Algebraic ¢ Geometric

Topology

Volume 25 (2025)

Mapping tori of 4..-autoequivalences and Legendrian lifts
of exact Lagrangians in circular contactizations

ADRIAN PETR

:'msp



Algebraic € Geometric Topology 25:1 (2025) 489-561
:'msp DOI: 10.2140/agt.2025.25.489
Published: 24 March 2025

Mapping tori of A ,,-autoequivalences and Legendrian lifts
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We study mapping tori of quasi-autoequivalences t: .A — .4 which induce a free action of Z on objects.
More precisely, we compute the mapping torus of ¢ when it is strict and acts bijectively on hom-sets, or
when the Ao-category A is directed and there is a bimodule map A(—, —) — A(—, t(—)) satisfying
some hypotheses. Then we apply these results in order to link together the Fukaya A,-category of a
family of exact Lagrangians, and the Chekanov—Eliashberg DG-category of Legendrian lifts in the circular
contactization.
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Introduction

Legendrian contact homology was introduced by Chekanov [8] and Eliashberg [20], and it fits into the
symplectic field theory as introduced by Eliashberg, Givental and Hofer [21]. It has been rigorously
defined in the contactization of a Liouville manifold by Ekholm, Etnyre and Sullivan in [16] following [14].
The importance of Legendrian contact homology goes beyond its applications to the Legendrian isotopy
problem: for example, it was used by Bourgeois, Ekholm and Eliashberg in [5] to compute symplectic
invariants of Weinstein manifolds, and in a different way by Chantraine, Dimitroglou Rizell, Ghiggini
and Golovko in [7] to prove a generation result for the wrapped Fukaya category of Weinstein manifolds.

The motivation for this paper is the study of Legendrian contact homology in subcritically fillable and
Boothby—Wang contact manifolds, the latter being named after [4]. This has been done combinatorially
in dimension three by Ekholm and Ng in [18] for the subcritically fillable case, and by Sabloff in [34]
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490 Adrian Petr

for the Boothby—Wang case. The importance of the first kind of manifolds comes from the fact that
every Weinstein manifold is obtained from a subcritical Weinstein manifold (of the form C x P for some
Weinstein manifold P) by attaching handles along Legendrian submanifolds in its boundary at infinity.
The importance of the second kind of manifolds comes from a theorem of Donaldson in [11], which states
that any integral symplectic manifold (X, w) admits a symplectic submanifold D C X of codimension 2,
such that X \ D is a Liouville manifold whose boundary at infinity is a Boothby—Wang contact manifold.
The first step before attacking both cases presented above is to study Legendrian contact homology in the
circular contactization of a Liouville manifold. In fact, both subcritically fillable and Boothby—Wang
contact manifolds can be seen as compactifications of such spaces. This paper links together the Fukaya
Aoso-category of a family of connected compact exact Lagrangians in a Liouville manifold (P, A), and the
Chekanov—Eliashberg DG-category of Legendrian lifts in the circular contactization (S! x P, ker(d —1)).

The strategy we follow is to lift the situation to the usual contactization R x P which has been much
more studied. This naturally leads to consider an Ao-category whose objects are the lifts in R x P
of our starting Legendrians, and morphisms spaces are generated by Reeb chords. Moreover, the deck
transformations of the cover R — S! induce an Ayo-autoequivalence of this category. The rest of the
proof has two main ingredients:

(1) Functorial properties of the Legendrian invariants, which are used to bring us in a situation where we
can apply the correspondence result of Dimitroglou Rizell [10] between discs in the symplectization
R xR x P and polygons in P.

(2) Two algebraic results of independent interest about mapping tori of Ac-autoequivalences, that
allow us to bridge the gaps between the algebraic invariants we are interested in.

We now proceed to describe the organization of the paper and state our main results.

Algebra In Section 1, we briefly recall the definitions of 4-(co)categories and give references for
standard notions that we do not recall, such as (co)bar, graded dual and Koszul dual constructions. On
the other hand, we discuss in some detail the notions of modules over A.,-categories, as well as the
Grothendieck construction and homotopy pushout associated to a diagram of Aso-categories following
Ganatra, Pardon and Shende [24, Section A.4]. We use it to introduce the notion of “cylinder object for
an Ao-category”, which is supposed to mimic the corresponding notion in homotopy theory.

Mapping torus of an A ..-autoequivalence In Section 2,' we define the mapping torus associated to a
quasi-autoequivalence t of an A-category A as the Ao-category

AUA—— A
MT(7) := hocolim l
A

n Section 2, Aoso-categories are always assumed to be strictly unital (see Paragraph (2a) in Seidel’s work[36]).
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Observe that this terminology was also used by Kartal in [26], but we do not know if the two notions
coincide. When considering an 4 -autoequivalence t: .4 — A, we always assume that .4 is equipped
with a Z-splitting of ob(A) compatible with t, which is a bijection

Z x E = ob(A), (n,E)— X"(E),

such that T(X"™(E)) = X"T1(E) for every n € Z and E € & (see Definition 2.2). This naturally turns .A
into an Adams-graded A .-category, where the Adams degree of a morphism in A(X*(E), X/ (E")) is
defined to be j —i. It then follows that the mapping torus of t is also Adams-graded.

Section 2 contains two results about mapping tori of A-autoequivalences: we choose to only state the
most important ones in this introduction. We denote by FF[#,,] the augmented Adams-graded associative
algebra generated by a variable ¢, of bidegree (m, 1). Observe that if C is a subcategory of an A »-category
D with ob(C) = ob(D), then C & (¢,,F[t;,] ® D) is naturally an Adams-graded Ao-category, where the
Adams degree of t,’,‘z ® x equals k. Besides, if C is an Ao-category equipped with a Z-splitting of ob(C),
we denote by C° the full A.-subcategory of C whose set of objects corresponds to {0} x £. Finally, we
use the functor C +— Cp, of Definition 1.27.

Theorem A Let © be a quasi-autoequivalence of an As-category A, weakly directed with respect
to some compatible Z-splitting of ob(.A). Assume that there exists a closed degree 0 bimodule map
[ Am(—, =) = Am(—,1t(=)) such that f: An(X'(E), X/ (E")) = An(X*(E), X' TUE")) is a
quasi-isomorphism for every i < j and E, E’ € £. Then there is a quasi-equivalence of Adams-graded
Aoso-categories

MT(7) ~ A% & (tmF[tm] ® Am[ f (units)~1]°).

Remark (1) In Ganatra’s work [22], the chain complex of .4-bimodule maps from the diagonal bimodule
A(—, —) to some .A-bimodule B is called the two-pointed complex for Hochschild cohomology of A with
coefficients in . According to [22, Proposition 2.5], this complex is quasi-isomorphic to the (ordinary)
Hochschild cochain complex of A with coefficients in 5. In particular, the bimodule map f in Theorem A
defines a class in the Hochschild cohomology of A,, with coefficients in A, (—, t(—)).

(2) The Aso-category which computes the mapping torus in Theorem A is very similar to the categories
studied by Seidel in [35], with main difference the presence of curvature in Seidel’s setting.

(3) The use of the functor C — C,, in Theorem A is not of any deep importance. It was convenient for
us to introduce it here for our application to Legendrian contact homology (see Theorem B).

Chekanov-Eliashberg DG-algebra In Section 3, we recall the definition and functorial properties of the
Chekanov—Eliashberg DG-category associated to a family of Legendrians in a hypertight contact manifold.

Legendrian lifts of exact Lagrangians in the circular contactization In Section 4, we start with a
family
L=(L(E)ges, E=11,...,N},
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of mutually transverse compact connected exact Lagrangian submanifolds in a Liouville manifold (P, A),
and we study a Legendrian lift of L in the circular contactization (S' x P, ker(df — 1)). More precisely,
we assume? that there are primitives fz: L(E) — R of AMr(g)such that 0 < f; <--- < fy < %, and
we consider the family of Legendrians

A°:= (A°(E)pee.  where A°(E) = {(fp(x).x) € (R/Z)x P | x € L(E)}.

We denote by CE(A°) the Chekanov—Eliashberg category of A°, by Fuk(L) the full subcategory of
—

Fuk(P) (see for example [36, Chapter 2]) with objects the Lagrangians L(E), and by Fuk(L) its directed

subcategory (see [36, Paragraph (5n)]).

In order for the latter algebraic objects to be Z-graded, we assume that H; (P) is free, that the first Chern
class of P (equipped with any almost complex structure compatible with (—dA)) is 2-torsion, and that
the Maslov class of the Lagrangians L(E) vanish. As explained in Section 3.1, the grading on CE(A®)
depends on the choice of a symplectic trivialization of the contact structure along a fiber g = S x {ag}.
We denote by CE”, (A°) the Chekanov—Eliashberg DG-category of A° with grading induced by the
trivialization

(€°no- da®) == (ho x C" dx Ady).,  ((6.d0). (hay(v).v)) > (8. ap). > ™ O (v)),
where ¥ : (Tyy P, —dAq,) == (C",dx A dy) is a symplectic isomorphism.
In this setting, CE” , (A®) is augmented (with the trivial augmentation) and Adams-graded (by the number
of times a Reeb chord winds around the fiber). As above, we denote by [F[z,] the augmented Adams-
graded associative algebra generated by a variable ¢,, of bidegree (m, 1). Moreover, we denote by
E(—) = B(—)* (graded dual of bar construction) the Koszul dual functor (see work by Lu, Palmieri, Wu
and Zhang [29, Section 2] or Ekholm and Lekili [17, Section 2.3]). We say that Koszul duality holds for

an augmented Adams-graded Ao-category A if the natural map 4 — E(E(A)) is a quasi-isomorphism
(see [29, Theorem 2.4] or [17, Definition 17]).

Theorem B  Koszul duality holds for CE”_, (A®), and there is a quasi-equivalence of augmented Adams-
graded A -categories
%

E(CE”(A®)) ~ Fuk(L) & (t2,F[t2,] ® Fuk(L)).
Remark Koszul duality has many important consequences, see for example [29] or [17]. In particular,
Theorem B implies that there is a quasi-equivalence of augmented Adams-graded DG-categories

—
CE”,(A°) ~ E(Fuk(L) @ (t2,F[t2,] ® Fuk(L))).

Observe that in the particular case when the Lagrangians are spheres, this formula is closely related to
Conjecture 6.3 in [35], which was also discussed by Ganatra and Maydanskiy in the appendix of [5].

2This can always be achieved by applying the Liouville flow in backwards time.
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We now give a corollary of the latter result. If B is a (unpointed) space, we consider its one-point
compactification B* and view it as a pointed space (with basepoint the point at infinity). If moreover X
is a pointed space, we consider the half-smash product of B and X,

XxB:=XAB*

(where A denotes the smash product of pointed spaces). Finally, if ¥ is a pointed space, we denote by
QY its based loop space.

Corollary If L is a connected compact exact Lagrangian and A° is a Legendrian lift of L in the circular
contactization, then there is a quasi-equivalence of augmented DG-algebras

CE!,(A°) ~ C_«(QUCP>® x L)).

Acknowledgments This work is part of my PhD thesis that I did at Nantes Université under the
supervision of Paolo Ghiggini and Vincent Colin, who I thank for their guidance and support. I also thank
Baptiste Chantraine, Georgios Dimitroglou Rizell and Tobias Ekholm for helpful discussions. Finally, I
thank the anonymous referee for suggestions that helped improve the exposition of the paper. The work
presented in this article is supported by Villum Fonden, Villum Investigator grant 37814.

1 Algebra

In the following, IF denotes the field Z /27Z. Vector spaces are always over [F.

Definition 1.1 An A.,-category A is the data of
(1) a collection of objects ob A4,
(2) for every objects X, Y, a graded vector space of morphisms A(X, Y),
(3) afamily of degree 2 — d linear maps
nh AXo, X)) ® -+ @ A(Xy—1. Xg) — A(Xo. Xa)
indexed by the sequences of objects (Xy, ..., Xg), d > 1, such that
Z Md_(j_i)H ol @u™® ld—j) -0,
0<i<j=<d
forall d > 1.
Definition 1.2 An As,-cocategory C is the data of
(1) a collection of objects obC,
(2) for every objects X, Y, a graded vector space of morphisms C(X, Y),
(3) afamily of degree 2 — d linear maps
:cX0. X)) > EP P X X))@ ®C(Xay. Xg)
d>1 X1,....,X5—1
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indexed by the sequences of objects (Xy, ..., Xg), d > 1, such that
e foralld > 1,
Z (li®8j—i®1d—j)05d—(j—i)+l =0,
0<i<j<d
¢ the map
C—[]c®. xm @¢4(x)az.
d>1

factors through the inclusion P, C ®d 1] a>1C ®d

Remark If £ is some set, denote by F¢ the semisimple algebra over IF generated by elements ey, X €&,

such that )
ex ifX=Y,

0 ifX#Y.

To any Aso-category A with ob(A) = £, we can associate an A o-algebra over F¢ where

ex €y ={

* the underlying graded vector space is P x,yee AX,Y),
e given x € A(Xy, Yp),

x if X = X,

et = {0 it X # Xo.

e operations are the same as on A.

X 1fY=Y0,

d  x-ey=
e ey {0 ifY # Yo,

Conversely, to any Aso-algebra over F¢, one can associate an Ao-category with ob(.A) = £. Note that
the above discussion also applies to Aso-cocategories. As a result, the theory of A.o-(co)categories with
£ as set of objects is equivalent to the theory of Aso-(co)algebras over Fg.

In this paper, we will appeal to several standard notions in the theory of A-(co)categories that we choose
not to recall: instead, we list them and give corresponding references.

¢ For A-(co)maps, (co)augmentations and (co)bar, graded dual, Koszul dual constructions, see [17,
Section 2] (where everything is written in the language of Aoo-(co)algebras over F¢).

¢ For general definitions and results about A -categories (in particular about homotopy between Ao-
functors, homological perturbation theory, directed (sub)categories and twisted complexes), see [36,

Chapter 1].

¢ For quotient of A-categories, see [30], and for localization of A4 -categories, see [23, Section 3.1.3].

Finally, we will use the following notion.

Definition 1.3 An Adams-graded vector space is a ZxZ-graded vector space: if x is an element in
the (i, j) component, we say that i is the cohomological degree of x, and j is the Adams degree of x.
An Adams-graded Ao-(co)category is an Ao-(co)category enriched over Adams-graded vector spaces,
where the operations are required to be of degree 0 with respect to the Adams grading. See [29] for a
treatment of Koszul duality in the context of Adams-graded A.-algebras.
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1.1 Modules over A ,-categories
Let C, D be two Aso-categories, and let A, B be two full subcategories of C, D, respectively.

Definition 1.4 A (C, D)-bimodule M consists of the following data:
(1) for every pair (X, Y) € ob(C) x ob(D), a graded vector space M(X,Y),
(2) a family of degree 1 — p — ¢ linear maps
pm:C(Xo, X1) Q-+ QC(Xp—1, Xp) @M(Xp, Yg) ®D(Yy, Yq—1)®---QD(Y1, ¥o) = M(Xo. Yo)
indexed by the sequences
(Xo, ..., Xp, Yo,...,Yy) €0b(C)?T! x ob(D)?T!,

which satisfy the relations

>t pe( L) F Y ).
+ > e pp (o)) =0,

A degree s morphism ¢ : M| — M between two (C, D)-bimodules consists of a family of degree s — p—¢q
linear maps

1:C(Xo, X1) ®---QC(Xp—1, Xp) @ M1(Xp, Yg) ®D(Yy, Yy—1) ®--- @ D(Y1, Yo) = M3(Xo, Yo)
indexed by the sequences
(X0, Xp, Yo,...,Y,) €0b(C)?T! x ob(D)?F!,
The differential of such a morphism is defined by
Mo p (Dt )= > 1o ()t )+ Y 1 oy (o))
+Zz(...,u,...,ﬂp(... ,...)+ZMM2 et (o)),
Finally, the composition of #;: M| — M, and t,: M, — M3 is such that

Mtode (11 12) (vt ) =Y (w0,
We denote by Mod¢ p the DG-category of (C, D)-bimodules.
Definition 1.5 Let @1, ©,:C — D be two Ao-functors. Then there is a C-bimodule D(®P¢(—), ©,(—))
defined as follows:
(1) On objects, it sends (X7, X3) to D(P1 X1, P X5).
(2) On morphisms, it sends a sequence (..., ),...) in
C(Xo, X1) X+ XC(Xp—1, Xp) X D(P1 Xp, P2 Xp41) XC(Xp41, Xpt2) X+ XC(Xptq, Xp+q+1)
to

1@, (=),02(=) (-2 Yo ) =D pup(Pr( ) Py ( )y Pa(L ), Do),
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In the following, we will focus on left C-modules, which correspond to (C, IF)-bimodules. We denote by
Mod¢ the DG-category of (left) C-modules.

Definition 1.6 Let 1: M; — M, be a degree 0 closed C-module map. We say that ¢ is a quasi-
isomorphism if the induced chain map ¢: M(X) = M, (X) is a quasi-isomorphism for every object X
in C. (See [24, Section A.2] for a discussion on quasi-isomorphisms between Ao-modules.)

Definition 1.7 Letz,7': M; — M, be two degree 0 closed morphisms of C-modules. A homotopy
between ¢ and ¢’ is a C-module map /: M; — M, such that

{1 = o, (D).
Definition 1.8 (see [36, Paragraph (11); 24, Section A.1]) There is an Ao-functor
C—>Mode, Y —C(-,Y),
called the Yoneda A.-functor, defined as follows. For every object X,

Also, a sequence
(X(),...,Xd_l) GC(Xo,Xl)X'--XC(Xd_I,Xd)

acts on an element « in C(Xy4, Y) via the operations

Me(—v) (X0, .o Xg—1,u) = pe(Xo, ... Xg—1.U).
Finally, let
y = (y()»' . »yp—l) EC(Y(), Yl) X"'XC(Yp—lv Yp)

be a sequence of morphisms in C. Then the Yoneda functor gives a morphism of C-modules
ty:C(—,Yy) = C(—.Yp)
which sends every sequence (xg, ..., X _1,u) as above to
pe(Xos -+ Xd—1,U, Yo, -+ -, Yp—1) € C(Xo, ¥p).
We have the following important result.

Proposition 1.9 (Yoneda lemma) The Yoneda Ao-functor
C—>Mode, Y —C(—,Y),

is cohomologically full and faithful.
Proof This is Lemma 2.12 in [36], and also Lemma A.1 in [24]. O
The Yoneda lemma has the following easy consequence. We state it for future reference.

