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Mapping tori of A1-autoequivalences and Legendrian lifts
of exact Lagrangians in circular contactizations

ADRIAN PETR

We study mapping tori of quasi-autoequivalences � WA!A which induce a free action of Z on objects.
More precisely, we compute the mapping torus of � when it is strict and acts bijectively on hom-sets, or
when the A1-category A is directed and there is a bimodule map A.�; �/! A.�; �.�// satisfying
some hypotheses. Then we apply these results in order to link together the Fukaya A1-category of a
family of exact Lagrangians, and the Chekanov–Eliashberg DG-category of Legendrian lifts in the circular
contactization.
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Introduction

Legendrian contact homology was introduced by Chekanov [8] and Eliashberg [20], and it fits into the
symplectic field theory as introduced by Eliashberg, Givental and Hofer [21]. It has been rigorously
defined in the contactization of a Liouville manifold by Ekholm, Etnyre and Sullivan in [16] following [14].
The importance of Legendrian contact homology goes beyond its applications to the Legendrian isotopy
problem: for example, it was used by Bourgeois, Ekholm and Eliashberg in [5] to compute symplectic
invariants of Weinstein manifolds, and in a different way by Chantraine, Dimitroglou Rizell, Ghiggini
and Golovko in [7] to prove a generation result for the wrapped Fukaya category of Weinstein manifolds.

The motivation for this paper is the study of Legendrian contact homology in subcritically fillable and
Boothby–Wang contact manifolds, the latter being named after [4]. This has been done combinatorially
in dimension three by Ekholm and Ng in [18] for the subcritically fillable case, and by Sabloff in [34]
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490 Adrian Petr

for the Boothby–Wang case. The importance of the first kind of manifolds comes from the fact that
every Weinstein manifold is obtained from a subcritical Weinstein manifold (of the form C �P for some
Weinstein manifold P ) by attaching handles along Legendrian submanifolds in its boundary at infinity.
The importance of the second kind of manifolds comes from a theorem of Donaldson in [11], which states
that any integral symplectic manifold .X; !/ admits a symplectic submanifold D �X of codimension 2,
such that X nD is a Liouville manifold whose boundary at infinity is a Boothby–Wang contact manifold.
The first step before attacking both cases presented above is to study Legendrian contact homology in the
circular contactization of a Liouville manifold. In fact, both subcritically fillable and Boothby–Wang
contact manifolds can be seen as compactifications of such spaces. This paper links together the Fukaya
A1-category of a family of connected compact exact Lagrangians in a Liouville manifold .P; �/, and the
Chekanov–Eliashberg DG-category of Legendrian lifts in the circular contactization .S1�P; ker.d���//.

The strategy we follow is to lift the situation to the usual contactization R�P which has been much
more studied. This naturally leads to consider an A1-category whose objects are the lifts in R � P

of our starting Legendrians, and morphisms spaces are generated by Reeb chords. Moreover, the deck
transformations of the cover R! S1 induce an A1-autoequivalence of this category. The rest of the
proof has two main ingredients:

(1) Functorial properties of the Legendrian invariants, which are used to bring us in a situation where we
can apply the correspondence result of Dimitroglou Rizell [10] between discs in the symplectization
R�R�P and polygons in P .

(2) Two algebraic results of independent interest about mapping tori of A1-autoequivalences, that
allow us to bridge the gaps between the algebraic invariants we are interested in.

We now proceed to describe the organization of the paper and state our main results.

Algebra In Section 1, we briefly recall the definitions of A1-(co)categories and give references for
standard notions that we do not recall, such as (co)bar, graded dual and Koszul dual constructions. On
the other hand, we discuss in some detail the notions of modules over A1-categories, as well as the
Grothendieck construction and homotopy pushout associated to a diagram of A1-categories following
Ganatra, Pardon and Shende [24, Section A.4]. We use it to introduce the notion of “cylinder object for
an A1-category”, which is supposed to mimic the corresponding notion in homotopy theory.

Mapping torus of an A1-autoequivalence In Section 2,1 we define the mapping torus associated to a
quasi-autoequivalence � of an A1-category A as the A1-category

MT.�/ WD hocolim

0@AtA A

A

1A:
1In Section 2, A1-categories are always assumed to be strictly unital (see Paragraph (2a) in Seidel’s work[36]).

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 491

Observe that this terminology was also used by Kartal in [26], but we do not know if the two notions
coincide. When considering an A1-autoequivalence � WA!A, we always assume that A is equipped
with a Z-splitting of ob.A/ compatible with � , which is a bijection

Z� E ��! ob.A/; .n;E/ 7!X n.E/;

such that �.X n.E//DX nC1.E/ for every n 2 Z and E 2 E (see Definition 2.2). This naturally turns A
into an Adams-graded A1-category, where the Adams degree of a morphism in A.X i.E/;X j .E0// is
defined to be j � i . It then follows that the mapping torus of � is also Adams-graded.

Section 2 contains two results about mapping tori of A1-autoequivalences: we choose to only state the
most important ones in this introduction. We denote by F Œtm� the augmented Adams-graded associative
algebra generated by a variable tm of bidegree .m; 1/. Observe that if C is a subcategory of an A1-category
D with ob.C/D ob.D/, then C˚ .tmF Œtm�˝D/ is naturally an Adams-graded A1-category, where the
Adams degree of tk

m˝x equals k. Besides, if C is an A1-category equipped with a Z-splitting of ob.C/,
we denote by C0 the full A1-subcategory of C whose set of objects corresponds to f0g � E . Finally, we
use the functor C 7! Cm of Definition 1.27.

Theorem A Let � be a quasi-autoequivalence of an A1-category A, weakly directed with respect
to some compatible Z-splitting of ob.A/. Assume that there exists a closed degree 0 bimodule map
f W Am.�; �/ ! Am.�; �.�// such that f W Am.X

i.E/;X j .E0// ! Am.X
i.E/;X jC1.E0// is a

quasi-isomorphism for every i < j and E;E0 2 E . Then there is a quasi-equivalence of Adams-graded
A1-categories

MT.�/'A0
m˚ .tmF Œtm�˝AmŒf .units/�1�0/:

Remark (1) In Ganatra’s work [22], the chain complex of A-bimodule maps from the diagonal bimodule
A.�; �/ to some A-bimodule B is called the two-pointed complex for Hochschild cohomology of A with
coefficients in B. According to [22, Proposition 2.5], this complex is quasi-isomorphic to the (ordinary)
Hochschild cochain complex of A with coefficients in B. In particular, the bimodule map f in Theorem A
defines a class in the Hochschild cohomology of Am with coefficients in Am.�; �.�//.

(2) The A1-category which computes the mapping torus in Theorem A is very similar to the categories
studied by Seidel in [35], with main difference the presence of curvature in Seidel’s setting.

(3) The use of the functor C 7! Cm in Theorem A is not of any deep importance. It was convenient for
us to introduce it here for our application to Legendrian contact homology (see Theorem B).

Chekanov–Eliashberg DG-algebra In Section 3, we recall the definition and functorial properties of the
Chekanov–Eliashberg DG-category associated to a family of Legendrians in a hypertight contact manifold.

Legendrian lifts of exact Lagrangians in the circular contactization In Section 4, we start with a
family

LD .L.E//E2E ; E D f1; : : : ;N g;
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492 Adrian Petr

of mutually transverse compact connected exact Lagrangian submanifolds in a Liouville manifold .P; �/,
and we study a Legendrian lift of L in the circular contactization .S1 �P; ker.d� ��//. More precisely,
we assume2 that there are primitives fE W L.E/! R of �jL.E/ such that 0 � f1 < � � � < fN �

1
2

, and
we consider the family of Legendrians

ƒı WD .ƒı.E//E2E ; where ƒı.E/D f.fE.x/;x/ 2 .R=Z/�P j x 2L.E/g:

We denote by CE.ƒı/ the Chekanov–Eliashberg category of ƒı, by Fuk.L/ the full subcategory of
Fuk.P / (see for example [36, Chapter 2]) with objects the Lagrangians L.E/, and by

�!
Fuk.L/ its directed

subcategory (see [36, Paragraph (5n)]).

In order for the latter algebraic objects to be Z-graded, we assume that H1.P / is free, that the first Chern
class of P (equipped with any almost complex structure compatible with .�d�/) is 2-torsion, and that
the Maslov class of the Lagrangians L.E/ vanish. As explained in Section 3.1, the grading on CE.ƒı/
depends on the choice of a symplectic trivialization of the contact structure along a fiber h0 D S1 � fa0g.
We denote by CEr

��.ƒ
ı/ the Chekanov–Eliashberg DG-category of ƒı with grading induced by the

trivialization

.�ıjh0
; d˛ı/ ��! .h0 �Cn; dx ^ dy/; ..�; a0/; .�a0

.v/; v// 7! ..�; a0/; e
2i�r� .v//;

where  W .Ta0
P;�d�a0

/ ��! .Cn; dx ^ dy/ is a symplectic isomorphism.

In this setting, CEr
��.ƒ

ı/ is augmented (with the trivial augmentation) and Adams-graded (by the number
of times a Reeb chord winds around the fiber). As above, we denote by F Œtm� the augmented Adams-
graded associative algebra generated by a variable tm of bidegree .m; 1/. Moreover, we denote by
E.�/DB.�/# (graded dual of bar construction) the Koszul dual functor (see work by Lu, Palmieri, Wu
and Zhang [29, Section 2] or Ekholm and Lekili [17, Section 2.3]). We say that Koszul duality holds for
an augmented Adams-graded A1-category A if the natural map A!E.E.A// is a quasi-isomorphism
(see [29, Theorem 2.4] or [17, Definition 17]).

Theorem B Koszul duality holds for CEr
��.ƒ

ı/, and there is a quasi-equivalence of augmented Adams-
graded A1-categories

E.CEr
��.ƒ

ı//'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Remark Koszul duality has many important consequences, see for example [29] or [17]. In particular,
Theorem B implies that there is a quasi-equivalence of augmented Adams-graded DG-categories

CEr
��.ƒ

ı/'E
� �!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//

�
:

Observe that in the particular case when the Lagrangians are spheres, this formula is closely related to
Conjecture 6.3 in [35], which was also discussed by Ganatra and Maydanskiy in the appendix of [5].

2This can always be achieved by applying the Liouville flow in backwards time.
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We now give a corollary of the latter result. If B is a (unpointed) space, we consider its one-point
compactification B� and view it as a pointed space (with basepoint the point at infinity). If moreover X

is a pointed space, we consider the half-smash product of B and X ,

X ÌB WDX ^B�

(where ^ denotes the smash product of pointed spaces). Finally, if Y is a pointed space, we denote by
�Y its based loop space.

Corollary If L is a connected compact exact Lagrangian and ƒı is a Legendrian lift of L in the circular
contactization , then there is a quasi-equivalence of augmented DG-algebras

CE1
��.ƒ

ı/' C��.�.CP1 ÌL//:
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1 Algebra

In the following, F denotes the field Z=2Z. Vector spaces are always over F .

Definition 1.1 An A1-category A is the data of

(1) a collection of objects obA,

(2) for every objects X;Y , a graded vector space of morphisms A.X;Y /,

(3) a family of degree 2� d linear maps

�d
WA.X0;X1/˝ � � �˝A.Xd�1;Xd /!A.X0;Xd /

indexed by the sequences of objects .X0; : : : ;Xd /, d � 1, such thatX
0�i<j�d

�d�.j�i/C1
ı .1i
˝�j�i

˝ 1d�j /D 0;

for all d � 1.

Definition 1.2 An A1-cocategory C is the data of

(1) a collection of objects ob C,

(2) for every objects X;Y , a graded vector space of morphisms C.X;Y /,

(3) a family of degree 2� d linear maps

ıd
W C.X0;Xd /!

M
d�1

M
X1;:::;Xd�1

C.X0;X1/˝ � � �˝ C.Xd�1;Xd /

Algebraic & Geometric Topology, Volume 25 (2025)
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indexed by the sequences of objects .X0; : : : ;Xd /, d � 1, such that

� for all d � 1, X
0�i<j�d

.1i
˝ ıj�i

˝ 1d�j / ı ıd�.j�i/C1
D 0;

� the map
C !

Y
d�1

C˝d ; x 7! .ıd .x//d�1;

factors through the inclusion
L

d�1 C˝d !
Q

d�1 C˝d .

Remark If E is some set, denote by FE the semisimple algebra over F generated by elements eX , X 2 E ,
such that

eX � eY D

�
eX if X D Y;

0 if X ¤ Y:

To any A1-category A with ob.A/D E , we can associate an A1-algebra over FE where

� the underlying graded vector space is
L

X ;Y 2E A.X;Y /,
� given x 2A.X0;Y0/,

eX �x D

�
x if X DX0;

0 if X ¤X0;
and x � eY D

�
x if Y D Y0;

0 if Y ¤ Y0;

� operations are the same as on A.

Conversely, to any A1-algebra over FE , one can associate an A1-category with ob.A/D E . Note that
the above discussion also applies to A1-cocategories. As a result, the theory of A1-(co)categories with
E as set of objects is equivalent to the theory of A1-(co)algebras over FE .

In this paper, we will appeal to several standard notions in the theory of A1-(co)categories that we choose
not to recall: instead, we list them and give corresponding references.

� For A1-(co)maps, (co)augmentations and (co)bar, graded dual, Koszul dual constructions, see [17,
Section 2] (where everything is written in the language of A1-(co)algebras over FE ).

� For general definitions and results about A1-categories (in particular about homotopy between A1-
functors, homological perturbation theory, directed (sub)categories and twisted complexes), see [36,
Chapter 1].

� For quotient of A1-categories, see [30], and for localization of A1-categories, see [23, Section 3.1.3].

Finally, we will use the following notion.

Definition 1.3 An Adams-graded vector space is a Z�Z-graded vector space: if x is an element in
the .i; j / component, we say that i is the cohomological degree of x, and j is the Adams degree of x.
An Adams-graded A1-(co)category is an A1-(co)category enriched over Adams-graded vector spaces,
where the operations are required to be of degree 0 with respect to the Adams grading. See [29] for a
treatment of Koszul duality in the context of Adams-graded A1-algebras.

Algebraic & Geometric Topology, Volume 25 (2025)
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1.1 Modules over A1-categories

Let C;D be two A1-categories, and let A;B be two full subcategories of C;D, respectively.

Definition 1.4 A .C;D/-bimodule M consists of the following data:

(1) for every pair .X;Y / 2 ob.C/� ob.D/, a graded vector space M.X;Y /,

(2) a family of degree 1�p� q linear maps

�M WC.X0;X1/˝� � �˝C.Xp�1;Xp/˝M.Xp;Yq/˝D.Yq;Yq�1/˝� � �˝D.Y1;Y0/!M.X0;Y0/

indexed by the sequences

.X0; : : : ;Xp;Y0; : : : ;Yq/ 2 ob.C/pC1
� ob.D/qC1;

which satisfy the relationsX
�M. : : : ; �C. : : : /; : : : ;u : : : /C

X
�M. : : : ; �M. : : : ;u; : : : /; : : : /

C

X
�M. : : : ;u; : : : ; �D. : : : /; : : : /D 0:

A degree s morphism t WM1!M2 between two .C;D/-bimodules consists of a family of degree s�p�q

linear maps

t W C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝M1.Xp;Yq/˝D.Yq;Yq�1/˝ � � �˝D.Y1;Y0/!M2.X0;Y0/

indexed by the sequences

.X0; : : : ;Xp;Y0; : : : ;Yq/ 2 ob.C/pC1
� ob.D/qC1:

The differential of such a morphism is defined by

�1
ModC;D.t/. : : : ;u; : : : /D

X
t. : : : ; �C. : : : /; : : : ;u; : : : /C

X
t. : : : ; �M1

. : : : ;u; : : : /; : : : /

C

X
t. : : : ;u; : : : ; �D. : : : /; : : : /C

X
�M2

. : : : ; t. : : : ;u; : : : /; : : : /:

Finally, the composition of t1 WM1!M2 and t2 WM2!M3 is such that

�2
ModC .t1; t2/. : : : ;u; : : : /D

X
t2. : : : ; t1. : : : ;u; : : : /; : : : /:

We denote by ModC;D the DG-category of .C;D/-bimodules.

Definition 1.5 Let ˆ1; ˆ2 W C!D be two A1-functors. Then there is a C-bimodule D.ˆ1.�/; ˆ2.�//

defined as follows:

(1) On objects, it sends .X1;X2/ to D.ˆ1X1; ˆ2X2/.

(2) On morphisms, it sends a sequence . : : : ;y; : : : / in

C.X0;X1/�� � ��C.Xp�1;Xp/�D.ˆ1Xp; ˆ2XpC1/�C.XpC1;XpC2/�� � ��C.XpCq;XpCqC1/

to
�D.ˆ1.�/;ˆ2.�//. : : : ;y; : : : /D

X
�D
�
ˆ1. : : : /; : : : ; ˆ1. : : : /;y; ˆ2. : : : /; : : : ; ˆ2. : : : /

�
:

Algebraic & Geometric Topology, Volume 25 (2025)



496 Adrian Petr

In the following, we will focus on left C-modules, which correspond to .C;F/-bimodules. We denote by
ModC the DG-category of (left) C-modules.

Definition 1.6 Let t W M1 ! M2 be a degree 0 closed C-module map. We say that t is a quasi-
isomorphism if the induced chain map t WM1.X /!M2.X / is a quasi-isomorphism for every object X

in C. (See [24, Section A.2] for a discussion on quasi-isomorphisms between A1-modules.)

Definition 1.7 Let t; t 0 WM1 !M2 be two degree 0 closed morphisms of C-modules. A homotopy
between t and t 0 is a C-module map h WM1!M2 such that

t C t 0 D �1
ModC .h/:

Definition 1.8 (see [36, Paragraph (1l); 24, Section A.1]) There is an A1-functor

C!ModC; Y 7! C.�;Y /;

called the Yoneda A1-functor, defined as follows. For every object X ,

C.�;Y /.X /D C.X;Y /:
Also, a sequence

.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u in C.Xd ;Y / via the operations

�C.�;Y /.x0; : : : ;xd�1;u/D �C.x0; : : : ;xd�1;u/:

Finally, let
y D .y0; : : : ;yp�1/ 2 C.Y0;Y1/� � � � � C.Yp�1;Yp/

be a sequence of morphisms in C. Then the Yoneda functor gives a morphism of C-modules

ty W C.�;Y0/! C.�;Yp/

which sends every sequence .x0; : : : ;xd�1;u/ as above to

�C.x0; : : : ;xd�1;u;y0; : : : ;yp�1/ 2 C.X0;Yp/:

We have the following important result.

Proposition 1.9 (Yoneda lemma) The Yoneda A1-functor

C!ModC; Y 7! C.�;Y /;

is cohomologically full and faithful.

Proof This is Lemma 2.12 in [36], and also Lemma A.1 in [24].

The Yoneda lemma has the following easy consequence. We state it for future reference.

Corollary 1.10 Every closed C-module map f W C.�;X /! C.�;Y / is homotopic to the C-module map
tf .eX / induced by f .eX / 2 C.X;Y /. (see Definition 1.8).
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Proof According to the Yoneda lemma, f is homotopic to tx for some closed x in C.X;Y /. Thus, there
exists a C-module map h W C.�;X /! C.�;Y / such that

f D txC�
1
ModC .h/:

Evaluating the latter relation at the unit eX 2 C.X;X / gives

f .eX /D xC�1
C.heX /:

Therefore, x is homotopic to f .eX /, and this implies that tx is homotopic to tf .eX / by the Yoneda lemma.
Finally, we have that f is homotopic to tf .eX /.

Pullback of A1-modules

Definition 1.11 (see [36, Paragraph (1k)] ) Letˆ W C!D be an A1-functor. Then there is a DG-functor

ˆ� WModD!ModC; N 7!ˆ�N ;

defined as follows. Let N be a D-module. For every object X ,

ˆ�N .X /DN .ˆX /:

Also, a sequence
.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u 2ˆ�N .Xd / via the operations

�ˆ�N .x0; : : : ;xd�1;u/D
X

�N .ˆ.x0; : : : ;xi1�1/; : : : ; ˆ.xd�ir
; : : : ;xd�1/;u/:

Finally, let t WN1!N2 be a D-module map. Then the above functor gives a C-module map

ˆ�t Wˆ�N1!ˆ�N2

which sends every sequence .x0; : : : ;xd�1;u/ as above to

ˆ�t.x0; : : : ;xd�1;u/D
X

t.ˆ.x0; : : : ;xi1�1/; : : : ; ˆ.xd�ir
; : : : ;xd�1/;u/:

Remark 1.12 Let ˆ W C! D be an A1-functor, and let ‰ W D! E be another A1-functor towards a
third A1-category E . Then ˆ� ı‰� D .‰ ıˆ/� as DG-functors.

