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Random Artin groups

ANTOINE GOLDSBOROUGH
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We introduce a new model of random Artin groups. The two variables we consider are the rank of the
Artin groups and the set of permitted coefficients of their defining graphs.

The heart of our model is to control the speed at which we make that set of permitted coefficients grow
relatively to the growth of the rank of the groups, as it turns out different speeds yield very different
results. We describe these speeds by means of (often polynomial) functions. In this model, we show that
for a large range of such functions, a random Artin group satisfies most conjectures about Artin groups
asymptotically almost surely.

Our work also serves as a study of how restrictive the commonly studied families of Artin groups are,
as we compute explicitly the probability that a random Artin group belongs to various families of Artin
groups, such as the classes of 2-dimensional Artin groups, FC-type Artin groups, large-type Artin groups,
and others.

20F36, 20F65, 20F69, 20P05; 20F67

1 Introduction

Artin groups are a family of groups that have drawn an increasing interest in the past few decades. They
are defined as follows. Let � be a defining graph, that is a simplicial graph with vertex set V.�/ and
edge set E.�/, such that every edge eab of � connecting two vertices a and b is given a coefficient
mab 2 f2; 3; : : :g. Then � defines an Artin group:

A� WD hV.�/ j aba � � �„ƒ‚…
mab terms

D bab � � �„ƒ‚…
mab terms

;8eab 2E.�/i:

The cardinality of V.�/, that is the number of standard generators of A� , is called the rank of A� . When
a and b are not connected by an edge we set mab WD1.

One of the main reasons why Artin groups have become of such great interest is because of the amount of
(often easily stated) conjectures and problems about them that are still to be solved. While some of these
conjectures are algebraic (torsion, centres), some others are more geometric (acylindrical hyperbolicity,
CAT(0)-ness), algorithmic (word and conjugacy problems, biautomaticity), or even topological. Although
close to none of these conjectures or problems has been answered in the most general case, there has
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1524 Antoine Goldsborough and Nicolas Vaskou

been progress on each of them. A common theme towards proving these conjectures has been to prove
them for smaller families of Artin groups.

The goal of this paper is to consider Artin groups with a probabilistic approach. One might wonder what
a typical Artin group looks like, and hence want to define a notion of randomness for Artin groups. By
computing the different “sizes” of the most commonly studied classes of Artin groups, we give a way to
quantify how restrictive these different classes really are. In light of that, our model provides a novel and
explicit way of quantifying the state of the common knowledge about the aforementioned conjectures and
problems about Artin groups.

Although Artin groups are defined using defining graphs, it is not known in general when two defining
graphs give rise to isomorphic Artin groups. This problem, known as the isomorphism problem, is
actually quite hard to solve even for restrictive classes of Artin groups. With our current knowledge, any
(reachable) theory of randomness for Artin groups must then be based on the randomness of defining
graphs, and not of the Artin groups themselves.

Random right-angled Coxeter (and Artin) groups have been studied by several authors in the literature
(see Behrstock, Hagen and Sisto [1] and Charney and Farber [4]), using the Erdős–Rényi model. While
in [4] the authors fix the probability of apparition of an edge as some constant 0 � p � 1, in [1] this
model is refined: p D p.N/ depends on the rank N of the group. That said, these models restrict to
right-angled groups, where the associated defining graphs are not labelled. In [7], Deibel introduces a
model of randomness for Coxeter groups in general. There are similarities between this model and ours,
although the former revolves more about making the probabilities of apparition of specific coefficients
vary. In particular, this model is not very well suited to provide insights on the “sizes” of the most
commonly studied classes of Coxeter and Artin groups. On the contrary, this is a central goal of our
model.

The two variables that come to mind when thinking about Artin groups are their rank, that is the number
of vertices of the defining graph, as well as the choice of the associated coefficients. A first step in the
theory is to consider what happens if we restrict ourselves to the family GN;M of all the defining graphs
with N vertices and with coefficients in f1; 2; 3; : : : ;M g, for some N � 1 and M � 2. As we want any
possible rank and any possible coefficient to eventually appear in a random Artin group, a convenient way
to think about randomness is to pick a defining graph at random in the family GN;M, and then to make N
and M grow to infinity. Note that isomorphic labelled graphs may be counted multiples times in GN;M.

As it turns out, randomness of defining graphs highly depends on the speed at which N and M grow.
A prime example of this is that the probability for a defining graph of GN;M to give an Artin group of
large-type (meaning that none of the coefficients is 2) tends to 1 when M grows much faster than N ,
and tends to 0 when N grows much faster than M . To solve this problem, we decide to relate N and M
through a function f such that M WD f .N /. This way, we only have to look at the family GN;f .N/ when
N goes to infinity.
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Random Artin groups 1525

If AF is a family of Artin groups coming from a family of defining graphs F, a way of measuring the
“size” of AF is to compute the limit

lim
N!1

#.F\GN;f .N//

#.GN;f .N//
:

Of course, this ratio depends on the choice we make for the function f . When the above limit is 1, that is
when the probability that a graph picked at random in GN;f .N/ will give an Artin group that belongs to
the said family AF tends to 1, we say that a random Artin group (with respect to f ) is asymptotically
almost surely in AF.

One may wonder why our model only considers graphs of rank N , and not all graphs with rank at
most N . As it turns out, the size of the set of all graphs with at most N vertices (and coefficients in
f1; 2; : : : ; f .N /g) is asymptotically the same as the size of GN;f .N/, in the sense that the quotient of
the two values tends to 1 when N approaches1. Thus asymptotically it is not an actual restriction to
only consider graphs with precisely N vertices.