Corollary 1.10 Every closed C-module map f:C(—, X)) — C(—,Y) is homotopic to the C-module map
If(ey) induced by f(ex) € C(X,Y). (see Definition 1.8).
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Proof According to the Yoneda lemma, / is homotopic to z, for some closed x in C(X, Y). Thus, there
exists a C-module map /4:C(—, X') — C(—, Y) such that

f = tx + 1aog, ().
Evaluating the latter relation at the unit ey € C(X, X) gives
[(ex) = x + pg(hex).
Therefore, x is homotopic to f(ex ), and this implies that 7 is homotopic to Zf(,) by the Yoneda lemma.
Finally, we have that /" is homotopic to Zf(cy)- |

Pullback of A ,,-modules

Definition 1.11 (see [36, Paragraph (1k)] ) Let ®:C — D be an Ao-functor. Then there is a DG-functor
®*: Modp — Mode, N +— O*N,
defined as follows. Let N be a D-module. For every object X,
O*N(X) = N(DX).

Also, a sequence
(X(), - ,Xd_l) € C(Xo, Xl) Xoeoe XC(Xd_], Xd)

acts on an element u € ®* N (X) via the operations
par A (X0, -y Xa—1,u) = D ppr (@ (X, oy Xiy—1)s ey P iy -+ Xd 1), 1)
Finally, let £: N7 — N, be a D-module map. Then the above functor gives a C-module map
Ot PN —> DN,
which sends every sequence (xg,...,X4_1,u) as above to

D*t(xg, ..., Xg_1.u) = Zt(cb(xo, s Xip—1)s e DX X g—1) ).

Remark 1.12 Let ®: C — D be an Ay.-functor, and let ¥: D — £ be another A-functor towards a
third Ao-category £. Then ®* o U* = (W o ®)* as DG-functors.

Definition 1.13 Let Y be an object of C, and let ®: C — D be an Ao-functor. Then there is a degree 0
closed C-module map tg: C(—,Y) — ®*D(—, ®(Y)) which sends any sequence

(x0, ..., xg_1,u) €C(Xg, X1) x+--xC(Xg_1, Xq) xC(Xg,Y)
to
te(xg, ..., x4_1,u) = DP(xg,...,xXq7_1,u) € D(PXy, ®Y).
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Quotient of 4 ,,-modules

Definition 1.14 (see [23, Section 3.1.3]) There is a DG-functor
Modc — Mode; 4, M > M,

defined as follows. Let M be a C-module. For every object X,

A\M<X)=M<X)ea( D C(X,Al)m®--~®C(A,,_1,Ap>[1]®M(Ap)).

Also, a sequence
X = (x9,...,xfi_1) €C/AXi, Xiy1) (0<i<d-1)

l
acts on an element

0 pPa—1
via the operations

MA\M(x07 s ,xd_l,ll)

0 i—1 ] —1 ] -1
= ) x®--®x; '®uelxg, ... x) )X @xi T Qu
OSi'Sp'oi,vldeSpd ) ) )
i<jifd=0 + Z X8®'-'®X6_1®/,LM(.X6,...,X5‘I 9”)'

Finally, let t: M; — M, be a C-module map. Then the above functor gives a C/.A-module map
AL M1 — g\ M2 which sends every sequence (xo,...,Xg_1,u) as above to

. : 4
Aat(xo,....xg_1,u) = Z X® - ®Xh 1®t(x6,...,x5" ).
0<i<po

Relations between pullback and quotient of 4 ,-modules

Definition 1.15 Let ®: C — D be an Ao-functor such that ®(A) is contained in B, and let X be a fixed
object of C. Then, for each D-module N, there is a chain map 4\ (®*N)(X) — N (PX) which sends
an element
u= (..., x?7u) e p (P*N)(X)
to
ZCD(XO,...,xi1_1)®---®<1>(xi’,...,xp_1)®u € pN(PX).

This defines a natural transformation between the functors N+ 4\ (®*N)(X) and N = s\ N (PX) from
Modp to Ch. In other words, for every D-module map ¢: N7 — N3, the following diagram of chain

complexes commutes:
(PN (X) —— pN(PX)

lA\(‘P*t) lzs\f

A(PFN)(X) —— pN2(DPX)
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Remark 1.16 Let Y be an object of C, and let ®: C — D be an A o-functor such that ®(A) is contained
in B. Let : C /A — D/B be the Ax-functor induced by @ (see [30, Section 3]). Localize the morphism
te:C(—,Y) —> ®*D(—, ®Y) of Definition 1.13 at A and evaluate at X to get a chain map

CIAX.Y) = 1 C(—.Y)(X) 2% 4\ (0*D(—, ®Y))(X).
Then the composition of this map with the chain map
A(P*D(—, PY))(X) — p\D(—, PY)(PX) = D/B(PX, PY)
of Definition 1.15 is the chain map P: C/AX,Y)— D/B(dX, dY).
Proposition 1.17 Let ®: C; — C, be an Aso-functor such that ®(A;) is contained in A,, and let
®:Cy /Ay — C3/ Ay be the Axo-tunctor induced by .

Let Yy be an object of Cy and set Y, := ®(Y;). Assume that there exists a C;-module Mc;, a degree 0
closed C;-module map t¢, : Ci(—, Y;) — Mc,; and a degree 0 closed C-module map ty: M¢, — ®* Mg,
such that the following diagram of C;-modules commutes:

Ci(—.Y)) —2 D*Cy(—, Yz)

ltcl ld)*l‘cz

Me, L) d* Me,
(see Definition 1.13 for the map t). Then for every object X in Cy, there is a chain map
us g \Me, (X) = 4\ Mec, (PX)

such that the following diagram of chain complexes commutes:

C1/AI(X,Y]) —2 Cy/ Ay (DX, Y2)

l.Al\tcl l/Az\tCZ

Al\Mcl (X) — Az\Mcz((DX)

I I

11
Me, (X) ———— Me, (PX)
(the two lowest vertical maps are the inclusions). If, moreover,

(1) for every objects A in A;, the complexes M¢,; (A) are acyclic,
(2) the maps g\tc;: 4\Ci(X,Y;) = a,\Me; (X) are quasi-isomorphisms, and
(3) the map ty: M, (X) — ®*Mc, (X) is a quasi-isomorphism,

then the map d: 0y JAL(X, Y1) = Cy /A (DX, Y,) is a quasi-isomorphism.
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Proof We apply the functor P +— 4,\P to the first diagram, we evaluate at X and we use the natural
map of Definition 1.15 to get the commutative diagram of chain complexes

A\te

ANCH (= Y)(X) —— 4\ (P Co(=. T2))(X) —— 4,\Ca(—.T2)(PX)

lAl\fcl lAl\(Cp*tcz) lAz\tcz

A\fo
apMe, (X)) ———— 4 \(P*Me)(X) ———— 4\ M, (PX)

Then we compose the horizontal maps and we use Remark 1.16 to get a commutative diagram of chain
complexes

C1/ A1 (X, Y1) —2 Cy/ Ay (DX, Y?)

l-Al\tcl lAz\tCZ

.AI\MCI (X) — Az\MC’z(CDX)
This proves the first part of the proposition because the following diagram of chain complexes commutes:

A\Me, (X) —= A\ Mo, (®X)

I )

11
Me, (X) —— Me, (®X)
The second part of the proposition follows directly with [23, Lemma 3.13]. |
Cone of module maps

Definition 1.18 Let : M; — M be a degree 0 closed morphism of C-modules. We denote by
My
Cone(M; > Mjy) = lt
Mo
the C-module M defined as follows. For every object X in C,

M(X) = M (X)[1] & M (X)
as graded vector space, and any sequence
(%0, -+ Xg—1) € C(Xo, X1) X ++- X C(Xg—1, Xq)
acts on an element u1 @ u, in M(Xy;) via the operations
pm(Xo, ... Xg—1,u1 D us)
= fiat; (X0 oo Xg—1, 1) @ (Brty (X0, - - oo Xg—1, U2) + (X0, ..., Xg—1.U1)).

If we have two C-module maps ¢: M; — M, and ¢': M| — M., then we set

M
r N P
M

Moy My EBM/Z

S
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Proposition 1.19 Consider a diagram of C-modules

M L) M
l/l‘i ltz
;b
M [ — M;
where all the morphisms are of degree 0 and closed. Then any homotopy h: M — M3 between

/

2 2
1= fygoa, (t1,12) and 1= puygeq. (81, 15)

induces a degree 0 closed C-module map

My
t/
M M),

defined by
(X0, ... Xg—1, Uy ®uy uy) =h(xo,....Xg—1,u1) +102(X0. ... Xg—1,U2) +15(X0. . ... Xg_1, U3).
Proof The only thing to check is that /’LI{/Iodc (t) = 0, which is straightforward. a

Remark If 7: M; — M; is a degree 0 closed C-module map, then
4\ Cone(M; L5 M,) = Cone( 4\ M A AM2).
1.2 Grothendieck construction and homotopy pushout

An exposition on Grothendieck constructions and homotopy colimits in the context of A -categories can
be found in [24, Appendix A]. We recall here definitions and basic facts that will serve us. In this section,
Aoso-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).

Definition 1.20 Consider a diagram of A -categories

]
c —— D
cpzl
D,

The Grothendieck construction of this diagram is the 4-category G such that:
(1) The set of objects is ob(C) Ll ob(D;) Ul ob(D5).

(2) The space of morphisms between two objects X and Y is given by
C(X.,Y) if X,Y € ob(C),

Di(X.Y) if X,Y € ob(D;),

Di(®; X,Y) if X €ob(C) and Y € ob(D;),
0 otherwise.

g(X.Y) =
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(3) The operations involving only objects of C, respectively of D;, are the same as in C, respectively
in D;, and for every sequence
(X052 Xp—1, Y420+ -5 Zg—1)
€C(Xo, X1)® - ®C(Xp—1,Xp) ®G(Xp,Yo) ®Di (Yo, Y1) ®--- @ D; (Yy—1.Yy),
we have
MG (X0, .o Xp—1, ¥V, 205+ Zg—1)
= ZMD[((Di(XO’ ces X —1)s e Pi(Xp—iy s Xp1), Vi 200 -y Zg—1)-

An adjacent unit of G is any morphism in G (X, ®; (X)) which corresponds to the unit in D; (P; (X), D; (X)).
The homotopy colimit ‘H of the above diagram is the localization of G at its adjacent units.

Proposition 1.21 Let G be the Grothendieck construction of a diagram

Then any strictly commutative square

induces a functor 0: G — &£ defined as follows. On the objects, o acts on D; as ¥;, and on C as
YV, 0d; = W, 0 Dy; on the morphisms, o acts on D; as Vi, on C as W1 o &1 = W, o ®,, and it sends any

sequence
(Xo,...,Xp_l,y,Zo,...,Zq_l)
€C(Xo, X1) Q-+ ®C(Xp—1, Xp) ®G(Xp. Yo) ®D;i (Yo, Y1) ® - @ Di(Yg—1.¥g)
to
0(X0,. s Xp—1,Y:20s-+-+2g—1)
:Z\Pi(d)i(xo,...,xil_l),...,<I>,-(xp_,-r,...,xp_l),y,zo,...,zq_l).
Proof This is a straightforward verification. |

Proposition 1.22 [24, Lemma A.5] A strictly commutative diagram of A-categories

B +— A —— B,

I

Dy +—C —— D,
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induces an A -functor from the Grothendieck construction of the top line to the Grothendieck construction
of the bottom line which preserves adjacent units. If moreover each vertical arrow is a quasi-equivalence,
then the induced functor

A—— B4 C—— D
hocolim l — hocolim l
B, D,

is a quasi-equivalence.

Proposition 1.23 Consider two diagrams of A -categories

@ 7
C —— Dy c —— D
q>2l and \pzl
D, D,

If ®; and W; (fori € {1,2}) are homotopic (see [36, Paragraph (1h)]), then the homotopy colimits of the
diagrams above are quasi-equivalent.

Proof Let Gy and G be the Grothendieck constructions of the above diagrams.

Let T; be a homotopy from ®; to W;. This means that

Qi+ W =Y Ti(.opeo ) )+ (W) W (L) T () @) @i 1),
We consider the functor k: Gy — G; such that
K|C =1id, K|'D,’ :idDi,
and which sends every sequence
(’y’)EC(X()?X])X”.XC(XP—I?XP)XgO(vaYO)XDl(YO’Yl)X”.XDI(Yq—lqu)
to
kConye )= pup (W) B (L) T (L) @i ) D)y
if p is positive, and to

®(y,...) =idp, (3, ...)

otherwise. Using the facts that ®;, ¥; are Ao-functors, that 7; is a homotopy from ®; to W;, and
gathering the terms depending on if they contain Tl.k (...) or y, we conclude that « satisfies the Ao-
relations. This proves the result because « is a quasi-equivalence sending the adjacent units of Gy onto
those of G;. O
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1.3 Cylinder object and homotopy

Let A, , A7 and AT be three copies of an A,-category .A. We denote by C the Grothendieck construction
of the diagram _

Ap 4 A

ol

AL

and we let ¢ ,t7,tT: A — C be the strict inclusions with images A , Ay, A~ respectively. Finally, we
denote by W the set of adjacent units in C, and we let Cyl 4, = C[WC_I] be the homotopy colimit of the
diagram above. We say that Cyl 4 is a cylinder object for A.

We denote by 7 : C — A the Aoo-functor induced by the commutative square

A9y g

o e
A4

(see Proposition 1.21).

Proposition 1.24 The following diagram of A, -categories commutes:

Lt

AUA =—=C T3 A
idulid
Moreover, 7 sends W to the set of units in A, and the induced Aoo-functor 7 : Cyl 4 — A[{units} '] is a
quasi-equivalence.
Proof The facts that 77 o (¢ U¢T) =1id L id and that & sends W to the set of units in 4 are clear. We
now show that 7 : Cyl , — A[{units}~!] is a quasi-equivalence.
First observe that it is enough to show that the map
7:CylLy(X,Y) — Al{units} (7 X, 7Y)

is a quasi-isomorphism for every objects X, ¥ in A because every object of C can be related to one of
A by a zigzag of morphisms in W, which are quasi-isomorphisms in Cyl 4 (see [23, Lemma 3.12]).
Our strategy is to apply Proposition 1.17. Let Y =t (Z) be an object in A . For the C-module we take
C(—.u(2))
_ T
MC - L \ )

C(—.11(2) C(—.11(2))

tan:C(—,1y(Z2)) - C(—.1a(Z)), Ae{l, T}

where

is the C-module map induced by the adjacent unit in C(t7 (Z), tao(Z)) (see Definition 1.8)). For the A-
module we simply take A(—, Z). Besides, we let to: C(—, t1 (£)) — M, be the C-module inclusion, and
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welettq: A(—, Z) — A(—, Z) be the identity map. We now define the morphism 7y: M — n* A(—, Z).
Consider the diagram of C-modules
t
C(— u(Z)) —= C(—,17(2))
ltIT ltn
C(=,11(Z)) —2= 7" A(=, Z)

Observe that this diagram is commutative, and thus it induces a strict C-module map ty: M¢ — n* A(—, Z)
according to Proposition 1.19. It is then easy to see that the following diagram commutes:

C(—,1a(2)) 2 7*A(—, Z)
ltc lﬂ*tA
Me — 2 s ¥ A(—, Z)
To conclude the proof, it suffices to check the three items of Proposition 1.17. Observe that the pair

(A(—, Z), t4) trivially satisfies the two first items.

We check that M. satisfies the first item of Proposition 1.17. Let Z’ be an object in A and let w be the
adjacent unit in C(t7(Z'), 11 (Z’)) (the proof is the same for the adjacent unit in C(t7 (Z"), t7(Z")) N We).
Then

Me(Conew) = Cone(M(1(Z) “X 7% M (') = Cone(C(uu(2'). e (2)) 2222 k),
where
C(Z),1u(2))
K = o T
C((Z),11(2)) C (Z).17(2))

Observe that ué (w, =):C(t1(Z"),11(Z)) — K is injective so its cone is quasi-isomorphic to its cokernel,
which is the cone of t;1:C(i;(Z), 11 (Z)) — C(t;(Z"),17(Z)). The latter map is a quasi-isomorphism,
so Mc¢(Cone w) is acyclic.

We now check that (Mg, t¢) satisfies the second item of Proposition 1.17. Observe that
w1 C(—.11(2)

—1T
we

-1Me =
w; ¢ wliL

C
w1 C(=.1L(2) w1 C(=.17(2)
and W tc: chlc(—, 11 (Z2)) — chl./\/l(j is the inclusion. Thus if X is some object of C, the cone of
Wt te:Cyl (X, 11 (2)) — WC—IMC(X ) is quasi-isomorphic to the cone of the multiplication in Cyl 4 by
an element of W¢, which is a quasi-isomorphism. Thus the map wle: Wc—lc(—, 11(2)) — Wl Me
indeed is a quasi-isomorphism.
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It remains to check the third item of Proposition 1.17, which is that the map z: M¢c(X) - n*A(—, Z)(X)
is a quasi-isomorphism when X is in A . This is true because Mc(t1(Z")) = C(t1(Z)),11(2)) =
A(Z',Z), and

to: A(Z', Z) = Mc((Z) » n* A=, 2)(t(Z))) = A(Z', Z)

is the identity. a
Remark Proposition 1.24 can be thought as saying that Cyl 4 is a cylinder object for A.

Proposition 1.25 If two A -functors ®, V: A — B are homotopic (see [36, Paragraph (1h)]), then
there is an A~o-functor n: C — B which sends the adjacent units of C to the units in B and such that the
following diagram commutes:

=

3

iy
—_—
o
oy

o~

Proof On the objects, we set n(Xa) = O(X) = ¥(X) for every object X of Aand A € {1,1, T}. On
the morphisms, we set
Nay, =nla, =Y, nar =2

and ask for the restriction of 7 to
Ar(Xo. X1) Q-+ @ Ar(Xp—1, Xp) @ C(Xp, Xp4+1) @ AL (Xpi1, Xp42) @+ ® AL (Xp1g. Xptg+1)
to be W. It remains to define 7, for
(....x,...)
€A (X0, X1)® - @A (Xp—1. Xp) ®C(Xp, Xp1+1) RAT(Xpy1, Xp12) - @ AT(Xp+q- Xptg+1)-
For this we take a homotopy 7" between ® and W, which means that

O+ U= "TC...paC-o)ee )+ ps(@C. ) @) T P, B L)),

Then we let

n(....x,...)
:Zug(d)(...),...,CD(...),T(...),\If(...),...,\If(...),\If(...,x,...)\Il(...),...,\Il(...))
if p is positive, and n(x,...) = ¥Y(x,...) otherwise. |

1.4 Adjunctions between Adams-graded and non-Adams-graded

We end this section by describing specific adjunctions between the category of Adams-graded A -
categories concentrated in nonnegative Adams degree and the category of (non-Adams-graded) Aco-
categories.
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Definition 1.26 If V' is an Adams-graded vector space and m is an integer, we denote by V}, the graded
vector space whose degree # component is the direct sum of the bidegree (p, k) components of V', where
the sum is over the set of couples (p, k) € Z x Z such that p —mk = n.

