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According to Bestvina, Bromberg and Fujiwara, a finitely generated group is said to have property (QT) if
it acts isometrically on a finite product of quasitrees so that orbital maps are quasi-isometric embeddings.
We prove that the fundamental group �1.M/ of a compact, connected, orientable 3-manifold M has
property (QT) if and only if no summand in the sphere-disc decomposition of M supports either Sol
or Nil geometry. In particular, all compact, orientable, irreducible 3-manifold groups with nontrivial
torus decomposition and not supporting Sol geometry have property (QT). In the course of our study, we
establish property (QT) for the class of Croke–Kleiner admissible groups and for relatively hyperbolic
groups under natural assumptions on the peripheral subgroups.

20F65, 20F67

1 Introduction

1.1 Background and motivation

The study of group actions on quasitrees has recently received a great deal of interest. A quasitree means
here a possibly locally infinite connected graph that is quasi-isometric to a simplicial tree. Groups acting
on (simplicial) trees have been well understood thanks to Bass–Serre theory. On the one hand, quasitrees
have the obvious advantage of being more flexible; hence, many groups can act unboundedly on quasitrees
but act on any trees with global fixed points. Many hyperbolic groups with Kazhdan’s property (T) and
mapping class of groups are among many examples that belong to this category (see Manning [38; 39]
for other examples). In effect, these are sample applications of a powerful axiomatic construction of
quasitrees proposed in the work of Bestvina, Bromberg and Fujiwara [5]. This construction will be
fundamental in this paper.

We say that a finitely generated group G has property (QT) if it acts isometrically on a finite product
X D T1 �T2 � � � � �Tn of quasitrees with the L2-metric such that for any basepoint o 2X , the induced
orbit map

g 2G 7! go 2X

is a quasi-isometric embedding of G equipped with some (or any) word metric dG to X . Informally
speaking, property (QT) gives an undistorted picture of the ambient group in a reasonably good space.
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Here, the direct product structure usually comes from the independence of several negatively curved
layers endowed on the group. Such a hierarchy structure has emerged from the study of mapping class
groups since Masur and Minsky [40]. In addition, property (QT) is a commensurability invariant as
observed by Bestvina, Bromberg and Fujiwara [6] and Button [14], and could be thought of as a stronger
property than the finiteness of asymptotic dimension.

Extending their earlier results of [5], Bestvina, Bromberg and Fujiwara [6] recently showed that residually
finite hyperbolic groups and mapping class groups have property (QT). It is known that Coxeter groups
have property (QT) (see Dranishnikov and Januszkiewicz [23]), and thus every right-angled Artin group
has property (QT) (see [6, Induction 2.2]).

In 3-manifold theory, the study of the fundamental groups of 3-manifolds is one of the most central topics.
Determining property (QT) of finitely generated 3-manifold groups is the main task of the present paper.

1.2 Property (QT) of 3-manifold groups

Let M be a 3-manifold with finitely generated fundamental group. Since property (QT) is a commensura-
bility invariant, we can assume that M is compact and orientable by considering the Scott core of M and
a double cover of M (if M is nonorientable).

In recent years, the theory of special cube complexes — see Haglund and Wise [30] — has led to a deep
understanding of 3-manifold groups; see Agol [3] and Wise [53]. By definition, the fundamental group of
a compact special cube complex is undistorted in a right-angled Artin group, and then has property (QT)
by [23]. However, 3-manifolds without nonpositively curved Riemannian metrics cannot be cubulated by
Przytycki and Wise [46] and certain cubulated 3-manifold groups are not virtually compact special (see
Hagen and Przytycki [28] and Tidmore [51]). Thus it was left still open to determine the property (QT)
for all 3-manifold groups.

By the sphere-disc decomposition, a compact oriented 3-manifold M is a connected sum of prime
summands Mi (1� i � n) with incompressible boundary. It is an easy observation that if a group has
property (QT) then every nontrivial element is undistorted (see Lemma 2.5), and hence if Mi supports
Sol or Nil geometry from the eight Thurston geometries, then �1.Mi / fails to have property (QT). Our
first main result is the following characterization of property (QT) for all 3-manifold groups.

Theorem 1.1 Let M be a connected , compact , orientable 3-manifold. Then �1.M/ has property (QT )
if and only if no summand in its sphere-disk decomposition supports either Sol or Nil geometry.

By standard arguments, we are reduced to the case where M is a compact, connected, orientable,
irreducible 3-manifold with empty or tori boundary. Theorem 1.1 actually follows from the following
theorem.
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Theorem 1.2 Let M be a compact orientable irreducible 3-manifold with empty or tori boundary ,
and with nontrivial torus decomposition which does not support the Sol geometry. Then �1.M/ has
property (QT ).

A 3-manifold M as in Theorem 1.2 is called a graph manifold if all the pieces in its torus decomposition
are Seifert fibered spaces; otherwise M is called a mixed manifold. It is well known that the fundamental
group of a mixed 3-manifold is hyperbolic relative to a collection of abelian groups and graph manifold
groups. As a result, to prove Theorem 1.2, we actually only need to determine the property (QT) of
Croke–Kleiner admissible groups, and of relatively hyperbolic groups, which will be discussed in detail in
the following subsections. These results include but are much more general than the fundamental groups
of graph manifolds and mixed manifolds.

1.3 Property (QT) of Croke–Kleiner admissible groups

We first address property (QT) of graph manifolds. Our approach is based on a study of a particular
class of graph of groups introduced by Croke and Kleiner [21] which they called admissible groups
and generalized the fundamental groups of graph manifolds. We say that an admissible group G is a
Croke–Kleiner admissible group or a CKA group if it acts properly discontinuously, cocompactly and by
isometries on a complete proper CAT(0) space X . Such an action G ÕX is called a CKA action and the
space X is called a CKA space. The CKA action is modeled on the JSJ structure of graph manifolds where
the Seifert fibration is replaced by the following central extension of a general hyperbolic group Hv:

(1) 1!Z.Gv/!Gv!Hv! 1

where Z.Gv/ D Z. It is worth pointing out that CKA groups encompass a much more general class
of groups and can be used to produce interesting groups by a “flip” trick from any finite number of
hyperbolic groups (see Example 2.14).

The notion of an omnipotent group was introduced by Wise [52] and has found many applications in
subgroup separability. We refer the reader to Definition 4.6 for its definition and note here that free
groups [52], surface groups (see Bajpai [4]), and the more general class of virtually special hyperbolic
groups [53] are omnipotent. Nguyen and Yang [43] proved property (QT) for a special class of CKA
actions under flip conditions (see Definition 2.18). One of the main contributions of this paper is to
remove this assumption and prove the following result in full generality.

Theorem 1.3 Let G ÕX be a CKA action where for every vertex group the central extension (1) has
omnipotent hyperbolic quotient group. Then G has property (QT ).

Remark 1.4 It is a long-standing problem whether every hyperbolic group is residually finite. Wise [52,
Remark 3.4] noted that if every hyperbolic group is residually finite, then any hyperbolic group is
omnipotent.
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Let us comment on the relation between this work and the previous one [43]. As in [43], the ultimate
goal is to utilize Bestvina, Bromberg and Fujiwara’s projection complex machinery to obtain actions
on quasitrees. The common starting point is the class of special paths developed in [43] that record the
distances of X . However, the flip assumption (see Definition 2.18) on CKA actions was crucially used
there: the fiber lines coincide with boundary lines in adjacent vertex pieces when crossing the boundary
plane, roughly speaking. Hence, a straightforward gluing construction works in that case but fails in
our general setting. In this paper, we use a completely different projection system to achieve the same
purpose with a more delicate analysis.

It is worth mentioning the following fact frequently invoked by many authors: the fundamental group
of any graph manifold is quasi-isometric to the fundamental group of some flip manifold as defined
by Kapovich and Leeb [34]. This simplification, however, is useless to address property (QT), as such
a quasi-isometry does not respect the group actions. Conversely, our direct treatment of any graph
manifolds (closed or with nonempty boundary) is new, and we believe it will potentially allow for further
applications.

We now explain how we apply Theorem 1.3 to graph manifolds. If M is a graph manifold with nonempty
boundary then it always admits a Riemannian metric of nonpositive curvature (see Leeb [35]). In particular,
�.M/Õ zM is a CKA action, and thus property (QT) of �1.M/ follows immediately from Theorem 1.3.
However, closed graph manifolds may not support any Riemannian metric of nonpositive curvature [35],
so property (QT) in this case does not follow immediately from Theorem 1.3. We have to make certain
modifications on some steps to run the proof of Theorem 1.3 for the fundamental groups of closed graph
manifolds (see Section 8.2.1 for details).

1.4 Property (QT) of relatively hyperbolic groups

When M is a mixed 3-manifold, �1.M/ is hyperbolic relative to the finite collection P of fundamental
groups of maximal graph manifold components, isolated Seifert components, and isolated JSJ tori (see
Bigdely and Wise [8] and Dahmani [22]). Therefore, we need to study property (QT) for relatively
hyperbolic groups.

Our main result in this direction is a characterization of property (QT) for residually finite relatively
hyperbolic groups, which generalizes the corresponding results of [6] on Gromov-hyperbolic groups.

Theorem 1.5 Suppose that a finitely generated group H is hyperbolic relative to a finite set of sub-
groups P . Assume that each P 2 P acts by isometry on finitely many quasitrees Ti (1 � i � nP ) such
that the induced diagonal action on

QnP

iD1 Ti has property (QT ). If H is residually finite , then H has
property (QT ).

Remark 1.6 Since maximal parabolic subgroups are undistorted, each P 2 P obviously has property
(QT) if G has property (QT). A nonequivariant version of this result was proven by Mackay and Sisto [37].
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Remark 1.7 It is well known that mixed 3-manifold groups G D �1.M/ are hyperbolic relative to a
collection P of abelian groups and graph manifold groups P D �1.Mi /. However, it is still insufficient to
derive directly via Theorem 1.5 the property (QT) of G from that of graph manifold groups P asserted in
Theorem 1.3, since P may not preserve factors in the finite product of quasitrees. Of course, passing to
an appropriate finite-index subgroup P 0 <P preserves the factors, but it is not clear at all whether P 0 are
peripheral subgroups of a finite-index subgroup G0 of G. In order to find such a G0, a stronger assumption
must be satisfied so that every finite-index subgroup of each P is separable in G. This requires the notion
of a full profinite topology induced on subgroups (see the precise definition before Theorem 3.5 and a
relevant discussion of Reid [47]). See Theorem 3.5 for the precise statement. In the setting of a mixed
3-manifold, Lemma 8.5 verifies that each peripheral subgroup P 2 P of �1.M/ satisfies this assumption.
Therefore, all mixed 3-manifolds are proven to have property (QT).

We now explain a few algebraic and geometric consequences for groups with property (QT).

Similar to trees, any isometry on quasitrees must be either elliptic or loxodromic [38]. Hence, if a finitely
generated group acts properly (in a metric sense) on a finite product of quasitrees, then every nontrivial
element is undistorted (Lemma 2.5). Moreover, property (QT) allows one to characterize virtually abelian
groups among subexponential growth groups and solvable groups.

Theorem 1.8 Let G be a finitely generated group.

(1) Assume that G has subexponential growth. Then G has property (QT ) if and only if G is virtually
abelian.

(2) Suppose that G is solvable with finite virtual cohomological dimension. Then G has property (QT )
if and only if it is virtually abelian.

By Theorem 1.5, this yields as a consequence that nonuniform lattices in SU.n; 1/ and Sp.n; 1/ for n� 2
fail to act properly on finite products of quasitrees.

Corollary 1.9 A nonuniform lattice in SU.n; 1/ for n� 2 or Sp.n; 1/ for n� 1 does not have property
(QT ), while any lattice of SO.n; 1/ has property (QT ) for n� 2.

Overview

The paper is structured as follows. In Section 2, we recall the preliminary materials about Croke–Kleiner
admissible groups, axiomatic constructions of quasitrees, and we collect a few preliminary observations
to prove Theorem 1.8 and to disprove property (QT) for the fundamental groups of 3-manifolds with Sol
or Nil geometry. Section 3 contains a proof of Theorem 1.5 and its variant Theorem 3.5. The next four
sections aim to prove Theorem 1.3: Section 4 first recalls a cone-off construction of CKA actions from
[43] and then outlines the steps executed in Sections 5, 6, and 7 to prove property (QT) for CKA actions.
Sections 5 and 6 explain in detail the construction of projection systems of fiber lines and then prove
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the corresponding distance formula. We finish the proof of Theorem 1.3 in Section 7. In Section 8, we
present the applications of the previous results for 3-manifold groups and prove Theorem 1.2 as well as
Theorem 1.1.
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2 Preliminaries

This section reviews concepts property (QT), Croke–Kleiner admissible actions, and the construction
of quasitrees. Several observations are made to determine property (QT) of the fundamental groups of
3-manifolds with Sol or Nil geometry. This includes the fact that every element is undistorted in groups
with property (QT) and some attempts to characterize by property (QT) the class of virtually abelian
groups in solvable/subexponential growth groups.

In the sequel, we use the notion a �K b if the exists C D C.K/ > 0 such that a � CbCC , and a �K b
if a �K b and b �K a. Also, when we write a�K b we mean that a=C � b � Ca. If the constant C is
universal from context, the subindex �K shall be omitted.

2.1 Property (QT)

Definition 2.1 We say that a finitely generated group G has property (QT) if it acts isometrically on a
finite product X D T1�T2� � � � �Tn of quasitrees with L2-metric such that for any basepoint o 2X , the
induced orbit map

g 2G 7! go 2X

is a quasi-isometric embedding of G equipped with some (or any) word metric dG to X with the product
metric d .

Remark 2.2 A group with property (QT) acts properly on a finite product of quasitrees in a metric sense:
d.o; go/!1 as dG.1; g/!1. We would emphasize that all consequences of the property (QT) in the
present paper use merely the existence of a metric proper action.

By definition, a quasitree is assumed to be a graph quasi-isometric to a simplicial tree. This does not lose
generality as any geodesic metric space (with an isometric action) is quasi-isometric to a graph (with an
equivariant isometric action) by taking the 1-skeleton of its Rips complex: the vertex set consists of all
points and two points with distance less than 1 are connected by an edge.
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The first part of the following lemma allows one to pass to finite-index subgroups in the study of property
(QT) of groups, as explained in [6, Section 2.2]. The second part of Lemma 2.3 is an immediate
consequence of the definition of property (QT).

Lemma 2.3 (1) Let H �G be a finite-index subgroup of G. Then G has property (QT ) if and only if
H has property (QT ).

(2) Let H �G be an undistorted subgroup of G. Suppose that G has property (QT ), then H also has
property (QT ).

Below is a corollary of the de Rham decomposition theorem [26, Theorem 1.1] which will be utilized in
the subsequent discussions.

Corollary 2.4 A finite product X D T1 �T2 � � � � �Tn of quasitrees must have de Rham decomposition

X DRk �TkC1 � � � � �Tn

if the first k quasitrees (k � 0) are all real lines among fTi j 1� i � ng.

A finite product
Qn
iD1 Ti of quasitrees has no R-factor if no Ti is isometric to R or a point. In this case,

the Euclidean factor Rk will disappear. In what follows, we present some general results about groups
with property (QT).

Lemma 2.5 Assume that G has property (QT ). Then the subgroup generated by an element g 2G, is
undistorted in G.

Proof Let X DRk �TkC1 � � � � �Tn be the de Rham decomposition of a finite product of quasitrees.
By [26, Corollary 1.3], up to passage to finite-index subgroups, G acts by isometries on each factor Rk ,
and Ti for kC 1� i � n. Let g 2G be an infinite order element. If the image of g is an isometry on the
Euclidean space Rk , then it either fixes a point or preserves an axis. If the image of g is an isometry on a
quasitree Ti then by [39, Corollary 3.2], it has either a bounded orbit or a quasi-isometrically embedded
orbit.

Fix a basepoint o D .ok; okC1; : : : ; on/ 2 X . If the action of G on X is proper, then by the first
paragraph, there must exist an unbounded action of hgi on some factor Y DRk or Y D Ti , so we have
m � �jok � g

mokjY C c for some �; c > 0. Since every isometric orbital map is Lipschitz, we have
jo�gmojX � C j1�g

mjG for some C > 0. Noting that jo�gmojY � jo�gmojX , we have that the map
m 7! gm is a quasi-isometric embedding of hgi Š Z into G.

Note that the Sol group embeds quasi-isometrically into a product of two hyperbolic planes (for example,
see [19, Section 9]). However, the Sol lattice contains exponentially distorted elements by [41, Lemma 5.2];
as a consequence, we have the following:
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Corollary 2.6 The fundamental group of a 3-manifold with Sol geometry does not have property (QT ).

Corollary 2.7 The Baumslag–Solitar group BS.1; n/ for n > 1 does not have property (QT ).