Now, there are families AF of Artin groups for which the above limit tends to 1 no matter what (sensible)
choice we make for the function f . We say that such a family is uniformly large (resp. uniformly small if
that limit is always 0). Our first result concern such families of Artin groups:

Theorem 1.1 The family of irreducible Artin groups and the family of Artin groups with connected
defining graphs are uniformly large. On the other hand , the family of Artin groups of type FC is uniformly
small. In particular , the same applies to the families of RAAGs and triangle-free Artin groups.

As mentioned earlier, there are numerous families of Artin groups whose “size” depends on the choice
of function f . When f is large enough, which means that the choice of possible coefficients for the
defining graphs grows fast enough compared to the rank of the Artin group, we obtain much stronger
results. This is made explicit in the next two theorems.

For two nondecreasing divergent functions f; g WN!N we say that f 4 g if the limit

lim
N!1

f .N /

g.N /

exists and is finite. If f 4 g and f < g then we will write f ' g. Finally if f 4 g but f 6' g then we
will write f � g, and similarly for f � g.

Theorem 1.2 Let AF be any family of Artin groups defined by forbidding a finite number of coefficients
from their defining graphs , and consider a function f W N ! N. Let � be a graph picked at random
in GN;f .N/.

(1) If f .N /�N 2, then A� asymptotically almost surely belongs to AF.

(2) If f .N /�N 2, then A� asymptotically almost surely does not belong to AF.

(3) If f .N /'N 2, then the probability that A� belongs to AF is strictly between 0 and 1.

Algebraic & Geometric Topology, Volume 25 (2025)



1526 Antoine Goldsborough and Nicolas Vaskou

Note that the previous theorem applies to the families of large-type, extra-large-type, or large-type and
free-of-infinity Artin groups. There are strong results in the literature about these families of Artin groups,
as most of the famous conjectures and problems about Artin groups have been solved for at least one of
them (see Section 2).

While these different families of Artin groups have the same threshold at f .N /' N 2 no matter how
many coefficients we forbid, the class of 2-dimensional Artin groups turns out to be substantially bigger.
Studying this class, we obtain the following result:

Theorem 1.3 Consider a nondecreasing divergent function f W N ! N. Let � be a graph picked at
random in GN;f .N/.

(1) If f .N /�N 3=2, then A� asymptotically almost surely is 2-dimensional.

(2) If f .N /�N 3=2, then A� asymptotically almost surely is not 2-dimensional.

A consequence of the two previous theorems is that we are able, when f grows fast enough, to show that
a random Artin group asymptotically almost surely satisfies most of the main conjectures about Artin
groups:

Theorem 1.4 Let f W N ! N be such that f .N / � N 3=2, and let � be a graph picked at random in
GN;f .N/. Then asymptotically almost surely, the following properties hold :

(1) A� is torsion-free;

(2) A� has trivial centre;

(3) A� has solvable word and conjugacy problem;

(4) A� satisfies the K.�; 1/-conjecture;

(5) the set of parabolic subgroups of A� is closed under (arbitrary) intersections;

(6) A� is acylindrically hyperbolic;

(7) A� satisfies the Tits alternative;

(8) A� is not virtually cocompactly cubulated.

Moreover , if f .N /�N 2 then asymptotically almost surely the following properties also hold :

(1) A� is CAT (0);

(2) A� is hierarchically hyperbolic;

(3) A� is systolic and thus biautomatic;

(4) A� is rigid ;

(5) Aut.A�/Š A� Ì Out.A�/, where Out.A�/Š Aut.�/� .Z=2Z/ is finite.

Algebraic & Geometric Topology, Volume 25 (2025)
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N

f .N/

� is not a cone

N 1�˛

� acylindrically hyperbolic
� trivial center

2-dimensional Artin groups

N 3=2

� acylindrically hyperbolic
� trivial centre
� solvable conjugacy problem
� K.�; 1/-conjecture holds
� parabolic subgroups stable

under intersections
� Tits alternative holds
� not virtually cocompactly cubulated

large, XL, XXL, free-of-1, . . .

N 2

� CAT(0)
� hierarchically hyperbolic
� systolic
� rigid
� finite Out.A�/

Figure 1: The axis represents various (polynomial) functions f . Above the main axis are
described the classes of Artin groups that we obtain asymptotically almost surely with respect to f ,
while under this axis we list the properties that we know these groups will satisfy asymptotically
almost surely.

At last, we also prove interesting results for families of Artin groups in which the number M of permitted
coefficients grows “slowly enough” compared to the rank N . We focus on the class of Artin groups A�
whose associated graphs � are not cones, and we prove that for most (nondecreasing divergent) functions,
the probability that a random Artin group is acylindrically hyperbolic and has trivial centre tends to 1.

Theorem 1.5 Let ˛ 2 .0; 1/ and let f W N ! N be a nondecreasing divergent function satisfying
f .N /�N 1�˛ . Let now � be a graph picked at random in GN;f .N/. Then the associated Artin group A�
is acylindrically hyperbolic and has trivial centre asymptotically almost surely.

The results of the above theorems for polynomial functions is encapsulated in Figure 1.

