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IDRISSA BA

ADAM CLAY

We initiate the study of circular-orderability of 3-manifold groups, motivated by the L-space conjecture.
We show that a compact, connected, P2-irreducible 3-manifold has a circularly orderable fundamental
group if and only if there exists a finite cyclic cover with left-orderable fundamental group, which
naturally leads to a “circular-orderability version” of the L-space conjecture. We also show that the
fundamental groups of almost all graph manifolds are circularly orderable, and contrast the behaviour of
circular-orderability and left-orderability with respect to the operations of Dehn surgery and taking cyclic
branched covers.

03C15, 06F15, 20F60, 57M50, 57M60

1 Introduction

For an irreducible, rational homology 3-sphere M, the L-space conjecture posits a relationship between
the properties of M admitting a coorientable taut foliation, M being not an L-space, and M having a
left-orderable fundamental group (see Conjecture 3.3). While this conjecture is known to hold for some
classes of manifolds, for example graph manifolds, new techniques are needed to tackle more general
classes of manifolds, or, indeed, to tackle the conjecture in full generality.

With this conjecture in mind, several of the most successful techniques developed in recent years to tackle
left-orderability of �1.M/ have shared a common theme: they all begin with an action on the circle, and
use cohomological techniques to pass to an action on the real line. For instance, in studying manifolds
arising from Dehn surgery on a knot K in S3, a common technique is to study one-parameter families of
representations �t W �1.S3 nK/! PSL.2;R/ that are built so as to provide representations that factor
through the quotient groups �1.S3p=q.K// for certain values of p=q 2Q[f1g. Controlling the Euler
classes of these representations allows one to construct lifts z�t W �1.S3p=q.K//!ePSL.2;R/, and these
lifts show that �1.S3p=q.K// is left-orderable since they have left-orderable image; see Boyer, Gordon
and Watson [12], Hakamata and Teragaito [29; 30], Motegi and Teragaito [42], Culler and Dunfield [23]
and Gao [26]. This technique has also been used to study left-orderability of cyclic branched covers of
knots by Hu [34], Tran [51], Turner [52] and Gordon and Lidman [28].

In a similar vein, if one starts with an irreducible rational homology 3-sphere M admitting a co-
orientable taut foliation F, Thurston’s universal circle construction yields a representation �univ W�1.M/!

HomeoC.S1/. With appropriate restrictions on F, one can control the Euler class of �univ and guarantee

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.791
http://www.ams.org/mathscinet/search/mscdoc.html?code=03C15, 06F15, 20F60, 57M50, 57M60
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


792 Idrissa Ba and Adam Clay

the existence of a lift z�univ W�1.M/!BHomeoC.S1/, again yielding left-orderability of �1.M/ for similar
reasons; see Calegari and Dunfield [16] and Boyer and Hu [13].

Motivated by the utility of actions on the circle by homeomorphisms in addressing the L-space conjecture,
this work is a first step toward directly addressing the question of when the fundamental group of a
3-manifold acts on the circle by homeomorphisms — though we take an algebraic approach to the problem.
Just as the existence of left-ordering of �1.M/ captures whether or not there is an embedding � W�1.M/!

HomeoC.R/, we approach the problem by studying the existence of an orientation cocycle c W �1.M/3!

f˙1; 0g that is compatible with the group operation, called a circular ordering of �1.M/. The existence of
such a map determines whether or not there exists an embedding � W �1.M/! HomeoC.S1/, analogous
to the case of left-orderings. It should be noted that, throughout, we adopt the convention that the trivial
group is left-orderable. We show:

Theorem 1.1 Suppose that M is a compact , connected , P2-irreducible 3-manifold. Then �1.M/ is
circularly orderable if and only if M admits a finite cyclic cover with left-orderable fundamental group.

Our contribution here is not the existence of a finite-index left-orderable subgroup, as this fact already
appears implicitly in [16], but that there is a normal, left-orderable subgroup that yields a finite cyclic group
upon passing to the quotient. This motivates an obvious “circular-orderability” version of the L-space
conjecture (see Conjecture 3.4), which mirrors the usual L-space conjecture up to finite cyclic covers.

This theorem is in fact a special case of a new algebraic result. Associated to every circular ordering c
of G is a cohomology class Œfc� 2H 2.GIZ/, called the Euler class of the circular ordering. We show
that, when a group G admits a circular ordering whose Euler class has order k in H 2.GIZ/, it also
admits a left-orderable normal subgroup N such that G=N Š Z=kZ; see Theorem 2.6.

From here we begin an exploration of exactly which fundamental groups admit circular orderings. We
first tackle the case of Seifert fibred manifolds, providing the details of a claim of Calegari [15]. Note
that circular-orderability of finite groups is well understood (a finite group is circularly orderable if and
only if it is cyclic; see Proposition 2.5), and so we focus on infinite fundamental groups. If G is a group
with circular ordering c, we use rotc.g/ to denote the rotation number of g 2G; see Section 2.

Theorem 1.2 Let M be a compact , connected Seifert fibred space and let h denote the class of a regular
fibre in �1.M/.

(1) If �1.M/ is infinite , then there exists a circular ordering c of �1.M/ such that rotc.h/ D 0; in
particular , �1.M/ is circularly orderable whenever it is infinite.

(2) If �1.M/ is infinite and M is orientable and has nonorientable base orbifold , then every circular
ordering c of �1.M/ satisfies rotc.h/ 2

˚
0; 1
2

	
.

(3) If �1.M/ is left-orderable and M is orientable and has base orbifold S2.˛1; : : : ; ˛n/ with n� 3,
then , for every p 2N>0, there exists a circular ordering c of �1.M/ such that rotc.h/D 1=p.
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(4) If M is orientable and has no exceptional fibres , then , for every r 2R=Z, there exists a circular
ordering c of �1.M/ such that rotc.h/D r .

This leads naturally to the study of graph manifolds, where we show that an analogous fact holds.

Theorem 1.3 Suppose that W is a graph manifold whose JSJ decomposition has Seifert fibred pieces
M1; : : : ;Mn. Further suppose that , for each 1 � i � n, if @Mi is a single torus boundary component ,
then there is no slope ˛ 2H1.@Mi IZ/=f˙1g such that �1.Mi .˛// is finite. Then , if �1.W / is infinite , it
is circularly orderable.

If W is not a rational homology sphere, then the first Betti number b1.W / is positive, so �1.W / is
left-orderable by Boyer, Rolfsen and Wiest [14, Theorem 3.2]. On the other hand, if W is a rational
homology sphere, then Theorem 1.3 is in fact a special case of a stronger, more technical result; see
Theorem 6.6 and Corollary 6.7. We conjecture that, with appropriate generalizations of the techniques
developed here, one can prove that the fundamental group of a graph manifold is circularly orderable
whenever it is infinite. See Conjecture 6.11 and the preceding discussion for details.

Our approach to this proof is to mirror the technique of “slope detection” developed by Boyer and Clay [9]
for the case of left-orderings of fundamental groups of graph manifolds; in Theorem 4.3 we develop a result
in the case of circular orderings that is analogous to the main tool of Clay, Lidman and Watson [20]. This
tool provides sufficient conditions that a manifold W DM1[�M2 have circularly orderable fundamental
group, by requiring that the gluing map � identify slopes on M1 and M2 whose fillings yield fundamental
groups admitting compatible circular orderings. Using this technique, it turns out that, in many cases, it
is sufficient to study fillings along rational longitudes to conclude that W DM1 [�M2 has circularly
orderable fundamental group; see Proposition 5.6.

We also deal with several notable cases not covered by Theorem 6.6 or Theorem 1.3; for instance, we
also show:

Theorem 1.4 The fundamental group of a compact , connected Sol manifold is circularly orderable.

We close with a discussion of circular-orderability of fundamental groups of hyperbolic 3-manifolds.
There is a well-known example of a hyperbolic 3-manifold whose fundamental group is not circularly
orderable, which is the Weeks manifold; see Calegari and Dunfield [16, Theorem 9]. Therefore, we
cannot expect the fundamental groups of hyperbolic 3-manifolds to be circularly orderable whenever they
are infinite, as in the case of Seifert fibred manifolds.

Two approaches to the question of left-orderability of fundamental groups of hyperbolic 3-manifolds
that have enjoyed success are via cyclic branched covers and via Dehn surgery. In both of these cases,
advancements in Heegaard Floer techniques have provided guidance as to the expected behaviour of
left-orderability with respect to these constructions. Over the course of several examples, including several
infinite families of hyperbolic 3-manifolds having circularly orderable but non-left-orderable fundamental
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groups, we find that none of the behaviour exhibited by left-orderability with respect to these familiar
topological constructions is shared with circular-orderability.

For example, it is suspected that, if the n-fold cyclic branched cover of a knot in S3 has left-orderable
fundamental group, then so does the m-fold cyclic branched cover for all m� n. This does not hold for
circular-orderability; see Propositions 7.1 and 7.2. Similarly, it is conjectured that the double branched
cover of a quasialternating knot always has non-left-orderable fundamental group, but our examples show
that there is no apparent relationship when left-orderability is replaced with circular-orderability: there
exist alternating links (or, more generally, quasialternating links) whose double branched covers have
non-circularly orderable fundamental groups (see Section 7.2), while other alternating (or quasialternating)
links yield double branched covers with circularly orderable fundamental groups. Similar observations
hold for the behaviour of circular-orderability with respect to Dehn surgery on a knot in S3.

We organize this paper as follows: Section 2 contains background and results relating to circular-
orderability and left-orderability of groups in general. In Section 3 we relate these facts to 3-manifold
fundamental groups, discuss the L-space conjecture and prove Theorem 1.1. In Section 4 we introduce
our tools that are analogous to slope detection by left-orderings, and in Section 5 we show how these
results can be applied to fillings along rational longitudes. In Section 6 we study circular-orderability of
the fundamental groups of Seifert fibred manifolds and graph manifolds. Finally, in Section 7 we discuss
circular-orderability of the fundamental groups of manifolds arising as the cyclic branched covers of links,
and manifolds arising from Dehn surgery.

Acknowledgements Ba was supported by a University of Manitoba postdoctoral fellowship. Clay was
supported by NSERC grant RGPIN-2020-05343.

2 Left- and circular-orderability

A strict total order < on a group G is said to be a left-ordering if, for every f; g; h 2 G, if g < h then
fg < f h. A group G is called left-orderable if it admits a left-ordering. Every left-ordering of G
determines a subset P D fg 2G j g > idg called the positive cone of the ordering, it satisfies

(i) P �P � P, and

(ii) P tP�1 DG n fidg.

Conversely any subset P �G satisfying (i) and (ii) determines a left-ordering of G via the prescription

g < h () g�1h 2 P:

A left-circular ordering of a group G is a map c WG3! f˙1; 0g satisfying:

(1) If .g1; g2; g3/ 2G3, then c.g1; g2; g3/D 0 if and only if fg1; g2; g3g are not all distinct.

(2) For all g1; g2; g3; g4 2G, we have

c.g1; g2; g3/� c.g1; g2; g4/C c.g1; g3; g4/� c.g2; g3; g4/D 0:
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(3) For all g; g1; g2; g3 2G, we have

c.g1; g2; g3/D c.gg1; gg2; gg3/:

If G admits such a map, then G is called left-circularly orderable. When no confusion will arise from
doing so, we will write circular ordering for short and circularly orderable.

Every left-orderable group is circularly orderable, for if < is a left-ordering of G then we may define
c W G3 ! f˙1; 0g by c.g1; g2; g3/ D sign.�/ when fg1; g2; g3g are distinct and c.g1; g2; g3/ D 0

otherwise; here � is the unique permutation such that g�.1/ < g�.2/ < g�.3/. When a circular ordering c
of a left-orderable group G arises in this way, we will say that c is a secret left-ordering.

