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Verdier duality on conically smooth stratified spaces

MARCO VOLPE

We prove a duality for constructible sheaves on conically smooth stratified spaces. We consider sheaves
with values in a stable and bicomplete oo-category equipped with a closed symmetric monoidal structure,
and in this setting constructible means locally constant along strata and with dualizable stalks. The crucial
point where we need to employ the geometry of conically smooth structures is in showing that Lurie’s
version of Verdier duality restricts to an equivalence between constructible sheaves and cosheaves: this
requires a computation of the exit paths co-category of a compact stratified space, which we obtain via
resolution of singularities.
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1 Introduction

Constructible sheaves are of great interest in both algebraic and differential geometry, as they provide tools
to study invariants for singular spaces (such as intersection cohomology; see Beilinson, Bernstein and
Deligne [8]) and have relations with D-modules (see Kashiwara [12]). Roughly speaking, constructible
sheaves are sheaves on stratified spaces that behave nicely on strata (see Definition 3.2 for more details).
A fundamental feature of constructible sheaves is that, assuming a finiteness condition on the stalks, they
carry a duality sometimes referred to as Verdier duality. This is an antiequivalence from the category of
constructible sheaves to itself, which is defined by taking an internal hom into the dualizing complex.
Verdier duality has many applications; for example, using abstract trace methods it allows one to associate
to any constructible sheaf a class in Borel-Moore homology. One of the interests of these classes is
that they can be related to Euler characteristics via computations with the six-functor formalism (see
Kashiwara and Schapira [13, Chapter 9] for a discussion on classical index formulas and their microlocal
enhancements).
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920 Marco Volpe

As far the author knows, it was an idea of MacPherson that, when the strata are manifolds, the duality
should be thought of as a combination of two different equivalences of categories. The first, induced
by the construction of sections with compact support, was expected to identify constructible sheaves
with constructible cosheaves. Without constructibility assumptions, this was proven by Lurie [15,
Theorem 5.5.5.1]. The second maps contravariantly constructible cosheaves to sheaves, and is obtained
using a foreseen combinatorial description of constructible (co)sheaves, similar in spirit to monodromy for
local systems. Following Barwick, Glasman and Haine [7], we refer to this combinatorial description as
exodromy (see [15, Theorem A.9.3] and Ayala, Francis and Tanaka [5, Theorem 1.2.5]). The topological
exodromy equivalence uses a generalization of the homotopy type of a stratified topological space, which
keeps track of the stratification. This is known as the category of exit paths of a stratified topological
space (see [15, Definition A.6.2] and Treumann [19]). We use here the language of oco-categories to
realize the vision of MacPherson and prove the expected duality result in a very general setting.

The first appearance of a proof of Verdier duality following the approach proposed by MacPherson is due
to Curry [10, Theorem 7.7]. That work deals with derived categories of constructible (co)sheaves of vector
spaces on locally finite regular CW complexes. This approach was later generalized by Aoki [1], working
with spectra-valued functors on posets. In our setting, a stratum can be any smooth manifold. Hence, via
exodromy, we obtain a duality for spectra-valued functors on co-categories that are not necessarily posets.
Another mention of Verdier duality is due to Ayala, Mazel-Gee and Rozenblyum [6, Example 1.10.8],
who outline a strategy to prove Verdier duality on stratified topological spaces that is essentially the same
as the one we employ in this paper. However, some of the main steps in their outline lack a rigorous proof
(see Remark 4.10 for a more detailed comment).

Let us spend a few words to specify more precisely the framework in which we are working. Relying on
our previous paper [20], we will be able to deal with sheaves valued in any stable bicomplete co-category C,
equipped with a closed symmetric monoidal structure. The machinery of six functors developed in [20]
supplies us with a dualizing sheaf a)g, for any C as above and X a locally compact Hausdorff stratified
space. More precisely, if @: X — x* is the unique map, a); is defined by applying the functor

ah: C— Shv(X:C)

to the monoidal unit of €. Our duality functor will be given by taking an internal hom into a); and
denoted by Df’(.

Following the nomenclature of [7], we will define a sheaf with values in € to be formally constructible'
if its restriction to each stratum is locally constant, and constructible if furthermore all of its stalks are
dualizable. Similar definitions can be given for C-valued cosheaves by observing that, up to passing to an
opposite category, these are C°P-valued sheaves.

Un this paper we will only deal with sheaves which are constructible with respect to a fixed stratification, as opposed to [13,
Chapter 8], for example.
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Verdier duality on conically smooth stratified spaces 921

Remark 1.1 The requirement of dualizability for stalks is unavoidable because, when X is the point,
a))(} is the monoidal unit of € and the duality functor coincides with the one coming from the monoidal
structure on €. Furthermore, this assumption is highly reasonable. For example, if € = D(R) and R is a
commutative ring (or, more generally, a module over any E-ring spectrum), it is a well-known result
that a complex is dualizable if and only if it is perfect (see for example [15, Proposition 7.2.4.4] for a
proof of a more general statement about E'|-ring spectra). Consequently, under our assumptions, we are

able to recover the classical setting as a special case.

For the geometric side of the story, we will consider conically smooth stratified spaces.> These were
introduced by Ayala, Francis and Tanaka [5], and provide a natural extension of C°°-structures in the
stratified setting. Notable examples of stratified spaces admitting a conically smooth atlas are Whitney
stratified spaces, as proven by Nocera and Volpe [17]. The definition of conically smooth atlases is rather
involved, as it relies on an elaborate inductive construction based on the depth of a stratification. For
convenience, we recall the definition of depth.

Definition 1.2 Let s: X — P be a stratified space. Then the depth is defined as
depth(X) = sup (dimy(X) — dimy (Xy(x))),
xeX

where dim denotes the covering dimension and X (y) is the stratum of X corresponding to s(x) € P.

We suggest the reader has a look at the introductions of [5; 17] to get an idea of how this works.

The main feature of conically smooth structures we will use in this paper is the unzip construction (see
[5, Definition 7.3.11]), which allows one to functorially resolve any conically smooth stratified space into
a manifold with corners. We will give a brief explanation of how this works in Example 2.15, but for now
let us only mention that, if Xz < X is the inclusion of a stratum of maximal depth, it consists of a square

Linkg (X)) —— Unzip, (X)

(1.3) lnx - l

X ;) X
which is both pushout and pullback, and Unzip, (X) is a conically smooth manifold with boundary given
by Linkg (X) such that both its interior and Linky (X) have depth strictly smaller than that of X. An
interesting consequence of the existence of the pushout/pullback square (1.3) is that the notion of conically
smooth map is completely determined by that of smooth maps between manifolds with corners.

We are now ready to state our main result.

2Most of our strategy to prove Verdier duality works more generally for C0-stratified spaces (see [5, Definition 2.1.15]). However,
the proof of Proposition 2.19 relies on the existence of blow-ups, which are not available without the presence a conically smooth
structure. In a future paper [21], we will use some general facts about stratified homotopy types to show that the exit path
oco-category of a compact C-stratified space is a compact object in Cateo.
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922 Marco Volpe

Theorem 1.4 (Theorem 4.8) Let X be a conically smooth stratified space and let Shv®(X; C) be the
full subcategory of Shv(X; C) spanned by constructible sheaves. Then the functor

DS : 8hv(X; )P — Shv(X; C)
restricts to an equivalence of oo-categories

DS : 8hve(X; €)° =5 8hve(X;C).

To conclude this introduction, let us make a short comment on how our proof strategy goes. As mentioned
earlier, our first observation is that the functor D; factors through the equivalence

De: 8hv(X; €) — CoShv(X; C),

proven by Lurie [15, Theorem 5.5.5.1]. Most of the work then lies in proving that the restriction of D¢ to
constructible sheaves factors through constructible cosheaves. We first show in Proposition 4.3 that w)e( is
constructible when € = Sp (the co-category of spectra), and from the techniques developed in [20] we

deduce immediately that
a!@: € — Shv(X;©)

factors through formally constructible sheaves. As a consequence of this and some properties of con-
structible sheaves that follow from homotopy invariance (see Theorem 3.4), one deduces that De maps
formally constructible sheaves into formally constructible cosheaves. We stress that being able to work
with such a general class of coefficients, which is closed under passing to opposite categories, makes this
step extremely formal.

