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Highly twisted diagrams
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We prove that knots and links that have a 3-highly twisted irreducible diagram with more than two twist
regions are hyperbolic. Furthermore, this result is sharp. The result is obtained using combinatorial
techniques, using a new approach involving the Euler characteristic. By using geometric techniques, Futer
and Purcell proved hyperbolicity under the assumption that the diagram is 6-highly twisted.

57K10, 57K32, 57K99

1 Introduction

The prevailing feeling among low dimensional topologists is that “complicated” links L in S3 are
hyperbolic, ie the open manifold S3 X L can be endowed with a complete, finite-volume, hyperbolic
metric of sectional curvature �1. Being hyperbolic is a property of the manifold with far reaching
consequences. However, proving that a specific link L is hyperbolic turns out to be nontrivial. This is
especially true if the link L is “heavy duty”, ie it has a very large crossing number. See for example
Minsky and Moriah’s work [12].

Our main theorem is:

Theorem A Let D.L/ be a connected , prime , twist-reduced , 3-highly twisted diagram of a link L with
at least two twist regions. Then L is hyperbolic.

For the definitions see Section 2. Intuitively, being 3-highly twisted means that any crossing of the
diagram is part of a sequence of at least 3 crossings of the same strings. For example, the diagram of the
link in Figure 2 is 3-highly twisted. Clearly not all links have a diagram that satisfies the conditions of
the theorem. However the subset of links that do is a “large” subset in a sense that can be made precise,
see the discussion in [10] by Lustig and Moriah.

The assumption of being 3-highly twisted makes Theorem A sharp since there are nonhyperbolic links
with 2-highly twisted link diagrams, as Figure 1 shows.

The question of when can one decide if the complement of a link in S3 is a hyperbolic manifold from a
projection diagram has been of interest for a long time. The first result in this direction is by Hatcher and
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Figure 1: A nonhyperbolic link with a 2-highly twisted diagram.

Thurston [7] who proved that complements of 2-bridge knots which have at least two twist regions (they
are not torus knots or links) are hyperbolic. The second is Menasco’s result [11] that a nonsplit prime
alternating link which is not a torus link is hyperbolic. Later Futer and Purcell proved in [4], among
other results, that every link with a connected, prime, twist-reduced, 6-highly twisted diagram which has
at least two twist regions is hyperbolic. Two other relevant results are by Giambrone [5] and by Futer,
Kalfagianni and Purcell [3], in which the condition that the diagram is 6-highly twisted is replaced by
conditions related to its “semiadequacy” (as defined there).

Theorem A, which is proved using combinatorial techniques, weakens the conditions imposed by Futer
and Purcell [4] on D.L/ from 6-highly twisted to 3-highly twisted. Their result is obtained by applying
geometric bounds, using Lackenby’s 6-surgery theorem, see [8], to the corresponding fully augmented
links. The fact that combinatorial techniques can be used to improve on geometric bounds is not surprising
and was repeatedly demonstrated in the study of three manifolds, for example in work by Culler, Gordon,
Luecke and Shalen [2], Gordon and Luecke [6] and Li [9].

We believe that the methods used in this paper are interesting in themselves, and could be used in studying
other problems. For example, as a corollary to Theorem A we obtain a simple method to construct
essential surfaces in complements of links with highly twisted diagrams. This is stated in Section 7 as
Theorem B.

Although there are nonhyperbolic links with 2-highly twisted diagrams, we expect that the 3-highly
twisted condition can be weakened to generalize Theorem A to a larger class of links which includes
alternating links (cf [11]).

Outline of the proof

By Thurston [14], it suffices to show that the link complement has incompressible boundary, and is
irreducible, atoroidal and unannular. These can be formulated as the nonexistence of an essential surface
S of nonnegative Euler characteristic. Given an essential surface S in the link complement, consider its
curves of intersection C with the projection plane P . To each curve c 2 C we assign its “contribution”
to the Euler characteristic �C.c/ and show that 0� �.S/D

P
c2C �C.c/ (see Lemma 4.2). In general

there might be curves c 2 C with �C.c/ > 0. Given such a curve, the 3-highly twisted condition
forces the existence of neighboring curves with negative �C. This allows us to redistribute the Euler
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Highly twisted diagrams 209

characteristic among the curves by defining for each c 2 C a modified Euler characteristic �0.c/ so that
0��.S/D

P
c2C �

0.c/ and �0.c/� 0 (see Lemmas 5.15 and 5.16). This shows that �.S/� 0. Moreover,
we get that �0.c/ D 0 for all c 2 C. A case by case analysis then shows that all curves must be of a
particular form (see Definition 6.3 and Propositions 6.7 and 6.13) from which it follows that S must be a
boundary parallel torus.
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2 Preliminaries

2.1 Bubbles and twist regions

Let L� S3 be a link. The projection of a link L in the isotopy class L onto a plane P together with the
crossing data is a link diagram of L and is denoted by D.L/. Let " be sufficiently small so that the closed
"-balls around the crossings of D.L/ are disjoint. Let B1; : : : ;Br be "-balls around the r crossings of the
diagram. The boundaries Bi D @Bi , 1� i � r , are the bubbles of the diagram. The link L is isotopic to a
link L which is embedded in P [

S
i Bi . Note that P divides each bubble into two hemispheres denoted

by BCi and B�i . Denote the two 2-spheres

P˙ D

�
P X

[
i

Bi

�
[

[
i

B˙i :

Each of PC;P� bounds a 3-ball H˙ in S3 XL.

A twist region T is a disk in P which contains a maximal (with respect to inclusion) chain of bigons in
D.L/ describing a trivial integer 2-tangle. See Figure 2 for an example of a diagram with twist regions.
We will assume that a twist region contains the projection of the bubbles around the crossings in T . We

Figure 2: A 3-highly twisted link diagram. The twist regions are the dashed rectangles.
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will often abuse terminology, and use twist regions to refer to the regions in P˙ which project to twist
regions. Correspondingly, we treat the bubbles around the crossings of T as being contained in T . A
twist box is the tangle .T ; t/ where T is the product T � Œ�2"; 2"� for a twist region T , and t is the tangle
T \L. The diagram D.L/ uniquely decomposes into disjoint twist regions.

Definition 2.1 Let D.L/ be a link diagram.

(1) The diagram D.L/ is prime if any simple closed curve in P intersecting D.L/ transversely in two
points bounds a subdiagram with no crossings.

(2) A twist-reduction subdiagram is a subdiagram of D.L/ enclosed by a simple closed curve 
 in P

which intersects D.L/ transversely in four points composed of two pairs each of which is adjacent to a
crossing of D.L/ but which is not a chain of bigons describing an integer 2-tangle. The diagram D.L/ is
twist-reduced if it contains no twist-reduction subdiagram.

(3) For k 2N, the diagram is k-highly twisted if every twist region has at least k crossings.

Note that every diagram can be made twist-reduced by performing flypes on twist-reduction subdiagrams.

Definition 2.2 A twist region T intersects the link diagram in four points, dividing its boundary @T into
four segments. If the twist region has at least two crossings, then a pair of opposite segments of @T can
be called the length edge or width edge of T as in

length

width

3 Surfaces in link complements

3.1 Normal position

We are interested in studying compact surfaces S properly embedded in S3 XN .L/. If @S ¤ ∅ we
extend S by shrinking the neighborhood N .L/ radially. This determines a map � W .S; @S/! .S3;L/,
whose image we denote by S as well, which is an embedding on the interior of S .

Lemma 3.1 Let S � S3 XN .L/ be a proper surface with no meridional boundary components , and let
.T ; t/ be a twist box. Then , up to isotopy , S \T is a disjoint union of disks D � .T ; t/ of one of the
following three types:

Algebraic & Geometric Topology, Volume 25 (2025)
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Type 0 D separates the two strings of t .

Type 1 @D decomposes as the union of two arcs ˛[ˇ such that ˛ � t and ˇ � @T .

Type 2 @D decomposes as the union of four arcs ˛1[ˇ1[˛2[ˇ2 where ˛i � ti and ˇi � @T .

Moreover , the isotopy decreases the number of bubbles that S meets and we may further assume that
�j@L W @S !L is a covering map.

Proof If no component of @S is a meridian, we may assume that up to isotopy �j@L W @S ! L is a
covering map.

The twist box .T ; t/ is a trivial 2-tangle. The complement T XN .t/ can be identified with U � Œ0; 1�,
where U is a twice holed disk. Let E be the disk ˛ � Œ0; 1�, where ˛ is the simple arc connecting the
two holes of U . Up to a small isotopy, we may assume that S intersects E transversely. Since the
bubbles in T are in some neighborhood of E, we may assume that S meets a bubble if it does so in E.
The intersection S \E comprises of simple closed curves and arcs. All curves and arcs except those
connecting ˛� f0g to ˛� f1g can be eliminated by an isotopy pushing S off T . This isotopy decreases
the number of bubbles S meets. The number of bubbles the resulting surface meets equals the number of
such arcs times the number of crossings in the corresponding twist region.

Up to isotopy, we may also assume that S intersects U �
˚

1
2

	
transversely. Hence, S \

�
U �

˚
1
2

	�
is a

collection of simple closed curves and arcs. By pushing S outwards towards the boundary of the disk U ,
one can assume that each component of S \

�
U �

˚
1
2

	�
is of the following form:

(0) An arc connecting the boundary of the disk U to itself separating the holes, and intersecting ˛
once.

(1) An arc connecting a hole to the boundary of the disk and not intersecting ˛.

(2) An arc connecting the two holes and not intersecting ˛.

Thus, S \
�
U �

�
1
2
� "; 1

2
C "

��
is a collection of disks of the form ˛�

�
1
2
� "; 1

2
C "

�
, where ˛ is an arc

of type (0), (1) or (2) as stated. By an ambient isotopy, we can stretch the slab U �
�

1
2
� "; 1

2
C "

�
to

U � Œ0; 1�D T . The number of bubbles the resulting surface meets equals the number of arcs of type (0)
times the number of twist in the twist region. The arcs of type (0) are in one-to-one correspondence with
the arcs of S \E. Note that the fact that � W @S !L is a covering map was not affected by the isotopies
above.

Definition 3.2 A surface S � S3XN .L/ is in normal position if it intersects the planes P˙ transversely
and the map @S !L that is obtained by shrinking N .L/ radially is a covering map onto its image. In
particular, S has no meridional boundary components.