Every circular ordering c of G is evidently a homogeneous cocycle. However, from each circular
ordering c, we can define an associated inhomogeneous cocycle fc WG2! f0; 1g by

fc.g; h/D

8<:
0 if g D id or hD id;
1 if ghD id and g ¤ id;
1
2
.1� c.id; g; gh// otherwise;

we call Œfc� 2H 2.GIZ/ the Euler class of the circular ordering c.

Construction 2.1 [54] Associated to Œfc� is a central extension zGc of G, which is constructed by
equipping the set Z�G with the operation .a; g/.b; h/D .aCbCfc.g; h/; gh/.1 The central extension zGc
is easily seen to be left-orderable, as one can check that the set P D f.a; g/ j a� 0g n f.0; id/g defines the
positive cone of a left-ordering, which we denote by <c . We call zGc the left-ordered central extension
associated to the circularly ordered group G with ordering c.

Recall that a subset S of a left-ordered group .G;</ is <-cofinal if, for every g 2G, there exist elements
s; t 2 S such that s < g < t . An element g 2G is called <-cofinal (or simply cofinal if the ordering is
understood) whenever the cyclic subgroup hgi is <-cofinal as a set. The central element .1; id/ 2 zGc is
positive and cofinal in the left-ordering <c of zGc and is called the canonical positive, cofinal, central
element of zGc .

Construction 2.2 [54] The above construction is reversible, in a categorical sense made precise in [17];
the basic construction is as follows. Suppose that G is a left-ordered group with ordering <, and there
is a central element z 2G which is positive and <-cofinal. Then the quotient G=hzi inherits a circular
ordering defined as follows. For each ghzi 2G=hzi, define the minimal representative Ng to be the unique
coset representative of ghzi satisfying id� Ng < z. Then define a circular ordering c< on G=hzi by

c<.g1hzi; g2hzi; g3hzi/D sign.�/;

where � is the unique permutation satisfying Ng�.1/ < Ng�.2/ < Ng�.3/.

1This is just an application of the standard construction associating elements of H2.GIZ/, represented by inhomogeneous
2-cocycles, to equivalence classes of central extensions 1! Z! zG!G! 1.
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When G admits a circular ordering c with Œfc�D id 2H 2.GIZ/, then G is left-orderable, because the
left-orderable central extension zGc is isomorphic to G�Z (though the ordering c need not be a secret left-
ordering for this to happen). It happens that c is a secret left-ordering if and only if Œfc�D id2H 2

b
.GIZ/,

where H 2
b
.GIZ/ is the second bounded cohomology group (see [5] for details).

We also recall the notion of rotation number of an orientation-preserving homeomorphism f W S1! S1,
which is connected to a circular ordering and the lift zGc as follows. For an orientation-preserving
homeomorphism f W S1! S1, one may choose a preimage Qf 2BHomeoC.S1/ of f 2 HomeoC.S1/ and
define the rotation number of f to be

lim
n!1

Qf n.0/

n
mod Z:

We can define the rotation number for an element g of a circularly ordered group .G; c/, following [2], in
a similar way. Let z D .1; id/ 2 zGc denote the cofinal, central element of zGc relative to the ordering <c .
Choose an element Qg 2 zGc such that q. Qg/D g, where q W zGc!G is the quotient map. For each n 2 Z,
let an denote the unique integer such that

zan � Qgn < zanC1;

and define
rotc.g/D lim

n!1

an

n
mod Z:

Note that this limit always exists by Fekete’s lemma, as one can check that the sequence fang1nD1 is
superadditive. Is it not difficult, though rather tedious, to show that this notion of rotation number agrees
with the “traditional definition” if one uses the circular ordering c of G to create a dynamical realization
�c WG!HomeoC.S1/ such that the circular ordering c of G agrees with the circular ordering of the orbit
of 0 inherited from the natural circular ordering of S1 (see [19, Sections 2.2 and 2.4]). In particular, this
implies that rotation number is invariant under conjugation, and is a homomorphism from A! S1 when
restricted to any abelian subgroup A�G. Moreover, the induced homomorphism A=ker.rotc/! S1 is
order-preserving with left-ordered kernel; see [27, Propositions 5.3 and 6.17; 21, Section 2].

A fundamental tool in constructing circular orderings on a given group G is the lexicographic construction,
which we use often throughout this work.

Proposition 2.3 Let
1!K!G

q
�!H ! 1

be a short exact sequence of groups.

(1) If K and H are left-orderable , then G is left-orderable.

(2) If K is left-orderable and H admits a circular ordering d , then G admits a circular ordering c
satisfying rotd .q.g//D rotc.g/ for all g 2G, and whose restriction to K is secretly a left-ordering.

Proof Claim (1) is a straightforward exercise and is common in the literature. Claim (2) is less common,
so we outline a lexicographic construction following [15, Lemma 2.2.12] and verify the claimed properties
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of the resulting circular ordering. Suppose K is equipped with the left-ordering <. Define a circular
ordering c WG! f0;˙1g as follows. Given three distinct elements g1; g2; g3 2G:

Case 1 If q.gi / are all distinct, set c.g1; g2; g3/D d.q.g1/; q.g2/; q.g3//.

Case 2 If exactly two of fq.g1/; q.g2/; q.g3/g are equal, we may (by cyclically permuting the arguments
and relabelling if necessary) assume that q.g1/D q.g2/, in which case we declare c.g1; g2; g3/D 1 if
g�11 g2 > id and c.g1; g2; g3/D�1 otherwise.

Case 3 If all of fq.g1/; q.g2/; q.g3/g are equal, then declare c.g1; g2; g3/ D 1 if and only if id <
g�11 g2 < g

�1
1 g3, up to cyclic permutation.

Note that, if g1; g2; g3 2K, then we define c.g1; g2; g3/ by appealing to Case 3, so c.g1; g2; g3/D 1 if
and only if g1 < g2 < g3 up to cyclic permutation. Thus the circular ordering c is a secret left-ordering
upon restriction to K.

That rotd .q.g//D rotc.g/ for all g 2G is proved in [2, Proof of Proposition 4.10].

Left-orderability and circular-orderability are also well behaved with respect to free products:

Proposition 2.4 Let fGigi2I be a family of groups. Then:

(1) [53] The free product
¨
i2I Gi is left-orderable if and only if each group Gi is left-orderable.

Moreover , if <i is a left-ordering of Gi for each i 2 I, then there exists a left-ordering of
¨
i2I Gi

extending the orderings <i .

(2) [3, Theorem 4.2] The free product
¨
i2I Gi is circularly orderable if and only if each group Gi is

circularly orderable. Moreover , if ci is a circular ordering of Gi for each i 2 I, then there exists a
circular ordering of

¨
i2I Gi extending the orderings ci .

Free products with amalgamation are much more finicky, with necessary and sufficient conditions that a
free product with amalgamation be left-orderable (resp. circularly orderable) appearing in [6] (resp. [17]).

Tools to obstruct circular-orderability are somewhat rarer than the tools commonly used to obstruct
left-orderability. One of the basic tools in this regard is the following fact:

Proposition 2.5 A finite group is circularly orderable if and only if it is cyclic.

For a proof from an algebraic point of view, see [18, Proposition 2.8]. A circular ordering c of G may
also give rise to a left-orderable subgroup of G, depending on whether or not the corresponding Euler
class Œfc� 2H 2.GIZ/ has finite order. This allows one to obstruct circular-orderability of a group G
by reducing the problem to obstructing left-orderability of certain finite-index subgroups. Calegari and
Dunfield [16] use a variant of this theorem, for instance, to show that the fundamental group of the Weeks
manifold is not circularly orderable.
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Theorem 2.6 Suppose that c is a circular ordering of G whose Euler class Œfc� 2H 2.GIZ/ has order k.
Then G contains a left-orderable normal subgroup H such that G=H Š Z=kZ.

Proof Consider the cocycle kfc WG2!f0; kg defined by taking k times the inhomogeneous cocycle fc ,
and the corresponding central extension zGkfc

constructed as Z�G with multiplication .a; g/.b; h/D
.aC bC kfc.g; h/; gh/. Define a map � W zGc! zGkfc

by �.a; g/D .ka; g/; one can check that this is
an injective homomorphism. Since we assume Œfc� has order k, we know that Œkfc�D id 2H 2.GIZ/,
and thus there exists a map � WG! Z satisfying �.id/D 0 and kfc.g; h/D �.g/� �.gh/C �.h/ for all
g; h 2G. This map � allows us to define an isomorphism  W zGkfc

!Z�G by  .a; g/D .aC�.g/; g/.

Let H denote the subgroup . ı�/. zGc/\ .f0g �G/ of f0g �G, meaning that

H D f.0; g/ j 9a 2 Z such that kaC �.g/D 0g:

Then H is clearly left-orderable since it is the image under an injective map of a left-orderable group.

Let qk W Z! Z=kZ denote the quotient map. To the equation �.gh/ D �.g/C �.h/� kfc.g; h/ we
apply the homomorphism qk to arrive at .qk ı �/.gh/ D .qk ı �/.g/C .qk ı �/.h/ and conclude that
qk ı � W G ! Z=kZ is a homomorphism. Moreover, g 2 ker.qk ı �/ if and only if �.g/ � 0 mod k,
meaning that .0; g/ 2H. Thus the obvious isomorphism f0g �G ŠG carries H to ker.qk ı �/.

As qk ı� has image in Z=kZ, it remains to argue that qk ı� is surjective. Suppose the order of im.qk ı�/
ism; thenm divides k and k

m
is the largest divisor of k such that �.g/2 k

m
Z for all g 2G. This means that

the function �.g/D m
k
�.g/ satisfies �.g/� �.gh/C �.h/Dmfc.g; h/, meaning that Œfc� 2H 2.GIZ/

has order dividing m. But m� k and the order of Œfc� is k, so this forces mD k, implying that qk ı � is
surjective.

3 Fundamental groups of 3-manifolds and orderability

First, we note that every compact 3-manifold other than S3 admits a decomposition

M ŠM1 #M2 # � � � #Mn

into prime 3-manifolds, and, as such, the fundamental group of a nonprime 3-manifoldM can be expressed
as a free product

�1.M/Š �1.M1/��1.M2/� � � � ��1.Mn/:

In light of Proposition 2.4(2), the question of circular-orderability of fundamental groups of 3-manifolds
reduces to considering the fundamental groups of prime 3-manifolds. In fact, since the only reducible
orientable prime 3-manifold is S1 �S2, whose fundamental group is clearly circularly orderable, in the
case of orientable 3-manifolds it suffices to consider only the fundamental groups of irreducible orientable
3-manifolds. In the case of a nonorientable 3-manifold M, the first Betti number is positive whenever M
is P2-irreducible, so M has circularly orderable fundamental group [14, Theorem 1.1].
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Remark 3.1 On the other hand, if M is P2-reducible, then we do not know whether or not �1.M/ is
circularly orderable in general. Our techniques for producing circular orderings of 3-manifold groups
make frequent use of algebraic properties that depend heavily on the situation at hand. For example,
our main tools use left-orderability of infinite-index subgroups of �1.M/ as in Proposition 3.2, or a
decomposition of �1.M/ as a free product with amalgamation of groups whose circular orderings are well
understood as in Theorem 4.3 (whose proof also uses Proposition 3.2). Neither of these properties hold for
the fundamental groups of P2-reducible manifolds; in particular, their fundamental groups always contain
a subgroup isomorphic to Z=2Z [25, Theorem 8.2], and so any argument that relies on left-orderability
of infinite-index subgroups will fail.

