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Cutting and pasting in the Torelli subgroup of Out.Fn/

JACOB LANDGRAF

Using ideas from 3-manifolds, Hatcher–Wahl defined a notion of automorphism groups of free groups
with boundary. We study their Torelli subgroups, adapting ideas introduced by Putman for surface
mapping class groups. Our main results show that these groups are finitely generated, and also that they
satisfy an appropriate version of the Birman exact sequence.

57K20, 57K30, 57M07

1 Introduction

Let FnDhx1; : : : ;xni be the free group on n letters, and let Out.Fn/ be the group of outer automorphisms
of Fn. In many ways, Out.Fn/ behaves very similarly to Mod.†g;b/, the mapping class group of the
surface †g;b of genus g with b boundary components. For an overview of some of these similarities, see
[7] by Bridson and Vogtmann.

One such connection is that they both contain a Torelli subgroup. In the mapping class group, the Torelli
subgroup I.†g;b/ �Mod.†g;b/ is defined to be the kernel of the action on H1.†n;bIZ/ for b D 0; 1.
In Out.Fn/, we define a similar subgroup,1 denoted IOn, as the kernel of the action of Out.Fn/ on
H1.FnIZ/D Zn.

On surfaces with multiple boundary components, there are many possible definitions one might use to
define a Torelli subgroup of Mod.†g;b/. Putman [22] defines a Torelli subgroup I.†g;b;P / for b > 1

requiring the additional data of a partition P of the boundary components. The goal of the current paper
is to mirror Putman’s procedure to define an “IOn with boundary”.

Let Mn;b D #n.S
1 �S2/ n .b open 3-disks/. For simplicity, we will write Mn if b D 0. A key property

of Mn;b is that it has fundamental group Fn. Fix such an identification. The mapping class group
Mod.Mn;b/ is the group of orientation-preserving diffeomorphisms of Mn;b fixing the boundary pointwise
modulo isotopies fixing the boundary pointwise. Letting DiffC.Mn;b; @Mn;b/ be the topological group of
orientation-preserving diffeomorphisms fixing the boundary pointwise, we can also write Mod.Mn;b/D

�0.DiffC.Mn;b; @Mn;b//. By a theorem of Laudenbach [19], there is an exact sequence

(1) 1! .Z=2/n!Mod.Mn/! Out.Fn/! 1;

where the map Mod.Mn/! Out.Fn/ is given by the action (up to conjugation) on �1.Mn/, and the

1It is also common to see this group denoted by IAn, but we wish to reserve this notation for the analogous subgroup of Aut.Fn/.
© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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2 Jacob Landgraf

.Z=2/n is generated by sphere twists about n disjointly embedded 2-spheres (see Section 2 for the
definition and relevant properties of sphere twists). Recent work of Brendle, Broaddus, and Putman [6]
shows that this sequence actually splits as a semidirect product. This exact sequence implies that, modulo
a finite group, Out.Fn/ acts on Mn up to isotopy. Therefore, Mn plays almost the same role for Out.Fn/

that †g;b plays for Mod.†g;b/.

Adding boundary components From Laudenbach’s sequence (1), we see that

Out.Fn/ŠMod.Mn/=STwist.Mn/;

where STwist.Mn/ Š .Z=2/n is the subgroup of Mod.Mn/ generated by sphere twists. Now that we
have related Out.Fn/ to a geometrically defined group, we can start introducing boundary components.
Extending the relationship given by Laudenbach’s sequence, we define “Out.Fn/ with boundary” as

Out.Fn;b/ WDMod.Mn;b/=STwist.Mn;b/:

When b D 1, Laudenbach [19] also shows that Out.Fn;1/Š Aut.Fn/. Hatcher and Wahl [14] introduced
a more general version of Out.Fn;b/, which they denoted by As

n;k
. The original definition of As

n;k
has

to do with classes of self-homotopy equivalences of a certain graph. However, in [14] the authors give
an equivalent definition, which says that As

n;k
is the mapping class group of Mn with s spherical and k

toroidal boundary components, modulo sphere twists. With this definition, we see that Out.Fn;b/DAb
n;0

.
Similar groups have been examined in the work of Jensen and Wahl [16] and Wahl [26]. Their versions,
however, involve only toroidal boundary components, and thus are distinct from Out.Fn;b/.

Torelli subgroups An important feature of sphere twists (discussed in Section 2) is that they act trivially
on homotopy classes of embedded loops, and thus act trivially on H1.Mn/. Therefore, the action of
Mod.Mn;b/ on H1.Mn;b/ induces an action of Out.Fn;b/ on H1.Mn;b/. We can then define the Torelli
subgroup IOn;b � Out.Fn;b/ to be the kernel of this action. However, this definition does not capture all
homological information when b > 1, especially when Mn;b is being embedded in Mm;c . To see why,
consider the scenario depicted in Figure 1, in which M2;2 has been embedded into M4. This embedding
induces a homomorphism �M WMod.M2;2/!Mod.M4/ obtained by extending by the identity. This map
sends sphere twists to sphere twists, and so we get an induced map �� W Out.F2;2/! Out.F4/. However,
this does not restrict to a map IO2;2! IO4 under this definition of IOn;b since elements of IO2;2 are not
required to fix the homology class of the subarc of ˛ lying inside M2;2. To address this issue, we will
use a slightly modified homology group.

Definition Fix a partition P of the boundary components of Mn;b .

(a) Two boundary components @1; @2 of Mn;b are P -adjacent if there is some p 2 P such that
f@1; @2g � p.

Algebraic & Geometric Topology, Volume 25 (2025)



Cutting and pasting in the Torelli subgroup of Out.Fn/ 3

˛ ˛M2;2 M1;2

Figure 1: A copy of M2;2 and M1;2 glued together to obtain M4. We realize M2;2 as a 3-sphere
with the six indicated open balls removed, then the boundaries of these removed balls are identified
according to the arrows (and similarly for M1;2). The class Œ˛� need not be fixed by elements of
IO2;2 with the naive definition.

(b) Let H P
1
.Mn;b/ be the subgroup of H1.Mn;b; @Mn;b/ spanned by˚

Œh� 2H1.Mn;b; @Mn;b/ j either h is a simple closed curve or h is a properly embedded arc
with endpoints in distinct P -adjacent boundary components

	
:

(c) There is a natural action of Out.Fn;b/ on H P
1
.Mn;b/, and we define the Torelli subgroup IOP

n;b �

Out.Fn;b/ to be the kernel of this action.

Returning to Figure 1, let P be the trivial partition of the boundary components of M2;2 with a single
P -adjacency class. With this choice of partition, we see that Œ˛\M2;2� 2H P

1
.M2;2/. If f 2 IOP

2;2, then
it follows that ��.f / 2 Out.F4/ preserves the homology class of ˛. Therefore, ��.f / 2 IO4, and so ��
restricts to a map IOP

2;2! IO4.

Restriction As we discussed in the last paragraph, given an embedding � WMn;b ,!Mm, we can extend
by the identity to get a map �� WOut.Fn;b/!Out.Fm/. In general, �� may not be injective. However, it is
injective if no connected component of Mm nMn;b is diffeomorphic to D3 (see Appendix A). Moreover,
such an embedding induces a natural partition of the boundary components of Mn;b as follows.

Definition Fix an embedding � WMn;b ,!Mm. Let N be a connected component of Mmn int.Mn;b/, and
let pN be the set of boundary components of Mn;b shared with N. Then the partition P of the boundary
components of Mn;b induced by � is defined to be

P D fpN jN a connected component of Mm nMn;bg:

With this definition, one might guess that ��1
� .IOn/D IOP

n;b . This turns out to be the case, and this is our
first main theorem, which we prove in Section 3.

Theorem A (restriction theorem) Let � WMn;b ,!Mm be an embedding , �� WOut.Fn;b/!Out.Fm/ the
induced map , and P the induced partition of the boundary components of Mn;b . Then IOP

n;b D �
�1
� .IOm/.

Algebraic & Geometric Topology, Volume 25 (2025)



4 Jacob Landgraf

Birman exact sequence From here, we move on to exploring the parallels between these Torelli
subgroups and those of mapping class groups. There is a well-known relationship between the mapping
class groups of surfaces with a different number of boundary components called the Birman exact sequence
(see [12]):

1! �1.UT.†n;b�1//!Mod.†g;b/!Mod.†g;b�1/! 1:

Here, UT.†n;b�1/ is the unit tangent bundle of†n;b�1, the map �1.UT.†n;b�1//!Mod.†g;b/ is given
by pushing a boundary component around a loop, and the map Mod.†g;b/!Mod.†g;b�1/ is given by
attaching a disk onto this boundary component. In Section 4, we will prove versions of the Birman exact
sequence for Mod.Mn;b/ and Out.Fn;b/, all culminating in the following sequence for IOP

n;b .

Theorem B (Birman exact sequence) Fix n; b > 0 such that .n; b/¤ .1; 1/, and let Mn;b ,!Mn;b�1

be an embedding obtained by gluing a ball to the boundary component @. Fix x 2Mn;b�1 nMn;b . Let
P be a partition of the boundary components of Mn;b , let P 0 be the induced partition of the boundary
components of Mn;b�1, and let p 2 P be the set containing @. We then have an exact sequence

1!L! IOP
n;b

��
! IOP 0

n;b�1! 1;

where L is equal to

(a) �1.Mn;b�1;x/Š Fn if p D f@g,

(b) Œ�1.Mn;b�1;x/; �1.Mn;b�1;x/�Š ŒFn;Fn� if p ¤ f@g.

Moreover , this sequence splits if b � 2.

Remark This theorem may seem superficially similar to results proven by Day and Putman [9; 11].
However, we consider a very different notion of “automorphisms with boundary”, and so these results are
unrelated.

Finite generation Once we have established this version of the Birman exact sequence, in Section 5, we
will define a generating set for IOP

n;b . This generating set will be inspired by the generating set for IOn

found by Magnus [21] in 1935.

Theorem 1.1 (Magnus) Let Fn D hx1; : : : ;xni. The group IOn is generated by the Out.Fn/-classes of
the automorphisms

Mij W xi 7! xj xix
�1
j ; Mijk W xi 7! xi Œxj ;xk �;

for all distinct i; j ; k 2 f1; : : : ; ng with j < k. Here , the automorphisms are understood to fix x` for `¤ i .

Throughout this paper, we will use the convention Œa; b� D aba�1b�1. Since we defined IOP
n;b to

be a subgroup of Mod.Mn;b/=STwist.Mn;b/, our generators will be defined geometrically rather than
algebraically. However, in the case of bD 0, they will reduce directly to Magnus’s generators. In Section 6,
we will show that these elements do indeed generate IOP

n;b .

Algebraic & Geometric Topology, Volume 25 (2025)



Cutting and pasting in the Torelli subgroup of Out.Fn/ 5

Theorem C The group IOP
n;b is finitely generated for n� 1, b � 0.

This is rather striking because the analogous result for Torelli subgroups of mapping class groups with
multiple boundary components is still open. We will prove this theorem by using the Birman exact
sequence to reduce to bD 0 and applying Magnus’s theorem. Unfortunately, the tools we have constructed
do not seem strong enough to give a novel proof of Magnus’s theorem. We will, however, prove a weaker
version in Section 7. The original proof of Magnus’s Theorem 1.1 comes in two steps: showing that the
given automorphisms Out.Fn/-normally generate IOn, and then showing that the subgroup they generate
is normal in Out.Fn/. We will give a proof of the first step in our setting. For alternative proofs of the
first step, as well as more information on the second step in this context, see work by Bestvina, Bux and
Margalit [5] as well as Day and Putman [10].

Theorem D The group IOn is Out.Fn/-normally generated by the automorphisms Mij and Mijk , where
i; j ; k 2 f1; : : : ; ng and j < k.

Abelianization Once we have a finite generating set for IOP
n;b , a natural question arises: how does the

cardinality of this generating set compare to the rank of H1.IOP
n;b/? For b � 1, this question is answered

by a result of Andreadakis [1] and Bachmuth [3].

Theorem 1.2 (Andreadakis, Bachmuth) The abelianization of IOn;b is torsion-free of rank n �
�
n
2

�
�n if

b D 0, and rank n �
�
n
2

�
if b D 1.

This theorem was proved using a version of the Johnson homomorphism

� W IAn! Hom
�
H;

V2
H
�
;

where H DH1.Fn/D Zn. We will recall the definition of this homomorphism in Section 8, along with
the proof of Theorem 1.2. We then move on to computing the rank of H1.IOP

n;b/ for b > 1. To do this,
we choose an embedding Mn;b ,!Mm;1, which induces an injection IOP

n;b! IOm;1D IAm. Composing
this map with � gives a map �� W IOP

n;b! Hom
�
H;

V2
H
�
. We then compute the image of our generators

under ��, and use this to count the rank of ��.IOP
n;b/.

Theorem E The abelianization of IOP
n;b is torsion-free of rank

n �
�n

2

�
C

�
b �
�n

2

�
� jP j �

�n

2

��
C .jP j � n� n/:

Outline In Section 2, we will give a short overview of sphere twists. We then move on to proving
Theorem A in Section 3. We will establish all of our versions of the Birman exact sequence (including
Theorem B) in Section 4. In Section 5, we will define our candidate generators for IOP

n;b , and we will
prove that they generate (Theorem C) in Section 6 using the Birman exact sequence and Magnus’s
Theorem 1.1. In Section 7, we will prove Theorem D. We then move on to Section 8, in which we recall
the definition of the Johnson homomorphism for IAn, and use it to compute the rank of the abelianization

Algebraic & Geometric Topology, Volume 25 (2025)



6 Jacob Landgraf

M1;2 M1;3 M2;1

Figure 2: M5 realized by gluing M1;2, M1;3, and M2;1 together along their boundaries as
indicated by the arrows.

of IOP
n;b , proving Theorem E. Finally, we conclude with two appendices. In Appendix A, we provide

conditions for a map Out.Fn;b/! Out.Fm/ induced by an inclusion to be injective, and in Appendix B
we prove a lemma which allows us to realize bases of H2.Mm/ as collections of disjoint oriented spheres.

Figure conventions We will frequently direct the reader to figures which are intended to give some
geometric intuition for the manifold Mn;b . In order to assemble Mn;b , we begin with one or more copies
of S3, remove a collection of open balls, and then glue the resulting boundary components together in
pairs. These gluings will be indicated by double-sided arrows connecting the boundary spheres being
glued. As an example, see Figure 2.

Acknowledgements I would like to thank my advisor Andy Putman for directing me to Out.Fn/ and its
Torelli subgroup, and for his input during the revision process. I would also like to thank Patrick Heslin
and Aaron Tyrrell for helpful conversations regarding diffeomorphism groups, as well as Dan Margalit
for an enlightening question which resulted in the addition of Section 8.

This material is based upon work supported by the National Science Foundation under grant number
DMS-1547292.

2 Preliminaries

Since sphere twists play a fundamental role throughout the remainder of the paper, we will give a brief
overview of them here.

Sphere twists Fix a smoothly embedded 2-sphere S � Mn;b , and let U Š S � Œ0; 1� be a tubular
neighborhood of S . Recall that �1.SO.3/; id/Š Z=2Z, and the nontrivial element  W Œ0; 1�! SO.3/ is
given by rotating R3 one full revolution about any fixed axis through the origin. Fix an identification
S DS2 �R3. Then, we define the sphere twist about S , denoted TS 2Mod.Mn;b/, to be the class of the
diffeomorphism which is the identity on Mn;b nU and is given by .x; t/ 7! . .t/ �x; t/ on U Š S � Œ0; 1�.

Algebraic & Geometric Topology, Volume 25 (2025)



Cutting and pasting in the Torelli subgroup of Out.Fn/ 7

The isotopy class of TS depends only on the isotopy class of S . In fact, more is true: Laudenbach [19]
showed that the class of TS depends only on the homotopy class of S .

Action on curves and surfaces Since �1.SO.3/; id/ Š Z=2Z, we see that sphere twists have order
at most two. However, it is tricky to show that sphere twists are actually nontrivial because they act
trivially on homotopy classes of embedded arcs and surfaces. To see why this is true, let S �Mn;b be an
embedded 2-sphere, and let U DS � Œ0; 1� be a tubular neighborhood of S . Suppose that ˛ is either an arc
or surface embedded in Mn;b (we will handle both cases simultaneously). We can homotope ˛ such that
it is either disjoint from U or intersects U transversely. Let p 2 S be one of points in S which lies on the
axis of rotation used to construct TS . We can homotope ˛ such that ˛\U collapses into p 2 Œ0; 1�. Note
that this process is not an isotopy, and ˛ is no longer embedded in Mn;b . This is not an issue because
a result of Laudenbach [19] shows that if ˛ is fixed up to homotopy, then it is fixed up to isotopy. Since
TS fixes p� Œ0; 1� pointwise, it follows that TS fixes ˛ up to homotopy. The upshot of this is that a more
sophisticated invariant must be constructed to detect the nontriviality of TS . In [18; 19], Laudenbach uses
framed cobordisms to show that for b D 0; 1, the sphere twist TS is trivial if and only if S is separating.
In the case of no boundary components, Brendle, Broaddus, and Putman [6] give another proof of this fact
by showing that sphere twists act nontrivially on a trivialization of the tangent bundle of Mn up to isotopy.

Sphere twist subgroup Let STwist.Mn;b/�Mod.Mn;b/ be the subgroup generated by sphere twists.
Given f 2Mod.Mn;b/ and a sphere twists TS , we have the “change of coordinates” formula

fTS f
�1
D Tf.S/:

This shows that STwist.Mn;b/ is a normal subgroup of Mod.Mn;b/. In fact, even more is true. Letting
fD TS 0 in the above formula and using the fact that sphere twists act trivially on embedded surfaces up
to isotopy, we find that

TS 0TST �1
S 0 D TTS0 .S/

D TS ;

which implies STwist.Mn;b/ is actually abelian. Since nontrivial sphere twists have order two, it follows
that STwist.Mn;b/ is isomorphic to a product of copies of Z=2Z. For b D 0; 1, another result of
Laudenbach shows that STwist.Mn;b/Š .Z=2Z/n and is generated by the sphere twists about the n core
spheres ��S2 in each S1�S2 summand. For b > 1, one can show that STwist.Mn;b/Š .Z=2Z/nCb�1.
The�1 in the exponent reflects the fact that the product of all the sphere twists about boundary components
is trivial. Since we will need this fact later, we include a proof here.

Lemma 2.1 If S1; : : : ;Sb �Mn;b be spheres parallel to the b boundary components of Mn;b , then the
element TS1

� � �TSb
is trivial in Mod.Mn;b/.

Proof We will prove this by induction on n. As the base case, consider M0;b . The argument in this
case follows a proof of Hatcher and Wahl [15, pages 214–215], but we include the proof here as well for

Algebraic & Geometric Topology, Volume 25 (2025)



8 Jacob Landgraf

z

S1

S2

S3

S4

Figure 3: M0;4 embedded in R3.

completeness. If b D 0, then the statement is trivial. If b > 0, then we can embed M0;b in R3 as the unit
ball with b� 1 smaller balls removed along the z-axis (see Figure 3). We may then use the z-axis as the
axis of rotation for the sphere twists about all the boundary components. Taking S1 to be the unit sphere,
we then see that the product T2 � � �Tb is isotopic to T1. Since sphere twists have order two, this gives the
desired relation, and so we have completed the base case.

Next, consider Mn;b for n > 0. Since n > 0, there exists a nonseparating sphere S �Mn;b which is
disjoint from S1; : : : ;Sb . Splitting Mn;b along S yields a submanifold diffeomorphic to Mn�1;bC2.
Let �M W Mod.Mn�1;bC2/! Mod.Mn;b/ be the map induced by inclusion. Let T1; : : : ;TbC2 be the
sphere twists about the boundary components of Mn�1;bC2, and order them such that �M .Tj /D TSj

for
0� j � b. With this ordering, notice that �M .TbC1/D �M .TbC2/D TS . Since sphere twists have order
two,

�M .T1 � � �TbC2/D TS1
� � �TSb

�T 2
S D TS1

� � �TSb
:

By our induction hypothesis, T1 � � �TbC2 is trivial in Mod.Mn�1;bC2/, and so we are done.

If bD 1, this shows that the sphere twist about the boundary component is trivial. However, if b > 1, then
the sphere twists about boundary components are nontrivial. We will also need this fact, so we prove it here.

Lemma 2.2 Let b > 1, and let @ be a boundary component of Mn;b . Then T@ 2Mod.Mn;b/ is nontrivial.

Proof Let @0 be a boundary component of Mn;b different from @. Then we get an embedding

� WMn;b ,!MnC1

by attaching @ and @0 with a copy of S2 � I , and capping off all the remaining boundary components.
Let �M WMod.Mn;b/!Mod.MnC1/ be the map induced by �. Then �M .T@/ is a sphere twist about a
nonseparating sphere. Earlier in this section, we saw that such sphere twists are nontrivial, and so we
conclude that T@ is nontrivial as well.
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3 Restriction theorem

Fix n; b � 0, and let P be a partition of the boundary components of Mn;b . Recall that we have defined
H P

1
.Mn;b/ to be the submodule of H1.Mn;b; @Mn;b/ generated by˚

Œh� 2H1.Mn;b; @Mn;b/ j either h is a simple closed curve or h is a properly embedded arc
with endpoints in distinct P -adjacent boundary components

	
;

and IOP
n;b is the kernel of the action of Out.Fn;b/ on H P

1
.Mn;b/ induced by the action of Mod.Mn;b/.

Remark This version of homology is simpler than the one used in [22]. There are two reasons for this.

� In our case, we can take homology relative to the entire boundary, whereas in [22], homology is taken
relative to a set consisting of a single point from each boundary component. This is because in surfaces,
the boundary components give nontrivial elements of H1, and the arcs considered in H P

1
.†g;b/ can get

“wrapped around” those boundary components. This is not a problem in our setting because loops in
boundary components of Mn;b are trivial in H1.

� Next, suppose we have an embedding †g;b ,!†g0 of surfaces. It is possible for a nontrivial element
a 2H1.†g;b/ to become trivial in H1.†g0/ (for instance, if a boundary component is capped off). So,
there could be elements of Mod.†g;b/ which act trivially on H1.†g0/, but not fix a. In other words,
the Torelli group would not be closed under restrictions. To fix this, the author in [22] must mod out
by the submodules of H1.†g;b/ spanned by the p 2 P (with proper orientation chosen). This is not
a problem in the 3-dimensional case however, since an inclusion Mn;b ,! Mm induces an injection
H1.Mn;b/!H1.Mm/.

Proof of Theorem A Let � WMn;b ,!Mm be an embedding, and let �� W Out.Fn;b/! Out.Fm/ be the
induced map. Recall that we must show that ��1

� .IOm/D IOP
n;b , where P is the partition of the boundary

components induced by � as described in the introduction.

This proof will follow the proof of [22, Theorem 3.3]. Define the following subsets of H1.Mm/ (we use �
to denote concatenation of arcs):

Q1 D fŒh� 2H1.Mm/ j h is a simple closed curve in Mm nMn;bg;

Q2 D fŒh� 2H1.Mm/ j h is a simple closed curve in Mn;bg;

Q3 D
˚
Œh1 � h2� 2H1.Mm/ j h1 is a properly embedded arc in Mn;b

with endpoints in distinct P -adjacent boundary components
and h2 is a properly embedded arc in Mm nMn;b

with the same endpoints as h1

	
:

We claim that the homology group H1.Mm/ is spanned by Q1[Q2[Q3. To see why, let Œ˛�2H1.Mm/

be the class of a loop ˛. If ˛ can be homotoped to lie entirely inside Mn;b or Mm nMn;b , then we are

Algebraic & Geometric Topology, Volume 25 (2025)



10 Jacob Landgraf

Mn;b Mn;b

˛

Figure 4: A loop can be surgered into a collection of loops which intersect @Mn;b exactly twice.

done. On the other hand, suppose that crosses the boundary of Mn;b . Without loss of generality, we
may assume that ˛ crosses the boundary of Mn;b exactly twice since any loop can be surgered into a
collection of such loops (see Figure 4). It follows that ˛ has the form ˛ D  � ı, where  �Mn;b is an
arc connecting boundary components of Mn;b , and ı �Mm nMn;b is a arc with the same endpoints as  .
Recall that under the partition P induced by the inclusion �, two boundary components are P -adjacent if
they lie on the same component of Mm nMn;b . Therefore, the existence of ı implies that the boundary
components intersected by ˛ are P -adjacent, and thus Œ˛� 2Q3. This completes the proof of the claim.

Let f 2 IOP
n;b . By the definition of IOP

n;b , the element ��.f / acts trivially on Q2. Moreover, ��.f / acts
trivially on Q1 by the definition of ��. Lastly, suppose that Œh1 �h2� 2Q3. Then ��.f / fixes the homology
class of h1 since f 2 IOP

n;b , and fixes h2 pointwise by the definition of ��. Therefore, f 2 ��1
� .IOm/.

Next, suppose that f 2 ��1
� .IOm/. By definition, ��.f / acts trivially on H1.Mm/, and thus on Q2 as

well since the map H1.Mn;b/!H1.Mm/ induced by � is injective. This implies that f acts trivially
on homology classes of simple closed curves in Mn;b . So, we only need to check that f preserves the
homology classes of arcs in Mm connecting distinct P -adjacent boundary components. Suppose there is
a class of arcs Œ˛� 2H P

1
.Mn;b/. Since P is the partition of the boundary components induced by �, Œ˛�

can be completed to a homology class Œ˛ �ˇ� 2H1.Mm/, where ˇ is an arc in Mm nMn;b connecting the
endpoints of ˛. Then since ��.f / 2 IOm and ��.f / fixes ˇ pointwise, we have

0D .Œ˛ �ˇ�/� ��.f /.Œ˛ �ˇ�/D Œ˛��f .Œ˛�/:

This shows that f acts trivially on Œ˛�. Therefore, f 2 IOP
n;b .
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4 Birman exact sequence

In this section, we give a version of the Birman exact sequence for the groups IOP
n;b . We will start by

giving a Birman exact sequence on the level of mapping class groups. We note that Banks has proved a
version of the Birman exact sequence for 3-manifolds (see [4]). However, this version involves forgetting
a puncture rather than capping a boundary component, so we will prove our own version here. Once we
have the sequence for mapping class groups, we will mod out by sphere twists to get a corresponding
sequence for Out.Fn;b/, and finally restrict to get a sequence for IOP

n;b .

Remark In the following theorems, we exclude the case .n; b/D .1; 1/. This is because boundary drags
in Mod.M1;1/ are trivial (see the proof of Theorem 4.1 for the definition of boundary drags). In this case,
we have isomorphisms

Mod.M1;1/ŠMod.M1/Š Z=2�Z=2; Out.F1;1/Š Out.F1/Š Z=2; IOf@g
1;1
Š IO1 Š 1;

where one of the generators of Mod.M1/DMod.S1 �S2/ is a sphere twist about the sphere � �S2

and the other is the antipodal map in both coordinates.

Theorem 4.1 Fix n; b > 0 such that .n; b/¤ .1; 1/. Glue a ball to a boundary component of Mn;b , and
let Mn;b ,!Mn;b�1 be the resulting embedding. Fix x 2Mn;b�1 nMn;b .

(a) If b > 1, choose a lift zx 2 Frx.Mn;b�1/ of x, where Fr.Mn;b�1/ is the oriented frame bundle of
Mn;b�1. We then have an exact sequence

1! �1.Fr.Mn;b�1/; zx/!Mod.Mn;b/!Mod.Mn;b�1/! 1:

(b) If b D 1 and n> 1, then we have an exact sequence

1! �1.Mn;b�1;x/!Mod.Mn;b/!Mod.Mn;b�1/! 1:

Proof Let DiffC.Mn;b�1/ denote the space of orientation-preserving diffeomorphisms of Mn;b�1 which
restrict to the identity on @Mn;b�1, and let DiffC.Mn;b�1; zx/ be the subspace of DiffC.Mn;b�1/ consisting
of diffeomorphisms which fix the framing zx. It is standard that there is a fiber bundle

DiffC.Mn;b�1; zx/! DiffC.Mn;b�1/
p
! Fr.Mn;b�1/;

where the map p W DiffC.Mn;b�1/! Fr.Mn;b�1/ is given by ' 7! d'.zx/. Passing to the long exact
sequence of homotopy groups associated to this fiber bundle, we find the segment

(2) �1.Fr.Mn;b�1//! �0.DiffC.Mn;b�1; zx//! �0.DiffC.Mn;b�1//! �0.Fr.Mn;b�1//:

Since Fr.Mn;b�1/ is the oriented frame bundle, it is connected, and so �0.Fr.Mn;b�1// is trivial.

Next, we claim that �0.DiffC.Mn;b�1; zx// is isomorphic to Mod.Mn;b/. For a proof of this fact in the
surface case, see [12, page 102]. We will give an analogous argument here. Let B be the ball glued
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to the boundary component of Mn;b , and let DiffC.Mn;b�1;B/ � DiffC.Mn;b�1/ be the subspace of
diffeomorphisms fixing B pointwise. Then �0.DiffC.Mn;b�1;B//ŠMod.Mn;b/, where the isomorphism
is obtained by simply removing B. Letting EmbC..B;Mn;b�1/; zx/ be the space of smooth, orientation-
preserving embeddings B ,!Mn;b�1 which fix the framing zx, we get a fiber bundle

DiffC.Mn;b�1;B/ ,! DiffC.Mn;b�1; zx/! EmbC..B;Mn;b�1/; zx/;

where the second map is given by restriction to B. Again, we pass to the long exact sequence of homotopy
groups, and find the segment

�1.EmbC..B;Mn;b�1/; zx//! �0.DiffC.Mn;b�1;B//

! �0.DiffC.Mn;b�1; zx//! �0.EmbC..B;Mn;b�1/; zx//:

Since B is contractible, so is EmbC..B;Mn;b�1/; zx/. This gives an isomorphism

�0.DiffC.Mn;b�1; zx//Š �0.DiffC.Mn;b�1;B//ŠMod.Mn;b/;

as desired.

With these identifications, the sequence (2) then becomes

(3) �1.Fr.Mn;b�1//!Mod.Mn;b/!Mod.Mn;b�1/! 1:

To get a short exact sequence, we must understand the kernel of the map

ePush W �1.Fr.Mn;b�1//!Mod.Mn;b/:

We remark here that the map ePush is given by pushing and rotating a small ball containing x about a loop
based at x. This is in analogy with the “disk pushing maps” seen in the case of surfaces. Since Mn;b�1 is
a compact, orientable 3-manifold, it is parallelizable, and hence we have

�1.Fr.Mn;b�1//Š �1.Mn;b�1/��1.SO.3//D �1.Mn;b�1/�Z=2:

Consider the map Mod.Mn;b/!Aut.�1.Mn;b;y//, where the basepoint y is on the boundary component
@ being capped off. As is shown in Figure 5, the composition

�1.Fr.Mn;b�1//Š �1.Mn;b�1/�Z=2
ePush
��!Mod.Mn;b/! Aut.�1.Mn;b;y//

is given by conjugation about the loop being pushed around. Since Aut.�1.Mn;b;y// Š Aut.Fn/ is
centerless for n>1, the entire kernel of ePush must be contained in 1�Z=2��1.Mn;b�1/�Z=2. However,
the image of the generator of this subgroup in Mod.Mn;b/ is the sphere twist T@. By Theorems 2.1
and 2.2, this sphere twist is nontrivial if and only if b > 1. If b > 1, this shows that Push is injective,
and (3) gives us the desired exact sequence. On the other hand, if b D 1, then ker.ePush/ D 1�Z=2.
Therefore, the image of ePush in Mod.Mn;b/ is isomorphic to

�1.Fr.Mn;b�1//=hT@i Š �1.Mn;b�1/

as desired.
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˛



�1˛y

Figure 5: The image of ˛ under ePush.;T / is �1˛ . Here, T can be either T@ or trivial.

Modding out by sphere twists Now that we have a Birman exact sequence for Mod.Mn;b/, we can
mod out by sphere twists to get a Birman exact sequence for Out.Fn;b/. Consider the map

iM WMod.Mn;b/!Mod.Mn;b�1/

given by capping off a boundary component @. Since �M takes sphere twists to sphere twists, this map
descends to a map �� W Out.Fn;b/! Out.Fn;b�1/. Since �M is surjective, �� is as well. Let K be the
kernel of ��, and let  WMod.Mn;b/! Out.Fn;b/ be the quotient map. If b > 1, then the kernel of �M is
�1.Fr.Mn;b�1/; zx/ by Theorem 4.1. Let ePush W �1.Fr.Mn;b�1/; zx/!Mod.Mn;b/ be the map defined in
the proof of Theorem 4.1, and fix an identification �1.Fr.Mn;b�1/; zx/D �1.Mn;b�1;x/�Z=2. Since

��
�
 .ePush.;T //

�
D  

�
�M .ePush.;T //

�
D  .id/D id

for all .;T / 2 �1.Mn;b�1;x/�Z=2Z, the image of �1.Fr.Mn;b�1/; zx/ under  ı ePush is contained
in K. In other words, we have the following commutative diagram:

1 �1.Fr.Mn;b�1/; zx/ Mod.Mn;b/ Mod.Mn;b�1/ 1

1 K Out.Fn;b/ Out.Fn;b�1/ 1

gPush

 
P

�M

 

��

where  
P
D  ı ePush. Next, we claim that the map  

P
W �1.Fr.Mn;b�1/; zx/!K is surjective. To see

this, let f 2K, and choose a lift f 2Mod.Mn;b/ of f . Since ��.f /D id, the image �M .f/ is a product of
sphere twists TS1

� � �TSj
. For each TSi

2Mod.Mn;b�1/, choose a preimage T 0
Si
2Mod.Mn;b/ which is

also a sphere twist. Then
�M .T 0S1

� � �T 0Sj
� f/D id;

which implies that T 0
S1
� � �T 0

Sj
� f D ePush.;T / for some .;T / 2 �1.Mn;b�1;x/�Z=2Z. Moreover,

 .T 0
S1
� � �T 0

Sj
� f/D f , which verifies our claim that  

P
W �1.Fr.Mn;b�1/; zx/!K is surjective.

Now, we wish to identify the kernel of  
P

. Let .;T / 2 �1.Mn;b�1;x/�Z=2Z, and fix a basepoint
y on the boundary component being capped off. At the end of the proof of Theorem 4.1, we saw that
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ePush.;T / acts nontrivially on �1.Mn;b;y/ if and only if  is trivial. Since sphere twists act trivially
on homotopy classes of curves, it follows that  

P
.;T / is nontrivial if  is nontrivial. Therefore, the

kernel of  
P

must lie inside 1�Z=2Z� �1.Mn;b�1;x/�Z=2Z. However, the generator of 1�Z=2Z

gets mapped to T@ under ePush, which is killed in Out.Fn;b/. Therefore, ker. /D 1�Z=2Z, and so it
follows that K Š �1.Mn;b�1;x/.

On the other hand, if b D 1 and n> 1, then the kernel of the map �M WMod.Mn;b/!Mod.Mn;b�1/ is
�1.Mn;b�1;x/ by Theorem 4.1. Almost exactly the same argument used above shows that the quotient
map restricts to a surjective map  

P
W�1.Mn;b�1;x/!K. However, in this case,  

P
is injective since the

sphere twist T@ has already been killed off. Thus, we find that K Š �1.Mn;b�1;x/ in this case as well.

From now on, we will identify the kernel of the map �� W Out.Fn;b/! Out.Fn;b�1/ with �1.Mn;b�1;x/.
The map �1.Mn;b�1;x/! Out.Fn;b/ will play a significant role throughout the remainder of the paper,
and so we give a formal definition here.

Definition The map Push W �1.Mn;b�1;x/!Out.Fn;b/ is defined as Push. /D .ePush.;T //, where
T 2 Z=2Z is arbitrary. Since sphere twists become trivial in Out.Fn;b/, this element depends only on  .

The upshot of this is that we have proven the Birman exact sequence for Out.Fn;b/.

Theorem 4.2 Fix n; b > 0 such that .n; b/¤ .1; 1/, and let Mn;b ,!Mn;b�1 be an embedding obtained
by gluing a ball to a boundary component. Fix x 2Mn;b�1 nMn;b . Then the following sequence is exact :

1! �1.Mn;b�1;x/
Push
��! Out.Fn;b/

��
! Out.Fn;b�1/! 1:

Restrict to Torelli We now move on to proving Theorem B, which gives a Birman exact sequence
for IOP

n;b . We start by recalling its statement. Let P be a partition of the boundary components of Mn;b ,
and fix a boundary component @. Let p 2 P be the set containing @, and let � WMn;b ,!Mn;b�1 be the
inclusion obtained by capping off @. The partition P induces a partition P 0 of the boundary components
of Mn;b�1 by removing @ from p. With this definition of P 0, the map �� W Out.Fn;b/! Out.Fn;b�1/

restricts to a map IOP
n;b ! IOP 0

n;b�1, which we will also call ��. The sequence from Theorem 4.2 then
restricts to

1! �1.Mn;b�1/\ IOP
n;b! IOP

n;b

��
! IOP 0

n;b�1:

Theorem B asserts that �� is surjective, and identifies its kernel �1.Mn;b�1/ \ IOP
n;b . We start with

surjectivity.

Lemma 4.3 The induced map �� W IOP
n;b! IOP 0

n;b�1 is surjective for any embedding � WMn;b ,!Mn;b�1.

Proof Consider an element g 2 IOP 0

n;b�1. Our goal is to find some f 2 IOP
n;b such that ��.f /D g. There

are two cases.
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First, suppose that pDf@g. Then the inclusion � induces an isomorphism �H WH
P
1
.Mn;b/!H P 0

1
.Mn;b�1/

which is equivariant with respect to the actions of Out.Fn;b/ and Out.Fn;b�1/. In other words, for any
Œh� 2H P

1
.Mn;b/ and f 2 Out.Fn;b/, we have

(4) �H .f � Œh�/D ��.f / � �H .Œh�/:

By Theorem 4.2, there exists some f 2Out.Fn;b/ such that ��.f /D g. We claim that f 2 IOP
n;b . To see

this, let Œh� 2H P
1
.Mn;b/. Then, by (4), we see that

�H .f � Œh�/D ��.f / � �H .Œh�/D g � �H .Œh�/D �H .Œh�/:

Since �H is an isomorphism, this implies that f � Œh�D Œh�, and so f 2 IOP
n;b , as desired.

Next, suppose that p ¤ f@g. Again, choose f 2 Out.Fn;b/ such that ��.f /D g. In this case, there is no
longer a well-defined map H P

1
.Mn;b/!H P 0

1
.Mn;b�1/. However, there is a subgroup of H P

1
.Mn;b/

which projects isomorphically onto H P 0

1
.Mn;b�1/. Let A�H P

1
.Mn;b/ be the subgroup generated by˚

Œa� 2H1.Mn;b; @Mn;b/ j either a is a simple closed curve or a is a properly embedded arc
with neither endpoint on @

	
:

It is clear that AŠH P 0

1
.Mn;b�1/.

Let Œk� 2H P
1
.Mn;b/ be the class of an arc k which has an endpoint on @. We claim that H P

1
.Mn;b/ is

generated by A and Œk�. To establish this claim, it suffices to show that Œ`�2hA; Œk�i, where Œ`�2H P
1
.Mn;b/

is the class of any arc with an endpoint on @ and the other elsewhere. Such an ` exists since p ¤ f@g. Fix
such a class Œ`�, and let ˛ � @ be an arc connecting the endpoints of ` and k on @. Orient `, ˛, and k such
that the curve ` �˛ � k is well-defined.

If the endpoints of ` and k which are not on @ lie on distinct boundary components, then ` � ˛ � k is
an arc connecting P 0-adjacent boundary components. Therefore, Œ`�C Œ˛�C Œk� 2 A. Since Œ˛�D 0 in
H P

1
.Mn;b/, it follows that Œ`� 2 hA; Œk�i. On the other hand, if the endpoints of ` and k which are not

on @ lie on the same boundary component @0, then we can complete ` �˛ � k to a loop ` �˛ � k �ˇ, where
ˇ � @0 is an arc connecting the endpoints of ` and k. Then

Œ`�C Œk�D Œ`�C Œ˛�C Œk�C Œˇ�D Œ` �˛ � k �ˇ� 2A;

and so Œ`� 2 hA; Œk�i. This completes the proof of the claim that H P
1
.Mn;b/ is generated by A and Œk�.

Since A projects isomorphically onto H P 0

1
.Mn;b�1/, and this projection is equivariant with respect to

the actions of Out.Fn;b/ and Out.Fn;b�1/, we have f � Œa� D Œa�. It follows that f acts trivially on A.
Therefore, if f fixes Œk�, then f 2 IOP

n;b by the discussion in the preceding paragraph, and so we are
done. On the other hand, if f does not fix Œk�, then  D k �f .k/�1 is a nontrivial loop based at a point
on @. So, the element Push. /�1 �f 2Out.Fn;b/ fixes Œk�. Moreover, Push. / acts trivially on A, and so
Push. /�1 �f does as well. Thus, Push. /�1 �f 2 IOP

n;b . Finally, since Push. / 2 ker.i�/, we have that
��.Push. /�1 �f /D g, and so we are done.

Algebraic & Geometric Topology, Volume 25 (2025)



16 Jacob Landgraf

h

˛

@

Figure 6: Dragging @ around ˛ takes Œh� to Œ˛�C Œh�.

Proof of Theorem B Recall that we want to show that we have an exact sequence

1!L
Push
��! IOP

n;b

��
! IOP 0

n;b�1! 1;

where L is equal to

(a) �1.Mn;b�1;x/Š Fn if p D f@g,

(b) Œ�1.Mn;b�1;x/; �1.Mn;b�1;x/�Š ŒFn;Fn� if p ¤ f@g.

By Lemma 4.3 and the discussion preceding it, all that is left to show is that �1.Mn;b�1/\ IOP
n;b agrees

with the subgroups L given above.

We begin with the case pDf@g. Recall that �1.Mn;b�1/ acts on Mn;b by pushing the boundary component
@ about a given loop. Since @ is not P -adjacent to any other boundary components, it follows that
�1.Mn;b�1/ acts trivially on H P

1
.Mn;b/. Therefore, �1.Mn;b�1/� IOP

n;b , and so �1.Mn;b�1/\IOP
n;bD

�1.Mn;b�1/. This completes this case.

Next, suppose that p ¤ f@g. In this case, not all elements of �1.Mn;b/ are contained in IOP
n;b . This is

because dragging @ about loops may change the homology class of arcs connected to @. In particular, if
 2 �1.Mn;b�1/ and Œh� 2H P

1
.Mn;b/ is the class of arc with an endpoint in @ and the other elsewhere,

then Push. / acts on Œh� via

Push. / � Œh�D Œ �C Œh�:

See Figure 6 for an illustration. This implies that an element Push. / is in IOP
n;b if and only if Œ �D 0 in

H1.Mn;b�1/. Thus,

�1.Mn;b�1/\ IOP
n;b D Œ�1.Mn;b�1/; �1.Mn;b�1/�;

which is what we wanted to show.
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5 Generators

In this section, we will define our generators of IOP
n;b . The definition of these generators will involve

splitting and dragging boundary components, so we will discuss these processes in more detail first, then
move on to the definitions.

Splitting along spheres Let S � Mn;b be an embedded 2-sphere. By splitting along S , we mean
removing an open tubular neighborhood N of S from Mn;b . If S is nonseparating, the resulting
manifold will be diffeomorphic to Mn�1;bC2 and if S is separating, the result will be diffeomorphic
to Mm1;c1

tMm2;c2
, where m1Cm2 D n and c1C c2 D bC 2. Notice that the resulting manifold is

a submanifold of Mn;b , and so we get a corresponding map Mod.Mn�1;bC2/! Mod.Mn;b/ if S is
nonseparating, or Mod.Mm1;c1

/�Mod.Mm2;c2
/!Mod.Mn;b/ if S is separating. In either case, this

map sends sphere twists to sphere twists, and thus induces a map �� W Out.Fn�1;bC2/! Out.Fn;b/ or
�� W Out.Fm1;c1

/�Out.Fm2;c2
/! Out.Fn;b/, depending on whether or not S separates Mn;b .

Dragging boundary components Let @ be a boundary component of Mn;b , and let � WMn;b ,!Mn;b�1

be the embedding obtained by capping off @. By Theorem 4.2, we have an exact sequence

1! �1.Mn;b�1;x/
Push
��! Out.Fn;b/

��
�! Out.Fn;b�1/! 1;

where x 2Mn;b�1 nMn;b . Given  2 �1.Mn;b�1;x/, recall that the element Push. / 2 Out.Mn;b/ is
given by pushing @ about the loop  . In the remainder of this section, we will be dragging multiple
boundary components at a time. So, from now on we will write Push@. / in order to keep track of which
boundary component is being pushed.

Magnus generators We now move on to defining our generators for IOP
n;b . In the b D 0 case, we have

that IOP
n;0 D IOn, where IOn is the subgroup of Out.Fn/ acting trivially on homology. In [21], Magnus

found the following generating set for IOn.

Theorem 5.1 (Magnus) Let Fn D hx1; : : : ;xni. The group IOn is generated by the Out.Fn/-classes of
the automorphisms

Mij W xi 7! xj xix
�1
j ; Mijk W xi 7! xi Œxj ;xk �;

for all distinct i; j ; k 2 f1; : : : ; ng with j < k. Here , the automorphisms are understood to fix x` for `¤ i .

Our generating set will be inspired by Magnus’s, and will indeed reduce to it when b D 0. In order to
choose a concrete collection of elements, we will need to make some choices. First, fix a basepoint
� 2 int.Mn;b/ and a collection of n disjointly embedded oriented 2-spheres S1; : : : ;Sn �Mn;b n �. We
will call such a collection a sphere basis for Mn;b . In addition, choose a corresponding geometric free
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Figure 7: M3;4 split along S1[S2[S3 with the partition P D
˚
f@1

1; @
1
2g; f@

2
1g; f@

3
1g
	
.

basis; that is, a set f˛1; : : : ; ˛ng of oriented simple closed curves intersecting only at � such that

� ˛i intersects Si exactly once with positive orientation for all i ,

� ˛i is disjoint from Sj if i ¤ j .

Notice that the homotopy classes of f˛1; : : : ; ˛ng necessarily forms a free basis for �1.Mn;b;�/. Splitting
Mn;b along the Si reduces it to a 3-sphere Z �Mn;b with bC2n boundary components. The submanifold
Z will play a significant role throughout the remainder of this section because it will allow all of our
choices made in the definitions to be unique. For each Si , let �Ci and ��i be the boundary components of Z
arising from the split along Si , where �Ci (resp. ��i ) is the component lying on the positive (resp. negative)
side of Si . We will also choose an ordering P D fp1; : : : ;pjP jg and an ordering pr D f@

r
1
; : : : ; @r

br
g for

each r 2 f1; : : : ; jP jg. See Figure 7.

The following lemma will be helpful in showing that our generators lie in IOP
n;b .

Lemma 5.2 Let Z be as above , and suppose that h � Mn;b is a properly embedded oriented arc
connecting P -adjacent boundary components of Mn;b . Then the homology class of Œh� 2H P

1
.Mn;b/ has

the form
Œh�D Œ˛�C Œh0�;

where ˛ is a loop based at �, and h0 is the unique arc (up to isotopy) in Z which has the same endpoints
as h.

Proof We may homotope h such that it has the form hD s �˛ � e, where (see Figure 8)

� s � Z is the unique arc (up to isotopy) from the initial point of h to the basepoint � of Mn;b ,
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h ˛
s

e

�

Figure 8: The arc h homotoped to be put in the form s �˛ � e .

� e � Z is the unique arc from � to the endpoint of h,

� ˛ 2 �1.Mn;b;�/.

Then

Œh�D Œs �˛ � e �D Œ˛�C Œs � e �D Œ˛�C Œh0�;

as desired.

Handle drags Let i 2 f1; : : : ; ng, and let hi be the unique (up to isotopy) properly embedded arc
in Z connecting �Ci and ��i which is disjoint from the ˛k . Choose a tubular neighborhood Ni of
�Ci [hi [ �

�
i that does not intersect any ˛k for k ¤ i . Let †i be the boundary component of Ni which

is not isotopic to �Ci or ��i (notice that †i is diffeomorphic to a 2-sphere). Splitting Mn;b along †i

yields Mn�1;bC1 tM1;1. Let †0i � @Mn�1;bC1 be the boundary component coming from this split, and
fix a basepoint yi 2†

0
i . Fix an oriented arc ıi �Z from yi to � which only intersects †0i at yi . Since

Z is a 3-sphere with spherical boundary components, ıi is unique up to isotopy. The arc ıi induces
an isomorphism �1.Mn�1;bC1;�/! �1.Mn�1;bC1;yi/ given by  7! ıi ı

�1
i . Define ˇi

j D ıi j̨ı
�1
i .

Then we define the handle drag HDij WD ��.Push†0
i
.ˇi

j /; id/ 2 Out.Fn;b/ for j ¤ i , where �� is the map
Out.Fn�1;bC1/�Out.F1;1/! Out.Fn;b/ induced by splitting along †i .

To see that HDij 2 IOP
n;b , notice that HDij acts trivially on ˛k for k¤ i , and acts on ˛i via ˛i 7! j̨˛i˛

�1
j .

See Figure 9. This shows that HDij acts trivially on homology classes of simple closed curves. Addition-
ally, this shows that HDij reduces to Mij of the Magnus generators if b D 0.

Next, suppose that h is an arc connecting P -adjacent boundary components. By Lemma 5.2, we may write
Œh�D Œ˛�CŒh0�, where ˛ is a loop based at �, and h0 is the unique arc (up to isotopy) in Z which has the same
endpoints as h. We have seen that HDij fixes the homology class of ˛. Moreover, we may homotope HDij

such that it fixes the arc h0. Thus, HDij fixes the homology class of h, and we conclude that HDij 2 IOP
n;b .

Algebraic & Geometric Topology, Volume 25 (2025)



20 Jacob Landgraf

†0
1

ı1

y1

˛2

˛2˛1˛
�1
2

Figure 9: Setup of the handle drag HD12 and the image of ˛1 under HD12

Commutator drags Let i; j ; k 2 f1; : : : ; ng be distinct with j < k. Split Mn;b along Si to get Mn;bC2,
where Z �Mn;bC2 �Mn;b . Fix basepoint yi 2 �

C
i and zi 2 �

�
i , and choose oriented arcs ıi ; "i � Z

connecting yi and zi to �, respectively. Just as in the construction of handle drags, ıi and "i are unique
up to isotopy. Let ˇi

`
D ıi˛`ı

�1
i and  i

`
D "i˛`"

�1
i for ` 2 fj ;mg. Then, we define the commutator

drags CDC
ijk
;CD�ijk 2 Out.Fn;b/ as ��.Push

�
C

i

.Œˇi
j ; ˇ

i
k
�// and ��.Push��

i
.Œ i

j ; 
i
k
�//, respectively, where

�� W Out.Fn;bC2/! Out.Fn;b/ is the map induced by splitting along Si . See Figure 10.

Again, we see that CD˙ijk acts trivially on ˛` for `¤ i , the commutator drag CDC
ijk

sends ˛i to ˛i Œ j̨ ; ˛k �
�1,

and CD�ijk sends ˛i to Œ j̨ ; ˛k �˛i . This shows that CDC
ijk

reduces to M�1
ijk

of the Magnus generators
when b D 0.

Now, suppose that h is an arc connecting P -adjacent boundary components of Mn;b . By Lemma 5.2, we
may express Œh� in the form Œh�D Œ˛�C Œh0�. We just saw that CD˙ijk fixes Œ˛�. We may also homotope
CD˙ijk such that it fixes h0. Thus, CD˙ijk fixes Œh�, and so CD˙ijk 2 IOP

n;b .

Boundary commutator drags Let pr 2 P and @r
s 2 pr . Fix i; j 2 f1; : : : ; ng such that i < j . Choose a

basepoint yr
s 2 @

r
s . Let  r

s �Z be the unique arc (up to isotopy) from yr
s to �. Let ˇrs

k
D  r

s ˛k.
r
s /
�1 for

k 2 fi; j g. Then, we define the boundary commutator drags BCDrs
ij D Push@r

s
.Œˇrs

i ; ˇ
rs
j �/ 2 Out.Fn;b/.

It is clear from the definition that BCDrs
ij acts trivially on ˛1; : : : ; ˛n and arcs that do not have an endpoint

on @r
s . Suppose that h is an oriented arc with an endpoint on @r

s . Without loss of generality, suppose the
terminal endpoint of h lies on @r

s . Applying Lemma 5.2, we may write Œh�D Œ˛�C Œh0�, where ˛ is a loop
based at � and h0 � Z is the unique arc (up to isotopy) which shares endpoints with h. We just saw that
BCDrs

ij fixes the ˛k , and thus fixes the homology class Œ˛�. Therefore,

BCDj`m.Œh�/D BCDrs
ij .Œ˛�C Œh0�/D Œ˛�CBCDrs

ij .Œh0�/D Œ˛�C Œh0�C Œ˛i � j̨ �˛
�1
i �˛

�1
j �

D Œ˛�C Œh0�D Œh�:

So, it follows that BCDrs
ij 2 IOP

n;b as well.
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z1

"1

˛2

˛3

��1

Figure 10: Setup of the commutator drag CD�123.

P -drags The final type of elements we will define are called P -drags, where P is a partition of the
boundary components of Mn;b . Let pr 2 P and i 2 f1; : : : ; ng. Let †r � Z be the unique 2-sphere (up
to isotopy) which separates the boundary components of pr from the remaining boundary components
and the �˙j . Splitting Mn;b along †r gives Mn;b�cC1 tM0;cC1, where c is the number of boundary
components in p. Let †0r � @Mn;b�cC1 be the boundary component coming from this splitting. Just
as in the construction of the other drags, fix a basepoint yr 2 †

0
r and an oriented arc r from yr

to � to get a basis fˇr
1
; : : : ; ˇr

ng of �1.Mn;b�cC1;yr /. See Figure 11. Then, we define the P -drag
PDr

i WD ��.Push†0r .ˇi/; id/ 2 Out.Fn;b/, where �� W Out.Fn;b�cC1/�Out.F0;cC1/! Out.Fn;b/ is the
map induced by splitting along †r .

To see why PDr
i 2 IOP

n;b , first notice that we can isotope PDr
i to fix all the j̨ . Next, if h is an arc

connecting P -adjacent boundary components, we write Œh� D Œ˛�C Œh0� as in Lemma 5.2. As we just
noted, PDr

i fixes Œ˛�, so it suffices to show that PDr
i fixes the homology class of h0. If the endpoints of h

lie on boundary components in pr , then we may homotope h0 such that it never crosses †r . Then, PDr
i

fixes h0. On the other hand, if the endpoints of h lie on boundary components which are not in pr , then
again we can homotope h0 such that it does not cross †r , and then homotope PDr

i such that it fixes h0.
In either case, PDr

i fixes the homology class of h0, and so we conclude that PDr
i 2 IOP

n;b .

Images under capping Suppose we have an embedding � WMn;b ,!Mn;b�1 given by capping off the
boundary component @. Let �� W IOP

n;b! IOP 0

n;b�1 be the induced map, where P 0 is the partition of the
boundary components of Mn;b�1 induced by P . Using the sphere basis fS1; : : : ;Sng and geometric
free basis f˛1; : : : ; ˛ng for Mn;b , we get a corresponding sphere basis f�.S1/; : : : ; �.Sn/g and geometric
free basis f�.˛1/; : : : ; �.˛n/g for Mn;b�1. Moreover, the ordering on P (and each pr 2 P ) induces an
ordering on P 0. We can repeat the process described throughout this section to define handle drags,

Algebraic & Geometric Topology, Volume 25 (2025)



22 Jacob Landgraf

p

˛2

@1
2

@1
1

†0p

Figure 11: Setup of the P -drag PDp
2

, where p D f@1
1
; @1

2
g 2 P .

commutator drags, boundary commutator drag, and P 0-drags in IOP 0

n;b�1, which we will denote by HDij ,
CD˙

ijk
, BCDrs

ij , and PDr 0

i , respectively. With this setup, we find that

��.HDij /D HDij ;

��.CD˙ijk/D CD˙ijk ;

��.BCDrs
ij /D

�
id if @D @r

s ;

BCDrs
ij otherwise;

��.PDr
i /D

�
id if pr D f@

r
1
g;

PDr
i otherwise:

6 Finite generation

Now that we have defined our collection of candidate generators for IOP
n;b , we now move on to proving that

they do in fact generate. The first step in this proof will be an induction on b to reduce to the case of bD 0.
This induction will rely on the following theorem of Tomaszewski [25] (see [24] for a geometric proof).

Theorem 6.1 (Tomaszewski) Let Fn be the free group on n letters fx1; : : : ;xng. The commutator
subgroup ŒFn;Fn� of Fn is freely generated by the set˚

Œxi ;xj �
x

di
i
���x

dn
n ; 1� i < j � n; d` 2 Z; i � `� n

	
;

where the superscript denotes conjugation.

We will also need the following lemma from group theory.

Lemma 6.2 Consider an exact sequence of groups

1!K!G!Q! 1:
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Let SQ be a generating set for Q. Moreover , assume that there are sets SK �K and SG �G such that K

is contained in the subgroup of G generated by SK and SG . Then G is generated by the set SK [SG[
zSQ,

where zSQ is a set consisting of one lift zq 2G for every element q 2 Sq .

Proof of lemma Let G0 �G be the subgroup generated by SK [SG [
zSQ, and let K0 DG0\K. Then

the following diagram commutes and has exact rows:

1 K0 G0 Q 1

1 K G Q 1

'

The vertical maps are all inclusions, and hence injective. Also, by assumption, the map ' is surjective.
Therefore, by the five lemma, all of the vertical maps are isomorphisms, and so we are done.

We now prove the following result, which implies Theorem C since the collections of handle, commutator,
boundary commutator, and P -drags are all finite. In Section 8, we will compute the number of each type
of drag, and show how many become redundant in the abelianization of IAn.

Theorem 6.3 The group IOP
n;b is generated by handle , commutator , boundary commutator , and P -drags

for b � 0, n> 0.

Proof As mentioned above, we will prove this by induction on b. The base case b D 0 follows directly
from Magnus’s Theorem 1.1.

If b > 0, fix a boundary component @ of Mn;b and let p 2 P be the partition containing @. Let
� WMn;b ,!Mn;b�1 be an embedding obtained by capping off @, and choose a basepoint �2Mn;b�1nMn;b .
By Theorem B, there is an exact sequence

1!L
Push
��! IOP

n;b

��
�! IOP 0

n;b�1! 1;

where L D �1.Mn;b;�/ if p D f@g and L D Œ�1.Mn;b;�/; �1.Mn;b;�/� otherwise. As we saw in the
discussion at the end of Section 5, we can define the drags of IOP

n;b and IOP 0

n;b�1 in a consistent way; that
is, we can define our drags in such a way that �� takes handle drags to handle drags, commutator drags
to commutator drags, and so on. By induction, IOP 0

n;b�1 is generated by the desired drags. Therefore, it
suffices to show that Push.L/ is generated by our drags as well. If p D f@g, then Push.L/ is precisely
the subgroup of IOP

n;b generated by the P -drags, and so we are done in this case.

The case of p ¤ f@g is less straightforward since the commutator subgroup of a free group is not finitely
generated when n� 2. However, this is not necessary for IOP

n;b to be finitely generated by our collection
of drags. We will appeal to Lemma 6.2. Suppose that p ¤ f@g. Then, by Theorem 6.1, the kernel
L D Œ�1.Mn;b;�/; �1.Mn;b;�/� of the Birman exact sequence is generated by elements of the form
Œxi ;xj �x

di
i
���x

dn
n . First, notice that Push.Œxi ;xj �/ is the boundary commutator drag BCDrs

ij , where @r
s D @
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is the boundary component of Mn;b being capped off. Moreover, we have seen that the handle drag
HDk` acts on xk by xk 7! x`xkx�1

`
. It follows that HDik �HDjk.Œxi ;xj �/D Œxi ;xj �

xk . Continuing this
pattern, we see that

Œxi ;xj �
x

di
i
���x

dn
n D .HDin �HDjn/

dn � � � .HDii �HDji/
di .Œxi ;xj �/;

where HDii is taken to be trivial. Let H D .HDin �HDjn/
dn � � � .HDii �HDji/

di . Then,

Push.Œxi ;xk �
x

di
i
���x

dn
n /D Push.H.Œxi ;xj �//DH �Push.Œxi ;xj �/ �H

�1
DH �BCDrs

ij �H
�1:

This shows that Push.L/ is contained in the subgroup of IOP
n;b generated by boundary commutator and

handle drags. Applying Lemma 6.2 (taking SG D fhandle dragsg and SK D fBCDr;s
i;j j 1 � i; j � ng),

we conclude that IOP
n;b is generated by the desired drags.

7 Partial proof of Magnus’s theorem

In this section, we will give a partial proof of Magnus’s Theorem 1.1, which constituted the base case in
the proof of Theorem 6.3. As stated in the introduction, the original proof of Magnus’s theorem involved
two steps: showing that the elements Mij and Mijk normally generate IOn, and then showing that the
subgroup generated by these elements is normal. We will give a proof of the first step here (Theorem D).

In order to establish this fact, we will examine the action of IOfg
n;0
D IOn on a certain simplicial complex,

and apply the following theorem of Armstrong [2]. We say that a group G acts on a simplicial complex
X without rotations if every simplex s is fixed pointwise by every element of its stabilizer, which we will
denote by Gs .

Theorem 7.1 (Armstrong) Suppose the group G acts on a simply connected simplicial complex X

without rotations. If X=G is simply connected , then G is generated by the set[
v2X .0/

Gv:

Here X .0/ is the 0-skeleton of X .

Remark In [2], Armstrong proves the converse of this theorem as well. For a modern discussion of the
proof of Theorem 7.1, along with some generalizations, we refer the reader to [23, Section 3].

The nonseparating sphere complex The complex to which we will apply Theorem 7.1 will be the
nonseparating sphere complex Sns

n . Vertices of Sns
n are isotopy classes of smoothly embedded nonsepa-

rating 2-spheres in Mn, and Sns
n has a k-simplex fS0; : : : ;Skg if the spheres S0; : : : ;Sk can be realized

pairwise disjointly and their union does not separate Mn. This is a subcomplex of the more ubiquitous
sphere complex, which was introduced by Hatcher in [13] as a tool to explore the homological stability
of Out.Fn/ and Aut.Fn/. In [13, Proposition 3.1], Hatcher proves the following connectivity result
about Sns

n .
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Proposition 7.2 (Hatcher) The complex Sns
n is .n�2/-connected.

In particular, Sns
n is simply connected for n� 3. Recall that sphere twists act trivially on isotopy classes

of embedded surfaces, and so we get an action of IOn on Sns
n . Notice that spheres in a simplex of Sns

n

necessarily represent distinct H2-classes. By Poincaré duality, elements of IOn act trivially on H2.Mn/,
and so this implies that IOn acts on Sns

n without rotations. Thus, in order to apply Theorem 7.1, we must
show that Sns

n =IOn is simply connected.

To do this, we will give a description of Sns
n =IOn in terms of linear algebra. Fix an identification

H2.Mn/D Zn. Let FS.Zn/ be the simplicial complex whose vertices are rank 1 summands of Zn, and
there is a `-simplex fA0; : : : ;A`g if A0 ˚ � � � ˚A` is a rank `C 1 summand of Zn. There is a map
' W Sns

n =IOn! FS.Zn/ defined as follows. Let s 2 Sns
n =IOn be a vertex, and choose a sphere S �Mn

which represents s. As noted above, elements of IOn act trivially on H2.Mn/. Therefore, the homology
class ŒS � 2H2.Mn/ does not depend on the choice of representative S . We then define '.s/ to be the
span of ŒS � in H2.Mn/. It is clear that ' extends to simplices.

Lemma 7.3 The map ' W Sns
n =IOn! FS.Zn/ is an isomorphism of simplicial complexes.

Proof Let � D fA0; : : : ;A`g be an `-simplex of FS.Zn/. We must show that, up to the action of IOn,
there exists a unique `-simplex z� of Sns

n which projects to � .

Let vj 2 H2.Mn/ be a primitive element generating Aj for 0 � j � `, and extend this to a basis
fv0; : : : ; vn�1g for H2.Mn;b/D Zn. In Appendix B, we will prove Lemma B.2, which says that there
exists a collection fS0; : : : ;Sn�1g of disjoint embedded 2-spheres such that ŒSj �D vj for 0� j � n� 1.
Then the simplex z� D fS0; : : : ;S`g of Sns

n maps to the � under the composition

Sns
n ! Sns

n =IOn
'
! FS.Zn/:

We will now show that z� is unique up to the action of IOn. Suppose that z� 0 D fS 0
0
; : : : ;S 0

`
g is another

simplex of Sns
n which projects to � . Since z� and z� 0 both project to � , we may order and orient the spheres

such that ŒSj �D ŒS
0
j � for 0� j � `. Again by Lemma B.2, we can extend fS1; : : : ;S`g and fS 0

1
; : : : ;S 0

`
g

to collections of spheres fS1; : : : ;Sng and fS 0
1
; : : : ;S 0ng such that ŒSj � D ŒS

0
j � D vj for 0 � j � n� 1.

Notice that splitting Mn along either of these collections reduces Mn to a sphere with 2n boundary
components. Therefore, there exists some f 2Mod.Mn/ such that f.Sj /D S 0j for all j . Let f 2Out.Fn/

be the image of f . By construction, f .z�/ D z� 0. Furthermore, f fixes a basis for homology, and so
f 2 IOn. This completes the proof.

This description of Sns
n =IOn is advantageous because FS.Zn/ is known to be .n�2/-connected, and hence

simply connected for n� 3. The first proof of this fact is due to Maazen [20] in his unpublished thesis
(see [8, Theorem E] for a published proof). Thus, we have shown that Sns

n =IOn is sufficiently connected.

Corollary 7.4 (Maazen) The complex Sns
n =IOn is simply connected for n� 3.
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As indicated in Theorem 7.1, the stabilizers of spheres play an important role in the proof of Theorem D,
and so we introduce notation for them here. If S is an isotopy class of embedded sphere in Mn, we
denote by Out.Fn;S/ the stabilizer of S in Out.Fn/, and define IOn.S/D Out.Fn;S/\ IOn. We now
move on to the proof of Theorem D.

Proof of Theorem D We will induct on n. The base cases are easy; IO1 and IO2 are both trivial. Suppose
now that IOn�1 is Out.Fn�1/-normally generated by handle and commutator drags. We must now show
that IOn is Out.Fn/-normally generated by handle and commutator drags as well. By Theorem 7.1,
Proposition 7.2, and Corollary 7.4, it suffices to show that IOn.S/ is generated by Out.Fn/-conjugates of
these drags for all S . Let S1; : : : ;Sn�Mn;b be a sphere basis, and choose a corresponding geometric free
basis f˛1; : : : ; ˛ng. Identify the homotopy classes of ˛1; : : : ; ˛n with our fixed basis x1; : : : ;xn for Fn.
Use these bases to construct the handle and commutator drags as in Section 5. Recall that handle drags
correspond to the automorphisms Mij of Magnus’s generators, and commutator drags correspond to Mijk .
We will first show that IOn.S1/ is Out.Fn;S1/-normally generated by handle and commutator drags.

Splitting Mn along S1 yields a copy of Mn�1;2. Let N be the tubular neighborhood of S1 removed
in this splitting, and let @1 and @2 be the boundary components of Mn�1;2. Then this splitting induces
a surjective map Out.Fn�1;2/! Out.Fn;S1/, which restricts to a map �� W IOP

n�1;2! IOn.S1/, where
P D fp1g D ff@1; @2gg. This map is also surjective.

Use the bases f˛2; : : : ; ˛ng and fS2; : : : ;Sng to construct the handle, commutator, boundary commutator,
and P -drags in IOP

n�1;2. By our induction hypothesis combined with the proof of Theorem 6.3, these
drags Out.Fn�1;2/-normally generate IOP

n�1;2. Notice that with these choices of drags, the map �� takes
handle and commutator drags to handle and commutator drags. Moreover, �� takes boundary commutator
drags in IOP

n�1;2 to commutator drags in IOn.S/, and takes the P -drag PDP
i to the handle drag HD1i .

Thus, IOn.S1/ is Out.Fn;S1/-normally generated by handle and commutator drags.

Finally, let S be an arbitrary vertex of Sns
n . Since S is nonseparating, there exists some f 2Out.Fn/ such

that f .S1/D S . It follows that
IOn.S/D f � IOn.S1/ �f

�1:

Since IOn.S1/ is Out.Fn;S1/-normally generated by handle and commutator drags, it follows that IOn.S/

is generated by Out.Fn/-conjugates of handle and commutator drags, which is what we wanted to show.

8 Computing the abelianization

In this section, we compute the abelianization of the group IOP
n;b , proving Theorem E. For the Torelli

subgroup of the mapping class group of a surface, this was done by Johnson [17]. Some key tools used in
this computation are the Johnson homomorphisms

�†g;1
W I.†g;1/!

V3
H and �†g

W I.†g/!
�V3

H
�
=H;
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where H DH1.†g;b/. Johnson showed that these homomorphisms are the abelianization maps modulo
torsion if g � 3. For IAn D IOn;1, Andreadakis [1] and Bachmuth [3] used an analogous homomorphism

� W IAn! Hom
�
H;

V2
H
�

(where now H DH1.Fn/D Zn) to show that

H1.IAn/Š Hom
�
H;

V2
H
�
Š Zn�.n

2/:

We will begin by recalling the definition of � , along with the computation of the ranks of H1.IAn/ and
H1.IOn/, and then proceed to the case of multiple boundary components.

The Johnson homomorphism Recall that Out.Fn;1/ Š Aut.Fn/, and the subgroup IAn is precisely
those automorphisms which act trivially on H1.Fn/D Zn. The goal is to construct a homomorphism
� W IAn! Hom

�
H;

V2
H
�
, where H DH1.Fn/D Zn.

First, we claim that the group ŒFn;Fn�=ŒFn; ŒFn;Fn�� is isomorphic to
V2

H , where ŒFn;Fn� denotes the
commutator subgroup of Fn. To see this, consider the short exact sequence

1! ŒFn;Fn�! Fn! Zn
! 1:

Passing to the five-term exact sequence in homology, we get the sequence

0!H2.Z
n/!H1.ŒFn;Fn�/Zn !H1.Fn/!H1.Z

n/! 0;

where H1.ŒFn;Fn�/Zn D ŒFn;Fn�=ŒFn; ŒFn;Fn�� denotes the group of coinvariants of H1.ŒFn;Fn�/ with
respect to the action of Zn (induced by the conjugation action of Fn on ŒFn;Fn�). The map H1.Fn/!

H1.Z
n/ is clearly an isomorphism, and so it follows that the map H2.Z

n/! ŒFn;Fn�=ŒFn; ŒFn;Fn�� is
an isomorphism as well. This proves our claim because H2.Z

n/Š
V2Zn. Let � W ŒFn;Fn�!

V2Zn be
the projection. Following the definitions above, we see that � is defined by

�.Œx;y�/D Œx�^ Œy�;

where Œx� and Œy� denote the classes of x and y in H , respectively.

Next, let f 2 IAn. Then f .x/x�1 is nullhomologous for all x 2 Fn, and therefore lies in ŒFn;Fn�. We
define the map O�f W Fn!

V2
H via

O�f .x/D �.f .x/x
�1/:

We now check that O�f is a homomorphism. Let x;y 2 Fn. Applying the relation ab D Œa; b�ba, we get

O�f .xy/D �.f .x/f .y/y�1x�1/

D �
�
Œf .x/; f .y/y�1� � .f .y/y�1/ � .f .x/x�1/

�
D Œf .x/�^ Œf .y/y�1�C O�f .y/C O�f .y/

D O�f .y/C O�f .y/;
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since Œf .y/y�1�D 0. This shows that O� is indeed a homomorphism. Furthermore, since
V2

H is abelian,
the map O� W Fn!

V2
H factors through the abelianization, inducing a map �f WH !

V2
H . Therefore,

we have a map
� W IAn! Hom

�
H;

V2
H
�

sending f to �f . We now check that � is a homomorphism. Let f;g 2 IAn. Then

�fg.Œx�/D �.f .g.x//x
�1/D �

�
f .g.x//.g.x//�1g.x/x�1

�
D �f .Œg.x/�/C �g.Œx�/D �f .Œx�/C �g.Œx�/

since g fixes Œx�. Thus, � is the desired homomorphism.

We now move on to computing the image of our generators under � . Since we are dealing with the case
of one boundary component, boundary commutator drags are unnecessary since they are products of
P -drags. Fix a basepoint � 2 @Mn;1, and choose a basis fx1; : : : ;xng of �1.Mn;1;�/. Construct the
handle, commutator, and P -drags with respect to this basis.

Handle drags Recall that the handle drag HDij acts on �1.Mn;1/ by sending xi to xj xix
�1
j , and fixing

the remaining basis elements. Therefore,

�.HDij /.Œx`�/D �.HDij .x`/x
�1
` /D

�
0 if `¤ i;

�.xj xix
�1
j x�1

i / if `D i:

Thus, �.HDij / is the homomorphism Œxi � 7! Œxj �^ Œxi � (and all other generators are sent to 0).

Commutator drags Notice that the product of commutator drags CDC
ijk
�CD�ijk is equal to a commutator

of handle drags. Therefore, only the CD�ijk are needed in our generating set, and we can disregard the
CDC

ijk
from now on. Recall that CD�ijk acts on �1.Mn;1/ by sending xi to Œxj ;xk �xi . Therefore,

�.CD�ijk/.Œx`�/D �.CD�ijk.x`/x
�1
` /D

�
0 if `¤ i;

�.Œxj ;xk �/ if `D i:

It follows that �.CD�ijk/ is the map Œxi � 7! Œxj �^ Œxk �.

P -drags Next, we note that the product

(5) PDj �HD1j � � �HDnj

is trivial in IAn. For a justification of this fact, see the proof of the claim at the end of Theorem A.2. It
follows that the P -drags are also redundant in our generating set for IAn, and can be removed.

Abelianization of IAn To compute the rank of the abelianization of IAn, we use the following lemma.

Lemma 8.1 Let G be a group and S a finite generating set for G. Suppose that ' W G ! ZjS j is a
surjective homomorphism. Then H1.G/Š ZjS j.
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Proof Let F.S/ denote the free group on the set S . Since ZjS j is abelian, the homomorphism ' factors
through the abelianization to give a map ' WH1.G/! Zn, which is also surjective. Additionally, by the
universal property of free groups, we have a map  W F.S/!G. Passing to the abelianizations induces a
map  WH1.F.S//!H1.G/. Since S is a generating set for G, this map is also surjective. It follows
that ' ı is a surjective map between free abelian groups of equal rank, and is hence an isomorphism.
Thus, ' is an isomorphism as well.

From the discussion in the preceding paragraphs, we have a generating set for IAn of size

#.handle drags/C #.commutator drags/D n.n� 1/C n �
�n�1

2

�
D n �

�n

2

�
(since P -drags can be written as a product of handle drags), and the image of this generating set spans
Hom

�
H;

V2
H
�
, which also has dimension n �

�
n
2

�
. Therefore, by Lemma 8.1, the group H1.IAn/ has

rank n �
�
n
2

�
.

To compute the rank of H1.IOn/, consider the quotient map IAn! IOn, whose kernel is the subgroup of
inner automorphisms (or P -drags under our geometric interpretation of IAn). We compute the image of a
P -drag under � :

�.PDi/.Œx`�/D �.PDi.x`/x
�1
` /D �.x�1

i x`xix
�1
` /D Œx`�^ Œxi �:

Since �.PDi/ is nontrivial, � does not descend to a map IOn! Hom
�
H;

V2
H
�
. However, the images

f�.PDi/g span a subgroup of Hom
�
H;

V2
H
�

isomorphic to H (where the isomorphism is given by
Œh� 7! .Œx`� 7! Œx`�^ Œh�/). So, � induces a map IOn! Hom

�
H;

V2
H
�
=H . Just as the element given

in (5) is trivial in IAn, the product HD1j � � �HDnj is trivial in IOn for all j 2 f1; : : : ; ng. Thus, we may
throw out n handle drags from our generating set to obtain a generating set for IOn of size n �

�
n
2

�
� n.

Since Hom
�
H;

V2
H
�

has rank n �
�
n
2

�
� n, Lemma 8.1 implies that H1.IOn/ has rank n �

�
n
2

�
� n as well.

This verifies Theorem 1.2 from the introduction.

Multiple boundary components We now move on to the case of multiple boundary components. Just
as we did when constructing our drags in Section 5, fix an ordering P D fp1; : : : ;pjP jg and an ordering
pr D f@

r
1
; : : : ; @r

br
g for each pr 2 P . We cap off the boundary components of each p 2 P as follows:

� If jpj D 1, we attach a copy of M1;1 to the single boundary component of p.

� If jpj D k > 1, we attach a copy of M0;k to these k boundary components.

� If p D p1, we follow the same rules as above, except we introduce an additional boundary
component in the piece glued to p.

Capping off the boundary components in this way gives an embedding

� WMn;b ,!Mm;1;
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where the boundary component of Mm;1 lies in the piece attached to p1. This embedding induces a map
�� W IOP

n;b! IAm. We obtain a similar map IAm! IOm by attaching a disk to the boundary component
of Mm;1. In Appendix A, we will prove Theorem A.2, which says that the composition

IOP
n;b

��
! IAm! IOm

is injective. It follows that �� is injective as well. Therefore, to compute the rank of the abelianization
of IOP

n;b , it suffices to compute the rank of the abelianization of its image in IAm. Let H DH1.Mm;1/,
and let �� W IOP

n;b! Hom
�
H;

V2
H
�

denote the composition

IOP
n;b

��
! IAm

�
! Hom

�
H;

V2
H
�
:

Our goal now becomes computing the images of handle, commutator, boundary commutator, and P -drags
under ��.

Choosing a basis To carry out this computation, it will be helpful to choose bases for �1.Mn;b/ and
�1.Mm;1/ carefully. For simplicity, we will assume that jp1j > 1. The case of jp1j D 1 is more
straightforward. Fix a basepoint z1

1
2 @1

1
, a sphere basis fS1; : : : ;Sng, and a geometric free basis

fx1; : : : ;xng for �1.Mn;b; z
1
1
/. We define our drags in IOP

n;b with respect to these bases.

Next, choose a basepoint z 2 @Mm;1, and an oriented arc ˛1 �Mm;1 n int.Mn;b/ from z to z1
1

(this is
possible since the boundary component of Mm;1 lies on the piece attached to p1). For i 2 f1; : : : ; ng, let
yi D˛1xi˛

�1
1

. Then fy1; : : : ;yng is a partial basis for �1.Mm;1; z/. We wish to extend this to a full basis.
Throughout the definition of this extended basis, we encourage the reader to follow along in Figure 12.

For each boundary component @r
s of Mn;b , fix a point zr

s 2 @
r
s (leaving z1

1
as before). For each zr

s ¤ z1
1

,
let ˇr

s be the unique oriented arc (up to isotopy) in Mn;b n
S

Si from z1
1

to zr
s . For s 2 f2; : : : ; b1g, define

y1
s D ˛1ˇ

1
s ˛
�1
s . In Figure 12, the loops y1

1
and y1

2
are of this form.

Next, let r > 1. If jpr j D 1, let  r
1

be an oriented loop based at zr
1

which generates the fundamental group
of the copy of M1;1 attached to pr . Then we define yr

1
D ˛1ˇ

r
1
 1

1
.ˇr

1
/�1.˛1/

�1. In Figure 12, the curve
y3

1
is an example of such a loop.

On the other hand, suppose jpr j> 1. For s 2 f2; : : : ; br g, let  r
s be the unique (up to isotopy) oriented

curve in Mm;1 n int.Mn;b/ from zr
1

to zr
s . Then, define

yr
s D ˛1ˇ

r
1

r
s .ˇ

r
s /
�1.˛1/

�1:

The curve y2
2

is an example of this type of loop in Figure 12.

Let Y D fy1 : : : ;yng. For r 2 f1; : : : ; jP jg, let Yr D fy
r
1
g if jpr j D 1, and Yr D fy

r
2
; : : : ;yr

br
g otherwise.

Then the collection
Y [Y1[ � � � [YjP j

forms a free basis for �1.Mm;1; z/.
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˛1

y1 y2

y3

y1
1

y1
2

y2
2

y3
1

M3;6

Figure 12: M3;6 with the partition P D
˚
f@1

1
; @1

2
; @1

3
g; f@2

1
; @2

2
g; f@3

1
g
	

embedded into M7;1. The
loops fy1;y2;y3g are freely homotopic to a basis for �1.M3;6/, and this basis has been extended
to a basis fy1;y2;y3;y

1
1 ;y

1
2 ;y

2
2 ;y

3
1g of �1.M7;1; z/.

Computations and relations We now move on to the computation of the images of our collection of
drags under ��. These computations are straightforward, and are summarized in Table 1. We see from
these computations that there is a relation between the images of P -drags and Handle Drags. Namely,

(6)
jP jX

rD1

��.PDr
j /D�

nX
iD1

��.HDij /

for all j 2 f1; : : : ; ng. As we saw in the case of one boundary component, this is because

(7) PD1
j � � � PDjP jj �HD1j �HDnj D 1

in IOP
n;b . Additionally, we see a relation between the image of boundary commutator drags:

(8)
brX

sD1

��.BCDrs
ij /D 0

for all r 2 f1; : : : ; jP jg and i; j 2 f1; : : : ; ng with i < j . This relation holds because

(9) BCDr1
ij � � �BCDrbr

ij D ŒPDr
i ;PDr

j �

in IOP
n;b .

Algebraic & Geometric Topology, Volume 25 (2025)



32 Jacob Landgraf

drag action on �1 image under ��

HDij yi 7! yj yiy
�1
j Œyi � 7! Œyj �^ Œyi �

CD�ijk yi 7! Œyj ;yk �yi Œyi � 7! Œyj �^ Œyk �

BCDrs
jk (r; s > 1) yr

s 7! yr
s Œyj ;yk �

�1 Œyr
s � 7! Œyk �^ Œyj �

BCDr1
jk (r > 1) yr

s 7! Œyj ;yk �y
r
s (s > 1) Œyr

s � 7! Œyj �^ Œyk � (s > 1)

BCD1s
jk (s > 1) y1

s 7! y1
s Œyj ;yk � Œy1

s � 7! Œyj �^ Œyk �

BCD11
jk

y 7! Œyj ;yk �
�1yŒyj ;yk � (y 62 Y1) Œy� 7! 0 (y 62 Y1)

y1
s 7! Œyj ;yk �

�1yr
s (s > 1) Œy1

s � 7! Œyk �^ Œyj � (s > 1)

PDr
j (r > 1) yr

s 7! yj yr
s y�1

j (s > 1) Œyr
s � 7! Œyj �^ Œy

r
s � (s > 1)

PD1
j y 7! y�1

j yyj (y 62 Y1) Œy� 7! Œy�^ Œyj � (y 62 Y1)

Table 1: Computing the image of drags under ��.

Contributions to abelianization From the computations and relations above, we see that the handle
drags and commutator drags together still contribute n �

�
n
2

�
dimensions to the abelianization of IOP

n;b .
There are b �

�
n
2

�
boundary commutator drags, but the relations given in (8) kill off jP j �

�
n
2

�
of these in

the abelianization (though we can also remove this many elements from our generating set by using (9)).
Finally, the number of P -drags is jP j � n, but n of them are killed in the abelianization by (6) (and again,
we may remove n elements from our generating set by (7)). Adding these all together, we find that the
image of �� W IOP

n;b! Hom
�
H;

V2
H
�

has rank

RD n �
�n

2

�
C

�
b �
�n

2

�
� jP j �

�n

2

��
C .jP j � n� n/:

Moreover, we can reduce our generating set (using (7) and (9)) to a set of size R as well. Thus, by
Lemma 8.1, the group H1.IOP

n;b/ has rank R, which proves Theorem E.

Appendix A Injectivity of the inclusion map
We end this paper with a proof of the following facts, which are surely known to experts, but for which
we do not know a reference. They are significant because they allow us to realize the groups Out.Fn;b/

(and hence IOP
n;b) as subgroups of Out.Fm/. We will begin with a low-genus case.

Lemma A.1 The induced map �� WOut.F1;1/!Out.Fm/ is injective for any embedding � WM1;1 ,!Mm.

Proof By Laudenbach [18], the group Out.F1;1/ Š Aut.F1/ Š Z=2, where the nontrivial element
f 2 Out.F1;1/ acts on �1.M1;1;x/Š Z by inverting the generator. Therefore, ��.f / 2 Out.Fm/ is the
class of the automorphism �

x1 7! x�1
1
;

xj 7! xj if j > 1:

This automorphism is not an inner automorphism for any m� 1, so i� is injective.
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Theorem A.2 Fix n; b � 1 such that .n; b/ ¤ .1; 1/, and let � WMn;b ,!Mm be an embedding. The
induced map �� W Out.Fn;b/! Out.Fm/ is injective if and only if no component of Mm n int.Mn;b/ is
diffeomorphic to a 3-disk.

Proof Suppose first that some component of Mm n int.Mn;b/ is diffeomorphic to a disk, and let @ be the
boundary component of Mn;b capped off by this disk. By the Birman exact sequence (Theorem 4.2), drag-
ging this boundary component along any nontrivial loop will give a nontrivial element in the kernel of ��.

Suppose now that no component of Mm n int.Mn;b/ is a disk. We will first prove the theorem in the case
b D 1, and then move on to the general result.

Case 1 Suppose we have an embedding � WMn;1 ,!Mm. Since no component of Mm n int.Mn;b/ is a
disk, m> n. If nD 1, then we are done by Lemma A.1, so we may assume that n> 1. Fix a basepoint
x on the boundary of Mn;1, and choose a free basis fx1; : : : ;xng of �1.Mn;1;x/. The embedding �
induces an injection �1.Mn;b;x/ ,! �1.Mm;x/ which identifies �1.Mn;1;x/ with a free summand of
�1.Mm;x/. This allows us to extend fx1; : : : ;xng to a free basis fx1; : : : ;xmg of �1.Mm;x/. Given
f 2 Out.Fn;1/Š Aut.Fn/, the image ��.f / 2 Out.Fm/ is the class of the automorphism ' 2 Aut.Fm/

generated by

' W xi 7!

�
f .xi/ if 1� i � n;

xi if n< i �m:

Suppose that ' is an inner automorphism. If m> nC 1, then ' fixes at least two generators of Fm, and
thus must be trivial. It follows that f is trivial as well. On the other hand, if mD nC 1, then ' fixes xm.
Since ' is inner, ' must conjugate by a power of xm. However, if ' conjugates by a nontrivial power
of xm, then f would not act as an automorphism on hx1; : : : ;xni � Fm, which is a contradiction. Thus,
' is trivial, and so f is trivial as well.

In summary, we have shown that ' is an inner automorphism if and only if f is trivial, which implies
that �� is injective.

Case 2 Next, suppose that � WMn;b ,!Mm is an embedding, where b> 1. Let @1; : : : ; @b be the boundary
components of Mn;b . Let † �Mn;b be a 2-sphere which separates Mn;b into Mn;1 and M0;bC1 (see
Figure 13). Then we have a composition of inclusions

Mn;1 ,!Mn;b ,!Mm:

Let �� W Out.Fn;1/! Out.Fn;b/ be the map induced by inclusion. By the preceding case, �� ı �� is
injective. Let f 2 Out.Fn;b/, and suppose that ��.f /D id. By repeated applications of the Birman exact
sequence (Theorem 4.2), f has the form f D p1p2 � � �pb � ��.g/, where g 2 Out.Fn;1/Š Aut.Fn/ and
pj 2Out.Fn;1/ is a boundary drag of @j along a loop ǰ . Fix a basepoint x 2†, and let j 2�1.Mn;b;x/

be representative of the free homotopy class of ǰ . Choose a free basis fx1; : : : ;xng for �1.Mn;1;x/.
Extend this to a free basis fx1; : : : ;xmg for �1.Mm;x/ such that for each i > n, the loop xi intersects
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x

@1

@2

@3

x3

x4

x5

†

M2;3

Figure 13: M2;3 embedded inside M5. For clarity, x1 and x2 are not shown, but they lie entirely
on the opposite side of † from x3, x4, and x5.

the set
Sb

jD1 @j exactly twice: once when exiting Mn;b , and once when reentering (see Figure 13). For
i > n, let @`.i/ be the boundary component through which ˛i leaves Mn;b , and let @r.i/ be the boundary
component through which it returns. Then ��.f / is the class of the automorphism ' 2 Aut.Fm/ given by

' W xi 7!

�
g.xi/ for 1� i � n;

`.i/xi
�1
r.i/

for n< i �m:

By assumption, this automorphism is an inner automorphism. Suppose that ' conjugates by a reduced
word w in the xi . Since g is an automorphism of hx1; : : : ;xni �Fm, it follows that w 2 hx1; : : :xni. We
will show that this implies that f is trivial by induction on the reduced word length of w.

For the base case, suppose that the word length of w is 0. Then w and ' are both trivial. Since �� ı �� is
injective, g is trivial as well. Suppose now that some j is not nullhomotopic. Since no component of
Mm n int.Mn;b/ is a disk, there exists some xi which passes through @j , where i > n. In other words,
either `.i/D j or r.i/D j . This is a contradiction because then '.xi/D `.i/xi

�1
r.i/
¤ xi . Thus, all j

are nullhomotopic, and so f is trivial. This completes the base case.

Next, suppose that w has positive word length, and let x˙1
i be the last letter in the reduced form of w.

Then, w D w0x˙1
i , where the length of w0 is less than that of w. To avoid notational complexity, we will

assume that x˙1
i D x1, but the same argument works for any other xi . Consider the element

h WD HD21 HD31 � � �HDn1 �q1 � � � qb 2 Out.Fn;b/;
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where HDi1 is the handle drag of the i th handle about the first handle (see Section 5) and qj is obtained
by dragging @j about a loop in the free homotopy class of x1. By construction, ��.h/ 2 Out.Fm/ is the
class of the automorphism which conjugates by x1. Therefore, ��.h�1f / is the class of the automorphism
which conjugates by w0. By our induction hypothesis, this implies that h�1f is trivial.

Claim The element h is trivial.

Proof Let †0 �Mn;b be a 2-sphere which separates Mn;b into M1;1 and Mn�1;bC1, where the M1;1 is
the handle containing x1. Let �� W Out.F1;1/! Out.Fn;b/ be the map induced by this inclusion. Notice
that hD ��.q/, where q 2 Out.F1;1/ drags the boundary component of M1;1 about the nontrivial loop
in the positive direction. We saw in the proof of Lemma A.1 that Out.F1;1/Š Z=2, and the nontrivial
element acts on �1.M1;1/ by inversion. However, the element q acts trivially on �1.M1;1/, and is thus
trivial itself. It follows that h is trivial as well.

Combining the claim with the fact that h�1f is trivial, we find that f is trivial. This completes the
induction, and so we conclude that �� is injective.

Appendix B Realizing homology classes as spheres

In this section, we prove a result used in the proof of Lemma 7.3 which involves realizing bases of H2.Mn/

as collections of 2-spheres. Recall that H2.Mn/ D Zn. This identification induces a homomorphism
� WMod.Mn/! GLn.Z/ which takes a mapping class to its action on homology.

Lemma B.1 The map � WMod.Mn/! GLn.Z/ is surjective.

Proof First, notice that H 1.Mn/D Zn. This identification also induces a homomorphism

�0 WMod.Mn/! GLn.Z/

which is well-known to be surjective. Indeed, this map factors as

Mod.Mn/
q
! Out.Fn/

'
! GLn.Z/;

where q is the quotient map, and ' sends an automorphism class to its action on H 1. Therefore, if we
choose our identifications H 1.Mn/D Zn and H2.Mn/D Zn to agree with Poincaré duality, then � and
�0 are the same map. Thus, � is surjective.

Lemma B.2 Let fv1; : : : ; vng be a basis for H2.Mn/ D Zn, and let A D fS1; : : : ;S`g be a collection
of disjoint embedded oriented 2-spheres in Mn which satisfy ŒSj � D vj for 1 � j � `. Then A can be
extended to a collection AD fS1; : : : ;Sng of disjoint embedded oriented 2-spheres such that ŒSj �D vj

for 1� j � n.

Proof We will induct on n. The base case nD 0 is trivial. So assume n > 0, and let fv1; : : : ; vng and
AD fS1; : : : ;S`g be as stated. There are two cases.

Algebraic & Geometric Topology, Volume 25 (2025)



36 Jacob Landgraf

Sk

1

@1

2

Sk Sk

Figure 14: Surgering boundary spheres onto Sk .

First, suppose that ` D 0. If we identity H2.Mn/ with Zn, then by Lemma B.1 the resulting map
� WMod.Mn/! GLn.Z/ is surjective. Choose any collection †1; : : : ; †n �Mn of disjoint embedded
2-spheres such that Mn n .†1 [ � � � [†n/ is connected. Then fŒ†1�; : : : ; Œ†n�g is a basis for H2.Mn/.
Since GLn.Z/ acts transitively on ordered bases of Zn and the map � is surjective (Lemma B.1), there
exists some f 2Mod.Mn/ such that �.f/ � Œ†j �D vj for all 1� j � n. In other words, Œf.†j /�D vj , and
so ff.†1/; : : : ; f.†n/g is the desired collection of spheres.

Next, suppose that ` > 0. Splitting Mn along S1 gives an embedding � WMn�1;2 ,!Mn. Notice that
the induced map �H W H2.Mn�1;2/! H2.Mn/ is an isomorphism. Let wj D �

�1
H
.vj / for 1 � j � n,

and let @ and @0 be the boundary components of Mn�1;2. Capping the two boundary components of
Mn�1;2 with disks D and D0, we get another embedding �0 WMn�1;2 ,!Mn�1. This embedding induces
a surjective map �0

H
WH2.Mn�1;2/!H2.Mn�1/ whose kernel is generated by Œ@�. Let w0j D �

0
H
.wj / for

2� j � n, and let S 0
k
D �0.Sk/ for 2� k � `. By our induction hypothesis, we can extend the collection

fS 0
2
; : : : ;S 0

`
g to a collection fS 0

2
; : : : ;S 0

n�1
g of disjoint embedded oriented 2-spheres in Mn�1 such that

ŒS 0j �D w
0
j for 2� j � n. Moreover, since the disks D and D0 used to cap the boundary components of

Mn�1;2 are contractible, we may isotope S 0
`C1

; : : : ;S 0
n�1

such that they are disjoint from D and D0. Let
Sj D .�

0/�1.S 0j / for `C 1 � j � n. If ŒSk �D wk for all k, then fS1; : : : ;Sng is the desired collection,
and we are done. However, since the kernel of �0

H
is generated by Œ@�, we have

ŒSk �D wk C ck Œ@�;

where ck 2 Z. Note that ck D 0 for 2� k � `. To fix this, we may surger parallel copies of @ or @0 onto
Sk such that it has the correct homology class. The process is as follows (see Figure 14):

(i) If ck > 0, take ck parallel copies of @0, which we denote by @1; : : : ; @ck
. If instead ck < 0, take

@1; : : : ; @ck
to be parallel copies of @. Order the @j such that @1 is furthest from its respective

boundary component, then @2, and so on.

(ii) Let 1 be a properly embedded arc connecting the positive side of Sk to @1 which does not intersect
any of the other Sj or @j .
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(iii) Surger Sk and @1 together via a tube running along 1.

(iv) Repeat steps (ii) and (iii) for the remaining @j .

Once we have carried out this process for all the Sk , we will have obtained a collection fS2; : : : ;Sng of
spheres whose homology classes are exactly w2; : : : ; wn. Thus, fS1; : : : ;Sng is the desired collection of
2-spheres.
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Hyperbolic groups with logarithmic separation profile

NIR LAZAROVICH

CORENTIN LE COZ

We prove that hyperbolic groups with logarithmic separation profiles split over cyclic groups. This shows
that such groups can be inductively built from Fuchsian groups and free groups by amalgamations and
HNN extensions over finite or virtually cyclic groups. However, we show that not all groups admitting
such a hierarchy have logarithmic separation profile by providing an example of a surface amalgam over a
cyclic group with superlogarithmic separation profile.

20E06, 20F65, 20F67, 20F69, 51F30; 14H30

1 Introduction

The separation profile was first introduced by Benjamini, Schramm and Timár [1] in 2012. It measures
large scale connectivity of infinite graphs, in the spirit of the celebrated theorem of Lipton and Trajan for
planar graphs [12].

Definition 1.1 (Benjamini, Schramm and Timár [1]) Given a finite graph � D .V �;E�/, we shall
say that a set of vertices C � V � cuts (or separates) the graph � if the connected components of the
subgraph induced by V � �C contain at most 1

2
jV �j vertices.

We define the cut of the graph � , denoted cut� , as the minimal size of a separating set.

We define the separation profile of a bounded degree infinite graph G as the following nondecreasing
function from N� to N�:

sepG.n/D sup
��G
jV �j�n

cut�:

We shall consider such function endowed with the partial order defined by g� h if and only if there exists
D > 0 such that g.n/�Dh.Dn/CD for any n�D. We denote by � and � the associated equivalence
relation and strict partial order, respectively.

As noticed in [1], the factor 1
2

does not play an important role in the previous definition. Replacing it by
any ˇ 2 .0; 1/ would give an equivalent profile.

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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The separation profile is a coarse-geometric monotone invariant (see Proposition 3.1). To our knowledge,
the only such invariants that were previously defined are volume growth and asymptotic dimension; see
Gromov [8]. The separation profile is a much finer invariant and has been generalized by Hume, Mackay
and Tessera [10] into a spectrum of profiles called Poincaré profiles. For a survey on this topic, we refer
to the first part of the thesis of the second author [11].

It is proved in [1] (see also Hume and Mackay [9]) that if a hyperbolic group has sepG.n/� log.n/ then
sepG.n/ is bounded and G is virtually free.

In this paper we investigate the smallest possible nonvirtually free case, namely sepG.n/� log.n/.

Theorem A Let G be a hyperbolic group with sepG.n/� log.n/. Then G is Fuchsian or splits over finite
or virtually cyclic subgroups.

This theorem is proved in Section 2, but let us give here a sketch of proof. The first step consists in
showing that the spheres of G have bounded separating sets. This is done by projecting the separating set
of some suitable annulus. Then, we make these sphere separating sets converge in @G. This implies the
existence of local cut points in @G, and the conclusion follows from Bowditch [3].

Corollary 1.2 Let G be a hyperbolic group without 2-torsion. If sepG.n/ � log.n/ then G can be
inductively built from Fuchsian groups and free groups by amalgamations and HNN extensions over finite
or virtually cyclic groups.

Proof We can apply Theorem A to G. Either G is Fuchsian and we are done, or G splits over virtually
cyclic groups. The edge groups are virtually cyclic, hence quasiconvex in G. This implies that the vertex
groups of this splitting are quasiconvex and hence hyperbolic. By the monotonicity of the separation
profile, the separation profile of the vertex groups H is sepH .n/� sepG.n/� log.n/. Therefore, we can
successively apply Theorem A to split G over virtually cyclic subgroups. Using the strong accessibility
by Louder and Touikan [13] this process terminates.

A group with conformal dimension at least one always has a separation profile bounded below by log,
from [9]. Using a recent result of Carrasco and Mackay [5] giving a characterization of hyperbolic groups
with conformal dimension one, we get the following corollary.

Corollary 1.3 Let G be a one-ended hyperbolic group with no 2-torsion. If the (Ahlfors regular)
conformal dimension of G is strictly greater than 1, then its separation profile is strictly greater than log.

In this generality, to our knowledge this improves the previously known lower bounds. We do not know
if this is sharp.

Lower bounds on separation profiles can be obtained from Poincaré inequalities in the boundary at infinity
of hyperbolic groups, see Hume, Mackay and Tessera [10, Theorem 13]. Finding general Poincaré
inequalities is an important challenge and this corollary can be seen as a step in this direction.
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The following theorem shows that the converse of Theorem A (and the subsequent corollaries) is false.

Theorem B Let S be the surface amalgam obtained by gluing two closed orientable hyperbolic surfaces
along a closed filling curve in each. Then , sep�1S .n/� log.n/.

From Carrasco and Mackay [5], such a group has conformal dimension equal to 1.

From [10], a hyperbolic group with conformal dimension one always have a separation profile bounded
above by any n�, with � > 0. To our knowledge, this is this is the first example of such a group whose
separation profile is not logarithmic. This implies in particular that the conformal dimension is not attained
[10, Theorem 11].

We believe that when the curves are not filling, the separation profile is actually log.

Question 1.4 Let S be a simple surface amalgam obtained by gluing two closed hyperbolic orientable
surfaces along simple curves. Do we have sep�1S � log?

From Hume, Mackay and Tessera [10] study of relations between conformal dimension and separation
profiles, we as well can formulate the following question:

Question 1.5 If a hyperbolic group has a separation profile bounded above by n� for every positive �,
does it imply that it has conformal dimension one?
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by the German–Israeli Foundation for Scientific Research and Development. Le Coz is supported by
the Israel Science Foundation (grant 2919/19), the FWO and the F.R.S.–FNRS under the Excellence of
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The authors would like to thank John Mackay and Ilya Gekhtman for interesting discussions. The authors
would also like to thank the referee for spotting a mistake in the first version of the paper, and for valuable
corrections.

2 Proof of Theorem A

Let G be a one-ended hyperbolic group. By abuse of notation let us denote by G also the Cayley graph
of G with respect to some fixed finite generating set, and assume it is ı-hyperbolic. We denote by o the
identity element of G. For every R> 0, BR denotes the ball, and SR the sphere, of radius R centred at o.
We denote by AŒR1;R2� the annulus BR2

�BR1�1.

Definition 2.1 For each R> 0, let �
R
WG �BR! SR be a projection defined by �

R
.y/D Œo;y�\SR,

where Œo;y� is some choice of geodesic joining o and y.

For any ˛ > 0, we call an ˛-step path any family of vertices v1; : : : ; vk such that d.vi ; viC1/� ˛ for any
i D 1; : : : ; k � 1.
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Figure 1: Shadows and sectors.

Fact 2.2 � For all R>0, if ;  0 are two geodesics from o to points x;y2G�BR then d. .R/;  0.R//�

d.x;y/C 2ı. In particular, d.�
R
.x/; �

R
.y//� d.x;y/C 2ı for all x;y 2G �BR.

� If ;  0 are two geodesic rays from o that represent the same point at infinity then d. .R/;  0.R//� 2ı.

� Since G is one-ended, there is a constant ı1 such that the ı1-neighbourhood of any sphere in G is
connected.

Proof The first two assertions are a straightforward consequence of the ı-slimness of geodesic triangles
in G. Let us prove the third assertion: Let z1; z2 2 SR. From [2, Lemma 3.1], there is some c such that
there exist infinite geodesic rays �1; �2 from o in G such that d.zi ; �i.R// � c for i D 1; 2. Since G is
one-ended, @G is path connected [4; 14], and so there is a continuous path from �1 to �2. By extending �

R

to @G, we can “project” any continuous path in @G to a .2ıC1/-step path in SR . In particular the vertices
�1.R/ and �2.R/ in SR can be joined by a .2ıC1/-step path in SR , and hence the vertices z1; z2 in SR can
be joined by a .cC2ıC1/-step path. If we set ı1 D cC 2ıC 1, then it follows that the ı1-neighbourhood
of any sphere of G is connected.

From now on, we will assume that ı1 stands for the constant of Fact 2.2.

Definition 2.3 The shadow †x of a point x 2G is that set of all points y 2G such that a geodesic from
o to y passes through x. For every subset Q�G denote its shadow by †Q D

S
x2Q†x . For a point x

and � � 0 denote by †x;� D†B.x;�/ its �-shadow where B.x; �/ is the ball of radius � around x in G.
Similarly, for Q�G and � � 0, denote by †Q;� D†.Q/� its � -shadow. Finally, for a subset A�X we
will denote by †A

x the intersection †x \A, and similarly †A
Q
; †A

x;� ; †
A
Q;�

(see Figure 1).

We will need the following strengthening of Fact 2.2.
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Fact 2.4 For every � there exists � 0 such that for every x 2 G and r � d.o;x/, the set †x;� \ Sr is
contained in a single connected component of †x;� 0 \ .Sr /ı1

.

Proof For any fixed o0 2 G, geodesic ray � W Œ0;1/ ! G starting from o0, R � ı and k > 2ı,
define V .o0; �;R; k/ to be the set in @G of all (equivalence classes of) geodesic rays � from o0 such
that d.�.R/; �.R// � k. The sets fV .o0; �;R; k/gR�0 form a neighbourhood basis for the ideal point
corresponding to � in @G. By [4; 14], the Gromov boundary @G is locally path connected. Therefore,
for every geodesic ray � from o0 and R there exists LDL.o0; �;R; k/ such that V .o0; �;RCL; kC 4ı/

is in a path component of V .o0; �;R; k/. Since @G is compact, there exists L0 DL0.o0;R; k/ such that
V .o0; �;RCL0; k C 4ı/ is in a component of V .o0; �;R; k/ for every geodesic ray � starting from o0.
Note that by G-equivariance, L0 does not depend on o0. Our next goal is to show that L0 does not depend
on R as well:

For a fixed k0 � 4ıC 1 and R0� �; ı, let �DL0.R0; k0� 2ı/, then by ı-slimness,

V .o; �;RC�; k0/� V
�
�.R�R0/; �jŒR�R0;1/;R0C�; k0C 2ı

�
for all R�R0:

By the above,
V
�
�.R�R0/; �jŒR�R0;1/;R0C�; k0C 2ı

�
is in a path component of V .�.R�R0/; �;R0; k0�2ı/ which by ı-slimness is contained in V .o; �;R; k0/.
Therefore, we have shown that there exists �, such that V .o; �;RC �; k0/ is in a path component of
V .o; �;R; k0/ for all geodesic rays � 2 @G and R� ı.

Observing the trivial inclusion V .o; �;R; k0/�V .o; �;RC�; k0C2�/, we get that V .o; �;RC�; k0/ is in
a path component of V .o; �;RC�; k0C2�/ for all sufficiently large R and geodesic ray � . Or equivalently,
V .o; �;R; k0/ is in a path component of V .o; �;R; k0C2�/ for all sufficiently large R and geodesic ray � .

We proceed as in the proof of the previous fact. Set R D d.o;x/, and let r � R. By [2, Lemma 3.1],
there exists c such that for every two points z1; z2 2†x;� \Sr there exist two geodesics rays �1; �2 from
o such that d.zi ; �i.r//� c for i D 1; 2. By the inequality in Fact 2.2, d.�

R
.zi/; �i.R//� cC 2ı. Since

zi 2†x;� we get that d.�i.R/;x/ � cC 2ıC � and hence d.�1.R/; �2.R// � 2.cC 2ıC �/. If we set
k0D 2.cC2ıC�/ we see that �1; �2 are in V .o; �1;R; k0/. Thus, by the above, they can be connected by
a continuous path in V .o; �1;R; k0C 2�/. Projecting this path using �r gives rise to a .2ıC1/-step path
in Sr between �1.r/ and �2.r/. and hence a ı1-step path between z1; z2, where ı1 D cC 2ıC 1 (as in
Fact 2.2). Replacing each ı1 step by a path of length ı1 in .Sr /ı1

we get a path p between z1; z2. Using
the inequality in Fact 2.2, we see that if we further project the path p to SR, we see that �

R
ıp stays in

the ball of radius � 0 D k0C 2�C ı1C 2ı around x. Thus, the path p is contained in †x;� 0 \ .Sr /ı1
.

Fact 2.5 There exist constants ˛ > 1 and �0 � 0 such that for all � � �0 there exists K such that:

� For all 0�R, we have
K�1˛R

� jSRj �K˛R:
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� For all 0�R1 �R2, we have

K�1.˛R2 �˛R1/� jAŒR1;R2�j �K.˛R2 �˛R1/:

� For all R;R0 � 0 and D � SR, we have

K�1˛R0

jDj � j†D;� \SRCR0 j �K˛R0

jDj:

� For all R� 0;R2 �R1 � 0 and D � SR, we have

K�1.˛R2 �˛R1/jDj � j†D;� \AŒRCR1;RCR2�j �K.˛R2 �˛R1/jDj:

Proof The first two items are immediate consequences of estimates of cardinality of balls given by
Coornaert [6, théorème 7.2].

The third item is an immediate consequence of properties of the Patterson–Sullivan measure on @G; see
Coornaert [6, Proposition 6.1]. The properties that are needed are detailed in Gouëzel, Mathéus and
Maucourant [7, inequality 2.9 from the proof of Lemma 2.13, and the fact that the covering number of
shadows is finite (item (1) on page 1216)].

The fourth item is obtained by summing up the inequalities given by the previous item for R0 2 ŒR1;R2�.

Definition 2.6 We say that G has bounded sphere separation if for every � > 0 there exists a number M

such that for all R there exists a set PR �SR such that jPRj �M , and each component of .SR/ı1
�.PR/ı1

has size at most �j.SR/ı1
j, where ı1 is the smallest integer satisfying that the ı1-neighbourhood of any

sphere in G is connected.

Remark 2.7 According to Fact 2.2, the constant ı1 in the definition above exists.

We are now able to state our key lemma.

Lemma 2.8 If G is hyperbolic and sepG.n/� log.n/, then G has bounded sphere separation.

Proof Let � > 0. Let �0; ˛ be as in Fact 2.5, set � D �0C 2ı1 and let K be the constant of Fact 2.5. Let
� 0

0
and � 0 be the constants of Fact 2.4 corresponding to �0 and � , respectively. Without loss of generality

by enlarging either � 0
0

or � 0, we may assume that � 0 D � 0
0
C 2ı.

Let ADA.R/ be the annulus AŒ2R;3R�. For ˇ 2 .0; 1/, to be determined later, let C �A.R/ be such that
each connected component of A.R/�C contains at most ˇjA.R/j vertices. By Fact 2.5, jA.R/j � ˛3R ,
and from the assumption that sepG � log, we can suppose jC j �ˇ log.jA.R/j/�ˇ R. Concretely, let

(2-1) jC j � cR

for some c (which depends on the choice of ˇ).
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Let PR � SR be the set of all x such that †x;� 0 \ .Sr /ı1
\ C ¤ ∅ for all r 2 Œ2RC ı1; 3R� ı1�. If

x 2 PR, there are at least .R� 2ı1/=2ı1 values of r 2 Œ2RC ı1; 3R� ı1� for which .Sr /ı1
are disjoint,

and †A
x;� 0 \C is assumed to meet all of them. Therefore we have j†A

x;� 0 \C j � .R�2ı1/=2ı1. As long
as R� ı1 this implies

(2-2) j†A
x;� 0 \C j �R=3ı1:

Since the � 0-shadows corresponding to vertices in SR that are 2� 0C 4ı apart are disjoint, it follows from
(2-1) and (2-2) that

(2-3) jPRj � 3cı1jB2� 0C4ıj DWM:

So, there is a uniform bound M (that depends on ˇ) on the size of PR. It remains to show that upon
choosing ˇ small enough we can ensure that .PR/ı1

separates .SR/ı1
into components of size at most

�j.SR/ı1
j.

Claim 2.9 There exists K0 > 0 such that for every R�ˇ 0, if x 2 SR �PR then †A
x;� �C has a subset

Tx of size jTxj �
1

2K 0 j†
A
x;� j which is contained in a connected component of A.R/�C .

Proof Since x 62PR , there exists r 2 Œ2RC ı1; 3R� ı1� such that †x;� 0 \ .Sr /ı1
\C D∅. By Fact 2.4,

†x;� \ Sr is contained in a path component of †x;� 0 \ .Sr /ı1
, hence also in a path component E of

A.R/�C . Let Tx be the intersection E \†A
x;� .

It remains to show the lower bound on jTxj. To do so, we will use �0-shadows of points y 2†x;�0
\S2R .

Note that †y;�0
is contained in †x;� (since � D �0C 2ı).

Let Qx be the collection of all points y 2†x;�0
\S2R such that †A

y;� 0
0

\C ¤∅. For each point z 2 C

there are at most jB� 0
0
C2ıj many y 2†x;�0

\S2R such that z 2†A
y;� 0

0

. Together with the assumption that
jC j � cR it follows that jQxj � cRjB� 0

0
C2ıj �ˇ R. Since j†x;�0

\S2Rj � ˛
R, the complementary set

Q0x D .†x;�0
\S2R/�Qx satisfies

(2-4) jQ0xj �
1
2
j†x;� \S2Rj;

for any large enough R�ˇ 0.

For points y 2 Q0x , by Fact 2.4, †A
y;�0

is contained in a connected component of †A
y;� 0

0

, and so in a
component of †A

x;� 0 �C (since � 0 D � 0
0
C 2ı) and intersects †x;� \Sr . Thus, by the definition of Tx we

have †A
y;�0
� Tx for all y 2Q0x . Or equivalently, †A

Q0
x ;�0
D
S

y2Q0
x
†A

y;�0
� Tx . Thus, jTxj � j†

A
Q0

x ;�0
j.

Similar to Fact 2.5, we have a constant K0 such that any subset Q�†x;�0
\S2R satisfies

(2-5)
jQj

j†x;� \S2Rj
�K0

j†A
Q;�0
j

j†A
x;� j

:

By (2-5) and (2-4) we get jTxj �
1

2K 0 j†
A
x;� j.
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Let D0 � .SR/ı1
� .PR/ı1

be a connected subset. We need to show jD0j � �j.SR/ı1
j. Let D be the set

of elements of SR that are at distance at most ı1 from D0. Define TD D
S

x2D Tx , with Tx given by
Claim 2.9.

Claim 2.10 TD is in a connected component of A.R/�C .

Proof Since Dı1
is connected, it suffices to show that for any x;x0 2D at distance at most 2ı1 from

each other then Tx and Tx0 intersect.

Let then x;x0 2D be such that d.x;x0/� 2ı1. Then, †x;�0
\S2R �†x;� \†x0;� \S2R and by Fact 2.5

contains � ˛R points. As in the proof of Claim 2.9 we see that if R is large enough, there exists a point
y 2†x;� \†x0;� \S2R which is in the complement of both Qx and Qx0 . As before, this implies that
†A

y;�0
is in both Tx and Tx0 .

By assumption on C , this implies that we have

(2-6) jTD j � ˇjA.R/j:

Claim 2.11 We have

(2-7)
X
x2D

jTxj � jB2�C4ıjjTD j:

Proof Let us show that there exists a map � WD!D such that

� d.x; �.x//� 2� and in particular j��1.�.x//j � jB2�C4ıj,

� jTxj � jT�.x/j, and

� if y ¤ y0 2 Im� then Ty \Ty0 D∅.

Assuming we have constructed such a map, the claim follows by the following inequality:

(2-8)
X
x2D

jTxj � jB2�C4ıj

X
y2Im�

jTy j � jB2�C4ıjjTD j:

To construct the map �, let x 2D be a point maximizing jTxj. Let Z �D be the collection of all points
x0 2 D satisfying Tx0 \ Tx ¤ ∅. Define � on Z by �.x0/ D x. Note that if d.x;x0/ > 2� C 4ı then
†x;� \†x0;� D∅ and hence Tx \T 0x D∅. It follows that if x0 2Z then d.x;x0/� 2�C4ı, and by the
choice of x, jTx0 j � jTxj.

Remove all the points in Z from D, and iterate the construction above until � is defined on all D.
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We deduce that for large enough R�ˇ 0 we have

jD0j � jBı1
jjDj

� jBı1
jK˛�2R

j†A
D;� j (from Fact 2.5)

� jBı1
jK˛�2R

X
x2D

j†A
x;� j

� 2K0jBı1
jK˛�2R

X
x2D

jTxj (from Claim 2.9)

� 2jBı1
jjB2�C4ıjKK0˛�2R

jTD j (from (2-7))

� 2jBı1
jjB2�C4ıjKK0˛�2RˇjA.R/j (from (2-6))

� 2jBı1
jjB2�C4ıjK

2K0ˇjSRj (from Fact 2.5)

� 2jBı1
jjB2�C4ıjK

2K0ˇj.SR/ı1
j:

Let w D 2jBı1
jjBı1

jjB2�C4ıjK
2K0, this is a constant that depends only of G. Thus, we get

(2-9) jD0j � wˇj.SR/ı1
j:

For every � > 0, set ˇ D �
w

. By (2-3) there exists M such that for every R, the set PR � SR that
we constructed satisfies jPRj � M , and by (2-9) each component D0 of .SR/ı1

� .PR/ı1
has size

jD0j � �j.SR/ı1
j for large enough R�ˇ 0. We have proved the bounded sphere separation property for

large enough R. This completes the proof of Lemma 2.8.

Definition 2.12 Let X be a connected topological space. We say that a subset F topologically separates
X if X �F is not connected.

Lemma 2.13 If G has bounded sphere separation , then @G has a finite topologically separating set.

Proof Following Definition 2.6, let ı1 is the smallest integer satisfying that the ı1-neighbourhood of any
sphere in G is connected. We start with the following claim.

Claim 2.14 There exist K > 0 and �1 � ı1 such that for any R<R0, if .PR0/ı1
separates .SR0/ı1

into
connected components of size at most 1

K
j.SR0/ı1

j, then .�
R
.PR0//�1

separates .SR/ı1
into connected

components of size at most 1
2
j.SR/ı1

j.

Proof For the constant �0 of Fact 2.5 let � D �0C 2ı1, and let � 0 be the corresponding constant from
Fact 2.4. Let �1D �

0C2ı1. If x 2 SR� .�R
.PR0//�1

then PR0 \†x;� 0 D∅. It follows from Fact 2.4 that
†x;� \SR0 is in a component of †x;� 0 \ .SR0/ı1

and so in a component of .SR0/ı1
� .PR0/ı1

. If we have
two points d.x;y/ � 2ı1 then the sets †x;� and †y;� intersect. This implies that for every connected
subset D0 of .SR/ı1

� .�
R
.PR0//�1

, the set †D;�0
\SR0 is connected in .SR0/ı1

� .PR0/ı1
, where D is

the set of points in SR at distance at most ı1 from D0. The conclusion of claim follows from the fact that
sizes of D and D0 differ by some constant factor, as in Fact 2.5.
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Claim 2.15 For each large enough R, we can choose PR � SR such that

(1) .PR/�1
separates .SR/ı1

into connected components of size at most 1
2
j.SR/ı1

j,

(2) PR1
D �

R1
.PR2

/, for every R1 �R2.

Proof We can assume without any loss of generality that the projection maps are chosen so that we have
�

R1
.x/D �

R1
ı�

R2
.x/ for every R1 <R2 and x 2G �BR2

.

From the assumption of bounded sphere separation, for every large enough R0 > 0, PR0 �SR0 of bounded
size M satisfying that .PR0/ı1

separates .SR0/ı1
into connected components of size at most 1

K
j.SR0/ı1

j,
where K is given by Claim 2.14.

From Claim 2.14, for every R < R0, the set PR WD �
R
.PR0/ satisfies property (1). Now, for every

R1 <R2 <R0, we have PR1
D �

R1
.PR2

/ since �
R1
D �

R1
ı�

R2
.

Since the spheres of G are finite, we can proceed to an extraction to obtain a sequence R0n such that
for every R> 0 the sequence .�

R
.PR0

n
//n�0 is constant (it is only defined when R0n �R). Without any

loss of generality we can assume that we have PR D �R
.PR0

n
/. We finally get the desired property that

PR1
D �

R1
.PR2

/ for every R1 <R2.

Now the sequence PR has a limit P � @G as R!1. To complete the proof of Lemma 2.13 it remains
to show that P topologically separates @G.

From above, there exist �; �2@G such that �
R
.�/ and �

R
.�/ are in different components of .SR/ı1

�.PR/ı1

for all large enough R. Assume for contradiction that � and � are in the same component of @G�P . The
boundary @G is path connected, let  be a path in @G �P connecting � and �. There exists � > 0 such
that the path  avoids the �-neighbourhood of P in @G. Let R be big enough so that ��1

R
.x2ı1

/\ @G is
of diameter � �=2 for each x 2 SR.

Thus, �
R
ı  is a 2ı1-step path in SR which avoids .PR/2ı1

. Completing it with a collections of geodesic
arcs of length at most ı1, we get a path in .SR/ı1

which avoids .PR/ı1
, and connects �

R
.�/ and �

R
.�/.

A contradiction. This ends the proof of Lemma 2.13.

Proof of Theorem A By Lemmas 2.8 and 2.13 we see that @G is topologically separated by a finite set
of points. It therefore has a local cut point. It follows from Bowditch [3] that G splits over a virtually
cyclic group or G is a Fuchsian group.

3 Proof of Theorem B

In this section, we construct a hyperbolic group with superlogarithmic separation profile whose boundary
has conformal dimension one. Let us start by giving the following proposition.

Proposition 3.1 [1, Lemma 1.3] Let G and H be bounded degree infinite graphs such that there exists
a coarse embedding G!H . Then , sepG � sepH .
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o

oz1 R=3 2R=3

oz2

Figure 2: The set X of Proposition 3.2.

Recall that quasi-isometric embeddings are examples of coarse embeddings. This proposition implies
that the separation profile is invariant under coarse equivalences and quasi-isometries. In particular we
can consider separation profiles more generally for metric spaces that are coarsely equivalent to graphs of
bounded degree. This is what we will do in this section for the hyperbolic plane.

Let † and †0 be two closed hyperbolic orientable surfaces, and  � †,  0 � †0 be two closed filling
geodesic curves. Recall that a curve on a surface is said to be filling when its complementary is
homeomorphic to a union of disks. Let S D .†t†0/= '  0 be the space obtained by gluing † and †0

along  and  0.

The universal cover zS of S consists of copies of hyperbolic planes, that we will call sheets, glued together
along the geodesic lines which correspond to the lifts of  and  0.

Let F be one of the sheets covering †. For a lift z � F of  let Fz be the adjacent sheet covering †0

which is glued to F along z .

Let R > 0. Let BR (resp. BR=3) be the balls of radius R (resp. R=3) in F centred around o. Let us
consider

X D BR [

[
z\BR=3¤∅

BFz
.oz ;R=3/� zS

where the union ranges over all lifts z of  that intersect BR=3 and BFz
.oz ;R=3/ is the ball of radius

R=3 in the sheet Fz centred at the point oz on z which is closest to o. See Figure 2.

Proposition 3.2 The set X satisfies cut X �R.

Let us prove how Theorem B can be deduced from this proposition.
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Proof of Theorem B The fundamental group �1S is quasi-isometric to the universal cover zS . Thus,
we can compute the separation profile of zS instead of that of �1S , and the theorem follows from
Proposition 3.2.

Proof of Proposition 3.2

Claim 3.3 Most of the volume of X lies in the ball BR � F :

vol.X /� vol.BR/:

Proof The volume of a ball B.o; r/ of radius r in the hyperbolic plane is

vol.B.o; r//D 2�.cosh.r/� 1/� er :

The number of lifts of a geodesic that intersect a ball B.o; r/ is � er . Thus,

vol.B.o;R//� vol.X /� vol.B.o;R//C eR=3 vol.B.o;R=3//� vol.B.o;R//:

Let C be a (1-thick) cutset of X , that is every connected component of X � C has volume at most
˛ vol X for some ˛ < 1. Up to taking a small enough ˛, C has to separate the ball BR . We want to show
that C must have volume strictly bigger than log vol.X /� log vol.B.o;R//�R. Let us assume for a
contradiction that we have (up to constants), vol C �R.

Let ƒD @C . The total length of ƒ is O.R/: indeed, C has volume R and can be chosen to be a union
of balls of radius 1 in a given net and so the length of their boundary component has to be O.R/.

The components of ƒ are either proper arcs or simple closed curves in BR. Let yƒ be the collection of
geodesics with the same endpoints as the arcs of ƒ. Let C 0 be the union of the components of X � yƒ

that include C \ @BR. See Figure 3.

Lemma 3.4 (i) vol.C4C 0/�R.

(ii) Every component E of BR �C of size � R corresponds to a unique component E0 of BR �C 0

such that vol.E4E0/�R, and vice versa.

Proof (i) The difference between the sets C and C 0 has boundary in ƒ[ yƒ. Then, since the total
length of ƒ and yƒ is O.R/, it follows from the isoperimetric inequality on the hyperbolic plane, that
vol.C4C 0/� length.ƒ[ yƒ/�R.

(ii) By the isoperimetric inequality, a component E of BR �C of size �R must intersect @BR. There
is a component E0 of BR � C 0 with E \ @BR D E0 \ @BR. The difference E4E0 comprises of sets
which are bounded by ƒ and yƒ. The volume of this difference can be bounded by � R again by the
isoperimetric inequality.
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yƒ

ƒ D @C

C

endpoints of ƒ

yƒ �ƒ0

2R
3

C 0

Figure 3: The separating set C of the hyperbolic ball.

Letƒ0 be a set of geodesics in yƒ that meet BR=3DBF .o;R=3/. Any geodesic inƒ0 must have a segment
joining @BR=3 and @BR, and thus must have length at least 2R=3. Since length.yƒ/�R there are O.1/

many geodesics in ƒ0. Let k be the number of geodesics in ƒ0.

Let m.x;y; z/ denote the centre of the geodesic triangle spanned by a triple points x;y; z 2H2. Let

M D fm.o;x;y/ j x;y 2ƒ0\ @BRg:

There are at most .2k/2 points in M .

Divide BR=3 into 3..2k/2C 1/ radial annuli of same width, called layers. By the pigeonhole principle,
there exist three consecutive layers A�;A;AC that do not contain a point of M .

Claim 3.5 For R large enough , we have:

(i) The intersection ƒ0\A consists of geodesics joining the inner and outer boundaries of A.

(ii) If ˛ is a component ofƒ0\A, and ˛ is a subarc of �2ƒ0, then ˛ is at Hausdorff distance at most ı
from the arc of intersection of one of the two geodesics connecting o and @� with A.

(iii) If ˛1, ˛2 are components of ƒ0\A, then either the Hausdorff distance dH .˛1; ˛2/ � 3ı or they
are at distance

p
R apart.1

Proof (i) Otherwise, a component ˛ of ƒ0\A is a geodesic arc connecting the outer boundary of A

to itself. Let p be the point on ˛ closest to o, let � be the geodesic of ƒ0 to which ˛ belongs, and let
x;y be the endpoints of � in SF .o;R/. Then, m.o;x;y/ 2M is at distance ı from p, contradicting the
assumption that A�[A[AC does not include points of M .

1The function
p

R can be replaced by any function o.R/.
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(ii) Consider the geodesic triangle consisting of the geodesic � and the two geodesics connecting its
endpoints to o. By assumption, the centre of this geodesic is not in A�[A[AC, hence by slimness of
triangles in H2 the segment ˛ is ı-close to one of the sides.

(iii) Let ˛1; ˛2 be components ofƒ0\A. Let �1 (resp. �2) be the geodesic inƒ containing ˛1 (resp. ˛2).
By (ii), ˛1 (resp. ˛2) is ı-close to a radial geodesic �0

1
(resp. �0

2
) connecting o and one of the endpoints

of �1 (resp. �2). Let ˛0
1
D �0

1
\A (resp. ˛0

2
D �0

2
\A). It suffices to prove that dH .˛

0
1
; ˛0

2
/� ı, or they

are at distance
p

RC 2ı apart.

Let p1; q1 2 ˛
0
1

(resp. p2; q2 2 ˛
0
2
) be the intersection of ˛0

1
(resp. ˛0

2
) with the inner and outer boundaries

of A, respectively. If d.q1; q2/ � ı then dH .˛
0
1
; ˛0

2
/ � ı by the convexity of the metric. Similarly, if

d.p1;p2/ �
p

RC 2ı then ˛0
1
; ˛0

2
are at least

p
RC 2ı apart. Otherwise, d.p1;p2/ �

p
RC 2ı and

d.q1; q2/ > ı, then the centre of the triangle with sides �0
1
; �0

2
is at distance at most

p
RC 3ı from ˛0

1
.

For R large enough, such a point must be in A�[A[AC in contradiction to the assumption.

From the claim above it follows that ƒ0 \A consists of at most 2k geodesic segments connecting the
inner and outer boundaries of A and the relation defined by ˛1 � ˛2 if dH .˛1; ˛2/� 3ı is an equivalence
relation. Let W be a set of representatives of the classes of this relation. We call the elements in W walls.
We call the connected components of A�W regions. By the claim, the walls bounding each region are at
distance

p
R apart.

Claim 3.6 Let D be a region in A, then there exists a (unique) component E of X � C such that
vol.D�E/�R.

Proof Let ˛1; ˛2 be the walls bounding D. Let ˛0
1
; ˛0

2
be the inner most arcs in D which belong to the

equivalence classes of ˛1; ˛2, respectively. Let E0 be the connected component of X � yƒ which includes
the section of A between ˛0

1
; ˛0

2
. This section is contained in D, and D �E0 consists of two regions

which are contained in the 3ı-neighbourhood of ˛1 [ ˛2. Therefore, vol.D �E0/ � R. The set C 0 is
bounded by geodesics in yƒ. It cannot contain the component E0, as otherwise vol.C 0/� vol.E0/�R.
Thus E0 is a component of X �C 0. By Lemma 3.4, E0 corresponds to a unique component E of X �C ,
and vol.D�E/� vol.D�E0/C vol.E0�E/�R.

Claim 3.7 No component E of X �C contains more than 2
3

of the layer A.

Proof Let E be a component of X �C . Assume for contradiction that vol.E\A/ > 2
3

vol.A/. For every
x 2E\A consider the ray x�DR�1x\BR Dftx 2BR j t � 1g. Let E1Dfx 2E j x�\C D∅g. Since
vol.C / consists of O.R/ balls of radius 1, the set E �E1 consists of at most O.R/ 1-neighbourhoods
of arcs of length O.R/. Whence, vol.E � E1/ � R2. Consider the set E�

1
D
S

x2E1
x�. Thus

vol.E1/ >
1
2

vol.A/, and therefore also vol.E�
1
/ > 1

2
vol.BR/. The set E�

1
�E, thus vol.E/ > 1

2
vol.BR/.

We get a contradiction to the assumption that the volume of components of X�C are at most 1
2

vol.BR/.
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By the previous two claims there are two regions DC;D� of A�W which correspond to two different
components EC;E� of X �C . We may assume that D1 and D2 are adjacent, and are separated by a
wall ˛. Let ˛m be the middle third subarc of ˛.

Claim 3.8 There is k �R, and disjoint lifts z1; : : : ; zk of  such that zi \˛m ¤∅.

Proof Consider the union � D
S
z of all the lifts z of  to the universal cover F of †. Since  is

filling in †, the connected components of F �� are one of finitely many types of convex hyperbolic
nonideal polygons. Let d be the maximal diameter of these polygons. There exists an angle � such that
every geodesic line intersecting one of the polygons, forms an angle � with at least one of its sides. Let
� > 0 be such that if two geodesic lines l1; l2 in the hyperbolic plane intersect a third geodesic line l at
points of distance � � and at angles � � , then l1; l2 do not meet.

Let ` D length.˛m/ � R. Every segment of length 2d on ˛m intersects a lift z of  in an angle � � .
Thus, the geodesic segment ˛m intersects at least k D `=.�C 2d/ lifts z1; : : : ; zk of  in an angle � � .
Note that k � `�R. By the choice of �, z1; : : : ; zk are disjoint.

Let z1; : : : ; zk be the disjoint lifts as in Claim 3.8. The geodesic segments zi \D˙ have length at
least �

p
R by Claim 3.5 and by the choice of ˛m. The circles around the point zi \ ˛m in Fzi

form
‚.
p

R/ disjoint paths connecting points in DC to points in D�. Considering these paths for all zi , we
get ‚.R3=2/ disjoint paths connecting DC to D�. By Claim 3.6, vol.D˙�E˙/�R, and so we have at
least �R3=2�O.R/ disjoint paths connecting EC to E�. Since EC and E� are different components
of X �C , each of these paths meets C . We get vol.C /�R3=2 which contradicts vol.C /�R. This ends
the proof of Proposition 3.2.
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Topology and geometry of flagness and beltness of simple handlebodies

ZHI LÜ

LISU WU

We consider a class of right-angled Coxeter orbifolds, called simple handlebodies, which are a generaliza-
tion of right-angled Coxeter simple polytopes. We generalize the notions of flag and belt in the setting
of simple polytopes into the setting of simple handlebodies, and prove the following two topological
properties characterized in terms of combinatorics: a simple handlebody is orbifold-aspherical if and only
if it is flag; and the orbifold fundamental group of a simple handlebody contains a rank-two free abelian
subgroup if and only if this simple handlebody contains an �-belt. Furthermore, together with some
results of geometry, it is shown that the existence of some curvatures on manifold double over a simple
handlebody can be also characterized in terms of combinatorics.

57R18

1 Introduction

A polytope is called simple if its each codimension-k face is the intersection of exact k facets (i.e.
codimension-one faces). Simple polytopes give rise to many interesting and beautiful connections among
topology, geometry, combinatorics and so on.

The story originated from Pogorelov and Andreev. Pogorelov’s theorem implies that a 3-dimensional
simple polytope (except for tetrahedra) can be embedded into hyperbolic space H3 with right dihedral
angles if and only if the polytope satisfies certain combinatorial conditions (i.e. containing no prismatic
3-circuit and prismatic 4-circuit); see Pogorelov [52]. Furthermore, Andreev’s theorem gives a complete
characterization of 3-dimensional compact hyperbolic (simple) polytopes having nonobtuse dihedral
angles in term of pure combinatorial conditions; see Andreev [2] and Roeder, Hubbard and Dunbar [53].

The theorems of Pogorelov and Andreev play an important role in Thurston’s hyperbolization theorem
for Haken 3-manifolds [58]. An orbifold version of the hyperbolization theorem was given by Otal [49].
The hyperbolization theorem implies that the main obstructions to hyperbolic structure on closed Haken
3-manifolds (or 3-orbifolds) are asphericity (i.e. �k trivial for each k � 2) and atoroidalness (i.e. �1
contains no subgroup Z˚Z) which is related to the combinatorics of simple polytopes.

The combinatorial characterizations of asphericity and atoroidalness for cubical complexes were given by
Gromov [32] and have played fundamental roles in geometric group theory.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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(a) A piecewise Euclidean cubical complex is locally CAT(0) (hence, aspherical) if and only if the link
of its each vertex is flag (i.e. contains no �).

(b) A piecewise Euclidean cubical complex is locally CAT(�1) (hence, atoroidal) if and only if the
link of its each vertex is flag and contains no �.

It follows that a right-angled Coxeter group is always CAT(0), and it is atoroidal if and only if it satisfies
no � condition. These results have been strengthened by Moussong to conclude that every Coxeter group
is CAT(0), and it is CAT(�1) if and only if it does not contain a copy of Z˚Z; see Moussong [46] or
Davis [18, Corollary 12.6.3].

It’s worth noting that each n-dimensional simple polytope admits a natural right-angled Coxeter orbifold
structure, that is locally modeled on the quotient Rn=.Z2/k of the .Z2/k-reflective action on Rn. A
combinatorial characterization of orbifold-asphericity for right-angled Coxeter simple polytopes is derived
from a theorem of Davis, Januszkiewicz and Scott [24]. That is, a right-angled Coxeter simple polytope
is orbifold-aspherical if and only if the dual of its boundary is a flag complex. On the other hand, the
orbifold fundamental group of a right-angled Coxeter simple polytope is a right-angled Coxeter group.
Thus, a combinatorial characterization of atoroidalness for right-angled Coxeter simple polytopes is
implied in Gromov’s result. Right-angled Coxeter simple polytopes (and more general Coxeter simple
polytopes) have played an important role in geometric group theory and in constructing high-dimensional
hyperbolic manifolds (e.g. see Davis [18], Everitt, Ratcliffe and Tschantz [26], Garrison and Scott [30],
and Gromov [32]).

Beyond that, simple polytopes have played an important role in theory of toric varieties, toric geometry,
toric topology, etc (e.g. see Barreto, López de Medrano and Verjovsky [5], Buchstaber, Erokhovets,
Masuda, Panov and Pak [8; 9], Danilov [15; 16], Davis and Januszkiewicz [22; 23], Fulton [29], Kuroki,
Masuda and Yu [38], Lü and Masuda [42], Notbohm [48], and Wu and Yu [61]). There are also various
relative works with other topics and viewpoints of simple polytopes (e.g. see Bahri, Bendersky, Cohen
and Gitler [3], Bosio and Meersseman [6], Cao and Lü [10], Chen, Lü and Yu [11], Choi and Park [14],
Gitler and López de Medrano [31], and Lü and Tan [43]).

In this paper, we consider the combinatorial characterizations of orbifold-asphericity and atoroidalness
for a simple handlebody, which can be obtained from a right-angled Coxeter simple n-polytope by gluing
some specific disjoint facets. Specifically, each simple handlebody Q with dimension n� 3 satisfies the
following conditions.

(a) As an orbifold, the underlying space jQj is an n-dimensional handlebody of genus g� 0 that is a
tubular neighborhood of the wedge sum of g circles in Rn (of course, an n-dimensional handlebody
of genus 0 is exactly an n-ball).

(b) The nerve of Q, denoted by N.Q/, is a triangulation of the boundary @jQj, where N.Q/ is the
abstract simplicial complex with a vertex for each facet (i.e. codimension-one face) of Q and a
.k�1/-simplex for each nonempty k-fold intersection.
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cutting belts

Figure 1: A simple 3-handlebody of genus 2.

(c) Each facet in Q is a simple polytope.

(d) Q can be cut into a simple polytope PQ along some codimension-one B-belts (called cutting belts;
for the notion of B-belts, see Definition 3.1).

Conditions (c) and (d) are restrictive conditions of the proof, and will be automatically omitted for nD 3;
see Lemma 7.14. An example of simple 3-handlebody is shown in Figure 1.

We shall carry out our work from the following aspects:

(I) We generalize the notions of belt and flag in the setting of simple polytopes into the setting of simple
handlebodies (see Definitions 3.1 and 3.3). Indeed, there is quite a difference because the underlying
space of a simple handlebody is not contractible. As we shall see, the flagness of a simple handlebody Q
cannot be defined by the flagness of its nerve N.Q/ in general. Actually, its definition is given in such a
different way that Q contains no �k-belt for any k � 2. Here a �k-belt of Q is an essential embedding
suborbifold given by .Z2/kC1-torus action on Sk .

(II) To understand the implicit structure of a simple handlebody, we introduce the notions of “right-angled
Coxeter cells” and “right-angled Coxeter cellular complexes”. Then we see that for a right-angled Coxeter
cellular complex X , its orbifold fundamental group �orb

1 .X/ is isomorphic to the orbifold fundamental
group of its 2-skeleton (see Proposition 2.9). For a simple handlebody Q, we can give an explicit right-
angled Coxeter cellular decomposition of Q, so that we can obtain an explicit presentation of �orb

1 .Q/,
which is just an iterative HNN-extension over some right-angled Coxeter group. Indeed, generally �orb

1 .Q/

will not be the right-angled Coxeter group of Q, given by only reflections on facets of Q, and it actually
contains torsion-free generators.

(III) We will use a “basic construction” of Davis [18, Chapter 5], which plays an important role on
our work. This basic construction tells us that each simple n-handlebody Q can be finitely covered by
a closed n-manifold MQ with an action of some 2-torus group G, which is called a manifold double
over Q. By the theory of orbifold covering,

�orb
k .Q/Š �k.MQ/; k � 2:
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Thus, Q is orbifold-aspherical if and only if MQ is aspherical. It follows from [24, Theorem 2.2.5] that a
simple polytope P is orbifold-aspherical if and only if P is flag; so in general, a simple n-handlebody Q
may not be orbifold-aspherical although jQj is aspherical. In addition, using the basic construction, we
can also use �orb

1 .Q/ and PQ to construct the orbifold universal cover zQ of Q.

(IV) Based upon (I), (II) and (III), together with the Cartan–Hadamard theorem and the work of
Gromov [32, Section 4.2] on nonpositive curvature, we obtain a combinatorial characterization of orbifold-
asphericity of simple handlebodies (see Theorem A). Making use of Tits’ theorem of Coxeter groups [18,
Theorem 3.4.2] and the normal form theorem of HNN-extensions [44, Theorem 2.1, page 182], we also
obtain a combinatorial characterization of atoroidalness of simple handlebodies (see Theorem B).

Now let us state our main results as follows.

Theorem A Let Q be a simple handlebody of dimension n� 3. Then Q is orbifold-aspherical if and
only if it is flag , that is , Q contains no �k-belt for any k � 2.

Remark 1.1 Theorem A is a “combinatorial sphere theorem” of simple handlebodies, which can be
viewed as a generalization of Davis, Januszkiewicz and Scott [24, Theorem 2.2.5] for simple polytopes.
Theorem A tells us that if Q is not flag, then there must exist a �k-belt for some k � 2 in Q, so that
the pullback of the embedding �k ,!Q via the projection MQ!Q gives an (equivariant) embedding
Sk ,!MQ which represents a nontrivial element in �k.MQ/, as shown in the following diagram:

Sk
� � //

��

MQ

��

�k
� � // Q

Our other main result characterizes the rank two free abelian subgroup Z˚Z in �orb
1 .Q/ in terms of

combinatorics of Q.

Theorem B Let Q be a simple handlebody of dimension n� 3. Then there is a rank two free abelian
subgroup Z˚Z in �orb

1 .Q/ if and only if Q contains a �-belt.

Remark 1.2 Theorem B is a “combinatorial flat torus theorem” of simple handlebodies. Similar to the
pullback way in Remark 1.1, the existence of a �-belt in Q actually means that there exists an essential
embedding of 2-dimensional torus T 2 inMQ, which is an obstacle of the existence of hyperbolic structure
or negative curvature on MQ. For the flat torus theorem of nonpositively curved spaces, one can refer to
Bridson and Haefliger [7, Charter 7, Part II] or Lawson and Yau [39].

Next, as further consequences of our two main results, we discuss the topology and geometry of covering
spaces over a simple handlebody. Together with some important results in geometry from Davis [18,
Proposition I.6.8], Kapovich [37], Kuroki, Masuda and Yu [38, Theorem 1.2], Otal [49, Chapter 7], and
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Wu and Yu [61, Proposition 4.9], for a simple handlebody Q, we obtain some relations between the
existence of some curvatures on MQ and the combinatorics of Q.

Corollary 1.3 Let Q be a simple handlebody of dimension n� 2, MQ be the smooth manifold double
over Q, and zQ be the orbifold universal cover of Q. Then:

(i) The following statements are equivalent :

(1) MQ is nonpositively curved ;

(2) zQ is CAT (0);

(3) Q is flag (this is equivalent to Q being orbifold-aspherical );

(4) MQ is aspherical.

(ii) If MQ admits a strictly negative curvature then Q is flag and contains no �-belt. In particular , if
Q is a simple polytope P , then MP admits a strictly negative curvature if and only if P is flag and
contains no �-belt.

In the 3-dimensional case ,

(iii) MQ is hyperbolic if and only if it is flag and contains no �-belt. Moreover ,Q admits a right-angled
hyperbolic structure if and only if it is flag and contains no �-belt. In this case , zQ�H3.

(iv) When Q is a simple 3-polytope , MQ admits a positive scalar curvature if and only if every
2-dimensional belt in Q is �2, or Q is just a tetrahedron.

Remark 1.4 The proof of Corollary 1.3 will mainly be finished in Section 7.

� Corollary 1.3(i)–(ii) are based on Gromov’s results; see [32]. A metric space is said to be of curvature
k if it is locally a CAT(k) space. A comparison theorem in [7, Theorem 1A.6, page 173] tells us that
a smooth Riemannian manifold has curvature � k if and only if it has sectional curvature � k. Hence,
under the condition that MQ admits a smooth Riemannian metric, the curvature in the statements of
Corollary 1.3(i)–(ii) can be replaced by sectional curvature. See [38, Theorem 1.2] for simple polytopes.

� There are examples of closed orientable 3-manifolds that are aspherical but do not support a Riemannian
metric with nonpositive sectional curvature (see Leeb [40]).

� Corollary 1.3(iii) is the hyperbolization theorem on simple 3-handlebodies. The hyperbolization
theorem on general right-angled Coxeter 3-orbifolds was considered by Otal [49]. An irreducible and
atoroidal 3-manifold Q with corners, defined by Otal [49, page 168], implies essentially that all involved
�2 and� suborbifolds in Q are not belts. This is actually equivalent to saying that Q is flag and contains
no �-belt. Here our statement is more combinatorial.

� Corollary 1.3(iv) is also a restatement of a result of [61]. A vc.k/ in [61] is equivalent to the simple
3-polytope in Corollary 1.3(iv).

� All 2-dimensional right-angled Coxeter orbifolds can be classified by their orbifold Euler numbers;
see Thurston [58].

Algebraic & Geometric Topology, Volume 25 (2025)



60 Zhi Lü and Lisu Wu

� With a bit of additional argument, the “simple” condition in 3-dimensional case can be generalized to
the case of a right-angled Coxeter 3-handlebody whose nerve is an ideal triangulation of its boundary,
where the concept of ideal triangulation can be found in Fomin, Shapiro and Thurston [27, Section 2]. In
this case, there may exist bad 3-handlebodies, that is, as right-angled Coxeter orbifolds, they cannot be
covered by 3-manifolds. So these bad orbifolds cannot admit any hyperbolic metric. See Lemma 7.16.
Although so, we can obtain that a right-angled Coxeter 3-handlebody with ideal nerve is hyperbolic if
and only if it is very good, flag and contains no �-belt; see Corollary 7.18. More generally, if the nerve
of Q is not a triangulation or an ideal triangulation of @jQj, then only the flag condition and no �-belt
condition can prevent the (right-angled) hyperbolicity of Q. An example is given in Example 7.20.

Structure of the paper

In Section 2, we review the notions of (right-angled Coxeter) orbifolds and manifolds with corners. We
introduce the right-angled Coxeter cellular decomposition of right-angled Coxeter orbifolds, and discuss
their orbifold fundamental groups. In addition, we also introduce the theory of fundamental domain. In
Section 3 we generalize the notions of B-belts and flags from simple polytopes to simple handlebodies.
In Section 4, we give a right-angled Coxeter cellular decomposition of a simple n-handlebody Q, so that
we can explicitly give a presentation of orbifold fundamental group �orb

1 .Q/. We further show that this
presentation of �orb

1 .Q/ is an iterative HNN-extension of some right-angled Coxeter group. Moreover,
the orbifold universal cover of Q is constructed by using �orb

1 .Q/ and the simple polytope PQ associated
to Q. In Section 5, we review the work of Gromov, and compute the homology groups of the manifold
double and universal cover of a simple handlebody Q by Davis’ method, which are useful in the proof
of Theorem A. Then we prove Theorem A. In Section 6, we show that the existence of a rank-two free
abelian subgroup in the orbifold fundamental group of a simple handlebody Q is characterized by a
�-belt in Q (Theorem B). In Section 7, applying Theorems A and B and some results of geometry, we
discuss the existence of some curvatures on a smooth manifold double over a simple handlebody Q in
terms of the combinatorics of Q.
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2 Preliminaries

2.1 Orbifold

As a generalization of manifolds, an n-dimensional orbifold O is a singular space which is locally modeled
on the quotient of a finite group acting on an open subset of Rn. For any p 2 O, there is an orbifold chart
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'U1

U2

U3

Figure 2: An orbifold loop.

.U;G; / satisfying that U is an n-ball centered at origin O and  �1.p/DO , where  W U ! U=G is
the projection map. In particular, the origin O is fixed by G. We called G the local group at p.

Definition 2.1 (Thurston [58, Definition 13.2.2]) A covering orbifold of an orbifold O is an orbifold zO
with a projection � W zO! O, satisfying that:

� Every x 2 O has a neighborhood V which is identified with an open subset U of Rn modulo a finite
group Gx , such that each component Vi of ��1.V / is homeomorphic to U=�i , where �i <Gx is
some subgroup;

� �jVi W Vi ! V corresponds to the natural projection U=�i ! U=Gx .

An orbifold is good (resp. very good) if it can be covered (resp. finitely covered) by a manifold. Otherwise
it is bad. Any orbifold O has an universal cover zO; see [58, Proposition 13.2.4].

In general, the orbifold fundamental group of an orbifold is defined as the deck transformation group of
its universal cover; see [58, Definition 13.2.5]. Another equivalent definition uses the notion of based
orbifold loops, that is, the orbifold fundamental group is defined by the homotopy classes of based orbifold
loops. For more details, see [12, Section 3].

Example 2.2 Let D2 be the unit disk in R2. A transformation r on D2 via r.x; y/D .x;�y/ gives a
reflective Z2-action on D2. The orbit space D2=Z2 has a natural orbifold structure. Any .x; 0/2D2=Z2
is a singular point with local group Z2. Since D2 is contractible, �orb

1 .D2=Z2/ŠZ2 is generated by the
transformation r .

In the viewpoint of orbifold loops, any path between .x1; 0/ and .x2; y2/ with y2 > 0 can be viewed as a
nontrivial orbifold loop. It is clear that D2=Z2 ŠD1 �D1=Z2 'D1=Z2. Hence, �orb

1 .D2=Z2/Š Z2
is generated by a based orbifold loop D1=Z2; see Figure 2.

Example 2.3 [1] If a discrete group G acts properly discontinuously on a manifold M , then the orbit
space M=G canonically inherits an orbifold structure. Here M=G is called the quotient orbifold by G
acting on M .
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Let p WM ! O be a regular orbifold cover over a good orbifold O, where M is a manifold. Then by
orbifold covering theory [12], the orbifold homotopy group of O is isomorphic to the homotopy group
of M ,

�orb
k .O/Š �k.M/; k � 2:

Thus a good orbifold is orbifold-aspherical if and only if its covering manifold is aspherical.

See [1; 12; 13; 19; 54] for more details of orbifold homotopy theory.

2.2 Right-angled Coxeter orbifolds, manifolds with corners and their manifold covers

Following [21; 22], a right-angled Coxeter n-orbifold Q is a special n-orbifold locally modeled on the
quotient Rn=.Z2/n of the standard .Z2/n-action on Rn by reflections across the coordinate hyperplanes.
A stratum of codimension k is the closure of a component of the subspace of jQj consisting of all points
with local group .Z2/k , where jQj denotes the underlying space of Q. It is easy to see that Rn=.Z2/n

possesses the following properties:

� Topologically and combinatorially, Rn=.Z2/n is the standard simplicial cone

Cn D f.x1; : : : ; xn/ 2Rn j xi � 0; 1� i � ng

in Rn.

� The local group at x D .x1; : : : ; xn/ 2 Rn=.Z2/n is the subgroup .Z2/c.x/, where c.x/ is the
number of those coordinates xi D 0 in x, called the codimension of x.

� For 0� k � n, .Z2/k as a local group determines
�
n
k

�
strata of codimension k, each of which is

isomorphic to Rn�k=.Z2/n�k .

Davis [17, Section 6] (or see [18, Chapter 10, page 180]) defined n-manifolds with corners, each of which
is a Hausdorff space X together with a maximal atlas of local charts onto open subsets of the standard
simplicial cone Cn such that the overlap maps are homeomorphisms of preserving codimension, where
for any chart ' W U ! Cn, the codimension of any x 2 U is defined as c.'.x//, also denoted by c.x/,
and it is independent of the chart. An open face of codimension k is a component of fx 2X j c.x/D kg.
A face is the closure of such a component.

A right-angled Coxeter orbifold Q naturally inherits the structure of a manifold with corners. On the
other hand, since the topological and combinatorial structure of Cn is compatible with that of right-angled
Coxeter orbifold on Rn=.Z2/n, an n-manifold with corners naturally admits a right-angled Coxeter
orbifold structure. Furthermore, all strata in a right-angled Coxeter orbifold Q bijectively correspond to
all faces in Q as a manifold with corners. A stratum or face of codimension one is called a facet.

In this paper we are mainly concerned with a special class of right-angled Coxeter orbifolds, i.e. simple
handlebodies, as defined in the beginning of this paper. Let Q be a simple n-handlebody with facet set
F.Q/D fF1; : : : ; Fmg. For some n� k �m, the map

� W F.Q/! .Z2/
k
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is called a characteristic map if for each l-face f l inQ (so there are exactly n�l facets, say Fi1 ; : : : ; Fin�l ,
whose intersection is f l since Q is simple), �.Fi1/; : : : ; �.Fin�l / are independent in .Z2/k . Clearly,
each l-face f l in Q determines a subgroup Gf l generated by �.Fi1/; : : : ; �.Fin�l / via �. Note that each
x 2 @jQj always lies in the relative interior of a unique face f . Then there is a manifold cover of Q
defined as

(2-1) U.Q; .Z2/
k/DQ� .Z2/

k=�;

where
.x; g/� .y; h/ ()

�
x D y and g D h if x 2 Int.jQj/;
x D y and gh�1 2Gf if x 2 f � @jQj:

Essentially this is a special case of the “basic construction” of Davis [18, Chapter 5]. It follows from
[18, Proposition 10.1.10] that U.Q; .Z2/k/ is an n-dimensional closed manifold and naturally admits an
action of .Z2/k with quotient orbifold Q. So a simple handlebody is a very good orbifold.

Lemma 2.4 A simple handlebody Q is the quotient orbifold of .Z2/k acting on U.Q; .Z2/k/.

If k D n, then U.Q; .Z2/n/ is called small manifold cover over Q which is a generalization of small
covers over simple polytopes (see [22]), but it may not exist even if Q is a simple polytope (see also
[22, Nonexamples 1.22]). However, if k D m, we can take �.Fi / D ei for each facet Fi of Q where
fe1; : : : ; emg is the standard basis of .Z2/m, such that there always exists such U.Q; .Z2/m/, called the
manifold double (see [21, Proposition 2.4]) over Q, which is a generalization of real moment angled
manifolds over simple polytopes (see [9]). In this case, for simplicity, we useMQ to replace U.Q; .Z2/m/.

2.3 The right-angled Coxeter cellular decomposition

Now let us introduce the right-angled Coxeter orbifold cellular decomposition for right-angled Coxeter
orbifolds, which will play an important role on the calculation of the orbifold fundamental groups of
right-angled Coxeter orbifolds. The more general notion of cellular decomposition of certain orbifolds
was considered as q-cellular complexes (or, q-CW complexes) in [4; 51].

Let ri WRn!Rn be the i th standard reflection defined by

ri .x1; : : : ; xi�1; xi ; xiC1; : : : ; xn/D .x1; : : : ; xi�1;�xi ; xiC1; : : : ; xn/:

All standard reflections in Rn induce a standard .Z2/n-action on the closed unit n-ball Bn with a right-
angled corner Bn=.Z2/n as its orbit space. Of course, IntBn is .Z2/n-equivariantly homeomorphic
to Rn.

Definition 2.5 (right-angled Coxeter cells) Let � be a group generated by some standard reflections
in Rn. Then the quotient Bn=� is called a right-angled Coxeter n-ball, and the quotient IntBn=� is
called an open right-angled Coxeter n-ball. Note that if � is not a trivial group, then the right-angled
Coxeter n-ball Bn=� is an n-orbifold with boundary @Bn=� .
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� D 1 � D Z2 � D Z22

Figure 3: Right-angled Coxeter 2-cells.

If en is �-equivariantly homeomorphic to IntBn, then the quotient en=� is called a right-angled Coxeter
n-cell, and its closure is call a closed right-angled Coxeter n-cell.

For example, a right-angled Coxeter 1-cell is either a connected open interval or a semiopen and semiclosed
interval whose closed endpoint gives a local group Z2. A right-angled Coxeter 2-cell has three possible
types, with local group being the trivial group, Z2 or .Z2/2, as shown in Figure 3.

An n-dimensional right-angled Coxeter cellular complex (or Coxeter CW complex) X can be constructed
in the same way as CW complex (see [36, page 5]). A key point is that the attaching map of every
n-dimensional right-angled Coxeter cell en˛=� to the .n�1/-skeleton Xn�1,

(2-2) �˛ W @ Ne
n
˛=�!Xn�1;

is required to preserve the local group of each point in @ Nen˛=� .

Here the attaching maps f�˛g of right-angled Coxeter cells with nontrivial local groups have a much
stronger restriction than those in CW complexes. Actually, �˛ preserving local groups implies that
singular points and nonsingular points of each embedding right-angled Coxeter n-cell are still singular
and nonsingular, respectively, in X .

Remark 2.6 (right-angled Coxeter cubical cellular complex) Recall that a cubical cellular complex is a
CW complex X whose cells are cubes, with the property that for two cubes c and c0 of X , c \ c0 is a
common face of c and c0; in other words, cubes are glued in X via combinatorial isometries of their faces.
Similarly, a right-angled Coxeter cubical cellular complex can be defined in the same way whose cells
are all right-angled Coxeter cubical cells, that is, the orbits of standard reflections on an n-cube Œ�1; 1�n.
For example, the standard cubical cellular decomposition of a simple polytope P (i.e. the cone of the
barycentric subdivision of N.P /) gives a right-angled Coxeter cubical cellular complex structure of P .
Of course, right-angled Coxeter cubical cellular complexes form a special class of right-angled Coxeter
cellular complexes.

Proposition 2.7 Each simple handlebody has a finite right-angled Coxeter cellular complex structure.
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Figure 4: Relations determined by right-angled Coxeter 2-cells in the case nD 3.

Proof Let Q be a simple n-handlebody with the associated simple polytope PQ. Then the standard
cubical subdivision of PQ induces a right-angled Coxeter cellular decomposition of Q. More details will
be shown in Section 4.

Remark 2.8 It should be pointed out that each simple handlebody still has a right-angled Coxeter cubical
cellular complex structure. This can be seen in Section 7.1.

In general, a right-angled Coxeter cellular complex is naturally an orbispace. Here its orbifold fundamental
group is defined by the homotopy classes of based orbifold loops. For more details, see [12, Section 3].
Although a right-angled Coxeter cell with nontrivial local group is not contractible in the sense of
orbifolds, all attaching maps f�˛g preserving local groups ensure that the orbifold fundamental group of
a right-angled Coxeter cellular complex is isomorphic to the orbifold fundamental group of its 2-skeleton.

Proposition 2.9 Let X be a right-angled Coxeter cellular complex. Then

�orb
1 .X2/Š �orb

1 .X/;

where X2 is the 2-skeleton of X .

Proof The argument can be proved in a similar way as shown by Hatcher [36, Proposition 1.26]. The
only thing to note is that the local group information of each right-angled Coxeter n-cell can be inherited
by the boundary orbifold of its closure in Xn�1.

Remark 2.10 We can easily read out the generators and relations of �orb
1 .X/ Š �orb

1 .X2/ from the
2-skeleton of a right-angled Coxeter cellular complex X . Let us look at a right-angled Coxeter 2-cell
with nontrivial local group in X . Assume that the boundary of a right-angled Coxeter 2-cell with
nontrivial local group consists of x1; x2; : : : ; xn, where each xi is a closed oriented orbifold loop in X ,
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and only one endpoint of x1 and xn has nontrivial local group. Regard these closed orbifold loops as
generators. Then x21 D x

2
n D 1 and the right-angled Coxeter 2-cells with local group Z2 give a relation

x1x2 � � � xn � x
�1
n�1 � � � x

�1
2 D 1, while the right-angled Coxeter 2-cells with local group Z22 give a relation

.x1x2 � � � xn � x
�1
n�1 � � � x

�1
2 /2 D 1. This can intuitively be seen from Figure 4 when nD 3.

Example 2.11 Let P be a simple polytope with facet set F.P /. Regard P as a right-angled Coxeter
orbifold. The standard cubical subdivision of P is a right-angled Coxeter cellular decomposition of P .
Calculating the orbifold fundamental group of P by the 2-skeleton of its right-angled Coxeter cellular
decomposition, �orb

1 .P / can be represented by the right-angled Coxeter group WP of P :

�orb
1 .P /ŠWP D hsF ; F 2 F.P / j s2F D 1 for all F I .sF sF 0/2 D 1 for F \F 0 ¤∅i:

2.4 Group action and fundamental domain ([18, page 64] or [59, pages 159–161])

Suppose that a discrete group G acts properly on a connected topological space X . A closed subset
D �X is a fundamental domain for the G-action on X if each G-orbit intersects with D and if for each
point x in the interior of D, G.x/\D D fxg. In other words, fgD j g 2Gg forms a locally finite cover
for X , such that no two of fgD j g 2 Gg have common interior points. Such fgD j g 2 Gg is called a
decomposition for X so

X D
[
g2G

gD

and each gD is called a chamber of G on X .

Throughout the following, the fundamental domain ofG acting on X will be taken as a simple polytopeD.
Then each g 2G gives a self-homeomorphism of X

�g WX !X

by mapping chamber hD to g � hD for any h 2 G. If two chambers gD and hD have a nonempty
intersection which includes some facets of gD and hD, then there is a homeomorphism �hg�1 that maps
gD to hD. Hence, for two facets F and F 0 from gD and hD, respectively, that are glued together in X ,
naturally we can assign hg�1 and gh�1 to F and F 0, respectively. This means that the action of G on X
gives a characteristic map on the facets set of D,

� W F.D/!G:

For each facet F of D, �.F / 2 G is called a coloring on F . Each �.F / 2 G naturally determines
a self-homeomorphism ��.F / 2 Homeo.X/, which is called an adjacency transformation on X with
respect to F . Such ��.F / maps each chamber into an adjacent chamber such that the facet F is contained
in the intersection of those two chambers. Each adjacency transformation has an inverse adjacency
transformation corresponding to a facet F 0 of D. Of course, F D F 0 is allowed. In this case, we call F a
mirror of X associated with G, and the corresponding adjacency transformation is called a reflection of
X with respect to F .
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Remark 2.12 It should be pointed out that two adjacency transformations determined by different facets
of D are viewed as being different, although they may correspond to the same self-homeomorphism of X .
The inverse adjacency transformation of an adjacency transformation determined by a facet F is exactly
determined by another facet F 0 which is identified with F in X .

All inverse adjacency transformations give an equivalence relation� on F.D/�G, where .F; g/� .F 0; h/
if and only if

(2-3) �.F / �g D h; �.F 0/ � hD g:

In other words, if two chambers gD and hD are attached together by identifying a facet F of gD with a
facet F 0 of hD in X , then �.F / ��.F 0/D 1, which gives a pair relation for G. When F is a mirror, the
pair relation is �.F / ��.F /D 1.

Remark 2.13 The equivalence relation � on F.D/�G gives an equivalence relation �0 on F.D/ via
the projection F.D/�G! F.D/ as follows: for F;F 0 2 F.D/,

F �0 F 0 () .F; g/� .F 0; h/ for g; h 2G satisfying relation (2-3):

Thus, we can obtain a quotient orbifold D=�0 by attaching some facets on the boundary of D via the
equivalence relation �0 on F.D/.

On the contrary, giving a simple polytope D and a characteristic map satisfying relation (2-3), we can
construct a space X with G-action by

(2-4) X DD �G=�;

where the equivalence relation is defined in relation (2-3).

The construction of X gives a natural polyhedral cellular decomposition of X , denoted by P.X/. The
dual complex of P.X/ is denoted by C.X/. If each codimension-k face of D in X intersects with exactly
2k chambers, then each cell of C.X/ is a cube, which is exactly one induced by the standard cubical
decomposition of the simple polytope D. Furthermore, if C.X/ is a cubical complex, then the link of
each vertex in C.X/ is a simplicial complex which is exactly the boundary complex of the dual of D.
The 1-skeleton of C.X/ is exactly the Cayley graph of G with generator set consisting of adjacency
transformations determined by all facets of D. Therefore, one has that:

Lemma 2.14 [59, page 160] The group G is generated by all adjacency transformations.

To simplify notation, let �.Fi / D si or sFi for each Fi 2 F.D/. Then for each g 2 G, �g can be
decomposed into the composition of some adjacency transformations,

g D si1si2 � � � sik :

The relations with si1si2 � � � sik D 1, except pair relations, are called Poincaré relations.
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Lemma 2.15 [59, page 161] The Poincaré relations together with the pair relations form a set of
relations of the group G.

For each codimension-2 face of D, there is a Poincaré relation with form sksk�1 � � � s1 D 1 (alternatively,
s01 � � � s

0
k
D 1, where s0i D .si /

�1 for each i ).

Define a group GD with generators consisting of all adjacency transformations determined by F.D/ and
relations formed by all pair relations and Poincaré relations determined by all codimension 2 faces in D:

(2-5) GD D hsi for Fi 2 F.D/ j sisj D 1 for Fi �0 Fj I si1si2 � � � sik D 1 for each codim-2 face in Di

For the sake of preciseness, suppose again that each codimension-k face of D in X intersects with exactly
2k chambers. Then the cubical subdivision of D induces a right-angled Coxeter cellular decomposition
for the quotient orbifold X=G. It is not difficult to see that D=�0 is isomorphic to X=G as orbifolds.
According to Proposition 2.9, GD is isomorphic to the orbifold fundamental group of the quotient space
X=G. Therefore, we have the following lemma.

Lemma 2.16 The orbifold fundamental group of D=�0 ŠX=G is isomorphic to GD .

There is a natural quotient map �� WGD!G, and the image of �� on each adjacency transformation sF
is the coloring on corresponding facet F . Then the fundamental group of X is isomorphic to the kernel
of ��.

Proposition 2.17 Let G be a discrete group which acts properly discontinuously on a manifold X .
Suppose X is decomposed into X D

S
g2G gD D D �G=�, where D is a simple polytope and each

codimension-k face of D in X intersects with exactly 2k chambers. Let GD be the group defined
as in expression (2-5), and �� be the quotient map from GD to G induced by the characteristic map
� W F.D/!G. Then there is a short exact group sequence

1! �1.X/!GD
���!G! 1

which is induced by the orbifold covering � WX !X=G.

Proof We refer to Chen [12, pages 40–49]. Here it is only necessary to show that GD Š �orb
1 .X=G/,

which is exactly Lemma 2.16.

Given a simple convex polytope D and a discrete group G, assume that there exists a characteristic map
� W F.D/!G such that X DD �G=� is a G-manifold, where .F; g/� .F 0; h/ for any F;F 0 2 F.D/

and g; h 2G if and only if relation (2-3) holds. Then we have the following result.

Corollary 2.18 Under the assumption of Proposition 2.17, X is simply connected if and only if GŠGD .
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Example 2.19 Let� be a square with faces F1, F2, F3 and F4 colored by e1, e2, e1 and e2 respectively,
where e1 D .�1; 1/ and e2 D .1;�1/ are generators of .Z2/2. Then X D�� .Z2/2=�Š T 2 is a small
cover over � (see [22]), and

G� D hs1; s2; s3; s4 j s
2
i D 1I .s1s2/

2
D .s2s3/

2
D .s3s4/

2
D .s4s1/

2
D 1i Š .Z2 �Z2/˚ .Z2 �Z2/

is the right-angled Coxeter group determined by �. Then �1.X/Š ker�� DZ2 is a normal subgroup of
G� generated by Poincaré relations s1s3 and s2s4.

2.5 Right-angled Coxeter group and HNN-extension

In this subsection, we refer to [18, Chapter 3] and [44, Chapter 4].

Let w D s1s2 � � � sm be a word in a right-angled Coxeter group W D hS jRi. An elementary operation
on w is one of the following two types of operations:

(i) Length-reducing Delete a subword of ss.

(ii) Braid (commutation) Replace a subword of the form st with ts if .st/2 D 1 in the relations set
R of W .

A word is reduced if it cannot be shorten by a sequence of elementary operations.

Theorem 2.20 (Tits [18, Theorem 3.4.2]) Two reduced words x and y are the same in a right-angled
Coxeter group if and only if one of both x and y can be transformed into the other one by a sequence of
elementary operations of type (ii ).

Definition 2.21 (Higman–Neumann–Neumann extension [44, page 179]) Let G be a group with
presentation G D hS jRi, and let � WA!B be an isomorphism between two subgroups of G. Let t be a
new symbol out of S . Then the HNN-extension of G relative to � is defined as

G�� D hS; t jR; t
�1gt D �.g/; g 2 Ai:

Let ! D g0t�1g1t�2 � � �gn�1t�ngn (n� 0) be an expression in G�� , where each gi is an element in G
(probably gi may be taken as the unit element 1 in G), and �i is either number 1 or �1. Then ! is said to
be t -reduced if there is no consecutive subword t�1gi t or tgj t�1 with gi 2 A and gj 2 B .

A normal form of an element in G�� is a word ! D g0t�1g1t�2 � � �gn�1t�ngn .n� 0/ where

(i) g0 is an arbitrary element of G;

(ii) if �i D�1, then gi is a representative of a coset of A in G;

(iii) if �i DC1, then gi is a representative of a coset of B in G;

(iv) there is no consecutive subword t�1t��.
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Theorem 2.22 (the normal form theorem for HNN-extensions [44, Theorem 2.1, page 182]) Let
G�� D hG; t j t

�1gt D �.g/; g 2 Ai be an HNN-extension. Then there are two equivalent statements:

(I) The group G is embedded in G�� by the map g 7! g. If ! D g0t�1g1 � � � t�ngn D 1 in G�� , then
! is not reduced.

(II) Every element ! of G�� has a unique representation ! D g0t�1g1 � � � t�ngn which is a normal
form.

A t -reduction of ! D g0t�1g1 � � � t�ngn is one of the following two operations:

� replace a subword of the form t�1gt , where g 2 A, by �.g/;

� replace a subword of the form tgt�1, where g 2 B , by ��1.g/.

A finite number of t -reductions leads from ! D g0t
�1g1 � � � t

�ngn to a normal form.

3 Flagness and beltness of simple handlebodies

3.1 B-belts and flagness

Assume that Q is a simple n-handlebody with nerve N.Q/. Denote by Q� the dual of Q, whose facial
structure is given by N.Q/.

Definition 3.1 (B-belts) Let i WB ,!Q be an embedding closed simple k-suborbifold whose underlying
space is a k-ball. We say that i.B/ is a B-belt of Q if

� i preserves codimensions, i.e. i maps each codimension-d face f of B to a codimension-d face
Ff of Q;

� the intersection
T
f˛ D ∅ for some facets f˛ in B if and only if either

T
Ff˛ D ∅ or

S
Ff˛

cannot deformatively retract onto B in jQj.

Remark 3.2 The orbifold embedding i WB ,!Q preserving codimension is equivalent to that i restricting
on the local group of each point in B induces an identity. The statement that

S
Ff˛ cannot deformatively

retract onto B in jQj is equivalent to that there is at least a hole in the area surrounded by fFf˛g and B .

A simple polytope P itself is a P -belt. For a B-belt in a simple polytope P , the intersection
T
f˛D∅ for

some facets f˛ in B if and only if
T
Ff˛ D∅. And each B-belt is �-injective in the sense of Lemma 7.1,

which is an analogue of �1-injective surfaces in 3-dimensional manifolds.

A 2-dimensional B-belt in a simple 3-handlebody Q is a k-gon. Traditionally, such a B-belt is also
called a k-belt of Q. In the case of dimension three, any simple 3-polytope except the tetrahedron has a
2-dimensional B-belt.

Next, we want to generalize the definition of flagness to simple handlebodies in terms of B-belts defined
above. Recall that a simplicial complex K with vertex set V is a flag complex if every finite subset of V ,
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which is pairwise joined by edges, spans a simplex. LetX be a cubical complex equipped with a piecewise
Euclidean structure. Then Gromov’s lemma (see [32]) tells us that X is nonpositively curved if and only if
the link of each vertex in X is a flag simplicial complex. Furthermore, by the Cartan–Hadamard theorem,
a nonpositively curved space is aspherical.

A simple polytope P is flag if the boundary complex of its dual is a flag simplicial complex. Let M !P

be a small cover or a real moment angled manifold over P . Then we know from [24, Theorem 2.2.5]
that M is aspherical if and only if P is flag. Equivalently, P , as a right-angled Coxeter orbifold, is
orbifold-aspherical if and only if it is flag.

Naturally, the flagness of a simple handlebody Q should still be closely related to the orbifold-asphericity
ofQ. The right-angled Coxeter orbifold structure ofQ induces a facial structure ofQ which can be carried
by the nerve N.Q/ ofQ as a manifold with corners. The combinatorial obstruction of orbifold-asphericity
of Q contains some quotient orbifolds of Sk for k � 2 by reflective actions of .Z2/l for 1� l � kC 1.
Moreover, since Q is a simple handlebody, Sk=.Z2/kC1 Š �k is the unique possible combinatorial
obstruction of orbifold-asphericity of Q. Notice that the orbifold-asphericity of Q is determined by both
N.Q/ and jQj.

Definition 3.3 A simple handlebody Q is said to be flag if it contains no 4k-belt for any k � 2.

Remark 3.4 The notion of B-belt and flagness can be generalized to a right-angled Coxeter orbifold
whose underlying space is an arbitrary compact manifold with nonempty boundary. We call such an
orbifold a simple orbifold if it satisfies conditions (b) and (c) in the definition of simple handlebody. A
natural conjecture arises as follows:

Conjecture 3.5 A simple orbifold Q is orbifold-aspherical if and only if its underlying space jQj is
aspherical as a manifold and Q contains no �k-belt for any k � 2.

Davis’ results in [18, Theorem 9.1.4] and [20, Theorem 3.5] tell us that the conjecture is true in the cases
where jQj is acyclic or Q has a corner structure defined in [20, Section 3.1]. Our Theorem A also proves
the case that Q is a simple handlebody. All of these support the conjecture.

A simple handlebody Q is a simple polytope or there exist finitely many disjoint B-belts of codimension
one, called cutting belts, such that Q can be cut open into a simple polytope PQ along those cutting belts.
Here the cutting operation is similar to a hierarchy of Haken manifolds (or Haken orbifolds). Note that a
simple handlebody is not a Haken orbifold except that it is flag. Refer to [28; 60] for Haken 3-manifolds
and generalized Haken manifolds.

Let Q be a simple handlebody. We see that some vertices F1; F2; : : : ; Fk of N.Q/ span a simplex 4k�1

in N.Q/ if and only if the associated vertices span a simplex in N.PQ/, and they span an empty simplex
(that is, @4k�1 �N.Q/ but4k�1 itself is not in N.Q/) whose interior is contained in the interior of Q�
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F1 F2

F3

Figure 5: A flag simple 3-handlebody whose nerve is not a flag simplicial complex.

if and only if associated vertices span an empty simplex in N.PQ/. Specifically, those empty simplices
correspond to some 4k-belts in Q. Hence, we have the following result.

Lemma 3.6 A simple handlebody Q is flag if and only if the associated simple polytope PQ is flag (in
other words , N.PQ/ is a flag simplicial complex).

Remark 3.7 Notice that a flag simple handlebody defined above may contain an empty simplex whose
interior cannot be embedded in its dual Q�, as shown in Figure 5 for three pairwise intersected faces F1,
F2 and F3 in a flag simple solid torus. Therefore, the statement that N.Q/ is a flag simplicial complex is
not equivalent to that Q is a flag simple handlebody.

3.2 �-belts in a simple handlebody

Definition 3.8 A �-belt in a simple handlebody Q is a B-belt where B is a two-disk with a square
boundary.

Remark 3.9 (1) In Gromov’s paper [32, Section 4.2], Siebenmann’s no �-condition for a flag
simplicial complex K means no empty square in K, where an empty square in K must make
sure that neither pair of opposite vertices is connected by an edge, which is a special case in our
definition.

(2) A prismatic 3-circuit (see [53]) in a simple 3-polytope P 3 determines a �2-belt in P 3. If there is
no prismatic 3-circuit in P 3, then P 3 is a flag polytope or a tetrahedron. Similarly for a prismatic
4-circuit (see [53]) in a flag simple 3-polytope, it determines a �-belt in P in our definition.

Next, we give two lemmas as the preliminary of the proof of Theorem B.

Let Q be a simple handlebody, and B� be a �-belt in Q with four ordered edges f1, f2, f3 and f4, any
two of which have a nonempty intersection except for pairs ff1; f3g and ff2; f4g. Assume that each fi
is contained in a facet Fi of Q. Then we may claim that fFi j i D 1; 2; 3; 4g must be different from each
other. More precisely, we have the following lemma.
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Lemma 3.10 Let Q be a simple handlebody, and B� be a �-belt in Q. Then

� two adjacent edges of B� cannot be contained in the same facet of Q;

� two disjoint edges of B� cannot be contained in the same facet of Q.

Proof Assume that the edges ff1; f2; f3; f4g ofB� are contained in four ordered facets fF1; F2; F3; F4g
of Q, respectively. If there are two adjacent edges of B� contained in the same facet of Q— without loss
of generality, suppose that F1 D F2 — then f1\f2 ¤∅ implies that F1 has a self-intersection, which is
equivalent to there being a 1-simplex which bounds a single vertex in N.Q/. This contradicts that Q is
simple.

Similarly, if there are two disjoint edges of B� contained in the same facet ofQ, then one can assume that
F1 D F3. This happens only for the case where the genus of Q is more than zero since B� is a �-belt
in Q. Thus there are some holes between F1 and B�. However, F2 is contractible, so this induces that
F2\F1 is disconnected. In other words, there are two 1-simplices which bound the same two vertices
in N.Q/. This is also impossible since Q is simple.

Lemma 3.10 tells us that in a simple handlebody Q, a �-belt can be presented as four different vertices
fF1; F2; F3; F4g in N.Q/, which satisfies the following two conditions:

(I) fF1; F2; F3; F4g bounds a square with its interior located in the interior of Q� and with its edges
contained in the 1-skeleton of N.Q/.

(II) The full subcomplex spanned by fF1; F2; F3; F4g in N.Q/ is either a square or a nonsquare
subcomplex (containing two 2-simplices gluing along an edge). Here the latter “a nonsquare
subcomplex” may happen only when the genus of Q is more than zero.

Example 3.11 (squares in the dual of a simple handlebody) Let Q be a simple handlebody, and Q� be
its dual. There are some possible cases of squares and nonsquares in Q�, listed in Figure 6, where all
vertices and edges are considered in N.Q/. Diagrams (a) and (b) are not squares in Q�, while (c) and (d)
are. Notice that (d) is not an empty square in N.Q/, which is different from the case of Siebenmann’s no
�-condition, as stated in Remark 3.9(1).

Lemma 3.12 Let B� be a �-belt in a simple n-handlebody Q, and B be a cutting belt of Q. Then
either B� and B can be separated in Q, or B intersects transversely with only a pair of disjoint edges
of B�.

Proof Assume that the four ordered edges f1, f2, f3 and f4 of B� are contained in four facets F1, F2,
F3 and F4 of Q, respectively. Since B� and B are contractible, we see that B and B� can be separated
if and only if their boundaries can be separated.

First we assume that @B and @B� intersect transversely, meaning that @B\@B� is a set of isolated points
cyclically ordered on the boundary of B�, which is denoted by V. Then V contains at least two points if
V is nonempty.
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(a) (b) (c)

(d)

Figure 6: Squares and nonsquares.

Let v and v0 be two adjacent points in V. Then there are the following cases:

(i) v and v0 are located in the same edge of B�;

(ii) v and v0 are located in two adjacent edges of B�;

(iii) v and v0 are located in two disjoint edges of B�.

In the case (i), without loss of generality, suppose that v; v0 2 int.f1/. Now if v and v0 are contained in
the same connected component of F1\B (without a loss of generality, assume that B is regarded as B1
of (a) in Figure 7), then we can deform the interior of f1 such that f1\@B D∅ will not contain v and v0.
If v and v0 are contained in two connected components of F1\B , without loss of generality, assume that
B is regarded as B2 of (a) in Figure 7. Since B is a B-belt, there is a hole surrounded by f1 and B . This
case is allowed (also see (b) and (c) in Figure 7).

In the case (ii), without loss of generality, assume thatB intersects with f1 and f2. Now ifB\F1\F2¤∅
(regard B as B3 of (a) in Figure 7), then we can move vertex f1 \ f2 in F1 \F2 such that @B� \ @B

does not contain v and v0.

Repeating this operation, we can assume that any two adjacent points v and v0 in V cannot remove. This
means that B \F1 \F2 D ∅ in the case (ii), so we may regard B as B4 of (a) in Figure 7. Then by
the definition of B-belt, there is a hole in the area surrounded by B , f1 and f2 (see (d) in Figure 7). If
jVj D 2, then B� will not be contractible. This is a contradiction. If jVj> 2, let v00 be a point after v0 by
the cyclic order of all isolated points in V. If v0 and v00 belong to the same edge f of B�, then there must
be a hole surrounded by f and B . If v0 and v00 belong to two adjacent edges f 0 and f 00 of B�, then there
is also a hole surrounded by f 0, f 00 and B . If v0 and v00 belong to two disjoint edges f 0 and f 00 of B�,
then there is still a hole surrounded by f , f 00 and B , where f is the edge containing v. Whichever of all
possible cases above happens implies that @B� is not contractible in jQj, but this is impossible.

The case (iii) is allowed; see B5 of (a) in Figure 7. So the conclusion holds.
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Figure 7: �-belt and cutting belt.

We see that if there are some cutting belts that intersect with B�, then one can do some deformations
such that those cutting belts either do not intersect with B� or intersect transversely with only a pair of
disjoint edges of B�.

4 The orbifold fundamental groups of simple handlebodies

4.1 The right-angled Coxeter cellular decomposition of simple handlebodies

Let Q be a simple n-handlebody of genus g with facet set F.Q/D fF1; : : : ; Fmg. Then we can cut Q
into a simple polytope PQ along g cutting belts B1; : : : ; Bg, each of which intersects transversely with
some facets of Q and is a simple .n�1/-polytope. Two copies of Bi in PQ, denoted by BCi and B�i ,
are two disjoint facets of PQ. Since they share the common belt Bi in Q, by BCi � B

�
i we denote this

share between them. The number of facets of PQ around BCi is the same as the number of facets of PQ
around B�i . In addition, each facet F of PQ around BCi also uniquely corresponds to a facet F 0 of PQ
around B�i such that F and F 0 share a common facet in Q, so by F \BCi � F

0 \B�i we mean this
share between F and F 0 via the belt Bi of Q.

Let F.PQ/ denote the set of all facets in PQ and FB denote the set of those facets in PQ produced by
cutting belts of Q, so FB contains 2g facets of PQ, appearing in pairs.

PQ is viewed as a right-angled Coxeter orbifold with boundary consisting of all facets in FB . By attaching
all pairs BC � B� in FB and all corresponding pairs .F; F 0/ with F \BC � F 0\B� together, we can
recover Q from PQ. Thus Q can be regarded as a quotient PQ=�, and we denote the quotient map by

(4-1) q W PQ!Q:
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F F 0

BC B�x0 x0

sF sF 0tBC tB�

Figure 8: The right-angled Coxeter 2-cell nearby B-belt.

There is a canonical right-angled Coxeter cubical cellular decomposition C.PQ/ of PQ, whose cells
consist of

� all cubes in the standard cubical decomposition of PQ;

� all cubes in the standard cubical decomposition of all boundary components of PQ in FB .

Moreover, C.PQ/ induces a right-angled Coxeter cellular decomposition on Q by attaching some cubical
cells of the copies of B-belts. Let c be a k-cube in C.PQ/ and B 2 FB .

� If c\BD∅, then we may take c as a right-angled Coxeter cubical cell forQ. Such a c corresponds
to a codimension-k face in PQ which is determined by k facets in F.PQ/�FB , so c is of the
form ek=.Z2/k .

� If c is a k-cube in C.BC/�C.PQ/, then there is also another k-cube c0 2C.B�/�C.PQ/. Both
c and c0 are codimension-one faces of two .kC1/-cubes in C.PQ/. Gluing those two .kC1/-cubes
by identifying c with c0, we obtain a right-angled Coxeter cubical cell with form ekC1=.Z2/k .

