorem.

Theorem 3.1.5 The bifunctor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

satisfies the following. Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. Then , i�Lpr!.X ^

L Y / 2 L, that is to say, we have a bifunctor

i�Lpr!.� ^
L
�/ W L�L! L:

Furthermore , there is a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

The theorem has two parts. First, we show that i�Lpr!.� ^
L �/ is in fact a bifunctor

i�Lpr!.� ^
L
�/ W L�L! L:

The second part is that for any two crowned diagrams X;Y 2 L satisfying the stated hypotheses, there is
a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

The two parts combined yield that the following diagram commutes (up to natural isomorphism):

C.Œ1�;1/.A/�C.Œ1�;1/.A/

˝

��

L�LQ�Q
oo

i�Lpr!

��

C.Œ1�;1/.A/ L
Q

oo
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The first part of Theorem 3.1.5 is the content of Section 3.3 and Proposition 3.3.1. The natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /

is the content of Sections 3.4 and 3.5 and Proposition 3.6.6.

3.2 Slice categories of the projection functor

Again, the values of Lpr!.� ^
L �/ are given by the formula in Proposition 2.2.4. That is, the values of

E at the objects of DN are given by

En
D hocolim

pr=n

.X ^L Y /;(3.2.1)

E�n
D hocolim

pr=�n

.X ^L Y /;(3.2.2)

Eˇn
D hocolim

pr=ˇn

.X ^L Y /:(3.2.3)

The structure morphisms of the diagram E, Oln WEn
!E�n

and ykn WEnC1
!E�n

, are the edges of the
homotopy Kan extension and are given by the natural maps

En
Š hocolim

pr=n

.X ^L Y /! hocolim
pr=�n

.X ^L Y /ŠE�n
;(3.2.4)

EnC1
Š hocolim

pr=nC1

.X ^L Y /! hocolim
pr=�n

.X ^L Y /ŠE�n
;(3.2.5)

induced by the maps of posets � and  , respectively, see (3.2.8).

Since we are interested in the homotopy Kan extension of the functor pr W CN �CN !DN , we need to
identify all the slice categories involved, ie pr=�n, pr=n and pr=ˇn. We have the following three cases.

(i) The first case is pr=�n. For n 2 Z=N Z and the object �n we have the slice category pr=�n

.�i ; �j /

.ˇi�1; �j /
.�i ; ǰ / .ˇi ; �j /

.�i ; ǰ�1/

.ˇi ; ǰ /

.ˇi�1; ǰ�1/

.ˇi�1; ǰ / .ˇi ; ǰ�1/

: : :

: : : : : :

: : :

where i C j � n .mod N /. Note that all the nonidentity morphisms are of the form .1; li/ or .li ; 1/ and
similarly .1; ki/ or .ki ; 1/ for any i 2Z=N Z. The poset pr=�n follows the same pattern to the left and to
the right.
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(ii) Next we have the case pr=n. Let n 2Z=N Z and consider now the slice category pr=n which looks
as follows,

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

where i C j � n .mod N /. Similarly to the above all the nonidentity morphisms are of the form .1; li/

or .li ; 1/ and .1; ki/ or .ki ; 1/ for any i 2 Z=N Z.

(iii) Next is the case pr=ˇn. Let again n 2Z=N Z but now we consider the slice category pr=ˇn. Notice
that it is

: : : .ˇi�1; ǰC1/ .ˇi ; ǰ / .ˇiC1; ǰ�1/ : : :

in which i C j � n .mod N /. In other words, it is a discrete category. This means that

Eˇn
D hocolim

pr=ˇn

.X ^L Y /Š
M

iCjDn

Xˇi
^

L Yˇj :

This is the only case that we can be explicit about the values of the homotopy left Kan extension
E D Lpr!.X ^

L Y /.

(iv) Our last example is a particular subposet of pr=�n and it is not strictly speaking a slice of any value.
However it will be very useful for us is the following. Consider the following subposet Jn � pr =�n
defined as follows

.�i ; �j /

.ˇi ; ǰ�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

where i C j � n .mod N /. In this poset, the nonidentity morphisms are of the form .ki ; li/ or .li ; ki/,
unlike the examples above where one arrow was always the identity arrow.

Remark 3.2.6 Now let � W Jn! pr=�n denote the inclusion of the subposet defined in (iv) into the poset
in (i). We will define a map of posets

L W pr=�n! Jn;

where it suffices to define it for the part of the poset visible in (i) as the rest can be defined analogously.
The map L is given by

L W pr=�n! Jn; .ˇiC1; ǰ / 7! .ˇiC1; ǰ /;

.ˇi ; ǰC1/ 7! .ˇi ; ǰC1/;

else 7! .�i ; �j /:
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We note that L left adjoint to � - this can quickly be verified straight from the definition as the morphism
sets in either poset are either empty or consist of exactly one element. As a consequence, since the
inclusion map � W Jn! pr =�n is a right adjoint, it is homotopy final, ie for any F 2Ho.Mpr=�n/ we have

hocolim
Jn

��.F /Š hocolim
pr=�n

F:

In other words, the value E�n
in (3.2.1) can be calculated as

(3.2.7) E�n
Š hocolim

pr=�n

.X ^L Y /Š hocolim
Jn

��.X ^L Y /:

We discuss homotopy finality in more detail in Section 4.1; see Definition 4.1.3.

Given any of subposet of CN �CN , eg pr=n from example (ii), we can define the restriction of the external
smash product X^Y 2MCN�CN to pr=n by taking the pullback along the inclusion � Wpr=n!CN�CN ,
that is,

�� WMCN�CN !Mpr=n :

Notice that �� preserves weak equivalences so it induces a functor on homotopy categories

�� W Ho.MCN�CN /! Ho.Mpr=n/:

Moreover, we have maps between the subposets of CN �CN . The morphisms n! �n and nC1! �n

induce maps of posets

(3.2.8)  W pr=n! pr=�n; � W pr=n�1! pr=�n;

which in turn also induce pullback functors on the homotopy categories, that is,

�� W Ho.Mpr=�n/! Ho.Mpr=n�1/; and  � W Ho.Mpr=�n/! Ho.Mpr=n/:

We conclude this section with a convention.

Convention 3.2.9 Because of the above, we will commit an abuse of notation and instead of writing, for
example,

��.X ^L Y / 2 Ho.Mpr=n/

we will simply write

X ^L Y 2 Ho.Mpr=n/;

with the understanding that this diagram was given by a composition of restriction functors

Ho.MCN�CN /
��

��! Ho.Mpr=�n/
��

��! Ho.Mpr=n/

unless we need the extra notation for clarification.
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Remark 3.2.10 Consider a diagram F 2 Ho.MCN�CN /. By Convention 2.1.1, we can assume that F

is a projective cofibrant object, so in particular, it is objectwise cofibrant. The external smash product

� ^ � WMCN �MCN !MCN�CN

as defined in (3.1.3) is a Quillen bifunctor, so in particular it preserves cofibrant objects. This implies that
X ^L Y is cofibrant in MCN�CN , so in particular it is objectwise cofibrant. Now, for any subposet

� W J ,! CN �CN ;

eg any of the slice categories of the projection functor pr (3.1.1), we have the pullback functor

�� WMCN�CN !MJ :

This functor is not necessarily a left Quillen functor with respect the projective model structures; see
Proposition 2.1.4. However, the diagram ��.X^LY /, is objectwise cofibrant, which means that the geomet-
ric realization of the simplicial replacement still models the homotopy colimit of the diagram ��.X ^L Y /.
In particular, the skeletal filtration of all the restrictions is always Reedy cofibrant; see Lemma 2.1.17.

3.3 Spectral sequence calculations

The main result of this subsection is that given crowned diagrams X;Y 2 L that for satisfying a simple
condition, the diagram i�E D i�Lpr!.X ^

L Y / is also in the subcategory L, ie the objects Xˇi
and X�i

are cofibrant in M, the objects F�.Xˇi
/ and F�.X�i

/ are in BŒi �, and the map

�.i/ W F�.Xˇi
/! F�.X�i

/

is a monomorphism for any i 2 Z=N Z; see Definition 2.5.1. Essentially, this condition is that for the
given homological functor F� WHo.M/!A, either the crowned diagram X or Y is objectwise projective.

Proposition 3.3.1 Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. Consider the homotopy left Kan extension E D Lpr!.X ^

L Y / 2 Ho.MDN / of

X ^L Y 2 Ho.MCN�CN /

along
pr W CN �CN !DN

with the values and morphisms given in (3.2.1)–(3.2.3) and (3.2.4), (3.2.5), respectively.

E�0
E�1

: : : E�N�1

E0

OO ==

E1

OO
==

: : :

<<

EN�1

OO
kk

Eˇ0

OO ==

Eˇ1

OO
==

: : :

<<

EˇN�1

OO
kk
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Then , for any n 2 Z=N Z and any ˛ 2 fˇ; �g we have F�.E˛n
/ 2 BŒn� and the morphisms

F�.En
/! F�.E�n

/

induced by En
!E�n

are monomorphisms.

Corollary 3.3.2 Let X;Y be crowned diagrams satisfying the hypothesis of Proposition 3.3.1. The top
two rows of the diagram E D Lpr!.X ^

L Y / form an object in L, that is , the diagram i�E 2 L.

By our assumption, for any n2Z=N Z and any ˛ 2fˇ; �g the objects F�.X˛n
/ and F�.Y˛n

/ are projective
in A. This ensures that there are natural Künneth isomorphisms

(3.3.3) F�.X˛n
^

L Y˛n
/Š F�.X˛n

/˝F�.Y˛n
/:

Since the values E�n
;En

and Eˇn
are computed via homotopy colimits, we will use (2.4.5), the spectral

sequences converging to the homology of the homotopy colimit.

Lemma 3.3.4 There are spectral sequences

(3.3.5) E2
pq DHp.pr=nIFq.X ^

L Y //) FpCq

�
hocolim

pr=n

.X ^L Y /
�
Š FpCq.En

/

and

(3.3.6) E02pq DHp.pr=�nIFq.X ^
L Y //) FpCq

�
hocolim

pr=�n

.X ^L Y /
�
Š FpCq.E�n

/

and natural morphisms of spectral sequences f W fE2
pqg ! fE

02
pqg induced by the map in (3.2.4).

We will now begin the proof of Proposition 3.3.1.