It is well known that left-orderability behaves in a very special way with respect to fundamental groups of
irreducible 3-manifolds. One of the key results in the area is the following, which we present alongside a
generalization to the case of circular-orderability:

Proposition 3.2 LetM be a compact , connected , P2-irreducible 3-manifold , let G be a nontrivial group
and suppose there exists an epimorphism � W �1.M/!G.

(1) If G is left-orderable , then �1.M/ is left-orderable.

(2) If G is infinite and circularly orderable , then �1.M/ is circularly orderable.

Proof The first claim is [14, Theorem 3.2]. For the second, sinceGD�.�1.M// is infinite,KDker.�/ is
an infinite-index normal subgroup of�1.M/. From [14, Proof of Theorem 3.2], the subgroupK is therefore
locally indicable and thus left-orderable, so we can use the short exact sequence 1!K!�1.M/!G!1

to construct a lexicographic circular ordering of �1.M/ as in Proposition 2.3(2).

This implies, for instance, that �1.M/ is left-orderable wheneverM satisfies the hypotheses of Proposition
3.2 andH1.M IZ/ is infinite. The case of interest is therefore whenH1.M IZ/ is finite, where the L-space
conjecture posits a connection between left-orderability of �1.M/, the existence of coorientable taut
foliations in M, and whether or not M is a Heegaard Floer homology L-space (that is, a manifold whose
Heegaard Floer homology is of minimal rank).

Conjecture 3.3 (the L-space conjecture [12; 37]) If M is an irreducible, rational homology 3-sphere
other than S3, then the following are equivalent:2

(1) The fundamental group of M is left-orderable.

(2) The manifold M supports a coorientable taut foliation.

(3) The manifold M is not an L-space.

Surrounding this conjecture, there are many tools and techniques to obstruct left-orderability of fundamen-
tal groups — see [16; 24; 22; 1], to name a few — and many more to prove that fundamental groups are
left-orderable. Our main contribution in this section is to connect circular-orderability to this conjecture

2We require the caveat that M ¤ S3 because, by our definition, the trivial group is left-orderable.
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as in Theorem 1.1 of the introduction, by applying Theorem 2.6 and Proposition 3.2. Recall that a finite
cyclic cover is, by definition, a regular covering space for which the group of deck transformations is a
finite cyclic group.

Proof of Theorem 1.1 If H1.M IZ/ is infinite, then there exists a surjection �1.M/! Z. Therefore
�1.M/ is left-orderable by [14, Theorem 1.1]. It follows that �1.M/ is circularly orderable, and all finite
cyclic covers (including the trivial cover) have left-orderable fundamental group, so there is nothing to
prove in this case.

On the other hand, suppose H1.M IZ/ is finite and �1.M/ is circularly orderable with circular ordering c.
Note that, by a standard Euler characteristic argument (see for example [14, Lemma 3.3]), either M is
closed and orientable, or M has nonempty boundary containing only S2 and P2 components. Since M
is P2-irreducible, the latter case does not occur.

We conclude H1.M IZ/ŠH 2.M IZ/ by Poincaré duality, and then H 2.M IZ/ŠH 2.�1.M/IZ/ since
M is irreducible. Thus Œfc� has finite order; say it has order k. Then, by Theorem 2.6, �1.M/ admits a
normal, left-orderable subgroup H such that �1.M/=H is cyclic. In this case, the cover �M of M with
�1. �M/DH has the desired properties.

To show the converse, suppose that p W �M !M is a finite cyclic cover with left-orderable fundamental
group. Then there is a short exact sequence

1! p�.�1. �M//! �1.M/! Z=kZ! 1

for some k � 1, where the kernel is left-orderable and the quotient (if nontrivial) is circularly orderable.
If the quotient is trivial, this means that �1.M/ itself is left-orderable, and the conclusion follows. If the
quotient is nontrivial, then Proposition 2.3(2) finishes the proof.

Circular-orderability is therefore one possible approach to the L-space conjecture, by first tackling the
conjecture up to finite cyclic covers. That is, we have the following “circular-orderability” version of
Conjecture 3.3:

Conjecture 3.4 (the L-space conjecture, circular-orderability version) If M is an irreducible, rational
homology 3-sphere that is not a lens space, then the following are equivalent:3

(1) The fundamental group of M is circularly orderable.

(2) There exists a finite cyclic cover �M of M that supports a coorientable taut foliation.

(3) There exists a finite cyclic cover �M of M that is not an L-space.

Note that this has conjectural implications beyond what would follow from the “left-orderability” version
of the conjecture. For instance, the following theorem connects certain topological properties directly to
circular-orderability (without passing via left-orderability):

3If we allowM to be a lens space, then the conjecture as stated would not be true, again because the trivial group is left-orderable
by our conventions.
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Theorem 3.5 [16, Theorem 3.1, Corollary 3.9] If M is an orientable , atoroidal 3-manifold containing
a very full tight essential lamination or supporting a pseudo-Anosov flow , then �1.M/ is circularly
orderable.

Conjecture 3.4 therefore predicts that one can obstruct the existence of a pseudo-Anosov flow on a rational
homology 3-sphere M, or the existence of a very full tight essential lamination in M, by showing, for
example, that all finite cyclic covers are L-spaces or that no finite cyclic cover supports a coorientable
taut foliation.

4 Slope detection and 3-manifolds having nontrivial JSJ decomposition

One of the key techniques in the analysis of manifolds admitting a nontrivial JSJ decomposition is that of
slope detection by left-orderings. This idea first appeared in a basic form in [20, Definition 2.6], was
further developed in [9] as a key technique in proving Conjecture 3.3 for graph manifolds [9; 31], and
appears also in [10; 11]. We recall the central technique from [20] in the following theorem:

Theorem 4.1 [20, Theorem 2.7] Suppose that M1 and M2 are 3-manifolds with incompressible torus
boundaries @Mi , and that � W @M1! @M2 is a homeomorphism such that W DM1[�M2 is irreducible.
If there exists a slope ˛ such that both �1.M1.˛// and �1

�
M2.��.˛//

�
are left-orderable , then �1.W / is

left-orderable.

In what follows, we develop a generalization of this technique that applies to circular-orderability and
present applications to various classes of manifolds. To prepare, we recall the following construction.

If .G; c/ and .H; d/ are circularly ordered groups and � WG!H is a homomorphism satisfying

c.g1; g2; g3/D d.�.g1/; �.g2/; �.g3// for all g1; g2; g3 2G;

then we say that � is order-preserving or compatible with the pair .c; d/. Note that in this case � is
necessarily injective. Then we can define z� W zGc ! zHd by z�.n; g/ D .n; �.g//, so that z� is order-
preserving with respect to the left-orderings <c and <d of zGc and zHd , respectively (or compatible with
the pair .<c ; <d /).

Proposition 4.2 Suppose that f.Gi ; ci /gi2I are circularly ordered groups each containing a subgroupHi .
If .D; d/ is a cyclic circularly ordered group and �i WD!Hi is an isomorphism compatible with the pair
.d; ci / for every i , then the free product with amalgamation

¨
i2I Gi .D Š�i

Hi / is circularly orderable.

Proof The homomorphism �i�
�1
j is compatible with the pair .cj ; ci / for all i; j 2 I, and therefore the

mapB�i��1j is also compatible with the pair .<cj ; <ci
/ for all i; j 2 I.

Now suppose that D Š Z, in which case zDd Š Z�Z and the images z�i . zDd / and z�j . zDd / are bounded
neither from above nor below in e.Gi /ci

and e.Gj /cj , respectively, since each image contains the cofinal
central element of the respective extension. We may therefore apply [17, Proposition 5.6] to conclude that
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the group
¨
i2I

e.Gi /ci
. zDd Šz�i

e.Hi /ci
/ is left-orderable, and then apply [17, Theorem 1] to conclude

that
¨
i2I Gi .D Š�i

Hi / is circularly orderable in this case.

Next suppose that D is finite, in which case zDd is infinite cyclic. Then
¨
i2I

e.Gi /ci
. zDd Šz�i

e.Hi /ci
/ is

an amalgamation of left-orderable groups along a cyclic subgroup, which is always left-orderable [6]. As
above, that

¨
i2I Gi .D Š�i

Hi / is circularly orderable then follows from [17, Theorem 1].

In preparation for the next theorem, suppose thatG is a group and let g 2G. We denote by hhgii the normal
closure of g 2G, that is, the smallest (with respect to inclusion) normal subgroup of G containing g.

Theorem 4.3 Let M1 and M2 be two 3-manifolds with incompressible torus boundaries , and let
� W @M1 ! @M2 be a homeomorphism such that M D M1 [� M2 is P2-irreducible. If there exists a
slope ˛ 2H1.@M1IZ/=f˙1g such that �1.M1.˛// and �1

�
M2.��.˛//

�
are infinite circularly orderable

groups , and either

(1) at least one of �1.@M1/� hh˛ii or �1.@M2/� hh��.˛/ii holds , or

(2) �1.M1.˛// and �1
�
M2.��.˛//

�
admit circular orderings c1 and c2, respectively, such that the

induced map

x�� W �1.@M1/=.hh˛ii \�1.@M1//! �1.@M2/=.hh��.˛/ii \�1.@M2//

is an isomorphism between nontrivial groups which is compatible with the pair .c1; c2/,

then �1.M/ is circularly orderable.

Proof Suppose first that there exists a slope ˛ satisfying condition (1) of the theorem; without loss of
generality we assume that �1.@M1/ � hh˛ii. To simplify notation, let Gi D �1.Mi / for i D 1; 2, each
equipped with an inclusion homomorphism fi W Z˚ Z! Gi that identifies the peripheral subgroup
�1.@Mi / with Z˚Z, satisfying �� ıf1 D f2, and let q1 WG1!G1=hh˛ii and q2 WG2!G2=hh��.˛/ii

be the quotient maps.

In this case, there exists a unique map f such that the following diagram commutes:

Z˚Z
f2

//

f1

��

G2

�� 1

��

G1 //

q1 ..

G1 ��� G2

f

&&

G1=hh˛ii

As the image of the map f is an infinite circularly orderable group, that �1.M/ŠG1���G2 is circularly
orderable follows from Proposition 3.2(2).

Suppose there exists a slope ˛ satisfying condition (2) of the theorem. Let x�� denote the map induced
by �, as in the statement of the theorem. There are two possibilities for the subgroup hh˛ii \�1.@M1/ of
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�1.@M1/ Š Z˚ Z: it is isomorphic to either Z or Z˚ nZ for some n > 1. In both cases, x�� is
an isomorphism between cyclic subgroups of G1 and G2 that is compatible with .c1; c2/, and so
G1=hh˛ii �x�� G2=hh��.˛/ii is circularly orderable by Proposition 4.2.

Then, as before, there is a unique map f such that the following diagram commutes:

Z˚Z
f2

//

f1

��

G2

��
q2

��

G1 //

q1
--

G1 ��� G2

f

))

G1=hh˛ii �x�� G2=hh��.˛/ii

Now, since the groups �1.M1.˛// and �1
�
M2.��.˛//

�
are infinite, so is G1=hh˛ii �x�� G2=hh��.˛/ii.

That �1.M/ŠG1 ��� G2 is circularly orderable follows from Proposition 3.2.

Note that this recovers Theorem 4.1 in the case that the quotients are both left-orderable.

Recall that rotc WG! S1 is an order-preserving homomorphism upon restriction to any abelian subgroup,
so long as it is injective. From this observation and Theorem 4.3, we arrive at the following:

Corollary 4.4 Let M1, M2, � W @M1 ! @M2 and M D M1 [� M2 be as in Theorem 4.3, and ˛ 2

H1.@M1IZ/=f˙1g be such that �1.M1.˛// and �1
�
M2.��.˛//

�
are infinite circularly orderable groups.