The missing piece is then showing that De preserves the property of having dualizable stalks. This is the
point where we have to employ the geometry of conically smooth structures. More specifically, we use
the unzip constuction and an inductive argument on the depth to prove that any compact stratified space
equipped with a conically smooth structure has a finite exit paths co-category (Proposition 2.19). For
simplicity, let us explain how to use Proposition 2.19 in the special case X = C(Z) with Z compact,
where C(Z) denotes the cone on Z. If x € X is the cone point and F is any constructible sheaf on X,
there is a fiber sequence

(1.5) IN(X; F) > Fx > T'(Z; F).

Here I'y (X'; F) denotes the sections of F supported at x (ie the stalk of the associated cosheaf of compactly
supported sections of F) and FY is the stalk of F at x. By Proposition 2.19 and the exodromy equivalence
(which we show holds also for our general class of coefficients in Theorem 3.19), one deduces that
I'(Z; F) is dualizable. Thus, using the fiber sequence above, Fy is dualizable if and only if [, (X; F) is,
which proves our claim.

1.1 Linear overview
We now give a linear overview of the results in our paper.
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Verdier duality on conically smooth stratified spaces 923

Section 2 is mainly devoted to the proof Proposition 2.19. In the first part we recall the definition of a
finite co-category, and show how these can be described in the model of quasicategories. None of these
results or definitions are new, but we decided to include a few words on the subject since we could not
find any reference dealing with it in our preferred fashion. In the second part we recall Lurie’s definition
of the simplicial set of exit paths of a stratified topological space. Given a proper stratified fiber bundle
m: L — X, we show how one can conveniently compute the exit paths of the fiberwise cone of  in terms
of L and X. To prove Proposition 2.19, we cover a conically smooth stratified space with an open subset
given by the locus of points of depth zero and a tubular neighborhood of its complement. By induction
and Lemma 2.13, one is then left to show that the exit paths co-category of the former is finite. This is
proven using the unzip construction. Namely, by unzipping the complement, the open subset of points of
depth 0 can be identified with the interior of a compact manifold with corners.

In Section 3 we extend the results of Haine, Porta and Teyssier [11] to sheaves valued in stable bicomplete
oo-categories. This is very formal, after [20]. As a consequence, we show that the stalk at a point x of a
constructible sheaf is the same as sections at any conical chart around x (Corollary 3.7). We also provide
a convenient description of the restriction of a constructible sheaf along a stratum (Corollary 3.10). These
two results are essential and are used very often in what follows. For example, the first immediately
implies the existence of the fiber sequence (1.5). In the second part we then characterize constructible
sheaves by the property of being homotopy invariant (see Proposition 3.13), and use this to deduce
exodromy for conically smooth spaces with general stable bicomplete coefficients (Theorem 3.19).

In Section 4 we prove our main result. Given a C-stratified space X, through an inductive argument on
the depth we show that w§, is constructible (Proposition 4.3). We first reduce to proving the statement in
the case C = Sp by employing the techniques developed in [20]. Then the only nontrivial part consists in
showing that, when X is a cone, the stalk of the dualizing sheaf at the cone point is a finite spectrum. We
then conclude by proving Theorem 4.8. As explained at the beginning of the introduction, our argument
starts by observing that the duality functor factors through Lurie’s Verdier duality. The hard part then
consists in showing that the latter restricts to an equivalence between constructible (co)sheaves, for which
we use all the results obtained previously in the paper.

Finally, in the appendix, we show that the shape of any proper and locally contractible co-topos is a
compact object in the co-category of co-groupoids.
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2 Finite exit paths

This first section contains the main geometric input needed to achieve our goal. Namely, we show the
exit paths co-category of a compact conically smooth stratified space is finite (Proposition 2.19).

2.1 Finite co-categories

This short section is devoted to recalling the definition of a finite co-category. Before going into that,
we say a few words about what an oco-category is for us. In this paper, we work in the model of
quasicategories. Let sSet be the category of simplicial sets. Following [9, Example 7.10.14], we define
Cats, as the localization of sSet at the class of Joyal equivalences. The class of Joyal equivalences and
fibrations equips sSet with the structure of a category with weak equivalences and fibrations in the sense
of [9, Definition 7.4.12]. Hence, by [9, Theorem 7.5.18], any object in Caty, is equivalent to the image
through the localization functor sSet — Cat, of a fibrant object in the Joyal model structure. For this
reason, objects of Caty, will be called co-categories.

The first definition we propose is expressed internally to the co-category Caty, in terms of pushouts, and
so in a kind of model-independent fashion. Later we prove that this is actually equivalent to a notion
of finiteness that one might expect in the simplicial model. All the results appearing here are not at all
original, but we still felt the need to write this section as, in the process of completing the paper, we could
not locate a reference dealing with the subject. In what follows, we will denote by 8 the full subcategory
of Caty, spanned by co-groupoids.
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Verdier duality on conically smooth stratified spaces 925

Definition 2.1 An co-category is said to be finite if it belongs to the smallest full subcategory of Catso
which contains @, A? and A! and is closed under pushouts. An co-groupoid is said to be finite if it is so
as an oo-category. We will denote by (:’atgo and 8/, respectively, the full subcategories of Catso and 8
spanned by finite objects.

Remark 2.2 Recall that the inclusion 8§ < Cats, admits both a left and a right adjoint, and one may
describe the left adjoint on objects by sending an oo-category C to the localization G[@~!]. Thus, since
8 <> Caty, preserves colimits and A![(A!)~1]~ A%, one may identify the class of finite co-groupoids with
the objects of the smallest full subcategory of 8 which contains & and A° and is closed under pushouts.
This implies in particular that, for any finite co-category C, the localization C[C~!] is again finite.

Lemma 2.3 Let C be a finite co-category and let W be a finite subcategory of C. Then the localization
C[W ~1] is again finite.

Proof We have a pushout square
W —2C

L

WW™1] —— w1

in Catyo; thus, it suffices to show that W[W ~!] is finite. This follows immediately by Remark 2.2. O

Recall that a simplicial set is said to be finite if it has a finite number of nondegenerate simplices. In the
next proposition we reconcile this notion of finiteness with the one in Definition 2.1. We will need the

following lemma, whose proof was explained to us by Sebastian Wolf.

Lemma 2.4 Let C be an co-category and let f: K — € be any map of simplicial sets, where K is finite.
Moreover, suppose that there exists a finite simplicial set K’ and a Joyal equivalence g: K’ — C. Then
there exists a finite simplicial set L, a Joyal equivalence j: L — C and a commutative diagram in sSet

e
e
J
k
K — L
where k is a monomorphism.

Proof We define inductively a sequence of finite simplicial sets { K}, },en. We set Kj = K, and we
define K, via the pushout

n /

HA’;_)Klgfl Aj — K

n—1
[ |
UA’}—)K,’I_I A" 7 K;l
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926 Marco Volpe

Now set
K. = colim(Ky <> K} <>+ > Kj <> --+).

Since all horns are finite simplicial sets, any map A’} — K[ factors through some KJ,. By construction
of the sequence, we get a commutative diagram

l ,,,,,,,,,, ,}/

which implies that K/ is an co-category. Since the class of categorical anodyne extensions is saturated
(see [9, Definition 3.3.3]), K’ — K[ is a categorical anodyne extension, and in particular a Joyal
equivalence. Hence, by the assumption that € is an co-category, we get a commutative triangle

K —2s¢

R
L g
K&

where ¢ is a Joyal equivalence by the 2-out-of-3 property. Since K/ is also an co-category, ¢ admits a
quasi-inverse
Vi€ — K.

By the finiteness of K, the composition
Vf:K—>C— K.,

factors through some §: K — K. Thus, we get a triangle

S/'K’r(\

which commutes up to J-homotopy, where J is the interval object for the Joyal model structure as defined
in [9, Definition 3.3.3].

Now let L be the mapping cylinder of §. Since J is a finite simplicial set, L must be finite as well. By
the usual factorizations obtained via mapping cylinders, we get a triangle

e
el
K<—'s L
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commuting up to J-homotopy, where i is a monomorphism and p is a Joyal equivalence. If H is a
J-homotopy between f and pi, we may find a map H fitting in the diagram

KxJULx{l} ¢

LxJ

since K x J UL x{l} — L x J is a categorical anodyne extension. Denote by j the restriction of H

to L x {0}. By construction, we get a commutative triangle

¢
J
K5 L
Since the map j is J-homotopic to p, it is a Joyal equivalence. |

Proposition 2.5 Let y: sSet — Cats, be the localization functor. Then an co-category C is finite if and
only if there exists a finite simplicial set K and an equivalence C >~ y (K).