Finally, we obtain a right-angled Coxeter cellular decomposition of Q, denoted by C.Q/, whose cells are
right-angled Coxeter cubes. Of particular note is that C.Q/ is not cubical. This is because there exists
the cubical cell glued by two cells c and c0 in C.PQ/ as above, which has a self-intersection, namely the
cone point x0, as shown in Figure 8. The cone point is the only 0-cell in C.Q/, which will be chosen as
the basepoint when we calculate the orbifold fundamental group of Q.

4.2 The orbifold fundamental groups of simple handlebodies

Following the above notations, by Proposition 2.9, we can directly write out a presentation of orbifold
fundamental group of Q.

Proposition 4.1 LetQ be a simple handlebody of genus g, andPQ be the associated simple polytope with
copies of cutting belts FB . Then �orb

1 .Q/ has a presentation with generators sF indexed by F 2F.PQ/,
satisfying the relations

(1) s2F D 1 for F 2 F.PQ/�FB ,

(2) tBC tB� D 1 for two BC and B� with BC � B� in FB ,
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(3) .sF sF 0/
2 D 1 for F;F 0 2 F.PQ/�FB with F \F 0 ¤∅,

(4) sF tBC D tBCsF 0 for BC � B� in FB and F;F 0 2 F.PQ/�FB with F \BC � F 0\B�,

where the basepoint of �orb
1 .Q/ is the cone point x0 in the interior of Q.

On the other hand, we show here that �orb
1 .Q/ is actually an iterative HNN-extension on W.PQ;FB/,

where W.PQ;FB/ is a right-angled Coxeter group determined by facial structure of PQ by ignoring the
facets in FB :

W.PQ;FB/D hsF ; F 2 F.PQ/�FB j s
2
F D 1 for all F I .sF sF 0/2 D 1 for F \F 0 ¤∅i;

which can be regarded as the orbifold fundamental group of PQ as a right-angled Coxeter orbifold with
boundary consisting of the disjoint union of all facets in FB .

Let B be a cutting belt in Q, and BC; B� 2 FB be two copies of B . Set

FB
C

D fF 2 F.PQ/�FB j F \B
C
¤∅g;

FB
�

D fF 2 F.PQ/�FB j F \B
�
¤∅g:

The associated right-angled Coxeter groups WBC and WB� are isomorphic since BC and B� are
combinatorially equivalent as simple polytopes.

Lemma 4.2 The maps iBC WWBC!W.PQ;FB/ and iB� WWB�!W.PQ;FB/ induced by inclusions
BC ,! PQ and B� ,! PQ are monomorphisms.

Proof According to the definition ofB-belt, iBC and iB� are obviously well defined. There are two group
homomorphisms jBC WW.PQ;FB/!WBC and jB� WW.PQ;FB/!WB� , defined by reducing modulo
the normal subgroups generated by facets being not in FB

C

and FB
�

, such that jBC ı iBC D idW
BC

and
jB� ı iB� D idWB� . The result follows from this.

Thus, WBC and WB� can also be regarded as two isomorphic subgroups of W.PQ;FB/ generated by
fsF ; F 2 FB

C

g and fsF 0 ; F 0 2 FB
�

g, respectively. Define �B W WB� ! WBC by �B.sF 0/ D sF with
F 0\B� � F \BC. Then �B is a well-defined isomorphism. Furthermore, attaching two facets on PQ
corresponding to the cutting belt B is equivalent to doing one HNN-extension on its orbifold fundamental
group �orb

1 .PQ/DW.PQ;FB/, giving new elements tBC and tB� with certain conditions in �orb
1 .Q/. By

doing an induction on the genus of Q and repeating the use of HNN-extension, the orbifold fundamental
group of Q is isomorphic to doing g HNN-extensions on the right-angled Coxeter group W.PQ;FB/,

.Qg; Bg/ // � � � // .Q1; B1/ // Q0 D PQ
cutting

//

HNN-extension
oo

Gg D �
orb
1 .Q/ � � �oo G1oo G0 DW.PQ;FB/oo

where each Qk is the simple handlebody of genus k obtained from QkC1 by cutting open along the
.kC1/st belt BkC1, which is a right-angled Coxeter orbifold with boundary consisting of double copies
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of fBkC1; : : : ; Bgg, and each Gk is the orbifold fundamental group of Qk which is obtained from an
HNN-extension on Gk�1.

Proposition 4.3 Let Q be a simple handlebody of genus g with cutting belts B1; : : : ; Bg. Then

�orb
1 .Q/Š .� � � ..W.PQ;FB/��B1 /��B2 / � � �/��Bg

:

Notice that the expression .� � � ..W.PQ;FB/��B1 /��B2 / � � � /��Bg
in Proposition 4.3 is independent of

orders of �Bi . In addition, the presentation of �orb
1 .Q/ in Proposition 4.1 can be simplified by deleting

all generators tB� and relations tBC tB� D 1, replaced by only all tB . It should be pointed out that the
right-angled Coxeter group WQ determined by the facial structure of Q is not a subgroup of �orb

1 .Q/ in
general. Actually, WQ is the quotient group of �orb

1 .Q/ with respect to the normal group generated by
all tB .

Remark 4.4 In [25, Theorem 4.7.2], Davis, Januszkiewicz and Scott give a similar form. However, all
generators in their paper lifted into the universal space as homeomorphisms onto itself are involutions,
i.e. t2B D 1. Here, with a little difference, we require that the lifted action of tB is free. In particular, the
last relation in Proposition 4.1 belongs to a kind of Baumslag–Solitar relations, which are related to the
HNN-extension. In other words, pasting pairs of facets corresponding to cutting belts of the polytope PQ
can be viewed as a topological explanation for the HNN-extension of their orbifold fundamental groups.
More precisely, for a cutting belt B , there are two copies BC and B� in PQ, and the composite map

WB ŠWBC
i
BC��!W.PQ;FB/

i1
�!G1

i2
�! � � �

ig
�!Gg D �

orb
1 .Q/

embeds WB into �orb
1 .Q/, where ik is defined by ik.h/D h 2Gk for h 2Gk�1. Both WBC and WB� are

linked in �orb
1 .Q/ by an isomorphism and the injectivity of ik is followed by the normal form theorem of

HNN-extension (see Theorem 2.22).

4.3 The orbifold universal covers of simple handlebodies

Let Q be a simple handlebody with cutting belts fB1; : : : ; Bgg, and PQ be the simple polytope given by
cutting Q with the quotient map q W PQ!Q. Let �orb

1 .Q/ be the orbifold fundamental group with the
presentation in Proposition 4.1. Define a characteristic map on the facet set of PQ,

� W F.PQ/! �orb
1 .Q/;

given by �.F /D sF for F 2 F.PQ/�FB , and �.B/D tB for B 2 FB . Then we construct the space

(4-2) zQD PQ ��
orb
1 .Q/=�;

where .x; g/� .y; h/ if and only if either

� x D y 2 F 2 F.PQ/�FB and gsF D h, or

� .x; y/ 2 .B;B
0

/, B;B 0 2 FB , q.x/D q.y/ and tB �g D h.
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The orbit space of the action of �orb
1 .Q/ on zQ isQ, so the polytope PQ can be viewed as the fundamental

domain of �orb
1 .Q/ acting on zQ. According to Corollary 2.18:

Lemma 4.5 zQ is the universal orbifold cover of Q.

5 Proof of Theorem A

This section is devoted to giving the proof of Theorem A.

5.1 Nonpositively curved cubical complex

A geodesic metric space X is nonpositively curved if it is a locally CAT(0) space. The Cartan–Hadamard
theorem implies that nonpositively curved spaces are aspherical; see [7; 18; 32].

Definition 5.1 (the links in a cubical complex, see [7, Section 7.15] or [18, page 508]) Let K be a
cubical complex. For each vertex v 2K, its (geometric) link, denoted by Lk.v/, is a simplicial complex
defined by all cubes in K that properly contain v with respect to the inclusion. A d -cube c of K that
properly contains v determines a .d�1/-simplex s.c/ in Lk.v/.

Proposition 5.2 (Gromov lemma; see [32] or [18, Corollary I.6.3]) A piecewise Euclidean cubical
complex is nonpositively curved if and only if the link of its each vertex is a flag complex.

5.2 Homology groups of manifold covers over simple handlebodies

Let MQ and zQ be the manifold double and orbifold universal cover over a simple handlebody Q with m
facets, respectively. In this subsection, we discuss the homology groups of MQ and zQ.

5.2.1 Homology groups of MQ By Davis’ result (see [18, Theorem 8.12]),

(5-1) H�.MQ/Š
M

g2.Z2/m

H�.jQj;Fg/

where Fg D
S
si2S.g/

Fi � @jQj, Fi 2 F.Q/ and S.g/D fsi j l.si �g/D l.g/� 1g for a reduced word
g of length l.g/ in .Z2/m. If Q is a simple handlebody of genus g� 0, then jQj '

W
g S

1. By the long
exact sequence of homology groups of .jQj;Fg/, if � � 3, then

H�.jQj;Fg/ŠH��1.Fg/ŠH��1.Kg/

where Kg 'Fg is the dual simplicial complex of Fg , which is a subcomplex of N.Q/. Hence for � � 3,

H�.MQ/Š
M

J�F.Q/

H��1.KJ /

where J is the set of those facets Fi corresponding to all si 2 S.g/.
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For � D 1; 2, we have

0!H2.jQj;Fg/!H1.Fg/
.ig/�
��!H1.jQj/Š Zg

!H1.jQj;Fg/! 0

where ig W Fg ! jQj is an inclusion. Then

H1.MQ/Š
M

g2.Z2/m

coker.ig/� and H2.MQ/Š
M

g2.Z2/m

ker.ig/�:

Remark 5.3 The formula (5-1) is actually Hochster’s formula in the setting of simple handlebodies.
When Q is a simple polytope P , Hochster’s formula [9, Proposition 3.2.11] can also be expressed as

H l.g/�i�1.Fg/Š Tor�i;l.g/ZŒv1;:::;vm�
.K.P /;Z/

where K.P / is the Stanley–Reisner face ring of P .

5.2.2 Homology groups of zQ Davis’ [18, Theorem 8.12] cannot be directly applied to give the
homology groups of zQ since �orb

1 .Q/ is not a Coxeter group when the genus of Q is more than zero.
However, we can employ the method of Davis in [18, Chapter 8] to calculate of the homology groups
of zQ.

Let Q be a simple handlebody with nerve N.Q/, and PQ be the associated simple polytope. Let
G D �orb

1 .Q/ be the orbifold fundamental group of Q. We have known that G is an iterative HNN-
extension on a right-angled Coxeter group W.PQ;FB/. Namely,

G D �orb
1 .Q/Š .� � � ..W.PQ;FB/��B1 /��B2 / � � � /��Bg

where g is the genus of Q. For any w 2G, consider the reduced normal form

w D g0t1g1 � � �gm�1tmgm

where each gi is reduced in W.PQ;FB/, and each ti is one of ft˙1B g which determines an isomorphism
of f�˙1B g on some subgroups of �orb

1 .Q/. Denote the generator set of G by

SD fsF IF 2 F.PQ/�FBg[ ftB IB 2 FBg:

For any word w 2G, put
S.w/D fs 2 S j l.ws/ < l.w/g;

where l.w/ is the word length of the reduced normal form of w in G (i.e. the shortest length between 1
and w in the Cayley graph of G associated with the generator set S). For each subset T of S, let P TQ be
the subcomplex of PQ defined by

P TQ D
[
t2T

Ft ;

where FsF D F for sF 2 F.PQ/�FB and FtB D B
0 for B 2 FB with B � B 0.

Algebraic & Geometric Topology, Volume 25 (2025)



Topology and geometry of flagness and beltness of simple handlebodies 81

Let zQ D PQ � G=� be the universal cover of Q defined as in (4-2). Then we have the following
conclusion which generalizes Davis’ theorem in [18, Theorem 8.12].

Proposition 5.4 The homology of zQ is isomorphic to the direct sum

H�. zQ/Š
M
w2G

H�.PQ; P
S.w/
Q /;

where G D �orb
1 .Q/ has the presentation in Proposition 4.1.

Remark 5.5 It should be emphasized that here PQ is not used as a mirrored space in the sense of Davis
in [18] although it is a simple polytope. Actually, here we just put PQ and �orb

1 .Q/ together to construct
the orbifold universal cover zQ, but �orb

1 .Q/ is not a Coxeter group except that the genus of Q is zero.

Corollary 5.6 If there is an empty k-simplex4k in N.PQ/, then Hk. zQ/¤ 0.

Proof Assume that the vertex set of a empty k-simplex 4k in N.PQ/ is

T D fF1; F2; : : : ; FkC1g

which does not contain the facet in FB (in fact, any facet in FB is not the vertex of any empty simplex of
N.PQ/; this is guaranteed by the definition ofB-belt). LetwD s1s2 � � � skC1. Regard T as fs1; : : : ; skC1g.
Then S.w/D T . Moreover, P S.w/Q D P TQ D

SkC1
iD1 Fi w @4k w Sk�1. Since PQ is a contractible ball,

by the long exact homology group sequence of pair .PQ; P TQ /, we have

Hk.PQ; P
T
Q /ŠHk�1.P

T
Q /ŠHk�1.S

k�1/¤ 0:

Therefore, by Proposition 5.4, Hk. zQ/¤ 0.

5.2.3 Proof of Proposition 5.4 Before we prove Proposition 5.4, we first give some notation (see [18]).

A subset T of S is called spherical if the subgroup generated by T is a finite subgroup of G. Each sF in
a spherical subset T exactly corresponds to a facet F 2F.P /�FB , and F \F 0¤∅ for any sF and sF 0
in a spherical set T . Let WT be the group generated by a spherical subset T . Then WT Š .Z2/#T , where
#T denotes the number of all elements in T .

If the set T is the union of a spherical set TS and a tB for B 2 FB , then

WT DWTS [ tB 0WTS ;

where B 0 is the facet which is identified with B in Q.

Lemma 5.7 Let G be the orbifold fundamental group of a simple handlebody with generator set S. Then
for each w 2G, S.w/ is either a spherical subset of S or the union of a tB and a spherical subset in S.

Proof Let wD g0t1g1 � � �gm�1tmgm be a reduced normal form in G. We might as well assume that this
expression of w is a normal form in the opposite direction for each tB , that is, each gi is a representative
of a coset of WBiC1 or WB 0

iC1
in G, for i D 0; : : : ; m� 1.
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It is easy to see that for F 2 F.P /�FB , sF 2 S.w/ if and only if sF 2 S.tmgm/. If there is a B 2 FB

such that tB 2S.w/, then gmtB D tBg0m where g0mD�B.gm/, and the last tm is t�1B . For another tB 0 ¤ tB ,
it cannot reduce the length of w. Thus the conclusion holds.

For a spherical set T D S.w/, we define an element in ZWT � ZW.PQ;FB/ by the formula

ˇT D
X
w2WT

.�1/l.w/w:

Consider a natural cellular decomposition of PQ given by its facial structure. Let C�.PQ/ and C�. zQ/
denote the cellular chain complexes of PQ and zQ, respectively, and let H�.PQ/ and H�. zQ/ be their
respective homology groups. Since G acts cellularly on zQ, C�. zQ/ is a Z.G/-module.

Let T be a spherical set. Multiplication by ˇT defines a homomorphism ˇT W C�.PQ/! C�.WTPQ/.

Lemma 5.8 C�.P
T
Q / is contained in the kernel of ˇT W C�.PQ/! C�.WTPQ/.

Proof Suppose � is a cell in P TQ . If T is a spherical set, then � lies in some F 2F.PQ/�FB such that
sF 2 T . Let B be a subset of WT such that WT DB[ sFB; then we can write ˇT as

ˇT D
X
w2WT

.�1/l.w/w D
X
v2B

.�1/l.v/.v� vsF /:

Since vF is identified with vsF F in zQ, we have that

ˇT � D
X

.�1/l.v/.v� vsF /� D
X

.�1/l.v/.v� � v�/D 0:

Thus, C�.P TQ /� kerˇT .

Hence, ˇT induces a chain map C�.PQ; P TQ /! C�.WTPQ/, still denoted by ˇT .

For each w 2G:

� If T D S.w/ is a spherical set, we then define a map

�w D wˇT W C�.PQ; P
T
Q /

ˇT
�! C�.WTPQ/

w
�! C�.wWTPQ/:

Hence, we have a map

�w� WH�.PQ; P
T
Q /!H�.wWTPQ/:

� If T D S.w/ D ftBg [ TS where TS is a spherical set, tBs D stB for any s 2 TS implies that
WTS <WB , i.e. B \Fs ¤∅ for any s 2 TS . So B 0 does not intersect any Fs; hence for k > 1 we
have

Hk.PQ; P
T
Q /ŠHk�1.P

T
Q /ŠHk�1

�
P
TS
Q

a
B 0
�
ŠHk�1.P

TS
Q /ŠHk.PQ; P

TS
Q /

where PQ and B 0 are contractible simple polytopes. Now put

�w� WHk.PQ; P
T
Q /ŠHk.PQ; P

TS
Q /

ˇTS
��!H�.WTSPQ/

i�
�!H�.WTPQ/

�w
�!H�.wWTPQ/:
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Next, order the elements of G,
w1; w2; : : :

so that l.wi /� l.wiC1/. For each n� 1, put

Xn D

n[
iD1

wiPQ:

To simplify notation, set w D wn.

Lemma 5.9 Xn�1\wP D wP
S.w/.

Proof Notice that Xn�1 contains a subgraph of Cayley graph of G associated with the generator set S,
where the length between each vertex and the unit element is less than or equal to l.w/. Then

l.ws/D

�
l.w/� 1 if s 2 S.w/;
l.w/C 1 if s 2 S�S.w/:

A chamber wiPQ (i < n) in Xn�1 intersects with wPQ in the facet wF if and only if either wi � sF Dw
for F 2F.P /�FB or wi � t�1F Dw for F 2FB where tF is a torsion-free generator in S; in other words,
either l.wsF /D l.w/� 1 or l.wtF /D l.w/� 1. Therefore, Xn�1\wPQ D wP

S.w/
Q .

Finally let us finish the proof of Proposition 5.4.

Proof of Proposition 5.4 We know from Lemma 5.9 that Xn�1\wPQ DwP
S.w/
Q . Hence, the excision

theorem gives an isomorphism

H�.Xn; Xn�1/
Š
�!H�.wPQ; wP

S.w/
Q /:

Consider the exact sequence of the pair .Xn; Xn�1/,

� � � !H�.Xn�1/
j�
�!H�.Xn/

k��!H�.Xn; Xn�1/! � � � :

We claim that the map k� is a split epimorphism, which is equivalent to the map

kw� WH�.Xn/!H�.PQ; P
S.w/
Q /

being a split epimorphism, where kw� denotes the composition of k� with the excision isomorphism
and left translation by w�1. Consider the map �w� on H�.PQ; P

S.w/
Q / whose image is contained in

H�.wWS.w/PQ/. For every v ¤ 1 in WS.w/, we have l.wv/ < l.w/; hence, wWS.w/PQ �Xn. Hence
the image of �w� is contained in H�.Xn/. All these can be seen from the commutative diagram

H�.Xn; Xn�1/
Š
// H�.wPQ; wP

S.w/
Q /

�w�1
��

H�.Xn/

kw�
..

k�

OO

H�.PQ; P
S.w/
Q /

�w�

mm

ˇ�
��

H�.wWS.w/PQ/

i�

OO

H�.WS.w/PQ/�w
oo
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where ˇ� is induced by multiplication by ˇS.w/ when S.w/ is a spherical set, and is the composition

ˇTS ı i� WHk.PQ; P
T
Q /ŠHk.PQ; P

TS
Q /

ˇTS
��!H�.WTSPQ/

i��!H�.WTPQ/

when S.w/ is the union of a ftBg and a spherical set TS .

Since zQ is the universal cover of Q, H1. zQ/Š 0. For �> 1, it can be see that kw� ı �
w
� is the identity on

H�.PQ; P
S.w/
Q / by above diagram. Hence there is the splitting short exact sequence

0!H�.Xn�1/
j�
�!H�.Xn/

kw��!H�.PQ; P
S.w/
Q /! 0:

This implies that
H�.Xn/ŠH�.Xn�1/˚H�.PQ; P

S.w/
Q /

where H�.X1/DH�.PQ/D 0. Since zQ is the increasing union of the Xn, we have

H�. zQ/D lim
n!1

H�.Xn/Š
M
w2G

H�.PQ; P
S.w/
Q /:

5.3 Proof of Theorem A

Let Q be a simple handlebody and q W PQ!Q be the quotient map by gluing all paired facets in FB .
Then the orbifold universal cover � W zQ!Q of Q can be constructed by (4-2).

Let C.PQ/ be the standard cubical cellular decomposition of PQ. For each cube c 2 C.PQ/, each
component of ��1.c/ is a cube in zQ. Then C.PQ/ determines a cubical cellular decomposition of zQ,
denoted by C. zQ/, such that the link of each point v in C. zQ/ is exactly the nerve N.PQ/ of PQ. Hence,
if Q is flag, then PQ is flag, and so is N.PQ/. By the Gromov lemma, zQ is nonpositively curved. In
fact, zQ is a CAT(0) space. Then by the Cartan–Hadamard theorem, zQ is aspherical. Therefore, Q is
orbifold-aspherical.

On the contrary, if Q is orbifold-aspherical, then zQ is contractible. Using an idea of Davis in [20,
Section 8.2], we shall show that if PQ is not flag then zQ is not contractible. Indeed, if PQ is not flag,
then N.PQ/ contains an empty k-simplex for some k � 2. The dual of this empty k-simplex gives an
essential embedding sphere in zQ. By Corollary 5.6, the fundamental class of such a sphere is nontrivial
in Hk. zQ/, which contradicts that zQ is contractible.

6 Proof of Theorem B

The purpose of this section is to characterize the rank two free abelian subgroup Z˚Z in �orb
1 .Q/ in

terms of a �-belt in Q. Here �orb
1 .Q/ is an iterative HNN-extension over a right-angled Coxeter group.

Theorem B Suppose that Q is a simple n-handlebody. Then there is a rank two free abelian subgroup
Z˚Z in �orb

1 .Q/ if and only if Q contains a �-belt.
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Remark 6.1 The “simple” condition of a handlebody is necessary in above proposition. In fact, it is easy
to see that the orbifold fundamental group of a two-dimensional annulus as a right-angled Coxeter orbifold
is isomorphic to Z˚ .Z2 �Z2/, which contains a rank two free abelian subgroup Z˚Z. Consider
a right-angled Coxeter 3-handlebody Q with a �1-injective annulus-suborbifold B such that B is a
�1-injective suborbifold; it provides a subgroup Z˚Z in its orbifold fundamental group. Of course, such
a Q is not simple. All of these results are the generalization of [7, Lemma 5.22] which is related to the
flat torus theorem in [7, Chapter II.7].

Example 6.2 (squares of Example 3.11) We show that each� in (c) and (d) of Example 3.11 determines
a subgroup Z˚Z in �orb

1 .Q/, whereas cases (a) and (b) do not.

In (a), the four facets F1, F2, F3 and F4 correspond to a suborbifold B which is a quadrilateral in Q�,
but it is not a �-belt in Q. In fact,

i�.�
orb
1 .B//ŠW�=h.s1s3/

2
i Š .Z2/

2
˚ .Z2 �Z2/ < �

orb
1 .Q/

and s1s3; s2s4 generate a subgroup Z2˚Z in i�.�orb
1 .B// < �orb

1 .Q/, where i� W �orb
1 .B/! �orb

1 .Q/ is
induced by the inclusion i W B ,!Q. Thus, there is no subgroup Z˚Z in i�.�orb

1 .B//.

In (b), fF1; F2; F3; F4g does not determine a quadrilateral suborbifold. Without loss of generality, assume
that fF1; F2; F3; F4g bounds only one hole of Q�. Then there are at least 5 generators in �orb

1 .Q/

associated to five facets in PQ, denoted by fF1; F2; F3; F4; F 01g with F1 \BC � F 01 \B
�, where B

is the cutting belt of Q and cut F1 into two facets in PQ. Thus, (b) induces a subgroup of �orb
1 .Q/ as

follows:
Wb WD hs1; s2; s3; s4; s

0
1; t j .si /

2
D 1;8i I .s1s2/

2
D .s2s3/

2
D .s3s4/

2
D .s4s

0
1/
2
D 1I s01 D ts1ti

D hs1; s2; s3; s4; t j .si /
2
D 1;8i I .s1s2/

2
D .s2s3/

2
D .s3s4/

2
D .s4ts1t

�1/2 D 1i

which contains no subgroup Z˚Z.

In (c) or (d), fF1; F2; F3; F4g determines a �-belt B� of Q. If B� does not intersect with any cutting
belt, then B� is kept in PQ, so there is a subgroup Z˚Z<W.PQ;FB/ < �

orb
1 .Q/. If there are some

cutting belts B1; B2; : : : ; Bk intersecting transversely with only a pair of disjoint edges of B�, without
loss of generality, assume that B1; B2; : : : ; Bk intersect with two disjoint edges f1 and f3 of B�, where
some cutting belts may cut f1 and f3 many times; see (c) in Figure 7. Then there is also a subgroup Z˚Z

generated by s1s3 and s2t1t2 � � � tks4t�1k � � � t
�1
2 t�11 where each ti is one of ft˙1B g. Also see Figure 9.

6.1 The special case where Q is a simple polytope

When Q is a simple polytope, Theorem B can be followed by Moussong’s theorem; see [46] or [18,
Corollary 12.6.3].

Theorem 6.3 (Moussong’s theorem; see [46] or [18, Corollary 12.6.3]) If WP is the right-angled
Coxeter group of a simple polytope P , then there exists a Z˚Z subgroup in WP if and only if there is a
�-belt in P .
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B1B2Bk�1Bk

s�1.s/�k ı � � � ı�1.s/

F

s2s4

s1s
.1/
1s

.k�1/
1

s
.k/
1

s
.k/
3 s

.k�1/
3 s

.1/
3

s3

Figure 9: �-belt and Z˚Z.

Next let us deal with the case of a simple handlebody. Let Q be a simple handlebody of genus g> 0, and
PQ be the associated simple polytope obtained by cuttingQ open along cutting belts fBi j i D 1; 2; : : : ; gg.

6.2 Proof of the sufficiency of Theorem B

Assume that there is a�-belt B� given by fF1; F2; F3; F4g in N.Q/. After cutting Q open along cutting
belts Bi , i D 1; 2; : : : ; g, by Lemma 3.12, there are the following two cases.

� The B� is still kept in PQ. Then B� gives a subgroup Z˚Z in W.PQ;FB/ < � � � < �orb
1 .Q/,

which is generated by s1s3 and s2s4.

� The B� is not kept in PQ. Then there is only one situation in which some cutting belts Bi intersect
transversely with a pair of disjoint edges of B�, say F1 and F3. If B� intersects transversely with
cutting belts B1; B2; : : : ; Bk in turn, then s1s3 and s2t1 � � � tks4t�1k � � � t

�1
1 generate a subgroup

Z˚Z in �orb
1 .Q/, as in cases (c) or (b) on Example 3.11. See also Example 6.2.

6.3 Proof of the necessity of Theorem B

Cutting Q open along a cutting belt B , we get a right-angled Coxeter n-handlebody of genus g� 1,
denoted by Qg�1. Conversely, Q can be recovered from Qg�1 by gluing its two disjoint boundary facets
associated with B , which implies that the orbifold fundamental group of Q is an HNN-extension on
�orb
1 .Qg�1/. Write Gg�1 D �

orb
1 .Qg�1/, and let WBC and WB� be two isomorphic subgroups of Gg�1

determined by two copies of B . Then we have

(6-1) �orb
1 .Q/ŠGg�1�� D hGg�1; t j t

�1at D �.a/; a 2WB�i

where � WWB� !WBC is an isomorphism by mapping s0 2WB� into s 2WBC . Generally, �orb
1 .Q/ is

isomorphic to g HNN-extensions on the right-angled Coxeter group W.PQ;FB/ as we have seen in the
proof of Proposition 4.3:

�orb
1 .Q/ Gg�1 � � �  G1 G0 DW.PQ;FB/;
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where each Gk is also an HNN-extension over Gk�1 for 1 � k � g� 1, and G0 D W.PQ;FB/ is a
right-angled Coxeter group.

According to the normal form theorem of HNN-extensions (see Theorem 2.22), each element x in �orb
1 .Q/

has a unique iterative normal form. First, write

x D g0t
�1
g g1t

�2
g � � �gn�1t

�n
g gn

as a normal form for tg where gi 2 Gg�1. Next, inductively each gi is also a normal form in Gk for
1� k � g� 1. More generally, x has a unique form

(6-2) x D g0t1g1 � � �gm�1tmgm

where each gi is reduced in G0 D W.PQ;FB/, and each ti is one of ft˙1B g which determines an
isomorphism of f�˙1B g on some subgroups of �orb

1 .Q/. This expression of x is a normal form with respect
to all possible tB . The expression in (6-2) is called a reduced normal form of x in �orb

1 .Q/. The number
m is called the (total) t -length of x.

By applying the Tits theorem (see Theorem 2.20) and the normal form theorem of HNN-extensions (see
Theorem 2.22), we have the following conclusion.

Lemma 6.4 Two reduced words x and y are the same in �orb
1 .Q/ if and only if one of x and y can

be transformed into the other one by a sequence of commutations of right-angled Coxeter groups and
t -reductions of HNN-extensions.

Next, we prove two lemmas.

Lemma 6.5 If there is a subgroup Z˚Z in �orb
1 .Q/, then one generator of Z˚Z can be presented as a

cyclically reduced word in W.PQ;FB/.

Proof Assume that there is a subgroup Z˚Z in �orb
1 .Q/, which is generated by two reduced normal

forms as in (6-2),
x D g0t1g1 � � �gm�1tmgm; y D h0t

0
1h1 � � � hn�1t

0
nhn:

Then xy D yx in �orb
1 .Q/. By Lemma 6.4, xy and yx have the same reduced normal form as in (6-2).

We do t -reductions on
xy D g0t1g1 � � �gm�1tmgm � h0t

0
1h1 � � � hn�1t

0
nhn;

yx D h0t
0
1h1 � � � hn�1t

0
nhn �g0t1g1 � � �gm�1tmgm:

Since x and y are reduced normal forms, xy and yx have the same tails. Without loss of generality,
assume that m� n. Write Qy D t 01h1 � � � hn�1t

0
nhn D h

�1
0 y. Then x can be written as

x D g0t1g1 � � � tm�ngm�n Qy D g0t1g1 � � � tm�ngm�n � h
�1
0 y:

Since x and y generate Z˚Z, both y and xy�1 do so. The word xy�1 has a shorter t -length. We further
do t -reductions on xy�1 to get a normal form, also denoted by x.

Algebraic & Geometric Topology, Volume 25 (2025)



88 Zhi Lü and Lisu Wu

We can always continue to do this algorithm, so that we can take either x or y fromW.PQ;FB/. Suppose
y D h 2W.PQ;FB/.

Furthermore, we can assume that h is a cyclically reduced word in W.PQ;FB/. In fact, if h is not
cyclically reduced, without loss of generality, assume that h is of the form w�1h0w, where w is an
arbitrary word and h0 is a cyclically reduced word in W.PQ;FB/. Then we replace h by h0, such that h0

and wxw�1 generate a Z˚Z in �orb
1 .Q/.

Lemma 6.6 Let x D g0 � t1 � � � tk be a reduced normal form , where g0 2 W.PQ;FB/ and each ti is
one of ft˙1B ; B 2FBg, and h be a cyclically reduced word in W.PQ;FB/. Then x; h cannot generate a
Z˚Z in �orb

1 .Q/.

Proof If x; h generate a Z˚Z in �orb
1 .Q/, then

x � hD g0 � t1 � � � tk � hD g0h
0
� t1 � � � tk;

where h0 D �1 ı � � � ı�k.h/ is the image of the composition of some �i on h.

We first claim that h0 is reduced in W.PQ;FB/, and the word length of h0 and h are equal. In fact, for
each i , �i is an isomorphism from some WB� to WBC which maps generators to generators, and all WBC
and WB� are subgroups of W.PQ;FB/.

Next, we claim that h D h0. In fact, xh D hx implies that g0h0 D hg0, that is h0 D g�10 hg0. Let
hD s1 � � � sn. If there exists a letter s in g0 such that:

� l.hs/D l.h/C 1 and hs ¤ sh, then l.h0/ > l.h/ which is a contradiction.

� l.hs/D l.h/� 1, then there is a letter sk D s in h such that sj s D ssj ¤ 1 for any j > k. So h
equal to a new word s1 � � � sk�1skC1 � � � sns. Moreover, g0h0 D hg0 implies that there is a letter
si D s in hg0 can be moved to the head of word hg0.

– If i D k, then s commutes with all letters except sk in h. Since there are two s canceled in hg0
by the relation s2 D 1, there are two canceled s in g0h0. Since g0 is reduced, s commutes with
all letters except s in g0 and there is an s that can be moved to the head of word h0. Now we
consider new Nh0 WD sh0 and Nh WD sh. Then there is no s in sh and s commutes with all letters
in sh.

– Otherwise, i ¤ k. Then h equals to a word with form s Nhs, which contradicts that h is cyclically
reduced.

Hence all letters in g0 commute with h. That is, g0hD hg0 D g0h0, Thus hD h0 D �1 ı � � � ı�k.h/.

If �1 ı � � � ı �k D id, then the associated sequence t1 � � � tk D 1, which contradicts that x is reduced. If
�1ı� � �ı�k¤ id has a fixed point in all letters in h, then there is a letter s0 in h such that �1ı� � �ı�k.s0/D s0.
Furthermore, s0; �k.s0/; : : : ; �1ı� � �ı�k�1.s0/ determine a noncontractible facet inQ, which contradicts
that Q is simple. More generally, if �1 ı � � � ı �k ¤ id has no fixed point, then there is a generator s1
as a letter in h, such that s2 D �1 ı � � � ı�k.s1/¤ s1. Continue this procedure; one can get a sequence
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s1; s2; s3; : : :, such that each si is a generator as a letter in h and si D �1 ı � � � ı�k.si�1/. However, the
word length of h is finite; thus there must be two same elements in the sequence. Geometrically, this
means that there is a noncontractible facet in Q, which contradicts that Q is simple.

Now let us give the proof of the necessity of Theorem B in the general case.

Proof of the necessity of Theorem B Suppose that there are two elements x and y in �orb
1 .Q/ which

generate a rank two free abelian subgroup Z˚Z. Our arguments are divided into the following steps.

Step 1 Simplify two generators x and y of Z˚Z by doing t -reductions.

Lemma 6.5 tells us that one of x or y can be chosen as a cyclically reduced word h in W.PQ;FB/,
say y D h. Now if x is also a word in W.PQ;FB/ (i.e. the t-length of x is zero), then by Moussong’s
theorem (see Theorem 6.3), there is a �-belt in PQ which can appear in Q, as desired.

Next let us consider the case in which the t -length of x is greater than zero. Let

x D g0t1g1 � � �gm�1tmgm

be a reduced normal form in �orb
1 .Q/. Then xhD hx implies that

gmhD hgm; tm � hD �m.h/ � tm;

gm�1 ��m.h/D �m.h/ �gm�1; tm�1 ��m.h/D �m�1 ı�m.h/ � tm�1;

:::

g0 ��1 ı � � � ı�m.h/D �1 ı � � � ı�m.h/ �g0;

where each �i WWBi !WB 0
i

is an isomorphism determined by some Bi 2FB , each �i ı � � � ı�m.h/ is an
expression in WB 0

i
\WBi�1 for i D 2; : : : ; m and �1 ı � � � ı�m.h/ 2WB 01 for h 2WBm . Here two Bi and

Bj may correspond to the same B 2 FB .

Step 2 Find facets F1 and F3 around B or B 0 in PQ.

Without loss of generality, h 2W.PQ;FB/ is a cyclically reduced word. Since h is a free element in
WBm \W.PQ;FB/, we can take two generators s1 and s3 in h corresponding to two disjoint facets
F1 and F3 of PQ such that F1 and F3 intersect with Bm. In particular, s1s3 is a free element in
WBm <W.PQ;FB/DG0 < � � �<Gg�1 <Gg D �

orb
1 .Q/.

Step 3 Find the facet F2 which intersects F1 and F3.

If gm ¤ 1, since x is a normal form, then gm is a representative of a coset of WBm in �orb
1 .Q/. Thus

there is a generator s2 … S.WBm/ in gm such that hs2 D s2h, where S.WBm/ is the generator set of WBm .
This generator s2 determines a facet F2 in PQ, as desired.
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If gm D 1, then x � hD g0t1g1 � � � tm � hD g0t1g1 � � � tm�1gm�1 ��m.h/ � tm: A similar argument shows
that either there is a s2 … S.WBm�1/ as desired, or

x � hD g0t1g1 � � � tm�1 ��m.h/ � tm D g0t1g1 � � � tm�2gm�2 ��m�1 ı�m.h/ � tm�1tm:

We can continuously carry out the above procedure. Finally we can arrive at two possible cases:

� There exists some gi ¤ 1 for i > 0. Then there must be a letter s2 in gi which determines the
required F2.

� x is of the form x D g0 � t1 � � � tm, where g0 2W.PQ;FB/ and t1 � � � tm is a word formed by letters
in ft˙1B g. By Lemma 6.6, x and h cannot generate a subgroup Z˚Z in �orb

1 .Q/, so xDg0 �t1 � � � tm
is impossible.

Thus, we can always find a facet F2 from a nontrivial gi in the reduced form (6-2) of x where i > 0.

Step 4 Find a facet F4 such that F1, F2, F3 and F4 determine a �-belt in Q.

We proceed our argument as follows.

(I) If there is only a gi¤1 (i.e. gj D1 for any j ¤ i ) in the expression of x, then xD t1 � � � ti �gi �tiC1 � � � tm,
where i must be more than zero by Lemma 6.6. Now xh D hx implies that t1 � � � ti � tiC1 � � � tm D 1.
Actually, if t1 � � � ti � tiC1 � � � tm ¤ 1, then �1 ı � � � ı �m.h/ D h implies that there is a noncontractible
facet in Q, which is impossible (also see the proof of Lemma 6.6). Thus, t1 � � � ti D .tiC1 � � � tm/�1, so
x D t1 � � � ti � gi � tiC1 � � � tm D .tiC1 � � � tm/

�1gi .tiC1 � � � tm/. Since x; h generate a Z˚Z, we see that
gi ; �iC1 ı � � � ı�m.h/ generate a Z˚Z in W.PQ;FB/. Then by Moussong’s theorem (see Theorem 6.3),
there is a �-belt in Q.

(II) If there are at least two nontrivial gi ; gj ¤ 1 in x where 0 < j < i �m but gk D 1 for all k > j and
k ¤ i , then one may write x D � � � tj �gj � tjC1 � � � ti �gi � tiC1 � � � tm. So we have

(6-3) xhD � � � tj �gj � tjC1 � � � ti �gi � tiC1 � � � tm � h

D � � � tj �gj � tjC1 � � � ti �gi � h
0tiC1 � � � tm

D � � � tj �gj � tjC1 � � � ti � h
0gi � tiC1 � � � tm

D � � � tj �gj � h
00
� tjC1 � � � ti �gi � tiC1 � � � tm

where h0 D �iC1 ı � � � ı�m.h/ and h00 D �jC1 ı � � � ı�m.h/. Since xhD hx, we have that gjh00 D h00gj ,
so we can take a generator s4 in gj (not in S.WBj /) such that h00s4D s4h00. Similarly, here s4 determines
a facet F4 of PQ such that F4 \F 001 ¤ ∅ and F4 \F 003 ¤ ∅ where F 001 and F 003 are two facets of PQ
determined by the images of �jC1 ı � � � ı�m on s1 and s3. In particular, F2 ¤ F4 in PQ. Otherwise, the
intersection of q.F1/ and q.F2/ in Q is disconnected where q WQ! PQ is the quotient map defined in
(4-1), which contradicts that Q is simple. Hence, we get a �-belt in Q.

(III) If there are only g0 and gi that are nontrivial in x where i > 0, then one may write

x D g0t1 � � � ti �gi � tiC1 � � � tm:
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Without loss of generality, assume that g0 and gi are two reduced words in W.PQ;FB/. Now if
x D g0t1 � � � ti � gi � tiC1 � � � tm D t1 � � � ti � g

0
0gi � tiC1 � � � tm where g00 D ��1i ı � � � ı �

�1
1 .g0/, then by

the proof of Lemma 6.6, xh D hx implies that t1 � � � ti � tiC1 � � � tm D 1. As in case (I), g00gi and
h0 D �iC1 ı � � � ı�m.h/ generate a Z˚Z in W.PQ;FB/. Hence we can find a � in Q. If

x D g0t1 � � � ti �gi � tiC1 � � � tm D g
0
0t1 � � � tjg

00
0tjC1 � � � ti �g

000
0 gi � tiC1 � � � tm

where g000 cannot cross tjC1 and g0 D g00 ��1 ı � � � ı�j .g
00
0/ ��1 ı � � � ı�i .g

000
0 /, then as in case (II), there

is a generator s4 in g000 which is not in S.WB 0
jC1

/. Then s4 determines a facet F4 of PQ such that F4
intersects with F1 and F3 in Q. So there is a �-belt in Q.

Together with all arguments above, we complete the proof.

7 Applications

Throughout the following, we always assume that Q is a genus g simple handlebody with m facets
and M is the manifold double over Q. Moreover, for the sake of discussion, we always assume that
M is a smooth manifold. In this section, we shall show that some B-belts in Q can play a role in the
obstruction of the existence of some Riemannian metrics on M . First we can see that every B-belt of Q
is a �-injective suborbifold in the sense of the following Lemma 7.1.

Lemma 7.1 Let i W B ,!Q be a belt of Q. Then i� W �orb
1 .B/! �orb

1 .Q/ is an injection. Moreover , if
B is not orbifold-aspherical , then Q is not orbifold-aspherical.

Proof If B is a cutting belt of Q, then by Lemma 4.2, B is �1-injective.

If B is a belt of Q which is disjoint with any cutting belts of Q, then B can be embedded into PQ, so
the induced map �orb

1 .B/! �orb
1 .PQ/ is an injection. Thus i� W �orb

1 .B/! �orb
1 .PQ/! �orb

1 .Q/ is an
injection.

If B intersects with some cutting belts, then we can always do some deformation on B such that it
intersects transversely with those cutting belts. Thus, we may assume that B is split into B1; B2; : : : ; Bk
by cutting belts E1; E2; : : : ; Ek�1 such that for each i , Bi and BiC1 exactly intersect with Ei since all
Ei are simple polytopes and jBj is a ball. In addition, it is also easy to see that for each i , �orb

1 .Bi / is a
right-angled Coxeter group. Now

�orb
1 .B/D �orb

1 .B1/��
orb
1 .B2/� � � � ��

orb
1 .Bk/=hR.Ei / j i D 1; : : : ; k� 1i

where R.Ei / is a relation set consisting of all equations sD t , each of which is associated with Fs �Ei Ft
where Fs 2 F.Bi / and Ft 2 F.BiC1/.

Now for g 2 �orb
1 .Bi /, i�.g/D t�1i�1 � � � t

�1
1 gt1 � � � ti�1. Define � W �orb

1 .Q/! �orb
1 .B/,

�.s/D

�
s if Fs 2

S
F.Bi /;

1 if Fs 2 F.PQ/�
S

F.Bi /;
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where all torsion free generators are mapped to 1. Then it is clear that � is well defined and � ı i� D id.
Hence, i� is an injection.

Let zQ and zB be the universal cover of Q and B , respectively. If B is not orbifold-aspherical, then there
is an integer k � 2 such that �k. zB/¤ 0 and �i . zB/D 0 for any 1 � i < k. By the Hurewicz theorem,
Hk. zB/ Š �k. zB/ ¤ 0. Hence by Proposition 5.4 there is a �k-belt in B . So there is a �k-belt of Q.
Hence by Theorem A, Q is not orbifold-aspherical.

Lemma 7.2 The manifold double of a simple handlebody is orientable.

Proof Let Q be a simple n-handlebody with m facets and cutting belts fB1; : : : ; Bgg, PQ be the
associated simple polytope, and M DQ� .Z2/m=� be the manifold double over Q, as defined in (2-1).
It suffices to prove that Hn.M IZ/ŠZ. We shall use the proof method of Nakayama and Nishimura (see
[47, Theorem 1.7]). The combinatorial structure of PQ defines a natural cellular decomposition of M .
We denote by f.Ck.M/; @k/g the chain complex associated with this cellular decomposition. In particular,
Cn.M/ and Cn�1.M/ are the free abelian groups generated by fPQg� .Z2/m D f.PQ; g/ j g 2 .Z2/mg
and F.PQ/� .Z2/m=�0 D fŒF; g� j F 2 F.PQ/; g 2 .Z2/mg, respectively, where the equivalence class
of F.PQ/� .Z2/m is defined by the equivalence relation

.F; g/�0 .F; g � eF / if F 2 F.PQ/�FB ;

.BC; g/�0 .B�; g/ if BC; B� 2 FB :

It should be pointed out that actually there is a characteristic map � W F.Q/! .Z2/m in the construction
of M D Q � .Z2/m=� such that f�.F / D eF j F 2 F.Q/g is the standard basis fei j i D 1; : : : ; mg
of .Z2/m. For any facet F 0 in F.PQ/�FB , there must be a facet F in F.Q/ such that F 0DF or F 0¤F ,
so F 0 and F are colored by the same element eF of .Z2/m. For any B in FB , since IntB � Int.Q/, we
adopt the convention that B is colored by the unit element e0 of .Z2/m. In other words, the characteristic
map � W F.Q/! .Z2/m induces a compatible characteristic map �0 W F.PQ/! .Z2/m such that for
any F 0 2 F.PQ/�FB , eF 0 D �0.F 0/D �.F /D eF where F 2 F.Q/ with F 0 � F , and for B in FB ,
�0.B/D e0.

We give an orientation on each facet Fi and B˙i such that the orientation of BCi is exactly the inverse
orientation of B�i , so

@PQ D
X

F 2F.PQ/

F D F1C � � �CFm0 CB
C
1 C � � �CB

C
g CB

�
1 C � � �CB

�
g D

X
F 2F.PQ/�FB

F

where m0 is the number of all facets in F.PQ/�FB .

Let cn D
P
g2.Z2/m

ng.P; g/ be an n-cycle of Cn.M/ where ng 2 Z. Then

@.cn/D

� X
g2.Z2/m

ng
X

F 2F.PQ/

.F; g/

�
D

X
ŒF;g�2..F.PQ/�F.B//�.Z2/m/=�0

.ng CngeF /ŒF; g�D 0;
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which induces that ng D �ngeF for any facet F 2 F.PQ/�FB and g 2 .Z2/m. Let l.g/ denote the
word length of g presented by feF g. For any g 2 .Z2/m, there exists a subset Ig D fFi1 ; : : : ; Fikg of
F.PQ/�FB such that g D

Q
F 2Ig

eF . Then we see easily that

ng D�ngeFi1
D ngeFi1

eFi2
D � � � D .�1/l.g/ng

Q
F2Ig eF

D .�1/l.g/ne0

so cn D ne0
P
g2.Z2/m

.�1/l.g/.P; g/. Then we obtain that Hn.M IZ/ D ker @n Š Z is generated byP
g2.Z2/m

.�1/l.g/.P; g/; hence M is orientable.

7.1 Nonpositive curvature

Recall that a geodesic metric space X is nonpositively curved if it is a locally CAT(0) space. In general,
X is said to be of curvature � k (in the sense of Alexandrov) if it is locally a CAT(k) space. See [7,
Definition 1.2, page 159].

Theorem 7.3 [7, Theorem 1A.6, page 173] A smooth Riemannian manifold N is of curvature � k in
the sense of Alexandrov if and only if the sectional curvature of N is � k.

Proposition 7.4 [50, Corollary 6.2.4] If .N; g/ is a complete Riemannian manifold of nonpositive
curvature , then the fundamental group is torsion free.

Let Q be a simple handlebody of dimension n� 3 and genus g, and M !Q be the smooth manifold
double over Q, as defined in (2-1). Let PQ be the simple polytope obtained from Q by cutting open
along g disjoint cutting belts B1; : : : ; Bg in Q. More precisely, PQ can be obtained in the following way:
For each belt Bi , choose a regular neighborhood N.Bi / of Bi that is homeomorphic to Bi � Œ�1; 1� as
manifolds with corners. Clearly N.Bi / is identified with a simple polytope, and it can also be understood
as the disk D1-bundle of the trivial normal bundle of Bi in Q. Then we get PQ by removing the interiors
of trivial D1-bundles Bi � Œ�1; 1� of all Bi .

In order to use the Gromov lemma as above, we need a cubical cellular structure of the manifold double
M over Q. For this, we perform the following procedure:

(1) First we decompose Q into more pieces,

QD PQ

g[
iD1

NC.Bi /[N
�.Bi /;

where NC.Bi /D Bi � Œ0; 1� and N�.Bi /D Bi � Œ�1; 0� satisfy N.Bi /DNC.Bi /[N�.Bi /.

(2) Next, the standard cubical decompositions of PQ and all N˙.Bi / determine a right-angled Coxeter
cubical cellular decomposition of Q, denoted by C.Q/. Specifically, all cone points of PQ and
all N˙.Bi / will be 0-cells with trivial local group in C.Q/. There are two kinds of k.>0/-
cubes in the cubical decompositions of PQ and all N˙.Bi /, each of which either intersects
transversely with an .n�k/-face f n�k D Fi1 \ � � � \Fik or intersects transversely with an .n�k/-
face f n�k DFi1\� � �\Fik�1\Bi . The first type of cubes determine right-angled Coxeter cubical
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cells of the form ek=.Z2/k in C.Q/, and the second type of cubes determine right-angled Coxeter
cubical cells of the form ek=.Z2/k�1. Then, C.Q/ is obtained by attaching each pair associated
with Bi of the second type of cubes together. It is clear that C.Q/ is a right-angled Coxeter cubical
cellular decomposition of Q.

(3) Finally, by pulling back C.Q/ to M via the covering map p WM !Q, one can obtain a cubical
cellular decomposition of M , denoted by C.M/, such that each cube in C.M/ is a connected
component of p�1.c/ for c in C.Q/. In particular, all vertices in C.M/ exactly consist of the
liftings of all cone points in C.Q/.

Lemma 7.5 Let v be a vertex in C.M/. Then Lk.v/ in C.M/ is combinatorially isomorphic to one of
the nerves N.PQ/, N.NC.Bi // or N.N�.Bi //.

Proof In fact, if p.v/ is the cone point of PQ, then each k.>0/-cube adjacent to v gives a .k�1/-simplex
in N.PQ/, which corresponds to an .n�k/-face of PQ. Therefore, Lk.v/ŠN.PQ/. The same argument
can be applied to the case where p.v/ is the cone point of NC.Bi / or N�.Bi /.

Proposition 7.6 M is nonpositively curved if and only if Q is flag.

Proof Let C.M/ be the cubical cellular decomposition of M discussed above. The Gromov lemma
(see Proposition 5.2) tells us that M is nonpositively curved if and only if the link of each vertex in the
cubical cellular decomposition of M is flag. By Lemma 7.5, the latter of the above statement means
that N.PQ/ and all N.N˙.Bi // are flag, so PQ and all N˙.Bi / are flag simple polytopes. This is also
equivalent to saying that Q is flag. Thus, if a simple handlebody Q is flag, then its manifold double M is
nonpositively curved.

Conversely, if M is nonpositively curved, then by the Cartan–Hadamard theorem, M is aspherical. Then
Q is orbifold-aspherical. By Theorem A, Q is flag.

7.2 Strictly negative curvature

Proposition 7.7 (Preissmann [50, Theorem 6.2.6]) If .N; g/ is a compact manifold of negative curvature ,
then any abelian subgroup of the fundamental group is cyclic.

Proposition 7.8 (Gromov [32]) Let C be a cubical complex. Suppose that the link of each vertex in C

is flag and contains no �. Let us give C a .N;��/ geometry, where each cube in C is isomorphic to the
unit cube in the hyperbolic space of curvature ��. If � is sufficiently small then K.C/� ��.

Lemma 7.9 Let Q be a simple handlebody with m facets , and M be the manifold double over Q. Then
Z˚Z< �1.M/ if and only if Z˚Z< �orb

1 .Q/.

Proof If Z˚Z< �1.M/, then the short exact sequence

1! �1.M/! �orb
1 .Q/ �

�! .Z2/
m
! 1

Algebraic & Geometric Topology, Volume 25 (2025)



Topology and geometry of flagness and beltness of simple handlebodies 95

induces that Z˚Z < �1.M/ < �orb
1 .Q/. Conversely, if Z˚Z < �orb

1 .Q/, then by Theorem B, there
is a �-belt in Q and Z˚Z < �orb

1 .Q/ is generated by two pairs of disjoints facets in �. Denote the
generators of Z˚Z by x D s1s3 and y D s2t1t2 � � � tks4t�1k � � � t

�1
2 t�11 where each ti is one of ft˙1B g;

then �.x2/D �.y2/D 1. Hence x2; y2 2 ker�Š �1.M/. So Z˚Z< �1.M/.

Proposition 7.10 If M admits a strictly negative curvature , then Q is flag and contains no �-belt.
Specially, if Q is a simple polytope , then M admits a strictly negative curvature if and only if Q is flag
and contains no �-belt.

Proof If M admits a strictly negative curvature, then by Proposition 7.6, Q is flag. Furthermore, if there
is a �-belt in Q, then by Theorem B, there is a rank-two abelian subgroup in �orb

1 .Q/. By Lemma 7.9,
there is a subgroup Z˚Z in �1.M/. By Preissmann’s result (Proposition 7.7), M cannot admit a strictly
negative curvature. Hence, Q contains no �-belt.

When Q is a simple polytope, then the standard cubical cellular decomposition of Q induces a cubical
cellular decomposition of M , denoted by C.M/, such that each point v 2 C.M/ has link N.Q/. By a
result of Gromov (Proposition 7.8), if N.Q/ is flag and contains no �-belt, then M admits a strictly
negative curvature.

Remark 7.11 We are inclined to think that M admits a strict negative curvature if a simple handlebody
Q is flag and contains no �-belt. But we cannot find a suitable cubical decomposition of M so as to use
Gromov’s result. Of course, this is related to the weak hyperbolization conjecture: “Let N be a closed
aspherical manifold. Then either �1.N / contains Z˚Z or �1.N / is Gromov-hyperbolic”. See [37,
Conjecture 20.12].

7.3 Hyperbolic curvature

When Q is a simple 3-polytope, the Pogorelov theorem, which is right-angled case of the Andreev
theorem (see [2; 53]), states that Q admits a right-angled hyperbolic structure if and only if it is flag and
contains no 4-belt, where “right-angled” means that all dihedral angles are �=2. This gives a combinatorial
equivalent description of the hyperbolicity of simple 3-polytopes as a right-angled Coxeter orbifold. Now
Q is also called a (right-angled) hyperbolic polyhedra in H3.

As a generalization of 3-dimensional hyperbolic polyhedra, a 3-manifold with corners is hyperbolic if
its interior admits a hyperbolic metric which can be extended to the boundary such that its all faces are
totally geodesic (or locally convex). Moreover we say that a 3-manifold with corners is right-angled
hyperbolic if its all dihedral angles are �=2.

Notice that a hyperbolic 3-manifold with corners is not right-angled in general. A 3-manifold with corners
can be equipped with many different orbifold structures. A hyperbolic structure on a 3-manifold with
corners should be compatible with an orbifold structure on it. Hence there may be different hyperbolic
structures on a 3-manifold with corners. The hyperbolization of 3-manifolds with corners corresponds
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to the generalization of the Andreev theorem [2; 53]. This question is still open now. However, the
hyperbolic structure of a hyperbolic closed 3-orbifold (or 3-manifold) is unique by the Mostow rigidity
theorem (see [45]).

Here we mainly consider the right-angled hyperbolicity of simple 3-manifolds with corners, where a
simple 3-manifold with corners is given by forgetting the orbifold structure on a simple 3-orbifold. Then
one can obtain the same understanding for right-angled hyperbolicity from the following two geometric
objects:

(1) a right-angled hyperbolic simple 3-manifold with corners;

(2) a hyperbolic simple 3-orbifold (as a right-angled Coxeter 3-orbifold).

Thus, a right-angled hyperbolic simple 3-manifold with corners is a hyperbolic simple 3-orbifold, and
vice versa.

Proposition 7.12 Let Q be a 3-dimensional simple handlebody. Then M is hyperbolic if and only if Q
is flag and contains no �-belt.

Proof Together with Perelman’s work, Thurston’s hyperbolization theorem implies that a closed orientable
3-manifold is hyperbolic if and only if it is aspherical and atoroidal, where if there is no subgroup Z˚Z

in �1.M/, then M is atoroidal. By Lemma 7.2, M is always orientable. Together with Theorems A
and B and Lemma 7.9, we know that M is aspherical and atoroidal if and only if Q is flag and contains
no �-belt.

By 3-dimensional hyperbolic manifold theory (see [49]), M is hyperbolic if and only if Q is hyperbolic.
Hence, we have:

Corollary 7.13 Q is right-angled hyperbolic as a 3-manifold with corners if and only if Q is flag and
contains no �-belt.

For a higher-dimensional simple handlebody, the fundamental group of a closed hyperbolic manifold is a
discrete convex-cocompact subgroup of Isom.Hn/, and contains no subgroup Z˚Z. Hence, if M is
hyperbolic, then Q must be flag and contains no �-belt. By a result in [18, Corollary 6.11.6] there must
exist a triangle or quadrilateral face in a simple polytope of dimension greater than 4. So

� a simple handlebody with dimension greater than 4 cannot be hyperbolic.

In the 4-dimensional case, it is not clear whether only 120-cells are hyperbolic simple 4-polytopes;
see [30].

7.3.1 3-handlebodies with simplicial nerve A 3-handlebody with simplicial nerve is just a simple
3-orbifold whose underlying space is a 3-handlebody. Let Q be a 3-handlebody with simplicial nerve
and with genus g > 0. Next we show that Q can always be cut into a simple polytope along some
codimension-one B-belts.
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pushBiBj

Ff1

Ff2

A

Figure 10: Modifying the boundary of Bi .

Lemma 7.14 A 3-handlebody with simplicial nerve is a simple 3-handlebody.

Proof Let Q be a 3-handlebody of genus g� 0 with simplicial nerve. If gD 0, then it is easy to check
that Q is a simple 3-polytope by the Steinitz theorem and [41, Proposition 3.4]. If g> 0, let

f.D2i ; @D
2
i / ,! .jQj; @jQj/ j i D 1; 2; : : : ; gg

be some disjoint compressing 2-disks in jQj such that jQj is cut into a connected 3-ball along those
compressing 2-disks. Considering the facial structure determined by the triangulation N.Q/ of @jQj, we
can always do some slight deformations for the boundaries of compressing 2-disks on faces of Q, so that
fD2i g can be modified into some embedded suborbifolds fBig of preserving codimension in Q. Each Bi
is a polygon.

Given a Bi , by the definition of B-belts, we see that Bi is not a B-belt if and only if there exist two
nonadjacent edges f1 and f2 in Bi such that

(i) Ff1 \Ff2 ¤∅ (probably Ff1 and Ff2 can even be the same face of Q);

(ii) Ff1 [Ff2 can deformatively retract onto Bi in jQj (in fact, Ff1 [Ff2 can deformatively retract
onto @B in @jQj);

where Ff1 and Ff2 are two 2-faces ofQ that contain f1 and f2 respectively. So, if Bi is not a B-belt, then
there is no hole in the area A in @jQj surrounded by Ff1 , Ff2 and Bi . Then we can modify the boundary
of Bi by pushing the retract of Ff1 [Ff2 into Ff1 and Ff2 , and throwing some edges of Bi away, as
shown in Figure 10, so that one can obtain a new B 0i with fewer edges which intersects transversely with
Ff1 \Ff2 . In particular, if Ff1 D Ff2 , then f1 and f2 will become the same edge in B 0i , and if Ff1 ¤ Ff2
then f1 is adjacent to f2 in B 0i . In addition, if there is also another suborbifold Bj which intersects with
the area A in @jQj, this means that Bj is not a belt, too. The above “pushing” process will move the
boundary of Bj out from the area A and modify Bj into B 0j with fewer edges such that B 0i \B

0
j D ∅.

Since Bi is a polygon with finite edges, this process can end after a finite number of steps until one has
modified Bi into an B-belt which does not intersect with other Bj .
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(a) (b) (c) (d)

(e)

(f)ideal triangles

Figure 11: Ideal nerves.

We can perform the same procedure to other non-B-belts in fBj gj¤i . Finally one can obtain a set of
disjoint cutting belts such that Q is cut open into a simple 3-polytope along those cutting belts, implying
that Q is a simple 3-handlebody.

Hence, Proposition 7.12 still holds for 3-handlebodies with simplicial nerve.

Proposition 7.15 A 3-handlebody with simplicial nerve (the existence of cutting belts is intrinsic) is
right-angled hyperbolic as a 3-manifold with corners if and only if Q is flag and contains no �-belt.

7.3.2 3-handlebodies with ideal nerve We say that Q is a 3-handlebody with ideal nerve if Q is a
right-angled Coxeter 3-orbifold such that its underlying space jQj is a 3-handlebody and its nerve is an
ideal triangulation of the boundary @jQj.

Now let Q be a 3-handlebody with ideal nerve. Then, by the definition of ideal triangulation [27,
Definition 2.6], the interior of each face of Q is also contractible. On the facial structure of Q, there are
three possible cases:
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� Some 2-faces of Q are henagons (i.e. 2-faces with only one point of codimension 3 in Q; see
(a) in Figure 11) or digons (i.e. 2-faces with only two points of codimension 3 in Q; see (b) in
Figure 11).

� There may be some 2-faces with self-intersection (see (c) in Figure 11).

� The intersection of two 2-faces may be not connected (see (d) in Figure 11).

If there is a henagon 2-face of Q, then it gives a self-folded ideal triangle. For example, see the blue part
of (a) in Figure 11. In general, if there is a henagon 2-suborbifold in Q, then the nerve of associated faces
may give some ideal triangles, such as (e) and (f) in Figure 11. In particular, the nerve of (f) contains
only one vertex and two ideal triangles glued along their three edges as shown in Figure 11. All those
cases agree with the definition of ideal triangulations in [27, Definition 2.6].

Lemma 7.16 Let Q be a 3-handlebody with ideal nerve. Then Q is very good if and only if it does not
contain a henagon 2-suborbifold.

Proof By applying a theorem of Morgan or Kato (see [37, Theorem 6.14]), each compact locally
reflective 3-orbifold that contains no bad 2-suborbifolds is very good. This means that if there is no
henagon 2-suborbifold in Q, then Q is very good. Conversely, if there is a henagon 2-suborbifold in Q,
then it is obvious that Q is bad.

Hence, if there is a henagon 2-suborbifold of Q, then Q cannot be hyperbolic.

Suppose that Q contains no henagon 2-suborbifolds. Then, by Lemma 7.16, Q can be covered finitely by
a closed 3-manifold M . In general, Q is not nice in the sense of Davis [18, page 180]; thus there is no
natural manifold double defined as in (2-1) for Q.

A digon 2-suborbifold in Q is said to be essential if its two vertices are not contained in a unique edge
of Q. If there is an essential digon 2-suborbifold in Q, then its nerve N.Q/ will contain two simplices
with common vertices. See (d) in Figure 11.

Lemma 7.17 Let Q be a 3-handlebody with ideal nerve. Assume that there is no henagon suborbifold
in Q, and M is a covering manifold over Q. If Q contains an essential digon suborbifold , then M is
reducible.

Proof Assume that two edges of a digon are contained in two 2-faces F1 and F2 of Q. Then we consider
the double cover of Q, denoted by DQ, which is obtained by gluing two copies of Q along F1. At
the same time, two copies of F2 are also glued along F1\F2, giving an annulus in DQ. Let M 0 be a
manifold double over DQ. Then M 0 can be decomposed into the connected sum of some 3-manifolds,
which implies that M 0 is reducible. Hence, DQ and Q are reducible. So M is reducible.

A digon 2-face of Q will give an essential digon 2-suborbifold in Q unless that Q is a trihedron
(S3=.Z2/3). Thus in this case Q is reducible as well. Therefore, if there is a henagon 2-suborbifold or
an essential digon 2-suborbifold in Q, then Q cannot be hyperbolic.
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Next, suppose that Q is not a trihedron and contains no henagon and essential digon 2-suborbifolds. If
there are some 2-faces with self-intersection or the intersection of two 2-faces is not connected, then we
can always construct some orbifold covers of Q. In fact, we can use some copies of Q to construct a
covering space of Q as follows. First we cut open each of copies by using a fixed 2-suborbifold B , and
then form a connected handlebody yQ by attaching them together along those new facets produced by B .
If necessary, we can choose enough copies of Q so as to make sure that this connected handlebody is
simple, and is exactly the required covering space of Q. Applying Theorem A gives:

Corollary 7.18 A 3-handlebody with ideal nerve is hyperbolic if and only if it is not trihedron , tetrahedron
and contains no42;�-belts and no henagon or essential digon 2-suborbifolds.

Remark 7.19 Let Q be a 3-handlebody with ideal nerve. We can define henagon 2-suborbifolds and
essential digons 2-suborbifolds in Q as 1- and 2-belts of Q, respectively. Then by Lemma 7.16, Q is
very good if and only if Q contains no 1-belts. An easy argument gives that a very good Q is flag if and
only if it is not trihedron or tetrahedron (i.e. S3=.Z2/3 or S3=.Z2/4) and contains no 2- or 3-belts (i.e.
�1-injective S2=.Z2/2- or S2=.Z2/3-suborbifolds). Furthermore, a very good flag Q is hyperbolic if
and only if it contains no 4-belts (i.e. �1-injective T 2=.Z2/2-suborbifolds). Thus, a right-angled Coxeter
3-handlebody with ideal nerve except trihedron and tetrahedron is hyperbolic if and only if it contains no
1-, 2-, 3- or 4-belts.

7.3.3 Example of a nonsimple 3-handlebody

Example 7.20 Let P be the product of a pentagon and Œ0; 1�. Gluing two opposite pentagons of P
together such that its diagonal vertices coincide with each other gives a right-angled Coxeter 3-orbifold
with its underlying space as a solid torus, denoted by Q. Then Q is a Seifert 3-orbifold. Thus it cannot
be hyperbolic. This is because each embedding annulus 2-facet is an obstruction.

7.4 Positive (scalar) curvature

A simple polytope P is two-neighborly if any two facets of P has a nonempty intersection. So it is
clear that P is two-neighborly if and only if it contains no I -belt. In addition, we also know from [38,
Proposition 2.1] that P is two-neighborly if and only if its manifold double M is simply connected. Thus,
we have that:

Lemma 7.21 Let P be a simple polytope. Then the following statements are equivalent.

� P is two-neighborly.

� P contains no I -belt.

� Its manifold double M is simply connected.
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Remark 7.22 Similarly, for a simple handlebody Q, we may define it to be two-neighborly if any two
vertices in its nerve N.Q/ are connected by an edge. However, if the genus of Q is greater than zero,
then we can always find an I -belt between two facets with nonempty intersection such that this I -belt
cannot be deformed onto the intersection of two facets in Q. Hence the existence of I -belts cannot be
used to detect whether Q is two-neighborly.

Lemma 7.23 Let N be a triangulable closed n-manifold with n > 1. If �1.N / is nontrivial , then the
1-skeleton of any triangulation of N cannot be a complete graph.

Proof Assume that K is a triangulation of N whose 1-skeleton K1 is a complete graph. Fixed a vertex
x in K, let N.x/ be the union of those n-simplices in K which contain x. Then N.x/ Š Dn whose
boundary @N.x/ is a two-neighborly simplicial .n�1/-sphere.

Let�n be an arbitrary simplex which does not contain x. SinceK1 is a complete graph, all vertices of�n

are contained in @N.x/. Hence, K1 is a subcomplex of N.x/. So any closed loop in K1 is contractible
in N.x/. This means that N is simply connected, giving a contradiction.

Corollary 7.24 A (flag) simple handlebody with genus >0 cannot be two-neighborly. In other words , a
two-neighborly simple handlebody must be a two-neighborly simple polytope as a manifold with corners.

Proposition 7.25 (Hopf–Rinow, Myers, [50, Corollary 6.3.2 and Theorem 6.3.3]) If an n-dimensional
closed manifold N admits a complete Riemannian metric of positive sectional curvature , then �1.N / is
finite. Specially, �1.N / is 0 or Z2 if n is even , and N is orientable if n is odd.

If N admits a complete Riemannian metric of positive Ricci curvature , then �1.N / is finite , too.

For a simple handlebody Q, by the short exact sequence

1! �1.M/! �orb
1 .Q/ �

�! .Z2/
m
! 1;

if the genus of Q is greater than zero, then any torsion-free generator t determined by a cutting belt is
mapped to 1 2 .Z2/m via �. Hence t gives a torsion-free element in �1.M/. So we have:

Lemma 7.26 If the genus of Q is greater than zero , then �1.M/ is not finite.

As a direct consequence of Proposition 7.25 and Lemmas 7.21 and 7.26, we have:

Corollary 7.27 If M admits a complete Riemannian metric of positive sectional or Ricci curvature , then
Q must be a two-neighborly simple polytope , that is , there is no I -belt in Q.

Conversely, the existence of positive sectional curvature and positive Ricci curvature of a closed (or
compact) n-manifold is a very hard question, which is involved in many conjectures and open questions.
For example, we know that the real moment angle manifold over �2 ��2 is S2 �S2. However, it is
well known that the existence of positive sectional curvature on S2 �S2 is just the Hopf conjecture.
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On the other hand, there are some results about the existence of positive scalar curvature. One can refer to
some works of Gromov and Lawson [34; 33; 35], Schoen and Yau [55; 56], and Stolz [57]. By Gromov
and Lawson [35], a compact manifold of nonpositive sectional curvature cannot carry a metric of positive
sectional curvature. So

� if M admits a positive scalar curvature, then Q is not flag.

Moreover, it is reasonable to conjecture that:

Conjecture 7.28 If a simple polytope Q is two-neighborly, then M admits a positive scalar curvature.

In the 3-dimensional case, Wu and Yu [61] gave a combinatorial description for the case of real moment-
angled manifolds with positive scalar curvature over simple 3-polytopes.

Proposition 7.29 [61, Corollary 4.10] A real moment-angle manifold (or small cover) over a sim-
ple 3-polytope P can admit a Riemannian metric with positive scalar curvature if and only if P is
combinatorially equivalent to a polytope obtained from �3 by a sequence of vertex cuts.

Let P be a simple polytope obtained from �3 by a sequence of vertex cuts. Then except for P D�3,
any 2-dimensional belt in P is a �2-belt. Conversely, assume that every 2-dimensional belt is only a
�2-belt in a simple polytope P , then it is easy to see that P is a tetrahedron or P can be decomposed
into the connected sum of some �3’s. This is equivalent to saying that P can be obtained from �3 by a
sequence of vertex cuts. Hence, we get an equivalent description of Proposition 7.29 in terms of �2-belts
and �3-belts.

Corollary 7.30 Let P be a simple 3-polytope. Then its manifold double M admits a Riemannian metric
with positive scalar curvature if and only if every 2-dimensional belt in P is�2, or P is just a tetrahedron.

We summarize what we have discussed in Table 1.

M Q 2-neighborly flag Pogorelov description

Sec< 0 � not � � �dim3 Proposition 7.10

hyperbolic � not � � �dim3 dim 3: Proposition 7.12; dim 4: not clear; dim� 5: none

Sec� 0, NPC � not � � � Proposition 7.6

flat � not � � not [38, Theorem 1.2]

spherical � � not � not [38, Theorem 1.2]

Sec;Ric> 0 � � not � not not clear (e.g. Hopf conjecture)

scalar > 0 �Conjecture 7.28 � not � not dim 3: [61]; dim> 3: not clear

Table 1: A simple handlebody is called Pogorelov if it is flag and contains no�-belt.
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Property (QT) for 3-manifold groups
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According to Bestvina, Bromberg and Fujiwara, a finitely generated group is said to have property (QT) if
it acts isometrically on a finite product of quasitrees so that orbital maps are quasi-isometric embeddings.
We prove that the fundamental group �1.M/ of a compact, connected, orientable 3-manifold M has
property (QT) if and only if no summand in the sphere-disc decomposition of M supports either Sol
or Nil geometry. In particular, all compact, orientable, irreducible 3-manifold groups with nontrivial
torus decomposition and not supporting Sol geometry have property (QT). In the course of our study, we
establish property (QT) for the class of Croke–Kleiner admissible groups and for relatively hyperbolic
groups under natural assumptions on the peripheral subgroups.

20F65, 20F67

1 Introduction

1.1 Background and motivation

The study of group actions on quasitrees has recently received a great deal of interest. A quasitree means
here a possibly locally infinite connected graph that is quasi-isometric to a simplicial tree. Groups acting
on (simplicial) trees have been well understood thanks to Bass–Serre theory. On the one hand, quasitrees
have the obvious advantage of being more flexible; hence, many groups can act unboundedly on quasitrees
but act on any trees with global fixed points. Many hyperbolic groups with Kazhdan’s property (T) and
mapping class of groups are among many examples that belong to this category (see Manning [38; 39]
for other examples). In effect, these are sample applications of a powerful axiomatic construction of
quasitrees proposed in the work of Bestvina, Bromberg and Fujiwara [5]. This construction will be
fundamental in this paper.

We say that a finitely generated group G has property (QT) if it acts isometrically on a finite product
X D T1 �T2 � � � � �Tn of quasitrees with the L2-metric such that for any basepoint o 2X , the induced
orbit map

g 2G 7! go 2X

is a quasi-isometric embedding of G equipped with some (or any) word metric dG to X . Informally
speaking, property (QT) gives an undistorted picture of the ambient group in a reasonably good space.
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Here, the direct product structure usually comes from the independence of several negatively curved
layers endowed on the group. Such a hierarchy structure has emerged from the study of mapping class
groups since Masur and Minsky [40]. In addition, property (QT) is a commensurability invariant as
observed by Bestvina, Bromberg and Fujiwara [6] and Button [14], and could be thought of as a stronger
property than the finiteness of asymptotic dimension.

Extending their earlier results of [5], Bestvina, Bromberg and Fujiwara [6] recently showed that residually
finite hyperbolic groups and mapping class groups have property (QT). It is known that Coxeter groups
have property (QT) (see Dranishnikov and Januszkiewicz [23]), and thus every right-angled Artin group
has property (QT) (see [6, Induction 2.2]).

In 3-manifold theory, the study of the fundamental groups of 3-manifolds is one of the most central topics.
Determining property (QT) of finitely generated 3-manifold groups is the main task of the present paper.

1.2 Property (QT) of 3-manifold groups

Let M be a 3-manifold with finitely generated fundamental group. Since property (QT) is a commensura-
bility invariant, we can assume that M is compact and orientable by considering the Scott core of M and
a double cover of M (if M is nonorientable).

In recent years, the theory of special cube complexes — see Haglund and Wise [30] — has led to a deep
understanding of 3-manifold groups; see Agol [3] and Wise [53]. By definition, the fundamental group of
a compact special cube complex is undistorted in a right-angled Artin group, and then has property (QT)
by [23]. However, 3-manifolds without nonpositively curved Riemannian metrics cannot be cubulated by
Przytycki and Wise [46] and certain cubulated 3-manifold groups are not virtually compact special (see
Hagen and Przytycki [28] and Tidmore [51]). Thus it was left still open to determine the property (QT)
for all 3-manifold groups.

By the sphere-disc decomposition, a compact oriented 3-manifold M is a connected sum of prime
summands Mi (1� i � n) with incompressible boundary. It is an easy observation that if a group has
property (QT) then every nontrivial element is undistorted (see Lemma 2.5), and hence if Mi supports
Sol or Nil geometry from the eight Thurston geometries, then �1.Mi / fails to have property (QT). Our
first main result is the following characterization of property (QT) for all 3-manifold groups.

Theorem 1.1 Let M be a connected , compact , orientable 3-manifold. Then �1.M/ has property (QT )
if and only if no summand in its sphere-disk decomposition supports either Sol or Nil geometry.

By standard arguments, we are reduced to the case where M is a compact, connected, orientable,
irreducible 3-manifold with empty or tori boundary. Theorem 1.1 actually follows from the following
theorem.
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Theorem 1.2 Let M be a compact orientable irreducible 3-manifold with empty or tori boundary ,
and with nontrivial torus decomposition which does not support the Sol geometry. Then �1.M/ has
property (QT ).

A 3-manifold M as in Theorem 1.2 is called a graph manifold if all the pieces in its torus decomposition
are Seifert fibered spaces; otherwise M is called a mixed manifold. It is well known that the fundamental
group of a mixed 3-manifold is hyperbolic relative to a collection of abelian groups and graph manifold
groups. As a result, to prove Theorem 1.2, we actually only need to determine the property (QT) of
Croke–Kleiner admissible groups, and of relatively hyperbolic groups, which will be discussed in detail in
the following subsections. These results include but are much more general than the fundamental groups
of graph manifolds and mixed manifolds.

1.3 Property (QT) of Croke–Kleiner admissible groups

We first address property (QT) of graph manifolds. Our approach is based on a study of a particular
class of graph of groups introduced by Croke and Kleiner [21] which they called admissible groups
and generalized the fundamental groups of graph manifolds. We say that an admissible group G is a
Croke–Kleiner admissible group or a CKA group if it acts properly discontinuously, cocompactly and by
isometries on a complete proper CAT(0) space X . Such an action G ÕX is called a CKA action and the
space X is called a CKA space. The CKA action is modeled on the JSJ structure of graph manifolds where
the Seifert fibration is replaced by the following central extension of a general hyperbolic group Hv:

(1) 1!Z.Gv/!Gv!Hv! 1

where Z.Gv/ D Z. It is worth pointing out that CKA groups encompass a much more general class
of groups and can be used to produce interesting groups by a “flip” trick from any finite number of
hyperbolic groups (see Example 2.14).

The notion of an omnipotent group was introduced by Wise [52] and has found many applications in
subgroup separability. We refer the reader to Definition 4.6 for its definition and note here that free
groups [52], surface groups (see Bajpai [4]), and the more general class of virtually special hyperbolic
groups [53] are omnipotent. Nguyen and Yang [43] proved property (QT) for a special class of CKA
actions under flip conditions (see Definition 2.18). One of the main contributions of this paper is to
remove this assumption and prove the following result in full generality.

Theorem 1.3 Let G ÕX be a CKA action where for every vertex group the central extension (1) has
omnipotent hyperbolic quotient group. Then G has property (QT ).

Remark 1.4 It is a long-standing problem whether every hyperbolic group is residually finite. Wise [52,
Remark 3.4] noted that if every hyperbolic group is residually finite, then any hyperbolic group is
omnipotent.
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Let us comment on the relation between this work and the previous one [43]. As in [43], the ultimate
goal is to utilize Bestvina, Bromberg and Fujiwara’s projection complex machinery to obtain actions
on quasitrees. The common starting point is the class of special paths developed in [43] that record the
distances of X . However, the flip assumption (see Definition 2.18) on CKA actions was crucially used
there: the fiber lines coincide with boundary lines in adjacent vertex pieces when crossing the boundary
plane, roughly speaking. Hence, a straightforward gluing construction works in that case but fails in
our general setting. In this paper, we use a completely different projection system to achieve the same
purpose with a more delicate analysis.

It is worth mentioning the following fact frequently invoked by many authors: the fundamental group
of any graph manifold is quasi-isometric to the fundamental group of some flip manifold as defined
by Kapovich and Leeb [34]. This simplification, however, is useless to address property (QT), as such
a quasi-isometry does not respect the group actions. Conversely, our direct treatment of any graph
manifolds (closed or with nonempty boundary) is new, and we believe it will potentially allow for further
applications.

We now explain how we apply Theorem 1.3 to graph manifolds. If M is a graph manifold with nonempty
boundary then it always admits a Riemannian metric of nonpositive curvature (see Leeb [35]). In particular,
�.M/Õ zM is a CKA action, and thus property (QT) of �1.M/ follows immediately from Theorem 1.3.
However, closed graph manifolds may not support any Riemannian metric of nonpositive curvature [35],
so property (QT) in this case does not follow immediately from Theorem 1.3. We have to make certain
modifications on some steps to run the proof of Theorem 1.3 for the fundamental groups of closed graph
manifolds (see Section 8.2.1 for details).

1.4 Property (QT) of relatively hyperbolic groups

When M is a mixed 3-manifold, �1.M/ is hyperbolic relative to the finite collection P of fundamental
groups of maximal graph manifold components, isolated Seifert components, and isolated JSJ tori (see
Bigdely and Wise [8] and Dahmani [22]). Therefore, we need to study property (QT) for relatively
hyperbolic groups.

Our main result in this direction is a characterization of property (QT) for residually finite relatively
hyperbolic groups, which generalizes the corresponding results of [6] on Gromov-hyperbolic groups.

Theorem 1.5 Suppose that a finitely generated group H is hyperbolic relative to a finite set of sub-
groups P . Assume that each P 2 P acts by isometry on finitely many quasitrees Ti (1 � i � nP ) such
that the induced diagonal action on

QnP

iD1 Ti has property (QT ). If H is residually finite , then H has
property (QT ).

Remark 1.6 Since maximal parabolic subgroups are undistorted, each P 2 P obviously has property
(QT) if G has property (QT). A nonequivariant version of this result was proven by Mackay and Sisto [37].
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Remark 1.7 It is well known that mixed 3-manifold groups G D �1.M/ are hyperbolic relative to a
collection P of abelian groups and graph manifold groups P D �1.Mi /. However, it is still insufficient to
derive directly via Theorem 1.5 the property (QT) of G from that of graph manifold groups P asserted in
Theorem 1.3, since P may not preserve factors in the finite product of quasitrees. Of course, passing to
an appropriate finite-index subgroup P 0 <P preserves the factors, but it is not clear at all whether P 0 are
peripheral subgroups of a finite-index subgroup G0 of G. In order to find such a G0, a stronger assumption
must be satisfied so that every finite-index subgroup of each P is separable in G. This requires the notion
of a full profinite topology induced on subgroups (see the precise definition before Theorem 3.5 and a
relevant discussion of Reid [47]). See Theorem 3.5 for the precise statement. In the setting of a mixed
3-manifold, Lemma 8.5 verifies that each peripheral subgroup P 2 P of �1.M/ satisfies this assumption.
Therefore, all mixed 3-manifolds are proven to have property (QT).

We now explain a few algebraic and geometric consequences for groups with property (QT).

Similar to trees, any isometry on quasitrees must be either elliptic or loxodromic [38]. Hence, if a finitely
generated group acts properly (in a metric sense) on a finite product of quasitrees, then every nontrivial
element is undistorted (Lemma 2.5). Moreover, property (QT) allows one to characterize virtually abelian
groups among subexponential growth groups and solvable groups.

Theorem 1.8 Let G be a finitely generated group.

(1) Assume that G has subexponential growth. Then G has property (QT ) if and only if G is virtually
abelian.

(2) Suppose that G is solvable with finite virtual cohomological dimension. Then G has property (QT )
if and only if it is virtually abelian.

By Theorem 1.5, this yields as a consequence that nonuniform lattices in SU.n; 1/ and Sp.n; 1/ for n� 2
fail to act properly on finite products of quasitrees.

Corollary 1.9 A nonuniform lattice in SU.n; 1/ for n� 2 or Sp.n; 1/ for n� 1 does not have property
(QT ), while any lattice of SO.n; 1/ has property (QT ) for n� 2.

Overview

The paper is structured as follows. In Section 2, we recall the preliminary materials about Croke–Kleiner
admissible groups, axiomatic constructions of quasitrees, and we collect a few preliminary observations
to prove Theorem 1.8 and to disprove property (QT) for the fundamental groups of 3-manifolds with Sol
or Nil geometry. Section 3 contains a proof of Theorem 1.5 and its variant Theorem 3.5. The next four
sections aim to prove Theorem 1.3: Section 4 first recalls a cone-off construction of CKA actions from
[43] and then outlines the steps executed in Sections 5, 6, and 7 to prove property (QT) for CKA actions.
Sections 5 and 6 explain in detail the construction of projection systems of fiber lines and then prove
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the corresponding distance formula. We finish the proof of Theorem 1.3 in Section 7. In Section 8, we
present the applications of the previous results for 3-manifold groups and prove Theorem 1.2 as well as
Theorem 1.1.
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2 Preliminaries

This section reviews concepts property (QT), Croke–Kleiner admissible actions, and the construction
of quasitrees. Several observations are made to determine property (QT) of the fundamental groups of
3-manifolds with Sol or Nil geometry. This includes the fact that every element is undistorted in groups
with property (QT) and some attempts to characterize by property (QT) the class of virtually abelian
groups in solvable/subexponential growth groups.

In the sequel, we use the notion a �K b if the exists C D C.K/ > 0 such that a � CbCC , and a �K b
if a �K b and b �K a. Also, when we write a�K b we mean that a=C � b � Ca. If the constant C is
universal from context, the subindex �K shall be omitted.

2.1 Property (QT)

Definition 2.1 We say that a finitely generated group G has property (QT) if it acts isometrically on a
finite product X D T1�T2� � � � �Tn of quasitrees with L2-metric such that for any basepoint o 2X , the
induced orbit map

g 2G 7! go 2X

is a quasi-isometric embedding of G equipped with some (or any) word metric dG to X with the product
metric d .

Remark 2.2 A group with property (QT) acts properly on a finite product of quasitrees in a metric sense:
d.o; go/!1 as dG.1; g/!1. We would emphasize that all consequences of the property (QT) in the
present paper use merely the existence of a metric proper action.

By definition, a quasitree is assumed to be a graph quasi-isometric to a simplicial tree. This does not lose
generality as any geodesic metric space (with an isometric action) is quasi-isometric to a graph (with an
equivariant isometric action) by taking the 1-skeleton of its Rips complex: the vertex set consists of all
points and two points with distance less than 1 are connected by an edge.
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The first part of the following lemma allows one to pass to finite-index subgroups in the study of property
(QT) of groups, as explained in [6, Section 2.2]. The second part of Lemma 2.3 is an immediate
consequence of the definition of property (QT).

Lemma 2.3 (1) Let H �G be a finite-index subgroup of G. Then G has property (QT ) if and only if
H has property (QT ).

(2) Let H �G be an undistorted subgroup of G. Suppose that G has property (QT ), then H also has
property (QT ).

Below is a corollary of the de Rham decomposition theorem [26, Theorem 1.1] which will be utilized in
the subsequent discussions.

Corollary 2.4 A finite product X D T1 �T2 � � � � �Tn of quasitrees must have de Rham decomposition

X DRk �TkC1 � � � � �Tn

if the first k quasitrees (k � 0) are all real lines among fTi j 1� i � ng.

A finite product
Qn
iD1 Ti of quasitrees has no R-factor if no Ti is isometric to R or a point. In this case,

the Euclidean factor Rk will disappear. In what follows, we present some general results about groups
with property (QT).

Lemma 2.5 Assume that G has property (QT ). Then the subgroup generated by an element g 2G, is
undistorted in G.

Proof Let X DRk �TkC1 � � � � �Tn be the de Rham decomposition of a finite product of quasitrees.
By [26, Corollary 1.3], up to passage to finite-index subgroups, G acts by isometries on each factor Rk ,
and Ti for kC 1� i � n. Let g 2G be an infinite order element. If the image of g is an isometry on the
Euclidean space Rk , then it either fixes a point or preserves an axis. If the image of g is an isometry on a
quasitree Ti then by [39, Corollary 3.2], it has either a bounded orbit or a quasi-isometrically embedded
orbit.

Fix a basepoint o D .ok; okC1; : : : ; on/ 2 X . If the action of G on X is proper, then by the first
paragraph, there must exist an unbounded action of hgi on some factor Y DRk or Y D Ti , so we have
m � �jok � g

mokjY C c for some �; c > 0. Since every isometric orbital map is Lipschitz, we have
jo�gmojX � C j1�g

mjG for some C > 0. Noting that jo�gmojY � jo�gmojX , we have that the map
m 7! gm is a quasi-isometric embedding of hgi Š Z into G.

Note that the Sol group embeds quasi-isometrically into a product of two hyperbolic planes (for example,
see [19, Section 9]). However, the Sol lattice contains exponentially distorted elements by [41, Lemma 5.2];
as a consequence, we have the following:
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Corollary 2.6 The fundamental group of a 3-manifold with Sol geometry does not have property (QT ).

Corollary 2.7 The Baumslag–Solitar group BS.1; n/ for n > 1 does not have property (QT ).

2.2 Subexponential growth and solvable groups with property (QT)

The fundamental group of a 3-manifold M with Nil geometry also fails to have property (QT) since it
contains quadratically distorted elements (for example, see [41, Proposition 1.2]). Generalizing results
about property (QT) of 3-manifolds with Sol or Nil geometry, in the rest of this subsection, we provide a
characterization of subexponential growth groups and solvable groups with property (QT) and give the
proof of Theorem 1.8.

In the next results, we apply the general conclusions in [17] about the isometric actions on hyperbolic
spaces to the actions on quasitrees. By Gromov, unbounded isometric group actions can be classified into
the following four types:

(1) horocyclic if it has no loxodromic element;

(2) lineal if it has a loxodromic element and any two loxodromic elements have the same fixed points
in the Gromov boundary;

(3) focal if it has a loxodromic element which is not lineal, and any two loxodromic elements have
one common fixed point;

(4) general type if it has two loxodromic elements without common fixed point.

Proposition 2.8 Assume that G has property (QT ). Then there exists a finite-index subgroup PG of G
which acts on a Euclidean space Rk with k � 0 and finitely many quasitrees Ti for 1� i � n with lineal
or focal or general type action such that the orbital map of PG into Rk �

Qn
iD1 Ti is a quasi-isometric

embedding.

Moreover , the action on each Ti can be chosen to be cobounded.

Proof By Corollary 2.4, the finite product of quasitrees given by property (QT) has the above form of
de Rham decomposition. By [26, Corollary 1.3],

1! Isom.Rk/�
nY

iDkC1

Isom.Yi /! Isom.X/! F ! 1

where F is a subgroup of the permutation group on the indices fk C 1; : : : ; ng. Thus, there exists a
finite-index subgroup PG of G acting on each de Rham factor such that PG � Isom.Rk/�

Qn
iD1 Isom.Yi /

for k � 0 and i � kC 1.

First of all, we can assume that the actions of PG on Rk and each Ti is unbounded. Otherwise, we can
remove Rk or Ti with bounded actions from the product without affecting the property (QT).
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We now consider the action on Ti for kC 1� i � n. We then need to verify that the action of PG on Ti
cannot be horocyclic. By way of contradiction, assume that the action of PG on given Ti is horocyclic.

Note that the proof of [17, Proposition 3.1] shows that the intersection of any orbit of PG on Ti with any
quasigeodesic is bounded. By [39, Corollary 3.2], any isometry on a quasitree Ti has either bounded
orbits or a quasigeodesic orbit. Thus, we conclude that any orbit of hhi for every h 2 PG on Ti is bounded.
We are then going to prove that the action of PG on Ti has bounded orbits. This is a well-known fact and
we present the proof for completeness.

By ı-hyperbolicity of Ti , each h 2 PG (with bounded orbits) has a quasicenter ch 2 Ti : there exists a
constant D > 0 depending only on ı such that jch � hichjTi

�D for i 2 Z. Moreover, for any x 2 ch
and any y 2 Ti , the Gromov product hy; hyix is bounded by a constant C depending only on D. As a
consequence, the union Z of quasicenters fch j h 2 PGg has finite diameter. Indeed, note that hy; h1yix
and hx; h�12 xiy are bounded by C for any x 2 ch1

and y 2 ch2
. If there exist two elements, h1 and h2,

such that the distance jch1
� ch2

jTi
is sufficiently large relative to C , then the piecewise geodesic path

connecting points .h1h2/nx for n 2 Z would be a sufficiently long local quasigeodesic, so it is a global
quasigeodesic. By the previous paragraph, we obtain a contradiction, so the PG-invariant set Z is bounded.
Since the action on Ti is assumed to be unbounded, we thus proved that the action on Ti cannot be
horocyclic.

At last, it remains to prove the “moreover” statement. By Manning’s bottleneck criterion [39], any
geodesic is contained in a uniform neighborhood of every path with the same endpoints. Thus, any
connected subgraph of a quasitree is uniform quasiconvex and thus is a uniform quasitree. Since G is a
finitely generated group, by taking the image of the Cayley graph, we can thus construct a connected
subgraph on each quasitree Ti such that the action on the subgraph (quasitree) is cobounded.

We are able to characterize subexponential groups with property (QT) as follows.

Proposition 2.9 Let G be a finitely generated group with subexponential growth. Then G has property
(QT ) if and only if G is virtually abelian.

Proof We first observe that Rk in Proposition 2.8 can be replaced by a finite product of real lines.
Indeed, consider the action of PG on Euclidean space Rk . By assumption, PG is of subexponential growth.
It is well known that the growth of any finitely generated group dominates that of quotients, so the
image � � Isom.Rk/ of PG acting on Rk has subexponential growth. Since finitely generated linear
groups do not have intermediate growth, � must be virtually nilpotent. It is well known that virtually
nilpotent subgroups in Isom.Rk/ must be virtually abelian. Thus, � contains a finite-index subgroup Zl

for 1� l � k. By taking the preimage of Zl in PG, we can assume further that PG acts on Rk through Zl .
It is clear that Zl acts on l real lines R1;R2; : : : ;Rl such that the product action is geometric. We thus
replace Rk by the product

Q
1�i�l Ri where PG admits a lineal action on each Ri by translation.
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By Proposition 2.8 the action of PG on Ti is either lineal or focal or general type. In the latter two cases,
PG contains a free (semi)group by [17, Lemma 3.3], contradicting the subexponential growth of PG. Thus,

the action of PG on each Ti is lineal. By Proposition 2.8, we can assume that Ti is a quasiline.

By [39, Lemma 3.7], a quasiline T admits a .1; C /-quasi-isometry � (with a quasi-inverse  ) to R for
some C > 0. A lineal action of G on T is then conjugated to a quasiaction of G on R sending g 2G to a
.1; C 0/-quasi-isometry �g on R for some C 0 D C 0.C / > 0. By taking an index at most 2 subgroup, we
can assume that every element in G fixes pointwise the two ends of T . Note that a .1; C 0/-quasi-isometry
�g on R fixing the two ends of R is uniformly bounded away from a translation on R. So, for any x 2R,
the orbital map g 7! �g .x/ is a quasimorphism G!R. It is well known that for any amenable group,
any quasimorphism must be a homomorphism up to bounded error. We conclude that any ŒG;G�-orbit on
T stays in a bounded set.

Therefore, any ŒG;G�-orbit on
�Q

1�i�l Ri
�
�
�Q

1�i�n Ti
�

is bounded, so the proper action onX implies
that Œ PG; PG� is a finite group. It is well known that if a group has a finite commutator subgroup, then it is
virtually abelian [11, Lemma II.7.9].

It would be interesting to ask whether Proposition 2.9 holds within the class of solvable groups. In
Proposition 2.11 below, we are able to give a positive answer to the previous question when the solvable
group has finite virtual cohomological dimension. To this end, we need the following fact.

Lemma 2.10 Any unbounded isometric action of a meta-abelian group on a quasitree must be lineal.

Recall that a meta-abelian group is a group whose commutator subgroup is abelian.

Proof Indeed, the abelian group � D ŒG;G� (of possibly infinite rank) cannot contain free semigroups,
so by [17, Lemma 3.3], the action of � on a quasitree T must be bounded or lineal.

Assume first that � has a bounded orbit K in T . Since G=� is abelian, we have that gmhnK D hngmK
for any n;m 2 Z and g; h 2 G, and thus ghnK D hngK has finite Hausdorff distance to hnK for any
n 2 Z. Assume that g and h are loxodromic. Then fhnK; n 2 Zg is quasi-isometric to a line. Hence, we
obtain that the fixed points of g and h at the Gromov boundary must coincide. This means the action of
G on T is lineal.

In the lineal case, � preserves some bi-infinite quasigeodesic  up to finite Hausdorff distance. Since �
is a normal subgroup in G, we see that every loxodromic element in G also preserves  up to a finite
Hausdorff distance. Thus, the action of G on T is also lineal.

By Lemma 2.5, a group with property (QT) is translation proper in the sense of Conner [18]: the translation
length of any nontorsion element is positive. If G is solvable and has finite virtual cohomological
dimension, then Conner shows that G is virtually meta-abelian.

Proposition 2.11 Suppose that a solvable group G has finite virtual cohomological dimension. If G has
property (QT ) then it is virtually abelian.
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Proof Passing to finite-index subgroups, assume that G is meta-abelian so any quotient of G is meta-
abelian. By Lemma 2.10, the action of G on each Ti is lineal.

After possibly passing to an index 2 subgroup, a lineal action of any amenable group G on a quasiline T
can be quasiconjugated to an isometric action on R. Indeed, by the proof of Proposition 2.9, conjugating
the original action by almost isometries gives a quasiaction of G on R such that any orbital map induces
a quasimorphism of G to R. For amenable groups, any quasimorphism differs from a homomorphism by
a uniformly bounded constant. Thus, up to quasiconjugacy, the lineal action of G on T can be promoted
to become an isometric action on R.

Consequently, we can quasiconjugate the action of a solvable group G on a finite product of quasitrees to
a proper action on a Euclidean space. Thus, G must be virtually abelian.

Proof of Theorem 1.8 The proof is a combination of Propositions 2.9 and 2.11.

2.3 CKA groups

Admissible groups, first introduced in [21], are a particular class of graph of groups that includes
fundamental groups of 3-dimensional graph manifolds. In this section, we review admissible groups and
their properties that will used throughout the paper.

Let G be a connected graph. We often consider oriented edges from e� to eC and write e D Œe�; eC�.
Then Ne D ŒeC; e�� denotes the oriented edge with reversed orientation. Denote by G0 the set of vertices
and by G1 the set of all oriented edges.

Definition 2.12 A graph of groups G is admissible if the following hold:

(1) G is a finite graph with at least one edge.

(2) Each vertex group Gv has center Z.Gv/Š Z, Hv WDGv=Z.Gv/ is a nonelementary hyperbolic
group, and every edge subgroup Ge is isomorphic to Z2.

(3) Let e1 and e2 be distinct directed edges entering a vertex v, and for iD1; 2, letKi �Gv be the image
of the edge homomorphism Gei

! Gv. Then for every g 2 Gv, gK1g�1 is not commensurable
with K2, and for every g 2Gv �Ki , gKig�1 is not commensurable with Ki .

(4) For every edge group Ge , if ˛i WGe!Gvi
is the edge monomorphism, then the subgroup generated

by ˛�11 .Z.Gv1
// and ˛�12 .Z.Gv1

// has finite index in Ge.

A group G is admissible if it is the fundamental group of an admissible graph of groups.

Definition 2.13 We say that an admissible group G is a Croke–Kleiner admissible group or CKA group
if it acts properly discontinuously, cocompactly and by isometries on a complete proper CAT(0) space X .
Such an action G ÕX is called a CKA action and the space X is called a CKA space.
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Example 2.14 (1) Let M be a nongeometric graph manifold that admits a nonpositively curved
metric. Lift this metric to the universal cover zM of M , and denote it by d . Then the action
�1.M/Õ . zM;d/ is a CKA action.

(2) Let T be the torus complexes constructed in [20]. Then �1.T /Õ zT is a CKA action.

(3) One may build Croke–Kleiner admissible groups algebraically from any finite number of hyperbolic
CAT(0) groups. The following example is for nD 2 but the same principle works for any n� 2.
Let H1 and H2 be two torsion-free hyperbolic groups that act geometrically on CAT(0) spaces
X1 and X2 respectively. Then Gi DHi � hti i (with i D 1; 2) acts geometrically on the CAT(0)
space Yi D Xi �R. Any primitive hyperbolic element hi in Hi gives rise to a totally geodesic
torus Ti in the quotient space Yi=Gi with basis .Œhi �; Œti �/. We rescale Yi so that the translation
length of hi is equal to that of ti for each i . Let f W T1! T2 be a flip isometry respecting these
lengths, that is, an orientation-reversing isometry mapping Œh1� to Œt2� and Œt1� to Œh2�. Let M be
the space obtained by gluing Y1 to Y2 by the isometry f . There is a metric on the space M that
gives rise to a locally CAT(0) space (see eg [11, Proposition II.11.6]). By the Cartan–Hadamard
theorem, the universal cover zM with the induced length metric from M is a CAT(0) space. Let G
be the fundamental group of M . Then the action G Õ zM is geometric, and G is an example of a
Croke–Kleiner admissible group.

Remark 2.15 All graph 3-manifold groups are admissible, but there are closed graph 3-manifold groups
that are not CAT(0) groups (see [33]), and thus are not CKA groups. The following is another example.
Take two nonvirtually split central extensions of hyperbolic groups by Z (eg CSL.2;R/ lattices) and
amalgamate them over Z2 to obtain an admissible group. This group cannot act properly on CAT(0)
spaces, since central extensions acting on CAT(0) spaces must virtually split as direct products [11,
Theorem II.7.1].

A collection of subgroups fK1; : : : ; Kng in a groupH is called almost malnormal if #.gKig�1\Kj /D1
implies i D j and g 2Ki . It is well known that a hyperbolic group is hyperbolic relative to any almost
malnormal collection of quasiconvex subgroups [10].

Lemma 2.16 Let Ke be the image of an edge group Ge into Gv and Ke be its projection in Hv under
Gv!Hv DGv=Z.Gv/. Then P WD fKe j e�D v; e 2 G1g is an almost malnormal collection of virtually
cyclic subgroups in Hv.

In particular , Hv is hyperbolic relative to P .

Proof Since Z.Gv/�Ke ŠZ2, we have Ke DKe=Z.Gv/ is virtually cyclic. The almost malnormality
follows from noncommensurability of Ke in Gv. Indeed, assume that Ke \ hKe0h�1 contains an
infinite order element by the hyperbolicity of Hv. If g 2Gv is sent to h, then Ke \gKe0g�1 is sent to
Ke \hKe0h

�1. Thus, Ke \gKe0g�1 contains an abelian group of rank 2. The noncommensurability of
Ke in Gv implies that e D e0 and g 2Ke. This shows that P is almost malnormal.
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Let G Õ X be a CKA action where G is the fundamental group of an admissible graph of groups G,
and let G Õ T be the action of G on the associated Bass–Serre tree T of G (we refer the reader to
[21, Section 2.5] for a brief discussion). Let T 0 and T 1 be the vertex and edge sets of T . By CAT(0)
geometry:

(1) For every vertex v 2 T 0, the minimal set Yv WD
T
g2Z.Gv/

Minset.g/ of X splits as metric product
Y v �R where Z.Gv/ acts by translation on the R-factor and Hv DGv=Z.Gv/ acts geometrically
on the Hadamard space Y v. Since Hv is a hyperbolic group, it follows that Y v is a hyperbolic
space.

(2) For every edge e 2 T 1, the minimal set Ye WD
T
g2Ge

Minset.g/ of X splits as Y e �R2 � Yv
where Y e is a compact Hadamard space and Ge DZ2 acts cocompactly on the Euclidean plane R2.

We note that the assignments v! Yv and e! Ye are G-equivariant with respect to the natural G actions.

We summarize results in [21, Section 3.2] that will be used in this paper.

Lemma 2.17 Let G ÕX be a CKA action. Then there exists a constant D > 0 such that

(1) X D
S
v2T 0 ND.Yv/D

S
e2T 1 ND.Ye/;

(2) if �; � 0 2 T 0[T 1 and ND.Y� /\ND.Y� 0/¤¿ then j� � � 0jT <D.

We shall refer to zYv DND.Yv/ and zYe DND.Ye/ as vertex and edge spaces for X .

2.3.1 Strips in CKA spaces [21, Section 4.2] We first choose, in a G-equivariant way, a plane Fe � Ye
(which we will call boundary plane) for each edge e 2 T 1. For every pair of adjacent edges e1 and e2,
we choose, again equivariantly, a minimal geodesic from Fe1

to Fe2
; by the convexity of Yv D Y v �R

where v WD e1 \ e2, this geodesic determines a Euclidean strip Se1e2
WD e1e2

�R (possibly of width
zero) for some geodesic segment e1e2

� Y v.

Note that Se1e2
\Fei

is an axis of Z.Gv/. Hence if e1; e2; e 2E and ei \eD vi 2 V are distinct vertices,
then the angle between the geodesics Se1e\Fe and Se2e\Fe is bounded away from zero. If hf1iDZ.Gv1

/

and hf2iDZ.Gv2
/ then hf1; f2i generates a finite-index subgroup of Ge . We remark that the intersection

of two strips Se1e and Se2e is a point. Indeed, we have Se1e \Se2e D .Se1e \Fe/\ .Se2e \Fe/. As
two lines Se1e \Fe and Se2e \Fe in the plane Fe are axes of hfv1

i D Z.Gv1
/ and hfv1

i D Z.Gv2
/,

respectively, and hf1; f2i generates a finite-index subgroup of Ge , it follows that these two lines are not
parallel, and hence their intersection must be a single point.

We note that the intersection of a boundary plane Fe of Yv with the hyperbolic space Y v is a line. The
boundary lines Lv of the hyperbolic space Y v is the collection of lines Lv D f`e WD Fe \Y v j e� D vg.

Definition 2.18 If for each edge e WD Œv; w� 2 T , the boundary line `D Y v\Fe is parallel to the R-line
in Yw D Y w �R, then the CKA action is called flip.

In the sequel, it will be useful to make the following specific choices.
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Figure 1: The dotted and blue path from x to y is a special path, and the red path is oneL1-version
of it.

Definition 2.19 An indexed map � W X ! T 0 is a G-equivariant coarsely Lipschitz map such that
x 2 zY�.x/ for all x 2X .

If G acts freely on X , such a map � can be constructed as follows. Choose a fundamental set † such
that † contains exactly one point from each orbit. Define � W †! T 0 so that x 2 zY�.x/, and extend �
equivariantly to the whole space X . By Lemma 2.17.(2), one can show that � is a coarsely Lipschitz map:
j�.x/� �.y/jT � Ljx�yjX CL for some L> 0. See [21, Section 3.3] for more details.

If G acts only geometrically on X , we could replace X with a G-orbit Go for a basepoint o with trivial
stabilizer. This does not matter much as we are only interested in the coarse geometry hereafter. By
modifying X , we can always assume such a basepoint o exists. Indeed, this can be achieved by attaching
a Euclidean cone to a point o such that its nontrivial but finite stabilizer acts freely on its boundary circle.
Then we do the modification equivariantly for all translates in Go.

2.3.2 Special paths in CKA spaces Let G Õ X be a CKA action. We now introduce the class of
special paths in X .

Definition 2.20 (special paths in X ) Let � WX ! T 0 be the indexed map given by Definition 2.19. Let
x and y be two points in X . If �.x/D �.y/, a special path in X connecting x to y is the geodesic Œx; y�.
Otherwise, let e1 � � � en be the geodesic edge path connecting �.x/ to �.y/ and let pi DSei�1ei

\SeieiC1

be the intersection point of adjacent strips, where e0 WD x and enC1 WD y. A special path connecting x to
y is the concatenation of the geodesics

Œx; p1�Œp1; p2� � � � Œpn�1; pn�Œpn; y�:

Remark 2.21 By definition, except for Œx; p1� and Œpn; y�, the special path depends only on the geodesic
e1 � � � en in T , the choice of planes Fe and the indexed map �.
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Proposition 2.22 [43, Proposition 3.8] There exists a constant � > 0 such that every special path  in
X is a .�; �/-quasigeodesic.

Assume that v0 D �.x/; v2n D �.y/ 2 V are such that d.v0; v2n/D 2n for n� 0. If  is a special path
between x and y, then we define

(2) jx�yjhor
X WD

2nX
iD0

jpi �piC1j
hor
Yvi
; jx�yjver

X WD

2nX
iD0

jpi �piC1j
ver
Yv

where p0 WD x and pnC1 WD y. By Proposition 2.22, we have

jx�yjX � jx�yj
hor
X Cjx�yj

ver
X :

By definition, the system of special paths isG-invariant, so the symmetric functions dh.x; y/ and dv.x; y/
are G-invariant for any x; y 2X .

We partition the vertex set T 0 of the Bass–Serre tree into two disjoint classes of vertices V1 and V2 such
that if v and v0 are in Vi then dT .v; v0/ is even.

Lemma 2.23 [43, Lemma 4.6] There exists a subgroup PG of index at most 2 in G preserving Vi for
i D 1; 2 such that Gv � PG for any v 2 T 0.

2.4 Projection axioms

In this subsection, we briefly recall the work of Bestvina, Bromberg and Fujiwara [5] on constructing a
quasitree of spaces.

Definition 2.24 (projection axioms) Let Y be a collection of geodesic spaces equipped with projection
maps

f�Y W Y �fY g ! P.Y /gY2Y

where P.Y / is the power set of Y . Write dY .X;Z/D diam.�Y .X/[�Y .Z// for X ¤ Y ¤Z 2 Y . The
pair .Y ; f�Y gY2Y / satisfies projection axioms for a projection constant � � 0 if the following hold:

(1) diam.�Y .X//� � when X ¤ Y .

(2) If X , Y and Z are distinct and dY .X;Z/ > � then dX .Y;Z/� � .

(3) For X ¤Z, the set fY 2 Y j dY .X;Z/ > �g is finite.

The following is a useful example to keep in mind throughout the paper. For further details, we refer the
reader to the introduction of [5]. In this example, the collection of metric spaces Y consists of subspaces
of a singe metric space; however, we emphasize that this need not be the case in general.
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Example 2.25 Let G be a discrete group of isometries of H2, and  2G be a loxodromic element with
axis  . Let Y be the set of all G-translates of  . Given Y 2 Y , let �Y denote the shortest projection map
in H2. Since all translates of  are convex, this is a well-defined 1-Lipschitz map. One may check that
.Y ; f�Y gY2Y / satisfies the projection axioms for some constant � .

Remark 2.26 Let .Y ; f�Y gY2Y / satisfy the projection axioms. By [7, Theorem 4.1 and Lemma 4.13],
there exists a variant � 0Y of �Y such that �Y and � 0Y are uniformly close in Hausdorff distance, and
.Y ; f� 0Y gY2Y / satisfies strong projection axioms, ie the axioms are the same as projection axioms except
for replacing (2) in Definition 2.24 with the following stronger statement: if X; Y;Z are distinct and
dY .X;Z/ > � then �X .Y /D �X .Z/ for a projection constant � 0 depending only on � .

The following results from [5] will be used in this paper.

� Fix K > 0. In [5], a quasitree of spaces CK.Y / is constructed for given .Y ; f�Y gY2Y / which
satisfies the projection axioms with constant � .

� If K > 4� and Y is a collection of uniform quasilines, then CK.Y / is a unbounded quasitree. If
Y admits a group action of G such that �gY D g�Y for any g 2 G and Y 2 Y , then G acts by
isometry on CK.Y /.

Set Œt �K D t if t �K, otherwise Œt �K D 0. Let x 2X and z 2Z for X;Z 2 Y . If X ¤ Y ¤Z, we define
dY .x; z/D dY .X;Z/. If Y DX and Y ¤Z, then define dY .x; z/D diam.�Y .x;Z//. If X D Y DZ,
let dY .x; z/ be the distance in Y . The following distance formula from [7] is crucial in what follows.

Proposition 2.27 [7, Theorem 6.3] Let .Y ; f�Y gY2Y / satisfy the strong projection axioms with constant
�. Then for any x; y 2 CK.Y /,

1

4

X
Y2Y

ŒdY .x; y/�K � jx�yjCK.Y/ � 2
X
Y2Y

ŒdY .x; y/�K C 3K

for all K � 4�.

Definition 2.28 (acylindrical action [9; 44]) Let G be a group acting by isometries on a metric space
.X; d/. The action of G on X is called acylindrical if for any r � 0, there exist constants R;N � 0 such
that for any pair a; b 2X with ja� bjX �R we have

#fg 2G j jga� ajX � r and jgb� bjX � rg �N:

By [9], any nontrivial isometry of acylindrical group action on a hyperbolic space is either elliptic or
loxodromic. A .�; c/-quasigeodesic  for some �; c > 0 is referred to as a quasiaxis for a loxodromic
element g if  and g have finite Hausdorff distance depending only on � and c.

A group is called nonelementary if it is neither finite nor virtually cyclic.
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Proposition 2.29 [6] Assume that a nonelementary hyperbolic group H acts acylindrically on a
hyperbolic space Y . For a loxodromic element g 2H , consider the set A of all H -translates of a given
.�; c/-quasiaxis of g for given �; c > 0. Then there exists a constant � D �.�; c/ > 0 such that for any
 2A, the set

fh 2G j diam.� .h//� �g

is a finite union of double E.g/-cosets.

In particular , there are only finitely many distinct pairs .;  0/ 2A�A satisfying diam.� . 0// > � up to
the action of H .

Lemma 2.30 [54, Lemma 2.14] Let H be a nonelementary group admitting a cobounded and acylin-
drical action on a ı-hyperbolic space .Y ; d/. Fix a basepoint o. Then there exists a set F �H of three
loxodromic elements and �; c > 0 with the following property.

For any h 2H there exists f 2 F such that hf is a loxodromic element and the bi-infinite path

 D
[
i2Z

.hf /i .Œo; ho�Œho; hfo�/

is a .�; c/-quasigeodesic.

Convention 2.31 When speaking of quasilines in hyperbolic spaces with actions satisfying Lemma 2.30,
we always mean .�; c/-quasigeodesics where �; c > 0 depend on F and ı.

3 Property (QT) of relatively hyperbolic groups

In this section, we are going to prove Theorem 1.5. The notion of relatively hyperbolic groups can be
formulated from a number of equivalent ways. Here we shall present a quick definition due to Bowditch
[10] and recall the relevant facts we shall need without proofs.

Let H be a finitely generated group with a finite collection of subgroups P. Fixing a finite generating
set S , we consider the corresponding Cayley graph Cay.H; S/ equipped with path metric d and we
denote by jhjH D d.1; h/ the word length.

Denote by P D fhP j h 2 H;P 2 Pg the collection of peripheral cosets. Let yH.P / be the coned-off
Cayley graph obtained from Cay.H; S/ as follows. A cone point denoted by c.P / is added for each
peripheral coset P 2 P and is joined by half edges to each element in P . The union of two half edges
at a cone point is called a peripheral edge. Denote by Od the induced path metric after coning-off and
jhj yH D

Od.1; h/.

The pair .G;P/ is said to be relatively hyperbolic if the coned-off Cayley graph yH.P / is hyperbolic and
fine: any edge is contained in finitely many simple circles with uniformly bounded length.

By [9, Lemma 3.3; 44, Proposition 5.2], the action of H on yH.P / is acylindrical.
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Let �P denote the shortest projection in word metric to P 2 P in H and dP .x; y/ the j � jH -diameter
of the projections of the points x; y to P . Since P has the strongly contracting property with bounded
intersection property, the projection axioms with a constant � > 0 hold for P (see [48]).

3.1 Thick distance formula

A geodesic edge path ˇ in the coned-off Cayley graph yH.P / is K-bounded for K > 0 if the end points
of every peripheral edge have d -distance at most K.

By definition, a geodesic ˇ D Œx; y� can be subdivided into maximal K-bounded nontrivial segments ˛i
(0 � i � n) separated by peripheral edges ej (0 � j �m) where j.ej /� � .ej /CjH > K. It is possible
that nD 0: ˇ consists of only peripheral edges.

Define
jˇjK WD

X
0�i�n

ŒLen.˛i /�K ;

which sums up the lengths of K-bounded subpaths of length at least K. It is possible that n D 0, so
jˇjK D 0. Define the K-thick distance

(3) jx�yjK
yH
DmaxfjˇjKg

over all relative geodesics ˇ between x and y. Thus, jx�yjK
yH

is Hv-invariant.

A relative path without backtracking in yH.P / admits nonunique lifts in Cay.H; S/ which are obtained
by replacing the peripheral edge by a geodesic in Cay.H; S/ with the same endpoints. The distance
formula follows from the fact that the lift of a relative quasigeodesic is a quasigeodesic (see [25; 27,
Proposition 6.1]). The following formula is made explicit in [48, Theorem 0.1].

Lemma 3.1 For any sufficiently large K > 0 and for any x; y 2H ,

(4) jx�yjH �K jx�yj
K
yH
C

X
P2P

ŒdP .x; y/�K :

The following result is proved in [43, Lemma 5.5] under the assumption that H is hyperbolic relative to a
set of virtually cyclic subgroups. However, the same proof works for any relatively hyperbolic group.

Lemma 3.2 For any sufficiently large K > 0, there exists an H -finite collection A of quasilines in yH
and a constant N DN.K; yH;A/ > 0 such that for any two vertices x; y 2 yH ,

(5) jx�yjK
yH
�N

X
`2A

Œ Od`.x; y/�K :

A group H endowed with the profinite topology is a topological group such that the set of all finite-index
subgroups is a (closed/open) neighborhood base of the identity. A subgroup P is called separable if
it is closed in the profinite topology. Equivalently, it is the intersection of all finite-index subgroups
containing P . A group is called residually finite if the trivial subgroup is closed.
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A maximal abelian subgroup of a residually finite group is separable (see [31, Proposition 1]). Note that a
maximal elementary (ie virtually cyclic) group E in a relatively hyperbolic group H contains a maximal
abelian group (of rank 1) as a finite-index subgroup. If H is residually finite, then E is a finite union of
closed subsets; hence it is closed and thus separable.

We will use the following corollary in the proof of Theorem 1.5.

Corollary 3.3 Assume that H is a residually finite relatively hyperbolic group. Then for any K� 0,
there exists a finite-index subgroup PH � H acting on finitely many quasitrees Ti (1 � i � n) such
that every orbital map of the PH -action on

Qn
iD1 Ti is a quasi-isometric embedding from . PH; j � jK

yH
/ toQn

iD1 Ti .

This corollary is essentially proved in [43], inspired by the arguments in the setting of mapping class
groups [6]. We sketch the proof for the convenience of the reader.

Sketch of proof Recall that for any � > 0, a set T of (uniform) quasilines in a hyperbolic space with
� -bounded projection satisfies the projection axioms for a projection constant � D �.�/ > 0. Let � and c
be the constants given by Lemma 2.30 with respect to the acylindrical action H Õ yH . For our purpose,
we will choose � to be the constant given by Proposition 2.29. Then the distance formula for the quasitree
CK.T / constructed from T holds for any K � 4�.

For a fixed large constant K, Lemma 3.2 provides an H -finite set of quasilines A such that (5) holds. We
then use the separability to find a finite-index subgroup PH of H such that A decomposes as a finite union
of PH -invariant Ti each of which satisfies the projection axioms with projection constant � . To be precise,
the stabilizer E of a quasiline ` in A is a maximal elementary subgroup of H and thus is separable in
H if H is residually finite (since a maximal abelian group in a residually finite group is separable). By
Proposition 2.29 and the paragraph after Lemma 2.1 in [6], the separability of E allows one to choose
a finite-index subgroup PH containing E such that any PH -orbit Ti in the collection of quasilines H`
satisfies the projection axioms with projection constant �. We take a common finite-index subgroup PH
for finitely many quasilines ` in A up to H -orbits and therefore have found all PH -orbit Ti such that their
union covers A.

Finally, it is straightforward to verify that the right-hand term of (5) coincides with the sum of distances
over the finitely many quasitrees Ti WD CK.Ti /. Thus, the thick distance dK

yH
.x; y/ is quasi-isometric to

the distance on a finite product of quasitrees.

All our discussion generalizes to the geometric action of H on a geodesic metric space Y , since there
exists an H -equivariant quasi-isometry between Cay.H; S/ and Y . Therefore, replacing Cay.H; S/
with Y , we have the same thick distance formula. This is the setup for CKA actions in next sections.

In next subsection, we obtain property (QT) for relatively hyperbolic groups provided peripheral subgroups
do so.
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3.2 Proof of property (QT) of relatively hyperbolic groups

Proof of Theorem 1.5 Recall that P is a finite set of subgroups. For each P 2 P, choose a full set
EP of left P -coset representatives in H such that 1 2EP . For given P and 1� i � nP , we define the
collection of quasitrees

T i
P WD ff Ti j f 2EP g

where Ti are quasitrees associated to P given by assumption. Then H preserves T i
P by the following

action: for any point f .x/ 2 f Ti and h 2H ,

h �f .x/ WD f 0p.x/ 2 f 0Ti

where p 2 P is given by hf D f 0p for f 0 2EP .

We are now going to define projection maps f�f Ti
g as follows.

By assumption, we fix an orbital embedding �iP of P into Ti such that the induced map

nPY
iD1

�iP W P !

nPY
iD1

Ti

is a quasi-isometric embedding. We then define an equivariant family of orbital maps �i
fP
W fP ! f Ti

such that
�ifP .x/ WD f �

i
P .f

�1x/ for all x 2 fP:

Then for any h 2H and x 2 fP , h � �i
fP
.x/D �i

f 0P
.hx/ where f 0 2EP with hf D f 0p and p 2 P .

Let �fP be the shortest projection to the coset fP in H with respect to the word metric. For any two
distinct f Ti ; f 0Ti 2 T i

P , we set

�f Ti
.f 0Ti / WD �

i
fP .�fP .f

0P //:

Recall that P DffP j f 2H;P 2Pg satisfies the projection axioms with shortest projection maps f�fP g.
It is readily checked that the projection axioms pass to the collection T i

P under equivariant Lipschitz
maps f�i

fP
gfP2P .

We can therefore build the projection complex for T i
P for a fixed K � 0. By Proposition 2.27, the

following distance holds for any x0; y0 2 CK.T i
P /:

(6) jx0�y0jCK.T
i
P /
�K

X
T2T i

P

ŒdT .x
0; y0/�K :

Note that
QnP

iD1 �
i
P WP !

QnP

iD1 Ti is a quasi-isometric embedding for each P 2P. Thus, for any x; y 2G
and P 2 P ,

(7) dP .x; y/D j�P .x/��P .y/jP �

nPX
iD1

j�iP .�P .x//� �
i
P .�P .y//jTi

:
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Setting x0 D �iP .�P .x// and y0 D �iP .�P .y// in (7), we deduce from (6) that

(8) dP .x; y/�K

nPX
iD1

j�iP .�P .x//� �
i
P .�P .y//jCK.T

i
P /
:

Recall from Lemma 3.1 that for any x; y 2H , we have

jx�yjH �K jx�yj
K
yH
C

X
P2P

ŒdP .x; y/�K :

Note that the orbital map of any isometric action is Lipschitz. To prove property (QT) of H , it suffices
to give an upper bound of jx � yjH . Taking account of (8), it remains to construct a finite product of
quasitrees to bound jx�yjK

yH
.

Since H is residually finite, by Corollary 3.3, there exists a finite-index subgroup, still denoted by H ,
and a finite product Y of quasitrees such that the orbital map …0 from H to Y gives a quasi-isometric
embedding of H equipped with j � jK

yH
-function into Y .

Recall that �P is the shortest projection to P 2 P . For 1� i � nP , define

…i WH ! CK.T
i
P /

by sending an element h 2H to �iP .�P .h//. We then have n equivariant maps …i from H to quasitrees
after reindexing, where n WD

P
P2P nP .

Let … WD…0 �
Qn
iD1…i be the map from H to Y �

Qn
iD1 CK.T i

P /, where Y is the finite product of
quasitrees as in the previous paragraphs. As previously mentioned, the product map … gives an upper
bound on dH .x; y/, so is a quasi-isometric embedding of H . Therefore, H has property (QT).

Remark 3.4 An immediate corollary of Theorem 1.5 is that the fundamental group of a finite volume
hyperbolic 3-manifold has property (QT). An alternative proof is that �1.M/ is virtually compact special
by deep theorems of Agol [3] and Wise [53], and thus �1.M/ has property (QT).

We say that the profinite topology on H induces a full profinite topology on a subgroup P if every
finite-index subgroup of P contains the intersection of P with a finite-index subgroup of H .

Theorem 3.5 Suppose that H is residually finite and each P 2 P is separable. Assume furthermore
that H induces the full profinite topology on each P 2 P. If each P 2 P acts by isometry on a finite
product of quasitrees without R-factor such that orbital maps are quasi-isometric embeddings , then H
has property (QT ).

Proof By [26, Corollary 1.3], there is a finite-index subgroup PP of P acting on each quasitree Ti such
that the diagonal action of PP on

Qn
iD1 Ti induces a quasi-isometric embedding orbital map

Qn
iD1 �

i
PP
.

By the assumption, H induces the full profinite topology on P 2 P, so every finite-index subgroup of a
separable subgroup P is also separable. Thus, there are finite-index subgroups PHP of H for P 2 P such
that PP D PHP \P .
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Consider the finite-index normal subgroup PH WD
T
fh PHPh

�1 j P 2 Pg in H . Since PH is normal in H ,
we see that PH \ hPh�1 � h PPh�1 is equivalent to PH \P � PP . The later holds by the choice of PHP .
Hence, for every h 2H , PH \ hPh�1 preserves the factors of the product decomposition. Note that PH is
hyperbolic relative to f PH \ hPh�1 j h 2H g. The conclusion follows from Theorem 1.5.

In subsequent sections (Sections 4, 5, 6 and 7), the proof of property (QT) of CKA groups will be
discussed, which may be considered as the technical heart of this paper.

4 Coning-off CKA spaces

In this section, we recapitulate the content of [43, Section 5] and give an outline of the proof of Theorem 1.3.

Let G ÕX be a CKA action where G is the fundamental group of an admissible graph of groups G (see
Section 2.3), and let G Õ T be the action of G on the associated Bass–Serre tree T of G. Let T 0 and T 1

be the vertex and edge sets of T .

Let fFeg be the collection of boundary planes of the space Yv (see Section 2.3). We note that the
intersection of a boundary plane Fe of Yv with the hyperbolic space Y v is a line. We define the collection
of lines Lv of the hyperbolic space Y v as

Lv D f`e WD Fe \Y v j e� D vg;

which shall be referred as boundary lines.

4.1 Construction of coned-off spaces

Recall that T 0 D V1[V2 where Vi consists of vertices in T with pairwise even distances. Let PG <G
be the subgroup of index at most 2 preserving V1 and V2 given by Lemma 2.23.

Fix a large r > 0. A hyperbolic r-cone by definition is the metric completion of the (incomplete) universal
cover of a punctured hyperbolic disk of radius r . Let Yi D fY v j v 2 Vig be the collection of hyperbolic
spaces and PYi D f PYv j v 2 Vig be their coned-off spaces (which are uniformly hyperbolic for r � 0) by
attaching hyperbolic r-cones along the boundary lines of Y v.

Note that PG preserves Yi and PYi by the action on the index gYv D Ygv for any g 2 PG. For each w 2 T 0,
let St.w/ be the star of w in T with adjacent vertices as extremities. Then St.w/ admits the action of Gw
so that the stabilizers of the extremities are the corresponding edge groups.

Define PXi to be the space obtained from the disjoint union of coned-off spaces PYv (v 2 Vi ) with cone
points identified with the extremities of the stars St.w/ with v 2 Lk.w/. Endowed with induced length
metric, the space PXi is a Gromov-hyperbolic space.

Lemma 4.1 Fix a sufficiently large r > 0 and i 2 f1; 2g. The space PXi is a ı-hyperbolic space where
ı > 0 only depends on the hyperbolicity constants of PYv (v 2 Vi ).
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The subgroup PG acts on PXi with the following properties:

(1) for each v 2 Vi , the stabilizer of PYv is isomorphic to Gv and Hv acts coboundedly on PYv, and

(2) for each w 2 T 0�Vi , Gw acts on St.w/ in the same manner as the action on the Bass–Serre tree T .

Proof Note that the stabilizers of the cone points of PYv under the action of Gv on PYv are the same as that
of the extremities of stars St.w/, which are both the edge groups Ge for e D Œv; w�. By construction, the
cone points of PYv are identified with the extremities of stars St.w/, so the actions of Gv on PYv (v 2 Vi )
and of Gw on St.w/ (w 2 T 0�Vi ) extend over PXi , and hence PG acts by isometries on PXi .

Remark 4.2 Our construction of coned-off spaces is slightly different from the one in [43, Section 5.1],
where the cone points are identified directly between different spaces PYv and PYv0 . Thus certain assumption
on vertex groups is necessary in [43] to ensure an action on the coned-off space.

We now define the thick distance on PXi (i D 1; 2) by taking the sum of thick distances through PYv as
follows.

If x is a point in a coned-off space PYv � PXi , we denote �.x/ by v (by abuse of notation). By the above
tree-like construction, any path between x; y 2 PXi has to pass through in order a pair of boundary lines `�v
and `Cv of Y v for each v 2 Œ�.x/; �.y/�. By abuse of language, if x is not contained in a hyperbolic cone,
set `�v D x for v D �.x/. Similarly, if y is not contained in a hyperbolic cone, set `Cv D y for v D �.y/.

Let .xv; yv/ be a pair of points in the boundary lines .`�v ; `
C
v / such that Œxv; yv� is orthogonal to `�v

and `Cv . Recall that jxv �yvjKPYv

is the K-cut-off thick distance defined in (3).

Definition 4.3 For any K � 0, the K-thick distance between x and y is defined by

(9) jx�yjK
PXi
WD

X
v2Œ�.x/;�.y/�\Vi

jxv �yvj
K
PYv
:

Since j � jK
PYv

is Hv-invariant, we see that jx�yjK
PXi

is PG-invariant.

Remark 4.4 The definition of j � jK
PXi

is designed to ignore the parts in hyperbolic cones between different
pieces. One consequence is that perturbing x and y in hyperbolic cones does not change their K-thick
distance.

4.2 Construct the collection of quasilines in PXi

If E.`/ denotes the stabilizer in Hv of a boundary line ` of Y v, then E.`/ is virtually cyclic and
almost malnormal. Since fE.`/g is Hv-finite by conjugacy, let Ev be a complete finite set of conjugacy
representatives. By Lemma 2.16, Hv is hyperbolic relative to peripheral subgroups Ev . Hence, the results
in Section 3 apply here.

Let �; c > 0 be the universal constants given by Lemma 2.30 applied to the actions of Hv on PYv for all
v 2 T 0 (since there are only finitely many actions up to conjugacy). By convention, the quasilines in
coned-off spaces are understood as .�; c/-quasigeodesics in PXi and PYv.
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The coning-off construction has the following consequence [43, Lemma 5.14]: the shortest projection of
any quasiline ˛ in PYv to a quasiline ˇ in PYv0 has to pass through the cone point attached to PYv0 , and thus
has uniformly bounded diameter by � D �.�; c/ > 0.

For simplicity, we also assume that � D �.�; c/ > 0 satisfies the conclusion of Proposition 2.29. Conse-
quently, this determines a constant � D �.�/ > 0 such that any set of quasilines with � -bounded projection
satisfies the projection axioms with projection constant � .

Fix K >maxf4�; �g. For each v 2 V, there exists an Hv-finite collection of quasilines Av in PYv and a
constant N DN.Av; K/ such that the dK

yHv

-distance formula holds by Lemma 3.2.

Since PG acts cofinitely on V1 and V2, we can assume Aw D gAv if w D gv for g 2 PG. Let

Ai WD
[
v2Vi

Av

for i D 1; 2, which are both PG-invariant. We now equip Ai with projection maps as the shortest projection
maps between two quasilines in PXi for i D 1; 2.

If  is a quasiline in PXi for i D 1; 2, denote by Pd .x; y/ the j � j PXi
-diameter of the shortest projection of

x; y 2 PXi to  .

The following result shows that the thick distance is captured by the projections of Ai . Recall that r is
the radius of the hyperbolic cones in constructing PXi .

Proposition 4.5 [43, Proposition 5.9] For any x; y 2 PXi ,

(10) jx�yjK
PXi
�r;K

X
2Ai

Œ Pd .x; y/�K Cj�.x/� �.y/jT :

In the next subsection, we construct a suitable finite subgroup of G such that it acts isometrically on a
finite product of quasitrees T1; : : : ; Tn under some assumptions on vertex groups. This allows rewriting
the right-hand side of the distance formula (10) as the product distance of the Ti .

4.3 Isometric action of a suitable finite-index subgroup of G

In a group, two elements are independent if they do not have conjugate powers (see [52, Definition 3.2]).

Definition 4.6 A group H is omnipotent if for any nonempty set of pairwise independent elements
fh1; : : : ; hrg (r � 1) there is a integer p � 1 such that for every choice of positive natural numbers
fn1; : : : ; nrg, there is a finite quotient H ! yH such that Ohi has order nip for each i .

Let G Õ X be a CKA action, where G is the fundamental group of the admissible graph of groups G

such that every vertex group Gv is a central extension of an omnipotent hyperbolic group. By Lemma 4.1,
the finite-index subgroup PG acts on PX1 � PX2 � T which is equipped with the PG-invariant function
j � jK
PX1

� j � jK
PX2

� j � jT . The main result of this subsection is the following.
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Proposition 4.7 The group PG admits finitely many isometric actions on quasitrees Ti for 1� i � n such
that there exists a PG-equivariant quasi-isometric embedding from PX1 � PX2 �T to T1 �T2 � � � � �Tn �T .

We emphasize here that j � jK
PX1

� j � jK
PX2

� j � jT on the domain for the quasi-isometric embedding is not a
distance function, but the target is equipped with product distance.

By [11, Theorem II.6.12], Gv contains a subgroup Kv intersecting trivially with Z.Gv/ such that the
direct product Kv �Z.Gv/ is a finite-index subgroup. Thus, the image of Kv in Gv=Z.Gv/ is of finite
index in Hv and Kv acts geometrically on hyperbolic spaces Y v. Since Hv is omnipotent and then is
residually finite, we can assume that Kv is torsion-free.

Recall the PG-invariant collection of quasilines in Section 4.2,

Ai D
[
v2Vi

Av;

where Av is the collection of quasilines such that dK-distance formula holds by Lemma 3.2. By
the residual finiteness of Kv, there exists a finite-index subgroup PKv such that Av is partitioned into
PKv-invariant subcollections with projection constants �.

To prepare the proof, we need to introduce a compatible condition of gluing finite-index subgroups. A
collection of finite-index subgroups fG0e; G

0
v j v 2 G0; e 2 G1g is called compatible if whenever v D e�,

we have
Gv \G

0
e DG

0
v \Ge:

By [24, Theorem 7.51], a compatible collection of finite-index subgroups gives a finite-index subgroup of
G. The following result says that upon taking finite-index subgroups, we can assume that each vertex
group is a direct product in a CKA group.

Lemma 4.8 Let f PKv <Kv j v 2 G0g be a collection of finite-index subgroups. Then there exist finite-
index subgroups RKv of PKv, G0e of Ge and Zv of Z.Gv/ such that the collection of finite-index subgroups
fG0e; G

0
v D

RKv �Zv j v 2 G0; e 2 G1g is compatible.

Assuming Lemma 4.8, we now complete the proof of Proposition 4.7.

Proof of Proposition 4.7 We pass to further finite-index subgroups RKv < PKv satisfying compatible con-
ditions, which then gives a further indexed subgroup RG � PG. For i D 1; 2, let us partition Ai D

Sni

kD1
Ai
k

into RG-obits Ai
k

. By the construction of RG, we know that RG intersects each vertex group Gv of the
Bass–Serre tree in a (conjugate) subgroup RKv . Thus, for each k, Ai

k
are the union of certain RKv-invariant

subcollections where v are varied in Vi .

Recall that Ai for i D 1; 2 satisfies the projection axioms with a uniform projection constant � in
Section 4.2. We can then build the quasitrees T i

k
WD CK.Aik/ where 1 � k � ni . Setting nD n1C n2,

this thus yields isometric group actions of RG on quasitrees Ti (1� i � n).
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We first construct a RG-equivariant map ˆ from PX1 � PX2 �T to T1 �T2 � � � � �Tn �T . By equivariance,
it suffices to fix a basepoint in each X1, X2, T and Ti so that ˆ sends basepoints to basepoints. The
quasi-isometric embedding property follows from the distance formula (10), where the right-hand side is
now replaced by the distance in the corresponding quasitrees.

Note that RG is of finite index in PG. By taking more copies of quasitrees Ti in the target, the map ˆ can
be made PG-equivariant. Indeed, if a finite-index subgroup H �G acts on some space X then G acts on
a finite product of ŒG WH� copies of X without preserving the factors. The map ˆ can be extended to
these copies as well.

Proof of Lemma 4.8 Assume that hfvi DZ.Gv/ for any v 2 G0. Then for an oriented edge e D Œv; w�
from v to w, the subgroup hfv; fwi is of finite index in Ge.

Note that Ge Š Z2 admits a base f Ofv; Obeg where Ofv is primitive so that fv is some power of Ofv. Let
�v WGv!Hv DGv=Z.Gv/. Thus, �v.Ge/ is a direct product of a torsion group with hbei in Hv , where
be D �v. Obe/ is a loxodromic element.

Similarly, let Ofw ; Ob Ne 2Ge such that h Ofw ; Ob Nei DGe. Keep in mind that for any integer n¤ 0,

h Of nv ;
Obne i D h

ObnNe ;
Of nw i

is of finite index in Ge.

We choose an integer m¤ 0 such that Obme 2 PKv for every vertex v 2 G0 and every oriented edge e from
e� D v. Such an integer m exists since PKv injects into Hv as a finite-index subgroup, and G is a finite
graph of groups.

Apply the omnipotence of Hv to the independent set of elements fbe j e� D vg. Let pv be the constant
given by Definition 4.6. Set

s WDm
Y
v2G0

pv:

Set lv D s=pv. Thus, for the collection fbe j e� D vg, there exists a finite quotient �v WHv!H v such
that �v.be/ has order s D lvpv and bse 2 ker.�v/. Then RKv WD PKv \��1v ker.�v/ is of finite index in PKv .
Recall that �vjKv

WKv!Hv is injective (see the paragraph before Lemma 4.8). Since �v. Obse/D b
s
e is

loxodromic in Hv and Obse 2 PKv for mjs, we have that Obse is a loxodromic element in RKv.

For each oriented edge e D Œv; w� 2 G1, define

G0v WD h
Of sv i �

RKv; G0w WD h
Of swi �

RKw ; G0e WD h
Of sv ;
Obsei D h

ObsNe ;
Of swi<G

0
v:

Let g 2 Ge \G0v be any element so we can write g D Of smv k for some m 2 Z and k 2 RKv. Recall that
�v.Ge/ is a direct product of hbei and a torsion group, and RKv is torsion-free. So

�v.g/D �v.k/ 2 �v.Ge/\�v. RKv/
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is some power of be; �v.k/D ble for some l 2Z. Note that ble D �v.k/2 ker.�v/ so omnipotence implies
that sjl , ie l D ns for some n 2 Z. Since be D �v. Obe/ and �v W RKv ! Hv is injective, we obtain that
k D Obnse . Therefore, g D Of smv Obnse 2G

0
e which implies

Gv \G
0
e DG

0
v \Ge:

Therefore, the collection fG0v; G
0
e j v 2 G0; e 2 G1g is verified to be compatible.

4.4 Outline of the proof of Theorem 1.3

Let G ÕX be a CKA action where G is the fundamental group of an admissible graph of groups G such
that for every vertex group the central extension (1) has omnipotent hyperbolic quotient group. Recall
that property (QT) is preserved undertaking finite-index subgroups (see Lemma 2.3). Upon passing to
further indexed subgroups in Lemma 4.8, we can assume that Gv DHv�Z, where Hv acts geometrically
on Y v and also we can assume PG DG. To show the property (QT) of G, we must find not only a suitable
action on a finite product of quasitrees, but also ensure the distance of points in the image can recover
word distance in the ambient group. We briefly describe here the strategy of the proof. Details are given
in Sections 5 and 6.

Thanks to Proposition 4.7, we know that there exists a G-equivariant quasi-isometric embedding (note
that PG DG)

PX1 � PX2 �T ! T1 �T2 � � � � �Tn �T:

Here Ti (with i 2 f1; 2; : : : ; ng) is a quasitree. As the geometry of space PX1 � PX2 �T does not capture
the distance from vertical parts of X , there is no way finding a quasi-isometric embedding from the orbit
Go to PX1 � PX2 �T . To overcome this obstacle, in Section 5, we will construct two additional quasitrees,
denoted by CK.F1/ and CK.F2/, and will show that there is indeed a G-equivariant quasi-isometric
embedding

ˆ WGo! CK.F1/�CK.F2/� PX1 � PX2 �T

(Section 6 is devoted to constructing ˆ and verifying G-equivariant quasi-isometric embedding of ˆ).
As a consequence, we obtain the desirable G-equivariant quasi-isometric embedding

Go! CK.F1/�CK.F2/�T1 �T2 � � � � �Tn �T

which entails property (QT) of G.

5 Projection system of fiber lines

Recall we partition T 0 D V1 [V2 where Vi consists of vertices in T with pairwise even distances.
For convenience, we sometimes write VD V1 and WD V2. We note that property (QT) of a group is
preserved under taking a finite-index subgroup (see Lemma 2.3). Thus passing to a finite-index subgroup
(see Lemma 2.23) if necessary we could assume that G is torsion-free and preserves Vi with i D 1; 2.
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Note that e D Œw; v� is an oriented edge from w towards v, and Ne D Œv; w� is the oriented edge from v

towards w. For each oriented edge e, let Fe be the corresponding boundary plane. It is clear that Fe DF Ne
does not depend on the orientation.

5.1 Desired quasilines

By Lemma 2.17, the CKA space X decomposes as the union of vertex spaces zYv DND.Yv/ for v 2 T 0,
on which the vertex groups Gv act geometrically. The center Z.Gv/'Z allows us to split Yv as a metric
product Y v �R. Upon passing to further finite-index subgroups in Lemma 4.8, we can assume that
Gv DHv �Z, where Hv acts geometrically on Y v . If the CKA action G ÕX is not flip (as in [43]), the
system of fiber lines R in Yv D Y v �R does not behave well with respect to the G-action. We introduce
better geometric models for vertex subgroups in order to resolve the G-action of fiber lines. As in [29],
these models are the metric product of Y v with a quasiline.

We first explain the construction of the quasiline obtained from a quasimorphism. The following lemma
is cited from Lemma 4.2 and the proof of Corollary 4.3 in [29]. We present their proof as it is short and
crucial for our discussion.

Lemma 5.1 Let H be a hyperbolic group relative to a finite collection of virtually cyclic subgroups
fEi j 1� i � ng. Consider G DH �Z and fix a set of elements ci 2Ei �Z for each 1� i � n such that
hci i has unbounded projection to Ei . Then there exist a generating set S of G and a .�; �/-quasi-isometry
' W Cay.G; S/!R such that the following holds.

(1) If ghci i and g0hci i are two hci i-cosets for g; g0 2Ei �Z, then

��1jghci i �g
0
hci ijG ��� j'.ghci i/�'.g

0
hci i/j � �jghci i �g

0
hci ijG C�

where jghci i � g0hci ijG denotes the distance between two subsets in G equipped with a word
metric relative to a finite generating set (so not the distance on Cay.G; S/).

(2) With the natural action of G ! H , the diagonal action of G D H � Z on H � Cay.G; S/ is
metrically proper and cobounded , where Z�G acts loxodromically on Cay.G; S/ but hci i acts
boundedly.

In applications, the choice of elements ci shall come from the fiber generator of the adjacent pieces. See
Lemma 5.2 below.

Proof Let �H WGDH�Z!H and �Z WGDH�Z!Z be the natural projections. Let tiD�H .ci /2Ei
be the projection to H of the element ci . We then choose a quasimorphism �i WH !R by [32] such that
�i .ti /D 1 but �i .Ek/D 0 if Ek ¤Ei . Define the quasimorphism of G!R as follows: for any x 2G,

'.x/ WD �Z.x/�

nX
iD1

�Z.ci / � .�i ı�H .x//:
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By definition, ' takes the constant value on hci i-cosets. Moreover, the distance jghci i � g0hci ijG is
bi-Lipschitz to j'.ghci i/�'.g0hci i/j with a constant depending only on hci i.

To find the generating set S , notice that the homogenization of ' (still denoted by ') has a bounded
distance to the original one. As ' is unbounded, there exists h 2G such that f'.hn/D n'.h/ j n 2 Zg

is an infinite cyclic subgroup. Let S WD '�1.Œ0; 2'.h/�/ be a (possibly infinite) subset of G. One can
prove that S generates G, and ' WG!R induces a desired quasi-isometry ' W Cay.G; S/!R. See [1,
Lemma 4.15] for details.

5.2 New geometric model for vertex spaces

Recall that G acts on the Bass–Serre tree T with finitely many vertex orbits. Let fv1; v2; : : : ; vng � T
be the full set of vertex representatives, and let Svi

be the (infinite) generating set for Gvi
given by

Lemma 5.1. Then Gvi
acts on the quasiline fl.vi / WD Cay.Gvi

; Svi
/. Let v be an arbitrary vertex

in T , so that v D gvi for some g 2 G and i 2 f1; 2; : : : ; ng. By equivariance, we define the quasiline
fl.v/ WD gfl.vi /D g Cay.Gvi

; Svi
/, and the action of Ggvi

D gGvi
g�1 on gfl.vi / is induced from the

action of Gvi
on fl.vi /.

Consider the word metric on G given by a finite generating set of G including a finite generating set of
Gvi

for each representative vertex vi . Equipping each vertex group Gv with a word metric, the inclusion
of Gv into G is a quasi-isometric embedding since Yv is quasi-isometrically embedded in the CAT(0)
space X .

WriteXv WDY v�fl.v/ for the new geometric model forGv . By Lemma 5.1, the diagonal actionGv ÕXv

is metrically proper and cobounded, and hence the induced orbital map

Gv!Gvo
0
�Xv

is a Gv-equivariant quasi-isometry for any basepoint o0 D .o01; o
0
2/ 2Xv.

Let us fix a basepoint oD .o1; o2/ 2 Yv. As Gv acts freely and geometrically on Yv D Y v �R, let

Gvo!Gv

be a bijective Gv-equivariant quasi-isometry, a quasi-inverse to the orbital map of Gv Õ Yv.

Choose the same first coordinate o1D o01 for the above basepoints o and o0. Define a Gv-equivariant map
ƒv W Yv!Xv as the composite of the above two G-equivariant maps

ƒv W Yv D Y v �R!Gv!Xv D Y v � fl.v/:

Define the horizontal and vertical projection maps

(11) ƒhor
v W Yv! Y v; ƒver

v W Yv! fl.v/
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as the composites of the map ƒv with the projections to the factor Y v and fl.v/ respectively. For the
product space Xv D Y v � fl.v/, we define similarly the horizontal distance and vertical distances j � jhor

Xv

and j � jver
Xv

. In terms of these notations, we have for any x; y 2 Yv,

jƒv.x/�ƒv.y/j
hor
Xv
D jƒhor

v .x/�ƒ
hor
v .y/jY v

;

jƒv.x/�ƒv.y/j
ver
Xv
D jƒver

v .x/�ƒ
ver
v .y/jfl.v/:

We now derive a few important facts from Lemma 5.1 about ƒv.

Recall that each piece Yv of the CKA space X splits as a metric product Y v �R. In this context, a fiber
line in Yv refers to a subset fxg �R of Yv where x 2 Y v.

Let �v W Yv! Y v be the natural projection map coming from the splitting Yv D Y v �R. We remark that
�v and ƒhor

v are not the same.

Lemma 5.2 There exists a uniform constant � > 0 such that ƒv is a .�; �/-quasi-isometry: for any
x; y 2 Yv,

1

�
jƒv.x/�ƒv.y/jXv

��� jx�yjYv
� �jƒv.x/�ƒv.y/jXv

C�:

Moreover , let Yw be the adjacent piece of Yv in the CKA space X . Let ` and `0 be lines in the plane
P D Yv \Yw such that ` and `0 are fibers in Yw . Then the following hold :

(1) diam.ƒver
v .`//� �. In other words , ƒv.`/� Y v \B.a; �/ in Y v � fl.v/ for some a 2 fl.v/.

(2) Let p 2 Yv D Y v �R be any point and �v.p/ be the projection of p into the factor Y v. Then
j�v.p/�ƒ

hor
v .p/jY v

� �.

(3) Denote by j`� `0jYv
the distance between ` and `0 in Yv. Then

��1j`� `0jYv
��� diamfl.v/.ƒ

ver
v .`/[ƒ

ver
v .`

0//� �j`� `0jYv
C�:

Proof We first prove (2). Choose the fixed basepoints oD .o1; o2/ in Yv and o0 D .o01; o
0
2/ in Y v � fl.v/

such that their projections into the factor Y v are the same: o1 D o01 2 Y v. Take any point p D .a; t/ in
Yv D Y v �R, so �v.p/D a. By our definition of the Gv-equivariant quasi-inverse Yv!Gv , there exists
a group element g 2Gv such that jgo�pjYv

� � for some uniform constant �. We write g D .h; n/ in
Hv �Z. Note that Gv acts on Y v � fl.v/ diagonally; thus the image of the group element g D .h; n/
under the composition map

Gv! Y v � fl.v/! Y v

is h �o1, where the first one is the orbital map and the second one is the projection map. If Yv is equipped
with L1-metric, it follows that jho1 � ajY v

� jgo� pjYv
� �. As the map ƒv descends to the map

Y v! Y v sending a to h.o1/, our claim is confirmed:

jƒhor
v .x/�ƒ

hor
v .y/jY v

��� dh.x; y/� �Cjƒhor
v .x/�ƒ

hor
v .y/jY v

:
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For part (1), as there are only finitely many isometric types of Yv of X , we only need to prove that
diam.ƒver

v .`//� � for one given Yv. Indeed, recall that ƒver
v W Yv! fl.v/ factors through

Yv!Xv D Y v � fl.v/

as the natural projection Xv ! fl.v/. The latter agrees with the quasimorphism ' W Gv ! R up to a
bounded error in the proof of Lemma 5.1, vanishing on the center Z.Gw/. If B.a; �/ denotes the ball at
some element a 2 fl.v/ with radius �, it follows that Z.Gw/o� Y v �B.a; �/. Every fiber line ` in Yw
lies in a uniform neighborhood of the orbit of a Z.Gw/-coset. Our second claim is thus verified.

Part (3) is clear from our construction.

5.3 Projection maps

Recall T 0 D V1[V2 where Vi consists of vertices in T with pairwise even distances. Let

F1 D ffl.v/ j v 2 V1g; F2 D ffl.w/ j w 2 V2g:

It remains to define a family of projection maps for them.

Definition 5.3 (projection maps in Fi ) Let e1 D Œv; w�, e2 D Œw; v2� denote the first two (oriented)
edges in Œv; v0�. Let Fe1

D Yv \Yw and Fe2
D Yv2

\Yw be the two boundary planes of Yw . Let Se1e2

be the strip in Yw joining two boundary plane Fe1
and Fe2

of Yw (see Section 2.3.1 for the definition
of strips). We note that Se1e2

\Fe1
is a line in Fe1

that is parallel to a fiber in Yw . We then define the
projection from fl.v0/ into fl.v/ to be

…fl.v/.fl.v
0/ WDƒver

v .Se1e2
\Fe1

/;

where ƒver
v defined in (11) is the vertical projection to the quasiline in Xv D Y v � fl.v/.

Lemma 5.4 Let � > 0 be the constant given by Lemma 5.2. Let a, b and c be distinct vertices in Vi

with i D 1; 2. If dT .a; Œb; c�/� 2 then …fl.a/.fl.c//D…fl.a/.fl.b//� �.

Proof Let Œb; a� and Œc; a� be the geodesics in the tree T connecting b and c to w respectively. Let
e � e0 be the last two edges in Œb; a� (that is also the last two edges in Œc; a�). Let See0 be the strip in YeC
connecting two boundary planes Fe and Fe0 of YeC By our definition of projection maps, we have that
…fl.a/.fl.c//D…fl.a/.fl.b//Dƒ

ver
a .See0 \Pe0/� �.

5.4 Projection axioms

We are now going to verify that Fi (i D 1; 2) with the above-defined projection maps in Definition 5.3
satisfy the projection axioms (see Definition 2.24). For each vertex v 2 T , let Lv be the collection of
boundary lines in the hyperbolic space Y v defined at the beginning of Section 4. Let `1, `2 and `3 be
three distinct boundary lines in Lv. We write

d`1
.`2; `3/D diam.�`1

.`2/[�`1
.`3//
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where �`i
. j̀ / is the shortest projection of j̀ to `i in the CAT(0) hyperbolic space Y v (note that Y v is

a hyperbolic space since Hv acts geometrically on Y v and Hv is a nonelementary hyperbolic group).
Recall that

dfl.v1/.fl.v2/; fl.v3// WD diam
�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
:

Lemma 5.5 There exists a uniform constant � > 0 such that the following holds. Let v1, v2 and v3 be
distinct vertices in V1 such that v1, v2 and v3 are in Lk.o/ for some vertex o in V2. Let ei denote the
edge Œvi ; o� with i D 1; 2; 3 and let Fei

be the plane in X associated to ei . For each i D 1; 2; 3, let `i
denote the boundary line of Y o that is the projection of Fei

into Y o. Then

1

�
d`1
.`2; `3/��� dfl.v1/.fl.v2/; fl.v3//� �d`1

.`2; `3/C�:

Proof Let Se1e2
and Se1e3

be the strips in Yo connecting the planesFe1
toFe2

andFe1
toFe3

respectively.
We denote the line Se1e2

\Fe1
by ` and denote the line Se1e3

\Fe1
by `0. Note that both lines ` and `0

are fibers in Yo. Recall that by our definition of projection maps, we have …fl.v1/.fl.v2//Dƒ
ver
v1
.`/ and

…fl.v1/.fl.v3//Dƒ
ver
v1
.`0/. By part (3) of Lemma 5.2, for some � > 0, we have that

1

�
j`� `0j ��� diam

�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
� �j`� `0jC�:

Note that j`�`0j D d`1
.`2; `3/ (indeed, let ˛ and ˇ be the shortest geodesics joining `2 to `1 and `3 to `1

respectively; then ` and `0 are the product ˛C�R and ˇC�R of endpoints of ˛ and ˇ, respectively, with
the R direction in Yo D Y o�R). Combining the above inequalities, we obtain a constant �0 D �0.�/ > 0
still denoted by � such that

1

�
d`1
.`2; `3/��� diam

�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
� �d`1

.`2; `3/C�:

We are now going to prove the following.

Lemma 5.6 There exists a constant � > 0 such that for each i 2 f1; 2g, the collection Fi with projection
maps �fl.v/ satisfies the projection axioms with projection constant � .

Proof We verify in order the projection axioms (see Definition 2.24) for the projection maps defined
on F1. The case for F2 is symmetric. The constant � will be defined explicitly during the proof.

Axiom 1 Let � > 0 be the constant given by Lemma 5.2. Since Se1e2
\Fe1

is a fiber line in Yw , it
follows from Lemma 5.2 that diamƒver

v .Se1e2
\Fe1

/� �. Thus diam
�
…fl.v/.fl.v

0//
�
� �. Axiom 1 in

Definition 2.24 is verified.

Axiom 2 Let u, v and w be distinct vertices in V1. We will show that there exists � � 0 sufficiently
large that if dfl.w/.fl.u/; fl.v// > �, then dfl.u/.fl.w/; fl.v//� � or dfl.v/.fl.w/; fl.u//� � . The constant
� will be defined explicitly during the proof. Since dfl.w/.fl.u/; fl.v// > �, it follows from Lemma 5.4
that there is some restriction on w, ie w is either lies on Œu; v� or dT .w; Œu; v�/D 1.
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`e

`e1
`e2

Y o

u v
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o

e

e1 e2
�

�

��

Figure 2: Verification of Axiom 2.

Case 1 Suppose w lies on Œu; v�. Since u;w; v 2 V1, we have dT .u; Œw; v�/� 2 and dT .v; Œu; w�/� 2.
Axiom 2 thus follows from Lemma 5.4.

Case 2 Suppose dT .w; Œu; v�/D 1. Without loss of generality, we can assume that u, v and w lie in the
same link Lk.o/ for some vertex o in V2. Indeed, let o2 Œu; v� be adjacent to w and u0; v0 2Lk.o/\ Œu; v�.
It is clear by definition that �fl.u/.fl.v0//D �fl.u/.fl.v// and �fl.v/.fl.u0//D �fl.v/.fl.u//. As a result, we
can thus assume that uD u0 and v D v0 lie in the link Lk.o/.

Recall that Y o is a ı-hyperbolic space whose boundary lines Lo satisfy the projection axioms for a
constant �0 [48]. We claim that � D �0 is the desired constant for Axiom 2.

Write e D Œw; o�, e1 D Œu; o� and e2 D Œv; o�. Let `e , `e1
and `e2

be the corresponding boundary lines of
Y o to the oriented edges e, e1 and e2. By Lemma 5.5, we have

1

�
d`e
.`e1

; `e2
/��� dfl.w/.fl.u/; fl.v//� �d`e

.`e1
; `e2

/C�:

As Lo satisfies the projection axioms, we see that if d`e
.`e1

; `e2
/ > �0, then d`e1

.`e; `e2
/� �0. Using

Lemma 5.5 again, we have that

1

�
d`e1

.`e; `e2
/��� dfl.u/.fl.w/; fl.v//� �d`e1

.`e; `e2
/C�:

Let � be a constant such that � > ��0C�. It follows from the above inequalities that

dfl.u/.fl.w/; fl.v//D diam
�
…fl.u/.fl.w//[…fl.u/.fl.v//

�
� �;

so Axiom 2 is verified.
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Axiom 3 For u¤ v 2 V1, the set

fw 2 V1 j dfl.w/.fl.u/; fl.v// > �g

is a finite set.

Indeed, by Lemma 5.4, such a w is either contained in the interior of Œu; v� or d.w; Œu; v�/ D 1. The
first case yields only .d.u; v/� 1/ choices for w. We now consider the case d.w; Œu; v�/D 1. Since u,
v and w have pairwise even distance, there exists o 2W\ Œu; v�0 and two vertices u0 and v0 on Œu; v�
adjacent to o such that u0; v0; w 2 Lk.o/. By the projection axioms of boundary lines Lo of Y o, the set of
w satisfying dfl.w/.fl.u/; fl.v// > � is finite. Thus, in both cases, the set of such w is finite.

Lemma 5.7 For each i D 1; 2, the collection Fi D ffl.v/ j v 2Vig admits an action of the group G such
that

…gfl.v/.gfl.u//D g…fl.v/.fl.u//

for any v; u 2 Vi and any g 2G.

Proof First, let us recall some discussion in the beginning of Section 5.2. Recall that fv1; v2; : : : ; vng�T
is the full set of vertex representatives of T and for each representative vertex v1; v2; : : : ; vn of T , the
quasiline fl.vj / is the Cayley graph Cay.Gvj

; Svj
/ for some generating set Svj

of Gvj
(see Lemma 5.1).

Let v be an arbitrary vertex in T ; then vD gvi for some g 2G and i 2 f1; 2; : : : ; ng. The quasiline fl.v/

is given by gfl.vi /D g Cay.Gvi
; Svi

/, and the action of Ggvi
D gGvi

g�1 on gfl.vi / is induced from
the action of Gvi

on fl.vi /. We are now going to show that

…gfl.v/.gfl.u//D g…fl.v/.fl.u//:

Recall that the family of maps ƒver
gv W Ygv D gYv! gfl.v/ are G-equivariant: ƒver

gv.gx/D gƒ
ver
v .x/ for

all x 2 Yv . Let e1 and e2 be the first two edges in the geodesic Œv; u� with v D .e1/� and .e1/C D .e2/�.
By Definition 5.3 of projection map, we have that

…fl.gv/.fl.gu//D diam
�
ƒver
gv.Sge1ge2

\Fge1
/
�

D diam
�
ƒver
gv.g.Se1e2

\Fe1
//
�

D diam
�
gƒver

v .Se1e2
\Fe1

/
�

D g diam
�
ƒver
v .Se1e2

\Fe1
/
�
D g…fl.v/.fl.u//

for any g 2G.

Definition 5.8 Let � > 0 be the projection constant given by Lemma 5.6, so the collection of quasilines
Fi D ffl.v/ j v 2 Vig with i D 1; 2 satisfies the projection axioms. For any fixed K > 4�, we obtain the
unbounded quasitrees of metric spaces CK.F1/ and CK.F2/ (see Section 2.4). Combining Lemma 5.7
with [5, Section 4.4], the spaces CK.F1/ and CK.F2/ are quasitrees and admit unbounded isometric
actionsGÕ CK.F1/ andGÕ CK.F2/. The quasitrees CK.F1/ and CK.F2/ are called vertical quasitrees
hereafter.
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6 Distance formulas in the CKA space X

Let CK.F1/ and CK.F2/ be the vertical quasitrees in Definition 5.8. Let PX1 and PX2 be the coned-off
spaces defined in Section 4.1. According to the outline of the proof of Theorem 1.3 in Section 4.4, the
last step to prove property (QT) of G is to show that there is a G-equivariant quasi-isometric embedding

ˆ WGo! CK.F1/�CK.F2/� PX1 � PX2 �T:

This section is devoted to constructing such a desired map ˆ and verifying it is a quasi-isometric
embedding.

We list here notation that will be used in the rest of this section.

� We fix an edge Œv0; w0� in the Bass–Serre tree T such that v0 2 V1. Let o 2X be a basepoint in
the common boundary plane FŒv0;w0� between two pieces Yv0

and Yw0
.

� Assume that xD o 2 Yv0
and y D go 2 Yv2n

for some g 2G and v2nD go. We list the vertices on
the geodesic Œv0; v2n� by fv0; v1; : : : ; v2ng where v2i 2V1 and v2iC1 2V2. Let eiC1D Œvi ; viC1�
be the oriented edge towards viC1. By definition of special paths, let pi WD Sei�1ei

\SeieiC1
be

the intersection of two strips with p0 W x D o and p2nC1 D y D go.

� Let ˛ be the geodesic edge path in the Bass–Serre tree T connecting v0 to v2n. And let w1 2 V2

be a vertex adjacent to v2n. Set

Q̨ WD e0[˛[ e2nC1

where e0 D Œw0; v0� and e2nC1 D Œv2n; w1�. It is possible that e0 D Ne1 and e2nC1 D Ne2n, ie Q̨
contains backtracking at e0 and e2n.

6.1 Construction of the desired map ˆ

It is a product of the following four maps with the index map � in Definition 2.19.

� We define #1 WGo! CK.F1/ as follows. Recall that each quasiline fl.v/ for v 2 V1 embeds as a
convex subset into CK.L1/ and ƒver

v WGvo! fl.v/ is a Gv-equivariant map. For every g 2G, we
set #1.go/ WDƒver

gv0
.go/D gƒver

v0
.o/. The second equality follows by Gv-equivariance.

� Similarly, define #2 WGo! CK.F2/ by #2.go/ WDƒver
gw0

.go/D gƒver
w0
.o/ for every g 2G.

� Define #3.o/ WD �Y v0
.o/ and extend the definition by equivariance so that #3.go/ WD g#3.o/ for

any g 2G. We thus obtain a G-equivariant map #3 WGo! PX1.

� Choose #4.o/ to be the cone point of the hyperbolic cone attached to the boundary line `Œv0;w0�

of Y w0
. We then extend #4.go/D g#4.o/ for any g 2G so that g#4.o/ is the corresponding cone

point to `Œgv0;gw0� of Y gw0
. We thus obtain a G-equivariant map #4 WGo! PX2.
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We then define

(|) ˆ WGo! CK.F1/�CK.F2/� . PX1; d
K
PX1
/� . PX2; d

K
PX2
/�T

by
ˆ WD #1 �#2 �#3 �#4 � �

where PXi for i D 1; 2 are equipped with the K-thick distance dK
PXi

(not genuine distance) defined in (9),
and the other three spaces are equipped with length metric. By abuse of language, we call the sum of the
distances over the factors the L1-metric on the product space.

The remainder of this section is to verify the following.

Proposition 6.1 The map ˆ in (|) is a G-equivariant quasi-isometric embedding.

Idea of the proof of Proposition 6.1 Since the orbital map of any isometric action is Lipschitz (see
eg [11, Lemma I.8.18]), we will only need to give a linear upper bound on jx�yjX . Recall from (2) in
Section 2.3.2, for any x; y 2X ,

jx�yjX � jx�yj
hor
X Cjx�yj

ver
X

where jx�yjhor
X D

P2n
iD0 jpi �piC1j

hor
Yvi

and jx�yjver
X D

P2n
iD0 jpi �piC1j

ver
Yvi

.

Recall from Section 5.2, we build a new geometric model Xv of Yv for each vertex v in the Bass–Serre
tree T . Namely, we have a Gv-equivariant quasi-isometric map ƒv W Yv D Y v �R!Xv D Y v � fl.v/.
For x; y 2Go, we shall accordingly replace jx�yjver

X by the quantity

(12) V.x; y/ WD
X

0�i�2n

jƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /:

To be precise, we first prove in Lemma 6.2 that

jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
;

and then we find suitable upper bounds of V.x; y/ (see Proposition 6.4) and jx�yjhor
X (see Lemma 6.6).

6.2 Verifying ˆ is a quasi-isometric embedding

In this section, we will verify that the map ˆ in (|) is a quasi-isometric embedding.

6.2.1 Upper bound of the distance jx�yjX on X

Lemma 6.2 Let x; y 2Go. The exists a constant � > 0 such that

(13) jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
:

Proof Recall that p0 D x and p2nC1 D y. Using the triangle inequality we have

jx�yjX �

2nX
iD0

jpi �piC1jYvi
:
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Note that 2nD j�.x/� �.y/jT and jx � yjhor
X D

P2n
iD0 jpi �piC1j

hor
Yvi

. The proof is then complete by
summing over 0� i � 2n the following inequality (14).

Claim There exists a uniform constant �0 > 0 such that for any i 2 f0; 1; : : : ; 2ng,

(14) jpi �piC1jYvi
� �0C �0jpi �piC1j

hor
Yvi
C �0jƒver

vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /:

Proof of the claim Indeed, since ƒvi
W Yvi
!Xvi

is a quasi-isometry by Lemma 5.2, we then have

jpi �piC1jYvi
�� jƒvi

.pi /�ƒvi
.piC1/jXvi

:

Using part (2) of Lemma 5.2 we have that

jƒhor
vi
.pi /�ƒ

hor
vi
.piC1/jY vi

�� jpi �piC1j
hor
Yvi
:

It implies that

jƒvi
.pi //�ƒvi

.piC1/jXvi
�p2 jƒ

hor
vi
.pi /�ƒ

hor
vi
.piC1/jY vi

Cjƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

�� jpi �piC1j
hor
Yvi
Cjƒver

vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

where the first coarse equality holds by definition of ƒhor
vi

and ƒver
vi

. Hence there exists a uniform constant
�0 > 0 such that the inequality (14) holds.

The lemma is proved.

6.2.2 Preparation for upper bounds of V.x; y/ and jx�yjhor
X

Fix K � 4� where the constant � > �
is given by Lemma 5.6. Let CK.F1/ and CK.F2/ be the vertical quasitrees given by Definition 5.8. With
i 2 f1; 2g, Proposition 2.27 gives the distance formula

(~) j#i .x/�#i .y/jCK.Fi / �K

X
fl.w/2Fi

Œdfl.w/.#i .x/; #i .y//�K :

To give an appropriate upper bound of V.x; y/, we need the following two technical lemmas (Lemmas 6.3
and 6.5).

Lemma 6.3 For any v2i 2 Œv0; v2n� with 0� i � n, we have

(15) dfl.v2i /.#1.x/; #1.y//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /:

For any 0� i � n� 1, we have

(16) dfl.v2iC1/.#2.x/; #2.y//�� jƒ
ver
v2iC1

.p2iC1/�ƒ
ver
v2iC1

.p2iC2/jfl.v2iC1/:

Proof We first prove (15) for the case 0 < i < n. The cases i D 0 or i D n are similar.

Note that `1 WD Se2i�1e2i
\Fe2i

is a fiber line of Yv2i�1
containing p2i , and similarly,

`2 WD Se2iC1e2iC2
\Fe2iC1
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contains p2iC1. By Definition 5.3 of projection maps, we have

…fl.v2i /.fl.v0//Dƒ
ver
v2i
.`1/ and …fl.v2i /.fl.v2n//Dƒ

ver
v2i
.`2/:

Let � > 0 be the constant given by Lemma 5.2, so the fiber lines `1 and `2 are sent by ƒver
v2i

into fl.v2i /

as subsets of diameter at most �:

diamƒver
v2i
.`1/; diamƒver

v2i
.`2/� �:

By definition of #1, we have #1.x/Dƒver
v0
.x/ 2 fl.v0/ and #1.y/Dƒver

v2n
.y/ 2 fl.v2n/. Thus,

dfl.v2i /.#1.x/; #1.y//�� dfl.v2i /.fl.v0/; fl.v2n//:

As p2i 2 `1 and p2iC1 2 `2, we obtain

dfl.v2i /.fl.v0/; fl.v2n//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /;

completing the proof of (15).

We are now going to prove (16). If w0 ¤ v1 or 1 � i � n� 1, the same proof for (15) proves (16).
We now consider w0 D v1 and i D 0. In this case, we note that e0 D Ne1. By definition, we have that
#2.x/D #2.o/Dƒ

ver
w0
.o/ 2 fl.w0/, so we obtain …fl.v1/.#2.x//D #2.x/. Recall that Sxe1

is the strip
in Yv0

over the shortest arc from x to Fe1
(see construction of special path). As x 2 Fe0

D Fe1
, we have

`1 WD Sxe1
is a fiber line of Yv0

that passes through x and also p1. Thus, #2.x/ 2…fl.v1/.`1/.

Recall that Sxe1
is the strip in Yv0

over the shortest arc from x to Fe1
(see construction of special path).

As x 2 Fe0
D Fe1

, we have that `1 WDSxe1
is a fiber line of Yv0

that passes through x and also p1. Thus,
#2.x/ 2…fl.v1/.`1/. Let `2 D Se2e3

\Fe2
be the fiber line on Yv2

that passes through p2. If w1 D v1,
then ˛ D Œv0; v1�Œv1; v2� and y 2 Fe2

. By the same reason, `2 passes through y, so #2.y/ 2…fl.v2/.`2/.
If w1 ¤ v1, the projection …Lv1

.#2.y// must be contained in …fl.v1/.`2/. In both cases, we have

dfl.v1/.#2.x/; #2.y//�� diam.ƒver
v1
.`1/[ƒ

ver
v1
.`2//

where we use diam.ƒver
v1
.`1//; diam.ƒver

v1
.`2//� � by Lemma 5.2. For p1 2 `1 and p2 2 `2, we obtain

diam.ƒver
v1
.`1/[ƒ

ver
v1
.`2//�� jƒ

ver
v1
.p1/�ƒ

ver
v1
.p2/jfl.v1/;

concluding the proof of (16).

Let us recall the notation from Section 2.4. Let x 2 fl.v/; z 2 fl.u/ 2 Fi .

If fl.v/¤ fl.u/¤ fl.w/ then
dfl.w/.x; z/ WD dfl.w/.fl.v/; fl.u//:

If fl.w/D fl.v/ and fl.w/¤ fl.u/, define dfl.w/.x; z/ WD diam.�fl.w/.x; fl.u///.

If fl.v/D fl.u/D fl.w/, let dfl.w/.x; z/ be the distance in fl.w/.
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6.2.3 Upper bound of V.x; y/ Let #1 and #2 be the maps defined in Section 6.1. We now have
prepared all ingredients for the proof of the following result.

Proposition 6.4 Let x; y 2Go and ˛ WD Œ�.x/; �.y/� be the geodesic in T . Then

(17) V.x; y/�K
X
jD1;2

� X
v2˛\Vj

Œdfl.v/.#j .x/; #j .y//�K

�
C dT .�.x/; �.y//:

Proof The goal is to recover the sum on the right side of (12), that is

V.x; y/D
X

0�i�2n

jƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

via the maps #1 and #2. By Lemma 6.3, we have the desired inequalities (15) for even indices
v2i 2 Œv0; v2n�\V1 with 0� i � n, that is

dfl.v2i /.#1.x/; #1.y//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /:

By Lemma 6.3, the inequalities (16) recover the odd indices v2iC1 2 Œv0; v2n�\V2 with 0� i � n� 1
in (12), that is,

dfl.v2iC1/.#2.x/; #2.y//�� jƒ
ver
v2iC1

.p2iC1/�ƒ
ver
v2iC1

.p2iC2/jfl.v2iC1/:

Plugging inequalities (15) and (16) into (12), and using the term j�.x/� �.y/jT to count the additive
errors in this process completes the proof of the desired inequality (17). Applying then the K-cutoff
function Œ � �K does not affect the inequalities.

6.2.4 Upper bound of jx�yjhor
X

The horizontal distance dh defined in (2) of the special path  from
x to y records the totality of the projected distances to the base hyperbolic spaces Y v:

jx�yjhor
X D jx�p1j

hor
Yv1
Cjp1�p2j

hor
Yv2
C � � �C jp2n�yj

hor
Yv2n

D j#3.x/�Fe1
jYv0
C

2n�1X
iD1

jFei
�FeiC1

jYvi
CjFe2n

�#3.y/jYv2n

where the map #3 defined in Section 6.1 sends a point in Yv D Y v �R to the hyperbolic base Y v.

Before moving on, let us introduce more notation to represent the horizontal distance. Let x0 D #3.x/,
y0 2 Fe1

and x2n 2 Fe2n
, y2n D #3.y/ be such that Œx0; y0� is orthogonal to Fe1

, and Œx2n; y2n� to Fe2n
.

Choose xi 2 Fei
and yi 2 FeiC1

so that Œxi ; yi � is a geodesic in Y vi
orthogonal to Fei

and FeiC1
. Thus,

(18) jx�yjhor
X D

2nX
iD0

jxi �yi jY vi

:

Recall that PX1 and PX2 are the coned-off spaces defined in Section 4.1. By Definition 4.3 of the K-thick
distance of PXj for any K > 0, and the remark after it, we have

(19)
2nX
iD0

jxi �yi j
K
PYvi

D j#3.x/�#3.y/j
K
PX1
Cj#4.x/�#4.y/j

K
PX2
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where j � jK
PYvi

defined in (3) is the K-thick distance on the coned-off space PYvi
. The map #4 defined in

Section 6.1 sends a point go in Go to the hyperbolic cone point to the boundary line `gŒv0;w0� (recall that
o is chosen on a common boundary plane FŒv0;w0�).

Hence, the K-thick distance (19) differs from the horizontal distance (18) by the amount coned-off on
boundary lines. The purpose of this subsection is to recover the loss in the coned-off from the projection
system of fiber lines.

To prove Lemma 6.6, we need the following lemma.

Lemma 6.5 Let #2 be the map given by Section 6.1. Let v be a vertex in Lk.v2i /� Q̨ and let eD Œv; v2i �.
Let `e, `e2i

, and ` Ne2iC1
be the boundary lines of zFv2i

associated to distinct edges e, e2i and Ne2iC1
respectively. Then we have

(20) dfl.v/.#2.x/; #2.y//�� d`e
.`e2i

; ` Ne2iC1
/:

Proof Note that `e, `e2i
and ` Ne2iC1

are the projection of planes Fe, Fe2i
and Fe2iC1

of Yv2i
into the

factor Yv2i
. We prove (20) case by case, according to the configuration of e0; e2nC1 with ˛.

Case 1 Suppose 0 < i < n. By Definition 5.3, the projection of #2.x/D ƒver
w0
.o/ 2 fl.w0/ to fl.v/ is

the same as that of fl.v1/ to fl.v/, and the projection of #2.y/ 2 fl.w1/ to fl.v/ is the same as that of
fl.v2n�1/ to fl.v/. That is to say, dfl.v/.#2.x/; #2.y//D dfl.v/.fl.v1/; fl.v2n�1//. Hence, (20) follows by
Lemma 5.5: dfl.v/.fl.v1/; fl.v2n�1//�� d`e

.`e2i
; ` Ne2iC1

/ for any v 2 Lk.v2i /� Q̨ .

Case 2 Suppose i D 0 or i D n. We only consider the case i D 0 and analyze the configuration of w0
with ˛. The analyze for the case for i D n and w1 is symmetric.

Case 2.1 Suppose w0 ¤ v1. In this case e0 � ˛ is a geodesic from w0 to v2n. By Definition 5.3 of
projection maps, no matter whether Ne2nC1 D e2n holds or not, the projection of #2.x/ 2 fl.w0/ to fl.v/

is the same as that of fl.w0/ to fl.v/, and the projection of #2.y/ 2 fl.w1/ to fl.v/ is the same as that of
fl.v2n�1/ to fl.v/. By Lemma 5.5, we have dfl.v/.fl.w0/; fl.v2n�1//�� d`e

.`e2i
; ` Ne2iC1

/.

Case 2.2 Suppose w0 D v1. No matter whether w0 D w1 or not, we have

dfl.v/.#2.x/; #2.y//�…fl.v/.fl.w0//� �

where � is the projection constant given by Lemma 5.6. On the right side of (20), d`e
.`e2i

; ` Ne2iC1
/ is

bounded above by � for i D 0 (as e0 D Ne1). Thus (20) holds as well in this case.

Lemma 6.6 For any x; y 2Go, we have

jx�yjhor
X �K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

where the index j D 1 is chosen if i is odd , otherwise j D 2.
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Proof We consider (18) for the horizontal distance jx�yjhor
X . Let Lvi

be the set of boundary lines of
Y vi

corresponding to the set of oriented edges e 2 St.vi / (ie the collection fFe \Y vi
j e 2 St.vi /g). By

Lemma 3.1, for each 0� i � 2n, we have

(21) jxi �yi jY vi

�K jxi �yi j
K
PYvi

C

X
`e2Lvi

Œd`e
.xi ; yi /�K

for any sufficiently large K� 0.

Let e D Œw; vi � 2 St.vi / and `e 2 Lvi
be the corresponding boundary line of Y vi

. Set j D 1 if i is odd,
otherwise j D 2.

If e D ei or e D NeiC1 for 1� i � 2n� 1, then

d`e
.xi ; yi /� �

since Œxi ; yi � is orthogonal to `e.

We remark that when i D 0 (the case i D 2n is similar), it is possible that Œx0; y0�may not be perpendicular
to `e. However, we have

d`e
.x0; y0/� dfl.w0/.#2.x/; #2.y//:

Otherwise, if e ¤ ei and e ¤ NeiC1 for 1� i � 2n� 1, we have e … ˛ for which the following holds by
Lemma 6.5 for j D 2 and by Lemma 5.5 for j D 1:

dfl.w/.#j .x/; #j .y//� d`e
.xi ; yi /:

Note that A� �BCC with B �K � C implies ŒA�K �K ŒB�K . Thus, for each 0� i � 2n, we deduce
from (21) that

(22) jxi �yi jY vi

�K jxi �yi j
K
PYvi

C

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

for any K� 0, where j D 1 if i is odd, and j D 2 otherwise. We sum up (22) over vi 2 ˛ to get the
horizontal distance dh.x; y/ in (18):

jx�yjhor
X D

2nX
iD0

jxi �yi jY vi

�K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K :

We now have prepared all ingredients in the proof of Proposition 6.1.

Proof of Proposition 6.1 Since � and #i (with i 2 f1; 2; 3; 4g) are G-equivariant maps, it follows
that ˆ is a G-equivariant map. Since the orbital map of any isometric action is Lipschitz (see eg [11,
Lemma I.8.18]), it suffices to give an upper bound on d.x; y/.

Let � > 0 be the constant given by Lemma 6.2, so that

jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
:
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Appropriate upper bounds of the vertical distance V.x; y/ and the horizontal distance jx � yjhor
X have

been already treated in Proposition 6.4 and Lemma 6.6 respectively. They are

V.x; y/�K
X
jD1;2

� X
v2˛\Vj

Œdfl.v/.#j .x/; #j .y//�K

�
Cj�.x/� �.y/jT

and

jx�yjhor
X �K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

where the index j depends on i : j D 1 if i is odd, otherwise j D 2. The above two inequalities yield

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT C

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /

Œdfl.w/.#j .x/; #j .y//�K :

By (~), we have
2nX
iD0

X
w2Lk.vi /

Œdfl.w/.#j .x/; #j .y//�K �K j#1.x/�#1.x/jCK.F1/Cj#2.x/�#2.x/jCK.F2/:

It follows that

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT C

2nX
iD0

jxi �yi j
K
PYvi

C

2X
iD1

j#i .x/�#i .x/jCK.Fi /:

Plugging the thick distance formula (19) into the above inequality, we obtain

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT Cj#3.x/�#3.y/j

K
PX1
Cj#4.x/�#4.y/j

K
PX2

Cj#1.x/�#1.x/jCK.F1/Cj#2.x/�#2.x/jCK.F2/:

As jx � yjX � �.j�.x/� �.y/j C jx � yjhor
X C V.x; y//, it is a consequence from the above inequality

that the map ˆD #1 �#2 �#3 �#4 � � in (|) is a G-equivariant quasi-isometric embedding from X to
CK.F1/�CK.F2/� PX1 � PX2 �T .

7 Proof of Theorem 1.3

Let G ÕX be a CKA action such that for every vertex group the central extension (1) has omnipotent
hyperbolic quotient group. Let PG <G be the subgroup of the index at most 2 preserving V1 and V2 given
by Lemma 2.23. Upon passing to further finite-index subgroups in Lemma 4.8, we obtain a finite-index
subgroup G0 of PG such that the results in Sections 5 and 6 hold for G0. We caution the reader that at the
beginning of Section 5 we assume that each vertex group of G is a direct product, this assumption may
not hold for the original G, but holds in the finite-index subgroup G0 of G.

AsG0 is a subgroup of PG, it follows from Proposition 4.7 that there exists aG0-equivariant quasi-isometric
embedding

� W . PX1 � PX2 �T; d
K
PX1
� dK

PX2
� dT /! T1 �T2 � � � � �Tn �T:
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Applying Proposition 6.1 to G0, we have a G0-equivariant quasi-isometric embedding

ˆ WG0o! CK.F1/�CK.F2/� . PX1; d
K
PX1
/� . PX2; d

K
PX2
/�T:

It implies that .idCK.F1/� idCK.F2/��/ıˆ is a G0-equivariant quasi-isometric embedding from G0 �o to
the finite product of quasitrees CK.F1/�CK.F1/�T1 �T2 � � � � �Tn �T . Thus G0 has property (QT),
implying G has property (QT).

8 Applications: property (QT) of 3-manifold groups

In this section, we apply results obtained in previous sections to give a complete characterization of
property (QT) of all finitely generated 3-manifold groups (Theorem 1.1). Note that property (QT) is a
commensurability invariant. Hence, we can always assume that all 3-manifolds are compact and orientable
(by taking Scott’s compact core and double cover).

Let M be a compact, connected, orientable, irreducible 3-manifold with empty or tori boundary. M is
called geometric if its interior admits geometric structures in the sense of Thurston; those are S3, E3,
H3, S2 �R, H2 �R, CSL.2;R/, Nil and Sol. If M is not geometric, then M is called a nongeometric
3-manifold. By geometric decomposition of 3-manifolds, there is a nonempty minimal union T�M of
disjoint essential tori and Klein bottles, unique up to isotopy, such that each component of MnT is either
a Seifert fibered piece or a hyperbolic piece. M is called graph manifold if all the pieces of MnT are
Seifert fibered pieces, otherwise it is a mixed manifold.