Let ˇ 2 �1.@M1/ denote a dual class to ˛, and let q1 W �1.M1/ ! �1.M1.˛// and q2 W �1.M2/ !

�1
�
M2.��.˛//

�
denote the quotient maps. If there exist circular orderings c1 and c2 of �1.M1.˛// and

�1
�
M2.��.˛//

�
, respectively, such that

c1.q1.ˇ
j /; q1.ˇ

k/; q1.ˇ
l//D c2

�
q2.��.ˇ

j //; q2.��.ˇ
k//; q2.��.ˇ

l//
�

for all j; k; l 2 Z, then �1.M/ is circularly orderable. In particular , if

rotc1
.q1.ˇ//D rotc2

�
q2.��.ˇ//

�
and rotci

are injective , then �1.M/ is circularly orderable.

Applications of Theorem 4.3 or Corollary 4.4 therefore hinge upon being able to construct circular
orderings of fundamental groups of 3-manifolds where certain elements have prescribed rotation number.

5 Rational longitudes and knot manifolds

Recall that a knot manifold is a compact, connected, irreducible and orientable 3-manifold with boundary
an incompressible torus. In this section we demonstrate a technique for creating circular orderings of
fundamental groups of knot manifolds, where the cyclic subgroup generated by a class dual to the rational
longitude has a prescribed circular ordering.
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Lemma 5.1 Suppose that C is a cyclic group , D is a nontrivial subgroup of C, and c is a circular
ordering of D. Then there exists a circular ordering c0 of C such that

c0.r; s; t/D c.r; s; t/ for all r; s; t 2D:

Proof We first consider the case where C D Z is infinite cyclic and D D kZ. Let c be an arbitrary
circular ordering of kZ and let d denote the standard circular ordering of S1. Consider the rotation
number homomorphism rotc W kZ! S1 corresponding to the circular ordering c. Suppose that rotc.k/D
exp.2�i˛/with ˛2 Œ0; 1�, and define � WZ!S1 by �.1/Dexp.2�i˛=k/. There are two cases to consider.

First, if rotc is injective, then c.r; s; t/ D d.rotc.r/; rotc.s/; rotc.t// for all r; s; t 2 kZ. Note that �
is injective because rotc is injective, so we can define a circular ordering c0 on Z by c0.r; s; t/ D
d.�.r/; �.s/; �.t//, which clearly extends c as required.

On the other hand, suppose that rotc is not injective; say ˛ D p=q with gcd.p; q/ D 1. Then c arises
lexicographically from a short exact sequence

1!H ! kZ
rotc
�! Z=qZ! 1;

where Z=qZ is identified naturally with the qth roots of unity and equipped with the restriction of the
natural circular ordering d of S1. In this case � yields a short exact sequence

1!H ! Z
�
�! Z=qkZ! 1;

where Z=qkZ is again equipped with the natural circular ordering arising from the natural embedding
into S1. Thus, if we use the latter short exact sequence to lexicographically define a circular ordering c0

of Z, using the same left-ordering of H as in the former short exact sequence, then c0 will be an extension
of the given circular ordering c of kZ.

When C is finite, rotc is injective, so we can use the same construction as in the first case above.

The next lemma is a standard result, but it is essential to our arguments and so we include a proof.

Lemma 5.2 Let M be a compact , connected , orientable 3-manifold with a torus boundary, and F be a
field. If i W @M !M denotes the inclusion map , then the image of the map

i1� WH1.@M IF/!H1.M IF/

is of rank one.

Proof Considering the pair .M; @M/, we have the long exact sequence

� � � !H1.@M IF/
i1��!H1.M IF/

p1
��!H1.M; @M IF/

@1
�!H0.@M IF/

i0��!H0.M IF/
@0
�! 0:

Since M is connected, it is also path-connected, and hence H0.M; @M IF/D 0. By exactness, we have
im.i1�/ D ker.p1�/, im.p1�/ D ker.@1/, im.@1/ D ker.i0�/ and im.i0�/ D H0.M IF/. By the rank–nullity
theorem,

dimF .im.i1�//D dimF .H1.M IF//� dimF .H1.M; @M IF//C dimF .H0.@M IF//� dimF .H0.M IF//:
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Since M is compact, by universal coefficient theorems and duality, we have

dimF .H1.M; @M IF//D dimF .H2.M IF//:

Hence,

dimF .im.i1�//D dimF .H1.M IF//� dimF .H1.M; @M IF//C dimF .H0.@M IF//� dimF .H0.M IF//

D��.M/C dimF .H3.M IF//C dimF .H0.@M IF//:

Since the boundary of M is not empty, dimF .H3.M IF//D 0. Thus,

dimF .im.i1�//D��.M/C dimF .H0.@M IF//:

Since �.M/D 1
2
�.@M/D 0, we conclude that dimF .im.i1�//D dimF .H0.@M IF//D 1.

It follows that the image of i1� WH1.@M IZ/!H1.M IZ/ is also of rank one when M is orientable. The
unique primitive element in H1.@M IZ/ whose image is of finite order in H1.M IZ/ is referred to as the
rational longitude of M, and is denoted �M .

Remark 5.3 Consider the long exact sequence, with M as in the previous lemma,

� � � !H1.@M IZ/
i1��!H1.M IZ/

p1
��!H1.M; @M IZ/

@1
�!H0.@M IZ/

i0��!H0.M IZ/
@0
�!H0.M; @M IZ/! 0:

Since M and @M are both connected, they are also path-connected, and hence H0.M; @M IZ/ D 0,
H0.@M IZ/ Š Z and H0.M IZ/ D Z. Hence i0� is an isomorphism, and im.@1/ D ker.i0�/ D 0. This
implies that im.p1�/Dker.@1/DH1.M; @M IZ/, and that i1� is surjective if and only ifH1.M; @M IZ/D0.
Thus we do not assume surjectivity of i1� , which necessitates the use of Lemma 5.1 in the proofs below.

Remark 5.4 If M is a compact, nonorientable, P2-irreducible 3-manifold, then �1.M/ is left-orderable
by [14, Lemma 3.3 and Theorem 3.1]; on the other hand, if M is P2-reducible, then our techniques do
not apply in general; see Remark 3.1. Hence, from now on, we assume that all 3-manifolds are orientable.

Proposition 5.5 Suppose that M is a knot manifold , let � be the class of any closed curve in @M that
is dual to �M and let q denote the quotient map q W �1.M/! �1.M.�M //. If M.�M / is irreducible ,
then , for every circular ordering c0 of the cyclic subgroup hq.�/i, there exists a circular ordering c of
�1.M.�M // such that

c0.q.�j /; q.�k/; q.�l//D c.q.�j /; q.�k/; q.�l//

for all j; k; l 2 Z.

Proof For such a manifold M, it follows that jH1.M.�M /IZ/j is infinite, with the class of � being of
infinite order by Lemma 5.2. Therefore there exists a map  W �1.M.�M //! Z with the image of �
being nontrivial; say  .�/D k. Let c0 be a given circular ordering of hq.�/i.

Denote the standard circular ordering of S1 by d and suppose that rotc0.q.�// D r . Define a map
� W kZ! S1 by �.k/D exp.2�ir/, and first suppose that rotc0 is injective. Then � is injective, so we
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may define a circular ordering c00 of kZ by c00.r; s; t/D d.�.r/; �.s/; �.t//. Next suppose that rotc0 is
not injective, so that r D s=t 2Q (with s=t in lowest terms) and the circular ordering c0 of hq.�/i is
lexicographic with respect to the short exact sequence

0! ker.rotc0/! hq.�/i ! Z=tZ! 0

for some choice of left-ordering of ker.rotc0/. Then � is not injective, and we may use Proposition 2.3(2)
to create a circular ordering c00 of kZ from the sequence 1!K! kZ

�
�! S1, where K is the kernel

of �, such that our choice of left-ordering of K agrees with the left-ordering of ker.rotc0/ under the
isomorphism kZŠ hq.�/i given by k 7! q.�/.

In either case, by Lemma 5.1, there is a circular ordering Oc of  
�
�1.M.�M //

�
ŠZ that extends c00. That

�1.M.�M // admits a circular ordering c with the required property now follows from Proposition 2.3(2)
and the proof of Proposition 3.2(2).

Following [50, pages 428–431], recall that a Seifert fibred space is a 3-manifold which is foliated by
circles, called fibres, such that each circle S has a closed tubular neighbourhood which is a union of fibres
and is isomorphic to a fibred solid torus if S preserves the orientation, or a fibred solid Klein bottle if S
reverses the orientation. We use h throughout to denote the class of the regular fibre.

Proposition 5.6 Suppose that M1 and M2 are compact , connected and orientable 3-manifolds with torus
boundary, � W @M1! @M2 is a homeomorphism , and M DM1[�M2 is irreducible.

(1) If rk.H1.M1IQ//� 2, then �1.M/ is left-orderable.

(2) Suppose rk.H1.M1IQ//D 1 and let �1 denote the rational longitude of M1. If �1
�
M2.��.�1//

�
is infinite and circularly orderable and either M1.�1/ is irreducible or M1 is Seifert fibred with
incompressible boundary, then �1.M/ is circularly orderable.

Proof In what follows, let i W @M1!M1 denote the inclusion map.

To prove (1), assume rk.H1.M1IQ// � 2. In this case, the image of H1.@M1IZ/
i�
�!H1.M1IZ/ has

rank one by Lemma 5.2. Therefore we may compose the Hurewicz map �1.M1/! H1.M IZ/ with
the quotient H1.M IZ/!H1.M IZ/=im.i�/ and obtain a map  W �1.M1/! A, where A is an abelian
group of positive rank, satisfying  

�
i�.�1.@M1//

�
D 0. In this case, since M is a free product with

amalgamation of �1.M1/ and �1.M2/, there exists a surjective homomorphism �1.M/! A induced by
 W �1.M1/! A and the zero homomorphism �1.M2/! A. Thus �1.M/ admits a torsion-free abelian
quotient, so �1.M/ is left-orderable by [14, Theorem 3.2].

For (2), suppose that rk.H1.M1IQ// D 1 and let q1 W �1.M1/ ! �1.M1.�1// and q2 W �1.M2/ !

�1
�
M2.��.�1//

�
denote the quotient maps. Equip �1

�
M2.��.�1//

�
with a circular ordering c2, and let

�2 denote the class of a curve dual to �.�1/. Let �1 denote the class of a curve dual to �1. In this case,
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if M1.�1/ is irreducible, then, by Proposition 5.5, we can equip �1.M1.�1// with a circular ordering c1
that agrees with c2 under the identification of hq1.�1/i and hq2.�2/i induced by ��. The result then
follows from Corollary 4.4.

On the other hand, if M1 is Seifert fibred, then M1.�1/ is irreducible by [33] unless �1 is the class of a
regular fibre, so we need only consider the case that �1 is the class of a regular fibre. For �1 to be the
class of a regular fibre, M1 must have nonorientable base orbifold. In this case, since rk.H1.M1IQ//D 1

we know the base orbifold must be a once-punctured projective plane and we compute

�1.M1/D ha; 1; : : : ; n; �; h j aha
�1
D h�1; Œi ; h�D 1; Œ�; h�D 1; 

˛i

i D h
ˇi ; a2�1 : : : n D 1i;

where � is a class dual to �1 D h on @M1. Therefore

�1.M1.�1//D ha; 1; : : : ; n; � j 
˛i

i D 1; a
2�1 : : : n D 1i;

which is isomorphic to the free product with amalgamation

h1 j 
˛1

1 D 1i � � � � � hn j 
˛n
n D 1i � h�i ��1:::nDa�2 hai:

In this case, we can first equip the infinite cyclic group h�i with a circular ordering c that agrees with c2
under the identification of h�i and hq2.�2/i induced by ��. By Proposition 2.4, this circular ordering
extends to the free product h1 j 

˛1

1 D 1i � � � � � hn j 
˛n
n D 1i � h�i, which in turn extends to a circular

ordering of �1.M1.�1// by combining Lemma 5.1 and Proposition 4.2. Thus the claim follows from
Corollary 4.4.

