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An infinite-type surface † is admissible if it has an isolated puncture p and admits shift maps. This
includes all infinite-type surfaces with an isolated puncture outside of two sporadic classes. Given
such a surface, we construct an infinite family of intrinsically infinite-type mapping classes that act
loxodromically on the relative arc graph A.†;p/. J Bavard produced such an element for the plane minus
a Cantor set, and our result gives the first examples of such mapping classes for all other admissible
surfaces. The elements we construct are the composition of three shift maps on †, and we give an
alternative characterization of these elements as a composition of a pseudo-Anosov on a finite-type
subsurface of † and a standard shift map. We then explicitly find their limit points on the boundary of
A.†;p/ and their limiting geodesic laminations. Finally, we show that these infinite-type elements can
be used to prove that Map.†;p/ has an infinite-dimensional space of quasimorphisms.
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1 Introduction

A surface † is of finite-type if �1.†/ is finitely generated, and otherwise † is of infinite-type. Recently,
there has been a surge of interest in infinite-type surfaces and their mapping class groups Map.†/, which
arise naturally in a variety of contexts in low-dimensional topology, dynamics, and even descriptive set
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theory. See the overview by Aramayona and Vlamis [4] for a survey of recent results on infinite-type
mapping class groups.

For finite-type surfaces †, Nielsen [21] and Thurston [27] give a powerful classification of the elements of
Map.†/: every element is periodic, reducible, or pseudo-Anosov. The action of Map.†/ by isometries on
the (infinite-diameter and hyperbolic) curve graph C.†/ captures a coarser classification of the elements
of Map.†/ since elements are either elliptic or loxodromic. These two classifications, which are both
interesting in their own right, have a strong relationship; the loxodromic elements are exactly the pseudo-
Anosovs. In this way, the most interesting and complex mapping classes correspond to the dynamically
richest actions.

The situation for infinite-type surfaces is more complicated for a few reasons. First, the exact analog of the
Nielsen–Thurston classification is no longer valid in this setting since some elements are neither periodic,
reducible, nor pseudo-Anosov in the traditional sense. Second, the curve graph of an infinite-type surface
has finite diameter unlike for finite-type surfaces. This paper is motivated by one of the biggest open
problems for infinite-type surfaces, which is to give an analog of the Nielsen–Thurston classification for
infinite-type mapping classes. We work towards this goal by studying the action of Map.†/ on a different
hyperbolic graph.

When † is an infinite-type surface with at least one isolated puncture p, the relative arc graph, A.†;p/,
plays the role of C.†/ and is defined as follows: the vertices correspond to isotopy classes of simple
arcs that begin and end at p and edges connect vertices for arcs admitting disjoint representatives. The
subgroup Map.†;p/ of Map.†/ that fixes the isolated puncture p acts on A.†;p/ by isometries. This
graph was first defined by D Calegari [12], who initiated its study by asking whether, for the plane minus a
Cantor set, this graph was infinite diameter and whether any element of Map.†;p/ acted loxodromically.
In [5], J Bavard carried out Caelgari’s program for the plane minus a Cantor set and, for that surface,
showed that A.†;p/ is both infinite-diameter and hyperbolic. Aramayona, Fossas, and Parlier [2] then
showed that these properties for A.†;p/ hold more generally for any infinite-type surface with at least
one isolated puncture.

Given that the trichotomy of the Nielsen–Thurston classification does not exactly hold for infinite-type
surfaces, it is necessary to redefine reducible, and therefore irreducible, mapping classes in this setting.
One of the most promising ways to motivate a new definition is to classify the elements of infinite-type
mapping class groups that are loxodromic with respect to the action of Map.†/ on a hyperbolic graph since
these elements correspond to infinite-order irreducibles in the finite-type setting. In order to classify these
elements, we must first construct them. We restrict to surfaces with an isolated puncture and their associated
graphs A.†;p/ in this paper because the relative arc graph is one of the few known graphs associated to
an infinite-type surface that is both infinite-diameter and hyperbolic. In general, proving results for infinite-
type surfaces typically involves a piecemeal approach. Constructing loxodromic isometries for infinite-type
surfaces without a puncture will require a different graph, and thus, a genuinely different approach.
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Figure 1: Above: a handleshift on an infinite-type surface. Below: a shift map on an infinite-type surface.

When † is the sphere minus a Cantor set with an isolated puncture p (ie † is the plane minus a Cantor
set), Bavard [5] constructed an intrinsically infinite-type mapping class that is loxodromic with respect
to the action of Map.†/ on A.†;p/, and for several years, this was the only known such example. In
this paper, we give a new construction of mapping classes that are loxodromic with respect to the action
of Map.†;p/ on the relative arc graph A.†;p/ for all infinite-type surfaces with an isolated puncture
(outside of two sporadic classes). This class of surfaces is uncountable.

Theorem 1.1 For any admissible surface †, there is an infinite family of intrinsically infinite-type
homeomorphisms fgngn2N in Map.†;p/ such that each gn is loxodromic with respect to the action of
Map.†;p/ on A.†;p/.

In addition, we explore other dynamical and geometric properties of these mapping classes by demonstrat-
ing the convergence of a simple closed curve to a geodesic lamination on † under iterates of the maps
and constructing an infinite-dimensional space of quasimorphisms of Map.†;p/ using these elements
(see below).

Each mapping class in our construction is the composition of three homeomorphisms called shift maps.
Shift maps are generalizations of the handleshift homeomorphisms constructed by the third author and
N Vlamis in [22] (see Figure 1 for examples of both). Roughly, an infinite-type surface † with an isolated
puncture p is admissible if there is a proper embedding of the biinfinite flute surface containing p into †
such that certain shift maps on the flute surface induce shift maps on †. Such an embedding allows us
to reduce the proof of Theorem 1.1 to the case of the biinfinite flute surface. See Section 2.4 for more

Algebraic & Geometric Topology, Volume 25 (2025)
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Figure 2: Examples of sporadic infinite-type surfaces that are not admissible. The first is a flute
with finite genus, the other three are fluted Loch Ness monster surfaces.

details and Figure 3 for some examples of admissible surfaces. In Lemma 2.7, we show that a surface
with an isolated puncture is admissible if and only if it admits shift maps. This set of surfaces consists
of all infinite-type surfaces with an isolated puncture except a flute surface with finite (possibly zero)
genus and a fluted Loch Ness monster. We call these two classes sporadic surfaces in this context. See
Figure 2 for examples of sporadic surfaces and Lemma 2.9 for a proof of this fact. Since sporadic surfaces
are exactly the small class of surfaces with an isolated puncture that do not admit shift maps, different
methods will need to be developed in order to prove an analog of Theorem 1.1 for these surfaces. It
would be interesting to understand how elements of the mapping class groups of sporadic surfaces act on
the relative arc graph.

The handleshift homeomorphisms mentioned above have proven to be crucial in understanding various
aspects of infinite-type mapping class groups. For example, it is shown in [22] that they are needed to
topologically generate the pure mapping class group whenever† has at least two nonplanar ends, and in [3]
Aramayona, Patel, and Vlamis showed that they are used to show that the pure mapping class groups of such
surfaces surject onto Z. With this paper, we emphasize the importance of more general shift maps to the
theory of infinite-type mapping class groups. Inspired by Bavard’s work in [5], we choose the shift maps in
our construction carefully so that their composition mimics some of the behavior of pseudo-Anosov maps
in the finite-type setting. In fact, we show that there is an alternative description of our homeomorphisms
as the composition of a pseudo-Anosov homeomorphism on a finite-type subsurface and a standard shift
map on † in Theorem 8.5. Additionally, in Section 10, we use the work of D Šarić [26] to prove the
following theorem regarding geodesic laminations for the mapping classes constructed in Theorem 1.1.

Theorem 1.2 If † is an admissible surface equipped with its conformal hyperbolic metric that is equal
to its convex core, then there exists a simple closed curve c0 on † such that the sequence .gi

n.c0//i2N

converges to a geodesic lamination on †.

In particular, we produce a train track on † and show the geodesic lamination from this theorem is weakly
carried by this train track.

We emphasize that the elements arising from our construction are of intrinsically infinite-type, that is, they
do not lie in the closure of the compactly supported mapping class group Mapc.†/, where the closure is
taken with respect to the compact-open topology on Map.†/. These are the first examples of intrinsically
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Figure 3: Examples of admissible surfaces, the first of which is the biinfinite flute surface S itself.

infinite-type loxodromic isometries for all admissible surfaces outside of the plane minus a Cantor set.
Additionally, we emphasize that our construction does not rely on, and is not a generalization of, one of
the few known methods for constructing pseudo-Anosov mapping classes for finite-type surfaces.

The most obvious candidates for mapping classes that are loxodromic with respect to the action on
A.†;p/ are those that are pseudo-Anosov on a finite-type subsurface †0 � † containing the special
puncture p, that extend via the identity map to the rest of † (these are compactly supported mapping
classes). In [7], Bavard and Walker prove that these types of mapping classes do indeed act loxodromically
on a graph that is quasi-isometric to A.†;p/. In that paper they point out that, though their class of
examples is interesting, it will be even more important to construct mapping classes of intrinsically
infinite-type that act loxodromically on A.†;p/; this remark was one of the main points of inspiration
for writing this paper. The intrinsically infinite-type elements of Map.†/ are more mysterious since tools
from finite-type surface theory do not directly generalize when studying these elements.

Remark 1.3 Morales and Valdez [20], building off of the work of Hooper [16], have also produced
noncompactly supported elements that are loxodromic, but their elements are in the closure of the
compactly supported mapping class group. Their method is a generalization of the Thurston–Veech
construction of pseudo-Anosovs in the finite-type setting.

Algebraic & Geometric Topology, Volume 25 (2025)
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Aside from the motivation provided by a Nielsen–Thurston classification for infinite-type mapping classes,
Bestvina and Fujiwara [10] show that constructing elements of Map.†/ that act loxodromically on
hyperbolic graphs can be used to understand the second bounded cohomology H 2

b
.Map.†/;R/ of Map.†/.

In particular, they show that, for a compact surface †, there exist elements acting loxodromically on C.†/
that are weakly properly discontinuous (WPD). These elements are used to prove that the space of quasimor-
phisms of Map.†/ is infinite-dimensional, which is sufficient to conclude that H 2

b
.Map.†/;R/ is, as well.

Along these lines, M Bestvina asked the following question at the AIM workshop on infinite-type surfaces
[1, Problem 4.7]: “For †DR2�C (where C is a Cantor set) is it true that every subgroup of Map.†/
has either infinite-dimensional space of quasimorphisms or is amenable?”1 More generally, we would
like to characterize the infinite-type mapping classes that can be used to produce quasimorphisms of
Map.†/. In Section 9, we show that the elements constructed in Theorem 1.1 can be used to give a new
proof of the following theorem, originally due to Bavard [5] in the case of a plane minus a Cantor set and
Bavard and Walker [7] in the general case.

Theorem 1.4 Let † be an admissible surface. The space of nontrivial quasimorphisms on Map.†;p/ is
infinite-dimensional.

When † is infinite type, Map.†/ does not contain WPD elements; see the demonstration by Bavard and
Genevois [6]. Despite this, we are still able to build nontrivial quasimorphisms using a weaker condition
on loxodromic elements introduced by Bestvina and Fujiwara [10], called being antialigned, and an
approach similar to that of Bavard in [5] which involves defining an intersection pairings on a specific
class of arcs on †. In [8], Bavard and Walker use the same condition of being antialigned to show that
homeomorphisms that are pseudo-Anosov on finite-type subsurfaces †0 and extend via the identity to
the rest of † can be used to produce quasimorphisms of Map.†/. There is also a weaker version of
the WPD condition, called WWPD, which was introduced by Bestvina, Bromberg, and Fujiwara in [9];
WWPD elements are always antialigned. A Rasmussen shows in [24] that for a surface † with an isolated
puncture p, an element of Map.†;p/ is WWPD with respect to the action on A.†;p/ if and only if it
stabilizes a finite-type subsurface †0 containing the puncture p and restricts to a pseudo-Anosov on †0.
In particular, the elements used by Bavard and Walker to construct nontrivial quasimorphisms are WWPD
elements. The elements we construct in Theorem 1.1 do not fix any finite-type subsurface and thus are
not WWPD. Our construction gives subgroups of Map.†/ that do not contain WWPD elements but do
have an infinite-dimensional space of quasimorphisms.

Plan of the paper In order to prove Theorem 1.1, we explicitly compute the images of a particular arc
on † under iterates of each homeomorphism gn and prove that these images form a quasigeodesic axis
for the action of hgni on A.†;p/. Though some of the methods in our paper are inspired by Bavard’s
work in [5], we note that there are a variety of additional challenges in proving Theorem 1.1 for such a

1This question has since been answered by Fournier-Facio, Lodha, and Zaremsky [14].
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wide class of surfaces. In fact, we first prove the theorem for the biinfinite flute surface S and then use the
fact that the inclusion of A.S;p/ into A.†;p/ is a .2; 0/-quasi-isometric embedding (see Lemma 2.10)
to extend the theorem to all admissible surfaces. One of the first challenges in proving Theorem 1.1 is
rigorously coding arcs on S , which we do in Section 3.1, in order to quantify how long two arcs on S

fellow travel. We note that the coding of our arcs is done in way that is “geometrically intuitive”. What
we mean is that, given the code for an arc, one can easily draw the corresponding arc on the surface. For
other ways to code arcs see [5; 7]. We then introduce standard position for an arc on S in Section 3.2 so
that we can use the code for an arc to find its image under our shift maps in a well-defined way. Most
importantly, we must understand when segments of arcs become trivial under our shift maps, and in
Section 4.1 we introduce a kind of cancellation in the image of the code for a segment which we call
cascading cancellation. This kind of cancellation will cause technical problems throughout the paper and
much of Section 6 is devoted to understanding how to control it.

The rest of Section 4 is devoted to proving Theorem 4.8, which answers the question of when a segment
in an arc becomes trivial under our shift maps. We define the homeomorphisms gn of Theorem 1.1 in
Section 5, show that we have “starts like” functions in Section 6, and show that we have highways in
Section 7. Finally, we prove Theorem 1.1 in Section 8, introduce an intersection pairing for arcs and
prove Theorem 1.4 in Section 9, and prove the convergence to a geodesic lamination from Theorem 1.2
in Section 10.
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2 Background

2.1 Space of ends and classification of infinite-type surfaces

Central to the classification of infinite-type surfaces is the definition of the space of ends E.†/ of an
infinite-type surface †. Informally, an end of † is a way to escape or go off to infinity in †. More
formally we have:

Definition 2.1 An exiting sequence in† is a sequence fUngn2N of connected open subsets of† satisfying

(1) Un � Um whenever m< n;

Algebraic & Geometric Topology, Volume 25 (2025)
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(2) Un is not relatively compact for any n 2N, that is, the closure of Un in † is not compact;

(3) the boundary of Un is compact for each n 2N; and

(4) any relatively compact subset of † is disjoint from all but finitely many Un.

Two exiting sequences fUngn2N and fVngn2N are equivalent if for every n 2N there exists m 2N such
that Um � Vn and Vm � Un. An end of † is an equivalence class of exiting sequences.

The space of ends E.†/, or simply E, of † is the set of ends of † equipped with a natural topology
for which it is totally disconnected, Hausdorff, second countable, and compact. In particular, E.†/

is homeomorphic to a closed subset of the Cantor set. To describe the topology, let V be an open
subset of † with compact boundary, define yV D fŒfUngn2N � 2 E W Un � V for some n 2 Ng and let
V D f yV W V �† is open with compact boundaryg. The set E becomes a topological space by declaring
V a basis for the topology.

We note that ends can be isolated or not and can be planar (if there exists an i such that Ui is homeomorphic
to an open subset of the plane R2) or nonplanar (if every Ui has infinite genus). The set of nonplanar
ends of † is a closed subspace of E.†/ and will be denoted by Eg.†/.

Kerékjártó [17] and Richards [25] showed that the homeomorphism type of an orientable infinite-type
surface is determined by the quadruple

.g; b;Eg.†/;E.†//;

where g 2 Z�0[f1g is the genus of † and b 2 Z�0 is the number of (compact) boundary components
of †.

Of particular interest to us is the infinite-type surface called the biinfinite flute obtained from an infinite
cylinder by deleting a countable discrete sequence of points exiting both ends of the cylinder (see Figure 3).
By the classification theorem of Kerékjártó and Richards, this surface can also be obtained from S2 by
deleting fxig, fyig, x, and y, where fxig and fyig are countable discrete sequences of points converging
to distinct points x and y, respectively. Note that S has two special nonisolated ends.

2.2 Mapping class groups and arc graphs

The mapping class group, Map.†/, of a surface† is the group of orientation-preserving homeomorphisms
of † up to isotopy. The natural topology on any group of homeomorphisms is the compact-open topology
and Map.†/ is endowed with the quotient topology with respect to the compact-open topology on the
space of homeomorphisms of †. When † is a finite-type surface, this topology agrees with the discrete
topology on Map.†/, but when † is of infinite type it does not. There are several important subgroups
of Map.†/: Mapc.†/ is the subgroup consisting of mapping classes with compact support, PMap.†/
is the pure mapping class group consisting of mapping classes which fix the set of ends pointwise,

Algebraic & Geometric Topology, Volume 25 (2025)



Infinite-type loxodromic isometries of the relative arc graph 571

Mapc.†/ < PMap.†/ is the closure of the compactly supported mapping class group with respect to
the topology described above, and when † has an isolated puncture p, Map.†;p/ is the subgroup of
mapping classes that fix p.

When † is finite-type, Map.†/ is algebraically generated by finitely many Dehn twists [19]. Infinite-type
mapping class groups, sometimes called big mapping class groups, are uncountable groups, so there is no
countable algebraic generating set. However, one can consider topological generating sets (countable
dense subsets of Map.†/) and in [22], Vlamis and the third author prove that for many infinite-type
surfaces, Dehn twists are not sufficient in topologically generating even PMap.†/. They show that in
addition to Dehn twists, a new class of homeomorphisms called handleshifts (defined in Section 2.4) are
often needed to topologically generate PMap.†/. In a subsequent paper with Aramayona [3], Vlamis
and the third author give an algebraic description of PMap.†/ that will be relevant in Section 8. When
† is an infinite-type surface with n> 1 nonplanar ends, they prove that PMap.†/DMapc.†/Ì Zn�1,
where Zn�1 is generated by n� 1 handleshifts with disjoint support. In particular, when † has exactly 2
nonplanar ends (for example when † is the ladder surface), PMap.†/DMapc.†/Ì Z, where ZD hH i

and H is the standard handleshift, shifting each genus of † over to the right by one.

In this paper we are primarily concerned with mapping classes of intrinsically infinite-type.

Definition 2.2 An element f 2Map.†/ is of intrinsically infinite-type if f 62Mapc.†/.

More specifically, we are interested in how such elements act on a particular graph of arcs called the
relative arc graph.

Let† be a connected, orientable surface with empty boundary, and let…�† be the set of punctures of†,
which we assume to be nonempty. In this subsection, it is convenient to regard… as a set of marked points
on †. By a proper arc on † we mean a map ˛ W Œ0; 1�!† such that ˛�1.…/D f0; 1g. We often conflate
an arc with its image in†. An arc is simple if it is an embedding when restricted to the open interval .0; 1/.

The arc graph A.†/ is the simplicial graph whose vertices are isotopy classes of simple arcs on †, where
we only consider isotopies rel endpoints, and two (isotopy classes of) arcs are connected by an edge if they
can be realized disjointly away from …. The mapping class group Map.†/ acts on A.†/ by isometries.
Hensel, Przytycki, and Webb [15] show that when † has finite-type, the graph A.†/ is infinite diameter
and 7-hyperbolic. On the other hand, when † is infinite-type with infinitely many punctures, it is straight-
forward to see that A.†/ has diameter 2, and so this graph is not particularly useful for studying Map.†/.

Assuming that … contains a nonempty set of isolated punctures, Aramayona, Fossas, and Parlier [2]
construct a particular subgraph of the arc graph which has interesting geometry, even when … is infinite.
We are interested in a special case of this construction, involving a single isolated puncture p.

Definition 2.3 The relative arc graph A.†;p/ is the subgraph of A.†/ spanned by arcs which start and
end at p. More precisely, the vertices of A.†;p/ are isotopy classes of arcs on † with endpoints on p,
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where we allow only isotopy rel endpoints. There is an edge between two (isotopy classes of) arcs if they
can be realized disjointly away from p.

Aramayona, Fossas, and Parlier show that A.†;p/ is connected, has infinite diameter, and is 7-hyperbolic
(see [2, Theorem 1.1]). While Map.†/ does not necessarily act on A.†;p/, the subgroup Map.†;p/
that fixes the puncture p does act by isometries on this graph. When † has only one isolated puncture p,
Map.†/DMap.†;p/.

2.3 Metric spaces and loxodromic isometries

We now introduce some basics of metric spaces and isometries of a hyperbolic metric space. Given a
metric space X , we denote by dX the distance function on X . A map f WX ! Y between metric spaces
X and Y is a .K;C /-quasi-isometric embedding if there is are constants K � 1, C � 0 such that for all
x;y 2X ,

1

K
dX .x;y/�C � dY .f .x/; f .y//�KdX .x;y/CC:

A geodesic in X is an isometric embedding of an interval into X and a .K;C /-quasigeodesic in X is a
.K;C /-quasi-isometric embedding of an interval into X . We call the constants K;C the quality of the
quasigeodesic. By an abuse of notation, we often conflate a (quasi)geodesic and its image in X .

Definition 2.4 Given an action by isometries of a group G on a hyperbolic space X , an element g 2G is
elliptic if it has bounded orbits; loxodromic if the map Z!X given by n 7! gnx0 for some (equivalently,
any) x0 2X is a quasi-isometric embedding; and parabolic otherwise.

Any biinfinite quasigeodesic in X which is preserved by a loxodromic isometry g 2G is called an axis
of g. An axis always exists; for any x0 2X , the set fgnx0 j n2Zg is a (discrete) quasigeodesic preserved
by g. If X is a geodesic metric space, in the sense that there exists a geodesic connecting any two points
of X , then we may construct a continuous quasigeodesic axis as follows. Fix a geodesic Œx0;gx0� from
x0 to gx0. Then g stabilizes the path formed by concatenating the geodesics gnŒx0;gx0�; this path is
a quasigeodesic axis of g in X . Varying the point x0 will change the quality of the quasigeodesic. Let
gC D limn!1 gnx0 and g� D limn!�1 gnx0 be points in the Gromov boundary @X of X . The limit
set of hgi is the subset fgC;g�g � @X ; this set is fixed pointwise by g. It is straightforward to show that
the limit set fgC;g�g does not depend on the choice of x0 2X .