The previous results shows that we are very close to being able to state that “almost all Artin groups
are acylindrically hyperbolic and have trivial centres”. It is conjectured that all irreducible nonspherical
Artin groups are acylindrically hyperbolic; see Charney and Morris-Wright [5]. Although proving this
conjecture for all Artin groups seems to be a difficult problem, some progress has been made in recent
years; see Kato and Oguni [13] and Vaskou [17]. It would seem to be an interesting line of research to try
to expand the spectrum of families of Artin groups for which one can prove acylindrical hyperbolicity, in
order to “fill in” the gap of functions at which a random Artin group is acylindrically hyperbolic. This
leads to the following question.

Algebraic & Geometric Topology, Volume 25 (2025)



1528 Antoine Goldsborough and Nicolas Vaskou

Question 1.6 Construct a family AF of acylindrically hyperbolic Artin groups or of Artin groups with
trivial centres for which the following holds:

There exists an ˛ 2 .0; 1/ such that for all functions f W N ! N satisfying N 1�˛ 4 f .N / 4 N 3=2, a
graph � picked at random in GN;f .N/ is such that A� asymptotically almost surely belongs to AF.
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2 Preliminaries and first results

In this section we bring more details about some of the notions discussed in the introduction. This includes
discussions about most of the commonly studied classes of Artin groups, as well as discussions regarding
open conjectures related to Artin groups.

Throughout this paper, we will often call a triangle in a graph � any subgraph of � that is generated by 3
vertices. This notion will be convenient, although one must note that with this definition, triangles may
have strictly fewer than 3 edges, as subgraphs of � .

Most of the main conjectures about Artin groups are still open in general. That said, many of them have
been proved for smaller families of Artin groups. Two important of these families are the families of
2-dimensional Artin groups and the family of Artin groups of type FC. These two families have been
extensively studied following the work of Charney and Davis [3]. The other well-studied families are
usually subfamilies of these.

Before coming to these definitions, we first recall what a parabolic subgroup of an Artin group is. Let A�
be any Artin group, and let � 0 be a full subgraph of � . A standard result about Artin groups states that
the subgroup of A� generated by the vertices of � 0 is also an Artin group, that is isomorphic to A� 0 [14].
Such a subgroup is called a standard parabolic subgroup of A� . The conjugates of these subgroups are
called the parabolic subgroups of A� .

Definition 2.1 (0) An Artin group A� is said to be spherical if the associated Coxeter group W� is
finite.

Algebraic & Geometric Topology, Volume 25 (2025)
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(1) An Artin group A� is said to be 2-dimensional if for every triplet of distinct standard generators
a; b; c 2 V.�/, the subgraph � 0 spanned by a, b and c corresponds to an Artin group A� 0 that is not
spherical. By a result of [3], this is equivalent to requiring that

1

mab
C

1

mac
C

1

mbc
� 1:

We let D be the set of graphs � such that the above condition is satisfied. We let AD be the set of
2-dimensional Artin groups. The family of 2-dimensional Artin groups contains the well-studied families
of large-type Artin groups (every coefficient is at least 3), extra-large-type Artin groups (every coefficient
is at least 4), or XXL Artin groups (every coefficient is at least 5).

(2) An Artin group A� is said to be of type FC if every complete subgraph � 0 � � generates an Artin
group A� 0 that is spherical. Let FC be the set of graphs � that give rise to an Artin group of type FC and
let AFC be the set of Artin groups of type FC.

The family of Artin groups of type FC contains the family of right-angled Artin groups, also called RAAGs
(the only permitted coefficients are 2 and1), the family of spherical Artin groups, and the family of
triangle-free Artin groups (the Artin groups whose associated graphs don’t contain any 3-cycles). Being
triangle-free is actually equivalent to being both of type FC and 2-dimensional.

We now move towards the main conjectures related to Artin groups. For each conjecture, we will briefly
describe the state of the common research towards proving it, by mentioning the one or two result(s) that
will turn out to be the more “probabilistically relevant” in our model — in other words, the results that
cover the largest classes.

Conjecture 2.2 Let A� be any Artin group. Then:

(1) A� is torsion-free.
,! This was proved for 2-dimensional Artin groups [3].

(2) If A� is irreducible and nonspherical, then A� has trivial centre.
,! This was proved for 2-dimensional Artin groups [17], and for Artin groups whose graph is not

the cone of a single vertex [5].

(3) A� has solvable word and conjugacy problems.
,! This was proved for 2-dimensional Artin groups [11].

(4) A� satisfies the K.�; 1/-conjecture.
,! This was proved for 2-dimensional Artin groups [3].

(5) Intersections of parabolic subgroups of A� give parabolic subgroups of A� .
,! This was proved for large-type Artin groups [6] and more generally for .2; 2/-free 2-dimensional

Artin groups [2].

(6) A� is CAT(0).
,! This was proved for XXL Artin groups [9].

Algebraic & Geometric Topology, Volume 25 (2025)



1530 Antoine Goldsborough and Nicolas Vaskou

(7) If A� is irreducible and nonspherical, then A� is acylindrically hyperbolic.
,! This was proved for 2-dimensional Artin groups [17], and for Artin groups whose graph is not

the cone of a single vertex [13].

(8) A� is hierarchically hyperbolic.
,! This was proved for extra-large-type Artin groups [10].

(9) A� is systolic and biautomatic.
,! This was proved for large-type Artin groups [12].

(10) A� satisfies the Tits alternative.
,! This was proved for 2-dimensional Artin groups [15].

In addition to these conjectures, the following questions have been raised:

Question 2.3 Let A� be any Artin group.