We remark here that the geometric decomposition is slightly different from the torus decomposition, but
they are closely related (if M has no decomposing Klein bottle, then these two decompositions agree
with each other). Such a difference can be got rid of by passing to some finite cover of M . Since we are
only interested in virtual properties of 3-manifolds in this paper, we can always assume that these two
decompositions agree with each other (on some finite cover of M ). For this reason, we will only use the
term torus decomposition in the remainder of this section.

8.1 Property (QT) of geometric 3-manifolds

Proposition 8.1 The fundamental group �1.M/ of a geometric 3-manifold M has property (QT ) if and
only if M does not support Sol or Nil geometry.

Proof We are going to prove the necessity. Assume that �1.M/ has property (QT). By Lemma 2.5,
�1.M/ does not contain any distorted element, while the fundamental group of a 3-manifold with Nil
geometry or Sol geometry contains quadratically/exponentially distorted elements (for example, see [41,
Proposition 1.2]). Hence, M does not support Sol or Nil geometry.

Now, we are going to prove sufficiency. If M supports geometry E3, S3 or S2 �R, then �1.M/ is
virtually abelian so has property (QT). If the geometry of M is H2 �R then M is virtually covered
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by †� S1 for some hyperbolic surface †. Note that �1.†/ is a residually finite hyperbolic group so
it has property (QT) by [6, Theorem 1.1]. Hence, �1.†/�Z has property (QT). Since �1.†/�Z is a
finite-index subgroup of �1.M/, it follows that �1.M/ has property (QT) by Lemma 2.3. If M supports
geometry H3, �1.M/ is virtually compact special by deep theorems of Agol [3] and Wise [53]; thus
�1.M/ has property (QT) since it is undistorted in a right-angled Artin group. Note that if the boundary
of M is empty, then �1.M/ is a residually finite hyperbolic group. As a result, it can be inferred that
�1.M/ possesses property (QT) as an alternative argument, according to [6, Theorem 1.1].

Finally, we need to show that if M supports CSL.2;R/ geometry then �1.M/ has property (QT). To see
this, by passing to a finite cover if necessary, we could assume that M is a nontrivial circle bundle over
a closed surface † with �.†/ < 0. Let 1! K ! �1.M/! �1.†/! 1 be the short exact sequence
associated with the circle bundle where K is the normal cyclic subgroup of �1.M/ generated by a fiber.
Let � W �1.M/! �1.†/ be the surjective homomorphism in the above short exact sequence. Note that
the short exact sequence does not split since M is supporting CSL.2;R/ geometry. According to the first
paragraph in the proof of [29, Corollary 4.3], there exists a generating set S of G D �1.M/ such that
L WD Cay.G;S/ is a quasiline. Moreover, the diagonal action of G on �1.†/�L is metrically proper
and cobounded, and thus its orbital map is a quasi-isometry. Since �1.†/ is a residually finite hyperbolic
group, it follows from [6] that �1.†/ has property (QT). Hence there exists a finite product of quasitreesQn
iD1 Ti such that �1.†/Õ

Qn
iD1 Ti such that its orbital map is a quasi-isometric embedding. It is easy

to see that the orbital map of the diagonal action G Õ
Qn
iD1 Ti �L of G on the product

Qn
iD1 Ti �L is

a quasi-isometric embedding. Therefore �1.M/ has property (QT).

8.2 Property (QT) of nongeometric 3-manifolds

In this section, we are going to prove Theorem 1.2. Recall that a nongeometric 3-manifold is either a
graph manifold or a mixed manifold.

8.2.1 Property (QT) of graph manifolds LetM be a graph manifold. Since property (QT) is preserved
under taking finite-index subgroups (see Lemma 2.3), we only need to show that a finite cover of M
has property (QT). By passing to a finite cover, we can assume that each Seifert fibered piece in the
JSJ decomposition of M is a trivial circle bundle over a hyperbolic surface of genus at least 2, and the
intersection numbers of fibers of adjacent Seifert pieces have absolute value 1 (see [34, Lemma 2.1]).
Also we can assume that the underlying graph of the graph manifold M is bipartite since any nonbipartite
graph manifold is double covered by a bipartite one.

We note that �1.M/ is an admissible group in the sense of Definition 2.12. However, it is not always
true that �1.M/ can act geometrically on a CAT(0) space, so property (QT) in this case does not follow
immediately from Theorem 1.3. Indeed, if M is a graph manifold with nonempty boundary then it
always admits a Riemannian metric of nonpositive curvature (see [35]). In particular, �.M/Õ zM is a
CKA action, and thus property (QT) of �1.M/ follows from Theorem 1.3. However, many closed graph
manifolds are shown to not support any Riemannian metric of nonpositive curvature (see [35]).
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We remark here that the CAT(0) metric on the CKA space X in Sections 5 and 6 is not really essential in
the proofs. Below we will make certain modifications on some steps to run the proof of Theorem 1.3 for
closed graph manifolds.

Metrics on M

We now are going to describe a convenient metric on M introduced by Kapovich and Leeb [34]. For
each Seifert component Mv D Fv �S

1 of M , we choose a hyperbolic metric on the base surface Fv such
that all boundary components are totally geodesic of unit length, and then equip each Seifert component
Mv D Fv �S

1 with the product metric dv such that the fibers have length one. Metrics dv on Mv induce
the product metrics on zMv which by abuse of notations is also denoted by dv.

Let Mv and Mw be adjacent Seifert components in the closed graph manifold M , and let T �Mv \Mw

be a JSJ torus. Each metric space . zT ; dv/ and . zT ; dw/ is a Euclidean plane. After applying a homotopy
to the gluing map, we may assume that at each JSJ torus T , the gluing map � from the boundary torus
 �
T �Mv to the boundary torus

�!
T �Mw is affine in the sense that the identity map . zT ; dv/! . zT ; dw/

is affine. We now have a product metric on each Seifert component Mv D Fv �S
1. These metrics may

not agree with each other on the JSJ tori but the gluing maps are bilipschitz (since they are affine). The
product metrics on the Seifert components induce a length metric on the graph manifold M denoted by d
(see [12, Section 3.1] for details). Moreover, there exists a positive constant L such that on each Seifert
component Mv D Fv �S

1 we have

1

L
dv.x; y/� d.x; y/� Ldv.x; y/

for all x and y in Mv. (See [45, Lemma 1.8] for a detailed proof of the last claim.) Metric d on M
induces metric on zM , which is also denoted by d (by abuse of notation). Then for all x and y in zMv we
have

1

L
dv.x; y/� d.x; y/� Ldv.x; y/:

Remark 8.2 Note that the space . zM;d/ may not be a CAT(0) space but �1.M/ acts geometrically on
. zM;d/ via deck transformations.

In Section 2.3.2, we define special paths on a CAT(0) space X . In this section, although . zM;d/ is no
longer a CAT(0) space, we are still able to define special paths in . zM;d/. The construction is similar to
Section 2.3.2 with slight changes.

Special paths on zM

Lift the JSJ decomposition of the graph manifold M to the universal cover zM , and let T be the tree dual
to this decomposition of zM (ie the Bass–Serre tree of �1.M/). For every pair of adjacent edges e1 and e2
in T , let v be the common vertex of e1 and e2. Let ` and `0 be two boundary lines of zFv corresponding
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to the edges e1 and e2 respectively. Let e1e2
be the shortest geodesic joining ` and `0 in . zMv; dv/. This

geodesic determines an Euclidean strip Se1e2
WD e1e2

�R in . zMv; dv/. Let x be a point in . zMv; dv/

and e be an edge with an endpoint v. The minimal geodesic from x to the plane Fe also define a strip
Sxe WD xe �R in . zMv; dv/ where xe � zFv is the projection to zFv of this minimal geodesic.

Now, let x and y be any two points in the universal cover zM of M such that x and y belong to the
interiors of pieces zMv and zM 0v respectively. If v D v0 then we define a special path in X connecting x
and y to be the geodesic Œx; y� in . zM;d/. Otherwise, let e1 � � � en be the geodesic edge path connecting v
and v0. For notational purpose, we write e0 WD x and enC1 WD y. Let pi 2 Fei

be the intersection point of
the strips Sei�1ei

and SeieiC1
. The special path connecting x and y is the concatenation of the geodesics

Œx; p1� � Œp1; p2� � � � Œpn; y�:

We label p0 WD x and pnC1 WD y.

Proposition 8.3 If M is a graph manifold , then �1.M/ has property (QT ).

Proof If M is a nonpositively curved graph manifold (for example, when M has nonempty boundary)
then the fact that �1.M/ has property (QT) is followed from Theorem 1.3. The only case that does
not follow directly from Theorem 1.3 is when M is a closed graph manifold (recall many closed graph
manifolds are nonpositively curved but many are not). Since the metric d on zM restricted to each piece
zMv is L-bilipschitz equivalent to dv, so the inequalities in Section 6 are slightly changed by a uniform

multiplicative constant. For example, the statement a�K b (or a �K b) in Section 6 will be changed to
a�K0 b (or a �0K b) for some constant K 0 depending on K. Thus, the proof, in this case, is performed
along the same lines as the proof of Theorem 1.3.

8.2.2 Property (QT) of mixed 3-manifolds Recall that a nongeometric 3-manifold with empty or
tori boundary is either a graph manifold or a mixed 3-manifold. The case of graph manifold has been
addressed in Section 8.2.1. In this section, we address the mixed 3-manifold case.

Proposition 8.4 The fundamental group of a mixed 3-manifold has property (QT ).

The fundamental group of a mixed 3-manifold has a natural relatively hyperbolic structure as follows:
Let M1; : : : ;Mk be the maximal graph manifold pieces, isolated Seifert fibered components of the
JSJ-decomposition of M , and S1; : : : ; Sl be the tori in M not contained in any Mi . The fundamental
group G D �1.M/ is hyperbolic relative to the set of parabolic subgroups

PD f�1.Mp/ j 1� p � kg[ f�1.Sq/ j 1� q � lg

(see [8; 22]).

The following lemma provides many separable subgroups in �1.M/, generalizing [50, Lemma 3.3]. The
proof uses a recent result of the second author and Sun in [41] where the authors show that separability
and distortion of subgroups in 3-manifold groups are closely related.
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Lemma 8.5 Let M be a compact , orientable , irreducible 3-manifold with empty or tori boundary , with
nontrivial torus decomposition and that does not support the Sol geometry. If H is a finitely generated ,
undistorted subgroup of �1.M/, then H is separable in �1.M/.

Proof Let MH be the covering space of M corresponding to H � �1.M/. Generalizing a notion called
“almost fiber part” in [36], an embedded (possibly disconnected) subsurface ˆ.H/ in MH called an
“almost fiber surface” is introduced in [49]. Sun [49, Theorem 1.3] shows that all information about the
separability of H can be obtained by examining the almost fibered surface.

In [41], the authors introduce a notion called “modified almost fibered surface” (denoted by Ô .H/) that
slightly modifies the original definition of almost fibered surface in [49] and show that information about
the distortion of H in G can be also be obtained by examining the “modified almost fibered surface”. We
refer the reader to [49] for the definition of the almost fiber surface and to [41] for the definition of the
modified almost fiber surface. The precise definitions are not needed here, so we only state here some
facts from [41] that will be used later in the proof.

The torus decomposition of M induces the torus decomposition of ˆ.H/. Let ˆ.H/ and Ô .H/ be the
almost fiber surface and modified almost fiber surface of H respectively.

(1) Both the almost fiber surface ˆ.H/ and the modified almost fiber surface Ô .H/ are (possibly
disconnected) subsurfaces of MH .

(2) The almost fiber surface ˆ.H/ has some piece that is homeomorphic to the annulus and parallel
to the boundary of ˆ.H/. We delete these annulus pieces from ˆ.H/ to get the modified almost
fiber surface, and we denote it by Ô .H/.

The surface ˆ.H/ (resp. Ô .H/) has a natural graph of spaces structure with the dual graph denoted by
�ˆ.H/ (resp. � Ô .H/). By [41, Theorem 1.4], every component S of the modified almost fiber surface
Ô .H/ must contain only one piece (otherwise, the distortion of H in �1.M/ is at least quadratic, this
contradicts the fact that H is undistorted in �1.M/). This fact combined with (2) implies that the graph
�ˆ.H/ is a union of trees. By [49, Theorem 1.3] (or see also [50, Theorem 3.2] for a statement) tells us
that whenever �ˆ.H/ does not contain a simple cycle then H is separable. As shown above, we are in
this case; hence we conclude that the subgroup H is separable in �1.M/.

Proof of Proposition 8.4 Let M1; : : : ;Mk be the collection of maximal graph manifold components and
Seifert fibered pieces in the geometric decomposition of M . Let S1; : : : ; S` be the tori in the boundary
of M that bound a hyperbolic piece, and let T1; : : : ; Tm be the tori in the JSJ decomposition of M that
separate two hyperbolic components of the JSJ decomposition. Then �1.M/ is hyperbolic relative to

P D f�1.Mp/g
k
pD1[f�1.Sq/g

`
qD1[f�1.Tr/g

m
rD1

(see [8; 22]).

We are going to show that G D �1.M/ satisfies all conditions in Theorem 1.5.
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Claim 1 �1.M/ induces the full profinite topology on each P 2 P.

Indeed, it is well known that the fundamental groups of all compact 3-manifolds are residually finite;
thus �1.M/ is residually finite. Since each peripheral subgroup P is undistorted in �1.M/, it follows
from Lemma 8.5 that P is separable in �1.M/. Again, by Lemma 8.5, each finite-index subgroup of P
is also separable in �1.M/. By [47, Lemma 2.8], �1.M/ induces the full profinite topology on P .

Claim 2 For each peripheral subgroup P 2 P , there exists a finite-index subgroup P 0 of P acting
isometrically on a finite number of quasitrees so that the diagonal action of P 0 on the finite product of
these quasitrees induces quasi-isometric embeddings on orbital maps.

Indeed, if P D�1.Tr/ or P D�1.Sq/ for some r or q then �1.P /DZ2; we let P 0 WDP . If P D�1.Mj /
for some Seifert component Mj D Fj � S1 then P D �1.Fj /�Z. In this case, as Fj is a hyperbolic
surface with nonempty boundary, �1.Fj / is a free group; hence we choose P 0 D P as �1.Fj / is a
quasitree. The last case we must consider is that P D �1.Mj / where Mj is a maximal graph manifold
component. Passing to an appropriate finite cover M 0j !Mj we can assume that �1.M 0j / acts on a finite
number of quasitrees (but they are not quasilines) T1; T2; : : : ; Tn so that the orbital map induced from the
diagonal action �1.Mj /Õ

Qn
1D1 Ti is a quasi-isometric embedding (see Proposition 8.3). Claim 2 is

confirmed. We then repeat the proof of Theorem 3.5 (the second and third paragraph) to show that P
satisfies the hypothesis of Theorem 1.5.

In summary, we have verified the hypotheses in Theorem 1.5 for G D �1.M/, so mixed 3-manifold
groups have property (QT).

Proof of Theorem 1.2 LetM be a compact orientable irreducible 3-manifold with empty or tori boundary,
with nontrivial torus decomposition, and that does not support the Sol geometry. Such a 3-manifold M is
either a graph manifold or a mixed manifold. The graph manifold case and mixed manifold case have
been addressed in Propositions 8.3 and 8.4, respectively, and hence the theorem is proved.

8.3 Property (QT) of finitely generated 3-manifolds

Proposition 8.6 Let M be a compact , orientable , irreducible , @-irreducible 3-manifold such that it has a
boundary component of genus at least 2. Then �1.M/ has property (QT ).

Proof We consider the following two cases:

Case 1 M has trivial torus decomposition. In this case, M supports a geometrically finite hyperbolic
structure with infinite volume. We paste hyperbolic 3-manifolds with totally geodesic boundaries to M
to get a finite volume hyperbolic 3-manifold N . By the covering theorem (see [16]) and the subgroup
tameness theorem (see [2; 15]), a finitely generated subgroup of the finite volume hyperbolic 3-manifold
N is either a virtual fiber surface subgroup or undistorted. By the construction of N , the subgroup
�1.M/� �1.N / could not be a virtual fiber surface subgroup, and thus �1.M/ must be undistorted in
�1.N /. Since �1.N / has property (QT), it follows that �1.M/ has property (QT) (see Lemma 2.3).
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Case 2 We now assume that M has nontrivial torus decomposition. By [49, Section 6.3], we paste
hyperbolic 3-manifolds with totally geodesic boundaries to M to get a 3-manifold N with empty or tori
boundary. The new manifold N satisfies the following properties.

(1) M is a submanifold of N with incompressible tori boundary.

(2) The torus decomposition of M also gives the torus decomposition of N .

(3) Each piece of M with a boundary component of genus at least 2 is contained in a hyperbolic piece
of N .

In particular, it follows from (2) and (3) that N is a mixed 3-manifold. The subgroup �1.M/ sits nicely
in �1.N /. By the proof of Case 1.2 in the proof of [41, Theorem 1.3], we have that �1.M/ is undistorted
in �1.N / (even more than that, �1.M/ is strongly quasiconvex in �1.N / (see [42]). Note that �1.N /
has property (QT) by Proposition 8.4. Since �1.M/ is undistorted in �1.N / and �1.N / has property
(QT), it follows that �1.M/ has property (QT).

We now give the proof of Theorem 1.1 which gives a complete characterization of property (QT) for
finitely generated 3-manifolds groups.

Proof of Theorem 1.1 Since M is a compact, orientable 3-manifold, it decomposes into irreducible,
@-irreducible pieces M1; : : : ;Mk by the sphere-disc decomposition. In particular, �1.M/ is the free
product �1.M1/��1.M2/� � � � ��1.Mk/�Fr for some free group Fr . We remark here that �1.M/ is
hyperbolic relative to the collection P D fP1; : : : ; Pk; Frg where Pi WD �1.Mi /.

We are going to prove the necessity. Assume that �1.M/ has property (QT). Since �1.Mi / is undistorted
in �1.M/, it follows that �1.Mi / has property (QT) (see Lemma 2.3). By Proposition 8.1, Mi does not
support Sol and Nil geometry.

Now, we are going to prove sufficiency. Assume that there is no piece Mi that supports either Sol or
Nil geometry. We would like to show that �1.M/ has property (QT). In this case, we observe that each
peripheral subgroup P 2 P has property (QT). Indeed, a free group P D Fr of course has property (QT),
so let us now assume that P D �1.Mi / for some 1� i � k. If Mi has a boundary component of genus at
least 2 then property (QT) of �1.Mi / follows from Proposition 8.6. Otherwise, Mi has empty or tori
boundary. Then the property (QT) of �1.Mi / follows from Proposition 8.1 for geometric manifolds,
Proposition 8.3 for graph manifolds, and Proposition 8.4 for mixed graph manifolds.

We are going to show that G D �1.M/ satisfies all conditions in Theorem 1.5. The proof is similar to the
proof of Proposition 8.4 with minor changes.

Claim 1 �1.M/ induces the full profinite topology on each Pi 2 P.

It is well known that the fundamental groups of all compact 3-manifolds are residually finite, thus �1.M/

is residually finite and its finite-index subgroups are residually finite as well. Any finite-index subgroup
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H of Pi D �1.Mi / is separable in the free product G D P1 �P2 � � � � �Pk �Fr by [13, Theorem 1.1].
Hence it follows from [47, Lemma 2.8] that G induces the full profinite topology on Pi .

Claim 2 For each peripheral subgroup P 2 P , there exists a finite-index subgroup P 0 of P acting
isometrically on a finite number of quasitrees , so that the diagonal action of P 0 on the finite product of
these quasitrees induces quasi-isometric embeddings on orbital maps.

Indeed, the claim obviously holds for P D Fr or P D Z2. The claim also holds for P D �1.Mi /

where Mi is a geometric 3-manifold. The case of graph manifolds is proved in Claim 2 of the proof of
Proposition 8.4. The only case left is when Mi is a mixed 3-manifold or Mi has a boundary component
with genus at least 2. It has been shown in Proposition 8.6 that if Mi has a boundary component with
genus at least 2 then it is an undistorted subgroup in a mixed 3-manifold. Therefore it suffices to consider
only the mixed 3-manifold case. Recall that in the proof of Proposition 8.4, we show that there exists a
finite-index subgroup of �1.Mi / such that it is a relatively hyperbolic group, satisfying the conditions of
Theorem 1.5, and thus Claim 2 is confirmed.

With Claims 1 and 2, we use the same argument as in the proof of Theorem 3.5 (see the second and
third paragraph) to find a finite-index normal subgroup G0 of G such that G0 is hyperbolic relative to
a collection of subgroups satisfying the hypotheses in Theorem 1.5, and thus G0 has property (QT).
Therefore, �1.M/ has property (QT) since G0 is a finite-index subgroup of �1.M/ and G0 does have
property (QT).
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On positive braids, monodromy groups and framings

LIVIO FERRETTI

We associate to every positive braid a group, generalizing the geometric monodromy group of an isolated
plane curve singularity. If the closure of the braid is a knot, we identify the corresponding group with a
framed mapping class group. In particular, this gives a well defined knot invariant. As an application, we
obtain that the geometric monodromy group of an irreducible singularity is determined by the genus and
the Arf invariant of the associated knot.
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1 Introduction

Singularity theory is a genuine source of examples and inspiration for knot theory. Since the topological
type of an isolated plane curve singularity is determined by an associated link, it is possible to understand
properties of the singularity from a knot theoretical viewpoint, and knot theory has been successfully
applied to solve algebraic questions. In another direction, links of singularities form an interesting class
of links, with special properties and invariants that follow from the whole machinery of singularity theory.
It is often unclear which of those properties are inherently algebraic and which ones could be generalized
to wider classes of knots and links. Among other invariants, the fundamental group of the discriminant
complement and the geometric monodromy group have drawn much attention but have proved to be hard
to investigate.

In [6], Baader and Lönne associate to any positive braid an abstract group defined by generators and
relations, which they call the secondary braid group. Their motivation comes from the similarities
between the combinatorial structure of positive braids and that of isolated plane curve singularities. In
particular, they prove that for braids of type ADE and for braids of minimal braid index whose closure is
a torus link Tp;q , the secondary braid group is isomorphic to the fundamental group of the discriminant
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complement of the corresponding singularities (simple singularities in the former case, Brieskorn–Pham
singularities f .x;y/D xp C yq in the latter; see [21] by Lönne). However, because of difficulties in
dealing with conjugation in the positive braid monoid, they can prove that the secondary braid group is a
well defined link invariant only for positive braids whose closure contains a positive half twist.

Inspired by their construction and in analogy with the definition of the geometric monodromy group
of a singularity, in this article we associate to any positive braid ˇ a group MG.ˇ/, which we call the
monodromy group of the positive braid, defined as a subgroup of the mapping class group of the unique
genus minimizing Seifert surface of the closure Ǒ, generated by the Dehn twists around some natural
family of curves. The monodromy group of a positive braid is a quotient of Baader’s and Lönne’s
secondary braid group which contains the monodromy diffeomorphism of the positive braid. Moreover, it
is a generalization of the geometric monodromy group of an isolated plane curve singularity to the setting
of positive braids.

Theorem 1.1 Let f W C2 ! C define an isolated plane curve singularity and L.f / be the link of f .
Then there exists a positive braid ˇ representing L.f / such that the geometric monodromy group of f is
equal to MG.ˇ/.

In [24], Portilla Cuadrado and Salter proved that the geometric monodromy group of any singularity of
genus at least 5 and not of type An and Dn is a framed mapping class group, ie the stabilizer of some
canonical framing on the Milnor fibre associated to the singularity and, among other things, they use
this result for deducing the noninjectivity of the geometric monodromy representation. Following their
approach, the main result of this paper is an identification of the monodromy group of a positive braid ˇ
whose closure is a knot with a framed mapping class group on the genus minimizing surface †ˇ.

Theorem 1.2 Let ˇ be a prime positive braid not of type An and whose closure is a knot. Then , for all
but finitely many such braids , there exists a framing �ˇ on †ˇ such that the monodromy group MG.ˇ/ is
equal to the framed mapping class group Mod.†ˇ; �ˇ/.

For the definition of a positive braid of type An, see Section 2. It is important to mention that the infinite
family of braids of type An that we exclude from Theorem 1.2 is in fact one of the only cases where the
monodromy group was already explicitly known: it is isomorphic to the Artin group of the corresponding
type; see [23] by Perron and Vannier. Those groups are not isomorphic to any framed mapping class
group, so their exclusion is a necessity, rather than a limitation of any sort.

Of course, as a consequence of Theorems 1.1 and 1.2, in the restricted context of singularities we
immediately obtain that the geometric monodromy group of an irreducible singularity is controlled by
a framing. In fact, as explained in Remark 5.7, one can see that our proof of Theorem 1.2 also applies to
many links, including links of singularities not of type An and Dn, thus recovering the results of [24] up
to finitely many exceptions. On the other hand, there are some infinite families of positive braid links for
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which our methods do not seem to work; see Remark 5.8. In spite of the increased combinatorial difficulty,
working in the more general setting of positive braids has some advantages, as we will now explain.

Since the topological type of a singularity is completely determined by its link, a priori every topological
invariant of a singularity should be somehow readable from the link. For instance, the Milnor number
corresponds to the minimal first Betti number, while the multiplicity corresponds to the braid index [28].
However, this translation is often far from straightforward. Now, it turns out that framed mapping class
groups are determined by the value of the framing on the boundary components of the surface and a
certain Arf invariant associated to the framing. In the case of a surface † with connected boundary,
the value of the framing on the boundary is always equal to the Euler characteristic of †, so that the
framed mapping class group is determined simply by the genus of † and the Arf invariant of the framing.
Working with positive braids, we are able to identify the Arf invariant of the framing with the classical
Arf invariant of the boundary knot. We thus obtain the following corollaries, expressing the geometric
monodromy group of an irreducible singularity in terms of well known invariants of its knot.

Corollary 1.3 Let ˇ be a prime positive braid not of type An and whose closure is a knot K. Up to
finitely many exceptions , the monodromy group of ˇ is an invariant of K, determined by its genus and
Arf invariant.

Corollary 1.4 Let f define an irreducible isolated plane curve singularity that is not of type An and
K.f / be the knot of the singularity. For all but finitely many such singularities , the geometric monodromy
group of f is determined by the genus and the Arf invariant of K.f /.

It is important to point out that the monodromy group of a positive braid is proved to be an invariant of
the braid closure only if the latter is connected; for braids whose closure is disconnected, the strongest
invariance result is Corollary 2.7.

From a purely knot theoretical viewpoint, Theorem 1.2 might seem disappointing. It implies that, if the
closure of a positive braid is a knot (up to finitely many exceptions), its monodromy group is an invariant
of the knot, but a rather useless one: it is hard to compute, but determined by two classical and much easier
invariants, a natural number and a mod 2 class. Its interest lies in negative results such as Corollary 1.4.
The geometric monodromy group, which was typically considered a rich yet hard to investigate invariant of
a plane curve singularity, turns out, in the case of irreducible singularities, to be determined by two simple
knot invariants, and the question whether two irreducible singularities have the same geometric monodromy
group can be answered by a direct and easy computation, using existing formulas for the Arf invariant of a
knot. Of course, for each fixed genus there are many different irreducible singularities, so there will be dif-
ferent singularities with the same geometric monodromy group. We believe that for big enough genus both
values of the Arf invariant are realized, so that there would be exactly two geometric monodromy groups.

The study of the monodromy group of a positive braid naturally has its place in the context of finitely
generated subgroups of the mapping class group, and in particular subgroups generated by Dehn twists
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around a family of curves with prescribed intersection pattern. Those subgroups are interesting by
themselves from a mapping class group theoretical viewpoint, but also appear naturally in different
contexts, such as singularity theory or in the study of Lefschetz fibrations. The question of what groups
can arise in this way is completely solved in the case of two Dehn twists; see for example Chapter 3

of [11], by Farb and Margalit, but is in general widely open. In [23] Perron and Vannier, interested in the
geometric monodromy group of singularities, proved that if the intersection pattern of the curves is a
Dynkin diagram of type An or Dn, the group generated by the Dehn twists is isomorphic to the Artin
group of corresponding type, and conjectured this to be true for general graphs. This was later disproved
by Labruère [19] and Wajnryb [27], whose results show that the only Artin groups whose Dynkin diagram
is a tree and that geometrically embed in the mapping class group are precisely the ones of type An

and Dn. Notice that, contrary to what Wajnryb claimed, the Artin groups of type QAn, ie whose Dynkin
diagram is a cycle, do geometrically embed in the mapping class group, as recently proved by Ryffel
in [26]. The theory of framed mapping class groups seems to suggest that, at least if the intersection
pattern is in some sense rich enough, those finitely generated subgroups are controlled by a framing on
the surface. Theorem 1.2 is an example of such a result.

As a final remark, although in this paper we concentrate only on positive braids, they are not the only
natural class of links generalizing links of singularities to which one could try to associate a monodromy
group. A’Campo’s divide links form another such interesting family; see Section 3. More generally, it is
known that the Milnor fibre of an isolated plane curve singularity can be constructed by a sequence of
positive Hopf plumbings such that the core curves of the Hopf bands coincide with a distinguished basis
of vanishing cycles of the singularity, the Dehn twist around which generate the geometric monodromy
group; see [17] by Ishikawa. As explained in Remark 2.3, this is also the case for the monodromy group
of a positive braid. Going one step further, for a general sequence of positive Hopf plumbings, one could
define a monodromy group as the group generated by all the Dehn twists around the core curves of the
Hopf bands. We expect that, at least for knots, results similar to Theorem 1.2 should hold in this more
general setting. This is not difficult to see for Hopf plumbings with intersection pattern a tree and whose
boundary is a knot of sufficiently big genus.

Structure of the paper In Section 2 we define the monodromy group of a positive braid and prove some
basic invariance properties. In Section 3 we recall some basics of singularity theory and, using A’Campo’s
theory of divides, we prove Theorem 1.1. In Section 4 we discuss the general theory of framed mapping
class groups and construct the framing appearing in Theorem 1.2. Finally, Section 5 is the technical part
of the paper, in which we prove Theorem 1.2. This basically consists of a lengthy case distinction that
allows us to apply general results about framed mapping class groups.

Acknowledgements I wish to thank Sebastian Baader for suggesting the topic and guiding me through
this project. I am also very grateful to Livio Liechti for the several interesting discussions, and in particular
for pointing out the connection to framed mapping class groups. Finally, thanks to Nick Salter, Pablo
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Portilla Cuadrado and Michael Lönne for their interesting comments, and to the anonymous referee for
the useful suggestions that greatly improved the exposition.

2 The monodromy group of a positive braid

Let BC
N

be the monoid of positive braids on N strands and ˇ 2 BC
N

. We will usually represent such
a braid with a brick diagram, a plane graph with N vertical lines connected by horizontal segments
corresponding to the crossings. Since all the crossings are positive, one can reconstruct the braid from the
brick diagram. It is well known that, if ˇ is nonsplit, its closure Ǒ is a fibred link, whose fibre surface can
be constructed by taking a disk for each strand of ˇ and, for each generator �i in ˇ, gluing a half-twisted
band between the i th and .iC1/th disks. The brick diagram of ˇ naturally embeds in this surface as a
retract. Let us denote this fibre surface by †ˇ, and let g be its genus and r the number of boundary
components. On †ˇ there is a standard family of 2gC r � 1 curves i , oriented counterclockwise, which
are in one-to-one correspondence with the bricks, ie the innermost rectangles, of the brick diagram of ˇ
and form a basis of the first homology of †ˇ . See Figure 1 for an example of †ˇ with the corresponding
curves for ˇ D �3�1�2�

2
1
�3�2. The intersection pattern of those standard curves can be read off directly

from the brick diagram, in the so called linking graph:

Definition 2.1 Let ˇ be a positive braid word. Its linking graph is a graph whose vertices are the bricks
of the brick diagram of ˇ; two vertices are connected by an edge if and only if the corresponding bricks
are arranged as the two bricks of the braids �3

i , �i�iC1�i�iC1 or �iC1�i�iC1�i .

Notice that two vertices of the linking graph are connected with an edge if and only if the corresponding
curves intersect each other. Linking graphs of positive braids were studied in great detail in [5]. Here it is
worth mentioning that since positive braid links are visually prime by [10], a positive braid link is prime
if and only if the linking graph is connected. In what follows, we will say that a positive braid link is of

3

4

2

1

Figure 1: The fibre surface of �3�1�2�
2
1
�3�2, its brick diagram and the corresponding linking graph.
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1

2

:::

n�1

n

Q1

Q2

:::

Qn�1

Qn

QnC1

Figure 2: The isotopy between †ˇ�i
and †�iˇ

.

type An (resp. Dn) if it isotopic to the closure of the braid �nC1
1

(resp. �n�2
1

�2�
2
1
�2). Those braids have

as linking graph the simply laced Dynkin diagram of type An or Dn.

Definition 2.2 Let ˇ be a positive braid. The monodromy group MG.ˇ/ is the subgroup of the mapping
class group of †ˇ generated by all the Dehn twists around the curves i , i D 1; : : : ; 2gC r � 1, ie

MG.ˇ/D hT1
; : : : ;T2gCr�1

i6Mod.†ˇ/:

Remark 2.3 As we just said, if a positive braid ˇ is nonsplit, then its closure is fibred, and †ˇ is the
fibre surface. In fact, this surface can be constructed by a sequence of plumbings of positive Hopf bands,
and the curves i are precisely the core curves of those Hopf bands. The monodromy group of ˇ therefore
somehow reflects this plumbing structure.

Example 2.4 As already mentioned, it follows from [23] that if ˇ D �nC1
1

then MG.ˇ/ is isomorphic to
the Artin group of type An. Similarly, for ˇ D �n�2

1
�2�

2
1
�2, MG.ˇ/ is isomorphic to the Artin group of

type Dn.

From the definition, it is clear that MG.ˇ/ is invariant under far-commutativity (ie �i�j D �j�i for
ji � j j � 2) and positive Markov move.

Proposition 2.5 (elementary conjugation invariance) Let ˇ be a positive braid on N strands. Then for
all 1� i �N � 1, MG.ˇ�i/'MG.�iˇ/.

Proof Consider the fibre surfaces of ˇ�i and �iˇ. Those surfaces are isotopic, by sliding the topmost
band between the i th and .iC1/th disks along the back of the disks and bringing it in the lowermost
position. Note that this isotopy restricts to the identity outside of the i th column. The surfaces †ˇ�i

and
†�iˇ can hence be schematically represented as in Figure 2, where we drew the i th column and the light
grey boxes on the two sides represent the remaining parts of the surface.
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†˛ †ˇ

! ! !

Figure 3: The isotopy between †˛ and †ˇ .

Let us number the standard curves of the i th column as in Figure 2. The isotopy will send each i ,
i D 1; : : : ; n� 1 to the corresponding Qi , i D 1; : : : ; n� 1 and transform n into the red curve QnC1. All
that we have to prove is then that we can generate the Dehn twists around the curves Q1; : : : ; Qn�1; QnC1

using Q1; : : : ; Qn�1; Qn, and vice-versa. But we note that

QnC1 D T Qn�1
� � �T Q2

T Q1
. Qn/;

so that for hD T Qn�1
� � �T Q2

T Q1
we have

T QnC1
D hT Qn

h�1

and the result is proved.

Proposition 2.6 (braid relation invariance) Let ˛ and ˇ be two positive braids related by a braid relation ,
then MG.˛/'MG.ˇ/.

Proof Up to elementary conjugation, we can suppose that ˛D!�i�iC1�i and ˇD!�iC1�i�iC1, where
! is a positive braid on N strands and 1 � i � N � 2. At the level of surfaces †˛ and †ˇ the braid
relation can be realized by an isotopy as in Figure 3. It is clear that all the standard curves i are fixed by
this isotopy but the ones (at most two) passing through the slid band.

� There is a generator �i in !: in this case, there are two curves on †˛ which are modified by the
isotopy. Let us call them 1 and 2, as in Figure 4. We see that, after the isotopy, 1 is transformed
into the corresponding Q1, while 2 becomes T �1

Q1
. Q2/. All the other standard curves are fixed.

Therefore, we get that MG.˛/'MG.ˇ/.

� There is no �i in !: in this case, the only curve modified by the isotopy is 1, which as before is
transformed into Q1. Again, we directly have that MG.˛/'MG.ˇ/.

The following corollary now follows directly by an observation of Orevkov about Garside’s solution
of the conjugacy problem in the braid group, saying that, in the presence of a positive half twist, two
conjugate positive braids can be related by a sequence of braid relations and elementary conjugations; see
[6, Section 6].
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†˛ †ˇ

1

2

Q1

Q2

T �1
Q1
. Q2/

Figure 4: First case of braid relation invariance.

Corollary 2.7 Let ˛ and ˇ be positive braids such that the closures are braid isotopic and contain a
positive half twist. Then MG.˛/'MG.ˇ/.

3 Divides and monodromy of singularities
The monodromy group of a positive braid is a generalization of the geometric monodromy group of an
isolated plane curve singularity. In this section, we will make this statement more precise.

Let f WC2!C define an isolated plane curve singularity. For a suitably small radius r > 0, the sphere
@.B4

r / � C2 intersects the singular curve C D f �1.0/ transversally, so that the intersection L.f / D

C \@.B4
r / is a link in S3D @.B4

r /, called the link of the singularity. It is well known that the isotopy type
of L.f / completely determines the topological type of the singularity. Moreover, in [22] Milnor proved
that the map f=jf jW S3 nL.f /! S1 is a fibration. Singularity links are therefore fibred links, with fibre
a surface †.f / called the Milnor fibre. It turns out that all the singularity links are iterated torus links, and
in particular positive braid links. The fibration induces a monodromy diffeomorphism of the fibre, which
is only defined up to isotopy and therefore defines a mapping class in Mod.†.f //, called the geometric
monodromy of the singularity. The geometric monodromy is an important invariant, which determines
the topology of the singularity and has been intensively studied in the context of singularity theory.

By the study of the deformations of the singularity, the geometric monodromy can be “promoted” to the
so called geometric monodromy group of the singularity. It is a subgroup of Mod.†.f // generated by
the Dehn twists around some specific curves on the Milnor fibre, called vanishing cycles. The geometric
monodromy can be expressed as a product of those generators and is therefore an element of the geometric
monodromy group. We will not discuss the original definition of the geometric monodromy group of
a singularity since, although classic, it would require quite some background knowledge in singularity
theory and will not be useful for our purposes. However, there exists an easy combinatorial model for the
Milnor fibre of a singularity which allows us to directly define the geometric monodromy group in terms
of explicit generators. This was constructed by A’Campo using the theory of divides.
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Figure 5: A divide and the associated surface with some of the vanishing cycles. The correspond-
ing link is the torus knot T3;4.

Definition 3.1 A divide D is a generic relative immersion of finitely many intervals in the unit disk
.D2; @.D2//.

Here, generic means that the only singularities are double points and that the intervals meet the boundary
@.D2/ transversally. Examples of divides can be seen in Figures 5 and 6.

Divides were first introduced by A’Campo [1; 2] and Gusein-Zade [15; 14], who independently proved
that they could be associated in a natural way to singularities and used them for studying properties of the
monodromy. Later on, in [4; 3], A’Campo associated to any divide D a link L.D/, constructed as follows.
Consider the tangent bundle of the unit disk, TD2 D f.x; v/ j x 2D2; v 2 TxD2g. The sphere S3 can be
seen as the unit sphere in TD2,

S3
D f.x; v/ 2 TD2

j jxj2Cjvj2 D 1g:

Now let D �D2 be a divide, the link of D is defined as

L.D/D f.x; v/ 2 S3
j x 2 D; v 2 TxDg � S3:

This gives a link whose number of components is equal to the number of intervals in the divide. In the same
papers, A’Campo proved that if the divide is connected the link is fibred and that if the divide was obtained
from a singularity the associated link L.D/ is ambient isotopic to the link of the singularity. In this latter
case, he also provided an easy graphical algorithm to construct a model of the Milnor fibre on which a
system of vanishing cycles is visible. We say that a face of a divide D is a connected component of D2nD
which does not intersect the boundary of D2. Let n be the number of intervals in D, ı be the number of
crossings and r the number of faces. The Milnor fibre will be a surface with first Betti number �D ıC r

and n boundary components. The distinguished vanishing cycles will be given by one curve per crossing
and one curve per face. The surface is constructed as follows: first, replace every crossing of D with a
small circle, to get a trivalent graph. Now, realize every edge of this new graph by a half-twisted band.
This will give a surface composed of twisted cylinders, corresponding to the crossings of D, connected
by half-twisted bands corresponding to the edges of D. The vanishing cycle associated to a crossing will
be given by the core curve of the corresponding cylinder, the vanishing cycle of a face will be given by
the core curves of the bands bounding the face. An example of this construction is given in Figure 5.
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Figure 6: The divides on the left are ordered Morse, the divides on the right are not.

Remark 3.2 A’Campo’s construction only leads to a combinatorial model of the Milnor fibre which is
not embedded. A graphical procedure to construct a diagram of the link of a divide and the associated
embedded fibre surface has been given by Hirasawa in [16].

Definition 3.3 Let f be an isolated plane curve singularity, D a divide associated to f and †.f / the
surface constructed from D with the previous procedure. The geometric monodromy group of f is the
subgroup of Mod.†.f // generated by the Dehn twists around the vanishing cycles constructed on †.f /.
This does not depend on the choice of the divide D.

As we have already mentioned, links of singularities are closures of positive braids. Since fibre surfaces
of fibred links are unique, the Milnor fibre of a singularity f is ambient isotopic to the fibre surface
†ˇ of any positive braid ˇ representing L.f /. We therefore now have two a priori distinct subgroups
of Mod.†ˇ/ D Mod.†.f //, the geometric monodromy group of f and the monodromy group of ˇ.
Theorem 1.1 says that those two groups coincide for at least one choice of ˇ.

To prove Theorem 1.1, we will explicitly find an isotopy between the Milnor fibre constructed from a
divide and the surface of an appropriate positive braid and identify the vanishing cycles on this braid
surface. In order to do so, we need to use a divide from which the positive braid is somehow visible.

Definition 3.4 A divide D �D2 is an ordered Morse divide if there is a diameter of D2 such that the or-
thogonal projection on this diameter is Morse when restricted to D, all the local maxima (resp. minima) have
the same critical value b (resp. a) with b > a and all the crossings are mapped in the open interval .a; b/.

Basically, a divide is ordered Morse (with respect to a given direction) if no local maxima or minima lie
in an interior face of the divide. Examples of such divides are given in Figure 6.

Remark 3.5 In the literature, ordered Morse divides are sometimes called scannable divides.
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Figure 7: Hirasawa’s construction of the embedded fibre surface of an ordered Morse divide.

Ordered Morse divides were introduced by Couture and Perron [9], who used a generalization of those to
construct a representative braid for any divide link. In particular, ordered Morse divides give positive
braid links. Notice that every singularity has an associated divide which is ordered Morse (in fact, the
divides originally constructed by A’Campo and Gusein-Zade are ordered Morse; see [9]). The result of
Couture and Perron can be obtained geometrically: if we apply the algorithm of [16] to an ordered Morse
divide, we get exactly the fibre surface of a positive braid. This was done in [13] for Lissajous divides
and torus links, but the same procedure works for an arbitrary ordered Morse divide. The construction
of the fibre surface is shown in Figure 7: one just has to replace the crossings and minima/maxima of
the divide with the corresponding pieces of surface and glue them together following the pattern of the
divide. Here we use that all the minima and maxima of the divide are in the exterior face: for general
divides the fibre surface is more complicated.

Remark 3.6 The diagrams in Figure 7 are the mirror image of those obtained by Hirasawa in [16].
This is due to the different choice of orientation of S3: Hirasawa uses the orientation induced by the
trivialization T R2Df.x; v/ j x 2R2; v 2TxR2gŠR2�R2; we use the identification T R2ŠC2, where
the plane R2 is identified with the real part of C2, since this allows one to correctly identify the link of a
singularity with the link of a corresponding divide.

Proof of Theorem 1.1 Let f be an isolated plane singularity and D an associated ordered Morse divide.
Let † be the embedded surface constructed following [16], as explained above. It is an embedded fibre
surface whose boundary is the link L.D/DL.f /. To see that this is indeed the fibre surface of a positive
braid, we just need to perform the isotopies shown in Figure 8(2a), getting a collection of disks connected
by half-twisted bands, and slide all the bands to the front. Let us remark that an ordered Morse divide is

'
.1/

'
.2a/

'
.2b/

Figure 8: A sequence of isotopies.

Algebraic & Geometric Topology, Volume 25 (2025)



172 Livio Ferretti

'
.1/

'
.2a/

'
.2b/

Figure 9: An example of the isotopies of Theorem 1.1.

formed of N parallel lines (where N is the number of points in the preimage of a regular value of the
Morse projection) connected by the crossings and the minima/maxima. The braid obtained will have N

strands, a crossing of D gives a pair of generators while every maximum/minimum gives one generator.

By further performing the isotopies of Figure 8(2b) around all the crossings of D corresponding to
generators �i for even i , we can now directly identify † with an embedded version of A’Campo’s model
of the Milnor fibre. A system of vanishing cycles is therefore visible on the braid surface †. Those cycles
are not exactly the same as the generators of the monodromy group of the braid, but the same arguments
as in the proof of Proposition 2.5 show that the two groups are indeed the same.

Example 3.7 In Figure 9, we see an example of the isotopies used in the previous proof. On the left, we
start with a divide D; we then construct the Seifert surface following Hirasawa’s algorithm. After applying
the isotopies of Figure 8(2a), we obtain the surface †ˇ of a positive braid, namely ˇD .�1�2�3/

3. On the
right, we performed the isotopy of Figure 8(2b) around the central crossing of D. In that way, we clearly
see that the surface is composed of twisted cylinders corresponding to the crossings of D and connected
by half-twisted bands, as required by A’Campo’s construction (compare with Figure 5). Notice that it is
not relevant that this last step is performed around all the crossings of D corresponding to generators �i

for even i as opposed to odd i ; what matters is that it alternates, in order the get the required half-twisting
of the bands become visible.

4 Framings

We will now briefly recall the basics of the theory of framed surfaces, concentrating in particular on
the action of the mapping class group on such structures, as investigated in [8; 25]. In what follows,
we will adhere to the notations and conventions of [8], but we will restrict only to the case of surfaces
with connected boundary. Let †D†g;1 be a connected, compact, oriented surface of genus g with one
boundary component. A framing � on † is a trivialization of the tangent bundle T†. With the fixed
orientation (and a choice of a Riemannian metric), a framing is determined by a nowhere-vanishing
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vector field �� on †. Two framings are isotopic if the associated vector fields are isotopic through
nowhere-vanishing vector fields.

To a framing one can associate a winding number function, computing the holonomy of a simple closed
curve. If c W S1!† is a C1 embedding, one can define

�.c/D

Z
S1

d†
�
Pc.t/; ��.c.t//

�
2 Z:

This defines a map from the set of simple closed curves on † to Z, which is clearly invariant under
isotopy of � and c. It is not hard to see that the converse also holds: the isotopy class of a framing on †
is determined by its winding number function, and actually by the value on finitely many curves (see [8,
Lemma 2.2; 25, Proposition 2.4]). Thanks to this, we will use the term “framing” indifferently to refer to
the isotopy class of the vector field �� or to the associated winding number function �.

Remark 4.1 Since we are only considering surfaces with connected boundary, it follows from the
Poincaré–Hopf index theorem that for any framing � on †, if the boundary @† is oriented with the
surface on its left, �.@†/D �.†/.

The mapping class group of † acts on the set of isotopy classes of framings by pullback, via f ��.c/D
�.f �1.c//, for f 2Mod.†/ and c a simple closed curve.

Definition 4.2 Let .†; �/ be a framed surface. The framed mapping class group

Mod.†; �/D ff 2Mod.†/ j f �� D �g

is the stabilizer of the isotopy class of �.

Of particular interest is the action of Dehn twists.

Lemma 4.3 [8, Lemma 2.4] Let .†; �/ be a framed surface and a;x oriented simple closed curves
on †. Then

�.Ta.x//D �.x/Chx; ai�.a/;

where h�; �i denotes the algebraic intersection number.

We say that a nonseparating simple closed curve a on .†; �/ is admissible if �.a/D 0. As a consequence
of Lemma 4.3 we have that a nonseparating simple closed curve a�† is admissible if and only if the
corresponding Dehn twist preserves �. Calderon and Salter proved that, for big enough genus, the framed
mapping class group is generated by those admissible twists:

Proposition 4.4 [8, Proposition 5.11] If .†; �/ is a framed surface of genus g � 5,

Mod.†; �/D hTa j a admissible for �i:

But more is true. The framed mapping class group is generated by finitely many admissible twists around
curves with prescribed intersection pattern. Again following [8]:
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Definition 4.5 Let CDfc1; : : : ; ckg be a collection of curves on a surface†, pairwise in minimal position
and intersecting at most once. We say that such a configuration

� spans the surface if † deformation retracts onto the union of curves in C;

� is arboreal if its intersection graph is a tree, and E-arboreal if moreover it contains the Dynkin
diagram E6 as a subtree.

Definition 4.6 Let C D fc1; : : : ; ck ; ckC1; : : : ; clg be a collection of curves on a surface † and denote
by Sj a regular neighbourhood of fc1; : : : ; cj g. We say that C is an h-assemblage of type E if

� fc1; : : : ; ckg is an E-arboreal spanning configuration on a subsurface S �† of genus h;

� For j > k, cj \Sj�1 is a single arc;

� Sl D†.

Proposition 4.7 [8, Theorem B] Let .†; �/ be a framed surface and C D fc1; : : : ; clg an h-assemblage
of type E on † of genus h� 5. If all the curves in C are admissible for �, then

Mod.†; �/D hTc j c 2 Ci:

The orbit space of this action was studied by Randal-Williams in [25]. It is classified by the Arf invariant.
More precisely, it follows from work of Johnson [18] that the function .� C 1/ mod 2 is a quadratic
refinement of the mod 2 intersection form. We can therefore define A.�/ to be the Arf invariant of this
quadratic form. More concretely, let us denote by i. �; �/ the geometric intersection number and take a
collection of oriented simple closed curves fx1;y1; : : : ;xg;ygg such that hxi ;xj i D hyi ;yj i D 0 and
hxi ;yj i D i.xi ;yj /D ıi;j . We then have

A.�/D
gX

iD1

.�.xi/C 1/.�.yi/C 1/ mod 2:

This is of course independent of the choice of the curves fx1;y1; : : : ;xg;ygg.

Proposition 4.8 [25, Theorem 2.9] Let g � 2. The action of the mapping class group on the set of
isotopy classes of framings on †D†g;1 has exactly two orbits , distinguished by the Arf invariant.

As a consequence, for a given † there are exactly two conjugacy classes of framed mapping class groups
as subgroups of Mod.†/.

Remark 4.9 (caveat) In this section we only stated results for surfaces with connected boundary, in
terms of absolute framings. For general surfaces, the whole theory is still valid, but needs to be formulated
for relative framings, ie only allowing isotopies that are trivial on the boundary. In this more general
context, the framed mapping class group is the stabilizer of the relative isotopy class of a framing, and
one needs to also take into account the action on arcs, getting so-called generalized winding number
functions. The orbit space is now classified by a generalized Arf invariant together with the values of the
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Figure 10: The framing on †ˇ for ˇ D �3�1�2�
2
1�3�2. On the vertical disks it is horizontal with

alternating directions, on the twisted bands it is parallel to the core.

framing on the different boundary components. However, if the boundary is connected the absolute and
relative theories are equivalent and we can use this slightly simpler formulation.

4.1 A framing for positive braids

Let ˇ be a nonsplit positive braid and †ˇ its fibre surface. We can construct a framing �ˇ on †ˇ as in
Figure 10. An explicit and straightforward computation now shows that every standard curve i on †ˇ is
admissible for �ˇ . Therefore, the monodromy group of ˇ is contained in the framed mapping class group
of �ˇ:

MG.ˇ/6Mod.†ˇ; �ˇ/:

We will prove that, at least for positive braids whose closure is a knot of big enough genus, the monodromy
group is equal to this framed mapping class group. Therefore, in view of the previous discussion, we now
want to compute the Arf invariant of �ˇ.

Proposition 4.10 Let ˇ be a positive braid whose closure is a knot K. Then

A.�ˇ/DA.K/;

where A.K/ is the classical Arf invariant of K.

To prove Proposition 4.10, we will need to discuss a bit more in detail the Arf invariant. Let V be
a finite dimensional vector space over Z2 equipped with a nonsingular, symmetric bilinear pairing
h�; �iW V � V ! Z2. Recall that a quadratic refinement of the bilinear pairing h�; �i is a function
q W V ! Z2 such that for all x;y 2 V

q.xCy/D q.x/C q.y/Chx;yi:

To such a mod 2 quadratic form it is classically associated the Arf invariant A.q/ 2 Z2.
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In our context, we will take V DH1.†ˇ;Z2/ and h�; �i the mod 2 intersection form. As we have already
mentioned, the framing �ˇ induces a quadratic refinement of the intersection form, whose Arf invariant is
A.�ˇ/. On the other hand, if the closure of ˇ is a knot K, it is known that the Seifert form also induces
such a quadratic refinement. More precisely, if S WH1.†ˇ/�H1.†ˇ/! Z denotes the Seifert form, we
can define q W V ! Z2 by q.x/ D S.x;x/ mod 2. It is a classical result that the Arf invariant of this
quadratic form is indeed an invariant of K, that we denote by A.K/.

Proof of Proposition 4.10 Let ˇ be a positive braid whose closure is a knot K and †ˇ its fibre surface,
equipped with the framing �ˇ. The family of curves i form a basis of V D H1.†ˇ;Z2/. Since by
construction all the i are admissible for �ˇ, for every i we have the equality

�ˇ.i/C 1D 1D S.i ; i/ mod 2:

Since fig is a basis, it now follows from the defining equation of a quadratic refinement that for every
x 2 V

�ˇ.x/C 1D q.x/ mod 2:

Therefore the two quadratic forms .�ˇC 1/ mod 2 and q coincide, so their Arf invariants also do.

5 Proof of the main theorem

In this section we will give the proof of Theorem 1.2, stating that, up to finitely many exceptions, the
monodromy group of a positive braid not of type An and whose closure is a knot is a framed mapping
class group. In the previous section we have constructed a framing �ˇ on the fibre surface †ˇ and
seen that MG.ˇ/ 6 Mod.†ˇ; �ˇ/, so we only need to deal with the opposite inclusion. This will be
done by applying Proposition 4.7. As a first step, we have to find appropriate subsurfaces supporting an
E-arboreal spanning configuration. For this, we will separately consider the case of braids on 3-strands
(Proposition 5.1), on at least 11 strands (Proposition 5.2) and finally with an intermediate number of
strands (Proposition 5.6).

Proposition 5.1 Let ˇ be a prime positive 3-braid of genus g � 5 which is not of type An or Dn. Then ,
excepting finitely many braids , up to positive braid isotopy its linking graph contains an induced subtree
which is an E-arboreal spanning configuration on a subsurface of genus g � 5.

Proof Let ˇ be a positive 3-braid which is not of type An. Up to elementary conjugation and braid
relation we can assume that ˇ D �a1

1
�

b1

2
� � � �

am

1
�

bm

2
, with ai � 2 and bi � 1 for all i 2 f1; : : : ;mg. First

of all, notice that if we can find a suitable subtree for a braid �a1

1
�

b1

2
� � � �

am

1
�

bm

2
, the result will also

hold for any braid �
a0

1

1
�

b0
1

2
� � � �

a0m
1
�

b0m
2

for a0i � ai and b0i � bi . We will now prove the result by case
distinction over m.

m� 5 Every braid with m� 5 has genus g � 5 so it is clearly enough to prove the result for mD 5. If
one of the bi is at least 2, we can assume that ˇD �2

1
�2�

2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2

2
. In the left of Figure 11 we
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Figure 11: Subtrees of �2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2

2
and �2

1
�2�

2
1
�2�

2
1
�2�

3
1
�2�

2
1
�2.

' '

Figure 12: The braid �2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2.

now see an induced subtree of the linking graph with the required properties. Similarly if one of the ai

is at least 3 we can assume that ˇ D �2
1
�2�

2
1
�2�

2
1
�2�

3
1
�2�

2
1
�2, and we find the induced subtree of the

right of Figure 11.

We are now only left with the braid �2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2. Here we do not directly find an appropriate

subtree, but Figure 12 shows a sequence of braid relations that makes it visible.

mD 4 We will treat several cases. Let us first assume that there is an i such that bi � 2. If there are
i ¤ j such that bi ; bj � 2, then up to cyclic ordering we only have to deal with the two cases depicted in
the left of Figure 13, where we see the sought subtrees. Similarly, if there is only one bi greater than 2 but
there is one aj bigger than 3 we will find one of the trees in the right of Figure 13. Finally, if all the aj are
equal to 2 and there is only one bi greater than 2, it is enough to consider the braid �2

1
�2�

2
1
�2�

2
1
�2�

2
1
�2

2
,

for which we can find the subtree after applying some braid relations as in Figure 14.

We are now left with bi D 1 for all i . Notice that in that case there need to be at least one ai � 3, otherwise
the braid has genus less than 5. If there are two nonconsecutive ai and aj greater than 3, it is enough to
consider the braid �3

1
�2�

2
1
�2�

3
1
�2�

2
1
�2, for which we find an appropriate subtree in the left of Figure 15.
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Figure 13: The cases when mD 4 and bi ; bj � 2 (left) or bi � 2 and aj � 3 (right).

' ' ' '

Figure 14: The braid �2
1
�2�

2
1
�2�

2
1
�2�

2
1
�2

2
.

' ' '

Figure 15: The cases mD 4 and bi D 1 for all i .

If not, up to cyclic ordering there must be two consecutive ai D aiC1 D 2, in which case we can apply a
sequence of braid relations as we did in the right of Figure 15 and find our subtree.

m D 3 This will be the lengthier case, since there are many low genus braids that require special
treatment. Let ˇ D �a1

1
�

b1

2
�

a2

1
�

b2

2
�

a3

1
�

b3

2
be a braid of genus g � 5, then a simple argument implies

that
P

ai C
P

bi � 12. If
P

bi � 8, it is enough to consider the braids in Figure 16. Similarly, whenP
ai � 11 it is enough to consider the case when all the bi are equal to 1, and up to elementary conjugation

we can assume that a3 � 3. In this case, by taking all the vertices in the left column and only the topmost
of the right column we will always end up finding a tripod tree T .1; k; 9 � k/ for k � 2, which all
correspond to subsurfaces of genus 5; see Figure 17 for some examples.

We are now left with the low genus cases.

Algebraic & Geometric Topology, Volume 25 (2025)



On positive braids, monodromy groups and framings 179

Figure 16: When mD 3 and
P

bi D 8.

T .1; k; 9� k/D

k 9� k

Figure 17: The tripod trees for mD 3 and
P

ai D 11.

Figure 18: When
P

ai D 7 and
P

bi D 6, with b1 D 1.

�
P

ai D 6 If
P

bi D 6 we always get a link with 3 components and genus 4. If
P

bi D 7

and there is at least one of the bi equal to one, up to elementary conjugation we can assume
that ˇ D �2

1
�2�

2
1
�

b2

2
�2

1
�

b3

2
with b2 C b3 D 6. Using that �2

1
�2�

2
1

commutes with �2 we get
�

b2

2
�2

1
�2�

4
1
�

b3

2
, which is conjugate to �2

1
�2�

4
1
�6

2
, whose intersection graph is a tree with the

required properties. We are now left with bi � 2 for all i . Up to elementary conjugation there is
only one such braid, �2

1
�2

2
�2

1
�2

2
�2

1
�3

2
. Here there are no possible braid relations to apply and it is

not possible to find a subtree of big enough genus.

�
P

ai D 7 Let us first assume that
P

bi D 6. If there is at least one bi equal to one, we can
directly find our subtrees. In Figure 18 we see some of the cases. The omitted ones are symmetric
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' ' ' '

' ' ' '

Figure 19: When
P

ai D 8 and
P

bi D 5.

and will give the same subtrees. Notice that this will also cover all the braids with
P

ai � 7 andP
bi � 7. If bi D 2 for all i , up to elementary conjugation there is only the braid �3

1
�2

2
�2

1
�2

2
�2

1
�2

2
,

for which again we cannot find any subtree of big enough genus.

If
P

bi D 5, up to conjugation we have ˇ D �3
1
�

b1

2
�2

1
�

b2

2
�2

1
�

b3

2
. If b2 D 1, using that �2

1
�2�

2
1

commutes with �2 we get the braid �5
1
�2�

2
1
�4

2
, whose intersection graph is a tree with the required

properties. We are left with the three braids �3
1
�2�

2
1
�2

2
�2

1
�2

2
, �3

1
�2

2
�2

1
�2

2
�2

1
�2 and �3

1
�2�

2
1
�3

2
�2

1
�2.

For the first, up to elementary conjugation and applying the commutativity relation as before we
have

�3
1�2�

2
1�

2
2�

2
1�

2
2 ' �

2
1�

2
2�

3
1�2�

2
1�

2
2 D �

2
1�

2
2�1�

2
2�

2
1�2�

2
1 D �

4
1�

2
2�1�

3
2�

2
1 ' �

6
1�

2
2�1�

3
2

and we get a suitable tree. The second braid is symmetric and will lead to the same intersection
tree. For the last, we similarly get

�3
1�2�

2
1�

3
2�

2
1�2 D �1�

3
2�

2
1�2�

4
1�2 ' �2�1�

3
2�

2
1�2�

4
1 D �

3
1�2�

3
1�2�

4
1 ' �

7
1�2�

3
1�2:

�
P

ai D 8 If
P

bi � 6, then either we are already done by the case
P

ai D 7 (if one of the bi is
equal to one) or it is symmetric to the case

P
bi � 8. If

P
bi D 5 after applying some positive braid

isotopy we can always find an appropriate subtree, with the lone exception of ˇD �3
1
�2�

3
1
�2

2
�2

1
�2

2
,

for which we couldn’t find any. In Figure 19 we see some of the cases, the remaining ones being
braid isotopic to those. Finally, if

P
bi D 4, we only get links of 3 components and genus 4 except

for the braid ˇ D �3
1
�2�

3
1
�2�

2
1
�2

2
(and the symmetric ˇ D �2

1
�2�

3
1
�2�

3
1
�2

2
), for which we see the

tree in Figure 20.

�
P

ai D 9 If
P

bi � 4, it is enough to consider ˇD �a1

1
�2�

a2

1
�2�

a3

1
�2

2
. By taking all the vertices

of the linking graph excepted the lowermost of the right column, according to the value of a3
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' ' '

Figure 20: The braid �3
1
�2�

3
1
�2�

2
1
�2

2
.

we will get one of the tripod trees T .1; 2; 6/, T .2; 2; 5/ and T .3; 2; 4/, which all correspond to
surfaces of genus 5. If

P
bi D 3 and there is one even ai , we only have to consider the three braids

�3
1
�2�

2
1
�2�

4
1
�2, �3

1
�2�

4
1
�2�

2
1
�2 and �5

1
�2�

2
1
�2�

2
1
�2. The first two are symmetric, and using that

�2
1
�2�

2
1

commutes with �2 we see that the first one is braid equivalent to the last, for which we
furthermore have �5

1
�2�

2
1
�2�

2
1
�2 D �

7
1
�2�

2
1
�2

2
, whose intersection graph is a tree. Finally, if all

the ai are odd, we get a link of genus 4.

�
P

ai D 10 The only case left is when
P

bi D 3. If one of the ai is odd we can suppose that
a3 is odd, in which case by taking all the bricks excepted the lowermost of the right column we
will get a tripod tree T .1; 2; 6/ or T .1; 4; 4/, which both correspond to subsurfaces of genus 5.
If all the ai are even, up to elementary conjugation we only have the braids �4

1
�2�

4
1
�2�

2
1
�2 and

�6
1
�2�

2
1
�2�

2
1
�2. Those are actually related by braid relations and elementary conjugations, and

the very same argument used for
P

ai D 9 and
P

bi D 3 will yield the required tree.

mD 2 For a braid ˇ D �a1

1
�

b1

2
�

a2

1
�

b2

2
of genus at least 5 the intersection graph is always a tree with

at least 10 crossings. Furthermore, by direct inspection we see that those trees will always contain E6

unless they are of type Dn.

mD 1 In this case we only get nonprime braids.

To sum up, the result holds for all braids excepted �2
1
�2

2
�2

1
�2

2
�2

1
�3

2
, its symmetric �3

1
�2

2
�2

1
�2

2
�2

1
�2

2

(which gives the same link with opposite orientation) and �3
1
�2�

3
1
�2

2
�2

1
�2

2
(which gives an invertible

link).

We will now consider braids with big positive braid index.

Proposition 5.2 Let ˇ be a prime positive braid on N � 11 strands and whose closure is a knot not of
type An. Then , up to positive braid isotopy and excepted finitely many braids , its linking graph contains
an induced subtree which is an E-arboreal spanning configuration on a subsurface of genus g � 5.

The strategy to prove Proposition 5.2 is very simple: we will try to explicitly construct the required
subtree and see that, each time our construction fails, either the closure is not a knot or we can reduce the
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Figure 21: An isotopy that reduces the number of strands.

number of strands. The finitely many exceptions come from Proposition 5.1 and Proposition 5.6, in case
we can reduce our braid to one of the exceptions therein. We will therefore heavily rely on the following
two lemmas.

Lemma 5.3 Let ˇ 2 BC
N

be a prime positive braid on N � 3 strands. If for some i the linking graph
of the subword induced by all the generators �i and �iC1 is a path , then there exists a positive braid
ˇ0 2 BC

N�1
such that Ǒ D Ǒ0 and MG.ˇ/DMG.ˇ0/.

Proof Up to elementary conjugation and symmetry, we can assume that the subword induced by �i and
�iC1 is of the form �a

i �iC1�i�
b
iC1

. Moreover, we can suppose that all the generators �j for j < i appear
before the last occurrence of �i and all the generators �j for j > iC1 appear after the first occurrence of
�iC1. In Figure 21 we see an isotopy between the fibre surface †ˇ and the fibre surface †ˇ0 of a new
braid ˇ0 with one strand less: the portion of the .iC1/th disk lying between the first occurrence of �iC1

and the last occurrence of �i (in red in the leftmost picture) is slid along the last �i , becoming a band
between the i th and .iC1/th disk (central image); this band is then slid along the back of the two disks to
be brought in the lowermost position. A direct computation now shows that MG.ˇ/DMG.ˇ0/.

Lemma 5.4 Let

AD
˚
�a

1�2�
b
3 �2�

c
1�2�

d
3 �2�

e
1 j a; b; c; d; e 2N

	
;

B D
˚
ˇ1�2�3ˇ2�3�2ˇ3 j ˇ1; ˇ3 2 h�3; �4i; ˇ2 2 h�1; �2i

	
;

C D
˚
ˇ1�2ˇ2�2�3ˇ3�3ˇ4 j ˇ1; ˇ4 2 h�1; �4i; ˇ2 2 h�3; �4i; ˇ3 2 h�1�2i

	
:

If ˇ 2A[B [C , then the closure of ˇ has at least two components.

Proof In Figure 22 we see some schematic drawings of the linking diagrams of braids from the three
families, in which one component of the closure is highlighted.
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Figure 22: Some positive braids with disconnected closure.

Notice that, even though for sake of simplicity we only stated Lemma 5.4 for braids with few strands, the
result clearly also applies in case some columns of the brick diagram of a braid on more strands exactly
look as in Figure 22 (or are symmetric to those).

To construct the trees required in Proposition 5.2, we will also need the following lemma from [20].

Lemma 5.5 [20, Lemma 7] Let ˇ be a prime positive braid and v be a vertex of its linking graph. Then
there is an induced path in the linking graph connecting v to any other column of the brick diagram.

We will briefly recall the algorithm for constructing such a path, since this will be used in what follows.
Let us say that we want to connect v to a column to its right. Start at v and move up or down its column
until reaching the closest brick linked to the right (potentially, already v). Now, move to the right and
repeat the procedure. If at the moment of moving to the right there are several possibilities, choose the
brick which is the closest to a brick in the same column linked again to its right. It is easy to see that
those choices prevent the creation of cycles, so that the result will be a path.

Proof of Proposition 5.2 Let ˇ be a prime positive braid on N � 11 strands. By Lemma 5.3 we can
assume that, for every pair of adjacent columns in the brick diagram, the linking graph restricted to those
columns is not a path. Let us furthermore repeatedly apply all the possible braid relations of the form
�i�iC1�i �iC1�i�iC1, until no subword �i�iC1�i is left in ˇ. Our strategy goes as follows: We will
start considering an induced path connecting the leftmost column to the rightmost, constructed with the
previous algorithm, and try to add to it one single vertex, in order to get a tripod tree containing E6.
Since b � 11, the tripod tree will have at least 11 vertices and hence correspond to a subsurface of genus
at least 5. So, let us fix one such path and look at the third column of the brick diagram. If we can add
a brick of this column to the path and get an (induced) tripod tree we are done. There are two reasons
why this might not be possible: either because there are no leftover bricks in the third column or because
every available brick is linked to more than one brick of the path and adding it would generate a cycle.
We will now analyse those cases in detail. By symmetry, we can assume that in the third column our path
arrives from the left to a brick v3, potentially moves down to a brick w3 and then continues to the right.
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∅

∅

∅

w3

v4 v5

:::

:::

:::

x

y

Figure 23: We only show the columns 3–5. The path goes through w3, v4, either x or y and v5.

If there are no leftover bricks in the third column, then by the construction rule of our paths we know
that w3 is the only brick of column 3 linked to the right. We can now apply elementary conjugations
on the right-hand side of the diagram in order to have all the generators �i for i � 4 appear before the
last occurrence of �3, and perform again all the possible braid moves �i�iC1�i �iC1�i�iC1. Those
transformations will not affect the first 3 columns and the part of the path therein. We now get that the
subbraid generated by �3 and �4 is �a

4
�3�

b
4
�c

3
, with c � 1 and a; b � 2 by Lemma 5.3. Let us denote by

v4 the only brick of column 4 linked to w3, and let us attach a path connecting v4 to the rightmost column.

If at least one of the bricks immediately above or below v4 is not linked to the portion of the path in the
fifth column (in particular, if v4 is itself linked to the right), it can safely be added to get a tripod tree.
We directly see that we are left with the case of Figure 23. Notice that, up to modifying the path in the
fourth and fifth columns, we can always choose whether it passes by x or y. Now, if there is a brick x0

above x, either it is not linked to the path in the fifth column, in what case we can directly connect it to x,
or it is, in what case we can change our path to w3! v4! x! x0! fpath in the fifth columng (thus
avoiding v5) and connect y to v4. Similarly, we can assume that there is no brick below y.

Let us now consider the fifth column. Notice that there must be at least one brick immediately above and
one immediately below v5 that are not linked to the fourth column, otherwise we could apply one of the
forbidden braid relations. By applying the same reasoning as before, we conclude that we can always
obtain a tripod tree, unless there are no other bricks in the column. In the latter case, however, the closure
of the braid is not a knot by Lemma 5.4 (compare with the leftmost diagram of Figure 22).

We can now suppose that there are some leftover bricks in the third column, but adding any of them to our
path creates a cycle. The idea is analogous to what we just did: we will try to locally “reconstruct” the
linking graph, successively exclude all the cases where we can find the required tripod and see that in the
end we are left with one of the links from Lemma 5.4. However, the analysis gets much more delicate and
will need lengthy case distinctions to cover the various ways adjacent columns can be connected. First of
all, in the third column there could be bricks left both above and below the path, only above or only below.

I If there are bricks above v3 and below w3, we will be in one of the two cases of Figure 24.
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v3

w3

w2

v4
:::

v3

w3

w2

v4

:::

w0
3

v03

Figure 24: In both cases the path arrives from w2, moves to v3, then goes down to w3 and finally to v4.

v3

w3w2

v4

w0
3

v0
3

v3v4

w0
3

v0
3

w0
3

v0
3

w0
3

  

Figure 25: Diagrams for Case I.A.a; in each case, we drew on the left the original path, on the
right the modified path with in blue the isolated vertex of the tripod.

I.A In the left-hand case of Figure 24, recalling that the path was constructed with the algorithm of
Lemma 5.5, we know that either v3 and w3 are adjacent or they coincide. We will analyse those
cases in great detail, since they serve as example of the kind of reasoning applied also to the rest of
the proof.

I.A.a If v3 and w3 are distinct and adjacent, as in the left of Figure 25, again by the construction
rule of our paths we know that w0

3
is not linked to the right at all and v0

3
is not linked

to the path to the left. Now, if v0
3

is linked to the path to the right above v4, we could
change our path to w2 ! v3 ! v0

3
! fpath in the fourth columng, thus avoiding v4, and

connect w3 to v3 to get a tripod (see centre of Figure 25). Otherwise, we can instead consider
w2! w0

3
! w3! v4! fpathg and connect v0

3
to v4 (right of Figure 25).

I.A.b If v3 D w3, then we know that w2 has to be linked to the first column, otherwise we could
perform one of the forbidden braid relations. We will further distinguish according to how w2

is linked to the first column.
I.A.b.1 Let us suppose first that w2 is linked to a brick v1 below it, as in the left-hand side of

Figure 26. Notice that the brick denoted by w0
2

needs to exist because of the condition on
the possible braid relations. Hence, we can assume that in the first column there are at most
two bricks, both linked withw2, and that the brick immediately beloww0

2
(if any) is linked

with v1, otherwise we could immediately find an appropriate tripod, as shown in Figure 26.

We are therefore left we the diagram on the left-hand side of Figure 27. If there is a
linking between the second and third columns above v3, we could modify our path by
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v1

w2
w0

2

v3

v0
3 v4

w03

v0
3

w03

v0
3

w03

v0
3

w0
3v1

v03

w03

Figure 26: First diagrams for Case I.A.b.1. In the third column, the brick w0
3

is linked to w2 and
may or may not be linked to w0

2
.

∅

∅

v1

w2

w0
2

v3

v03 v4

∅

∅

v1

w2

w0
2

v3

∅

∅

∅

v1

w2

w02

v3

∅

w0
3

b

a?

Figure 27: Further diagrams for Case I.A.b.1. The dashed lines show where the following brick
(if existing) would be. In the third column, there is still a brick w03 below v3 as in Figure 24, which
is linked to w2 and may or may not be linked to w02.

starting from v1 and w2, then moving upwards in the second column until we reach
the first connection with the third column above v3 and finally going down on the third
column until the first connection to the original path in the fourth column (which occurs
at the latest at v0

3
). This will give us a path avoiding v3. We can now safely connect w0

3

to w2 and get a tripod. If not, up to elementary conjugations on the first two columns,
we can suppose that there are no bricks in the second column above v3, as in the central
picture of Figure 27. In this case, we can assume that above w2 there is at most one brick.
Now, if in the first column there are two bricks, again by elementary conjugation we are
back to the case where there is a brick below v1 and we are done. We are hence left with
just one brick in the first column, as in the right-hand side of Figure 27. Notice that in
this case the brick w0

3
is forced to be linked to w0

2
, otherwise the closure of the braid is

not a knot by the second case of Lemma 5.4. This in turn forces the existence of the brick
denoted by b below w0

3
, otherwise we could apply a forbidden braid relation. If there is a

brick a below w0
2
, we can consider v1! a! w0

2
! w0

3
! v3! fpathg and connect b

to w0
3
. On the other hand, if there are no bricks below w0

2
we see that either the closure

of the braid is not a knot, if there is a brick above w2 (third case of Lemma 5.4), or we
can reduce the number of strands with Lemma 5.3.

I.A.b.2 We can now suppose that w2 is linked to a brick v1 above it, but is not linked with any
brick of the first column below it, as in the leftmost image of Figure 28. If there are at
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∅

v1

w2

v3

w0
3

v4

∅

v1

w2

v3

w03

v4

∅

v1

w2

v3

w0
3

v4
∅

a

v0
3

∅

v1

w2

v3

w0
3

v4

a

v03 v0
3a

∅
∅

Figure 28: Diagrams for case I.A.b.2. In the second column, there is at least one brick above w2

but below v1.

least two bricks below w2 we immediately find a tripod. If there is exactly one brick
below w2, we can furthermore assume that v1 is the only brick in the first column. Let
us now consider how v1 is connected with the second column. If it is only linked to
w2, by applying an elementary conjugation we are back Case I.A.b.1, where v1 was
below w2. Notice that the existence of a brick below w2 ensures that the condition about
the possible braid relations is still satisfied after the conjugation. If v1 is linked to another
brick of the second column above w2, called a, and a is below v0

3
, as in the second image

of Figure 28, we immediately see that either we find a suitable tripod or the closure is
not a knot, depending on how many bricks there are in the second column between w2

and a (there is at least one by the condition on braid relations; if it is unique, we fall
in the second case of Lemma 5.4, else we find a tripod). Finally, if a is above v0

3
or

linked to it, as in the two right-hand side images of Figure 28, we know that there is a
brick between a and w2 linked to v3 (potentially, this could be a). We can now consider
v1! a! fsecond columng ! v3! fpathg, thus avoiding w2, and connect w0

3
to v3.

The only case left now is when there are no bricks below w2. Again, if v1 is linked to
another brick a of the second column above w2 the exact same argument as before applies.
If v1 is linked only to w2, this time we cannot simply apply an elementary conjugation to
reduce to a previously treated case. However, if there are no bricks above v1 (resp. below
v1) we could apply Lemma 5.3, whilst if there are bricks in the first column both above
and below v1 it is immediate to conclude that either we find a tripod or the closure is not
a knot, as in the first case of Lemma 5.4.

I.B In the right-hand case of Figure 24, we know that w2 needs to be linked to a brick v1 in the first
column. Again, we will separately consider whether v1 is above or below w2.

I.B.a Suppose first that w2 is linked to a brick v1 above it, as depicted in the left of Figure 29. Note
that the brick denoted by v2 must exist, otherwise we could perform a forbidden braid relation.
By excluding all the cases where one can immediately find a tripod, we are left with at most
two bricks in the first column, both linked to w2, and we know that the brick above v2 (if any)
is linked to v1; see Figure 29.
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v1

w2

v2

:::

v0
3

v3

:::

v0
3

:::

v0
3

:::

v0
3

v1 v0
3

:::

Figure 29: First diagrams for Case I.B.a. The dashed lines show where the brick v0
3

could end.

v1

w2

v2

∅

∅

v01

v1

w2

v2

∅

∅
v3

v3

v1

w2

v2

∅

∅
v3

∅

v03

v00
3

v03

w02?

Figure 30: Additional diagrams for Case I.B.a.

We hence can reduce the study to one of the cases in the left-hand side of Figure 30. If there
are two bricks in the first column, we either have a brick above v2, in which case we can find a
tripod by simply starting our path from v0

1
and adding two bricks above w2, or we can apply an

elementary conjugation to the first column to get a brick below v0
1
, which again immediately

gives a tripod. If in the first column there is just one brick, we know that v2 needs to be
linked to the third column, otherwise the closure is not a knot by Lemma 5.4 (second case).
Thus, we can now suppose that there are no bricks above v2, otherwise we immediately find a
tripod, so we are left with the diagram on the right-hand side of Figure 30. Notice that now by
Lemma 5.3 there needs to be at least one brick below w2, otherwise we can reduce the number
of strands. If none of the bricks below w2 is linked to v3, we see that according to the number
of those bricks we either get a tripod or the closure is not a knot by (a symmetry of) the third
case in Lemma 5.4. Hence we can suppose that there is a brick w0

2
below w2 linked to v3. If

w0
2

is connected to the original path in the third column below v3, we can instead consider
v1! w2! � � � ! w0

2
! fpathg and get a tripod by connecting to w2 the bricks v0

3
and v00

3
. If

not, we can simply take our original path starting from v3 and connect to it w0
2
, v0

3
and v00

3
.

I.B.b Suppose now that w2 is only linked to a brick v1 below it, as in the leftmost image of Figure 31;
note that, as depicted, there must exist one brick immediately below w2 not linked to v1,
otherwise we could perform a braid relation. First, we immediately see that there can be at
most one brick above w2, and if this brick exists then v1 is the only brick of the first column,
otherwise we easily find a tripod. After excluding the additional easy cases shown in Figure 31,
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v0
3

∅

:::

v1

w2
v3

v0
3

v0
3

v0
3

v0
3

∅

∅::: :::

::::::

v3

w2

v1

Figure 31: First diagrams for Case I.B.b.
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v0
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v00
3

∅

:::

v1

w2

w02

v3

v0
3

v00
3

∅

Figure 32: Additional diagrams for Case I.B.b.

we are left with the diagrams of Figure 32: that is, there must exist a brick w0
2

below w2 which
is linked to v3 but above v1.

First, if w0
2

is linked to the path in the third column below v3, we can take v1! w2! � � � !

w0
2
! path and add to it a brick in the third column (which will be at most v00

3
). Otherwise,

if w0
2

is not connected to the path and there is a brick w00
2

below it, we can simply take our
original path from v3 and add to it v0

3
, w0

2
and w00

2
. Finally, let’s assume that there are no bricks

below w0
2
. If there is a brick above w2 we can apply an elementary conjugation to the first

column and get back to the previous case. If not, Lemma 5.3 forces the existence of bricks
above and below v1, in which case either we get a tripod or the closure is not a knot, as in the
first case of Lemma 5.4.

II Let us now consider the case where there is at least one free brick v0
3

above v3, but none below w3.
First of all, if after w3 our path moves to a brick v4 of the fourth column which is below it, we are
basically in the same situation as Case I.B, and the precise same arguments apply. We can hence suppose
that the path moves upwards in the fourth column. We will now treat different cases according to how v0

3

is linked to the neighbouring columns.

II.A If v0
3

is not linked to the right, we know that it needs to be linked to a brick w2 in the second
column, which in turns needs to be linked to a brick v1 in the first column.

II.A.a Let us suppose first that v1 is above w2, as in the leftmost image of Figure 33. Note that we are
in a situation similar to Case I.B.a, with the only difference that now the bricks above v0

3
could
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v1

∅

v1

w2 v3
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∅

∅

∅

w3

:::

v4

Figure 33: Diagrams for Case II.A.

v1
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v2

∅

∅

v3

∅

v03

v003

w3

v4

v1

w2

v2

∅

∅
v3

∅

v03

v003

v4

∅

v0
2
?

Figure 34: Diagrams for Case II.B.a.

potentially be linked to the path in the fourth column; in particular, all the arguments therein
still apply to the current situation, as long as they do not involve the bricks above v0

3
. Hence,

by Case I.B.a, we can suppose that there is only one brick in the first column, as in the central
image of Figure 33. Furthermore, if the brick v00

3
is not linked to its right, all the arguments

from Case I.B.a still apply. We are then left with the rightmost diagram of Figure 33. Now, if
v00

3
is not linked to the path above v4 it can directly be added as additional vertex, otherwise we

can instead consider the path v1! w2! v0
3
! v00

3
! fpathg and add a brick to this new path

in the fourth column.
II.A.b If v1 is below w2, we are in a situation analogous to Case I.B.b, and in fact all the arguments

therein still apply to the current setting, as we never made use of the bricks of the third column
above v0

3
.

II.B If v0
3

is linked to the right (to v4) and to the left (to a brick w2), by the construction rules of the
path we know that either v3 and w3 are adjacent or they coincide, and by the assumption on the
braid relations w2 is linked to a brick v1 in the first column.

II.B.a If v1 is above w2, after repeating the arguments of Case I.B.a we can suppose that there is only
one brick in the first column, so we are left with the two diagrams of Figure 34.
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∅

v1

w2

w0
2
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:::

v1

w2
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2

v3

v0
3

w3

∅

v4

v4

w00
2

w002

Figure 35: Diagrams for Case II.B.b.

II.B.a.1 Let us first consider the case where v3 and w3 are distinct and adjacent, as on the
left of Figure 34. If v0

3
is not linked to the path above v4, we can simply consider

v1! w2! v0
3
! v4! fpathg and add v00

3
(notice that this would also work if v3 and

w3 did coincide). If v0
3

is linked to the path in the fourth column above v4, take instead
v2! v0

3
! fpathg and add v3 and w3.

II.B.a.2 Suppose now that v3 and w3 coincide, as on the right of Figure 34. In this case, notice
that no brick below w2 can be linked to v3 (otherwise we could perform a forbidden braid
relation), and that therefore if there are at least two bricks below w2 we immediately get a
tripod. It follows that there needs to be a brick v0

2
above v2, otherwise either we can apply

Lemma 5.3 (if there are no bricks below w2) or the closure is not a knot, as in the third
case of Lemma 5.4 (if there is exactly one brick below w2). Now, if v0

3
is not linked to the

path in the fourth column above v4, we can find the same tripod as in Case II.B.a.1. If v0
3

is
linked to the path above v4, we can instead consider v0

2
! v2! v0

3
!fpathg and add v3.

II.B.b Finally, if v1 is below w2, after repeating the arguments of Case I.B.b we are left with one of
the diagrams of Figure 35. Note that the case where v3 and w3 coincide is excluded by the
condition on the braid relations. Furthermore, again by what was done in Case I.B.b, we know
that we can assume the existence of a brick w00

2
below w0

2
. Hence, if v0

3
is not connected to the

path above v4 we can take v1! w2! v0
3
! v4! fpathg and add w3, if v0

3
is connected to

the path above v4 we can instead take w00
2
! w0

2
! v3! v0

3
! fpathg and add w3.

II.C If v0
3

is not linked to the left, then it must be linked to the right to v4. It follows that either v3 and
w3 are adjacent or they coincide, as in Figure 36. In both cases, if v0

3
is connected to the path

above v4, we can simply let our path pass by v0
3

instead of w3 (thus skipping v4) and add a brick
in the fourth column (which will be at most v0

4
).

Suppose now that v0
3

is not connected to the path above v4 and v3,w3 are distinct. If w3 is linked
to the left we are in the situation at the left-hand side of Figure 37 and we directly find a tripod by
considering v1! w2! w3! v4! fpathg and adding v0

3
. If not, we are in the situation at the

right-hand side of Figure 37. Note that this is analogous to Figure 23, and the same arguments
discussed there apply to the current setting.
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:::
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v0
3

v4

v0
4

:::

∅ ∅

Figure 36: Diagrams for Case II.C; v3 is linked to the second column, but v0
3

is not.

v3

v03

w3

v4

v04

:::

w2

∅

v3

v03

w3

v4

v0
4

:::

∅

Figure 37: Diagrams for Case II.C. On the left, we know that w2 needs to be linked to some brick
v1 in the first column.

We are left with the case where v3 and w3 coincide and v0
3

is not connected to the path above v4.
We will now consider how the third and second column are connected.

II.C.a Let us suppose first that there is a brick v2 in the second column below v3. We know that v2 needs
to be linked to a brick in the first column, otherwise we could perform a forbidden braid relation.

II.C.a.1 If there is a brick v1 in the first column above v2, we are in one of the situations in the left of
Figure 38. In both cases, we can assume that v1 is the only brick of the first column linked
to v2, otherwise we find a tripod after elementary conjugation, as shown in the right of the
figure. Moreover, in the leftmost case we now directly see that either we find a tripod (if
there is at least another brick in the first column) or the closure is not a knot by Lemma 5.4.

Let us now focus on the second image of Figure 38. First of all, using Lemma 5.3 we
deduce that there must be a brick in the second column above v1, as shown in the left
of Figure 39. Note that we only drew the “extremal” cases; in all the others (having
either more bricks below v2 or more bricks in the first column), one can easily find a
tripod. By excluding additional direct cases, we end up with the diagram on the right-hand
side of Figure 39: indeed, we can assume that there is no brick below v2, otherwise
by elementary conjugations we would get two bricks above v00

2
and would find a tripod

by taking fsecond columng ! � � � ! v0
2
! v3 ! fpathg and adding v1. With similar
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Figure 38: Diagrams for Case II.C.a.1, when v3 and w3 coincide and there is a brick v2 below v3.
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∅
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∅
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:::

Figure 39: Additional diagrams for Case II.C.a.1.

arguments we can conclude there are no bricks in the second column above v00
2

and v1

is the only brick of the first column. Finally, we now see that there needs to be a brick
in the third column above v00

2
, otherwise the closure is not a knot by the second case of

Lemma 5.4. If there are at least two bricks of the third column above v0
2
, we get a tripod

by taking fthird columng ! � � � ! v0
3
! v4! fpathg and adding v0

2
and v2. Otherwise,

we can consider v1 ! v00
2
! � � � ! v0

2
! v3 ! fpathg and add the other brick in the

third column linked to v0
2
, which now we know will not be linked to any other brick

of the second column (it is also useful to remember that, as stated at the beginning of
Case II.C.a, v0

3
, and hence all the bricks of the third column above it, is not connected to

the path in the fourth column above v4).
II.C.a.2 If there are no bricks in the first column above v2, but v2 is linked to a brick v1 below it,

as in the left of Figure 40, we can directly conclude that, depending on the number of
bricks in the first column, either the closure is not a knot by Lemma 5.4 or we find an
appropriate tripod.

II.C.b Suppose now that there are no bricks in the second column below v3, which is therefore only
linked to a brick v2 above it.

II.C.b.1 If in the second column there are bricks both above and below v2, noticing that if there
are at least four bricks in the second column we are done, we are only left with the cases
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Figure 40: Diagrams for Case II.C.a.2.
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Figure 41: Diagrams for Case II.C.b.1, when v3 and w3 coincide and there is no brick in the
second column below v3.
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Figure 42: Diagrams for Case II.C.b.2.

of Figure 41. For the leftmost diagram, if there is only one brick in the first column the
result is not a knot by Lemma 5.4, otherwise up to elementary conjugation we get a tripod.
In the two central diagrams we directly find a tripod. In the rightmost diagram, if v0

2
is

not linked to the third column the closure is not a knot by the first case of Lemma 5.4,
otherwise in the third column there is in particular a brick v00

3
linked to v2 from above,

and we get a tripod by taking v1! v0
2
! v2! v3! fpathg and adding v00

3
(again, we

use that v0
3

is not linked to the path above v4, hence v00
3

is also not).
II.C.b.2 If in the second column there are only bricks below v2, by minimality of the number of

strands there must be a brick v00
3

in the third column above v2. If v2 is not linked to the
first column, as in the left of Figure 42, we can simply take our original path starting from
the first column and add to it v00

3
. If v2 is linked to the left, notice that by the condition on
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Figure 43: Diagrams for Case II.C.b.3.

v3
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w0
3

w2
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w2

v3

w03
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:::
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Figure 44: The two main possibilities for Case III.A.

braid relations it can only be linked to a brick v1 from below; in Figure 42 we show that
we always get a tripod or a link with at least two components.

II.C.b.3 Finally, if in the second column there are only bricks above v2, let us consider v0
2

the
first brick of the second column linked to a brick v1 of the first column (starting from
v2 upwards, potentially v0

2
D v2). If there is still a brick v00

2
above it, up to elementary

conjugation on the first column we can assume that v1 is above v0
2
, as in the left of

Figure 43. We now directly see that we can suppose there is only one brick in the first
column and that according to whether v00

2
is linked to its right or not, we either get a

tripod or a link with more than one component by Lemma 5.4. If there are no more bricks
above v0

2
, we are left with the diagram at the right-hand side of Figure 43. By Lemma 5.3,

we know that there must be bricks above and below v1 and we conclude with an usual
argument, according to the number of those bricks.

III We finally have to treat the case where there is a free brick w0
3

below w3, but no brick above v3.
Once more, we distinguish according to how w0

3
is connected to the path.

III.A Let us first suppose that w0
3

is linked to a brick w2 of the original path in the second column (which,
by construction, will also be linked to v3). Then either v3 and w3 are adjacent or they coincide, as
in Figure 44.
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Figure 45: First diagrams for Case III.A.a, when w0
3

is linked to the second column from below.
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∅

v3

∅

Figure 46: Final diagrams for Case III.A.a.

III.A.a If v3 and w3 are distinct, by construction we furthermore know that v3 and w0
3

are not linked
to any brick of the fourth column. If v3 is linked to a brick v2 of the second column above w2,
we know that in turns v2 needs to be linked to the first column. In this case, we could simply
connect the first column to v3 via v2 (thus skipping w2), continue with our original path and
add to it w0

3
to get a tripod. Similarly, suppose that w0

3
is linked to some brick w0

2
in the second

column below w2. If there is a connection between the first and second columns below w2, the
previous argument still applies: we can connect w0

3
to the first column bypassing w2, continue

with our original path from w3 and connect v3 as isolated leaf of the tripod. Otherwise, all the
bricks in the second column below w2 are “free” and can be added to our path. In particular, if
there are at least two of them we are done. Moreover, as shown in the left of Figure 45, we
also directly find a tripod if there are at least two bricks above w2 or if w2 is not connected to
the first column. We are then now left with the rightmost diagram of Figure 45. Here it is clear
that if there are at least two bricks in the first column we find a tripod (potentially after one
elementary conjugation), otherwise Lemma 5.3 forces the existence of a brick above w2, in
which case the closure is not a knot by Lemma 5.4.
We can therefore now suppose that there is also no brick of the second column below w0

3
, as

depicted in the left of Figure 46. If in the second column there are bricks both above and below
w2, we are basically in the situation of Case II.C.b.1 (with the appropriate changes in the third
column) and the same arguments apply. If there are only bricks above w2, considering v0

2
the
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Figure 47: First diagrams for Case III.A.b.1.
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Figure 48: Final diagrams for Case III.A.b.1. Recall that there is no brick in the third column above v3.
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Figure 49: First diagrams for Case III.A.b.2.

first brick of the second column linked to a brick v1 of the first column, we get a diagram as in
the right of Figure 46. Note that this is analogous to Case II.C.b.3 and we conclude similarly.
The case where there are only bricks below w2 is symmetric.

III.A.b If v3 and w3 coincide, as in the right-hand side of Figure 44, we know that w2 needs to be
linked to a brick v1 in the first column.

III.A.b.1 If v1 is abovew2, as in the left of Figure 47, we are in a situation very similar to Case I.B.a.
First, after removing all the cases where one can directly find a tripod, we can suppose
that there are at most two bricks in the first column, both linked to w2, and we know that
the brick immediately above v2 (if any) is linked to v1. We are then left with diagrams as
in Figure 48. In the right-hand side we directly see that the closure is not a knot, while
the left-hand side can be solved as in Case I.B.a (compare with Figure 30).

III.A.b.2 Ifw2 is not linked to any brick in the first column from above, as in the left of Figure 49, af-
ter removing some easy cases shown in Figure 49, we can suppose that there is at most one
brick in the first column, and we are left with a diagram as in the left-hand side of Figure 50.
Note that this is similar to Case I.A.b.1; compare with the rightmost diagram of Figure 27.
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Figure 50: Additional diagrams for Case III.A.b.2.

v3

w3

w2

v4

:::

w0
3

∅ v1 v2

v3

w3

w2

v4

:::

w0
3

∅

Figure 51: First diagrams for Case III.B.a.

Now, if b is not linked to the path in the fourth column, as was the case in Case I.A.b.1,
or the brick denoted by a does not exist, the same argument discussed therein still
works. If b is linked to the path in the fourth column from below, one can consider
v1! a! w0

2
! w0

3
! b! fpathg and add v3 to get a tripod. Similarly if w0

3
is linked

to the path in the fourth column from below. Finally, if b is linked to the path in the
fourth column from above but w0

3
is not, we are in the case drawn in the right-hand side

of Figure 50. If in the third column there are no bricks below a, one can simply perform
an elementary conjugation on the second column to get a brick v2 above w2, take the
original path starting from v3 and add to it w0

3
!w0

2
and v2 to obtain a tripod. Finally, if

in the third column there is a brick below a, in particular w0
2

is linked to a brick b0 of the
third column below b. One can hence take v1! a!w0

2
! b0!� � �! b! v4!fpathg

(or potentially skipping w0
2

if b0 is also linked to a) and connect v3 to v4.

III.B We now suppose that w0
3

is not linked to the original path in the second column (and therefore has
to be linked to the path in the fourth column). By construction, we know that v3 is linked to some
brick in the second column.

III.B.a Assume first that v3 is linked to a brick w2 above it, as in the left of Figure 51. Note that the
situation is similar to the one analysed in Case I.B, and many of the arguments discussed therein
will apply to the current case. First of all, we know that w2 will be linked to a brick of the first
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Figure 52: Diagrams for Case III.B.a.
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Figure 53: Additional diagrams for Case III.B.a.

column. If it is linked to a brick v1 above it, as in the right of Figure 51, we conclude directly as in
Case I.B.a (compare also with the left diagram of Figure 47 and the discussion of Case III.A.b.1).

We can now assume that w2 is only linked to a brick v1 below it, as in the left of Figure 52. By
Case I.B.b, we are only left with the two diagrams in the centre of Figure 52, and we furthermore
can assume that the brick w0

2
is not linked to the original path in the third column below v3 (so

no other brick of the second column below w0
2

is) and that, as drawn, there is at least one brick
w00

2
in the second column below v1 (compare with Figure 32 and the discussion preceding it).

After removing all the cases where one can directly find a tripod, as shown in Figure 53, we
are left with the rightmost diagram of Figure 52.
But now we observe that there needs to be a brick in the third column below w00

2
, otherwise the

closure is not a knot by Lemma 5.4. In particular, w0
2

is linked to a brick of the third column
below v3. Recalling that w0

2
is not linked to the original path in the third column below v3, it

follows that either w0
2

is linked to w0
3

or to some brick below it (in the notation of Figure 51).
III.B.a.1 Let us first assume that w0

2
is linked to w0

3
, as in Figure 54. Notice that in that case

by construction v3 is not linked to the path in the fourth column. If w0
3

is only linked
to the second column in w0

2
, as in the left of Figure 54, we can find can simply take

v1 ! w00
2
! � � � ! w0

2
! w00

3
! fpath in the fourth columng and connect v3 to w0

2
.

Otherwise, we know that there exists at least one brick in the third column below w0
3
, as

in the right of Figure 54. Consider now how w0
3

is connected to the path in the fourth
column: if it is only connected to v4, all the bricks of the third column below w0

3
are free

to use and we can take w2! w0
2
! w0

3
! v4! fpathg and connect the brick below w0

3

as leaf of the tripod; if w0
3

is connected to the path in the fourth column from below, via a
brick w4, take instead v1!w00

2
! � � � !w0

3
!w00

4
! fpathg and connect w3 as a leaf.
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Figure 54: Diagrams for Case III.B.a.1.
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Figure 55: Diagrams for Case III.B.a.2.

v3

w2

:::

w0
3

v3

w2
w0

3
w3

v4

v4

:::

∅∅
∅∅

v0
4

Figure 56: Diagrams for Case III.B.b.

III.B.a.2 If w0
2

is linked to a brick w00
3

below w0
3
, we have one of the diagrams of Figure 55. If v3

and w3 are distinct, as in the left of Figure 55, we recognize the diagram of Figure 23,
and the argument discussed there applies to the current setting. If v3 and w3 coincide, we
have the diagram on the right of Figure 55. Once again, we consider how w0

3
is connected

to the path in the fourth column. If w0
3

is linked to the path in the fourth column under v4,
we can simply take v1!w2! v3!w0

3
!fpathg and add a brick of the fourth column

(which will be at most v0
4
). Finally, if w0

3
is not linked to the path in the fourth column

below v4, then all the bricks in the third column under w0
3

also are not, and can hence be
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freely used. If there is still at least one brick in the third column under w00
3

, we can take
w2! w0

2
! w00

3
! � � � ! w0

3
! v4! fpathg and add a brick below w00

3
to get a tripod.

If w00
3

is the last brick of the third column, in particular it is not linked to any of the bricks
below w0

2
, so we can take v1! w00

2
! � � � ! w0

2
! v3! fpathg and connect w00

3
to w0

2
.

III.B.b We can now suppose that v3 is only linked to a brick w2 of the second column below it. In
particular, our original path was passing by w2, which is therefore not linked to w0

3
. We now

get the diagrams of Figure 56. In the left-hand side, where v3 and w3 are distinct, we end up
with a diagram similar to Figure 23 and the exact same arguments apply. Suppose now that v3

and w3 coincide, as in the right-hand side of Figure 56. If w0
3

is linked to the path in the fourth
column under v4, we can simply take w2! v3! w0

3
! fpathg and add a brick of the fourth

column (which will be at most v0
4
). Otherwise, we are in a situation perfectly symmetric to

Case II.C.b, in particular as in Figures 41, 42 and 43, and again the same arguments apply.

We still have to consider the braids of intermediate positive braid index. One could probably study
those by hand, in a similar way to Propositions 5.1 and 5.2, but the computations would quickly get too
complicated. Instead, we will treat them by directly applying Proposition 5.1, at the cost of losing some
low genus cases.

Proposition 5.6 Let ˇ be a prime positive braid on 4�N � 10 strands whose closure is a knot not of
type An. Suppose that ˇ has genus g.ˇ/ > 4.N � 1/. Then there exists a family of curves on †ˇ that is
an E-arboreal spanning configuration on a subsurface of genus at least 5.

The curves appearing in Proposition 5.6 will not necessarily be vertices of the intersection graph, but we
might need to do some “change of basis”, ie modify some of the curves by applying appropriate Dehn
twists. This will change the intersection pattern of the curves in question, but not the subsurface they
span nor the subgroup that the corresponding Dehn twists generate in Mod.†ˇ/.

Proof Let ˇ be such a positive braid. Since g.ˇ/ > 4.N � 1/, there exists 1� i �N � 2 such that the
subword induced by all the generators �i and �iC1 has first Betti number at least 12, when seen as a
3-braid. Let us denote this subword by ˇi;iC1. By Proposition 5.1, either ˇi;iC1 is positively isotopic to a
3-braid ˇ0

i;iC1
containing the required spanning configuration, or it is of type An or Dn (the other finitely

many exceptions have first Betti number 11).

In the first case, the required positive braid isotopy might not be realizable when ˇi;iC1 is seen as
a subword of ˇ. However, since at the level of curves the effect of braid relations and elementary
conjugations is obtained by Dehn twists, we can still find a family of curves in †ˇi;iC1

� †ˇ whose
intersection pattern is equal to the linking graph of ˇ0

i;iC1
, and the result follows.

If ˇi;iC1 is of type An, since there are only three strands one can directly verify that up to elementary
conjugation its linking graph is a path. We can therefore apply Lemma 5.3 to ˇ and reduce it to a braid
with less strands.
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Figure 57: The columns i; i C 1 and i C 2 of a braid ˇ such that ˇi;iC1 D �
n�3
i �2

iC1
�i�

2
iC1

.

If ˇi;iC1 is of type Dn, up to elementary conjugation and symmetry it is of one of three forms:
�n�3

i �2
iC1

�i�
2
iC1

, �n�2
i �iC1�

2
i �iC1 or �a

i �iC1�i�
b
iC1

�i�iC1 with aC b D n� 2. This follows from
a direct computation, or can be seen by applying the classification of checkerboard graphs of type Dn

contained in Lucas Fernández Vilanova’s PhD thesis [12]. In all the cases one can see that, if the closure
is connected, we can always add a brick in a neighbouring column and find the required subtree. We
will do it for ˇi;iC1 D �

n�3
i �2

iC1
�i�

2
iC1

, the others are analogous. In this case, we know that i <N � 2,
otherwise the closure is not a knot by Lemma 5.4. Since ˇ is prime, its intersection graph is connected, so
at least one of the three bricks in the .iC1/th column needs to be linked to its right. After removing the
cases where one directly finds an appropriate subtree, we are left with one of the three cases of Figure 57.
The first one is excluded since the closure is not a knot; in the second one we can find a subtree after
braid relation, as shown in the figure; for the third one, up to elementary conjugation we can suppose that
there are no generators �iC2 above the last occurrence of �iC1. Now we see that if there are at least two
bricks in the .iC2/th column we are done, otherwise either the closure is not a knot (if iC 2DN � 1) or
we can still add one brick further to the right and again find the required subtree.

Everything is now ready to prove our main theorem.

Proof of Theorem 1.2 Let ˇ be a prime positive braid not of type An and whose closure is a knot. We
want to prove that MG.ˇ/DMod.†ˇ; �ˇ/ by using Proposition 4.7. Let V Df1; : : : ; 2gg be the family
of standard curves on †ˇ corresponding to the vertices of the linking graph of ˇ. In Propositions 5.1, 5.2
and 5.6 we have constructed the starting E-arboreal spanning configuration of genus h � 5 for all but
finitely many such prime positive braids. In general, this is obtained by taking a subfamily of curves
V 0

0
� V and potentially modifying some of them by applying Dehn twists around other curves of V 0

0
,

obtaining a family V0 of curves in †ˇ. In particular, the subsurface spanned by V0 is the same as the
subsurface spanned by V 0

0
. It is now clear that the remaining curves of V nV 0

0
can be attached in an order

that respects the definition of h-assemblage, so that

Mod.†ˇ; �ˇ/D hTc j c 2 V0[ .V nV 00/i D hTc j c 2 V i DMG.ˇ/:

Remark 5.7 In fact, our proof of Theorem 1.2 also applies to many links. Indeed, the requirement of
the closure of ˇ being a knot was uniquely used to exclude links as in Lemma 5.4: all these have one
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unknotted component whose total linking number with the other components is precisely 2. In particular,
the proof works without problems for links whose components are all knotted or whose pairwise linking
numbers are all big enough.

Interestingly, this is essentially always the case in the special class of links of singularities, if we exclude
the special families An and Dn. In what follows, the reader can refer to [7] for the background material on
plane curve singularities. If f1 and f2 are irreducible singularities with associated knots K1 and K2, then
the link of f D f1f2 is L.f /DK1[K2, and the linking number lk.K1;K2/ equals the intersection
multiplicity of the two branches. It follows that in the link of a singularity all linking numbers are strictly
positive. Now, let f be a singularity whose link has a component which is unknotted and has total linking
number with the other components equal to 2, as in Lemma 5.4. By the previous discussion, f has at
most three branches. Suppose first that f D f1f2 has only two branches, and L.f /DK1[K2. Since
one component is the unknot and the multiplicity of a singularity equals the braid index of the associated
link by [28], we can assume that f2 D yCx Qf .x;y/. Let now m be the multiplicity and y D g.x1=m/

the Puiseux series of f1; we obtain 2D lk.K1;K2/D ord
�
g.t/C tm Qf .tm;g.t//

�
�m, from which we

conclude that K1 has braid index at most 2. Finally, since the link of a reducible singularity is determined
by the components and the pairwise linking numbers, and all the possible pairs of a positive 2-braid and
an unknot with linking number 2 are realized by singularities of type An or Dn, it follows that f belongs
to one of those two families. Similarly, if f has three branches one can conclude that all the components
of L.f / are unknotted, so that the link is determined by the triple of linking numbers (where two of the
linking numbers are now equal to 1). Since all such triples are realized by singularities of type Dn, f
must belong to this family. Therefore, up to finitely many low genus exceptions, we completely recover
the main result of [24], saying that the geometric monodromy group of a singularity not of type An and
Dn is a framed mapping class group.

Remark 5.8 In contrast to the case of singularities, it does not seem possible to extend the proof to
all positive braid links. Even excluding the two exceptional families An and Dn, there are other infinite
families, both with bounded and unbounded braid index, that most likely do not contain an E6. For
example, we could not find such subtrees for the braids ˇn D �1�

2
2
�1�

n�4
2

�3�
2
2
�3 2 BC

4
, whose linking

graph is the extended Dynkin diagram zDn, nor for ˇN D .�1 � � � �N �N � � � �1/
2 2 BC

NC1
. We do not

know whether the corresponding monodromy groups are equal to the whole framed mapping class group.
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Highly twisted diagrams
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We prove that knots and links that have a 3-highly twisted irreducible diagram with more than two twist
regions are hyperbolic. Furthermore, this result is sharp. The result is obtained using combinatorial
techniques, using a new approach involving the Euler characteristic. By using geometric techniques, Futer
and Purcell proved hyperbolicity under the assumption that the diagram is 6-highly twisted.

57K10, 57K32, 57K99

1 Introduction

The prevailing feeling among low dimensional topologists is that “complicated” links L in S3 are
hyperbolic, ie the open manifold S3 X L can be endowed with a complete, finite-volume, hyperbolic
metric of sectional curvature �1. Being hyperbolic is a property of the manifold with far reaching
consequences. However, proving that a specific link L is hyperbolic turns out to be nontrivial. This is
especially true if the link L is “heavy duty”, ie it has a very large crossing number. See for example
Minsky and Moriah’s work [12].

Our main theorem is:

Theorem A Let D.L/ be a connected , prime , twist-reduced , 3-highly twisted diagram of a link L with
at least two twist regions. Then L is hyperbolic.

For the definitions see Section 2. Intuitively, being 3-highly twisted means that any crossing of the
diagram is part of a sequence of at least 3 crossings of the same strings. For example, the diagram of the
link in Figure 2 is 3-highly twisted. Clearly not all links have a diagram that satisfies the conditions of
the theorem. However the subset of links that do is a “large” subset in a sense that can be made precise,
see the discussion in [10] by Lustig and Moriah.

The assumption of being 3-highly twisted makes Theorem A sharp since there are nonhyperbolic links
with 2-highly twisted link diagrams, as Figure 1 shows.

The question of when can one decide if the complement of a link in S3 is a hyperbolic manifold from a
projection diagram has been of interest for a long time. The first result in this direction is by Hatcher and

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Figure 1: A nonhyperbolic link with a 2-highly twisted diagram.

Thurston [7] who proved that complements of 2-bridge knots which have at least two twist regions (they
are not torus knots or links) are hyperbolic. The second is Menasco’s result [11] that a nonsplit prime
alternating link which is not a torus link is hyperbolic. Later Futer and Purcell proved in [4], among
other results, that every link with a connected, prime, twist-reduced, 6-highly twisted diagram which has
at least two twist regions is hyperbolic. Two other relevant results are by Giambrone [5] and by Futer,
Kalfagianni and Purcell [3], in which the condition that the diagram is 6-highly twisted is replaced by
conditions related to its “semiadequacy” (as defined there).

Theorem A, which is proved using combinatorial techniques, weakens the conditions imposed by Futer
and Purcell [4] on D.L/ from 6-highly twisted to 3-highly twisted. Their result is obtained by applying
geometric bounds, using Lackenby’s 6-surgery theorem, see [8], to the corresponding fully augmented
links. The fact that combinatorial techniques can be used to improve on geometric bounds is not surprising
and was repeatedly demonstrated in the study of three manifolds, for example in work by Culler, Gordon,
Luecke and Shalen [2], Gordon and Luecke [6] and Li [9].

We believe that the methods used in this paper are interesting in themselves, and could be used in studying
other problems. For example, as a corollary to Theorem A we obtain a simple method to construct
essential surfaces in complements of links with highly twisted diagrams. This is stated in Section 7 as
Theorem B.

Although there are nonhyperbolic links with 2-highly twisted diagrams, we expect that the 3-highly
twisted condition can be weakened to generalize Theorem A to a larger class of links which includes
alternating links (cf [11]).

Outline of the proof

By Thurston [14], it suffices to show that the link complement has incompressible boundary, and is
irreducible, atoroidal and unannular. These can be formulated as the nonexistence of an essential surface
S of nonnegative Euler characteristic. Given an essential surface S in the link complement, consider its
curves of intersection C with the projection plane P . To each curve c 2 C we assign its “contribution”
to the Euler characteristic �C.c/ and show that 0� �.S/D

P
c2C �C.c/ (see Lemma 4.2). In general

there might be curves c 2 C with �C.c/ > 0. Given such a curve, the 3-highly twisted condition
forces the existence of neighboring curves with negative �C. This allows us to redistribute the Euler
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characteristic among the curves by defining for each c 2 C a modified Euler characteristic �0.c/ so that
0��.S/D

P
c2C �

0.c/ and �0.c/� 0 (see Lemmas 5.15 and 5.16). This shows that �.S/� 0. Moreover,
we get that �0.c/ D 0 for all c 2 C. A case by case analysis then shows that all curves must be of a
particular form (see Definition 6.3 and Propositions 6.7 and 6.13) from which it follows that S must be a
boundary parallel torus.
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2 Preliminaries

2.1 Bubbles and twist regions

Let L� S3 be a link. The projection of a link L in the isotopy class L onto a plane P together with the
crossing data is a link diagram of L and is denoted by D.L/. Let " be sufficiently small so that the closed
"-balls around the crossings of D.L/ are disjoint. Let B1; : : : ;Br be "-balls around the r crossings of the
diagram. The boundaries Bi D @Bi , 1� i � r , are the bubbles of the diagram. The link L is isotopic to a
link L which is embedded in P [

S
i Bi . Note that P divides each bubble into two hemispheres denoted

by BCi and B�i . Denote the two 2-spheres

P˙ D

�
P X

[
i

Bi

�
[

[
i

B˙i :

Each of PC;P� bounds a 3-ball H˙ in S3 XL.

A twist region T is a disk in P which contains a maximal (with respect to inclusion) chain of bigons in
D.L/ describing a trivial integer 2-tangle. See Figure 2 for an example of a diagram with twist regions.
We will assume that a twist region contains the projection of the bubbles around the crossings in T . We

Figure 2: A 3-highly twisted link diagram. The twist regions are the dashed rectangles.

Algebraic & Geometric Topology, Volume 25 (2025)



210 Nir Lazarovich, Yoav Moriah and Tali Pinsky

will often abuse terminology, and use twist regions to refer to the regions in P˙ which project to twist
regions. Correspondingly, we treat the bubbles around the crossings of T as being contained in T . A
twist box is the tangle .T ; t/ where T is the product T � Œ�2"; 2"� for a twist region T , and t is the tangle
T \L. The diagram D.L/ uniquely decomposes into disjoint twist regions.

Definition 2.1 Let D.L/ be a link diagram.

(1) The diagram D.L/ is prime if any simple closed curve in P intersecting D.L/ transversely in two
points bounds a subdiagram with no crossings.

(2) A twist-reduction subdiagram is a subdiagram of D.L/ enclosed by a simple closed curve  in P

which intersects D.L/ transversely in four points composed of two pairs each of which is adjacent to a
crossing of D.L/ but which is not a chain of bigons describing an integer 2-tangle. The diagram D.L/ is
twist-reduced if it contains no twist-reduction subdiagram.

(3) For k 2N, the diagram is k-highly twisted if every twist region has at least k crossings.

Note that every diagram can be made twist-reduced by performing flypes on twist-reduction subdiagrams.

Definition 2.2 A twist region T intersects the link diagram in four points, dividing its boundary @T into
four segments. If the twist region has at least two crossings, then a pair of opposite segments of @T can
be called the length edge or width edge of T as in

length

width

3 Surfaces in link complements

3.1 Normal position

We are interested in studying compact surfaces S properly embedded in S3 XN .L/. If @S ¤ ∅ we
extend S by shrinking the neighborhood N .L/ radially. This determines a map � W .S; @S/! .S3;L/,
whose image we denote by S as well, which is an embedding on the interior of S .

Lemma 3.1 Let S � S3 XN .L/ be a proper surface with no meridional boundary components , and let
.T ; t/ be a twist box. Then , up to isotopy , S \T is a disjoint union of disks D � .T ; t/ of one of the
following three types:

Algebraic & Geometric Topology, Volume 25 (2025)



Highly twisted diagrams 211

Type 0 D separates the two strings of t .

Type 1 @D decomposes as the union of two arcs ˛[ˇ such that ˛ � t and ˇ � @T .

Type 2 @D decomposes as the union of four arcs ˛1[ˇ1[˛2[ˇ2 where ˛i � ti and ˇi � @T .

Moreover , the isotopy decreases the number of bubbles that S meets and we may further assume that
�j@L W @S !L is a covering map.

Proof If no component of @S is a meridian, we may assume that up to isotopy �j@L W @S ! L is a
covering map.

The twist box .T ; t/ is a trivial 2-tangle. The complement T XN .t/ can be identified with U � Œ0; 1�,
where U is a twice holed disk. Let E be the disk ˛ � Œ0; 1�, where ˛ is the simple arc connecting the
two holes of U . Up to a small isotopy, we may assume that S intersects E transversely. Since the
bubbles in T are in some neighborhood of E, we may assume that S meets a bubble if it does so in E.
The intersection S \E comprises of simple closed curves and arcs. All curves and arcs except those
connecting ˛� f0g to ˛� f1g can be eliminated by an isotopy pushing S off T . This isotopy decreases
the number of bubbles S meets. The number of bubbles the resulting surface meets equals the number of
such arcs times the number of crossings in the corresponding twist region.

Up to isotopy, we may also assume that S intersects U �
˚

1
2

	
transversely. Hence, S \

�
U �

˚
1
2

	�
is a

collection of simple closed curves and arcs. By pushing S outwards towards the boundary of the disk U ,
one can assume that each component of S \

�
U �

˚
1
2

	�
is of the following form:

(0) An arc connecting the boundary of the disk U to itself separating the holes, and intersecting ˛
once.

(1) An arc connecting a hole to the boundary of the disk and not intersecting ˛.

(2) An arc connecting the two holes and not intersecting ˛.

Thus, S \
�
U �

�
1
2
� "; 1

2
C "

��
is a collection of disks of the form ˛�

�
1
2
� "; 1

2
C "

�
, where ˛ is an arc

of type (0), (1) or (2) as stated. By an ambient isotopy, we can stretch the slab U �
�

1
2
� "; 1

2
C "

�
to

U � Œ0; 1�D T . The number of bubbles the resulting surface meets equals the number of arcs of type (0)
times the number of twist in the twist region. The arcs of type (0) are in one-to-one correspondence with
the arcs of S \E. Note that the fact that � W @S !L is a covering map was not affected by the isotopies
above.

Definition 3.2 A surface S � S3XN .L/ is in normal position if it intersects the planes P˙ transversely
and the map @S !L that is obtained by shrinking N .L/ radially is a covering map onto its image. In
particular, S has no meridional boundary components.

Lemma 3.3 Let S � S3 XN .L/ be a surface in normal position , and let .T ; t/ be a twist box. Then , up
to isotopy, each component of the intersection S \T \P˙ looks as in Figure 3.
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Type 0 Type 1 Type 2

S \P�

S \PC

Figure 3: The possible three types of intersection of S with a twist box.

3.2 Curves of intersection

Let S � S3 XN .L/ be a surface in normal position. We would like to study the surface S through its
curves of intersection with the planes P˙.

Let T be the union of all twist boxes of L. Consider the collection of disks D of Type 2 which occur as
intersections S \ T . We may assume that @D � P [L, and that the subsurface yS D S XD is transversal
to P˙.

Recall the map � W .S; @S/! .S3;L/. Define CCD @��1. yS\HC/ and C�D @��1. yS\H�/. Now define
C D CC[ C�. As each of P˙ is a 2-sphere, yS \H˙ is a collection of subsurfaces of yS , the boundary
of which are simple closed curves c � S . For c 2 CC, denote by Sc the component of yS \HC so that
c � @Sc , and respectively for c 2 C�.

We think of curves in C˙ as curves on P˙, as they are disjoint outside L. Here, and in most of the figures
in the remainder of this paper, curves in CC are colored blue while curves in C� are colored orange.

Assume S is in normal position, and let T be a twist box. The curves of intersection C of S which meet
a connected component of �.S/\T must meet the corresponding twist region T in one of the following
three configurations:

Type 0 Type 1 Type 2

In order to analyze the curves c 2 C we need to consider specific subarcs and points of c which we define
next.
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Definition 3.4 For a curve c 2 C, we define the following arcs and points (they are illustrated in the
figures following the definition):

(1) An ı-joint (“interior-joint”) of c is a subarc of c which is a connected component of c \ ��1.B/ for
some bubble B. The number of ı-joints of c is denoted Jı.c/.

(2) A @-joint (“boundary-joint”) of c is an endpoint of a connected component of c \ @S . The number
of @-joints of c is denoted J@.c/

(3) A joint of c is an ı-joint or a @-joint of c. The number of joints of c is denoted by J.c/DJı.c/CJ@.c/.

(4) Define Ci;j D fc 2 C j Jı.c/D i; J@.c/D j g.

(5) A bone of c is a connected component of c minus its joints. Note that all bones are arcs which are
mapped by � to P .

(6) A @-bone of c is a bone which is contained in @S . Note that the endpoints of @-bones are @-joints.
All other bones are ı-bones.

(7) A limb of c is a subarc ˛ � c with endpoints in the interiors of bones. Two limbs are equal if there
is an isotopy of limbs (in c) between them. In particular, their endpoints lie in the interior of the same
bones. The quantities J.˛/, Jı.˛/ and J@.˛/ are defined as for curves.

(8) A turn of c is a limb of c that contains exactly one joint, this joint is an ı-joint and the endpoints of
the limb are outside twist regions. A curve turns at a twist region if it contains a turn in that region.

(9) A wiggle of c is a limb of c that contains exactly two joints, these joints are ı-joints through
consecutive bubbles of a twist box, and the endpoints of the limb are outside the twist regions. A curve
wiggles through a twist region if it contains a wiggle in that region.

◦ − joint

bubbles

knot diagram

◦ − bone

∂ − joint

∂ − bone

wiggle

turn

(10) Let B be a 3-ball bounded by a bubble B, then the components of S \B are saddles. Those are
disks whose boundary is �.˛C

1
[ ˛C

2
[ ˛�

1
[ ˛�

2
/, where ˛˙i are ı-joints of curves in C˙, respectively.

The two ı-joints ˛C
1
; ˛C

2
(and the two ı-joints ˛�

1
; ˛�

2
) are said to be opposite. See Figure 4.

Remark 3.5 Note that a @-joint connects a @-bone and ı-bone, while a ı-joint connects two ı-bones.
The @-joints and @-bones are contained in the boundary of S , while ı-joints and ı-bones are contained in
the interior of S .
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saddle

opposite ◦-joints
opposite ◦-joints

Figure 4: A saddle of S in a bubble viewed from an angle and from the top.

Definition 3.6 Two curves (or limbs of curves) c; c0 2 C are abutting if they share an ı-bone and c ¤ c0.
Necessarily, if c 2 CC then c0 2 C� and vice versa.

The following figure shows an example of two abutting curves c and c0:

c′
c

3.3 Taut surfaces

Definition 3.7 Given an incompressible surface S � S3 XN .L/ we define a lexicographic complexity
of S as

(3-1) Com.S/D
�X

c2C

Jı.c/;
X
c2C

J@.c/; jCj
�
:

Recall that a properly embedded surface S in a 3-manifold M is called essential if it is either a 2-sphere
which does not bound a 3-ball, or it is incompressible, boundary incompressible and not boundary parallel.

Definition 3.8 Let S � S3 XN .L/ be an essential surface in normal position. The surface S is taut if
either

(i) S is an essential 2-sphere, and S minimizes complexity among all essential 2-spheres, or

(ii) S is not a 2-sphere, the link L is not split (ie S3 XL is irreducible), and S minimizes complexity
in its isotopy class.

The next lemma shows that the intersection curves of taut surfaces must have certain properties.
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Lemma 3.9 Assume that the diagram D.L/ is connected. Let S � S3 XN .L/ be a taut surface. Then ,
for all c 2 C we have:

(1) Sc is a disk.

(2) J@.c/ is even.

(3) If J@.c/� 2 then Jı.c/ > 0.

(4) If J@.c/D 0 then Jı.c/ is even.

(5) If a curve c meets a bubble B more than once , then it does so in two opposite ı-joints.

(6) If a curve c has two @-joints on a connected component of PC \L (or P� \L), then they are
the endpoints of a @-bone. Moreover , the two ı-bones incident to them are in different regions of
P XD.L/.

(7) The curve c is not a curve in C1;2 bounding on P˙ exactly one component of L\P˙ as depicted
here:

Proof Let S�S3XN .L/ be an essential surface satisfying (i) or (ii). Note that in both cases, compressing
along a disk D � S3XN .L/ with D\S D @D results either in two essential spheres, or a surface in the
same isotopy class of S . Thus, by the assumption on S , surfaces obtained by such a compression cannot
have lower complexity.

(1) Since S is essential, each subsurface Sc must be planar, as otherwise it contains a nontrivial
compression disk. If Sc has more than one boundary component then compressing along a disk in HC or
H� whose boundary separates boundary components of Sc will result in a surface with fewer intersections
with P in contradiction to the choice of S .

(2) By definition, J@.c/ is the number of endpoints of arcs in c XL. Since each arc has two endpoints,
J@.c/ is even.

(3) By (2), J@.c/ is either two or zero. If J@.c/ D 0 and Jı.c/ D 0 then, since D.L/ is connected,
c bounds a disk on P XL. Compressing S along this disk reduces the number of intersections with P .

If J@.c/D 2 and Jı.c/D 0 then c bounds a disk D in P such that @D D ˛[ˇ, where ˛ is a @-bone of c

and ˇ is an ı-bone of c. However, this is impossible by (2).

(4) The diagram D.L/ is a 4-regular graph, and thus it partitions P into regions which can be given
a checkerboard coloring, ie can be colored black and white so that two adjacent regions are colored in
different colors. Consider the colors of complementary regions of P X T which the curve c intersects. If
J@.c/D 0 every change of colors, of these regions along c, accounts for one bubble that c meets. Since c

is a closed curve the total number of color changes is even, and correspondingly Jı.c/ is even.

Algebraic & Geometric Topology, Volume 25 (2025)



216 Nir Lazarovich, Yoav Moriah and Tali Pinsky

(5) Without loss of generality assume that c 2 CC. Each time c meets a bubble B it does so along a
@-bone or an ı-joint. Since c meets B twice then it does so along either two @-bones, an ı-joint and a
@-bone or two ı-joints. If c meets B in two @-bones, then the disk Sc contains an arc connecting the two
@-bones. This arc together with an arc on @N .L/ bounds (by an innermost argument) a compression disk
for S . Compressing along this disk reduces the complexity of S .

If c meets B in an ı-joint and a @-bone, then the disk Sc contains an arc connecting the ı-joint and the
@-bone. This arc, together with an arc on B bounds a disk. Isotoping S through this disk reduces the
complexity of S .

Thus, c meets B in two ı-joints. Assume that c has two ı-joints in B on the same side of L as in

The isotopy of S defined in the proof of Lemma 1(ii) of [11] (for the case R\LD∅ in his notation)
reduces our complexity since the number

P
c2C Jı.c/ strictly decreases.

By Lemma 1(ii) of [11], c does not have It follows that c has at most two ı-joints in the same bubble, and
they are separated by L in BC. The number of components of S \BC separating each of the ı-joints of
c from L is the same: Each component of S \B separating an ı-joint of c and L belongs to a curve c0

in CC. As curves in CC do not intersect, in order to close up, c0 has to return to B on the other side of L

between L and the other ı-joint of c in B. This is depicted here:

The intersection of S with the ball bounded by B, is a finite collection of stacked saddles, it follows that
the ı-joints of c belong to the same saddle.

(6) If c has two @-joints on the same component of PC \L. Let ˛ in PC \L and ˇ in Sc be arcs
connecting the two @-joints. Unless ˛ is a @-bone of c, by compressing along the disk bounded by
˛[ˇ (using an innermost such disk) complexity is reduced because

P
c2C J@.c/ strictly decreases whileP

c2C Jı.c/ does not increase.
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If c contains a @-bone ˛ such that the two adjacent ı-joints are in the same region of P XD.L/ then,
by pushing S through P in a neighborhood of ˛, we reduce the number of intersection points by 2, in
contradiction to the minimal complexity of S .

(7) Assume in contradiction that c is such a curve, ie as the blue curve here:

c̄

By (6), any curve contained in c has to be of a similar form. Assume c is an innermost such curve. The
curve Nc abutting c, as depicted in the following figure, meets the bubble twice, at a @-bone and an ı-joint,
in contradiction to (5).

Remark 3.10 Note that if S is taut then C0;0 D C0;2 D Ci;2kC1 D C2kC1;0 D∅ for all i; k 2N [f0g.

4 Euler characteristic and curves of intersection

From now on we assume that the surface S is taut.

4.1 Distributing Euler characteristic among curves

For each curve c 2 C we will define the contribution of c, and show that the Euler characteristic of S can
be computed by summing up the contributions of curves c 2 C.

Definition 4.1 The contribution �C.c/ of a curve c 2 C is defined by

�C.c/D 1� 1
4
J.c/:

Lemma 4.2 If S � S3 XN .L/ is taut then �.S/D
P

c2C �C.c/.

Proof The union of the collection of all the curves c 2 C on S is an embedded graph yX of S . The
vertices yX 0 of the graph yX are the @-joints and the endpoints of ı-joints. The edges yX 1 of the graph yX
are the bones and the ı-joints. The graph yX partitions S into disk regions of three types:

(1) subsurfaces Sc �
yS \H˙ for c 2 C˙,

(2) saddles R� yS \B where B is a 3-ball bounded by a bubble, or

(3) regions D � S corresponding to Type 2 disks.
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In case (3), the regions D are disks whose boundary consists of two arcs on L and two edges of yX . By
collapsing each such disk D to one of the edges in yX we get a homotopic surface. By abuse of notation,
we call it S , and call the corresponding graph X obtained from yX by gluing together pairs of ı-bones.
Note that in the new surface, @S �X and consists of circles comprised of @-bones and @-joints. Moreover,
along every ı-bone there are two abutting curves. It follows that

(4-1) �.S/D �.X /C
X

S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/

D jX 0
j � jX 1

jC

X
S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/:

We compute how each c 2 C contributes to each of the summands in (4-1):

The vertices of X Every curve c 2 C passes through 2Jı.c/ vertices of X 0 in the interior of S (those
are the endpoints of ı-joints it passes). Furthermore, it goes through J@.c/ vertices of X 0 in @S . Each of
these vertices belongs to two (abutting) curves c 2 C. Hence,

(4-2) jX 0
j D

X
c2C

�
Jı.c/C

1
2
J@.c/

�
The edges of X Every curve c 2 C passes through 2Jı.c/C J@.c/ edges in X 1. Note that every ı-joint
edge and every @-bone edge belongs to exactly one curve in C, while each ı-bone edge belongs to two
curves in C. Each ı-joint edge appears in exactly one curve c and is counted once in Jı.c/. Hence, the
number of ı-joint edges is

P
c2C Jı.c/: Similarly each @-bone edge appears in exactly one curve c and is

counted twice in J@.c/. Hence, the number of @-bone edges is
P

c2C
1
2
J@.c/. Finally, each ı-bone edge

in c accounts for two vertices in X 0. So the number of ı-bone edges is equal to

1
2
jX 0
j D

1
2

�X
c2C

�
Jı.c/C

1
2
J@.c/

��
:

Adding these contributions together gives

(4-3) jX 1
j D

X
c2C

�
3
2
Jı.c/C

3
4
J@.c/

�
:

Regions S 0 � yS \H˙ To every curve c 2 C there is a disk Sc �
yS \H˙. Thus,

(4-4)
X

S 0�yS\H˙

�.S 0/D
X
c2C

1:

Saddle regions R � yS \B Each ı-joint of a curve c 2 C belongs to the boundary such a region. And
so each curve passes through the boundary of Jı.c/ such regions. As each saddle region has four ı-joints
in its boundary, we have

(4-5)
X

R�yS\B

�.R/D
X
c2C

1
4
Jı.c/:
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Summing over all of the above we get,

�.S/D jX 0
j � jX 1

jC

X
S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/

D

X
c2C

�
1� 1

4
.Jı.c/C J@.c//

�
D

X
c2C

�C.c/:

5 Redistribution of Euler characteristic

Standing assumption Throughout the rest of the paper, we assume that the diagram D.L/ is connected,
prime, twist-reduced, 3-highly twisted and contains at least two twist regions.

In this section we redistribute the positive contribution of the Euler characteristic of curves, �C, so that
after the redistribution each curve’s contribution is nonpositive.

We first characterize the curves of intersection that have a positive �C. The characterization is done in
the following lemma:

Lemma 5.1 Let c 2 C so that �C.c/ > 0 (ie J.c/ < 4) then c 2 C2;0 or c 2 C1;2 and it is one of the six
forms of Figure 5 (up to isotopy).

Note that the curves c in cases (i) and (ii) are in C2;0. The curves in cases (iii), (iv), (v) and (vi) belong
to C1;2.

Proof It follows from Definition 4.1, Lemma 3.9 and Remark 3.10 that if �C.c/ > 0 then c 2 C2;0 or
c 2 C1;2. Since the diagram is prime, a curve c 2 C2;0 must contain two turns at different twist boxes.
Hence c is as depicted in figures (i) or (ii).

(i) (ii) (iii) (iv) (v) (vi)(i) (ii) (iii) (iv) (v) (vi)

Figure 5: The six possibilities for a curve in c 2 C2;0[ C1;2.
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Let c 2 C1;2 and let ˛ denote a limb which is a small extension of the unique @-bone in c. The endpoints
of ˛ must be in regions of P XD.L/ of different color since the complementary limb of ˛ in c is a turn.
Since S is taut, Lemma 3.9(7) implies that ˛ must pass over at least one crossing of D.L/. Since the
endpoints of ˛ are in regions of different colors, ˛ cannot connect the two regions adjacent to the two
length edges of a twist region. Thus, ˛ enters a twist region T through its length edge, and exists on L.
It can meet one or two twist regions. If ˛ meets one twist region, then it must be as in figures (iii) or (iv).
Otherwise, up to isotopy, it must be as in figures (v) or (vi).

Definition 5.2 Denote by C>0 (resp. C�0) the set of curves c 2 C such that �C.c/ > 0 (resp. � 0). The
lemma above shows that C>0D C2;0[C1;2. The type of a curve in C>0 corresponds to the types of curves
as depicted in Figure 5. For example, a curve of C2;0 is of type (i) or (ii).

Next, we will describe a distinguished set, denoted by K, of limbs of curves in C to which we will
“reallocate” some of the positive contribution of curves in C>0. We begin with a definition:

Definition 5.3 An extremal bubble is a first or last bubble of a twist region. A curve wiggles extremally
if it wiggles through an extremal bubble. Assume that a curve or an arc ˇ wiggles through a twist region
extremally, then the ı-bone ˛ � ˇ which leaves the twist region from the extremal bubble of the wiggle
is called a core of ˇ.

Definition 5.4 A vertebra is an ı-bone � in a curve c connecting two turns of c in two twist regions
T;T 0 so that � meets the length edge of T and the width edge of T 0.

A rib is a closed curve c 2 C4;0 which consists of exactly two turns and an extremal wiggle.

Remark 5.5 Note that the two ı-bones of a curve c 2 C2;0 of type (i) are vertebrae.

Lemma 5.6 Assume that c0 is not a rib , and that c0 contains a vertebra �0. Then , there exists a finite
sequence of curves c0; c1; : : : ; cn, limbs �1; : : : ; �n and bones �0; : : : ; �n�1 such that :

(1) For 1� i < n, ci is a rib and �i is the ı-bone connecting its two turns.

(2) For 1� i � n, �i is a limb of ci with a unique core �i�1 and J.�i/D 3. In particular , the curve ci

abuts the curve ci�1 along the core �i�1.

(3) The curve cn has �C.cn/ < 0.

Moreover , given �n one can uniquely determine the ı-bone �0 and hence the curves ci , arcs �i and bones
�i as above.

Definition 5.7 We will refer to the curves ci (resp. limbs �i) in the lemma as the layers curves (resp. layer
limbs) of �0, and to the curve cn (resp. arc �n) as the terminal layer curve (resp. terminal layer limb) of �0.

Proof of Lemma 5.6 We produce a sequence of curves, limbs and bones, satisfying the assumptions
above, which terminates at the first curve cn such that �C.cn/ < 0.

Algebraic & Geometric Topology, Volume 25 (2025)



Highly twisted diagrams 221

κ1

c0

c1

κ2

κ1

c1

κ2

c2 c2

κ3 κ3

c3

τ0 c0
τ0

c3

Figure 6: Example 5.8.

Let c0 and �0 be as in the statement of the lemma. Let c1 be the curve abutting c0 along �0. The bone �0

connects an extremal wiggle and a turn of c1, hence it is a core of c1. Let �1 be the limb of c1 containing
�0 and the adjacent wiggle and turn. If �C.c1/ < 0, then stop the process. Otherwise, J.c1/D 4. Hence,
by Lemma 3.9, the curve c1 is a rib, ie it consists of a wiggle and two turns and has a unique core.
Let ˛1; ˛

0
1

be the ı-joint of the two turns of c1, and assume that ˛1 � �1. Let �1 be the ı-bone of c1

connecting ˛1; ˛
0
1
. The bone �1 meets the length edge of the twist region containing ˛1.

Assume first that �1 is not a vertebra of c1, ie it meets the length edge of the twist region containing ˛0
1
.

Then, the curve c2 abutting c1 along �1 contains two wiggles in two different twist regions. It follows that
�C.c2/ < 0 as otherwise c2 bounds a twist reduction subdiagram. Let �2 be the limb in c2, abutting �1,
consisting of a wiggle through the bubble of ˛1, and one more ı-joint at the bubble containing ˛0

1
. The

bone �1 is the unique core of the limb �2, and the process stops (nD 2).

If �1 is a vertebra, then we iterate the process. That is, we consider the curve c2 abutting c1 along �1, and
the limb �2 of c2 containing �1 and its adjacent wiggle and turn.

Since there are finitely many curves and limbs, the process either terminates or is periodic. It cannot be
periodic because the initial curve c0 is not a rib, but note that all the curves ci for i < n are ribs.

Finally, given �n, the curve cn�1 is the curve abutting cn along the unique core of �n. The curve cn�1 has
a unique core, which is also the core of a unique arc �n�1 (with J.�n�1/D 3). Repeating this process,
we can retrace the sequence all the way to �0.

Example 5.8 In Figure 6 we see two examples of outputs of the process in Lemma 5.6. Starting with
the curve c0 which is not a rib, and the vertebra �0 of c0, we get the curves c0; c1; c2; c3, limbs �1; �2; �3

and ı-bones �0; �1; �2. The limbs �i are shown in bold the figure. The ı-bones �0; �1; �2 are the cores of
�1; �2; �3 respectively.

In Figure 6, left, note that the ı-bone �2 is a vertebra. If �C.c3/ < 0 then the process stops at c3 and �3

is its terminal limb. Otherwise, c3 is again a rib, and the process continues.
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In Figure 6, right, the ı-bone connecting the two turns of c2 is not a vertebra, as it meets the length edge
of both twist regions. Therefore the limb �3, which is shown in bold in the figure, contains a wiggle
(through the bubble in which both c1 and c2 turn) and “half a wiggle” (through the other bubble in which
c2 turns). As the proof shows, the curve c3 necessarily satisfies �C.c3/ < 0, and thus it is the terminal
curve of the process.

Definition 5.9 (definition of K) (1) Each c 2 C2;0 of type (i) has two ı-bones. Each ı-bone � of c is a
vertebra and hence by Lemma 5.6 determines a terminal layer limb �n. Let K3;0 be the set of all terminal
layer limbs associated with all ı-bones of curves in c 2 C2;0.

(2) Each c 2 C2;0 of type (ii) determines an arc � which abuts c and wiggles through the two twist
regions. Let K4;0 be the collection of all arcs � obtained in this way.

(3) Each c 2 C2;1, determines an arc � which abuts c, wiggles through the twist region in which c turns,
and contains one of the @-joints of c. Let K2;1 be the collection of all arcs � obtained in this way.

Finally, let K be the set K3;0[K4;0[K2;1.

Lemma 5.10 Given � 2 K one can uniquely determine the curve c 2 C>0 that determines it. Conversely,
to each curve in C2;0 of type (i) there are two curves of K3;0 corresponding to the two choices of ı-bones
of c. To each curve in C1;2 and each curve in C2;0 of type (ii) there is a unique arc in K2;1 and K4;0

respectively.

In particular ,
1
2
jK3;0jC jK4;0j D jC2;0j and jK2;1j D jC1;2j:

Proof If � 2 K4;0 (resp. � 2 K2;1) then the curve c 2 C2;0 of type (ii) (resp. c 2 C1;2) that determines
it is the curve abutting �. If � 2 K3;0 then by Lemma 5.6 there is a unique ı-bone � of a curve C2;0 of
type (i) that determines it. The converse statements follow.

Lemma 5.11 The arcs in K which belong to curves in CC (resp. C�) are pairwise disjoint.

Proof Assume that the two arcs �; �0 2 K meet. Since, by Lemma 5.10, every arc in K is determined by
its core, it suffices to show that � and �0 have the same core.

By assumption �; �0 share a joint, and hence are limbs of the same curve c. If this joint is a @-joint then
�; �0 2 K2;1 and their core is the unique ı-bone incident to their shared @-joint. If the joint is an ı-joint
that is part of a wiggle of c, then, since the diagram is 3-highly twisted, there is a unique core emanating
from the extremal bubble of this wiggle, which is shared by both � and �0. Finally, if the joint is an ı-joint
that is part of a turn of c, then �; �0 2K3;0. The cores of �; �0 must be the unique ı-bone which emanates
from the width edge of the twist region in which the turn occurs because it is also the vertebra of the
previous layer curve.
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Lemma 5.12 For all � 2 K we have J.c/� J.�/C 2, where c is the unique curve in C containing �.

Proof Let � 2K and let c 2 C be the curve containing �. Assume for contradiction that J.c/ < J.�/C2.

If � 2 K4;0 then J.c/ < J.�/C 2 implies that c 2 C4;0. If this is the case, then since c wiggles through
two twist regions, the projection of c to P gives a twist-reduction subdiagram in contradiction to the
assumption on the diagram.

If � 2 K2;1, then J.c/ < J.�/C 2 implies that c 2 C2;2. If this is the case, then � abuts some curve
c0 2 C1;2 which could be one of the figures (iii)–(vi) in Lemma 5.1. For case (iii), there are two possible
configurations for the closed curve c 2 C2;2 containing �, while for each of the cases (iv)–(vi) there is
only one possible such curve. Thus, all possible cases for the curve c are shown here:

(iii′) (iv) (v) (vi)(iii)(iii) (iii0) (iv) (v) (vi)

In case (iii) the surface is not taut and in all other cases, the curve c bounds a twist-reduction subdiagram.

If � 2 K3;0, then J.c/ < J.�/C 2 implies that c 2 C4;0, however this is in contradiction to the definition
of K3;0 given by Lemma 5.6.

Remark 5.13 It follows from the proof of Lemma 5.6 that if c contains a limb � 2 K3;0 such that the
core of � is not a vertebra of its abutting curve then J.c/ � J.k/C 3: Indeed, if c D cn, � D �n and �
abuts cn�1 along a bone which is not a vertebra of cn�1 then c must have an additional ı-joint which is
not contained in �.

Definition 5.14 Let c 2 C. If c 2 C>0 define �0.c/ D 0. Otherwise, let n3;0 (resp. n4;0; n2;1) be the
number of limbs � 2 K3;0 (resp. K4;0; K2;1) in c. We associate to c the quantity

�0.c/D �C.c/C
1
4
n3;0C

1
2
n4;0C

1
4
n2;1:

The next lemma shows that �0 is a redistribution of the Euler characteristic of S among curves in C�0.

Lemma 5.15 �.S/D
X
c2C

�0.c/.

Proof By Lemma 4.2, �.S/D
P

c2C �C.c/. Since �0.c/D 0 for c 2 C>0,X
c2C

�0.c/D
X

c2C�0

�0.c/:
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It thus remains to prove that X
c2C

�C.c/D
X

c2C�0

�0.c/:

Subtracting
P

c2C�0
�C.c/ from both sides and recalling that C�0 D C X C>0, we have to show thatX

c2C>0

�C.c/D
X

c02C�0

.�0.c0/��C.c
0//:

The left hand side is simply 1
2
jC2;0jC

1
4
jC1;2j since C>0 D C2;0[ C1;2 and

�C.c/D

�1
2

if c 2 C2;0;

1
4

if c 2 C1;2:

By the definition of �0, the right hand side gives 1
4
jK3;0jC

1
2
jK4;0jC

1
4
jK2;1j. The proof is now complete

by Lemma 5.10.

The next lemma shows that indeed �0 is nonpositive.

Lemma 5.16 �0.c/� 0 for all c 2 C.

Proof If c 2 C>0 then �0.c/D 0. Let c 2 C�0 and let n3;0; n4;0; n2;1 be as in Definition 5.14 of �0.c/.
By Lemma 5.11, the limbs of K in c are disjoint and therefore

(5-1) J.c/�
X

c��2K

J.�/:

Hence,

(5-2) �0.c/D �C.c/C
1
4
n3;0C

1
2
n4;0C

1
4
n2;1 D

�
1� 1

4
J.c/

�
C

1
4
n3;0C

1
2
n4;0C

1
4
n2;1

� 1�
X

c��2K

1
4
J.�/C 1

4
n3;0C

1
2
n4;0C

1
4
n2;1

D 1C
X

c��2K3;0

�
1
4
�

1
4
J.�/

�
C

X
c��2K4;0

�
1
2
�

1
4
J.�/

�
C

X
c��2K2;1

�
1
4
�

1
4
J.�/

�
D 1C

X
c��2K3;0

�
1
4
�

1
4
� 3
�
C

X
c��2K4;0

�
1
2
�

1
4
� 4
�
C

X
c��2K2;1

�
1
4
�

1
4
� 3
�

D 1� 1
2
.n3;0C n4;0C n2;1/:

Now the argument is divided into cases depending on the sum nD n3;0C n4;0C n2;1.

Case 0 (nD 0) We have �0.c/D �C.c/. But since c 2 C�0 we have �C.c/� 0 and we are done.

Case 1 (nD 1) That is, c contains a single subarc � 2 K3;0 [K4;0 [K2;1. By Lemma 5.12, J.c/ �
J.�/C 2. If � 2K4;0 we get J.c/� 6 and thus �0.c/D 1� 1

4
J.c/C 1

2
� 0. Similarly, if � 2K3;0[K2;1

we get J.c/� 5 and thus �0.c/D 1� 1
4
J.c/C 1

4
� 0.

Case 2 (n� 2) In this case we are done by inequality (5-2).

Corollary 5.17 The link L is nonsplit nor the unknot.
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name of set J. �/ Jı. �/ J@. �/ the set’s composition/classification

C2;0 2 2 0 type (i) or (ii)

C1;2 3 1 2 type (iii), (iv) or (v)

C4;0 4 4 0 4 turns or 1 wiggle and 2 turns or 2 wiggles

C2;2 4 2 2 2 ı-joints and 1 @-bone

C0;4 4 0 4 2 @-bones

K3;0C 0; 2 5 3 2 1 limb of K0;3 + @-bone

K2;1C 1; 1 5 3 2 1 limb of K2;1 + 1 ı-joint + 1 @-joint

K4;0C 2; 0 6 6 0 1 limb of K0;4 + 2 ı-joints

K4;0C 0; 2 6 4 2 1 limb of K0;4 + @-bone

K3;0CK3;0 6 6 0 2 limbs of K3;0 = 2 wiggles + 2 turns

K2;1CK2;1 6 4 2 2 limbs of K2;1 = 2 wiggles + @-bone

K4;0CK4;0 8 8 0 2 limbs of K4;0 = 4 wiggles

Table 1: Classification of all curves with �0.c/D 0.

Proof Assume, in contradiction, that S3XN .L/ has an essential sphere or a disk bounding a component
of L. By Lemma 3.9 we may assume that S is taut. Let C be its curves of intersection With P˙. By
Lemma 5.15,

0< �.S/D
X
c2C

�0.c/:

However, this contradicts Lemma 5.16 which states that �0.c/� 0 for all c 2 C.

Lemma 5.18 Let S be a taut surface with �.S/D 0, then any curve c 2 C is one of the following:

(1) c 2 C2;0[ C1;2.

(2) J.c/D 4, ie c 2 C4;0[ C2;2[ C0;4.

(3) c contains a limb � 2 K and has J.c/D J.�/C 2.

(4) c is the union of two limbs �1; �2 2 K.

Moreover , the cores of arcs in K3;0 are vertebrae of their abutting curves.

Proof By Lemma 5.15 and 5.16 each curve c 2 C must have �0.c/D 0. It follow from the definition of
�0 that the above are the only cases in which �0.c/D 0.

By Remark 5.13 and Case 1 of the proof of Lemma 5.16, if c contains an arc � 2 K3;0 whose core is not
a vertebra of the abutting curve c0 then �0.c/ < 0.

In Table 1 we summarize the possible sets of curves with �0 D 0 and assign them names.
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6 Atoroidal and unannular

In this section we prove that if the link L has a diagram which satisfies the conditions of Theorem A, then
its complement does not contain essential annuli or tori (in particular �.S/D 0). Let S denote such a
2-torus or annulus. After an isotopy, if need be, we may assume that S is taut. We first need the following
technical lemmas.

Claim 6.1 The following three configurations for curves c 2 C are impossible:

c1 c1 c1

where the bubble marked in pink is nonextremal.

Proof We argue simultaneously that the three configurations are impossible. In each of these cases, let
c2 (marked in orange) be the depicted curve abutting c1. The limb of c2 that is shown here has three
joints:

c1

c2
c1

c2
c1

c2

None of these joints belongs to a limb in K: in all cases, the curve c1 is not in C2;0 or C1;2 nor a rib
with a vertebra. By Lemma 5.18, it follows that J.c2/D 4. Thus the only way that c2 can close up is
in Figure 7. Let c3 be the depicted curve abutting c1. In the two left figures, one sees, as before, that
J.c3/D 4. In the figure on the right, c3 is in K4;0C 2; 0 in the notation of Table 1: Indeed, c3 cannot
have J.c3/D 4, as otherwise it bounds a twist reduction subdiagram. Thus, c3 must contain an arc of K.
By elimination of the possibilities in Table 1, c3 must be in K4;0C 2; 0. Thus, in all cases, c3 can close
only after passing through an additional twist region as shown in Figure 8. Thus, taking into account all
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c3

c1
c2 c1

c2

c3

c1

c2

c3

Figure 7: Proof of Claim 6.1. Second figure.

c3

c1
c2 c1

c2

c3

c1

c2

c3

Figure 8: Proof of Claim 6.1. Third figure.

possible configurations of the curves c2 and c3 determined by the stated configurations of the c1 curves,
the diagrams are seen to contained a closed curve depicted by the dashed curves in the figures. Each of the
dashed curves bounds a twist-reduction subdiagram. This contradicts the assumption that the diagrams
are twist reduced, which finishes the proof of the claim.

Lemma 6.2 If a curve c 2 C contains a bone � connecting two turns of c then one of the following holds:

(1) the curve c 2 C2;0,

(2) the curve c is a rib , or

(3) the ı-bone � meets the width edge of both twist regions.

In particular , c cannot have three consecutive turns.

Proof Let � be a bone connecting two turns of c it is therefore an ı-bone. Assume in contradiction that
� and c do not satisfy any of (1)–(3) of the lemma. That is, c is not a curve in C2;0 nor a rib, and � does
not meet the width edge of both twist regions. There are two cases to consider depending on whether �
meets a width edge or not.
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(I) (II) (III) (IV ) (V )(I) (II) (III) (IV) (V)

Figure 9: The five configurations of good curves which are not in C2;0.

If � meets a width edge, then � is a vertebra, ie it meets the length edge of one twist box and the width of
the other. If this occurs set c0D c, �0D � . Since c is assumed not to be a rib, it follows from Lemma 5.6
that there exist curves c1; : : : ; cn, limbs �1; : : : ; �n, and vertebrae �1; : : : ; �n�1 so that the terminal layer
cn has �C.cn/ < 0. Moreover, note that the limb �n is not in K3;0 as otherwise by the uniqueness property,
assured in Lemma 5.6, the “initial” layer curve c0 must be a curve in C2;0 of type (i). This implies that �n

does not meet any limb of K. As otherwise, as in the proof of Lemma 5.11, one can prove that �n and the
limb it meets must be equal. However, by Lemma 5.18, there is no curve, with �0 D 0, which has three
ı-joints that do not belong to a limb of K.

If � does not meet a width edge, then � meets the length edge of both twist regions. It follows that the
curve c0 abutting c along � has two wiggles which are connected by � . The curve c0 cannot be in C4;0

as otherwise it bounds a twist-reduction subdiagram. By Lemma 5.18, one of the wiggles must meet a
limb � 2 K. Since � is a core of c0, it must be the core �. It follows that � 2 K4;0 and that c 2 C2;0 is of
type (ii), in contradiction to our assumption.

In both cases, whether � meets a width edge or not, we arrived at a contradiction. Hence, c must satisfy
one of (1)–(3).

Finally, if c has three consecutive turns then c is not a rib nor a curve in C2;0. One of the two bones
between the turns of c must meet a length edge and a width edge, contradicting (3).

Definition 6.3 A curve c 2 C is good if it bounds on P˙ exactly one component of L\P˙. I.e., it is
either in C2;0 as depicted in Figure 5 (i) and (ii), or a curve in one of the forms shown in Figure 9.

We will say that c is good of type (I)–(V), accordingly. Otherwise, c is called bad.

Remark 6.4 Under the assumption that the diagram is prime and contains at least two twist regions the
twist regions in each of the subfigures (II)–(V) of Figure 9 are distinct, as otherwise there is an arc of L

connecting a twist region to itself, resulting in a nonprime subdiagram.

Remark 6.5 If S is a boundary parallel torus, then its intersection curves are good. A key observation
is that the converse holds. That is, if all the curves of intersection of S with P are good then S is a
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α

α′

β

γR

γL

Figure 10: A curve c that meets a bubble twice.

boundary parallel torus: Consider a curve c 2 C; c is good and hence bounds on P˙ a unique component
`c of L\P˙. When c meets a bubble B, there is a saddle of S bounded by B which meets c and two
other curves c1; c2, and the component of L\B that meets `c also meets `c1

and `c2
. Thus, the obvious

isotopies from disks on S bounded by curves c 2 C to `c can be glued together to form an isotopy of S to
a component of L. Therefore, our goal in the next claims is to show that the curves of intersection of a
taut surface S with �.S/D 0 are good.

Lemma 6.6 If a curve c 2 C passes through a bubble more than once , then c is good.

Proof Let c meet the bubble B1 more than once. By Lemma 3.9(5) it can do so only in two opposite
ı-joints, ˛; ˇ. Therefore, at least one of those ı-joints, say ˛, is part of a wiggle ˛0 of c. Hence, ˛0 meets
an adjacent bubble B2. Note that c X .˛0 [ˇ/ consists of two arcs connecting ˛0 and ˇ as depicted in
Figure 10. Let R, L be the dotted subarcs of c on the right and left of the figure, respectively. The
argument is divided into cases according to Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) If c 2 C4;0, then the subarc R of c has no joints while L has one ı-joint. Hence c is good of type (I),
(II) or (III).

(3) Since the three ı-joints of c in T are not part of the same limb in K3;0 nor K4;0, then c cannot be in
K3;0C 0; 2 or in K4;0C 0; 2 (See Table 1).

(4) The curve c cannot be in K4;0 C K4;0: Otherwise ˇ is part of a wiggle ˇ0 of c. The wiggle ˛0

(resp. ˇ0) is part of a limb ˛00 2 K4;0 (resp. ˇ00 2 K4;0/. Since each limb of K4;0 has a core, the bubble
B2 must be extremal. Then, the subarc R of c contains the other wiggle of ˛00. The closed curve which
is the union of R and an arc on the boundary of the twist region intersects the link diagram twice, and
both subdiagrams bounded by it are nontrivial. This contradicts the assumption that the diagram is prime.

(5) A similar argument shows that c cannot be in K2;1+K2;1.

(6) The curve c cannot be in K2;1C 1; 1: Otherwise, ˛0 is the wiggle of some ˛00 2 K2;1 and ˇ is a
turn. Beside ˛0 and ˇ, c has a @-bone on the subarc L, and no joints on R. Since ˛00 2 K2;1 it abuts
some c0 2 C1;2. Hence, c\L and c0\L share endpoints. It follows that the union .c\L/[ .c0\L/ is
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a component of L passing over at most two wiggles of the diagram (at c \L) and under at most two
wiggles (at c0\L). This contradicts the assumption that L is 3-highly twisted.

(7) If the curve c is in K4;0C 2; 0 then c is good of type (V): If ˇ is part of a wiggle ˇ0 of c, then at
most one of ˛0 and ˇ0 is part of limb in K4;0. Without loss of generality, assume ˛0 is a wiggle of a limb
˛00 2 K4;0. Then, B2 is extremal, and the subarc R contains the other wiggle of ˛00. The curve which
is the union of R and an arc on the boundary of the twist region intersects the link diagram twice, in
contradiction to the assumption that the diagram is prime. If ˇ is a turn, then B1 is extremal, and the wiggle
˛0 is part of a limb ˛00 2K4;0. This limb abuts a curve c0 2 C2;0, and it follows that c is good of type (V).

(8) Finally, if the curve c is in K3;0CK3;0 then c is good of type (IV): The wiggle ˛0 is a wiggle of
some limb ˛00 2 K3;0. If ˇ is part of a wiggle ˇ0 of c, then ˇ0 is a wiggle of some other limb ˇ00 2 K3;0.
It follows that each of R; L contains exactly one ı-joint, which is impossible. If ˇ is a turn, then it is
the turn of some limb ˇ00 in K3;0. As the core of ˇ00 meets the width of the twist region, its wiggle must
be on L. Similarly, the turn of ˛00 must be on L as well. This implies that R does not contain any
joints. If the turn of ˛00 and the wiggle of ˇ00 are in two different twist regions then the curve abutting
(both of) their cores contains three turns. However, this curve is a nonterminal layer curve (in the sense
of Lemma 5.6), and those contain at most two turns. Thus, the turn of ˛00 and the wiggle of ˇ00 are in the
same twist region T 0. Each of ˛00 and ˇ00 meets an extremal bubble of T 0. Then only option for them to
close up is if they meet the same extremal bubble of T 0. It follows that c is good of type (IV).

Proposition 6.7 All curves in C are good or in C0;4.

In the proof of the proposition, we will assume in contradiction that such a curve exists. The proof will
follow from the next four lemmas.

Lemma 6.8 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve
in PC which is not in C0;4. Let D be the disk bounded by c. Then the curve c does not turn or wiggle
through a twist region T which has a bubble contained in D.

Proof Assume c turns at T Let B be the extreme bubble in a twist region T through which c turns.
Since the diagram is 3-highly twisted T contains at least two more bubbles let B0 be the bubble adjacent
to B in T . By assumption B0 is contained in the disk D. Consider the curve c0 whose ı-joint is opposite
to the ı-joint of c in B. Since c is innermost, the curve c0 is good. It must be of good type (I) as in this
configuration:

D

c B

B′
c̄

c′
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The curve Nc abutting both c and c0, passes through the bubble B0 twice. Hence, by Lemma 6.6, Nc is good.
By the definitions, it cannot be in C2;0 nor good of type (I). If Nc is good of type (II) or (III) it has a turn at
a bubble B00, then c passes twice through B00 which by Lemma 6.6 contradicts the assumption that c is
bad. If Nc is good of type (IV) or (V) then it meets an extremal bubble B00. The curve c turns at B00 and
hence belongs to C2;0 which again contradicts the assumption that c is bad.

Assume c wiggles through T The curve c wiggles through the bubbles B1;B2. Let B0 be a bubble of
T \D so that B0;B1;B2 are consecutive, as in:

D

B2

B1

B0

c

Consider the curve c0 whose ı-joint is opposite to the ı-joint of c in B1. The curve c0 is contained in D

and wiggles through T passing through the bubbles B0;B1:

D

c

c′
c̄

By assumption c0 must be good, and so it wiggles through T and then returns to T , passing through
B0;B1;B0 in that order. By Lemma 3.9(5), the two ı-joints of c0 in B0 are opposite sides of the same
saddle. Next, consider the curve Nc abutting c0 along the two ı-bones of c0 connecting B0 and B1. The
curve Nc passes through B1 twice. Hence, it is good by Lemma 6.6. It must be of type (I) and in addition
passes through B2. It follows that c abuts Nc along the two ı-bones of Nc connecting B1 and B2. Hence, c

passes through B2 twice, and by Lemma 6.6 c is good, contradicting the assumption.

Lemma 6.9 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4. Let D be the disk bounded by c. Then the curve c does not wiggle through a
twist region.

Proof Assume that c wiggles through a twist region T . By Lemma 6.8, the disk D does not contain a
bubble of T . The curve c wiggles extremely through the twist region by passing through two bubbles
B0;B1, where B0 is extremal. By Lemma 6.6, c meets the bubble B0 once.

The curve c0 turning at B0 is good by choice of c. Therefore, c0 2 C4;0 is good of type (II) or (III) or
c0 2 C2;0 of type (i) or (ii) (as in Lemma 5.1); see Figure 11.
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ccc c

c′ c′c′ c′

B1

B0

B′
1

B′
0

c′ ∈ C4,0 c′ ∈ C2,0

Figure 11: Proof of Lemma 6.9. The four configurations of c0.

Let T 0 ¤ T be the other twist region which c0 meets, let B0
0

denote the extremal bubble in T 0 through
which c0 passes, and let B0

1
be its adjacent bubble.

Case 1 If c0 2 C4;0 (ie as depicted in the left two subfigures in Figure 11), then consider the curve Nc
abutting c and c0 (shown in orange in subsequent figures). None of the bubbles of Nc belongs to an arc
of K. Therefore, Nc 2 C4;0, and it follows that it must close up as shown in the dotted curves here:

c c

c′ c′

c̄ c̄

As c must follow the dotted bone of Nc, we see that c passes through the bubbles B1 twice. By Lemma 6.6.
This contradicts the assumption that c is bad.

Case 2 Let c0 2 C2;0 (ie as depicted in the right two subfigures of Figure 11) and assume that c does not
meet B0

0
. Consider, now, the curve c00 whose ı-joint in B0

0
is opposite to that of c0. By the choice of c,

the curve c00 is good. It must be good of type (I). And the configuration is as depicted here:

cc

c′ c′

c̄ c̄

c′′

c′′
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c

c′

c̄2

c̄1

c

c′

c̄2

c̄1

Figure 12: Subcase 3.1.

Considering the curve Nc abutting all of c; c0; c00, we see that it must be good by Lemma 6.6 of type (IV) and
(V) respectively. As in Case 1, it follows that c meets B1 twice contradicting the assumption that c is bad.

Case 3 Assume that c0 2 C2;0 of type (i) and c does meet B0
0

(as in the third, counted from the left,
subfigure of Figure 11). In this situation are three subcases to consider:

(1) c wiggles through T 0 at the bubbles B0
0

and B0
1
.

(2) c turns at B0
0
.

(3) c \L meets the bubble B0
0
.

Subcase 3.1 The curve c wiggles through T 0 and through the bubbles B0
0

and B0
1
. After passing

through B1, the curve c must exit T at its right length edge and enter T 0 on its right length edge before
meeting B0

0
. Otherwise the curve c would be forced to pass through a bubble twice in contradiction to

Lemma 6.6. Thus, the curve c is as in Figure 12, left. If c 2 C4;0 then we get a twist-reduction subdiagram,
in contradiction to the assumption. Thus, by Lemma 5.18, at least one of the wiggles of c, via B0;B1 or
via B0

0
;B0

1
, must be part of an arc � 2 K. Since the curves Nc1; Nc2 abutting c0 are not in C2;0 nor in C1;2 it

is clear that � 62 K4;0[K2;1. Hence � 2 K3;0. Since c has two wiggles, it must be in K3;0CK3;0 (as in
Table 1), and each of the dotted subarcs (in Figure 12, left) must contain a turn.

Let � 2K3;0 be the limb that wiggles through B0
0
;B0

1
. Then, c is the terminal curve of some vertebra � in

a curve in C2;0 (in the sense of Lemma 5.6). By retracing backwards, we see that the sequence of curves
terminating in c starts with c0 2 C2;0, then produces Nc2 2 C4;0, and then finally produce the curve c (and
the limb �). In particular, Nc2 is a rib, and the ı-bone connecting its two turns is a vertebra. Figure 12,
right, shows an example of such a configuration of curves. As one can see, there are subarcs of Nc2 and c

that together bound a twist-reduction subdiagram which is a contradiction.

Subcase 3.2 Assume c turns at the bubble B0
0
. As explained at the beginning of the previous Subcase 3.1,

the curve c must be as in Figure 13.
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c

c′

c̄

Figure 13: Subcase 3.2. The curve c0 is of type (i) and c turns at B0
0
.

Let Nc be the curve abutting c0 as in Figure 13. The argument proceeds by dividing into cases according to
Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) The curve c is not in C4;0: Otherwise, c has to be a rib. The bone � connecting the two turns cannot
meet both width edges of the corresponding twist regions by Claim 6.1. Hence it is a vertebra, eg as in
this figure:

c

c′

c̄

As Nc has at least five ı-joints, by Table 1 Nc is in K3;0CK3;0, and its two cores are those of the limbs
in K3;0. The core of c ending in B0 meets the length edge of both twist regions it connects. This is
impossible for a core of a limb in K3;0.

(3) The curve c cannot be in K4;0C 0; 2, K2;1+K2;1, or K4;0CK4;0 (see Table 1), since c contains a
turn.

(4) The curve c cannot be in K3;0C 0; 2: Otherwise, the three ı-joints of c are part of the same limb in
K3;0. The core of such a limb connects a width edge to a length edge. This is not the case here.

(5) The curve c cannot be in K2;1C 1; 1 or in K4;0C 2; 0: Otherwise, the wiggle of c is part of a limb
in K2;1 or K4;0, respectively. It follows that the curve Nc abutting c and c0 in Figure 13 must be in C1;2 or
C2;0, respectively, which is clearly not the case.

(6) Finally, the curve c cannot be in K3;0CK3;0: Otherwise, it follows that R must contain a single
wiggle. However, in this case one can close R with an arc along c0 to obtain a curve in P intersecting
the diagram in two points contradicting the assumption that the diagram is prime.
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Subcase 3.3 If c \L meets the bubble B0
0
, then it is as depicted here:

c

c′

c̄2

c̄1

If c 2 C2;2 then the left dotted line passes through no bubbles or intersection points, and we get a
contradiction to the parity. Therefore, by Lemma 5.18, c must contain some arc � 2 K. Clearly, � must
contain the subarc of c wiggling through T via B0;B1. The curve Nc1 is not in C1;2[ C2;0 and therefore
� 62K2;1[K4;0. It follows that � is an arc in K3;0 and is the terminal layer limb of the process c0, then Nc1,
then �, which is discussed in the proof of Lemma 5.6. If this is the case then, as in the end of Subcase 3.1,
a subarc of Nc1 and a subarc of c bound a twist-reduction subdiagram as in the example shown here:

c

c′

c̄2

c̄1

Case 4 Assume that c0 2 C2;0 of type (ii) and c does meet B0
0
. (as depicted in the rightmost subfigure of

Figure 11). Let Nc1 be the curve abutting c as in:

c

c′

c̄1

The wiggle of c passing via B0;B1 is not part of any arc � in K: If it were, then the curve Nc1 will either
be in C2;0[ C1;2 or will be the nonterminal layer curve of a process terminating in �. Clearly, Nc1 is not in
C2;0[ C1;2. It is also not a nonterminal layer of a process defining K3;0 as in Lemma 5.6, since at any
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c

c′

c̄

Figure 14: Subcase 4.2. The curve c0 is of type (ii) and c turns at B0
0
.

step of a process every curve is a rib, ie it has two turns and a wiggle, and the next step of the process
abuts the ı-bone connecting its the two turns, however here c does not abut the ı-bone of Nc1 connecting
its two turns.

As in the previous subcase there are three further subsubcases to consider:

(1) c wiggles through T 0 at the bubbles B0
0

and B0
1
.

(2) c turns at B0
0
.

(3) c \L meets the bubble B0
0
.

Subcase 4.1 If c wiggles through the bubbles B0
0
;B0

1
, the exact same argument as above shows that the

subarc of c passing through B0
0
;B0

1
is not a subarc of any arc in K. It follows that c 2 C4;0 and bounds a

twist-reduction subdiagram,

c

c′

which is a contradiction.

Subcase 4.2 If c turns at the bubble B0
0
. The curve c must be as in Figure 14. The argument is further

divided into cases according to Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) The curve c is not in C4;0: Otherwise, c has to be a rib. The bone � connecting the two turns cannot
meet both width edges of the corresponding twist regions by Claim 6.1. Hence it is a vertebra, as in
Figure 15. It follows that the curve Nc abutting c and c0 has at least three consecutive turns in contradiction
to Lemma 6.2.
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c

c′

c̄

Figure 15: Subcase 4.2(2).

c

c′

γR

c

c′

c

c′

c

c′

c̄1

Figure 16: Subcase 4.3.

(3) The curve c cannot be in K4;0C 0; 2, K2;1CK2;1 or K4;0CK4;0 (See Table 1) since c contains a
turn.

(4) The curve c cannot be in K3;0C 0; 2: Otherwise the three ı-joints of c are part of the same limb
in K3;0. However this would imply that the three ı-joints of c are consecutive, which is impossible by
the checkerboard coloring of the diagram.

(5) The curve c cannot be in K2;1C 1; 1 or in K4;0C 2; 0: Otherwise, the wiggle of c is part of a limb
in K2;1 or K4;0, respectively. It follows that the curve Nc abutting c and c0 in Figure 14 must be in C1;2 or
C2;0, respectively, which is clearly not the case.

(6) Finally, the curve c cannot be in K3;0CK3;0: Otherwise, it follows that the curve Nc abutting c has
three consecutive turns. This is impossible by Lemma 6.2.

Subcase 4.3 If c\L meets the bubble B0
0
, then by Table 1 c is either in C2;2, or K2;1C1; 1 or K2;1CK2;1.

It cannot be in K2;1C 1; 1 or K2;1CK2;1 since otherwise the dotted subarc R has a turn or a wiggle,
respectively (see Figure 16, left), which would contradict primeness. Thus, c 2 C2;2.

If c \L passes over one crossing of L, then c bounds a twist-reduction subdiagram as in Figure 16,
middle left. Otherwise, we are in Figure 16, middle right. Now consider how the curve Nc1 abutting
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c0 on its left can close up. It must be as depicted in Figure 16, right. Thus, Nc1 must be as one of the
configurations that were ruled out in Claim 6.1.

Lemma 6.10 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4. Let D be the disk bounded by c. Then c 62 C4;0.

Proof By Lemma 6.9, c only turns. However, this is impossible by Lemma 6.2.

Lemma 6.11 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4, and let D be the disk bounded by c. Then c 62 C2;2.

Proof Assume c 2 C2;2, Since c X .c \ L/ passes through two bubbles, the endpoints of (a small
continuation of) c \L have the same color in the checkerboard coloring of P XD.L/. Thus it is one of
the following:

(a) (b)(a) (b)

By Lemmas 6.8 and 6.9, the complement c X .c \L/ contains two turns, in twist regions which do not
contain bubbles in D. Thus, the possible configurations are:

(a1) (b1) (b2) (b3)(a2) (a3)(a1) (a2) (a3) (b1) (b2) (b3)

In each of the cases, consider the curve Nc abutting c (a subarc of which is shown in orange).

Case (a1) is ruled out by Claim 6.1. In cases (a2), (b1), (b2), it is clear that the curve Nc 2 C4;0 [ C2;2

and bounds a twist-reduction subdiagram, which is a contradiction. Cases (a3), (b3) are impossible by
Lemma 6.2.

Proof of Proposition 6.7 Assume in contradiction that there are bad curves which are not in C0;4. Let c

be an innermost bad curve in PC which is not in C0;4.
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By the last two lemmas, c is not in C4;0 nor in C2;2. Thus, by Lemma 5.18, c must contain an arc of K.
Since every arc in K wiggles through some twist region, we get a contradiction to Lemma 6.9. This
contradiction finishes the proof of Proposition 6.7.

Corollary 6.12 If the diagram of L is 3-highly twisted , connected , prime , and twist-reduced then
S3 XN .L/ is atoroidal. In particular , L is prime.

Proof Let S � S3 XN .L/ be an incompressible taut torus. Let C be the curves of intersection of S

with P˙. Since S has no boundary, C0;4 D∅. By Proposition 6.7 all curves in C are good. We have seen
in Remark 6.5 that if all curves are good then the torus S is boundary parallel.

If L was a composite knot, then the swallow-follow torus would be an essential torus in S3 XL.

Proposition 6.13 If the diagram of L is 3-highly twisted , connected , prime and twist-reduced , then
S3 XN .L/ is unannular.

Proof Let S be an essential annulus. Since L is prime by Corollary 6.12, the annulus can be assumed
not to have meridional boundary components. Thus, we may assume that S is taut. Let C be its curves of
intersection with P . By Proposition 6.7 all curves in C are either good or in C0;4. Since S has boundary com-
ponents, not all curves in C are good, and there is at least one curve c2C0;4. We show that this is impossible.

If there exists a curve c 2 C0;4 then the curve Nc abutting c has two intersection points which are not
connected by an arc of Nc \L therefore Nc 2 C0;4. Repeating this argument shows that all the curves are in
C0;4, ie C D C0;4.

Case 1 There exists a curve c 2 C0;4 which passes twice at the same twist region.

Denote the two connected components of c \L by ˛ and ˇ. Let n be the number of crossings of T

in-between ˛ and ˇ. We further divide the proof into subcases depending on n.

Subcase 1.0 (nD 0) By Lemma 3.9(5), ˛ and ˇ do not meet the same bubble of T . Since we assume
nD 0, they must meet adjacent bubbles of T . The annulus S must spiral between the strands of L\T .
Thus we obtain a disk of Type 2 (as in Lemma 3.1) and hence, by the definition of CC and C� as in the
beginning of Section 3.2 this curve does not appear in C.

Subcase 1.1 (nD 1) The tangle L\T has two components �1; �2. Let l1; l2 be the corresponding
components of L (possibly l1 D l2). Because n D 1 the arcs ˛ and ˇ meet the same string of L\ T ,
say �1. Hence the two boundary components of S are contained in the same component l1 of L. If l1D l2,
then there exists a curve c0 2 C0;4 which meets the bridge in-between ˛ and ˇ, and this curve must be as
in Subcase 1.0. Thus, we may assume that l1 ¤ l2. Consider the disk � as depicted in Figure 17, left. Its
interior intersects L in a single point in l2, and its boundary is the union of an arc on S and an arc on l1.
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�

l2 l1

ˇ

˛

l1

V
S

U

l2

U�

Figure 17: Left: the disk �. Right: A cross section of the twist box, the annulus S and the tori U;V .

The manifold N .S/[N .l1/ has two torus boundary components U and V . See Figure 17, right. Let U

be the torus that meets �. Let U� be the component of S3 XU containing l2, and let UC be the other
component. The torus U is incompressible in U�, as such a compression must be on � and � does
intersect l2 once. It is also incompressible in UC, as if a compression disk exists then since it cannot
intersect l1, it gives a compression of the annulus S , in contradiction to the incompressibility of S . By
Corollary 6.12, U must be boundary parallel to either @N .l2/ or @N .l1/.

If U is parallel to @N .l2/, then since l1 is parallel to a curve in U crossing � once there exists an annulus
A� S3 XL whose boundary is l1[ l2. This annulus A is incompressible, since otherwise l1[ l2 would
be a 2-component unlink that is not linked with L, ie L is split, contradicting Corollary 5.17. The annulus
A is trivially boundary-incompressible because the boundary components of A are on two different
components of L. If we run the argument for A instead of S , Case 1.1 cannot occur because the boundary
components of A are on two different components of L.

If U is parallel to @N .l1/, the intersection �\U is a curve on U which meets the meridian of N .l1/
exactly once: As if it meets it more than once, then the union N .�/[N .l1/ determines a once-punctured
nontrivial lens space contained in S3, which is impossible. Thus, @� which is parallel to �\U is also
parallel to l1. Therefore, the arcs @�X l1 � S and l1 X @� � L bound a disk. Since the arc @�X l1

connects different components of S it is an essential arc, and the disk is a boundary compression for S ,
which is a contradiction.

Subcase 1.2 (n � 2) As the boundary of the annulus S must pass through every other bridge in T ,
there must be another curve of C0;4 in between ˛ and ˇ. By choosing an innermost such curve we are
back in one of the previous cases.

Case 2 None of the curves c 2 C0;4 passes twice at the same twist region. Let c1 be a curve in C0;4. Then
c1 \L is the disjoint union of two arcs ˛; ˇ. Since all of the curves are in C0;4 and at least one curve
passes over a nonextremal bubble, we may assume, by changing c1 that one of the components, say ˛1,
passes over a nonextremal bubble in a twist region. The component ˇ cannot pass over one bubble, as in
this case, either c1 passes twice in the same twist region, or defines a twist-reduction subdiagram. Thus,
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ˇ must be the arc connecting two twist regions, passing over their two extremal bubbles, and the situation
is as depicted here:

This case was ruled out in Claim 6.1.

Remark 6.14 Subcase 1.1 (nD 1) in the proof of Proposition 6.13 follows also from the following well
known general statement:

Nonsplit , annular atoroidal links in S3 are either torus knots or a link consisting of a torus knot on the
“standard torus” T2 in S3 and one or both of the core curves of the solid tori components of S3 XN .T2/.

For completeness we include a proof.

Proof Let L� S3 be a nonsplit and an atoroidal link in S3 containing an essential annulus A. If L is
a knot then boundary A cuts @N .L/ into two annuli A1 and A2. The surfaces A[A1 and A[A2 are
tori which bound solid tori V1 and V2 as L is atoroidal. The two solid tori are glued to each other along
A and since the result together with a regular neighborhood of L is S3, then by Seifert (see [13]), their
complement is a regular neighborhood of a torus knot.

If L is a nonhyperbolic, nonsplit link whose exterior is atoroidal then by [14] it is a Seifert link, ie its
exterior is a Seifert fiber space. Links in Seifert spaces were classified by Burde and Murasugi in [1]. They
are either a connected sum of Hopf links or consist of a union of Seifert fibers in some Seifert fibration
of S3. Atoroidal such links can contain at most three fibers. Hence the link L is a torus knot K on an
unknotted solid torus T and the Hopf link which is the core curves of the complementing solid tori.

Proof of Theorem A By Thurston [14], it suffices to prove that S3XN .L/ has incompressible boundary,
and is irreducible, atoroidal and unannular. By Corollary 5.17 it has incompressible boundary and is
irreducible, by Corollary 6.12 it is atoroidal, and by Proposition 6.13 it is unannular.

7 Essential holed spheres in highly twisted link complements

In this section we use Theorem A to show that certain holed spheres in the complement of a highly twisted
links are essential. We begin with three definitions.
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Definition 7.1 Let D.T / be a projection of a tangle .B;T / onto a disk �� P where @� is the simple
closed curve  � P and so that the end points of the strings of T denoted by @T are contained in  . We
call D.T / a tangle diagram. Let D.T / denote the reflection of D.T / along P (ie the diagram with the
same projection, but with reverse crossing data).

Definition 7.2 The diagram D.T / is relatively prime (resp. relatively twist reduced, relatively k-highly
twisted) if the link diagram obtained by gluing D.T / and D.T / along their boundary is prime (resp.
twist reduced, k-highly twisted).

Definition 7.3 A surface S in .S3;L/ is pairwise-incompressible if every disk D in S3 with @DDD\S ,
and which intersects L transversely in a single point, is isotopic to a disk in S by an isotopy preserving L
setwise.

The surface S is acylindrical if the complement of S in S3 XN .L/ contains no essential annuli whose
boundary is on S [ @N .L/.

Theorem B Let D.L/ be a 3-highly twisted diagram and let  be a simple closed curve in D.L/

intersecting D.L/ transversely. Assume that both tangle diagrams bounded by  are connected , relatively
prime , relatively twist-reduced , relatively 3-highly twisted and contain at least two twist regions each. Let
† be the sphere in S3 which intersects P transversely in  , and does not intersect L outside  . Then the
punctured sphere †0 D†XN .L/ is incompressible , boundary-incompressible , pairwise-incompressible
and acylindrical in S3 XN .L/.

Proof Assume in contradiction that †0 D †XN .L/ is either compressible, boundary-compressible,
pairwise-compressible or not acylindrical in S3 XN .L/.

Let B1;B2 be the two 3-balls that † bounds in S3, and let E1 D P \ B1, E2 D P \ B2 be the
corresponding two disks in P bounded by  . The induced tangle diagrams on E1 and E2 are assumed
to be relatively prime, relatively twist-reduced and relatively 3-highly twisted. After doubling each of
E1 and E2, as in Definition 7.2, we get two link diagrams D.L1/;D.L2/ which are connected, prime,
twist-reduced and 3-highly twisted. By Theorem A, the associated links L1;L2 are hyperbolic.

(1) If †0 is compressible then the doubling of an innermost compressing disk �� Bi will give rise to
an essential 2-sphere in S3 XN .Li/.

(2) If †0 is boundary compressible with boundary compression disk �� Bi , then the doubling of �
along †0 \� results in a disk which is bounded by a component of Li . Hence either Li is the
unknot or has a split unknot component.

(3) If†0 is pairwise boundary compressible, then the doubling of the essential disk��Bi intersecting
L once is a 2-sphere intersecting the boundary of N .Li/ in two meridians. Thus Li is not prime.

(4) If †0 contains an essential annulus A � Bi (ie †0 is cylindrical), then Li is toroidal if both
boundaries of A are on †0, or annular if one of these boundaries is on †0 and the other on @N .L/.

In all these cases we get that one of the links L1;L2 is not hyperbolic and thus a contradiction.
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Rational homology ribbon cobordism is a partial order

STEFAN FRIEDL

FILIP MISEV

RAPHAEL ZENTNER

We show that ribbon rational homology cobordism is a partial order within the class of irreducible
3-manifolds. This makes essential use of the methods recently employed by Ian Agol to show that ribbon
knot concordance is a partial order.

57K10, 57K31, 57K40

1 Introduction

It was recently proved by Agol [1] that ribbon concordance of knots is a partial order. We prove an
analogous statement for the preorder on irreducible, closed, connected, oriented 3-manifolds that is given
by rational homology cobordisms.

Let Y0 and Y1 be closed, connected, oriented 3-manifolds. We say that a compact, connected, oriented,
smooth 4-manifold W is a cobordism from Y0 to Y1 if @W D Y1 t .�Y0/. A cobordism W is called a
Q-homology cobordism from Y0 to Y1 if the inclusions of Y0 and Y1 into W both induce an isomorphism
in homology with Q-coefficients. Finally we say that W is a ribbon cobordism from Y0 to Y1 if W is
built from Y0 � Œ0; 1� by attaching only 1-handles and 2-handles.

We write Y1 � Y0 if there exists a ribbon Q-homology cobordism from Y0 to Y1. Clearly this defines a
preorder, ie the relation � is reflexive and transitive. It is less clear whether this is antisymmetric and so
defines a partial order, ie if Y0 � Y1 and Y1 � Y0, are then Y0 and Y1 homeomorphic?

The following conjecture was formulated by Daemi, Lidman, Vela-Vick, and Wong [3, Conjecture 1.1]:

Conjecture 1.1 The preorder on the set of homeomorphism classes of closed , connected , oriented
3-manifolds given by ribbon Q-homology cobordism is a partial order , ie if one has Y0 � Y1 and Y1 � Y0

then Y0 and Y1 are homeomorphic.

We prove this conjecture for irreducible 3-manifolds.

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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Theorem 1.2 The preorder � is a partial order on the set of homeomorphism classes of irreducible ,
closed , connected , oriented 3-manifolds. In particular , if Y0 � Y1 and Y1 � Y0, then Y0 and Y1 are
homeomorphic.

In fact for aspherical 3-manifolds we can prove a refinement.