Definition 1.13 Let Y be an object of C, and let ˆ W C! D be an A1-functor. Then there is a degree 0

closed C-module map tˆ W C.�;Y /!ˆ�D.�; ˆ.Y // which sends any sequence

.x0; : : : ;xd�1;u/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /� C.Xd ;Y /

to
tˆ.x0; : : : ;xd�1;u/Dˆ.x0; : : : ;xd�1;u/ 2 D.ˆX0; ˆY /:
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Quotient of A1-modules

Definition 1.14 (see [23, Section 3.1.3]) There is a DG-functor

ModC!ModC=A; M 7! AnM;

defined as follows. Let M be a C-module. For every object X ,

AnM.X /DM.X /˚

� M
p�1

A1;:::;Ap2A

C.X;A1/Œ1�˝ � � �˝ C.Ap�1;Ap/Œ1�˝M.Ap/

�
:

Also, a sequence
xi D .x

0
i ; : : : ;x

pi�1
i / 2 C=A.Xi ;XiC1/ .0� i � d � 1/

acts on an element
uD .x0

d ; : : : ;x
pd�1

d
;u/ 2 AnM.Xd /

via the operations

�AnM.x0; : : : ;xd�1;u/

D

X
0�i�p0;1�j�pd

i<j if dD0

x0
0 ˝ � � �˝xi�1

0 ˝�C.x
i
0; : : : ;x

j�1

d
/˝x

j

d
˝ � � �˝x

pd�1

d
˝u

C

X
0�i�p0

x0
0 ˝ � � �˝xi�1

0 ˝�M.x
i
0; : : : ;x

pd�1

d
;u/:

Finally, let t W M1 ! M2 be a C-module map. Then the above functor gives a C=A-module map

Ant W AnM1! AnM2 which sends every sequence .x0; : : : ;xd�1;u/ as above to

Ant.x0; : : : ;xd�1;u/D
X

0�i�p0

x0
0 ˝ � � �˝xi�1

0 ˝ t.xi
0; : : : ;x

pd�1

d
;u/:

Relations between pullback and quotient of A1-modules

Definition 1.15 Let ˆ W C!D be an A1-functor such that ˆ.A/ is contained in B, and let X be a fixed
object of C. Then, for each D-module N , there is a chain map An.ˆ

�N /.X /! BnN .ˆX / which sends
an element

uD .x0; : : : ;xp�1;u/ 2 An.ˆ
�N /.X /

to X
ˆ.x0; : : : ;xi1�1/˝ � � �˝ˆ.xir ; : : : ;xp�1/˝u 2 BnN .ˆX /:

This defines a natural transformation between the functors N 7! An.ˆ
�N /.X / and N 7! BnN .ˆX / from

ModD to Ch. In other words, for every D-module map t W N1 ! N2, the following diagram of chain
complexes commutes:

An.ˆ
�N1/.X / BnN1.ˆX /

An.ˆ
�N2/.X / BnN2.ˆX /

An.ˆ
�t/ Bnt
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Remark 1.16 Let Y be an object of C, and let ˆ W C!D be an A1-functor such that ˆ.A/ is contained
in B. Let ẑ W C=A!D=B be the A1-functor induced by ˆ (see [30, Section 3]). Localize the morphism
tˆ W C.�;Y /!ˆ�D.�; ˆY / of Definition 1.13 at A and evaluate at X to get a chain map

C=A.X;Y /D AnC.�;Y /.X /
Antˆ
���! An.ˆ

�D.�; ˆY //.X /:

Then the composition of this map with the chain map

An.ˆ
�D.�; ˆY //.X /! BnD.�; ˆY /.ˆX /D D=B.ˆX; ˆY /

of Definition 1.15 is the chain map ẑ W C=A.X;Y /! D=B.ˆX; ˆY /.

Proposition 1.17 Let ˆ W C1 ! C2 be an A1-functor such that ˆ.A1/ is contained in A2, and let
ẑ W C1=A1! C2=A2 be the A1-functor induced by ˆ.

Let Y1 be an object of C1 and set Y2 WD ˆ.Y1/. Assume that there exists a Ci-module MCi
, a degree 0

closed Ci-module map tCi
W Ci.�;Yi/!MCi

and a degree 0 closed C1-module map t0 WMC1
!ˆ�MC2

such that the following diagram of C1-modules commutes:

C1.�;Y1/ ˆ�C2.�;Y2/

MC1
ˆ�MC2

tC1

tˆ

ˆ�tC2

t0

(see Definition 1.13 for the map tˆ). Then for every object X in C1, there is a chain map

u W A1n
MC1

.X /! A2n
MC2

.ˆX /

such that the following diagram of chain complexes commutes:

C1=A1.X;Y1/ C2=A2.ˆX;Y2/

A1n
MC1

.X / A2n
MC2

.ˆX /

MC1
.X / MC2

.ˆX /

A1n
tC1

ẑ

A2n
tC2

u

t0

(the two lowest vertical maps are the inclusions). If , moreover ,

(1) for every objects A in Ai , the complexes MCi
.A/ are acyclic ,

(2) the maps Ain
tCi
W Ain

Ci.X;Yi/! Ain
MCi

.X / are quasi-isomorphisms , and

(3) the map t0 WMC1
.X /!ˆ�MC2

.X / is a quasi-isomorphism ,

then the map ẑ W C1=A1.X;Y1/! C2=A2.ˆX;Y2/ is a quasi-isomorphism.
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Proof We apply the functor P 7! A1n
P to the first diagram, we evaluate at X and we use the natural

map of Definition 1.15 to get the commutative diagram of chain complexes

A1n
C1.�;Y1/.X / A1n

.ˆ�C2.�;Y2//.X / A2n
C2.�;Y2/.ˆX /

A1n
MC1

.X / A1n
.ˆ�MC2

/.X / A2n
MC2

.ˆX /

A1n
tC1

A1n
tˆ

A1n
.ˆ�tC2

/ A2n
tC2

A1n
t0

Then we compose the horizontal maps and we use Remark 1.16 to get a commutative diagram of chain
complexes

C1=A1.X;Y1/ C2=A2.ˆX;Y2/

A1n
MC1

.X / A2n
MC2

.ˆX /

A1n
tC1

ẑ

A2n
tC2

u

This proves the first part of the proposition because the following diagram of chain complexes commutes:

A1n
MC1

.X / A2n
MC2

.ˆX /

MC1
.X / MC2

.ˆX /

u

t0

The second part of the proposition follows directly with [23, Lemma 3.13].

Cone of module maps

Definition 1.18 Let t WM1!M2 be a degree 0 closed morphism of C-modules. We denote by

Cone.M1
t
�!M2/D

24M1

M2

t

35
the C-module M defined as follows. For every object X in C,

M.X /DM1.X /Œ1�˚M2.X /

as graded vector space, and any sequence

.x0; : : : ;xd�1/ 2 C.X0;X1/� � � � � C.Xd�1;Xd /

acts on an element u1˚u2 in M.Xd / via the operations

�M.x0; : : : ;xd�1;u1˚u2/

D �M1
.x0; : : : ;xd�1;u1/˚

�
�M2

.x0; : : : ;xd�1;u2/C t.x0; : : : ;xd�1;u1/
�
:

If we have two C-module maps t WM1!M2 and t 0 WM1!M0
2
, then we set264 M1

M2 M0
2

t

t 0

375 WD
264 M1

M2˚M0
2

.t;t 0/

375:
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Proposition 1.19 Consider a diagram of C-modules

M1 M2

M0
2

M3

t1

t 0
1 t2

t 0
2

where all the morphisms are of degree 0 and closed. Then any homotopy h WM1!M3 between

t WD �2
ModC .t1; t2/ and t 0 WD �2

ModC .t
0
1; t
0
2/

induces a degree 0 closed C-module map

th W

264
M1

M2 M0
2

t1

t 0
1

375!M3

defined by

th.x0; : : : ;xd�1;u1˚u2˚u02/D h.x0; : : : ;xd�1;u1/C t2.x0; : : : ;xd�1;u2/C t 02.x0; : : : ;xd�1;u
0
2/:

Proof The only thing to check is that �1
ModC .th/D 0, which is straightforward.

Remark If t WM1!M2 is a degree 0 closed C-module map, then

AnCone.M1
t
�!M2/D Cone.AnM1

Ant
��! AnM2/:

1.2 Grothendieck construction and homotopy pushout

An exposition on Grothendieck constructions and homotopy colimits in the context of A1-categories can
be found in [24, Appendix A]. We recall here definitions and basic facts that will serve us. In this section,
A1-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).

Definition 1.20 Consider a diagram of A1-categories

C D1

D2

ˆ1

ˆ2

The Grothendieck construction of this diagram is the A1-category G such that:

(1) The set of objects is ob.C/t ob.D1/t ob.D2/.

(2) The space of morphisms between two objects X and Y is given by

G.X;Y /D

8̂̂̂<̂
ˆ̂:
C.X;Y / if X;Y 2 ob.C/;
Di.X;Y / if X;Y 2 ob.Di/;

Di.ˆiX;Y / if X 2 ob.C/ and Y 2 ob.Di/;

0 otherwise:
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(3) The operations involving only objects of C, respectively of Di , are the same as in C, respectively
in Di , and for every sequence

.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

2 C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝G.Xp;Y0/˝Di.Y0;Y1/˝ � � �˝Di.Yq�1;Yq/;

we have

�G.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

D

X
�Di

.ˆi.x0; : : : ;xi1�1/; : : : ; ˆi.xp�ir
; : : : ;xp�1/;y; z0; : : : ; zq�1/:

An adjacent unit of G is any morphism in G.X ;ˆi.X //which corresponds to the unit in Di.ˆi.X /;ˆi.X //.
The homotopy colimit H of the above diagram is the localization of G at its adjacent units.

Proposition 1.21 Let G be the Grothendieck construction of a diagram

C D1

D2

ˆ1

ˆ2

Then any strictly commutative square

C D1

D2 E

ˆ1

ˆ2 ‰1

‰2

induces a functor � W G ! E defined as follows. On the objects , � acts on Di as ‰i , and on C as
‰1 ıˆ1 D‰2 ıˆ2; on the morphisms , � acts on Di as ‰i , on C as ‰1 ıˆ1 D‰2 ıˆ2, and it sends any
sequence

.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

2 C.X0;X1/˝ � � �˝ C.Xp�1;Xp/˝G.Xp;Y0/˝Di.Y0;Y1/˝ � � �˝Di.Yq�1;Yq/

to

�.x0; : : : ;xp�1;y; z0; : : : ; zq�1/

D

X
‰i

�
ˆi.x0; : : : ;xi1�1/; : : : ; ˆi.xp�ir

; : : : ;xp�1/;y; z0; : : : ; zq�1

�
:

Proof This is a straightforward verification.

Proposition 1.22 [24, Lemma A.5] A strictly commutative diagram of A1-categories

B1 A B2

D1 C D2
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induces an A1-functor from the Grothendieck construction of the top line to the Grothendieck construction
of the bottom line which preserves adjacent units. If moreover each vertical arrow is a quasi-equivalence ,
then the induced functor

hocolim

0B@A B1

B2

1CA! hocolim

0B@ C D1

D2

1CA
is a quasi-equivalence.

Proposition 1.23 Consider two diagrams of A1-categories

C D1

D2

ˆ1

ˆ2 and
C D1

D2

‰1

‰2

If ˆi and ‰i (for i 2 f1; 2g) are homotopic (see [36, Paragraph (1h)]), then the homotopy colimits of the
diagrams above are quasi-equivalent.

Proof Let G0 and G1 be the Grothendieck constructions of the above diagrams.

Let Ti be a homotopy from ˆi to ‰i . This means that

ˆiC‰iD

X
Ti. : : : ; �C. : : : /; : : : /C

X
�Di

�
‰i. : : : /; : : : ; ‰i. : : : /;Ti. : : : /; ˆi. : : : /; : : : ; ˆi. : : : /

�
:

We consider the functor � W G0! G1 such that

�jC D idC; �jDi
D idDi

;

and which sends every sequence

. : : : ;y; : : : / 2 C.X0;X1/� � � � � C.Xp�1;Xp/�G0.Xp;Y0/�Di.Y0;Y1/� � � � �Di.Yq�1;Yq/

to

�. : : : ;y; : : : /D
X

�Di
.‰i. : : : /; : : : ; ‰i. : : : /;Ti. : : : /; ˆi. : : : /; : : : ; ˆi. : : : /;y; : : : /

if p is positive, and to

ˆ.y; : : : /D idDi
.y; : : : /

otherwise. Using the facts that ˆi ; ‰i are A1-functors, that Ti is a homotopy from ˆi to ‰i , and
gathering the terms depending on if they contain T k

i . : : : / or y, we conclude that � satisfies the A1-
relations. This proves the result because � is a quasi-equivalence sending the adjacent units of G0 onto
those of G1.
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1.3 Cylinder object and homotopy

Let A?, AI and A> be three copies of an A1-category A. We denote by C the Grothendieck construction
of the diagram

AI A>

A?

id

id

and we let �?; �I ; �> WA! C be the strict inclusions with images A?, AI , A> respectively. Finally, we
denote by WC the set of adjacent units in C, and we let CylA D CŒW �1

C � be the homotopy colimit of the
diagram above. We say that CylA is a cylinder object for A.

We denote by � W C!A the A1-functor induced by the commutative square

A A

A A

id

id id

id

(see Proposition 1.21).

Proposition 1.24 The following diagram of A1-categories commutes:

AtA C A�?t�>

idtid

�

Moreover , � sends WC to the set of units in A, and the induced A1-functor z� W CylA!AŒfunitsg�1� is a
quasi-equivalence.

Proof The facts that � ı .�? t �>/D idt id and that � sends WC to the set of units in A are clear. We
now show that z� W CylA!AŒfunitsg�1� is a quasi-equivalence.

First observe that it is enough to show that the map

z� W CylA.X;Y /!AŒfunitsg�1�.�X; �Y /

is a quasi-isomorphism for every objects X , Y in A? because every object of C can be related to one of
A? by a zigzag of morphisms in WC , which are quasi-isomorphisms in CylA (see [23, Lemma 3.12]).
Our strategy is to apply Proposition 1.17. Let Y D �?.Z/ be an object in A?. For the C-module we take

MC D

264 C.�; �I .Z//

C.�; �?.Z// C.�; �>.Z//
tI?

tI>

375;
where

tI4 W C.�; �I .Z//! C.�; �4.Z//; 42 f?;>g;

is the C-module map induced by the adjacent unit in C.�I .Z/; �4.Z// (see Definition 1.8)). For the A-
module we simply take A.�;Z/. Besides, we let tC W C.�; �?.Z//!MC be the C-module inclusion, and
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we let tA WA.�;Z/!A.�;Z/ be the identity map. We now define the morphism t0 WMC!��A.�;Z/.
Consider the diagram of C-modules

C.�; �I .Z// C.�; �>.Z//

C.�; �?.Z// ��A.�;Z/

tI?

tI> t�

t�

Observe that this diagram is commutative, and thus it induces a strict C-module map t0 WMC!��A.�;Z/
according to Proposition 1.19. It is then easy to see that the following diagram commutes:

C.�; �4.Z// ��A.�;Z/

MC ��A.�;Z/

tC

t�

��tA

t0

To conclude the proof, it suffices to check the three items of Proposition 1.17. Observe that the pair
.A.�;Z/; tA/ trivially satisfies the two first items.

We check that MC satisfies the first item of Proposition 1.17. Let Z0 be an object in A and let w be the
adjacent unit in C.�I .Z0/; �?.Z0// (the proof is the same for the adjacent unit in C.�I .Z0/; �>.Z0//\WC).
Then

MC.Conew/D Cone
�
MC.�?.Z

0//
�2

C.w;�/
������!MC.�I .Z

0//
�
D Cone

�
C.�?.Z0/; �?.Z//

�2
C.w;�/
������!K

�
;

where

K D

264 C.�I .Z0/; �I .Z//

C.�I .Z0/; �?.Z// C.�I .Z0/; �>.Z//
tI?

tI>

375:
Observe that �2

C.w; �/ W C.�?.Z
0/; �?.Z//!K is injective so its cone is quasi-isomorphic to its cokernel,

which is the cone of tI> W C.�I .Z0/; �I .Z//! C.�I .Z0/; �>.Z//. The latter map is a quasi-isomorphism,
so MC.Conew/ is acyclic.

We now check that .MC; tC/ satisfies the second item of Proposition 1.17. Observe that

W �1
C

MC D

2664
W �1

C
C.�; �I .Z//

W �1
C

C.�; �?.Z// W �1
C

C.�; �>.Z//
W �1

C
tI?

W �1
C

tI>

3775
and W �1

C
tC W W �1

C
C.�; �?.Z//! W �1

C
MC is the inclusion. Thus if X is some object of C, the cone of

W �1
C

tC W CylA.X; �?.Z//! W �1
C

MC.X / is quasi-isomorphic to the cone of the multiplication in CylA by
an element of WC , which is a quasi-isomorphism. Thus the map W �1

C
tC W W �1

C
C.�; �?.Z//! W �1

C
MC

indeed is a quasi-isomorphism.
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It remains to check the third item of Proposition 1.17, which is that the map t0 WMC.X /!��A.�;Z/.X /
is a quasi-isomorphism when X is in A?. This is true because MC.�?.Z

0// D C.�?.Z0/; �?.Z// D
A.Z0;Z/, and

t0 WA.Z0;Z/DMC.�?.Z
0//! ��A.�;Z/.�?.Z0//DA.Z0;Z/

is the identity.

Remark Proposition 1.24 can be thought as saying that CylA is a cylinder object for A.

Proposition 1.25 If two A1-functors ˆ;‰ W A! B are homotopic (see [36, Paragraph (1h)]), then
there is an A1-functor � W C! B which sends the adjacent units of C to the units in B and such that the
following diagram commutes:

A

C B

A

�>

ˆ

�

�? ‰

Proof On the objects, we set �.X4/Dˆ.X /D‰.X / for every object X of A and 42 f?; I;>g. On
the morphisms, we set

�jA? D �jAI
D‰; �jA> Dˆ

and ask for the restriction of � to

AI .X0;X1/˝ � � �˝AI .Xp�1;Xp/˝ C.Xp;XpC1/˝A?.XpC1;XpC2/˝ � � �˝A?.XpCq;XpCqC1/

to be ‰. It remains to define � for

. : : : ;x; : : : /

2AI .X0;X1/˝� � �˝AI .Xp�1;Xp/˝C.Xp;XpC1/˝A>.XpC1;XpC2/˝� � �˝A>.XpCq;XpCqC1/:

For this we take a homotopy T between ˆ and ‰, which means that

ˆC‰ D
X

T . : : : ; �A. : : : /; : : : /C
X

�B
�
ˆ. : : : /; : : : ; ˆ. : : : /;T . : : : /; ‰. : : : /; : : : ; ‰. : : : /

�
:

Then we let

�. : : : ;x; : : : /

D

X
�B
�
ˆ. : : : /; : : : ; ˆ. : : : /;T . : : : /; ‰. : : : /; : : : ; ‰. : : : /; ‰. : : : ;x; : : : /‰. : : : /; : : : ; ‰. : : : /

�
if p is positive, and �.x; : : : /D‰.x; : : : / otherwise.

1.4 Adjunctions between Adams-graded and non-Adams-graded

We end this section by describing specific adjunctions between the category of Adams-graded A1-
categories concentrated in nonnegative Adams degree and the category of (non-Adams-graded) A1-
categories.
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Definition 1.26 If V is an Adams-graded vector space and m is an integer, we denote by Vm the graded
vector space whose degree n component is the direct sum of the bidegree .p; k/ components of V , where
the sum is over the set of couples .p; k/ 2 Z�Z such that p�mk D n.

Definition 1.27 If C is an Adams-graded A1-category, we denote by Cm the (non-Adams-graded)
A1-category obtained from C by changing the grading so that

Cm.X0;X1/D C.X0;X1/m

Observe that any A1-functor ˆ W C1! C2 between two Adams-graded A1-categories induces an A1-
functor from .C1/m to .C2/m (that we still denote byˆ) which acts exactly asˆ on objects and morphisms.
This defines a functor C 7! Cm from the category of Adams-graded A1-categories to the category of
(non-Adams-graded) A1-categories.

We denote by F Œtm� the augmented Adams-graded associative algebra generated by a variable tm of
bidegree .m; 1/, and by tmF Œtm� its augmentation ideal (or equivalently, the ideal generated by tm).