Proof LetsSet/ be the full subcategory of sSet spanned by the finite simplicial sets, and denote by JF

the essential image of the restriction of y to sSet/. We need to show that (‘Zatgo coincides with F.

Let K be any finite simplicial set, so that in particular there exists some finite n such that K = sk, (K).
By induction on n and using the cellular decomposition

L[8A”—>K oA — Skn_l (K)
[ -
]_[An_)K A" E— Skn(K)
we see that, to prove that L (K) belongs to Gatgo, it suffices to show that each A" does. But this is clear
because the n-simplex is Joyal equivalent to the n-spine. Thus, F C Gatgo.
Since J contains @, A® and A!, we are now only left to show that F is closed under pushouts. Let

D«—C—=E&

be any cospan of oco-categories in F, and let K — C be any Joyal equivalence, where K is a finite
simplicial set. By applying Lemma 2.4 twice, we get a map of cospans

L < > K < > M

L

D « C > &

where the vertical arrows are Joyal equivalences and the upper horizontal arrows are monomorphisms. We

then get a Joyal equivalence between the respective homotopy pushouts, and thus the desired conclusion. O
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2.2 Finiteness properties of compact conically smooth spaces

The main goal of this section is to show that the exit paths co-category of a compact conically smooth
stratified space is finite (Proposition 2.19). For this purpose, we make use of Lurie’s model of the exit
paths oco-category, whose definition we now recall.

By a slight abuse of notation, for a poset P we still denote by P the topological space obtained by
equipping the poset with the Alexandroff topology. If X — P is a stratified topological space, then we
define Exitp(X) by forming the pullback

Exitp(X) —— Sing(X)
N(P) — Sing(P)

in the category of simplicial sets. Lurie showed that if the stratification X — P is conical, then Exitp (X)
is an oo-category [15, Theorem A.6.4].

Example 2.6 Consider the stratified space R? — {0 < 1}, where the closed stratum is given by the origin.
This can be identified, up to stratified homeomorphism, with the cone on S'!, with its natural stratification.
Using Lemma 2.13, one can show that Exit{0<1}(R2) is equivalent to the oo-category (BZ)<. This is
given by formally adding an initial object to the classifying space BZ. More explicitly, let us denote by x
the origin, and y any point different from x. Then one can describe Exit{0<1}(R2) as a 1-category with
two distinct objects x and y, where x is initial and the monoid of endomorphisms of y is given by Z.

Remark 2.7 In what follows, we often consider a stratified space X without specifying any particular
notation for its stratifying poset. In that case, by a slight abuse of notation, we write Exit(X) for the
oo-category of exit paths of X.

In [5, Definition 1.1.5], the authors propose an alternative model of the opposite of the co-category of
exit paths of a conically smooth stratified space, called the enter paths co-category. Let us briefly recall
this definition, as it also allows us to introduce some notation that is used throughout our paper.

Let Snglr be the 1-category whose objects are conically smooth stratified spaces and morphisms are
conically smooth open immersions, and Bsc the full subcategory of Snglr spanned by basic conically
smooth stratified spaces, ie those which are isomorphic to one of the type R” x C(Z), where Z is compact
and conically smooth.

Lemma 4.1.4 of [5] shows that Snglr (and therefore Bsc) admits an enrichment in Kan complexes. By
passing to homotopy coherent nerves, one gets co-categories that we denote by

(2.8) Bsc — Snglr.
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For any conically smooth stratified space, the authors of [5] then define Entr(X') as the slice Bsc, xy. More
precisely, this is defined to be the pullback

Entr(X) —— Snglr/ x
Lo
Bsc —— Snglr

Their proof of the exodromy equivalence for constructible sheaves of spaces, combined with the one in [15],
implies that Lurie’s exit paths co-category has to be equivalent to Entr(X)°P (see [5, Corollary 1.2.10]).

In this section, we prefer to use Lurie’s model, because it has an evident much richer functoriality. Indeed,
one sees by the functoriality of Sing that Exit is functorial with respect to general stratified maps. On the
other hand, the one in [5] is only functorial with respect to conically smooth open embeddings. We also
see immediately that, if we stratify P over itself through the identity, then Exitp(P) = N(P).

Definition 2.9 Let f: (X — P) — (Y — Q) be a map of stratified spaces. We say that f is a full
inclusion of strata if the underlying map of posets P — Q is injective and full, and the square

X — Y

L

P—— 0

is a pullback of topological spaces.
We will also need the following lemma.

Lemma 2.10 Let X — P and Y — Q be stratified spaces, and assume that the stratification on X is
conical. Assume that we have a stratified embedding Y < X which is a full inclusion of strata. Then
Exitg(Y') is an oo-category and the induced functor Exitg(Y') — Exitp(X) is fully faithful.

Proof Since the functor Sing from topological spaces to simplicial sets preserves limits and since ¥ < X
is a full inclusion of strata, we get a pullback square

EXitQ(Y) —— Exitp(X)
(2.11) l - l
N(Q) —— N(P)

of simplicial sets. By [15, Theorem A.6.4(1)], the functor Exitp(X) — N(P) is an inner fibration. Using
the pullback square (2.11), one sees that the map Exitg(Y) — N(Q) is also an inner fibration, which
implies that Exity (Y') is an co-category. Moreover, since the inclusion is full, the functor N(Q) — N (P)
is fully faithful, and thus we may conclude again by (2.11). O
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Recall that, for a proper conically smooth fiber bundle 7 : L — X, we define the fiberwise cone of m as
the pushout

L —— LxRs

2.12) l ] l

X — C(n)

taken in the category of conically smooth stratified spaces (see [5, Example 3.6.3]). By definition, we get
a new fiber bundle C () — X whose fibers are isomorphic to basics. We now show how to compute the
exit paths of C(7r) in terms of L and X.

Lemma 2.13 Let w: L — X be a proper conically smooth fiber bundle. Then the commutative square

Exit(L) — Exit(L x Rxg)

| |

Exit(X) —— Exit(C(r))

in Cats, induced by (2.12) is a pushout.

Proof By the Van Kampen theorem for exit paths [15, Theorem A.7.1], we may assume that X is a basic.
Thus, by [5, Corollary 7.1.4], we may also assume that 7 is a trivial bundle. Since Exit commutes with
finite products, we may assume that X = *, and hence we are only left to prove that, for any compact
conically smooth space L, the square

Exit(L) —— Exit(L x Rxg)

/ |

A —— Exit(C(L))

is a pushout in Cats,. This follows from [5, Lemma 6.1.4]. O

We will also need to use the unzip and link construction, as defined in [5, Definition 7.3.11]. By [5,
Proposition 7.3.10], for any proper constructible embedding X < Y we have a pullback square

Linky (Y) —— Unzipy (Y)

(2.14) l”x J l

X ———7Y

Here Unzip y (Y) is a conically smooth manifold with corners whose interior is identified with Y\ X,
and Unzipy (Y) — Y and wy: Linky (Y) — X are proper constructible bundles.
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Example 2.15 To get a feeling for how Unzip y (¥Y') works, one may think of it as a generalization of
the spherical blow-up (see [3]). More precisely, when Y is a smooth manifold stratified with a closed
submanifold X and its open complement, the unzip of X < ¥ coincides with the spherical blow-up of X
in Y, and the link is diffeomorphic to the boundary of any normalized tubular neighborhood of X in Y.

For a visual representation of the unzip construction, we refer to [5, Figure 7.3.1].

The link of a proper constructible embedding is used to provide tubular neighborhoods in the stratified
setting. Proposition 8.2.5 of [5] shows that there is a conically smooth map

(2.16) Clrx) =Y

under X which is a refinement onto its image and whose image is open in Y. Here we are using

the same notation as in (2.14). Denote by ElnkT(Y/) X R~ and C(mry) the respective refinements of
Linkx (Y) x R~ and C(;ry) through the embedding (2.16).

Corollary 2.17 Let X < Y be a proper conically smooth constructible embedding. Then the square

Exit(Linkx (Y) x R~¢) —— Exit(Y \ X)

| |

Exit(C(y)) —— Exit(Y)
is a pushout in Cate.

Proof This follows immediately by the Van Kampen theorem for exit paths oco-categories in [15,
Theorem A.7.1]. O

Remark 2.18 For the existence of tubular neighborhoods, one may relax the assumption of properness
for a constructible embedding 7 : X < Y to just requiring that there is a factorization

where i’ is a proper constructible embedding and j is a conically smooth open embedding. For example,
if P is the stratifying poset of Y and X = Y, for some « € P, one may pick Y’ = Y>, and thus get a
tubular neighborhood of Y.