Definition 1.27 If C is an Adams-graded A o-category, we denote by Cp, the (non-Adams-graded)
Aoso-category obtained from C by changing the grading so that

Cm(Xo, X1) = C(Xo, X1)m

Observe that any A -functor ®: C; — C;, between two Adams-graded A -categories induces an A o-
functor from (Cq)m, to (C2)m (that we still denote by @) which acts exactly as ® on objects and morphisms.
This defines a functor C — C,, from the category of Adams-graded A ,-categories to the category of
(non-Adams-graded) A -categories.

We denote by F[z,,] the augmented Adams-graded associative algebra generated by a variable #,, of
bidegree (m, 1), and by t,,[F[t,,] its augmentation ideal (or equivalently, the ideal generated by #,,).

Definition 1.28 If D is a (non-Adams-graded) A-category, we denote by F[t,,] ® D the Adams-graded
Aoso-category such that

(1) the objects of F[t,,] ® D are those of D,

(2) the space of morphisms from Y; to Y5 is F[t,,] ® D(Y7, Y3), and if y € D(Y, Y3) is of degree j,
t,’f, ® y is of bidegree (j + mk, k),

(3) the operations send any sequence (t,]ff ® Vos---s t,IZ"_l ® y4—1) of morphisms to

MJF[tm]®D(f,’f1° ® Y0, 1K1 @ yg_1) = thotTha—t @ (o, ..., va_y).

Observe that any A-functor W: D; — D, between (non-Adams-graded) A o-categories induces an
Aoso-functor F[t,,] ® D1 — Fltm] ® D, which acts as ¥ on objects, and which sends any sequence

rﬁo+...+kd_1 QWY (yg, ..., V4—1). This defines a functor

(l,l;O ® Vo, ... ,l,]ff_l ® y4—1) of morphisms to ¢
D+ F[t;u] ® D from the category of (non-Adams-graded) A .o-categories to the category of Adams-graded

Aso-categories.

Definition 1.29 Let C be an Adams-graded Aoo-category concentrated in nonnegative Adams degree,
and let D be a (non-Adams-graded) Aso-category. To any Aso-functor Wy, : Cy — D, we associate an

Aso-functor W: C — FF[t,,] ® D which sends a sequence (xo, ..., xg7—;), where x; is of bidegree (i;, k;),
to
W(Xg, ... Xg_1) = thotFha—1 @ W, (xo...., x4_1).

This defines an adjunction between the category of Adams-graded Ao-categories concentrated in non-
negative Adams degree and the category of (non-Adams-graded) A.-categories.
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2 Mapping torus of an A4,,-autoequivalence

In this section, we introduce the notion of mapping torus for a quasi-autoequivalence of an Ao-category,
by analogy with the mapping torus associated to an automorphism of a topological space. This terminology
was also used in [26], but we do not know if the two notions coincide. The two main theorems of this
section allow us to compute this mapping torus under different hypotheses.

Remark In this section, Aoo-categories are always assumed to be strictly unital (see [36, Paragraph (2a)]).
2.1 Definitions and main results
2.1.1 Definitions

Definition 2.1 Let t be a quasi-autoequivalence of an Adams-graded Ao,-category .A. The mapping
torus of t is the Ao-category

AuA - 4
MT(7) := hocolim iduidl
A

(see Definition 1.20).

Remark (1) We use the terminology “mapping torus” by analogy with the analogous situation in the
category of topological spaces. Indeed, if f is an automorphism of some topological space X, then the
mapping torus of f

My = (X x[0,1])/((x,0) ~ (f(x), 1))

is the homotopy colimit of the diagram
xux 2y

idI_Iidl
X

(2) The terminology “mapping torus of an autoequivalence of A -categories” also appears in [26], where
the corresponding DG-category is denoted by M<, and it is used in [25] to distinguish open symplectic
mapping tori. According to [25, Appendix A], M; is equivalent to the homotopy colimit of

Ico®T
A—0PH o4
ip®id

whereas MT(7) should rather be equivalent to the homotopy colimit of
T
A=A
1

(we did not define MT(7) using the latter diagram because [24] only defines homotopy colimits of
diagrams indexed by posets).

(3) The mapping torus of a quasi-autoequivalence is also Adams-graded, because it is the localization of
an Adams-graded Ao-category at morphisms of Adams degree 0.
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Definition 2.2 Let A be an A-category. A Z-splitting of ob(.A) is a bijection
Zx & =>o0b(A), (n, E)— X"(E),
where £ is some set. If such a splitting has been chosen, we define the Adams-grading of a homogeneous
element x € A(X'(E), X’/ (E)) tobe j —i. This turns A into an Adams-graded A4.-category.
Let 7 be a quasi-autoequivalence of .A. We say that a Z-splitting of ob(.A) is compatible with t if
T(X"(E)) = X"TI(E)
foreveryn € Z and E € £.
We say that A is weakly directed with respect to a Z-splitting of ob(A) if
AXY(E), X/ (E") =0
for every i > j and E, E’ € £ (we use the term “weakly directed” Aoo-category because the notion is

slightly more general than that of directed Ao-category defined by Seidel in [36, Paragraph (5m)]).

Remark Compatible Z-splittings naturally arise in the context of Z-actions. A strict Z-action on an

Aoso-category A is a family of Ao-endofunctors (7,),ez such that 7o =id4 and 7;4; = 7; 0 T (see

[36, Paragraph (10b)]). If the induced Z-action on ob(.A) is free, then any section o of the projection

ob(A) — &, where £ is the set of equivalence classes of objects in A under the Z-action, gives a Z-splitting
Z x &= o0b(A), (n, E)— t(0(E)),

which is compatible with the automorphism t;.
2.1.2 Main results
First result

Definition 2.3 Let t be a quasi-autoequivalence of an A .-category A equipped with a compatible
Z-splitting of ob(.A). Assume that 7 is strict, ie ¢ =0 for d > 2, and acts bijectively on hom-sets. In
this case, we define an Adams-graded Ao-category A; as:

(1) The set of objects of A; is .
(2) The space of morphisms A;(E, E’) is the Adams-graded vector space given by
AEE) = (@) AXE) () ) ~ ).
i,jeZ
(3) The operations are the unique linear maps such that for every sequence
(0. -+ Xg—1) € A(X™(Eo), X" (E1)) x -+ X A(X"=1 (Eq—1). X' (Eq)),
we have
pa, ([xol. - ... [xa—1]) = [ralxo, ..., xa-1)];

where [—]: A(X'(E), X/(E")) — A.(E, E’) denotes the projection. (It is not hard to see that
such operations exist and satisfy the 4 -relations.)
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Remark When A is a DG-category, the latter construction is known as the orbit category, see [27; 28,
Section 4.9]. In [26, Section 4], it is denoted by A#Z (considering that t induces a Z-action on .A).

Theorem 2.4 Let v be a quasi-autoequivalence of an Ao-category A equipped with a compatible
Z-splitting of ob(A). Assume that t is strict and acts bijectively on hom-sets. Then there is a quasi-
equivalence of Adams-graded A, -categories

MT(7) ~ A;.

Remark (1) The Ayo-category A; is the (ordinary) colimit of the diagram used to define MT(7). Thus,
Theorem 2.4 can be thought of as a “homotopy colimit equals colimit” result.

(2) In [26], given a DG-category A and an autoequivalence t acting bijectively on hom-sets, the author
defines a DG-category M := (O(%O)dg ® A)#Z (see [26] for the notation). In the case where T moreover
induces a free Z-action on objects, Theorem 2.4 says that relating MT(7) and M; amounts to comparing
AH#Z and (O(T ¢)ag ® AL,

Second result We denote by F[#,,] the augmented Adams-graded associative algebra generated by a
variable t,,, of bidegree (m1, 1). Observe that if C is a subcategory of an A -category D with ob(C) = ob(D),
then C @ (tF[¢] ® D) is naturally an Adams-graded Ao-category, where the Adams degree of k@ x
equals k. Besides, if C is an Aoo-category equipped with a Z-splitting of ob(C), we denote by C° the full
Aoso-subcategory of C whose set of objects corresponds to {0} x £. Finally, we use the functor C — C, of
Definition 1.27.

Theorem 2.5 (Theorem A in the introduction) Let t be a quasi-autoequivalence of an A -category A,
weakly directed with respect to some compatible 7. -splitting of ob(.A). Assume that there exists a closed
degree 0 bimodule map f: Ap(—, —) = Am(—, ©(—)) such that

fiAm(XN(E), X (E") = An(X'(E), X/ T1(E"))

is a quasi-isomorphism for every i < j and E, E’ € £. Then there is a quasi-equivalence of Adams-graded
Aoso-categories
MT(7) 2 A), & (tmF [tm] ® Ap[ f (units) ~'1°).

Outline of the section In Section 2.2, we consider an 4 -category A equipped with a Z-splitting of
ob(.A) and a choice of a closed degree 0 morphism ¢, (E) € A(X"(E), X"T1(E)) for every n € Z and
every E € £. We give technical results about specific modules associated to this data. This will be used
in the proof of Theorem 2.5 with ¢, (E) = f(exn(E)).

In Section 2.3, we consider the Grothendieck construction G of a slightly different diagram than the one
in Definition 2.1, together with a set Wy of closed degree 0 morphisms. The idea is that the localization
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H=G [Wg_l] is the homotopy colimit of a diagram obtained from the one in Definition 2.1 by a cofibrant
replacement of the diagonal functor A LI A — A. Thus it is not surprising that # is quasi-equivalent to
the mapping torus of t. Moreover, we prove technical results about specific modules over G that will be
used in the proofs of Theorems 2.4 and 2.5.

In Section 2.4, we prove Theorem 2.4. We first define an Ao-functor ®: G — A; which sends Wy
to the set of units in A;. Then we prove that the induced A.o-functor d:H — Ac[{units}™1] is a
quasi-equivalence. To do that, our strategy is to apply Proposition 1.17 using the results of Section 2.3
about the specific G-modules.

In Section 2.5, we prove Theorem 2.5. We use the fact that G is “big enough” (there are more objects and
morphisms than in the Grothendieck construction of the diagram in Definition 2.1) in order to define an
Aso-functor ¥y, : G, — A, (see Definition 1.27). This induces an A o -functor

U: H — Fltm] ® Ap[ f({units}) ™.
Then we prove that for every Adams degree j > 1, and for every objects X, Y in H, the map
U H(X,Y)* — (Fltm] ® Al f (units}) ™) (WX, WY )*/

is a quasi-isomorphism (if V is an Adams-graded vector space, V*»/ denotes the subspace of Adams
degree j elements). To do that, we apply once again Proposition 1.17 using the results of Sections 2.2
and 2.3 about the specific modules over A, and G respectively. This allows us to finish the proof of
Theorem 2.5.

2.2 Results about specific modules

In this section, we give technical results that will allow us to apply Proposition 1.17 in the proof of
Theorem 2.5.

Let A be an Ao-category equipped with a Z-splitting of ob(.A). Assume that we have chosen, for every
neZ and every E € &, a closed degree 0 morphism ¢, (E) € A(X"(E), X"T1(E)). Moreover, assume
that we have chosen a set W4 of closed degree 0 morphisms which contains the morphisms ¢, (E).

Remark According to Definition 2.2, the Z-splitting of ob(A) naturally induces an Adams-grading
on A. However in this section, we do not consider A as being Adams-graded.

In the following, we fix some element £ € £. When we write an object X” or a morphism ¢, without
specifying the element of £, we mean X" (E,) or ¢,(E) respectively. Recall that

tcn : A(_v Xl’l) g A(_v Xn+1)
denotes the .A-module map induced by ¢, € A(X", X"*1) (see Definition 1.8).
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Definition 2.6 We set M 4 to be the .A-module

. A(=, X9 A(=. X1 Dicz A(— X7
My = Xj \L \ l \ l@iez(id’tci)
. A(—, X9 A(—, X1 Picz A=, X7

(see Definition 1.18). Besides, we set t’;: A(—, X") — M4 to be the A-module inclusion for every
nez.

The first result highlights a key property of the module M 4.

Lemma 2.7 For every n € 7, the closed A-module map ¢, ! ote,  A(—, X™) — M 4 is homotopic to
e A(=, X)) — My,

Proof Consider the degree —1 strict .A-module map s: A(—, X"*) — M 4 which sends a morphism in
A(X, X™) to the corresponding shifted element in .A(X, X”)[1]. Then an easy computation gives

1
;LModA(s) ”+ ote, + 1. |

In the proof of the two results below, we will use specific .A-modules. If p is a fixed nonnegative integer,

we set
LA XPTH A=, XP)
‘p—2 e,y ‘
Kp = \ l \ lld
o AEXPTY A= XP)
and
A(—=, X7P) A(=, XP*1

Ep _ & l/ w
+1)

Moreover, we will consider the sequences of .A-modules (F] ;,1 )g>0- (F2 » )g>0 starting at F 1(7) =F 1(,) =0

and with
A(—, Xp—q+1) .. A(—, XP)
ng wﬂ X”; l
—, X P+l A(—, XP)
and
A(—, XP) .
~q l‘cp t6p+q 1
12 \
A(—, XPT9)
for g > 1.

The following lemma is mostly technical. It will be used in the proofs of Lemmas 2.9 and 2.21.
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Lemma 2.8 Assume that for every i < j and that for every E € £ the chain map
) ‘ . . , i1
WA= ¢): AKX (E). X7) — A(XH(E), XT+)

is a quasi-isomorphism. Then for every k < n and for every E € &, the inclusion AXK(E), X™) —
Mu(X*k(E))isa quasi-isomorphism.

Proof The cone of the inclusion A(X k(E ), X)) > M (X k (FE)) is quasi-isomorphic to its cokernel,
which is K,_1(X*(E)) ® K.(X*(E)).

We have to show that these complexes are acyclic. Observe that

(FZ_I(Xk(E)))qEO and (fg(Xk(E)))qZO

are increasing, exhaustive, and bounded from below filtrations of K,_;(X*(E)) and K, (Xk(E)Y),
respectively. For every g > 1, we have
AXK(E), X"
-1
Fi_ (xF(E)/ ) (X (E)) = Jia
AXK(E), X"
and
AXK(E), xmHaT)
~ ~ fepgge
Fix* )/ Fi~H (X (£) = o
AXK(E), X"+4)

The first of the two latter complexes is clearly acyclic, and the second one is acyclic by assumption on
the morphisms ¢;. Thus the entire complex K, (X kKE) @ K, (X*(E)) is acyclic, which is what we
needed to prove. O

The following two lemmas will be used later in order to apply Proposition 1.17.

Lemma 2.9 Assume that for everyi < j < k and for every E € & that the chain maps
WA= AXC(E). X))~ AX(E). X7,
Walei (E), =) AXTHHE), XMHY) — A (B), X*+

are quasi-isomorphisms. Then for every (n, E) € Z x £, the complex M 4(Cone ¢, (E)) is acyclic.

Proof We have

134 4 (en(E), =)
-

M a(Cone ¢ (E)) = Cone(M(X" ! (E)) Ma(X"(E))),
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so we have to prove that ,ufwA(cn (E), —): MA(X"TI(E)) = M4(X"(E)) is a quasi-isomorphism.
Observe that we have the commutative diagram

24, (en(E),—)
Ma(XHI(E)) — 24 » Mu(X"(E))

] I

2 _
A(Xn+1(E),Xn+2) Halen(E),—) A(XH(E),Xn+2)

The bottom horizontal map is a quasi-isomorphism by assumption on the morphisms ¢; (£). Moreover,
the vertical maps are quasi-isomorphisms according to Lemma 2.8. This implies that /,L'%VIA(C,,(E ), —)is
indeed a quasi-isomorphism. |

Lemma 2.10 The A-module map Wil 1 WA—1A(—, X" — Wit M 4 is a quasi-isomorphism for every
ne’z.

Proof Let X be some object of .A. We want to prove that the chain map
W;ll‘f\: WA—l.A(X, X" — WA—lMA(X)

is a quasi-isomorphism. Observe that

AW X, X0) AW (X Xt :
worMaX) = \ l x W_ltcl
AW (X, XO) ’ AW ! (X xh

and the chain map Wi e W—1A(X X" — W—IMA(X) is the inclusion. The cone of the latter
chain map is then quasi- 1somorph1c to its cokernel, which is Wit K,_1(X)® Wil Kn(X ). Observe that
(W—1 F, a _1(X))g>0- (W—1 Fy, Fa (X))g>0 are increasing, exhaustlve and bounded from below filtrations of
Wil K,—1(X), Wit K, (X ), respectively. For every ¢ > 1, we have

AW (X, Xm9)
wot Fyy(X)/ o1 FZ LX) = lid
AW (X, X"9)

d
an AW (X, Xn=1+a)

~ ~ willen_144
AW (X, X7H9)

The first of the two latter complexes is clearly acyclic, and the second one is acyclic because ¢;,—144
belongs to the set W4 by which we localized (see [23, Lemma 3.12]). Thus the entire complex
Wit K, 1(X)® Wil K, (X) is acyclic, which is what we needed to prove. a
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2.3 The A,-category and modules for the mapping torus

In this section, we consider an Ao-category G, together with a set Wy of closed degree O morphisms. We
prove that H =G [Wg_l] is quasi-equivalent to the mapping torus of 7, and we prove technical results about
specific G-modules that will allow us to apply Proposition 1.17 in the proofs of Theorems 2.4 and 2.5.

Let 7 be a quasi-autoequivalence of an A.-category A equipped with a compatible Z-splitting of ob(.A).
If A is a copy of A, we denote by X'} (E) the object of Aa corresponding to (1, E) € Z x £.

2.3.1 The Grothendieck construction G The A.-category G will be the Grothendieck construction
of a slightly different diagram than the one in Definition 2.1. The idea is to introduce an A.-category C
together with a set of closed degree 0 morphisms W, such that the localization C[WC_I] is a cylinder object
for A. Observe that this kind of cofibrant replacement is common in homotopy colimits computation, and
indeed we need it to prove Theorem 2.5.

Definition 2.11 Let A, , A and AT be three copies of .A. We denote by C the Grothendieck construction
(see Definition 1.20) of the diagram

AILAT

i

Al

and we let ¢, (7, t7: A — C be the strict inclusions with images A, , Ay, AT, respectively. Finally, we
denote by W the set of adjacent units in C, and we let Cyl 4, = C[WC_I] be the homotopy colimit of the
diagram above.