Definition 1.28 If D is a (non-Adams-graded) A1-category, we denote by F Œtm�˝D the Adams-graded
A1-category such that

(1) the objects of F Œtm�˝D are those of D,

(2) the space of morphisms from Y1 to Y2 is F Œtm�˝D.Y1;Y2/, and if y 2 D.Y1;Y2/ is of degree j ,
tk
m˝y is of bidegree .j Cmk; k/,

(3) the operations send any sequence .tk0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/ of morphisms to

�F Œtm�˝D.t
k0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/D tk0C���Ckd�1

m ˝�D.y0; : : : ;yd�1/:

Observe that any A1-functor ‰ W D1 ! D2 between (non-Adams-graded) A1-categories induces an
A1-functor F Œtm�˝ D1 ! F Œtm�˝ D2 which acts as ‰ on objects, and which sends any sequence
.t

k0
m ˝y0; : : : ; t

kd�1
m ˝yd�1/ of morphisms to t

k0C���Ckd�1
m ˝‰.y0; : : : ;yd�1/. This defines a functor

D 7!F Œtm�˝D from the category of (non-Adams-graded) A1-categories to the category of Adams-graded
A1-categories.

Definition 1.29 Let C be an Adams-graded A1-category concentrated in nonnegative Adams degree,
and let D be a (non-Adams-graded) A1-category. To any A1-functor ‰m W Cm! D, we associate an
A1-functor ‰ W C! F Œtm�˝D which sends a sequence .x0; : : : ;xd�1/, where xj is of bidegree .ij ; kj /,
to

‰.x0; : : : ;xd�1/D tk0C���Ckd�1
m ˝‰m.x0; : : : ;xd�1/:

This defines an adjunction between the category of Adams-graded A1-categories concentrated in non-
negative Adams degree and the category of (non-Adams-graded) A1-categories.
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2 Mapping torus of an A1-autoequivalence

In this section, we introduce the notion of mapping torus for a quasi-autoequivalence of an A1-category,
by analogy with the mapping torus associated to an automorphism of a topological space. This terminology
was also used in [26], but we do not know if the two notions coincide. The two main theorems of this
section allow us to compute this mapping torus under different hypotheses.

Remark In this section, A1-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).

2.1 Definitions and main results

2.1.1 Definitions

Definition 2.1 Let � be a quasi-autoequivalence of an Adams-graded A1-category A. The mapping
torus of � is the A1-category

MT.�/ WD hocolim

0B@ AtA A

A

idt�

idtid

1CA
(see Definition 1.20).

Remark (1) We use the terminology “mapping torus” by analogy with the analogous situation in the
category of topological spaces. Indeed, if f is an automorphism of some topological space X , then the
mapping torus of f

Mf D .X � Œ0; 1�/=..x; 0/� .f .x/; 1//

is the homotopy colimit of the diagram

X tX X

X

idtf

idtid

(2) The terminology “mapping torus of an autoequivalence of A1-categories” also appears in [26], where
the corresponding DG-category is denoted by M� , and it is used in [25] to distinguish open symplectic
mapping tori. According to [25, Appendix A], M� is equivalent to the homotopy colimit of

A O.P1/˝A
i0˝id

i1˝�

whereas MT.�/ should rather be equivalent to the homotopy colimit of

A A
id

�

(we did not define MT.�/ using the latter diagram because [24] only defines homotopy colimits of
diagrams indexed by posets).

(3) The mapping torus of a quasi-autoequivalence is also Adams-graded, because it is the localization of
an Adams-graded A1-category at morphisms of Adams degree 0.
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Definition 2.2 Let A be an A1-category. A Z-splitting of ob.A/ is a bijection

Z� E ��! ob.A/; .n;E/ 7!X n.E/;

where E is some set. If such a splitting has been chosen, we define the Adams-grading of a homogeneous
element x 2A.X i.E/;X j .E// to be j � i . This turns A into an Adams-graded A1-category.

Let � be a quasi-autoequivalence of A. We say that a Z-splitting of ob.A/ is compatible with � if

�.X n.E//DX nC1.E/

for every n 2 Z and E 2 E .

We say that A is weakly directed with respect to a Z-splitting of ob.A/ if

A.X i.E/;X j .E0//D 0

for every i > j and E;E0 2 E (we use the term “weakly directed” A1-category because the notion is
slightly more general than that of directed A1-category defined by Seidel in [36, Paragraph (5m)]).

Remark Compatible Z-splittings naturally arise in the context of Z-actions. A strict Z-action on an
A1-category A is a family of A1-endofunctors .�n/n2Z such that �0 D idA and �iCj D �i ı �j (see
[36, Paragraph (10b)]). If the induced Z-action on ob.A/ is free, then any section � of the projection
ob.A/! E , where E is the set of equivalence classes of objects in A under the Z-action, gives a Z-splitting

Z� E ��! ob.A/; .n;E/ 7! �n.�.E//;

which is compatible with the automorphism �1.

2.1.2 Main results

First result

Definition 2.3 Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible
Z-splitting of ob.A/. Assume that � is strict, ie �d D 0 for d � 2, and acts bijectively on hom-sets. In
this case, we define an Adams-graded A1-category A� as:

(1) The set of objects of A� is E .

(2) The space of morphisms A� .E;E0/ is the Adams-graded vector space given by

A� .E;E0/D
� M

i;j2Z

A.X i.E/;X j .E0//

�.
.�.x/� x/:

(3) The operations are the unique linear maps such that for every sequence

.x0; : : : ;xd�1/ 2A.X i0.E0/;X
i1.E1//� � � � �A.X id�1.Ed�1/;X

id .Ed //;

we have
�A� .Œx0�; : : : ; Œxd�1�/D Œ�A.x0; : : : ;xd�1/�;

where Œ� � W A.X i.E/;X j .E0//! A� .E;E0/ denotes the projection. (It is not hard to see that
such operations exist and satisfy the A1-relations.)
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Remark When A is a DG-category, the latter construction is known as the orbit category, see [27; 28,
Section 4.9]. In [26, Section 4], it is denoted by A#Z (considering that � induces a Z-action on A).

Theorem 2.4 Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible
Z-splitting of ob.A/. Assume that � is strict and acts bijectively on hom-sets. Then there is a quasi-
equivalence of Adams-graded A1-categories

MT.�/'A� :

Remark (1) The A1-category A� is the (ordinary) colimit of the diagram used to define MT.�/. Thus,
Theorem 2.4 can be thought of as a “homotopy colimit equals colimit” result.

(2) In [26], given a DG-category A and an autoequivalence � acting bijectively on hom-sets, the author
defines a DG-category M� WD .O.eT 0/dg˝A/#Z (see [26] for the notation). In the case where � moreover
induces a free Z-action on objects, Theorem 2.4 says that relating MT.�/ and M� amounts to comparing
A#Z and .O.eT 0/dg˝A/#Z.

Second result We denote by F Œtm� the augmented Adams-graded associative algebra generated by a
variable tm of bidegree .m; 1/. Observe that if C is a subcategory of an A1-category D with ob.C/Dob.D/,
then C˚ .tF Œt �˝D/ is naturally an Adams-graded A1-category, where the Adams degree of tk ˝ x

equals k. Besides, if C is an A1-category equipped with a Z-splitting of ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g� E . Finally, we use the functor C 7! Cm of
Definition 1.27.

Theorem 2.5 (Theorem A in the introduction) Let � be a quasi-autoequivalence of an A1-category A,
weakly directed with respect to some compatible Z-splitting of ob.A/. Assume that there exists a closed
degree 0 bimodule map f WAm.�; �/!Am.�; �.�// such that

f WAm.X
i.E/;X j .E0//!Am.X

i.E/;X jC1.E0//

is a quasi-isomorphism for every i < j and E;E0 2 E . Then there is a quasi-equivalence of Adams-graded
A1-categories

MT.�/'A0
m˚ .tmF Œtm�˝AmŒf .units/�1�0/:

Outline of the section In Section 2.2, we consider an A1-category A equipped with a Z-splitting of
ob.A/ and a choice of a closed degree 0 morphism cn.E/ 2A.X n.E/;X nC1.E// for every n 2 Z and
every E 2 E . We give technical results about specific modules associated to this data. This will be used
in the proof of Theorem 2.5 with cn.E/D f .eX n.E//.

In Section 2.3, we consider the Grothendieck construction G of a slightly different diagram than the one
in Definition 2.1, together with a set WG of closed degree 0 morphisms. The idea is that the localization
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HD GŒW �1
G � is the homotopy colimit of a diagram obtained from the one in Definition 2.1 by a cofibrant

replacement of the diagonal functor AtA!A. Thus it is not surprising that H is quasi-equivalent to
the mapping torus of � . Moreover, we prove technical results about specific modules over G that will be
used in the proofs of Theorems 2.4 and 2.5.

In Section 2.4, we prove Theorem 2.4. We first define an A1-functor ˆ W G ! A� which sends WG

to the set of units in A� . Then we prove that the induced A1-functor ẑ W H ! A� Œfunitsg�1� is a
quasi-equivalence. To do that, our strategy is to apply Proposition 1.17 using the results of Section 2.3
about the specific G-modules.

In Section 2.5, we prove Theorem 2.5. We use the fact that G is “big enough” (there are more objects and
morphisms than in the Grothendieck construction of the diagram in Definition 2.1) in order to define an
A1-functor ‰m W Gm!Am (see Definition 1.27). This induces an A1-functor

z‰ WH! F Œtm�˝AmŒf .funitsg/�1�:

Then we prove that for every Adams degree j � 1, and for every objects X;Y in H, the map

z‰ WH.X;Y /�;j ! .F Œtm�˝AmŒf .funitsg/�1�/.‰X; ‰Y /�;j

is a quasi-isomorphism (if V is an Adams-graded vector space, V �;j denotes the subspace of Adams
degree j elements). To do that, we apply once again Proposition 1.17 using the results of Sections 2.2
and 2.3 about the specific modules over Am and G respectively. This allows us to finish the proof of
Theorem 2.5.

2.2 Results about specific modules

In this section, we give technical results that will allow us to apply Proposition 1.17 in the proof of
Theorem 2.5.

Let A be an A1-category equipped with a Z-splitting of ob.A/. Assume that we have chosen, for every
n 2 Z and every E 2 E , a closed degree 0 morphism cn.E/ 2A.X n.E/;X nC1.E//. Moreover, assume
that we have chosen a set WA of closed degree 0 morphisms which contains the morphisms cn.E/.

Remark According to Definition 2.2, the Z-splitting of ob.A/ naturally induces an Adams-grading
on A. However in this section, we do not consider A as being Adams-graded.

In the following, we fix some element E˘ 2 E . When we write an object X n or a morphism cn without
specifying the element of E , we mean X n.E˘/ or cn.E˘/ respectively. Recall that

tcn
WA.�;X n/!A.�;X nC1/

denotes the A-module map induced by cn 2A.X n;X nC1/ (see Definition 1.8).
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Definition 2.6 We set MA to be the A-module

MA WD

264 � � � A.�;X 0/ A.�;X 1/ � � �

� � � A.�;X 0/ A.�;X 1/ � � �

tc�1

id
tc0

id
tc1

375D
2664
L

i2Z A.�;X i/

L
i2Z A.�;X i/

L
i2Z.id;tci

/

3775
(see Definition 1.18). Besides, we set tn

A W A.�;X
n/!MA to be the A-module inclusion for every

n 2 Z.

The first result highlights a key property of the module MA.

Lemma 2.7 For every n 2 Z, the closed A-module map tnC1
A ı tcn

WA.�;X n/!MA is homotopic to
tn
A WA.�;X

n/!MA.

Proof Consider the degree �1 strict A-module map s WA.�;X n/!MA which sends a morphism in
A.X;X n/ to the corresponding shifted element in A.X;X n/Œ1�. Then an easy computation gives

�1
ModA.s/D tnC1

A ı tcn
C tn

A:

In the proof of the two results below, we will use specific A-modules. If p is a fixed nonnegative integer,
we set

Kp D

264 � � � A.�;X p�1/ A.�;X p/

� � � A.�;X p�1/ A.�;X p/

tcp�2

id
tcp�1

id

375
and

zKp D

264A.�;X
p/ A.�;X pC1/ � � �

A.�;X pC1/ � � �

tcp
id

tcpC1

375:
Moreover, we will consider the sequences of A-modules .Fq

p /q�0, . zFq
p /q�0 starting at F0

p D
zF0
p D 0

and with

Fq
p D

264A.�;X
p�qC1/ � � � A.�;X p/

A.�;X p�qC1/ � � � A.�;X p/

id
tcp�qC1

tcp�1

id

375
and

zFq
p D

264A.�;X
p/ � � �

� � � A.�;X pCq/

tcp

tcpCq�1

375
for q � 1.

The following lemma is mostly technical. It will be used in the proofs of Lemmas 2.9 and 2.21.
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Lemma 2.8 Assume that for every i < j and that for every E 2 E the chain map

�2
A.�; cj / WA.X i.E/;X j /!A.X i.E/;X jC1/

is a quasi-isomorphism. Then for every k < n and for every E 2 E , the inclusion A.X k.E/;X n/ ,!

MA.X
k.E// is a quasi-isomorphism.

Proof The cone of the inclusion A.X k.E/;X n/ ,!MA.X
k.E// is quasi-isomorphic to its cokernel,

which is Kn�1.X
k.E//˚ zKn.X

k.E//.

We have to show that these complexes are acyclic. Observe that�
F

q
n�1

.X k.E//
�
q�0

and
�
zFq

n .X
k.E//

�
q�0

are increasing, exhaustive, and bounded from below filtrations of Kn�1.X
k.E// and zKn.X

k.E//,
respectively. For every q � 1, we have

F
q
n�1

.X k.E//=F
q�1
n�1

.X k.E//D

2664
A.X k.E/;X n�q/

A.X k.E/;X n�q/

id

3775
and

zFq
n .X

k.E//= zFq�1
n .X k.E//D

2664
A.X k.E/;X nCq�1/

A.X k.E/;X nCq/

tcnCq�1

3775:
The first of the two latter complexes is clearly acyclic, and the second one is acyclic by assumption on
the morphisms cj . Thus the entire complex Kn�1.X

k.E//˚ zKn.X
k.E// is acyclic, which is what we

needed to prove.

The following two lemmas will be used later in order to apply Proposition 1.17.

Lemma 2.9 Assume that for every i < j < k and for every E 2 E that the chain maps

�2
A.�; cj / W A.X i.E/;X j /!A.X i.E/;X jC1/;

�2
A.cj .E/; �/ WA.X jC1.E/;X kC1/!A.X j .E/;X kC1/

are quasi-isomorphisms. Then for every .n;E/ 2 Z� E , the complex MA.Cone cn.E// is acyclic.

Proof We have

MA.Cone cn.E//D Cone
�
MA.X

nC1.E//
�2

MA .cn.E/;�/
�����������!MA.X

n.E//
�
;
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so we have to prove that �2
MA

.cn.E/; �/ WMA.X
nC1.E//!MA.X

n.E// is a quasi-isomorphism.
Observe that we have the commutative diagram

MA.X
nC1.E// MA.X

n.E//

A.X nC1.E/;X nC2/ A.X n.E/;X nC2/

�2
MA .cn.E/;�/

�2
A.cn.E/;�/

The bottom horizontal map is a quasi-isomorphism by assumption on the morphisms cj .E/. Moreover,
the vertical maps are quasi-isomorphisms according to Lemma 2.8. This implies that �2

MA
.cn.E/; �/ is

indeed a quasi-isomorphism.

Lemma 2.10 The A-module map W �1
A

tn
A W W �1

A
A.�;X n/! W �1

A
MA is a quasi-isomorphism for every

n 2 Z.

Proof Let X be some object of A. We want to prove that the chain map

W �1
A

tn
A W W �1

A
A.X;X n/! W �1

A
MA.X /

is a quasi-isomorphism. Observe that

W �1
A

MA.X /D

2664
� � � AŒW �1

A �.X;X 0/ AŒW �1
A �.X;X 1/ � � �

� � � AŒW �1
A �.X;X 0/ AŒW �1

A �.X;X 1/ � � �

id
W �1

A
tc0

id W �1
A

tc1

3775
and the chain map W �1

A
tn
A W W �1

A
A.X;X n/ ! W �1

A
MA.X / is the inclusion. The cone of the latter

chain map is then quasi-isomorphic to its cokernel, which is W �1
A

Kn�1.X /˚W �1
A
zKn.X /. Observe that

.W �1
A

F
q
n�1

.X //q�0, .W �1
A
zF

q
n .X //q�0 are increasing, exhaustive, and bounded from below filtrations of

W �1
A

Kn�1.X /, W �1
A
zKn.X /, respectively. For every q � 1, we have

W �1
A

F
q
n�1

.X /=W �1
A

F
q�1
n�1

.X /D

2664
AŒW �1

A �.X;X n�q/

AŒW �1
A �.X;X n�q/

id

3775
and

W �1
A
zFq

n .X /=W �1
A
zFq�1

n .X /D

2664
AŒW �1

A �.X;X n�1Cq/

AŒW �1
A �.X;X nCq/

W �1
A

tcn�1Cq

3775:
The first of the two latter complexes is clearly acyclic, and the second one is acyclic because cn�1Cq

belongs to the set WA by which we localized (see [23, Lemma 3.12]). Thus the entire complex

W �1
A

Kn�1.X /˚W �1
A
zKn.X / is acyclic, which is what we needed to prove.
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2.3 The A1-category and modules for the mapping torus

In this section, we consider an A1-category G, together with a set WG of closed degree 0 morphisms. We
prove that HDGŒW �1

G � is quasi-equivalent to the mapping torus of � , and we prove technical results about
specific G-modules that will allow us to apply Proposition 1.17 in the proofs of Theorems 2.4 and 2.5.

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
If A4 is a copy of A, we denote by X n

4
.E/ the object of A4 corresponding to .n;E/ 2 Z� E .

2.3.1 The Grothendieck construction G The A1-category G will be the Grothendieck construction
of a slightly different diagram than the one in Definition 2.1. The idea is to introduce an A1-category C
together with a set of closed degree 0 morphisms WC such that the localization CŒW �1

C � is a cylinder object
for A. Observe that this kind of cofibrant replacement is common in homotopy colimits computation, and
indeed we need it to prove Theorem 2.5.

Definition 2.11 Let A?, AI and A> be three copies of A. We denote by C the Grothendieck construction
(see Definition 1.20) of the diagram

AI A>

A?

id

id

and we let �?; �I ; �> WA! C be the strict inclusions with images A?, AI , A>, respectively. Finally, we
denote by WC the set of adjacent units in C, and we let CylA D CŒW �1

C � be the homotopy colimit of the
diagram above.

Definition 2.12 Let A�, AC, A� be three copies of A. We denote by G the Grothendieck construction
of the diagram

A� tAC A�

C

idt�

�?t�>

Also, we denote by WG the union of WC and the set of adjacent units in G, and we set

H WD GŒW �1
G �:

According to Proposition 1.24, CylA can be thought as a cylinder object for A. Therefore, the following
result should not be surprising.

Lemma 2.13 The mapping torus of � is quasi-equivalent to H.
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Proof Let � W C!A be the A1-functor induced by the commutative diagram

AI A>

A? A

id

id id

id

(see Proposition 1.21). We get a commutative diagram

C A� tAC A�

A A� tAC A�

�

�?t�> idt�

id id

idtid idt�

which induces an A1-functor � from G to the Grothendieck construction of the bottom line (see
Proposition 1.22). Observe that � sends WC to the set U of units in A. Now, according to Proposition 1.24,
the A1-functor z� W CylA D CŒW �1

C �!AŒU�1� is a quasi-equivalence. According to Lemma A.6 in [24]
(called “localization and homotopy colimits commute”), this implies that the A1-functor induced by �,

hocolim

0B@A� tAC A�

C

�?t�>

idt�
1CA ŒW �1

C �
z�
�! hocolim

0B@A� tAC A�

A
idtid

idt�
1CA ŒU�1�;

is a quasi-equivalence. This completes the proof because the source of z� is exactly H, and its target is
quasi-equivalent to the mapping torus of � .

2.3.2 Modules over G In the following, we fix some element E˘ 2 E . When we write an object X n
4

without specifying the element of E , we mean X n
4
.E˘/. Moreover, we denote by

tn
4�
W G.�;X n

4/! G.�;X nCı4�
�

/

the G-module map induced by the adjacent unit in G.X n
4
;X

nCı4�
�

/ (see Definition 1.8), where

ı4� D

�
1 if .4;�/D .C; �/;
0 otherwise:

Definition 2.14 We denote by MG the G-module defined by

MG D

2664
� � � G.�;X 0

�/ G.�;X 0
I
/ G.�;X 0

C/ G.�;X 1
�/ � � �

� � � G.�;X 0
�
/ G.�;X 0

?
/ G.�;X 0

>
/ G.�;X 1

�
/ � � �

t�1
C�

t0
��

t0
�?

t0
I?

t0
I>

t0
C>

t0
C�

t1
��

t1
�?

