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The geometry of subgroup embeddings and asymptotic cones

ANDY JARNEVIC

Given a finitely generated subgroupH of a finitely generated group G and a nonprincipal ultrafilter !, we
consider a natural subspace, Cone!G.H/, of the asymptotic cone ofG corresponding toH . Informally, this
subspace consists of the points of the asymptotic cone ofG represented by elements of the ultrapowerH! .
We show that the connectedness and convexity of Cone!G.H/ detect natural properties of the embedding
of H in G. We begin by defining a generalization of the distortion function and show that this function
determines whether Cone!G.H/ is connected. We then show that whether H is strongly quasiconvex in G
is detected by a natural convexity property of Cone!G.H/ in the asymptotic cone of G.

20F65

1 Introduction

The asymptotic cone of a group G is a metric space which captures certain aspects of the coarse geometry
of G. Roughly speaking, the asymptotic cone is how the group looks from infinitely far away, and
is constructed by taking a certain limit of scaled-down copies of the group viewed as a metric space.
The roots of asymptotic cones come from a paper of Gromov proving that finitely generated groups
of polynomial growth are nilpotent [8]. Van den Dries and Wilkie added nonstandard analysis to the
construction in this paper, formally introducing asymptotic cones [4]. Since then, several other standard
algebraic and geometric properties of groups have been shown to have natural parallels in their asymptotic
cones. For instance, a finitely generated group is virtually abelian if and only if all of its asymptotic cones
are quasi-isometric to Rn for some n 2N (see Gromov [9]), and a finitely generated group is hyperbolic
if and only if all of its asymptotic cones are R-trees [9].

Given a group G and an ultrafilter !, we will denote the asymptotic cone of G with respect to ! by
Cone!.G/. Our goal here is to study the way that geometric properties of embeddings of subgroups in
groups can be detected using asymptotic cones. In order to accomplish this, we define a natural subspace
of Cone!.G/ corresponding to a subgroup H . Essentially, points in the asymptotic cone of a group G
can be represented by certain elements of the ultrapower G! . We denote by Cone!G.H/ the subspace of
Cone!.G/ consisting of points with a representative from H! . For the formal definition of this subspace,
see Definition 4.10.

The first property of Cone!G.H/we study is connectedness. We show that whether Cone!G.H/ is connected
is closely related to a generalization of the distortion function of H in G.
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700 Andy Jarnevic

Definition 1.1 Let H be a subgroup of a group G, with G D hXi and H D hY i where X and Y are
finite sets. The distortion function of H in G with respect to X and Y is defined by the formula

�
G;X
H;Y .n/DmaxfjhjY W h 2H; jhjX � ng;

where jhjY denotes the word length of h with respect to the generating set Y . A subgroupH of a group G
is called undistorted if �G;XH;Y is bounded from above by a linear function.

We consider distortion up to the following equivalence relation:

Definition 1.2 For nondecreasing functions f; g WN!N, we write that f �g if there exists a constant C
such that f .n/� Cg.Cn/ for all n 2N. We write f � g if f � g and g � f .

Under this equivalence, distortion is independent of the choice of the finite generating set. We denote by
�GH the distortion function of H in G for some choice of the finite generating set X .

Definition 1.3 Assume that X is a finite generating set for a groupG, andH is a subgroup ofG such that
X contains a generating set forH . We define the generalized distortion function �G;XH .m; n/ WN�N!R

by the formula
�
G;X
H .m; n/DmaxfjhjYm

W h 2H; jhjX � ng D�
G;X
H;Ym

.n/;

where Ym D fh 2H W jhjX �mg.

We consider generalized distortion functions up to the following equivalence:

Definition 1.4 Given two functions f; g WN �N!R which are nonincreasing in the first variable and
nondecreasing in the second variable, we write f � g if there exists a constant C 2N such that

f .Cm; n/� Cg.m;Cn/CC

for all m; n 2N, and we say that f Š g if f � g and g � f .

Under this equivalence, �G;XH .n/ is independent of the choice of the finite generating setX ofG, so we use
�GH to mean �G;XH whereX is some finite generating set ofG. For example, ifH is undistorted inG, then

�GH .m; n/Š
n

m
:

We show that the generalized distortion function determines whether Cone!G.H/ is connected. Specifically,
we prove the following result, which also shows that for such a subspace, connectedness is equivalent to
path connectedness.

Definition 1.5 We say that a function f WR�1�R�0!R is homogeneous if f .r; s/D g.s=r/ for some
function g WR�0!N.
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Theorem 1.6 (Theorem 4.13) For any finitely generated group G and any subgroup H , the following
conditions are equivalent :

(i) H is finitely generated and �GH .m; n/ is bounded from above by a homogeneous function.

(ii) Cone!G.H/ is path connected for all nonprincipal ultrafilters !.

(iii) Cone!G.H/ is connected for all nonprincipal ultrafilters !.

This theorem enables us to relate the ordinary distortion function to the connectedness of Cone!G.H/,
and to construct pairs H �G such that Cone!G.H/ is disconnected, but the distortion of H in G is small.
Consider the following properties of a finitely generated subgroup H of a finitely generated group G:

(a) H is undistorted in G.

(b) Cone!G.H/ is connected for all nonprincipal ultrafilters !.

(c) �GH is bounded by a polynomial function.

The following theorem collects the relationship between these three properties:

Theorem 1.7 (Theorem 4.19) For any finitely generated subgroup H of a finitely generated group G,
the following implications hold :

.a/ D) .b/ D) .c/

Further , the missing implications do not hold. Specifically:

(i) For any k 2N, there exists a finitely generated group G and a finitely generated subgroup H of G
such that �GH .n/� n

k and Cone!G.H/ is connected for any nonprincipal ultrafilter !.

(ii) For any real number � > 0, there exists a finitely generated group G with a finitely generated
subgroup H such that �GH .n/ � n

1C� but Cone!G.H/ is disconnected for some nonprincipal
ultrafilter !.

Next, we show that the property of a subgroup being strongly quasiconvex, introduced independently
by Tran and Genevois [7; 17], can be detected by a natural property of the embedding of Cone!G.H/
in Cone!.G/.

Definition 1.8 A subgroup H of a group G with finite generating set X is said to be quasiconvex if there
exists a number M such that any geodesic in the Cayley graph �.G;X/ connecting two points in H is
contained in theM neighborhood ofH . H is said to be strongly quasiconvex if for all real numbers �� 1
and C � 0 there exists a constant N.�; C / such that any .�; C /-quasigeodesic in �.G;X/ connecting
two points in H is entirely contained in the N neighborhood of H .