Proof Our claim is that F�.En
/! F�.E�n

/ is a monomorphism, where

E D Lpr!.X ^
L Y / 2 Ho.MDN /

as before and F� W Ho.M/! A is our homological functor. To obtain information on F�.En
/ and

F�.E�n
/, we will start by working out the spectral sequence (3.3.5), which we explained is a special case

of the spectral sequence (2.4.5). The proof of the proposition is divided into three parts:

� calculating the E2–term Hp.pr=nIFq.X ^
L Y //,

� calculating the E2–term Hp.pr=�nIFq.X ^
L Y //,

� showing that the induced map of spectral sequences gives the desired isomorphism.
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Step 1 Hp.pr=nI Fq.X ^L Y //

We will use the simplicial replacement techniques explained in Section 2.4. Recall the poset pr=n which
is

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

Here, i C j D n .mod N /, and so the functor X ^L Y 2 Ho.Mpr=n/ looks as follows:

Xˇi
^Y

ǰ

Xˇi
^Y�jX�i

^Y
ǰ

Xˇi
^Y

ǰ�1
Xˇi�1

^Y
ǰ

X�iC1
^Y

ǰ�1
Xˇi�1

^Y�iC1

: : :: : :

Our goal is to compute

Hp.pr=nIFq.X ^
L Y // for all p � 0 and all q 2 Z,

which are the E2–terms of the spectral sequence (3.3.5). In order to do so, we apply the homological
functor Fn.�/ to the previous diagram to get the diagram Fn.X ^

L Y / 2Apr=n which, by (3.3.3), is

(3.3.7)

B.i/˝ zB.j/

B.i/˝ zZ.j/Z.i/˝ zB.j/

00

B.iC1/˝ zZ.j�1/B.i�1/˝ zZ.jC1/

: : :: : :

We will write

fij D �i ˝ 1 W B.i/˝ zB.j/!Z.i/
˝ zB.j/;(3.3.8)

gij D 1˝ Q�j W B
.i/
˝ zB.j/! B.i/˝ zZ.j/;(3.3.9)

to distinguish, for labelling purposes, the two different morphisms in the simplicial replacement below.
Note that since Bi and zBj and projective in A, by our convention they are automatically flat, hence the
morphisms (3.3.8) and (3.3.9) are monomorphisms.

Next, we consider the simplicial replacement of the diagram Fn.X ^
L Y / 2Apr=n , that is

srep.Fn.X ^
L Y // 2A�

op
:

Following Definition 2.1.14 we have that

srep.F.X ^L Y //0 D
M

iCjDn

�
.B.i/˝ zB.j//˚ .Z.i/

˝ zB.j//˚ .B.i/˝ zZ.j//
�
;

srep.Fn.X ^
L Y //1 D

M
iCjDn

�
.B.i/˝ zB.j//fij

˚ .B.i/˝ zB.j//gij

�
;

with face maps given by “source” and “target” respectively. Because of the shape of the poset pr=n, for
all m� 2 the simplices srep.Fn.X ^

L Y //m consist solely of degenerate simplices.
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Now we consider the associated complex C�.Fn.X^
LY // of this simplicial complex, see Definition 2.4.1.

We briefly explain the differential of the complex C�.E.1/�n.X ^
L Y //, namely the map

d D d0� d1 W C1.Fn.X ^
L Y //! C0.Fn.X ^

L Y //:

Notice from (3.3.7), we can consider the simpler case where the diagram is

Z.i/˝ zB.j/ B.i/˝ zZ.j/

B.i/˝ zB.j/
gij

77

fij

gg

Then, the differential of the associated complex of the simplicial replacement of this diagram is

dij D d0� d1 W .B
.i/
˝ zB.j//˚ .B.i/˝ zB.j//! .B.i/˝ zB.j//˚ .Z.i/

˝ zB.j//˚ .B.i/˝ zZ.j//;

.x;y/ 7! .xCy;�fij .x/;�gij .y//:

The 0th homology of the complex is just the pushout

B.i/˝ zZ.j/
a

B.i/˝ zB.j /

Z.i/
˝ zB.i/:

The first homology is the kernel of the differential dij . Since the maps fij and gij are injective, this
forces dij .x;y/D 0 if and only if x D y D 0, which implies that the first homology is trivial. It follows
from the diagram (3.3.7) that the differential d on the complex C�.Fn.X ^

L Y // is the direct sum of
the differentials dij for i C j D n. Now that we know the differential of the complex C�.Fn.X ^

L Y //

we will compute its homology. It follows that H0.pr=nIFn.X ^
L Y // is the colimit of the diagram

Fn.X ^
L Y /. By inspecting the diagram Fn.X ^

L Y / above we can see the colimit of the diagram is a
direct sum (coproduct) of pushouts, that is,

H0.pr=nIFn.X ^
L Y //D colim

pr=n

Fn.X ^
L Y /D

M
iCjDn

�
Z.i/
˝ zB.j/

a
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
:

Similar to the simpler case, the first homology

H1.pr=nIFn.X ^
L Y //

is the kernel of the differential

d0� d1 W srep.Fn.X ^
L Y //1! srep.Fn.X ^

L Y //0:

Since it is a direct sum of the simpler differentials dij as above, it follows that

H1.pr=nIFn.X ^
L Y //D 0:

Of course, all the higher homologies

Hq.pr=nIFn.X ^
L Y //

vanish for all q � 2.
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Next, we apply the homological functor Fn�1.�/ to the diagram X ^L Y 2 Ho.Mpr=n/ and we have
the diagram Fn�1.X ^

L Y / 2Apr=n which is

0

00

Bi ˝ zB.j�1/B.i�1/˝ zB.j/

00

: : :: : :

Clearly,
H0.pr=nIFn�1.X ^

L Y //D 0;

and
H1.pr=nIFn�1.X ^

L Y //D
M

iCjDnC1

B.i/˝ zB.j/:

It follows that for all p � 0 and all m ¤ �n;�n� 1 mod N , the terms Hp.pr=nIFm.X ^
L Y // all

vanish. This completes the computation of the E2 terms of the spectral sequence. It is concentrated in
degrees .0;m/ and .1;m� 1/ with m� n mod N . Therefore the spectral sequence collapses and we
have a short exact sequence

0!
M

iCjDn

�
Z.i/
˝ zB.j/

M
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
! Fn.En

/!
M

iCjDnC1

B.i/˝ zB.j/! 0:

This concludes the calculation of the spectral sequence (3.3.5).

Step 2 Hp.pr=�nI Fq.X ^L Y //

We will now repeat the previous strategy and apply it to the spectral sequence (3.3.6). Recall the poset Jn

from (iv), which is the following subposet of pr=�n:

.�i ; �j /

.bi ; bj�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

By Remark 3.2.6, the inclusion functor � W Jn! pr=�n has a left adjoint L, and we have

E�n
Š hocolim

pr=�n

.X ^L Y /Š hocolim
Jn

��.X ^L Y /I

see (3.2.7). So, instead of the spectral sequence (3.3.6) we can compute the following spectral sequence

Hp

�
JnIFq.�

�.X ^L Y //
�
) FpCq

�
hocolim

Jn

��.X ^L Y /
�

since both converge to the same target, ie the F�–homology of E�n
,

F�

�
hocolim

Jn

��.X ^L Y /
�
Š F�

�
hocolim

pr=�n

.X ^L Y /
�
Š F�.E�n

/:
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In fact this, can be made stronger. The adjoint pair L W pr=�n� Jn W � induces a natural isomorphism

H�.pr=�nIFq.X ^
L Y //ŠH�.Jn; �

�Fq.X ^
L Y //:

From the diagram Jn we again only need to consider Fn.�/ and F�n�1.�/. Firstly, we apply Fn.�/ to
the diagram ��.X ^L Y / and we get Fn.�

�.X ^L Y // 2AJn as

Z.i/˝ zZ.j/

0

Z.iC1/˝ zZ.i�1/

: : :0

Z.i�1/˝ zZ.iC1/

: : :

From this we get that
H0

�
JnIFn.�

�.X ^L Y //
�
D

M
iCjDn

Z.i/
˝ zZ.j/

and
Hp

�
JnIFn.�

�.X ^L Y //
�
D 0; p � 1:

Next, we will apply the functor Fn�1.�/ to obtain the diagram Fn�1.�
�.X ^L Y // 2AJn depicted by

0

B.i/˝ zB.j�1/

0

: : :B.i�1/˝ zB.j/

0

: : :

From the above we get that

H1

�
JnIFn�1.�

�.X ^L Y //
�
D

M
iCjDnC1

B.i/˝ zB.j/

and
Hp

�
JnIFn�1.�

�.X ^L Y //
�
D 0 for p D 0 and p � 2.

This completes the computation of the E2–term of the final spectral sequence. It is concentrated in
degrees .0;m/ and .1;m� 1/ with m� n mod N . Therefore, the spectral sequence collapses and we
have a short exact sequence

0!
M

iCjDn

Z.i/
˝ zZ.j/

! Fn.E�n
/!

M
iCjDn�1

B.i/˝ zB.j/! 0:

Step 3 the monomorphism F�.En/! F�.E�n
/

Now that we have calculated both spectral sequences we can continue with the proof that F�.En
/!

F�.E�n
/ is a monomorphism. The map of posets  W pr=n! pr=�n induces morphisms on homologies

of categories with coefficients Fn.�/ and Fn�1.�/ respectively, ie

H�.pr=nIFn.X ^
L Y //!H�.pr=�nIFn.X ^

L Y //ŠH�
�
JnIFn.�

�.X ^L Y //
�
;

H�.pr=nIFn�1.X ^
L Y //!H�.pr=�nIFn�1.X ^

L Y //ŠH�
�
JnIFn�1.�

�.X ^L Y //
�
:
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Hence we have a morphism of short exact sequences

0 //
L

iCjDn

�
Z.i/˝ zB.j/

`
B.i/˝ zB.j /

B.i/˝ zZ.j/
�

//

��

Fn.En
/ //

��

L
iCjDnC1

B.i/˝ zB.j/

Š

��

// 0

0 //
L

iCjDn

Z.i/˝ zZ.j/ // Fn.E�n
/ //

L
iCjDnC1

B.i/˝ zB.j/ // 0

By naturality, the left vertical map is the direct sum of the pushout-product maps

�i � z�j W

�
Z.i/
˝ zB.j/

a
B.i/˝ zB.j /

B.i/˝ zZ.j/

�
!Z.i/

˝ zZ.j/:

By Lemma 3.7.2, the map �i � z�j is injective which means that so is the left vertical map. The five
lemma now implies that the morphism

Fn.En
/! Fn.E�n

/

is an injection. In particular, F�.En
/ and F�.E�n

/ are concentrated in the correct degrees and the
induced morphisms F�.En

/! F�.E�n
/ are injections. This concludes the proof of the proposition.