3775
(see Definition 1.18). For practical reasons, we also consider the G-modules

Mn
? WD

264 G.�;X n
I
/

G.�;X n
?
/ G.�;X n

>
/

tn
I?

tn
I>

375; n 2 Z:

We denote by tG W G.�;X 0
�
/!MG the G-module inclusion.
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Remark We can write

MG D

264
L

n2Z G.�;X n
�/˚G.�;X n

I
/˚G.�;X n

C/

L
n2Z G.�;X n

�
/˚G.�;X n

?
/˚G.�;X n

>
/

L
n2Z.t

n
��;t

n
�?
;tn

I?
;tn

I>
;tn
C>

;tn
C�
/

375
and also

MG D

264
L

n2Z.G.�;X n
�/˚G.�;X n

C//

L
n2Z Mn

?

L
n2Z G.�;X n

�
/

L
n2Z.t

n
�?
;tn
C>

/

L
n2Z.t

n
��;t

n
C�
/

375:
The following two lemmas are analogs of Lemmas 2.9 and 2.10, respectively. They will be used later in
order to apply Proposition 1.17.

Lemma 2.15 For every w in WG , the complex MG.Conew/ is acyclic.

Proof Let w be the morphism in WG \G.X k
I
.E/;X k

>
.E// (the proof is analogous for the morphism in

WG \G.X k
I
.E/;X k

?
.E//). Then

MG.Conew/D Cone
�
MG.X

k
>.E//

�2
MG .w;�/��������!MG.X

k
I .E//

�
D

M
n

Cone
�
G.X k

>.E/;X
n
>/

�2
MG .w;�/��������!Mn

?.X
k
I .E//

�
:

We want to prove that �2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E// is a quasi-isomorphism for every n.

Observe that the following diagram of chain complexes is commutative:

G.X k
>
.E/;X n

>
/ Mn

?.X
k
I
.E//

G.X k
>
.E/;X n

>
/ G.X k

I
.E/;X n

>
/

�2
MG .w;�/

�2
G.w;�/

The rightmost vertical arrow is injective, so its cone is quasi-isomorphic to its cokernel, which is the
cone of tn

I?
W G.X k

I
.E/;X n

I
/! G.X k

I
.E/;X n

?
/. Since the latter map is a quasi-isomorphism, the cone

of �2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E// is quasi-isomorphic to the cone of

�2
G.w; �/ W G.X

k
>.E/;X

n
>/! G.X k

I .E/;X
n
>/:

The latter map is a quasi-isomorphism, so we conclude that �2
MG
.w; �/ WG.X k

>
.E/;X n

>
/!Mn

?.X
k
I
.E//

is a quasi-isomorphism for every n, and thus MG.Conew/ is acyclic.

Now let w be the morphism in WG \ G.X k
C.E/;X

k
>
.E// (the proof is analogous for the morphism in

WG \G.X k
�.E/;X

k
?
.E//). Then

MG.Conew/D Cone
�
MG.X

k
>.E//

�2
MG .w;�/��������!MG.X

k
C.E//

�
D

M
n

Cone
�
G.X k

>.E/;X
n
>/

�2
MG .w;�/��������!Kn

�
;
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where

Kn
D

2664
G.X k

C.E/;X
n
C/

G.X k
C.E/;X

n
>
/ G.X k

C.E/;X
nC1
�

/

tn
C>

tn
C�

3775:
Observe that �2

MG
.w; �/ W G.X k

>
.E/;X n

>
/!Kn is injective (it is basically an inclusion once we unravel

the definitions), so its cone is quasi-isomorphic to its cokernel, which is the cone of

tn
C� W G.X

k
C.E/;X

n
C/! G.X k

C.E/;X
nC1
�

/:

The latter map is a quasi-isomorphism because � is a quasi-equivalence. This implies that the cone of
�2
MG
.w; �/ W G.X k

>
.E/;X n

>
/!Kn is acyclic for every n, and thus MG.Conew/ is acyclic.

It remains to consider a morphism w in WG \ G.X k
C.E/;X

kC1
�

.E// (the proof is analogous for the
morphism in WG \G.X k

�.E/;X
k
�
.E//). Then

MG.Conew/D Cone
�
MG.X

kC1
�

.E//
�2

MG .w;�/��������!MG.X
k
C.E//

�
D

M
n

Cone
�
G.X kC1

�
.E/;X n

�
/
�2

MG .w;�/��������!Kn
�
;

where

Kn
D

2664
G.X k

C.E/;X
n�1
C /

G.X k
C.E/;X

n�1
>

/ G.X k
C.E/;X

n
�
/

tn�1
C>

tn�1
C�

3775:
Observe that �2

MG
.w; �/ W G.X kC1

�
.E/;X n

�
/!Kn is injective, so its cone is quasi-isomorphic to its

cokernel, which is the cone of tn�1
C>
W G.X k

C.E/;X
n�1
C /! G.X k

C.E/;X
n�1
>

/. The latter map is a quasi-
isomorphism, so we conclude that the cone of �2

MG
.w; �/ W G.X kC1

�
.E/;X n

�
/ ! Kn is acyclic for

every n, and thus MG.Conew/ is acyclic.

Lemma 2.16 The H-module map W �1
G

tG W W �1
G

G.�;X 0
�
/! W �1

G
MG is a quasi-isomorphism.

Proof We fix an object X in G, and we want to prove that W �1
G

tG W W �1
G

G.X;X 0
�
/! W �1

G
MG.X / is a

quasi-isomorphism. Observe that

W �1
G

MG WD

26664
� � � GŒW �1

G �.�;X�1
C / GŒW �1

G �.�;X 0
�/ � � �

� � � GŒW �1
G �.�;X�1

>
/ GŒW �1

G �.�;X 0
�
/ � � �

W �1
G

t�1
C>

W �1
G

t�1
C�

W �1
G

t0
�� W �1

G
t0
�?

37775
Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 519

and that the chain map W �1
G

tG W W �1
G

G.X;X 0
�
/! W �1

G
MG.X / is the inclusion. The cone of the latter

chain map is then quasi-isomorphic to its cokernel, which can be written K0˚K00, where

K0 D

26664
� � � GŒW �1

G �.X;X�1
I
/ GŒW �1

G �.X;X�1
C /

� � � GŒW �1
G �.X;X�1

?
/ GŒW �1

G �.X;X�1
>
/

W �1
G

t�1
I?

W �1
G

t�1
I>

W �1
G

t�1
C>

37775
and

K00 D

26664
GŒW �1

G �.X;X 0
�/ GŒW �1

G �.X;X 0
I
/ � � �

GŒW �1
G �.X;X 0

?
/ � � �

W �1
G

t0
�?

W �1
G

t0
I? W �1

G
t0
I>

37775:
Observe that the maps defining the chain complex structures in K0 and K00 are all quasi-isomorphisms
(see [23, Lemma 3.12]). Thus it is not difficult to show using an increasing exhaustive and bounded from
below filtration of K0 and K00 that these complexes are acyclic (compare the proof of Lemma 2.10). This
implies that the map W �1

G
tG W W �1

G
G.X;X 0

�
/! W �1

G
MG.X / is a quasi-isomorphism.

2.4 Proof of the first result

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
Assume that � is strict and acts bijectively on hom-sets.

Observe that there is a strict A1-functor � W A ! A� which sends X n.E/ to E, and which sends
x 2A.X i.E1/;X

j .E2// to Œx� 2A� .E1;E2/. Besides, let � W C!A be the A1-functor induced by the
commutative diagram

A A

A A

id

id id

id

(see Proposition 1.21). Then the diagram of Adams-graded A1-categories

A� tAC A�

C A�

idt�

�?t�> �

�ı�

is commutative because � ı � D � . Moreover, the induced A1-functor ˆ W G!A� is strict, and it sends
WG to the set of units in A� . Let

ẑ WH!A� Œfunitsg�1�

be the A1-functor induced by ˆ.
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According to Lemma 2.13, H is quasi-equivalent to the mapping torus of � . Moreover, A� Œfunitsg�1� is
quasi-equivalent to A� . Thus, Theorem 2.4 will follow if we prove that ẑ is a quasi-equivalence. Our
strategy is to apply Proposition 1.17. Observe that it suffices to prove that

ẑ WH.X;Y /!A� Œfunitsg�1�.ˆX; ˆY /

is a quasi-isomorphism for every object X , Y in A0
�

(recall that A0
�

denotes the subcategory of A�
generated by the objects X 0

�
.E/, E 2 E) because every object of G can be related to one of A0

�
by a

zigzag of morphisms in WG , which are quasi-isomorphisms in H (see [23, Lemma 3.12]).

In the following, we fix some element E˘ 2 E . When we write an object X n
4

without specifying the
element of E , we mean X n

4
.E˘/. We consider the corresponding G-module MG and the G-module map

tG W G.�;X 0
�
/! G of Definition 2.14. Moreover, we set

MA� WDA� .�;E˘/ and tA� WD id WA� .�;E˘/!MA� :

Lemma 2.17 There exists a G-module map t0 WMG ! ˆ�MA� (see Definition 1.11 for the pullback
functor) such that :

(1) The following diagram of G-modules commutes:

G.�;X 0
�
/ ˆ�A� .�;E˘/

MG ˆ�MA�

tG

tˆ

ˆ�tA�Did

t0

(see Definition 1.13 for the map tˆ).

(2) For every E 2 E , the map t0 WMG.X
0
�
.E//!ˆ�MA� .X

0
�
.E// is a quasi-isomorphism.

Proof Observe that the diagram of G-modules

G.�;X n
I
/ G.�;X n

>
/

G.�;X n
?
/ ˆ�MA�

tn
I>

tn
I?

tˆ

tˆ

is commutative, so that it induces a G-module map Mn
?!ˆ�MA� (see Proposition 1.19). Now observe

that the following diagram of G-modules commutes:

L
n2Z.G.�;X n

�/˚G.�;X n
C//

L
n2Z G.�;X n

�
/

L
n2Z Mn

? ˆ�MA�

L
n2Z.t

n
��˚tn

C�
/

L
n2Z.t

n
�?
˚tn
C>

/ tˆ
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We let t0 WMG ! ˆ�MA� be the induced G-module map. It is then easy to verify that the following
diagram of G-modules is commutative:

G.�;X 0
�
/ ˆ�A� .�;E˘/

MG ˆ�MA�

tG

tˆ

ˆ�tA�Did

t0

We now prove the second part of the lemma. We have

MG.X
0
�
.E//D

M
n

G.X 0
�
.E/;X n

�
/D

M
n

A.X k.E/;X n/

and
t0 W
M

n

A.X k.E/;X n/DMG.X
0
�
.E//!ˆ�MA� .X

0
�
.E//DA� .E;E˘/

is the sum of the projections, which is an isomorphism.

Lemma 2.18 For every E 2 E , the chain map

ẑ WH.X 0
�
.E/;X 0

�
/!A� Œfunitsg�1�.E;E˘/

is a quasi-isomorphism.

Proof According to Lemmas 2.15, 2.16 and 2.17, the assumptions of Proposition 1.17 are satisfied.

As explained above, Theorem 2.4 follows from Lemma 2.18 since H is quasi-equivalent to the mapping
torus of � (see Lemma 2.13) and A� Œfunitsg�1� is quasi-equivalent to A� .

2.5 Proof of the second result

Let � be a quasi-autoequivalence of an A1-category A equipped with a compatible Z-splitting of ob.A/.
Assume that the following holds:

(1) A is weakly directed with respect to the Z-splitting of ob.A/ (see Definition 2.2).

(2) There exists a closed degree 0 bimodule map f WAm.�; �/!Am.�; �.�// (see Definitions 1.4
and 1.5) such that f W Am.X

i.E/;X j .E0//! Am.X
i.E/;X jC1.E0// is a quasi-isomorphism

for every i < j and E;E0 2 E .

Remark It follows from Corollary 1.10 and � being a quasi-equivalence that the chain maps

�2
Am
.�; f .eX j .E/// W Am.X

i.E0/;X j .E//!Am.X
i.E0/;X jC1.E//;

�2
Am
.f .eX j .E//; �/ WAm.X

jC1.E/;X kC1.E0//!Am.X
j .E/;X kC1.E0//;

are quasi-isomorphisms for every i < j < k and E;E0 2 E .
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In the following, we set
cn.E/ WD f .eX n.E//

for every n 2 Z, E 2 E , and

WAm
WD fcn.E/ j n 2 Z;E 2 Eg[ funits of Amg:

2.5.1 Generalized homotopy Recall that we introduced a functor B 7! Bm from the category of
Adams-graded A1-categories to the category of (non-Adams-graded) A1-categories. Also, recall that
we introduced Adams-graded A1-categories C and G in Definitions 2.11 and 2.12, respectively. Observe
that Cm and Gm are the Grothendieck constructions of the diagrams

.AI /m .A>/m

.A?/m

id

id and
.A�/m t .AC/m .A�/m

Cm

idt�

�?t�>

respectively. We denote by WCm
the set of adjacent units in Cm, and by WGm

the union of WCm
and the

set of adjacent units in Gm.

We would like to define an A1-functor ‰m W Gm ! Am which sends WGm
to WAm

. According to
Proposition 1.21, it is enough to prove the following result.

Lemma 2.19 There exists an A1-functor � W Cm!Am which sends WCm
to WAm

, and such that

� ı �I D � ı �? D id; � ı �> D �:

Proof We first define � to be id on .A?/m, .AI /m. and to be � on .A>/m. Observe that this completely
defines � on the objects. Also, we ask for � to act as the identity on the sequences involving an adjacent
morphism from .AI /m to .A?/m.

It remains to define � on the sequences involving an adjacent morphism from .AI /m to .A>/m. Consider
a sequence of morphisms

.x0; : : : ;xpCq/

2 Cm.X
i0

I
.E0/;X

i1

I
.E1//� � � � � Cm.X

ip�1

I
.Ep�1/;X

ip
I
.Ep//� Cm.X

ip
I
.Ep/;X

ipC1

>
.EpC1//

� Cm.X
ipC1

>
.EpC1/;X

ipC2

>
.EpC2//� � � � � Cm.X

ipCq

>
.EpCq/;X

ipCqC1

>
.EpCqC1//:

Observe that

Cm.X
i
I .E/;X

j
I
.E0//D Cm.X

i
I .E/;X

j
>
.E0//D Cm.X

i
>.E/;X

j
>
.E0//DAm.X

i.E/;X j .E//:

Then we set

�.x0; : : : ;xpCq/ WD f .x0; : : : ;xp�1;xp;xpC1; : : : ;xpCqC1/ 2Am.X
i0.E0/; �X

ipCqC1.EpCqC1//:

The functor � we defined satisfies the A1-relations because f WAm.�; �/!Am.�; �.�// is a closed
degree 0 bimodule map. Moreover, � sends WCm

to WAm
by construction.
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Remark First observe that

CylAm
D CmŒW

�1
Cm
�D .CŒW �1

C �/m D .CylA/m:

According to Lemma 2.19, the functor � induces an A1-functor z� W CylAm
! AmŒW

�1
Am
�. Moreover,

Lemma 2.19 implies that the following diagram commutes:

.AC/m

CylAm
AmŒW

�1
Am
�

.A�/m

�Cmı�>

�Amı�

z�

�Cmı�? �Am

(�Am
WAm!AmŒW

�1
Am
� and �Cm

W Cm! CmŒW
�1
Cm
� denote the localization functors). Since CylAm

should
be thought of as a cylinder object for Am (see Proposition 1.24), we should think that the functors �Am

and �Am
ı � are homotopic (even if they do not act the same way on objects) and that z� is a generalized

homotopy between them (see Proposition 1.25 for a justification of this terminology).

2.5.2 Relation between G and Am Using the A1-functor � W Cm ! Am of Lemma 2.19, we get a
commutative diagram of (non-Adams-graded) A1-categories

.A�/m t .AC/m .A�/m

Cm Am

idt�

�?t�> id
�

and the induced A1-functor‰m WGm!Am (see Proposition 1.21) sends WGm
to WAm

(see Lemma 2.19).
Let

z‰m WHm D GmŒW
�1
Gm
�!AmŒW

�1
Am
�

be the A1-functor induced by ‰m. Observe that, since A is assumed to be weakly directed and since
the Adams degree of A comes from the Z-splitting of ob.A/ (see Definition 2.2), H is concentrated in
nonnegative Adams degree. In particular, we can apply the adjunction of Definition 1.29 to z‰m, which
gives an A1-functor

z‰ WHD GŒW �1
G �! F Œtm�˝AmŒW

�1
Am
�:

We would like to prove that for every Adams degree j � 1, and for every objects X;Y in A0
�

(recall that
A0
�

denotes the subcategory of A� generated by the objects X 0
�
.E/, E 2 E), the map

z‰ WH.X;Y /�;j ! .F Œtm�˝AmŒW
�1
Am
�/.‰X; ‰Y /�;j D Fj

m˝AmŒW
�1
Am
�.‰X; ‰Y /

is a quasi-isomorphism, (Fj
m is the vector space generated by t

j
m; also recall that if V is an Adams-graded

vector space, V �;j denotes the subspace of Adams degree j elements). Our strategy is once again to
apply Proposition 1.17.
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In the following we fix some element E˘ 2 E . When we write X n
4

or cn without specifying the element
of E , we mean X n

4
.E˘/ or cn.E˘/, respectively. We consider the corresponding G-module MG , and the

G-module map tG W G.�;X n
4
/! G of Definition 2.14. Moreover, we consider the Am-module MAm

and
the Am-module maps

tn
Am
WAm.�;X

n/!MAm
; n 2 Z;

associated to the morphisms .cn/n2Z as in Definition 2.6.

The following result is a first step in order to define a Gm-module map .t0/m W .MG/m!‰�mMAm
as in

Proposition 1.17.

Lemma 2.20 For every n 2 Z, the diagram of Gm-modules

Gm.�;X
n
I
/ Gm.�;X

n
>
/

Gm.�;X
n
?
/ ‰�mMAm

tn
I>

tn
I? ‰�mt

nC1
Am
ıt‰m

‰�mtn
Am
ıt‰m

commutes up to homotopy.

Proof First observe that ��
I
Gm.�;X

n
I
/DAm.�;X

n/, and ��
I
‰�mMAm

DMAm
because ‰m ı �I D id

(see Remark 1.12). Moreover, it suffices to show that the Am-module maps

��I .‰
�
mtn

Am
ı t‰m

ı tn
I?/D tn

Am
ı ��I .t‰m

ı tn
I?/ WAm.�;X

n/!MAm

and
��I .‰

�
mtnC1

Am
ı t‰m

ı tn
I>/D tnC1

Am
ı ��I .t‰m

ı tn
I>/ WAm.�;X

n/!MAm

are homotopic because
Gm.X

k
4;X

n
I /D 0 if 4¤ I:

On the one hand,
tn
Am
ı ��I .t‰m

ı tn
I?/D tn

Am
:

On the other hand, ��
I
.t‰m

ı tn
I>
/ WAm.�;X

n/!Am.�;X
nC1/ is closed (as composition and pullback

of closed module maps), and
��I .t‰m

ı tn
I>/.eX n/D �.eX n/D cn

according to Lemma 2.19. Therefore, ��
I
.t‰m

ı tn
I>
/ is homotopic to tcn

according to Corollary 1.10,
and thus tnC1

Am
ı ��

I
.t‰m

ı tn
I>
/ is homotopic to tnC1

Am
ı tcn

. Now according to Lemma 2.7, tnC1
Am
ı tcn

is
homotopic to tn

Am
.

We can now state the result establishing the existence of a Gm-module map .t0/m W .MG/m!‰�mMAm

as in Proposition 1.17.

Lemma 2.21 There exists a Gm-module map .t0/m W .MG/m!‰�mMAm
such that the following holds:
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(1) The following diagram of Gm-modules commutes:

Gm.�;X
0
�
/ ‰�mAm.�;X

0/

.MG/m ‰�mMAm

tGm

t‰m

‰�mt0
Am

.t0/m

(2) For every E 2 E and j � 1, the induced map t0 WMG.X
0
�
.E//! F Œtm�˝‰�mMAm

.X 0
�
.E// (see

Definition 1.29) is a quasi-isomorphism in each positive Adams degree.