2.4 Shift maps and the biinfinite flute surface

A handleshift was first defined in [22] as follows. Consider the surface S 0 defined by taking the strip
R� Œ�1; 1�, removing a disk of radius 1

2
with center .n; 0/ for each n 2Z, and attaching a torus with one

boundary component to the boundary of each such disk. A handleshift on S 0 is the homeomorphism
that acts like a translation, sending .x;y/ in S to .x C 1;y/ and which tapers to the identity on @S 0.
Given a surface of infinite-genus † with at least two nonplanar ends and a proper embedding of S 0 into
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† so that the two ends of the strip correspond to two distinct ends of †, the handleshift on S 0 induces a
handleshift on †, where the homeomorphism acts as the identity on the complement of S 0. In this paper,
more flexibility is allowed, and we define the following generalization.

Definition 2.5 Let S 0 be the surface defined by taking the strip R� Œ�1; 1�, removing a closed disk of
radius 1

4
with center .n; 0/ for n 2Z, and attaching any fixed topologically nontrivial surface with exactly

one boundary component to the boundary of each such disk. A shift on S 0 is the homeomorphism that
acts like a translation, sending .x;y/ in S 0 to .xC 1;y/ and which tapers to the identity on @S 0.

Lanier and Loving use two particular cases of this generalization in [18]. Naming the full generalization a
“shift” is in line with their paper. Note that it is essential for the same surface to be glued to the boundary
component of each disk in order for the shift to be a homeomorphism of the surface.

As above, given a surface † with a proper embedding of S 0 into † so that the two ends of the strip
correspond to two different ends of †, the shift on S 0 induces a shift on †, where the homeomorphism
acts as the identity on the complement of S 0. Given a shift h on †, the embedded copy of S 0 in † is
called the domain of h. In this paper, we produce special homeomorphisms that can be obtained as a
composition of three shift maps on such a surface † with an isolated puncture p and that are loxodromic
with respect to the action of Map.†;p/ on A.†;p/. Instead of working generally with surfaces that
admit shift maps, we begin by letting S be the biinfinite flute surface. Then, S admits shift maps which
shift a countable collection of punctures on S . To prove Theorem 1.1 we first construct mapping classes
that are loxodromic with respect to the action of Map.S;p/ on A.S;p/. We then use this surface as a
template for constructing the desired mapping classes for more general surfaces † by extending the shift
maps on S to shift maps on † as follows.

Definition 2.6 Let S be the biinfinite flute surface. A surface† with an isolated puncture p is admissible
if there exists a proper embedding S ,!† where S contains p, the two nonisolated ends of S correspond
to distinct ends of†, and such that a countably infinite collection of connected components of†nS are of
the same (nontrivial) topological type. Note that when the components are once-punctured disks, there are
countably many isolated punctures of S that remain isolated punctures when embedded in †. Denote this
special class of connected components of †nS by U , so that the elements of U are all homeomorphic to a
fixed surface †0 with one boundary component. See Figure 1 for some examples of admissible surfaces.

Given a shift map h on S , the support of h is a strip R� Œ�1; 1� with countably many punctures. When
the set of punctures in the support of h only consists of those corresponding to elements of U , we can glue
copies of †0 onto the punctures of this strip to produce a shift map on a surface S 0 as in Definition 2.5.
The embedding of S in † therefore gives an embedding of S 0 in † and the shift on S 0 in † is extended
via the identity on † nS 0 as usual. From this construction, we immediately have one direction of the
following lemma.

Algebraic & Geometric Topology, Volume 25 (2025)



574 Carolyn Abbott, Nicholas Miller and Priyam Patel

p

p





4


3
2
1
0
�1

5 
6 
7

Figure 4: Examples showing that surfaces with shift maps are always admissible. For the first
surface, only one curve 
 is needed to cut away the extra topology of †. In the second case, a
countable collection of curves f
ig is needed.

Lemma 2.7 Given a surface † with an isolated puncture , † is admissible if and only if † admits shift
maps.

Proof It is left to show that if† has an isolated puncture p and admits a shift map, then† is admissible. To
see this, we consider the proper embedding of S 0 into †. Recall that S 0 is obtained from a punctured strip
by gluing on countably many copies of any surface†0 with exactly one boundary component. Let T DfTig

denote the corresponding countable collection of subsurfaces homeomorphic to †0 in †, indexed by Z.

Note that E.S 0/ is a closed subset of E.†/, as is X DE.S 0/[fpg, and thus X c DE.†/nX is open in
E.†/. The second countability of the topology on E.†/ implies that X c is the union of countably many
basis elements. If X c is in fact clopen in E.†/, then X c is compact and is therefore a finite union of
basis elements. In this case, there exists a simple closed curve 
 in † with the following property: there
exists a connected component K of † n 
 such that the end space of K DK[ 
 is exactly X c . In this
way, 
 cuts away the ends of † that are in X c (see Figure 4). We then have that

† n
�
K[

�S
i Ti

��
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is homeomorphic to the biinfinite flute surface and † is admissible with T playing the role of U in the
definition of an admissible surface.

In general, we can only assume that X c is open, not clopen, so that it can be expressed as the union
of countably many basis elements for the topology. Then, there exists a countable collection of simple
closed curves f
ig and a countable collection of connected components Ki of † n 
i such that the end
space of

S
i Ki D

S
i Ki [ 
i is exactly X c (see Figure 4). In this case,

† n
��S

i Ki

�
[
�S

i Ti

��
is homeomorphic to the biinfinite flute surface and † is admissible.

Given this equivalent definition for an admissible surface, we can show that this class includes all infinite-
type surfaces with an isolated puncture outside of two sporadic classes that do not admit shift maps. We
will need the following definition.

Definition 2.8 The Loch Ness monster is the infinite-type surface with no planar ends and exactly one
nonplanar end. An infinite-type surface is a fluted Loch Ness monster if it is obtained from the Loch Ness
monster in one of the two following ways:

(1) by deleting a finite, nonzero collection of isolated points, or

(2) deleting a countably infinite collection of isolated points accumulating to exactly one point, which
we also delete from the surface, or accumulating onto the end of the Loch Ness monster.

See Figure 2 for examples of fluted Loch Ness monsters.

Lemma 2.9 Let † be an infinite-type surface with an isolated puncture. Then † is admissible unless †
is a flute surface with finite (possibly zero) genus or is a fluted Loch Ness monster surface.

Proof Let † be an infinite-type surface with an isolated puncture p. If † has at least two nonplanar
ends, then † admits a shift map (in fact a handleshift). Similarly, if † has at least two nonisolated planar
ends, then † admits a shift map with these two ends corresponding to the two ends of the strip S 0 in
Definition 2.5. Thus, if † does not admit a shift map, † has exactly one nonisolated planar end and finite
genus, ie a flute surface with finite genus, or has exactly one nonplanar end and up to one nonisolated
planar end, ie a fluted Loch Ness monster.

Going back to the original definition of an admissible surface, there are a few more notable remarks
regarding the relationship between S and†. First, there is not necessarily an embedding of Map.S;p/ into
Map.†;p/ since if the support of a shift h on S contains punctures that do not correspond to elements of U ,
then there may not be a way to extend that shift to †. In particular, if h shifts one puncture x to another
puncture x0 but the topology of the surfaces glued to x and x0 are different, there is no extension of h to a
shift of†. This will not affect our arguments since there are countably many punctures of S corresponding
to the elements of U which we move to the front of the cylinder for S along with p, and we move all other
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punctures to the back of the cylinder. Here we are choosing one nonisolated end of S to correspond to the
left direction on the surface, and the other nonisolated end to correspond to moving right on the surface
so that there is a well-defined notion of the front and back of S . In our constructions, we use shift maps
on S whose support only contains the punctures on the front of S so that all of these shifts extend to †.

Second, and most importantly, we now show that proving Theorem 1.1 for admissible surfaces † can
be reduced to the case of the biinfinite flute S . In fact, this is the motivation for the original definition
of an admissible surface. For simplicity, given a surface M with an isolated puncture p and any points
a; b 2A.M;p/, we write dM .a; b/ for the distance between a and b in A.M;p/

Lemma 2.10 Let† be an admissible infinite-type surface with an isolated puncture p. Then the inclusion
of A.S;p/ into A.†;p/ is a .2; 0/-quasi-isometric embedding.

Proof As S �†, it is clear that d†.a; b/� dS .a; b/ for any a; b 2A.S;p/.

To obtain the other inequality, let Sa;b � S be a finite-type subsurface of S which contains a; b, the
puncture p, and has complexity at least 2. Note that Sa;b is then a finite-type subsurface of † as well.
Thus by [2, Corollary 4.3] applied to Sa;b �† and to Sa;b � S , we have

dS .a; b/� dSa;b
.a; b/� 2d†.a; b/:

Together, these imply that
d†.a; b/� dS .a; b/� 2d†.a; b/;

completing the proof.

In particular, let g 2Map.S;p/ be loxodromic with respect to the action of Map.S;p/ on A.S;p/ with
a .K;C /-quasigeodesic axis. If g can be extended to an element of Map.†;p/, then this extension
is loxodromic with respect to the action of Map.†;p/ on A.†;p/, and the extension will have a
.2K;C /-quasigeodesic axis.

3 Coding arcs and standard position

Let S be the biinfinite flute surface with a distinguished isolated puncture p, and let fpigi2Z be any
countably infinite discrete collection of punctures on S which exits both ends of the cylinder and does
not contain p. As described in Section 2.4, we choose one nonisolated end of S to correspond to the left
direction and one to correspond to the right direction, which gives a well-defined notion of a front and
back of the cylinder for S . We move all of the punctures in fpi j i 2Zg[ fpg to the front of the cylinder
for S and all other punctures to the back. We also move the distinguished puncture p so that it lies to the
right of p�1 and to the left of p0. We will consider the collection fpi j i 2 Zg[ fpg of punctures. We
index this set with Z[fPg, which we give the ordering consisting of the usual ordering on Z with the
additional requirement that �1< P < 0. The index P corresponds to the distinguished puncture p.
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P 0�1 1

P 0 1�1

Figure 5: The curves Bi are in red. The blue region is the domain of the shift map H .

Fix the simple closed curve B0 bounding the puncture p0 on S shown in Figure 5. More formally, to
define B0 we fix a complete hyperbolic metric on S and let B0 be a horocycle at a height sufficiently far
out the cusp. Fix a shift map H on S whose domain contains exactly the collection fpig for i 2 Z[P

and which shifts pi to piC1 for all i 2 Z[P .

Definition 3.1 Define the simple closed curves Bi WDH iB0 for i 2 Z[P . Then Bi is a simple closed
curve bounding the puncture pi , where p

P
D p.

Our choice of left=right also gives a well-defined notion of an arc passing over or under a puncture (or
equivalently some Bi). In all pictures of S throughout the paper, we denote the special puncture p by an
“X”, and rather than drawing the punctures pi , we draw the simple closed curves Bi in S . We will use
these simple closed curves to put arcs into standard position as described later in this section.

3.1 Coding arcs

We use the simple closed curves Bi to describe a way to code simple arcs on S starting and ending at p.
We will use this code to quantify how long two arcs fellow travel, which will be essential for proving the
results of this paper.

Suppose that 
 is an oriented arc on S starting and ending at p such that 
 can be homotoped to be
completely contained on the front of S . We code 
 as follows. First homotope 
 so that it is disjoint
from all Bi with i 2 Z[P , with the exception that 
 starts and ends at the puncture p and therefore
intersects BP exactly twice. The code for 
 always starts and ends with the character Ps (which stands for
“puncture start”) and contains either the character ko or the character ku, where k 2Z[fPg, whenever 
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P 0 1 2 3�1�2�3

˛

P 0 1 2 3�1�2�3

ˇ

P 0 1 2 3�1�2�3




Figure 6: Pictured are arcs on the front of the surface S . The X denotes the puncture p and the
elements k 2 Z[fPg shown under S denote the subscript on the simple closed curves Bk . The
codes for arcs ˛; ˇ; 
 are given in Example 3.2.

passes over or under the simple closed curve Bk for k 2 Z[P . These characters appear in the code for

 in the same order in which 
 passes over=under the curves Bk . For example, since �1< P < 0, the
second character of the code for 
 must be either 0o, 0u, .�1/o, .�1/u, Po, or Pu, because if 
 doesn’t
immediately wrap around p (which would lead to the second character being Po or Pu), it must pass
over or under either B0 or B�1 before it can pass over or under Bk for any k ¤ 0;�1. Similarly, if the
character 2o or 2u appears in the code, each adjacent character must be one of 1o; 1u; 2o; 2u; 3o, or 3u.
To simplify notation, we write ko=u to mean that the character could be ko or ku. We will write ko=uku=o

to mean that the two adjacent characters are either koku or kuko; the ku=o is used to emphasize that the
second character has the opposite subscript as the first one.

Example 3.2 Consider the arcs shown in Figure 6. The elements k 2 Z[fPg shown under S denote
the subscript on the simple closed curves Bk . The code for ˛ is Ps0o1u2o2u1u0uPs , the code for ˇ is
PsPuPo0o1o2o2u1o0oPs , and the code for 
 is Ps.�1/o.�2/o.�2/u.�1/uPu0u1u1o0oPs .

Now suppose 
 is an oriented arc on S starting and ending at p such that no arc in its homotopy class
is contained on the front of S . Since 
 starts and ends at p, which is on the front of the surface, every
time 
 leaves the front of S it must eventually reenter the front. We give the code C to any subpath of 

which is on the back of S . Up to homotopy, we may assume that each time 
 exits then enters the front
of S , it does so “between” two simple closed curves Bk and BkC1. In other words, there is an arc 
 0 in
the homotopy class of 
 whose code contains either ko=uC.kC 1/o=u or ko=uC ko=u each time 
 0 leaves
the front of S . We give 
 the same code as 
 0. We emphasize that this implies that the code of an arc
does not distinguish the behavior of arcs 
 on the back of S .

By an abuse of notation, we typically blur the distinction between an arc and its code, writing, for example,
˛ D Ps0o1u2o2u1u0uPs .

Definition 3.3 Let 
 be an oriented arc on S starting and ending at p. A code for 
 is reduced if no two
adjacent characters in the code are the same and if the character immediately following the initial Ps or
preceding the terminal Ps is not Po=u.
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 0

�3 �2 �1 P 0 1 2 3

Figure 7: The arcs 
 and 
 0 are homotopic and have the same reduced code: 
 0 is formed from 


by the removal of the pair 1o1o.

The appearance of repeated characters in the code of an arc indicates backtracking in the arc. The
following lemma is immediate.

Lemma 3.4 If there are two arc 
 and 
 0, starting and ending at p, whose codes differ only by the
removal of two adjacent characters which are equal , ie koko or kuku, then 
 and 
 0 are homotopic.

Example 3.5 The arcs 
 and 
 0 in Figure 7, with codes Ps0o1o1o1u2u2o1o0oPs and Ps0o1u2u2o1o0oPs ,
respectively, are homotopic.

Note that if a triple appears in the code for an arc, it is reduced to a single character according to our
convention, as only pairs of repeated characters are removed. For example, Ps0o1o1o1o1u0oPs is reduced
to Ps0o1o1u0oPs .

Each homotopy class of curves on S determines a reduced code, in the sense that any two homotopic
curves have the same reduced code. We write that two codes are equal if they determine homotopic arcs.
For example, we write

Ps0o1o1o1u2u1u0uPs D Ps0o1u2u1u0uPs:

The converse of this fact is not true, however, because the code does not encode the behavior of arcs on
the back of S ; hence there can be nonhomotopic arcs with the same reduced code. This will not cause
any problems in this paper.

Definition 3.6 The code length of an arc 
 , denoted `c.
 /, is the number of characters in a reduced
code for 
 .

Convention 3.7 When giving the code of an arc for which the numerical values of the characters are
unimportant (or unknown), we will use variables in the code. Our convention is to use Roman letters to
represent single characters and Greek letters to represent strings of characters whose length is (possibly)
greater than one. For example, `c.a1a2a3/D 3 while `c.a
b/D `c.
 /C 2.

Given a string of characters ˛D a1a2 : : : an, we denote by ˛ the reverse of ˛, so that ˛D anan�1 : : : a2a1.
If ˛ is an arc, then ˛ is the same arc with the opposite orientation.
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3.2 Standard position

In this section, we describe how to use the code for an arc to find its image under a general class of shifts
which we call “permissible”.

Definition 3.8 We say a shift shifting to the right is a right shift, while a shift shifting to the left is a
left shift. A right shift is permissible if its domain D stays on the front of our subsurface and contains a
turbulent region .n1; n2/, that is, there exist n1; n2 2 Z[fPg with n1 < n2 such that D contains Bk for
all k 2 .�1; n1�[ Œn2;1/ but does not contain Bk for any k 2 .n1; n2/. We call .�1; n1/[ Œn2;1/

the shift region of h. See Figure 11. Analogously, a left shift is permissible if its domain D stays on
the front of our subsurface and contains a turbulent region .n2; n1/, that is, there exist n1; n2 2 Z[fPg

with n2 < n1 such that D contains Bk for all k 2 .�1; n2�[ Œn1;1/ but does not contain Bk for any
k 2 .n2; n1/. The shift region for a left shift is .�1; n2�[ .n1;1/.

Convention 3.9 Throughout the paper, we will use both left and right shifts. For notational simplicity,
all general results about shifts will be stated for right shifts. All statements of results, proofs, and figures
will make this assumption as well. However, all of our definitions and results (and their proofs) also hold
for left shifts, by modifying any proof for a right shift so that we essentially replace all instances of n1

with n2 and vice versa and replace all instances of the word “increasing” by the word “decreasing” and
vice versa. The only subtleties are that:

� We retain the convention that h.Bn1
/D Bn2

.

� For the shift region intervals .�1; n1/[Œn2;1/ that appear for a right shift, we use .�1; n2�[.n1;1/

for the left shift. In particular, the n2 is always contained in the shift region.

Remark 3.10 It is worthwhile to mention that Convention 3.9 is equivalent to simply redefining the
order, given by the symbol <rev, on Z[fPg to be the opposite of the standard meaning of the inequality
sign <. For example, in this “reversed order” we would have 5<rev 3 and so on. Given this and using
the standard meanings for “increasing” and “decreasing” with respect to <rev, all of the proofs for shifts
that shift to the left would go through identically as shifts that shift to the right when one replaces each
instance of < with an <rev. Despite the simplicity of this reversed order, we found writing proofs with it
to be more confusing to the reader than applying the above convention.

In order to find the image of an arc using only its code, we will need to consider paths whose endpoints
are not on p.

Definition 3.11 A segment is a simple path with at least one endpoint which is not a puncture, and no
endpoints on a puncture other than p. We code a segment in an analogous way as we did arcs in Section 3.1.
If a segment begins or ends on p, then the initial or terminal character of the code is Ps , respectively.
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Note that a segment can have at most one instance of Ps in its code. Given a segment 
 , we denote the
initial and terminal character of its code by 
 i and 
 t , respectively. A segment is supported on an interval
.a; b/� Z[fPg if the numerical value of every character in its reduced code is contained in .a; b/. A
subsegment of 
 which is supported on an interval .a; b/ is denoted 
 j.a;b/, with similar notation for half-
open and closed intervals. A segment is (strictly) monotone if the numerical value of the characters in its
reduced code are (strictly) monotone as a subset of Z[fPg. A segment with code C is called a back loop.

The notion of left=right on the front of S induces an orientation on strictly monotone segments contained
on the front of S in the following way. If the terminal endpoint of such a segment 
 is to the right of
the initial endpoint, then 
 is oriented to the right. Similarly, if the terminal endpoint is to the left of
the initial endpoint, then 
 is oriented to the left. Since 
 is strictly monotone, one of the above two
possibilities must occur. We note that single characters of a code represent strictly monotone segments
and so can be oriented in this way.

We will use the code for an arc or segment to find the image of the arc or segment under certain
homeomorphisms of S . The process can be complicated. We now introduce a new way of concatenating
strings of characters which will be more suited to finding the image of an arc or segment in certain situations.

Definition 3.12 Given two segments ˛ and ˇ such that the terminal character of ˛ agrees with the initial
character of ˇ and such that these two characters have the same orientation, the efficient concatenation of
˛ and ˇ, denoted ˛Cˇ, is formed by removing the terminal character of ˛ to form a new string ˛0 and
concatenating this new string with ˇ, resulting in ˛0ˇ.

For example,

Ps0oC 0o1o D Ps0o1o;

and

Ps0o1o2o2uC 2u2u2o1o1u D Ps0o1o2o2u2u2o1o1u D Ps0o1u;

where the middle term is an unreduced code and the final term is a reduced code. See Figure 8. We note
that if ˛ and ˇ can be efficiently concatenated, then they cannot be concatenated, because ˛t and ˇi have
the same orientation. By a similar reasoning, if two segments can be concatenated, then they cannot be
efficiently concatenated. Throughout the paper, we only (efficiently) concatenate two segments when it is
possible.

As written, the code of a segment is not well behaved under homotopy because every segment is
homotopically trivial or homotopic into a puncture. We will introduce a standard position for segments
on S with the property that any two segments that are homotopic rel endpoints will, in standard position,
have the same reduced code. Standard position will also allow us to find the image of a segment under a
permissible shift using only its code.
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0 1 2

0 1 2

Figure 8: The two examples of efficient concatenation following Definition 3.12. In each, the
(reduced) code for the blue segment is the efficient concatenation of the codes of the two black
segments.

Definition 3.13 Fix a simple closed curve Sj as in Figure 9 for each j 2 Z[fPg. Let

C D fSj j j 2 Z[fPgg:

For each j 2 Z[fPg, we orient the simple closed curve Bj clockwise and identify Bj with the subset
S1 of C by a homeomorphism which preserves this orientation. Fix points b

j
L
; b

j
R
2Bj corresponding to

�1; 1 2 S1, respectively. Here L and R stand for left and right.

To describe standard position, we will sometimes move endpoints of segments 
 to lie on various boundary
components. When we do this, we will use the following convention. Suppose 
 i D ko=u and we want
to move the initial endpoint of 
 onto the boundary component Bk . If 
 is oriented to the right, then
we move the initial endpoint of 
 to bk

L
, and if it is oriented to the left, we move the initial endpoint

to bk
R

. On the other hand, suppose 
 t D .k 0/o=u and we want to move the terminal endpoint of 
 onto the
boundary component Bk0 . If 
 is oriented to the right, we move the terminal endpoint of 
 to bk0

R
, and if

it is oriented to the left, we move the terminal endpoint to bk0

L
. See Figure 10. Moving endpoints in this

way does not change the code for 
 .

It will be useful to understand how a given segment interacts with the domain of a permissible shift.

�3 �2 �1 P 0 1 2 3

S�2 S�1 SP S0 S1 S2 S3

Figure 9: Some of the simple separating curves in C defined in Definition 3.13.
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k k 0

Figure 10: Adjusting the endpoints of 
 (black) results in the red segment.