We are now ready to prove the main result of the section.

Proposition 2.19 Let X be any compact conically smooth stratified space. Then Exit(X) is a finite
oo-category.

Proof Since X is compact, X is finite-dimensional and hence also has finite depth. We then argue by
induction on depth(X) = k.
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If k =0, it is well known that Exit(X) = Sing(X) is a finite co-groupoid. For example, this follows by
the Van Kampen theorem [15, Theorem A.3.1] and the existence of finite good covers for X.

Assume now that k is positive. Denote by X, the union of strata of minimal depth, and by X
its complement in X. One sees that X- ¢ < X is a proper constructible embedding, and hence, by
Corollary 2.17, we get a pushout

Exit(Linko(X) x R~q) —— Exit(Xo)

| -

Exit(C(7=9)) — Exit(X).

By Lemma 2.13, to conclude the proof it suffices to show that Exit(L/irE(—f)), Exit(é(?:o/)) and
Exit(Xj) are finite.

Being a closed subset of X, the space X~ is compact. By the pullback square (2.14), Link..¢(X) is
compact too. Since the depths of both are strictly less than depth(X), by the inductive hypothesis both
X~ and Link- ¢ (X)) have finite exit paths co-categories. Notice that we have a stratified embedding

Link=o(X) x R=o <> Xo

and X is a smooth manifold, so the stratification on L/irE(_f) is trivial. Thus, Exit(m)) isa
localization of Exit(Link (X)) at all maps and, by Lemma 2.3, Exit(Link~ (X)) is finite.

By Lemma 2.13 and the inductive hypothesis, we also know that Exit(C(ms¢)) is finite. Using [5,
Proposition 1.2.13], the canonical functor

¢ : Exit(C(7=9)) — Exit(C(7w=g))

is a localization at the class of exit paths that are inverted by ¢. Since the inclusion C(7~¢) — X lies
under X > 0, the same argument as above shows that a noninvertible exit path is inverted by ¢ if and
only if it lies inside Link- ¢(X) X R~y <> C(7~¢). Notice that Link- ¢(X) x R~ < C(m~¢) is a full
inclusion of strata. Therefore, by Lemma 2.10, the induced functor on exit paths is the inclusion of a full
subcategory. This implies that one can identify Exit(é(zrtg)) with the localization of Exit(C (7)) at
Exit(Links,(X)) x R~ . Hence, by Lemma 2.3, Exit(C/'(n\>0/)) is finite as well.

We know that X, is the interior of the compact manifold with corners Unzip. ,(X). One can show that
the existence of collaring for corners [5, Lemma 8.2.1] implies that the inclusion X, < Unzip. ¢(X) is
a homotopy equivalence. In the proof of [6, Lemma 2.1.3] one may find a construction of a homotopy
inverse of the inclusion X, < Unzip. ((X) in the special case where the corner structure is a boundary.
However, the construction of such an inverse in the more general case is completely analogous. Hence, to
conclude the proof it suffices to show that Sing(Unzip. ((X)) is finite. This follows by the existence of
good covers for manifolds with corners. O
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Corollary 2.20 Let X be a finitary conically smooth stratified space (see [5, Definition 8.3.6]). Then
Exit(X) is a finite oo-category. In particular, if X is the interior of a compact conically smooth manifold
with corners, then Exit(X) is a finite co-category.

Proof By Proposition 2.19 and Lemma 2.13, the class of conically smooth spaces with finite exit paths
oo-category contains all basics. Thus it suffices to show that it is closed under taking collar gluings.
Suppose there is a collar gluing f: Y — [—1, 1] such that f~! (-1.1), ! ((—1, 1]) and £71(0) are
finitary. Then we get an open covering of ¥ given by f~1([—1,1)), /~'((—=1.1]) and R x /~1(0),
which implies that Exit(Y) is finite by Van Kampen.

The last part of the statement follows by [5, Theorem 8.3.10(1)]. O

3 Homotopy invariance and exodromy with general coefficients

In this section we explain how to use [20] to prove homotopy invariance and the exodromy equivalence
for (formally) constructible sheaves (see Definition 3.2) valued in stable and bicomplete co-categories
(Theorem 3.19).

A proof of homotopy invariance for constructible sheaves with presentable coefficients can be found in [11].
Our argument in Theorem 3.4 follows precisely the one in [11]. Nevertheless, we will try to quickly
outline the main steps to convince the reader that all the results in [11], after [20], generalize to the setting
of stable bicomplete coefficients, at least if we restrict ourselves to locally compact Hausdorff spaces.

The exodromy equivalence was first proven by Lurie [15, Theorem A.9.3] and later generalized in [18].
For constructible sheaves of co-groupoids on conically smooth stratified spaces, this was proven in
[5, Theorem 1.2.5]. Here we stick with conically smooth stratified spaces, and we provide a short
argument that works for constructible sheaves in stable and bicomplete co-categories. This is essentially
a combination of the homotopy invariance and [5, Lemma 4.5.1].

With these at hand, we show that global sections of constructible sheaves on compact conically smooth

stratified spaces are dualizable (Corollary 3.22).

3.1 Homotopy invariance of constructible sheaves

From now on, all co-categories appearing as coefficients for sheaves will be assumed to be stable and
bicomplete, all topological spaces locally compact Hausdorff and all posets Noetherian. The next lemma
shows in particular that the stratifying poset of any C-stratified space (see [5, Definition 2.1.15]) is
Noetherian. Since any conically smooth stratified space is by definition C°-stratified, all our stratified
spaces of interest will have Noetherian stratifying posets.

Lemma 3.1 Let X — P be a C°-stratified space. Then P is locally finite and therefore Noetherian.
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Proof Recall that, by [5, Lemma 2.2.2], any C-stratified space admits a basis given by its open subsets
isomorphic as stratified spaces to ones of type R” x C(Z), where Z is a compact C%-stratified space.
Therefore, it will suffice to show P is finite when X is compact. We prove this by induction on the depth
of X.

When the depth of X is 0, it follows by [17, Lemma 2.22] that P is discrete. Since X is compact, it can
have only a finite number of connected components, and therefore P has to be finite.

Assume that the depth of X is n. Since X is compact and C-stratified, one may find a finite cover of X
by open subsets isomorphic as stratified spaces to R” x C(Z), where Z is a compact C-stratified space.
But the depth of Z is smaller than 7, and thus by the inductive assumption its stratifying poset has to be
finite. Therefore, P has to be finite. O

Definition 3.2 Let X be any locally compact Hausdorff topological space, and let a: X — * be the
unique map. We say that a sheaf F' € Shv(X;C) is constant if there exists an object M € € and an
equivalence F =~ af M. We say that F is locally constant if there exists an open covering {U; };ey of X
such that F'|y, is constant.

Let X — P be a stratified space. We say that a sheaf F' € Shv(X; C) is formally constructible if, for any
a € P, the restriction of F' to the stratum Xj, is locally constant.

Assume now that € admits a closed symmetric monoidal structure, and denote by G9! the full subcategory
of C spanned by dualizable objects. We say that F' is constructible if F is formally constructible and
each stalk of F belongs to @4,

We denote by Shv(X; C) and Shv®(X; C) the full subcategories of Shv(X; C) spanned respectively by
formally constructible and constructible sheaves. Dually, we define formally constructible and constructible
cosheaves on X as CoShv®(X; @) := Shv®(X; €°P)°P and CoShv(X; C) := Shv¢(X; CP)°P.

In this paper we only deal with constructible sheaves with respect to a specified stratification. Therefore,
we will take the liberty of omitting the stratifying poset from our notation for constructible sheaves.

We first recall the proof of the homotopy invariance of constructible sheaves and, before that, the definition
of stratified homotopy equivalence.

Definition 3.3 Let X — P and Y — Q be stratified spaces, and let [0, 1] € R be the closed interval,
considered as a stratified space with a single stratum. A stratified homotopy is a map of stratified spaces
H: X x[0,1]>7Y.

We say that a stratified map f: X — Y is a stratified homotopy equivalence if there exists a stratified map
g:Y — X and stratified homotopies H: X x[0, 1] — X and K:Y x[0, 1] — Y such that H|x oy =idy,

H|xx(1y = g/ Klyxioy = idy and K|y} = /3.
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Theorem 3.4 (homotopy invariance) Let X — P be a stratified space. Let p: X x [0, 1] > X be the
canonical projection. Then p*: 8hv(X; C) — S8hv(X x [0, 1]; C) restricts to an equivalence

Shv®(X; @) ~ Shv(X x [0, 1]; ©).