Lemma 3.3 Let S � S3 XN .L/ be a surface in normal position , and let .T ; t/ be a twist box. Then , up
to isotopy, each component of the intersection S \T \P˙ looks as in Figure 3.

Algebraic & Geometric Topology, Volume 25 (2025)
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Type 0 Type 1 Type 2

S \P�

S \PC

Figure 3: The possible three types of intersection of S with a twist box.

3.2 Curves of intersection

Let S � S3 XN .L/ be a surface in normal position. We would like to study the surface S through its
curves of intersection with the planes P˙.

Let T be the union of all twist boxes of L. Consider the collection of disks D of Type 2 which occur as
intersections S \ T . We may assume that @D � P [L, and that the subsurface yS D S XD is transversal
to P˙.

Recall the map � W .S; @S/! .S3;L/. Define CCD @��1. yS\HC/ and C�D @��1. yS\H�/. Now define
C D CC[ C�. As each of P˙ is a 2-sphere, yS \H˙ is a collection of subsurfaces of yS , the boundary
of which are simple closed curves c � S . For c 2 CC, denote by Sc the component of yS \HC so that
c � @Sc , and respectively for c 2 C�.

We think of curves in C˙ as curves on P˙, as they are disjoint outside L. Here, and in most of the figures
in the remainder of this paper, curves in CC are colored blue while curves in C� are colored orange.

Assume S is in normal position, and let T be a twist box. The curves of intersection C of S which meet
a connected component of �.S/\T must meet the corresponding twist region T in one of the following
three configurations:

Type 0 Type 1 Type 2

In order to analyze the curves c 2 C we need to consider specific subarcs and points of c which we define
next.

Algebraic & Geometric Topology, Volume 25 (2025)
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Definition 3.4 For a curve c 2 C, we define the following arcs and points (they are illustrated in the
figures following the definition):

(1) An ı-joint (“interior-joint”) of c is a subarc of c which is a connected component of c \ ��1.B/ for
some bubble B. The number of ı-joints of c is denoted Jı.c/.

(2) A @-joint (“boundary-joint”) of c is an endpoint of a connected component of c \ @S . The number
of @-joints of c is denoted J@.c/

(3) A joint of c is an ı-joint or a @-joint of c. The number of joints of c is denoted by J.c/DJı.c/CJ@.c/.

(4) Define Ci;j D fc 2 C j Jı.c/D i; J@.c/D j g.

(5) A bone of c is a connected component of c minus its joints. Note that all bones are arcs which are
mapped by � to P .

(6) A @-bone of c is a bone which is contained in @S . Note that the endpoints of @-bones are @-joints.
All other bones are ı-bones.

(7) A limb of c is a subarc ˛ � c with endpoints in the interiors of bones. Two limbs are equal if there
is an isotopy of limbs (in c) between them. In particular, their endpoints lie in the interior of the same
bones. The quantities J.˛/, Jı.˛/ and J@.˛/ are defined as for curves.

(8) A turn of c is a limb of c that contains exactly one joint, this joint is an ı-joint and the endpoints of
the limb are outside twist regions. A curve turns at a twist region if it contains a turn in that region.

(9) A wiggle of c is a limb of c that contains exactly two joints, these joints are ı-joints through
consecutive bubbles of a twist box, and the endpoints of the limb are outside the twist regions. A curve
wiggles through a twist region if it contains a wiggle in that region.

◦ − joint

bubbles

knot diagram

◦ − bone

∂ − joint

∂ − bone

wiggle

turn

(10) Let B be a 3-ball bounded by a bubble B, then the components of S \B are saddles. Those are
disks whose boundary is �.˛C

1
[ ˛C

2
[ ˛�

1
[ ˛�

2
/, where ˛˙i are ı-joints of curves in C˙, respectively.

The two ı-joints ˛C
1
; ˛C

2
(and the two ı-joints ˛�

1
; ˛�

2
) are said to be opposite. See Figure 4.

Remark 3.5 Note that a @-joint connects a @-bone and ı-bone, while a ı-joint connects two ı-bones.
The @-joints and @-bones are contained in the boundary of S , while ı-joints and ı-bones are contained in
the interior of S .
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saddle

opposite ◦-joints
opposite ◦-joints

Figure 4: A saddle of S in a bubble viewed from an angle and from the top.

Definition 3.6 Two curves (or limbs of curves) c; c0 2 C are abutting if they share an ı-bone and c ¤ c0.
Necessarily, if c 2 CC then c0 2 C� and vice versa.

The following figure shows an example of two abutting curves c and c0:

c′
c

3.3 Taut surfaces

Definition 3.7 Given an incompressible surface S � S3 XN .L/ we define a lexicographic complexity
of S as

(3-1) Com.S/D
�X

c2C

Jı.c/;
X
c2C

J@.c/; jCj
�
:

Recall that a properly embedded surface S in a 3-manifold M is called essential if it is either a 2-sphere
which does not bound a 3-ball, or it is incompressible, boundary incompressible and not boundary parallel.

Definition 3.8 Let S � S3 XN .L/ be an essential surface in normal position. The surface S is taut if
either

(i) S is an essential 2-sphere, and S minimizes complexity among all essential 2-spheres, or

(ii) S is not a 2-sphere, the link L is not split (ie S3 XL is irreducible), and S minimizes complexity
in its isotopy class.

The next lemma shows that the intersection curves of taut surfaces must have certain properties.
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Lemma 3.9 Assume that the diagram D.L/ is connected. Let S � S3 XN .L/ be a taut surface. Then ,
for all c 2 C we have:

(1) Sc is a disk.

(2) J@.c/ is even.

(3) If J@.c/� 2 then Jı.c/ > 0.

(4) If J@.c/D 0 then Jı.c/ is even.

(5) If a curve c meets a bubble B more than once , then it does so in two opposite ı-joints.

(6) If a curve c has two @-joints on a connected component of PC \L (or P� \L), then they are
the endpoints of a @-bone. Moreover , the two ı-bones incident to them are in different regions of
P XD.L/.

(7) The curve c is not a curve in C1;2 bounding on P˙ exactly one component of L\P˙ as depicted
here:

Proof Let S�S3XN .L/ be an essential surface satisfying (i) or (ii). Note that in both cases, compressing
along a disk D � S3XN .L/ with D\S D @D results either in two essential spheres, or a surface in the
same isotopy class of S . Thus, by the assumption on S , surfaces obtained by such a compression cannot
have lower complexity.

(1) Since S is essential, each subsurface Sc must be planar, as otherwise it contains a nontrivial
compression disk. If Sc has more than one boundary component then compressing along a disk in HC or
H� whose boundary separates boundary components of Sc will result in a surface with fewer intersections
with P in contradiction to the choice of S .

(2) By definition, J@.c/ is the number of endpoints of arcs in c XL. Since each arc has two endpoints,
J@.c/ is even.

(3) By (2), J@.c/ is either two or zero. If J@.c/ D 0 and Jı.c/ D 0 then, since D.L/ is connected,
c bounds a disk on P XL. Compressing S along this disk reduces the number of intersections with P .

If J@.c/D 2 and Jı.c/D 0 then c bounds a disk D in P such that @D D ˛[ˇ, where ˛ is a @-bone of c

and ˇ is an ı-bone of c. However, this is impossible by (2).

(4) The diagram D.L/ is a 4-regular graph, and thus it partitions P into regions which can be given
a checkerboard coloring, ie can be colored black and white so that two adjacent regions are colored in
different colors. Consider the colors of complementary regions of P X T which the curve c intersects. If
J@.c/D 0 every change of colors, of these regions along c, accounts for one bubble that c meets. Since c

is a closed curve the total number of color changes is even, and correspondingly Jı.c/ is even.

Algebraic & Geometric Topology, Volume 25 (2025)
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(5) Without loss of generality assume that c 2 CC. Each time c meets a bubble B it does so along a
@-bone or an ı-joint. Since c meets B twice then it does so along either two @-bones, an ı-joint and a
@-bone or two ı-joints. If c meets B in two @-bones, then the disk Sc contains an arc connecting the two
@-bones. This arc together with an arc on @N .L/ bounds (by an innermost argument) a compression disk
for S . Compressing along this disk reduces the complexity of S .

If c meets B in an ı-joint and a @-bone, then the disk Sc contains an arc connecting the ı-joint and the
@-bone. This arc, together with an arc on B bounds a disk. Isotoping S through this disk reduces the
complexity of S .

Thus, c meets B in two ı-joints. Assume that c has two ı-joints in B on the same side of L as in

The isotopy of S defined in the proof of Lemma 1(ii) of [11] (for the case R\LD∅ in his notation)
reduces our complexity since the number

P
c2C Jı.c/ strictly decreases.

By Lemma 1(ii) of [11], c does not have It follows that c has at most two ı-joints in the same bubble, and
they are separated by L in BC. The number of components of S \BC separating each of the ı-joints of
c from L is the same: Each component of S \B separating an ı-joint of c and L belongs to a curve c0

in CC. As curves in CC do not intersect, in order to close up, c0 has to return to B on the other side of L

between L and the other ı-joint of c in B. This is depicted here:

The intersection of S with the ball bounded by B, is a finite collection of stacked saddles, it follows that
the ı-joints of c belong to the same saddle.

(6) If c has two @-joints on the same component of PC \L. Let ˛ in PC \L and ˇ in Sc be arcs
connecting the two @-joints. Unless ˛ is a @-bone of c, by compressing along the disk bounded by
˛[ˇ (using an innermost such disk) complexity is reduced because

P
c2C J@.c/ strictly decreases whileP

c2C Jı.c/ does not increase.
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If c contains a @-bone ˛ such that the two adjacent ı-joints are in the same region of P XD.L/ then,
by pushing S through P in a neighborhood of ˛, we reduce the number of intersection points by 2, in
contradiction to the minimal complexity of S .

(7) Assume in contradiction that c is such a curve, ie as the blue curve here:

c̄

By (6), any curve contained in c has to be of a similar form. Assume c is an innermost such curve. The
curve Nc abutting c, as depicted in the following figure, meets the bubble twice, at a @-bone and an ı-joint,
in contradiction to (5).

Remark 3.10 Note that if S is taut then C0;0 D C0;2 D Ci;2kC1 D C2kC1;0 D∅ for all i; k 2N [f0g.