(1) When is A� not virtually cocompactly cubulated?
,! This was proved to be the case when A� is 2-dimensional and satisfies the condition of [8,

Conjecture B].

(2) When is Out.A�/ finite?
,! This was proved to be the case for large-type free-of-infinity Artin groups [18].

(3) When is A� rigid, in the sense of [16]?
,! This was proved to be the case for large-type Artin groups that have no separating edges [16,

Theorem B]. This includes the class of large-type free-of-infinity Artin groups.

Definition 2.4 Let F be a family of defining graphs and let AF be the corresponding class of Artin
groups. Let f WN!N be a nondecreasing divergent function. We say that a random Artin group (with
respect to f ) A� belongs to AF with probability

Pf ŒA� 2 AF� WD lim
N!1

P Œ� 2 F j � 2 GN;f .N/�D lim
N!1

#.F\GN;f .N//

#.GN;f .N//
;

when the limit exists. Furthermore, we say that a random Artin group A� (with respect to f ) is
asymptotically almost surely in AF if Pf ŒA� 2 AF� D 1. Similarly, we say that A� is asymptotically
almost surely not in AF if Pf ŒA� 2 AF�D 0.

Definition 2.5 Let AF be a family of Artin groups. Then we say that AF is uniformly large if for
every nondecreasing divergent function f W N ! N, a random Artin group A� (with respect to f ) is
asymptotically almost surely in AF. We say that F is uniformly small if A� is asymptotically almost
surely not in AF.

We now move towards our first results. The first thing we will prove is that the family of irreducible
Artin groups and the family of Artin groups with connected defining graphs are uniformly large. This is
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important as many results regarding Artin groups assume that the corresponding groups are irreducible
and/or have a connected defining graph. Our work shows that these two hypotheses are very much not
restrictive.

Definition 2.6 Let �1 and �2 be two defining graphs. The graph �1 �k �2 is the graph obtained by
attaching every vertex of �1 to every vertex of �2 by an edge with label k (with k 2 f1; 2; 3; : : :g).

Let now � be any defining graph. Then � is called a k-join relative to �1 and �2 if there are two
subgraphs �1; �2 � � such that V.�1/tV.�2/D V.�/ and such that � D �1 �k �2.

We will denote by AJk the class of Artin groups whose defining graphs decompose as k-joins.

Remark 2.7 (1) If � 2 J2 then A� decomposes as a direct product A�1 �A�2 in an obvious way. In
that case, � is called reducible. The class JC2 of irreducible defining graphs will be denoted by Irr.

(2) If � 2 J1 then it is disconnected. The class JC1 of connected defining graphs will be denoted
by Con.

Lemma 2.8 For all k 2 f1; 2; 3; : : :g, the family AJk is uniformly small. In particular , the classes AIrr

and ACon of Artin groups are both uniformly large.

Proof We will count the number of decompositions of the graph � as � D �1 �k �2. Without loss
of generality, we will let �1 denote the subgraph with the lower rank, so that jV.�1/j � bN=2c. Let
f WN!N be a nondecreasing divergent function and consider the family Jk . For a given N � 1,

P Œ� 2Jk j� 2GN;f .N/�DP
�
9�1; �2 with jV.�1/j �N=2 such that �D�1 �k �2 j� 2GN;f .N/

�
�

bN=2cX
jD1

P
�
9�1; �2 with jV.�1/jD j such that �D�1 �k �2 j� 2GN;f .N/

�

D

bN=2cX
jD1

�
N

j

��
1

f .N /

�j.N�j /

�

bN=2cX
jD1

�
Ne

jf .N /N=2

�j
�

Ne

f .N /N=2
�

�
1� .Ne=f .N /N=2/N=2C1

1�Ne=f .N /N=2

�
where we used the bound �N

j

�
�

�
Ne

j

�j
:

Now limN!1Ne=f .N /N=2 D 0 for any nondecreasing divergent function f , so we obtain

Pf ŒA� 2 AJk �D lim
N!1

P Œ� 2 Jk j � 2 GN;f .N/�D 0 �
�
1�0

1�0

�
D 0:

This proves the main statement of the lemma. The second then directly follows from Remark 2.7.

Our next result concerns the class of Artin groups of type FC.
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Lemma 2.9 The family AFC of Artin groups of type FC is uniformly small. In particular , the family
of triangle-free Artin groups , the family of spherical Artin groups and the family of RAAGs are also
uniformly small.

Proof Let f be any nondecreasing divergent function, and let � 2 GN;f .N/. We want to bound the
probability that � belongs to FC\GN;f .N/. Let a, b and c be three vertices of � . The probability that any
of the three corresponding coefficients mab , mac and mbc is not 2 or1 is precisely .f .N /� 2/=f .N /,
and hence the probability that the three coefficients are not 2 nor1 is ..f .N /� 2/=f .N //3. Note that
when this happens, the subgraph � 0 � � spanned by a, b and c is complete but generates an Artin group
A� 0 which is nonspherical (the sum of the inverses of the three corresponding coefficients is � 1). In
particular, � is not of type FC. We obtain

Pf ŒA� … AFC�D lim
N!1

#.GN;f .N/nFC/

#.GN;f .N//
� lim
N!1

�
f .N /� 2

f .N /

�3
D lim
N!1

�
1�

2

f .N /

�3
D 1:

As mentioned in the introduction, there are interesting classes of Artin groups for which the probability
that a graph taken at random will belong to the class highly depends on the choice of function f . Some
examples are given through the following theorem.