Corollary 3.3.2 now follows: the diagram E is indeed in the subcategory L� Ho.MCN / as the vertices
are in the correct degree shifts of B, and F applied to the edges En

!E�n
is a monomorphism, which

is precisely how L was defined.

3.4 Cones

In the previous section we proved that for any two crowned diagrams X;Y 2 L which are objectwise
projective, i�E D i�pr!.X ^

L Y / 2 L. In this subsection we will prove that applying the functor Q to the
object i�E is a good model for the tensor product Q.X /˝Q.Y /. This will follow as a corollary from
the following proposition.

Proposition 3.4.1 Consider E 2 Lpr!.X ^
L Y / 2 Ho.MDN / and let i�E be the pullback of E along

i W CN !DN . For every n 2 Z=N Z we have a canonical isomorphism

cone.i�Eˇn�1
! i�E�n

/Š
_

iCjDn

cone.ki/^
L cone. Qkj /;

where ki WXˇi�1
!X�i

is a structure morphism of X 2 L.

Proof This proof has three main parts. Firstly, we will work out the morphism i�Eˇn�1
! i�E�n

by calculating the relevant values of Eˇn�1
and E�n

using their description as homotopy colimits over
slice categories; see Section 3.2. We will arrive at the conclusion that the left-hand side is actually
hocolimpr =�n

.cone."X^LY //, where "X^LY is the counit of a certain adjunction. We will then explicitly
determine the map of diagrams "X^LY in Step 2 and calculate its cone in Step 3.
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Step 1 unravelling i�Eˇn�1
! i�E�n

Recall the slice categories of the map pr W CN �CN !DN over �n, pr=�n from example (i), and pr=n

from example (ii). By definition of i , we have that

.i�Eˇn�1
! i�E�n

/DEn�1
!E�n

:

Let us begin by recalling the diagram X ^L Y 2 Ho.Mpr=�n/. The thick arrows show the image of the
map of posets � W pr=n�1! pr=�n:

(3.4.2)

.�i ; �j /

.ˇi�1; �j /
.�i ; ǰ / .ˇi ; �j /

.�i ; ǰ�1/

.ˇi ; ǰ /

.ˇi�1; ǰ�1/

.ˇi�1; ǰ / .ˇi ; ǰ�1/

: : :

: : : : : :

: : :

Recall from (3.2.2) that

E�n
D hocolim.pr=�n

�
�! CN �CN

X^LY
�����!M/;

and we committed an abuse of notation by writing

E�n
D hocolim

pr=�n

.X ^L Y /D hocolim
pr=�n

��.X ^L Y /:

Also, recall from (3.2.5) that the morphism En�1
!E�n

is the canonical morphism

En�1
D hocolim

pr=n�1

��.X ^L Y /! hocolim
pr=�n

.X ^L Y /DE�n

induced by the map of posets � W pr=n�1! pr=�n. The pullback functor

�� W Ho.Mpr =�n/! Ho.Mpr =n�1/

has a left adjoint defined by the homotopy left Kan extension L�!, that is,

L�! W Ho.Mpr=n�1/� Ho.Mpr=�n/ W ��:

The counit of the derived adjunction " W L�!�
�! Id provides the canonical natural transformation

(3.4.3) "X^LY W L�!�
�.X ^L Y /!X ^L Y:

Lastly, since L�! is a homotopy left Kan extension, there is a canonical isomorphism

hocolim
pr=n�1

��.X ^L Y /Š hocolim
pr=�n

L�!�
�.X ^L Y /:
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Putting all this together means that the left-hand side of Proposition 3.4.1 is

hocolim
pr =�n

.cone."X^LY //:

Step 2 working out "X^LY

The underlying diagram X ^L Y 2 Ho.Mpr=�n/ is

(3.4.4)

X�i
^Y�j

Xˇi�1
^Y�j

X�i
^Y

ǰ
Xˇi
^Y�j

X�i
^Y

ǰ�1

Xˇi
^Y

ǰ

Xˇi�1
^Y

ǰ�1

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

: : :

: : : : : :

: : :

Furthermore, the homotopy left Kan extension L�!�
�.X ^L Y / 2 Ho.Mpr =�n/ is

(3.4.5)

X�i�1
^Y�j

`h
Xˇi�1

^Y
ǰ�1

X�i
^Y

ǰ�1

Xˇi�1
^Y�j

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

X�i
^Y

ǰ�1

�

Xˇi�1
^Y

ǰ�1

Xˇi�1
^Y

ǰ
Xˇi
^Y

ǰ�1

: : :

: : : : : :

: : :

We briefly explain how we calculated the left homotopy Kan extension L�!.X ^
L Y /. From the formula

of Proposition 2.2.4 for calculating homotopy Kan extensions, we can calculate the homotopy left Kan
extension L�!�

� at an object .˛s; ˛t / 2 pr=�n as

L�!.X ^
L Y /.˛s ;˛t / Š hocolim

�
�=.˛s; ˛t /

�
�! pr=n�1

��.X^LY /
��������!M

�
:

For the object .�i ; ǰ /, the slice �=.�i ; ǰ / consists only of the object the object . ǰ�1; ǰ /, which implies
that

.L�!/.�i ; ǰ / DXˇi�1
^Yˇj :
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For the object .ˇi ; �j /, the argument is the same as above. For .ˇi ; ǰ /, the slice category �=.ˇi ; ǰ / is
empty, which means that

.L�!/.ˇi ; ǰ / Š �:

For the object .�i ; �j /, the slice category �=.�i ; �j / is the poset

.ˇi�1; �j / .�i ; ˇj�1/

.ˇi�1; ˇj /

88

.ˇi�1; ˇj�1/

77gg

.ˇi ; ˇj�1/

ff

But the subposet
.ˇi�1; �j / .ˇi�1; ˇj�1/ //oo .�i ; ˇj�1/

is homotopy final, which means that

.L�!/.�i ;�j / Š .L�!/.�i ;�j / Š hocolim

0BBBB@
Xˇi�1

^Yˇj�1

ki^1
//

1^zkj
��

X�i
^Yˇj�1

Xˇi�1
^Y�j

1CCCCA :
Step 3 calculating the cone in the left-hand side

Next, we calculate the cone of the natural transformation "X^LY (3.4.3) of diagrams in Ho.Mpr=�n/. We
have the diagram cone."X^LY / 2 Ho.Mpr=�n/, which is

cone."X^LY / W pr =�n!M; .˛s; ˛t / 7! cone
�
�!.X ^

L Y /.˛s ;˛t /! .X ^L Y /.˛s ;˛t /

�
:

In other words, we are taking objectwise cones of the canonical map from the diagram (3.4.5) to the
diagram (3.4.4). This means that cone."X^LY / is

(3.4.6)

cone.ki �L zkj /

�

C i ^Y
ǰ

Xˇi
^ zC j

�

†Xˇi
^Y

ǰ

�

� �

: : :

: : : : : :

: : :

Here, we have denoted

C i
WD cone.ki/D cone.Xi�1!X�i

/; zC j
WD cone.zkj /D cone.Yj�1! Y�i

/:
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Next, we determine the homotopy colimit of the diagram cone."X^LY /. One way is to observe that
the homotopy colimit of the above diagram is isomorphic in Ho.M/ to the homotopy colimit of (finite)
coproduct of squares

(3.4.7)

†Xˇi
^Yˇj

��

// cone.ki/^Yˇj

��

Xˇi
^ cone.zkj / // cone.ki �L zkj /

where we can consider the above as an object in Ho.MŒ1��Œ1�/. Formally this is obtained by taking the
visually obvious map of posets f W Œ1�� Œ1�! pr=�n, ie

.0; 0/ 7! .ˇi ; ǰ /; .0; 1/ 7! .�i ; ǰ /; .1; 0/ 7! .ˇi ; �j /; .1; 1/ 7! .�i ; �j /

and considering the pullback

f � W Ho.Mpr=�n/! Ho.MŒ1��Œ1�/:

The bottom right corner of the poset Œ1�� Œ1� is its final object, which implies that the homotopy colimit of
the diagram (3.4.7) is naturally isomorphic to cone.ki �L zkj /. Hence the homotopy colimit over pr=�n
is, up to natural isomorphism, the coproduct

W
iCjDn cone.ki �L cone.zkj //. Another way of seeing this

is by pulling back the above diagram to �n W Jn! pr =�n, and we get the diagram

cone.ki�1�L kjC1/ cone.ki �L kj / cone.kiC1�L kj�1/

: : :

99

�

ee ;;

�

cc 99

: : :

ee

All in all, we have that the homotopy colimit of the diagram (3.4.6) is

(3.4.8) hocolim
pr =�n

.cone."X^LY //Š
_

iCjDn

cone.ki �L zkj /:

Finally, by Corollary 2.3.6, we have the canonical isomorphism

cone.ki �L zkj /Š cone.ki/^
L cone.zkj /

for each pair i; j 2 Z=N Z. The coproduct of these isomorphisms together with (3.4.8) gives us that

hocolim
pr =�n

.cone."X^LY //Š
_

iCjDn

cone.ki/^
L cone.zkj /:

Let us now gather all this information to prove Proposition 3.4.1. Calculating the homotopy cofiber (cone)
of the morphisms i�Eˇn�1

! i�E�n
is the same thing as calculating the homotopy cofiber En�1

!E�n
.
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We have the following natural isomorphisms:

cone.i�Eˇn�1
! i�E�n

/D cone.En�1
!E�n

/

D cone
�

hocolim
pr=n�1

��.X ^L Y /! hocolim
pr =�n

.X ^L Y /
�

Š cone
�

hocolim
pr=�n

�!�
�.X ^L Y /! hocolim

pr=�n

.X ^L Y /
�

Š hocolim
pr =�n

�
cone

�
�!�
�.X ^L Y /! .X ^L Y /

��
Š

_
iCjDn

cone.ki �L zkj /

Š

_
iCjDn

cone.ki/^
L cone.zkj /:

Corollary 3.4.9 Let X;Y;E as before and assume furthermore that F�.X˛n
/;F�.Y˛n

/ 2Aproj for any
n 2 Z=N Z and any ˛ 2 f�; ˇg. Then there is a canonical isomorphism

C .n/.i�E/D F�.cone.i�Eˇn�1
! i�E�n

//Š
M

iCjDn

C .i/.X /˝C .j/.Y /:

Proof By our assumption, for any ˛ 2 f�; ˇg and any n 2 Z=N Z, the object F�X˛n
is projective.