Definition 2.12 Let A_, A4, A, be three copies of .A. We denote by G the Grothendieck construction

of the diagram

AU Ay 24T 4,

LLLILT\L

C

Also, we denote by W the union of W, and the set of adjacent units in G, and we set

H=g[W;'].

According to Proposition 1.24, Cyl , can be thought as a cylinder object for A. Therefore, the following
result should not be surprising.

Lemma 2.13 The mapping torus of T is quasi-equivalent to H.
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Proof Let 7:C — A be the Aso-functor induced by the commutative diagram

A —4 s AT

b

AL —4 A
(see Proposition 1.21). We get a commutative diagram

u
C ) Uer A_I_l.A idut .A

l’f lid lid
A A-UAy — 5 — A

which induces an Aso-functor y from G to the Grothendieck construction of the bottom line (see
Proposition 1.22). Observe that x sends W to the set U of units in .A. Now, according to Proposition 1.24,
the Aoo-functor 7: Cyl 4 =C [WC_I] — A[U 1] is a quasi-equivalence. According to Lemma A.6 in [24]
(called “localization and homotopy colimits commute”), this implies that the 4 -functor induced by ¥,

A_UAL s 4, _ A_U AL 4,
hocolim llLUlT [W; '] %5 hocolim liduid 1,
C A

is a quasi-equivalence. This completes the proof because the source of ¥ is exactly H, and its target is
quasi-equivalent to the mapping torus of t. a

2.3.2 Modules over G In the following, we fix some element £, € £. When we write an object X Z
without specifying the element of £, we mean X'} (Es). Moreover, we denote by
10 G(—, X1) — G(—, X0
the G-module map induced by the adjacent unit in G(X 7, X] SHAD) (see Definition 1.8), where
. {1 if (8,0) = (+.9)
0 otherwise.

Definition 2.14 We denote by Mg the G-module defined by

e 9(=XY)  G=XD)) G- X G(—.xh -

e 41
Mg = \ lﬂ\ lu_\) l-ﬂ'\ l \

e G- XY G(—.XY) G(—.XY G- X

(see Definition 1.18). For practical reasons, we also consider the G-modules
Ca=xp
ML= t’/ \IIT) , nez.
G(—. X7 G(—. X1

We denote by t5: G(—, X, .0) — Mg the G-module inclusion.
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Remark We can write
Dez 6(— XD ®G(—, X]) ®G(—, X)

Mg = lGBnez(fﬁ-J’-’Mh:ff‘r,timti.)

Drez 9(— XS G(—. X]) & G(—, X7)

Pz (G(—. X" ®G(—, X))

Dnez(tatl,)
O e
Dnez (2 14 1)

@neZ M'l @neZ g(_’X.n)

The following two lemmas are analogs of Lemmas 2.9 and 2.10, respectively. They will be used later in

and also

order to apply Proposition 1.17.
Lemma 2.15 For every w in Wg, the complex Mg(Cone w) is acyclic.

Proof Let w be the morphism in Wg N G(X Ik (E), X #(E )) (the proof is analogous for the morphism in
Wg NG(XF(E), X¥(E))). Then

Mg(Cone w) = Cone(Mg (XX(E)) #2122, \qo(xk(E))
— @ Cone(9(XE(E), X3) Mg, (xk(EY)).

We want to prove that M%\/tg (w, —): Q(X-lli (E), XT) — M’,f(XI]‘ (E)) is a quasi-isomorphism for every n.
Observe that the following diagram of chain complexes is commutative:

w3y, (w,—)
GXA(E), x1) — s MU(XF(E))

H ug(w,~) I

G(XF(E), X7) ——— G(XF(E). X})
The rightmost vertical arrow is injective, so its cone is quasi-isomorphic to its cokernel, which is the
cone of 77 : g(X}‘ (E), X[)— Q(XIk (E), X'). Since the latter map is a quasi-isomorphism, the cone
of /"L.%\/[g (w, —): g(X#(E), X1 — ./\/l’l(XIk (E)) is quasi-isomorphic to the cone of

uGw, =): GXF(E), X7) — G(Xf (E), X7).
The latter map is a quasi-isomorphism, so we conclude that ,uf\/lg (w, —): Q(X$ (E), X1)—> ML (XIk (E))
is a quasi-isomorphism for every #n, and thus Mg(Cone w) is acyclic.
Now let w be the morphism in Wg N G(X J’ﬁ (E), X$ (E)) (the proof is analogous for the morphism in
Wg NG(XK(E), X*(E))). Then

u’g\/lg(wa_)
—g

Mg(Cone w) = Cone(Mg (X% (E)) Mg (XX (EY))

2 —
= @Cone(g(X_llf(E),X_’ll) Mg (W, —) K"),
n
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where
g(xk(E), x1)

e

G(Xk(E), x1) G(XK(E), X1t

Observe that uf\/[g (w, —): G(X- -’lf(E ), X)) — K" is injective (it is basically an inclusion once we unravel
the definitions), so its cone is quasi-isomorphic to its cokernel, which is the cone of

1. G(XE(E), X}) — G(XE(E), X,

The latter map is a quasi-isomorphism because 7 is a quasi-equivalence. This implies that the cone of
/‘3\/19 (w, —): Q(X-’F(E), X)) — K" is acyclic for every n, and thus Mg (Cone w) is acyclic.

It remains to consider a morphism w in Wg N G(X jﬁ (E), X, .k+1 (E)) (the proof is analogous for the
morphism in Wg N G(XX(E), X¥(E))). Then

2
Mg(Cone w) = Cone(Mg(X5T1(E)) Hag @07, Mg (XK (E)))
2 (—
= P Cone(G(XET1(E), x7) Lua™D, gom),
n

where
GXK(E), X171

,, !
K= % \
e

G(Xk(E), x1~) G(xk(E), x1

Observe that ;Lf\/[g (w, =): (X, .k TI(E), X") — K" is injective, so its cone is quasi-isomorphic to its
cokernel, which is the cone of t_”ﬁ-l : Q(X_’ﬁ (E), X_’|’__1) — Q(X_]f_ (E), X-l’l_l). The latter map is a quasi-
isomorphism, so we conclude that the cone of /wag (w, —): G(X, .k+1(E), X)) — K" is acyclic for
every n, and thus Mg (Cone w) is acyclic. |

Lemma 2.16 The H-module map Wi Ig: Wi G(—, X0 — Wil Mg is a quasi-isomorphism.

Proof We fix an object X in G, and we want to prove that w6t w G(X, X% — Wg—lMg(X) is a
quasi-isomorphism. Observe that

GIW; (=, XY gIw; (-, X9)
Wg_lMg = \ lwg_ltN lwg_w‘l
w1lte
gw; (-, x7Y * GIW; (=, X0
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and that the chain map Wg—ltg: Wi G(X, X% — Wg—lMg(X ) is the inclusion. The cone of the latter
chain map is then quasi-isomorphic to its cokernel, which can be written K’ @ K", where

GIWg (X, X gIwg (X, X7

’ -1 -1
K' = \ Wg—lf“‘\) Wg—1t+T
-
wllT

aw L xh aw; (X, X7
and
gw; (X, X9) GIW; (X, XP)

0 0
1 —1t —1t
K" = ltOJ_ WQIIJ_ Wg IT
w; ' —
g

GIwg (X, X?)

Observe that the maps defining the chain complex structures in K’ and K" are all quasi-isomorphisms
(see [23, Lemma 3.12]). Thus it is not difficult to show using an increasing exhaustive and bounded from
below filtration of K’ and K” that these complexes are acyclic (compare the proof of Lemma 2.10). This
implies that the map w6 wy G(X, X% — Wg—lMg(X ) is a quasi-isomorphism. m|

2.4 Proof of the first result

Let 7 be a quasi-autoequivalence of an A..-category A equipped with a compatible Z-splitting of ob(.A).
Assume that t is strict and acts bijectively on hom-sets.

Observe that there is a strict Aoo-functor o: A — A; which sends X”(F) to E, and which sends
x € AX'(E), X7 (Ey)) to[x] € Ac(E1, E,). Besides, let 7: C — A be the Ano-functor induced by the
commutative diagram

1

A A
lid lid
A A
(see Proposition 1.21). Then the diagram of Adams-graded Ao-categories

AU AL 24T 4,

L] ULTl l/o’

C—F 5 A,

is commutative because o o T = ¢. Moreover, the induced Aoo-functor ®: G — A is strict, and it sends
W to the set of units in A;. Let

®: H — A [{units} ']
be the A-functor induced by ®.
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According to Lemma 2.13, H is quasi-equivalent to the mapping torus of 7. Moreover, A.[{units}~!] is
quasi-equivalent to A;. Thus, Theorem 2.4 will follow if we prove that Disa quasi-equivalence. Our
strategy is to apply Proposition 1.17. Observe that it suffices to prove that

®: H(X.Y) — A[{units}~1)(dX, DY)

is a quasi-isomorphism for every object X, Y in A? (recall that A? denotes the subcategory of A,
generated by the objects X2 (E), E € £) because every object of G can be related to one of A? by a
zigzag of morphisms in Wy, which are quasi-isomorphisms in A (see [23, Lemma 3.12]).

In the following, we fix some element E, € £. When we write an object X} without specifying the
element of £, we mean X} (E). We consider the corresponding G-module Mg and the G-module map
tg:G(—, X, .0) — G of Definition 2.14. Moreover, we set

My, i=A(—, Es) and ty4, :=1id: A(—, Eo) = My, .
Lemma 2.17 There exists a G-module map ty: Mg — ®* M 4, (see Definition 1.11 for the pullback
functor) such that:

(1) The following diagram of G-modules commutes:

G(—. X0) —25 ®* A (—, Eo)

l/tg l@* ta,=id

Mg # O* M4,
(see Definition 1.13 for the map tg).
(2) Forevery E € &, the map ty: Mg(X2(E)) — ®* M4, (X2(E)) is a quasi-isomorphism.
Proof Observe that the diagram of G-modules

tn
g(—. XM 1Ty g(—, xm)

n
l/tli ltq;

G(—, XT) —2 0* My,

is commutative, so that it induces a G-module map M" — ®* M A, (see Proposition 1.19). Now observe
that the following diagram of G-modules commutes:

Dz @1t ,)
Bz (G(— XD ®G(—, X)) " @,z G(—, X1
l@nez(tzleatﬂ_T) l/l‘@
@nGZ M’l ) (D*MAT
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We let t9: Mg — ®* M 4, be the induced G-module map. It is then easy to verify that the following
diagram of G-modules is commutative:

G(—. X0) —25 ®* A (—, Eo)

l/tg l@* ta,=id

Mg S NN O* M 4,
We now prove the second part of the lemma. We have
Mg(X2(E) = P o(x2(E). X1 = P AX*(E). X"
n n
and
. k ny _ 0 * 0 —
to: P AXK(E). X™) = Mg(XO(E)) > @* M, (X2(E)) = A (E. Eo)
n

is the sum of the projections, which is an isomorphism. |

Lemma 2.18 For every E € &, the chain map

®: H(X2(E), X0) — A [{units} '|(E, Eo)

is a quasi-isomorphism.
Proof According to Lemmas 2.15, 2.16 and 2.17, the assumptions of Proposition 1.17 are satisfied. O

As explained above, Theorem 2.4 follows from Lemma 2.18 since H is quasi-equivalent to the mapping
torus of 7 (see Lemma 2.13) and A[{units}~!] is quasi-equivalent to A,.

2.5 Proof of the second result

Let t be a quasi-autoequivalence of an Ao-category A equipped with a compatible Z-splitting of ob(.A).
Assume that the following holds:

(1) A is weakly directed with respect to the Z-splitting of ob(.A) (see Definition 2.2).

(2) There exists a closed degree 0 bimodule map f: Ay (—, —) — Am(—, t(—)) (see Definitions 1.4
and 1.5) such that f: Ay (X' (E), X/ (E")) = Am(X*(E), X/ *t1(E")) is a quasi-isomorphism
foreveryi < jand E, E' € €.

Remark It follows from Corollary 1.10 and 7 being a quasi-equivalence that the chain maps

1i,, (= flexig)): Am(X'(E"), X7 (E)) = An (X (E), X/ T1(E)),
1h (fexi(gy): =) Am(XTTHE), XFTUE")) — Am (X7 (E), X*T1(E")),

are quasi-isomorphisms for every i < j <k and E, E' € £.
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In the following, we set
cn(E) := flexn(g))
foreveryn e Z, E € £, and

Wy, :={cn(E) |ne€Z,E € £} U {units of Ay, }.

2.5.1 Generalized homotopy Recall that we introduced a functor B + B, from the category of
Adams-graded A-categories to the category of (non-Adams-graded) Ao-categories. Also, recall that
we introduced Adams-graded A -categories C and G in Definitions 2.11 and 2.12, respectively. Observe
that C;,, and G, are the Grothendieck constructions of the diagrams

(ADm —2 (AT)m (A2)m U (A)m 25 (Adm
idl and LJ_I_ILTl
(AJ_)m Cm

respectively. We denote by W, the set of adjacent units in Cy,, and by W, the union of W, and the
set of adjacent units in Gy,.

We would like to define an Aso-functor Wy, : G, — A, which sends Wy, to Wy,,. According to

Proposition 1.21, it is enough to prove the following result.

Lemma 2.19 There exists an Aoo-functor n: Cpy — Am which sends W, to W4, and such that
noty =noty =id, noit =r.

Proof We first define 7 to be id on (A )m, (Af)m- and to be T on (AT).,,. Observe that this completely
defines 1 on the objects. Also, we ask for 7 to act as the identity on the sequences involving an adjacent
morphism from (Aj ), to (AL)m.

It remains to define 7 on the sequences involving an adjacent morphism from (Aj);, to (AT),. Consider
a sequence of morphisms

(X0, -+ s Xp+q)
€ Cm(XIIO(EO), XIZI (Eq))x---% Cm(X]lp_1 (Ep—1)s Xllp (Ep)) % Cm(lep (Ep). X-l|£7—~_1 (Ep+1))

X Con (XL (Epy1). X2 (Epg2)) X - X Con(XE TN (Epg). XL (Epyga1))-
Observe that

Cn (X} (E), X{ (E")) = C(X{(E), X{(E")) = Cu(X5(E), X} (E')) = A (X' (E), X7 (E)).

Then we set

(X0, ..., Xp+q) i= f(X0,. ., Xp—1,Xp, Xpt1s... s Xpigs1) € A (X (Ey), rXiP+‘1+1(Ep+q+1)).
The functor n we defined satisfies the Aoo-relations because f: Ay (—, —) = Am(—, 7(—)) is a closed
degree 0 bimodule map. Moreover, 1 sends We,, to Wy, by construction. O
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Remark First observe that
Cyla,, = CnlW5, 1= (CIWs  Dim = (CYL)m.

According to Lemma 2.19, the functor 7 induces an A4oo-functor 1: Cyl 4, — .Am[W;ni]. Moreover,
Lemma 2.19 implies that the following diagram commutes:

(A—i-)m Aam ot
Aem OLT\L \

Cyly,, —— Am[WZ!]

)“Cm OLJ_T M
(A-)m

(Ag,: Am— .Am[W;Wll] and Ac,, : Cip — Cm[WC;l] denote the localization functors). Since Cyl 4, should
be thought of as a cylinder object for .A,,, (see Proposition 1.24), we should think that the functors A 4,,,
and A 4,, o T are homotopic (even if they do not act the same way on objects) and that 7 is a generalized
homotopy between them (see Proposition 1.25 for a justification of this terminology).

2.5.2 Relation between G and A, Using the A-functor n: C,, — Ay, of Lemma 2.19, we get a
commutative diagram of (non-Adams-graded) A -categories

(AD)m U (A)m ~25 (A

L] I_ILT\L lid

Cn ————— Am

and the induced A o-functor Wy, : G, — A, (see Proposition 1.21) sends W, to Wy, (see Lemma 2.19).
Let

Uyt Hom = G W5 1 — AW ]
be the Ao-functor induced by W,,. Observe that, since A is assumed to be weakly directed and since
the Adams degree of A comes from the Z-splitting of ob(.A) (see Definition 2.2), # is concentrated in
nonnegative Adams degree. In particular, we can apply the adjunction of Definition 1.29 to W,,, which

gives an Ao-functor
U:H =GW5 '] — Fltm] ® Am[W3 ']

We would like to prove that for every Adams degree j > 1, and for every objects X, Y in A? (recall that
A? denotes the subcategory of A, generated by the objects X2 (E), E € £), the map

U H(X, V) = (Ftn] @ AW D(PX, WYY =F) ® AW 1(PX, UY)

is a quasi-isomorphism, (IF ,J,, is the vector space generated by t,{,; also recall that if V' is an Adams-graded
vector space, V*/ denotes the subspace of Adams degree j elements). Our strategy is once again to
apply Proposition 1.17.
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In the following we fix some element E,, € £. When we write X} or ¢, without specifying the element
of £, we mean X} (E) or ¢, (Es), respectively. We consider the corresponding G-module Mg, and the
G-module map #g: G(—, X} ) — G of Definition 2.14. Moreover, we consider the Ay,-module M 4,, and
the A;;-module maps

0, Am(—, X") = My, nel,

associated to the morphisms (¢,),ez as in Definition 2.6.

The following result is a first step in order to define a G,,-module map (29) ;1 (Mg)m — Y, M 4, as in
Proposition 1.17.

Lemma 2.20 For every n € Z, the diagram of G,,-modules

'
Gom(— XY —TT 5 Go(—. X)
ltﬁ l‘l’;‘n’f\;] oty
n \p;;ztftmo Ym *
gWI(_’ XJ_) —_— lpmMAm

commutes up to homotopy.

Proof First observe that 17 G (—, X[') = Am(—., X"), and (f W M 4,, = M4, because Wy, 01y =id
(see Remark 1.12). Moreover, it suffices to show that the .4,,;,-module maps
(Wt oty otf ) =1t oif(ty, otf ) Am(—, X") = My,
and
GOt ony,, otft) =3 0 (tw,, o1 1): Am(=, XT) = Ma,,
are homotopic because
Gm(XK XIY=0 if A£1
On the one hand,
Z-Zm °© L}k (l\I/m ° I?J_) = [Zlm ‘
On the other hand, ¢} (tg,, o /1) Am(—, X") = Am(—. X n+1y is closed (as composition and pullback
of closed module maps), and
iy (tw,, otyr)(exn) = nlexn) = cx
according to Lemma 2.19. Therefore, (] (ty,, o /) is homotopic to t., according to Corollary 1.10,
and thus tfl::l o1} (ty,, o tj+) is homotopic to tﬁ;l otc,. Now according to Lemma 2.7, t;":nrl ote, is
homotopic to 73 . ad

We can now state the result establishing the existence of a G,,-module map (f9)m: (Mg)m — VM4,
as in Proposition 1.17.