Definition 3.14 Let h be a permissible right shift with domain D and turbulent region .n1; n2/. Then
both (the upper and lower) boundary components of D have the same reduced code on .n1; n2/. For any
k; k 0 2 .n1; n2/, we let @DjŒk;k0� be the reduced code of the boundary components of D on the interval
Œk; k 0� with similar notation for open and half-open intervals. If a segment 
 has the same code as @D on an
interval .k1; k2/� .n1; n2/, we say that 
 follows @D or agrees with @D on that interval. As noted in the
convention above, there is an analogous definition when h is a left shift. When a segment 
 supported on
Œn1; n2� intersects one component of @D, we call this a half crossing. When such a 
 intersects both compo-
nents of @D so that the code for the subsegment of 
 between these two half crossings is empty, in the sense
that this subsegment does not pass over or under Bk for any k, we call this a full crossing. See Figure 11.

Even though S is a straightforward surface, standard position for segments on S is necessarily complicated.
Before introducing it formally in the next two subsections, we briefly give an intuitive idea of standard
position in the following remark. On a first reading of this paper, we strongly suggest the reader read this
remark and study Figures 12–15 instead of reading the formal definition of standard position given in
Sections 3.2.1 and 3.2.2. The reader may then safely skip to Section 3.3. If, later in the paper, the image
of a particular segment seems counterintuitive, likely this is because we put the segment in standard
position before taking its image. This would be a good time to look back at Sections 3.2.1 and 3.2.2 with
that example of a segment in mind.

Remark 3.15 Let h be a permissible right shift with domain D and turbulent region .n1; n2/, and let 

be a segment. To put 
 in standard position with respect to h, we first homotope subsegments of 
 that
are contained in the region .�1; n1/[ .n2;1/ to be completely contained in D. For the subsegments of

 contained in the region Œn1; n2�, we homotope 
 so that crossings are full crossings whenever possible.
We will always be able to make crossings full except near n1 or n2, because n1 and n2 are where 
 leaves

n2




n1

Figure 11: The domain D for a permissible shift is shown in red. The segment 
 follows @D
on Œn1C 1; n1C 3�, has a half crossing between Bn2�1 and Bn2

, and has a full crossing between
Bn1C1 and Bn1C2.
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the turbulent region and enters the shift region, where we have already ensured that it is contained in D.
We also homotope 
 to minimize the number of full crossings. If 
 contains a loop .n1/o=u.n1/u=o or
.n2/o=u.n2/u=o, we homotope 
 so that it crosses one connected component of @D immediately before
the loop and the other connected component immediately after. In other words, 
 has to enter one side of
D before the loop and exit the other side of D after the loop. If 
 contains the character C , we homotope
it so that the subsegment of 
 represented by C exits and reenters the front of S at the same place, in
the sense that the endpoints of this subsegment lie on the same simple closed curve Si . Finally, we also
homotope each endpoint of 
 to lie either on the nearest Bk (if it is in the shift region) or the nearest Sk

(if it is in the turbulent region).

Standard position will be slightly different for those segments which contain back loops. We first discuss
standard position for segments that do not contain back loops.

3.2.1 Segments without back loops Given a segment 
 whose reduced code does not contain C and a
permissible right shift h with domain D and turbulent region .n1; n2/, we put 
 into standard position
with respect to h as follows.

If the endpoints of 
 are not contained in .n1; n2/ and it is possible to homotope 
 completely inside of
the domain of h, we do so, and we move the endpoints of 
 to lie on the Bk curve numbered by the first
and last characters of the code as described above.

Otherwise, 
 can be written as the concatenation 
1 : : : 
k of disjoint connected maximal subsegments
such that each 
i is either

(a) supported on either .�1; n1� or Œn2;1/; or

(b) supported on .n1; n2/.

We now homotope each 
i individually. If 
i satisfies (a), then we move the endpoints of 
i onto the
Bk curve numbered by the first and last character of the code as above and homotope the interior of 
i

to lie completely inside the domain of h. We homotope segments 
i satisfying (b) using the following
procedure:

Step (i) If the initial character of the segment is ko=u, move the initial endpoint of the segment onto
the separating curve Sk if ko=u is oriented to the right and onto SkC1 if it is oriented to the left. If the
terminal character of the segment is k 0

o=u
, move the terminal endpoint of the segment onto Sk0 if k 0

o=u

is oriented to the left and onto Sk0C1 if it is oriented to the right. Now move the endpoints along the
Sj containing them to reduce the number of full and half crossings, if possible, without creating any
self-intersections. In particular, the endpoints should not lie in the domain of h. See Figure 12.

There is one caveat to the rule above. Note that when 
i is type (b), then 
iC1 and 
i�1 are type (a),
otherwise 
i would not be maximal. In the case that either of these neighboring segments is exactly a
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n1 n2

n1 n2

n1 n2

n1 n2

Figure 12: The domain D for a permissible shift is shown in red. In black is a segment 
 that has
no .ni/o=u.ni/u=o for i D 1; 2. Left: putting 
 in standard position. Right: a simple segment with
the same code as 
 which we say is in standard position.

loop around n1 or n2 we must adjust the position of the endpoints of 
i along Sj . If 
iC1 D .nk/o.nk/u,
for k D 1 or 2, we require that the terminal endpoint of 
i is above D and require that the terminal
endpoint is below D when 
iC1 D .ni/u.ni/o. Similarly, if 
i�1 D .ni/o.ni/u, for i D 1 or 2, we require
that the initial endpoint of 
i is below D and require that the initial endpoint of 
i is above D when

i�1D .ni/u.ni/o. See Figure 13. Note that this repositioning of endpoints can cause additional crossings
of D as in Figure 14, but this is the appropriate configuration for our calculations.

Step (ii) Homotope the segment rel endpoints to make all crossings full. Since Step (i) ensures that the
endpoints of 
i are always outside the domain D, this is always possible.

Step (iii) Homotope the segment rel endpoints to reduce the number of crossing by removing all bigons
that bound disks and have one side on the segment 
i and the other side on @D.

Step (iv) Finally, there may be a choice of where a full crossing occurs. If there is such a choice, then
it will always be possible to homotope rel endpoints so that the crossing occurs between two adjacent
characters ko=u, .k 0/o=u with k; k 0 2 .n1; n2/ such that the o=u pattern of k and/or k 0 does not match that
of @D, and our convention is to make this choice for the largest possible k; k 0. For example, in Figure 12,
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n1

n1

n1

n1

n1

Figure 13: A segment 
 that contains multiple copies occurrences of .n1/o.n1/u. Left: putting 
 in
standard position. Right: a simple segment with the same code as 
 which we say is in standard position.

the bottom strand could fully cross the domain between .n1C 1/o and .n1C 1/u or between .n1C 1/u

and .n1C 2/u; we make the latter choice.

At this point, we have a collection of disjoint subsegments, each in standard position. The final step is
to connect the endpoints of these segments, in the order they were originally connected, by segments
called connectors. Connectors always occur between characters with numerical value n1 and n1C 1

or n2 and n2 � 1. For the purposes of the code, we picture these segments extended slightly in either
direction to overlap with the segments on either side so that the code of a connector will always be a
pair jo=u.j C 1/o=u or .j C 1/o=ujo=u. Thus, if a connector ˛ connects disjoint subsegments ı1 and ı2
(in that order), then ˛ D .ı1/t .ı2/i and we can write ı1C ˛C ı2. Note that this code is equivalent to
the concatenation ı1ı2. By construction, connectors always have one endpoint inside and one endpoint
outside the domain D of the shift. After applying this procedure, the resulting segment in standard
position may no longer be simple. However, it will have the same code as our original 
 .

The following lemma summarizes the above procedure.

Lemma 3.16 A segment 
 in standard position with respect to a permissible right shift h which is not
completely contained in the domain of h can be written as the efficient concatenation of (possibly empty)
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n1

n1

n1

n1

n1

Figure 14: A segment 
 that contains .n1/o.n1/u. Note that the requirements on the endpoints of

i in step (i) of the procedure for standard position require that we have one connector cross the
top of @D and one connector cross the bottom of @D. Left: putting 
 in standard position. Right:
a simple segment with the same code as 
 which we say is in standard position.

segments in the following way,

(1) 
 D 
 tu
1 C 


c1
1 C 


sh
1 C 


c2
1 C 


tu
2 C 


c1
2 C � � �C 


sh
n C 


c2
n ;

where for each i ,

� 
 tu
i is supported on the turbulent region .n1; n2/, has been put into standard position following steps

(i)–(iv) above , and has both endpoints outside of the domain D;

� 
 sh
i is supported on the shift region .�1; n1�[ Œn2;1/, is completely contained in the domain D,

and has both endpoints on the Bk curves; and

� 
 c1
i ; 
 c2

i are connectors , each of which has code length 2, is supported on either Œn1; n1C 1� or
Œn2�1; n2�, and has one endpoint on Bn1

or Bn2
and one endpoint outside the domain D on Sn1C1

or Sn2
.

We will sometimes use the notation 
 conn
i for a connector if it is not important if this subsegment is the

first connector 
 c1
i or the second connector 
 c2

i .
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n1 n2

n1 n2

Figure 15: A segment 
 that has endpoints in .�1; n1�[ Œn2;1/ and can be homotoped to be
completely inside D.

It is often convenient to abuse notation and say that a simple segment is in “standard position” even if
it is not the result of the above procedure because these segments are easier to draw and think about.
What we mean by this is that the segment intersects the boundary of D in the same place as it would in
standard position. In Figures 12–15, we give a segment, the steps to put it in standard position, and an
example of a simple segment with the same code which we also say is in standard position.

Because each segment in (1) has fixed endpoints, its image under h is well-defined up to homotopy rel
endpoints. Thus we may use the decomposition of 
 to find its image under h as

h.
 /D h.
 tu
1 /C h.
 c1

1 /C h.
 sh
1 /C h.
 c2

1 /C h.
 tu
2 /C h.
 c1

2 /C � � �C h.
 sh
n /C h.
 c2

n /:

Since in standard position 
 may not be simple, its image under h may not be simple. However, this code
corresponds to a unique (homotopy class of) simple segment with the same endpoints. It is important
that we use efficient concatenation when calculating h.
 /. Using regular concatenation, the code for 
 is
simply 
 tu

1

 sh

1
: : : 
 tu

n 

sh
n . However, it is not true that h.
 tu

1
/h.
 sh

1
/ : : : h.
 tu

n /h.

sh
n / is a code for 
 ; in fact,

much of the time this code does not define a segment. See Example 3.17. Most of the interesting behavior
in the image of an arc or segment under a permissible shift actually comes from the full and half crossings.
Since each connector contributes a half crossing, they are essential for determining the image of 
 .

Example 3.17 Consider the permissible shift h shown in Figure 11 along with the segment 
 . In
Figure 16, we put 
 in standard position and find its image under the shift. Using code, we have

 D .n1C1/u.n1C2/o.n1C3/o.n2�1/o.n2/u. Note that every character in this code except the terminal
.n2/u is fixed by h, and h..n2/u/D .n2C 1/u. If we simply compute h.
 / character by character, we

n1 n2 n1 n2

Figure 16: The segment 
 from Example 3.17 in standard position (left) and its image under the
shift whose domain is shown (right).
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get h.
 /D .n1C 1/u.n1C 2/o.n1C 3/o.n2 � 1/o.n2C 1/u. However, this is not a well-defined code
since n2� 1 and n2C 1 are not adjacent. On the other hand, using efficient concatenation, we see that

h.
 /D h.
 tu/C h.
 conn/C h.
 sh/

D h..n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/o/C h..n2� 1/o.n2/u/C h..n2/u/

D .n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/oC .n2� 1/o.n2/o.n2C 1/uC .n2C 1/u

D .n1C 1/u.n1C 2/o.n1C 3/o.n2� 1/o.n2/o.n2C 1/u:

Note that all but the final pair .n2 � 1/o.n2/u are fixed by h. This final pair is a half crossing and in
standard position it is a connector.

In fact, given a segment 
 D 
 tu supported on .n1; n2/, we can further decompose 
 into subsegments
which are disjoint from D and pairs which fully cross D in such a way that makes it straightforward to
find its image under h. Write

(2) 
 D 
 d
1 C 


e
1 C � � �C 


d
s C 


e
s ;

where each 
 d is a maximal subsegment disjoint from D, each 
 e fully crosses D, and `c.

d / � 2,

`c.

e/D 2, when nonempty.

Using the above decomposition, in an unreduced code we have

h.
 /D 
 d
1 C h.
 e

1 /C � � �C 

d
s C h.
 e

s /:

Every nonempty 
 e
j will have image which follows @D, loops around n2, and follows @D back, so that

h.
 e
j /D @DjŒ.
 e

j
/i ;n2/

.n2/o=u.n2/u=o@DjŒ.
 e
j
/t ;n2/:

As in Example 3.17, if we don’t use efficient concatenation then we can write 
 D 
 d
1

 d

2
: : : 
 d

s . Applying
h to each of these subsegments individually would yield h.
 /D 
 , since each of these subsegments is
fixed by h, which is not the correct image.

3.2.2 Segments with back loops If 
 is a segment with code equal to C , we require that 
 has both
endpoints on some separating curve Si in our collection C. We also assume that the endpoints of C lie
outside the domain, and, moreover, that 
 does not intersect D. There are two possibilities for 
 , either

 both enters and exits the front of S at the top or bottom or (up to taking inverses) 
 enters at the top
and exits at the bottom of the front of the surface. Recall that we define the top=bottom of the front of S

with respect to the notion of right=left on the front of S . In the first case, this implies that the endpoints
of 
 are both above or both below D, respectively, while in the second case one will be above and one
will be below. In either case, this convention implies that 
 \D D∅ and h.
 /D 
 .

Suppose next that 
 is a segment whose code contains C but also contains other characters. Suppose for
simplicity that the code for 
 contains a single instance of C , so that 
 D �1C�2, where �i does not contain
C for i D 1; 2. We put 
 in standard position as follows. First note that by definition of the code, we must
either have .�1/

t D .�2/
i (if �1 and �2 have opposite orientations) or .�1/

t D .�2/
i˙ 1 (if .�1/

t and .�2/
i
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Figure 17: Various segments 
 containing back loops. The segments on the right are in standard
form. Back loops are blue and back loop connectors are green. Note that in the second, third, and
fifth examples, at least one of C˙ is empty.

have the same orientation). See Figure 17. Without loss of generality, suppose � t
1

is oriented to the right.
Consider the (disjoint) segments �1 and �2, put them in standard position as in the previous section, and
homotope the endpoints of C as in the previous paragraph. Note the endpoints of C will lie on the curve
S.�1/tC1. We now have three disjoint segments with codes �1, �2, and C . We will add (possibly empty)
segments called back loop connectors from the terminal point of �1 to the initial point of C and from the
terminal point of C to the initial point of �2, respectively, to form a connected segment. See Figure 17. We
code these back loop connectors with the characters C�;CC, respectively, so that we can easily discuss
their image. In particular, by a slight abuse of notation, we replace C in the code for 
 with C�C CC.

Recall that without loss of generality, .�1/
t is oriented to the right. If the terminal endpoint of �1 lies

outside D and on the same side of D as the initial point of the back loop C , then the back loop connector
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Figure 18: A segment 
 (left) is split into subsegments 
 D 
1C 
2 and each 
i is individually
put into standard position with respect to the shift h whose domain is shown (right). This causes
a loss of information when we take the images of 
i individually under h: since h.
i/D 
i for
i D 1; 2, we have h.
1/C h.
2/D 
1C 
2 D 
 , but 
 is clearly not fixed by h.

C� is empty. An analogous statement holds for CC, where we use the initial endpoint of �2 in place of
the terminal endpoint of �1. Each nonempty back loop connector C˙ either

(i) has one endpoint on B.�1/t or B.�2/i
(depending on whether it is C� or CC), the other endpoint

on S.�1/tC1, and half-crosses D; or

(ii) has both endpoints on S.�1/tC1 which are outside of D and fully crosses D.

3.3 Gaps in segments

When we use the code of a segment to find its image under a permissible shift, we first break it into
smaller subsegments using standard position. When we do this, we always use efficient concatenation, so
that the codes of the individual pieces overlap in a single character. The goal of efficient concatenation is
to ensure that we do not lose any information about the segment by breaking it into pieces. However,
we need to be careful when we do this. If we first break a segment into subsegments and then put each
subsegment into standard position, it is possible that we will lose some information. In particular, we
may cause there to be a “gap” in the segment. Based on standard position, these gaps can only occur
when breaking a segment in the interior of the turbulent region .n1; n2/.

To see this, suppose we break a segment 
 D 
1C
2 into two subsegments such that the numerical value
of 
 t

1
D 
 i

2
is j 2 .n1; n2/. If we put each 
i into standard position individually, it is possible that 
 t

1

and 
 i
2

lie on opposite sides of D (see Figure 18). In this case, we have lost the full crossing between
them. Recall that a shift fixes the surface outside of its domain. In the region .n1; n2/, a segment in
standard position is disjoint from the domain of the shift except where there is a full crossing (see the
decomposition in equation (2)), so the full crossings are essential for determining the image of a segment.
Thus we cannot use 
1 and 
2 to find the correct image of 
 .

In order to ensure that we do not lose any information when working with a segment and subsegments in
the turbulent region, we always first homotope the whole segment 
 to be a simple segment in standard
position. We then fix this particular representative of the homotopy class of 
 for the remainder of the
time we work with it. Thus, when we break 
 into subsegments 
1 and 
2, we do not put these into
standard position individually. To be precise, we choose the endpoints 
 t

1
and 
 i

2
to be the intersection of
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h.
 /

B0

B0




h.
 /

Figure 19: A segment 
 and its image h.
 / are shown. Left: a subsegment which does not have
a preimage. The pink subsegment of h.
 / does not have an inverse; it is a proper subpath of
the image of the purple subsegment of 
 . Right: a subsegment which has a preimage. The pink
subsegment of h.
 / has an inverse; it is the image of the purple subsegment of 
 .


 and the appropriate separating curves in our collection C and we do not allow any further homotopies
of 
1 or 
2. This will always ensure that there are no gaps between 
1 and 
2.

In certain cases, it may be simpler to break 
 into subsegments in a different way, and we do this whenever
it will avoid technicalities. For example, in Figure 18, we may simply choose not to divide 
 into
subsegments at all. On the other hand, we could also choose to make 
1 or 
2 longer than is strictly
necessary in a particular calculation in order to avoid a potential loss of information.

3.4 Taking inverses of segments

In general, if we have a segment 
 and a subsegment � of h.
 /, there is not necessarily a subsegment of

 which we may call h�1.�/. In other words, not every subsegment of h.
 / is the image of a subsegment
of 
 . It is important here that when we think of a subsegment of 
 , we are fixing 
 in standard position.
That is, we are thinking of a reduced code for 
 , rather than any (unreduced) code representing 
 .

For example, consider the shift shown in Figure 19, left. Here, the pink subsegment �1 of h.
 / is not the
image of any subsegment of 
 . Rather, it is properly contained in the image of the purple subsegment
of 
 , specifically because it is in the image of the full crossing of the purple segment with D. Explicitly,


 D 0o1u2o2u1u; h.
 /D 0o1u2o2u1u0o0u1u2u2o1u1o2o2u1u0u;

and one can see that if the subsegment �1 D 1u2o2u1u of h.
 / then there is no subsegment 
 0 of 
 for
which h.
 0/D �1.

However, we may take an inverse image of a subsegment � of h.
 / whenever we know that � is the
image of a subsegment of 
 . This is the case, for example, when � D h.
 /; in other words, it is true that

 D h�1.h.
 //. This can also happen when the initial and terminal characters of a subsegment of h.
 /
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are the images of the initial and terminal characters of a subsegment of 
 . For example, in Figure 19,
right, a direct computation will show that the initial and terminal characters of �2 (in pink) are the images
of the initial and terminal characters of the purple subsegment of 
 . Therefore �2 is the image of the
purple subsegment of 
 , which is precisely the result of calculating h�1.�2/.

4 Characterizing loops with trivial image

As in Section 3, we let S be the biinfinite flute surface with a distinguished puncture p and fix the
collection of simple closed curves fBi j i 2 Z[fPgg as in Definition 3.1. Let h be a permissible shift
(see Definition 3.8) and k 2 Z[ fPg. By an abuse of notation, we may occasionally write h.k/, by
which we mean that h.k/ is the label of h.Bk/. Thus, given any segment whose code is ko=u, we have
h.ko=u/D h.k/o=u.

Recall that a segment is a path which does not have both endpoints on p.

Definition 4.1 A segment in standard position is trivial if it can be homotoped rel endpoints to one of
the following:

(a) a segment contained in one of the separating curves Si 2 C; or

(b) a point.

We will use the notation ∅ to denote the reduced code for a trivial segment. For example, we write
koko D∅.

Definition 4.2 A loop is a segment that has one of the following forms:

(1) ı1ao=uau=oı2 for some a where ıi
1
D ıt

2
,

(2) ao=uau=o for some a, or

(3) C .

See Figure 20 for examples of loops. A loop satisfying (1) is called a regular loop, a loop satisfying (2)
is called an over-under loop, and, as in Definition 3.11, a loop satisfying (3) is called a back loop. Note

Figure 20: Some examples of loops from Definition 4.2. The loop in red fits case (1), the loop in
blue fits case (2), and the loop in purple fits case (3).
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Figure 21: The permissible shift h translates to the right. The first two loops on the left are
homotopic via homotopies which keep the endpoints on the same fixed separating curve. However,
one image is trivial while the other is not.

that regular loops always contain an over-under loop but not all over-under loops can be extended to a
regular loop. A single loop is a back loop, an over-under loop, or a regular loop such that ıi does not
contain a loop for i D 1; 2.

With the above definitions, the rest of this section is devoted to analyzing the following question.

Question 4.3 Let h be a permissible shift. When does h send a loop to a trivial segment?

The reason we introduced standard position is to ensure that this question is well defined. The issue is
that homotopies of a loop can change whether or not its image is trivial, even if those homotopies keep
the endpoints on a fixed separating closed curve (see Figures 21 and 22). Thus it is important that, given
a loop, we first put it in standard position before applying the permissible shift h. This will remove any
possible ambiguity in the image of the loop.

In this section, we first introduce a kind of cancellation in the image of a segment and its code which
we call cascading cancellation. This kind of cancellation will cause technical problems throughout the
paper, and much of Section 6 is devoted to understanding how to control it. We then prove Theorem 4.8,
which answers Question 4.3. We end the section with a discussion of several technical consequences of
the Theorem 4.8 which will be useful later.

Figure 22: The second loop from Figure 21 is in standard position. We show why its image under
h is trivial.
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4.1 Cascading cancellation

Definition 4.4 We call an arc 
 symmetric if 
 D ıq1q2ı for any characters q1, q2. In other words, a
reduced code for 
 is palindromic with the exception of the middle two characters. Note in particular that
this implies that q1, q2 have the same numerical value.