Theorem 2.10 Let F be any family of graphs defined by forbidding a finite number k of coefficients and
let AF be the family of corresponding Artin groups. Consider a function f WN!N. Let A� be a random
Artin group (with respect to f ).

(1) If f .N /�N 2, then A� asymptotically almost surely belongs to AF.

(2) If f .N /�N 2, then A� asymptotically almost surely does not belong to AF.

(3) If f .N /'N 2 then asymptotically we have Pf ŒA� 2AF� 2 .0; 1/. Moreover , if f .N /D �N 2 for
some � > 0, then Pf ŒA� 2 AF�D e

�k=2�.

Proof A graph with N vertices has 1
2
N.N � 1/ pairs of vertices, each of which is given one of f .N /

possible coefficients. Hence, direct computations on the possible number of graphs give

#GN;f .N/ D .f .N //
N.N�1/

2 :

Similarly, we have
#.F\GN;f .N//D .f .N /� k/

N.N�1/
2 :

And thus we obtain

Pf ŒA� 2 AF�D lim
N!1

#.F\GN;f .N//

#.GN;f .N//
D lim
N!1

�
f .N /� k

f .N /

�N.N�1/
2

D lim
N!1

�
f .N /� k

f .N /

�f .N/�N.N�1/
2f.N/

�
:
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Observe that

lim
N!1

�
f .N /� k

f .N /

�f .N/
D e�k :

In particular, for any � > 0 there is a big enough N� such that for all N �N� we have

e�k � � �

�
f .N /� k

f .N /

�f .N/
� e�kC �:

Hence for N �N�,

.e�k � �/r.N/ �

�
f .N /� k

f .N /

�f .N/�N.N�1/
2f.N/

�
� .e�kC �/r.N/;

where r.N /DN.N � 1/=.2f .N //.

Therefore, if f .N / �N 2, there is a function h with limN!1 h.N /D1 such that f .N /D h.N /N 2,
and hence r.N /D .N � 1/=.2Nh.N // which tends to 0 as N !C1. Thus, in this case

Pf ŒA� 2 A_F�D lim
N!1

�
f .N /� k

f .N /

�f .N/r.N/
D 1:

If f .N /�N 2, there exists a function h with limN!1 h.N /D1 such that f .N /h.N /DN 2, and here
r.N /D .N � 1/h.N /=.2N / which tends to1 as N !1, so in this case

Pf ŒA� 2 A_F�D lim
N!1

�
f .N /� k

f .N /

�f .N/r.N/
D 0:

If f .N /'N 2, then limN!1 f .N /=N 2 is a nonzero constant and hence limN!1 r.N /DM for some
constant M > 0. Thus in this case,

Pf ŒA� 2 A_F�D e�kM :

Finally, if f .N /D �N 2, we obtain r.N /! 1=.2�/DWM and the result follows.

The previous theorem has many consequences, as it can be applied to the families of large-type, extra-
large-type, XXL or free-of-infinity Artin groups, for which much is known. Before stating an explicit
result in Corollary 2.12, we prove the following small lemma:

Lemma 2.11 Let A_F and A_H be two families of Artin groups , let f W N ! N be a nondecreasing
divergent function , and suppose that Pf ŒA� 2 A_H�D 1. Then

Pf ŒA� 2 A_F�D Pf ŒA� 2 A_F\A_H�:

Proof This is straightforward:

Pf ŒA� 2 A_F�D Pf ŒA� 2 A_F\A_H�CPf ŒA� 2 A_F[A_H�„ ƒ‚ …
D1

�Pf ŒA� 2 A_H�„ ƒ‚ …
D1

D Pf ŒA� 2 A_F\A_H�:
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Corollary 2.12 Let f WN!N be a function satisfying f .N / �N 2. Then a random Artin group A�
(with respect to f ) satisfies any of the following properties asymptotically almost surely:

(1) A� is CAT (0);

(2) A� is hierarchically hyperbolic;

(3) A� is systolic and biautomatic;

(4) A� is rigid ;

(5) Aut.A�/Š A� Ì Out.A�/, where Out.A�/Š Aut.�/� .Z=2Z/ is finite.

Proof Let AK be the class of XXL free-of-infinity Artin groups, and let AL WD AIrr\ACon\AK. Using
Lemmas 2.8 and 2.11 we can see that Pf ŒA� 2 AL� D Pf ŒA� 2 AK�. The class AK has been defined
as forbidding 4 coefficients from the defining graph; hence by Theorem 2.10 a random Artin group A�
(with respect to f ) is asymptotically almost surely in AK and therefore asymptotically almost surely
in AL. The various results given in Conjecture 2.2 concern families of Artin groups that all contain the
family AL. In particular, every Artin group in AL satisfies the ten points of Conjecture 2.2. The results
given in items (6), (8) and (9) of Conjecture 2.2 are precisely those needed for items (1), (2) and (3) of
Corollary 2.12. Similarly, every Artin group in AK is rigid, as per item (3) of Question 2.3. This proves
point (4) of Corollary 2.12. For item (5), this follows from [18, Theorem A] which shows that this result
holds for large-type free-of-infinity Artin groups, and in particular for Artin groups in the family AK.

Remark 2.13 The previous corollary proves the five points in the second half of Theorem 1.4. Note that
at this point, we could already prove the eight points in the first half of Theorem 1.4 for f .N /�N 2. We
did not include this proof as it will be extended to all functions f .N /�N 3=2 in the following section.