Lemma 2.21 There exists a Gp,-module map (t9)m : (Mg)m — Vj, M 4,, such that the following holds:
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(1) The following diagram of G,,-modules commutes:
Gon (=, X2) =5 Wi A (=, X©)

l/t Sm l/\y;;q t 9\ m

(Mg)m % LI'I;’l;’l'/\/l-Airt

(2) Forevery E € £ and j > 1, the induced map to: Mg(X2(E)) — Fltm] ® ¥} M4, (XO(E)) (see
Definition 1.29) is a quasi-isomorphism in each positive Adams degree.

Proof Using Lemma 2.20 and Proposition 1.19, we get a G,,-module map 7 : (M7), — W M 4, for
every n € Z (see Definition 2.14 for the G-modules M?%). Observe that the diagram of G,,-modules

@neZ(’ﬂoeatn o)
ez (Gn(—. X2) & Gu(—. X)) s @z Gm(—. X
l/@”ez(tﬁi@ti'r) l@nez "Il;kntf\m oty
Dnez 13
Drez(MDm z > Wi My,

is commutative (the composition is id for —-terms and 7 for +-terms), so that it induces a G,,-module
map (f0)m: (Mg)m — W5, M 4,,. It is then easy to verify that the following diagram of G,,-modules is

commutative: ,
G (=, X0) —"5 W Ap(—. X°)

l/tgm l\ll;"n t,(c)\m

(Mg)m — s W Ay,

It remains to show that the map 7g: Mg(X2(E))*/ — F}, ® M4, (X°(E)) is a quasi-isomorphism for
every E € £ and j > 1. Note that

Mg(X2EN* = G(XUE), X]) = AX°, X7)
and the map
AXO(E), X7y = Mg(X2(E)* 2% F] ® Ma,, (X°(E))

is the inclusion. Now observe that the following diagram of chain complexes commutes:

AXOE), X7y — 2 Tl @ My, (XO(E))

H I

Fiy ® Am(XO(E), X7) == Fj}, ® An(X°(E), X7)

The inclusion A, (X°(E), X7) < My, (X°(E)) is a quasi-isomorphism according to Lemma 2.8
(observe that it is important here that j is strictly greater than 0). Therefore the map

to: AXX°(E), X7) - Fl, @ Ma,,(X°(E))
is a quasi-isomorphism, which is what we needed to prove. O
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Lemma 2.22 Forevery E € £ and j > 1, the map
U HXD(E). XD — (Flim] ® Am[ Wi, DX (E), X)) = Fj), ® Am[W 3, [(X°(E). X°)

is a quasi-isomorphism.

Proof Using the first part of Lemma 2.21 and Proposition 1.17, we know that there exists a chain
Map Um': 1 (Mg)m(XO(E)) — Wl My, (X©) such that the following diagram of chain complexes
commutes:

Hm(X2(E), XO) —2"s AW (XO(E), X°)
l/Wg_n/} fgm lWZI tgm
w1 (Mm(X)(E) —— ot Ma,, (¥ X)

] J

(Me)m(XO(E) — 0 My, (W X)

Observe that

W=t (Mo)m (X)(E)) = 1 Mg (X)) (E))m.
(Me)m(X)(E)) = Mg(X.)(E))m.
Applying the adjunction of Definition 1.29 to the last diagram, we get the commutative diagram of
Adams-graded chain complexes

HXO(E), X0) —L Flin] ® An[WEII(XO(E), X°)

~1lg id®,,—1 1)
W, 1 —1
l ¢ l W am Am

Wg—lMg(X.O(E)) —— Fltm]® wil Ma, (W X)

] ]

MG(XO(E)) ——— Fltm] ® M, (¥ X)

Specializing to the components of fixed Adams degree j > 1, we get the commutative diagram of chain
complexes
HOXO(E), X0 —Ts B AW J(XO(E), X©)
le—l tg id® Wil 9,

W Ma(XD(EN™ —— Fip ® ot Maa,, (U X)

] I

Mg(XQ(EN* — 2 S Tl @ My, (ImX)
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Using Lemmas 2.15, 2.16, and [23, Lemma 3.13], we know that all the vertical maps on the left are
quasi-isomorphisms. Similarly, using Lemmas 2.9, 2.10, and [23, Lemma 3.13], we know that all the
vertical maps on the right are quasi-isomorphisms. Moreover, the second part of Lemma 2.21 states that
the bottom horizontal map is a quasi-isomorphism. Thus, the chain map

U HXQE), X ™ — Fl @ Au[W (XO(E), X°)

is a quasi-isomorphism. |

2.5.3 End of the proof We end the section with the proof of Theorem 2.5. Now that we have proved
Lemma 2.22 which takes care of the positive Adams degrees, we have to treat the zero Adams degree part
(recall that #H is concentrated in nonnegative Adams degree because A is assumed to be weakly directed).

Let Z be the (nonfull) 4 -subcategory of H with
ob(Z) ={XQ(E)|E€&} and I(X,Y)=G(X.Y)® (EBH(X, Y)*’j)
izl

(recall that if V is an Adams-graded vector space, we denote by V*/ its component of Adams degree ;).
Lemma 2.23 The inclusion Z — H is a quasi-equivalence.

Proof Observe that the inclusion Z < H is cohomologically essentially surjective because every object
of H can be related to one of Z by a zigzag of morphisms in Wg, which are quasi-isomorphisms in H
(see [23, Lemma 3.12]). Therefore, it suffices to show that the inclusion

GX(E). X)(Eo)) = H(X](E). X (Eo)™*
is a quasi-isomorphism for every E, E, € £.

Let E, be an element of £. When we write an object X7 without specifying the element of £, we
mean X/(E,). Recall that we introduced a pair (Mg, #g) in Definition 2.14. According to Lem-
mas 2.15, 2.16 and [23, Lemma 3.13], the inclusion Mg(X2(E)) — Wg—lMg(X.O(E)) and the map
wyilg: H(XO(E), X0) — Wg_lMg(X_O(E)) are quasi-isomorphisms for every E € £. Also, observe
that

Mg(X(E)™ = G(X)(E), X).

The result then follows from the commutativity of the diagram

GXI(E), X0) === G(XO(E), X0) ———= G(X2(E), X?)
MG(X(EN™® "y MG(XO(EN*0 " — H(XI(E), XO)* D
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The following diagram of Adams-graded A.o-categories is commutative:

H—L s Fltm] @ AnW7 ]

T —" A, @ (Flim] ® AnlW, 1)
(recall that if C is an Ao-category equipped with a splitting ob(C) =~ Z x &, then we denote by C° the full
Aso-subcategory of C whose set of objects corresponds to {0} x £). Moreover, since A is assumed to be

weakly directed with respect to the Z-splitting of ob(A), Lemma 2.22 implies that the bottom horizontal
Aso-functor is a quasi-equivalence. Therefore we have

H = Ay, @ (Fltm] ® Au[W'10).
Recall that W4, = f({units}) U {units}, so that
AmW 1~ Al f ({units}) "],

This concludes the proof of Theorem 2.5, since H is quasi-equivalent to the mapping torus of 7 (see
Lemma 2.13).

3 Chekanov-Eliashberg DG-category

Recall the following terminology.

Definition 3.1 A contact form is said to be hypertight if its Reeb vector field has no contractible periodic
orbits.

In this section, we recall the definition of the Chekanov-Eliashberg DG-category associated to a family
of Legendrians in a contact manifold equipped with a hypertight contact form «. We also describe the
behavior of the Chekanov—Eliashberg DG-category under change of data.

In the following, (V, &) is a contact manifold of dimension 2 + 1. In order to have well defined gradings
in Z, we assume that H; (V) is free and that the first Chern class of & (equipped with any compatible
almost complex structure) is 2-torsion. We will need the following definition.

Definition 3.2 We say that a Legendrian submanifold A in (V, §) is chord generic with respect to a
contact form o if

(1) for every Reeb chord c: [0, T] — V of A, the space D(pITi,a (T¢ o)) is transverse to Ty A in &,

(2) different Reeb chords belong to different Reeb trajectories.
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3.1 Conley-Zehnder index

Let @ be a hypertight contact form on (V, &) and let A be a chord generic Legendrian submanifold
of (V, ). In the following, we define the Conley—Zehnder index of a Reeb chord of A starting and ending
on the same connected component (such chords are called pure).

We briefly recall what is the Maslov index of a loop in the Grassmannian of Lagrangian subspaces in C”.
We refer to [33] for a precise exposition. Fix a Lagrangian subspace K, and denote by X4 (K) the set of
Lagrangian subspaces in C” whose intersection with K is k dimensional. Consider the Maslov cycle

T =3(K)U---UZ,(K).

This is an algebraic variety of codimension one in the Lagrangian Grassmannian. Now if I" is a loop in
the Lagrangian Grassmannian, its Maslov index u(I') € Z is the intersection number of I' with X. The
contribution of an intersection instant #y is computed as follows. Choose a Lagrangian complement W of
K in C". Then for each v in I'(¢9) N K, there exists a vector w(¢) in W such that v + w(¢) is in I'(¢) for
every t near ty. Consider the quadratic form

0w = Fro.uw®)| _,

on I'(¢p) N K. Without loss of generality, Q can be assumed to be nonsingular and the contribution of 7,
to u(T') is the signature of Q.

Recall that H; (V) is assumed to be free. We choose a family (%41,..., A,) of embedded circles in V'
which represent a basis of H;(V'), and a symplectic trivialization of & over each A;. If y is some loop
in A, there is a unique family (a1, ..., a,) of integers such that [yc > aihi] is zero in Hq (V). Choose
a surface ¥, in V' such that

X, = V—Zaihi-
i

There is a unique trivialization of £ over X,, which extends the chosen trivializations over /;. Thus we get
a trivialization y ~1& ~ S x C” (where 7 is the dimension of A). We denote by I the loop of Lagrangian
planes in C" corresponding, via the latter trivialization, to the loop ¢ — T),(;)A. The Maslov index of
I' does not depend on the choice of the surface X, because we assumed 2¢;(§) = 0. This construction
defines a morphism Hi (A, Z) — Z, and the Maslov number m(A) of A is the generator of its image. In
the following, we assume that the Maslov number of A is zero.

Now, let ¢ be a pure Reeb chord of A (a Reeb chord is called pure if it starts and ends on the same
connected component of the Legendrian). We choose a path y.: [0, 1] — A which starts at the endpoint
of ¢, and ends at its starting point (), is called a capping path of c¢). We denote by y . the loop obtained
by concatenating y and c. Let (a1, ..., a,) be the unique family of integers such that [)70 —Y ;jaih ,-] is
zero in Hy(V'), and choose a surface X, in V such that

0X. =y — Zaih,‘.
i
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There is a unique trivialization of £ over ¥, which extends the chosen trivializations over /;. Thus we
get a trivialization )7;15 ~ S1 x C" (where n is the dimension of A). We denote by T, the path of
Lagrangian planes in C" corresponding, via the latter trivialization, to the concatenation of ¢ — T, ;) A
and  — D(p%a (T¢0)A). Since A is chord generic, I'¢ is not a loop: we close it in the following way. Let
I be a complex structure on C” which is compatible with the standard symplectic form on C” and such
that 7(T'¢(1)) = I'¢(0). Then we let T, be the loop of Lagrangian subspaces obtained by concatenating
I'; and the path z € [0, %] > e!IT(1). The Conley—Zehnder index of ¢ is the Maslov index of T;:

CZ(c) := ().
The Conley—Zehnder index of a Reeb chord does not depend on the choice of ¥, because the first Chern
class of £ is 2-torsion, and it does not depend on the choice of y. because the Maslov number of A vanishes.
Remark In the case where ¢(V, §) (where ¢(V, &) is the positive generator of (2¢1(§), H1(V))) or m(A)

is nonzero, the Conley—Zehnder index is well defined in Z /dZ, where

d = ged(c(V,§),m(A)).
3.2 Moduli spaces

Recall that (V, §) is a contact manifold such that H; (V) is free and the first Chern class of & (equipped
with any compatible almost complex structure) is 2-torsion. Let o be a hypertight contact form on (V, £)
and let A be a chord generic Legendrian submanifold of (V, &) with vanishing Maslov number. In the
following, we introduce the moduli spaces needed to define the Chekanov—Eliashberg category of A.

Definition 3.3 A Riemann (d+1)-pointed disk is a triple (D, ¢, j) such that

(1) D is a smooth oriented manifold-with-boundary diffeomorphic to the closed unit disk in C,
2) ¢ =(y4,...,¢1,C0) is a cyclically ordered family of distinct points on dD,

(3) Jj is an integrable almost complex structure on D which induces the given orientation on D.
If (D,¢,j) is a Riemann pointed disk, we denote by A := D\ {{4,...,{1, o} the corresponding
punctured disk.
Definition 3.4 A family of Riemann (d+1)-pointed discs is a bundle S — R with

(1) afamily & = (¢4,...,¢1, &) of nonintersecting sections {;: R — S and
(2) asection j: R — End(TS)

such that (Sy, ¢ (r), j(r)) is a Riemann (d+1)-pointed disk for every r € R.

Algebraic € Geometric Topology, Volume 25 (2025)



Mapping tori of Ao-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations 531

Definition 3.5 Let S — R be a family of Riemann (d+1)-pointed discs. A choice of strip-like ends for
S — R is a family of sections

€dr--,€1: RXR<ogx[0,1] > Ay, €:RXR5ox][0,1] > A,
such that
(1) €4(r),...,e1(r),eo(r) are proper embeddings with
€ (r)(R<ox{0,1}) CIA, and €o(r)(Rxo x{0,1}) CIA,,
(2) €q4(r),...,e1(r), €o(r) satisfy the asymptotic conditions
e (r)(5.1) 5= G (1) and  €o(r)(s. 1) s> Lo(r).

3) €4(r),...,e1(r),eo(r) are (i, j(r))-holomorphic, where i is the standard complex structure on C.

As explained in [36, Section (9c)], there is a universal family S+ 5 RA+1 of Riemann (d+1)-
pointed discs when d > 2, which means that any other family S — R is isomorphic to the pullback of
Sd+1 _, pd+1 by amap R — R4+ In the following, we fix a choice of strip-like ends for the universal
family Sd+1 _, gd+1,

Definition 3.6 Let J be an almost complex structure on £ compatible with (da)|¢. We denote by J¢ the
unique almost complex structure on R, x V' which sends d, to R, and which restricts to J on &. Let
¢d,---,C1,Co be Reeb chords of A, where ¢ : [0, Ty] = V.

(1) Ifd =1, we denote by Mcl o (RXA, J, @) the set of equivalence classes of maps u: R x[0, 1] = RxV
such that

e 1 maps the boundary of R x [0, 1] to R x A,
e 1y satisfies the asymptotic conditions
u(s, 1) ~5— (=00, ¢1(T11)) and u(s, 1) P (400, co(THt)),
e uis (i, J*)-holomorphic,
where two maps u and u’ are identified if there exists 5o € R such that u/(-, -) = u(- + 59, *).
(2) Ifd > 2, we denote by ./ch,,,,,cl,c() (R x A, J, @) the set of pairs (r, u) such that
e reR¥ 1 and u: A, — R x V maps the boundary of A, to R x A,

e 1y satisfies the asymptotic conditions

(uoer(r))(s,1) 5= (—00, ek (Tkt)) and  (uo€o(r))(s,1) s5350 (00, co(To?)),
e uis (i, J%*)-holomorphic.
Observe that R acts on Mctz,-.-,cl,c() (R x A, J, a) by translation in the R,-coordinate. We set
Mcd,...,cl ,C()(]R X A? J? 0[) = Mvcd,...,cl ,C()(]R X A7 J? a)/]R
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The moduli space J\’ch,.,_,clgc() (R x A, J,a) can be realized as the zero-set of a section 9:B— Eofa
Banach bundle £ — B (see for example [16]). We say that /\76 y
if 9 is transverse to the O-section.

c1,c0(R X A, J) is transversely cut out

.....

Definition 3.7 We say that J is regular (with respect to o and A) if the moduli spaces

ereoRXALJ, o)

.....

are all transversely cut out.

Proposition 3.8 [9, Proposition 3.13] The set of regular almost complex structures on & is Baire.
Moreover, the dimension of a transversely cut out moduli space is

d
dim M, c;.co R XA, J, ) = CZ(a) — ( > CZ(bk)) +d—1.
k=1

3.3 Chekanov-Eliashberg DG-category

Recall that (V, £) is a contact manifold such that H; (V) is free and the first Chern class of & (equipped with
any compatible almost complex structure) is 2-torsion. Let o be a hypertight contact form on (V, &) and
let A = (A(E))Ees be a family of Legendrian submanifolds of (V,&). We set A :=|Jgcs A(E) and we
assume that A is chord generic with vanishing Maslov number. Moreover, we denote by C(A(E), A(E"))
the graded vector space generated by the words of Reeb chords ¢y ---¢4, d > 1, where ¢; starts on
A(E), cg ends on A(E’), and the ending component of ¢; is the starting component of ¢; 1 for every
1 <i <d—1, with grading

d
ley-+-cql ==Y (CZ(ci)— ).

i=1

Finally, let J be a regular almost complex structure on &.
Definition 3.9 We denote by CE«(A) = CE«(A, J, «) the graded category defined as follows:

(1) The objects are the Legendrians A(E), E € £.

(2) The space of morphisms from A(E) to A(E’) is

C(A(E),A(E")) if E£E', F®CA(E),AE") if E=E’
(the summand F corresponds to the “empty word”).
(3) The composition is given by concatenation of words.

If ¢¢ is a Reeb chord in CE«(A), we set

Aco) ==Y #Mey . crc®XA T 0)cq c1,

Cds.--5C1
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where #M € I denotes the number of elements modulo 2 in M if M is finite, and 0 otherwise. Finally,
we extend 0 to CE«(A) so that it is linear and satisfies the Leibniz rule with respect to the concatenation
product.

Theorem 3.10 0: CE.(A) — CE«(A) decreases the grading by 1 and satisfies d o d = 0. As a result,
(CE_«(A), 0) is a DG-category.