Theorem 1.3 The preorder � is a partial order on the set of orientation-preserving homeomorphism
classes of aspherical , closed , connected , oriented 3-manifolds. In particular , if Y0 � Y1 and Y1 � Y0,
then there exists an orientation-preserving homeomorphism from Y0 to Y1.

It is not clear to us whether the conclusion of Theorem 1.3 also holds for irreducible 3-manifolds that are
not aspherical. This leads us to the following question. To formulate it, we call an oriented 3-manifold
chiral if it does not admit a self-homeomorphism which is orientation-reversing.

Question 1.4 Does there exist a chiral spherical oriented 3-manifold Y with Y � �Y ?

In the proofs of Theorems 1.2 and 1.3 we make essential use of the methods employed by Agol to prove
that ribbon concordance is a partial order. More precisely, Agol’s methods apply to the situation we are
considering and provide us with the following theorem.

Theorem 1.5 Suppose Y is a closed , connected , oriented 3-manifold. Suppose W is a ribbon Q-
homology cobordism from Y� Š Y to YC Š Y , ie YC � Y� (and so from Y to itself). Then the inclusion
�C W YC!W induces an isomorphism on fundamental groups.

Using Theorem 1.5 one can easily prove the following corollary which is the key ingredient in the proofs
of Theorems 1.2 and 1.3.

Corollary 1.6 Suppose W0 is a ribbon Q-homology cobordism from Y0 to Y1, so that Y1 � Y0. Suppose
that W1 is a ribbon Q-homology cobordism from Y1 to Y0, so that Y0�Y1. Then the injection �0 WY1!W0

induces an isomorphism of fundamental groups , and likewise for the injection �1 W Y0!W1.

Remark We use the convention of [3], in which Conjecture 1.1 has been formulated, where Y1 � Y0

means that there is a ribbon cobordism from Y0 to Y1, as defined above. We would like to point out
that this may result in some confusion when comparing with Gordon’s initial convention [5] and the
one employed in [1], where a ribbon concordance goes from K1 to K0 if the exterior E.C / of the
concordance C is obtained by adding only 1-handles and 2-handles to E.K0/� Œ0; 1�. In other words,
in their convention, a ribbon cobordism goes from the more complex object to the simpler one.

Outline 1 In Section 2 we will state and prove some auxiliary results that we will need for the proof of
our main results, Theorems 1.2 and 1.3. In Section 3 we provide the proof of Theorem 1.3. Afterwards
in Section 4 we will use Theorem 1.3 as an ingredient in our proof of Theorem 1.2. Finally Section 5
contains a sketch of proof of Theorem 1.5 which is almost verbatim identical to Agol’s proof in the
context of knot complements, together with the proof of Corollary 1.6.
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2 Preparations

In this short section we collect a few basic facts that we will use in the proof of Theorem 1.2. The
following appears as [3, Proposition 2.1].

Proposition 2.1 (Daemi, Lidman, Vela-Vick, Wong) Let Y0 and Y1 be closed , connected , oriented
3-manifolds and let W be a cobordism from Y0 to Y1. We denote by �0 W Y0!W and �1 W Y1!W the
obvious inclusion maps.

(1) If W is a ribbon cobordism , then the map .�1/� W �1.Y1/! �1.W / is an epimorphism.

(2) If W is a ribbon Q-homology cobordism , then the map .�0/� W�1.Y0/!�1.W / is a monomorphism.

By definition, a ribbon cobordism W from Y0 to Y1 is obtained from Y0 � Œ0; 1� by attaching 1-handles
and 2-handles. Flipping W upside down, we see that W can equivalently be viewed as Y1 � Œ0; 1� with
some 2-handles and 3-handles attached. This immediately implies the first statement. For the second
statement, Daemi, Lidman, Vela-Vick, and Wong use Gersenhaber and Rothaus’ Theorem 2 in [4], much
in the same way as initially done by Gordon in [5, Proof of Lemma 3.1], using the residual finiteness of
3-manifold groups.

The next proposition gives us some homological information about Q-homology cobordisms.

Proposition 2.2 Let Y0 and Y1 be closed , connected , oriented 3-manifolds. We consider their funda-
mental classes ŒY0� 2H3.Y0IZ/ and ŒY1� 2H3.Y1IZ/. Let W be a cobordism from Y0 to Y1. If W is a
Q-homology cobordism , then the maps .�0/� WH3.Y0IZ/!H3.W IZ/ and .�1/� WH3.Y1IZ/!H3.W IZ/

are both isomorphisms. Furthermore .�0/�.ŒY0�/D .�1/�.ŒY1�/ 2H3.W IZ/.

Proof Let i 2 f0; 1g. We have the following commutative diagram:

� � � // H4.W;Yi IZ/ // H3.Yi IZ/
.�i /�

//

��

H3.W IZ/ //

��

H3.W;Yi IZ/ // � � �

H3.Yi IQ/Š
.�i /�

// H3.W IQ/
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Since W is a Q-homology cobordism we know that the bottom horizontal map is an isomorphism. It
follows from this observation and the universal coefficient theorem that the kernel and the cokernel of
the map .�i/� WH3.Yi IZ/!H3.W IZ/ are finite. But by Poincaré duality and the universal coefficient
theorem we see that

H3.W;Yi IZ/ŠH 1.W;Y1�i IZ/Š Hom.H1.W;Y1�i IZ/;Z/˚Ext.H0.W;Y1�i IZ/;Z/

is torsion-free. Similarly, we see that H4.W;Yi IZ/ is torsion-free, since

H4.W;Yi IZ/ŠH 0.W;Y1�i IZ/Š Hom.H0.W;Y1�i IZ/;Z/:

In summary, we see that the two maps .�0/� WH3.Y0IZ/!H3.W IZ/ and .�1/� WH3.Y1IZ/!H3.W IZ/

are isomorphisms.

It remains to show that .�0/�.ŒY0�/D .�1/�.ŒY1�/ 2H3.W IZ/. We consider the long exact sequence of
the pair .W;Y0[Y1/:

� � � !H4.W;Y0[Y1IZ/
@
�!H3.Y0[Y1IZ/!H3.W IZ/! � � � :

It is well known that @.ŒW �/D Œ@W �. Since W is a cobordism, we have @W D Y1 t .�Y0/; in particular
Œ@W �D ŒY1�� ŒY0�. Since the sequence is exact we see that the image of ŒY1�� ŒY0� is zero in H3.W IZ/,
ie we have .�0/�.ŒY0�/� .�1/�.ŒY1�/D 0 2H3.W IZ/.

Lemma 2.3 Suppose that we have a continuous map g WX !Z, between path-connected topological
spaces X and Z which admit the structure of a CW-complex. Then for any k the following diagram
commutes:

Hk.X IZ/ Hk.ZIZ/

Hk.�1.X /IZ/ Hk.�1.Z/IZ/

.jX /�

g�

.jZ/�

g�

Here the group homology Hi.GIZ/ of a group G is defined to be the singular homology of its as-
sociated K.G; 1/-space: Hi.GIZ/ WD Hi.K.G; 1/IZ/. Furthermore jX W X ! K.�1.X /; 1/ and
jZ WZ!K.�1.Z/; 1/ are the natural maps of the respective spaces to the Eilenberg–Mac Lane space
associated to their fundamental groups.

Proof We denote by K.g/ WK.�1.X /; 1/!K.�1.Z/; 1/ the map induced by the group homomorphism
g� W �1.X /! �1.Z/. By construction this map induces the map

g� W �1.X /
Š�! �1.K.�1.X /; 1//! �1.K.�1.Z//; 1/

Š�! �1.Z/:

Therefore, the two maps K.g/ ı jX and jZ ıg induce the same maps on the fundamental group. Since
their image space K.�1.Z/; 1/ is aspherical, these two maps are homotopic by Whitehead’s theorem,
and hence induce the same maps in homology.
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Theorem 2.4 Let Y0 and Y1 be irreducible , closed , orientable 3-manifolds and let ˛ W �1.Y0/! �1.Y1/

be an isomorphism.

(1) If Y0 and Y1 are not lens spaces , then Y0 and Y1 are homeomorphic.

(2) If Y0 and Y1 are not spherical , then there exists a homeomorphism g W Y0! Y1 which induces ˛,
ie which satisfies g� D ˛ W �1.Y0/! �1.Y1/.

Proof The theorem is stated as [2, Theorem 2.1.2]. It is a consequence of the geometrization theorem,
the Mostow rigidity theorem, work of Waldhausen [11, Corollary 6.5] and Scott [10, Theorem 3.1], and
classical work on spherical 3-manifolds (see [9, page 113]).

We conclude our section of preparations with the following theorem, recently proved by Huber [7].

Theorem 2.5 (Huber) Let L.p1; q1/ and L.p2; q2/ be lens spaces. If L.p1; q1/�L.p2; q2/, then one
of the following holds:

(1) The lens spaces are homeomorphic.

(2) There exists an n� 2 with L.p1; q1/ŠL.n; 1/ and p2=q2 2 Fn, where

Fn WD

�
nm2

nmkC 1

ˇ̌̌
m> k > 0; gcd.m; k/D 1

�
:

(3) L.p1; q1/Š S3.

3 Proof of Theorem 1.3

We first provide the proof of Theorem 1.3, since the statement of Theorem 1.3 gives us also most of
Theorem 1.2.

Proof of Theorem 1.3 Let Y0 and Y1 be aspherical, closed, connected, oriented 3-manifolds. We
assume that Y0 � Y1 and that Y1 � Y0. We need to show that there exists an orientation-preserving
homeomorphism from Y0 to Y1.

Let W be a ribbon Q-homology cobordism from Y0 to Y1. We denote by �0 W Y0!W and �1 W Y1!W

the obvious inclusion maps. Since we also assume that Y1 � Y0, we obtain from Corollary 1.6
that .�1/� W �1.Y1/ ! �1.W / is an isomorphism. Furthermore by Proposition 2.1(2) we know that
.�0/� W �1.Y0/! �1.W / is a monomorphism. We write ˛ WD ..�1/�/�1 ı .�0/� W �1.Y0/! �1.Y1/.

Since Y1 is aspherical, there exists a map f W Y0! Y1 with f�D ˛ W�1.Y0/!�1.Y1/. We will show that
this map f has degree equal to ˙1. For this we consider the following diagram, which is commutative
by Lemma 2.3:

(1)
H3.Y0IZ/ H3.W IZ/ H3.Y1IZ/

H3.�1.Y0/IZ/ H3.�1.W /IZ/ H3.�1.Y1/IZ/

.j0/� Š

.�0/�

Š

.jW /�

Š

.�1/�

.j1/�Š

.�0/� .�1/�

Š

Algebraic & Geometric Topology, Volume 25 (2025)
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Here, j0 WY0 ,!K.�1.Y0/; 1/ is the natural map of Y0 to the Eilenberg–MacLane space of its fundamental
group, and likewise j1 and jW are defined.

It follows from our hypothesis that W is a Q-homology cobordism and Proposition 2.2 that the horizontal
maps in the first line of this diagram are isomorphisms. By hypothesis Y0 and Y1 are already aspherical,
ie they are Eilenberg–MacLane spaces. Therefore, the maps .j0/� and .j1/� are isomorphisms.

Now by commutativity of the right square in the diagram (1), the vertical map .jW /� induced by the
inclusion map jW must be an isomorphism. Therefore, by commutativity of the left square in this diagram,
we conclude that the map .�0/� WH3.�1.Y0/IZ/!H3.�1.W /IZ/ is an isomorphism.

As in the proof of Lemma 2.3 above, we denote by K.'/ W K.G; 1/! K.H; 1/ the map induced on
Eilenberg–MacLane spaces by a group homomorphism ' WG!H . In our situation, we have the two maps
f W Y0! Y1 and K..�1/

�1
� /ıK..�0/�/ W Y0! Y1, where we identify Y0 and Y1 with Eilenberg–MacLane

spaces of their respective fundamental groups. Both induce the same map at the level of fundamental
groups. Since Y1 is aspherical, these maps are homotopic by Whitehead’s theorem. Therefore, they
induce the same map on homology. By the above observation that the bottom maps in diagram (1) are
isomorphisms, we conclude that f� WH3.Y0/!H3.Y1/ is an isomorphism, and therefore f has degree˙1.

By a standard argument a map f W Y0 ! Y1 of degree ˙1 induces an epimorphism of fundamental
groups. Since we already know that f� D ˛ is a monomorphism, we see that f� W �1.Y0/! �1.Y1/ is an
isomorphism. Thus it follows from Theorem 2.4(2) that there exists a homeomorphism g W Y0! Y1 that
induces f� D ˛. It remains to show that g is orientation-preserving. To do so we consider the following
commutative diagram:

(2)

H3.Y0IZ/ H3.W IZ/ H3.Y1IZ/

H3.�1.Y0/IZ/ H3.�1.W /IZ/ H3.�1.Y1/IZ/

H3.�1.Y0/IZ/ H3.�1.Y1/IZ/

H3.Y0IZ/ H3.Y1IZ/

.j0/� Š

.�0/�

Š

.jW /�

Š

.�1/�

.j1/�Š

.�0/�

id

.�1/�

Š

id

˛Df�Dg�

.j0/�Š

g�

Š

.j1/� Š

We already know that the top part of the diagram (2) commutes. The center part of diagram (2) commutes
since ˛ D ..�1/�/�1 ı .�0/�. The bottom part of diagram (2) commutes again by Lemma 2.3. Finally by
design we have ˛ D f� D g�.

By Proposition 2.2 we know that .�0/�.ŒY0�/D .�1/�.ŒY1�/ 2H3.W IZ/. But by the above this implies
that g�.ŒY0�/D ŒY1�.
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4 Proof of Theorem 1.2

Proof of Theorem 1.2 Let Y0 and Y1 be irreducible closed connected oriented 3-manifolds. We assume
that Y0 � Y1 and that Y1 � Y0. We need to show that Y0 and Y1 are homeomorphic. If �1.Y0/ and
�1.Y1/ are infinite, it follows by a standard argument, using the sphere theorem, that Y1 is aspherical;
see [2, page 48]. Thus we see that the statement follows from Theorem 1.3.

Therefore it suffices to consider the case that �1.Y0/ or �1.Y1/ is finite. We assume that Y0 � Y1 and
that Y1 � Y0. We need to show that Y0 and Y1 are homeomorphic. By symmetry we can assume that
�1.Y1/ is finite.

Let W0 be a ribbon Q-homology cobordism from Y0 to Y1 and let W1 be a ribbon Q-homology cobordism
from Y1 to Y0. By Corollary 1.6 we know that the inclusion-induced maps �1.Y1/ ! �1.W0/ and
�1.Y0/! �1.W1/ are isomorphisms, and by Proposition 2.1 we know that the inclusion-induced maps
�1.Y0/! �1.W0/ and �1.Y1/! �1.W1/ are monomorphisms.

It follows that j�1.Y1/j � j�1.W1/j D j�1.Y0/j � j�1.W0/j D j�1.Y1/j. Since �1.Y1/ is finite we see
that we have equalities throughout and we see that all the inclusion-induced maps are isomorphisms. In
particular we see that �1.Y0/Š �1.Y1/.

First we consider the case that �1.Y0/, and thus also �1.Y1/, is not cyclic. In this setting it follows from
Theorem 2.4 that Y0 is homeomorphic to Y1.

Finally we consider the case that �1.Y0/, and thus also �1.Y1/, is cyclic. It follows from [2, page 25]
that neither Y0 nor Y1 are lens spaces. But it follows almost immediately from Theorem 2.5 that if for
two lens spaces Y0 and Y1 we have Y1 � Y0 and if they have isomorphic fundamental groups, then Y0

and Y1 are homeomorphic.

5 Sketch of proof of Theorem 1.5

In this section we provide a sketch of proof of Theorem 1.5 and Corollary 1.6, both of which are essentially
due to [1], although his formulation is in the context of knot complements.

Sketch of proof of Theorem 1.5 This follows almost verbatim in the same way as in all but the last
paragraph of [1, Proof of Theorem 1.2]. The only comment to make is that his proof uses residual
finiteness of fundamental groups of knot complements. This is due to [6], using Thurston’s proof of his
geometrization conjecture for Haken manifolds. In our situation, we need the fact that all fundamental
groups of 3-manifolds are residually finite, and this uses the full geometrization conjecture, together with
Hempel’s result. We will outline this proof for the sake of completeness.

Suppose that W is a rational ribbon homology cobordism from Y� to YC, where both YC and Y�

are homeomorphic to Y . For a finitely presented group � , Agol considers the representation variety
RN .�/D Hom.�;SO.N // for some N � 1, and in the case of a path-connected topological space X ,
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he defines RN .X / WD RN .�1.X //. This representation variety is a real algebraic set. Since the in-
clusion �C W YC ! W defines a surjection at the level of fundamental groups, we obtain an injection
��C WRN .W /!RN .YC/ by precomposition of representations with .�C/� W �1.YC/! �1.W /. In fact,
since there is a presentation of �1.W / obtained by one from �1.YC/ by only possibly adding relations,
but no generators, one can realize RN .W / as an algebraic subset of RN .YC/, RN .W /�RN .YC/.

On the other hand, the inclusion �� W Y�!W induces an injection of fundamental groups, and Daemi,
Lidman, Vela-Vick, and Wong [3, Proposition 2.1] showed that the induced map .��/� W RN .W /!

RN .Y�/ is surjective. Both of these results build on work of Gerstenhaber and Rothaus: the first statement
uses [4, Theorem 2], using the residual finiteness of �1.Y�/, and the second statement builds on [4,
Theorem 1], where it is essential that the Lie group that Agol considers, the group SO.N /, is compact.

At this stage, RN .Y�/ and RN .YC/ have a priori been considered using different presentations, but a
sequence of Tietze moves between the presentations induces a polynomial isomorphism � WRN .Y�/!

RN .YC/ between these. Together with the statement in the last paragraph, one obtains a surjective
polynomial map � ı .��/� W RN .W / ! RN .YC/. At this stage Agol uses the following algebraic-
geometric lemma [1, Lemma A.2]: if X and Z are real algebraic sets, with X � Z, and if there is
a surjective polynomial map ' W X ! Z, then X D Z. Applied to our problem, this implies that
RN .YC/DRN .W /, induced by the inclusion .�C/� WRN .W /!RN .YC/. Finally, by using residual
finiteness of �1.YC/ again, and by the fact that any finite group embeds into some SO.N / for sufficiently
large N, we conclude as in Agol’s situation that .�C/� W �1.YC/! �1.W / is an isomorphism, using
RN .YC/DRN .W /.

Proof of Corollary 1.6 Suppose that W0 is a ribbon Q-homology cobordism from Y0 to Y1, and that
W1 is a ribbon Q-homology cobordism from Y1 to Y0. We denote by �10 W Y1!W0 the natural inclusion.
We form a Q-homology ribbon cobordism from Y� WD Y1 to YC WD Y1 by gluing W0 and W1 along Y0,
and we denote by �C W YC!W the natural inclusion. Finally, we denote by j WW0!W the natural
inclusion. Then clearly �C D j ı �10. This induces a commutative diagram between fundamental groups:

(3)
�1.Y1/

�1.W0/ �1.W /

.�10/�
.�C/�

j�

By Theorem 1.5, the map .�C/� is an isomorphism. Since W0 is a ribbon Q-homology cobordism from
Y0 to Y1 it follows from Proposition 2.1(1) that the map .�10/� is a surjection. By commutativity of the
diagram we conclude that .�10/� is a monomorphism. Thus in summary it is in fact an isomorphism.
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A cubulation with no factor system

SAM SHEPHERD

The primary method for showing that a given cubulated group is hierarchically hyperbolic is by con-
structing a factor system on the cube complex. We show that such a construction is not always possible,
namely we construct a cubulated group for which the cube complex does not have a factor system. We
also construct a cubulated group for which the induced action on the contact graph is not acylindrical.

20F65; 20F67

1 Introduction

A cubulated group G ÕX is a group G together with a proper cocompact action of G on a CAT(0) cube
complex X (and if G is fixed then each such action is called a cubulation of G). Numerous groups can be
cubulated, including small cancellation groups, finite volume hyperbolic 3-manifold groups and many
Coxeter groups — see Wise [15] for further background and examples. In turn, many cubulated groups
are examples of hierarchically hyperbolic groups (HHGs), a class of groups that includes hyperbolic
groups, relatively hyperbolic groups and mapping class groups among others — see Behrstock, Hagen
and Sisto [3; 4] for relevant definitions and background. The primary method for showing that a given
cubulated group G ÕX is an HHG is by constructing a certain family of subcomplexes of X , called a
factor system, which we define below following [3]. Many cubulated groups are known to have factor
systems, including virtually special cubulated groups [3, Proposition B] — see also Hagen and Susse [9].

Definition 1.1 Let X be a CAT(0) cube complex. Each hyperplane H in X has an associated carrier
H � Œ�1; 1� � X , and we call the convex subcomplexes H � f˙1g combinatorial hyperplanes. For a
convex subcomplex K �X we let gK WX !K denote the closest point projection to K. A collection F

of subcomplexes of X is called a factor system if it satisfies the following:

(1) X 2 F.

(2) Each F 2 F is a nonempty convex subcomplex of X .

(3) There exists �� 0 such that for all x 2X .0/, at most � elements of F contain x.

(4) Every nontrivial convex subcomplex parallel to a combinatorial hyperplane of X is in F.

(5) There exists � � 0 such that for any pair of subcomplexes F;F 0 2 F, either gF .F
0/ 2 F or

diam.gF .F
0// < � .
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256 Sam Shepherd

Our first theorem is as follows, which answers a question of Behrstock, Hagen and Sisto [3, Question 8.13].

Theorem 1.2 There is a cubulated group G ÕX such that X does not have a factor system.

Hagen and Susse [9, Theorem A] provided three separate sufficient conditions for a cubulated group
G ÕX to admit a factor system:

(1) the action is rotational,

(2) it satisfies the weak finite height condition for hyperplanes, and

(3) it satisfies the essential index condition together with the Noetherian intersection of conjugates
condition on hyperplane stabilizers.

Theorem 1.2 gives the first known example of a cubulated group that fails all of these conditions (see
Remark 2.4 for more on this). The example behind Theorem 1.2 also contains pairs of hyperplanes that
are L-well-separated but not .L�1/-well-separated for arbitrarily large L (Remark 2.3), which provides
a negative answer to a question of Genevois [7, Question 6.69 (first part)].

Associated to a CAT(0) cube complex X is the contact graph CX : the vertices are the hyperplanes of X ,
and edges correspond to pairs of hyperplanes whose carriers intersect (equivalently, pairs of hyperplanes
that are not separated by a third hyperplane). The contact graph is always a quasitree — see Hagen [8] —
so in particular it is hyperbolic. Moreover, the contact graph is a key ingredient of the HHG structure that
one usually builds for cubulated groups. More precisely, if a cubulated group G ÕX has a G-invariant
factor system F, then one can build an HHG structure for G by taking the contact graph CF of each
F 2 F and coning off certain subgraphs of CF that correspond to smaller elements of F— see [3] for
details. The existence of a factor system for G ÕX also implies that the induced action of G on CX is
acylindrical [3, Theorem D]. (Recall that the action of a group G on a metric space .M; d/ is acylindrical
if for all � > 0 there exist R;N >0 such that d.x; y/�R implies that there are at most N elements g 2G
satisfying d.x; gx/; d.y; gy/ < �.) The following theorem is therefore a strengthening of Theorem 1.2.

Theorem 1.3 There is a cubulated group G ÕX for which the induced action on the contact graph CX

is not acylindrical.

This theorem is even more surprising in light of Genevois [6, Theorem 1.1], which implies that every
cubulated group G ÕX has a nonuniformly acylindrical action on CX (nonuniformly meaning that “at
most N elements” is replaced by “finitely many elements” in the definition of acylindrical).

Briefly, the construction for Theorem 1.2 is to take a free cocompact action of a group � on a product of
trees T1 �T2 that contains an antitorus, and then �-equivariantly attach infinite strips to T1 �T2 along
antitori axes. The details are in Section 2. The construction for Theorem 1.3 builds on this by defining a
certain HNN extension ƒD ��Z, and an action of ƒ on a cube complex that splits as a tree of spaces,
with vertex spaces being copies of T1 �T2 and edge spaces corresponding to the infinite strips described
above. The arguments for this are in Section 3. Although � admits a cubulation without a factor system,
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it is still an HHG because � Õ T1�T2 is another cubulation that does have a factor system. On the other
hand, we do not know whether our second group ƒ admits a cubulation with a factor system, and we do
not know whether ƒ is an HHG. In particular, the question of whether all cubulated groups are HHGs is
still open [4, Question A]. One possible strategy is to find a cubulated group with no largest acylindrical
action (see Definition 3.4), since all HHGs have a largest acylindrical action — see Abbott, Behrstock and
Durham [2]. This does not work for the group ƒ however, as we prove in Proposition 3.6 that ƒ does
have a largest acylindrical action.

Acknowledgements I am grateful for Mark Hagen’s suggestion of considering antitori, which made
my construction for Theorem 1.2 more general. Thanks go to Anthony Genevois for his comments, in
particular regarding Remark 3.3. And I thank the referee for their comments and corrections. I am also
thankful for the support of the Institut Henri Poincaré (UAR 839 CNRS-Sorbonne Université), and LabEx
CARMIN (ANR-10-LABX-59-01).

2 Example with no factor system

Let T1 and T2 be locally finite trees, and let � be a group acting freely and cocompactly on T1 � T2.
Suppose that elements g1; g2 2 � form an antitorus, meaning firstly that they translate nontrivially along
intersecting axes `1�fp2g; fp1g�`2 � T1�T2 respectively (so p1 2 `1 and p2 2 `2), and secondly that
no nonzero powers of g1 and g2 commute. In addition, suppose that g1 and g2 are not proper powers in � .
The condition that no powers of g1 and g2 commute is equivalent to saying that the flat …D `1 � `2 is
not periodic. We also note that the existence of an antitorus implies that � is irreducible [10, Lemma 18],
meaning it does not have a finite-index subgroup that splits as a product �1 ��2 with �i acting trivially
on T3�i . Examples of antitori were constructed by Wise [14], Janzen and Wise [10] and Rattaggi [12].
The smallest example is in [10], where .T1 �T2/=� consists of one vertex, four edges and four 2-cells.
See [5] for more about antitori and irreducible lattices in products of trees.

Choose orientations for the edges in the finite quotient .T1 �T2/=� , and label them with distinct letters
from an alphabet A. Lift this labeling to T1 �T2. Each finite edge path in T1 �T2 or its quotient is thus
labeled by some word w on A˙, and we denote the length of w by jwj. The axes `1�fp2g and fp1g�`2

descend to loops in .T1 �T2/=� based at � � .p1; p2/; say these loops are labeled by words w1 and w2

respectively. Lifts of the w1-loop to T1 �T2 will be referred to as w1-geodesics (equivalently, these are
�-translates of `1 � fp2g).

Lemma 2.1 For any n� 1 there exists a w1-geodesic whose intersection with … is a finite path of the
form  � fyg � `1 � `2, with p1 2  and  of length at least n.

Proof For each i � 1, consider the rectangle in … with two sides labeled by wn
1 and wi

2 that meet at the
vertex .p1; p2/, as shown in Figure 1. Note that the bottom side is a subpath of the axis `1 � fp2g, while
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.p1; p2/ wn
1

wi
2

vi

˛i � fyig

Figure 1: Rectangle in … with two sides labeled by wn
1 and wi

2 that meet at the vertex .p1; p2/.

the left-hand side is a subpath of the axis fp1g � `2. Let ˛i � fyig denote the top side, and suppose that
it is labeled by the word vi . There are only finitely many words of length jwn

1 j, so vi D viCj for some
i; j � 1. Since ˛i � fyig and ˛iCj � fyiCj g are both labeled by vi , the element gj

2 maps ˛i � fyig to
˛iCj �fyiCj g. Moreover, gj

2 preserves the axis fp1g� `2, so it maps the rectangle shown in Figure 1 to
another rectangle in …. Restricting to the bottom sides of the rectangles, we see that gj

2 maps the subpath
of `1 � fp2g labeled wn

1 to j̨ � fyj g, so vj D wn
1 .

The path ˛ � fyg WD j̨ � fyj g extends to a unique w1-geodesic. Let  � fyg � `1 � `2 denote the
intersection of this w1-geodesic with …. Since p1 2 ˛ �  , and since ˛ has length jwn

1 j � n, it remains
to show that  is finite. Say that p1 splits  into subpaths 1 and 2, with ˛ being an initial segment
of 2. We will show that 2 is finite — finiteness of 1 follows by a similar argument.

For k � n, consider the rectangle in … with two sides labeled by wk
1 and wj

2 that meet at the vertex
.p1; p2/, as shown in Figure 2. Let ˇk � fyg denote the top side. Note that ˛ � fyg is an initial segment
of ˇk � fyg. Say the right-hand side is labeled by the word v0

k
. The same argument we used earlier in

the proof shows that v0
k
D w

j
2 for some k. For this k, we then argue that 2 has length less than jwk

1 j.
Indeed, otherwise 2 � fyg would contain ˇk � fyg as an initial segment, so ˇk � fyg would be labeled
by wk

1 , but then the labels on the rectangle would imply that gk
1 and gj

2 commute, contradicting the fact
that g1 and g2 form an antitorus. Thus 2 is finite, as required.

To construct a cubulation of � with no factor system we first take the quotient .T1 � T2/=� , then we
attach an annulus by gluing one boundary component along the edge loop labeled by w1, and then we
let X be the universal cover. If the annulus is subdivided into jw1j squares then X is a CAT(0) cube
complex. Attaching the annulus to .T1 �T2/=� doesn’t change the fundamental group, so � acts on X
by deck transformations. The picture upstairs is that X is obtained from T1 �T2 by attaching an infinite
strip to each w1-geodesic (and only one strip since g1 is not a proper power). We already remarked that
.T1 �T2/=� has only four 2-cells for the example in [10]; moreover the word w1 has length two in this
case, so the cube complex X=� would be a VH-complex consisting of just six 2-cells.

Theorem 2.2 X has no factor system.

Algebraic & Geometric Topology, Volume 25 (2025)



A cubulation with no factor system 259

.p1; p2/ wk
1

w
j
2

v0
k

˛� fyg

ˇk � fyg

Figure 2: Rectangle in … with two sides labeled by wk
1 and wj

2 that meet at the vertex .p1; p2/.

Proof Suppose for contradiction that X has a factor system F. In X , there is an infinite strip glued to
each w1-geodesic, and there is a hyperplane that runs along the middle of each infinite strip (shown as
dotted red lines in Figure 3). Hence each w1-geodesic is a combinatorial hyperplane in X , and is an
element of F by Definition 1.1(4). In particular F WD `1 � fp2g 2 F.

Choose an integer n� 1 and apply Lemma 2.1. This provides us with aw1-geodesic F 0 whose intersection
with … is a finite path of the form  � fyg � `1 � `2 D…, with p1 2  and  of length at least n. The
projection gF W X ! F maps  � fyg to  � fp2g, and it maps the rest of F 0 to the endpoints of
 �fp2g. By Definition 1.1(5), the image gF .F

0/D  �fp2g is in F for sufficiently large n. But we have
.p1; p2/ 2 gF .F

0/ for all n, so we contradict Definition 1.1(3).

Remark 2.3 If H and H 0 are the hyperplanes that run along the strips glued to F and F 0 from the
above proof (see Figure 3), then the hyperplanes that are transverse to both H and H 0 are precisely the
hyperplanes that cross the path  �fyg. Moreover, this collection of hyperplanes has no facing triples, so
if  has length L then H and H 0 are L-well-separated but not .L�1/-well-separated. We can choose
H and H 0 so that L is arbitrarily large, so this provides a negative answer to a question of Genevois [7,
Question 6.69 (first part)].

Remark 2.4 Hagen and Susse [9, Theorem A] provided three separate sufficient conditions for a
cubulated group to admit a factor system. Since X has no factor system, we know that � ÕX does not
satisfy any of these three conditions. We describe what these conditions are below, and outline some
direct arguments for why they fail for � ÕX :

(1) A cubulated group G Õ Z is rotational if for each hyperplane B there is a finite-index subgroup
KB < StabG.B/ such that, for any hyperplane A disjoint from B and all k 2KB , the carriers of A and
kA are either equal or disjoint.

For our cubulated group � ÕX , we can consider B DH to be the hyperplane shown in Figure 3, and
we can show that for any 1 ¤ k 2 Stab�.H/ there is a hyperplane A disjoint from H such that the
carriers of A and kA are distinct but not disjoint. Indeed, for 1¤ k 2 Stab�.H/D hg1i we know that
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F D `1 � fp2g

F 0

gF .F
0/D  � fp2g

 � fyg

.p1; p2/

H

H 0

Figure 3: The w1-geodesics F and F 0 with their attached strips.

k.fp1g � `2/\… is a finite path (else k would commute with some power of g2 by a similar argument
to the proof of Lemma 2.1, contradicting the fact that g1 and g2 form an antitorus), so there must be a
vertex x 2 `2 incident to an edge e � `2 such that k.p1; x/ 2 `1 � fxg but k.fp1g � e/ ª …. With A
being the hyperplane dual to fp1g� e, the intersection of the carriers of A and kA is T1�fxg, which is a
proper subset of the carrier of A (it is one of the combinatorial hyperplanes of A).

(2) A cubulated group G Õ Z satisfies the weak finite height condition for hyperplanes if the fol-
lowing holds for each hyperplane A and its stabilizer K D StabG.A/: if fgig � G is an infinite set
such that K \

T
i2J K

gi is infinite for all finite J � I , then there exist distinct gi and gj such that
K \Kgi DK \Kgj .

This condition fails for our cubulated group � ÕX (in fact it also fails for � Õ T1 �T2) by considering
an edge e � `2 and taking A to the hyperplane dual to fp1g � e. Then the stabilizer K D Stab�.A/ is
just the stabilizer of e with respect to the action � Õ T2. For any i � 1 we know that gi

1.fp1g� `2/\…

is finite (as in case (1)), or equivalently gi
1`2\ `2 � T2 is finite. The element g2 translates along `2, so

for any power gj
2 the conjugate Kg

j
2 is the �-stabilizer of the edge gj

2e � `2. Thus gi
1 … K

g
j
2 for all

sufficiently large j � 1. Since T2 is locally finite, K and Kg
j
2 are commensurable in � for any j , and

hg1i \K
g

j
2 is infinite since g1 fixes the vertex p2 2 T2. Hence, we may construct increasing sequences

of positive integers .ik/ and .jk/ such that gik

1 is not in Kg
jk
2 but gikC1

1 is. Therefore,

K \Kg
j1
2 ©K \Kg

j2
2 ©K \Kg

j3
2 © � � �

is a strictly descending chain of commensurable (hence infinite) subgroups of � , which means the weak
finite height condition for hyperplanes does not hold for � ÕX .
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(3) The third condition has two parts. A cubulated group G ÕZ satisfies the essential index condition if
there is a constant � such that for any F 2 F (where F is the smallest collection of convex subcomplexes
of Z that contains Z, contains all combinatorial hyperplanes, and is closed under closest point projection)
the G-stabilizer of F has index at most � in the G-stabilizer of the essential core of F . A cubulated group
G ÕZ satisfies the Noetherian intersection of conjugates (NIC) condition on hyperplane stabilizers if
the following holds for each hyperplane stabilizer K: given fgig �G such that Kn DK \

Tn
iD0K

gi is
infinite for all n, there exists l such that Kn and Kl are commensurable for n� l .

Our cubulated group � ÕX satisfies the NIC condition for hyperplane stabilizers (because all hyperplane
stabilizers are either cyclic or commensurated) but fails the essential index condition as follows. Suppose
the geodesic `1�fp2g (from Figure 3) crosses the hyperplanesH1;H2;H3; : : :, respectively, when starting
at .p1; p2/ and moving in the direction of translation of g1. Let Fi be the combinatorial hyperplane of Hi

that is on the same side of Hi as .p1; p2/. Let F be as described above for our cubulated group � ÕX ,
and consider the subcomplexes gF1

.Fi / 2 F. Given an integer n � 1, as in the proof of Theorem 2.2
we can apply Lemma 2.1 to obtain a w1-geodesic F 0 whose intersection with … is a finite path of the
form  � fyg � `1 � `2 D …, with p1 2  and  of length at least n. Moreover, it follows from the
proof of Lemma 2.1 that we can take .p1; y/D g

k
2 .p1; p2/ for some k ¤ 0, and we may assume that the

subpath of  � fyg that starts at .p1; y/ and moves in the direction of translation of gk
2g1g

�k
2 has length

at least n. Let e and e0 be the edges in F1 incident at vertices .p1; p2/ and .p1; y/, respectively, that
cross the hyperplanes H and H 0 respectively (again from Figure 3). Note that gk

2e D e
0. One can show

that e � gF1
.Fi / for all i . On the other hand, e0 � gF1

.Fi / for 1� i � n but for only finitely many i in
total. One can then argue that gk

2 is in the �-stabilizer of gF1
.Fi / for 1� i � n but for only finitely many

i in total. This can be done for any n� 1, so the �-stabilizers of the gF1
.Fi / is a descending sequence

of subgroups that never terminates. Meanwhile, all the gF1
.Fi / have essential core fp1g � T2, so the

essential index condition fails.

3 Example with nonacylindrical action on the contact graph

We now construct a free cocompact action of a group ƒ on a CAT(0) cube complex Y , such that the
induced action on the contact graph CY is not acylindrical. We start with the action of � on T1�T2 from
Section 2, with elements g1; g2 2 � forming an antitorus. We retain all the notation from Section 2, so
in particular g1 translates along an axis `1 � fp2g � T1 �T2 which descends to a loop in .T1 �T2/=�

labeled by w1. Next we attach an annulus to .T1 � T2/=� by gluing both its boundary components
(with matching orientations) along the loop labeled by w1. We make this a nonpositively curved cube
complex by subdividing the annulus into jw1j squares, and we let Y be the universal cover. Unlike for the
construction of X in Section 2, we have glued both boundary components of the annulus to .T1�T2/=� ,
so the gluing changes the fundamental group from � to the HNN extension

(3-1) ƒ WD ��hg1i
D h�; t j tg1t

�1
D g1i;

Algebraic & Geometric Topology, Volume 25 (2025)
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F

F 0

F 00

gF .F
0/.p1; p2/

gn.p1; p2/
r

Figure 4: The positioning of gn.p1; p2/.

and ƒ acts on Y by deck transformations. Observe that Y has the structure of a tree of spaces, where
the vertex spaces are copies of T1 � T2, and the edge spaces are infinite strips. The edge labeling of
.T1 �T2/=� induces an edge labeling of Y=ƒ (apart from the edges that cross the annulus) and we can
lift this to an edge labeling of Y . As in Section 2, lifts of the w1-loop in Y=ƒ to Y will be referred to
as w1-geodesics. Each w1-geodesic in Y is attached to two edge spaces since the w1-loop in Y=ƒ is
attached to both boundary components of the annulus.

Theorem 3.1 The action of ƒ on the contact graph CY is not acylindrical.

Proof We will show that for any R;N > 0 there exist H;H 0 2CY such that dCY .H;H
0/�R and there

are more than N elements g 2ƒ satisfying dCY .H; gH/; dCY .H
0; gH 0/� 2.

Consider a vertex space in Y , and identify it with T1 � T2. Given an integer n � 1, we can choose
w1-geodesics F and F 0 as in the proof of Theorem 2.2 such that the projection gF .F

0/ is a finite path of
length at least n that contains the vertex .p1; p2/. Now take one of the edge spaces in Y glued to F 0,
and let F 00 be the geodesic on the other side of the edge space. F 00 is in a different vertex space, but it
is again a w1-geodesic, so it contains vertices in the orbit ƒ � .p1; p2/. Moreover, the spacing between
these vertices is at most jw1j, so we can choose gn 2ƒ such that gn.p1; p2/ lies on F 00 but is shifted to
the right relative to .p1; p2/ by an integer 0 < r � jw1j, as shown in Figure 4.

Note that gnF D F
00. Furthermore, applying powers of gn to F and F 0 produces a staircase-like picture

as shown in Figure 5, where each step has depth r . Each pair gi
nF; g

i
nF
0 lies in a different vertex space

of Y . If H is the hyperplane that runs along the edge space between g�1
n F 0 and F , then the hyperplanes

gi
nH run along a sequence of edge spaces that connect the aforementioned sequence of vertex spaces.
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F

F 0

g�1
n F 0

gF .F
0/

H

gnH

gnF

gnF
0

g2
nH

g3
nH

g4
nH

g2
nF

g2
nF
0

g3
nF

g3
nF
0

L

Hv

r

Figure 5: The arrangement of the w1-geodesics gi
nF and gi

nF
0.

Suppose that the path gF .F
0/ has length L (remembering that L� n). If a hyperplane intersects more

than one of the hyperplanes gi
nH then it must cross some hgni-translate of the projection gF .F

0/. The
hyperplaneHv that is dual to the last edge of gF .F

0/ intersects exactlyM WDdL=reC1 of the hyperplanes
gi

nH , and no other hyperplane intersects more of them. In particular, for 1� i < M , Hv intersects H
and gi

nH , so the distance between H and gi
nH in the contact graph CY is

(3-2) dCY .H; g
i
nH/D 2:

On the other hand, dCY .H; g
p
nH/!1 as p!1. Indeed, suppose the geodesic in CY fromH to gp

nH

consists of hyperplanes H DH0;H1; : : : ;Hd D g
p
nH . We know that H and gp

nH are separated by the
hyperplanes gi

nH for each 0 < i < p, so each of these gi
nH either equals one of the Hj or intersects one

of the Hj . But we know from earlier that each Hj intersects at most M of the gi
nH ; hence

d D dCY .H; g
p
nH/�

p

M
:

PuttingH 0Dgp
nH , we have dCY .H;H

0/�R providedp�MR. But (3-2) implies thatH andH 0 are both
moved at most distance 2 in CY by the elements f1; gn; g

2
n; : : : ; g

M�1
n g�ƒ; andM DdL=reC1>n=r , so
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if we choose n� rN then we get more thanN elements g2ƒ satisfying dCY .H; gH/; dCY .H
0; gH 0/�2,

as required. So we conclude that the action of ƒ on CY is not acylindrical.

Remark 3.2 The staircase in Figure 5 is not a staircase as defined in [9] (visually speaking, the former
looks like it has empty space below the staircase whereas the latter does not). However, they are both
obstructions to the existence of a factor system. Indeed, the existence of staircases as in Figure 5 for
arbitrarily large ratios L=r is the key to proving Theorem 3.1, which in turn implies that Y has no
factor system. Meanwhile, the existence of just a single convex staircase in the sense of [9] rules out the
possibility of a factor system. It remains an open question whether any cubulation of a group contains a
convex staircase in the sense of [9].

Remark 3.3 Genevois [7] defined a metric ıK for a CAT(0) cube complex X as the maximal number of
pairwise K-well-separated hyperplanes separating two given vertices. The space .X; ıK/ is hyperbolic for
all K, and it is quasi-isometric to the contact graph for K D 0. Moreover, if G ÕX is a cubulated group,
then the induced action on .X; ıK/ is nonuniformly acylindrical for all K. However, for our cubulated
group ƒÕ Y , the action of ƒ on .Y; ıK/ is not acylindrical for any K. The argument is similar to that in
the proof of Theorem 3.1: you can define the element gn 2ƒ in the same way, and show that gn acts
loxodromically on .Y; ıK/, and you can exhibit points on the axis of gn that are arbitrarily far apart but
are moved at most distance 2 by many powers of gn — with the number of such powers tending to infinity
as n!1.

As discussed in the introduction, we do not know whether ƒ is an HHG. A possible strategy to prove that
ƒ is not an HHG would be to show that ƒ has no largest acylindrical action (definition below), because
all HHGs possess a largest acylindrical action [2].

Definition 3.4 Let G be a group that acts on metric spaces R and S . We say that G ÕR is dominated
by G Õ S , written G ÕR �G Õ S , if there exist r 2R, s 2 S and a constant C such that

dR.r; gr/� CdS .s; gs/CC

for all g2G. The actionsGÕR andGÕS are equivalent ifGÕR�GÕS andGÕS �GÕR. We
denote the equivalence class by ŒG ÕR�. The relation � defines a partial order on the set of equivalence
classes of actions of G on metric spaces. The largest acylindrical action of G (if it exists) is the largest
element of the set of equivalence classes of cobounded acylindrical actions of G on hyperbolic metric
spaces.

Alas, we show below in Proposition 3.6 that ƒ does have a largest acylindrical action, which is defined as
follows. Let T be the Bass–Serre tree for the splitting ƒD ��hg1i

. We say that edges e1; e2 2ET are
equivalent if the stabilizers ƒe1

and ƒe2
are commensurable. Each equivalence class defines a subtree

of T called a cylinder. The tree of cylinders Tc is the bipartite tree with vertex set V0Tc tV1Tc , where
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V0Tc are the vertices of T and V1Tc is the set of cylinders. The edges of Tc are of the form .v; C / where
v is a vertex in T that lies in the cylinder C � T . The action of ƒ on T induces an action on Tc .

To help us prove Proposition 3.6 we will use the following lemma, which is equivalent to [1, Corollary 4.14].

Lemma 3.5 Let G act cocompactly on a connected graph� and let GÕR be another cobounded action
on a metric space. If the vertex stabilizers of � have bounded orbits in R, then G ÕR �G Õ�.

Proposition 3.6 The largest acylindrical action of ƒ is its action on the tree of cylinders ƒÕ Tc .

Proof First we show that the action of ƒ on Tc is acylindrical. It suffices to show that only the identity
element ofƒ fixes a path in Tc of the form v1; C1; u; C2; v2, where u; vi 2V0Tc and Ci 2V1Tc . Indeed if
g 2ƒ fixes such a path, then it must also fix any pair of edges e1; e2 2ET that lie on the geodesics Œu; v1�

and Œu; v2� respectively. It follows that e1 and e2 lie in the cylinders C1 and C2, and so the stabilizers ƒe1

and ƒe2
are not commensurable. But these stabilizers are infinite cyclic (they are conjugates of hg1i),

hence they have trivial intersection, so g 2ƒe1
\ƒe2

is trivial.

The action ƒ Õ Tc is clearly cobounded and Tc is obviously hyperbolic, so it remains to show that
ƒÕ Tc dominates all other cobounded acylindrical actions of ƒ on hyperbolic spaces. Let ƒÕR be
such an action. By Lemma 3.5, it suffices to show that the vertex stabilizers of Tc have bounded orbits
in R.

First consider v 2 V0Tc . If the stabilizer ƒv does not have bounded orbits in R then there must exist
a loxodromic element g 2 ƒv by [11, Theorem 1.1], and g must be contained in a virtually cyclic
hyperbolically embedded subgroup of ƒv by [11, Theorem 1.4]. It then follows from [13, Theorem 1]
that g is Morse in ƒv. But this is impossible since ƒv Š � is quasi-isometric to a product of trees.

Now consider C 2 V1Tc . Without loss of generality we may assume that C contains the edge that
corresponds to the subgroup hg1i < � < ƒ. We know that ƒC contains the element g1 as well as the
stable letter t from the presentation (3-1), so ƒC is not virtually cyclic. If ƒC does not have bounded
orbits in R then there must exist a loxodromic element g 2ƒC by [11, Theorem 1.1]. Fix a point r 2R.
The element g1 lies in the V0Tc-vertex stabilizer � <ƒ, so g1 is elliptic in R by the previous paragraph,
and the orbit hg1i � r lies in some �-ball about r . By definition of C , for any integer k the subgroups hg1i

and gkhg1ig
�k are commensurable, so have infinite intersection; and any element h of this intersection

satisfies dR.r; hr/; dR.g
kr; hgkr/ < �. But d.r; gkr/!1 as k !1 since g is loxodromic, which

contradicts the acylindricity of the action ƒÕR.
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Relative h-principle and contact geometry

JACOB TAYLOR

We show that if F.M / is a space of holonomic solutions with space of formal solutions Ff.M / that
satisfies a certain relative h-principle, then the nonrelative map F.M /! Ff.M / admits a section up to
homotopy. We apply this to the relative h-principle for overtwisted contact structures proved by Borman,
Eliashberg and Murphy to find infinite cyclic subgroups in the homotopy groups of contactomorphism
groups.

53D35, 57R17; 58D99

1 Introduction

Gromov [12] showed that if M is an open manifold then the inclusion Cont.M /! AlmCont.M / is
a weak equivalence, where Cont.M / is the space of contact structures on M and AlmCont.M / is the
space of almost contact structures on M. The case of compact manifolds is not so simple. For example,
there exist contact structures on closed 3-manifolds that are formally homotopic but not homotopic; see
Bennequin [1]. In [2], Matthew Borman, Yakov Eliashberg and Emmy Murphy advanced the field of
contact geometry by first extending the definition of an overtwisted contact manifold from 3-dimensional
manifolds to manifolds of dimension 2nC 1� 3, and then proving an h-principle result for overtwisted
contact manifolds. Essentially, an overtwisted contact manifold is a contact manifold M that contains an
embedded overtwisted disk, ie an embedded 2n-disk� with a certain model germ of a contact structure on
a neighborhood of� (see [2, Definition 3.6]). If ContOT.M; �/ and AlmCont.M; �/ denote, respectively,
the spaces of contact and formal contact structures that are overtwisted with fixed disk �, then the main
result of [2] is that

ContOT.M; �/! AlmCont.M; �/

is a weak equivalence. However, it is known that in general the map ContOT.M /! AlmCont.M / from
overtwisted contact structures to almost contact structures is not a weak equivalence; see for example
Vogel [18]. Given this, one may wonder how much can be learned about the maps ContOT.M / !

AlmCont.M / and Cont.M /! AlmCont.M / using the h-principle when one fixes a disk. In fact, there
is a much more general question here about relative h-principles, motivated by this example.

Question Let � be some subset of M and  be the germ of some holonomic solution on �. Let
F.M rel.�;  // denote the set of all holonomic solutions that have germ  on �, and Ff.M rel.�;  //

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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denote the set of formal solutions that have germ  on �. If the map

F.M rel.�;  //! Ff.M rel.�;  //

is a weak equivalence for all pairs .�;  / 2W for some collection W , what can be said about the map

F.M /! Ff.M /?

One of the main results of this paper is a partial answer to this question. Suppose M is a manifold and
A�M is a (possibly empty) closed subset of M such that M nA is a manifold without boundary. By
assumption Ff.M / is the space of sections of some bundle � W E!M, and furthermore we suppose
the fibers of E are path connected. Let W be a sufficiently separated collection for the bundle E

relative to A (see Definition 2.2), such that each germ in the collection is holonomic. Finally, let �0 be a
holonomic solution near A. Using this, we construct a semisimplicial space F�.M rel.A; �0/IW/ with
an augmentation to F.M /, and prove the following theorem:

Theorem A If the map

F
�
M rel.�1; 1/; : : : ; .�k ; k/; .A; �0/

�
! Ff.M rel.�1; 1/; : : : ; .�k ; k/; .A; �0//

is a weak equivalence for all finite sets of disjoint elements f.�i ; i/g
k
iD1
�W , k � 1, then the following

diagram commutes:
kF�.M rel.A; �0/IW/k F.M rel.A; �0//

Ff.M rel.A; �0//

'

and the map kF�.M rel.A; �0/IW/k! Ff.M rel.A; �0// is a weak equivalence.

Remark 1.1 As the above theorem is stated, the so-called “nonrelative map” is still relative to the set A.
This is because there are two notions of relative h-principle here, one that gives an h-principle relative
to fairly arbitrary sets and functions near those sets, and one that gives an h-principle relative to very
specific sets and functions near those sets. The former usually includes the empty set and is thus strictly
stronger than the nonrelative statement, while the latter should be thought of as asking for the existence
of some sort of nice local model. So, the above theorem should be thought of as saying that if one has an
h-principle relative to some nice local models, then even when you do not fix any models the map admits
a section up to homotopy.

This has some immediate consequences in contact geometry, as the above theorem allows us to find a
subgroup of �k ContOT.M / isomorphic to �k AlmCont.M /, induced by a map of spaces, for all k. This
is an improvement on the current tool used to analyze the difference between the homotopy groups of
ContOT.M / and AlmCont.M /, the overtwisted group (see Casals, del Pino and Presas [4, Proposition 1]
or Fernández and Gironella [8, Definition 10]), which only allows one to realize �k AlmCont.M / as a
subgroup of �k ContOT.M / when 1� k � 2n. Furthermore, we show that these subgroups agree when
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1� k � 2n. Finally, we use these results to help study certain homotopy groups of the contactomorphism
group of an overtwisted contact manifold. Let C0.M; �OT rel @M /� Diff0.M rel @M / denote the space
of contactomorphisms of the contact manifold .M; �OT/ which are smoothly isotopic to the identity and
agree with the identity near the boundary of M.

Theorem B If .M; �OT/ is a compact , coorientable , overtwisted contact manifold of dimension 2nC 1,
then �kC0.M; �OT rel @M / contains an infinite cyclic subgroup whenever

�kDiff0.D
2nC1 rel @D2nC1/˝Q¤ 0; for k � �Q.D2n/� 1; k ¤ 0:

Here �Q.D2n/ is the rational concordance stable range for D2n. The stability theorem of Igusa [13, page
6] implies �Q.M d /�min

�
1
2
.d�7/; 1

3
.d�4/

�
for any compact d -dimensional manifold M. Better lower

bounds exist in different cases, for example Corollary C of Goodwillie, Krannich and Kupers [11]. For
d � 10 it is known that �Q.Dd /D d � 4 by Corollary B of Kranniich and Randal-Williams [15]. Also,
it is known that �kDiff0.D

2nC1 rel @D2nC1/˝Q¤ 0 for many k in this range, for example Krannich
[14, Corollary B] computes �kDiff0.D

2nC1 rel @D2nC1/˝Q for k < 2n� 4 in terms of the algebraic
K-theory of the integers.

Overview of the paper

In Section 2, we show that for a fiber bundle E!M with space of continuous sections �.E/, if W
is a sufficiently separated collection relative to A of pairs .�;  / for E (see Definition 2.2) then the
space �.E rel.A; �0// is weakly equivalent to the geometric realization of a certain semisimplicial space
built from the spaces of relative sections. Then in Section 3, we use this result to prove Theorem A. In
Section 4, we show that the collection of all overtwisted disks on a manifold is sufficiently separated,
and so the map ContOT.M rel A/! AlmCont.M rel A/ admits a section up to homotopy. Then we use
this to show that in the range it is defined, the usual overtwisted group agrees with the image of the
map induced by this section. In Section 5 we use these results to prove Theorem B, which finds infinite
cyclic subgroups in the homotopy groups of the contactomorphism groups of compact overtwisted contact
manifolds, in degrees different than those found in [8]. Finally, in Section 6 we note other applications of
Theorem A, specifically coming from Engel geometry.
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2 Semisimplicial resolutions of section spaces

For technical reasons, suppose we are in the category of compactly generated spaces. Let M be a
d -dimensional manifold, possibly with boundary. Let X be a path connected space and � WE!M be a
fiber bundle with fiber X. Let �.E/ denote the space of sections of E.

Definition 2.1 Let A�M be some subset of M. A germ of a section on A is a pair .;U /, where U is
an open neighborhood of A and  is a section on U, with the equivalence relation that two germs are the
same if they agree on some neighborhood of A.

For convenience we usually omit the neighborhood U and just let  denote the germ, with the understanding
that  is defined on some arbitrarily small neighborhood of A. If A1; : : : ;Ak �M and i is a germ of a
section on Ai for 1� i � k, we will let �.E rel.A1; 1/; : : : ; .Ak ; k// denote the space of sections of
E which agree with i near Ai for all 1� i � k. By abuse of notation, we will let �.E rel A1; : : : ;Ak/

denote the same space, and more generally we will use this convention for many function spaces appearing
in this paper.

Definition 2.2 A sufficiently separated collection relative to A for the bundle � WE!M is a collection
W of pairs .�;  / of (a) a contractible compact subset ��M nA and (b) a germ of a section near �.
These are required to satisfy:

(1) For each .�;  / 2W , there exists some neighborhood D Š Dd such that � is contained in the
interior of D, D �M nA, and the inclusion map � W�!D is a closed cofibration.

(2) Given any finite collection .�i ; i/
k
iD1

in W , there exists some .�0;  0/2W so that�0 is contained
in the interior of a closed ball DŠDd that is disjoint from each �i , D�M nA, and the inclusion
� W�0!D is a closed cofibration.

We say that two elements .�1; 1/, .�2; 2/ of W are disjoint if �1 \�2 D ∅, and a collection of
elements is disjoint if each pair of elements in the collection is disjoint. Next, let A�M and �0 be some
germ of a section on A. Suppose W is a sufficiently separated collection relative to A for the bundle E.
Then let ��.E rel AIW/ be the semisimplicial space defined by

�p.E rel AIW/ WD
a

tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

�.E rel�0; : : : ; �p;A/:

The i th face map is given by forgetting that the sections agree with i near �i . Our goal is to compare the
space k��.E rel AIW/k to �.E rel A/. In order to do this, we need a few lemmas. First, let .�;  / 2W
and �.E; � rel A/ denote the space of sections s of E which agree with �0 near A and satisfy sj�D  j�.
Then we have the following lemma, which will allow us to forget about germs and just work with spaces
of sections that have fixed values on subsets.

Lemma 2.3 The map �.E rel�;A/! �.E; � rel A/ given by inclusion is a weak equivalence.
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Proof By definition, �.E rel�;A/ is topologized as the colimit

�.E rel�;A/ WD lim
��!

�.E;Bi rel A/;

where the Bi are some neighborhood basis of �. Let ˛ WDn! �.E; � rel A/ be a continuous map such
that we have the following diagram:

Sn�1 �.E rel�;A/

Dn �.E; � rel A/

@˛

˛

We will show there exists a lift ˇ W Dn! �.E rel�;A/ of ˛ up to homotopy relative to the boundary.
By Lemma 3:6 of [17], any map from a compact space to a colimit of closed inclusions factors over one
of the inclusions, so Sn�1! �.E rel�;A/ factors as

Sn�1
! �.E;Bi rel A/! �.E rel�;A/

for some neighborhood Bi . We can choose Bi to be contractible and such that the inclusion Bi !M

is a closed cofibration. We can also ensure Bi is disjoint from A. Then it suffices to show that
�.E;Bi rel A/! �.E; � rel A/ is a weak equivalence, which holds due to the following commutative
diagram; the rows are fiber sequences and �.EjBi

/! �.Ej�/ is a weak equivalence since both � and
Bi are contractible:

�.E;Bi rel A/ �.E rel A/ �.EjBi
/

�.E; � rel A/ �.E rel A/ �.Ej�/

� id res

Remark 2.4 A similar argument can be used if one replaces .�;  / with finitely many disjoint elements
of W .

This allows us to use the following abuse of notation. Let ��.E rel AIW/ denote the semisimplicial space
given by

�p.E rel AIW/ WD
a

tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

�.E; �0; : : : ; �p rel A/;

where again the face maps just forget the fixed sets. We can do this because Lemma 2.3 implies the
resulting semisimplicial space is levelwise weakly equivalent to the one constructed before, and so the
geometric realizations of both are weakly equivalent. We can also consider the semisimplicial space W�

given by
Wp WD

a
tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

f?g;

where the face maps are given by forgetting elements of W . Here f?g is just a singleton set, so Wp

contains a point for each tuple of p C 1 disjoint elements of W , with the discrete topology. These
semisimplicial spaces are related via the following lemma.
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Lemma 2.5 The space k��.E rel AIW/k is homeomorphic to the subspace of �.E rel A/�kW�k given
by

f.f; Ew; Et/ j f .m/D i.m/ whenever m 2�i and ti ¤ 0g=�;

where .�i ; i/ is the i th component of Ew, and � is just the usual geometric realization equivalence on the
second factor.

Proof It is clear these are the same as sets, so we just need to show that this map is a homeomorphism
onto some subspace. First, since the quotient of a subspace is naturally a subspace of the quotient in
compactly generated spaces, we have

k��.E rel AIW/k � k�.E rel A/�W�k:

On the other hand, by [7, page 2106] we have that

k�.E rel A/�W�k D k�.E rel A/˝W�k Š k�.E rel A/k� kW�k Š �.E rel A/�kW�k;

where we are treating �.E rel A/ as a semisimplicial space with only 0-simplices in order to use the
exterior product defined in [7, page 2103]. So, k��.E rel AIW/k is homeomorphic to the subspace of
�.E rel A/�kW�k described above.

We can now introduce the main result of this section:

Theorem 2.6 Let A�M be a closed subset of a manifold M and �0 be a germ of a section on A, such
that M nA is a manifold without boundary. Furthermore , let � WE!M be a fiber bundle with connected
fiber X, and W be a sufficiently separated collection relative to A for the bundle E. Let k��.E rel AIW/k

be as before. Then the map k��.E rel AIW/k ! �.E rel A/ given by forgetting the fixed subsets is a
weak equivalence.

Proof We will prove this by showing that the relative homotopy groups of the map are zero. So, let
˛ WDn! �.E rel A/ be a continuous map such that we have the following diagram:

Sn�1 k��.E rel AIW/k

Dn �.E rel A/

@˛

˛

where by abuse of notation @˛ is the map Sn�1!k��.E rel AIW/k, p 7! .˛.p/; Ewp; Etp/ for some finite
ordered set of elements Ewp of W and weights Etp (where of course we just exclude any elements when
their weight goes to zero). Then we need to show that there exists a continuous map ˛0 ' ˛ relative to
the boundary, and a lift ˇ WDn!k��.E rel AIW/k of ˛0 such that the resulting diagram still commutes.
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First, consider the section

˛1.p/.m/ WD

�
˛.2p/.m/; 0� jpj � 1

2
;

˛.p=jpj/; 1
2
� jpj � 1:

So ˛1 is just ˛ compressed to a smaller ball, with the boundary extended to an annulus. It is clear that
˛1' ˛ relative to the boundary, so we can work with ˛1, which gives us a buffer away from the boundary.
Next, consider the set

zW WD
˚
m 2M j for some p 2 Sn�1 and some positive integer i;m 2�p;i ;

where .�p;i ; p;i/ is the i th component of Ewp

	
:

Note that ˛1 lifts to k��.E rel AIW/k on the annulus, and furthermore if we only change ˛1 away from zW
then it will still lift in the annulus. Now, using the natural projection map from k��.E rel AIW/k!kW�k

given in Lemma 2.5, we can consider the map

Sn�1
!k��.E rel AIW/k! kW�k;

where p 7! . Ewp; Etp/. Since Sn�1 is compact we know that the image of this map is compact, and so
it hits finitely many cells of kW�k. Also, each cell consists of finitely many elements of W , so the set
of all elements of W that are a component of Ewp for some p is finite. But, if f.�1; 1/; : : : ; .�k ; k/g

is that set, then clearly zW D�1 [ � � � [�k . Let .�;  / 2W be such that there is some neighborhood
D ŠDd of � contained in M nA that is disjoint from zW . Since a map Dn! �.E rel A/ is the same
data as a section of the bundle Dn �E! Dn �M, .p; e/ 7! .p; �.e// we will from now on consider
˛; ˛1 as maps from Dn�M !Dn�E so that composition with the projection map is the identity. Now,
let g0D ˛1jDn�D , Dn

3=4
WD
˚
p 2Dn

ˇ̌
jpj � 3

4

	
. Since Dn�D is a contractible submanifold of Dn�M,

we know that the restriction of the bundle to Dn�D is trivial. So, g0 and any other sections on (a subset
of) Dn �D just become maps from (a subset of) Dn �D to X. Consider the homotopy

.Dn
3=4 ��/[ @.D

n
�D/� Œ0; 1�!X

given by

H.p;m; s/ WD

8<:
˛1.p;m/; p 2 @Dn;

˛1.p;m/; m 2 @D;

h.p;m; s/; .p;m/ 2Dn
3=4
��;

where h.p;m; s/ is a homotopy between ˛1jDn
3=4
�� and the map .p;m/ 7!  .m/. Such an h exists since

Dn
3=4
�� is contractible and X is path connected, which implies any two maps are homotopic. Since the

inclusion of � into D is a cofibration, and the inclusion of Dn
3=4

into Dn is a cofibration, the inclusion of
Dn

3=4
�� into Dn �D also is. This implies

�
Dn �D; .Dn

3=4
��/[ @.Dn �D/

�
satisfies the homotopy

extension property, so there exists a homotopy

Dn
�D � Œ0; 1�!X
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between g0 and a function g1 WD
n �D!X, relative to the boundary, so that g1 D g0 on @Dn, @D, and

.p;m/ 7!  .m/ on Dn
3=4
��. Now, we can extend this to a section on all of M by letting

˛2.p;m/ WD

�
˛1.p;m/; m 62D;

g1.p;m/; m 2D:

Clearly ˛2'˛1 relative to the boundary, ˛2.p;m/D  .m/ when jpj� 3
4

, m2�, and for m2 zW we have
˛2.p;m/D ˛1.p;m/D p=jpj;i.m/ when jpj � 1

2
. So, all we need to do now is show that ˛2 lifts. Let

us again view these as maps from Dn! �.E rel A/, and consider the map ˇ WDn!k��.E rel AIW/k

given by

ˇ.p/ WD

8<:
.˛2.p/; .�;  /; 1/; 0� jpj � 1

2
;�

˛2.p/; . Ewp=jpj; .�;  //; ..4jpj � 2/Etp=jpj; 3� 4jpj/
�
; 1

2
< jpj � 3

4
;

.˛2.p/; Ewp=jpj; Etp=jpj/;
3
4
< jpj � 1:

Clearly ˇ is a lift of ˛2, as required.

Remark 2.7 In particular, the above theorem applies when M has no boundary and AD∅, and when
M has boundary and AD @M.

3 h-principle

Let M be a d -dimensional manifold and A be a (possibly empty) closed subset of M such that M nA is
a manifold without boundary. Suppose F.M / is a space of holonomic solutions with space of formal
solutions Ff.M /, and �0 is a germ of a holonomic solution on A. We would like to use Theorem 2.6 to
show that the map F.M rel A/! Ff.M rel A/ from the space of holonomic solutions relative to A to
the space of formal solutions relative to A admits a section up to homotopy under the right conditions. We
assume there exists some bundle E!M such that Ff.M rel A/ is the space �.E rel A/ of sections of
E relative to A. Suppose furthermore that the fibers of E are path connected, and let W be a sufficiently
separated collection for E relative to A. In addition, for each .�;  / 2W , suppose  is the germ of a
holonomic solution. Then we can define semisimplicial spaces F�.M rel AIW/ and Ff

�
.M rel AIW/ by

letting
Fp.M rel AIW/ WD

a
tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

F.M rel A; �0; : : : ; �p/;

Ffp .M rel AIW/ WD
a

tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

Ff.M rel A; �0; : : : ; �p/;

where as before the face maps come from forgetting that the functions agree with the given germs near
the given sets. There is a map of semisimplicial spaces

F�.M rel AIW/! Ff
�
.M rel AIW/
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induced by the maps

F.M rel A; �0; : : : ; �p/! Ff.M rel A; �0; : : : ; �p/:

Also, there are natural maps kF�.M rel AIW/k!F.M rel A/ and kFf
�
.M rel AIW/k!Ff.M rel A/

which forget the elements of W .

Theorem 3.1 If the natural inclusion map

F.M rel A; �0; : : : ; �p/! Ff.M rel A; �0; : : : ; �p/

is a weak equivalence for all finite sets of disjoint elements f.�i ; i/g
k
iD1
�W , k�1, then the composition

map kF�.M rel AIW/k! F.M rel A/! Ff.M rel A/ is a weak homotopy equivalence.

Proof First, we are given that

F.M rel A; �0; : : : ; �p/! Ff.M rel A; �0; : : : ; �p/

is a weak equivalence for all tuples of elements of W , so the map

kF�.M rel AIW/k! kFf
�
.M rel AIW/k

is a levelwise weak equivalence and hence a weak equivalence. Also, by Theorem 2.6,

kFf
�
.M rel AIW/k! Ff.M rel A/

is a weak equivalence, so we get the following commutative diagram:

kF�.M rel AIW/k F.M rel A/

kFf
�
.M rel AIW/k Ff.M rel A/

'

'

which gives the required weak homotopy equivalence.

Remark 3.2 A more common formulation of such a relative h-principle result is that there is an h-
principle relative to any fixed closed set A and one fixed subset�, where� is from some special collection.
Such a result will usually imply the result for many fixed subsets �1; : : : ; �k in such a collection, since
we can take A to be the union of the first k � 1 such sets, and use �k as our fixed subset �.

4 Improved h-principle for contact geometry

Let us briefly recall some basic definitions from contact geometry. A cooriented contact structure on
a connected, orientable, .2nC1/-dimensional manifold M is a “maximally nonintegrable” hyperplane
distribution � D ker.˛/ for a 1-form ˛. Maximally nonintegrable means ˛^ d˛n ¤ 0. Unless otherwise
stated we assume all contact structures are cooriented. This naturally induces a reduction of the structure
group of M to U.n/� 1, and so an almost contact structure is just a reduction of the structure group of
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M to U.n/� 1. Equivalently, an almost contact structure is a triple .�;J;R/, where � is a hyperplane
distribution, J is a complex structure on � , and R is a trivial sub-line-bundle of TM such that �˚RDTM.
We let Cont.M / denote the space of contact structures on M and AlmCont.M / denote the space of
almost contact structures on M.

Next, we recall the notion of an overtwisted contact structure. An overtwisted disk in a manifold M is a
pair .�;  /, where��M is an embedded 2n-dimensional disk and  is a certain model germ of a contact
structure on �. Then a contact manifold .M; �/ is said to be overtwisted if there exists an embedding of
an overtwisted disk .�;  / such that the contact germ  agrees with � on some neighborhood of � (ie
the embedding is a contact embedding). In this case we say that � is overtwisted for �. The details of
this definition in any dimension can be found in [2, Definition 3.6]. Let ContOT.M / denote the space
of overtwisted contact structures on M. It has been shown by [2, Theorem 1:2] that if M is a closed
2nC1-dimensional manifold, A is a closed subset of M such that M nA is connected, .�;  / is an
overtwisted disk in M nA, and �0 is an almost contact structure on M that is a genuine contact structure
on a neighborhood of A, then the map

ContOT.M rel A; �/! AlmCont.M rel A; �/

is a weak equivalence. Here ContOT.M rel A; �/ is the space of contact structures on M that agree with �0
in a neighborhood of A and are overtwisted with disk �, and AlmCont.M rel A; �/ is the corresponding
space of almost contact structures. Next, let W be the collection of all overtwisted disks in M nA, and
let ContOT

�
.M rel AIW/ and AlmCont�.M rel AIW/ be the semisimplicial spaces defined by

ContOT
p .M rel AIW/ WD

a
tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

ContOT.M rel A; �0; : : : ; �p/;

AlmContp.M rel AIW/ WD
a

tuples ..�0;0/;:::;.�p;p//
of pC1 disjoint elements of W

AlmCont.M rel A; �0; : : : ; �p/;

where as usual the face maps just forget the overtwisted disks. From this, we would like to prove the
following theorem:

Theorem 4.1 Let M be a .2nC1/-dimensional manifold and A�M be a closed subset of M such that
M nA is connected and without boundary. Then the composition

kContOT
�
.M rel AIW/k! ContOT.M rel A/! AlmCont.M rel A/

is a weak homotopy equivalence.

Proof It is known (see [8, page 191]) that AlmCont.M / is naturally the section space of a certain fiber
bundle � WE!M with connected fiber SO.2nC 1/=U.n/, which comes from viewing AlmCont.M /

as the space of reductions of the structure group of M to U.n/� 1, so AlmCont.M rel A/ is naturally
�.E rel A/. Also, if we have some collection of disjoint overtwisted disks �1; : : : ; �k , we can let
A0 D A[�1 [ � � � [�k�1 and �k be the overtwisted disk, so the h-principle given in [2] implies an
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h-principle of the form required in Theorem 3.1. So, we just need to show that the collection of all
overtwisted disks on M nA is sufficiently separated relative to A. Clearly such an embedded disk is
closed, contractible and compact. Also, by finding a sufficiently small regular neighborhood, it is clear
that any embedded 2n-dimensional disk is a neighborhood deformation retract of a .2nC1/-dimensional
ball in M nA containing it, so the inclusion is a cofibration and condition .1/ of Definition 2.2 is satisfied.
Finally, it is clear that a finite collection of embedded overtwisted disks in M nA can’t cover M nA, so
given some finite set of overtwisted disks in M nA there will always be some point m 2M nA that is not
in any of them, and since an overtwisted disk is just some embedded disk with a local germ, we can always
introduce a new overtwisted disk at the point m that doesn’t intersect the rest of the overtwisted disks.
Again, we can choose a sufficiently small regular neighborhood of the disk that doesn’t intersect the given
overtwisted disks or the set A, so that the inclusion is a cofibration and condition .2/ of Definition 2.2 is
satisfied.

Remark 4.2 This argument also shows that the map Cont.M rel A/! AlmCont.M rel A/ admits a
section up to homotopy, but this section factors through the overtwisted contact structures.

Remark 4.3 In particular, this holds if M is closed and connected and A is empty.

From Theorem 4.1 we get as an immediate consequence that �k AlmCont.M rel A/ is isomorphic to
a subgroup of �k ContOT.M rel A/ for all k. For the remainder of this section, suppose M is a closed
manifold and A D ∅. Then our result is an improvement on the current overtwisted group OTk.M /

(see [4, Proposition A.2]), which gives an isomorphism between �k AlmCont.M / and a subgroup of
�k ContOT.M / when 1 � k � 2n. In fact, when 1 � k � 2n the image of �kkContOT

�
.M IW/k in

�k ContOT.M / is OTk.M /:

Theorem 4.4 The overtwisted group OTk.M / is the image of �kkContOT
�
.M IW/k induced by the

natural forgetful map kContOT
�
.M IW/k! ContOT.M / when 1� k � 2n.

Before we can prove this, we need to define some intermediary spaces that will help us understand the
relationship between �kkContOT

�
.M IW/k and OTk.M /. Recall that an element of kContOT

�
.M IW/k is

a contact structure, along with a list of disks and weights, such that each disk is overtwisted for the contact
structure as long as its weight is nonzero. Since we defined this for an arbitrary section space and an
arbitrary sufficiently separated collection, we did not make use of any topology on the space of disks. So,
in kContOT

�
.M IW/k the fixed disks are not allowed to move through M, and the only way to change the

disks is to introduce a new overtwisted disk somewhere, or delete a disk by letting its weight go to zero.
However, the space of overtwisted disks does have a topology coming from the space of embeddings of
D2n into M. We can use this to define new semisimplicial spaces that are more clearly related to OTk.M /.

Remark 4.5 Strictly speaking, overtwisted disks are only piecewise smooth, so instead of embeddings
of the standard disk into M we want to take a specific piecewise structure coming from the model
overtwisted disk (see [2, Definition 3:6]) and consider the space of embeddings of this into M that
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preserve the piecewise smooth structure. However, none of our arguments depend on this distinction, so
by abuse of notation we just denote this space as Emb.D2n;M /.

Definition 4.6 Let ContOT
�
.M IW/C be the semisimplicial space defined by

ContOT
p .M IW/C � ContOT.M /�Emb.D2n;M /pC1;

the set of all .�;�0; : : : ; �p/ such that each �i is an overtwisted disk for � , and �i , �j are disjoint when
i ¤ j . The face maps di are given by forgetting the i th disk.

Similarly, let AlmCont�.M IW/C be defined in the same way except with AlmCont.M / instead of
ContOT.M /. The geometric realizations of these differ from kContOT

�
.M IW/k and kAlmCont�.M IW/k

since continuous maps into kContOT
�
.M IW/C k and kAlmCont�.M IW/C k can also deform disks along

families inside of M. For example, if ˛ W Sk ! ContOT.M / is a family of contact structures, and
� W Sk! Emb.D2n;M / is a certificate of overtwistedness for ˛, then .˛;�; 1/ is naturally a continuous
map Sk!kContOT

�
.M IW/C k. Furthermore, since constant embeddings are still continuous embeddings,

there are natural maps

kContOT
�
.M IW/k! kContOT

�
.M IW/C k and kAlmCont�.M IW/k! kAlmCont�.M IW/C k

given by viewing the fixed disks as constant embeddings. Then we have the following commutative
diagram:

kContOT
�
.M IW/k kContOT

�
.M IW/C k ContOT.M /

kAlmCont�.M IW/k kAlmCont�.M IW/C k AlmCont.M /

We already know the map kContOT
�
.M IW/k ! kAlmCont�.M IW/k is a weak equivalence by the

h-principle given in [2]. Also, we have the following lemma, which is a direct consequence of [2].

Lemma 4.7 The map
kContOT

�
.M IW/C k! kAlmCont�.M IW/C k

induced by ContOT.M /! AlmCont.M / is a weak equivalence.

Proof First, ContOT
p .M IW/C !AlmContp.M IW/C is a weak equivalence as a direct consequence of

Theorem 1.6 of [2]. Indeed, suppose we have the following diagram:

Sk�1 ContOT
p .M IW/C

Dk AlmContp.M IW/C

@˛

˛
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where ˛.t/D .�.t/;�0.t/; : : : ; �p.t//. First, we can homotope ˛ relative to the boundary by extending
the boundary to an annulus, so that ˛ is genuine on a neighborhood of the boundary. Then we can
consider V DM �Dk , so that � can be viewed as a leafwise almost contact structure on V. If we let
AD Sk�1 �M � V, �0 D �jA, and hi D�i for 0� i � p, we have that

� 2 AlmCont.V IA; �0; h0; : : : ; hp/;

where AlmCont.V IA; �0; h0; : : : ; hp/ is the space of leafwise almost contact structures that agree
with �0 near A, with overtwisted basis fhig

p
iD0

(see [2, Theorem 1.6 and definitions immediately
preceding]). Then � is a representative of an element in �0 AlmCont.V IA; �0; h0; : : : ; hp/. But, if
Cont.V IA; �0; h0; : : : ; hp/ is the space of leafwise contact structures that agree with �0 near A, with
overtwisted basis fhig

p
iD0

, then by [2, Theorem 1.6] we have that

�0 Cont.V IA; �0; h0; : : : ; hp/! �0 AlmCont.V IA; �0; h0; : : : ; hp/

is an isomorphism, so there is a path from � to Q� in AlmCont.V IA; �0; h0; : : : ; hp/ for some Q� 2
Cont.V IA; �0; h0; : : : ; hp/. But, a path in this space is a homotopy of � relative to the boundary and
relative to the families of overtwisted disks �0; : : : ; �p. Clearly such a homotopy is a homotopy of
˛ WDk ! AlmContp.M IW/C relative to the boundary to a map ˇ D . Q�;�0; : : : ; �p/, which has image
in ContOT

p .M IW/C . So indeed ContOT
p .M IW/C ! AlmContp.M IW/C is a weak equivalence and so

kContOT
�
.M IW/C k! kAlmCont�.M IW/C k is also a weak equivalence.

Furthermore, we have the following, which relates kAlmCont�.M IW/C k to AlmCont.M /:

Lemma 4.8 The map kAlmCont�.M IW/C k! AlmCont.M / is a weak equivalence.

Proof The proof is similar to the proof of Theorem 2.6, so we will omit some technical details that
were included there. Let ˛ WDk ! AlmCont.M / be a continuous map such that we have a commutative
diagram

Sk�1 kAlmCont�.M IW/C k

Dk AlmCont.M /

@˛

˛

where by abuse of notation @˛ is the map Sk�1!kAlmCont�.M IW/C k, p 7! .˛.p/; Ewp; Etp/, where
Ewp D .w1.p/; : : : w`.p// is a finite ordered set of overtwisted disks for ˛.p/ and Etp D .t1.p/; : : : ; t`.p//
are their corresponding weights. We can assume all of these weights appearing are nonzero.

There is only one part of the proof of Theorem 2.6 that does not go through immediately, which is finding a
disk that is disjoint from all the disks wi.p/ for all p; i . The problem is that since the embedded disks are
no longer locally constant but rather can vary from point to point, we have Sk�1 families of disks instead
of finitely many, so it is possible that they cover all of M. However, we can get around this as follows.
First, we can make a buffer away from the boundary by replacing ˛ with a radial compression to the disk
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of radius 1
2

, which is homotopic to ˛ relative to the boundary. Again by abuse of notation we will let ˛
denote this new map. Let A be the annulus of radius 1

2
, so now the map ˛ lifts to kAlmCont�.M IW/C k

in A. Let Sk�1
1=2

be the sphere of radius 1
2

. By arguing as in Section 6.2 of [9], we can assume that for
each p 2 Sk�1

1=2
there is a contractible open neighborhood Vp of p 2Dk such that there is some m 2M

so that m is not contained in any wi.q/ for any q 2 Vp \A and 1 � i � `.q/. Furthermore, we can let
Up � Vp be a slightly smaller contractible open neighorhood of p so that the closure of Up, cl.Up/, is
contractible and contained in Vp . These can be chosen so that the inclusion of cl.Up/ into Vp is a closed
cofibration, for example by choosing them as small balls, so we assume that this is the case. Since spheres
are compact, we can find a finite subcover by these smaller neighborhoods, U1; : : : ;Uj , which also gives
us a cover by the larger neighborhoods V1; : : : ;Vj . By construction the disks wi.q/ for q 2 Va\A don’t
cover M for any given 1� a� j , so in particular we can find an embedded disk �1 �M and a regular
neighborhood D1 of �1 in M, such that D1 is disjoint from all such disks wi.q/, q 2 V1\A. Finally,
we can pick some V0 � int.Dk

1=2
/ and some slightly smaller U0 so that U1; : : : ;Uj ;U0;A cover Dk .

With all of this set up, we can now do the following. Since cl.U1/��1 is contractible, if we restrict ˛
to this we can homotope it to agree with the overtwisted germ that comes with �1. Also, we can use
the homotopy extension property to extend this homotopy to one on V1 �D1, such that on @D1, @V1

the homotopy is just ˛. Then we can extend the homotopy by ˛ to all of Dk , M so that we have a new
map ˛1 W D

k ! AlmCont.M / that is homotopic to ˛, agrees with ˛ away from V1 �D1, and satisfies
that �1 is overtwisted for ˛1.p/ for all p 2 U1. Also, wi.q/ is still overtwisted for ˛1.q/ for all q 2A,
since in V1, �1 is away from all of the wi.q/, and outside of V1, ˛1 D ˛. We can repeat this on U2, now
being careful to choose �2;D2 so that D2 is disjoint from �1 as well as wi.q/ for q 2 V2 \A. Then
we can find ˛2 homotopic to ˛1 so that ˛2 D ˛1 outside of V2 �D2 and �2 is overtwisted for ˛2.p/

for all p 2 cl.U2/. So, by the same reasoning �1 is still overtwisted for ˛2.p/ for p 2 U1 and wi.q/ is
still overtwisted for ˛2.q/ for all q 2A. Repeat this for U3; : : : ;Uj , and get j̨ , which still has the same
overtwisted disks in A as well as �a is overtwisted for j̨ on Ua. Finally, since V0 is disjoint from the
annulus A by definition, on U0 we just need to find an overtwisted disk �0 with regular neighborhood
D0 disjoint from �1; : : : ; �j , which we can always do. Then do the same homotopy trick as before
to get ˛0 that agrees with j̨ outside of V0 �D0 and has overtwisted disk �0 on cl.U0/. Finally, let
s0; : : : ; sj ; sA be a partition of unity subordinate to the cover U0;U1; : : : ;Uj ;A. Then we have a map
ˇ WDk !kAlmCont�.M IW/C k given by

p 7!
�
˛0.p/;�0; �1; : : : ; �j ; Ewp=jpj; s0.p/; s1.p/; : : : ; sj .p/; sA.p/Etp=jpj

�
:

By construction the specified disk is an overtwisted disk at p precisely when its weight is nonzero, all
of the weights add up to one, and this is clearly a lift of ˛0 which is homotopic to ˛ relative to the
boundary.

Using this lemma, we can now prove Theorem 4.4; OTk.M / is the image of �kkContOT
�
.M IW/k induced

by the natural forgetful map kContOT
�
.M IW/k! ContOT.M / when 1� k � 2n.
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Proof Recall the commutative diagram relating the different semisimplicial spaces:

kContOT
�
.M IW/k kContOT

�
.M IW/C k ContOT.M /

kAlmCont�.M IW/k kAlmCont�.M IW/C k AlmCont.M /

First, we will show that OTk.M / is a subgroup of the image of �kkContOT
�
.M IW/k. By abuse of notation

we will use specific representatives of elements of homotopy groups when we mean their homotopy
classes, so we are really working up to homotopy relative to the basepoint. Let ˛ W Sk ! ContOT.M /

be an element of OTk.M / and � W Sk ! Emb.D2n;M / be a certificate of overtwistedness for ˛. Then
.˛;�; 1/ 2 �kkContOT

�
.M IW/C k maps to ˛. However, we know that the maps

kContOT
�
.M IW/k! kAlmCont�.M IW/k and kContOT

�
.M IW/C k! kAlmCont�.M IW/C k

in the above diagram are weak equivalences. Furthermore, by the previous lemma

kAlmCont�.M IW/C k! AlmCont.M /

is a weak equivalence, and since we know that kAlmCont�.M IW/k!AlmCont.M / is also a weak equiv-
alence by Theorem 2.6 we have that kAlmCont�.M IW/k!kAlmCont�.M IW/C k is a weak equivalence.
Combining these equivalences with the previous commutative diagram, we have that kContOT

�
.M IW/k!

kContOT
�
.M IW/C k is a weak equivalence, and so there exists some ˇ 2 �kkContOT

�
.M IW/k such that

ˇ 7!.̨ ;�;1/ and hence maps to ˛. So indeed, OTk.M / is a subgroup of the image of�kkContOT
�
.M IW/k.

However, we know that the isomorphisms

OTk.M /! �k AlmCont.M / and �kkContOT
�
.M IW/k! �k AlmCont.M /

are both induced by the natural inclusion ContOT.M /!AlmCont.M /, so we have a group isomorphism
that remains an isomorphism when restricted to a subgroup. This is only possible if the subgroup is the
whole group, so indeed OTk.M / is this image.

5 Infinite cyclic subgroups in the homotopy groups of the
contactomorphism group

We can now use Theorem 4.1 to generalize the results from [8]. Let .M; �OT/ be a compact, connected,
cooriented, overtwisted contact manifold of dimension 2nC 1 with (possibly empty) boundary, and let
C0.M; �OT rel @M /� Diff0.M rel @M / be the group of contactomorphisms of .M; �OT/ relative to the
boundary, ie all diffeomorphisms of M that are isotopic to the identity, agree with the identity near the
boundary, and preserve the contact structure �OT. Then from [10, Lemma 1.1] we have a fiber sequence

C0.M; �OT rel @M /! Diff0.M rel @M /! Cont.M rel @M /;
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where Diff0.M rel @M /!Cont.M rel @M / is given by f 7!f ?�OT, which induces a long exact sequence
of homotopy groups.

Remark 5.1 In the literature the fibration is given by pushforward not pullback, ie the map f 7! f?�OT.
While this may be more natural geometrically, since we are using diffeomorphisms pullback is just push-
forward by the inverse, so our map is still a fibration. Also, we will see later that it is convenient to factor
this map through something more general, where pushforward is no longer well defined but pullback is.

We would like to find infinite cyclic subgroups inside �k.C0.M; �OT rel @M /; id/, ie we want to find
nonzero elements of the rational homotopy groups of C0.M; �OT rel @M /. To do this, we will prove a
few lemmas. Let Bun@.TM / denote the space of all pairs .f; ıf /, where f WM !M is a smooth map
which agrees with the identity map near the boundary, and ıf W TM ! f ?TM is some vector bundle
map over M that agrees with the identity near the boundary and is a fiberwise isomorphism, ie the space
of bundle isomorphisms of TM.

Lemma 5.2 The map

Diff0.M rel @M /! Cont.M rel @M /! AlmCont.M rel @M /

factors through the space of bundle isomorphisms of TM as

Diff0.M rel @M / Cont.M rel @M /

Bun@.TM / AlmCont.M rel @M /

f 7!f ?�OT

.f;ıf / 7!.f;ıf /?�OT

where the left vertical map is the derivative f 7! .f; df /, and .f; ıf /��OT is the almost contact structure
obtained by realizing f ��OT � f

�TM as a subbundle of TM via the isomorphism ıf W TM ! f �TM.

Proof It is clear the diagram commutes as long as the bottom map is well defined, so to verify this, we
just need to ensure that if .f; ıf /2Bun@.TM / then .f; ıf /?�OT is still an almost contact structure on M,
which agrees with �OT near the boundary. First, f ?�OT and f ?R are always a hyperplane bundle and line
bundle on M respectively, for any smooth function f WM !M. Also, the Whitney sum decomposition
and the almost complex structure are naturally preserved by pullback. Since both f and ıf agree with
the identity near the boundary, the pullback agrees with �OT near the boundary, so the only possible
obstruction is that f ?�OT and f ?R are not necessarily isomorphic to subbundles of TM for an arbitrary
smooth function. However, we are given a fiberwise isomorphism ıf W TM ! f ?TM which allows us
to realize these pullbacks as subbundles of the tangent bundle, as required.

Next, we need some results about how the diffeomorphism group of a disk glued into M maps to
Cont.M rel @M /. First, we can use a recent result in [6, Theorem 1:4] which says that the inclusion map

Diff0.D
2nC1 rel @D2nC1/! Diff0.M rel @M /
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is injective on rational homotopy in degrees k in the rational concordance range k � �Q.D2n/ � 1,
k ¤ 0. So, if we can find something nontrivial in �kDiff0.D

2nC1 rel @D2nC1/˝Q that maps to zero in
�k Cont.M rel @M /˝Q in this range, then by the injectivity result we will have a nontrivial element of
�kDiff0.M rel @M /˝Q that maps to zero in �k Cont.M rel @M /˝Q, which will give us a nontrivial
element of �kC0.M; �OT rel @M /˝Q by exactness. Let Diff0.D

2nC1 rel @D2nC1/! Cont.M rel @M /

be given by composing through Diff0.M rel @M /.

Lemma 5.3 Let ˛ 2 �kDiff0.D
2nC1 rel @D2nC1/ be such that ˛ 7! 0 under the map

�kDiff0.D
2nC1 rel @D2nC1/! �k Cont.M rel @M /! �k AlmCont.M rel @M /:

Then we also have that ˛ 7! 0 under the map

�kDiff0.D
2nC1 rel @D2nC1/! �k Cont.M rel @M /:

Proof Let � be an overtwisted disk for �OT, and let D ' D2nC1 be an embedded disk in the interior
of M disjoint from a neighborhood of �. Then since we get a diffeomorphism of M by extending
a diffeomorphism of the disk by the identity, we have that � is overtwisted for f ?�OT for all f 2
Diff0.D rel @D/. Then we have that the map Diff0.D

2nC1 rel @D2nC1/ ! Cont.M rel @M / factors
through kContOT

�
.M rel @M IW/k, where f 7! .f ?�OT; �; 1/, and of course the map

kContOT
�
.M rel @M IW/k! Cont.M rel @M /

just comes from forgetting the overtwisted disks. So, we have the following commutative diagram:

Diff0.D
2nC1 rel @D2nC1/ Cont.M rel @M /

kContOT
�
.M rel @M IW/k AlmCont.M rel @M /

But, as we saw in a previous section the map kContOT
�
.M rel @M IW/k ! AlmCont.M rel @M / is a

weak equivalence, so indeed anything mapping to zero in �k AlmCont.M rel @M / must map to zero in
�kkContOT

�
.M rel @M IW/k and thus in �k Cont.M rel @M / as well.

Now, we have enough to prove the following lemma:

Lemma 5.4 The map Diff0.D
2nC1 rel @D2nC1/ ! Cont.M rel @M / is trivial on rational homotopy

groups.

Proof From Lemma 5.2, we can factor the map through bundle isomorphisms, as follows:

Diff0.D
2nC1 rel @D2nC1/ Diff0.M rel @M / Cont.M rel @M /

Bun@.D2nC1/ Bun@.TM / AlmCont.M rel @M /
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where the left vertical map is the derivative

d W Diff0.D
2nC1 rel @D2nC1/!�2nC1 SO.2nC 1/:

But, this map is zero on rational homotopy groups, see for example [5, page 9]. So, the composition through
the bottom of the diagram to AlmCont.M rel @M / is zero on rational homotopy. So, since the diagram is
commutative, we can go through the top, and use Lemma 5.3 to conclude Diff@.D2nC1 rel @D2nC1/!

Diff0.M rel @M /! Cont.M rel @M / is trivial on rational homotopy groups, as required.

Corollary 5.5 If .M; �OT/ is a compact , cooriented , overtwisted contact manifold of dimension 2nC 1,
then �kC0.M; �OT rel @M / contains an infinite cyclic subgroup whenever

�kDiff0.D
2nC1 rel @D2nC1/˝Q¤ 0; for k � �Q.D2n/� 1; k ¤ 0:

Proof By the injectivity result of [6], every nonzero element of

�kDiff0.D
2nC1 rel @D2nC1/˝Q

has nonzero image in �kDiff0.M rel @M/˝Q, which is then mapped to zero in �k ContOT.M rel @M /˝Q

by Lemma 5.4. By exactness, there must be a nonzero element in �kC0.M; �OT rel @M /˝Q.

6 Further applications

Another immediate application of Theorem 3.1 appears in Engel geometry, where it was recently shown
that there is a notion of overtwistedness parallel to contact overtwistedness, and one still gets an h-principle
with a fixed overtwisted disk; see [16, Theorem 1.1 and Corollary 1.2]. All of the relevant properties of
contact overtwistedness also apply to Engel overtwistedness; the collection of all overtwisted Engel disks
is still sufficiently separated, and Theorem 1.1 of [16] gives a strong enough relative h-principle that we
can get an h-principle for any number of fixed overtwisted disks. We can apply Theorem 3.1 to conclude
that for a 4-manifold M, E.M /! Ef .M / admits a section up to homotopy, where E.M /; Ef .M / are
the spaces of Engel and formal Engel structures on M, respectively. This shows that �kEf .M / is a
subgroup of �kE.M / for all k via the map from the semisimplicial realization. Furthermore, using the
foliated version of this h-principle from [16, Theorem 6.25], this subgroup agrees with the subgroup
found using a certificate of overtwistedness in degrees k � 3 in [16], using the same arguments used in
Theorem 4.4. It was already known that the map E.M /! Ef .M / is surjective on homotopy groups
by [3], and one of the main results of [4] shows �kEf .M / is a subgroup of �kE.M / for all k. The
natural question this raises is whether the subgroup of �kE.M / found in [4] using loose Engel structures
is the same as the subgroup one gets using semisimplicial realization via overtwisted disks. Understanding
this may help to understand how loose and overtwisted Engel structures interact, which is currently poorly
understood.
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Relations amongst twists along Montesinos twins in the 4-sphere

DAVID T GAY

DANIEL HARTMAN

Isotopy classes of diffeomorphisms of the 4-sphere can be described either from a Cerf-theoretic
perspective in terms of loops of 5-dimensional handle attaching data, starting and ending with handles
in canceling position, or via certain twists along submanifolds analogous to Dehn twists in dimension 2.
The subgroup of the smooth mapping class group of the 4-sphere coming from loops of 5-dimensional
handles of index 1 and 2 coincides with the subgroup generated by twists along Montesinos twins (pairs
of 2-spheres intersecting transversely twice) in which one of the two 2-spheres in the twin is unknotted.
We show that this subgroup is in fact trivial or cyclic of order 2.

57K40; 57K45

1 Introduction

By the smooth mapping class group of a smooth manifold X we mean �0.DiffC.X //, where DiffC.X /
is the space of orientation-preserving self-diffeomorphisms of X . One way to describe a smooth mapping
class is analogous to Dehn twists on surfaces: describe an explicit self-diffeomorphism of some standard
neighborhood of some standard object, which is the identity on the boundary of that neighborhood, then
implant this diffeomorphism via an embedding of this standard object into the ambient manifold and
extend by the identity outside the neighborhood. Smooth mapping classes which are pseudoisotopic
to the identity can also be described in a very different way via families of handlebodies, following
Cerf [2]: If � WX !X is pseudoisotopic to the identity via a pseudoisotopy ˆ W Œ0; 1��X ! Œ0; 1��X ,
let ft be a 1-parameter family of (generalized) Morse functions interpolating from f0D �Œ0;1�, projection
onto Œ0; 1�, to f1 D f0 ıˆ; choosing an associated family of gradient-like vector fields then gives a
family of handlebody structures on X � Œ0; 1�. The 1-parameter family of handle-attaching data in X then
determines � up to isotopy. Since f0 and f1 are Morse functions without critical points, this family starts
and ends with canceling handle pairs.

Using the fact that every orientation-preserving diffeomorphism of S4 is pseudoisotopic to the identity,
the first author showed in [3] that every element of �0.DiffC.S4// can be given in this Cerf-theoretic
way by a 1-parameter family involving only 2-3-handle pairs, and that under favorable conditions (it is
unclear whether these conditions might perhaps always be satisfied) such a family can be traded for a
family involving a single 1-2-handle pair. Here we study the subgroup of �0.DiffC.S4// coming from
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http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.287
http://www.ams.org/mathscinet/search/mscdoc.html?code=57K40, 57K45
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


288 David T Gay and Daniel Hartman

families of 1-2-handle pairs, the “1-2-subgroup”. In [3] the first author gave a countable list of generators
for the 1-2-subgroup, explicitly described as Dehn twist-like diffeomorphisms where the embedded object
is a Montesinos twin, a pair of spheres intersecting transversely at two points. Here we go back and forth
between the family of handlebodies perspective and the Montesinos twists perspective to show that this
1-2-subgroup is actually generated by a single element, and that the square of this element is trivial.

We now develop these two perspectives more carefully:

Definition 1 Given an embedding f WS1�†,!X , for some closed oriented surface† and some smooth
oriented 4-manifold X , the twist along f is the isotopy class of diffeomorphisms �f obtained by choosing
an orientation-preserving embedding Œ�1; 1� � S1 � † extending f , and performing a right-handed
Dehn twist along Œ�1; 1��S1 and the identity along †. As an element of �0.DiffC.X //, �f is uniquely
determined by the isotopy class of the embedding f .

Note that in this definition the twist �f is sensitive to the separate orientations of the two factors S1

and † in the embedded 3-dimensional submanifold f .S1 �†/ � X . In particular, if we reverse the
orientation of f .S1 �†/ by precomposing f with an orientation-reversing diffeomorphism of S1 then
the extension to an embedding of Œ�1; 1��S1 �† needs to reverse the Œ�1; 1� direction, but in the end
this reverses both factors in the annulus Œ�1; 1��S1, so we do not change the meaning of “right-handed
Dehn twist”. On the other hand, if we reverse the orientation of f .S1 �†/ by precomposing f with
an orientation-reversing diffeomorphism of † then we again need to reverse the Œ�1; 1� direction in the
extension to Œ�1; 1��S1�†, but since we did not reverse the orientation of S1 we did in the end reverse
the orientation of the annulus factor Œ�1; 1� � S1 and right-handed Dehn twists become left-handed
Dehn twists. In short, reversing the orientation of the S1 factor does not change �f while reversing the
orientation of the † factor turns �f into ��1

f
.

Definition 2 A Montesinos twin in a 4-manifold X is a pair W D .R;S/ of embeddings R;S WS2 ,!X ,
each with trivial normal bundle, which intersect transversely at two points. A half-unknotted Montesinos
twin is one in which one of the two 2-spheres is unknotted.

As shown by Montesinos [5; 6] and discussed in [3], the boundary @�.W / of a neighborhood of a
Montesinos twin W in an oriented 4-manifold X is diffeomorphic to T 3, and if X D S4 and we label the
factors of T 3 as S1

l
�S1

R
�S1

S
, this parametrization of @�.W / is canonically determined by the oriented

isotopy class of W up to independent orientation-preserving reparametrizations of S1
l

, S1
R

and S1
S

and
ambient isotopy in X . The S1

l
factor is homologically trivial in S4, while S1

R
is a positive meridian for

R and S1
S

is a positive meridian for S .

Definition 3 Given a Montesinos twin W in S4, the twist along W , denoted by �W , is the twist along the
embedding S1

l
� .S1

R
�S1

S
/ ,! S4, as given in Definition 1. Let M be the subgroup of �0.DiffC.S4//

generated by twists along Montesinos twins. Let M0 �M be the subgroup generated by twists along
half-unknotted Montesinos twins W D .R;S/.
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As we will discuss below, M0 is precisely the 1-2-subgroup of �0.DiffC.S4//.

The following is our main result:

Theorem 4 The group M0 generated by twists along half-unknotted Montesinos twins is either trivial or
cyclic of order 2.

Besides the Cerf-theoretic perspective identifying M0 as the 1-2-subgroup, one can also think of M0

as the simplest class of “twist subgroups” of �0.DiffC.S4//, with M, the subgroup generated by twists
along arbitrary Montesinos twins, being the next interesting case. Continuing from there, one can consider
subgroups generated by twists along general embeddings of S1 �†g for surfaces of various genus g. It
would be interesting to know if Theorem 4 can be generalized to say something about these potentially
more complicated subgroups.

Acknowledgments Both authors were supported in their work on this project by National Science
Foundation grant DMS-2005554 Smooth 4-manifolds: 2-, 3-, 5- and 6-dimensional perspectives.

2 The proof modulo one main calculation

There are two main ingredients in the proof of Theorem 4. The first is part of [3, Lemma 3]:

Lemma 5 �.S;R/ D �
�1
.R;S/.

Proof Switching R and S changes the parametrization of the boundary of a tubular neighborhood of
R[S from S1

l
�S1

R
�S1

S
to S1

l
�S1

S
�S1

R
. However, we are not changing the orientations of R or S , and

thus the orientations of the meridians S1
R

and S1
S

do not change. Therefore to keep our parametrization of
the boundary of R[S correctly oriented, we need to switch the orientation of the longitudinal S1

l
factor.

Then, when we turn this into a parametrization of a neighborhood of this 3-torus as Œ�1; 1��S1
l
�T 2, the

Œ�1; 1� direction does not change orientation (being oriented by the outward normal convention), and thus
the annulus Œ�1; 1��S1

l
in fact does change orientation. Therefore the Dehn twist along this annulus

switches from a positive Dehn twist to a negative Dehn twist, and so �.S;R/ D ��1
.R;S/

.

The second ingredient expands on the connection between twists along Montesinos twins and Cerf-
theoretically described diffeomorphisms of S4 developed in [3], so as to get a full set of generators and
some relations for M0. We now briefly set up the Cerf-theoretic picture in a little more detail.

Let Emb.S1;S1 � S3/ be the space of embeddings of S1 into S1 � S3, with basepoint taken to be
the embedding S1 � fpg for some p 2 S3. (In other words, without further comment, we will only be
working in the component of Emb.S1;S1 � S3/ containing S1 � fpg and we will take that to be the
basepoint for �1.Emb.S1;S1 �S3//.) There is a homomorphism

H W �1.Emb.S1;S1
�S3//! �0.DiffC.S4/
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discussed in [3] (where it is called FH1), which we describe briefly: Given a 2 �1.Emb.S1;S1 �S3//,
let ˛t W S

1 ,! S1�S3, with t 2 Œ0; 1�, be a loop of embeddings representing a, with ˛0D ˛1D S1�fpg.
Extend this to a loop of framed embeddings (the fact that we can do this is also explained in [3]). For
each t , let Zt be the 5-dimensional cobordism built by starting with Œ0; 1��S4, attaching a 5-dimensional
1-handle along a fixed standard attaching map into f1g � S4, to give an upper boundary canonically
identified with S1 �S3, and then attaching a 2-handle along the framed circle ˛t . Note that Z0 and Z1

are the same 5-manifold (ie built exactly the same way), so we can put these cobordisms together to build
a 6-manifold W fibering over S1 D Œ0; 1�=1� 0, with fiber over t 2 S1 equal to Zt , so that W itself is a
cobordism from S1 �S4 to some 4-manifold bundle over S1. In other words, each Zt is a cobordism
from S4 to some 4-manifold Xt , and the top boundary of W is a 5-manifold fibering over S1 with fiber
over t 2 S1 equal to Xt . Furthermore, since our basepoint is S1�fpg, the 2-handle at t D 0D 1 cancels
the 1-handle, and thus X0 can be canonically identified with S4. Hence the top of the cobordism W is
in fact an S4-bundle over S1 with some potentially interesting monodromy which is determined by the
(homotopy class of the) loop of attaching maps ˛t . This monodromy, as an element of �0.DiffC.S4//, is
by definition H.a/.

There is an obvious subgroup of �1.Emb.S1;S1 � S3// in the kernel of H, namely the subgroup of
homotopy classes represented by embeddings with image equal to S1�fpg, ie the subgroup corresponding
to reparametrizations of the domain S1 (or “spinning the circle in place”). By multiplying by elements of
this subgroup, we can thus always assume that our loops of embeddings ˛t W S

1 ,! S1 �S3 have the
property that the circle f˛t .z/ j t 2 Œ0; 1�g, for a fixed z 2S1, is homotopically trivial in �1.S

1�S3/DZ.

The connection between Montesinos twins and loops of circles in S1�S3 is seen as follows: Given a loop
˛t WS

1 ,!S1�S3 as in the preceding paragraph, suppose that the mapped in torus T WS1�S1!S1�S3

defined by T .t; z/ D ˛t .z/ is actually an embedding. (Budney and Gabai [1] in fact show that every
element of �1.Emb.S1;S1 �S3// can be represented by such a loop ˛t .) Let C be the basepoint circle
S1�fpg. Note that C lies on T . Surgery along C turns the triple .S1�S3;T;C / into a triple .S4;R;S/

where R is an embedded S2 in S4 obtained by surgering the torus T along the essential simple closed
curve C and S is the embedded S2 which is the cocore of the surgery, or belt sphere of the associated
5-dimensional 2-handle (ie the surgery replaces S1 �B3 with B2 �S2, and S is f0g �S2 � B2 �S2).
Furthermore, R and S intersect transversely at two points, namely the two “scars” on R resulting from
surgering the torus down to a sphere along C . In other words, W D .R;S/ is a Montesinos twin in S4,
which we will call the twin associated to the loop ˛t . Note that S is unknotted, since it results from
surgery along S1 � fpg � S1 �S3, so that W is a half-unknotted Montesinos twin. Conversely, given a
Montesinos twin W D .R;S/ in S4, if we assume that S is unknotted, then surgering .S4;R;S/ along
S yields .S1�S3;T;C /, where C D S1�fpg and T is an embedding of S1�S1 which is the trace of
a loop of embeddings ˛t W S

1 ,! S1 �S3; we will call this the loop of circles associated to the twin W .

The following lemma is implicit in the proof of [3, Theorem 4]:
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Lemma 6 Let W D .R;S/ be a half-unknotted Montesinos twin in S4; for the moment assume that
S is unknotted. Let ˛t be the loop of circles in S1 �S3 associated to W . Then �W D H.Œ˛t �/. If , on
the other hand , R is unknotted , then let x̨t be the loop of circles associated to W D .S;R/. In this case ,
�W D �

�1

W
DH.Œx̨t �/

�1 DH.Œx̨1�t �/.

Note that there are orientation conventions hidden in the above statement. In particular, one needs to
understand how the orientations of R and S determine the orientations both of each circle ˛t , for each t ,
and of the t direction in the loop of circles; equivalently, one needs to understand how the orientations of
R and S correspond to the orientations of meridian and longitude for the torus T W S1 �S1 ,! S1 �S3.
The truth is that it suffices to know that there exists some orientation convention that makes it correct, but
in the end we will not need to nail down that convention to get our proofs correct, because we show that
the whole group involved is trivial or cyclic of order 2.

Proof We have to show that, with appropriate orientation conventions, �W DH.Œ˛t �/ when W D .R;S/

and S is unknotted. The second half of the statement of Lemma 6, for W , follows directly from Lemma 5.

Given a loop of embeddings ˛t WS
1 ,!S1�S3, a diffeomorphism representing H.Œ˛t �/ can be defined as

follows. (Note that this idea goes back to Wall’s proof [7] realizing automorphisms of intersection forms
of 4-manifolds by diffeomorphisms.) Using the isotopy extension theorem, let  t W S

1 �S3! S1 �S3

be an ambient isotopy starting from  0 D id, for t 2 Œ0; 1�, such that ˛t D  t ı ˛0. Since ˛1 D ˛0 D

S1 �fpg � S1 �S3 we can assume that  1 is the identity on S1 �U for U a 3-ball neighborhood of p.
Then surgery along ˛0 D S1 � fpg turns S1 �S3 into S4 in such a way that  1 extends as the identity
across the surgered region, and thus  1 can be seen as a self-diffeomorphism of S4, and the isotopy class
of  1 on S4 is H.Œ˛t �/.

When the associated torus T W S1�S1! S1�S3 given by T .t; b/D ˛t .b/ is an embedding, then there
is a standard construction of an explicit ambient isotopy  t supported in a neighborhood D2�S1�S1 of
T as follows: Let .r; �/ 2 Œ0; 1�� Œ0; 2�� be polar coordinates on D2, with coordinates .a; b/ on S1�S1.
(We have replaced the original t variable by a because now it represents a spatial coordinate, and t will
be used for the time parameter in the isotopy.) Let f W Œ0; 1�! Œ0; 1� be a smooth nonincreasing function
which is 1 on Œ0; �� and 0 on Œ1� �; 1� for some suitably small positive �. Then

 t .r; �; a; b/D .r; �; aC tf .r/; b/

is the desired isotopy. The complement of
˚
r < 1

2
�
	

in our neighborhood D2 � S1 � S1 can now be
parametrized (and oriented) as

�
1
2
�; 1

�
�S1

�
�S1

a �S1
b

. This orientation agrees with the orientation as�
1
2
�; 1

�
�S1

a �S1
b
�S1

�
and, with respect to this orientation, we see that  1 is a positive Dehn twist on�

1
2
�; 1

�
�S1

a crossed with the identity on S1
b
�S1

�
.

We now need to see that the three circle parameters S1
a , S1

b
and S1

�
translate into S1

l
, S1

R
and S1

S

when we surger along C to turn T into a Montesinos twin .R;S/. In particular we need to make sure
that S1

a becomes S1
l

so that the Dehn twist on
�

1
2
�; 1

�
� S1

a becomes the Dehn twist on Œ�1; 1�� S1
l
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R.3/

S

Figure 1: An illustration of W .3/D .R.3/;S/, with the generalization to W .i/ being to wrap i

times around instead of three times around. The red and blue disks in R.3/ (“ear holes” of the
snake) are pushed forward and backwards in time to avoid self-intersection. We only show the
equator of S , with the hemispheres lying in the past and future. The two intersection points are
colored pink and green.

in our original parametrization of the neighborhood of a Montesinos twin. First of all, C is the circle
fr D 0; aD 0; b 2S1

b
g in T Dfr D 0; a2S1

a ; b 2S1
b
g. The circle S1

�
links T and thus, when we surger T

to become the 2-sphere R, S1
�

becomes the meridian S1
R

. The circle S1
b

essentially is the circle C , and thus
after surgery becomes the meridian S1

S
to the new 2-sphere S . Finally, in order to see that S1

a becomes the
longitudinal circle S1

l
, we just need to see that S1

a is homologically trivial in the complement of T . This
follows from the fact that S1

a is homotopically trivial in S1�S3, which we arranged earlier by multiplying
by an appropriate element of the domain reparametrization subgroup of �1.Emb.S1;S1 �S3//.

These facts, together with the fact that �1.Emb.S1;S1 �S3// is generated by loops which come from
embedded tori, immediately give us the fact that the group of isotopy classes of diffeomorphisms of S4

coming from loops of circles in S1 �S3 agrees with the group generated by twists along half-unknotted
Montesinos twins:

Corollary 7 H.�1.Emb.S1;S1
�S3///DM0.

One of the main results of [3] can be restated (combining Corollary 14 and Theorem 4 of [3] with
Corollary 7) as:

Theorem 8 M0 is generated by twists �W .i/ for i 2 N, for the Montesinos twins W .i/ D .R.i/;S/

illustrated in [3, Figures 1, 2 and 3]. The loops of circles ˛.i/t W S1 ,! S1 �S3 associated to these twins
are described by the embedded tori T .i/ illustrated in [3, Figure 8].
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R.3/

S

Figure 2: An alternative illustration of W .3/, involving two disjoint embedded 2-spheres in S4

(the two thick circles capped off with hemispheres in past and future) and an arc connecting them.
Pushing a finger from one of the spheres out along this arc and then doing a finger move when one
encounters the other sphere, creating a pair of transverse intersections, gives W .3/. To recover
Figure 1, push the finger from R.3/ until it meets S . However, this description is more “balanced”
between R.3/, allowing the user to decide which sphere they prefer to draw as the complicated one.

Figures 1 and 2 reproduce two illustrations of W .3/ from [3]; the generalization to W .i/ is clear.

An important feature of the twins W .i/ D .R.i/;S/ is that both R.i/ and S are unknotted. Thus, in
addition to the loops of circles ˛.i/t associated to W .i/, we have loops of circles ˛.i/t associated to
W .i/D .S;R.i//. Then by Lemma 5, we know that

��1
W .i/ DH.Œ˛.i/t �/:

Our main calculation in this paper is:

Proposition 9 In �1.Emb.S1;S1 �S3// we have Œ˛.i/t �D ni Œ˛.1/t � for some integer ni .

(We use additive notation for �1.Emb.S1;S1 �S3// because Budney and Gabai show that this group is
abelian [1].) In fact one can show that ni D˙i , but we do not need such a precise result, and the result
as stated is quicker and easier to prove. We combine the above result with the following observation:

Figure 3: Isotoping W .1/ into a symmetric position so as to see that W .1/D .R.1/;S/ is isotopic
to W .1/D .S;R.1//.
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Lemma 10 The twin W .1/ D .R.1/;S/ is isotopic (taking orientations into account) to W .1/ D

.S;R.1// and thus , by Lemma 5, �W .1/ D �
�1
W .1/

.

Proof Figure 3 illustrates W .1/ using the “finger move” schematic of Figure 2, and then shows an
isotopy to a diagram which is obviously symmetric between the two 2-spheres.

Note that in [1] the authors discuss “barbell diffeomorphisms”, clearly related to Montesinos twists,
and give conditions under which barbell diffeomorphisms have order 2. Most likely Lemma 10 is a
consequence of [1, Proposition 5.17].

From these three results we get:

Proof of Theorem 4 An immediate corollary of Proposition 9 is that, switching to additive notation for
�0.DiffC.S4//,

��W .i/ D˙ni�W .1/:

From Lemma 10, we know that �W .1/ has order 2 or is trivial. Since M0 is generated by f�W .i/; i 2Ng,
we conclude that M0 is generated by �W .1/ and thus is either the trivial group or the cyclic group of
order 2.

The rest of this paper is devoted to proving Proposition 9.

3 Calculating the Budney–Gabai invariants

To prove Proposition 9, we need a picture of the loop of circles ˛.i/t in S1 � S3 associated to the
Montesinos twin W .i/D .S;R.i// in S4. To get this, we need to first draw a picture of W .i/D .S;R.i//

in which R.i/ appears as a standard unknotted S2 and S appears as the interesting half of the twin.
Then we can surger along R.i/ so as to draw a picture of the resulting embedded torus T .i/ in S1 �S3,
from which we can understand the loop of embeddings ˛.i/t . This will then be used to compute the W2

invariant of Œ˛.i/t � 2 �1.Emb.S1;S1�S3// defined in [1]. As the calculation will be sufficient to prove
the proposition, we give a summary of Budney and Gabai’s W2 invariant below.

Figure 2 is most useful for performing the isotopy that standardizes R.i/ and leaves S looking complicated.
To recover Figure 1 from Figure 2, one pushes the finger from the sphere labeled R.3/ along the arc
until meeting S , and then performing a finger move there. However, one obtains an isotopic Montesinos
twin by pushing the figure out along the arc starting from S until it meets R.3/ and then performing
the finger move; this leaves R.3/ still “looking” like an unknot. In fact, we can first perform an isotopy
to the diagram in Figure 2 to put R.3/ into exactly the position where S was, as in Figure 4. The final
step in Figure 4 represents the result of surgering along the (now standardized) W .3/ to the torus T .3/

in S1 � S3. Figure 5 illustrates this final torus T .3/ more explicitly in S1 � S3, and this should be
compared to Figure 6 (Figure 8 in [3]), which illustrates the original T .3/.
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Figure 4: An isotopy of W .3/. The final frame should be interpreted as a diagram of an embedded
torus in S1 �S3, the result of surgering along R.3/. The interpretation of this diagram is made
clearer in Figure 5.

Now we discuss Budney and Gabai’s analysis of �1.Emb.S1;S1 �S3// and the aforementioned W2

invariant.

C

Figure 5: The embedded torus T .3/ in S1 �S3. The top is glued to the bottom, and horizontal
slices are S3’s, with the “time” coordinate indicated in red/blue shading, as in Figure 1.

Algebraic & Geometric Topology, Volume 25 (2025)



296 David T Gay and Daniel Hartman

C

Figure 6: The embedded torus T .3/ in S1 �S3, the obvious next member of the family of tori
described in [1, Figure 4].

In [1, Theorem 2.9] the authors compute �1 of all path components of �1.Emb.S1;S1 �S3//. Here we
summarize their main result only for the component we care about, the component containing our chosen
basepoint S1 � fpg: There is an isomorphism

(1) W1 �W2 W �1.Emb.S1;S1
�S3//! Z�ƒ0;

where
ƒ0
D ZŒx;x�1�=hxn

�x�n
8n 2 Z; x0; x�1

i:

The isomorphism W1 �W2 is the product of two homomorphisms

W1 W �1.Emb.S1;S1
�S3/! Z and W2 W �1.Emb.S1;S1

�S3/!ƒ0:

The invariant W1 detects “spinning the circle in place” as discussed in the proof of Lemma 6. We have
assumed already that our loops of embeddings ˛t W S

1 ,! S1 � S3 have the property that for a fixed
z 2 S1, the loop f˛t .z/; t 2 Œ0; 1�g is homotopically trivial. This directly translates to saying that we can
always assume that W1.Œ˛t �/D 0 for any of the loops of circles we will be considering.

Remark 11 As discussed in Lemma 6, we are free to reparametrize the domain of our loops, without
affecting H. Considering the isomorphism (1), we get that ker.W2/� ker.H/.

The important invariant to discuss is thus W2. We begin by reviewing the definition of W2 found in [1].
Following the authors’ notation, we will denote the two-point configuration space of a manifold M by
C2.M /. Let CC�C2.S

1�S3/ be the submanifold of points of the form ..z1;p/; .z2;p//, diffeomorphic
to C2.S

1/�S3, with an orientation coming from the diffeomorphism

..z1; z2/;p/! ..z1;p/; .z2;p//:

Algebraic & Geometric Topology, Volume 25 (2025)



Relations amongst twists along Montesinos twins in the 4-sphere 297

Note that C2.S
1/ may be familiar to many low-dimensional topologists as the pillowcase S2.

Given any loop of embeddings ˛t WS
1 ,!S1�S3, the authors define a map A WS1�C2.S

1/!C2.S
1�S3/

given by the formula
A.t; .z1; z2//D .˛t .z1/; ˛t .z2//:

After a slight perturbation if necessary, we may assume A to be transverse to CC, as the set of transverse
maps is dense (but not open) [4]. However, to prove homotopy invariance, Budney and Gabai work
instead with the Fulton–MacPherson compactification of the configuration spaces. Here transversality is
both open and dense, and ultimately is where two of the relations defining ƒ originate from. With A

transverse to CC, one sees that A�1.CC/ is just a finite collection of points. On the set A�1.CC/, there is
a natural †2 action given by permuting the C2.S

1/ coordinates. On the quotient A�1.CC/=†2, assign to
Œp�2A�1.CC/=†2 the monomial˙xkp . Here the sign of the monomial is given by the signed intersection
number of A.p/ and CC, for some representative p of Œp�, and the degree kp of the monomial is given by
the following procedure. First we consider the coordinates of the point p: .t; .z1; z2//. Next, take the
path Œz1; z2� going from z1 to z2 in S1 in the positively oriented direction. As p 2 CC, the S3 coordinate
of ˛t .z1/ equals the S3 coordinate of ˛t .z2/. Let Bp denote the arc in S1 �S3 which connects ˛t .z2/

to ˛t .z1/ by moving along the S1 factor in the direction opposite to the orientation, while keeping the S3

coordinate fixed. With this, we construct a map Kp W S
1! S1�S3 by concatenating the arc ˛t .Œz1; z2�/

with the arc Bp. The degree kp is then given by

kp D deg.�S1 ıKp/:

Alternatively we can calculate kp first by counting the signed intersection of Kp with fz0g�S3, for a generic
choice of z0 2S1. If we choose our S3 slice away from both ˛t .z1/ and ˛t .z2/, then kp can be calculated
by counting the signed intersection of the arcs ˛t Œz1; z2� and Bp with the S3 slice, and adding the result. So

kp D ˛t .Œz1; z2�/ � .fz
0
g �S3/CBp � .fz

0
g �S3/;

where � is the signed count of transverse intersection points.

Adding the monomials up over all Œp� 2A�1.CC/=†2 gives the formula for W2:

W2.Œ˛t �/D
X

Œp�2A�1.CC/=†2

˙xkp :

It is shown in [1] that W2 is well defined on homotopy classes of loops when considered as a map to ƒ0.
Moreover, none of the choices made affect the result as long as they are made consistently.

Proof of Proposition 9 We begin by recalling some notation. First, T .i/ and T .i/ are all embedded tori
in S1 �S3 (see Figures 5 and 6). Each embedded torus then corresponds to a loop of embeddings of
circles ˛.i/t W S1 ,! S1 �S3 for t 2 Œ0; 1� and ˛.i/t W S1 ,! S1 �S3 for t 2 Œ0; 1�, respectively. Each
loop starts at the embedding t 7! .t;p/, depicted by the red curve C in both Figures 5 and 6. Now in [1],
the authors show that W2.Œ˛.1/t �/D˙x2. As W2 is a homomorphism, the proposition will follow once
we show that W2.Œ˛.i/t �/D nx2, for some n 2 Z.
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Figure 7: The tubing construction for the torus T .3/. The general torus T .i/ is given by using a
tube which links the embedded sphere i times before it is attached to the sphere.

To begin our calculation, we note that the torus T .i/ can be constructed by tubing together the “standard”
torus with a 2-sphere as illustrated in Figure 7, with i equal to the number of times the tube spirals around
and through the 2-sphere. The ambient space in the figure should be viewed as Œ0; 1��S3, with f0g�S3

being identified with f1g�S3 by the identity. Note that all the “spiraling” the tube does happens between
f0g�S3 and f1g�S3. So, to calculate W2, we will compute intersections with the sphere f0g�S3. Note
that there are two values of t when ˛.i/t intersects f0g�S3 nontransversely, but transversality of A with
CC means that these values of t will not occur in the calculation of W2.

Supposing .t; z1; z2/ is a representative for Œp� 2A�1.CC/=†2,

kp D ˛.i/t .Œz1; z2�/ � .f0g �S3/CBp � .f0g �S3/:

As ˛.i/t .Œz1; z2�/ is a subarc of the embedded circle ˛.i/t .S1/, and ˛.i/t .S1/ has either exactly one
positive intersection or exactly two positive intersections and one negative intersection with f0g �S3,
the signed intersection count of ˛.i/t .Œz1; z2�/ with f0g �S3 lies in the set f0; 1;�1; 2g. For the arc Bp ,
this is a subarc of S1 � fvpg for some point vp 2 S3, oriented opposite to the given orientation of S1 in
S1 �S3. As such, the intersection number of Bp with f0g �S3 is either 0 or �1. Putting these together,
we get that

W2.Œ˛.i/t �/Dm�2x�2
Cm�1x�1

Cm0x0
Cm1x1

Cm2x2;

for some set of integers mk for k D�2;�1; 0; 1; 2. Finally, by considering the relations for ƒ0, we get

W2.Œ˛.i/t �/D nx2;

where nDm�2Cm2.
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Complexity of 3-manifolds obtained by Dehn filling

WILLIAM JACO

JOACHIM HYAM RUBINSTEIN

JONATHAN SPREER

STEPHAN TILLMANN

Let M be a compact 3-manifold with boundary a single torus. We present upper and lower complexity
bounds for closed 3-manifolds obtained as even Dehn fillings of M . As an application, we characterise
some infinite families of even Dehn fillings of M for which our method determines the complexity of
their members up to an additive constant. The constant only depends on the size of a chosen triangulation
of M , and the isotopy class of its boundary.

We then show that, given a triangulation T of M with 2-triangle torus boundary, there exist infinite
families of even Dehn fillings of M for which we can determine the complexity of the filled manifolds
with a gap between upper and lower bounds of at most 13jT jC7. This result is bootstrapped to obtain the
gap as a function of the size of an ideal triangulation of the interior of M , or the number of crossings of a
knot diagram. We also show how to compute the gap for explicit families of fillings of knot complements
in the 3-sphere. The practicability of our approach is demonstrated by determining the complexity up to a
gap of at most 10 for several infinite families of even fillings of the figure-eight knot, the pretzel knot
P .�2; 3; 7/, and the trefoil.

57K10, 57K31, 57K32, 57Q15

1 Introduction

We define the complexity of a triangulable manifold M to be the minimum number of top-dimensional
simplices in a semisimplicial triangulation of M . For closed irreducible manifolds in dimension 3 — the
focus of this work — this notion coincides for all but three manifolds with Matveev’s complexity [23]
that was defined in terms of spines. The notion of complexity is an important organising principle when
studying manifolds through the lens of low-dimensional topology. For any given n; d 2N there are only a
finite number of d -manifolds of complexity � n, and systematic census enumeration using triangulations
naturally generates all triangulations up to a certain complexity. In this very precise sense, complexity is
to manifolds what the crossing number is to knots.

Determining the complexity of a given manifold is a hard problem in general. Before we discuss closed
3-manifolds, note that several results on the complexity of 3-manifolds with boundary exist; see for
instance Frigerio, Martelli, and Petronio [9], Ishikawa and Nemoto [12], Jaco, Rubinstein, Spreer, and
Tillmann [16], and Rubinstein, Spreer and Tillmann [29] for complexity bounds on ideal triangulations,
and Jaco, Johnson, Spreer, and Tillmann [13] for complexity bounds on triangulations with real boundary.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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302 William Jaco, Joachim Hyam Rubinstein, Jonathan Spreer and Stephan Tillmann

In the closed case, early lower bounds on complexity use an analysis of homology and fundamental groups
(see Matveev and Pervova [24] and Pervova and Petronio [27]), or hyperbolic volume computations (see
Matveev, Petronio, and Vesnin [25] and Petronio and Vesnin [28]). Bounds in terms of hyperbolic volume
are only sharp in very special cases; see Fominykh, Garoufalidis, Goerner, Tarkaev, and Vesnin [8] and
Vesnin, Tarkaev, and Fominykh [31]. Cha [4, Corollary 1.11] gave lower bounds in terms of Cheeger–
Gromov �-invariants. A recent approach developed by Lackenby and Purcell [21] gives complexity
bounds for hyperbolic 3-manifolds that fibre over the circle using the monodromy of the bundle. Census
enumeration trivially determines the complexity of all manifolds in a given census, and hence a lower
bound for all manifolds that do not appear in that census. Currently, this determines the complexity of
all closed irreducible orientable 3-manifolds up to complexity 13 (see Matveev and Tarkaev [26]) — an
impressive algorithmic and computational achievement.

Upper bounds usually arise from the explicit construction of triangulations, and the difficulty lies in
closing the gap between upper and lower bounds. For instance, for the Weber–Seifert dodecahedral space,
it is currently only known that its complexity lies between 14 (since it does not appear in the current
census) and 23 (by an explicit construction of Burton, Rubinstein, and Tillmann [2]).

Here we build on observations on least-genus surface representatives of Z2-homology classes to produce
new complexity bounds. This is the only approach currently known to provide exact complexity bounds for
infinite families of closed 3-manifolds — more precisely, spherical 3-manifolds (see Jaco, Rubinstein, and
Tillmann [18; 19]) and 3-manifolds modelled on BSL2.R/ (see Jaco, Rubinstein, Spreer, and Tillmann [15]).
It also certifies complexity for some infinite classes of cusped hyperbolic 3-manifolds [16; 29].

Our new contributions to this line of work are complexity bounds up to a practical additive constant for
infinite families of closed 3-manifolds obtained by Dehn filling. We prove:

Theorem 5 Let M be an orientable compact irreducible 3-manifold with boundary an incompressible
torus , and let T be a triangulation of M with a 2-triangle torus boundary. Then there exist infinite
families of even Dehn fillings M.˛k/ of M for ˛k 2Q[f1g and k � 0, such that

2k � c.M.˛k//� 2kC 13jT jC 7:

In particular, for each once-cusped hyperbolic 3-manifold M of finite volume, this gives an infinite family
of closed hyperbolic 3-manifolds whose volumes converge to the volume of M and whose complexity is
known up to an additive constant that only depends on M . We remark that at the time of writing, there is
no infinite family of closed hyperbolic 3-manifolds for which the complexity is known exactly.

The gap in the above bound, denoted by gap.M.˛k//, is the difference between the upper and lower
bounds on the complexity of M.˛k/. Hence the above theorem provides an infinite family where the gap
is 13jT jC 7. In particular,

gap.M.˛k//

c.M.˛k//
2O

�
1

c.M.˛k//

�
:
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We extend Theorem 5 to similar statements with input an ideal triangulation (Corollary 6) or a knot
diagram (Corollary 7). None of these three results explicitly describes the filling slopes ˛k . Knots in the
3-sphere have a canonical framing, and our methods can be used to determine explicit bounds for infinite
families of even fillings where the gap is only a function of the number of crossings of a knot projection.
A sample result of this form is:

Theorem 8 Let K be a knot distinct from the unknot , and let D be a reduced diagram of K with n

crossings. Moreover , let M D S3 nN.K/ be the knot exterior of K with the standard framing on @M .

Let m0 D 1401.n� 1/, n0 Dm027m0C2, and k > n0. Then for the complexity of M.2k=1/,

2.k � n0/� c.M.2k=1//�m0C 2k � 1:

The proof of Theorem 8 can be adapted to give a bound for other families of even fillings, and those
families giving rise to a bound up to an additive constant are easily identified. Since every 3-manifold can
be obtained from Dehn filling on a link in the 3-sphere (see Lickorish [22] and Wallace [32]), Theorem 8
can be applied in a quite broad setting. The above result is complementary to similar bounds for integral
surgeries obtained by Cha [3; 5].

The reader should think of the theoretical results discussed so far as a flexible toolkit that can be applied
to specific families of examples. While Theorem 8 cites a very large constant, this constant is much
smaller in practical settings. We present three extended examples, analysing various families of Dehn
fillings of the figure-eight knot in Section 5.1, the pretzel knot P .�2; 3; 7/ in Section 5.2, and the trefoil
in Section 5.3. In several cases of infinite families of fillings allowing a constant gap, this gap is in the
single digits. The goal of this extended list of examples is to demonstrate that, given a knot and very little
extra information, we can determine practical upper and lower complexity bounds for infinite families of
even Dehn fillings using out-of-the-box software such as Regina [1] or SnapPy [6].

Acknowledgements Jaco is partially supported by the Grayce B Kerr Foundation. Research of Rubinstein,
Spreer, and Tillmann is supported in part under the Australian Research Council’s Discovery funding
scheme (project DP190102259). The main result was conceived whilst the authors were supported through
the programme Research in pairs by the Mathematisches Forschungsinstitut Oberwolfach in 2017. The
authors would like to thank the staff at MFO for an excellent collaboration environment. The authors
would also like to thank the referee for very useful remarks that improved the presentation of the paper.

2 Background

We refer to [15] for background and standard definitions, and only recall the following two key definitions:
Given a closed 3-manifold M , we define the complexity of M to be the minimum number c.M / of
tetrahedra in a triangulation of M . The norm k�k of a nontrivial class � 2H 1.M;Z2/ is the negative of
the maximal Euler characteristic of a properly embedded surface S , no component of which is a sphere
or projective plane, representing the Poincaré dual of �.

Algebraic & Geometric Topology, Volume 25 (2025)
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2.1 3-manifolds with torus boundary and the Farey tessellation

Let M be an orientable compact irreducible 3-manifold with @M consisting of a single incompressible
torus boundary component. Let .m; l/ be a framing of @M . Since @M is incompressible and has
abelian fundamental group, im.�1.@M /! �1.M //Š �1.@M /ŠH1.@M;Z/. As is usual for the torus,
we freely move between isotopy, homotopy, and homology classes depending on context and most
efficient notation. Hence, for an isotopy class of nontrivial simple closed loops on the boundary torus
˛ 2 im.�1.@M /! �1.M //, we refer to the nontrivial primitive class ˛ 2H1.@;Z/, where ˛ D mqlp,
as a slope, and vice versa. A slope is an even slope if it maps to zero in H1.M;Z2/.

Proposition 1 [17, Corollary 10] Let ˛ 2 im.�1.@M /! �1.M // be a slope. There is a properly
embedded surface S in M with Œ@S �D ˛ if and only if ˛ is an even slope.

This motivates the definition of the norm of an even slope ˛ in M as

k˛k Dminf��.S/ j S is a properly embedded surface in M with Œ@S �D ˛g:

We say that S is taut for ˛ if S is connected, Œ@S �D ˛, and k˛k D ��.S/.

Let T be a 0-efficient triangulation of M . Then T has a single vertex, and the induced triangulation
T@ of @M has exactly two triangles and necessarily contains this vertex. We briefly sketch how the
fundamental normal surfaces fFig of T , together with the dual graph of the Farey tessellation — as an
organising principle of boundary slopes on T@ — can be used to compute the slope norm for an arbitrary
even slope ˛ of M . We refer to [17, Section 2] for details.

Consider the Farey tessellation F associated with the framing .m; l/ for @M ; see Figure 1. Each ideal
triangle � corresponds to an isotopy class of 1-vertex triangulations of T@. Its ideal vertices are labelled
with the slopes .˛; ˇ;  / of the edges for T@, and each ideal triangle is labelled with its unique even slope,
say ˛, which is referred to as the even slope of � . The base triangle is marked in green, and the canonical
triangles for the even slopes in yellow. A canonical triangle is characterised by the property that the ideal
vertex carrying the even slope lies between the two other ideal vertices on the boundary of the tessellation.

The dual graph to the Farey tessellation �.F / is an infinite trivalent tree. Travelling across an arc in
�.F / corresponds to flipping an edge in T@ yielding another isotopy class of 2-vertex triangulations
of the torus. On the level of the triangulation T of M , this edge flip is realised by layering an extra
tetrahedron on top of T@, increasing the size of the triangulation by one.

Every isotopy class of 2-triangle triangulations of @M can be realised as the boundary of some triangulation
of M , and hence every even slope of @M is an edge in some triangulation of M .

Related to this organising principle, there are two measures of distance on �.F / of interest to us. Let �
and � 0 be two ideal triangles of the Farey tessellations. By abuse of notation, we refer to their corresponding
nodes in �.F / by � and � 0 as well. Let ˛ and ˛0 be the even slope labels of � and � 0, respectively. By
dF .�; �

0/ we denote the length of the unique shortest path in �.F / between � and � 0. By d.˛; ˛0/ we
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Figure 1: The Farey tessellation.

denote one less than the number of distinct even slope labels we see on the unique shortest path in �.F /
from a triangle labelled ˛ to a triangle labelled ˛0. Moreover, for ˛ an arbitrary even slope, we define
d.Œ1�; ˛/D1, where Œ1� 2 im.�1.@M /! �1.M // denotes the trivial loop. By construction, we have
2d.˛; ˛0/� dF .�; �

0/, and this bound is the best possible, as can be seen by following a path in �.F /
alternating between yellow and white ideal triangles in Figure 1.

In [17] it is shown that for some even slope ˛, the slope norm of ˛ equals

(2-1) k˛k D ��.S/Dmin
Fi

f��.Fi/C d.Œ@Fi �; ˛/g;
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where the minimum is taken over all fundamental surfaces Fi of T . Note that it is enough to minimise
over the set of incompressible and @-incompressible fundamental surfaces of M with connected essential
boundary.

Let M.˛/ be the Dehn filling of M along ˛. Moreover, let S �M be taut for ˛. Consider the union of S

and the meridian disk of the filling torus in M.˛/, and denote its Poincaré dual by �˛ 2H 1.M.˛/;Z2/.
By construction k�˛k D k˛k� 1.

3 Complexity bounds on even Dehn fillings

In this section we first deduce lower and upper bounds for the complexity of M.˛/. We then describe
infinite families of Dehn fillings for which the gap between these bounds is constant.

3.1 Lower bound

A balanced lens space is a lens space M with even fundamental group that satisfies c.M /D 1C 2k'k,
where ' is a generator for H 1.M IZ2/. With the setup from Section 2 and the following theorem
from [15], we directly obtain a lower bound for the complexity of M.˛/.

Theorem 2 [15, Corollary 2] Let M be a closed orientable irreducible connected 3-manifold not
homeomorphic with a balanced lens space and suppose that 0¤' 2H 1.M IZ2/. Then c.M /� 2C2k'k.

Corollary 3 Let M be an orientable compact irreducible 3-manifold with boundary an incompressible
torus , and let ˛ be an even filling slope of M such that M.˛/ is not a balanced lens space. Then

(3-1) c.M.˛//� 2k˛k;

where k˛k denotes the slope norm of ˛ in M .

Proof Since M.˛/ is not a balanced lens space, it follows from Theorem 2 that c.M.˛//� 2C2k�˛kD

2C 2.k˛k� 1/D 2k˛k.

3.2 Upper bound

Let M be an orientable compact irreducible 3-manifold with boundary an incompressible torus. Fix a
framing .m; l/ on @M and let T be a triangulation of M with a 1-vertex 2-triangle torus boundary T@.
Let � be the node in �.F / corresponding to the isotopy class of T@.

We can turn T into a triangulation of a Dehn filling of M by folding T@ over one of its three boundary
edges. That is, the two triangles in T@ are identified in such a way that one obtains a Möbius band. The
edge that one folds over becomes the boundary of the Möbius band, and the other two edges are identified;
see Figure 2. The kernel of the induced map on fundamental groups from the torus to the Möbius band is
generated by the associated filling slope. This can be worked out from the identification of the two edges
of T@ by the folding operation as follows:
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Figure 2: Left: the torus boundary T@ of isotopy class .a=b; c=d; .aC c/=.bC d//. The arrow
indicates the folding over the diagonal and the dotted line indicates the target filling slope. Right:
corresponding ideal triangle(s) in the Farey tessellation. The arrow indicates source and target
triangle and the bold vertex indicates the target filling slope.

Suppose we fold over the diagonal edge in Figure 2, left. This yields the filling slope .c � a/=.d � b/,
which is the opposite diagonal, and hence a triangulation of the manifold M..c � a/=.d � b//. Folding
over the even edge produces a closed nonorientable surface of the same Euler characteristic as the negative
of the current slope norm. This means there are two ways to relate the slope norm of an even boundary
slope ˛ to the Z2-norm of the associated class in the Dehn filled manifold M.˛/:

(1) layering on an ideal triangle labelled ˛, thereby adding an additional saddle (decreasing Euler
characteristic by one), and then capping off the bounded taut surface with a disk in M.˛/ (increasing
the Euler characteristic by one), or

(2) layering on one ideal triangle before a triangle labelled ˛, and closing the bounded taut surface by
antipodal identification (leaving the Euler characteristic invariant).

Given T and a target even Dehn filling slope ˛, we can use the Farey tessellation to work out how to
layer on T@ to obtain a triangulation of M.˛/ via folding: From � , the node of �.F / corresponding to
the isotopy class of T@, layer on T@ following the unique shortest path from � to one step before a node
labelled ˛ (if � is already labelled ˛, perform one layering to obtain an isotopy class of the boundary not
labelled ˛). Denote this target node by � 0. Now folding over the even boundary edge yields a triangulation
T˛ of M.˛/; see Figure 2, left, for ˛ D .c � a/=.d � b/.

By construction,

(3-2) c.M.˛//� jT˛j D jT jC dF .�; �
0/:

Note that this upper bound does not only depend on jT j, but also on the isotopy class of T@ (in (3-2)
this information is incorporated in �). This plays a role in the bound derived in Section 4, and again in
Section 5, where we look at different triangulations of the figure-eight knot complement and the pretzel
knot P .�2; 3; 7/ to minimise the gap between upper and lower bounds for Dehn fillings of this manifold.
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Remark 4 Whenever we want to calculate the norm of an even boundary slope we must work with a
0-efficient triangulation, because this way, for every boundary slope bounding an incompressible and
@-incompressible surface, a norm-minimising surface with this slope is amongst the fundamental surfaces
in the triangulation; see [17, Lemma 13]. However, here and in the following sections we only need a
guarantee that for every boundary slope of an incompressible and @-incompressible surface, there exists a
fundamental normal surface in the triangulation with a single boundary component realising this slope.
By virtue of [20, Proposition 3.7 and its corollaries], this is satisfied as soon as the triangulation has a
2-triangle torus boundary.

3.3 Families of filling slopes with constant gap

Let T be a triangulation of M with 2-triangle torus boundary, let fFig be the finite set of fundamental nor-
mal surfaces of T , and let S be the (finite) subset of vertices of �.F / associated with the boundary slopes
of those fFig with a single nontrivial boundary curve in T@. Denote the vertex of �.F / corresponding to
the isotopy class of T@ by �0. Choose a framing .m; l/ on @M such that �0 D �.0=1; 1=0;�1=1/.

In �.F /, starting at node �0 D �.0=1; 1=0;�1=1/, follow any infinite path �k for k � 0 in �.F / where
the even slope labels change at every second node. Equivalently, follow a path that alternates between
nodes corresponding to white and yellow triangles; see Figure 1.

Let � 0 2S be the last node of S along the path, with even slope label ˛0. Replace the path by truncating
its beginning: start at � 0, and remove the portion from �0 to � 0. Refer to every even slope ˛ as admissible
if ˛ is an even slope label on the path and the previous even slope label ˛00 of a node � 00 on the original
path is still on the truncated version of the path. Note that

(3-3) 2d.˛0; ˛00/� dF .�
0; � 00/� 2d.˛0; ˛00/C 1:

For ˛ admissible, and if M.˛/ is not a balanced lens space, we have for the difference between upper
and lower bounds

0� jT˛j � 2k˛k D jT jC dF .�; �
00/� 2k˛k(3-4)

� jT jC dF .�; �
0/C dF .�

0; � 00/� 2k˛k(3-5)

� jT jC dF .�; �
0/C dF .�

0; � 00/� 2d.˛0; ˛00/(3-6)

� jT jC dF .�; �
0/C 1:(3-7)

Here (3-4) is the difference between (3-2) and 2k˛k. This is nonnegative by virtue of Corollary 3.
Equation (3-5) is a simple application of the triangle inequality for dF . Equation (3-6) follows from the
setup of the path between � 0 and � 00, the definition of k � k in (2-1), and the assumption that the slope
norm of the slope corresponding to the second even slope label on the truncated path is 0. Finally (3-7)
implements the more pessimistic case of (3-3).

Since neither jT j nor dF .�; �
0/ depend on the choice of admissible slope ˛, this determines the complexity

of the infinite family of closed manifolds fM.˛/g for ˛ admissible, up to a constant.
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Note that, if all members of fM.˛/g are hyperbolic, we can decrease the constant by one, accounting
for the fact that the norm of the first slope must be positive. Also note that this bound can be improved
by looking at different triangulations T with different isotopy classes of T@. In particular, the choice of
triangulation affects both jT j and dF .�; �

0/.

4 An upper bound for the constant gap

As above, let M be an orientable compact irreducible 3-manifold with boundary an incompressible torus.
Moreover, as above, let T be a triangulation of M with a 2-triangle torus as boundary. In this section
we compute upper bounds for jT j and dF .�; �

0/ from Section 3.3, and hence the gap in complexity, for
infinite families of Dehn fillings with constant gap of M . Our bounds only depend on jT j (Theorem 5),
the number of tetrahedra in an ideal triangulation T 0 of the interior of M (Corollary 6), or the number of
crossings of a knot diagram D of a knot K � S3 in the case M D S3 nN.K/ (Corollary 7).

In addition, we give an improvement of Corollary 7, where we have control over the knot-theoretic
framing of @M . This allows us to determine constant gaps for explicitly chosen families of even Dehn
fillings of knot exteriors only depending on the crossing number of a diagram of a knot (Theorem 8).

Theorem 5 Let M be an orientable compact irreducible 3-manifold with boundary an incompressible
torus , and let T be a triangulation of M with a 2-triangle torus boundary. Then there exist infinite
families of even Dehn fillings M.˛k/ of M for ˛k 2Q[f1g and k � 0, such that

2k � c.M.˛k//� 2kC 13jT jC 7:

Proof Since M is a 3-manifold with a single torus boundary component, every incompressible and
@-incompressible surface in M has one of finitely many boundary slopes [11]. Since the triangulation T

has exactly two boundary triangles, for every boundary slope of an incompressible and @-incompressible
surface, there exists a fundamental normal surface in T with a single boundary component realising this
slope [20, Proposition 3.7 and its corollaries].

Let jT j D n. By the work of Hass, Lagarias, and Pippenger [10], a fundamental surface F can have
at most n27nC2 normal arcs per boundary normal arc type. Choose a framing on M with one edge of
T@ following the meridian m and one following the longitude l, such that the isotopy class of T@ is
.0=1; 1=0;�1=1/. It follows that @F intersects each of m and l at most 2n27nC2 times.

Construct an infinite path in the dual of the Farey tessellation �.F /: Starting at node �.0=1; 1=0;�1=1/

go to a node � 0 that we will choose in the course of the proof, which will have associated even slope
˛D 2p=q with 2p > 2n27nC2D n27nC3. Then proceed away from �.0=1; 1=0;�1=1/ and � 0 with a new
even slope in every second node. In the language of Section 3.3, we call the truncated path starting at � 0

the admissible path: � 0 is the last node on the path possibly still contained in S � �.F /. Denote the
associated even slopes of the admissible path by ˛k for k � 0, where ˛0 D ˛.
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Claim We have c.M.˛k//� 2k for the complexity of M.˛k/.

Proof of the claim Let � be a node in S ��.F /, and let �� be the smallest negative Euler characteristic
of a surface with slope the even slope of � . Following [17, Algorithm 16], we compute the slope norm of ˛k

by taking the minimum of�� plus the number of even slopes (¤˛k) observed on a path in�.F / from � to a
node with even slope label ˛k , ranging over all nodes � 2S . (Note that it would be enough to only consider
nodes � associated to the slope of an incompressible @-incompressible surface in M .) By construction this
path must pass through � 0. To see this, note that�.F / is a tree and hence there is a unique shortest path from
� to a node labelled ˛k . Assume that this path does not contain � 0. Observe that the unique shortest path
from � to �.0=1; 1=0;�1=1/ cannot contain � 0 because all even slope labels on this path have numerator at
most n27nC3. Hence, it follows that the path from �.0=1; 1=0;�1=1/ to a node labelled ˛k (containing � 0),
the segment between nodes labelled ˛k , the segment from the second node labelled ˛k to � , and the segment
from � to �.0=1; 1=0;�1=1/ form a (not necessarily simple) cycle in the tree �.F /. This is a contradiction.

However, this implies that we see at least kC 1 distinct even slopes on the admissible path, and we have
k˛kk � k. It then follows from Corollary 3 that c.M.˛k//� 2k, provided M.˛k/ is not a balanced lens
space. But M.˛k/ cannot be a balanced lens space because of the nonempty sequence of layerings along
the Fibonacci path described below.

On the other hand, we can triangulate M.˛k/ by starting with T and layering tetrahedra along the shortest
path of �.0=1; 1=0;�1=1/ to � 0. We then need 2k�1 more tetrahedra to layer onto the boundary to reach
a boundary isotopy class that yields a triangulation T˛k

of M.˛k/ by folding the even boundary edge.
Hence, in order to compute a bound for the gap up to which we can determine the complexity of M.˛k/,
it remains to bound dF .�.0=1; 1=0;�1=1/; � 0/; see (3-2).

The shortest path from �.0=1; 1=0;�1=1/ to some node � 0 with even slope coefficients larger than n27nC3

is the following path:

�.0=1; 1=0;�1=1/ �.1=1; 1=0; 0=1/ �.2=1; 1=1; 1=0/ �.3=2; 2=1; 1=1/ �.5=3; 3=2; 2=1/

� � � �.Fl=Fl�1;Fl�1=Fl�2;Fl�2=Fl�3/; �.FlC1=Fl ;Fl=Fl�1;Fl�1=Fl�2/:

Here F0D 0, F1D 1, and Fi DFi�1CFi�2 for i � 2 is the Fibonacci sequence. As described above, we
choose � 0 and associated even slope ˛ D FlC1=Fl , where FlC1 is an even Fibonacci number such that
FlC1 > n27nC3. By construction, the length of the path from �.0=1; 1=0;�1=1/ to this � 0 is exactly l .

We have Fi D
�
�i=
p

5C 1
2

˘
for � D 1

2
.1C
p

5/� 1:618. Observe that 1
2
�l �

�
�i=
p

5C 1
2

˘
for l � 2.

Since n� 1, we have n27nC3 � 1024, and l � 2 can safely be assumed. It follows that we need to bound l

so that 1
2
�l > n27nC3. This translates to

l >
1

log2.�/
.log2.n/C 1C 7nC 3/:

Since n> log2.n/ we can instead compute l to satisfy l > .8nC4/= log2.�/� 1:4404201.8nC4/. Since
every third Fibonacci number is even, l D 12nC 8 satisfies the bound.
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Altogether, this means we can triangulate M.˛k/ by starting with T , layering 12nC 8 tetrahedra on
its boundary to obtain a triangulation with boundary isotopy class .FlC1=Fl ;Fl=Fl�1;Fl�1=Fl�2/,
followed by layering 2k � 1 additional tetrahedra on its boundary before folding over the boundary.

We thus have the upper bound

c.M.˛//� nC 12nC 8C 2k � 1D 13nC 7C 2k:

Corollary 6 Let M be an orientable compact irreducible 3-manifold with boundary an incompressible
torus , and let T 0 be an ideal triangulation of the interior of M . Then there exist infinite families of even
Dehn fillings M.˛k/ of M for ˛k 2Q[f1g and k � 0, such that

2k � c.M.˛k//� 2kC 1
3
.143jT 0jC 151/:

Proof Let nD jT 0j be the number of ideal tetrahedra in T 0. According to [14, Section 4.4], inflating the
ideal vertex of T 0 along frame ƒ in the vertex link of T 0 produces a triangulation T of the compact core
of M with jT j D jT 0j C e.ƒ/CX.ƒ/C 2. Here e.ƒ/ is the number of edges in frame ƒ and X is a
correction term accounting for the fact that conflicting diagonals of quadrilateral faces may be introduced
in the inflation process, requiring extra tetrahedra to be inserted.

The vertex link of T 0 is a triangulated torus with 2n vertices (points on edges of T 0), 6n edges (normal
arcs in triangles of T 0), and 4n triangles (normal triangles in tetrahedra of T 0). The frame ƒ is a
collection of edges of the vertex link with Euler characteristic �1. Hence ƒ can have at most 2nC 1

edges, and so e.ƒ/� 2nC 1.

Since edges in ƒ are normal arcs in triangles of T 0, every triangle t � T 0 can contain between zero
and three edges of the framing. In the case of two or three edges, inflating at t corresponds to adding
a triangulated pyramid over a quadrilateral or a triangulated prism over a triangle. The diagonal in the
pyramid can be freely chosen, but for the prism only six of the eight combinations of diagonals are possible.
As a result, for every such t containing three edges of the frame, we may need an additional tetrahedron to
flip a conflicting diagonal. In the worst case this adds another X.ƒ/�

�
1
3
e.ƒ/

˘
�

�
1
3
.2nC1/

˘
tetrahedra

to T .

Altogether we have
jT j � nC 2nC 1C

�
1
3
.2nC 1/

˘
C 2�

�
1
3
.11nC 10/

˘
:

Applying Theorem 5 to T proves the result.

Corollary 7 Let K be a knot distinct from the unknot , and let D be a diagram of K with n crossings.
Moreover , let M D S3 nN.K/ be the knot exterior of K.

Then there exist infinite families of even Dehn fillings M.˛k/ of M for ˛k 2Q[f1g and k�0, such that

2k � c.M.˛k//� 2kC 1
3
.572nC 723/:

Proof A well-known construction due to Weeks [33, Section 3] produces an ideal triangulation T 0 from
an n-crossing diagram of a link with one cusp per link component and 4nC 4 tetrahedra. Applying
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the inflation in the proof of Corollary 6 to T 0 hence produces a triangulation T with a 2-triangle torus
boundary with jT j �

�
1
3
.44nC 54/

˘
tetrahedra. Applying Theorem 5 to T proves the result.

For the final statement of this section, we say that a diagram D of a knot K is reduced, if it does not allow
reducing Reidemeister moves of type I or II. We call the pair of essential curves .mK ; lK / on @M the
knot-theoretic framing if mK bounds a disk in N.K/, and lK intersects mK once and has linking number
zero with K in S3. Determining the knot-theoretic framing first, we can give bounds for explicitly chosen
infinite families of Dehn fillings of M . Here we prove this in the special case of filling slopes 2k=1 for k

sufficiently large.

Theorem 8 Let K be a knot distinct from the unknot , and let D be a reduced diagram of K with n

crossings. Moreover , let M D S3 n N.K/ be the knot exterior of K, and let m0 D 1401.n � 1/,
n0 Dm027m0C2, and k > n0.

Then we have for the complexity of M.2k=1/

2.k � n0/� c.M.2k=1//�m0C 2k � 1:

Remark 9 The focus on fillings 2k=1 is arbitrary. Using the identical method, we can compute explicit
bounds for other families of filling slopes with constant gap (as presented in Section 3.3).

Proof The proof of this statement has the following main steps and ingredients:

(1) Construct a triangulation T of M with boundary T@ a torus containing mK and lK as simple closed
loops of edges meeting in a single vertex.

(2) Turn T into a triangulation T 0 with boundary T 0
@

a 2-triangle torus of isotopy class .0=1; 1=0;�1=1/

with respect to the knot-theoretic framing. In particular, one boundary edge runs along the meridian and
one boundary edge runs along the longitude of the knot-theoretic framing of @M . This step takes up the
bulk of the proof.

(3) As in Theorem 5 invoke Hatcher [11], Jaco and Sedgwick [20], and Hass, Lagarias, and Pippenger [10].

(4) Use the Farey tessellation and the known isotopy class of T 0
@

to show k2k=1k � k � c for some
constant c. The complexity of M.2k=1/ is bounded above by the size of T 0 and the length of a path in
the dual graph of the Farey tessellation.

The triangulation T We apply a slightly revised construction of [10, Lemmas 7.1 and 7.2] to D. In [10],
the authors first turn D into a maximal planar graph (with crossings as vertices), possibly by introducing
extra vertices at bigons of D — which they call special vertices — and edges. Since in our case D is
reduced, the number of special vertices is bounded above by n itself, and we have for the total number of
vertices in the subdivided planar graph m � 2n (instead of m � 5n in [10]). The process is illustrated
in Figure 3: On the left, add special vertices, giving the planar graph shown in the second step. The
third step shows the result of completing to a triangulation. This yields a maximal planar graph, or
planar triangulation, with � 4n� 5 bounded triangular regions — or triangles. We take the union of these
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z

y

� P

x

Figure 3: From D to P . The blue lines denote the edges representing K.

triangles cross an interval to obtain a collection of � 4n� 5 triangular prisms, denoted by P . This is
shown in the fourth step of Figure 3.

Combining [10, Lemmas 7.1 and 7.2] we only consider one layer of such prisms P (instead of three in [10])
and subdivide them into 14 tetrahedra each (with one vertex in the centre of each quadrilateral, coning over
a vertex in the centre of P ) to obtain a triangulation P 0 of P with at most 14.4n�5/D 56n�70 tetrahedra,
and at most 2.4n�5/C12D8nC2 triangles in its boundary @P 0. This is shown in Figure 4. Coning @P 0 to
a single point at infinity, this yields a triangulation S of the 3-sphere with�64n�68<64.n�1/ tetrahedra.

By construction, S contains the knot K as a simple closed loop L in its 1-skeleton: Follow the top (bottom)
edge of a prism for an arc of D from an overcrossing (undercrossing) to an overcrossing (undercrossing).
Follow the two edges in a diagonal of a quadrilateral prism face for an arc in D from an overcrossing to
an undercrossing, or an undercrossing to an overcrossing, respectively. Whenever we encounter a special
vertex, we first follow the appropriate edge of a triangular prism face before following the appropriate
diagonal of the next quadrilateral prism face. It follows that the length of L is bounded above by 6n.

Placing P 0 into R3 with the planar triangulations parallel to the xy-plane, and the interval in the z-direction
(see Figure 3, right), we can see that D can be recovered from L by projecting a regular neighbourhood
of P 0 in S into the xy-plane from the z-direction.

Removing a small regular neighbourhood of L from S produces either tetrahedra with neighbourhoods
of zero, one, two, or three vertices removed, or tetrahedra with the neighbourhood of one edge, and zero
or one vertices removed. To see this note that since D is reduced and hence does not admit any reducing

x
y

z

� P 0

Figure 4: The triangulation P 0. Subdivisions are mostly omitted for readability.
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L

L

LL

L

L

L LL

L

Figure 5: Removing a small neighbourhood of L from a tetrahedron followed by triangulating
the resulting truncated tetrahedron. Top row: L meets the tetrahedron in an edge and a vertex.
This results in a subdivision into 9C 3D 12 tetrahedra. Bottom row: L meets the tetrahedron in
three vertices. This results in 13C 3D 16 tetrahedra.

Reidemeister II moves, at most one edge per tetrahedron in S is in L, and each tetrahedron in S has
exactly one vertex that either lies at the centre of a triangular prism, or at infinity, and hence away from L.

Triangulating the boundary of these truncated tetrahedra produces at most 16 triangles. (See Figure 5
bottom row for the case realising 16 triangles. All other types of truncated tetrahedra can be triangulated
with fewer tetrahedra; see for instance Figure 5, top row.) Coning these over a single vertex in its centre
produces a triangulation T of the knot exterior of K with at most 16 �64.n�1/D 1024.n�1/ tetrahedra.
Note that at most three triangles per triangulated boundary of a truncated tetrahedron are in the boundary
T@ of T ; see Figure 5 for some details about constructing T .

Looking at the construction of T and its boundary, we can identify the geometric meridian mK of the
knot exterior as a loop of six edges in the link of a special vertex. If no special vertex exist, we can create
one at the beginning of the construction, and since we assume that we have as many special vertices as
original vertices in our construction, this does not change our bound. We can also identify the geometric
longitude lK as a simple closed path in T@: we simply run along edges in the direction of L, and realise
linking number 0 with L by walking around meridian curves at nonspecial vertices as needed. Since mK

lives in a neighbourhood of a special vertex, mK and lK are edge-disjoint and meet in a single vertex.

The triangulation T 0 In the next step of the construction, we turn T into a triangulation T 0 with
a 1-vertex, 2-triangle boundary torus of isotopy class .0=1; 1=0;�1=1/. That is, with one of its three
boundary edges running parallel to mK , and another one running parallel to lK .

From our calculations about the number of triangles in the truncated tetrahedra (see above), we conclude
that T@ has at most 3 �64.n�1/D 192.n�1/ triangles and hence at most 9

2
64.n�1/D 288.n�1/ edges,

and, since it is a torus, 96.n� 1/ vertices. In particular, its average vertex degree is 6 and we can always
find a vertex v with degree � 6 in T@.
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e

v

e

v

e

v
v

e0

e0e0e0

Figure 6: Turning a degree-1 vertex (left) or a degree-2 vertex (second from the left) into a vertex
of degree 3 with two or one flips, respectively. Note that edges e and e0 must be distinct because
T@ is not a 2-sphere.

If v is of degree 1 or 2, we can layer two tetrahedra or one tetrahedron, respectively, onto the triangles
adjacent to v, as shown in Figure 6, to turn v into a vertex of degree 3. Note that this is always possible since
T@ is not a sphere (and hence the boundary of the two triangles around a vertex of degree 2 must consist of
two distinct edges). If mK or lK ran through v (only possible in the case that v initially was of degree 2),
we can find a shorter curve on the boundary of the altered triangulation isotopic to the original one.

If v is of degree 4, 5, or 6, we have three main cases:

Case 1 (the simple closed paths following mK and lK do not run through v) Here we have three subcases:

Case 1.1 (all triangles of T@ contain v at most once) We can add one, two, or three tetrahedra,
respectively, onto the triangles adjacent to v, as shown in Figure 7, left, to turn v into a vertex of degree 3.

Case 1.2 (there exists a triangle containing v twice, but no triangle contains v three times) At least two
triangles contain v twice and, locally, we must have the picture shown in Figure 7, right. Moreover, since
T@ is not a sphere, v must be of degree at least 5. Gluing one tetrahedron, as shown in Figure 7, right,
decreases the degree by 2, and causes v to have two fewer triangles containing v twice (actually, since
the degree of v is at most 6, then all remaining triangles must be distinct).

Case 1.3 (there exists a triangle occurring three times) Then either we have a 1-vertex 2-triangle torus
and the simple closed paths following mK and lK pass through v, or the degree of vertex v must be at
least 7. Either way this is a contradiction.

Case 2 (one of mK or lK runs through v) Without loss of generality, let mK contain v, and let lK be
disjoint from v. Since v is disjoint from lK , it follows that mK is of length at least 2, and intersects the
triangles adjacent to v in exactly two edges and at least one vertex distinct from v.

Since v has degree at most 6, it occurs in triangles on one side of mK at most five times. Fix one side.
It follows from Case 1.3 that no triangle on this side contains v three times. Moreover, if an edge e

contains v twice, it cannot be contained in mK . Hence we can layer over e as in Case 1.2 to reduce the
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v

v

v

Figure 7: Left: reducing the degree of a boundary vertex v with only distinct triangles around it
by one. Right: reducing the degree of a boundary vertex v contained twice in two triangles by two.
The layered edge is drawn dashed, and the new boundary edge is drawn in red. Vertex linking
normal curves are drawn in green. New arcs of the vertex linking curve are drawn in blue, and old
arcs are dashed.

degree of v by 2 without covering an edge contained in mK . If no triangle contains v more than once, we
proceed as in Case 1.1, noting that we can always avoid covering an edge contained in mK in the process.

Case 3 (both mK and lK run through v) In this case, we do not touch this vertex. It must be of degree
at least 6, and hence we can find another vertex of degree at most 6 to perform the above process on.

Altogether, after adding at most three tetrahedra to T we obtain a triangulation containing a vertex with
exactly three distinct triangles around it. Hence, we can glue one additional tetrahedron to the three
triangles surrounding this vertex to produce a triangulation with this vertex no longer in its boundary.
Note that this is possible whenever T@ has more than one vertex, and that the boundary of this new
triangulation is smaller by one vertex, three edges, and two triangles. Moreover, by construction, it still
contains simple closed paths of edges running along mK and lK of equal or shorter length.

Iterating this procedure hence necessarily produces a triangulation T 0 with only two triangles in its
boundary. Since T has at most 96.n� 1/ vertices in its boundary, the above procedure adds at most
4.96.n� 1/� 1/D 384.n� 1/� 4 extra tetrahedra to T to produce T 0. It follows that T 0 contains at
most .384C 1024/.n� 1/� 1< 1408.n� 1/DWm0 tetrahedra.

This part of the proof is completely analogous to the proof of Theorem 5. We sketch the argument again
for the reader’s convenience:

(1) Due to Hatcher, every incompressible and @-incompressible surface in M has one of finitely many
boundary slopes [11].

(2) Due to Jaco and Sedgwick, for every boundary slope of an incompressible and @-incompressible
surface, there exists a fundamental normal surface F in T 0 with a single boundary component realising
this slope [20, Proposition 3.7 and its corollaries].

(3) Due to Hass, Lagarias, and Pippenger [10] F can have at most n0 D m027m0C2 normal arcs per
boundary normal arc type. Since the isotopy type of the boundary of T 0 is .0=1; 1=0;�1=1/, it follows
that @F intersects each of mK and lK at most 2n0 times.
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Deduce upper and lower bounds for the complexity of M.2k=1/ Starting at node �.0=1; 1=0;�1=1/,
consider the following path in the dual of the Farey tessellation �.F /:

�.0=1;�1=1; 1=0/ �.0=1; 1=1; 1=0/ �.2=1; 1=1; 1=0/ �.2=1; 3=1; 1=0/ �.4=1; 3=1; 1=0/

� � � �..2k � 2/=1; .2k � 3/=1; 1=0/ �..2k � 2/=1; .2k � 1/=1; 1=0/:

Layering on top of T 0
@

along this path and then folding over the even boundary edge produces a triangulation
of M.2k=1/ with m0C 2k � 1 tetrahedra.

Let � 0D�..2n0�2/=1; .2n0�1/=1; 1=0/ be the node corresponding to the isotopy class of the triangulation
obtained from T 0 by layering 2n0� 1 times on T 0

@
along the path above. In the language of Section 3.3,

call the truncated path starting from � 0 the admissible path. By construction, the even slopes of the
admissible path are 2k=1 for k > n0.

Claim Let k > n0. Then c.M.2k=1//� 2.k � n0/.

Proof of the claim Let � be a node in �.F / associated to the slope of an incompressible @-incompressible
surface in M , and let �� be the negative Euler characteristic of this surface. Following [17], we compute
the slope norm of 2k=1 by taking the minimum of �� plus the number of even slopes 2k=1 for k > n0,
observed on a path in �.F / from � to node �..2k�2/=1; .2k�1/=1; 1=0/, ranging over all such nodes � .
By construction, this path must always pass through � 0, observing at least k � n0 distinct even slopes
(note that 2k=1 is not one of them). Hence k˛kk � k � n0. It then follows from Corollary 3 and the fact
that M.2k=1/ is not a balanced lens space that c.M.2k=1//� 2.k � n0/.

On the other hand, we can triangulate M.2k=1/ by starting with T 0 and layering 2k�1 tetrahedra along
the shortest path of �.0=1; 1=0;�1=1/ to �..2k � 2/=1; .2k � 1/=1; 1=0/. Folding the boundary then
produces a triangulation T2k=1 of M.2k=1/.

Altogether we have
2.k � n0/� c.M.2k=1//�m0C 2k � 1

for any k > n0.

It is important to note that while the constant in Theorem 8 is prohibitively large, it can be made quite
small in explicit examples. This is mainly due to the following two observations:

(a) boundary edges running parallel to mK and lK seem to be common in small triangulations T 0 of
the knot exterior, and hence jT 0j is typically very far from the upper bound given in the proof of
Theorem 8, and

(b) fundamental normal surfaces often have boundary patterns with far fewer normal arcs than the
bound given by Hass, Lagarias, and Pippenger.

We make this precise in Section 5 by providing examples of the actual gap in the cases of the figure-eight
knot, the .2; 3; 7/-pretzel, and the trefoil.
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5 Examples

5.1 Dehn fillings of the figure-eight knot complement

Throughout this section, let M be the complement of the figure-eight knot endowed with the knot-theoretic
framing. It is well known (see for instance [30]) that, with respect to this framing, M contains three
incompressible @-incompressible surfaces: a once-punctured torus with boundary slope .0; 1/, and two
Klein bottles with boundary slopes .˙4; 1/. Let ˛ be an even boundary slope on @M . We are interested in
the associated Dehn filling M.˛/. Note that since the figure-eight knot is amphichiral, M.˛/ŠM.�˛/.

Using a search through the Pachner graph of ideal triangulations of M , truncating and simplifying in
every step, we obtain 82 combinatorially inequivalent triangulations of the compact core of M , each with
ten tetrahedra and a single vertex contained in their 2-triangle boundaries. Each of them is 0-efficient. Let
T be one of these triangulations, and let S be one of its normal surfaces. The boundary pattern .a; b; c/
of S records the intersection numbers of S with the three boundary edges of T@.

Following [17], we know that the boundary slopes of both Klein bottles and the punctured torus must
appear in the fundamental normal surfaces of T . This allows us to determine the isotopy class of the
boundary T@. As a result, the 82 triangulations exhibit four distinct isotopy classes in their boundaries;
see Figure 8 for details.

Fix one of the 82 triangulations and denote it by T . Let � be the ideal triangle (node) in the (dual of the)
Farey tessellation corresponding to the isotopy class of T@. Folding over the even boundary edge of T@

realises the even Dehn filling with slope the even slope of the ideal triangle � 0 adjacent to � opposite the
even slope vertex of � ; see Section 3.2 and Figure 2 for details. Also, recall that layering over boundary
edge e of T@ produces a triangulation with boundary of isotopy class the one corresponding to the adjacent
ideal triangle of the Farey tessellation opposite the ideal vertex labelled with the slope of e.

In our example, all incompressible and @-incompressible surfaces and their boundary slopes are known,
and we will never encounter triangulations of balanced lens spaces. Hence, following the instructions
for folding above, obtaining the lower bound for complexity for M.˙˛/ is straightforward: it is twice
the smallest number of even slopes encountered on the unique shortest path in the dual of the Farey
tessellation from one of the slopes 0=1 and ˙4=1 to a node labelled ˙˛ (note that the slope norm of all
of 0=1 and ˙4=1 is one).

name # triangulations T isotopy class of T@ .0; 1/ @-pattern .4; 1/ @-pattern .�4; 1/ @-pattern

class I 24 .1=0; 1=1; 2=1/ .1; 1; 2/ .1; 3; 2/ .1; 5; 6/

class II 41 .1=0; 0=1; 1=1/ .1; 0; 1/ .1; 4; 3/ .1; 4; 5/

class III 4 .1=0; 3=1; 4=1/ .1; 3; 4/ .1; 1; 0/ .1; 7; 8/

class IV 13 .1=0; 2=1; 3=1/ .1; 2; 3/ .1; 2; 1/ .1; 6; 7/

Figure 8: The 82 triangulations of the compact core of the figure-eight knot complement with 10

tetrahedra. The boundary patterns and isotopy class triples follow the same order.
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Figure 9: Slope norms and upper bounds per boundary isotopy class of triangulations for the
compact core of the figure-eight knot complement. For 10-tetrahedron triangulations, the class
numbers I, II, III, and IV are given. Due to the amphichirality of the figure-eight knot, reversing
the orientation of the meridian (swapping the left and right of the picture) gives identical slope
norms and upper bounds. Boundary slopes of incompressible and @-incompressible surfaces are
marked in green.

At the same time, a triangulation of M.˙˛/ obtained from T via layering and folding yields the upper
bound: it is the size of T plus the length of the unique shortest path between � and the node before the
first node labelled ˛. Note that this upper bound depends on the choice of triangulation T .

Figure 9 shows the first few triangles of the Farey tessellation, locating the four isotopy classes of the
boundaries of the 82 triangulations. In the following, we use this figure to conveniently obtain lower and
upper bounds for infinite families of Dehn fillings of M : Every ideal triangle in Figure 9 is decorated
with a pair of numbers .a; b/. The first one, a, denotes the slope norm of the even slope at this ideal
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triangle, and the second one, b, denotes the minimum size of a (known) triangulation with this isotopy
type in the boundary. The latter is obtained from layering, starting from the closest triangulation along
the unique shortest path in the dual of the Farey tessellation.

As an example, we can fold over the even edge of a triangulation of class I (see Figure 9) to obtain a
10-tetrahedron triangulation of M.0=1/ D T � I=

�
2
1

1
1

�
. We refer to the base triangle of class I with

vertices .1=0; 1=1; 2=1/ as the source triangle, while we refer to the triangle with vertices .0=1; 1=1; 1=0/
as the target triangle. The lower bound in complexity for M.0=1/ from Corollary 3 is 2 (it is twice the
first parameter in the target triangle) and the upper bound is 10, while its actual complexity is 7.

Similarly, we can fold over the even boundary edge of class IV to obtain a 10-tetrahedron triangulation of

M.4=1/D SFSŒD W .2; 1/; .2; 1/�[�
0
1

1
0

� SFSŒD W .2; 1/; .3; 1/�:

Again, the lower bound in complexity for M.4=1/ from Corollary 3 is 2 and the upper bound is 10, while
its actual complexity is 7.

We now consider class III with boundary isotopy class .1=0; 3=1; 4=1/ and layer on its boundary along
the path

�.4=1; 3=1; 1=0/ �.4=1; 5=1; 1=0/ �.6=1; 5=1; 1=0/ �.6=1; 7=1; 1=0/

� � � �..2k � 2/=1; .2k � 3/=1; 1=0/ �..2k � 2/=1; .2k � 1/=1; 1=0/:

Folding over the even boundary edge of slope .2k � 2/=1 of the resulting triangulation yields M.2k=1/.
This results in a lower bound in complexity from Corollary 3 of 2k � 2 (note that M.2k=1/ for k � 3 is
hyperbolic and hence not a lens space), and an upper bound from the triangulation of 2kC 5 for k � 3.
Experimentally, the actual complexity seems to be 2kC 4 (proven for k D 3).

Similarly, we can do this for all infinite paths in the dual of the Farey tessellation that have a new even
slope in every second step. Some of these infinite paths are straightforward: For an ideal triangle with
even slope label ˛, pick the odd slope ˇ on the outside (eg ˛D 2=1 and ˇD 1=1 in Figure 9). Walk along
the infinite path of ideal triangles containing ˇ (the blue path in Figure 9). This way all even slopes of type
˛k D˛˚2kˇ are encountered, where˚ denotes Farey addition (in our example, ˛k D .2kC2/=.2kC1/).
For any infinite family of slopes obtained this way, the gap between upper and lower bounds in complexity
for M.˛k/ can be directly computed from the labels of the starting ideal triangle � :

Let .a; b/ be the label of � as given in Figure 9. Provided that M.˛k/ is not a balanced lens space, the
lower and upper bounds in complexity for M.˛k/, with k > 0, are then given as

2.kC a/� c.M.˛k//� 2kC b� 1:

(See above for details, and note that these bounds are not valid for the starting point k D 0 itself.) The
gap in complexity for M.˛k/, with k > 0, is hence .2kC b� 1/� 2.kC a/D b� 2a� 1.

Remark 10 In this example we only consider infinite families of Dehn fillings of M with a constant
gap in complexity. More broadly, we can use the same description and method to produce upper and
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lower bounds in complexity for families of arbitrary even fillings. The only difference is that the gap is
potentially widening. This is due to the lower bound only taking into account new even slope labels on
the path of fillings, while the upper bound grows with every step.

5.2 Even Dehn fillings of the pretzel P.�2 ; 3; 7/

In this example we compute lower and upper complexity bounds for even Dehn fillings of the pretzel knot
with parameters �2, 3, and 7. Here we only work with information that is known for large collections of
knots. In particular, everything we do in this example can be done for many knots in the SnapPy [6] census.

For most of our calculations, software can be used out-of-the box [1; 6]. Some calculations require small
scripts or moderate levels of human interaction. For instance, determining the knot-theoretic framing is
done using data on exceptional fillings for census knots [7], as well as Regina’s capabilities to recognise
Seifert fibred spaces [1].

Let M be the complement of the pretzel knot P .�2; 3; 7/ (eg the underlying space of triangulation m016
in the SnapPy [6] census). We show how to establish the following bounds of gaps between 6 and 8:

kC 2� c.M.�2.k � 1/=.2k � 1///� 2kC 8 for k � 1;(5-1)

2k � c.M.�2k=1//� 2kC 7 for k � 1;(5-2)

2kC 2� c.M.�.6kC 2/=.2kC 1///� 2kC 10 for k � 1:(5-3)

Using the same search through the Pachner graph of ideal triangulations of M as in the previous example,
we obtain 93 triangulations of the compact core of M , each 0-efficient, with ten tetrahedra and a single
vertex contained in their 2-triangle boundaries.

Looking at the boundary patterns of the Seifert surface, these 93 triangulations split into three classes, as
indicated in Figure 10. Since each triangulation T is 0-efficient, it follows from [17, Theorem 5] that the
boundary pattern of the Seifert surface is determined as the boundary pattern of a fundamental orientable
normal surface of T with boundary a single essential curve (and such a surface always exists). Even
more, there must be such a surface with maximum Euler characteristic (realising the genus of the knot).

Let T be the unique triangulation of the pretzel knot exterior with boundary pattern of the Seifert surface
.1; 19; 20/. This has Regina [1] isomorphism signature kLvKwIPQcfeghijijjllmgwneflp.

We first need to determine the knot-theoretic framing. Observe that folding over the even boundary edge
of T yields the lens space L.18; 5/DM.0=1/. Moreover, layering over the even boundary edge and
then folding back over the resulting degree-1 even boundary edge yields a graph manifold homeomorphic

name # triangulations T @-pattern of Seifert surface

class 1 29 .1; 17; 18/

class 2 63 .1; 19; 18/

class 3 1 .1; 19; 20/

Figure 10: The 93 triangulations of the pretzel knot exterior.
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with M.�2=1/. Hence the even boundary edge of T has slope �2=1, and the ideal triangle of the Farey
tessellation encoding the isotopy class of T@ is adjacent to a triangle with even slope label 0=1. It follows
that the boundary edges of T have slopes 1=0, �2=1, and �1=1, where the order corresponds to the
pattern .1; 19; 20/.

The triangulation T has 75 fundamental normal surfaces in standard coordinates. These contain the
orientable Seifert surface, and nonorientable surfaces with boundary a single essential curve of eight
distinct slopes. Their boundary patterns, boundary slopes, maximum Euler characteristic, and slope norm
are summarised in Figure 12. Once the knot-theoretic framing is known, all of this information can be
computed directly from the fundamental normal surfaces of T and the Farey tessellation, following the
procedure to compute the slope norm from [17] and from Sections 3.1 and 3.2.

From Figure 11 and extensions into the Farey tessellation we can now directly read off lower and upper
bounds for c.M.˛//, where ˛ is any given even slope ˛:

(1) Layer on top of T@ along the unique shortest path in the dual of the Farey tessellation from the base
triangle .1=0;�1=1;�2=1/ labelled T in Figure 11, to one layering before the target triangle. That is,
one layering before the first triangle containing the target slope ˛ as one of its ideal vertices. The result is
a triangulation T 0 with number of tetrahedra ten plus number of layerings.

(2) Fold over the even boundary edge of T 0 to obtain a triangulation of M.˛/.

(3) The Z2-norm of the unique Z2-torsion class of M.˛/ is one less than the slope norm in the target
triangle.

(4) The difference of twice the Z2-norm plus two (if our triangulation is not a balanced lens space) and
the size of T 0 (one less than the upper bound recorded in the target triangle) yields the gap up to which
we can determine c.M.˛//.

From the above calculations, we deduce the upper and lower bounds in complexity for infinite families of
Dehn fillings of M . In particular, this gives the bounds stated in (5-1)–(5-3).

The above procedure does not work for M.0=1/. Here we first need to layer once to obtain a different
isotopy class in the boundary, and then fold back over the even edge. In this case, a better gap can be
obtained by starting with a triangulation with a different isotopy class in the boundary.

5.3 Even Dehn fillings of the trefoil knot complement

In this section we discuss a nonhyperbolic knot. More specifically, we look at three infinite families of
even Dehn fillings of the trefoil knot complement. For each of them we can determine their complexity
up to a gap of two.

We start with the 2-tetrahedron triangulation of the right-handed trefoil knot complement M with Regina
isomorphism signature cPcbbbadu. A search through the Pachner graph yields two triangulations of the
compact core of M with four tetrahedra. Their Regina isomorphism signatures are eHLObcdddwun and
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Figure 11: Slope norms and triangulation sizes for the compact core of the pretzel knot as
calculated based on triangulation T . Green diamonds indicate (even) slopes of fundamental
normal surfaces of T .

eHLObcdddwuj, respectively. For the remainder of this section we refer to them as T1 and T2. Both
triangulations are 0-efficient.

See Figure 13 for consistent choices of framings, and boundary patterns of fundamental normal surfaces
for both T1 and T2. See Figure 14 for a marked Farey tessellation containing slope norms (as computed
via [17, Theorem 5]) and triangulation sizes based on layering on T1 and T2, respectively.

Starting at an ideal triangle associated to the isotopy class of the boundary of either T1 or T2, there are a
total of three infinite paths through the dual graph of the Farey tessellation with a gap of b� 2a� 1D 2.
As in previous examples, we describe these families in terms of their filling slopes ˛k D ˛˚ 2kˇ. The
layerings are determined by starting at one of the two base ideal triangles in Figure 14 and following
the path in the dual of the Farey tessellation around the ideal vertex with label ˇ 2 f1=0;�1=1; 1=1g. In
each step, a line of the Farey tessellation is crossed into a new ideal triangle. To obtain a triangulation
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orientable @-pattern � @-slope ˛ .a; b/

no .1; 1; 0/ �1 �2=1 .1; 10/

no .1; 1; 2/ �2 0=1 .2; 11/

no .5; 3; 2/ �6 �8=5 .2; 13/

no .1; 3; 2/ �2 �4=1 .2; 12/

no .1; 3; 4/ �1 2=1 .1; 13/

no .3; 1; 4/ �3 �2=3 .3; 13/

no .3; 5; 2/ �4 �8=3 .2; 13/

no .11; 3; 8/ �9 �14=11 .3; 15/

yes .1; 19; 20/ �9 18=1 .9; 29/

Figure 12: Boundary pattern, Euler characteristic, and boundary slope of fundamental normal
surfaces of triangulation T of the compact core of the pretzel knot. Rightmost column: tuple
.a; b/ of slope norm and upper bound for complexity for triangulations with even boundary edge
of the given slope.

with boundary of isotopy class the class of the new ideal triangle, we layer over the boundary edge of the
existing triangulation with slope the label of the opposite ideal vertex in the old ideal triangle.

� The first family is given by ˛k D .�2=1/˚ 2k.�1=1/ for k � 0. We have for the topological type
M.˛k/D SFS.S2 W .2; 1/; .3; 1/; .2kC2;�1//. The single Z2-torsion class of M.˛k/ has norm k. This
leads to c.M.˛k//� 2kC 2, via the norm, and c.M.˛k//� 2kC 4, via the layering construction.

0=10=1

0=1

1=0

2=1

2=1

0=1

0=1

�6=1

�6=1

0=1

0=1

0=1

1=0 1=0 1=0

1=0

4 4

4

4

4

4

44

4

4

4

4

2

2
2

2 2

22

22
2

2

2

1

1
1

11

1

1=0

1=1

�1=1

�1=1
�1=1

1=1
1=1

Figure 13: Boundary patterns and choices for framings for @T1 (top) and @T2 (bottom), and
triangulations of the compact core of the trefoil knot. The choices for longitude and meridian are
topologically equivalent for @T1 and @T2.
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(a) SFS.S2 W .2; 1/.3; 2/.2kC 2;�1//

(b) SFS.S2 W .2; 1/.3; 2/.2kC 2;�2k � 1//

(c) SFS.S2 W .2; 1/.3; 1/.2kC 2;�1//
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Figure 14: Slope norms and triangulation sizes giving lower and upper bounds for three infinite
families of even Dehn fillings of the trefoil complement. Slopes of fundamental normal surfaces
in T1 and T2 are marked in green. The slope of the Seifert surface is �6=1.

� The second family is given by ˛k D .2=1/ ˚ 2k.1=0/ for k � 0. Here the topological type is
M.˛k/D SFS.S2 W .2; 1/; .3; 2/; .2kC 2;�2k � 1//, the norm is again k, and we have for complexity
2kC 2� c.M.˛k//� 2kC 4.