Therefore, by definition, Z.n/.X / and B.n�1/.X / are projective. The short exact sequence (2.5.2) now
implies that for any i 2 Z=N Z the graded object C .i/.X / is projective. It follows by our assumptions
that

F�.cone ks ^
L cone zkt /Š F�.cone ks/˝F�.cone kt /:

By Proposition 3.4.1 we have

cone.i�Eˇn�1
! i�E�n

/Š
_

iCjDn

cone.ki/^
L cone. Qkj /;

and applying the functor F�.�/ we have

F�.cone.i�Eˇn�1
! i�E�n

//Š F�

� _
iCjDn

cone.ki/^
L cone. Qkj /

�
Š

M
iCjDn

F�.cone.ki/^
L cone zkj /

Š

M
iCjDn

F�.cone ki/˝F�.cone zkj /:

Shifting the above by Œn�D Œi C j � we have

C .n/.i�E/Š
M

iCjDn

C .i/.X /˝C .j/.Y /:
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3.5 Differentials

In the previous subsection we proved that C�.i
�E/Š C�.X /˝C�.Y / as objects in A, so the diagram

i�E is a good candidate for the tensor product

C�.X /˝C�.Y /:

The final step in order to show that indeed

Q.i�E/ŠQ.X /˝Q.Y /

as objects in C.Œ1�;1/.A/ is to prove that the differential d W C�.i
�E/! C�.i

�E/Œ1� coincides with the
differential of the tensor product C�.X /˝C�.Y /. That is, we have to show that

.C�.i
�E/; d/Š .C�.X /˝C�.Y /; d˝/;

where d˝ is the differential of the tensor product of the dg-objects .C�.X /; d/ and .C�.Y /; d/.

3.5.1 Reduction to the case of disks We will reduce the proof to a much simpler case. Let L� 2

C.Œ1�;1/.A/ and choose s 2 Z=N Z. Without loss of generality we will assume that L� is degreewise
projective. Consider the map of differential graded objects,

(3.5.1)

: : : // 0 //

��

Ls Ls
//

ds

��

0 //

��

: : :

: : :
dsC2

// LsC1
dsC1

// Ls
ds
// Ls�1

ds�1

// Ls�2
ds�2

// : : :

where we view the top differential graded object as an object in BŒs � 1�˚ BŒs�, meaning that it is
concentrated in degrees s�1 and s modulo N . We denote this by Ds.Ls/, and we denote the above map of
differential graded objects by fL;s WD

s.Ls/!L�. Under the equivalence of categories Q WL!C.Œ1�;1/.A/
there are crowned diagrams X and X 0 and a morphism F W X ! X 0 such that the morphism fL;s is
realized as Q.F /. This means that there are isomorphisms

Q.X /ŠDs.Ls/; Q.X 0/ŠL�

and the following diagram commutes:

Q.X /
Q.F /

//

Š

��

Q.X 0/

Š

��

Ds.Ls/
fL;s

// L�

Now let M� be another differential graded object, which we also assume to be degreewise projective, and
let t 2 Z=N Z. Similarly to (3.5.1) we have the morphism

gM;t WD
t .Mt /!M�:
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Again, under the equivalence Q there are crowned diagrams Y and Y 0 and a morphism G W Y ! Y 0 such
that

Q.Y /ŠDt .Mt /; Q.Y 0/ŠM�

and the following diagram commutes:

Q.Y /
Q.G/

//

Š

��

Q.Y 0/

Š

��

Dt .Mt / gM;t

// M�

We have the morphism of dg-objects fL;s˝gM;t WD
s.Ls/˝Dt .Mt /!L�˝M�, which is

(3.5.2)

� � � // Ls˝Mt
//

��

.Ls˝Mt /˚ .Ls˝Mt / //

.ds˝id;id˝ Qd t /

��

� � �

� � � //
L

iCjDn

Li ˝Mj
//

L
iCjDnC1

Li ˝Mj
// � � �

where the left vertical morphism is the inclusion of the .s; t/th summand and the right vertical map is the
universal map out of the coproduct.

Now assume that
Q.i�pr!.X ^

L Y //ŠQ.X /˝Q.Y /;

that is, we prove our claim for the case of X ŠQ�1.Ds.Ls// and Y ŠQ�1.Dt .Mt //. The commutativity
of the square (3.5.2) implies that the bottom vertical maps must also coincide with the tensor product
L�˝M�, ie

Q.i�pr!.X
0
^

L Y 0//ŠL�˝M�

and the following diagram commutes degreewise:

Q.i�pr!.X ^
L Y // //

��

Q.i�pr!.X
0 ^L Y 0//

��

Ds.Ls/˝Dt .Mt / // L�˝M�

The horizontal maps are indeed maps of dg-objects, so if we can show that the left hand vertical map is too,
then the claim follows for the general L� and M�. The proof of the former will occupy the next subsection.

3.6 Differentials for disks

To prove the claim for disks, we discuss a crowned diagram that corresponds to the disks. By [Patchkoria
2012, Proposition 3.2.1], there is an object A 2 Ho.M/, such that F�A 2 BŒs� 1�DLs , which is due to
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the fact that our assumptions force the corresponding Adams spectral sequence to collapse. Consider the
crowned diagram

X D

� A � : : :

: : :

>>

�

OO ??

A

??

�

OO >>

where the nontrivial entries are at the .s�1/–spot, ie

Xˇs�1
DX�s�1

DA:

The diagram X is in L since

B�.X /D B.s�1/.X /D F�Xˇs�1
D F�A and Z�.X /DZ.s�1/.X /D F�X�s�1

D F�A:

Next, we calculate .C�.X /; d/ 2 C.Œ1�;1/.A/. The only nontrivial cones are cone.ks�1/ and cone.ks/.
This means that

C .s/.X /D F� cone.ks/D F� cone.A!�/D F�.†A/Š .F�A/Œ1�;

C .s�1/.X /D F� cone.ks�1/D F� cone.�!A/D F�A;

C�.X /D C .s�1/.X /˚C .s/.X /:

We obtain that � WB�.X /!Z�.X / is the identity map, � WZ�.X /!C�.X / is inclusion to the first factor
and � W C�.X /! B�.X / is the projection to the second factor. It follows that d W C�.X /! C�.X /Œ1� is
the identity. Similarly, Dt .Lt / is mapped to a crowned diagram Y in which

Yˇt�1
D Y�t�1

D zA;

where the only nontrivial morphism is the identity.

We now have the ingredients to deal with the following proposition.

Proposition 3.6.1 Let X and Y be the objects of L of the form Q�1.Ds.Ls// and Q�1.Dt .Mt //. Then

Q.i�Lpr!.X ^
L Y //Š .C�.X /˝C�.Y /; d˝/;

where .C�.X /˝C�.Y /; d˝/ is the tensor product of C�.X / and C�.Y / in C.Œ1�;1/.A/.

Proof We note that the tensor product Ds.Ls/˝Dt .Mt / is concentrated in degrees sC t , sC t � 1,
and sC t � 2 modulo N . As we already know that our chain complexes agree degreewise, these are the
only degrees where we have to calculate our differential. As usual, we write E D Lpr!.X ^

L Y /.

We will work out the differential in the chain complex Q.i�Lpr!.X ^
L Y //, beginning with

Q.i�E/sCt
D C .sCt/.i�E/! C .sCt�1/.i�E/DQ.i�E/sCt�1;

and we will discuss the other degree

C .sCt�1/.i�E/! C .sCt�2/.i�E/
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afterwards. Our proof is divided into the following steps.

We start by going through the definition Q applied to i�E using the descriptions given in Section 2.5,
where we will arrive at the exact triangle

cone.yksCt /!†EsCt�1
!†E�sCt�1

!†cone.yksCt�1/:

The next steps separately determine E�sCt�1
followed by the maps

cone.yksCt /!†EsCt�1
; EsCt�1

!E�sCt�1
and E�sCt�1

! cone.yksCt�1/:

Putting those together, we obtain the desired differential.

Step 1 recalling the construction of Q.i�E/sCt ! Q.i�E/sCt�1

By Proposition 3.3.1 and Proposition 3.4.1 we can construct a diagram E DLpr!.X ^
L Y / 2Ho.MDN /

such that
i�E 2 L and cone.i�Eˇn�1

! i�E�n
/Š

_
iCjDn

cone.ki/^ cone.zkj /:

For notational convenience we will write

ykn W i
�Eˇn�1

! i�E�n
and Oln W i

�Eˇn
!E�n

for the structure maps of the crowned diagram i�E. We briefly recall the construction of the differential

d W C�.i
�E/! C�.i

�E/Œ1�; d D �Œ1��Œ1��C�.i
�E/! C�.i

�E/Œ1�:

Degreewise, the differential on C .n/.i�E/! C .n�1/.i�E/ is given by applying F�.�/ to the sequence
of maps

(3.6.2) cone.ykn/!†En�1
!†E�n�1

!†cone.ykn�1/:

Therefore, we have to show that for nD sC t the sequence of maps (3.6.2) after applying F�.�/ gives
us the differential of the tensor product of disks. By Proposition 3.4.1, we have

cone.yksCt /Š cone.ks/^
L cone.zkt /;

cone.yksCt�1/Š .cone.ks�1/^
L cone.zkt //_ .cone.ks/^

L cone.zkt�1//:

Recall that ADXˇs�1
DX�s�1

and zAD Yˇs�1
D Y�s�1

as before. Directly from the structure morphisms
of the crowned diagrams X and Y we have

cone.yksCt /Š .†A/^ .† zA/; cone.yksCt�1/Š .A^† zA/_ .†A^ zA/:

To analyse the sequence of maps (3.6.2) it remains to calculate EsCt�1
;E�sCt�1

;E�sCt
and the maps

EsCt�1
!E�sCt�1

. The maps

cone.yksCt /!†EsCt�1
;(3.6.3)

†E�sCt�1
!†cone.yksCt�1/(3.6.4)
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are the canonical maps that are given by construction of distinguished triangles in a simplicial stable
model category. The map (3.6.3) is the canonical map

cone.yksCt /! S1
^EsCt�1

I

see Definition 2.3.13. Similarly, the map (3.6.4) is the suspension of the canonical map

E�sCt�1
! cone.yksCt�1/I

see Definition 2.3.13.