4 Euler characteristic and curves of intersection

From now on we assume that the surface S is taut.

4.1 Distributing Euler characteristic among curves

For each curve c 2 C we will define the contribution of c, and show that the Euler characteristic of S can
be computed by summing up the contributions of curves c 2 C.

Definition 4.1 The contribution �C.c/ of a curve c 2 C is defined by

�C.c/D 1� 1
4
J.c/:

Lemma 4.2 If S � S3 XN .L/ is taut then �.S/D
P

c2C �C.c/.

Proof The union of the collection of all the curves c 2 C on S is an embedded graph yX of S . The
vertices yX 0 of the graph yX are the @-joints and the endpoints of ı-joints. The edges yX 1 of the graph yX
are the bones and the ı-joints. The graph yX partitions S into disk regions of three types:

(1) subsurfaces Sc �
yS \H˙ for c 2 C˙,

(2) saddles R� yS \B where B is a 3-ball bounded by a bubble, or

(3) regions D � S corresponding to Type 2 disks.
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In case (3), the regions D are disks whose boundary consists of two arcs on L and two edges of yX . By
collapsing each such disk D to one of the edges in yX we get a homotopic surface. By abuse of notation,
we call it S , and call the corresponding graph X obtained from yX by gluing together pairs of ı-bones.
Note that in the new surface, @S �X and consists of circles comprised of @-bones and @-joints. Moreover,
along every ı-bone there are two abutting curves. It follows that

(4-1) �.S/D �.X /C
X

S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/

D jX 0
j � jX 1

jC

X
S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/:

We compute how each c 2 C contributes to each of the summands in (4-1):

The vertices of X Every curve c 2 C passes through 2Jı.c/ vertices of X 0 in the interior of S (those
are the endpoints of ı-joints it passes). Furthermore, it goes through J@.c/ vertices of X 0 in @S . Each of
these vertices belongs to two (abutting) curves c 2 C. Hence,

(4-2) jX 0
j D

X
c2C

�
Jı.c/C

1
2
J@.c/

�
The edges of X Every curve c 2 C passes through 2Jı.c/C J@.c/ edges in X 1. Note that every ı-joint
edge and every @-bone edge belongs to exactly one curve in C, while each ı-bone edge belongs to two
curves in C. Each ı-joint edge appears in exactly one curve c and is counted once in Jı.c/. Hence, the
number of ı-joint edges is

P
c2C Jı.c/: Similarly each @-bone edge appears in exactly one curve c and is

counted twice in J@.c/. Hence, the number of @-bone edges is
P

c2C
1
2
J@.c/. Finally, each ı-bone edge

in c accounts for two vertices in X 0. So the number of ı-bone edges is equal to

1
2
jX 0
j D

1
2

�X
c2C

�
Jı.c/C

1
2
J@.c/

��
:

Adding these contributions together gives

(4-3) jX 1
j D

X
c2C

�
3
2
Jı.c/C

3
4
J@.c/

�
:

Regions S 0 � yS \H˙ To every curve c 2 C there is a disk Sc �
yS \H˙. Thus,

(4-4)
X

S 0�yS\H˙

�.S 0/D
X
c2C

1:

Saddle regions R � yS \B Each ı-joint of a curve c 2 C belongs to the boundary such a region. And
so each curve passes through the boundary of Jı.c/ such regions. As each saddle region has four ı-joints
in its boundary, we have

(4-5)
X

R�yS\B

�.R/D
X
c2C

1
4
Jı.c/:

Algebraic & Geometric Topology, Volume 25 (2025)



Highly twisted diagrams 219

Summing over all of the above we get,

�.S/D jX 0
j � jX 1

jC

X
S 0�yS\H˙

�.S 0/C
X

R�yS\B

�.R/

D

X
c2C

�
1� 1

4
.Jı.c/C J@.c//

�
D

X
c2C

�C.c/:

5 Redistribution of Euler characteristic

Standing assumption Throughout the rest of the paper, we assume that the diagram D.L/ is connected,
prime, twist-reduced, 3-highly twisted and contains at least two twist regions.

In this section we redistribute the positive contribution of the Euler characteristic of curves, �C, so that
after the redistribution each curve’s contribution is nonpositive.

We first characterize the curves of intersection that have a positive �C. The characterization is done in
the following lemma:

Lemma 5.1 Let c 2 C so that �C.c/ > 0 (ie J.c/ < 4) then c 2 C2;0 or c 2 C1;2 and it is one of the six
forms of Figure 5 (up to isotopy).

Note that the curves c in cases (i) and (ii) are in C2;0. The curves in cases (iii), (iv), (v) and (vi) belong
to C1;2.

Proof It follows from Definition 4.1, Lemma 3.9 and Remark 3.10 that if �C.c/ > 0 then c 2 C2;0 or
c 2 C1;2. Since the diagram is prime, a curve c 2 C2;0 must contain two turns at different twist boxes.
Hence c is as depicted in figures (i) or (ii).

(i) (ii) (iii) (iv) (v) (vi)(i) (ii) (iii) (iv) (v) (vi)

Figure 5: The six possibilities for a curve in c 2 C2;0[ C1;2.
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Let c 2 C1;2 and let ˛ denote a limb which is a small extension of the unique @-bone in c. The endpoints
of ˛ must be in regions of P XD.L/ of different color since the complementary limb of ˛ in c is a turn.
Since S is taut, Lemma 3.9(7) implies that ˛ must pass over at least one crossing of D.L/. Since the
endpoints of ˛ are in regions of different colors, ˛ cannot connect the two regions adjacent to the two
length edges of a twist region. Thus, ˛ enters a twist region T through its length edge, and exists on L.
It can meet one or two twist regions. If ˛ meets one twist region, then it must be as in figures (iii) or (iv).
Otherwise, up to isotopy, it must be as in figures (v) or (vi).

Definition 5.2 Denote by C>0 (resp. C�0) the set of curves c 2 C such that �C.c/ > 0 (resp. � 0). The
lemma above shows that C>0D C2;0[C1;2. The type of a curve in C>0 corresponds to the types of curves
as depicted in Figure 5. For example, a curve of C2;0 is of type (i) or (ii).

Next, we will describe a distinguished set, denoted by K, of limbs of curves in C to which we will
“reallocate” some of the positive contribution of curves in C>0. We begin with a definition:

Definition 5.3 An extremal bubble is a first or last bubble of a twist region. A curve wiggles extremally
if it wiggles through an extremal bubble. Assume that a curve or an arc ˇ wiggles through a twist region
extremally, then the ı-bone ˛ � ˇ which leaves the twist region from the extremal bubble of the wiggle
is called a core of ˇ.

Definition 5.4 A vertebra is an ı-bone � in a curve c connecting two turns of c in two twist regions
T;T 0 so that � meets the length edge of T and the width edge of T 0.

A rib is a closed curve c 2 C4;0 which consists of exactly two turns and an extremal wiggle.

Remark 5.5 Note that the two ı-bones of a curve c 2 C2;0 of type (i) are vertebrae.

Lemma 5.6 Assume that c0 is not a rib , and that c0 contains a vertebra �0. Then , there exists a finite
sequence of curves c0; c1; : : : ; cn, limbs �1; : : : ; �n and bones �0; : : : ; �n�1 such that :

(1) For 1� i < n, ci is a rib and �i is the ı-bone connecting its two turns.

(2) For 1� i � n, �i is a limb of ci with a unique core �i�1 and J.�i/D 3. In particular , the curve ci

abuts the curve ci�1 along the core �i�1.

(3) The curve cn has �C.cn/ < 0.

Moreover , given �n one can uniquely determine the ı-bone �0 and hence the curves ci , arcs �i and bones
�i as above.

Definition 5.7 We will refer to the curves ci (resp. limbs �i) in the lemma as the layers curves (resp. layer
limbs) of �0, and to the curve cn (resp. arc �n) as the terminal layer curve (resp. terminal layer limb) of �0.

Proof of Lemma 5.6 We produce a sequence of curves, limbs and bones, satisfying the assumptions
above, which terminates at the first curve cn such that �C.cn/ < 0.
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κ1

c0

c1

κ2

κ1

c1

κ2

c2 c2

κ3 κ3

c3

τ0 c0
τ0

c3

Figure 6: Example 5.8.

Let c0 and �0 be as in the statement of the lemma. Let c1 be the curve abutting c0 along �0. The bone �0

connects an extremal wiggle and a turn of c1, hence it is a core of c1. Let �1 be the limb of c1 containing
�0 and the adjacent wiggle and turn. If �C.c1/ < 0, then stop the process. Otherwise, J.c1/D 4. Hence,
by Lemma 3.9, the curve c1 is a rib, ie it consists of a wiggle and two turns and has a unique core.
Let ˛1; ˛

0
1

be the ı-joint of the two turns of c1, and assume that ˛1 � �1. Let �1 be the ı-bone of c1

connecting ˛1; ˛
0
1
. The bone �1 meets the length edge of the twist region containing ˛1.

Assume first that �1 is not a vertebra of c1, ie it meets the length edge of the twist region containing ˛0
1
.

Then, the curve c2 abutting c1 along �1 contains two wiggles in two different twist regions. It follows that
�C.c2/ < 0 as otherwise c2 bounds a twist reduction subdiagram. Let �2 be the limb in c2, abutting �1,
consisting of a wiggle through the bubble of ˛1, and one more ı-joint at the bubble containing ˛0

1
. The

bone �1 is the unique core of the limb �2, and the process stops (nD 2).

If �1 is a vertebra, then we iterate the process. That is, we consider the curve c2 abutting c1 along �1, and
the limb �2 of c2 containing �1 and its adjacent wiggle and turn.

Since there are finitely many curves and limbs, the process either terminates or is periodic. It cannot be
periodic because the initial curve c0 is not a rib, but note that all the curves ci for i < n are ribs.

Finally, given �n, the curve cn�1 is the curve abutting cn along the unique core of �n. The curve cn�1 has
a unique core, which is also the core of a unique arc �n�1 (with J.�n�1/D 3). Repeating this process,
we can retrace the sequence all the way to �0.

