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An upper bound conjecture for the Yokota invariant

GIULIO BELLETTI

We conjecture an upper bound on the growth of the Yokota invariant of polyhedral graphs, extending a
previous result on the growth of the 6 j-symbol. Using Barrett’s Fourier transform we are able to prove
this conjecture in a large family of examples. As a consequence of this result, we prove the Turaev—Viro
volume conjecture for a new infinite family of hyperbolic manifolds.
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1 Introduction

In [7] Chen and Yang proposed and provided extensive computations for the following conjecture, relating
the hyperbolic volume of a manifold to its Turaev—Viro invariants TV, (see [22, page 869] for the
original definition):

Conjecture 1 (the Turaev—Viro volume conjecture) Let M be a hyperbolic 3-manifold, either closed
with cusps, or compact with geodesic boundary. Then as r varies along the odd natural numbers,

(1-1) lim 2Z log(TV, (M, >™/7)) = Vol(M).
r—>o0 r

This conjecture has been verified for the complements of the Borromean rings and of the figure-eight
knot by Detcherry, Kalfagianni and Yang [12], all the hyperbolic Dehn surgeries on the figure-eight knot
(for integral surgeries by Ohtsuki [19] and later for rational surgeries by Wong and Yang [26]), and all
complements of fundamental shadow links by Belletti, Detcherry, Kalfagianni and Yang [5].

A useful tool introduced in [5] to study the asymptotic behavior of quantum invariants such as TV, is a
sharp upper bound on the growth of the 6;-symbol, which is the basic building block in their definition.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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646 Giulio Belletti

Such an upper bound can be used to prove very quickly the volume conjecture for complements of
fundamental shadow links.

The upper bound just mentioned can be interpreted as an upper bound for the Yokota invariant Y, which
is an invariant of embedded graphs (see Definition 2.7). Indeed, the square of the 6j-symbol is also the
Yokota invariant of the tetrahedral graph; thus it is natural to ask if an upper bound analogous to that
of [5] holds for any polyhedral graph (which is to say, any graph which is the 1-skeleton of a hyperbolic
polyhedron). We propose the following:

Conjecture 2 (the upper bound conjecture) Let r > 2 be odd. If T" is a polyhedral graph and col is any
r-admissible coloring of its edges (see Definition 2.3), then

I
™ log |, (T, col)| < sup Vol(P) + OHOO( og(r))’
P r

where P varies among all proper generalized hyperbolic polyhedra with 1-skeleton I" (see Definition 3.2;
these are hyperbolic polyhedra with possibly hyperideal vertices) and Vol(P) is the hyperbolic volume
of P.

Moreover, the inequality is sharp, with equality attained by the sequence of colorings giving the color
%(r — 2= 1) to each edge (the sign is chosen so that the colors are even).

We are able to prove the upper bound conjecture for a large family of examples:

Theorem 4.9 The upper bound conjecture is verified for any planar graph obtained from the tetrahedron

by applying any sequence of the following two moves:
¢ blowing up a trivalent vertex (see Figure 1), or

e triangulating a triangular face (see Figure 2).

The upper bound conjecture naturally leads to the question of what is the supremum of all volumes of
polyhedra sharing the same 1-skeleton. This is answered by Belletti [4, Theorem 4.2]:

Theorem 1.1 For any polyhedral graph T,
sup Vol(P) = Vol(T),
P

where P varies among all proper generalized hyperbolic polyhedra with 1-skeleton T' and T is the
rectification of T'.

Figure 1: Truncating a vertex.

Algebraic € Geometric Topology, Volume 25 (2025)



An upper bound conjecture for the Yokota invariant 647

Figure 2: Triangulating a face.

The rectification of a graph is defined in [4, Section 3.4] (see also Remark 3.9); for our purposes it
suffices to say that T is the polyhedron with 1-skeleton I" with every edge tangent to JH? in the Klein
model of hyperbolic space (and hence which has dihedral angle 0 at each edge). This polyhedron can be
canonically truncated to give an ideal right-angled hyperbolic polyhedron, and hence it makes sense to
speak of Vol(T") as the volume of the truncation.

As an application of Theorem 4.9, we prove in Theorem 5.6 that the Turaev—Viro volume conjecture holds
for a new infinite family of cusped manifolds. These are complements of certain links in S3 #8 (S! x §2);
their hyperbolic structure is obtained by gluing right-angled octahedra.

In Section 2 we set the notation, give the basic properties of the Kauffman bracket and define the Yokota
invariant. In Section 3 we discuss previous volume conjectures for polyhedra and state the upper bound
conjecture. In Section 4 we introduce the Fourier transform of Barrett, and use it to prove Theorem 4.9.
Section 5 contains the proof of the Turaev—Viro volume conjecture for a new family of manifolds. Finally
in an appendix we propose numerical evidence for a related volume conjecture for polyhedra.

Acknowledgments I wish to thank my advisors Bruno Martelli and Francesco Costantino for their
guidance and support. Furthermore I wish to thank Renaud Detcherry, Efstratia Kalfagianni and Tian
Yang for their comments on a preliminary version of this paper. Finally I would like to thank the referee
for their detailed suggestions which greatly improved the readability of this paper. Part of this work
supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC-2181/1
-390900948 (the Heidelberg STRUCTURES Cluster of Excellence).

2 The Kauffman bracket and the Yokota invariant

2.1 The Kauffman bracket

Throughout the rest of the paper r > 3 is an odd integer and g = 2% ilr

. All the definitions we give in
this section are standard; the only notable difference is that in some papers (eg [2]) the graphs are colored

with half-integer colors, while here we use integers.

For an integer n > 0, the quantum integer [n] is defined as (¢" —q~")/(q—q~') =sin(2zn/r)/sin(27/r),
and the quantum factorial [n]! is []7—,[i] (with the convention that [0]! = 1). Furthermore, we denote
by I, the set of all even nonnegative integers at most equal to » — 2.

Algebraic € Geometric Topology, Volume 25 (2025)



648 Giulio Belletti

Remark 2.1 Because of the choice of root of unity ¢, we need to work with the SO(3) version of the
quantum invariants, rather than the SU(2) version. This essentially amounts to using only even numbers
as colors; a brief overview of how these invariants are related can be found for example in [12, Section 2].
Because of this, some terms in the upcoming formulas appear redundant; we still include them to keep
the notation uniform with other papers dealing with the SU(2) version.

Definition 2.2 We say that a triple (a, b, ¢) € I} is r-admissible if
e a,b,c<r-2,

e at+b+cisevenanda+b+c <2r —4,
e a<b+c¢,b<a-+candc <a-+b.

We say that a 6-tuple (11, n,,n3, ny4,ns, ng) of elements in I, is r-admissible if the four triples (11,15, 13),
(ny,ns,ng), (ny,ng,n¢) and (n3,n4,ns) are r-admissible.

For n € N define

2-1) Ap=(=1)"n+1].

For an r-admissible triple (a, b, c¢) we can define

[Fa+b+c)+1]
[3a+b—0)][3@@a=b+0)][3(—a+b+0)]

and A(a, b, ¢) := O(a, b, ¢)~ /2. Notice that the number inside the square root is real; by convention we

(2-2) O(a,b,c) = (_1)(a+b+c)/2

take the positive square root of a positive number, and the square root with positive imaginary part of a
negative number.

Definition 2.3 An r-admissible coloring for a tetrahedron 7T is an assignment of an r-admissible 6-tuple
(ny,ny,n3,n4,n5,n¢) € I,,6 to the set of edges of T, as shown in Figure 3. More generally, we say that
an r-admissible coloring for a trivalent graph I' € S3 is an assignment of elements of I, to the edges
of I" such that the colors at each vertex form an r-admissible triple. Even more generally we say that an

ni

ne ns

na ns3

ng

Figure 3: An r-admissible coloring for a tetrahedron.
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An upper bound conjecture for the Yokota invariant 649

assignment of elements of 7, to edges of a (not necessarily trivalent) graph is a coloring, and a graph I
together with its coloring col is a colored graph (I, col).

If v is a trivalent vertex of a graph whose incident edges are colored by an r-admissible triple (a, b, ¢),
we write for short ®(v) and A(v) instead of O(a, b, ¢) and A(a, b, ¢).

Moreover, for an r-admissible 6-tuple (n1,n,, 13, 14,15, 1n6) We can define its 6 j-symbol as usual as

4 min Q;
ny ny n =D#[z+ 1]
(2-3) el B PCH I D= 3 %
4 75 e i=1 z=max T; i=1[Z_Ti]~l_[j=1[Qj —z]!
where

e vy = (n1,n2,n3), v2 = (n1,n5,n6), v3 = (n2,n4,n¢) and v4 = (n3,n4,ns),
o Ty =50 +ny+n3), Ty =501 +ns+ne), Ts = 3(nz +n4+ne) and Ty = 3(n3 +ng +ns),
e 0= %(nl +ny+n4+ns), Oy = %(nl +n3 +nq4 +ng) and Q3 = %(nz +n3 +ns + ng).

By convention we define the 6;-symbol of a non-r-admissible tuple to be equal to 0.

The Kauffman bracket is an invariant of trivalent framed graphs; before defining the Kauffman bracket

we recall the definition of framed graphs:

Definition 2.4 A framed graph T’ € S3 is a graph in S together with a 2-dimensional oriented thickening,
considered up to isotopy. More precisely, a framed graph T is a pair (G, F)) with G an embedded graph
in S3 and F an embedded orientable surface containing G as a deformation retract. As is usual for
framed links, we draw planar diagrams of framed graphs with over and undercrossing information, and
such that the “thickness” of the surface always lies flat on the projection plane.
Definition 2.5 The Kauffinan bracket is the unique map

(-): {colored trivalent framed graphs in S3} — C
satisfying the following properties:

(i) If T is the planar circle colored with n € I, then (I') = A,,.

(ii) If T is a theta graph (see Figure 4) colored with the r-admissible triple (@, b, ¢) € I} then (I') = 1.

Figure 4: A theta graph.

Algebraic € Geometric Topology, Volume 25 (2025)



650 Giulio Belletti

(iii) If T is a tetrahedron colored with the r-admissible 6-tuple (nq,...,ng) € 1 ,6 then

ny np nj3
(ry=

ng N5 ng

(iv) The fusion rule:

(2-4) <;>_i§r A,-<H>.

a
(v) If T has a bridge (that is to say, an edge that disconnects the graph if removed) colored with i # 0,
then (I') = 0.

(vi) If at some vertex of I" the colors do not form an r-admissible triple, then (I") = 0.

(vii) If T is colored with an r-admissible coloring such that the color of an edge e is equal to 0, then

Co—<0-mle o)

and (T) = (1//AqgAp)(T’), where T is T" with e removed, and @ and b are the colors of the edges that
share a vertex with e (notice that since the coloring is r-admissible, two edges sharing the same vertex
with e will have the same color).

(viii) The undoing of a crossing:

< c b
<b©c> = (- 1)(b+c—a)/2q(b(b+2)+c(c+2)—a(a+2))/4< \'a/ >
a

(ix) If I is the disjoint union of Iy and I, then (I") = (I7)(I3%).

It is absolutely not clear from the definition that such a map exists; a proof is in [16, Chapter 9]. However,
it is straightforward to see that (i)—(ix) are enough to calculate (I'}. Taking any planar diagram of T,
apply a fusion rule near each crossing, and then undo the crossing using (viii); therefore we only need
to calculate (-) on planar graphs. For a planar graph, repeated applications of the fusion rule create a
bridge, and (v), (vii) and (ix) allow one to compute (I") from the Kauffman bracket of two graphs, each

with fewer vertices.

Remark 2.6 There are a few different normalizations of the Kauffman bracket in the literature. Here we
use the unitary normalization; it should be noted that [16] uses a different one, however the results there
apply to the unitary normalization with little modification.

In what follows sometimes we will color the edges of I" with linear combinations of colors; the Kauffman
bracket can be extended linearly to this context. In particular, we will use Kirby’s color Q :=) ;¢ 1, Ail.

Algebraic € Geometric Topology, Volume 25 (2025)



An upper bound conjecture for the Yokota invariant 651

AN

N\

Figure 5: Desingularization of a vertex of valence 6
2.2 The definition of the Yokota invariant from the Kauffman bracket

In this subsection we give an overview of the Yokota invariant, which generalizes the Kauffman bracket
invariant of trivalent graphs to graphs with vertices of any valence; it was first introduced in [27].

Suppose I' € S3 is a framed graph with vertices of valence at least 3; as before r > 2 is odd and
q= e2mi/r

For a vertex v of I', we can take a small ball B containing v, and replace I N B with a trivalent planar tree
in B having the same endpoints in dB N T (see Figure 5). We call this procedure a desingularization of T’
at v. Notice that if v has valence greater than 3, then this procedure is not unique; however, any desingu-
larization is related to any other via a sequence of Whitehead moves (see Figure 6). This fact can be most
easily seen by thinking about the dual graph: the vertex corresponds to a polygon and a desingularization
corresponds to a choice of enough diagonals to triangulate the polygon. Then a Whitehead move acts on the
dual as a diagonal flip, and clearly diagonal flips are enough to go from any choice of diagonals to any other.

We say that the trivalent graph I'/ is a desingularization of T if it is obtained from I" by desingularization
of each vertex of valence at least 4.

Definition 2.7 Let (T, col) be a framed graph in S3 colored with elements of /,. Let I'’ be a desingular-
ization of I". Call €], ..., e; the edges of " that were added by the desingularization. If k > 0, then the
Yokota invariant of (T, col) is

k
Y, (T, col) := Z (l_[ Acol’(e;))“F/,COl U col’)|?,

col’elk "i=1

> -

Figure 6: A Whitehead move.

Algebraic € Geometric Topology, Volume 25 (2025)



652 Giulio Belletti

with col’ coloring the edges el ..., e}{. If instead k = 0 (ie I’ = I'/, ie T is trivalent) then Y, (T, col) =
(T, col)|.

As we did with the Kauffman bracket, we extend linearly the Yokota invariant to linear combinations of

colors. Notice that in this case, even if I is trivalent, we may get Y, (I, col) # |(T", col)|?.

Remark 2.8 We stress the fact that we are using the unitary normalization for the Kauffman bracket.
If we instead used the Kauffman normalization (- ) g of [16], the definition of the Yokota invariant of
(", col) would be

k
Hizl Aco]’(el'.)
Hv vertex of I ®(v)

(T, col Ucol') g |2

Y, (T, col) := Z

col' eIk

Proposition 2.9 [27] The Yokota invariant does not depend on the choice of desingularization.

We can easily extend the Yokota invariant to graphs with 1-valent and 2-valent vertices as well, via the
following formulas:

Y, (l—o—‘]) - (Z—’er(;), Yr(>—io) - 5,-,0Y,(>).

We normalize the invariant so that it is equal to 1 for the graph with a single vertex and no edges.

Now we give three important properties of the Yokota invariant, all easy consequences of the definitions:

Proposition 2.10 (1) The Yokota invariant does not depend on the framing of T.

(2) Ifanedge e of T is colored with the Kirby color 2, and T" is obtained from I" via a Whitehead
move on the edge e (coloring the edge that replaces e with 2 and keeping every other color the
same) then Y, (T, col) = Y, (I"/, col).

(3) If T is a vertex sum of I'| and I, along trivalent vertices vy € I and v, € I'; (see Figure 7), then
Y, (T, col) = Y, (I7, coly) Y3 (I5, coly ), where col; and col, are the restrictions of col to I} and I3,

respectively.
< 2 -
b b — b
¢ ¢ C—~

Figure 7: A vertex sum of two trivalent vertices

Algebraic € Geometric Topology, Volume 25 (2025)
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Figure 8: Applying the fusion rule to three edges arising from a vertex sum.

Proof Part (1) holds because (I') depends on the framing of I" only up to a factor of ¢%; thus when
taking squared norms this becomes 1. Part (2) is essentially the fact that the Yokota invariant is well
defined: since both e and the corresponding edge in I' are colored with 2, both sides of the equality are
equal to the Yokota invariant of the graph obtained by collapsing e to a point.

Part (3) follows from the analogous property for the Kauffman bracket; this is obtained via two applications
of the fusion rule and one application of the bridge rule of Definition 2.5(v); see Figure 8. |

It is very important that the vertex sum in Proposition 2.10(3) is done between trivalent vertices; the
assertion is false in general.

Remark 2.11 The Kauffman bracket (and hence, the Yokota invariant) can also be defined in the much
larger setting of framed trivalent graphs in closed oriented 3-manifolds (see for example [16; 18]); since
we will not need such a generality that carries some more technical details, we will restrict ourselves to
the S3 case.

3 Volume conjecture for polyhedra

3.1 The volume conjecture for polyhedra

Costantino first conjectured in [8] that the growth of the 6 j-symbol is given by the volume of a hyperbolic
tetrahedron. A volume conjecture for trivalent graphs (and their Kauffman bracket invariant) was proposed
in [24] and later refined in [10] to the case of planar trivalent graphs and hyperbolic polyhedra with
trivalent vertices. The conjecture of [10] evaluates the invariant at the first root of unity g = e” i/r ; the
downside of this choice is that they have to consider poles of the Kauffman bracket, instead of its values
directly. Recently Murakami and Kolpakov [17] proposed a volume conjecture for polyhedra at the

second root of unity ¢ = 27 i/r

, but only stated it for simple polyhedra without hyperideal vertices (see
Remark 3.6 and Definition 3.2); remarkably this conjecture directly involves the value of the Kauffman
bracket. Here we propose Conjecture 3, which is an extension of Kolpakov and Murakami’s volume
conjecture to a very general setting, and then propose Conjecture 4, which concerns an upper bound for

the Yokota invariant of polyhedral graphs.

Geometric background Recall the projective model for hyperbolic space H3 € R?* € RP? where H?
is the unit ball of R3; for the basic definitions see for example [1]. Notice that for convenience we
have picked an affine chart R? € RPP3, so that it always make sense to speak of segments between two

Algebraic € Geometric Topology, Volume 25 (2025)
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Figure 9: The dual of a point P.

points, half-spaces, et cetera; this choice is inconsequential, up to isometry. It should be mentioned that
isometries, in this model, correspond to projective transformations that preserve the unit sphere.

The space RPP? has a duality that comes from the Minkowski scalar product on R3-!; using this we
can associate to a point p lying in RZ’\]IT3 a plane II, C H3, called the polar plane of p, such that
all lines passing through H?* and p are orthogonal to IT p (see Figure 9 for a 2-dimensional picture).
Ifpe R3\]I-T3, denote by H, C H?3 the half-space delimited by the polar plane IT p on the other side
of p; in other words, H), contains 0 € R3. If the line from p to p’ passes through H?3, then IT p and I,
are disjoint [1, Lemma 4]. In particular, if the segment from p to p’ intersects H?, then IT p € Hy and
I, C H,p; if however the segment does not intersect H?, but the half-line from p to p’ does, then
H, C Hy . If p gets pushed away from H3, then I1 p gets pushed closer to the origin of R3.

Definition 3.1 A projective polyhedron in RPP? is a convex polyhedron in some affine chart of RIP3,
Alternatively, it is the closure of a connected component of the complement of finitely many planes in
RP? that does not contain any projective line.

Definition 3.2 Following [15, Definition 4.7]:

o We say that a projective polyhedron P € R3> C RIP? is a generalized hyperbolic polyhedron if each
edge of P intersects H?3.

o A vertex of a generalized hyperbolic polyhedron is real if it lies in H?3, ideal if it lies in 0H?> and
hyperideal otherwise.

¢ A generalized hyperbolic polyhedron P is proper if for each hyperideal vertex v of P the interior of
the polar half-space H, contains all the other real vertices of P (see Figure 10).

Algebraic € Geometric Topology, Volume 25 (2025)
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Figure 10: A proper vertex.

e We define the fruncation of a generalized hyperbolic polyhedron P at a hyperideal vertex v to be the
intersection of P with H,; similarly the truncation of P is the truncation at every hyperideal vertex, that
istosay PN (ﬂv hyperideal Hv). We say that the volume of P is the volume of its truncation. Notice that
the volume of a nonempty generalized hyperbolic polyhedron could be 0 if the truncation is empty.

In the remainder of the paper we simply say proper polyhedra for proper generalized hyperbolic polyhedra.

When it has positive volume, the truncation of a generalized hyperbolic polyhedron P is itself a polyhedron;
some of its faces are the truncations of the faces of P, while the others are the intersection of P with
some truncating plane; we call such faces truncation faces. If an edge of the truncation of P lies in a
truncation face we say that the edge arises from the truncation.

Remark 3.3 For proper polyhedra the dihedral angles at the edges arising from the truncation are %n.

Remark 3.4 If I' can be embedded as the 1-skeleton of a projective polyhedron, then it is 3-connected
(that is to say, it cannot be disconnected by removing two nonadjacent vertices). Furthermore, any 3-
connected planar graph can be embedded as the 1-skeleton of a proper polyhedron [20]. If a planar graph
is 3-connected, then it admits a unique embedding in S2 (up to isotopies of S2 and mirror symmetry)
[13, Corollary 3.4]. Hence when in the following we consider a planar graph, it is always going to be
3-connected and embedded in S2. In particular, it will make sense to talk about the dual of I', denoted
by I'*. The graph I'* is the 1-skeleton of the cellular decomposition of S? dual to that of T".

Remark 3.5 It is important not to mix up the 1-skeleton of a projective polyhedron with the 1-skeleton
of its truncation. In what follows, whenever we refer to 1-skeletons we always refer to those of projective
polyhedra (and not their truncation) unless specified.

We propose the following formulation of the volume conjecture for polyhedra, generalizing the previously
mentioned versions:
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Conjecture 3 (the volume conjecture for polyhedra) Let P be a proper polyhedron with dihedral angles
o1,...,0, atthe edges ey, ..., e, and 1-skeleton I". Let col, be a sequence of r-admissible colorings
of the edges ey, ..., em of ' such that

col, (e;)

27 lim
r—>+o0o r

=7 —0;.

Then
lim Zlog|Y; (T, col,)| = Vol(P).
r—>+oo
Remark 3.6 In the case where P is a simple polyhedron in H? (ie a compact polyhedron with only
trivalent vertices) this conjecture is the same as the volume conjecture of Kolpakov and Murakami [17].

Conjecture 3 was verified in [6] for tetrahedra with at least one hyperideal vertex; we provide some further
supporting numerical evidence for Conjecture 3 for some pyramids in the appendix, and prove it for a large
family of examples in Proposition 4.8 and Remark 4.10 (however, only for a single sequence of colors).

Remark 3.7 Conjecture 3 would imply that Conjecture 2 is verified when restricted to colors which
correspond to hyperbolic polyhedra.

3.2 The upper bound conjecture

In [5] the authors proved an upper bound on the growth of the 6;-symbol. When stated in terms of the
Yokota invariant of the tetrahedral graph T, the result is the following:

Theorem 3.8 For any r and any r-admissible coloring col of the graph T', we have

log(r)
¥ )’

%log|Yr(T,col)| <wvg+ 0(

where vg ~ 3.66 is the volume of the regular ideal right-angled octahedron. Furthermore, this inequality
is sharp, with the upper bound achieved at the 6-tuple (3(r —2 £ 1),..., 3(r —2 £ 1)) with the signs
chosen so that %(r —2+1)iseven.

It is natural to ask if a similar upper bound holds for other graphs. The reason the quantity vg is involved
in the statement of Theorem 3.8 is that it is the upper bound of the volume of all proper tetrahedra. In [4]
the author proved that, given a polyhedral graph I', the upper bound of the volume of all proper polyhedra
with 1-skeleton I is equal to the volume of the rectification of I', denoted by T (see Remark 3.9). In
light of this, we reword Conjecture 2 as follows:

Conjecture 4 If I' is a polyhedral graph and col is any r -admissible coloring of its edges, then

log(r)
r )

% log |Y; (T, col)| < Vol(T') + 0(

Moreover, the inequality is sharp, with equality attained by the sequence of colorings giving the color
%(r — 2= 1) to each edge (the sign is chosen so that the colors are even).
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—

[

Figure 11: The rectification of a tetrahedron (left) and its truncation (right), the ideal right-angled
octahedron. The gray faces arise from the truncation of the top and bottom vertices.

Remark 3.9 The rectification of I' is defined as the unique projective polyhedron with 1-skeleton I" and
with every edge tangent to 9H? (see Figure 11). While T is not a proper (or even generalized hyperbolic)
polyhedron, we can still speak of its truncation and its volume; for more details see [4, Section 3.4].

Remark 3.10 It would be natural to ask whether a similar upper bound would work for nonpolyhedral
graphs; however in this case it is unclear what would be the geometric object to replace T'.

Theorem 4.9 Conjecture 4 is verified for any planar graph obtained from the tetrahedron by applying
any sequence of the following two moves:

e blowing up a trivalent vertex (see Figure 1), or

e triangulating a triangular face (see Figure 2).

This theorem will be proven in Section 4.

4 The Fourier transform

In this section we prove Theorem 4.9. The first main tool used is Theorem 3.8.

The second is the Fourier transform introduced in [2] by Barrett. We describe it here in a slightly different
context and notation.

Let H C S* be the 0-framed Hopf link as in Figure 12. For i, j € I, we denote by H (i, j) € C the value
of the Kauffman bracket of the Hopf link colored with i, j; applying the relation of [18, Figure 22] and
an easy induction on j shows that
.. i : 1 asinQRre(i+1D)(+1)/r
H. ) = (1[G + 1)+ 1)] = (-1 S DG LD/,
sin(2z/r)
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Figure 12: The 0-framed Hopf link.

Furthermore define

L —w.e)=Y A

Ni=—7F"——=
4sin” (2w /r) iel
where U is the 0-framed unknot in S* colored with Q := ", 1, Ail; see [18, page 185].

Remark 4.1 Once again, we are using the SO(3) version of the invariants evaluated at ¢ = 27/,
However, the Fourier transform and its properties hold with any choice of primitive 21" root of unity, or

any choice of primitive 47 root of unity for the SU(2) case; the proofs work verbatim in every other case.

Definition 4.2 The Fourier transform of Y, (I, col) is the invariant of the colored graph (T, col’) given
by the formula
Fr(T,col’) = Z Y, (T, col) H(col, col’),
col coloring of T’
where

H(col,col’) := H H(col(e), col'(e*)).
e edge of '

The following proposition was first noticed by Barrett in [2, Section 5]; a concise proof was later given
in [3, Theorem 1]. For the sake of completeness, we include a detailed proof.

Proposition 4.3 If T is a planar framed graph, T'* is its planar dual and col’ is a coloring of the edges
of T'*, then

Y,(T*.col) =N"¢ Y Y,(T.col)H(col,col') = N ¢ F (T, col),

col coloring of T'

where g is the genus of a regular neighborhood of T'.

Proof The proof is entirely diagrammatic; when we display an equality between (linear combinations of)
diagrams, we mean that they have the same Kauffman bracket. Throughout the proof we will liberally
add 2-colored 0-framed unknots that are unlinked from anything else; this will generate an ambiguity of
a power of N that we will account for at the end.

Step 1 Calculate Y, (I, col) as the Kauffman bracket of a certain framed colored link L (T, col).

The colored link L (I, col) is obtained from (I", col) as in Figure 13. Every vertex is replaced by a circle
colored with €2, and every edge is replaced by a circle colored with the same color as the edge, wrapping
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e -
/\_ /K

Figure 13: Obtaining L(T", col) using the chainmail rule. Each circle has the same color as its
corresponding edge, and it has two consecutive overcrossings and two consecutive undercrossings.

once around each of the two circles corresponding to its vertices in a minimally twisted way (ie the
circle has two consecutive overcrossings and two consecutive undercrossings). Notice that the link itself
only depends on I'; only its coloring depends on col. Furthermore we can define the framing to be the
blackboard framing of the diagram we just constructed.

The fact that (L (T, col)) = Y, (T, col) can be shown by using the definition of Y, after applying the
following identity to L:

T\ i i
(4-1) ———=Xx
) i€l

This holds for any number of strands; it is obtained by repeated application of the fusion rule followed by
the well-known fact (see [18, Lemma 6]) that if a diagram contains the portion depicted in Figure 14 it is
equal to O unless i = 0.

When passing from I' to L(T", col) we still speak of edges and vertices of L (T, col): we mean the circles
corresponding to edges and vertices of I, respectively. Slightly more improperly, we speak of faces of
L(T, col), by which we mean the portions of the plane delimited by edges of T". To do this, until the start
of Step 3, we fix the diagram of L (I, col) that we just created.

Q
Figure 14

Algebraic € Geometric Topology, Volume 25 (2025)



660 Giulio Belletti

Figure 15: Stretching edges towards the center and adding an extra component.

Step 2 For a given coloring col’ of T, calculate 7, (T, col’) as the Kauffman bracket of a link Z(F, col’).
The Fourier transform is given by the formula
Fr(T,col’) = Z (L(T, col)) H(col, col’).
col coloring of T

We wish to express this formula as the bracket of a single colored link; to do so we use the following
relationship (which can be proven via a particular case of the vertex sum formula from (3) after we
introduce extra edges colored with 0):

. . Q
(4-2) D HG )=
i€l .
J
Therefore (T, col’) = (L(T, col’)), where L(T,col’) is the colored link obtained from L (T, col) by
changing the color of each edge e of L(I, col) to €2 and by adding a meridional circle around it colored
with col’(e). We call the meridional circles added via this process the transverse circles; they will
correspond to edges of I"*. Notice that this step only added circles, and did not otherwise change the link
diagram we created in Step 1 (not even via planar isotopy).

Step 3 Manipulate L (T, col’) to obtain L(I'*, col’).

Take a face F of E(F, col’), stretch the circles transverse to its edges so that they are close to the center
of F and add an unknot U colored with €2 at the center of F (see Figure 15). Handleslide this new
unknotted component along all the edges of F (see Figure 16); the result is that U gets linked to each
transverse circle and remains unlinked from any edge or vertex of I" as in Figure 17. Because the edges
are colored with €2 this procedure does not change the Kauffman bracket (see for example [18, Corollary,
page 181]). The circle U will correspond to a vertex in I'*. Repeat this procedure for every face of
E(F, col’); notice also that the procedure we just carried out only changes the link diagram in the portion
of the plane corresponding to F.
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Figure 16: Handleslide between two different components of L(T", col).

Now apply (4-1) to each circle corresponding to a vertex of I' and each circle corresponding to a vertex
of I'*. The result (see Figure 18) is going to be four connected graphs (and several unlinked unknots
that for now we ignore), which lie in parallel planes and are therefore unlinked from each other. Two of
these give Y, (I'*, col’) and two of these give Y, (T, Q) (where we still denote by € the coloring of T’
with color €2 on each edge).

Step 4 Prove that
Y, (T, Q)= NE&.

To do this, recall that the Yokota invariant does not change when performing a Whitehead move on an
edge colored with €2; see Proposition 2.10(2). Further recall that a sequence of Whitehead moves can
change any trivalent graph into any other trivalent graph with the same number of vertices; this is because

e two trivalent graphs with the same number of vertices also have the same number of faces,
¢ their duals are triangulations with the same number of vertices,

¢ their duals can be changed into one another via “edge flips” (see [14]),

¢ edge flips are dual to Whitehead moves,

¢ two planar graphs with isotopic duals are themselves isotopic by [25, Theorem 11].

Figure 17: The central component U gets linked by handleslides.
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Jacal

Figure 18: After applying (4-1), we get four unlinked graphs.

Therefore, we can desingularize and then apply Whitehead moves to I" until it becomes a “bicycle” graph
as in Figure 19, with some circles connected linearly by segments; since desingularizing and performing a
Whitehead move do not change the genus of the regular neighborhood, there are g circles. Because of the
bridge rule (v), the Kauffman bracket is 0 unless the color of every connecting edge is 0, and therefore

Y, (I, Q)= ( > A -.-Afg) = N%.
i1yig€ly
Step 5 Account for the extra N factors.
At the beginning we added an unknot for each vertex of I', and then for each face. However when we

applied the inverse of the chainmail relation we removed the exact same number of components; therefore
there is no additional N factor. O

Proposition 4.4 For any coloring col of a planar graph T,

lo
2 log |Y, (T, col)| < max = log |Y, (T'*, col’)| + O( gr)’
r col’ ¥ r
where the maximum is taken over all r-admissible colorings of the dual graph T*.

Proof Let coly,x be an r-admissible coloring of T'* such that | Y, (I'*, cOlpax )| is maximum.
By Proposition 4.3,
% log | Y, (T, col)| = % log |Z H(col, col')Y, (I'*, col’)|

col’

1
=< %log ZlH(COL COl/)Yr(F*,Colmax)l — %log |Yr(F*,COlmax)| + 0( Ogl")’
r

col’

where the last equality stems from the fact that >_ . H(col, col’) grows polynomially in r. O

col’

O—0O—0

Figure 19: The bicycle with three wheels.
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Figure 20: The 1-skeleton of the rectification is outlined with dashed lines; a blow-up of a vertex
corresponds to gluing an octahedron to its truncation face.

Corollary 4.5 Conjecture 4 is true for T if and only if it is true for T'*.
Proof Corollary 4.6 of [4] states that Vol(T') = Vol(T'*); this and Proposition 4.4 imply the result. [

We now turn to the proof of Theorem 4.9. This will use a few intermediate propositions which we now
state and prove.

We first calculate the volume of the rectification of the graphs at hand:

Proposition 4.6 If I is obtained from the tetrahedron by a sequence of g blow-ups of vertices or

triangulations of triangular faces, then
Vol(T') = (g + 1)vg.

Proof The case of g = 0 is well known and appears in [23, Theorem 4.2]. Take now any I" obtained from
I'’ by a blow-up of a vertex v and consider P the truncated rectification of I'’. The vertex v corresponds
to a truncation face of P: this face is an ideal triangle. Given an octahedron, we can glue it to P by
identifying any of its faces to the face corresponding to v (since they are triangular faces the result does
not depend on any choice). Notice that the gluing is done along an ideal triangular face, and along
right dihedral angles. It is immediate to see that this gluing gives the truncation of T': it has the correct
1-skeleton (see Figure 20) and it is right-angled. Therefore, by blowing up a vertex, the maximum volume
grows by vg. Dually, triangulating a triangular face makes the maximum volume grow by vg as well. O

Next, we prove the upper bound:

Proposition 4.7 If I is obtained from the tetrahedron by a sequence of g blow-ups of vertices or
triangulations of triangular faces, and col is any r -admissible coloring, then

log(r))

" tog 1, (T cab)| = (g + Dy + O <2

Proof The base case g = 0 is Theorem 3.8.

If T is obtained from I'’ as a blow-up of a single vertex, then

Y, (T, col) = Y, (I'", coly) Y, (T, col,),
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where T is a tetrahedron, and col; and col, are the colorings induced by col on I'" and T, respectively.
Therefore Y, (T, col) < Y, (I'/, coly)Y, (T, col,), and by induction

log(r
%log|Yr(F,col)|E(g—i—l)vg—I-O( gr( ))
By Proposition 4.4, this inequality also holds if T" is obtained from I'” by triangulating a single triangular
face. O

Finally we prove the sharpness of the upper bound:

Proposition 4.8 If I is obtained from the tetrahedron by a sequence of g blow-ups of vertices or
triangulations of triangular faces, and col = (%(r —2+1),..., %(r -2+ 1)) — where the signs are
chosen so that r —2 £ 1 is a multiple of 4 — then

lim £ log(Y;(T,col)) = (g + 1)vs.

—>+oo I

r

Proof The proof is by induction; the base case is Theorem 3.8. Suppose I' is obtained from the
tetrahedron by g blow-ups and triangulations, and at least one blow-up. Then I' is a vertex sum of
I and I3, with both graphs obtained from the tetrahedron via g; and g, blow-ups or triangulations,
respectively, and g1 + g» = g — 1. Since Y, (I, col) = Y, (I', coly) Y, (I3, col, ) — with coly and col, the
colorings induced by col on I} and I3, respectively — we have

lim Zlog(Y,(T,col)) = lim Zlog(Yy(Ty,coly)Y, (T, coly))
r r—>+oo r

r—+00
=@+ 1+g+1vsg=(g+1us.
We need to deal with the case of I" being obtained via g triangulations. In this case, I'* is obtained from
the tetrahedron via g blow-ups. Apply the Fourier transform to Y, (I'*, col’):
Y, (T, col) = Y~ H(col, col) Y, (I'*, col).
col’

However, since col is constantly %(r —241) and even, we have

. 1 .
H(%(” -2+ 1),]') = (—l)j Sm((zn/’”)' sr£1)(j + 1))

sin2m/r)
_ -1y sin(r(j + ) Ex(j+1)/r) _ sin(Ex(j +1)/r)
- sin(27/ ) T sin@a/n)

which has 7 sign since 0 < j <r—1. Moreover, since I'* is a trivalent graph, Y, (I'*, col’) = [(I'*, col’) |2
is nonnegative for every coloring; therefore Y, (I, col) is a sum with constant sign of Y, (I'*, col’) over
all possible colorings. This shows that Y, (T, col) grows as the maximum growth of Y, (I'*, col’) over all
colorings, which is (g + 1)vg. |

Putting Propositions 4.6, 4.7 and 4.8 together, we obtain the following theorem:
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Theorem 4.9 If T" is obtained from the tetrahedron by a sequence of blow-ups of vertices or triangulations

of triangular faces, then Conjecture 4 is verified.

Remark 4.10 Proposition 4.8 actually proves Conjecture 3 for a large family of polyhedra (albeit for a
single sequence of colors each) since the volume of a polyhedron with internal angles 0 is the volume of
its rectification (notice how (27/r) - %(r +1-2) > masr — 4+00).

5 The Turaev-Viro volume conjecture

In this section we apply Theorem 4.9 to prove the Turaev—Viro volume conjecture for an infinite family

of examples.

Recall (for example from [18, Section 4.2]) that the Reshetikhin—Turaev invariant of a colored framed
link L in a manifold M is defined as

RT,(M, L, col) = nx® L)L U L', col U Q),

where
e L' C S3isaframed link giving M via Dehn surgery,

e LU L'is the disjoint union of L’ and L viewed as a subset of S (if need be, after isotoping L to
be disjoint from L),

 the components of L’ are all colored with €2,

o o(L’) is the signature of the linking matrix of L' C S3,

o n=(U,Q) ' =(4%2—-472)//=2r, and

o k= (U4, Q), where Uy is the unknot with framing equal to +1.

Proposition 5.1 Let I' € S* be a graph obtained from the tetrahedron by a sequence of g — 1 blow-ups
of vertices or triangulations of triangular faces as in the hypothesis of Theorem 4.9; let eq, . .., ej be its
edges, and denote by h the number of vertices of I'. Then there is a k-component link . = Ly U---U Ly
in S3#"=1 (S x §2) such that for any coloring col € I,k (seen both as a coloring of I" and as a coloring

of L) we have
Y, (T, col) = RT,(S* #1 (S! x $2), L, col).

Proof We have seen in the proof of Proposition 4.3 (specifically, in Step 1) that there is a way to
associate to any (I, col) a colored framed link L (T, col) in S3 such that Y, (T, col) = (L(T", col)). The
link L (T, col) is a link with k + 4 components; k of these components are in bijection with the edges
of I' and are colored with the corresponding color of col. The other / are unknotted components in
bijection with the vertices of I" and are colored with 2. The link L (T, col) — without its coloring —
almost satisfies the requirements we desire; however it has one too many components.
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We now want to remove a component from L(I", col); we do this so that the end result of the proposition
is alink in S3 #%~1 (S! x $2) rather than a link in S3 #" (S! x S2).

Pick an equatorial S? in S* and isotope L (T, col) so that all its Q-colored components lie flat on it, and
all other components intersect the S 2 twice; the fact that this can be done is evident from the construction
of L(I", col). Each Q-colored component will bound a disk that contains the intersection of its edges
with S2; every intersection lands inside one of these disks. Pick a component of L (I, col) colored with Q:
it is possible to handleslide it along each other €2-colored component without modifying the Kauffman
bracket (by [18, Corollary, page 181]). Once one such handleslide is performed, the new curve will
bound a disk that contains the intersection points of both families of curves. Repeating this procedure and
handlesliding the chosen component over all others will make it bound a disk containing all transverse
intersection points of L(I",col) with the plane, thus making it unlinked from everything; therefore
(L(T, col)) = (U){L(T, col)’) = n~ 1 (L(T, col)’), where U is an unknotted unlinked component colored
with € and L (T, col)’ is the remaining part of the colored link. By the definition of the Reshetikhin—Turaev

invariant of links
(L(T,col)’y = nRT,(S*#" 1 (S' x §?), L, col),

where L is the link obtained from L (T, col)’ by doing a 0-framed Dehn surgery on the components of
L (T, col) colored with Q2. Notice that L only depends on I" and not on the coloring. |

Definition 5.2 We denote the link constructed in Proposition 5.1 by K(I") —notice that this is a link
rather than a colored link. The next several propositions explore the geometric properties of K(I'),
culminating in proving the Turaev—Viro volume conjecture for it.

Proposition 5.3 Let I' € S3 be a graph obtained from the tetrahedron by a sequence of g — 1 blow-ups
of vertices or triangulations of triangular faces; suppose I' has k edges and h vertices. Then L := K(I")
is hyperbolic, and the hyperbolic structure on its complement is obtained by gluing 4g right-angled
hyperbolic ideal octahedra.

Proof Let T be the rectification of T', and let P be its truncation. We have seen in the proof of
Theorem 4.9 that P can be obtained by gluing g right-angled hyperbolic octahedra. Take two copies
of P and glue them along each corresponding truncation face. This gives a manifold homeomorphic
to a handlebody of genus # — 1 with some annuli removed from the boundary (corresponding to the
ideal vertices of P); the decomposition into octahedra makes it into a finite-volume manifold M with
geodesic boundary. Take the double of M along the geodesic boundary: this gives a manifold N which
is homeomorphic to §3 #'~1 (§1 x §2)\ L.

To see this, take an octahedron O and truncate a small link of each of its vertices. This truncation can be
seen as the basic building block of the fundamental shadow links (see Figure 21 and [11, Proposition 3.33]):
each truncated vertex corresponds to an arc, four of the faces of the octahedron correspond to the discs
and the remaining four faces correspond to the regions of the spheres delimited by the arcs.
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Figure 21: The building block: a ball with 4 disks in its boundary, and six arcs connecting them.

The polyhedron P is obtained by gluing octahedra together following a certain pattern; we can glue the
building blocks in the same pattern. The result of this gluing is a ball with / discs on its boundary and
some arcs connecting the discs. If we take the double of this ball along the discs, we obtain a genus 2 — 1
handlebody with a link in its boundary. The link L(I", col) corresponds to the link on the boundary of the
handlebody plus /2 — 1 components corresponding to the boundary of the gluing disks (after pushing them
out of the handlebody slightly).