In general, quasiconvexity is not independent of the choice of the finite generating set of G. For instance,
in the group Z�ZD hai � hbi, the subgroup habi is not quasiconvex with respect to the generating set
ha; bi, but is quasiconvex with respect to the generating set hab; ai. In the case where G is hyperbolic,
quasiconvexity is independent of the choice of the finite generating set.
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We have the following relationship between these properties of a subgroup H of a finitely generated
group G:

strongly quasiconvex D) quasiconvex D) finitely generated and undistorted:

None of the reverse implications hold. To see this again consider G D Z�ZD hai � hbi. The subgroup
habi is undistorted but not quasiconvex, and the subgroup hai is quasiconvex but not strongly quasiconvex.
However, in the case when G is hyperbolic, all of these properties are in fact equivalent.

Strong quasiconvexity is a generalization of quasiconvexity that is preserved under quasi-isometry
in general. Tran [17] characterized strongly quasiconvex subgroups based on a certain divergence
function, and showed that they satisfy many properties of quasiconvex subgroups of hyperbolic groups.
Specifically, any strongly quasiconvex subgroup is undistorted, has finite index in its commensurator, and
the intersection of any two strongly quasiconvex subgroups is strongly quasiconvex. Examples of strongly
quasiconvex subgroups include peripheral subgroups of relatively hyperbolic groups and hyperbolically
embedded subgroups of finitely generated groups.

We show that the property of being strongly quasiconvex is equivalent to a natural property of the
embedding of Cone!G.H/ in Cone!.G/.

Definition 1.9 We say that a subspace T of a metric space S is strongly convex if any simple path in S
starting and ending in T is entirely contained in T .

Theorem 1.10 (Theorem 5.12) Let H be a finitely generated subgroup of a finitely generated group G.
H is strongly quasiconvex in G if and only if Cone!G.H/ is strongly convex in Cone!.G/ for all
nonprincipal ultrafilters !.

This characterization gives useful information about the structure of the asymptotic cones of groups with
strongly quasiconvex subgroups. For instance:

Theorem 1.11 (Theorem 5.13) If G is a finitely generated group containing an infinite , infinite-index
strongly quasiconvex subgroup H , then all asymptotic cones of G contain a cut point.

A precursor to Theorems 1.10 and 1.11 can be found in [2], where Behrstock showed that any asymptotic
cone of a mapping class group contains an isometrically embedded copy of an R-tree, and that this R-tree is
strongly convex in the asymptotic cone. This is then used to deduce that any asymptotic cone of a mapping
class group contains a cut point. I would like to thank Jason Behrstock for pointing out this connection.

Combining Theorem 1.11 with a result of Drut,u and Sapir [6] gives the following result:

Corollary 1.12 (Corollary 5.15) If G is a finitely generated group containing an infinite , infinite-index
strongly quasiconvex subgroup , then G does not satisfy a law.

This result can be applied to show, for instance, that solvable groups and groups satisfying the law xnD 1

for some n 2N cannot have infinite, infinite-index strongly quasiconvex subgroups.
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Organization Section 2 covers some necessary background on asymptotic cones and establishes our
notation. Section 3 establishes some basic properties of the generalized distortion function and formulates
a relationship between the generalized distortion function and the distortion function. Section 4 contains
the proof of Theorems 1.6 and 1.7. Finally, Section 5 contains the proof of Theorems 1.10 and 1.11.

2 Background

In this section, we provide some background and fix our notation for asymptotic cones.

Recall that given an ultrafilter ! and any bounded sequence of real numbers, .ri /, lim!.ri / exists and is
unique.

Now let .S; d/ be a metric space, and let ci be an unbounded strictly increasing sequence of positive real
numbers. Denote by di the metric on S defined by di .x; y/D d.x; y/=ci . We call the sequence .ci / the
scaling sequence.

Definition 2.1 Given a metric space .S; d/, a scaling sequence .ci /, and an infinite sequence of points
z D .si / in S , denote by SN

z the set of infinite sequences .ti / in S such that di .si ; ti / is bounded. The
sequence .si / is called the observation point.

Definition 2.2 Given .xi /; .yi / 2 SN
z , let d�..xi /; .yi //D lim! di .xi ; yi /.

Note that this is a bounded sequence so the limit exists. However, in general d� will not be a metric, as
there can be different sequences .xi / and .yi / such that d�..xi /; .yi //D 0.

Definition 2.3 We will denote by Cone!z ..di /; S/ the metric space that results from quotienting the
pseudometric d� by the equivalence relation .xi /� .yi / if d�..xi /; .yi //D0. We will denote the resultant
metric by d!S . When the choice of the basepoint or the scaling sequence is clear, we will simply write
Cone!.S/. We will denote the equivalence class of .xi / by .xi /! , so d!S ..xi /

! ; .yi /
!/D d�..xi /; .yi //.

Definition 2.4 A map f between two metric spaces .S; dS / and .T; dT / is called a .�; C /-quasi-isometric
embedding if for all s; t 2 S ,

dS .s; t/

�
�C � dT .f .s/; f .t//� �dS .s; t/CC:

Here f is called �-quasisurjective if for all t 2 T , there exists an s 2 S such that dT .f .s/; t/� �. A map
f is called a .�; C; �/-quasi-isometry if f is a .�; C /-quasi-isometric embedding, and is �-quasisurjective.
When we don’t care about the quasi-isometry constants, we will simply call f a quasi-isometry and say
that S and T are quasi-isometric.

Definition 2.5 Let S be a metric space. A path p W Œ0; l�! S is called a .�; C /-quasigeodesic if p is a
.�; C /-quasi-isometric embedding.
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Definition 2.6 Given a pointed metric space .S; x/ and .�; C /-quasigeodesic paths pi W Œ0; li �! S such
that the sequence li=ci is bounded and .pi .0// 2 SN

z , let LD lim! li=ci . If L¤ 0, define the !-limit of
the paths pi , written

p D lim!.pi / W Œ0; L�! Cone!.S/;

by p.x/D .pi .x.li=L///! . If LD 0, define p D lim!.pi / W f0g ! Cone!.S/ by p.0/D .pi .0//! .

Definition 2.7 A geodesic in Cone!.S/ is called a limit geodesic if it is an !-limit of geodesic paths.

Note that the limit of geodesics is a geodesic in the asymptotic cone. Thus if S is a geodesic metric space,
then so is Cone!.S/.