Recall that we find the image of a path with code ˛ˇ under a permissible shift f as follows. Let q be the
last character of ˛ and q0 be the first character of ˇ. Then

f .˛ˇ/D f .˛/Cf .qq0/Cf .ˇ/:

While f .˛/; f .qq0/, and f .ˇ/ are all reduced codes, it is possible that the efficient concatenation will
cause there to be cancellation. For example, if f .˛/ D 1u1o2o3o and f .qq0/ D 3o3o2o1o0oPo, then
f .˛/Cf .qq0/D 1u0oPo. When this type of cancellation occurs, that is, when a character of f .qq0/ does
not appear in a reduced code of the image, we say there is cancellation involving f .qq0/. In our example,
there is cancellation involving f .qq0/ and f .˛/. When it is necessary to be more precise, we may also
say there is (respectively, is not) cancellation involving a character s, if s appears in the unreduced code
but not the reduced code (respectively, appears in both the unreduced code and the reduced code) of the
image. Thus in our example, there is no cancellation involving 1u but there is cancellation involving 2o.
Our goal is to understand, in general, when there is cancellation with a particular character in a path under
a permissible shift.

Suppose ˛ D 
q1 and h is a permissible shift. Let q be the terminal character of 
 . It is tempting to
believe that if we can show that there is no cancellation involving h.q1/ within h.qq1/, then there is no
cancellation involving h.q1/ at all. However, this is not sufficient, for it is possible that there is “cascading
cancellation”. Before giving a formal definition, we illustrate this phenomenon with an example.

Example 4.5 Consider the segment ı D 3u2u1o0u and the permissible left shift h whose domain is
shown in Figure 23. Then

h.ı/D h.3u2u/C h.2u1o/C h.100u/:

We have

h.1o0u/D 1o0u; h.2u1o/D 2u1o and h.3u2u/D 3u2u1o0u.�1/u.�1/o0u1o2u2u:

Putting this together, we obtain h.ı/D 3u2u1o0u.�1/u.�1/o.

There is no cancellation involving either of the terms when computing h.2u10/C h.1o0u/. However,
when computing h.3u2u/Ch.2u10/, we see that h.2u1o/ completely cancels with an initial segment of
h.3u2u3/, and h.1o0u/ completely cancels with the next subsegment of h.3u2u/. Therefore, there is in
fact cancellation involving h.0u/ in h.ı/.

Definition 4.6 Formally, given an arc ı1 : : : ın and a permissible shift f , we say there is cascading
cancellation involving f .ın/ if there is cancellation involving f .ın/ in f .ı1ı2 : : : ın/ but there is no
cancellation involving f .ın/ in f .ın�1ın/.
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ı

h.ı/

�1 0 1 2 3 4

�1 0 1 2 3 4

Figure 23: Above: the segment ı in standard position. The domain of the left shift h is shown in
green. Below: the image h.ı/.

Understanding and controlling cascading cancellation is the difficult part of many of the proofs in this
paper. The remainder of this subsection is devoted to theorems that will allow us to control cascading
cancellation for permissible shifts. We will often be in the following situation: there is a segment 
 D 
1
2

whose image under a shift h we would like to understand and we know that h.
1/ has some desired
quality (such as containing a loop, for example). In order to show that the desirable behavior of h.
1/

persists in h.
 /, we need to ensure that there is no cancellation involving h.
1/ and h.
2/ by controlling
cascading cancellation. In Section 6, we will revisit this topic and prove some additional results that
allow us to control cascading cancellation for the particular homeomorphisms we construct, which are
compositions of shifts.

Lemma 4.7 Let h be a permissible right shift with domain D and turbulent region .n1; n2/. Let ˛ be a
strictly monotone segment supported on .n1; n2/. Then in a reduced code h.˛/ has n loops around n2,
where n is the number of times ˛ fully crosses D.

Proof Without loss of generality, we will assume that ˛ is strictly monotone increasing, that is, the
numerical value ˛i is strictly less than that of ˛t , as the conclusion is invariant under replacing ˛ by ˛.
As in Section 3.2.1, put ˛ in standard position. Since no segment in standard position which is supported
on .n1; n2/ will be completely contained in the domain of the shift, we may write

˛ D ˛d
1 C˛

e
1C � � �C˛

d
s C˛

e
s ;

where each ˛d
j is a maximal subsegment disjoint from D, each ˛e

j fully crosses D, and `c.˛
d
j / � 2,

`c.˛
e
j /D 2 when nonempty. Notice that if ˛d

j ¤∅ and ˛d
jC1
¤∅, then also ˛e

j ¤∅ by maximality.

Under the above decomposition, in an unreduced code we have

h.˛/D ˛d
1 C h.˛e

1/C � � �C˛
d
s C h.˛e

s /;
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Figure 24: Above: The case where ˛e
j C ˛

d
j C ˛

e
jC1 D ˛

e
j C ˛

e
jC1 in the proof of Lemma 4.7,

where ˛e
j is in purple and ˛e

jC1
is in red. Below: the nontrivial image of this segment under h.

where every nonempty ˛e
j will have image

h.˛e
j /D @DjŒ.˛e

j
/i ;n2/

.n2/o=u.n2/u=o@DjŒ.˛e
j
/t ;n2/:

Thus each full crossing ˛e
j contributes a loop around n2 in an unreduced code for h.˛/. We must show

that such loops persist in a reduced code for h.˛/.

If ˛e
j , ˛e

jC1
¤∅ and ˛d

jC1
D∅ then a calculation shows that in a reduced code

h.˛e
j C˛

d
jC1C˛

e
jC1/D h.˛e

j C˛
e
jC1/D h.˛e

j /C h.˛e
jC1/:

In particular, there is no cancellation between h.˛e
j / and h.˛e

jC1
/ and the loops around n2 persist. See

Figure 24.

Now assume that ˛d
jC1

is nonempty. The maximality of ˛d
jC1

implies that ˛e
j and ˛e

jC1
are nonempty as

well. We must show that there is no cancellation between the loops around n2 in h.˛e
j / and h.˛e

jC1
/ so

that both loops persist in a reduced code for h.˛e
j /C˛

d
jC1
C h.˛e

jC1
/. Recall that in standard position,

a full crossing occurs between two adjacent characters ko=u, .k 0/o=u with k; k 0 2 .n1; n2/ such that the
o=u pattern of k and=or k 0 does not match that of @D, and our convention is to make this choice for the
largest possible k; k 0.

The subtlety arises because the code for h.˛e
j /C ˛

d
jC1

may not be reduced if an initial subsegment
of ˛d

jC1
D h.˛d

jC1
/ agrees with @D, in which case .˛e

j /
t agrees with @D. If .˛e

j /
t is the character of

the full crossing ˛e
j that does not agree with @D, then this character will block cancellation between

h.˛e
j / and ˛d

jC1
, so that the loops around n2 in h.˛e

j / and h.˛e
jC1

/ cannot cancel. On the other hand,
if .˛e

jC1
/i is the character of the full crossing ˛e

jC1
that does not agree with @D, then this character

will block cancellation between the two n2 loops, even if ˛d
jC1

fully cancels in a reduced code for
h.˛e

j /C˛
d
jC1
C h.˛e

jC1
/.
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˛e
j

˛e
jC1

˛d
jC1

Figure 25: Above: A picture of ˛e
j C ˛

d
jC1C ˛

e
jC1

, not in standard position, where .˛e
j /

t and
.˛e

jC1
/i both agree with @D. Below: The same subsegment of ˛ in standard position.

In the last case, where .˛e
j /

t and .˛e
jC1

/i both agree with @D, the largest possible choice of k; k 0 for
the full crossing ˛e

j would in fact result in a segment ˛e
j C ˛

d
jC1
C ˛e

jC1
that is fully disjoint from D,

contradicting the maximality of ˛d
jC1

, so that this case cannot occur. See Figure 25.

Thus, there is no cancellation between the loops around n2 in h.˛e
j / and h.˛e

jC1
/, which proves the

lemma.

4.2 Loops with trivial image

In this subsection, we describe the form a loop must have if its image under a shift is trivial. In particular,
the image of any loop which does not have the form as stated in the theorem is nontrivial. In addition, any
segment that is not a loop cannot have trivial image under a shift since the numerical values the initial
and terminal characters, and thus their images, differ.

Theorem 4.8 Let h be a permissible right shift with turbulent region .n1; n2/. Suppose ˇ is a nontrivial
loop such that h.ˇ/D∅. Then either ˇ D koıko or ˇ D kuıku, where

(i) k 2 .n1; n2/,

(ii) ı D 
 .n1/o=u.n1/u=o
 , and

(iii) 
 follows @D between k and n1.

Proof Put ˇ in standard position. We will consider the image h.ˇ/. By the discussion in Section 3.4, we
have ˇ D h�1.h.ˇ//. By assumption, h.ˇ/ is trivial, and therefore it is homotopic rel endpoints to either
a segment contained in the separating curve Sk for some k 2 Œn1; n2/ or a point. If h.ˇ/ is homotopic rel
endpoints to a point, then ˇDh�1.h.ˇ// is also homotopic rel endpoints to a point, in which case ˇ is triv-
ial, which is a contradiction. So suppose that h.ˇ/ is homotopic rel endpoints to an embedded subsegment
� of the separating curve Sk for some k 2 .n1; n2�. Then ˇ is homotopic rel endpoints to h�1.�/.
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Let D denote the domain of h. Since ˇ is in standard position, the endpoints of � (which are the endpoints
of ˇ) are not contained in D. There are two possibilities. If �\DD∅, then ˇ is homotopic rel endpoints
to h�1.�/D � and so ˇ is trivial, which is a contradiction. On the other hand, if � \D ¤ ∅, then �
must fully cross D. A direct computation shows that, up to reversing orientation,

h�1.�/D @DjŒk;n1/.n1/o=u.n1/u=o@Dj.n1;k�;

for k 2 .n1; n2/, as desired.

We note one immediate consequence of Theorem 4.8.

Corollary 4.9 Suppose ˇ is any of the following:

(1) a loop containing more than one single loop;

(2) a loop containing a back loop; or

(3) a loop with endpoints outside of the turbulent region.

Then h.ˇ/ is nontrivial.

Some of these consequences may be surprising, so we now give a more intuitive (and informal) discussion
of why the image of loops as in the corollary are nontrivial.

We first consider the case of segments which contain more than one single loop. At first glance, it may
seem that if a segment ˇ is composed of loops which each satisfy the conclusion of Theorem 4.8, then
h.ˇ/ will be trivial. The problem arises in how these loops fit together to form ˇ. Suppose we have two
loops, ˇ1 and ˇ2 which each satisfy the conclusion of Theorem 4.8. If the numerical value of ˇt

1
is not

the same as that of ˇi
2
, then in order to “connect” ˇ1 to ˇ2, we must add a segment between the terminal

point of ˇ1 and the initial point of ˇ2. This segment is either disjoint from D, in which case it is fixed
by h, or it fully crosses D. In the former case, this segment will appear in the image of ˇ, while in the
latter case, the image of this full crossing will be nontrivial by Lemma 4.7 applied to the full crossing. If
the numerical values are the same and ˇ D ˇ1ˇ2, then ˇ will be trivial. On the other hand, if there is
some segment connecting the terminal point of ˇ1 to the initial point of ˇ2, then as before, the image of
this segment will not be trivial and will force h.ˇ/ to be nontrivial. See Figure 26 for an example of this.

Suppose next that ˇ contains a back loop C . Intuitively, it seems reasonable that if ˇD Cˇ0C and ˇ0 is a
loop as in Theorem 4.8, then h.ˇ/ is trivial. However, this is not the case. To see this, notice that if we
put ˇ0 in standard position then it will have one endpoint above D and one below D. However, C and C

are the same loop. If C is either above or below D, then this will cause ˇ to have a full crossing between
ˇ0 and one of C or C . The image of this full crossing will be nontrivial by Lemma 4.7 applied to the full
crossing, which will prevent any cancellation between h.C /D C and h.C /D C . On the other hand, if
C exits at the top and enters at the bottom, then C exits at the bottom and enters at the top. This will
again force ˇ to have a full crossing between ˇ0 and one of C or C , preventing cancellation between the
images of the back loops.
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ˇ1
ˇ2

ˇ

h.ˇ/

C C

ˇ

h.ˇ/

Figure 26: Examples of loops whose images are nontrivial. From top to bottom, these correspond
to Corollary 4.9 (1), (2), and (3).

Finally, if ˇ is a loop whose endpoints are outside the turbulent region, say both in Œn2;1/, and ˇj.n1;n2/

has the form in the conclusion of Theorem 4.8, it seems possible that h.ˇ/ is trivial. For example, suppose
that ˇD .n2/oˇ

0.n2/o, where ˇ0 is as in Theorem 4.8. Then since h.ˇ0/ is trivial, h.ˇ0/ will be a segment
contained in the separating curve Sn2

. On the other hand, the images of the connectors .n2/o.ˇ
0/i and

.ˇ0/t .n2/o will each be of the form .n2 C 1/o.n2/o=u.n2 � 1/o=u or .n2 � 1/o=u.n2/o=u.n2 C 1/o. In
particular, we have h.ˇ/D .n2C 1/o.n2/o=u.n2/u=o.n2C 1/o, which is nontrivial.

4.3 Consequences of Theorem 4.8

In this subsection, we record several (technical) consequences of Theorem 4.8 which will be useful in
later sections. The first shows that loops in the shift region persist under the image of shifts.
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Lemma 4.10 Let h be a permissible right shift and 
 any nontrivial , simple arc with no back loops.
If k 2 .�1; n1/[ Œn2;1/ and ko=uku=o appears in a reduced code for 
 , then there is no cancellation
involving h.ko=uku=o/ in an unreduced code for h.
 /. In particular , such a pair ko=uku=o will yield a pair
.kC 1/o=u.kC 1/u=o in a reduced code for h.
 /.

Proof We argue for koku without loss of generality. Fix k as above and put 
 into standard position. If
in standard position 
 is completely contained in the domain of h, then the result is clear, so suppose this
is not the case. We assume for contradiction that there is cancellation with h.koku/ and, without loss of
generality, that it is with h.ku/D .kC 1/u, as otherwise we replace 
 with 
 and argue identically for
ko instead. Let 
 0 be the minimal subsegment of 
 beginning with koku so that h.
 0/ had cancellation
with h.ku/. The only way cancellation in an unreduced code can involve h.ku/ is if a subsegment of the
form .k C 1/o.k C 1/uı.k C 1/u appears in an unreduced h.
 0/ where a reduced code for ı is trivial.
Since k 2 .�1; n1/ [ Œn2;1/, any .k C 1/u in h.
 0/ must be the image under h of ku. Therefore,

 0 D koku�ku, where h.ku�ku/D .kC 1/uı.kC 1/u, which has trivial reduced code. This contradicts
Theorem 4.8 as k 62 .n1; n2/.

The second consequence of Theorem 4.8 shows that characters of a segment that lie in the turbulent
region which disagree with the domain of a shift persist in a reduced code of the image of the segment
under that shift.

Lemma 4.11 Let h be a permissible right shift with domain D. Let ı be a simple segment whose support
intersects .n1; n2/ nontrivially , and suppose ı contains a character b with numerical value in .n1; n2/

which disagrees with @D. Then b persists in a reduced code for h.ı/.

In other words , if ı D ı1bı2, then h.ı/D �1b�2, where �1b D h.ı1b/ and b�2 D h.bı2/.

Proof Write b D ko=u, where by assumption k 2 .n1; n2/.

Claim 4.12 Since b disagrees with @D, any occurrence of b in h.ı/ must also appear in ı.

Proof Since b disagrees with @D, the segment ı cannot be homotoped rel endpoints to be completely
contained in D. Thus in standard position, ı can be written as the efficient concatenation of subsegments
which are disjoint from D, subsegments of length two which are either full or half crossings, and
subsegments supported on .�1; n1�[ Œn2;1/ (see Lemma 3.16). We consider the images of each type of
subsegment in turn. The subsegments which are disjoint from D are fixed by h. The image of subsegments
supported on .�1; n1/[ Œn2;1/ have empty intersection with .n1; n2/, and so cannot contain b. The
remaining subsegments are half crossings, full crossings, or segments that include a character whose
numerical value is n1. Any subsegment of the image of any of these subsegments supported on .n1; n2/

agrees with @D and so cannot contain b. This proves the claim.

Now suppose towards a contradiction that b does not persist in h.ı/. Then there must be another instance
of b in an unreduced code for h.ı/ which cancels with b. By the claim, ı must contain a subsegment of the
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form b�b whose image is trivial. Theorem 4.8 then implies that b�bD @Dj.n1;k�.n1/o=u.n1/u=o@Dj.n1;k�.
However, b D ko=u disagrees with @D by assumption, and therefore b�b cannot have this form, which is
a contradiction.

5 Constructing the homeomorphisms

As in Section 3, let S be the biinfinite flute with an isolated puncture p, and let fBi j i 2 Z[Pg be the
simple closed curves from Definition 3.1 bounding a collection of punctures fpi j i 2 Z[Pg, where
p

P
D p. As in that section, we move the punctures fpi j i 2 Z[ Pg to the front of S and all other

punctures to the back of S .

In this section, we define a countable collection of elements fgngn2N in Map.S;p/. In the following
sections we will show that these elements are of intrinsically infinite type and are loxodromic with respect
to the action of Map.S;p/ on A.S;p/.

Definition 5.1 For each n 2N, define

(3) gn WD h.n/3 ı h.n/2 ı h1;

�3 �2 �1 P 0 1
h1

0 1 2 3P�1h.1/
2

0 1 2 3P�1h.2/
2

0 1 2 nC1nP�1�2�nh.n/
2

0 1 2 nC1nP�1�2�nh.n/
2

�3 �2 �1 0 1P
h.1/

3

�4 �3 �2 �1 0 1 2P
h.2/

3

�n�2�n�1 �n �1 0 1 nP
h.n/

3

Figure 27: The various shift maps used in the construction of gn D h.n/
3
ı h.n/

2
ı h1. Top: the

shift map h1. Bottom left: the shift map h.n/2 for various n. In order from top to bottom, the first
two pictures are the case of nD 1; 2 (respectively) and the bottom two are for general n odd and
general n even (respectively). Bottom right: the shift map h.n/

3
for various n. In order from top to

bottom, the first two pictures are the case of nD 1; 2 and the bottom picture is the case of general n.
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�2 �1 0 1

4
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2

1

2
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6

˛
.1/
�1

˛0

1

2�1 1 30

2�1 1 30

2�1 1 30

˛
.1/
1

1

˛
.1/
2

8

4

2

1 10

4

6
2

4

10

Figure 28: The arcs ˛.1/i for i D�1; 0; 1; 2 drawn as train tracks for simplicity.

where h1 and h.n/i for i D 2; 3 are permissible shifts defined as follows. Let h1 be the right shift whose
domain includes all simple closed curves Bj for j 2 Z n f0g and passes under p and B0. Let h.n/

2
be the

left shift whose domain includes only fBj j j 2 .�1;�n� 1�[ ŒnC 1;1/g, passes over p and B0, and,
when j 2 Œ�n;�1�[ Œ1; n�, passes under Bj for j odd and over Bj for j even. Finally, let h.n/

3
be the

right shift whose domain includes only fBj j j 2 .�1;�n� 1�[ ŒnC 1;1/g and passes under p and
over Bj for all j 2 Œ�n;P /[ .P; n�. See Figure 27.

In the language of the previous sections, we have that n1 D�1 and n2 D 1 for h1. For h.n/
2

, n1 D nC 1

and n2 D�n� 1. For h.n/
3

, n1 D�n� 1 and n2 D nC 1.

In order to prove that each gn is loxodromic with respect to the action of Map.S;p/ on A.S;p/, we
introduce a collection of arcs f˛.n/i j i 2Zg which are invariant under gn. We will show in Proposition 8.2
that for i � 0, these arcs form a quasigeodesic half-axis for gn in A.S;p/.

Definition 5.2 For each fixed n, we define a sequence of arcs f˛.n/i g
1
iD�1 in A.S;p/ as the images under

successive applications of gn of the fixed initial arc ˛0 D Ps0o0uPs . That is to say that ˛.n/i D gi
n.˛0/

for any i 2 Z. See Figure 28 for the case nD 1 and Figure 29 for general n� 1.
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nC 1�1 nC 20�2�nC 1�n

˛
.n/
28

4

2

1 10

4

6
2

4

10

nC 1�1 nC 20
1

˛
.n/
1

˛0

1

2�1 1 30

n� 1�1 n0�2
�n

�3�n� 1 1 2

4
8 10

1

12
6

6

˛
.n/
�1

Figure 29: The arcs ˛.n/i for i D�1; 0; 1; 2 and n � 1. In ˛.n/
�1 , the blue appears when n is odd,

while the green appears when n is even.

When nD 1, the arcs ˛.1/i are the most straightforward and thus most useful for building intuition. We
suggest that the reader keep these arcs in mind while reading the remainder of the paper. We now give
the code for ˛.1/

1
and ˛.1/

2
, which the reader can compare to Figure 28:

˛.1/1 D Ps0o1o2o2u1o0o0u1o2u2o1o0oPs;

˛.1/2 D Ps0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2o2u1o0oPu.�1/o.�1/uPu0o1o2u2o1o

0oPuPo0o1o2o3o3u2o1o0oPoPu0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2u2o1o0o

Pu.�1/o.�1/uPu0o1o2u2o1o0oPuPo0o1o2o2u1o0o0u1o2u2o1o0oPoPu0o1o2o

2u1o0oPu.�1/u.�1/oPu0o1o2o2u1o0oPu.�1/o.�1/uPu0o1o2u2o1o0oPuPo0o

1o2o3u3o2o1o0oPoPu0o1o2o2u1o0oPu.�1/u.�1/oPu0o1o2u2o1o0oPu.�1/o.�1/u

Pu0o1o2u2o1o0oPs:

While it is possible to compute the images of arcs under gnDh.n/
3
ıh.n/

2
ıh1 by hand, we have also written

a computer program to implement this. The interested reader should contact the authors for more details.

Remark 5.3 In light of how complicated the arcs ˛.n/i are when i ¤ 0; 1, it may be surprising that
only single loops can have trivial image under each of the shifts h1; h

.n/
2

, and h.n/
3

(see Theorem 4.8 and
Corollary 4.9). Figure 30 gives the intermediate steps so that one can see how the image under g1 of a com-
plicated arc such as ˛.1/

�1
becomes the straightforward arc ˛0. The figure shows the collection of single loops

with trivial image at each stage of computing g1.˛
.1/
�1
/D ˛0. A similar phenomenon happens for n> 1.
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˛
.1/
�1

h1

h1.˛
.1/
�1
/

h
.1/
2

h
.1/
3

h
.1/
2
ı h1.˛

.1/
�1
/

˛0

Figure 30: Each of the strands in blue are single loops whose image is trivial under the shift
whose domain is shown in red. Each blue strand fits the form of Theorem 4.8.

Our method for using the arcs ˛.n/i to prove that gn is a loxodromic isometry of A.S;p/ is inspired by
the foundational work of Bavard in [5]. Bavard constructs an element f of the mapping class group of
the plane minus a Cantor set which is loxodromic with respect to the associated relative arc graph. We
give a brief outline of Bavard’s methods here.