3 Two-dimensional Artin groups

This section aims at studying from our probabilistic point of view the family of 2-dimensional Artin
groups. This family is particularly important in the study of Artin groups, and many authors in the
literature have obtained strong results for this class (see Conjecture 2.2).

Our goal will be to show that if f .N /�N 3=2 then asymptotically almost surely a random Artin group
(with respect to f ) will be 2-dimensional and if f .N / � N 3=2 then asymptotically almost surely a
random Artin group (with respect to f ) will not be 2-dimensional. In particular, we will be able to
improve the result of Corollary 2.12, thus proving Theorem 1.4.

The condition of being 2-dimensional (see Definition 2.1(1)) is quite specific, which makes it hard to
compute the “size” of the family. As it turns out, the size of this family is comparable to the size of
another family of Artin groups, which is slightly easier to compute (see Lemma 3.2 and Theorem 3.3).
This other family resembles the family introduced in [2]. We introduce it here:
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Definition 3.1 We say an Artin group A� is .2; 2/-free if � does not have any two adjacent edges
labelled by 2. We denote by B the set of graphs that do not have two adjacent edges labelled by 2. We
define AB to be the family of .2; 2/-free Artin groups.

Recall that in Definition 2.1(1), we have defined the set of graphs D and the set of Artin groups AD. The
following lemma is a key result. It will allow us to restrict to the study of .2; 2/-free Artin groups, as
asymptotically this family has the same size as the family AD.

Lemma 3.2 For all nondecreasing divergent functions f WN!N,

� Pf ŒA� 2 AD�� Pf ŒA� 2 AB�;

� further , if f .N /�N , then Pf ŒA� 2AD�D Pf ŒA� 2 AB�.

Proof The probability that a random Artin group A� gives rise to a 2-dimensional Artin group can be
found by conditioning on the event “� 2B”:

(�) P Œ� 2 D j � 2 GN;f .N/�D P
�
� 2 D j .� 2B/\ .� 2 GN;f .N//

�
P
�
� 2B j � 2 GN;f .N/

�
CP

�
� 2 D j .� …B/\ .� 2 GN;f .N//

�
P
�
� …B j � 2 GN;f .N/

�
:

Note that once we have two adjacent edges e1 and e2 labelled by 2, then the probability that the triangle
spanned by fe1; e2g generates an Artin groups of spherical type is exactly the probability that the last
edge is not labelled by1. This probability is .f .N /� 1/=f .N /; hence we have

P
�
� 2 D j .� …B/\ .� 2 GN;f .N//

�
� 1�

f .N /� 1

f .N /
D

1

f .N /
:

Whence we get the following upper bound for (�), for any nondecreasing function f :

P Œ� 2 D j � 2 GN;f .N/�� P Œ� 2B j � 2 GN;f .N/�CP Œ� …B j � 2 GN;f .N/� �
1

f .N /
:

By noting that for any nondecreasing divergent function f we have that 1=f .N /! 0, we get

Pf ŒA� 2 AD�D lim
N!1

P Œ� 2 D j � 2 GN;f .N/�� lim
N!1

P Œ� 2B j � 2 GN;f .N/�D Pf ŒA� 2 AB�:

We now deal with the lower bound. The probability that a given triangle � is of spherical type is the
quotient

(��)
# ways that � can be spherical

# possible coefficients on �
:

In general, the only triangles that give spherical Artin groups are of the form .2; 3; 3/, .2; 3; 4/, .2; 3; 5/,
and .2; 2; k/ for k � 2. In our case, it is given that A� is .2; 2/-free, so the only triangles which are of
spherical type are of the form .2; 3; 3/, .2; 3; 4/ or .2; 3; 5/. When considering the possible permutations
of the order of the coefficients, this gives 15 possibilities. This yields the numerator of (��).

In order to find an upper bound for (��), it remains to find a lower bound for the denominator. In a graph
� that we know is .2; 2/-free, a triangle whose edges are all labelled by coefficients other than 2 will
always be a possible combination of coefficients for a triangle � of � . Hence the number of possible
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coefficients for a triangle � of a .2; 2/-free graph is at least .f .N /� 1/3. This yields

(���)
# ways that � can be spherical

# possible coefficients on �
�

15

.f .N /� 1/3
:

Hence, by an union bound we get

P
�
� …D j .� 2B/\.� 2GN;f .N//

�
�

X
� triangle in �

P
�
� is of spherical type j .� 2B/\.� 2GN;f .N//

�
�

�
N

3

�
15

.f .N /�1/3
:

Therefore, by (�) we get

(����) P Œ� 2 D j � 2 GN;f .N/��

�
1�

�
N

3

�
15

.f .N /� 1/3

�
P Œ� 2B j � 2 GN;f .N/�:

Hence, if f .N /�N , we have

lim
N!1

��
N

3

�
15

.f .N /� 1/3

�
D 0:

This means that

Pf ŒA� 2 AD�D lim
N!1

P Œ� 2 D j � 2 GN;f .N/�

� lim
N!1

P Œ� 2B j � 2 GN;f .N/� (by (����))

D Pf ŒA� 2 AB�:

We now move towards determining for which (nondecreasing divergent) functions a random Artin group
is asymptotically almost surely 2-dimensional, or not 2-dimensional. In view of Lemma 3.2, looking at
.2; 2/-free Artin groups will be enough to give a conclusion for 2-dimensional Artin groups. The result
we want to prove is the following:

Theorem 3.3 Let f WN!N; then , for a random Artin group A� (with respect to f ):

(1) If f .N /�N 3=2, then asymptotically almost surely A� is 2-dimensional.