As a consequence, if Y — P is another stratified space and f: X — Y is a stratified homotopy equivalence,
then the functor
f*:8hv(Y; @) — Shve(X; @).

is an equivalence.

Proof We first treat the case of locally constant sheaves, ie when P = x. By [15, Lemma A.2.9; 20,
Corollary 5.2], p* is fully faithful. We start by showing that ps preserves constant sheaves. If a: X —
and b: X x [0, 1] — * are the unique maps, then, for any object M € €, the fully faithfulness of p*

implies that we have equivalences

ps«b*M >~ pip*a*M ~a*M.
Now let F be any locally constant sheaf on X x [0, 1]. By [11, Lemma 4.9], there exists an open cover
{Ui}ier of X such that F|y. «[o,1] is constant. Therefore, since [0, 1] is compact, by proper base change
(see [20, Proposition 6.1]) we see that (p« F)|y, is constant. Hence, px preserves locally constant sheaves.

Thus, to conclude we only need to show that, for any locally constant sheaf F on X x [0, 1], the counit

map p* p« F — F is an equivalence.

Again by base change and [11, Lemma 4.9], we may reduce to the case when F >~ b* M is constant. In

this case we have a commutative diagram

counity* pz

pEpb*M b*M
p*p*p*a*M counit s g% pr p*a*M
p* (unit, M)T: ”
pra*M

which implies the desired result.

Now assume that P is any Noetherian poset. Using base change in a similar way as before, one sees that
P« preserves formally constructible sheaves, and thus we are left to show that, for any F' constructible,
p* p« F — F is an equivalence. By [20, Corollary 4.2], any stable and bicomplete co-category respects
gluing in the sense of [11, Definition 5.17]. Hence, Lemma 5.19 of [11] implies that the functors given
by restricting to the strata of X are jointly conservative. By base change we may thus assume that F is
locally constant, whence the counit is known to be an equivalence by the previous step.

The last part of the statement then follows by a standard argument analogous to the proof of [20,
Corollary 3.1]. =]
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We now present a couple of useful corollaries of homotopy invariance.

Corollary 3.5 Let f: X — Y be a stratified homotopy equivalence and F € Shv'°(Y ; €). The natural

map
L(Y;F)—T(X;f*F)

is an equivalence.

Proof The commutative triangle
y —71 Ly
N Y
*
induces an invertible natural transformation f*b* ~ a*. Since both a¢* and b* factor through formally

constructible sheaves, we get b* ~ na*, where n is any adjoint inverse of the restriction of f™* to
Shv(Y; @). Thus, by passing to right adjoints, we get the desired equivalence. |

We will need the following lemma.

Lemma 3.6 Let Z be a compact topological space. Let R>o x Z — C(Z) be the quotient map, and for
each € > 0 denote by C¢(Z) the image of the open subset [0, €) x Z. Then the family of open subsets

{Ce(Z) | € € Rso}
forms a basis at the cone point.

Proof We will prove that, for every open subset W of Rx( x Z containing {0} x Z, there exists some
€ > 0 such that [0,€) x Z € W. Since Z is compact, one can obtain a finite covering of {0} x Z with
opens of type [0, €;) x V; € W, and thus, by taking € to be the minimum of the ¢;, we get the claim. O

Corollary 3.7 Let X be a C°-stratified space and F € Shvi®(X ; €). For any point x € X and any conical
chart R" x C(Z) centered at x, the natural map

I(R" x C(Z): F) — Fy

is an equivalence.

Proof First of all, notice that there is a homeomorphism R” =~ C(S"~1) sending 0 to the cone point,
under which the subsets C¢(S”~!) on the right-hand side are identified with open balls centered at
zero with radius €. Let us denote these subsets by B¢(0). By Lemma 3.6, the family of open subsets
{Bc(0) x Cc(Z)}e=0 is cofinal in the family of all open subsets of R” x C(Z) containing (0, cone point).

Hence,
lim ['(Be(0) x Ce(Z2); F) >~ Fx.
€>0
By Corollary 3.5, we have
FR"x C(Z); F) = lim T(R" x Ce(Z); F) O

>0
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Now let X — P be a conically smooth stratified space, and let « € P. By Remark 2.18, we get a

Xo

RN
- > X
J

commutative triangle

C(mg)

where 7y is the fiber bundle Linky, (X>o) — Xg, i is the cone-point section of the fiber bundle
p:C(my) = Xy and j is a conically smooth open immersion. For any F € Shv(X; C), the unit of the
adjunction i * - i, gives a natural map

3.9) PxJ F — puisi™ j*F ~ i} F.
Furthermore, the map (3.8) can be obtained by applying the sheafification functor to
3.9 Pij¥F = puln ()P F =~ (i3)PF,

where (i*)P™ and (i})P™ denote the corresponding presheaf pullback functors.

Corollary 3.10 Let X, < X be the inclusion of a stratum in a conically smooth stratified space, and let
F be any formally constructible sheaf on X. Then the map (3.8) is an equivalence.

Proof Since F is a sheaf, it suffices to show that (3.9) is an equivalence. As usual, it suffices to prove
that it is an equivalence after taking sections on any euclidean chart U of X. For any such U, by [5,
Corollary 7.1.4],

T(U: psj*F) =T(UxC(Z); F)
for some compact conically smooth stratified space Z. Thus we are left to show that the natural map

(3.11) LU xC(Z); F) = lim I'(V; F)
ucv
is an equivalence.

By a cofinality argument, the map (3.11) factors through an equivalence

lim I'(U x Ce(Z); F) ~ lim T(V; F),
€>0 Uucv
and thus we are left to show that
LU XxC(Z); F) > imT'(U x Ce(Z2); F)
>0

is an equivalence. This last assertion then follows by Corollary 3.5. O
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3.2 Exodromy

This subsection is devoted to giving a proof of the exodromy equivalence on conically smooth stratified
spaces for constructible sheaves valued in stable and bicomplete co-categories. To do this we use the
model of the exit paths co-category of a conically smooth stratified space given in [5, Definition 1.1.5]. As
an intermediate step, we provide a useful characterization of the property of being formally constructible
for a sheaf on a conically smooth stratified space. In short, this says that a sheaf is formally constructible
if and only if it is homotopy invariant (see Proposition 3.13 for a precise statement). We also collect a
couple of useful corollaries of this fact, which are used later in the following section to prove a crucial
step of our main result.

One has functors
Bsc/x Y Bsc /X

lim
UCX)

where U(X) denotes the poset of open subsets of X, and im sends an open immersion to its image in X.
Lemma 4.5.1 of [5] shows that y is a localization at the class W of open immersions of basics U < V
such that U and V are abstractly isomorphic in Strat. That is, precomposing with y gives an equivalence

(3.12) y*: Fun(Exit(X), C) — FunW(Bsc(/)P:Y, ©),

where the right-hand side denotes the full subcategory of Fun(B sc(/’g(, ©) spanned by functors which send
all morphisms in W to equivalences. In the next proposition we show that W coincides with the class of
open immersions which are stratified homotopy equivalences, and then characterize the property of being
formally constructible through these maps.

Proposition 3.13 Let X — P be a conically smooth stratified space and let F € Shv(X; C). Then the
following assertions are equivalent:

(i) F is formally constructible.
(i1) For any inclusion V — U of basic open subsets of X which is a stratified homotopy equivalence,
ru,;rF)y—T(:F)
is an equivalence.
(iii) For any inclusion V < U of basic open subsets of X which are abstractly isomorphic,
ru;rF)y—T(;F)

is an equivalence.

Proof We first prove that (ii) is equivalent to (iii) by showing that an open immersion j: V < U of basic
open subsets of X is a stratified homotopy equivalence if and only if U and V are abstractly isomorphic.
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First of all, observe that j is conically smooth, because the conically smooth structures of U and V'
are restricted from that of X. If j is a stratified homotopy equivalence, it follows that U and V are
stratified over the same subposet of P, and so in particular V' intersects the stratum of maximal depth of U.
Therefore, by the equivalence of conditions (2) and (4) in [5, Lemma 4.3.7], U and V are isomorphic.

Conversely, assume that U is abstractly isomorphic to V. Therefore, up to composing with isomorphisms
on both sides, we may assume j is of the form j: R"” x C(Z) — R" x C(Z). Then, by [5, Lemma 4.3.6],
j is homotopy equivalent to Dg j, where Dy j denotes the differential of j at the point (0, cone point)
(see [5, Definition 3.1.4]). Since Dy is a stratified homotopy equivalence, the same is true for j.