Proof This follows from Proposition 3.8, SFT compactness (see [1; 6], in particular [1, Theorem 3.20])
and pseudoholomorphic gluing. See [12; 14; 16] for details. a

Augmentations and Legendrian A4,-(co)category Let ¢ be the category with £ as set of objects,
and morphism space from E to E’ equal to F if E = E’, or 0 if E # E’. Assume that we have an
augmentation of CE_4(A), ie a DG-functor ¢: CE_x(A) — F¢. Denote by ¢, the automorphism of
CE_.(A) defined by
Pe(c) = c +&(c)

for every Reeb chord ¢ of A. We denote by CE? , (A) the DG-category whose underlying graded category
is the same as for CE_,(A), but the differential is d; = ¢ 0 d o ¢, !. Now let LCE(A) be the graded
precategory (no composition) with

(1) objects the set of Legendrians {A(FE) | E € £},

(2) morphisms from A(E) to A(E’) the vector space generated by (individual, not words of) Reeb
chords ¢ which start on A(E) and end on A(E’), with grading

lc| := —CZ(c).
Observe that, as a graded precategory, we have
CE®,(A) =F¢ & (EB LCE (A)[—1]®d).

d>1
If we write

@)y = > 9¢ with 9¢: LCE(A) - LCS(A)®,
d=0

then 9% = ¢ 0 d = 0. Moreover, the operations (8? )d>1 make LC% (A) a (noncounital) A.o-cocategory
(see Definition 1.2). We define the coaugmented Ao-cocategory of (A, ¢) to be

LC:(A) :=Fe @ LCE(A)

(the Ao-cooperations are naturally extended so that 1 € Fg(E, E), E € £ are counits). Now observe

that, as a DG-category,
CE’ . (A) = Q(LCL(A))

(see [17, Section 2.2] for the cobar construction). Finally, we define the augmented A,o-category of
(A, &) to be the graded dual (see [17, Section 2.1.3]) of LC%(A):

LAX(A) = LCE(A)*.
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3.4 Functoriality

Recall that (V, €) is a contact manifold such that H; (V) is free and the first Chern class of & (equipped
with any compatible almost complex structure) is 2-torsion. Let M = (M (E))ges be a family of
n-dimensional manifolds. When we write a map A: M — V, we mean that A is a family of maps
A(E): M(E) — V indexed by &, and we set

A=||AE): | |ME) >V

Ec& Eeg

Definition 3.11 Let o be a hypertight contact form on (V,£). We denote by Lps (o) the bicategory
where:

(1) Objects are the pairs (A, J), where A: M — V is a family of Legendrian embedding such that A is
chord generic with vanishing Maslov number, and J is a regular almost complex structure on £.

(2) Morphisms from (A, Jo) to (A1, J1) are the smooth paths ® = (A, J;)o<¢<1 going from (A, Jo)
to (Ay,Jy), where A;: M — V is a family of Legendrian embeddings and J; is an almost complex
structure on £.

(3) Homotopies from a morphism ® = (A¢, J¢)o<i<1: (Ao, Jo) = (A1, J1) to another morphism
" = (A}, JDo<i<1: (Ao, Jo) = (A, Jy) are the smooth families (A, Js,1)o<s<s,0<r<1, Where
As:: M — V is a family of Legendrian embeddings, Js ; is an almost complex structure on &, and

(As0.J5,00=(A0.Jo). (As1.Jd51)=(A1,J1), (Aos.Jor)=(AsnJs), (Asy. Jsi)=(A} J)).

Definition 3.12 Let o, o be hypertight contact forms on (V, §), and let ¢ be a contactomorphism of
(V,€) such that p*a = o’. If ® = (A, Jr)o<s<1 is @ morphism in £y (@), we denote by

9*® = (9 (A1) 0" J1)o<i<
the corresponding morphism in £z («’), and by
Jéa 00 CE—(Ar, Jr ) = CE_i (97 (A1), 9™ 1, )
the DG-functor which sends a Reeb chord ¢ to ¢! (c).
Definition 3.13 Let o be a hypertight contact form on (V, £), and let ® = (A, J;)o<s<1 be a morphism

in Lpg (o). A handle slide instant in ® is a time fy where Ay, is chord generic and has Reeb chords

¢d,--.,C1,Co such that the moduli space /\76 docrco R X Ay, Jyy, ) is not transversely cut out.

.....

Theorem 3.14 There exist functors Fo, from Lz (at) to the bicategory® of DG-categories such that:
(1) Fq sends an object (A, J) to CE_«(A, J, @).

3Homotopies between DG-maps are DG-homotopies, see for example [31, Section 2.1].
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(2) Fq sends a morphism to a homotopy equivalence.

(3) If ¢ is a contactomorphism of (V, ) such that p*a = &’ and if ® = (A, J¢)o<¢<1 is a morphism
in Ly («), then
_ 49 @ -1
For (9™ @) = f‘(Al’Jl) o Fy(P)o (.f(AO’_]O)) .

(4) If (¢r)o<s<1 is a contact isotopy of (V, &) satisfying oo = o’ forevery t, and if (A, J) is an object
of Lz («) such that there is neither birth/death of Reeb chords nor handle slide instants in the path
' = (¢, ' (M), @7 J):, then

Far(®) =[50 1 0 (S8 7"

Proof The existence of such functors at the category level (without homotopies) has been established
in [14; 16] for the case (V,a) = (R x P,dz — ). Statements in the general case can be found in [12,
Section 4; 19, Section 5]. O

Note that I proved a weaker version of this result in my thesis by generalizing methods of [14; 16; 31].
The following is the only particular case of Theorem 3.14 that we will use in this paper.

Theorem 3.15 [32, Theorem 3.8] Theorem 3.14 holds if we replace the categories Ly (o) by the
subcategories Li?w (o) where

(1) objects are the pairs (A, J) such that A has finitely many Reeb chords,

(2) morphisms from (A, Jo) to (A1, Jy) are the families ® = (A, J¢)o<¢<1 such that A; is chord
generic and has finitely many Reeb chords for every ¢,

(3) homotopies from a morphism ® = (A;, Jy)o<i<1: (Ao, Jo) = (A1, J1) to another morphism
@' = (A}, J))o<t<1: (Ao, Jo) = (Ay, Jy) are the families (A, Js,1)o<s<s,0<t<1 such that Ag
is chord generic and has finitely many Reeb chords for every s, t.

Remark We expect that the finiteness of Reeb chords condition in Theorem 3.15 (which is very restrictive)
can be easily dropped using (homotopy) colimits of DG-categories diagrams. On the other hand, studying
birth/death of Reeb chords phenomena is a more serious issue that we will address in future work.

4 Legendrian lifts of exact Lagrangians in the circular contactization

In this section, we start with a family L of mutually transverse compact connected exact Lagrangian
submanifolds in a Liouville manifold, and we study a Legendrian lift A® of L in the circular contactization.
For the standard contact form, each point on a Legendrian gives rise to a (countable) infinite set of Reeb
chords, and thus A° is not chord generic. In Section 4.1, we explain how we perturb the contact form
and we state our main result, which relates the Chekanov—-Eliashberg DG-category of A° and the Fukaya
Aoso-category of L.
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4.1 Setting

Let (P, A) be a Liouville manifold, and let
L=(L(E))Ees. €={l.....N},

be a family of mutually transverse compact connected exact Lagrangian submanifolds in (P, A) such
that there are primitives fg: L(E) — R of A|(g) satisfying 0 < f; <--- < fy < % We consider the
contact manifold

(V°,£%) = (S! x P,kera®), where S! =Ry/Z, a° =db — A,
and the family of Legendrian submanifolds
A% = (A(E))Eee.  where N°(E) ={(fe(x).x) € R/Z)x P |x € L(E)}.

In order for the Chekanov—Eliashberg category of A° and the Fukaya category of L to be Z-graded, we
assume that H; (P) is free, that the first Chern class of P (equipped with any almost complex structure
compatible with (—dA)) is 2-torsion, and that the Maslov classes of the Lagrangians L(E) vanish.

4.1.1 Reeb chords Observe that A° = | g A(E) is not chord generic for «° (see Definition 3.2).

We will choose a compactly supported function H: P — R, and consider the perturbed contact form
ay =efal,

The Reeb vector field of afq is then

_ g (1+A(XH)
R“?—] =e ( XH y

where Xp is the unique vector field on P satisfying tx,, dA = —dH.

We fix a compact neighborhood K of L which is contained in a Weinstein neighborhood of L in P. It
is not hard to see that for every positive integer N, the space of smooth functions H on P supported
in K, such that the Ra;{ -chords of A® with action less than N are generic, is open and dense in Cg°(P).
Therefore, the space of functions H € Cg°(P) such that A® is chord generic with respect to aj, is a Baire
subset of Cg°(P). In particular, the latter is dense in Cg°(P). In the following, we choose H € Cg°(P)
such that

(1) A®is chord generic with respect to ay,,

(2) H is sufficiently close to 0 so that
dO(Res,) = ¢ (1 +M(Xm)) = 3.
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Figure 1: Reeb chords (in blue) of A° = {0} x 0g1. Left: for «®. Right: for ag,.

Example 4.1 Assume that we are in the case
(P.A)=(T*"M,pdq)., L=0p. and H(q.p)=h(q).

where 1: M — R is a Morse function (we present this example in order to see what happens, even if H
is not compactly supported in 7* M'). The Reeb vector field of a3, is

—dh
and therefore the Reeb flow satisfies

ko 0.(q. ) = (0 +1e7"D (g, p—1e7"D dh(q))).
H
Thus, the Rye -chords of A° are the paths c: [0, T] — S x T*M of the form
c(t) = (1e799 (44,0)), with Te 90 € Z~, and g € Crith.

Observe that these Reeb chords are transverse but lie on top of each other. See Figure 1, where we

illustrate this perturbation when M = S!.

Conley—Zehnder index In order to define the Conley—Zehnder index (see Section 3.1), we need to
choose a family (g, 41, ..., hg) of embedded circles in V° = S x P which represent a basis of H;(V°),
and a symplectic trivialization of £° over each h;. We let iy = S x {ag} be some fiber of S' x P — P,
and we fix (/11, ..., hs) to be any family of embedded circles in P which represent a basis of Hj(P).
We choose a symplectic isomorphism ¥ : (T4, P, —dAq,) = (C",dx A dy), and then we choose the
symplectic trivialization

(E°[ny> da®) 2> (ho x C",dx A dy),  ((6,a0), (ay(v),v)) = (6, ap), > ™ Oy (v)),

where r is some integer, that we call r-trivialization of £° over the fiber. Finally, we choose some

trivialization of £° over each /;, 1 <i <s.
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Example 4.2 We compute the Conley—Zehnder index of a Reeb chord in the case of Example 4.1, ie
when
(P,A)=(T*"M, pdq), L=0p, and H(q.p)=h(q),

where i: M — R is a Morse function. In this case, the Reeb flow is given by

0% . (0,(q, p) = (0 +1e™"D (q, p—1e™"D dn(q))).
“rr

Let ¢: [0, T] — V° be a Reeb chord of A°. Then there exists a positive integer k& and a critical point gq
of / such that
c(t) = (te™"@® (g5,0)) and Te™"40) =k,

Observe that ¢(0) = ¢(T'), and thus there is no need to choose a capping path for ¢. Besides, for every u
in Ty, M, we have
Dy . (€(0)(0,u,0) = (0.u, ~te~" @) D2h(go)u).
“H

In order to compute the index of ¢, we first choose coordinates (X1, ..., xX,) around gg € M in which
dim(M)
h = h(qo) —I—% Z ajxf, where o; = £1,
j=1
and we extend it to symplectic coordinates (x1, ..., Xy, ¥1,..., yn) around (qo,0) € T*M by setting

d
yi(q. p) = <p, —(q))-
4 ax]’
Our choice of trivialization for a fiber of S x P — P induces the trivialization
2T RIT (dx + idy): ¢7'E° 2> (R/TZ) x C"

(observe that éé’(t) = {0} x T(g,,0)(T* M)). Accordingly, the path ¢ D(p}e , (T¢(0)A°) induces a path

of Lagrangians A

Fe:tel0, T~ {(eZi”mkt/T(uj —ite_h(q‘))o]-uj))l<j<n |ueR"} CC".

We close this path using a counterclockwise rotation T', and call the resulting loop I'¢. In order to compute
the Conley—Zehnder index of ¢, we have to look at how T, intersects the Lagrangian i R” (as explained
in [14, Section 2.2]). Observe that I'. intersects i R" positively 27k times, so that I'. contributes 2rk to
the Conley—Zehnder index of ¢. Moreover, since I' is a counterclockwise rotation bringing

{j—iTe " ©oju;) i<y |ueR") 1o R,

the contributions to the intersection between I" and iR” come from the negative eigenvalues o;. The
computation done in [15, Lemma 3.4] implies that I" contributes ind(gg) to the Conley—Zehnder index
of ¢. We conclude that the Conley—Zehnder index of ¢ is

CZ(c) = u(T¢) = 2rk +ind(qo).
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4.1.2 Main result Let j be an almost complex structure on P compatible with (—dA), and let J° be
its lift to a complex structure on £°. Recall from Section 3.3 the definition of the Chekanov—Eliashberg
DG-category of a family of Legendrians. In our situation, CE” , (A°) = CE—«(A°, J°, ay;) (with grading
induced by the r-trivialization of £° over the fiber) is an Adams-graded DG-algebra, where the Adams
degree of a Reeb chord c¢ is the number of times ¢ winds around the fiber. Besides, the map CE” ,(A°) - F
which sends every Reeb chord to zero (and preserves units) defines an augmentation of CE” , (A®).

Remark In the case of Example 4.1, the cohomological degree of a Reeb chord ¢ in CE” , (A®) corre-
sponding to a positive integer k and a critical point gq is

1—CZ(c) =1-2rk —ind(qo)
(see Example 4.2).

Besides, we denote by Fuk(L ) the Fukaya category with objects being the set of Lagrangians {L(E)| E € £}
(see for example [36, Chapter 2]), and by ]-"—ul)c(L) its directed subcategory:

(L(E)YNL(E")) if E<E,

homzi)(L(E), L(E")) = F if E=F',

0 if E> E’;
see [36, Paragraph (5n)].
Let [F[t,] be the augmented Adams-graded associative algebra generated by a variable #,, of bidegree
(m, 1). Observe that if C is a subcategory of an A -category D with ob(C) = ob(D), then CH(t,,,F[t,,] QD)
is naturally an Adams-graded A -category, where the Adams degree of t,’,‘1 ® x equals k. Moreover, we
denote by E(—) =B (—)# (graded dual of bar construction) the Koszul dual functor (see [17, Section 2.3]
or [29, Section 2]). We say that Koszul duality holds for an augmented Adams-graded A -category A4 if
the natural map A — E(E(A)) is a quasi-isomorphism (see [29, Theorem 2.4] or [17, Definition 17]).

Theorem 4.3 (Theorem B in the introduction) Koszul duality holds for CE” , (A®), and there is a
quasi-equivalence of augmented Adams-graded A -categories
—
E(CEL,(A%)) =~ Fuk(L) ® (t2,F[t2,] ® Fuk(L)).
Corollary 4.4 If L is a connected compact exact Lagrangian and A° is a Legendrian lift of L in the

circular contactization, then there is a quasi-equivalence of augmented DG-algebras,

CE!,(A°) ~ C_«(QCP>® x L)).

Proof Let x( be the basepoint of CP*°, and set P := CP*°\ {x(}. Observe that
(PxL)* = P*AL*=CP®AL*=CP®xL.
We have
F & (F[5] @ CF* (L)) =~ F & (6,F[1,]  C*(L)) ~ C*((P x L)*) =~ C*(CP*® x L).

Algebraic € Geometric Topology, Volume 25 (2025)



540 Adrian Petr

Thus, it follows from Theorem 4.3 that

E(CE!,(A°) ~ C*(CP*®x L).
Since Koszul duality holds for CEI_*(A"),

CE!,(A°) ~ E(C*(CP® x L)).

Observe that the graded algebra H*(CIP x L) is locally finite (ie each degree component is finitely
generated) and simply connected (ie its augmentation ideal is concentrated in components of degree strictly
greater than 1). Thus, according to the homological perturbation lemma (see [36, Proposition 1.12]), we
can assume that C*(CPP® x L) is a locally finite and simply connected Ao, model for the DG-algebra
of cochains on CPP*° x L. Therefore, [17, Lemma 10] implies that

CE!,(A°) ~ Q(C_«(CP*® x L)).
Now, since CIP®° x L is simply connected, Adams’ result (see [2; 3; 17]) yields
Q(C_4x(CP*®x L)) >~ C_«(QUCP*®x L)). m|
4.1.3 Strategy of proof We explain the strategy to compute E(CE”,(A®)). Recall from the last
paragraph of Section 3.3 that there is a coaugmented A o-cocategory LC(A®) such that
CE”,(A°) = Q(LC«(A%)).

LC«(A®) inherits an Adams-grading from CE” , (A°) (the same), and we denote by LA*(A®) its graded
dual (see [17, Section 2.1.3]). In our situation, LA*(A®) is an augmented Adams-graded A o,-category
whose augmentation ideal is generated by the Reeb chords of A° (and the Adams degree of a Reeb chord
¢ is the number of times ¢ winds around the fiber). Since there is a quasi-isomorphism B(2C) ~ C for
every Aoo-cocategory C (see [17, Section 2.2.2]), it follows that

E(CE" ,(A°) = B(CE" ,(A°))" ~ LC+(A°)* = LA*(A°)
(graded dual preserves quasi-isomorphisms).
Remark In the case of Example 4.1, the cohomological degree of a Reeb chord ¢ in LA*(A®) corre-
sponding to a positive integer k and a critical point ¢q is
CZ(c) = 2rk +ind(qo)
(see Example 4.2).
In order to compute LA*(A®), we lift the problem to the contact manifold
(V.€) = (Rg x P ker(dfl — 1)),
and introduce the following objects.
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Definition 4.5 Let M = (M"(E))u,E)ezxe be a family of Legendrian submanifolds in (V,£), K an
almost complex structure on £, and B a hypertight contact form on (V, &) for which M is chord-generic.
We denote by A(M, K, B) the Axo-category defined as follows:

(1) The objects of A(M, K, ) are the Legendrians M"(E), (n, E) € Z X £.

(2) The space of morphisms from M’ (E) to M/ (E’) is either generated by the R p-chords from M I(E)
to M/ (E")if (i, E) < (j,E"),or F if (i, E) = (j, E'), or 0 otherwise.

(3) The operations are such that 1 e A(M, K, B)(M"(E), M"(E)) is a strict unit, and for every sequence
(ig, Eg) <--- < (ig, E4), for every sequence of Reeb chords

(C1yenrcq) € R(IM™(Eg), M (Eq)) x -+ x RAIM =1 (E4_y), M (E)),
we have
HaM .k .p) (€1, Cq) = Z #Mecy,....cr,co RX M, K, B)co
co€ER(M0(Ep),M'd (E;))

(see Definition 3.6 for the moduli spaces).