2.2 Subexponential growth and solvable groups with property (QT)

The fundamental group of a 3-manifold M with Nil geometry also fails to have property (QT) since it
contains quadratically distorted elements (for example, see [41, Proposition 1.2]). Generalizing results
about property (QT) of 3-manifolds with Sol or Nil geometry, in the rest of this subsection, we provide a
characterization of subexponential growth groups and solvable groups with property (QT) and give the
proof of Theorem 1.8.

In the next results, we apply the general conclusions in [17] about the isometric actions on hyperbolic
spaces to the actions on quasitrees. By Gromov, unbounded isometric group actions can be classified into
the following four types:

(1) horocyclic if it has no loxodromic element;

(2) lineal if it has a loxodromic element and any two loxodromic elements have the same fixed points
in the Gromov boundary;

(3) focal if it has a loxodromic element which is not lineal, and any two loxodromic elements have
one common fixed point;

(4) general type if it has two loxodromic elements without common fixed point.

Proposition 2.8 Assume that G has property (QT ). Then there exists a finite-index subgroup PG of G
which acts on a Euclidean space Rk with k � 0 and finitely many quasitrees Ti for 1� i � n with lineal
or focal or general type action such that the orbital map of PG into Rk �

Qn
iD1 Ti is a quasi-isometric

embedding.

Moreover , the action on each Ti can be chosen to be cobounded.

Proof By Corollary 2.4, the finite product of quasitrees given by property (QT) has the above form of
de Rham decomposition. By [26, Corollary 1.3],

1! Isom.Rk/�
nY

iDkC1

Isom.Yi /! Isom.X/! F ! 1

where F is a subgroup of the permutation group on the indices fk C 1; : : : ; ng. Thus, there exists a
finite-index subgroup PG of G acting on each de Rham factor such that PG � Isom.Rk/�

Qn
iD1 Isom.Yi /

for k � 0 and i � kC 1.

First of all, we can assume that the actions of PG on Rk and each Ti is unbounded. Otherwise, we can
remove Rk or Ti with bounded actions from the product without affecting the property (QT).
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We now consider the action on Ti for kC 1� i � n. We then need to verify that the action of PG on Ti
cannot be horocyclic. By way of contradiction, assume that the action of PG on given Ti is horocyclic.

Note that the proof of [17, Proposition 3.1] shows that the intersection of any orbit of PG on Ti with any
quasigeodesic is bounded. By [39, Corollary 3.2], any isometry on a quasitree Ti has either bounded
orbits or a quasigeodesic orbit. Thus, we conclude that any orbit of hhi for every h 2 PG on Ti is bounded.
We are then going to prove that the action of PG on Ti has bounded orbits. This is a well-known fact and
we present the proof for completeness.

By ı-hyperbolicity of Ti , each h 2 PG (with bounded orbits) has a quasicenter ch 2 Ti : there exists a
constant D > 0 depending only on ı such that jch � hichjTi

�D for i 2 Z. Moreover, for any x 2 ch
and any y 2 Ti , the Gromov product hy; hyix is bounded by a constant C depending only on D. As a
consequence, the union Z of quasicenters fch j h 2 PGg has finite diameter. Indeed, note that hy; h1yix
and hx; h�12 xiy are bounded by C for any x 2 ch1

and y 2 ch2
. If there exist two elements, h1 and h2,

such that the distance jch1
� ch2

jTi
is sufficiently large relative to C , then the piecewise geodesic path

connecting points .h1h2/nx for n 2 Z would be a sufficiently long local quasigeodesic, so it is a global
quasigeodesic. By the previous paragraph, we obtain a contradiction, so the PG-invariant set Z is bounded.
Since the action on Ti is assumed to be unbounded, we thus proved that the action on Ti cannot be
horocyclic.

At last, it remains to prove the “moreover” statement. By Manning’s bottleneck criterion [39], any
geodesic is contained in a uniform neighborhood of every path with the same endpoints. Thus, any
connected subgraph of a quasitree is uniform quasiconvex and thus is a uniform quasitree. Since G is a
finitely generated group, by taking the image of the Cayley graph, we can thus construct a connected
subgraph on each quasitree Ti such that the action on the subgraph (quasitree) is cobounded.

We are able to characterize subexponential groups with property (QT) as follows.

Proposition 2.9 Let G be a finitely generated group with subexponential growth. Then G has property
(QT ) if and only if G is virtually abelian.

Proof We first observe that Rk in Proposition 2.8 can be replaced by a finite product of real lines.
Indeed, consider the action of PG on Euclidean space Rk . By assumption, PG is of subexponential growth.
It is well known that the growth of any finitely generated group dominates that of quotients, so the
image � � Isom.Rk/ of PG acting on Rk has subexponential growth. Since finitely generated linear
groups do not have intermediate growth, � must be virtually nilpotent. It is well known that virtually
nilpotent subgroups in Isom.Rk/ must be virtually abelian. Thus, � contains a finite-index subgroup Zl

for 1� l � k. By taking the preimage of Zl in PG, we can assume further that PG acts on Rk through Zl .
It is clear that Zl acts on l real lines R1;R2; : : : ;Rl such that the product action is geometric. We thus
replace Rk by the product

Q
1�i�l Ri where PG admits a lineal action on each Ri by translation.

Algebraic & Geometric Topology, Volume 25 (2025)
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By Proposition 2.8 the action of PG on Ti is either lineal or focal or general type. In the latter two cases,
PG contains a free (semi)group by [17, Lemma 3.3], contradicting the subexponential growth of PG. Thus,

the action of PG on each Ti is lineal. By Proposition 2.8, we can assume that Ti is a quasiline.

By [39, Lemma 3.7], a quasiline T admits a .1; C /-quasi-isometry � (with a quasi-inverse  ) to R for
some C > 0. A lineal action of G on T is then conjugated to a quasiaction of G on R sending g 2G to a
.1; C 0/-quasi-isometry �g on R for some C 0 D C 0.C / > 0. By taking an index at most 2 subgroup, we
can assume that every element in G fixes pointwise the two ends of T . Note that a .1; C 0/-quasi-isometry
�g on R fixing the two ends of R is uniformly bounded away from a translation on R. So, for any x 2R,
the orbital map g 7! �g .x/ is a quasimorphism G!R. It is well known that for any amenable group,
any quasimorphism must be a homomorphism up to bounded error. We conclude that any ŒG;G�-orbit on
T stays in a bounded set.

Therefore, any ŒG;G�-orbit on
�Q

1�i�l Ri
�
�
�Q

1�i�n Ti
�

is bounded, so the proper action onX implies
that Œ PG; PG� is a finite group. It is well known that if a group has a finite commutator subgroup, then it is
virtually abelian [11, Lemma II.7.9].

It would be interesting to ask whether Proposition 2.9 holds within the class of solvable groups. In
Proposition 2.11 below, we are able to give a positive answer to the previous question when the solvable
group has finite virtual cohomological dimension. To this end, we need the following fact.

Lemma 2.10 Any unbounded isometric action of a meta-abelian group on a quasitree must be lineal.

Recall that a meta-abelian group is a group whose commutator subgroup is abelian.

Proof Indeed, the abelian group � D ŒG;G� (of possibly infinite rank) cannot contain free semigroups,
so by [17, Lemma 3.3], the action of � on a quasitree T must be bounded or lineal.

Assume first that � has a bounded orbit K in T . Since G=� is abelian, we have that gmhnK D hngmK
for any n;m 2 Z and g; h 2 G, and thus ghnK D hngK has finite Hausdorff distance to hnK for any
n 2 Z. Assume that g and h are loxodromic. Then fhnK; n 2 Zg is quasi-isometric to a line. Hence, we
obtain that the fixed points of g and h at the Gromov boundary must coincide. This means the action of
G on T is lineal.

In the lineal case, � preserves some bi-infinite quasigeodesic  up to finite Hausdorff distance. Since �
is a normal subgroup in G, we see that every loxodromic element in G also preserves  up to a finite
Hausdorff distance. Thus, the action of G on T is also lineal.

By Lemma 2.5, a group with property (QT) is translation proper in the sense of Conner [18]: the translation
length of any nontorsion element is positive. If G is solvable and has finite virtual cohomological
dimension, then Conner shows that G is virtually meta-abelian.

Proposition 2.11 Suppose that a solvable group G has finite virtual cohomological dimension. If G has
property (QT ) then it is virtually abelian.
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Proof Passing to finite-index subgroups, assume that G is meta-abelian so any quotient of G is meta-
abelian. By Lemma 2.10, the action of G on each Ti is lineal.

After possibly passing to an index 2 subgroup, a lineal action of any amenable group G on a quasiline T
can be quasiconjugated to an isometric action on R. Indeed, by the proof of Proposition 2.9, conjugating
the original action by almost isometries gives a quasiaction of G on R such that any orbital map induces
a quasimorphism of G to R. For amenable groups, any quasimorphism differs from a homomorphism by
a uniformly bounded constant. Thus, up to quasiconjugacy, the lineal action of G on T can be promoted
to become an isometric action on R.

Consequently, we can quasiconjugate the action of a solvable group G on a finite product of quasitrees to
a proper action on a Euclidean space. Thus, G must be virtually abelian.

Proof of Theorem 1.8 The proof is a combination of Propositions 2.9 and 2.11.

2.3 CKA groups

Admissible groups, first introduced in [21], are a particular class of graph of groups that includes
fundamental groups of 3-dimensional graph manifolds. In this section, we review admissible groups and
their properties that will used throughout the paper.

Let G be a connected graph. We often consider oriented edges from e� to eC and write e D Œe�; eC�.
Then Ne D ŒeC; e�� denotes the oriented edge with reversed orientation. Denote by G0 the set of vertices
and by G1 the set of all oriented edges.

Definition 2.12 A graph of groups G is admissible if the following hold:

(1) G is a finite graph with at least one edge.

(2) Each vertex group Gv has center Z.Gv/Š Z, Hv WDGv=Z.Gv/ is a nonelementary hyperbolic
group, and every edge subgroup Ge is isomorphic to Z2.

(3) Let e1 and e2 be distinct directed edges entering a vertex v, and for iD1; 2, letKi �Gv be the image
of the edge homomorphism Gei

! Gv. Then for every g 2 Gv, gK1g�1 is not commensurable
with K2, and for every g 2Gv �Ki , gKig�1 is not commensurable with Ki .

(4) For every edge group Ge , if ˛i WGe!Gvi
is the edge monomorphism, then the subgroup generated

by ˛�11 .Z.Gv1
// and ˛�12 .Z.Gv1

// has finite index in Ge.

A group G is admissible if it is the fundamental group of an admissible graph of groups.

Definition 2.13 We say that an admissible group G is a Croke–Kleiner admissible group or CKA group
if it acts properly discontinuously, cocompactly and by isometries on a complete proper CAT(0) space X .
Such an action G ÕX is called a CKA action and the space X is called a CKA space.
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Example 2.14 (1) Let M be a nongeometric graph manifold that admits a nonpositively curved
metric. Lift this metric to the universal cover zM of M , and denote it by d . Then the action
�1.M/Õ . zM;d/ is a CKA action.

(2) Let T be the torus complexes constructed in [20]. Then �1.T /Õ zT is a CKA action.

(3) One may build Croke–Kleiner admissible groups algebraically from any finite number of hyperbolic
CAT(0) groups. The following example is for nD 2 but the same principle works for any n� 2.
Let H1 and H2 be two torsion-free hyperbolic groups that act geometrically on CAT(0) spaces
X1 and X2 respectively. Then Gi DHi � hti i (with i D 1; 2) acts geometrically on the CAT(0)
space Yi D Xi �R. Any primitive hyperbolic element hi in Hi gives rise to a totally geodesic
torus Ti in the quotient space Yi=Gi with basis .Œhi �; Œti �/. We rescale Yi so that the translation
length of hi is equal to that of ti for each i . Let f W T1! T2 be a flip isometry respecting these
lengths, that is, an orientation-reversing isometry mapping Œh1� to Œt2� and Œt1� to Œh2�. Let M be
the space obtained by gluing Y1 to Y2 by the isometry f . There is a metric on the space M that
gives rise to a locally CAT(0) space (see eg [11, Proposition II.11.6]). By the Cartan–Hadamard
theorem, the universal cover zM with the induced length metric from M is a CAT(0) space. Let G
be the fundamental group of M . Then the action G Õ zM is geometric, and G is an example of a
Croke–Kleiner admissible group.

Remark 2.15 All graph 3-manifold groups are admissible, but there are closed graph 3-manifold groups
that are not CAT(0) groups (see [33]), and thus are not CKA groups. The following is another example.
Take two nonvirtually split central extensions of hyperbolic groups by Z (eg CSL.2;R/ lattices) and
amalgamate them over Z2 to obtain an admissible group. This group cannot act properly on CAT(0)
spaces, since central extensions acting on CAT(0) spaces must virtually split as direct products [11,
Theorem II.7.1].

A collection of subgroups fK1; : : : ; Kng in a groupH is called almost malnormal if #.gKig�1\Kj /D1
implies i D j and g 2Ki . It is well known that a hyperbolic group is hyperbolic relative to any almost
malnormal collection of quasiconvex subgroups [10].

Lemma 2.16 Let Ke be the image of an edge group Ge into Gv and Ke be its projection in Hv under
Gv!Hv DGv=Z.Gv/. Then P WD fKe j e�D v; e 2 G1g is an almost malnormal collection of virtually
cyclic subgroups in Hv.

In particular , Hv is hyperbolic relative to P .

Proof Since Z.Gv/�Ke ŠZ2, we have Ke DKe=Z.Gv/ is virtually cyclic. The almost malnormality
follows from noncommensurability of Ke in Gv. Indeed, assume that Ke \ hKe0h�1 contains an
infinite order element by the hyperbolicity of Hv. If g 2Gv is sent to h, then Ke \gKe0g�1 is sent to
Ke \hKe0h

�1. Thus, Ke \gKe0g�1 contains an abelian group of rank 2. The noncommensurability of
Ke in Gv implies that e D e0 and g 2Ke. This shows that P is almost malnormal.
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Let G Õ X be a CKA action where G is the fundamental group of an admissible graph of groups G,
and let G Õ T be the action of G on the associated Bass–Serre tree T of G (we refer the reader to
[21, Section 2.5] for a brief discussion). Let T 0 and T 1 be the vertex and edge sets of T . By CAT(0)
geometry:

(1) For every vertex v 2 T 0, the minimal set Yv WD
T
g2Z.Gv/

Minset.g/ of X splits as metric product
Y v �R where Z.Gv/ acts by translation on the R-factor and Hv DGv=Z.Gv/ acts geometrically
on the Hadamard space Y v. Since Hv is a hyperbolic group, it follows that Y v is a hyperbolic
space.

(2) For every edge e 2 T 1, the minimal set Ye WD
T
g2Ge

Minset.g/ of X splits as Y e �R2 � Yv
where Y e is a compact Hadamard space and Ge DZ2 acts cocompactly on the Euclidean plane R2.

We note that the assignments v! Yv and e! Ye are G-equivariant with respect to the natural G actions.

We summarize results in [21, Section 3.2] that will be used in this paper.

Lemma 2.17 Let G ÕX be a CKA action. Then there exists a constant D > 0 such that

(1) X D
S
v2T 0 ND.Yv/D

S
e2T 1 ND.Ye/;

(2) if �; � 0 2 T 0[T 1 and ND.Y� /\ND.Y� 0/¤¿ then j� � � 0jT <D.

We shall refer to zYv DND.Yv/ and zYe DND.Ye/ as vertex and edge spaces for X .

2.3.1 Strips in CKA spaces [21, Section 4.2] We first choose, in a G-equivariant way, a plane Fe � Ye
(which we will call boundary plane) for each edge e 2 T 1. For every pair of adjacent edges e1 and e2,
we choose, again equivariantly, a minimal geodesic from Fe1

to Fe2
; by the convexity of Yv D Y v �R

where v WD e1 \ e2, this geodesic determines a Euclidean strip Se1e2
WD e1e2

�R (possibly of width
zero) for some geodesic segment e1e2

� Y v.

Note that Se1e2
\Fei

is an axis of Z.Gv/. Hence if e1; e2; e 2E and ei \eD vi 2 V are distinct vertices,
then the angle between the geodesics Se1e\Fe and Se2e\Fe is bounded away from zero. If hf1iDZ.Gv1

/

and hf2iDZ.Gv2
/ then hf1; f2i generates a finite-index subgroup of Ge . We remark that the intersection

of two strips Se1e and Se2e is a point. Indeed, we have Se1e \Se2e D .Se1e \Fe/\ .Se2e \Fe/. As
two lines Se1e \Fe and Se2e \Fe in the plane Fe are axes of hfv1

i D Z.Gv1
/ and hfv1

i D Z.Gv2
/,

respectively, and hf1; f2i generates a finite-index subgroup of Ge , it follows that these two lines are not
parallel, and hence their intersection must be a single point.