� The third family is given by ˛k D .2=1/˚ 2k.1=1/ for k � 0. The topological type is M.˛k/ D

SFS.S2 W .2; 1/; .3; 2/; .2kC 2;�1//, the norm is k, and for complexity, 2kC 2� c.M.˛k//� 2kC 4.

In all three cases, the upper bound is conjectured to be the actual complexity.

The three walks in the dual of the Farey tessellation corresponding to the above families are marked in
Figure 14. For the first family, we start with triangulation T1, while for the other two families we start
with T2. Note that family M.˛k/ with ˛k D .�2=1/˚2k.1=0/ has a larger gap due to the Seifert surface
being on this path. This reduces the Z2-norm and hence the lower bound in complexity for subsequent
members of the associated infinite family of Dehn fillings.
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The enumeration and classification of prime 20-crossing knots

MORWEN B THISTLETHWAITE

An account is given of the compilation of the 1 847 319 428 prime knots with 20 crossings.

57K10; 57-04

1 Introduction

In the summer of 2018 the author tabulated the knots of 20 crossings. An independent tabulation was
made simultaneously by B Burton (personal communication, 2018) using the software Regina developed
by him and others [3]; as the results of the two tabulations agree, there is some confidence that the results
are correct, despite the quantity and complexity of the data.

The knots are listed up to unoriented equivalence, that is to say we regard knot pairs .S3;K/ and
.S3;L/ as equivalent if there is a homeomorphism of pairs sending .S3;K/ to .S3;L/, and we list
one representative of each equivalence class. The issue of determining which knots are amphicheiral or
reversible will be addressed as a separate project.

A short historical note: knot tabulations began in earnest in the late nineteenth century with the work
of P G Tait [28; 29; 30], T P Kirkman [15] and C N Little [17], Tait having being motivated by the
(then current) Kelvin theory of vortex atoms. Initially, as Tait was aware, techniques were not available
for distinguishing knot types rigorously; these techniques arrived shortly afterwards with the advent of
the fundamental group due to Poincaré [21], whereupon M Dehn [7] and O Schreier [25] initiated the
rigorous classification of knots, beginning with torus knots. A fuller account of the history, up to the
classification of 16-crossing knots, is given by Hoste, Thistlewaite and Weeks [14], and, to complete the
picture, Burton [2] pioneered the classification of knots of 17, 18 and 19 crossings.

A table listing the numbers of prime knots from 3 up to 20 crossings is given in the appendix.

Theorem 1.1 The number of equivalence classes of prime knots that can be projected with 20 crossings ,
but not with fewer crossings , is 1 847 319 428. Of these , all but 921 are hyperbolic , the remainder
comprising 915 satellites of the trefoil knot , 5 satellites of the figure-eight knot and the .3; 10/-torus knot.

The issue of primality is one that is easy to overlook, but it is important, as one has to guard against
“imposter” knots that might be composite in some hidden way and are thus masquerading as prime knots.
For this reason a section of this article is devoted to justifying the claim that all listed knots are prime.
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2 The tabulation

2.1 Obtaining the raw list of knots

For the most part the method is the same as that employed in [14], albeit with some minor differences.
Traditionally all tabulations of knots with given crossing-number begin with a listing of the prime
alternating knots with that number of crossings. This is one of the few steps in the process that is truly
algorithmic: from the solutions of the various Tait conjectures, it is known that a knot with a reduced
alternating n-crossing diagram cannot be projected with fewer than n crossings. Also, an alternating
knot is guaranteed to be prime if its reduced alternating diagrams have the property that they do not
admit a simple closed curve in the projection plane meeting the knot projection transversely in two points
on distinct edges of the projection; see Figure 1 and [18]. Furthermore, any two reduced alternating
diagrams represent the same link type if and only if one can transform one to the other by means of a
finite sequence of flypes; see Figure 2.

It is precisely the failure of nonalternating knots to adhere to such desirable properties that renders their
classification a challenge.

It is relatively straightforward to write a program that generates all possible reduced alternating diagrams
of a given crossing-number n, choosing a representative from each flype equivalence class, although skill
is required in devising a program that will run in a reasonable time. This has indeed been accomplished
quite dramatically for n � 23 [22]. The present author has written a program that generates all prime

Figure 1: A composite alternating knot.
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Figure 2: The “flype” transformation.

alternating links with a given number of crossings, and for the case nD 20 the number of prime alternating
knot types turns out to be 199 631 989.

Once one has the list of alternating diagrams to hand, nonalternating diagrams can be obtained from
them by means of crossing switches. It is only necessary to take one alternating diagram from each flype
equivalence class, as if alternating diagrams D1 and D2 are flype-equivalent, then the diagrams obtained
from crossing switches of D1 are flype-equivalent to those obtained from D2. Switching all crossings
of a knot diagram produces a knot equivalent to the original on account of being its reflected image in
the projection plane, so a crude estimate of the number of diagrams to be generated in this way from a
single alternating diagram is 219 D 524 288. However, it is only on rare occasions that this number is
needed, as can be seen from the following observation: if a rational tangle diagram [4] is not alternating,
then there exists an isotopy of the tangle that reduces the number of crossings while keeping the four
ends of the tangle fixed; see Figure 3. Therefore built into the program is a procedure that detects all
nontrivial rational tangle substituents, and then we only allow crossing switches of the “base” alternating
knot diagram that keep each of these tangles alternating.

The resulting nonalternating diagrams are subjected to a number of rapid viability tests to check whether
the number of crossings can be reduced, and are immediately discarded upon failing any such test. A
surviving diagram is then subjected to a different kind of test, specifically to see whether it can be
transformed by flypes and passes (Figures 2 and 4) to a diagram whose DT code [8] is lexicographically
less. As the size of an equivalence class generated by these moves can be very large, even in the tens of
thousands, we declare that the diagram passes the test if it is still lexicographically minimal once some
fixed number k of diagrams has been generated by the moves. Smaller values of k will entail larger
redundancy, but it makes sense to keep k quite small on account of the time that would be spent on
processing a large set of diagrams.

In [14] some diagram moves more “exotic” than flypes and passes were used, but this approach was
avoided here as it was deemed unnecessary, quite apart from the increased danger of introducing bugs

Figure 3: Reducing a nonalternating diagram of a rational tangle.
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Figure 4: The “pass” transformation on diagrams.

into the program. In practice the value chosen for k was 200, and from experimentation with known
tabulations with fewer crossings it was estimated that this resulted in roughly 25% redundancy overall.

2.2 Removing duplicate knots

The next task is to augment the current list of over 2 billion nonalternating diagrams by all tabulated
knots with fewer crossings, and then to remove as many duplicates as possible. The extreme difficulty
of achieving this “house cleaning” simply by inspecting or manipulating knot diagrams is wonderfully
exhibited by the celebrated Perko pair [19], a pair of knots with only 10 crossings declared to be
inequivalent in Little’s 1900 table, this status persisting until 1974 when K Perko finally spotted the
equivalence, thereby obtaining the first correct table of 10-crossing knots.

The 1970s also saw R Riley’s [23] discovery of a hyperbolic structure on the complement of the figure-
eight knot, this being one of the inspirations for W Thurston’s breakthrough work on geometric structures
on 3-manifolds. This in turn led to J Weeks’ extensive program SnapPea and its more recent Python
implementation SnapPy [6], one of whose many features is the ability to compute the canonical cell
decomposition [9; 24] of a hyperbolic 3-manifold with genus-1 cusps.

The preimage of this cell structure in the universal cover can either be seen in the upper half-space model
as dual to the Ford domain, or it can be seen by means of a convex hull construction in the Minkowski
model. SnapPea performs a very rapid computation of a purported canonical cell decomposition by
starting with a known ideal triangulation of the manifold and then implementing a heuristic optimization
process that applies combinatorial moves on the triangulation without affecting the underlying topology.
Because of inevitable accumulation of roundoff error, the resulting cell decomposition might on occasion
not be the canonical one, but nonetheless if two hyperbolic knots produce isomorphic cell decompositions,
their respective complements are proved to be homeomorphic, and from the fact that knots are determined
by their complements [12], the knots are equivalent. In practice, even at the level of 20 crossings this
is an effective way of removing duplicates, which otherwise could be very hard to spot.

Indeed, the current list of over 2 billion 20-crossing nonalternating diagrams was fed through SnapPea’s
canonical cell decomposition procedure, and the few hundred million diagrams producing duplicate cell
decompositions were discarded. During this process approximately a mere 549 491 were declared (with
due caution) by SnapPea to be “apparently not hyperbolic”, and these were copied to a separate list. The
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next stage is to try to distinguish by means of invariants the knots in the filtrate. There is no algorithm at
work here, as there does not seem to be any way of predicting which invariants will distinguish which
knots: we just throw invariants at the knots and hope for the best. However, the method is rigorous, as all
computations of invariants are integer based.

2.3 Application of invariants to the list of knots

2.3.1 Description of the invariants The first invariant applied to the remaining diagrams was the
Jones polynomial, for which we are fortunate in having the very fast program of [10], which on a single
processor of my workstation will process a million 20-crossing knots in 21

2
minutes. This partitions the

set of diagrams into relatively small equivalence classes, such that within each equivalence class all knots
have the same Jones polynomial. The knots in equivalence classes of size 1 are extracted and placed in
the “resolved” folder, and the remaining knots are subjected to a sequence of further invariants, the aim
being to subject the partition to successive refinements so that eventually all equivalence classes have
size 1.

The remaining invariants are classical, and occur in papers of R H Fox [11] and Perko [20]. They rely on
the fact that knot groups seem always to have an abundance of subgroups of small index. It follows from
the work of Thurston that knot groups are residually finite, but this alone does not explain why the knots
in our 20-crossing list are so rich in subgroups of index less than 10. Given a subgroup H of index n of a
knot group G, the group G acts transitively by left multiplication on the set of n left cosets of H , giving
rise to a transitive permutation representation of degree n of G. Conversely, given a transitive permutation
representation of degree n of G, the stabilizers of the n symbols are conjugate subgroups of G of index n.
Using the Reidemeister–Schreier rewriting process we can obtain a presentation of such a subgroup H ,
and by abelianization obtain a finitely generated abelian group, which is essentially the first homology
group of the covering space of the knot complement corresponding to H . We can also glue in solid
tori to this covering space so that the components of the preimage of a meridian curve are spanned by
cross-sectional disks, thus obtaining the first homology group of the so-called branched covering space.

The technique is to choose a transitive permutation representation of some group, for example the natural
representation of degree 5 of the alternating group A5, and then find all homomorphisms of the knot
group onto that group of permutations, up to composition with inner automorphisms of the image group.
The multiset of abelian groups thus obtained is then an invariant of that knot type, and amazingly, together
with the Jones polynomial, it was possible in this way to distinguish almost all listed 20-crossing knots
from one another and from knots with fewer crossings, using only subgroups of the symmetric group S7.

Figure 5 contains two examples of this type of invariant applied to a fairly resistant mutant pair of
20-crossing knots.

Each diagram in Figure 5 consists of an upper tangle glued to a lower tangle along four strands; the
second diagram can be obtained from the first by excising the upper tangle, rotating it through a half turn
in the projection plane and then gluing it back to the lower tangle.
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Figure 5: A pair K1 and K2 of mutant 20-crossing knots.

Being related by mutancy, these knots cannot be distinguished by the Jones polynomial nor indeed by the
HOMFLYPT 2-variable polynomial; also they resisted homology groups associated with permutation
representations of degrees 5 and 6. However they did succumb to permutation representations mapping
meridians to one of the two conjugacy classes of 7-cycles in the alternating group A7. For K1 there were
14 representations, producing homology groups with torsion numbers as follows:

Œ1083964; 14�; Œ10873394�; Œ117987912�; Œ1308356; 2; 2�; Œ13423592; 8�; Œ155682849; 3�; Œ2496669�;

Œ30245222; 2�; Œ353577; 7�; Œ477902327�; Œ4832310�; Œ58290239; 7�; Œ8694588�; Œ909657; 7�:

And for K2 just 13 representations:

Œ10007522; 2�; Œ1339604; 14�; Œ20281751�; Œ21298634�; Œ24072097�; Œ2742502; 2�; Œ304197488; 2�;

Œ40220460�; Œ46137; 21�; Œ4719806�; Œ53620280�; Œ56118930; 3�; Œ6282066; 2�:

Since the group A7 admits an automorphism sending each 7-cycle to its inverse, this conjugacy class
cannot be used to detect nonreversibility of knots. It was observed by H Trotter [32] that a more careful
choice of target group can be effective for this purpose; indeed this was the first occasion that the existence
of nonreversible knots was proved. Later R Hartley [13] used (solvable) groups of functions x 7! axC b

(for a¤ 0) over finite fields to establish nonreversibility of many knots of up to 10 crossings. For the knots
K1 and K2 of Figure 5, the sporadic Mathieu simple group M11 is effective in showing that they are
not reversible. Specifically, we can use the irreducible permutation representation of M11 of degree 11,
and map meridians to one of the two conjugacy classes of size 990 containing elements of cycle type
.ab/.cdefghij /. Here are the results, with torsion numbers for each representation enclosed in square
brackets as above:

K1 Œ1394030; 2�

Reverse of K1 Œ287520�; Œ65322�

K2 Œ14118592�; Œ5682; 2�

Reverse of K2 Œ1598572�; Œ4161904�
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It is expected that one can determine reversibility in this way for the list of 20-crossing knots, although it
could be very time consuming. Determining amphicheirality is in practice easier, as almost all instances
of nonamphicheirality are detected by the Jones polynomial.

2.3.2 Details of the invariants’ performance There now follows details of the efficacy of the invariants
used for distinguishing the 20-crossing knots from one another and from knots with fewer crossings.
The enumeration stage of the classification process generated 2 229 828 372 20-crossing nonalternating
diagrams; barring programming error there were no omissions in this list, and the procedure was in three
main stages as described below.

Stage 1 The raw list of 20-crossing nonalternating diagrams was augmented by the list of all 352 151 858

hyperbolic knots with fewer than 20 crossings, resulting in an enlarged list containing 2 581 980 230

knots. SnapPea’s canonical cell decomposition procedure was applied to each knot in the enlarged list,
and the data was sorted so that duplicate cell decompositions became evident. Each cell decomposition
was encoded by a string of approximately 300 bytes on average, so the amount of data involved in this
step was around 775 GB. As explained in Section 2.2, it is not guaranteed that the cell decompositions
output by this procedure are canonical in the sense of [9; 24], but knots with duplicate cell decompositions
have homeomorphic complements, so are equivalent owing to the fact that knots are determined by their
complements [12].

The canonical cell decomposition procedure declared that 549 491 knots from the list were “apparently
not hyperbolic” and these were put in a separate list for further treatment. Aggressive diagram moves
revealed that out of these knots 200 were the unknot, 547 611 were composite knots, and a further 482

could be drawn with fewer than 20 crossings. This left a residue of 1198 knots, which on being treated to
still more stringent diagram moves were shown to belong to 921 knot types, distinct from one another and
distinct from all nonhyperbolic knot types with fewer than 20 crossings. The proof that this list consisted
of a single 20-crossing torus knot and 920 20-crossing satellite knots is given in Section 3.

After removing the 549 491 knots declared to be “apparently not hyperbolic” and the knots whose
complements had duplicate cell decompositions, the number of knots in the refined list was 1 999 847 149.
These were input into the next stage, it being expected that the only duplications were those arising from
roundoff error in application of the canonical cell decomposition procedure.

Stage 2 From an accounting point of view this was the easiest stage. The Jones polynomials of the
1 999 847 149 knots output by the previous stage were computed, and the 336 548 774 knots with unique
polynomials were extracted and placed in the store of “resolved” knots. The remaining 1 663 298 375 knots
were input into Stage 3, which subjected them to the invariants described above, namely first homology
groups of branched covering spaces corresponding to permutation representations of the knot groups.

Stage 3 Tables 1 and 2 summarize the results of this stage. The first table uses representations into
alternating or symmetric groups of degrees 5 and 6, and the number of unresolved knots was reduced from
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degree cycle type input unique nonunique runtime

5 .abcde/ 1 663 298 375 906 980 266 756 318 109 20 days
5 .abc/.de/ 756 318 109 317 431 388 438 886 721 4 days
5 .abcd/ 438 886 721 309 112 549 129 774 172 5 days
6 .abc/.def / 129 774 172 66 784 736 62 989 436 6 days
6 .abcde/ 62 989 436 57 189 475 5 799 961 6 days
6 .abcdef / 5 799 961 5 071 212 728 749 1 day

Table 1

1 663 298 375 to 728 749. The column labelled “unique” gives the number of knots distinguished from
all others and placed into the “resolved” store, and the column labelled “nonunique” gives the number
of unresolved knots requiring further treatment. The column labelled “cycle type” gives the cycle type
of the conjugacy class to which meridians of the knot group were mapped. The machine used for these
computations had 160 GB of memory and 20 processing cores.

The remaining knots were then subjected to permutation representations in various specific groups, as set
out in Table 2. Each of these substages took less than a day of runtime.

At this point the list of 17 528 unresolved knots were partitioned into 8755 equivalence classes, where
knots within each equivalence class had resisted all invariants applied to date. It was suspected that each of
these in fact represented a single knot type, and this was confirmed by a more persistent application of the
canonical cell decomposition procedure: SnapPea has a convenient “random retriangulation” feature, and
from this a small number of different contenders for canonicity were obtained, amongst which matching
cell decompositions were found in each of the outstanding cases.

Surprisingly the last two knots to be distinguished, in the last row of Table 2, were a pair of 14-crossing
two-bridged knots, with associated fractions 505

192
and 505

212
and respective Conway codes 2111221112

and 2211111122. These are easily distinguished by the fact that they are alternating, and also by their
lens space two-fold branched covers, but for some reason they resisted polynomial invariants and the
homology invariants of Tables 1 and 2 until the very last step.

group degree cycle type input unique nonunique

PSL.2; 7/ 7 7-cycles 728 749 572 093 156 656

PSL.2; 11/ 11 11-cycles 156 656 117 446 39 210

PSL.2; 13/ 14 13-cycles 39 210 15 364 23 846

PSL.2; 17/ 18 17-cycles 23 846 5 245 18 601

A7 7 7-cycles 18 601 1 071 17 530

PSL.2; 19/ 20 19-cycles 17 530 2 17 528

Table 2
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This concluded the task of obtaining a list of 20-crossing knots with no omissions or duplications, but it
was still necessary to check that there were no “poseur” composite knots in the list. One almost hoped
that some would materialize, as such examples would be noteworthy.

3 Establishing primality

A fundamental property of a hyperbolic 3-manifold is that it cannot contain an essential torus. The
software Regina [3] confirmed that all presumed 1 847 318 507 hyperbolic 20-crossing knots in our list
are indeed hyperbolic (ie there are no false positives with respect to hyperbolicity) so all are immediately
known to be prime.

A different approach is needed for showing that the 921 (apparently) nonhyperbolic knots are prime. The
single torus knot was easily identified, and since torus knots are prime we may restrict our attention to
the remaining 920 knots in this list.

Regina [3] was also put to work by Burton to implement normal surface calculations for dealing with
these 920 knots, and in this way all but eight were confirmed to be prime. Regina was not immediately
able to certify primality of the remaining eight knots (personal communication, 2018) and this led the
author to an alternative approach based on tangle decompositions, anticipating that both methods could
be useful in future tabulations. Indeed the methods could be complementary, for the following reason.
All prime satellite knots of up to 20 crossings have minimal diagrams that are tangle sums satisfying the
hypothesis of Theorem 3.2, and although this situation is expected to continue for a while, it will not
continue indefinitely. At some point a more generic technique for establishing primality will be essential,
and this could be provided by programs such as Regina.

Figure 6 illustrates one of the eight abovementioned satellite knots. It is visibly a tangle sum of a
companion tangle on the right (Figure 7, right) with an alternating tangle on the left, and in fact each of
these eight satellites admits such a decomposition. From the main result of [18] the alternating tangle
summands of these knots have no local knotting (Figure 7, left), so from Theorem 3.2 these eight knots
are all prime.

Figure 6: A 20-crossing satellite of the trefoil.
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Figure 7: A locally knotted tangle (left) and a companion tangle (right).

We recall the terminology of [16]. In that paper a tangle is defined to be a pair .B;T / where B is a 3-ball,
ie a manifold with boundary homeomorphic to the standard 3-ball B3, and T is a proper 1-submanifold
of B consisting of two disjoint arcs (naturally we assume that we are in the piecewise linear or smooth
category). Thus the boundary of T consists of four points on @B. This definition has some obvious
generalizations; for example we might allow the number of arcs in T to be greater than 2, but the
definition as given is sufficient for our purposes. Tangles .B1;T1/ and .B2;T2/ are equivalent if there is
a homeomorphism of pairs from .B1;T1/ to .B2;T2/, and .B;T / is untangled or trivial if it is equivalent
to a product .D; fx;yg/� I , where D is a disk and x and y are points in its interior.

In the definition of tangle equivalence given above, for a homeomorphism h W .B;T1/! .B;T2/ there is
no restriction on the effect of h on the boundary 2-sphere of B, other than the requirement that it map
@T1 to @T2. For example, any tangle represented as a diagram of a rational tangle [4] is equivalent to a
tangle where T consists of two parallel line segments, ie it is trivial.

A tangle .B;T / is locally unknotted if each 2-sphere in B meeting T transversely in two points bounds
in B a ball meeting T in an unknotted spanning arc. Otherwise we say that .B;T / is locally knotted;
an example is illustrated in Figure 7, left. Observe that if .B;T / is locally unknotted, and there exists a
properly embedded disk in B separating the arcs of T , then .B;T / is trivial.

Given tangles .B1;T1/ and .B2;T2/, we may glue them together by means of some homeomorphism of
(2-sphere, four points) pairs to obtain a link L of one or two components in the 3-sphere. Such a pair
.S3;L/ is called a sum of the tangles .B1;T1/ and .B2;T2/. Given two tangles drawn in the usual way
as diagrams, one way of summing them is to join the diagrams by arcs in the projection plane.

If .B;T / contains a 2-sphere S exhibiting local knottedness, with knotted arc ˛ in the ball bounded
by S , then there is a well-defined nontrivial knot K obtained by joining the ends of ˛ with an arc in S ,
and this knot K will persist as a connected summand of any knot formed by summing .B;T / with an
arbitrary tangle. Therefore if we can sum .B;T / with a tangle so as to obtain the unknot, .B;T / is locally
unknotted. In more complicated situations we have the following effective test for local unknottedness:

Proposition 3.1 Let .B;T / be a tangle for which there exist tangles .B1;T1/ and .B2;T2/, such that
summing .B;T / with the .Bi ;Ti/ in turn produces distinct prime knots K1 and K2. Then .B;T / is
locally unknotted.
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Proof If .B;T / is locally knotted, there exists a nontrivial knot that is a connected summand of each of
the distinct prime knots K1 and K2, and this contradicts uniqueness of factorization of knots.

There is a special type of tangle that pertains to satellite knots. We define a companion tangle to be a tangle
.B;T / where T consists of two parallel, knotted arcs in B; an example is illustrated in Figure 7, right.
Each companion tangle .B;T / contains a properly embedded annulus A in B�T that “follows” the two
strands of T in tube-like fashion, ie there is a homeomorphism h W S1 � I ! A such that each section
h.S1 � ftg/ of A bounds a disk in B meeting T transversely in two points. A companion tangle cannot
be locally knotted, as it is always possible to sum it with a trivial tangle so as to obtain the unknot; in
Figure 7, right, this can be seen by taking two arcs in the projection plane, one joining the two left-hand
ends and the other the two right-hand ends.

Let us now consider a knot .S3;K/ constructed as a sum of a companion tangle .B1;T1/ with a
locally unknotted tangle .B2;T2/. We may form a torus F in the complement of K as the union of the
“following” annulus A1 of .B1;T1/ described above, with a boundary-parallel annulus A2 in .B2;T2/

that “swallows” T2. Let V be the solid torus containing K that is bounded by F ; V is the union of two
“halves” V \B1 and V \B2 glued together along cross-sectional disks D1 and D2, both in @B1 D @B2,
and each meeting K in two points. The core � of V is a nontrivial knot in S3, as it is the union of a
knotted arc in B1 that is the core of A1 with an unknotted arc in B2 that is the core of A2.

Any cross-sectional disk of V not meeting K would have to separate the strands of the second tangle
.B2;T2/, but the local unknottedness of .B2;T2/ would force that tangle to be trivial, and we would be in
the situation described above where K is the unknot. On the other hand, if there is no cross-sectional disk
of V separating the strands of .B2;T2/, K is a satellite of � and the torus F is incompressible in S3�K.

The next theorem provides the method for showing that the 920 outstanding knots are prime. It is closely
related to results in [26; 16; 5], as explained below; however the full proof is given here as the hypotheses
are an exact fit to our situation, and moreover should be applicable to future tabulations with more than
20 crossings.

Theorem 3.2 Let K be a knot that is a sum of a companion tangle with a locally unknotted tangle. If K

is nontrivial , then K is prime.

Proof We adopt the notation of the preceding discussion: .S3;K/ is a nontrivial knot that is the sum of a
companion tangle .B1;T1/ with a locally unknotted tangle .B2;T2/, F DA1[A2 is the incompressible
torus in S3�K that “follows” T1 and “swallows” T2, and V is the solid torus with boundary F .

Let S be a 2-sphere in S3 meeting K transversely in two points. Before proceeding further it is useful
to observe that each simple closed curve C in S �K is either nullhomotopic in S �K (and hence also
nullhomotopic in S3�K), or else it separates the punctures. In particular, a circle on F that bounds a
cross-sectional disk of V cannot lie on S .
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We first consider the special case where S is contained in V . Since by hypothesis each of the constituent
tangles .B1;T1/ and .B2;T2/ is locally unknotted, the conclusion of the theorem holds for S contained in
either “half” V \Bi , and we are motivated to consider the transverse intersection of S with the two disks
D1 and D2 along which the halves of V are glued together. We may assume that the two points of S \K

are away from the Di . The set S \ .D1[D2/ is the union of a disjoint collection of circles on S ; let C

be a circle from this collection that is innermost on S , say without loss of generality C � S \D1. Then
C bounds a disk �1 � S and a disk �2 �D1. The union of the disks �i is an embedded 2-sphere †,
bounding a ball B0 contained in one of the Bi . The number n of points of �2\K is 0; 1 or 2, and we
consider each of these cases. We can exclude the possibility nD 2 summarily, as in this case C would be
a simple closed curve on S homotopic in S3�K to a meridional curve of F D @V , a situation ruled out
in the previous paragraph.

Suppose that nD 0; then �1 meets K in 0 or 2 points. In the latter case, from the hypothesis of local
unknottedness applied to †, the ball B0 would meet K in an unknotted arc; we deduce from this that one
of the components of S3�S would meet K in this arc, and the conclusion of the theorem would follow.
Otherwise the ball B0 does not meet K. The circle C might not be innermost on D1, but nonetheless �1

can be pushed by an isotopy through B0, taking with it all components of S \B0, reducing the number
of components of S \ .D1[D2/. If nD 1, then from the hypothesis of local unknottedness B0 meets
K in an unknotted arc, so again there is an isotopy that pushes �1 across B0, including if necessary
another component of S \B0 meeting K in one point. Here the isotopy will move points of K along the
unknotted arc, but can be assumed to fix K setwise. We conclude that there is an isotopy of S into one of
the Bi without affecting transversality of S \K, whence S bounds a ball on one side meeting K in an
unknotted arc, and the conclusion of the theorem follows for this special case.

For the remainder of the proof we assume that S has nonempty transverse intersection with F D @V ; the
proof will be completed by showing that there an isotopy of S in S3, maintaining transversality of S

with K, that moves S to a 2-sphere contained in V .

Recall that a simple closed curve in the twice-punctured sphere S �K is either nullhomotopic in S �K

or is homotopic to a meridian curve of K. The torus F does not contain any simple closed curve of the
second type, so each component C of S \F is a simple closed curve bounding a disk in S �K, and
also bounding a disk in F owing to the incompressibility of F . Let us take a component C of S \F

bounding a disk �1 � S �K whose interior does not meet F ; also let �2 be the disk on F bounded
by C . Then �1[�2 is an embedded 2-sphere in S3�K, and in a manner similar to that of the special
case we can perform an isotopy of S that reduces the number of components of S \F . Repeating the
process will eventually move S into V , and the proof of the theorem is complete.

There is overlap between Theorem 3.2 and results in the literature, most notably H Schubert’s paper [26],
where the notion of the companionship tree of a knot is introduced, and where it is shown that doubled
knots and cabled knots are prime.
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In [16] a tangle is called prime if it is nontrivial and locally unknotted, and it is proved in that paper that
a sum of two prime tangles is a prime link. A companion tangle is prime according to this definition, as it
is locally unknotted, and cannot be trivial as its individual strands are knotted arcs. Theorem 3.2 shows
that, apart from the obvious single exception, a knot formed as a sum of a companion tangle with a trivial
tangle is also prime, thus confirming a special case of the conjecture stated in [16, Section 4].

Theorem 4.4.1 of [5] deals more generally with primality of satellite knots; it includes the hypothesis that
the pair .V;K/ is locally unknotted, this being the conclusion of the special case dealt with in the proof
of Theorem 3.2.

Recall that there are 920 knots in our tabulation that are under examination for primeness. It was suspected
that five of these are satellites of the figure-eight knot, and these were easily found in the list; they are all
obtained by summing the companion tangle of Figure 7, right, with a 4-crossing rational tangle. Since
they are already known to be nontrivial, and rational tangles are certainly locally unknotted, application
of Theorem 3.2 shows that they are prime.

Naturally one suspects that the remaining 915 knots are satellites of the trefoil knot. In order to apply
Theorem 3.2 we need diagrams of these knots that show each as a sum of a companion tangle with a
locally unknotted tangle. Undoubtedly it would be possible to find such diagrams directly; however, a
different approach was used here. The list of 199 631 989 prime alternating 20-crossing knots provides,
up to flype equivalence, all projections of prime nonalternating knots, and an easy search through this list
found 434 projections of tangle sums of the required kind. Suitable over- and under-passes were applied
to these, resulting in a refined list of 915 knot diagrams that visibly were sums of tangles .B1;T1/ and
.B2;T2/ with .B1;T1/ a companion tangle, and matched the tabulated 915 knots.

As the knots were already known to be nontrivial, it remained to check that in each case the tangle
.B2;T2/ was locally unknotted. In all but ten cases verification was immediate, as the diagrams of
.B2;T2/ are either alternating, in which case they are subject to [18, Theorem 1], or they are standard
diagrams of arborescent tangles [1].

The ten exceptional cases come in five pairs, each pair consisting of a diagram and its reflection in the
projection plane. It was only necessary to check one tangle from each pair, and they are illustrated
in Figure 8.

Under mild scrutiny the individual strands of the third, fourth and fifth tangles of Figure 8 are all revealed
to be unknotted, so local knots for these tangles are ruled out. One can also notice that the first two
tangles are equivalent: there is a homeomorphism that interchanges the lower two tangle ends. Therefore,
in order to complete the proof that all 920 satellite knots are prime, we just need to check that the first
tangle is locally unknotted. This follows quickly from Proposition 3.1: summing (in the “diagrammatic”
sense) with a tangle with no crossings produces a prime 8-crossing knot, and one can obtain a prime
9-crossing knot, also a prime 10-crossing knot by summing with a 2-crossing tangle.
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Figure 8

Appendix

A.1 The rate of growth of the number of knots

It is natural to ask whether one can estimate the number of prime knots with a given number of crossings
without an actual tabulation. There are very few results in existence on this topic, but the following is
known. It is stated for links rather than knots, but it suggests that the number of nonalternating knots
grows exponentially faster than that of alternating knots.

Theorem A.3 (i) [27] Let An denote the number of prime alternating link types with n crossings.
Then

lim
n!1

A1=n
n D

1
40
.101C

p
21001/� 6:1479:

(ii) [31] Let � be the limit stated in (i ). There exists a set B of prime link types , strictly containing the
set of prime alternating link types , such that if Bn is the number of link types in B with n crossings ,
then limn!1 B

1=n
n exists and is strictly greater than �.

A.2 The number of prime knot types with n crossings, 3 � n � 20

The first correct tabulations of knots of 17; 18 and 19 crossings were produced by Burton [2].

Table 3 gives summary data up to 20 crossings. When reading Table 3, it is worth noting that the only
prime alternating nonhyperbolic knots are the .2; n/-torus knots (with n necessarily odd) [18]. Thus for
even n all n-crossing prime alternating knots are hyperbolic, and for odd n there is a single nonhyperbolic
prime alternating knot, namely the .2; n/-torus knot. Also it follows that all prime satellite knots are
nonalternating.
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crossings alternating knots nonalternating knots hyperbolic torus satellites

3 1 0 0 1 0
4 1 0 1 0 0
5 2 0 1 1 0
6 3 0 3 0 0
7 7 0 6 1 0
8 18 3 20 1 0
9 41 8 48 1 0

10 123 42 164 1 0
11 367 185 551 1 0
12 1 288 888 2 176 0 0
13 4 878 5 110 9 985 1 2
14 19 536 27 436 46 969 1 2
15 85 263 168 030 253 285 2 6
16 379 799 1 008 906 1 388 694 1 10
17 1 769 979 6 283 414 8 053 363 1 29
18 8 400 285 39 866 181 48 266 380 0 86
19 40 619 385 253 511 073 294 130 212 1 245
20 199 631 989 1 647 687 439 1 847 318 507 1 920

Table 3
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An exotic presentation of Z � Z and the Andrews–Curtis conjecture

JONATHAN ARIEL BARMAK

We prove that the presentations hx;y j Œx;y�; 1i and hx;y j Œx; Œx;y�1��2yŒy�1;x�y�1; Œx; ŒŒy�1;x�;x��i

are not Q�-equivalent even though their standard complexes have the same simple homotopy type.

20F05, 20F65, 57M05, 57Q10

1 Introduction

A finite presentation hx1;x2; : : : ;xn j r1; r2; : : : ; rmi of a group G can be transformed into another
presentation of G by performing one of the following:

(i) Changing a relator rj by rj ri for some i ¤ j .

(ii) Changing a relator rj by r�1
j .

(iii) Changing a relator rj by a conjugate grj g�1 for some g in the free group F.x1;x2; : : : ;xn/.

(iv) Changing each relator rj by �.rj /, where � is an automorphism of F.x1;x2; : : : ;xn/.

(v) Adding a generator xnC1 and a relator rnC1 which coincides with xnC1.

(vi) The inverse of (v), when possible.

Moves (i) to (iii) are called Q-transformations, (i) to (iv) are Q�-transformations and moves (i) to (vi)
are called Q��-transformations. Two finite presentations are said to be Q-equivalent (Q� or Q��) if
one can be obtained from the other by performing a sequence of Q-transformations (Q� or Q��). The
Andrews–Curtis conjecture [1] states that any two presentations of the trivial group with n generators
and mD n relators are Q-equivalent. The weak version of the Andrews–Curtis conjecture states that
in the same situation the two presentations are just Q��-equivalent. The latter is equivalent to the
statement that any contractible finite 2-dimensional CW-complex 3-deforms to a point. The so-called
generalized Andrews–Curtis conjecture [13, Section 4.1] says that any two presentations P and Q with
simple homotopy equivalent standard complexes KP and KQ are Q��-equivalent. These three conjectures
are open.

Although the original conjecture says that in some cases any Q��-equivalence is a Q-equivalence, there
are known examples of presentations which are Q��-equivalent but Q�-inequivalent. The first were
probably those given by Zieschang [24, page 36]: hx;y j x3y5i and hx;y j x3y3x3y2i, and, with more
generality, by McCool and Pietrowski [18]: hx;y j xkyptC1i and hx;y j .xkyt /pyi for k;p; t � 2.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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In each case the presentations are Q��-equivalent. The authors only prove that they present the same
group, but it is easy to translate their proof to the language of Q��-transformations. On the other hand,
Whitehead’s algorithm can be used to prove that the relators of all these presentations are of minimal
length in F2 D F.x;y/, ie in their orbit under the Aut.F2/ action. Since in each example the relators
have different length, there is no automorphism of F2 taking one to the other or its inverse. Thus, these
one-relator presentations are not Q�-equivalent. In fact, the construction of [18] shows that for every
m > 0 there are m presentations which are pairwise Q��-equivalent and Q�-inequivalent. By a result
of Magnus, the normal closures N.r/ and N.s/ of two elements r and s in a free group coincide if and
only if r is a conjugate of s or its inverse. Thus, these one-relator examples are not Q�-equivalent for
an elementary reason: there is no automorphism of F2 taking the normal closure of one relator to the
normal closure of the other. In [19], Metzler gives an example of a different nature. He shows that the
presentations hx;y j x5;y5; Œx;y�i and hx;y j x5;y5; Œx2;y�i are Q��-equivalent and not Q�-equivalent.
In this case the normal closures of both sets of relators coincide.

McCool–Pietrowski’s family and Metzler’s example occur at minimal Euler characteristic (ie the Euler
characteristic of the standard complexes of those presentations are minimal among all possible presenta-
tions of the same groups), though the one-relator examples can be stabilized (by adding trivial relations)
to obtain Q��-equivalent and Q�-inequivalent presentations (the same argument can be used) arbitrarily
far from minimal Euler characteristic.

In this article we construct presentations P and Q of Z�Z each with two generators and two relators,
having simple homotopy equivalent standard complexes, but such that P and Q are not Q�-equivalent.
The normal closures of both relator sets coincide and the Euler characteristic is one above the minimal
level.

Non-homotopy-equivalent presentations of the same group G with equal Euler characteristic have been
constructed by using stably free nonfree ZŒG�-modules. Although every finitely generated projective
ZŒG�-module is free when G D Z�Z, in our construction we need to distinguish Q-equivalence classes,
and we use a more subtle idea: an exotic basis of ZŒG�2 which is not obtained from the standard basis by
elementary row operations. The basis change matrix, which is not a product of elementary and diagonal
matrices, was found by Evans in [9]. The second ingredient of our proof is a new invariant called the
winding invariant. The present article was meant to be a section in the paper [3], which introduces this
invariant along with applications. We believe that it is better to present this example in a separate article.

There are known examples of presentations P1 and P2 which are

(a) not simple homotopy equivalent but homotopy equivalent, or

(b) not homotopy equivalent, but such that the stabilized presentations P
.1/
1

and P
.1/
2

, obtained by
adding one trivial relator, become Q-equivalent.

These examples have minimal Euler characteristic. Our presentations P and Q are above minimal Euler
characteristic and become Q-equivalent after one stabilization.
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After the first version of this paper was finished, X Fernández [10] proved that the presentations P and Q

are in fact Q��-equivalent. Also, at that time we were not aware of Zieschang, McCool–Pietrowski
and Metzler’s examples. Although the results of the present version and the original are essentially the
same, we have added comments suggested by two anonymous referees. The results about the tree of
Q-equivalence classes were motivated by one of the referees’ comments. We are grateful to the referees
for their suggestions.

Projecting to F 0
2
=F 00

2
Previously known methods for proving that the presentations hx1;x2; : : : ;xn j

r1; r2; : : : ; rmi and hx1;x2; : : : ;xn j s1; s2; : : : ; smi are not Q or Q��-equivalent were developed by
Browning [6], Hog-Angeloni and Metzler [12, Section 2.2] and Borovik, Lubotzky and Myasnikov [5].
As explained by Hog-Angeloni and Metzler in [14, Section 2.2], the idea is to define a homomorphism q

from F.x1;x2; : : : ;xn/ to a test group G� and prove that the m-tuples .q.r1/; q.r2/; : : : ; q.rm// and
.q.s1/; q.s2/; : : : ; q.sm// are not equivalent. The results of Hog-Angeloni and Metzler [13, Theorems 2.3
and 2.4] show that solvable groups are not useful as test groups to distinguish Q��-equivalence. In
Borovik, Lubotzky and Myasnikov [5], Browning [7] and Hog-Angeloni and Metzler [14], there are
results concerning the use of finite groups to distinguish Q and Q��-equivalences. Our methods appeared
as a natural application when studying the winding invariant. However, they can be seen through
this perspective as an application of solvable groups to distinguish Q-equivalence. Concretely we use
G� D F2=F

00
2

, the free metabelian group of rank 2.

The presentations P and Q present Z�Z, so their Whitehead group is trivial. The torsion �.f /2Wh.KP/

of any homotopy equivalence f WKQ!KP is therefore trivial. To distinguish Q�-equivalence classes
we will work in GL2.ZŒ�1.P/�/=GE2.ZŒ�1.P/�/ instead of Wh.KP/D GL.ZŒ�1.P/�/=GE.ZŒ�1.P/�/.
We recall the definitions of these concepts.

Given a ring R, denote by En.R/ the subgroup of GLn.R/ generated by the elementary matrices.
Recall that E 2 GLn.R/ is elementary if all the diagonal coefficients are 1 2 R and all the other
coefficients but one are 02R. We call Dn.R/ the subgroup of GLn.R/ of diagonal matrices and GEn.R/

the subgroup of GLn.R/ generated by En.R/ and Dn.R/. Note that Dn.R/ normalizes En.R/, so
GEn.R/DDn.R/En.R/DEn.R/Dn.R/. If R is a Euclidean ring, then GEn.R/D GLn.R/ for every
n � 1. A ring R is said to be generalized Euclidean if GEn.R/D GLn.R/ for every n. It was proved
by Bachmuth and Mochizuki [2, Theorem 1] that RD ZŒX;X�1;Y;Y �1� is not generalized Euclidean.
Evans [9, Theorem C] gives a concrete example of a 2 by 2 invertible matrix over that ring which is not
in E2.R/.

From now on R will denote the ring ZŒX;X�1;Y;Y �1�.

Theorem 1 (Evans) The matrix�
1� 2.X � 1/Y �1 4Y �1

�.X � 1/2Y �1 1C 2.X � 1/Y �1

�
is in GL2.R/ but not in GE2.R/.
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The commutator subgroup of F2 is denoted by ŒF2;F2� or F 0
2
. Recall that w 2 F2 lies in ŒF2;F2� if and

only if the total exponents of x and of y in w are both 0.

Definition 2 Let w 2 F2. Then w D x
�1

1
x
�2

2
� � �x

�t

t , where xi 2 fx;yg and �i 2 f1;�1g for each i . The
word w determines a path w in R2 which begins in .0; 0/ and is a concatenation of paths 1; 2; : : : ; l .
The path i moves one unit parallel to the axis xi and with positive or negative direction depending on
the sign �i . The image of w is contained in the grid Z�R[R�Z. The ending point of w is .k; l/,
where k is the total exponent of x in w and l is the total exponent of y. Suppose w 2 ŒF2;F2�, so w
finishes in .0; 0/. For each .i; j / 2 Z�Z, let ai;j be the winding number w

�
w; i C

1
2
; j C 1

2

�
of w

around the point p D
�
i C 1

2
; j C 1

2

�
. Define the winding invariant Pw 2RD ZŒX;X�1;Y;Y �1� of w

to be the Laurent polynomial Pw D
P

ai;j X iY j .

Our notation for commutators is Œu; v�D uvu�1v�1. So, for instance, the winding invariant of Œx;y� is
PŒx;y�D12R and PŒy�1;x�DY �1. The path w is just the lift ofw to the Cayley graph �.Z�Z; fx;yg/D

Z�R[R�Z, and the winding invariant F 0
2
! R can be seen as the projection N ! N=N 0 of the

normal closure N of Œx;y� in F2 onto the relation module N=N 0 of the presentation hx;y j Œx;y�i; see
[3, Section 8]. Ifw 2F 0

2
, then  .@w=@x/D .1�Y /Pw and  .@w=@y/D .X�1/Pw; see [3, Section 10].

Here @=@x; @=@y WZŒF2�!ZŒF2� are the Fox derivatives,  WZŒF2�!ZŒF2=F
0
2
� is the canonical projection,

and ZŒF2=F
0
2
� is identified with R via the isomorphism which maps the class of x to X and the class of y

to Y . Thus, Pw is essentially the Alexander polynomial of the group hx;y jwi (which is only defined up
to a multiplication by a unit of R and a change of basis of Z2). The geometric nature of our definition is
useful to understand the intuition behind the algebraic arguments.

The proof of the next result is clear from the definition (see [3, Proposition 7]), the comments above
about relation modules or the relation with Fox derivatives.

Lemma 3 Let w;w0 2 ŒF2;F2�;u 2 F2. Then the following hold :

(i) Pww0 D PwCPw0 .

(ii) Pw�1 D�Pw.

(iii) Puwu�1 DX kY lPw, where k and l are the total exponents of x and y in u.

(iv) PŒu;w� D .X
kY l � 1/Pw.

Call a presentation PD hx;y j r1; r2; : : : ; rmi cocommutative if each relator rj lies in ŒF2;F2�.

Remark 4 Every presentation Q�-equivalent to a cocommutative presentation is also cocommutative.
We can associate to a cocommutative presentation P the vector ƒ.P/D .Pr1

;Pr2
; : : : ;Prm

/ 2Rm. This
can also be seen as the first column in the Alexander matrix A 2Rm�2 of hx;y j r1; r2; : : : ; rmi divided
by .1�Y /. The effect on ƒ.P/ of performing a Q-transformation on P is to change a polynomial Prj

by Prj
CPri

for certain i ¤ j , or by �Prj
, or by X kY lPrj

for certain k; l 2 Z. Therefore, if P is a
cocommutative presentation and Q is Q-equivalent to P, then ƒ.Q/t DEƒ.P/t for some E 2 GEm.R/.
Here ƒ.P/t ; ƒ.Q/t 2Rm�1 denote the column vectors.
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1

2 �2 �1 2 �1

Figure 1: Left, the graphical representation of the curve r1
which begins in the black dot. The

represented curve and the actual curve are homotopic in the plane with the centers of the squares
removed. In the interior of the squares we see the corresponding winding numbers. Right, the
curve r2

.

If PD hx;y j r1; r2; : : : ; rmi and QD hx;y j s1; s2; : : : ; smi are cocommutative presentations such that
the normal closure of fr1; r2; : : : ; rmg coincides with the normal closure of fs1; s2; : : : ; smg, then each sj

is a product of conjugates of ri’s and inverses of ri’s. By Lemma 3, Psj
is an R-linear combination of

the Pri
. Therefore ƒ.Q/t DMƒ.P/t for certain M 2Rm�m. Symmetrically, ƒ.P/t DM 0ƒ.Q/t for

some M 0 2Rm�m.

Let
PD hx;y j Œx;y�; 1i and QD hx;y j Œx; Œx;y�1��2yŒy�1;x�y�1; Œx; ŒŒy�1;x�;x��i:

We state the main result of the article.

Theorem 5 The standard complexes KP and KQ are simple homotopy equivalent , while P and Q are not
Q�-equivalent. Moreover , the normal closures of both relator sets coincide. Also , these examples occur
at Euler characteristic one above the minimal level.

Since the Whitehead group of �1.KP/D Z�Z is trivial [4], to prove simple homotopy equivalence we
only need to prove homotopy equivalence. This can be achieved by standard methods and we postpone
this part to the end of the proof.

We begin by proving that P and Q are not Q-equivalent. We compute first ƒ.Q/. Let

r1 D Œx; Œx;y
�1��2yŒy�1;x�y�1 and r2 D Œx; ŒŒy

�1;x�;x��

be the relators of Q. By Lemma 3 the winding invariant of r1 is 2.X � 1/PŒx;y�1�C YPŒy�1;x�. Since
PŒy�1;x�DY �1 and PŒx;y�1�D�PŒy�1;x�D�Y �1, it follows that Pr1

D 1�2.X �1/Y �1; see Figure 1.
Similarly, Pr2

D .X � 1/PŒŒy�1;x�;x� D�.X � 1/2PŒy�1;x� D�.X � 1/2Y �1. Thus,

ƒ.Q/D .1� 2.X � 1/Y �1;�.X � 1/2Y �1/

is the first column of matrix M in Theorem 1.

On the other hand it is easy to see that ƒ.P/D .1; 0/ 2R2. If P and Q are Q-equivalent, by Remark 4
there exists a matrix E 2 GE2.R/ such that M

�
1
0

�
Dƒ.Q/t DEƒ.P/t DE

�
1
0

�
. Then E�1M

�
1
0

�
D
�
1
0

�
.
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Thus E�1M is a matrix of the form �
1 A

0 B

�
for some A;B 2 R. Moreover, since E;M 2 GL2.R/, B 2 R is a unit, so E2E1E�1M D Id for the
diagonal and elementary matrices

E1 D

�
1 0

0 B�1

�
and E2 D

�
1 �A

0 1

�
:

Then M DEE�1
1

E�1
2
2 GE2.R/, which contradicts Theorem 1. This completes the proof that P and

Q are not Q-equivalent. The last lines of our proof are implicit in the comments of [8, page 115]
about unimodular columns. The matrix M was used by Myasnikov, Myasnikov and Shpilrain in
[20, Theorem 1.6] to study Q-transformations of m-tuples in a nonfree group G. As we mentioned
above, the idea of our proof naturally appeared when studying applications of the winding invariant. We
discovered later that our methods are very similar to those used in the proof of [20, Proposition 5.1].

The fact that P and Q are not Q�-equivalent, either, will follow from the next key lemma.

Lemma 6 The normal closure N of fr1; r2g is ŒF2;F2�.

Before we give a proof the lemma, we show how to use it to prove that P and Q are not Q�-equivalent.
Suppose they are. Then there is an automorphism � of F2 such that �PD hx;y j �.Œx;y�/; 1i and Q are
Q-equivalent. Since Q-transformations preserve the normal closure of the relators, the normal closure
of �.Œx;y�/ is ŒF2;F2� D N.Œx;y�/ by Lemma 6. By a well-known result of Magnus, �.Œx;y�/ is a
conjugate of Œx;y� or Œx;y��1. In any case, �P is Q-equivalent to P, so P and Q are Q-equivalent, a
contradiction.

Alternatively, that P and Q are not Q�-equivalent follows from the fact that there is no matrix E 2GE2.R/

such that Eƒ.P/t Dƒ.Q/t , and the following. If � 2 Aut.F2/, then the winding invariant P�.Œx;y�/ is a
unit of R, so there exists E0 2 GE2.R/ such that E0ƒ.P/t Dƒ.�P/t ; see [3]. Then �P and Q cannot
be Q-equivalent.

Proof of Lemma 6 It is clear that r1; r2 2 ŒF2;F2�, so we only need to show that Œx;y�D 1 in F2=N .
Let d D Œx;y�1�D xy�1x�1y. Since

1D r2 D Œx; Œd
�1;x��D xd�1xdx�1x�1xd�1x�1d D xd�1xdx�1d�1x�1d

in F2=N , it follows that xdx�1d�1D dx�1d�1xD x�1.xdx�1d�1/x. Therefore eD Œx; d � commutes
with x in F2=N .

On the other hand 1D r1 D Œx; d �
2yd�1y�1 D e2yd�1y�1, so

(1) d D y�1e2y:
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Finally, by definition, e D xdx�1d�1 D x.y�1e2y/x�1d�1. But since d D xy�1x�1y, we have
dy�1x D xy�1. We use this in the previous equation to obtain

e D dy�1xe2x�1yd�1d�1:

We use now that e and x commute to deduce eD dy�1e2yd�2D ddd�2D 1 in F2=N . The last equality
follows from (1). By (1) again we deduce d D 1 in F2=N . Thus, d D Œx;y�1� 2N , so Œx;y� 2N .

To finish the proof of the theorem we need to prove that KP and KQ are homotopy equivalent. We have
done the most important part already in Lemma 6. It implies that KP and KQ have isomorphic fundamental
groups with an isomorphism �1.KQ/! �1.KP/ induced by a map which is the identity on 1-skeletons.
Then KP and KQ have isomorphic fundamental groups and the same Euler characteristic. In general this
does not imply homotopy equivalence, but it does in our case since �1.KP/ is free abelian of rank 2. This
is explained by Harlander in [11]: Suppose K and L are finite connected 2-dimensional complexes with
�1.K/Š�1.L/ŠZ�Z and �.K/D�.L/. Since Z�Z is aspherical, H2. zK/ and H2. zL/ are projective
R-modules by the generalized Schanuel lemma. By the Quillen–Suslin theorem, these R-modules are free;
see Swan’s comments [23] on how to go from polynomials to Laurent polynomials. Since �.K/D �.L/,
it follows that H2. zK/ and H2. zL/ have the same rank, so they are isomorphic. Once again, since Z�Z

is aspherical, H 3.Z�Z;H2. zK// D H 3.Z�Z;H2. zL// D 0, so K and L have isomorphic algebraic
2-types. By Mac Lane–Whitehead’s theorem [22, Theorem 4.9], K and L are homotopy equivalent. This
finishes the proof of Theorem 5.

An alternative and simpler way to see that KP and KQ are homotopy equivalent is to show that there exists
a homomorphism ˆ W C2. zKQ/! C2. zKP/ of R-modules that makes the following diagram commutative

C2. zKQ/
d2

//

ˆ
��

C1. zKQ/

C2. zKP/
d 0

2
// C1. zKP/

A computation of Fox derivatives, or our comments right after Definition 2, show that d2 has matrix
representation �

.1�Y /.1� 2.X � 1/Y �1/ .X � 1/2.1�Y �1/

.X � 1/.1� 2.X � 1/Y �1/ �.X � 1/3Y �1

�
D

�
1�Y

X � 1

�
ƒ.Q/;

and d 0
2

is represented by �
1�Y 0

X � 1 0

�
D

�
1�Y

X � 1

�
ƒ.P/:

Therefore the map ˆ W C2. zKQ/! C2. zKP/ represented by the transpose of the (invertible) matrix M

in Theorem 1 is an isomorphism satisfying d 0
2
ˆD d2, and by [22, Theorem 3.9], there is a homotopy

equivalence f WKQ!KP.
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The fact that the Euler characteristic of P and Q is one level above the minimal follows from the
general bound �.K/ � 1 � dim H1.GIQ/ C dim H2.GIQ/ that holds for any finite 2-dimensional
complex K with �1.K/ŠG, which in turn can be deduced from the fact that there is an epimorphism
H2.KIQ/!H2.GIQ/ induced by the inclusion of K into a K.G; 1/.

The tree of Q-equivalence Let G be a group. If K and L are finite 2-dimensional complexes with
fundamental group G, there exist k; l � 0 such that K _

Wk
iD1 S2 'L_

Wl
iD1 S2. In fact for some k; l ,

one of these complexes 3-deforms into the other [13, page 28]. The tree of homotopy types of finite
2-dimensional complexes with fundamental group G has a directed edge from the homotopy type of K

to the homotopy type of K _ S2. The classification problem consists in understanding this tree for
each group G. This has been achieved in few examples (free groups, finite abelian, and few others),
and interesting features of the tree have been found in other cases. The complexes of minimal Euler
characteristic (minimal among all the 2-complexes with fundamental group G) are roots of this tree, but
there can be roots above minimal characteristic. Very recently Nicholson [21] proved that for every k � 0

there exists a group G and (infinitely many) distinct homotopy types of 2-complexes with fundamental
group G and Euler characteristic equal to the minimal plus k. It is an open problem whether there exist
2-complexes X and Y such that X _S2 6' Y _S2 while X _S2 _S2 ' Y _S2 _S2.

The trees of simple homotopy types and 3-deformation types are defined similarly. If two finite presen-
tations P1 D hX j Ri;P2 D hX j Si with same generator set X have their relators with equal normal
closure N.R/DN.S/, then there exists k; l � 0 such that the presentations P

.k/
1

and P
.l/
2

obtained from
P1 and P2 by adding k and l trivial relators respectively, are Q-equivalent. In fact, k and l can be taken
as jS nRj and jR nS j, respectively. Given a group G, a finite set X and a normal subgroup N E F.X /

such that F.X /=N ŠG, the tree of Q-equivalence classes of finite presentations of G with respect to X

and N has a directed edge from the Q-equivalence class of a presentation P1D hX jRi with N.R/DN

to the class of P
.1/
1

. The example of Metzler of presentations of Z5�Z5 with minimal Euler characteristic
shows that the tree of Q-equivalence classes of Z5�Z5 with respect to fx;yg;N.x5;y5; Œx;y�/ has two
roots hx;y jRi and hx;y j Si of minimal Euler characteristic, which are adjacent to a same type, since
jR n S j D jS nRj D 1; see Figure 2. Our example shows that a different situation may happen. Our
presentations P and Q have Euler characteristic one above the minimal level. In fact P is not a root, but
Q is. Moreover, the tree of Q-equivalence classes of presentations of Z�Z with respect to fx;yg and F 0

2

..
.

..
.

Figure 2: Part of the trees of Q-equivalence classes of Metzler’s example and ours.
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has a unique class with minimal Euler characteristic, which is hx;y j Œx;y�i. We have that P.1/ and Q.1/

are Q-equivalent.

Note that the Andrews–Curtis conjecture says that the tree of Q-equivalence classes of presentations of the
trivial group with respect to fx1;x2; : : : ;xng and Fn has a unique class with minimal Euler characteristic.

We mention other known examples, from the perspective of the tree of Q-equivalence. In [16], Lustig
proves that the presentations

P1 D hx;y; z j y
3;yx10y�1x�5; Œx7; z�i;

P2 D hx;y; z j y
3;yx10y�1x�5;x14zx14z�1x�7zx�21z�1

i;

are homotopy equivalent and not simple homotopy equivalent. Moreover, he proves that the normal
closures of relators coincide. Thus P

.1/
1

is Q-equivalent to P
.1/
2

.

The twisted presentations of a finite abelian group (see Latiolais [15]) can be used to show that for any k

there exists a group G and presentations P1;P2; : : : ;Pk of G with minimal Euler characteristic whose
standard complexes are pairwise not homotopy equivalent but such that P

.1/
i and P

.1/
j are Q-equivalent

for every 1� i; j � k.

In [17] Mannan and Popiel give an example of two presentations P1 D hx;y j y
2x�7;xyxy�1i and

P2 D hx;y j y
2x�7;y�1xyx2y�1x�2yx�3i of the quaternion group Q28 with nonisomorphic second

homotopy modules for any identification of fundamental groups (and thus not homotopy equivalent).
Again they have minimal Euler characteristic. It is proved that both relator sets have equal normal closures.
Thus, P

.1/
1

and P
.1/
2

are Q-equivalent.
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Generalizing quasicategories via model structures on simplicial sets

MATT FELLER

We use Cisinski’s machinery to construct and study model structures on the category of simplicial sets
whose classes of fibrant objects generalize quasicategories. We identify a lifting condition that captures
the homotopical behavior of quasicategories without the algebraic aspects and show that there is a model
structure whose fibrant objects are precisely those that satisfy this condition. We also identify a localization
of this model structure whose fibrant objects satisfy a “special horn lifting” property similar to the one
satisfied by quasicategories. This special horn model structure leads to a conjectural characterization of
the bijective-on-0-simplices trivial cofibrations of the Joyal model structure. We also discuss how these
model structures all relate to one another and to the minimal model structure.
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1 Introduction

The theory of quasicategories has proven to be a powerful tool across many areas of mathematics, including
algebraic geometry, topology, and beyond. The basic idea of a quasicategory is that it is a simplicial
set that behaves like a category “up to homotopy”. This paper explores how one can generalize this
idea, where we have simplicial sets modeling up-to-homotopy versions of structures that are weaker than
categories. Our motivating example of such a structure weaker than categories is the 2-Segal sets of
Dyckerhoff and Kapranov [5] and Gálvez-Carrillo, Kock and Tonks [8]. In a follow-up paper, we define
“quasi-2-Segal sets” that are up-to-homotopy versions of 2-Segal sets, building on the groundwork laid
here.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.357
http://www.ams.org/mathscinet/search/mscdoc.html?code=18N50, 55U35, 18N60
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


358 Matt Feller

A foundational result of quasicategory theory is the existence of a corresponding model structure on the
category of simplicial sets, called the Joyal model structure [14]. A desirable quality of any generalization
of quasicategories is therefore the existence of a similar associated model structure. Taking this idea to
heart, one could say that within simplicial sets the search for robust generalizations of quasicategories
is equivalent to the search for model structures. Hence, the aim of this paper is to dive into the sea of
possible model structures and retrieve a few with properties that should prove useful for further study.

1.1 Model structures on simplicial sets

The two most prominent model structures on sSet, the category of simplicial sets, are the Kan–Quillen
model structure [15] and the Joyal model structure [14]. In both model structures, all objects are cofibrant,
so the well-behaved objects are precisely the fibrant objects. In the Kan–Quillen model structure, the
fibrant objects are the Kan complexes which provide a model of spaces/1-groupoids, and the fibrant
objects of the Joyal model structure are the quasicategories which give us a model of .1; 1/-categories.
These model structures are both examples of Cisinski model structures on sSet, meaning that they are
cofibrantly generated and their cofibrations are precisely the monomorphisms. The Kan–Quillen model
structure is a localization of the Joyal model structure in the sense that it has the same cofibrations and its
class of fibrant objects (Kan complexes) is contained in the class of Joyal fibrant objects (quasicategories).
In general, the process of localizing a model structure to another with the same cofibrations and fewer
fibrant objects is well understood; see Hirschhorn [10]. There are other localizations of the Joyal model
structure in the literature; see for example Campbell and Lanari [2] and Cisinski [3, Chapter 9].

By starting with the Joyal model structure and localizing, one ends up with fibrant objects that are
quasicategories with extra structure. If we instead want to do the opposite and generalize the notion
of quasicategory, then we want to “delocalize”. The goal of this paper is to lay the groundwork for
constructing such delocalizations of the Joyal model structure. Our approach is to focus on the homotopical
aspects of quasicategories, constructing various model structures that maintain those aspects but lack
a notion of composition. In particular, for morphisms f and g in a quasicategory Q, we consider a
homotopy from f to g to be given by a 2-simplex

x y

x
s0x

f

g

with degenerate edge 0! 1 as indicated. We say that Q is homotopically behaved, in the sense that
all of the higher invertibility and compositionality we would expect from a good notion of homotopy
are satisfied by the 2-simplices of this form, as well as by higher n-simplices whose edge i ! i C 1 for
some 0� i � n� 1 is degenerate. The purpose of this paper is to study Cisinski model structures on sSet
whose fibrant objects are homotopically behaved, which we call homotopically behaved model structures.
Our main result is to construct and describe the homotopically behaved model structure with the smallest
possible class of weak equivalences.
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Theorem A There exists a minimal homotopically behaved model structure on sSet. The fibrant objects
in this model structure are the simplicial sets with lifts of certain modified horn inclusions , which we call
J -augmented horn inclusions.

We state this theorem in more detail as Theorem 4.33. The terms homotopically behaved and J -augmented
horn inclusion are defined explicitly in Section 1.4.

1.2 2-Segal motivation

Our motivation for considering delocalizations of the Joyal model structure is to construct a “quasi-2-
Segal set” model structure, where the fibrant objects satisfy an up-to-homotopy version of the 2-Segal
condition introduced in [5] and [8]. Recall that the (strict) Segal (or “1-Segal”) condition encodes unique
composition; the simplicial sets satisfying this condition (the “1-Segal sets”) are equivalent to categories.
The simplicial sets satisfying a weakened, up-to-homotopy version of the 1-Segal condition are the
quasicategories. The 2-Segal condition is generalization of the 1-Segal condition that encodes partially
defined, not necessarily unique composition which is still associative in a particular sense. It is therefore
natural to try to extend this generalization from 1-Segal to 2-Segal to the up-to-homotopy setting, ie to look
for a robust definition of “quasi-2-Segal sets”. A compelling justification for a particular definition would
be the existence of a model structure analogous to the Joyal model structure. Since the quasi-2-Segal sets
should generalize quasicategories, such a model structure should be a delocalization of the Joyal model
structure. In follow-up work [7] we construct such a quasi-2-Segal model structure by localizing our
minimal homotopically behaved model structure with respect to maps that encode the 2-Segal condition.

1.3 Cisinski’s theory and the minimal model structure

Proving the existence of a model structure from scratch is generally cumbersome and highly technical,
but fortunately for our particular situation Cisinski’s theory provides a powerful framework for building
model structures that requires checking a much more manageable set of conditions. One aspect of this
theory is the existence of a minimal model structure, whose class of fibrant objects contains the fibrant
objects of every other Cisinski model structure.1 Therefore, one approach to delocalizing the Joyal model
structure is to delocalize all the way back to the minimal model structure, and then localize from there.

As we see in a companion paper [6], we lose a lot by delocalizing all the way down to the minimal
model structure. In particular, the main result of that paper is a new characterization of the fibrant
objects in the minimal model structure. What we find is that the notion of “homotopy” familiar from
quasicategories does not behave well in the fibrant objects of this model structure. In particular, the
existence of a homotopy from f to g given by a 2-simplex with degenerate edge need not imply the

1One could also call this “maximal”, but we prefer “minimal” since the class of weak equivalences is as small as possible, and
the fibrant objects have the least structure.
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existence a homotopy from g to f . Homotopies of this form also need not compose. One can devise
an alternative notion of homotopy which behaves well in the minimal model structure, essentially by
demanding that all higher invertibility data be present from the start, but then one sacrifices the simplicity
that comes from a homotopy being embodied by a single simplex.

1.4 Homotopically behaved model structures and augmented horns

We denote by �Œn��i!iC1 the standard n-simplex with the edge i ! .i C 1/ collapsed to a degeneracy.
The idea that an n-simplex with degenerate i ! .i C 1/ edge is a homotopy of .n�1/-simplices can be
expressed by the surjective map�Œn��i!iC1!�Œn�1� being a weak equivalence. Thus, we introduce the
terminology homotopically behaved for Cisinski model structures on sSet where each of these surjective
maps �Œn��i!iC1!�Œn�1� is a weak equivalence. In Section 4 we construct the minimal homotopically
behaved model structure, whose fibrant objects have the least possible structure while maintaining the
desirable homotopical aspects of quasicategories. Localizing this model structure with respect to the
maps from the 2-Segal condition yields a “quasi-2-Segal set” model structure whose fibrant objects must
then also have the desirable homotopical aspects of quasicategories.

At the same time, we construct a nontrivial localization of this model structure at K!�, where K is the
simplicial set one gets by gluing in a left and right inverse to �Œ1�; see Example 4.5. Although this model
structure does not appear to be directly useful for defining quasi-2-Segal sets, it may be of independent
interest in understanding the broader picture of model structures on simplicial sets.

The key inspiration for our approach comes from the special outer horn extension property of quasicate-
gories. Recall that a horn ƒi Œn� is the union of all of the faces of the n-simplex �Œn� except for di�Œn�,
which we say is inner if 0 < i < n and is outer if i D 0 or i D n. We refer to these horns as ordinary
horns to distinguish them from the augmented horns we introduce below. A quasicategory is a simplicial
set Q such that every inner horn ƒi Œn�!Q extends to an n-simplex �Œn�!Q. A quasicategory need
not have extensions of an outer horn such as ƒ0Œn�!Q. However, if the edge 0! 1 is sent to an edge
in Q that is invertible in a certain sense, then we say ƒ0Œn�!Q is an example of a special outer horn,
and it turns out that quasicategories do have extensions of all special outer horns.

In a general homotopically behaved model structure, the fibrant objects need not have extensions of
ordinary horns. However, the central idea of our approach is to create augmented horns, where we glue
a simplicial set onto a particular edge to “invert” it. In Section 3, we see how certain augmented horn
inclusions are forced to be weak equivalences in a homotopically behaved model structure. Furthermore,
we can characterize the fibrant objects in the minimal homotopically behaved model structure in terms
of lifts of J -augmented horn inclusions, as we stated in Theorem A. We denote by J the nerve of the
free-living isomorphism, so and define J -augmented horn inclusions to be ordinary horn inclusions
ƒj Œn� ,!�Œn� with a copy of J glued in along either the .j � 1/! j edge or the j ! .j C 1/ edge.
We see in Corollary 4.28 that the minimal homotopically behaved model structure localizes to the Joyal
model structure.
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1.5 Special horns

The notion of invertibility in Section 3 comes from attaching a simplicial set I that is contractible in the
sense that the map I !� is a weak equivalence, with our main examples being I D J and I DK. In
Section 5, we see that this notion does not account for all of the edges we want to consider invertible in
the context of quasicategories, and identify a separate class of augmented horn inclusions which we call
the special horn inclusions. We show that there is a model structure whose fibrant objects are precisely
the simplicial sets with special horn inclusions.

Recall that we deemed the localization of the minimal homotopically behaved model structure at K!�
to be unsuitable for our ultimate purposes in defining quasi-2-Segal sets. This special horn model structure
is a further localization, and hence is also not suitable. However, this model structure may be of interest
with regards to studying the Joyal model structure. In particular, we conjecture that the special horn
inclusions, together with the inner horn inclusions, generate the class of bijective-on-0-simplices trivial
cofibrations in the Joyal model structure; see Conjecture 5.24.

1.6 Pointwise cylinders

A central element of Cisinski’s theory is the exact cylinder, which is a functorial choice of simplicial set
E˝X for each simplicial set X , satisfying certain axioms. Many applications of Cisinski’s work use an
exact cylinder given by the Cartesian product E ˝X D I �X for some simplicial set I with distinct
vertices f0g ,! I and f1g ,! I . For our purposes, the necessary proofs are greatly simplified by instead
using an alternative kind of exact cylinder, which we call a pointwise cylinder. We introduce pointwise
cylinders in Section 4.1. In Section 4.2, we see that the minimal homotopically behaved model structure
is also minimal with respect to pointwise cylinders, in the sense that we construct it using a pointwise
cylinder in Cisinski’s machinery and any other such constructed model structure is a localization of it.

1.7 Organization

In Section 2, we cover basic definitions and notation, and then summarize Cisinski’s theory. In Section 3,
we define homotopically behaved model structures and augmented horn inclusions. In Section 4 we
show that there is a minimal homotopically behaved model structure and that its fibrant objects are the
simplicial sets with extensions of certain augmented horns. In Section 5, we define special horns as a
separate kind of augmented horn, and use Cisinski’s machinery to show that there exists a model structure
whose fibrant objects are simplicial sets with special horn extensions. In Section 6 we summarize and
compare the various model structures constructed in this work.
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2 Background

We recall some basic notions, as well as the necessary aspects of Cisinski’s theory.

2.1 Basics of simplicial sets and model structures

Let � denote the category whose objects are the finite nonempty ordered sets Œn�D f0� 1� � � � � ng for
n� 0 and whose morphisms are order-preserving maps. We write d i W Œn�! ŒnC1� and si W ŒnC1�! Œn�

for the coface and codegeneracy maps, respectively, which generate the morphisms of �. A simplicial set
is a functor �op! Set. We denote the category of simplicial sets by sSet and the representable simplicial
sets by �Œn�, except that we often denote �Œ0� instead by � since it is the terminal object in sSet. Our
notation for the i th horn of �Œn� is ƒi Œn�. For more background on simplicial sets, see [9].

We write f � g if g has the right lifting property with respect to f . The class of morphisms with the
right lifting property with respect to a set of maps A is denoted by A�, and the class of morphisms f
such that f � B is denoted by �B. Given a set S of morphisms, the class �.S�/ is the closure of S
under taking pushouts, transfinite compositions, and retracts. For this reason, we sometimes say that S
generates the class �.S�/.

We restrict our focus to Cisinski model structures on sSet, which are cofibrantly generated model structures
whose cofibrations are precisely the monomorphisms. A model structure is cofibrantly generated if there
are sets I and J such that I generates the cofibrations and J generates the trivial cofibrations. For more
background on model categories, see [10] or [11].

2.2 Cisinski’s theory

The main result we use from Cisinski is Theorem 2.10, which says that if a set of monomorphisms ƒ
satisfies certain properties, then ƒ characterizes the fibrant objects of some model category via a lifting
property. The purpose of this subsection is to recall the background necessary to state this result precisely.

We begin by recalling the notion of a cylinder.

Definition 2.1 [4, Definition 2.4.6] A cylinder of a simplicial set X is a factorization

X tX
.@0;@1/,����! I ˝X !X

of the canonical fold map .idX ; idX /, where the first map is a monomorphism. The maps @" for "D 0; 1
pick out copies of X that do not intersect inside of I ˝X .

Beware that the notation I ˝X in the above definition is purely formal. The simplicial set I ˝X need
not be a monoidal product or tensor of any kind.

Remark 2.2 In an arbitrary model category, we define cylinders similarly, where the first map is required
to be a cofibration. In the context of Cisinski’s theory, all of the model structures we consider have as
cofibrations precisely the class of monomorphisms, justifying this definition.
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A functorial cylinder is a compatible choice of cylinder for every simplicial set. To make this definition
rigorous, we first notice that X 7! X tX and X 7! X are endofunctors of sSet, which we denote by
1t 1 and 1, respectively. There is a natural transformation .id; id/ W 1t 1) 1 whose component at each
X is the canonical fold map .idX ; idX /.

Definition 2.3 [4, Definition 2.4.8] A functorial cylinder is a factorization

1t 1
.@0;@1/
HHHH) I ˝�) 1

of the natural transformation .id; id/, where each component of the natural transformation

.@0; @1/ W 1t 1) I ˝�

is a monomorphism.

The motivation behind these definitions is to generalize the idea (from the Kan–Quillen model structure
on sSet) of �Œ1��X being a cylinder of a simplicial set X , in the sense that a map X ��Œ1�! Y gives
a homotopy of maps X ! Y . Imposing some further conditions helps maintain the spirit of the original
setting, where we imagine I ˝X as something like a stretched out copy of X .

Definition 2.4 [4, Definition 2.4.8] An exact cylinder2 is a functorial cylinder satisfying the following
axioms.

(DH1) The functor I ˝� commutes with small colimits and preserves monomorphisms.

(DH2) For any monomorphism of simplicial sets j W A ,! B , the square

A B

I ˝A I ˝B

j

.@"/A .@"/B

I˝j

is a pullback for each "D 0; 1.

Remark 2.5 Assuming I ˝� preserves monomorphisms (as (DH1) calls for), all of the morphisms in
the square in (DH2) are monomorphisms. We can interpret the condition that the square be a pullback as
saying that the intersection of I ˝A� I ˝B with B � I ˝B is precisely A.

Example 2.6 Let I be a cylinder of the terminal simplicial set �Œ0�. In other words, choose a monomor-
phism of simplicial sets �Œ0�t�Œ0� ,! I . The functor defined by I ˝X D I �X determines an exact
cylinder. In particular, when I D�Œ1�, we recover the familiar notion of cylinder from the Kan–Quillen
model structure.

Many applications of this theory involve cylinders defined by Cartesian product, but our approach uses a
new kind of exact cylinder which we introduce in Section 4.1.

2The origin of this definition is [3], where the term is “donnée homotopique élémentaire”, hence “DH”.
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Let us follow [4, Remark 2.4.9] and establish some more notation. Given an exact cylinder I ˝�, by
taking the pushout of the left and top maps in the square for axiom (DH2), we get the inclusion map

.I ˝A/[B ,! I ˝B:

To emphasize the dependence of this inclusion on whether "D 0 or 1 in the inclusion @" W�Œ0� ,! I , we
rewrite this map as

.I ˝A/[ .f"g˝B/ ,! I ˝B;

thinking of f0g and f1g as endpoints of I D I ˝�Œ0�.

In this spirit, we also write @I for the union of f0g and f1g inside of I , and we write @I ˝X as the union
of f0g˝X and f1g˝X in I ˝X . Then we have a canonical inclusion

.I ˝A/[ .@I ˝B/ ,! I ˝B;

arising from a diagram akin to the square in axiom (DH2).

We are now ready for one of the key definitions we need from Cisinski.

Definition 2.7 [4, Definition 2.4.11] Given an exact cylinder I ˝�, we say that a class of morphisms
�.ƒ�/ generated by a set ƒ of monomorphisms is an .I ˝�/-anodyne class if the following conditions
hold.

(An1) For each monomorphism of simplicial sets X ,! Y and "D 0; 1, the induced map

.I ˝X/[ .f"g˝Y / ,! I ˝Y

is in �.ƒ�/.

(An2) For each A ,! B in �.ƒ�/, the induced map .I ˝A/[ .@I ˝B/! I ˝B is also in �.ƒ�/.

We can restate each of axioms (An1) and (An2) in a form that is easier to check.

Lemma 2.8 Let I ˝� be an exact cylinder and let ƒ be a set of monomorphisms. Then axiom (An1) is
equivalent to (An10) below and axiom (An2) is equivalent to (An20) below:

(An10) For each n � 0 and " D 0; 1, the map .I ˝ @�Œn�/ [ .f"g ˝�Œn�/ ,! I ˝�Œn� induced by
@�Œn� ,!�Œn� is in �.ƒ�/.

(An20) For each A ,! B in ƒ, the induced map .I ˝A/[ .@I ˝B/! I ˝B is in �.ƒ�/.

Proof The equivalence (An10)() (An1) follows from the equality of classes

f.I ˝ @�Œn�/[ .f"g˝�Œn�/ ,! I ˝�Œn� j n� 0; "D 0; 1g�

D f.I ˝X/[ .f"g˝Y / ,! I ˝Y jX ,! Y in sSet; "D 0; 1g�;

Algebraic & Geometric Topology, Volume 25 (2025)



Generalizing quasicategories via model structures on simplicial sets 365

which is a consequence of correspondence (2.4.13.4) of Example 2.4.13 in [4], which ultimately relies on
the fact that the boundary inclusions generate the class of monomorphisms. The equivalence of (An20)
and (An2) follows from a similar argument, replacing f"g with @I and arbitrary monomorphisms X ,! Y

with maps in �.ƒ�/.

Definition 2.9 Given an exact cylinder I ˝� and a morphism of simplicial sets f0; f1 WA!X , we say
that an I -homotopy from f0 to f1 is a map h W I˝A!X such that precomposing h with f"g˝A,! I˝A

yields f" for "D 0; 1. We say that f; g WA!X are I -homotopic if there is a finite zigzag of I -homotopies
from f to g. Suppressing the dependence on I , we let ŒA;X� denote the quotient of the set Hom.A;X/
by identifying maps that are I -homotopic.

Theorem 2.10 [4, Theorem 2.4.19] Given an exact cylinder I ˝� and a set of monomorphisms ƒ such
that �.ƒ�/ is an .I ˝�/-anodyne class , there is a cofibrantly generated model structure on sSet whose
cofibrations are the monomorphisms and whose fibrant objects are the simplicial sets with the right lifting
property with respect to ƒ. The weak equivalences in this model structure are maps X ! Y such that for
every fibrant W the induced map ŒY;W �! ŒX;W � is a bijection.

Remark 2.11 It is a theorem of Joyal that if two model structures share the same cofibrations and
fibrant objects, then they are the same model structure; see [14, Proposition E.1.10]. Therefore, the
weak equivalences described in the above theorem are determined once we know our cofibrations are
the monomorphisms and our fibrant objects are those with lifts against ƒ. Throughout this paper, we
shall implicitly use this fact from Joyal to conclude that when the class of fibrant objects of a Cisinski
model structure is contained in the class of fibrant objects in another, the class of weak equivalences of
the former model contains the class of weak equivalences of the latter.

3 Homotopically behaved model structures and augmented horns

In this section, we define homotopically behaved model structures to be Cisinski model structures where
the retract map from an n-simplex with i! .iC1/ edge collapsed to a degeneracy onto the .n�1/-simplex
is a weak equivalence. This condition captures the idea that a map out of an n-simplex with degenerate
i ! .i C 1/ edge is a homotopy of .n�1/-simplices. We show that this condition is equivalent to the
condition that certain modified horn inclusions are weak equivalences.

3.1 Augmented horn extensions

In a quasicategory, we can view higher homotopies as simplices with a degenerate edge i ! i C 1. More
precisely, for n� 1, a homotopy between n-simplices x; y consists of an .nC1/-simplex H with some
0� i � n such that the edge i ! .i C 1/ is degenerate and fdiH;diC1H g D fx; yg.

Before continuing this discussion, let us fix some notation.
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Definition 3.1 Given n � 2, 0 � i � n� 1, a subcomplex A � �Œn� containing the i ! .i C 1/ edge
of �Œn�, and a map �Œ1�!X , let AXi!iC1 be the pushout

�Œ1� X

A AXi!iC1

i!iC1

Example 3.2 To get ƒ1Œ2�X1!2, we attach �Œ1�!X along the edge 1! 2, as in the following diagram:

1

0 2

X

Our main use for these AXi!iC1 is to discuss modified versions of the ordinary horn inclusions. Given a
horn inclusionƒj Œn� ,!�Œn�, the hornƒj Œn� contains the edges .j �1/! j and j ! .jC1/ (excluding
the cases �1! 0 and n! nC1 as there are no such edges). For each �Œ1�!X and i D j �1; j , we get
an induced inclusion ƒj Œn�Xi!iC1 ,!�Œn�Xi!iC1. The modified horn inclusions we study are two special
cases of this situation. The first case is when X D�, so the induced inclusion ƒj Œn��i!iC1 ,!�Œn��i!iC1
is the ordinary horn inclusion with the i ! i C 1 edge collapsed to a degeneracy. The second case is
when �Œ1�!X is an inclusion, so that the induced map is the ordinary horn inclusion with a copy of X
glued in along the i ! i C 1 edge. Let us set some terminology for these special cases.

Definition 3.3 Fix n� 2 and 0� i � n� 1.

(1) When X D�, the terminal simplicial set, we say thatƒj Œn��i!iC1 is a pinched horn for j D i; iC1,
that �Œn��i!iC1 is a pinched n-simplex, and that the inclusion ƒj Œn��i!iC1 ,! �Œn��i!iC1 for
j D i; i C 1 is a pinched horn inclusion.

(2) When �Œ1�!X is an inclusion, we say that ƒj Œn�Xi!iC1 is an X -augmented horn for j D i; iC1,
that �Œn�Xi!iC1 is an X -augmented n-simplex, and that the inclusion ƒj Œn�Xi!iC1 ,!�Œn�Xi!iC1
for j D i; i C 1 is an X -augmented horn inclusion.

Remark 3.4 The notation AXi!iC1 and terminology “X -augmented” are technically ambiguous because
they depend on the map �Œ1�!X , but the choice of map should be clear from context in all instances in
this paper.

Since we think of maps out of a pinched .nC1/-simplex �ŒnC 1��i!iC1 as homotopies of n-simplices,
we can interpret this situation as saying that maps out of a pinched .nC1/-simplex �ŒnC 1��i!iC1 are
equivalent to maps out of the standard n simplex �Œn� up to homotopy. This interpretation is encoded
more precisely by the surjective map �ŒnC 1��i!iC1 ! �Œn� being a weak equivalence in the Joyal
model structure. As our goal is to construct model structures with fibrant objects that have the same
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homotopical behavior as quasicategories, a natural starting place is to declare each of these surjective
maps �ŒnC 1��i!iC1!�Œn� for n� 1 and 0� i � n to be weak equivalences in our model structure.
The aim of this subsection is to use 2-out-of-3 arguments to identify other maps that are forced to be
weak equivalences in this situation.

Definition 3.5 We say that a Cisinski model structure on the category of simplicial sets is a homotopically
behaved model structure if the surjective maps �ŒmC 1��

k!kC1
!�Œm� are weak equivalences for all

m� 1 and 0� k �m.

Our first step is to notice that these maps have sections, which must also be weak equivalences by the
2-out-of-3 property.

Lemma 3.6 The surjective maps �ŒmC 1��
k!kC1

! �Œm� are weak equivalences for all m � 1 and
0� k �m if and only if the sections dk; dkC1 W�Œm� ,!�ŒmC 1��

k!kC1
are as well.

Our next step is to show that pinched horn inclusions are forced to be weak equivalences. Our proof
requires first defining generalized pinched horns. Given n� 2, 0� i � n�1, and a subset S � f0; : : : ; ng
such that jS j � 2 and exactly one of i; i C 1 is in S , the generalized horn ƒS Œn���Œn� is the union of
all dj faces of �Œn� for j in S . There exists an ` 2 S not equal to i or i C 1 and so the d` face of �Œn�
contains the i! .iC1/ edge, and therefore ƒS Œn� contains the i! .iC1/ edge of �Œn�, allowing us to
apply Definition 3.3.

Definition 3.7 Given n�2, 0� i �n�1, and a subset S �f0; : : : ; ng such that jS j�2 and exactly one of
i; iC1 is in S , we say thatƒS Œn��i!iC1 is a generalized pinched horn and thatƒS Œn��i!iC1 ,!�Œn��i!iC1
is a generalized pinched horn inclusion. Similarly, given X and an inclusion �Œ1� ,! X , we say that
ƒS Œn�Xi!iC1 is a generalized X-augmented horn and that ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is a generalized
X -augmented horn inclusion.

In addition to using the 2-out-of-3 property, the proofs of the upcoming propositions rely on the fact that
every Cisinski model structure is left proper by [10, Proposition 13.1.2]. We state this standard fact as a
lemma.

Lemma 3.8 In a Cisinski model structure , pushouts along inclusions preserve weak equivalences.

Proposition 3.9 A Cisinski model structure is homotopically behaved if and only if every generalized
pinched horn inclusion is a weak equivalence.

Proof We first prove the forward implication. By Lemma 3.6, we know that the composite of

�Œn� 1� ,!ƒS Œn��i!iC1 ,!�Œn��i!iC1

is a weak equivalence, so it suffices to show that the map on the left is a weak equivalence by the 2-out-of-3
property. This map on the left is the inclusion of either the d i or d iC1 face, whichever is in S .
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For nD 2, the map on the left is actually an isomorphism since ƒS Œ2� is the union of two 1-simplices,
one of which gets collapsed to a point to create ƒS Œ2��i!iC1.

For n�3, we proceed by induction on jS j. For the base case jS jD2, the inclusion�Œn�1� ,!ƒS Œn��i!iC1
amounts to gluing in a copy of �Œn� 1��i 0!i 0C1 along one of the faces of �Œn� 1�. In other words, it
is a pushout of the weak equivalence �Œn� 2� ,!�Œn� 1��i 0!i 0C1 along an inclusion, and so is a weak
equivalence.

Now if jS j � 3, we pick some j 2 S not equal to i or i C 1 and let S 0 D S Xfj g. By induction we know
that the inclusion�Œn� ,!ƒS

0

ŒnC1��i!iC1 is a weak equivalence, so it suffices to show that the inclusion
ƒS

0

ŒnC 1��i!iC1 ,!ƒS ŒnC 1��i!iC1 is as well. But this latter inclusion is itself a pushout of a pinched
generalized horn whose subset of indices is of size one less than jS j, and so is a weak equivalence.

We now turn to the reverse implication, so let us assume that every generalized pinched horn inclusion is
a weak equivalence. In particular, we can pick S such that jS j D 2, and consider the composite

�Œn� 1� ,!ƒS Œn��i!iC1 ,!�Œn��i!iC1:

By Lemma 3.6, it suffices to show that every such composite map is a weak equivalence, and therefore (by
the 2-out-of-3 property) to show that the map on the left is a weak equivalence. We proceed by induction
on n. As we saw in the proof of the forward implication, in the base case nD 2 the map on the left is an
isomorphism. For n� 3, the map on the left is a pushout of �Œn� 2� ,!�Œn� 1��i!iC1.

We can now go one step further and show that certain generalized augmented horn inclusions must also
be weak equivalences in a homotopically behaved model structure.

Proposition 3.10 Given a simplicial set I and an inclusion �Œ1� ,! I , if the map I ! � is a weak
equivalence in a given Cisinski model structure , then the model structure is homotopically behaved if and
only if every generalized I -augmented horn inclusion is a weak equivalence in that model structure.

Proof In the diagram
I �

ƒS Œn�Ii!iC1 ƒS Œn��i!iC1

�Œn�Ii!iC1 �Œn��i!iC1

�

�

�

the horizontal maps are all weak equivalences by Lemma 3.8. The bottom-left vertical map is a weak
equivalence if and only if the bottom-right vertical map is by the 2-out-of-3 property, which is a weak
equivalence if and only if the model structure is homotopically behaved by Proposition 3.9.

Let us recall the definition of J , the key example of a simplicial set that is weakly equivalent to � in
every Cisinski model structure on sSet.
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Definition 3.11 Let I be the category with two objects and precisely one morphism in every hom-set,
sometimes called the free-living isomorphism. We denote the nerve of the free-living isomorphism by
J DN.I/.

Corollary 3.12 A Cisinski model structure is homotopically behaved if and only if every generalized
J -augmented horn inclusion is a weak equivalence.

Proof Observe that J ! � has the right lifting property with respect to all monomorphisms, and so
is weak equivalence in every Cisinski model structure. Therefore the hypothesis of Proposition 3.10 is
satisfied for �Œ1� ,! J .

We can further strengthen this statement once we prove the following lemma.

Proposition 3.13 Given a simplicial set I and�Œ1� ,! I , every generalized I -augmented horn inclusion
can be realized as a sequence of pushouts of I -augmented horn inclusions.

Proof We emulate Joyal’s proof for generalized inner horns, [14, Proposition 2.12(iv)]. To show that
every generalized I -augmented horn inclusion ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is a pushout of I -augmented
horn inclusions, we proceed by induction on k D n� jS j. The base case, k D 0, is immediate because
then jS j D n so ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is itself an I -augmented horn inclusion. For k � 1, we pick
` in f0; : : : ; ng X .S [fi; i C 1g/ and let T D S [f`g. Then we have

ƒS Œn�Xi!iC1 ,!ƒT Œn�Xi!iC1 ,!�Œn��i!iC1:

The right map has n� jT j< n� jS j D k. The left map is a pushout of a generalized I -augmented horn
inclusion with indexing set S 0 with the same size as S , so that n� 1� jS 0j D n� 1� jS j< k. Therefore,
both of these maps are sequences of pushouts of I -augmented horn inclusions by the inductive hypothesis,
meaning the composite is as well.

Corollary 3.14 Let M be a Cisinski model structure on sSet. Given a simplicial set I and an inclusion
�Œ1� ,! I , if the map I !� is a weak equivalence in the model structure M, then M is homotopically
behaved if and only if every I -augmented horn inclusion is a weak equivalence in M. In particular , the
model structure M is homotopically behaved if and only if every J -augmented horn inclusion is a weak
equivalence in M.

Proof By Proposition 3.13, generalized I -augmented horn inclusions are weak equivalences if and only
if I -augmented horn inclusions are. Apply this observation to Proposition 3.10 and Corollary 3.12.

We conclude this subsection by comparing the lifting properties of fibrant objects in a homotopically
behaved model structure to those of quasicategories.

Definition 3.15 Let h W sSet!Cat be the left adjoint of the nerve functor. We say an edge in a simplicial
set X is a categorical preisomorphism if it becomes an isomorphism in the category h.X/.
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Remark 3.16 The functor h freely builds a category out of a simplicial set X where the set of objects of
hX is the set of 0-simplices X0, and the set of morphisms is generated by the 1-simplices with 2-simplices
witnessing composition. We discuss h in more detail in Section 5. The key takeaway at the moment is that
the universal property of the unit X ! hX implies that an edge e of X is a categorical preisomorphism
precisely if every map from X to the nerve of a category sends e to an isomorphism.

An intuitive justification for why augmented horn inclusions are weak equivalences in a homotopically
behaved model structure comes from recalling the special outer horn lifting property of quasicategories.

Proposition 3.17 [12, Theorem 1.3] If Q is a quasicategory , then for every n�2 and every u Wƒ0Œn�!Q

such that the edge 0! 1 in ƒ0Œn� is sent to a categorical preisomorphism by u, we have a lift

ƒ0Œn� X

�Œn�

u

Similarly, for every n � 2 and every v WƒnŒn�!Q such that the edge n� 1! n in ƒnŒn� is sent to a
categorical preisomorphism by v, we have an extension of v along ƒnŒn� ,!�Œn�.

We can interpret this result is as follows: even though quasicategories do not necessarily have lifts of all
outer horns, if we know that the 0! 1 edge of the horn ƒ0Œn�!X or the .n� 1/! n edge of the horn
ƒnŒn�!X horn is “invertible” in X in a certain sense, then we do get a lift.

This same intuition applies to I -augmented horn inclusions in homotopically behaved model structures
where I ! � is a weak equivalence. Since I is weakly equivalent to a point, it makes sense to think
of all of the edges of I as invertible. Therefore, a map ƒj Œn�Ii!iC1! X (where j D i or i C 1) is a
horn in X where we view the i ! .i C 1/ edge as invertible. The I -augmented horn inclusions being
weak equivalences in this model structure implies that if X is fibrant, then we get a lift �Œn�Ii!iC1!X

extending that horn.

3.2 Augmented triangulations

The goal of this subsection is to address a complication arising from the discussion above. To explain, let
us first make the following definition.

Definition 3.18 Given Z and an inclusion � W�Œ1� ,!Z, we say that an edge e W�Œ1�!X in an arbitrary
simplicial set X is an Z-edge if e factors through �.

Given a simplicial set I and �Œ1� ,! I and a homotopically behaved model structure with I ! � a
weak equivalence, we have seen above how it makes sense to view I -edges in arbitrary simplicial sets as
invertible. But then any good notion of “invertible edges” should satisfy a simplicial 2-out-of-3 property:
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7 5

6 4

0 2

1 3

Figure 1

if two edges of a 2-simplex �Œ2�!X are invertible, then so is the third edge. The complication is that in
an arbitrary simplicial set, the set of I -edges do not necessarily satisfy the simplicial 2-out-of-3 property
(unless I D �Œ1�). As a minimal counterexample, one can simply take �Œ2� itself and glue in a copy
of I along two of its nondegenerate edges. The takeaway is that no single I can be used to identify
which edges we want to view as invertible in an arbitrary simplicial set (except for the special case when
I D�Œ1�).

To address this concern, let us characterize the edges that we want to be invertible even if they are not
I -edges themselves. We begin by defining unordered triangulations.

Definition 3.19 Given n� 2 and a regular .nC1/-gon with vertices labeled 0 through n (in no particular
order), we say an unordered triangulation T is a decomposition of this .nC1/-gon into 2-simplices such
that every 0-simplex corresponds to a unique vertex of the .nC1/-gon and such that the 1-simplices point
from lower numbers to higher numbers.

Figure 1 shows an example of an unordered triangulation of the octagon.

Example 3.20 For nD 2, there is only one unordered triangulation of the triangle, the standard 2-simplex
itself. For nD 3, there are precisely six unordered triangulations of the square:

3 2 3 2

0 1 0 1

2 3 2 3 3 1 3 1

0 1 0 1 0 2 0 2

Remark 3.21 For those familiar with 2-Segal objects, we note that these unordered triangulations are
similar to the triangulations used to define the 2-Segal condition, except that in the 2-Segal definition one
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z y

x

UI

e
VI

Figure 2

requires the vertices of the .nC1/-gon be cyclically ordered with the exception of the 0! n edge. The
first two triangulations in Example 3.20 are the triangulations of the square used in the 2-Segal condition.

We now define augmented unordered triangulations that characterize edges that we want to view as
invertible.

Definition 3.22 Given a simplicial set I and �Œ1� ,! I , an I -augmented unordered triangulation TI is
an unordered triangulation T with a copy of I glued in along all but one of the outer edges. We say that
TI has size n if there are nC 1 outer edges (and so n copies of I glued in). We consider I itself to be an
I -augmented unordered triangulation of size 1. We say that an edge �Œ1�!X in an arbitrary simplicial
set is an almost-I -edge if it is a TI -edge for some TI.

In the above definition, all but one of the outer edges being invertible (since they are I -edges) means that
we should consider the remaining outer edge to be invertible as well by iterated simplicial 2-out-of-3
arguments. The idea is that if we consider I -edges invertible, then an edge e W�Œ1�!X in an arbitrary
simplicial set is forced to be invertible by iterated application of the simplicial 2-out-of-3 property precisely
if it is an almost-I -edge. Figure 2 indicates the inductive argument affirming this intuition, which we
spell out in the following propositions.

Proposition 3.23 Almost-I -edges satisfy the simplicial 2-out-of-3 property. More precisely, if�Œ2�!X

is a 2-simplex in an arbitrary simplicial set where two of the faces are almost-I -edges , then so is the third.

Proof Let UI and VI be I -augmented unordered triangulations that the given edges factor through.
Call the remaining edge e. Then we can define TI by gluing UI and VI to the appropriate faces of �Œ2�
as in Figure 2, making the remaining edge a TI -edge.

Proposition 3.24 If the map I ! � is a weak equivalence in a given homotopically behaved model
structure , then so is every TI !� and every generalized TI -augmented horn inclusion.

Proof We proceed by induction on the size of TI . The base case of size 1, where TI D I , is covered by
Proposition 3.10.

For TI of size bigger than 1, denote by x e
�! y the outer edge of TI without a copy of I . Then we can

break down TI into the 2-simplex of which e is a face plus UI and VI of smaller size, as in Figure 2.
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By the inductive hypothesis, we know that UI !� and VI !� are weak equivalences, so the inclusion
of the point z into UI and VI is as well, and so taking the pushout we see that � ,!UI [VI is as well.
But then UI [VI ,! TI is a pushout of a UI -augmented 2-horn inclusion (or a VI -augmented 2-horn
inclusion). Thus we see that �! TI is a weak equivalence and hence TI !� is also by the 2-out-of-3
property. By applying Proposition 3.10 to TI , we see that all generalized TI -augmented horn inclusions
are weak equivalences.

Definition 3.25 We say that a (generalized) TI -augmented horn inclusion is a (generalized) almost-I -
augmented horn inclusion.

Remark 3.26 Given a simplicial set I and �Œ1� ,! I , there are countably many I -augmented unordered
triangulations TI, up to isomorphism. Thus, there are countably many almost-I -augmented horn inclusions
up to isomorphism. More generally, given any countable set of inclusions f�Œ1� ,! Irgr�1, the set of all
almost-Ir -augmented horn inclusions for varying r � 1 is still countable.

We have thus shown that these almost-I -augmented horn inclusions are forced to be weak equivalences in
a homotopically behaved model structure where I !� is a weak equivalence. Our next task is to show
that we can apply Cisinski’s machinery to this class of maps to get a model structure for certain I .

4 Minimal homotopically behaved model structures

In this section we apply Cisinski’s machinery to produce model structures whose fibrant objects are those
with lifts of particular augmented horns. We do so using the new concept of a pointwise exact cylinder.
We then show that these model structures are “minimal” in a certain sense, both with respect to being
homotopically behaved and with respect to the chosen exact cylinders.

4.1 Pointwise cylinders

Our only example of an exact cylinder given above was of the form X 7! I �X for some simplicial set I .
In this subsection, we describe a slightly more complex kind of exact cylinder which we use to construct
our model structure.

Let sk0 denote the endofunctor of sSet that sends a simplicial set X to its 0-skeleton (the simplicial set
that has the same 0-simplices as X but no nondegenerate higher simplices). Given a monomorphism
� W�Œ1� ,! I , we let �ˇX be the pushout

�Œ1�� sk0X �Œ1��X

I � sk0X �ˇX

��sk0X

In other words, the simplicial set �ˇX is �Œ1��X with a copy of I glued in along �Œ1�� fxg for each
0-simplex x of X .
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Example 4.1 When X D�Œ2�, we glue in a copy of I along the three red edges of �Œ1���Œ2� depicted
in Figure 3.

Proposition 4.2 The above description of �ˇ� defines an exact cylinder.

Proof Functoriality follows from �ˇ� being a pushout of the functors I � sk0.�/, �Œ1�� sk0.�/, and
�Œ1���. These three functors preserve monomorphisms and small colimits, so their pushout does as
well, meaning that �ˇ� satisfies axiom (DH1) from Definition 2.4. By Remark 2.5, to check axiom
(DH2) we simply observe that for any inclusion of simplicial sets A ,!B , the simplices of �ˇB that are
in both �ˇA and f"gˇB are precisely those in f"gˇA.

Definition 4.3 We call the exact cylinder �ˇ� the pointwise cylinder for the inclusion � W�Œ1� ,! I .

Example 4.4 The functor .id�Œ1�/ˇ� is simply the functor �Œ1���, since we do not glue anything
extra onto the vertical edges in this case.

Example 4.5 Let P be the pushout on the left below

�Œ1� �Œ0� �Œ1� �Œ2� P

�Œ2�

�Œ2� P P K

d1

p

s0

p

p

d2

d0

i2

i0

and then let K be the pushout on the right, with � W�Œ1� ,!K being the diagonal composite of the right
square. We can view the simplicial set K as

b b

a a

f g
�

where the dotted arrows indicate degenerate edges. We can think of K as the edge � with a left inverse g
and a right inverse f glued in. We will use the pointwise cylinder �ˇ� in later sections.

Example 4.6 Recall that J is the nerve of the free-living isomorphism I. Through a slight abuse of
notation, we use J ˇ� to denote the pointwise cylinder for the inclusion �Œ1� ,! J .
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4.2 Constructing the model structures

The rest of this section is devoted to proving the existence of two homotopically behaved model structures.
One is the minimal homotopically behaved model structure, whose fibrant objects are precisely the
simplicial sets with lifts of J -augmented horn inclusions. The other is a localization of this model
structure at K!� (where K is the simplicial set from Example 4.5), whose fibrant objects are precisely
the simplicial sets with lifts of K-augmented horn inclusions. The key to this result is the following
proposition; the existence of our desired model structures then follows from Cisinski’s Theorem 2.10.

Proposition 4.7 (1) The almost-J -augmented horn inclusions together with the map f0g ,!J generate
a .Jˇ�/-anodyne class.

(2) The almost-K-augmented horn inclusions together with the maps f"g ,!K for "D 0; 1 generate a
.�ˇ�/-anodyne class.

Recall that we defined a .I ˝�/-anodyne class in Definition 2.7, but in Lemma 2.8 we reformulated
the axioms to be easier to check. Thus, proving this proposition amounts to verifying the axioms from
Lemma 2.8. It turns out that (An10) and all but one case of (An20) can be proved just as easily for arbitrary
�Œ1� ,! I in the place of �Œ1� ,! J or � W�Œ1� ,!K. Let us give a name to the �Œ1� ,! I such that the
remaining case of (An20) is satisfied.

Definition 4.8 We say that an inclusion �Œ1� ,! I is anodyne-ready if the maps

.@I ˇ I /[ .I ˇf"g/ ,! I ˇ I

for "D 0; 1 are a sequence of pushouts of almost-I -augmented horn inclusions.

We can thus break down the proof of Proposition 4.7 into the following two pieces.

Proposition 4.9 If � W�Œ1� ,! I is anodyne-ready, then the almost-I -augmented horn inclusions together
with the maps f"g ,! I for "D 0; 1 generate an .�ˇ�/-anodyne class.

Proposition 4.10 The inclusions �Œ1� ,! J and � W�Œ1� ,!K are anodyne-ready.

We prove Proposition 4.9 in Section 4.3 and prove Proposition 4.10 in Section 4.4. We discuss the
resulting model structures we get from Cisinski’s theory in Section 4.5.

Remark 4.11 In our arguments below, we view the simplicial set �Œ1���Œn� as the nerve of the poset
Œ1�� Œn�

.0; 0/ .0; 1/ � � � .0; n� 1/ .0; n/

.1; 0/ .1; 1/ � � � .1; n� 1/ .1; n/

and so we view simplices of �Œ1���Œn� as paths in this poset. We depict the first coordinate vertically.
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4.3 Proving Proposition 4.9

Given I and �Œ1� ,! I , let A.I / denote the set of I -augmented horn inclusions plus the maps f"g ,! I .
The inclusion �Œ1� ,! I is anodyne-ready precisely if A.I / partially satisfies axiom (An20). In this
subsection, we justify this terminology by showing that A.I / satisfies axiom (An10) and the rest of (An20)
for arbitrary I and �Œ1� ,! I , making �Œ1� ,! I being anodyne ready precisely the missing piece for
A.I / to generate an .Iˇ�/-anodyne class.

We begin by checking that our set of maps A.I / satisfies axiom (An10).

Lemma 4.12 Given a simplicial set I and �Œ1� ,! I , the maps .f"gˇ�Œn�/[ .I ˇ@�Œn�/ ,! I ˇ�Œn�

for n� 1 and "D 0; 1 can be realized as a sequence of pushouts of I -augmented horn inclusions.

Proof We prove the case " D 0; the argument for " D 1 is similar. We begin by identifying which
simplices of I ˇ�Œn� are neither in f0gˇ�Œn� nor in I ˇ @�Œn�. Because n� 1, the extra copies of I
glued in along �Œ1�� sk0.�Œn�/ are already present in I ˇ @�Œn�, and so all of the simplices not in the
domain of our inclusion must be contained in �Œ1���Œn�� I ˇ�Œn�.

For 0� j � n, let Pj be the .nC1/-simplex corresponding to the path

.0; 0/ � � � .0; j � 1/ .0; j /

.1; j / .1; j C 1/ � � � .1; n/

and for 0� j � n� 1, let QjjC1 be the n-simplex corresponding to the path

.0; 0/ � � � .0; j � 1/ .0; j /

.1; j C 1/ � � � .1; n/

Let Q0 denote the n-simplex .1; 0/ ! � � � ! .1; n/. These simplices are precisely the simplices of
�Œ1� ��Œn� that are not contained in f0g ��Œn� or in �Œ1� � @�Œn�, since any other simplex either
avoids both vertices .0; j / and .1; j / for some 0� j � n and so is in �Œ1�� @�Œn�, or is the n-simplex
.0; 0/! � � � ! .0; n/ that is contained in f0g��Œn�. The diagram in Figure 4 shows how these simplices
fit together, with an arrow indicating that one simplex is a face of another. It remains to describe the
process by which we glue in each of these simplices via an I -augmented horn pushout. The red arrows
indicate which pairs of simplices are attached at the same step of this process, and conversely a black
arrow indicates that the simplices are glued in at different steps.

Let us spell out this process explicitly. To attach these simplices via I -augmented horn pushouts, we
begin with Pn, whose only missing face is its dn face, the n-simplex Qn�1n . This horn pushout can
be realized as an I -augmented horn pushout because the n! nC 1 edge of Pn is the vertical edge
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Q0

P0

Q0
1

P1

:::
:::

Pn�1

Qn�1
n

Pn

Figure 4

.0; n/! .1; n/, which is an I -edge. We continue inductively, gluing in each Pj together with its dj face
for j D n�1; n�2; : : : ; 2; 1; 0. The red arrows in the diagram highlight the inclusion of the dj face into
each .nC1/-simplex Pj .

We record a consequence of this lemma for later use.

Corollary 4.13 Given a simplicial set I and �Œ1� ,! I and any bijective-on-0-simplices inclusion
A ,! B , the maps .f"gˇB/[ .I ˇA/ ,! I ˇB for "D 0; 1 can be realized as a sequence of pushouts
of I -augmented horn inclusions.

Proof Since A ,! B is bijective on 0-simplices, it can be witnessed as a sequence of pushouts of
boundary inclusions @�Œn� ,!�Œn� for n� 1, and so .f"gˇB/[ .I ˇA/ ,! I ˇB can be witnessed as
a sequence of pushouts of the maps .f"gˇ�Œn�/[ .I ˇ @�Œn�/ ,! I ˇ�Œn� for n� 1.

Having shown that A.I / satisfies (An10), we turn to proving that part of (An20) is satisfied, which follows
from the following more general lemma (by setting I 0 D TI ).

Lemma 4.14 Fix �Œ1� ,! I 0. For all n� 2 and 0� i � n, if A ,! B is a pushout along�
.f0g t f1g/��Œn�

�
[
�
�Œ1��ƒi Œn�

�
,!�Œ1���Œn�

such that either the ."; i � 1/! ."; i/ edges or the ."; i/! ."; i C 1/ edges (for " D 0; 1) are sent to
I 0-edges in A, then A ,! B is a finite composite of pushouts of I 0-augmented horn inclusions.

Proof We begin by identifying which simplices of�Œ1���Œn� are not in�Œ1��ƒi Œn� or .f0gtf1g/��Œn�.

A simplex is in �Œ1��ƒi Œn� if there is some 0� j � n with j ¤ i such that the simplex avoids both of
the vertices .0; j / and .1; j /. A simplex is in .f0gt f1g/��Œn� if its vertices are all 0 or all 1 in the first
coordinate.

Let us fix notation for each of the simplices that avoid satisfying both of these criteria. First, we let Pj
and QjjC1 be defined as in the proof of Lemma 4.12. For 0� i; j � n such that j ¤ i , let R.i/j be the
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n-face of Pj that skips the ."; i/ vertex (where " D 0 if j > i and " D 1 if j < i). For 0 � i � n and
0� j � n� 1 such that j ¤ i � 1; i , let S.i/jjC1 be the .n�1/-face of QjjC1 that skips the ."; i/ vertex
(where "D 0 if j > i and "D 1 if j < i � 1). Let S.i/i�1iC1 be the .n�1/-simplex corresponding to the
path

.0; 0/ � � � .0; i � 1/

.1; i C 1/ � � � .1; n/

Figure 5 shows how these simplices fit together, with an arrow indicating that one simplex is a face of
another. As in Figure 4 from the proof of Lemma 4.12, the different-colored arrows indicate which pairs
of simplices are attached at the same step of the process below, while black arrows indicate that the
simplices are glued in at different steps.

To describe A ,! B as a sequence of pushouts of I 0-augmented horn inclusions, we consider the case
where the ."; i/! ."; iC1/ edges are sent to I 0-edges in A. (The other case is similar.) For 0� j � i�1
and i C 1 � j � n� 1, the only face of QjjC1 that is not already in A is its di face S.i/jjC1. When
0� j � i �1, the .1; i/! .1; iC1/ edge is in QjjC1, and when iC1� j � n�1, the .0; i/! .0; iC1/

edge is in QjjC1, in both cases corresponding to the i ! .i C 1/ edge of the n-simplex QjjC1. We also
have S.i/i�1iC1 as the di face of Qi�1i , where the edge .1; i/! .1; iC1/ is the i! .iC1/ edge of Qi�1i .
We can therefore glue in every Q simplex (along with its di face) except for QiiC1 as the first steps in our
sequence of I 0-augmented horn pushouts. The pairs of simplices glued in at this step are indicated by the
blue arrows in the diagram. Then for 0� j � i � 1 the diC1 face of Pj is R.i/j and the i C 1! i C 2

edge is .1; i/! .1; iC1/, and for iC1� j � n�1 the di face of Pj is R.i/j and the i! .iC1/ edge
is .0; i/! .0; i C 1/, so we can now glue in every P simplex (along with its missing di or diC1 face)
except for Pi as the next steps in our sequence of pushouts. These steps are indicated by the red arrows.
All that is left is Pi and its diC1 face QiiC1, and since the iC1! iC2 edge of Pi is .1; i/! .1; iC1/,
these remaining simplices are glued in via an I 0-augmented horn pushout as well, indicated by the green
arrow.

By applying Lemma 4.14 when I 0 DTI, we get the following corollary which says that A.I / satisfies
part of (An20).

Corollary 4.15 Given a simplicial set I and �Œ1� ,! I , for every almost-I -augmented horn inclusion

ƒj Œn�T
I

i!iC1 ,!�Œn�T
I

i!iC1

(where j D i or i C 1), the map

.@J ˇ�Œn�T
I

i!iC1/[ .I ˇƒ
j Œn�T

I

i!iC1/ ,! I ˇ�Œn�T
I

i!iC1

is a finite composite of pushouts of almost-I -augmented horn inclusions.

Proof This map satisfies the hypotheses of Lemma 4.14 when I 0 D TI.
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Figure 5

We have now assembled the necessary ingredients to prove Proposition 4.9, which says that �Œ1� ,! I

being anodyne-ready is indeed the missing piece for the set of maps A.I / to generate an anodyne class.

Proof of Proposition 4.9 To check that axiom (An10) is satisfied, we note that the map

.f"gˇ�Œ0�/[ .I ˇ @�Œ0�/ ,! I ˇ�Œ0�

for "D 0; 1 is isomorphic to f"g ,! I , which takes care of the nD 0 case. For n� 1 we apply Lemma 4.12.

To check that axiom (An20) is satisfied, we use Corollary 4.15 to account for all of the almost-I -augmented
horn inclusions. The remaining maps f"g ,! I are accounted for because we assumed �Œ1� ,! I to be
anodyne-ready.
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4.4 Proving Proposition 4.10

We now turn to showing that �Œ1� ,! J and �Œ1� ,! K are anodyne-ready. An important ingredient
of the proof will be the following observation about when we can upgrade ordinary horn inclusions to
augmented horn inclusions.

Lemma 4.16 Given a simplicial set I and �Œ1� ,! I and k � 2, if ƒj Œk�! X is a k-horn in some
simplicial set such that all of the edges of ƒj Œk� are sent to almost-I -edges , then all of the edges of �Œk�
are sent to almost-I -edges in �Œk�tƒj Œk� X . Furthermore , the inclusion X ,! �Œk�tƒj Œk� X can be
witnessed as a pushout of an almost-I -augmented horn inclusion.

Proof For k > 2, there are no new edges added in the pushout, so the first claim is immediate. For kD 2,
since the two edges of ƒj Œ2� are sent to almost-I -edges, the new edge is also an almost-I -edge in the
pushout X tƒj Œ2��Œ2� by applying the simplicial 2-out-of-3 property from Proposition 3.23. In each of
these cases, the inclusion X ,!�Œk�tƒj Œk�X can be upgraded to an almost-I -augmented horn pushout
because every edge of the horn in X is an almost-I -edge.

Iterated application of Lemma 4.16 yields the following corollary.

Corollary 4.17 Given a simplicial set I and �Œ1� ,! I , if A ,! B is a sequence of pushouts of k-horns
for varying k � 2, and A!X is a map such that all of the edges of A are sent to almost-I -edges , then all
of the edges of B are sent to almost-I -edges in B tAX . Furthermore , the inclusion X ,!B tAX can be
witnessed as a sequence of pushouts of almost-I -augmented horn inclusions.

Another ingredient to the proof of Proposition 4.10 is the following observation that the given inclusions
are themselves a sequence of pushouts of ordinary k-horns.

Lemma 4.18 The inclusions �Œ1� ,! J and � W�Œ1� ,!K are obtained via a sequence of pushouts of
k-horn inclusions for k � 2.

Proof We first consider �Œ1� ,! J . Recall that J has precisely two nondegenerate n-simplices for all
n� 0. Furthermore, for each n-simplex, only the d0 and dn faces are nondegenerate. We may therefore
inductively build J from �Œ1� as follows. For the base case, we observe that �Œ1� � J contains both
0-simplices and one of the nondegenerate 1-simplices. Now, assuming for n � 1 that we have glued
in all .n�1/-simplices and exactly one of the nondegenerate n-simplices, we may glue in one of the
.nC1/-simplices along an .nC1/-horn (where nC 1� 2) since it is missing exactly one of its faces. We
then have all of the n-simplices and exactly one of the nondegenerate .nC1/-simplices.

Now let us consider � W�Œ1� ,!K. We build K out of �Œ1� by pushouts along outer 2-horns where the
0! 2 edge is degenerate.
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Combining Lemma 4.18 and Corollary 4.17 yields the following corollary.

Corollary 4.19 Given a simplicial set X , if an edge �Œ1�!X is an almost-J -edge , then the inclusion
X ,!J t�Œ1�X can be witnessed as a pushout of almost-J -augmented horns. Similarly, if�Œ1�!X is an
almost-K-edge , then the inclusionX ,!Kt�Œ1�X can be witnessed as a pushout of almost-K-augmented
horns.

The last ingredient to the proof of Proposition 4.10 is the observation that each inclusion

.@�Œ1�� I /[ .�Œ1�� f"g/ ,! .�Œ1�� I /

for I D J;K and "D 0; 1 is also obtained via a sequence of pushouts of ordinary k-horns. The following
two lemmas handle the two cases I D J and I DK separately.

Lemma 4.20 The inclusion .@�Œ1��J /[ .�Œ1��f0g/ ,!�Œ1��J is a sequence of pushouts of k-horn
inclusions for varying k � 2.

Proof For each `� 0, let B` denote the nondegenerate `-simplex of J whose initial vertex is 0. Each B`
contains all m-simplices for m<`, so J D

S
`�0B`. Notice that B0Df0g, so .@�Œ1��J /[.�Œ1��f0g/

is precisely .@�Œ1��J /[ .�Œ1��B0/. It therefore suffices to show that each inclusion

.@�Œ1��J /[ .�Œ1��B`/ ,! .@�Œ1��J /[ .�Œ1��B`C1/

for all `� 0 is a sequence of pushouts of .`C1/-horns and .`C2/-horns, with .`C1/-horns only necessary
when `� 1. Recalling the notation from Figure 5 in the proof of Lemma 4.14, we depict in Figure 6 the
simplices of �Œ1��B`C1 that are not in �Œ1��B`. We can proceed by gluing in the QiiC1 simplices
together with the S.0/iiC1 simplices for each i � 1 via pushouts of .`C1/-horns, indicated by the blue
arrows. Note that this first step is only necessary if `� 1. Then we can glue in via an .`C2/-horn the P0
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.0; b/ .0; a/ .0; b/ .0; a/

.1; b/ .1; a/ .1; b/ .1; a/

0�f 0�g

�Œ1��a

0�h

�Œ1��a

1�f 1�g 1�h

Figure 7

simplex with Q01, as indicated by the red arrow. Finally, we glue each Pi together with R.0/i for each
i � 1, also via .`C2/-horns, as indicated by the green arrows.

Lemma 4.21 Given " D 0; 1, the inclusion .@�Œ1��K/[ .�Œ1�� f"g/ ,! �Œ1��K is a sequence of
pushouts of 2-horn and 3-horn inclusions.

Proof We start by including all of the missing 1-simplices, which we can do working in �Œ1�� sk1K.
For this proof, let us rename the 0 and 1 vertices of K to a and b, respectively, and let f , g, and h denote
the nondegenerate edges of K. The 1-simplices of �Œ1��K that we start with can then be pictured as in
the first diagram of Figure 7. The latter three diagrams in Figure 7 show the order in which we can glue
in four 2-horns to end up with all of the 1-simplices of �Œ1��K.

From here, we must glue in the missing 3-simplices as well as the remaining 2-simplices. First, we attach
the 3-simplices outlined by the edges

�Œ1��a

0�g 0�h

�Œ1��a

1�g 1�h

The 3-simplex on the left is only missing its d1 face, and the 3-simplex on the right is only missing its d2
face (which are different 2-simplices), so we can attach them both via 3-horn extensions. Having done so,
we can then glue in the 3-simplex

0�g

�Œ1��b

1�h
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that is now only missing its d0 face (which was left empty in the diagram above). We now have all of the
nondegenerate 3-simplices that involve the h edges. For those involving the f edges, the order

0�f 0�g

�Œ1��b

0�f

�Œ1��a �Œ1��b

1�g 1�f 1�g

works because the first 3-simplex is only missing its d2 face, then the second 3-simplex is only missing
its d1 face, and then the last 3-simplex is only missing its d3 face.

We now have all of the pieces to prove Proposition 4.10.

Proof of Proposition 4.10 Let I DJ orK. We wish to show that the maps .@IˇI /[.Iˇf"g/ ,! IˇI

for "D 0; 1 can be realized as a sequence of pushouts of almost-I -augmented horn inclusions. The central
claim of the proof is that all of the missing simplices of �Œ1�� I � I ˝ I can be glued in via a sequence
of pushouts of k-horns for varying k � 2, which we proved for I D J in Lemma 4.20 and for I DK in
Lemma 4.21. Now, we apply Lemma 4.16 to upgrade it to a sequence of pushouts of almost-I -augmented
horn inclusions, and note that all of the new edges are also almost-I -edges. The last step is to glue in
a copy of I along the vertical edge that was missing when we started, ie the edge �Œ1�� f"0g where
"0 ¤ ". We can witness this gluing as a sequence of pushouts of almost-I -augmented horn inclusions by
Corollary 4.17.

4.5 The resulting model structures

Having proved Propositions 4.9 and 4.10, and therefore Proposition 4.7, Cisinski’s theory gives us our
desired model structures.

Proposition 4.22 For I D J or K, there is a cofibrantly generated model structure on sSet whose
cofibrations are the monomorphisms , and whose fibrant objects are the simplicial sets X such that X !�
has the right lifting property with respect to the set of almost-I -augmented horn inclusions.

Proof Let S denote the set containing the maps f"g ,!I for "D0; 1 together with the almost-I -augmented
horn inclusions. By Proposition 4.7, the set S generates an .Iˇ�/-anodyne class, so Theorem 2.10
gives us a model structure whose fibrant objects are the simplicial sets X such that S � .X !�/. Since
.� ,! A/� .Y !�/ for all simplicial sets A and Y , a simplicial set is fibrant in this model structure if it
has lifts of almost-I -augmented horn inclusions.

Remark 4.23 Recall that Theorem 2.10 gives a description of the weak equivalences in this model
structure as well, but that we do not get an explicit description of the fibrations.

To check that a simplicial set is fibrant in one of these model structures, it is actually not necessary to
check all almost-I -augmented horn inclusions.
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Proposition 4.24 Given I ¤�Œ1� with two 0-simplices and an inclusion �Œ1� ,! I , if X is a simplicial
set such that X !� has the right lifting property with respect to all I -augmented horn inclusions , then
every almost-I -edge is an I -edge too.

Proof The result follows if we can show that if an edge �Œ1�! X factors through some TI then it
factors through a UI of strictly smaller size. Since there is at least one 2-simplex of every I -augmented
unordered triangulation where two of the edges are I -edges, it suffices to show that if two edges of a
2-simplex in X are I -edges, then so is the third edge.

Since �Œ1� ,! I is bijective on 0-simplices, we know by Corollary 4.13 that the maps

g" W .f"gˇ I /[ .I ˇ�Œ1�/ ,! I ˇ I

can be witnessed as sequences of pushouts of I -augmented horn inclusions for "D 0; 1, so X!� has the
right lifting property with respect to g". Let WI be �Œ2� with a copy of I glued along two edges. Then
we can choose "¤ "0 and a surjective map f W .f"gˇ I /[ .I ˇ�Œ1�/!WI that sends the f"0g ��Œ1�
edge to the edge e of WI that is not an I -edge. Let g0 WWI ! P be the pushout of g along f , so that
X!� also has the right lifting property with respect to g0. Note that the edge e becomes an I -edge in P ,
so we have shown that every WI -edge of X is also an I -edge because we can extend every WI ! X

along g0 WWI ,! P .

Corollary 4.25 Let I DJ orK. A simplicial setX is fibrant in the model structure from Proposition 4.22
if and only if X !� has the right lifting property with respect to all I -augmented horn inclusions.

Proof The forward implication is immediate because every I -augmented horn inclusion is also an
almost-I -augmented horn inclusion. For the other implication, let us assume X !� has the right lifting
property with respect to all I -augmented horn inclusions. Given an almost-I -augmented horn in X , by
Proposition 4.24 the almost-I edge of the horn can be turned into an I -edge, so we get a lift.

Definition 4.26 We call the model structures from Proposition 4.22 the minimal homotopically behaved
model structure and K-minimal homotopically behaved model structure.

The word “minimal” in the above definition is justified by the following remark.

Remark 4.27 By Corollary 3.14, a Cisinski model structure is homotopically behaved if and only if the
J -augmented horn inclusions are weak equivalences in that model structure. The minimal homotopically
behaved model structure therefore has the smallest class of weak equivalences possible for a homotopically
behaved model structure. Similarly, if the map K!� is a weak equivalence in a Cisinski model structure,
then that model structure is homotopically behaved if and only if all K-augmented horn inclusions are
weak equivalences as well, so the K-minimal homotopically behaved model structure has smallest class
of weak equivalences possible for a homotopically behaved model structure where K ! � is a weak
equivalence.
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Corollary 4.28 The Joyal model structure is a localization of the K-minimal homotopically behaved
model structure.

Proof Let X be a quasicategory. Given a K-augmented horn ƒj Œn�Ki!iC1! X , there are two cases:
either 0 < j < n, in which case the horn is inner so there is a lift, or the horn is an outer horn with edge
0! 1 or n�1! n factoring through K. In the latter case, the edge factoring through K means it is sent
to a categorical preisomorphism, making the horn a special outer horn, so there is a lift in this case as
well.

We have shown that every fibrant object in the Joyal model structure is also fibrant in the K-minimal
homotopically behaved model structure, which implies that the K-minimal homotopically behaved model
structure is a localization of the Joyal model structure since their cofibrations are the same.

Furthermore, these model structures are also minimal with respect to the exact cylinders J ˇ� and �ˇ�,
as we now explain.

Remark 4.29 Observe that for all n� 2, the I -augmented horn inclusion ƒ1Œn�I0!1 ,!�Œn�I0!1 is a
retract of the inclusion

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�:

The same cannot be said of ƒj Œn�I0!1 ,!�Œn�Ij�1!j for 1 < j � n. However, it is instead true that it is
a retract of a closely related inclusion. To illustrate, recall the notation from Lemma 4.12, along with the
diagram

Q0

P0

Q01

P1

:::
:::

Pn�1

Qn�1n

Pn

showing the simplices of �Œ1� ˇ �Œn� that are not in .f0g ˇ �Œn�/ [ .I ˇ @�Œn�/. Let us denote
by Aj the union of .f0g ˇ �Œn�/ [ .I ˇ @�Œn�/ with the simplices Pn�j ; Pn�jC1; : : : ; Pn. Then
ƒj Œn�I0!1 ,!�Œn�Ij�1!j is a retract of Aj ,! I ˇ�Œn� 1�.

The above remark sets us up to prove the following proposition inductively.

Proposition 4.30 Given a simplicial set I and �Œ1� ,! I and n� 2, if the map

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�
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is a weak equivalence , then so is every I -augmented horn inclusion of the form

ƒj Œn�I0!1 ,!�Œn�Ij�1!j :

Similarly, if the map

.f1gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�

is a weak equivalence , then so is every I -augmented horn inclusion of the form

ƒj Œn�I0!1 ,!�Œn�Ij!jC1:

Proof We prove the first claim, as the second is similar. We proceed by induction on j . As observed in
Remark 4.29, for the base case j D 1, the inclusion

ƒj Œn�I0!1 ,!�Œn�Ij�1!j

is a retract of
.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�;

so is a weak equivalence. Now, assuming 1 < j � n and each

ƒ`Œn�I0!1 ,!�Œn�I`�1!`

for 1� ` < j is a weak equivalence, then, using the notation from Remark 4.29, the inclusion

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! Aj

is a weak equivalence, and so Aj ,! I ˇ�Œn� 1� is by the 2-out-of-3 property, and therefore

ƒj Œn�I0!1 ,!�Œn�Ij�1!j

is a weak equivalence since it is a retract of Aj ,! I ˇ�Œn� 1�.

Corollary 4.31 Let S be a set of monomorphisms.

(1) If S generates an .Iˇ�/-anodyne class for some I , then the corresponding Cisinski model structure
M (whose fibrant objects are simplicial sets with the right lifting property with respect to S ) is a
localization of the minimal homotopically behaved model structure.

(2) If S generates a .�ˇ�/-anodyne class , then the corresponding Cisinski model structure M is a
localization of the K-minimal homotopically behaved model structure.

Proof We first prove (1). The maps .f"gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1� are necessarily
in �.S�/ and hence weak equivalences for "D 0; 1 and n� 2 in M, and so by Proposition 4.30 all of the
I -augmented horn inclusions are also weak equivalences. Since the inclusion f0g ,! I is also in �.S�/

and hence a weak equivalence, by the 2-out-of-3 property the map I !� is also a weak equivalence. We
may therefore apply Corollary 3.14 to see that M is homotopically behaved, and so is a localization of the
minimal homotopically behaved model structure by Remark 4.27.
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To prove (2), we apply (1) with I DK to see that M is homotopically behaved. In our proof of (1) we also
see that K!� is a weak equivalence in M, so by Remark 4.27 we can conclude that M is a localization
of the K-minimal homotopically behaved model structure.

Remark 4.32 We note that K-augmented horns ƒi Œn�Ki!iC1 are themselves fibrant in the minimal
homotopically behaved model structure, but not in theK-minimal homotopically behaved model structure,
so these model structures are distinct. Furthermore, the map K ! � is not a weak equivalence in the
minimal homotopically behaved model structure because otherwise Proposition 3.10 would imply that all
K-augmented horn inclusions would be as well and so the model structures would be the same.

We summarize the results of this section with the following theorem.

Theorem 4.33 Let Mmhb be the minimal homotopically behaved model structure on sSet, and let MK;mhb

be the K-minimal homotopically behaved model structure on sSet.

(1) (a) Every homotopically behaved model structure is a localization of Mmhb.

(b) Every Cisinski model structure corresponding to an .Iˇ�/-anodyne class for some I is a
localization of Mmhb.

(c) The fibrant objects in Mmhb are the simplicial sets with the right lifting property with respect to
all J -augmented horn inclusions.

(d) The Joyal model structure is a localization of Mmhb.

(2) (a) The model structure MK;mhb is the localization of Mmhb with respect to K!�.

(b) Every Cisinski model structure corresponding to a .Kˇ�/-anodyne class is a localization
of MK;mhb.

(c) The fibrant objects in MK;mhb are the simplicial sets with the right lifting property with respect
to all K-augmented horn inclusions.

(d) The Joyal model structure is a localization of MK;mhb.

We conclude this section with one more useful corollary to this theorem.

Corollary 4.34 Given a set of monomorphisms S DfAi ,!Big of simplicial sets such that the inclusions

.Ai ��Œ1�/[ .Bi � @�Œ1�/ ,! Bi ��Œ1�

are in �.S�/, there exists a homotopically behaved model structure on sSet whose fibrant objects are
those with lifts against S and all J -augmented horn inclusions.

Proof We claim that the set S together with f0g ,! J and the set of almost-J -augmented horn inclusions
generates a .J ˝�/-anodyne class. Because we know that f0g ,! J together with the J -augmented horn
inclusions generate such a class, it suffices to check that S satisfies axiom (An20). However, the maps that
we must show are in �.S�/ are pushouts of the maps we have assumed are in �.S�/, so we are done.
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5 A model structure for special horn inclusions

Intuitively, considering I -edges to be “invertible” implies we want I -augmented horn inclusions to be
weak equivalences. So far, the invertibility of I -edges has come from I !� being a weak equivalence. In
particular, since every TK!� is a weak equivalence in the Joyal model structure, the almost-K-augmented
horn inclusions are also Joyal weak equivalences. However, the Joyal model structure comes with its own
notion of invertible edges, the categorical preisomorphisms. The following example demonstrates that, in
an arbitrary simplicial set, a categorical preisomorphism need not be an almost-K-edge.

Example 5.1 Let T be the simplicial set depicted by

z y y

x x w

eT

with eT W�Œ1� ,!T the vertical edge in the middle. We have a nondegenerate 2-simplex for each of the four
triangles in the picture. The dotted arrows indicate degenerate edges. If T were Joyal equivalent to �Œ0�,
then every edge of T would be a categorical preisomorphism, but in fact eT is the only nondegenerate
categorical preisomorphism in T as the functor T ! Set

fa; cg fa0g fa0g

fag fag fa; cg

a

a

which sends every other nondegenerate edge of T to a nonisomorphism in Set, demonstrates.

Furthermore, there is no simplicial set T 0 that is Joyal equivalent to �Œ0� such that the inclusion
eT W �Œ1� ,! T from the above example factors through eT 0 W �Œ1� ,! T 0, because the sequence of
edges in T 0 that provide a left inverse to eT 0 are all categorical preisomorphisms, but there is no directed
sequence of categorical preisomorphisms in T from y to x. Therefore, while all T -edges are necessarily
categorical preisomorphisms, this example shows that they need not be almost-K-edges.

The goal of this section is to address this disparity. We identify a set of inclusions ED f�Œ1� ,! T g such
that an edge in an arbitrary simplicial set is a categorical equivalence if and only if it is a T -edge for
some �Œ1� ,! T in E. We then define the set of special horn inclusions to be the set of T -augmented
horn inclusions for all �Œ1� ,! T in E. There turns out to be an intermediate model structure between
the K-minimal homotopically behaved model structure and the Joyal model structure where the fibrant
objects are precisely the simplicial sets with lifts of special horn inclusions.

We begin by establishing notation and terminology. This first definition is standard.

Definition 5.2 For n� 1, let SpŒn� denote the spine of �Œn�, the union of the edges i ! .i C 1/ in �Œn�
ranging over 0� i � n� 1.
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SpŒn� SpŒnC 1�

n nC 1 nC 1

:::
:::

:::

i i C 1 i C 1

i i

i � 1 i � 1 i � 1

:::
:::

:::

0 0 0

Ci Œn; nC 1�

Figure 8

For the purposes of this section, we introduce some new notions in the following definitions.

Definition 5.3 For n� 1 and 1� i � n, let Ci Œn; nC 1� denote the union in �ŒnC 1� of SpŒnC 1� with
the 2-simplex .i � 1/! i ! .i C 1/. Call Ci Œn; nC 1� a composition tile.

Remark 5.4 There are two inclusions of spines into the composition tile Ci Œn; nC 1� that preserve the
initial and final vertex, the inclusion SpŒnC 1� ,! Ci Œn; nC 1� that hits every vertex of Ci Œn; nC 1� and
the inclusion SpŒn� ,! Ci Œn; nC 1� that avoids the i th vertex. These inclusions are depicted in Figure 8.

Definition 5.5 Call a simplicial set a composition tiling if it is a colimit of a diagram of the form

Ci Œn; nC 1� Ci 0 Œn
0; n0C 1� � � � Ci.k/ Œn.k/; n.k/C 1�

SpŒm� SpŒm0� SpŒm.k�1/�

built out of the inclusions from above. (For such a diagram to make sense, we must have n.j /Dn.jC1/˙1
and m.j / Dmax.n.j /; n.jC1// for all 0� j � k� 1.)

A composition tiling C comes with two important inclusions of spines, coming from the unused inclusions
of the composition tiles on the left and right in the diagram above. These spines must start at the same
vertex and end at the same vertex, and their union is precisely the outer edges of the composition tiling.
We view a composition tiling as linking these two spines. For our purposes, those two spines are the
crucial data to keep track of in a composition tiling, so we use C r;s to denote a composition tiling linking
a length r spine to a length s spine.
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Figure 9

Example 5.6 We visualize the components of the diagram

C3Œ3; 4� C2Œ3; 4� C1Œ3; 4� C2Œ2; 3� C1Œ1; 2�

SpŒ3� SpŒ4� SpŒ3� SpŒ2�

along with the leftmost and rightmost spines as shown in Figure 9, and then taking the colimit we get a
composition tiling C 4;1

The green edges show the spine SpŒ4� ,! C 4;1 and the blue edge shows SpŒ1� ,! C 4;1.

Example 5.7 An unordered triangulation need not be a composition tiling. For example, in the unordered
triangulation

� �

� �

there is not a choice of precisely two spines whose union is the set of outer edges. However, every (ordered)
triangulation of the .nC1/-gon is a composition tiling, linking the spine 0! 1! � � �! .n�1/! n with
the spine 0! n. At the same time, not every composition tiling from SpŒn� to SpŒ1� is a triangulation
since in general composition tilings can have interior vertices.

Remark 5.8 Recall that h W sSet! Cat is the left adjoint of the nerve functor. Given a simplicial set X ,
we can construct hX explicitly by first letting the set of objects of hX equal the set of 0-simplices X0.
To define HomhX .x; y/ for x; y 2X0, we take the set of all maps SpŒn�!X (for varying n) that start at

Algebraic & Geometric Topology, Volume 25 (2025)



Generalizing quasicategories via model structures on simplicial sets 391

x and end at y and then quotient out by the equivalence relation where f W SpŒr�!X is equivalent to
g W SpŒs�!X if there exists a composition tiling C r;s and a map C r;s!X such that restricting along
SpŒr� ,! C r;s is f and restricting along SpŒs� ,! C r;s is g. The composition functions are induced by
concatenation of spines.

Although this construction of hX is nonstandard, one can check that is just another way of phrasing the
more standard explicit construction given in [16].

Definition 5.9 For any r � 1 and composition tiling C r;1, call the pushout

SpŒ1�D�Œ1� �Œ0�

C r;1 zC r

a pinched tiling. Call the inclusions �Œ1� ,! SpŒr� ,! zC r coming from the 0! 1 and .r � 1/! r edge
inclusions �Œ1�! SpŒr� the first edge inclusion and last edge inclusion, respectively.

Example 5.10 In Example 5.6, we collapse the rightmost arrow of C 4;1 to a degeneracy to get a pinched
tiling zC 4. The first edge inclusion is the bottom-most edge, and the last edge inclusion is the top-most
edge in the picture.

Example 5.11 The standard 2-simplex �Œ2� is itself a composition tiling C 2;1. We collapse the 0! 2

edge to get a pinched tiling zC 2, whose first edge inclusion is 0! 1 and last edge inclusion is 1! 2.

Since a map from a composition tiling C r;1!X is capturing that the restriction to SpŒr�!X and to
�Œ1�!X correspond to the same morphism in hX , we can see that a map from the respective pinched
tiling zC r !X is capturing that the restriction to SpŒr�!X becomes the identity in hX . In particular,
the first edge inclusion of a pinched tiling (the 0! 1 edge of the spine SpŒr�) has a left inverse (coming
from the 1! 2! � � � ! r edges), and the last edge inclusion (the .r � 1/! r edge) has a right inverse
(0! 1! � � � ! .r � 1/). In fact, by Remark 5.8, an edge �Œ1�!X has a right or left inverse in hX if
and only if it extends along a pinched tiling. We record this observation as a lemma.

Lemma 5.12 Given an edge e W�Œ1�!X , the morphism h.e/ has left (right) inverse in hX if and only if
there exists a pinched tiling zC r and a map zC r !X that restricts to e along the first (last) edge inclusion.

Since we can use pinched tilings to identify edges of a simplicial set X that have left or right inverses, we
can use a pushout of pinched tilings to identify edges that have both inverses.

Definition 5.13 Given two pinched tilings zC r and . zC 0/s , let T be the pushout

�Œ1� . zC 0/s

zC r T

last

first
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Call T an inverting tiling, and let eT denote the diagonal composite map �Œ1� ,! T . Call eT the inverting
inclusion of T .

The following proposition shows that categorical preisomorphisms are characterized by maps out of
inverting tilings.

Proposition 5.14 An edge e W�Œ1�!X is a categorical preisomorphism if and only if there exists an
inverting tiling T such that e extends along the inclusion eT :

�Œ1� X

T

eT

e

Proof By Lemma 5.12, the morphism h.e/ has a left and a right inverse if and only if there exist two
pinched tilings such that e extends along the first inclusion of one and the last inclusion of the other,
which happens if and only if e extends along the pushout of those inclusions.

Example 5.15 The simplicial set K from Example 4.5 is an inverting tiling built out of the pinched
tiling zC 2.

This set of inverting tilings fT g characterizes which edges of a simplicial set we want to think of as
invertible, in the context of the Joyal model structure. So, in the spirit of Section 4, let us consider the set
of T -augmented horn inclusions from Definition 3.3.

Definition 5.16 Let ED f�Œ1� ,! T g be the set of all inverting inclusions into inverting tilings. Given
�Œ1� ,! T in E, we say that a T -augmented horn inclusion is a special horn inclusion. If the horn is
outer, we say that it is a special outer horn inclusion. Let SpHorn be the set of all special horn inclusions
and let SpOH be the set of all special outer horn inclusions.

Remark 5.17 The sets SpHorn and SpOH are countable by Remark 3.26.

Recall that the standard phrasing of the special outer horn lifting property of quasicategories is that there
exist lifts of outer horns so long as they satisfy the additional property that a certain edge is sent to a
categorical preisomorphism. We can now rephrase this condition directly as a lifting condition with
respect to the set of special horn inclusions.

Proposition 5.18 If Q is a quasicategory , then Q! � has the right lifting property with respect to
SpOH.

Proof All inner special horns are pushouts of ordinary inner horns, so it suffices just to check outer
special horns. By symmetry, it suffices to consider an inverting inclusion �Œ1� ,! T and a special
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horn map ƒ0Œn�T0!1!Q. Because the edge 0! 1 factors through T !Q, it is sent to a categorical
preisomorphism in Q, and so by the special horn lifting property, we get an extension of the horn
ƒ0Œn�!Q to �Œn�!Q, inducing a lift of the original special horn map �Œn�T0!1!Q.

We now turn to constructing the special horn model structure using Cisinski’s theory.

Lemma 5.19 The class generated by the set of special horn inclusions satisfies axiom (An20) from
Lemma 2.8.

Proof Apply Lemma 4.14 where I 0 D T , the inverting tiling for a given special horn.

Corollary 5.20 The class generated by SpHorn[ff"g ,! Kg together with the set of almost-K-
augmented horn inclusions is .�ˇ�/-anodyne.

Proof We already knew from Proposition 4.7 that axiom (An10) is satisfied, as well as (An20) for
ff"g ,!Kg together with the set of almost-K-augmented horn inclusions. Lemma 5.19 tells us that (An20)
is satisfied for the remaining maps.

Theorem 5.21 There is a Cisinski model structure on sSet whose fibrant objects are the simplicial sets
X such that X !� has the right lifting property with respect to the set of special horn inclusions.

Proof By Theorem 2.10, we get a Cisinski model structure from Corollary 5.20 whose fibrant objects
are those with lifts against SpHorn[ff"g ,!Kg as well as the set of K-augmented horn inclusions. We
claim that simply knowing X !� has lifts of special horn inclusions is enough to conclude that X is
fibrant in this model structure. We first note that X ! � has the right lifting property with respect to
ff"g ,!Kg for all simplicial sets X . Now, note that K is itself an inverting tiling, so if X !� has lifts
of special horn inclusions, it in particular has lifts of K-augmented horn inclusions, so by Corollary 4.25
we see that X !� has lifts of all almost-K-augmented horn inclusions.

Definition 5.22 We call the model structure in Theorem 5.21 the special horn model structure. We say a
simplicial set is special horn fibrant if it is fibrant in this model structure.

Remark 5.23 The special outer horn lifting property of quasicategories implies that the Joyal model
structure is a localization of the special horn model structure. While these model structures have a close
relationship in sharing a notion of “invertible edges”, they are distinct because ƒ1Œ2� is fibrant in the
special horn model structure but not in the Joyal model structure.

The fact that K is itself an inverting tiling means that every special horn fibrant simplicial set has lifts
of K-augmented horns. Therefore, the special horn model structure is a localization of the K-minimal
homotopically behaved model structure. These model structures are also distinct; if T is as in Example 5.1,
then the special horns ƒi Œn�Ti!iC1 are fibrant in the K-minimal homotopically behaved model structure
but not in the special horn model structure.
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The special horn model structure is therefore a curious intermediate between theK-minimal homotopically
behaved model structure and the Joyal model structure. The fibrant objects are very similar to those
of the K-minimal homotopically behaved model structure, making it tempting to claim it as a model
structure with “the homotopical properties of quasicategories without the composition aspects”. However,
compositionality actually does play a subtle but key role in determining the notion of homotopy for the
special horn model structure.

We conclude this section by conjecturing a partial characterization of the trivial cofibrations in the Joyal
model structure.

Conjecture 5.24 The class of trivial cofibrations in the Joyal model structure that are bijective-on-0-
simplices is generated by the set of inner horn inclusions together with the set of special outer horn
inclusions. That is , the bijective-on-0-simplices trivial cofibrations are precisely �..IH[SpOH/�/.

Remark 5.25 The special outer horn inclusions are weak equivalences in the special horn model
structure, and so are also Joyal weak equivalences. The uncertain aspect of the conjecture is whether the
containment of �..IH[SpOH/�/ in the class of bijective-on-0-simplices trivial cofibrations in the Joyal
model structure is strict.

Joyal [13] left open whether the inner horn inclusions alone generated the bijective-on-0-simplices trivial
cofibrations in his model structure, but Campbell [1] recently provided a counterexample of a map that is
bijective-on-0-simplices and a weak equivalence in the Joyal model structure but is not in �.IH�/. Since
Campbell’s map is in fact a pushout of a special 2-horn, it is not a counterexample to Conjecture 5.24.

An intuitive argument for Conjecture 5.24 is that this set of maps seems as close as possible to the set of
ordinary horn inclusions (which generate the trivial cofibrations of the Kan–Quillen model structure on
sSet) while still being weak equivalences in the Joyal model structure.

We also state a similar conjecture for the special horn model structure.

Conjecture 5.26 The class of bijective-on-0-simplices trivial cofibrations in the special horn model
structure is generated by the set of special horn inclusions. That is , the bijective-on-0-simplices trivial
cofibrations are precisely �.SpHorn�/.

6 Comparing model structures

In this section, we compare the fibrant objects in the minimal model structure to the fibrant objects of
homotopically behaved model structures to get a better understanding of what it means to be homotopically
behaved. We begin by explaining the horn-based characterization of the minimal model structure’s fibrant
objects from [6].
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Definition 6.1 Fix n� 1 and 0� i �n�1. Let Œn�i denote the category Œn� with the morphism ci! ciC1

inverted,
c0! c1! � � � ! ci�1! ci � ciC1! ciC2! � � � ! cn�1! cn;

and let ri Œn� denote the nerve of Œn�i . Call ri Œn� an n-isoplex, or simply an isoplex.

Let djri Œn� denote the nerve of the full subcategory of Œn�i that includes all but the j th vertex. Call
djri Œn� the j th face of ri Œn�.

For j ¤ i; i C 1, the dj face of the isoplex ri Œn� is an .n�1/-isoplex, while the di and diC1 faces are
standard .n�1/-simplices. We can therefore think of the n-isoplex as an “isomorphism of .n�1/-simplices”
between its diC1 face and its di face.

Having defined our “iso” analogue of simplices and faces, we can now define “iso-horns” to be the union
of all but one face of an isoplex. However, just like we saw with augmented horns, we want to limit
ourselves to horns that omit the dk or dkC1 face, where k! kC 1 is a J -edge. Furthermore, due to the
symmetry of isoplexes, it suffices just to consider horns where the dk face is missing.

Definition 6.2 Let n� 1 and 0� i � n� 1 be as in Definition 6.1. Let Vi Œn� be the union of all but the
i th face of ri Œn�. We call Vi Œn� an iso-horn, and call the inclusion Vi Œn� ,!ri Œn� an iso-horn inclusion.

We can now state the main result of [6].

Theorem 6.3 A simplicial set X is fibrant in the minimal model structure if and only if it has lifts of
iso-horn inclusions.

The takeaway of this theorem is that, from a certain perspective, isoplexes are the fundamental building
blocks of homotopies in the minimal model structure, and hence in any Cisinski model structure. They
are inherently equipped with all the higher invertibility data we want from a good notion of homotopy.

To understand what is happening when we localize to a homotopically behaved model structure, consider
the diagram

�Œn�Ji!iC1 ri Œn�

�Œn� 1�

�

Since the map on the right is a weak equivalence in any Cisinski model structure, by localizing with
respect to the maps on the left to yield a homotopically behaved model structure, we are equivalently
localizing with respect to the horizontal maps. These maps being weak equivalences is effectively saying
that “n-simplices with a J -edge along i! .iC1/ extend to full-fledged homotopies of .n�1/-simplices”.
In other words, we are justified in considering a n-simplex with a J -edge in its spine to be a “homotopy”
since all of the higher invertibility data comes along for free.
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Min.¿/ Min.HtpyBehaved/

Min.K!�/ Min.K;HtpyBehaved/ Special Joyal

Figure 10

We conclude by reviewing the broader picture of Cisinski model structures on sSet that localize to the
Joyal model structure. Figure 10 shows the model structures discussed in this paper, with an arrow drawn
to indicate that the target is a localization of the source. (The minimal model structure is denoted by
Min.¿/, and its localization with respect to K ! � by Min.K ! �/. The minimal and K-minimal
homotopically behaved model structures are depicted in the second column.) By Remark 5.23, the two
localizations on the right are nontrivial. The vertical arrows indicate nontrivial localizations because
K!� is not a weak equivalence in the two upper model structures by Remark 4.32. The upper horizontal
arrow indicates a nontrivial localization because the simplicial set�Œ2��0!1 is fibrant in the minimal model
structure but not in the minimal homotopically behaved model structure. The remaining localization is
nontrivial by the following lemma.

Lemma 6.4 Given a simplicial set I with exactly two vertices a and b and with 1-simplices a! b and
b! a, the localization of the minimal model structure at the map I !� is not homotopically behaved.

Proof Since the map �Œ2��0!1!� is a weak equivalence but not a trivial fibration in a homotopically
behaved model structure, it cannot be a fibration. So, it suffices to show that �Œ2��0!1 is fibrant in
the minimal model structure localized at I !�. A similar argument as in [6, Section 3] shows that a
simplicial set is fibrant in this model structure if and only if it has lifts with respect to all maps in the set

AI D f.I � @�Œn�/[ .fvg ��Œn�/ ,! I ��Œn�gv2fa;bg;n�0:

We therefore see that �Œ2��0!1 is fibrant by observing that any map

.I � @�Œn�/[ .fvg ��Œn�/!�Œ2��0!1

either factors through the collapse map .I � @�Œn�/[ .fvg��Œn�/!�Œn� or through �Œ1� ,!�Œ2��0!1
because the 1-simplices of I go in opposite directions.

Min.¿/ Min.HtpyBehaved/

Min.K 0!�/ Min.K 0;HtpyBehaved/ 2-Special Quasi-2-Seg

Min.K!�/ Min.K;HtpyBehaved/ Special Joyal

Figure 11
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In Figure 11, we indicate how we expect the 2-Segal analogue of these model structures to fit in. In
particular, it appears likely that there is a separate simplicial set K 0 that plays the same role for the
2-Segal situation as K does for quasicategories. It also seems likely that there be a notion of 2-Segal
preisomorphism that is distinct from categorical preisomorphisms, and hence a notion of 2-special horns
that is distinct from that of special horns. These model structures are the topic of [7].
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Quasiconvexity of virtual joins and separability of products
in relatively hyperbolic groups
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A relatively hyperbolic group G is said to be QCERF if all finitely generated relatively quasiconvex
subgroups are closed in the profinite topology on G.

Assume that G is a QCERF relatively hyperbolic group with double coset separable (eg virtually poly-
cyclic) peripheral subgroups. Given any two finitely generated relatively quasiconvex subgroupsQ;R6G
we prove the existence of finite-index subgroups Q0 6f Q and R0 6f R such that the join hQ0; R0i is
again relatively quasiconvex in G. We then show that, under the minimal necessary hypotheses on the
peripheral subgroups, products of finitely generated relatively quasiconvex subgroups are closed in the
profinite topology on G. From this we obtain the separability of products of finitely generated subgroups
for several classes of groups, including limit groups, Kleinian groups and balanced fundamental groups of
finite graphs of free groups with cyclic edge groups.
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1 Introduction

Any group can be equipped with the profinite topology, whose basic open sets are cosets of finite-index
subgroups. A subset of a group is said to be separable if it is closed in the profinite topology. The trivial
subgroup of a group G is separable if and only if the profinite topology is Hausdorff; in this case G is
said to be residually finite. If every finitely generated subgroup of G is separable then G is called LERF
(or subgroup separable), and if the product of any two finitely generated subgroups is separable, G is
said to be double coset separable.

In this paper we will be interested in various separability properties of relatively hyperbolic groups. The
notion of a relatively hyperbolic group was originally suggested by Gromov [25] as a generalisation
of word hyperbolic groups. The concept was further developed by Farb [20], Bowditch [8], Drut,u and
Sapir [17], Osin [46], and Groves and Manning [26], whose various definitions were later shown to be
equivalent by Hruska [30]. Relative hyperbolicity is a relative property of a group G in the sense that
one must specify a collection of peripheral subgroups fH� j � 2 Ng with respect to which G is relatively
hyperbolic (see Definition 5.3). Typical examples of relatively hyperbolic groups include geometrically
finite Kleinian groups, fundamental groups of finite-volume manifolds of pinched negative curvature,
and small cancellation quotients of free products. Respectively, these groups are hyperbolic relative to
their maximal parabolic subgroups, their cusp subgroups and the images of the free factors (see, for
example, [46]).

1.1 Quasiconvexity of virtual joins

Since general finitely generated subgroups of word hyperbolic (relatively hyperbolic) groups can be quite
wild and need not be separable, it is customary to restrict one’s attention to quasiconvex (respectively,
relatively quasiconvex) subgroups.
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Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 401

Quasiconvex subgroups play a central role in the study of word hyperbolic groups. They are precisely the
finitely generated quasi-isometrically embedded subgroups, and, hence, they are hyperbolic themselves
and are generally well behaved.

If Q and R are two quasiconvex subgroups of a hyperbolic group G then the intersection S DQ\R is
also quasiconvex (see, for example, Short [57]) but the join hQ;Ri need not be. This can be remedied
by considering a virtual join of Q and R, which is defined as hQ0; R0i, for some finite-index subgroups
Q0 6f Q and R0 6f R. The existence of a quasiconvex virtual join hQ0; R0i was proved by Gitik [23]
under the assumption that S DQ\R is separable in G. More precisely, Gitik’s theorem states that there
exist finite-index subgroups Q0 6f Q and R0 6f R such that Q0\R0 D S and the virtual join hQ0; R0i
is quasiconvex in G; moreover, hQ0; R0i will be naturally isomorphic to the amalgamated free product
Q0 �S R

0. This theorem was an important ingredient in the proof that double cosets of quasiconvex
subgroups are separable in LERF hyperbolic groups (see [22; 43]).

In the setting of relatively hyperbolic groups, the natural subobjects are the relatively quasiconvex
subgroups, which are themselves relatively hyperbolic in a way that is compatible with the ambient
group. Basic examples of relatively quasiconvex subgroups are maximal parabolic subgroups (that is,
conjugates of the peripheral subgroups), parabolic subgroups (subgroups of maximal parabolics) and
finitely generated undistorted (equivalently, quasi-isometrically embedded) subgroups (see [30]).

In [30], Hruska proved that the intersection of two relatively quasiconvex subgroups is again relatively
quasiconvex. However, until now the existence of a relatively quasiconvex virtual join hQ0; R0i, for two
relatively quasiconvex subgroups Q and R in a relatively hyperbolic group G, such that S DQ\R is
separable in G, was only known in special cases:

� Martínez-Pedroza [37] proved it in the case when R 6 P , for some maximal parabolic subgroup
P of G, such that Q\P �R;

� Martínez-Pedroza and Sisto [38] proved it when Q and R have compatible parabolics (that is, for
every maximal parabolic subgroup P of G either Q\P �R\P or R\P �Q\P );

� Yang [60] (unpublished; see also McClellan’s thesis [40]) proved it when R is a full subgroup of G
(that is, for every maximal parabolic subgroup P in G, R\P is either finite or has finite index
in P ).

Similarly to Gitik’s theorem [23], in all three cases above the authors establish an isomorphism between
the virtual join hQ0; R0i and the amalgamated free product Q0 �S 0 R0, where S 0 DQ0\R0 6f S .

The extra assumptions on Q and R in each of the above results from [37; 38; 40; 60] imply that Q and R
have almost compatible parabolics (see Definition 1.5 below). Unfortunately this is still a significant
restriction and a more general result is desirable. Moreover, in the absence of almost compatibility one
cannot expect a virtual join to split as an amalgamated free product of Q0 and R0. Indeed, for example if
both Q and R are subgroups of an abelian peripheral subgroup of G then any virtual join hQ0; R0i would
again be abelian.
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One of the goals of the present paper is to establish quasiconvexity of virtual joins without making
any compatibility assumptions on Q and R. However we need to impose stronger assumptions on the
properties of the profinite topology on G than just separability of S DQ\R: we will require the finitely
generated relatively quasiconvex subgroups to be separable and the peripheral subgroups to be double
coset separable.

Definition 1.1 (QCERF) We will say that a relatively hyperbolic group G is QCERF if every finitely
generated relatively quasiconvex subgroup in G is separable.

Theorem 1.2 Let G be a finitely generated relatively hyperbolic group. Suppose that G is QCERF and
the peripheral subgroups of G are double coset separable. If Q;R 6G are finitely generated relatively
quasiconvex subgroups and S DQ\R then there exist finite-index subgroups Q0 6f Q and R0 6f R,
with Q0\R0 D S , such that the virtual join hQ0; R0i is relatively quasiconvex in G.

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q, and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

One can observe that the choice of R0 6f R in the above theorem depends on the choice of Q0 6f Q. In
the case when the peripheral subgroups are abelian the situation is easier:

Theorem 1.3 Let G be a finitely generated group hyperbolic relative to a finite collection of abelian
subgroups. Assume that G is QCERF. If Q;R 6G are relatively quasiconvex subgroups and S DQ\R
then there exists a finite-index subgroupL6f G, with S�L, such that the virtual join hQ0; R0i is relatively
quasiconvex in G, for arbitrary subgroups Q0 6f Q\L and R0 6f R\L, satisfying Q0\R0 D S .

In fact, one can slightly weaken the assumptions in Theorem 1.3 by requiring the peripheral subgroups of
G to be virtually abelian instead of abelian; see Corollary 14.2.

Unlike the previous results from [38; 60], Theorem 1.2 does not require any (almost) compatibility of
parabolics from the subgroups Q and R. To work in this general setting, we develop a novel approach
which uses the profinite topology on G to carefully select the finite-index subgroups Q0 6f Q and
R0 6f R satisfying certain metric properties (see Sections 3.1, 3.2 and 11). We also give a new and
simple criterion for establishing separability of double cosets in amalgamated free products in Section 12.

Theorem 1.2 applies to a wide class of relatively hyperbolic groups, including all limit groups, all Kleinian
groups and many groups acting on CAT(0) cube complexes. Regarding QCERF-ness, Manning and
Martínez-Pedroza [36] proved that the following two statements are equivalent:

(a) every finitely generated group hyperbolic relative to a finite collection of LERF and slender
subgroups is QCERF;

(b) all word hyperbolic groups are residually finite.
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Recall that a group is called slender if every subgroup is finitely generated. The question of whether
statement (b) is true is a well-known open problem. If the answer to it is positive then, for example, all
finitely generated groups hyperbolic relative to virtually polycyclic subgroups will be QCERF.

Large classes of relatively hyperbolic groups have already been proved to be QCERF. One of the first
results in this direction is due to Wilton [58], who established QCERF-ness of limit groups. The ground-
breaking work of Haglund and Wise [28] and Agol [2] implies that any word hyperbolic group acting
geometrically on a CAT(0) cube complex is QCERF. One of the consequences of this result is that all
finitely generated Kleinian groups are QCERF. More recently, Einstein and Groves [18] and Groves and
Manning [27] extended this theory to relatively hyperbolic groups acting (weakly) relatively geometrically
on CAT(0) cube complexes. Einstein and Ng [19] used it to show that full relatively quasiconvex subgroups
of C 0.1=6/-small cancellation quotients of free products of residually finite groups are separable. In the
case when the free factors are LERF and slender the latter result can be combined with a theorem of
Manning and Martínez-Pedroza [36, Theorem 1.7] to conclude that such small cancellation free products
are QCERF.

By a theorem of Lennox and Wilson [33] all virtually polycyclic groups are double coset separable; hence
the assumption about peripheral subgroups in Theorem 1.2 is automatically true in many relevant cases.
However whether this assumption is actually necessary is less obvious. It is required in our approach, but
it would be interesting to see whether the theorem remains valid without it. As expected from the results
in [38; 60], it is not needed if the relatively quasiconvex subgroups Q and R have almost compatible
parabolics; see Theorem 14.5 below.

1.2 Separability of double cosets

In group theory, knowing that double cosets of certain subgroups are separable is often quite useful. For
example, the separability of double cosets of hyperplane subgroups was used by Haglund and Wise in [28]
to give a criterion for virtual specialness of a compact non-positively curved cube complex. Separability
of double cosets of abelian subgroups in Kleinian groups was an important ingredient in the theorem
of Hamilton, Wilton and Zalesskii [29] that fundamental groups of compact orientable 3-manifolds are
conjugacy separable.

Double coset separability of free groups was first proved by Gitik and Rips [24]. Shortly after, Niblo [44]
came up with a new criterion for separability of double cosets and applied it to show that finitely
generated Fuchsian groups and fundamental groups of Seifert-fibred 3-manifolds are double coset separable.
Separability of double cosets of quasiconvex subgroups in QCERF word hyperbolic groups was proved
by the first author in [43]. Martínez-Pedroza and Sisto [38] generalised this to double cosets of relatively
quasiconvex subgroups with compatible parabolics in QCERF relatively hyperbolic groups; Yang [60]
and McClellan [40] treated the case when at least one of the factors is full. Our proof of Theorem 1.2
almost immediately yields the following.
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Corollary 1.4 Let G be a finitely generated group hyperbolic relative to a finite collection of subgroups
fH� j � 2 Ng. Suppose that G is QCERF and H� is double coset separable , for every � 2 N. Then for all
finitely generated relatively quasiconvex subgroups Q;R 6G, the double coset QR is separable in G.

Clearly the assumptions of Corollary 1.4 are the minimal possible. This result is powerful enough to
prove a conjecture of Hsu and Wise from [31]; see Corollary 2.3.

In the case when the relatively hyperbolic group G admits a weakly relatively geometric action on a
CAT(0) cube complex, Corollary 1.4 was proved by Groves and Manning [27]. Groves and Manning’s
argument uses Dehn fillings to approximate G by QCERF word hyperbolic groups; thus reducing the
statement to separability of double cosets in hyperbolic groups from [43]. Our approach is completely
different as we always work within G.

In the following definition we will use a preorder 4 on the sets of subsets of a group G, introduced by
the first author in [42]:

given U; V �G we will write U 4 V if there exists a finite subset Y �G such that U � V Y:

If dX is the word metric on G, corresponding to a finite generating set X , and U and V are subsets of G
then U 4 V if and only if U is contained in a finite dX -neighbourhood of V . If U and V are subgroups
of G then U 4 V is equivalent to jU W .U \V /j<1 (see [42, Lemma 2.1]).

Definition 1.5 (almost compatible parabolics) Let Q and R be subgroups of a relatively hyperbolic
groups G. We will say that Q and R have almost compatible parabolics if for every maximal parabolic
subgroup P of G either Q\P 4R\P or R\P 4Q\P .

Clearly if G is a relatively hyperbolic group and Q and R are subgroups with compatible parabolics then
they have almost compatible parabolics. The same is true if at least one of Q or R is a full subgroup of G.

In the case when the relatively quasiconvex subgroups Q and R have almost compatible parabolics, the
assumption that the peripheral subgroupsH� are double coset separable can be dropped from Corollary 1.4,
allowing us to recover the double coset separability results from [38; 40; 60].

Corollary 1.6 Suppose that G is a finitely generated QCERF relatively hyperbolic group. If Q and R
are finitely generated relatively quasiconvex subgroups of G with almost compatible parabolics then the
double coset QR is separable in G.

1.3 Separability of products of quasiconvex subgroups

The third part of this paper is dedicated to proving separability for more general products F1 � � �Fs , where
s 2N is arbitrary and F1; : : : ; Fs are relatively quasiconvex subgroups in a relatively hyperbolic group.

Definition 1.7 (RZs and product separability) Let P be a group and let s 2 N. We say that P has
property RZs if for arbitrary finitely generated subgroups E1; : : : ; Es 6 P the product E1 � � �Es is
separable in P . If P has property RZs for all s 2N, we say that P is product separable.
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Thus RZ1 means that the group is LERF and RZ2 is equivalent to double coset separability. The definition
of RZs is due to Coulbois [14]; he named it after Ribes and Zalesskii, who proved in [53] that free groups
are product separable, confirming a conjecture of Pin and Reutenauer from [49]. Pin and Reutenauer
showed that product separability of free groups implies Rhodes’ type II conjecture from semigroup theory
(see [48; 49] for the background).

In [43], generalising the result of [53], the first author proved that the product of finitely many quasiconvex
subgroups is separable in a QCERF word hyperbolic group. Moreover, in [14] Coulbois showed that, for
every s 2N, free products of groups with property RZs also have property RZs . Taken together, these
facts motivate the following theorem.

Theorem 1.8 Let G be a finitely generated group hyperbolic relative to a finite collection of subgroups
fH� j � 2 Ng, and let s 2 N. Suppose that G is QCERF and H� has property RZs , for each � 2 N. If
F1; : : : ; Fs 6G are finitely generated relatively quasiconvex subgroups of G, then the product F1 � � �Fs
is separable in G.

We note that separability of products of full relatively quasiconvex subgroups in a QCERF relatively
hyperbolic group was proved by McClellan [40].

Finitely generated virtually abelian groups are product separable. Therefore, Theorem 1.8 applies to finitely
generated QCERF relatively hyperbolic groups with virtually abelian peripheral subgroups. Examples of
such groups include limit groups, geometrically finite Kleinian groups and C 0.1=6/-small cancellations
quotients of free products of finitely generated virtually abelian groups (see [51]). We discuss some
applications of Theorem 1.8 in Section 2.2, and give a brief outline of the proof at the beginning of
Part III.
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2 Applications

In this section we list some applications of the main results from the introduction.

2.1 Geometrically finite virtual joins

A Kleinian group is a discrete subgroup of the (orientation-preserving) isometries of the real hyperbolic
3-space, Isom.H3/. Recall that a Kleinian group G has an induced action on the ideal boundary @H3 of
hyperbolic space by homeomorphisms, under which the smallest G-invariant compact subset, ƒG, is
called its limit set. A subgroup P 6G is called parabolic if it has a single fixed point p in @H3 and setwise
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fixes some horosphere centred at p. We say that G is geometrically finite if every point of ƒG is either a
conical limit point or a bounded parabolic point (see [7] for definitions). Examples of geometrically finite
Kleinian groups include the fundamental groups of finite-volume hyperbolic 3-manifolds.

As noted in the introduction, geometrically finite Kleinian groups are relatively hyperbolic with respect
to conjugacy class representatives of their maximal parabolic subgroups (which are virtually abelian).
Moreover, geometrically finite subgroups are exactly the relatively quasiconvex subgroups of geometrically
finite Kleinian groups [30, Corollary 1.6].

Baker and Cooper [5] showed, using geometric methods, that if G is a finitely generated Kleinian group
and Q and R are geometrically finite subgroups of G with almost compatible parabolics, then there are
finite-index subgroups Q0 6f Q and R0 6f R such that the join hQ0; R0i is geometrically finite. In [38]
Martínez-Pedroza and Sisto recover this result for geometrically finite Kleinian groups as a special case
of their work, using techniques closer to those in the present paper. Using Theorem 1.2, we are able to
eliminate the hypothesis of compatible parabolic subgroups in these results:

Corollary 2.1 Let G be a geometrically finite Kleinian group , and suppose that Q;R 6G are geomet-
rically finite subgroups of G. Then there are finite-index subgroups Q0 6f Q and R0 6f R such that
hQ0; R0i is a geometrically finite subgroup of G.

Proof The group G is geometrically finite, so it is finitely generated [50, Theorem 12.4.9] and hyperbolic
relative to a finite collection of finitely generated virtually abelian subgroups [8; 30]. Agol proved that all
finitely generated Kleinian groups are LERF [2, Corollary 9.4]; in particular, this means that they are
QCERF. Therefore G is a QCERF relatively hyperbolic group with double coset separable peripheral
subgroups. By Hruska’s result [30, Corollary 1.6], a subgroup of G is geometrically finite if and only if it
is relatively quasiconvex. We may now apply Theorem 1.2 to obtain the desired conclusion.

2.2 Product separability

Recall that a group G is product separable if the product of finitely many finitely generated subgroups
is closed in the profinite topology on G. Until now, few examples of groups were known to be product
separable: free abelian groups, free groups [53], groups of the form F �Z, where F is free [61], and
locally quasiconvex LERF hyperbolic groups [43] (eg, surface groups). Additionally, the class of product
separable groups is closed under taking subgroups, finite-index supergroups and free products [14].
However, this class is not closed under direct products (eg, the direct product of two non-abelian free
groups is not even LERF [4]). It also does not contain some polycyclic groups: in [33] Lennox and
Wilson proved that the integral Heisenberg group H3.Z/, which is polycyclic (in fact, finitely generated
nilpotent of class 2), is not product separable as it does not have property RZ3.

We use Theorem 1.8 to establish product separability for many more groups.
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Theorem 2.2 The following groups are product separable:

(i) limit groups;

(ii) finitely generated Kleinian groups;

(iii) fundamental groups of finite graphs of free groups with cyclic edge groups , as long as they are
balanced.

Recall that a group G is called a limit group if it is finitely generated and fully residually free (that is, for
every finite subset A�G, there is a free group F and a homomorphism ' WG! F that is injective when
restricted to A). Limit groups played an important role in the solutions of Tarski’s problems about the
first order theory of free groups by Sela [54] and Kharlampovich and Myasnikov [32].

Following Wise, we say that a group G is balanced if for every infinite order element g 2G the conjugacy
between gm and gn implies that nD˙m. In [59], Wise proved that the fundamental group G of a finite
graph of free groups with cyclic edge groups is LERF if and only if it is balanced if and only if G does
not contain any non-Euclidean Baumslag–Solitar subgroups BS.m; n/ D ha; t j tamt�1 D ani, with
m; n 2 Z n f0g and n¤˙m.

Part (iii) of Theorem 2.2 generalises a result of Coulbois [13, Theorem 5.18], who proved that the free
amalgamated product of two free groups along a cyclic subgroup is product separable. Theorem 2.2(iii)
confirms (in a strong way) a conjecture of Hsu and Wise [31, Conjecture 15.5], which states that a
balanced group splitting as a finite graph of free groups with cyclic edge groups is double coset separable.

Corollary 2.3 Suppose that G splits as a fundamental group of a finite graph of finitely generated free
groups with cyclic edge groups. If G is balanced then it is virtually compact special ; in other words , G
has a finite-index subgroup which is isomorphic to the fundamental group of a compact non-positively
curved special cube complex (in the sense of Haglund and Wise [28]).

Proof Hsu and Wise [31, Theorem 10.4] proved that G admits a proper cocompact action on a CAT(0)
cube complex X. By Theorem 2.2, G is double coset separable; hence, by a result of Haglund and Wise
[28, Theorem 9.19], G has a finite-index subgroup K such that KnX is a special cube complex.

After the completion of this paper the authors learned of a recent result of Shepherd and Woodhouse [56,
Theorem 1.2], which gives an alternative proof of Corollary 2.3, using different methods.

One of the original motivations for considering product separability of groups came from semigroups and
automata theory. Pin and Reutenauer [49] used this property to characterise the profinitely closed rational
subsets of free groups.

Recall that for a monoid M , the rational subsets Rat.M/� 2M form the smallest collection of subsets
of M satisfying the following conditions:

(1) ∅ 2 Rat.M/ and, for each m 2M , fmg 2 Rat.M/;
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(2) if A;B 2 Rat.M/, then AB 2 Rat.M/ and A[B 2 Rat.M/;

(3) if A 2 Rat.M/, then A� 2 Rat.M/, where A� is the submonoid of M generated by A.

We refer the reader to [49] for an account of the basic theory of rational subsets.

In a group G it makes sense to consider the subgroup closure instead of the �-closure. Thus we define
the set Rat0.G/� 2G as the smallest collection of subsets of G containing all finite subsets, closed under
finite unions, products and subgroup closure. It is easy to see that Rat0.G/ consists of all subsets of
the form gF1 � � �Fs , where s 2 N0, g 2 G and F1; : : : ; Fs are finitely generated subgroups of G [49,
Proposition 2.2]. Evidently Rat0.G/�Rat.G/; moreover, it is not difficult to show that Rat0.G/DRat.G/
if and only if G is torsion.

The following theorem was proved by Pin and Reutenauer [49, Corollary 2.5] in the case of free groups
(see also [52, Section 12.3] for a slightly different argument); however the proof is readily seen to remain
valid in all product separable groups.

Theorem 2.4 (Pin and Reutenauer) If G is a product separable group then Rat0.G/ is precisely the
class of all separable rational subsets of G.

Corollary 2.5 If G is a group from one of the classes (i)–(iii), described in Theorem 2.2, then the set of
separable rational subsets of G coincides with Rat0.G/.

3 Plan of the paper

3.1 The metric quasiconvexity theorem

Let G be a relatively hyperbolic group generated by a finite set X , and let Q and R be relatively
quasiconvex subgroups of G. The technical heart of this paper is Theorem 3.5 below, which, given some
relatively quasiconvex subgroups Q0 6 Q and R0 6 R, provides sufficient metric conditions for the
relative quasiconvexity of the join hQ0; R0i.

Definition 3.1 (minX ) Let G be a group with finite generating set X , and let Y �G. Then we denote
the number minfjgjX j g 2 Y g by minX .Y /, with the usual convention that minimum over the empty set
is C1.

Let S DQ\R and A � 0 be some constant. We will be interested in finding subgroups Q0 6Q and
R0 6R satisfying the following properties:

(P1) if Q0 and R0 are relatively quasiconvex in G then so is the subgroup hQ0; R0i;

(P2) minX .hQ0; R0i nS/� A;

(P3) minX .QhQ0; R0iR nQR/� A.
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Remark 3.2 � Quasiconvexity of Q0 and R0 is only required in property (P1).

� Property (P2) says that all “short” elements of hQ0; R0i belong to S .

� Property (P3) is the key ingredient for proving that the double coset QR is separable in G in
Corollary 1.4.

Let us now describe the metric conditions used to establish the above properties. Given a finite collection
P of maximal parabolic subgroups of G, constants B;C � 0 and subgroups Q0 6Q and R0 6 R, we
will consider the following conditions:

(C1) Q0\R0 D S ;

(C2) minX .QhQ0; R0iQ nQ/� B and minX .RhQ0; R0iR nR/� B;

(C3) minX ..PQ0[PR0/ nPS/� C , for each P 2 P.

Moreover, if not all of the subgroups in P are abelian then we will need two more conditions (here for
subgroups H;P 6G, we use HP to denote the intersection H \P 6 P ):

(C4) QP \ hQ
0
P ; R

0
P i DQ

0
P and RP \ hQ0P ; R

0
P i DR

0
P , for every P 2 P;

(C5) minX .qhQ0P ; R
0
P iRP n qQ

0
PRP /� C , for each P 2 P and all q 2QP .

Remark 3.3 If the peripheral subgroups of G are abelian then condition (C4) follows from (C1) and
condition (C5) is trivially true.

Indeed, if P is abelian, then, in the notation of (C4), hQ0P ; R
0
P i DQ

0
PR
0
P ; hence

Q0P �QP \ hQ
0
P ; R

0
P i DQP \Q

0
PR
0
P DQ

0
P .QP \R

0
P /�Q

0
PSP DQ

0
P ;

where the last equality used that SP D S \P �Q0P by (C1). The second equality of (C4) can be proved
in the same fashion.

Similarly, if q 2QP then qhQ0P ; R
0
P iRP D qQ

0
PR
0
PRP D qQ

0
PRP , so

minX .qhQ0P ; R
0
P iRP n qQ

0
PRP /DminX .∅/DC1I

thus (C5) holds.

Remark 3.4 In this paper we will be primarily interested in the existence of finite-index subgroups
Q0 6f Q and R0 6f R satisfying the above conditions. This may be easier to interpret through the lens
of the profinite topology on G (see Section 11):

� Conditions (C1) and (C4) can be ensured by choosing any finite-index subgroup M 6f G with
S �M , and setting Q0 DQ\M , R0 DR\M .

� The existence of finite-index subgroups Q0 6f Q and R0 6f R satisfying condition (C2) can be
deduced from separability of Q and R in G.

� The existence of finite-index subgroups Q0 6f Q and R0 6f R satisfying condition (C3) can be
deduced from separability of the double coset PS in G.
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� If Q0P 6f QP is already chosen then R0P 6f RP , satisfying (C5), can be constructed with the help
of separability of the double coset Q0PRP in P . Indeed, if QP D

Sn
jD1 ajQ

0
P , then the inequality

in (C5) can be rewritten as minX .aj hQ0P ; R
0
P iQ

0
pRP n ajQ

0
PRP / � C , for every j D 1; : : : ; n.

Thus our approach to establishing (C5) will be to choose R0 6f R after Q0 6f Q has already been
constructed (in other words, R0 will depend on Q0).

Theorem 3.5 (metric quasiconvexity theorem) Let G be relatively hyperbolic group generated by
a finite set X . Suppose that Q;R 6 G are relatively quasiconvex subgroups and denote S D Q \R.
There exists a finite collection P of maximal parabolic subgroups of G such that for any A� 0 there are
constants B;C � 0 satisfying the following.

Suppose that Q0 6 Q and R0 6 R are subgroups of G satisfying conditions (C1)–(C5). Then these
subgroups enjoy properties (P1)–(P3) above.

Rough sketches of the proofs of Theorems 3.5 and 1.2 are given in the beginning of Part II of the paper.

3.2 The separability assumptions

As the reader may notice, our main results in the introduction assume that the underlying relatively
hyperbolic group G is QCERF and the peripheral subgroups of G are double coset separable. Indeed, the
essence of our method is in finding (sufficiently many) finite-index subgroups Q0 6f Q and R0 6f R
satisfying conditions (C1)–(C5) by using properties of the profinite topology. However, a careful analysis
of the arguments reveals that instead of the full QCERF assumption it is possible to require the separability
only of certain finitely generated relatively quasiconvex subgroups related to Q and R. For example,
the proof of Theorem 1.2 relies on the separability conditions (S1)–(S3) from Theorem 11.3, which are
established in Section 13 using the separability of relatively quasiconvex subgroups Q, R, K, hK;T i
and hK;V i, where K 6f P 2 P, T 6f Q, V 6f R and P D P1 is a finite collection of maximal
parabolic subgroups of G that depends on Q and R (see Notation 10.2). The exact requirements for
double coset separability of the peripheral subgroups are easier to trace: it suffices to look at condition (S4)
of Theorem 11.3.

3.3 Section outline

This paper is structured as follows. There are three parts: Part I contains background material and useful
preliminary results (Sections 4–5), Part II is dedicated to the proof of the metric quasiconvexity theorem
and the double coset separability results that follow from them (Sections 6–15), and Part III is essentially
dedicated to the proof and applications of Theorem 1.8 (Sections 16–21).

Section 4 covers generalities and Section 5 covers definitions and results specific to relatively hyperbolic
groups. In Section 6 we introduce the terminology of path representatives, their associated types, and
make some observations about path representatives that have minimal type. Sections 7 and 8 are devoted to
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controlling certain instances of backtracking in minimal type path representatives. In Section 9 we describe
the “shortcutting” of a broken line, and establish its quasigeodesicity under some technical assumptions.
Section 10 contains the proof of Theorem 3.5. In Sections 11 and 13 we show how finite-index subgroups
Q0 6f Q and R0 6f R satisfying conditions (C1)–(C5) can be obtained using separability, with the help
of a new criterion for separability of double cosets in amalgamated products from Section 12. Section 14
contains proofs of Theorems 1.2 and 1.3, while Section 15 contains the proof of Corollary 1.6.

In Section 16 we generalise the content of Section 6 to the setting of products of subgroups, as well
as introducing new metric conditions (C2-m) and (C5-m). Sections 17 and 18 are product analogues
to Section 8; similarly, Section 19 generalises Section 11. Finally, Section 20 contains the proof of
Theorem 1.8, and Section 21 establishes new examples of product separable groups, proving Theorem 2.2.

Part I Background

In this part we will present the definitions and basic results that will be necessary for the rest of the paper.

4 Preliminaries

4.1 Notation

We write N for the set of natural numbers f1; 2; 3; : : : g, and N0 for N [f0g.

Let G be a group. If H is a finite-index (respectively, finite-index normal) subgroup of G, then we
write H 6f G (respectively, H Cf G). For a subgroup T 6 G and elements a; b 2 G we will write
T a D aTa�1 6G and ba D aba�1 2G.

By a generating set A of G we will mean a set A together with a map A!G such that the image of A

under this map generates G.

If A is a generating set for G, then we denote by �.G;A/ the (left) Cayley graph of G with respect to A.
The standard edge path length metric on �.G;A/ will be denoted by dA. � ; � /. After identifying G with
the vertex set of �.G;A/, this metric induces the word metric associated to A: dA.g; h/D jg

�1hjA for
all g; h 2G, where jgjA denotes the length of the shortest word in A˙1 representing g in G.

Abusing the notation, we will identify the combinatorial Cayley graph �.G;A/ with its geometric
realisation. The latter is a geodesic metric space and, given two points x and y in this space, we will
use Œx; y� to denote a geodesic path from x to y in �.G;A/. In general �.G;A/ need not be uniquely
geodesic, so there will usually be a choice for Œx; y�, which will either be specified or will be clear from
the context (eg, if x and y already belong to some geodesic path under discussion, then Œx; y� will be
chosen as the subpath of that path).

If Y �G is a subset of G and K � 0, we denote by

NA.Y;K/D fg 2G j dA.g; Y /�Kg
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the K-neighbourhood of Y with respect to dA. Note that when A is a finite generating set, the metric
dA is proper. However, in this paper we will also be working with infinite generating sets; see Section 5
below, where generating sets of the form ADX [H are considered.

The following general fact will be used quite often.

Lemma 4.1 Let G be a group generated by a finite set A. If A;B 6 G are subgroups of G then for
every K � 0 there is a constant K 0 DK 0.A;B;K/� 0 such that for any x 2G we have

NA.xA;K/\NA.xB;K/�NA.x.A\B/;K
0/:

Proof After applying the left translation by x�1, which preserves the metric dA, we can assume that
x D 1. Now the statement follows, for example, from [30, Proposition 9.4].

Suppose that  is a combinatorial path (edge path) in �.G;A/. We will denote the initial and terminal
endpoints of  by � and C respectively. We will write `./ for the length (that is, the number of edges)
of  . We will also use �1 to denote the inverse of  , which is the path starting at C, ending at � and
traversing  in the reverse direction. If 1; : : : ; n are combinatorial paths with .i /C D .iC1/�, for
each i 2 f1; : : : ; n� 1g, we will denote their concatenation by 1 � � � n.

Since �.G;A/ is a labelled graph, every combinatorial path  comes with a label Lab./, which is a
word over the alphabet A˙1. We denote by Q 2 G the element represented by Lab./ in G. Finally,
we write j jA D j Q jA D dA.�; C/. Note that Lab.�1/ is the formal inverse of Lab./, so that and
j�1jA D j jA and e�1 D Q�1.

4.2 Quasigeodesic paths

In this section we assume that � is a graph equipped with the standard path length metric d. � ; � /.

Definition 4.2 (quasigeodesic) Let �� 1 and c � 0 be some numbers and let p be an edge path in � .
Recall that p is said to be .�; c/-quasigeodesic if for every combinatorial subpath q of p we have

`.q/� �d.q�; qC/C c:

Lemma 4.3 Suppose that s D rpt is a concatenation of three combinatorial paths r , p and t in � such
that `.r/�D and `.t/�D, for some D � 0, and p is .�; c/-quasigeodesic , for some �� 1 and c � 0.
Then the path s is .�; c0/-quasigeodesic , where c0 D cC 2.�C 1/D.

Proof Consider an arbitrary combinatorial subpath q of s. We need to show that

(4-1) `.q/� �d.q�; qC/C cC 2.�C 1/D:

If q is contained in r or in t then the desired inequality follows from the assumptions that `.r/�D and
`.t/ � D. Therefore we can further suppose that q� is a vertex of rp and qC is a vertex of pt . The
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bounds on the lengths of r and t imply that there is a combinatorial subpath a of p such that there are at
most D edges of s between q� and a� and between aC and qC. Thus d.q�; a�/�D, d.qC; aC/�D
and `.q/� `.a/C 2D

The assumption that p is .�; c/-quasigeodesic implies that

(4-2) `.q/� `.a/C 2D � �d.a�; aC/C cC 2D:

The triangle inequality gives d.a�; aC/� d.q�; qC/C2D, which, combined with (4-2), shows that (4-1)
holds, as required.