Bavard constructs a collection of simple paths ˇi which start at an isolated puncture and end at some point
of the Cantor set. These paths are invariant under the action of a chosen homeomorphism f and have the
property that ˇiC1 D f .ˇi/. They are constructed so that for all i , the path ˇiC1 begins by following the
same path as ˇi . Roughly, if a path 
 begins by following the same path as ˇi then Bavard says the path

 “begins like” ˇi (see [5, Section 2]). Bavard uses this definition to define a function from the vertex
set of a certain graph of paths (defined similarly to the relative arc graph but with paths instead of arcs)
to Z�0 by sending a path 
 to the maximal i 2 Z�0 so that 
 begins like ˇi . Aramayona, Fossas, and
Parlier [2] show that the relative arc graph is quasi-isometric to the graph whose vertex set is isotopy class
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of paths with at least one endpoint on the distinguished isolated puncture. Therefore this function can
then be used to estimate distances in the relative arc graph and ultimately to show that the collection of
paths fˇi j i 2Z�0g forms a geodesic half-axis for the element f . The key fact that Bavard uses is that if
ı is a path which begins like ˇi and 
 is any path disjoint from ı, then 
 begins like ˇi�1 [5, Lemma 2.4].

Our arcs f˛.n/i gi2Z do not satisfy the same property as Bavard’s paths. One notable difference is that our
arcs start and end at the puncture p. Because of this, for a fixed n, ˛.n/

iC1
does not begin by following the

entirety of ˛.n/i . However, we will show that it does begin by following the first half of ˛.n/i . In light of
this, we modify Bavard’s notion of “begins like” and make the following definition.

Definition 5.4 Fix an n 2N. An arc ı starts like ˛.n/i if the maximal initial or the maximal terminal
segment of ı which agrees with an initial or terminal segment of ˛.n/i (not necessarily respectively) has
code length at least

�
1
2
`c.˛

.n/
i /

˘
. Recall that code length was defined in Definition 3.6.

In Section 6, we investigate the properties of arcs that start like ˛.n/i for some i , and in Section 7 we
use these properties to prove Theorem 7.10, which is an analog of [5, Lemma 2.4]. In our more general
context, proving this result is quite a bit more involved than the proof of [5, Lemma 2.4]. One reason for
this is that the behavior of our arcs ˛.n/i is much more complicated than the paths from [5].

6 Arcs that start like ˛.n/
i

The main goal of this section is to prove that the images of arcs which start like ˛.n/i under gn must start
like ˛.n/

iC1
(see Corollary 6.9). This will follow from Proposition 6.2 and Theorem 6.4. Proposition 6.2

states that the image of the first half of ˛.n/i is the first half of ˛.n/
iC1

. We need to be careful about what
we mean by this because of the possibility that we cause there to be a gap when we break ˛.n/i into its
first and second half (see Section 3.3). Given a segment 
 , let V
 be the initial subsegment of 
 with
code length

�
1
2
`c.
 /

˘
. For a fixed i and n, we have ˛.n/i D V̨ .n/i C ˛

0 for some ˛0. As in Section 3.3,
it is possible that when we put V̨ .n/i and ˛0 (or their images) into standard position individually with
respect to one of the shifts h1; h

.n/
2

, or h.n/
3

, we will lose information when we take its image. In fact,
this does happen when we put h.n/

2
.h1. V̨

.n/
i // and h.n/

2
.h1.˛

0// into standard position with respect to h.n/
3

(see Figure 31). We avoid this issue by extending V̨ .n/i by one character and considering V̨ .n/i 0u. Note
that 0u is fixed by gn. Thus when we say that the image of the first half of ˛.n/i is the first half of ˛.n/

iC1

we precisely mean that gn. V̨
.n/
i 0u/D V̨

.n/
iC1

0u as a subsegment of gn.˛
.n/
i /D ˛.n/

iC1
, in a reduced code. In

other words, gn sends everything before the central 0u in ˛.n/i to V̨ .n/
iC1

.

Remark 6.1 When dealing with the arcs ˛.n/i , the floor function in V̨ .n/i is actually unnecessary, as
`c.˛

.n/
i / will always be even with the central two characters being 0o0u. However, at this point in the paper

we have not proven this fact, which is a consequence of Proposition 6.2, so we will not use it in what follows.

Proposition 6.2 For any n and any i , we have gn. V̨
.n/
i 0u/D V̨

.n/
iC1

0u in a reduced code.
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h
.1/
2

h1. V̨
.1/
1
/

h1.0o0u/

h
.1/
2
ı h1.0o0u/

h
.1/
2
ı h1. V̨

.1/
1
/

h
.1/
3

Figure 31: Here we consider h1. V̨10u/D h1. V̨1/Ch1.0o0u/ and take the images of each subseg-
ment separately. The images are drawn as train tracks for clarity, but we omit the weights as they
are immaterial. When we put the images h.n/

2
.h1. V̨1// and h.n/

2
.h1.0o0u// D 0o0u in standard

position individually with respect to h.n/3 (the second picture), there is a gap in the segment
between p and B1, which would have been a full crossing. This results in a loss of information in
the image under h.n/3 .

In order to prove Proposition 6.2, we need to understand how to control cascading cancellation for our home-
omorphisms gn (see Section 4.1 for the definition and a discussion of cascading cancellation). The follow-
ing lemma is almost a direct consequence of Lemma 4.10, the difference being that gn is not itself a shift.

Lemma 6.3 For all k � nC1, if ko=uku=o appears in a reduced code for ˛.n/i , then there is no cancellation
involving gn.ko=uku=o/ in an unreduced code for ˛.n/

iC1
. In particular , such a pair ko=uku=o will yield

.kC 1/o=u.kC 1/u=o in a reduced code for ˛.n/
iC1

.

Proof The union of the turbulent regions for h1, h.n/
2

, and h.n/
3

is Œ�n� 1; nC 1�. Therefore we may
apply Lemma 4.10 three times once we remark that h.n/

2
shifts left, h1.ko=uku=o/D .kC1/o=u.kC1/u=o,

and h.n/
2

fits the hypothesis of Lemma 4.10, as kC 1> nC 1.

We can now use this control on cascading cancellation to prove Proposition 6.2.

Proof of Proposition 6.2 As ˛.n/i is symmetric, the only way this proposition could be false is if
there is cancellation in gn.˛

.n/
i / involving the image of the central 0o0u (which is also 0o0u) in ˛.n/i .

Equivalently, we need to show that there is no cancellation involving the final 0o0u in gn. V̨
.n/
i 0u/. We

begin by considering the case i D 1, where

(4) V̨
.n/
1 0u D Ps0o1o2o : : : .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o0u;

and all of the characters that are not displayed are ko for the appropriate k. By Lemma 6.3, there is no
cancellation in gn.˛

.n/
1
/ involving gn..nC 1/o.nC 1/u/, and so there can be no cascading cancellation
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involving both the final 0o0u and the image of any character before .nC 1/o.nC 1/u in (4). Thus it
suffices to consider gn.�0u/, where

�D .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o:

A direct computation yields, in a reduced code,

(5) gn.�0u/D .nC 2/o.nC 2/u.nC 1/ono : : : .n� 1/ono�0u;

and from this computation we can see that there is no cancellation in gn. V̨
.n/
1
/ involving the final characters,

0o0u. Thus gn. V̨
.n/
1

0u/D V̨
.n/
2

0u in a reduced code.

By (5), we also see that gn.�0u/ also ends in �0u. Hence, to show that the result holds for any index i ,
we simply repeatedly apply gn and Lemma 6.3 as in the previous paragraph.

We can deduce from Proposition 6.2 that if an arc 
 starts like ˛.n/i , then an unreduced code for its image
gn.
 / will start like ˛.n/

iC1
. We will use the following technical theorem to show that this is true for a

reduced code for gn.
 /, as well.

Theorem 6.4 Let 
 be a simple arc of the form 
 D Ps�10o�2Ps in standard position. Assume the
following two conditions hold :

(1) The numerical value of �i
2

is at most 0, ie �i
2

is either 0u or Po=u.

(2) Either the first two characters of �2 are not a loop around P or , if they are , the initial segment of �2

is given by PuPo0o1o.

Then there is no cancellation with the initial 0o in a reduced code for gn.0o�2Ps/.

We note that the first condition means that the segment 0o is oriented to the left.

Remark 6.5 Theorem 6.4 is written with a particular orientation in mind, but such an orientation is
arbitrary. That is to say, the exact same statement is true applied to the image of 
 under gn. We will use
both the original and this “reverse” version of Theorem 6.4 later in the paper, so we make its statement
precise: Suppose, as in Theorem 6.4, that 
 D Ps�10o�2Ps and

(1) the numerical value of �t
1

is at most 0;

(2) either the final two characters of �1 are not a loop around P or the final segment of �1 is given by
1o0oPoPu.

Then there is no cancellation with the terminal 0o in a reduced code for gn.Ps�10o/.
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�j

CjCjC1

C�jC1

Figure 32: Situation in the proof of Lemma 6.6.

We will prove Theorem 6.4 through a series of lemmas. Fix an arc 
 which satisfies the hypothesis
of Theorem 6.4. We must show that there is no cancellation with the initial 0o in a reduced code for
gn.0o�2Ps/. For contradiction, suppose there is cancellation with the initial 0o in a reduced code for
gn.0o�2Ps/. Consider the subsegment of 
 given by 0oı, where 0oı is the minimal subsegment such
that gn.0oı/ has cancellation with 0o.

Lemma 6.6 The segment ı does not contain any back loops.

Proof Suppose towards a contradiction that ı contains at least one back loop and write ı in standard
form as

ı D �1C�1 C1CC
1
�2 : : : �sC�s CsCCs �sC1;

where the �i are possibly empty for i � sC 1. Then

gn.ı/D gn.�1C�1 /C1gn.C
C

1
�2C�2 /C2 : : :gn.C

C

s�1
�sC�s /Csgn.C

C
s �sC1/:

In order to have cascading cancellation involving 0o, there must be an instance of 0o in gn.C
C
s �sC1/

and the initial subsegment of gn.ı/ which ends immediately before that 0o must have trivial image. By
the minimality of our choice of ı, this initial subsegment must contain gn.Ci/D Ci for all i D 1; : : : ; s.
Since its image is trivial, there must be cancellation involving each Ci . The only way that this can occur
is if there is some j such that Cj D CjC1 and Cj gn.C

C
j �j C�

jC1
/Cj D∅. Consequently, we must have

gn.C
C

j �j C�
jC1

/D∅. This implies that exactly one of the following holds:

(1) h1.C
C

j �j C�
jC1

/D∅.

(2) h1.C
C

j �j C�
jC1

/¤∅ in a reduced code while h.n/
2
.h1.C

C
j �kC�

jC1
//D∅.

(3) h.n/
2
.h1.C

C
j �j C�

jC1
//¤∅ in a reduced code while h.n/

3

�
h.n/

2
.h1.C

C
j �j C�

jC1
//
�
D∅.

Let i correspond to which of the above cases we are in and let hD h.n/i . Define

� 0j D

8̂<̂
:

CCj �j C�
jC1

; hD h1;

h1.C
C

j �j C�
jC1

/; hD h.n/
2
;

h.n/
2
.h1.C

C
j �j C�

jC1
//; hD h.n/

3
:

By assumption, � 0j ¤∅ and h.� 0j /D∅.
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By Theorem 4.8, this implies that � 0j is a loop which begins and ends in the turbulent region and does
not fully cross D in .n1; n2/. Moreover, in ı, the path � 0j is preceded by Cj and followed by CjC1 D Cj

and so one of the back loop connectors CCj or C�
jC1

must fully cross D. However this is a contradiction,
since these back loop connectors must occur in .n1; n2/. See Figure 32.

Notice that 0o does not appear in the image under gn of any segment supported on

.�1;�n� 1/[ ŒnC 1;1/:

Therefore, if ı contains any subsegment supported in this region then, by minimality, it must also contain
a subsegment of the form qo=uqu=o for q � nC1 or q <�n�1; in other words, the segment ı must “turn
around” in the shift region. Moreover, by Lemma 6.6, ı can have no back loops, and hence Lemma 4.10
implies that such a qo=uqu=o blocks cascading cancellation, so this cannot occur. Thus, we conclude that a
reduced code for 0oı is supported on Œ�n� 1; nC 1/.

We will now show that there is no cancellation involving 0o under each of h1; h
.n/
2

, and h.n/
3

. By the
assumptions of the theorem, the 0o in 0oı is oriented to the left. If there is no cancellation involving 0o

under a shift, then 0o persists in the image and is still oriented to the left. This implies that the character
after 0o in the image still satisfies condition (1) of the theorem, that is, it is either 0u or Po=u.

A straightforward calculation shows that h1.0oı/ cannot cancel 0o for any ı. This follows from the fact
that @D1 contains 0u, not 0o, where D1 is the domain for h1. Write 0oı

0 for the reduced code of h1.0oı/,
which is another segment completely contained in the region .�n� 1; nC 1� with no back loops. The
first character of ı0 is still either 0u or Po=u.

It remains to rule out any cancellation involving 0o under h.n/
2

and h.n/
3

. We do this in the following two
lemmas.

Lemma 6.7 There is no cancellation involving 0o under h.n/
2

.

Proof For contradiction, assume that there is cancellation involving 0o, and let � be the minimal
subsegment of 0oı

0 which has cancellation with 0o under h.n/
2

.

If �t D 0o, then � is a loop whose image is trivial. By Theorem 4.8, � must be of the form

@D2jŒ0;n1/.n1/o=u.n1/u=o@D2jŒ0;n1/;

where D2 is the domain of h.n/
2

. In particular, �iD0o and this 0o is oriented to the right. However, as noted
above, the initial 0o of 0oı is oriented to the left, which contradicts that � is an initial subsegment of 0oı

0.

Therefore, � D 0o�
0a1a2, where the 0o which cancels with �i D 0o appears in h.n/

2
.a1a2/ and is not the

terminal character. This is the case exactly when a1a2 is either a full or half crossing. Moreover, in order
for 0o to appear in the image of a1a2, we must have that the numerical values of a1 and a2 are greater
than or equal to zero, since h.n/

2
shifts to the left.
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There are two cases to consider: either .�0/i D 0u or .�0/i D Po=u. If .�0/i D 0u, then �0 contains a
character which disagrees with @D2, namely 0u. On the other hand, if .�0/i D Po=u, then it must be
oriented to the left. Since the numerical values of a1 and a2 are at least 0 and P < 0, �0 must “turn around”
and contain an over-under loop in turbulent region. In particular, it must again contain a character which
disagrees with @D2. In either case, call the character which disagrees with the boundary of the domain b.

By Lemma 4.11, b persists in a reduced code for h.n/
2
.�0/ and such a b must block any cascading

cancellation. However, by assumption, there is cancellation between two instances of 0o in an unreduced
code for h.n/

2
.�0/, one which precedes b and one which succeeds b. This is a contradiction.

It remains only to check for cancellation under h.n/
3

.

Lemma 6.8 There is no cancellation involving 0o under h.n/
3

.

Proof The argument is similar to the proof of Lemma 6.7. For contradiction assume that there is
cancellation involving 0o and write ˇD 0oı

00 for the minimal subsegment of a reduced code for h.n/
2
.0oı

0/

which has cancellation with 0o under h.n/
3

. Note that .ı00/i is still either 0u or Po=u. By the same reasoning
as in the proof of Lemma 6.7, ˇ D 0oˇ

0c1c2, and c1c2 is a full or half crossing. Recall that for the shift
h.n/

3
, n1 D�n� 1, n2 D nC 1, and h.n/

3
shifts to the right.

If ˇ0c1 contains a character which does not agree with @D3, then the contradiction follows by applying
Lemma 4.11 as in the proof of Lemma 6.7. However, it is possible that ˇ0c1 does not contain such a
character. This occurs exactly when ˇD@D3j.n1;0�.n1/o=u. This possibility did not arise when considering
h2 because h2 is a left shift, and so n1 > 0.

In this case, ˇ must begin with 0oPu.�1/o. We will now show that ˇ could not be the image of 0oı under
h.n/

2
ı h1. In the notation above, .�1/o is in the image of � D 0oı

0 under h.n/
2

. Since .�1/o disagrees
with @D2, there must be an instance of .�1/o in ı0 by Claim 4.12. Let � 0 D 0o�.�1/o be the subsegment
of � so that h.n/

2
.� 0/D 0oPu.�1/o. We can find � directly by computing .h.n/

2
/�1.0oPu.�1/o/. Recall

that we cannot always take the preimage of a segment under a permissible shift (see the discussion in
Section 3.4). However, in this case we are able to take the preimage precisely because Claim 4.12 ensures
that 0oPu.�1/o is the image of a subsegment of h.n/

2
.�/. Computing .h.n/

2
/�1.0oPu.�1/o/ results in

� 0 D 0oPu@D2jŒP;nC1/.nC 1/u.nC 1/o@D2jŒP;nC1/.�1/o:

In particular, � 0 starts with 0oPuPo0o1u. To conclude the proof, we will show that � 0 cannot occur as the
image under h1 of the segment 0oı.

Assume for contradiction that h1.0oı/D �
0. Since Po does not agree with @D1, there must be an instance

of Po in ı by Claim 4.12. Let 0o�Po be the initial subsegment of 0oı so that h1.0o�Po/D 0oPuPo. As
above, we may directly compute the preimage of 0oPuPo under h1. This shows that 0o�Po D 0oPuPo.
The assumptions of the theorem then imply that 0oı starts with 0oPuPo0o1o, where 1o is oriented to
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the right. Since � 0 starts with 0oPuPo1u, the only way h1.0oı/D �
0 is if there is cancellation with the

terminal 1o in 0oPuPo0o1o when we apply h1 to 0oı. Since h1 shifts to the right and � 0 contains .�1/o,
it must be the case that 0oı contains a loop ko=uku=o with k � 1. In particular, 0oı starts with either
0oPuPo0o1o1u (if k D 1/ or 0oPuPo0o1o�ko=uku=o where � is strictly monotone increasing (if k > 1).
Since n2D 1 for h1, Lemma 4.10 then implies that this ko=uku=o blocks cancellation between the terminal
1o in 0oPuPo0o1o and any characters in 0oı that appear after koku. Since the segment � of 0oı between
1o and koku is either empty (if k D 1) or a strictly monotone increasing segment (if k > 1), using the
fact that h1 shifts to the right, it is straightforward to check that there can be no cancellation with the
terminal 1o in 0oPuPo1o when we apply h1, which is a contradiction. This completes the proof.

Lemmas 6.6, 6.7, and 6.8 show that gn.0oı/ has no cancellation with 0o, which completes the proof of
Theorem 6.4.

As promised at the beginning of this section, we have the following corollary.

Corollary 6.9 For any fixed n and any i � 0, ˛.n/
iC1

starts like ˛.n/i . More generally, for any i � 1, if 

starts like ˛.n/i then gn.
 / starts like ˛.n/

iC1
.

Proof First, a direct computation shows that for any fixed n, ˛.n/
1

starts like ˛.n/
0

. For all i � 1, we will
prove both statements simultaneously, using strong induction. We will show that for each n and any i � 1,
if 
 is a simple arc that starts like ˛i , then gn.
 /D V̨

.n/
iC1

�0 for some reduced �0 which has the form of �2

in the hypotheses of Theorem 6.4.

For the base case i D 1, suppose 
 starts like ˛.n/
1

so that we may write


 D V̨ .n/1 �;

in a reduced code. Applying gn to both sides of this equation, we have, in an unreduced code,

gn.
 /D gn. V̨
.n/
1 /�0;

for some reduced �0. By Proposition 6.2, gn. V̨
.n/
1
/D V̨ .n/

2
in a reduced code. Thus to conclude that gn.
 /

starts like ˛.n/
2

, we need to show that gn. V̨
.n/
1
/D V̨ .n/

2
persists in a reduced code for gn.
 /. Since V̨ .n/

1

ends with 0o, it suffices to show that � has the form of �2 in the hypotheses of Theorem 6.4 so that there
is no cancellation with this 0o. We have V̨ .n/

1
D Ps0o1o2o : : : .nC1/o.nC1/uno.n�1/o : : : 2o1o0o, and

so the terminal 0o is oriented to the left. It follows that � satisfies Theorem 6.4(1). Moreover, since

 is simple and starts like ˛.n/

1
, if � begins with a loop around p, it must begin with PuPo0o1o (see

Figure 33). Thus � satisfies Theorem 6.4(2) and so Theorem 6.4 shows that there is no cancellation in
gn.
 / between the final 0o in gn. V̨

.n/
1
/ D V̨ .n/

2
and �0. Therefore, gn.
 / starts like ˛.n/

2
. In particular,

a direct computation shows that ˛.n/
2

starts like ˛.n/
1

and so by setting 
 D ˛.n/
2

, we have shown that
gn.˛

.n/
2
/D ˛.n/

3
starts like ˛.n/

2
.

To finish the base case, we will now show that �0 has the form of �2 in the hypotheses of Theorem 6.4.
A direct computation shows that V̨ .n/

2
ends with .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o, and so that �0
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P 0 1 2

Figure 33: The arc ˛.n/
1

is in red; the gray portions may vary depending on n. One possibility for

 and the subsegment � is shown in blue; the gray portions may vary depending on n.

satisfies Theorem 6.4(1). As above, since gn.
 /D V̨
.n/
2
�0 is simple and ˛.n/

2
(and therefore V̨ .n/

2
) starts

like ˛.n/
1

, it follows that if �0 starts with a loop around p, it must begin with PuPo0o1o, so �0 satisfies
Theorem 6.4(2). This completes the base case.

Now assume the results hold for all j < i . For the induction step, suppose that 
 D V̨ .n/i � for some �
which has the form of �2 in the hypotheses of Theorem 6.4. The argument for this case goes through
exactly as in the base case except we need one additional argument to show that �0 has the form of �2 in
the hypotheses of Theorem 6.4, where gn.
 /D V̨

.n/
iC1

�0 in a reduced code. By the proof of Proposition 6.2,
V̨ .n/

iC1
ends with �D .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o and therefore �0 satisfies Theorem 6.4(1). To

see that �0 satisfies Theorem 6.4(2), notice that ˛.n/
iC1

starts like ˛.n/i , which starts like ˛.n/
i�1

, etc, so that
˛.n/

iC1
(and therefore V̨ .n/

iC1
) starts like ˛.n/

1
. In particular, 
 must start like ˛.n/

1
. Since 
 is simple, if �0

starts with a loop around p, it must begin with PuPo0o1o and Theorem 6.4(2) is satisfied. This completes
the induction step, and the result is proved.

7 Highways in arcs

In this section, we introduce and examine the prevalence of certain segments of the code for ˛.n/i that
we call highways. The presence of highways forces arcs disjoint from ˛.n/i to have very specific initial
and terminal subsegments. This will be instrumental in proving Theorem 7.10, which shows that if ı is
any arc which starts like ˛.n/i and 
 is an arc disjoint from ı, then 
 starts like ˛.n/

i�1
, provided i is large

enough. In Section 8, we will use Theorem 7.10 to show that the arcs ˛.n/i lie on a quasigeodesic in the
modified arc graph.