We note that the intersection of a boundary plane Fe of Yv with the hyperbolic space Y v is a line. The
boundary lines Lv of the hyperbolic space Y v is the collection of lines Lv D f`e WD Fe \Y v j e� D vg.

Definition 2.18 If for each edge e WD Œv; w� 2 T , the boundary line `D Y v\Fe is parallel to the R-line
in Yw D Y w �R, then the CKA action is called flip.

In the sequel, it will be useful to make the following specific choices.
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Figure 1: The dotted and blue path from x to y is a special path, and the red path is oneL1-version
of it.

Definition 2.19 An indexed map � W X ! T 0 is a G-equivariant coarsely Lipschitz map such that
x 2 zY�.x/ for all x 2X .

If G acts freely on X , such a map � can be constructed as follows. Choose a fundamental set † such
that † contains exactly one point from each orbit. Define � W †! T 0 so that x 2 zY�.x/, and extend �
equivariantly to the whole space X . By Lemma 2.17.(2), one can show that � is a coarsely Lipschitz map:
j�.x/� �.y/jT � Ljx�yjX CL for some L> 0. See [21, Section 3.3] for more details.

If G acts only geometrically on X , we could replace X with a G-orbit Go for a basepoint o with trivial
stabilizer. This does not matter much as we are only interested in the coarse geometry hereafter. By
modifying X , we can always assume such a basepoint o exists. Indeed, this can be achieved by attaching
a Euclidean cone to a point o such that its nontrivial but finite stabilizer acts freely on its boundary circle.
Then we do the modification equivariantly for all translates in Go.

2.3.2 Special paths in CKA spaces Let G Õ X be a CKA action. We now introduce the class of
special paths in X .

Definition 2.20 (special paths in X ) Let � WX ! T 0 be the indexed map given by Definition 2.19. Let
x and y be two points in X . If �.x/D �.y/, a special path in X connecting x to y is the geodesic Œx; y�.
Otherwise, let e1 � � � en be the geodesic edge path connecting �.x/ to �.y/ and let pi DSei�1ei

\SeieiC1

be the intersection point of adjacent strips, where e0 WD x and enC1 WD y. A special path connecting x to
y is the concatenation of the geodesics

Œx; p1�Œp1; p2� � � � Œpn�1; pn�Œpn; y�:

Remark 2.21 By definition, except for Œx; p1� and Œpn; y�, the special path depends only on the geodesic
e1 � � � en in T , the choice of planes Fe and the indexed map �.
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Proposition 2.22 [43, Proposition 3.8] There exists a constant � > 0 such that every special path  in
X is a .�; �/-quasigeodesic.

Assume that v0 D �.x/; v2n D �.y/ 2 V are such that d.v0; v2n/D 2n for n� 0. If  is a special path
between x and y, then we define

(2) jx�yjhor
X WD

2nX
iD0

jpi �piC1j
hor
Yvi
; jx�yjver

X WD

2nX
iD0

jpi �piC1j
ver
Yv

where p0 WD x and pnC1 WD y. By Proposition 2.22, we have

jx�yjX � jx�yj
hor
X Cjx�yj

ver
X :

By definition, the system of special paths isG-invariant, so the symmetric functions dh.x; y/ and dv.x; y/
are G-invariant for any x; y 2X .

We partition the vertex set T 0 of the Bass–Serre tree into two disjoint classes of vertices V1 and V2 such
that if v and v0 are in Vi then dT .v; v0/ is even.

Lemma 2.23 [43, Lemma 4.6] There exists a subgroup PG of index at most 2 in G preserving Vi for
i D 1; 2 such that Gv � PG for any v 2 T 0.

2.4 Projection axioms

In this subsection, we briefly recall the work of Bestvina, Bromberg and Fujiwara [5] on constructing a
quasitree of spaces.

Definition 2.24 (projection axioms) Let Y be a collection of geodesic spaces equipped with projection
maps

f�Y W Y �fY g ! P.Y /gY2Y

where P.Y / is the power set of Y . Write dY .X;Z/D diam.�Y .X/[�Y .Z// for X ¤ Y ¤Z 2 Y . The
pair .Y ; f�Y gY2Y / satisfies projection axioms for a projection constant � � 0 if the following hold:

(1) diam.�Y .X//� � when X ¤ Y .

(2) If X , Y and Z are distinct and dY .X;Z/ > � then dX .Y;Z/� � .

(3) For X ¤Z, the set fY 2 Y j dY .X;Z/ > �g is finite.

The following is a useful example to keep in mind throughout the paper. For further details, we refer the
reader to the introduction of [5]. In this example, the collection of metric spaces Y consists of subspaces
of a singe metric space; however, we emphasize that this need not be the case in general.
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Example 2.25 Let G be a discrete group of isometries of H2, and  2G be a loxodromic element with
axis  . Let Y be the set of all G-translates of  . Given Y 2 Y , let �Y denote the shortest projection map
in H2. Since all translates of  are convex, this is a well-defined 1-Lipschitz map. One may check that
.Y ; f�Y gY2Y / satisfies the projection axioms for some constant � .

Remark 2.26 Let .Y ; f�Y gY2Y / satisfy the projection axioms. By [7, Theorem 4.1 and Lemma 4.13],
there exists a variant � 0Y of �Y such that �Y and � 0Y are uniformly close in Hausdorff distance, and
.Y ; f� 0Y gY2Y / satisfies strong projection axioms, ie the axioms are the same as projection axioms except
for replacing (2) in Definition 2.24 with the following stronger statement: if X; Y;Z are distinct and
dY .X;Z/ > � then �X .Y /D �X .Z/ for a projection constant � 0 depending only on � .

The following results from [5] will be used in this paper.

� Fix K > 0. In [5], a quasitree of spaces CK.Y / is constructed for given .Y ; f�Y gY2Y / which
satisfies the projection axioms with constant � .

� If K > 4� and Y is a collection of uniform quasilines, then CK.Y / is a unbounded quasitree. If
Y admits a group action of G such that �gY D g�Y for any g 2 G and Y 2 Y , then G acts by
isometry on CK.Y /.

Set Œt �K D t if t �K, otherwise Œt �K D 0. Let x 2X and z 2Z for X;Z 2 Y . If X ¤ Y ¤Z, we define
dY .x; z/D dY .X;Z/. If Y DX and Y ¤Z, then define dY .x; z/D diam.�Y .x;Z//. If X D Y DZ,
let dY .x; z/ be the distance in Y . The following distance formula from [7] is crucial in what follows.

Proposition 2.27 [7, Theorem 6.3] Let .Y ; f�Y gY2Y / satisfy the strong projection axioms with constant
�. Then for any x; y 2 CK.Y /,

1

4

X
Y2Y

ŒdY .x; y/�K � jx�yjCK.Y/ � 2
X
Y2Y

ŒdY .x; y/�K C 3K

for all K � 4�.

Definition 2.28 (acylindrical action [9; 44]) Let G be a group acting by isometries on a metric space
.X; d/. The action of G on X is called acylindrical if for any r � 0, there exist constants R;N � 0 such
that for any pair a; b 2X with ja� bjX �R we have

#fg 2G j jga� ajX � r and jgb� bjX � rg �N:

By [9], any nontrivial isometry of acylindrical group action on a hyperbolic space is either elliptic or
loxodromic. A .�; c/-quasigeodesic  for some �; c > 0 is referred to as a quasiaxis for a loxodromic
element g if  and g have finite Hausdorff distance depending only on � and c.

A group is called nonelementary if it is neither finite nor virtually cyclic.
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Proposition 2.29 [6] Assume that a nonelementary hyperbolic group H acts acylindrically on a
hyperbolic space Y . For a loxodromic element g 2H , consider the set A of all H -translates of a given
.�; c/-quasiaxis of g for given �; c > 0. Then there exists a constant � D �.�; c/ > 0 such that for any
 2A, the set

fh 2G j diam.� .h//� �g

is a finite union of double E.g/-cosets.

In particular , there are only finitely many distinct pairs .;  0/ 2A�A satisfying diam.� . 0// > � up to
the action of H .

Lemma 2.30 [54, Lemma 2.14] Let H be a nonelementary group admitting a cobounded and acylin-
drical action on a ı-hyperbolic space .Y ; d/. Fix a basepoint o. Then there exists a set F �H of three
loxodromic elements and �; c > 0 with the following property.

For any h 2H there exists f 2 F such that hf is a loxodromic element and the bi-infinite path

 D
[
i2Z

.hf /i .Œo; ho�Œho; hfo�/

is a .�; c/-quasigeodesic.

Convention 2.31 When speaking of quasilines in hyperbolic spaces with actions satisfying Lemma 2.30,
we always mean .�; c/-quasigeodesics where �; c > 0 depend on F and ı.

3 Property (QT) of relatively hyperbolic groups

In this section, we are going to prove Theorem 1.5. The notion of relatively hyperbolic groups can be
formulated from a number of equivalent ways. Here we shall present a quick definition due to Bowditch
[10] and recall the relevant facts we shall need without proofs.

Let H be a finitely generated group with a finite collection of subgroups P. Fixing a finite generating
set S , we consider the corresponding Cayley graph Cay.H; S/ equipped with path metric d and we
denote by jhjH D d.1; h/ the word length.

Denote by P D fhP j h 2 H;P 2 Pg the collection of peripheral cosets. Let yH.P / be the coned-off
Cayley graph obtained from Cay.H; S/ as follows. A cone point denoted by c.P / is added for each
peripheral coset P 2 P and is joined by half edges to each element in P . The union of two half edges
at a cone point is called a peripheral edge. Denote by Od the induced path metric after coning-off and
jhj yH D

Od.1; h/.

The pair .G;P/ is said to be relatively hyperbolic if the coned-off Cayley graph yH.P / is hyperbolic and
fine: any edge is contained in finitely many simple circles with uniformly bounded length.

By [9, Lemma 3.3; 44, Proposition 5.2], the action of H on yH.P / is acylindrical.
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Let �P denote the shortest projection in word metric to P 2 P in H and dP .x; y/ the j � jH -diameter
of the projections of the points x; y to P . Since P has the strongly contracting property with bounded
intersection property, the projection axioms with a constant � > 0 hold for P (see [48]).

3.1 Thick distance formula

A geodesic edge path ˇ in the coned-off Cayley graph yH.P / is K-bounded for K > 0 if the end points
of every peripheral edge have d -distance at most K.

By definition, a geodesic ˇ D Œx; y� can be subdivided into maximal K-bounded nontrivial segments ˛i
(0 � i � n) separated by peripheral edges ej (0 � j �m) where j.ej /� � .ej /CjH > K. It is possible
that nD 0: ˇ consists of only peripheral edges.

Define
jˇjK WD

X
0�i�n

ŒLen.˛i /�K ;

which sums up the lengths of K-bounded subpaths of length at least K. It is possible that n D 0, so
jˇjK D 0. Define the K-thick distance

(3) jx�yjK
yH
DmaxfjˇjKg

over all relative geodesics ˇ between x and y. Thus, jx�yjK
yH

is Hv-invariant.

A relative path without backtracking in yH.P / admits nonunique lifts in Cay.H; S/ which are obtained
by replacing the peripheral edge by a geodesic in Cay.H; S/ with the same endpoints. The distance
formula follows from the fact that the lift of a relative quasigeodesic is a quasigeodesic (see [25; 27,
Proposition 6.1]). The following formula is made explicit in [48, Theorem 0.1].

Lemma 3.1 For any sufficiently large K > 0 and for any x; y 2H ,

(4) jx�yjH �K jx�yj
K
yH
C

X
P2P

ŒdP .x; y/�K :

The following result is proved in [43, Lemma 5.5] under the assumption that H is hyperbolic relative to a
set of virtually cyclic subgroups. However, the same proof works for any relatively hyperbolic group.

Lemma 3.2 For any sufficiently large K > 0, there exists an H -finite collection A of quasilines in yH
and a constant N DN.K; yH;A/ > 0 such that for any two vertices x; y 2 yH ,

(5) jx�yjK
yH
�N

X
`2A

Œ Od`.x; y/�K :

A group H endowed with the profinite topology is a topological group such that the set of all finite-index
subgroups is a (closed/open) neighborhood base of the identity. A subgroup P is called separable if
it is closed in the profinite topology. Equivalently, it is the intersection of all finite-index subgroups
containing P . A group is called residually finite if the trivial subgroup is closed.
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A maximal abelian subgroup of a residually finite group is separable (see [31, Proposition 1]). Note that a
maximal elementary (ie virtually cyclic) group E in a relatively hyperbolic group H contains a maximal
abelian group (of rank 1) as a finite-index subgroup. If H is residually finite, then E is a finite union of
closed subsets; hence it is closed and thus separable.

We will use the following corollary in the proof of Theorem 1.5.

Corollary 3.3 Assume that H is a residually finite relatively hyperbolic group. Then for any K� 0,
there exists a finite-index subgroup PH � H acting on finitely many quasitrees Ti (1 � i � n) such
that every orbital map of the PH -action on

Qn
iD1 Ti is a quasi-isometric embedding from . PH; j � jK

yH
/ toQn

iD1 Ti .

This corollary is essentially proved in [43], inspired by the arguments in the setting of mapping class
groups [6]. We sketch the proof for the convenience of the reader.

Sketch of proof Recall that for any � > 0, a set T of (uniform) quasilines in a hyperbolic space with
� -bounded projection satisfies the projection axioms for a projection constant � D �.�/ > 0. Let � and c
be the constants given by Lemma 2.30 with respect to the acylindrical action H Õ yH . For our purpose,
we will choose � to be the constant given by Proposition 2.29. Then the distance formula for the quasitree
CK.T / constructed from T holds for any K � 4�.

For a fixed large constant K, Lemma 3.2 provides an H -finite set of quasilines A such that (5) holds. We
then use the separability to find a finite-index subgroup PH of H such that A decomposes as a finite union
of PH -invariant Ti each of which satisfies the projection axioms with projection constant � . To be precise,
the stabilizer E of a quasiline ` in A is a maximal elementary subgroup of H and thus is separable in
H if H is residually finite (since a maximal abelian group in a residually finite group is separable). By
Proposition 2.29 and the paragraph after Lemma 2.1 in [6], the separability of E allows one to choose
a finite-index subgroup PH containing E such that any PH -orbit Ti in the collection of quasilines H`
satisfies the projection axioms with projection constant �. We take a common finite-index subgroup PH
for finitely many quasilines ` in A up to H -orbits and therefore have found all PH -orbit Ti such that their
union covers A.

Finally, it is straightforward to verify that the right-hand term of (5) coincides with the sum of distances
over the finitely many quasitrees Ti WD CK.Ti /. Thus, the thick distance dK

yH
.x; y/ is quasi-isometric to

the distance on a finite product of quasitrees.

All our discussion generalizes to the geometric action of H on a geodesic metric space Y , since there
exists an H -equivariant quasi-isometry between Cay.H; S/ and Y . Therefore, replacing Cay.H; S/
with Y , we have the same thick distance formula. This is the setup for CKA actions in next sections.

In next subsection, we obtain property (QT) for relatively hyperbolic groups provided peripheral subgroups
do so.
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3.2 Proof of property (QT) of relatively hyperbolic groups

Proof of Theorem 1.5 Recall that P is a finite set of subgroups. For each P 2 P, choose a full set
EP of left P -coset representatives in H such that 1 2EP . For given P and 1� i � nP , we define the
collection of quasitrees

T i
P WD ff Ti j f 2EP g

where Ti are quasitrees associated to P given by assumption. Then H preserves T i
P by the following

action: for any point f .x/ 2 f Ti and h 2H ,

h �f .x/ WD f 0p.x/ 2 f 0Ti

where p 2 P is given by hf D f 0p for f 0 2EP .

We are now going to define projection maps f�f Ti
g as follows.

By assumption, we fix an orbital embedding �iP of P into Ti such that the induced map

nPY
iD1

�iP W P !

nPY
iD1

Ti

is a quasi-isometric embedding. We then define an equivariant family of orbital maps �i
fP
W fP ! f Ti

such that
�ifP .x/ WD f �

i
P .f

�1x/ for all x 2 fP:

Then for any h 2H and x 2 fP , h � �i
fP
.x/D �i

f 0P
.hx/ where f 0 2EP with hf D f 0p and p 2 P .

Let �fP be the shortest projection to the coset fP in H with respect to the word metric. For any two
distinct f Ti ; f 0Ti 2 T i

P , we set

�f Ti
.f 0Ti / WD �

i
fP .�fP .f

0P //:

Recall that P DffP j f 2H;P 2Pg satisfies the projection axioms with shortest projection maps f�fP g.
It is readily checked that the projection axioms pass to the collection T i

P under equivariant Lipschitz
maps f�i

fP
gfP2P .

We can therefore build the projection complex for T i
P for a fixed K � 0. By Proposition 2.27, the

following distance holds for any x0; y0 2 CK.T i
P /:

(6) jx0�y0jCK.T
i
P /
�K

X
T2T i

P

ŒdT .x
0; y0/�K :

Note that
QnP

iD1 �
i
P WP !