Proof Using Lemma 2.20 and Proposition 1.19, we get a Gm-module map tn
? W .Mn

?/m!‰�mMAm
for

every n 2 Z (see Definition 2.14 for the G-modules Mn
?). Observe that the diagram of Gm-modulesL

n2Z.Gm.�;X
n
�/˚Gm.�;X

n
C//

L
n2Z Gm.�;X

n
�
/

L
n2Z.Mn

?/m ‰�mMAm

L
n2Z.t

n
��˚tn

C�
/

L
n2Z.t

n
�?
˚tn
C>

/
L

n2Z‰
�
mtn

Am
ıt‰mL

n2Z tn
?

is commutative (the composition is id for �-terms and � for C-terms), so that it induces a Gm-module
map .t0/m W .MG/m!‰�mMAm

. It is then easy to verify that the following diagram of Gm-modules is
commutative:

Gm.�;X
0
�
/ ‰�mAm.�;X

0/

.MG/m ‰�mMAm

tGm

t‰m

‰�mt0
Am

.t0/m

It remains to show that the map t0 WMG.X
0
�
.E//�;j ! Fj

m˝MAm
.X 0.E// is a quasi-isomorphism for

every E 2 E and j � 1. Note that

MG.X
0
�
.E//�;j D G.X 0

�
.E/;X j

�
/DA.X 0;X j /

and the map
A.X 0.E/;X j /DMG.X

0
�
.E//�;j

t0
�! Fj

m˝MAm
.X 0.E//

is the inclusion. Now observe that the following diagram of chain complexes commutes:

A.X 0.E/;X j / Fj
m˝MAm

.X 0.E//

Fj
m˝Am.X

0.E/;X j / Fj
m˝Am.X

0.E/;X j /

t0

The inclusion Am.X
0.E/;X j / ,!MAm

.X 0.E// is a quasi-isomorphism according to Lemma 2.8
(observe that it is important here that j is strictly greater than 0). Therefore the map

t0 WA.X 0.E/;X j /! Fj
m˝MAm

.X 0.E//

is a quasi-isomorphism, which is what we needed to prove.
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Lemma 2.22 For every E 2 E and j � 1, the map

z‰ WH.X 0
�
.E/;X 0

�
/�;j ! .F Œtm�˝AmŒW

�1
Am
�/.X 0.E/;X 0/�;j D Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

is a quasi-isomorphism.

Proof Using the first part of Lemma 2.21 and Proposition 1.17, we know that there exists a chain
map um W W �1

Gm
.MG/m.X

0
�
.E//! W �1

Am
MAm

.X 0/ such that the following diagram of chain complexes
commutes:

Hm.X
0
�
.E/;X 0

�
/ AmŒW

�1
Am
�.X 0.E/;X 0/

W �1
Gm
.MG/m.X

0
�
.E// W �1

Am
MAm

.‰mX /

.MG/m.X
0
�
.E// MAm

.‰mX /

W �1
Gm

tGm

z‰m

W �1
Am

t0
Am

um

.t0/m

Observe that
Hm.X

0
�
.E/;X 0

�
/DH.X 0

�
.E/;X 0

�
/m;

W �1
Gm
.MG/m.X

0
�
.E//D W �1

G
MG.X

0
�
.E//m;

.MG/m.X
0
�
.E//DMG.X

0
�
.E//m:

Applying the adjunction of Definition 1.29 to the last diagram, we get the commutative diagram of
Adams-graded chain complexes

H.X 0
�
.E/;X 0

�
/ F Œtm�˝AmŒW

�1
Am
�.X 0.E/;X 0/

W �1
G

MG.X
0
�
.E// F Œtm�˝W �1

Am
MAm

.‰mX /

MG.X
0
�
.E// F Œtm�˝MAm

.‰mX /

W �1
G

tG

z‰

id˝
W �1

Am

t0
Am

u

t0

Specializing to the components of fixed Adams degree j � 1, we get the commutative diagram of chain
complexes

H.X 0
�
.E/;X 0

�
/�;j Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

W �1
G

MG.X
0
�
.E//�;j Fj

m˝W �1
Am

MAm
.‰mX /

MG.X
0
�
.E//�;j Fj

m˝MAm
.‰mX /

W �1
G

tG

z‰

id˝
W �1

Am

t0
Am

u

t0
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Using Lemmas 2.15, 2.16, and [23, Lemma 3.13], we know that all the vertical maps on the left are
quasi-isomorphisms. Similarly, using Lemmas 2.9, 2.10, and [23, Lemma 3.13], we know that all the
vertical maps on the right are quasi-isomorphisms. Moreover, the second part of Lemma 2.21 states that
the bottom horizontal map is a quasi-isomorphism. Thus, the chain map

z‰ WH.X 0
�
.E/;X 0

�
/�;j ! Fj

m˝AmŒW
�1
Am
�.X 0.E/;X 0/

is a quasi-isomorphism.

2.5.3 End of the proof We end the section with the proof of Theorem 2.5. Now that we have proved
Lemma 2.22 which takes care of the positive Adams degrees, we have to treat the zero Adams degree part
(recall that H is concentrated in nonnegative Adams degree because A is assumed to be weakly directed).

Let I be the (nonfull) A1-subcategory of H with

ob.I/D fX 0
�
.E/ jE 2 Eg and I.X;Y /D G.X;Y /˚

�M
j�1

H.X;Y /�;j
�

(recall that if V is an Adams-graded vector space, we denote by V �;j its component of Adams degree j ).

Lemma 2.23 The inclusion I ,!H is a quasi-equivalence.

Proof Observe that the inclusion I ,!H is cohomologically essentially surjective because every object
of H can be related to one of I by a zigzag of morphisms in WG , which are quasi-isomorphisms in H
(see [23, Lemma 3.12]). Therefore, it suffices to show that the inclusion

G.X 0
�
.E/;X 0

�
.E˘// ,!H.X 0

�
.E/;X 0

�
.E˘//

�;0

is a quasi-isomorphism for every E;E˘ 2 E .

Let E˘ be an element of E . When we write an object X n
�

without specifying the element of E , we
mean X n

�
.E˘/. Recall that we introduced a pair .MG ; tG/ in Definition 2.14. According to Lem-

mas 2.15, 2.16 and [23, Lemma 3.13], the inclusion MG.X
0
�
.E// ,! W �1

G
MG.X

0
�
.E// and the map

W �1
G

tG W H.X 0
�
.E/;X 0

�
/! W �1

G
MG.X

0
�
.E// are quasi-isomorphisms for every E 2 E . Also, observe

that

MG.X
0
�
.E//�;0 D G.X 0

�
.E/;X 0

�
/:

The result then follows from the commutativity of the diagram

G.X 0
�
.E/;X 0

�
/ G.X 0

�
.E/;X 0

�
/ G.X 0

�
.E/;X 0

�
/

MG.X
0
�
.E//�;0 W �1

G
MG.X

0
�
.E//�;0 H.X 0

�
.E/;X 0

�
/�;0

� �

W �1
G

tG
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The following diagram of Adams-graded A1-categories is commutative:

H F Œtm�˝AmŒW
�1
Am
�

I A0
m˚ .tF Œtm�˝AmŒW

�1
Am
�0/

z‰

�

z‰

(recall that if C is an A1-category equipped with a splitting ob.C/'Z�E , then we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E). Moreover, since A is assumed to be
weakly directed with respect to the Z-splitting of ob.A/, Lemma 2.22 implies that the bottom horizontal
A1-functor is a quasi-equivalence. Therefore we have

H'A0
m˚ .tF Œtm�˝AmŒW

�1
Am
�0/:

Recall that WAm
D f .funitsg/[funitsg, so that

AmŒW
�1
Am
�'AmŒf .funitsg/�1�:

This concludes the proof of Theorem 2.5, since H is quasi-equivalent to the mapping torus of � (see
Lemma 2.13).

3 Chekanov–Eliashberg DG-category

Recall the following terminology.

Definition 3.1 A contact form is said to be hypertight if its Reeb vector field has no contractible periodic
orbits.

In this section, we recall the definition of the Chekanov–Eliashberg DG-category associated to a family
of Legendrians in a contact manifold equipped with a hypertight contact form ˛. We also describe the
behavior of the Chekanov–Eliashberg DG-category under change of data.

In the following, .V; �/ is a contact manifold of dimension 2nC1. In order to have well defined gradings
in Z, we assume that H1.V / is free and that the first Chern class of � (equipped with any compatible
almost complex structure) is 2-torsion. We will need the following definition.

Definition 3.2 We say that a Legendrian submanifold ƒ in .V; �/ is chord generic with respect to a
contact form ˛ if

(1) for every Reeb chord c W Œ0;T �! V of ƒ, the space D'T
R˛
.Tc.0/ƒ/ is transverse to Tc.T /ƒ in �,

(2) different Reeb chords belong to different Reeb trajectories.

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 529

3.1 Conley–Zehnder index

Let ˛ be a hypertight contact form on .V; �/ and let ƒ be a chord generic Legendrian submanifold
of .V; ˛/. In the following, we define the Conley–Zehnder index of a Reeb chord of ƒ starting and ending
on the same connected component (such chords are called pure).

We briefly recall what is the Maslov index of a loop in the Grassmannian of Lagrangian subspaces in Cn.
We refer to [33] for a precise exposition. Fix a Lagrangian subspace K, and denote by †k.K/ the set of
Lagrangian subspaces in Cn whose intersection with K is k dimensional. Consider the Maslov cycle

†D†1.K/[ � � � [†n.K/:

This is an algebraic variety of codimension one in the Lagrangian Grassmannian. Now if � is a loop in
the Lagrangian Grassmannian, its Maslov index �.�/ 2 Z is the intersection number of � with †. The
contribution of an intersection instant t0 is computed as follows. Choose a Lagrangian complement W of
K in Cn. Then for each v in �.t0/\K, there exists a vector w.t/ in W such that vCw.t/ is in �.t/ for
every t near t0. Consider the quadratic form

Q.v/D
d

dt
!.v;w.t//

ˇ̌̌
tDt0

on �.t0/\K. Without loss of generality, Q can be assumed to be nonsingular and the contribution of t0

to �.�/ is the signature of Q.

Recall that H1.V / is assumed to be free. We choose a family .h1; : : : ; hr / of embedded circles in V

which represent a basis of H1.V /, and a symplectic trivialization of � over each hi . If 
 is some loop
in ƒ, there is a unique family .a1; : : : ; ar / of integers such that

�

c�

P
i aihi

�
is zero in H1.V /. Choose

a surface †
 in V such that
@†
 D 
 �

X
i

aihi :

There is a unique trivialization of � over †
 which extends the chosen trivializations over hi . Thus we get
a trivialization 
�1� 'S1�Cn (where n is the dimension of ƒ). We denote by � the loop of Lagrangian
planes in Cn corresponding, via the latter trivialization, to the loop t 7! T
.t/ƒ. The Maslov index of
� does not depend on the choice of the surface †
 because we assumed 2c1.�/D 0. This construction
defines a morphism H1.ƒ;Z/! Z, and the Maslov number m.ƒ/ of ƒ is the generator of its image. In
the following, we assume that the Maslov number of ƒ is zero.

Now, let c be a pure Reeb chord of ƒ (a Reeb chord is called pure if it starts and ends on the same
connected component of the Legendrian). We choose a path 
c W Œ0; 1�!ƒ which starts at the endpoint
of c, and ends at its starting point (
c is called a capping path of c). We denote by 
 c the loop obtained
by concatenating 
 and c. Let .a1; : : : ; ar / be the unique family of integers such that

�

 c �

P
i aihi

�
is

zero in H1.V /, and choose a surface †c in V such that

@†c D 
 c �

X
i

aihi :
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There is a unique trivialization of � over †c which extends the chosen trivializations over hi . Thus we
get a trivialization 
�1

c � ' S1 �Cn (where n is the dimension of ƒ). We denote by �c the path of
Lagrangian planes in Cn corresponding, via the latter trivialization, to the concatenation of t 7! T
.t/ƒ

and t 7!D't
R˛
.Tc.0/ƒ/. Since ƒ is chord generic, �c is not a loop: we close it in the following way. Let

I be a complex structure on Cn which is compatible with the standard symplectic form on Cn and such
that I.�c.1//D �c.0/. Then we let �c be the loop of Lagrangian subspaces obtained by concatenating
�c and the path t 2

�
0; �

2

�
7! etI�c.1/. The Conley–Zehnder index of c is the Maslov index of �c :

CZ.c/ WD �.�c/:

The Conley–Zehnder index of a Reeb chord does not depend on the choice of †c because the first Chern
class of � is 2-torsion, and it does not depend on the choice of 
c because the Maslov number ofƒ vanishes.

Remark In the case where c.V; �/ (where c.V; �/ is the positive generator of h2c1.�/;H1.V /i) or m.ƒ/

is nonzero, the Conley–Zehnder index is well defined in Z=dZ, where

d D gcd.c.V; �/;m.ƒ//:

3.2 Moduli spaces

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped
with any compatible almost complex structure) is 2-torsion. Let ˛ be a hypertight contact form on .V; �/
and let ƒ be a chord generic Legendrian submanifold of .V; ˛/ with vanishing Maslov number. In the
following, we introduce the moduli spaces needed to define the Chekanov–Eliashberg category of ƒ.

Definition 3.3 A Riemann .dC1/-pointed disk is a triple .D; �; j / such that

(1) D is a smooth oriented manifold-with-boundary diffeomorphic to the closed unit disk in C,

(2) � D .�d ; : : : ; �1; �0/ is a cyclically ordered family of distinct points on @D,

(3) j is an integrable almost complex structure on D which induces the given orientation on D.

If .D; �; j / is a Riemann pointed disk, we denote by � WD D n f�d ; : : : ; �1; �0g the corresponding
punctured disk.

Definition 3.4 A family of Riemann .dC1/-pointed discs is a bundle S!R with

(1) a family � D .�d ; : : : ; �1; �0/ of nonintersecting sections �k WR! S and

(2) a section j WR! End.T S/

such that .Sr ; �.r/; j .r// is a Riemann .dC1/-pointed disk for every r 2R.
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Definition 3.5 Let S!R be a family of Riemann .dC1/-pointed discs. A choice of strip-like ends for
S!R is a family of sections

�d ; : : : ; �1 WR�R�0 � Œ0; 1�!�r ; �0 WR�R�0 � Œ0; 1�!�r ;

such that

(1) �d .r/; : : : ; �1.r/; �0.r/ are proper embeddings with

�k.r/.R�0 � f0; 1g/� @�r and �0.r/.R�0 � f0; 1g/� @�r ;

(2) �d .r/; : : : ; �1.r/; �0.r/ satisfy the asymptotic conditions

�k.r/.s; t/ �����!s!�1
�k.r/ and �0.r/.s; t/ �����!s!C1

�0.r/;

(3) �d .r/; : : : ; �1.r/; �0.r/ are .i; j .r//-holomorphic, where i is the standard complex structure on C.

As explained in [36, Section (9c)], there is a universal family SdC1 ! RdC1 of Riemann .dC1/-
pointed discs when d � 2, which means that any other family S!R is isomorphic to the pullback of
SdC1!RdC1 by a map R!RdC1. In the following, we fix a choice of strip-like ends for the universal
family SdC1!RdC1.

Definition 3.6 Let J be an almost complex structure on � compatible with .d˛/j� . We denote by J˛ the
unique almost complex structure on R� �V which sends @� to R˛ and which restricts to J on �. Let
cd ; : : : ; c1; c0 be Reeb chords of ƒ, where ck W Œ0;Tk �! V .

(1) If dD1, we denote by eMc1;c0
.R�ƒ;J; ˛/ the set of equivalence classes of maps u WR�Œ0; 1�!R�V

such that

� u maps the boundary of R� Œ0; 1� to R�ƒ,

� u satisfies the asymptotic conditions

u.s; t/ �����!
s!�1

.�1; c1.T1t// and u.s; t/ �����!
s!C1

.C1; c0.T0t//;

� u is .i;J˛/-holomorphic,

where two maps u and u0 are identified if there exists s0 2R such that u0. �; �/D u. � C s0; �/.

(2) If d � 2, we denote by eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ the set of pairs .r;u/ such that

� r 2RdC1 and u W�r !R�V maps the boundary of �r to R�ƒ,

� u satisfies the asymptotic conditions

.u ı �k.r//.s; t/ �����!s!�1
.�1; ck.Tk t// and .u ı �0.r//.s; t/ �����!s!C1

.C1; c0.T0t//;

� u is .i;J˛/-holomorphic.

Observe that R acts on eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ by translation in the R� -coordinate. We set

Mcd ;:::;c1;c0
.R�ƒ;J; ˛/ WD eMcd ;:::;c1;c0

.R�ƒ;J; ˛/=R:
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The moduli space eMcd ;:::;c1;c0
.R�ƒ;J; ˛/ can be realized as the zero-set of a section @ W B! E of a

Banach bundle E! B (see for example [16]). We say that eMcd ;:::;c1;c0
.R�ƒ;J / is transversely cut out

if @ is transverse to the 0-section.

Definition 3.7 We say that J is regular (with respect to ˛ and ƒ) if the moduli spaces

eMcd ;:::;c1;c0
.R�ƒ;J; ˛/

are all transversely cut out.

Proposition 3.8 [9, Proposition 3.13] The set of regular almost complex structures on � is Baire.
Moreover , the dimension of a transversely cut out moduli space is

dim eMcd ;:::;c1;c0
.R�ƒ;J; ˛/D CZ.a/�

� dX
kD1

CZ.bk/

�
C d � 1:

3.3 Chekanov–Eliashberg DG-category

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped with
any compatible almost complex structure) is 2-torsion. Let ˛ be a hypertight contact form on .V; �/ and
let ƒD .ƒ.E//E2E be a family of Legendrian submanifolds of .V; �/. We set ƒ WD

S
E2E ƒ.E/ and we

assume that ƒ is chord generic with vanishing Maslov number. Moreover, we denote by C.ƒ.E/;ƒ.E0//
the graded vector space generated by the words of Reeb chords c1 � � � cd , d � 1, where c1 starts on
ƒ.E/, cd ends on ƒ.E0/, and the ending component of ci is the starting component of ciC1 for every
1� i � d � 1, with grading

jc1 � � � cd j WD

dX
iD1

.CZ.ci/� 1/:

Finally, let J be a regular almost complex structure on � .

Definition 3.9 We denote by CE�.ƒ/D CE�.ƒ;J; ˛/ the graded category defined as follows:

(1) The objects are the Legendrians ƒ.E/, E 2 E .

(2) The space of morphisms from ƒ.E/ to ƒ.E0/ is

C.ƒ.E/;ƒ.E0// if E ¤E0; F ˚ C.ƒ.E/;ƒ.E0// if E DE0

(the summand F corresponds to the “empty word”).

(3) The composition is given by concatenation of words.

If c0 is a Reeb chord in CE�.ƒ/, we set

@.c0/ WD
X

cd ;:::;c1

#Mcd ;:::;c1;c0
.R�ƒ;J; ˛/cd � � � c1;
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where #M 2 F denotes the number of elements modulo 2 in M if M is finite, and 0 otherwise. Finally,
we extend @ to CE�.ƒ/ so that it is linear and satisfies the Leibniz rule with respect to the concatenation
product.

Theorem 3.10 @ W CE�.ƒ/! CE�.ƒ/ decreases the grading by 1 and satisfies @ ı @D 0. As a result ,
.CE��.ƒ/; @/ is a DG-category.

Proof This follows from Proposition 3.8, SFT compactness (see [1; 6], in particular [1, Theorem 3.20])
and pseudoholomorphic gluing. See [12; 14; 16] for details.