Step 2 calculating E�n

To compute the above, let us recall from (iv) the poset Jn with inclusion � W Jn ,! pr=�n and left adjoint
L W pr=�n! Jn. For i C j � n modulo N the poset Jn looks as follows:

.�i ; �j /

.ˇi ; ǰ�1/

.�iC1; �i�1/

: : :.ˇi�1; ǰ /

.�i�1; �iC1/

: : :

Also, recall from (ii) the slice category pr=n, which for i C j � n is

.ˇi ; ǰ /

.ˇi ; �j /.�i ; ǰ /

.ˇi ; ǰ�1/.ˇi�1; ǰ /

.�iC1; ǰ�1/.ˇi�1; �iC1/

: : :: : :

By definition of homotopy left Kan extensions, we have

E�n
D hocolim

pr=�n

X ^L Y Š hocolim
Jn

��.X ^L Y /; En
D hocolim

pr=n

.X ^L Y /:

The maps
En�1

!E�n
and En�1

!E�n�1

are the maps of homotopy colimits induced by the respective map of posets

 W pr =n�1! pr =�n and � W pr =n�1! pr =�n�1:

We start with calculating E�sCt�1
. The underlying diagram ��.X ^L Y / 2 Ho.MJsCt�1/ is

(3.6.5)

� � �

: : :

>>

A^ zA

<<bb

�

@@^^

: : :

``

where the only nontrivial entry is at .ˇs�1; ˇt�1/. From the diagram above we get

E�sCt�1
D hocolim

pr=�sCt�1

.X ^L Y /Š hocolim
JsCt�1

��.X ^L Y /Š†A^ zA:

Algebraic & Geometric Topology, Volume 24 (2024)



Monoidal properties of Franke’s exotic equivalence 5201

We do the same for EsCt
;EsCt�1

and EsCt�2
. The value EsCt�2

is the homotopy colimit of the
diagram X ^L Y 2 Ho.Mpr=sCt�2/, which is

� A^ zA A^ zA �

: : :

??

�

==]]

A^ zA �

AAaa

: : :

__

with nontrivial entries at the places .ˇs�1; ˇt�1/ on the bottom, .�s�1; ˇt�1/ on the left and .ˇs�1; �t�1/

on the right. Thus, EsCt�2
ŠA^ zA. Similarly, we have

EsCt
D hocolim

pr=sCt

.X ^L Y /Š �; EsCt�1
D hocolim

pr=sCt�1

.X ^L Y /Š†A^ zA:

Step 3 calculating cone.yksCt/!†EsCt�1

We move on to calculate the map cone.yksCt /! S1˝EsCt�1
. From Definition 2.3.13 we have the

pushout square

EsCt�1

yksCt
//

��

E�sCt

��
�

��

.I; 0/˝EsCt�1
//

�^1 ,,

cone.yksCt /

''

S1˝Es�t�1

which, based on our computations, is

†A^ zA

��

// �

��

��

.I; 0/˝†.A^ zA/

�^1 --

// cone.yksCt /

''

S1˝ .†A^ zA/

Recall from Proposition 3.4.1, (3.4.8), and Corollary 2.3.6 that there is a series of canonical isomorphisms

cone.yksCt /Š cone.ks�L zkt /Š cone.ks/^
L cone.zkt /:

In our particular case, in which ks WA!A and zk W zA!�, this is

cone.yksCt /Š cone.ks�L kt /Š†
2A^ zAŠ†A^† zAŠ cone.ks/^

L cone.zkt /:

This implies that the universal map out of the pushout is the identity map. Thus, the map

cone.yksCt /!†EsCt�1

Algebraic & Geometric Topology, Volume 24 (2024)



5202 Nikitas Nikandros and Constanze Roitzheim

is the map †A^† zA! †2.A^ zA/, which is the composition of the canonical map (commutation of
colimits) and the identity map.

Step 4 calculating OlsCt�1 W EsCt�1
! E�sCt�1

From the posets above we can see directly that the map

OlsCt�1 WEsCt�1
!E�sCt�1

is the identity map induced by
 W pr=sCt�1! pr =�sCt�1:

Therefore the map
†OlsCt�1 WEsCt�1

!†E�sCt�1

is the identity map
1 W†2.A^ zA/!†2.A^ zA/:

Step 5 calculating E�sCt�1
! cone.yksCt�1/

Lastly it remains to figure out the map

E�sCt�1
! cone.yksCt�1/:

Recall from the proof of Proposition 3.4.1 that cone.yksCt�1/ can be written as a homotopy colimit,

cone.yksCt�1/Š hocolim
pr=�sCt�1

.cone."X^LY //;

where � W pr=sCt�2! pr=�sCtC1, and " is the counit of the derived adjunction .L�!; �
�/. Pulling back

the diagram cone."X^LY / to JsCt�1 along the inclusion � W JsCt�1! pr=�sCt�1, we obtain the diagram

†A^ zA

�

�

: : :�

A^† zA

: : :

with nontrivial entries at .�s�1; �t / and .�s; �t�1/ respectively. Recall the following diagram from (3.6.5)
��.X ^L Y / 2 Ho.MJsCt�1/,

�

��

�A^ zA

��

: : :: : :

with the only nontrivial entry at .ˇs�1; ˇt�1/, left top being .�s�1; �t / and right top being .�s; �t�1/.
Because of the shape of the underlying posets and the map, we can safely ignore the trivial entries, so the
map EsCt�1

! cone.yksCt�1/ can be taken as the map of homotopy pushouts

hocolim.� A^ zA!�/! hocolim.A^† zA �!†A^ zA/;
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induced by the following map of posets:

�

��

A^ zAoo //

��

�

��

A^† zA �oo // †A^ zA

Now consider the above map of diagrams and the following map at the bottom:

�

��

A^ zAoo //

��

�

��

A^† zA

�
��

�oo

��

//

��

†A^ zA

†A^ zA �oo // †A^ zA

Here, � is the map

A^† zADA^ .S1
^ zA/Š .A^S1/^ zA

�
�! .S1

^A/^ zAŠ†A^ zA

and the first map is the associativity isomorphism. By Lemma 3.7.1 the induced map of homotopy colimits
is, up to weak equivalence, the diagonal map

diag W†A^ zA! .†A^ zA/_ .†A^ zA/:

Hence, the map (3.6.2) is up to weak equivalence the diagonal map but with a sign introduced by the
twist map as above. This and Corollary 3.4.9 imply that indeed the differential

d W C .sCt/.i�E/! C .sCt�1/.i�E/

coincides with the differential of the tensor product of

..DsLs/˝ .Dt zLt //sCt
! ..DsLs/˝ .Dt zLt //sCt�1:

Step 6 Q.i�E/sCt�1 ! Q.i�E/sCt�2

We do not need to do any extra work to determine the other differential, namely to check that the
differential

C .sCt�1/.i�E/! C .sCt�2/.i�E/

coincides with the differential

..DsLs/˝ .Dt zLt //sCt�1
! ..DsLs/˝ .Dt zLt //sCt�2;

since by construction .C�.i�E/; d/ is a differential graded object and that means that by necessity
d Œ1� ı d D 0 on C�.i

�E/. This concludes the proof.

To conclude this section, by combining Corollary 3.4.9 and Proposition 3.6.1 we have proved the following
proposition.
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Proposition 3.6.6 Let X;Y 2 L such that F�.X˛n
/;F�.Y˛n

/ 2 Aproj for any n 2 Z=N Z and any
˛ 2 fˇ; �g. There is a natural isomorphism

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /:

3.7 Technical lemmas

In this subsection we prove two technical lemmas that are used in the previous proofs. The first lemma is
about the canonical map from the suspension of an object to the wedge product of suspensions in a stable,
simplicial model category M. The second lemma is about pushout-products of injective morphisms in a
hereditary abelian category A.

Lemma 3.7.1 Let M be a stable simplicial model category and let X 2M. Consider the following map
of homotopy pushouts

hocolim.� X !�/! hocolim.†X  �!†X /:

Then the above map is , up to isomorphism in Ho.M/, the diagonal map

diag W†X !†X _†X:

Proof Let CX D .I; 0/˝X be the cone of X and let i WX ! CX be the canonical inclusion, which is
a cofibration. We choose a model for †X as the homotopy pushout

†X Š hocolim.CX  X ! CX /:

In fact, we can take this to be the ordinary pushout colim.CX  � X ! CX / since i W X ! CX is a
cofibration. From this model we get directly that the induced map on pushouts

CX

�˝1
��

X
i
oo

i
//

��

CX

�˝1
��

†X �oo // †X

where � W I ! S1 is the projection is indeed the diagonal map diag W †X ! †X _†X . Hence, the
induced map of homotopy pushouts is the diagonal map up to natural isomorphism.

Lemma 3.7.2 Let A be a hereditary abelian category. Let X;Y;U;V 2 Aproj and let f W X ! Y and
g W U ! V be injective maps. Then the pushout-product map f �g is injective.

Proof Since g W U ! V is monomorphism we have the short exact sequence

0! U
g
�! V

j
�! coker g! 0:
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Notice that the dimension of the abelian category E.1/�–modules is 1, which implies that coker g is a
projective module since it is a submodule of V . Since X is flat, X ˝ � is an exact functor, which means
that the sequence

0!X ˝U
1˝g
���!X ˝V

1˝j
���!X ˝ coker g! 0

is short exact. Consider the diagram

0 // X ˝U
1˝g

//

f˝1

��

X ˝V
1˝j
//

��

X ˝ coker g // 0

0 // Y ˝U // P //

f�g

��

X ˝ coker g //

f˝1

��

0

0 // Y ˝U
1˝g

// Y ˝V
1˝j
// Y ˝ coker g // 0

where P is the pushout of 1˝g and g˝ 1. Since the top left square is cocartesian, the canonical map
coker.1˝g/

Š
�! coker.Y ˝U ! P / is an isomorphism, so the middle row is also exact. Now note that

the morphism f ˝ 1 WX ˝ coker g! Y ˝ coker g is injective since coker g is projective. Applying the
snake lemma gives us that f �g is a monomorphism.