Doubling this handlebody is equivalent to performing 0-surgery on each of these 4 — 1 components in S°3;
therefore by doing this we obtain S3 #%~1 (S x §2) as ambient manifold and the link in the boundary
gives L. O

Proposition 5.4 Let I" be a graph obtained from the tetrahedron by a sequence of g — 1 blow-ups of
vertices or triangulations of triangular faces; let t be the maximal number of disjoint triangular faces in
the truncation of T'. Let L := K(I"), and E be its complement. Then Ej contains at most t +2g —2
disjoint geodesic thrice-punctured spheres.

Proof The reasoning in this proof is similar to the proof of [9, Proposition 3.4].

Let P be the truncation of I'; we have seen in the proof of Proposition 5.3 that E is obtained by
doubling P along the truncation faces (to obtain a hyperbolic manifold with geodesic boundary H) and
doubling again along the geodesic boundary.

The truncation faces of P can be colored with black and the remaining with white; this way two faces of
the same color never share an edge.

The proof of Proposition 5.3 shows that £y decomposes into octahedra; take O an octahedron in this
decomposition, and let S be any thrice-punctured sphere.

Claim S N O is either the empty set or a facet of O.

We will prove the claim later; for now let us see how this concludes the proof.
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Figure 22: The six geodesics in a thrice punctured sphere cutting it into triangles.

Let S be a set of disjoint thrice-punctured spheres. This determines a set of disjoint ideal triangles in each
of the four copies of P that make up E7 ; some of them are in the boundary of a polyhedron while some
of them are properly embedded. Each polyhedron contains exactly g — 1 disjoint properly embedded
geodesic triangles (the ones that decompose P into octahedra). These glue up to give 2g — 2 disjoint
thrice-punctured spheres in £y . Furthermore, a disjoint collection 77, ..., T; of triangles in dP induces
a set of disjoint thrice-punctured spheres. Therefore there are at most 2g — 2 + ¢ disjoint thrice-punctured
spheres in Ep..

Proof of the claim We first look at S N O as a subset of .S. It must be a convex region of S delimited
by geodesics. Since S contains exactly six maximal embedded geodesics (since it contains no closed
geodesics and maximal embedded geodesics are determined by the cusp in which they end) the possible
configurations are easy to list. Figure 22 shows the six geodesics cutting S into triangles; the possibilities
for S N O can be obtained by looking at all the possible ways to glue these triangles to obtain a convex
set. The convex subsets of .S obtained by gluing triangle regions are

(1) atriangle with one ideal vertex (a single triangle region),

(2) atriangle with two ideal vertices (gluing two triangle regions without an ideal vertex in common),

(3) asquare with one ideal vertex and two right angles (gluing two triangle regions with an ideal vertex
in common),

(4) atriangle with two ideal vertices and a right angle (gluing a triangle region to the triangle in (2)),
(5) a square with two ideal vertices (gluing two triangles in (2) along a geodesic),
(6) abigon with one ideal point in its interior (gluing all triangle regions sharing an ideal vertex),

(7) a bigon with one ideal point in its boundary (gluing two triangle regions that have all the edges on
the same geodesics),

(8) aregion with three ideal points (obtained in several possible ways).

Every other possible way of gluing together the triangle regions of Figure 22 does not give a convex
subset.

On the other hand, S N O as a subset of O must coincide with the intersection of O with a plane IT C H?3;
therefore it cannot be either a bigon with an ideal point in its interior (6) or a bigon with an ideal point
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Figure 23: A square arising as the intersection of a thrice-punctured sphere and an octahedron of Ey .

in its boundary (7), since these regions cannot be realized as a hyperbolic polygon in H? (hence, neither
in 0). Moreover, I1N O cannot be a triangle with one or two ideal vertices (this excludes (1), (2) and (4)),
nor can it be a square with one ideal vertex and two right angles (3), since none of these configurations can
be realized as intersections of a plane with O. The remaining possibilities are that S N O is a region with
three ideal points (8), a square with two ideal vertices ((5), see Figure 23), or a facet of dimension 0 or 1.
However by construction O is glued to at least three octahedra which are different from O and each other;
therefore the case of a square with two ideal vertices is impossible since the intersection of S with these
octahedra must also be a square with two ideal vertices, which would contradict the fact that S is a thrice-
punctured sphere. Finally there are no properly embedded totally geodesic surfaces with exactly three ideal
points in O; therefore the only possibility is that it is a face of O. To sum up, the only possible cases are
that $ N O (when nonempty) is a vertex, an edge or a face of O. Therefore S N O must be a facet of 0. O

Remark 5.5 If M is the exterior of a fundamental shadow link with volume 2nvg, then it contains
exactly 2n disjoint geodesic thrice-punctured spheres. This can be used to show that some of the exterior
of the links provided by Proposition 5.1 are not homeomorphic to exteriors of fundamental shadow links;
the simplest such example is the link associated to the graph shown in Figure 24. An easy check shows
that the truncation of ' contains at most six disjoint triangular faces: they correspond to the truncation
faces of the three vertices on the left half of the picture, and to the three triangular faces on the right half
of the picture. This means that (by Proposition 5.4) Ej contains at most 10 thrice-punctured spheres
and has volume 12vg; on the other hand a fundamental shadow link complement with the same volume
as Ey must contain 12 such spheres.

Figure 24: A graph whose link is not a fundamental shadow link.
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More generally, if T" is obtained from the tetrahedron through at least one triangulation and at least one
blow-up, then the associated link exterior is not diffeomorphic to the exterior of a fundamental shadow
link (and there is at least one such manifold of volume 4nvg for each n > 1).

Theorem 5.6 Let I' € S3 be a graph obtained from the tetrahedron by a sequence of g — 1 blow-ups of
vertices or triangulations of triangular faces; suppose I' has k edges and h vertices. Take the k -component
link L := K(I') € S3#"~1 (S x S2). Then the Turaev-Viro volume conjecture (Conjecture 1) holds for
the exterior of L.

Proof Theorem 4.9 implies that for any choice of r-admissible coloring col,

1
1og |RT, (> #'7" (8" x §2), L, col)| = T log | ¥, (', col)| < gvg + 0( Og(r))-
r

The equality is a consequence of Proposition 5.1; the subsequent inequality is the content of Theorem 4.9.
Furthermore if we denote by ¢ the coloring (%(r +1),..., %(r + 1)) (where the sign is chosen so that
the color is always even), we have

1
T 10g |RT, (S #7! (8" x §2), L, )| = - log|Y,(I',¢)| = gvg + 0( Og(r))
r

because of Proposition 4.8.
If E is the exterior of L, then
TV,(EL) = Y [RT,(S*#'71(S' x §?). L. col)|?
cole Ik
by [5, Proposition 5.3], and Vol(£7,) = 4gvg by Proposition 5.3.

This implies the result since
lim 2% log(TV,(EL)) = 4gvs,
r—>oo r

because the sum in the formula for TV, (E1) has polynomially many terms all with the same sign. 0O

Remark 5.7 There is an overlap between Theorem 5.6 and [5, Theorem 1.1]. Some links of Theorem 5.6
are also fundamental shadow links (FSL); namely, those links corresponding to graphs obtained from the
tetrahedron by blow-ups. However as we have seen in Remark 5.5 (infinitely) many others are not.

Appendix Numerical evidence for Conjecture 3

Supporting evidence for Conjecture 3 in the case of simple polyhedra can be found in [17]. In this
appendix we show numerical computations supporting the conjecture for the square and pentagonal
pyramids; all the calculations are performed with Mathematica. The notebook is available on GitHub at
https://github.com/Giulio451/UpperBound; all calculations were performed on a Dell XPS 13 laptop.

The ideal regular square pyramid By Bao and Bonahon [1, Theorem 1] there is a unique square

pyramid such that the angles at the base are %n and the vertical angles are %n. Such a pyramid is ideal and
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Figure 25: The coloring of a square pyramid associated to the ideal regular pyramid.

is maximally symmetric; it is decomposed into two ideal tetrahedra with angles %n, %n and %n; hence

its hyperbolic volume is equal to 4A(%7T) = %Ug ~ 1.83193 (where A is the Lobachevsky function).
Consider the coloring of Figure 25; it converges to the angles of the ideal pyramid in the sense of
Conjecture 3.

Its Yokota invariant can be calculated by desingularizing the 4-valent vertex and by using the vertex sum
formula; it is given by

4

rJ k

J 571 L57]

where | x| is the floor of x. The growth is shown in Figure 26.
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Y rectified pentagonal pyramid
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The 0-angled squared pyramid Because of [4, Theorem 4.2], the square pyramid with every dihedral

angle equal to 0 exists and attains the maximum volume of any square pyramid (it is in fact the rectified

pyramid). Its truncation is the right-angled ideal square antiprism. The volume of a right-angled ideal
antiprism with n-gonal face is given by [21, page 151]

T,ow T ow
m(A(G+2,) A (G- 3)
and for n = 4 this gives ~ 6.02305.
Color the pyramid with L%rj at every vertex; this coloring converges to the angles of the rectified pyramid.

Its Yokota invariant is given by

kel,
and its growth is shown in Figure 27.

The ideal regular pentagonal pyramid As before there is a unique ideal pentagonal pyramid with
vertical angles %n and base angles %n; this pyramid is maximally symmetric. We can decompose it

into three ideal tetrahedra, two with dihedral angles %JT, %n and %7‘[ and the remaining with dihedral

angles %J‘[, %n and %n. Its volume then is
SA(3m) +2A(37) + A(3m) ~ 2.49339.

Consider the coloring in Figure 28, converging to the angles of the ideal pyramid. Its Yokota invariant

)

can be calculated (by desingularization and the vertex sum formula) as

If\2e) () K |2 12 7 |12 &
PIES (L%rJ L] W)l () L3 ()| (0] L2e) 3]
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157

3]

Figure 28: The coloring of the pentagonal pyramid corresponding to an ideal regular pyramid.

and its growth is shown in Figure 29.
The 0-angled pentagonal pyramid The truncation of the rectified pentagonal pyramid is the pentagonal
antiprism, whose volume is ~ 8.13789, and the corresponding Yokota invariant is
1 1 1 1 . 1 .
) AkAj(LZVJ Lar] Kk (lar] Lar) 7 (|lar) k0

kel Lar) Lar) Lardl{Lar) Lar) Lar D |Lar]) Lar) L%rJ)

Because of the greater range of the sum, it is considerably slower to compute than the other examples;

2

we were only able to arrive to level r = 321, and the Yokota invariant is within 4% of the volume, as
can be seen in Figure 30. However this is similar to the error (at level 321) in the previous examples.

regular ideal pentagonal pyramid

Y

29 -

2.8 |

2.7:— e Yokota invariant
I volume

26 f ©o.

25 [ IR
L Loy

200 400 600 800 1000 1200
Figure 29
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Arithmetic representations of mapping class groups

EDUARD LOOIJENGA

Let S be a closed oriented surface and G a finite group of orientation-preserving automorphisms of S
whose orbit space has genus at least two. There is a natural group homomorphism from the G-centralizer
in Diff*(S) to the G-centralizer in Sp(H;(S)). We give a sufficient condition for its image to be a
subgroup of finite index.

57K20, 57M12; 11E39

1 Introduction and statement of the main result

Let S be a closed connected oriented surface of genus > 2. The group Diff* (S) of orientation-preserving
diffeomorphisms of S acts on H;(S) via its connected component group 7o (Diff*(S5)), known as the
mapping class group of S, and it is a classical fact that the image of this representation is the full
symplectic group Sp(H(S)) of integral linear transformations which preserve the intersection form
on H;(S). This paper concerns an equivariant version, where it is assumed that we are given a finite
subgroup G C Diff™ (S). The centralizer Difft () of G in Diff™(S) lands under the above symplectic
representation in Sp(H1(S5))€ and the question we address here is how much smaller the image is. Besides
its intrinsic interest, the answer has consequences for understanding the mapping class group of the
G-orbit space of S. We shall regard the latter as an orbifold surface and denote it by Sq; the regular orbits
then define an open subset S C S with finite complement. This punctured surface S¢; has negative
Euler characteristic. The image of Diff ™ (S) in the mapping class group of the punctured surface S b
is of finite index and thus makes Sp(H1(S)) a “virtual representation” of that mapping class group.
The work of Putman and Wieland [6] relates our question to the Ivanov conjecture as follows. Let us say
that the G-action on S has the Putman—Wieland property if Diff*(S)© has no finite orbit in H;(S)~ {0}.
These authors prove that if that property holds for a given genus /4 of Sg (no matter what S and G are),
then every finite-index subgroup of a mapping class group of a connected oriented surface of finite type
of genus > A has zero first Betti number. The first part of our main result is about that property.

Theorem 1.1 Let S — Sg be a G -cover as above.

(i) Ifthis cover is trivial over a compact genus-one subsurface of S¢, with connected boundary, then
the action of Diff*(S)° on H,(S) has no nonzero finite orbits.

(ii) If this cover is trivial over a compact genus-two subsurface of S¢g with connected boundary, then
the image of Diff*(S)C in Sp(H1(S))C is of finite index.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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We will also obtain an arithmeticity property in the setting of (i). See the discussion and the end of this
introduction as well as Remark 5.6.

Remark 1.2 In either case the cover over the complement of such a subsurface of S must be connected
(for the subsurface has a connected boundary and S is connected). Since this complement has a boundary
component over which the covering is trivial, we may contract that component (and each of the components
lying over it) to obtain a G-covering S" — S é;, where the genus of S/G is now one (resp. two) less than
that of Sg. As this covering represents all the topological input, we may paraphrase our main theorem as
saying that the Putman—Wieland property (resp. the arithmeticity property) holds after a ““stabilization”
by taking a connected sum of the base orbifold with a closed surface of genus one (resp. two).

We will prove this theorem under the apparently weaker assumption that there exists a closed one-
dimensional submanifold nonempty 4 C Sg, so a disjoint union of say k > 1 embedded circles (with
k = 1in case (i) and k = 2 in case (ii)) such that S — S is trivial over A and connected over Sg ~ A.
This looks as if this is a more general result, because it is easy to find in the respective cases such an A
inside the postulated subsurface with the property that its complement is connected. But we will see that
this generalization is only apparent.

There is also a useful geometric interpretation for this last formulation: given such an A, then we can
obtain the G-covering S’ — S, as above by regarding Sg ~ A4 as a punctured surface (so with two
punctures for each component of A4) and letting S¢;; D S ~ A be the closed orbifold obtained by filling
in these punctures as nonorbifold points. Our assumptions say that S;; is a closed connected surface
(the genus drop is the number of connected components of A) and that the given G-covering S — Sg
arises from a G-covering " — S, with, for each component of A, an identification of the fibers of this
covering over the two associated points (as principal G-sets). If we give S a complex structure and thus
turn it into a smooth complex-projective curve with an orbifold structure, then an algebraic geometer
might be tempted to regard this orbifold curve as being in its moduli space near the Deligne-Mumford
stratum where the orbifold acquires k nodes, but for which the G-covering stays irreducible and does not
ramify over the nodes. The covering S" — S’G then appears as the normalization of such a degeneration.
No algebraic geometry is used in the proof, though, for the topological part of this paper uses methods
that directly generalize those of Looijenga [3].

Let us compare the above theorem with the work of Grunewald, Larsen, Lubotzky and Malestein [1],
whose main motivation was to construct, via the virtual isomorphism mentioned above, new arithmetic
quotients of the mapping class group of Sg. They assume that G acts freely so that Sg = S and impose
another, more technical condition, which in our setup translates into requiring that we are in the context
of (i) and demanding that the covering S” — S; is of “handlebody type”, in the sense that it extends to
a handlebody that has S¢; as boundary. They prove that the image of Diff*(S)€ in each simple factor
of Sp(H (S, Q))Y is arithmetic. Our approach differs from theirs in several aspects, but mostly in our
direct and relatively simple way of constructing G-equivariant mapping classes.

Algebraic € Geometric Topology, Volume 25 (2025)
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When speaking of arithmetic subgroups of Sp(H (S, Q))?, it is of course tacitly understood that the
latter can be regarded as the group of rational points of an algebraic group defined over Q. Let us make
this explicit.

Denote by X(QG) the set of irreducible characters of QG and choose for every y € X(QG) a representing
irreducible (left) Q G-module V). We also fix on every V), a G-invariant inner product sy: Vy x Vy — Q
(which can be obtained as the G-average of an arbitrary inner product). This exhibits V), as a self-dual
QG-module. Then Endgg (Vy) is a skew field which is of finite Q-dimension. We denote its opposite
by D (meaning that the underling Q-vector space is Endgg (Vy ), but that composition is taken in opposite
order) so that V) is now a right D,-module. Adopting as a convention that D, used as superscript
(resp. subscript) indicates that we are dealing with right (resp. left) D ,-module endomorphisms, then the
natural map
QG= T[] EndPx(vy)
X€X(QG)

is an isomorphism of Q-algebras. This is in fact the Wedderburn decomposition of QG, as each factor is
a minimal two-sided ideal.

The group algebra QG comes with an anti-involution r +— rT which takes each basis element eg for
g € G to the basis element e,—1. This identifies QG with its opposite. Since V) is self-dual, in the above
decomposition the involution leaves each factor End? (V) invariant and induces one in the skew-field D :
the involution on End®x (Vy) is given by taking the sy-adjoint, given by s, (cv,v") = 5, (v, oTv’). Since
we have D, acting on V, on the right, this means that s, (vA, v) = s, (v, v'A"). (We note in passing that
any other G-invariant inner product 5%, on Vj is of the form sy (vA, v’) for some nonzero A with At =1,
the associated anti-involution of D is then a conjugate of 1.) The center of D, which we denote by L,
is a number field, and the fixed-point set of f in L, is a subfield K, C L, with [L, : K,] <2.

For a finitely generated Q G-module H, denote by H [x] the associated y-isogeny space Homgg (Vy, H).
The right D y-module structure on V, determines a left D ,-module structure on H [x] and the isotypical
decomposition of H is the assertion that the natural map

@D viop, HXl—»H, vep,ueVy®p, Hlxl—u(),
x€X(QG)
is an isomorphism of Q G-modules. So the y-isotypical subspace of H, ie the image Hy of Vy, ®p , H[]
in V', has the structure of a K ,-vector space.

Assume now that H comes equipped with a nondegenerate G-invariant symplectic form (a,b) € H x H —
a-b € Q. Then the isotypical decomposition of H is symplectic, so that we also have a decomposition
Sp(H)¢ = HXGX(QG) Sp(HX)G. Every factor Sp(HX)G can be understood with the help of the skew-
hermitian form

(f f)) e H[Y)x H[x] > (f. f')x € Dy.
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which is characterized by the property that for all v, v’ € V,

F@)- f1@) = sy {f ). )

(skew-hermitian means that the form is D ,-linear in the first variable and ( f/, f), = —(f, f’ );r(). Indeed,
for fixed f and f’, the map (v,v") € Vy x Vy  f(v)- f(v') € Q is a bilinear form on V,. Since
sy: Vy x Vy — Q is nondegenerate, there exists a unique Q-linear endomorphism o of V, such that
f()- f(v') = s4(0(v),v"). The G-invariance of both bilinear forms implies that o is G-equivariant,
ie is an element of Endgg(Vy). We prefer to regard it as an element of its opposite Dy, so that
f()- f(v') =sy(vo,v’). This o is evidently Q-linear in both f and f”, and that is why we denote it by
(f. f')yx € Dy. 1tis then a little exercise to check that (, ), is skew-hermitian. This form is nondegenerate
in an obvious sense. The group of automorphisms H [y] that preserve this form is a generalized unitary
group, and therefore written as U(H [x]).

Any element of Sp(H X)G acts via the isomorphism Hy = Vy ®p, H[y] as an element of the form
ly, ®u with u € U(H[]), and this identifies Sp(H,)C with U(H [y]). The group U(H []) is the group
of K-points of a reductive algebraic group defined over K, whereas Sp(H X)G is the group of Q-points
of an algebraic group defined over Q. Indeed, the latter is obtained from the former by the restriction of
scalars K, |Q.

Theorem 1.1 then amounts to the assertion that the image of Diff*(S)¢ in the product of unitary groups
I1 vex@a) UMH1(S; Q)[x]) is arithmetic. We use this decomposition to prove the theorem, since we
first prove arithmeticity for a single factor. This leads to a somewhat stronger result, for we show that in
the setting of (i) of our main theorem (so when S — Sg is trivial over a genus-one subsurface) the image
of Diff " (S)¢ in U(H,(S; Q)[x]) is almost always arithmetic (see Remark 5.6).

Structure Of the four sections, only the last one is topological, but in order to put the constructions given
there to work, we need a considerable amount of algebra and that explains the nature of the preceding
sections.

Section 2 collects useful (and essentially known) algebraic proprieties of constructs that we encounter in
the symplectic representation theory of a finite group over Q. So there is little or no claim of originality
here, although it was (for us) a bit of an effort to extract this material from the literature. In Section 3 we
introduce and study what we might regard as the basic symplectic module associated to an irreducible
QG-module, where G is a finite group. The main result is Proposition 3.1, which states an arithmeticity
property and also lists the (few) cases for which this arithmetic group has real rank < 1. This prepares us
for stating and proving the arithmeticity criterion Theorem 4.2 in Section 4, which furnishes the main
algebraic input for Section 5. As mentioned, this last section is essentially topological: we there construct
sufficiently many G-equivariant mapping classes to ensure that we can apply said theorem to obtain our
main theorem, Theorem 1.1.
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2 Brief review of special unitary groups

The Albert classification In this subsection, D is a skew field of finite dimension over Q endowed with
an anti-involution . We assume that the involution f is positive in the sense that A € D — trp (AAT)isa
positive-definite form. We remark that this is so for the cases that matter here, for the given anti-involution
on QG is evidently positive: for r € QG, the Q-trace of rr' is |G| times the coefficient of e; in rrT,
and hence is positive definite. The same is then true for its Wedderburn factors EndPx (V) and their
associated skew fields D .

We denote the center of D by L (so it is a number field) and denote by D (resp. K) the f-invariant part of
D (resp. L). Albert’s classification of such pairs (D, 1) —see for example [5, Chapter IV, Theorem 2] —
then tells us that K is totally real, so that R ® g D = ]_[Or R ®4 D, where o runs over the distinct field
embeddings o : K — R, and that there are essentially four cases:

I) D=L =Ksothat R®,; D =R for each o,

(I) L = K and for each o there exists an isomorphism R ®, D = Endg (R?) which sends ¥ to taking
the transpose (so [D : L] = 4),

(IIl) L = K and for each o there exists an isomorphism R ®, D = K, where K denotes the Hamilton
quaternions, which sends 1 to quaternion conjugation (so [D : L] = 4),

(IV) L is a purely imaginary extension of K (in other words, L is a CM field) and for each o there
exists an isomorphism R ®, D = Endc (C?), which takes R ®¢ L to C (so [D : L] = d?) and
sends | to taking the conjugate transpose.

Let M be a left D-module of finite rank. We write M T for M endowed with the structure of a right
D-module via the rule ad ;= ATa fora € M and A € D. So if M’ is another left D-module, then
MY ®p M’ is defined. It is a K-vector space with the property that ¢ ® p Aa’ = (ATa) ®p a’ for
allA € D,a € M and @’ € M’. In particular, we have in M T® p M a K-linear involution defined
by (@ ®p b) = b @p a. We denote its fixed-point set by u(M) C MT @ p M. As a Q-subspace of
MY ®p M, it is spanned by the symmetric tensors ¢ ®p a.
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Isotropic transvections and Eichler transformations Let (a,b) € M x M +— (a,b) € D be a skew-
hermitian form on M. We denote its radical by M,, so that the form descends to a nondegenerate one on
M := M/M,. We define the associated unitary group U(M ) as the group of D-linear automorphisms of
M that preserve the form and act as the identity on M,. It is the group of K-points of an algebraic group
defined over K. If the form is nondegenerate (M, = 0), then U(M) is what is called in [2, Section 5.2B]

a classical unitary group.

If ¢ € M is isotropic (meaning that (c¢,c) = 0), then we have the associated isotropic transvection
T.=T(c®pc)eUM) definedby x € M — x + (x,c)c (so ¢ ®p c is here understood as an element
of MY ®p M). It “generates” an abelian unipotent subgroup of U(M) defined by

AeDy—T(®pAc)eUM), T(c®pAc)(x)=x+ (x,Ac)c.

Isotropic transvections are particular cases of Eichler transformations. These are defined as follows:
Let ¢ € M be isotropic, a € M perpendicular to ¢ and A € D such that A — AT = (4, a) (equivalently,
A— %(a, a) € D). Then the associated Eichler transformation is

E(c,a,M)ixeM—x+ (x,a)c+ {x,c)a+ (x,c)Ac € M.

It is a D-linear transformation which preserves the form. When A = %(a, a), we shall write E(c,a)

instead. Since T(c ®p c) = E (%c, c), isotropic transvections are Eichler transformations, as asserted.

One checks that each Eichler transformation lies in U(M ) as defined above. In fact,t € K+ E(tc,a, 1) =
E(c,ta,t?}) is a closed one-parameter subgroup of U(M ) whose infinitesimal generator is represented
by a ®p ¢ + ¢ ®p a € u(M)— or rather by its image in u(M)/u(M,), for if both a and ¢ lie in M,,
then we get the identity. By a general property of algebraic groups [8, Corollary 2.2.7], such subgroups
then generate a closed algebraic K-subgroup of U(M). Following [2], we denote that group by EU(M).

We note the commutator identity
(D) [E(c,a1, A1), E(c,az,A2)]=T(c®Ac) with A = {(ay,a2) + (al,az)T.

It follows that if we fix c, but let @ and A vary (subject to the conditions above, so with a € CJ‘), then the
E(c,a, \) generate a unipotent group that appears as an extension of the vector group ¢ /(M, + Dc)
by the abelian subgroup of U(M) defined by the T'(c ® p Ac).

The group EU(M) is already generated by the isotropic transvections: When T is nontrivial this follows
from [2, (6.3.1)]. The remaining case is the one we labeled (I). This is when D = L = K and U(M)
is a symplectic group over K, but then there is no issue, because every a € M is isotropic, and then
E(c,a) = Taq T IT L

Unipotent radical and Levi quotient If the form is nondegenerate (ie M, = {0}), then EU(M) is a
K-form of a classical semisimple algebraic group, and hence has finite center. To be precise, it is a group of
symplectic type in cases (I) and (I), of orthogonal type in case (III) and of special linear type in case (IV).
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If M, is possibly nonzero, then per convention, the elements of U(M) act trivially on M,,. The natural
map U(M) — U(M) is evidently onto. Its kernel consists of the transformations that act trivially on
both M, and M/M,, and is therefore the unipotent radical R, (U(M)) of U(M ) —recall that U(M) is
reductive. We have an exact sequence

1> R, (UM))—UM)—UM)— 1.

The elements of R, (U(M)) are the Eichler transformations E(c,a) with ¢ € M, and a € M arbitrary.
In this case E(c,a) only depends on the image of ¢ ®7 a in MOJr ®p M), so that the resulting map

M] ®p M — R,(U(M))

is an isomorphism. So R, (U(M)) is a vector group over K (ie a K-vector space regarded as the group
of K-points of a K-algebraic group of additive type). Since EU(M) is a normal semisimple subgroup of
U(M), it has the same unipotent radical: R, (EU(M)) = R, (U(M)).

The relation between EU(M) and U(M) Since in what follows the notion of the real rank of an
algebraic group shows up, let us begin with reviewing this concept briefly.

Let G be a reductive algebraic group. Suppose first that G is defined over R. Then the real rank rkg (9)
of G is by definition the dimension of a Cartan subgroup of G defined over R. For example, if G is the
orthogonal group of a nondegenerate quadratic form over R, then its real rank is the Witt index of this
form: the dimension of a maximal isotropic subspace defined over R. If G is defined over a number
field k, then we restrict scalars a la Weil so that Resg g G is a group defined over Q. We then regard
Resg|g § (by base change) as a group over R, and define the real rank of G to be the real rank of the
latter. Concretely, if 01, ..., 0, are the real embeddings of k in R and 74, 71, .. ., Ts, Ts are the remaining
distinct (complex) embeddings (they come in complex conjugate pairs), then the definition comes down to

kg (9) = Y _rkr(Go;) + Y _ ke (Gr,)

i=1 i=1

(this is also the sum over all the archimedean valuations of k, taking as general term the real rank of the
corresponding completion of G(k)). The Dirichlet unit theorem often gives lower bounds for the rank. For
example, if the skew field D is as in the Albert classification, the group of units D> is a reductive group
defined over K, and its group of real points and its real rank are then as follows, putting e := [K : Q]:

(D) Resgjg D*(R) is open in (R*); the real rank of D™ is e,

(II) Resgjg D*(R) is open in GL3(RR)®; the real rank of D> is 2e,
(III) Resk|g D*(R) is open in (K*)¢; the real rank of D> is e,
(IV) Resgig D*(R) is open in GL;(C)¢; the real rank of D™ is de.

So D* has real rank > 2, unless D equals Q (I), is a definite quaternion algebra with center Q (III) or is
an imaginary quadratic extension of Q.
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It is clear that EU(M) is a normal subgroup of U(M'). We already noticed that it is closed in U(M ), and
hence the quotient U(M)/EU(M) is also an algebraic group. Note however that if M has no nonzero
isotropic vectors, then EU(M) is trivial. We mention for future reference a consequence of a theorem of
GE Wall [10]:

Lemma 2.1 If M is nondegenerate and contains a nonzero isotropic vector, then U(M)/EU(M) is
anisotropic (all its real forms are compact). So EU(M) and U(M) have the same real rank, and any
arithmetic subgroup of U(M) will have finite image in U(M)/ EU(M).

Proof Theorem 1 of [10] identifies U(M )/ EU(M) as a quotient of D* by a normal subgroup which
contains D™ N D. It is easy to check that in all four cases (I)-(IV) in the Albert classification such a
quotient must be anisotropic. |

Wall’s result is more specific and tells us that U(M)/ EU(M) is often an anisotropic torus. But this need
not be so when dimp M = 2.

Lemma 2.2 If M is nondegenerate isotropic, then the K -algebraic group EU(M) is almost simple (by
which we mean that EU(M) is perfect and every proper normal subgroup is contained in its center) unless
D = K and M = K* is endowed with a nondegenerate symmetric form which admits an isotropic plane
defined over K.

Proof This follows from [2, Theorem 6.3.16 combined with Theorem 6.3.15]. O

The excepted case is genuine, for in that case M =~ M| @k M» as modules endowed with K-forms,
where M; is a two-dimensional K-vector space endowed with a nondegenerate symplectic form. The
resulting map SL(M1) x SL(M>) — GL(M) has image EU(M ) =~ O(M) and its kernel has (—1, —1) as
its unique nonidentity element.

Remark 2.3 The reduced norm is the homomorphism N : U(M) — L* characterized by the following
property: if T € U(M), then for some (or equivalently, every) real embedding o : K < R, the D-linear T
induces a linear transformation of the (R® L)-vector space R ® x M whose determinant is 1 ®, N(T).
The kernel of N, usually denoted by SU(M ), contains EU(M ) and is often equal to it. But in our context
this group does not show up in a natural manner.

3 The hyperbolic module attached to a finite group

A hermitian extension Our discussion of symplectic QQ G-modules also applies to orthogonal QG-
modules. One such module is QG itself (regarded as a left module). It comes indeed with a G-invariant
pairing QG x QG — Q, the trace form, which assigns to the pair (r1, r») the trace of r1r;r considered
as an endomorphism of QG as a Q-vector space (this is simply |G| times the coefficient of e1). This

pairing is symmetric and nondegenerate.
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The Wedderburn decomposition QG = [ | X EndPx (Vy) is also the isotypical decomposition, for the
K y-linear map

Vy ®p, HomDX(VX, Dy) —>EndDX(VX), V1 ®p, f:vEVy>v1f(v),

which assigns to v; ®pp, f the endomorphism v € Vy = vy f(v) is well defined and is an isomorphism
of left Q G-modules (and also as right Q G-modules). This also shows that QG[y] = HomPx (Vy. Dy)
as aright D y-module.

We claim that Hom®x (Vy, Dy) = V; as left Dy-modules. This is based on a hermitian extension of s,
to V; : if we follow the same recipe as in the introduction for a symplectic representation, then we find
that there is a hermitian form 7/ : V; X V; — D, characterized by the property that for all v, v’ € Vy
and f, f' € V; ,

sy (v, f,)sx(vl, ) =sy(hy(f, 0.

This formula implies that 4, is G-invariant (we let G act on the right of V; ). By taking v = f = f/,
we also see that hy (f, /) = s,(f, f), so that i, is a hermitian extension of s,. For every v € VT, the
expression /1, (v, —) yields an element of HomPx (Vy., Dy) and defines the stated isomorphism.

Isotropic transvections Henceforth we write R for the integral group ring ZG. Let M be a finitely
generated (left) R-module, free over Z, and let (a,b) € M x M + a - b € 7 be a nondegenerate (but not
necessarily unimodular) G-equivariant symplectic form. We extend this in the standard manner to a form

(a,b)e M x M + {a,b) = Z(g_la-b)eg = Z(a-gb)eg € R.
geG geG

This form is skew-hermitian: it is R-linear in the first variable and (a,b) = —(b,a)T. A Z-linear
automorphism of M is G-equivariant and preserves the symplectic form if and only if it is an R-module
automorphism which preserves this skew-hermitian form. We denote the group of such automorphisms
by U(M).

Let R4 stand for the fixed-point set of T in R; this is an additive subgroup of R. If a € M is R-isotropic
in the sense that {(a,a) = 0, then for every r € R4 the isotropic transvection

2) Ta(r):xeMi—>x+(x,a)rae M

lies in U(M) and r € R+ + T,(r) is a homomorphism from (the additively written) R4 to (the
multiplicatively written) U(M). Since T, (r) only depends on a ® ra € MT ® g M, we also denote this
transformation by 7'(a ® ra).

The basic hyperbolic module Let A be a (not necessarily commutative) unital ring with unit endowed
with an anti-involution t. The basic hyperbolic A-module ?*(A) is the free left A-module of rank
two (whose generators we denote by e and f) endowed with the skew-hermitian form defined by
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(e,e) = (f,f)=0and (e, f) = 1. It can be regarded as the A-form of the standard symplectic
module Z2. In vector notation:

a b’
(3) <<a//)’ (b//)> = a/b//T —a”b’T,

It is unimodular in the sense that a € #2(A) — (—, a) € Homy(H?(A), A) is an antilinear isomorphism.
We will write U, (A) and EU(A)) for U(H?(A)) and EU(H?(A)), respectively. The latter contains
SL,(Z) in an obvious manner. Let Ay C A be the set of f-invariant elements. One verifies that
Te:x € H2(A) > x + (x, e)e and the similarly defined T have the matrix form

T, (a) = ((1) —lloa) and Ty (a) = (pla D

respectively, where p, stands for right multiplication with a.

The group I'(G) We take A = R(= ZG). The elements of the form r + rT with r € R make up
a subgroup Ry of Ry such that Ry /R4 is a finite-dimensional [F»-vector space. Let 'y (G) and
I'_(G) denote the subgroups of EU>(R) generated by T, (R++) and Ty (R4 ), respectively, and let
I',(G) C EUs(R) stand for the subgroup generated by I'4 (G) and SL»(Z). Since I'_(G) is a SLy(Z)-
conjugate of I'1 (G), the group I'y,(G) contains Ty (R++). The right (inverse) action of G on H?(R)
defines an embedding of G in U, (R). One checks that

pgTe (r)lOgT = Te (grg_l)v
and so G normalizes I, (G). We put I'(G) :=I'1(G).G.

Arithmetic nature of I'(G) The notion of a basic hyperbolic module generalizes in a straightforward
manner to ’;'-KZ(V);r ), the skew-hermitian form being given by

v/ w/ / " " /
4) <(v//),(w”)>=hx(v,w )—hy(v",w).

So we have defined U2(V);r ); it is the group of K, -points of a reductive algebraic group defined over K.
If we write an element of UZ(V; ) in block form ( é g), with A, B, C and D in Endp, (V; ), then the
subgroup defined by C = 0 is parabolic. Its unipotent radical is given by requiring that in addition
A and D are the identity. The corresponding subgroup is then the vector group ((1) ]f ) for which B is
hermitian relative to /. In other words, %, identifies B with an element of u(V);r ) —that is, a symmetric
element of V), ®p, V; —and hence defines an isotropic transvection. In particular, this is also the
unipotent radical of the corresponding subgroup of EUz(V);r ). An opposite parabolic subgroup is defined
by B = 0 and has a similar description of its unipotent radical. Let us denote these unipotent radicals by
Ry (UZ(V;)) and R_(UZ(V;)), respectively.
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We run into this when we consider the isotypical decomposition of #?(QG). The isogeny space
H?(QG)[x] = Homgg (Vy, H*(QG)) is then a left Dy-module that is naturally identified with HZ(V; ).
This gives rise to a decomposition

Q6= [ .
x€X(QG)
The image of '+ (G) in Uz(V);r) clearly lands in Ri(Uz(V;)). Since EndDX(V;) = EndDX(VX) is a
Wedderburn factor of QG, it follows that the image of R in EndDX(V);r ) is an order (a lattice that is
also a unital algebra). This is compatible with the anti-involutions, and hence the image of R4 in
EndDX(V; ) is a lattice in the subspace of hermitian matrices. So the image of '+ (G) in Uz(V)Z )isa
lattice in R (Ua(Vy)).

It is clear that ', (G) maps to EUZ(I/);r ).

Proposition 3.1 The image of I'(G) in UZ(V);r ) is an arithmetic subgroup. The real rank of Uz(V; )
is > 2 unless dimDX Vy = 1. In that last case, where we can assume that VT = D, with G acting on the
right and mapping to its group of units, one of the following holds:

(i) Dy =Q and G maps to 2,
(iia) Dy is the Gaussian field Q(+/—1) and G maps onto i4,
(itb) Dy is the Eisenstein field Q(+/—3) and G maps onto ju3 or [Le,
(ilia) Dy = Q4+ Qi +Qj + Qk and G maps onto its group of units (a binary tetrahedral group of
order 24) or onto the quaternion group of order 8, or
(iiib) Dy =Q+ Q+/3i + Qj +Q+/3k and G maps onto the binary dihedral group of order 12.
In all cases, T'(G) acts Q-irreducibly in Hz(V;).

Remark 3.2 It is well known that the quaternion group appearing in Proposition 3.1(iiia) is realized as
the Galois group of a torus ramified at four points (the covering surface has genus three). This example is
like a Swiss army knife for illustrating (and refuting) statements in complex dynamics, which is why that
community refers to it as the eierlegende Wollmilchsau. We do not know whether its appearance here is
just a coincidence.

For the proof we need:

Theorem 3.3 (Raghunathan [7], Venkataramana [9]) Let G be an almost simple simply connected
Q-algebraic group of real rank > 2. Let R_ and R4+ be Q-subgroups that contain the unipotent radicals
of opposite Q-parabolic subgroups of G. Then for any pair of lattices '+ C R4+ (Q) and I'_ C R_(Q),
the subgroup of G(Q) generated by their union I'. U T'_ is a congruence subgroup of G(Q).

Proof We first prove the arithmeticity property of I',(G) in EUZ(V; ). Let us first observe that the
group EUZ(V);r ) is almost simple by Lemma 2.2. Indeed, this can only fail if D, = K, and the form is
symmetric (with dimg, V; = 2), and this is clearly not the case.
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If the real rank of EUz(V; ) is > 2, then the theorem of Raghunathan and Venkataramana applies and
we conclude that I', () is an arithmetic subgroup of EUz(V);r ). It is then also easy to see that ['(G) acts
Q-irreducibly in H2(V;).

Since the real rank of EU2(V; ) is > dimp VT, it remains to treat the case when dimp VT =1.1In
other words, we can assume that V; = Dy. The real rank of EU(D/) is then still > 2 most of the
time. As we saw above, the exceptions are the cases for which K, = Q and D, is either Q, a definite
quaternion algebra over QQ with center Q or an imaginary quadratic extension of Q. Since D, is also an
irreducible Q G-module, we have a homomorphism p: G — D; whose image contains a Q-basis of D .
In particular, D is generated over QQ by its units. So if D is an imaginary quadratic extension of QQ, then
D is either Q, the Gaussian field or the Eisenstein field. In the definite quaternion case, D ;(R) is the
group of unit quaternions, and hence p(G) is one of the subgroups classified by Klein: this group must be
binary tetrahedral, binary octahedral, binary icosahedral or binary dihedral (of order 4n). In these cases
p(QG) NR equals Q, Q(v/2), Q(+/5) or Q(cos(rr/n)), respectively. Since we want this intersection to
be Q, only the two groups listed have that property.

Note that in each of these exceptional cases, Dy, + = K, = Q. The isotropic subspaces in ’H,Z(DX)
are defined over QQ, and hence EU> (D) = SL»(Q). The group I', () is then a copy of SL>(Z). So
I',(G) is arithmetic in EUZ(V; ). In view of Lemma 2.1 this also implies the arithmeticity of I'(G)
in U2(V);r ). The actions of G (on the right) and SL,(Z) (on the left) on ’HZ(V);r ) commute and make
’;’-[2(1/);r ) an exterior tensor product of irreducible Q-representations: it is the right QG-module V;
tensored with the tautological representation of SL,(Z) on Q? (which is absolutely irreducible). Hence
H2( V; ) is irreducible as a representation of SL.»(Z) x G. This implies that ’Hz(V; ) is irreducible as a
I'(G)-module. |

4 An arithmeticity criterion

In this section we fix a rational character y € X(QG). We therefore suppress the subscript y and write D
for Dy and V for V.

Proposition 3.1 tells us that I'(G) C U>(V") is an arithmetic subgroup which acts Q-irreducibly on
H2(VT) and that, with a few exceptions, the group U (V1) is of real rank > 2.

Eichler transformations revisited Let M be (left) D-module of finite rank endowed with a nonde-
generate skew-hermitian form (—,—): M x M — D. Given a D-submodule N C M, we denote by
Uy (N) the subgroup of the group of transformations that act trivially on N L. This group preserves N
and acts trivially on its radical Np = N N N L. Hence “restriction to N” defines a homomorphism
Uy (N) — U(N). This homomorphism is easily shown to be onto. Its kernel consists of the unitary
transformations that act trivially on N + N1, and one checks that this is the image of u(N,) under 7.
We saw that the homomorphism U(N) — U(N) is also onto, and we identified its kernel with the vector

Algebraic € Geometric Topology, Volume 25 (2025)



Arithmetic representations of mapping class groups 689

group NJ ® N. So the Levi quotient of Ups(N) is U(N) and its unipotent radical R, (Ups(N)) is an
extension of vector groups:

1 - u(No) > Ry (Up(N)) - N ®@p N — 0.