QnP

iD1 Ti is a quasi-isometric embedding for each P 2P. Thus, for any x; y 2G
and P 2 P ,

(7) dP .x; y/D j�P .x/��P .y/jP �

nPX
iD1

j�iP .�P .x//� �
i
P .�P .y//jTi

:
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Setting x0 D �iP .�P .x// and y0 D �iP .�P .y// in (7), we deduce from (6) that

(8) dP .x; y/�K

nPX
iD1

j�iP .�P .x//� �
i
P .�P .y//jCK.T

i
P /
:

Recall from Lemma 3.1 that for any x; y 2H , we have

jx�yjH �K jx�yj
K
yH
C

X
P2P

ŒdP .x; y/�K :

Note that the orbital map of any isometric action is Lipschitz. To prove property (QT) of H , it suffices
to give an upper bound of jx � yjH . Taking account of (8), it remains to construct a finite product of
quasitrees to bound jx�yjK

yH
.

Since H is residually finite, by Corollary 3.3, there exists a finite-index subgroup, still denoted by H ,
and a finite product Y of quasitrees such that the orbital map …0 from H to Y gives a quasi-isometric
embedding of H equipped with j � jK

yH
-function into Y .

Recall that �P is the shortest projection to P 2 P . For 1� i � nP , define

…i WH ! CK.T
i
P /

by sending an element h 2H to �iP .�P .h//. We then have n equivariant maps …i from H to quasitrees
after reindexing, where n WD

P
P2P nP .

Let … WD…0 �
Qn
iD1…i be the map from H to Y �

Qn
iD1 CK.T i

P /, where Y is the finite product of
quasitrees as in the previous paragraphs. As previously mentioned, the product map … gives an upper
bound on dH .x; y/, so is a quasi-isometric embedding of H . Therefore, H has property (QT).

Remark 3.4 An immediate corollary of Theorem 1.5 is that the fundamental group of a finite volume
hyperbolic 3-manifold has property (QT). An alternative proof is that �1.M/ is virtually compact special
by deep theorems of Agol [3] and Wise [53], and thus �1.M/ has property (QT).

We say that the profinite topology on H induces a full profinite topology on a subgroup P if every
finite-index subgroup of P contains the intersection of P with a finite-index subgroup of H .

Theorem 3.5 Suppose that H is residually finite and each P 2 P is separable. Assume furthermore
that H induces the full profinite topology on each P 2 P. If each P 2 P acts by isometry on a finite
product of quasitrees without R-factor such that orbital maps are quasi-isometric embeddings , then H
has property (QT ).

Proof By [26, Corollary 1.3], there is a finite-index subgroup PP of P acting on each quasitree Ti such
that the diagonal action of PP on

Qn
iD1 Ti induces a quasi-isometric embedding orbital map

Qn
iD1 �

i
PP
.

By the assumption, H induces the full profinite topology on P 2 P, so every finite-index subgroup of a
separable subgroup P is also separable. Thus, there are finite-index subgroups PHP of H for P 2 P such
that PP D PHP \P .
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Consider the finite-index normal subgroup PH WD
T
fh PHPh

�1 j P 2 Pg in H . Since PH is normal in H ,
we see that PH \ hPh�1 � h PPh�1 is equivalent to PH \P � PP . The later holds by the choice of PHP .
Hence, for every h 2H , PH \ hPh�1 preserves the factors of the product decomposition. Note that PH is
hyperbolic relative to f PH \ hPh�1 j h 2H g. The conclusion follows from Theorem 1.5.

In subsequent sections (Sections 4, 5, 6 and 7), the proof of property (QT) of CKA groups will be
discussed, which may be considered as the technical heart of this paper.

4 Coning-off CKA spaces

In this section, we recapitulate the content of [43, Section 5] and give an outline of the proof of Theorem 1.3.

Let G ÕX be a CKA action where G is the fundamental group of an admissible graph of groups G (see
Section 2.3), and let G Õ T be the action of G on the associated Bass–Serre tree T of G. Let T 0 and T 1

be the vertex and edge sets of T .

Let fFeg be the collection of boundary planes of the space Yv (see Section 2.3). We note that the
intersection of a boundary plane Fe of Yv with the hyperbolic space Y v is a line. We define the collection
of lines Lv of the hyperbolic space Y v as

Lv D f`e WD Fe \Y v j e� D vg;

which shall be referred as boundary lines.

4.1 Construction of coned-off spaces

Recall that T 0 D V1[V2 where Vi consists of vertices in T with pairwise even distances. Let PG <G
be the subgroup of index at most 2 preserving V1 and V2 given by Lemma 2.23.

Fix a large r > 0. A hyperbolic r-cone by definition is the metric completion of the (incomplete) universal
cover of a punctured hyperbolic disk of radius r . Let Yi D fY v j v 2 Vig be the collection of hyperbolic
spaces and PYi D f PYv j v 2 Vig be their coned-off spaces (which are uniformly hyperbolic for r � 0) by
attaching hyperbolic r-cones along the boundary lines of Y v.

Note that PG preserves Yi and PYi by the action on the index gYv D Ygv for any g 2 PG. For each w 2 T 0,
let St.w/ be the star of w in T with adjacent vertices as extremities. Then St.w/ admits the action of Gw
so that the stabilizers of the extremities are the corresponding edge groups.

Define PXi to be the space obtained from the disjoint union of coned-off spaces PYv (v 2 Vi ) with cone
points identified with the extremities of the stars St.w/ with v 2 Lk.w/. Endowed with induced length
metric, the space PXi is a Gromov-hyperbolic space.

Lemma 4.1 Fix a sufficiently large r > 0 and i 2 f1; 2g. The space PXi is a ı-hyperbolic space where
ı > 0 only depends on the hyperbolicity constants of PYv (v 2 Vi ).
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The subgroup PG acts on PXi with the following properties:

(1) for each v 2 Vi , the stabilizer of PYv is isomorphic to Gv and Hv acts coboundedly on PYv, and

(2) for each w 2 T 0�Vi , Gw acts on St.w/ in the same manner as the action on the Bass–Serre tree T .

Proof Note that the stabilizers of the cone points of PYv under the action of Gv on PYv are the same as that
of the extremities of stars St.w/, which are both the edge groups Ge for e D Œv; w�. By construction, the
cone points of PYv are identified with the extremities of stars St.w/, so the actions of Gv on PYv (v 2 Vi )
and of Gw on St.w/ (w 2 T 0�Vi ) extend over PXi , and hence PG acts by isometries on PXi .

Remark 4.2 Our construction of coned-off spaces is slightly different from the one in [43, Section 5.1],
where the cone points are identified directly between different spaces PYv and PYv0 . Thus certain assumption
on vertex groups is necessary in [43] to ensure an action on the coned-off space.

We now define the thick distance on PXi (i D 1; 2) by taking the sum of thick distances through PYv as
follows.

If x is a point in a coned-off space PYv � PXi , we denote �.x/ by v (by abuse of notation). By the above
tree-like construction, any path between x; y 2 PXi has to pass through in order a pair of boundary lines `�v
and `Cv of Y v for each v 2 Œ�.x/; �.y/�. By abuse of language, if x is not contained in a hyperbolic cone,
set `�v D x for v D �.x/. Similarly, if y is not contained in a hyperbolic cone, set `Cv D y for v D �.y/.

Let .xv; yv/ be a pair of points in the boundary lines .`�v ; `
C
v / such that Œxv; yv� is orthogonal to `�v

and `Cv . Recall that jxv �yvjKPYv

is the K-cut-off thick distance defined in (3).

Definition 4.3 For any K � 0, the K-thick distance between x and y is defined by

(9) jx�yjK
PXi
WD

X
v2Œ�.x/;�.y/�\Vi

jxv �yvj
K
PYv
:

Since j � jK
PYv

is Hv-invariant, we see that jx�yjK
PXi

is PG-invariant.

Remark 4.4 The definition of j � jK
PXi

is designed to ignore the parts in hyperbolic cones between different
pieces. One consequence is that perturbing x and y in hyperbolic cones does not change their K-thick
distance.

4.2 Construct the collection of quasilines in PXi

If E.`/ denotes the stabilizer in Hv of a boundary line ` of Y v, then E.`/ is virtually cyclic and
almost malnormal. Since fE.`/g is Hv-finite by conjugacy, let Ev be a complete finite set of conjugacy
representatives. By Lemma 2.16, Hv is hyperbolic relative to peripheral subgroups Ev . Hence, the results
in Section 3 apply here.

Let �; c > 0 be the universal constants given by Lemma 2.30 applied to the actions of Hv on PYv for all
v 2 T 0 (since there are only finitely many actions up to conjugacy). By convention, the quasilines in
coned-off spaces are understood as .�; c/-quasigeodesics in PXi and PYv.
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The coning-off construction has the following consequence [43, Lemma 5.14]: the shortest projection of
any quasiline ˛ in PYv to a quasiline ˇ in PYv0 has to pass through the cone point attached to PYv0 , and thus
has uniformly bounded diameter by � D �.�; c/ > 0.

For simplicity, we also assume that � D �.�; c/ > 0 satisfies the conclusion of Proposition 2.29. Conse-
quently, this determines a constant � D �.�/ > 0 such that any set of quasilines with � -bounded projection
satisfies the projection axioms with projection constant � .

Fix K >maxf4�; �g. For each v 2 V, there exists an Hv-finite collection of quasilines Av in PYv and a
constant N DN.Av; K/ such that the dK

yHv

-distance formula holds by Lemma 3.2.

Since PG acts cofinitely on V1 and V2, we can assume Aw D gAv if w D gv for g 2 PG. Let

Ai WD
[
v2Vi

Av

for i D 1; 2, which are both PG-invariant. We now equip Ai with projection maps as the shortest projection
maps between two quasilines in PXi for i D 1; 2.

If  is a quasiline in PXi for i D 1; 2, denote by Pd .x; y/ the j � j PXi
-diameter of the shortest projection of

x; y 2 PXi to  .

The following result shows that the thick distance is captured by the projections of Ai . Recall that r is
the radius of the hyperbolic cones in constructing PXi .

Proposition 4.5 [43, Proposition 5.9] For any x; y 2 PXi ,

(10) jx�yjK
PXi
�r;K

X
2Ai

Œ Pd .x; y/�K Cj�.x/� �.y/jT :

In the next subsection, we construct a suitable finite subgroup of G such that it acts isometrically on a
finite product of quasitrees T1; : : : ; Tn under some assumptions on vertex groups. This allows rewriting
the right-hand side of the distance formula (10) as the product distance of the Ti .

4.3 Isometric action of a suitable finite-index subgroup of G

In a group, two elements are independent if they do not have conjugate powers (see [52, Definition 3.2]).

Definition 4.6 A group H is omnipotent if for any nonempty set of pairwise independent elements
fh1; : : : ; hrg (r � 1) there is a integer p � 1 such that for every choice of positive natural numbers
fn1; : : : ; nrg, there is a finite quotient H ! yH such that Ohi has order nip for each i .

Let G Õ X be a CKA action, where G is the fundamental group of the admissible graph of groups G

such that every vertex group Gv is a central extension of an omnipotent hyperbolic group. By Lemma 4.1,
the finite-index subgroup PG acts on PX1 � PX2 � T which is equipped with the PG-invariant function
j � jK
PX1

� j � jK
PX2

� j � jT . The main result of this subsection is the following.
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Proposition 4.7 The group PG admits finitely many isometric actions on quasitrees Ti for 1� i � n such
that there exists a PG-equivariant quasi-isometric embedding from PX1 � PX2 �T to T1 �T2 � � � � �Tn �T .

We emphasize here that j � jK
PX1

� j � jK
PX2

� j � jT on the domain for the quasi-isometric embedding is not a
distance function, but the target is equipped with product distance.

By [11, Theorem II.6.12], Gv contains a subgroup Kv intersecting trivially with Z.Gv/ such that the
direct product Kv �Z.Gv/ is a finite-index subgroup. Thus, the image of Kv in Gv=Z.Gv/ is of finite
index in Hv and Kv acts geometrically on hyperbolic spaces Y v. Since Hv is omnipotent and then is
residually finite, we can assume that Kv is torsion-free.

Recall the PG-invariant collection of quasilines in Section 4.2,

Ai D
[
v2Vi

Av;

where Av is the collection of quasilines such that dK-distance formula holds by Lemma 3.2. By
the residual finiteness of Kv, there exists a finite-index subgroup PKv such that Av is partitioned into
PKv-invariant subcollections with projection constants �.

To prepare the proof, we need to introduce a compatible condition of gluing finite-index subgroups. A
collection of finite-index subgroups fG0e; G

0
v j v 2 G0; e 2 G1g is called compatible if whenever v D e�,

we have
Gv \G

0
e DG

0
v \Ge:

By [24, Theorem 7.51], a compatible collection of finite-index subgroups gives a finite-index subgroup of
G. The following result says that upon taking finite-index subgroups, we can assume that each vertex
group is a direct product in a CKA group.

Lemma 4.8 Let f PKv <Kv j v 2 G0g be a collection of finite-index subgroups. Then there exist finite-
index subgroups RKv of PKv, G0e of Ge and Zv of Z.Gv/ such that the collection of finite-index subgroups
fG0e; G

0
v D

RKv �Zv j v 2 G0; e 2 G1g is compatible.

Assuming Lemma 4.8, we now complete the proof of Proposition 4.7.

Proof of Proposition 4.7 We pass to further finite-index subgroups RKv < PKv satisfying compatible con-
ditions, which then gives a further indexed subgroup RG � PG. For i D 1; 2, let us partition Ai D

Sni

kD1
Ai
k

into RG-obits Ai
k

. By the construction of RG, we know that RG intersects each vertex group Gv of the
Bass–Serre tree in a (conjugate) subgroup RKv . Thus, for each k, Ai

k
are the union of certain RKv-invariant

subcollections where v are varied in Vi .

Recall that Ai for i D 1; 2 satisfies the projection axioms with a uniform projection constant � in
Section 4.2. We can then build the quasitrees T i

k
WD CK.Aik/ where 1 � k � ni . Setting nD n1C n2,

this thus yields isometric group actions of RG on quasitrees Ti (1� i � n).
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We first construct a RG-equivariant map ˆ from PX1 � PX2 �T to T1 �T2 � � � � �Tn �T . By equivariance,
it suffices to fix a basepoint in each X1, X2, T and Ti so that ˆ sends basepoints to basepoints. The
quasi-isometric embedding property follows from the distance formula (10), where the right-hand side is
now replaced by the distance in the corresponding quasitrees.

Note that RG is of finite index in PG. By taking more copies of quasitrees Ti in the target, the map ˆ can
be made PG-equivariant. Indeed, if a finite-index subgroup H �G acts on some space X then G acts on
a finite product of ŒG WH� copies of X without preserving the factors. The map ˆ can be extended to
these copies as well.

Proof of Lemma 4.8 Assume that hfvi DZ.Gv/ for any v 2 G0. Then for an oriented edge e D Œv; w�
from v to w, the subgroup hfv; fwi is of finite index in Ge.

Note that Ge Š Z2 admits a base f Ofv; Obeg where Ofv is primitive so that fv is some power of Ofv. Let
�v WGv!Hv DGv=Z.Gv/. Thus, �v.Ge/ is a direct product of a torsion group with hbei in Hv , where
be D �v. Obe/ is a loxodromic element.

Similarly, let Ofw ; Ob Ne 2Ge such that h Ofw ; Ob Nei DGe. Keep in mind that for any integer n¤ 0,

h Of nv ;
Obne i D h

ObnNe ;
Of nw i

is of finite index in Ge.

We choose an integer m¤ 0 such that Obme 2 PKv for every vertex v 2 G0 and every oriented edge e from
e� D v. Such an integer m exists since PKv injects into Hv as a finite-index subgroup, and G is a finite
graph of groups.

Apply the omnipotence of Hv to the independent set of elements fbe j e� D vg. Let pv be the constant
given by Definition 4.6. Set

s WDm
Y
v2G0

pv:

Set lv D s=pv. Thus, for the collection fbe j e� D vg, there exists a finite quotient �v WHv!H v such
that �v.be/ has order s D lvpv and bse 2 ker.�v/. Then RKv WD PKv \��1v ker.�v/ is of finite index in PKv .
Recall that �vjKv

WKv!Hv is injective (see the paragraph before Lemma 4.8). Since �v. Obse/D b
s
e is

loxodromic in Hv and Obse 2 PKv for mjs, we have that Obse is a loxodromic element in RKv.