A finitely generated group G can be considered as a metric space using the word metric arising from
any finite generating set X . Given an ultrafilter !, we will denote the asymptotic cone of G with respect
to ! by Cone!.G/ where we assume all scaling sequences are ci D i unless otherwise specified, and
the observation point will always be .e/! . Note that G is

�
1; 0; 1

2

�
-quasi-isometric to its Cayley graph

�.G;X/, and so its asymptotic cone is isometric to the asymptotic cone of �.G;X/. This is a geodesic
space, and so Cone!.G/ is a geodesic space.

The asymptotic cone ofG depends on the choice of a finite generating setX , an ultrafilter !, and the choice
of a scaling sequence .di /. Note that changing the generating set of a group gives a quasi-isometric Cayley
graph, and so will give a bi-Lipschitz asymptotic cone. In general, however, the other choices can matter,
and a group can have many different asymptotic cones. For instance, Thomas and Velickovic exhibited a
group such that one of its asymptotic cones is an R-tree, and another is not simply connected [16]. These
two choices turn out to be closely related. Specifically, given any scaling sequence .ci / such that the
sizes of the sets Sr D fi W ci 2 Œr; r C 1/g are bounded, and any ultrafilter !, there exists an ultrafilter !0

such that Cone!..ci /; G/D Cone!
0

..i/; G/ [14]. This justifies our choice to take all scaling sequences
as ci D i unless otherwise specified.

Definition 2.8 We say that a metric space S is transitive if for any two points s; t 2 S there exists an
isometry � W S ! S such that �.s/D t .

Recall that for any group G, Cone!.G/ is a transitive space, and that any asymptotic cone is complete.

3 The generalized distortion function

We begin by defining a variant of distortion that will help us calculate generalized distortion in a variety
of groups.

Definition 3.1 Let H be an infinite subgroup of a group G and let Y and X be finite generating sets of
H and G, respectively. Define the lower distortion function of H in G, written rG;XH;Y .n/, by the formula

r
G;X
H;Y .n/DminfjhjY W jhjX > n; h 2H g:

Algebraic & Geometric Topology, Volume 25 (2025)
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We consider lower distortion up to the same equivalence as distortion, and denote by rGH the function
r
G;X
H;Y for some choices of the finite generating sets X and Y .

Example 3.2 For p 2N with p � 2, let G D BS.1; p/D ha; b W b�1ab D api, and let H D hai. Note
that ap

n

D b�nabn, and so �GH .n/� p
n. In fact, �GH � p

n [9]. Next, note that if k < pn, then we can
write k D

Pn�1
iD0 cip

i , with 0 � ci < p. This in turn means that we can write ak D
Qn�1
iD0 b

�iacibi D�Qn�1
iD0 a

cib�1
�
bn�1. This implies that jakjX � nCn.p/D n.pC 1/. Thus rGH .n/� p

n.

Example 3.3 LetG be the discrete Heisenberg group, ie the group of all upper triangular integer matrices
with ones along the diagonal, and let H be the center of this group, ie the subgroup of all matrices of the
form 0@1 0 c0 1 0

0 0 1

1A with c 2 Z:

Let X be the generating set for the group G given by G D hx; y; zi where

x D

0@1 1 00 1 0

0 0 1

1A ; y D

0@1 0 00 1 1

0 0 1

1A ; and z D

0@1 0 10 1 0

0 0 1

1A ;
and let Y D fzg, a generating set for H . Note that xnynx�ny�n D zn

2

. Now let m be a natural number
such that .n� 1/2 <m< n2. We know that jzn

2

jX � 4n. Thus

jzmjX � 4nC .n
2
� .n� 1/2/D 4nC 2n� 1� 6n:

Therefore if m� n2, then jzmjX � 6n, and so rGH .n/� n
2.

Now we will show that if jhjX � n, then jhjY � n2. Let f W G ! N and k W G ! N be the functions
given by

f

0@1 a b

0 1 c

0 0 1

1AD jaj and k

0@1 a b

0 1 c

0 0 1

1AD jbj;
respectively. We have that

f .gx/� f .g/C 1; f .gy/D f .g/; and f .gz/D f .g/;

and thus if jgjX � n, then f .g/� n. Similarly

k.gx/D k.g/; k.gy/� f .g/C k.g/; and k.gz/� k.g/C 1:

Thus if jgjX � n, then k.g/� n2. If h 2H , then jhjY D k.h/, and so if jhjX � n, then jhjY � n2. Thus
�GH .n/� n

2.

Example 3.4 Let GDha; b; c W Œa; b�D 1; Œa; c�D 1; c�1bcD b2iŠZ�BS.1; 2/, and letH Dha; biŠ
Z�Z. Let X D fa; b; cg. Note that jb2

n

jX � 2nC1, so �GH .n/� 2
n, but janjX D n, and so rGH .n/� n.

Thus �GH ¦r
G
H .
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Note that if f1, f2, g1, and g2 are strictly increasing functions such that f1.n/�f2.n/ and g1.n/�g2.n/,
then f1.n/=g1.m/Š f2.n/=g2.m/. Thus:

Proposition 3.5 For a finitely generated infinite subgroup H of a finitely generated group G,

(1)
�GH .n/

�GH .m/
� �GH .m; n/�

�GH .n/

rGH .m/
:

Proof First choose a finite generating set X for G containing a generating set Y for H . Fix n 2N and
let h be an element of H such that jhjX � n and jhjY D�

G;X
H;Y .n/. By definition, if k 2 Ym then jkjX �m,

and so jkjY ��
G;X
H;Y .m/. Thus jhjYm

� d�
G;X
H;Y .n/=�

G;X
H;Y .m/e, and we obtain the first inequality in (1).

For the next inequality, note that if jhjX � n, then jhjY ��
G;X
H;Y .n/. Thus we can write h as a product of

at most d�G;XH;Y .n/=.r
G;X
H;Y .m/� 1/e elements of length less than or equal to rG;XH;Y .m/� 1 with respect

to Y . Note that if h is an element of H such that jhjY < r
G;X
H;Y .m/, then by the definition of rG;XH;Y ,

jhjX �m, and h 2 Ym. This gives the second inequality in (1).

Definition 3.6 We call an infinite subgroup H of a group G uniformly distorted if �GH �r
G
H .

Combining the previous observations gives the following corollary:

Corollary 3.7 If H is an infinite uniformly distorted finitely generated subgroup of a finitely generated
group G, then �GH .m; n/Š�

G
H .n/=�

G
H .m/Š�

G
H .n/=r

G
H .m/.