Example 5.8 In Figure 6 we see two examples of outputs of the process in Lemma 5.6. Starting with
the curve c0 which is not a rib, and the vertebra �0 of c0, we get the curves c0; c1; c2; c3, limbs �1; �2; �3

and ı-bones �0; �1; �2. The limbs �i are shown in bold the figure. The ı-bones �0; �1; �2 are the cores of
�1; �2; �3 respectively.

In Figure 6, left, note that the ı-bone �2 is a vertebra. If �C.c3/ < 0 then the process stops at c3 and �3

is its terminal limb. Otherwise, c3 is again a rib, and the process continues.
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In Figure 6, right, the ı-bone connecting the two turns of c2 is not a vertebra, as it meets the length edge
of both twist regions. Therefore the limb �3, which is shown in bold in the figure, contains a wiggle
(through the bubble in which both c1 and c2 turn) and “half a wiggle” (through the other bubble in which
c2 turns). As the proof shows, the curve c3 necessarily satisfies �C.c3/ < 0, and thus it is the terminal
curve of the process.

Definition 5.9 (definition of K) (1) Each c 2 C2;0 of type (i) has two ı-bones. Each ı-bone � of c is a
vertebra and hence by Lemma 5.6 determines a terminal layer limb �n. Let K3;0 be the set of all terminal
layer limbs associated with all ı-bones of curves in c 2 C2;0.

(2) Each c 2 C2;0 of type (ii) determines an arc � which abuts c and wiggles through the two twist
regions. Let K4;0 be the collection of all arcs � obtained in this way.

(3) Each c 2 C2;1, determines an arc � which abuts c, wiggles through the twist region in which c turns,
and contains one of the @-joints of c. Let K2;1 be the collection of all arcs � obtained in this way.

Finally, let K be the set K3;0[K4;0[K2;1.

Lemma 5.10 Given � 2 K one can uniquely determine the curve c 2 C>0 that determines it. Conversely,
to each curve in C2;0 of type (i) there are two curves of K3;0 corresponding to the two choices of ı-bones
of c. To each curve in C1;2 and each curve in C2;0 of type (ii) there is a unique arc in K2;1 and K4;0

respectively.

In particular ,
1
2
jK3;0jC jK4;0j D jC2;0j and jK2;1j D jC1;2j:

Proof If � 2 K4;0 (resp. � 2 K2;1) then the curve c 2 C2;0 of type (ii) (resp. c 2 C1;2) that determines
it is the curve abutting �. If � 2 K3;0 then by Lemma 5.6 there is a unique ı-bone � of a curve C2;0 of
type (i) that determines it. The converse statements follow.

Lemma 5.11 The arcs in K which belong to curves in CC (resp. C�) are pairwise disjoint.

Proof Assume that the two arcs �; �0 2 K meet. Since, by Lemma 5.10, every arc in K is determined by
its core, it suffices to show that � and �0 have the same core.

By assumption �; �0 share a joint, and hence are limbs of the same curve c. If this joint is a @-joint then
�; �0 2 K2;1 and their core is the unique ı-bone incident to their shared @-joint. If the joint is an ı-joint
that is part of a wiggle of c, then, since the diagram is 3-highly twisted, there is a unique core emanating
from the extremal bubble of this wiggle, which is shared by both � and �0. Finally, if the joint is an ı-joint
that is part of a turn of c, then �; �0 2K3;0. The cores of �; �0 must be the unique ı-bone which emanates
from the width edge of the twist region in which the turn occurs because it is also the vertebra of the
previous layer curve.
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Lemma 5.12 For all � 2 K we have J.c/� J.�/C 2, where c is the unique curve in C containing �.

Proof Let � 2K and let c 2 C be the curve containing �. Assume for contradiction that J.c/ < J.�/C2.

If � 2 K4;0 then J.c/ < J.�/C 2 implies that c 2 C4;0. If this is the case, then since c wiggles through
two twist regions, the projection of c to P gives a twist-reduction subdiagram in contradiction to the
assumption on the diagram.

If � 2 K2;1, then J.c/ < J.�/C 2 implies that c 2 C2;2. If this is the case, then � abuts some curve
c0 2 C1;2 which could be one of the figures (iii)–(vi) in Lemma 5.1. For case (iii), there are two possible
configurations for the closed curve c 2 C2;2 containing �, while for each of the cases (iv)–(vi) there is
only one possible such curve. Thus, all possible cases for the curve c are shown here:

(iii′) (iv) (v) (vi)(iii)(iii) (iii0) (iv) (v) (vi)

In case (iii) the surface is not taut and in all other cases, the curve c bounds a twist-reduction subdiagram.

If � 2 K3;0, then J.c/ < J.�/C 2 implies that c 2 C4;0, however this is in contradiction to the definition
of K3;0 given by Lemma 5.6.

Remark 5.13 It follows from the proof of Lemma 5.6 that if c contains a limb � 2 K3;0 such that the
core of � is not a vertebra of its abutting curve then J.c/ � J.k/C 3: Indeed, if c D cn, � D �n and �
abuts cn�1 along a bone which is not a vertebra of cn�1 then c must have an additional ı-joint which is
not contained in �.

Definition 5.14 Let c 2 C. If c 2 C>0 define �0.c/ D 0. Otherwise, let n3;0 (resp. n4;0; n2;1) be the
number of limbs � 2 K3;0 (resp. K4;0; K2;1) in c. We associate to c the quantity

�0.c/D �C.c/C
1
4
n3;0C

1
2
n4;0C

1
4
n2;1:

The next lemma shows that �0 is a redistribution of the Euler characteristic of S among curves in C�0.

Lemma 5.15 �.S/D
X
c2C

�0.c/.

Proof By Lemma 4.2, �.S/D
P

c2C �C.c/. Since �0.c/D 0 for c 2 C>0,X
c2C

�0.c/D
X

c2C�0

�0.c/:
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It thus remains to prove that X
c2C

�C.c/D
X

c2C�0

�0.c/:

Subtracting
P

c2C�0
�C.c/ from both sides and recalling that C�0 D C X C>0, we have to show thatX

c2C>0

�C.c/D
X

c02C�0

.�0.c0/��C.c
0//:

The left hand side is simply 1
2
jC2;0jC

1
4
jC1;2j since C>0 D C2;0[ C1;2 and

�C.c/D

�1
2

if c 2 C2;0;

1
4

if c 2 C1;2:

By the definition of �0, the right hand side gives 1
4
jK3;0jC

1
2
jK4;0jC

1
4
jK2;1j. The proof is now complete

by Lemma 5.10.

The next lemma shows that indeed �0 is nonpositive.

Lemma 5.16 �0.c/� 0 for all c 2 C.

Proof If c 2 C>0 then �0.c/D 0. Let c 2 C�0 and let n3;0; n4;0; n2;1 be as in Definition 5.14 of �0.c/.
By Lemma 5.11, the limbs of K in c are disjoint and therefore

(5-1) J.c/�
X

c��2K

J.�/:

Hence,

(5-2) �0.c/D �C.c/C
1
4
n3;0C

1
2
n4;0C

1
4
n2;1 D

�
1� 1

4
J.c/

�
C

1
4
n3;0C

1
2
n4;0C

1
4
n2;1

� 1�
X

c��2K

1
4
J.�/C 1

4
n3;0C

1
2
n4;0C

1
4
n2;1

D 1C
X

c��2K3;0

�
1
4
�

1
4
J.�/

�
C

X
c��2K4;0

�
1
2
�

1
4
J.�/

�
C

X
c��2K2;1

�
1
4
�

1
4
J.�/

�
D 1C

X
c��2K3;0

�
1
4
�

1
4
� 3
�
C

X
c��2K4;0

�
1
2
�

1
4
� 4
�
C

X
c��2K2;1

�
1
4
�

1
4
� 3
�

D 1� 1
2
.n3;0C n4;0C n2;1/:

Now the argument is divided into cases depending on the sum nD n3;0C n4;0C n2;1.

Case 0 (nD 0) We have �0.c/D �C.c/. But since c 2 C�0 we have �C.c/� 0 and we are done.

Case 1 (nD 1) That is, c contains a single subarc � 2 K3;0 [K4;0 [K2;1. By Lemma 5.12, J.c/ �
J.�/C 2. If � 2K4;0 we get J.c/� 6 and thus �0.c/D 1� 1

4
J.c/C 1

2
� 0. Similarly, if � 2K3;0[K2;1

we get J.c/� 5 and thus �0.c/D 1� 1
4
J.c/C 1

4
� 0.

Case 2 (n� 2) In this case we are done by inequality (5-2).

Corollary 5.17 The link L is nonsplit nor the unknot.

Algebraic & Geometric Topology, Volume 25 (2025)



Highly twisted diagrams 225

name of set J. �/ Jı. �/ J@. �/ the set’s composition/classification

C2;0 2 2 0 type (i) or (ii)

C1;2 3 1 2 type (iii), (iv) or (v)

C4;0 4 4 0 4 turns or 1 wiggle and 2 turns or 2 wiggles

C2;2 4 2 2 2 ı-joints and 1 @-bone

C0;4 4 0 4 2 @-bones

K3;0C 0; 2 5 3 2 1 limb of K0;3 + @-bone

K2;1C 1; 1 5 3 2 1 limb of K2;1 + 1 ı-joint + 1 @-joint

K4;0C 2; 0 6 6 0 1 limb of K0;4 + 2 ı-joints

K4;0C 0; 2 6 4 2 1 limb of K0;4 + @-bone

K3;0CK3;0 6 6 0 2 limbs of K3;0 = 2 wiggles + 2 turns

K2;1CK2;1 6 4 2 2 limbs of K2;1 = 2 wiggles + @-bone

K4;0CK4;0 8 8 0 2 limbs of K4;0 = 4 wiggles

Table 1: Classification of all curves with �0.c/D 0.

Proof Assume, in contradiction, that S3XN .L/ has an essential sphere or a disk bounding a component
of L. By Lemma 3.9 we may assume that S is taut. Let C be its curves of intersection With P˙. By
Lemma 5.15,

0< �.S/D
X
c2C

�0.c/:

However, this contradicts Lemma 5.16 which states that �0.c/� 0 for all c 2 C.

Lemma 5.18 Let S be a taut surface with �.S/D 0, then any curve c 2 C is one of the following:

(1) c 2 C2;0[ C1;2.

(2) J.c/D 4, ie c 2 C4;0[ C2;2[ C0;4.

(3) c contains a limb � 2 K and has J.c/D J.�/C 2.