4 Main result

4.1 Homotopy colimit calculations

In this section we discuss how the functor i�Lpr! interacts with the homotopy colimits of the various
diagram categories, giving us the right hand side of the main diagram (1.0.2). The main result of the
section is the following.

Theorem 4.1.1 For any pair of diagrams .X;Y / 2 Ho.MCN /�Ho.MCN /, the homotopy colimit of
the diagram i�Lpr!.X ^

L Y / 2 Ho.MCN / is naturally isomorphic to the smash product of the homotopy
colimits of X and Y , that is ,

hocolim
CN

.i�Lpr!.X ^
L Y //Š hocolim

CN

X ^L hocolim
CN

Y:

Recall that the functor

i�Lpr!.� ^
L
�/ W Ho.MCN /�Ho.MCN /! Ho.MCN /

is the composition

Ho.MCN /�Ho.MCN /
^L

��! Ho.MCN�CN /
Lpr!
���! Ho.MDN /

i�

�! Ho.MCN /:
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In order to prove Theorem 4.1.1 we will break it apart into smaller pieces. Consider the following diagram:

Ho.MCN /�Ho.MCN / //

^L

��

Ho.M/

Ho.MCN�CN /

Lpr!

��

66

Ho.MDN /

i�

��

==

Ho.MCN /

EE

The top horizontal functor is the smash product of homotopy colimits of crowned diagrams, that is,
hocolimCN

X ^L hocolimCN
Y . The three other functors are the homotopy colimit functors,

hocolim
CN�CN

W Ho.MCN�CN /! Ho.M/;

hocolim
DN

W Ho.MDN /! Ho.M/;

hocolim
CN

W Ho.MCN /! Ho.M/:

Theorem 4.1.1 asserts that the outer triangle above commutes up to isomorphism. This will follow once
we show that all the small triangles commute up to isomorphism.

Lemma 4.1.2 The top triangle and the middle triangle commute. That is ,

hocolim
CN

X ^L hocolim
CN

Y Š hocolim
CN�CN

.X ^L Y /

and

hocolim
CN�CN

.X ^L Y /Š hocolim
DN

pr!.X ^
L Y /:

Proof The first assertion follows from Corollary 2.3.4 as a direct application for C DD D CN . The
second assertion follows from the fact that the homotopy colimit of a homotopy left Kan extension of a
diagram is isomorphic to the homotopy colimit of the diagram itself [Richter 2020, Proposition 4.3.2].

We will prove Theorem 4.1.1 by proving that the functor i W CN !DN satisfies the following definition;
see [Riehl 2014, Definition 8.5.1].

Definition 4.1.3 A functor between small categories K WC!D is homotopy final (or homotopy terminal)
if for every object d 2D, the simplicial set N.d=K/ is contractible.
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A convenient way to check whether a poset is contractible is given by Quillen [1978, Section 1.5]: a
poset C is conically contractible if there is an object c0 2 C and a map of posets f W C ! C such that
c � f .c/� c0 for every c 2C . In this case one can show that the identity 1C , the map f , and the constant
map with value c0 from C to itself are homotopic (that is to say, their realizations are homotopic), and
hence C is contractible. So, given a diagram E 2 Ho.MDN /, to check that the canonical morphism

�i W hocolim
CN

i�E! hocolim
DN

E

is an isomorphism it suffices to check that the slice categories ˛n= i of the functor i W CN ! DN are
contractible for any ˛ 2 f�; ; ˇg and any n 2 Z=N Z.

We will now apply this to our functor i W CN ! DN , which is the inclusion of the two-row crowned
diagram into the three-row crowned diagram (3.1.2).

Lemma 4.1.4 The functor i W CN !DN is homotopy final.

Proof We will prove the above proposition by applying Quillen’s criterion of conical contractible posets.
First, we identity the slice categories �n= i , n= i and ˇn= i and then we will check that they are indeed
conically contractible. We start with �n= i . By definition,

�n= i D f˛n 2 CN j i.˛n/� �ng D f�ng:

Since this poset contains only one element it is obviously contractible. The next slice categories are of
the form n= i . By definition,

n= i D f˛n 2 CN j i.˛n/� ng;

that is, n= i is the poset
�n �nC1

ˇn

OO ==

We choose ˇn and 1 W n= i ! n= i . Directly from above we can see that n= i is conically contractible.
The last case is the slices ˇn= i . By definition,

ˇn= i D f˛n 2 CN j i.˛n/� ˇng;

which is the poset
�n �nC1

ˇn

OO ==

ˇnC1

OO

We choose ˇn and the map of ˇn= i ! ˇn= i as

�n 7! �n; �nC1 7! �nC1; ˇn 7! ˇn; ˇnC1 7! �nC1:

With these choices, we can see that the poset ˇn= i is conically contractible.
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Finally, we obtain the commutativity of the bottom triangle of our big diagram, which also concludes the
proof of Theorem 4.1.1.

Corollary 4.1.5 The bottom triangle of (1.0.2) commutes , that is ,

hocolim
CN

i�E Š hocolim
DN

E:

4.2 Proof of main theorem

Finally, we are in a position to assemble all our work into our main theorem.

Theorem 4.2.1 Let A be a hereditary abelian category , and M be a monoidal stable model category
such that Franke’s functor

R W .D.Œ1�;1/.A/;˝L/! .Ho.M/;^L/

exists and is an equivalence. Then R preserves the monoidal products up to a natural isomorphism , that is ,

R.M�˝L M�/ŠR.M�/^L R.M�/:

Proof We assemble our proof along the lines of the diagram (1.0.2). Let M� and N� be objects in
D.Œ1�;1/.A/. By Convention 2.1.1, both objects are cofibrant. Since M� is cofibrant, the functor

M�˝ � W C.Œ1�;1/.A/! C.Œ1�;1/.A/

is left Quillen, see [Hovey 1999, Remark 4.2.3], which means it preserves cofibrant objects. Since both
objects are cofibrant, the tensor product M�˝N� represents the derived tensor product in .D.Œ1�;1/.A/;˝L/

and in particular it also cofibrant. Recall from Example 2.3.11 that the cofibrant objects in C.Œ1�;1/.A/ are
the projective objects in A. This means, in particular, that M�;N� and M�˝N� all belong to Aproj. We
recall some notation from Section 3. Given a crowned diagram X 2MCN as

X�0
X�1

: : : X�N�1

Xˇ0

OO
44

Xˇ1

OOaa

: : :

``

Xˇ�1

OO
bb

we set

Z.n/.X /D F�.X�n
/; B.n/.X /D F�.Xˇn

/; C .n/.X /D F�.cone.Xˇn�1
!X�n

//:

Given .M�; d/ 2 C.Œ1�;1/.A/, one can construct a crowned diagram X in L such that

.C�.X /; d/Š .M�; d/; Z�.X /Š ker d; B�.X /Š im d:

By the discussion above, M� 2Aproj. By assumption, A is a hereditary abelian category, in other words,
gl:dimAD 1. This implies that ker d; im d 2Aproj since they are submodules of M�.
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Hence, for the crowned diagram X Š Q�1.M�/ we have F�.X˛n
/ 2 Aproj for every n 2 Z=N Z and

any ˛ 2 f�; ˇg. Similarly, for the dg-object .N�; d/ we get a crowned diagram Y ŠQ�1.N�/ such that
F�.Y˛n

/ 2Aproj for every n 2 Z=N Z and any ˛ 2 f�; ˇg.

Now, by Theorem 3.1.5,

Q.i�Lpr!.X ^
L Y //ŠQ.X /˝Q.Y /DM�˝N�

and by Theorem 4.1.1,

hocolim
CN

.i�Lpr!.X ^
L Y //Š hocolim

CN

X ^L hocolim
CN

Y:

Finally, we recall that Franke’s realization functor (2.5.4) is defined by

RD hocolim
CN

ıQ�1;

which concludes the proof.

The assumptions of Theorem 4.2.1 are satisfied in the following instances.

Example 4.2.2 From [Patchkoria 2012, Corollary 5.2.1] we know that

R WD.��R/!D.R/D Ho.R-mod/

is an equivalence for a ring spectrum R with ��.R/ concentrated in degrees that are multiples of some
N > 1 and global dimension of ��.R/ equal to 1. This satisfies the assumption of our Theorem 4.2.1 and
applies to RDKU , RDKU.p/, RDE.1/ (complex K–theory), and RD k.n/ (connective Morava
K–theory).

Example 4.2.3 By [Franke 1996; Roitzheim 2008] we know that

R W D.Œ1�;1/.A/! Ho.L1S/

is an equivalence. Here, A is the category of E.1/�E.1/–comodules, and L1S is a suitable category
of spectra equipped with the K–local model structure at an odd prime. Note that as mentioned in
Example 2.3.11, that while A does not have enough projectives, all our proofs also work when working
with comodules whose underlying E.1/�–module is projective; see also the first author’s thesis [Nikandros
2022].
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Characterising quasi-isometries of the free group

ANTOINE GOLDSBOROUGH

STEFANIE ZBINDEN

We introduce the notion of mixed subtree quasi-isometries, which are self-quasi-isometries of regular
trees built in a specific inductive way. We then show that any self-quasi-isometry of a regular tree is
at bounded distance from a mixed-subtree quasi-isometry. Since the free group is quasi-isometric to a
regular tree, this provides a way to describe all self-quasi-isometries of the free group. In doing this, we
also give a way of constructing quasi-isometries of the free group.

20F65

1 Introduction

Quasi-isometries are the most fundamental maps in geometric group theory. However, for most metric
spaces, very little is known about their quasi-isometry groups and there are no known tangible ways to
describe all quasi-isometries, except in some cases where quasi-isometric rigidity is known. Notable
exceptions to this are Baumslag–Solitar groups, which are described in [Whyte 2001] and 3–dimensional
solvable Lie groups, which have been studied by Eskin, Fisher and Whyte [Eskin et al. 2007; 2012; 2013].