(2) If f .N /�N 3=2, then asymptotically almost surely A� is not 2-dimensional.

(3) If f .N /'N 3=2 then Pf ŒA� 2 AD� < 1. Moreover , if f .N /DN 3=2 then Pf ŒA� 2 AD�� 2=3.

Proof Let f be any nondecreasing, divergent function. We need to compute Pf ŒA� 2 AD�. In view of
Lemma 3.2, it is enough to compute Pf ŒA� 2 AB�, ie the probability that an Artin group A� picked at
random is .2; 2/-free. To do this, we will use the second moment method.

Let us consider a graph � 2 GN;f .N/. For any ordered triplet .v1; v2; v3/ of distinct vertices of � , we
let I.v1;v2;v3/ W G

N;f .N/! f0; 1g be the random variable which takes 1 on � 2 GN;f .N/ precisely when
.v1; v2; v3/ spans a triangle with mv1;v2 Dmv1;v3 D 2. We let

X D

� X
.v1;v2;v3/2V.�/3

I.v1;v2;v3/

�
W GN;f .N/!N;
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where the sum is taken over all triplets of distinct vertices. The variable X counts the number of pairs of
adjacent edges labelled by a 2, twice (because of the permutation of these edges).

We can compute the expectation EŒI.v1;v2;v3/�D f .N /
�2 and hence

EŒX�D
X

.v1;v2;v3/

EŒI.v1;v2;v3/�DN.N � 1/.N � 2/f .N /
�2
�N 3f .N /�2:

Now, we use the second moment method, as in [4, Theorem 6]:

P ŒX ¤ 0��
EŒX�2

EŒX2�
:

We have already computed EŒX�, so we now compute EŒX2� by dividing into several cases the sum

X2 D
X

I.v1;v2;v3/I.w1;w2;w3/:

Note that the sum is taken over all ordered triplets .v1; v2; v3/ and .w1; w2; w3/ of vertices, where the vi
are distinct, and the wi are distinct. Also note that if one of the two triangles does not have two edges
labelled by 2, then the corresponding term in the sum is trivial. In other words, it is enough to only sum
over pairs of triangles that both have at least two edges labelled by 2. In a triangle .v1; v2; v3/ such that
mv1v2 Dmv1v3 D 2, we shall call v1 the central vertex of the triangle. The different cases are treated
below. They can be seen in Figure 2.

Case 1 Let X1 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that no vertex appears in both
triples. Then

EŒX1�D
NŠ

.N � 6/Š
f .N /�4 �N 6f .N /�4:

Case 2 Let X2 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex and the vertex they share is central in both triangles (ie v1 D w1). Then we have

EŒX2�D
NŠ

.N � 5/Š
f .N /�4 �N 5f .N /�4:

Case 3 Let X3 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex, where this vertex is the central vertex for one triangle and not a central vertex for the
other triangle (for example v2 D w1). In this case

EŒX3�D 4
N Š

.N � 5/Š
f .N /�4 � 4N 5f .N /�4:

Case 4 Let X4 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex, where this vertex is not central for either triangle (for example v2 D w2). Then

EŒX4�D 4
N Š

.N � 5/Š
f .N /�4 � 4N 5f .N /�4:
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v1

v2 v3

2 2

w1

w2 w3

2 2
v1

v2

v3

w2

w3

2 2

2 2

v1

v2

v3

w2

w3

2 2

2

v1

v2

v3

w1

w3

2

2 2

2 v1

v2

v3

w1

2 2

2 2

v1

v2

v3

w2

2 2

2

v1

v2

w1

w2

2

2

2

v1

v2

v3

w1

2 2

2

2

v1 D w1

v2 v3

2 2

v1 D w2

v2 v3

2 2

2

Figure 2: From top-left to bottom-right: the ten cases described in the proof of Theorem 3.3. The
edges that are not explicitly labelled by 2 can be labelled by any coefficient, including1.

Case 5 Let X5 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices and these two vertices are not central for either triangle (for example v2 D w2 and
v3 D w3). In this case

EŒX5�D 2
N Š

.N � 4/Š
f .N /�4 � 2N 4f .N /�4:

Case 6 Let X6 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices and one of these is central in both triangles and the other is not (for example v1Dw1
and v3 D w2). In this case

EŒX6�D 4
N Š

.N � 4/Š
f .N /�3 � 4N 4f .N /�3:

Case 7 Let X7 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices where one of these is central for the triangle .v1; v2; v3/ but not for .w1; w2; w3/,
and the other vertex is central for the triangle .w1; w2; w3/ but not for .v1; v2; v3/ (for example v1 Dw3
and w1 D v3). In this case

EŒX7�D 4
N Š

.N � 4/Š
f .N /�3 � 4N 4f .N /�3:

Case 8 Let X8 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices where one of these is central for the triangle .v1; v2; v3/ but none of the two vertices
is central for .w1; w2; w3/ (for example v1 D w2 and v3 D w3). In this case

EŒX8�D 4
N Š

.N � 4/Š
f .N /�4 � 4N 4f .N /�4:
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Case 9 Let X9 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share all
three vertices, and such the central vertices of both triangles are the same (ie v1 D w1). In this case