(4) c is the union of two limbs �1; �2 2 K.

Moreover , the cores of arcs in K3;0 are vertebrae of their abutting curves.

Proof By Lemma 5.15 and 5.16 each curve c 2 C must have �0.c/D 0. It follow from the definition of
�0 that the above are the only cases in which �0.c/D 0.

By Remark 5.13 and Case 1 of the proof of Lemma 5.16, if c contains an arc � 2 K3;0 whose core is not
a vertebra of the abutting curve c0 then �0.c/ < 0.

In Table 1 we summarize the possible sets of curves with �0 D 0 and assign them names.
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6 Atoroidal and unannular

In this section we prove that if the link L has a diagram which satisfies the conditions of Theorem A, then
its complement does not contain essential annuli or tori (in particular �.S/D 0). Let S denote such a
2-torus or annulus. After an isotopy, if need be, we may assume that S is taut. We first need the following
technical lemmas.

Claim 6.1 The following three configurations for curves c 2 C are impossible:

c1 c1 c1

where the bubble marked in pink is nonextremal.

Proof We argue simultaneously that the three configurations are impossible. In each of these cases, let
c2 (marked in orange) be the depicted curve abutting c1. The limb of c2 that is shown here has three
joints:

c1

c2
c1

c2
c1

c2

None of these joints belongs to a limb in K: in all cases, the curve c1 is not in C2;0 or C1;2 nor a rib
with a vertebra. By Lemma 5.18, it follows that J.c2/D 4. Thus the only way that c2 can close up is
in Figure 7. Let c3 be the depicted curve abutting c1. In the two left figures, one sees, as before, that
J.c3/D 4. In the figure on the right, c3 is in K4;0C 2; 0 in the notation of Table 1: Indeed, c3 cannot
have J.c3/D 4, as otherwise it bounds a twist reduction subdiagram. Thus, c3 must contain an arc of K.
By elimination of the possibilities in Table 1, c3 must be in K4;0C 2; 0. Thus, in all cases, c3 can close
only after passing through an additional twist region as shown in Figure 8. Thus, taking into account all
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c3

c1
c2 c1

c2

c3

c1

c2

c3

Figure 7: Proof of Claim 6.1. Second figure.

c3

c1
c2 c1

c2

c3

c1

c2

c3

Figure 8: Proof of Claim 6.1. Third figure.

possible configurations of the curves c2 and c3 determined by the stated configurations of the c1 curves,
the diagrams are seen to contained a closed curve depicted by the dashed curves in the figures. Each of the
dashed curves bounds a twist-reduction subdiagram. This contradicts the assumption that the diagrams
are twist reduced, which finishes the proof of the claim.

Lemma 6.2 If a curve c 2 C contains a bone � connecting two turns of c then one of the following holds:

(1) the curve c 2 C2;0,

(2) the curve c is a rib , or

(3) the ı-bone � meets the width edge of both twist regions.

In particular , c cannot have three consecutive turns.

Proof Let � be a bone connecting two turns of c it is therefore an ı-bone. Assume in contradiction that
� and c do not satisfy any of (1)–(3) of the lemma. That is, c is not a curve in C2;0 nor a rib, and � does
not meet the width edge of both twist regions. There are two cases to consider depending on whether �
meets a width edge or not.
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(I) (II) (III) (IV ) (V )(I) (II) (III) (IV) (V)

Figure 9: The five configurations of good curves which are not in C2;0.

If � meets a width edge, then � is a vertebra, ie it meets the length edge of one twist box and the width of
the other. If this occurs set c0D c, �0D � . Since c is assumed not to be a rib, it follows from Lemma 5.6
that there exist curves c1; : : : ; cn, limbs �1; : : : ; �n, and vertebrae �1; : : : ; �n�1 so that the terminal layer
cn has �C.cn/ < 0. Moreover, note that the limb �n is not in K3;0 as otherwise by the uniqueness property,
assured in Lemma 5.6, the “initial” layer curve c0 must be a curve in C2;0 of type (i). This implies that �n

does not meet any limb of K. As otherwise, as in the proof of Lemma 5.11, one can prove that �n and the
limb it meets must be equal. However, by Lemma 5.18, there is no curve, with �0 D 0, which has three
ı-joints that do not belong to a limb of K.

If � does not meet a width edge, then � meets the length edge of both twist regions. It follows that the
curve c0 abutting c along � has two wiggles which are connected by � . The curve c0 cannot be in C4;0

as otherwise it bounds a twist-reduction subdiagram. By Lemma 5.18, one of the wiggles must meet a
limb � 2 K. Since � is a core of c0, it must be the core �. It follows that � 2 K4;0 and that c 2 C2;0 is of
type (ii), in contradiction to our assumption.

In both cases, whether � meets a width edge or not, we arrived at a contradiction. Hence, c must satisfy
one of (1)–(3).

Finally, if c has three consecutive turns then c is not a rib nor a curve in C2;0. One of the two bones
between the turns of c must meet a length edge and a width edge, contradicting (3).

Definition 6.3 A curve c 2 C is good if it bounds on P˙ exactly one component of L\P˙. I.e., it is
either in C2;0 as depicted in Figure 5 (i) and (ii), or a curve in one of the forms shown in Figure 9.

We will say that c is good of type (I)–(V), accordingly. Otherwise, c is called bad.

Remark 6.4 Under the assumption that the diagram is prime and contains at least two twist regions the
twist regions in each of the subfigures (II)–(V) of Figure 9 are distinct, as otherwise there is an arc of L

connecting a twist region to itself, resulting in a nonprime subdiagram.

Remark 6.5 If S is a boundary parallel torus, then its intersection curves are good. A key observation
is that the converse holds. That is, if all the curves of intersection of S with P are good then S is a
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α

α′

β

γR

γL

Figure 10: A curve c that meets a bubble twice.

boundary parallel torus: Consider a curve c 2 C; c is good and hence bounds on P˙ a unique component
`c of L\P˙. When c meets a bubble B, there is a saddle of S bounded by B which meets c and two
other curves c1; c2, and the component of L\B that meets `c also meets `c1

and `c2
. Thus, the obvious

isotopies from disks on S bounded by curves c 2 C to `c can be glued together to form an isotopy of S to
a component of L. Therefore, our goal in the next claims is to show that the curves of intersection of a
taut surface S with �.S/D 0 are good.

Lemma 6.6 If a curve c 2 C passes through a bubble more than once , then c is good.

Proof Let c meet the bubble B1 more than once. By Lemma 3.9(5) it can do so only in two opposite
ı-joints, ˛; ˇ. Therefore, at least one of those ı-joints, say ˛, is part of a wiggle ˛0 of c. Hence, ˛0 meets
an adjacent bubble B2. Note that c X .˛0 [ˇ/ consists of two arcs connecting ˛0 and ˇ as depicted in
Figure 10. Let 
R, 
L be the dotted subarcs of c on the right and left of the figure, respectively. The
argument is divided into cases according to Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) If c 2 C4;0, then the subarc 
R of c has no joints while 
L has one ı-joint. Hence c is good of type (I),
(II) or (III).

(3) Since the three ı-joints of c in T are not part of the same limb in K3;0 nor K4;0, then c cannot be in
K3;0C 0; 2 or in K4;0C 0; 2 (See Table 1).

(4) The curve c cannot be in K4;0 C K4;0: Otherwise ˇ is part of a wiggle ˇ0 of c. The wiggle ˛0

(resp. ˇ0) is part of a limb ˛00 2 K4;0 (resp. ˇ00 2 K4;0/. Since each limb of K4;0 has a core, the bubble
B2 must be extremal. Then, the subarc 
R of c contains the other wiggle of ˛00. The closed curve which
is the union of 
R and an arc on the boundary of the twist region intersects the link diagram twice, and
both subdiagrams bounded by it are nontrivial. This contradicts the assumption that the diagram is prime.

(5) A similar argument shows that c cannot be in K2;1+K2;1.

(6) The curve c cannot be in K2;1C 1; 1: Otherwise, ˛0 is the wiggle of some ˛00 2 K2;1 and ˇ is a
turn. Beside ˛0 and ˇ, c has a @-bone on the subarc 
L, and no joints on 
R. Since ˛00 2 K2;1 it abuts
some c0 2 C1;2. Hence, c\L and c0\L share endpoints. It follows that the union .c\L/[ .c0\L/ is
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a component of L passing over at most two wiggles of the diagram (at c \L) and under at most two
wiggles (at c0\L). This contradicts the assumption that L is 3-highly twisted.

(7) If the curve c is in K4;0C 2; 0 then c is good of type (V): If ˇ is part of a wiggle ˇ0 of c, then at
most one of ˛0 and ˇ0 is part of limb in K4;0. Without loss of generality, assume ˛0 is a wiggle of a limb
˛00 2 K4;0. Then, B2 is extremal, and the subarc 
R contains the other wiggle of ˛00. The curve which
is the union of 
R and an arc on the boundary of the twist region intersects the link diagram twice, in
contradiction to the assumption that the diagram is prime. If ˇ is a turn, then B1 is extremal, and the wiggle
˛0 is part of a limb ˛00 2K4;0. This limb abuts a curve c0 2 C2;0, and it follows that c is good of type (V).

(8) Finally, if the curve c is in K3;0CK3;0 then c is good of type (IV): The wiggle ˛0 is a wiggle of
some limb ˛00 2 K3;0. If ˇ is part of a wiggle ˇ0 of c, then ˇ0 is a wiggle of some other limb ˇ00 2 K3;0.
It follows that each of 
R; 
L contains exactly one ı-joint, which is impossible. If ˇ is a turn, then it is
the turn of some limb ˇ00 in K3;0. As the core of ˇ00 meets the width of the twist region, its wiggle must
be on 
L. Similarly, the turn of ˛00 must be on 
L as well. This implies that 
R does not contain any
joints. If the turn of ˛00 and the wiggle of ˇ00 are in two different twist regions then the curve abutting
(both of) their cores contains three turns. However, this curve is a nonterminal layer curve (in the sense
of Lemma 5.6), and those contain at most two turns. Thus, the turn of ˛00 and the wiggle of ˇ00 are in the
same twist region T 0. Each of ˛00 and ˇ00 meets an extremal bubble of T 0. Then only option for them to
close up is if they meet the same extremal bubble of T 0. It follows that c is good of type (IV).