Lemma 4.4 Let � � 1, c � 0 and K 2 N. Suppose that p is a combinatorial path in � and let p0 be
a path obtained by replacing some edges of p with combinatorial paths of length at most K. If p is
.�; c/-quasigeodesic then p0 is .K�; 2K2�CKcC 2K/-quasigeodesic.

Proof Let q be any combinatorial subpath of p0 and write q� D x and qC D y. We need to show that

(4-3) `.q/�K�d.x; y/C 2K2�CKcC 2K:

If q does not contain any vertices of p then `.q/�K and (4-3) holds. Otherwise, let z and w be the first
and the last vertices of q that lie on p respectively, and let r be the subpath of p starting at z and ending
at w. The assumptions imply that d.x; z/�K, d.y;w/�K and

(4-4) `.q/�K`.r/C 2K:

Using the quasigeodesicity of p and the triangle inequality, we obtain

`.r/� �d.z; w/C c � �d.x; y/C 2K�C c;

which, combined with (4-4), gives (4-3).

4.3 Hyperbolic metric spaces

In this subsection let .�; d/ be a geodesic metric space.

Definition 4.5 (Gromov product) Let x; y; z 2 � be points. The Gromov product of x and y with
respect to z is

hx; yiz D
1
2
.d.x; z/C d.y; z/� d.x; y//:

It is easy to see that the Gromov products satisfy

d.x; y/D hy; zixChx; ziy ; d.y; z/D hx; ziy Chx; yiz; d.z; x/D hx; yizChy; zix :

The following elementary property of Gromov products is an immediate consequence of the triangle
inequality.

Remark 4.6 Suppose that x, y and z are points in � , u is a point on any geodesic segment Œx; z�, from
x to z, and v is a point on any geodesic segment Œz; y�, from z to y. Then

hu; viz � hx; yiz :
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Definition 4.7 (ı-thin triangle) Let � be a geodesic triangle in � with vertices x, y and z, and let
ı � 0. Denote by T� the (possibly degenerate) tripod with edges of length hx; yiz , hy; zix and hz; xiy
respectively. There is an map from fx; y; zg to the extremal vertices of T�, which extends uniquely to a
map � W�! T�, whose restriction to each side of � is an isometry. If the diameter in � of ��1.ftg/ is
at most ı, for all t 2 T�, then � is said to be ı-thin.

Definition 4.8 (hyperbolic space) The space � is said to be a hyperbolic metric space if there is a
constant ı � 0 such that every geodesic triangle in � is ı-thin.

The above definition of ı-hyperbolicity is not the most commonly used in the literature, though it is well-
known to be equivalent to other definitions after possibly increasing ı; see, for example, [9, III.H.1.17].
For technical reasons we will always assume that ı is chosen to be sufficiently large so that all the
definitions in this reference are satisfied.

In the remainder of this subsection we assume that � is a ı-hyperbolic graph, for some ı � 0, and d. � ; � /
is the standard path length metric on � .

Definition 4.9 (broken line) A broken line in � is a path p which comes with a fixed decomposition
as a concatenation of combinatorial geodesic paths p1; : : : ; pn in � , so p D p1p2 � � �pn. The paths
p1; : : : ; pn will be called the segments of the broken line p, and the vertices

p� D .p1/�; .p1/C D .p2/�; : : : ; .pn�1/C D .pn/�; .pnC1/C D pC

will be called the nodes of p.

The following statement is a special case of [41, Lemma 4.2], applied to the situation when each pi is
geodesic (so, in the notation of that lemma, we can take N� D 1, Nc D 0 and � D ı). Note that due to a
slightly different definition of quasigeodesicity used in [41], a .�; c/-quasigeodesic in the sense of [41] is
.1=�; c=�/-quasigeodesic in the sense of Definition 4.2 above, and vice versa.

Lemma 4.10 Let c0, c1 and c2 be constants such that c0� 14ı, c1D 12.c0Cı/C1 and c2D 10.ıCc1/.

Suppose that pDp1 � � �pn is a broken line in � , where pi is a geodesic with .pi /�Dxi�1 and .pi /CDxi
for i D 1; : : : ; n. If d.xi�1; xi /� c1 for i D 1; : : : ; n, and hxi�1; xiC1ixi

� c0 for each i D 1; : : : ; n�1,
then the path p is .4; c2/-quasigeodesic.

We will need an extension of the above lemma which allows the first and the last geodesic segments p1
and pn to be short.

Lemma 4.11 For any constant c0 satisfying c0 � 14ı, let

c1 D c1.c0/D 12.c0C ı/C 1 and c3 D c3.c0/D 10.ıC 2c1/:

Suppose that pDp1 � � �pn is a broken line in �, where pi is a geodesic with .pi /�Dxi�1 and .pi /CDxi
for iD1; : : : ; n. If d.xi�1; xi /�c1 for iD2; : : : ; n�1, and hxi�1; xiC1ixi

�c0 for each iD1; : : : ; n�1,
then the path p is .4; c3/-quasigeodesic.
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Proof This follows easily by combining Lemma 4.10 with Lemma 4.3. Indeed, there are four possibilities
depending on whether or not d.x0; x1/� c1 and d.xn�1; xn/� c1. Since all of these cases are similar, let
us concentrate on the situation when d.x0; x1/< c1 and d.xn�1; xn/� c1. Then the path qDp2p3 � � �pn
is .4; c2/-quasigeodesic by Lemma 4.10, where c2 D 10.ıC c1/. Since `.p1/ D d.x0; x1/ < c1, we
can apply Lemma 4.3 to deduce that the path p D p1 � � �pn D p1q is .4; c3/-quasigeodesic, where
c3 D c2C 10c1 D 10.ıC 2c1/, as required.

4.4 Profinite topology and separable subsets

Let G be a group. The profinite topology on G is the topology PT.G/ whose basis consists of left cosets
to finite-index subgroups of G.

A subset Z �G is called separable (in G) if it is closed in PT.G/. Evidently finite unions and arbitrary
intersections of separable subsets are separable. It is easy to see that a subset Z � G is separable if
and only if for every g 2 G nZ, there is a finite group Q and a homomorphism ' W G!Q such that
'.g/ … '.Z/ in Q. A subgroup H �G is separable if and only if it is the intersection of the finite-index
subgroups of G containing it.

The following observation stems from the fact that the group operations of taking an inverse and multiplying
by a fixed element are homeomorphisms with respect to the profinite topology.

Remark 4.12 Let Z be a separable subset of a group G. Then for every g 2G the subsets Z�1, gZ
and Zg are also separable.

Lemma 4.13 Suppose that A is a subgroup of a group G.

(a) Every subset of A which is closed in PT.G/ is also closed in PT.A/.

(b) If every finite-index subgroup of A is separable in G then every closed subset of PT.A/ is closed
in PT.G/.

Proof Claim (a) immediately follows from the observation that the intersection of A with any basic
closed subset from PT.G/ is either empty or is a basic closed subset of PT.A/.

If each finite-index subgroup of A is separable in G then, in view of Remark 4.12, every basic closed set
in PT.A/ is closed in the profinite topology of G. Claim (b) of the lemma now follows from the fact that
any closed subset of A is the intersection of basic closed sets.

Lemma 4.14 Let G be a group with subgroups A and B . Suppose that A0 6f A, B 0 6f B and A0B 0 is
separable in G. Then AB is separable in G.

Proof Let AD
Fm
iD1 aiA

0 and B D
Fn
jD1B

0bj . Then

AB D

m[
iD1

n[
jD1

aiA
0B 0bj ;

which is separable in G by Remark 4.12.
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The next two lemmas use the notation introduced in Sections 1.2 and 3.1.

Lemma 4.15 Let A and B be subgroups of a group G such that A4 B . If B is separable in G then so
are the double cosets AB and BA.

Proof By [42, Lemma 2.1]A\B has finite index inA, soAD
Fm
iD1 ai .A\B/, for some a1; : : : ; am2A.

It follows that AB D
Sm
iD1 aiB , so it is separable by Remark 4.12. The same remark also implies that

BAD .AB/�1 is separable in G.

The main use of the profinite topology in this paper stems from the following elementary facts.

Lemma 4.16 Let G be a group generated by a finite set X , and let P 6G be a subgroup. Suppose that
Z is a separable subset of P .

(a) If a finite subset U � P is disjoint from Z then there is a normal finite-index subgroup N Cf P
such that U \ZN D∅. Thus the image of U in the quotient P=N will be disjoint from the image
of Z.

(b) For every constant C � 0 there is a finite-index normal subgroup N Cf P such that

minX .ZN nZ/� C:

(c) For any finite subset A� P and any C � 0 there exists N Cf P such that

minX .aZN n aZ/� C for all a 2 A:

Proof For (a), let U D fu1; : : : ; umg � P . Since ui …Z and Z is separable in P , there exists Ni Cf P
such that uiNi \Z D ∅, for each i D 1; : : : ; m. We set N D

Tm
iD1Ni Cf P , so that uiN \Z D ∅.

That is, ui …ZN for all i D 1; : : : ; m. Therefore U \ZN D∅ and (a) has been proved.

Claim (b) follows by applying claim (a) to the finite subset U D fg 2 P nZ j jgjX < C g of P .

To prove (c), suppose that AD fa1; : : : ; akg � P . By Remark 4.12, ajZ is separable in P , for every
j D 1; : : : ; k, so, according to part (b), there exists Nj Cf P such that

minX .ajZNj n ajZ/� C for each j D 1; : : : ; k:

It is easy to see that the normal subgroup N D
Tk
jD1Nj Cf P enjoys the required property.

The following statement is well known; we include a proof for completeness.

Lemma 4.17 Let G be a group with subgroups K 6f H 6 G. If K is separable in G, then there is
L6f G such that L\H DK

Proof Since K is of finite index in H , we can write

H DK [Kh1[ � � � [Khm
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for some h1; : : : ; hm 2H nK. The subgroup K is separable in G, meaning that it is closed in PT.G/.
Following Remark 4.12, the union Kh1[ � � � [Khm is also closed in PT.G/. Thus the subset

.G nH/[K DG n .Kh1[ � � � [Khm/

is open in PT.G/ and contains the identity. It follows from the definition of the profinite topology that
there is a finite-index normal subgroup N Cf G with N � .G nH/[K. Observe that Khi \N D∅, for
every i D 1; : : : ; m, soN \H 6K. Now set LDKN 6f G. Then L\H DKN \H DK.N \H/DK,
as required.

5 Relatively hyperbolic groups

In this section we define relatively hyperbolic groups and collect various properties that will be used
throughout the paper.

5.1 Definition

We will define relatively hyperbolic groups following the approach of Osin (for full details, see [46]).

Definition 5.1 (relative generating set, relative presentation) Let G be a group, X �G a subset and
fH� j � 2 Ng a collection of subgroups of G. The group G is said to be generated by X relative to
fH� j � 2Ng if it is generated by XtH, where HD

F
�2N.H� nf1g/ (with the obvious map XtH!G).

If this is the case, then there is a surjection

F D F.X/� .��2NH�/!G;

where F.X/ denotes the free group on X . Suppose that the kernel of this map is the normal closure of a
subset R� F . Then G can equipped with the relative presentation

(5-1) hX;H� ; � 2 N jRi:

If X is a finite set, then G is said to be finitely generated relative to fH� j � 2 Ng. If R is also finite,
G is said to be finitely presented relative to fH� j � 2 Ng and the presentation above is a finite relative
presentation.

With the above notation, we call the Cayley graph �.G;X [H/ the relative Cayley graph of G with
respect to X and fH� j � 2Ng. Note that when X is itself a generating set of G, dX[H.g; h/� dX .g; h/,
for all g; h 2G.

Definition 5.2 (relative Dehn function) Suppose that G has a finite relative presentation (5-1) with
respect to a collection of subgroups fH� j � 2Ng. If w is a word in the free group F.X tH/, representing
the identity in G, then it is equal in F to a product of conjugates

w
F
D

nY
iD1

airia
�1
i ;
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where ai 2 F and ri 2 R, for each i . The relative area of the word w with respect to the relative
presentation, Arearel.w/, is the least number n among products of conjugates as above that are equal to
w in F .

A relative isoperimetric function of the above presentation is a function f WN!N such that Arearel.w/

is at most f .jwj/, for every freely reduced word w in F.X tH/ representing the identity in G. If an
isoperimetric function exists for the presentation, the smallest such function is called the relative Dehn
function of the presentation.

Definition 5.3 (relatively hyperbolic group) Let G be a group and let fH� j � 2Ng be a collection of
subgroups of G. If G admits a finite relative presentation with respect to this collection of subgroups
which has a well-defined linear relative Dehn function, it is called hyperbolic relative to fH� j � 2 Ng.
When it is clear what the relevant collection of subgroups is, we refer toG simply as a relatively hyperbolic
group. The groups fH� j � 2Ng are called the peripheral subgroups of the relatively hyperbolic group G,
and their conjugates in G are called maximal parabolic subgroups. Any subgroup of a maximal parabolic
subgroup is said to be parabolic.

Lemma 5.4 [46, Corollary 2.54] Suppose that G is a group generated by a finite set X and hyperbolic
relative to a collection of subgroups fH� j � 2 Ng, and let HD

F
�2N.H� n f1g/. Then the Cayley graph

�.G;X [H/ is ı-hyperbolic , for some ı � 0.

In the remainder of this section (namely, in Sections 5.2–5.4, we will assume that G is a group generated
by a finite subset X and hyperbolic relative to a finite collection of subgroups fH� j � 2Ng. As usual, we
will let HD

F
�2N.H� n f1g/.

5.2 Geodesics and quasigeodesics in relatively hyperbolic groups

Definition 5.5 (path components) Let p be a combinatorial path in �.G;X [ H/. A non-trivial
combinatorial subpath of p whose label consists entirely of elements of H� n f1g, for some � 2 N, is
called an H�-subpath of p.

An H�-subpath is called an H�-component if it is not contained in any strictly longer H�-subpath. We
will call a subpath of p an H-subpath (respectively, an H-component) if it is an H�-subpath (respectively,
an H�-component), for some � 2 N.

Definition 5.6 (connected and isolated components) Let p and q be edge paths in �.G;X [H/ and
suppose that s and t are H�-subpaths of p and q respectively, for some � 2 N. We say that s and t are
connected if s� and t� belong to the same left coset of H� in G. The latter means that for all vertices u of
s and v of t either uD v or there is an edge e in �.G;X[H/ with Lab.e/2H� nf1g and e�D u; eCD v.

If s is an H�-component of a path p and s is not connected to any other H�-component of p then we say
that s is isolated in p.
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Definition 5.7 (phase vertex) A vertex v of a combinatorial path p in �.G;X [H/ is called non-phase
if it is an interior vertex of an H-component of p (that is, if it lies in an H-component for which it is not
an endpoint). Otherwise v is called phase.

Definition 5.8 (backtracking) If all H-components of a combinatorial path p are isolated, then p is
said to be without backtracking. Otherwise we say that p has backtracking.

Remark 5.9 If p is a geodesic edge path in �.G;X [H/ then every H-component of p will consist of
a single edge, labelled by an element from H. Therefore every vertex of p will be phase. Moreover, it is
easy to see that p will be without backtracking.

The following is a basic observation about the lengths of paths in the relative Cayley graph whose
H-components are uniformly short.

Lemma 5.10 Let p be a path in �.G;X [H/ and suppose there is a constant ‚� 1 such that for any
H-component h of p, we have jhjX �‚. Then jpjX �‚`.p/.

Proof We can write p as a concatenation p D a0h1a1 � � � an�1hnan, where h1; : : : ; hn are the H-
components of p and a0; : : : ; an are subpaths of p all whose edges are labelled by elements of X˙1.

It follows from the triangle inequality that

jpjX D dX .p�; pC/�

nX
iD0

dX ..ai /�; .ai /C/C

nX
iD1

dX ..hi /�; .hi /C/:

Since each edge of ai is labelled by an element of X˙1, we have that dX ..ai /�; .ai /C/� `.ai /, for all
i D 0; : : : ; n. Moreover, dX ..hi /�; .hi /C/D jhi jX �‚`.hi /, for each i D 1; : : : ; n, by the hypothesis
of the lemma, as `.hi /� 1.

Combining the above three inequalities with the fact that ‚� 1, we obtain

jpjX �

nX
iD0

`.ai /C

nX
iD1

‚`.hi /�‚

� nX
iD0

`.ai /C

nX
iD1

`.hi /

�
D‚`.p/:

Lemma 5.11 [46, Lemma 3.1] There is a constant M � 1 such that if h1; : : : ; hn are isolated H-
components of a cycle q in �.G;X [H/, then

nX
iD1

jhi jX �M`.q/:

Lemma 5.12 For any � � 1, c � 0 and A � 0 there is a constant � D �.�; c; A/ � 0 such that the
following is true.

Suppose that p is a .�; c/-quasigeodesic path in �.G;X [H/ possessing an isolated H-component h
such that jhjX � �. Then jpjX � A.
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Proof Let M � 1 be the constant from Lemma 5.11, and set

(5-2) �DM.1C�/ACMc:

Let q be a path in �.G;X [H/, labelled by a word over X˙1, with endpoints q� D p� and qC D pC,
such that `.q/D jpjX .

Consider the cycle r D pq�1 in �.G;X [H/, formed by concatenating p and the inverse of q. By the
quasigeodesicity of p, `.p/� �jpjX[HC c � �jpjX C c. Now `.r/D `.p/C `.q/; therefore

(5-3) `.r/� .1C�/jpjX C c:

Since h is isolated in p it must also be an isolated H-component of the cycle r (because all edges of q
are labelled by letters from X˙1). Hence jhjX �M`.r/ by Lemma 5.11, so (5-3) implies that

(5-4) jpjX �
1

1C�
.`.r/� c/�

1

M.1C�/
.jhjX �Mc/:

Combining the above inequality with (5-2) and the assumption that jhjX � �, we obtain the desired bound
jpjX � A.

Proposition 5.13 [47, Proposition 3.2] There is a constant L� 0 such that if � is a geodesic triangle in
�.G;X [H/ and some side p is an isolated H-component of � then jpjX � L.

Lemma 5.14 There is a constant L� 0 such that if p1 and p2 are geodesic paths in �.G;X [H/ with
.p1/C D .p2/�, and s and t are connected H�-components of p1 and p2 respectively , for some � 2 N,
then dX .sC; t�/� L.

Proof Let L� 0 be the constant provided by Proposition 5.13.

Since the component s of p1 is connected to the component t of p2, we know that hD .sC/�1t� 2H� .
If h D 1 then sC D t� and there is nothing to prove, otherwise sC and t� are endpoints of an edge e
labelled by h in �.G;X [H/.

Consider the geodesic triangle � with vertices sC, .p1/C and t�, where the sides ŒsC; .p1/C� and
Œ.p1/C; t�� are chosen to be subpaths of p1 and p2 respectively, and the side ŒsC; t�� is the edge e.

If v 2 ŒsC; .p1/C� is a vertex belonging to the left coset sCH� then dX[H.s�; v/D 1 and sC 2 Œs�; v�
in p1. Since dX[H.s�; sC/D 1 and p1 is geodesic, we can conclude that v D sC. Similarly, the only
vertex of Œ.p1/C; t�� which belongs to the left coset t�H� D sCH� is t�. It follows that the edge e is an
isolated H�-component of �. Hence dX .sC; t�/� L by Proposition 5.13.

Proposition 5.15 [46, Theorem 3.26] Let � be a combinatorial geodesic triangle in �.G;X [H/ with
sides p, q and r . There is a constant � D �.G;H; X/ 2 N0 such that for any vertex u 2 p, there is a
vertex v 2 q[ r with dX .u; v/� � .

Definition 5.16 (k-similar paths) Let p and q be paths in �.G;X [H/, and let k � 0. The paths p
and q are said to be k-similar if dX .p�; q�/� k and dX .pC; qC/� k.
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Proposition 5.17 [46, Proposition 3.15, Lemma 3.21 and Theorem 3.23] For any ��1 and c; k�0 there
is a constant � D �.�; c; k/� 0 such that if p and q are k-similar .�; c/-quasigeodesics in �.G;X [H/

and p is without backtracking , then

(1) for every phase vertex u of p, there is a phase vertex v of q with dX .u; v/� �;

(2) every H-component s of p, with jsjX � �, is connected to an H-component of q.

Moreover , if q is also without backtracking then

(3) if s and t are connected H-components of p and q respectively, then

maxfdX .s�; t�/; dX .sC; tC/g � �:

5.3 Quasigeodesicity of paths with long components

One of the tools for proving Theorem 3.5 will be the next result of Martínez-Pedroza from [37].

Proposition 5.18 [37, Proposition 3.1] There are constants �0 � 0 and �0 � 1 such that the following
holds. If q D r0s1 � � � rnsnC1 is a concatenation of geodesic paths r0; s1; : : : ; rn; snC1 in �.G;X [H/

such that

(1) si is an H-component of q, for each i D 1; : : : ; nC 1,

(2) jsi jX � �0, for every i D 1; : : : ; nC 1,

(3) si is not connected to siC1, for every i D 1; : : : ; n,

then q is .�0; 0/-quasigeodesic in �.G;X [H/ without backtracking.

We will actually need a slightly more general version of Proposition 5.18, as follows.

Proposition 5.19 There exist constants � � 1 and c � 0 such that for every � � 0 there is �1 > 0

such that the following holds. Suppose that p D a0b1a1 � � � bnan is a concatenation of geodesic paths
a0; b1; : : : ; bn; an in �.G;X [H/ such that

(1) bi is an H-subpath of p, for each i D 1; : : : ; n,

(2) jbi jX � �1, for each i D 1; : : : ; n;

(3) bi is not connected to biC1, for every i D 1; : : : ; n� 1;

(4) if bi is connected to a component h of ai or ai�1 then jhjX � �, i D 1; : : : ; n.

Then p is a .�; c/-quasigeodesic without backtracking.

Proof The argument below employs the following trick: for each i D 1; : : : ; n, we replace the H-
component of p containing bi by a single edge si , and then embed the resulting path p0 into a larger
path q to which Proposition 5.18 can be applied. Since a subpath of a .�; c/-quasigeodesic path without
backtracking is again .�; c/-quasigeodesic and without backtracking, this will complete the proof. In

Algebraic & Geometric Topology, Volume 25 (2025)



422 Ashot Minasyan and Lawk Mineh

order to construct the path q we add an extra infinite peripheral subgroup Z by embedding G into a larger
relatively hyperbolic group G1.

Let us consider the free product G1 D G � Z, where Z D hzi is an infinite cyclic group. Since G
is hyperbolic relative to the family fH� j � 2 Ng, the group G1 is hyperbolic relative to the union
fH� j � 2 Ng [ fZg (this can be fairly easily deduced from the definition or from many existing
combination theorems for relatively hyperbolic groups, eg [45, Corollary 1.5]).

Note that G embeds in G1 and G1 is generated by the finite set X 0 DX t fzg. Let H0 DHtZ n f1g, so
that the Cayley graph �.G;X[H/ is naturally a subgraph of the Cayley graph �.G1; X 0[H0/. Therefore
we can think of p as a path in �.G1; X 0[H0/.

The normal form theorem for free products [35, Theorem IV.1.2] implies that the embedding of G into
G1 is isometric with respect to both proper and relative metrics; more precisely,

(5-5) dX .g; h/D dX 0.g; h/ and dX[H.g; h/D dX 0[H0.g; h/ for all g; h 2G:

An alternative way to see this is to use the retraction r WG1!G, such that r.x/D x for all x 2X and
r.z/D 1. Then r.X 0/DX [f1g, r.H�/DH� , for all � 2 N, and r.Z/D f1g.

Let �0 � 0 and �0 � 1 be the constants provided by Proposition 5.18 applied to the group G1, its finite
generating set X 0 and its Cayley graph �.G1; X 0[H0/. Set �1 D �0C 2�C 1 > 0.

For each i D 1; : : : ; n, let ti denote the H�i
-component of p containing the edge bi , �i 2 N. Note that

t1; : : : ; tn are pairwise distinct by condition (3), in particular no two of them share a common edge. In
view of Remark 5.9, for every i D 1; : : : ; n we can represent ti as a concatenation ti D hi�1bifi , where

� hi�1 is either the last edge and an H�i
-component of ai�1 if ai�1 ends with an H�i

-component,
or hi�1 is the trivial path, consisting of the vertex .ai�1/C, if ai�1 does not end with an H�i

-
component;

� fi is the first edge and an H�i
-component of ai if ai starts with an H�i

-component, or fi is the
trivial path, consisting of the vertex .ai /�, if ai does not start with an H�i

-component.

Note that for each i D 1; : : : ; n we have jhi�1jX � � and jfi jX � �, by condition (4). By (2) and the
triangle inequality we get

(5-6) jti jX � jbi jX � 2� � �0C 1 for i D 1; : : : ; n:

Therefore p decomposes as a concatenation

p D r0t1r1 � � � tnrn;

where ri is a subpath of ai , i D 0; : : : ; n, such that a0 D r0h0; a1 D f1r1h1; : : : ; an D fnrn.

By (5-6) the endpoints of the H�i
-component ti of p must be distinct; hence there is an edge si joining

them in �.G;X [H/, with Lab.si / 2H�i
n f1g, i D 1; : : : ; n. Now, (5-6) and (5-5) imply that

jsi jX 0 D jti jX 0 D jti jX � �0 for i D 1; : : : ; n:
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Choose k 2N so that jzkjX 0 � �0 and let snC1 be the edge in �.G1; X 0[H0/, starting at pC D .rn/C
and labelled by zk . Observe that jsnC1jX 0 D jzkjX 0 � �0.

Consider the path q in �.G1; X 0 [H0/, defined as the concatenation q D r0s1 � � � rnsnC1. By (5-5)
the paths r0; : : : ; rn are still geodesic in �.G1; X 0[H0/, and s1; : : : ; snC1 are H0-components of q, by
construction. Finally, si is not connected to siC1, for i D 1; : : : ; n � 1, because elements of G that
belong to different H�-cosets continue to do so in G1, and sn is not connected to snC1 because H�n

and Z are distinct peripheral subgroups of G1. Therefore all of the assumptions of Proposition 5.18 are
satisfied, which allows us to conclude that the path q is .�0; 0/-quasigeodesic without backtracking in
�.G1; X

0[H0/.

Consequently, the pathp0Dr0s1r1 � � � snrn is .�0;0/-quasigeodesic without backtracking in�.G1;X 0[H0/,
as a subpath of q. Since p0 only contains vertices and edges from �.G;X [H/, we see that p0 is also
.�0; 0/-quasigeodesic without backtracking in �.G;X [H/.

Now, the original path p can be obtained by replacing the edges s1; : : : ; sn of p0 by paths t1; : : : ; tn, each
of which has length at most 3. Hence, by Lemma 4.4, p is .3�0; 18�0C 6/-quasigeodesic. Since p0

is without backtracking and every H-component of p is connected to an H-component of p0 (and vice
versa), by construction, the path p must also be without backtracking.

Thus we have shown that the path p is .�; c/-quasigeodesic without backtracking in �.G;X [H/, where
�D 3�0 and c D 18�0C 6.

5.4 Quasiconvex subsets in relatively hyperbolic groups

In this paper we shall use the definition of a relatively quasiconvex subgroup given by Osin in [46]. For
convenience we state it in the case of arbitrary subsets rather than just subgroups.

Definition 5.20 (relatively quasiconvex subset) A subset Q �G is said to be relatively quasiconvex
(with respect to fH� j � 2 Ng) if there exists "� 0 such that for every geodesic path q in �.G;X [H/,
with q�; qC 2Q, and every vertex v of q we have dX .v;Q/� ".

Any number "� 0 as above will be called a quasiconvexity constant of Q.

Osin proved that relative quasiconvexity of a subset is independent of the choice of a finite generating set
X of G; see [46, Proposition 4.10] — the proof there is stated for relatively quasiconvex subgroups but
actually works more generally for relatively quasiconvex subsets.

We outline some basic properties of quasiconvex subsets and subgroups of G in the next two lemmas.

Lemma 5.21 Let Q be a relatively quasiconvex subset of G. Then

(a) the subset gQ is relatively quasiconvex, for every g 2G;

(b) if T �G lies at a finite dX -Hausdorff distance from Q then T is relatively quasiconvex.
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Proof Claim (a) follows immediately from the fact that left multiplication by g induces an isometry of
G with respect to both the proper metric dX and the relative metric dX[H.

To prove claim (b), suppose that "� 0 is a quasiconvexity constant of Q and the dX -Hausdorff distance
between Q and T is less than k 2 N. Consider any geodesic path t in �.G;X [H/ with t�; tC 2 T ,
and take any vertex v of t . Then there are x; y 2 Q such that dX .x; t�/ � k and dX .y; tC/ � k. Let
q be any geodesic connecting x with y. Then q is k-similar to t , hence there is a vertex u of q such
that dX .v; u/� �, where � D �.1; 0; k/� 0 is the global constant given by Proposition 5.17 applied to
k-similar geodesics. By the relative quasiconvexity of Q, there exists w 2Q such that dX .u;w/ � ".
Moreover, dX .w; T /� k by assumption. Therefore dX .v; T /� �C"Ck, thus T is relatively quasiconvex
in G.

Lemma 5.22 Suppose thatQ6G is a relatively quasiconvex subgroup. Then for all g 2G andQ06f Q
the subgroups gQg�1 and Q0 are relatively quasiconvex in G.

Proof By claim (a) of Lemma 5.21, the coset gQ is relatively quasiconvex and the dX -Hausdorff
distance between this coset and gQg�1 is at most jgjX ; hence gQg�1 is relatively quasiconvex in G by
claim (b) of the same lemma.

Suppose that QD
Sm
iD1Q

0hi , where hi 2Q, i D 1; : : : ; m. Then the dX -Hausdorff distance between Q
andQ0 is bounded above by maxfjhi jX j 1� i �mg, soQ0 is relatively quasiconvex by Lemma 5.21(b).

Corollary 5.23 Any parabolic subgroup of G is relatively quasiconvex.

Proof Let H D gQg�1 be a parabolic subgroup, where g 2 G and Q 6 H� , for some � 2 N. The
subgroup Q is relatively quasiconvex in G (with quasiconvexity constant 0), because any geodesic
connecting two elements of Q consists of a single edge in �.G;X [H/. Therefore H is relatively
quasiconvex by Lemma 5.22.

Lemma 5.24 Let P be a maximal parabolic subgroup of G and let Q be a finitely generated relatively
quasiconvex subgroup of G. Then the subgroups P and Q\P are finitely generated.

Proof The fact that each H� is finitely generated, provided G is finitely generated, was proved by Osin
in [46, Theorem 1.1].

Now, Hruska [30, Theorem 9.1] proved that every quasiconvex subgroup Q of G is itself relatively
hyperbolic and maximal parabolic subgroups of Q are precisely the infinite intersections of Q with
maximal parabolic subgroups of G. In other words, if P 6G is maximal parabolic, then Q\P is either
finite or a maximal parabolic subgroup of Q. Combined with Osin’s result [46, Theorem 1.1] mentioned
above we can conclude that if Q is finitely generated then so is Q\P , as required.

The following property of quasiconvex subgroups will be useful.

Algebraic & Geometric Topology, Volume 25 (2025)



Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 425

Lemma 5.25 Let Q;R 6G be relatively quasiconvex subgroups of G. For every � � 0 there exists a
constant �D �.�/� 0 such that the following holds.

Suppose x2G, a2Q and b2R are some elements , Œx; xa� and Œx; xb� are geodesic paths in �.G;X[H/,
and u2 Œx; xa� and v 2 Œx; xb� are vertices such that dX .u; v/� �. Then there is an element z 2x.Q\R/
such that dX .u; z/� � and dX .v; z/� �.

Proof Denote by " � 0 a quasiconvexity constant of the subgroups Q and R. After applying the left
translation by x�1, which is an isometry with respect to both metrics dX and dX[H, we can assume that
x D 1. Let K 0 DK 0.Q;R; "C �/ be the constant given by Lemma 4.1.

Since x D 1 2 Q \ R, xa D a 2 Q and xb D b 2 R, by the relative quasiconvexity of Q and R
we know that u 2 NX .Q; "/ and v 2 NX .R; "/. By the assumptions dX .u; v/ � �, it follows that
u 2NX .Q; "C �/\NX .R; "C �/; hence u 2NX .Q\R;K 0/ by Lemma 4.1.

Thus there exists z 2 Q \R such that dX .u; z/ � K 0, and, hence, dX .v; z/ � K 0C � by the triangle
inequality. Therefore the statement of the lemma holds for �DK 0C �.

The next combination theorem was proved by Martínez-Pedroza.

Theorem 5.26 [37, Theorem 1.1] Let G be a relatively hyperbolic group generated by a finite set X .
Suppose that Q is a relatively quasiconvex subgroup of G, P is a maximal parabolic subgroup of G
and D DQ\P . There is a constant C � 0 such that the following holds. If H 6 P is any subgroup
satisfying

(1) H \QDD, and

(2) minX .H nD/� C ,

then the subgroup AD hH;Qi is relatively quasiconvex in G and is naturally isomorphic to the amalga-
mated free product H �DQ.

Moreover , for every maximal parabolic subgroup T of G, there exists u 2 A such that either

A\T � uQu�1 or A\T � uHu�1:

Part II Quasiconvexity of virtual joins

This part of the paper is mostly devoted to the proofs of Theorems 3.5 and 1.2. Let us start by giving
brief outlines of the arguments.

Suppose G is a group generated by finite set X and hyperbolic relative to a collection of subgroups
fH� j � 2Ng. Denote HD

F
�2NH� n f1g and take any A� 0. Consider two finitely generated relatively

quasiconvex subgroups Q;R 6G. Set S DQ\R and suppose that Q0 6Q and R0 6R are subgroups
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satisfying conditions (C1)–(C5) from Section 3.1, with some finite collection of maximal parabolic
subgroups P of G (which is independent of A) and parameters B and C that are sufficiently large with
respect to A.

Every element g 2 hQ0; R0i can be written as a product of elements of Q0 and R0, which gives rise to
a broken geodesic line in �.G;X [H/ (not necessarily uniquely), whose label represents g in G. We
choose a path p from the collection of such broken lines, representing g, that is minimal in a certain
sense. The path p may fail to be uniformly quasigeodesic, as it may travel through H�-cosets for an
arbitrarily long time. We do, however, have some metric control over such instances of backtracking,
using the fact that Q0 and R0 satisfy conditions (C1)–(C5) and the minimality of p.

We construct a new path from p, which we call the shortcutting of p, that turns out to be uniformly
quasigeodesic. Informally speaking, the shortcutting of p is obtained by replacing each maximal instance
of backtracking in consecutive geodesic segments of p with a single edge, then connecting these edges in
sequence by geodesics. The resulting path can be seen to satisfy the hypotheses of Proposition 5.19. It
follows that the shortcutting of p is uniformly quasigeodesic, and hence hQ0; R0i is relatively quasiconvex.
Properties (P2) and (P3) also follow from this quasigeodesicity, giving us Theorem 3.5.

Now suppose that G is QCERF and its peripheral subgroups are double coset separable. In Theorem 11.3
we use the separability assumptions on G and fH� j � 2 Ng to deduce the existence of a finite-index
subgroup M 6f G such that Q0 DQ\M 6f Q;R0 DR\M 6f R satisfy conditions (C1)–(C5) with
constants B and C large enough to apply Theorem 3.5 (as suggested in Remark 3.4). Conditions (C1) and
(C4) are essentially automatic. Conditions (C2), (C3) and (C5) can be assured to hold for the subgroups
Q0 and R0 using Lemma 4.16 by the QCERF condition on G, separability of double cosets PS (where
P is one of finitely many maximal parabolic subgroups) and double coset separability of the peripheral
subgroups, respectively.

The remaining technical difficulty is in showing that the double cosets of the form PS as above are
separable in G. To this end, we prove a general result about lifting separability of certain double cosets in
amalgamated free products. This is then combined with a result of Martínez-Pedroza (Theorem 5.26),
allowing us to deduce Theorem 1.2 from Theorem 3.5.

6 Path representatives

Let us set the notation that will be used in the next few sections.

Convention 6.1 We fix a group G, generated by a finite set X , which is hyperbolic relative to a finite
family of subgroups fH� j � 2 Ng. We let H D

F
�2N.H� n f1g/. It follows that the Cayley graph

�.G;X [H/ is ı-hyperbolic, for some ı 2N (see Lemma 5.4).

Furthermore, we assume that Q;R 6G are fixed relatively quasiconvex subgroups of G, with a quasi-
convexity constant "� 0, and denote S DQ\R.
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In this section Q0 and R0 will denote some subgroups of Q and R respectively. We will introduce path
representatives of elements in hQ0; R0i and will order such representatives by their types. This will be
crucial in our proof of Theorem 3.5.

Definition 6.2 (path representative, I) Consider an arbitrary element g 2 hQ0; R0i. Let p D p1 � � �pn
be a broken line in �.G;X [H/ with geodesic segments p1; : : : ; pn, such that Qp D g and Qpi 2Q0[R0

for each i 2 f1; : : : ; ng. We will call p a path representative of g.

To choose an optimal path representative we define their types.

Definition 6.3 (type of a path representative, I) Suppose that p D p1 � � �pn is a broken line in
�.G;X[H/. For each i D 1; : : : ; n, let Ti denote the set of all H-components of pi , and let T D

Sn
iD1 Ti .

We define the type �.p/ of p to be the triple

�.p/D

�
n; `.p/;

X
t2T

jt jX

�
2N0

3;

where `.p/D
Pn
iD1 `.pi / is the length of p.

Definition 6.4 (minimal type) Given g2 hQ0; R0i, the set S of all path representatives of g is non-empty.
Therefore the subset �.S/D f�.p/ j p 2 Sg �N0

3, where N0
3 is equipped with the lexicographic order,

will have a unique minimal element.

We will say that pDp1 � � �pn is a path representative of g of minimal type if �.p/ is the minimal element
of �.S/.

Remark 6.5 If p1 and p2 are paths with .p1/C D .p2/� whose labels both represent elements of Q0

(or, respectively, both of R0), then the label of any geodesic Œ.p1/�; .p2/C� also represents an element
of Q0 (respectively, R0). Hence in a path representative of g 2 hQ0; R0i of minimal type, the labels of
the consecutive segments necessarily alternate between representing elements of Q0 n .Q0 \R0/ and
R0 n .Q0\R0/, whenever g is not itself an element of Q0\R0.

The minimality of the type of a path representative is thus a numerical condition on the total lengths
of the paths pi and the total lengths of their components. In the next few sections we will study local
properties induced by this global condition. The first such property is stated in the next lemma.

Notation 6.6 Let x; y; z 2G. We will write hx; yirel
z D

1
2
.dX[H.x; z/CdX[H.y; z/�dX[H.x; y// to

denote the Gromov product of x and y with respect to z in the relative metric dX[H.

Lemma 6.7 (Gromov products are bounded) There is a constant C0 � 0 such that the following holds.

Let Q0 6Q and R0 6R be subgroups satisfying condition (C1). If p D p1 � � �pn is a minimal type path
representative of an element g 2 hQ0; R0i and f0; : : : ; fn 2G are the nodes of p (that is , fi�1 D .pi /�,
for i D 1; : : : ; n, and fn D .pn/C) then hfi�1; fiC1irel

fi
� C0 for each i D 1; : : : ; n� 1.
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fi�1

fi

fiC1

z

u1
v1

u v

Figure 1: We obtain a different path representative for g by replacing pi and piC1 with geodesics
from fi�1 to z to fiC1.

Proof Let � 2N0 be the constant from Proposition 5.15 and let �D�.�/� 0 be given by Lemma 5.25.
Set C0 D �C ıC 2� C 2, and assume that p D p1 � � �pn is a path representative of g 2 hQ0; R0i of
minimal type.

Take any i 2 f1; : : : ; n� 1g. Choose vertices u 2 pi and v 2 piC1 so that

dX[H.fi ; u/D dX[H.fi ; v/D bhfi�1; fiC1i
rel
fi
c:

As �.G;X [H/ is ı-hyperbolic, we must have dX[H.u; v/� ı.

If hfi�1; fiC1irel
fi
< C0 then we are done, so suppose otherwise. Then dX[H.u; fi /� ıC � C 1 2N, so

there is a vertex u1 on the subpath Œu; fi � of pi such that

dX[H.u1; u/D ıC � C 1:

Applying Proposition 5.15 to the geodesic triangle � with sides Œu; fi �, Œfi ; v� and Œu; v� (here we choose
Œfi ; v� to be a subpath of piC1), we can find some vertex v1 2 Œu; v�[ Œfi ; v� with dX .v1; u1/ � � . If
v1 2 Œu; v�, then, by the triangle inequality,

dX[H.u1; u/� dX[H.u1; v1/C dX[H.u; v/� � C ı;

which would contradict the choice of u1. Therefore it must be that v1 2 Œfi ; v� (see Figure 1).

Since the path representative p has minimal type, in view of Remark 6.5 we must have either Qpi 2Q0

and QpiC1 2 R0 or Qpi 2 R0 and QpiC1 2 Q0. Without loss of generality let us assume the former. We
can apply Lemma 5.25 to find z 2 fi .Q \ R/ with dX .u1; z/ � � and dX .v1; z/ � �. Let p0i be a
geodesic path in �.G;X [H/ joining fi�1 D .pi /� with z and let p0iC1 be a geodesic path joining z
with fiC1 D .piC1/C. Observe that fi�1 2 fiQ0 and Q\R �Q0 by (C1), whence

Qp0i D f
�1
i�1z 2Q

0f �1i fi .Q\R/DQ
0:
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Similarly, Qp0iC1 2R
0. It follows that the path p0 D p1 � � �pi�1p0ip

0
iC1piC2 � � �pn is also a path represen-

tative of the same element g 2 hQ0; R0i.

Since p has minimal type, by the assumption, it must be that `.pi /C `.piC1/� `.p0i /C `.p
0
iC1/, which

can be rewritten as

(6-1) dX[H.fi�1; fi /C dX[H.fi ; fiC1/� dX[H.fi�1; z/C dX[H.z; fiC1/:

Since u1 2 pi , we have dX[H.fi�1; fi /D dX[H.fi�1; u1/C dX[H.u1; fi /. On the other hand,

dX[H.fi�1; z/� dX[H.fi�1; u1/C dX[H.u1; z/� dX[H.fi�1; u1/C�;

by the triangle inequality. Similarly,

dX[H.fi ; fiC1/D dX[H.fi ; v1/C dX[H.v1; fiC1/ and dX[H.z; fiC1/� dX[H.v1; fiC1/C�:

Combining the above inequalities with (6-1), we obtain

(6-2) dX[H.u1; fi /C dX[H.fi ; v1/� 2�:

Now, by construction, we have

(6-3) dX[H.u1; fi /D dX[H.u; fi /� dX[H.u1; u/D bhfi�1; fiC1i
rel
fi
c� .ıC � C 1/:

On the other hand, since dX[H.v1; u1/� � , we achieve

(6-4) dX[H.fi ; v1/� dX[H.u1; fi /� dX[H.v1; u1/� bhfi�1; fiC1i
rel
fi
c� .ıC 2� C 1/:

After combining (6-3), (6-4) and (6-2), we obtain

2bhfi�1; fiC1i
rel
fi
c� .2ıC 3� C 2/� 2�:

Therefore, we can conclude that hfi�1; fiC1irel
fi
� �C ıC 2� C 2D C0, as required.

7 Adjacent backtracking in path representatives of minimal type

In this section we continue working under Convention 6.1. Our goal here is to study the possible
backtracking within two adjacent segments in a minimal type path representative.

Lemma 7.1 For all non-negative numbers � and � there exists � D �.�; �/� 0 such that the following
holds.

Suppose that Q0 6Q and R0 6R are subgroups satisfying (C1), g 2 hQ0; R0i and pD p1 � � �pn is a path
representative of g of minimal type. If for some i 2 f1; : : : ; n� 1g, s and t are connected H-components
of pi and piC1 respectively , such that dX .s�; tC/� � and dX .sC; .pi /C/� �, then jsjX � � and jt jX � � .

Proof Let �D �.�/� 0 be the constant from Lemma 5.25. Since jX j<1 and jNj<1 we can define
the constant k � 0 as

(7-1) k DmaxfK 0.Q\R; cH�c�1; �C�/ j � 2 N; c 2G; jcjX � �g;
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.pi /C D x

˛ ˇ

xaD sC t� D xb

u 2 xaH�a
�1

s w t

s� e

wa wb

f
tC

.pi /� 2 xQ
0 z 2 x.Q\R/ .piC1/C 2 xR

0

Figure 2: Illustration of Lemma 7.1.

where for each c 2 G and � 2 N the constant K 0.Q\R; cH�c�1; �C�/ is given by Lemma 4.1. Let
L� 0 be the constant from Lemma 5.14 and set � D 2kC 2�C �CL� 0.

Let p D p1 � � �pn be a path representative of some g 2 hQ0; R0i of minimal type. Suppose that s and t
are connected H�-components of pi and piC1 respectively, for some i 2 f1; : : : ; n� 1g and � 2 N, such
that dX .s�; tC/� � and dX .sC; .pi /C/� � .

Note that, by Lemma 5.14,

(7-2) dX .sC; t�/� L:

Denote x D .pi /C D .piC1/� 2G, aD x�1sC 2G and b D x�1t� 2G; see Figure 2.

Note that

(7-3) aH� D bH� ; hence aH�a�1 D bH�b�1;

because the H�-components s and t are connected. Using the lemma hypotheses and (7-2) we also have

(7-4) jajX D dX .x; sC/� � and jbjX � dX .x; sC/C dX .sC; t�/� �CL:

In view of Remark 6.5, without loss of generality we can assume that Lab.pi / represents an element of
Q0 and Lab.piC1/ represents an element of R0 in G (the other case can be treated similarly). Applying
Lemma 5.25, we can find z 2 x.Q\R/ such that dX .s�; z/� �.

Consider the element uD s�a�1 D xaQs�1a�1 2 xaH�a�1, and observe that dX .s�; u/D ja�1jX � �.
On the other hand, dX .s�; x.Q\R//� dX .s�; z/� �, whence

s� 2NX .x.Q\R/; �C�/\NX .xaH�a
�1; �C�/:
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Therefore, according to Lemma 4.1, there exists w 2 x.Q\R\ aH�a�1/ such that

(7-5) dX .s�; w/� k;

where k � 0 is the constant defined in (7-1).

Let ˛ be the subpath of pi from sC D xa to .pi /C D x. Choose the geodesic path Œwa;w� as the
translate wx�1˛. Observe that s� 2 xaH� and wa 2 xaH�a�1a D xaH� lie in the same H�-coset.
Thus dX[H.s�; wa/� 1; if s� Dwa we let e be the trivial path in �.G;X [H/ consisting of the single
vertex s�, and otherwise we let e be the edge of �.G;X [H/ labelled by an element of H� n f1g that
joins s� to wa. Define the path q in �.G;X [H/ as the concatenation

(7-6) q D Œ.pi /�; s��eŒwa;w�;

where Œ.pi /�; s�� is chosen as the initial segment of pi .

Since `.e/� 1D dX[H.s�; sC/, we can bound the length of the path q from above as follows:

(7-7) `.q/D dX[H..pi /�; s�/C `.e/C dX[H.wa;w/

� dX[H..pi /�; s�/C dX[H.s�; sC/C dX[H.xa; x/D `.pi /:

Now we construct a similar path from w to .piC1/C. Let ˇ be the subpath of piC1 from .piC1/� D x

to t� D xb. Choose the geodesic path Œw;wb� as the translate wx�1ˇ. Recall that tC 2 xbH� and note
that the inclusion w 2 xaH�a�1, together with (7-3), imply that wb 2 xbH� also. If tC D wb then let
f be the trivial path in �.G;X [H/ consisting of the single vertex tC, otherwise let f be the edge
in �.G;X [H/ joining the vertices wb and tC with Lab.f / 2H� n f1g. We now define the path r in
�.G;X [H/ as the concatenation

(7-8) r D Œw;wb�f ŒtC; .piC1/C�;

where ŒtC; .piC1/C� is chosen as the ending segment of piC1. Similarly to the case of q we can estimate
that

(7-9) `.r/� `.piC1/:

Note that since q� D .pi /� D x Qp�1i 2 xQ
0, qC D w 2 x.Q\R/ and Q\R �Q0, we have Qq 2Q0.

Similarly, Qr 2R0.

Let p0i be a geodesic path from q� D .pi /� to qC D w, and let p0iC1 be a geodesic path from w D r� to
.piC1/CD rC. Since Qp0i D Qq 2Q

0 and Qp0iC1D Qr 2R
0, the broken line p0Dp1 � � �pi�1p0ip

0
iC1piC2 � � �pn

is a path representative of the same element g 2G.

If at least one of the paths q, r is not geodesic in �.G;X [H/, then, in view of (7-7) and (7-9) we have

`.p0i /C `.p
0
iC1/ < `.q/C `.r/� `.pi /C `.piC1/I

hence `.p/D
Pn
iD1 `.pi / > `.p

0/, contradicting the minimality of the type of p.
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Hence both q and r must be geodesic in �.G;X [ H/, so we can further assume that p0i D q and
p0iC1D r . Moreover, the inequality `.p/� `.p0/ must hold by the minimality of the type of p. Therefore
`.pi /C`.piC1/�`.q/C`.r/, which, in view of (7-7) and (7-9), implies that `.q/D`.pi /, `.r/D`.piC1/
and `.p/D `.p0/. In particular, e and f are actual edges of �.G;X [H/ (and not trivial paths).

The definition (7-6) of q implies that Lab.q/ can differ from Lab.pi / in at most one letter, which is the
label of the H�-component e in Lab.q/ and the label of the H�-component s in Lab.pi /. Indeed,

Lab.pi /D Lab.Œ.pi /�; s��/Lab.s/Lab.˛/ and Lab.q/D Lab.Œ.pi /�; s��/Lab.e/Lab.˛/;

where we used the fact that Œwa;w� is the left translate of ˛, by definition, and hence it has the same label
as ˛.

Similarly, (7-8) implies Lab.r/ can differ from Lab.pi / in at most one letter which is the label of f in r
and the label of t in piC1. The minimality of the type of p therefore implies that

(7-10) jsjX Cjt jX � jejX Cjf jX :

Now, using the triangle inequality, (7-5) and (7-4) we obtain

(7-11) jejX D dX .s�; wa/� dX .s�; w/C dX .w;wa/� kCjajX � kC �:

To estimate jf jX we also use the inequality dX .s�; tC/� �:

(7-12) jf jX D dX .tC; wb/� dX .tC; w/CjbjX

� dX .tC; s�/C dX .s�; w/C �CL� �C kC �CL:

Combining (7-10)–(7-12) together, we achieve

maxfjsjX ; jt jXg � jejX Cjf jX � 2kC 2�C �CLD �:

This inequality completes the proof of the lemma.

The following auxiliary definition will only be used in the remainder of this section.

Definition 7.2 Let C0 � 0 be the constant provided by Lemma 6.7, let L� 0 be the constant given by
Lemma 5.14 and let � D �.1; 0; L/� 0 be the constant from Proposition 5.17.

Define the sequences .�j /j2N , .�j /j2N and .�j /j2N of non-negative real numbers as follows.

Set �1 D �, �1 D C0C 1 and �1 Dmaxf�; �.�1; �1/g, where �.�1; �1/ is given by Lemma 7.1.

Now suppose that j > 1 and the first j � 1 members of the three sequences have already been defined.
Then we set

�j D �; �j D C0C 1C

j�1X
kD1

�k; �j Dmaxf�; �.�j ; �j /g;

where �.�j ; �j / is given by Lemma 7.1.
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Lemma 7.3 There exists a constant C1 � 0 such that the following is true.

Let Q0 6 Q and R0 6 R be subgroups satisfying (C1) and let p D p1 � � �pn be a minimal type path
representative for an element g2hQ0; R0i. Suppose that , for some i 2f1; : : : ; n�1g, q and r are connected
H-components of pi and piC1 respectively. Then dX .qC; .pi /C/� C1 and dX ..pi /C; r�/� C1.

Proof Denote x D .pi /C D .piC1/� 2G. First, let us show that

(7-13) dX[H.qC; x/� C0C 1;

where C0 � 0 is the global constant provided by Lemma 6.7. Indeed, the latter lemma states that
h.pi /�; .piC1/Ci

rel
x �C0. Since qC and r� are points on the geodesics pi and piC1, Remark 4.6 implies

that
hqC; r�i

rel
x � h.pi /�; .piC1/Ci

rel
x � C0:

Consequently,

C0 � hqC; r�i
rel
x D

1
2

�
dX[H.x; qC/C dX[H.x; r�/� dX[H.qC; r�/

�
�
1
2

�
2dX[H.x; qC/� 2dX[H.qC; r�/

�
� dX[H.x; qC/� 1;

where the last inequality used the fact that dX[H.qC; r�/� 1, which is true because q and r are connected
H-components. This establishes the inequality (7-13).

Let ˛ denote the subpath of pi starting at qC and ending at x, and let ˇ denote the subpath of piC1
starting at x and ending at r�. Let s1; : : : ; sl , l 2N0, be the set of all H-components of ˛ listed in the
reverse order of their occurrence. That is, s1 is the last H-component of ˛ (closest to ˛C D x) and sl is
the first H-component of ˛ (closest to ˛� D qC). Note that, by (7-13),

(7-14) l � `.˛/D dX[H.x; qC/� C0C 1:

Let L� 0 be the constant given by Lemma 5.14, then

(7-15) dX .˛�; ˇC/D dX .qC; r�/� L:

It follows that the geodesic paths ˛ and ˇ�1 are L-similar in �.G;X [H/. Let � D �.1; 0; L/ � 0 be
the constant provided by Proposition 5.17.

We will now prove the following.

Claim 7.4 For each j D 1; : : : ; l we have

(7-16) jsj jX � �j ;

where �j � 0 is given by Definition 7.2.

We will establish the claim by induction on j . For the base of induction, j D 1, note that if js1jX < �
then the inequality js1jX � �1 will be true by definition of �1. Thus we can suppose that js1jX � �.
In this case, by Proposition 5.17, s1 must be connected to some H-component of ˇ�1. Claim (3) of
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the same proposition implies that there is an H-component t1 of ˇ, such that s1 is connected to t1 and
dX ..s1/�; .t1/C/� �. Note that, by construction, s1 and t1 are also connected H-components of pi and
piC1 respectively.

Observe that the subpath of ˛ from .s1/C to x is labelled by letters from X˙1 because it has no H-
components. Therefore dX ..s1/C; x/� `.˛/�C0C1. Consequently, we can apply Lemma 7.1 to deduce
that js1jX � �.�1; �1/, where �1 D � and �1 D C0C 1.

Thus we have shown that js1jX � �1, where �1 Dmaxf�; �.�1; �1/g, and the base of induction has been
established.

Now, suppose that j > 1 and inequality (7-16) has been proved for all strictly smaller values of j .
If jsj jX < � then are done, because �j � � by definition. So we can assume that jsj jX � �. As
before, we can use Proposition 5.17, to find an H-component tj of ˇ such that sj is connected to tj and
dX ..sj /�; .tj /C/� �.

By construction, s1; : : : ; sj�1 is the list of all H-components of the subpath Œ.sj /C; x� of ˛; hence

dX ..sj /C; x/� `.˛/C

j�1X
kD1

jskjX � C0C 1C

j�1X
kD1

�k;

where the second inequality used (7-14) and the induction hypothesis. This allows us to apply Lemma 7.1
again, and conclude that jsj jX � �.�j ; �j /, where �j D � and �j D C0C 1C

Pj�1

kD1
�k .

Thus, jsj jX �maxf�; �.�j ; �j /g D �j , as required. Hence the claim has been proved by induction on j .

We are finally ready to prove the main statement of the lemma. Since s1; : : : ; sl is the list of all H-
components of ˛, we can combine the inequalities (7-14) and (7-16) to achieve

dX .qC; .pi /C/D j˛jX � `.˛/C

lX
jD1

jsj jX � C0C 1C

lX
jD1

�j � C0C 1C

bC0C1cX
jD1

�j :

On the other hand, by the triangle inequality and (7-15), we have

dX ..pi /C; r�/� LC dX .qC; .pi /C/� LCC0C 1C

bC0C1cX
jD1

�j :

We have shown that the constant C1DLCC0C1C
PbC0C1c
jD1 �j >0 is an upper bound for dX .qC; .pi /C/

and dX ..pi /C; r�/; thus the lemma is proved.

Definition 7.5 (consecutive, adjacent and multiple backtracking) Let p D p1 � � �pn be a broken line
in �.G;X [H/. Suppose that for some i and j , with 1 � i < j � n, and � 2 N there exist pairwise
connected H�-components hi ; hiC1; : : : ; hj of the paths pi ; piC1; : : : ; pj , respectively. Then we will
say that p has consecutive backtracking along the components hi ; : : : ; hj of pi ; : : : ; pj . Moreover, if
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j D i C 1, we will call it an instance of adjacent backtracking, while if j > i C 1 will use the term
multiple backtracking.

The next lemma shows that, among path representatives of minimal type, instances of adjacent backtracking
where at least one of the components is sufficiently long with respect to the proper metric dX must have
initial and terminal vertices far apart in dX .

Lemma 7.6 (adjacent backtracking is long) For any � � 0 there is ‚0 D ‚0.�/ 2 N such that the
following holds.

Let Q0 6 Q and R0 6 R be subgroups satisfying (C1) and let p D p1 � � �pn be a minimal type path
representative for an element g 2 hQ0; R0i. Suppose that for some i 2 f1; : : : ; n� 1g the paths pi and
piC1 have connected H-components q and r respectively, satisfying

maxfjqjX ; jr jXg �‚0:

Then dX .q�; rC/� �.

Proof For any � � 0 we can define ‚0 D b�.�; C1/cC1, where C1 is the constant from Lemma 7.3 and
�.�; C1/ is provided by Lemma 7.1.

It follows that if dX .q�; rC/ < � then jqjX < ‚0 and jr jX < ‚0, which is the contrapositive of the
required statement.

8 Multiple backtracking in path representatives of minimal type

As before, we keep working under Convention 6.1. In this section we deal with multiple backtracking in
path representatives of elements from hQ0; R0i. Proposition 8.4 below uses condition (C3) to show that
any instance of multiple backtracking essentially takes place inside a parabolic subgroup. In order to
achieve this we first prove two auxiliary statements.

Notation 8.1 Throughout this section C1 � 0 will be the constant given by Lemma 7.3 and P1 will
denote the finite collection of parabolic subgroups of G defined by

P1 D ftH�t
�1
j � 2 N; jt jX � C1g:

Consider the subset O D fo 2 PS j P 2P1; jojX � 2C1g of G. Since jOj<1, we can choose and fix a
finite subset � � S such that every element o 2O can be written as oD f h, where f 2 P , for some
P 2 P1, and h 2�. We define a constant E by

(8-1) E DmaxfjhjX j h 2�g � 0:

Lemma 8.2 There exists a constant D � 0 such that the following holds.

Let � 2 N and b 2G be an element with jbjX � C1, so that P D bH�b�1 2 P1, and let p be a geodesic
path in �.G;X [H/ with Qp 2Q[R.
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v

2 xQ

Figure 3: Illustration of Lemma 8.2.

Suppose there is a vertex v of p and an element u2P such that v 2PbD bH� and u�1p� 2 S DQ\R.
Then there exists a geodesic path p0 in �.G;X [H/ such that

� p0� D u and dX .p0C; v/�D;

� if Qp 2Q then Qp0 2Q\P , otherwise Qp0 2R\P .

Proof Let K DmaxfC1; "g � 0, where " is the quasiconvexity constant of Q and R, and let

(8-2) D DmaxfK 0.Q;P;K/;K 0.R; P;K/ j P 2 P1g;

where K 0.Q;P;K/ and K 0.R; P;K/ are obtained from Lemma 4.1.

Denote x D p� 2 G and assume, without loss of generality, that Qp 2 Q (the case Qp 2 R can be
treated similarly). By the quasiconvexity of Q, we have that dX .v; xQ/ � ". Moreover, xQ D uQ as
u�1x 2 S �Q.

By the assumptions, vb�1 2 P ; hence dX .v; P /� jbjX � C1. Since uP D P we see that

v 2NX .uQ; "/\NX .uP; C1/:

Applying Lemma 4.1, we find w 2 u.Q\P / such that dX .v; w/�D (see Figure 3).

Let p0 be any geodesic in �.G;X [H/ starting at u and ending at w. It is easy to see that p0 satisfies all
of the required properties, so the lemma is proved.

The next lemma describes how condition (C3) is used in this paper.

Lemma 8.3 Assume that subgroups Q0 6Q and R0 6R satisfy conditions (C1) and (C3) with constant
C and family P such that C � 2C1C1 and P1 �P. Let P D bH�b�1 2P1, for some � 2N and b 2G,
with jbjX � C1, and let p be a path in �.G;X [H/ with Qp 2Q0[R0.

Suppose that there is a vertex v of p and an element u 2 P satisfying u�1p� 2 S , v 2 Pb, and
dX .v; pC/� C1. Then there exists a geodesic path p0 such that .p0/� D u, Qp0 2 P , .p0/�1

C
pC 2 S and
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Figure 4: Illustration of Lemma 8.3.

dX ..p
0/C; pC/�E, where E is the constant from (8-1). In particular , if Qp 2Q0 (respectively , Qp 2R0)

then Qp0 2Q0\P (respectively, Qp0 2R0\P ).

Proof Denote xDp�, yDpC and zDvb�12P (see Figure 4). Then u�1z2P and x�1yD Qp2Q0[R0.

Since u�1x 2 S DQ0\R0, we obtain

u�1y D .u�1x/.x�1y/ 2Q0[R0;

whence z�1y D .z�1u/.u�1y/ 2 P.Q0[R0/. Now, observe that

jz�1yjX D dX .z; y/� dX .z; v/C dX .v; y/� jbjX CC1 � 2C1 < C:

Condition (C3) now implies that z�1y 2 PS . That is, z�1y D f h for some f 2 P and h 2�, where �
is the finite subset of S defined above the statement of the lemma. Let p0 be a geodesic path starting at u
and ending at zf 2 P . Then Qp0 D u�1zf 2 P ,

.p0/�1C pC D f
�1z�1y D h 2 S and dX ..p

0/C; pC/D jhjX �E:

The last statement of the lemma follows from (C1) and the observation that

Qp0 D u�1.p0/C D u
�1p� Qp.pC/

�1.p0/C 2 S QpS:

Proposition 8.4 Let D � 0 is the constant provided by Lemma 8.2, and let E be given by (8-1). Suppose
that Q0 6Q and R0 6R are subgroups satisfying (C1) and (C3), with constant C � 2C1C 1 and family
P� P1.

Let p D p1 � � �pn be a path representative for an element g 2 hQ0; R0i with minimal type. If p has
consecutive backtracking along H-components hi ; : : : ; hj of the subpaths pi ; : : : ; pj respectively , then
there is a subgroup P 2 P1 and a path p0 D p0i � � �p

0
j satisfying the following properties:

(i) p0
k

is geodesic with Qp0
k
2 P for all k D i; : : : ; j ;

(ii) .p0i /C D .pi /C, .p0
k
/�1
C
.pk/C 2 S and dX ..p0k/C; .pk/C/�E, for all k D i C 1; : : : ; j � 1;

(iii) dX .p
0
�; .hi /�/�D and dX .p0C; .hj /C/�D;
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p0i

p0iC1
p0j�1

p0j

hi

hiC1 hj�1

hj

�D �D

Figure 5: The new path p0 constructed in Proposition 8.4. The dotted lines between p and p0 are
paths whose labels represent elements of S .

(iv) Qp0i 2Q\P if Qpi 2Q0, and Qp0i 2R\P if Qpi 2R0; similarly, Qp0j 2Q\P if Qpj 2Q0, and Qp0j 2R\P
if Qpj 2R0;

(v) for each k 2 fi C 1; : : : ; j � 1g, Lab.p0
k
/ either represents an element of Q0\P or an element of

R0\P .

Proof Figure 5 below is a sketch of the path p0 above the subpath pipiC1 � � �pj�1pj of p.

Note that claim (v) follows from claim (ii) and condition (C1), so we only need to establish claims (i)–(iv).

By the assumptions, there is � 2 N such that for each k 2 fi; : : : ; j g, the path pk is a concatenation
pk D akhkbk , where hk is an H�-component of pk and ak; bk are subpaths of pk .

According to Lemma 7.3, we have

(8-3) jbkjX � C1 for k D i; : : : ; j � 1:

After translating everything by .pi /�1C we can assume that .pi /CD 1. From here on, we let bD Qb�1i 2G
and P D bH�b�1. As noted in (8-3), jbjX D jbi jX � C1, so P 2 P1.

Since the components hi and hk are connected, for every kD iC1; : : : ; j , the elements .hi /CD .bi /�Db
and .hk/C all belong to the same left coset bH� D Pb; thus

(8-4) .hk/C 2 Pb for all k D i C 1; : : : ; j:

The rest of the argument will be divided into three steps.

Step 1 Construction of the path p0i .

Set ui D .pi /C D 1 and vi D .hi /�. Then vi D Qb�1i Qh
�1
i 2 bH� D Pb, so the path p�1i , its vertex vi

and the element ui D 1 2 P satisfy the assumptions of Lemma 8.2. Therefore there exists a path q with
q� D ui , dX .qC; v/�D and such that Qq 2Q\P if Qpi 2Q and Qq 2R\P if Qpi 2R.

It is easy to check that the path p0i D q
�1 enjoys the required properties.
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Step 2 Construction of the paths p0
k

, for k D i C 1; : : : ; j � 1.

We will define the paths p0
k

by induction on k. For k D i C 1 we consider the path piC1, its vertex
viC1 D .hiC1/C and the element ui D 1D .piC1/�. Since viC1 2 Pb by (8-4) and

dX .viC1; .piC1/C/D jbiC1jX � C1

by (8-3), we can apply Lemma 8.3 to find a geodesic path p0iC1 starting at ui and satisfying the required
conditions.

Now suppose the required pathsp0iC1; : : : ;p
0
m have already been constructed for somem2fiC1; : : : ;j�2g.

To construct the path p0mC1, let vmC1 be the vertex .hmC1/C of pmC1 and set um D .p0m/C. Then
um 2 P and u�1m .pmC1/� D .p

0
m/
�1
C
.pm/C 2 S by the induction hypothesis. In view of (8-4) and (8-3),

vmC1 2Pb and dX .vmC1; .pmC1/C/�C1; therefore we can find a geodesic path p0mC1 with the desired
properties by using Lemma 8.3.

Thus we have described an inductive procedure for constructing the paths p0
k

, for k D i C 1; : : : ; j � 1.

Step 3 Construction of the path p0j .

This step is similar to Step 1: the path p0j will start at uj�1 D .p0j�1/C 2 P and can be constructed by
applying Lemma 8.2 to the path pj and the elements vj D .hj /C 2 Pb, uj�1 2 P .

We have thus constructed a sequence of geodesic paths p0i ; : : : ; p
0
j whose concatenation p0 satisfies all

the properties from the proposition.

We will now prove the main result of this section, which states that the initial and terminal vertices of an
instance of multiple backtracking in a minimal type path representative must lie far apart in the proper
metric dX , provided Q0 6Q and R0 6R satisfy (C1)–(C5) with sufficiently large constants.

Proposition 8.5 (multiple backtracking is long) For any � � 0 there is a constant C2 D C2.�/� 0 such
that if Q0 6Q and R0 6 R are subgroups satisfying conditions (C1)–(C5) with constants B � C2 and
C � C2 and a family P� P1, then the following is true.

Let p D p1 � � �pn be a minimal type path representative for an element g 2 hQ0; R0i. If p has multiple
backtracking along H-components hi ; : : : ; hj of pi ; : : : ; pj then dX ..hi /�; .hj /C/� �.

Proof Let � � 0 and define C2.�/Dmax f2C1; �C 2DgC1, where D � 0 is the constant obtained from
Lemma 8.2.

In view of the assumptions we can apply Proposition 8.4 to find a path p0 D p0i � � �p
0
j and P 2 P1

satisfying properties (i)–(v) from its statement. Let ˛ be a geodesic with ˛� D .p0j /� and ˛C D .pj /�,
and let ˇ D p0iC1 � � �p

0
j�1. We will denote xk D Qpk and x0

k
D Qp0

k
, for each k 2 fi; : : : ; j g, and z D Q̨ .
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Condition (C1), together with claim (ii) of Proposition 8.4, tell us that z 2 S DQ0\R0, and claim (v)
yields that

(8-5) Q̌ D x0iC1 � � � x
0
j�1 2 hQ

0
P ; R

0
P i

(as before, for a subgroup H 6G we denote by HP 6G the intersection H \P ).

Now suppose, for a contradiction, that dX ..hi /�; .hj /C/ < �. Then

(8-6) jp0jX D dX .p
0
�; p

0
C/ < �C 2D < C2 �minfB;C g;

by claim (iii) of Proposition 8.4. There are four cases to consider depending on whether Qpi and Qpj are
elements of Q0 or R0.

Case 1 xi D Qpi 2Q
0 and xj D Qpj 2Q0.

Then, by claim (iv) of Proposition 8.4, both x0i and x0j are elements of QP . It follows that

Qp0 2QP hQ
0
P ; R

0
P iQP �QhQ

0; R0iQ:

By (8-6) and (C2), there is q 2Q such that Qp0 D q. Therefore

(8-7) Q̌ D x0i
�1
Qp0x0j
�1
D x0i

�1
qx0j
�1
2Q:

Combining (8-7) with (8-5) and using condition (C4), we get

Q̌ 2Q\ hQ0P ; R
0
P i DQP \ hQ

0
P ; R

0
P i DQ

0
P :

Let  be any geodesic path in �.G;X [H/ starting at .pi /� and ending at .pj /C. Then  shares the
same endpoints with the path piˇ˛pj ; therefore their labels represent the same element of G,

Q D xi Q̌zxj 2Q
0Q0PSQ

0
DQ0:

Thus we can use  to obtain another path representative for g through p1 � � �pi�1pjC1 � � �pn, which
consists of strictly fewer geodesic subpaths than p D p1 � � �pn. This contradicts the minimality of the
type of p, so Case 1 has been considered.

Case 2 Both Qpi and Qpj are elements of R0.

This case can be dealt with identically to Case 1.

Case 3 xi D Qpi 2Q
0 and xj D Qpj 2R0.

Then x0i 2QP and x0j 2 RP by claim (iv) of Proposition 8.4. Hence Lab.p0/ represents an element of
x0i hQ

0
P ; R

0
P iRP with x0i 2QP . In view of (8-6), we can use condition (C5) to deduce that Qp0 2 x0iQ

0
PRP .

It follows that
Q̌ D .x0i /

�1
Qp0.x0j /

�1
2Q0PRP ;

Algebraic & Geometric Topology, Volume 25 (2025)



Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 441

so there exist q 2 Q0P and r 2 RP such that Q̌ D qr . Combining this with (8-5) we conclude that
r D q�1 Q̌ 2RP \ hQ

0
P ; R

0
P i, so r 2R0P by condition (C4), whence

(8-8) Q̌ D qr 2Q0PR
0
P :

Observe that the paths  D pi � � �pj and piˇ˛pj have the same endpoints; hence their labels represent
the same element of G,

Q D xi Q̌zxj 2Q
0Q0PR

0
PSR

0
�Q0R0:

Therefore there are elements q1 2Q0 and r1 2R0 such that Q D q1r1.

Let 1 be a geodesic path in �.G;X [H/ starting at � D .pi /� and ending at �q1 and let 2 be a
geodesic path starting at .1/C and ending at .1/Cr1DCD .pj /C. Since Q1Dq12Q0 and Q2D r12R0

the path p1 � � �pi�112pjC1 � � �pn is a path representative of g. Moreover, it consists of fewer than
n geodesic segments because j > i C 1 (by the definition of multiple backtracking), contradicting the
minimality of the type of p. This contradiction shows that Case 3 is impossible.

Case 4 xi D Qpi 2R
0 and xj D Qpj 2Q0.

Then x0i 2RP while x0j 2QP , which implies that Qp02RP hQ0P ; R
0
P ix

0
j , hence Qp0�12.x0j /

�1hQ0P ; R
0
P iRP .

By (8-6), we can use (C5) to conclude that Qp0�1 2 .x0j /
�1Q0PRP , thus Qp0 2RPQ0Px

0
j . The rest of the

argument proceeds similarly to the previous case, leading to a contradiction with the minimality of the
type of p. Hence Case 4 is also impossible.

We have arrived at a contradiction in each of the four cases, so dX ..hi /�; .hj /C/� �, as required.

9 Constructing quasigeodesics from broken lines

In this section we detail a procedure that takes as input a broken line and a natural number, and outputs
another broken line together with some additional vertex data. We show that if a broken line satisfies
certain metric conditions, then the new path constructed through this procedure is uniformly quasigeodesic.

We assume that G is a group generated by a finite set X and hyperbolic relative to a finite family of
subgroups fH� j � 2 Ng. As usual we set HD

F
�2N.H� n f1g/, and by Lemma 5.4 we know that the

Cayley graph �.G;X [H/ is ı-hyperbolic, for some ı � 0.

The outline of the construction is as follows. We begin with a broken line p D p1 � � �pn in �.G;X [H/.
Starting from the initial vertex p�, we note in sequence (along the vertices of p) the vertices marking
the start and end of maximal instances of consecutive backtracking in p involving sufficiently long
H-components. Once we have done this, we construct the new path by connecting (in the same sequence)
the marked vertices with geodesics.
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Procedure 9.1 (‚-shortcutting) Fix a natural number ‚ 2N and let p D p1 � � �pn be a broken line in
�.G;X [H/. Let v0; : : : ; vd be the enumeration of all vertices of p in the order they occur along the
path (possibly with repetition), so that v0 D p�, vd D pC and d D `.p/.

We construct a broken line †.p;‚/, called the ‚-shortcutting of p, which comes with a finite set
V.p;‚/� f0; : : : ; dg � f0; : : : ; dg corresponding to indices of vertices of p that we shortcut along.

In the algorithm below we will refer to numbers s; t;N 2f0; : : : ;dg and a subset V�f0; : : : ;dg�f0; : : : ;dg.
To avoid excessive indexing these will change value throughout the procedure. The parameters s and t
will indicate the starting and terminal vertices of subpaths of p in which all H-components have lengths
less than ‚. The parameter N will keep track of how far along the path p we have proceeded. The set V
will collect all pairs of indices .s; t/ obtained during the procedure. We initially take s D 0, N D 0 and
V D∅.

Step 1 If there are no edges of p between vN and vd that are labelled by elements of H, then add the
pair .s; d/ to the set V and skip ahead to Step 4. Otherwise, continue to Step 2.

Step 2 Let t 2 f0; : : : ; dg be the least natural number with t �N for which the edge of p with endpoints
vt and vtC1 is an H-component hi of a geodesic segment pi of p, for some i 2 f1; : : : ; ng.

If i D n or if hi is not connected to a component of piC1 then set j D i . Otherwise, let j 2 fiC1; : : : ; ng
be the maximal integer such that p has consecutive backtracking along H-components hi ; : : : ; hj of
segments pi ; : : : ; pj . Proceed to Step 3.

Step 3 If
maxfjhkjX j k D i; : : : ; j g �‚;

then add the pair .s; t/ to the set V and redefine s DN in f1; : : : ; dg to be the index of the vertex .hj /C
in the above enumeration v0; : : : ; vd of the vertices of p. Otherwise let N be the index of .hi /C, and
leave s and V unchanged.

Return to Step 1 with the new values of s, N and V .

Step 4 Set V.p;‚/D V . The above constructions gives a natural ordering of V.p;‚/,

V.p;‚/D f.s0; t0/; : : : ; .sm; tm/g;

where sk � tk < skC1, for all k D 0; : : : ; m� 1. Note that s0 D 0 and tm D d . Proceed to Step 5.

Step 5 For each k D 0; : : : ; m, let fk be a geodesic segment (possibly trivial) connecting vsk with vtk .
Note that when k < m, vtk and vskC1

are in the same left coset of H� , for some � 2 N. If vtk D vskC1

then let ekC1 be the trivial path at vtk , otherwise let ekC1 be an edge of �.G;X [H/ starting at vtk ,
ending at vskC1

and labelled by an element of H� n f1g.

We define the broken line †.p;‚/ to be the concatenation f0e1f1e2 � � � fm�1emfm.
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f0

e1

f1
e2

f2
e3

f3

Figure 6: An example of a shortcutting of a path p in �.G;X [H/. The path p contains long
H-components, some of which are involved in instances of consecutive backtracking, as indicated
by the dashed lines. The path †.p;‚/D f0e1f1e2f2e3f3 is drawn on top of p.

Remark 9.2 Let us collect some observations about Procedure 9.1.

(a) Since p has only finitely many vertices and N increases at each iteration of Step 3 above, the
procedure will always terminate after finitely many steps.

(b) The newly constructed broken line†.p;‚/ has the same endpoints as p, and each node of†.p;‚/
is a vertex of p.

(c) By construction, for any k 2 f0; : : : ; mg the subpath of p between vsk and vtk contains no edge
labelled by an element h 2H satisfying jhjX �‚.

Figure 6 sketches an example of the output of Procedure 9.1.

In the next definition we describe paths that will serve as input for the above procedure.

Definition 9.3 (tamable broken line) Let p D p1 � � �pn be a broken line in �.G;X [H/, and let
B;C; � � 0 and ‚ 2N. We say that p is .B; C; �;‚/-tamable if all of the following conditions hold:

(i) jpi jX � B , for i D 2; : : : ; n� 1;

(ii) h.pi /�; .piC1/Cirel
.pi /C

� C , for each i D 1; : : : ; n� 1;

(iii) whenever p has consecutive backtracking along H-components hi ; : : : ; hj , of segments pi ; : : : ; pj ,
such that

maxfjhkjX j k D i; : : : ; j g �‚;

it must be that dX ..hi /�; .hj /C/� �.

The remainder of this section is devoted to showing the following result about quasigeodesicity of
shortcuttings for tamable paths with appropriate constants.

Proposition 9.4 Given arbitrary c0 � 14ı and �� 0 there are constants �D �.c0/� 1, c D c.c0/� 0
and � D �.�; c0/� 1 such that for any natural number ‚� � there is B0 D B0.‚; c0/� 0 satisfying the
following.
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Let p D p1 � � �pn be a .B0; c0; �;‚/-tamable broken line in �.G;X [H/ and let †.p;‚/ be the ‚-
shortcutting , obtained by applying Procedure 9.1 to p, †.p;‚/ D f0e1f1 � � � fm�1emfm. Then ek is
non-trivial , for each k D 1; : : : ; m, and †.p;‚/ is .�; c/-quasigeodesic without backtracking.

Moreover , for any k 2 f1; : : : ; mg, if we denote by e0
k

the H-component of †.p;‚/ containing ek , then
je0
k
jX � �.

The idea of the proof will be to show that under the above assumptions the broken line †.p;‚/ satisfies
the hypotheses of Proposition 5.19.

Notation 9.5 For the remainder of this section we fix arbitrary constants c0 � 14ı and � � 0. We let
�D �.4; c3; 0/, where c3 D c3.c0/� 0 is the constant from Lemma 4.11 and �.4; c3; 0/ is the constant
obtained by applying Proposition 5.17 to .4; c3/-quasigeodesics. Let �1 > 0, � � 1 and c � 0 be the
constants given by Proposition 5.19, applied with constant �. Note that the constants � and c only depend
on c0 and do not depend on �.

We now define the constant � by

(9-1) � Dmaxf�1; �gC 2�C 1:

Finally we take any natural number ‚� � and

(9-2) B0 Dmaxf.12c0C 12ıC 1/‚; .4C c3/‚C 1g:

The proof of Proposition 9.4 will consist of the following four lemmas. Throughout these lemmas we
use the constants defined above and assume that p D p1 � � �pn is a .B0; c0; �;‚/-tamable broken line in
�.G;X [H/. As before, we write v0; : : : ; vd for the set of vertices of p in the order of their appearance.
We let †.p;‚/D f0e1f1 � � � fm�1emfm be the ‚-shortcutting and V.p;‚/D f.s0; t0/; : : : ; .sm; tm/g
be the set obtained by applying Procedure 9.1 to p.

Lemma 9.6 For each k D 1; : : : ; m, we have jekjX � � > 0.

Proof By the construction in Procedure 9.1, there are pairwise connected H-components h1; : : : ; hj of
consecutive segments of p, such that j � 1, .h1/� D .ek/�, .hs/C D .ek/C and

maxfjhl jX j l D 1; : : : ; j g �‚:

If j D 1 we see that jekjX D jh1jX �‚� �, and if j > 1 then we know that jekjX � � by property (iii)
from Definition 9.3.

Lemma 9.7 The subpaths of p between vsk and vtk , for k D 0; : : : ; m, are .4; c3/-quasigeodesic.

Proof We write c1 D c1.c0/D 12c0C 12ıC 1, as in Lemma 4.11.

Choose any k 2 f0; : : : ; mg and denote by p0 be the subpath of p starting at vsk and terminating at vtk .
If vsk and vtk are both vertices of pi , for some i 2 f1; : : : ; ng, then p0 is geodesic and we are done.
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Otherwise p0Dp0ipiC1 � � �pj�1p
0
j , for some i; j 2 f1; : : : ; ng, with i < j , where p0i is a terminal segment

of pi and p0j is an initial segment of pj .

By Remark 9.2(c), the paths piC1; : : : ; pj�1 contain no H-components h with jhjX � ‚. Since p is
.B0; c0; �;‚/-tamable, jpl jX � B0 for each l D i C 1; : : : ; j � 1 by condition (i). Thus we can combine
Lemma 5.10 with (9-2) to obtain

dX[H..pl/�; .pl/C/D `.pl/�
1

‚
jpl jX �

B0

‚
� c1 for each l 2 fi C 1; : : : ; j � 1g:

Again, from the assumption that p is .B0; c0; �;‚/-tamable, we have that

h.pl/�; .plC1/Ci
rel
.pl /C

� c0 for all l D i; : : : ; j � 1;

using condition (ii). In view of Remark 4.6,

h.p0i /�; .piC1/Ci
rel
.p0

i
/C
� c0 and h.pj�1/�; .p

0
j /Ci

rel
.pj�1/C

� c0:

Therefore we can use Lemma 4.11 to conclude that p0 is .4; c3/-quasigeodesic, as required.

Lemma 9.8 If k 2 f0; : : : ; m� 1g and h is an H-component of fk or fkC1 that is connected to ekC1,
then jhjX � �.

Proof Arguing by contradiction, suppose that h is an H-component of fk connected to ekC1 and
satisfying jhjX > � (the other case when h is an H-component of fkC1 is similar). Remark 5.9 tells us
that h is a single edge of fk . Moreover, since h and ekC1 are connected and .fk/C D .ekC1/�, we have
dX[H.h�; .fk/C/� 1. The geodesicity of fk in �.G;X [H/ now implies that h must in fact be the last
edge of fk , so that hC D .fk/C D vtk .

Let p0 D p0ipiC1 � � �pj�1p
0
j be the subpath of p with p0� D vsk and p0

C
D vtk , where p0i and p0j are

non-trivial subpaths of pi and pj respectively. By Lemma 9.7, p0 is .4; c3/-quasigeodesic.

Since jhjX >�D �.4; c3; 0/ we may apply Proposition 5.17 to find that h is connected to an H-component
of p0 (which may consist of multiple edges, each of which is an H-component of a segment of p). We
write h0 for the final edge of this H-component and denote by u the edge of p with endpoints vtk
and vtkC1 (see Figure 7). Procedure 9.1 and the assumption that h is connected to ekC1 imply that u is
an H-component of a segment of p and h0 and u are connected as H-subpaths of p.

Suppose, first, that p0j is a proper subpath of pj , so that u belongs to the segment pj , as shown on
Figure 7. Then there are the following possibilities.

Case 1 h0 is an edge of pj .

In this case h0 and u are connected distinct H-subpaths of pj , which is a geodesic. This contradicts the
observation of Remark 5.9, that geodesics are without backtracking and H-components of geodesics are
single edges.
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vsk

vtk vtkC1

vskC1

pi

h0 u
pj

fk

h

ekC1

Figure 7: Illustration of Lemma 9.8.

Case 2 h0 is an H-component of pj�1.

Let t 2 f0; : : : ; dg be such that vt D h0�, and note that

(9-3) sk � t < tk :

By the construction from Procedure 9.1, there are pairwise connected H-components hj ; : : : ; hjCl , of
segments pj ; : : : ; pjCl , with .ekC1/� D .hj /� D vtk and .ekC1/C D .hjCl/C D vskC1

, such that

maxfjhj jX ; : : : ; jhjCl jXg �‚

and l 2 f0; : : : ; n� j g is chosen to be maximal with this property. Then the components h0; hj ; : : : ; hjCl
constitute a larger instance of consecutive backtracking, starting at h0� D vt , with

maxfjh0jX ; jhj jX ; : : : ; jhjCl jXg �‚:

In view of (9-3), this contradicts the choice of tk and the inclusion of .sk; tk/ in the set V.p;‚/ at Steps 2
and 3 of Procedure 9.1.

Case 3 h0 is an H-component of one of the paths p0i ; piC1; : : : ; pj�2.

Then the subpath q of p0 from h0
C

to p0
C
D vtk contains all of pj�1. By Remark 9.2(c), pj�1 contains

no H-components q satisfying jqjX � ‚. Therefore, in view of Lemma 5.10 and the assumption that
p is .B0; c0; �;‚/-tamable, we can deduce that ‚`.pj�1/ � jpj�1jX � B0: Combining this with the
.4; c3/-quasigeodesicity of p0, we obtain

dX[H.h
0
C; p

0
C/�

1

4
.`.q/� c3/�

1

4
.`.pj�1/� c3/�

B0

4‚
�
c3

4
> 1;

where the last inequality follows from (9-2). On the other hand, the fact that h0 and h are connected gives
dX[H.h

0
C
; p0
C
/D dX[H.h

0
C
; hC/� 1, contradicting the above.

In each case we arrive at a contradiction, so it is impossible that jhjX > � if p0j is a proper subpath of pj .
If p0j is instead the whole subpath pj , we may carry out a similar analysis. In this situation it must be
that u is an H-component of the segment pjC1. We now have only two relevant cases to consider: h0 is
an H-component of pj or h0 is an H-component of one of the paths p0i ; piC1; : : : ; pj�1. Both of them
will lead to contradictions similarly to Cases 2 and 3 above.

Therefore it must be that jhjX � �, as required.
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Lemma 9.9 For each k 2 f1; : : : ; m� 1g, the H-subpaths ek and ekC1 of †.p;‚/ are not connected.

Proof Suppose that ek is connected to ekC1 for some k 2 f1; : : : ; m � 1g. As before, according to
Procedure 9.1, there exist two sets of pairwise connected H-components of consecutive segments of p,
h1; : : : ; hi and q1; : : : ; qj , such that .h1/�D .ek/�, .hi /CD .ek/C, .q1/�D .ekC1/�, .qj /CD .ekC1/C
and

maxfjh1jX ; : : : ; jhi jXg �‚; maxfjq1jX ; : : : ; jqj jXg �‚:

Since ek and ekC1 are connected, hi and q1 will be connected H-subpaths of p; in particular they cannot
be contained in the same segment of the broken line p by Remark 5.9. If hi and q1 are H-components
of adjacent segments of p, then the components h1; : : : ; hi ; q1; : : : ; qj constitute a longer instance of
consecutive backtracking in p, which contradicts the construction of ek in Procedure 9.1.

Therefore it must be the case that the subpath p0 of p between

.ek/C D .hi /C D vsk and .ekC1/� D .q1/� D vtk

contains at least one full segment pl (with 1<l <n). By Remark 9.2(c) the path p0 has no H-components h
satisfying jhjX �‚. Therefore we can combine Lemma 5.10 with the fact that p is .B0; c0; �;‚/-tamable
to deduce that

(9-4) `.p0/� `.pl/�
jpl jX

‚
�
B0

‚
:

Moreover, by Lemma 9.7 the path p0 is .4; c3/-quasigeodesic, so

`.p0/� 4dX[H..ek/C; .ekC1/�/C c3 � 4C c3;

where the last inequality is true because ek and ekC1 are connected. Combined with (9-4), the above
inequality gives B0 � .4C c3/‚, which contradicts the choice of B0 in (9-2).

Therefore ek and ekC1 cannot be connected, for any k 2 f1; : : : ; m� 1g.

Proof of Proposition 9.4 The construction, together with Lemmas 9.6, 9.8 and 9.9, show that the
‚-shortcutting †.p;‚/D f0e1f1 � � � fm�1emfm satisfies the hypotheses of Proposition 5.19 and ek is
non-trivial, for each k D 1; : : : ; m. Therefore †.p;‚/ is .�; c/-quasigeodesic without backtracking.

For the final claim of the proposition, consider any k 2 f1; : : : ; mg and denote by e0
k

the H�-component of
†.p;‚/ containing ek , for some � 2N. Lemma 9.9 implies that e0

k
is the concatenation h1ekh2, where

h1 is either trivial or it is an H�-component of fk�1, and h2 is either trivial or it is an H�-component
of fk . Combining the triangle inequality with Lemmas 9.6 and 9.8 and equation (9-1), we obtain

je0kjX � jekjX � jh1jX � jh2jX � � � 2� � �;

as required.
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10 Metric quasiconvexity theorem

This section comprises a proof of Theorem 3.5, and, as usual, we work under Convention 6.1. First we
will show that if some subgroups Q0 6Q and R0 6R satisfy conditions (C1)–(C5) with appropriately
large constants, then minimal type path representatives of hQ0; R0i meet the conditions of Proposition 9.4.
We will then use the quasigeodesicity of shortcuttings of these path representatives to obtain properties
(P1)–(P3).

Lemma 10.1 Suppose that Q0 6Q and R0 6R satisfy (C2) with constant B � 0. Then

minX ..Q0[R0/ nS/� B:

Proof Let g 2 .Q0[R0/ nS . If g 2Q0 then g …R as g … S . Therefore g 2Q0 nR �RhQ0; R0iR nR;
hence jgjX � B by (C2). Similarly, if g 2 R0 then g 2QhQ0; R0iQ nQ, and (C2) again implies that
jgjX � B .

Notation 10.2 For the remainder of this section we fix the following notation:

� C0 is the constant provided by Lemma 6.7;

� c0 DmaxfC0; 14ıg and c3 D c3.c0/ is the constant obtained by applying Lemma 4.11;

� �D �.c0/ and c D c.c0/ are the first two constants from Proposition 9.4;

� C1 � 0 is the constant from Lemma 7.3;

� P1 is the finite family of parabolic subgroups of G defined by

P1 D ftH�t
�1
j � 2 N; jt jX � C1g:

Lemma 10.3 For each �� 0 there are constants C3 D C3.�/� 0, � D �.�/� 1, ‚1 D‚1.�/ 2N and
B1 D B1.�/� 0 such that the following is true.

Suppose that Q0 6Q and R0 6R are subgroups satisfying conditions (C1)–(C5) with constants B � B1
and C � C3 and family P� P1. If p D p1 � � �pn is a minimal type path representative for an element
g 2 hQ0; R0i then p is .B; c0; �;‚1/-tamable.

Moreover , let†.p;‚1/Df0e1f1 � � � fm�1emfm be the ‚1-shortcutting of p obtained from Procedure 9.1
and let e0

k
be the H-component of †.p;‚1/ containing ek for k D 1; : : : ; m. Then †.p;‚1/ is a .�; c/-

quasigeodesic without backtracking and je0
k
jX � �, for each k D 1; : : : ; m.

Proof We define the following constants:

� � D �.�; c0/� 0, the constant provided by Proposition 9.4;

� C3 D C2.�/� 0, where C2.�/ is given by Proposition 8.5;
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� ‚1 Dmaxf‚0.�/; �g, where ‚0 is the constant of Lemma 7.6;

� B1 DmaxfB0.‚1; c0/; C2.�/g � 0, where B0 is the remaining constant of Proposition 9.4.

Let B � B1 and C � C3. Suppose that Q0, R0, g and p are as in the statement of the lemma. In view of
Remark 6.5, Qpi 2 .Q0[R0/ nS , for every i D 2; : : : ; n� 1. Therefore, by Lemma 10.1, we have

(10-1) jpi jX � B for each i D 2; : : : ; n� 1:

On the other hand, Lemma 6.7 tells us that

(10-2) h.pi /�; .piC1/Ci
rel
.pi /C

� C0 � c0 for each i D 1; : : : ; n� 1:

Now suppose that p has consecutive backtracking along H-components hi ; : : : ; hj of segments pi ; : : : ; pj
satisfying

maxfjhi jX ; : : : ; jhj jXg �‚1:

If j D i C 1 then Lemma 7.6 and the choice of ‚1 give that dX ..hi /�; .hj /C/ � �. Otherwise
Proposition 8.5 gives the same inequality. The above together with (10-1) and (10-2) show that p
is .B; c0; �;‚1/-tamable.

The remaining claims of the lemma follow from Proposition 9.4.

We can now deduce the relative quasiconvexity of hQ0; R0i by applying Lemma 10.3 with �D 0.

Proposition 10.4 Let ˇ1 D B1.0/ and 1 D C3.0/ be the constants provided by Lemma 10.3 applied to
the case when �D 0.

Suppose that Q0 6Q and R0 6R are relatively quasiconvex subgroups of G satisfying conditions (C1)–
(C5) with family P � P1 and constants B � ˇ1 and C � 1. Then the subgroup hQ0; R0i is relatively
quasiconvex in G.

Proof By assumption the subgroups Q0 and R0 are relatively quasiconvex, with some quasiconvexity
constant "0 � 0. For any element g 2 hQ0; R0i consider a geodesic � in �.G;X [H/ with �� D 1 and
�C D g. Let u be any vertex of � .

Since g 2 hQ0; R0i, it has a path representative p D p1 � � �pn of minimal type, with p� D 1. Let
†.p;‚/ D f0e1f1 � � � fm�1emfm be the ‚-shortcutting of p obtained from Procedure 9.1, where
‚D‚1.0/ is provided by Lemma 10.3. This lemma implies that p is .B; c0; �;‚/-tamable and†.p;‚/ is
a .�; c/-quasigeodesic without backtracking, where ��1 and c�0 are the constants fixed in Notation 10.2.
Therefore, by Proposition 5.17, there is a phase vertex v of †.p;‚/ with dX .u; v/� �.�; c; 0/.

Since each ei is a single edge, the vertex v lies on the geodesic subpath fi of †.p;‚/, for some
i 2 f0; : : : ; mg. The subpath of p sharing endpoints with fi is .4; c3/-quasigeodesic by Lemma 9.7.
Hence there is a vertex w of p such that dX .v; w/� �.4; c3; 0/, by Proposition 5.17.
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Noww is a vertex of a subpath pj of p, for some j 2f1; : : : ; ng. Let xD .pj /�, and note that x 2hQ0; R0i.
Without loss of generality, suppose that Qpj 2Q0 (the case when Qpj 2R0 can be treated similarly). Then
by the relative quasiconvexity of Q0, dX .w; xQ0/� "0, whence dX .w; hQ0; R0i/� "0. Therefore

dX .u; hQ
0; R0i/� dX .u; v/C dX .v; w/C dX .w; hQ

0; R0i/

� �.�; c; 0/C �.4; c3; 0/C "
0;

so hQ0; R0i is a relatively quasiconvex subgroup of G, with the quasiconvexity constant

�.�; c; 0/C �.4; c3; 0/C "
0:

We will next show that properties (P2) and (P3) will be satisfied if one chooses the constants B and C of
(C1)–(C5) to be sufficiently large with respect to A.

Lemma 10.5 For any A � 0 there exist constants ˇ2 D ˇ2.A/ � 0 and 2 D 2.A/ � 0 such that if
Q0 6Q and R0 6R satisfy conditions (C1)–(C5) with constants B � ˇ2 and C � 2 and family P�P1,
then

minX .hQ0; R0i nS/� A:

Proof Given any A� 0 let �D �.�; c; A/ be the constant provided by Lemma 5.12. Using Lemma 10.3,
set

‚D‚1.�/; 2 D C3.�/; ˇ2 DmaxfB1.�/; .4AC c3/‚g:

Suppose that Q0 and R0 satisfy conditions (C1)–(C5) with constants B � ˇ2 and C � 2, and let
g 2 hQ0; R0i be any element with jgjX <A. Let pD p1 � � �pn be a path representative of g with minimal
type. By Lemma 10.3, p is .B; c0; �;‚1/-tamable, the ‚-shortcutting †.p;‚/D f0e1f1 � � � fm�1emfm
is .�; c/-quasigeodesic without backtracking, and, for each k D 1; : : : ; m, e0

k
, the H-component of

†.p;‚/ containing ek , is isolated and satisfies je0
k
jX � �.

If m � 1, then, according to Lemma 5.12, jgjX D j†.p;‚/jX � A, contradicting our assumption.
Therefore it must be the case that m D 0 and †.p;‚/ D f0. Since p� D .f0/� and pC D .f0/C,
Lemma 9.7 tells us that p is .4; c3/-quasigeodesic. Moreover, following Remark 9.2(c), we see that pi
has no H-component h with jhjX �‚, for each i D 1; : : : ; n.

Now, arguing by contradiction, suppose that g … S . Then Qp1 2 .Q0 [ R0/ n S (by Remark 6.5), so
jp1jX � B � ˇ2, by Lemma 10.1. Lemma 5.10 now implies that

`.p1/� ˇ2=‚� 4AC c3:

Since `.p/� `.p1/, the .4; c3/-quasigeodesicity of p yields

A > jgjX � jgjX[H D jpjX[H �
1
4
.`.p/� c3/� A;

which is a contradiction. Therefore g 2 S and the lemma is proved.
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In order to prove that property (P3) holds for the subgroups Q0 and R0, we need to consider path
representatives of elements g 2 QhQ0; R0iR. These path representatives will necessarily have to be
slightly different from those in Definition 6.2.

Definition 10.6 (path representative, II) Let g be an element of QhQ0; R0iR, and suppose that
p D qp1 � � �pnr is a broken line in �.G;X [H/, satisfying all of the following conditions:

� Qp D g;

� Qq 2Q and Qr 2R;

� Qpi 2Q
0[R0, for each i 2 f1; : : : ; ng.

Then we say that p is a path representative of g in the product QhQ0; R0iR.

Similarly to Definition 6.3, we can define types for such path representatives.

Definition 10.7 (type of a path representative, II) Suppose that pD qp1 � � �pnr is a path representative
of some g 2QhQ0; R0iR, as described in Definition 10.6. Let Y denote the set of all H-components of
the segments of p. We define the type of the path representative p to be the triple

�.p/D

�
n; `.p/;

X
y2Y

jyjX

�
2N0

3:

Remark 10.8 Note that, by Definition 10.6, a path representative p D qp1 � � �pnr , of an element
g 2 QhQ0; R0iR nQR, must necessarily satisfy n > 0. Moreover, if p has minimal type (so n is the
smallest possible) then Qp1 2 R0 n S , Qpn 2 Q0 n S and the labels of p1; : : : ; pn will alternate between
representing elements of R0 nS and Q0 nS . It follows that the integer n must be even, so n� 2.

For example, if g 2R0Q0 nQR then a minimal type path representative of g will have the form qp1p2r ,
where q and r are trivial paths, Qp1 2R0 and Qp2 2Q0.

It is not difficult to check that the results of Sections 6, 7, and 8 hold equally well for minimal type path
representatives of the above form for elements g 2QhQ0; R0iR nQR, with only superficial adjustments
to the proofs in those sections. It follows that Lemma 10.3 also remains valid in these settings.

Lemma 10.9 In the statement of Lemma 10.5 we can add that

minX .QhQ0; R0iR nQR/� A:

Proof For any A� 0 we define the constants �, ‚, 2 and ˇ2 exactly as in Lemma 10.5.

Suppose that for some element g 2 QhQ0; R0iR nQR we have jgjX < A. Let p D qp1 � � �pnr be a
minimal type path representative of g, of the form described in Definition 10.6.

Arguing in the same way as in Lemma 10.5, we can deduce that p is .4; c3/-quasigeodesic and for each
i D 1; : : : ; n, pi has no H-component h with jhjX �‚.
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According to Remark 10.8, n � 2 and Qp1 2 R0 n S . So, by Lemma 10.1, jp1jX � B � ˇ2. The same
argument as in Lemma 10.5 now yields that jgjX � A, leading to a contradiction. Therefore it must be
that jgjX � A for any g 2QhQ0; R0iR nQR.

We are finally able to prove Theorem 3.5.

Proof of Theorem 3.5 Choose P to be the finite family P1, defined in Notation 10.2. Given any A� 0,
we apply Proposition 10.4 and Lemma 10.5 to define the constants

B Dmaxfˇ1; ˇ2.A/g and C Dmaxf1; 2.A/g:

Suppose that Q0 6Q and R0 6R are subgroups satisfying conditions (C1)–(C5) with constants B and
C and the finite family of parabolic subgroups P. Then property (P1) holds by Proposition 10.4, while
properties (P2) and (P3) are satisfied by Lemmas 10.5 and 10.9 respectively.

11 Using separability to establish the conditions of the quasiconvexity
theorem

In this section we will show how one can prove the existence of finite-index subgroups Q0 6f Q and
R0 6f R, satisfying the conditions (C1)–(C5) from Section 3.1, using certain separability assumptions.
We start with finding such assumptions for establishing (C2) and (C3).

Proposition 11.1 Let G be a group generated by a finite subset X , letQ;R6G and S DQ\R, and let
P be a finite collection of subgroups of G. Suppose that Q and R are separable in G and PS is separable
in G, for each P 2 P.

Then for any constants B;C � 0 there exists a finite-index subgroup L 6f G, with S � L, such that
conditions (C2) and (C3) are satisfied by arbitrary subgroups Q0 6Q\L and R0 6R\L.

Proof Combining the separability of Q and R in G with Lemma 4.16, we can find E1; E2 Cf G such
that minX .QE1 nQ/� B and minX .RE2 nR/� B . Set N0 DE1\E2 Cf G and observe that

QSN0QDQN0QDQQN0 DQN0 �QE1;

as Q is a subgroup containing S and normalising N0 in G. Similarly, RSN0RDRN0 �RE2; therefore

(11-1) minX .QSN0Q nQ/� B and minX .RSN0R nR/� B:

Let P D fP1; : : : ; Pkg. The assumptions imply that for every i 2 f1; : : : ; kg the double coset PiS is
separable in G; hence we can apply Lemma 4.16 again to find finite-index normal subgroups Ni Cf G
satisfying

(11-2) minX .PiSNi nPiS/� C for each i D 1; : : : ; k:
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Now set L D
Tk
iD0 SNi 6f G, and choose arbitrary subgroups Q0 6 Q\L and R0 6 R\L. Then

S � L and hQ0; R0i � L� SNi , for all i D 0; : : : ; k, by construction; hence (C2) holds by (11-1) and
(C3) holds by (11-2), as desired.

To establish condition (C5) we need to be able to lift certain finite-index subgroups of a maximal parabolic
subgroup P 6G to finite-index subgroups of G in a controlled way. The next statement shows how a
double coset separability assumption can help with this task.

Lemma 11.2 Let G be a group , P;Q6G be subgroups of G and letK 6f P be a finite-index subgroup
of P , with Q\P �K. If KQ is separable in G, then there is a finite-index subgroup M 6f G such that
Q �M and M \P �K.

Proof Let P DK[Kh1[� � �[Khm, where h1; : : : ; hm 2P nK. Note thatKQ\P DK.Q\P /DK,
so h1; : : : ; hm … KQ. The double coset KQ is profinitely closed, so, by Lemma 4.16(a), there exists
N Cf G such that

fh1; : : : ; hmg\KQN D∅:

Let M DQN 6f G, so that the above implies Khi \M D ∅, for each i D 1; : : : ; m. We then have
Q �M and M \P �K, as required.

We are now in position to prove the main result of this section.

Theorem 11.3 Assume that G is a group generated by a finite set X , Q;R 6 G are subgroups of G,
and denote S DQ\R. Let P be a finite collection of subgroups of G such that for every P 2P all of
the following hold :

(S1) Q and R are separable in G;

(S2) the double coset PS is separable in G;

(S3) for all K 6f P and T 6f Q, satisfying S � T and T \P �K, the double coset KT is separable
in G;

(S4) for all U 6f Q\P , with S \P � U , the double coset U.R\P / is separable in P .

Then , given arbitrary constants B;C � 0, there exist finite-index subgroups Q0 6f Q and R0 6f R such
that conditions (C1)–(C5) are all satisfied.

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof The idea is that (S1) will take care of condition (C2), (S2) will take care of (C3), and (S3) and
(S4) will take care of (C5). The subgroups Q0 and R0 will satisfy Q0 DQ\M 0 and RDR\M 0, for
some M 0 6f G, with S �M 0, which will immediately imply (C1) and (C4).
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Let PD fP1; : : : ; Pkg. Arguing just like in the proof of Proposition 11.1 (using the assumptions (S1)
and (S2)), we can find finite-index normal subgroups Ni Cf G, i D 0; : : : ; k, such that

minX .QSN0Q nQ/� B; minX .RSN0R nR/� B;

minX .PiSNi nPiS/� C for i D 1; : : : ; k:

We can now define a finite-index subgroup L6f G by LD
Tk
iD0 SNi . Note that S �L by construction,

and for each i 2 f1; : : : ; kg we have

(11-3) minX .QLQ nQ/� B; minX .RLR nR/� B; minX .PiL nPiS/� C:

Choose an arbitrary finite-index subgroup L0 6f L, with S � L0, and define Q0 D Q \ L0, so that
S 6Q0 6f Q.

To construct R0 6f R, consider any i 2 f1; : : : ; kg and denote

Qi DQ\Pi ; Ri DR\Pi ; Q0i DQ
0
\Pi 6f Qi :

Choose some elements ai1; : : : ; aini
2Qi such that Qi D

Fni

jD1 aijQ
0
i . Condition (S4) implies that the

subset Q0iRi is separable in Pi ; hence, by claim (c) of Lemma 4.16, there exists Fi Cf Pi such that

(11-4) minX .aijQ0iRiFi n aijQ
0
iRi /� C for j D 1; : : : ; ni :

Define Ki DQ0iFi 6f Pi . Then Q0\Pi DQ0i �Ki and aijKiRi D aijQ0iRiFi , for each j D 1; : : : ; ni .
Therefore, from (11-4) we can deduce that

(11-5) minX .aijKiRi n aijQ0iRi /� C for all j D 1; : : : ; ni :

By (S3), the double coset KiQ0 is separable in G, so we can apply Lemma 11.2 to find Mi 6f G such
that Q0 �Mi and Mi \Pi �Ki .

We now letM D
Tk
iD1Mi\L

0 and observe thatQ06M 6f L0 andM \Pi �Ki for each i 2 f1; : : : ; kg.
Inequality (11-5) yields

(11-6) minX
�
aij .M \Pi /Ri n aijQ

0
iRi

�
� C for all i D 1; : : : ; k and j D 1; : : : ; ni :

We can now choose an arbitrary finite-index subgroup M 06f M , withQ0�M 0, and define R0DR\M 0.
Observe that M 0 6f G, by construction, hence R0 6f R.

Let us check that the subgroups Q0 and R0 obtained above satisfy conditions (C1)–(C5). Indeed, by
construction, S DQ\R �Q0, so S �R\M 0 DR0; hence

S �Q0\R0 �Q\RD S:

Thus (C1) holds. We also have Q0 DQ\L0 DQ\M 0, as Q0 �M 0 � L0; hence

Q0 �Q\ hQ0; R0i �Q\M 0 DQ0:
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Thus Q\hQ0; R0i DQ0. After intersecting both sides of the latter equation with an arbitrary P 2P, we
get QP \ hQ0; R0i DQ0P ; hence

Q0P �QP \ hQ
0
P ; R

0
P i �QP \ hQ

0; R0i DQ0P :

Thus QP \ hQ0P ; R
0
P i DQ

0
P . Similarly, RP \ hQ0P ; R

0
P i DR

0
P , so condition (C4) is satisfied.

Conditions (C2) and (C3) hold by (11-3), because Q0; R0 � L by construction.

To prove (C5), take Pi 2P for any i 2 f1; : : : ; kg, and denote Qi DQ\Pi , Q0i DQ
0\Pi , Ri DR\Pi

and R0i DR
0\Pi , as before. For any q 2Qi there exists j 2 f1; : : : ; nig such that q 2 aijQ0i . It follows

that

(11-7) qhQ0i ; R
0
i iRi D aij hQ

0
i ; R
0
i iRi and qQ0iRi D aijQ

0
iRi :

Since hQ0i ; R
0
i i6M \Pi , we can combine (11-7) with (11-6) to deduce that

minX .qhQ0i ; R
0
i iRi n qQ

0
iRi /� C;

which establishes condition (C5).

12 Double coset separability in amalgamated free products

In this section we develop a method for establishing the separability assumptions (S2) and (S3) of
Theorem 11.3 using amalgamated products. The idea is that when G is a relatively hyperbolic group,
P is a maximal parabolic subgroup and Q is a relatively quasiconvex subgroup of G, we can apply the
combination theorem of Martínez-Pedroza (Theorem 5.26) to find a finite-index subgroup H 6f P such
that AD hH;Qi ŠH �H\QQ, so proving the separability of PQ in G can be reduced to proving the
separability of HQ in the amalgamated free product A.

The next proposition gives a new criterion for showing separability of double cosets in amalgamated free
products. This criterion may be of independent interest.

Proposition 12.1 Let AD B �D C be an amalgamated free product , where we consider B , C and D as
subgroups of A with B \C DD. Suppose that D is separable in A, and U �B and V � C are arbitrary
subsets.

If the product UD (respectively, DV ) is separable in A then the product UC (respectively, BV ) is
separable in A.

Proof We will prove the statement in the case of UC , as the other case is similar.

If U D ∅ then UC D ∅, so we can suppose that U is non-empty. Take any u 2 U . According to
Remark 4.12, without loss of generality we can replace U with u�1U to assume that 1 2 U .

Consider any element g 2AnUC ; since 12U , we deduce that g …C . We will construct a homomorphism
from A to a finite group L which separates the image of g from the image of UC .
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Since g …D, it has a reduced form g D x1x2 � � � xk , where xi belongs to one of the factors B or C , for
each i , consecutive elements xi and xiC1 belong to different factors, and xi …D for all i D 1; : : : ; k (see
[35, page 187]).

Since D is separable in A, by Lemma 4.16(a) there is a finite group M and a homomorphism ' WA!M

such that

(12-1) '.xi / … '.D/ in M for every i D 1; : : : ; k:

Denote by B , C and D the '-images if B , C and D in M respectively. We can then consider the
amalgamated free product AD B �D C , together with the natural homomorphism  W A! A, which is
compatible with ' on B and C (in other words,  jB D 'jB and  jC D 'jC ). It follows that ' factors
through  . That is, 'D N' ı , where N' WA!M is the natural homomorphism extending the embeddings
of B and C in M . Equation (12-1) now implies that

(12-2)  .xi / …D in A for every i D 1; : : : ; k:

Denote Nxi D  .xi / 2 A, i D 1; : : : ; k. In view of (12-2),  .g/ D Nx1 � � � Nxk is a reduced form in the
amalgamated free product A. We will now consider several cases.

Case 1 Assume that k � 3.

Then the above reduced form for  .g/ has length k � 3, so by the normal form theorem for amalgamated
free products [35, Theorem IV.2.6], it cannot be equal to an element from  .UC/ D  .U /C � BC ,
which would necessarily have a reduced form of length at most 2 in A. Therefore  .g/ …  .UC/ in A.

Since B and C are finite groups, their amalgamated free product A is residually finite (in fact, A
is a virtually free group — see [55, Proposition 2.6.11]), so the finite subset  .UC/ is closed in the
profinite topology on A. Hence there is a finite group L and a homomorphism � W A! L such that
�. .g// … �. .UC// in L. The composition � ı W A! L is the required homomorphism separating
the image of g from the image of UC , and the consideration of Case 1 is complete.

Case 2 Suppose that k D 2, x1 2 C nD and x2 2 B nD.

Then Nx1 2C nD and Nx2 2B nD by (12-2), so  .g/D Nx1 Nx2 is a reduced form of length 2 in A. Again, the
normal form theorem for amalgamated free products implies that  .g/…BC in A; hence  .g/… .UC/
and we can find the required finite quotient L of A as in Case 1.

Case 3 gD bc, where b 2B nUD and c 2C (here we allow c 2D, so this case also covers the situation
when k D 1).

This is the only case where we need to use the assumption that UD is separable in A. This assumption
implies that we can find a finite group M and a homomorphism ' W A!M satisfying

'.b/ … '.UD/ in M:
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As above, we can construct the amalgamated free product A D B �D C , together with the natural
homomorphism  W A! A, such that ' factors through  . It follows that

(12-3)  .b/ …  .UD/D  .U /D in A:

Observe that  .g/ …  .UC/D  .U /C in A. Indeed, otherwise we would have

 .b/D  .g/ .c�1/ 2  .U /C \B D  .U /.C \B/D  .U /D;

which would contradict (12-3) (in the first equality we used the fact that B is a subgroup of A containing
the subset  .U /). We can now argue as in Case 1 above to find a homomorphism from A to a finite
group L separating the image of g from the image of UC .

It is not hard to see that since g … UC in A, the above three cases cover all possibilities; hence the proof
is complete.

In the next two corollaries we assume that AD B �D C is the amalgamated free product of its subgroups
B and C , with B \C DD.

Corollary 12.2 Suppose that D is a separable subgroup in A. Then B , C and BC are all separable in A.

Proof The separability of C and B in A follows from Proposition 12.1, after choosing U D f1g and
V D f1g.

The separability of BC is also a consequence of Proposition 12.1, where we take U D B (so that
UD D BD D B).

We will not need the next corollary in this paper, but it may be of independent interest and can be used to
strengthen some of the statements proved in Section 13.

Corollary 12.3 Suppose that U � B and V � C are subsets such that UD and DV are separable in A.
Then the triple product UDV is separable in A.

Proof If either U or V are empty then UDV is empty, and, hence, separable in A. Thus we can
suppose that there exist some elements u 2 U and v 2 V . By Remark 4.12. the subsets u�1UD � B and
DVv�1 � C are separable in A. Since both of them contain D, we see that D D u�1UD \DVv�1;
thus D is separable in A.

By Proposition 12.1, the products UC and BV are separable in A, so the statement follows from the
observation that

UC \BV D UDV in A:

In the case when U and V are subgroups, the above corollary shows that we can use separability of
double cosets UD and DV to deduce separability of the triple coset UDV . Moreover, if both U and V
are subgroups containing D, Corollary 12.3 implies that the double coset UV D UDV is separable in A,
as long as U and V are separable in A.
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13 Separability of double cosets when one factor is parabolic

Throughout this section we will assume that G is group generated by a finite subset X and hyperbolic
relative to a collection of peripheral subgroups fH� j � 2 Ng, with jNj<1.

Our goal in this section will be to establish separability of double cosets required by conditions (S2)
and (S3) of Theorem 11.3. All statements in this section will assume that finitely generated relatively
quasiconvex subgroups of G are separable — that is, G is QCERF (see Definition 1.1).

Lemma 13.1 Suppose that G is QCERF. If A is a finitely generated relatively quasiconvex subgroup of
G then every subset of A which is closed in PT.A/ is also closed in PT.G/.

Proof By Lemma 5.22 every subgroup of finite index inA is finitely generated and relatively quasiconvex;
hence it is separable in G as G is QCERF. The claim of the lemma now follows from Lemma 4.13(b).

The following statement is essentially a corollary of the combination theorem of Martínez-Pedroza
(Theorem 5.26).

Proposition 13.2 Suppose that G is QCERF. Let P be a maximal parabolic subgroup of G, letQ6G be
a finitely generated relatively quasiconvex subgroup and let D D P \Q. Then there exists a finite-index
subgroup H 6f P such that all of the following properties hold :

� H \QDD;

� the subgroup AD hH;Qi is relatively quasiconvex in G;

� A is naturally isomorphic to H �DQ;

� D is separable in A;

� every subset of A which is closed in PT.A/ is also closed in PT.G/.

Proof Let C � 0 be the constant provided by Theorem 5.26, applied to the maximal parabolic subgroup
P and the relatively quasiconvex subgroup Q. By QCERF-ness, Q is separable in G, so by Lemma 4.16
there exists N Cf G such that minX .QN nQ/� C . Therefore, after setting H D P \QN 6f P , we
get minX .H nD/DminX .H nQ/� C .

Note that since D D P \Q � H � P , we have H \Q D D. Hence we can apply Theorem 5.26 to
conclude that AD hH;Qi is relatively quasiconvex in G and is naturally isomorphic to the amalgamated
free product H �DQ.

Recall, from Lemma 5.24 and Corollary 5.23, that P is finitely generated and relatively quasiconvex
in G; hence it is separable in G by QCERF-ness. It follows that D D P \Q is separable in G, which
implies that it is separable in A by Lemma 4.13.

Observe thatH andQ are both finitely generated, hence A is finitely generated and relatively quasiconvex
in G. Therefore Lemma 13.1 yields the last assertion of the proposition, that every subset of A which is
closed in PT.A/ is also closed in PT.G/.
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By combining Proposition 13.2 with Proposition 12.1 we obtain the first double coset separability result
when one of the factors is parabolic and the other one is finitely generated and relatively quasiconvex.

Proposition 13.3 Assume that G is QCERF. Let P be a maximal parabolic subgroup of G, let R6G be
a finitely generated relatively quasiconvex subgroup of G. Suppose that D 6 P is a subgroup satisfying
the following condition:

(13-1) for each U 6f D the double coset U.P \R/ is separable in P:

Then the double coset DR is separable in G.

Proof According to Proposition 13.2, there exists H 6f P such that the subgroup A D hH;Ri is
naturally isomorphic to the amalgamated free product H �E R, where E D P \RDH \R is separable
in A, and every closed subset from PT.A/ is separable in G.

Denote U DD\H 6f D. By assumption (13-1), UE is separable in P . Since P is finitely generated and
relatively quasiconvex inG, we can conclude that UE is separable inG by Lemma 13.1. As UE�A6G,
UE will also be closed in PT.A/, so we can apply Proposition 12.1 to deduce that the double coset UR
is closed in PT.A/. It follows that this double coset is separable in G and, since U 6f D, Lemma 4.14
implies that DR is separable in G, as desired.

We can now prove that (S3) of Theorem 11.3 holds as long as the relatively hyperbolic group G is QCERF.

Corollary 13.4 Suppose that G is QCERF , P is a maximal parabolic subgroup of G and Q 6 G is
a finitely generated relatively quasiconvex subgroup. Then for all finite-index subgroups K 6f P and
T 6f Q the double coset KT is separable in G.

Proof Note that T is finitely generated and relatively quasiconvex in G by Lemma 5.22. Hence, to apply
Proposition 13.3 we simply need to check that for any U 6f K the double coset U.P \T / is separable
in P . The latter is true because U.P \T / is a basic closed set in PT.P /, being a finite union of right
cosets to U 6f P . Therefore KT is separable in G by Proposition 13.3.

The proof of (S2) of Theorem 11.3 is slightly more involved because the intersection of two finitely
generated relatively quasiconvex subgroups need not be finitely generated.

Proposition 13.5 Let P be a maximal parabolic subgroup of G, let Q;R 6 G be finitely generated
relatively quasiconvex subgroups , let S D Q \R and D D P \Q. Suppose that G is QCERF and
condition (13-1) is satisfied. Then the double coset PS is separable in G.

Proof Proposition 13.3 tells us that the double coset DR is separable in G, and G is QCERF so Q is
separable in G. Now, observe that DR\Q DD.R\Q/ DDS , because D 6 Q. It follows that the
double coset DS is separable in G.
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According to Proposition 13.2, there exists a finite-index subgroup H 6f P such that H \Q D D,
A D hH;Qi Š H �D Q, D is separable in A and every closed subset in PT.A/ is closed in PT.G/.
The double coset DS is separable in A by Lemma 4.13, so HS is closed in PT.A/ by Proposition 12.1.
It follows that HS is closed in PT.G/, which implies that the double coset PS is separable in G by
Lemma 4.14.

14 Quasiconvexity of a virtual join from separability properties

In this section we will prove Theorems 1.2 and 1.3 from the introduction. The latter follows from the
following result and the observation that a finite-index subgroup of a relatively quasiconvex subgroup is
itself relatively quasiconvex (see Lemma 5.22).

Theorem 14.1 Let G be a group generated by a finite set X and hyperbolic relative to a finite collection
of abelian subgroups. Assume that G is QCERF. If Q;R 6G are relatively quasiconvex subgroups and
S DQ\R then for every A � 0 there exists a finite-index subgroup L 6f G, with S � L, such that
properties (P1)–(P3) from Section 3.1 hold for arbitrary subgroupsQ0 6Q\L and R0 6R\L satisfying
Q0\R0 D S .

Proof By combining the assumptions with Lemma 5.24, we know that maximal parabolic subgroups
of G are finitely generated abelian groups. Since such groups are slender, all relatively quasiconvex
subgroups of G are finitely generated (see [30, Corollary 9.2]). Moreover, finitely generated abelian
groups are LERF, and hence, they are double coset separable (because the product of two subgroups is
again a subgroup). Therefore the double coset PS is separable in G for any maximal parabolic subgroup
P 6G by Proposition 13.5.

In view of Proposition 11.1, for any finite collection P, of maximal parabolic subgroups of G, and any
B;C � 0 there exists L6f G, with S �L, such that any subgroups Q0 6Q\L and R0 6R\L satisfy
conditions (C1)–(C3), as long as Q0\R0 D S . Remark 3.3 tells us that these subgroups automatically
satisfy conditions (C4) and (C5). Thus we can obtain the desired statement by applying Theorem 3.5.

Corollary 14.2 Suppose that G is a QCERF group generated by a finite subset X and hyperbolic relative
to a finite family fH� j � 2 Ng of virtually abelian subgroups. Let Q;R 6G be relatively quasiconvex
subgroups and let S DQ\R. Then there exists L6f G such that if Q0 6Q\L and R0 6R\L are
relatively quasiconvex subgroups of G satisfying Q0 \R0 D S \L then the subgroup hQ0; R0i is also
relatively quasiconvex in G.

Proof By the assumptions for each � 2 N there exists a finite-index abelian subgroup K� 6f H� . Since
G is QCERF, each K� is separable in G (it is finitely generated by Lemma 5.24 and it is relatively
quasiconvex by Corollary 5.23). Thus, in view of Lemma 4.17, for every � 2 N there exists L� 6f G
such that L� \H� DK� .
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Since jNj<1, the intersection
T
�2NL� has finite index in G, hence it contains a finite-index normal

subgroup G1 Cf G. Note that for any g 2G and any � 2 N we have

(14-1) G1\gH�g
�1
D g.G1\H�/g

�1
� g.L� \H�/g

�1
D gK�g

�1;

where the first equality follows from the normality of G1, the middle inclusion follows from the fact
that G1 � L� , and the last equality is due to the fact that L� \H� D K� . By Lemma 5.22, G1 is
finitely generated and relatively quasiconvex in G; hence, by [30, Theorem 9.1] it is hyperbolic relative
to representatives of G1-conjugacy classes of the intersections G1\gH�g�1, g 2G. Thus, in view of
(14-1), all peripheral subgroups in G1 are abelian.

By [30, Corollary 9.3], a subgroup of G1 is relatively quasiconvex in G1 (with respect to the above
family of peripheral subgroups) if and only if it is relatively quasiconvex in G. Therefore G1 is QCERF
and Q1 DQ\G1 6f Q, R1 DR\G1 6f R are finitely generated relatively quasiconvex subgroups
of G1 by Lemma 5.22. After denoting S1 D S \G1 D Q1 \R1, we can apply Theorem 1.3 to find
a finite-index subgroup L 6f G1 such that S1 � L (thus, S1 D S \L) and the subgroup hQ0; R0i is
relatively quasiconvex in G1, for arbitrary Q0 6Q1\LDQ\L and R0 6R1\LDR\L satisfying
Q0 \R0 DQ1 \R1 D S1. We can use [30, Corollary 9.3] again to deduce that hQ0; R0i is relatively
quasiconvex in G.

The following collects the results of the previous sections, allowing us to find subgroups Q0 and R0 to
which Theorem 3.5 can be applied.

Proposition 14.3 Let G be a finitely generated QCERF relatively hyperbolic group with double coset
separable peripheral subgroups , and let Q and R be finitely generated relatively quasiconvex subgroups.
Then for any B;C � 0; and finite family P of maximal parabolic subgroups of G, there are finite-index
subgroups Q0 6f Q and R0 6f R satisfying (C1)–(C5) with constants B and C and family P.

More precisely , writing S DQ\R, there exists L6f G with S �L such that for any L0 6f L satisfying
S � L0, we can choose Q0 DQ\L0 6f Q and there exists M 6f L0 with Q0 �M such that for any
M 0 6f M satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof We check that all the assumptions of Theorem 11.3 are satisfied for every P 2P. Indeed, (S1)
holds because G is QCERF and (S3) is true by Corollary 13.4.

Note that the subgroups D DQ\P and R\P are finitely generated by Lemma 5.24, hence condition
(13-1) follows from the double coset separability of P ; thus (S4) is satisfied. Finally, (S2) holds by
Proposition 13.5.

The statement now follows by applying Theorem 11.3.

Theorem 14.4 Let G be a group generated by a finite set X and hyperbolic relative to a finite collection
of subgroups fH� j � 2Ng. Suppose that G is QCERF and H� is double coset separable , for each � 2N.
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If Q;R6G are finitely generated relatively quasiconvex subgroups and S DQ\R then for every A� 0
there exist finite-index subgroups Q0 6f Q and R0 6f R which satisfy properties (P1)–(P3).

More precisely , there exists L 6f G with S � L such that for any L0 6f L satisfying S � L0, we can
chooseQ0DQ\L0 6f Q and there existsM 6f L0 withQ0�M such that for anyM 0 6f M satisfying
Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof Let P be the finite collection of maximal parabolic subgroups of G provided by Theorem 3.5.
The statement follows immediately from a combination of Theorem 3.5 with Proposition 14.3.

Recall thatQ andR are said to have almost compatible parabolics if for every maximal parabolic subgroup
P 6G, either Q\P 4R\P or R\P 4Q\P . We find that in the case when Q and R have almost
compatible parabolics, it is actually not necessary to assume that the peripheral subgroups are double
coset separable:

Theorem 14.5 Suppose that G is a finitely generated QCERF relatively hyperbolic group , Q;R6G are
finitely generated relatively quasiconvex subgroups with almost compatible parabolics and S DQ\R.
Then for every A� 0 there exist finite-index subgroups Q0 6f Q and R0 6f R which satisfy properties
(P1)–(P3).

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof As before, we will be verifying the assumptions of Theorem 11.3. Let P be an arbitrary maximal
parabolic subgroup of G. Condition (S1) follows from the QCERF-ness of G and (S3) follows from
Corollary 13.4.

Let D D Q \ P and U 6f D. Since Q and R have almost compatible parabolics and Q \ P 4 U ,
we know that either U 4R\P or R\P 4 U . Note that both U and R\P are finitely generated by
Lemma 5.24 and relatively quasiconvex by Corollary 5.23, so they are separable because G is QCERF.
Lemma 4.15 now implies that the double coset U.R\P / is separable in G, thus condition (13-1) is
satisfied by Lemma 4.13. This shows that (S4) of Theorem 11.3 is satisfied; furthermore, (S2) holds by
Proposition 13.5.

We can now deduce the theorem by combining Theorem 3.5 with Theorem 11.3.

15 Separability of double cosets in QCERF relatively hyperbolic groups

In this section we prove Corollary 1.4 from the introduction.

Proof of Corollary 1.4 Let X be a finite generating set of G. Consider any g 2 G nQR, and set
AD jgjX C 1. By Theorem 14.4 there are subgroups Q0 6f Q and R0 6f R satisfying properties (P1)
and (P3). The latter property, combined with the definition of A, implies that g …QhQ0; R0iR.
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On the other hand, property (P1) tells us that H D hQ0; R0i is relatively quasiconvex in G. Clearly it is
also finitely generated, hence it must be separable in G by QCERF-ness. Observe that since Q0 and R0

are finite-index subgroups in Q and R respectively,

QHRD

n[
iD1

m[
jD1

aiHbj ;

where a1; : : : ; an are left coset representatives of Q0 in Q, and b1; : : : ; bm are right coset representatives
of R0 in R. Recalling Remark 4.12, we see that the subset QHR is separable in G; thus it is a closed
set containing QR but not containing g. Since we found such a set for an arbitrary g 2G nQR, we can
conclude that QR is closed in PT.G/, as required.

Corollary 1.6 from the introduction can be proved in the same way as Corollary 1.4, except that one needs
to use Theorem 14.5 instead of Theorem 14.4.

Part III Separability of products of subgroups

This part of the paper is dedicated to proving Theorem 1.8 from the introduction. In order to do this we
must generalise the discussion of path representatives in Sections 6–8, adapting the arguments there to
deal with additional technicalities. Let us give a summary of the argument.

Let G be a QCERF finitely generated relatively hyperbolic group with a finite collection of peripheral
subgroups fH� j � 2 Ng. Suppose that, for each � 2 N, the subgroup H� has property RZs . Let
F1; : : : ; Fs 6G be finitely generated relatively quasiconvex subgroups. In order to show that the product
F1 � � �Fs is separable, we proceed by induction on s. The case that s D 1 is the QCERF condition and
s D 2 is Corollary 1.4, so we may assume s > 2. For ease of reading we now relabel the subgroups
F1 DQ;F2 DR;F3 D T1; : : : ; Fs D Tm, where mD s� 2 > 0.

We approximate the product QRT1 � � �Tm with sets of the form QhQ0; R0iRT1 � � �Tm, where Q0 6f Q
and R0 6f R are finite-index subgroups of Q and R respectively. Observe that we can write these sets as
finite unions

(15-1) QhQ0; R0iRT1 � � �Tm D
[
i;j

ai hQ
0; R0ibjT1 � � �Tm;

where the elements ai and bj are coset representatives of Q0 and R0 in Q and R respectively. Note that
the products on the right-hand side of (15-1) now involve only s � 1 subgroups. By Theorem 1.2, the
subgroups Q0 and R0 can be chosen so that hQ0; R0i is relatively quasiconvex, hence we can apply the
induction hypothesis to show that such products are separable in G.

It then remains to prove that the product QRT1 � � �Tm is, in fact, an intersection of subsets of the
form QhQ0; R0iRT1 � � �Tm as above. To this end, we study path representatives qp1 � � �pnrt1 � � � tm of
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elements of QhQ0; R0iRT1 � � �Tm in a similar manner to Part II. The main additional difficulty comes
from controlling instances of multiple backtracking that involve segments in the t1 � � � tm part of the path.
We introduce new metric conditions (C2-m) and (C5-m) to deal with these technicalities.

16 Auxiliary definitions

Convention 16.1 We write G for a group generated by a finite set X and hyperbolic relative to a family
of subgroups fH� j � 2 Ng, jNj <1. Let HD

F
�2N.H� n f1g/ and choose ı 2 N so that the Cayley

graph �.G;X [H/ is ı-hyperbolic (see Lemma 5.4).

We will assume that Q;R; T1; : : : ; Tm 6 G are fixed relatively quasiconvex subgroups of G, with
quasiconvexity constant "� 0, where m 2N0. Denote S DQ\R.

Throughout this section we use Q0 and R0 to denote subgroups of Q and R respectively. We will also
assume that Q0\R0 DQ\RD S (that is, Q0 and R0 satisfy (C1)).

16.1 New metric conditions

Suppose B;C � 0 are some constants, P is a finite collection of maximal parabolic subgroups of G, and
U is a finite family of finitely generated relatively quasiconvex subgroups of G. We will be interested in
the following generalisations of conditions (C2) and (C5) to the multiple coset setting:

(C2-m) minX .RhQ0; R0iRT1 � � �Tj nRT1 � � �Tj /� B , for each j D 0; : : : ; m;

(C5-m) minX
�
qhQ0P ; R

0
P iRP .U1/P � � � .Uj /P n qQ

0
PRP .U1/P � � � .Uj /P

�
� C , for each P 2 P, all

q 2QP , any j 2 f0; : : : ; mg and arbitrary U1; : : : ; Uj 2U, where .Ui /P D Ui \P 6 P .

Remark 16.2 Let us make the following observations.

� When j D 0, the inequality from condition (C2-m) reduces to minX .RhQ0; R0iR nR/�B , which
is a part of (C2); on the other hand, the inequality from condition (C5-m) simply becomes (C5). In
particular, for each m� 0, (C5-m) implies (C5).

� In our usage of (C5-m), the set U will consists of finitely many conjugates of T1; : : : ; Tm; in fact,
Ui D T

ai

i , for some ai 2G, i D 1; : : : ; m.

Remark 16.3 Similarly to conditions (C1)–(C5), the above conditions are best understood with a view
towards the profinite topology.

� To prove separability of products of relatively quasiconvex subgroups we argue by induction on the
number of factors. That is, we assume that the product ofmC1 relatively quasiconvex subgroups is
separable and then deduce the separability of the product ofmC2 relatively quasiconvex subgroups.
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The existence of finite-index subgroups Q0 6f Q and R0 6f R realising condition (C2-m) will be
deduced from this inductive assumption.

� The existence of finite-index subgroups Q0 6f Q and R0 6f R realising condition (C5-m), given
a finite family U, will be deduced from the assumption that the peripheral subgroups fH� j � 2Ng

of G each satisfy the property RZmC2.

16.2 Path representatives for products of subgroups

In this subsection we define path representatives for elements of QhQ0; R0iRT1 � � �Tm similarly to the
path representatives for elements of QhQ0; R0iR from Definition 10.6 and discuss their properties.

Definition 16.4 (path representative, III) Let g be an element of QhQ0; R0iRT1 � � �Tm. Suppose that
p D qp1 � � �pnrt1 � � � tm is a broken line in �.G;X [H/ satisfying the following properties:

� Qp D g;

� Qq 2Q and Qr 2R;

� Qpi 2Q
0[R0 for each i 2 f1; : : : ; ng;

� Qti 2 Ti for each i 2 f1; : : : ; mg.

Then we say that p is a path representative of g in the product QhQ0; R0iRT1 � � �Tm.

The type of a path representative is defined as before (cf Definitions 6.3 and 10.7).

Definition 16.5 (type and width of a path representative, III) Let g 2 QhQ0; R0iRT1 � � �Tm and let
p D qp1 � � �pnrt1 � � � tm be a path representative of g in the sense of Definition 16.4. Denote by Y the
set of all H-components of the segments of p. We define the width of p as the integer n and the type of
p as the triple

�.p/D

�
n; `.p/;

X
y2Y

jyjX

�
2N0

3:

The following observation will be useful.

Remark 16.6 Suppose g 2QhQ0; R0iRT1 � � �Tm can be written as a product

g D xy1 � � �ynzu1 � � �um;

where x 2 Q, y1; : : : ; yn 2 Q0 [R0, z 2 R and ui 2 Ti , for each i D 1; : : : ; m. Then g has a path
representative of width n.

Similarly to path representatives of elements of hQ0; R0i (in the sense defined in Section 6), we will be
interested in path representatives whose type is minimal (as an element of N0

3 under the lexicographic
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ordering). Given an element g 2QhQ0; R0iRT1 � � �Tm, such a path representative is always guaranteed
to exist. Let us make the following observation (cf Remark 10.8).

Remark 16.7 Suppose that p D qp1 � � �pnrt1 � � � tm is a minimal type path representative of an element
g 2QhQ0; R0iRT1 � � �Tm such that g …QRT1 � � �Tm. Then n > 0, Qp1 2 R0 n S , Qpn 2Q0 n S and the
labels of p1; : : : ; pn alternate between representing elements of R0 n S and Q0 n S . In particular, the
integer n must be even.

Note that in Definition 16.4 the geodesic paths q, r and t1; : : : ; tm are always counted as segments of
the path p, even if they end up being trivial paths. For example a minimal type path representative of
an element g 2 R0Q0T1 � � �Tm nQRT1 � � �Tm will be a broken line p D qp1p2rt1 � � � tm with mC 4
segments, where q and r are trivial paths.

The proofs of the main results from Sections 6 and 7 can be easily adapted to apply to minimal type path
representatives of elements g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm (in the sense of Definitions 16.4
and 16.5), with only superficial differences, so the proofs of the following generalisations of Lemmas 6.7,
7.3 and 7.6, respectively, will be omitted.

Lemma 16.8 There is a constant C0 � 0 such that the following holds.

Assume that Q0 6 Q and R0 6 R are subgroups satisfying condition (C1). Consider any element
g 2QhQ0; R0iRT1 � � �Tm with g …QRT1 � � �Tm. Let p D qp1 � � �pnrt1 � � � tm be a path representative
of g of minimal type , with nodes f0; : : : ; fnCmC2 (that is , f0 D q�, fi D .pi /�, for each i 2 f1; : : : ; ng,
fnC1D r�, fnC1Cj D .tj /�, for each j 2f1; : : : ; mg, and fnCmC2D .tm/C). Then hfi�1; fiC1irel

fi
�C0,

for all i 2 f1; : : : ; nCmC 1g.

Lemma 16.9 There is a constant C1 � 0 such that the following is true.

Let Q0 6 Q and R0 6 R be subgroups satisfying condition (C1). Consider a minimal type path rep-
resentative p D qp1 � � �pnrt1 � � � tm for an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. If a and
b are adjacent segments of p, with aC D b�, and h and k are connected H-components of a and b
respectively, then dX .hC; aC/� C1 and dX .aC; k�/� C1.

Lemma 16.10 For any � � 0 there is ‚0 D‚0.�/ 2N such that the following is true.

Let Q0 6Q and R0 6R be subgroups satisfying condition (C1). Consider a minimal type path represen-
tative p D qp1 � � �pnrt1 � � � tm for an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. Suppose that a
and b are adjacent segments of p, with aC D b�, and h and k are connected H-components of a and b
respectively, such that

maxfjhjX ; jkjXg �‚0:

Then dX .h�; kC/� �.
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17 Multiple backtracking in product path representatives: two special
cases

Just like in Theorem 3.5, the main difficulty in proving Theorem 1.8 consists in dealing with multiple
backtracking in path representatives. In this section we will consider two of the possible cases. We will
be working under Convention 16.1.

Throughout the rest of the paper we fix the following notation.

Notation 17.1 let C1 be the larger of the two constants provided by Lemmas 7.3 and 16.9, and denote
by P1 the finite collection of maximal parabolic subgroups of G given by

P1 D fH�
b
j � 2 N; jbjX � C1g:

The following lemma is roughly analogous to Lemma 8.2.

Lemma 17.2 For any L � 0 and any relatively quasiconvex subgroup T 6 G there is a constant
L0 D L0.L; T /� 0 such that the following is true.

Let P D H�
b
2 P1, for some � 2 N and b 2 G, with jbjX � C1, and let t be a geodesic path in

�.G;X [H/, with Qt 2 T . Suppose that v 2 PbD bH� is a vertex of t and u 2 P is an element satisfying
dX .u; t�/� L. Denote aD u�1t� 2G. Then there is a geodesic path t 0 in �.G;X [H/ such that

� t 0� D u and dX .t 0C; v/� L
0;

� Qt 0 2 T a \P ;

� .t 0
C
/
�1
tC 2 aT.

Proof Let K DmaxfC1; � CLg, where � � 0 is a quasiconvexity constant for T . Denote

(17-1) L0 DmaxfK 0.P; T a; K/ j P 2 P1; a 2G; jajX � Lg;

where K 0.P; T a; K/ is obtained from Lemma 4.1.

The hypotheses that v 2Pb and jbjX �C1 imply that dX .v; P /� jbjX �C1. As u2P, we have P DuP
and so

(17-2) dX .v; uP /� C1:

Set x D t� D ua. Since Qt 2 T, we have dX .v; xT /� � , as T is � -quasiconvex. Hence

dX .v; uT
a/D dX .v; xTa

�1/� dX .v; xT /CjajX � � CL:

Combining the latter inequality with (17-2) allows us to apply Lemma 4.1 to find an element z 2u.T a\P /
such that dX .v; z/ � L0, where L0 � 0 is the constant from (17-1). Now take t 0 to be any geodesic in
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�.G;X [H/ with t 0� D u and t 0
C
D z. It is straightforward to verify that t 0 satisfies the first two of the

required properties. For the last property, observe that

.t 0C/
�1tC D ..t

0
C/
�1u/.u�1t�/.t

�1
� tC/D Qt

0�1a Qt 2 T aaT D aT:

The following notation will be fixed for the remainder of the paper.

Notation 17.3 LetD be the constant from Lemma 8.2, corresponding to C1 and P1 (from Notation 17.1)
and subgroups Q;R. We define constants L1; : : : ; LmC1 as

L1 DDCC1 and LiC1 D L
0.Li ; Ti /CC1 for each i D 1; : : : ; m;

where L0 is obtained from Lemma 17.2.

We also define the family of subgroups

U1 D

m[
iD1

˚
T
g
i j i 2 f1; : : : ; mg; g 2G; jgjX � Li

	
;

consisting of finitely many conjugates of the subgroups T1; : : : ; Tm. Note that, by Lemma 5.22, each
U 2U1 is a relatively quasiconvex subgroup of G.

The next proposition describes how we deal with consecutive backtracking that involves the .t1 � � � tm/-
part of a path representative of an element g 2 QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm; it complements
Proposition 8.4 which takes care of backtracking within the qp1 � � �pnr-part.

Proposition 17.4 Suppose that p D qp1 � � �pnrt1 � � � tm is a path representative of minimal type for
an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm, where Q0 6 Q and R0 6 R are some subgroups
satisfying (C1). Let P DH�b 2 P1, for some � 2 N and b 2G, with jbjX � C1.

Suppose that h1; : : : ; hj are connected H�-components of the segments t1; : : : ; tj , respectively, with
j 2 f1; : : : ; mg, such that .h1/� 2 Pb D bH� . If u1 2 P is an element satisfying dX .u1; .t1/�/ � L1
then there exist elements a1; : : : ; aj 2G and a broken line t 01 � � � t

0
j in �.G;X [H/ such that

(i) .t 01/� D u1 and dX ..t 0j /C; .hj /C/� LjC1;

(ii) aiC1 2 aiTi , for i D 1; : : : ; j � 1;

(iii) ai D .t
0
i /
�1
� .ti /� and jai jX � Li , for each i D 1; : : : ; j ;

(iv) Qt 0i 2 T
ai

i \P , for all i D 1; : : : ; j .

Proof We start by setting a1 D u�11 .t1/�, so that ja1jX D dX .u1; .t1/�/� L1. Note that

.h1/C D .h1/� Qh1 2 bH� D Pb:

Therefore we can apply Lemma 17.2 to find a geodesic path t 01 in �.G;X [H/ such that .t 01/� D u1,
dX ..t

0
1/C; .h1/C/� L

0.L1; T1/, Qt 01 2 T
a1

1 \P and

(17-3) .t 01/
�1
C .t1/C 2 a1T1:
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u1

u2 u3 uj

t 01

t 02

t 0j

� L1

� L2
� Lj

� LjC1

.h1/�

.h1/C
.h2/� .h2/C

.hj /�

.hj /Ct1

t2

tj

Figure 8: The new path t 01 � � � t
0
j constructed in Proposition 17.4.

It follows that properties (ii)–(iv) are satisfied for i D 1, while property (i) holds because L2 �L0.L1; T1/
by definition. If j D 1 then property (ii) is vacuously true.

We can now suppose that j > 1. Then h1 is connected to the component h2 of t2, so, according to
Lemma 16.9, dX ..h1/C; .t1/C/�C1. Set u2D .t 01/C and a2D u�12 .t1/C. Note that a2 2 a1T1 by (17-3)
and

ja2jX D dX ..t1/
0
C; .t1/C/� dX ..t

0
1/C; .h1/C/C dX ..h1/C; .t1/C/� L

0.L1; T1/CC1 D L2:

Since .t2/� D .t1/C, we see that a2 D u�12 .t2/� and dX .u2; .t2/�/D ja2jX � L2.

Now, observe that u2 D u1 Qt
0
1 2 P and .h2/C 2 bH� D Pb, as h2 is connected to h1. This allows

us to use Lemma 17.2 to find a geodesic path t 02 in �.G;X [ H/ such that .t 02/� D u2 D .t 01/C,
dX ..t

0
2/C; .h2/C/� L

0.L2; T2/, Qt 02 2 T
a2

2 \P and .t 02/
�1
C
tC 2 a2T2 (see Figure 8).

If j D 2 then we are done, otherwise we construct the remaining elements a3; : : : ; aj and the paths
t 03; : : : ; t

0
j inductively, similarly to the construction of a2 and t 02 above.

The next two propositions prove that, under certain conditions, instances of multiple backtracking are
long. Essentially, they generalise Proposition 8.5. The first of these shows how we can use condition
(C5-m) to deal with particular instances of multiple backtracking.

Proposition 17.5 For each � � 0 there is a constant C2 D C2.�/ � 0 such that if Q0 6Q and R0 6 R

satisfy conditions (C1), (C3) and (C5-m) with constant C � C2 and finite families P and U, such that
P1 � P and U1 �U, then the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm. Suppose that p has multiple backtracking along H�-components h1; : : : ; hk of
its segments , for some � 2 N, such that

� h1 is an H�-component of either q or pi , for some i 2 f1; : : : ; n� 1g, with Qpi 2Q0;
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� hk is an H�-component of a segment tj , for some j 2 f1; : : : ; mg.

Then dX ..h1/�; .hk/C/� �.

Proof Take
C2 Dmaxf2C1;DC �CLj j j D 1; : : : ; mC 1gC 1;

where D and Lj are defined in Notation 17.3, and suppose that C � C2.

The proof employs the same strategy as Proposition 8.5: we first construct a path whose endpoints are
close to .h1/� and .hk/C and whose label represents an element of a parabolic subgroup. We will then
obtain a contradiction with the minimality of the type of p, using condition (C5-m).

We will focus on the case when h1 is an H�-component of pi , for some i 2 f1; : : : ; n� 1g with Qpi 2Q0,
with the case when h1 is an H�-component of q being similar. Note that since g …QRT1 � � �Tm, it must
be that n � 2 by Remark 16.7. After translating by .pi /�1C , we may assume that .pi /C D 1. We write
b D .h1/C and note that, according to Lemma 16.9,

(17-4) jbjX D dX ..h1/C; .pi /C/� C1:

Let P D bH�b�1 2P1 �P. Since h1; : : : ; hk are pairwise connected, the vertices .hl/C lie in the same
left coset bH� , for all l D 1; : : : ; k, thus

(17-5) .hl/C 2 Pb for all l D 1; : : : ; k:

We construct a new broken line p0 D p0i � � �p
0
nr
0t 01 � � � t

0
j in two steps. It will be used in conjunction with

condition (C5-m) to obtain a path representative of g with lesser type than p.

Step 1 We start by constructing geodesic paths p0i ; p
0
iC1; : : : ; p

0
n and r 0 by using condition (C3) and

applying Lemmas 8.2 and 8.3, in exactly the same way as in the proof of Proposition 8.4. The newly
constructed paths will have the following properties:

� Qp0i 2QP , Qp0
l
2Q0P [R

0
P , for each l D i C 1; : : : ; n, and Qr 0 2RP ;

� dX ..p
0
i /�; .h1/�/�D and .p0i /C D .pi /C D 1;

� .p0
l
/C D .p

0
lC1

/�, for l D i; : : : ; n� 1;

� r 0� D .p
0
n/C and dX .r 0C; .hk�j /C/�D;

� .p0
l
/�1
C
.pl/C 2 S , for l D i C 1; : : : ; n.

Step 2 We now construct geodesic paths t 01; : : : ; t
0
j as follows. Set u1 D .r 0/C and observe that since

.p0iC1/� D .p
0
i /C D 1, we have

u1 D Qp
0
iC1 � � � Qp

0
n Qr
0
2 P:

By Lemma 16.9, we have dX ..hk�j /C; .t1/�/D dX ..hk�j /C; rC/ � C1. Moreover, by Step 1 above,
dX .u1; .hk�j /C/�D. Therefore

dX .u1; .t1/�/� C1CD D L1:
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Together with (17-5) this allows us to apply Proposition 17.4 to find elements a1; : : : ; aj 2 G and a
broken line t 01t

0
2 � � � t

0
j in �.G;X [H/ such that

� .t 01/� D u1 and dX ..t 0j /C; .hk/C/� LjC1;

� alC1 2 alTl , for l D 1; : : : ; j � 1;

� al D .t
0
l
/�1� .tl/� and jal jX � Ll , for each l D 1; : : : ; j ;

� Qt 0
l
2 T

al

l
\P , for all l D 1; : : : ; j .

Observe that

(17-6) a1D .t 01/
�1
� .t1/�D u

�1
1 rCD .r

0
C

�1
r 0�/.r

0
�

�1
r�/.r

�1
� rC/D Qr

0�1.p0n/
�1
C .pn/C Qr 2RPSR�R:

We now define a new broken line p0 in �.G;X [H/ by

p0 D p0i � � �p
0
nr
0t 01 � � � t

0
j :

Note that dX .p0�; .h1/�/ � D, dX .p0C; .hk/C/ � LjC1 and Qp0 2 Qp0i hQ
0
P ; R

0
P iRP .T

a1

1 /P � � � .T
aj

j /P ,
where Qp0i 2QP . Moreover, T al

l
2U1 �U, for each l D 1; : : : ; j .

Now, suppose, for a contradiction, that dX ..h1/�; .hk/C/ < �. Then, by the triangle inequality,

jp0jX �DC �CLjC1 < C2:

Thus, as C �C2, we can apply (C5-m) to deduce that Qp0 2 Qp0iQ
0
PRP .T

a1

1 /P � � � .T
aj

j /P . Therefore, there
exist elements z 2 Qp0iQ

0
P , x 2R and yl 2 Tl , l D 1; : : : ; j , such that Qp0D zxya1

1 � � �y
aj

j . By construction,
for each l D 1; : : : ; j � 1 there is bl 2 Tl such that alC1 D albl , and so a�1

l
alC1 D bl 2 Tl . Recalling

that .p0i /C D .pi /C D 1, the above yields

(17-7) Qp0 D zxy
a1

1 � � �y
aj

j D zxa1y1b1y2b2 � � � bj�1yja
�1
j :

Let ˛ and ˇ be geodesic segments in �.G;X [H/ connecting .pi /� with .p0i /� and .t 0j /C with .tj /C
respectively. Since .pi /C D .p0i /C, we have

(17-8) Q̨ D .pi /
�1
� .p

0
i /� D .pi /

�1
� .pi /C.p

0
i /
�1
C .p

0
i /� D Qpi Qp

0
i
�1:

On the other hand, it follows from the construction that

(17-9) Q̌ D .t 0j /
�1
C .tj /C D Qt

0
j
�1.t 0j /

�1
� .tj /� Qtj D Qt

0
j
�1aj Qtj 2 T

aj

j ajTj D ajTj :

The broken lines p and  D qp1 � � �pi�1˛p0ˇtjC1 � � � tm have the same endpoints in �.G;X[H/. Hence,
in view of (17-8) and (17-7), we obtain

(17-10) g D Qp D Q D Qq Qp1 � � � Qpi�1 Q̨ Qp
0 Q̌ QtjC1 � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1/.zxa1y1b1y2b2 � � � bj�1yja

�1
j / Q̌ QtjC1 � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1z/.xa1/.y1b1/ � � � .yj�1bj�1/.yja

�1
j
Q̌/QtjC1 � � � Qtm:
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Recall that Qq 2Q, Qp1; : : : ; Qpi�1 2Q0[R0 and Qtl 2 Tl , for l D j C 1; : : : ; m, by definition. On the other
hand, Qpi Qp0i

�1z 2Q0 Qp0i
�1 Qp0iQ

0
P DQ

0, xa1 2 R by (17-6) and ylbl 2 Tl , for each l D 1; : : : ; j � 1, by
construction. Finally, yja�1j Q̌ 2 Tja

�1
j ajTj D Tj by (17-9). Thus, following Remark 16.6, the product

decomposition (17-10) for g gives us a path representative of g with width i < n. This contradicts the
minimality of the type of p, so the proposition is proved.

Condition (C2-m) can be used deal with another case of multiple backtracking.

Proposition 17.6 For every � � 0 there is a constant B1 D B1.�/� 0 such that if Q0 6Q and R0 6R

satisfy condition (C2-m) with constant B � B1 then the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm, and let � 2 N. Suppose that p has multiple backtracking along H�-components
h1; : : : ; hk of its segments such that

� h1 is an H�-component of pi , for some i 2 f1; : : : ; n� 1g, with Qpi 2R0;

� hk is an H�-component of tj for some j 2 f1; : : : ; mg.

Then dX ..h1/�; .hk/C/� �.

Proof TakeB1D �C2"C1, where "�0 is a quasiconvexity constant for the subgroupsR and T1; : : : ; Tm
(as in Convention 16.1), and let B � B1. Suppose, for a contradiction, that dX ..h1/�; .hk/C/ < �.

Since Qpi 2R0, we have dX ..h1/�; .pi /CR/� ", by the quasiconvexity of R. Therefore there is a geodesic
path p0i in �.G;X [H/, such that Qp0i 2R, dX ..p0i /�; .h1/�/� " and .p0i /C D .pi /C. Similarly, using
the quasiconvexity of Tj , we can find a geodesic path t 0j in �.G;X [H/, such that Qt 0j 2 Tj , .t 0j /�D .tj /�
and dX ..t 0j /C; .hk/C/� ". Let p0 be the broken line p0ipiC1 � � �pnrt1 � � � tj�1t

0
j .

Observe that Qp0 2RhQ0; R0iRT1 � � �Tj and, by the triangle inequality, jp0jX � �C 2". Therefore we can
apply condition (C2-m) to Qp0 to find that Qp0D xy1 � � �yj , where x 2R and yl 2 Tl , for each l D 1; : : : ; j .

The broken lines p and  D qp1 � � �pip0i
�1
p0t 0j
�1
tj � � � tm have the same endpoints; hence

(17-11) g D Qp D Q D Qq Qp1 � � � Qpi Qp
0
i
�1
Qp0 Qt 0j
�1 Qtj � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1x/y1 � � �yj�1.yj Qt

0
j
�1 Qtj /QtjC1 � � � Qtm:

Note that Qpi Qp0i
�1x 2 R and yj Qt 0j

�1 Qtj 2 Tj . In view of Remark 16.6, the product decomposition of g
from (17-11) can be used to obtain a path representative p00 of g with width i � 1 < n. Thus the type of
p00 is strictly less than the type of p, which yields the desired contradiction.

18 Multiple backtracking in product path representatives: general case

Propositions 8.5, 17.5 and 17.6 above show that for g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm, instances
of multiple backtracking in a minimal type path representative p D qp1 � � �pnrt1 � � � tm, that start at a
component of q; p1; : : : , or pn�1, are long. We cannot draw the same conclusion in all cases since we
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have no control over the elements Qr; Qt1; : : : ; Qtm. Therefore in this section we use a different approach.
Proposition 18.3 below shows that in the remaining cases we can find a path representative with one of
the segments from the tail section rt1 � � � tm being short with respect to the proper metric dX . Note that
the main constant �0 D �0.Q0; �/, produced in this proposition, will depend on Q0 (unlike the constants
C1;D; C2.�/; B1.�/; : : : , defined previously) but will be independent of R0.

As before, we work under Convention 16.1. We will also keep using Notation 17.1 and 17.3. Let us start
with the following elementary observation.

Lemma 18.1 For any � � 0 and any given subsets A1; : : : ; Ak �G, k � 1, there is a constant

� D �.�; A1; : : : ; Ak/� 0

such that if g 2 A1 � � �Ak and jgjX � �, then there exist a1 2 A1; : : : ; ak 2 Ak such that g D a1 � � � ak
and jai jX � �, for all i 2 f1; : : : ; kg.

Proof For each g 2 A1 � � �Ak fix some elements a1;g 2 A1; : : : ; ak;g 2 Ak such that g D a1;g � � � ak;g .
Now we can define

� Dmax
˚
ja1;g jX ; : : : ; jak;g jX j g 2 A1 � � �Ak; jgjX � �

	
<1:

Clearly � has the required property.

Definition 18.2 (tail height) Suppose that Q0 6 Q, R0 6 R and p D qp1 � � �pnrt1 � � � tm is a path
representative of an element g 2QhQ0; R0iRT1 � � �Tm. The tail height of p, thX .p/, is defined as

thX .p/Dminfjr jX ; jt1jX ; : : : ; jtm�1jXg:

Proposition 18.3 For each � � 0, let C2 D C2.�/ be the larger of the two constants provided by Proposi-
tions 8.5 and 17.5, and letB1DB1.�/ be given by Proposition 17.6. SetB2DB2.�/DmaxfC2.�/; B1.�/g.

Suppose that Q0 6Q is a relatively quasiconvex subgroup of G containing S DQ\R. Then there exists
a constant �0 D �0.Q0; �/� 0 such that if R0 6R and Q0 and R0 satisfy conditions (C1)–(C4), (C2-m)
and (C5-m), with constants B �B2 and C � C2 and collections of subgroups P�P1 and U�U1, then
the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm. Suppose that p has multiple backtracking along H-components h1; : : : ; hk of its
segments , with k � 3 and dX ..h1/�; .hk/C/� �. Then m� 1 and there is a path representative p0 for g
(not necessarily of minimal type) such that thX .p0/� �0.

Proof Let "0 � 0 be a quasiconvexity constant for Q0. Take �0 D �0.Q0; �/ � 0 to be the maximum,
taken over all indices i and j satisfying 1� i � j �m, of the constants

�.�C "C "0;Q0; R; T1; : : : ; Tj /; �.�C 2";R; T1; : : : ; Tj /; �.�C 2"; Ti ; : : : ; Tj /;

obtained from Lemma 18.1.
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Suppose that h1; : : : ; hk are as in the statement, with dX ..h1/�; .hk/C/ � �. There are four possible
cases to consider, depending on the segments of p to which the H-components h1 and hk belong to. If
hk is an H-component of one of the segments p2; : : : ; pn or r , then one obtains a contradiction to the
minimality of type of p by following the same argument as in Proposition 8.5 (recall that (C5-m) implies
(C5) by Remark 16.2).

If h1 is an H-component of one of the segments q; p1; : : : ; pn�1 and hk is an H-component of one of the
segments t1; : : : ; tm, we obtain a contradiction by applying either Proposition 17.5 or 17.6 (depending on
whether h1 is a component of a segment of p representing an element of Q or R, respectively).

It remains to consider the possibility when h1 is an H-component of one of the segments pn; r; t1; : : : ; tm.
It follows that hk is an H-component of tj , for some j 2 f1; : : : ; mg, in particular m� 1. For simplicity
we treat only the case when h1 is an H-component of pn; the remaining cases can be dealt with similarly.

Note that Qpn 2Q0 by Remark 16.7. By the relative quasiconvexity of Q0 and Tj there are geodesic paths
˛ and ˇ in �.G;X [H/ satisfying

dX .˛�; .h1/�/� "
0; ˛C D .pn/C; Q̨ 2Q0;

ˇ� D .tj /�; dX .ˇC; .hk/C/� "; Q̌ 2 Tj :

Let  D ˛rt1 � � � tj�1ˇ. Observe that Q 2Q0RT1 � � �Tj and, by the triangle inequality,

j jX D dX .˛�; ˇC/� "
0
C �C ":

Thus, applying Lemma 18.1, we can find elements x 2 Q0, y 2 R, z1 2 T1; : : : ; zj 2 Tj such that
Q D xyz1 � � � zj and

(18-1) jyjX � �0:

Therefore

(18-2) g D Qp D Qq Qp1 � � � Qpn. Q̨
�1
Q̨ / Qr Qt1 � � � Qtj�1. Q̌ Q̌

�1/Qtj � � � Qtm

D Qq Qp1 � � � Qpn Q̨
�1
Q Q̌�1 Qtj � � � Qtm

D Qq Qp1 � � � Qpn�1. Qpn Q̨
�1x/yz1 � � � zj�1.zj Q̌

�1 Qtj /QtjC1 � � � Qtm:

Following Remark 16.6, the product decomposition (18-2) gives rise to a path representative

p0 D q0p01 � � �p
0
nr
0t 01 � � � t

0
m

for g, where Qq0 D Qq 2 Q, Qp0i D Qpi 2 Q
0 [R0, for i D 1; : : : ; n� 1, Qp0n D Qpn Q̨

�1x 2 Q0, Qr 0 D y 2 R,
Qt 0
l
D zl 2 Tl , for l D 1; : : : ; j � 1, Qt 0j D zj Q̌

�1 Qtj 2 Tj and Qt 0s D Qts 2 Ts , for s D j C 1; : : : ; m. In view of
(18-1), we see that thX .p0/� jyjX � �0, so the proof is complete.

The following proposition is an analogue of Lemma 10.3. It employs the constant c0 DmaxfC0; 14ıg,
where C0 is provided by Lemma 16.8, and the constants � D �.c0/ � 1 and c D c.c0/ � 0, given by
Proposition 9.4.
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Proposition 18.4 For any � � 0 there are constants � D �.�/ � 0, C3 D C3.�/ � 0, ‚1 D‚1.�/ 2N

and B3DB3.�/� 0 such that if Q0 6Q is a relatively quasiconvex subgroup of G and B �B3, C �C3
then there exists E DE.�;Q0; B/� 0 such that the following holds.

Suppose Q0 and some subgroup R0 6R satisfy conditions (C1)–(C4), (C2-m) and (C5-m), with constants
B and C , and families P�P1 and U�U1. Let p be a minimal type path representative for an element
g 2 QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. Assume that for any path representative p0 for g we have
thX .p0/�E. Then p is .B; c0; �;‚1/-tamable.

Let †.p;‚1/ D f0e1f1 � � � elfl denote the ‚1-shortcutting of p, obtained by applying Procedure 9.1,
and let e0j be the H-component of †.p;‚1/ containing ej , j D 1; : : : ; l . Then †.p;‚1/ is a .�; c/-
quasigeodesic without backtracking and je0j jX � �, for each j D 1; : : : ; l .

Proof The proof is similar to the argument in Lemma 10.3. Let us define the necessary constants:

� � D �.�; c0/ is the constant from Proposition 9.4;

� ‚1 Dmaxf‚0.�/; �g, where ‚0 is the constant from Lemma 16.10;

� B2.�/ and C3 D C2.�/ are the constants provided by Proposition 18.3;

� B3 DmaxfB0.‚1; c0/; B2.�/g, where B0.‚1; c0/ is the constant from Proposition 9.4;

and, finally, for any given B � B3; C � C3, we set

� E DmaxfB; �0.�;Q0/C 1g, where �0.�;Q0/ is the constant from Proposition 18.3.

Suppose that Q0, R0, g and p D qp1 � � �pnrt1 � � � tm are as in the statement of the proposition. We will
now show that p is .B; c0; �;‚1/-tamable.

Since Q0 and R0 satisfy (C2), Lemma 10.1 together with Remark 16.7 imply that jpi jX � B , for
each i D 1; : : : ; n. Moreover, by assumption, jr jX ; jt1jX ; : : : ; jtm�1jX � E � B , so condition (i) of
Definition 9.3 is satisfied. On the other hand, condition (ii) is satisfied by Lemma 16.8.

If condition (iii) of Definition 9.3 is not satisfied then p must have consecutive backtracking along
H-components h1; : : : ; hk of its segments, such that

maxfjhi jX j i D 1; : : : ; kg �‚1 and dX ..h1/�; .hk/C/ < �:

Lemma 16.10 rules out the case of adjacent backtracking (k D 2), so it must be that k � 3. That is,
h1; : : : ; hk is an instance of multiple backtracking in p. Proposition 18.3 now applies, giving a path
representative p0 for g with thX .p0/� �0.�;Q0/ < E. This contradicts a hypothesis of the proposition,
so p must also satisfy condition (iii).

Thus p is .B; c0; �;‚1/-tamable, and we can apply Proposition 9.4 to achieve the desired conclusion.
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19 Using separability to establish conditions (C2-m) and (C5-m)

In this section we exhibit, under suitable assumptions on G, the existence of finite-index subgroups
Q0 6f Q and R0 6f R satisfying conditions (C1)–(C4), (C2-m) and (C5-m).

Lemma 19.1 Let G be a group generated by finite set X , let Q;R; T1; : : : ; Tm 6G be some subgroups ,
and let S DQ\R. Suppose that RT1 � � �Tl is separable in G, for each l D 0; : : : ; m. Then for any B � 0
there is a finite-index subgroup N 6f G, with S � N , such that arbitrary subgroups Q0 6Q\N and
R0 6R\N satisfy condition (C2-m) with constant B .

Proof For each l 2 f0; : : : ; mg the product RT1 � � �Tl is separable, so, by Lemma 4.16(b), there is a
finite-index normal subgroup Ml Cf G such that

(19-1) minX .RT1 � � �TlMl nRT1 � � �Tl/� B for all l D 0; : : : ; m:

Define the subgroup M D
Tm
lD0Ml Cf G, and take N D SM 6f G. Observe that

(19-2) RNRT1 � � �Tl DRSMRT1 � � �Tl DRSRT1 � � �TlM DRT1 � � �TlM for all l D 0; : : : ; m:

Now choose arbitrary subgroups Q0 6Q\N and R0 6R\N , so that hQ0; R0i �N . Since M �Ml

for all l , we can combine (19-1) with (19-2) to draw the desired conclusion.

The next statement is similar to Theorem 11.3.

Lemma 19.2 Suppose that G is a group generated by finite set X and m 2N0. Let Q;R 6G be some
subgroups , and let P and U be finite collections of subgroups of G such that

(1) each P 2 P has property RZmC2;

(2) the subgroups Q\P , R\P and U \P are finitely generated , for all P 2 P and all U 2U;

(3) if P 2 P, K 6f P and L6f Q then KL is separable in G.

Then for any C � 0 and any finite-index subgroup Q0 6f Q, there is a finite-index subgroup O 6f G,
with Q0 � O , such for any R0 6 R\O the subgroups Q0 and R0 satisfy (C5-m) with constant C and
collections P and U.

Proof As usual, for subgroups H 6G and P 2 P we denote H \P by HP .

Fix an enumeration P D fP1; : : : ; Pkg and let Q0 6f Q be a finite-index subgroup of Q. Given any
i 2 f1; : : : ; kg, we choose some coset representatives ai1; : : : ; aini

2QPi
of Q0Pi

, so that

QPi
D

niG
jD1

aijQ
0
Pi
:

Let U be the finite set consisting of all l-tuples .U1; : : : ; Ul/, where l 2 f0; : : : ; mg and U1; : : : ; Ul 2U.
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Consider any i 2 f1; : : : ; kg and uD .U1; : : : ; Ul/ 2U , where l 2 f0; : : : ; mg. Note that Q0Pi
6f QPi

is
finitely generated, for each i D 1; : : : ; k, since QPi

is itself finitely generated by (2). Combining assump-
tions (1) and (2), the subset Q0Pi

RPi
.U1/Pi

� � � .Ul/Pi
is separable in Pi . Therefore, by Lemma 4.16(c),

for any C � 0 there is Fi;u Cf Pi such that

(19-3) minX
�
aijQ

0
Pi
Fi;uRPi

.U1/Pi
� � � .Ul/Pi

n aijQ
0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C;

for all j D 1; : : : ; ni .

Define Ki;u DQ0Pi
Fi;u 6f Pi . Then (19-3) implies that for every j D 1; : : : ; ni we have

(19-4) minX
�
aijKi;uRPi

.U1/Pi
� � � .Ul/Pi

n aijQ
0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C:

Assumption (3) tells us that the double cosetKi;uQ0 is separable inG, and sinceQ0\PiDQ0Pi
�Ki;u, we

can apply Lemma 11.2 to find a finite-index subgroupOi;u6f G such thatQ0�Oi;u andOi;u\Pi �Ki;u.

We can now define a finite-index subgroup O of G by

O D

k\
iD1

\
u2U

Oi;u 6f G:

Observe that Q0 �O and O \Pi �Ki;u, for each i D 1; : : : ; k and all u 2U . Consider any subgroup
R0 6R\O . Then Q0Pi

[R0Pi
�O \Pi , so (19-4) yields that

(19-5) minX
�
aij hQ

0
Pi
; R0Pi

iRPi
.U1/Pi

� � � .Ul/Pi
n aijQ

0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C;

for arbitrary i D 1; : : : ; k, l D 0; : : : ; m, U1; : : : ; Ul 2U and any j D 1; : : : ; ni .

Given any i 2 f1; : : : ; kg and any q 2QPi
, there is j 2 f1; : : : ; nig such that qQ0Pi

D aijQ
0
Pi

. It follows
that qhQ0Pi

; R0Pi
i D aij hQ

0
Pi
; R0Pi

i, which, combined with (19-5), shows that Q0 and R0 satisfy condition
(C5-m), as required.

For the next result we will follow the notation of Convention 16.1.

Proposition 19.3 Suppose that G is QCERF , the product RT1 � � �Tl is separable in G, for every
l D 0; : : : ; m, and the peripheral subgroup H� has property RZmC2, for each � 2 N. Let P1 be a finite
collection of maximal parabolic subgroups and let U1 be a finite collection of finitely generated relatively
quasiconvex subgroups in G.

Then for any B;C � 0 there exist finite-index subgroups Q0 6f Q and R0 6f R such that

� hQ0; R0i is relatively quasiconvex in G;

� Q0 andR0 satisfy conditions (C1)–(C4), (C2-m) and (C5-m) with constantsB and C and collections
P1 and U1.

More precisely, there is L1 6f G, with S � L1, such that for any L0 6f L1, satisfying S � L0, we can
take Q0 DQ\L0 6f Q, and there is M1 6f L0, with Q0 �M1, such that for any M 0 6f M1, satisfying
Q0 �M 0, the subgroups Q0 and R0 DR\M 0 6f R enjoy the above properties.
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Proof Fix some constants B;C � 0. Let P0 be the finite collection of maximal parabolic subgroups
of G provided by Theorem 3.5 and set PD P0[P1.

Note that maximal parabolic subgroups of G are double coset separable by the assumptions, as mC2� 2.
Therefore the argument from the proof of Theorem 14.4 shows thatG, its subgroupsQ, R and S DQ\R,
and the finite collection P satisfy assumptions (S1)–(S4) of Theorem 11.3. Let L6f G, with S � L, be
the finite-index subgroup provided by this theorem.

By the hypothesis on G, the subsets RT1 � � �Tl are separable in G, for each l D 0; : : : ; m. We can
therefore apply Lemma 19.1 to obtain a finite-index subgroup N 6f G from its statement (in particular,
S �N ). Now we define the finite-index subgroup L1 6f G, from the statement of the proposition, by
setting L1DL\N . Clearly L1 contains S . Take any L06f L1, with S �L0, and setQ0DQ\L06f Q.
Let M 6f L0 be the subgroup provided by Theorem 11.3, with Q0 �M .

Lemma 5.24 and Corollary 13.4 imply that all the assumptions of Lemma 19.2 are satisfied, so letO 6f G
be the subgroup given by this lemma, with Q0 �O . We now define the finite-index subgroup M1 6f L0,
from the statement of the proposition, by M1 DM \O .

Evidently, M1 contains Q0. Choose an arbitrary finite-index subgroup M 0 6f M1, with Q0 �M 0, and
set R0 DR\M 0. Observe that M 0 6f G, by construction, hence R0 6f R.

The combined statements of Theorems 11.3 and 3.5 and Lemmas 5.22, 19.1 and 19.2 now imply that the
subgroups Q0 6f Q and R0 6f R, obtained above, satisfy all of the required properties.

20 Separability of quasiconvex products in QCERF relatively hyperbolic
groups

In this section we prove Theorem 1.8 from the introduction.

Remark 20.1 Let G be a relatively hyperbolic group. Suppose that s 2 N and the product of any s
finitely generated relatively quasiconvex subgroups is separable in G. IfQ1; : : : ;Qs are finitely generated
quasiconvex subgroups of G and a0; : : : ; as 2G are arbitrary elements, then the subset a0Q1a1 � � �Qsas
is separable in G.

Indeed, observe that the subset

a0Q1a1 � � �Qsas DQ
a0

1 Q
a0a1

2 � � �Qa0���as�1
s a0 � � � as

is a translate of a product of conjugates of the subgroups Q1; : : : ;Qs . Combining Lemma 5.22 with
Remark 4.12 and the assumption on G yields the desired conclusion.

Proof of Theorem 1.8 We induct on s. The case s D 1 is equivalent to the QCERF property of G, while
the case s D 2 follows from Corollary 1.4. Thus we can assume that s > 2 and the product of any s� 1
finitely generated relatively quasiconvex subgroups is separable in G.
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Let F1; : : : ; Fs be finitely generated relatively quasiconvex subgroups of G. For ease of notation we write
mD s� 2, QD F1, RD F2 and Ti D FiC2, for i 2 f1; : : : ; mg. Choose a finite generating set X for G
and let ı 2N be a hyperbolicity constant for the Cayley graph �.G;X[H/, where HD

F
�2N.H� nf1g/.

Denote by "� 0 a common quasiconvexity constant for Q;R; T1; : : : ; Tm.

Arguing by contradiction, suppose that the subset QRT1 � � �Tm D F1 � � �Fs is not separable in G. Then
there exists g 2G nQRT1 � � �Tm such that g belongs to the profinite closure of QRT1 � � �Tm in G. Let
us fix the following notation for the remainder of the proof:

� c0 DmaxfC0; 14ıg � 0, where C0 is the constant obtained from Lemma 16.8;

� c3 D c3.c0/� 0 is the constant obtained from Lemma 4.11;

� �D �.c0/� 1 and c D c.c0/� 0 are obtained from Proposition 9.4, applied with the constant c0;

� P1 is the finite family of maximal parabolic subgroups of G from Notation 17.1;

� U1 is the finite collection of finitely generated relatively quasiconvex subgroups of G from
Notation 17.3;

� AD jgjX C 1 and �D �.�; c; A/� 0 is obtained from Lemma 5.12;

� � D �.�/� 0, ‚1 D‚1.�/� 0, C3 D C3.�/� 0 and B3 D B3.�/� 0 are the constants obtained
from Proposition 18.4;

� B DmaxfB3.�/; .4AC c3/‚1g and C D C3.�/.

Observe that, by the induction hypothesis, the product RT1 � � �Tl is separable inG, for every l D 0; : : : ; m.
Let L1 6f G be the finite-index subgroup obtained from Proposition 19.3, applied with finite families
P1, U1 and constants B , C , given above. Note that S � L1, and define Q0 DQ\L1 6f Q. Again, by
Proposition 19.3, there is a finite-index subgroup M1 6f L1 such that Q0 �M1 and for any M 0 6f M1,
with Q0 �M 0, the subgroups Q0 and R0 DR\M 0 6f R satisfy the conclusion of Proposition 19.3.

Let E D E.�;Q0; B/ � 0 be the constant provided by Proposition 18.4. Let fNj j j 2 Ng be an
enumeration of the finite-index subgroups of M1 containing Q0, and define the subgroups

(20-1) M 0i D

i\
jD1

Nj 6f L0 and R0i DM
0
i \R 6f R; i 2N:

Note that for every i 2N,Q0�M 0i , so the subgroupsQ0 andR0i satisfy the conclusion of Proposition 19.3.
In particular, the subgroup hQ0; R0i i is relatively quasiconvex (and finitely generated) in G, and Q0 and
R0i satisfy conditions (C1)–(C4), (C2-m) and (C5-m) with constants B and C , and families P1 and U1,
defined above. For each i 2N, consider the subset

Ki DQhQ
0; R0i iRT1 � � �Tm:
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Choose coset representatives x1; : : : ; xa 2 Q and yi;1; : : : ; yi;bi
2 R such that Q D

Sa
jD1 xjQ

0 and
RD

Sbi

kD1
R0iyi;k . Then

QhQ0; R0i iRD

a[
jD1

bi[
kD1

xj hQ
0; R0i iyi;kI

hence Ki may be written as the finite union

Ki D

a[
jD1

bi[
kD1

xj hQ
0; R0i iyi;kT1 � � �Tm:

Therefore, for every i 2N, Ki is separable in G by Remark 20.1 and the induction hypothesis. Since each
Ki containsQRT1 � � �Tm and g is in the profinite closure ofQRT1 � � �Tm, it must be the case that g 2Ki ,
for every i 2N. We will show that considering sufficiently large values of i leads to a contradiction.

For each i 2 N, let Si be the set of path representatives of g in Ki D QhQ0; R0i iRT1 � � �Tm (see
Definition 16.4, where R0 is replaced by R0i ). We will now consider two cases.

Case 1 There exists i 2N such that infp02Si
thX .p0/�E.

Choose a path representative of minimal type p D qp1 � � �pnrt1 � � � tm for g in Ki . Note that n � 1
and Qp1 2 R0i n S because g …QRT1 � � �Tm (see Remark 16.7). By the assumptions of Case 1 and the
above construction, we can apply Proposition 18.4 to conclude that p is .B; c0; �;‚1/-tamable and
the shortcutting †.p;‚1/D f0e1f1 � � � fl�1elfl , obtained from Procedure 9.1, is .�; c/-quasigeodesic
without backtracking, with je0

k
jX � � for each k D 1; : : : ; l (where e0

k
denotes the H-component of

†.p;‚1/ containing ek).

If l > 0, then applying Lemma 5.12 to the path †.p;‚1/ gives

jgjX D jpjX D j†.p;‚1/jX � A > jgjX ;

by the choice of �, which gives a contradiction.

Therefore it must be that l D 0. Then p is .4; c3/-quasigeodesic by Lemma 9.7 and, according to
Remark 9.2(c), no segment of p contains an H-component h with jhjX �‚1. By the quasigeodesicity of
p and the fact that p1 is a subpath of p, we have

(20-2) jgjX[H D jpjX[H �
1
4
.`.p/� c3/�

1
4
.`.p1/� c3/:

Applying Lemma 5.10 to the geodesic p1 in �.G;X [H/ we obtain

(20-3) `.p1/�
1

‚1
jp1jX �

B

‚1
� 4AC c3;

where the second inequality follows from the fact that Qp1 2R0i nS and Lemma 10.1. Combining (20-2)
and (20-3), we get

jgjX � jgjX[H �
1
4
.4AC c3� c3/D A > jgjX ;

which is a contradiction.
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Case 2 For all i 2N we have infp02Si
thX .p0/ < E.

Then for each i 2N there is a path representative pi D qip1;i � � �pni ;iri t1;i � � � tm;i 2 Si for g such that
th.pi / � E. It must either be the case that lim infi!1jri jX � E or lim infi!1jtj;i jX � E, for some
j 2 f1; : : : ; mg. We will consider the former case, as the latter is very similar.

Since there are only finitely many elements x 2G with jxjX �E, we may pass to a subsequence .pik /k2N

such that Qrik D y 2R is some fixed element, for all k 2N. It follows that

(20-4) g D Qpik 2QhQ
0; R0ik iyT1 � � �Tm; for each k 2N:

Now, g … QyT1 � � �Tm (as y 2 R), and the subset QyT1 � � �Tm is separable in G by the induction
hypothesis and Remark 20.1. By Lemma 4.16(a), there is a finite-index normal subgroup O Cf G such
that g … QOyT1 � � �Tm. The subgroup M1 \QO has finite index in M1 and contains Q0; therefore
M1\QO DNj0

, for some j0 2N.

Choose k 2N such that ik � j0, so that M 0ik � Nj0
�QO (see (20-1)). Then R0ik DM

0
ik
\R �QO;

hence

(20-5) QhQ0; R0ik iyT1 � � �Tm �QOyT1 � � �Tm:

Since g …QOyT1 � � �Tm, inclusions (20-4) and (20-5) contradict each other.

We have arrived to a contradiction at each of the two cases; hence the proof is complete.

21 New examples of product separable groups

In this section we prove Theorem 2.2, which will follow from the three propositions below.

Proposition 21.1 Limit groups are product separable.

Proof Dahmani [15] and, independently, Alibegović [3] proved that every limit group is hyperbolic
relative to a collection of conjugacy class representatives of its maximal non-cyclic finitely generated
abelian subgroups.

Moreover, Wilton [58] showed that limit groups are LERF and Dahmani [15] showed they are locally
quasiconvex (that is, each of their finitely generated subgroups is relatively quasiconvex with respect to the
given peripheral structure). Therefore our Theorem 1.8 yields that limit groups are product separable.

Finitely generated Kleinian groups are not always locally quasiconvex, and we require the following two
lemmas to deal with the case when one of the factors is not relatively quasiconvex.

Lemma 21.2 Let N be a group and n� 2 be an integer. Suppose that H1; : : : ;Hn are subgroups of N
such that Hi C N , for some i 2 f1; : : : ; ng, and the image of the product H1 � � �Hi�1HiC1 � � �Hn is
separable in N=Hi . Then H1 � � �Hn is separable in N .

Algebraic & Geometric Topology, Volume 25 (2025)



482 Ashot Minasyan and Lawk Mineh

Proof Let ' WN !N=Hi denote the natural epimorphism. By the assumptions, the subset

S D '.H1 � � �Hi�1HiC1 � � �Hn/

is separable in N=Hi . Observe that

H1 � � �Hn D .H1 � � �Hi�1HiC1 � � �Hn/Hi D '
�1.S/;

as Hi CN ; hence H1 � � �Hn is closed in the profinite topology on N because group homomorphisms
are continuous with respect to profinite topologies.

Lemma 21.3 Let G be a group with finitely generated subgroups F1; : : : ; Fn 6G, n� 2. Suppose that
there exists a finite-index subgroup G0 6f G and an index i 2 f1; : : : ; ng such that F 0i D Fi \G

0 C G0

and G0=F 0i has property RZn�1. Then the product F1 � � �Fn is separable in G.

Proof Let N Cf G be a finite-index normal subgroup contained in G0, and set Hj D Fj \N , for
j D 1; : : : ; n.

Since jFj W Hj j <1, for each j D 1; : : : ; n, the product F1 � � �Fn can be written as a finite union of
subsets of the form h1H1h2H2 � � � hnHn, where h1; : : : ; hn 2G. Observe that

h1H1h2H2 � � � hnHn DH
g1

1 H
g2

2 � � �H
gn
n gn;

where gj D h1 � � � hj 2G, j D 1; : : : ; n. Thus, in view of Remark 4.12, in order to prove the separability
of F1 � � �Fn in G it is enough to show that the product Hg1

1 H
g2

2 � � �H
gn
n is separable, for arbitrary

g1; : : : ; gn 2G.

Given any elements g1; : : : ; gn 2G, the subgroups Hg1

1 ;H
g2

2 ; : : : ;H
gn
n 6G are finitely generated and

are contained in N . Moreover, since the subgroup Hi D Fi \N D F 0i \N is normal in N and N 6G0

is normal in G, we see that Hgi

i CN and

N=H
gi

i DN
gi=H

gi

i ŠN=Hi 6G0=F 0i :

Therefore the group N=Hgi

i has RZn�1, as a subgroup of G0=F 0i , so the image of the product

H
g1

1 � � �H
gi�1

i�1 H
giC1

iC1 � � �H
gn
n

is separable in N=Hgi

i . Lemma 21.2 now implies thatHg1

1 H
g2

2 � � �H
gn
n is separable in N ; hence it is also

separable in G by Lemma 4.13(b). As we observed above, the latter yields the separability of F1 � � �Fn
in G, as required.

Proposition 21.4 Finitely generated Kleinian groups are product separable.