As is clear from (1), this extension is usually nontrivial. If N, is spanned by a single element ¢, then we
can write this sequence as

(5) 0>c®DycL Ry(Uy(N) —>c®N —0.

Any element of R, (U (N)) is an Eichler transformation E(c,a, A) whose image inc ® N is c ® @
(where @ € N is the image of a). We will often use the following lemma:

Lemma 4.1 Let I’ C Uy (N) be a discrete subgroup whose image in U(N ) is arithmetic and which acts
Q-irreducibly in N . If T' N Ry, (Ups (N)) contains an Eichler transformation E (c,a, A) with a € N~ D,
then I' N Upg (N) is arithmetic in Ups (N).

Proof We are given that in the exact sequence of algebraic groups
1= Ry(Unu(N)) = Uy (N) — UN) - 1,

the image T of T" in U(N) is arithmetic. Hence for T" to be arithmetic, it suffices that I' N R, (EUps (N))
be a lattice. For this we turn to the exact sequence (5). The Eichler transformation E(c, a, A) has image
c®a in ¢ ® N, and this image is nonzero by assumption. The image of the I'-conjugacy class of
E(c,a,)A)inc® N is equal to ¢ ® T'a. Since our assumptions also imply that T acts Q-irreducibly in N,
it follows that the image of ' N Ry, (Up (N)) in ¢ ® N is a lattice in ¢ ® N.

Next observe that if E(c,ay,A1) and E(c,az, A) liein I' N R, (Ups (N)), then so does their commutator,
which by the identity (1) is 7(c ® Ac) with A = (a1, a») + (a1, a»)T. Since the (a1, a») generate a lattice
in D, it follows that the A generate a lattice in D4 . In other words, the preimage of I' N R, (Ups(N)) in
¢ ® D4 c is also a lattice. Hence I' N R, (Ups (N)) is a lattice. |

Hyperbolic submodules If j: H2(V') <> M is an embedding of hermitian D-modules, then M is the
orthogonal direct sum of the image of j and its perp (for #2(VT) is nondegenerate), so that j gives rise
to an injective homomorphism of groups jx: Us(V 1) < U(M). Let us refer to such an embedding as a
V¥-hyperbolic summand in M .

The following criterion for arithmeticity will be central to our argument:
Theorem 4.2 Let M be a nondegenerate skew-hermitian D -module of finite rank, and
a:Vie m, {b: yie M}pen

a collection of D -linear embeddings (with B finite and nonempty) whose images span M over D and
are such that for each b € ‘B, the pair (a,b) defines a hyperbolic summand of M. If dimp VT =1
and dimp M > 2, assume in addition that there exist by, by € B for which by (V') and by(V') are
perpendicular.
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Then the subgroup I' of U(M) generated by {(a, )+ (G)}pes is an arithmetic subgroup of U(M) which
acts Q-irreducibly in M .

The proof will be by induction on dimp M. As may be inferred from the statement of the theorem, the
case when dimp V1 = 1 is a bit more delicate. Indeed, the first induction step then requires special care
and so we do that case first. Once we have dealt with it, we indicate how to modify the arguments in

order to obtain a proof of the unrestricted version of Theorem 4.2.

Let us say that a D-subspace N C M is I"-arithmetic if I' N\ Upg (N) is arithmetic in Ups (V) and acts
Q-irreducibly in N (the last property is a consequence of the first if the real rank of Uy (N) is > 2).

The case dimp VT =1 We then identify VT with D and a and each b € B with the image of 1 € D
under these embeddings, so that {a,b) = 1 for all b € B. Note that {a} UB C M consists of isotropic
elements and generates M over D. We write I"(a, b) for the image of I'(G) under (a, ), so that I is
generated by {I'(a, b)}peg. As any b € B lies in ['(a, b)a, it follows that {a} UB C la.

By Proposition 3.1, Da + Db is I'-arithmetic for every b € B. We therefore assume that M is not of the
form Da + Db. So there exist by, by € B with b, ¢ Da + Dby such that (b1, b,) = 0.

Lemma 4.3 Put N := Da + Db;. Then N’ := N + Db, is I"-arithmetic.

Proof We verify that the assumptions of Lemma 4.1 are satisfied by I' N Ups (N'). It is clear that the
radical of N’ is spanned by ¢ := b, — by, so that N’ is the isomorphic image of N. We know that N is
I"-arithmetic and so I has arithmetic image in U(N’). Since Ty, and Tp, lie in I", so does Tp, Tb_ll' We
check that

Ty, Ty, (X) = x — (x.b1) + (x, b1 +c) (b1 +¢) = E(c. by, 1)(x).

So the image of I' N Ry, (Ups(N')) in ¢ ® N’ contains ¢ ® by. Now apply Lemma 4.1. m|

From this point onward the argument will be inductive. The union of Lemmas 4.4 and 4.5 will establish
the theorem in the case dimp vi=1.

Lemma 4.4 Let N & M be a D-subspace which contains a, by and by, and whose radical is of D -
dimension one. If N is T -arithmetic, then there exists ab € B such that N’ := N + Db is nondegenerate
and T -arithmetic, and the real rank of U(N') is > 2.

Proof Let c € N span the radical of N. Since M is nondegenerate and D-spanned by {a} U B, there
must exist a b € B such that ¢ is not in the radical of N’ := N + Db. Then it is easily seen that N’
is nondegenerate, so that Uy (N') = U(N'). In the case N = Da + Dby + Db, (where we can take
¢ =by—by), one checks that N is the perpendicular sum of two copies of 72(D). Otherwise, N’ contains
such a sum. This implies that U(N') has real rank > 2.
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The U(N')-stabilizer U(N’). of ¢ is equal to Ups (N) and hence contains I' N U(N’), as an arithmetic
subgroup. Observe that ¢’ := T}, (c) = c+{c, b)b is another isotropic element with (¢, ¢) = (c, b) (b, ¢) #0,
and so Dc 4+ D¢’ 2= H?(D). The two U(N')-stabilizers of D¢ and D¢’ are opposite parabolic subgroups
of U(N') whose unipotent radicals are contained in U(N'). and U(N’),’, respectively. Since U(N'),’ is
a ['-conjugate of U(N'),, it follows that ' N U(N’),s is an arithmetic subgroup of U(N’).,. We have
thus satisfied the hypotheses of Theorem 3.3 and we conclude that I' N U(N’) is arithmetic in U(N').
The fact that I’ N U(N') acts Q-irreducibly in N’ follows from the fact that I' N U(N) has this property
in N, for the (CNU(N’))-translates of N span N’ over Q, but do not decompose N’. O

Lemma 4.5 Let N & M be a proper nondegenerate D -subspace of dimension > 4 and contain a, b;
and by. If N is T -arithmetic, then so is N' := N + Db’ forevery b’ € B~ N.

Proof when N’ is degenerate We verify that the assumptions of Lemma 4.1 are satisfied by TN Ups (N).
The radical of N is necessarily spanned by an element of the form ¢ := b’—b, where b € N is characterized
by the property that (x,b) = (x,b’) for all x € N. So N maps isomorphically onto N'/Dc¢ = N’'. In
particular, the natural map U(N) — U(N’) is an isomorphism, and hence I" N Ups (N’) maps onto an
arithmetic subgroup of U(N").

Let n be a positive integer such that 7, € I". Then
T T, " (x) =x—n{x,b)b +n(x,b")b" = x +n(x,b)c +n(x,c)b+n(x,c)c = E(c,nb,n)(x).

So E(c,nb,n) € T'N Ry (Up (N')) and this element has image ¢ ® nb in ¢ ® N'. It then follows from
Lemma 4.1 that N’ is T -arithmetic. O

Proof when N’ is nondegenerate Then N|:= N'Nb’~ is degenerate with radical spanned by b’. We first
prove that N| is I'-arithmetic by verifying the assumptions of Lemma 4.1. The subspace Ny := N Nb’ L
supplements b’ in Ny. It is therefore nondegenerate and maps isomorphically onto N | = N{/Db'. This
enables us to regard U(N1) as a subgroup of Ups (N/) that acts trivially on both b’ and its orthogonal

projection in N.

Since I' N Ups (N) is arithmetic in Ups (N), its subgroup I' N U(Np) is arithmetic in U(N1) and has
arithmetic image in U(N',). We show that E(b’,¢’) € T for some ¢’ € N{ ~ Db’. Then Lemma 4.1 will
imply that N is I"-arithmetic.

For this we recall that ¢ := by — by is perpendicular to b1 and has nonzero image in Dbf- /Dby. Let
yeTl(a,b")[(a,by) CT(N') take by to b’. Since ¢ is perpendicular to by, ¢’ :=y(c) € N’ is perpendicular
to y(b1) = b’ (so lies in N{) and has nonzero image [c'] in N, = Nj. Since E(b’,¢’) = E(c/,b") !isa
I'-conjugate of E(c, bl)_l, itliesin I'.

Now U(N')p = U(N'Nb'+) and so T N U(N'); is arithmetic in U(N')y. As a € T/, the same is
true for ' NU(N'),. Since a and b’ span a copy of H?(D), their U(N')-stabilizers contain the unipotent
radicals of opposite parabolic subgroups of U(N’). The real rank of U(N') is > 2, so Theorem 3.3 applies
and tells us that N’ is I"-arithmetic. O
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The case whendimp VT >1 The same scheme works when dimp VT > 1. The difference is that we deal
with larger hyperbolic packets, to wit, the images of hyperbolic embeddings (a,b): #2(V 1) < M. The
essential difference is that we start off in a better position, since we begin with a VV T-hyperbolic embedding
j:H?2(VT) < M and we already know that its image N is I'-arithmetic and that Ups (N) = U(N) has
real rank > 2.

5 Finding liftable mapping classes

In this section the G-covering § — Sg is as in the introduction and 4 C Sg is a nonempty closed
one-submanifold such that the covering is trivial over A and is connected over S ~ A. We also choose
a connected component o of A, so that A’ := A ~ « might be empty. We orient & and regard it as the
oriented image of an embedding of the circle in Sg. We will see that this gives rise to enough copies
of I'(G) in the representation of the G-equivariant mapping classes as to satisfy the hypotheses of our
arithmeticity criterion, Theorem 4.2.

We denote by Sg(«) the singular surface obtained from Sg by contracting « to a point (that we will
denote by 00). Its topological normalization is a closed connected surface, denoted by §G (), whose
genus is one less than that of Sg. The surface §G (o) comes with two points over co and the orientation
of o enables us to tell them apart: we let p— be “to the left” of @ and p be “to the right” of «. If we
regard A’ also as a submanifold of S ¢ (), then the surjection S ¢ (@) = 8¢ () defines a map from the set
H(§ ¢(@)~A": p—, p+) of path homotopy classes in S ¢ (@)~ A’ from p_ to p to the fundamental group
71(Sg (), 00). This map is injective. We do the same (in a G-equivariant manner) for the preimage of
S¢ ~a in S, and thus get G-covers S(«) — Sg(«) and S° (o) = S (), and G-orbits Poo C S(a)° and
PicCS8° (o), so that we end up with the diagram below (in which the vertical maps are G-coverings):

7 la % Poo & P_UP,
\ N ‘ \S( ) | > S(a)
» S(a) 4 o
! !
« » {oo} « {p-. p+}

N N e

S¢ ———% Sg@) «——— S5(a)

This construction comes with G-equivariant bijections P_— = Py, = P4. Our assumption on the covering
S — Sg amounts to the properties that S (o) is connected and stays so if we remove the preimage of A’,
and the three G-orbits Py, and Py are regular. So the choice of a point in P, (Which is equivalent to the
choice of a lift & of «) identifies these G-sets with G (on which G acts by left translation). In particular, we
thus identify Isog (P—, P+) = Autg (Pso) With G (where g € G acts on G by right translation over g~ !).
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Sg ()

Figure 1: The surface Sg, its quotient S («) and the normalization S ().

For any path in S ¢ (@)~ A’ from p_to p, the G covering is trivial over it, so that we have an associated
G-bijection P_ = P . Since the G-covering over S ¢ (@) ~ A’ is connected, the resulting map

(S (@)~ A'; p—, p+) = IsoG (P—, P+) = Autg (Poo)

is onto by standard covering theory. We will say that an element of H(§ g@)~ A" p_, py)is G-trivial
if its image in Autg (Poo) under the above map is the identity. Such elements make up a coset for the
kernel of the natural homomorphism 7y (§ gl@)~A" . p)—G.

Lemma 5.1 Every element of H(§ c(@)~ A’"; p_, py) is representable by some arc (ie some embedded
unit interval) in S ¢ (@)~ A" from p_ to p4.. We can arrange that this arc lifts to an embedding of the
circle R/Z in Sg, which meets « in a single point with intersection number one. In particular, every
element of Autg (P) is realized by the monodromy along an embedded circle 8 which does not meet A’,
and meets o in one point only and does so transversally with intersection number one.

Proof We first represent the homotopy class by an immersion of the unit interval with only transverse
self-intersections. That number of self-intersections is finite and if this number is positive, we lower it by
moving the last point of self-intersection towards p4 and then slide the path over p4. By iterating this
procedure we obtain a representative which is an embedding. It is clear that we can make this arc lift to
an embedded circle. The second assertion then follows. |

We choose a lift & of o and write a € H;(S) for its homology class. Since Ra is an isotropic sublattice
of H1(S), we have that (a,a) = 0. We let I C H1(S) be the homology supported by the preimage of A’;
this is a free R-submodule (where as before, R = ZG) with a generator for every connected component
of A’. Tt is clear that Ra + I is isotropic. We saw that the lift & identifies Autg (P) with the group G
with G acting on itself by right translations. Lemma 5.1 above shows that all such elements are obtained
from a loop of the type described there. From that lemma we also derive:
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Corollary 5.2 Let b e [+ besuchthat a-b =1 and ga-b =0 for g € G ~{1}. Then some b’ € b+ Ra
can be represented by a lift of an embedded circle 8 in Sg; ~ A" which meets a transversally at a unique
point (and for which necessarily « - 8 = 1). In particular, b’ is R-isotropic and the R-linear map defined by

H2(R) > I+, e—a, frb,

is an embedding of skew-hermitian R-modules whose orthogonal complement supplements its image; we
obtain a basic hyperbolic summand of the R-module H;(S).

Proof It is not difficult to see that the homology class b is representable by a map from the circle to S°
which meets the preimage of « exactly once (and hence in a point of &) and does not meet the preimage
of A’. We apply Lemma 5.1 to its image in Sg ~ A’, or rather to the resulting arc in S, ¢ (@) ~ A" which
connects p— with p; this then produces an embedding f of the circle in Sg ~ A" which meets « only
once and with intersection number one over which the G-covering is trivial. The lift ,3 of § which meets &
defines a homology class b” which differs from b by a class supported by the preimage of «, that is, an
element of Ra.

The proof of the last paragraph is straightforward. a

Let us call an ordered pair (a, b) in H{(S) R-hyperbolic if {(a,a) = (b, b) = 0 and {(a,b) = 1. Such a
pair defines a basic hyperbolic summand Ra + Rb C H1(S) and gives rise to an embedding of I'(G) in
Sp(H1(S))C. We shall denote the latter’s image by I'(a, b) and the image of I',(G) by Ty(a, b). We
write B, for the set of b € H1(S) for which the pair (a, b) is R-hyperbolic, and I',(a) and I'(a) for the
subgroups of Sp(H(S))¢ generated by its subgroups I'y(a, b) and T'(a, b), respectively, with b € B,.

Fix a basepoint p on « and write p for its preimage in &.

Let 4 € G and regard / as an element of Autg(P). Let 8 be as in Lemma 5.1, which we may (and will)
assume to meet « in p such that the lift ,3 of B (as an arc) begins in p ends in hp. Let S g be a closed
regular neighborhood of & U # in SZ ~ A’. This is a compact genus-one surface whose boundary 05 g is
connected. The homotopy class of this boundary (with its natural orientation) is in the free homotopy
class of the commutator [8]~![a] ! [B][e] — we write path composition functorially, so the order of travel
is read from right to left. This commutator has trivial image in G (since [«] has), and so the G-covering
S — Sg is trivial over asg. The preimage of 4.5 g in S is the boundary of the preimage S# of Sg and
the Dehn twist along 95 g lifts in a G-equivariant manner to a multi-Dehn twist DB along that boundary.
The following lemma generalizes one of the constructions given in [3] for the case when G is cyclic (in

that paper they are depicted as Figures 2 and 3).

Lemma 5.3 The multi-Dehn twist D? acts on H1(S) as T, (2 —ej, — eZ) (where we use formula (2),
noting that 2 — ey, — e;: € Ry).
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Proof The lift of the commutator [8]™![e] ! [B][«] that passes through p first traverses the embedded
circle &, then traverses B , then traverses the circle 4& in the opposite direction and then returns via the
inverse of B to p. So the homology class of this lift of the commutator (and hence of the corresponding
lift of 852) is a — ha. If we replace p by gp with g € G, then this replaces a by ga and & by ghg™!, so
that the corresponding class is ga — gha = g(1 — h)a. By a standard formula, the resulting action on

H/(S) is given by
DEx)=x+ Y (x-g(1—ha)g(1—h)a

geiG
=x+ Z ((x-ga)ga—(x-gha)ga— (x-ga)gha + (x - gha)gha)
geG
=x+2(x,a)a—(x,ha)a—{(x,a)ha =T,(2—ej — eZ)(x). |

Proposition 5.4 Let b € H;(S) be such that (a,b) is an R-hyperbolic pair. Then the image of
Diff*(S)¢ — Sp(H1(S))C contains I'(a, b).

Proof We first show this for Tg(a, b). Let B be as in Corollary 5.2 (and thus represent an element of
b+ Ra). The diffeomorphisms of Sg with support in the interior of S g have, as their image in the mapping
class group of Sg, a centrally extended copy of SL(2, Z) with the central subgroup generated by the
Dehn twist along the boundary of § g This Dehn twist acts trivially on H; (Sg). These diffeomorphisms
lift to diffeomorphisms of S with support in S B with the central subgroup acting trivially on H1(S). We

thus obtain in the image of Diff T (5)C — Sp(H1(S)) a copy of SL»(Z).

The multi-Dehn twist associated to o acts on H{(S) as x — x + deG (x-ga)ga =x+ (x,a)a =
T,(1)(x). By Lemma 5.3 the image of Diff ()¢ — Sp(H(S))¢ also contains the transvections
Ta2—ep— eZ) for all 1 € G. Hence that image contains all of T, (R44). This proves that the image of
Difft(S)¢ — Sp(H1(S))C contains ', (a, b).

Figure 2: Point pushing (or rather, “small circle pushing”) the genus-one surface S# along Sg /S g
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So it remains to show that the image of G in I'(a, b) is realized by Difft(S)C. For this we use mapping
classes of push type. Consider the smooth surface Sg/ Sg that is obtained as a quotient of Sg by
contracting g to a point (that we shall call g). If we do the same for the connected components of S B
in G we geta G-cover S/SP — Sg/S g fitting in the commutative diagram

S —— S)sh

|l
S¢ — Sg/S5

The covering on the right does not branch over ¢, and so its preimage Q in S /S# is a regular G-orbit.
For every g € G there is a closed loop y of Sg/ Sg based at ¢ which avoids branch points and induces
in Q right multiplication by g. The corresponding point-pushing map on Sg/S g (chosen to fix branch
points) lifts to a G-equivariant diffeomorphism ¢ of S/S B that extends this permutation.

Such a point-pushing map is isotopic to the identity on Sg /S g, and hence the same is true for its lift ¢. In
particular, ¢ acts trivially on H; (S /S#). It is not difficult to see that the point-pushing map and its lift ¢
can be “lifted” to S and Sg by “small circle pushing”. Since H;(S~S#,3(S~S5#)) - H' (S S#)isan
isomorphism, the action on H; (S ~S#,3(S ~ S#)) will be trivial. Clearly the components of S g will be
permuted according to the right action of g, and thus g € I'(a, b) is realized in the image of Diff " (S)%. O

Part (ii) of the corollary below establishes the Putman—Wieland property of Theorem 1.1.

Corollary 5.5 (hyperbolic generation) The following properties hold:

(1) The subset {a} U B, of Hi(S;Q) spans the latter over QG.

(i) The subgroup I'p(a) of Sp(H1(S)) generated by the subgroups Ty (a, b) with b € B, (and hence
Difft(S)9) has no nonzero finite orbit in H;(S).

Proof Letc € H(S;Q) be perpendicular to {a} U B,. We prove that ¢ is then perpendicular to every
x € H{(S); since the intersection form is nondegenerate, this will imply that ¢ = 0 and hence that
the ZG-submodule of H;(S) generated by {a} U B, is of finite index. To this end, let b € B,. Then
x":= (14 (x,a))b + x has the property that (a, x’) = 1. By Corollary 5.2 (a, x”) is a hyperbolic pair
for some x” € x’ + Ra, so that 0 = (x”, ¢) = (x,c).

For (ii) it suffices to show that for every finite-index subgroup I' C T,(a), the fixed part H;(S)T is
trivial. Note that H;(S)T2(@?) is the perp of Ra + Rb in H,(S) with respect to the intersection pairing.
The T'y(a, b)-invariant part of H1(S) is not changed if we replace I',(a, b) by the finite-index subgroup
I'NT,(a, b), and hence Hy(S)' is perpendicular to Ra + Rb. As this is true for all b € B, and {a}U B,
generates H1(S) as an R-module, it follows that H1(S)! must be trivial. |

We can now finish the proof of our main theorem.
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Proof of Theorem 1.1 Let us denote the image of Diff™ (M )% in Sp(H(S;Q))% by I' and the image
of the latter in the factor U(H,(S)[x]) of Sp(H1(S;Q))¢ = Hx U(H1(S)[x]) by I'y. By combining
Corollary 5.5 with Theorem 4.2, we see that under the assumptions of (ii), I is an arithmetic subgroup
of UCH1(S)[xD-

Note that I'X := I" N EU(H1(S)[x]) is a normal subgroup of I',. It remains to see that I'X is of finite
index in I'y. Since EU(H1(S)[x]) is almost simple and of real rank > 2, it follows from a general result
of Margulis [4, Assertion (A), Chapter VIII] that this is the case unless I'* meets EU(H1(S)[y]) in the
center. But Proposition 5.4 shows that I'X contains a subgroup isomorphic to I',()), and so this last
possibility does not occur. m]

Remark 5.6 This argument shows that if we are in the setting of (i) (triviality of the cover over a
genus-one subsurface of Sg), then I'y is an arithmetic subgroup of U(H1(S)[x]), unless V) ~D x and
the image of G in V), is of the type given in Proposition 3.1. Denote that image by G, and let GX
stand for the kernel of G — G. Since H1(S)[y] already arises on the Gy-cover Sgx — S in the
sense that H1(S)[x] = H1(Sgx)[x], we may for the arithmeticity question just as well focus on this
intermediate cover.

In Proposition 3.1(i)—(ii), that is, when D, equals Q, the Gaussian field or the Eisenstein field, then G
is a group of roots of unity and hence cyclic. When the genus of S¢ is at least three, we can always
find a closed subsurface of genus two over which the covering Sgx — Sg is trivial, and so I'y is then
arithmetic. In the remaining cases, G is a particular kind of Kleinian group. It might well be that a
G y-cover is then also trivial over the complement of a genus-two subsurface of the quotient surface when
the genus of the latter is > 3. If true, then it would follow that I" would always be arithmetic if the genus
of S¢ is at least three and the covering is trivial over a genus-one subsurface of Sg.
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The geometry of subgroup embeddings and asymptotic cones

ANDY JARNEVIC

Given a finitely generated subgroup H of a finitely generated group G and a nonprincipal ultrafilter w, we
consider a natural subspace, Coneg (H ), of the asymptotic cone of G corresponding to H . Informally, this
subspace consists of the points of the asymptotic cone of G represented by elements of the ultrapower H®.
We show that the connectedness and convexity of Coneg (H) detect natural properties of the embedding
of H in G. We begin by defining a generalization of the distortion function and show that this function
determines whether Coneg; (H ) is connected. We then show that whether H is strongly quasiconvex in G
is detected by a natural convexity property of Coneg (H) in the asymptotic cone of G.

20F65

1 Introduction

The asymptotic cone of a group G is a metric space which captures certain aspects of the coarse geometry
of G. Roughly speaking, the asymptotic cone is how the group looks from infinitely far away, and
is constructed by taking a certain limit of scaled-down copies of the group viewed as a metric space.
The roots of asymptotic cones come from a paper of Gromov proving that finitely generated groups
of polynomial growth are nilpotent [8]. Van den Dries and Wilkie added nonstandard analysis to the
construction in this paper, formally introducing asymptotic cones [4]. Since then, several other standard
algebraic and geometric properties of groups have been shown to have natural parallels in their asymptotic
cones. For instance, a finitely generated group is virtually abelian if and only if all of its asymptotic cones
are quasi-isometric to R” for some n € N (see Gromov [9]), and a finitely generated group is hyperbolic
if and only if all of its asymptotic cones are R-trees [9].

Given a group G and an ultrafilter w, we will denote the asymptotic cone of G with respect to w by
Cone®(G). Our goal here is to study the way that geometric properties of embeddings of subgroups in
groups can be detected using asymptotic cones. In order to accomplish this, we define a natural subspace
of Cone®(G) corresponding to a subgroup H. Essentially, points in the asymptotic cone of a group G
can be represented by certain elements of the ultrapower G. We denote by Conef, (H ) the subspace of
Cone®(G) consisting of points with a representative from H®. For the formal definition of this subspace,
see Definition 4.10.

The first property of Coneg, (H ) we study is connectedness. We show that whether Cone(, (H ) is connected
is closely related to a generalization of the distortion function of H in G.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Definition 1.1 Let H be a subgroup of a group G, with G = (X) and H = (Y') where X and Y are
finite sets. The distortion function of H in G with respect to X and Y is defined by the formula

X

A% (n) = max{|hly :h € H. |hlx <n},

where |h|y denotes the word length of /& with respect to the generating set Y. A subgroup H of a group G
is called undistorted if Agi{ is bounded from above by a linear function.

We consider distortion up to the following equivalence relation:

Definition 1.2 For nondecreasing functions f, g: N — N, we write that f < g if there exists a constant C
such that f(n) <Cg(Cn) foralln € N. We write f ~gif f <gandg < f.

Under this equivalence, distortion is independent of the choice of the finite generating set. We denote by
Ag the distortion function of H in G for some choice of the finite generating set X.

Definition 1.3 Assume that X is a finite generating set for a group G, and H is a subgroup of G such that
X contains a generating set for H. We define the generalized distortion function /Lg’X (m,n):NxN—>R
by the formula

gy X (m.n) = max{|hly,, : h € H.|hlx <n} =AY ().

where Y, ={h € H : |h|x <m}.

We consider generalized distortion functions up to the following equivalence:

Definition 1.4 Given two functions f, g: N x N — R which are nonincreasing in the first variable and

nondecreasing in the second variable, we write f < g if there exists a constant C € N such that
f(€Cm,n)<Cg(m,Cn)+C

forall m,n e N, and we say that f ~ gif f <gandg =< f.

Under this equivalence, /Lg’X (n) is independent of the choice of the finite generating set X of G, so we use
/,Lg to mean Mg,X where X is some finite generating set of G. For example, if H is undistorted in G, then

G ~
,uH(m,n)zm.

We show that the generalized distortion function determines whether Coneg, (H ) is connected. Specifically,
we prove the following result, which also shows that for such a subspace, connectedness is equivalent to
path connectedness.

Definition 1.5 We say that a function f:RZ! x RZ% — R is homogeneous if f(r,s) = g(s/r) for some
function g: R=% — N.
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Theorem 1.6 (Theorem 4.13) For any finitely generated group G and any subgroup H , the following
conditions are equivalent:

(i) H is finitely generated and /,LIGi (m, n) is bounded from above by a homogeneous function.
(i) Coneg (H) is path connected for all nonprincipal ultrafilters w.

(ili) Coneg (H) is connected for all nonprincipal ultrafilters w.

This theorem enables us to relate the ordinary distortion function to the connectedness of Coneg; (H ),
and to construct pairs H < G such that Cone (H) is disconnected, but the distortion of H in G is small.

Consider the following properties of a finitely generated subgroup H of a finitely generated group G:
(a) H is undistorted in G.
(b) Coneg (H) is connected for all nonprincipal ultrafilters w.

©) AIG{ is bounded by a polynomial function.

The following theorem collects the relationship between these three properties:

Theorem 1.7 (Theorem 4.19) For any finitely generated subgroup H of a finitely generated group G,
the following implications hold:
(@) = (b)) = (o)

Further, the missing implications do not hold. Specifically:

(i) For any k € N, there exists a finitely generated group G and a finitely generated subgroup H of G
such that Ag (n) ~ n¥ and Coneg, (H) is connected for any nonprincipal ultrafilter .

(i1) For any real number € > 0, there exists a finitely generated group G with a finitely generated
subgroup H such that Ag (n) < n'T€ but Coneg, (H) is disconnected for some nonprincipal
ultrafilter .

Next, we show that the property of a subgroup being strongly quasiconvex, introduced independently
by Tran and Genevois [7; 17], can be detected by a natural property of the embedding of Coneg, (H)
in Cone® (G).

Definition 1.8 A subgroup H of a group G with finite generating set X is said to be quasiconvex if there
exists a number M such that any geodesic in the Cayley graph I'(G, X) connecting two points in H is
contained in the M neighborhood of H. H is said to be strongly quasiconvex if for all real numbers A > 1
and C > 0 there exists a constant N(A, C) such that any (A, C)-quasigeodesic in I'(G, X)) connecting
two points in H is entirely contained in the N neighborhood of H.

In general, quasiconvexity is not independent of the choice of the finite generating set of G. For instance,
in the group Z x Z = (a) x (b), the subgroup (ab) is not quasiconvex with respect to the generating set
(a, b), but is quasiconvex with respect to the generating set {ab, a). In the case where G is hyperbolic,
quasiconvexity is independent of the choice of the finite generating set.
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We have the following relationship between these properties of a subgroup H of a finitely generated
group G:

strongly quasiconvex —> quasiconvex —> finitely generated and undistorted.

None of the reverse implications hold. To see this again consider G = Z x Z = {a) x (b). The subgroup
(ab) is undistorted but not quasiconvex, and the subgroup (a) is quasiconvex but not strongly quasiconvex.
However, in the case when G is hyperbolic, all of these properties are in fact equivalent.

Strong quasiconvexity is a generalization of quasiconvexity that is preserved under quasi-isometry
in general. Tran [17] characterized strongly quasiconvex subgroups based on a certain divergence
function, and showed that they satisfy many properties of quasiconvex subgroups of hyperbolic groups.
Specifically, any strongly quasiconvex subgroup is undistorted, has finite index in its commensurator, and
the intersection of any two strongly quasiconvex subgroups is strongly quasiconvex. Examples of strongly
quasiconvex subgroups include peripheral subgroups of relatively hyperbolic groups and hyperbolically
embedded subgroups of finitely generated groups.

We show that the property of being strongly quasiconvex is equivalent to a natural property of the
embedding of Coneg (H) in Cone®(G).

Definition 1.9 We say that a subspace T of a metric space S is strongly convex if any simple path in S
starting and ending in 7 is entirely contained in 7.

Theorem 1.10 (Theorem 5.12) Let H be a finitely generated subgroup of a finitely generated group G.
H is strongly quasiconvex in G if and only if Coneg (H) is strongly convex in Cone®(G) for all
nonprincipal ultrafilters .

This characterization gives useful information about the structure of the asymptotic cones of groups with
strongly quasiconvex subgroups. For instance:

Theorem 1.11 (Theorem 5.13) If G is a finitely generated group containing an infinite, infinite-index
strongly quasiconvex subgroup H , then all asymptotic cones of G contain a cut point.

A precursor to Theorems 1.10 and 1.11 can be found in [2], where Behrstock showed that any asymptotic
cone of a mapping class group contains an isometrically embedded copy of an R-tree, and that this R-tree is
strongly convex in the asymptotic cone. This is then used to deduce that any asymptotic cone of a mapping
class group contains a cut point. I would like to thank Jason Behrstock for pointing out this connection.

Combining Theorem 1.11 with a result of Drutu and Sapir [6] gives the following result:

Corollary 1.12 (Corollary 5.15) If G is a finitely generated group containing an infinite, infinite-index
strongly quasiconvex subgroup, then G does not satisfy a law.

This result can be applied to show, for instance, that solvable groups and groups satisfying the law x" = 1
for some n € N cannot have infinite, infinite-index strongly quasiconvex subgroups.
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Organization Section 2 covers some necessary background on asymptotic cones and establishes our
notation. Section 3 establishes some basic properties of the generalized distortion function and formulates
a relationship between the generalized distortion function and the distortion function. Section 4 contains
the proof of Theorems 1.6 and 1.7. Finally, Section 5 contains the proof of Theorems 1.10 and 1.11.

2 Background

In this section, we provide some background and fix our notation for asymptotic cones.

Recall that given an ultrafilter w and any bounded sequence of real numbers, (r;), lim® (r;) exists and is
unique.

Now let (S, d) be a metric space, and let ¢; be an unbounded strictly increasing sequence of positive real
numbers. Denote by d; the metric on S defined by d; (x, y) = d(x, y)/c;. We call the sequence (c;) the
scaling sequence.

Definition 2.1 Given a metric space (S, d), a scaling sequence (c¢;), and an infinite sequence of points
z = (s;) in §, denote by S;\] the set of infinite sequences (#;) in S such that d; (s;, ¢;) is bounded. The
sequence (s;) is called the observation point.

Definition 2.2 Given (x;), (y;) € S;\I, let d*((x;), (i) = im® d; (x;, yi).

Note that this is a bounded sequence so the limit exists. However, in general d* will not be a metric, as
there can be different sequences (x;) and (y;) such that d*((x;), (vi)) = 0.

Definition 2.3 We will denote by Cone? ((d;), S) the metric space that results from quotienting the
pseudometric d * by the equivalence relation (x;) ~ (y;) if d*((x;), (yi)) = 0. We will denote the resultant
metric by d¢’. When the choice of the basepoint or the scaling sequence is clear, we will simply write
Cone® (). We will denote the equivalence class of (x;) by (x;)®, so d¢((x;)®, (y:)®) = d*((xi), (y:))-

Definition 2.4 A map f between two metric spaces (S, ds) and (7, dr) is called a (A, C)-quasi-isometric
embedding if for all s,t € §,

ds(s,t
OO ¢ <ar (1), f0) = Adsts.n +C.
Here f is called e-quasisurjective if for all ¢ € T, there exists an s € S such that d7( f(s),7) <e€. A map
fiscalled a (A, C, €)-quasi-isometry if f is a (A, C)-quasi-isometric embedding, and is €-quasisurjective.
When we don’t care about the quasi-isometry constants, we will simply call f a quasi-isometry and say
that S and 7' are quasi-isometric.

Definition 2.5 Let S be a metric space. A path p: [0,/] — S is called a (A, C)-quasigeodesic if p is a
(A, C)-quasi-isometric embedding.
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Definition 2.6 Given a pointed metric space (S, x) and (A, C)-quasigeodesic paths p;: [0,/;] — S such
that the sequence /; /¢; is bounded and (p; (0)) € S}I, let L =1im® [; /¢;. If L # 0, define the w-limit of
the paths p;, written

p =1m®(p;): [0, L] — Cone®(S),

by p(x) = (pi(x(li/L)))®. If L =0, define p = lim®(p;): {0} — Cone®(S) by p(0) = (pi(0))*.
Definition 2.7 A geodesic in Cone® (S) is called a limit geodesic if it is an w-limit of geodesic paths.

Note that the limit of geodesics is a geodesic in the asymptotic cone. Thus if ' is a geodesic metric space,
then so is Cone® (S).

A finitely generated group G can be considered as a metric space using the word metric arising from
any finite generating set X . Given an ultrafilter w, we will denote the asymptotic cone of G with respect
to w by Cone®(G) where we assume all scaling sequences are ¢; = i unless otherwise specified, and
the observation point will always be (e)“. Note that G is (1, 0, %)—quasi—isometric to its Cayley graph
I'(G, X), and so its asymptotic cone is isometric to the asymptotic cone of I'(G, X). This is a geodesic
space, and so Cone®(G) is a geodesic space.

The asymptotic cone of G depends on the choice of a finite generating set X, an ultrafilter w, and the choice
of a scaling sequence (d;). Note that changing the generating set of a group gives a quasi-isometric Cayley
graph, and so will give a bi-Lipschitz asymptotic cone. In general, however, the other choices can matter,
and a group can have many different asymptotic cones. For instance, Thomas and Velickovic exhibited a
group such that one of its asymptotic cones is an R-tree, and another is not simply connected [16]. These
two choices turn out to be closely related. Specifically, given any scaling sequence (c;) such that the
sizes of the sets S, = {i : ¢; € [r,r + 1)} are bounded, and any ultrafilter w, there exists an ultrafilter o’
such that Cone®((¢;), G) = Cone“’/((i ), G) [14]. This justifies our choice to take all scaling sequences
as ¢; =i unless otherwise specified.

Definition 2.8 We say that a metric space S is transitive if for any two points s, ¢ € S there exists an
isometry ¢: S — S such that ¢ (s) =t.

Recall that for any group G, Cone®(G) is a transitive space, and that any asymptotic cone is complete.

3 The generalized distortion function

We begin by defining a variant of distortion that will help us calculate generalized distortion in a variety
of groups.

Definition 3.1 Let H be an infinite subgroup of a group G and let Y and X be finite generating sets of
H and G, respectively. Define the lower distortion function of H in G, written Vg)),( (n), by the formula

Vs (n) =min{|hly : |hlx > n. h € H}.
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We consider lower distortion up to the same equivalence as distortion, and denote by Vg the function
X

Vg:Y for some choices of the finite generating sets X and Y.

Example 3.2 For p € N with p > 2,let G =BS(1, p) = (a,b:b~'ab = a?), and let H = (a). Note
that a?" = b™"ab™, and so Ag (n) > p™. In fact, Ag ~ p" [9]. Next, note that if k < p", then we can
write k = Y 'Z5 ¢; p', with 0 < ¢; < p. This in turn means that we can write ak = []/Zy b~'a%i b! =
(]_[;1;3 acfb_l)b”_l. This implies that |a*|x <n +n(p) =n(p +1). Thus Vg(n) > p".

Example 3.3 Let G be the discrete Heisenberg group, ie the group of all upper triangular integer matrices
with ones along the diagonal, and let H be the center of this group, ie the subgroup of all matrices of the
form

S O =

0c
10 with c € Z.
01

Let X be the generating set for the group G given by G = (x, y, z) where

110 100 101
x=(010}, y=|011}, and z={010],
001 001 001

n.,,—n

and let Y = {z}, a generating set for H. Note that x" y"x "y " = z"* . Now let m be a natural number

such that (n — 1)?> < m < n%. We know that |Z"2|X < 4n. Thus
2"y <4n+m*>—(n—-1)?) =4n+2n—1<6n.
Therefore if m < n?, then |z™|x < 61, and so Vg(n) > n2.

Now we will show that if |h|x < n, then |h|y <n?. Let f: G — N and k: G — N be the functions
given by

1ab 1ab
fl101 cl=lal and k|0 1 c | =|b|,
001 001

respectively. We have that

fgx)= f(@)+1. f(gy)=/f(g). and f(gz)= f(g).
and thus if |g|x <n, then f(g) <n. Similarly
k(gx) =k(g). k(gy)= f(g)+k(g). and k(gz)=<k(g)+1.
Thus if |g|x <7, then k(g) <n?. If h € H, then |h|y = k(h), and so if |h|x < n, then |h|y < n?. Thus

Ag(n) <nZ.

Example3.4 LetG = (a,b,c:[a,b]=1,[a.c]=1,c 'hc =b?)=Z xBS(1,2),andlet H = (a,b) =
ZxZ.Let X ={a,b,c}. Note that |b?"[x <2n+1,s0 AG (n) = 2", but [a"|x = n, and so V§ (n) < n.
Thus Ag A Vf].
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Note that if f1, f2, g1, and g are strictly increasing functions such that f1(n) ~ f>(n) and g1 (n) ~ g2(n),
then f1(n)/g1(m) = f2(n)/g2(m). Thus:

Proposition 3.5 For a finitely generated infinite subgroup H of a finitely generated group G,

AT 6o G
G = H GG Gy

Proof First choose a finite generating set X for G containing a generating set Y for H. Fix n € N and
let /1 be an element of H such that ||y <n and |h|y = AGX gy (). By definition, if k € Yy, then |k|x <m,
and so |k|y < AH’Y(m) Thus |Aly,, > [AH’Y( )/Afl Y(m)} and we obtain the first inequality in (1).
For the next inequality, note that if |h|y < n, then |h|y < AS HY (n) Thus we can wnte h as a product of
at most [AG (n)/(VG (m) — 1)] elements of length less than or equal to v& ’Y (m) — 1 with respect
to Y. Note that if /1 is an element of H such that |h|y < VG gy (m), then by the definition of VH v
|h|x <m, and h € Yy,. This gives the second inequality in (1). m|

(1

Definition 3.6 We call an infinite subgroup H of a group G uniformly distorted if Ag ~ Vg.
Combining the previous observations gives the following corollary:

Corollary 3.7 If H is an infinite uniformly distorted finitely generated subgroup of a finitely generated
group G, then ug (m,n) = Ag (n)/Ag (m) =~ Ag (n)/Vg (m).

Example 3.8 Example 3.2 showed that if G = BS(1, p) = (a,b :b~'ab = a”) and H = (a), then H
is uniformly distorted in G, so we can apply Corollary 3.7 to get that /Lg (m,n) = p"™™.

Example 3.9 Example 3.3 showed that if G is the discrete Heisenberg group and H is the center of G,
then H is uniformly distorted in G and we have from Corollary 3.7 that /Lg (m,n) = (n/m)>.

We conclude with an example demonstrating that for a group G with finite generating set X containing a
. G, X
generating set for a subgroup H, uz (n —1,n) can be very large.

Example 3.10 Let H be a finitely generated subgroup of a finitely generated group G such that the
membership problem is undecidable, and let X be a finite generating set for G containing a generating
set of H. The existence of such subgroups was demonstrated independently by Mihailova and Rips [11;
15]. Gromov [9] showed that the distortion function of H in G is bounded by a computable function if
and only if the membership problem is solvable. Note that

G,X G,X G.X G.X G.X
AH,Y(n):MH (ILn) <pg” (L2ug ™ (2,3)---pug” (n—1,n).