With this paper, we add the free group F2, or more generally regular trees, to the list of spaces where
all quasi-isometries up to bounded distance can be described. In particular, we introduce the notion of a
D–mixed subtree quasi-isometry which is a type of quasi-isometry from regular trees to themselves. While
a precise definition can be found in Section 3, the main idea behind them is the following; having defined
the quasi-isometry for vertices v at distance nD from the root, one next defines what the quasi-isometry
does on the next level, that is, vertices at distance .nC1/D from the root. Moreover, the valid choices of
extending the map to the vertices at distance .nC1/D only depend on which of the vertices of distance nD

are mapped to the same vertex, but is otherwise independent of the choices made previously.

Our main theorem below states that a map from a regular tree to itself is a quasi-isometry if and only if it
is at bounded distance from a mixed-subtree quasi-isometry.

Theorem 1.1 Let T be a regular tree of degree at least 3, rooted at v0. Let f W T ! T be a C –quasi-
isometry such that f .v0/D v0. Then there is a constant D only depending on C and a D–deep mixed
subtree quasi-isometry g W T ! T such that f and g are at bounded distance from each other.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Since regular trees of degree at least 3 and nonelementary free groups are quasi-isometric, the theorem
above describes quasi-isometries of the free group F2.

Thanks to this independence mentioned above, mixed-subtree quasi-isometries are a useful tool to
construct quasi-isometries with certain desired properties. For example, this technique was used in
[Goldsborough and Zbinden 2024], where the authors built a self-quasi-isometry of F2 with the property
that the push-forward of a simple random walk by this quasi-isometry does not have a well-defined drift.

We suspect that there might be other applications of this construction. For instance, one might want to
consider “random quasi-isometries” of F2 and properties of a “generic” quasi-isometry. Further, this
characterisation might allow one to better understand the quasi-isometry group QI.F2/.

Outline

In Section 2 we introduce the relevant notation and prove some of the technical results about quasi-
isometries of trees. In particular, we extend a result of [Nairne 2023] and show that any quasi-isometry is
at bounded distance from an order-preserving quasi-isometry. In Section 3 we describe mixed-subtree
quasi-isometries and prove Theorem 1.1, which states that a map from a rooted tree of degree at least 3 to
itself is a quasi-isometry if and only if it is at bounded distance from a mixed-subtree quasi-isometry.

Acknowledgements

We would like to thank Oli Jones, Alice Kerr, Patrick Nairne and our supervisor Alessandro Sisto for
helpful discussions and feedback. We also thank the anonymous referee for very helpful comments which
greatly improved the readability of the paper.

2 Preliminaries

In this section, we introduce the relevant notation and some preliminary lemmas. Throughout this paper,
we will view F2 as a rooted tree. Therefore, our results will cover self-quasi-isometries of rooted trees.

Definition 2.1 Let .X; d/ be a metric space, we say that a map f W X ! X is a C –quasi-isometric
embedding for a constant C � 1 if

d.x; y/

C
�C � d.f .x/; f .y//� Cd.x; y/CC

for all x; y 2X.

Further, we say that a C –quasi-isometric embedding f WX !X is a C –quasi-isometry if there exists a
constant D such that for all y 2X there exists x 2X such that d.y; f .x//�D.

Definition 2.2 Let .X; d/ be a metric space. Two maps f; g WX!X are C –bounded if d.f .x/; g.x//�C

for all x 2X. They are bounded if they are C –bounded for some constant C.

Algebraic & Geometric Topology, Volume 24 (2024)



Characterising quasi-isometries of the free group 5213

2.1 Notation on trees

Let T be a rooted tree and w 2 T a vertex. We assume throughout that trees have edge length exactly 1.
We denote the subtree rooted at w by Tw . Further the subtree T k

w � Tw is the induced subtree of all
vertices v 2Tw with d.w; v/� k. Vertices v 2Tw are called descendants of w and w is called an ancestor
of v. Further, a vertex v 2 Tw is a D–child of w if d.v; w/DD and we say that w is the D–parent of v.
We denote the (1–)parent of a vertex v 2 T by p.v/ and say that the parent of the root is itself.

We will view a path between vertices u and v as a sequence of neighbouring vertices uDu0; u1; : : : ; unDv,
denoted by .u0; : : : ; un/. If a path .u0; : : : ; un/ is geodesic (or equivalently nonbacktracking) we also
denote it by Œu0; un�.

Definition 2.3 For a subset U � T of a rooted tree T based at v0, we define the lowest common ancestor
of U as the (unique) vertex v 2 T furthest away from v0 such that every vertex u 2 U is a descendant
of v. We will denote this vertex v as LCA.U /.

Observe that if v D LCA.U /, then there exists a pair of vertices x; y 2 U such that v lies on Œx; y�.

Definition 2.4 Let S be a finite subtree of a rooted tree T. We say that the boundary of S, denoted
by @S, is the set of vertices v 2 T nS whose parent p.v/ is in S.

Remark 2.5 If T is a d–regular tree rooted at v0, then one can easily show by induction that j@S j D

jS j.d � 2/C 1 if v0 62 S and j@S j D jS j.d � 2/C 2 if v0 2 S.

Definition 2.6 Let T be a tree rooted at v0. A map f W T ! T is order-preserving if for every pair of
vertices u; v 2 T with v 2 Tu we have that f .v/ 2 Tf .u/.

Nairne [2023] showed that every .1; C /–quasi-isometry between spherically homogeneous trees is at
bounded distance from an order-preserving quasi-isometry. In Lemma 2.8 we extend this result and
show that any C –quasi-isometry of a rooted tree to itself is at bounded distance from an order-preserving
quasi-isometry.

2.2 Properties of quasi-isometries of trees

We state and prove three key technical lemmas about quasi-isometries of trees.

The following lemma states that the image of the geodesic Œu; v� under a quasi-isometry f coarsely
surjects onto the geodesic Œf .u/; f .v/�.

Lemma 2.7 Let T be a tree and let f W T ! T be a C –quasi-isometry. For every pair of vertices u; v 2 T

and vertex a 2 Œf .u/; f .v/� there exists a vertex b 2 Œu; v� such that d.f .b/; a/� C.
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f .u/ y1

xj

a yjC1 f .v/

xjC1

yj

x1

Figure 1: Images of geodesics coarsely surject onto the geodesic.

Proof Let Œu; v�D .u0; : : : ; un/. For 0� i �n, define xiDf .ui / and let yi be the closest point projection
of xi onto Œf .u/; f .v/�. This is depicted in Figure 1. Let j be the largest index such that yj 2 Œf .u/; a�.
Then the path Œxj ; yj �Œyj ; yjC1�ŒyjC1; xjC1� is nonbacktracking and hence a geodesic from xj to xjC1

going through a. Since f is a C –quasi-isometry, d.xj ; a/ C d.a; xjC1/ D d.xj ; xjC1/ � 2C. So
minfd.xj ; a/C d.a; xjC1/g � C.

The following lemma states that every quasi-isometry between a rooted tree and itself is at bounded
distance from an order-preserving quasi-isometry. This extends the result of [Nairne 2023] where this is
shown for .1; C /–quasi-isometries between spherically homogeneous trees.

Lemma 2.8 Let T be a tree rooted at v0 and let f W T ! T be a C –quasi-isometry. The map f is
at bounded distance from an order-preserving quasi-isometry. Moreover , if f .v0/ D v0, then f is at
K–bounded distance from an order-preserving .2KCC /–quasi-isometry for some K depending only on C.

Proof It suffices to show the moreover part with K D 3C 3 C 2C. Define g W T ! T via g.v/ WD

LCA.f .Tv//. Clearly, g is order-preserving. It remains to show that g is at K–bounded distance from f

since it then follows that g is a .2KCC /–quasi-isometry.

Let u 2 T be a vertex. We will show that d.f .u/; g.u// � K. We have f .u/ 2 Tg.u/. Thus by
Lemma 2.7, there exists w 2 Œv0; u� such that d.f .w/; g.u// � C. This is depicted in Figure 2. Since
g.u/D LCA.f .Tu//, there exist vertices x; y 2 Tu such that g.u/ 2 Œf .x/; f .y/�. Again by Lemma 2.7,
there exists a vertex z 2 Œx; y�� Tu with d.g.u/; f .z//� C. In particular, d.f .w/; f .z//� 2C.

Observe that u 2 Œw; z�. Hence, d.u; z/� d.w; z/� 3C 2. Therefore,

d.g.u/; f .u//� d.g.u/; f .z//C d.f .z/; f .u//� 3C 3
C 2C DK:

The following lemma states that if f is an order-preserving quasi-isometry and two vertices u; v have
the same distance from the root, then f .u/ cannot be a descendant of f .v/, unless they are close. This
lemma is a key ingredient in the proof of Lemma 3.2.

Lemma 2.9 Let T be a tree rooted at v0 and let f W T ! T be an order-preserving C –quasi-isometry.
Let u; v 2 T be vertices such that d.v0; u/D d.v0; v/ and f .u/ 2 Tf .v/. Then d.f .u/; f .v// �K and
d.u; v/�K for some constant K depending only on C.
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v0

w

u

z

yx

f .v0/

g.u/

f .z/ f .w/

f .x/ f .u/ f .y/

Figure 2: Quasi-isometries are at bounded distance from order-preserving quasi-isometries.

u

x

w

v f .u/

f .v/

f .x/

f .w/

Figure 3: Illustration of the proof of Lemma 2.9.

Proof Let w D LCA.fu; vg/. Since f is order-preserving, f .v/ lies on Œf .u/; f .w/�. This is depicted
in Figure 3. By Lemma 2.7, there exists a vertex x 2 Œu; w� such that d.f .x/; f .v//�C. Thus d.w; v/�

d.x; v/ � 2C 2. Since d.v0; u/ D d.v0; v/, we have d.u; v/ D 2d.w; v/ and hence d.f .u/; f .v// �

4C 3CC. So choosing K D 4C 3CC works.

3 Quasi-isometries of regular trees

Notation For the rest of this section, T denotes a regular tree of degree d � 3 rooted at a vertex v0.

In this section, we describe a way of building quasi-isometries, which we call mixed-subtree quasi-
isometries, of regular trees to themselves. We further show that any quasi-isometry is at bounded distance
from a mixed-subtree quasi-isometry. The key idea behind mixed-subtree quasi-isometries is that they are
quasi-isometries which are defined iteratively for vertices further and further away from the root. Moreover,
at each step, the allowed choices are in some sense independent from the choices for earlier vertices.