Proposition 6.7 All curves in C are good or in C0;4.

In the proof of the proposition, we will assume in contradiction that such a curve exists. The proof will
follow from the next four lemmas.

Lemma 6.8 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve
in PC which is not in C0;4. Let D be the disk bounded by c. Then the curve c does not turn or wiggle
through a twist region T which has a bubble contained in D.

Proof Assume c turns at T Let B be the extreme bubble in a twist region T through which c turns.
Since the diagram is 3-highly twisted T contains at least two more bubbles let B0 be the bubble adjacent
to B in T . By assumption B0 is contained in the disk D. Consider the curve c0 whose ı-joint is opposite
to the ı-joint of c in B. Since c is innermost, the curve c0 is good. It must be of good type (I) as in this
configuration:

D

c B

B′
c̄

c′
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The curve Nc abutting both c and c0, passes through the bubble B0 twice. Hence, by Lemma 6.6, Nc is good.
By the definitions, it cannot be in C2;0 nor good of type (I). If Nc is good of type (II) or (III) it has a turn at
a bubble B00, then c passes twice through B00 which by Lemma 6.6 contradicts the assumption that c is
bad. If Nc is good of type (IV) or (V) then it meets an extremal bubble B00. The curve c turns at B00 and
hence belongs to C2;0 which again contradicts the assumption that c is bad.

Assume c wiggles through T The curve c wiggles through the bubbles B1;B2. Let B0 be a bubble of
T \D so that B0;B1;B2 are consecutive, as in:

D

B2

B1

B0

c

Consider the curve c0 whose ı-joint is opposite to the ı-joint of c in B1. The curve c0 is contained in D

and wiggles through T passing through the bubbles B0;B1:

D

c

c′
c̄

By assumption c0 must be good, and so it wiggles through T and then returns to T , passing through
B0;B1;B0 in that order. By Lemma 3.9(5), the two ı-joints of c0 in B0 are opposite sides of the same
saddle. Next, consider the curve Nc abutting c0 along the two ı-bones of c0 connecting B0 and B1. The
curve Nc passes through B1 twice. Hence, it is good by Lemma 6.6. It must be of type (I) and in addition
passes through B2. It follows that c abuts Nc along the two ı-bones of Nc connecting B1 and B2. Hence, c

passes through B2 twice, and by Lemma 6.6 c is good, contradicting the assumption.

Lemma 6.9 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4. Let D be the disk bounded by c. Then the curve c does not wiggle through a
twist region.

Proof Assume that c wiggles through a twist region T . By Lemma 6.8, the disk D does not contain a
bubble of T . The curve c wiggles extremely through the twist region by passing through two bubbles
B0;B1, where B0 is extremal. By Lemma 6.6, c meets the bubble B0 once.

The curve c0 turning at B0 is good by choice of c. Therefore, c0 2 C4;0 is good of type (II) or (III) or
c0 2 C2;0 of type (i) or (ii) (as in Lemma 5.1); see Figure 11.
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ccc c

c′ c′c′ c′

B1

B0

B′
1

B′
0

c′ ∈ C4,0 c′ ∈ C2,0

Figure 11: Proof of Lemma 6.9. The four configurations of c0.

Let T 0 ¤ T be the other twist region which c0 meets, let B0
0

denote the extremal bubble in T 0 through
which c0 passes, and let B0

1
be its adjacent bubble.

Case 1 If c0 2 C4;0 (ie as depicted in the left two subfigures in Figure 11), then consider the curve Nc
abutting c and c0 (shown in orange in subsequent figures). None of the bubbles of Nc belongs to an arc
of K. Therefore, Nc 2 C4;0, and it follows that it must close up as shown in the dotted curves here:

c c

c′ c′

c̄ c̄

As c must follow the dotted bone of Nc, we see that c passes through the bubbles B1 twice. By Lemma 6.6.
This contradicts the assumption that c is bad.

Case 2 Let c0 2 C2;0 (ie as depicted in the right two subfigures of Figure 11) and assume that c does not
meet B0

0
. Consider, now, the curve c00 whose ı-joint in B0

0
is opposite to that of c0. By the choice of c,

the curve c00 is good. It must be good of type (I). And the configuration is as depicted here:

cc

c′ c′

c̄ c̄

c′′

c′′
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c

c′

c̄2

c̄1

c

c′

c̄2

c̄1

Figure 12: Subcase 3.1.

Considering the curve Nc abutting all of c; c0; c00, we see that it must be good by Lemma 6.6 of type (IV) and
(V) respectively. As in Case 1, it follows that c meets B1 twice contradicting the assumption that c is bad.

Case 3 Assume that c0 2 C2;0 of type (i) and c does meet B0
0

(as in the third, counted from the left,
subfigure of Figure 11). In this situation are three subcases to consider:

(1) c wiggles through T 0 at the bubbles B0
0

and B0
1
.

(2) c turns at B0
0
.

(3) c \L meets the bubble B0
0
.

Subcase 3.1 The curve c wiggles through T 0 and through the bubbles B0
0

and B0
1
. After passing

through B1, the curve c must exit T at its right length edge and enter T 0 on its right length edge before
meeting B0

0
. Otherwise the curve c would be forced to pass through a bubble twice in contradiction to

Lemma 6.6. Thus, the curve c is as in Figure 12, left. If c 2 C4;0 then we get a twist-reduction subdiagram,
in contradiction to the assumption. Thus, by Lemma 5.18, at least one of the wiggles of c, via B0;B1 or
via B0

0
;B0

1
, must be part of an arc � 2 K. Since the curves Nc1; Nc2 abutting c0 are not in C2;0 nor in C1;2 it

is clear that � 62 K4;0[K2;1. Hence � 2 K3;0. Since c has two wiggles, it must be in K3;0CK3;0 (as in
Table 1), and each of the dotted subarcs (in Figure 12, left) must contain a turn.

Let � 2K3;0 be the limb that wiggles through B0
0
;B0

1
. Then, c is the terminal curve of some vertebra � in

a curve in C2;0 (in the sense of Lemma 5.6). By retracing backwards, we see that the sequence of curves
terminating in c starts with c0 2 C2;0, then produces Nc2 2 C4;0, and then finally produce the curve c (and
the limb �). In particular, Nc2 is a rib, and the ı-bone connecting its two turns is a vertebra. Figure 12,
right, shows an example of such a configuration of curves. As one can see, there are subarcs of Nc2 and c

that together bound a twist-reduction subdiagram which is a contradiction.

Subcase 3.2 Assume c turns at the bubble B0
0
. As explained at the beginning of the previous Subcase 3.1,

the curve c must be as in Figure 13.
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c

c′

c̄

Figure 13: Subcase 3.2. The curve c0 is of type (i) and c turns at B0
0
.

Let Nc be the curve abutting c0 as in Figure 13. The argument proceeds by dividing into cases according to
Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) The curve c is not in C4;0: Otherwise, c has to be a rib. The bone � connecting the two turns cannot
meet both width edges of the corresponding twist regions by Claim 6.1. Hence it is a vertebra, eg as in
this figure:

c

c′

c̄

As Nc has at least five ı-joints, by Table 1 Nc is in K3;0CK3;0, and its two cores are those of the limbs
in K3;0. The core of c ending in B0 meets the length edge of both twist regions it connects. This is
impossible for a core of a limb in K3;0.

(3) The curve c cannot be in K4;0C 0; 2, K2;1+K2;1, or K4;0CK4;0 (see Table 1), since c contains a
turn.

(4) The curve c cannot be in K3;0C 0; 2: Otherwise, the three ı-joints of c are part of the same limb in
K3;0. The core of such a limb connects a width edge to a length edge. This is not the case here.

(5) The curve c cannot be in K2;1C 1; 1 or in K4;0C 2; 0: Otherwise, the wiggle of c is part of a limb
in K2;1 or K4;0, respectively. It follows that the curve Nc abutting c and c0 in Figure 13 must be in C1;2 or
C2;0, respectively, which is clearly not the case.

(6) Finally, the curve c cannot be in K3;0CK3;0: Otherwise, it follows that 
R must contain a single
wiggle. However, in this case one can close 
R with an arc along c0 to obtain a curve in P intersecting
the diagram in two points contradicting the assumption that the diagram is prime.
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Subcase 3.3 If c \L meets the bubble B0
0
, then it is as depicted here:

c

c′

c̄2

c̄1

If c 2 C2;2 then the left dotted line passes through no bubbles or intersection points, and we get a
contradiction to the parity. Therefore, by Lemma 5.18, c must contain some arc � 2 K. Clearly, � must
contain the subarc of c wiggling through T via B0;B1. The curve Nc1 is not in C1;2[ C2;0 and therefore
� 62K2;1[K4;0. It follows that � is an arc in K3;0 and is the terminal layer limb of the process c0, then Nc1,
then �, which is discussed in the proof of Lemma 5.6. If this is the case then, as in the end of Subcase 3.1,
a subarc of Nc1 and a subarc of c bound a twist-reduction subdiagram as in the example shown here:

c

c′

c̄2

c̄1

Case 4 Assume that c0 2 C2;0 of type (ii) and c does meet B0
0
. (as depicted in the rightmost subfigure of

Figure 11). Let Nc1 be the curve abutting c as in:

c

c′

c̄1

The wiggle of c passing via B0;B1 is not part of any arc � in K: If it were, then the curve Nc1 will either
be in C2;0[ C1;2 or will be the nonterminal layer curve of a process terminating in �. Clearly, Nc1 is not in
C2;0[ C1;2. It is also not a nonterminal layer of a process defining K3;0 as in Lemma 5.6, since at any
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c

c′

c̄

Figure 14: Subcase 4.2. The curve c0 is of type (ii) and c turns at B0
0
.

step of a process every curve is a rib, ie it has two turns and a wiggle, and the next step of the process
abuts the ı-bone connecting its the two turns, however here c does not abut the ı-bone of Nc1 connecting
its two turns.

As in the previous subcase there are three further subsubcases to consider:

(1) c wiggles through T 0 at the bubbles B0
0

and B0
1
.

(2) c turns at B0
0
.

(3) c \L meets the bubble B0
0
.

Subcase 4.1 If c wiggles through the bubbles B0
0
;B0

1
, the exact same argument as above shows that the

subarc of c passing through B0
0
;B0

1
is not a subarc of any arc in K. It follows that c 2 C4;0 and bounds a

twist-reduction subdiagram,

c

c′

which is a contradiction.