Augmentations and Legendrian A1-(co)category Let FE be the category with E as set of objects,
and morphism space from E to E0 equal to F if E D E0, or 0 if E ¤ E0. Assume that we have an
augmentation of CE��.ƒ/, ie a DG-functor " W CE��.ƒ/! FE . Denote by �" the automorphism of
CE��.ƒ/ defined by

�".c/D cC ".c/

for every Reeb chord c of ƒ. We denote by CE"��.ƒ/ the DG-category whose underlying graded category
is the same as for CE��.ƒ/, but the differential is @" D �" ı @ ı ��1

" . Now let LC"�.ƒ/ be the graded
precategory (no composition) with

(1) objects the set of Legendrians fƒ.E/ jE 2 Eg,
(2) morphisms from ƒ.E/ to ƒ.E0/ the vector space generated by (individual, not words of) Reeb

chords c which start on ƒ.E/ and end on ƒ.E0/, with grading

jcj WD �CZ.c/:

Observe that, as a graded precategory, we have

CE"��.ƒ/D FE ˚

�M
d�1

LC"�.ƒ/Œ�1�˝d

�
:

If we write
.@"/jLC"�.ƒ/

D

X
d�0

@d
" with @d

" W LC"�.ƒ/! LC"�.ƒ/
˝d ;

then @0
" D " ı @D 0. Moreover, the operations .@d

" /d�1 make LC"�.ƒ/ a (noncounital) A1-cocategory
(see Definition 1.2). We define the coaugmented A1-cocategory of .ƒ; "/ to be

LC"�.ƒ/ WD FE ˚LC"�.ƒ/

(the A1-cooperations are naturally extended so that 1 2 FE.E;E/, E 2 E are counits). Now observe
that, as a DG-category,

CE"��.ƒ/D�.LC"�.ƒ//

(see [17, Section 2.2] for the cobar construction). Finally, we define the augmented A1-category of
.ƒ; "/ to be the graded dual (see [17, Section 2.1.3]) of LC"�.ƒ/:

LA�" .ƒ/D LC"�.ƒ/
#:
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3.4 Functoriality

Recall that .V; �/ is a contact manifold such that H1.V / is free and the first Chern class of � (equipped
with any compatible almost complex structure) is 2-torsion. Let M D .M.E//E2E be a family of
n-dimensional manifolds. When we write a map ƒ WM ! V , we mean that ƒ is a family of maps
ƒ.E/ WM.E/! V indexed by E , and we set

ƒD
G
E2E

ƒ.E/ W
G
E2E

M.E/! V:

Definition 3.11 Let ˛ be a hypertight contact form on .V; �/. We denote by LM .˛/ the bicategory
where:

(1) Objects are the pairs .ƒ;J /, where ƒ WM ! V is a family of Legendrian embedding such that ƒ is
chord generic with vanishing Maslov number, and J is a regular almost complex structure on �.

(2) Morphisms from .ƒ0;J0/ to .ƒ1;J1/ are the smooth pathsˆD .ƒt ;Jt /0�t�1 going from .ƒ0;J0/

to .ƒ1;J1/, where ƒt WM ! V is a family of Legendrian embeddings and Jt is an almost complex
structure on �.

(3) Homotopies from a morphism ˆ D .ƒt ;Jt /0�t�1 W .ƒ0;J0/ ! .ƒ1;J1/ to another morphism
ˆ0 D .ƒ0t ;J

0
t /0�t�1 W .ƒ0;J0/ ! .ƒ1;J1/ are the smooth families .ƒs;t ;Js;t /0�s�S;0�t�1, where

ƒs;t WM ! V is a family of Legendrian embeddings, Js;t is an almost complex structure on � , and

.ƒs;0;Js;0/D.ƒ0;J0/; .ƒs;1;Js;1/D.ƒ1;J1/; .ƒ0;t ;J0;t /D.ƒt ;Jt /; .ƒS;t ;JS;t /D.ƒ
0
t ;J
0
t /:

Definition 3.12 Let ˛, ˛0 be hypertight contact forms on .V; �/, and let ' be a contactomorphism of
.V; �/ such that '�˛ D ˛0. If ˆD .ƒt ;Jt /0�t�1 is a morphism in LM .˛/, we denote by

'�ˆD .'�1.ƒt /; '
�Jt /0�t�1

the corresponding morphism in LM .˛0/, and by

f
'

.ƒt ;Jt /
W CE��.ƒt ;Jt ; ˛/! CE��.'�1.ƒt /; '

�Jt ; ˛
0/

the DG-functor which sends a Reeb chord c to '�1.c/.

Definition 3.13 Let ˛ be a hypertight contact form on .V; �/, and let ˆD .ƒt ;Jt /0�t�1 be a morphism
in LM .˛/. A handle slide instant in ˆ is a time t0 where ƒt0

is chord generic and has Reeb chords
cd ; : : : ; c1; c0 such that the moduli space eMcd ;:::;c1;c0

.R�ƒt0
;Jt0

; ˛/ is not transversely cut out.

Theorem 3.14 There exist functors F˛ from LM .˛/ to the bicategory3 of DG-categories such that :

(1) F˛ sends an object .ƒ;J / to CE��.ƒ;J; ˛/.

3Homotopies between DG-maps are DG-homotopies, see for example [31, Section 2.1].
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(2) F˛ sends a morphism to a homotopy equivalence.

(3) If ' is a contactomorphism of .V; �/ such that '�˛ D ˛0 and if ˆD .ƒt ;Jt /0�t�1 is a morphism
in LM .˛/, then

F˛0.'�ˆ/D f
'

.ƒ1;J1/
ıF˛.ˆ/ ı .f

'

.ƒ0;J0/
/�1:

(4) If .'t /0�t�1 is a contact isotopy of .V; �/ satisfying '�t ˛D ˛
0 for every t , and if .ƒ;J / is an object

of LM .˛/ such that there is neither birth/death of Reeb chords nor handle slide instants in the path
ˆ0 D .'�1

t .ƒ/; '�t J /t , then

F˛0.ˆ0/D f
'1

.ƒ;J /
ı .f

'0

.ƒ;J /
/�1:

Proof The existence of such functors at the category level (without homotopies) has been established
in [14; 16] for the case .V; ˛/D .R�P; dz � �/. Statements in the general case can be found in [12,
Section 4; 19, Section 5].

Note that I proved a weaker version of this result in my thesis by generalizing methods of [14; 16; 31].
The following is the only particular case of Theorem 3.14 that we will use in this paper.

Theorem 3.15 [32, Theorem 3.8] Theorem 3.14 holds if we replace the categories LM .˛/ by the
subcategories L0

M
.˛/ where

(1) objects are the pairs .ƒ;J / such that ƒ has finitely many Reeb chords ,

(2) morphisms from .ƒ0;J0/ to .ƒ1;J1/ are the families ˆD .ƒt ;Jt /0�t�1 such that ƒt is chord
generic and has finitely many Reeb chords for every t ,

(3) homotopies from a morphism ˆ D .ƒt ;Jt /0�t�1 W .ƒ0;J0/! .ƒ1;J1/ to another morphism
ˆ0D .ƒ0t ;J

0
t /0�t�1 W .ƒ0;J0/! .ƒ1;J1/ are the families .ƒs;t ;Js;t /0�s�S;0�t�1 such thatƒs;t

is chord generic and has finitely many Reeb chords for every s; t .

Remark We expect that the finiteness of Reeb chords condition in Theorem 3.15 (which is very restrictive)
can be easily dropped using (homotopy) colimits of DG-categories diagrams. On the other hand, studying
birth/death of Reeb chords phenomena is a more serious issue that we will address in future work.

4 Legendrian lifts of exact Lagrangians in the circular contactization

In this section, we start with a family L of mutually transverse compact connected exact Lagrangian
submanifolds in a Liouville manifold, and we study a Legendrian liftƒı of L in the circular contactization.
For the standard contact form, each point on a Legendrian gives rise to a (countable) infinite set of Reeb
chords, and thus ƒı is not chord generic. In Section 4.1, we explain how we perturb the contact form
and we state our main result, which relates the Chekanov–Eliashberg DG-category of ƒı and the Fukaya
A1-category of L.
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4.1 Setting

Let .P; �/ be a Liouville manifold, and let

LD .L.E//E2E ; E D f1; : : : ;N g;

be a family of mutually transverse compact connected exact Lagrangian submanifolds in .P; �/ such
that there are primitives fE WL.E/!R of �jL.E/ satisfying 0� f1 < � � �< fN �

1
2

. We consider the
contact manifold

.V ı; �ı/D .S1
�P; ker˛ı/; where S1

DR�=Z; ˛
ı
D d� ��;

and the family of Legendrian submanifolds

ƒı WD .ƒı.E//E2E ; where ƒı.E/D f.fE.x/;x/ 2 .R=Z/�P j x 2L.E/g:

In order for the Chekanov–Eliashberg category of ƒı and the Fukaya category of L to be Z-graded, we
assume that H1.P / is free, that the first Chern class of P (equipped with any almost complex structure
compatible with .�d�/) is 2-torsion, and that the Maslov classes of the Lagrangians L.E/ vanish.

4.1.1 Reeb chords Observe that ƒı D
S

E2E ƒ.E/ is not chord generic for ˛ı (see Definition 3.2).
We will choose a compactly supported function H W P !R, and consider the perturbed contact form

˛ıH D eH˛ı:

The Reeb vector field of ˛ı
H

is then

R˛ı
H
D e�H

�
1C�.XH /

XH

�
;

where XH is the unique vector field on P satisfying �XH
d�D�dH .

We fix a compact neighborhood K of L which is contained in a Weinstein neighborhood of L in P . It
is not hard to see that for every positive integer N , the space of smooth functions H on P supported
in K, such that the R˛ı

H
-chords of ƒı with action less than N are generic, is open and dense in C1

K
.P /.

Therefore, the space of functions H 2C1
K
.P / such that ƒı is chord generic with respect to ˛ı

H
is a Baire

subset of C1
K
.P /. In particular, the latter is dense in C1

K
.P /. In the following, we choose H 2 C1

K
.P /

such that

(1) ƒı is chord generic with respect to ˛ı
H

,

(2) H is sufficiently close to 0 so that

d�.R˛ı
H
/D e�H .1C�.XH //�

1
2
:
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ƒı

T �S1

S1 �T �S1

ƒı

T �S1

Figure 1: Reeb chords (in blue) of ƒı D f0g � 0S1 . Left: for ˛ı. Right: for ˛ıH .

Example 4.1 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function (we present this example in order to see what happens, even if H

is not compactly supported in T �M ). The Reeb vector field of ˛ı
H

is

R˛ı
H
D e�h

0@ 1

0

�dh

1A;
and therefore the Reeb flow satisfies

't
R
˛ı

H

.�; .q;p//D
�
� C te�h.q/; .q;p� te�h.q/ dh.q//

�
:

Thus, the R˛ı
H

-chords of ƒı are the paths c W Œ0;T �! S1 �T �M of the form

c.t/D .te�h.q0/; .q0; 0//; with Te�h.q0/ 2 Z�1 and q0 2 Crit h:

Observe that these Reeb chords are transverse but lie on top of each other. See Figure 1, where we
illustrate this perturbation when M D S1.

Conley–Zehnder index In order to define the Conley–Zehnder index (see Section 3.1), we need to
choose a family .h0; h1; : : : ; hs/ of embedded circles in V ıDS1�P which represent a basis of H1.V

ı/,
and a symplectic trivialization of �ı over each hi . We let h0 D S1 � fa0g be some fiber of S1 �P ! P ,
and we fix .h1; : : : ; hs/ to be any family of embedded circles in P which represent a basis of H1.P /.
We choose a symplectic isomorphism  W .Ta0

P;�d�a0
/ ��! .Cn; dx ^ dy/, and then we choose the

symplectic trivialization

.�ıjh0
; d˛ı/ ��! .h0 �Cn; dx ^ dy/; ..�; a0/; .�a0

.v/; v// 7! ..�; a0/; e
2i�r� .v//;

where r is some integer, that we call r -trivialization of �ı over the fiber. Finally, we choose some
trivialization of �ı over each hi , 1� i � s.
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Example 4.2 We compute the Conley–Zehnder index of a Reeb chord in the case of Example 4.1, ie
when

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. In this case, the Reeb flow is given by

't
R
˛ı

H

.�; .q;p//D
�
� C te�h.q/; .q;p� te�h.q/ dh.q//

�
:

Let c W Œ0;T �! V ı be a Reeb chord of ƒı. Then there exists a positive integer k and a critical point q0

of h such that
c.t/D .te�h.q0/; .q0; 0// and Te�h.q0/ D k:

Observe that c.0/D c.T /, and thus there is no need to choose a capping path for c. Besides, for every u

in Tq0
M , we have

D't
R
˛ı

H

.c.0//.0;u; 0/D .0;u;�te�h.q0/D2h.q0/u/:

In order to compute the index of c, we first choose coordinates .x1; : : : ;xn/ around q0 2M in which

hD h.q0/C
1

2

dim.M /X
jD1

�j x2
j ; where �j D˙1;

and we extend it to symplectic coordinates .x1; : : : ;xn; y1; : : : ;yn/ around .q0; 0/ 2 T �M by setting

yj .q;p/D
D
p;

@

@xj
.q/
E
:

Our choice of trivialization for a fiber of S1 �P ! P induces the trivialization

e2i�rkt=T .dxC idy/ W c�1�ı ��! .R=T Z/�Cn

(observe that �ı
c.t/
D f0g �T.q0;0/.T

�M /). Accordingly, the path t 7!D't
R
˛ı

H

.Tc.0/ƒ
ı/ induces a path

of Lagrangians

�c W t 2 Œ0;T � 7!
˚�

e2i�mkt=T .uj � i te�h.q0/�j uj /
�
1�j�n

j u 2Rn
	
�Cn:

We close this path using a counterclockwise rotation � , and call the resulting loop �c . In order to compute
the Conley–Zehnder index of c, we have to look at how �c intersects the Lagrangian iRn (as explained
in [14, Section 2.2]). Observe that �c intersects iRn positively 2rk times, so that �c contributes 2rk to
the Conley–Zehnder index of c. Moreover, since � is a counterclockwise rotation bringing˚

.uj � iTe�h.q0/�j uj /1�j�n j u 2Rn
	

to Rn;

the contributions to the intersection between � and iRn come from the negative eigenvalues �j . The
computation done in [15, Lemma 3.4] implies that � contributes ind.q0/ to the Conley–Zehnder index
of c. We conclude that the Conley–Zehnder index of c is

CZ.c/D �.�c/D 2rkC ind.q0/:
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4.1.2 Main result Let j be an almost complex structure on P compatible with .�d�/, and let J ı be
its lift to a complex structure on �ı. Recall from Section 3.3 the definition of the Chekanov–Eliashberg
DG-category of a family of Legendrians. In our situation, CEr

��.ƒ
ı/D CE��.ƒı;J ı; ˛ıH / (with grading

induced by the r -trivialization of �ı over the fiber) is an Adams-graded DG-algebra, where the Adams
degree of a Reeb chord c is the number of times c winds around the fiber. Besides, the map CEr

��.ƒ
ı/!F

which sends every Reeb chord to zero (and preserves units) defines an augmentation of CEr
��.ƒ

ı/.

Remark In the case of Example 4.1, the cohomological degree of a Reeb chord c in CEr
��.ƒ

ı/ corre-
sponding to a positive integer k and a critical point q0 is

1�CZ.c/D 1� 2rk � ind.q0/

(see Example 4.2).

Besides, we denote byFuk.L/ the Fukaya category with objects being the set of Lagrangians fL.E/jE2Eg
(see for example [36, Chapter 2]), and by

�!
Fuk.L/ its directed subcategory:

hom�!Fuk.L/.L.E/;L.E
0//D

8<:
hL.E/\L.E0/i if E <E0;

F if E DE0;

0 if E >E0I
see [36, Paragraph (5n)].

Let F Œtm� be the augmented Adams-graded associative algebra generated by a variable tm of bidegree
.m; 1/. Observe that if C is a subcategory of an A1-category D with ob.C/Dob.D/, then C˚.tmF Œtm�˝D/
is naturally an Adams-graded A1-category, where the Adams degree of tk

m˝x equals k. Moreover, we
denote by E.�/DB.�/# (graded dual of bar construction) the Koszul dual functor (see [17, Section 2.3]
or [29, Section 2]). We say that Koszul duality holds for an augmented Adams-graded A1-category A if
the natural map A!E.E.A// is a quasi-isomorphism (see [29, Theorem 2.4] or [17, Definition 17]).

Theorem 4.3 (Theorem B in the introduction) Koszul duality holds for CEr
��.ƒ

ı/, and there is a
quasi-equivalence of augmented Adams-graded A1-categories

E.CEr
��.ƒ

ı//'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Corollary 4.4 If L is a connected compact exact Lagrangian and ƒı is a Legendrian lift of L in the
circular contactization , then there is a quasi-equivalence of augmented DG-algebras ,

CE1
��.ƒ

ı/' C��.�.CP1 ÌL//:

Proof Let x0 be the basepoint of CP1, and set P WDCP1 n fx0g. Observe that

.P �L/� D P� ^L� DCP1 ^L� DCP1 ÌL:

We have

F ˚ .t2F Œt2�˝CF�.L//' F ˚ .t2F Œt2�˝C �.L//' C �..P �L/�/' C �.CP1 ÌL/:
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Thus, it follows from Theorem 4.3 that

E.CE1
��.ƒ

ı//' C �.CP1 ÌL/:

Since Koszul duality holds for CE1
��.ƒ

ı/,

CE1
��.ƒ

ı/'E.C �.CP1 ÌL//:

Observe that the graded algebra H�.CP1 ÌL/ is locally finite (ie each degree component is finitely
generated) and simply connected (ie its augmentation ideal is concentrated in components of degree strictly
greater than 1). Thus, according to the homological perturbation lemma (see [36, Proposition 1.12]), we
can assume that C �.CP1 ÌL/ is a locally finite and simply connected A1 model for the DG-algebra
of cochains on CP1 ÌL. Therefore, [17, Lemma 10] implies that

CE1
��.ƒ

ı/'�.C��.CP1 ÌL//:

Now, since CP1 ÌL is simply connected, Adams’ result (see [2; 3; 17]) yields

�.C��.CP1 ÌL//' C��.�.CP1 ÌL//:

4.1.3 Strategy of proof We explain the strategy to compute E.CEr
��.ƒ

ı//. Recall from the last
paragraph of Section 3.3 that there is a coaugmented A1-cocategory LC�.ƒı/ such that

CEr
��.ƒ

ı/D�.LC�.ƒı//:

LC�.ƒı/ inherits an Adams-grading from CEr
��.ƒ

ı/ (the same), and we denote by LA�.ƒı/ its graded
dual (see [17, Section 2.1.3]). In our situation, LA�.ƒı/ is an augmented Adams-graded A1-category
whose augmentation ideal is generated by the Reeb chords of ƒı (and the Adams degree of a Reeb chord
c is the number of times c winds around the fiber). Since there is a quasi-isomorphism B.�C /' C for
every A1-cocategory C (see [17, Section 2.2.2]), it follows that

E.CEr
��.ƒ

ı//D B.CEr
��.ƒ

ı//# ' LC�.ƒı/# D LA�.ƒı/

(graded dual preserves quasi-isomorphisms).

Remark In the case of Example 4.1, the cohomological degree of a Reeb chord c in LA�.ƒı/ corre-
sponding to a positive integer k and a critical point q0 is

CZ.c/D 2rkC ind.q0/

(see Example 4.2).

In order to compute LA�.ƒı/, we lift the problem to the contact manifold

.V; �/D .R� �P; ker.d� ��//;

and introduce the following objects.

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 541

Definition 4.5 Let M D .M n.E//.n;E/2Z�E be a family of Legendrian submanifolds in .V; �/, K an
almost complex structure on � , and ˇ a hypertight contact form on .V; �/ for which M is chord-generic.
We denote by A.M ;K; ˇ/ the A1-category defined as follows:

(1) The objects of A.M ;K; ˇ/ are the Legendrians M n.E/, .n;E/ 2 Z� E .

(2) The space of morphisms from M i.E/ to M j .E0/ is either generated by the Rˇ-chords from M i.E/

to M j .E0/ if .i;E/ < .j ;E0/, or F if .i;E/D .j ;E0/, or 0 otherwise.

(3) The operations are such that 12A.M ;K; ˇ/.M n.E/;M n.E// is a strict unit, and for every sequence
.i0;E0/ < � � �< .id ;Ed /, for every sequence of Reeb chords

.c1; : : : ; cd / 2R.M i0.E0/;M
i1.E1//� � � � �R.M id�1.Ed�1/;M

id .Ed //;

we have

�A.M ;K ;ˇ/.c1; : : : ; cd /D
X

c02R.M i0 .E0/;M
id .Ed //

#Mcd ;:::;c1;c0
.R�M;K; ˇ/c0

(see Definition 3.6 for the moduli spaces).

Definition 4.6 Consider a path .Mt /0�t�1, where Mt D .M
n
t .E//.n;E/2Z�E is a family of Legendrian

submanifolds in .V; �/, such that M n�1
1

.E/DM n
0
.E/DWM n.E/. Let K be an almost complex structure

on �, and ˇ a hypertight contact form on .V; �/ for which M D .M n.E//.n;E/2Z�E is chord-generic.
We denote by �.Mt /t ;K ;ˇ WA.M ;K; ˇ/!A.M ;K; ˇ/ the A1-functor defined as follows:

(1) On objects, �.Mt /t ;K ;ˇ sends M n.E/DM n
0
.E/ to M nC1.E/DM n

1
.E/.