6 Seifert fibred manifolds and graph manifolds

Aside from this last tool, there are other situations where we can control the rotation numbers of certain
elements in circular orderings of fundamental groups. We next investigate Seifert fibred manifolds, where
our goal is to show that the fundamental group of a Seifert fibred space is always circularly orderable
whenever it is infinite, and to describe the possible circular orderings in terms of the rotation numbers of
the class of a regular fibre.

6.1 Seifert fibred manifolds

It was first claimed by Calegari [15, Remark 4.3.2] that, if M is Seifert fibred and �1.M/ is infinite, then
it is circularly orderable. We provide the details of this claim below.

Recall that, when M is an orientable Seifert fibred manifold over an orientable closed surface of genus
g � 0, the fundamental group has presentation

�1.M/D ha1; b1; : : : ; ag ; bg ; 1; : : : ; n; h j h central; ˛i

i D h
ˇi ; Œa1; b1� : : : Œag ; bg �1 : : : n D h

b
i

and, if the surface is nonorientable, then

�1.M/D ha1; : : : ; ag ; 1; : : : ; n; h j ajha
�1
j D h

�1; Œi ; h�D 1; 
˛i

i D h
ˇi ; a21 : : : a

2
g1 : : : n D h

b
i:
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In either case, quotienting by the normal subgroup hhi (the cyclic subgroup generated by the class of the
regular fibre) yields the orbifold fundamental group of the underlying orbifold. Consequently we observe
the following lemma:

Lemma 6.1 Suppose that ˛1; : : : ; ˛n � 2 are integers and that B is an orbifold of type S2.˛1; : : : ; ˛n/

or P2.˛1; : : : ; ˛n/. Assume that

(1) n� 3 and
Pn
iD1 1=˛i < n� 2 if BD S2.˛1; : : : ; ˛n/, and

(2) n� 2 if BD P2.˛1; : : : ; ˛n/.

Then �orb
1 .B/ is circularly orderable.

Proof (1) With the assumptions in (1), as B is hyperbolic, the group �orb
1 .B/ embeds in PSL2.R/. As

PSL2.R/ embeds in HomeoC.S1/, it is circularly orderable, so the result follows.

(2) In this case, for the group Z=˛1Z� � � � �Z=˛nZ, suppose that the generator of Z=˛iZ is xi , and use
x to denote the product x1 : : : xn. Then

�orb
1 .B/D .Z=˛1Z� � � � �Z=˛nZ/�hxiD2Z Z;

and the group Z=˛1Z� � � � �Z=˛nZ is circularly orderable by Proposition 2.4. That �orb
1 .B/ is circularly

orderable then follows from Proposition 4.2.

Last, we note the following holds for all left-ordered groups admitting a cofinal, central element:

Proposition 6.2 Suppose that .G;</ is a left-ordered group , and that z 2G is a cofinal , central element.
Then , for every p 2N>0, the group G admits a circular ordering c such that rotc.z/D 1=p.

Proof Let p 2 N>0 be given, and first construct a circular ordering d of G=hzpi by mimicking
Construction 2.2 as follows. Define the minimal representative Ng of each ghzpi 2 G=hzpi to be the
unique coset representative satisfying id� Ng < zp, and set

d.g1hz
p
i; g2hz

p
i; g3hz

p
i/D sign.�/;

where � is the unique permutation such that the minimal representatives satisfy Ng�.1/ < Ng�.2/ < Ng�.3/.
Then construct a circular ordering c of G by using the short exact sequence

1! hzpi !G!G=hzpi ! 1;

the orderings < and d of the kernel and quotient, respectively, and Proposition 2.3. The circular ordering c
satisfies rotc.z/D 1=p (see [2, Proof of Theorem 6.2]).

Proposition 6.3 Suppose that M is a compact , connected , orientable Seifert fibred space with base
orbifold S2.˛1; : : : ; ˛n/ with n� 3, and let h denote the class of a regular fibre in �1.M/. If �1.M/ is
left-orderable , then �1.M/ admits a left-ordering relative to which h is cofinal.

Proof This result is essentially a restatement of [9, Proposition 4.7].
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Proof of Theorem 1.2 We first prove (1). By [14, Theorem 1.3], �1.M/ is left-orderable whenever the
first Betti number b1.M/ is positive and M © P2 �S1. When M D P2 �S1, the fundamental group
�1.M/ clearly admits a circular ordering of the required kind, via a lexicographic construction. This
proves the claim for Seifert fibred manifolds M with b1.M/ > 0.

Thus we can assume that b1.M/ D 0, which implies that M is closed and orientable (see eg [14,
Lemma 3.3]), and the base orbifold of M is either S2.˛1; ˛2; : : : ; ˛n/ or P2.˛1; ˛2; : : : ; ˛n/.

Assume that either condition (1) or (2) of Lemma 6.1 holds. Since we also assume that �1.M/ is infinite,
the class of the fibre h is of infinite order (see eg [14, Proposition 4.1(1)]). Therefore, from the short
exact sequence

1! hhi ! �1.M/! �orb
1 .B/! 1;

we can lexicographically construct the required circular ordering of �1.M/ using Lemma 6.1 and
Proposition 2.3, completing the proof in these cases.

For the remaining cases, first suppose that BD S2.˛1; ˛2; : : : ; ˛n/ and
Pn
iD1 1=˛i � n� 2. Note that

necessarily n� 4, and our assumption that �1.M/ is infinite and b1.M/D 0 rules out nD 0, nD 1 and
nD 2. When nD 3 and 1=˛1C1=˛2C1=˛3 >1, the group �1.M/ is finite, so we need not consider this
case. On the other hand, if

Pn
iD1 1=˛i D n�2, then �1.M/ has infinite abelianization [32, Proposition 2;

36, VI.13 Example], and so is left-orderable. Last, if M has base orbifold P2 or P2.˛1/, then �1.M/ is
finite, Z or Z2 �Z2 [36, VI.11(c)]. Since we have assumed that �1.M/ is infinite, �1.M/ is either Z or
Z2�Z2, which is circularly orderable in both cases. We construct a circular ordering of �1.M/ for which
rot.h/ is zero in either case as follows: when �1.M/ is Z, we equip Z with a secret left-ordering, and,
when �1.M/ŠZ2 �Z2 Š ha; h j a2 D id; aha�1 D h�1i, we circularly order �1.M/ lexicographically
using

1! hhi ! �1.M/! Z=2Z! 1:

We observe that (2) follows from the defining relations of the fundamental group �1.M/. When M has
nonorientable base orbifold and admits at least one exceptional fibre, the relation h�1 D h�1 holds
in �1.M/. As rotation number is invariant under conjugation, we get that rotc.h/D rotc.h�1/ for every
circular ordering c of �1.M/, from which it follows that rotc.h/ 2

˚
0; 1
2

	
.

To prove (3), suppose that �1.M/ is left-orderable. Using Proposition 6.3, choose a left-ordering of �1.M/

relative to which the class of the fibre is cofinal. The result now follows from Proposition 6.2.

Finally, (4) follows from the short exact sequence of the fibration

1! �1.F /! �1.M/! �1.S
1/! 1

and the observation that we may use any circular ordering of �1.S1/ Š Z we please in applying
Proposition 2.3.
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6.2 Graph manifolds

We begin with a few preliminaries to establish notation and some well-known facts. Recall that every
compact, orientable, irreducible 3-manifold M admits a unique minimal family of disjoint incompressible
tori T such that M nT consists of Seifert fibred 3-manifolds and atoroidal 3-manifolds, called the JSJ
decomposition. By a graph manifold, we mean a compact, connected, orientable, irreducible 3-manifold
admitting a JSJ decomposition into Seifert fibred pieces. By using the tori of the JSJ decomposition to
cut our graph manifolds into Seifert fibred pieces, we know that the collection of such tori is minimal for
each graph manifold, and each torus is incompressible and thus �1-injective.

Note that it follows from Proposition 3.2 that graph manifolds with infinite first homology always have
left-orderable fundamental group; in particular, their fundamental groups are always circularly orderable.
Thus, when it comes to circular-orderability, we will only consider the case of rational homology sphere
graph manifolds.

Lemma 6.4 Let W be a graph manifold with a torus boundary that is not homeomorphic to a Seifert
fibred manifold. If ˛ 2 H1.@W IZ/=f˙1g is not the slope of a regular fibre , then W.˛/ is a graph
manifold.

Proof Let M1;M2; : : : ;Mp be the Seifert pieces of the JSJ decomposition of W. Assume that the JSJ
decomposition of W has only two pieces, M1 and M2. Without loss of generality, assume that the torus
boundary of W is contained in M2. Since ˛ is not the slope of a regular fibre, M2.˛/ is a Seifert fibred
space with boundary @M2 n @W, by [33; 8, Theorem 5.1]. Therefore, M2.˛/ is irreducible (because it
is not S1 �S2 or S1 z�S2 or P3 # P3 [14, Proposition 4.1(3)]). Hence, W.˛/ is a graph manifold with
Seifert pieces M1 and M2.˛/. Now assume that p > 2. Let Mk be the Seifert piece of W containing
the torus boundary of W. Since ˛ is not the slope of a regular fibre, Mk.˛/ is a Seifert fibred space with
boundary @Mk n @W, by [33; 8, Theorem 5.1]. Therefore, Mk.˛/ is irreducible (because it is not S1�S2

or S1 z�S2 or P3 # P3 [14, Proposition 4.1(3)]). Hence W.˛/ is a graph manifold with Seifert pieces
M1;M2; : : : ;Mk.˛/; : : : ;Mp.

Lemma 6.5 Suppose that W is a graph manifold and that @W is a torus. Suppose W has Seifert fibred
pieces M1; : : : ;Ml and that @W �M1. Then , if W.˛/ is reducible , ˛ must be the slope of the regular
fibre in a Seifert fibration of M1 unless W is a Seifert fibred space with base orbifold B1.˛1; : : : ; ˛s1/

such that ˛1 D � � � D ˛s1 D 1 or s1 D 0, and the geometric intersection number satisfies �.˛; h/ D 1,
where h is the slope of a regular fibre.

Proof Let ˛ 2H1.@W IZ/=f˙1g be a slope. We have two cases:

Case 1 Assume that ˛ is not the slope of a regular fibre. Then the geometric intersection number satisfies
�.˛; h/ D d > 0, where h is the slope of a regular fibre in M1. Hence, if the base orbifold of M1 is
B1.˛1; : : : ; ˛s1/, then the base orbifold of M1.˛/ is B01.˛1; : : : ; ˛s1 ; d /, where B0 is obtained from B

by filling a disk. We have two subcases:
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Subcase 1 Assume thatM1DW ; that is,W is a Seifert fibred space. ThenW.˛/ is a Seifert fibred space
by [33; 8, Theorem 5.1]. HenceW.˛/ is irreducible unless it is S1�S2 or P3#P3 [14, Proposition 4.1(3)].
(This is possible only in the case where ˛1 D � � � D ˛s1 D 1 or s1 D 0, and d D 1.)

Subcase 2 If W is not a Seifert fibred space, then W.˛/ is a graph manifold by Lemma 6.4. Hence,
W.˛/ is irreducible by definition of a graph manifold.

Case 2 If ˛ is the slope of a regular fibre, then W.˛/ may be reducible [33; 8, Theorem 5.1].