Thus, if ug’X(n — 1, n) is bounded by a computable function, then so is Ag}; (n), a contradiction. Thus

Mf] X (n — 1, n) is not bounded by any computable function.
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4 Connectedness in asymptotic cones

We begin by defining an analog of the generalized distortion function for the case of a metric space S.

Definition 4.1 Given a metric space S, a real number r > 0, and two points s, f € S, an -path connecting
s and ¢ is a sequence of points s = s¢, 51, ...,8 =1 with dg(s;,si+1) <r forall 0 <i < k. We call k
the length of the r-path. We say a metric space S is r-connected if for any two points s, ¢ € S there exists
an r-path connecting s and ¢. If (S, s) is a pointed r-connected metric space, and 7 is in S, let |¢|, be the

length of a shortest r-path connecting s and .

Definition 4.2 Let (S, 5) be a proper r-connected pointed metric space. Define vg (m, n): RZ"xRZ% - N
to be max{|t|, : ds(s,t) <n}.

Lemma 4.3 The value vg is well defined, ie for all real numbers m > r, n there exists a constant K € R
such that for any pointt € S withd(s,t) <n, |t|m < K.

Proof Fix n € RZ°, and let B be the closed ball centered at s of radius n. As B is compact, it can be
covered by some finite number p of open balls of radius m. Let 51, ..., s, be the centers of these balls.
As S is r-connected, for each s; there exists a sequence of points

S =580,i,81,is---+5K;,i = Si

with dg(sji,sj+1,;)) <mforall 0 <i < K;. Let K =max{K; : 1 <i < p}. Any point in B is within m

of some s;, and so vg(m,n) < K + 1. |

If H is a finitely generated subgroup of a finitely generated group G, and X is a finite generating set
of G containing a generating set for H, then H is 1-connected and proper with respect to the word metric
induced by X. It is clear in this case that ug is the restriction of vg to N x N, where we consider H
with the word metric induced from G.

Definition 4.4 Given two functions f, g: R=" x R=Z% — R which are nonincreasing in the first variable,
and nondecreasing in the second variable, we write f <, g if there exists a constant C € R such that
f(Cm,n) < Cg(m,Cn) for all m,n € R=0 with m > r, and we say that f =, g if f <, g and g <, f.

Essentially, v measures how far away S is from being a geodesic metric space. For instance, if S is

geodesic, then vg(m,n) = [n/m].

Lemma 4.5 If (S, s) and (T, t) are proper r-connected pointed metric spaces, and f is a (A, C, €)-quasi-
isometry between S and T such that f(s) =t, then, vs =, vr.

Proof First, fixn € RZ% and m e R=", and let y € S with dg (s, y) <n. Thismeans d7 (¢, f(y)) <An+C.
Let K = vr(m,An + C). There exist K + 1 points yg, y1,..., yg such that t = yo, y1,...,yxg = f(¥)
with d(y;, yi+1) < m. By quasisurjectivity, for each i there exists a y/ € S such that d7(f(y]), yi) <e.
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<A(m+2¢)+C

b))
<A(m+2e)+C

b
<A(m+2¢)+C

Figure 1: Lemma 4.5.

Thus d7 (f(y;), f(¥{11)) <m +2€, and so ds(y;, yj ;) < A(m + 2€) + C < ’m for some fixed A’
as m > r. Note that we can choose y to be s, and y to be y. Thus vg(A'm,n) <vr(m,An+C). If
An 4+ C < m, we have that vy (m,An 4+ C) = 1, so we can assume that An + C is greater than r as well,
and hence vg(A'm,n) < vy(m,A”n) for some fixed A”. By symmetry, vy <, vg, and so vy =, vsg. O

Definition 4.6 We call a metric space S asymptotically transitive if Cone®(S) is transitive for all
ultrafilters w.

Theorem 4.7 Let r be a positive number and let (S, s) be an asymptotically transitive proper r-connected
pointed metric space. The following are equivalent:

(i) There exists a function f:RZ% — RZ% such that forall m > r and n > 0, vs(m,n) < f(n/m).
(ii) There exists a constant K such that vs(i,4i) < K for all real numbersi > r.
(iii) Cone®(S) is path connected for all nonprincipal ultrafilters w.

(iv) Cone®(S) is connected for all nonprincipal ultrafilters .

Algebraic € Geometric Topology, Volume 25 (2025)



The geometry of subgroup embeddings and asymptotic cones 709

Note that the implication (i) = (ii) is clear, simply by letting K = f(4). The implication (iii) = (iv)
is also immediate.

To show that (ii) implies (iii) we will need the following lemma:

Lemma 4.8 Let r € RZ0. If (S, s) is an asymptotically transitive proper r-connected pointed metric
space and there exists a constant K such that vg (i, 4i) < K for all real numbers i > r, then for any points
p=i)? q=(z;)® € Cone®(S), there exist K + 1 points p = pg, p1, P2, - .-, Pk = q in Cone®(S)
such that dg (p;, pi+1) < %d_‘q"(p,q).

This lemma is reminiscent of a lemma in [13] used to prove that any group satisfying a quadratic
isoperimetric inequality has a simply connected asymptotic cone. There Papasoglu used the isoperimetric
inequality to build sequences of loops to fill a loop in the asymptotic cone. This is very similar to the
approach we will use to prove that (ii) implies (iii). Similar ideas can also be found in [3; 10; 14].

Proof If (y;)® = (z;)%, the result is trivial, so let (y;)® and (z;)® be points in Cone®(S) such that
dg((yi)®,(zi)”) = C > 0. Note that by the transitivity of Cone”(S), we can assume that (y;)® = (s)“.
This means in particular that dg (s, z;) < 2Ci w-almost surely. Note that %C i > r w-almost surely, and
hence vS(%Ci, 2Ci) < K w-almost surely. It follows that there exist points s = y; 0, Vi 1,--., Vi,K = Zi
with ds(yi,j, yi,j+1) < %Ci forall 0 < j < K —1 w-almost surely. Now define p; = (y;,;)®. Note that
d¢(pj. pj+1) =lim® ds(yi,j, yi,j+1)/i < %C, and so we have our desired py, ..., px. |

We will also need the following lemma in order to prove that (iv) implies (i):
Lemma 4.9 If S is a connected metric space, then for any real number r > 0, S is r-connected.

Proof For a fixed r > 0, and fixed p € S, consider the set C of points ¢ such that there exists a finite
sequence of points p = po, p1,..., Pk = ¢q with d(p;, pi+1) <r. If x € C, then clearly B,(x) C C,
and so C is open. Similarly, if x ¢ C, then B,(x) C S\ C, so C is closed. Hence C is open, closed, and
nonempty, so C = S, as desired. a

Proof of Theorem 4.7 We begin by proving (ii) implies (iii).

Let p,q € Cone®(S), and let C = d¢ (p.q). We will define a uniformly continuous function f* from
numbers of the form a/ K" with a,n € N and a < K" to the asymptotic cone such that f(0) = p and
f(1) = q. Note that this is sufficient, since asymptotic cones are complete, and these numbers are dense
in the interval [0, 1].

We will define the function inductively as follows. First define f(0) = p and f(1) =¢. Then fix n € N,
and assume we’ve defined f on all numbers of the form ¢/ K" in such a way that for all s € N U {0}

with s < K7, | c
Ky s +
i (1( )1 (" ) =3
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Now let t = (K[ +b)/K"t! where 1 <b < K and [ € NU{0} with / < K"~!. According to Lemma 4.8,
there exist points pg, p1, ..., pg such that

) I+1
f(ﬁ)_pO’plv‘°'vpK_f( K” )a

) I+1 C
3o = 308 (1 (5 )/ () = o

Let f(¢) = pp. It is straightforward to verify that f is uniformly continuous.

and

We will now show that (iv) implies (i) by contradiction. Assume that Cone®(S) is connected, and
that vg(m, n) is not bounded by any homogeneous function. Hence there exists a ¢ € R>° such that
vs(n,cn) is not bounded. Let n; be a sequence of natural numbers such that vg(n;,cn;) >i. Let
be an ultrafilter containing {n; : i € N}. Consider a sequence of points ¢; € S such that dg(s,t;) < ci,
and |t;|; = vs (i, ci). According to Lemma 4.9, we can pick points (s)® = pg, p1,..., pr = (£;)® in
Cone®(S) such that d¢ (p;, pi+1) < L Let p;j = (t;,;)®. We have that ds(#;,;.%,j+1) < i w-almost
surely, so vs(i,ci) = |t;|; < k w-almost surely. On the other hand if j > k, then vg(n;,cn;) > k.
However,
nj:j>ky={nj:jeNiN{n:n>ni} cw,

a contradiction. |

We now want to study how distortion of groups relates to connectedness in asymptotic cones. We begin
by defining a natural subspace of the asymptotic cone of G corresponding to H :

Definition 4.10 Let 7 be a subspace of a metric space S. Denote by Cone(7") the set of all points in
Cone® () with a representative (¢;)® with each component in 7.

Lemma 4.11 For all subspaces T C S, Cone’(T') is closed in Cone®(S).

Proof Note that Cone§(7") = Cone®(T'), where we consider 7" under the induced metric from S. Since
asymptotic cones are complete, this is a complete metric space. A complete subspace of a complete
metric space is closed, and so Cone$ (7') is closed in Cone®(S). a

Note that we can think about a subgroup H of a group G as a subspace of the metric space we get by
considering the word metric on G.

Lemma 4.12 If H is a subgroup of a finitely generated group G such that Coneg, (H ) is connected for
all ultrafilters w, then H is finitely generated.

Proof Let H be a subgroup of a finitely generated group G, and let X be a finite generating set for G.
We call an element h of H reducible if there exists a constant k € N and k elements of H, hy, ho, ..., hg,
with |hi|x < |h|x forall 0 <i <k such that h = hyhy---h;. We call an element h € H irreducible if it
is not reducible. We can assume that there exists no i such that all elements 4 € H with |h|x > i are
reducible, as this would imply that H is finitely generated. Thus we can find a sequence (%;) of irreducible
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elements of H such that |h;|x > |h;j—1|x for all i. Fix an ultrafilter @ and consider the asymptotic cone
Coneg (H ) with respect to w and the scaling sequence (|/2;]x ). Assume this asymptotic cone is connected.
As (h;)® € Coneg (H ), there exist points (¢)” = po, p1, ..., px = (hi)® with d(p;, pi+1) < % for all
0<i<k.Let pj = (h; ;). We have that |h;}h,~,j+1|x < %|h,~|x w-almost surely. Finally, note that
hi =hi,=nhy, (hl-_’llh,-,z) .o (h;,:_lh,-,k). This, however, implies that /; is w-almost surely reducible, a
contradiction. O

We can apply Lemma 4.8 to a subgroup H of a finitely generated group G, where H is given the word
metric induced from G. In this case, the relationship between vy and /,Lg combined with Theorem 4.7
gives the following theorem:

Theorem 4.13 The following are equivalent for a subgroup H of a finitely generated group G

(i) H is finitely generated and there exists a constant K such that /Lg (i,4i) <K forall i.
(ii) H is finitely generated and there exists a function f such that ,ufl (m,n) < f(n/m).
(iti) Coneg (H) is path connected for all ultrafilters w.

(iv) Coneg (H) is connected for all ultrafilters w.

Example 4.14 We have previously seen that if G = BS(1, p) = (a,b :b~lab =a?) and H = (a), then
Mg (m,n) = p"~™. Thus /Lg (i,2i) is unbounded, and we can conclude from Theorem 4.13 that there
exists an ultrafilter @ such that Coneg (H) is disconnected. In fact, Conef (H) is disconnected for all
ultrafilters w. This follows from the proof of Theorem 4.7 and observing that for all ¢,n € N the set of

k € N such that uz’f{‘;’}b}(k, ck) < n is finite.

Example 4.15 If G is the discrete Heisenberg group and H is the center of G, then we have seen in a
previous example that 1% (m,n) = n?/m?, and so u% (i, 4i) is bounded and Cone& (H ) is connected
for all ultrafilters w.

We now want to relate the connectedness of Coneg, (H) to the distortion of H in G. In order to do this,
we need a couple preliminary results. The first of these is due to Olshansky:

Theorem 4.16 [12] For any group H, and any function {: H — N satisfying
(i) forall he H,{L(h)=0ifandonlyif h =1,
(i) €(h)=4L(h~ ") forall h e H,
(iii) £(gh) <{(g)+L(h) forall g,h€ H,
(iv) there exists a constant a such that |{h € H : £(h) <n}| <d",

there exists a group G = (X} with | X| < 0o, an embedding ¢ of H in G, and a constant C such that for

all h e H,
| (h)|x

C
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Definition 4.17 A function f:RZ! — R is called superlinear if for all k € R the set {x : f(x) < kx} is
bounded, and f is called sublinear if for all k € R the set {x : f(x) > kx} is bounded.

Lemma 4.18 Let f:R=! — R be an increasing sublinear function with f(r) < r for all real numbers
r > 1. There exists a function £: R=Z! — RZ! such that

(1) forallm,n e N, L(m)+L(n) > L(m+n),
(ii) forall n e N, £(n) = f(n),

(iii) for all k € N, there exists a p € R such that £ is constant on the interval [py, kpg].

Proof We will define p; and £ by induction on k. First let p; = 1 and let £(1) = 1. Assume we have
defined py and £(n) for n < kpj in a way that satisfies (i)—(iii). Let pg, be the least real number
such that for all r € R, if r > (k + 1) px 41, then f(r) <r/(k +1)I. Fors e R, if kpx <5 < pr+1,
define £(s) = s/k!. For s € R, if pxyq <5 < (k + 1) pg+1, define £(s) = pg+1/k!. By definition,
Uk + 1) pr+1) = pr+1/ k! = (k + D pr41/(k+ DL

We will now show that £ satisfies (i)—(iii). First, fix r € R=!, and let k € N such that kpy <r < (k+1) px11.
If kpp < r < pr+1, then £(r) = r/k!, and if s < r, then £(s) > s/k!. Thus, if p + g = r, then

Up)+€(@) = /K +q/ k!t = /K= £(r). If pryr <7 < (k + D) prsr, then £(r) = £(pg 1), and ()
follows immediately as £ is increasing. For s € R, if kpy <s < pr41,then £(s)=s/k!> f(s) by definition.

If pry1 =8 <(k+1)pr41, then b(s) =L((k+1) pry1) = (k+1) pry1/(k+ D= f((k+ 1) pr+1) = f(5),
so £ satisfies (ii). It is clear that this definition of £ satisfies (iii). m]

We are now ready to relate the connectedness of Coneg (H) to the distortion of H in G:

Theorem 4.19 If H is a finitely generated subgroup of a finitely generated group G, then the following
implications hold:

1 If Ag (n) is linear, then Coneg, (H ) is connected for all ultrafilters w.

(ii) If Coneg (H) is connected for all ultrafilters w, then Ag (n) < f for some polynomial f.

(iii)) For every increasing superlinear function ¢ : N — N there exists a group G with a subgroup H
such that Coneg, (H ) is disconnected for some ultrafilter w, but Ag (n) < ¢.

(iv) Forall k € N, there exists a group G with a subgroup H such that Coneg (H ) is connected for all
k

ultrafilters w, and Ag ~n.
Proof (i) If H is a subgroup of G, then we can define a continuous function p from Cone® (H) to
Cone (H) by p((h;)®) = (h;)®. Forall h € H, |h|x < C|h|y for some fixed constant C, so p is well
defined. Assume (/;)® € Coneg (H ). This means that there exists B such that foralli € N, |h;|x /i < B.
Since distortion is linear, there exists D such that |h;|y /i < D(|hi|x/i) < DB. Thus p is surjective, and
Cone( (H) is connected, as Coneg, (H ) is connected.
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(i) Assume that Cone; (H) is connected in Cone®(G), and hence that ,ug (i,2i) is bounded by some
constant K for all i. By induction, AIC_;I 2" = Mg(l, 2"y < K" foralln € N.

Now let n € N, and let m € R such that 2"~1 < < 2™ We have that

A1?1(”) < Afl(2’") < K™ = QM2 K < (op)l K
Thus Ag (n) < nlo22 K

(iii) Let ¢ be a superlinear increasing function N — N. Then ¢ can be extended to an invertible
increasing superlinear function from R=! to R. We can now apply Lemma 4.18 to ¢! to get a function
¢ which is always larger than ¢—!. We can then restrict £ to the natural numbers and take ceilings to
get a function from N to N. We can extend this to a function from 7Z to Z by defining £(0) = 0 and
U(—z) =L(z) for z < 0. As £ > ¢!, we have that ¢ (£(n)) > n. If ¢ is subexponential, then this £ now
satisfies all of the conditions of Theorem 4.16, and hence there exists a group G = (X ), a constant C,
and an embedding v : Z — G such that

Ln

A < iy = Cem).
Now note that if | (n)|x < m, then £(n) < C|y(n)|x < Cm, and so n < ¢p(€(n)) < ¢(Cm). Hence,
distortion is bounded by ¢. On the other hand, £(pr) =£(pr+1) =---=L(kpy) implies that C |y (q)|x >

(pr) for all pp < g < kpg while |y (kpr)lx < CL(pg), and so uG(L(pr)/C.CL(pr)) = k. By
Theorem 4.13, Cone (H ) is disconnected for some ultrafilter w.

Note that if ¢ is superexponential, then Theorem 4.19(ii) shows that Coneg (H ) is not connected for all
ultrafilters .

(iv) We will use the same method as in (iii).

Fix k e N, and forz € Z let £(z) = [|Z|1/k'|. Let G be a group with finite generating set X and ¥ an

embedding of Z into G such that

<ol = cee).

Note that if [ (z)|x < m, then |z|'/% < [|z]Y*] = €(z) < C|¥/(z)|x < Cm, which implies that
lz| < Ckmk. Thus Ag(m) < mk. Now note that £(m¥) = m, so |y (m*)|x < Cm, which implies
Ag (Cm) > m¥*. Thus Ag, (m) ~ m¥. The above calculations show that if |y (z)|x < 4i, then |z| <
4kCcKik Fuyrther, if |z| < (i/C)X then |y (z)|x < CL(z) <i. Thus ug(i,4i) < 4kC2%k and so by
Theorem 4.13 we have that Cone( (H) is connected. |

5 Convexity in asymptotic cones

Definition 5.1 A subspace T of a metric space S is called Morse if for all constants A and C there
exists a constant M such that any (A, C)-quasigeodesic connecting points in 7" is contained in the M
neighborhood of T'.
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pi(s;i)

Cone(T)

Figure 2: Theorem 5.3.

Definition 5.2 We say a subset 7' of a metric space S is strongly convex if every simple path starting
and ending in 7 is entirely contained in 7.

Theorem 5.3 Let T be a closed subspace of a geodesic metric space S. Assume that Cone%(T') is
strongly convex in Cone® (S) for all ultrafilters w, and for any two points t; and t; in Cone’g(T’) there
exists an isometry ¢ of Cone®(S) fixing Cone$§(T') such that ¢(t1) = t>. Then T is Morse.

Proof Assume 7 is not Morse. This means that there exist constants A > 1 and C > 0 such that for all
i € N there exists a (A, C)-quasigeodesic p;: [0, k;] — S parametrized by length, and s; € [0, k;] with
pi(0) and p;(k;) in T and dg(p;(s;), T) > i. For all i let

(2) di = sup{ds(pi(s). T):s €[0,k;]}.

We can choose our paths p; to make the sequence (d;) increasing with all d; > C. For each i, let s;
be a point in [0, k;] such that dg(p;(s;), T) = d; (such a point exists as paths are compact). Let sf =
max{s; —3Ad;, 0}, and similarly let s = min{s; +3Ad;,k;}. By (2), ds(pi (sf), T) and ds(pi(s]), T)
are less than or equal to d;. Let dg(p; (sf), T)= kf, and ds(pi(sj).T) = k] . Let tl.l be a point in T
such that dg(p; (sll), tl.l) = kf, and let pf: [0, kl?] — I'(G) be a geodesic from tl.l to p; (sf). Note that by
assumption we can take tl.l =1, where ¢ is some fixed point in 7', by taking an isometry fixing 7" sending tl.l
to ¢. Similarly, let p7 : [0, k]] be a geodesic from p; (s]) to a point ¢/ € T such that ds(t], p;(s])) = k.
Denote by pi": [sll,sl.r] — S the segment of p; from p; (sl!) to p;i (s]).
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We will need the following lemma:

Lemma 5.4 (i) Foralli € N, if sll #0,a€s;,s]],and b € [O,kf], then ds(p"(a), pf(b)) > d;.
(i) Foralli € N,ifs] #k;,a€ [sf,s,'], and b € [0,k]], then ds(p"(a), pj (b)) > d;.

Proof First, if sf = 0, then sf =s; — 3Ad;. Now note that

3Ad;
ds(p!"(@). pl"(s}) 2 =5~ = C =3d; = C > 3d; —d; = 2d;.,
as p; is a (A, C)-geodesic, and we assumed that d; > C. Thus, as dg (pf ), p* (xf)) < d;, we have
ds(p"(a), pf (b)) = d;. The second claim follows similarly. |

We return to the proof of Theorem 5.3.

Fix an ultrafilter w, and consider the asymptotic cone of S with respect to w and the scaling sequence d;.
By construction, ds(t,pf(kf)) < d;, and so (pf(kl!))“’ € Cone®((d;),G). Since |sf — 57| < 6Ad;,
we have that ds(p,-(sf),pi (s7)) < 6A2d; + C, and so since (p; (sf))“’ € Cone®((d;), S), we have
that (p;(s]))® € Cone®((d;),S). Since ds(pi(s7), p] (k])) = d(p](0), pl(k])) < d;, we have that
(p] (k7))® € Cone®((d;), S). Thus we can define
k' =1im® K s' =1im?® st ¢ =1im® L and K" = lim® oL
di’ di’ di’ di’
and we can define p’: [0, k!]— Cone®((d;), S) as lim“’(pf), p™:[st, s"]— Cone®((d;), S) as lim® (p/"),
and p”:[0,k"] as lim®(p]). We have that p! and p” are geodesics, and p™ is a (X, 0)-quasigeodesic,

and hence all are simple.

Now we have three simple paths, p!, p™ and p”, such that p’(0) and p” (k") are in Cone§((d;), T), and
pl and p” both intersect p”. Unfortunately, the concatenation of these three paths may not be simple, as
pl and p” could intersect p” more than once. To deal with this case, we need the following lemma:

Lemma 5.5 Let s =1im®s;/d;.

(i) Ifael0,k'land b el[s’, s"] with p'(a) = p™(b), then b < s.

(i) ifa €[0,k"] and b € [s,s"] with p"(a) = p™(b), then b > s.
Proof Note that if {i : kf = 0} € w, then p' is a trivial path, and the result is clear. Otherwise
{i: kf # 0} € w. In this case we can use Lemma 5.4 to say that if (b;)® is on p’ and (a;)® is on p™
after s, then d§ ((b;), (a;)®) > lim® d; /d; > 1. The proof of (ii) follows similarly. ]
Thus we can form a simple path which starts and ends in Cone$ ((d;), T') as follows. Let

p =max{t € [s',s"]:3a € [0, k'] such that p’(a) = p™ ()},
and let
g =min{z € [s',5"]:3a € [0, k"] such that p" (a) = p™(1)}.
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We obtain a simple path by following p’ up to p™(p), then following p™ up to p™(q), and finally
following p” back to p” (k"). This path contains p™(s) by Lemma 5.5. Finally, as p™(s) = (p" (si))“,

o ds(P}(5).ConeB(@). T)) _ ., di _ |

d,‘ di

Thus we have a simple path starting and ending in Cone’§ (T') that is not entirely contained in Cone§ (7). O

dg (p™(s),Coneg((d;)T)) = lim

In order to prove a partial converse of this statement we will need the following results from Drutu,
Mozes, and Sapir [5]. Note that an error was found in this paper [1], but none of the following lemmas
were affected.

Lemma 5.6 [5, Lemma 2.3] Let S be a geodesic metric space, w an ultrafilter, and B a closed subset
of Cone®(S). If x and y are in the same connected component of Cone®(S) \ B, then there exists a
sequence of paths (p;)?_, such that each path is a limit geodesic in X, and the concatenation of the paths
pi is a simple path from x to y.

Definition 5.7 A path is called C-bi-Lipschitz if it is a (C, 0)-quasigeodesic.

Lemma 5.8 [5, Lemma 2.5] In the same setting as Lemma 5.6, let p be a simple path in Cone® (S)
which is a concatenation of limit geodesics. For all § there exists a constant C and a C-bi-Lipschitz
path p’ such that the Hausdorff distance between p and p’ is less than §, and p’ is also a concatenation of
limit geodesics connecting the same points.

Lemma 5.9 [5, Lemma 2.6] Let p be a C-bi-Lipschitz path in Cone®(S) which is a concatenation
of limit geodesics. There exists a constant C’ and a sequence of paths (py) in S such that each p, is
C’-bi-Lipschitz, and lim® (p,) = p.

Theorem 5.10 If T is a Morse subspace of a metric space S, then Cone§(T') is strongly convex in
Cone®(S).

Proof Let p be a simple path in Cone® (S) starting and ending in Cone’g(7") but not entirely contained
in Cone§ (7). As Cone§(T') is closed, there is a subpath p’ of p which starts and ends in Cone(7"), but
no interior point of p’ is in Cone§ (7). Let x be the initial point of p and let y be the terminal point of p.
Let x’ and y’ be points on p’ such that

max{dg (x,x"), d§ (v, y")} < 3d§ (x,y),

and let pl and p” be limit geodesics from x to x” and from y’ to y, respectively. Let p™ be a concatenation
of limit geodesics connecting x” to y” avoiding Cone’(7"). Such a path exists by Lemma 5.6 as Cone’¢ (7')
is closed. The concatenation of pl , p™, and p” may not be simple, so we let a be the first point of pl
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p

Figure 3: Lemma 5.9.

on p™, and b be the last point of p” on p™. By the choice of x” and y’, p! does not intersect p”, so we
can obtain a simple path by following pl from x to a, p™ from a to b, and p” from b to y. Call this
concatenation ¢.

Let z be a point on g such that d¢ (z, Cone§(T)) = d > 0. Using Lemma 5.8, we can find a path ¢’
such that ¢ is a C-bi-Lipschitz path which is a concatenation of limit geodesics, and the Hausdorff
distance between ¢ and ¢’ is less than %d. Thus there is a point z’ on ¢’ such that d¢(z, z’) < %d, )
d2(z',Conel(T)) > 1d.

Finally we can apply Lemma 5.9 to this new path ¢’ to get that ¢’ = lim®(g,,) with each g, being a C’-
bi-Lipschitz path starting and ending in 7. Thus, as T is Morse, each path is in some fixed neighborhood
of T'. This implies that ¢ = lim®(g,) is entirely contained in Cone% (7'), a contradiction.

Thus, if T" is Morse in S, then Cone(7') is strongly convex in Cone®(S). |

Definition 5.11 A subgroup H of a group G with finite generating set X is called strongly quasiconvex
if it is Morse as a subspace of the Cayley graph G with respect to X.

Note that if H is a subgroup of G, then for any two points (%;)® and (k;)® in Coneg (H ) there exists an
isometry of Cone® (G) fixing Coneg (H') which sends (/;)“ to (k;)®. Thus we can combine the previous
two results to give:
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P(Sl)
A p(t3)

Figure 4: Theorem 5.13.

Theorem 5.12 A subgroup H of a group G is strongly quasiconvex if and only if Coneg, (H ) is strongly
convex in Cone® (G) for all ultrafilters w.

We conclude by proving a large class of groups cannot contain infinite, infinite-index strongly quasiconvex
subgroups.

Theorem 5.13 If a path connected metric space S contains a proper closed strongly convex subspace T
consisting of more than one point, then S contains a cut point.

Proof Letse S\T,andlett € T. Let p:[0,/] — S be a simple path connecting s and 7. Let 11 =
min{a € [0,!]: p(a) € T}. This is well defined as T is closed. We will show that p(¢1) is a cut point. Let
tp # p(t1) be apointin T. If p(¢1) is not a cut point, then there exists a path p’: [0, k] connecting s and 7,
such that p(t7) is not on p’. Let 3 = min{a € [0, k] : p’(a) € T}. Let s1 = max{a € [0,11]: p(s1) € p'}.
Create a simple path by following p from #; to 57 and then following p’ from s to 5. This is a simple
path connecting two points of 7" that is not entirely contained in 7', a contradiction. a

Theorem 5.14 (Sapir and Drutu [6]) If G is a nonvirtually cyclic group satisfying a law, then no
asymptotic cone of G contains a cut point.

If H is an infinite, infinite-index subgroup of a finitely generated group G, then it is easy to see that
Coneg (H) is a proper subspace of Cone® (G) that consists of more than one point. Thus we can combine
the previous two results to get the following corollary:

Corollary 5.15 If G is a finitely generated group containing a nondegenerate strongly quasiconvex
subgroup H, then G does not satisfy a law.
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On k-invariants for (oo, n)-categories
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Every (0o, n)-category can be approximated by its tower of homotopy (m, n)-categories. In this paper,
we prove that the successive stages of this tower are classified by k-invariants, analogously to the classical
Postnikov system for spaces. Our proof relies on an abstract analysis of Postnikov-type systems equipped
with k-invariants, and also yields a construction of k-invariants for algebras over co-operads and enriched
oo-categories.
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1 Introduction

The weak homotopy type of a topological space can be conveniently studied using its Postnikov tower
X == 14X > 1<q1X = - = 1<0X = mo(X).

The Postnikov tower allows one (theoretically) to reconstruct X from algebraic and cohomological data.
Indeed, the lowest stages of this tower encode the path components of X and its fundamental groupoid.
For the higher stages, the passage from 7<,—1X to 1<, X is completely determined by a cohomology
class

ko € H* T (t<q1 X, ma(X)).

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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722 Yonatan Harpaz, Joost Nuiten and Matan Prasma

Indeed, given amap f:Y — 7<4,—1 X, there exists a lift

TSaX

(1-1 l

Y 7 T<a1X

if and only if the cohomology class f*k, vanishes on Y. In this case, the i™ homotopy group of the
space of lifts (1-1) can be identified (noncanonically) with the (a—i)™ cohomology group of Y with
coefficients in f*m,(X). Here it should be noted that the homotopy groups 7, (X)) typically form a local
system of abelian groups.

The purpose of this paper is to describe an analogue of the Postnikov tower for (co, n)-categories. More
precisely, every (oo, n)-category C admits a tower of homotopy (m, n)-categories, as shown by Lurie [24,
Section 3.5] (see Section 6)

€C— -+ —=howyn € —hog,_1,,) C—---—how ) C.

Our main result asserts that there are again cohomology classes which control the passage from the
homotopy (m, n)-category to the homotopy (m+1, n)-category:

Theorem 1.1 (informal) For each a > 2, the extension ho, 44 ) € — h0(,44—1,n) C is classified by a
k -invariant
kg € H* T (ho(y+a—1.1) C, 74 (C)),

where 74 (C) is a local system of abelian groups on the (oo, n)-category ho(, 41, C.

In the case of (o0, 1)-categories, these k-invariants have also been constructed explicitly in terms of
simplicial categories by Dwyer, Kan, and Smith [7]. For n > 1, the above result is stated (without proof)
and used by Lurie in [24]. In [14], we have used this result as part of an obstruction-theoretic proof of the
fact that adjunctions in (00, 2)-categories are uniquely determined at the level of the homotopy 2-category
(see also the work of Riehl and Verity [29]).

To make Theorem 1.1 more precise, let us recall that for any local system of abelian groups A on a
space X, there exist Eilenberg—MacLane spaces K(A, a) — 7<1 X, defined in the homotopy category
ho(8,._, x) by the following universal property: for every map f:Y — t<1 X, there is a natural bijection

HA(Y, f*A) = 7o Map/rsl(X)(Y, K(A, a)).
In fact, the Eilenberg—MacLane spaces K(A, a) are related by equivalences
KA, a) = Q/;_ xK(A,a+1),

where €2/;_, xK(A,a + 1) computes the fiberwise loop space of K(A,a + 1) over 7<1 X (at the base-
points given by the canonical section classifying the zero cohomology class). In other words, these
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Eilenberg—MacLane spaces can be organized into a parametrized spectrum HA over t<; X such that
K(A,a) ~ Q% (X?HA) (see work of May and Sigurdsson [27]). From an oco-categorical perspective,
this parametrized spectrum can also be described more precisely as follows (Ando, Blumberg, Gepner,
Hopkins, and Rezk [1]): the local system A determines a functor of co-categories HA: t<1 X — Ab — Sp
sending each x € 7<; X to the Eilenberg-MacLane spectrum of the abelian group A, . By the Grothendieck
construction, such an co-functor to spectra can equivalently be viewed as a spectrum object in spaces
over <1 X.

In these terms, the k-invariants can be interpreted as maps that fit into commuting squares for a > 2:

TeaX ——— 14X

| l

t<a1 X —— QX (T4 Hr, (X))

Here the right vertical map classifies the zero cohomology class. In fact, this square is homotopy Cartesian,
which implies that the space of sections (1-1) is homotopy equivalent to the space of null-homotopies
of f*kg.

Our more precise version of Theorem 1.1 is then the following:

Theorem 1.2 (Theorem 6.3) For any (oo, n)-category C and a > 2, there is a parametrized spectrum
object Hrg (€) internal to (oo, n)-categories, whose base object is ho(, 1 1,,) C, so that there is a pullback

square of (00, n)-categories

ho+a,.m) € —————— ho@ 41, C

(1-2) l lo

hO(r4a—1,m) € —— (4 Hrg (€)).

Furthermore, we prove that the parametrized spectrum Hz, (C) can indeed be thought of as an Eilenberg—
MacLane spectrum: it is contained in the heart of a certain #-structure on the co-category of parametrized
spectrum objects over hog,+1,,) € (Corollary 6.17). This heart consists of local systems of abelian
groups on the (0o, n)-category hog,+1,,) €, as defined (somewhat informally) by Lurie in [24] (see
Definition 6.13 and Remark 6.15).

To prove Theorem 1.2, the main idea will be to proceed by induction on the categorical dimension #.
More precisely, the structure of the Postnikov tower, together with its k-invariants, can be axiomatized
in terms of “Postnikov structures”. We prove that a (functorial) Postnikov structure on a symmetric
monoidal co-category 'V that is compatible with the tensor product gives rise to a Postnikov structure on
the co-category Cat(V) of V-enriched co-categories (Theorem 5.18). Furthermore, the resulting Postnikov
structure on Cat("V) respects the natural symmetric monoidal structure on Cat(V) inherited from V. This
can be used to proceed inductively.
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More generally, this argument can also be used to provide k-invariants for Postnikov towers of algebras
over oo-operads (see Proposition 4.14 and Example 4.24). These k-invariants typically take values in
certain André—Quillen cohomology groups, and have also been considered (in specific cases) by Goerss
and Hopkins [10], Basterra and Mandell [4] and Lurie [26].

Outline

Let us now give an outline of this paper: In Section 2, we recall the definition of the tangent bundle of an
oo-category and the related theory of “square zero extensions”. Furthermore, we discuss the “square zero”
monoidal structure on the tangent bundle of a symmetric monoidal presentable co-category V, which
is useful to describe tangent bundles to categories of algebras. This square zero monoidal structure is

particularly simple when V is already stable; we discuss this case in a bit more detail in Section 3.

In Section 4, we give an abstract axiomatization of towers of square zero extensions, which we call Post-
nikov structures, as well as multiplicative refinements thereof. In particular, we show how multiplicative
Postnikov structures induce (multiplicative) Postnikov structures for algebras over co-operads. As the basis
of our inductive proof, we show that the Postnikov tower of spaces is part of a multiplicative (functorial)
Postnikov structure. Section 5 contains our main result, Theorem 5.18: we show that multiplicative
Postnikov structures induce multiplicative Postnikov structures at the level of enriched co-categories.

In Section 6, we apply this result inductively to prove that the homotopy (m, n)-categories of an (oo, n)-
category are part of a multiplicative Postnikov structure (Theorem 6.3); in particular, this provides the
required pullback squares (1-2). Finally, we discuss how the tangent bundle of (co, n)-categories carries
a (family of) ¢-structures, whose heart consists of the category of local systems of abelian groups on
(00, n)-categories (Definition 6.13). The parametrized spectra Hr, (C) appearing in (1-2) then appear as
the Eilenberg—MacLane spectra associated to such local systems.

Conventions

We will make use of the language of co-categories, ie quasicategories, and oo-operads, following the
standard references by Lurie [23; 26]; we will not distinguish between an ordinary category and its nerve.
Furthermore, we will refer to symmetric monoidal co-categories as SM oo-categories. Recall that SM
oo-categories and (lax) SM functors form (full) subcategories of the co-category of co-operads, which
we will denote by

SMCat < SMCat'™ < Op,,.

A presentable SM oco-category is a presentable co-category equipped with a closed symmetric monoidal
structure, ie an object in CAlg(Pr").

Given an oco-operad O, ie a map O® — Finy, and a collection of objects S in the underlying co-category
01y that is closed under equivalences, the full suboperad of O on § is the full subcategory of O® spanned
by all objects of the form x; & --- D x, with all x; € S (see [26, Section 2.2.1]).

Algebraic € Geometric Topology, Volume 25 (2025)



On k-invariants for (0o, n)-categories 725

Let f: € — D be an SM functor and let W be the class of maps in C that are sent to equivalences
by f. We will say that f is a monoidal localization if it defines an initial object in full subcategory
of CAlg(Cat)e, on those symmetric monoidal functors g: € — & sending W to equivalences. If C is
an SM oo-category and f: € — C[W~!] is a (non-SM) localization such that W is closed under tensor
products with objects in C, then f admits a unique lift to a monoidal localization of SM oo-categories
[26, Proposition 4.1.7.4].

If C and D are SM oo-categories, let us define a reflective monoidal localization to be an adjoint pair
L:C® z D®: R in the homotopy 2-category of co-operads such that € : L R — idy is a natural equivalence.
Note that a reflective monoidal localization is determined uniquely by any one of the two maps L and R
(Riehl and Verity [29]). If (L, R) is a reflective monoidal localization, then the (a priori only lax SM) left
adjoint L is a monoidal localization in the sense above (Lurie [26, Corollary 7.3.2.12], Haugseng [18,
Theorem 4.6]). Conversely, if L is a monoidal localization which admits a (fully faithful) right adjoint
at the level of the underlying oco-categories, then it determines a reflective monoidal localization [26,
Corollary 7.3.2.7].
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2 Tangent bundles of co-categories

The purpose of this section is to recall some elements of the cotangent complex formalism described by
Lurie [26, Section 7.3]. In particular, we will recall the definition of the tangent bundle of an co-category
© and the notion of a square zero extension. To motivate this terminology, we show in Section 2.2 that
the tangent bundle inherits a “square zero” monoidal structure from V. In Section 2.3, we introduce
the notion of a “¢-orientation” on the tangent bundle, allowing one to make sense of connective (and
discrete) objects in its fibers. The tangent bundle of stable (or more generally, additive) co-categories has
a particularly simple structure, which we discuss in more detail in Section 3.

2.1 Recollections on tangent bundles and square zero extensions

Let V be an co-category with finite limits. Following Lurie [26, Definition 7.3.1.9], we define the tangent
bundle of 'V to be the co-category
TV = Exc(8fi", V)

Algebraic € Geometric Topology, Volume 25 (2025)
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of excisive functors F : 8" — 'V from the co-category of finite pointed spaces, ie those functors sending
pushout squares to pullback squares. The co-category TV comes with functors

T=evx:TV=>V, Q¥ =evgo:TV—>YV

taking the base, or the (parametrized) infinite loop space object underlying such a parametrized spectrum,
respectively. The functor 7 is a Cartesian fibration and admits both a left and a right adjoint, both taking
the constant excisive functor on an object in V. We refer to the fiber of 7 at an object X € V as the
tangent co-category TxV of V at X. The diagram

E—[E(S")—E
gy EEGZEW@]L oy

1%

then exhibits each fiber Ty V as the stabilization Sp(V, x) of the over-category V,x [26, Section 7.3.1].

When V is presentable, TV and each of the fibers TxV are presentable as well and the functor 2°° admits
a left adjoint X°.

Definition 2.1 Let V be a presentable co-category. Then the inclusion TV — Fun(81", V) admits a left
adjoint, which we will denote by X > X . We will say that a map X — Y in Fun(8f", V) is a TV-local
equivalence if the map X ¢ — Y °*¢ is an equivalence.

Example 2.2 The tangent bundle TS can be thought of as the co-category of parametrized spectra (with
varying base space). Note that TS is in some sense the universal tangent bundle. Indeed, using the tensor
product on presentable co-categories [26, Section 4.8.1] (with unit 8, exhibiting that all presentable
oo-categories are tensored over §), we have that

TV~TSQV.

Indeed, using [26, Proposition 4.8.1.17], the full subcategory of Fun(8fi", V) on the excisive functors coin-
cides under restriction along the Yoneda embedding with the full subcategory of Fun® (Fun(8f", §)°P, V)
of right adjoint functors that factor over the localization (—)®*°: Fun(8f", §) — TJ8.

Remark 2.3 Forany S € 8™ and C € V, let hg ® C = Map(S, —) ® C be the corresponding corepre-
sentable functor, ie the left Kan extension of C: x — V along S: * — 8fi". Note that F € Fun(8f", V) is
excisive if and only if it is a local object with respect to the set of maps

(2-1) (hs, Hh53 hs,) ® Cqy — (hs, ® Cq)
for any set of generators {Cg} of V and any pushout square in 8fi»

So—)Sl

L

S2—>S3

In particular, the T'V-local equivalences are strongly generated by this set of maps [23, Proposition 5.5.4.15].
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Remark 2.4 For any presentable co-category 'V, the description of the generating TV-local equivalences
from Remark 2.3 shows that evaluation at * € 8$fi" sends TV-local equivalences to equivalences in V. It
follows that there is a commuting diagram

(_ exc

TV 5 Fun(8f", V) ——— TV

\l/

\%

The vertical functors are Cartesian (and co-Cartesian) fibrations, with right adjoint sections taking
the constant 8fi"-diagram. In particular, an arrow in TV or Fun($f", V) is Cartesian if and only if
it is the pullback of a map between constant diagrams. It follows that the (right adjoint) inclusion
TV < Fun(8fi", V) preserves Cartesian arrows. When V is compactly generated, or more generally
differentiable [26, Definition 6.1.1.6] (see Lemma 6.5), the functor (—)®*¢ preserves Cartesian arrows by
[26, Theorem 6.1.1.10].