Subcase 4.2 If c turns at the bubble B0
0
. The curve c must be as in Figure 14. The argument is further

divided into cases according to Table 1:

(1) The curve c contains three ı-joints, hence it is not in C2;0, C2;2 or C0;4.

(2) The curve c is not in C4;0: Otherwise, c has to be a rib. The bone � connecting the two turns cannot
meet both width edges of the corresponding twist regions by Claim 6.1. Hence it is a vertebra, as in
Figure 15. It follows that the curve Nc abutting c and c0 has at least three consecutive turns in contradiction
to Lemma 6.2.
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c

c′

c̄

Figure 15: Subcase 4.2(2).

c

c′

γR

c

c′

c

c′

c

c′

c̄1

Figure 16: Subcase 4.3.

(3) The curve c cannot be in K4;0C 0; 2, K2;1CK2;1 or K4;0CK4;0 (See Table 1) since c contains a
turn.

(4) The curve c cannot be in K3;0C 0; 2: Otherwise the three ı-joints of c are part of the same limb
in K3;0. However this would imply that the three ı-joints of c are consecutive, which is impossible by
the checkerboard coloring of the diagram.

(5) The curve c cannot be in K2;1C 1; 1 or in K4;0C 2; 0: Otherwise, the wiggle of c is part of a limb
in K2;1 or K4;0, respectively. It follows that the curve Nc abutting c and c0 in Figure 14 must be in C1;2 or
C2;0, respectively, which is clearly not the case.

(6) Finally, the curve c cannot be in K3;0CK3;0: Otherwise, it follows that the curve Nc abutting c has
three consecutive turns. This is impossible by Lemma 6.2.

Subcase 4.3 If c\L meets the bubble B0
0
, then by Table 1 c is either in C2;2, or K2;1C1; 1 or K2;1CK2;1.

It cannot be in K2;1C 1; 1 or K2;1CK2;1 since otherwise the dotted subarc 
R has a turn or a wiggle,
respectively (see Figure 16, left), which would contradict primeness. Thus, c 2 C2;2.

If c \L passes over one crossing of L, then c bounds a twist-reduction subdiagram as in Figure 16,
middle left. Otherwise, we are in Figure 16, middle right. Now consider how the curve Nc1 abutting
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c0 on its left can close up. It must be as depicted in Figure 16, right. Thus, Nc1 must be as one of the
configurations that were ruled out in Claim 6.1.

Lemma 6.10 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4. Let D be the disk bounded by c. Then c 62 C4;0.

Proof By Lemma 6.9, c only turns. However, this is impossible by Lemma 6.2.

Lemma 6.11 Assume that there are bad curves which are not in C0;4. Let c be an innermost bad curve in
PC which is not in C0;4, and let D be the disk bounded by c. Then c 62 C2;2.

Proof Assume c 2 C2;2, Since c X .c \ L/ passes through two bubbles, the endpoints of (a small
continuation of) c \L have the same color in the checkerboard coloring of P XD.L/. Thus it is one of
the following:

(a) (b)(a) (b)

By Lemmas 6.8 and 6.9, the complement c X .c \L/ contains two turns, in twist regions which do not
contain bubbles in D. Thus, the possible configurations are:

(a1) (b1) (b2) (b3)(a2) (a3)(a1) (a2) (a3) (b1) (b2) (b3)

In each of the cases, consider the curve Nc abutting c (a subarc of which is shown in orange).

Case (a1) is ruled out by Claim 6.1. In cases (a2), (b1), (b2), it is clear that the curve Nc 2 C4;0 [ C2;2

and bounds a twist-reduction subdiagram, which is a contradiction. Cases (a3), (b3) are impossible by
Lemma 6.2.

Proof of Proposition 6.7 Assume in contradiction that there are bad curves which are not in C0;4. Let c

be an innermost bad curve in PC which is not in C0;4.
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By the last two lemmas, c is not in C4;0 nor in C2;2. Thus, by Lemma 5.18, c must contain an arc of K.
Since every arc in K wiggles through some twist region, we get a contradiction to Lemma 6.9. This
contradiction finishes the proof of Proposition 6.7.

Corollary 6.12 If the diagram of L is 3-highly twisted , connected , prime , and twist-reduced then
S3 XN .L/ is atoroidal. In particular , L is prime.

Proof Let S � S3 XN .L/ be an incompressible taut torus. Let C be the curves of intersection of S

with P˙. Since S has no boundary, C0;4 D∅. By Proposition 6.7 all curves in C are good. We have seen
in Remark 6.5 that if all curves are good then the torus S is boundary parallel.

If L was a composite knot, then the swallow-follow torus would be an essential torus in S3 XL.

Proposition 6.13 If the diagram of L is 3-highly twisted , connected , prime and twist-reduced , then
S3 XN .L/ is unannular.

Proof Let S be an essential annulus. Since L is prime by Corollary 6.12, the annulus can be assumed
not to have meridional boundary components. Thus, we may assume that S is taut. Let C be its curves of
intersection with P . By Proposition 6.7 all curves in C are either good or in C0;4. Since S has boundary com-
ponents, not all curves in C are good, and there is at least one curve c2C0;4. We show that this is impossible.

If there exists a curve c 2 C0;4 then the curve Nc abutting c has two intersection points which are not
connected by an arc of Nc \L therefore Nc 2 C0;4. Repeating this argument shows that all the curves are in
C0;4, ie C D C0;4.

Case 1 There exists a curve c 2 C0;4 which passes twice at the same twist region.

Denote the two connected components of c \L by ˛ and ˇ. Let n be the number of crossings of T

in-between ˛ and ˇ. We further divide the proof into subcases depending on n.

Subcase 1.0 (nD 0) By Lemma 3.9(5), ˛ and ˇ do not meet the same bubble of T . Since we assume
nD 0, they must meet adjacent bubbles of T . The annulus S must spiral between the strands of L\T .
Thus we obtain a disk of Type 2 (as in Lemma 3.1) and hence, by the definition of CC and C� as in the
beginning of Section 3.2 this curve does not appear in C.

Subcase 1.1 (nD 1) The tangle L\T has two components �1; �2. Let l1; l2 be the corresponding
components of L (possibly l1 D l2). Because n D 1 the arcs ˛ and ˇ meet the same string of L\ T ,
say �1. Hence the two boundary components of S are contained in the same component l1 of L. If l1D l2,
then there exists a curve c0 2 C0;4 which meets the bridge in-between ˛ and ˇ, and this curve must be as
in Subcase 1.0. Thus, we may assume that l1 ¤ l2. Consider the disk � as depicted in Figure 17, left. Its
interior intersects L in a single point in l2, and its boundary is the union of an arc on S and an arc on l1.
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�

l2 l1

ˇ

˛

l1

V
S

U

l2

U�

Figure 17: Left: the disk �. Right: A cross section of the twist box, the annulus S and the tori U;V .

The manifold N .S/[N .l1/ has two torus boundary components U and V . See Figure 17, right. Let U

be the torus that meets �. Let U� be the component of S3 XU containing l2, and let UC be the other
component. The torus U is incompressible in U�, as such a compression must be on � and � does
intersect l2 once. It is also incompressible in UC, as if a compression disk exists then since it cannot
intersect l1, it gives a compression of the annulus S , in contradiction to the incompressibility of S . By
Corollary 6.12, U must be boundary parallel to either @N .l2/ or @N .l1/.

If U is parallel to @N .l2/, then since l1 is parallel to a curve in U crossing � once there exists an annulus
A� S3 XL whose boundary is l1[ l2. This annulus A is incompressible, since otherwise l1[ l2 would
be a 2-component unlink that is not linked with L, ie L is split, contradicting Corollary 5.17. The annulus
A is trivially boundary-incompressible because the boundary components of A are on two different
components of L. If we run the argument for A instead of S , Case 1.1 cannot occur because the boundary
components of A are on two different components of L.

If U is parallel to @N .l1/, the intersection �\U is a curve on U which meets the meridian of N .l1/
exactly once: As if it meets it more than once, then the union N .�/[N .l1/ determines a once-punctured
nontrivial lens space contained in S3, which is impossible. Thus, @� which is parallel to �\U is also
parallel to l1. Therefore, the arcs @�X l1 � S and l1 X @� � L bound a disk. Since the arc @�X l1

connects different components of S it is an essential arc, and the disk is a boundary compression for S ,
which is a contradiction.

Subcase 1.2 (n � 2) As the boundary of the annulus S must pass through every other bridge in T ,
there must be another curve of C0;4 in between ˛ and ˇ. By choosing an innermost such curve we are
back in one of the previous cases.

Case 2 None of the curves c 2 C0;4 passes twice at the same twist region. Let c1 be a curve in C0;4. Then
c1 \L is the disjoint union of two arcs ˛; ˇ. Since all of the curves are in C0;4 and at least one curve
passes over a nonextremal bubble, we may assume, by changing c1 that one of the components, say ˛1,
passes over a nonextremal bubble in a twist region. The component ˇ cannot pass over one bubble, as in
this case, either c1 passes twice in the same twist region, or defines a twist-reduction subdiagram. Thus,
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ˇ must be the arc connecting two twist regions, passing over their two extremal bubbles, and the situation
is as depicted here:

This case was ruled out in Claim 6.1.

Remark 6.14 Subcase 1.1 (nD 1) in the proof of Proposition 6.13 follows also from the following well
known general statement:

Nonsplit , annular atoroidal links in S3 are either torus knots or a link consisting of a torus knot on the
“standard torus” T2 in S3 and one or both of the core curves of the solid tori components of S3 XN .T2/.

For completeness we include a proof.

Proof Let L� S3 be a nonsplit and an atoroidal link in S3 containing an essential annulus A. If L is
a knot then boundary A cuts @N .L/ into two annuli A1 and A2. The surfaces A[A1 and A[A2 are
tori which bound solid tori V1 and V2 as L is atoroidal. The two solid tori are glued to each other along
A and since the result together with a regular neighborhood of L is S3, then by Seifert (see [13]), their
complement is a regular neighborhood of a torus knot.