For each oriented edge e D Œv; w� 2 G1, define

G0v WD h
Of sv i �

RKv; G0w WD h
Of swi �

RKw ; G0e WD h
Of sv ;
Obsei D h

ObsNe ;
Of swi<G

0
v:

Let g 2 Ge \G0v be any element so we can write g D Of smv k for some m 2 Z and k 2 RKv. Recall that
�v.Ge/ is a direct product of hbei and a torsion group, and RKv is torsion-free. So

�v.g/D �v.k/ 2 �v.Ge/\�v. RKv/
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is some power of be; �v.k/D ble for some l 2Z. Note that ble D �v.k/2 ker.�v/ so omnipotence implies
that sjl , ie l D ns for some n 2 Z. Since be D �v. Obe/ and �v W RKv ! Hv is injective, we obtain that
k D Obnse . Therefore, g D Of smv Obnse 2G

0
e which implies

Gv \G
0
e DG

0
v \Ge:

Therefore, the collection fG0v; G
0
e j v 2 G0; e 2 G1g is verified to be compatible.

4.4 Outline of the proof of Theorem 1.3

Let G ÕX be a CKA action where G is the fundamental group of an admissible graph of groups G such
that for every vertex group the central extension (1) has omnipotent hyperbolic quotient group. Recall
that property (QT) is preserved undertaking finite-index subgroups (see Lemma 2.3). Upon passing to
further indexed subgroups in Lemma 4.8, we can assume that Gv DHv�Z, where Hv acts geometrically
on Y v and also we can assume PG DG. To show the property (QT) of G, we must find not only a suitable
action on a finite product of quasitrees, but also ensure the distance of points in the image can recover
word distance in the ambient group. We briefly describe here the strategy of the proof. Details are given
in Sections 5 and 6.

Thanks to Proposition 4.7, we know that there exists a G-equivariant quasi-isometric embedding (note
that PG DG)

PX1 � PX2 �T ! T1 �T2 � � � � �Tn �T:

Here Ti (with i 2 f1; 2; : : : ; ng) is a quasitree. As the geometry of space PX1 � PX2 �T does not capture
the distance from vertical parts of X , there is no way finding a quasi-isometric embedding from the orbit
Go to PX1 � PX2 �T . To overcome this obstacle, in Section 5, we will construct two additional quasitrees,
denoted by CK.F1/ and CK.F2/, and will show that there is indeed a G-equivariant quasi-isometric
embedding

ˆ WGo! CK.F1/�CK.F2/� PX1 � PX2 �T

(Section 6 is devoted to constructing ˆ and verifying G-equivariant quasi-isometric embedding of ˆ).
As a consequence, we obtain the desirable G-equivariant quasi-isometric embedding

Go! CK.F1/�CK.F2/�T1 �T2 � � � � �Tn �T

which entails property (QT) of G.

5 Projection system of fiber lines

Recall we partition T 0 D V1 [V2 where Vi consists of vertices in T with pairwise even distances.
For convenience, we sometimes write VD V1 and WD V2. We note that property (QT) of a group is
preserved under taking a finite-index subgroup (see Lemma 2.3). Thus passing to a finite-index subgroup
(see Lemma 2.23) if necessary we could assume that G is torsion-free and preserves Vi with i D 1; 2.
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Note that e D Œw; v� is an oriented edge from w towards v, and Ne D Œv; w� is the oriented edge from v

towards w. For each oriented edge e, let Fe be the corresponding boundary plane. It is clear that Fe DF Ne
does not depend on the orientation.

5.1 Desired quasilines

By Lemma 2.17, the CKA space X decomposes as the union of vertex spaces zYv DND.Yv/ for v 2 T 0,
on which the vertex groups Gv act geometrically. The center Z.Gv/'Z allows us to split Yv as a metric
product Y v �R. Upon passing to further finite-index subgroups in Lemma 4.8, we can assume that
Gv DHv �Z, where Hv acts geometrically on Y v . If the CKA action G ÕX is not flip (as in [43]), the
system of fiber lines R in Yv D Y v �R does not behave well with respect to the G-action. We introduce
better geometric models for vertex subgroups in order to resolve the G-action of fiber lines. As in [29],
these models are the metric product of Y v with a quasiline.

We first explain the construction of the quasiline obtained from a quasimorphism. The following lemma
is cited from Lemma 4.2 and the proof of Corollary 4.3 in [29]. We present their proof as it is short and
crucial for our discussion.

Lemma 5.1 Let H be a hyperbolic group relative to a finite collection of virtually cyclic subgroups
fEi j 1� i � ng. Consider G DH �Z and fix a set of elements ci 2Ei �Z for each 1� i � n such that
hci i has unbounded projection to Ei . Then there exist a generating set S of G and a .�; �/-quasi-isometry
' W Cay.G; S/!R such that the following holds.

(1) If ghci i and g0hci i are two hci i-cosets for g; g0 2Ei �Z, then

��1jghci i �g
0
hci ijG ��� j'.ghci i/�'.g

0
hci i/j � �jghci i �g

0
hci ijG C�

where jghci i � g0hci ijG denotes the distance between two subsets in G equipped with a word
metric relative to a finite generating set (so not the distance on Cay.G; S/).

(2) With the natural action of G ! H , the diagonal action of G D H � Z on H � Cay.G; S/ is
metrically proper and cobounded , where Z�G acts loxodromically on Cay.G; S/ but hci i acts
boundedly.

In applications, the choice of elements ci shall come from the fiber generator of the adjacent pieces. See
Lemma 5.2 below.

Proof Let �H WGDH�Z!H and �Z WGDH�Z!Z be the natural projections. Let tiD�H .ci /2Ei
be the projection to H of the element ci . We then choose a quasimorphism �i WH !R by [32] such that
�i .ti /D 1 but �i .Ek/D 0 if Ek ¤Ei . Define the quasimorphism of G!R as follows: for any x 2G,

'.x/ WD �Z.x/�

nX
iD1

�Z.ci / � .�i ı�H .x//:
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By definition, ' takes the constant value on hci i-cosets. Moreover, the distance jghci i � g0hci ijG is
bi-Lipschitz to j'.ghci i/�'.g0hci i/j with a constant depending only on hci i.

To find the generating set S , notice that the homogenization of ' (still denoted by ') has a bounded
distance to the original one. As ' is unbounded, there exists h 2G such that f'.hn/D n'.h/ j n 2 Zg

is an infinite cyclic subgroup. Let S WD '�1.Œ0; 2'.h/�/ be a (possibly infinite) subset of G. One can
prove that S generates G, and ' WG!R induces a desired quasi-isometry ' W Cay.G; S/!R. See [1,
Lemma 4.15] for details.

5.2 New geometric model for vertex spaces

Recall that G acts on the Bass–Serre tree T with finitely many vertex orbits. Let fv1; v2; : : : ; vng � T
be the full set of vertex representatives, and let Svi

be the (infinite) generating set for Gvi
given by

Lemma 5.1. Then Gvi
acts on the quasiline fl.vi / WD Cay.Gvi

; Svi
/. Let v be an arbitrary vertex

in T , so that v D gvi for some g 2 G and i 2 f1; 2; : : : ; ng. By equivariance, we define the quasiline
fl.v/ WD gfl.vi /D g Cay.Gvi

; Svi
/, and the action of Ggvi

D gGvi
g�1 on gfl.vi / is induced from the

action of Gvi
on fl.vi /.

Consider the word metric on G given by a finite generating set of G including a finite generating set of
Gvi

for each representative vertex vi . Equipping each vertex group Gv with a word metric, the inclusion
of Gv into G is a quasi-isometric embedding since Yv is quasi-isometrically embedded in the CAT(0)
space X .

WriteXv WDY v�fl.v/ for the new geometric model forGv . By Lemma 5.1, the diagonal actionGv ÕXv

is metrically proper and cobounded, and hence the induced orbital map

Gv!Gvo
0
�Xv

is a Gv-equivariant quasi-isometry for any basepoint o0 D .o01; o
0
2/ 2Xv.

Let us fix a basepoint oD .o1; o2/ 2 Yv. As Gv acts freely and geometrically on Yv D Y v �R, let

Gvo!Gv

be a bijective Gv-equivariant quasi-isometry, a quasi-inverse to the orbital map of Gv Õ Yv.

Choose the same first coordinate o1D o01 for the above basepoints o and o0. Define a Gv-equivariant map
ƒv W Yv!Xv as the composite of the above two G-equivariant maps

ƒv W Yv D Y v �R!Gv!Xv D Y v � fl.v/:

Define the horizontal and vertical projection maps

(11) ƒhor
v W Yv! Y v; ƒver

v W Yv! fl.v/
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as the composites of the map ƒv with the projections to the factor Y v and fl.v/ respectively. For the
product space Xv D Y v � fl.v/, we define similarly the horizontal distance and vertical distances j � jhor

Xv

and j � jver
Xv

. In terms of these notations, we have for any x; y 2 Yv,

jƒv.x/�ƒv.y/j
hor
Xv
D jƒhor

v .x/�ƒ
hor
v .y/jY v

;

jƒv.x/�ƒv.y/j
ver
Xv
D jƒver

v .x/�ƒ
ver
v .y/jfl.v/:

We now derive a few important facts from Lemma 5.1 about ƒv.

Recall that each piece Yv of the CKA space X splits as a metric product Y v �R. In this context, a fiber
line in Yv refers to a subset fxg �R of Yv where x 2 Y v.

Let �v W Yv! Y v be the natural projection map coming from the splitting Yv D Y v �R. We remark that
�v and ƒhor

v are not the same.

Lemma 5.2 There exists a uniform constant � > 0 such that ƒv is a .�; �/-quasi-isometry: for any
x; y 2 Yv,

1

�
jƒv.x/�ƒv.y/jXv

��� jx�yjYv
� �jƒv.x/�ƒv.y/jXv

C�:

Moreover , let Yw be the adjacent piece of Yv in the CKA space X . Let ` and `0 be lines in the plane
P D Yv \Yw such that ` and `0 are fibers in Yw . Then the following hold :

(1) diam.ƒver
v .`//� �. In other words , ƒv.`/� Y v \B.a; �/ in Y v � fl.v/ for some a 2 fl.v/.

(2) Let p 2 Yv D Y v �R be any point and �v.p/ be the projection of p into the factor Y v. Then
j�v.p/�ƒ

hor
v .p/jY v

� �.

(3) Denote by j`� `0jYv
the distance between ` and `0 in Yv. Then

��1j`� `0jYv
��� diamfl.v/.ƒ

ver
v .`/[ƒ

ver
v .`

0//� �j`� `0jYv
C�:

Proof We first prove (2). Choose the fixed basepoints oD .o1; o2/ in Yv and o0 D .o01; o
0
2/ in Y v � fl.v/

such that their projections into the factor Y v are the same: o1 D o01 2 Y v. Take any point p D .a; t/ in
Yv D Y v �R, so �v.p/D a. By our definition of the Gv-equivariant quasi-inverse Yv!Gv , there exists
a group element g 2Gv such that jgo�pjYv

� � for some uniform constant �. We write g D .h; n/ in
Hv �Z. Note that Gv acts on Y v � fl.v/ diagonally; thus the image of the group element g D .h; n/
under the composition map

Gv! Y v � fl.v/! Y v

is h �o1, where the first one is the orbital map and the second one is the projection map. If Yv is equipped
with L1-metric, it follows that jho1 � ajY v

� jgo� pjYv
� �. As the map ƒv descends to the map

Y v! Y v sending a to h.o1/, our claim is confirmed:

jƒhor
v .x/�ƒ

hor
v .y/jY v

��� dh.x; y/� �Cjƒhor
v .x/�ƒ

hor
v .y/jY v

:
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For part (1), as there are only finitely many isometric types of Yv of X , we only need to prove that
diam.ƒver

v .`//� � for one given Yv. Indeed, recall that ƒver
v W Yv! fl.v/ factors through

Yv!Xv D Y v � fl.v/

as the natural projection Xv ! fl.v/. The latter agrees with the quasimorphism ' W Gv ! R up to a
bounded error in the proof of Lemma 5.1, vanishing on the center Z.Gw/. If B.a; �/ denotes the ball at
some element a 2 fl.v/ with radius �, it follows that Z.Gw/o� Y v �B.a; �/. Every fiber line ` in Yw
lies in a uniform neighborhood of the orbit of a Z.Gw/-coset. Our second claim is thus verified.

Part (3) is clear from our construction.

5.3 Projection maps

Recall T 0 D V1[V2 where Vi consists of vertices in T with pairwise even distances. Let

F1 D ffl.v/ j v 2 V1g; F2 D ffl.w/ j w 2 V2g:

It remains to define a family of projection maps for them.

Definition 5.3 (projection maps in Fi ) Let e1 D Œv; w�, e2 D Œw; v2� denote the first two (oriented)
edges in Œv; v0�. Let Fe1

D Yv \Yw and Fe2
D Yv2

\Yw be the two boundary planes of Yw . Let Se1e2

be the strip in Yw joining two boundary plane Fe1
and Fe2

of Yw (see Section 2.3.1 for the definition
of strips). We note that Se1e2

\Fe1
is a line in Fe1

that is parallel to a fiber in Yw . We then define the
projection from fl.v0/ into fl.v/ to be

…fl.v/.fl.v
0/ WDƒver

v .Se1e2
\Fe1

/;

where ƒver
v defined in (11) is the vertical projection to the quasiline in Xv D Y v � fl.v/.

Lemma 5.4 Let � > 0 be the constant given by Lemma 5.2. Let a, b and c be distinct vertices in Vi

with i D 1; 2. If dT .a; Œb; c�/� 2 then …fl.a/.fl.c//D…fl.a/.fl.b//� �.

Proof Let Œb; a� and Œc; a� be the geodesics in the tree T connecting b and c to w respectively. Let
e � e0 be the last two edges in Œb; a� (that is also the last two edges in Œc; a�). Let See0 be the strip in YeC
connecting two boundary planes Fe and Fe0 of YeC By our definition of projection maps, we have that
…fl.a/.fl.c//D…fl.a/.fl.b//Dƒ

ver
a .See0 \Pe0/� �.

5.4 Projection axioms

We are now going to verify that Fi (i D 1; 2) with the above-defined projection maps in Definition 5.3
satisfy the projection axioms (see Definition 2.24). For each vertex v 2 T , let Lv be the collection of
boundary lines in the hyperbolic space Y v defined at the beginning of Section 4. Let `1, `2 and `3 be
three distinct boundary lines in Lv. We write

d`1
.`2; `3/D diam.�`1

.`2/[�`1
.`3//
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where �`i
. j̀ / is the shortest projection of j̀ to `i in the CAT(0) hyperbolic space Y v (note that Y v is

a hyperbolic space since Hv acts geometrically on Y v and Hv is a nonelementary hyperbolic group).
Recall that

dfl.v1/.fl.v2/; fl.v3// WD diam
�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
:

Lemma 5.5 There exists a uniform constant � > 0 such that the following holds. Let v1, v2 and v3 be
distinct vertices in V1 such that v1, v2 and v3 are in Lk.o/ for some vertex o in V2. Let ei denote the
edge Œvi ; o� with i D 1; 2; 3 and let Fei

be the plane in X associated to ei . For each i D 1; 2; 3, let `i
denote the boundary line of Y o that is the projection of Fei

into Y o. Then

1

�
d`1
.`2; `3/��� dfl.v1/.fl.v2/; fl.v3//� �d`1

.`2; `3/C�:

Proof Let Se1e2
and Se1e3

be the strips in Yo connecting the planesFe1
toFe2

andFe1
toFe3

respectively.
We denote the line Se1e2

\Fe1
by ` and denote the line Se1e3

\Fe1
by `0. Note that both lines ` and `0

are fibers in Yo. Recall that by our definition of projection maps, we have …fl.v1/.fl.v2//Dƒ
ver
v1
.`/ and

…fl.v1/.fl.v3//Dƒ
ver
v1
.`0/. By part (3) of Lemma 5.2, for some � > 0, we have that

1

�
j`� `0j ��� diam

�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
� �j`� `0jC�:

Note that j`�`0j D d`1
.`2; `3/ (indeed, let ˛ and ˇ be the shortest geodesics joining `2 to `1 and `3 to `1

respectively; then ` and `0 are the product ˛C�R and ˇC�R of endpoints of ˛ and ˇ, respectively, with
the R direction in Yo D Y o�R). Combining the above inequalities, we obtain a constant �0 D �0.�/ > 0
still denoted by � such that

1

�
d`1
.`2; `3/��� diam

�
…fl.v1/.fl.v2//[…fl.v1/.fl.v3//

�
� �d`1

.`2; `3/C�:

We are now going to prove the following.

Lemma 5.6 There exists a constant � > 0 such that for each i 2 f1; 2g, the collection Fi with projection
maps �fl.v/ satisfies the projection axioms with projection constant � .

Proof We verify in order the projection axioms (see Definition 2.24) for the projection maps defined
on F1. The case for F2 is symmetric. The constant � will be defined explicitly during the proof.