Let V be an oo-category with finite limits and B € V an object. For every E € TgV, there is a natural
map Q®°(E) — B, arising from the map of finite pointed spaces S° — *. For every map X — B, we
denote by

HQ(X: E) = o Map, 5(X, Q(E))

the set of homotopy classes of lifts n: X — Q% (E). Since Q%°(F) is a grouplike E,-monoid over
B by Proposition 2.28, this forms an abelian group; its unit is the zero map 0: X — B — Q*°(E)
induced by the map of finite pointed spaces * — S°. More generally, we will refer to the groups
Hg (X E)= Hg (X:; X" E) as the n™ Quillen cohomology groups of X with coefficients in E. Given a
section n: X — Q°°(E), we will say that the pullback square

X——B
(2-2) l lo
X — QX(E)
exhibits X as a square zero extension of X [26, Definition 7.4.1.6]. When 7 is homotopic to
0: X - B — Q%(E),

we will refer to X ~ X xp Q®*1 (E) as the trivial square zero extension.

Remark 2.5 The above definition of a square zero extension looks slightly more general than the one
appearing in [26, Definition 7.4.1.6], where it is assumed that B = X. However, note that there is a
natural map p: X — B (induced by the projection Q°°(E) — B); pulling back the parametrized spectrum
E along p, one can also realize X as the square zero extension of X classified by the canonical map
n: X — QX(p*E).
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2.2 Monoidal structure on the tangent bundle

Our next goal will be to construct a (closed) symmetric monoidal structure on the tangent bundle TV
of a presentable SM oo-category. To this end, let us recall that if V is an SM oo-category and J is an
oo-category, then Fun(J, V) can be endowed with a levelwise tensor product, as follows:

Construction 2.6 [26, Remark 2.1.3.4] Let V be an SM oco-category, encoded by a co-Cartesian
fibration of co-operads V® — Fin,. If J is another co-category, let us consider the map

Fun(J, V)®e := Fun(J, V®) X Fun(9,Finy) Filx — Finy.

This is again a co-Cartesian fibration of co-operads [26, Remark 2.1.3.4], which endows the functor
category Fun(J,V) with a symmetric monoidal structure that we will refer to as the levelwise tensor
product. For every f:J— J, the restriction functor f*: Fun(J, V) — Fun(J, V) has the natural structure
of a symmetric monoidal functor because the induced map f*: Fun(g, V)®e — Fun(J, V)®e preserves
co-Cartesian arrows over Fin,. On the other hand, every SM functor V — W induces an SM functor
Fun(J, V)®e — Fun(J, W)® by postcomposition.

For future reference, let us mention two alternative descriptions of the levelwise tensor product:

Remark 2.7 The levelwise tensor product is adjoint to the Boardman—Vogt tensor product. Indeed, we can
view J as an oco-operad via the functor J — * — Fin,, where the second functor is the inclusion of the object
(1). For any oo-operad O, recall that the co-category of co-operad maps O® ®gyJ — V® is then equivalent
to the co-category BiFunc(O®, J; V®) of (dotted) bifunctors of co-operads [26, Definition 2.2.5.3]

0®x7J » V®

l id x{(1)} l

. . . A .
Fin, x * ——— Fin, X Fine, ———— Fin,

Since the bottom horizontal composite can simply be identified with the identity functor on Finy, the
oo-category BiFunc(O®, J; V®) is equivalent to the co-category of functors f: O%® x J — V® relative to
Fin, with the following equivalent properties:

(a) For each inert map a: x — y in O® and each equivalence B:i — j in J, f(c, B) is an inert map
in V®.

(b) For each inert map a: x — y in O%® and each object i € J, f(,id;) is an inert map in V.

These conditions are indeed equivalent since f(a, ) >~ f(idy,B) o f(c,id;), where f(idy, B) is an
equivalence. The oo-category of functors f satisfying condition (b) is in turn equivalent to the oo-
category of oo-operad maps O® — Fun(J, V)®e . Consequently, we have natural equivalences

Algyg,,s(V®) ~ BiFunc(0®, J; V®) ~ Alg, (Fun(J, V)®).
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Let us point out that by symmetry of the Boardman—Vogt tensor product, we also have that

Algy(Fun(J, V)®=) ~ Algyg. 1(V®) =~ Fun(J, Algy (V®)).

Remark 2.8 If J has coproducts, then the levelwise tensor product can be identified with the Day
convolution product. Indeed, let J! be the corresponding co-Cartesian oo-operad [26, Definition 2.4.3.7]
and let us write Fun(J, V)®P» — Fin, for the co-operad obtained from ! and V® by Day convolution
[26, Definition 2.2.6.1]. By [26, Proposition 2.2.6.16], this is a co-Cartesian fibration of co-operads that
endows Fun(J, V) with a (closed) SM structure. For any co-operad O, we then have equivalences of
oo-categories of maps of co-operads (ie algebras)

Algg (Fun(J, V)®P») = Algg,qu (V®) ~ Fun(J, Algy (V®)) ~ Algyg,,1(VE) = Algy(Fun(J, V)®*).

Here O x I is the product of co-operads, given explicitly by O® xg;,, TX — Fin,. The first equivalence
then follows from the universal property of the Day convolution [26, Definition 2.2.6.1], the second from
[26, Theorem 2.4.3.18] and the last two equivalences follow from the relation between the levelwise
tensor product and the Boardman—Vogt tensor product (which is symmetric).

Lemma 2.9 LetV be a presentable SM co-category and f :J — J a functor between co-categories with
finite coproducts that preserves finite coproducts. Then the SM functor f*:Fun(g, V)®e — Fun(J, V)®e
admits a symmetric monoidal left adjoint fi.

Proof Remark 2.8 identifies the lax SM functor f*: Fun(g, V)®< — Fun(J, V)®® (which happens to
be strong SM) with the lax SM functor f*: Fun(g, V)®>» — Fun(J, V)®P» arising from naturality of the
Day convolution product. The latter admits an SM left adjoint f; (given by left Kan extension) by [22,
Remark 3.31]. O

Proposition 2.10 Let V be a presentable SM oo-category and endow Fun(81", V) with the levelwise
tensor product Q.. Then the localization of Fun(SEn, V) at the TV-local equivalences is monoidal. In
particular:

e The localization functor (—)®: Fun(8f", V) — TV has a unique lift to an SM functor between SM
oo-categories with domain given by (Fun(8i", V), ®1ey).

e The closed SM structure on TV is given by X ® ¥ = (X ®yey ¥ ).

Proof By [26, Proposition 4.1.7.4], it suffices to verify that X Qey ¥ — X Qe Y’ is a TV-local
equivalence for every X : 8" — 'V and every TV-local equivalence ¥ — Y’. Since the TV-local
equivalences are closed under colimits and ®1e, preserves colimits in each variable, we may assume that
Y — Y’ is a generating local equivalence of the form (2-1) and that X = h7 ® D. Since the tensoring
Fun(8fi", 8) x V — Fun(8fi", V) is monoidal (for the levelwise tensor product), there are equivalences

X Qiev Y := (h7 ® D) Qey (s, @ C) =~ (h x hs,) ® (C ® D) =~ (hrvs,) @ (C Q D).
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The last equivalence uses that the copresheaf hr x hs, = Map(T, —) x Map(So, —) (valued in spaces) is
corepresentable by the coproduct 7' v Sq in $fi". Similarly, we have that

X Qv Y = (hT ® D) Rlev ((hSI Hh53 hSz) 02 C)
>~ (hr x (hs, Upg, hs,)) (D QC) = (hrvs, Uppy s, hrvs,) ® (D ®C),

where the last equivalence uses that Fun(8f", §) is Cartesian closed and that h7 x hs; = hrvs;. It
therefore suffices to show that the map

(hrvs, Unyy g, hvs,) @ (D ® C) > hrvs, ® (D ® C)
is a JV-local equivalence. This is obvious since

TVS()—>TV51

| |

TVvS,——TvVvS3

is a pushout square in 8fi". |

Lemma 2.11 Let'V be a presentable SM oo-category and endow TV with the closed symmetric monoidal
structure from Proposition 2.10. Then:

(1) The tunctor r: TV — 'V admits a natural symmetric monoidal structure.

(2) The induced oplax symmetric monoidal structure on the left adjoint to 7 [26, Corollary 7.3.2.7] is
strong monoidal. Consequently, TV is tensored over V via the formula

C®X = (C Ry X(—))™.

(3) Q% :TV — V has a natural lax symmetric monoidal structure.

Remark 2.12 The lax monoidal structure on 2 induces an oplax symmetric monoidal structure on
¥P:V — TV [19]. This does not make X a strong monoidal functor. For example, taking V = 8, we
have that £9°(X) € Sp(8,x) corresponds to the constant parametrized spectrum over X with fiber given
by the sphere spectrum S. Unraveling the definitions (eg using equivalence (2-3)), one then sees that
EP(X) ® ZP(Y) corresponds to the constant parametrized spectrum over X X Y with fiber S V'S, while
YP(X xY) has fiber S.

Proof Let¢: % — 8fi" be the inclusion of the initial (and also terminal) object. By Construction 2.6 and
Lemma 2.9, restriction and left Kan extension along ¢ yield an adjoint pair of SM functors

est=10:V L Fun(8i", V) :1* = evy,
where the left adjoint takes the constant diagram and the right adjoint evaluates at .
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For (1), we then note that ev, is itself a left adjoint and sends TV-local equivalences to equivalences
in 'V, since the domain and codomain of the generating TV-local equivalences (2-1) are both sent to Cy.
It follows that 7: TV — 'V is symmetric monoidal for ® as well. For (2), one simply notes that the
SM functor cst: V — Fun(8f", V) already takes values in TV € Fun($fi", V). For (3), note that Q is
the composite of the lax symmetric monoidal inclusion TV — Fun(8f", V) and the symmetric monoidal
functor ev go : Fun(8fi", V) — V (for the levelwise tensor product on the domain). |

For any functor X : 8" — V), there is a canonical (counit) map X (*) — X, where we consider X () € V
as a constant diagram.

Lemma 2.13 Let X, Y : 8" — 'V be two functors. Then the pushout-product map
V(X,Y): X(%) Qlev Y Ux(x)@, v (%) X Blev Y (%) = X @1ev ¥
is a TV-local equivalence.
Proof Suppose that X = colim X; for some diagram of functors X;. Since evaluation and taking the
constant diagram preserve colimits, we can identify the pushout-product map v (X, Y') with the colimit

colim; ¥ (X;,Y) in the arrow category of Fun(8fi", V). As TV-local equivalences are stable under colimits,
we can therefore reduce to the case where X = hg ® C and Y = hr ® D are corepresentables.

Using that the constant diagram on X (x) is given by /. ® X (%), the pushout-product map can then be
identified with

hr ® (C ® D) Uy, ocep)hs ®(C ® D) — (hs ® C) Ry (h7 ® D).

As in the proof of Proposition 2.10, the codomain can be identified with hgy7 ® (C ® D). The above
map is then a TV-local equivalence because

SvT —— S Vv«

|

* VT —— %V %

is a co-Cartesian square (see Remark 2.3). O

The above lemma can be described somewhat informally as follows: we can identify an object of TV
with a tuple consisting of C € V and E € Sp(V, ). Using the tensoring of TV over V from Lemma 2.11,
we then have an equivalence

(2-3) C,E)(D,F)~(C®D,(CRF)®(E®D)),

where the direct sum is taken in the fiber Tc g pV. This justifies the following terminology:

Definition 2.14 Let V be a presentable SM co-category. The square zero tensor product on TV is the
symmetric monoidal structure provided by Proposition 2.10.
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For any SM left adjoint f: "V — W, postcomposition with f defines an SM left adjoint Fun(8f", V) —
Fun(8fi", W) that descends to a natural SM left adjoint T( f): TV — TW between localizations.

Remark 2.15 Let @ be the initial object of V. Since {&} < 'V is stable under the binary tensor product
of Vand 7 : TV — V is symmetric monoidal, the full subcategory T5V = TV xy {&} — TV inherits a
nonunital SM structure from TV. Lemma 2.13 shows that for all £, F' € T4V, the tensor product £ ® F
is the zero object in TxV.

Example 2.16 Let V be a cartesian closed presentable co-category. In this case, the levelwise monoidal
structure on Fun(8fi", V) induced by the cartesian product on 'V is simply the cartesian monoidal structure.
Since the (reflective) full subcategory TV < Fun(8fi", V) is closed under the cartesian product, the induced
square zero monoidal structure on TV is simply the cartesian product as well.

Proposition 2.17 LetV be a presentable SM oco-category and let O be an oco-operad. Then there is an
equivalence of co-categories

Algy (TV) = T(Alge(V)),

where TV is endowed with the square zero monoidal structure.

Proof The fully faithful functor TV — Fun(8fi", V) is lax symmetric monoidal and hence realizes TV®
as a full suboperad of the co-operad Fun(8", V)®. The co-category of O-algebras in TV then embeds as
the full subcategory of Alg,(Fun(8f", V)) whose underlying functors are excisive. Using Remark 2.7
together with the commutativity of the Boardman—Vogt tensor product [26, Proposition 2.2.5.13], we
obtain an equivalence

Algy(TV) T(Alge(V))
N N
Algy (Fun(8i, V), @1ey) = Fun(8f", Algy(V))

Fun(8fin, V)

of oo-categories over Fun(8fi", V), where the diagonal functors are induced by forgetting algebra structures.
In particular, this equivalence identifies the full subcategory Alg,(7TV) on the left-hand side with the full
subcategory on the right spanned by diagrams of O-algebras in V whose underlying diagrams are excisive.
But this is the same as diagrams $fi" — Alg, (V) that are themselves excisive, because the forgetful functor
from O-algebras to V detects limits [26, Corollary 3.2.2.4]. We conclude that the horizontal equivalence
above identifies Algy (TV) with T(Algy(V)), so the desired result follows. |

The following result provides a symmetric monoidal refinement of Example 2.2:
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Proposition 2.18 LetV € CAlg(Pr") and consider the commuting square in CAlg(Pr")

SLH?

CSIJ/ JCS'[
T(m)

TS —= TV

where the vertical functors are the SM left adjoints to the projection functors and the horizontal functors are
induced by the map n from the initial presentable SM oo-category. This is a pushout square in CAlg(Pr").

The proof requires some results about the tensor product of presentable oo-categories [26, Section 4.8.1].
Let us recall that there is a sub-co-operad Pri>® C Cat®®* of the cartesian operad of big co-categories,
whose objects are presentable co-categories and Mapp, L. (C1, . .., Cy: D) is the union of path components
of Mapc,pie (C1 X -+ x Cy, D) spanned by the functors preserving colimits in each variable. Then the
oo-operad Prl»® describes a (closed) symmetric monoidal structure on pr [26, Proposition 4.8.1.15].

In the proof below, let us refer to functors g: C; x €3 — D preserving colimits in each variable simply as
bifunctors and let us say that such a bifunctor g is initial if it defines an initial object in the co-category
of presentable co-categories (with left adjoints between them) equipped with a bifunctor from C; x C5.
An initial bifunctor g: € x €, — D exhibits D as the tensor product of C; and €, in Pr".

Lemma 2.19 Let C1, C; and D be presentable oo-categories, g: C1 X C» — D a bifunctor and consider

the functor .
W(g): D s P(D) £ P(€) x ).

Then W (g) takes values in the full subcategory of right adjoint functors
FunR(G(ip, GCy) C Fun(G({p, Cy) C Fun((i’(ip, P(Cr)) ~ P(C1 x Cp)
and g is an initial bifunctor if and only if V(g): D — FunR(G(;p, C») is an equivalence.
Proof This follows from the proof of [26, Proposition 4.8.1.17]. Indeed, the argument in [loc. cit.] shows

that W(g) is in fact a right adjoint functor with values in the full subcategory FunR(G(;p, ©>) and that the
assignment g — W(g) determines a natural equivalence of spaces

Mapp, L. (C1, C2; D) >~ Mappr (D, FunR(G(;p, C2)) >~ Mapp,L (FunR(G?p, C2), D).
In particular (as concluded in [loc. cit.]), it follows that the presentable oco-category FunR(G({p, Cz)

corepresents bifunctors, ie €] ® €y ~ FunR(G?p, C,). This immediately implies that g is an initial
bifunctor if and only if ¥(g): D — FunR(G(l)p, C») is an equivalence. a

Proof of Proposition 2.18 Since § is the initial object in CAlg(Pr") and coproducts of [E-algebras are
given by the tensor product in the underlying co-category [26, Proposition 3.2.4.7], it will suffice to verify
that the SM left adjoint functor F: TS ® V — TV induced by the commuting square is an equivalence. To
verify this, we need to show that the underlying functor (forgetting SM structures) is an equivalence.
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To this end, note that the proof of [26, Proposition 3.2.4.7] implies that F can be identified with the

composite functor

T
(n)®cst

F:T8®V TVRTV S TV,

The corresponding bifunctor is therefore given by
£:I8x v IS gy gy &, gy,

To see that F' is an equivalence, we need to show that the bifunctor f satisfies the condition of Lemma 2.19,
ie that U(f): TV — Fun®(T8°, V) is an equivalence. To identify the codomain of W( f), consider the
functor A% SEH’OP — ?(Sin’(’p) — T8 given by the Yoneda embedding followed by the localization from
Remark 2.3. The universal properties of the Yoneda embedding and this localization imply that restriction
along /%€ induces an equivalence

(h)*: Fun® (T8, V) => Exc(8}",V) = TV.

Using this equivalence, W( /') can be identified with the functor ¥( f): TV — Exc(8", V) sending X € TV
to the functor 8" — V classifying the correspondence

SV 58, (S,v) > Mapyy((hs ® 19)%¢ ® cst(v), X).

Here we used that T'(n): T8 — TV sends h§° to the excisive approximation of (hs ® ly). By
Proposition 2.10, the tensor product (s ® 1v)*° ®cst(v) in TV is naturally equivalent to (hs @ v)**¢ € TV.
This object has the universal property that

Mapgy((hs ® v)™, X) = Mapy(v, X(S5)).
It follows that W( f) can simply be identified with the identity on TV. In particular, it is an equivalence,

so that Lemma 2.19 shows that f is an initial bifunctor and F is an equivalence, as desired. a

2.3 t-orientations on tangent categories

In later sections, we will consider various examples of tangent bundles whose fibers are stable categories
with a natural “connective part”. Let us axiomatize this situation as follows:

Definition 2.20 Let p: & — B be a stable Cartesian fibration, ie a Cartesian fibration such that each fiber
Ex is stable and each arrow f: X — Y in B induces an exact functor f*: &y — Ex. A t-orientation on
p: & — B is atuple of full subcategories (€22, £=9) of € such that:

(1) For each p-Cartesian arrow E — F in & with F € £€=°, we have that E € £=0,

(2) Forevery X € B, the tuple
E&=%ney, es%ney)

defines a ¢-structure on the stable co-category Cy.

In this case, we will refer to ¥ = €201 £=0 ag the heart of the ¢-orientation.
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Example 2.21 Let 7: TV — 'V be the tangent bundle of a presentable co-category. Then each Ty'V
carries a t-structure such that 3';_1\7 is the full subcategory of E € TxV such that Q°°(E) ~ X is the
terminal object in V,x [26, Proposition 1.4.3.4]. Since such objects are stable under base change along
amap X’ — X in the base, it follows that TV comes with a canonical t-orientation in which T7=~1V
consists of those E such that Q°°(E) ~ n(E).

Condition (1) of Definition 2.20 is equivalent to £=% — B being a Cartesian fibration and the inclusion
£=0 < & preserving Cartesian edges.

Lemma 2.22 Let p: & — B be a stable Cartesian fibration with a t -orientation (£=°, £=9). Then:

(1) The restriction of the projection p to each of the three subcategories £Z°, =% and € is a Cartesian
fibration.

(2) There exists a commuting square of adjunctions over B, ie in Catso /B, of the form
0T =0

>0
T<0 H T<0 H

£20 T ¢

>0

Furthermore, all right adjoint functors preserve Cartesian edges.
In particular, €Y — B is a Cartesian fibration whose fibers are (ordinary) abelian categories.

Proof For each X € B, the fiber £y comes equipped with a ¢-structure. In particular, for each X there
are coreflective localizations [26, Proposition 1.2.1.5],
(2-4) Eiotﬁ Ex, 82?8;0.

>0 >0
The functors t>¢ realize their codomain as the localization of the domain at the (—1)-coconnective
morphisms, ie those morphisms whose cofiber in £y is contained in 8;0. By condition (1) from
Definition 2.20, each morphism f: X — Y in & induces a left -exact functor f*: &y — Ex between
the fibers. It follows that the (—1)-coconnective morphisms in (each fiber of) € and €=° are stable under
the functors f*. Let us pass to a universe U such that & and B are U-small and write X=° (resp. X°) for
the U-small co-category obtained from & (resp. £=9) by localizing at the (—1)-coconnective arrows in
each fiber. We can then apply [21, Proposition 2.1.4] in the (U-small) setting where the marked arrows in
B are just the equivalences to obtain maps of Cartesian fibrations (preserving Cartesian arrows)

>0 >0

_
b /
B

e xz0 e=o0 x©

—_—
(2-5)
T 5 /
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By [loc. cit.], on the fiber over an object X € B these maps can be identified with the localization functors
from (2-4). In particular, it follows from [26, Proposition 7.3.2.6] that the localizations from (2-5) both
admit a left adjoint over B. These left adjoints are (fiberwise) fully faithful and identify XZ° and X%
with the full subcategories €= and €V, respectively. In particular, this shows that the projections from
€20 and &Y to B are Cartesian fibrations, proving (1). Furthermore, the functors from (2-5) provide the
horizontal right adjoints (relative to B) in (2). Finally, the inclusions &9 5 £20 and £=0 — ¢ admit left
adjoints over B by [26, Proposition 7.3.2.6]. |

Let us now specialize to the case of the tangent bundle.

Definition 2.23 Let V be an SM oco-category with finite limits. A z-orientation on TV is monoidal if
729V is closed under the square-zero tensor product and contains the unit.

Example 2.24 Consider the full subcategories of excisive functors F: 8" — §
7298 c T8, T=98< TS

such that for every n, the map F(S”) — F(x) has n-connected, (resp. n-truncated) fibers. This defines a
t-orientation on TS, whose restriction to each fiber Ty 8 >~ Fun(X, Sp) consists of diagrams of connective,
(resp. coconnective) spectra. Furthermore, this 7-orientation is monoidal (the square zero monoidal
structure simply being the Cartesian product by Example 2.16). In particular, the heart T¥S can be
identified with the co-category of local systems of abelian groups. The inclusion T98 < T8 sends a local
system of abelian groups A to the corresponding parametrized Eilenberg—MacLane spectrum HA.

Let V be an SM oo-category with finite limits and suppose that TV carries a monoidal #-orientation. If O
is an oo-operad, we can use Proposition 2.17 to identify the Cartesian fibration 7 : T Algy (V) — Algy (V)
with Algy(TV) — Algy (V). Using this identification, consider the two full subcategories

T20 Algy (V) = Algo(T20V),  T=0 Algy (V) = Alg, (T="V),

where we view 729V and 7=V as full suboperads of TV. In other words, these are the full subcategories of
O-algebras in TV whose underlying objects (for every color x € O) are O-connective (resp. 0-coconnective)
in TV.

Proposition 2.25 These two full subcategories T=° Alg, (V) and T=<° Alg, (V) define a monoidal t-
orientation on T Alg, (V). For every color x € O, the forgetful functor x*: T Algy (V) — TV is t-exact, ie
it preserves both 0-connective and 0-coconnective objects.

Proof First, to see that the ¢-orientation is monoidal, note that the full subcategory T=° Alg (V) ~
Algy(T=0V) C Algy(TV) is closed under tensor products, since evaluation on the set of colors detects
tensor products of algebras.
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To verify condition (1) of Definition 2.20, notice that a morphism in Algy(TV) is w-Cartesian if and only
if for every color x € O, its image under x*: Algy(TV) — TV is a Cartesian arrow [26, Corollary 3.2.2.3].
This immediately implies that for every Cartesian arrow in Alg,(TV) whose codomain is contained in
T=0 Alg,(V), the domain is contained in T<? Alg,(TV) as well.

For condition (2), consider the adjoint pair 7=V T L TV from Lemma 2.22. Since the inclusion
TZ0V — TV is symmetric monoidal, its right adJomt 7>9 inherits a lax symmetric monoidal structure
[26, Corollary 7.3.2.7]. We therefore obtain an adjoint pair at the level of O-algebras which is natural
with respect to restriction along maps of oo-operads O — O’ (see [26, Remark 7.3.2.13]). In particular,
both adjoints commute with the forgetful functor for each color x € O

T20 Algy (V) = Algy (T20V) T T Algo(TV)

ol |+

F=0y° T TV

Since the unit of the adjoint pair T=0V z TV is an equivalence and its counit maps to an equivalence in
V by Lemma 2.22, the induced adjunction on O-algebras restricts to an adjunction between the fibers
over an O-algebra 4

75° Algy(V) L I T4 Algy(V)

Tzo
x*J/ x*

e R
‘IZSAV 1 Tx*AV
>0

The left and right adjoint both commute with the forgetful functors and the unit of the adjunction is an
equivalence. In particular, it follows that an object E € T4 Algy(V) is

(a) contained in ‘Iio Algy(V) if and only if 75¢(E) ~ E

(b) contained in ‘J'f_l Algy (V) if and only if for every color x € O, x* E € T+ 4V is (—1)-coconnective,

ie T>0(x*E) =~ 0; in turn, this is equivalent to t>¢(E) >~ 0 in T4 Algy(V).
By [26, Proposition 1.2.1.16], the subcategories ‘J’io Algy (V) and ‘J’fo Algy (V) then determine a ?-
structure on T4 Alg,(V) if and only if the essential image of
T>0: T4 Algo (V) = T4 Algy(V)

is closed under extensions. Since this functor is idempotent, (a) identifies its essential image with
‘J’EO Algy(V), which is closed under extensions because the forgetful functors x* (which detect connec-
tivity) preserve extensions and each ‘J’ff 4V is closed under extensions. |

In the remainder of this section, we will show that for a large class of presentable co-categories V, the
connective objects for the canonical z-orientation on TV (Example 2.21) admit a simpler combinatorial
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description than that of an excisive functor. To this end, let us start by recalling that every E € TxV
defines a reduced excisive functor E: 8ir — V /x - Restricting E to the full subcategory of finite pointed
sets, we obtain a very special I'-space object in V,x in the sense of Segal, whose underlying object is
Q% (E). Indeed, for any two finite pointed sets S, T, the pushout square of finite pointed spaces (in fact,

sets)
SvTl ——xVvT

L

SVk — %

induces an equivalence E(S v T) — E(S) x E(T), from which the grouplike Segal conditions follow.
In other words, 2°°(E) has the structure of a grouplike [ -monoid in the sense of [8].

Conversely, in the presence of loop space machinery, every grouplike [E ,,-monoid arises from a spectrum.
For later purposes, let us make this slightly more precise: suppose that V is a presentable oo-category and
let

Grp(V) € Fun(A?,V), Grpg_ (V) € Fun(Fins, V)

denote the co-categories of grouplike monoids, (resp. grouplike E ,-monoids) in V. Both arise as full
(reflective) subcategories of diagrams satisfying the grouplike Segal conditions [23, Definition 7.2.2.1;
26, Section 2.4.2, Definition 5.2.6.2; 8]. In addition, there is an adjoint pair

(2-6) B:Grp(V) L' Vu:Q

where the left adjoint sends a grouplike monoid to its bar construction and the right adjoint sends a pointed
object in 'V to its loop space (endowed with the group structure coming from the usual cogroup structure
St stvsh,

Definition 2.26 Let V be a presentable oo-category. We will say that V has loop space machinery if it
satisfies the following conditions:

(1) The Cartesian product V x V =5 preserves geometric realizations.

(2) The unit of the adjunction (2-6) is an equivalence.

We will say that V has parametrized loop space machinery if each slice oo-category V, x has loop space
machinery.

Example 2.27 Note that V has loop space machinery if and only if V,, has loop space machinery.
Using this, one readily sees that all co-toposes and stable presentable co-categories have parametrized
loop space machinery. More generally, a prestable presentable co-category (ie the connective part of a
t-structure on a stable co-category [25, Section C.1]) has parametrized loop space machinery. If V has
(parametrized) loop space machinery and U : W — V is a right adjoint functor preserving sifted colimits
and detecting equivalences (in particular, it is monadic), then W has (parametrized) loop space machinery.
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Recall that a simplicial object A°? — D in some co-category D is said to be n-skeletal if it is left Kan
extended from A(gn C AP,

Proposition 2.28 LetV be a presentable co-category with loop space machinery and consider the adjoint
pair
B:Grpg_ (V) I Sp(V) = Excreq(Si1, V) : Q%
whose right adjoint restricts a reduced excisive functor along the inclusion i : Finy, — 8fi". Then the left
adjoint B is fully faithful and a functor F: 8" — 'V lies in its essential image (in particular, it will be
reduced excisive) if and only if it satisfies the following two conditions:
(1) Its restriction to Finy satisfies the grouplike Segal conditions.

(2) It preserves all finite geometric realizations, ie colimits of simplicial diagrams that are n-skeletal
for some n.

Before turning to the proof of Proposition 2.28, let us mention some consequences:

Definition 2.29 For a presentable co-category V, let us say that a functor A: Fin, — V is a Segal
Eo-groupoid if for any two finite pointed sets S, T € Finy, the square

ASVT)—— A(xVvT)
A(S V %) —— A(%)

is cartesian. We will write Gpdg__ (V) € Fun(Finx, V) for the full subcategory on the Segal [E oo -groupoids.
A Segal Eo-groupoid in V with A(*) = X is equivalent to a grouplike Eoo-monoid in V, x.

Corollary 2.30 LetV be a presentable co-category with parametrized loop space machinery. Then the
following hold:
(1) There is a relative adjoint pair
B

Gpdg_ (V). LT 7TV =Exc(S™V)

oo
€V /

A%
whose right adjoint restricts an excisive functor along the inclusion i : Fin, — 81",

(2) The left adjoint B is fully faithful and a functor F : 81" — 'V lies in its essential image (in particular,
it will be excisive) if and only if it preserves finite geometric realizations and i * F is a Segal
E »-groupoid.

(3) The connective part TZ0YV of the canonical t-orientation (Example 2.21) on TV coincides with the
essential image of B.
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Proof Each excisive functor E: 8" — 'V can also be considered as a reduced excisive functor with
values in V, g (x). The restriction to Fins then defines a grouplike [Eo-monoid in V, g («), or equivalently,
an Eoo-groupoid in V. It follows that there is a well-defined functor Q°°: TV — Gpdg__ (V) compatible
with the projections to V. For each X € 'V, the induced functor between fibers admits a fully faithful left
adjoint by Proposition 2.28 (applied to V, x).

For (1), we now note that the projections evs and 7 are both Cartesian fibrations, so that 2°° admits
a relative left adjoint B [26, Proposition 7.3.2.6]. For (2), note that B is given fiberwise by the fully
faithful left adjoint from Proposition 2.28. Since 7 and ev, are also co-Cartesian fibrations, this implies
that B is fully faithful (by [23, Proposition 2.4.4.2]) and that its essential image is as asserted in (2).

For (3), the proof of [26, Proposition 1.4.3.4] shows that it suffices to verify that the essential image of
B: Grpg_ (V,x) <> JxV is closed under extensions. For this, we just need to verify that the additive
presentable co-category Grpg__ (V) x) satisfies the following condition [25, Proposition C.1.2.2]: for
eachmap ¥ — X Z in Grpg__(V,x) to a suspension with fiber F — Y, the natural map O LLp ¥ — X Z
from the cofiber is an equivalence. To see this, consider the following diagram in Grpg__ (V,x):

 FOZOZ—FF®Z—3F——Y
| R
e Z®L——2Z——30——3%Z
Here the bottom row is the standard augmented simplicial object that computes ¥ Z as a geometric
realization of coproducts (by restricting along the cofinal functor (A / A%)Op — A% and taking the left Kan
extension along the left fibration (A / A%)"P — A°P). The top row is obtained from the bottom row by base
change along ¥ — XZ and each of the left vertical maps can be identified with the evident projection
onto a summand. However, note that the simplicial structure of the top row is not just the direct sum of
the bottom row and the constant diagram on F'.

Since the forgetful functor Grpg__ (V,x) — V,x detects geometric realizations and 'V has parametrized
loop space machinery (so that the fiber product xyz preserves geometric realizations), the top row is
then a colimit diagram as well. The canonical map 0 LI Y — X Z is then an equivalence, since it can be
identified with the geometric realization of the natural equivalence of simplicial objects

OUr (F®Z%)— 7% i
Corollary 2.31 LetV be a presentable SM oco-category with parametrized loop space machinery. Then

there is a commuting square of presentable SM oco-categories and symmetric monoidal left adjoint functors

Fun(Finy, V) L> Fun($fin, V)

| [

Gpdg_ (V) — 22— TV

where the top co-categories come equipped with the levelwise monoidal structure and the vertical functors
are monoidal localizations. In particular, the canonical t -orientation (Example 2.21) is monoidal.
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Proof Corollary 2.30 already provides the desired square of presentable co-categories and left adjoints
without monoidal structures. Here the functors Fun(Fin, V) — Gpdg__ (V) and Fun(8fi", V) — TV
are the localizations whose right adjoints are the evident inclusions of the full subcategories of Segal
[E o-groupoids and excisive functors. Since B is a fully faithful functor, the localization Fun(Finy, V) —
Gpdg__ (V) precisely inverts the class W of maps that are sent to equivalences by (—)*“o1i.

To refine this commuting square to a commuting square of SM functors, observe that Fin, and 8" both
admit finite coproducts (given by wedge sums) and that the inclusion i : Finy < 8fi" preserves coproducts.
Lemma 2.9 now implies that iy : Fun(Finy, V)® — Fun(8f", V)® admits a natural SM structure (adjoint
to the SM structure on i *). The functor (—)*¢ is an SM localization by Proposition 2.10.

Since (—)%*¢oi is monoidal, the class W of arrows in Fun(Fin,, V) is closed under the tensor product
with an object. It follows that the localization Fun(Finy, V) — Gpdg__(V) is a symmetric monoidal
localization [26, Proposition 4.1.7.4]; the functor B : Gpdg__ (V) — TV then has a unique SM structure
making the square commute.

For the conclusion about the canonical 7-orientation being monoidal, note that Gpdg__ (V) < TV is a
fully faithful symmetric monoidal functor whose essential image coincides with 7=%V by Corollary 2.30.
This implies that T=%V contains the monoidal unit and is closed under the tensor product, as desired. O

Let us now turn to the proof of Proposition 2.28, which requires some preliminaries.

Lemma 2.32 Leti: Fin, — 8" be the natural fully faithful inclusion. Then restriction and left Kan
extension define an adjoint pair

iy: Fun(Fink, V) _ L ' Fun(8fi", V) :i*

whose left adjoint is fully faithful. The essential image of iy consists exactly of those functors F : 8" — V
that preserve finite geometric realizations.

Proof Note that i) is fully faithful because i is. To identify the essential image, let us factor the Yoneda
embedding as
Finy —— 8 L5 P(Fin,),

where j sends T € 8fi" to Mapgin (i (—), T'). Note that for each finite pointed set S € Fin, the functor
Mapgin (i (S), —) preserves all finite geometric realizations in 8fin since it sends 7' — T*!SI=1, Conse-
quently, j preserves finite geometric realizations as well. Since every finite pointed space is the geometric
realization of some n-skeletal simplicial diagram in Fins and the Yoneda embedding is fully faithful on
Fin,, it follows that j is fully faithful.

We then have a sequence of adjunctions given by restriction and left Kan extension

0 J

Fun(Fins, V) 7L Fun(8™, V) I Fun(P(Finy), V)
i* j*
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where the left adjoints are fully faithful. By [23, Lemma 5.1.5.5], the essential image of j,i) coincides
with those functors P(Fin,) — V preserving all colimits. Consequently, the essential image of i) consists
of those functors whose left Kan extension along j defines a colimit-preserving functor P(Finy) — V.

Since j preserves finite geometric realizations, it follows that any functor in the image of i) preserves
finite geometric realizations. Conversely, given F: 8" — 'V preserving finite geometric realizations, we

have to verify that the counit map
hi*F(T)— F(T)

is a natural equivalence for 7' € 8fi". The domain and codomain both preserve finite geometric realizations
in T. Since each T is the realization of a finite simplicial diagram in Fin,, we can reduce to the case
where T € Fin,. But F and i\i * F agree on finite pointed sets by construction. |

Recall that S arises as the geometric realization of the 1-skeletal (finite) pointed simplicial set
N.(A'/OAY): A% — Fin,,

given explicitly in simplicial degree n by the finite pointed set (rn) with n + 1 elements [31, page 295].
For every S € 8fin, the levelwise smash product N,(A!/dA!) A S then determines a simplicial diagram
in 8", given in degree n by the n-fold wedge sum (n) A S = SV".

Lemma 2.33 Suppose thatV is a presentable co-category with loop space machinery and that A :Finy, —V
satisfies the grouplike Segal conditions. Let F = iy A: 8i" — V be its image under the left adjoint from
Lemma 2.32. For each S € 8fi", the simplicial diagram

F(NJAYJAAY)Y A S): AP -V

endows F(S) with the structure of a grouplike monoid in the sense of [23, Definition 7.2.2.1].

Proof Consider the functor Q: 8" — Fun(A°P, V) sending S to F(N,(Al/dA) A S). We have to show
that Q takes values in the full subcategory Grp(V) C Fun(A°P,V) of simplicial objects satisfying the
grouplike Segal conditions.

Observe that the full subcategory Grp(V) C Fun(A°P, V) of simplicial objects X satisfying the group-
like Segal conditions (ie the grouplike Segal maps X(n) — X (1)*" are equivalences) is stable under
geometric realizations: for every simplicial diagram X, in Fun(A°P,V), the grouplike Segal maps
| Xo(n)] = | Xo(1)|*" are equivalent to the geometric realizations of simplicial diagram of Segal maps
X.(n) = X.(1)*". On the other hand, the functor Q preserves finite geometric realizations since F
preserves finite geometric realizations (Lemma 2.32). Since every object in 8fi" is the geometric realization
of a k-skeletal simplicial diagram of finite pointed sets, it thus suffices to show that F(N,(Al/9A) A S)
is a grouplike monoid when S is a finite pointed set.

When S = (m), the simplicial object F(N,(A!/dAl) A (m)) can be identified explicitly as follows: it is
obtained from A((—)A(m)):Fin, — V by restricting along the functor N,(A!/dA!): A°’ — Fin, from [31,
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page 295]. Since A satisfies the grouplike Segal conditions, A((—) A (m)) >~ A(—)*™ satisfies the group-
like Segal conditions as well. The simplicial object obtained by restriction then satisfies the grouplike Segal
conditions as well (as asserted somewhat implicitly in [loc. cit.]; see in particular Proposition 1.5 there). O

Proof of Proposition 2.28 Consider the adjoint pair (i, *) from Lemma 2.32. We claim that for every
A: Fin, — V satisfying the grouplike Segal conditions, the functor F := i)(A4): 81" — V is reduced
excisive. Assuming this, the adjoint pair (i, *) simply restricts to an adjoint pair between spectra and
grouplike Eo-monoids, ie B =iy and 2°° = i*. The characterization of the essential image of B then
follows from Lemma 2.32.

To verify the claim, note that F (%) ~ A(x) ~ *, so F is reduced. Since * € 8fi" is the initial object, there
is a canonical lift F: 8fin _ V), such that postcomposing with the forgetful functor V, — V yields F:
indeed, F is simply given by the functor sending S to the pointed object x >~ F(x) — F(S) in V. Since
the forgetful functor V. — 'V preserves limits, the functor F is excisive if and only if F is excisive.

To see that F is excisive, it suffices to verify that for every S € 81", the natural map
(2-7) F(S)—> QF(S)

is an equivalence [26, Proposition 1.4.2.13]. Using that ©§ = S! A S is the geometric realization of
the 1-skeletal simplicial diagram N,(A!/dA!) A S and that F (and hence F) preserves finite geometric
realizations, we have that F (XS) is the bar construction of the group object from Lemma 2.33. The
map (2-7) can then be identified with the map underlying the canonical map of grouplike monoids
F(S) — QB(F(S)), which is an equivalence because V has loop space machinery. |

3 Tangent bundles of stable co-categories

The purpose of this section is to spell out the various definitions from Section 2 in the case where V is a
stable or additive presentable co-category, for which the tangent bundle has a much simpler description.

3.1 Trivializing the tangent bundle

Let V be a pointed oo-category with finite limits and consider the full subcategory Ret C 81" on * and S°.
Then Ret is equivalent to the retract category [23, Definition 4.4.5.2] and there are functors

Tv -9, Fun(Ret, V) SRLLEN VISR

(3-1) l /

A%

Here the first horizontal functor is given by restriction and fib sends a retract diagram X — Y — X to the
tuple (X, Y xx *). The first functor exhibits TV as the fiberwise stabilization of Fun(Ret, V): for every
X €V the induced functor TxV — Fun(Ret, V)x 2~ (V,x)« on fibers over X exhibits its domain as the
stabilization of its target.
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Now suppose that V is an additive co-category. Then the functor fib is an equivalence, with inverse
sending (X,Y)to X > X ®Y — X (see eg [5, Lemma 1.5.12]). In this case, we therefore obtain an
equivalence

TV —— = S VxSp(V)
N

between TV and the fiberwise stabilization of V x 'V over V. For stable V, the situation is even simpler:

Lemma 3.1 IfV is a stable oo-category, then both G and fib are equivalences, so that there is an
equivalence TV ~V xV such that w(X,Y) ~ X and Q®°(X,Y)~ X @Y.

Proof The functor fib is an equivalence since 'V is additive, so that the fibers of Fun(Ret, V) are equivalent
to 'V and hence already stable, which in turn implies that the functor G exhibiting the fiberwise stabilization
is an equivalence (see [16, Corollary 2.2.5] for a similar argument). O

Lemma 3.2 LetV be an additive presentable co-category and let ©°°: 'V — Sp(V) be the left adjoint
functor exhibiting Sp(V) as the stabilization of V. Then the following induced square of tangent categories
is Cartesian:

T 7(5 )
v E% L sp(v)

Proof The left adjoint functor 3°°:V — Sp(V) commutes with the functor fib because one can identify
Y xx 0 >~ Y Ly O for a retract diagram X — Y — X. This implies that the functor T(X°°) is obtained
from the functor £°° x X9°: V xV — Sp(V) x Sp(V) by stabilizing the second factor, which readily
implies the result. O

3.2 Square zero monoidal structure

If V is a stable presentable SM co-category, then the square zero monoidal structure on TV >~V x V
(Definition 2.14) can be made more explicit using the following:

Definition 3.3 Let D be a presentable SM oo-category. We will say that an object D € D is square zero
if the canonical map @ — D ® D from the initial object is an equivalence and denote by SqZ(D) € D
the full subcategory on the square zero objects. Note that every SM left adjoint F: D — D’ restricts to a
natural map F: SqZ(D) — SqZ(D’).
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Recall that the co-category of V-linear SM oo-categories is given by the oo-category CAlgy, (Prt) ~
CAlg(Prt)y , of presentable SM oo-categories D equipped with a symmetric monoidal left adjoint functor
V—D.