Given a rational homology sphere graph manifold W, note that the underlying graph must be a tree. In
this situation, for a fixed JSJ torus T, note that W n T has two components. We denote the closure of
these components by W1 and W2, and by � W @W1! @W2 the homeomorphism such that W DW1[�W2.
We use this fixed notation for the discussion and proof below.

Define a class C of rational homology sphere graph manifolds to be the smallest collection of 3-manifolds
satisfying:

(1) All connected, irreducible rational homology sphere Seifert fibred manifolds belong to C.

(2) A rational homology sphere graph manifold W is in C if and only if, for every JSJ torus T �W,

(a) at least one of W1.��1� .�W2
// and W2.��.�W1

// has infinite fundamental group, and

(b) every irreducible manifold of the form Wi .˛/ satisfying jH1.Wi .˛/IZ/j<1 lies in C.

Theorem 6.6 For W 2 C, if �1.W / is infinite , then it is circularly orderable.

Proof For every graph manifold W, let nW denote the minimal number of tori required to cut W into
Seifert fibred pieces (ie the number of tori in its JSJ decomposition). When nW D 0, if �1.W / is infinite,
then it is circularly orderable by Theorem 1.2. For induction, assume that k � 0 and that �1.W / is
circularly orderable for all W 2 C with nW � k, and consider the case of nW D kC 1.

For a manifold W 2 C with nW D kC 1 and infinite fundamental group, choose a JSJ torus T such that
W nT results in two pieces W1 and W2 such that W1 is Seifert fibred.

First suppose that W2.��.�W1
// has infinite fundamental group and let M1; : : : ;Ml denote the Seifert

fibred pieces of the JSJ decomposition of W2; assume that @W2 �M1.

Next suppose that W2.��.�W1
// is irreducible. If H1

�
W2.��.�W1

//IZ
�

is finite, then we conclude
W2.��.�W1

// 2 C by property (2)(b). Then ��.�W1
/ is not the slope of a regular fibre in the outer-

most piece of M1 and the JSJ components of W2.��.�W1
// are precisely the Seifert fibred mani-

folds M1.��.�W1
//;M2; : : : ;Ml by Lemma 6.4. Thus W2.��.�W1

// is a graph manifold in C with
nW2.��.�W1

// < nW , so �1
�
W2.��.�W1

//
�

is circularly orderable by induction. On the other hand, if
H1
�
W2.��.�W1

//IZ
�

is infinite, then �1
�
W2.��.�W1

//
�

is left-orderable, and hence circularly orderable,
by [14, Theorem 3.2]. In either case it follows that �1.W / is circularly orderable by Proposition 5.6(2).
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Now suppose that W2.��.�W1
// is reducible, in which case ��.�W1

/ must be the slope of a regular
fibre in @M1, or W2.��.�W1

// is S1 � S2 or P3 # P3, by Lemma 6.5. If W2.��.�W1
// is S1 � S2 or

P3 # P3, then, as each has circularly orderable fundamental group, �1.W / is circularly orderable by
Proposition 5.6(2).

Next, in the case that ��.�W1
/ is the slope of a regular fibre in @M1, recall that H1.W IZ/ is finite and so

the surface underlying the base orbifold of M1 has genus zero. Further suppose that M1 has r exceptional
fibres and boundary tori T; T1; : : : ; Tm, and that W2 nM1 has components Y1; : : : ; Ym, where each Yj is
a graph manifold with torus boundary. Let �j W @Yj ! Tj �M1 for j D 1; : : : ; m denote the gluing maps
that recover W2 from the pieces M1; Y1; : : : ; Ym. In this case, by [8, Theorem 5.1; 33], filling M1 along
��.�W1

/ yields
M1.��.�W1

//Š L1 # � � � #Lr # .S1 �D2/ # � � � # .S1 �D2/

or
M1.��.�W1

//Š L1 # � � � #Lr # .S1 �D2/ # � � � # .S1 �D2/ # .S1 �S2/;

depending on whether or not the underlying manifold of the base orbifold is a punctured S2 or P2.
Here, L1; : : : ; Lr are lens spaces, there are m copies of S1 �D2, each arising from a torus component
of @M1 nT, and each @D2 is path-homotopic to (the image of) a regular fibre in the Dehn filled manifold
M1.��.�W1

//.

Therefore, if we denote the slope of a regular fibre on @M1 by h, it follows that

W2.��.�W1
//Š L1 # � � � #Lr #Y1..��11 /�.h// # � � � #Ym..��1m /�.h//

or
W2.��.�W1

//Š L1 # � � � #Lr #Y1..��11 /�.h// # � � � #Ym..��1m /�.h// # .S1 �S2/;

again depending on whether or not the base orbifold is orientable.

In either case, we may proceed as follows. Suppose that every manifold Yj ..��1j /�.h// for j D 1; : : : ; m
has infinite fundamental group. If Yj is homeomorphic to a Seifert fibred manifold, it follows that its
fundamental group of Yj ..��1j /�.h// is circularly orderable by Theorem 1.2. On the other hand, if Yj
is not homeomorphic to a Seifert fibred manifold, then, as .��1j /�.h/ is not the slope of a regular fibre
in the outermost Seifert fibred piece of Yj , we know that Yj ..��1j /�.h// is irreducible by Lemma 6.4.
Thus either

ˇ̌
H1
�
Yj ..�

�1
j /�.h//IZ

�ˇ̌
D1 or

ˇ̌
H1
�
Yj ..�

�1
j /�.h//IZ

�ˇ̌
<1 and Yj ..��1j /�.h// 2 C by

property (2)(b). In the former case, the fundamental group of Yj ..��1j /�.h// is circularly orderable since
it is in fact left-orderable by [14, Theorem 3.2]. In the latter case, we may argue that nYj ..�

�1
j
/�.h//

<nW ,
so the fundamental group of Yj ..��1j /�.h// is circularly orderable by induction.

It follows that �1
�
W2.��.�W1

//
�

is a free product of circularly orderable groups, and thus is circularly
orderable. Note it is also infinite by assumption. Last, note that �W1

is not the slope of a regular fibre
in @W1, since it is glued via �� to the slope of a regular fibre in @M1, and thus W1.�W1

/ is irreducible
by [33]. Therefore �1.W / is circularly orderable by Proposition 5.6(2).
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Now suppose that there exists j0 such that the fundamental group of Yj0
..��1j0

/�.h// is finite, in which
case Yj0

is Seifert fibred and .��1j0
/�.h/ is not equal to the rational longitude �Yj0

of Yj0
. One of the

components of W n Tj0
is Yj0

; we will call the other component W 00, so that W D Yj0
[�j0

W 00. Note
that W 00..�j0

/�.�Yj0
// is irreducible by Lemma 6.4, since .�j0

/�.�Yj0
/ is not the slope a regular fibre

in the outermost piece of W 00. Thus, either the homology of W 00..�j0
/�.�Yj0

// is infinite and so it has
left-orderable fundamental group, or the homology is finite and so W 00..�j0

/�.�Yj0
// 2 C. In the latter

case, W 00..�j0
/�.�Yj0

// has infinite fundamental group since it is an irreducible graph manifold whose
JSJ decomposition consists of two or more Seifert fibred pieces, and its fundamental group is circularly
orderable by induction. Thus we may apply Proposition 5.6(2) with Yj0

in place of M1 and W 00 in place
of M2 in order to conclude that �1.W / is circularly orderable.

Last, suppose W2.��.�W1
// has finite fundamental group (and thus W2 is Seifert fibred), so that

W1.�
�1
� .�W2

// is infinite by property (2)(a). Then �1
�
W1.�

�1
� .�W2

//
�

is circularly orderable by
Theorem 1.2. Thus the result follows from Proposition 5.6(2).

We can more precisely codify the manifolds covered by Theorem 6.6 as follows. The possible base
orbifolds of a Seifert fibred manifold admitting a single incompressible torus boundary component and a
finite filling are

A WD fD2.p; q/;D2.2; 2; r/;D2.2; 3; 3/;D2.2; 3; 4/;D2.2; 3; 5/ j r � 1; p � 2; q � 2g:

Proof of Theorem 1.3 First, if W is not a rational homology sphere, then the first Betti number b1.W /
is positive, so �1.W / is left-orderable by [14, Theorem 3.2]. Second, if W is a graph manifold satisfying
the assumptions of Theorem 1.3 and W is Seifert fibred, then Theorem 1.2 finishes the proof.

From here, we complete the proof by showing that, if W is a rational homology sphere graph manifold
satisfying the hypotheses of Theorem 1.3, then W 2 C, so Theorem 6.6 applies.

To do this, we induct on the number nW of tori in the JSJ decomposition of W, noting that, if W satisfies
the hypotheses of Theorem 1.3 and nW D 0, then W 2 C by definition. Next suppose that every rational
homology sphere graph manifold W satisfying the hypotheses of Theorem 1.3 with nW < k lies in C,
and consider W with nW D k.

Suppose W has Seifert fibred pieces M1; : : : ;Ml . Choose an arbitrary JSJ torus T �W and cut along T
to arrive at W DW1[� W2.

Considering W1.��1� .�W2
// and W2.��.�W1

//, if either admits a JSJ decomposition with one or more
JSJ tori, then its fundamental group is infinite. On the other hand, if either is Seifert fibred, then again the
fundamental group is infinite since the hypotheses of Theorem 1.3 imply the base orbifold of Mi is not
in A for i D 1; : : : ; l . In any event, W satisfies property (2)(a) in the definition of C.

Next suppose that W1.˛/ is irreducible for some ˛ 2H1.W1IZ/=f˙1g and that H1.W.˛/IZ/ is finite. If
W1 is Seifert fibred, then W1.˛/ is Seifert fibred and so lies in C by definition. On the other hand, if W1 is
not Seifert fibred, then, by Lemma 6.5, ˛ must not be the slope of the regular fibre in the outermost piece
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of W1 and so W1.˛/ is a graph manifold by Lemma 6.4. Moreover, nW1.˛/ < k and so W1.˛/ 2C by our
induction assumption. As the same arguments hold for W2, we conclude that W satisfies property (2)(b)
in the definition of C, and thus W 2 C.

In fact, supposeW is an arbitrary rational homology sphere graph manifold admitting a JSJ decomposition
W DM1[�M2 such that the base orbifold of Mi lies in A. If �1.W / is circularly orderable for every
such W, then Theorem 6.6 and its proof can be used, mutatis mutandis, to show that the fundamental
group of every rational homology sphere graph manifold is circularly orderable whenever it is infinite.
We thus make explicit exactly which graph manifolds having two pieces in their JSJ decomposition are
covered by Theorem 6.6.

Let E be the set of graph manifolds whose JSJ decomposition has at least one Seifert piece with base
orbifold in A. Further, set

FD fD2.2; 2/;D2.2; 3/;D2.3; 3/;D2.3; 4/;D2.3; 5/g �A:

Corollary 6.7 Let W be a rational homology sphere graph manifold whose JSJ decomposition has only
two Seifert pieces M1 and M2 with base orbifolds B1.p

1
1 ; : : : ; p

1
s1
/ and B2.p

2
1 ; : : : ; p

2
s2
/, respectively.