Construction Let D � 1 be a natural number. For all natural numbers i � 0 we inductively construct
functions fi W T

iD
v0
! T. Define f0.v0/D v0. Assuming we have defined fi , we define fiC1 as follows:

� For all vertices x 2 T iD
v0

define fiC1.x/D fi .x/.
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x1 x2 xk

fiC1

v

Sv

@Sv

f 0v

Bv

Figure 4: The definition of f 0.

� Iterate through all vertices x 2 T with d.v0; x/ D iD. If we have not yet defined fiC1 for any
descendants of x, do the following:

– Denote fi .x/ by v and let X D fx1; : : : ; xkg be the set of vertices that satisfy fi .xj / D v and
d.v0; xj /D iD. Define Bv as the set of all D–children of vertices xj 2X. We now define fiC1.h/

for all vertices h 2 Bv.

– Choose any function f 0v W Bv! Tv satisfying the following properties (see Figure 4):
(1) Im.f 0v/D @Sv for some finite subtree Sv of Tv containing v.
(2) If f 0v.w/D f 0v.w0/, then w and w0 are D–children of the same vertex xj 2X.

– Define fiC1jBv
D f 0v .

– For all xj 2X, define fiC1.w/D v for all vertices w 2 T D�1
xj

.

We first argue that there always exists at least one function f 0v satisfying (1) and (2). In other words,
we have to show that there exists a subtree Sv rooted at v such that jX j � j@Svj � jBvj. If D D 1 and
jX j D 1, then one can choose Sv D fvg to get jBvj D j@Svj. Otherwise jBvj � jX j � d � 1; hence by
Remark 2.5 we can find a subtree Sv rooted at v with jX j � j@Svj � jBvj.

Further note that with this definition, for every i; j 2N, fi and fj agree if they are both defined. Hence
we can define f W T ! T via f .v/D fi .v/ for some i where v is in the domain of fi . We call any map f

constructed this way a D–deep mixed-subtree quasi-isometry.

The following lemma shows that mixed-subtree quasi-isometries are indeed quasi-isometries.

Lemma 3.1 For any choice of functions f 0v , the map f constructed is an order-preserving C –quasi-
isometry, where C only depends on D and T.

Proof It follows directly from the definition that f is order-preserving. Let K D dD, where d is the
degree of T and let C D 2K2. We will show that f is a C –quasi-isometry.

Claim 1 If vertices b; b0 are D.iC1/–children of v0, then f .b/ ¤ f .b0/ unless the D–parents of b

and b0 are the same. Furthermore , if f .b/¤ f .b0/, then Tf .b/ and Tf .b0/ are disjoint.
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Proof of Claim 1 We prove this by induction on i . For i D 0, b and b0 have the same D–parent,
namely v0. The furthermore part follows from (1). Assume the statement is true for i ; we want to show
that it holds for iC1. Let x and x0 be the D–parents of b and b0 respectively. If f .x/¤ f .x0/, then Tf .x/

is disjoint from Tf .x0/ by the induction hypothesis. Hence f .b/¤ f .b0/ and Tf .b/ is disjoint from Tf .b0/.
If f .x/D f .x0/ and x ¤ x0, then (2) implies that f .b/¤ f .b0/. Moreover, (1) implies that Tf .b/ and
Tf .b0/ are disjoint. Lastly, if xD x0, we only have to show the furthermore part, which follows from (1).

Claim 2 For any i , the number of Di–children of v0 whose images under f coincide is at most K.

Proof of Claim 2 This follows from Claim 1 together with the fact that every vertex has at most K

D–children.

Claim 3 If b is the D–child of a vertex x which in turn is a Di–child of v0, then 1�d.f .b/; f .x//�K2.

Proof of Claim 3 Let v D f .x/. We use the notation from the construction of fiC1. By Claim 2, the
set Bv contains at most K2 vertices, so jIm.f 0v/j �K2. In other words the subtree Sv from (1) has at
most K2 leaves, implying that d.v; v0/�K2 for any vertex v0 2 @Sv (see Remark 2.5). Consequently
d.f 0v.b/; f .x//�K2, which concludes the proof.

Claim 4 The map f is K2–coarsely surjective.

Proof of Claim 4 First observe that whenever a vertex v is in the image of f , there exists a Di–child x

of v0 with f .x/D v.

Let v0 2 T be a vertex. We show that d.v0; Im.f //�K2. Let v be the lowest ancestor of v0 which is in
the image of f . We have that v D f .x/ for some vertex x which is a Di child of v0. If v0 D v, we are
done. If v0 2 Sv , then d.v; v0/�K2 as in the proof of Claim 3. If v0 62 Sv , there exists w 2 @Sv which is
a descendant of v and an ancestor of v0. Since w 2 @Sv , it is in the image of f , a contradiction with the
definition of v.

It remains to show that
d.u; v/

C
�C � d.f .u/; f .v//� Cd.u; v/CC

for all vertices u; v 2 T. To show the right half of the inequality, it is enough to show that for all
neighbours u; v 2 T, we have d.f .u/; f .v// � C. This follows directly from the definition of f and
Claim 3. Next we show the left half of the inequality. Let u; v 2 T be vertices and let nD bd.v0; u/=Dc,
mD bd.v0; v/=Dc. Define u0 D v0 and for i � n define ui as the Di–child of v0 which is an ancestor
of u. Define vi analogously. Let k be the maximal index such that uk D vk . Claim 1, together with
f being order-preserving, yields that f .ui / and f .vj / lie on the geodesic from f .u/ to f .v/ for all
kC2� i � n and kC2� j �m. Hence, d.f .u/; f .v//� .n�k�2/C .m�k�2/. On the other hand
d.u; v/�D.n� kC 1/CD.m� kC 1/. The statement follows.
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We are now ready to prove the following lemma which together with Lemma 3.1 states that a map
g W T ! T is a quasi-isometry if and only if it is at bounded distance from a mixed-subtree quasi-isometry.
The lemma is a slightly more detailed version of Theorem 1.1.

Lemma 3.2 Let g W T ! T be a C –quasi-isometry. There exist a constant D > 0 and a D–deep mixed
subtree quasi-isometry f such that g and f are at bounded distance. Moreover , if g.v0/D v0, then D

only depends on T and C.

Proof By Lemma 2.8, which states that all quasi-isometries are at bounded distance from order-preserving
quasi-isometries, it suffices to show the moreover part for an order-preserving quasi-isometry. So we
assume in the following that g is order-preserving.

Let K be the constant of Lemma 2.9 and let D D dC.C CK/C1e. We will show that there is a D–deep
mixed subtree quasi-isometry f at distance KCCDCC from g.

Assume that we have defined fi W T
iD
v0
! T, as in the construction, such that

(i) d.fi .u/; g.u//�K for all u with d.v0; u/DDi ,

(ii) g.u/ 2 Tfi .u/ for all u with d.v0; u/DDi ,

(iii) d.fi .w/; g.w//�KCCDCC for all w 2 T iD
v0

.

We show that we can define a function fiC1 such that

(a) d.fiC1.u/; g.u//�K for all u with d.v0; u/DD.i C 1/,

(b) g.u/ 2 TfiC1.u/ for all u with d.v0; u/DD.i C 1/,

(c) d.fiC1.w/; g.w//�KCCDCC for all w 2 T
.iC1/D
v0

.

Let x be a Di child of v0, let vDfi .x/ and let X Df �1
i .v/. Observe that, for all x0 2X, d.v0; x0/DDi .

Let Bv be the set of all D–children of elements of X and let Av D g.Bv/. By (ii), Av � Tv . For b 2 Bv ,
define f 0v.b/ as the vertex a 2 Av closest to v0 which satisfies g.b/ 2 Ta. Observe that g.b/ 2 Tf 0

v.b/; in
other words, (b) is satisfied.

Note that f 0v.b/D g.b0/ for some b0 2 Bv. It follows from Lemma 2.9 that d.f 0v.b/; g.b//�K for all
b2Bv , which proves (a). Therefore, gjBv

and f 0v are at K–bounded distance. By (i), d.fi .x
0/; g.x0//�K

for all x0 2X. Hence for a k–child w of some x0 2X for k < D we have fiC1.w/D v, and hence

d.fiC1.w/; g.w//� d.v; g.x0//C d.g.x0/; g.w//�KCCDCC;

which, together with (iii), proves (c).

It only remains to show that f 0v as defined above is a valid choice; that is, f 0v satisfies (1) and (2). For (1),
define Sv Dfy 2 Tvjy 62 Ta for all a 2 Avg. If w 2 @Sv , then w 2 Taw

for some aw 2Av while its parent
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is not in Taw
. It follows that w D aw . Further, for any b 2 g�1.aw/ we have that f 0v.b/ 2 Œaw ; v0� but

f 0v.b/ 62 Sv. Hence f 0v.b/D aw implying that aw 2 Im.f 0v/.

Thus @Sv D Im.f 0v/ is finite. If Sv is infinite, there exists a vertex u 2 Sv which is further away from v0

than all points in the finite set @Sv. Consequently, Tu � Sv. Since g is a quasi-isometry (and hence
coarsely surjective), there exists a vertex u0 2 T with d.v0; u0/� .i C 1/D and g.u0/ 2 Tu. We have that
u0 is the descendant of some Di–child x0 of v0. By Claim 1 from the proof of Lemma 3.1 either x0 2X or
Tfi .x0/ is disjoint from Tv . By (ii) the latter cannot be the case. Consequently, u0 2Tb for some b 2Bv and
since g is order-preserving, g.u0/ 2 Tg.b/. This is a contradiction to g.u0/ 2 Sv . Thus Sv is indeed finite.

In order to prove (1), it remains to show that v 2 Sv, or in other words, that v 62 Av. Let b 2 Bv be a
D–child of some vertex x0 2X. By (i) and the fact that g is a C –quasi-isometry,

d.g.b/; v/� d.g.b/; g.x0//� d.g.x0/; fi .x
0//� d.g.b/; g.x0//�K > 0;

so indeed g.b/¤ v. Since this is true for all b 2 Bv, it follows that v 62 Av.

Next we prove (2). Let b be a D–child of x and b0 be a D–child of x0 with x ¤ x0 2 X. We have
d.b; b0/� 2D. Thus d.g.b/; g.b0//� 2D=C �C > 2KCC, which implies that d.f 0v.b/; f 0v.b0// > C.
In particular, f 0v.b/¤ f 0v.b0/.
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