Definition 3.4 Let W be a V-linear SM oo-category together with a square zero object M € W. We say
that this exhibits W as the free V-algebra on a square zero object if for each D € CAlgy (Pr"), evaluation
at M defines a natural equivalence

evys : Fund (W, D) — SqZ(D).

Remark 3.5 Consider a pushout square in CAlg(Pr")

V1—>V2

o

Wl T)Wz

If M € W; exhibits W1 as the free V;-algebra on a square zero object, then f(M) exhibits W, =~
V) ®v, Wi as the free V,-algebra on a square zero object: indeed, the evaluation at f (M) factors as two
equivalences:

f* ev
ev sy Fun§ (V; @y, Wy, D) —— Fun® (Wy, D) —5 SqZ(D).

Proposition 3.6 There exists a free S-algebra S[¢] on a square zero object. Furthermore, the functor
{A, M} — §[€]

that sends A to the monoidal unit and M to the (universal) square zero object, exhibits S[e] as the free
presentable oo-category on the two-element set {A, M }.

In particular, the tensor product functor ®: 8[e]| x 8[e] — S[e] is the unique functor preserving colimits in
each variable given on generating objectsby AQ A=A, AQM=MA=Mand M QM = I is
the initial object.

Proof First, let Fin® be the category of finite sets and bijections, with monoidal structure given by
disjoint union. By [26, Proposition 2.2.4.9], the inclusion of the 1-element set {1}: * — Fin®J exhibits
Fin®J as the free symmetric monoidal co-category on *. By [26, Corollary 4.8.1.12] (and the fact
that Fin® ~ Fin®i-°P), the co-category Fun(Fin®!, 8) of symmetric sequences admits a unique closed
symmetric monoidal structure such that the Yoneda embedding

Finl /> Fun(Fin®¥, 8)

admits a symmetric monoidal structure. In particular, the (co)representable /¢ on the empty set is the
monoidal unit and the universal property of (Fin®”, IT) and [26, Proposition 4.8.1.10] imply that the map
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{h1}: * — Fun(Fin®, 8) exhibits Fun(FinJ, §) as the free presentable SM oco-category on *. Finally,
[26, Remark 4.8.1.13] asserts that the resulting symmetric monoidal structure on Fun(Fin®J, 8) is in fact
given by Day convolution.

Let us now denote by S[e] the (reflective) localization of symmetric sequences at the set of maps @ — hy,
from the initial object, for all 7 > 2. Then 8[¢] C Fun(Fin®J, 8) is the full subcategory of symmetric
sequences X such that X(n) =~ x for all n > 2. In particular, the functor {4, M } — S[e] sending A — hy
and M +— h; exhibits §[¢] as the free presentable co-category on {4, M }.

For any m > 0 and n > 2, the map @ ® hy, — h, ® hy, is equivalent to the map @ — hy4m, so (by
the same argument as in Proposition 2.10) this exhibits S[¢] as a symmetric monoidal localization of
Fun(Fin®V, 8). By the universal property of symmetric monoidal localizations, the square zero object
hy € §[€] then realizes S[e] as the free presentable SM co-category on a square zero object. |

Corollary 3.7 For every presentable SM oco-category 'V, there exists a free V-algebra V[e] on a square
zero object.

Proof Proposition 3.6 provides the existence of the free S-algebra on a square zero object S[e]. By
Remark 3.5, V ®g S[e] then provides the free V-algebra on a square zero object. |

Remark 3.8 Let V be a presentable SM co-category. Then the free V-algebra V[e] on a square zero object
can also be described in terms of a variant of the Day convolution product applicable to promonoidal
oo-categories, as developed in recent work of Nardin and Shah [28]. More precisely, one can check that
the 2-colored operad M Com for commutative algebras and modules is such a promonoidal (co-)category.
Since the underlying category of MCom is simply the set {4, M}, this endows Fun({4, M }, V) with a
Day convolution product which has the property that
(hi®C)®(ha®D)=hq ®(C ® D),

(ha®C)®(hy ® D) =hy ® (C ® D),

(hy ®C) @ (hy @ D) = 2.
In particular, the square zero object /s ® 1y induces a symmetric monoidal functor from V[e] to this Day
convolution, which is easily seen to be an equivalence. The universal property of the Day convolution
therefore implies that for any co-operad O, there is a natural equivalence

Algy (V[e]) 2 Algoxaicom (V).

The oo-operad MO = O x MCom is the oo-operad for O-algebras and (operadic) modules over them
[16; 20]. Combining this with Propositions 2.17 and 3.10 below, one finds that T Algqy (V) >~ Algyq (V)
for every stable presentable SM oco-category 'V (see also [4; 26; 30]).

We will now relate the free V-algebra on a square zero object to TV:
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Construction 3.9 Let V be a stable presentable SM oo-category and consider the cofiber sequence of
excisive functors
e ® 1y 2% hgo @ 1y — My,

where i ® id is the canonical map of corepresentables induced by * — S°. Lemma 2.13 shows that the
pushout-product of /1, ® 1y — h go ® 1y with itself in Fun(8fi", V) is a TV-local equivalence. Consequently,
the pushout-product map in the monoidal localization TV becomes an equivalence. Since the cofiber of a
pushout-product map is the tensor product of the cofibers (see eg [12, Theorem 6.2] for a proof at the
level of stable monoidal derivators), it follows that My ® My ~ 0 in TV.

Proposition 3.10 Let 'V be a stable presentable SM oo-category and consider TV as a V-linear SM
oo-category via the left adjoint V — TV to the projection. Then the square zero object My € TV exhibits
TV as the free V-algebra on a square zero object.

Proof Since V is a stable presentable SM oco-category, the canonical SM left adjoint § — 'V factors
canonically over spectra [26, Corollary 4.8.2.19]. This gives rise to the following diagram in CAlg(Pr"):

S Sp v

T8 T Sp TV

Here each composite vertical functor is the left adjoint to the projection (ie taking constant 8fi"-diagrams).
For 'V and the oco-category of spectra, this left adjoint factors over the free algebra on a square zero object:
¢ is the functor classifying the square zero object Ms, € T Sp and ¢y classifies My. Since the functor
T Sp — TV is a monoidal left adjoint, it sends Ms, to My so that the diagram commutes.

Now notice that by Proposition 2.18, the total square and the left rectangle are both pushout squares in
CAlg(PrY). On the other hand, Remark 3.5 shows that the top right square is co-Cartesian. It therefore
follows that the bottom right square is co-Cartesian as well. Consequently, ¢y is an equivalence as soon
as ¢ is an equivalence, so we can reduce to the case V = Sp. In this case, let us consider the composite
functor

{A, M} — 8[e] — Sple]

sending A to the monoidal unit and M to the universal square zero object. Proposition 3.6 asserts that the
first functor exhibits S[e] as the free presentable co-category generated by {4, M } and Remark 3.5 and
[26, Proposition 4.8.2.18] imply that the second functor exhibits Sp[e] as the stabilization of S[¢]. The
composite therefore exhibits Sp[e] as the free stable presentable co-category generated by {A4, M }.
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Now observe that by construction the monoidal functor
¢:Fun({A, M}, Sp) >~ Sple] = T Sp

is given on generators by ¢ (hyg) = lgsp = hs ® 1sp and ¢ (hpyr) = Msp = cof(hs @ 1sp — hgo ® 1sp).
It follows that the right adjoint to ¢ is given by the composite functor T Sp — Fun(Ret, Sp) — Sp x Sp
appearing (3-1), which is an equivalence since Sp is stable. We conclude that ¢ is an equivalence, as
desired. O

Remark 3.11 If V is an additive presentable SM oo-category, its stabilization Sp(V) carries an induced
symmetric monoidal structure and £°°: 'V — Sp(V) is a symmetric monoidal functor [8, Theorem 5.1].
The pullback square of Lemma 3.2 then becomes a pullback square of SM oo-categories. Proposition 3.10
then provides an explicit description of the square zero monoidal structure on TV >~ 'V x Sp(V), given
informally by the formula

(3-2) (C.E)®7v (D. F) = (C ®y D.(S%°C ®sy(v) F) @ (E ®sp(v) 5°D)).

Example 3.12 Let V be a stable presentable SM oo-category and suppose that O is a monochromatic
oo-operad in arity > 1, ie (928(’)) =@ and (‘)ﬁ) is a category with (up to equivalence) one object. This implies
that Alg, (V) is pointed, ie the terminal algebra O is also the initial algebra (by [26, Proposition 3.1.3.13]).

For any A € Algy(V), T4 Algy (V) can be identified with the oco-category of operadic A-modules (see [16,
Corollary 1.0.5] or [26, Theorem 7.3.4.13]). Alternatively, Remark 3.8 identifies T Algy (V) =~ Algy o (V)
with the oco-category of O-algebras and modules over them.

Now, given such an A-module E, the O-algebra 2°°(E) can be identified with the split square zero
extension A @ E. For any section n: A — A @ E, we then obtain pullback squares of the form

Q% (0, E[—1]) —— A —— Q®(4, E)

l L,

Q%(0,0) =0 —— A —" 4 Q%(A, E)

Here the map 0 — A is the initial map of O-algebras and total pullback arises as the image under 2°° of
the pullback in T Algy (V) >~ Algyo (V) of the map (A4, 0) — (A, E) along the initial map (0, 0) — (4, E).
In particular, 2°°(0, E[—1]) is the image of an O-algebra (0, £[—1]) under the nonunital lax symmetric

monoidal functor
QX: TV =TV xp{0} > TV—>V,

where the first functor is the inclusion of the nonunital SM sub-oo-category from Remark 2.15. We have
seen there that the tensor product on T,V is null-homotopic, so that each operation in O of arity > 2
acts on (0, E[—1]) by a null-homotopic map. Consequently, the resulting map A, — A indeed behaves
like a square zero extension in the sense of algebra: its fiber 2°°(0, E[—1]) is an O-algebra on which all
operations in O of arity > 2 act by null-homotopic maps (see [26, Proposition 7.4.1.14]).
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3.3 t-orientations

Let us conclude with some remarks about ¢-orientations on tangent bundles of additive and monoidal
oo-categories.

Example 3.13 Let V be an additive presentable co-category, so that TV >~V x Sp(V) (Lemma 3.2). Then
any ¢-structure on Sp(V) determines a ¢-orientation on TV. Now suppose that V is furthermore symmetric
monoidal and recall that the square zero tensor product on TV can be identified with the tensor product on
V x Sp(V) given by Remark 3.11. From this description, one sees that a ¢-structure on Sp(V) determines
a monoidal t-orientation on TV if and only if Sp(V)=? is closed under taking the tensor product in Sp(V)
with objects of the form X°°(X), for X € V.

Example 3.14 Suppose that V is an additive presentable co-category and consider the canonical -
orientation on TV =~ V x Sp(V) (Example 2.21). A tuple (C, E) is then contained in T=~1V if and only
if Q°°(E) = 0in V. The proof of [26, Proposition 1.4.3.4] shows that (C, E) € 7=V if and only if E is
contained in the smallest subcategory of Sp('V) which is closed under colimits and extensions and contains
all ¥*°(X) for X € V. If V is furthermore closed SM, then Example 3.13 shows that the canonical
t-orientation is monoidal.

When V is stable, the canonical z-orientation simply produces the trivial ¢-structure (T=0V = TV). If V is
prestable [25, Definition C.1.2.1], the canonical ¢-orientation has T7Z%V ~ V x V under the equivalence
TV >~V x Sp(V) [25, Proposition C.1.2.2].

Example 3.15 Suppose that V is a prestable SM oco-category and O an co-operad. Endowing TV ~
VxSp(V) with its canonical monoidal #-orientation and applying Proposition 2.25, we obtain a ¢ -orientation
on T Algy(V), and hence a t-structure on T4 Algy (V) for any O-algebra A. Under the identification
T4 Algy(V) >~ Mody (Sp(V)) from Example 3.12, this is simply the ¢-structure whose connective part is
given by Mody4 (V) € Modg4 (Sp(V)).

4 Postnikov structures

The goal of this section is to give an axiomatic description of a decomposition of an object in a nice
oo-category, together with the data of “k-invariants”, analogous to the Postnikov tower of a space.

Definition 4.1 Let V be an oco-category with finite limits. A Postnikov structure on an object X in V
consists of the following data:

(1) An infinite tower
X—> > X,—>—> X

of objects X, € V under X for a > 1, exhibiting X as the limit of {X,}4>1.
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(2) For each a > 2, an object K, : 8" — V in TV together with a Cartesian square

Xg —— n(Ky)

)

Xa_l k—> QOOKa

exhibiting X, — X,—1 as a square zero extension (see (2-2)).

The convention to start at @ = 1 is rather arbitrary, and in various cases it can be more natural to start at
a=0.

Warning 4.2 The notion of a Postnikov structure on an object X is a priori unrelated to the tower of
truncations of X, ie its underlying tower need not be given by the Postnikov tower of X in the sense of
[23, Definition 5.5.6.23]. For example, Theorem 6.3 yields a Postnikov structure on an (oo, n)-category
C whose underlying tower consists of the homotopy categories ho(,; 44 ,)(€) and not on its truncations
T<n+a(C€) in Cat(so p)-

Warning 4.2 notwithstanding, we will see that a good source of Postnikov structures is given by the usual
Postnikov tower together with its k-invariants:

Example 4.3 The motivating example of a Postnikov structure is the usual Postnikov tower of a space X,
together with the data of its k-invariants. In this case, X, = 1<, X and the K, are given by the (suspended)
parametrized Eilenberg—-MacLane spectra K, = 4T Hz, (X) over <1 X. We will come back to this in
Example/Proposition 4.15.

To study naturality of Postnikov structures, it will be convenient to organize the data of an object X
equipped with a Postnikov structure into a single diagram 7 : &€ — V. To this end, let us start by recalling
the following definition:

Definition 4.4 Let ¢: C — D be a functor of co-categories. We will denote by M(¢) the domain of the
co-Cartesian fibration classified by ¢: Al — Cateo. By [23, Lemma 3.2.3.3], M(¢) can be identified with
the mapping simplex [23, Section 3.2.2], ie it can be identified with the pushout of co-categories

M(¢) :=D Upyxe Al x C.

Using the co-Cartesian fibration M(¢) — A, one can understand M (¢) as follows: an object of M (¢)
is either an object of C or an object of D, and for each ¢, ¢’ € € and d,d’ € D we have

Mapyy(g)(c, ¢’) = Mape(c, '), Mapyyy)(c,d) = Mapy (¢(c), d),
Mapysp)(d.d") =Mapy(d.d'), Mapyg)(d.c) =2,

with the evident composition. Let us write ¢« : Al x € — M(¢) for the natural map into the pushout,
sending (0, ¢) to ¢ and (1, ¢) to ¢(c).
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Construction 4.5 For any integer a, let k4 : {a — (a — 1)} — 81" be the functor sending the walking
arrow a — (a — 1) to x — S9 and let &, = M (k) be its mapping simplex. As in Definition 4.4, we
will identify the objects of &, with the objects of 8", together with two additional objects a, a — 1. The
functor o4« : Al x {a — a — 1} — €, is then given explicitly by

02(0,a) =a, 0,00,a—1)=a—1, o4(l,a)=% oz(1,a—1)=S5".
For any integer m, let us then define €, as the pushout of co-categories

ng — [8m+1 H{m+1} Em+2 H{m+2} Em+z - ]

| |

(Z;pm)q 82”1

where the left vertical functor is the usual inclusion into the cone and the top horizontal functor sends
eachmapa — (a—1) in Zozpm to the corresponding nondegenerate arrow in €,. Given 7: €5, — V, we
then observe that:

e The restriction of T to 8" C &, corresponds to K.

e The restriction of 7 along o44: Al x {a — a — 1} C &, corresponds to the square

Xg — Ka(¥) = m(Kq)

(N

Xa—1 k_> Ka(SO) = Q% (Ky)

e The restriction of T to (Z(;pm)<1 C € encodes the tower X — -+ = Xp4+1 — Xm.
By default, we will take € = €.
Definition 4.6 We define the co-category of objects equipped with a Postnikov structure to be the full

subcategory
PoStr(V) € Fun(€, V)

of diagrams T for which (a) the restriction to each 8fi" C €, is excisive, (b) the restriction along each

0gx 18 a Cartesian square and (c) the restriction to (Z°>p1)<1 is a limit cone.

Remark 4.7 The conditions determining PoStr(V) inside Fun(&, V) assert that certain designated cone
diagrams Jof' — &, with J, contractible (either a span or Z;pl), are sent to limit cones. In particular,
PoStr(V) C Fun(€&, V) is closed under limits.

Evaluating at the cone point of the tower oo € (Z(;pl)<1 C €& determines a limit-preserving functor
eVoo: PoStr(V) — V.
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Definition 4.8 A Postnikov structure on an co-category 'V is defined to be a section ®: 'V — PoStr(V) of
the functor ev : PoStr(V) — V.

Warning 4.9 Note the distinction between a Postnikov structure on an object in an co-category V
(Definition 4.1) and a Postnikov structure on an co-category V: the former is a single diagram in 'V, while
the latter is a family of diagrams depending functorially on X € V. This should not cause any confusion,
since it is always clear from the context if we are dealing with a functor on V.

Definition 4.10 Let V be an SM oo-category and endow Fun(&, V) with the levelwise tensor product.
We define the co-operad of objects equipped with a Postnikov structure to be the full suboperad

PoStr(V)® C Fun(&, V)@«

spanned by the objects from Definition 4.8. A multiplicative Postnikov structure on 'V is a section of the
map eveo : PoStr(V)® — V& in the oo-category of co-operads.

Using that PoStr(V)® is a full suboperad of Fun(€, V)®, Definition 4.10 can be rephrased as follows:
a multiplicative Postnikov structure on V is a lax symmetric monoidal section ®: V — Fun(&, V)
of eveo: Fun(€,V) — V with the property that the underlying functor of ® is a Postnikov structure
(Definition 4.8).

Remark 4.11 In general, the co-operad PoStr(V)® need not be an SM oo-category.

Remark 4.12 Suppose that ®: V — Fun(&, V) is a multiplicative Postnikov structure. Restricting to
the copy of 8fi" C &, in level m, one obtains a lax monoidal functor K, (®): V — Fun(8f", V) taking
values in TV C Fun(8f", V). Since TV is a monoidal localization of Fun(8fi", V), each K, (®) defines a
lax monoidal functor V — TV to the tangent bundle, equipped with the square zero monoidal structure
(Definition 2.14).

Example 4.13 Suppose that the monoidal structure on 'V is given by the Cartesian product. Then the
levelwise monoidal structure on Fun(€, V) is the Cartesian monoidal structure as well. Consequently (see
[26, Section 2.4.1]), strong symmetric monoidal functors V — Fun(&, V) simply correspond to product
preserving functors V — Fun(€&, V), ie to functors V — Fun(&, V) each of whose components V — V
are product preserving. In particular, any Postnikov structure ®:V — Fun(&, V) on V whose individual
components ®; : V — 'V are product preserving canonically refines to a multiplicative Postnikov structure.

The main point of multiplicative Postnikov structures is that they induce such structures on categories of
algebras:

Proposition 4.14 Let O be an co-operad and let V be a symmetric monoidal co-category equipped with
a multiplicative Postnikov structure ®: "V — Fun(&, V). Then the induced map

Algy (V) 25 Alg (Fun(€, V)) ~ Fun(€, Algy (V)

is also a multiplicative Postnikov structure.
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Proof First, note that we can view € as an co-operad (with only unary operations), so that
Fun(&,V) >~ Alge (V).

By Remark 2.7, the symmetry of the Boardman—Vogt tensor product of oco-operads [26, Proposi-
tion 2.2.5.13] then induces a commuting diagram of symmetric monoidal co-categories

Algyg, e (V) = Algy(Fun(E, V)) = Fun(€, Algy(V)) = Algeg, 0 (V)

Algy (eVOO)J le\’oo

Algy (V) === Algy(V)

in which the horizontal arrows are equivalences. It follows that &, = Alg,(P) defines a lax symmetric
monoidal section of eve,. To see that @ takes values in the full sub-co-category PoStr(Algy(V)) €
Fun(€, Algy(V)), consider the commuting diagram

Algy (V) L Algy(Fun(€,V)) —= Fun(€&, Algy(V))

| | |

Fun(0(yy, V) T*> Fun(O 1, Fun(€, V)) —— Fun(¢, Fun(0(yy,V))

where Oy is the underlying oo-category of O [26, Remark 2.1.1.25]. Since the vertical functors preserve
limits and detect equivalences, the top horizontal composite defines a Postnikov structure if and only
if the bottom horizontal composite does (since an €-diagram is a Postnikov structure if it sends certain
subdiagrams to limit diagrams). But for the bottom horizontal composite this is clear, since limits are
computed pointwise. a

4.1 Examples

Together with Proposition 4.14, the main sources of examples of multiplicative Postnikov structures are
the following:

Example/Proposition 4.15 Let 8 be the oco-category of spaces. Then the Postnikov tower

X == 1<2(X) = <1(X),
together with its k -invariants, gives rise to a multiplicative Postnikov structure on (8, X).
Proof Since we consider & with the Cartesian monoidal structure, Example 4.13 shows that it suffices to
construct the Postnikov structure without its lax monoidal structure, and only check at the end that the
individual components are product preserving. Now the underlying Postnikov structure can be produced

at the level of simplicial sets (and is classical, see [6; 11]). Indeed, for every Kan complex X, let us make
the following definitions:
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(a) Let Py(X) = coskg+1(X) be the (a+1)-coskeleton and note that there is a canonical weak equiva-
lence P1(X) — N(IT{(X)) to the nerve of the fundamental groupoid.

(b) For every a > 2, there is a functor 74 (X): 11 (X) — Ab sending a vertex x of X to the corresponding
homotopy group. Let us recall that this homotopy group can be presented as quotient of the set of maps
of pointed simplicial sets (sk, A1, {0}) — (X, x) by pointed homotopy.

(c) For every pointed simplicial set S, taking the free reduced 7, (X )-module on its simplices yields a
simplicial IT; (X)-set 74 (X)®S : 11 (X) — sSet. Taking S = A" /sk,_1 A", this gives the functor sending
each vertex x of X to the classical (minimal) model for the Eilenberg—MacLane space K (74 (X, x), n).
Recall that the latter is characterized up to isomorphism by the following universal property: there is a
natural bijection between the set of maps of simplicial sets T — K (7r4 (X, x), n) and the set of n-cocycles
in the normalized cochain complex of T with coefficients in 7, (X, x).

(d) Recall that there is a classifying space functor (=), (x) from Fun(IT; (X), sSet) to simplicial sets,
given by the following explicit point-set model for the homotopy colimit: Y1y, (x) has n-simplices given
by tuples of xg — -+ — x5 in I11(X) and an n-simplex of Y (xo). In particular, ()11, (x) = N(IT1 (X))
is the nerve of the fundamental groupoid.

(e) Let sSet™ denote the full subcategory of pointed simplicial sets whose image in the co-category S
of pointed spaces is finite. We then define Ky ,: sSet" — sSet by

Kx.o(T) = [7a(X) & (T A S**D]pm, x)-
where S4T1 = A9t gk, AT,
(f) By [6, 1.2(vi)], there is a natural map of simplicial sets for each a > 2
ka: Pa—1(X) > Kx,a(S°) = [K(7a(X), a + Dlam, (x)-

Explicitly, this map is given as follows. The simplicial set Kx ,(S°) is (a+1)-coskeletal and the
map Ky ,(S® — N(IT; (X)) induces an isomorphism on a-skeleta. The map k, then coincides with
P, 1(X)— P1(X)— N(IT1(X)) on the a-skeleton, and sends an (a+1)-simplex of P;—;(X), ie a map
0 :skg ATl — X | to the associated element in 7, (X, 5 (0)) (see point (b)).

By construction, the map k, is trivial on all (a+1)-simplices in P,—;(X) that arise as the image of an
(a+1)-simplex in P4(X), so that there is a commuting square

Pa(X) — KX,a(*)

(4-1) l l"

Pa—1(X) —— Kx.a(S%)

For any Kan complex X, the functor Kx , preserves weak equivalences of simplicial sets and hence
determines a functor of co-categories Kx 4: 8i" — 8. It is straightforward to verify the conditions of
Proposition 2.28, which imply that Ky , is excisive because 8§ admits loopspace machinery (Example 2.27).
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Furthermore, the square (4-1) defines a pullback square in the co-category & by [6, Lemma 2.3] and
the sequence X — -+ — Pg(X) — P4s—1(X) — --- is a homotopy limit sequence. It follows that the
above construction defines, for every Kan complex X, a simplicial model for a Postnikov structure on the
underlying object in the co-category 3.

All of the above data is strictly functorial in maps of Kan complexes and sends weak equivalences to
pointwise weak equivalences of simplicial sets. It therefore defines a section

eVoo

$< s PoSt(8)

on oo-categorical localizations, as desired. To verify that the individual components of this tower are

product preserving we note that:

(1) For each a > 1 the Postnikov piece functor P,(X) is product preserving. Indeed, on the level of Kan

complexes it is given by cosk, (—), which is product preserving on the nose.
(2) Foreacha >1and T € 8fi", the functor
X > Kxo(T) = (a(X) & (T AS“TH)m, (x)
is product preserving. Indeed, this follows from the fact that:
e [II;(—) is product preserving.
 Taking a™ homotopy groups is product preserving when considered as a functor from pointed

spaces to abelian groups. In other words, the map 7, (X X Y, (x, y)) = 74 (X, x) X w4(Y, y) is an
isomorphism.

e For a fixed finite set I the functor A = A ® I = A’ from abelian groups to sets is product
preserving.

¢ Products in spaces commute with homotopy quotients in each variable separately. Indeed, for

two diagrams of simplicial sets X : § — sSet and Y : H{ — sSet indexed by groupoids, the map
(X X Y)n(gx3c) = Xpg X Ypg¢ is an isomorphism by the explicit formula from (d).

It follows that the Postnikov structure is multiplicative. a
Example 4.16 The multiplicative Postnikov structure of Example/Proposition 4.15 is not just lax
symmetric monoidal, but strongly symmetric monoidal, as mentioned in its construction: it is a product

preserving functor ®: & — Fun(&, 8). It follows that for any small co-category with finite products T,
the oo-category Fun™ (T, 8) of product preserving functors T — 8 comes with a Postnikov structure

Fun™ (7, 8) LN Fun™ (T, Fun(€, 8)) ~ Fun(€, Fun™ (T, §)).

For every A € Fun™ (7, 8), this provides a refinement of the tower A — - -- — 7<» A — <1 A of truncations
of A. In particular, when T is an algebraic theory, this shows that T-algebras over in & have Postnikov
towers equipped with k-invariants (see [10] for algebras over simplicial operads).
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Example 4.17 Let X be an oco-topos in which Postnikov towers converge [23, Definition 5.5.6.23],
ie X — lim, t<,X is the limit of its full subcategories of truncated objects (this implies that X is
hypercomplete). In this case, there exists a reflective localization L : Fun(C°P, §) Z X :i such that L is
left exact and preserves (limits of) Postnikov towers. We then obtain a Postnikov structure on X

x - Fun(C, 8) LN Fun(C°?, Fun(€&, 8)) ~ Fun(&, Fun(C?, §)) LN Fun(&, X).

Indeed, this sends every object X € X to the Postnikov structure of the presheaf i(X) (applying
Example/Proposition 4.15 pointwise in C), and then applies L to the resulting diagram of presheaves. Since
L is left exact and preserves Postnikov towers, the resulting £-diagram in X is indeed a Postnikov structure.

Observation 4.18 The proof of Example/Proposition 4.15 admits the following modification: let
87~ C § be the full subcategory consisting of those spaces X such that each homotopy group 71 (X, x)
is abelian and acts trivially on the higher 7, (X, x). Then there exists a multiplicative Postnikov structure

8§77 _; PoStr(§™ %) C PoStr(8)

whose value on a space X is the Postnikov structure X — --+ — <1 X — 7o(X) including the zeroth
stage. Furthermore, the k-invariants are given by maps

ka:t<a—1X — Q% (Ka(X)),

where K, (X) is the parametrized spectrum over 7o(X ) whose fiber over x € 7o (X ) denotes the suspended
Eilenberg—MacLane spectrum H (7, (X, x))[a—+1]. Indeed, this follows from the fact that the category of
simplicial sets with homotopy type in 87~ is closed under coskeleta and products, together with the
fact that the local system of homotopy groups from (b) arises as the pullback of a local system along the
map I (X) — mo(X).

Example 4.19 Let Mong__ (87 ) be the co-category of E-spaces whose underlying space has trivial
actions of my. Proposition 4.14 and Observation 4.18 imply that the Postnikov tower

A— - > 1A — 104
is part of a multiplicative Postnikov structure ®*® on (Mong__ (8™ —ab) ).

Let A be a grouplike Eo-space. Then A is in particular contained in Mong,__ (87 ~*"). The corresponding
Postnikov structure @jlb: & — Mong__ (8™ ) has the property that no(clﬁb) is the constant diagram
with value 7o(A4). In particular, QDZb takes values in the full subcategory of grouplike E ,-monoids. It
follows that the multiplicative Postnikov structure ®2 restricts to a multiplicative Postnikov structure on
grouplike [E -monoids, which fits into a commuting square

ab
Grpg,, (8) ——— PoStr(Grpg_ (8))
forget forget

gm—ab Observation 4.18 POStI‘(S)
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The Postnikov structure on the category of grouplike [ ,-spaces (or equivalently, connective spectra) from
Example 4.19 admits a generalization to more general complete Grothendieck prestable co-categories
[25, Definitions C.1.2.12, C.1.4.2].

Remark 4.20 Recall that a presentable co-category V is a complete Grothendieck prestable co-category
if and only if the left adjoint V — Sp(V) to its stabilization is fully faithful and exhibits V ~ Sp(V)=°
as the connective part of a left complete ¢-structure on Sp(V) with the property that the coconnective
part Sp(V)=0 C Sp(V) is closed under filtered colimits (see [25, Proposition C.1.4.1] and its proof). In
particular, this implies that V is an additive co-category and that the full subcategory of O-truncated objects
T<oV is an abelian category, equivalent to the heart Sp(V)“. As usual, we will write 7, X € Sp(V)" for
the homotopy groups with respect to the ¢-structure. Finally, we will say that amap f: 4 — B in 'V
is a-connective if its cofiber cof( f) € V C Sp(V) is (a+1)-connective (in other words, the (a+ 1)-fold
suspension of an object in V).

For later purposes, let us record the following properties of prestable co-categories:

Remark 4.21 Consider a square F: Al x Al — V in a prestable co-category in which all maps induce
isomorphisms on t<g. Then the square is Cartesian if and only if it is co-Cartesian in V. Indeed, the
condition that all maps induce isomorphisms in t<oV >~ Sp(V)® implies that the square is Cartesian in
V ~ Sp(V)=Y if and only if it is Cartesian in Sp(V), and likewise for being co-Cartesian. Since pullback
and pushout squares in Sp(V) coincide, the result follows.

Lemma 4.22 Let'V be an SM prestable oo-category such that the tensor product preserves finite colimits
in each variable and letn > 0 and a > 1. For each 1 <i < n, suppose we have an a-connective map
fi: Ai — B; and a 1-connective map g;: A; — A}, and let B} = A 114, B; be their pushout. For the
induced square

Q=1 Ai — Qi Aj

| |

®i=1 B — Qj=1 B
the natural map Q — ®?:1 Bl./ from the pushout is (a+2)-connective.

Proof We proceed by induction on 7, the case n = 1 being evident. The map i, can be factored as

n
P 6 / Bi®in—l /
in:On—> B ®0n—1 ——_)®Bi’

i=1

where the map 6 arises as the colimit of the following natural transformation of spans:

Q=1 A iy Ai Qi1 Bi

| | J

Bl @ Qj_p A} +—— B{ @ Qi—p Ai — B{ ® @, Bi
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Using that (a+3)-connective objects are closed under extensions in V, it suffices to verify that # and
B| ® in—1 are both (a+2)-connective. For B| ® i,_1, this follows by inductive hypothesis. To show that
cof(f) is (a+3)-connective, we can use the equivalence cof(4; — B]) =~ cof( f1) & cof(g1) to identify
the cofiber of the above natural transformation with

n n n
cof(f1) ® () A} < (cof(f1) ® cof(g1)) ® ) Ai — cof(g1) ® (X) Bi.
i=2 i=2 i=2
The maps are given by projections in the first factor and by tensor products of g; and f; in the other
factors. Taking the pushout of the above diagram, one therefore finds that

cof(6) ~ [cof(fl) ® cof(® gi)} @ [cof(gl) ® cof(® f,)]
i=2 i=2

It follows from [26, HA, Lemma 7.4.1.30] and our connectivity assumptions on the maps f; and g; that
both summands are (a+3)-connective, so that 6 is (a+2)-connective. |

Example/Proposition 4.23 Let "V be a complete Grothendieck prestable co-category and let us write
PoStr" (V) C PoStr(V) for the full sub-oo-category of objects equipped with a Postnikov structure (indexed
over all a > 0) with the following properties:

(a) Foreacha >0, the map X — X, exhibits X, >~ 1<, X as the a-truncation of X .
(b) Foreacha > 1, n(K,) is O-truncated and all maps in the pullback square

Xg —— n(Ky)

[

k
Xa—1 —— Q%®K,
induce isomorphisms on O-truncations.

(c) Foreacha > 1, the object K, € TV is contained in the connective part for the canonical t -orientation
(Example 3.14).

Then the map eV : PoStr" (V) — 'V is an equivalence. If 'V is furthermore closed SM, then ev, refines
to an equivalence PoStr"(V)® — V® between V® and the full suboperad of PoStr(V)® spanned by the
objects equipped with Postnikov structures satisfying the above properties.

In particular, each object A € V comes with a unique Postnikov structure satisfying the above three
conditions, and the resulting Postnikov structure on V carries a unique multiplicative structure if V is
symmetric monoidal. Let us point out that by Remark 4.21, the square (4-2) is also a pushout square.
Together with (a), this implies that for each @ > 1, the square (4-2) can be identified with the (co-)Cartesian

square
T<gA —— > wo(A)

(43) | |

kq
T<q—14 —— 70(A) @ 4t g (A)
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since the cofiber of the left (and hence right) vertical map is 7, (X)[a+1] and the right vertical map is
the inclusion of a summand (since it admits a retraction). Taking algebras, we then obtain the following:

Example 4.24 Let V be a complete SM Grothendieck prestable co-category and let O be an co-operad.
For example, one can take V = Sp=° to be the oco-category of connective spectra with the smash
product. Combining Proposition 4.14 and Example/Proposition 4.23, we find that the Postnikov tower
A—---—1<1A— 1<0A of an O-algebra in V is part of a (multiplicative) Postnikov structure on Algy (V).

By Example 3.12, this means that each stage of the Postnikov tower fits into a pullback square of O-
algebras (4-3), where m¢(A) ® 4T 17,(A) is the trivial square zero extension of 7¢(A) by the operadic
module X% *17,(A). By specializing to O = E,,, this recovers [26, Corollary 7.4.1.28].

The remainder of this section is devoted to a proof of Example/Proposition 4.23. To avoid repetition, let
us prove the claim for a symmetric monoidal V; the much simpler nonmonoidal case can be proven in the
same way, removing all references to the monoidal structure. Our proof will proceed by induction, where
the inductive step relies on an analysis of the co-operad of pullback squares (4-2). To this end, let us
introduce some auxiliary categories:

Construction 4.25 For each a > 1, let us denote by

€ai=M(ky), & :=M(k)),

the mapping simplices (Definition 4.4) of the functors k,: {a — (a — 1)} — 8fi", as in Construction 4.5,
and k/,: {a — (a — 1)} — Finy sending a > x and (a — 1) = S°. Note that £ is an ordinary category,
since it is the unstraightening of a diagram of ordinary categories. In particular, Definition 4.4 provides a

full description of £, without need of specifying further homotopy coherences.
Now consider the chain of functors
(4-4) a:*L>A2<L>8§“L>€a,
where j is the inclusion of the full subcategory {a — (a —1) — *} in £ (using the description from
Definition 4.4) and 7 is the cobase change of the inclusion i : Fin, <> 8fin,
Definition 4.26 Let us denote by
Ext® < Fun(&,, V)®,  Ext™® < Fun(EXM, V)®,  Trun® < Fun(A?, V)®,
the three full sub-oco-operads defined as follows:

(D) Trunf’ is spanned by sequences 7, — Ty —1 — Tx with T, € 1<,V and exhibiting 7,1 ~ 1<4—17,
and Ty >~ 1<07Ty.
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(2) Extzn’® is spanned by the diagrams 7": £;" — V such that
(a) the restriction to {a — (a — 1) — %} is contained in Trun?,
(b) the restriction along kg4 : Al x {a,a —1} — &g (Definition 4.4) is a pullback square in which
all maps induce isomorphisms on O-truncations,
(¢’) the restriction to Finy defines an E-groupoid object (Definition 2.29).
3) Extg9 is spanned by the diagrams 7 : £, — V satisfying conditions (a) and (b) above, as well as
(c) the restriction to 81" defines an object in T=0V C TV = Exc(8[", V).
Lemma 4.27 LetV be a complete Grothendieck prestable oo-category and T : €' — 'V a diagram. Then
the following are equivalent:
(1) T is contained in Ext".
(2) T is left Kan extended trom its restriction to {a — (a — 1) — *}, and this restriction is contained

in Trun,.

Proof Recall that j: A2 < & denotes the inclusion of the full subcategory on a, (a—1) and *. For
any diagram F: A2 — V of the form F(a) — F(a —1) — F(*) and a finite pointed set S with basepoint
S50, the left Kan extension jj F(S) can be computed as the pushout

Dses F(a) F(a)

| |

F(*) &) @SES\{SO} F(a — 1) — ]lF(S)

Here the vertical functor is given by F(a) — F(*) on the summand labeled by the basepoint of S and by

F(a) — F(a—1) on the summand labeled by each other point of S. Indeed, the above colimit coincides
with the colimit of

A xgon (E) 5 — A2 550,
where one can use the explicit description of the (ordinary) category € to identify the comma category.
Using that 'V is a prestable (and in particular additive) co-category, this implies that
(4-5) NF(S)=Fx)& O cof(F(a)— F(a—1)).

seS\{so}

This formula shows that the restriction ji F|gin, is @ Segal Eoo-groupoid and that the square

JF(a) —— jiF (%)
!

J'!F(ﬁ— ) — 1 F(S°)
is co-Cartesian, and hence also Cartesian since V is prestable. It follows that (2) implies (1). For the
converse, if T € €, then the natural map €: jij*T — T is an equivalence at the objects a, (a—1)
and * because j is fully faithful. In light of Remark 4.21, the map F(a) Upg—1) F(*) — F(S%) is an
equivalence so that € is also an equivalence at S°. Since both ji j* F and F restrict to Segal [E oo-groupoids
on Fin,, it follows that € is also an equivalence at all other S € Fin,. O
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Lemma 4.28 Let V be a complete Grothendieck prestable co-category with a closed SM structure. Then
restriction along the maps (4-4) induces equivalences of co-operads

cn,®
a

ev(0,a)" Extff’ —~> Ext = Trun? = (rfa\?)‘g’.
Proof Restriction along the functors in (4-4) defines SM functors between the oo-categories of V-valued
diagrams, with the levelwise tensor product, which preserve the full sub-co-operads from Definition 4.26.

We will check that each of the restriction functors is an equivalence.

Step 1 Using that i : &M — €, is the pushout of the inclusion i : Fin, — 8fin, it follows that there is a
pullback square of co-operads

Ext® — L Ex™®

(T0V)® — — Gpdg_ (V)®

Here the oo-operads in the bottom row are full sub-co-operads of Fun(8", V)®iev and Fun(Finy, V)&,
respectively. Corollary 2.31 implies that these bottom two oco-operads are in fact SM oo-categories and
that 2 is an SM equivalence between them. Consequently, i * is an equivalence of co-operads as well.

Step 2 Let j: A% — & denote the inclusion of the full subcategory {a — (a — 1) — *}. To see that
Jj*: Extzn"X> — Trun;@ is an equivalence of co-operads, we will show that it is essentially surjective and
fully faithful, ie it induces equivalences on spaces of multimorphisms [2, Proposition 7.17]. Essential
surjectivity follows from Lemma 4.27: indeed, each object F' € Trun, arises as the restriction of its left
Kan extension ji F € Ext;".

To check that j * is fully faithful, let 71, . . ., T, and Ty be objects in Ext{", and let us abbreviate X; = T; (@)
and Y; = T;(a — 1). The condition that 7; € Ext;" then implies that X; is a-truncated and that

(4-6) Yi ~t<q1Xi, Ti(x) =moXi, cof(Tj(a) = Ti(a—1)) ~ 2T x, X;.
We now need to show that restriction along j induces an equivalence
4-7) Mapgyean v) (T1 ®ley -+ ®lev T, To) — Mappy(a2,v)(J *T1 ®tev -+ ®tev J " Tns j * To).
By adjunction, the map (4-7) is obtained by applying Mapg,,een v)(—, To) to the counit map
€: 1" (T1 ®lev*+* Btey Tn) = T1 Qley *+* Btey T

We claim that € is given pointwise by an (a+2)-connective map in V. This implies that (4-7) is an
equivalence, because (a+2)-connective maps induce equivalences on (a+1)-truncations and T takes
values in (a+ 1)-truncated objects, by equations (4-5) and (4-6).

It thus remains to verify that each component of the natural transformation € is (a+2)-connective. This
is clear for the components of the natural transformation € at the objects a, (a—1) and * in £, where
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the counit is an equivalence (since j is fully faithful). We will prove by induction on k > 0 that the
component of € at the finite pointed set (k) with k + 1 elements is (a+2)-connective. The case k =0
has already been treated, and for k > 1 consider the following commuting diagram:

X1®®@ Xy — jij* (1 ®- @ Ty)((k—1) == Ti((k—1) ®--- ® Ty ((k — 1))
V1@ @Yy, — jij*(T1 @+ Q Tp)((k)) ——— T1({(k)) @ -+ - ® Ty ({k))

Formula (4-5) shows that the left square is a pushout, so that the pushout Q for the right cospan is
equivalent to the pushout for the total cospan. Lemma 4.22 then implies that the natural map

0 —->Ti({k) ®--- @ Tu((k))

is (a+2)-connective. On the other hand, the map jij* (T} Qley - - ®1ev Tn) ((k)) — Q is the pushout of
the counit map € at (k — 1), which was (a+2)-connective by inductive hypothesis. We conclude that € is
a natural transformation given at each object by an (a+2)-connective map, as desired.