By Theorem 3.4, (i) implies (ii), so we are left to show that (iii) implies (i). Let7: Y — X be the inclusion
of a stratum, and let V' < U be an inclusion of euclidean charts of Y. By Corollary 3.10, the horizontal
arrows in the commutative square

'UxC(Z),;F) —— T'(U;i*F)

| !

F'(VxC(Z),F) —— T'(V;i*F)

are invertible, and thus T'(U ;i * F) — I'(V; i * F) is invertible too. Therefore, to deduce that i * F is locally
constant, we just need to show that (iii) implies (i) in the special case when X has a trivial stratification, ie
when X is a smooth manifold. The result is now a very special case of [11, Proposition 3.1]. For the reader’s
convenience, we review and adapt the proof of [loc. cit.] to our setting in the following proposition. O

Proposition 3.14 Let X be a smooth manifold and let F € Shv(X; C). Then the following assertions are
equivalent:

(i) F islocally constant.
(ii) For any inclusion V — U of euclidean charts of X, the restriction

r'U; F)y->T(V;F)

is an equivalence.

Proof Since the question is local, we may assume that X' = R”, where we will prove that condition (ii)
implies that F is constant. More precisely, we will show that, if @: R” — * is the unique map, the counit
morphism

(3.15) a*ayF — F

is an equivalence. Since R” is hypercomplete and admits a basis given by those open subsets diffeomorphic
to itself, it then suffices to check that, for any such open j: U < R”, the map a« j«j*a*ax F — ax jx j* F

Algebraic € Geometric Topology, Volume 25 (2025)



940 Marco Volpe

obtained by applying to (3.15) the functor of sections at U is invertible. Notice that we have a commutative
triangle

A jx J Fcounitp

ax jx j*a*ax F axjxj*F

counit,, F\L = (anit)
ax (unit g
A x F

where the diagonal map is invertible by the assumption in (iii). Thus, to conclude the proof it suffices
to show that a* is fully faithful, which follows by the homotopy invariance of the shape (see [20,
Corollary 3.1]). O

Corollary 3.16 For f: L — X a conically smooth fiber bundle, the pushforward f.£: Shv(L;C) —
Shv(X'; ©) preserves formally constructible sheaves.

Proof By definition of a conically smooth fiber bundle, for any point x € X there exists an open
neighborhood U of x, a conically smooth stratified space Y and a pullback square
UxY «—— L
Lol
U—X

where p is the canonical projection. Let F be a formally constructible sheaf on L. To prove that f;* F is
formally constructible, it suffices to show that its restriction to any U as above is formally constructible.
Therefore, since any open immersion gives a locally contractible geometric morphism, by smooth base
change (see [20, Lemma 3.25)) it suffices to show that p¢ preserves formally constructible sheaves.

Let G be any formally constructible sheaf on U x Y, and let j: V <> W be any open immersion of basics
in U which is a stratified homotopy equivalence. By Proposition 3.13, we need to show that the restriction
of p¢G corresponding to j is an equivalence. We have a commutative square

T(W; piG) —— T'(V; piG)
rWwWxY;G) — I'(VxY;G)

Since G is constructible and j xidy: V x Y < W x Y is again a stratified homotopy equivalence, by
Corollary 3.5 we see that the lower horizontal arrow is an equivalence. The proof is then concluded by
observing that both vertical arrows are equivalences. |

Corollary 3.17 Let X be a conically smooth stratified space and let i : Xoq < X be the inclusion of a
stratum. Let F € Shv(X; C) be a formally constructible sheaf. Then iéF is locally constant.

Proof We have a fiber sequence
(3.18) ibF =il F—iljSj&F,
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where j is the open immersion X, < X. Hence, to conclude it suffices to show that i j& Jo F is locally
constant.

Let 4 : Linky, (X>o) — Xy be the projection from the link of Xy in X>,. Denote by k the open
immersion
k:Linky, (X>«¢) X Rsg = C(mg) — X,

and by p the conically smooth fiber bundle
p:Linky, (X>¢) xR~ — Link y, (X>¢) Zes Xy,

where the first arrow is the canonical projection. Then, by Corollary 3.10, we have an equivalence
iy jsjaF ~ pSk} F. But, since k§ F is formally constructible and p is a conically smooth fiber bundle,
we can apply Corollary 3.16 to deduce that i jE Jo F is locally constant. O

Theorem 3.19 (exodromy) The composition
Fun(Exit(X), €) X5 Funy((Bsc, x), €) <™ Fun(U(X), €)

is fully faithful with essential image Shv'®(X ; C). Moreover, if we assume that C has a closed symmetric
monoidal structure, the statement remains true if we replace Fun(Exit(X), €) by Fun(Exit(X), €%y and
Shv®(X; @) by Shv®(X; @).

Proof By Proposition 3.13, it suffices to show that the restriction of im4 to Funy(Bsc, x, C) factors
through Shvi®(X; @).

Let U be a basic open subset of X" and let k: T <> Bsc,y be a covering sieve. There is at least one
V e T whose image in U intersects the deepest stratum. By the equivalence of conditions (2) and (4) in
[5, Lemma 4.3.7], U and V' are abstractly isomorphic. Then, for any F' € Funy(Bsc, y, C), we have a
commutative triangle

LU; F) —— lim, . T(O; F)

|

LV F)

where the diagonal map is invertible by assumption. By [5, Proposition 3.2.23], open subsets isomorphic
to basics form a basis for the topology of X. Since X is hypercomplete, to show that im, F is a sheaf it
suffices, by [2, Theorem A.6], to check the sheaf condition on open covers formed by basics of basic
open subsets. More succinctly, we have to show that the horizontal map in the triangle above is invertible.
Moreover, by the 2-out-of-3 property, it suffices to show that the vertical map is invertible.

Let §: T — T be the localization of 7" at W. Since & is final and k* sends maps in X to equivalences, the
result then follows by observing that V' is a terminal object in J.
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For the second part of the statement, we just need to show that, for any functor F: Exit(X) — €% the
stalks of imy y* F are dualizable. By Corollary 3.7, it suffices to prove that, for any open U which is
isomorphic to a basic, I'(U; imy y* F) is dualizable. But I'(U; imy y* F) is equivalent to the value of F

at the object
(U € X) e Exit(X) = (Bsc, x)",

and therefore is dualizable by assumption. a

Example 3.20 Consider again the stratified space (X — P) := (R?> — {0 < 1}) as in Example 2.6,
and let C be a stable and bicomplete co-category. It follows from Theorem 3.19 that giving a formally
constructible sheaf on X is essentially the same as providing two objects M and N in C, a Z-action on N
and a Z-equivariant map o: M — N, where M is equipped with the trivial action. One may equivalently
supply a Z-equivariant object N and amap &: M — N hZ \where the target of & denotes the homotopy
fixed points.

Remark 3.21 Even though we assumed from the beginning that the coefficients are stable and bicomplete,
all the arguments we have discussed work whenever Shv(X'; €) < Fun(U(X)°P, C) admits a left adjoint
and C respects gluings in the sense of [11, Definition 5.17]. In particular, our proof also recovers the case
€ = 8. A proof of the exodromy equivalence with presentable coefficients but on a much bigger class of
stratified spaces can be found in [18].

Corollary 3.22 Let Z be any compact conically smooth stratified space and let F € 8hv®(Z; C). Then
I'(Z; F) is dualizable.

Proof By Theorem 3.19, we know that there exists an essentially unique functor G : Exit(Z) — @dual

such that imy y*G >~ F. Therefore, since y is final, global sections of F are equivalent to the limit of G.
The proof is then concluded by applying Proposition 2.19 and observing that, since C is stable and its
monoidal structure is closed, @4 is itself stable. |

Remark 3.23 Let Z be a stratified space such that Exit(Z) is a retract in Caty, of a finite co-category,
and assume that the exodromy equivalence holds for constructible sheaves on Z. Since €44 is idempotent
complete, the same argument as in Corollary 3.22 shows that, for any F € Shv®(X; €), the object I'(Z; F)
is dualizable.