Example 3.8 Example 3.2 showed that if G D BS.1; p/D ha; b W b�1ab D api and H D hai, then H
is uniformly distorted in G, so we can apply Corollary 3.7 to get that �GH .m; n/Š p

n�m.

Example 3.9 Example 3.3 showed that if G is the discrete Heisenberg group and H is the center of G,
then H is uniformly distorted in G and we have from Corollary 3.7 that �GH .m; n/Š .n=m/

2.

We conclude with an example demonstrating that for a group G with finite generating set X containing a
generating set for a subgroup H , �G;XH .n� 1; n/ can be very large.

Example 3.10 Let H be a finitely generated subgroup of a finitely generated group G such that the
membership problem is undecidable, and let X be a finite generating set for G containing a generating
set of H . The existence of such subgroups was demonstrated independently by Mihailova and Rips [11;
15]. Gromov [9] showed that the distortion function of H in G is bounded by a computable function if
and only if the membership problem is solvable. Note that

�
G;X
H;Y .n/D �

G;X
H .1; n/� �

G;X
H .1; 2/�

G;X
H .2; 3/ � � ��

G;X
H .n� 1; n/:

Thus, if �G;XH .n� 1; n/ is bounded by a computable function, then so is �G;XH;Y .n/, a contradiction. Thus
�
G;X
H .n� 1; n/ is not bounded by any computable function.
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4 Connectedness in asymptotic cones

We begin by defining an analog of the generalized distortion function for the case of a metric space S .

Definition 4.1 Given a metric space S , a real number r > 0, and two points s; t 2S , an r-path connecting
s and t is a sequence of points s D s0; s1; : : : ; sk D t with dS .si ; siC1/� r for all 0� i < k. We call k
the length of the r-path. We say a metric space S is r-connected if for any two points s; t 2 S there exists
an r-path connecting s and t . If .S; s/ is a pointed r-connected metric space, and t is in S , let jt jr be the
length of a shortest r-path connecting s and t .

Definition 4.2 Let .S; s/ be a proper r-connected pointed metric space. Define �S .m; n/ WR�r�R�0!N

to be maxfjt jm W dS .s; t/� ng.

Lemma 4.3 The value �S is well defined , ie for all real numbers m� r; n there exists a constant K 2R

such that for any point t 2 S with d.s; t/� n, jt jm �K.

Proof Fix n 2R�0, and let B be the closed ball centered at s of radius n. As B is compact, it can be
covered by some finite number p of open balls of radius m. Let s1; : : : ; sp be the centers of these balls.
As S is r-connected, for each si there exists a sequence of points

s D s0;i ; s1;i ; : : : ; sKi ;i D si

with dS .sj;i ; sjC1;i /�m for all 0� i < Ki . Let K DmaxfKi W 1� i � pg. Any point in B is within m
of some si , and so �S .m; n/�KC 1.

If H is a finitely generated subgroup of a finitely generated group G, and X is a finite generating set
of G containing a generating set for H , then H is 1-connected and proper with respect to the word metric
induced by X . It is clear in this case that �GH is the restriction of �H to N �N, where we consider H
with the word metric induced from G.

Definition 4.4 Given two functions f; g WR�r �R�0!R which are nonincreasing in the first variable,
and nondecreasing in the second variable, we write f �� g if there exists a constant C 2 R such that
f .Cm; n/� Cg.m;Cn/ for all m; n 2R�0 with m� r , and we say that f Š� g if f �� g and g �� f .

Essentially, � measures how far away S is from being a geodesic metric space. For instance, if S is
geodesic, then �S .m; n/D dn=me.

Lemma 4.5 If .S; s/ and .T; t/ are proper r-connected pointed metric spaces , and f is a .�; C; �/-quasi-
isometry between S and T such that f .s/D t , then , �S Š� �T .

Proof First, fix n2R�0 andm2R�r , and let y2S with dS .s; y/�n. This means dT .t; f .y//��nCC .
Let K D �T .m; �nCC/. There exist KC1 points y0; y1; : : : ; yK such that t D y0; y1; : : : ; yK D f .y/
with dT .yi ; yiC1/�m. By quasisurjectivity, for each i there exists a y0i 2 S such that dT .f .y0i /; yi /� �.
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Figure 1: Lemma 4.5.

Thus dT .f .y0i /; f .y
0
iC1// � mC 2�, and so dS .y0i ; y

0
iC1/ � �.mC 2�/CC � �

0m for some fixed �0

as m� r . Note that we can choose y00 to be s, and y0K to be y. Thus �S .�0m; n/� �T .m; �nCC/. If
�nCC �m, we have that �T .m; �nCC/D 1, so we can assume that �nCC is greater than r as well,
and hence �S .�0m; n/� �T .m; �00n/ for some fixed �00. By symmetry, �T �� �S , and so �T Š� �S .

Definition 4.6 We call a metric space S asymptotically transitive if Cone!.S/ is transitive for all
ultrafilters !.

Theorem 4.7 Let r be a positive number and let .S; s/ be an asymptotically transitive proper r-connected
pointed metric space. The following are equivalent :

(i) There exists a function f WR�0!R�0 such that for all m� r and n� 0, �S .m; n/� f .n=m/.

(ii) There exists a constant K such that �S .i; 4i/�K for all real numbers i � r .

(iii) Cone!.S/ is path connected for all nonprincipal ultrafilters !.

(iv) Cone!.S/ is connected for all nonprincipal ultrafilters !.
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Note that the implication .i/D) .ii/ is clear, simply by letting K D f .4/. The implication .iii/D) .iv/
is also immediate.

To show that .ii/ implies .iii/ we will need the following lemma:

Lemma 4.8 Let r 2 R�0. If .S; s/ is an asymptotically transitive proper r-connected pointed metric
space and there exists a constant K such that �S .i; 4i/�K for all real numbers i � r , then for any points
p D .yi /

! ; q D .zi /
! 2 Cone!.S/, there exist KC 1 points p D p0; p1; p2; : : : ; pK D q in Cone!.S/

such that d!S .pi ; piC1/�
1
2
d!S .p; q/.

This lemma is reminiscent of a lemma in [13] used to prove that any group satisfying a quadratic
isoperimetric inequality has a simply connected asymptotic cone. There Papasoglu used the isoperimetric
inequality to build sequences of loops to fill a loop in the asymptotic cone. This is very similar to the
approach we will use to prove that .ii/ implies .iii/. Similar ideas can also be found in [3; 10; 14].