Definition 4.6 Consider a path (M;)o<;<1, where M; = (M (E))(x, E)ezxe is a family of Legendrian
submanifolds in (V, £), such that Ml”_1 (E)=MJ(E)=: M"(E). Let K be an almost complex structure
on &, and B a hypertight contact form on (V, &) for which M = (M"(E))(,,Eyezxe is chord-generic.
We denote by t(am,),,x.8: AMM, K, B) — A(M , K, B) the Axo-functor defined as follows:

(1) On objects, T(m,),,k,p sends M"(E) = M'(E) to M"T1(E) = M]'(E).
(2) On morphisms, the map
M) (K)op AM K B (MO (Eg), M (E) ®---® AM ., K, B) (M~ (Eq_). M" (E))
— AM . K. B)(M™F ! (Eo), M'* ! (Ey))
is obtained by dualizing the components of the DG-isomorphism
CE—*((Mln)l'()Snfl.dv Kl ) ﬁ) - CE—*((M(?)I.()SIZEid’ KO’ ﬂ)
induced by the path (M[",)iy<n<i,» K1—1)o<s<1 (see Theorem 3.14).

Remark (1) The Aoo-functor t(pg,), kg 1s a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting
7 xE-=>o0b(AM,K,B)), n, E)— M"(E),

is compatible with the quasi-autoequivalence t(pr,),, k, in the sense of Definition 2.2. As explained
there, this turns A(M , K, B) into an Adams-graded A -category: the Adams degree of a morphism ¢
from M (E)to M7 (E')is j —i.
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In Section 4.2, we lift the data used to define LA*(A®) (Legendrian A°, almost complex structure J°,
contact form ;) to R x P. This gives us a path (A /), an almost complex structure J and a contact
form ag for which we can prove, using Theorem 2.4, that

LA*(AO) ~ MT('E(A,)[,J,aH)-

In Section 4.3, we use a contactomorphism ¢y satisfying ¢, ag = (df) — L) =: o to change our data
into (A g +)s, Jg and a. We then prove that

MT(t(A ) 0.an) = MT(TA G )T 0)-

In Section 4.4, we change the almost complex structure Jg to the original one J, and use Theorem 3.15
to prove that

MT(TA )T 0) SMT(TA )T 0)-

In Section 4.5 we project our data to P, so that we get a path (L g7 /), of Lagrangians in P and the almost
complex structure j. We use these new data to define an Ao-category O and a quasi-autoequivalence
y: O — O. Then we use [10, Theorem 2.1] to prove that

MT(T(AH.t)t,J,Ol) ~MT(y).

Finally in Section 4.6, we use Theorem 2.5 (Theorem A in the introduction) to conclude.

4.2 LifttoRx P

In the following we consider the contact manifold
(V, &) = (Rg x P, ker(x)), where o =df—A,
and the family of Legendrian submanifolds
A := (N"(E))(n,Eyezxe. Where A°(E) ={(fg(x)+60,x) eRx P |x e L(E)}.
Recall from Section 4.1.1 that we chose a compactly supported function H: P — R such that

(1) A® is chord generic with respect to oy,
(2) H is sufficiently close to 0 so that
dO(Res,) = ¢ (1 +M(Xm)) = 3.

We consider the contact form

o = eHa,
with Reeb vector field
— 1+A(Xg)
Ry, =e 1 .
amg e ( XH

Moreover, we denote by J the lift of J° to an almost complex structure on &.
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HSIXT*SI (C) = HSIXT*SI (TC')

RxT*S!, ag,J) (S'xT*S' ag, J°)
Figure 2: Action of the projection IT g1 pxg1-

Definition 4.7 Consider the path of Legendrians (A;)o</<1, where A”(E) = A"*!(E). We set
A:=AA,J,ag) and t:=71Q,), Jan
(see Definitions 4.5 and 4.6).

Relation between LA*(A°) and (A, T) We now explain how LA*(A®) and (A, t) are related. See
Figure 2, where we illustrate the action of the projection ITg1, p in the case

(P.A)=(T*S'. pdg). L=0g1, and H(q.p)=h(q),

where 4: S — R is a Morse function.

Lemma 4.8 The Ao -functor 7 is strict, and it sends a Reeb chord t — (6(¢), x(t)) in A(A*(E), A/ (E"))
to the Reeb chord t — (8(t) + 1,x(t)) in A(A'TV(E), AT1(E")). In particular, T acts bijectively on
hom-sets.

Proof Recall that oy = e

goge of dg is a strict contactomorphism of (V, ag). Moreover, since J is the lift of an almost complex

o, with H a function defined on the base manifold P. In particular, the flow

structure j on P, we have

(N igznsias ) = ()™ A Digznsiy s (95,)"J)-

The result follows from Theorem 3.15. d
We denote by A; the Adams-graded A4 o-category associated to T as in Definition 2.3.

Lemma 4.9 There is a quasi-isomorphism of Adams-graded A .-categories
LA*(A®) ~ A;.
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Proof Consider the map which sends a Reeb chord ¢ € R(A!(E), A/ (E’)) to the corresponding chord
Mgiyp(c) € R(N(E), A°(E’)) (where Tgi1,p: R x P — S! x P is the projection). According to
Lemma 4.8, [Igi1, p(tc) = g1, p(c), and thus the map ¢ — Il g1, p(c) induces a map ¥ : A; —
LA*(A°). Moreover, observe that ¥ is a bijection on hom-spaces. It remains to prove that ¥ is an
Aoso-map. This follows from the fact that the map

u=(o,v)~ (0,Ilgi,pov)

induces a bijection

Meg,nerco R XA T am) =5 My cg),..p (e (eo) RX A, T, agr). O

Lemma 4.10 The Adams-graded Ao-category LA*(A°®) is quasi-equivalent to the mapping torus of
7: A— A (see Definition 2.1).

Proof This follows directly from Theorem 2.4 using Lemmas 4.8 and 4.9. |

4.3 Rectification of the contact form

Now that we are in the usual contactization, we have the following result.

Lemma 4.11 There exists a contactomorphism ¢ of (V, £) such that
Pram =a.

Proof Recall that oy = e

that e™# (1 + M(Xg)) > 3.

o, with H a compactly supported function on the base manifold P such

Assume that there is a contact isotopy (¢;)o<s<1 such that ¢¢ = id and
(1) Sroup =«
for every ¢. Let (Fy); be the family of functions on V such that
%‘ﬁt =YF, o ¢y,
where, for each fixed 7, Y, is the vector field on V' satisfying
a(Yp,) = Fr, typda=dFi(Ro)a—dF;.
Let us prove that Y, satisfies
ag(Yr,) =M Fi, vy dog = d(e™ Fi)(Ra,y)arm —d(e ™ Fy).
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Observe that the first equality is clear, and that it is enough to show that the second equality holds on
& = ker(a). Now for every Z € &, we have

tyg, doy g (Z) = (d(e"™) na)(YF,. Z) + P da(YE,. Z)

= —a(Yg,)d(e")(Z)— e dF,(Z) (because Z € §)
= —Fd(™)(Z2)= e dF,(2) (because a(Yr,) = F;)
=—d" F)(2).

Taking the derivative of (1) with respect to 7, and using what we just proved, we get
0 H +d (" Fy)(Ra, ) = 0.

Besides, we deduce from

I (1 +”‘(XH)), tydh = —dH,

tXyg
that
dH(Ry,) =0.
Then (2) gives
3) dFi(Rg, ;) = —He .

Conversely, if (F;); is a family of functions on V satisfying (3), then the contact isotopy (¢;); defined by

. d
¢o =1d and Eqﬁ; =YF, o:
satisfies J
E(éb;k arg) =0,
and thus ¢ := ¢ gives the desired result.

Therefore, it remains to find a family (F;); satisfying (3). First recall that

— 1+ tA(Xg)
RatH =e€ tH ( Xy .

By assumption on H, the function d0(Rg, ;) is greater than % for every ¢ €0, 1]. Thus, for every ¢ €0, 1]
and every (6, x) in V, there exists a unique real number p; (6, x) such that

0 ;gtff”‘)(e, x) € {0} x P.
Then we let
F; = —,otHe_tH.

For every real number ¢, we have
—tH
F, o<p§eatH = —(ps 0 gojeatH)He ! because dH(Rqy,,) = 0.
But the map ¢ ”* PRy, T takes its values in {0} x P by definition of p;, so by uniqueness we have
YtH
Pt °¢§?a,H =pr t+1.
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Then we have

Frogk, . ==(p+He M,
and thus

dF;(Ry,,) =—He 'H. O
Example 4.12 Assume that we are in the case
(P,)\):(T*M,de), L =0p, and H(qvp):h(q)’
where h: M — R is a Morse function. Then the diffeomorphism ¢ g defined by
$1' (0. (q. p)) = (6", (q. '@ p 1 6D di(g)))
satisfies ¢ 7y = . With this choice of ¢, we have in particular
o' ({6} x 0pr) = j 1 (Be") CR X T* M.

In the following, we fix a contactomorphism ¢z as in Lemma 4.11. We define a pair (A, t1), which is
roughly obtained by pulling back the data of (A, t) by ¢g.

Definition 4.13 Let
Ag = (AA(E)n.pyezxe, where A% (E) = g5 (A% (E)), and Jg := ¢} J.
Consider the path of Legendrians (A g ;)o</<1, Where A’}J,t(E) = A'I’{H(E). We set
Ar:=AAg,Jg,o0) and 11 =TAy ) Tne
(see Definitions 4.5 and 4.6).
Relation between (A, 7) and (Ay,71) We now explain how the pairs (A, 7) and (A, 1) (Defini-
tions 4.7 and 4.13) are related. See Figure 3, where we illustrate the action of the contactomorphism qb;ll

in the case
(P.))=(T*S', pdq), L=0g1, and H(q, p)=h(q),

where 4: S — R is a Morse function.

Lemma 4.14 There is a strict Aoo-isomorphism {;: A — A; defined as follows:
(1) On objects, {1 (A"(E)) = Ay (E).
(2) On morphisms, {; sends a Reeb chord ¢ in A(A'(E), A’ (E")) to the Reeb chord

. S1(c) = ¢ oc
in Ay (A% (E), Al (E")).
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RxT*S!, ag,J) RxT*S, , Jg)
Figure 3: Action of the contactomorphism gbI_{l.

Proof We have to show that {; is an Aoo-map. This follows from the fact that the map

u=(o,v) — (o, ¢;Il ov)

induces a bijection

Mcd,...,cl,co (R x A, J, OlH) - M¢;[l (cd).,,¢;11 (Cl),tﬁﬁl (co) (R X AH, JH, Ol). d
Lemma 4.15 T =§‘loro§1_1.

Proof This follows from Theorem 3.15 using that ¢ ;o = a and
((Ar}l]+l_t)i0§n5id, JH) = ((¢I_{1 An+1_t)io§n§id s ¢[*1J) O

Lemma 4.16 The mapping torus of t: A — A is quasi-equivalent to the mapping torus of 71 : A; — A4
(see Definition 2.1).

Proof According to Lemma 4.15 the following diagram of Adams-graded A.o-categories is commutative:

A iduUid AUA idut A
l;l l@'ll—lil l}'l
Ay A oA S 4

Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.14. Thus the result follows

from Proposition 1.22. |

4.4 Back to the original almost complex structure

In this section, we introduce a pair (A, 7o) defined using the same data as (A1, ;) (Definition 4.13),
except we are using the almost complex structure J instead of Jg .
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Definition 4.17 We set
Ay:=A(Ag,J, @) and 13:=TAy,),.Ja
(see Definitions 4.5 and 4.6).
Relation between (A1, 71) and (A3, 73)
Lemma 4.18 Choose a generic path (J112)05t51 such that JO12 = J and Jl12 = Jg. There is an
Aoso-isomorphism {15 : A1 — Aj defined as follows:
(1) On objects, §12(Ay (E)) = Ay (E).
(2) On morphisms, the map
Cra AL (A (Eo) A (E) @+ @ AL (A (Ea—1), Aff (Ea) = As (Al (Eo), A (Eg)
is obtained by dualizing the components of the DG-isomorphism
CE_«((A})ig<n<iy» J. @) = CE_« (A} ig<n<iy JH . @)
induced by the path ((A'%)iy<n<iy J}?)o<s<1 (see Theorem 3.15).

Proof We have to prove that {;, is an isomorphism. This follows from the fact that it is defined by
dualizing the components of a DG-isomorphism. a

Lemma 4.19 The A -functor t, is homotopic to {15 o t1 © §1_21 (see [36, Paragraph (1h)]).

Proof First recall that 7y is obtained by dualizing the components of the DG-map
CE_. (A% D ig<n<iys JH . ) = CE_x (A% ig<n<iy+ JH - @)

induced by the path ((A’I’;rl_’ )ig<n<iy» JH)o<t<1. Thus, {1501/ is obtained by dualizing the components
of the composition

CE_s (A% D ig<nziys J. &) = CE_ (A Dig<nziys JH. &) = CE_«(A%)ig<n<iy, JH. ).
On the other hand, 7, is obtained by dualizing the components of the DG-map
CE_ (A% DY ig<n<iy. J. &) > CE_«(A}ig<n=iy. J. @)

induced by the path ((A’;;'l_t) io<n<iy» J)o<t<1. Thus, 70}, is obtained by dualizing the components
of the composition

CE_*((An+ )lo<n<ld, J Ol) — CE_*((A )lo<n<ld, J O[) — CE_*((A )l()<n<ld’ JH O{)

According to Theorem 3.15, the DG-maps used to define {07 and 7,0, are DG-homotopic. Therefore
the Ao-functors {1, o 7y and 7 o {1, are homotopic. O
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Lemma 4.20 The mapping torus of Ty : Ay — Ay is quasi-equivalent to the mapping torus of t5: Ay — As
(see Definition 2.1).

Proof Letti;:={1p07110 §1_21. Consider the commutative diagram of Adams-graded Ao-categories

idui idu
A & AU Ay 1—11) A

l@'lz lflzl-lflz ll'lz

idLii idul
-AZ idUid .A2|_|.A2 dUTy2 -AZ

Each vertical arrow is a quasi-equivalence according to Lemma 4.18, so it follows from Proposition 1.22
that the mapping torus of 71 is quasi-equivalent to the mapping torus of 7;,. Now according to Lemma 4.19,
712 is homotopic to 7. Thus the result follows from Proposition 1.23. O

4.5 Projection to P

4.5.1 The A -category O In order to define the 4o-category O, we need to introduce moduli spaces
of pseudoholomorphic discs in P.

Definition 4.21 Let L = (L"(E)) @, E)ezx¢ be a family of mutually transverse connected compact exact
Lagrangians in (P, 1). Consider a sequence of integers iy < --- < iy, and a family of intersection points
(x0,X1,...,Xx4), Where

xo€ L(EQ)NL"“(E;)  and  xg € L% (Ex_;)NL*(E), 1<k<d.

(1) Ifd =1, we denote by My, x,(L, j) the set of equivalence classes of maps u: R x [0, 1] — P such
that

e u maps R x {0} to L0(E) and R x {1} to Li1(E1),
ey satisfies the asymptotic conditions

u(s,t) ——>x1 and u(s,t) 570 Yo
e uis (i, j)-holomorphic,
where two maps u and u’ are identified if there exists 5o € R such that u/(-, -) = u(- + sq, *).
(2) Ifd =2, we denote by My, ..,

e reR™landu: A, - P maps the boundary arc (g 41, Cx) of A, to Lik(Ey),

x1,x0 (L, j) the set of pairs (, u) such that

e 1y satisfies the asymptotic conditions

(uoer(r))(s,t) ——5> xk and (uoeo(r))(s.7) X0,

SSFoo
e uis (i, j)-holomorphic.
Recall that we have chosen a contactomorphism ¢z as in Lemma 4.11. We set

Ly :=Tp(Ag(E) CP and Lp:=(Ly(E)@E)ezxe-
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Definition 4.22 We denote by O the Ao-category defined as follows:

(1) The objects of O are the Lagrangians L%, (E), (n, E) € Z x E.

(2) The space of morphisms from L g (E) to L 4 (E') is either generated by L g(E)N L’ y (E') if
(i,E)<(j,E",orFif (i, E)=(j, E’), or 0 otherwise.

(3) The operations are such that 1 € O(L;(E), L' (E)) is a strict unit, and for every sequence
(ig, Eo) <--- < (ig, E4), for every sequence of intersection points

(X1 -0 Xq) € (LY (Eo) N Ly (Ep)) x -+ x (LY (Eq—1) N L (Eq)),

we have

M(’)(Xl,...,)(d)_ Z #de ..... xl,xo(LHaj)x0~
xoeLH(Eo)ﬂL (Eq)

4.5.2 The quasi-autoequivalence y Before defining the Aoo-functor y: O — O, we recall Legendrian
contact homology as defined in [16]. To each generic Legendrian A in R x P, the authors associate a
semifree DG-algebra A = A(A, j) generated by the self-intersection points of I1p(A), with a differential
d: A — A defined using J-holomorphic discs in P. In our case, the differential of ALk A%(E ), j) on
a generator xg € LH(EO) NnLY g (Egq) is given by

dxg = Z #de ,,,,, xl,xo(LH,j)xd...xl

(xla'"axd)

where the sum is over the sequences
(X1, .. xq) € (LG (Eo) N LYy (Eq)) x -+ x (L (Eq—1) N L& (Eq)).

According to [10, Theorem 2.1], Legendrian contact homology as defined in [16] coincides with the
version exposed in Section 3:

A(A, j) = CE.(A, (DTIp)[} /. ).
We introduced this version only because it makes clearer the fact that some operations are defined using
pseudoholomorphic polygons in the base P.
Definition 4.23 We denote by y: O — O the Ao-functor defined as follows:
(1) On objects, y (L% (E)) = L't (E).
(2) On morphisms, the map
y: O(L(Eo). Ly (E) ®---® O(LYy™ (Eq—1). L (Ea) = O(L 5" (Eo). Lig ™ (Ea))
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is obtained by dualizing the components of the DG-isomorphism

ig iq
A( | | A’;,“,j) =CE_*(RX | ] A’g,*l,(DHp)lg‘j,a)

k=i k=io
ig iq
—)CE_*(RX |_| A’,;,(an)gj,a) :A( |_| A’,‘,,J’)
k=i0 k=i()

induced by the Legendrian isotopy ( 2’;1.0 A];IH_’ )0 << (see Theorem 3.15).

Remark (1) The Aso-functor y: O — O is a quasi-equivalence because it is defined by dualizing the
components of a DG-isomorphism.

(2) The Z-splitting
ZxE-=>0b(0), (n, E)w Ly(E),

is compatible with the quasi-autoequivalence y in the sense of Definition 2.2. As explained there, this

turns O into an Adams-graded Ao-category.