4 Verdier duality

This final section is devoted to proving Verdier duality for conically smooth spaces (Theorem 4.8). For
this reason, from now on our oco-categories of coefficients are assumed to be equipped with a closed
symmetric monoidal structure. We first introduce the Verdier duality functor, and then recall the definition
of Lurie’s covariant Verdier duality. A crucial observation for the proof stratergy that we adopt is that
these two functors are closely related.
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For any locally compact Hausdorff topological space X, we will denote by a))e( the sheaf a'(1e), where
a: X — x is the unique map and 1¢ is the monoidal unit in €. The sheaf a))(? will be called the C-valued
dualizing sheaf of X. We denote the functor

Homy (—, w%): Shv(X; €)*® — Shv(X;€)

simply by Df( and, when X = x, we will only write D®: G — C. In this case, D® sends an object
M € C to its dual Home (M, 1¢). Therefore, DC gives an equivalence between 44 and its opposite.

Recall that, for any F € Shv(X;C) and V € U(X), one defines the compactly supported sections of F
at V by
(Vi F):= lim Tx(V: F).
K<V

In the colimit above, K ranges through the compact subsets of V, and 'y (V'; F) denotes the fiber of the
restriction I'(V'; F) — T'(V \ K; F) (see for example [20, Definition 5.6] and the whole section there for
a more detailed discussion). The association F > I (X F) gives a left adjoint to the functor a'. The
above construction can be upgraded to a functor

)
Shv(X; @) 255 CoShv(X;€), F > (U > [L(U: F)).

Lurie [15, Theorem 5.5.5.1] shows that D is an equivalence of co-categories. This equivalence is referred
to as covariant Verdier duality. Our next lemma explains the relation between covariant Verdier duality
and the contravariant functor Df(.

Lemma 4.1 Let X be any locally compact Hausdorff topological space and let C be any stable bicomplete
oo-category equipped with a closed symmetric monoidal structure. Then there is a factorization

Homy (—,wx)

Shv(X; ©)°P > Shv(X:C)

D /DE—’

CoShv(X; C)°P
where D¢ denotes the functor obtained by postcomposing with D®: G — C.

Proof Let j: U < X be any open subset of X. Then, for any F € Shv(X;C), by applying [20,
Corollary 3.26, Lemma 6.5 and Proposition 6.12], we get functorial equivalences

['(U;Homy (F,wy)) ~T'(U;Homy, (j*F, j*w%)) ~ T(U; Homy, (j* F, wg;)) ~ Hom (T (U; F), 1)

and thus we have the desired factorization. O

Our next goal toward proving Theorem 4.8 is to show that the covariant Verdier duality functor D sends
constructible sheaves to constructible cosheaves. This is a consequence of constructibility of the dualizing
sheaf, which we prove in Proposition 4.3. We first compute the stalk at the cone point of the dualizing
sheaf of a cone on a compact C-stratified space.
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Lemma 4.2 Let Z be a compact C°-stratified space. Denote by X the cone C(Z) and let x € C(Z) be
the cone point. Let 1 € C be the monoidal unit and let 1x € Shv(X; C) be the constant sheaf at 1. Then
we have an equivalence

(w;%)x = DG(F{x}(X; 1x)).

Proof We have equivalences
(0y)x = lim F(Uiog) = lim [(Ce(Z);0y) = lim D(L(Ce(2):1x)).
xeU 0<e<oo 0<e<oo
where the second follows from Lemma 3.6 and the third by [20, Proposition 6.12]. Here Coo(Z) refers
to C(Z). Notice that the colimit above is indexed by a weakly contractible co-category. Therefore, it
will suffice to show that, for any €, the map

Dy (X 1x) > Ty (Ce(2): 1x) — Te(Ce(Z): 1x)
is invertible (see [20, Remark 5.7] for a proof of why the first equivalence holds).

First of all, notice that, for any K € C¢(Z) compact containing the cone point, there exists a 7' > 0
such that K € Cr(Z) (namely, take T to be the maximum in the image of K through the projection
Ce(Z) — R>g). Hence, by a cofinality argument, we have a commutative triangle

Ly (X5 1x)
h—r>n0§T<e FCTZ)(X; 1x) i) FC(CE(Z); 1X)

where we fix {x} := Cr(Z). Notice that 0 is the initial object in the indexing poset of the colimit
appearing above. Hence, to conclude our proof it suffices to prove that, for any 7, the map

Iy (X1 1x) = Tz (X 1x)
is invertible. By definition, this holds if and only if the restriction
F(X\{x}:1x) > T(X\ Cr(2):1x)
is invertible. But the inclusion X \ C7(Z) < X \ {x} is a homotopy equivalence, and so we may conclude

by the homotopy invariance of the shape. O

Proposition 4.3 Let X be any C°-stratified topological space. Then the dualizing sheaf a))e( is con-
structible.

Proof We will proceed by induction on the depth of X. If X has depth 0, then X is a topological manifold
(see [17, Lemma 2.22]), and hence, by [20, Proposition 6.18], a))e( is locally equivalent to »dim(X) 1x.
Now assume that X has finite nonzero depth. Since the question is local on X, by [5, Lemma 2.2.2] we
may assume that X = R” x C(Z), where Z is a compact C°-stratified space with depth(Z) < depth(X).
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Let p:R"xC(Z) — C(Z) be the projection and b: C(Z) — * the unique map. By [20, Proposition 6.18],
for any sheaf F on C(Z) we have a functorial equivalence p'F ~ =" p* F, so it suffices to show that
bél = a)g( 2) is constructible. Hence we may assume that X = C(Z).

Let x be the cone point and j: U — X its open complement. Since x is the point at which the depth is
. . % @ . .C

maximal, we have depth(U) < depth(X'). Moreover, we have an equivalence j*wy >~ w;, and so, by

the inductive hypothesis, j *a))e( is constructible. Thus, for every stratum 7" € X which does not contain

the cone point, the restriction of wy is locally constant with dualizable stalks. Hence it remains to prove

that the stalk of wy at the cone point is dualizable.

Since the dual of a dualizable object is again dualizable, by Lemma 4.2 it suffices to show that Iy (X 1x)
is dualizable. By definition, Iy(X; 1x) is the fiber of the restriction I'(X;1y) — I'(X \ {x}: 1x).
Using the homotopy invariance of the shape, we get a commutative square

F(X:1xy) — T(X\{x}1x)

FL

1— S T(Z:1p)

where the right vertical arrow is induced by any inclusion Z — X inducing an homotopy equivalence
between Z and X \ {x}, and the left vertical arrow by the inclusion of x in X. Since €4 is stable, it
suffices to show that I'(Z; 1) is dualizable. But this follows from Corollary A.7. O

Corollary 4.4 Let X be a conically smooth stratified space. Then the covariant Verdier duality functor
]D))e( restricts to an equivalence

(4.5) D: Shv(X; €) ~ CoShv®(X; C).

Proof The inverse of the covariant Verdier functor ID); is given by (ID))G(OP)Op (see for example the proof
of [20, Theorem 5.10]). Therefore, it suffices to show that ]D))e( preserves formally constructible objects
for any C stable and bicomplete.

First of all, we prove that, if F' € Shv(X; C) is locally constant, then D F is a formally constructible
cosheaf. Since restricting along an open immersion commutes with D (see [20, Lemma 6.5]) and the
property of being formally constructible can be checked on an open cover, it suffices to show that D sends
constant sheaves to formally constructible sheaves.

Assume F ~ a* M, where a: X — * is the unique map. In this case, by [20, Definition 6.1], D F ~ a!eop M.
Moreover, by [20, Proposition 6.16], a!eopM ~ a))e;p ® a* M. Therefore, by Proposition 4.3, D F is
constructible.

Assume now that F is any formally constructible sheaf, and let i : X, < X be the inclusion of a stratum
of X, with complement j: U < X. We need to show that i3, [0 F >~ Di éF is locally constant. Notice that
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it suffices to show that i éF is locally constant. Indeed, since X, is a smooth manifold, it is in particular
conically smooth. Therefore, by what we have proven before, if G is any locally constant sheaf on X,
DG must be formally constructible. But X, is unstratified, and hence being formally constructible on X,
is equivalent to being locally constant. Thus, by Corollary 3.17, iéF is locally constant. |

Proposition 4.6 Let X be a conically smooth stratified space. Then the covariant Verdier duality
functor ]D)f‘?, restricts to an equivalence

4.7 D: 8hv’(X; €) ~ CoShv’(X; C).

Proof By Corollary 4.4, it suffices to show that, for any x € X and F € Shv®(X; @), Fy € € is dualizable
if and only if (D F), is dualizable, where the latter denotes the costalk of D F at x.