Proof Let G be a finitely generated discrete subgroup of Isom.H3/. We will first reduce the proof to
the case when GnH3 is a finite-volume manifold. This idea is inspired by the argument of Manning and
Martínez-Pedroza used in the proof of [36, Corollary 1.5].
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Using Selberg’s lemma, we can find a torsion-free finite-index subgroupK6G. Since product separability
ofK implies that ofG [52, Lemma 11.3.5], without loss of generality we can assume thatG is torsion-free.
It follows that G acts freely and properly discontinuously on H3, so that M D GnH3 is a complete
hyperbolic 3-manifold.

If M has infinite volume then, by [39, Theorem 4.10], G is isomorphic to a geometrically finite Kleinian
group. Thus we can further assume that G is geometrically finite, which allows us to apply a theorem
of Brooks [10, Theorem 2] to find an embedding of G into a torsion-free Kleinian group G� such that
G�nH3 is a finite-volume manifold. If G� is product separable, then so is any subgroup of it; hence we
have made the promised reduction.

Thus we can suppose that G D �1.M/, for a hyperbolic 3-manifold M of finite volume. The tameness
conjecture, proved by Agol [1] and Calegari and Gabai [11], combined with a result of Canary [12,
Corollary 8.3], imply that any finitely generated subgroup F 6 G is either geometrically finite or is
a virtual fibre subgroup. The latter means that there is a finite-index subgroup G0 6f G such that
F 0 D F \G0 CG0 and G0=F 0 Š Z.

By [39, Theorem 3.7], G is a geometrically finite subgroup of Isom.H3/; hence it is finitely generated
and hyperbolic relative to a finite collection of finitely generated virtually abelian subgroups, each of
which is product separable by [52, Lemma 11.3.5]. Moreover, by [30, Corollary 1.6], a subgroup of G is
relatively quasiconvex if and only if it is geometrically finite. Finally, G is LERF (and, hence, QCERF)
by [2, Corollary 9.4].

Let F1; : : : ; Fn be finitely generated subgroups of G, n � 2. If Fj is geometrically finite, for all
j D 1; : : : ; n, then the product F1 � � �Fn is separable in G by Theorem 1.8. Thus we can suppose that Fi
is not geometrically finite, for some i 2 f1; : : : ; ng. By the above discussion, in this case Fi must be a
virtual fibre subgroup of G. Since Z is product separable, we can apply Lemma 21.3 to conclude that
F1 � � �Fn is separable in G, completing the proof.

Proposition 21.5 Let G be the fundamental group of a finite graph of free groups with cyclic edge
groups. If G is balanced then it is product separable.

Limit groups and Kleinian groups are hyperbolic relative to virtually abelian subgroups. The peripheral
subgroups from relatively hyperbolic structures on groups in Proposition 21.5 will be fundamental groups
of graphs of cyclic groups, which motivates the next auxiliary lemma.

Lemma 21.6 Suppose that G is the fundamental group of a finite graph of infinite cyclic groups. If G is
balanced then it is product separable.

Proof Suppose that GD�1.G�; �/, where .G�; �/ is a graph of groups, associated to a finite connected
graph � with vertex set V � and edge set E� . According to the assumptions, each vertex group Gv,
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v 2 V � , is infinite cyclic. As usual, we use Ge to denote the edge group corresponding to an edge e 2E�
(see Dicks and Dunwoody [16, Section I.3] for the definition and general theory of graphs of groups).

If jE�j D 0 then G is cyclic and, thus, product separable. Let us proceed by induction on jE�j.

Assume first that one of the edge groups Ge is trivial. If removing e disconnects � then G splits as a free
product G1 �G2, where G1 and G2 are the fundamental groups of finite graphs of infinite cyclic groups
corresponding to the two connected components of � n feg. Otherwise, G Š G1 �G2, where G1 the
fundamental group of a finite graph of infinite cyclic groups corresponding to the graph � n feg and G2 is
infinite cyclic. Moreover, G1 and G2 will be balanced as subgroups of a balanced group G. Hence G1
and G2 will be product separable by induction, so G ŠG1 �G2 will be product separable by Coulbois’
theorem [14, Theorem 1].

Therefore we can assume that every edge group Ge is infinite cyclic. This means that G is a generalised
Baumslag–Solitar group. The assumption that G is balanced now translates into the assumption that G is
unimodular, using Levitt’s terminology from [34]. We can now apply [34, Proposition 2.6] to deduce that
G has a finite-index subgroup K isomorphic to the direct product F �Z, where F is a free group.

Now, K Š F �Z is product separable by You’s result [61, Theorem 5.1]; hence G is product separable
as a finite-index supergroup of K (see [52, Lemma 11.3.5]).

Proof of Proposition 21.5 Suppose that G splits as the fundamental group of a finite graph of free
groups .G�; �/ with cyclic edge groups.

Without loss of generality we can assume that each vertex group is a finitely generated free group (in
particular, G is finitely generated). Indeed, otherwise G ŠG1 �F , where G1 is the fundamental group
of a finite graph of finitely generated free groups with cyclic edge groups and F is free (this follows
from the fact that any element of a free group is the product of only finitely many free generators). In
this case we can deduce the product separability of G from the product separability of G1 and F by [14,
Theorem 1] (recall that F is product separable by Ribes and Zalesskii [53, Theorem 2.1]).

Now, for each vertex group Gv, choose and fix a finite family of maximal infinite cyclic subgroups Pv
such that

(a) no two subgroups from Pv are conjugate in Gv;

(b) for every edge e incident to v in � , the image of the cyclic group Ge in Gv is conjugate into one
of the subgroups from Pv.

Condition (a) means that each Gv is hyperbolic relative to the finite family Pv (for example, by [8,
Theorem 7.11]), and condition (b) means that each edge group of the given splitting of G is parabolic in
the corresponding vertex groups. Therefore we can apply the work of Bigdely and Wise [6, Theorem 1.4]
to conclude that G is hyperbolic relative to a finite collection of subgroups Q, where each Q 2Q acts
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cocompactly on a parabolic tree (see [6, Definition 1.3]) with vertex stabilisers conjugate to elements ofS
v2V � Pv and edge stabilisers conjugate to elements of fGe j e 2 �g. The structure theorem for groups

acting on trees [16, Section I.4.1] implies that every Q 2 Q is isomorphic to the fundamental group
of a finite graph of infinite cyclic groups. Since Q is balanced, being a subgroup of G, we can apply
Lemma 21.6 to conclude that each Q 2Q is product separable. By Wise’s result [59, Theorem 5.1] G
is LERF, hence we can apply our Theorem 1.8 to deduce that the product of a finite number of finitely
generated relatively quasiconvex subgroups is separable in G.

To establish the product separability of G it remains to show that it is locally quasiconvex. To achieve
this we will again use the results of Bigdely and Wise. More precisely, according to [6, Theorem 2.6], a
subgroup of G is relatively quasiconvex if it is tamely generated.

Let H 6G be a finitely generated subgroup. The splitting of G as the fundamental group of the graph
of groups .G�; �/ induces a splitting of H as the fundamental group of a graph of groups .H�; �/,
where for each vertex u 2 V� the stabiliser Hu is equal to H \Gvg , for some v 2 V � and some g 2G.
Moreover, the graph � is finite, because H is finitely generated (see [16, Proposition I.4.13]). Note
that every edge group from .H�; �/ is cyclic; hence each vertex group Hu, u 2 V�, must be finitely
generated as H is finitely generated (see [6, Lemma 2.5]).

According to [6, Definition 0.1], H is tamely generated if for every u2 V� the subgroup HuDH \Gvg

is relatively quasiconvex in Gvg , equipped with the peripheral structure Pv
g. But the latter is true because

Gv
g is a finitely generated free group, so any finitely generated subgroup is undistorted, and hence it is

relatively quasiconvex with respect to any peripheral structure on Gvg, by [30, Theorem 1.5]. Thus every
finitely generated subgroup H 6G is tamely generated, and so it is relatively quasiconvex in G by [6,
Theorem 2.6].

Remark 21.7 In the case when the graph of groups has two vertices and one edge (so that G is a free
amalgamated product of two free groups over a cyclic subgroup), Proposition 21.5 was originally proved
by Coulbois in his thesis; see [13, Theorem 5.18]. We can use similar methods to recover another result of
Coulbois: if G DH �C F , where H is product separable, F is free and C is a maximal cyclic subgroup
in F then G is product separable [13, Theorem 5.4]. Indeed, in this case G will be hyperbolic relative to
QDfH g and will be LERF by Gitik’s theorem [21, Theorem 4.4]. As in the proof of Proposition 21.5, the
results from [6] imply that G is locally quasiconvex. Therefore G is product separable by Theorem 1.8.

Remark 21.8 Using recent work of Shepherd and Woodhouse [56, Theorem 1.2], Proposition 21.5 can
be immediately extended to balanced groups G that split as fundamental groups of finite graphs of groups
with virtually free vertex groups and virtually cyclic edge groups. In fact, by [56, Proposition 3.13], G
has a torsion-free finite-index subgroup K. Then K is balanced and is isomorphic to the fundamental
group of a finite graph of free groups with cyclic edge groups. So the product separability of G follows
by combining Proposition 21.5 with [52, Lemma 11.3.5].
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[3] E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005)
459–466 MR Zbl

[4] R B J T Allenby, R J Gregorac, On locally extended residually finite groups, from “Conference on group
theory” (R W Gatterdam, K W Weston, editors), Lecture Notes in Math. 319, Springer (1973) 9–17 MR Zbl

[5] M Baker, D Cooper, A combination theorem for convex hyperbolic manifolds, with applications to surfaces
in 3-manifolds, J. Topol. 1 (2008) 603–642 MR Zbl

[6] H Bigdely, D T Wise, Quasiconvexity and relatively hyperbolic groups that split, Michigan Math. J. 62
(2013) 387–406 MR Zbl

[7] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245–317 MR Zbl

[8] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) art. id. 1250016 MR
Zbl

[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer
(1999) MR Zbl

[10] R Brooks, Circle packings and co-compact extensions of Kleinian groups, Invent. Math. 86 (1986) 461–469
MR Zbl

[11] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19
(2006) 385–446 MR Zbl

[12] R D Canary, A covering theorem for hyperbolic 3-manifolds and its applications, Topology 35 (1996)
751–778 MR Zbl

[13] T Coulbois, Propriétés de Ribes–Zalesskii, topologie profinie, produit libre et généralisations, PhD
thesis, Université Paris VII (2000) https://www.i2m.univ-amu.fr/perso/thierry.coulbois/
publications.html

[14] T Coulbois, Free product, profinite topology and finitely generated subgroups, Internat. J. Algebra Comput.
11 (2001) 171–184 MR Zbl

[15] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933–963 MR Zbl

[16] W Dicks, M J Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics 17,
Cambridge Univ. Press (1989) MR Zbl

[17] C Drut,u, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959–1058
MR Zbl

[18] E Einstein, D Groves, Relatively geometric actions on CAT.0/ cube complexes, J. Lond. Math. Soc. 105
(2022) 691–708 MR Zbl

[19] E Einstein, T Ng, Relative cubulation of small cancellation free products, preprint (2021) arXiv 2111.03008

[20] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810–840 MR Zbl

[21] R Gitik, Graphs and separability properties of groups, J. Algebra 188 (1997) 125–143 MR Zbl

[22] R Gitik, On the profinite topology on negatively curved groups, J. Algebra 219 (1999) 80–86 MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

http://msp.org/idx/arx/math/0405568
https://doi.org/10.4171/dm/421
http://msp.org/idx/mr/3104553
http://msp.org/idx/zbl/1286.57019
https://doi.org/10.1112/S0024609304004059
http://msp.org/idx/mr/2131400
http://msp.org/idx/zbl/1074.57001
https://doi.org/10.1007/BFb0058924
http://msp.org/idx/mr/382450
http://msp.org/idx/zbl/0263.20020
https://doi.org/10.1112/jtopol/jtn013
https://doi.org/10.1112/jtopol/jtn013
http://msp.org/idx/mr/2417445
http://msp.org/idx/zbl/1151.57014
https://doi.org/10.1307/mmj/1370870378
http://msp.org/idx/mr/3079269
http://msp.org/idx/zbl/1296.20041
https://doi.org/10.1006/jfan.1993.1052
http://msp.org/idx/mr/1218098
http://msp.org/idx/zbl/0789.57007
https://doi.org/10.1142/S0218196712500166
http://msp.org/idx/mr/2922380
http://msp.org/idx/zbl/1259.20052
https://doi.org/10.1007/978-3-662-12494-9
http://msp.org/idx/mr/1744486
http://msp.org/idx/zbl/0988.53001
https://doi.org/10.1007/BF01389263
http://msp.org/idx/mr/860677
http://msp.org/idx/zbl/0578.30037
https://doi.org/10.1090/S0894-0347-05-00513-8
http://msp.org/idx/mr/2188131
http://msp.org/idx/zbl/1090.57010
https://doi.org/10.1016/0040-9383(94)00055-7
http://msp.org/idx/mr/1396777
http://msp.org/idx/zbl/0863.57010
https://www.i2m.univ-amu.fr/perso/thierry.coulbois/publications.html
https://www.i2m.univ-amu.fr/perso/thierry.coulbois/publications.html
https://doi.org/10.1142/S0218196701000449
http://msp.org/idx/mr/1829049
http://msp.org/idx/zbl/1024.20022
https://doi.org/10.2140/gt.2003.7.933
http://msp.org/idx/mr/2026551
http://msp.org/idx/zbl/1037.20042
http://msp.org/idx/mr/1001965
http://msp.org/idx/zbl/0665.20001
https://doi.org/10.1016/j.top.2005.03.003
http://msp.org/idx/mr/2153979
http://msp.org/idx/zbl/1101.20025
https://doi.org/10.1112/jlms.12556
http://msp.org/idx/mr/4411337
http://msp.org/idx/zbl/1521.20096
http://msp.org/idx/arx/2111.03008
https://doi.org/10.1007/s000390050075
http://msp.org/idx/mr/1650094
http://msp.org/idx/zbl/0985.20027
https://doi.org/10.1006/jabr.1996.6847
http://msp.org/idx/mr/1432351
http://msp.org/idx/zbl/0874.20013
https://doi.org/10.1006/jabr.1998.7847
http://msp.org/idx/mr/1707664
http://msp.org/idx/zbl/0937.20022


Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 487

[23] R Gitik, Ping-pong on negatively curved groups, J. Algebra 217 (1999) 65–72 MR Zbl

[24] R Gitik, E Rips, On separability properties of groups, Internat. J. Algebra Comput. 5 (1995) 703–717 MR
Zbl

[25] M Gromov, Hyperbolic groups, from “Essays in group theory” (S M Gersten, editor), Math. Sci. Res. Inst.
Publ. 8, Springer (1987) 75–263 MR Zbl

[26] D Groves, J F Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317–429
MR Zbl

[27] D Groves, J F Manning, Specializing cubulated relatively hyperbolic groups, J. Topol. 15 (2022) 398–442
MR Zbl

[28] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551–1620 MR Zbl

[29] E Hamilton, H Wilton, P A Zalesskii, Separability of double cosets and conjugacy classes in 3-manifold
groups, J. Lond. Math. Soc. 87 (2013) 269–288 MR Zbl

[30] G C Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol.
10 (2010) 1807–1856 MR Zbl

[31] T Hsu, D T Wise, Cubulating graphs of free groups with cyclic edge groups, Amer. J. Math. 132 (2010)
1153–1188 MR Zbl

[32] O Kharlampovich, A Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006)
451–552 MR Zbl

[33] J C Lennox, J S Wilson, On products of subgroups in polycyclic groups, Arch. Math. (Basel) 33 (1979/80)
305–309 MR Zbl

[34] G Levitt, On the automorphism group of generalized Baumslag–Solitar groups, Geom. Topol. 11 (2007)
473–515 MR Zbl

[35] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. 89, Springer (1977) MR Zbl

[36] J F Manning, E Martínez-Pedroza, Separation of relatively quasiconvex subgroups, Pacific J. Math. 244
(2010) 309–334 MR Zbl

[37] E Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups
Geom. Dyn. 3 (2009) 317–342 MR Zbl

[38] E Martínez-Pedroza, A Sisto, Virtual amalgamation of relatively quasiconvex subgroups, Algebr. Geom.
Topol. 12 (2012) 1993–2002 MR Zbl

[39] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Univ. Press (1998) MR
Zbl

[40] C McClellan, Separable at birth: products of full relatively quasi-convex subgroups, PhD thesis, University
of Illinois at Chicago (2019) MR https://www.proquest.com/docview/2342583959

[41] A Minasyan, On residualizing homomorphisms preserving quasiconvexity, Comm. Algebra 33 (2005)
2423–2463 MR Zbl

[42] A Minasyan, Some properties of subsets of hyperbolic groups, Comm. Algebra 33 (2005) 909–935 MR
Zbl

[43] A Minasyan, Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006) 1090–1100
MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

https://doi.org/10.1006/jabr.1998.7789
http://msp.org/idx/mr/1700476
http://msp.org/idx/zbl/0936.20019
https://doi.org/10.1142/S0218196795000288
http://msp.org/idx/mr/1365198
http://msp.org/idx/zbl/0838.20026
https://doi.org/10.1007/978-1-4613-9586-7_3
http://msp.org/idx/mr/919829
http://msp.org/idx/zbl/0634.20015
https://doi.org/10.1007/s11856-008-1070-6
http://msp.org/idx/mr/2448064
http://msp.org/idx/zbl/1211.20038
https://doi.org/10.1112/topo.12226
http://msp.org/idx/mr/4413505
http://msp.org/idx/zbl/1529.20081
https://doi.org/10.1007/s00039-007-0629-4
http://msp.org/idx/mr/2377497
http://msp.org/idx/zbl/1155.53025
https://doi.org/10.1112/jlms/jds040
https://doi.org/10.1112/jlms/jds040
http://msp.org/idx/mr/3022716
http://msp.org/idx/zbl/1275.57031
https://doi.org/10.2140/agt.2010.10.1807
http://msp.org/idx/mr/2684983
http://msp.org/idx/zbl/1202.20046
https://doi.org/10.1353/ajm.2010.0004
http://msp.org/idx/mr/2732342
http://msp.org/idx/zbl/1244.20040
https://doi.org/10.1016/j.jalgebra.2006.03.033
http://msp.org/idx/mr/2293770
http://msp.org/idx/zbl/1110.03020
https://doi.org/10.1007/BF01222760
http://msp.org/idx/mr/564284
http://msp.org/idx/zbl/0426.20026
https://doi.org/10.2140/gt.2007.11.473
http://msp.org/idx/mr/2302496
http://msp.org/idx/zbl/1143.20014
https://doi.org/10.1007/978-3-642-61896-3
http://msp.org/idx/mr/577064
http://msp.org/idx/zbl/0368.20023
https://doi.org/10.2140/pjm.2010.244.309
http://msp.org/idx/mr/2587434
http://msp.org/idx/zbl/1201.20024
https://doi.org/10.4171/GGD/59
http://msp.org/idx/mr/2486802
http://msp.org/idx/zbl/1186.20029
https://doi.org/10.2140/agt.2012.12.1993
http://msp.org/idx/mr/2994828
http://msp.org/idx/zbl/1258.20035
http://msp.org/idx/mr/1638795
http://msp.org/idx/zbl/0892.30035
http://msp.org/idx/mr/4060654
https://www.proquest.com/docview/2342583959
https://doi.org/10.1081/AGB-200058383
http://msp.org/idx/mr/2153233
http://msp.org/idx/zbl/1120.20047
https://doi.org/10.1081/AGB-200051164
http://msp.org/idx/mr/2128420
http://msp.org/idx/zbl/1080.20036
https://doi.org/10.1016/j.jalgebra.2006.03.050
http://msp.org/idx/mr/2264291
http://msp.org/idx/zbl/1175.20034


488 Ashot Minasyan and Lawk Mineh

[44] G A Niblo, Separability properties of free groups and surface groups, J. Pure Appl. Algebra 78 (1992)
77–84 MR Zbl

[45] D V Osin, Relative Dehn functions of amalgamated products and HNN-extensions, from “Topological and
asymptotic aspects of group theory” (R Grigorchuk, M Mihalik, M Sapir, Z Šuniḱ, editors), Contemp. Math.
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We study mapping tori of quasi-autoequivalences � WA!A which induce a free action of Z on objects.
More precisely, we compute the mapping torus of � when it is strict and acts bijectively on hom-sets, or
when the A1-category A is directed and there is a bimodule map A.�; �/! A.�; �.�// satisfying
some hypotheses. Then we apply these results in order to link together the Fukaya A1-category of a
family of exact Lagrangians, and the Chekanov–Eliashberg DG-category of Legendrian lifts in the circular
contactization.

53D42, 53D37, 18G70

Introduction 489

1. Algebra 493

2. Mapping torus of an A1-autoequivalence 508

3. Chekanov–Eliashberg DG-category 528

4. Legendrian lifts of exact Lagrangians in the circular contactization 535

References 560

Introduction

Legendrian contact homology was introduced by Chekanov [8] and Eliashberg [20], and it fits into the
symplectic field theory as introduced by Eliashberg, Givental and Hofer [21]. It has been rigorously
defined in the contactization of a Liouville manifold by Ekholm, Etnyre and Sullivan in [16] following [14].
The importance of Legendrian contact homology goes beyond its applications to the Legendrian isotopy
problem: for example, it was used by Bourgeois, Ekholm and Eliashberg in [5] to compute symplectic
invariants of Weinstein manifolds, and in a different way by Chantraine, Dimitroglou Rizell, Ghiggini
and Golovko in [7] to prove a generation result for the wrapped Fukaya category of Weinstein manifolds.

The motivation for this paper is the study of Legendrian contact homology in subcritically fillable and
Boothby–Wang contact manifolds, the latter being named after [4]. This has been done combinatorially
in dimension three by Ekholm and Ng in [18] for the subcritically fillable case, and by Sabloff in [34]
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for the Boothby–Wang case. The importance of the first kind of manifolds comes from the fact that
every Weinstein manifold is obtained from a subcritical Weinstein manifold (of the form C �P for some
Weinstein manifold P ) by attaching handles along Legendrian submanifolds in its boundary at infinity.
The importance of the second kind of manifolds comes from a theorem of Donaldson in [11], which states
that any integral symplectic manifold .X; !/ admits a symplectic submanifold D �X of codimension 2,
such that X nD is a Liouville manifold whose boundary at infinity is a Boothby–Wang contact manifold.
The first step before attacking both cases presented above is to study Legendrian contact homology in the
circular contactization of a Liouville manifold. In fact, both subcritically fillable and Boothby–Wang
contact manifolds can be seen as compactifications of such spaces. This paper links together the Fukaya
A1-category of a family of connected compact exact Lagrangians in a Liouville manifold .P; �/, and the
Chekanov–Eliashberg DG-category of Legendrian lifts in the circular contactization .S1�P; ker.d���//.

The strategy we follow is to lift the situation to the usual contactization R�P which has been much
more studied. This naturally leads to consider an A1-category whose objects are the lifts in R � P

of our starting Legendrians, and morphisms spaces are generated by Reeb chords. Moreover, the deck
transformations of the cover R! S1 induce an A1-autoequivalence of this category. The rest of the
proof has two main ingredients:

(1) Functorial properties of the Legendrian invariants, which are used to bring us in a situation where we
can apply the correspondence result of Dimitroglou Rizell [10] between discs in the symplectization
R�R�P and polygons in P .

(2) Two algebraic results of independent interest about mapping tori of A1-autoequivalences, that
allow us to bridge the gaps between the algebraic invariants we are interested in.

We now proceed to describe the organization of the paper and state our main results.

Algebra In Section 1, we briefly recall the definitions of A1-(co)categories and give references for
standard notions that we do not recall, such as (co)bar, graded dual and Koszul dual constructions. On
the other hand, we discuss in some detail the notions of modules over A1-categories, as well as the
Grothendieck construction and homotopy pushout associated to a diagram of A1-categories following
Ganatra, Pardon and Shende [24, Section A.4]. We use it to introduce the notion of “cylinder object for
an A1-category”, which is supposed to mimic the corresponding notion in homotopy theory.

Mapping torus of an A1-autoequivalence In Section 2,1 we define the mapping torus associated to a
quasi-autoequivalence � of an A1-category A as the A1-category

MT.�/ WD hocolim

0@AtA A

A

1A:
1In Section 2, A1-categories are always assumed to be strictly unital (see Paragraph (2a) in Seidel’s work[36]).
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Observe that this terminology was also used by Kartal in [26], but we do not know if the two notions
coincide. When considering an A1-autoequivalence � WA!A, we always assume that A is equipped
with a Z-splitting of ob.A/ compatible with � , which is a bijection

Z� E ��! ob.A/; .n;E/ 7!X n.E/;

such that �.X n.E//DX nC1.E/ for every n 2 Z and E 2 E (see Definition 2.2). This naturally turns A
into an Adams-graded A1-category, where the Adams degree of a morphism in A.X i.E/;X j .E0// is
defined to be j � i . It then follows that the mapping torus of � is also Adams-graded.

Section 2 contains two results about mapping tori of A1-autoequivalences: we choose to only state the
most important ones in this introduction. We denote by F Œtm� the augmented Adams-graded associative
algebra generated by a variable tm of bidegree .m; 1/. Observe that if C is a subcategory of an A1-category
D with ob.C/D ob.D/, then C˚ .tmF Œtm�˝D/ is naturally an Adams-graded A1-category, where the
Adams degree of tk

m˝x equals k. Besides, if C is an A1-category equipped with a Z-splitting of ob.C/,
we denote by C0 the full A1-subcategory of C whose set of objects corresponds to f0g � E . Finally, we
use the functor C 7! Cm of Definition 1.27.

Theorem A Let � be a quasi-autoequivalence of an A1-category A, weakly directed with respect
to some compatible Z-splitting of ob.A/. Assume that there exists a closed degree 0 bimodule map
f W Am.�; �/ ! Am.�; �.�// such that f W Am.X

i.E/;X j .E0// ! Am.X
i.E/;X jC1.E0// is a

quasi-isomorphism for every i < j and E;E0 2 E . Then there is a quasi-equivalence of Adams-graded
A1-categories

MT.�/'A0
m˚ .tmF Œtm�˝AmŒf .units/�1�0/:

Remark (1) In Ganatra’s work [22], the chain complex of A-bimodule maps from the diagonal bimodule
A.�; �/ to some A-bimodule B is called the two-pointed complex for Hochschild cohomology of A with
coefficients in B. According to [22, Proposition 2.5], this complex is quasi-isomorphic to the (ordinary)
Hochschild cochain complex of A with coefficients in B. In particular, the bimodule map f in Theorem A
defines a class in the Hochschild cohomology of Am with coefficients in Am.�; �.�//.

(2) The A1-category which computes the mapping torus in Theorem A is very similar to the categories
studied by Seidel in [35], with main difference the presence of curvature in Seidel’s setting.

(3) The use of the functor C 7! Cm in Theorem A is not of any deep importance. It was convenient for
us to introduce it here for our application to Legendrian contact homology (see Theorem B).

Chekanov–Eliashberg DG-algebra In Section 3, we recall the definition and functorial properties of the
Chekanov–Eliashberg DG-category associated to a family of Legendrians in a hypertight contact manifold.

Legendrian lifts of exact Lagrangians in the circular contactization In Section 4, we start with a
family

LD .L.E//E2E ; E D f1; : : : ;N g;
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of mutually transverse compact connected exact Lagrangian submanifolds in a Liouville manifold .P; �/,
and we study a Legendrian lift of L in the circular contactization .S1 �P; ker.d� ��//. More precisely,
we assume2 that there are primitives fE W L.E/! R of �jL.E/ such that 0 � f1 < � � � < fN �

1
2

, and
we consider the family of Legendrians

ƒı WD .ƒı.E//E2E ; where ƒı.E/D f.fE.x/;x/ 2 .R=Z/�P j x 2L.E/g:

We denote by CE.ƒı/ the Chekanov–Eliashberg category of ƒı, by Fuk.L/ the full subcategory of
Fuk.P / (see for example [36, Chapter 2]) with objects the Lagrangians L.E/, and by

�!
Fuk.L/ its directed

subcategory (see [36, Paragraph (5n)]).

In order for the latter algebraic objects to be Z-graded, we assume that H1.P / is free, that the first Chern
class of P (equipped with any almost complex structure compatible with .�d�/) is 2-torsion, and that
the Maslov class of the Lagrangians L.E/ vanish. As explained in Section 3.1, the grading on CE.ƒı/
depends on the choice of a symplectic trivialization of the contact structure along a fiber h0 D S1 � fa0g.
We denote by CEr

��.ƒ
ı/ the Chekanov–Eliashberg DG-category of ƒı with grading induced by the

trivialization

.�ıjh0
; d˛ı/ ��! .h0 �Cn; dx ^ dy/; ..�; a0/; .�a0

.v/; v// 7! ..�; a0/; e
2i�r� .v//;

where  W .Ta0
P;�d�a0

/ ��! .Cn; dx ^ dy/ is a symplectic isomorphism.

In this setting, CEr
��.ƒ

ı/ is augmented (with the trivial augmentation) and Adams-graded (by the number
of times a Reeb chord winds around the fiber). As above, we denote by F Œtm� the augmented Adams-
graded associative algebra generated by a variable tm of bidegree .m; 1/. Moreover, we denote by
E.�/DB.�/# (graded dual of bar construction) the Koszul dual functor (see work by Lu, Palmieri, Wu
and Zhang [29, Section 2] or Ekholm and Lekili [17, Section 2.3]). We say that Koszul duality holds for
an augmented Adams-graded A1-category A if the natural map A!E.E.A// is a quasi-isomorphism
(see [29, Theorem 2.4] or [17, Definition 17]).

Theorem B Koszul duality holds for CEr
��.ƒ

ı/, and there is a quasi-equivalence of augmented Adams-
graded A1-categories

E.CEr
��.ƒ

ı//'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Remark Koszul duality has many important consequences, see for example [29] or [17]. In particular,
Theorem B implies that there is a quasi-equivalence of augmented Adams-graded DG-categories

CEr
��.ƒ

ı/'E
� �!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//

�
:

Observe that in the particular case when the Lagrangians are spheres, this formula is closely related to
Conjecture 6.3 in [35], which was also discussed by Ganatra and Maydanskiy in the appendix of [5].

2This can always be achieved by applying the Liouville flow in backwards time.
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We now give a corollary of the latter result. If B is a (unpointed) space, we consider its one-point
compactification B� and view it as a pointed space (with basepoint the point at infinity). If moreover X

is a pointed space, we consider the half-smash product of B and X ,

X ÌB WDX ^B�

(where ^ denotes the smash product of pointed spaces). Finally, if Y is a pointed space, we denote by
�Y its based loop space.

Corollary If L is a connected compact exact Lagrangian and ƒı is a Legendrian lift of L in the circular
contactization , then there is a quasi-equivalence of augmented DG-algebras

CE1
��.ƒ

ı/' C��.�.CP1 ÌL//:
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1 Algebra

In the following, F denotes the field Z=2Z. Vector spaces are always over F .

Definition 1.1 An A1-category A is the data of

(1) a collection of objects obA,

(2) for every objects X;Y , a graded vector space of morphisms A.X;Y /,

(3) a family of degree 2� d linear maps

�d
WA.X0;X1/˝ � � �˝A.Xd�1;Xd /!A.X0;Xd /

indexed by the sequences of objects .X0; : : : ;Xd /, d � 1, such thatX
0�i<j�d

�d�.j�i/C1
ı .1i
˝�j�i

˝ 1d�j /D 0;

for all d � 1.

Definition 1.2 An A1-cocategory C is the data of

(1) a collection of objects ob C,

(2) for every objects X;Y , a graded vector space of morphisms C.X;Y /,

(3) a family of degree 2� d linear maps

ıd
W C.X0;Xd /!

M
d�1

M
X1;:::;Xd�1

C.X0;X1/˝ � � �˝ C.Xd�1;Xd /
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indexed by the sequences of objects .X0; : : : ;Xd /, d � 1, such that

� for all d � 1, X
0�i<j�d

.1i
˝ ıj�i

˝ 1d�j / ı ıd�.j�i/C1
D 0;

� the map
C !

Y
d�1

C˝d ; x 7! .ıd .x//d�1;

factors through the inclusion
L

d�1 C˝d !
Q

d�1 C˝d .

Remark If E is some set, denote by FE the semisimple algebra over F generated by elements eX , X 2 E ,
such that

eX � eY D

�
eX if X D Y;

0 if X ¤ Y:

To any A1-category A with ob.A/D E , we can associate an A1-algebra over FE where

� the underlying graded vector space is
L

X ;Y 2E A.X;Y /,
� given x 2A.X0;Y0/,

eX �x D

�
x if X DX0;

0 if X ¤X0;
and x � eY D

�
x if Y D Y0;

0 if Y ¤ Y0;

� operations are the same as on A.

Conversely, to any A1-algebra over FE , one can associate an A1-category with ob.A/D E . Note that
the above discussion also applies to A1-cocategories. As a result, the theory of A1-(co)categories with
E as set of objects is equivalent to the theory of A1-(co)algebras over FE .

In this paper, we will appeal to several standard notions in the theory of A1-(co)categories that we choose
not to recall: instead, we list them and give corresponding references.

� For A1-(co)maps, (co)augmentations and (co)bar, graded dual, Koszul dual constructions, see [17,
Section 2] (where everything is written in the language of A1-(co)algebras over FE ).

� For general definitions and results about A1-categories (in particular about homotopy between A1-
functors, homological perturbation theory, directed (sub)categories and twisted complexes), see [36,
Chapter 1].

� For quotient of A1-categories, see [30], and for localization of A1-categories, see [23, Section 3.1.3].

Finally, we will use the following notion.

Definition 1.3 An Adams-graded vector space is a Z�Z-graded vector space: if x is an element in
the .i; j / component, we say that i is the cohomological degree of x, and j is the Adams degree of x.
An Adams-graded A1-(co)category is an A1-(co)category enriched over Adams-graded vector spaces,
where the operations are required to be of degree 0 with respect to the Adams grading. See [29] for a
treatment of Koszul duality in the context of Adams-graded A1-algebras.
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1.1 Modules over A1-categories

Let C;D be two A1-categories, and let A;B be two full subcategories of C;D, respectively.

Definition 1.4 A .C;D/-bimodule M consists of the following data:

(1) for every pair .X;Y / 2 ob.C/� ob.D/, a graded vector space M.X;Y /,

(2) a family of degree 1�p� q linear maps

�M WC.X0;X1/˝� � �˝C.Xp�1;Xp/˝M.Xp;Yq/˝D.Yq;Yq�1/˝� � �˝D.Y1;Y0/!M.X0;Y0/

indexed by the sequences

.X0; : : : ;Xp;Y0; : : : ;Yq/ 2 ob.C/pC1
� ob.D/qC1;

which satisfy the relationsX
�M. : : : ; �C. : : : /; : : : ;u : : : /C

X
�M. : : : ; �M. : : : ;u; : : : /; : : : /

C

X
�M. : : : ;u; : : : ; �D. : : : /; : : : /D 0:

A degree s morphism t WM1!M2 between two .C;D/-bimodules consists of a family of degree s�p�q

linear maps

t W C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝M1.Xp;Yq/˝D.Yq;Yq�1/˝ � � �˝D.Y1;Y0/!M2.X0;Y0/

indexed by the sequences

.X0; : : : ;Xp;Y0; : : : ;Yq/ 2 ob.C/pC1
� ob.D/qC1:

The differential of such a morphism is defined by

�1
ModC;D.t/. : : : ;u; : : : /D

X
t. : : : ; �C. : : : /; : : : ;u; : : : /C

X
t. : : : ; �M1

. : : : ;u; : : : /; : : : /

C

X
t. : : : ;u; : : : ; �D. : : : /; : : : /C

X
�M2

. : : : ; t. : : : ;u; : : : /; : : : /:

Finally, the composition of t1 WM1!M2 and t2 WM2!M3 is such that

�2
ModC .t1; t2/. : : : ;u; : : : /D

X
t2. : : : ; t1. : : : ;u; : : : /; : : : /:

We denote by ModC;D the DG-category of .C;D/-bimodules.

Definition 1.5 Let ˆ1; ˆ2 W C!D be two A1-functors. Then there is a C-bimodule D.ˆ1.�/; ˆ2.�//

defined as follows:

(1) On objects, it sends .X1;X2/ to D.ˆ1X1; ˆ2X2/.

(2) On morphisms, it sends a sequence . : : : ;y; : : : / in

C.X0;X1/�� � ��C.Xp�1;Xp/�D.ˆ1Xp; ˆ2XpC1/�C.XpC1;XpC2/�� � ��C.XpCq;XpCqC1/

to
�D.ˆ1.�/;ˆ2.�//. : : : ;y; : : : /D

X
�D
�
ˆ1. : : : /; : : : ; ˆ1. : : : /;y; ˆ2. : : : /; : : : ; ˆ2. : : : /

�
:
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In the following, we will focus on left C-modules, which correspond to .C;F/-bimodules. We denote by
ModC the DG-category of (left) C-modules.

Definition 1.6 Let t W M1 ! M2 be a degree 0 closed C-module map. We say that t is a quasi-
isomorphism if the induced chain map t WM1.X /!M2.X / is a quasi-isomorphism for every object X

in C. (See [24, Section A.2] for a discussion on quasi-isomorphisms between A1-modules.)

Definition 1.7 Let t; t 0 WM1 !M2 be two degree 0 closed morphisms of C-modules. A homotopy
between t and t 0 is a C-module map h WM1!M2 such that

t C t 0 D �1
ModC .h/:

Definition 1.8 (see [36, Paragraph (1l); 24, Section A.1]) There is an A1-functor

C!ModC; Y 7! C.�;Y /;

called the Yoneda A1-functor, defined as follows. For every object X ,

C.�;Y /.X /D C.X;Y /:
Also, a sequence

.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u in C.Xd ;Y / via the operations

�C.�;Y /.x0; : : : ;xd�1;u/D �C.x0; : : : ;xd�1;u/:

Finally, let
y D .y0; : : : ;yp�1/ 2 C.Y0;Y1/� � � � � C.Yp�1;Yp/

be a sequence of morphisms in C. Then the Yoneda functor gives a morphism of C-modules

ty W C.�;Y0/! C.�;Yp/

which sends every sequence .x0; : : : ;xd�1;u/ as above to

�C.x0; : : : ;xd�1;u;y0; : : : ;yp�1/ 2 C.X0;Yp/:

We have the following important result.

Proposition 1.9 (Yoneda lemma) The Yoneda A1-functor

C!ModC; Y 7! C.�;Y /;

is cohomologically full and faithful.

Proof This is Lemma 2.12 in [36], and also Lemma A.1 in [24].

The Yoneda lemma has the following easy consequence. We state it for future reference.

Corollary 1.10 Every closed C-module map f W C.�;X /! C.�;Y / is homotopic to the C-module map
tf .eX / induced by f .eX / 2 C.X;Y /. (see Definition 1.8).
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Proof According to the Yoneda lemma, f is homotopic to tx for some closed x in C.X;Y /. Thus, there
exists a C-module map h W C.�;X /! C.�;Y / such that

f D txC�
1
ModC .h/:

Evaluating the latter relation at the unit eX 2 C.X;X / gives

f .eX /D xC�1
C.heX /:

Therefore, x is homotopic to f .eX /, and this implies that tx is homotopic to tf .eX / by the Yoneda lemma.
Finally, we have that f is homotopic to tf .eX /.

Pullback of A1-modules

Definition 1.11 (see [36, Paragraph (1k)] ) Letˆ W C!D be an A1-functor. Then there is a DG-functor

ˆ� WModD!ModC; N 7!ˆ�N ;

defined as follows. Let N be a D-module. For every object X ,

ˆ�N .X /DN .ˆX /:

Also, a sequence
.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u 2ˆ�N .Xd / via the operations

�ˆ�N .x0; : : : ;xd�1;u/D
X

�N .ˆ.x0; : : : ;xi1�1/; : : : ; ˆ.xd�ir
; : : : ;xd�1/;u/:

Finally, let t WN1!N2 be a D-module map. Then the above functor gives a C-module map

ˆ�t Wˆ�N1!ˆ�N2

which sends every sequence .x0; : : : ;xd�1;u/ as above to

ˆ�t.x0; : : : ;xd�1;u/D
X

t.ˆ.x0; : : : ;xi1�1/; : : : ; ˆ.xd�ir
; : : : ;xd�1/;u/:

Remark 1.12 Let ˆ W C! D be an A1-functor, and let ‰ W D! E be another A1-functor towards a
third A1-category E . Then ˆ� ı‰� D .‰ ıˆ/� as DG-functors.

Definition 1.13 Let Y be an object of C, and let ˆ W C! D be an A1-functor. Then there is a degree 0

closed C-module map tˆ W C.�;Y /!ˆ�D.�; ˆ.Y // which sends any sequence

.x0; : : : ;xd�1;u/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /� C.Xd ;Y /

to
tˆ.x0; : : : ;xd�1;u/Dˆ.x0; : : : ;xd�1;u/ 2 D.ˆX0; ˆY /:
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Quotient of A1-modules

Definition 1.14 (see [23, Section 3.1.3]) There is a DG-functor

ModC!ModC=A; M 7! AnM;

defined as follows. Let M be a C-module. For every object X ,

AnM.X /DM.X /˚

� M
p�1

A1;:::;Ap2A

C.X;A1/Œ1�˝ � � �˝ C.Ap�1;Ap/Œ1�˝M.Ap/

�
:

Also, a sequence
xi D .x

0
i ; : : : ;x

pi�1
i / 2 C=A.Xi ;XiC1/ .0� i � d � 1/

acts on an element
uD .x0

d ; : : : ;x
pd�1

d
;u/ 2 AnM.Xd /

via the operations

�AnM.x0; : : : ;xd�1;u/

D

X
0�i�p0;1�j�pd

i<j if dD0

x0
0 ˝ � � �˝xi�1

0 ˝�C.x
i
0; : : : ;x

j�1

d
/˝x

j

d
˝ � � �˝x

pd�1

d
˝u

C

X
0�i�p0

x0
0 ˝ � � �˝xi�1

0 ˝�M.x
i
0; : : : ;x

pd�1

d
;u/:

Finally, let t W M1 ! M2 be a C-module map. Then the above functor gives a C=A-module map

Ant W AnM1! AnM2 which sends every sequence .x0; : : : ;xd�1;u/ as above to

Ant.x0; : : : ;xd�1;u/D
X

0�i�p0

x0
0 ˝ � � �˝xi�1

0 ˝ t.xi
0; : : : ;x

pd�1

d
;u/:

Relations between pullback and quotient of A1-modules

Definition 1.15 Let ˆ W C!D be an A1-functor such that ˆ.A/ is contained in B, and let X be a fixed
object of C. Then, for each D-module N , there is a chain map An.ˆ

�N /.X /! BnN .ˆX / which sends
an element

uD .x0; : : : ;xp�1;u/ 2 An.ˆ
�N /.X /

to X
ˆ.x0; : : : ;xi1�1/˝ � � �˝ˆ.xir ; : : : ;xp�1/˝u 2 BnN .ˆX /:

This defines a natural transformation between the functors N 7! An.ˆ
�N /.X / and N 7! BnN .ˆX / from

ModD to Ch. In other words, for every D-module map t W N1 ! N2, the following diagram of chain
complexes commutes:

An.ˆ
�N1/.X / BnN1.ˆX /

An.ˆ
�N2/.X / BnN2.ˆX /

An.ˆ
�t/ Bnt
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Remark 1.16 Let Y be an object of C, and let ˆ W C!D be an A1-functor such that ˆ.A/ is contained
in B. Let ẑ W C=A!D=B be the A1-functor induced by ˆ (see [30, Section 3]). Localize the morphism
tˆ W C.�;Y /!ˆ�D.�; ˆY / of Definition 1.13 at A and evaluate at X to get a chain map

C=A.X;Y /D AnC.�;Y /.X /
Antˆ
���! An.ˆ

�D.�; ˆY //.X /:

Then the composition of this map with the chain map

An.ˆ
�D.�; ˆY //.X /! BnD.�; ˆY /.ˆX /D D=B.ˆX; ˆY /

of Definition 1.15 is the chain map ẑ W C=A.X;Y /! D=B.ˆX; ˆY /.

Proposition 1.17 Let ˆ W C1 ! C2 be an A1-functor such that ˆ.A1/ is contained in A2, and let
ẑ W C1=A1! C2=A2 be the A1-functor induced by ˆ.

Let Y1 be an object of C1 and set Y2 WD ˆ.Y1/. Assume that there exists a Ci-module MCi
, a degree 0

closed Ci-module map tCi
W Ci.�;Yi/!MCi

and a degree 0 closed C1-module map t0 WMC1
!ˆ�MC2

such that the following diagram of C1-modules commutes:

C1.�;Y1/ ˆ�C2.�;Y2/

MC1
ˆ�MC2

tC1

tˆ

ˆ�tC2

t0

(see Definition 1.13 for the map tˆ). Then for every object X in C1, there is a chain map

u W A1n
MC1

.X /! A2n
MC2

.ˆX /

such that the following diagram of chain complexes commutes:

C1=A1.X;Y1/ C2=A2.ˆX;Y2/

A1n
MC1

.X / A2n
MC2

.ˆX /

MC1
.X / MC2

.ˆX /

A1n
tC1

ẑ

A2n
tC2

u

t0

(the two lowest vertical maps are the inclusions). If , moreover ,

(1) for every objects A in Ai , the complexes MCi
.A/ are acyclic ,

(2) the maps Ain
tCi
W Ain

Ci.X;Yi/! Ain
MCi

.X / are quasi-isomorphisms , and

(3) the map t0 WMC1
.X /!ˆ�MC2

.X / is a quasi-isomorphism ,

then the map ẑ W C1=A1.X;Y1/! C2=A2.ˆX;Y2/ is a quasi-isomorphism.
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Proof We apply the functor P 7! A1n
P to the first diagram, we evaluate at X and we use the natural

map of Definition 1.15 to get the commutative diagram of chain complexes

A1n
C1.�;Y1/.X / A1n

.ˆ�C2.�;Y2//.X / A2n
C2.�;Y2/.ˆX /

A1n
MC1

.X / A1n
.ˆ�MC2

/.X / A2n
MC2

.ˆX /

A1n
tC1

A1n
tˆ

A1n
.ˆ�tC2

/ A2n
tC2

A1n
t0

Then we compose the horizontal maps and we use Remark 1.16 to get a commutative diagram of chain
complexes

C1=A1.X;Y1/ C2=A2.ˆX;Y2/

A1n
MC1

.X / A2n
MC2

.ˆX /

A1n
tC1

ẑ

A2n
tC2

u

This proves the first part of the proposition because the following diagram of chain complexes commutes:

A1n
MC1

.X / A2n
MC2

.ˆX /

MC1
.X / MC2

.ˆX /

u

t0

The second part of the proposition follows directly with [23, Lemma 3.13].

Cone of module maps

Definition 1.18 Let t WM1!M2 be a degree 0 closed morphism of C-modules. We denote by

Cone.M1
t
�!M2/D

24M1

M2

t

35
the C-module M defined as follows. For every object X in C,

M.X /DM1.X /Œ1�˚M2.X /

as graded vector space, and any sequence

.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u1˚u2 in M.Xd / via the operations

�M.x0; : : : ;xd�1;u1˚u2/

D �M1
.x0; : : : ;xd�1;u1/˚

�
�M2

.x0; : : : ;xd�1;u2/C t.x0; : : : ;xd�1;u1/
�
:

If we have two C-module maps t WM1!M2 and t 0 WM1!M0
2
, then we set264 M1

M2 M0
2

t

t 0

375 WD
264 M1

M2˚M0
2

.t;t 0/

375:
Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 501

Proposition 1.19 Consider a diagram of C-modules

M1 M2

M0
2

M3

t1

t 0
1 t2

t 0
2

where all the morphisms are of degree 0 and closed. Then any homotopy h WM1!M3 between

t WD �2
ModC .t1; t2/ and t 0 WD �2

ModC .t
0
1; t
0
2/

induces a degree 0 closed C-module map

th W

264
M1

M2 M0
2

t1

t 0
1

375!M3

defined by

th.x0; : : : ;xd�1;u1˚u2˚u02/D h.x0; : : : ;xd�1;u1/C t2.x0; : : : ;xd�1;u2/C t 02.x0; : : : ;xd�1;u
0
2/:

Proof The only thing to check is that �1
ModC .th/D 0, which is straightforward.

Remark If t WM1!M2 is a degree 0 closed C-module map, then

AnCone.M1
t
�!M2/D Cone.AnM1

Ant
��! AnM2/:

1.2 Grothendieck construction and homotopy pushout

An exposition on Grothendieck constructions and homotopy colimits in the context of A1-categories can
be found in [24, Appendix A]. We recall here definitions and basic facts that will serve us. In this section,
A1-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).

Definition 1.20 Consider a diagram of A1-categories

C D1

D2

ˆ1

ˆ2

The Grothendieck construction of this diagram is the A1-category G such that:

(1) The set of objects is ob.C/t ob.D1/t ob.D2/.

(2) The space of morphisms between two objects X and Y is given by

G.X;Y /D

8̂̂̂<̂
ˆ̂:
C.X;Y / if X;Y 2 ob.C/;
Di.X;Y / if X;Y 2 ob.Di/;

Di.ˆiX;Y / if X 2 ob.C/ and Y 2 ob.Di/;

0 otherwise:
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(3) The operations involving only objects of C, respectively of Di , are the same as in C, respectively
in Di , and for every sequence

.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

2 C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝G.Xp;Y0/˝Di.Y0;Y1/˝ � � �˝Di.Yq�1;Yq/;

we have

�G.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

D

X
�Di

.ˆi.x0; : : : ;xi1�1/; : : : ; ˆi.xp�ir
; : : : ;xp�1/;y; z0; : : : ; zq�1/:

An adjacent unit of G is any morphism in G.X ;ˆi.X //which corresponds to the unit in Di.ˆi.X /;ˆi.X //.
The homotopy colimit H of the above diagram is the localization of G at its adjacent units.

Proposition 1.21 Let G be the Grothendieck construction of a diagram

C D1

D2

ˆ1

ˆ2

Then any strictly commutative square

C D1

D2 E

ˆ1

ˆ2 ‰1

‰2

induces a functor � W G ! E defined as follows. On the objects , � acts on Di as ‰i , and on C as
‰1 ıˆ1 D‰2 ıˆ2; on the morphisms , � acts on Di as ‰i , on C as ‰1 ıˆ1 D‰2 ıˆ2, and it sends any
sequence

.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

2 C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝G.Xp;Y0/˝Di.Y0;Y1/˝ � � �˝Di.Yq�1;Yq/

to

�.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

D

X
‰i

�
ˆi.x0; : : : ;xi1�1/; : : : ; ˆi.xp�ir

; : : : ;xp�1/;y; z0; : : : ; zq�1

�
:

Proof This is a straightforward verification.

Proposition 1.22 [24, Lemma A.5] A strictly commutative diagram of A1-categories

B1 A B2

D1 C D2
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induces an A1-functor from the Grothendieck construction of the top line to the Grothendieck construction
of the bottom line which preserves adjacent units. If moreover each vertical arrow is a quasi-equivalence ,
then the induced functor

hocolim

0B@A B1

B2

1CA! hocolim

0B@ C D1

D2

1CA
is a quasi-equivalence.

Proposition 1.23 Consider two diagrams of A1-categories

C D1

D2

ˆ1

ˆ2 and
C D1

D2

‰1

‰2

If ˆi and ‰i (for i 2 f1; 2g) are homotopic (see [36, Paragraph (1h)]), then the homotopy colimits of the
diagrams above are quasi-equivalent.

Proof Let G0 and G1 be the Grothendieck constructions of the above diagrams.

Let Ti be a homotopy from ˆi to ‰i . This means that

ˆiC‰iD

X
Ti. : : : ; �C. : : : /; : : : /C

X
�Di

�
‰i. : : : /; : : : ; ‰i. : : : /;Ti. : : : /; ˆi. : : : /; : : : ; ˆi. : : : /

�
:

We consider the functor � W G0! G1 such that

�jC D idC; �jDi
D idDi

;

and which sends every sequence

. : : : ;y; : : : / 2 C.X0;X1/� � � � � C.Xp�1;Xp/�G0.Xp;Y0/�Di.Y0;Y1/� � � � �Di.Yq�1;Yq/

to

�. : : : ;y; : : : /D
X

�Di
.‰i. : : : /; : : : ; ‰i. : : : /;Ti. : : : /; ˆi. : : : /; : : : ; ˆi. : : : /;y; : : : /

if p is positive, and to

ˆ.y; : : : /D idDi
.y; : : : /

otherwise. Using the facts that ˆi ; ‰i are A1-functors, that Ti is a homotopy from ˆi to ‰i , and
gathering the terms depending on if they contain T k

i . : : : / or y, we conclude that � satisfies the A1-
relations. This proves the result because � is a quasi-equivalence sending the adjacent units of G0 onto
those of G1.
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1.3 Cylinder object and homotopy

Let A?, AI and A> be three copies of an A1-category A. We denote by C the Grothendieck construction
of the diagram

AI A>

A?

id

id

and we let �?; �I ; �> WA! C be the strict inclusions with images A?, AI , A> respectively. Finally, we
denote by WC the set of adjacent units in C, and we let CylA D CŒW �1

C � be the homotopy colimit of the
diagram above. We say that CylA is a cylinder object for A.

We denote by � W C!A the A1-functor induced by the commutative square

A A

A A

id

id id

id

(see Proposition 1.21).

Proposition 1.24 The following diagram of A1-categories commutes:

AtA C A�?t�>

idtid

�

Moreover , � sends WC to the set of units in A, and the induced A1-functor z� W CylA!AŒfunitsg�1� is a
quasi-equivalence.

Proof The facts that � ı .�? t �>/D idt id and that � sends WC to the set of units in A are clear. We
now show that z� W CylA!AŒfunitsg�1� is a quasi-equivalence.

First observe that it is enough to show that the map

z� W CylA.X;Y /!AŒfunitsg�1�.�X; �Y /

is a quasi-isomorphism for every objects X , Y in A? because every object of C can be related to one of
A? by a zigzag of morphisms in WC , which are quasi-isomorphisms in CylA (see [23, Lemma 3.12]).
Our strategy is to apply Proposition 1.17. Let Y D �?.Z/ be an object in A?. For the C-module we take

MC D

264 C.�; �I .Z//

C.�; �?.Z// C.�; �>.Z//
tI?

tI>

375;
where

tI4 W C.�; �I .Z//! C.�; �4.Z//; 42 f?;>g;

is the C-module map induced by the adjacent unit in C.�I .Z/; �4.Z// (see Definition 1.8)). For the A-
module we simply take A.�;Z/. Besides, we let tC W C.�; �?.Z//!MC be the C-module inclusion, and
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we let tA WA.�;Z/!A.�;Z/ be the identity map. We now define the morphism t0 WMC!��A.�;Z/.
Consider the diagram of C-modules

C.�; �I .Z// C.�; �>.Z//

C.�; �?.Z// ��A.�;Z/

tI?

tI> t�

t�

Observe that this diagram is commutative, and thus it induces a strict C-module map t0 WMC!��A.�;Z/
according to Proposition 1.19. It is then easy to see that the following diagram commutes:

C.�; �4.Z// ��A.�;Z/

MC ��A.�;Z/

tC

t�

��tA

t0

To conclude the proof, it suffices to check the three items of Proposition 1.17. Observe that the pair
.A.�;Z/; tA/ trivially satisfies the two first items.

We check that MC satisfies the first item of Proposition 1.17. Let Z0 be an object in A and let w be the
adjacent unit in C.�I .Z0/; �?.Z0// (the proof is the same for the adjacent unit in C.�I .Z0/; �>.Z0//\WC).
Then

MC.Conew/D Cone
�
MC.�?.Z

0//
�2

C.w;�/
������!MC.�I .Z

0//
�
D Cone

�
C.�?.Z0/; �?.Z//

�2
C.w;�/
������!K

�
;

where

K D

264 C.�I .Z0/; �I .Z//

C.�I .Z0/; �?.Z// C.�I .Z0/; �>.Z//
tI?

tI>

375:
Observe that �2

C.w; �/ W C.�?.Z
0/; �?.Z//!K is injective so its cone is quasi-isomorphic to its cokernel,

which is the cone of tI> W C.�I .Z0/; �I .Z//! C.�I .Z0/; �>.Z//. The latter map is a quasi-isomorphism,
so MC.Conew/ is acyclic.

We now check that .MC; tC/ satisfies the second item of Proposition 1.17. Observe that

W �1
C

MC D

2664
W �1

C
C.�; �I .Z//

W �1
C

C.�; �?.Z// W �1
C

C.�; �>.Z//
W �1

C
tI?

W �1
C

tI>

3775
and W �1

C
tC W W �1

C
C.�; �?.Z//! W �1

C
MC is the inclusion. Thus if X is some object of C, the cone of

W �1
C

tC W CylA.X; �?.Z//! W �1
C

MC.X / is quasi-isomorphic to the cone of the multiplication in CylA by
an element of WC , which is a quasi-isomorphism. Thus the map W �1

C
tC W W �1

C
C.�; �?.Z//! W �1

C
MC

indeed is a quasi-isomorphism.
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It remains to check the third item of Proposition 1.17, which is that the map t0 WMC.X /!��A.�;Z/.X /
is a quasi-isomorphism when X is in A?. This is true because MC.�?.Z

0// D C.�?.Z0/; �?.Z// D
A.Z0;Z/, and

t0 WA.Z0;Z/DMC.�?.Z
0//! ��A.�;Z/.�?.Z0//DA.Z0;Z/

is the identity.

Remark Proposition 1.24 can be thought as saying that CylA is a cylinder object for A.

Proposition 1.25 If two A1-functors ˆ;‰ W A! B are homotopic (see [36, Paragraph (1h)]), then
there is an A1-functor � W C! B which sends the adjacent units of C to the units in B and such that the
following diagram commutes:

A

C B

A

�>

ˆ

�

�? ‰

Proof On the objects, we set �.X4/Dˆ.X /D‰.X / for every object X of A and 42 f?; I;>g. On
the morphisms, we set

�jA? D �jAI
D‰; �jA> Dˆ

and ask for the restriction of � to

AI .X0;X1/˝ � � �˝AI .Xp�1;Xp/˝ C.Xp;XpC1/˝A?.XpC1;XpC2/˝ � � �˝A?.XpCq;XpCqC1/

to be ‰. It remains to define � for

. : : : ;x; : : : /

2AI .X0;X1/˝� � �˝AI .Xp�1;Xp/˝C.Xp;XpC1/˝A>.XpC1;XpC2/˝� � �˝A>.XpCq;XpCqC1/:

For this we take a homotopy T between ˆ and ‰, which means that

ˆC‰ D
X

T . : : : ; �A. : : : /; : : : /C
X

�B
�
ˆ. : : : /; : : : ; ˆ. : : : /;T . : : : /; ‰. : : : /; : : : ; ‰. : : : /

�
:

Then we let

�. : : : ;x; : : : /

D

X
�B
�
ˆ. : : : /; : : : ; ˆ. : : : /;T . : : : /; ‰. : : : /; : : : ; ‰. : : : /; ‰. : : : ;x; : : : /‰. : : : /; : : : ; ‰. : : : /

�
if p is positive, and �.x; : : : /D‰.x; : : : / otherwise.

1.4 Adjunctions between Adams-graded and non-Adams-graded

We end this section by describing specific adjunctions between the category of Adams-graded A1-
categories concentrated in nonnegative Adams degree and the category of (non-Adams-graded) A1-
categories.
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Definition 1.26 If V is an Adams-graded vector space and m is an integer, we denote by Vm the graded
vector space whose degree n component is the direct sum of the bidegree .p; k/ components of V , where
the sum is over the set of couples .p; k/ 2 Z�Z such that p�mk D n.

Definition 1.27 If C is an Adams-graded A1-category, we denote by Cm the (non-Adams-graded)
A1-category obtained from C by changing the grading so that

Cm.X0;X1/D C.X0;X1/m

Observe that any A1-functor ˆ W C1! C2 between two Adams-graded A1-categories induces an A1-
functor from .C1/m to .C2/m (that we still denote byˆ) which acts exactly asˆ on objects and morphisms.
This defines a functor C 7! Cm from the category of Adams-graded A1-categories to the category of
(non-Adams-graded) A1-categories.

We denote by F Œtm� the augmented Adams-graded associative algebra generated by a variable tm of
bidegree .m; 1/, and by tmF Œtm� its augmentation ideal (or equivalently, the ideal generated by tm).

Definition 1.28 If D is a (non-Adams-graded) A1-category, we denote by F Œtm�˝D the Adams-graded
A1-category such that

(1) the objects of F Œtm�˝D are those of D,

(2) the space of morphisms from Y1 to Y2 is F Œtm�˝D.Y1;Y2/, and if y 2 D.Y1;Y2/ is of degree j ,
tk
m˝y is of bidegree .j Cmk; k/,

(3) the operations send any sequence .tk0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/ of morphisms to

�F Œtm�˝D.t
k0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/D tk0C���Ckd�1

m ˝�D.y0; : : : ;yd�1/:

Observe that any A1-functor ‰ W D1 ! D2 between (non-Adams-graded) A1-categories induces an
A1-functor F Œtm�˝ D1 ! F Œtm�˝ D2 which acts as ‰ on objects, and which sends any sequence
.t

k0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/ of morphisms to t

k0C���Ckd�1
m ˝‰.y0; : : : ;yd�1/. This defines a functor

D 7!F Œtm�˝D from the category of (non-Adams-graded) A1-categories to the category of Adams-graded
A1-categories.

Definition 1.29 Let C be an Adams-graded A1-category concentrated in nonnegative Adams degree,
and let D be a (non-Adams-graded) A1-category. To any A1-functor ‰m W Cm! D, we associate an
A1-functor ‰ W C! F Œtm�˝D which sends a sequence .x0; : : : ;xd�1/, where xj is of bidegree .ij ; kj /,
to

‰.x0; : : : ;xd�1/D tk0C���Ckd�1
m ˝‰m.x0; : : : ;xd�1/:

This defines an adjunction between the category of Adams-graded A1-categories concentrated in non-
negative Adams degree and the category of (non-Adams-graded) A1-categories.
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2 Mapping torus of an A1-autoequivalence

In this section, we introduce the notion of mapping torus for a quasi-autoequivalence of an A1-category,
by analogy with the mapping torus associated to an automorphism of a topological space. This terminology
was also used in [26], but we do not know if the two notions coincide. The two main theorems of this
section allow us to compute this mapping torus under different hypotheses.

Remark In this section, A1-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).

2.1 Definitions and main results

2.1.1 Definitions

Definition 2.1 Let � be a quasi-autoequivalence of an Adams-graded A1-category A. The mapping
torus of � is the A1-category

MT.�/ WD hocolim

0B@ AtA A

A

idt�

idtid

1CA
(see Definition 1.20).

Remark (1) We use the terminology “mapping torus” by analogy with the analogous situation in the
category of topological spaces. Indeed, if f is an automorphism of some topological space X , then the
mapping torus of f

Mf D .X � Œ0; 1�/=..x; 0/� .f .x/; 1//

is the homotopy colimit of the diagram

X tX X

X

idtf

idtid

(2) The terminology “mapping torus of an autoequivalence of A1-categories” also appears in [26], where
the corresponding DG-category is denoted by M� , and it is used in [25] to distinguish open symplectic
mapping tori. According to [25, Appendix A], M� is equivalent to the homotopy colimit of

A O.P1/˝A
i0˝id

i1˝�

whereas MT.�/ should rather be equivalent to the homotopy colimit of

A A
id

�

(we did not define MT.�/ using the latter diagram because [24] only defines homotopy colimits of
diagrams indexed by posets).

(3) The mapping torus of a quasi-autoequivalence is also Adams-graded, because it is the localization of
an Adams-graded A1-category at morphisms of Adams degree 0.
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Definition 2.2 Let A be an A1-category. A Z-splitting of ob.A/ is a bijection

Z� E ��! ob.A/; .n;E/ 7!X n.E/;

where E is some set. If such a splitting has been chosen, we define the Adams-grading of a homogeneous
element x 2A.X i.E/;X j .E// to be j � i . This turns A into an Adams-graded A1-category.

Let � be a quasi-autoequivalence of A. We say that a Z-splitting of ob.A/ is compatible with � if

�.X n.E//DX nC1.E/

for every n 2 Z and E 2 E .

We say that A is weakly directed with respect to a Z-splitting of ob.A/ if

A.X i.E/;X j .E0//D 0

for every i > j and E;E0 2 E (we use the term “weakly directed” A1-category because the notion is
slightly more general than that of directed A1-category defined by Seidel in [36, Paragraph (5m)]).

Remark Compatible Z-splittings naturally arise in the context of Z-actions. A strict Z-action on an
A1-category A is a family of A1-endofunctors .�n/n2Z such that �0 D idA and �iCj D �i ı �j (see
[36, Paragraph (10b)]). If the induced Z-action on ob.A/ is free, then any section � of the projection
ob.A/! E , where E is the set of equivalence classes of objects in A under the Z-action, gives a Z-splitting

Z� E ��! ob.A/; .n;E/ 7! �n.�.E//;

which is compatible with the automorphism �1.

2.1.2 Main results

First result

Definition 2.3 Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible
Z-splitting of ob.A/. Assume that � is strict, ie �d D 0 for d � 2, and acts bijectively on hom-sets. In
this case, we define an Adams-graded A1-category A� as:

(1) The set of objects of A� is E .

(2) The space of morphisms A� .E;E0/ is the Adams-graded vector space given by

A� .E;E0/D
� M

i;j2Z

A.X i.E/;X j .E0//

�.
.�.x/� x/:

(3) The operations are the unique linear maps such that for every sequence

.x0; : : : ;xd�1/ 2A.X i0.E0/;X
i1.E1//� � � � �A.X id�1.Ed�1/;X

id .Ed //;

we have
�A� .Œx0�; : : : ; Œxd�1�/D Œ�A.x0; : : : ;xd�1/�;

where Œ� � W A.X i.E/;X j .E0//! A� .E;E0/ denotes the projection. (It is not hard to see that
such operations exist and satisfy the A1-relations.)
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Remark When A is a DG-category, the latter construction is known as the orbit category, see [27; 28,
Section 4.9]. In [26, Section 4], it is denoted by A#Z (considering that � induces a Z-action on A).

Theorem 2.4 Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible
Z-splitting of ob.A/. Assume that � is strict and acts bijectively on hom-sets. Then there is a quasi-
equivalence of Adams-graded A1-categories

MT.�/'A� :

Remark (1) The A1-category A� is the (ordinary) colimit of the diagram used to define MT.�/. Thus,
Theorem 2.4 can be thought of as a “homotopy colimit equals colimit” result.

(2) In [26], given a DG-category A and an autoequivalence � acting bijectively on hom-sets, the author
defines a DG-category M� WD .O.eT 0/dg˝A/#Z (see [26] for the notation). In the case where � moreover
induces a free Z-action on objects, Theorem 2.4 says that relating MT.�/ and M� amounts to comparing
A#Z and .O.eT 0/dg˝A/#Z.

Second result We denote by F Œtm� the augmented Adams-graded associative algebra generated by a
variable tm of bidegree .m; 1/. Observe that if C is a subcategory of an A1-category D with ob.C/Dob.D/,
then C˚ .tF Œt �˝D/ is naturally an Adams-graded A1-category, where the Adams degree of tk ˝ x

equals k. Besides, if C is an A1-category equipped with a Z-splitting of ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g� E . Finally, we use the functor C 7! Cm of
Definition 1.27.

Theorem 2.5 (Theorem A in the introduction) Let � be a quasi-autoequivalence of an A1-category A,
weakly directed with respect to some compatible Z-splitting of ob.A/. Assume that there exists a closed
degree 0 bimodule map f WAm.�; �/!Am.�; �.�// such that

f WAm.X
i.E/;X j .E0//!Am.X

i.E/;X jC1.E0//

is a quasi-isomorphism for every i < j and E;E0 2 E . Then there is a quasi-equivalence of Adams-graded
A1-categories

MT.�/'A0
m˚ .tmF Œtm�˝AmŒf .units/�1�0/:

Outline of the section In Section 2.2, we consider an A1-category A equipped with a Z-splitting of
ob.A/ and a choice of a closed degree 0 morphism cn.E/ 2A.X n.E/;X nC1.E// for every n 2 Z and
every E 2 E . We give technical results about specific modules associated to this data. This will be used
in the proof of Theorem 2.5 with cn.E/D f .eX n.E//.

In Section 2.3, we consider the Grothendieck construction G of a slightly different diagram than the one
in Definition 2.1, together with a set WG of closed degree 0 morphisms. The idea is that the localization

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 511

HD GŒW �1
G � is the homotopy colimit of a diagram obtained from the one in Definition 2.1 by a cofibrant

replacement of the diagonal functor AtA!A. Thus it is not surprising that H is quasi-equivalent to
the mapping torus of � . Moreover, we prove technical results about specific modules over G that will be
used in the proofs of Theorems 2.4 and 2.5.

In Section 2.4, we prove Theorem 2.4. We first define an A1-functor ˆ W G ! A� which sends WG

to the set of units in A� . Then we prove that the induced A1-functor ẑ W H ! A� Œfunitsg�1� is a
quasi-equivalence. To do that, our strategy is to apply Proposition 1.17 using the results of Section 2.3
about the specific G-modules.

In Section 2.5, we prove Theorem 2.5. We use the fact that G is “big enough” (there are more objects and
morphisms than in the Grothendieck construction of the diagram in Definition 2.1) in order to define an
A1-functor ‰m W Gm!Am (see Definition 1.27). This induces an A1-functor

z‰ WH! F Œtm�˝AmŒf .funitsg/�1�:

Then we prove that for every Adams degree j � 1, and for every objects X;Y in H, the map

z‰ WH.X;Y /�;j ! .F Œtm�˝AmŒf .funitsg/�1�/.‰X; ‰Y /�;j

is a quasi-isomorphism (if V is an Adams-graded vector space, V �;j denotes the subspace of Adams
degree j elements). To do that, we apply once again Proposition 1.17 using the results of Sections 2.2
and 2.3 about the specific modules over Am and G respectively. This allows us to finish the proof of
Theorem 2.5.

2.2 Results about specific modules

In this section, we give technical results that will allow us to apply Proposition 1.17 in the proof of
Theorem 2.5.

Let A be an A1-category equipped with a Z-splitting of ob.A/. Assume that we have chosen, for every
n 2 Z and every E 2 E , a closed degree 0 morphism cn.E/ 2A.X n.E/;X nC1.E//. Moreover, assume
that we have chosen a set WA of closed degree 0 morphisms which contains the morphisms cn.E/.

Remark According to Definition 2.2, the Z-splitting of ob.A/ naturally induces an Adams-grading
on A. However in this section, we do not consider A as being Adams-graded.

In the following, we fix some element E˘ 2 E . When we write an object X n or a morphism cn without
specifying the element of E , we mean X n.E˘/ or cn.E˘/ respectively. Recall that

tcn
WA.�;X n/!A.�;X nC1/

denotes the A-module map induced by cn 2A.X n;X nC1/ (see Definition 1.8).
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Definition 2.6 We set MA to be the A-module

MA WD

264 � � � A.�;X 0/ A.�;X 1/ � � �

� � � A.�;X 0/ A.�;X 1/ � � �

tc�1

id
tc0

id
tc1

375D
2664
L

i2Z A.�;X i/

L
i2Z A.�;X i/

L
i2Z.id;tci

/

3775
(see Definition 1.18). Besides, we set tn

A W A.�;X
n/!MA to be the A-module inclusion for every

n 2 Z.

The first result highlights a key property of the module MA.

Lemma 2.7 For every n 2 Z, the closed A-module map tnC1
A ı tcn

WA.�;X n/!MA is homotopic to
tn
A WA.�;X

n/!MA.

Proof Consider the degree �1 strict A-module map s WA.�;X n/!MA which sends a morphism in
A.X;X n/ to the corresponding shifted element in A.X;X n/Œ1�. Then an easy computation gives

�1
ModA.s/D tnC1

A ı tcn
C tn

A:

In the proof of the two results below, we will use specific A-modules. If p is a fixed nonnegative integer,
we set

Kp D

264 � � � A.�;X p�1/ A.�;X p/

� � � A.�;X p�1/ A.�;X p/

tcp�2

id
tcp�1

id

375
and

zKp D

264A.�;X
p/ A.�;X pC1/ � � �

A.�;X pC1/ � � �

tcp
id

tcpC1

375:
Moreover, we will consider the sequences of A-modules .Fq

p /q�0, . zFq
p /q�0 starting at F0

p D
zF0
p D 0

and with

Fq
p D

264A.�;X
p�qC1/ � � � A.�;X p/

A.�;X p�qC1/ � � � A.�;X p/

id
tcp�qC1

tcp�1

id

375
and

zFq
p D

264A.�;X
p/ � � �

� � � A.�;X pCq/

tcp

tcpCq�1

375
for q � 1.

The following lemma is mostly technical. It will be used in the proofs of Lemmas 2.9 and 2.21.
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Lemma 2.8 Assume that for every i < j and that for every E 2 E the chain map

�2
A.�; cj / WA.X i.E/;X j /!A.X i.E/;X jC1/

is a quasi-isomorphism. Then for every k < n and for every E 2 E , the inclusion A.X k.E/;X n/ ,!

MA.X
k.E// is a quasi-isomorphism.

Proof The cone of the inclusion A.X k.E/;X n/ ,!MA.X
k.E// is quasi-isomorphic to its cokernel,

which is Kn�1.X
k.E//˚ zKn.X

k.E//.

We have to show that these complexes are acyclic. Observe that�
F

q
n�1

.X k.E//
�
q�0

and
�
zFq

n .X
k.E//

�
q�0

are increasing, exhaustive, and bounded from below filtrations of Kn�1.X
k.E// and zKn.X

k.E//,
respectively. For every q � 1, we have

F
q
n�1

.X k.E//=F
q�1
n�1

.X k.E//D

2664
A.X k.E/;X n�q/

A.X k.E/;X n�q/

id

3775
and

zFq
n .X

k.E//= zFq�1
n .X k.E//D

2664
A.X k.E/;X nCq�1/

A.X k.E/;X nCq/

tcnCq�1

3775:
The first of the two latter complexes is clearly acyclic, and the second one is acyclic by assumption on
the morphisms cj . Thus the entire complex Kn�1.X

k.E//˚ zKn.X
k.E// is acyclic, which is what we

needed to prove.

The following two lemmas will be used later in order to apply Proposition 1.17.

Lemma 2.9 Assume that for every i < j < k and for every E 2 E that the chain maps

�2
A.�; cj / W A.X i.E/;X j /!A.X i.E/;X jC1/;

�2
A.cj .E/; �/ WA.X jC1.E/;X kC1/!A.X j .E/;X kC1/

are quasi-isomorphisms. Then for every .n;E/ 2 Z� E , the complex MA.Cone cn.E// is acyclic.

Proof We have

MA.Cone cn.E//D Cone
�
MA.X

nC1.E//
�2

MA .cn.E/;�/
�����������!MA.X

n.E//
�
;
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so we have to prove that �2
MA

.cn.E/; �/ WMA.X
nC1.E//!MA.X

n.E// is a quasi-isomorphism.
Observe that we have the commutative diagram

MA.X
nC1.E// MA.X

n.E//

A.X nC1.E/;X nC2/ A.X n.E/;X nC2/

�2
MA .cn.E/;�/

�2
A.cn.E/;�/

The bottom horizontal map is a quasi-isomorphism by assumption on the morphisms cj .E/. Moreover,
the vertical maps are quasi-isomorphisms according to Lemma 2.8. This implies that �2

MA
.cn.E/; �/ is

indeed a quasi-isomorphism.

Lemma 2.10 The A-module map W �1
A

tn
A W W �1

A
A.�;X n/! W �1

A
MA is a quasi-isomorphism for every

n 2 Z.

Proof Let X be some object of A. We want to prove that the chain map

W �1
A

tn
A W W �1

A
A.X;X n/! W �1

A
MA.X /

is a quasi-isomorphism. Observe that

W �1
A

MA.X /D

2664
� � � AŒW �1

A �.X;X 0/ AŒW �1
A �.X;X 1/ � � �

� � � AŒW �1
A �.X;X 0/ AŒW �1

A �.X;X 1/ � � �

id
W �1

A
tc0

id W �1
A

tc1

3775
and the chain map W �1

A
tn
A W W �1

A
A.X;X n/ ! W �1

A
MA.X / is the inclusion. The cone of the latter

chain map is then quasi-isomorphic to its cokernel, which is W �1
A

Kn�1.X /˚W �1
A
zKn.X /. Observe that

.W �1
A

F
q
n�1

.X //q�0, .W �1
A
zF

q
n .X //q�0 are increasing, exhaustive, and bounded from below filtrations of

W �1
A

Kn�1.X /, W �1
A
zKn.X /, respectively. For every q � 1, we have

W �1
A

F
q
n�1

.X /=W �1
A

F
q�1
n�1

.X /D

2664
AŒW �1

A �.X;X n�q/

AŒW �1
A �.X;X n�q/

id

3775
and

W �1
A
zFq

n .X /=W �1
A
zFq�1

n .X /D

2664
AŒW �1

A �.X;X n�1Cq/

AŒW �1
A �.X;X nCq/

W �1
A

tcn�1Cq

3775:
The first of the two latter complexes is clearly acyclic, and the second one is acyclic because cn�1Cq

belongs to the set WA by which we localized (see [23, Lemma 3.12]). Thus the entire complex

W �1
A

Kn�1.X /˚W �1
A
zKn.X / is acyclic, which is what we needed to prove.
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2.3 The A1-category and modules for the mapping torus

In this section, we consider an A1-category G, together with a set WG of closed degree 0 morphisms. We
prove that HDGŒW �1

G � is quasi-equivalent to the mapping torus of � , and we prove technical results about
specific G-modules that will allow us to apply Proposition 1.17 in the proofs of Theorems 2.4 and 2.5.

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
If A4 is a copy of A, we denote by X n

4
.E/ the object of A4 corresponding to .n;E/ 2 Z� E .

2.3.1 The Grothendieck construction G The A1-category G will be the Grothendieck construction
of a slightly different diagram than the one in Definition 2.1. The idea is to introduce an A1-category C
together with a set of closed degree 0 morphisms WC such that the localization CŒW �1

C � is a cylinder object
for A. Observe that this kind of cofibrant replacement is common in homotopy colimits computation, and
indeed we need it to prove Theorem 2.5.

Definition 2.11 Let A?, AI and A> be three copies of A. We denote by C the Grothendieck construction
(see Definition 1.20) of the diagram

AI A>

A?

id

id

and we let �?; �I ; �> WA! C be the strict inclusions with images A?, AI , A>, respectively. Finally, we
denote by WC the set of adjacent units in C, and we let CylA D CŒW �1

C � be the homotopy colimit of the
diagram above.

Definition 2.12 Let A�, AC, A� be three copies of A. We denote by G the Grothendieck construction
of the diagram

A� tAC A�

C

idt�

�?t�>

Also, we denote by WG the union of WC and the set of adjacent units in G, and we set

H WD GŒW �1
G �:

According to Proposition 1.24, CylA can be thought as a cylinder object for A. Therefore, the following
result should not be surprising.

Lemma 2.13 The mapping torus of � is quasi-equivalent to H.
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Proof Let � W C!A be the A1-functor induced by the commutative diagram

AI A>

A? A

id

id id

id

(see Proposition 1.21). We get a commutative diagram

C A� tAC A�

A A� tAC A�

�

�?t�> idt�

id id

idtid idt�

which induces an A1-functor � from G to the Grothendieck construction of the bottom line (see
Proposition 1.22). Observe that � sends WC to the set U of units in A. Now, according to Proposition 1.24,
the A1-functor z� W CylA D CŒW �1

C �!AŒU�1� is a quasi-equivalence. According to Lemma A.6 in [24]
(called “localization and homotopy colimits commute”), this implies that the A1-functor induced by �,

hocolim

0B@A� tAC A�

C

�?t�>

idt�
1CA ŒW �1

C �
z�
�! hocolim

0B@A� tAC A�

A
idtid

idt�
1CA ŒU�1�;

is a quasi-equivalence. This completes the proof because the source of z� is exactly H, and its target is
quasi-equivalent to the mapping torus of � .

2.3.2 Modules over G In the following, we fix some element E˘ 2 E . When we write an object X n
4

without specifying the element of E , we mean X n
4
.E˘/. Moreover, we denote by

tn
4�
W G.�;X n

4/! G.�;X nCı4�
�

/

the G-module map induced by the adjacent unit in G.X n
4
;X

nCı4�
�

/ (see Definition 1.8), where

ı4� D

�
1 if .4;�/D .C; �/;
0 otherwise:

Definition 2.14 We denote by MG the G-module defined by

MG D

2664
� � � G.�;X 0

�/ G.�;X 0
I
/ G.�;X 0

C/ G.�;X 1
�/ � � �

� � � G.�;X 0
�
/ G.�;X 0

?
/ G.�;X 0

>
/ G.�;X 1

�
/ � � �

t�1
C�

t0
��

t0
�?

t0
I?

t0
I>

t0
C>

t0
C�

t1
��

t1
�?

3775
(see Definition 1.18). For practical reasons, we also consider the G-modules

Mn
? WD

264 G.�;X n
I
/

G.�;X n
?
/ G.�;X n

>
/

tn
I?

tn
I>

375; n 2 Z:

We denote by tG W G.�;X 0
�
/!MG the G-module inclusion.

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 517

Remark We can write

MG D

264
L

n2Z G.�;X n
�/˚G.�;X n

I
/˚G.�;X n

C/

L
n2Z G.�;X n

�
/˚G.�;X n

?
/˚G.�;X n

>
/

L
n2Z.t

n
��;t

n
�?
;tn

I?
;tn

I>
;tn
C>

;tn
C�
/

375
and also

MG D

264
L

n2Z.G.�;X n
�/˚G.�;X n

C//

L
n2Z Mn

?

L
n2Z G.�;X n

�
/

L
n2Z.t

n
�?
;tn
C>

/

L
n2Z.t

n
��;t

n
C�
/

375:
The following two lemmas are analogs of Lemmas 2.9 and 2.10, respectively. They will be used later in
order to apply Proposition 1.17.

Lemma 2.15 For every w in WG , the complex MG.Conew/ is acyclic.

Proof Let w be the morphism in WG \G.X k
I
.E/;X k

>
.E// (the proof is analogous for the morphism in

WG \G.X k
I
.E/;X k

?
.E//). Then

MG.Conew/D Cone
�
MG.X

k
>.E//

�2
MG .w;�/��������!MG.X

k
I .E//

�
D

M
n

Cone
�
G.X k

>.E/;X
n
>/

�2
MG .w;�/��������!Mn

?.X
k
I .E//

�
:

We want to prove that �2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E// is a quasi-isomorphism for every n.

Observe that the following diagram of chain complexes is commutative:

G.X k
>
.E/;X n

>
/ Mn

?.X
k
I
.E//

G.X k
>
.E/;X n

>
/ G.X k

I
.E/;X n

>
/

�2
MG .w;�/

�2
G.w;�/

The rightmost vertical arrow is injective, so its cone is quasi-isomorphic to its cokernel, which is the
cone of tn

I?
W G.X k

I
.E/;X n

I
/! G.X k

I
.E/;X n

?
/. Since the latter map is a quasi-isomorphism, the cone

of �2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E// is quasi-isomorphic to the cone of

�2
G.w; �/ W G.X

k
>.E/;X

n
>/! G.X k

I .E/;X
n
>/:

The latter map is a quasi-isomorphism, so we conclude that �2
MG
.w; �/ WG.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E//

is a quasi-isomorphism for every n, and thus MG.Conew/ is acyclic.

Now let w be the morphism in WG \ G.X k
C.E/;X

k
>
.E// (the proof is analogous for the morphism in

WG \G.X k
�.E/;X

k
?
.E//). Then

MG.Conew/D Cone
�
MG.X

k
>.E//

�2
MG .w;�/��������!MG.X

k
C.E//

�
D

M
n

Cone
�
G.X k

>.E/;X
n
>/

�2
MG .w;�/��������!Kn

�
;
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where

Kn
D

2664
G.X k

C.E/;X
n
C/

G.X k
C.E/;X

n
>
/ G.X k

C.E/;X
nC1
�

/

tn
C>

tn
C�

3775:
Observe that �2

MG
.w; �/ W G.X k

>
.E/;X n

>
/!Kn is injective (it is basically an inclusion once we unravel

the definitions), so its cone is quasi-isomorphic to its cokernel, which is the cone of

tn
C� W G.X

k
C.E/;X

n
C/! G.X k

C.E/;X
nC1
�

/:

The latter map is a quasi-isomorphism because � is a quasi-equivalence. This implies that the cone of
�2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Kn is acyclic for every n, and thus MG.Conew/ is acyclic.

It remains to consider a morphism w in WG \ G.X k
C.E/;X

kC1
�

.E// (the proof is analogous for the
morphism in WG \G.X k

�.E/;X
k
�
.E//). Then

MG.Conew/D Cone
�
MG.X

kC1
�

.E//
�2

MG .w;�/��������!MG.X
k
C.E//

�
D

M
n

Cone
�
G.X kC1

�
.E/;X n

�
/
�2

MG .w;�/��������!Kn
�
;

where

Kn
D

2664
G.X k

C.E/;X
n�1
C /

G.X k
C.E/;X

n�1
>

/ G.X k
C.E/;X

n
�
/

tn�1
C>

tn�1
C�

3775:
Observe that �2

MG
.w; �/ W G.X kC1

�
.E/;X n

�
/!Kn is injective, so its cone is quasi-isomorphic to its

cokernel, which is the cone of tn�1
C>
W G.X k

C.E/;X
n�1
C /! G.X k

C.E/;X
n�1
>

/. The latter map is a quasi-
isomorphism, so we conclude that the cone of �2

MG
.w; �/ W G.X kC1

�
.E/;X n

�
/ ! Kn is acyclic for

every n, and thus MG.Conew/ is acyclic.

Lemma 2.16 The H-module map W �1
G

tG W W �1
G

G.�;X 0
�
/! W �1

G
MG is a quasi-isomorphism.

Proof We fix an object X in G, and we want to prove that W �1
G

tG W W �1
G

G.X;X 0
�
/! W �1

G
MG.X / is a

quasi-isomorphism. Observe that

W �1
G

MG WD

26664
� � � GŒW �1

G �.�;X�1
C / GŒW �1

G �.�;X 0
�/ � � �

� � � GŒW �1
G �.�;X�1

>
/ GŒW �1

G �.�;X 0
�
/ � � �

W �1
G

t�1
C>

W �1
G

t�1
C�

W �1
G

t0
�� W �1

G
t0
�?

37775
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and that the chain map W �1
G

tG W W �1
G

G.X;X 0
�
/! W �1

G
MG.X / is the inclusion. The cone of the latter

chain map is then quasi-isomorphic to its cokernel, which can be written K0˚K00, where

K0 D

26664
� � � GŒW �1

G �.X;X�1
I
/ GŒW �1

G �.X;X�1
C /

� � � GŒW �1
G �.X;X�1

?
/ GŒW �1

G �.X;X�1
>
/

W �1
G

t�1
I?

W �1
G

t�1
I>

W �1
G

t�1
C>

37775
and

K00 D

26664
GŒW �1

G �.X;X 0
�/ GŒW �1

G �.X;X 0
I
/ � � �

GŒW �1
G �.X;X 0

?
/ � � �

W �1
G

t0
�?

W �1
G

t0
I? W �1

G
t0
I>

37775:
Observe that the maps defining the chain complex structures in K0 and K00 are all quasi-isomorphisms
(see [23, Lemma 3.12]). Thus it is not difficult to show using an increasing exhaustive and bounded from
below filtration of K0 and K00 that these complexes are acyclic (compare the proof of Lemma 2.10). This
implies that the map W �1

G
tG W W �1

G
G.X;X 0

�
/! W �1

G
MG.X / is a quasi-isomorphism.

2.4 Proof of the first result

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
Assume that � is strict and acts bijectively on hom-sets.

Observe that there is a strict A1-functor � W A ! A� which sends X n.E/ to E, and which sends
x 2A.X i.E1/;X

j .E2// to Œx� 2A� .E1;E2/. Besides, let � W C!A be the A1-functor induced by the
commutative diagram

A A

A A

id

id id

id

(see Proposition 1.21). Then the diagram of Adams-graded A1-categories

A� tAC A�

C A�

idt�

�?t�> �

�ı�

is commutative because � ı � D � . Moreover, the induced A1-functor ˆ W G!A� is strict, and it sends
WG to the set of units in A� . Let

ẑ WH!A� Œfunitsg�1�

be the A1-functor induced by ˆ.
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According to Lemma 2.13, H is quasi-equivalent to the mapping torus of � . Moreover, A� Œfunitsg�1� is
quasi-equivalent to A� . Thus, Theorem 2.4 will follow if we prove that ẑ is a quasi-equivalence. Our
strategy is to apply Proposition 1.17. Observe that it suffices to prove that

ẑ WH.X;Y /!A� Œfunitsg�1�.ˆX; ˆY /

is a quasi-isomorphism for every object X , Y in A0
�

(recall that A0
�

denotes the subcategory of A�
generated by the objects X 0

�
.E/, E 2 E) because every object of G can be related to one of A0

�
by a

zigzag of morphisms in WG , which are quasi-isomorphisms in H (see [23, Lemma 3.12]).

In the following, we fix some element E˘ 2 E . When we write an object X n
4

without specifying the
element of E , we mean X n

4
.E˘/. We consider the corresponding G-module MG and the G-module map

tG W G.�;X 0
�
/! G of Definition 2.14. Moreover, we set

MA� WDA� .�;E˘/ and tA� WD id WA� .�;E˘/!MA� :

Lemma 2.17 There exists a G-module map t0 WMG ! ˆ�MA� (see Definition 1.11 for the pullback
functor) such that :

(1) The following diagram of G-modules commutes:

G.�;X 0
�
/ ˆ�A� .�;E˘/

MG ˆ�MA�

tG

tˆ

ˆ�tA�Did

t0

(see Definition 1.13 for the map tˆ).

(2) For every E 2 E , the map t0 WMG.X
0
�
.E//!ˆ�MA� .X

0
�
.E// is a quasi-isomorphism.

Proof Observe that the diagram of G-modules

G.�;X n
I
/ G.�;X n

>
/

G.�;X n
?
/ ˆ�MA�

tn
I>

tn
I?

tˆ

tˆ

is commutative, so that it induces a G-module map Mn
?!ˆ�MA� (see Proposition 1.19). Now observe

that the following diagram of G-modules commutes:

L
n2Z.G.�;X n

�/˚G.�;X n
C//

L
n2Z G.�;X n

�
/

L
n2Z Mn

? ˆ�MA�

L
n2Z.t

n
��˚tn

C�
/

L
n2Z.t

n
�?
˚tn
C>

/ tˆ
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We let t0 WMG ! ˆ�MA� be the induced G-module map. It is then easy to verify that the following
diagram of G-modules is commutative:

G.�;X 0
�
/ ˆ�A� .�;E˘/

MG ˆ�MA�

tG

tˆ

ˆ�tA�Did

t0

We now prove the second part of the lemma. We have

MG.X
0
�
.E//D

M
n

G.X 0
�
.E/;X n

�
/D

M
n

A.X k.E/;X n/

and
t0 W
M

n

A.X k.E/;X n/DMG.X
0
�
.E//!ˆ�MA� .X

0
�
.E//DA� .E;E˘/

is the sum of the projections, which is an isomorphism.

Lemma 2.18 For every E 2 E , the chain map

ẑ WH.X 0
�
.E/;X 0

�
/!A� Œfunitsg�1�.E;E˘/

is a quasi-isomorphism.

Proof According to Lemmas 2.15, 2.16 and 2.17, the assumptions of Proposition 1.17 are satisfied.

As explained above, Theorem 2.4 follows from Lemma 2.18 since H is quasi-equivalent to the mapping
torus of � (see Lemma 2.13) and A� Œfunitsg�1� is quasi-equivalent to A� .

2.5 Proof of the second result

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
Assume that the following holds:

(1) A is weakly directed with respect to the Z-splitting of ob.A/ (see Definition 2.2).

(2) There exists a closed degree 0 bimodule map f WAm.�; �/!Am.�; �.�// (see Definitions 1.4
and 1.5) such that f W Am.X

i.E/;X j .E0//! Am.X
i.E/;X jC1.E0// is a quasi-isomorphism

for every i < j and E;E0 2 E .

Remark It follows from Corollary 1.10 and � being a quasi-equivalence that the chain maps

�2
Am
.�; f .eX j .E/// W Am.X

i.E0/;X j .E//!Am.X
i.E0/;X jC1.E//;

�2
Am
.f .eX j .E//; �/ WAm.X

jC1.E/;X kC1.E0//!Am.X
j .E/;X kC1.E0//;

are quasi-isomorphisms for every i < j < k and E;E0 2 E .
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In the following, we set
cn.E/ WD f .eX n.E//

for every n 2 Z, E 2 E , and

WAm
WD fcn.E/ j n 2 Z;E 2 Eg[ funits of Amg:

2.5.1 Generalized homotopy Recall that we introduced a functor B 7! Bm from the category of
Adams-graded A1-categories to the category of (non-Adams-graded) A1-categories. Also, recall that
we introduced Adams-graded A1-categories C and G in Definitions 2.11 and 2.12, respectively. Observe
that Cm and Gm are the Grothendieck constructions of the diagrams

.AI /m .A>/m

.A?/m

id

id and
.A�/m t .AC/m .A�/m

Cm

idt�

�?t�>

respectively. We denote by WCm
the set of adjacent units in Cm, and by WGm

the union of WCm
and the

set of adjacent units in Gm.

We would like to define an A1-functor ‰m W Gm ! Am which sends WGm
to WAm

. According to
Proposition 1.21, it is enough to prove the following result.

Lemma 2.19 There exists an A1-functor � W Cm!Am which sends WCm
to WAm

, and such that

� ı �I D � ı �? D id; � ı �> D �:

Proof We first define � to be id on .A?/m, .AI /m. and to be � on .A>/m. Observe that this completely
defines � on the objects. Also, we ask for � to act as the identity on the sequences involving an adjacent
morphism from .AI /m to .A?/m.

It remains to define � on the sequences involving an adjacent morphism from .AI /m to .A>/m. Consider
a sequence of morphisms

.x0; : : : ;xpCq/

2 Cm.X
i0

I
.E0/;X

i1

I
.E1//� � � � � Cm.X

ip�1

I
.Ep�1/;X

ip
I
.Ep//� Cm.X

ip
I
.Ep/;X

ipC1

>
.EpC1//

� Cm.X
ipC1

>
.EpC1/;X

ipC2

>
.EpC2//� � � � � Cm.X

ipCq

>
.EpCq/;X

ipCqC1

>
.EpCqC1//:

Observe that

Cm.X
i
I .E/;X

j
I
.E0//D Cm.X

i
I .E/;X

j
>
.E0//D Cm.X

i
>.E/;X

j
>
.E0//DAm.X

i.E/;X j .E//:

Then we set

�.x0; : : : ;xpCq/ WD f .x0; : : : ;xp�1;xp;xpC1; : : : ;xpCqC1/ 2Am.X
i0.E0/; �X

ipCqC1.EpCqC1//:

The functor � we defined satisfies the A1-relations because f WAm.�; �/!Am.�; �.�// is a closed
degree 0 bimodule map. Moreover, � sends WCm

to WAm
by construction.
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Remark First observe that

CylAm
D CmŒW

�1
Cm
�D .CŒW �1

C �/m D .CylA/m:

According to Lemma 2.19, the functor � induces an A1-functor z� W CylAm
! AmŒW

�1
Am
�. Moreover,

Lemma 2.19 implies that the following diagram commutes:

.AC/m

CylAm
AmŒW

�1
Am
�

.A�/m

�Cmı�>

�Amı�

z�

�Cmı�? �Am

(�Am
WAm!AmŒW

�1
Am
� and �Cm

W Cm! CmŒW
�1
Cm
� denote the localization functors). Since CylAm

should
be thought of as a cylinder object for Am (see Proposition 1.24), we should think that the functors �Am

and �Am
ı � are homotopic (even if they do not act the same way on objects) and that z� is a generalized

homotopy between them (see Proposition 1.25 for a justification of this terminology).

2.5.2 Relation between G and Am Using the A1-functor � W Cm ! Am of Lemma 2.19, we get a
commutative diagram of (non-Adams-graded) A1-categories

.A�/m t .AC/m .A�/m

Cm Am

idt�

�?t�> id
�

and the induced A1-functor‰m WGm!Am (see Proposition 1.21) sends WGm
to WAm

(see Lemma 2.19).
Let

z‰m WHm D GmŒW
�1
Gm
�!AmŒW

�1
Am
�

be the A1-functor induced by ‰m. Observe that, since A is assumed to be weakly directed and since
the Adams degree of A comes from the Z-splitting of ob.A/ (see Definition 2.2), H is concentrated in
nonnegative Adams degree. In particular, we can apply the adjunction of Definition 1.29 to z‰m, which
gives an A1-functor

z‰ WHD GŒW �1
G �! F Œtm�˝AmŒW

�1
Am
�:

We would like to prove that for every Adams degree j � 1, and for every objects X;Y in A0
�

(recall that
A0
�

denotes the subcategory of A� generated by the objects X 0
�
.E/, E 2 E), the map

z‰ WH.X;Y /�;j ! .F Œtm�˝AmŒW
�1
Am
�/.‰X; ‰Y /�;j D Fj

m˝AmŒW
�1
Am
�.‰X; ‰Y /

is a quasi-isomorphism, (Fj
m is the vector space generated by t

j
m; also recall that if V is an Adams-graded

vector space, V �;j denotes the subspace of Adams degree j elements). Our strategy is once again to
apply Proposition 1.17.
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In the following we fix some element E˘ 2 E . When we write X n
4

or cn without specifying the element
of E , we mean X n

4
.E˘/ or cn.E˘/, respectively. We consider the corresponding G-module MG , and the

G-module map tG W G.�;X n
4
/! G of Definition 2.14. Moreover, we consider the Am-module MAm

and
the Am-module maps

tn
Am
WAm.�;X

n/!MAm
; n 2 Z;

associated to the morphisms .cn/n2Z as in Definition 2.6.

The following result is a first step in order to define a Gm-module map .t0/m W .MG/m!‰�mMAm
as in

Proposition 1.17.

Lemma 2.20 For every n 2 Z, the diagram of Gm-modules

Gm.�;X
n
I
/ Gm.�;X

n
>
/

Gm.�;X
n
?
/ ‰�mMAm

tn
I>

tn
I? ‰�mt

nC1
Am
ıt‰m

‰�mtn
Am
ıt‰m

commutes up to homotopy.

Proof First observe that ��
I
Gm.�;X

n
I
/DAm.�;X

n/, and ��
I
‰�mMAm

DMAm
because ‰m ı �I D id

(see Remark 1.12). Moreover, it suffices to show that the Am-module maps

��I .‰
�
mtn

Am
ı t‰m

ı tn
I?/D tn

Am
ı ��I .t‰m

ı tn
I?/ WAm.�;X

n/!MAm

and
��I .‰

�
mtnC1

Am
ı t‰m

ı tn
I>/D tnC1

Am
ı ��I .t‰m

ı tn
I>/ WAm.�;X

n/!MAm

are homotopic because
Gm.X

k
4;X

n
I /D 0 if 4¤ I:

On the one hand,
tn
Am
ı ��I .t‰m

ı tn
I?/D tn

Am
:

On the other hand, ��
I
.t‰m

ı tn
I>
/ WAm.�;X

n/!Am.�;X
nC1/ is closed (as composition and pullback

of closed module maps), and
��I .t‰m

ı tn
I>/.eX n/D �.eX n/D cn

according to Lemma 2.19. Therefore, ��
I
.t‰m

ı tn
I>
/ is homotopic to tcn

according to Corollary 1.10,
and thus tnC1

Am
ı ��

I
.t‰m

ı tn
I>
/ is homotopic to tnC1

Am
ı tcn

. Now according to Lemma 2.7, tnC1
Am
ı tcn

is
homotopic to tn

Am
.

We can now state the result establishing the existence of a Gm-module map .t0/m W .MG/m!‰�mMAm

as in Proposition 1.17.

Lemma 2.21 There exists a Gm-module map .t0/m W .MG/m!‰�mMAm
such that the following holds:
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(1) The following diagram of Gm-modules commutes:

Gm.�;X
0
�
/ ‰�mAm.�;X

0/

.MG/m ‰�mMAm

tGm

t‰m

‰�mt0
Am

.t0/m

(2) For every E 2 E and j � 1, the induced map t0 WMG.X
0
�
.E//! F Œtm�˝‰�mMAm

.X 0
�
.E// (see

Definition 1.29) is a quasi-isomorphism in each positive Adams degree.

Proof Using Lemma 2.20 and Proposition 1.19, we get a Gm-module map tn
? W .Mn

?/m!‰�mMAm
for

every n 2 Z (see Definition 2.14 for the G-modules Mn
?). Observe that the diagram of Gm-modulesL

n2Z.Gm.�;X
n
�/˚Gm.�;X

n
C//

L
n2Z Gm.�;X

n
�
/

L
n2Z.Mn

?/m ‰�mMAm

L
n2Z.t

n
��˚tn

C�
/

L
n2Z.t

n
�?
˚tn
C>

/
L

n2Z‰
�
mtn

Am
ıt‰mL

n2Z tn
?

is commutative (the composition is id for �-terms and � for C-terms), so that it induces a Gm-module
map .t0/m W .MG/m!‰�mMAm

. It is then easy to verify that the following diagram of Gm-modules is
commutative:

Gm.�;X
0
�
/ ‰�mAm.�;X

0/

.MG/m ‰�mMAm

tGm

t‰m

‰�mt0
Am

.t0/m

It remains to show that the map t0 WMG.X
0
�
.E//�;j ! Fj

m˝MAm
.X 0.E// is a quasi-isomorphism for

every E 2 E and j � 1. Note that

MG.X
0
�
.E//�;j D G.X 0

�
.E/;X j

�
/DA.X 0;X j /

and the map
A.X 0.E/;X j /DMG.X

0
�
.E//�;j

t0
�! Fj

m˝MAm
.X 0.E//

is the inclusion. Now observe that the following diagram of chain complexes commutes:

A.X 0.E/;X j / Fj
m˝MAm

.X 0.E//

Fj
m˝Am.X

0.E/;X j / Fj
m˝Am.X

0.E/;X j /

t0

The inclusion Am.X
0.E/;X j / ,!MAm

.X 0.E// is a quasi-isomorphism according to Lemma 2.8
(observe that it is important here that j is strictly greater than 0). Therefore the map

t0 WA.X 0.E/;X j /! Fj
m˝MAm

.X 0.E//

is a quasi-isomorphism, which is what we needed to prove.
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Lemma 2.22 For every E 2 E and j � 1, the map

z‰ WH.X 0
�
.E/;X 0

�
/�;j ! .F Œtm�˝AmŒW

�1
Am
�/.X 0.E/;X 0/�;j D Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

is a quasi-isomorphism.

Proof Using the first part of Lemma 2.21 and Proposition 1.17, we know that there exists a chain
map um W W �1

Gm
.MG/m.X

0
�
.E//! W �1

Am
MAm

.X 0/ such that the following diagram of chain complexes
commutes:

Hm.X
0
�
.E/;X 0

�
/ AmŒW

�1
Am
�.X 0.E/;X 0/

W �1
Gm
.MG/m.X

0
�
.E// W �1

Am
MAm

.‰mX /

.MG/m.X
0
�
.E// MAm

.‰mX /

W �1
Gm

tGm

z‰m

W �1
Am

t0
Am

um

.t0/m

Observe that
Hm.X

0
�
.E/;X 0

�
/DH.X 0

�
.E/;X 0

�
/m;

W �1
Gm
.MG/m.X

0
�
.E//D W �1

G
MG.X

0
�
.E//m;

.MG/m.X
0
�
.E//DMG.X

0
�
.E//m:

Applying the adjunction of Definition 1.29 to the last diagram, we get the commutative diagram of
Adams-graded chain complexes

H.X 0
�
.E/;X 0

�
/ F Œtm�˝AmŒW

�1
Am
�.X 0.E/;X 0/

W �1
G

MG.X
0
�
.E// F Œtm�˝W �1

Am
MAm

.‰mX /

MG.X
0
�
.E// F Œtm�˝MAm

.‰mX /

W �1
G

tG

z‰

id˝
W �1

Am

t0
Am

u

t0

Specializing to the components of fixed Adams degree j � 1, we get the commutative diagram of chain
complexes

H.X 0
�
.E/;X 0

�
/�;j Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

W �1
G

MG.X
0
�
.E//�;j Fj

m˝W �1
Am

MAm
.‰mX /

MG.X
0
�
.E//�;j Fj

m˝MAm
.‰mX /

W �1
G

tG

z‰

id˝
W �1

Am

t0
Am

u

t0
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Using Lemmas 2.15, 2.16, and [23, Lemma 3.13], we know that all the vertical maps on the left are
quasi-isomorphisms. Similarly, using Lemmas 2.9, 2.10, and [23, Lemma 3.13], we know that all the
vertical maps on the right are quasi-isomorphisms. Moreover, the second part of Lemma 2.21 states that
the bottom horizontal map is a quasi-isomorphism. Thus, the chain map

z‰ WH.X 0
�
.E/;X 0

�
/�;j ! Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

is a quasi-isomorphism.

2.5.3 End of the proof We end the section with the proof of Theorem 2.5. Now that we have proved
Lemma 2.22 which takes care of the positive Adams degrees, we have to treat the zero Adams degree part
(recall that H is concentrated in nonnegative Adams degree because A is assumed to be weakly directed).

Let I be the (nonfull) A1-subcategory of H with

ob.I/D fX 0
�
.E/ jE 2 Eg and I.X;Y /D G.X;Y /˚

�M
j�1

H.X;Y /�;j
�

(recall that if V is an Adams-graded vector space, we denote by V �;j its component of Adams degree j ).

Lemma 2.23 The inclusion I ,!H is a quasi-equivalence.

Proof Observe that the inclusion I ,!H is cohomologically essentially surjective because every object
of H can be related to one of I by a zigzag of morphisms in WG , which are quasi-isomorphisms in H
(see [23, Lemma 3.12]). Therefore, it suffices to show that the inclusion

G.X 0
�
.E/;X 0

�
.E˘// ,!H.X 0

�
.E/;X 0

�
.E˘//

�;0

is a quasi-isomorphism for every E;E˘ 2 E .

Let E˘ be an element of E . When we write an object X n
�

without specifying the element of E , we
mean X n

�
.E˘/. Recall that we introduced a pair .MG ; tG/ in Definition 2.14. According to Lem-

mas 2.15, 2.16 and [23, Lemma 3.13], the inclusion MG.X
0
�
.E// ,! W �1

G
MG.X

0
�
.E// and the map

W �1
G

tG W H.X 0
�
.E/;X 0

�
/! W �1

G
MG.X

0
�
.E// are quasi-isomorphisms for every E 2 E . Also, observe

that

MG.X
0
�
.E//�;0 D G.X 0

�
.E/;X 0

�
/:

The result then follows from the commutativity of the diagram

G.X 0
�
.E/;X 0

�
/ G.X 0

�
.E/;X 0

�
/ G.X 0

�
.E/;X 0

�
/

MG.X
0
�
.E//�;0 W �1

G
MG.X

0
�
.E//�;0 H.X 0

�
.E/;X 0

�
/�;0

� �

W �1
G

tG
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The following diagram of Adams-graded A1-categories is commutative:

H F Œtm�˝AmŒW
�1
Am
�

I A0
m˚ .tF Œtm�˝AmŒW

�1
Am
�0/

z‰

�

z‰

(recall that if C is an A1-category equipped with a splitting ob.C/'Z�E , then we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E). Moreover, since A is assumed to be
weakly directed with respect to the Z-splitting of ob.A/, Lemma 2.22 implies that the bottom horizontal
A1-functor is a quasi-equivalence. Therefore we have

H'A0
m˚ .tF Œtm�˝AmŒW

�1
Am
�0/:

Recall that WAm
D f .funitsg/[funitsg, so that

AmŒW
�1
Am
�'AmŒf .funitsg/�1�:

This concludes the proof of Theorem 2.5, since H is quasi-equivalent to the mapping torus of � (see
Lemma 2.13).

3 Chekanov–Eliashberg DG-category

Recall the following terminology.

Definition 3.1 A contact form is said to be hypertight if its Reeb vector field has no contractible periodic
orbits.

In this section, we recall the definition of the Chekanov–Eliashberg DG-category associated to a family
of Legendrians in a contact manifold equipped with a hypertight contact form ˛. We also describe the
behavior of the Chekanov–Eliashberg DG-category under change of data.

In the following, .V; �/ is a contact manifold of dimension 2nC1. In order to have well defined gradings
in Z, we assume that H1.V / is free and that the first Chern class of � (equipped with any compatible
almost complex structure) is 2-torsion. We will need the following definition.

Definition 3.2 We say that a Legendrian submanifold ƒ in .V; �/ is chord generic with respect to a
contact form ˛ if

(1) for every Reeb chord c W Œ0;T �! V of ƒ, the space D'T
R˛
.Tc.0/ƒ/ is transverse to Tc.T /ƒ in �,

(2) different Reeb chords belong to different Reeb trajectories.
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3.1 Conley–Zehnder index

Let ˛ be a hypertight contact form on .V; �/ and let ƒ be a chord generic Legendrian submanifold
of .V; ˛/. In the following, we define the Conley–Zehnder index of a Reeb chord of ƒ starting and ending
on the same connected component (such chords are called pure).

We briefly recall what is the Maslov index of a loop in the Grassmannian of Lagrangian subspaces in Cn.
We refer to [33] for a precise exposition. Fix a Lagrangian subspace K, and denote by †k.K/ the set of
Lagrangian subspaces in Cn whose intersection with K is k dimensional. Consider the Maslov cycle

†D†1.K/[ � � � [†n.K/:

This is an algebraic variety of codimension one in the Lagrangian Grassmannian. Now if � is a loop in
the Lagrangian Grassmannian, its Maslov index �.�/ 2 Z is the intersection number of � with †. The
contribution of an intersection instant t0 is computed as follows. Choose a Lagrangian complement W of
K in Cn. Then for each v in �.t0/\K, there exists a vector w.t/ in W such that vCw.t/ is in �.t/ for
every t near t0. Consider the quadratic form

Q.v/D
d

dt
!.v;w.t//

ˇ̌̌
tDt0

on �.t0/\K. Without loss of generality, Q can be assumed to be nonsingular and the contribution of t0

to �.�/ is the signature of Q.

Recall that H1.V / is assumed to be free. We choose a family .h1; : : : ; hr / of embedded circles in V

which represent a basis of H1.V /, and a symplectic trivialization of � over each hi . If  is some loop
in ƒ, there is a unique family .a1; : : : ; ar / of integers such that

�
c�

P
i aihi

�
is zero in H1.V /. Choose

a surface † in V such that
@† D  �

X
i

aihi :

There is a unique trivialization of � over † which extends the chosen trivializations over hi . Thus we get
a trivialization �1� 'S1�Cn (where n is the dimension of ƒ). We denote by � the loop of Lagrangian
planes in Cn corresponding, via the latter trivialization, to the loop t 7! T.t/ƒ. The Maslov index of
� does not depend on the choice of the surface † because we assumed 2c1.�/D 0. This construction
defines a morphism H1.ƒ;Z/! Z, and the Maslov number m.ƒ/ of ƒ is the generator of its image. In
the following, we assume that the Maslov number of ƒ is zero.

Now, let c be a pure Reeb chord of ƒ (a Reeb chord is called pure if it starts and ends on the same
connected component of the Legendrian). We choose a path c W Œ0; 1�!ƒ which starts at the endpoint
of c, and ends at its starting point (c is called a capping path of c). We denote by  c the loop obtained
by concatenating  and c. Let .a1; : : : ; ar / be the unique family of integers such that

�
 c �

P
i aihi

�
is

zero in H1.V /, and choose a surface †c in V such that

@†c D  c �

X
i

aihi :
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There is a unique trivialization of � over †c which extends the chosen trivializations over hi . Thus we
get a trivialization �1

c � ' S1 �Cn (where n is the dimension of ƒ). We denote by �c the path of
Lagrangian planes in Cn corresponding, via the latter trivialization, to the concatenation of t 7! T.t/ƒ

and t 7!D't
R˛
.Tc.0/ƒ/. Since ƒ is chord generic, �c is not a loop: we close it in the following way. Let

I be a complex structure on Cn which is compatible with the standard symplectic form on Cn and such
that I.�c.1//D �c.0/. Then we let �c be the loop of Lagrangian subspaces obtained by concatenating
�c and the path t 2

�
0; �

2

�
7! etI�c.1/. The Conley–Zehnder index of c is the Maslov index of �c :

CZ.c/ WD �.�c/:

The Conley–Zehnder index of a Reeb chord does not depend on the choice of †c because the first Chern
class of � is 2-torsion, and it does not depend on the choice of c because the Maslov number ofƒ vanishes.

Remark In the case where c.V; �/ (where c.V; �/ is the positive generator of h2c1.�/;H1.V /i) or m.ƒ/

is nonzero, the Conley–Zehnder index is well defined in Z=dZ, where

d D gcd.c.V; �/;m.ƒ//:

3.2 Moduli spaces

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped
with any compatible almost complex structure) is 2-torsion. Let ˛ be a hypertight contact form on .V; �/
and let ƒ be a chord generic Legendrian submanifold of .V; ˛/ with vanishing Maslov number. In the
following, we introduce the moduli spaces needed to define the Chekanov–Eliashberg category of ƒ.

Definition 3.3 A Riemann .dC1/-pointed disk is a triple .D; �; j / such that

(1) D is a smooth oriented manifold-with-boundary diffeomorphic to the closed unit disk in C,

(2) � D .�d ; : : : ; �1; �0/ is a cyclically ordered family of distinct points on @D,

(3) j is an integrable almost complex structure on D which induces the given orientation on D.

If .D; �; j / is a Riemann pointed disk, we denote by � WD D n f�d ; : : : ; �1; �0g the corresponding
punctured disk.

Definition 3.4 A family of Riemann .dC1/-pointed discs is a bundle S!R with

(1) a family � D .�d ; : : : ; �1; �0/ of nonintersecting sections �k WR! S and

(2) a section j WR! End.T S/

such that .Sr ; �.r/; j .r// is a Riemann .dC1/-pointed disk for every r 2R.
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Definition 3.5 Let S!R be a family of Riemann .dC1/-pointed discs. A choice of strip-like ends for
S!R is a family of sections

�d ; : : : ; �1 WR�R�0 � Œ0; 1�!�r ; �0 WR�R�0 � Œ0; 1�!�r ;

such that

(1) �d .r/; : : : ; �1.r/; �0.r/ are proper embeddings with

�k.r/.R�0 � f0; 1g/� @�r and �0.r/.R�0 � f0; 1g/� @�r ;

(2) �d .r/; : : : ; �1.r/; �0.r/ satisfy the asymptotic conditions

�k.r/.s; t/ �����!s!�1
�k.r/ and �0.r/.s; t/ �����!s!C1

�0.r/;

(3) �d .r/; : : : ; �1.r/; �0.r/ are .i; j .r//-holomorphic, where i is the standard complex structure on C.

As explained in [36, Section (9c)], there is a universal family SdC1 ! RdC1 of Riemann .dC1/-
pointed discs when d � 2, which means that any other family S!R is isomorphic to the pullback of
SdC1!RdC1 by a map R!RdC1. In the following, we fix a choice of strip-like ends for the universal
family SdC1!RdC1.

Definition 3.6 Let J be an almost complex structure on � compatible with .d˛/j� . We denote by J˛ the
unique almost complex structure on R� �V which sends @� to R˛ and which restricts to J on �. Let
cd ; : : : ; c1; c0 be Reeb chords of ƒ, where ck W Œ0;Tk �! V .

(1) If dD1, we denote by eMc1;c0
.R�ƒ;J; ˛/ the set of equivalence classes of maps u WR�Œ0; 1�!R�V

such that

� u maps the boundary of R� Œ0; 1� to R�ƒ,

� u satisfies the asymptotic conditions

u.s; t/ �����!
s!�1

.�1; c1.T1t// and u.s; t/ �����!
s!C1

.C1; c0.T0t//;

� u is .i;J˛/-holomorphic,

where two maps u and u0 are identified if there exists s0 2R such that u0. �; �/D u. � C s0; �/.

(2) If d � 2, we denote by eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ the set of pairs .r;u/ such that

� r 2RdC1 and u W�r !R�V maps the boundary of �r to R�ƒ,

� u satisfies the asymptotic conditions

.u ı �k.r//.s; t/ �����!s!�1
.�1; ck.Tk t// and .u ı �0.r//.s; t/ �����!s!C1

.C1; c0.T0t//;

� u is .i;J˛/-holomorphic.

Observe that R acts on eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ by translation in the R� -coordinate. We set

Mcd ;:::;c1;c0
.R�ƒ;J; ˛/ WD eMcd ;:::;c1;c0

.R�ƒ;J; ˛/=R:
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The moduli space eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ can be realized as the zero-set of a section @ W B! E of a

Banach bundle E! B (see for example [16]). We say that eMcd ;:::;c1;c0
.R�ƒ;J / is transversely cut out

if @ is transverse to the 0-section.

Definition 3.7 We say that J is regular (with respect to ˛ and ƒ) if the moduli spaces

eMcd ;:::;c1;c0
.R�ƒ;J; ˛/

are all transversely cut out.

Proposition 3.8 [9, Proposition 3.13] The set of regular almost complex structures on � is Baire.
Moreover , the dimension of a transversely cut out moduli space is

dim eMcd ;:::;c1;c0
.R�ƒ;J; ˛/D CZ.a/�

� dX
kD1

CZ.bk/

�
C d � 1:

3.3 Chekanov–Eliashberg DG-category

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped with
any compatible almost complex structure) is 2-torsion. Let ˛ be a hypertight contact form on .V; �/ and
let ƒD .ƒ.E//E2E be a family of Legendrian submanifolds of .V; �/. We set ƒ WD

S
E2E ƒ.E/ and we

assume that ƒ is chord generic with vanishing Maslov number. Moreover, we denote by C.ƒ.E/;ƒ.E0//
the graded vector space generated by the words of Reeb chords c1 � � � cd , d � 1, where c1 starts on
ƒ.E/, cd ends on ƒ.E0/, and the ending component of ci is the starting component of ciC1 for every
1� i � d � 1, with grading

jc1 � � � cd j WD

dX
iD1

.CZ.ci/� 1/:

Finally, let J be a regular almost complex structure on � .

Definition 3.9 We denote by CE�.ƒ/D CE�.ƒ;J; ˛/ the graded category defined as follows:

(1) The objects are the Legendrians ƒ.E/, E 2 E .

(2) The space of morphisms from ƒ.E/ to ƒ.E0/ is

C.ƒ.E/;ƒ.E0// if E ¤E0; F ˚ C.ƒ.E/;ƒ.E0// if E DE0

(the summand F corresponds to the “empty word”).

(3) The composition is given by concatenation of words.

If c0 is a Reeb chord in CE�.ƒ/, we set

@.c0/ WD
X

cd ;:::;c1

#Mcd ;:::;c1;c0
.R�ƒ;J; ˛/cd � � � c1;
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where #M 2 F denotes the number of elements modulo 2 in M if M is finite, and 0 otherwise. Finally,
we extend @ to CE�.ƒ/ so that it is linear and satisfies the Leibniz rule with respect to the concatenation
product.

Theorem 3.10 @ W CE�.ƒ/! CE�.ƒ/ decreases the grading by 1 and satisfies @ ı @D 0. As a result ,
.CE��.ƒ/; @/ is a DG-category.

Proof This follows from Proposition 3.8, SFT compactness (see [1; 6], in particular [1, Theorem 3.20])
and pseudoholomorphic gluing. See [12; 14; 16] for details.

Augmentations and Legendrian A1-(co)category Let FE be the category with E as set of objects,
and morphism space from E to E0 equal to F if E D E0, or 0 if E ¤ E0. Assume that we have an
augmentation of CE��.ƒ/, ie a DG-functor " W CE��.ƒ/! FE . Denote by �" the automorphism of
CE��.ƒ/ defined by

�".c/D cC ".c/

for every Reeb chord c of ƒ. We denote by CE"��.ƒ/ the DG-category whose underlying graded category
is the same as for CE��.ƒ/, but the differential is @" D �" ı @ ı ��1

" . Now let LC"�.ƒ/ be the graded
precategory (no composition) with

(1) objects the set of Legendrians fƒ.E/ jE 2 Eg,
(2) morphisms from ƒ.E/ to ƒ.E0/ the vector space generated by (individual, not words of) Reeb

chords c which start on ƒ.E/ and end on ƒ.E0/, with grading

jcj WD �CZ.c/:

Observe that, as a graded precategory, we have

CE"��.ƒ/D FE ˚

�M
d�1

LC"�.ƒ/Œ�1�˝d

�
:

If we write
.@"/jLC"�.ƒ/

D

X
d�0

@d
" with @d

" W LC"�.ƒ/! LC"�.ƒ/
˝d ;

then @0
" D " ı @D 0. Moreover, the operations .@d

" /d�1 make LC"�.ƒ/ a (noncounital) A1-cocategory
(see Definition 1.2). We define the coaugmented A1-cocategory of .ƒ; "/ to be

LC"�.ƒ/ WD FE ˚LC"�.ƒ/

(the A1-cooperations are naturally extended so that 1 2 FE.E;E/, E 2 E are counits). Now observe
that, as a DG-category,

CE"��.ƒ/D�.LC"�.ƒ//

(see [17, Section 2.2] for the cobar construction). Finally, we define the augmented A1-category of
.ƒ; "/ to be the graded dual (see [17, Section 2.1.3]) of LC"�.ƒ/:

LA�" .ƒ/D LC"�.ƒ/
#:
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3.4 Functoriality

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped
with any compatible almost complex structure) is 2-torsion. Let M D .M.E//E2E be a family of
n-dimensional manifolds. When we write a map ƒ WM ! V , we mean that ƒ is a family of maps
ƒ.E/ WM.E/! V indexed by E , and we set

ƒD
G
E2E

ƒ.E/ W
G
E2E

M.E/! V:

Definition 3.11 Let ˛ be a hypertight contact form on .V; �/. We denote by LM .˛/ the bicategory
where:

(1) Objects are the pairs .ƒ;J /, where ƒ WM ! V is a family of Legendrian embedding such that ƒ is
chord generic with vanishing Maslov number, and J is a regular almost complex structure on �.

(2) Morphisms from .ƒ0;J0/ to .ƒ1;J1/ are the smooth pathsˆD .ƒt ;Jt /0�t�1 going from .ƒ0;J0/

to .ƒ1;J1/, where ƒt WM ! V is a family of Legendrian embeddings and Jt is an almost complex
structure on �.

(3) Homotopies from a morphism ˆ D .ƒt ;Jt /0�t�1 W .ƒ0;J0/ ! .ƒ1;J1/ to another morphism
ˆ0 D .ƒ0t ;J

0
t /0�t�1 W .ƒ0;J0/ ! .ƒ1;J1/ are the smooth families .ƒs;t ;Js;t /0�s�S;0�t�1, where

ƒs;t WM ! V is a family of Legendrian embeddings, Js;t is an almost complex structure on � , and

.ƒs;0;Js;0/D.ƒ0;J0/; .ƒs;1;Js;1/D.ƒ1;J1/; .ƒ0;t ;J0;t /D.ƒt ;Jt /; .ƒS;t ;JS;t /D.ƒ
0
t ;J
0
t /:

Definition 3.12 Let ˛, ˛0 be hypertight contact forms on .V; �/, and let ' be a contactomorphism of
.V; �/ such that '�˛ D ˛0. If ˆD .ƒt ;Jt /0�t�1 is a morphism in LM .˛/, we denote by

'�ˆD .'�1.ƒt /; '
�Jt /0�t�1

the corresponding morphism in LM .˛0/, and by

f
'

.ƒt ;Jt /
W CE��.ƒt ;Jt ; ˛/! CE��.'�1.ƒt /; '

�Jt ; ˛
0/

the DG-functor which sends a Reeb chord c to '�1.c/.

Definition 3.13 Let ˛ be a hypertight contact form on .V; �/, and let ˆD .ƒt ;Jt /0�t�1 be a morphism
in LM .˛/. A handle slide instant in ˆ is a time t0 where ƒt0

is chord generic and has Reeb chords
cd ; : : : ; c1; c0 such that the moduli space eMcd ;:::;c1;c0

.R�ƒt0
;Jt0

; ˛/ is not transversely cut out.

Theorem 3.14 There exist functors F˛ from LM .˛/ to the bicategory3 of DG-categories such that :

(1) F˛ sends an object .ƒ;J / to CE��.ƒ;J; ˛/.

3Homotopies between DG-maps are DG-homotopies, see for example [31, Section 2.1].
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(2) F˛ sends a morphism to a homotopy equivalence.

(3) If ' is a contactomorphism of .V; �/ such that '�˛ D ˛0 and if ˆD .ƒt ;Jt /0�t�1 is a morphism
in LM .˛/, then

F˛0.'�ˆ/D f
'

.ƒ1;J1/
ıF˛.ˆ/ ı .f

'

.ƒ0;J0/
/�1:

(4) If .'t /0�t�1 is a contact isotopy of .V; �/ satisfying '�t ˛D ˛
0 for every t , and if .ƒ;J / is an object

of LM .˛/ such that there is neither birth/death of Reeb chords nor handle slide instants in the path
ˆ0 D .'�1

t .ƒ/; '�t J /t , then

F˛0.ˆ0/D f
'1

.ƒ;J /
ı .f

'0

.ƒ;J /
/�1:

Proof The existence of such functors at the category level (without homotopies) has been established
in [14; 16] for the case .V; ˛/D .R�P; dz � �/. Statements in the general case can be found in [12,
Section 4; 19, Section 5].

Note that I proved a weaker version of this result in my thesis by generalizing methods of [14; 16; 31].
The following is the only particular case of Theorem 3.14 that we will use in this paper.

Theorem 3.15 [32, Theorem 3.8] Theorem 3.14 holds if we replace the categories LM .˛/ by the
subcategories L0

M
.˛/ where

(1) objects are the pairs .ƒ;J / such that ƒ has finitely many Reeb chords ,

(2) morphisms from .ƒ0;J0/ to .ƒ1;J1/ are the families ˆD .ƒt ;Jt /0�t�1 such that ƒt is chord
generic and has finitely many Reeb chords for every t ,

(3) homotopies from a morphism ˆ D .ƒt ;Jt /0�t�1 W .ƒ0;J0/! .ƒ1;J1/ to another morphism
ˆ0D .ƒ0t ;J

0
t /0�t�1 W .ƒ0;J0/! .ƒ1;J1/ are the families .ƒs;t ;Js;t /0�s�S;0�t�1 such thatƒs;t

is chord generic and has finitely many Reeb chords for every s; t .

Remark We expect that the finiteness of Reeb chords condition in Theorem 3.15 (which is very restrictive)
can be easily dropped using (homotopy) colimits of DG-categories diagrams. On the other hand, studying
birth/death of Reeb chords phenomena is a more serious issue that we will address in future work.

4 Legendrian lifts of exact Lagrangians in the circular contactization

In this section, we start with a family L of mutually transverse compact connected exact Lagrangian
submanifolds in a Liouville manifold, and we study a Legendrian liftƒı of L in the circular contactization.
For the standard contact form, each point on a Legendrian gives rise to a (countable) infinite set of Reeb
chords, and thus ƒı is not chord generic. In Section 4.1, we explain how we perturb the contact form
and we state our main result, which relates the Chekanov–Eliashberg DG-category of ƒı and the Fukaya
A1-category of L.
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4.1 Setting

Let .P; �/ be a Liouville manifold, and let

LD .L.E//E2E ; E D f1; : : : ;N g;

be a family of mutually transverse compact connected exact Lagrangian submanifolds in .P; �/ such
that there are primitives fE WL.E/!R of �jL.E/ satisfying 0� f1 < � � �< fN �

1
2

. We consider the
contact manifold

.V ı; �ı/D .S1
�P; ker˛ı/; where S1

DR�=Z; ˛
ı
D d� ��;

and the family of Legendrian submanifolds

ƒı WD .ƒı.E//E2E ; where ƒı.E/D f.fE.x/;x/ 2 .R=Z/�P j x 2L.E/g:

In order for the Chekanov–Eliashberg category of ƒı and the Fukaya category of L to be Z-graded, we
assume that H1.P / is free, that the first Chern class of P (equipped with any almost complex structure
compatible with .�d�/) is 2-torsion, and that the Maslov classes of the Lagrangians L.E/ vanish.

4.1.1 Reeb chords Observe that ƒı D
S

E2E ƒ.E/ is not chord generic for ˛ı (see Definition 3.2).
We will choose a compactly supported function H W P !R, and consider the perturbed contact form

˛ıH D eH˛ı:

The Reeb vector field of ˛ı
H

is then

R˛ı
H
D e�H

�
1C�.XH /

XH

�
;

where XH is the unique vector field on P satisfying �XH
d�D�dH .

We fix a compact neighborhood K of L which is contained in a Weinstein neighborhood of L in P . It
is not hard to see that for every positive integer N , the space of smooth functions H on P supported
in K, such that the R˛ı

H
-chords of ƒı with action less than N are generic, is open and dense in C1

K
.P /.

Therefore, the space of functions H 2C1
K
.P / such that ƒı is chord generic with respect to ˛ı

H
is a Baire

subset of C1
K
.P /. In particular, the latter is dense in C1

K
.P /. In the following, we choose H 2 C1

K
.P /

such that

(1) ƒı is chord generic with respect to ˛ı
H

,

(2) H is sufficiently close to 0 so that

d�.R˛ı
H
/D e�H .1C�.XH //�

1
2
:

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 537

ƒı

T �S1

S1 �T �S1

ƒı

T �S1

Figure 1: Reeb chords (in blue) of ƒı D f0g � 0S1 . Left: for ˛ı. Right: for ˛ı
H

.

Example 4.1 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function (we present this example in order to see what happens, even if H

is not compactly supported in T �M ). The Reeb vector field of ˛ı
H

is

R˛ı
H
D e�h

0@ 1

0

�dh

1A;
and therefore the Reeb flow satisfies

't
R
˛ı

H

.�; .q;p//D
�
� C te�h.q/; .q;p� te�h.q/ dh.q//

�
:

Thus, the R˛ı
H

-chords of ƒı are the paths c W Œ0;T �! S1 �T �M of the form

c.t/D .te�h.q0/; .q0; 0//; with Te�h.q0/ 2 Z�1 and q0 2 Crit h:

Observe that these Reeb chords are transverse but lie on top of each other. See Figure 1, where we
illustrate this perturbation when M D S1.

Conley–Zehnder index In order to define the Conley–Zehnder index (see Section 3.1), we need to
choose a family .h0; h1; : : : ; hs/ of embedded circles in V ıDS1�P which represent a basis of H1.V

ı/,
and a symplectic trivialization of �ı over each hi . We let h0 D S1 � fa0g be some fiber of S1 �P ! P ,
and we fix .h1; : : : ; hs/ to be any family of embedded circles in P which represent a basis of H1.P /.
We choose a symplectic isomorphism  W .Ta0

P;�d�a0
/ ��! .Cn; dx ^ dy/, and then we choose the

symplectic trivialization

.�ıjh0
; d˛ı/ ��! .h0 �Cn; dx ^ dy/; ..�; a0/; .�a0

.v/; v// 7! ..�; a0/; e
2i�r� .v//;

where r is some integer, that we call r -trivialization of �ı over the fiber. Finally, we choose some
trivialization of �ı over each hi , 1� i � s.
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Example 4.2 We compute the Conley–Zehnder index of a Reeb chord in the case of Example 4.1, ie
when

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. In this case, the Reeb flow is given by

't
R
˛ı

H

.�; .q;p//D
�
� C te�h.q/; .q;p� te�h.q/ dh.q//

�
:

Let c W Œ0;T �! V ı be a Reeb chord of ƒı. Then there exists a positive integer k and a critical point q0

of h such that
c.t/D .te�h.q0/; .q0; 0// and Te�h.q0/ D k:

Observe that c.0/D c.T /, and thus there is no need to choose a capping path for c. Besides, for every u

in Tq0
M , we have

D't
R
˛ı

H

.c.0//.0;u; 0/D .0;u;�te�h.q0/D2h.q0/u/:

In order to compute the index of c, we first choose coordinates .x1; : : : ;xn/ around q0 2M in which

hD h.q0/C
1

2

dim.M /X
jD1

�j x2
j ; where �j D˙1;

and we extend it to symplectic coordinates .x1; : : : ;xn; y1; : : : ;yn/ around .q0; 0/ 2 T �M by setting

yj .q;p/D
D
p;

@

@xj
.q/
E
:

Our choice of trivialization for a fiber of S1 �P ! P induces the trivialization

e2i�rkt=T .dxC idy/ W c�1�ı ��! .R=T Z/�Cn

(observe that �ı
c.t/
D f0g �T.q0;0/.T

�M /). Accordingly, the path t 7!D't
R
˛ı

H

.Tc.0/ƒ
ı/ induces a path

of Lagrangians

�c W t 2 Œ0;T � 7!
˚�

e2i�mkt=T .uj � i te�h.q0/�j uj /
�
1�j�n

j u 2Rn
	
�Cn:

We close this path using a counterclockwise rotation � , and call the resulting loop �c . In order to compute
the Conley–Zehnder index of c, we have to look at how �c intersects the Lagrangian iRn (as explained
in [14, Section 2.2]). Observe that �c intersects iRn positively 2rk times, so that �c contributes 2rk to
the Conley–Zehnder index of c. Moreover, since � is a counterclockwise rotation bringing˚

.uj � iTe�h.q0/�j uj /1�j�n j u 2Rn
	

to Rn;

the contributions to the intersection between � and iRn come from the negative eigenvalues �j . The
computation done in [15, Lemma 3.4] implies that � contributes ind.q0/ to the Conley–Zehnder index
of c. We conclude that the Conley–Zehnder index of c is

CZ.c/D �.�c/D 2rkC ind.q0/:
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4.1.2 Main result Let j be an almost complex structure on P compatible with .�d�/, and let J ı be
its lift to a complex structure on �ı. Recall from Section 3.3 the definition of the Chekanov–Eliashberg
DG-category of a family of Legendrians. In our situation, CEr

��.ƒ
ı/D CE��.ƒı;J ı; ˛ıH / (with grading

induced by the r -trivialization of �ı over the fiber) is an Adams-graded DG-algebra, where the Adams
degree of a Reeb chord c is the number of times c winds around the fiber. Besides, the map CEr

��.ƒ
ı/!F

which sends every Reeb chord to zero (and preserves units) defines an augmentation of CEr
��.ƒ

ı/.

Remark In the case of Example 4.1, the cohomological degree of a Reeb chord c in CEr
��.ƒ

ı/ corre-
sponding to a positive integer k and a critical point q0 is

1�CZ.c/D 1� 2rk � ind.q0/

(see Example 4.2).

Besides, we denote byFuk.L/ the Fukaya category with objects being the set of Lagrangians fL.E/jE2Eg
(see for example [36, Chapter 2]), and by

�!
Fuk.L/ its directed subcategory:

hom�!Fuk.L/.L.E/;L.E
0//D

8<:
hL.E/\L.E0/i if E <E0;

F if E DE0;

0 if E >E0I
see [36, Paragraph (5n)].

Let F Œtm� be the augmented Adams-graded associative algebra generated by a variable tm of bidegree
.m; 1/. Observe that if C is a subcategory of an A1-category D with ob.C/Dob.D/, then C˚.tmF Œtm�˝D/
is naturally an Adams-graded A1-category, where the Adams degree of tk

m˝x equals k. Moreover, we
denote by E.�/DB.�/# (graded dual of bar construction) the Koszul dual functor (see [17, Section 2.3]
or [29, Section 2]). We say that Koszul duality holds for an augmented Adams-graded A1-category A if
the natural map A!E.E.A// is a quasi-isomorphism (see [29, Theorem 2.4] or [17, Definition 17]).

Theorem 4.3 (Theorem B in the introduction) Koszul duality holds for CEr
��.ƒ

ı/, and there is a
quasi-equivalence of augmented Adams-graded A1-categories

E.CEr
��.ƒ

ı//'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Corollary 4.4 If L is a connected compact exact Lagrangian and ƒı is a Legendrian lift of L in the
circular contactization , then there is a quasi-equivalence of augmented DG-algebras ,

CE1
��.ƒ

ı/' C��.�.CP1 ÌL//:

Proof Let x0 be the basepoint of CP1, and set P WDCP1 n fx0g. Observe that

.P �L/� D P� ^L� DCP1 ^L� DCP1 ÌL:

We have

F ˚ .t2F Œt2�˝CF�.L//' F ˚ .t2F Œt2�˝C �.L//' C �..P �L/�/' C �.CP1 ÌL/:
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Thus, it follows from Theorem 4.3 that

E.CE1
��.ƒ

ı//' C �.CP1 ÌL/:

Since Koszul duality holds for CE1
��.ƒ

ı/,

CE1
��.ƒ

ı/'E.C �.CP1 ÌL//:

Observe that the graded algebra H�.CP1 ÌL/ is locally finite (ie each degree component is finitely
generated) and simply connected (ie its augmentation ideal is concentrated in components of degree strictly
greater than 1). Thus, according to the homological perturbation lemma (see [36, Proposition 1.12]), we
can assume that C �.CP1 ÌL/ is a locally finite and simply connected A1 model for the DG-algebra
of cochains on CP1 ÌL. Therefore, [17, Lemma 10] implies that

CE1
��.ƒ

ı/'�.C��.CP1 ÌL//:

Now, since CP1 ÌL is simply connected, Adams’ result (see [2; 3; 17]) yields

�.C��.CP1 ÌL//' C��.�.CP1 ÌL//:

4.1.3 Strategy of proof We explain the strategy to compute E.CEr
��.ƒ

ı//. Recall from the last
paragraph of Section 3.3 that there is a coaugmented A1-cocategory LC�.ƒı/ such that

CEr
��.ƒ

ı/D�.LC�.ƒı//:

LC�.ƒı/ inherits an Adams-grading from CEr
��.ƒ

ı/ (the same), and we denote by LA�.ƒı/ its graded
dual (see [17, Section 2.1.3]). In our situation, LA�.ƒı/ is an augmented Adams-graded A1-category
whose augmentation ideal is generated by the Reeb chords of ƒı (and the Adams degree of a Reeb chord
c is the number of times c winds around the fiber). Since there is a quasi-isomorphism B.�C /' C for
every A1-cocategory C (see [17, Section 2.2.2]), it follows that

E.CEr
��.ƒ

ı//D B.CEr
��.ƒ

ı//# ' LC�.ƒı/# D LA�.ƒı/

(graded dual preserves quasi-isomorphisms).

Remark In the case of Example 4.1, the cohomological degree of a Reeb chord c in LA�.ƒı/ corre-
sponding to a positive integer k and a critical point q0 is

CZ.c/D 2rkC ind.q0/

(see Example 4.2).

In order to compute LA�.ƒı/, we lift the problem to the contact manifold

.V; �/D .R� �P; ker.d� ��//;

and introduce the following objects.

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 541

Definition 4.5 Let M D .M n.E//.n;E/2Z�E be a family of Legendrian submanifolds in .V; �/, K an
almost complex structure on � , and ˇ a hypertight contact form on .V; �/ for which M is chord-generic.
We denote by A.M ;K; ˇ/ the A1-category defined as follows:

(1) The objects of A.M ;K; ˇ/ are the Legendrians M n.E/, .n;E/ 2 Z� E .

(2) The space of morphisms from M i.E/ to M j .E0/ is either generated by the Rˇ-chords from M i.E/

to M j .E0/ if .i;E/ < .j ;E0/, or F if .i;E/D .j ;E0/, or 0 otherwise.

(3) The operations are such that 12A.M ;K; ˇ/.M n.E/;M n.E// is a strict unit, and for every sequence
.i0;E0/ < � � �< .id ;Ed /, for every sequence of Reeb chords

.c1; : : : ; cd / 2R.M i0.E0/;M
i1.E1//� � � � �R.M id�1.Ed�1/;M

id .Ed //;

we have

�A.M ;K ;ˇ/.c1; : : : ; cd /D
X

c02R.M i0 .E0/;M
id .Ed //

#Mcd ;:::;c1;c0
.R�M;K; ˇ/c0

(see Definition 3.6 for the moduli spaces).

Definition 4.6 Consider a path .Mt /0�t�1, where Mt D .M
n
t .E//.n;E/2Z�E is a family of Legendrian

submanifolds in .V; �/, such that M n�1
1

.E/DM n
0
.E/DWM n.E/. Let K be an almost complex structure

on �, and ˇ a hypertight contact form on .V; �/ for which M D .M n.E//.n;E/2Z�E is chord-generic.
We denote by �.Mt /t ;K ;ˇ WA.M ;K; ˇ/!A.M ;K; ˇ/ the A1-functor defined as follows:

(1) On objects, �.Mt /t ;K ;ˇ sends M n.E/DM n
0
.E/ to M nC1.E/DM n

1
.E/.

(2) On morphisms, the map

�.Mt /t ;.Kt /t ;ˇ WA.M ;K; ˇ/.M i0.E0/;M
i1.E1//˝ � � �˝A.M ;K; ˇ/.M id�1.Ed�1/;M

id .Ed //

!A.M ;K; ˇ/.M i0C1.E0/;M
idC1.Ed //

is obtained by dualizing the components of the DG-isomorphism

CE��..M n
1 /i0�n�id

;K1; ˇ/! CE��..M n
0 /i0�n�id

;K0; ˇ/

induced by the path ..M n
1�t
/i0�n�id

;K1�t /0�t�1 (see Theorem 3.14).

Remark (1) The A1-functor �.Mt /t ;K ;ˇ is a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting
Z� E ��! ob.A.M ;K; ˇ//; .n;E/ 7!M n.E/;

is compatible with the quasi-autoequivalence �.Mt /t ;K ;ˇ in the sense of Definition 2.2. As explained
there, this turns A.M ;K; ˇ/ into an Adams-graded A1-category: the Adams degree of a morphism c

from M i.E/ to M j .E0/ is j � i .
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In Section 4.2, we lift the data used to define LA�.ƒı/ (Legendrian ƒı, almost complex structure J ı,
contact form ˛ı

H
) to R�P . This gives us a path .ƒt /t , an almost complex structure J and a contact

form ˛H for which we can prove, using Theorem 2.4, that

LA�.ƒı/'MT.�.ƒt /t ;J ;˛H
/:

In Section 4.3, we use a contactomorphism �H satisfying ��
H
˛H D .d� � �/DW ˛ to change our data

into .ƒH ;t /t , JH and ˛. We then prove that

MT.�.ƒt /t ;J ;˛H
/'MT.�.ƒH;t /t ;JH ;˛/:

In Section 4.4, we change the almost complex structure JH to the original one J , and use Theorem 3.15
to prove that

MT.�.ƒH;t /t ;JH ;˛/'MT.�.ƒH;t /t ;J ;˛/:

In Section 4.5 we project our data to P , so that we get a path .LH ;t /t of Lagrangians in P and the almost
complex structure j . We use these new data to define an A1-category O and a quasi-autoequivalence
 WO!O. Then we use [10, Theorem 2.1] to prove that

MT.�.ƒH;t /t ;J ;˛/'MT. /:

Finally in Section 4.6, we use Theorem 2.5 (Theorem A in the introduction) to conclude.

4.2 Lift to R�P

In the following we consider the contact manifold

.V; �/D .R� �P; ker.˛//; where ˛ D d� ��;

and the family of Legendrian submanifolds

ƒ WD .ƒn.E//.n;E/2Z�E ; where ƒ� .E/D f.fE.x/C �;x/ 2R�P j x 2L.E/g:

Recall from Section 4.1.1 that we chose a compactly supported function H W P !R such that

(1) ƒı is chord generic with respect to ˛ı
H

,

(2) H is sufficiently close to 0 so that

d�.R˛ı
H
/D e�H .1C�.XH //�

1
2
:

We consider the contact form
˛H WD eH˛;

with Reeb vector field

R˛H
D e�H

�
1C�.XH /

XH

�
:

Moreover, we denote by J the lift of J ı to an almost complex structure on �.
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ƒ0

ƒ1

ƒ2

.R�T �S1; ˛H ;J /

T �S1

…S1�T�S1

ƒı

T �S1
c

�c

…S1�T�S1.c/ = …S1�T�S1.�c/

.S1 �T �S1; ˛ı
H
;J ı/

Figure 2: Action of the projection …S1�T�S1 .

Definition 4.7 Consider the path of Legendrians .ƒt /0�t�1, where ƒn
t .E/Dƒ

nCt .E/. We set

A WDA.ƒ;J; ˛H / and � WD �.ƒt /t ;J ;˛H

(see Definitions 4.5 and 4.6).

Relation between LA�.ƒı/ and .A; �/ We now explain how LA�.ƒı/ and .A; �/ are related. See
Figure 2, where we illustrate the action of the projection …S1�P in the case

.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

Lemma 4.8 The A1-functor � is strict , and it sends a Reeb chord t 7! .�.t/;x.t// in A.ƒi.E/;ƒj .E0//

to the Reeb chord t 7! .�.t/C 1;x.t// in A.ƒiC1.E/;ƒjC1.E0//. In particular , � acts bijectively on
hom-sets.

Proof Recall that ˛H D eH˛, with H a function defined on the base manifold P . In particular, the flow
't
@�

of @� is a strict contactomorphism of .V; ˛H /. Moreover, since J is the lift of an almost complex
structure j on P , we have

..ƒnC1�t /i0�n�id
;J /D

�
..'t

@�
/�1ƒnC1/i0�n�id

; .'t
@�
/�J

�
:

The result follows from Theorem 3.15.

We denote by A� the Adams-graded A1-category associated to � as in Definition 2.3.

Lemma 4.9 There is a quasi-isomorphism of Adams-graded A1-categories

LA�.ƒı/'A� :
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Proof Consider the map which sends a Reeb chord c 2R.ƒi.E/;ƒj .E0// to the corresponding chord
…S1�P .c/ 2 R.ƒı.E/;ƒı.E0// (where …S1�P W R � P ! S1 � P is the projection). According to
Lemma 4.8, …S1�P .�c/ D …S1�P .c/, and thus the map c 7! …S1�P .c/ induces a map  W A� !
LA�.ƒı/. Moreover, observe that  is a bijection on hom-spaces. It remains to prove that  is an
A1-map. This follows from the fact that the map

uD .�; v/ 7! .�;…S1�P ı v/

induces a bijection

Mcd ;:::;c1;c0
.R�ƒ;J; ˛H / ��!M .cd /;:::; .c1/; .c0/.R�ƒ

ı;J ı; ˛ıH /:

Lemma 4.10 The Adams-graded A1-category LA�.ƒı/ is quasi-equivalent to the mapping torus of
� WA!A (see Definition 2.1).

Proof This follows directly from Theorem 2.4 using Lemmas 4.8 and 4.9.

4.3 Rectification of the contact form

Now that we are in the usual contactization, we have the following result.

Lemma 4.11 There exists a contactomorphism �H of .V; �/ such that

��H˛H D ˛:

Proof Recall that ˛H D eH˛, with H a compactly supported function on the base manifold P such
that e�H .1C�.XH //�

1
2

.

Assume that there is a contact isotopy .�t /0�t�1 such that �0 D id and

(1) ��t ˛tH D ˛

for every t . Let .Ft /t be the family of functions on V such that

d

dt
�t D YFt

ı�t ;

where, for each fixed t , YFt
is the vector field on V satisfying

˛.YFt
/D Ft ; �YFt

d˛ D dFt .R˛/˛� dFt :

Let us prove that YFt
satisfies

˛tH .YFt
/D etH Ft ; �YFt

d˛tH D d.etH Ft /.R˛tH
/˛tH � d.etH Ft /:
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Observe that the first equality is clear, and that it is enough to show that the second equality holds on
� D ker.˛/. Now for every Z 2 �, we have

�YFt
d˛tH .Z/D .d.e

tH /^˛/.YFt
;Z/C etH d˛.YFt

;Z/

D�˛.YFt
/d.etH /.Z/� etH dFt .Z/ .because Z 2 �/

D�Ftd.e
tH /.Z/� etH dFt .Z/ .because ˛.YFt

/D Ft /

D�d.etH Ft /.Z/:

Taking the derivative of (1) with respect to t , and using what we just proved, we get

(2) H C d.etH Ft /.R˛tH
/D 0:

Besides, we deduce from

R˛tH
D e�tH

�
1C t�.XH /

tXH

�
; �XH

d�D�dH;

that
dH.R˛tH

/D 0:

Then (2) gives

(3) dFt .R˛tH
/D�He�tH :

Conversely, if .Ft /t is a family of functions on V satisfying (3), then the contact isotopy .�t /t defined by

�0 D id and d

dt
�t D YFt

ı�t

satisfies
d

dt
.��t ˛tH /D 0;

and thus �H WD �1 gives the desired result.

Therefore, it remains to find a family .Ft /t satisfying (3). First recall that

R˛tH
D e�tH

�
1C t�.XH /

tXH

�
:

By assumption on H , the function d�.R˛tH
/ is greater than 1

2
for every t 2 Œ0; 1�. Thus, for every t 2 Œ0; 1�

and every .�;x/ in V , there exists a unique real number �t .�;x/ such that

'
��t .�;x/
R˛tH

.�;x/ 2 f0g �P:

Then we let
Ft WD ��tHe�tH :

For every real number t , we have

Ft ı'
t
R˛tH

D�.�t ı'
t
R˛tH

/He�tH because dH.R˛tH
/D 0:

But the map '��tı'
t
R˛tH

Ct
R˛tH

takes its values in f0g �P by definition of �t , so by uniqueness we have

�t ı'
t
R˛tH

D �t C t:
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Then we have
Ft ı'

t
R˛tH

D�.�t C t/He�tH ;

and thus
dFt .R˛tH

/D�He�tH :

Example 4.12 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. Then the diffeomorphism �H defined by

��1
H .�; .q;p//D

�
�eh.q/; .q; eh.q/pC �eh.q/ dh.q//

�
satisfies ��

H
˛H D ˛. With this choice of �H , we have in particular

��1
H .f�g � 0M /D j 1.�eh/�R�T �M:

In the following, we fix a contactomorphism �H as in Lemma 4.11. We define a pair .A1; �1/, which is
roughly obtained by pulling back the data of .A; �/ by �H .

Definition 4.13 Let

ƒH WD .ƒ
n
H .E//.n;E/2Z�E ; where ƒ�H .E/ WD �

�1
H .ƒ� .E//; and JH WD �

�
H J:

Consider the path of Legendrians .ƒH ;t /0�t�1, where ƒn
H ;t
.E/DƒnCt

H
.E/. We set

A1 WDA.ƒH ;JH ; ˛/ and �1 WD �.ƒH;t /t ;JH ;˛

(see Definitions 4.5 and 4.6).

Relation between .A; �/ and .A1; �1/ We now explain how the pairs .A; �/ and .A1; �1/ (Defini-
tions 4.7 and 4.13) are related. See Figure 3, where we illustrate the action of the contactomorphism ��1

H

in the case
.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

Lemma 4.14 There is a strict A1-isomorphism �1 WA!A1 defined as follows:

(1) On objects , �1.ƒn.E//Dƒn
H
.E/.

(2) On morphisms , �1 sends a Reeb chord c in A.ƒi.E/;ƒj .E0// to the Reeb chord

�1.c/D �
�1
H ı c

in A1.ƒ
i
H
.E/;ƒ

j
H
.E0//.
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ƒ0

ƒ1

ƒ2

.R�T �S1; ˛H ;J /

T �S1

c

�c

ƒ0
H

ƒ1
H

ƒ2
H

T �S1

��1
H
.c/

��1
H
.�c/D �1.�

�1
H
.c//

��1
H

.R�T �S1; ˛;JH /

Figure 3: Action of the contactomorphism ��1
H

.

Proof We have to show that �1 is an A1-map. This follows from the fact that the map

uD .�; v/ 7! .�; ��1
H ı v/

induces a bijection

Mcd ;:::;c1;c0
.R�ƒ;J; ˛H / ��!M��1

H
.cd /:::�

�1
H
.c1/;�

�1
H
.c0/
.R�ƒH ;JH ; ˛/:

Lemma 4.15 �1 D �1 ı � ı �
�1
1 :

Proof This follows from Theorem 3.15 using that ��
H
˛H D ˛ and

..ƒnC1�t
H

/i0�n�id
;JH /D ..�

�1
H ƒnC1�t /i0�n�id

; ��H J /:

Lemma 4.16 The mapping torus of � WA!A is quasi-equivalent to the mapping torus of �1 WA1!A1

(see Definition 2.1).

Proof According to Lemma 4.15 the following diagram of Adams-graded A1-categories is commutative:

A AtA A

A1 A1 tA1 A1

�1

idtid idt�

�1t�1 �1

idtid idt�1

Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.14. Thus the result follows
from Proposition 1.22.

4.4 Back to the original almost complex structure

In this section, we introduce a pair .A2; �2/ defined using the same data as .A1; �1/ (Definition 4.13),
except we are using the almost complex structure J instead of JH .
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Definition 4.17 We set

A2 WDA.ƒH ;J; ˛/ and �2 WD �.ƒH;t /t ;J ;˛

(see Definitions 4.5 and 4.6).

Relation between .A1; �1/ and .A2; �2/

Lemma 4.18 Choose a generic path .J 12
t /0�t�1 such that J 12

0
D J and J 12

1
D JH . There is an

A1-isomorphism �12 WA1!A2 defined as follows:

(1) On objects , �12.ƒ
n
H
.E//Dƒn

H
.E/.

(2) On morphisms , the map

�12 WA1.ƒ
i0

H
.E0/;ƒ

i1

H
.E1//˝ � � �˝A1.ƒ

id�1

H
.Ed�1/;ƒ

id

H
.Ed //!A2.ƒ

i0

H
.E0/;ƒ

id

H
.Ed //

is obtained by dualizing the components of the DG-isomorphism

CE��..ƒn
H /i0�n�id

;J; ˛/! CE��..ƒn
H /i0�n�id

;JH ; ˛/

induced by the path ..ƒn
H
/i0�n�id

;J 12
t /0�t�1 (see Theorem 3.15).

Proof We have to prove that �12 is an isomorphism. This follows from the fact that it is defined by
dualizing the components of a DG-isomorphism.

Lemma 4.19 The A1-functor �2 is homotopic to �12 ı �1 ı �
�1
12

(see [36, Paragraph (1h)]).

Proof First recall that �1 is obtained by dualizing the components of the DG-map

CE��..ƒnC1
H

/i0�n�id
;JH ; ˛/! CE��..ƒn

H /i0�n�id
;JH ; ˛/

induced by the path ..ƒnC1�t
H

/i0�n�id
;JH /0�t�1. Thus, �12ı�1 is obtained by dualizing the components

of the composition

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒnC1

H
/i0�n�id

;JH ; ˛/! CE��..ƒn
H /i0�n�id

;JH ; ˛/:

On the other hand, �2 is obtained by dualizing the components of the DG-map

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;J; ˛/

induced by the path ..ƒnC1�t
H

/i0�n�id
;J /0�t�1. Thus, �2 ı �12 is obtained by dualizing the components

of the composition

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;JH ; ˛/:

According to Theorem 3.15, the DG-maps used to define �12ı�1 and �2ı�12 are DG-homotopic. Therefore
the A1-functors �12 ı �1 and �2 ı �12 are homotopic.
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Lemma 4.20 The mapping torus of �1 WA1!A1 is quasi-equivalent to the mapping torus of �2 WA2!A2

(see Definition 2.1).

Proof Let �12 WD �12 ı �1 ı �
�1
12

. Consider the commutative diagram of Adams-graded A1-categories

A1 A1 tA1 A1

A2 A2 tA2 A2

�12

idtid idt�1

�12t�12 �12

idtid idt�12

Each vertical arrow is a quasi-equivalence according to Lemma 4.18, so it follows from Proposition 1.22
that the mapping torus of �1 is quasi-equivalent to the mapping torus of �12. Now according to Lemma 4.19,
�12 is homotopic to �2. Thus the result follows from Proposition 1.23.

4.5 Projection to P

4.5.1 The A1-category O In order to define the A1-category O, we need to introduce moduli spaces
of pseudoholomorphic discs in P .

Definition 4.21 Let LD .Ln.E//.n;E/2Z�E be a family of mutually transverse connected compact exact
Lagrangians in .P; �/. Consider a sequence of integers i0 < � � �< id , and a family of intersection points
.x0;x1; : : : ;xd /, where

x0 2Li0.E0/\Lid .Ed / and xk 2Lik�1.Ek�1/\Lik .Ek/; 1� k � d:

(1) If d D 1, we denote by Mx1;x0
.L; j / the set of equivalence classes of maps u WR� Œ0; 1�! P such

that

� u maps R� f0g to Li0.E0/ and R� f1g to Li1.E1/,

� u satisfies the asymptotic conditions

u.s; t/ �����!
s!�1

x1 and u.s; t/ �����!
s!C1

x0;

� u is .i; j /-holomorphic,

where two maps u and u0 are identified if there exists s0 2R such that u0. �; �/D u. � C s0; �/.

(2) If d � 2, we denote by Mxd ;:::;x1;x0
.L; j / the set of pairs .r;u/ such that

� r 2RdC1 and u W�r ! P maps the boundary arc .�kC1; �k/ of �r to Lik .Ek/,

� u satisfies the asymptotic conditions

.u ı �k.r//.s; t/ �����!s!�1
xk and .u ı �0.r//.s; t/ �����!s!C1

x0;

� u is .i; j /-holomorphic.

Recall that we have chosen a contactomorphism �H as in Lemma 4.11. We set

Ln
H WD…P .ƒ

n
H .E//� P and LH WD .L

n
H .E//.n;E/2Z�E :
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Definition 4.22 We denote by O the A1-category defined as follows:

(1) The objects of O are the Lagrangians Ln
H
.E/, .n;E/ 2 Z� E .

(2) The space of morphisms from Li
H
.E/ to L

j
H
.E0/ is either generated by Li

H
.E/\L

j
H
.E0/ if

.i;E/ < .j ;E0/, or F if .i;E/D .j ;E0/, or 0 otherwise.

(3) The operations are such that 1 2 O.Ln
H
.E/;Ln

H
.E// is a strict unit, and for every sequence

.i0;E0/ < � � �< .id ;Ed /, for every sequence of intersection points

.x1; : : : ;xd / 2 .L
i0

H
.E0/\L

i1

H
.E1//� � � � � .L

id�1

H
.Ed�1/\L

id

H
.Ed //;

we have

�O.x1; : : : ;xd /D
X

x02L
i0
H
.E0/\L

id
H
.Ed /

#Mxd ;:::;x1;x0
.LH ; j /x0:

4.5.2 The quasi-autoequivalence  Before defining the A1-functor  WO!O, we recall Legendrian
contact homology as defined in [16]. To each generic Legendrian ƒ in R�P , the authors associate a
semifree DG-algebra ADA.ƒ; j / generated by the self-intersection points of …P .ƒ/, with a differential
@ WA!A defined using j -holomorphic discs in P . In our case, the differential of A

�F
k ƒ

k
H
.E/; j

�
on

a generator x0 2L
i0

H
.E0/\L

id

H
.Ed / is given by

@x0 D

X
.x1;:::;xd /

#Mxd ;:::;x1;x0
.LH ; j /xd � � �x1;

where the sum is over the sequences

.x1; : : : ;xd / 2 .L
i0

H
.E0/\L

i1

H
.E1//� � � � � .L

id�1

H
.Ed�1/\L

id

H
.Ed //:

According to [10, Theorem 2.1], Legendrian contact homology as defined in [16] coincides with the
version exposed in Section 3:

A.ƒ; j /D CE�.ƒ; .D…P /j
�
� j ; ˛/:

We introduced this version only because it makes clearer the fact that some operations are defined using
pseudoholomorphic polygons in the base P .

Definition 4.23 We denote by  WO!O the A1-functor defined as follows:

(1) On objects,  .Ln
H
.E//DLnC1

H
.E/.

(2) On morphisms, the map

 WO.Li0

H
.E0/;L

i1

H
.E1//˝ � � �˝O.Lid�1

H
.Ed�1/;L

id

H
.Ed //!O.Li0C1

H
.E0/;L

idC1
H

.Ed //
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is obtained by dualizing the components of the DG-isomorphism

A

� idG
kDi0

ƒkC1
H

; j

�
D CE��

�
R�

idG
kDi0

ƒkC1
H

; .D…P /j
�
� j ; ˛

�

! CE��

�
R�

idG
kDi0

ƒk
H ; .D…P /j

�
� j ; ˛

�
DA

� idG
kDi0

ƒk
H ; j

�

induced by the Legendrian isotopy
�Fid

kDi0
ƒkC1�t

H

�
0�t�1

(see Theorem 3.15).

Remark (1) The A1-functor  WO!O is a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting

Z� E ��! ob.O/; .n;E/ 7!Ln
H .E/;

is compatible with the quasi-autoequivalence  in the sense of Definition 2.2. As explained there, this
turns O into an Adams-graded A1-category.

4.5.3 Relation with the previous invariants We now explain how the pairs .A2; �2/ (Definition 4.17)
and .O;  / are related. See Figure 4, where we illustrate the action of the projection …P in the case

.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

ƒ0
H

ƒ1
H

T �S1

c

.R�T �S1; ˛;J / .T �S1; j /

L0
H

L1
H

…T�S1

…T�S1.c/

Figure 4: Action of the projection …T�S1 .
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Lemma 4.24 There is a strict A1-isomorphism �2 WA2!O defined as follows:

(1) On objects , �2.ƒn
H
.E//DLn

H
.E/.

(2) On morphisms , �2 sends a Reeb chord c in A2.ƒ
i
H
.E/;ƒ

j
H
.E0// to the intersection point

�2.c/D…P .c/

in O.Li
H
.E/;L

j
H
.E0//.

Proof We have to show that �2 is an A1-map. Since J D .D…P /j
�
�
j , it follows from [10, Theorem 2.1]

that the map
uD .�; v/ 7!…P ı v

induces a bijection

Mcd ;:::;c1;c0
.R�ƒH ;J; ˛/ ��!M…P .cd /:::…P .c1/;…P .c0/.LH ; j /:

This implies the result.

Lemma 4.25  D �2 ı �2 ı �
�1
2 :

Proof This follows from the definitions of �2,  , �2 and the fact that J D .D…P /j
�
�
j .

Lemma 4.26 The mapping torus of �2 WA2!A2 is quasi-equivalent to the mapping torus of  WO!O
(see Definition 2.1).

Proof According to Lemma 4.25 the following diagram of Adams-graded A1-categories is commutative:

A2 A2 tA2 A

O OtO O

�2

idtid idt�2

�2t�2 �2

idtid idt

Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.24. Thus, the result follows
from Proposition 1.22.

4.6 Mapping torus of 

In this section, we show that we can apply Theorem 2.5 (Theorem A in the introduction) in order to
compute the mapping torus of  WO!O. This allows us to finish the proof of Theorem 4.3.

Recall that we have fixed a contactomorphism �H of V such that ��
H
˛H D ˛. Also recall that if � is

some real number, then

ƒ� .E/D f.fE.x/C �;x/ j x 2Lg; ƒ�H .E/D �
�1
H .ƒ� .E//; and L�H .E/D…P .ƒ

�
H .E//:
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4.6.1 Continuation elements We denote by O2r the A1-category obtained from O by applying the
functor of Definition 1.27. We denote by

� D
˚
cn.E/ 2O2r .L

n
H .E/;L

nC1
H

.E// j .n;E/ 2 Z� E
	

the set of continuation elements in O2r induced by the exact Lagrangian isotopies .LnCt
H

/0�t�1 (see for
example [23, Section 3.3]).

Recall that if C is an A1-category equipped with a Z-splitting of ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E .

Lemma 4.27 There are quasi-equivalences of A1-categories

O0
2r '

�!
Fuk.LH / and O2r Œ�

�1�0 ' Fuk.LH /:

Proof First observe that we actually have O0
2r
D
�!
Fuk.LH /.

The second equivalence follows from the results of [37, Lecture 10; 23] about Fukaya categories and
localization of A1-categories. More precisely, consider the subcategory F of Fuk.P / with objects
the Lagrangians Ln.E/. There is a trivial A1-functor O2r ! F (which is the identity on objects
and on morphisms in O.Li

H
.E/;L

j
H
.E0// whenever .i;E/ < .j ;E0/). Moreover, this functor sends

continuation elements of O2r to quasi-invertible morphisms in F , and therefore induces an A1-functor
O2r Œ�

�1�! F . Since the map

O2r .L
i
H .E/;L

j
H
.E0//!O2r Œ�

�1�.Li
H .E/;L

j
H
.E0//

is a quasi-isomorphism whenever .i;E/ < .j ;E0/, it follows that the functor O2r Œ�
�1� ! F is a

quasi-equivalence. Thus we get

O2r Œ�
�1�0 ' F0

D Fuk.LH /:

4.6.2 The O2r -bimodule map In order to apply Theorem 2.5, we need a degree 0 closed O2r -module
map f WO2r .�; �/!O2r .�;  .�// such that the elements in f .units/ satisfy certain hypotheses. As
usual, we would like to find such an f geometrically, ie using some Lagrangian (or Legendrian) isotopy.
However, here the unit 1D eLk

H
.E/ 2O.L

k
H
.E/;Lk

H
.E//, which is not an intersection point between

Lagrangians, is supposed to be sent by f to something in O.Lk
H
.E/;LkC1

H
.E//, which is generated by the

intersection points between Lk
H
.E/ and LkC1

H
.E/. Therefore, we need to somehow replace this unit by

some intersection point between Lagrangians. The idea is that we will slightly perturb Lk
H
.E/ to LkCı

H
.E/,

and then replace eLk
H
.E/ by the continuation element in the vector space generated by Lk

H
.E/\LkCı

H
.E/.

Observe that if ı is small enough, LkCı
H

.E/ is a small perturbation of Lk
H
.E/. Therefore, in a Weinstein

neighborhood of Lk
H
.E/, the Lagrangian LkCı

H
.E/ is the graph of dhı;k;E , where hı;k;E is some Morse

function on L.E/. In particular, the intersection points between Lk
H
.E/ and LkCı

H
.E/ correspond

to the critical points of hı;k;E . Moreover, the continuation element in the vector space generated by
Lk

H
.E/\LkCı

H
.E/ corresponds to the sum of the minima of hı;k;E .
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Example 4.28 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. As explained in Example 4.12, in this case we have

L�H D…T �M .j 1.�eh//D graph.d.�eh//:

Thus, LkCı
H

is the graph of d.ıeh/ over Lk
H

.

We will need the following result about moduli spaces of discs with boundary on small perturbations of
the Lagrangians.

Lemma 4.29 Let g WD �d�.�; j �/ be the metric on P induced by j and .�d�/. For every positive
integer n, there exists ın > 0 such that the following holds for every ı 2 �0; ın�. For every sequence

.�n;E0/� .j0;E0/ < � � �< .jp;Ep/� .`0;E
0
0/ < � � �< .`q;E

0
q/� .n;E

0
q/; p; q � 0;

the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp

H
.Ep/[L

`0Cı
H

.E00/[ � � � [L
`qCı

H
.E0q/

are

(1) in bijection with the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp

H
.Ep/[L

`0

H
.E00/[ � � � [L

`q

H
.E0q/

if .jp;Ep/ < .`0;E
0
0
/, or

(2) in bijection with the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp�1

H
.Ep�1/[L

`0

H
.E00/[L

`1

H
.E01/[ � � � [L

`q

H
.E0q/

with a flow line of .�rghı;k;E0
0
/ attached on the component in L

`0

H
.E0

0
/ if .jp;Ep/D .`0;E

0
0
/.

Proof The case jp < `0 follows from transversality of the moduli spaces in consideration. The case
jp D `0 follows from the main analytic theorem of [13] (Theorem 3.6).

In order to define the O2r -bimodule map f properly, we will use Lemma 4.29 to modify the A1-
category O2r . In the following, we fix a decreasing sequence of positive real numbers .ın/n�1 such that,
for every n,

(1) Lemma 4.29 holds with ın, and

(2) ın is small enough so that there is no handle slide instant in the Legendrian isotopy
n[

`D�n

ƒ
`Cınt
H

D

n[
`D�n

[
E2E

ƒ
`Cınt
H

.E/; t 2 Œ0; 1�:

We define two families of A1-categories .On;k/n;k and . zOn;k/n;k indexed by the couples .n; k/, where
n� 1 and �n� k � n. The A1-category On;k is basically obtained from O2r by restricting to objects
Li

H
.E/, �n� i � n, and adding a copy of the object Lk

H
.E/.
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Definition 4.30 For every .j ;E/ 2 Z� E , let L
j
H
.E/ be a copy of L

j
H
.E/. We denote by On;k the

A1-category defined as follows:

(1) The set of objects of On;k is

ob.On;k/D fL
j
H
.E/ j �n� j � k; E 2 Eg[ fL`H .E/ j k � `� n; E 2 Eg:

(2) The spaces of morphisms in On;k are the corresponding spaces of morphisms in O2r when we
replace L`

H
.E/, k � `� n, by L`

H
.E/, except that

On;k.L
k
H .E/;L

k
H .E//D f0g:

(3) The operations are the same as in O2r .

The A1-category zOn;k is obtained from On;k by perturbing the objects L`
H
.E/, k � `� n, to L

`Cın

H
.E/.

Definition 4.31 Let

‚n;k WD f�n; : : : ; kg[ f`C ın j k � `� ng �R; and zLH WD .L
�
H .E//.�;E/2‚n;k�E :

We denote by zOn;k the A1-category defined as follows:

(1) The objects of zOn;k are the Lagrangians L�
H
.E/, .�;E/ 2‚n;k � E .

(2) The space of morphisms from L�
H
.E/ to L�

0

H
.E0/ is either generated by L�

H
.E/\L�

0

H
.E0/ if

.�;E/ < .� 0;E0/, or F if .�;E/D .� 0;E0/, or 0 otherwise.

(3) The operations are such that eL�
H
.E/ D 1 2 zOn;k.L

�
H
.E/;L�

H
.E// is a strict unit, and for every

sequence .�0;E0/ < � � �< .�d ;Ed /, for every sequence of intersection points

.x1; : : : ;xd / 2 .L
�0

H
.E0/\L

�1

H
.E1//� � � � � .L

�d�1

H
.Ed�1/\L

�d

H
.Ed //;

we have
� zOn;k

.x1; : : : ;xd /D
X

x02L
�0
H
.E0/\L

�d
H
.Ed /

#Mxd ;:::;x1;x0
. zLH ; j /x0:

These A1-categories being defined, Lemma 4.29 implies the following result.

Lemma 4.32 There is a strict A1-functor �n;k WOn;k !
zOn;k defined as follows:

(1) On objects , �n;k.L
j
H
.E//DL

j
H
.E/ if �n� j � k and �n;k.L

`
H
.E//DL

`Cın

H
.E/ if k � `� n.

(2) On morphisms , �n;k sends the unit of On;k.L
k
H
.E/;Lk

H
.E// D F to the continuation element

in zOn;k.L
k
H
.E/;L

kCın

H
.E//, and it sends any other morphism of On;k to the corresponding one

in zOn;k .

Proof Consider a sequence .x0; : : : ;xd�1/ of morphisms in On;k . If in this sequence there is no
morphism from Lk

H
.E/ to Lk

H
.E/, then the relation

� zOn;k
.�n;kx0; : : : ; �n;kxd /D �n;k.�On;k

.x0; : : : ;xd //
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follows directly from the first item of Lemma 4.29. Now assume that there is p 2 f0; : : : ; d �1g such that
xpDeLk

H
.E/2On;k.L

k
H
.E/;Lk

H
.E//. Recall that the continuation element in zOn;k.L

k
H
.E/;L

kCın

H
.E//

corresponds to the sum of the minima of hın;k;E . Then the second item of Lemma 4.29 implies that

� zOn;k
.�n;kx0; : : : ; �n;kxd /D

8<:
�n;kx1 if d D 1 and p D 0;

�n;kx0 if d D 1 and p D 1;

0 otherwise:

Thus, the A1-relation for �n;k is still satisfied according to the behavior of the operations �On;k
with

respect to the unit eLk
H
.E/.

We can now define geometrically an A1-functor that will finally allow us to define the O2r -bimodule
map f .

Definition 4.33 We denote by �n;k W
zOn;k !O2r the A1-functor defined as follows:

(1) On objects, �n;k.L
j
H
.E//DL

j
H
.E/ if �n� j �k, and �n;k.L

`Cın

H
.E//DL`C1

H
.E/ if k � `�n.

(2) On morphisms, �n;k is obtained by dualizing the components of the DG-isomorphism

A

� nC1G
iD�n

ƒi
H

�
��!A

� kG
jD�n

ƒ
j
H
t

nG
`Dk

ƒ
`Cın

H

�
:

induced by the Legendrian isotopy� kG
jD�n

ƒ
j
H

�
t

� nG
`Dk

ƒ
`C1�t.1�ın/
H

�
; t 2 Œ0; 1�

(see Theorem 3.15 or [16, Proposition 2.6]).

Remark 4.34 We point out some properties of the A1-functor

�n;k WD �n;k ı �n;k WOn;k !O2r :

(1) Let n � p be two positive integers, and let k 2 f�n; : : : ; ng. Recall that we have chosen ın small
enough so that there is no handle slide instant in the Legendrian isotopy

nG
`D�n

ƒ
`Cınt
H

; 0� t � 1:

Since ıp � ın, neither is there any handle slide instant in the Legendrian isotopy

nG
`D�n

ƒ
`Cıpt

H
; 0� t � 1:

Therefore, �p;k agrees with �n;k on On;k �Op;k .
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(2) Consider a sequence of integers

�n� j0 < � � �< jp � k1 < k2 � `0 < � � �< `q � n;

and a sequence of morphisms

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2On;ki
.L

j0

H
.E0/;L

j1

H
.E1//� � � � �On;ki

.L
jp�1

H
.Ep�1/;L

jp

H
.Ep//�On;ki

.L
jp

H
.Ep/;L

`0

H
.E00//

�On;ki
.L
`0

H
.E00/;L

`1

H
.E01//� � � � �On;ki

.L
`q�1

H
.E0q�1/;L

`q

H
.E0q//:

Since the Legendrian isotopy defining �n;ki
is� kiG

jD�n

ƒ
j
H

�
t

� nG
`Dki

ƒ
`C1�t.1�ın/
H

�
; t 2 Œ0; 1�;

we have

�n;k1
.x0; : : : ;xp�1/D ı1px0;

�n;k2
.y0; : : : ;yq�1/D  .y0; : : : ;yq�1/;

�n;k2
.x0; : : : ;xp�1;u;y0; : : : ;yq�1/D �n;k1

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/:

(3) By construction, the A1-functor �n;k sends the continuation element in zOn;k.L
k
H
.E/;L

kCın

H
.E//

(corresponding to the sum of the minima of hın;k;E) to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//:

In other words, �n;k sends the unit eLk
H
.E/ 2On;k.L

k
H
.E/;Lk

H
.E// to ck.E/.

(4) The map �n;k W On;k.L
j
H
.E/;Lk

H
.E0// ! O2r .L

j
H
.E/;LkC1

H
.E0// is a quasi-isomorphism for

every j < k and E;E0 2 E .

We can now state and prove the desired result.

Lemma 4.35 There exists a degree 0 closed O2r -bimodule map f WO2r .�; �/!O2r .�;  .�// which
sends the unit eLk

H
.E/ 2O2r .L

k
H
.E/;Lk

H
.E// to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//\�;

and such that f WO2r .L
j
H
.E/;Lk

H
.E0//!O2r .L

j
H
.E/;LkC1

H
.E0// is a quasi-isomorphism for every

j < k and E;E0 2 E .

Proof Consider a sequence

.j0;E0/ < � � �< .jp;Ep/� .k;E/D .`0;E
0
0/ < � � �< .`q;E

0
q/;
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and a sequence of morphisms

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2O2r .L
j0

H
.E0/;L

j1

H
.E1//� � � � �O2r .L

jp�1

H
.Ep�1/;L

jp

H
.Ep//�O2r .L

jp

H
.Ep/;L

k
H .E

0
0//

�O2r .L
k
H .E

0
0/;L

`1

H
.E01//� � � � �O2r .L

`q�1

H
.E0q�1/;L

`q

H
.E0q//:

We choose n� 1 such that �n� j0 � `q � n, and we set

f .x0; : : : ;xp�1;u;y0; : : : ;yq�1/ WD �n;k.x0; : : : ;xp�1;u;y0; : : : ;yq�1/ 2O2r .L
j0

H
.E0/; L

`q

H
.E0q//;

where on the right-hand side we consider that

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2On;k.L
j0

H
.E0/;L

j1

H
.E1//� � � � �On;k.L

jp�1

H
.Ep�1/;L

jp

H
.Ep//�On;k.L

jp

H
.Ep/;L

k
H .E

0
0//

�On;k.L
k
H .E

0
0/;L

`1

H
.E01//� � � � �On;k.L

`q�1

H
.E0q�1/;L

`q

H
.E0q//:

Observe that f is well defined (it does not depend on the choice of n) according to the first item of
Remark 4.34.

We now verify that f is closed. According to Definition 1.4, we have

�1
ModC;C .f /.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

D

X
�n;k. : : : ; �O2r

. : : : /; : : : ;u; : : : /C
X

�n;`s
. : : : ; �O2r

.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

C

X
�n;k. : : : ;u; : : : ; �O2r

. : : : /; : : : /C
X

�O2r
. : : : ; �n;k. : : : ;u; : : : /;  . : : : /; : : : ;  . : : : //:

Now according to the second item of Remark 4.34, we haveX
�n;`s

. : : : ; �O2r
.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

D

X
�n;k. : : : ; �O2r

.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

andX
�O2r

. : : : ; �n;k. : : : ;u; : : : /;  . : : : /; : : : ;  . : : : //

D

X
�O2r

�
�n;k. : : : /; : : : ; �n;k. : : : /; �n;k. : : : ;u; : : : /; �n;k. : : : /; : : : ; �n;k. : : : /

�
:

Therefore, we get

�1
ModC;C .f /.x0; : : : ;xp�1;u;y0; : : : ;yq�1/D 0

from the fact that �n;k is an A1-functor.

Now f sends the unit eLk
H
.E/ 2O2r .L

k
H
.E/;Lk

H
.E// to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//\�
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according to the third item of Remark 4.34. Finally, the map

f WO2r .L
j
H
.E/;Lk

H .E
0//!O2r .L

j
H
.E/;LkC1

H
.E0//

is a quasi-isomorphism for every j < k and E;E0 2 E according to the last item of Remark 4.34.

4.6.3 Proof of the main result We end the section with the proof of Theorem 4.3 (Theorem B in the
introduction).

Recall that we denote by F Œtm� the augmented Adams-graded associative algebra generated by a variable
tm of bidegree .m; 1/, and by tmF Œtm� its augmentation ideal (or equivalently, the ideal generated by tm).
The key result is the following.

Lemma 4.36 The mapping torus of  is quasi-equivalent to the Adams-graded A1-category
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Proof Let f W O2r .�; �/! O2r .�;  .�// be the degree 0 closed bimodule map of Lemma 4.35.
According to the latter, the hypotheses of Theorem 2.5 are satisfied, and f .units/D � . Thus the mapping
torus of  is quasi-equivalent to the Adams-graded A1-algebra O0

2r
˚ .t2r F Œt2r �˝O2r Œ�

�1�0/ (recall
that if C is an A1-category equipped with a Z-splitting Z � E ' ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E). According to Lemma 4.27 we have

O0
2r '

�!
Fuk.LH / and O2r Œ�

�1�0 ' Fuk.LH /:

The result follows from invariance of the Fukaya category (see [36, Section (10a)])
�!
Fuk.LH /'

�!
Fuk.L/ and Fuk.LH /' Fuk.L/:

We now give the proof of Theorem 4.3 (Theorem B in the introduction). According to [29, Theorem 2.4],
Koszul duality holds for the augmented Adams-graded DG-algebra CEr

��.ƒ
ı/ because it is Adams

connected (see [29, Definition 2.1]). Indeed, recall from Section 4.1.2 that the Adams degree in CEr
��.ƒ

ı/

of a Reeb chord c is the number of times c winds around the fiber. Besides, recall from Section 4.1.2 that
there is a coaugmented Adams-graded A1-cocategory LC�.ƒı/ such that

CEr
��.ƒ

ı/D�.LC�.ƒı// and LA�.ƒı/D LC�.ƒı/#:

Since there is a quasi-isomorphism B.�C /' C for every A1-cocategory C (see [17, Section 2.2.2]), it
follows that

E.CEr
��.ƒ

ı//D B.CEr
��.ƒ

ı//# ' LC�.ƒı/# D LA�.ƒı/

(graded dual preserves quasi-isomorphisms). Now the quasi-equivalence

LA�.ƒı/'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//

follows from Lemmas 4.10, 4.16, 4.20, 4.26 and 4.36. This concludes the proof.
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Infinite-type loxodromic isometries of the relative arc graph
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PRIYAM PATEL

An infinite-type surface † is admissible if it has an isolated puncture p and admits shift maps. This
includes all infinite-type surfaces with an isolated puncture outside of two sporadic classes. Given
such a surface, we construct an infinite family of intrinsically infinite-type mapping classes that act
loxodromically on the relative arc graph A.†;p/. J Bavard produced such an element for the plane minus
a Cantor set, and our result gives the first examples of such mapping classes for all other admissible
surfaces. The elements we construct are the composition of three shift maps on †, and we give an
alternative characterization of these elements as a composition of a pseudo-Anosov on a finite-type
subsurface of † and a standard shift map. We then explicitly find their limit points on the boundary of
A.†;p/ and their limiting geodesic laminations. Finally, we show that these infinite-type elements can
be used to prove that Map.†;p/ has an infinite-dimensional space of quasimorphisms.
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1 Introduction

A surface † is of finite-type if �1.†/ is finitely generated, and otherwise † is of infinite-type. Recently,
there has been a surge of interest in infinite-type surfaces and their mapping class groups Map.†/, which
arise naturally in a variety of contexts in low-dimensional topology, dynamics, and even descriptive set
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theory. See the overview by Aramayona and Vlamis [4] for a survey of recent results on infinite-type
mapping class groups.

For finite-type surfaces †, Nielsen [21] and Thurston [27] give a powerful classification of the elements of
Map.†/: every element is periodic, reducible, or pseudo-Anosov. The action of Map.†/ by isometries on
the (infinite-diameter and hyperbolic) curve graph C.†/ captures a coarser classification of the elements
of Map.†/ since elements are either elliptic or loxodromic. These two classifications, which are both
interesting in their own right, have a strong relationship; the loxodromic elements are exactly the pseudo-
Anosovs. In this way, the most interesting and complex mapping classes correspond to the dynamically
richest actions.

The situation for infinite-type surfaces is more complicated for a few reasons. First, the exact analog of the
Nielsen–Thurston classification is no longer valid in this setting since some elements are neither periodic,
reducible, nor pseudo-Anosov in the traditional sense. Second, the curve graph of an infinite-type surface
has finite diameter unlike for finite-type surfaces. This paper is motivated by one of the biggest open
problems for infinite-type surfaces, which is to give an analog of the Nielsen–Thurston classification for
infinite-type mapping classes. We work towards this goal by studying the action of Map.†/ on a different
hyperbolic graph.