Axiom 1 Let � > 0 be the constant given by Lemma 5.2. Since Se1e2
\Fe1

is a fiber line in Yw , it
follows from Lemma 5.2 that diamƒver

v .Se1e2
\Fe1

/� �. Thus diam
�
…fl.v/.fl.v

0//
�
� �. Axiom 1 in

Definition 2.24 is verified.

Axiom 2 Let u, v and w be distinct vertices in V1. We will show that there exists � � 0 sufficiently
large that if dfl.w/.fl.u/; fl.v// > �, then dfl.u/.fl.w/; fl.v//� � or dfl.v/.fl.w/; fl.u//� � . The constant
� will be defined explicitly during the proof. Since dfl.w/.fl.u/; fl.v// > �, it follows from Lemma 5.4
that there is some restriction on w, ie w is either lies on Œu; v� or dT .w; Œu; v�/D 1.
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`e

`e1
`e2

Y o

u v

w

o

e

e1 e2
�

�

��

Figure 2: Verification of Axiom 2.

Case 1 Suppose w lies on Œu; v�. Since u;w; v 2 V1, we have dT .u; Œw; v�/� 2 and dT .v; Œu; w�/� 2.
Axiom 2 thus follows from Lemma 5.4.

Case 2 Suppose dT .w; Œu; v�/D 1. Without loss of generality, we can assume that u, v and w lie in the
same link Lk.o/ for some vertex o in V2. Indeed, let o2 Œu; v� be adjacent to w and u0; v0 2Lk.o/\ Œu; v�.
It is clear by definition that �fl.u/.fl.v0//D �fl.u/.fl.v// and �fl.v/.fl.u0//D �fl.v/.fl.u//. As a result, we
can thus assume that uD u0 and v D v0 lie in the link Lk.o/.

Recall that Y o is a ı-hyperbolic space whose boundary lines Lo satisfy the projection axioms for a
constant �0 [48]. We claim that � D �0 is the desired constant for Axiom 2.

Write e D Œw; o�, e1 D Œu; o� and e2 D Œv; o�. Let `e , `e1
and `e2

be the corresponding boundary lines of
Y o to the oriented edges e, e1 and e2. By Lemma 5.5, we have

1

�
d`e
.`e1

; `e2
/��� dfl.w/.fl.u/; fl.v//� �d`e

.`e1
; `e2

/C�:

As Lo satisfies the projection axioms, we see that if d`e
.`e1

; `e2
/ > �0, then d`e1

.`e; `e2
/� �0. Using

Lemma 5.5 again, we have that

1

�
d`e1

.`e; `e2
/��� dfl.u/.fl.w/; fl.v//� �d`e1

.`e; `e2
/C�:

Let � be a constant such that � > ��0C�. It follows from the above inequalities that

dfl.u/.fl.w/; fl.v//D diam
�
…fl.u/.fl.w//[…fl.u/.fl.v//

�
� �;

so Axiom 2 is verified.
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Axiom 3 For u¤ v 2 V1, the set

fw 2 V1 j dfl.w/.fl.u/; fl.v// > �g

is a finite set.

Indeed, by Lemma 5.4, such a w is either contained in the interior of Œu; v� or d.w; Œu; v�/ D 1. The
first case yields only .d.u; v/� 1/ choices for w. We now consider the case d.w; Œu; v�/D 1. Since u,
v and w have pairwise even distance, there exists o 2W\ Œu; v�0 and two vertices u0 and v0 on Œu; v�
adjacent to o such that u0; v0; w 2 Lk.o/. By the projection axioms of boundary lines Lo of Y o, the set of
w satisfying dfl.w/.fl.u/; fl.v// > � is finite. Thus, in both cases, the set of such w is finite.

Lemma 5.7 For each i D 1; 2, the collection Fi D ffl.v/ j v 2Vig admits an action of the group G such
that

…gfl.v/.gfl.u//D g…fl.v/.fl.u//

for any v; u 2 Vi and any g 2G.

Proof First, let us recall some discussion in the beginning of Section 5.2. Recall that fv1; v2; : : : ; vng�T
is the full set of vertex representatives of T and for each representative vertex v1; v2; : : : ; vn of T , the
quasiline fl.vj / is the Cayley graph Cay.Gvj

; Svj
/ for some generating set Svj

of Gvj
(see Lemma 5.1).

Let v be an arbitrary vertex in T ; then vD gvi for some g 2G and i 2 f1; 2; : : : ; ng. The quasiline fl.v/

is given by gfl.vi /D g Cay.Gvi
; Svi

/, and the action of Ggvi
D gGvi

g�1 on gfl.vi / is induced from
the action of Gvi

on fl.vi /. We are now going to show that

…gfl.v/.gfl.u//D g…fl.v/.fl.u//:

Recall that the family of maps ƒver
gv W Ygv D gYv! gfl.v/ are G-equivariant: ƒver

gv.gx/D gƒ
ver
v .x/ for

all x 2 Yv . Let e1 and e2 be the first two edges in the geodesic Œv; u� with v D .e1/� and .e1/C D .e2/�.
By Definition 5.3 of projection map, we have that

…fl.gv/.fl.gu//D diam
�
ƒver
gv.Sge1ge2

\Fge1
/
�

D diam
�
ƒver
gv.g.Se1e2

\Fe1
//
�

D diam
�
gƒver

v .Se1e2
\Fe1

/
�

D g diam
�
ƒver
v .Se1e2

\Fe1
/
�
D g…fl.v/.fl.u//

for any g 2G.

Definition 5.8 Let � > 0 be the projection constant given by Lemma 5.6, so the collection of quasilines
Fi D ffl.v/ j v 2 Vig with i D 1; 2 satisfies the projection axioms. For any fixed K > 4�, we obtain the
unbounded quasitrees of metric spaces CK.F1/ and CK.F2/ (see Section 2.4). Combining Lemma 5.7
with [5, Section 4.4], the spaces CK.F1/ and CK.F2/ are quasitrees and admit unbounded isometric
actionsGÕ CK.F1/ andGÕ CK.F2/. The quasitrees CK.F1/ and CK.F2/ are called vertical quasitrees
hereafter.
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6 Distance formulas in the CKA space X

Let CK.F1/ and CK.F2/ be the vertical quasitrees in Definition 5.8. Let PX1 and PX2 be the coned-off
spaces defined in Section 4.1. According to the outline of the proof of Theorem 1.3 in Section 4.4, the
last step to prove property (QT) of G is to show that there is a G-equivariant quasi-isometric embedding

ˆ WGo! CK.F1/�CK.F2/� PX1 � PX2 �T:

This section is devoted to constructing such a desired map ˆ and verifying it is a quasi-isometric
embedding.

We list here notation that will be used in the rest of this section.

� We fix an edge Œv0; w0� in the Bass–Serre tree T such that v0 2 V1. Let o 2X be a basepoint in
the common boundary plane FŒv0;w0� between two pieces Yv0

and Yw0
.

� Assume that xD o 2 Yv0
and y D go 2 Yv2n

for some g 2G and v2nD go. We list the vertices on
the geodesic Œv0; v2n� by fv0; v1; : : : ; v2ng where v2i 2V1 and v2iC1 2V2. Let eiC1D Œvi ; viC1�
be the oriented edge towards viC1. By definition of special paths, let pi WD Sei�1ei

\SeieiC1
be

the intersection of two strips with p0 W x D o and p2nC1 D y D go.

� Let ˛ be the geodesic edge path in the Bass–Serre tree T connecting v0 to v2n. And let w1 2 V2

be a vertex adjacent to v2n. Set

Q̨ WD e0[˛[ e2nC1

where e0 D Œw0; v0� and e2nC1 D Œv2n; w1�. It is possible that e0 D Ne1 and e2nC1 D Ne2n, ie Q̨
contains backtracking at e0 and e2n.

6.1 Construction of the desired map ˆ

It is a product of the following four maps with the index map � in Definition 2.19.

� We define #1 WGo! CK.F1/ as follows. Recall that each quasiline fl.v/ for v 2 V1 embeds as a
convex subset into CK.L1/ and ƒver

v WGvo! fl.v/ is a Gv-equivariant map. For every g 2G, we
set #1.go/ WDƒver

gv0
.go/D gƒver

v0
.o/. The second equality follows by Gv-equivariance.

� Similarly, define #2 WGo! CK.F2/ by #2.go/ WDƒver
gw0

.go/D gƒver
w0
.o/ for every g 2G.

� Define #3.o/ WD �Y v0
.o/ and extend the definition by equivariance so that #3.go/ WD g#3.o/ for

any g 2G. We thus obtain a G-equivariant map #3 WGo! PX1.

� Choose #4.o/ to be the cone point of the hyperbolic cone attached to the boundary line `Œv0;w0�

of Y w0
. We then extend #4.go/D g#4.o/ for any g 2G so that g#4.o/ is the corresponding cone

point to `Œgv0;gw0� of Y gw0
. We thus obtain a G-equivariant map #4 WGo! PX2.
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We then define

(|) ˆ WGo! CK.F1/�CK.F2/� . PX1; d
K
PX1
/� . PX2; d

K
PX2
/�T

by
ˆ WD #1 �#2 �#3 �#4 � �

where PXi for i D 1; 2 are equipped with the K-thick distance dK
PXi

(not genuine distance) defined in (9),
and the other three spaces are equipped with length metric. By abuse of language, we call the sum of the
distances over the factors the L1-metric on the product space.

The remainder of this section is to verify the following.

Proposition 6.1 The map ˆ in (|) is a G-equivariant quasi-isometric embedding.

Idea of the proof of Proposition 6.1 Since the orbital map of any isometric action is Lipschitz (see
eg [11, Lemma I.8.18]), we will only need to give a linear upper bound on jx�yjX . Recall from (2) in
Section 2.3.2, for any x; y 2X ,

jx�yjX � jx�yj
hor
X Cjx�yj

ver
X

where jx�yjhor
X D

P2n
iD0 jpi �piC1j

hor
Yvi

and jx�yjver
X D

P2n
iD0 jpi �piC1j

ver
Yvi

.

Recall from Section 5.2, we build a new geometric model Xv of Yv for each vertex v in the Bass–Serre
tree T . Namely, we have a Gv-equivariant quasi-isometric map ƒv W Yv D Y v �R!Xv D Y v � fl.v/.
For x; y 2Go, we shall accordingly replace jx�yjver

X by the quantity

(12) V.x; y/ WD
X

0�i�2n

jƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /:

To be precise, we first prove in Lemma 6.2 that

jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
;

and then we find suitable upper bounds of V.x; y/ (see Proposition 6.4) and jx�yjhor
X (see Lemma 6.6).

6.2 Verifying ˆ is a quasi-isometric embedding

In this section, we will verify that the map ˆ in (|) is a quasi-isometric embedding.

6.2.1 Upper bound of the distance jx�yjX on X

Lemma 6.2 Let x; y 2Go. The exists a constant � > 0 such that

(13) jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
:

Proof Recall that p0 D x and p2nC1 D y. Using the triangle inequality we have

jx�yjX �

2nX
iD0

jpi �piC1jYvi
:
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Note that 2nD j�.x/� �.y/jT and jx � yjhor
X D

P2n
iD0 jpi �piC1j

hor
Yvi

. The proof is then complete by
summing over 0� i � 2n the following inequality (14).

Claim There exists a uniform constant �0 > 0 such that for any i 2 f0; 1; : : : ; 2ng,

(14) jpi �piC1jYvi
� �0C �0jpi �piC1j

hor
Yvi
C �0jƒver

vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /:

Proof of the claim Indeed, since ƒvi
W Yvi
!Xvi

is a quasi-isometry by Lemma 5.2, we then have

jpi �piC1jYvi
�� jƒvi

.pi /�ƒvi
.piC1/jXvi

:

Using part (2) of Lemma 5.2 we have that

jƒhor
vi
.pi /�ƒ

hor
vi
.piC1/jY vi

�� jpi �piC1j
hor
Yvi
:

It implies that

jƒvi
.pi //�ƒvi

.piC1/jXvi
�p2 jƒ

hor
vi
.pi /�ƒ

hor
vi
.piC1/jY vi

Cjƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

�� jpi �piC1j
hor
Yvi
Cjƒver

vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

where the first coarse equality holds by definition of ƒhor
vi

and ƒver
vi

. Hence there exists a uniform constant
�0 > 0 such that the inequality (14) holds.

The lemma is proved.

6.2.2 Preparation for upper bounds of V.x; y/ and jx�yjhor
X

Fix K � 4� where the constant � > �
is given by Lemma 5.6. Let CK.F1/ and CK.F2/ be the vertical quasitrees given by Definition 5.8. With
i 2 f1; 2g, Proposition 2.27 gives the distance formula

(~) j#i .x/�#i .y/jCK.Fi / �K

X
fl.w/2Fi

Œdfl.w/.#i .x/; #i .y//�K :

To give an appropriate upper bound of V.x; y/, we need the following two technical lemmas (Lemmas 6.3
and 6.5).

Lemma 6.3 For any v2i 2 Œv0; v2n� with 0� i � n, we have

(15) dfl.v2i /.#1.x/; #1.y//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /:

For any 0� i � n� 1, we have

(16) dfl.v2iC1/.#2.x/; #2.y//�� jƒ
ver
v2iC1

.p2iC1/�ƒ
ver
v2iC1

.p2iC2/jfl.v2iC1/:

Proof We first prove (15) for the case 0 < i < n. The cases i D 0 or i D n are similar.

Note that `1 WD Se2i�1e2i
\Fe2i

is a fiber line of Yv2i�1
containing p2i , and similarly,

`2 WD Se2iC1e2iC2
\Fe2iC1

Algebraic & Geometric Topology, Volume 25 (2025)



144 Suzhen Han, Hoang Thanh Nguyen and Wenyuan Yang

contains p2iC1. By Definition 5.3 of projection maps, we have

…fl.v2i /.fl.v0//Dƒ
ver
v2i
.`1/ and …fl.v2i /.fl.v2n//Dƒ

ver
v2i
.`2/:

Let � > 0 be the constant given by Lemma 5.2, so the fiber lines `1 and `2 are sent by ƒver
v2i

into fl.v2i /

as subsets of diameter at most �:

diamƒver
v2i
.`1/; diamƒver

v2i
.`2/� �:

By definition of #1, we have #1.x/Dƒver
v0
.x/ 2 fl.v0/ and #1.y/Dƒver

v2n
.y/ 2 fl.v2n/. Thus,

dfl.v2i /.#1.x/; #1.y//�� dfl.v2i /.fl.v0/; fl.v2n//:

As p2i 2 `1 and p2iC1 2 `2, we obtain

dfl.v2i /.fl.v0/; fl.v2n//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /;

completing the proof of (15).

We are now going to prove (16). If w0 ¤ v1 or 1 � i � n� 1, the same proof for (15) proves (16).
We now consider w0 D v1 and i D 0. In this case, we note that e0 D Ne1. By definition, we have that
#2.x/D #2.o/Dƒ

ver
w0
.o/ 2 fl.w0/, so we obtain …fl.v1/.#2.x//D #2.x/. Recall that Sxe1

is the strip
in Yv0

over the shortest arc from x to Fe1
(see construction of special path). As x 2 Fe0

D Fe1
, we have

`1 WD Sxe1
is a fiber line of Yv0

that passes through x and also p1. Thus, #2.x/ 2…fl.v1/.`1/.

Recall that Sxe1
is the strip in Yv0

over the shortest arc from x to Fe1
(see construction of special path).

As x 2 Fe0
D Fe1

, we have that `1 WDSxe1
is a fiber line of Yv0

that passes through x and also p1. Thus,
#2.x/ 2…fl.v1/.`1/. Let `2 D Se2e3

\Fe2
be the fiber line on Yv2

that passes through p2. If w1 D v1,
then ˛ D Œv0; v1�Œv1; v2� and y 2 Fe2

. By the same reason, `2 passes through y, so #2.y/ 2…fl.v2/.`2/.
If w1 ¤ v1, the projection …Lv1

.#2.y// must be contained in …fl.v1/.`2/. In both cases, we have

dfl.v1/.#2.x/; #2.y//�� diam.ƒver
v1
.`1/[ƒ

ver
v1
.`2//

where we use diam.ƒver
v1
.`1//; diam.ƒver

v1
.`2//� � by Lemma 5.2. For p1 2 `1 and p2 2 `2, we obtain

diam.ƒver
v1
.`1/[ƒ

ver
v1
.`2//�� jƒ

ver
v1
.p1/�ƒ

ver
v1
.p2/jfl.v1/;

concluding the proof of (16).

Let us recall the notation from Section 2.4. Let x 2 fl.v/; z 2 fl.u/ 2 Fi .

If fl.v/¤ fl.u/¤ fl.w/ then
dfl.w/.x; z/ WD dfl.w/.fl.v/; fl.u//:

If fl.w/D fl.v/ and fl.w/¤ fl.u/, define dfl.w/.x; z/ WD diam.�fl.w/.x; fl.u///.