If L is a nonhyperbolic, nonsplit link whose exterior is atoroidal then by [14] it is a Seifert link, ie its
exterior is a Seifert fiber space. Links in Seifert spaces were classified by Burde and Murasugi in [1]. They
are either a connected sum of Hopf links or consist of a union of Seifert fibers in some Seifert fibration
of S3. Atoroidal such links can contain at most three fibers. Hence the link L is a torus knot K on an
unknotted solid torus T and the Hopf link which is the core curves of the complementing solid tori.

Proof of Theorem A By Thurston [14], it suffices to prove that S3XN .L/ has incompressible boundary,
and is irreducible, atoroidal and unannular. By Corollary 5.17 it has incompressible boundary and is
irreducible, by Corollary 6.12 it is atoroidal, and by Proposition 6.13 it is unannular.

7 Essential holed spheres in highly twisted link complements

In this section we use Theorem A to show that certain holed spheres in the complement of a highly twisted
links are essential. We begin with three definitions.
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Definition 7.1 Let D.T / be a projection of a tangle .B;T / onto a disk �� P where @� is the simple
closed curve 
 � P and so that the end points of the strings of T denoted by @T are contained in 
 . We
call D.T / a tangle diagram. Let D.T / denote the reflection of D.T / along P (ie the diagram with the
same projection, but with reverse crossing data).

Definition 7.2 The diagram D.T / is relatively prime (resp. relatively twist reduced, relatively k-highly
twisted) if the link diagram obtained by gluing D.T / and D.T / along their boundary is prime (resp.
twist reduced, k-highly twisted).

Definition 7.3 A surface S in .S3;L/ is pairwise-incompressible if every disk D in S3 with @DDD\S ,
and which intersects L transversely in a single point, is isotopic to a disk in S by an isotopy preserving L
setwise.

The surface S is acylindrical if the complement of S in S3 XN .L/ contains no essential annuli whose
boundary is on S [ @N .L/.

Theorem B Let D.L/ be a 3-highly twisted diagram and let 
 be a simple closed curve in D.L/

intersecting D.L/ transversely. Assume that both tangle diagrams bounded by 
 are connected , relatively
prime , relatively twist-reduced , relatively 3-highly twisted and contain at least two twist regions each. Let
† be the sphere in S3 which intersects P transversely in 
 , and does not intersect L outside 
 . Then the
punctured sphere †0 D†XN .L/ is incompressible , boundary-incompressible , pairwise-incompressible
and acylindrical in S3 XN .L/.

Proof Assume in contradiction that †0 D †XN .L/ is either compressible, boundary-compressible,
pairwise-compressible or not acylindrical in S3 XN .L/.

Let B1;B2 be the two 3-balls that † bounds in S3, and let E1 D P \ B1, E2 D P \ B2 be the
corresponding two disks in P bounded by 
 . The induced tangle diagrams on E1 and E2 are assumed
to be relatively prime, relatively twist-reduced and relatively 3-highly twisted. After doubling each of
E1 and E2, as in Definition 7.2, we get two link diagrams D.L1/;D.L2/ which are connected, prime,
twist-reduced and 3-highly twisted. By Theorem A, the associated links L1;L2 are hyperbolic.

(1) If †0 is compressible then the doubling of an innermost compressing disk �� Bi will give rise to
an essential 2-sphere in S3 XN .Li/.

(2) If †0 is boundary compressible with boundary compression disk �� Bi , then the doubling of �
along †0 \� results in a disk which is bounded by a component of Li . Hence either Li is the
unknot or has a split unknot component.

(3) If†0 is pairwise boundary compressible, then the doubling of the essential disk��Bi intersecting
L once is a 2-sphere intersecting the boundary of N .Li/ in two meridians. Thus Li is not prime.

(4) If †0 contains an essential annulus A � Bi (ie †0 is cylindrical), then Li is toroidal if both
boundaries of A are on †0, or annular if one of these boundaries is on †0 and the other on @N .L/.

In all these cases we get that one of the links L1;L2 is not hyperbolic and thus a contradiction.

Algebraic & Geometric Topology, Volume 25 (2025)



Highly twisted diagrams 243

References
[1] G Burde, K Murasugi, Links and Seifert fiber spaces, Duke Math. J. 37 (1970) 89–93 MR Zbl

[2] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Bull. Amer. Math. Soc. 13 (1985)
43–45 MR Zbl

[3] D Futer, E Kalfagianni, J S Purcell, Hyperbolic semi-adequate links, Comm. Anal. Geom. 23 (2015)
993–1030 MR Zbl

[4] D Futer, J S Purcell, Links with no exceptional surgeries, Comment. Math. Helv. 82 (2007) 629–664 MR
Zbl

[5] A Giambrone, Combinatorics of link diagrams and volume, J. Knot Theory Ramifications 24 (2015)
art. id. 1550001 MR Zbl

[6] C M Gordon, J Luecke, Knots are determined by their complements, Bull. Amer. Math. Soc. 20 (1989)
83–87 MR Zbl

[7] A Hatcher, W Thurston, Incompressible surfaces in 2–bridge knot complements, Invent. Math. 79 (1985)
225–246 MR Zbl

[8] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243–282 MR Zbl

[9] T Li, Rank and genus of 3–manifolds, J. Amer. Math. Soc. 26 (2013) 777–829 MR Zbl

[10] M Lustig, Y Moriah, Are large distance Heegaard splittings generic?, J. Reine Angew. Math. 670 (2012)
93–119 MR Zbl

[11] W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984)
37–44 MR Zbl

[12] Y N Minsky, Y Moriah, Discrete primitive-stable representations with large rank surplus, Geom. Topol.
17 (2013) 2223–2261 MR Zbl

[13] H Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933) 147–238 MR Zbl

[14] W P Thurston, The geometry and topology of three-manifolds, lecture notes, Princeton University (1979)
Available at https://url.msp.org/gt3m

Department of Mathematics, Technion
Haifa, Israel

lazarovich@technion.ac.il, ymoriah@technion.ac.il, talipi@technion.ac.il

Received: 6 September 2022 Revised: 23 July 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://projecteuclid.org/euclid.dmj/1077378799
http://msp.org/idx/mr/253313
http://msp.org/idx/zbl/0195.54003
https://doi.org/10.1090/S0273-0979-1985-15357-1
http://msp.org/idx/mr/788388
http://msp.org/idx/zbl/0571.57008
https://doi.org/10.4310/CAG.2015.v23.n5.a3
http://msp.org/idx/mr/3458811
http://msp.org/idx/zbl/1339.57009
https://doi.org/10.4171/CMH/105
http://msp.org/idx/mr/2314056
http://msp.org/idx/zbl/1134.57003
https://doi.org/10.1142/S0218216515500017
http://msp.org/idx/mr/3319678
http://msp.org/idx/zbl/1332.57009
https://doi.org/10.1090/S0273-0979-1989-15706-6
http://msp.org/idx/mr/972070
http://msp.org/idx/zbl/0672.57009
https://doi.org/10.1007/BF01388971
http://msp.org/idx/mr/778125
http://msp.org/idx/zbl/0602.57002
https://doi.org/10.1007/s002220000047
http://msp.org/idx/mr/1756996
http://msp.org/idx/zbl/0947.57016
https://doi.org/10.1090/S0894-0347-2013-00767-5
http://msp.org/idx/mr/3037787
http://msp.org/idx/zbl/1277.57004
https://doi.org/10.1515/crelle.2011.154
http://msp.org/idx/mr/2982693
http://msp.org/idx/zbl/1248.57012
https://doi.org/10.1016/0040-9383(84)90023-5
http://msp.org/idx/mr/721450
http://msp.org/idx/zbl/0525.57003
https://doi.org/10.2140/gt.2013.17.2223
http://msp.org/idx/mr/3109867
http://msp.org/idx/zbl/1278.57026
https://doi.org/10.1007/BF02398271
http://msp.org/idx/mr/1555366
http://msp.org/idx/zbl/59.1241.02
https://url.msp.org/gt3m
mailto:lazarovich@technion.ac.il
mailto:ymoriah@technion.ac.il
mailto:talipi@technion.ac.il
http://msp.org
http://msp.org




ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US $760/year for the electronic version, and $1110/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 1 (pages 1–644) 2025

1Cutting and pasting in the Torelli subgroup of Out.Fn/

JACOB LANDGRAF

39Hyperbolic groups with logarithmic separation profile

NIR LAZAROVICH and CORENTIN LE COZ

55Topology and geometry of flagness and beltness of simple handlebodies

ZHI LÜ and LISU WU

107Property (QT) for 3-manifold groups

SUZHEN HAN, HOANG THANH NGUYEN and WENYUAN YANG

161On positive braids, monodromy groups and framings

LIVIO FERRETTI

207Highly twisted diagrams

NIR LAZAROVICH, YOAV MORIAH and TALI PINSKY

245Rational homology ribbon cobordism is a partial order

STEFAN FRIEDL, FILIP MISEV and RAPHAEL ZENTNER

255A cubulation with no factor system

SAM SHEPHERD

267Relative h-principle and contact geometry

JACOB TAYLOR

287Relations amongst twists along Montesinos twins in the 4-sphere

DAVID T GAY and DANIEL HARTMAN

301Complexity of 3-manifolds obtained by Dehn filling

WILLIAM JACO, JOACHIM HYAM RUBINSTEIN, JONATHAN SPREER and STEPHAN TILLMANN

329The enumeration and classification of prime 20-crossing knots

MORWEN B THISTLETHWAITE

345An exotic presentation of Z � Z and the Andrews–Curtis conjecture

JONATHAN ARIEL BARMAK

357Generalizing quasicategories via model structures on simplicial sets

MATT FELLER

399Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups

ASHOT MINASYAN and LAWK MINEH

489Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations

ADRIAN PETR

563Infinite-type loxodromic isometries of the relative arc graph

CAROLYN ABBOTT, NICHOLAS MILLER and PRIYAM PATEL

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2025

Vol.25,
Issue

1
(pages

1–644)


	1. Introduction
	Outline of the proof
	Acknowledgments

	2. Preliminaries
	2.1. Bubbles and twist regions

	3. Surfaces in link complements
	3.1. Normal position
	3.2. Curves of intersection
	3.3. Taut surfaces

	4. Euler characteristic and curves of intersection
	4.1. Distributing Euler characteristic among curves

	5. Redistribution of Euler characteristic
	6. Atoroidal and unannular
	7. Essential holed spheres in highly twisted link complements
	References
	
	