Proof If .yi /! D .zi /! , the result is trivial, so let .yi /! and .zi /! be points in Cone!.S/ such that
d!S ..yi /

! ; .zi /
!/D C > 0. Note that by the transitivity of Cone!.S/, we can assume that .yi /! D .s/! .

This means in particular that dS .s; zi /� 2C i !-almost surely. Note that 1
2
Ci � r !-almost surely, and

hence �S
�
1
2
Ci; 2C i

�
�K !-almost surely. It follows that there exist points s D yi;0; yi;1; : : : ; yi;K D zi

with dS .yi;j ; yi;jC1/� 1
2
Ci for all 0� j �K�1 !-almost surely. Now define pj D .yi;j /! . Note that

d!S .pj ; pjC1/D lim! dS .yi;j ; yi;jC1/=i � 1
2
C , and so we have our desired p0; : : : ; pK .

We will also need the following lemma in order to prove that .iv/ implies .i/:

Lemma 4.9 If S is a connected metric space , then for any real number r > 0, S is r-connected.

Proof For a fixed r > 0, and fixed p 2 S , consider the set C of points q such that there exists a finite
sequence of points p D p0; p1; : : : ; pK D q with d.pi ; piC1/ � r . If x 2 C , then clearly Br.x/ � C ,
and so C is open. Similarly, if x … C , then Br.x/� S nC , so C is closed. Hence C is open, closed, and
nonempty, so C D S , as desired.

Proof of Theorem 4.7 We begin by proving .ii/ implies .iii/.

Let p; q 2 Cone!.S/, and let C D d!S .p; q/. We will define a uniformly continuous function f from
numbers of the form a=Kn with a; n 2N and a �Kn to the asymptotic cone such that f .0/D p and
f .1/D q. Note that this is sufficient, since asymptotic cones are complete, and these numbers are dense
in the interval Œ0; 1�.

We will define the function inductively as follows. First define f .0/D p and f .1/D q. Then fix n 2N,
and assume we’ve defined f on all numbers of the form a=Kn in such a way that for all s 2 N [ f0g

with s < Kn,

d!S

�
f

�
s

Kn

�
; f

�
sC 1

Kn

��
�
C

2n
:
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Now let t D .KlCb/=KnC1 where 1� b <K and l 2N[f0g with l �Kn�1. According to Lemma 4.8,
there exist points p0; p1; : : : ; pK such that

f

�
l

Kn

�
D p0; p1; : : : ; pK D f

�
l C 1

Kn

�
;

and
d!S .pi ; piC1/�

1
2
d!S

�
f

�
l

Kn

�
; f

�
l C 1

Kn

��
�

C

2nC1
:

Let f .t/D pb . It is straightforward to verify that f is uniformly continuous.

We will now show that .iv/ implies .i/ by contradiction. Assume that Cone!.S/ is connected, and
that �S .m; n/ is not bounded by any homogeneous function. Hence there exists a c 2 R>0 such that
�S .n; cn/ is not bounded. Let ni be a sequence of natural numbers such that �S .ni ; cni / � i . Let !
be an ultrafilter containing fni W i 2Ng. Consider a sequence of points ti 2 S such that dS .s; ti / � ci ,
and jti ji D �S .i; ci/. According to Lemma 4.9, we can pick points .s/! D p0; p1; : : : ; pk D .ti /! in
Cone!.S/ such that d!S .pi ; piC1/ �

1
2

. Let pj D .ti;j /! . We have that dS .ti;j ; ti;jC1/ � i !-almost
surely, so �S .i; ci/ D jti ji � k !-almost surely. On the other hand if j > k, then �S .nj ; cnj / > k.
However,

fnj W j > kg D fnj W j 2Ng\ fn W n > nkg 2 !;

a contradiction.

We now want to study how distortion of groups relates to connectedness in asymptotic cones. We begin
by defining a natural subspace of the asymptotic cone of G corresponding to H :

Definition 4.10 Let T be a subspace of a metric space S . Denote by Cone!S .T / the set of all points in
Cone!.S/ with a representative .ti /! with each component in T .

Lemma 4.11 For all subspaces T � S , Cone!S .T / is closed in Cone!.S/.

Proof Note that Cone!S .T /D Cone!.T /, where we consider T under the induced metric from S . Since
asymptotic cones are complete, this is a complete metric space. A complete subspace of a complete
metric space is closed, and so Cone!S .T / is closed in Cone!.S/.

Note that we can think about a subgroup H of a group G as a subspace of the metric space we get by
considering the word metric on G.

Lemma 4.12 If H is a subgroup of a finitely generated group G such that Cone!G.H/ is connected for
all ultrafilters !, then H is finitely generated.

Proof Let H be a subgroup of a finitely generated group G, and let X be a finite generating set for G.
We call an element h of H reducible if there exists a constant k 2N and k elements of H , h1; h2; : : : ; hk ,
with jhi jX < jhjX for all 0� i � k such that hD h1h2 � � � hk . We call an element h 2H irreducible if it
is not reducible. We can assume that there exists no i such that all elements h 2H with jhjX � i are
reducible, as this would imply thatH is finitely generated. Thus we can find a sequence .hi / of irreducible
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elements of H such that jhi jX > jhi�1jX for all i . Fix an ultrafilter ! and consider the asymptotic cone
Cone!G.H/ with respect to ! and the scaling sequence .jhi jX /. Assume this asymptotic cone is connected.
As .hi /! 2 Cone!G.H/, there exist points .e/! D p0; p1; : : : ; pk D .hi /! with d.pi ; piC1/� 1

4
for all

0 � i < k. Let pj D .hi;j /! . We have that jh�1i;j hi;jC1jX �
1
2
jhi jX !-almost surely. Finally, note that

hi D hi;k D h1;i .h
�1
i;1hi;2/ � � � .h

�1
i;k�1

hi;k/. This, however, implies that hi is !-almost surely reducible, a
contradiction.

We can apply Lemma 4.8 to a subgroup H of a finitely generated group G, where H is given the word
metric induced from G. In this case, the relationship between �H and �GH combined with Theorem 4.7
gives the following theorem:

Theorem 4.13 The following are equivalent for a subgroup H of a finitely generated group G:

(i) H is finitely generated and there exists a constant K such that �GH .i; 4i/�K for all i .

(ii) H is finitely generated and there exists a function f such that �GH .m; n/� f .n=m/.

(iii) Cone!G.H/ is path connected for all ultrafilters !.

(iv) Cone!G.H/ is connected for all ultrafilters !.