Step 3 Finally, let us show that ev, : Trun? — (t<4V)® is an equivalence of co-operads. The objects of
Trun, are simply given by sequences 0 = [X — 1<4—1X — t<0X] with X € 1<, V. In particular, ev, is
essentially surjective. To see that it is a fully faithful map of co-operads, ie that each

Map,, & (01....,0n:00) = Map(,_,y)®(eva(01), . .., eva(on); eva(0o))
is an equivalence, it suffices to verify the following: for each diagram in t<,V of the form

X1® @ Xy — (tza1X1) @+ ® (t=a—1Xn) — (1=0X1) ® -+ ® (t<0Xn)

| v

Xo T<qa—1X0 T<0X0

there exists a contractible space of dotted extensions, as indicated. This follows from the fact that the first
horizontal map is a-connective and the second is 1-connective. O

Proof of Example/Proposition 4.23 Let us inductively define a tower of co-operads PoStrZ, (V)® by
setting PoStrZ, (V)® = (1<0V)® and taking pullbacks

PoSts™, (V)® Ext® — 2 4 (1, V)®

(4-8) l lev,l_l

PoStS,_; (V)® == (141 V)®

Each ev,: PoStrd, (V)® — (1<, V)® is an equivalence of co-operads: by inductive hypothesis the
first top horizontal arrow in (4-8) will be an equivalence, and the second map is an equivalence by
Lemma 4.28. Furthermore, Step 3 of the proof of Lemma 4.28 shows that the map of oco-operads
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(fﬁa\?)@’ ~ Extg9 — (rfa_1\7)® is given by the localization t<4—1: <4V — 7<4—1"V with its canonical

SM structure. We thus obtain a natural diagram
PoStr(V)® —— -+ —— PoStrd, (V)® —— PoStrZ (V)® —— PoStrZ, (V)®

eVool ~levz ~lev1 Nlevo
T

Ve . (‘[§2V)® ;1) (Ts]v)® i) (TSOV)®

Since V was a complete Grothendieck prestable co-category (so that Postnikov towers are convergent),
the bottom row exhibits V® as the limit of the (r<,V)®. Using this and unraveling the definitions (see
Construction 4.5), we then have an equivalence PoSt"(V)® >~ V®x, e lim, PoStZ, (V)®. Since
this is the pullback of a span consisting of two equivalences, we conclude that evyo: PoStr®(V)® — V@
is an equivalence, as desired. O

5 Postnikov structures on enriched categories

In the previous section we have seen how multiplicative Postnikov structures give rise to multiplicative
Postnikov structures on oco-categories of algebras over operads (Proposition 4.14). The purpose of this
section is to prove that similarly, a multiplicative Postnikov structure on a symmetric monoidal co-category
V induces a multiplicative Postnikov structure on the co-category of V-enriched oco-categories.

5.1 Recollections on enriched co-categories

Let us briefly recall some elements of the theory of enriched oco-categories developed by Gepner and
Haugseng [9].

Definition 5.1 For each space X, let us write Oy for the universal (X x X )-colored (symmetric) oo-operad
receiving a map from A(;? — A° — Fin,, where A‘;‘; is the generalized nonsymmetric co-operad from
[9, Definition 4.1.1]. By [9, Corollaries 3.7.8, 4.2.8], one can model Oy explicitly by the symmetrization
of the simplicial operad from [9, Definition 4.2.4].

When the space X is a point, one recovers the associative operad O, = [E;. The operads Oy depend
functorially on the space X, so that we obtain a functor

0(=):8 = (Opeo) /E, = OPpo-

If V is a monoidal category, then an Ox-algebra in V can be informally described as follows: an algebra
consists of objects Map(x, y) € V, depending functorially on (x, y) € X x X, together with composition
operations satisfying obvious associativity conditions.
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Definition 5.2 We will refer to the co-category Alg, (V) as the co-category of V-enriched categorical
algebras with space of objects X . These co-categories depend (contravariantly) functorially on X and we
define the co-category of categorical algebras

(5-1) Ob: Algey (V) = [ Algo, (V) =8
Xes

to be the domain of the corresponding Cartesian fibration [9, Definition 4.3.1]. If V is a presentable
monoidal co-category, then Alg., (V) is presentable as well [9, Proposition 4.3.5].

For later purposes, we will mainly be interested in a refinement of this construction for symmetric
monoidal V.

Proposition 5.3 Let 8* — Fin, denote the Cartesian co-operad associated to the co-category of spaces.
Then there exists a natural functor

Alge,: SMCat®™ — SMCat"™"

00/8%
that sends each SM oo-category V to the oo-category Algq,, (V) of categorical algebras, together with
an SM structure such that the tensor product of categorical algebras with spaces of objects X and Y is a
categorical algebra with space of objects X x Y.

Let us point out that the results from [9] only provide functoriality of Algq, (V) with respect to (strong)
SM functors in V. Since the proof of Proposition 5.3 is rather technical, we will postpone it to the
appendix and instead record two further consequences (which are also proven in the appendix). First, note
that Proposition 5.3 asserts in particular that Alg., (V) inherits a symmetric monoidal structure from V,
whose underlying tensor product functor can be identified as follows:

Lemma 5.4 LetV be an SM oco-category. Then the tensor product

®
AlgCat (V) X AlgCat (V) I AlgCat (V)

| |

$x8 x 8

arises as the unstraightening of the natural transformation of functors 8°° x 8°° — Cat given at (X, Y) by

(5-2) Algg, (V) x Algg, (V) = Algg, ., (V) x Algg, (V) 2> Algg,, (V),

where the first functor restricts along the maps Oy < Oxyxy — Oy and the second functor arises from
the SM structure on algebras in 'V [26, Example 3.2.4.4].

Informally, this means that given two categorical algebras C, D with spaces of objects X, Y, their tensor
product C ® D has space of objects X x ¥ and mapping objects

Mapcgp ((x0. yo), (X1, y1)) = Mapc (xo, x1) ® Mapp (yo. y1).
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In particular, the unit is given by the categorical algebra [0];, with a single object * and with 1y as

endomorphisms.

Remark 5.5 If V is an SM oo-category, then the natural map (5-2) can also be identified with the
composite map Algy, (V) X Algg, (V) — Algy, , (VX V) — Algy, ., (V), where the first map is the
“exterior product” from [9, Propositions 3.6.14, 4.3.11] and the second map is the image under Algq . (=)
of the lax monoidal functor ®vy: V xV — V. Consequently, the functor ® : Algc, (V) x Algc, (V) —
Algc, (V) from Proposition 5.3 is naturally equivalent to the tensor product functor from [9, Corollary
4.3.13]. In particular, we find that Alg.,, (V) is a presentable SM oo-category if V is a presentable SM
oo-category, ie the monoidal structure is closed [9, Corollary 4.3.16].

Proposition 5.6 For each co-category J, there is a commuting square depending functorially on J

AlgCal

SMCat"™ ——*, SMCat;q:"®

Fun(fJ,—)J lFun(J:_)XFun(J,SX)SX

SMCat"™ ——— SMCatjy:"®
&Cat

where the vertical functors use the levelwise tensor product from Construction 2.6.

In other words, for each co-category J there is a natural monoidal equivalence
Algcy (Fun(J, V) =~ Fun(J, Algey (V) Xpun(,s) -

When J is weakly contractible, the constant diagram functor § — Fun(J, §) is fully faithful, so that
we can rephrase this as follows: there is a natural (SM) fully faithful embedding Algc,(Fun(J, V)) —
Fun(J, Algq,(V)) whose essential image consists of J-diagrams of categorical algebras whose underlying
diagram of objects is constant.

For any presentable monoidal co-category V, we then define the co-category of V-enriched oo-categories
Cat(V) to be the full subcategory Cat(V) € Alg, (V) of complete categorical algebras. More precisely,
there is a functor

J[=]: A = Algey (V)

sending [n] to the categorical algebra with object set {0, ..., n}, all mapping objects being 1y and all
compositions being equivalences. We will abbreviate J = J[1]. Every categorical algebra C then defines
a simplicial space

AP — 8§, [n]— Map . (v)(J [1], C).

This simplicial space is a Segal groupoid [9, Corollary 5.2.7] and C is defined to be complete if this
Segal groupoid is essentially constant. The above Segal space only depends on the underlying space-
valued categorical algebra, ie the categorical algebra in § obtained by applying the lax monoidal
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functor Map(ly, —): V — 8§ to all mapping objects [9, Proposition 5.1.11]. Furthermore, the space
Map(J [n], C) < Map([n]1,, C) is a union of path components in the space of n-composable sequences
of arrows in C [9, Proposition 5.1.17].

The inclusion of V-enriched oco-categories into categorical algebras is part of an adjoint pair

(="
Alge, (V) L 5 Cat(V)

whose left adjoint is called completion [9, Theorem 5.6.6]. When V is presentable symmetric monoidal,
this is a symmetric monoidal localization [9, Proposition 5.7.14] (using Remark 5.5). Finally, let us
recall that the completion functor realizes Cat(V) as the localization of Algq, (V) at the Dwyer-Kan (DK)
equivalences, ie the fully faithful and essentially surjective functors in the following sense:

Definition 5.7 Let f: C — D be a map of categorical algebras.
(1) f is fully faithful if for every two objects x, y € Ob(C), the map
J :Mapc (x, y) — Mapp (f(x). f(¥))

is an equivalence in V. Equivalently, f is a Cartesian arrow for the Cartesian fibration (5-1).
(2) f is essentially surjective if the map

Map({0}. C) Xyiup(t03.0) Map(J. D) — Map({1}. D)
is surjective on . Here the mapping spaces are taken in the co-category Algq, (V).
(3) f is an isofibration if the induced map

Map(J, C) — Map(J, D) Xnap({13,0) Map({1}, C)

is surjective on 7.

Remark 5.8 Let F:V — W be an SM left adjoint functor between presentable SM oco-categories, with
(lax SM) right adjoint G. Then Algq,(G): Algc, (W) — Alg, (V) preserves underlying space-valued
categorical algebras. Indeed, this follows from the equivalence of lax SM functors Mapyy (1w, —) =~
Mapy (1y, G(—)), which is right adjoint to the equivalence of SM functors between 8 WO v E W and
lw® —:8 — W, where 1\p ® — denotes the unique SM functor preserving colimits (and likewise for V).
In particular, the right adjoint Algc,,(G): Algc, (W) — Algq, (V) detects completeness of categorical
algebras, as well as essential surjectivity and being an isofibration for maps between these.

5.2 The cube and tower lemmas

Throughout, let V be a monoidal co-category. The purpose of this section is to record two kinds of (“homo-
topy”) limits of categorical algebras that are preserved by the completion functor (—)": Algq,, (V) — Cat(V).
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The results and arguments are very analogous to the usual way of computing homotopy limits of categories

in terms of the canonical model structure on categories.

Lemma 5.9 Consider a commutative square of categorical algebras

(5-3) pJ Jq

such that g’ is essentially surjective, g is fully faithful and p is an isofibration. Then

Map({0}, C") X Map(J,D’) — Map({0}, C) X Map(J, D)
Map({0},D) Ma

X Map({1},D")
Map({0},D’) p ({1},D)

p

is surjective on path components.

Informally, this means that for any object d € D’, each lift-up-to-equivalence of ¢(d) to C refines to a
lift-up-to-equivalence of d to C’.

Proof By [9, Proposition 5.1.11], we may as well assume that V = 8. Explicitly, suppose that we are
given objects ¢ € C and d’ € D’ together with an equivalence a: g(¢) => d = g(d’) in D, that is, a map
from J. We then need to find an object ¢ € C’ lying over ¢ and an equivalence &’: g’(¢’) => d’ in D’

lying over «.

To begin, g’ being essentially surjective provides an object ' € C’ and an equivalence y': g’(¢') = d’
in D’. One can then complete ¢(y’) and « to a commutative triangle

q(g'(t")

(5-4) P K(”

g(c) d

in D for some equivalence §: g(c¢) — ¢(g’(t')). Using the commuting square (5-3), we can iden-
tify ¢(g’(t")) ~ g(p(t’)) in the space of objects of D. Because g is fully faithful, every map from
g(c) — g(p(t))) lifts to a unique map ¢ — p(¢’) in C, so that there exists an equivalence &: ¢ — p(t’)
lying over §. Since p is an isofibration we may lift ¢ to an equivalence &": ¢’ — t’ for some ¢’ € C’ lying
over ¢. We may then complete g’(¢) and y’ to a commutative diagram

gt

(5-5) s K
o d’

g'(c")
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for some equivalence o: g’(¢’) — d’ in D', since Map(J [—], C) is a Segal groupoid object. Because the
image of triangle (5-5) under g: D’ — I agrees with triangle (5-4) on the inner horn, it follows that ¢ (')
is homotopic to «. This yields the desired data of ¢’ and &’: g’(¢’) — d’ so that the proof is complete. O

Lemma 5.10 (cube lemma) Consider a map of Cartesian squares in Algc,, (V)

P——C’ (Jj/ g/) Q——D
(5-6) l lp &8 l lq

C//T)(C D//T}D

such that p is an isofibration. If the components g: C — D, g’: C' — D’ and g’: C"" — D" are
Dwyer—Kan equivalences, then the same holds for f: P — Q.

Corollary 5.11 The completion functor (—)" : Algc, (V) — Cat(V) sends pullback squares with one leg
being an isofibration to pullback squares.

Proof Apply Lemma 5.10 to the case where the maps g, g’ and g” exhibit D,D’ and D” as the
completions of C,C’ and C” respectively (in this case Q >~ D’ xp D” is automatically complete). 0O

Proof of Lemma 5.10 To show that f is fully faithful, let x, y € P be two objects, and consider the
induced map of squares

Mapp (x, y) —— Mapc-(x, y) Mapg (x, y) — Mapp/(x, y)
JV lp* — l lq»«
Mapcr (x, y) —— Mapc(x, y) Mapp (x, y) —— Mapp (x, y)

Both squares are Cartesian in V and by assumption the three maps associated to g, g’ and g” are
equivalences, so that the map fx: Mapp(x, y) — Mapg(x, y) is an equivalence as well.

Let us now show that f is essentially surjective as a map of categorical algebras. Essential surjectivity is
detected on the level of the underlying space-valued categorical algebras [9, Proposition 5.1.11]. We may
hence assume that V = 8. Let y € Q be an object and let d’ € D/, d € D, d” € D” be its images. Since
g":C"” — D" is essentially surjective there exists an object ¢” € C” and an equivalence «”: g’ (¢") => d”
inD”. Let ¢ := h(c"”) € C. Applying Lemma 5.9 to the image

a:gle) =k(g"(c") =>k(d") ~d ~q(d")

of &’ in D we deduce the existence of an object ¢’ € C’ lying over ¢ and an equivalence «’: g’(c’) — d’
in D’ lying over . The compatible triple (¢, ¢/, ¢’) now determines an object x € P while the compatible
triple (o, @', ") determines an equivalence g(x) = y in Q. |
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Lemma 5.12 (tower lemma) Consider a natural transformation between limit cones in Algc, (V)

P (Cz D2 (Cl b1 (CO
fl gzl gll lgo
Q Dy —— D1 —— Do

Suppose that all p; fori > 1 are isofibrations and all g; fori > 0 are Dwyer—Kan equivalences. Then f is
a Dwyer—Kan equivalence as well.

Corollary 5.13 The completion functor (—)": Alge, (V) — Cat(V) sends limits of towers of isofibrations
to limits.

Proof Apply Lemma 5.12 to the case where the maps g; exhibit D; as the completion of C; (in which
case QQ is automatically complete). O

Proof of Lemma 5.12 To show that f is fully faithful, let x, y € P be two objects, and consider the
induced map of towers

Mapgp (x, y) — -+ —— Mapc, (x, y) — Mapc, (x, y)

f*l (gl)*l l(go)*

Mapg (x, y) — -+ — Mapp, (x, y) — Mapp, (x, y)

Then both towers are limit towers in V and by assumption the (g; )« are equivalences, so that the map
fx:Mapp (x, y) = Mapg(x, y) is an equivalence as well.

Let us now show that f" is essentially surjective as a map of categorical algebras. We may again assume that
V =38 [9, Proposition 5.1.11]. Let y € Q be an object and let d; € D; be its images. Since go: Co — Dy
is essentially surjective, there exists an object co € Co and an equivalence g : go(co) = do in Dy.
Applying Lemma 5.9 to ¢ and d; € D, we deduce the existence of an object ¢; € C; lying over cg
and an equivalence &1 : g1(c1) — dp in D lying over «1. Proceeding inductively, we obtain compatible
sequences of objects ¢; € C; and equivalences «; : g;(¢;) — d;. These determine an object x € P and an
equivalence g(x) = y in Q. a

5.3 Postnikov structures on enriched co-categories

We now turn to our main result, providing Postnikov structures on V-enriched co-categories from (certain)
multiplicative Postnikov structures on V.

Definition 5.14 Let V be an SM co-category. We will say that amap f: X — Y in 'V is an external mo-
isomorphism if the induced map of spaces Mapy(1y, X) — Mapy(ly, Y') induces an isomorphism on g.

We will say that a Postnikov structure on an object T': € — V is externally my-constant if it sends every
map in € to an external g-isomorphism in V. A Postnikov structure ®:V — Fun(€, V) on 'V is externally
mo-constant if it sends each object X € 'V to an externally mg-constant Postnikov structure on X.
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Remark 5.15 If T € PoStr(V) is externally mo-constant then each K, € TV has the property that the
induced parametrized spectrum E, = Mapy(ly, K;) € T8 is 0-connected (or 1-connective), ie each fiber
is a 1-connective spectrum. Indeed, for each n > 0, the map E,(S") = Q®"(E,) — n(E,) induces an
isomorphism on g by assumption and a surjection on 7 since it admits a section, so that its fibers are
all connected. It follows that the fiber Q%" (E,)y is the connected delooping of Q®°"T1(E,), for
each n > 0 and E, x is a 1-connective spectrum.

Example 5.16 The usual Postnikov structure on spaces (Example/Proposition 4.15) is externally o-
constant: for every space X, the resulting Postnikov structure is even constant after applying t<;. For
more general oo-toposes (Example 4.17), the Postnikov structure is typically not externally mo-constant:
even though all maps induce isomorphisms on wg-sheaves, on global sections they typically do not induce
bijections on mg. For example, for any finite CW-complex X, abelian group 4 and n > 2, the map of
constant sheaves K(A4,n) — t1<,—1K(A4,n) >~ * in Shee(X) induces an isomorphism on 1-truncations,
but at the level of g of the global sections we obtain H” (X; A) — *, which need not be an isomorphism.

Example 5.17 The canonical Postnikov structure on Sp=? is externally 7o-constant. Indeed, for each
E € Sp=%, the image of its Postnikov structure under Mapg =0 (S, —) is simply the Postnikov structure
on the space Q2°°(E), but extended down to dimension 0, see Example 4.19. All spaces appearing in the
Postnikov structure for 2°°(E) have isomorphic 7.

More generally, let V be a stable, presentable SM oco-category with a left complete ¢-structure such that
the connective part V=9 is closed under finite tensor products. If the mapping spectrum functor

Map(ly, —): V — Sp

sends V=0 to Sp=°, then the Postnikov structure on V=9 from Example/Proposition 4.23 is externally
mo-constant. This is notably the case when V = Modg with R a connective ring spectrum (with the usual
t-structure).

Theorem 5.18 LetV be an SM oo-category equipped with a multiplicative Postnikov structure
®:V — Fun(€,V).
If @ is externally my-constant, then the composite
Cat(V) € Algc, (V) LN Alge, (Fun(€, V)) — Fun(€, Algc, (V) O Fun(€&, Cat(V))

defines a multiplicative Postnikov structure ®c, on Cat(V). Furthermore, this Postnikov structure ®cy is
itself externally my-constant.

Slightly informally (ie up to Dwyer—Kan equivalence), the Postnikov structure ®c,(C) of a V-enriched
oo-category C is obtained by applying ® to all mapping objects in C. To see that this still yields a
Postnikov structure after completion, we will make use of the cube and tower lemmas (Lemmas 5.10
and 5.12), for which we will need ® to be externally wg-constant.
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Theorem 5.18 can be applied repeatedly:
Definition 5.19 Let V be a presentable SM oo-category. Then the presentable SM oo-category of

V-enriched (00, n)-categories is defined inductively as

Cat, (V) := Cat(Cat,—1(V)).
For later purposes, let us record the following:

Lemma 5.20 Let'V and W be presentable SM oo-categories and L: 'V z W i1 a reflective (symmetric)
monoidal localization. This induces a reflective monoidal localization of presentable SM oco-categories

Cat, (L): Cat, (V) 7 L " Cat,(W): Cat, ().

The essential image of 1« consists of those V-enriched (0o, n)-categories whose mapping objects are (in
the essential image of) W-enriched (oo, n — 1)-categories.

Proof An inductive application of [9, Corollary 5.7.12, Proposition 5.7.16] provides the presentable SM
structure on Cat, (V) and Cat, (W). The induced reflective monoidal localization arises from an inductive
application of [9, Proposition 5.7.18]. a

An inductive application of Theorem 5.18 then immediately yields the following:

Corollary 5.21 LetV be a presentable SM oo-category equipped with a multiplicative, externally
mo-constant Postnikov structure ®:V — Fun(&, V). Then there is an induced multiplicative Postnikov

structure
Dcy, 1 Caty (V) ® _ PoStr(Cat, (V))®

on the oco-category of V-enriched (oo, n)-categories. Explicitly, ®cy,, is given (up to n-categorical

Dwyer—Kan equivalence) by applying ® to objects of n-morphismes.

We will now turn to the proof of Theorem 5.18. Our strategy will be to first prove a version of Theorem 5.18
for categorical algebras and then descend to enriched oco-categories. The case of categorical algebras
follows readily from the following observation:

Lemma 5.22 Let J be a weakly contractible co-category, J< its cone and V a monoidal oo-category
with J-indexed limits. Consider the natural functor

¢: Algey (Fun(I=, V) = Fun(T™, Algey (V) Xpun=,5) 8 = Fun(I™, Alge, (V).

where the first functor is the natural equivalence from Proposition 5.6. If C is a categorical algebra in
Fun(J<, V) whose mapping objects belong to the full subcategory of limit cones, then

$(C): I~ — Algey (V)

is a limit cone as well.
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Proof By naturality, the equivalences of Proposition 5.6 fit into a commuting square where the horizontal
functors restrict along J < J<

Algey (Fun(J<, V) Algcy (Fun(J, V))

~| l:

Fun(3<]7 AlgCat(V)) XFun(7<,8) § —— Fun(f], AlgCat(v)) XFun(7,8) 8

This induces a commuting square between the right adjoints of the two horizontal functors. The top right
adjoint is a fully faithful embedding whose essential image consists precisely of categorical algebras
enriched over limit cones. To compute the bottom right adjoint, consider the diagram

Fun(J<, Alge, (V)) —— Fun(J<, 8) +— 8

| | ]

Fun(J, Algc,(V)) —— Fun(J,8) «—— 8

where the vertical functors restrict along J — J<. The horizontal functors then commute with the right ad-
joints to the restriction functors as well: for the left square, this uses that the forgetful functor Algc,, (V) — 8
preserves limits, and for the right square, this uses that J is contractible, so that constant J<-diagrams are
limit cones. The right adjoint to Fun(J<, Algc, (V) Xpun@g=,s) 8 = Fun(J, Alge, (V) Xpun(s,8) S is then
the fiber product of the three right adjoint functors [26, Corollary 4.7.4.18]. In particular, the projection
onto the first factor commutes with these right adjoints. It follows that the composite ¢ intertwines the
right adjoints to restriction along J < J<, which yields the result. O

Proof of Theorem 5.18 We have to verify that ¢, is a lax symmetric monoidal section of the (lax)
symmetric monoidal functor ev : Fun(€, Cat(V)) — V, and that it takes values in the full subcategory
PoStr(Cat(V)) C Fun(&, Cat(V)) of Postnikov structures.

For the first assertion, consider the commuting diagram

Cat(V) s Alge (V) 5 Alge (Fun(€, V)) —= Fun(€, Alge (V) 2 Fun(e, Cat(V))

H evool levoo levoo

Cat(V)— Al (V) ——— Al (V) ———— Algey (V) — = Cat(V)

All arrows are lax SM functors. For the first and last horizontal arrows (in both rows), this follows from
[9, Proposition 5.7.14] and for ®., this follows from Proposition 5.3. The functor ¢ is the composite of
the SM equivalence from Proposition 5.6 and the SM projection

Fun(€&, Algc, (V) Xpunce,s)  — Fun(€, Algc, (V).

Furthermore, the second square commutes since @ is a multiplicative Postnikov structure and all other
squares commute by naturality in the co-category €. This provides a lax SM section of evy, because
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the composition of the bottom row is naturally equivalent to the identity via the (lax SM) counit of the
monoidal adjunction (—)": Alge, (V) Z Cat(V) :¢ [9, Proposition 5.7.14].

For the second assertion, it suffices to verify that for a V-enriched category C, its image
T" := Pcy(C): & — Cat(V)

defines a Postnikov structure in Cat(V). By construction, T” is the levelwise completion of the diagram
which applies the multiplicative Postnikov structure @ to all mapping objects

T := $(4(C)): & — Algey (V).

For each of the cone diagrams J3' — & from Remark 4.7 (with J, contractible), T'|;< is a limit cone in
Algc, (V) by Lemma 5.22. Consequently, T defines a Postnikov structure in Algq, (V). We have to show
that these cones remain limit cones upon applying the completion functor objectwise. This will follow
from Corollaries 5.11 and 5.13 once we verify that T sends every arrow in € to an isofibration.

To this end, consider a map T (i) — T () of categorical algebras induced by i — j in €. By construction,
f induces the identity on spaces of objects and for every two objects x, y € T (i), the map

Map(1ly, Mapy ;) (x, y)) = Map(ly, MapT ;) (x, y))

is a mp-isomorphism since the Postnikov structure ® is wg-constant (Definition 5.14). The condition
that T (i) — T (j) is an isofibration is determined at the level of the underlying S-enriched categorical
algebras, so we may as well assume that V = §S. For every object x in T (i) and every arrow «: x — y
in T (j), we then have a lift of « to amap &: x — y in T (i) (note that T (i) — T () is the identity on
objects), which is furthermore unique up to homotopy. If « is an equivalence, then & is an equivalence
by [9, Proposition 5.1.15]: indeed, using that such lifts of arrows to T (i) are unique up to homotopy,
a homotopy inverse of & is provided by a lift of the homotopy inverse of « to T (7). We conclude that
T (@) — T(j) is an isofibration.

Finally, we have to verify that T” is a mo-constant Postnikov structure. The monoidal unit of Cat(V) is
the completion 1¢y vy = [0] 1AV of the unit object of Algq,(V), given by the operad map O, ~ Ass — V®
encoding the unit (ie initial) associative algebra 1y in V. In particular, the functor

Mapc, vy (Lca(vy. —): Cat(V) — 8

is equivalent to the functor sending a V-enriched oo-category to its space of objects. To see that T is
mo-constant, it therefore suffices to verify that the diagram of object spaces

Oob(T?): & L5 cat(v) & 8

sends each map i — j in € to a map with O-connected fibers (in particular, a wg-isomorphism). Let us
pick an object x € T”(j) and verify that the fiber Ob(T (7)) is connected. The object x determines a
map x: [0]1, = lca(v) = T7(j). Since the functor T (j) — T (/) induces a mo-surjection on objects
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by [9, Theorem 5.6.2], this composite map factors over T (). Taking pullbacks along these maps, we
obtain a commuting square of categorical algebras

T (@) %1y [0l1y —— T{) XTA) Lcaw)

| l

[O] 1y 1Cat(V)

Since T (i) — T (j) was an isofibration, the top and bottom horizontal maps are Dwyer—Kan equivalences
(cube lemma, ie Lemma 5.10) and the left vertical map is an isofibration. Lemma 5.9, together with the
fact that the right column consists of complete categorical algebras, then implies that T (i) X ;) [0]1, —
T"(i)xT~(;)[0]1, induces a mo-surjection on spaces of objects. Since T (i) — T () is constant on objects,
the domain of this map has a contractible space of objects. Consequently, Ob(T (i) X () [0]1,) =
Ob(T”(i))x is connected, as desired. |

6 Local systems on (oo, n)-categories

In this section, we spell out the contents of Theorem 5.18 and Corollary 5.21 in the setting of (oo, n)-
categories. There are many equivalent models for the co-category of (0o, n)-categories, one of which is
the oo-category Cat, (8) of 8-enriched (oo, n)-categories of Definition 5.19 [17, Corollary 7.21]. This
model is particularly well-adapted to definitions that proceed by induction on mapping objects, such as
the following:

Definition 6.1 An (m, 0)-category is defined to be an m-truncated space. For any 0 <n < m, an (oo, n)-
category C is called an (m, n)-category if each mapping (oo, n—1)-category is an (m—1, n—1)-category.

In light of [9, Corollary 6.1.10], this coincides with [9, Definition 6.1.1].

Lemma 6.2 The fully faithful inclusion ¢: Cat(,, ,) € Cat( ,) of the full subcategory of (m, n)-categories
admits a left adjoint sending an (0o, n)-category € to its homotopy (m, n)-category ho,, ,) C. The adjoint
pair hogy, »): Cat(oo ) Z Cat(y, ) :t has the canonical structure of a reflective monoidal localization.

Proof Consider the reflective localization t<;,—,: & z T<m—nd :L. Since truncation preserve products,
this is a reflective monoidal localization. Consequently, it induces a reflective monoidal localization
Caty, (t<m—n): Cat, (8) z Caty, (t<m—nS) :Caty (1) by Lemma 5.20. Note that (by induction) the essential
image of Caty (¢) is precisely the full subcategory Cat(,, ,) C Cat(oo,p). It follows that there is a left
adjoint ho, ) : Cat(eo,n) — Cat(y, ,) (equivalent to Caty (T<m—n)), which has the canonical structure of
a monoidal localization. O

The universal properties of the homotopy (m, n)-categories imply that they fit into a tower
(6-1) C— -+ = ho ) (C) > hogy—1,1)(C) = -+ = hog41,,)(C).
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By induction on 7, one sees that this tower is convergent. Indeed, using that Cat(o 54+ 1) S Algc, (Cat(oo,n))
preserves limits, this follows from the fact that:

(a) Atthe level of spaces of objects, the tower induces isomorphisms on g so that € — limy; ho gy, ,+1)(C)
is essentially surjective.

(b) The map Mape(c, d) — lim,, Mapy, ot 1(© (c,d) >~ limy, hog,, ,)(Mape(c, d)) is an equivalence
for each ¢, d € C by inductive hypothesis.

Theorem 5.18 and Corollary 5.21 then yield the following more precise statement of Theorem 1.1:
Theorem 6.3 For each n > 1, the tower of natural transformations (6-1) refines to a multiplicative
Postnikov structure on Cat (s ).

Proof By Lemma 6.2, the reflective monoidal localization

Catp (T<m—n)

ho(m,n) : Cat(oo,n) = Caty, (S) -5 Caty, (SSm—n) = Cat(m,n) i
Caty (1)

arises from the reflective monoidal localization 7<p—p: 8 Z S<m—n 1t via Lemma 5.20. Now let

®: 8 — Fun(€&, §) be the multiplicative, g-constant Postnikov structure on spaces refining the classical
Postnikov tower (Example/Proposition 4.15). By Theorem 5.18 and Corollary 5.21, this induces a
multiplicative Postnikov structure ®cy, on Cat(sg, ).

We can view @y, as a diagram & — Fun®:1x (Cat(oo,n)» Cat(so,ny) of (lax symmetric monoidal) endo-
functors of Cat( ), by adjunction with the Boardman—Vogt tensor product (see Remark 2.7). Forgetting
about the k-invariants, the underlying tower of ®c,, is given by the tower of functors

id — -+ — Cat, (1<4) — Cat, (t<g—1) = - -+ = Caty (1<1).

Lemma 6.2 identifies this with the natural tower of homotopy (m, n)-categories (6-1), as desired. |

In other words, for each (oo, n)-category € and a > 2, there exists a natural parametrized spectrum object
H7a(C) € Thogy1.m (@) (Cat(oo,n))
and a pullback square of (oo, n)-categories
hogta,n) € —————hog41,0) C

| |

ho(n+a—1,n) C k—) QOO(E“"HHJta(G))

The proof of Theorem 6.3 is not completely satisfying because these parametrized spectra Hm, (C) are
defined somewhat implicitly. In the remainder of this section, we will explain how (as the notation suggests)
the parametrized spectra Hmr,(C) can be considered as the Eilenberg—MacLane spectra associated to local
systems of abelian groups on hog, 1 ,)(C), as considered in [24].
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6.1 Tangent bundle of enriched oo-categories

Our first goal will be to construct a ¢-orientation (Definition 2.20) on the tangent bundle to V-enriched
oo-categories, using a version of Proposition 2.25. To this end, we will need a description of the tangent
bundle to enriched co-categories along the lines of Proposition 2.17:

Theorem 6.4 LetV be a differentiable presentable SM oo-category such that 1vy is compact. Then there
exists a natural equivalence of SM oco-categories

Cat(TV) T Cat(V)

2 Cm /

Cat(V)

where Cat(7ry) is induced by the (monoidal) tangent projection ity : TV — 'V and 7 is the tangent projection
for Cat(V).

Recall from [26, Definition 6.1.1.6] that a presentable oco-category 'V is differentiable if the sequential
colimit functor colim: Fun(N, V) — 'V is left exact. In particular, any compactly generated oco-category
is differentiable. To apply Theorem 6.4 inductively, let us record the following observation:

Lemma 6.5 LetV be a presentable monoidal co-category which is differentiable and such that 1y is
compact. Then Cat(V) is differentiable and 1c,(v) (ie the image of the categorical algebra with one object
with endomorphism algebra 1v) is compact as well.

Proof By [26, Remark 4.1.8.9], there exists a monoidal model category V presenting V of the following
form: one can construct a simplicial monoid 4 € Alg(sSet) and take V = sSet;4, with monoidal
structure given by (X > A)® (Y - A) = (X xY — A x A — A) and model structure given by a left
Bousfield localization of the covariant model structure. In particular, V is simplicial and combinatorial,
its cofibrations are the monomorphisms, all objects are cofibrant and weak equivalences are stable under
filtered colimits. Then Cat(V) arises from the model category Cat™ (V) on V -enriched categories [17]
and it then follows from [13, Corollary 3.1.12] that Cat("V) is again differentiable.

To see that 1y (y) is compact, note that the corepresentable functor Map(1cy(v), —) can be identified
with the functor taking spaces of objects. This functor decomposes as

Core

Cat(V) — Cat(8) ~ Catoo — 3,

where the first functor is induced by the lax monoidal functor Mapy(1y, —):V — & and the second functor
takes the core (or maximal sub-oo-groupoid). Taking cores preserves filtered colimits (as is easily checked
using quasicategories). To see that Cat(V) — Cat(8) preserves filtered colimits, we use model categories.
Since V is simplicial and monoidal, there is a monoidal Quillen pair 1y & —: sSet z V :Mapy (ly, —).

Algebraic € Geometric Topology, Volume 25 (2025)



On k-invariants for (0o, n)-categories 777

Applying these functors on mapping objects yields a Quillen pair on enriched categories. In light of [23,
Proposition 5.3.1.16], it now suffices to verify that the right Quillen functor U : Cat™" (V) — Cat*"“!(sSet)
preserves filtered homotopy colimits.

Let C,: J — Cat™ (V) be a projectively cofibrant filtered diagram with colimit Coo. To see that the
natural map hocolim U(C,) — U(C«) is a weak equivalence, note that the Dwyer—Kan equivalences of
simplicial categories are closed under filtered colimits. Consequently, the homotopy colimit can simply be
computed by the ordinary colimit and it suffices to verify that colim U(C,) — U(Cy) is a Dwyer—Kan
equivalence. At the level of objects, the map is simply an isomorphism and for each ¢, d € colim U(C,)
arising from some U(C;), the induced map on mapping spaces is given by

colim;eg;, Mapy (1y, C;(c,d)) — Mapy (1y, colim;ey;, C;(c, d)).
This map is a weak equivalence of simplicial sets because Mapy (1y, —) preserves filtered homotopy
colimits and because weak equivalences in both sSet and V are closed under filtered colimits. O

The proof of Theorem 6.4 requires a few preliminary observations:

Proposition 6.6 LetV be a presentable monoidal co-category and wy: TV — 'V its tangent projection.
Then the inclusions of complete objects and the completion functors fit into pullback squares

Cat(TV) —— Algey (TV) 25 Cat(TV)

Cat(nv)l Algey (nv)l lCat(nv)

Cat(V) — Alge, (V) ~—2 Cat(V)

in which the vertical functors are all Cartesian and co-Cartesian fibrations.

Proof Recall from Lemma 2.11 that the monoidal functor 7y: TV — V has a (strong) monoidal
fully faithful left adjoint cst: V — TV taking constant diagrams, and that cst is also a monoidal fully
faithful right adjoint to my. Considering my as a right adjoint functor, Remark 5.8 then implies that
Algey (mry) 1 Alge, (TV) — Alg, (V) preserves and detects completeness, so that the left square commutes
and is Cartesian. On the other hand, considering my as a monoidal left adjoint, we find that the right
square commutes: taking right adjoints, this comes down to cst: Algq, (V) — Algc, (TV) preserving
complete objects.

Next, the two monoidal adjunctions (cst, 7y) and (7y, cst) induce adjunctions

Alg, (cst) Alge, ()
Alge, (V) L 7 Alge, (TV), Alge, (TV) L 5AIge, (V)
Algcy (v) Algc, (cst)

in which Alg,(cst) is fully faithful. This implies that Alg., (ry) preserves limits and colimits and
by [5, Lemma 2.6.1], it is both a Cartesian and co-Cartesian fibration. Since the left square was a
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pullback, this implies that Cat(sry) is a Cartesian and co-Cartesian fibration as well and that the inclusion
Cat(TV) — Alg,(TV) preserves Cartesian and co-Cartesian arrows.

It remains to verify that the right square is Cartesian. To see this, we claim that the following conditions
are equivalent for a map o: C — D in Algq, (TV):

(a) o is a DK-equivalence.
(b) o« is an Algq, (my)-co-Cartesian lift of a DK-equivalence in Algc,, (V).

(c) « is an Algg, (my)-Cartesian lift of a DK-equivalence in Algq, (V).

Assuming this, it follows that Algq, (y) classifies a diagram Algq, (V) — Cat" sending each DK-
equivalence to an adjoint equivalence: over a fixed DK-equivalence in Alg,(V), the Algc, (7y)-Cartesian
and Algq,,(7y)-co-Cartesian arrows coincide, so that the proof of [23, Proposition 5.2.2.8] shows that
the unit and counit of the induced adjunction are equivalences. Since the DK-equivalences in Algq, (TV)
are precisely the Alg,,(ry)-(co)Cartesian lifts of DK-equivalences in Algq,(V), it then follows from
[21, Proposition 2.1.4] that the right square is a Cartesian square.

To see the claim, let us write ag: Co — Dy for the image of « in Alge, (V) and let oy : Ciy — Dy be
the image of o under Algq, (cst). The unit and the counit of the adjoint pairs above then determine a
commuting diagram in Algq, (TV):

Since Alg, (cst) and Algq, (7y) both preserve DK-equivalences (having right adjoints preserving com-
plete objects), o, is a DK-equivalence in Algq, (TV) if and only if «g is a DK-equivalence in Algc, (V).
Furthermore, the left square is a pushout if and only if ¢ is Algq, (7y)-co-Cartesian and the right square
is a pullback if and only if « is Algq,, (7ry)-Cartesian, by [5, Lemma 2.6.1] and its opposite.

Using this, (b) implies (a) because DK-equivalences are stable under pushout. Conversely, if « is a
DK-equivalence, then e, is a DK-equivalence as well. Consequently, D, H(C(/) C — D is both a DK-
equivalence and an equivalence on spaces of objects (since its image in Algq, (V) is an equivalence), and
hence an equivalence.

Dually, (c) is equivalent to «, being a DK-equivalence and the right square being a pullback. Since fully
faithful maps are stable under pullback, this implies that « is fully faithful. Since essential surjectivity is
detected on the underlying space-valued categorical algebra, which in turn is determined by the underlying
V-enriched categorical algebra, we find that « is essentially surjective as well. Conversely, if « is a
DK-equivalence, then o, is a DK-equivalence as well. Consequently, the map C — C, Xpy, D is fully
faithful and an equivalence on spaces of objects, and is hence an equivalence. O
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Lemma 6.7 LetV be a presentable SM oo-category and let TV be its tangent bundle with the square zero
monoidal structure. Then there is a natural SM equivalence

Algey (TV) = T Algey (V) xg5 8

between Algc, (TV) and the full subcategory of excisive functors C,: 8i" — Alg,, (V) which are constant
at the level of objects.

Proof Recall the equivalence
AlgCat(Fun(Sin9 V)) = FUH(SEH, AlgCat(V)) XFun(Si",S) S

from Proposition 5.6. By Lemma 5.22, this restricts to an equivalence on full subcategories of excisive
functors. o

Lemma 6.8 LetV be a presentable monoidal oco-category. Then there exists a natural relative adjunction

%

C
Alge, (TV) L T Alge, (V)
W
Algc;u(ﬂ\v)) /
Algey (V)

Proof Using Lemma 6.7, we define ¢ as the projection onto the first factor

Algey (TV) = T Algey (V) x5 8 —— T Algey (V)

(6-3) Algm(m)l ln
AlgCat(v) ~ AlgCat(V) X8 S % AlgCat(V)

Here the square commutes by naturality of the equivalence from Proposition 5.6 with respect to restriction
along {*} < 80", Note that ¢ is the base change along the Cartesian fibration T Algq, (V) — TS of
the fully faithful functor cst: § — TS that is left adjoint to the tangent projection. The opposite of [23,
Corollary 5.2.7.11] then implies that ¢ is fully faithful and admits a right adjoint . This right adjoint
can be described as follows: given C,: 8" — Algq, (V), ¥(C,): 8" — Alg, (V) sends each space
T to the full subcategorical algebra of C7 obtained by restricting the objects along the canonical map
Ob(Cx) — Ob(Cr). In other words, the counit map ¥ (C7) — Cr is a Cartesian lift of the map of
spaces Ob(Cy) — Ob(Cr). It follows from this description that 1 commutes with evaluation at * as

well, so that ¢ and v form a relative adjunction. a

Proof of Theorem 6.4 To define the functor £, consider the composition
T((—)") 0 ¢ Algey (TV) <> T Algey (V) — T Cat(V).
Here ¢ is the functor from Lemma 6.8 and the last square arises from the adjoint pair
(—)": Algey (V) T Car(V) ¢
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by taking tangent bundles. Note that ¢ sends DK-equivalences in Alge,, (TV) to 8fi"-diagrams of DK-
equivalences in Algq,,(V), which in turn are sent to equivalences by T((—)"). Consequently, the above
composite induces a functor £: Cat(TV) — T Cat(V) from the localization at the DK-equivalences.