Let � W @M1 ! @M2 denote the gluing map that recovers W from the pieces M1 and M2, and let �i
and hi denote the rational longitude and the slope of a regular fibre on @Mi for each of i D 1; 2. Suppose
that W satisfies

(1) W … E; or

(2) the base orbifold of M1 lies in A and the base orbifold of M2 is not in A; or

(3) the base orbifolds of both M1 and M2 lie in A with B1.p
1
1 ; : : : ; p

1
s1
/ … F, and

(a) if B2.p
2
1 ; : : : ; p

2
s2
/ … F, then either �.��.�1/; h2/ > 1 or �.��1� .�2/; h1/ > 1;

(b) if B2.p
2
1 ; : : : ; p

2
s2
/ 2 F, then either

� �.��1� .�2/; h1/ > 1, or
� B2.p

2
1 ; : : : ; p

2
s2
/DD2.2; 3/ and �.��.�1/; h2/ > 5, or

� B2.p
2
1 ; : : : ; p

2
s2
/DD2.3; 3/ and �.��.�1/; h2/ > 2, or

� B2.p
2
1 ; : : : ; p

2
s2
/DD2.3; 4/ and �.��.�1/; h2/ > 2, or

� B2.p
2
1 ; : : : ; p

2
s2
/DD2.3; 5/ and �.��.�1/; h2/ > 2;

then �1.W / is circularly orderable.

Proof We prove only case (3)(b), as the other statements claimed are all consequences of Theorem 6.6,
since any such manifold lies in C.

Assume that B1.p
1
1 ; : : : ; p

1
s1
/ … F, B2.p

2
1 ; : : : ; p

2
s2
/ 2 F and �.��1� .�2/; h1/ > 1. Let ' D ��1. Since

B1.p
1
1 ; : : : ; p

1
s1
/…F and�.��1� .�2/; h1/ > 1, �1

�
M1.'.�2//

�
is infinite and circularly orderable. Since

B2.p
2
1 ; : : : ; p

2
s2
/ 2F, M2 is Seifert fibred with incompressible boundary. Therefore, �1.M/ is circularly

orderable by Proposition 5.6.

Algebraic & Geometric Topology, Volume 25 (2025)



Circular-orderability of 3-manifold groups 815

Next assume that B2.p
2
1 ; : : : ; p

2
s2
/DD2.2; 3/ (resp. D2.3; 3/, D2.3; 4/, D2.3; 5/) and�.��.�1/; h2/>5

(resp. �.��.�1/; h2/ > 2). Then the base orbifold of M2.�.�1// is S2.2; 3; a/ (resp. S2.3; 3; a/,
S2.3; 4; a/, S2.3; 5; a/) with a � 6 (resp. a � 3). Hence, �1

�
M2.�.�1//

�
is infinite and circularly

orderable. Since B1.p
1
1 ; : : : ; p

1
s1
/ 2A, M1 is Seifert fibred with incompressible boundary. Therefore,

�1.M/ is circularly orderable by Proposition 5.6.

6.3 Graph manifolds with two pieces

Our goal in this section is to show that we can circularly order many of the fundamental groups of graph
manifolds having two pieces in their JSJ decomposition that are not covered by Corollary 6.7.

Lemma 6.8 Let W be a 3-manifold obtained by gluing two knot exteriors in some integer homology
3-spheres on their torus boundary by some orientation-reversing homeomorphism. Then H1.W;Z/ is
cyclic.

Proof Let K1 and K2 be two knots in some integer homology 3-spheres W1 and W2, respectively. Let
M1 and M2 be the knot exteriors of K1 and K2, respectively. Let W be the 3-manifold obtained by
identifying @M1 and @M2 by some orientation-reversing homeomorphism '. Let .�1; �1/ and .�2; �2/
be the meridian–longitude slope pairs of @M1 and @M2, respectively. Let '�.�1/ D a�2 C b�2 and
'�.�1/D c�2C d�2.

Let T D @M1 Š @M2. We have the Mayer–Vietoris sequence

� � � !H1.T IZ/
�1
�!H1.M1IZ/˚H1.M2IZ/

 1
�!H1.W IZ/

@1
�!H0.T IZ/

�0
�!H0.M1IZ/˚H0.M2IZ/

 0
�!H0.W IZ/! 0:

We have that �1 D 0 in H1.M1IZ/, and H1.M1IZ/ is generated by �1. We have also that �2 D 0 in
H1.M2IZ/, and H1.M2IZ/ is generated by �2. We consider f�1; �1g to be the generators of H1.T IZ/.
Hence, �1.�1/D iT .�1/˚�iT .�1/D .�1;�a�2/ and �1.�1/D iT .�1/˚�iT .�1/D .0;�c�2/. By
exactness, im.�1/Dker. 1/, im. 1/Dker.@1/ and im.@1/Dker.�0/. Since T,M1 andM2 are connected
and hence path-connected, �0 is injective. Therefore, im.@1/D 0 and im. 1/D ker.@1/DH1.W IZ/.
So H1.W IZ/D im. 1/ŠH1.M1IZ/˚H1.M2IZ/=ker. 1/DH1.M1IZ/˚H1.M2IZ/=im.�1/D
Z˚ Z=im.�1/. We have that im.�1/ D h.�1;�a�2/; .0;�c�2/i Š h.1;�a/; .0;�c/i. Consider the
matrix

�
1 0
�a �c

�
. By adding a times the first row to the second row, we obtain

�
1 0
0 �c

�
. Hence im.�1/D

h.�1;�a�2/; .0;�c�2/i Š h.1;�a/; .0;�c/i Š h.1; 0/; .0;�c/i Š Z˚jcjZ, and so

H1.W IZ/D im. 1/ŠH1.M1IZ/˚H1.M2IZ/=ker. 1/DH1.M1IZ/˚H1.M2IZ/=im.�1/;

with this final group being isomorphic to Z˚Z=.Z˚jcjZ/Š Zjcj.

If W is a rational homology sphere graph manifold, we can construct a graph called the splice diagram
�.W / as follows: nodes are in one-to-one correspondence with the Seifert pieces of W. Two nodes are
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a

b

c

d1 d

e

d2
C �

Figure 1: Example of a splice diagram.

connected by an edge if the corresponding Seifert fibred pieces are glued together along a common torus
boundary component. To each node, one attaches a leaf for each singular fibre of the corresponding
Seifert fibred piece.

We then decorate the graph so constructed as follows: Each edge corresponding to a leaf is labelled with
the multiplicity of the corresponding singular fibre. Let v be a node of �.W / and e be an edge of �.W /
connecting v. Let N and K be the two pieces of W obtained by cutting W along the torus corresponding
to e such that K does not contain Mv , where Mv is the Seifert piece of W corresponding to v. Let D be
the manifold obtained by Dehn filling K with a solid torus D2 �S1 by identifying a regular fibre of @K
with a meridian of D2 �S1. Let dv D jH1.D/j, and take dv to be the label of the edge e at the node v.
We also decorate the nodes of �.W / with signs C or � corresponding to the sign of the linking number
of two nonsingular fibres in the Seifert fibration (see [46, Section 2] for more details).

Proposition 6.9 Suppose that M1 and M2 are Seifert fibred spaces with incompressible boundaries and
base orbifolds D2.a1; : : : ; as/ and D2.b1; : : : ; bt /, respectively , and that each is the exterior of a knot in
an integer homology sphere. Let W be a graph manifold obtained by gluing M1 and M2 along their torus
boundaries by some orientation-reversing homeomorphism. If gcd.ai ; al/D 1 and gcd.bj ; bk/D 1 for
1� i ¤ l � s and 1� j ¤ k � t , and gcd.ai ; bk/D 1 for all i D 1; : : : ; s and k D 1; : : : t , then �1.W /
is circularly orderable.

Proof With the restrictions on ai and bk as in the statement of the theorem, the manifold W has a
corresponding splice diagram �.W / with two nodes. The edge labels around any node in the diagram are
all pairwise coprime, so, by [46, Corollary 6.3], the universal abelian cover of W is an integer homology
sphere graph manifold. Hence, the commutator group Œ�1.W /; �1.W /� is left-orderable by [20]. Since
H1.W / is cyclic by Lemma 6.8, �1.W / is circularly orderable by Proposition 2.3.

In particular, Proposition 6.9 applies to manifolds W DM1 [�M2 where Mi are torus knot exteriors
whose cone points have relatively coprime orders. Manifolds of this form are not completely covered by
Corollary 6.7 or Theorem 6.6. We can further deal with other special cases of interest not covered by
these theorems.
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Proposition 6.10 Suppose that W DM1 [�M2 where each Mi is a twisted I -bundle over the Klein
bottle. Then �1.W / is circularly orderable.

Proof The fundamental group of W is an amalgamated free product of two Klein bottle groups K1 D
ha; b j a2 D b2i and K2 D hc; d j c2 D d2i, whose peripheral subgroups are ha2; abi and hc2; cd i,
respectively. The amalgamation is with respect to an isomorphism � W ha2; abi ! hc2; cd i. Observe that
K1 admits a lexicographic circular ordering arising from the short exact sequence

1! ha2; abi !K1! Z=2Z! 1;

and that K2 admits a similar lexicographic circular ordering, with the choice of left-ordering on the
subgroup ha2; abi (resp. hc2; cd i) being arbitrary. As such, we can construct circular orderings of K1
and K2 so that the homomorphism � is order-preserving, and the subgroups ha2; abi and hc2; cd i are
convex.4 Then, by [17, Proposition 1.1], �1.W / is circularly orderable.

Proof of Theorem 1.4 Suppose M is such a manifold. By [14, Theorem 1.7(1)], if the boundary of M
is not empty, or M is nonorientable, or M is a torus bundle over the circle, then �1.M/ is left-orderable.
Thus �1.M/ is circularly orderable. By [14, Section 9], the only case which is left to check is when M
is orientable and the union of two twisted I -bundles over the Klein bottle K, which are glued together
along their torus boundaries. Therefore Proposition 6.10 finishes the proof.

It seems, however, that the special case of a graph manifold consisting of two Seifert fibred pieces, each
admitting finite fillings, is out of reach of our current technology. A general notion of “slope detection by
a circular ordering” is likely needed to deal with these last few cases, though our results thusfar contribute
ample evidence for the truth of the following conjecture:

Conjecture 6.11 Suppose W is a rational homology sphere graph manifold. If �1.W / is infinite, then it
is circularly orderable.

7 Cyclic branched covers and Dehn surgery

With respect to certain well-known geometric constructions, left-orderability is conjectured to exhibit
certain predictable behaviours. In this section we contrast the conjectured “predictable behaviours” of left-
orderability with the behaviour of circular-orderability, which is strikingly different and whose expected
behaviour at this time is completely unknown.

7.1 Cyclic branched covers

We recall the standard construction of the cyclic covers and cyclic branched covers of a knot in S3 in
order to establish notation.
4Convexity here means that the quotient group inherits a circular ordering. For a more general definition and discussion of
convexity in the context of circular orderings, see [17].
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Let K be an oriented knot in S3. Let MK be the exterior of K and S be a Seifert surface for K. Isotope
S so that S \ @MK is a longitude of K and let F D S \MK . Let C be a tubular neighbourhood of F
in MK , so that C is homeomorphic to F � Œ�1; 1�.

Set Y DMK nF � .�1; 1/. The boundary of Y contains two copies of F, which we denote by F� Š
F � f�1g and FC Š F � f1g; use these to create a triple .Y; FC; F�/. Consider n copies of this triple,
denoted by .Yi ; FCi ; F

�
i / for i D 0; : : : ; n� 1, and glue them together by identifying FC0 � Y0 with

F�1 �Y1, FC1 �Y1 with F�2 �Y2, : : : , FCn�2�Yn�2 with F�n�1�Yn�1 and FCn�1�Yn�1 with F�0 �Y0.
Call the resulting space Xn.