Example 4.14 We have previously seen that if G D BS.1; p/D ha; b W b�1abD api and H D hai, then
�GH .m; n/Š p

n�m. Thus �GH .i; 2i/ is unbounded, and we can conclude from Theorem 4.13 that there
exists an ultrafilter ! such that Cone!G.H/ is disconnected. In fact, Cone!G.H/ is disconnected for all
ultrafilters !. This follows from the proof of Theorem 4.7 and observing that for all c; n 2N the set of
k 2N such that �G;fa;bg

H;fag
.k; ck/� n is finite.

Example 4.15 If G is the discrete Heisenberg group and H is the center of G, then we have seen in a
previous example that �GH .m; n/Š n

2=m2, and so �GH .i; 4i/ is bounded and Cone!G.H/ is connected
for all ultrafilters !.

We now want to relate the connectedness of Cone!G.H/ to the distortion of H in G. In order to do this,
we need a couple preliminary results. The first of these is due to Olshansky:

Theorem 4.16 [12] For any group H , and any function ` WH !N satisfying

(i) for all h 2H , `.h/D 0 if and only if hD 1,

(ii) `.h/D `.h�1/ for all h 2H ,

(iii) `.gh/� `.g/C `.h/ for all g; h 2H ,

(iv) there exists a constant a such that jfh 2H W `.h/� ngj � an,

there exists a group G D hXi with jX j<1, an embedding � of H in G, and a constant C such that for
all h 2H ,

j�.h/jX

C
� `.h/� C j�.h/jX :
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Definition 4.17 A function f WR�1!R is called superlinear if for all k 2R the set fx W f .x/� kxg is
bounded, and f is called sublinear if for all k 2R the set fx W f .x/� kxg is bounded.

Lemma 4.18 Let f WR�1!R be an increasing sublinear function with f .r/� r for all real numbers
r � 1. There exists a function ` WR�1!R�1 such that

(i) for all m; n 2N, `.m/C `.n/� `.mCn/,

(ii) for all n 2N, `.n/� f .n/,

(iii) for all k 2N, there exists a pk 2R such that ` is constant on the interval Œpk; kpk�.

Proof We will define pk and ` by induction on k. First let p1 D 1 and let `.1/D 1. Assume we have
defined pk and `.n/ for n � kpk in a way that satisfies (i)–(iii). Let pkC1 be the least real number
such that for all r 2 R, if r � .k C 1/pkC1, then f .r/ � r=.k C 1/Š. For s 2 R, if kpk < s � pkC1,
define `.s/ D s=kŠ. For s 2 R, if pkC1 � s � .k C 1/pkC1, define `.s/ D pkC1=kŠ. By definition,
`..kC 1/pkC1/D pkC1=kŠD .kC 1/pkC1=.kC 1/Š.

We will now show that ` satisfies (i)–(iii). First, fix r 2R�1, and let k2N such that kpk� r� .kC1/pkC1.
If kpk < r < pkC1, then `.r/ D r=kŠ, and if s < r , then `.s/ � s=kŠ. Thus, if p C q D r , then
`.p/C `.q/� p=kŠC q=kŠD r=kŠD `.r/. If pkC1 < r � .kC 1/pkC1, then `.r/D `.pkC1/, and (i)
follows immediately as ` is increasing. For s2R, if kpk� s�pkC1, then `.s/D s=kŠ>f .s/ by definition.
If pkC1� s� .kC1/pkC1, then `.s/D`..kC1/pkC1/D .kC1/pkC1=.kC1/Š�f ..kC1/pkC1/�f .s/,
so ` satisfies (ii). It is clear that this definition of ` satisfies (iii).

We are now ready to relate the connectedness of Cone!G.H/ to the distortion of H in G:

Theorem 4.19 If H is a finitely generated subgroup of a finitely generated group G, then the following
implications hold :

(i) If �GH .n/ is linear , then Cone!G.H/ is connected for all ultrafilters !.

(ii) If Cone!G.H/ is connected for all ultrafilters !, then �GH .n/� f for some polynomial f .

(iii) For every increasing superlinear function � W N ! N there exists a group G with a subgroup H
such that Cone!G.H/ is disconnected for some ultrafilter !, but �GH .n/� �.

(iv) For all k 2N, there exists a group G with a subgroup H such that Cone!G.H/ is connected for all
ultrafilters !, and �GH � n

k .

Proof (i) If H is a subgroup of G, then we can define a continuous function � from Cone!.H/ to
Cone!G.H/ by �..hi /!/D .hi /! . For all h 2H , jhjX � C jhjY for some fixed constant C , so � is well
defined. Assume .hi /! 2Cone!G.H/. This means that there exists B such that for all i 2N, jhi jX=i �B .
Since distortion is linear, there exists D such that jhi jY =i �D.jhi jX=i/�DB . Thus � is surjective, and
Cone!G.H/ is connected, as Cone!G.H/ is connected.
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(ii) Assume that Cone!G.H/ is connected in Cone!.G/, and hence that �GH .i; 2i/ is bounded by some
constant K for all i . By induction, �GH .2

n/D �GH .1; 2
n/�Kn for all n 2N.

Now let n 2N, and let m 2R such that 2m�1 � n < 2m. We have that

�GH .n/��
G
H .2

m/�Km D .2m/log2K � .2n/log2K :

Thus �GH .n/� n
log2K .

(iii) Let � be a superlinear increasing function N ! N. Then � can be extended to an invertible
increasing superlinear function from R�1 to R. We can now apply Lemma 4.18 to ��1 to get a function
` which is always larger than ��1. We can then restrict ` to the natural numbers and take ceilings to
get a function from N to N. We can extend this to a function from Z to Z by defining `.0/ D 0 and
`.�z/D `.z/ for z < 0. As `� ��1, we have that �.`.n//� n. If � is subexponential, then this ` now
satisfies all of the conditions of Theorem 4.16, and hence there exists a group G D hXi, a constant C ,
and an embedding  W Z!G such that

`.n/

C
� j .n/jX � C`.n/:

Now note that if j .n/jX � m, then `.n/ � C j .n/jX � Cm, and so n < �.`.n// � �.Cm/. Hence,
distortion is bounded by �. On the other hand, `.pk/D `.pkC1/D� � �D `.kpk/ implies that C j .q/jX >
`.pk/ for all pk � q � kpk while j .kpk/jX � C`.pk/, and so �GH .`.pk/=C; C`.pk// � k. By
Theorem 4.13, Cone!G.H/ is disconnected for some ultrafilter !.

Note that if � is superexponential, then Theorem 4.19(ii) shows that Cone!G.H/ is not connected for all
ultrafilters !.