In Section 7.1, we will give general preliminary definitions and results for general arcs, and then in
Section 7.2 we will analyze highways in the arcs ˛.n/i .

7.1 Preliminaries on highways

Recall our convention that all arcs are assumed to be simple and start and end at p.

Definition 7.1 Given an arc ı D Psq1�q2Ps , where q1; q2 are single characters which are not C and �
is a segment, we say that ı has highways if either q1Po=uPu=oq1 or q2Po=uPu=oq2 is a subsegment of ı.
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q1

q2

q1

q2

q2

q1

Figure 34: At the top is an arc where q1 D q2 and the red segment shows that this arc has
highways. Below are two arcs where q1 ¤ q2 and the blue segments must appear if the arc has
highways. However, this arrangement contradicts the simplicity of each arc (see Lemma 7.2) so
neither arc has highways.

The following lemma is an almost immediate corollary of the definition and the fact that ı is simple.

Lemma 7.2 If ı is an arc that has highways , then

ı D Ps� : : : �Ps;

for some segment � with `c.�/ > 0. That is to say, the first part of the code for ı always overlaps with the
reverse of the last part of the code in at least two characters , one of which is Ps .

Proof It suffices to consider the case when � is a single character, so that � D aD � for some a. Since
ı D Psq1�q2Ps , if the conclusion does not hold, then q1 ¤ q2. In this case, either the subsegment Psq1

intersects q2PoPuq2 or the subsegment q2Ps intersects q1PoPuq1, contradicting the fact that ı is simple.
See Figure 34.

Recall that in the code for an arc, the character Ps does not correspond to any subsegment. Since the first
and last characters of every arc are always Ps , we use the first two characters of ı in the statement of the
above lemma to ensure that there is an initial subsegment of ı which fellow travels a terminal subsegment.

In the future, we will need to use a refined notion of highways to constrain the beginnings of certain arcs.
For this we define a notion of right lane and left lane. See Figure 35 for examples and nonexamples.

Definition 7.3 Given an arc ı that has highways, a subsegment � of ı is called a left lane if one of the
following holds:

(1) �D PoPu
 , where 
 does not contain C and 
 is maximal with respect to the property that the
code for Ps
 coincides with the initial `c.Ps
 / many characters in ı and 
Ps coincides with the
terminal `c.Ps
 / many characters in ı; or

(2) �D 
PuPo is the reverse of the segment of the form in (1).
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Figure 35: Some examples and nonexamples of left and right lanes are shown in blue. Top left:
the blue segment is not a left lane since it does not coincide with the terminal subsegment of the
arc. Top right: the blue segment contains both left and right lanes. There is a left lane via case (2)
of Definition 7.3 and a right lane via case (1) of Definition 7.4. Bottom left: the blue segment
contains two left lanes via case (2) of Definition 7.3. Bottom right: the blue segment contains two
left lanes via case (1) of Definition 7.3 (notice the orientation on the arc has been changed).

We note that the reason that there are two possibilities for a left lane is that we want the definition to be
independent of the orientation of ı.

Definition 7.4 Given an arc ı that has highways, a segment � of the code is called a right lane if one of
the following holds:

(1) �D PuPo
 , where 
 does not contain C and 
 is maximal with respect to the property that the
code Ps
 coincides with the initial `c.Ps
 / many characters in ı and 
Ps coincides with the
terminal `c.Ps
 / many characters in ı; or

(2) �D 
PoPu is the reverse of the segment from (1).

If ı is a symmetric arc (see Definition 4.4), then in Definitions 7.3 and 7.4 it suffices to check the overlap
on just the initial part of the code for ı. However, in the general case, checking the overlap with both the
initial and terminal parts of the code for ı is necessary.

Definition 7.5 Let ı be an arc with highways. The lane length L.�/ of a left or right lane � of ı is
defined to be

L.�/D `c.�/� 1:

We denote the collection of all left lanes of ı by L and similarly of all right lanes of ı by R.
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ı

Figure 36: In blue is (a portion) of an arc ı. The shaded disk around the puncture is Dp . This
example has two right lanes (in green), a portion of which are shown, and two left lanes (in pink),
which are shown in their entirety. The Po=uPu=o portion of these lanes are contained in Dp while
all other strands of ı are disjoint from Dp .

Through the rest of the section, we fix a closed topological disc Dp of sufficiently small radius with
center at the puncture p such that Dp has empty intersection with each Bi where i 2Z, contains BP , and
has empty intersection with each separating curve fSig from Section 3.2.1. Moreover, we will only work
with homotopy representatives of ı which have reduced code and the property that any pair Po=uPu=o lies
inside of Dp , while any other segments remain outside, except for the two that come from the initial and
terminal two characters of ı (see Figure 36). Throughout the section, when we further homotope ı we
will only do so relative to Dp, so one can assume that the set ı\Dp is pointwise fixed.

A left or right lane � is called innermost if every oriented straight line segment with initial point at
the puncture and terminal point on the boundary circle of Dp intersects the Po=uPu=o at the beginning
(resp. end) of � before it intersects any other lane of the same type (left or right). If the oriented line
segment does not intersect any lane, then this condition is vacuously satisfied. See Figure 37. In particular,
innermost left and right lanes are the lanes which are closest to an initial and terminal subsegments of ı.

We then have the following lemma.

Lemma 7.6 Let ı be an arc that has highways. Let � 2 L and � 2R denote the innermost left and right
lanes of ı, respectively. Then L.�/ � L.�0/ for all �0 2 L and L.�/ � L.�0/ for all �0 2R. Moreover ,
writing �D PuPoˇl or its reverse and �D PoPuˇr or its reverse , then if 
 is an arc disjoint from ı, then
one of the following holds:

(1) 
 has initial code Psˇl and terminal code Psˇl ,

(2) 
 has initial code Psˇr and terminal code Psˇr .

Figure 37: The blue and red segments are the initial portions of innermost left and right lanes,
respectively. The dotted gray segments intersect these segments before intersecting the initial or
terminal portion of any other lane.
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Figure 38: In black is (a portion) of an arc ı. The red disk is Dp . Any arc 
 which is disjoint from
ı must have initial and terminal segment which follows one of the three purple strands emanating
from the puncture and continues to fellow travel ı.

Intuitively, this lemma states that the arc 
 must “stay in a lane” of the arc ı; see Figure 38. Note that we
do not require 
 to be distinct from ı, so this statement applies to ı as well. Indeed, the arc ı can always
be homotoped to be disjoint from itself while retaining the same code.

Proof The hypothesis that ı has highways implies that L;R¤∅, and hence an innermost left and right
lane exist. We prove the first statement for the innermost left lane �; an identical proof works for �.

Since � is innermost, if there exists a left lane �0 2 L such that L.�0/ >L.�/, then we get a contradiction
to the simplicity of ı, as � must intersect either �0 or an initial segment of ı. See Figure 39.

For the final statement, fix an arc 
 that is disjoint from ı. It must be the case that the initial and terminal
subsegments of 
 are each contained in a single connected component of Dp n ı (not necessarily the
same component). Moreover these initial and terminal subsegments must begin at the puncture p and
therefore must also fellow travel �, �, and the initial=terminal parts of ı (see Figure 38). Therefore, by
the same reasoning as in the previous paragraph, we see that 
 satisfies conclusion (1) of the lemma if
`c.ˇl/� `c.ˇr / and satisfies conclusion (2) of the lemma if `c.ˇr /� `c.ˇl/.

7.2 Highways for the arcs ˛.n/
i

The main goal of this section is to apply the technology of the previous section to show that any arc
disjoint from an arc which starts like ˛.n/i starts like ˛.n/

i�1
, provided i is large enough (see Theorem 7.10).

�0

Psˇ
0
L

�

Figure 39: A schematic of the two left lanes: �, which is innermost, and �0, which is not. If
�0 fellow travels an initial segment of ı for longer than � does, then � must intersect either �0

(pictured) or the initial segment of ı.
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To do this, we will show that ˛.n/i has highways for all i � 2 and all n, beginning by proving the result
for i D 2. For fixed i and n, define �.n/i to be all of V̨ .n/i except the initial Ps , so that

(6) V̨
.n/
i D Ps�

.n/
i :

Proposition 7.7 The segment ˛.n/
2

contains a subsegment of the form �.n/
1

PuPo�
.n/
1

that appears as the
final subsegment of V̨ .n/

2
. In particular , ˛.n/

2
has highways whose lanes contain �.n/

1
.

Proof We prove this by carefully examining the code for ˛.n/
1

, which we assume is in standard position
relative to the disk Dp . As in Section 6, we will retain the 0u which immediately follows V̨ .n/

1
when we

compute images. We will show that �.n/
1

PuPo�
.n/
1

0u appears as the final subsegment of V̨ .n/
2

0u, which
then implies the statement of the proposition.

By Proposition 6.2, V̨ .n/
2

0u D gn. V̨
.n/
1

0u/. Recall from (4) that

(7) V̨
.n/
1 0u D Ps0o1o : : : .nC 1/o.nC 1/uno.n� 1/o : : : 2o1o0o0u:

Defining � WD∅ if nD 1 or � WD no.n� 1/o : : : 2o if n> 1, a computation shows that

h1. V̨
.n/
1 0u/D Ps0o1o2o : : : .nC 2/o.nC 2/u.nC 1/ono : : : 2o1o0o0u

D Ps0o1o2o : : : .nC 2/o.nC 2/u.nC 1/o�1o0o0u:

See also Figure 40, top pair. We will show that the image of the 1o0o0u at the end of this last equation
under h.n/

3
ı h.n/

2
produces the requisite segment in ˛.n/

2
.

A direct computation shows that

h.n/2 ..nC 2/o.nC 2/u.nC 1/o�1o0o0u/D .nC 1/o.nC 1/u�h.n/2 .1o0o0u/;

since all of � is disjoint from D2. In standard position, 1o0o0u contains a full crossing, and we compute
that

h.n/2 .1o0o0u/D 1o@D2j.�n�1;0�.�n� 1/o.�n� 1/u@D2j.�n�1;0�0o0u;

in an unreduced code. We thus have the decomposition

(8) h.n/2 ..nC 2/o.nC 2/u�1o0o0u/

D .nC 1/o.nC 1/u�1o@D2j.�n�1;0�.�n� 1/o.�n� 1/u@D2j.�n�1;0�0o0u

D �1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u;

where each �i is defined by the second equality. See Figure 40, middle pair. None of �1; �2; �3 fully cross
D3 in standard position. As .�1/uPo0u fully crosses D3 twice, we compute that

(9) h.n/3 ..�1/uPo0u/D .�1/uPu0o@D3j.0;n�.nC 1/u.nC 1/o@D3j.0;n�0oPuPo0o@D3j.0;n�

.nC 1/o.nC 1/u@D3j.0;n�0o0u

D .�1/uPu�
.n/
1 PuPo�

.n/
1 0u:
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h1

V̨ .n/
1

0u

h1. V̨
.n/
1

0u/
�2

h.n/2

�

�

h.n/2 ..nC 2/o.nC 2/u�21o0o0u/

�1�2

�3

h.n/
3

�.n/
1

�.n/
1

Figure 40: The direct computations done in the proof of Proposition 7.7. Top pair: the image of
˛.n/1 0u under h1. Middle pair: the image under h.n/2 of the segment � , shown in red and black.
Bottom pair: the two full crossings in red give rise to �.n/

1
and �.n/

1
, which are shown in green, in

the proof of Proposition 7.7 upon applying h.n/3 .

Hence we see that �.n/
1

PuPo�
.n/
1

0u is contained in an unreduced code for gn. V̨
.n/
1

0u/. It remains to show
that this segment persists in a reduced code for gn. V̨

.n/
1

0u/D V̨
.n/
2

0u.

Proposition 6.2 shows that if �.n/
1

PuPo�
.n/
1

0u persists in a reduced code for V̨20u then it persists in a
reduced code for ˛2. To check if �.n/

1
PuPo�

.n/
1

0u persists in a reduced code for V̨20u, we need only
consider a reduced code for the image under gn of the characters following the .nC 1/o.nC 1/u in (7),
because Lemma 6.3 shows that the pair .nC1/o.nC1/u blocks cascading cancellation between characters
on either side. This is precisely the segment whose image under h.n/

2
is given by (8).
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We will use direct computation to show that the segment �.n/
1

PuPo�
.n/
1

0u is the final segment of a reduced
code for

(10) h.n/3

�
�1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u

�
:

Before making this computation, we point out the relevant pieces. Each .�1/uPo (or its reverse) in (10)
fully crosses D3 and has image given by the first half of (9), up to reversing the orientation. The terminal
Po0u also fully crosses D3, and so we may similarly compute its image. The segments �2, �3 are invariant
under h.n/

3
. The image of �1 is h.n/

3
.�1/D .nC2/o.nC2/u.nC1/o�1o0o. Moreover, the four characters

� t
2
.�n�1/o.�n�1/u�

i
3

form a loop which fully crosses D3 exactly once. (Note that � t
2
D � i

3
D .�n/o=u,

where the choice of o=u depends on the parity of n.) Combining all of these remarks, we find the following
reduced code (see Figure 40, bottom pair):

h.n/3

�
�1Po.�1/u�2.�n� 1/o.�n� 1/u�3.�1/uPo0u

�
D .nC 2/o.nC 2/u.nC 1/o�1o0oPoPu0o : : : .nC 1/o.nC 1/uno : : : 0o

Pu@D2j.�n;�1�.�n/u.�n/o@D3j.�n;nC1/.nC 1/o.nC 1/u@D2j.�n;n�.�n/o.�n/u@D2j.�n;�1�Pu

@D3jŒ0;nC1/.nC 1/u.nC 1/o@D3j.P;nC1/PuPo@D3jŒ0;nC1/.nC 1/o.nC 1/u@D3jŒ1;nC1/0o0u:

In particular, we see the requisite segment as the last line of this string. Precisely, we have

�.n/1 D @D3jŒ0;nC1/.nC 1/o.nC 1/u@D3jŒ1;nC1/0o:

This completes the proof of Proposition 7.7.

The next corollary shows that ˛.n/i has highways whose lanes contain �.n/
i�1

. Notice that gn.�
.n/
i�1
/D �.n/i

by Proposition 6.2.

Corollary 7.8 When i � 2, ˛.n/i contains a subsegment of the form �.n/
i�1

PuPo�
.n/
i�1

that appears as the
final subsegment of V̨ .n/i . In particular , ˛.n/i has highways for all i � 2 with lanes containing �.n/

i�1
.

Proof As above, we will retain the 0u which immediately follows V̨ .n/i when we compute images. We will
show by induction that gn. V̨

.n/
i�1

0u/ ends with �.n/
i�1

PuPo�
.n/
i�1

0u in a reduced code, which will show that
�.n/

i�1
PuPo�

.n/
i�1

appears as the final subsegment of V̨ .n/i . Since gn. V̨
.n/
i�1

0u/D V̨
.n/
i 0u by Proposition 6.2,

this will imply that such a segment persists in ˛.n/i .

The base case i D 2 was shown in Proposition 7.7, so we proceed to the induction step. Using the
induction hypothesis, write

V̨
.n/
i�10u D Ps�1�

.n/
i�2PuPo�

.n/
i�20u;

for some subsegment �1. A calculation shows that in an unreduced code

gn.�
.n/
i�2PuPo�

.n/
i�20u/D gn.�

.n/
i�2C 0oPuPo0oC�

.n/
i�20u/

D gn.�
.n/
i�2/Cgn.0oPuPo0o/Cgn.�

.n/
i�20u/

D �.n/i�1PuPo�
.n/
i�10u;
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where one verifies that the last line is in fact reduced. We therefore reduce to showing that �.n/
i�1

PuPo�
.n/
i�1

0u

persists as the terminal substring of V̨ .n/i 0u. For this, we must prove that no characters in an unreduced
code for gn.Ps�10o/ cancel with this terminal 0o, which is .�.n/

i�1
/i .

Recall from (6) that �.n/
i�1

is by definition all of V̨ .n/
i�1

except the initial Ps . In particular, its terminal
character 0o D .�

.n/
i�1
/t is oriented to the left. Thus the initial 0o of the reverse segment �.n/

i�1
is oriented

to the right. Since we are considering the segment Ps�10o D Ps�1.�
.n/
i�1
/i , this implies that .�1/

t has
numerical value at most 0. Moreover, simplicity of V̨ .n/

i�1
shows that if �1 ends by looping around p, then

it must have 1o0oPoPu as its final segment. Theorem 6.4 combined with Remark 6.5 then shows that
there is no cancellation with .�.n/

i�1
/i D 0o in a reduced code for gn.Ps�10o/.

The following corollary follows immediately from Corollaries 6.9 and 7.8, our definition of �.n/i in (6),
and the definition of lane length.

Corollary 7.9 Fix i � 2 and let L and R denote the collections of left and right lanes in ˛.n/i , respectively.
Then

nL Dmax
�2L

L.�/� `c. V̨
.n/
i�1/ and nR Dmax

�2R
L.�/� `c. V̨

.n/
i�1/:

We are now in a position to prove the main result of the section.

Theorem 7.10 If ı is an arc which starts like ˛.n/i for some i � 2 and 
 is any arc disjoint from ı, then 

starts like ˛.n/

i�1
.

Proof Proposition 7.7 and Corollary 7.8 show that V̨ .n/i contains the segment �.n/
i�1

PuPo�
.n/
i�1

and hence
V̨ .n/i has highways for all i � 2.

As ı starts like ˛.n/i , the first part of its code is identical to that of V̨ .n/i and therefore ı also has highways
and also contains the segment �.n/

i�1
PuPo�

.n/
i�1

. By Lemma 7.6, the innermost left lane PuPo˛l (or its
reverse) and the innermost right lane PoPu˛r (or its reverse) in ı each have lane length at least `c. V̨

.n/
i�1
/.

Hence the first `c. V̨
.n/
i�1
/� 1 characters of these lanes immediately following Po=uPu=o must agree with

�.n/
i�1

or its reverse. As 
 is disjoint from ı, the moreover statement of Lemma 7.6 gives that the code for

 must begin with Ps˛l or Ps˛r . Consequently it must begin with V̨ .n/

i�1
D Ps�

.n/
i�1

, as required.

8 Loxodromic elements for A.†;p/

In this section, we will first conclude the proof of Theorem 1.1 and then go on to explore some properties
of our loxodromic elements gn, including identifying an explicit geodesic axis for gn, as well as describing
the limit points of gn on the boundary of the modified arc complex A.†;p/ for an admissible surface †.
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8.1 The proof of Theorem 1.1

Let S be the biinfinite flute surface we defined in Section 2 with isolated puncture p. Recall that A.S;p/
denotes the modified arc graph of S , as in Definition 2.3. Let ˛0 D Ps0o0uPs 2A.S;p/ be the arc from
Definition 5.2.

For each n, consider the map

(11) 'n WA.S;p/! Z�0;

defined by setting 'n.ı/ equal to the largest i � 0 such that ı starts like ˛.n/i . If there is no such i then
set 'n.ı/D 0.

Lemma 8.1 For any 
; ı 2A.S;p/, we have dA.S;p/.
; ı/� j'n.
 /�'n.ı/j.

Proof It follows from Theorem 7.10 that if dA.S;p/.
; ı/ D 1, then j'n.
 / � 'n.ı/j � 1 for any n.
In particular, if 'n.ı/ D 'n.
 /, then we are done. If not, then without loss of generality, assume that
'n.ı/ < 'n.
 / and 'n.
 /D j . Then by Theorem 7.10, 'n.ı/D j � 1 so that j'n.
 /�'n.ı/j � 1. The
result then follows from the subadditivity of the absolute value.

Let fgngn2N be as in Definition 5.1, and let f˛.n/i gi2Z be as in Definition 5.2. We first show that the
elements gn 2Map.S;p/ are loxodromic with respect to the action on A.S;p/.

Proposition 8.2 For each n 2 N, the homeomorphism gn 2 Map.S;p/ is a loxodromic isometry of
A.S;p/ with a .2; 0/-quasigeodesic axis f˛.n/i gi2Z.

Proof We first show that the map Z�0! hgni˛0 � A.S;p/ defined by i 7! gi
n.˛0/ is a .2; 0/-quasi-

isometry. In other words, we will show that f˛.n/i gi�0 is a quasigeodesic half-axis for gn along which gn

acts as translation.

Let 'n be the map defined in (11). By Lemma 8.1, we have that dA.S;p/.
; ı/� j'n.
 /�'n.ı/j for any

; ı 2A.S;p/. Since 'n.˛

.n/
i /D i for all i � 0, this implies that

(12) dA.S;p/.˛0; ˛
.n/
i /� i:

Consider the arc ˇ D Ps.�1/o.�1/uPs . Then ˇ is disjoint from both ˛.n/
0

and ˛.n/
1

. Since gn is a
homeomorphism, gi

n.ˇ/ is disjoint from both ˛.n/i and ˛.n/
iC1

, and thus dA.S;p/.˛
.n/
i ; ˛.n/

iC1
/� 2 for all i .

Therefore, for all i ,

(13) dA.S;p/.˛0; ˛
.n/
i /� 2i:

Together, (12) and (13) show that f˛.n/i gi�0 is a .2; 0/-quasigeodesic half-axis for gn.

Since f˛.n/i gi�0 is an unbounded orbit of gn, we can see that gn is not elliptic, and since gn acts as
translation along this quasigeodesic half-axis, gn cannot be parabolic. Thus we may conclude that gn is a
loxodromic isometry of A.S;p/.
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Recall from Definition 2.6 that a surface † with an isolated puncture p is admissible if there exists a
proper embedding S ,!† where S contains p, the two nonisolated ends of S correspond to distinct ends
of †, and with the property that either there are countably many connected components of † nS of the
same (nontrivial) topological type or countably many isolated punctures of S remain isolated punctures
when embedded in †. We denote this special class of connected components by U , so that the elements
of U are all homeomorphic to a fixed surface †0. Recall that this definition ensures that the shift maps
h1; h

.n/
2
; and h.n/

3
we are interested in on S extend to shift maps on †. In particular, gnD h.n/

3
ıh.n/

2
ıh1

extends to a homeomorphism of †. When we reference gn below, we will try to be specific about
when we are considering gn as an element of Map.S;p/ versus an element of Map.†;p/. Recall from
Definition 2.2 that a homeomorphism f 2Map.†;p/ is intrinsically infinite-type if f 62Mapc.†/.

Theorem 1.1 is then a direct consequence of the following theorem.

Theorem 8.3 Let† be an admissible surface. For each n 2N, the homeomorphism gn 2Map.†;p/ is a
loxodromic isometry of A.†;p/ with a .4; 0/-quasigeodesic axis f˛.n/i gi2Z. Moreover , gn is intrinsically
infinite-type.