4.5.3 Relation with the previous invariants We now explain how the pairs (A, 7o) (Definition 4.17)

and (O, y) are related. See Figure 4, where we illustrate the action of the projection I1p in the case
(P,A) =(T*S', pdg), L=0g1, and H(q,p)=h(q).

where i: S — R is a Morse function.

Ly

1
RxT*S', a,J) (T*S, j)
Figure 4: Action of the projection Iz« g1.
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Lemma 4.24 There is a strict Aoo-isomorphism {,: Ay — O defined as follows:
(1) On objects, § (A (E)) = L'y (E).
(2) On morphisms, ¢, sends a Reeb chord ¢ in A, (A%(E ), A{q(E ")) to the intersection point

§2(c) =1I1p(c)
in O(L% (E), L}, (E)).

Proof We have to show that ¢, is an A,-map. Since J = (DHP)|’§j, it follows from [10, Theorem 2.1]
that the map
u=(,v)—~Ilpov

induces a bijection

Mey,.oerco RXAg, T, ) 2> Mp(ey)..Tip(er).p(co) LH- J)-

This implies the result. |
Lemma 4.25 y :g‘zorzog‘z_l.
Proof This follows from the definitions of 7,, , {, and the fact that J = (DI p)|’ék j. |

Lemma 4.26 The mapping torus of t,: Ay — A, is quasi-equivalent to the mapping torus of y: O — O
(see Definition 2.1).

Proof According to Lemma 4.25 the following diagram of Adams-graded A4.o-categories is commutative:

idLli idu
Ay (ﬁ Ay U Ay i} A

l@z l@zl-lfz l}z

idLi id
O iduid OLUO iduy %)

Moreover, each vertical arrow is a quasi-equivalence according to Lemma 4.24. Thus, the result follows
from Proposition 1.22. O

4.6 Mapping torus of y

In this section, we show that we can apply Theorem 2.5 (Theorem A in the introduction) in order to
compute the mapping torus of y: © — O. This allows us to finish the proof of Theorem 4.3.

Recall that we have fixed a contactomorphism ¢g of V such that ¢}}a H = o. Also recall that if 0 is
some real number, then

N(E)={(fE(x)+0,x)|xe L}, AS(E)=¢z" (A°(E)), and LY(E)=Tip(A%(E)).
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4.6.1 Continuation elements We denote by O,, the Ao-category obtained from O by applying the
functor of Definition 1.27. We denote by

T = {cu(E) € 02 (L} (E), LY (E)) | (0. E) € Z x &}

the set of continuation elements in O,, induced by the exact Lagrangian isotopies (L'I’;L’ Jo<r<1 (see for
example [23, Section 3.3]).

Recall that if C is an Axo-category equipped with a Z-splitting of ob(C), we denote by C° the full
Aoso-subcategory of C whose set of objects corresponds to {0} x £.

Lemma 4.27 There are quasi-equivalences of Ao-categories

0 =7 —110
O,, ~Fuk(Lyg) and O[] =~ Fuk(L g).

Proof First observe that we actually have O(z)r = ,7-71)((L H)-

The second equivalence follows from the results of [37, Lecture 10; 23] about Fukaya categories and
localization of Aso-categories. More precisely, consider the subcategory F of Fuk(P) with objects
the Lagrangians L"(FE). There is a trivial A-functor @,, — F (which is the identity on objects
and on morphisms in (’)(L (E), L’ o (E")) whenever (i, E) < (j, E')). Moreover, this functor sends
continuation elements of O,, to quasi-invertible morphisms in F, and therefore induces an Ao-functor
O,,[I"!]1— F. Since the map

O2r (Ll (E). LYy (E")) = Og, [T (Ll (E), LY (E")

is a quasi-isomorphism whenever (i, E) < (j, E’), it follows that the functor O,,['"!] — F is a
quasi-equivalence. Thus we get

O3 [T71° ~ FO = Fuk(L ). o

4.6.2 The O;,-bimodule map In order to apply Theorem 2.5, we need a degree 0 closed O,,-module
map f: Oy, (—, —) = Oy,.(—, y(—)) such that the elements in f (units) satisfy certain hypotheses. As
usual, we would like to find such an f geometrically, ie using some Lagrangian (or Legendrian) isotopy.
However, here the unit 1 = ¢ Lk (E) € (’)(L (E), L H(E )), which is not an intersection point between
Lagrangians, is supposed to be sent by f to something in O(L (E), L];IH (E)), which is generated by the
intersection points between LX 7 (E) and L];I‘H (E). Therefore, we need to somehow replace this unit by
some intersection point between Lagrangians. The idea is that we will slightly perturb Llfq (E)to L];IM (E),

and then replace e Lk (E) by the continuation element in the vector space generated by L]fq (E)N LI;I“L‘S (E).

Observe that if § is small enough, Ll;“s (E) is a small perturbation of L]I‘i(E ). Therefore, in a Weinstein
neighborhood of L’;I (E), the Lagrangian L];I""S (E) is the graph of dhs . g, where hs ;g is some Morse
function on L(FE). In particular, the intersection points between L’I‘{(E ) and L]I‘;”s (E) correspond
to the critical points of /5 x g. Moreover, the continuation element in the vector space generated by
L’;I(E) N L];IH (E) corresponds to the sum of the minima of /s g.
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Example 4.28 Assume that we are in the case
(P,A)=(T*"M, pdq), L =0y, and H(q,p)=h(q),
where i: M — R is a Morse function. As explained in Example 4.12, in this case we have
Ly = Tz=pr(j' (6e")) = graph(d(6e™)).
Thus, Lll‘{"'g is the graph of d(8e") over L’I‘{.

We will need the following result about moduli spaces of discs with boundary on small perturbations of
the Lagrangians.

Lemma 4.29 Let g := —dA(—, j —) be the metric on P induced by j and (—d\). For every positive
integer n, there exists 6, > 0 such that the following holds for every é € |0, 6,]. For every sequence
(—I’l, EO) = (jOv EO) <:-- < (jp’ EP) = (60’ E(I)) <. < (Eqs Ec/I) = (l’l, E;)’ p.q > 07
the rigid j -holomorphic discs in P with boundary on
LI(E))U--ULI(E)ULY (B U---u L™ (E))
are
(1) in bijection with the rigid j-holomorphic discs in P with boundary on
LI%(Eg)U---U L (Ep) U LY(E) U---UL(EL)
if (jp. Ep) < (Lo, Ey), or
(2) in bijection with the rigid j-holomorphic discs in P with boundary on
j L
LI(Eq)U---U L2 (Ep—) U LL(E) U LY (E) U ‘U LF(E,)
with a flow line of (—Vghg i E’) attached on the component in Lt H(EY) if (jp. Ep) = (Lo, Ey).

Proof The case j, < {( follows from transversality of the moduli spaces in consideration. The case
Jp = {o follows from the main analytic theorem of [13] (Theorem 3.6). O

In order to define the O;,-bimodule map f properly, we will use Lemma 4.29 to modify the Aco-
category O,,. In the following, we fix a decreasing sequence of positive real numbers (8,),>1 such that,
for every n,

(1) Lemma 4.29 holds with §,, and

(2) &, is small enough so that there is no handle slide instant in the Legendrian isotopy

n

n
U A5 =1 U ag™®). reo.l

{=—n {=—n E€&

We define two families of Ao-categories (O, x)n k and (6n,k) n.k indexed by the couples (7, k), where
n>1and —n < k < n. The Ao-category O, x is basically obtained from O,, by restricting to objects
Li}I(E), —n < i < n, and adding a copy of the object LI;I(E).
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Definition 4.30 For every (j, E) € Z x &, let 2 1y (E) be a copy of L’  (E). We denote by Oy, i the
Axo-category defined as follows:
(I) The set of objects of O, x is
ob(On i) = {LI,(E)|—n<j <k, Ec& U{LY(E) |k <t<n, Ec&}.

(2) The spaces of morphisms in O, j are the corresponding spaces of morphisms in O, when we
replace qu (E), k<€ <n,by qu (E), except that

On i (L (E), L (E)) = {0}.
(3) The operations are the same as in O,
The Aoo-category (5,,,/C is obtained from O, ;. by perturbing the objects qu (E), k<{=<n,to Lzl;”s” (E).
Definition 4.31 Let
Opg ={—n.....k}U{L+8 |k <€<n}CR, and Ly :=(LY(E)) g E)co, xs-
We denote by (”5,,,;c the Aoo-category defined as follows:
(1) The objects of 6,,,;{ are the Lagrangians L%(E), (0,E) €Op xE.

(2) The space of morphisms from L%(E) to L%(E’) is either generated by L%(E) N L%(E’) if
(0,E)<(0',E"),orFif (6, E)= (0, E'), or 0 otherwise.

(3) The operations are such that e L9, (E) = =1le (’)n k(L (E), LY g (E)) is a strict unit, and for every
sequence (0y, Eo) <--- < (04, E d) for every sequence of intersection points

(X1, Xq) € (LR(EQ) N LI(E) x - x (L1 (E4_1) N L% (Ey)),

we have

/"Lén’k(xlv"'vxd) = Z #de ..... x1,x0(LH, j)xo.
x0€L (Eg)NLY (E4)

These Aso-categories being defined, Lemma 4.29 implies the following result.

Lemma 4.32 There is a strict Aoo-functor py, i : Op j — 5,,,;{ defined as follows:
(1) On objects, py i (L}, (E)) = L1, (E) if—n < j <k and p, x (L%, (E)) = LSF(E) ifk < ¢ <n.
(2) On morphisms, p, j sends the unit of O, k(Lk (E), L* 7 (E)) =T to the continuation element

in (9,, k(L (E), LkJ”s" (E)), and it sends any other morphism of O,, j to the corresponding one
in On,k

Proof Consider a sequence (X, ...,Xg—;) of morphisms in O, k. If in this sequence there is no
morphism from L’fq (E)to Z];I (E), then the relation

13, . (PnkXos s PniXd) = Pk (RO, 1 (X0, - ... Xa))
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follows directly from the first item of Lemma 4.29. Now assume that there is p € {0, . — 1} such that
Xp=erk (k)€ Ok (L (E), Lk 77 (E)). Recall that the continuation element in (’)n k(L (E) Lk+8"(E))
corresponds to the sum of the minima of 45, x g. Then the second item of Lemma 4.29 implies that

PniXx1 ifd=1and p =0,

13, (PnjXo.-- s PnjXd) =4 PnkXo ifd=1and p=1,
0 otherwise.

Thus, the 4o-relation for pj, k is still satisfied according to the behavior of the operations uo,, , with
respect to the unit eLk (E)- a

We can now define geometrically an 4 o-functor that will finally allow us to define the O;,-bimodule
map f.

Definition 4.33 We denote by v, x: (’N)n,k — 05, the Axo-functor defined as follows:
(1) On objects, v, & (L4, (E)) = LI, (E) if =n < j <k, and v, 4 (L5 (E)) = LYY (E) ifk <t <n.
(2) On morphisms, v,  is obtained by dualizing the components of the DG-isomorphism
n+1 )
A( | ] A’H) —>A( |_| AU |_| A“‘S")
i=—n j=—n
induced by the Legendrian isotopy

k n
( | ] A{H) U ( | ] Aﬁ,“"““s")), tel0,1]
L=k

j==n

(see Theorem 3.15 or [16, Proposition 2.6]).

Remark 4.34 We point out some properties of the Ao-functor

Onk = Vnk © Pnk: Onk = O2p.

(1) Letn < p be two positive integers, and let k € {—n, ..., n}. Recall that we have chosen &, small
enough so that there is no handle slide instant in the Legendrian isotopy

n
L+6,t
| | AF™" o<r<1

{=—n

Since 8, =< 8, neither is there any handle slide instant in the Legendrian isotopy

n
L+8pt
| ] Ag™ o<t=<1

{=—n

Therefore, 0, i agrees with 0, x on Oy i C O k.
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(2) Consider a sequence of integers
—}’lfj()<--'<jp <k <k2§€0<-~<€q§n,
and a sequence of morphisms

(X0s - s Xp—1,U, Y05 - - s Vg—1)
€ Ot (LI9(Eq), LIN(E)) X -+ X Op s (LT (Ep—1), LI (Ep)) X Oy i, (LI (Ep), L (Eo))
X Oty (LR (ED). LY (ED) % -+ Oy (Lt (EL_ ). L (E})).

Since the Legendrian isotopy defining v, g, is

ki ) n
( | ] A}{) |_|( | ] A?l_’(l_‘s”)), t€[o,1],
L=k;

j=—n
we have
Ondey (X0 -+ » Xp—1) = 81pX0,
Ones (Y0 -+ -2 Yg—1) =V (Yo, ..., Yg—1),
Onkr (X0s - o s Xp 1, U, Y05 o+ oy Yg—1) = Op ke (X0s - s Xp—1, U, Y0, -y Yg—1)-

(3) By construction, the Ao-functor v, x sends the continuation element in 6n,k (L’I;(E ), L];;“S” (E))
(corresponding to the sum of the minima of /5,  g) to the continuation element

ck(E) € Og, (L (E), LY (E)).

In other words, 0, x sends the unit erk () € Oy, k(L (E), Lk 7 (E)) o cr(E).

(4) The map o0,k : O, k(L (E), Lk H(EN) = Oy (L (E), Lk+1(E )) is a quasi-isomorphism for
every j <k and E, E' €&.

We can now state and prove the desired result.

Lemma 4.35 There exists a degree 0 closed O, -bimodule map f: O, (—, —) = Oy, (—, y(—)) which
sends the un1teLA (E) € Os, (L (E), Lk 77 (E)) to the continuation element

ck(E) € O (LK (E), LKYY(E)) T,

and such that f: Oy, (L (E), L H(E)) — OZr(L (E), LkJrl (E’)) is a quasi-isomorphism for every
j<kand E,E' €€&.

Proof Consider a sequence
(o Eo) <+ < (jp. Ep) = (k. E) = (Lo, E) <+~ < ({q. Ep),
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and a sequence of morphisms

(X0s - s Xp—1, U, Y05 -+ s Vg—1)
€ O, (LI(Eq), LIN(Ey)) X -+ X Ogp (LI (Ep_y), LI2(Ep)) x Ogy (L1 (Ep), LY (E}))
X Ogp (LY (ED), LY(E}) % - x Onp (L (El)_}). Lyt (ED)).

We choose n > 1 such that —n < jo < {4 < n, and we set

f(x01'--’xp—lau9y0’~--’yq—1)::Un,k(XOa'--axp—lau’y()""’yq I)EOZV(L (EO) )/L (E ))
where on the right-hand side we consider that
(XO,,,, xp_l?u yOs---syq—l)
€ On (LY (Eg), L} (Eq)) X XOnk(LJp Y(Ep- 1)L (Ep))XOnk(L (Ep), L% (Eo))
7L —ly_
X Ok (LA (E(), L (E})) X - X O (L HE,_)) r H(ED).

Observe that f is well defined (it does not depend on the choice of n) according to the first item of
Remark 4.34.

We now verify that f is closed. According to Definition 1.4, we have

I’Lll\/lodc’c(f)(xo’”wxp—l’u’ yOv"'qu—l)
:Zan,k(---»ILOZr(---)’---’”’-~-)+Z‘7n€ (coo s Os (Xpa e s Xp 1 UL Y0 oo Vs—1)s e )
+Zon,k(...,u,...,u02r )-I—Zuon O ety ) ) v ().

Now according to the second item of Remark 4.34, we have

Zan,es("’7/1’02r(xrs---sxp—19u7y0a---a,VS—l)a---)
=Zon’k(...,,uoh(x,,...,xp_l,u,yo,...,ys_l),...)

and

ZMOZV(...,Gn,k(...,u,...),)/(...),...,)/(...))
=Y 102 (Oup () g (o) O (st O g () O ().

Therefore, we get

//,I{,Iodc.c(f)(xo, ces Xp U, Yos ey Yg—1) =0
from the fact that 0y, j is an Ao-functor.
. k k . .
Now f sends the unit e Lk (E) € Oz (L' (E), L (E)) to the continuation element
ek (E) € O3 (L (E), L (E)NT
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according to the third item of Remark 4.34. Finally, the map
[ 02 (L (E). Ly (E") — 02 (L (E). Ly (E')

is a quasi-isomorphism for every j < k and E, E’ € £ according to the last item of Remark 4.34. a

4.6.3 Proof of the main result We end the section with the proof of Theorem 4.3 (Theorem B in the
introduction).

Recall that we denote by [F[z,,] the augmented Adams-graded associative algebra generated by a variable
tm of bidegree (m, 1), and by #,,[F[¢,,] its augmentation ideal (or equivalently, the ideal generated by #;,).
The key result is the following.

Lemma 4.36 The mapping torus of y is quasi-equivalent to the Adams-graded A ,-category

Fuk(L) @ (12, F[t2,] ® Fuk(L)).

Proof Let f: Oy,.(—, —) — Oy,(—,y(—)) be the degree 0 closed bimodule map of Lemma 4.35.
According to the latter, the hypotheses of Theorem 2.5 are satisfied, and f(units) = I'. Thus the mapping
torus of y is quasi-equivalent to the Adams-graded Ao-algebra (9(2) , O (12, Flt2,]® O, A0 710) (recall
that if C is an Aso-category equipped with a Z-splitting Z x £ ~ ob(C), we denote by C° the full
Aoso-subcategory of C whose set of objects corresponds to {0} x £). According to Lemma 4.27 we have

0%~ Fuk(Ly) and O, [I'° ~ Fuk(Lg).
The result follows from invariance of the Fukaya category (see [36, Section (10a)])

—> —>

Fuk(Lpr) ~ Fuk(L) and Fuk(Lp) >~ Fuk(L). O
We now give the proof of Theorem 4.3 (Theorem B in the introduction). According to [29, Theorem 2.4],
Koszul duality holds for the augmented Adams-graded DG-algebra CE” , (A®) because it is Adams
connected (see [29, Definition 2.1]). Indeed, recall from Section 4.1.2 that the Adams degree in CE”_, (A°)

of a Reeb chord ¢ is the number of times ¢ winds around the fiber. Besides, recall from Section 4.1.2 that
there is a coaugmented Adams-graded A o-cocategory LC4(A°) such that

CE",(A°) = Q(LCx(A°)) and LA*(A°) = LC.(A°)".

Since there is a quasi-isomorphism B(Q2C) ~ C for every Aoo-cocategory C (see [17, Section 2.2.2]), it
follows that
E(CE" ,(A°%) = B(CE" ,(A°))" ~ LC+(A°)* = LA*(A°)

(graded dual preserves quasi-isomorphisms). Now the quasi-equivalence
—
LA*(A®) >~ Fuk(L) & (t,F[t2,] ® Fuk(L))
follows from Lemmas 4.10, 4.16, 4.20, 4.26 and 4.36. This concludes the proof.
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