(iv) We will use the same method as in (iii).

Fix k 2N, and for z 2 Z let `.z/D djzj1=ke. Let G be a group with finite generating set X and  an
embedding of Z into G such that

`.z/

C
� j .z/jX � C`.z/:

Note that if j .z/jX � m, then jzj1=k � djzj1=ke D `.z/ � C j .z/jX � Cm, which implies that
jzj � C kmk . Thus �GH .m/ � m

k . Now note that `.mk/ D m, so j .mk/jX � Cm, which implies
�GH .Cm/ � m

k . Thus �GH .m/ � m
k . The above calculations show that if j .z/jX � 4i , then jzj �

4kCK ik . Further, if jzj � .i=C /K then j .z/jX � C`.z/ � i . Thus �GH .i; 4i/ � 4
kC 2k , and so by

Theorem 4.13 we have that Cone!G.H/ is connected.

5 Convexity in asymptotic cones

Definition 5.1 A subspace T of a metric space S is called Morse if for all constants � and C there
exists a constant M such that any .�; C /-quasigeodesic connecting points in T is contained in the M
neighborhood of T .
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Cone!S .T /

pi .si /

pi

pi .s
l
i / pi .s

r
i /

�di

t

�di

�di

pli pri

t ri

pli .b/

pmi .a/

Figure 2: Theorem 5.3.

Definition 5.2 We say a subset T of a metric space S is strongly convex if every simple path starting
and ending in T is entirely contained in T .

Theorem 5.3 Let T be a closed subspace of a geodesic metric space S . Assume that Cone!S .T / is
strongly convex in Cone!.S/ for all ultrafilters !, and for any two points t1 and t2 in Cone!S .T / there
exists an isometry � of Cone!.S/ fixing Cone!S .T / such that �.t1/D t2. Then T is Morse.

Proof Assume T is not Morse. This means that there exist constants �� 1 and C � 0 such that for all
i 2N there exists a .�; C /-quasigeodesic pi W Œ0; ki �! S parametrized by length, and si 2 Œ0; ki � with
pi .0/ and pi .ki / in T and dS .pi .si /; T /� i . For all i let

(2) di D supfdS .pi .s/; T / W s 2 Œ0; ki �g:

We can choose our paths pi to make the sequence .di / increasing with all di > C . For each i , let si
be a point in Œ0; ki � such that dS .pi .si /; T /D di (such a point exists as paths are compact). Let sli D
maxfsi � 3�di ; 0g, and similarly let sri Dminfsi C 3�di ; kig. By (2), dS .pi .sli /; T / and dS .pi .sri /; T /
are less than or equal to di . Let dS .pi .sli /; T / D k

l
i , and dS .pi .sri /; T / D k

r
i . Let t li be a point in T

such that dS .pi .sli /; t
l
i /D k

l
i , and let pli W Œ0; k

l
i �! �.G/ be a geodesic from t li to pi .sli /. Note that by

assumption we can take t li D t , where t is some fixed point in T , by taking an isometry fixing T sending t li
to t . Similarly, let pri W Œ0; k

r
i � be a geodesic from pi .s

r
i / to a point tri 2 T such that dS .tri ; pi .s

r
i //D k

r
i .

Denote by pmi W Œs
l
i ; s

r
i �! S the segment of pi from pi .s

l
i / to pi .sri /.
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We will need the following lemma:

Lemma 5.4 (i) For all i 2N, if sli ¤ 0, a 2 Œsi ; sri �, and b 2 Œ0; kli �, then dS .pmi .a/; p
l
i .b//� di .

(ii) For all i 2N, if sri ¤ ki , a 2 Œs
l
i ; si �, and b 2 Œ0; kri �, then dS .pmi .a/; p

r
i .b//� di .

Proof First, if sli ¤ 0, then sli D si � 3�di . Now note that

dS .p
m
i .a/; p

m
i .s

l
i //�

3�di

�
�C D 3di �C > 3di � di D 2di ;

as pi is a .�; C /-geodesic, and we assumed that di > C . Thus, as dS .pli .b/; p
m
i .x

l
i // � di , we have

dS .p
m
i .a/; p

l
i .b//� di . The second claim follows similarly.

We return to the proof of Theorem 5.3.

Fix an ultrafilter !, and consider the asymptotic cone of S with respect to ! and the scaling sequence di .
By construction, dS .t; pli .k

l
i // � di , and so .pli .k

l
i //

! 2 Cone!..di /; G/. Since jsli � s
r
i j � 6�di ,

we have that dS .pi .sli /; pi .s
r
i // � 6�

2di C C , and so since .pi .sli //
! 2 Cone!..di /; S/, we have

that .pi .sri //
! 2 Cone!..di /; S/. Since dS .pi .sri /; p

r
i .k

r
i // D d.pri .0/; p

r
i .k

r
i // � di , we have that

.pri .k
r
i //

! 2 Cone!..di /; S/. Thus we can define

kl D lim!
kli
di
; sl D lim!

sli
di
; sr D lim!

sri
di
; and kr D lim!

kri
di
;

and we can define pl W Œ0; kl �!Cone!..di /; S/ as lim!.pli /, p
m W Œsl ; sr �!Cone!..di /; S/ as lim!.pmi /,

and pr W Œ0; kr � as lim!.pri /. We have that pl and pr are geodesics, and pm is a .�; 0/-quasigeodesic,
and hence all are simple.

Now we have three simple paths, pl , pm and pr , such that pl.0/ and pr.kr/ are in Cone!S ..di /; T /, and
pl and pr both intersect pm. Unfortunately, the concatenation of these three paths may not be simple, as
pl and pr could intersect pm more than once. To deal with this case, we need the following lemma:

Lemma 5.5 Let s D lim! si=di .

(i) If a 2 Œ0; kl � and b 2 Œsl ; sr � with pl.a/D pm.b/, then b � s.

(ii) if a 2 Œ0; kr � and b 2 Œsl ; sr � with pr.a/D pm.b/, then b � s.

Proof Note that if fi W kli D 0g 2 !, then pl is a trivial path, and the result is clear. Otherwise
fi W kli ¤ 0g 2 !. In this case we can use Lemma 5.4 to say that if .bi /! is on pl and .ai /! is on pm

after s, then d!S ..bi /
! ; .ai /

!/� lim! di=di � 1. The proof of (ii) follows similarly.