(2) On morphisms, the map

�.Mt /t ;.Kt /t ;ˇ WA.M ;K; ˇ/.M i0.E0/;M
i1.E1//˝ � � �˝A.M ;K; ˇ/.M id�1.Ed�1/;M

id .Ed //

!A.M ;K; ˇ/.M i0C1.E0/;M
idC1.Ed //

is obtained by dualizing the components of the DG-isomorphism

CE��..M n
1 /i0�n�id

;K1; ˇ/! CE��..M n
0 /i0�n�id

;K0; ˇ/

induced by the path ..M n
1�t
/i0�n�id

;K1�t /0�t�1 (see Theorem 3.14).

Remark (1) The A1-functor �.Mt /t ;K ;ˇ is a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting
Z� E ��! ob.A.M ;K; ˇ//; .n;E/ 7!M n.E/;

is compatible with the quasi-autoequivalence �.Mt /t ;K ;ˇ in the sense of Definition 2.2. As explained
there, this turns A.M ;K; ˇ/ into an Adams-graded A1-category: the Adams degree of a morphism c

from M i.E/ to M j .E0/ is j � i .
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In Section 4.2, we lift the data used to define LA�.ƒı/ (Legendrian ƒı, almost complex structure J ı,
contact form ˛ı

H
) to R�P . This gives us a path .ƒt /t , an almost complex structure J and a contact

form ˛H for which we can prove, using Theorem 2.4, that

LA�.ƒı/'MT.�.ƒt /t ;J ;˛H
/:

In Section 4.3, we use a contactomorphism �H satisfying ��
H
˛H D .d� � �/DW ˛ to change our data

into .ƒH ;t /t , JH and ˛. We then prove that

MT.�.ƒt /t ;J ;˛H
/'MT.�.ƒH;t /t ;JH ;˛/:

In Section 4.4, we change the almost complex structure JH to the original one J , and use Theorem 3.15
to prove that

MT.�.ƒH;t /t ;JH ;˛/'MT.�.ƒH;t /t ;J ;˛/:

In Section 4.5 we project our data to P , so that we get a path .LH ;t /t of Lagrangians in P and the almost
complex structure j . We use these new data to define an A1-category O and a quasi-autoequivalence

 WO!O. Then we use [10, Theorem 2.1] to prove that

MT.�.ƒH;t /t ;J ;˛/'MT.
 /:

Finally in Section 4.6, we use Theorem 2.5 (Theorem A in the introduction) to conclude.

4.2 Lift to R�P

In the following we consider the contact manifold

.V; �/D .R� �P; ker.˛//; where ˛ D d� ��;

and the family of Legendrian submanifolds

ƒ WD .ƒn.E//.n;E/2Z�E ; where ƒ� .E/D f.fE.x/C �;x/ 2R�P j x 2L.E/g:

Recall from Section 4.1.1 that we chose a compactly supported function H W P !R such that

(1) ƒı is chord generic with respect to ˛ı
H

,

(2) H is sufficiently close to 0 so that

d�.R˛ı
H
/D e�H .1C�.XH //�

1
2
:

We consider the contact form
˛H WD eH˛;

with Reeb vector field

R˛H
D e�H

�
1C�.XH /

XH

�
:

Moreover, we denote by J the lift of J ı to an almost complex structure on �.
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ƒ0

ƒ1

ƒ2

.R�T �S1; ˛H ;J /

T �S1

…S1�T�S1

ƒı

T �S1
c

�c

…S1�T�S1.c/ = …S1�T�S1.�c/

.S1 �T �S1; ˛ı
H
;J ı/

Figure 2: Action of the projection …S1�T�S1 .

Definition 4.7 Consider the path of Legendrians .ƒt /0�t�1, where ƒn
t .E/Dƒ

nCt .E/. We set

A WDA.ƒ;J; ˛H / and � WD �.ƒt /t ;J ;˛H

(see Definitions 4.5 and 4.6).

Relation between LA�.ƒı/ and .A; �/ We now explain how LA�.ƒı/ and .A; �/ are related. See
Figure 2, where we illustrate the action of the projection …S1�P in the case

.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

Lemma 4.8 The A1-functor � is strict , and it sends a Reeb chord t 7! .�.t/;x.t// in A.ƒi.E/;ƒj .E0//

to the Reeb chord t 7! .�.t/C 1;x.t// in A.ƒiC1.E/;ƒjC1.E0//. In particular , � acts bijectively on
hom-sets.

Proof Recall that ˛H D eH˛, with H a function defined on the base manifold P . In particular, the flow
't
@�

of @� is a strict contactomorphism of .V; ˛H /. Moreover, since J is the lift of an almost complex
structure j on P , we have

..ƒnC1�t /i0�n�id
;J /D

�
..'t

@�
/�1ƒnC1/i0�n�id

; .'t
@�
/�J

�
:

The result follows from Theorem 3.15.

We denote by A� the Adams-graded A1-category associated to � as in Definition 2.3.

Lemma 4.9 There is a quasi-isomorphism of Adams-graded A1-categories

LA�.ƒı/'A� :
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Proof Consider the map which sends a Reeb chord c 2R.ƒi.E/;ƒj .E0// to the corresponding chord
…S1�P .c/ 2 R.ƒı.E/;ƒı.E0// (where …S1�P W R � P ! S1 � P is the projection). According to
Lemma 4.8, …S1�P .�c/ D …S1�P .c/, and thus the map c 7! …S1�P .c/ induces a map  W A� !
LA�.ƒı/. Moreover, observe that  is a bijection on hom-spaces. It remains to prove that  is an
A1-map. This follows from the fact that the map

uD .�; v/ 7! .�;…S1�P ı v/

induces a bijection

Mcd ;:::;c1;c0
.R�ƒ;J; ˛H / ��!M .cd /;:::; .c1/; .c0/.R�ƒ

ı;J ı; ˛ıH /:

Lemma 4.10 The Adams-graded A1-category LA�.ƒı/ is quasi-equivalent to the mapping torus of
� WA!A (see Definition 2.1).

Proof This follows directly from Theorem 2.4 using Lemmas 4.8 and 4.9.

4.3 Rectification of the contact form

Now that we are in the usual contactization, we have the following result.

Lemma 4.11 There exists a contactomorphism �H of .V; �/ such that

��H˛H D ˛:

Proof Recall that ˛H D eH˛, with H a compactly supported function on the base manifold P such
that e�H .1C�.XH //�

1
2

.

Assume that there is a contact isotopy .�t /0�t�1 such that �0 D id and

(1) ��t ˛tH D ˛

for every t . Let .Ft /t be the family of functions on V such that

d

dt
�t D YFt

ı�t ;

where, for each fixed t , YFt
is the vector field on V satisfying

˛.YFt
/D Ft ; �YFt

d˛ D dFt .R˛/˛� dFt :

Let us prove that YFt
satisfies

˛tH .YFt
/D etH Ft ; �YFt

d˛tH D d.etH Ft /.R˛tH
/˛tH � d.etH Ft /:

Algebraic & Geometric Topology, Volume 25 (2025)



Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 545

Observe that the first equality is clear, and that it is enough to show that the second equality holds on
� D ker.˛/. Now for every Z 2 �, we have

�YFt
d˛tH .Z/D .d.e

tH /^˛/.YFt
;Z/C etH d˛.YFt

;Z/

D�˛.YFt
/d.etH /.Z/� etH dFt .Z/ .because Z 2 �/

D�Ftd.e
tH /.Z/� etH dFt .Z/ .because ˛.YFt

/D Ft /

D�d.etH Ft /.Z/:

Taking the derivative of (1) with respect to t , and using what we just proved, we get

(2) H C d.etH Ft /.R˛tH
/D 0:

Besides, we deduce from

R˛tH
D e�tH

�
1C t�.XH /

tXH

�
; �XH

d�D�dH;

that
dH.R˛tH

/D 0:

Then (2) gives

(3) dFt .R˛tH
/D�He�tH :

Conversely, if .Ft /t is a family of functions on V satisfying (3), then the contact isotopy .�t /t defined by

�0 D id and d

dt
�t D YFt

ı�t

satisfies
d

dt
.��t ˛tH /D 0;

and thus �H WD �1 gives the desired result.

Therefore, it remains to find a family .Ft /t satisfying (3). First recall that

R˛tH
D e�tH

�
1C t�.XH /

tXH

�
:

By assumption on H , the function d�.R˛tH
/ is greater than 1

2
for every t 2 Œ0; 1�. Thus, for every t 2 Œ0; 1�

and every .�;x/ in V , there exists a unique real number �t .�;x/ such that

'
��t .�;x/
R˛tH

.�;x/ 2 f0g �P:

Then we let
Ft WD ��tHe�tH :

For every real number t , we have

Ft ı'
t
R˛tH

D�.�t ı'
t
R˛tH

/He�tH because dH.R˛tH
/D 0:

But the map '��tı'
t
R˛tH

Ct
R˛tH

takes its values in f0g �P by definition of �t , so by uniqueness we have

�t ı'
t
R˛tH

D �t C t:
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Then we have
Ft ı'

t
R˛tH

D�.�t C t/He�tH ;

and thus
dFt .R˛tH

/D�He�tH :

Example 4.12 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. Then the diffeomorphism �H defined by

��1
H .�; .q;p//D

�
�eh.q/; .q; eh.q/pC �eh.q/ dh.q//

�
satisfies ��

H
˛H D ˛. With this choice of �H , we have in particular

��1
H .f�g � 0M /D j 1.�eh/�R�T �M:

In the following, we fix a contactomorphism �H as in Lemma 4.11. We define a pair .A1; �1/, which is
roughly obtained by pulling back the data of .A; �/ by �H .

Definition 4.13 Let

ƒH WD .ƒ
n
H .E//.n;E/2Z�E ; where ƒ�H .E/ WD �

�1
H .ƒ� .E//; and JH WD �

�
H J:

Consider the path of Legendrians .ƒH ;t /0�t�1, where ƒn
H ;t
.E/DƒnCt

H
.E/. We set

A1 WDA.ƒH ;JH ; ˛/ and �1 WD �.ƒH;t /t ;JH ;˛

(see Definitions 4.5 and 4.6).

Relation between .A; �/ and .A1; �1/ We now explain how the pairs .A; �/ and .A1; �1/ (Defini-
tions 4.7 and 4.13) are related. See Figure 3, where we illustrate the action of the contactomorphism ��1

H

in the case
.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

Lemma 4.14 There is a strict A1-isomorphism �1 WA!A1 defined as follows:

(1) On objects , �1.ƒn.E//Dƒn
H
.E/.

(2) On morphisms , �1 sends a Reeb chord c in A.ƒi.E/;ƒj .E0// to the Reeb chord

�1.c/D �
�1
H ı c

in A1.ƒ
i
H
.E/;ƒ

j
H
.E0//.
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ƒ0

ƒ1

ƒ2

.R�T �S1; ˛H ;J /

T �S1

c

�c

ƒ0
H

ƒ1
H

ƒ2
H

T �S1

��1
H
.c/

��1
H
.�c/D �1.�

�1
H
.c//

��1
H

.R�T �S1; ˛;JH /

Figure 3: Action of the contactomorphism ��1
H

.

Proof We have to show that �1 is an A1-map. This follows from the fact that the map

uD .�; v/ 7! .�; ��1
H ı v/

induces a bijection

Mcd ;:::;c1;c0
.R�ƒ;J; ˛H / ��!M��1

H
.cd /:::�

�1
H
.c1/;�

�1
H
.c0/
.R�ƒH ;JH ; ˛/:

Lemma 4.15 �1 D �1 ı � ı �
�1
1 :

Proof This follows from Theorem 3.15 using that ��
H
˛H D ˛ and

..ƒnC1�t
H

/i0�n�id
;JH /D ..�

�1
H ƒnC1�t /i0�n�id

; ��H J /:

Lemma 4.16 The mapping torus of � WA!A is quasi-equivalent to the mapping torus of �1 WA1!A1

(see Definition 2.1).

Proof According to Lemma 4.15 the following diagram of Adams-graded A1-categories is commutative:

A AtA A

A1 A1 tA1 A1

�1

idtid idt�

�1t�1 �1

idtid idt�1

Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.14. Thus the result follows
from Proposition 1.22.

4.4 Back to the original almost complex structure

In this section, we introduce a pair .A2; �2/ defined using the same data as .A1; �1/ (Definition 4.13),
except we are using the almost complex structure J instead of JH .
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Definition 4.17 We set

A2 WDA.ƒH ;J; ˛/ and �2 WD �.ƒH;t /t ;J ;˛

(see Definitions 4.5 and 4.6).

Relation between .A1; �1/ and .A2; �2/

Lemma 4.18 Choose a generic path .J 12
t /0�t�1 such that J 12

0
D J and J 12

1
D JH . There is an

A1-isomorphism �12 WA1!A2 defined as follows:

(1) On objects , �12.ƒ
n
H
.E//Dƒn

H
.E/.

(2) On morphisms , the map

�12 WA1.ƒ
i0

H
.E0/;ƒ

i1

H
.E1//˝ � � �˝A1.ƒ

id�1

H
.Ed�1/;ƒ

id

H
.Ed //!A2.ƒ

i0

H
.E0/;ƒ

id

H
.Ed //

is obtained by dualizing the components of the DG-isomorphism

CE��..ƒn
H /i0�n�id

;J; ˛/! CE��..ƒn
H /i0�n�id

;JH ; ˛/

induced by the path ..ƒn
H
/i0�n�id

;J 12
t /0�t�1 (see Theorem 3.15).

Proof We have to prove that �12 is an isomorphism. This follows from the fact that it is defined by
dualizing the components of a DG-isomorphism.

Lemma 4.19 The A1-functor �2 is homotopic to �12 ı �1 ı �
�1
12

(see [36, Paragraph (1h)]).

Proof First recall that �1 is obtained by dualizing the components of the DG-map

CE��..ƒnC1
H

/i0�n�id
;JH ; ˛/! CE��..ƒn

H /i0�n�id
;JH ; ˛/

induced by the path ..ƒnC1�t
H

/i0�n�id
;JH /0�t�1. Thus, �12ı�1 is obtained by dualizing the components

of the composition

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒnC1

H
/i0�n�id

;JH ; ˛/! CE��..ƒn
H /i0�n�id

;JH ; ˛/:

On the other hand, �2 is obtained by dualizing the components of the DG-map

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;J; ˛/

induced by the path ..ƒnC1�t
H

/i0�n�id
;J /0�t�1. Thus, �2 ı �12 is obtained by dualizing the components

of the composition

CE��..ƒnC1
H

/i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;J; ˛/! CE��..ƒn

H /i0�n�id
;JH ; ˛/:

According to Theorem 3.15, the DG-maps used to define �12ı�1 and �2ı�12 are DG-homotopic. Therefore
the A1-functors �12 ı �1 and �2 ı �12 are homotopic.
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Lemma 4.20 The mapping torus of �1 WA1!A1 is quasi-equivalent to the mapping torus of �2 WA2!A2

(see Definition 2.1).

Proof Let �12 WD �12 ı �1 ı �
�1
12

. Consider the commutative diagram of Adams-graded A1-categories

A1 A1 tA1 A1

A2 A2 tA2 A2

�12

idtid idt�1

�12t�12 �12

idtid idt�12

Each vertical arrow is a quasi-equivalence according to Lemma 4.18, so it follows from Proposition 1.22
that the mapping torus of �1 is quasi-equivalent to the mapping torus of �12. Now according to Lemma 4.19,
�12 is homotopic to �2. Thus the result follows from Proposition 1.23.

4.5 Projection to P

4.5.1 The A1-category O In order to define the A1-category O, we need to introduce moduli spaces
of pseudoholomorphic discs in P .

Definition 4.21 Let LD .Ln.E//.n;E/2Z�E be a family of mutually transverse connected compact exact
Lagrangians in .P; �/. Consider a sequence of integers i0 < � � �< id , and a family of intersection points
.x0;x1; : : : ;xd /, where

x0 2Li0.E0/\Lid .Ed / and xk 2Lik�1.Ek�1/\Lik .Ek/; 1� k � d:

(1) If d D 1, we denote by Mx1;x0
.L; j / the set of equivalence classes of maps u WR� Œ0; 1�! P such

that

� u maps R� f0g to Li0.E0/ and R� f1g to Li1.E1/,

� u satisfies the asymptotic conditions

u.s; t/ �����!
s!�1

x1 and u.s; t/ �����!
s!C1

x0;

� u is .i; j /-holomorphic,

where two maps u and u0 are identified if there exists s0 2R such that u0. �; �/D u. � C s0; �/.

(2) If d � 2, we denote by Mxd ;:::;x1;x0
.L; j / the set of pairs .r;u/ such that

� r 2RdC1 and u W�r ! P maps the boundary arc .�kC1; �k/ of �r to Lik .Ek/,

� u satisfies the asymptotic conditions

.u ı �k.r//.s; t/ �����!s!�1
xk and .u ı �0.r//.s; t/ �����!s!C1

x0;

� u is .i; j /-holomorphic.

Recall that we have chosen a contactomorphism �H as in Lemma 4.11. We set

Ln
H WD…P .ƒ

n
H .E//� P and LH WD .L

n
H .E//.n;E/2Z�E :
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Definition 4.22 We denote by O the A1-category defined as follows:

(1) The objects of O are the Lagrangians Ln
H
.E/, .n;E/ 2 Z� E .

(2) The space of morphisms from Li
H
.E/ to L

j
H
.E0/ is either generated by Li

H
.E/\L

j
H
.E0/ if

.i;E/ < .j ;E0/, or F if .i;E/D .j ;E0/, or 0 otherwise.

(3) The operations are such that 1 2 O.Ln
H
.E/;Ln

H
.E// is a strict unit, and for every sequence

.i0;E0/ < � � �< .id ;Ed /, for every sequence of intersection points

.x1; : : : ;xd / 2 .L
i0

H
.E0/\L

i1

H
.E1//� � � � � .L

id�1

H
.Ed�1/\L

id

H
.Ed //;

we have

�O.x1; : : : ;xd /D
X

x02L
i0
H
.E0/\L

id
H
.Ed /

#Mxd ;:::;x1;x0
.LH ; j /x0:

4.5.2 The quasi-autoequivalence 
 Before defining the A1-functor 
 WO!O, we recall Legendrian
contact homology as defined in [16]. To each generic Legendrian ƒ in R�P , the authors associate a
semifree DG-algebra ADA.ƒ; j / generated by the self-intersection points of …P .ƒ/, with a differential
@ WA!A defined using j -holomorphic discs in P . In our case, the differential of A

�F
k ƒ

k
H
.E/; j

�
on

a generator x0 2L
i0

H
.E0/\L

id

H
.Ed / is given by

@x0 D

X
.x1;:::;xd /

#Mxd ;:::;x1;x0
.LH ; j /xd � � �x1;

where the sum is over the sequences

.x1; : : : ;xd / 2 .L
i0

H
.E0/\L

i1

H
.E1//� � � � � .L

id�1

H
.Ed�1/\L

id

H
.Ed //:

According to [10, Theorem 2.1], Legendrian contact homology as defined in [16] coincides with the
version exposed in Section 3:

A.ƒ; j /D CE�.ƒ; .D…P /j
�
� j ; ˛/:

We introduced this version only because it makes clearer the fact that some operations are defined using
pseudoholomorphic polygons in the base P .

Definition 4.23 We denote by 
 WO!O the A1-functor defined as follows:

(1) On objects, 
 .Ln
H
.E//DLnC1

H
.E/.

(2) On morphisms, the map


 WO.Li0

H
.E0/;L

i1

H
.E1//˝ � � �˝O.Lid�1

H
.Ed�1/;L

id

H
.Ed //!O.Li0C1

H
.E0/;L

idC1
H

.Ed //
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is obtained by dualizing the components of the DG-isomorphism

A

� idG
kDi0

ƒkC1
H

; j

�
D CE��

�
R�

idG
kDi0

ƒkC1
H

; .D…P /j
�
� j ; ˛

�

! CE��

�
R�

idG
kDi0

ƒk
H ; .D…P /j

�
� j ; ˛

�
DA

� idG
kDi0

ƒk
H ; j

�

induced by the Legendrian isotopy
�Fid

kDi0
ƒkC1�t

H

�
0�t�1

(see Theorem 3.15).

Remark (1) The A1-functor 
 WO!O is a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting

Z� E ��! ob.O/; .n;E/ 7!Ln
H .E/;

is compatible with the quasi-autoequivalence 
 in the sense of Definition 2.2. As explained there, this
turns O into an Adams-graded A1-category.

4.5.3 Relation with the previous invariants We now explain how the pairs .A2; �2/ (Definition 4.17)
and .O; 
 / are related. See Figure 4, where we illustrate the action of the projection …P in the case

.P; �/D .T �S1;pdq/; LD 0S1 ; and H.q;p/D h.q/;

where h W S1!R is a Morse function.