When † is an infinite-type surface with at least one isolated puncture p, the relative arc graph, A.†;p/,
plays the role of C.†/ and is defined as follows: the vertices correspond to isotopy classes of simple
arcs that begin and end at p and edges connect vertices for arcs admitting disjoint representatives. The
subgroup Map.†;p/ of Map.†/ that fixes the isolated puncture p acts on A.†;p/ by isometries. This
graph was first defined by D Calegari [12], who initiated its study by asking whether, for the plane minus a
Cantor set, this graph was infinite diameter and whether any element of Map.†;p/ acted loxodromically.
In [5], J Bavard carried out Caelgari’s program for the plane minus a Cantor set and, for that surface,
showed that A.†;p/ is both infinite-diameter and hyperbolic. Aramayona, Fossas, and Parlier [2] then
showed that these properties for A.†;p/ hold more generally for any infinite-type surface with at least
one isolated puncture.

Given that the trichotomy of the Nielsen–Thurston classification does not exactly hold for infinite-type
surfaces, it is necessary to redefine reducible, and therefore irreducible, mapping classes in this setting.
One of the most promising ways to motivate a new definition is to classify the elements of infinite-type
mapping class groups that are loxodromic with respect to the action of Map.†/ on a hyperbolic graph since
these elements correspond to infinite-order irreducibles in the finite-type setting. In order to classify these
elements, we must first construct them. We restrict to surfaces with an isolated puncture and their associated
graphs A.†;p/ in this paper because the relative arc graph is one of the few known graphs associated to
an infinite-type surface that is both infinite-diameter and hyperbolic. In general, proving results for infinite-
type surfaces typically involves a piecemeal approach. Constructing loxodromic isometries for infinite-type
surfaces without a puncture will require a different graph, and thus, a genuinely different approach.

Algebraic & Geometric Topology, Volume 25 (2025)



Infinite-type loxodromic isometries of the relative arc graph 565

Figure 1: Above: a handleshift on an infinite-type surface. Below: a shift map on an infinite-type surface.

When † is the sphere minus a Cantor set with an isolated puncture p (ie † is the plane minus a Cantor
set), Bavard [5] constructed an intrinsically infinite-type mapping class that is loxodromic with respect
to the action of Map.†/ on A.†;p/, and for several years, this was the only known such example. In
this paper, we give a new construction of mapping classes that are loxodromic with respect to the action
of Map.†;p/ on the relative arc graph A.†;p/ for all infinite-type surfaces with an isolated puncture
(outside of two sporadic classes). This class of surfaces is uncountable.

Theorem 1.1 For any admissible surface †, there is an infinite family of intrinsically infinite-type
homeomorphisms fgngn2N in Map.†;p/ such that each gn is loxodromic with respect to the action of
Map.†;p/ on A.†;p/.

In addition, we explore other dynamical and geometric properties of these mapping classes by demonstrat-
ing the convergence of a simple closed curve to a geodesic lamination on † under iterates of the maps
and constructing an infinite-dimensional space of quasimorphisms of Map.†;p/ using these elements
(see below).

Each mapping class in our construction is the composition of three homeomorphisms called shift maps.
Shift maps are generalizations of the handleshift homeomorphisms constructed by the third author and
N Vlamis in [22] (see Figure 1 for examples of both). Roughly, an infinite-type surface † with an isolated
puncture p is admissible if there is a proper embedding of the biinfinite flute surface containing p into †
such that certain shift maps on the flute surface induce shift maps on †. Such an embedding allows us
to reduce the proof of Theorem 1.1 to the case of the biinfinite flute surface. See Section 2.4 for more
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Figure 2: Examples of sporadic infinite-type surfaces that are not admissible. The first is a flute
with finite genus, the other three are fluted Loch Ness monster surfaces.

details and Figure 3 for some examples of admissible surfaces. In Lemma 2.7, we show that a surface
with an isolated puncture is admissible if and only if it admits shift maps. This set of surfaces consists
of all infinite-type surfaces with an isolated puncture except a flute surface with finite (possibly zero)
genus and a fluted Loch Ness monster. We call these two classes sporadic surfaces in this context. See
Figure 2 for examples of sporadic surfaces and Lemma 2.9 for a proof of this fact. Since sporadic surfaces
are exactly the small class of surfaces with an isolated puncture that do not admit shift maps, different
methods will need to be developed in order to prove an analog of Theorem 1.1 for these surfaces. It
would be interesting to understand how elements of the mapping class groups of sporadic surfaces act on
the relative arc graph.

The handleshift homeomorphisms mentioned above have proven to be crucial in understanding various
aspects of infinite-type mapping class groups. For example, it is shown in [22] that they are needed to
topologically generate the pure mapping class group whenever† has at least two nonplanar ends, and in [3]
Aramayona, Patel, and Vlamis showed that they are used to show that the pure mapping class groups of such
surfaces surject onto Z. With this paper, we emphasize the importance of more general shift maps to the
theory of infinite-type mapping class groups. Inspired by Bavard’s work in [5], we choose the shift maps in
our construction carefully so that their composition mimics some of the behavior of pseudo-Anosov maps
in the finite-type setting. In fact, we show that there is an alternative description of our homeomorphisms
as the composition of a pseudo-Anosov homeomorphism on a finite-type subsurface and a standard shift
map on † in Theorem 8.5. Additionally, in Section 10, we use the work of D Šarić [26] to prove the
following theorem regarding geodesic laminations for the mapping classes constructed in Theorem 1.1.

Theorem 1.2 If † is an admissible surface equipped with its conformal hyperbolic metric that is equal
to its convex core, then there exists a simple closed curve c0 on † such that the sequence .gi

n.c0//i2N

converges to a geodesic lamination on †.

In particular, we produce a train track on † and show the geodesic lamination from this theorem is weakly
carried by this train track.

We emphasize that the elements arising from our construction are of intrinsically infinite-type, that is, they
do not lie in the closure of the compactly supported mapping class group Mapc.†/, where the closure is
taken with respect to the compact-open topology on Map.†/. These are the first examples of intrinsically
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Figure 3: Examples of admissible surfaces, the first of which is the biinfinite flute surface S itself.

infinite-type loxodromic isometries for all admissible surfaces outside of the plane minus a Cantor set.
Additionally, we emphasize that our construction does not rely on, and is not a generalization of, one of
the few known methods for constructing pseudo-Anosov mapping classes for finite-type surfaces.

The most obvious candidates for mapping classes that are loxodromic with respect to the action on
A.†;p/ are those that are pseudo-Anosov on a finite-type subsurface †0 � † containing the special
puncture p, that extend via the identity map to the rest of † (these are compactly supported mapping
classes). In [7], Bavard and Walker prove that these types of mapping classes do indeed act loxodromically
on a graph that is quasi-isometric to A.†;p/. In that paper they point out that, though their class of
examples is interesting, it will be even more important to construct mapping classes of intrinsically
infinite-type that act loxodromically on A.†;p/; this remark was one of the main points of inspiration
for writing this paper. The intrinsically infinite-type elements of Map.†/ are more mysterious since tools
from finite-type surface theory do not directly generalize when studying these elements.

Remark 1.3 Morales and Valdez [20], building off of the work of Hooper [16], have also produced
noncompactly supported elements that are loxodromic, but their elements are in the closure of the
compactly supported mapping class group. Their method is a generalization of the Thurston–Veech
construction of pseudo-Anosovs in the finite-type setting.
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Aside from the motivation provided by a Nielsen–Thurston classification for infinite-type mapping classes,
Bestvina and Fujiwara [10] show that constructing elements of Map.†/ that act loxodromically on
hyperbolic graphs can be used to understand the second bounded cohomology H 2

b
.Map.†/;R/ of Map.†/.

In particular, they show that, for a compact surface †, there exist elements acting loxodromically on C.†/
that are weakly properly discontinuous (WPD). These elements are used to prove that the space of quasimor-
phisms of Map.†/ is infinite-dimensional, which is sufficient to conclude that H 2

b
.Map.†/;R/ is, as well.

Along these lines, M Bestvina asked the following question at the AIM workshop on infinite-type surfaces
[1, Problem 4.7]: “For †DR2�C (where C is a Cantor set) is it true that every subgroup of Map.†/
has either infinite-dimensional space of quasimorphisms or is amenable?”1 More generally, we would
like to characterize the infinite-type mapping classes that can be used to produce quasimorphisms of
Map.†/. In Section 9, we show that the elements constructed in Theorem 1.1 can be used to give a new
proof of the following theorem, originally due to Bavard [5] in the case of a plane minus a Cantor set and
Bavard and Walker [7] in the general case.

Theorem 1.4 Let † be an admissible surface. The space of nontrivial quasimorphisms on Map.†;p/ is
infinite-dimensional.

When † is infinite type, Map.†/ does not contain WPD elements; see the demonstration by Bavard and
Genevois [6]. Despite this, we are still able to build nontrivial quasimorphisms using a weaker condition
on loxodromic elements introduced by Bestvina and Fujiwara [10], called being antialigned, and an
approach similar to that of Bavard in [5] which involves defining an intersection pairings on a specific
class of arcs on †. In [8], Bavard and Walker use the same condition of being antialigned to show that
homeomorphisms that are pseudo-Anosov on finite-type subsurfaces †0 and extend via the identity to
the rest of † can be used to produce quasimorphisms of Map.†/. There is also a weaker version of
the WPD condition, called WWPD, which was introduced by Bestvina, Bromberg, and Fujiwara in [9];
WWPD elements are always antialigned. A Rasmussen shows in [24] that for a surface † with an isolated
puncture p, an element of Map.†;p/ is WWPD with respect to the action on A.†;p/ if and only if it
stabilizes a finite-type subsurface †0 containing the puncture p and restricts to a pseudo-Anosov on †0.
In particular, the elements used by Bavard and Walker to construct nontrivial quasimorphisms are WWPD
elements. The elements we construct in Theorem 1.1 do not fix any finite-type subsurface and thus are
not WWPD. Our construction gives subgroups of Map.†/ that do not contain WWPD elements but do
have an infinite-dimensional space of quasimorphisms.

Plan of the paper In order to prove Theorem 1.1, we explicitly compute the images of a particular arc
on † under iterates of each homeomorphism gn and prove that these images form a quasigeodesic axis
for the action of hgni on A.†;p/. Though some of the methods in our paper are inspired by Bavard’s
work in [5], we note that there are a variety of additional challenges in proving Theorem 1.1 for such a

1This question has since been answered by Fournier-Facio, Lodha, and Zaremsky [14].
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wide class of surfaces. In fact, we first prove the theorem for the biinfinite flute surface S and then use the
fact that the inclusion of A.S;p/ into A.†;p/ is a .2; 0/-quasi-isometric embedding (see Lemma 2.10)
to extend the theorem to all admissible surfaces. One of the first challenges in proving Theorem 1.1 is
rigorously coding arcs on S , which we do in Section 3.1, in order to quantify how long two arcs on S

fellow travel. We note that the coding of our arcs is done in way that is “geometrically intuitive”. What
we mean is that, given the code for an arc, one can easily draw the corresponding arc on the surface. For
other ways to code arcs see [5; 7]. We then introduce standard position for an arc on S in Section 3.2 so
that we can use the code for an arc to find its image under our shift maps in a well-defined way. Most
importantly, we must understand when segments of arcs become trivial under our shift maps, and in
Section 4.1 we introduce a kind of cancellation in the image of the code for a segment which we call
cascading cancellation. This kind of cancellation will cause technical problems throughout the paper and
much of Section 6 is devoted to understanding how to control it.

The rest of Section 4 is devoted to proving Theorem 4.8, which answers the question of when a segment
in an arc becomes trivial under our shift maps. We define the homeomorphisms gn of Theorem 1.1 in
Section 5, show that we have “starts like” functions in Section 6, and show that we have highways in
Section 7. Finally, we prove Theorem 1.1 in Section 8, introduce an intersection pairing for arcs and
prove Theorem 1.4 in Section 9, and prove the convergence to a geodesic lamination from Theorem 1.2
in Section 10.
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2 Background

2.1 Space of ends and classification of infinite-type surfaces

Central to the classification of infinite-type surfaces is the definition of the space of ends E.†/ of an
infinite-type surface †. Informally, an end of † is a way to escape or go off to infinity in †. More
formally we have:

Definition 2.1 An exiting sequence in† is a sequence fUngn2N of connected open subsets of† satisfying

(1) Un � Um whenever m< n;
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(2) Un is not relatively compact for any n 2N, that is, the closure of Un in † is not compact;

(3) the boundary of Un is compact for each n 2N; and

(4) any relatively compact subset of † is disjoint from all but finitely many Un.

Two exiting sequences fUngn2N and fVngn2N are equivalent if for every n 2N there exists m 2N such
that Um � Vn and Vm � Un. An end of † is an equivalence class of exiting sequences.

The space of ends E.†/, or simply E, of † is the set of ends of † equipped with a natural topology
for which it is totally disconnected, Hausdorff, second countable, and compact. In particular, E.†/

is homeomorphic to a closed subset of the Cantor set. To describe the topology, let V be an open
subset of † with compact boundary, define yV D fŒfUngn2N � 2 E W Un � V for some n 2 Ng and let
V D f yV W V �† is open with compact boundaryg. The set E becomes a topological space by declaring
V a basis for the topology.

We note that ends can be isolated or not and can be planar (if there exists an i such that Ui is homeomorphic
to an open subset of the plane R2) or nonplanar (if every Ui has infinite genus). The set of nonplanar
ends of † is a closed subspace of E.†/ and will be denoted by Eg.†/.

Kerékjártó [17] and Richards [25] showed that the homeomorphism type of an orientable infinite-type
surface is determined by the quadruple

.g; b;Eg.†/;E.†//;

where g 2 Z�0[f1g is the genus of † and b 2 Z�0 is the number of (compact) boundary components
of †.

Of particular interest to us is the infinite-type surface called the biinfinite flute obtained from an infinite
cylinder by deleting a countable discrete sequence of points exiting both ends of the cylinder (see Figure 3).
By the classification theorem of Kerékjártó and Richards, this surface can also be obtained from S2 by
deleting fxig, fyig, x, and y, where fxig and fyig are countable discrete sequences of points converging
to distinct points x and y, respectively. Note that S has two special nonisolated ends.

2.2 Mapping class groups and arc graphs

The mapping class group, Map.†/, of a surface† is the group of orientation-preserving homeomorphisms
of † up to isotopy. The natural topology on any group of homeomorphisms is the compact-open topology
and Map.†/ is endowed with the quotient topology with respect to the compact-open topology on the
space of homeomorphisms of †. When † is a finite-type surface, this topology agrees with the discrete
topology on Map.†/, but when † is of infinite type it does not. There are several important subgroups
of Map.†/: Mapc.†/ is the subgroup consisting of mapping classes with compact support, PMap.†/
is the pure mapping class group consisting of mapping classes which fix the set of ends pointwise,
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Mapc.†/ < PMap.†/ is the closure of the compactly supported mapping class group with respect to
the topology described above, and when † has an isolated puncture p, Map.†;p/ is the subgroup of
mapping classes that fix p.

When † is finite-type, Map.†/ is algebraically generated by finitely many Dehn twists [19]. Infinite-type
mapping class groups, sometimes called big mapping class groups, are uncountable groups, so there is no
countable algebraic generating set. However, one can consider topological generating sets (countable
dense subsets of Map.†/) and in [22], Vlamis and the third author prove that for many infinite-type
surfaces, Dehn twists are not sufficient in topologically generating even PMap.†/. They show that in
addition to Dehn twists, a new class of homeomorphisms called handleshifts (defined in Section 2.4) are
often needed to topologically generate PMap.†/. In a subsequent paper with Aramayona [3], Vlamis
and the third author give an algebraic description of PMap.†/ that will be relevant in Section 8. When
† is an infinite-type surface with n> 1 nonplanar ends, they prove that PMap.†/DMapc.†/Ì Zn�1,
where Zn�1 is generated by n� 1 handleshifts with disjoint support. In particular, when † has exactly 2
nonplanar ends (for example when † is the ladder surface), PMap.†/DMapc.†/Ì Z, where ZD hH i

and H is the standard handleshift, shifting each genus of † over to the right by one.

In this paper we are primarily concerned with mapping classes of intrinsically infinite-type.

Definition 2.2 An element f 2Map.†/ is of intrinsically infinite-type if f 62Mapc.†/.

More specifically, we are interested in how such elements act on a particular graph of arcs called the
relative arc graph.

Let† be a connected, orientable surface with empty boundary, and let…�† be the set of punctures of†,
which we assume to be nonempty. In this subsection, it is convenient to regard… as a set of marked points
on †. By a proper arc on † we mean a map ˛ W Œ0; 1�!† such that ˛�1.…/D f0; 1g. We often conflate
an arc with its image in†. An arc is simple if it is an embedding when restricted to the open interval .0; 1/.

The arc graph A.†/ is the simplicial graph whose vertices are isotopy classes of simple arcs on †, where
we only consider isotopies rel endpoints, and two (isotopy classes of) arcs are connected by an edge if they
can be realized disjointly away from …. The mapping class group Map.†/ acts on A.†/ by isometries.
Hensel, Przytycki, and Webb [15] show that when † has finite-type, the graph A.†/ is infinite diameter
and 7-hyperbolic. On the other hand, when † is infinite-type with infinitely many punctures, it is straight-
forward to see that A.†/ has diameter 2, and so this graph is not particularly useful for studying Map.†/.

Assuming that … contains a nonempty set of isolated punctures, Aramayona, Fossas, and Parlier [2]
construct a particular subgraph of the arc graph which has interesting geometry, even when … is infinite.
We are interested in a special case of this construction, involving a single isolated puncture p.

Definition 2.3 The relative arc graph A.†;p/ is the subgraph of A.†/ spanned by arcs which start and
end at p. More precisely, the vertices of A.†;p/ are isotopy classes of arcs on † with endpoints on p,
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where we allow only isotopy rel endpoints. There is an edge between two (isotopy classes of) arcs if they
can be realized disjointly away from p.

Aramayona, Fossas, and Parlier show that A.†;p/ is connected, has infinite diameter, and is 7-hyperbolic
(see [2, Theorem 1.1]). While Map.†/ does not necessarily act on A.†;p/, the subgroup Map.†;p/
that fixes the puncture p does act by isometries on this graph. When † has only one isolated puncture p,
Map.†/DMap.†;p/.

2.3 Metric spaces and loxodromic isometries

We now introduce some basics of metric spaces and isometries of a hyperbolic metric space. Given a
metric space X , we denote by dX the distance function on X . A map f WX ! Y between metric spaces
X and Y is a .K;C /-quasi-isometric embedding if there is are constants K � 1, C � 0 such that for all
x;y 2X ,

1

K
dX .x;y/�C � dY .f .x/; f .y//�KdX .x;y/CC:

A geodesic in X is an isometric embedding of an interval into X and a .K;C /-quasigeodesic in X is a
.K;C /-quasi-isometric embedding of an interval into X . We call the constants K;C the quality of the
quasigeodesic. By an abuse of notation, we often conflate a (quasi)geodesic and its image in X .

Definition 2.4 Given an action by isometries of a group G on a hyperbolic space X , an element g 2G is
elliptic if it has bounded orbits; loxodromic if the map Z!X given by n 7! gnx0 for some (equivalently,
any) x0 2X is a quasi-isometric embedding; and parabolic otherwise.

Any biinfinite quasigeodesic in X which is preserved by a loxodromic isometry g 2G is called an axis
of g. An axis always exists; for any x0 2X , the set fgnx0 j n2Zg is a (discrete) quasigeodesic preserved
by g. If X is a geodesic metric space, in the sense that there exists a geodesic connecting any two points
of X , then we may construct a continuous quasigeodesic axis as follows. Fix a geodesic Œx0;gx0� from
x0 to gx0. Then g stabilizes the path formed by concatenating the geodesics gnŒx0;gx0�; this path is
a quasigeodesic axis of g in X . Varying the point x0 will change the quality of the quasigeodesic. Let
gC D limn!1 gnx0 and g� D limn!�1 gnx0 be points in the Gromov boundary @X of X . The limit
set of hgi is the subset fgC;g�g � @X ; this set is fixed pointwise by g. It is straightforward to show that
the limit set fgC;g�g does not depend on the choice of x0 2X .

2.4 Shift maps and the biinfinite flute surface

A handleshift was first defined in [22] as follows. Consider the surface S 0 defined by taking the strip
R� Œ�1; 1�, removing a disk of radius 1

2
with center .n; 0/ for each n 2Z, and attaching a torus with one

boundary component to the boundary of each such disk. A handleshift on S 0 is the homeomorphism
that acts like a translation, sending .x;y/ in S to .x C 1;y/ and which tapers to the identity on @S 0.
Given a surface of infinite-genus † with at least two nonplanar ends and a proper embedding of S 0 into
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† so that the two ends of the strip correspond to two distinct ends of †, the handleshift on S 0 induces a
handleshift on †, where the homeomorphism acts as the identity on the complement of S 0. In this paper,
more flexibility is allowed, and we define the following generalization.

Definition 2.5 Let S 0 be the surface defined by taking the strip R� Œ�1; 1�, removing a closed disk of
radius 1

4
with center .n; 0/ for n 2Z, and attaching any fixed topologically nontrivial surface with exactly

one boundary component to the boundary of each such disk. A shift on S 0 is the homeomorphism that
acts like a translation, sending .x;y/ in S 0 to .xC 1;y/ and which tapers to the identity on @S 0.

Lanier and Loving use two particular cases of this generalization in [18]. Naming the full generalization a
“shift” is in line with their paper. Note that it is essential for the same surface to be glued to the boundary
component of each disk in order for the shift to be a homeomorphism of the surface.

As above, given a surface † with a proper embedding of S 0 into † so that the two ends of the strip
correspond to two different ends of †, the shift on S 0 induces a shift on †, where the homeomorphism
acts as the identity on the complement of S 0. Given a shift h on †, the embedded copy of S 0 in † is
called the domain of h. In this paper, we produce special homeomorphisms that can be obtained as a
composition of three shift maps on such a surface † with an isolated puncture p and that are loxodromic
with respect to the action of Map.†;p/ on A.†;p/. Instead of working generally with surfaces that
admit shift maps, we begin by letting S be the biinfinite flute surface. Then, S admits shift maps which
shift a countable collection of punctures on S . To prove Theorem 1.1 we first construct mapping classes
that are loxodromic with respect to the action of Map.S;p/ on A.S;p/. We then use this surface as a
template for constructing the desired mapping classes for more general surfaces † by extending the shift
maps on S to shift maps on † as follows.

Definition 2.6 Let S be the biinfinite flute surface. A surface† with an isolated puncture p is admissible
if there exists a proper embedding S ,!† where S contains p, the two nonisolated ends of S correspond
to distinct ends of†, and such that a countably infinite collection of connected components of†nS are of
the same (nontrivial) topological type. Note that when the components are once-punctured disks, there are
countably many isolated punctures of S that remain isolated punctures when embedded in †. Denote this
special class of connected components of †nS by U , so that the elements of U are all homeomorphic to a
fixed surface †0 with one boundary component. See Figure 1 for some examples of admissible surfaces.

Given a shift map h on S , the support of h is a strip R� Œ�1; 1� with countably many punctures. When
the set of punctures in the support of h only consists of those corresponding to elements of U , we can glue
copies of †0 onto the punctures of this strip to produce a shift map on a surface S 0 as in Definition 2.5.
The embedding of S in † therefore gives an embedding of S 0 in † and the shift on S 0 in † is extended
via the identity on † nS 0 as usual. From this construction, we immediately have one direction of the
following lemma.
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Figure 4: Examples showing that surfaces with shift maps are always admissible. For the first
surface, only one curve  is needed to cut away the extra topology of †. In the second case, a
countable collection of curves fig is needed.

Lemma 2.7 Given a surface † with an isolated puncture , † is admissible if and only if † admits shift
maps.

Proof It is left to show that if† has an isolated puncture p and admits a shift map, then† is admissible. To
see this, we consider the proper embedding of S 0 into †. Recall that S 0 is obtained from a punctured strip
by gluing on countably many copies of any surface†0 with exactly one boundary component. Let T DfTig

denote the corresponding countable collection of subsurfaces homeomorphic to †0 in †, indexed by Z.

Note that E.S 0/ is a closed subset of E.†/, as is X DE.S 0/[fpg, and thus X c DE.†/nX is open in
E.†/. The second countability of the topology on E.†/ implies that X c is the union of countably many
basis elements. If X c is in fact clopen in E.†/, then X c is compact and is therefore a finite union of
basis elements. In this case, there exists a simple closed curve  in † with the following property: there
exists a connected component K of † n  such that the end space of K DK[  is exactly X c . In this
way,  cuts away the ends of † that are in X c (see Figure 4). We then have that

† n
�
K[

�S
i Ti

��
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is homeomorphic to the biinfinite flute surface and † is admissible with T playing the role of U in the
definition of an admissible surface.

In general, we can only assume that X c is open, not clopen, so that it can be expressed as the union
of countably many basis elements for the topology. Then, there exists a countable collection of simple
closed curves fig and a countable collection of connected components Ki of † n i such that the end
space of

S
i Ki D

S
i Ki [ i is exactly X c (see Figure 4). In this case,

† n
��S

i Ki

�
[
�S

i Ti

��
is homeomorphic to the biinfinite flute surface and † is admissible.

Given this equivalent definition for an admissible surface, we can show that this class includes all infinite-
type surfaces with an isolated puncture outside of two sporadic classes that do not admit shift maps. We
will need the following definition.

Definition 2.8 The Loch Ness monster is the infinite-type surface with no planar ends and exactly one
nonplanar end. An infinite-type surface is a fluted Loch Ness monster if it is obtained from the Loch Ness
monster in one of the two following ways:

(1) by deleting a finite, nonzero collection of isolated points, or

(2) deleting a countably infinite collection of isolated points accumulating to exactly one point, which
we also delete from the surface, or accumulating onto the end of the Loch Ness monster.

See Figure 2 for examples of fluted Loch Ness monsters.

Lemma 2.9 Let † be an infinite-type surface with an isolated puncture. Then † is admissible unless †
is a flute surface with finite (possibly zero) genus or is a fluted Loch Ness monster surface.

Proof Let † be an infinite-type surface with an isolated puncture p. If † has at least two nonplanar
ends, then † admits a shift map (in fact a handleshift). Similarly, if † has at least two nonisolated planar
ends, then † admits a shift map with these two ends corresponding to the two ends of the strip S 0 in
Definition 2.5. Thus, if † does not admit a shift map, † has exactly one nonisolated planar end and finite
genus, ie a flute surface with finite genus, or has exactly one nonplanar end and up to one nonisolated
planar end, ie a fluted Loch Ness monster.

Going back to the original definition of an admissible surface, there are a few more notable remarks
regarding the relationship between S and†. First, there is not necessarily an embedding of Map.S;p/ into
Map.†;p/ since if the support of a shift h on S contains punctures that do not correspond to elements of U ,
then there may not be a way to extend that shift to †. In particular, if h shifts one puncture x to another
puncture x0 but the topology of the surfaces glued to x and x0 are different, there is no extension of h to a
shift of†. This will not affect our arguments since there are countably many punctures of S corresponding
to the elements of U which we move to the front of the cylinder for S along with p, and we move all other
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punctures to the back of the cylinder. Here we are choosing one nonisolated end of S to correspond to the
left direction on the surface, and the other nonisolated end to correspond to moving right on the surface
so that there is a well-defined notion of the front and back of S . In our constructions, we use shift maps
on S whose support only contains the punctures on the front of S so that all of these shifts extend to †.

Second, and most importantly, we now show that proving Theorem 1.1 for admissible surfaces † can
be reduced to the case of the biinfinite flute S . In fact, this is the motivation for the original definition
of an admissible surface. For simplicity, given a surface M with an isolated puncture p and any points
a; b 2A.M;p/, we write dM .a; b/ for the distance between a and b in A.M;p/

Lemma 2.10 Let† be an admissible infinite-type surface with an isolated puncture p. Then the inclusion
of A.S;p/ into A.†;p/ is a .2; 0/-quasi-isometric embedding.

Proof As S �†, it is clear that d†.a; b/� dS .a; b/ for any a; b 2A.S;p/.

To obtain the other inequality, let Sa;b � S be a finite-type subsurface of S which contains a; b, the
puncture p, and has complexity at least 2. Note that Sa;b is then a finite-type subsurface of † as well.
Thus by [2, Corollary 4.3] applied to Sa;b �† and to Sa;b � S , we have

dS .a; b/� dSa;b
.a; b/� 2d†.a; b/:

Together, these imply that
d†.a; b/� dS .a; b/� 2d†.a; b/;

completing the proof.

In particular, let g 2Map.S;p/ be loxodromic with respect to the action of Map.S;p/ on A.S;p/ with
a .K;C /-quasigeodesic axis. If g can be extended to an element of Map.†;p/, then this extension
is loxodromic with respect to the action of Map.†;p/ on A.†;p/, and the extension will have a
.2K;C /-quasigeodesic axis.

3 Coding arcs and standard position

Let S be the biinfinite flute surface with a distinguished isolated puncture p, and let fpigi2Z be any
countably infinite discrete collection of punctures on S which exits both ends of the cylinder and does
not contain p. As described in Section 2.4, we choose one nonisolated end of S to correspond to the left
direction and one to correspond to the right direction, which gives a well-defined notion of a front and
back of the cylinder for S . We move all of the punctures in fpi j i 2Zg[ fpg to the front of the cylinder
for S and all other punctures to the back. We also move the distinguished puncture p so that it lies to the
right of p�1 and to the left of p0. We will consider the collection fpi j i 2 Zg[ fpg of punctures. We
index this set with Z[fPg, which we give the ordering consisting of the usual ordering on Z with the
additional requirement that �1< P < 0. The index P corresponds to the distinguished puncture p.
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P 0�1 1

P 0 1�1

Figure 5: The curves Bi are in red. The blue region is the domain of the shift map H .

Fix the simple closed curve B0 bounding the puncture p0 on S shown in Figure 5. More formally, to
define B0 we fix a complete hyperbolic metric on S and let B0 be a horocycle at a height sufficiently far
out the cusp. Fix a shift map H on S whose domain contains exactly the collection fpig for i 2 Z[P

and which shifts pi to piC1 for all i 2 Z[P .

Definition 3.1 Define the simple closed curves Bi WDH iB0 for i 2 Z[P . Then Bi is a simple closed
curve bounding the puncture pi , where p

P
D p.

Our choice of left=right also gives a well-defined notion of an arc passing over or under a puncture (or
equivalently some Bi). In all pictures of S throughout the paper, we denote the special puncture p by an
“X”, and rather than drawing the punctures pi , we draw the simple closed curves Bi in S . We will use
these simple closed curves to put arcs into standard position as described later in this section.

3.1 Coding arcs

We use the simple closed curves Bi to describe a way to code simple arcs on S starting and ending at p.
We will use this code to quantify how long two arcs fellow travel, which will be essential for proving the
results of this paper.

Suppose that  is an oriented arc on S starting and ending at p such that  can be homotoped to be
completely contained on the front of S . We code  as follows. First homotope  so that it is disjoint
from all Bi with i 2 Z[P , with the exception that  starts and ends at the puncture p and therefore
intersects BP exactly twice. The code for  always starts and ends with the character Ps (which stands for
“puncture start”) and contains either the character ko or the character ku, where k 2Z[fPg, whenever 
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P 0 1 2 3�1�2�3

˛

P 0 1 2 3�1�2�3

ˇ

P 0 1 2 3�1�2�3



Figure 6: Pictured are arcs on the front of the surface S . The X denotes the puncture p and the
elements k 2 Z[fPg shown under S denote the subscript on the simple closed curves Bk . The
codes for arcs ˛; ˇ;  are given in Example 3.2.

passes over or under the simple closed curve Bk for k 2 Z[P . These characters appear in the code for
 in the same order in which  passes over=under the curves Bk . For example, since �1< P < 0, the
second character of the code for  must be either 0o, 0u, .�1/o, .�1/u, Po, or Pu, because if  doesn’t
immediately wrap around p (which would lead to the second character being Po or Pu), it must pass
over or under either B0 or B�1 before it can pass over or under Bk for any k ¤ 0;�1. Similarly, if the
character 2o or 2u appears in the code, each adjacent character must be one of 1o; 1u; 2o; 2u; 3o, or 3u.
To simplify notation, we write ko=u to mean that the character could be ko or ku. We will write ko=uku=o

to mean that the two adjacent characters are either koku or kuko; the ku=o is used to emphasize that the
second character has the opposite subscript as the first one.

Example 3.2 Consider the arcs shown in Figure 6. The elements k 2 Z[fPg shown under S denote
the subscript on the simple closed curves Bk . The code for ˛ is Ps0o1u2o2u1u0uPs , the code for ˇ is
PsPuPo0o1o2o2u1o0oPs , and the code for  is Ps.�1/o.�2/o.�2/u.�1/uPu0u1u1o0oPs .

Now suppose  is an oriented arc on S starting and ending at p such that no arc in its homotopy class
is contained on the front of S . Since  starts and ends at p, which is on the front of the surface, every
time  leaves the front of S it must eventually reenter the front. We give the code C to any subpath of 
which is on the back of S . Up to homotopy, we may assume that each time  exits then enters the front
of S , it does so “between” two simple closed curves Bk and BkC1. In other words, there is an arc  0 in
the homotopy class of  whose code contains either ko=uC.kC 1/o=u or ko=uC ko=u each time  0 leaves
the front of S . We give  the same code as  0. We emphasize that this implies that the code of an arc
does not distinguish the behavior of arcs  on the back of S .

By an abuse of notation, we typically blur the distinction between an arc and its code, writing, for example,
˛ D Ps0o1u2o2u1u0uPs .

Definition 3.3 Let  be an oriented arc on S starting and ending at p. A code for  is reduced if no two
adjacent characters in the code are the same and if the character immediately following the initial Ps or
preceding the terminal Ps is not Po=u.
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 0

�3 �2 �1 P 0 1 2 3

Figure 7: The arcs  and  0 are homotopic and have the same reduced code:  0 is formed from 

by the removal of the pair 1o1o.

The appearance of repeated characters in the code of an arc indicates backtracking in the arc. The
following lemma is immediate.

Lemma 3.4 If there are two arc  and  0, starting and ending at p, whose codes differ only by the
removal of two adjacent characters which are equal , ie koko or kuku, then  and  0 are homotopic.

Example 3.5 The arcs  and  0 in Figure 7, with codes Ps0o1o1o1u2u2o1o0oPs and Ps0o1u2u2o1o0oPs ,
respectively, are homotopic.

Note that if a triple appears in the code for an arc, it is reduced to a single character according to our
convention, as only pairs of repeated characters are removed. For example, Ps0o1o1o1o1u0oPs is reduced
to Ps0o1o1u0oPs .

Each homotopy class of curves on S determines a reduced code, in the sense that any two homotopic
curves have the same reduced code. We write that two codes are equal if they determine homotopic arcs.
For example, we write

Ps0o1o1o1u2u1u0uPs D Ps0o1u2u1u0uPs:

The converse of this fact is not true, however, because the code does not encode the behavior of arcs on
the back of S ; hence there can be nonhomotopic arcs with the same reduced code. This will not cause
any problems in this paper.

Definition 3.6 The code length of an arc  , denoted `c. /, is the number of characters in a reduced
code for  .

Convention 3.7 When giving the code of an arc for which the numerical values of the characters are
unimportant (or unknown), we will use variables in the code. Our convention is to use Roman letters to
represent single characters and Greek letters to represent strings of characters whose length is (possibly)
greater than one. For example, `c.a1a2a3/D 3 while `c.ab/D `c. /C 2.

Given a string of characters ˛D a1a2 : : : an, we denote by ˛ the reverse of ˛, so that ˛D anan�1 : : : a2a1.
If ˛ is an arc, then ˛ is the same arc with the opposite orientation.
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3.2 Standard position

In this section, we describe how to use the code for an arc to find its image under a general class of shifts
which we call “permissible”.

Definition 3.8 We say a shift shifting to the right is a right shift, while a shift shifting to the left is a
left shift. A right shift is permissible if its domain D stays on the front of our subsurface and contains a
turbulent region .n1; n2/, that is, there exist n1; n2 2 Z[fPg with n1 < n2 such that D contains Bk for
all k 2 .�1; n1�[ Œn2;1/ but does not contain Bk for any k 2 .n1; n2/. We call .�1; n1/[ Œn2;1/

the shift region of h. See Figure 11. Analogously, a left shift is permissible if its domain D stays on
the front of our subsurface and contains a turbulent region .n2; n1/, that is, there exist n1; n2 2 Z[fPg

with n2 < n1 such that D contains Bk for all k 2 .�1; n2�[ Œn1;1/ but does not contain Bk for any
k 2 .n2; n1/. The shift region for a left shift is .�1; n2�[ .n1;1/.

Convention 3.9 Throughout the paper, we will use both left and right shifts. For notational simplicity,
all general results about shifts will be stated for right shifts. All statements of results, proofs, and figures
will make this assumption as well. However, all of our definitions and results (and their proofs) also hold
for left shifts, by modifying any proof for a right shift so that we essentially replace all instances of n1

with n2 and vice versa and replace all instances of the word “increasing” by the word “decreasing” and
vice versa. The only subtleties are that:

� We retain the convention that h.Bn1
/D Bn2

.

� For the shift region intervals .�1; n1/[Œn2;1/ that appear for a right shift, we use .�1; n2�[.n1;1/

for the left shift. In particular, the n2 is always contained in the shift region.

Remark 3.10 It is worthwhile to mention that Convention 3.9 is equivalent to simply redefining the
order, given by the symbol <rev, on Z[fPg to be the opposite of the standard meaning of the inequality
sign <. For example, in this “reversed order” we would have 5<rev 3 and so on. Given this and using
the standard meanings for “increasing” and “decreasing” with respect to <rev, all of the proofs for shifts
that shift to the left would go through identically as shifts that shift to the right when one replaces each
instance of < with an <rev. Despite the simplicity of this reversed order, we found writing proofs with it
to be more confusing to the reader than applying the above convention.

In order to find the image of an arc using only its code, we will need to consider paths whose endpoints
are not on p.

Definition 3.11 A segment is a simple path with at least one endpoint which is not a puncture, and no
endpoints on a puncture other than p. We code a segment in an analogous way as we did arcs in Section 3.1.
If a segment begins or ends on p, then the initial or terminal character of the code is Ps , respectively.
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Note that a segment can have at most one instance of Ps in its code. Given a segment  , we denote the
initial and terminal character of its code by  i and  t , respectively. A segment is supported on an interval
.a; b/� Z[fPg if the numerical value of every character in its reduced code is contained in .a; b/. A
subsegment of  which is supported on an interval .a; b/ is denoted  j.a;b/, with similar notation for half-
open and closed intervals. A segment is (strictly) monotone if the numerical value of the characters in its
reduced code are (strictly) monotone as a subset of Z[fPg. A segment with code C is called a back loop.

The notion of left=right on the front of S induces an orientation on strictly monotone segments contained
on the front of S in the following way. If the terminal endpoint of such a segment  is to the right of
the initial endpoint, then  is oriented to the right. Similarly, if the terminal endpoint is to the left of
the initial endpoint, then  is oriented to the left. Since  is strictly monotone, one of the above two
possibilities must occur. We note that single characters of a code represent strictly monotone segments
and so can be oriented in this way.

We will use the code for an arc or segment to find the image of the arc or segment under certain
homeomorphisms of S . The process can be complicated. We now introduce a new way of concatenating
strings of characters which will be more suited to finding the image of an arc or segment in certain situations.

Definition 3.12 Given two segments ˛ and ˇ such that the terminal character of ˛ agrees with the initial
character of ˇ and such that these two characters have the same orientation, the efficient concatenation of
˛ and ˇ, denoted ˛Cˇ, is formed by removing the terminal character of ˛ to form a new string ˛0 and
concatenating this new string with ˇ, resulting in ˛0ˇ.

For example,

Ps0oC 0o1o D Ps0o1o;

and

Ps0o1o2o2uC 2u2u2o1o1u D Ps0o1o2o2u2u2o1o1u D Ps0o1u;

where the middle term is an unreduced code and the final term is a reduced code. See Figure 8. We note
that if ˛ and ˇ can be efficiently concatenated, then they cannot be concatenated, because ˛t and ˇi have
the same orientation. By a similar reasoning, if two segments can be concatenated, then they cannot be
efficiently concatenated. Throughout the paper, we only (efficiently) concatenate two segments when it is
possible.

As written, the code of a segment is not well behaved under homotopy because every segment is
homotopically trivial or homotopic into a puncture. We will introduce a standard position for segments
on S with the property that any two segments that are homotopic rel endpoints will, in standard position,
have the same reduced code. Standard position will also allow us to find the image of a segment under a
permissible shift using only its code.
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0 1 2

0 1 2

Figure 8: The two examples of efficient concatenation following Definition 3.12. In each, the
(reduced) code for the blue segment is the efficient concatenation of the codes of the two black
segments.

Definition 3.13 Fix a simple closed curve Sj as in Figure 9 for each j 2 Z[fPg. Let

C D fSj j j 2 Z[fPgg:

For each j 2 Z[fPg, we orient the simple closed curve Bj clockwise and identify Bj with the subset
S1 of C by a homeomorphism which preserves this orientation. Fix points b

j
L
; b

j
R
2Bj corresponding to

�1; 1 2 S1, respectively. Here L and R stand for left and right.

To describe standard position, we will sometimes move endpoints of segments  to lie on various boundary
components. When we do this, we will use the following convention. Suppose  i D ko=u and we want
to move the initial endpoint of  onto the boundary component Bk . If  is oriented to the right, then
we move the initial endpoint of  to bk

L
, and if it is oriented to the left, we move the initial endpoint

to bk
R

. On the other hand, suppose  t D .k 0/o=u and we want to move the terminal endpoint of  onto the
boundary component Bk0 . If  is oriented to the right, we move the terminal endpoint of  to bk0

R
, and if

it is oriented to the left, we move the terminal endpoint to bk0

L
. See Figure 10. Moving endpoints in this

way does not change the code for  .

It will be useful to understand how a given segment interacts with the domain of a permissible shift.

�3 �2 �1 P 0 1 2 3

S�2 S�1 SP S0 S1 S2 S3

Figure 9: Some of the simple separating curves in C defined in Definition 3.13.
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k k 0

Figure 10: Adjusting the endpoints of  (black) results in the red segment.

Definition 3.14 Let h be a permissible right shift with domain D and turbulent region .n1; n2/. Then
both (the upper and lower) boundary components of D have the same reduced code on .n1; n2/. For any
k; k 0 2 .n1; n2/, we let @DjŒk;k0� be the reduced code of the boundary components of D on the interval
Œk; k 0� with similar notation for open and half-open intervals. If a segment  has the same code as @D on an
interval .k1; k2/� .n1; n2/, we say that  follows @D or agrees with @D on that interval. As noted in the
convention above, there is an analogous definition when h is a left shift. When a segment  supported on
Œn1; n2� intersects one component of @D, we call this a half crossing. When such a  intersects both compo-
nents of @D so that the code for the subsegment of  between these two half crossings is empty, in the sense
that this subsegment does not pass over or under Bk for any k, we call this a full crossing. See Figure 11.

Even though S is a straightforward surface, standard position for segments on S is necessarily complicated.
Before introducing it formally in the next two subsections, we briefly give an intuitive idea of standard
position in the following remark. On a first reading of this paper, we strongly suggest the reader read this
remark and study Figures 12–15 instead of reading the formal definition of standard position given in
Sections 3.2.1 and 3.2.2. The reader may then safely skip to Section 3.3. If, later in the paper, the image
of a particular segment seems counterintuitive, likely this is because we put the segment in standard
position before taking its image. This would be a good time to look back at Sections 3.2.1 and 3.2.2 with
that example of a segment in mind.

Remark 3.15 Let h be a permissible right shift with domain D and turbulent region .n1; n2/, and let 
be a segment. To put  in standard position with respect to h, we first homotope subsegments of  that
are contained in the region .�1; n1/[ .n2;1/ to be completely contained in D. For the subsegments of
 contained in the region Œn1; n2�, we homotope  so that crossings are full crossings whenever possible.
We will always be able to make crossings full except near n1 or n2, because n1 and n2 are where  leaves

n2



n1

Figure 11: The domain D for a permissible shift is shown in red. The segment  follows @D
on Œn1C 1; n1C 3�, has a half crossing between Bn2�1 and Bn2

, and has a full crossing between
Bn1C1 and Bn1C2.
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the turbulent region and enters the shift region, where we have already ensured that it is contained in D.
We also homotope  to minimize the number of full crossings. If  contains a loop .n1/o=u.n1/u=o or
.n2/o=u.n2/u=o, we homotope  so that it crosses one connected component of @D immediately before
the loop and the other connected component immediately after. In other words,  has to enter one side of
D before the loop and exit the other side of D after the loop. If  contains the character C , we homotope
it so that the subsegment of  represented by C exits and reenters the front of S at the same place, in
the sense that the endpoints of this subsegment lie on the same simple closed curve Si . Finally, we also
homotope each endpoint of  to lie either on the nearest Bk (if it is in the shift region) or the nearest Sk

(if it is in the turbulent region).

Standard position will be slightly different for those segments which contain back loops. We first discuss
standard position for segments that do not contain back loops.

3.2.1 Segments without back loops Given a segment  whose reduced code does not contain C and a
permissible right shift h with domain D and turbulent region .n1; n2/, we put  into standard position
with respect to h as follows.

If the endpoints of  are not contained in .n1; n2/ and it is possible to homotope  completely inside of
the domain of h, we do so, and we move the endpoints of  to lie on the Bk curve numbered by the first
and last characters of the code as described above.

Otherwise,  can be written as the concatenation 1 : : : k of disjoint connected maximal subsegments
such that each i is either

(a) supported on either .�1; n1� or Œn2;1/; or

(b) supported on .n1; n2/.

We now homotope each i individually. If i satisfies (a), then we move the endpoints of i onto the
Bk curve numbered by the first and last character of the code as above and homotope the interior of i

to lie completely inside the domain of h. We homotope segments i satisfying (b) using the following
procedure:

Step (i) If the initial character of the segment is ko=u, move the initial endpoint of the segment onto
the separating curve Sk if ko=u is oriented to the right and onto SkC1 if it is oriented to the left. If the
terminal character of the segment is k 0

o=u
, move the terminal endpoint of the segment onto Sk0 if k 0

o=u

is oriented to the left and onto Sk0C1 if it is oriented to the right. Now move the endpoints along the
Sj containing them to reduce the number of full and half crossings, if possible, without creating any
self-intersections. In particular, the endpoints should not lie in the domain of h. See Figure 12.

There is one caveat to the rule above. Note that when i is type (b), then iC1 and i�1 are type (a),
otherwise i would not be maximal. In the case that either of these neighboring segments is exactly a
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n1 n2

n1 n2

n1 n2

n1 n2

Figure 12: The domain D for a permissible shift is shown in red. In black is a segment  that has
no .ni/o=u.ni/u=o for i D 1; 2. Left: putting  in standard position. Right: a simple segment with
the same code as  which we say is in standard position.

loop around n1 or n2 we must adjust the position of the endpoints of i along Sj . If iC1 D .nk/o.nk/u,
for k D 1 or 2, we require that the terminal endpoint of i is above D and require that the terminal
endpoint is below D when iC1 D .ni/u.ni/o. Similarly, if i�1 D .ni/o.ni/u, for i D 1 or 2, we require
that the initial endpoint of i is below D and require that the initial endpoint of i is above D when
i�1D .ni/u.ni/o. See Figure 13. Note that this repositioning of endpoints can cause additional crossings
of D as in Figure 14, but this is the appropriate configuration for our calculations.

Step (ii) Homotope the segment rel endpoints to make all crossings full. Since Step (i) ensures that the
endpoints of i are always outside the domain D, this is always possible.

Step (iii) Homotope the segment rel endpoints to reduce the number of crossing by removing all bigons
that bound disks and have one side on the segment i and the other side on @D.

Step (iv) Finally, there may be a choice of where a full crossing occurs. If there is such a choice, then
it will always be possible to homotope rel endpoints so that the crossing occurs between two adjacent
characters ko=u, .k 0/o=u with k; k 0 2 .n1; n2/ such that the o=u pattern of k and/or k 0 does not match that
of @D, and our convention is to make this choice for the largest possible k; k 0. For example, in Figure 12,
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n1

n1

n1

n1

n1

Figure 13: A segment  that contains multiple copies occurrences of .n1/o.n1/u. Left: putting  in
standard position. Right: a simple segment with the same code as  which we say is in standard position.

the bottom strand could fully cross the domain between .n1C 1/o and .n1C 1/u or between .n1C 1/u

and .n1C 2/u; we make the latter choice.

At this point, we have a collection of disjoint subsegments, each in standard position. The final step is
to connect the endpoints of these segments, in the order they were originally connected, by segments
called connectors. Connectors always occur between characters with numerical value n1 and n1C 1

or n2 and n2 � 1. For the purposes of the code, we picture these segments extended slightly in either
direction to overlap with the segments on either side so that the code of a connector will always be a
pair jo=u.j C 1/o=u or .j C 1/o=ujo=u. Thus, if a connector ˛ connects disjoint subsegments ı1 and ı2
(in that order), then ˛ D .ı1/t .ı2/i and we can write ı1C ˛C ı2. Note that this code is equivalent to
the concatenation ı1ı2. By construction, connectors always have one endpoint inside and one endpoint
outside the domain D of the shift. After applying this procedure, the resulting segment in standard
position may no longer be simple. However, it will have the same code as our original  .

The following lemma summarizes the above procedure.

Lemma 3.16 A segment  in standard position with respect to a permissible right shift h which is not
completely contained in the domain of h can be written as the efficient concatenation of (possibly empty)
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n1

n1

n1

n1

n1

Figure 14: A segment  that contains .n1/o.n1/u. Note that the requirements on the endpoints of
i in step (i) of the procedure for standard position require that we have one connector cross the
top of @D and one connector cross the bottom of @D. Left: putting  in standard position. Right:
a simple segment with the same code as  which we say is in standard position.

segments in the following way,

(1)  D  tu
1 C 

c1
1 C 

sh
1 C 

c2
1 C 

tu
2 C 

c1
2 C � � �C 

sh
n C 

c2
n ;

where for each i ,

�  tu
i is supported on the turbulent region .n1; n2/, has been put into standard position following steps

(i)–(iv) above , and has both endpoints outside of the domain D;

�  sh
i is supported on the shift region .�1; n1�[ Œn2;1/, is completely contained in the domain D,

and has both endpoints on the Bk curves; and

�  c1
i ;  c2

i are connectors , each of which has code length 2, is supported on either Œn1; n1C 1� or
Œn2�1; n2�, and has one endpoint on Bn1

or Bn2
and one endpoint outside the domain D on Sn1C1

or Sn2
.

We will sometimes use the notation  conn
i for a connector if it is not important if this subsegment is the

first connector  c1
i or the second connector  c2

i .

Algebraic & Geometric Topology, Volume 25 (2025)



588 Carolyn Abbott, Nicholas Miller and Priyam Patel

n1 n2

n1 n2

Figure 15: A segment  that has endpoints in .�1; n1�[ Œn2;1/ and can be homotoped to be
completely inside D.

It is often convenient to abuse notation and say that a simple segment is in “standard position” even if
it is not the result of the above procedure because these segments are easier to draw and think about.
What we mean by this is that the segment intersects the boundary of D in the same place as it would in
standard position. In Figures 12–15, we give a segment, the steps to put it in standard position, and an
example of a simple segment with the same code which we also say is in standard position.

Because each segment in (1) has fixed endpoints, its image under h is well-defined up to homotopy rel
endpoints. Thus we may use the decomposition of  to find its image under h as

h. /D h. tu
1 /C h. c1

1 /C h. sh
1 /C h. c2

1 /C h. tu
2 /C h. c1

2 /C � � �C h. sh
n /C h. c2

n /:

Since in standard position  may not be simple, its image under h may not be simple. However, this code
corresponds to a unique (homotopy class of) simple segment with the same endpoints. It is important
that we use efficient concatenation when calculating h. /. Using regular concatenation, the code for  is
simply  tu

1
 sh

1
: : :  tu

n 
sh
n . However, it is not true that h. tu

1
/h. sh

1
/ : : : h. tu

n /h.
sh
n / is a code for  ; in fact,

much of the time this code does not define a segment. See Example 3.17. Most of the interesting behavior
in the image of an arc or segment under a permissible shift actually comes from the full and half crossings.
Since each connector contributes a half crossing, they are essential for determining the image of  .

Example 3.17 Consider the permissible shift h shown in Figure 11 along with the segment  . In
Figure 16, we put  in standard position and find its image under the shift. Using code, we have
 D .n1C1/u.n1C2/o.n1C3/o.n2�1/o.n2/u. Note that every character in this code except the terminal
.n2/u is fixed by h, and h..n2/u/D .n2C 1/u. If we simply compute h. / character by character, we

n1 n2 n1 n2

Figure 16: The segment  from Example 3.17 in standard position (left) and its image under the
shift whose domain is shown (right).
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get h. /D .n1C 1/u.n1C 2/o.n1C 3/o.n2 � 1/o.n2C 1/u. However, this is not a well-defined code
since n2� 1 and n2C 1 are not adjacent. On the other hand, using efficient concatenation, we see that

h. /D h. tu/C h. conn/C h. sh/

D h..n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/o/C h..n2� 1/o.n2/u/C h..n2/u/

D .n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/oC .n2� 1/o.n2/o.n2C 1/uC .n2C 1/u

D .n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/o.n2/o.n2C 1/u:

Note that all but the final pair .n2 � 1/o.n2/u are fixed by h. This final pair is a half crossing and in
standard position it is a connector.

In fact, given a segment  D  tu supported on .n1; n2/, we can further decompose  into subsegments
which are disjoint from D and pairs which fully cross D in such a way that makes it straightforward to
find its image under h. Write

(2)  D  d
1 C 

e
1 C � � �C 

d
s C 

e
s ;

where each  d is a maximal subsegment disjoint from D, each  e fully crosses D, and `c.
d / � 2,

`c.
e/D 2, when nonempty.

Using the above decomposition, in an unreduced code we have

h. /D  d
1 C h. e

1 /C � � �C 
d
s C h. e

s /:

Every nonempty  e
j will have image which follows @D, loops around n2, and follows @D back, so that

h. e
j /D @DjŒ. e

j
/i ;n2/

.n2/o=u.n2/u=o@DjŒ. e
j
/t ;n2/:

As in Example 3.17, if we don’t use efficient concatenation then we can write  D  d
1
 d

2
: : :  d

s . Applying
h to each of these subsegments individually would yield h. /D  , since each of these subsegments is
fixed by h, which is not the correct image.

3.2.2 Segments with back loops If  is a segment with code equal to C , we require that  has both
endpoints on some separating curve Si in our collection C. We also assume that the endpoints of C lie
outside the domain, and, moreover, that  does not intersect D. There are two possibilities for  , either
 both enters and exits the front of S at the top or bottom or (up to taking inverses)  enters at the top
and exits at the bottom of the front of the surface. Recall that we define the top=bottom of the front of S

with respect to the notion of right=left on the front of S . In the first case, this implies that the endpoints
of  are both above or both below D, respectively, while in the second case one will be above and one
will be below. In either case, this convention implies that  \D D∅ and h. /D  .

Suppose next that  is a segment whose code contains C but also contains other characters. Suppose for
simplicity that the code for  contains a single instance of C , so that  D �1C�2, where �i does not contain
C for i D 1; 2. We put  in standard position as follows. First note that by definition of the code, we must
either have .�1/

t D .�2/
i (if �1 and �2 have opposite orientations) or .�1/

t D .�2/
i˙ 1 (if .�1/

t and .�2/
i
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Figure 17: Various segments  containing back loops. The segments on the right are in standard
form. Back loops are blue and back loop connectors are green. Note that in the second, third, and
fifth examples, at least one of C˙ is empty.

have the same orientation). See Figure 17. Without loss of generality, suppose � t
1

is oriented to the right.
Consider the (disjoint) segments �1 and �2, put them in standard position as in the previous section, and
homotope the endpoints of C as in the previous paragraph. Note the endpoints of C will lie on the curve
S.�1/tC1. We now have three disjoint segments with codes �1, �2, and C . We will add (possibly empty)
segments called back loop connectors from the terminal point of �1 to the initial point of C and from the
terminal point of C to the initial point of �2, respectively, to form a connected segment. See Figure 17. We
code these back loop connectors with the characters C�;CC, respectively, so that we can easily discuss
their image. In particular, by a slight abuse of notation, we replace C in the code for  with C�C CC.

Recall that without loss of generality, .�1/
t is oriented to the right. If the terminal endpoint of �1 lies

outside D and on the same side of D as the initial point of the back loop C , then the back loop connector
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Figure 18: A segment  (left) is split into subsegments  D 1C 2 and each i is individually
put into standard position with respect to the shift h whose domain is shown (right). This causes
a loss of information when we take the images of i individually under h: since h.i/D i for
i D 1; 2, we have h.1/C h.2/D 1C 2 D  , but  is clearly not fixed by h.

C� is empty. An analogous statement holds for CC, where we use the initial endpoint of �2 in place of
the terminal endpoint of �1. Each nonempty back loop connector C˙ either

(i) has one endpoint on B.�1/t or B.�2/i
(depending on whether it is C� or CC), the other endpoint

on S.�1/tC1, and half-crosses D; or

(ii) has both endpoints on S.�1/tC1 which are outside of D and fully crosses D.

3.3 Gaps in segments

When we use the code of a segment to find its image under a permissible shift, we first break it into
smaller subsegments using standard position. When we do this, we always use efficient concatenation, so
that the codes of the individual pieces overlap in a single character. The goal of efficient concatenation is
to ensure that we do not lose any information about the segment by breaking it into pieces. However,
we need to be careful when we do this. If we first break a segment into subsegments and then put each
subsegment into standard position, it is possible that we will lose some information. In particular, we
may cause there to be a “gap” in the segment. Based on standard position, these gaps can only occur
when breaking a segment in the interior of the turbulent region .n1; n2/.

To see this, suppose we break a segment  D 1C2 into two subsegments such that the numerical value
of  t

1
D  i

2
is j 2 .n1; n2/. If we put each i into standard position individually, it is possible that  t

1

and  i
2

lie on opposite sides of D (see Figure 18). In this case, we have lost the full crossing between
them. Recall that a shift fixes the surface outside of its domain. In the region .n1; n2/, a segment in
standard position is disjoint from the domain of the shift except where there is a full crossing (see the
decomposition in equation (2)), so the full crossings are essential for determining the image of a segment.
Thus we cannot use 1 and 2 to find the correct image of  .

In order to ensure that we do not lose any information when working with a segment and subsegments in
the turbulent region, we always first homotope the whole segment  to be a simple segment in standard
position. We then fix this particular representative of the homotopy class of  for the remainder of the
time we work with it. Thus, when we break  into subsegments 1 and 2, we do not put these into
standard position individually. To be precise, we choose the endpoints  t

1
and  i

2
to be the intersection of
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h. /

B0

B0



h. /

Figure 19: A segment  and its image h. / are shown. Left: a subsegment which does not have
a preimage. The pink subsegment of h. / does not have an inverse; it is a proper subpath of
the image of the purple subsegment of  . Right: a subsegment which has a preimage. The pink
subsegment of h. / has an inverse; it is the image of the purple subsegment of  .

 and the appropriate separating curves in our collection C and we do not allow any further homotopies
of 1 or 2. This will always ensure that there are no gaps between 1 and 2.

In certain cases, it may be simpler to break  into subsegments in a different way, and we do this whenever
it will avoid technicalities. For example, in Figure 18, we may simply choose not to divide  into
subsegments at all. On the other hand, we could also choose to make 1 or 2 longer than is strictly
necessary in a particular calculation in order to avoid a potential loss of information.

3.4 Taking inverses of segments

In general, if we have a segment  and a subsegment � of h. /, there is not necessarily a subsegment of
 which we may call h�1.�/. In other words, not every subsegment of h. / is the image of a subsegment
of  . It is important here that when we think of a subsegment of  , we are fixing  in standard position.
That is, we are thinking of a reduced code for  , rather than any (unreduced) code representing  .

For example, consider the shift shown in Figure 19, left. Here, the pink subsegment �1 of h. / is not the
image of any subsegment of  . Rather, it is properly contained in the image of the purple subsegment
of  , specifically because it is in the image of the full crossing of the purple segment with D. Explicitly,

 D 0o1u2o2u1u; h. /D 0o1u2o2u1u0o0u1u2u2o1u1o2o2u1u0u;

and one can see that if the subsegment �1 D 1u2o2u1u of h. / then there is no subsegment  0 of  for
which h. 0/D �1.

However, we may take an inverse image of a subsegment � of h. / whenever we know that � is the
image of a subsegment of  . This is the case, for example, when � D h. /; in other words, it is true that
 D h�1.h. //. This can also happen when the initial and terminal characters of a subsegment of h. /
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are the images of the initial and terminal characters of a subsegment of  . For example, in Figure 19,
right, a direct computation will show that the initial and terminal characters of �2 (in pink) are the images
of the initial and terminal characters of the purple subsegment of  . Therefore �2 is the image of the
purple subsegment of  , which is precisely the result of calculating h�1.�2/.

4 Characterizing loops with trivial image

As in Section 3, we let S be the biinfinite flute surface with a distinguished puncture p and fix the
collection of simple closed curves fBi j i 2 Z[fPgg as in Definition 3.1. Let h be a permissible shift
(see Definition 3.8) and k 2 Z[ fPg. By an abuse of notation, we may occasionally write h.k/, by
which we mean that h.k/ is the label of h.Bk/. Thus, given any segment whose code is ko=u, we have
h.ko=u/D h.k/o=u.

Recall that a segment is a path which does not have both endpoints on p.

Definition 4.1 A segment in standard position is trivial if it can be homotoped rel endpoints to one of
the following:

(a) a segment contained in one of the separating curves Si 2 C; or

(b) a point.

We will use the notation ∅ to denote the reduced code for a trivial segment. For example, we write
koko D∅.

Definition 4.2 A loop is a segment that has one of the following forms:

(1) ı1ao=uau=oı2 for some a where ıi
1
D ıt

2
,

(2) ao=uau=o for some a, or

(3) C .

See Figure 20 for examples of loops. A loop satisfying (1) is called a regular loop, a loop satisfying (2)
is called an over-under loop, and, as in Definition 3.11, a loop satisfying (3) is called a back loop. Note

Figure 20: Some examples of loops from Definition 4.2. The loop in red fits case (1), the loop in
blue fits case (2), and the loop in purple fits case (3).
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Figure 21: The permissible shift h translates to the right. The first two loops on the left are
homotopic via homotopies which keep the endpoints on the same fixed separating curve. However,
one image is trivial while the other is not.

that regular loops always contain an over-under loop but not all over-under loops can be extended to a
regular loop. A single loop is a back loop, an over-under loop, or a regular loop such that ıi does not
contain a loop for i D 1; 2.

With the above definitions, the rest of this section is devoted to analyzing the following question.

Question 4.3 Let h be a permissible shift. When does h send a loop to a trivial segment?

The reason we introduced standard position is to ensure that this question is well defined. The issue is
that homotopies of a loop can change whether or not its image is trivial, even if those homotopies keep
the endpoints on a fixed separating closed curve (see Figures 21 and 22). Thus it is important that, given
a loop, we first put it in standard position before applying the permissible shift h. This will remove any
possible ambiguity in the image of the loop.

In this section, we first introduce a kind of cancellation in the image of a segment and its code which
we call cascading cancellation. This kind of cancellation will cause technical problems throughout the
paper, and much of Section 6 is devoted to understanding how to control it. We then prove Theorem 4.8,
which answers Question 4.3. We end the section with a discussion of several technical consequences of
the Theorem 4.8 which will be useful later.

Figure 22: The second loop from Figure 21 is in standard position. We show why its image under
h is trivial.
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4.1 Cascading cancellation

Definition 4.4 We call an arc  symmetric if  D ıq1q2ı for any characters q1, q2. In other words, a
reduced code for  is palindromic with the exception of the middle two characters. Note in particular that
this implies that q1, q2 have the same numerical value.

Recall that we find the image of a path with code ˛ˇ under a permissible shift f as follows. Let q be the
last character of ˛ and q0 be the first character of ˇ. Then

f .˛ˇ/D f .˛/Cf .qq0/Cf .ˇ/:

While f .˛/; f .qq0/, and f .ˇ/ are all reduced codes, it is possible that the efficient concatenation will
cause there to be cancellation. For example, if f .˛/ D 1u1o2o3o and f .qq0/ D 3o3o2o1o0oPo, then
f .˛/Cf .qq0/D 1u0oPo. When this type of cancellation occurs, that is, when a character of f .qq0/ does
not appear in a reduced code of the image, we say there is cancellation involving f .qq0/. In our example,
there is cancellation involving f .qq0/ and f .˛/. When it is necessary to be more precise, we may also
say there is (respectively, is not) cancellation involving a character s, if s appears in the unreduced code
but not the reduced code (respectively, appears in both the unreduced code and the reduced code) of the
image. Thus in our example, there is no cancellation involving 1u but there is cancellation involving 2o.
Our goal is to understand, in general, when there is cancellation with a particular character in a path under
a permissible shift.

Suppose ˛ D q1 and h is a permissible shift. Let q be the terminal character of  . It is tempting to
believe that if we can show that there is no cancellation involving h.q1/ within h.qq1/, then there is no
cancellation involving h.q1/ at all. However, this is not sufficient, for it is possible that there is “cascading
cancellation”. Before giving a formal definition, we illustrate this phenomenon with an example.

Example 4.5 Consider the segment ı D 3u2u1o0u and the permissible left shift h whose domain is
shown in Figure 23. Then

h.ı/D h.3u2u/C h.2u1o/C h.100u/:

We have

h.1o0u/D 1o0u; h.2u1o/D 2u1o and h.3u2u/D 3u2u1o0u.�1/u.�1/o0u1o2u2u:

Putting this together, we obtain h.ı/D 3u2u1o0u.�1/u.�1/o.

There is no cancellation involving either of the terms when computing h.2u10/C h.1o0u/. However,
when computing h.3u2u/Ch.2u10/, we see that h.2u1o/ completely cancels with an initial segment of
h.3u2u3/, and h.1o0u/ completely cancels with the next subsegment of h.3u2u/. Therefore, there is in
fact cancellation involving h.0u/ in h.ı/.

Definition 4.6 Formally, given an arc ı1 : : : ın and a permissible shift f , we say there is cascading
cancellation involving f .ın/ if there is cancellation involving f .ın/ in f .ı1ı2 : : : ın/ but there is no
cancellation involving f .ın/ in f .ın�1ın/.
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ı

h.ı/

�1 0 1 2 3 4

�1 0 1 2 3 4

Figure 23: Above: the segment ı in standard position. The domain of the left shift h is shown in
green. Below: the image h.ı/.

Understanding and controlling cascading cancellation is the difficult part of many of the proofs in this
paper. The remainder of this subsection is devoted to theorems that will allow us to control cascading
cancellation for permissible shifts. We will often be in the following situation: there is a segment  D 12

whose image under a shift h we would like to understand and we know that h.1/ has some desired
quality (such as containing a loop, for example). In order to show that the desirable behavior of h.1/

persists in h. /, we need to ensure that there is no cancellation involving h.1/ and h.2/ by controlling
cascading cancellation. In Section 6, we will revisit this topic and prove some additional results that
allow us to control cascading cancellation for the particular homeomorphisms we construct, which are
compositions of shifts.

Lemma 4.7 Let h be a permissible right shift with domain D and turbulent region .n1; n2/. Let ˛ be a
strictly monotone segment supported on .n1; n2/. Then in a reduced code h.˛/ has n loops around n2,
where n is the number of times ˛ fully crosses D.

Proof Without loss of generality, we will assume that ˛ is strictly monotone increasing, that is, the
numerical value ˛i is strictly less than that of ˛t , as the conclusion is invariant under replacing ˛ by ˛.
As in Section 3.2.1, put ˛ in standard position. Since no segment in standard position which is supported
on .n1; n2/ will be completely contained in the domain of the shift, we may write

˛ D ˛d
1 C˛

e
1C � � �C˛

d
s C˛

e
s ;

where each ˛d
j is a maximal subsegment disjoint from D, each ˛e

j fully crosses D, and `c.˛
d
j / � 2,

`c.˛
e
j /D 2 when nonempty. Notice that if ˛d

j ¤∅ and ˛d
jC1
¤∅, then also ˛e

j ¤∅ by maximality.

Under the above decomposition, in an unreduced code we have

h.˛/D ˛d
1 C h.˛e

1/C � � �C˛
d
s C h.˛e

s /;
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Figure 24: Above: The case where ˛e
j C ˛

d
j C ˛

e
jC1 D ˛

e
j C ˛

e
jC1 in the proof of Lemma 4.7,

where ˛e
j is in purple and ˛e

jC1
is in red. Below: the nontrivial image of this segment under h.

where every nonempty ˛e
j will have image

h.˛e
j /D @DjŒ.˛e

j
/i ;n2/

.n2/o=u.n2/u=o@DjŒ.˛e
j
/t ;n2/:

Thus each full crossing ˛e
j contributes a loop around n2 in an unreduced code for h.˛/. We must show

that such loops persist in a reduced code for h.˛/.

If ˛e
j , ˛e

jC1
¤∅ and ˛d

jC1
D∅ then a calculation shows that in a reduced code

h.˛e
j C˛

d
jC1C˛

e
jC1/D h.˛e

j C˛
e
jC1/D h.˛e

j /C h.˛e
jC1/:

In particular, there is no cancellation between h.˛e
j / and h.˛e

jC1
/ and the loops around n2 persist. See

Figure 24.

Now assume that ˛d
jC1

is nonempty. The maximality of ˛d
jC1

implies that ˛e
j and ˛e

jC1
are nonempty as

well. We must show that there is no cancellation between the loops around n2 in h.˛e
j / and h.˛e

jC1
/ so

that both loops persist in a reduced code for h.˛e
j /C˛

d
jC1
C h.˛e

jC1
/. Recall that in standard position,

a full crossing occurs between two adjacent characters ko=u, .k 0/o=u with k; k 0 2 .n1; n2/ such that the
o=u pattern of k and=or k 0 does not match that of @D, and our convention is to make this choice for the
largest possible k; k 0.

The subtlety arises because the code for h.˛e
j /C ˛

d
jC1

may not be reduced if an initial subsegment
of ˛d

jC1
D h.˛d

jC1
/ agrees with @D, in which case .˛e

j /
t agrees with @D. If .˛e

j /
t is the character of

the full crossing ˛e
j that does not agree with @D, then this character will block cancellation between

h.˛e
j / and ˛d

jC1
, so that the loops around n2 in h.˛e

j / and h.˛e
jC1

/ cannot cancel. On the other hand,
if .˛e

jC1
/i is the character of the full crossing ˛e

jC1
that does not agree with @D, then this character

will block cancellation between the two n2 loops, even if ˛d
jC1

fully cancels in a reduced code for
h.˛e

j /C˛
d
jC1
C h.˛e

jC1
/.
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˛e
j

˛e
jC1

˛d
jC1

Figure 25: Above: A picture of ˛e
j C ˛

d
jC1C ˛

e
jC1

, not in standard position, where .˛e
j /

t and
.˛e

jC1
/i both agree with @D. Below: The same subsegment of ˛ in standard position.

In the last case, where .˛e
j /

t and .˛e
jC1

/i both agree with @D, the largest possible choice of k; k 0 for
the full crossing ˛e

j would in fact result in a segment ˛e
j C ˛

d
jC1
C ˛e

jC1
that is fully disjoint from D,

contradicting the maximality of ˛d
jC1

, so that this case cannot occur. See Figure 25.

Thus, there is no cancellation between the loops around n2 in h.˛e
j / and h.˛e

jC1
/, which proves the

lemma.

4.2 Loops with trivial image

In this subsection, we describe the form a loop must have if its image under a shift is trivial. In particular,
the image of any loop which does not have the form as stated in the theorem is nontrivial. In addition, any
segment that is not a loop cannot have trivial image under a shift since the numerical values the initial
and terminal characters, and thus their images, differ.

Theorem 4.8 Let h be a permissible right shift with turbulent region .n1; n2/. Suppose ˇ is a nontrivial
loop such that h.ˇ/D∅. Then either ˇ D koıko or ˇ D kuıku, where

(i) k 2 .n1; n2/,

(ii) ı D  .n1/o=u.n1/u=o , and

(iii)  follows @D between k and n1.

Proof Put ˇ in standard position. We will consider the image h.ˇ/. By the discussion in Section 3.4, we
have ˇ D h�1.h.ˇ//. By assumption, h.ˇ/ is trivial, and therefore it is homotopic rel endpoints to either
a segment contained in the separating curve Sk for some k 2 Œn1; n2/ or a point. If h.ˇ/ is homotopic rel
endpoints to a point, then ˇDh�1.h.ˇ// is also homotopic rel endpoints to a point, in which case ˇ is triv-
ial, which is a contradiction. So suppose that h.ˇ/ is homotopic rel endpoints to an embedded subsegment
� of the separating curve Sk for some k 2 .n1; n2�. Then ˇ is homotopic rel endpoints to h�1.�/.
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Let D denote the domain of h. Since ˇ is in standard position, the endpoints of � (which are the endpoints
of ˇ) are not contained in D. There are two possibilities. If �\DD∅, then ˇ is homotopic rel endpoints
to h�1.�/D � and so ˇ is trivial, which is a contradiction. On the other hand, if � \D ¤ ∅, then �
must fully cross D. A direct computation shows that, up to reversing orientation,

h�1.�/D @DjŒk;n1/.n1/o=u.n1/u=o@Dj.n1;k�;

for k 2 .n1; n2/, as desired.

We note one immediate consequence of Theorem 4.8.

Corollary 4.9 Suppose ˇ is any of the following:

(1) a loop containing more than one single loop;

(2) a loop containing a back loop; or

(3) a loop with endpoints outside of the turbulent region.

Then h.ˇ/ is nontrivial.

Some of these consequences may be surprising, so we now give a more intuitive (and informal) discussion
of why the image of loops as in the corollary are nontrivial.

We first consider the case of segments which contain more than one single loop. At first glance, it may
seem that if a segment ˇ is composed of loops which each satisfy the conclusion of Theorem 4.8, then
h.ˇ/ will be trivial. The problem arises in how these loops fit together to form ˇ. Suppose we have two
loops, ˇ1 and ˇ2 which each satisfy the conclusion of Theorem 4.8. If the numerical value of ˇt

1
is not

the same as that of ˇi
2
, then in order to “connect” ˇ1 to ˇ2, we must add a segment between the terminal

point of ˇ1 and the initial point of ˇ2. This segment is either disjoint from D, in which case it is fixed
by h, or it fully crosses D. In the former case, this segment will appear in the image of ˇ, while in the
latter case, the image of this full crossing will be nontrivial by Lemma 4.7 applied to the full crossing. If
the numerical values are the same and ˇ D ˇ1ˇ2, then ˇ will be trivial. On the other hand, if there is
some segment connecting the terminal point of ˇ1 to the initial point of ˇ2, then as before, the image of
this segment will not be trivial and will force h.ˇ/ to be nontrivial. See Figure 26 for an example of this.

Suppose next that ˇ contains a back loop C . Intuitively, it seems reasonable that if ˇD Cˇ0C and ˇ0 is a
loop as in Theorem 4.8, then h.ˇ/ is trivial. However, this is not the case. To see this, notice that if we
put ˇ0 in standard position then it will have one endpoint above D and one below D. However, C and C

are the same loop. If C is either above or below D, then this will cause ˇ to have a full crossing between
ˇ0 and one of C or C . The image of this full crossing will be nontrivial by Lemma 4.7 applied to the full
crossing, which will prevent any cancellation between h.C /D C and h.C /D C . On the other hand, if
C exits at the top and enters at the bottom, then C exits at the bottom and enters at the top. This will
again force ˇ to have a full crossing between ˇ0 and one of C or C , preventing cancellation between the
images of the back loops.
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ˇ1
ˇ2

ˇ

h.ˇ/

C C

ˇ

h.ˇ/

Figure 26: Examples of loops whose images are nontrivial. From top to bottom, these correspond
to Corollary 4.9 (1), (2), and (3).

Finally, if ˇ is a loop whose endpoints are outside the turbulent region, say both in Œn2;1/, and ˇj.n1;n2/

has the form in the conclusion of Theorem 4.8, it seems possible that h.ˇ/ is trivial. For example, suppose
that ˇD .n2/oˇ

0.n2/o, where ˇ0 is as in Theorem 4.8. Then since h.ˇ0/ is trivial, h.ˇ0/ will be a segment
contained in the separating curve Sn2

. On the other hand, the images of the connectors .n2/o.ˇ
0/i and

.ˇ0/t .n2/o will each be of the form .n2 C 1/o.n2/o=u.n2 � 1/o=u or .n2 � 1/o=u.n2/o=u.n2 C 1/o. In
particular, we have h.ˇ/D .n2C 1/o.n2/o=u.n2/u=o.n2C 1/o, which is nontrivial.

4.3 Consequences of Theorem 4.8

In this subsection, we record several (technical) consequences of Theorem 4.8 which will be useful in
later sections. The first shows that loops in the shift region persist under the image of shifts.
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Lemma 4.10 Let h be a permissible right shift and  any nontrivial , simple arc with no back loops.
If k 2 .�1; n1/[ Œn2;1/ and ko=uku=o appears in a reduced code for  , then there is no cancellation
involving h.ko=uku=o/ in an unreduced code for h. /. In particular , such a pair ko=uku=o will yield a pair
.kC 1/o=u.kC 1/u=o in a reduced code for h. /.

Proof We argue for koku without loss of generality. Fix k as above and put  into standard position. If
in standard position  is completely contained in the domain of h, then the result is clear, so suppose this
is not the case. We assume for contradiction that there is cancellation with h.koku/ and, without loss of
generality, that it is with h.ku/D .kC 1/u, as otherwise we replace  with  and argue identically for
ko instead. Let  0 be the minimal subsegment of  beginning with koku so that h. 0/ had cancellation
with h.ku/. The only way cancellation in an unreduced code can involve h.ku/ is if a subsegment of the
form .k C 1/o.k C 1/uı.k C 1/u appears in an unreduced h. 0/ where a reduced code for ı is trivial.
Since k 2 .�1; n1/ [ Œn2;1/, any .k C 1/u in h. 0/ must be the image under h of ku. Therefore,
 0 D koku�ku, where h.ku�ku/D .kC 1/uı.kC 1/u, which has trivial reduced code. This contradicts
Theorem 4.8 as k 62 .n1; n2/.

The second consequence of Theorem 4.8 shows that characters of a segment that lie in the turbulent
region which disagree with the domain of a shift persist in a reduced code of the image of the segment
under that shift.

Lemma 4.11 Let h be a permissible right shift with domain D. Let ı be a simple segment whose support
intersects .n1; n2/ nontrivially , and suppose ı contains a character b with numerical value in .n1; n2/

which disagrees with @D. Then b persists in a reduced code for h.ı/.

In other words , if ı D ı1bı2, then h.ı/D �1b�2, where �1b D h.ı1b/ and b�2 D h.bı2/.

Proof Write b D ko=u, where by assumption k 2 .n1; n2/.

Claim 4.12 Since b disagrees with @D, any occurrence of b in h.ı/ must also appear in ı.

Proof Since b disagrees with @D, the segment ı cannot be homotoped rel endpoints to be completely
contained in D. Thus in standard position, ı can be written as the efficient concatenation of subsegments
which are disjoint from D, subsegments of length two which are either full or half crossings, and
subsegments supported on .�1; n1�[ Œn2;1/ (see Lemma 3.16). We consider the images of each type of
subsegment in turn. The subsegments which are disjoint from D are fixed by h. The image of subsegments
supported on .�1; n1/[ Œn2;1/ have empty intersection with .n1; n2/, and so cannot contain b. The
remaining subsegments are half crossings, full crossings, or segments that include a character whose
numerical value is n1. Any subsegment of the image of any of these subsegments supported on .n1; n2/

agrees with @D and so cannot contain b. This proves the claim.

Now suppose towards a contradiction that b does not persist in h.ı/. Then there must be another instance
of b in an unreduced code for h.ı/ which cancels with b. By the claim, ı must contain a subsegment of the
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form b�b whose image is trivial. Theorem 4.8 then implies that b�bD @Dj.n1;k�.n1/o=u.n1/u=o@Dj.n1;k�.
However, b D ko=u disagrees with @D by assumption, and therefore b�b cannot have this form, which is
a contradiction.

5 Constructing the homeomorphisms

As in Section 3, let S be the biinfinite flute with an isolated puncture p, and let fBi j i 2 Z[Pg be the
simple closed curves from Definition 3.1 bounding a collection of punctures fpi j i 2 Z[Pg, where
p

P
D p. As in that section, we move the punctures fpi j i 2 Z[ Pg to the front of S and all other

punctures to the back of S .

In this section, we define a countable collection of elements fgngn2N in Map.S;p/. In the following
sections we will show that these elements are of intrinsically infinite type and are loxodromic with respect
to the action of Map.S;p/ on A.S;p/.

Definition 5.1 For each n 2N, define

(3) gn WD h.n/3 ı h.n/2 ı h1;

�3 �2 �1 P 0 1
h1

0 1 2 3P�1h.1/
2

0 1 2 3P�1h.2/
2

0 1 2 nC1nP�1�2�nh.n/
2

0 1 2 nC1nP�1�2�nh.n/
2

�3 �2 �1 0 1P
h.1/

3

�4 �3 �2 �1 0 1 2P
h.2/

3

�n�2�n�1 �n �1 0 1 nP
h.n/

3

Figure 27: The various shift maps used in the construction of gn D h.n/
3
ı h.n/

2
ı h1. Top: the

shift map h1. Bottom left: the shift map h.n/2 for various n. In order from top to bottom, the first
two pictures are the case of nD 1; 2 (respectively) and the bottom two are for general n odd and
general n even (respectively). Bottom right: the shift map h.n/

3
for various n. In order from top to

bottom, the first two pictures are the case of nD 1; 2 and the bottom picture is the case of general n.
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�2 �1 0 1

4
8

2

1

2

12

6

˛
.1/
�1

˛0

1

2�1 1 30

2�1 1 30

2�1 1 30

˛
.1/
1

1

˛
.1/
2

8

4

2

1 10

4

6
2

4

10

Figure 28: The arcs ˛.1/i for i D�1; 0; 1; 2 drawn as train tracks for simplicity.

where h1 and h.n/i for i D 2; 3 are permissible shifts defined as follows. Let h1 be the right shift whose
domain includes all simple closed curves Bj for j 2 Z n f0g and passes under p and B0. Let h.n/

2
be the

left shift whose domain includes only fBj j j 2 .�1;�n� 1�[ ŒnC 1;1/g, passes over p and B0, and,
when j 2 Œ�n;�1�[ Œ1; n�, passes under Bj for j odd and over Bj for j even. Finally, let h.n/

3
be the

right shift whose domain includes only fBj j j 2 .�1;�n� 1�[ ŒnC 1;1/g and passes under p and
over Bj for all j 2 Œ�n;P /[ .P; n�. See Figure 27.

In the language of the previous sections, we have that n1 D�1 and n2 D 1 for h1. For h.n/
2

, n1 D nC 1

and n2 D�n� 1. For h.n/
3

, n1 D�n� 1 and n2 D nC 1.

In order to prove that each gn is loxodromic with respect to the action of Map.S;p/ on A.S;p/, we
introduce a collection of arcs f˛.n/i j i 2Zg which are invariant under gn. We will show in Proposition 8.2
that for i � 0, these arcs form a quasigeodesic half-axis for gn in A.S;p/.

Definition 5.2 For each fixed n, we define a sequence of arcs f˛.n/i g
1
iD�1 in A.S;p/ as the images under

successive applications of gn of the fixed initial arc ˛0 D Ps0o0uPs . That is to say that ˛.n/i D gi
n.˛0/

for any i 2 Z. See Figure 28 for the case nD 1 and Figure 29 for general n� 1.
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nC 1�1 nC 20�2�nC 1�n

˛
.n/
28

4

2

1 10

4

6
2

4

10

nC 1�1 nC 20
1

˛
.n/
1

˛0

1

2�1 1 30

n� 1�1 n0�2
�n

�3�n� 1 1 2

4
8 10

1

12
6

6

˛
.n/
�1

Figure 29: The arcs ˛.n/i for i D�1; 0; 1; 2 and n � 1. In ˛.n/
�1 , the blue appears when n is odd,

while the green appears when n is even.

When nD 1, the arcs ˛.1/i are the most straightforward and thus most useful for building intuition. We
suggest that the reader keep these arcs in mind while reading the remainder of the paper. We now give
the code for ˛.1/

1
and ˛.1/

2
, which the reader can compare to Figure 28:

˛.1/1 D Ps0o1o2o2u1o0o0u1o2u2o1o0oPs;

˛.1/2 D Ps0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2o2u1o0oPu.�1/o.�1/uPu0o1o2u2o1o

0oPuPo0o1o2o3o3u2o1o0oPoPu0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2u2o1o0o

Pu.�1/o.�1/uPu0o1o2u2o1o0oPuPo0o1o2o2u1o0o0u1o2u2o1o0oPoPu0o1o2o

2u1o0oPu.�1/u.�1/oPu0o1o2o2u1o0oPu.�1/o.�1/uPu0o1o2u2o1o0oPuPo0o

1o2o3u3o2o1o0oPoPu0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2u2o1o0oPu.�1/o.�1/u

Pu0o1o2u2o1o0oPs:

While it is possible to compute the images of arcs under gnDh.n/
3
ıh.n/

2
ıh1 by hand, we have also written

a computer program to implement this. The interested reader should contact the authors for more details.

Remark 5.3 In light of how complicated the arcs ˛.n/i are when i ¤ 0; 1, it may be surprising that
only single loops can have trivial image under each of the shifts h1; h

.n/
2

, and h.n/
3

(see Theorem 4.8 and
Corollary 4.9). Figure 30 gives the intermediate steps so that one can see how the image under g1 of a com-
plicated arc such as ˛.1/

�1
becomes the straightforward arc ˛0. The figure shows the collection of single loops

with trivial image at each stage of computing g1.˛
.1/
�1
/D ˛0. A similar phenomenon happens for n> 1.
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˛
.1/
�1

h1

h1.˛
.1/
�1
/

h
.1/
2

h
.1/
3

h
.1/
2
ı h1.˛

.1/
�1
/

˛0

Figure 30: Each of the strands in blue are single loops whose image is trivial under the shift
whose domain is shown in red. Each blue strand fits the form of Theorem 4.8.

Our method for using the arcs ˛.n/i to prove that gn is a loxodromic isometry of A.S;p/ is inspired by
the foundational work of Bavard in [5]. Bavard constructs an element f of the mapping class group of
the plane minus a Cantor set which is loxodromic with respect to the associated relative arc graph. We
give a brief outline of Bavard’s methods here.

Bavard constructs a collection of simple paths ˇi which start at an isolated puncture and end at some point
of the Cantor set. These paths are invariant under the action of a chosen homeomorphism f and have the
property that ˇiC1 D f .ˇi/. They are constructed so that for all i , the path ˇiC1 begins by following the
same path as ˇi . Roughly, if a path  begins by following the same path as ˇi then Bavard says the path
 “begins like” ˇi (see [5, Section 2]). Bavard uses this definition to define a function from the vertex
set of a certain graph of paths (defined similarly to the relative arc graph but with paths instead of arcs)
to Z�0 by sending a path  to the maximal i 2 Z�0 so that  begins like ˇi . Aramayona, Fossas, and
Parlier [2] show that the relative arc graph is quasi-isometric to the graph whose vertex set is isotopy class

Algebraic & Geometric Topology, Volume 25 (2025)



606 Carolyn Abbott, Nicholas Miller and Priyam Patel

of paths with at least one endpoint on the distinguished isolated puncture. Therefore this function can
then be used to estimate distances in the relative arc graph and ultimately to show that the collection of
paths fˇi j i 2Z�0g forms a geodesic half-axis for the element f . The key fact that Bavard uses is that if
ı is a path which begins like ˇi and  is any path disjoint from ı, then  begins like ˇi�1 [5, Lemma 2.4].

Our arcs f˛.n/i gi2Z do not satisfy the same property as Bavard’s paths. One notable difference is that our
arcs start and end at the puncture p. Because of this, for a fixed n, ˛.n/

iC1
does not begin by following the

entirety of ˛.n/i . However, we will show that it does begin by following the first half of ˛.n/i . In light of
this, we modify Bavard’s notion of “begins like” and make the following definition.

Definition 5.4 Fix an n 2N. An arc ı starts like ˛.n/i if the maximal initial or the maximal terminal
segment of ı which agrees with an initial or terminal segment of ˛.n/i (not necessarily respectively) has
code length at least

�
1
2
`c.˛

.n/
i /

˘
. Recall that code length was defined in Definition 3.6.

In Section 6, we investigate the properties of arcs that start like ˛.n/i for some i , and in Section 7 we
use these properties to prove Theorem 7.10, which is an analog of [5, Lemma 2.4]. In our more general
context, proving this result is quite a bit more involved than the proof of [5, Lemma 2.4]. One reason for
this is that the behavior of our arcs ˛.n/i is much more complicated than the paths from [5].

6 Arcs that start like ˛.n/
i

The main goal of this section is to prove that the images of arcs which start like ˛.n/i under gn must start
like ˛.n/

iC1
(see Corollary 6.9). This will follow from Proposition 6.2 and Theorem 6.4. Proposition 6.2

states that the image of the first half of ˛.n/i is the first half of ˛.n/
iC1

. We need to be careful about what
we mean by this because of the possibility that we cause there to be a gap when we break ˛.n/i into its
first and second half (see Section 3.3). Given a segment  , let V be the initial subsegment of  with
code length

�
1
2
`c. /

˘
. For a fixed i and n, we have ˛.n/i D V̨ .n/i C ˛

0 for some ˛0. As in Section 3.3,
it is possible that when we put V̨ .n/i and ˛0 (or their images) into standard position individually with
respect to one of the shifts h1; h

.n/
2

, or h.n/
3

, we will lose information when we take its image. In fact,
this does happen when we put h.n/

2
.h1. V̨

.n/
i // and h.n/

2
.h1.˛

0// into standard position with respect to h.n/
3

(see Figure 31). We avoid this issue by extending V̨ .n/i by one character and considering V̨ .n/i 0u. Note
that 0u is fixed by gn. Thus when we say that the image of the first half of ˛.n/i is the first half of ˛.n/

iC1

we precisely mean that gn. V̨
.n/
i 0u/D V̨

.n/
iC1

0u as a subsegment of gn.˛
.n/
i /D ˛.n/

iC1
, in a reduced code. In

other words, gn sends everything before the central 0u in ˛.n/i to V̨ .n/
iC1

.

Remark 6.1 When dealing with the arcs ˛.n/i , the floor function in V̨ .n/i is actually unnecessary, as
`c.˛

.n/
i / will always be even with the central two characters being 0o0u. However, at this point in the paper

we have not proven this fact, which is a consequence of Proposition 6.2, so we will not use it in what follows.

Proposition 6.2 For any n and any i , we have gn. V̨
.n/
i 0u/D V̨

.n/
iC1

0u in a reduced code.
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h
.1/
2

h1. V̨
.1/
1
/

h1.0o0u/

h
.1/
2
ı h1.0o0u/

h
.1/
2
ı h1. V̨

.1/
1
/

h
.1/
3

Figure 31: Here we consider h1. V̨10u/D h1. V̨1/Ch1.0o0u/ and take the images of each subseg-
ment separately. The images are drawn as train tracks for clarity, but we omit the weights as they
are immaterial. When we put the images h.n/

2
.h1. V̨1// and h.n/

2
.h1.0o0u// D 0o0u in standard

position individually with respect to h.n/3 (the second picture), there is a gap in the segment
between p and B1, which would have been a full crossing. This results in a loss of information in
the image under h.n/3 .

In order to prove Proposition 6.2, we need to understand how to control cascading cancellation for our home-
omorphisms gn (see Section 4.1 for the definition and a discussion of cascading cancellation). The follow-
ing lemma is almost a direct consequence of Lemma 4.10, the difference being that gn is not itself a shift.

Lemma 6.3 For all k � nC1, if ko=uku=o appears in a reduced code for ˛.n/i , then there is no cancellation
involving gn.ko=uku=o/ in an unreduced code for ˛.n/

iC1
. In particular , such a pair ko=uku=o will yield

.kC 1/o=u.kC 1/u=o in a reduced code for ˛.n/
iC1

.

Proof The union of the turbulent regions for h1, h.n/
2

, and h.n/
3

is Œ�n� 1; nC 1�. Therefore we may
apply Lemma 4.10 three times once we remark that h.n/

2
shifts left, h1.ko=uku=o/D .kC1/o=u.kC1/u=o,

and h.n/
2

fits the hypothesis of Lemma 4.10, as kC 1> nC 1.

We can now use this control on cascading cancellation to prove Proposition 6.2.

Proof of Proposition 6.2 As ˛.n/i is symmetric, the only way this proposition could be false is if
there is cancellation in gn.˛

.n/
i / involving the image of the central 0o0u (which is also 0o0u) in ˛.n/i .

Equivalently, we need to show that there is no cancellation involving the final 0o0u in gn. V̨
.n/
i 0u/. We

begin by considering the case i D 1, where

(4) V̨
.n/
1 0u D Ps0o1o2o : : : .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o0u;

and all of the characters that are not displayed are ko for the appropriate k. By Lemma 6.3, there is no
cancellation in gn.˛

.n/
1
/ involving gn..nC 1/o.nC 1/u/, and so there can be no cascading cancellation
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involving both the final 0o0u and the image of any character before .nC 1/o.nC 1/u in (4). Thus it
suffices to consider gn.�0u/, where

�D .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o:

A direct computation yields, in a reduced code,

(5) gn.�0u/D .nC 2/o.nC 2/u.nC 1/ono : : : .n� 1/ono�0u;

and from this computation we can see that there is no cancellation in gn. V̨
.n/
1
/ involving the final characters,

0o0u. Thus gn. V̨
.n/
1

0u/D V̨
.n/
2

0u in a reduced code.

By (5), we also see that gn.�0u/ also ends in �0u. Hence, to show that the result holds for any index i ,
we simply repeatedly apply gn and Lemma 6.3 as in the previous paragraph.

We can deduce from Proposition 6.2 that if an arc  starts like ˛.n/i , then an unreduced code for its image
gn. / will start like ˛.n/

iC1
. We will use the following technical theorem to show that this is true for a

reduced code for gn. /, as well.

Theorem 6.4 Let  be a simple arc of the form  D Ps�10o�2Ps in standard position. Assume the
following two conditions hold :

(1) The numerical value of �i
2

is at most 0, ie �i
2

is either 0u or Po=u.

(2) Either the first two characters of �2 are not a loop around P or , if they are , the initial segment of �2

is given by PuPo0o1o.

Then there is no cancellation with the initial 0o in a reduced code for gn.0o�2Ps/.

We note that the first condition means that the segment 0o is oriented to the left.

Remark 6.5 Theorem 6.4 is written with a particular orientation in mind, but such an orientation is
arbitrary. That is to say, the exact same statement is true applied to the image of  under gn. We will use
both the original and this “reverse” version of Theorem 6.4 later in the paper, so we make its statement
precise: Suppose, as in Theorem 6.4, that  D Ps�10o�2Ps and

(1) the numerical value of �t
1

is at most 0;

(2) either the final two characters of �1 are not a loop around P or the final segment of �1 is given by
1o0oPoPu.

Then there is no cancellation with the terminal 0o in a reduced code for gn.Ps�10o/.
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�j

CjCjC1

C�jC1

Figure 32: Situation in the proof of Lemma 6.6.

We will prove Theorem 6.4 through a series of lemmas. Fix an arc  which satisfies the hypothesis
of Theorem 6.4. We must show that there is no cancellation with the initial 0o in a reduced code for
gn.0o�2Ps/. For contradiction, suppose there is cancellation with the initial 0o in a reduced code for
gn.0o�2Ps/. Consider the subsegment of  given by 0oı, where 0oı is the minimal subsegment such
that gn.0oı/ has cancellation with 0o.

Lemma 6.6 The segment ı does not contain any back loops.

Proof Suppose towards a contradiction that ı contains at least one back loop and write ı in standard
form as

ı D �1C�1 C1CC
1
�2 : : : �sC�s CsCCs �sC1;

where the �i are possibly empty for i � sC 1. Then

gn.ı/D gn.�1C�1 /C1gn.C
C

1
�2C�2 /C2 : : :gn.C

C

s�1
�sC�s /Csgn.C

C
s �sC1/:

In order to have cascading cancellation involving 0o, there must be an instance of 0o in gn.C
C
s �sC1/

and the initial subsegment of gn.ı/ which ends immediately before that 0o must have trivial image. By
the minimality of our choice of ı, this initial subsegment must contain gn.Ci/D Ci for all i D 1; : : : ; s.
Since its image is trivial, there must be cancellation involving each Ci . The only way that this can occur
is if there is some j such that Cj D CjC1 and Cj gn.C

C
j �j C�

jC1
/Cj D∅. Consequently, we must have

gn.C
C

j �j C�
jC1

/D∅. This implies that exactly one of the following holds:

(1) h1.C
C

j �j C�
jC1

/D∅.

(2) h1.C
C

j �j C�
jC1

/¤∅ in a reduced code while h.n/
2
.h1.C

C
j �kC�

jC1
//D∅.

(3) h.n/
2
.h1.C

C
j �j C�

jC1
//¤∅ in a reduced code while h.n/

3

�
h.n/

2
.h1.C

C
j �j C�

jC1
//
�
D∅.

Let i correspond to which of the above cases we are in and let hD h.n/i . Define

� 0j D

8̂<̂
:

CCj �j C�
jC1

; hD h1;

h1.C
C

j �j C�
jC1

/; hD h.n/
2
;

h.n/
2
.h1.C

C
j �j C�

jC1
//; hD h.n/

3
:

By assumption, � 0j ¤∅ and h.� 0j /D∅.
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By Theorem 4.8, this implies that � 0j is a loop which begins and ends in the turbulent region and does
not fully cross D in .n1; n2/. Moreover, in ı, the path � 0j is preceded by Cj and followed by CjC1 D Cj

and so one of the back loop connectors CCj or C�
jC1

must fully cross D. However this is a contradiction,
since these back loop connectors must occur in .n1; n2/. See Figure 32.

Notice that 0o does not appear in the image under gn of any segment supported on

.�1;�n� 1/[ ŒnC 1;1/:

Therefore, if ı contains any subsegment supported in this region then, by minimality, it must also contain
a subsegment of the form qo=uqu=o for q � nC1 or q <�n�1; in other words, the segment ı must “turn
around” in the shift region. Moreover, by Lemma 6.6, ı can have no back loops, and hence Lemma 4.10
implies that such a qo=uqu=o blocks cascading cancellation, so this cannot occur. Thus, we conclude that a
reduced code for 0oı is supported on Œ�n� 1; nC 1/.

We will now show that there is no cancellation involving 0o under each of h1; h
.n/
2

, and h.n/
3

. By the
assumptions of the theorem, the 0o in 0oı is oriented to the left. If there is no cancellation involving 0o

under a shift, then 0o persists in the image and is still oriented to the left. This implies that the character
after 0o in the image still satisfies condition (1) of the theorem, that is, it is either 0u or Po=u.

A straightforward calculation shows that h1.0oı/ cannot cancel 0o for any ı. This follows from the fact
that @D1 contains 0u, not 0o, where D1 is the domain for h1. Write 0oı

0 for the reduced code of h1.0oı/,
which is another segment completely contained in the region .�n� 1; nC 1� with no back loops. The
first character of ı0 is still either 0u or Po=u.

It remains to rule out any cancellation involving 0o under h.n/
2

and h.n/
3

. We do this in the following two
lemmas.

Lemma 6.7 There is no cancellation involving 0o under h.n/
2

.

Proof For contradiction, assume that there is cancellation involving 0o, and let � be the minimal
subsegment of 0oı

0 which has cancellation with 0o under h.n/
2

.

If �t D 0o, then � is a loop whose image is trivial. By Theorem 4.8, � must be of the form

@D2jŒ0;n1/.n1/o=u.n1/u=o@D2jŒ0;n1/;

where D2 is the domain of h.n/
2

. In particular, �iD0o and this 0o is oriented to the right. However, as noted
above, the initial 0o of 0oı is oriented to the left, which contradicts that � is an initial subsegment of 0oı

0.

Therefore, � D 0o�
0a1a2, where the 0o which cancels with �i D 0o appears in h.n/

2
.a1a2/ and is not the

terminal character. This is the case exactly when a1a2 is either a full or half crossing. Moreover, in order
for 0o to appear in the image of a1a2, we must have that the numerical values of a1 and a2 are greater
than or equal to zero, since h.n/

2
shifts to the left.
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There are two cases to consider: either .�0/i D 0u or .�0/i D Po=u. If .�0/i D 0u, then �0 contains a
character which disagrees with @D2, namely 0u. On the other hand, if .�0/i D Po=u, then it must be
oriented to the left. Since the numerical values of a1 and a2 are at least 0 and P < 0, �0 must “turn around”
and contain an over-under loop in turbulent region. In particular, it must again contain a character which
disagrees with @D2. In either case, call the character which disagrees with the boundary of the domain b.

By Lemma 4.11, b persists in a reduced code for h.n/
2
.�0/ and such a b must block any cascading

cancellation. However, by assumption, there is cancellation between two instances of 0o in an unreduced
code for h.n/

2
.�0/, one which precedes b and one which succeeds b. This is a contradiction.

It remains only to check for cancellation under h.n/
3

.

Lemma 6.8 There is no cancellation involving 0o under h.n/
3

.

Proof The argument is similar to the proof of Lemma 6.7. For contradiction assume that there is
cancellation involving 0o and write ˇD 0oı

00 for the minimal subsegment of a reduced code for h.n/
2
.0oı

0/

which has cancellation with 0o under h.n/
3

. Note that .ı00/i is still either 0u or Po=u. By the same reasoning
as in the proof of Lemma 6.7, ˇ D 0oˇ

0c1c2, and c1c2 is a full or half crossing. Recall that for the shift
h.n/

3
, n1 D�n� 1, n2 D nC 1, and h.n/

3
shifts to the right.

If ˇ0c1 contains a character which does not agree with @D3, then the contradiction follows by applying
Lemma 4.11 as in the proof of Lemma 6.7. However, it is possible that ˇ0c1 does not contain such a
character. This occurs exactly when ˇD@D3j.n1;0�.n1/o=u. This possibility did not arise when considering
h2 because h2 is a left shift, and so n1 > 0.

In this case, ˇ must begin with 0oPu.�1/o. We will now show that ˇ could not be the image of 0oı under
h.n/

2
ı h1. In the notation above, .�1/o is in the image of � D 0oı

0 under h.n/
2

. Since .�1/o disagrees
with @D2, there must be an instance of .�1/o in ı0 by Claim 4.12. Let � 0 D 0o�.�1/o be the subsegment
of � so that h.n/

2
.� 0/D 0oPu.�1/o. We can find � directly by computing .h.n/

2
/�1.0oPu.�1/o/. Recall

that we cannot always take the preimage of a segment under a permissible shift (see the discussion in
Section 3.4). However, in this case we are able to take the preimage precisely because Claim 4.12 ensures
that 0oPu.�1/o is the image of a subsegment of h.n/

2
.�/. Computing .h.n/

2
/�1.0oPu.�1/o/ results in

� 0 D 0oPu@D2jŒP;nC1/.nC 1/u.nC 1/o@D2jŒP;nC1/.�1/o:

In particular, � 0 starts with 0oPuPo0o1u. To conclude the proof, we will show that � 0 cannot occur as the
image under h1 of the segment 0oı.

Assume for contradiction that h1.0oı/D �
0. Since Po does not agree with @D1, there must be an instance

of Po in ı by Claim 4.12. Let 0o�Po be the initial subsegment of 0oı so that h1.0o�Po/D 0oPuPo. As
above, we may directly compute the preimage of 0oPuPo under h1. This shows that 0o�Po D 0oPuPo.
The assumptions of the theorem then imply that 0oı starts with 0oPuPo0o1o, where 1o is oriented to
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the right. Since � 0 starts with 0oPuPo1u, the only way h1.0oı/D �
0 is if there is cancellation with the

terminal 1o in 0oPuPo0o1o when we apply h1 to 0oı. Since h1 shifts to the right and � 0 contains .�1/o,
it must be the case that 0oı contains a loop ko=uku=o with k � 1. In particular, 0oı starts with either
0oPuPo0o1o1u (if k D 1/ or 0oPuPo0o1o�ko=uku=o where � is strictly monotone increasing (if k > 1).
Since n2D 1 for h1, Lemma 4.10 then implies that this ko=uku=o blocks cancellation between the terminal
1o in 0oPuPo0o1o and any characters in 0oı that appear after koku. Since the segment � of 0oı between
1o and koku is either empty (if k D 1) or a strictly monotone increasing segment (if k > 1), using the
fact that h1 shifts to the right, it is straightforward to check that there can be no cancellation with the
terminal 1o in 0oPuPo1o when we apply h1, which is a contradiction. This completes the proof.

Lemmas 6.6, 6.7, and 6.8 show that gn.0oı/ has no cancellation with 0o, which completes the proof of
Theorem 6.4.

As promised at the beginning of this section, we have the following corollary.

Corollary 6.9 For any fixed n and any i � 0, ˛.n/
iC1

starts like ˛.n/i . More generally, for any i � 1, if 
starts like ˛.n/i then gn. / starts like ˛.n/

iC1
.

Proof First, a direct computation shows that for any fixed n, ˛.n/
1

starts like ˛.n/
0

. For all i � 1, we will
prove both statements simultaneously, using strong induction. We will show that for each n and any i � 1,
if  is a simple arc that starts like ˛i , then gn. /D V̨

.n/
iC1

�0 for some reduced �0 which has the form of �2

in the hypotheses of Theorem 6.4.

For the base case i D 1, suppose  starts like ˛.n/
1

so that we may write

 D V̨ .n/1 �;

in a reduced code. Applying gn to both sides of this equation, we have, in an unreduced code,

gn. /D gn. V̨
.n/
1 /�0;

for some reduced �0. By Proposition 6.2, gn. V̨
.n/
1
/D V̨ .n/

2
in a reduced code. Thus to conclude that gn. /

starts like ˛.n/
2

, we need to show that gn. V̨
.n/
1
/D V̨ .n/

2
persists in a reduced code for gn. /. Since V̨ .n/

1

ends with 0o, it suffices to show that � has the form of �2 in the hypotheses of Theorem 6.4 so that there
is no cancellation with this 0o. We have V̨ .n/

1
D Ps0o1o2o : : : .nC1/o.nC1/uno.n�1/o : : : 2o1o0o, and

so the terminal 0o is oriented to the left. It follows that � satisfies Theorem 6.4(1). Moreover, since
 is simple and starts like ˛.n/

1
, if � begins with a loop around p, it must begin with PuPo0o1o (see

Figure 33). Thus � satisfies Theorem 6.4(2) and so Theorem 6.4 shows that there is no cancellation in
gn. / between the final 0o in gn. V̨

.n/
1
/ D V̨ .n/

2
and �0. Therefore, gn. / starts like ˛.n/

2
. In particular,

a direct computation shows that ˛.n/
2

starts like ˛.n/
1

and so by setting  D ˛.n/
2

, we have shown that
gn.˛

.n/
2
/D ˛.n/

3
starts like ˛.n/

2
.

To finish the base case, we will now show that �0 has the form of �2 in the hypotheses of Theorem 6.4.
A direct computation shows that V̨ .n/

2
ends with .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o, and so that �0
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P 0 1 2

Figure 33: The arc ˛.n/
1

is in red; the gray portions may vary depending on n. One possibility for
 and the subsegment � is shown in blue; the gray portions may vary depending on n.

satisfies Theorem 6.4(1). As above, since gn. /D V̨
.n/
2
�0 is simple and ˛.n/

2
(and therefore V̨ .n/

2
) starts

like ˛.n/
1

, it follows that if �0 starts with a loop around p, it must begin with PuPo0o1o, so �0 satisfies
Theorem 6.4(2). This completes the base case.

Now assume the results hold for all j < i . For the induction step, suppose that  D V̨ .n/i � for some �
which has the form of �2 in the hypotheses of Theorem 6.4. The argument for this case goes through
exactly as in the base case except we need one additional argument to show that �0 has the form of �2 in
the hypotheses of Theorem 6.4, where gn. /D V̨

.n/
iC1

�0 in a reduced code. By the proof of Proposition 6.2,
V̨ .n/

iC1
ends with �D .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o and therefore �0 satisfies Theorem 6.4(1). To

see that �0 satisfies Theorem 6.4(2), notice that ˛.n/
iC1

starts like ˛.n/i , which starts like ˛.n/
i�1

, etc, so that
˛.n/

iC1
(and therefore V̨ .n/

iC1
) starts like ˛.n/

1
. In particular,  must start like ˛.n/

1
. Since  is simple, if �0

starts with a loop around p, it must begin with PuPo0o1o and Theorem 6.4(2) is satisfied. This completes
the induction step, and the result is proved.

7 Highways in arcs

In this section, we introduce and examine the prevalence of certain segments of the code for ˛.n/i that
we call highways. The presence of highways forces arcs disjoint from ˛.n/i to have very specific initial
and terminal subsegments. This will be instrumental in proving Theorem 7.10, which shows that if ı is
any arc which starts like ˛.n/i and  is an arc disjoint from ı, then  starts like ˛.n/

i�1
, provided i is large

enough. In Section 8, we will use Theorem 7.10 to show that the arcs ˛.n/i lie on a quasigeodesic in the
modified arc graph.

In Section 7.1, we will give general preliminary definitions and results for general arcs, and then in
Section 7.2 we will analyze highways in the arcs ˛.n/i .

7.1 Preliminaries on highways

Recall our convention that all arcs are assumed to be simple and start and end at p.

Definition 7.1 Given an arc ı D Psq1�q2Ps , where q1; q2 are single characters which are not C and �
is a segment, we say that ı has highways if either q1Po=uPu=oq1 or q2Po=uPu=oq2 is a subsegment of ı.
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q1

q2

q1

q2

q2

q1

Figure 34: At the top is an arc where q1 D q2 and the red segment shows that this arc has
highways. Below are two arcs where q1 ¤ q2 and the blue segments must appear if the arc has
highways. However, this arrangement contradicts the simplicity of each arc (see Lemma 7.2) so
neither arc has highways.

The following lemma is an almost immediate corollary of the definition and the fact that ı is simple.

Lemma 7.2 If ı is an arc that has highways , then

ı D Ps� : : : �Ps;

for some segment � with `c.�/ > 0. That is to say, the first part of the code for ı always overlaps with the
reverse of the last part of the code in at least two characters , one of which is Ps .

Proof It suffices to consider the case when � is a single character, so that � D aD � for some a. Since
ı D Psq1�q2Ps , if the conclusion does not hold, then q1 ¤ q2. In this case, either the subsegment Psq1

intersects q2PoPuq2 or the subsegment q2Ps intersects q1PoPuq1, contradicting the fact that ı is simple.
See Figure 34.

Recall that in the code for an arc, the character Ps does not correspond to any subsegment. Since the first
and last characters of every arc are always Ps , we use the first two characters of ı in the statement of the
above lemma to ensure that there is an initial subsegment of ı which fellow travels a terminal subsegment.

In the future, we will need to use a refined notion of highways to constrain the beginnings of certain arcs.
For this we define a notion of right lane and left lane. See Figure 35 for examples and nonexamples.

Definition 7.3 Given an arc ı that has highways, a subsegment � of ı is called a left lane if one of the
following holds:

(1) �D PoPu , where  does not contain C and  is maximal with respect to the property that the
code for Ps coincides with the initial `c.Ps / many characters in ı and Ps coincides with the
terminal `c.Ps / many characters in ı; or

(2) �D PuPo is the reverse of the segment of the form in (1).
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Figure 35: Some examples and nonexamples of left and right lanes are shown in blue. Top left:
the blue segment is not a left lane since it does not coincide with the terminal subsegment of the
arc. Top right: the blue segment contains both left and right lanes. There is a left lane via case (2)
of Definition 7.3 and a right lane via case (1) of Definition 7.4. Bottom left: the blue segment
contains two left lanes via case (2) of Definition 7.3. Bottom right: the blue segment contains two
left lanes via case (1) of Definition 7.3 (notice the orientation on the arc has been changed).

We note that the reason that there are two possibilities for a left lane is that we want the definition to be
independent of the orientation of ı.

Definition 7.4 Given an arc ı that has highways, a segment � of the code is called a right lane if one of
the following holds:

(1) �D PuPo , where  does not contain C and  is maximal with respect to the property that the
code Ps coincides with the initial `c.Ps / many characters in ı and Ps coincides with the
terminal `c.Ps / many characters in ı; or

(2) �D PoPu is the reverse of the segment from (1).

If ı is a symmetric arc (see Definition 4.4), then in Definitions 7.3 and 7.4 it suffices to check the overlap
on just the initial part of the code for ı. However, in the general case, checking the overlap with both the
initial and terminal parts of the code for ı is necessary.

Definition 7.5 Let ı be an arc with highways. The lane length L.�/ of a left or right lane � of ı is
defined to be

L.�/D `c.�/� 1:

We denote the collection of all left lanes of ı by L and similarly of all right lanes of ı by R.
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ı

Figure 36: In blue is (a portion) of an arc ı. The shaded disk around the puncture is Dp . This
example has two right lanes (in green), a portion of which are shown, and two left lanes (in pink),
which are shown in their entirety. The Po=uPu=o portion of these lanes are contained in Dp while
all other strands of ı are disjoint from Dp .

Through the rest of the section, we fix a closed topological disc Dp of sufficiently small radius with
center at the puncture p such that Dp has empty intersection with each Bi where i 2Z, contains BP , and
has empty intersection with each separating curve fSig from Section 3.2.1. Moreover, we will only work
with homotopy representatives of ı which have reduced code and the property that any pair Po=uPu=o lies
inside of Dp , while any other segments remain outside, except for the two that come from the initial and
terminal two characters of ı (see Figure 36). Throughout the section, when we further homotope ı we
will only do so relative to Dp, so one can assume that the set ı\Dp is pointwise fixed.

A left or right lane � is called innermost if every oriented straight line segment with initial point at
the puncture and terminal point on the boundary circle of Dp intersects the Po=uPu=o at the beginning
(resp. end) of � before it intersects any other lane of the same type (left or right). If the oriented line
segment does not intersect any lane, then this condition is vacuously satisfied. See Figure 37. In particular,
innermost left and right lanes are the lanes which are closest to an initial and terminal subsegments of ı.

We then have the following lemma.

Lemma 7.6 Let ı be an arc that has highways. Let � 2 L and � 2R denote the innermost left and right
lanes of ı, respectively. Then L.�/ � L.�0/ for all �0 2 L and L.�/ � L.�0/ for all �0 2R. Moreover ,
writing �D PuPoˇl or its reverse and �D PoPuˇr or its reverse , then if  is an arc disjoint from ı, then
one of the following holds:

(1)  has initial code Psˇl and terminal code Psˇl ,

(2)  has initial code Psˇr and terminal code Psˇr .

Figure 37: The blue and red segments are the initial portions of innermost left and right lanes,
respectively. The dotted gray segments intersect these segments before intersecting the initial or
terminal portion of any other lane.
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Figure 38: In black is (a portion) of an arc ı. The red disk is Dp . Any arc  which is disjoint from
ı must have initial and terminal segment which follows one of the three purple strands emanating
from the puncture and continues to fellow travel ı.

Intuitively, this lemma states that the arc  must “stay in a lane” of the arc ı; see Figure 38. Note that we
do not require  to be distinct from ı, so this statement applies to ı as well. Indeed, the arc ı can always
be homotoped to be disjoint from itself while retaining the same code.

Proof The hypothesis that ı has highways implies that L;R¤∅, and hence an innermost left and right
lane exist. We prove the first statement for the innermost left lane �; an identical proof works for �.

Since � is innermost, if there exists a left lane �0 2 L such that L.�0/ >L.�/, then we get a contradiction
to the simplicity of ı, as � must intersect either �0 or an initial segment of ı. See Figure 39.

For the final statement, fix an arc  that is disjoint from ı. It must be the case that the initial and terminal
subsegments of  are each contained in a single connected component of Dp n ı (not necessarily the
same component). Moreover these initial and terminal subsegments must begin at the puncture p and
therefore must also fellow travel �, �, and the initial=terminal parts of ı (see Figure 38). Therefore, by
the same reasoning as in the previous paragraph, we see that  satisfies conclusion (1) of the lemma if
`c.ˇl/� `c.ˇr / and satisfies conclusion (2) of the lemma if `c.ˇr /� `c.ˇl/.

7.2 Highways for the arcs ˛.n/
i

The main goal of this section is to apply the technology of the previous section to show that any arc
disjoint from an arc which starts like ˛.n/i starts like ˛.n/

i�1
, provided i is large enough (see Theorem 7.10).

�0

Psˇ
0
L

�

Figure 39: A schematic of the two left lanes: �, which is innermost, and �0, which is not. If
�0 fellow travels an initial segment of ı for longer than � does, then � must intersect either �0

(pictured) or the initial segment of ı.
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To do this, we will show that ˛.n/i has highways for all i � 2 and all n, beginning by proving the result
for i D 2. For fixed i and n, define �.n/i to be all of V̨ .n/i except the initial Ps , so that

(6) V̨
.n/
i D Ps�

.n/
i :

Proposition 7.7 The segment ˛.n/
2

contains a subsegment of the form �.n/
1

PuPo�
.n/
1

that appears as the
final subsegment of V̨ .n/

2
. In particular , ˛.n/

2
has highways whose lanes contain �.n/

1
.

Proof We prove this by carefully examining the code for ˛.n/
1

, which we assume is in standard position
relative to the disk Dp . As in Section 6, we will retain the 0u which immediately follows V̨ .n/

1
when we

compute images. We will show that �.n/
1

PuPo�
.n/
1

0u appears as the final subsegment of V̨ .n/
2

0u, which
then implies the statement of the proposition.

By Proposition 6.2, V̨ .n/
2

0u D gn. V̨
.n/
1

0u/. Recall from (4) that

(7) V̨
.n/
1 0u D Ps0o1o : : : .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o0u:

Defining � WD∅ if nD 1 or � WD no.n� 1/o : : : 2o if n> 1, a computation shows that

h1. V̨
.n/
1 0u/D Ps0o1o2o : : : .nC 2/o.nC 2/u.nC 1/ono : : : 2o1o0o0u

D Ps0o1o2o : : : .nC 2/o.nC 2/u.nC 1/o�1o0o0u:

See also Figure 40, top pair. We will show that the image of the 1o0o0u at the end of this last equation
under h.n/

3
ı h.n/

2
produces the requisite segment in ˛.n/

2
.

A direct computation shows that

h.n/2 ..nC 2/o.nC 2/u.nC 1/o�1o0o0u/D .nC 1/o.nC 1/u�h.n/2 .1o0o0u/;

since all of � is disjoint from D2. In standard position, 1o0o0u contains a full crossing, and we compute
that

h.n/2 .1o0o0u/D 1o@D2j.�n�1;0�.�n� 1/o.�n� 1/u@D2j.�n�1;0�0o0u;

in an unreduced code. We thus have the decomposition

(8) h.n/2 ..nC 2/o.nC 2/u�1o0o0u/

D .nC 1/o.nC 1/u�1o@D2j.�n�1;0�.�n� 1/o.�n� 1/u@D2j.�n�1;0�0o0u

D �1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u;

where each �i is defined by the second equality. See Figure 40, middle pair. None of �1; �2; �3 fully cross
D3 in standard position. As .�1/uPo0u fully crosses D3 twice, we compute that

(9) h.n/3 ..�1/uPo0u/D .�1/uPu0o@D3j.0;n�.nC 1/u.nC 1/o@D3j.0;n�0oPuPo0o@D3j.0;n�

.nC 1/o.nC 1/u@D3j.0;n�0o0u

D .�1/uPu�
.n/
1 PuPo�

.n/
1 0u:
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h1

V̨ .n/
1

0u

h1. V̨
.n/
1

0u/
�2

h.n/2

�

�

h.n/2 ..nC 2/o.nC 2/u�21o0o0u/

�1�2

�3

h.n/
3

�.n/
1

�.n/
1

Figure 40: The direct computations done in the proof of Proposition 7.7. Top pair: the image of
˛.n/1 0u under h1. Middle pair: the image under h.n/2 of the segment � , shown in red and black.
Bottom pair: the two full crossings in red give rise to �.n/

1
and �.n/

1
, which are shown in green, in

the proof of Proposition 7.7 upon applying h.n/3 .

Hence we see that �.n/
1

PuPo�
.n/
1

0u is contained in an unreduced code for gn. V̨
.n/
1

0u/. It remains to show
that this segment persists in a reduced code for gn. V̨

.n/
1

0u/D V̨
.n/
2

0u.

Proposition 6.2 shows that if �.n/
1

PuPo�
.n/
1

0u persists in a reduced code for V̨20u then it persists in a
reduced code for ˛2. To check if �.n/

1
PuPo�

.n/
1

0u persists in a reduced code for V̨20u, we need only
consider a reduced code for the image under gn of the characters following the .nC 1/o.nC 1/u in (7),
because Lemma 6.3 shows that the pair .nC1/o.nC1/u blocks cascading cancellation between characters
on either side. This is precisely the segment whose image under h.n/

2
is given by (8).
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We will use direct computation to show that the segment �.n/
1

PuPo�
.n/
1

0u is the final segment of a reduced
code for

(10) h.n/3

�
�1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u

�
:

Before making this computation, we point out the relevant pieces. Each .�1/uPo (or its reverse) in (10)
fully crosses D3 and has image given by the first half of (9), up to reversing the orientation. The terminal
Po0u also fully crosses D3, and so we may similarly compute its image. The segments �2, �3 are invariant
under h.n/

3
. The image of �1 is h.n/

3
.�1/D .nC2/o.nC2/u.nC1/o�1o0o. Moreover, the four characters

� t
2
.�n�1/o.�n�1/u�

i
3

form a loop which fully crosses D3 exactly once. (Note that � t
2
D � i

3
D .�n/o=u,

where the choice of o=u depends on the parity of n.) Combining all of these remarks, we find the following
reduced code (see Figure 40, bottom pair):

h.n/3

�
�1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u

�
D .nC 2/o.nC 2/u.nC 1/o�1o0oPoPu0o : : : .nC 1/o.nC 1/uno : : : 0o

Pu@D2j.�n;�1�.�n/u.�n/o@D3j.�n;nC1/.nC 1/o.nC 1/u@D2j.�n;n�.�n/o.�n/u@D2j.�n;�1�Pu

@D3jŒ0;nC1/.nC 1/u.nC 1/o@D3j.P;nC1/PuPo@D3jŒ0;nC1/.nC 1/o.nC 1/u@D3jŒ1;nC1/0o0u:

In particular, we see the requisite segment as the last line of this string. Precisely, we have

�.n/1 D @D3jŒ0;nC1/.nC 1/o.nC 1/u@D3jŒ1;nC1/0o:

This completes the proof of Proposition 7.7.

The next corollary shows that ˛.n/i has highways whose lanes contain �.n/
i�1

. Notice that gn.�
.n/
i�1
/D �.n/i

by Proposition 6.2.

Corollary 7.8 When i � 2, ˛.n/i contains a subsegment of the form �.n/
i�1

PuPo�
.n/
i�1

that appears as the
final subsegment of V̨ .n/i . In particular , ˛.n/i has highways for all i � 2 with lanes containing �.n/

i�1
.

Proof As above, we will retain the 0u which immediately follows V̨ .n/i when we compute images. We will
show by induction that gn. V̨

.n/
i�1

0u/ ends with �.n/
i�1

PuPo�
.n/
i�1

0u in a reduced code, which will show that
�.n/

i�1
PuPo�

.n/
i�1

appears as the final subsegment of V̨ .n/i . Since gn. V̨
.n/
i�1

0u/D V̨
.n/
i 0u by Proposition 6.2,

this will imply that such a segment persists in ˛.n/i .

The base case i D 2 was shown in Proposition 7.7, so we proceed to the induction step. Using the
induction hypothesis, write

V̨
.n/
i�10u D Ps�1�

.n/
i�2PuPo�

.n/
i�20u;

for some subsegment �1. A calculation shows that in an unreduced code

gn.�
.n/
i�2PuPo�

.n/
i�20u/D gn.�

.n/
i�2C 0oPuPo0oC�

.n/
i�20u/

D gn.�
.n/
i�2/Cgn.0oPuPo0o/Cgn.�

.n/
i�20u/

D �.n/i�1PuPo�
.n/
i�10u;
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where one verifies that the last line is in fact reduced. We therefore reduce to showing that �.n/
i�1

PuPo�
.n/
i�1

0u

persists as the terminal substring of V̨ .n/i 0u. For this, we must prove that no characters in an unreduced
code for gn.Ps�10o/ cancel with this terminal 0o, which is .�.n/

i�1
/i .

Recall from (6) that �.n/
i�1

is by definition all of V̨ .n/
i�1

except the initial Ps . In particular, its terminal
character 0o D .�

.n/
i�1
/t is oriented to the left. Thus the initial 0o of the reverse segment �.n/

i�1
is oriented

to the right. Since we are considering the segment Ps�10o D Ps�1.�
.n/
i�1
/i , this implies that .�1/

t has
numerical value at most 0. Moreover, simplicity of V̨ .n/

i�1
shows that if �1 ends by looping around p, then

it must have 1o0oPoPu as its final segment. Theorem 6.4 combined with Remark 6.5 then shows that
there is no cancellation with .�.n/

i�1
/i D 0o in a reduced code for gn.Ps�10o/.

The following corollary follows immediately from Corollaries 6.9 and 7.8, our definition of �.n/i in (6),
and the definition of lane length.

Corollary 7.9 Fix i � 2 and let L and R denote the collections of left and right lanes in ˛.n/i , respectively.
Then

nL Dmax
�2L

L.�/� `c. V̨
.n/
i�1/ and nR Dmax

�2R
L.�/� `c. V̨

.n/
i�1/:

We are now in a position to prove the main result of the section.

Theorem 7.10 If ı is an arc which starts like ˛.n/i for some i � 2 and  is any arc disjoint from ı, then 
starts like ˛.n/

i�1
.

Proof Proposition 7.7 and Corollary 7.8 show that V̨ .n/i contains the segment �.n/
i�1

PuPo�
.n/
i�1

and hence
V̨ .n/i has highways for all i � 2.

As ı starts like ˛.n/i , the first part of its code is identical to that of V̨ .n/i and therefore ı also has highways
and also contains the segment �.n/

i�1
PuPo�

.n/
i�1

. By Lemma 7.6, the innermost left lane PuPo˛l (or its
reverse) and the innermost right lane PoPu˛r (or its reverse) in ı each have lane length at least `c. V̨

.n/
i�1
/.

Hence the first `c. V̨
.n/
i�1
/� 1 characters of these lanes immediately following Po=uPu=o must agree with

�.n/
i�1

or its reverse. As  is disjoint from ı, the moreover statement of Lemma 7.6 gives that the code for
 must begin with Ps˛l or Ps˛r . Consequently it must begin with V̨ .n/

i�1
D Ps�

.n/
i�1

, as required.

8 Loxodromic elements for A.†;p/

In this section, we will first conclude the proof of Theorem 1.1 and then go on to explore some properties
of our loxodromic elements gn, including identifying an explicit geodesic axis for gn, as well as describing
the limit points of gn on the boundary of the modified arc complex A.†;p/ for an admissible surface †.
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8.1 The proof of Theorem 1.1

Let S be the biinfinite flute surface we defined in Section 2 with isolated puncture p. Recall that A.S;p/
denotes the modified arc graph of S , as in Definition 2.3. Let ˛0 D Ps0o0uPs 2A.S;p/ be the arc from
Definition 5.2.

For each n, consider the map

(11) 'n WA.S;p/! Z�0;

defined by setting 'n.ı/ equal to the largest i � 0 such that ı starts like ˛.n/i . If there is no such i then
set 'n.ı/D 0.

Lemma 8.1 For any ; ı 2A.S;p/, we have dA.S;p/.; ı/� j'n. /�'n.ı/j.

Proof It follows from Theorem 7.10 that if dA.S;p/.; ı/ D 1, then j'n. / � 'n.ı/j � 1 for any n.
In particular, if 'n.ı/ D 'n. /, then we are done. If not, then without loss of generality, assume that
'n.ı/ < 'n. / and 'n. /D j . Then by Theorem 7.10, 'n.ı/D j � 1 so that j'n. /�'n.ı/j � 1. The
result then follows from the subadditivity of the absolute value.

Let fgngn2N be as in Definition 5.1, and let f˛.n/i gi2Z be as in Definition 5.2. We first show that the
elements gn 2Map.S;p/ are loxodromic with respect to the action on A.S;p/.

Proposition 8.2 For each n 2 N, the homeomorphism gn 2 Map.S;p/ is a loxodromic isometry of
A.S;p/ with a .2; 0/-quasigeodesic axis f˛.n/i gi2Z.

Proof We first show that the map Z�0! hgni˛0 � A.S;p/ defined by i 7! gi
n.˛0/ is a .2; 0/-quasi-

isometry. In other words, we will show that f˛.n/i gi�0 is a quasigeodesic half-axis for gn along which gn

acts as translation.

Let 'n be the map defined in (11). By Lemma 8.1, we have that dA.S;p/.; ı/� j'n. /�'n.ı/j for any
; ı 2A.S;p/. Since 'n.˛

.n/
i /D i for all i � 0, this implies that

(12) dA.S;p/.˛0; ˛
.n/
i /� i:

Consider the arc ˇ D Ps.�1/o.�1/uPs . Then ˇ is disjoint from both ˛.n/
0

and ˛.n/
1

. Since gn is a
homeomorphism, gi

n.ˇ/ is disjoint from both ˛.n/i and ˛.n/
iC1

, and thus dA.S;p/.˛
.n/
i ; ˛.n/

iC1
/� 2 for all i .

Therefore, for all i ,

(13) dA.S;p/.˛0; ˛
.n/
i /� 2i:

Together, (12) and (13) show that f˛.n/i gi�0 is a .2; 0/-quasigeodesic half-axis for gn.

Since f˛.n/i gi�0 is an unbounded orbit of gn, we can see that gn is not elliptic, and since gn acts as
translation along this quasigeodesic half-axis, gn cannot be parabolic. Thus we may conclude that gn is a
loxodromic isometry of A.S;p/.
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Recall from Definition 2.6 that a surface † with an isolated puncture p is admissible if there exists a
proper embedding S ,!† where S contains p, the two nonisolated ends of S correspond to distinct ends
of †, and with the property that either there are countably many connected components of † nS of the
same (nontrivial) topological type or countably many isolated punctures of S remain isolated punctures
when embedded in †. We denote this special class of connected components by U , so that the elements
of U are all homeomorphic to a fixed surface †0. Recall that this definition ensures that the shift maps
h1; h

.n/
2
; and h.n/

3
we are interested in on S extend to shift maps on †. In particular, gnD h.n/

3
ıh.n/

2
ıh1

extends to a homeomorphism of †. When we reference gn below, we will try to be specific about
when we are considering gn as an element of Map.S;p/ versus an element of Map.†;p/. Recall from
Definition 2.2 that a homeomorphism f 2Map.†;p/ is intrinsically infinite-type if f 62Mapc.†/.

Theorem 1.1 is then a direct consequence of the following theorem.

Theorem 8.3 Let† be an admissible surface. For each n 2N, the homeomorphism gn 2Map.†;p/ is a
loxodromic isometry of A.†;p/ with a .4; 0/-quasigeodesic axis f˛.n/i gi2Z. Moreover , gn is intrinsically
infinite-type.

Proof Fix n 2 N. By Proposition 8.2, gn is loxodromic with respect to the action of Map.S;p/ on
A.S;p/. Moreover, gn extends to an element of Map.†;p/ and so gn acts on by isometries A.†;p/ as
well. By Lemma 2.10, there is a .2; 0/-quasi-isometric embedding A.S;p/ ,!A.†;p/. Therefore the
image of the .2; 0/-quasigeodesic half-axis for gn constructed in Proposition 8.2 is a .4; 0/-quasigeodesic
half-axis in A.†;p/. It is clear that gn stabilizes this .4; 0/-quasigeodesic half-axis and so the arcs
f˛.n/i gi2Z�0

form a quasigeodesic half-axis for gn in A.†;p/. Therefore, gn is loxodromic with respect
to the action of Map.†;p/ on A.†;p/.

We now show that gn 62Mapc.†/. If†0 has a nontrivial end space, then gn 62PMap.†/ since gn translates
the elements of U . Note that Mapc.†/ < PMap.†/ so that gn is of intrinsically infinite-type in this case.

Now suppose that the end space of †0 is trivial, so that †0 is a finite-genus surface with one boundary
component. Therefore, S [U D†0 is homeomorphic to an infinite-genus surface with two nonplanar
ends and a countable number of planar ends. Note that † n†0 consists of all of the additional topology
of † that is irrelevant to our construction of shift maps. In this way, the planar ends of †0 cut away the
irrelevant topology of †.

By [3, Corollary 6], PMap.†0/DMapc.†
0/Ì Z.h0/, where h0 is the standard handleshift on †0, which

also corresponds to a handleshift on† by extending h0 via the identity on†n†0. For simplicity of notation,
we drop the subscript on gn in what follows since the argument does not depend on n. Theorem 8.5 below
tells us that when g is considered as an element of Map.S;p/, there is a compactly supported mapping
class ' such that g D 'h, where h is the right shift on S shifting the punctures corresponding to the
elements of U . As an element of PMap.†0;p/, and therefore of Map.†;p/, g is thus equal to ' � .h0/m,
where ' 2 Mapc.†

0/ < Mapc.†/ and m is the genus of †0. By the proof of [22, Proposition 6.3],
.h0/m 62Mapc.†/, so that g 62Mapc.†/ as well.
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S�n

S�n

R.n/
1

R.n/
3

R.n/
1

R.n/
3

R.n/
2

R.n/
2

SnC2

SnC2

Figure 41: The curves R.n/
i when n is odd and even (top and middle, respectively), and the surface

…D…n when n� 3 (bottom). In …, the blue, green, and purple punctures correspond to where
…0n was cut along the curves R.n/

1 ;R.n/
2 ;R.n/

3 , respectively.

8.2 Alternative description of gn

In this section, we show that our mapping classes gn can be written as the composition of a pseudo-Anosov
on a finite-type subsurface and a standard shift. Moreover, we will show that gn is the composition
of the same pseudo-Anosov on a fixed finite-type subsurface and a standard shift whenever n > 3;
however, this subsurface is embedded in † in different ways for different n, yielding distinct elements
of Map.†;p/. Though the gn can be expressed as a pseudo-Anosov composed with a shift map, they
are not end-periodic maps as defined in the work of Cantwell, Conlon, and Fenley [13]. In particular,
there are isolated planar ends, or punctures, that are fixed by our homeomorphisms (for example, the
puncture p). However, it is possible that some of the methods used to study end periodic maps could also
apply to the homeomorphisms we have constructed.

Let h be the shift map on our subsurface S that translates the punctures that correspond to elements of U ,
that is, the right shift whose domain contains the simple closed curves Bi for all i 2Z and maps Bi to BiC1.

Without loss of generality, for each n we may modify our separating curves S�n and SnC1 so that a
connected component …0n of S n .S�n [ SnC2/ is a sphere with 2 boundary components and nC 4

punctures, one of which is p. This amounts to pushing any extra topology on the back of S outside
of this subsurface. We now further modify …0n to form a subsurface …n for each n as follows. Let
R.n/

1
;R.n/

2
;R.n/

3
be the simple closed curves as shown in Figure 41. In particular,

� R.n/
1

encloses all Bi with �n� i � �1 and i odd;

� R.n/
2

encloses all Bi with �n� i � n and i even; and

� R.n/
3

encloses all Bi with 3� i � n and i odd.

Algebraic & Geometric Topology, Volume 25 (2025)



Infinite-type loxodromic isometries of the relative arc graph 625

1

1 1 1 4

2 4 6 8 1

1 1 1

1

1

4

8

2 4 6 7 9

Figure 42: The train tracks �n on the finite-type subsurface…n. Left: nD 1; 2. The pink puncture
only appears when nD 2. Right: n� 3.

Note that R.1/
i is empty for all i D 1; 2; 3, R.2/

i is empty when i D 1; 3, and R.3/
i is empty when i D 3.

For all n� 4, R.n/
i is nonempty for each i D 1; 2; 3.

Definition 8.4 Let …n be the component of …0n n .R
.n/
1
[R.n/

2
[R.n/

3
/ which contains the puncture p.

The surface …n is a sphere with 2 boundary components and some number of punctures: five punctures
if nD 1, six punctures if nD 2, and seven punctures if n� 3. Notice that the …n are homeomorphic for
all n� 3. However, the embedding �n W…n!† are different for distinct n. For any f 2 PMap.…n;p/,
let Nf WD �n ıf .

Theorem 8.5 For each n� 1, there is a pseudo-Anosov 'n 2 PMap.…n/ so that gn D 'nh. Moreover ,
for all n; n0 � 3, …n D…n0 and 'n D 'n0 as elements of PMap.…n/. However , 'n and 'n0 are distinct
elements of Map.†;p/ since the embeddings �n are distinct.

Proof We define 'n WD gnh�1 for all n� 1. It is clear that 'n stabilizes the subsurface …n and is the
identity on † n…n. Let 'n be the restriction of 'n to PMap.…n/, so that � ı'n D 'n. We will show that
'n is pseudo-Anosov. To do this, we will apply [28, Lemma 3.1], which states that a mapping class is
pseudo-Anosov if it preserves a large, generic, birecurrent train track whose associated transition matrix
is Perron–Frobenius. We will construct such a train track �n for each n.

The cases nD 1; 2 are slightly different and we will deal with them separately. For all n� 3, the surfaces
…n are homeomorphic and we will build a single train track which will satisfy the above conditions.
Notice that �n is a train track on the surface …n, so to show that �n is large, generic, and birecurrent
it suffices to consider …n. However, since 'n is defined as a restriction of 'n, which is a product of
elements of Map.†;p/ which are not supported on …n, we must consider the different embeddings of
…n into † in order to show that �n is preserved by 'n and to calculate the transition matrix of �n.

The train tracks �n for nD 1; 2 and for n� 3 are shown on …n in Figure 42. For all n, the following hold.
All switches are trivalent and so �n is generic. Each complementary region is a once-punctured disk or a
polygon and so �n is large. The weights on each branch of �n are positive and so �n is recurrent. Moreover,
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1 2 3 4 5 6 7

8

1 2 3 4 5 67 8

9

Figure 43: A collection of simple closed curves f .n/i g such that each branch of �n is intersected
transversely and efficiently by some  .n/i . As in Figure 42, the pink puncture only appears when
nD 2. Left: nD 1; 2. Right: n� 3.

the finite collections of simple closed curves f .n/i g in Figure 43 is such that each branch of �n is intersected
transversely and efficiently by some  .n/i , ie  .n/i [ �n has no complementary bigon regions for any i .
Therefore �n is transversely recurrent. Since �n is recurrent and transversely recurrent, it is birecurrent.

Figures 44 and 45 show that �n is preserved by 'n for nD 1; 2 and n� 3, respectively. It is immediate
from these figures that the matrix An associated to �n is

A1 DA2 D

0BB@
5 6 0 2

6 9 0 2

10 10 2 3

6 6 1 2

1CCA and An D

0BBBB@
5 6 0 2 0

6 9 0 2 0

10 10 2 2 1

6 6 1 1 1

6 6 1 2 0

1CCCCA;
when n� 3.

For each n, .An/
2 has all positive entries, hence An is Perron–Frobenius. We conclude that 'n is pseudo-

Anosov for all n by [28, Lemma 3.1].

While it is not necessary for this paper, it is interesting to note that for all n 2N, the top eigenvalue of
An is 9

2
C

1
2

p
41C

p
1
2
.59C 9

p
41/, which is associated to a unique irrational lamination on …n that is

carried by �n and fixed by 'n.

We say that a homeomorphism of Map.†;p/ is a pseudo-Anosov shift if it can be written as the composition
of a pseudo-Anosov on a finite-type subsurface containing p and a standard shift. The results of this
section inspire the following questions.

Question 8.6 When is the composition of shift maps a pseudo-Anosov shift?

Question 8.7 Does every pseudo-Anosov shift act loxodromically on A.†;p/?

8.3 Geodesic axes

The proof of Theorem 1.1 shows that, for each n, the sequence .˛.n/i /i2Z is a .4; 0/-quasigeodesic axis
for gn in A.†;p/. In this section, we find a geodesic axis for gn in A.†;p/.
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h
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2

h1h�1�

gn�

Figure 44: The train track �n is preserved by 'n D gnh�1 for n D 1; 2; the pink puncture only
appears when nD 2. The weights in the picture are used to calculate the matrix An associated to �n.

Theorem 8.8 For each n2N, there is a geodesic axis for gn in A.†;p/. Furthermore , gn has translation
length 1 on this axis.

Proof As dA.†;p/.; ı/� dA.S;p/.; ı/ for any arcs ; ı 2A.S;p/, the image of a geodesic under the
inclusion A.S;p/ ,!A.†;p/ is still a geodesic. Thus it suffices to construct a geodesic axis for gn in
A.S;p/. Toward this goal, define

ˇ.n/0 D Ps.�1/o.�2/o : : : .�n� 1/o.�n� 1/u.�n/o : : : .�2/o.�1/oPs 2A.S;p/;

and let

ˇ.n/i D gi
n.ˇ

.n/
0 /:
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x1

x2

x3
x4

x5

x1

x2
x3 x4

x5

x2

x1

x3 x4

x5

.3 5 5 3 3/ x2

x1

.0 0 2 1 1/
.0 0 1 1 0/

.2 2 2 1 2/

.6 9 10 6 6/

.5 6 10 6 6/

.0 0 2 1 1/
.0 0 1 1 0/

.2 2 2 1 2/

�

h�1�

h1h�1�

h
.n/
2 h1h�1�

gn�

Figure 45: The train track �n is preserved by 'nD gnh�1, when n� 3. The weights in the picture
show how to calculate the matrix An associated to �n. For ease of notation, we often write the
weights of each branch as a vector in the variables x1; : : : ;x5. For example, the label .2 1 2 4 5/

corresponds to the weight 2x1Cx2C 2x3C 4x4C 5x5.

Since the arcs ˇ.n/i are the orbit of ˇ.n/
0

under hgni and gn is a loxodromic isometry, it follows that they
form a quasigeodesic axis in A.†;p/ for gn. We will show that ˇ.n/

0
is disjoint from ˇ.n/

1
, which will

prove that .ˇ.n/i /i2Z is a geodesic axis for gn and that gn has translation length one on this axis. In fact,
it suffices to show that ˇ.n/

1
does not contain Po or ko=u for any k � �n� 1, as it then follows that ˇ.n/

0

is disjoint from ˇ.n/
1

; see Figure 46.

Applying h1 to ˇ.n/
0

yields

(14) h1.ˇ
.n/
0 /D Ps.�1/o.�2/o : : : .�n/o.�n/u.�nC 1/o : : : .�2/o.�1/oPs:
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�n� 1

ˇ.n/
0

Figure 46: If an arc  does not contain Po or ko=u for any k � �n� 1, then it must lie in the
shaded region of S . In particular,  must be disjoint from ˇ.n/

0
.

Since all of h1.ˇ
.n/
0
/ is to the left of the puncture, the image under h.n/

2
(which shifts to the left) will not

contain Po. Moreover, since Po disagrees with the code for the domain of h.n/
3

, neither will ˇ.n/
1

. Thus it
remains to show that ˇ.n/

1
does not contain ko=u for any k � �n� 1.

Recall that h.n/
3

shifts to the right and has shift region .�1;�n� 1�[ ŒnC 1;1/. Thus, any instance
of ko=u with k � �n � 1 in ˇ.n/

1
must be the image of .k � 1/o=u in h.n/

2
.h1.ˇ

.n/
0
//. Similarly, such

a .k � 1/o=u must be the image of ko=u in h1.ˇ
.n/
0
/, since h.n/

2
shifts to the left. However, by (14),

h1.ˇ
.n/
0
/ does not contain jo=u for j � �n� 1, and we conclude that ˇ.n/

1
does not contain ko=u for any

k � �n� 1.

8.4 Limit points of the gn

Since the relative arc graph A.†;p/ is a hyperbolic metric space, it has a well-defined Gromov boundary.
This boundary was described by Bavard and Walker [7; 8]. In this section, we describe the limit set of gn

on @A.†;p/ in terms of Bavard and Walker’s characterization of the boundary.

8.4.1 The Gromov boundary of A.†;p/ We begin by recalling some definitions from [7; 8]. It is
important to mention that in [7; 8], the word loop is used for what we call an arc in this paper. Any time
we mention a result from one of these two papers, we will convert it to our terminology. Let E.†/ denote
the space of ends of †, which necessarily contains our preferred puncture p.

Fix any hyperbolic metric (of the first kind) on †, as in [8, Theorem 3.0.1]. For a fixed lift of p to
the universal cover H2, which necessarily lies on @H2, there exists a parabolic subgroup G < �1.†/

stabilizing this lift. Define y†DH2=G to be the intermediate cover associated to this parabolic subgroup.
The space y† is called the conical cover of †. This cover has boundary S1 and contains a preferred lift yp
of p which comes from our fixed choice in the universal cover. Let � W y†!† be the natural quotient
map, let y̌ be any geodesic ray from yp to @y†, and let ˇ D �. y̌/. Thus y̌ has one endpoint on yp and the
other endpoint somewhere in @y†' S1. The other endpoint may be a lift of p that is not our chosen yp, (a
lift of) a point in E.†/ n fpg, or a point which is neither. If ˇ is simple, then in the first case ˇ is an
arc,2 in the second case ˇ is a short ray, and in the last case ˇ is a long ray. Equivalently, an embedding

2As noted above, Bavard and Walker call this a loop.
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ˇ W .0; 1/!† is a short ray if it can be continuously extended to a map y̌W Œ0; 1�!†[E.†/ such that
y̌j.0;1/ D ˇ, y̌.0/D p, and y̌.1/ 2E.†/n fpg (see [8, Section 5.1.1]), and ˇ is a long ray if it is neither
an arc nor a short ray.

Bavard and Walker construct a graph involving all three kinds of rays, which they use to describe the
Gromov boundary @A.†;p/ of the relative arc graph.

Definition 8.9 The completed ray graph R.†;p/ is the graph whose vertices are isotopy classes of simple
arcs, short rays, and long rays and whose edges correspond to homotopically disjoint isotopy classes.

By definition, A.†;p/ embeds in R.†;p/, but the following theorem shows that something stronger is
true. Recall that a clique is a complete graph.

Theorem 8.10 [8, Theorem 5.7.1] The connected component of R.†;p/ containing all arcs is quasi-
isometric to A.†;p/. All other connected components are cliques.

A particular type of long ray will be important in the description of the Gromov boundary of A.†;p/.
A long ray ˇ is k-filling if k is the minimum natural number such that there exists an arc ˇ0 and long
rays ˇ1; : : : ; ˇk D ˇ such that ˇi \ˇiC1 D∅ for all i � 0. In other words, a long ray is k-filling if it is
distance exactly k from an arc in R.†;p/.

Definition 8.11 A long ray ˇ is said to be high-filling if both of the following hold:

(1) ˇ intersects every short ray; and

(2) ˇ is not k-filling for any k 2N.

All of the vertices of the connected components that form cliques are high-filling rays; accordingly, such
cliques are called high-filling cliques.

Theorem 8.12 [8, Theorem 6.3.1] The set of high-filling cliques is in bijection with the Gromov
boundary @A.†;p/ of the relative arc graph.

8.4.2 The limit set of gn In [8, Section 7.1], Bavard and Walker prove that to associated to any
f 2Map.†;p/ acting loxodromically on A.†;p/, there exists an attracting clique of high-filling rays
CC.f / and a repelling clique of high-filling rays C�.f / in R.†;p/ that correspond to the attracting
and repelling limit points of f in @A.†;p/, respectively. The cliques CC.f / and C�.f / have the same
(finite) number of vertices, called the weight of f , denoted by w.f / (see [8, Definition 7.1.3]).

Following [7, Example 2.7.1], we have the following lemma.

Lemma 8.13 For any n� 1, the homeomorphism gn constructed in Theorem 1.1 satisfies w.gn/D 1.
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Proof For notational simplicity, fix n and define g D gn and ˛i D ˛
.n/
i . It suffices to prove that the

attracting clique CC.g/ consists of a single high-filling ray.

For each i , let y̨i be a lift of ˛i to the conical cover y†. Then y̨i is a simple geodesic arc with one endpoint
on yp and the other on some xi 2 @y†. By [8, Lemma 5.2.2], the set of endpoints of arcs, short rays, and
long rays is compact in @ O†, and hence there exists a subsequence .xik

/ of .xi/ which limits to a point
x1 2 @y†. Let y̨1 be the geodesic ray from yp to x1 and ˛1D �.y̨1/, where � W y†!† is the covering
map. The construction of the conical cover y† shows that ˛1 has an infinite-length code with initial
segment V̨ ik

for any k. Since `c. V̨ ik
/!1 as k!1 and V̨ ik

has an initial segment equal to V̨ ik�1
, this

uniquely determines the entire infinite code. We claim that ˛1 is a high-filling ray and, moreover, that
˛1 is the sole vertex in CC.g/.

That ˛1 is a ray follows from the fact that the set of endpoints of arcs in @y† are isolated [8, Lemma 5.2.2].
To see that ˛1 is high-filling, it therefore suffices to show that it intersects every other ray (short or long).
It follows from the same proof as Theorem 7.10 that any ray ˇ which is disjoint from ˛ik

must begin
like ˛ik�1. In particular, we see that the first `c. V̨ ik�1

/ characters in a code for ˇ must agree with V̨ ik�1
.

Since `c. V̨ ik�1
/ < `c. V̨ ik

/ for all k, taking k!1 shows that any ray ˇ which is disjoint from ˛1 must
have identical code and hence indeed must be exactly ˛1.

Finally, since ˛1 intersects every other ray, it must, in particular, intersect any other high-filling ray. By
[7, Lemma 2.7.8], the connected component of any high-filling ray is a clique of high-filling rays, and
thus ˛1 is its own connected component in R.†;p/. Hence w.g/D 1, completing the proof.

We close this section with the remark that if the weight of the limit points of gn were not all the same,
then Bavard and Walker give a method for constructing nontrivial quasimorphisms [8, Theorem 9.1.1].
However, since this is not the case, we must use a different method for showing that the space of
quasimorphisms is infinite-dimensional, which is related to Bavard’s original proof for the arc graph
from [5]. We do so in Section 9.

9 Infinite-type quasimorphisms

A quasimorphism of a group G is a map f WG!R such that there exists a real constant C for which
jf .ab/�f .a/�f .b/j � C for all a; b 2G. The set of quasimorphisms forms a vector space V .G/ over
R, and, moreover, bounded functions and homomorphisms both form subspaces of V .G/. Let eQH.G/
denote the quotient of V .G/ by the subspace spanned by bounded functions and homomorphisms. We
call eQH.G/ the space of quasimorphisms of G. The goal of this section is to use the elements constructed
in Theorem 1.1 to prove Theorem 1.4, which we restate for the convenience of the reader.

Theorem 1.4 Let † be an admissible surface. The space of nontrivial quasimorphisms on Map.†;p/ is
infinite-dimensional.
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Dp

�0
�0

aC

a�

xs

xt

Figure 47: A schematic of Dp and the two arcs a� and aC.

Several of the ideas in this section closely follow the strategy and ideas of Bavard [5], though the
production of the elements which give rise to our quasimorphisms differs. We begin by studying a specific
subclass of arcs with the goal of describing a particular homotopy operation and intersection pairing on
them. We then use this intersection pairing and a theorem of Bestvina and Fujiwara to prove the theorem.

9.1 An intersection pairing on symmetric arcs and first properties

Recall that our surface † has an embedding of the biinfinite flute surface S such that † nS has infinitely
many connected components, a countable collection of which are homeomorphic to a fixed surface †0.
Moreover, the complement of each arc ˛i separates† into two components, one of which is homeomorphic
to int.†0/, the interior of the fixed surface†0. Using†0, we define SA to be the set of simple, symmetric
arcs ı (see Definition 4.4) such that †n ı has two connected components, one of which is homeomorphic
to int.†0/. Notice that ˛.n/i 2 SA for all i 2 Z, n 2N and that SA is a Map.†;p/-invariant subset of
the set of all arcs.

Since p is isolated, we again fix the small once-punctured disk Dp containing p as in Section 7. This disk
is homeomorphic to the closed unit disk minus an interior point. As in that section, given any element ı
in SA, we put ı in standard position so that its intersections with @Dp � S1 are all transverse. Let xs

and xt be the initial and terminal point where ı intersects @Dp. Let �0 and �0 be the subsegments of ı
which connect xt and xs to p, respectively.

We will modify ı to form a particular simple closed curve as follows. We can replace �0[�0 with either
aC or a�, as shown in Figure 47, forming two distinct simple closed curves, ıC and ı�, respectively. One
of these two curves bounds a surface homeomorphic to int.†0/; in Figure 47, this curve is ı�. Fixing a
hyperbolic metric on the surface, we let Bı be the geodesic representative of this curve.

We now choose the homotopy representative of ı that will allow us to define an intersection pairing. As ı
is symmetric, there exists an arc

ı0 D rıBır
�1
ı
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Figure 48: Two examples of arcs in SA (in the case that †0 is a one-holed torus) and their
corresponding zippings. The purple and red arcs are zipped to the green and blue arcs, respectively.

in the homotopy class of ı, where rı is a simple ray from the puncture to Bı that intersects Bı only at its
endpoint. Intuitively, one can think of the arc ı0 as being constructed from ı by “zipping” the initial and
terminal portions of the arc together for as long as they fellow travel to form rı . Particular examples of rı

and ı0 are given in Figure 48.

We are now in a position to define the intersection pairings.

Definition 9.1 We define a map I˙ W SA � SA! Z�0 as follows. Let IC.ı;  / be the number of
positively oriented intersections between minimal position representatives for the homotopy classes of
rı and r that do not occur on Bı or B . Here we require that the homotopy fixes the puncture and
fixes each of Bı and B setwise (though not necessarily pointwise). We define I�.ı;  / similarly using
negative intersections.

Notice that IC.�; �/ and I�.�; �/ are not necessarily symmetric in their arguments. However, it is
straightforward to verify that the relationship

IC.ı;  /D I�.; ı/

holds for any ı;  2 SA.

For the remainder of the section we will fix an n 2N and use the notation that g D gn, ˛i D ˛
.n/
i , and

' D 'n is the “starts like” function from Section 8.

Example 9.2 One can readily compute from Figure 49 that we have the following relations:

5D I�.˛0; ˛2/D IC.˛2; ˛0/ and 6D IC.˛0; ˛2/D I�.˛2; ˛0/:

These calculations will be relevant later in the section.

We now collect some useful properties of the intersection pairing and its interaction with Map.†;p/.
These preliminary facts are inspired by Bavard [5], where similar statements are shown in Bavard’s context.
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�2 �1 0 nC 1 nC 2 nC 3

Figure 49: The oriented arc r˛.n/
0

is shown in blue and the oriented arc r˛.n/
2

is shown in pink.
Each line of r˛.n/

0
and r˛.n/

2
represents two strands of ˛.n/0 and ˛.n/2 , respectively.

Lemma 9.3 The intersection pairing is mapping class group invariant. That is , for any ı;  2 SA and
any f 2Map.†;p/

I˙.f .ı/; f . //D I˙.ı;  /:

Proof This is immediate from the fact that Map.†;p/ is orientation preserving and preserves SA.

Recall that in Section 8, we defined the “starts like” function

' WA.S;p/! Z�0;

by setting '.ı/ equal to the largest i � 0 such that ı starts like ˛i . We now extend ' to all of A.†;p/ by
setting '.ı/D 0 if ı does not have a homotopy representative that is contained in S . We continue to call
this extension '.

Lemma 9.4 If ı;  2 SA are arcs such that 2C'.ı/� '. /, then

6� I�.; ı/:

Proof By the mapping class group invariance of Lemma 9.3, the quantities I˙.˛i ; j̨ / depend only on
j � i . As ˛iC1 starts like ˛i , the pairing I�.˛i ; j̨ / must be monotonically increasing in the difference
j � i . In particular, if 2C i � j , then

6D I�.˛2; ˛0/� I�. j̨ ; ˛i/:

If '.ı/D i and '. /D j , then ı starts like ˛i and  starts like j̨ , so the arcs  and ı must have at least
as many negatively oriented intersections as ˛i and j̨ . Thus we have

6� I�. j̨ ; ˛i/� I�.; ı/;

and the result follows.
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9.2 Production of “infinite-type” quasimorphisms

We now use the intersection pairing from the previous subsection to show that the elements gn give rise
to nontrivial quasimorphisms. For this, we need the following theorem of Bestvina and Fujiwara. We
explain the two conditions on h1, h2 after the statement.

Theorem 9.5 [10, Theorem 1] Suppose that a group G has a nonelementary action by isometries on a
ı-hyperbolic graph X . If there exist independent loxodromic elements h1; h2 2G such that h1 œ h2, then
the space of quasimorphisms is infinite-dimensional.

Two loxodromic isometries h1 and h2 are independent if their limit sets in the boundary @X of X

are disjoint. For the second condition, fix constants K � 1 and K0 � 0 so that hi has a .K;K0/-
quasigeodesic axis `i in X for i 2 f1; 2g. A fundamental property of ı-hyperbolic spaces is that there
exists BDB.K;K0; ı/ such that any two finite .K;K0/-quasigeodesics with common endpoints are within
distance B of each other. Define an equivalence relation on elements h1; h2 2G so that h1 � h2 if the
following holds: for any arbitrarily long segment L of `1, there exists an f 2G such that f .L/ is contained
in the B-neighborhood of `2 and the map f W L! f .L/ is orientation-preserving with respect to the
hi-orientation on `i for i 2f1; 2g. For the definition of the hi-orientation on L and f .L/, see [10, page 72].

We now recall some arguments from [5, Section 4.3] which, when adapted into our language, show that
g œ g�1 for our loxodromic isometries g D gn. Fix B � 1 to be the constant defined above for all
.4; 0/-quasigeodesics in A.†;p/. Let `D fgi.˛0/gi2Z, so that ` is a .4; 0/-quasigeodesic axis of g by
Theorem 8.3. We then have the following statements that are similar to [5, Lemmas 4.6, 4.7]. We supply
the proofs for the reader’s convenience.

Lemma 9.6 Let L be a subpath of ` from ˛i to j̨ for 0 < i < j . Let f 2 Map.†;p/ be such that
dA.†;p/.˛i ; f . j̨ //� B and such that f .L/�NB.`/ with the opposite orientation. If j � i > 8BC 3,
then there exists some k such that i � k < j and '.f .˛kC2//� '.f .˛k//� 2.

Proof Since dA.†;p/.f . j̨ /; ˛i/ � B, we conclude by Lemma 8.1 that '.f . j̨ // � i C B. Since
f .L/�NB.`/ with the opposite orientation, we may apply [5, Lemma 4.4] to L and the reverse of f .L/
to conclude that dA.†;p/. j̨ ; f .˛i//� 3B. Note that [5, Lemma 4.4] is stated for geodesics, but the exact
same proof goes through for quasigeodesics. Again applying Lemma 8.1, we see that '.f .˛i//� j �3B.

Suppose towards a contradiction that '.f .˛kC2// > '.f .˛k// � 2 for all 1 � k < j . Equivalently,
'.f .˛kC2//� '.f .˛k//� 1 for every k. Then, if j � i is even,

i CB � '.f . j̨ //� '.f .˛i//�
1
2
.j � i/� j � 3B � 1

2
.j � i/;

where the second inequality is obtained by applying '.f .˛kC2// � '.f .˛k//� 1 repeatedly starting
with j D kC 2. If j � i is odd, then by the same reasoning we have

i CB � '.f . j̨ //� '.f .˛iC1//�
1
2
.j � i � 1/:
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Since
j'.f .˛i//�'.f .˛iC1//j � d.f .˛i/; f .˛iC1//D d.˛i ; ˛iC1/D 2;

it follows that

i CB � '.f .˛iC1//�
1
2
.j � i � 1/� '.f .˛i//�

3
2
�

1
2
.j � i/� j � 3B � 3

2
�

1
2
.j � i/:

Hence we conclude that, in either case,

4BC 3
2
�

1
2
.j � i/;

which contradicts that j �i > 8BC3. Thus there must be some k for which '.f .˛kC2//� '.f .˛k//�2,
as required.

Proposition 9.7 For any segment L of ` whose length is greater than 32BC12 and any f 2Map.†;p/,
if f .L/�NB.`/ then f .L/ has the same orientation as `.

Proof After possibly increasing the length of L, we may assume that L is a subpath of ` from ˛i to j̨

for some i < j . Since the length of L is greater than 32BC 12 and ` is a .4; 0/-quasigeodesic edge path
by Theorem 8.3, we have that j � i > 8BC 3. By precomposing f with a suitable power of g, we can
and do assume that i; j > 0.

Assume for contradiction that f .L/ has the opposite orientation as `. By Example 9.2 and Lemma 9.3
we have that

(15) I�.f .˛k/; f .˛kC2//D I�.˛k ; ˛kC2/D I�.˛0; ˛2/D 5

for all k 2 Z. On the other hand, by Lemma 9.6 there is some fixed index i � k < j for which

(16) 2C'.f .˛kC2//� '.f .˛k//:

Applying Lemma 9.4 to f .˛k/ and f .˛kC2/ for this index k shows that

6� I�.f .˛k/; f .˛kC2//D I�.˛k ; ˛kC2/D I�.˛0; ˛2/:

However, this contradicts (15), and so we conclude that f .L/ has the same orientation as L.

Proposition 9.7 implies that g œ g�1 since the axis ` has opposite orientations for g and g�1. Additionally,
since conjugate elements are equivalent under the relationship �, we have the following immediate
corollary of Proposition 9.7.

Corollary 9.8 For fixed n 2N, the loxodromic elements g D gn have the property that g œ hg�1h�1

for any h 2Map.†;p/.

With this in hand, we can prove the main result of this section.
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Proof of Theorem 1.4 Fix n 2 N, and continue to use the notation that g D gn. By Theorem 9.5
and Corollary 9.8 it suffices to show that there exists an h 2Map.†;p/ such that g and hg�1h�1 are
independent loxodromic elements. For this we can use any h 2Map.†;p/ which does not fix the limit
set of g (which is the same as the limit set of g�1). For example, fix any finite-type subsurface …0

with boundary of sufficient complexity which contains the puncture p, and take any pseudo-Anosov
h 2 Map.…0;p/. Extending h by the identity outside of …0, we may consider h as an element of
Map.†;p/. By Lemma 2.10, there is a .2; 0/-quasi-isometric embedding � WA.…0;P / ,!A.†;p/. Since
h is loxodromic with respect to the action of Map.…0;p/ on A.…0;p/, it is therefore also loxodromic
with respect to the action of Map.†;p/ on A.†;p/. In addition, out of all such pseudo-Anosovs, there is
a choice of h whose limit points are different from the limit points �˙ of g. (Note that the quasi-isometric
embedding � ensures that two pseudo-Anosovs with distinct limit points in the boundary of A.…0;p/ also
have distinct limit points in the boundary of A.†;p/.) Therefore, the limit points h.�˙/ of hg�1h�1 are
distinct from those of g. In particular, g and hg�1h�1 are independent loxodromic elements, as required.

10 Convergence to a geodesic lamination

The goal of this section is to prove Theorem 1.2, which we restate for the convenience of the reader. As
in [26], we equip † with its unique conformal hyperbolic metric. Additionally, we require that with this
metric, † is equal to its convex core, which is equivalent to eliminating hyperbolic funnels and half-planes
in †. This is necessary in order to consider geodesic laminations on an infinite-type surface; see [26].

Theorem 1.2 If † is an admissible surface equipped with its conformal hyperbolic metric that is equal
to its convex core, then there exists a simple closed curve c0 on † such that the sequence .gi

n.c0//i2N

converges to a geodesic lamination on †.

10.1 Geodesic laminations

We begin by reviewing some facts about geodesic laminations on infinite-type surfaces. For a complete
treatment of the subject, we refer the reader to [26].

Definition 10.1 A geodesic lamination � on † is a foliation of a closed subset of † by complete
geodesics.

Fix a locally finite geodesic pants decomposition fPng of † and a train track ‚ on † constructed as in
[26, Section 4]. Denote by z‚ the lift of ‚ to z†, the universal cover of †. An edge path of z‚ is a finite,
infinite, or biinfinite sequence of edges of z‚ such that consecutive edges meet smoothly at each vertex.
Every biinfinite edge path has two distinct accumulation points on @1 z† by [26, Proposition 4.5].

Given a biinfinite edge path z of z‚, let G.z / be the geodesic of z† whose endpoints on @1 z† are the two
distinct endpoints of z . A geodesic g of z† is weakly carried by z‚ if there exists a biinfinite path z in z‚
such that G.z /D g.
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We now gather various results from [26] which will be useful in what follows. These are all analogous to
the situation for finite-type surfaces (see, for example, [11; 23; 27]). The first gives a correspondence
between geodesics weakly carried by z‚ and biinfinite edge paths.

Proposition 10.2 [26, Proposition 4.7] There is a one-to-one correspondence between biinfinite edge
paths of z‚ and geodesics weakly carried by z‚.

Let  be an edge path in ‚ and z a single component of the lift of  to z†. Then, as above, we construct
a geodesic G.z / with the same endpoints as z and denote by G. / its projection to †. We then say
that the geodesic G. / is weakly carried by ‚ if G.z / is weakly carried by z‚. A geodesic lamination
� on † is weakly carried by ‚ if every geodesic of � is weakly carried by ‚. The next result gives a
correspondence between geodesic laminations and certain families of biinfinite edge paths.

Proposition 10.3 [26, Proposition 4.11] The set of geodesic laminations on † that are weakly carried
by ‚ is in one-to-one correspondence with the families � of biinfinite edge paths of z‚ that satisfy

� any two biinfinite edge paths  and  0 in � do not cross; and

� if  is a biinfinite edge path such that for any finite edge subpath there is a biinfinite edge path in �
that contains it , then  2 � .

The following proposition describes when a sequence of geodesics carried by ‚ converge. Let G.z†/ be
the set of unoriented geodesics on z†.

Proposition 10.4 [26, Proposition 4.9] Let fn; f 2 G.z†/ be weakly carried by a train track z‚, and
denote by zn; z the corresponding biinfinite edge paths in z‚. Then fn converges to f as n!1 if and only
if for each finite subpath z 0 of z there exists n0 � 0 such that z 0 is contained in the path zn for all n� n0.

The final proposition we will need shows that every geodesic lamination is weakly carried by a train track.

Proposition 10.5 [26, Proposition 4.12] Every geodesic lamination � on a hyperbolic surface X is
weakly carried by a train track ‚ that is constructed as above starting from a fixed locally finite geodesic
pants decomposition.

10.2 Construction of the train track‚

We now construct a train track on our surface †. In the next section, we will define our simple closed
curve c0 and show that gi

n.c0/ converges as i !1 to a geodesic lamination that is weakly carried by
this train track.

First, fix a simple closed curve  0p on S so that the bounded component of S n p is the pair of pants
with cuffs  0p , p�1, and p (recall that punctures are allowed to be cuffs). Let p be the image of  0p under
the embedding S ,! †. We construct our first pair of pants Qp to have cuffs p, B�1, and p. Next
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p
ı�1

�1;` �1;r 0;` 0;r D 1;` 1;r

B�1

B0

B1

Qp

Q�1 Q�1;r Q0 Q1

p

Figure 50: The cuffs of the pants decomposition are in blue and black, and the pairs of pants are
labeled in red. Anything dotted occurs on the back of the embedded copy of S in †.

choose two simple closed separating curves �1;l and �1;r on the embedded copy of S in † so that one
component of † n .�1;l [ �1;r / contains two pairs of pants: Qp and a pair of pants Q�1 with cuffs
�1;l ; �1;r , and p . Let �1;l be the curve which bounds the connected component of†n.�1;l[�1;r /

containing B�2. For each i 2 Z n f�1g, choose two simple closed separating curves i;l and i;r on
the embedded copy of S in † so that one component of † n .i;l [ i;r / contains a pair of pants, Qi ,
with cuffs i;l ; i;r , and Bi . Similarly, let i;l be the curve which bounds the connected component of
† n .�1;l [ �1;r / containing Bi�1.

Next, for all i 2Z, consider the component Ci of †n .i;r [iC1;l/ which does not contain i;l for any i .
If Ci is a cylinder, that is, if i;r is homotopic to iC1;l , then modify i;r and Qi so that i;r D iC1;l . If
Ci is a pair of pants, let Qi;r DCi . If Ci is neither a pair of pants nor a cylinder, fix a simple closed curve
ıi so that one component of Ci n ıi is a pair of pants Qi;r with cuffs i;r ; iC1;l , and ıi . See Figure 50.

We replace each cuff with a geodesic representative of the same homotopy class; by a slight abuse of
notation, we continue to call the resulting geodesic pairs of pants Qi , Qp, and Qi;r . This is a locally
finite geodesic pants decomposition of a subsurface of the embedded copy of S in †, and we extend it to
a locally finite geodesic pants decomposition of †, which we denote Q.

We next construct the train track ‚ as follows. The specific connectors on the front of the surface for all
Qi , Qp , and Qi;r are as in Figure 51. For all other pairs of pants, we choose any connectors that satisfy
the conditions of [26].

p

�1;` �1;r 0;` 0;r D 1;` 1;r

Po

Pu�1o

�1u

�1L

�1R

B�1

B0 B1

�1RR
0L 1L

0R 1R0o

0u

1o

1u

p

Figure 51: A portion of the train track ‚. The connectors are in purple, and the labels are the
codes for certain connectors and cuffs.
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We code a subset of the connectors and cuff segments of ‚ which lie on the front of S in the following
way (see Figure 51):

� In each pair of pants Qi with i ¤�1, denote the connectors from i;l and i;r to Bi by iL and iR ,
respectively. The two segments of the cuff B0 are denoted 0o; 0u, as in our standard code.

� In each pair of pants Qi;r , denote the single connector on the front of S by iRR.

� In the pair of pants Qp , denote the connector which has both endpoints on p by Pu. This connector
divides the cuff p into two segments, denote these by Po and .�1/u, as in Figure 51. We will not
code the second connector or the segments on the cuff B�1 in this pair of pants.

� In the pair of pants Q�1, denote the connectors from �1;l and �1;r to p by .�1/L and .�1/R ,
respectively.

If a simple closed curve is carried by this train track and does not intersect any subpaths without a code,
then we call this a ‚-code for the given simple closed curve. We say a ‚-code is reduced if no two
adjacent characters are the same.

10.3 The simple closed curves ci

For the remainder of this section, we fix n 2N and use the notation g D gn and ˛i D ˛
.n/
i .

In [26], is it assumed that the relevant geodesic laminations do not contain geodesics that run out a cusp
at one (or both) ends (see the discussion before [26, Proposition 4.12]). It is impossible for our sequence
˛i to converge to a geodesic lamination of this type. In this section, we describe how to associate simple
closed curves ci to each ˛i so that g.ci�1/D ci . In the following subsection, we prove that they converge
to a geodesic lamination as in [26].

Let Dp be a small disk around the puncture p which is invariant under our homeomorphism g, as in
Section 7.1. As before, we choose Dp small enough so that, for each i , ˛i \Dp consists of two segments,
one starting at p and one ending at p, with endpoints zi;1; zi;2 on @Dp . Up to homotopy, we may assume
without loss of generality that zi;1 D zj ;1 and zi;2 D zj ;2 for all i; j . To form the simple closed curves ci ,
we start with ˛i and remove ˛i\ int.Dp/. We then add an arc of @Dp from zi;1 to zi;2; there two possible
choices of arc, and we choose the one so that one connected component of S n c0 contains p and p0.
Note that this is the opposite choice than the one made in Section 9.1. See Figure 52.

For example, given the train track in Figure 51, a ‚-code of c0 is

(17) Po.�1/R.�1/RR0L0o0u0L.�1/RR.�1/RPu:

Note that since curves do not have a well-defined starting point, any cyclic permutation of this ‚-code
for c0 is also a ‚-code for c0. For the rest of the section, we fix the starting point Po for the ‚-code for
c0 as in (17).
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Dp Dp

p p

zi;1 zi;1

zi;2 zi;2

Figure 52: Forming ci (right) from ˛i (left). The initial and terminal segments of ˛i are in purple
(left), and the corresponding segment of ci is in purple (right).

Our curves ci and the arcs ˛i agree outside of Dp, and since Dp is invariant under g, it follows that
g.ci/D ciC1. For each i , we fix the starting point Po for a ‚-code for ci in such a way that applying g

to the ‚-code for ci yields the ‚-code for ciC1.

10.4 Proof of Theorem 1.2

We will show that the simple closed curves ci defined in the previous section converge to a geodesic
lamination T on †. Our strategy is as follows. We will first fix a lift zi of each curve ci in z† and
show that the sequence zi converges to some z . We then show that if fi D G.zi/ and f D G.z / are
the corresponding geodesics that are weakly carried by z‚, then limi!1 fi D f . Finally, we take the
geodesic lamination T to be the image of f in †.

For each i , let `‚.ci/ be the length of any reduced ‚-code for ci . Recall that `c.˛i/ is the code length of
˛i , as in Definition 3.6.

Lemma 10.6 For each i , `c.˛i/� `‚.ci/� 5`c.˛i/.

Proof It is clear that the ‚-code for ci is at least as long as the code for ˛i . For the second inequality,
notice that each instance of ko=u with k ¤ �1;P in ˛i is replaced with one of the following strings,
depending on what precedes=follows the character ko=u and on the chosen pants decomposition,

kLko=ukR; kLko=u; kRko=u; .k�1/RRkLko=ukR; .k�1/RRkLko=ukRkRR; or kLko=ukRkRR:

If k D�1, then .�1/o=u is replaced with

.�1/L.�1/o=u; .�1/o=u.�1/R; .�2/RR.�1/L.�1/o=u;

.�1/o=u.�1/R.�1/RR; or .�2/RR.�1/L.�1/o=u.�1/RR:

Finally, if k D P , then each Po=u remains the same and Ps is replaced with Po=u. Therefore, each
character in the code for ˛i is replaced with at most 5 characters in the ‚-code for ci , which gives the
upper bound.

For each i , let `i D `‚.ci/, and consider the ‚-code for ci

(18) ci D ci
1ci

2 : : : c
i
`i
:
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For each i , fix the lift zi of ci that is the periodic biinfinite edge path

zi D . : : : ; b
i
�1; b

i
0; b

i
1; b

i
2; : : : /;

with period `i , where bi
j D ci

j for each 1 � j � `i , and bi
j D bi

j�`i
for all j . The codes for ˛i and

˛iC1 agree on the first 1
2
`c.˛i/ characters. Thus it follows from Lemma 10.6 that the ‚-codes of ci and

ciC1 defined by (18) agree on at least the first Li D
�

1
10
`i

˘
characters. Therefore, bi

j D biC1
j for all

1� j �Li .

We define a biinfinite path
z D . : : : ; d�1; d0; d1; d2; : : : /;

as follows. Intuitively, our goal is to define z so that it agrees with each zi from d�Li
to dLi

. In the first
step, we define the characters d�L0

to dL0
of z so that they agree with z0. In the second step, we define

the characters d�L1
to dL1

of z so that they agree with z1. The key point here is that z0 and z1 agree
on the characters of z that we have already defined in the first step. Thus we are not redefining di if
�L0 � i �L0. Rather, these characters remain, and the additional information from the second step is
the definition of di if �L1 � i < �L0 or L0 < i �L1. We then continue this process.

Formally, this is equivalent to the following definition. For each i � 0 and each 1� j �Li , define

d1 D bi
1; : : : ; dj D bi

j ; : : : ; dLi
D bi

Li
;

and define
d0 D bi

1; : : : ; d�jC1 D bi
j ; : : : ; d�LiC1 D bi

Li
:

For each i and all 1� j �Li , since bi
j D biC1

j , there is no conflict with the previous defined edges as i

increases.

By construction, z is a biinfinite path in z‚. Let fi DG.zi/ and f DG.z / be the corresponding geodesics
which are weakly carried by z‚, the existence of which is guaranteed by Proposition 10.2.

Lemma 10.7 lim
i!1

fi D f .

Proof This is almost immediate from the construction of z . Fix any finite subpath T � z . Then T is
supported on Œ�k; l � for some k; l � 1. Let LD maxfk; lg, and fix N such that LN � L. Such an N

exists since `c.˛i/!1 implies that limi!1Li D1. Then by construction T appears in all zi with
i �N . Convergence follows by Proposition 10.4.

Let T be the image of f in †. Figure 53 shows the train track which weakly carries the lamination, that
is, the image of Q in †.

Lemma 10.8 T is a geodesic lamination on †.

Proof This follows immediately from Proposition 10.3 applied to � D fz g.

Finally, Theorem 1.2 follows from Lemma 10.8.
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�1 0 1 2 3 4 5 6 7 8 n

Figure 53: The train track on † which weakly carries the lamination T when nD 1. Note that
the train track is, in fact, contained on the front of the embedded copy of S in †.

References
[1] American Institute of Mathematics, Surfaces of infinite type, problem lists (2019) Available at http://

aimpl.org/genusinfinity/

[2] J Aramayona, A Fossas, H Parlier, Arc and curve graphs for infinite-type surfaces, Proc. Amer. Math.
Soc. 145 (2017) 4995–5006 MR Zbl

[3] J Aramayona, P Patel, N G Vlamis, The first integral cohomology of pure mapping class groups, Int. Math.
Res. Not. 2020 (2020) 8973–8996 MR Zbl

[4] J Aramayona, N G Vlamis, Big mapping class groups: an overview, from “In the tradition of Thurston:
geometry and topology” (K Ohshika, A Papadopoulos, editors), Springer (2020) 459–496 MR Zbl

[5] J Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom.
Topol. 20 (2016) 491–535 MR Zbl

[6] J Bavard, A Genevois, Big mapping class groups are not acylindrically hyperbolic, Math. Slovaca 68
(2018) 71–76 MR Zbl

[7] J Bavard, A Walker, The Gromov boundary of the ray graph, Trans. Amer. Math. Soc. 370 (2018)
7647–7678 MR Zbl

[8] J Bavard, A Walker, Two simultaneous actions of big mapping class groups, Trans. Amer. Math. Soc. 376
(2023) 7603–7650 MR Zbl

[9] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to
mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1–64 MR Zbl

[10] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6
(2002) 69–89 MR Zbl

[11] F Bonahon, Closed curves on surfaces, preprint (2000) Available at https://dornsife.usc.edu/
francis-bonahon/wp-content/uploads/sites/205/2023/06/Bouquin.pdf

[12] D Calegari, Big mapping class groups and dynamics, blog post (2009) Zbl Available at https://
lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics

[13] J Cantwell, L Conlon, S R Fenley, Endperiodic automorphisms of surfaces and foliations, Ergodic Theory
Dynam. Systems 41 (2021) 66–212 MR Zbl

[14] F Fournier-Facio, Y Lodha, M C B Zaremsky, Braided Thompson groups with and without quasimor-
phisms, Algebr. Geom. Topol. 24 (2024) 1601–1622 MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

http://aimpl.org/genusinfinity/
http://aimpl.org/genusinfinity/
https://doi.org/10.1090/proc/13608
http://msp.org/idx/mr/3692012
http://msp.org/idx/zbl/1377.57006
https://doi.org/10.1093/imrn/rnaa229
http://msp.org/idx/mr/4216709
http://msp.org/idx/zbl/1462.57020
https://doi.org/10.1007/978-3-030-55928-1_12
http://msp.org/idx/mr/4264585
http://msp.org/idx/zbl/1479.57037
https://doi.org/10.2140/gt.2016.20.491
http://msp.org/idx/mr/3470720
http://msp.org/idx/zbl/1362.37086
https://doi.org/10.1515/ms-2017-0081
http://msp.org/idx/mr/3764317
http://msp.org/idx/zbl/1473.20046
https://doi.org/10.1090/tran/7204
http://msp.org/idx/mr/3852444
http://msp.org/idx/zbl/1499.20098
https://doi.org/10.1090/tran/8874
http://msp.org/idx/mr/4657217
http://msp.org/idx/zbl/1525.20035
https://doi.org/10.1007/s10240-014-0067-4
https://doi.org/10.1007/s10240-014-0067-4
http://msp.org/idx/mr/3415065
http://msp.org/idx/zbl/1372.20029
https://doi.org/10.2140/gt.2002.6.69
http://msp.org/idx/mr/1914565
http://msp.org/idx/zbl/1021.57001
https://dornsife.usc.edu/francis-bonahon/wp-content/uploads/sites/205/2023/06/Bouquin.pdf
https://dornsife.usc.edu/francis-bonahon/wp-content/uploads/sites/205/2023/06/Bouquin.pdf
http://msp.org/idx/zbl/1187.57019
https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics
https://lamington.wordpress.com/2009/06/22/big-mapping-class-groups-and-dynamics
https://doi.org/10.1017/etds.2019.56
http://msp.org/idx/mr/4190052
http://msp.org/idx/zbl/1464.57022
https://doi.org/10.2140/agt.2024.24.1601
https://doi.org/10.2140/agt.2024.24.1601
http://msp.org/idx/mr/4767881
http://msp.org/idx/zbl/1548.20073


644 Carolyn Abbott, Nicholas Miller and Priyam Patel

[15] S Hensel, P Przytycki, R C H Webb, 1-slim triangles and uniform hyperbolicity for arc graphs and curve
graphs, J. Eur. Math. Soc. 17 (2015) 755–762 MR Zbl

[16] W P Hooper, The invariant measures of some infinite interval exchange maps, Geom. Topol. 19 (2015)
1895–2038 MR Zbl

[17] B von Kerékjártó, Vorlesungen über Topologie, I: Flächentoplogie, Springer (1923) Zbl

[18] J Lanier, M Loving, Centers of subgroups of big mapping class groups and the Tits alternative, Glas. Mat.
Ser. III 55(75) (2020) 85–91 MR Zbl

[19] W B R Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962)
531–540 MR Zbl

[20] I Morales, F Valdez, Loxodromic elements in big mapping class groups via the Hooper–Thurston–Veech
construction, Algebr. Geom. Topol. 22 (2022) 3809–3854 MR Zbl

[21] J Nielsen, Surface transformation classes of algebraically finite type, Danske Vid. Selsk. Mat.-Fys. Medd.
2, Munksgaard, Copenhagen (1944) MR Zbl

[22] P Patel, N G Vlamis, Algebraic and topological properties of big mapping class groups, Algebr. Geom.
Topol. 18 (2018) 4109–4142 MR Zbl

[23] R C Penner, J L Harer, Combinatorics of train tracks, Ann. of Math. Stud. 125, Princeton Univ. Press
(1992) MR Zbl

[24] A J Rasmussen, WWPD elements of big mapping class groups, Groups Geom. Dyn. 15 (2021) 825–848
MR Zbl

[25] I Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963) 259–269
MR Zbl
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