Thus we can form a simple path which starts and ends in Cone!S ..di /; T / as follows. Let

p Dmaxft 2 Œsl ; sr � W 9a 2 Œ0; kl � such that pl.a/D pm.t/g;
and let

q Dminft 2 Œsl ; sr � W 9a 2 Œ0; kr � such that pr.a/D pm.t/g:
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We obtain a simple path by following pl up to pm.p/, then following pm up to pm.q/, and finally
following pr back to pr.kr/. This path contains pm.s/ by Lemma 5.5. Finally, as pm.s/D .pmi .si //

! ,

d!S .p
m.s/;Cone!S ..di /T //D lim!

dS .p
m
i .si /;Cone!S ..di /; T //

di
D lim!

di

di
D 1:

Thus we have a simple path starting and ending in Cone!S .T / that is not entirely contained in Cone!S .T /.

In order to prove a partial converse of this statement we will need the following results from Drut,u,
Mozes, and Sapir [5]. Note that an error was found in this paper [1], but none of the following lemmas
were affected.

Lemma 5.6 [5, Lemma 2.3] Let S be a geodesic metric space , ! an ultrafilter , and B a closed subset
of Cone!.S/. If x and y are in the same connected component of Cone!.S/ nB , then there exists a
sequence of paths .pi /niD1 such that each path is a limit geodesic in X , and the concatenation of the paths
pi is a simple path from x to y.

Definition 5.7 A path is called C-bi-Lipschitz if it is a .C; 0/-quasigeodesic.

Lemma 5.8 [5, Lemma 2.5] In the same setting as Lemma 5.6, let p be a simple path in Cone!.S/
which is a concatenation of limit geodesics. For all ı there exists a constant C and a C-bi-Lipschitz
path p0 such that the Hausdorff distance between p and p0 is less than ı, and p0 is also a concatenation of
limit geodesics connecting the same points.

Lemma 5.9 [5, Lemma 2.6] Let p be a C-bi-Lipschitz path in Cone!.S/ which is a concatenation
of limit geodesics. There exists a constant C 0 and a sequence of paths .pn/ in S such that each pn is
C 0-bi-Lipschitz, and lim!.pn/D p.

Theorem 5.10 If T is a Morse subspace of a metric space S , then Cone!S .T / is strongly convex in
Cone!.S/.

Proof Let p be a simple path in Cone!.S/ starting and ending in Cone!S .T / but not entirely contained
in Cone!S .T /. As Cone!S .T / is closed, there is a subpath p0 of p which starts and ends in Cone!S .T /, but
no interior point of p0 is in Cone!S .T /. Let x be the initial point of p and let y be the terminal point of p.
Let x0 and y0 be points on p0 such that

maxfd!S .x; x
0/; d!S .y; y

0/g< 1
2
d!S .x; y/;

and let pl and pr be limit geodesics from x to x0 and from y0 to y, respectively. Let pm be a concatenation
of limit geodesics connecting x0 to y0 avoiding Cone!S .T /. Such a path exists by Lemma 5.6 as Cone!S .T /
is closed. The concatenation of pl , pm, and pr may not be simple, so we let a be the first point of pl

Algebraic & Geometric Topology, Volume 25 (2025)
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Cone!S .T /

x

pl

x0
q0

pm z

z0

�
d

2

y0

pr

y

p0

Figure 3: Lemma 5.9.

on pm, and b be the last point of pr on pm. By the choice of x0 and y0, pl does not intersect pr , so we
can obtain a simple path by following pl from x to a, pm from a to b, and pr from b to y. Call this
concatenation q.

Let z be a point on q such that d!S .z;Cone!S .T // D d > 0. Using Lemma 5.8, we can find a path q0

such that q0 is a C-bi-Lipschitz path which is a concatenation of limit geodesics, and the Hausdorff
distance between q and q0 is less than 1

2
d . Thus there is a point z0 on q0 such that d!S .z; z

0/ � 1
2
d , so

d!S .z
0;Cone!S .T //�

1
2
d .

Finally we can apply Lemma 5.9 to this new path q0 to get that q0 D lim!.qn/ with each qn being a C 0-
bi-Lipschitz path starting and ending in T . Thus, as T is Morse, each path is in some fixed neighborhood
of T . This implies that q D lim!.qn/ is entirely contained in Cone!S .T /, a contradiction.

Thus, if T is Morse in S , then Cone!S .T / is strongly convex in Cone!.S/.

Definition 5.11 A subgroup H of a group G with finite generating set X is called strongly quasiconvex
if it is Morse as a subspace of the Cayley graph G with respect to X .

Note that if H is a subgroup of G, then for any two points .hi /! and .ki /! in Cone!G.H/ there exists an
isometry of Cone!.G/ fixing Cone!G.H/ which sends .hi /! to .ki /! . Thus we can combine the previous
two results to give:

Algebraic & Geometric Topology, Volume 25 (2025)
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p.t3/

Figure 4: Theorem 5.13.

Theorem 5.12 A subgroup H of a group G is strongly quasiconvex if and only if Cone!G.H/ is strongly
convex in Cone!.G/ for all ultrafilters !.

We conclude by proving a large class of groups cannot contain infinite, infinite-index strongly quasiconvex
subgroups.

Theorem 5.13 If a path connected metric space S contains a proper closed strongly convex subspace T
consisting of more than one point , then S contains a cut point.

Proof Let s 2 S n T , and let t 2 T . Let p W Œ0; l�! S be a simple path connecting s and t . Let t1 D
minfa 2 Œ0; l� W p.a/ 2 T g. This is well defined as T is closed. We will show that p.t1/ is a cut point. Let
t2¤p.t1/ be a point in T . If p.t1/ is not a cut point, then there exists a path p0 W Œ0; k� connecting s and t2
such that p.t1/ is not on p0. Let t3 Dminfa 2 Œ0; k� W p0.a/ 2 T g. Let s1 Dmaxfa 2 Œ0; t1� W p.s1/ 2 p0g.
Create a simple path by following p from t1 to s1 and then following p0 from s1 to t2. This is a simple
path connecting two points of T that is not entirely contained in T , a contradiction.

Theorem 5.14 (Sapir and Drut,u [6]) If G is a nonvirtually cyclic group satisfying a law , then no
asymptotic cone of G contains a cut point.

If H is an infinite, infinite-index subgroup of a finitely generated group G, then it is easy to see that
Cone!G.H/ is a proper subspace of Cone!.G/ that consists of more than one point. Thus we can combine
the previous two results to get the following corollary:

Corollary 5.15 If G is a finitely generated group containing a nondegenerate strongly quasiconvex
subgroup H , then G does not satisfy a law.
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