There is a regular covering map g W Xn ! MK and its group of deck transformations is isomorphic
to Z=nZ. The manifold Xn is called the n-fold cyclic cover of MK and its fundamental group is
isomorphic to ker.�1.MK/! Z=nZ/. To construct the n-fold cyclic branched cover †n.K/, we glue
a solid torus V Š D2 � S1 to Yn by identifying the meridian @D2 � f1g of V with the preimage of
the meridian � of @MK under the map g W Xn ! MK . The manifold †n.K/ that results is a closed,
oriented 3-manifold. For any n 2N, let qn WXn!†n.K/ be the inclusion map. The map qn induces a
homomorphism .qn/� W �1.Xn/! �1.†n.K// and ker.qn/� D hh�nii. Therefore we have a short exact
sequence 1! hh�nii ! �1.Xn/! �1.†n.K//! 1, which identifies the fundamental group of †n.K/
as the quotient of a certain subgroup of the knot group �1.MK/.

IfL�S3 is an oriented link, then the n-fold cyclic branched cover ofL,†n.L/, can be also constructed [7].

Set
LObr.K/D fn� 2 j �1.†n.K// is left-orderableg

and
CObr.K/D fn� 2 j �1.†n.K// is circularly orderableg:

Note that LObr.K/� CObr.K/.

Motivated by the L-space conjecture, in [52, Question 1.8; 7], the authors ask whether or not the set
LObr.K/ is always of the form fn j n�N g for some N � 2, or empty. In contrast, circular-orderability
does not behave this way, with this behaviour being evident upon examining the torus knots. For example,
considering the trefoil, we have the following:

Proposition 7.1 With notation as above , CObr.31/D f2g[ fn j n� 6g.

Proof The double branched cover of 31 is the lens space L.3; 1/, so its fundamental group is circularly
orderable. On the other hand, the 3-, 4- and 5-fold branched cyclic covers of 31 have fundamental group
the quaternion group, the binary tetrahedral group, and the binary icosahedral group, respectively, all of
which are finite and noncyclic. It follows from Proposition 2.5 that none of these groups are circularly
orderable. For n� 6 we know that n 2 LObr.31/� CObr.31/ by [28, Theorem 1.2(i)].

This behaviour is not confined to torus knots.
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Proposition 7.2 With notation as above ,

2 2 CObr.52/ and 3 … CObr.52/; and fn j n� 9g � CObr.52/:

Proof The knot 52 is a two-bridge knot, corresponding to the fraction 7
4

. As such, its double branched
cover is the lens space L.7; 4/, which has fundamental group Z=7Z, and is therefore circularly orderable.

On the other hand, the fundamental group of the Weeks manifold W is not circularly orderable by [16,
Theorem 9.2], yet W is homeomorphic to †3.52/ by [39, Main result].

Last, n 2 LObr.52/� CObr.52/ for all n� 9 by [34].

There are also examples of knots for which LObr.K/ is empty. Notable examples are the two-bridge
knots p=q D 2mC 1=.2k/, or LŒ2k;2m� with k;m > 0 in Conway’s notation [24]. However, for these
knots, CObr.K/ is never empty, because the double branched cover is the lens space L.p; q/, for which
�1.L.p; q//DZ=pZ, and is thus circularly orderable. Indeed, for the figure eight knot 41, which isLŒ2;2�,
we can show that infinitely many of the cyclic branched covers have circularly orderable fundamental
group. We first require a proposition.

Proposition 7.3 Let K be a prime knot in S3. If n � 2 and �1.†n.K// is circularly orderable and
infinite , then �1.†m.K// is circularly orderable for all m divisible by n.

Proof By [28, Lemma 2.11], there exists a surjective group homomorphism

qm;n W �1.†m.K//! �1.†n.K//

for any positive integer m divisible by n. By [47], the manifolds †m.K/ are irreducible and so
Proposition 3.2(2) applies; we conclude that �1.†m.K// is circularly orderable.

Proposition 7.4 If n is divisible by 3, then �1.†n.41// is circularly orderable. In particular , 3N �
CObr.41/.

Proof The manifold†3.41/ is homeomorphic to the Hantzsche–Wendt manifold, which is a Seifert fibred
manifold with infinite fundamental group. Therefore �1.†3.41// is circularly orderable by Theorem 1.2.
The result now follows from Proposition 7.3.

These observations naturally lead to the following questions:

Question 7.5 What subsets of N can occur as CObr.K/ for a knot K in S3?

Question 7.6 Is there a knot K in S3 for which CObr.K/D∅?

7.2 Double branched covers

In this section we study the circular-orderability of the double branched cover of links, in particular the
case of double branched covers of alternating links. We start with the observation that, if the L-space
conjecture is true, then the fundamental group of the double branched cover of a quasialternating knot is
never left-orderable (the double branched cover of a quasialternating link is an L-space [45]).
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In contrast to this, there are alternating Montesinos links whose double branched cover are prism manifolds
by [49; 4], so their fundamental groups are not circularly orderable by Proposition 2.5. Similarly, it turns
out that the Weeks manifold is homeomorphic to †2.949/ [39, Main result], and so the double branched
cover of 949 has non-circularly orderable fundamental group. Yet 949 is a quasialternating knot [35].

On the other hand, there are many examples of alternating and quasialternating knots whose double
branched covers do have circularly orderable fundamental groups, as the next two results show.

7.2.1 Generalized Fibonacci groups Let M.k;m/ denote the double branched cover of the alternating
link which is the closure of the 3-strand braid .�k1 �

�k
2 /m, where m and k are positive integers. By [38,

page 169], the fundamental group of M.k;m/ is isomorphic to the generalized Fibonacci group

F k2m D hx1; : : : ; x2m j xix
k
iC1 D xiC2 for any i D 1; : : : ; 2mi;

where the indices are taken mod 2m.

Proposition 7.7 For any k � 2, the fundamental group of M.k;m/ is circularly orderable.

Proof For any k � 2, M.k;m/ is irreducible by [38, Lemma 6 and page 171]. Moreover we can define
an epimorphism � WF k2m!Zk �Zk by �.x2i / 7! x and �.x2iC1/ 7! y, where x and y are the generators
of Zk � Zk . Since Zk � Zk is circularly orderable by Proposition 2.4(2), �1.M.k;m// is circularly
orderable by Proposition 3.2(2).

Remark 7.8 For k � 2, the manifolds M.k; 2/ are obtained by identifying two Seifert fibred spaces
along a common torus boundary [38, page 171]. Thus M.k; 2/ is a graph manifold. For k � 2 and m� 3,
the manifolds M.k;m/ are irreducible, Haken and atoroidal hyperbolic 3-manifolds by [38, Lemma 6].

7.2.2 Generalized Takahashi manifolds Fix two positive integers n and m and a collection of integers
fpk;j ; qk;j ; rk;j ; sk;j g satisfying gcd.pk;j ; qk;j / D 1, gcd.rk;j ; sk;j / D 1 and pk;j ; rk;j � 0 for all
1� k � n and 1� j �m. The generalized Takahashi manifold Tn;m.pk;j =qk;j I rk;j =sk;j / is the double
branched cover of S3, branched over the closure of the braid appearing in Figure 2 [43, Theorem 3], first
defined in [43, Section 2]. We will denote the closure of this braid by Ln;m.pk;j =qk;j I rk;j =sk;j /.

This family of manifolds contains many well-known 3-manifolds, such as all n-fold cyclic branched
covers of 2-bridge knots, the Weeks manifold, and some graph manifolds. When pk;j D pj , qk;j D qj ,
rk;j D rj and sk;j D sj for all 1 � k � n and 1 � j � m, the manifold Tn;m.pj =qj I rj =sj / is called a
generalized periodic Takahashi manifold; correspondingly, it is the double branched cover of the link
Ln;m.pj =qj I rj =sj /.

Each generalized periodic Takahashi manifold can also be viewed as a cyclic branched cover over a knot
in a connected sum of lens spaces.
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pk�1;1
qk�1;1
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qk;1
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rk�1;m
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:::
:::

:::
:::
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Figure 2: The braid that defines the generalized Takahashi manifold Tn;m.pk;j =qk;j I rk;j =sk;j /.
The fraction used to label each box determines the rational tangle used in that box to create
Ln;m.pk;j =qk;j I rk;j =sk;j /.

Theorem 7.9 [43, Theorem 6] The generalized periodic Takahashi manifold Tn;m.pj =qj I rj =sj / is the
n-fold cyclic branched cover of the connected sum of 2m lens spaces

L.p1; q1/ #L.r1; s1/ # � � � #L.pm; qm/ #L.rm; sm/

branched over a knot which does not depend on n.

We use this as follows:

Theorem 7.10 The fundamental group of a generalized periodic Takahashi manifold Tn;m.pj =qj I rj =sj /
is circularly orderable if the set fpj ; rj j 1� j �mg contains at least two elements different from 1 and
the link Ln;m.pj =qj I rj =sj / is prime.

Proof Since the link Ln;m.pj =qj I rj =sj / is prime, Tn;m.pj =qj I rj =sj / is irreducible by the equivariant
sphere theorem [40] and the positive answer of the Smith conjecture [41]. By Theorem 7.9 and [28,
Lemma 2.11], there exists a surjective homomorphism from the fundamental group of the generalized
periodic Takahashi manifold �1.Tn;m.pj =qj I rj =sj // to the free product Zp1

�Zr1
� � � � �Zpm

�Zrm
.

Therefore, if the set fpj ; rj j 1� j �mg contains at least two elements different from 1, this free product
is infinite, and hence, by Proposition 3.2, �1.Tn;m.pj =qj I rj =sj // is circularly orderable.
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Remark 7.11 The family of generalized Fibonacci manifolds is a subfamily of the family of generalized
periodic Takahashi manifolds.

Question 7.12 Is it possible to characterize the knots K � S3 for which �1.†2.K// is circularly
orderable?

7.3 Dehn surgery

In this brief section, we point out that circular-orderability of manifolds arising from Dehn surgery on a
knot in an integer homology 3-sphere has already appeared in the literature under a different guise, from
which we already observe different behaviour than left-orderability with respect to Dehn surgery.

Recall that, for a knot K in an irreducible integer homology 3-sphere M, the result of p=q Dehn surgery
on M is denoted by Mp=q.K/. The L-space conjecture predicts that, for a knot K in S3, if �1.S3p=q.K//
is non-left-orderable for some p=q > 0, then in fact �1.S3p=q.K// is non-left-orderable precisely when
p=q � 2g.K/� 1, where g.K/ is the genus of K [44, Proposition 2.1; 48, Theorem 1].

To contrast this with circular-orderability, we first observe that, in light of Theorem 1.1:

Proposition 7.13 Suppose that M is a compact , connected , P2-irreducible 3-manifold and H1.M IZ/
is cyclic. Then �1.M/ is circularly orderable if and only if the universal abelian cover of M has
left-orderable fundamental group.

Consequently, for an irreducible integer homology 3-sphereM, since we haveH1.Mp=q.K/IZ/ŠZ=pZ,
we precisely need to investigate the universal abelian covers of these manifolds in order to know whether
or not their fundamental groups are circularly orderable. This is precisely what is done in [13].

When K is fibred, we use h to denote its monodromy and c.h/ the fractional Dehn twist coefficient of h;
see [13, Section 4] for details.

Theorem 7.14 [13] Suppose that K is a fibred hyperbolic knot in an irreducible integer homology
3-sphereM. Given coprime p and q with p� 1, the universal abelian cover ofMp=q.K/ has left-orderable
fundamental group whenever

(1) pc.h/ 2 Z and q ¤ pc.h/, or

(2) pc.h/ … Z and q … fbpc.h/c; bpc.h/cC 1g.

Consequently, for any fibred knot K in an irreducible integer homology 3-sphere M, the result of p=q
surgery is a manifold with circularly orderable fundamental group whenever the surgery coefficient p=q
satisfies either condition (1) or (2) of Theorem 7.14.

Question 7.15 Fix a knot K in an irreducible integer homology 3-sphere M. Is it true that the set
fp=q jMp=q.K/ is not circularly orderableg is always finite?
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