Proof Fix n 2 N. By Proposition 8.2, gn is loxodromic with respect to the action of Map.S;p/ on
A.S;p/. Moreover, gn extends to an element of Map.†;p/ and so gn acts on by isometries A.†;p/ as
well. By Lemma 2.10, there is a .2; 0/-quasi-isometric embedding A.S;p/ ,!A.†;p/. Therefore the
image of the .2; 0/-quasigeodesic half-axis for gn constructed in Proposition 8.2 is a .4; 0/-quasigeodesic
half-axis in A.†;p/. It is clear that gn stabilizes this .4; 0/-quasigeodesic half-axis and so the arcs
f˛.n/i gi2Z�0

form a quasigeodesic half-axis for gn in A.†;p/. Therefore, gn is loxodromic with respect
to the action of Map.†;p/ on A.†;p/.

We now show that gn 62Mapc.†/. If†0 has a nontrivial end space, then gn 62PMap.†/ since gn translates
the elements of U . Note that Mapc.†/ < PMap.†/ so that gn is of intrinsically infinite-type in this case.

Now suppose that the end space of †0 is trivial, so that †0 is a finite-genus surface with one boundary
component. Therefore, S [U D†0 is homeomorphic to an infinite-genus surface with two nonplanar
ends and a countable number of planar ends. Note that † n†0 consists of all of the additional topology
of † that is irrelevant to our construction of shift maps. In this way, the planar ends of †0 cut away the
irrelevant topology of †.

By [3, Corollary 6], PMap.†0/DMapc.†
0/Ì Z.h0/, where h0 is the standard handleshift on †0, which

also corresponds to a handleshift on† by extending h0 via the identity on†n†0. For simplicity of notation,
we drop the subscript on gn in what follows since the argument does not depend on n. Theorem 8.5 below
tells us that when g is considered as an element of Map.S;p/, there is a compactly supported mapping
class ' such that g D 'h, where h is the right shift on S shifting the punctures corresponding to the
elements of U . As an element of PMap.†0;p/, and therefore of Map.†;p/, g is thus equal to ' � .h0/m,
where ' 2 Mapc.†

0/ < Mapc.†/ and m is the genus of †0. By the proof of [22, Proposition 6.3],
.h0/m 62Mapc.†/, so that g 62Mapc.†/ as well.
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S�n

S�n

R.n/
1

R.n/
3

R.n/
1

R.n/
3

R.n/
2

R.n/
2

SnC2

SnC2

Figure 41: The curves R.n/
i when n is odd and even (top and middle, respectively), and the surface

…D…n when n� 3 (bottom). In …, the blue, green, and purple punctures correspond to where
…0n was cut along the curves R.n/

1 ;R.n/
2 ;R.n/

3 , respectively.

8.2 Alternative description of gn

In this section, we show that our mapping classes gn can be written as the composition of a pseudo-Anosov
on a finite-type subsurface and a standard shift. Moreover, we will show that gn is the composition
of the same pseudo-Anosov on a fixed finite-type subsurface and a standard shift whenever n > 3;
however, this subsurface is embedded in † in different ways for different n, yielding distinct elements
of Map.†;p/. Though the gn can be expressed as a pseudo-Anosov composed with a shift map, they
are not end-periodic maps as defined in the work of Cantwell, Conlon, and Fenley [13]. In particular,
there are isolated planar ends, or punctures, that are fixed by our homeomorphisms (for example, the
puncture p). However, it is possible that some of the methods used to study end periodic maps could also
apply to the homeomorphisms we have constructed.

Let h be the shift map on our subsurface S that translates the punctures that correspond to elements of U ,
that is, the right shift whose domain contains the simple closed curves Bi for all i 2Z and maps Bi to BiC1.

Without loss of generality, for each n we may modify our separating curves S�n and SnC1 so that a
connected component …0n of S n .S�n [ SnC2/ is a sphere with 2 boundary components and nC 4

punctures, one of which is p. This amounts to pushing any extra topology on the back of S outside
of this subsurface. We now further modify …0n to form a subsurface …n for each n as follows. Let
R.n/

1
;R.n/

2
;R.n/

3
be the simple closed curves as shown in Figure 41. In particular,

� R.n/
1

encloses all Bi with �n� i � �1 and i odd;

� R.n/
2

encloses all Bi with �n� i � n and i even; and

� R.n/
3

encloses all Bi with 3� i � n and i odd.
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Figure 42: The train tracks �n on the finite-type subsurface…n. Left: nD 1; 2. The pink puncture
only appears when nD 2. Right: n� 3.

Note that R.1/
i is empty for all i D 1; 2; 3, R.2/

i is empty when i D 1; 3, and R.3/
i is empty when i D 3.

For all n� 4, R.n/
i is nonempty for each i D 1; 2; 3.

Definition 8.4 Let …n be the component of …0n n .R
.n/
1
[R.n/

2
[R.n/

3
/ which contains the puncture p.

The surface …n is a sphere with 2 boundary components and some number of punctures: five punctures
if nD 1, six punctures if nD 2, and seven punctures if n� 3. Notice that the …n are homeomorphic for
all n� 3. However, the embedding �n W…n!† are different for distinct n. For any f 2 PMap.…n;p/,
let Nf WD �n ıf .

Theorem 8.5 For each n� 1, there is a pseudo-Anosov 'n 2 PMap.…n/ so that gn D 'nh. Moreover ,
for all n; n0 � 3, …n D…n0 and 'n D 'n0 as elements of PMap.…n/. However , 'n and 'n0 are distinct
elements of Map.†;p/ since the embeddings �n are distinct.

Proof We define 'n WD gnh�1 for all n� 1. It is clear that 'n stabilizes the subsurface …n and is the
identity on † n…n. Let 'n be the restriction of 'n to PMap.…n/, so that � ı'n D 'n. We will show that
'n is pseudo-Anosov. To do this, we will apply [28, Lemma 3.1], which states that a mapping class is
pseudo-Anosov if it preserves a large, generic, birecurrent train track whose associated transition matrix
is Perron–Frobenius. We will construct such a train track �n for each n.

The cases nD 1; 2 are slightly different and we will deal with them separately. For all n� 3, the surfaces
…n are homeomorphic and we will build a single train track which will satisfy the above conditions.
Notice that �n is a train track on the surface …n, so to show that �n is large, generic, and birecurrent
it suffices to consider …n. However, since 'n is defined as a restriction of 'n, which is a product of
elements of Map.†;p/ which are not supported on …n, we must consider the different embeddings of
…n into † in order to show that �n is preserved by 'n and to calculate the transition matrix of �n.

The train tracks �n for nD 1; 2 and for n� 3 are shown on …n in Figure 42. For all n, the following hold.
All switches are trivalent and so �n is generic. Each complementary region is a once-punctured disk or a
polygon and so �n is large. The weights on each branch of �n are positive and so �n is recurrent. Moreover,
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Figure 43: A collection of simple closed curves f
 .n/i g such that each branch of �n is intersected
transversely and efficiently by some 
 .n/i . As in Figure 42, the pink puncture only appears when
nD 2. Left: nD 1; 2. Right: n� 3.

the finite collections of simple closed curves f
 .n/i g in Figure 43 is such that each branch of �n is intersected
transversely and efficiently by some 
 .n/i , ie 
 .n/i [ �n has no complementary bigon regions for any i .
Therefore �n is transversely recurrent. Since �n is recurrent and transversely recurrent, it is birecurrent.

Figures 44 and 45 show that �n is preserved by 'n for nD 1; 2 and n� 3, respectively. It is immediate
from these figures that the matrix An associated to �n is

A1 DA2 D

0BB@
5 6 0 2

6 9 0 2

10 10 2 3

6 6 1 2

1CCA and An D

0BBBB@
5 6 0 2 0

6 9 0 2 0

10 10 2 2 1

6 6 1 1 1

6 6 1 2 0

1CCCCA;
when n� 3.

For each n, .An/
2 has all positive entries, hence An is Perron–Frobenius. We conclude that 'n is pseudo-

Anosov for all n by [28, Lemma 3.1].

While it is not necessary for this paper, it is interesting to note that for all n 2N, the top eigenvalue of
An is 9

2
C

1
2

p
41C

p
1
2
.59C 9

p
41/, which is associated to a unique irrational lamination on …n that is

carried by �n and fixed by 'n.

We say that a homeomorphism of Map.†;p/ is a pseudo-Anosov shift if it can be written as the composition
of a pseudo-Anosov on a finite-type subsurface containing p and a standard shift. The results of this
section inspire the following questions.

Question 8.6 When is the composition of shift maps a pseudo-Anosov shift?

Question 8.7 Does every pseudo-Anosov shift act loxodromically on A.†;p/?

8.3 Geodesic axes

The proof of Theorem 1.1 shows that, for each n, the sequence .˛.n/i /i2Z is a .4; 0/-quasigeodesic axis
for gn in A.†;p/. In this section, we find a geodesic axis for gn in A.†;p/.
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Figure 44: The train track �n is preserved by 'n D gnh�1 for n D 1; 2; the pink puncture only
appears when nD 2. The weights in the picture are used to calculate the matrix An associated to �n.

Theorem 8.8 For each n2N, there is a geodesic axis for gn in A.†;p/. Furthermore , gn has translation
length 1 on this axis.

Proof As dA.†;p/.
; ı/� dA.S;p/.
; ı/ for any arcs 
; ı 2A.S;p/, the image of a geodesic under the
inclusion A.S;p/ ,!A.†;p/ is still a geodesic. Thus it suffices to construct a geodesic axis for gn in
A.S;p/. Toward this goal, define

ˇ.n/0 D Ps.�1/o.�2/o : : : .�n� 1/o.�n� 1/u.�n/o : : : .�2/o.�1/oPs 2A.S;p/;

and let

ˇ.n/i D gi
n.ˇ

.n/
0 /:
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x1
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x5
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.0 0 2 1 1/
.0 0 1 1 0/
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h
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Figure 45: The train track �n is preserved by 'nD gnh�1, when n� 3. The weights in the picture
show how to calculate the matrix An associated to �n. For ease of notation, we often write the
weights of each branch as a vector in the variables x1; : : : ;x5. For example, the label .2 1 2 4 5/

corresponds to the weight 2x1Cx2C 2x3C 4x4C 5x5.

Since the arcs ˇ.n/i are the orbit of ˇ.n/
0

under hgni and gn is a loxodromic isometry, it follows that they
form a quasigeodesic axis in A.†;p/ for gn. We will show that ˇ.n/

0
is disjoint from ˇ.n/

1
, which will

prove that .ˇ.n/i /i2Z is a geodesic axis for gn and that gn has translation length one on this axis. In fact,
it suffices to show that ˇ.n/

1
does not contain Po or ko=u for any k � �n� 1, as it then follows that ˇ.n/

0

is disjoint from ˇ.n/
1

; see Figure 46.

Applying h1 to ˇ.n/
0

yields

(14) h1.ˇ
.n/
0 /D Ps.�1/o.�2/o : : : .�n/o.�n/u.�nC 1/o : : : .�2/o.�1/oPs:
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�n� 1

ˇ.n/
0

Figure 46: If an arc 
 does not contain Po or ko=u for any k � �n� 1, then it must lie in the
shaded region of S . In particular, 
 must be disjoint from ˇ.n/

0
.

Since all of h1.ˇ
.n/
0
/ is to the left of the puncture, the image under h.n/

2
(which shifts to the left) will not

contain Po. Moreover, since Po disagrees with the code for the domain of h.n/
3

, neither will ˇ.n/
1

. Thus it
remains to show that ˇ.n/

1
does not contain ko=u for any k � �n� 1.

Recall that h.n/
3

shifts to the right and has shift region .�1;�n� 1�[ ŒnC 1;1/. Thus, any instance
of ko=u with k � �n � 1 in ˇ.n/

1
must be the image of .k � 1/o=u in h.n/

2
.h1.ˇ

.n/
0
//. Similarly, such

a .k � 1/o=u must be the image of ko=u in h1.ˇ
.n/
0
/, since h.n/

2
shifts to the left. However, by (14),

h1.ˇ
.n/
0
/ does not contain jo=u for j � �n� 1, and we conclude that ˇ.n/

1
does not contain ko=u for any

k � �n� 1.

8.4 Limit points of the gn

Since the relative arc graph A.†;p/ is a hyperbolic metric space, it has a well-defined Gromov boundary.
This boundary was described by Bavard and Walker [7; 8]. In this section, we describe the limit set of gn

on @A.†;p/ in terms of Bavard and Walker’s characterization of the boundary.

8.4.1 The Gromov boundary of A.†;p/ We begin by recalling some definitions from [7; 8]. It is
important to mention that in [7; 8], the word loop is used for what we call an arc in this paper. Any time
we mention a result from one of these two papers, we will convert it to our terminology. Let E.†/ denote
the space of ends of †, which necessarily contains our preferred puncture p.

Fix any hyperbolic metric (of the first kind) on †, as in [8, Theorem 3.0.1]. For a fixed lift of p to
the universal cover H2, which necessarily lies on @H2, there exists a parabolic subgroup G < �1.†/

stabilizing this lift. Define y†DH2=G to be the intermediate cover associated to this parabolic subgroup.
The space y† is called the conical cover of †. This cover has boundary S1 and contains a preferred lift yp
of p which comes from our fixed choice in the universal cover. Let � W y†!† be the natural quotient
map, let y̌ be any geodesic ray from yp to @y†, and let ˇ D �. y̌/. Thus y̌ has one endpoint on yp and the
other endpoint somewhere in @y†' S1. The other endpoint may be a lift of p that is not our chosen yp, (a
lift of) a point in E.†/ n fpg, or a point which is neither. If ˇ is simple, then in the first case ˇ is an
arc,2 in the second case ˇ is a short ray, and in the last case ˇ is a long ray. Equivalently, an embedding

2As noted above, Bavard and Walker call this a loop.
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ˇ W .0; 1/!† is a short ray if it can be continuously extended to a map y̌W Œ0; 1�!†[E.†/ such that
y̌j.0;1/ D ˇ, y̌.0/D p, and y̌.1/ 2E.†/n fpg (see [8, Section 5.1.1]), and ˇ is a long ray if it is neither
an arc nor a short ray.

Bavard and Walker construct a graph involving all three kinds of rays, which they use to describe the
Gromov boundary @A.†;p/ of the relative arc graph.

Definition 8.9 The completed ray graph R.†;p/ is the graph whose vertices are isotopy classes of simple
arcs, short rays, and long rays and whose edges correspond to homotopically disjoint isotopy classes.

By definition, A.†;p/ embeds in R.†;p/, but the following theorem shows that something stronger is
true. Recall that a clique is a complete graph.

Theorem 8.10 [8, Theorem 5.7.1] The connected component of R.†;p/ containing all arcs is quasi-
isometric to A.†;p/. All other connected components are cliques.

A particular type of long ray will be important in the description of the Gromov boundary of A.†;p/.
A long ray ˇ is k-filling if k is the minimum natural number such that there exists an arc ˇ0 and long
rays ˇ1; : : : ; ˇk D ˇ such that ˇi \ˇiC1 D∅ for all i � 0. In other words, a long ray is k-filling if it is
distance exactly k from an arc in R.†;p/.

Definition 8.11 A long ray ˇ is said to be high-filling if both of the following hold:

(1) ˇ intersects every short ray; and

(2) ˇ is not k-filling for any k 2N.

All of the vertices of the connected components that form cliques are high-filling rays; accordingly, such
cliques are called high-filling cliques.

Theorem 8.12 [8, Theorem 6.3.1] The set of high-filling cliques is in bijection with the Gromov
boundary @A.†;p/ of the relative arc graph.

8.4.2 The limit set of gn In [8, Section 7.1], Bavard and Walker prove that to associated to any
f 2Map.†;p/ acting loxodromically on A.†;p/, there exists an attracting clique of high-filling rays
CC.f / and a repelling clique of high-filling rays C�.f / in R.†;p/ that correspond to the attracting
and repelling limit points of f in @A.†;p/, respectively. The cliques CC.f / and C�.f / have the same
(finite) number of vertices, called the weight of f , denoted by w.f / (see [8, Definition 7.1.3]).

Following [7, Example 2.7.1], we have the following lemma.

Lemma 8.13 For any n� 1, the homeomorphism gn constructed in Theorem 1.1 satisfies w.gn/D 1.
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Proof For notational simplicity, fix n and define g D gn and ˛i D ˛
.n/
i . It suffices to prove that the

attracting clique CC.g/ consists of a single high-filling ray.

For each i , let y̨i be a lift of ˛i to the conical cover y†. Then y̨i is a simple geodesic arc with one endpoint
on yp and the other on some xi 2 @y†. By [8, Lemma 5.2.2], the set of endpoints of arcs, short rays, and
long rays is compact in @ O†, and hence there exists a subsequence .xik

/ of .xi/ which limits to a point
x1 2 @y†. Let y̨1 be the geodesic ray from yp to x1 and ˛1D �.y̨1/, where � W y†!† is the covering
map. The construction of the conical cover y† shows that ˛1 has an infinite-length code with initial
segment V̨ ik

for any k. Since `c. V̨ ik
/!1 as k!1 and V̨ ik

has an initial segment equal to V̨ ik�1
, this

uniquely determines the entire infinite code. We claim that ˛1 is a high-filling ray and, moreover, that
˛1 is the sole vertex in CC.g/.

That ˛1 is a ray follows from the fact that the set of endpoints of arcs in @y† are isolated [8, Lemma 5.2.2].
To see that ˛1 is high-filling, it therefore suffices to show that it intersects every other ray (short or long).
It follows from the same proof as Theorem 7.10 that any ray ˇ which is disjoint from ˛ik

must begin
like ˛ik�1. In particular, we see that the first `c. V̨ ik�1

/ characters in a code for ˇ must agree with V̨ ik�1
.

Since `c. V̨ ik�1
/ < `c. V̨ ik

/ for all k, taking k!1 shows that any ray ˇ which is disjoint from ˛1 must
have identical code and hence indeed must be exactly ˛1.

Finally, since ˛1 intersects every other ray, it must, in particular, intersect any other high-filling ray. By
[7, Lemma 2.7.8], the connected component of any high-filling ray is a clique of high-filling rays, and
thus ˛1 is its own connected component in R.†;p/. Hence w.g/D 1, completing the proof.

We close this section with the remark that if the weight of the limit points of gn were not all the same,
then Bavard and Walker give a method for constructing nontrivial quasimorphisms [8, Theorem 9.1.1].
However, since this is not the case, we must use a different method for showing that the space of
quasimorphisms is infinite-dimensional, which is related to Bavard’s original proof for the arc graph
from [5]. We do so in Section 9.

9 Infinite-type quasimorphisms

A quasimorphism of a group G is a map f WG!R such that there exists a real constant C for which
jf .ab/�f .a/�f .b/j � C for all a; b 2G. The set of quasimorphisms forms a vector space V .G/ over
R, and, moreover, bounded functions and homomorphisms both form subspaces of V .G/. Let eQH.G/
denote the quotient of V .G/ by the subspace spanned by bounded functions and homomorphisms. We
call eQH.G/ the space of quasimorphisms of G. The goal of this section is to use the elements constructed
in Theorem 1.1 to prove Theorem 1.4, which we restate for the convenience of the reader.

Theorem 1.4 Let † be an admissible surface. The space of nontrivial quasimorphisms on Map.†;p/ is
infinite-dimensional.
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Dp

�0
�0

aC

a�

xs

xt

Figure 47: A schematic of Dp and the two arcs a� and aC.

Several of the ideas in this section closely follow the strategy and ideas of Bavard [5], though the
production of the elements which give rise to our quasimorphisms differs. We begin by studying a specific
subclass of arcs with the goal of describing a particular homotopy operation and intersection pairing on
them. We then use this intersection pairing and a theorem of Bestvina and Fujiwara to prove the theorem.

9.1 An intersection pairing on symmetric arcs and first properties

Recall that our surface † has an embedding of the biinfinite flute surface S such that † nS has infinitely
many connected components, a countable collection of which are homeomorphic to a fixed surface †0.
Moreover, the complement of each arc ˛i separates† into two components, one of which is homeomorphic
to int.†0/, the interior of the fixed surface†0. Using†0, we define SA to be the set of simple, symmetric
arcs ı (see Definition 4.4) such that †n ı has two connected components, one of which is homeomorphic
to int.†0/. Notice that ˛.n/i 2 SA for all i 2 Z, n 2N and that SA is a Map.†;p/-invariant subset of
the set of all arcs.

Since p is isolated, we again fix the small once-punctured disk Dp containing p as in Section 7. This disk
is homeomorphic to the closed unit disk minus an interior point. As in that section, given any element ı
in SA, we put ı in standard position so that its intersections with @Dp � S1 are all transverse. Let xs

and xt be the initial and terminal point where ı intersects @Dp. Let �0 and �0 be the subsegments of ı
which connect xt and xs to p, respectively.

We will modify ı to form a particular simple closed curve as follows. We can replace �0[�0 with either
aC or a�, as shown in Figure 47, forming two distinct simple closed curves, ıC and ı�, respectively. One
of these two curves bounds a surface homeomorphic to int.†0/; in Figure 47, this curve is ı�. Fixing a
hyperbolic metric on the surface, we let Bı be the geodesic representative of this curve.

We now choose the homotopy representative of ı that will allow us to define an intersection pairing. As ı
is symmetric, there exists an arc

ı0 D rıBır
�1
ı
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Figure 48: Two examples of arcs in SA (in the case that †0 is a one-holed torus) and their
corresponding zippings. The purple and red arcs are zipped to the green and blue arcs, respectively.

in the homotopy class of ı, where rı is a simple ray from the puncture to Bı that intersects Bı only at its
endpoint. Intuitively, one can think of the arc ı0 as being constructed from ı by “zipping” the initial and
terminal portions of the arc together for as long as they fellow travel to form rı . Particular examples of rı

and ı0 are given in Figure 48.

We are now in a position to define the intersection pairings.

Definition 9.1 We define a map I˙ W SA � SA! Z�0 as follows. Let IC.ı; 
 / be the number of
positively oriented intersections between minimal position representatives for the homotopy classes of
rı and r
 that do not occur on Bı or B
 . Here we require that the homotopy fixes the puncture and
fixes each of Bı and B
 setwise (though not necessarily pointwise). We define I�.ı; 
 / similarly using
negative intersections.

Notice that IC.�; �/ and I�.�; �/ are not necessarily symmetric in their arguments. However, it is
straightforward to verify that the relationship

IC.ı; 
 /D I�.
; ı/

holds for any ı; 
 2 SA.

For the remainder of the section we will fix an n 2N and use the notation that g D gn, ˛i D ˛
.n/
i , and

' D 'n is the “starts like” function from Section 8.

Example 9.2 One can readily compute from Figure 49 that we have the following relations:

5D I�.˛0; ˛2/D IC.˛2; ˛0/ and 6D IC.˛0; ˛2/D I�.˛2; ˛0/:

These calculations will be relevant later in the section.