Since (—)": Alge, (TV) — Cat(TV) is a monoidal localization, £ inherits a natural SM structure from
the composite T((—)") o ¢: Alge, (TV). Here T((—)") inherits its SM structure from (—)”, and ¢
corresponds under the SM equivalence of Proposition 5.6 to the projection (6-3), which is an SM functor.

To show that £ is an equivalence, observe that (since (—)": Algc, (TV) — Cat(TV) has a section), £
coincides with the top horizontal composite

Cat(TV) s Alge (TV) —2— T Alge (V) 22 7 car(v)

o | | oo

Cat(V) ———— Alg, (V) =—= Alg,(V) L Cat(V)

Here all vertical functors are co-Cartesian fibrations, where we use Proposition 6.6 for the left two. The
first two horizontal functors preserve co-Cartesian arrows by Proposition 6.6 and by Lemma 6.8 and [26,
Proposition 7.3.2.6]. The last functor T((—)"") preserves co-Cartesian arrows for formal reasons: for any
adjoint pair F: C z D :G, the induced adjoint pair TF: JC Z ID :TG covering F and G has left
adjoint T F preserving co-Cartesian arrows and right adjoint TG preserving Cartesian arrows.

Having proven that £ is a map between co-Cartesian fibrations preserving co-Cartesian arrows, it suffices
to verify that £ induces an equivalence on fibers. Let us therefore fix a V-enriched category C € Cat(V)
and let us write X = Ob(C) for its space of objects. Since the left square in (6-4) was Cartesian, it
suffices to verify that ¢ and completion induce an equivalence Algc, (TV) Xalg., (v) {C} — T Cat(V).
This follows essentially from [13, Section 3.1].

Indeed, note that the equivalence from Lemma 6.7 induces an equivalence on fibers

Algey (TV) X Algey (V) {C} = T Algey (V) Xy s {X}.

Recall that under the equivalence of Lemma 6.7, the functor ¢ was simply given by projection onto the

first factor. It will therefore suffice to verify that the composite

p=m Tc((—)™)
(6-5) Tc Algey (V) xg,s {X} ? Tc Alge, (V) <‘.T—T> Tc Cat(V)
c (¢

is an equivalence. As indicated, this composite admits a right adjoint: ¥ is the right adjoint from
Lemma 6.8, restricting the space of objects to X, and T(¢) is induced by the canonical inclusion

t: Cat(V) — Alge, (V).

Now note that the above diagram arises upon stabilization from the following diagram of adjunctions
between oco-categories of retractive objects over C:

A

T —
F:Alge, (Ve e Xsx x 1X} <T> Alge, (Ve yc <L—’ Cat(V)cc :G.
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Here the right adjoint v’ exists by (the opposite of) [23, Corollary 5.2.7.11]. Explicitly, it takes the full
subcategorical algebra with objects X, ie the counit map ¥'(ID) — DD is a Cartesian lift of the map of
spaces X = Ob(C) — Ob(ID) (see Definition 5.7). Upon stabilization, this induces the right adjoint pair
in (6-5) by definition. For the left adjoint pair, note that Algc, (V)c/c Xsy,xy {X} is a fiber product
of pointed oco-categories along left exact functors, and that stabilization preserves such fiber products.
Consequently, the projection onto the first factor induces the functor ¢, and since stabilization sends
an adjoint pair of left exact functors to an adjunction between stable co-categories, its right adjoint v’/
induces the functor i at the stable level.

We now follow the same proof as [13, Proposition 3.1.9]: applying (the co-categorical analogue of) [15,
Corollary 2.39], it suffices to verify that the unit and counit of (F, G) become equivalences upon taking
loop spaces. For the unit map, let C — D — C be a retract diagram of categorical algebras with spaces
of objects X. Then D — GF (D) is the natural map obtained by decomposing D — D" (essentially
uniquely) into a map that is the identity on objects, followed by a fully faithful map. Since D — D" is
itself fully faithful, the unit is itself already an equivalence.

For the counit, let C — D — C be a retract diagram of V-enriched categories. Then the counit map
ep: FG(D) = /(D) — D is the natural map from the completion of the full subcategorical algebra
¥'(D) — D with objects X. Since ¥'(ID) — I is fully faithful, ep is fully faithful as well. Consequently,
the base change FG(D) xp C — C is fully faithful as well. This map has a canonical section (since
we are working in Cat(V)c ) and is hence also essentially surjective. Since all categorical algebras
involved were complete, it follows that F G(ID) xp C ~ C is the zero object in Cat(V)c yc. Using this,
the looping of the counit map 2,c(ep): C x pgm) C — C xp C can be identified with

C XFG(D) C—->C XFG(D) FG(D) XD (C,
which is the base change of an equivalence. It follows that the counit is an equivalence upon taking loop

space objects, so that (6-5) is indeed an equivalence. a

Proposition 6.9 LetV be presentable monoidal co-category and suppose that TV carries a monoidal
t-orientation. Then the full subcategories Algc, (T=°V) and Algc, (T=°V) define a t-orientation on the
stable Cartesian fibration Algc,,(TV) — Algc, (V).

Proof Theorem 6.4 and Proposition 6.6 imply that Algc,, (TV) — Alg, (V) is a stable Cartesian fibration,
being the base change of such. For a fixed space of objects, the restrictions
(6-6)  Alge, (TZ0V) x5 {X} > Algy, (TZ°V),  Alge, (T="V) x5 {X} ~ Algy, (T=°V)

coincide with the 7-orientation on Ox-algebras from Proposition 2.25. In particular, this implies that
Alge, (TZ0V) and Alge, (T=<OV) restrict to a ¢-structure on the fiber over a fixed categorical algebra C.

For condition (1) of Definition 2.20, let f: C — D be a map in Algc,(V), E € Alge, (T=V) an object
living over D and f*E — E the Cartesian lift of f. To see that f*E € Algq, (T=°V), factor f as a map
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g: C — D’ which is the identity on objects, followed by a fully faithful map 4: D’ — D. Then 2*(E) - E
is fully faithful; in particular, if all mapping objects of E are contained in T=°V, the same holds for #*(E).
The map f*(E) — h*(E) is then a Cartesian arrow in Algq «, (TV), so that Proposition 2.25 implies
that f*(E) € Algc, (T=V). m|

Corollary 6.10 LetV be a differentiable presentable SM oo-category such that 1y is compact and suppose
that TV carries a monoidal t -orientation. Under the equivalence T Cat(V) ~ Cat(TV) from Theorem 6.4,
the full subcategories

20 cat(V) ~ Cat(T2%V), T=0Cat(V) ~ Cat(T=V)
then determine a monoidal t-orientation of the tangent bundle T Cat(V), with heart T% Cat(V) =~

Cat(TV).

Proof Using the left pullback square from Proposition 6.6, this is simply the base change of the ¢-
orientation from Proposition 6.9. It is a monoidal #-structure because Cat(—) preserves symmetric
monoidal functors and fully faithful functors, so that 720 Cat(V) ~ Cat(T7Z%V) € T Cat(V) is closed
under the tensor product. O

Remark 6.11 In the setting of Corollary 6.10, let C be V-enriched category together with a mo-surjection
of spaces X — Ob(C). Let Cx — C be the induced fully faithful functor, which realizes C as the
completion of Cy. Theorem 6.4 and Proposition 6.6 then provide equivalences of stable co-categories

Tc Cat(V) ~ Algc, (TV) X Algey (V) {Cx} >~ Algy, (TV) X Algg, (V) {Cx}.
In the presence of a 7-orientation, the proof of Proposition 6.9 (see (6-6)) shows that this identifies

T& Cat(V) with the fiber Algy (TVV) XAlgy, ) {Cx}-

6.2 Local systems of abelian groups on (oo, n)-categories

Applying Corollary 6.10 inductively, starting with the ¢-structure on parametrized spectra of Example 2.24,

we obtain:

Corollary 6.12 Let C be an (oo, n)-category. Then the tangent co-category Je Cat(o ) carries a t-
structure, in which an object E is (co)connective if and only if for any two objects x, y € C, the functor

Map(_y(x, ) Te Cat(oo,n) = Thape(x.y) Cal(oo,n—1)
sends E to a (co)connective object.
Applying this inductively, one finds the following inductive description of the heart of the ¢-orientation
on J Cat(oo,p):
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Definition 6.13 (see [24, Definition 3.5.10]) The oo-category of local systems of abelian groups on
(00, 0)-categories is defined to be the domain of the Cartesian fibration

LocC(s0,0) = &

classified by the functor 8°° — Cat, sending a space X to the category of local systems Fun(IT1;(X), Ab).
This carries a symmetric monoidal structure given by the Cartesian product. For n > 1, we define the
symmetric monoidal co-category of local systems of abelian groups on (00, n)-categories to be the domain
of the Cartesian fibration

Loc(00,n) = Cat(Loc(so,n—1)) = Cat(Cat(os n—1)) = Cat(oo n) -
Note that Loc(s,,) inherits a symmetric monoidal structure from Loc(so,,—1), such that the projection to

Cat(so,p) 1s Symmetric monoidal.

For each €, let us denote the fiber of Loc(s, ) Over € by Loc(s,,)(C) and refer to it as the abelian
category of local systems on C. Note that Loc( ) (€) is indeed an (ordinary) abelian category by the
following immediate consequence of Corollary 6.10:
Corollary 6.14 There are equivalences of co-categories over Cat(og 5)

LOC(OO’n) o~ Cat(LOC(oo,n_l)) ad Cat(‘.TO Cat(oo,n_l)) ~ J9 Cat(oo,n) .
Given an (oo, n)-category C, Remark 6.11 now implies that a local system A on € is given by the datum

of map of co-operads

®
Loc(oo’n_l)

A7 l

Ox —> OOb(G) —>e Catﬁo,n—l)

for any choice of mg-surjection of spaces X — Ob(C).
Remark 6.15 For the canonical choice X = Ob(C), the datum of a local system .A on an (oo, n)-category
€ can therefore be described informally as follows:
(0) For each x, y € C, a local system Ay, , over the (co, n—1)-category of maps C(x, y).
(i) a map of local systems for each triple x, y, z € € and a map of abelian groups for each x € C
Mx,yz: P1Ayz X poAxy = ¢ Axzy Ux:Z — e* Ay x.
Here ¢: C(y,z) x C(x, y) — C(x, z) is the composition,
Po:C(y,z) xC(x,y) > C(y,z) and p1:C(y,z) xC(x,y) = C(x,y)

are the projections and e: * — C(x, x) is the unit.
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(i1) An associativity condition for each quadruple w, x, y, z € € and left and right unitality conditions
for each tuple x, y € C, given by the commutativity of the diagrams

PrAzw X pTAyz X paAx,y

my zwolidxXmy y ) My, y.wo(my z yxid)

S

(co(idxc))*Ax.w

(co(exid)*Axw

12

where o* arises from the associator « of C by naturality of base change, and

mx.x.yty Wuy xid)
A‘*

(co(idxe)* Ay —= (co(exid)* Ay,

Ax’y

‘AX,J’

~

where the bottom maps arise from the left and right unit equivalences A and p.

There are no higher coherences because the local systems over each C(x, y) form an ordinary 1-category.
Definition 6.13 therefore gives a precise formulation of the (informal) definition of local systems on
(00, n)-categories appearing in [24, Definition 3.5.10].

Remark 6.16 Taking X — Ob(C) to be a mp-surjection from a set, the datum of a local system over €
®

(00,n—1)
induces maps on mapping spaces with discrete fibers. Since

can also be identified with a section of the map of operads Le x := Loc
®

(o0,n—1)
X is a set, both Oy and Le x are therefore ordinary operads and a section Oy — Le x is given by

© xcal, ,_;,0x = Ox.
Now note that Loc(oo’n_l) — Cat

choosing images of objects and multimorphisms satisfying a certain associativity condition, but no higher
coherences. In this situation, the informal description of a local system from Remark 6.15, for objects
taken in the set X, is exactly the data of a local system on C.

The inductive construction of the Postnikov structure in Theorem 6.3 shows that all parametrized spectra
appearing in it are contained in the heart of the z-structure on T Cat(s, ). We therefore obtain the
following result (which appears without proof as [24, Claim 3.5.18]):

Corollary 6.17 For every (co, n)-category C, the parametrized spectrum Hr, (C) of Theorem 6.3 is the
Eilenberg—MacLane spectrum associated to

74(C) € Loc(oo,n) (C) = jﬁ)(ng.m(@) Cat(oo,n) -

In terms of Remark 6.15, it is the Eilenberg—MacLane spectrum of the local system of abelian groups on
ho(,41,n) € given inductively by w4(C)x,y = mq Mape(x, y), forany x, y € C.

Algebraic € Geometric Topology, Volume 25 (2025)



On k-invariants for (0o, n)-categories 785

Appendix Symmetric monoidal structure on categorical algebras

In this appendix, we provide the proofs of Lemma 5.4 and Propositions 5.3 and 5.6 about the symmetric
monoidal structure on Catajg(V). The key ingredient of these proofs will be Construction A.3: given an
oo-category € with finite products, this produces a diagram Fy: D — SMCatl/aé‘X of SM oo-categories
over C* from the data of a (suitable) diagram W: C°P x D — SMCatlg‘c’,‘. Let us start with a preliminary
observation:

Definition A.1 For an co-category D, let us write
co-Cart(D)"** Catog/p, Cart(D)?' Catoo/p

for the full subcategories spanned by the co-Cartesian and Cartesian fibrations, respectively. Furthermore,
let us denote by Fun(D, SMCatg’g)Strorlg — Fun(D, SMCatg‘;‘) the wide subcategory whose morphisms
w: F — G are natural transformations such that for each d € D, the map u,: F(d) — G(d) is a strong
(as opposed to lax) SM functor.

Lemma A.2 For any oo-category D, there is a natural (wide) subcategory inclusion
Fun(D, SMCat'®)3n¢ < CAlg(Cart(D°P)°P),

where we take commutative algebras with respect to the fiber product over D.

Proof We use unstraightening to identify both categories with (nonfull) subcategories of Catog /DopxFin,
and then show that one is naturally included in the other. First, note that Fun(D, SMCat!®)stong jg
subcategory of Fun(D, Cate/Fin, ). By [19, Corollary 2.3.4], unstraightening to a Cartesian fibration
over D then provides an equivalence between Fun(D, SMCat'®)5""2 and the following subcategory of

Catoo/DOP xFiny -

(1) Objects are maps p = (p1, p2): € — D x Fin, such that p; is a Cartesian fibration, p; is a
co-Cartesian fibration, p; sends p,-co-Cartesian arrows to equivalences and p, sends pj-Cartesian
arrows to equivalences. Furthermore, for each d € D, the fiber £; — Fin, is an SM oo-category and for
each «:d — d’ in D, the change of fiber functor a*: €4, — €4 preserves p,-co-Cartesian lifts of inert
morphisms in Finy.

(2) Morphisms are commuting triangles

S &

(A-1) e
(p1,p2)=p 9=(q1,92)

DOP x Finy

such that f sends all p;-Cartesian arrows to gi-Cartesian arrows and all p,-co-Cartesian arrows to
g2-co-Cartesian arrows.
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Similarly, we can view CAlg(Cart(DP)°P!) as a subcategory of Fun(Fin,, Cat, /oer). By [19, Corol-
lary 2.3.4], unstraightening to a co-Cartesian fibration over Fin. then provides an equivalence between
CAlg(Cart(D°P)°P!) and the following subcategory of Cate /DOPXFin -

(1”) Objects are maps p = (p1, p2): € — D x Fin, such that p; is a Cartesian fibration, p; is a
co-Cartesian fibration, p; sends pj-co-Cartesian arrows to equivalences and p, sends pj-Cartesian
arrows to equivalences. Furthermore, for each (n) in Fins, the Segal maps induce an equivalence
Eny = E(1) Xpov - -+ Xpor € (1) of Cartesian fibrations over DP.

(2’) Morphisms are commuting triangles (A-1) such that f sends all p,-co-Cartesian arrows to g-co-

Cartesian arrows.
Notice that conditions (1) and (1’) are equivalent. Indeed, consider the Segal map
g1 E€(n) = Eq1) Xpor -+ Xepow Eqp)

between categories over D°P, Then g preserves Cartesian arrows over D°P if and only if for each a:d — d’
in D, the change of fiber functor «*: €4, — &, preserves co-Cartesian lifts of inert morphisms in Fin,.
When this is the case, the Segal map is an equivalence if and only if it induces an equivalence between
the fibers over each d € DP, ie if and only if each £  is an SM oco-category. We therefore obtain two
subcategories with the same objects, while on morphisms the condition (2) is clearly stronger than (2”).
This yields the desired wide subcategory inclusion. |

Construction A.3 Let C be an co-category with finite products, D an co-category and consider a functor
W: G x D — SMCat'™ that sends each arrow in C° to a strong SM functor. We will construct from W
a natural functor Fy: D — SMCatl/aé‘X, where Fy(d) — €* is an SM functor whose underlying functor
is the Cartesian fibration classified by W(—, d): C°°? — Catyo.

To do this, note that by adjunction and Lemma A.2, we obtain a natural functor
W: € — Fun(D, SMCatX)son¢ s CAlg(Cart(DP)°P!).
By [26, Theorem 2.4.3.18], this defines a map of co-operads
(P s Cart(DP)°PL* ~ co-Cart(D) 2>

from the co-Cartesian co-operad (C°P)H to the Cartesian operad co-Cart(D)"?> . Here the equivalence
of Cartesian operads arises from the equivalence sending a Cartesian fibration & — D°P to the opposite
co-Cartesian fibration E°° — D.

Since the target of the above map is a Cartesian co-operad, this is uniquely determined by an (C°P)H-
monoid object (€)X — co-Cart(D)'?*. The unstraightening of this functor determines a functor

(A-2) p=(p1.p2): XG® > (€M) xD
with the following properties:
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1 pr: f)Cij® — (€°P)I j5 a co-Cartesian fibration and p5 sends p;-co-Cartesian arrows to equivalences.

(2) For each (n) € Fin, the n inert maps o; : (n) — (1) induce an equivalence

0,® o, o,®
DC\I/’(n) — xq,’m X - XD f)Cq,,(l).

(3) For each {(n) € Fin,, the map between fibers over (n)

p: x‘\;ﬁn) — (€P) gy x D~ (CP) " x D

is a co-Cartesian fibration, classified by the functor sending (c1,...,cn,d) to W(cy, d)Px---xW(cy, d)°P.
Here (2) is equivalent to (€)1 — co-Cart(D)"* being a monoid object, after which (3) is equivalent

to the fact that the underlying functor €% — co-Cart(D)'¥* corresponds to W: C°% x D — Cat under
unstraightening over D.

In particular, these conditions imply that for each d € D, the map between fibers p;: p; 1(d) — (eoryl
is a co-Cartesian fibration of oo-operads and that each map d — d’ induces a map of oo-operads
)23 d)— 123 1(d") over (€°P)H. Unraveling the definitions, the co-Cartesian fibration

pi:py ' (d) > €M)
arises as the co-Cartesian unstraightening of the functor
CP — Cat, c¢+ ¥(c,d)®,
with lax monoidal structure maps given by
(A-3) W(c,d)PxW(c,d)P — V(e xc,d)PxW(cxc,d)® — W(exc d)P.

Here the first map restricts along the maps ¢ < ¢ X ¢/ — ¢’ and the second map uses the SM struc-
ture on W(c x ¢/, d)°P. Similarly, unwinding the construction shows that the co-Cartesian fibration
pl_l(cl, ...,cn) — D is classified by the functor sending d to W(cy,d)P? x--- x W(cy, d)P.

Postcomposing with the map (€)X — Fin,, one can view (A-2) as a map of co-Cartesian fibrations
over Fin,. Let us take the induced map of fiberwise opposite co-Cartesian fibrations, ie the co-Cartesian
fibrations classifying the Fin-diagram of opposite co-categories [3]. This yields a diagram of the form

q9=(q1,92) ©X x OP

N7

Finy

28

where €% — Fin, is the Cartesian operad associated to the co-category with products € (which is the
fiberwise opposite of (CP)I; see [26, Variant 2.4.3.12]). Here the map ¢ has the following properties
(which correspond to the properties of p under taking fiberwise opposites over Fin):

(1) g is a map of co-Cartesian fibrations over Fin, preserving co-Cartesian arrows.
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(2) For each (n) € Fin, the n inert maps o; : (n) — (1) induce an equivalence

® ® °0,®
x\y’(n) — xwl) XP - XD x\l/,(l)'

(3) For each (n) in Finy, the map on fibers DCS ) > (‘BZ(n) x DOP ~ @XM x DP is a Cartesian fibration
classified by the functor sending (c1,...,cn,d) = W(c1,d) xX---xW(cy,d).

In particular, the map (r, ¢»): DC% — Finy x D°P has the property that (1) r is a co-Cartesian fibration

and that g, sends r-co-Cartesian arrows to equivalences in D°P and (2) for each (n) € Fin,, the map

q>: DCS ) DCP is a Cartesian fibration. It follows from [19, Proposition 2.3.3] that ¢, : x@ — DPisa

Cartesian fibration and that ¢ is a map of Cartesian fibrations over D (preserving Cartesian arrows). We

can therefore apply straightening over D, and the above three conditions then imply that the straightening

determines the desired functor Fy: D — SMCatl/aé‘x.

Proof of Proposition 5.3 Recall that there is a functor Opgp x Op,, — Op., sending (O, P) to the
oo-operad of algebras Alg, (P)®. This takes values in SMCatloaé‘ if P is an SM oo-category [26, Exam-
ple 3.2.4.4], in which case restriction along O — O’ determines an SM functor Alge (P) — Algy(P). We
can thus apply Construction A.3 to the functor 8P x SMCatlo“c’,‘ — SMCatl;g‘ sending X — Algy, (V). O

Proof of Lemma 5.4 Unraveling Construction A.3, the structure of the SM functor Algq, (V) — 8
arises as the straightening over Fin, of the map g;: Alg?at(\?) =q, 1(V) — 8*. By construction, the
straightening of g is the pointwise opposite of the straightening of py: p5 L(V) — (8°P) over Fin,
by taking fiberwise opposites over Finy. Consequently, the tensor product on Alg., (V) is arises as the

unstraightening of the opposite of the natural transformation (A-3), as desired. |

Proof of Proposition 5.6 Construction A.3 has the following general property: for any f: D’ — D and
W: CP x D — SMCat'™, the functor Fyo(axf): D' — SMCatl/a(fz‘X is naturally equivalent to the functor
Fy o f. Consequently, the left-bottom composite in Proposition 5.6 arises by applying Construction A.3
to the functor Wy: 8 x SMCat'™ — SMCat'™ sending (X, V) to Algy, (Fun(J, V))®.

Now notice that Wy is equivalent to the functor sending (X, V) to Fun(J, Algy, (V)) with the levelwise
tensor product (by adjunction to the Boardman—Vogt tensor product, see Remark 2.7). The result will
therefore follow from the following general claim about Construction A.3: for any W: €% x D — SMCat'™
and any oco-category J, applying Construction A.3 to the functor Wy(c, d) = Fun(J, W(c, d)) results in
the composite functor

Fun(fJ,—)xFun(j.GX)GX

1
SMCat 3 Jex -

F
(A-4) Fy,: D SMCatl o«

To see this, recall the inclusion Fun(D, SMCat'®) < CAlg(Cart(D°)°P') from Lemma A.2, which was
given by unstraightening over D. Under this inclusion, applying Fun(J, —) pointwise corresponds to
sending a Cartesian fibration €% — D to the Cartesian fibration Fun(J, EP) Xpgyn(g,por) DP — DP.
This implies that the monoid object determined by Wy is given by the composite

(P 5 co-Cart(D)™ — co-Cart(D)"™,
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where the first functor is the monoid object associated to W and the second functor sends a co-Cartesian
fibration & — D to Fun(JP, &) Xpyn(gor,p) D — D (note that we took opposite categories to pass from
Cartesian to co-Cartesian fibrations). Next, applying the same reasoning to the unstraightening over
(C°P)I we obtain that

x\ol;;@ ~ Ful’l(JOp, x?ﬁ®) XFun(jOP,(GOP)HXD) (GOP)H X @

Taking fiberwise opposite co-Cartesian fibrations over Fins, one then obtains an equivalence of Cartesian
fibrations over D°P
XS, > Fun(J, X§) Xpun(g,exxpor) € x DP.

Under straightening over D°P, this equivalence provides the desired identification of Fy, as in (A-4). O
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Circular-orderability of 3-manifold groups

IDRISSA BA
ADAM CLAY

We initiate the study of circular-orderability of 3-manifold groups, motivated by the L-space conjecture.
We show that a compact, connected, P2-irreducible 3-manifold has a circularly orderable fundamental
group if and only if there exists a finite cyclic cover with left-orderable fundamental group, which
naturally leads to a “circular-orderability version” of the L-space conjecture. We also show that the
fundamental groups of almost all graph manifolds are circularly orderable, and contrast the behaviour of
circular-orderability and left-orderability with respect to the operations of Dehn surgery and taking cyclic
branched covers.

03C15, 06F15, 20F60, 57M50, 57TM60

1 Introduction

For an irreducible, rational homology 3-sphere M, the L-space conjecture posits a relationship between
the properties of M admitting a coorientable taut foliation, M being not an L-space, and M having a
left-orderable fundamental group (see Conjecture 3.3). While this conjecture is known to hold for some
classes of manifolds, for example graph manifolds, new techniques are needed to tackle more general
classes of manifolds, or, indeed, to tackle the conjecture in full generality.

With this conjecture in mind, several of the most successful techniques developed in recent years to tackle
left-orderability of 1 (M) have shared a common theme: they all begin with an action on the circle, and
use cohomological techniques to pass to an action on the real line. For instance, in studying manifolds
arising from Dehn surgery on a knot K in S3, a common technique is to study one-parameter families of
representations p;: 71 (S3\ K) — PSL(2, R) that are built so as to provide representations that factor
through the quotient groups 71 (S> >/ q(K )) for certain values of p/g € Q U {oo}. Controlhng the Euler
classes of these representations allows one to construct lifts py: 7 (S3 /4 (K)) — PSL(2 R), and these
lifts show that 7} (S; q(K )) is left-orderable since they have left-orderable image; see Boyer, Gordon
and Watson [12], Hakamata and Teragaito [29; 30], Motegi and Teragaito [42], Culler and Dunfield [23]
and Gao [26]. This technique has also been used to study left-orderability of cyclic branched covers of
knots by Hu [34], Tran [51], Turner [52] and Gordon and Lidman [28].

In a similar vein, if one starts with an irreducible rational homology 3-sphere M admitting a co-
orientable taut foliation %, Thurston’s universal circle construction yields a representation pypiy: 71 (M) —
Homeo (S!). With appropriate restrictions on %, one can control the Euler class of puniv and guarantee

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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the existence of a lift pyniy : 71 (M) — Homeo (S!), again yielding left-orderability of 71 (M) for similar
reasons; see Calegari and Dunfield [16] and Boyer and Hu [13].

Motivated by the utility of actions on the circle by homeomorphisms in addressing the L-space conjecture,
this work is a first step toward directly addressing the question of when the fundamental group of a
3-manifold acts on the circle by homeomorphisms — though we take an algebraic approach to the problem.
Just as the existence of left-ordering of 7t (M) captures whether or not there is an embedding p: 71 (M) —
Homeo (R), we approach the problem by studying the existence of an orientation cocycle c: 1 (M)3 —
{£1, 0} that is compatible with the group operation, called a circular ordering of 7z (M ). The existence of
such a map determines whether or not there exists an embedding p: 71 (M) — Homeo (S'), analogous
to the case of left-orderings. It should be noted that, throughout, we adopt the convention that the trivial
group is left-orderable. We show:

Theorem 1.1 Suppose that M is a compact, connected, P?-irreducible 3-manifold. Then 7y (M) is
circularly orderable if and only if M admits a finite cyclic cover with left-orderable fundamental group.

Our contribution here is not the existence of a finite-index left-orderable subgroup, as this fact already
appears implicitly in [16], but that there is a normal, left-orderable subgroup that yields a finite cyclic group
upon passing to the quotient. This motivates an obvious “circular-orderability” version of the L-space
conjecture (see Conjecture 3.4), which mirrors the usual L-space conjecture up to finite cyclic covers.

This theorem is in fact a special case of a new algebraic result. Associated to every circular ordering ¢
of G is a cohomology class [ f;] € H?(G;Z), called the Euler class of the circular ordering. We show
that, when a group G admits a circular ordering whose Euler class has order k in H?(G;Z), it also
admits a left-orderable normal subgroup N such that G/N = Z/kZ; see Theorem 2.6.

From here we begin an exploration of exactly which fundamental groups admit circular orderings. We
first tackle the case of Seifert fibred manifolds, providing the details of a claim of Calegari [15]. Note
that circular-orderability of finite groups is well understood (a finite group is circularly orderable if and
only if it is cyclic; see Proposition 2.5), and so we focus on infinite fundamental groups. If G is a group
with circular ordering ¢, we use rot.(g) to denote the rotation number of g € G; see Section 2.

Theorem 1.2 Let M be a compact, connected Seifert fibred space and let h denote the class of a regular
fibre in w1 (M).

(1) If my(M) is infinite, then there exists a circular ordering ¢ of w1(M) such that rot.(h) = 0; in
particular, 1 (M) is circularly orderable whenever it is infinite.

(2) If m1(M) is infinite and M is orientable and has nonorientable base orbifold, then every circular
ordering ¢ of w1(M) satisfies rot. (h) € {0, %}

(3) If w1 (M) is left-orderable and M is orientable and has base orbifold S?(ay, . .., o) withn > 3,
then, for every p € Nx, there exists a circular ordering ¢ of 71 (M) such that rot.(h) = 1/p.

Algebraic € Geometric Topology, Volume 25 (2025)
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(4) If M is orientable and has no exceptional fibres, then, for every r € R/Z, there exists a circular
ordering ¢ of 1(M) such that rot.(h) =r.

This leads naturally to the study of graph manifolds, where we show that an analogous fact holds.

Theorem 1.3 Suppose that W is a graph manifold whose JSJ decomposition has Seifert fibred pieces
My, ..., M,. Further suppose that, for each 1 <i < n, if 0M; is a single torus boundary component,
then there is no slope « € Hy(0M;; Z)/{x1} such that w1 (M;(«)) is finite. Then, if 71 (W) is infinite, it
is circularly orderable.

If W is not a rational homology sphere, then the first Betti number b1 (W) is positive, so w1(W) is
left-orderable by Boyer, Rolfsen and Wiest [14, Theorem 3.2]. On the other hand, if W is a rational
homology sphere, then Theorem 1.3 is in fact a special case of a stronger, more technical result; see
Theorem 6.6 and Corollary 6.7. We conjecture that, with appropriate generalizations of the techniques
developed here, one can prove that the fundamental group of a graph manifold is circularly orderable
whenever it is infinite. See Conjecture 6.11 and the preceding discussion for details.

Our approach to this proof is to mirror the technique of “slope detection” developed by Boyer and Clay [9]
for the case of left-orderings of fundamental groups of graph manifolds; in Theorem 4.3 we develop a result
in the case of circular orderings that is analogous to the main tool of Clay, Lidman and Watson [20]. This
tool provides sufficient conditions that a manifold W = M7 Uy M5 have circularly orderable fundamental
group, by requiring that the gluing map ¢ identify slopes on M1 and M, whose fillings yield fundamental
groups admitting compatible circular orderings. Using this technique, it turns out that, in many cases, it
is sufficient to study fillings along rational longitudes to conclude that W = My Uy M> has circularly
orderable fundamental group; see Proposition 5.6.

We also deal with several notable cases not covered by Theorem 6.6 or Theorem 1.3; for instance, we
also show:

Theorem 1.4 The fundamental group of a compact, connected Sol manifold is circularly orderable.

We close with a discussion of circular-orderability of fundamental groups of hyperbolic 3-manifolds.
There is a well-known example of a hyperbolic 3-manifold whose fundamental group is not circularly
orderable, which is the Weeks manifold; see Calegari and Dunfield [16, Theorem 9]. Therefore, we
cannot expect the fundamental groups of hyperbolic 3-manifolds to be circularly orderable whenever they
are infinite, as in the case of Seifert fibred manifolds.

Two approaches to the question of left-orderability of fundamental groups of hyperbolic 3-manifolds
that have enjoyed success are via cyclic branched covers and via Dehn surgery. In both of these cases,
advancements in Heegaard Floer techniques have provided guidance as to the expected behaviour of
left-orderability with respect to these constructions. Over the course of several examples, including several
infinite families of hyperbolic 3-manifolds having circularly orderable but non-left-orderable fundamental
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groups, we find that none of the behaviour exhibited by left-orderability with respect to these familiar

topological constructions is shared with circular-orderability.

For example, it is suspected that, if the n-fold cyclic branched cover of a knot in S* has left-orderable
fundamental group, then so does the m-fold cyclic branched cover for all m > n. This does not hold for
circular-orderability; see Propositions 7.1 and 7.2. Similarly, it is conjectured that the double branched
cover of a quasialternating knot always has non-left-orderable fundamental group, but our examples show
that there is no apparent relationship when left-orderability is replaced with circular-orderability: there
exist alternating links (or, more generally, quasialternating links) whose double branched covers have
non-circularly orderable fundamental groups (see Section 7.2), while other alternating (or quasialternating)
links yield double branched covers with circularly orderable fundamental groups. Similar observations
hold for the behaviour of circular-orderability with respect to Dehn surgery on a knot in S3.

We organize this paper as follows: Section 2 contains background and results relating to circular-
orderability and left-orderability of groups in general. In Section 3 we relate these facts to 3-manifold
fundamental groups, discuss the L-space conjecture and prove Theorem 1.1. In Section 4 we introduce
our tools that are analogous to slope detection by left-orderings, and in Section 5 we show how these
results can be applied to fillings along rational longitudes. In Section 6 we study circular-orderability of
the fundamental groups of Seifert fibred manifolds and graph manifolds. Finally, in Section 7 we discuss
circular-orderability of the fundamental groups of manifolds arising as the cyclic branched covers of links,
and manifolds arising from Dehn surgery.

Acknowledgements Ba was supported by a University of Manitoba postdoctoral fellowship. Clay was
supported by NSERC grant RGPIN-2020-05343.

2 Left- and circular-orderability

A strict total order < on a group G is said to be a left-ordering if, for every f, g,h € G, if g < h then
fg < fh. A group G is called left-orderable if it admits a left-ordering. Every left-ordering of G
determines a subset P = {g € G | g > id} called the positive cone of the ordering, it satisfies

(i) P-P CP and
() PuPl'=aG\{d}.
Conversely any subset P C G satisfying (i) and (ii) determines a left-ordering of G via the prescription
g<h < glheP
A left-circular ordering of a group G is a map ¢: G — {%1, 0} satisfying:
(1) If (g1,g2.83) € G3, then c(g1, g2, g3) = 0 if and only if {g1, g2, g3} are not all distinct.
(2) For all g1, g2, g3, 84 € G, we have
c(g1,82.83) — (81,82, 84) +¢(g1. 83, 84) — (g2, 83.84) = 0.
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(3) Forall g, g1, g2, g3 € G, we have

c(g1.82.83) =c(gg1.882.883)-

If G admits such a map, then G is called left-circularly orderable. When no confusion will arise from
doing so, we will write circular ordering for short and circularly orderable.

Every left-orderable group is circularly orderable, for if < is a left-ordering of G then we may define
c: G3 — {£1,0} by c(g1.g2.g3) = sign(c) when {g1.g>.g3} are distinct and c(g1,g2.83) = 0
otherwise; here o is the unique permutation such that g, (1) < g5(2) < &0 (3)- When a circular ordering ¢
of a left-orderable group G arises in this way, we will say that c is a secret left-ordering.

Every circular ordering ¢ of G is evidently a homogeneous cocycle. However, from each circular
ordering ¢, we can define an associated inhomogeneous cocycle f.: G? — {0, 1} by
0 if g=idor h =id,
fe(g,h) =11 if gh =id and g # id,
%(1 —c(id, g, gh)) otherwise;

we call [ ;] € H?(G; Z) the Euler class of the circular ordering c.

Construction 2.1 [54] Associated to [f.] is a central extension G. of G, which is constructed by
equipping the set Z x G with the operation (a, g)(b, h) = (a+b+ f-(g. ), gh).! The central extension G
is easily seen to be left-orderable, as one can check that the set P = {(a, g) | @ > 0} \ {(0, id)} defines the
positive cone of a left-ordering, which we denote by <.. We call G, the left-ordered central extension
associated to the circularly ordered group G with ordering c.

Recall that a subset S of a left-ordered group (G, <) is <-cofinal if, for every g € G, there exist elements
s,t € S suchthat s < g <t. An element g € G is called <-cofinal (or simply cofinal if the ordering is
understood) whenever the cyclic subgroup (g) is <-cofinal as a set. The central element (1,id) € Ge is
positive and cofinal in the left-ordering <. of G, and is called the canonical positive, cofinal, central

element of Ge.

Construction 2.2 [54] The above construction is reversible, in a categorical sense made precise in [17];
the basic construction is as follows. Suppose that G is a left-ordered group with ordering <, and there
is a central element z € G which is positive and <-cofinal. Then the quotient G/(z) inherits a circular
ordering defined as follows. For each g(z) € G/(z), define the minimal representative g to be the unique
coset representative of g(z) satisfying id < g < z. Then define a circular ordering c< on G/(z) by

c<(g1(2). 82(z), g3(z)) = sign(0),
where o is the unique permutation satisfying g4(1) < &5(2) < £0(3)-

IThis is just an application of the standard construction associating elements of H2(G;Z), represented by inhomogeneous
2-cocycles, to equivalence classes of central extensions | - Z — G — G — 1.
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When G admits a circular ordering ¢ with [ f,] =id € H?(G;Z), then G is left-orderable, because the
left-orderable central extension G is isomorphic to G x Z (though the ordering ¢ need not be a secret left-
ordering for this to happen). It happens that ¢ is a secret left-ordering if and only if [ f;] =id € H g (G; 72),
where H b2 (G; Z) is the second bounded cohomology group (see [5] for details).

We also recall the notion of rotation number of an orientation-preserving homeomorphism f: S! — S!,
which is connected to a circular ordering and the lift G, as follows. For an orientation-preserving
homeomorphism f:S! — S!, one may choose a preimage f € I—er(Sl) of f € Homeo (S') and
define the rotation number of f to be

lim fn ©

n—oco n

mod Z.

We can define the rotation number for an element g of a circularly ordered group (G, ¢), following [2], in
a similar way. Let z = (1,1id) € éc denote the cofinal, central element of éc relative to the ordering <.
Choose an element g € G, such that q(g) = g, where ¢: Ge — G is the quotient map. For each n € Z,
let a, denote the unique integer such that
an < gn < Zan—i-l’

and define u

rot.(g) = nli)n;o 7" mod Z.
Note that this limit always exists by Fekete’s lemma, as one can check that the sequence {a,},~; is
superadditive. Is it not difficult, though rather tedious, to show that this notion of rotation number agrees
with the “traditional definition” if one uses the circular ordering ¢ of G to create a dynamical realization
pe: G — Homeo (S!) such that the circular ordering ¢ of G agrees with the circular ordering of the orbit
of 0 inherited from the natural circular ordering of S! (see [19, Sections 2.2 and 2.4]). In particular, this
implies that rotation number is invariant under conjugation, and is a homomorphism from 4 — S! when
restricted to any abelian subgroup A C G. Moreover, the induced homomorphism A /ker(rot.) — S1 is
order-preserving with left-ordered kernel; see [27, Propositions 5.3 and 6.17; 21, Section 2].

A fundamental tool in constructing circular orderings on a given group G is the lexicographic construction,
which we use often throughout this work.

Proposition 2.3 Let
1-K—>G-L H 1

be a short exact sequence of groups.
(1) IfK and H are left-orderable, then G is left-orderable.

(2) If K is left-orderable and H admits a circular ordering d, then G admits a circular ordering ¢
satistying roty (q(g)) = rot.(g) for all g € G, and whose restriction to K is secretly a left-ordering.

Proof Claim (1) is a straightforward exercise and is common in the literature. Claim (2) is less common,
so we outline a lexicographic construction following [15, Lemma 2.2.12] and verify the claimed properties
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of the resulting circular ordering. Suppose K is equipped with the left-ordering <. Define a circular
ordering ¢: G — {0, =1} as follows. Given three distinct elements g1, g2, g3 € G:

Case 1 If ¢(g;) are all distinct, set c(g1, g2, 83) = d(q(g1),q(g2),q(g3)).

Case 2 If exactly two of {¢(g1),q(g2),¢q(g3)} are equal, we may (by cyclically permuting the arguments
and relabelling if necessary) assume that g(g1) = g(g2), in which case we declare c(g1, g2, g3) = 1 if
gl_lgz >id and c(g1, g2, g3) = —1 otherwise.

Case 3 If all of {g(g1),9(g2),q(g3)} are equal, then declare c(g1, g2,g3) = 1 if and only if id <
gl_1 g2 < gl_1 g3, up to cyclic permutation.

Note that, if g1, g2, g3 € K, then we define c(g1, g2, g3) by appealing to Case 3, so c(g1, g2, g3) = 1 if
and only if g1 < g2 < g3 up to cyclic permutation. Thus the circular ordering c is a secret left-ordering
upon restriction to K.

That rotz (¢(g)) = rot.(g) for all g € G is proved in [2, Proof of Proposition 4.10]. |
Left-orderability and circular-orderability are also well behaved with respect to free products:

Proposition 2.4 Let {G;};es be a family of groups. Then:

(1) [53] The free product X;.; G; is left-orderable if and only if each group G; is left-orderable.
Moreover, if <; is a left-ordering of G; for each i € I, then there exists a left-ordering of 3k, c; Gi
extending the orderings <;.

(2) [3, Theorem 4.2] The free product K;; G; is circularly orderable if and only if each group G; is
circularly orderable. Moreover, if c; is a circular ordering of G; for eachi € I, then there exists a
circular ordering of %, ; G; extending the orderings c;.

Free products with amalgamation are much more finicky, with necessary and sufficient conditions that a
free product with amalgamation be left-ordera