ƒ0
H

ƒ1
H

T �S1

c

.R�T �S1; ˛;J / .T �S1; j /

L0
H

L1
H

…T�S1

…T�S1.c/

Figure 4: Action of the projection …T�S1 .
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Lemma 4.24 There is a strict A1-isomorphism �2 WA2!O defined as follows:

(1) On objects , �2.ƒn
H
.E//DLn

H
.E/.

(2) On morphisms , �2 sends a Reeb chord c in A2.ƒ
i
H
.E/;ƒ

j
H
.E0// to the intersection point

�2.c/D…P .c/

in O.Li
H
.E/;L

j
H
.E0//.

Proof We have to show that �2 is an A1-map. Since J D .D…P /j
�
�
j , it follows from [10, Theorem 2.1]

that the map
uD .�; v/ 7!…P ı v

induces a bijection

Mcd ;:::;c1;c0
.R�ƒH ;J; ˛/ ��!M…P .cd /:::…P .c1/;…P .c0/.LH ; j /:

This implies the result.

Lemma 4.25 
 D �2 ı �2 ı �
�1
2 :

Proof This follows from the definitions of �2, 
 , �2 and the fact that J D .D…P /j
�
�
j .

Lemma 4.26 The mapping torus of �2 WA2!A2 is quasi-equivalent to the mapping torus of 
 WO!O
(see Definition 2.1).

Proof According to Lemma 4.25 the following diagram of Adams-graded A1-categories is commutative:

A2 A2 tA2 A

O OtO O

�2

idtid idt�2

�2t�2 �2

idtid idt


Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.24. Thus, the result follows
from Proposition 1.22.

4.6 Mapping torus of 


In this section, we show that we can apply Theorem 2.5 (Theorem A in the introduction) in order to
compute the mapping torus of 
 WO!O. This allows us to finish the proof of Theorem 4.3.

Recall that we have fixed a contactomorphism �H of V such that ��
H
˛H D ˛. Also recall that if � is

some real number, then

ƒ� .E/D f.fE.x/C �;x/ j x 2Lg; ƒ�H .E/D �
�1
H .ƒ� .E//; and L�H .E/D…P .ƒ

�
H .E//:
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4.6.1 Continuation elements We denote by O2r the A1-category obtained from O by applying the
functor of Definition 1.27. We denote by

� D
˚
cn.E/ 2O2r .L

n
H .E/;L

nC1
H

.E// j .n;E/ 2 Z� E
	

the set of continuation elements in O2r induced by the exact Lagrangian isotopies .LnCt
H

/0�t�1 (see for
example [23, Section 3.3]).

Recall that if C is an A1-category equipped with a Z-splitting of ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E .

Lemma 4.27 There are quasi-equivalences of A1-categories

O0
2r '

�!
Fuk.LH / and O2r Œ�

�1�0 ' Fuk.LH /:

Proof First observe that we actually have O0
2r
D
�!
Fuk.LH /.

The second equivalence follows from the results of [37, Lecture 10; 23] about Fukaya categories and
localization of A1-categories. More precisely, consider the subcategory F of Fuk.P / with objects
the Lagrangians Ln.E/. There is a trivial A1-functor O2r ! F (which is the identity on objects
and on morphisms in O.Li

H
.E/;L

j
H
.E0// whenever .i;E/ < .j ;E0/). Moreover, this functor sends

continuation elements of O2r to quasi-invertible morphisms in F , and therefore induces an A1-functor
O2r Œ�

�1�! F . Since the map

O2r .L
i
H .E/;L

j
H
.E0//!O2r Œ�

�1�.Li
H .E/;L

j
H
.E0//

is a quasi-isomorphism whenever .i;E/ < .j ;E0/, it follows that the functor O2r Œ�
�1� ! F is a

quasi-equivalence. Thus we get

O2r Œ�
�1�0 ' F0

D Fuk.LH /:

4.6.2 The O2r -bimodule map In order to apply Theorem 2.5, we need a degree 0 closed O2r -module
map f WO2r .�; �/!O2r .�; 
 .�// such that the elements in f .units/ satisfy certain hypotheses. As
usual, we would like to find such an f geometrically, ie using some Lagrangian (or Legendrian) isotopy.
However, here the unit 1D eLk

H
.E/ 2O.L

k
H
.E/;Lk

H
.E//, which is not an intersection point between

Lagrangians, is supposed to be sent by f to something in O.Lk
H
.E/;LkC1

H
.E//, which is generated by the

intersection points between Lk
H
.E/ and LkC1

H
.E/. Therefore, we need to somehow replace this unit by

some intersection point between Lagrangians. The idea is that we will slightly perturb Lk
H
.E/ to LkCı

H
.E/,

and then replace eLk
H
.E/ by the continuation element in the vector space generated by Lk

H
.E/\LkCı

H
.E/.

Observe that if ı is small enough, LkCı
H

.E/ is a small perturbation of Lk
H
.E/. Therefore, in a Weinstein

neighborhood of Lk
H
.E/, the Lagrangian LkCı

H
.E/ is the graph of dhı;k;E , where hı;k;E is some Morse

function on L.E/. In particular, the intersection points between Lk
H
.E/ and LkCı

H
.E/ correspond

to the critical points of hı;k;E . Moreover, the continuation element in the vector space generated by
Lk

H
.E/\LkCı

H
.E/ corresponds to the sum of the minima of hı;k;E .
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Example 4.28 Assume that we are in the case

.P; �/D .T �M;pdq/; LD 0M ; and H.q;p/D h.q/;

where h WM !R is a Morse function. As explained in Example 4.12, in this case we have

L�H D…T �M .j 1.�eh//D graph.d.�eh//:

Thus, LkCı
H

is the graph of d.ıeh/ over Lk
H

.

We will need the following result about moduli spaces of discs with boundary on small perturbations of
the Lagrangians.

Lemma 4.29 Let g WD �d�.�; j �/ be the metric on P induced by j and .�d�/. For every positive
integer n, there exists ın > 0 such that the following holds for every ı 2 �0; ın�. For every sequence

.�n;E0/� .j0;E0/ < � � �< .jp;Ep/� .`0;E
0
0/ < � � �< .`q;E

0
q/� .n;E

0
q/; p; q � 0;

the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp

H
.Ep/[L

`0Cı
H

.E00/[ � � � [L
`qCı

H
.E0q/

are

(1) in bijection with the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp

H
.Ep/[L

`0

H
.E00/[ � � � [L

`q

H
.E0q/

if .jp;Ep/ < .`0;E
0
0
/, or

(2) in bijection with the rigid j -holomorphic discs in P with boundary on

L
j0

H
.E0/[ � � � [L

jp�1

H
.Ep�1/[L

`0

H
.E00/[L

`1

H
.E01/[ � � � [L

`q

H
.E0q/

with a flow line of .�rghı;k;E0
0
/ attached on the component in L

`0

H
.E0

0
/ if .jp;Ep/D .`0;E

0
0
/.

Proof The case jp < `0 follows from transversality of the moduli spaces in consideration. The case
jp D `0 follows from the main analytic theorem of [13] (Theorem 3.6).

In order to define the O2r -bimodule map f properly, we will use Lemma 4.29 to modify the A1-
category O2r . In the following, we fix a decreasing sequence of positive real numbers .ın/n�1 such that,
for every n,

(1) Lemma 4.29 holds with ın, and

(2) ın is small enough so that there is no handle slide instant in the Legendrian isotopy
n[

`D�n

ƒ
`Cınt
H

D

n[
`D�n

[
E2E

ƒ
`Cınt
H

.E/; t 2 Œ0; 1�:

We define two families of A1-categories .On;k/n;k and . zOn;k/n;k indexed by the couples .n; k/, where
n� 1 and �n� k � n. The A1-category On;k is basically obtained from O2r by restricting to objects
Li

H
.E/, �n� i � n, and adding a copy of the object Lk

H
.E/.
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Definition 4.30 For every .j ;E/ 2 Z� E , let L
j
H
.E/ be a copy of L

j
H
.E/. We denote by On;k the

A1-category defined as follows:

(1) The set of objects of On;k is

ob.On;k/D fL
j
H
.E/ j �n� j � k; E 2 Eg[ fL`H .E/ j k � `� n; E 2 Eg:

(2) The spaces of morphisms in On;k are the corresponding spaces of morphisms in O2r when we
replace L`

H
.E/, k � `� n, by L`

H
.E/, except that

On;k.L
k
H .E/;L

k
H .E//D f0g:

(3) The operations are the same as in O2r .

The A1-category zOn;k is obtained from On;k by perturbing the objects L`
H
.E/, k � `� n, to L

`Cın

H
.E/.

Definition 4.31 Let

‚n;k WD f�n; : : : ; kg[ f`C ın j k � `� ng �R; and zLH WD .L
�
H .E//.�;E/2‚n;k�E :

We denote by zOn;k the A1-category defined as follows:

(1) The objects of zOn;k are the Lagrangians L�
H
.E/, .�;E/ 2‚n;k � E .

(2) The space of morphisms from L�
H
.E/ to L�

0

H
.E0/ is either generated by L�

H
.E/\L�

0

H
.E0/ if

.�;E/ < .� 0;E0/, or F if .�;E/D .� 0;E0/, or 0 otherwise.

(3) The operations are such that eL�
H
.E/ D 1 2 zOn;k.L

�
H
.E/;L�

H
.E// is a strict unit, and for every

sequence .�0;E0/ < � � �< .�d ;Ed /, for every sequence of intersection points

.x1; : : : ;xd / 2 .L
�0

H
.E0/\L

�1

H
.E1//� � � � � .L

�d�1

H
.Ed�1/\L

�d

H
.Ed //;

we have
� zOn;k

.x1; : : : ;xd /D
X

x02L
�0
H
.E0/\L

�d
H
.Ed /

#Mxd ;:::;x1;x0
. zLH ; j /x0:

These A1-categories being defined, Lemma 4.29 implies the following result.

Lemma 4.32 There is a strict A1-functor �n;k WOn;k !
zOn;k defined as follows:

(1) On objects , �n;k.L
j
H
.E//DL

j
H
.E/ if �n� j � k and �n;k.L

`
H
.E//DL

`Cın

H
.E/ if k � `� n.

(2) On morphisms , �n;k sends the unit of On;k.L
k
H
.E/;Lk

H
.E// D F to the continuation element

in zOn;k.L
k
H
.E/;L

kCın

H
.E//, and it sends any other morphism of On;k to the corresponding one

in zOn;k .

Proof Consider a sequence .x0; : : : ;xd�1/ of morphisms in On;k . If in this sequence there is no
morphism from Lk

H
.E/ to Lk

H
.E/, then the relation

� zOn;k
.�n;kx0; : : : ; �n;kxd /D �n;k.�On;k

.x0; : : : ;xd //
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follows directly from the first item of Lemma 4.29. Now assume that there is p 2 f0; : : : ; d �1g such that
xpDeLk

H
.E/2On;k.L

k
H
.E/;Lk

H
.E//. Recall that the continuation element in zOn;k.L

k
H
.E/;L

kCın

H
.E//

corresponds to the sum of the minima of hın;k;E . Then the second item of Lemma 4.29 implies that

� zOn;k
.�n;kx0; : : : ; �n;kxd /D

8<:
�n;kx1 if d D 1 and p D 0;

�n;kx0 if d D 1 and p D 1;

0 otherwise:

Thus, the A1-relation for �n;k is still satisfied according to the behavior of the operations �On;k
with

respect to the unit eLk
H
.E/.

We can now define geometrically an A1-functor that will finally allow us to define the O2r -bimodule
map f .

Definition 4.33 We denote by �n;k W
zOn;k !O2r the A1-functor defined as follows:

(1) On objects, �n;k.L
j
H
.E//DL

j
H
.E/ if �n� j �k, and �n;k.L

`Cın

H
.E//DL`C1

H
.E/ if k � `�n.

(2) On morphisms, �n;k is obtained by dualizing the components of the DG-isomorphism

A

� nC1G
iD�n

ƒi
H

�
��!A

� kG
jD�n

ƒ
j
H
t

nG
`Dk

ƒ
`Cın

H

�
:

induced by the Legendrian isotopy� kG
jD�n

ƒ
j
H

�
t

� nG
`Dk

ƒ
`C1�t.1�ın/
H

�
; t 2 Œ0; 1�

(see Theorem 3.15 or [16, Proposition 2.6]).

Remark 4.34 We point out some properties of the A1-functor

�n;k WD �n;k ı �n;k WOn;k !O2r :

(1) Let n � p be two positive integers, and let k 2 f�n; : : : ; ng. Recall that we have chosen ın small
enough so that there is no handle slide instant in the Legendrian isotopy

nG
`D�n

ƒ
`Cınt
H

; 0� t � 1:

Since ıp � ın, neither is there any handle slide instant in the Legendrian isotopy

nG
`D�n

ƒ
`Cıpt

H
; 0� t � 1:

Therefore, �p;k agrees with �n;k on On;k �Op;k .
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(2) Consider a sequence of integers

�n� j0 < � � �< jp � k1 < k2 � `0 < � � �< `q � n;

and a sequence of morphisms

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2On;ki
.L

j0

H
.E0/;L

j1

H
.E1//� � � � �On;ki

.L
jp�1

H
.Ep�1/;L

jp

H
.Ep//�On;ki

.L
jp

H
.Ep/;L

`0

H
.E00//

�On;ki
.L
`0

H
.E00/;L

`1

H
.E01//� � � � �On;ki

.L
`q�1

H
.E0q�1/;L

`q

H
.E0q//:

Since the Legendrian isotopy defining �n;ki
is� kiG

jD�n

ƒ
j
H

�
t

� nG
`Dki

ƒ
`C1�t.1�ın/
H

�
; t 2 Œ0; 1�;

we have

�n;k1
.x0; : : : ;xp�1/D ı1px0;

�n;k2
.y0; : : : ;yq�1/D 
 .y0; : : : ;yq�1/;

�n;k2
.x0; : : : ;xp�1;u;y0; : : : ;yq�1/D �n;k1

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/:

(3) By construction, the A1-functor �n;k sends the continuation element in zOn;k.L
k
H
.E/;L

kCın

H
.E//

(corresponding to the sum of the minima of hın;k;E) to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//:

In other words, �n;k sends the unit eLk
H
.E/ 2On;k.L

k
H
.E/;Lk

H
.E// to ck.E/.

(4) The map �n;k W On;k.L
j
H
.E/;Lk

H
.E0// ! O2r .L

j
H
.E/;LkC1

H
.E0// is a quasi-isomorphism for

every j < k and E;E0 2 E .

We can now state and prove the desired result.

Lemma 4.35 There exists a degree 0 closed O2r -bimodule map f WO2r .�; �/!O2r .�; 
 .�// which
sends the unit eLk

H
.E/ 2O2r .L

k
H
.E/;Lk

H
.E// to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//\�;

and such that f WO2r .L
j
H
.E/;Lk

H
.E0//!O2r .L

j
H
.E/;LkC1

H
.E0// is a quasi-isomorphism for every

j < k and E;E0 2 E .

Proof Consider a sequence

.j0;E0/ < � � �< .jp;Ep/� .k;E/D .`0;E
0
0/ < � � �< .`q;E

0
q/;

Algebraic & Geometric Topology, Volume 25 (2025)



558 Adrian Petr

and a sequence of morphisms

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2O2r .L
j0

H
.E0/;L

j1

H
.E1//� � � � �O2r .L

jp�1

H
.Ep�1/;L

jp

H
.Ep//�O2r .L

jp

H
.Ep/;L

k
H .E

0
0//

�O2r .L
k
H .E

0
0/;L

`1

H
.E01//� � � � �O2r .L

`q�1

H
.E0q�1/;L

`q

H
.E0q//:

We choose n� 1 such that �n� j0 � `q � n, and we set

f .x0; : : : ;xp�1;u;y0; : : : ;yq�1/ WD �n;k.x0; : : : ;xp�1;u;y0; : : : ;yq�1/ 2O2r .L
j0

H
.E0/; 
L

`q

H
.E0q//;

where on the right-hand side we consider that

.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

2On;k.L
j0

H
.E0/;L

j1

H
.E1//� � � � �On;k.L

jp�1

H
.Ep�1/;L

jp

H
.Ep//�On;k.L

jp

H
.Ep/;L

k
H .E

0
0//

�On;k.L
k
H .E

0
0/;L

`1

H
.E01//� � � � �On;k.L

`q�1

H
.E0q�1/;L

`q

H
.E0q//:

Observe that f is well defined (it does not depend on the choice of n) according to the first item of
Remark 4.34.

We now verify that f is closed. According to Definition 1.4, we have

�1
ModC;C .f /.x0; : : : ;xp�1;u;y0; : : : ;yq�1/

D

X
�n;k. : : : ; �O2r

. : : : /; : : : ;u; : : : /C
X

�n;`s
. : : : ; �O2r

.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

C

X
�n;k. : : : ;u; : : : ; �O2r

. : : : /; : : : /C
X

�O2r
. : : : ; �n;k. : : : ;u; : : : /; 
 . : : : /; : : : ; 
 . : : : //:

Now according to the second item of Remark 4.34, we haveX
�n;`s

. : : : ; �O2r
.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

D

X
�n;k. : : : ; �O2r

.xr ; : : : ;xp�1;u;y0; : : : ;ys�1/; : : : /

andX
�O2r

. : : : ; �n;k. : : : ;u; : : : /; 
 . : : : /; : : : ; 
 . : : : //

D

X
�O2r

�
�n;k. : : : /; : : : ; �n;k. : : : /; �n;k. : : : ;u; : : : /; �n;k. : : : /; : : : ; �n;k. : : : /

�
:

Therefore, we get

�1
ModC;C .f /.x0; : : : ;xp�1;u;y0; : : : ;yq�1/D 0

from the fact that �n;k is an A1-functor.

Now f sends the unit eLk
H
.E/ 2O2r .L

k
H
.E/;Lk

H
.E// to the continuation element

ck.E/ 2O2r .L
k
H .E/;L

kC1
H

.E//\�
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according to the third item of Remark 4.34. Finally, the map

f WO2r .L
j
H
.E/;Lk

H .E
0//!O2r .L

j
H
.E/;LkC1

H
.E0//

is a quasi-isomorphism for every j < k and E;E0 2 E according to the last item of Remark 4.34.

4.6.3 Proof of the main result We end the section with the proof of Theorem 4.3 (Theorem B in the
introduction).

Recall that we denote by F Œtm� the augmented Adams-graded associative algebra generated by a variable
tm of bidegree .m; 1/, and by tmF Œtm� its augmentation ideal (or equivalently, the ideal generated by tm).
The key result is the following.

Lemma 4.36 The mapping torus of 
 is quasi-equivalent to the Adams-graded A1-category
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//:

Proof Let f W O2r .�; �/! O2r .�; 
 .�// be the degree 0 closed bimodule map of Lemma 4.35.
According to the latter, the hypotheses of Theorem 2.5 are satisfied, and f .units/D � . Thus the mapping
torus of 
 is quasi-equivalent to the Adams-graded A1-algebra O0

2r
˚ .t2r F Œt2r �˝O2r Œ�

�1�0/ (recall
that if C is an A1-category equipped with a Z-splitting Z � E ' ob.C/, we denote by C0 the full
A1-subcategory of C whose set of objects corresponds to f0g � E). According to Lemma 4.27 we have

O0
2r '

�!
Fuk.LH / and O2r Œ�

�1�0 ' Fuk.LH /:

The result follows from invariance of the Fukaya category (see [36, Section (10a)])
�!
Fuk.LH /'

�!
Fuk.L/ and Fuk.LH /' Fuk.L/:

We now give the proof of Theorem 4.3 (Theorem B in the introduction). According to [29, Theorem 2.4],
Koszul duality holds for the augmented Adams-graded DG-algebra CEr

��.ƒ
ı/ because it is Adams

connected (see [29, Definition 2.1]). Indeed, recall from Section 4.1.2 that the Adams degree in CEr
��.ƒ

ı/

of a Reeb chord c is the number of times c winds around the fiber. Besides, recall from Section 4.1.2 that
there is a coaugmented Adams-graded A1-cocategory LC�.ƒı/ such that

CEr
��.ƒ

ı/D�.LC�.ƒı// and LA�.ƒı/D LC�.ƒı/#:

Since there is a quasi-isomorphism B.�C /' C for every A1-cocategory C (see [17, Section 2.2.2]), it
follows that

E.CEr
��.ƒ

ı//D B.CEr
��.ƒ

ı//# ' LC�.ƒı/# D LA�.ƒı/

(graded dual preserves quasi-isomorphisms). Now the quasi-equivalence

LA�.ƒı/'
�!
Fuk.L/˚ .t2r F Œt2r �˝Fuk.L//

follows from Lemmas 4.10, 4.16, 4.20, 4.26 and 4.36. This concludes the proof.
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