If fl.v/D fl.u/D fl.w/, let dfl.w/.x; z/ be the distance in fl.w/.
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6.2.3 Upper bound of V.x; y/ Let #1 and #2 be the maps defined in Section 6.1. We now have
prepared all ingredients for the proof of the following result.

Proposition 6.4 Let x; y 2Go and ˛ WD Œ�.x/; �.y/� be the geodesic in T . Then

(17) V.x; y/�K
X
jD1;2

� X
v2˛\Vj

Œdfl.v/.#j .x/; #j .y//�K

�
C dT .�.x/; �.y//:

Proof The goal is to recover the sum on the right side of (12), that is

V.x; y/D
X

0�i�2n

jƒver
vi
.pi /�ƒ

ver
vi
.piC1/jfl.vi /

via the maps #1 and #2. By Lemma 6.3, we have the desired inequalities (15) for even indices
v2i 2 Œv0; v2n�\V1 with 0� i � n, that is

dfl.v2i /.#1.x/; #1.y//�� jƒ
ver
v2i
.p2i /�ƒ

ver
v2i
.p2iC1/jfl.v2i /:

By Lemma 6.3, the inequalities (16) recover the odd indices v2iC1 2 Œv0; v2n�\V2 with 0� i � n� 1
in (12), that is,

dfl.v2iC1/.#2.x/; #2.y//�� jƒ
ver
v2iC1

.p2iC1/�ƒ
ver
v2iC1

.p2iC2/jfl.v2iC1/:

Plugging inequalities (15) and (16) into (12), and using the term j�.x/� �.y/jT to count the additive
errors in this process completes the proof of the desired inequality (17). Applying then the K-cutoff
function Œ � �K does not affect the inequalities.

6.2.4 Upper bound of jx�yjhor
X

The horizontal distance dh defined in (2) of the special path  from
x to y records the totality of the projected distances to the base hyperbolic spaces Y v:

jx�yjhor
X D jx�p1j

hor
Yv1
Cjp1�p2j

hor
Yv2
C � � �C jp2n�yj

hor
Yv2n

D j#3.x/�Fe1
jYv0
C

2n�1X
iD1

jFei
�FeiC1

jYvi
CjFe2n

�#3.y/jYv2n

where the map #3 defined in Section 6.1 sends a point in Yv D Y v �R to the hyperbolic base Y v.

Before moving on, let us introduce more notation to represent the horizontal distance. Let x0 D #3.x/,
y0 2 Fe1

and x2n 2 Fe2n
, y2n D #3.y/ be such that Œx0; y0� is orthogonal to Fe1

, and Œx2n; y2n� to Fe2n
.

Choose xi 2 Fei
and yi 2 FeiC1

so that Œxi ; yi � is a geodesic in Y vi
orthogonal to Fei

and FeiC1
. Thus,

(18) jx�yjhor
X D

2nX
iD0

jxi �yi jY vi

:

Recall that PX1 and PX2 are the coned-off spaces defined in Section 4.1. By Definition 4.3 of the K-thick
distance of PXj for any K > 0, and the remark after it, we have

(19)
2nX
iD0

jxi �yi j
K
PYvi

D j#3.x/�#3.y/j
K
PX1
Cj#4.x/�#4.y/j

K
PX2
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where j � jK
PYvi

defined in (3) is the K-thick distance on the coned-off space PYvi
. The map #4 defined in

Section 6.1 sends a point go in Go to the hyperbolic cone point to the boundary line `gŒv0;w0� (recall that
o is chosen on a common boundary plane FŒv0;w0�).

Hence, the K-thick distance (19) differs from the horizontal distance (18) by the amount coned-off on
boundary lines. The purpose of this subsection is to recover the loss in the coned-off from the projection
system of fiber lines.

To prove Lemma 6.6, we need the following lemma.

Lemma 6.5 Let #2 be the map given by Section 6.1. Let v be a vertex in Lk.v2i /� Q̨ and let eD Œv; v2i �.
Let `e, `e2i

, and ` Ne2iC1
be the boundary lines of zFv2i

associated to distinct edges e, e2i and Ne2iC1
respectively. Then we have

(20) dfl.v/.#2.x/; #2.y//�� d`e
.`e2i

; ` Ne2iC1
/:

Proof Note that `e, `e2i
and ` Ne2iC1

are the projection of planes Fe, Fe2i
and Fe2iC1

of Yv2i
into the

factor Yv2i
. We prove (20) case by case, according to the configuration of e0; e2nC1 with ˛.

Case 1 Suppose 0 < i < n. By Definition 5.3, the projection of #2.x/D ƒver
w0
.o/ 2 fl.w0/ to fl.v/ is

the same as that of fl.v1/ to fl.v/, and the projection of #2.y/ 2 fl.w1/ to fl.v/ is the same as that of
fl.v2n�1/ to fl.v/. That is to say, dfl.v/.#2.x/; #2.y//D dfl.v/.fl.v1/; fl.v2n�1//. Hence, (20) follows by
Lemma 5.5: dfl.v/.fl.v1/; fl.v2n�1//�� d`e

.`e2i
; ` Ne2iC1

/ for any v 2 Lk.v2i /� Q̨ .

Case 2 Suppose i D 0 or i D n. We only consider the case i D 0 and analyze the configuration of w0
with ˛. The analyze for the case for i D n and w1 is symmetric.

Case 2.1 Suppose w0 ¤ v1. In this case e0 � ˛ is a geodesic from w0 to v2n. By Definition 5.3 of
projection maps, no matter whether Ne2nC1 D e2n holds or not, the projection of #2.x/ 2 fl.w0/ to fl.v/

is the same as that of fl.w0/ to fl.v/, and the projection of #2.y/ 2 fl.w1/ to fl.v/ is the same as that of
fl.v2n�1/ to fl.v/. By Lemma 5.5, we have dfl.v/.fl.w0/; fl.v2n�1//�� d`e

.`e2i
; ` Ne2iC1

/.

Case 2.2 Suppose w0 D v1. No matter whether w0 D w1 or not, we have

dfl.v/.#2.x/; #2.y//�…fl.v/.fl.w0//� �

where � is the projection constant given by Lemma 5.6. On the right side of (20), d`e
.`e2i

; ` Ne2iC1
/ is

bounded above by � for i D 0 (as e0 D Ne1). Thus (20) holds as well in this case.

Lemma 6.6 For any x; y 2Go, we have

jx�yjhor
X �K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

where the index j D 1 is chosen if i is odd , otherwise j D 2.

Algebraic & Geometric Topology, Volume 25 (2025)



Property (QT) for 3-manifold groups 147

Proof We consider (18) for the horizontal distance jx�yjhor
X . Let Lvi

be the set of boundary lines of
Y vi

corresponding to the set of oriented edges e 2 St.vi / (ie the collection fFe \Y vi
j e 2 St.vi /g). By

Lemma 3.1, for each 0� i � 2n, we have

(21) jxi �yi jY vi

�K jxi �yi j
K
PYvi

C

X
`e2Lvi

Œd`e
.xi ; yi /�K

for any sufficiently large K� 0.

Let e D Œw; vi � 2 St.vi / and `e 2 Lvi
be the corresponding boundary line of Y vi

. Set j D 1 if i is odd,
otherwise j D 2.

If e D ei or e D NeiC1 for 1� i � 2n� 1, then

d`e
.xi ; yi /� �

since Œxi ; yi � is orthogonal to `e.

We remark that when i D 0 (the case i D 2n is similar), it is possible that Œx0; y0�may not be perpendicular
to `e. However, we have

d`e
.x0; y0/� dfl.w0/.#2.x/; #2.y//:

Otherwise, if e ¤ ei and e ¤ NeiC1 for 1� i � 2n� 1, we have e … ˛ for which the following holds by
Lemma 6.5 for j D 2 and by Lemma 5.5 for j D 1:

dfl.w/.#j .x/; #j .y//� d`e
.xi ; yi /:

Note that A� �BCC with B �K � C implies ŒA�K �K ŒB�K . Thus, for each 0� i � 2n, we deduce
from (21) that

(22) jxi �yi jY vi

�K jxi �yi j
K
PYvi

C

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

for any K� 0, where j D 1 if i is odd, and j D 2 otherwise. We sum up (22) over vi 2 ˛ to get the
horizontal distance dh.x; y/ in (18):

jx�yjhor
X D

2nX
iD0

jxi �yi jY vi

�K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K :

We now have prepared all ingredients in the proof of Proposition 6.1.

Proof of Proposition 6.1 Since � and #i (with i 2 f1; 2; 3; 4g) are G-equivariant maps, it follows
that ˆ is a G-equivariant map. Since the orbital map of any isometric action is Lipschitz (see eg [11,
Lemma I.8.18]), it suffices to give an upper bound on d.x; y/.

Let � > 0 be the constant given by Lemma 6.2, so that

jx�yjX � �
�
j�.x/� �.y/jT Cjx�yj

hor
X CV.x; y/

�
:
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Appropriate upper bounds of the vertical distance V.x; y/ and the horizontal distance jx � yjhor
X have

been already treated in Proposition 6.4 and Lemma 6.6 respectively. They are

V.x; y/�K
X
jD1;2

� X
v2˛\Vj

Œdfl.v/.#j .x/; #j .y//�K

�
Cj�.x/� �.y/jT

and

jx�yjhor
X �K

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /�˛

Œdfl.w/.#j .x/; #j .y//�K

where the index j depends on i : j D 1 if i is odd, otherwise j D 2. The above two inequalities yield

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT C

2nX
iD0

jxi �yi j
K
PYvi

C

2nX
iD0

X
w2Lk.vi /

Œdfl.w/.#j .x/; #j .y//�K :

By (~), we have
2nX
iD0

X
w2Lk.vi /

Œdfl.w/.#j .x/; #j .y//�K �K j#1.x/�#1.x/jCK.F1/Cj#2.x/�#2.x/jCK.F2/:

It follows that

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT C

2nX
iD0

jxi �yi j
K
PYvi

C

2X
iD1

j#i .x/�#i .x/jCK.Fi /:

Plugging the thick distance formula (19) into the above inequality, we obtain

jx�yjhor
X CV.x; y/�K j�.x/� �.y/jT Cj#3.x/�#3.y/j

K
PX1
Cj#4.x/�#4.y/j

K
PX2

Cj#1.x/�#1.x/jCK.F1/Cj#2.x/�#2.x/jCK.F2/:

As jx � yjX � �.j�.x/� �.y/j C jx � yjhor
X C V.x; y//, it is a consequence from the above inequality

that the map ˆD #1 �#2 �#3 �#4 � � in (|) is a G-equivariant quasi-isometric embedding from X to
CK.F1/�CK.F2/� PX1 � PX2 �T .

7 Proof of Theorem 1.3

Let G ÕX be a CKA action such that for every vertex group the central extension (1) has omnipotent
hyperbolic quotient group. Let PG <G be the subgroup of the index at most 2 preserving V1 and V2 given
by Lemma 2.23. Upon passing to further finite-index subgroups in Lemma 4.8, we obtain a finite-index
subgroup G0 of PG such that the results in Sections 5 and 6 hold for G0. We caution the reader that at the
beginning of Section 5 we assume that each vertex group of G is a direct product, this assumption may
not hold for the original G, but holds in the finite-index subgroup G0 of G.

AsG0 is a subgroup of PG, it follows from Proposition 4.7 that there exists aG0-equivariant quasi-isometric
embedding

� W . PX1 � PX2 �T; d
K
PX1
� dK

PX2
� dT /! T1 �T2 � � � � �Tn �T:
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Applying Proposition 6.1 to G0, we have a G0-equivariant quasi-isometric embedding

ˆ WG0o! CK.F1/�CK.F2/� . PX1; d
K
PX1
/� . PX2; d

K
PX2
/�T:

It implies that .idCK.F1/� idCK.F2/��/ıˆ is a G0-equivariant quasi-isometric embedding from G0 �o to
the finite product of quasitrees CK.F1/�CK.F1/�T1 �T2 � � � � �Tn �T . Thus G0 has property (QT),
implying G has property (QT).

8 Applications: property (QT) of 3-manifold groups

In this section, we apply results obtained in previous sections to give a complete characterization of
property (QT) of all finitely generated 3-manifold groups (Theorem 1.1). Note that property (QT) is a
commensurability invariant. Hence, we can always assume that all 3-manifolds are compact and orientable
(by taking Scott’s compact core and double cover).

Let M be a compact, connected, orientable, irreducible 3-manifold with empty or tori boundary. M is
called geometric if its interior admits geometric structures in the sense of Thurston; those are S3, E3,
H3, S2 �R, H2 �R, CSL.2;R/, Nil and Sol. If M is not geometric, then M is called a nongeometric
3-manifold. By geometric decomposition of 3-manifolds, there is a nonempty minimal union T�M of
disjoint essential tori and Klein bottles, unique up to isotopy, such that each component of MnT is either
a Seifert fibered piece or a hyperbolic piece. M is called graph manifold if all the pieces of MnT are
Seifert fibered pieces, otherwise it is a mixed manifold.

We remark here that the geometric decomposition is slightly different from the torus decomposition, but
they are closely related (if M has no decomposing Klein bottle, then these two decompositions agree
with each other). Such a difference can be got rid of by passing to some finite cover of M . Since we are
only interested in virtual properties of 3-manifolds in this paper, we can always assume that these two
decompositions agree with each other (on some finite cover of M ). For this reason, we will only use the
term torus decomposition in the remainder of this section.

8.1 Property (QT) of geometric 3-manifolds

Proposition 8.1 The fundamental group �1.M/ of a geometric 3-manifold M has property (QT ) if and
only if M does not support Sol or Nil geometry.

Proof We are going to prove the necessity. Assume that �1.M/ has property (QT). By Lemma 2.5,
�1.M/ does not contain any distorted element, while the fundamental group of a 3-manifold with Nil
geometry or Sol geometry contains quadratically/exponentially distorted elements (for example, see [41,
Proposition 1.2]). Hence, M does not support Sol or Nil geometry.

Now, we are going to prove sufficiency. If M supports geometry E3, S3 or S2 �R, then �1.M/ is
virtually abelian so has property (QT). If the geometry of M is H2 �R then M is virtually covered
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by †� S1 for some hyperbolic surface †. Note that �1.†/ is a residually finite hyperbolic group so
it has property (QT) by [6, Theorem 1.1]. Hence, �1.†/�Z has property (QT). Since �1.†/�Z is a
finite-index subgroup of �1.M/, it follows that �1.M/ has property (QT) by Lemma 2.3. If M supports
geometry H3, �1.M/ is virtually compact special by deep theorems of Agol [3] and Wise [53]; thus
�1.M/ has property (QT) since it is undistorted in a right-angled Artin group. Note that if the boundary
of M is empty, then �1.M/ is a residually finite hyperbolic group. As a result, it can be inferred that
�1.M/ possesses property (QT) as an alternative argument, according to [6, Theorem 1.1].

Finally, we need to show that if M supports CSL.2;R/ geometry then �1.M/ has property (QT). To see
this, by passing to a finite cover if necessary, we could assume that M is a nontrivial circle bundle over
a closed surface † with �.†/ < 0. Let 1! K ! �1.M/! �1.†/! 1 be the short exact sequence
associated with the circle bundle where K is the normal cyclic subgroup of �1.M/ generated by a fiber.
Let � W �1.M/! �1.†/ be the surjective homomorphism in the above short exact sequence. Note that
the short exact sequence does not split since M is supporting CSL.2;R/ geometry. According to the first
paragraph in the proof of [29, Corollary 4.3], there exists a generating set S of G D �1.M/ such that
L WD Cay.G;S/ is a quasiline. Moreover, the diagonal action of G on �1.†/�L is metrically proper
and cobounded, and thus its orbital map is a quasi-isometry. Since �1.†/ is a residually finite hyperbolic
group, it follows from [6] that �1.†/ has property (QT). Hence there exists a finite product of quasitreesQn
iD1 Ti such that �1.†/Õ

Qn
iD1 Ti such that its orbital map is a quasi-isometric embedding. It is easy

to see that the orbital map of the diagonal action G Õ
Qn
iD1 Ti �L of G on the product

Qn
iD1 Ti �L is

a quasi-isometric embedding. Therefore �1.M/ has property (QT).

8.2 Property (QT) of nongeometric 3-manifolds

In this section, we are going to prove Theorem 1.2. Recall that a nongeometric 3-manifold is either a
graph manifold or a mixed manifold.

8.2.1 Property (QT) of graph manifolds LetM be a graph manifold. Since property (QT) is preserved
under taking finite-index subgroups (see Lemma 2.3), we only need to show that a finite cover of M
has property (QT). By passing to a finite cover, we can assume that each Seifert fibered piece in the
JSJ decomposition of M is a trivial circle bundle over a hyperbolic surface of genus at least 2, and the
intersection numbers of fibers of adjacent Seifert pieces have absolute value 1 (see [34, Lemma 2.1]).
Also we can assume that the underlying graph of the graph manifold M is bipartite since any nonbipartite
graph manifold is double covered by a bipartite one.