We now collect some useful properties of the intersection pairing and its interaction with Map.†;p/.
These preliminary facts are inspired by Bavard [5], where similar statements are shown in Bavard’s context.
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�2 �1 0 nC 1 nC 2 nC 3

Figure 49: The oriented arc r˛.n/
0

is shown in blue and the oriented arc r˛.n/
2

is shown in pink.
Each line of r˛.n/

0
and r˛.n/

2
represents two strands of ˛.n/0 and ˛.n/2 , respectively.

Lemma 9.3 The intersection pairing is mapping class group invariant. That is , for any ı; 
 2 SA and
any f 2Map.†;p/

I˙.f .ı/; f .
 //D I˙.ı; 
 /:

Proof This is immediate from the fact that Map.†;p/ is orientation preserving and preserves SA.

Recall that in Section 8, we defined the “starts like” function

' WA.S;p/! Z�0;

by setting '.ı/ equal to the largest i � 0 such that ı starts like ˛i . We now extend ' to all of A.†;p/ by
setting '.ı/D 0 if ı does not have a homotopy representative that is contained in S . We continue to call
this extension '.

Lemma 9.4 If ı; 
 2 SA are arcs such that 2C'.ı/� '.
 /, then

6� I�.
; ı/:

Proof By the mapping class group invariance of Lemma 9.3, the quantities I˙.˛i ; j̨ / depend only on
j � i . As ˛iC1 starts like ˛i , the pairing I�.˛i ; j̨ / must be monotonically increasing in the difference
j � i . In particular, if 2C i � j , then

6D I�.˛2; ˛0/� I�. j̨ ; ˛i/:

If '.ı/D i and '.
 /D j , then ı starts like ˛i and 
 starts like j̨ , so the arcs 
 and ı must have at least
as many negatively oriented intersections as ˛i and j̨ . Thus we have

6� I�. j̨ ; ˛i/� I�.
; ı/;

and the result follows.

Algebraic & Geometric Topology, Volume 25 (2025)



Infinite-type loxodromic isometries of the relative arc graph 635

9.2 Production of “infinite-type” quasimorphisms

We now use the intersection pairing from the previous subsection to show that the elements gn give rise
to nontrivial quasimorphisms. For this, we need the following theorem of Bestvina and Fujiwara. We
explain the two conditions on h1, h2 after the statement.

Theorem 9.5 [10, Theorem 1] Suppose that a group G has a nonelementary action by isometries on a
ı-hyperbolic graph X . If there exist independent loxodromic elements h1; h2 2G such that h1 œ h2, then
the space of quasimorphisms is infinite-dimensional.

Two loxodromic isometries h1 and h2 are independent if their limit sets in the boundary @X of X

are disjoint. For the second condition, fix constants K � 1 and K0 � 0 so that hi has a .K;K0/-
quasigeodesic axis `i in X for i 2 f1; 2g. A fundamental property of ı-hyperbolic spaces is that there
exists BDB.K;K0; ı/ such that any two finite .K;K0/-quasigeodesics with common endpoints are within
distance B of each other. Define an equivalence relation on elements h1; h2 2G so that h1 � h2 if the
following holds: for any arbitrarily long segment L of `1, there exists an f 2G such that f .L/ is contained
in the B-neighborhood of `2 and the map f W L! f .L/ is orientation-preserving with respect to the
hi-orientation on `i for i 2f1; 2g. For the definition of the hi-orientation on L and f .L/, see [10, page 72].

We now recall some arguments from [5, Section 4.3] which, when adapted into our language, show that
g œ g�1 for our loxodromic isometries g D gn. Fix B � 1 to be the constant defined above for all
.4; 0/-quasigeodesics in A.†;p/. Let `D fgi.˛0/gi2Z, so that ` is a .4; 0/-quasigeodesic axis of g by
Theorem 8.3. We then have the following statements that are similar to [5, Lemmas 4.6, 4.7]. We supply
the proofs for the reader’s convenience.

Lemma 9.6 Let L be a subpath of ` from ˛i to j̨ for 0 < i < j . Let f 2 Map.†;p/ be such that
dA.†;p/.˛i ; f . j̨ //� B and such that f .L/�NB.`/ with the opposite orientation. If j � i > 8BC 3,
then there exists some k such that i � k < j and '.f .˛kC2//� '.f .˛k//� 2.

Proof Since dA.†;p/.f . j̨ /; ˛i/ � B, we conclude by Lemma 8.1 that '.f . j̨ // � i C B. Since
f .L/�NB.`/ with the opposite orientation, we may apply [5, Lemma 4.4] to L and the reverse of f .L/
to conclude that dA.†;p/. j̨ ; f .˛i//� 3B. Note that [5, Lemma 4.4] is stated for geodesics, but the exact
same proof goes through for quasigeodesics. Again applying Lemma 8.1, we see that '.f .˛i//� j �3B.

Suppose towards a contradiction that '.f .˛kC2// > '.f .˛k// � 2 for all 1 � k < j . Equivalently,
'.f .˛kC2//� '.f .˛k//� 1 for every k. Then, if j � i is even,

i CB � '.f . j̨ //� '.f .˛i//�
1
2
.j � i/� j � 3B � 1

2
.j � i/;

where the second inequality is obtained by applying '.f .˛kC2// � '.f .˛k//� 1 repeatedly starting
with j D kC 2. If j � i is odd, then by the same reasoning we have

i CB � '.f . j̨ //� '.f .˛iC1//�
1
2
.j � i � 1/:
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Since
j'.f .˛i//�'.f .˛iC1//j � d.f .˛i/; f .˛iC1//D d.˛i ; ˛iC1/D 2;

it follows that

i CB � '.f .˛iC1//�
1
2
.j � i � 1/� '.f .˛i//�

3
2
�

1
2
.j � i/� j � 3B � 3

2
�

1
2
.j � i/:

Hence we conclude that, in either case,

4BC 3
2
�

1
2
.j � i/;

which contradicts that j �i > 8BC3. Thus there must be some k for which '.f .˛kC2//� '.f .˛k//�2,
as required.

Proposition 9.7 For any segment L of ` whose length is greater than 32BC12 and any f 2Map.†;p/,
if f .L/�NB.`/ then f .L/ has the same orientation as `.

Proof After possibly increasing the length of L, we may assume that L is a subpath of ` from ˛i to j̨

for some i < j . Since the length of L is greater than 32BC 12 and ` is a .4; 0/-quasigeodesic edge path
by Theorem 8.3, we have that j � i > 8BC 3. By precomposing f with a suitable power of g, we can
and do assume that i; j > 0.

Assume for contradiction that f .L/ has the opposite orientation as `. By Example 9.2 and Lemma 9.3
we have that

(15) I�.f .˛k/; f .˛kC2//D I�.˛k ; ˛kC2/D I�.˛0; ˛2/D 5

for all k 2 Z. On the other hand, by Lemma 9.6 there is some fixed index i � k < j for which

(16) 2C'.f .˛kC2//� '.f .˛k//:

Applying Lemma 9.4 to f .˛k/ and f .˛kC2/ for this index k shows that

6� I�.f .˛k/; f .˛kC2//D I�.˛k ; ˛kC2/D I�.˛0; ˛2/:

However, this contradicts (15), and so we conclude that f .L/ has the same orientation as L.

Proposition 9.7 implies that g œ g�1 since the axis ` has opposite orientations for g and g�1. Additionally,
since conjugate elements are equivalent under the relationship �, we have the following immediate
corollary of Proposition 9.7.

Corollary 9.8 For fixed n 2N, the loxodromic elements g D gn have the property that g œ hg�1h�1

for any h 2Map.†;p/.

With this in hand, we can prove the main result of this section.
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Proof of Theorem 1.4 Fix n 2 N, and continue to use the notation that g D gn. By Theorem 9.5
and Corollary 9.8 it suffices to show that there exists an h 2Map.†;p/ such that g and hg�1h�1 are
independent loxodromic elements. For this we can use any h 2Map.†;p/ which does not fix the limit
set of g (which is the same as the limit set of g�1). For example, fix any finite-type subsurface …0

with boundary of sufficient complexity which contains the puncture p, and take any pseudo-Anosov
h 2 Map.…0;p/. Extending h by the identity outside of …0, we may consider h as an element of
Map.†;p/. By Lemma 2.10, there is a .2; 0/-quasi-isometric embedding � WA.…0;P / ,!A.†;p/. Since
h is loxodromic with respect to the action of Map.…0;p/ on A.…0;p/, it is therefore also loxodromic
with respect to the action of Map.†;p/ on A.†;p/. In addition, out of all such pseudo-Anosovs, there is
a choice of h whose limit points are different from the limit points �˙ of g. (Note that the quasi-isometric
embedding � ensures that two pseudo-Anosovs with distinct limit points in the boundary of A.…0;p/ also
have distinct limit points in the boundary of A.†;p/.) Therefore, the limit points h.�˙/ of hg�1h�1 are
distinct from those of g. In particular, g and hg�1h�1 are independent loxodromic elements, as required.

10 Convergence to a geodesic lamination

The goal of this section is to prove Theorem 1.2, which we restate for the convenience of the reader. As
in [26], we equip † with its unique conformal hyperbolic metric. Additionally, we require that with this
metric, † is equal to its convex core, which is equivalent to eliminating hyperbolic funnels and half-planes
in †. This is necessary in order to consider geodesic laminations on an infinite-type surface; see [26].

Theorem 1.2 If † is an admissible surface equipped with its conformal hyperbolic metric that is equal
to its convex core, then there exists a simple closed curve c0 on † such that the sequence .gi

n.c0//i2N

converges to a geodesic lamination on †.

10.1 Geodesic laminations

We begin by reviewing some facts about geodesic laminations on infinite-type surfaces. For a complete
treatment of the subject, we refer the reader to [26].

Definition 10.1 A geodesic lamination � on † is a foliation of a closed subset of † by complete
geodesics.

Fix a locally finite geodesic pants decomposition fPng of † and a train track ‚ on † constructed as in
[26, Section 4]. Denote by z‚ the lift of ‚ to z†, the universal cover of †. An edge path of z‚ is a finite,
infinite, or biinfinite sequence of edges of z‚ such that consecutive edges meet smoothly at each vertex.
Every biinfinite edge path has two distinct accumulation points on @1 z† by [26, Proposition 4.5].

Given a biinfinite edge path z
 of z‚, let G.z
 / be the geodesic of z† whose endpoints on @1 z† are the two
distinct endpoints of z
 . A geodesic g of z† is weakly carried by z‚ if there exists a biinfinite path z
 in z‚
such that G.z
 /D g.
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We now gather various results from [26] which will be useful in what follows. These are all analogous to
the situation for finite-type surfaces (see, for example, [11; 23; 27]). The first gives a correspondence
between geodesics weakly carried by z‚ and biinfinite edge paths.

Proposition 10.2 [26, Proposition 4.7] There is a one-to-one correspondence between biinfinite edge
paths of z‚ and geodesics weakly carried by z‚.

Let 
 be an edge path in ‚ and z
 a single component of the lift of 
 to z†. Then, as above, we construct
a geodesic G.z
 / with the same endpoints as z
 and denote by G.
 / its projection to †. We then say
that the geodesic G.
 / is weakly carried by ‚ if G.z
 / is weakly carried by z‚. A geodesic lamination
� on † is weakly carried by ‚ if every geodesic of � is weakly carried by ‚. The next result gives a
correspondence between geodesic laminations and certain families of biinfinite edge paths.

Proposition 10.3 [26, Proposition 4.11] The set of geodesic laminations on † that are weakly carried
by ‚ is in one-to-one correspondence with the families � of biinfinite edge paths of z‚ that satisfy

� any two biinfinite edge paths 
 and 
 0 in � do not cross; and

� if 
 is a biinfinite edge path such that for any finite edge subpath there is a biinfinite edge path in �
that contains it , then 
 2 � .

The following proposition describes when a sequence of geodesics carried by ‚ converge. Let G.z†/ be
the set of unoriented geodesics on z†.

Proposition 10.4 [26, Proposition 4.9] Let fn; f 2 G.z†/ be weakly carried by a train track z‚, and
denote by z
n; z
 the corresponding biinfinite edge paths in z‚. Then fn converges to f as n!1 if and only
if for each finite subpath z
 0 of z
 there exists n0 � 0 such that z
 0 is contained in the path z
n for all n� n0.

The final proposition we will need shows that every geodesic lamination is weakly carried by a train track.

Proposition 10.5 [26, Proposition 4.12] Every geodesic lamination � on a hyperbolic surface X is
weakly carried by a train track ‚ that is constructed as above starting from a fixed locally finite geodesic
pants decomposition.

10.2 Construction of the train track‚

We now construct a train track on our surface †. In the next section, we will define our simple closed
curve c0 and show that gi

n.c0/ converges as i !1 to a geodesic lamination that is weakly carried by
this train track.

First, fix a simple closed curve 
 0p on S so that the bounded component of S n 
p is the pair of pants
with cuffs 
 0p , p�1, and p (recall that punctures are allowed to be cuffs). Let 
p be the image of 
 0p under
the embedding S ,! †. We construct our first pair of pants Qp to have cuffs 
p, B�1, and p. Next
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p
ı�1


�1;` 
�1;r 
0;` 
0;r D 
1;` 
1;r

B�1

B0

B1

Qp

Q�1 Q�1;r Q0 Q1

p

Figure 50: The cuffs of the pants decomposition are in blue and black, and the pairs of pants are
labeled in red. Anything dotted occurs on the back of the embedded copy of S in †.

choose two simple closed separating curves 
�1;l and 
�1;r on the embedded copy of S in † so that one
component of † n .
�1;l [ 
�1;r / contains two pairs of pants: Qp and a pair of pants Q�1 with cuffs

�1;l ; 
�1;r , and 
p . Let 
�1;l be the curve which bounds the connected component of†n.
�1;l[
�1;r /

containing B�2. For each i 2 Z n f�1g, choose two simple closed separating curves 
i;l and 
i;r on
the embedded copy of S in † so that one component of † n .
i;l [ 
i;r / contains a pair of pants, Qi ,
with cuffs 
i;l ; 
i;r , and Bi . Similarly, let 
i;l be the curve which bounds the connected component of
† n .
�1;l [ 
�1;r / containing Bi�1.

Next, for all i 2Z, consider the component Ci of †n .
i;r [
iC1;l/ which does not contain 
i;l for any i .
If Ci is a cylinder, that is, if 
i;r is homotopic to 
iC1;l , then modify 
i;r and Qi so that 
i;r D 
iC1;l . If
Ci is a pair of pants, let Qi;r DCi . If Ci is neither a pair of pants nor a cylinder, fix a simple closed curve
ıi so that one component of Ci n ıi is a pair of pants Qi;r with cuffs 
i;r ; 
iC1;l , and ıi . See Figure 50.

We replace each cuff with a geodesic representative of the same homotopy class; by a slight abuse of
notation, we continue to call the resulting geodesic pairs of pants Qi , Qp, and Qi;r . This is a locally
finite geodesic pants decomposition of a subsurface of the embedded copy of S in †, and we extend it to
a locally finite geodesic pants decomposition of †, which we denote Q.

We next construct the train track ‚ as follows. The specific connectors on the front of the surface for all
Qi , Qp , and Qi;r are as in Figure 51. For all other pairs of pants, we choose any connectors that satisfy
the conditions of [26].


p


�1;` 
�1;r 
0;` 
0;r D 
1;` 
1;r

Po

Pu�1o

�1u

�1L

�1R

B�1

B0 B1

�1RR
0L 1L

0R 1R0o

0u

1o

1u

p

Figure 51: A portion of the train track ‚. The connectors are in purple, and the labels are the
codes for certain connectors and cuffs.
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We code a subset of the connectors and cuff segments of ‚ which lie on the front of S in the following
way (see Figure 51):

� In each pair of pants Qi with i ¤�1, denote the connectors from 
i;l and 
i;r to Bi by iL and iR ,
respectively. The two segments of the cuff B0 are denoted 0o; 0u, as in our standard code.

� In each pair of pants Qi;r , denote the single connector on the front of S by iRR.

� In the pair of pants Qp , denote the connector which has both endpoints on 
p by Pu. This connector
divides the cuff 
p into two segments, denote these by Po and .�1/u, as in Figure 51. We will not
code the second connector or the segments on the cuff B�1 in this pair of pants.

� In the pair of pants Q�1, denote the connectors from 
�1;l and 
�1;r to 
p by .�1/L and .�1/R ,
respectively.

If a simple closed curve is carried by this train track and does not intersect any subpaths without a code,
then we call this a ‚-code for the given simple closed curve. We say a ‚-code is reduced if no two
adjacent characters are the same.

10.3 The simple closed curves ci

For the remainder of this section, we fix n 2N and use the notation g D gn and ˛i D ˛
.n/
i .

In [26], is it assumed that the relevant geodesic laminations do not contain geodesics that run out a cusp
at one (or both) ends (see the discussion before [26, Proposition 4.12]). It is impossible for our sequence
˛i to converge to a geodesic lamination of this type. In this section, we describe how to associate simple
closed curves ci to each ˛i so that g.ci�1/D ci . In the following subsection, we prove that they converge
to a geodesic lamination as in [26].

Let Dp be a small disk around the puncture p which is invariant under our homeomorphism g, as in
Section 7.1. As before, we choose Dp small enough so that, for each i , ˛i \Dp consists of two segments,
one starting at p and one ending at p, with endpoints zi;1; zi;2 on @Dp . Up to homotopy, we may assume
without loss of generality that zi;1 D zj ;1 and zi;2 D zj ;2 for all i; j . To form the simple closed curves ci ,
we start with ˛i and remove ˛i\ int.Dp/. We then add an arc of @Dp from zi;1 to zi;2; there two possible
choices of arc, and we choose the one so that one connected component of S n c0 contains p and p0.
Note that this is the opposite choice than the one made in Section 9.1. See Figure 52.

For example, given the train track in Figure 51, a ‚-code of c0 is

(17) Po.�1/R.�1/RR0L0o0u0L.�1/RR.�1/RPu:

Note that since curves do not have a well-defined starting point, any cyclic permutation of this ‚-code
for c0 is also a ‚-code for c0. For the rest of the section, we fix the starting point Po for the ‚-code for
c0 as in (17).
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Dp Dp

p p

zi;1 zi;1

zi;2 zi;2

Figure 52: Forming ci (right) from ˛i (left). The initial and terminal segments of ˛i are in purple
(left), and the corresponding segment of ci is in purple (right).

Our curves ci and the arcs ˛i agree outside of Dp, and since Dp is invariant under g, it follows that
g.ci/D ciC1. For each i , we fix the starting point Po for a ‚-code for ci in such a way that applying g

to the ‚-code for ci yields the ‚-code for ciC1.

10.4 Proof of Theorem 1.2

We will show that the simple closed curves ci defined in the previous section converge to a geodesic
lamination T on †. Our strategy is as follows. We will first fix a lift z
i of each curve ci in z† and
show that the sequence z
i converges to some z
 . We then show that if fi D G.z
i/ and f D G.z
 / are
the corresponding geodesics that are weakly carried by z‚, then limi!1 fi D f . Finally, we take the
geodesic lamination T to be the image of f in †.

For each i , let `‚.ci/ be the length of any reduced ‚-code for ci . Recall that `c.˛i/ is the code length of
˛i , as in Definition 3.6.

Lemma 10.6 For each i , `c.˛i/� `‚.ci/� 5`c.˛i/.

Proof It is clear that the ‚-code for ci is at least as long as the code for ˛i . For the second inequality,
notice that each instance of ko=u with k ¤ �1;P in ˛i is replaced with one of the following strings,
depending on what precedes=follows the character ko=u and on the chosen pants decomposition,

kLko=ukR; kLko=u; kRko=u; .k�1/RRkLko=ukR; .k�1/RRkLko=ukRkRR; or kLko=ukRkRR:

If k D�1, then .�1/o=u is replaced with

.�1/L.�1/o=u; .�1/o=u.�1/R; .�2/RR.�1/L.�1/o=u;

.�1/o=u.�1/R.�1/RR; or .�2/RR.�1/L.�1/o=u.�1/RR:

Finally, if k D P , then each Po=u remains the same and Ps is replaced with Po=u. Therefore, each
character in the code for ˛i is replaced with at most 5 characters in the ‚-code for ci , which gives the
upper bound.

For each i , let `i D `‚.ci/, and consider the ‚-code for ci

(18) ci D ci
1ci

2 : : : c
i
`i
:
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For each i , fix the lift z
i of ci that is the periodic biinfinite edge path

z
i D . : : : ; b
i
�1; b

i
0; b

i
1; b

i
2; : : : /;

with period `i , where bi
j D ci

j for each 1 � j � `i , and bi
j D bi

j�`i
for all j . The codes for ˛i and

˛iC1 agree on the first 1
2
`c.˛i/ characters. Thus it follows from Lemma 10.6 that the ‚-codes of ci and

ciC1 defined by (18) agree on at least the first Li D
�

1
10
`i

˘
characters. Therefore, bi

j D biC1
j for all

1� j �Li .

We define a biinfinite path
z
 D . : : : ; d�1; d0; d1; d2; : : : /;

as follows. Intuitively, our goal is to define z
 so that it agrees with each z
i from d�Li
to dLi

. In the first
step, we define the characters d�L0

to dL0
of z
 so that they agree with z
0. In the second step, we define

the characters d�L1
to dL1

of z
 so that they agree with z
1. The key point here is that z
0 and z
1 agree
on the characters of z
 that we have already defined in the first step. Thus we are not redefining di if
�L0 � i �L0. Rather, these characters remain, and the additional information from the second step is
the definition of di if �L1 � i < �L0 or L0 < i �L1. We then continue this process.

Formally, this is equivalent to the following definition. For each i � 0 and each 1� j �Li , define

d1 D bi
1; : : : ; dj D bi

j ; : : : ; dLi
D bi

Li
;

and define
d0 D bi

1; : : : ; d�jC1 D bi
j ; : : : ; d�LiC1 D bi

Li
:

For each i and all 1� j �Li , since bi
j D biC1

j , there is no conflict with the previous defined edges as i

increases.

By construction, z
 is a biinfinite path in z‚. Let fi DG.z
i/ and f DG.z
 / be the corresponding geodesics
which are weakly carried by z‚, the existence of which is guaranteed by Proposition 10.2.

Lemma 10.7 lim
i!1

fi D f .

Proof This is almost immediate from the construction of z
 . Fix any finite subpath T � z
 . Then T is
supported on Œ�k; l � for some k; l � 1. Let LD maxfk; lg, and fix N such that LN � L. Such an N

exists since `c.˛i/!1 implies that limi!1Li D1. Then by construction T appears in all z
i with
i �N . Convergence follows by Proposition 10.4.

Let T be the image of f in †. Figure 53 shows the train track which weakly carries the lamination, that
is, the image of Q
 in †.

Lemma 10.8 T is a geodesic lamination on †.

Proof This follows immediately from Proposition 10.3 applied to � D fz
 g.

Finally, Theorem 1.2 follows from Lemma 10.8.
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�1 0 1 2 3 4 5 6 7 8 n

Figure 53: The train track on † which weakly carries the lamination T when nD 1. Note that
the train track is, in fact, contained on the front of the embedded copy of S in †.
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