Let x: * < X be the inclusion of a point x € X. By definition, there are equivalences (D F), =~
Xpop (D F) =~ xéF. Thus, by applying global sections to the localization sequence associated to i and j,
we obtain a fiber sequence

X F~T(X:ixi'F)>T(X; F)—>T(U:F)
and hence an equivalence
T (X; F) ~i'F.

Thus, by choosing a conical chart R” x C(Z) around x and applying Corollary 3.7, we get a fiber sequence
(DF)x — Fx = T((R" x C(Z2))\ (0, %); F),

where * € C(Z) denotes the cone point. Therefore, arguing as in the proof of Corollary 3.22, it suffices
to show that Exit((R” x C(Z)) \ (0, *)) is finite. But, by Van Kampen for exit paths, one has a pushout

Exit(R"\ {0} x Rs g x Z) —— Exit(R" xR. ¢ x Z)

| -

Exit(R" \ {0} x C(Z)) —— Exit((R" x C(Z))\ (0, %))

The result then follows by observing that Exit commutes with products, Exit(Z) and Exit(C(Z)) are
both finite by Proposition 2.19 and Lemma 2.13, and Exit(R” \ {0}) ~ Sing(S”!) is finite. |

Theorem 4.8 Let X be a conically smooth stratified space. Then the restriction to Shv®(X; C)°P of the
functor D§, factors through an equivalence

DS : 8hve(X; €)° =5 8hve(X; C).
Proof By Lemma 4.1 and Proposition 4.6, we only need to show that
DC: CoShve(X; ) — Shve(X; C)
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is an equivalence. Denote again by im: Bsc;y — U(X) the functor taking a conically smooth open
immersion into X to its image. The diagram

(64
Fun(Exit(X), (€a)ory —2* Fun(Exit(X), Cdualy

Zly* 2ly*

e

D
Funyy ((Bsc x)°P, (Gdualyopy 2 Funyw ((Bsc, x)°P, @dualy

ZTim* ZTim*
e

CoShve (X: €)°P P she(x:e)

commutes, since the horizontal arrows are given by postcompositions and the vertical arrows by pre-
compositions. Moreover, since the restriction of D® induces a duality on €% the upper horizontal
arrows are equivalences, and thus we get the desired conclusion. a

Example 4.9 Let us give an explicit description of what Verdier duality looks like for the stratified
space X appearing in Example 2.6. Let € be any stable and bicomplete oco-category. For any map
a: M — N"Z in @ as in Example 3.20, we get a map QN"Z — fib(«). It follows by Poincaré duality
for manifolds (see [20, Proposition 6.18]) that there is an equivalence N hZ ~ Q Npz. Therefore, we have
a map Q% Nj,z — fib(er). This can be upgraded to a functor

Fun(BZ<,€) — Fun(BZ",€), (a: M — N") > @: Q%N — fib(a)),

which is easily seen to be an equivalence. We invite the interested reader to work out the details to show
that the functor given above coincides with (4.5), after applying the exodromy equivalence.

Remark 4.10 In [6, Example 1.10.8], the authors propose a strategy to prove Verdier duality. However,
they do not provide proofs for some of the major steps in their outline. We specify here the main missing
points in [loc. cit.]. Let X — P be any stratified topological space. First of all, in [loc. cit.] there is
no explanation of why the stratification on Shv(X; €) restricts to a stratification on Shv®(X; C). We
verify this for conically smooth stratified spaces in the proof of Corollary 3.17. Secondly, in [loc. cit.]
the authors claim without proof that, if wy is formally constructible, then the covariant Verdier duality
functor preserves formally constructible objects. We prove this claim in Corollary 4.4. The authors also
do not explain for which kind of stratified topological spaces one should expect the dualizing sheaf to be
formally constructible. We show that this is the case for C°-stratified spaces in Proposition 4.3.

Remark 4.11 The equivalences (4.5) and (4.7) are already interesting on their own, because they imply
that, for any stratified map /: X — Y, f.C or J¢ preserves (formal) constructibility if and only if j,‘e
or fé does. In particular, fé always preserves (formally) constructible sheaves.

Remark 4.12 Any p-stratification of an analytic manifold in the sense of [13] satisfies the Whitney
conditions, and hence by [17] defines a conically smooth structure. Thus, Theorem 4.8 recovers and
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generalizes the duality on constructible sheaves on analytic manifolds as defined in [13] (ie sheaves which
are constructible in our sense with respect to some -stratification).

Appendix The shape of a proper locally contractible co-topos

In this appendix, we present a couple of topos-theoretic results that provide an elegant argument to conclude
the last step in the proof of Proposition 4.3. While the content of this appendix is not fundamental for our
primary purposes, we have decided to include it because we believe it is interesting on its own. More
precisely, in this appendix we prove that the shape of any proper and locally contractible co-topos is a
compact co-groupoid.

We start by recalling the definition of the shape of a locally contractible co-topos. For a more general and
detailed discussion about shape and locally contractible geometric morphisms, see [20, Section 3].

Definition A.1 Let X be an oco-topos and let a: X — § be the unique geometric morphism. We say that
X is locally contractible if a*: 8 — X admits a left adjoint, denoted by ay: X — 8.

If X is any locally contractible co-topos, we define the shape of X, denoted by 1o (X), as the co-groupoid
ay(lx), where 1y denotes the terminal object of X.

We now show that sheaf topoi associated to C°-stratified spaces are locally contractible. We need the
following preliminary lemma.

Lemma A.2 Let X be a C-stratified space. Then the co-topos Shv(X ; 8) is hypercomplete.

Proof By [5, Lemma 2.2.2], X admits an open cover given by its open subsets isomorphic as stratified
spaces to ones of type R” x C(Z), where Z is a compact C°-stratified space. Therefore, X is locally
paracompact and of finite covering dimension. By [14, Theorem 7.2.3.6], the covering dimension of
a paracompact space agrees with its homotopy dimension (see [14, Definition 7.2.1.1]). Moreover, by
[14, Corollary 7.2.1.12], any oco-topos which is locally of finite homotopy dimension is hypercomplete.
Therefore, we conclude that Shv(X; 8) is hypercomplete. |

Corollary A.3 Let X be a C°-stratified space. Then the co-topos Shv(X; 8) is locally contractible.
Moreover, we have an equivalence of co-groupoids I (Shv(X;8)) ~ Sing(X).

Proof Since, by [5, Lemma 2.2.2], the topological space X is locally contractible, the result follows
from Lemma A.2 and [20, Corollary 3.19]. O

Definition A.4 Let X be an oo-topos and let a: X — S be the unique geometric morphism. We say that
X is proper if ay: X — 8 preserves filtered colimits.

Remark A.5 It would be very natural to define an co-topos to be proper by requiring the unique
geometric morphism a: X — S to be proper in the sense of [14, Definition 7.3.1.4]. This alternative
definition is proven to be equivalent to Definition A.4 in [16].
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Proposition A.6 Let X be a proper and locally contractible co-topos. Then 1o (X) is a compact object
in 8.

Proof Leta: X — S be the unique geometric morphism. Observe that a4 : X — 8 is corepresented by
the terminal object 1. Since X is assumed to be proper, 1 must be a compact object in X. Therefore, to
conclude the proof it suffices to show that ay: X — 8 preserves compact objects. But this is clear because
its right adjoint a* preserves (filtered) colimits. |

Corollary A.7 Let X be any compact Hausdortf topological space and assume that Shv(X; 8) is locally
contractible. Let € be any stable bicomplete co-category equipped with a closed symmetric monoidal
structure. Let M € C be any dualizable object and denote by My the constant sheaf at M. Then
I'(X; My) is dualizable.

Proof Let a: X — x be the unique map. Recall that, by [20, Corollary 5.16], we have an equiv-
alence Shv(X;C) >~ Shv(X;8) ® C, where the ® denotes Lurie’s tensor product of cocomplete co-
categories. Since X is locally contractible, by combining [20, Corollaries 5.16 and 5.20] we see that
ag: € — Shv(X:C) admits a left adjoint ag obtained by tensoring with € the cocontinuous functor
ay: Shv(X;38) — 8. In particular, if we denote by 1x the constant sheaf at the monoidal unit 1 € C,
ag(ly)~ lim 1.
Moo (X)
Here oo (X) denotes the shape of the locally contractible co-topos Shv(X'; 8). Moreover, it follows from
the dual version of the smooth projection formula (see [20, Corollary 3.26]) that there is an equivalence
I'X; My) ~ Home(ag(lX), M). Hence,
F(X:My)~ lim M.
Moo (X)

edual

Since is an idempotent complete stable co-category, we can conclude by Proposition A.6. |
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