We note that �1.M/ is an admissible group in the sense of Definition 2.12. However, it is not always
true that �1.M/ can act geometrically on a CAT(0) space, so property (QT) in this case does not follow
immediately from Theorem 1.3. Indeed, if M is a graph manifold with nonempty boundary then it
always admits a Riemannian metric of nonpositive curvature (see [35]). In particular, �.M/Õ zM is a
CKA action, and thus property (QT) of �1.M/ follows from Theorem 1.3. However, many closed graph
manifolds are shown to not support any Riemannian metric of nonpositive curvature (see [35]).
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We remark here that the CAT(0) metric on the CKA space X in Sections 5 and 6 is not really essential in
the proofs. Below we will make certain modifications on some steps to run the proof of Theorem 1.3 for
closed graph manifolds.

Metrics on M

We now are going to describe a convenient metric on M introduced by Kapovich and Leeb [34]. For
each Seifert component Mv D Fv �S

1 of M , we choose a hyperbolic metric on the base surface Fv such
that all boundary components are totally geodesic of unit length, and then equip each Seifert component
Mv D Fv �S

1 with the product metric dv such that the fibers have length one. Metrics dv on Mv induce
the product metrics on zMv which by abuse of notations is also denoted by dv.

Let Mv and Mw be adjacent Seifert components in the closed graph manifold M , and let T �Mv \Mw

be a JSJ torus. Each metric space . zT ; dv/ and . zT ; dw/ is a Euclidean plane. After applying a homotopy
to the gluing map, we may assume that at each JSJ torus T , the gluing map � from the boundary torus
 �
T �Mv to the boundary torus

�!
T �Mw is affine in the sense that the identity map . zT ; dv/! . zT ; dw/

is affine. We now have a product metric on each Seifert component Mv D Fv �S
1. These metrics may

not agree with each other on the JSJ tori but the gluing maps are bilipschitz (since they are affine). The
product metrics on the Seifert components induce a length metric on the graph manifold M denoted by d
(see [12, Section 3.1] for details). Moreover, there exists a positive constant L such that on each Seifert
component Mv D Fv �S

1 we have

1

L
dv.x; y/� d.x; y/� Ldv.x; y/

for all x and y in Mv. (See [45, Lemma 1.8] for a detailed proof of the last claim.) Metric d on M
induces metric on zM , which is also denoted by d (by abuse of notation). Then for all x and y in zMv we
have

1

L
dv.x; y/� d.x; y/� Ldv.x; y/:

Remark 8.2 Note that the space . zM;d/ may not be a CAT(0) space but �1.M/ acts geometrically on
. zM;d/ via deck transformations.

In Section 2.3.2, we define special paths on a CAT(0) space X . In this section, although . zM;d/ is no
longer a CAT(0) space, we are still able to define special paths in . zM;d/. The construction is similar to
Section 2.3.2 with slight changes.

Special paths on zM

Lift the JSJ decomposition of the graph manifold M to the universal cover zM , and let T be the tree dual
to this decomposition of zM (ie the Bass–Serre tree of �1.M/). For every pair of adjacent edges e1 and e2
in T , let v be the common vertex of e1 and e2. Let ` and `0 be two boundary lines of zFv corresponding
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to the edges e1 and e2 respectively. Let e1e2
be the shortest geodesic joining ` and `0 in . zMv; dv/. This

geodesic determines an Euclidean strip Se1e2
WD e1e2

�R in . zMv; dv/. Let x be a point in . zMv; dv/

and e be an edge with an endpoint v. The minimal geodesic from x to the plane Fe also define a strip
Sxe WD xe �R in . zMv; dv/ where xe � zFv is the projection to zFv of this minimal geodesic.

Now, let x and y be any two points in the universal cover zM of M such that x and y belong to the
interiors of pieces zMv and zM 0v respectively. If v D v0 then we define a special path in X connecting x
and y to be the geodesic Œx; y� in . zM;d/. Otherwise, let e1 � � � en be the geodesic edge path connecting v
and v0. For notational purpose, we write e0 WD x and enC1 WD y. Let pi 2 Fei

be the intersection point of
the strips Sei�1ei

and SeieiC1
. The special path connecting x and y is the concatenation of the geodesics

Œx; p1� � Œp1; p2� � � � Œpn; y�:

We label p0 WD x and pnC1 WD y.

Proposition 8.3 If M is a graph manifold , then �1.M/ has property (QT ).

Proof If M is a nonpositively curved graph manifold (for example, when M has nonempty boundary)
then the fact that �1.M/ has property (QT) is followed from Theorem 1.3. The only case that does
not follow directly from Theorem 1.3 is when M is a closed graph manifold (recall many closed graph
manifolds are nonpositively curved but many are not). Since the metric d on zM restricted to each piece
zMv is L-bilipschitz equivalent to dv, so the inequalities in Section 6 are slightly changed by a uniform

multiplicative constant. For example, the statement a�K b (or a �K b) in Section 6 will be changed to
a�K0 b (or a �0K b) for some constant K 0 depending on K. Thus, the proof, in this case, is performed
along the same lines as the proof of Theorem 1.3.

8.2.2 Property (QT) of mixed 3-manifolds Recall that a nongeometric 3-manifold with empty or
tori boundary is either a graph manifold or a mixed 3-manifold. The case of graph manifold has been
addressed in Section 8.2.1. In this section, we address the mixed 3-manifold case.

Proposition 8.4 The fundamental group of a mixed 3-manifold has property (QT ).

The fundamental group of a mixed 3-manifold has a natural relatively hyperbolic structure as follows:
Let M1; : : : ;Mk be the maximal graph manifold pieces, isolated Seifert fibered components of the
JSJ-decomposition of M , and S1; : : : ; Sl be the tori in M not contained in any Mi . The fundamental
group G D �1.M/ is hyperbolic relative to the set of parabolic subgroups

PD f�1.Mp/ j 1� p � kg[ f�1.Sq/ j 1� q � lg

(see [8; 22]).

The following lemma provides many separable subgroups in �1.M/, generalizing [50, Lemma 3.3]. The
proof uses a recent result of the second author and Sun in [41] where the authors show that separability
and distortion of subgroups in 3-manifold groups are closely related.
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Lemma 8.5 Let M be a compact , orientable , irreducible 3-manifold with empty or tori boundary , with
nontrivial torus decomposition and that does not support the Sol geometry. If H is a finitely generated ,
undistorted subgroup of �1.M/, then H is separable in �1.M/.

Proof Let MH be the covering space of M corresponding to H � �1.M/. Generalizing a notion called
“almost fiber part” in [36], an embedded (possibly disconnected) subsurface ˆ.H/ in MH called an
“almost fiber surface” is introduced in [49]. Sun [49, Theorem 1.3] shows that all information about the
separability of H can be obtained by examining the almost fibered surface.

In [41], the authors introduce a notion called “modified almost fibered surface” (denoted by Ô .H/) that
slightly modifies the original definition of almost fibered surface in [49] and show that information about
the distortion of H in G can be also be obtained by examining the “modified almost fibered surface”. We
refer the reader to [49] for the definition of the almost fiber surface and to [41] for the definition of the
modified almost fiber surface. The precise definitions are not needed here, so we only state here some
facts from [41] that will be used later in the proof.

The torus decomposition of M induces the torus decomposition of ˆ.H/. Let ˆ.H/ and Ô .H/ be the
almost fiber surface and modified almost fiber surface of H respectively.

(1) Both the almost fiber surface ˆ.H/ and the modified almost fiber surface Ô .H/ are (possibly
disconnected) subsurfaces of MH .

(2) The almost fiber surface ˆ.H/ has some piece that is homeomorphic to the annulus and parallel
to the boundary of ˆ.H/. We delete these annulus pieces from ˆ.H/ to get the modified almost
fiber surface, and we denote it by Ô .H/.

The surface ˆ.H/ (resp. Ô .H/) has a natural graph of spaces structure with the dual graph denoted by
�ˆ.H/ (resp. � Ô .H/). By [41, Theorem 1.4], every component S of the modified almost fiber surface
Ô .H/ must contain only one piece (otherwise, the distortion of H in �1.M/ is at least quadratic, this
contradicts the fact that H is undistorted in �1.M/). This fact combined with (2) implies that the graph
�ˆ.H/ is a union of trees. By [49, Theorem 1.3] (or see also [50, Theorem 3.2] for a statement) tells us
that whenever �ˆ.H/ does not contain a simple cycle then H is separable. As shown above, we are in
this case; hence we conclude that the subgroup H is separable in �1.M/.

Proof of Proposition 8.4 Let M1; : : : ;Mk be the collection of maximal graph manifold components and
Seifert fibered pieces in the geometric decomposition of M . Let S1; : : : ; S` be the tori in the boundary
of M that bound a hyperbolic piece, and let T1; : : : ; Tm be the tori in the JSJ decomposition of M that
separate two hyperbolic components of the JSJ decomposition. Then �1.M/ is hyperbolic relative to

P D f�1.Mp/g
k
pD1[f�1.Sq/g

`
qD1[f�1.Tr/g

m
rD1

(see [8; 22]).

We are going to show that G D �1.M/ satisfies all conditions in Theorem 1.5.
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Claim 1 �1.M/ induces the full profinite topology on each P 2 P.

Indeed, it is well known that the fundamental groups of all compact 3-manifolds are residually finite;
thus �1.M/ is residually finite. Since each peripheral subgroup P is undistorted in �1.M/, it follows
from Lemma 8.5 that P is separable in �1.M/. Again, by Lemma 8.5, each finite-index subgroup of P
is also separable in �1.M/. By [47, Lemma 2.8], �1.M/ induces the full profinite topology on P .

Claim 2 For each peripheral subgroup P 2 P , there exists a finite-index subgroup P 0 of P acting
isometrically on a finite number of quasitrees so that the diagonal action of P 0 on the finite product of
these quasitrees induces quasi-isometric embeddings on orbital maps.

Indeed, if P D�1.Tr/ or P D�1.Sq/ for some r or q then �1.P /DZ2; we let P 0 WDP . If P D�1.Mj /
for some Seifert component Mj D Fj � S1 then P D �1.Fj /�Z. In this case, as Fj is a hyperbolic
surface with nonempty boundary, �1.Fj / is a free group; hence we choose P 0 D P as �1.Fj / is a
quasitree. The last case we must consider is that P D �1.Mj / where Mj is a maximal graph manifold
component. Passing to an appropriate finite cover M 0j !Mj we can assume that �1.M 0j / acts on a finite
number of quasitrees (but they are not quasilines) T1; T2; : : : ; Tn so that the orbital map induced from the
diagonal action �1.Mj /Õ

Qn
1D1 Ti is a quasi-isometric embedding (see Proposition 8.3). Claim 2 is

confirmed. We then repeat the proof of Theorem 3.5 (the second and third paragraph) to show that P
satisfies the hypothesis of Theorem 1.5.

In summary, we have verified the hypotheses in Theorem 1.5 for G D �1.M/, so mixed 3-manifold
groups have property (QT).

Proof of Theorem 1.2 LetM be a compact orientable irreducible 3-manifold with empty or tori boundary,
with nontrivial torus decomposition, and that does not support the Sol geometry. Such a 3-manifold M is
either a graph manifold or a mixed manifold. The graph manifold case and mixed manifold case have
been addressed in Propositions 8.3 and 8.4, respectively, and hence the theorem is proved.

8.3 Property (QT) of finitely generated 3-manifolds

Proposition 8.6 Let M be a compact , orientable , irreducible , @-irreducible 3-manifold such that it has a
boundary component of genus at least 2. Then �1.M/ has property (QT ).

Proof We consider the following two cases:

Case 1 M has trivial torus decomposition. In this case, M supports a geometrically finite hyperbolic
structure with infinite volume. We paste hyperbolic 3-manifolds with totally geodesic boundaries to M
to get a finite volume hyperbolic 3-manifold N . By the covering theorem (see [16]) and the subgroup
tameness theorem (see [2; 15]), a finitely generated subgroup of the finite volume hyperbolic 3-manifold
N is either a virtual fiber surface subgroup or undistorted. By the construction of N , the subgroup
�1.M/� �1.N / could not be a virtual fiber surface subgroup, and thus �1.M/ must be undistorted in
�1.N /. Since �1.N / has property (QT), it follows that �1.M/ has property (QT) (see Lemma 2.3).
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Case 2 We now assume that M has nontrivial torus decomposition. By [49, Section 6.3], we paste
hyperbolic 3-manifolds with totally geodesic boundaries to M to get a 3-manifold N with empty or tori
boundary. The new manifold N satisfies the following properties.

(1) M is a submanifold of N with incompressible tori boundary.

(2) The torus decomposition of M also gives the torus decomposition of N .

(3) Each piece of M with a boundary component of genus at least 2 is contained in a hyperbolic piece
of N .

In particular, it follows from (2) and (3) that N is a mixed 3-manifold. The subgroup �1.M/ sits nicely
in �1.N /. By the proof of Case 1.2 in the proof of [41, Theorem 1.3], we have that �1.M/ is undistorted
in �1.N / (even more than that, �1.M/ is strongly quasiconvex in �1.N / (see [42]). Note that �1.N /
has property (QT) by Proposition 8.4. Since �1.M/ is undistorted in �1.N / and �1.N / has property
(QT), it follows that �1.M/ has property (QT).

We now give the proof of Theorem 1.1 which gives a complete characterization of property (QT) for
finitely generated 3-manifolds groups.

Proof of Theorem 1.1 Since M is a compact, orientable 3-manifold, it decomposes into irreducible,
@-irreducible pieces M1; : : : ;Mk by the sphere-disc decomposition. In particular, �1.M/ is the free
product �1.M1/��1.M2/� � � � ��1.Mk/�Fr for some free group Fr . We remark here that �1.M/ is
hyperbolic relative to the collection P D fP1; : : : ; Pk; Frg where Pi WD �1.Mi /.

We are going to prove the necessity. Assume that �1.M/ has property (QT). Since �1.Mi / is undistorted
in �1.M/, it follows that �1.Mi / has property (QT) (see Lemma 2.3). By Proposition 8.1, Mi does not
support Sol and Nil geometry.

Now, we are going to prove sufficiency. Assume that there is no piece Mi that supports either Sol or
Nil geometry. We would like to show that �1.M/ has property (QT). In this case, we observe that each
peripheral subgroup P 2 P has property (QT). Indeed, a free group P D Fr of course has property (QT),
so let us now assume that P D �1.Mi / for some 1� i � k. If Mi has a boundary component of genus at
least 2 then property (QT) of �1.Mi / follows from Proposition 8.6. Otherwise, Mi has empty or tori
boundary. Then the property (QT) of �1.Mi / follows from Proposition 8.1 for geometric manifolds,
Proposition 8.3 for graph manifolds, and Proposition 8.4 for mixed graph manifolds.

We are going to show that G D �1.M/ satisfies all conditions in Theorem 1.5. The proof is similar to the
proof of Proposition 8.4 with minor changes.

Claim 1 �1.M/ induces the full profinite topology on each Pi 2 P.

It is well known that the fundamental groups of all compact 3-manifolds are residually finite, thus �1.M/

is residually finite and its finite-index subgroups are residually finite as well. Any finite-index subgroup
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H of Pi D �1.Mi / is separable in the free product G D P1 �P2 � � � � �Pk �Fr by [13, Theorem 1.1].
Hence it follows from [47, Lemma 2.8] that G induces the full profinite topology on Pi .

Claim 2 For each peripheral subgroup P 2 P , there exists a finite-index subgroup P 0 of P acting
isometrically on a finite number of quasitrees , so that the diagonal action of P 0 on the finite product of
these quasitrees induces quasi-isometric embeddings on orbital maps.

Indeed, the claim obviously holds for P D Fr or P D Z2. The claim also holds for P D �1.Mi /

where Mi is a geometric 3-manifold. The case of graph manifolds is proved in Claim 2 of the proof of
Proposition 8.4. The only case left is when Mi is a mixed 3-manifold or Mi has a boundary component
with genus at least 2. It has been shown in Proposition 8.6 that if Mi has a boundary component with
genus at least 2 then it is an undistorted subgroup in a mixed 3-manifold. Therefore it suffices to consider
only the mixed 3-manifold case. Recall that in the proof of Proposition 8.4, we show that there exists a
finite-index subgroup of �1.Mi / such that it is a relatively hyperbolic group, satisfying the conditions of
Theorem 1.5, and thus Claim 2 is confirmed.

With Claims 1 and 2, we use the same argument as in the proof of Theorem 3.5 (see the second and
third paragraph) to find a finite-index normal subgroup G0 of G such that G0 is hyperbolic relative to
a collection of subgroups satisfying the hypotheses in Theorem 1.5, and thus G0 has property (QT).
Therefore, �1.M/ has property (QT) since G0 is a finite-index subgroup of �1.M/ and G0 does have
property (QT).
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