Download this article
 Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
An exotic presentation of $\mathbb{Z} \times \mathbb{Z}$ and the Andrews–Curtis conjecture

Jonathan Ariel Barmak

Algebraic & Geometric Topology 25 (2025) 345–355
Abstract

We prove that the presentations x,y[x,y],1 and x,y[x,[x,y1]]2y[y1,x]y1,[x,[[y1,x],x]] are not Q-equivalent even though their standard complexes have the same simple homotopy type.

Keywords
group presentations, $Q^*$-transformations, generalized Andrews–Curtis conjecture, simple homotopy type
Mathematical Subject Classification
Primary: 20F05, 20F65, 57M05, 57Q10
References
Publication
Received: 24 July 2023
Revised: 5 December 2023
Accepted: 28 January 2024
Published: 5 March 2025
Authors
Jonathan Ariel Barmak
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires
Argentina
Instituto de Investigaciones Matemáticas Luis A Santaló (IMAS)
CONICET-Universidad de Buenos Aires
Buenos Aires
Argentina

Open Access made possible by participating institutions via Subscribe to Open.