EŒX9�D 2
N Š

.N � 3/Š
f .N /�2 � 2N 3f .N /�2:

Case 10 Let X10 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
all three vertices, and such that the central vertex of the first triangle is not the central vertex of the second
triangle (for example v1 D w2). We get

EŒX10�D 4
N Š

.N � 3/Š
f .N /�3 � 2N 3f .N /�3:

Therefore, we have

EŒX2�

EŒX�2
D

8X
iD1

EŒXi �

EŒX�2

�
N 6f .N /�4C9N 5f .N /�4C6N 4f .N /�4C8N 4f .N /�3C2N 3f .N /�3C2N 3f .N /�2

N 6f .N /�4

� 1C
9

N
C

6

N 2
C
8f .N /

N 2
C
2f .N /

N 3
C
2f .N /2

N 3
:

Hence, if f .N /�N 3=2 then by definition there exists a nondecreasing divergent function h such that
f .N /h.N /DN 3=2. In this case we get

P ŒX ¤ 0��

�
EŒX2�

EŒX�2

��1
�

�
1C

9

N
C

6

N 2
C

8

h.N /N 1=2
C

4

h.N /N 3=2
C

2

h.N /2

��1
:

When f .N /�N 3=2, we obtain

Pf ŒA� 2 AB�D lim
N!1

P Œ� 2B j � 2 GN;f .N/�D lim
N!1

P ŒX D 0�D 1� lim
N!1

P ŒX ¤ 0�D 0:

Thus asymptotically almost surely A� is not .2; 2/-free. In view of Lemma 3.2, this also means that
asymptotically almost surely A� is not of dimension 2, this proves item (2) in Theorem 3.3.

If f .N /'N 3=2 then the quotient f .N /=N 3=2 tends to M for some constant M >0. Hence in this case,

P ŒX ¤ 0�&
�
1C

9

N
C

6

N 2
C
8f .N /

N 2
C
2f .N /

N 3
C
2f .N /2

N 3

��1
� .1C 2M 2/�1 > 0:

Therefore Pf ŒA� 2 AB� < 1 at f .N /'N 3=2 and hence by Lemma 3.2 we have that Pf ŒA� 2 AD� < 1.

We note that the above calculation allows us to find a better upper bound for Pf ŒA� 2AB� at f .N /DN 3=2.
Indeed, this implies that M D 1 and hence we get P ŒX ¤ 0� & 1

3
, and so at f .N / D N 3=2 we have

Pf ŒA� 2 AB��
2
3

. Hence by Lemma 3.2, this proves item (3) in the theorem.

We note that P Œ� 2B j � 2 GN;f .N/�D 1�P ŒX � 1� and by the Markov inequality,

P ŒX � 1�� EŒX��N 3f .N /�2:
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Hence if f .N /�N 3=2 then we can write f .N /DN 3=2g.N / for some nondecreasing divergent function
g WN!N and in this case

P ŒX � 1��
1

g.N /2
:

Therefore, for f .N /�N 3=2 we have

Pf ŒA� 2 AB�D lim
N!1

P Œ� 2B j GN;f .N/�D 1� lim
N!1

P ŒX � 1�� 1� lim
N!1

1

g.N /2
D 1:

In particular, asymptotically almost surely A� is .2; 2/-free. By applying Lemma 3.2 (as f .N /�N ), we
get that asymptotically almost surely A� is 2-dimensional. This proves item (1) and hence Theorem 3.3.

Before stating a corollary which will be a refinement of Corollary 2.12, we prove a small lemma which
will allow us to study the problem of (virtual) cocompact cubulation of random Artin groups. We note
that the class P defined below is point 3 in [8, Conjecture B].

Lemma 3.4 Let P be the class of defining graphs � for which there exist 4 distinct a; b; c; d 2 V.�/
such that mab … f2;1g; mac ; mbd ¤1 and mad ; mbc ¤ 2. Then AP is uniformly large.

Proof Let f WN!N be any nondecreasing, divergent function. Fix a, b, c and d to be any distinct
vertices. The probability that these vertices and their corresponding coefficients satisfy the defining
condition of P is at exactly �

f .N /� 1

f .N /

�4�f .N /� 2
f .N /

�
:

This tends to 1 for all nondecreasing divergent functions f .

Corollary 3.5 Let f WN!N be a function satisfying f .N /�N 3=2. Then a random Artin group A�
(with respect to f ) satisfies any of the following properties asymptotically almost surely:

(1) A� is torsion-free;

(2) A� has trivial centre;

(3) A� has solvable word and conjugacy problems;

(4) A� satisfies the K.�; 1/-conjecture;

(5) the set of parabolic subgroups of A� is closed under arbitrary intersections;

(6) A� is acylindrically hyperbolic;

(7) A� satisfies the Tits alternative;

(8) A� is not virtually cocompactly cubulated.

Proof By Theorem 3.3, A� is asymptotically almost surely 2-dimensional. Using Lemma 3.2, A� is
also asymptotically almost surely .2; 2/-free. Using Lemma 2.8, we also know that A� is asymptotically
almost surely irreducible. By Lemma 3.4 we know that A� is asymptotically almost surely in AP. Using
Lemma 2.11 three times, this ensures that A� is asymptotically almost surely in the class

AK WD AIrr\AD\AB\AP:
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Note that the results given for points (1), (2), (3), (4), (5), (7) and (10) of Conjecture 2.2 concern families
of Artin groups that all contain AK. In particular, every Artin group of AK satisfies the first seven points
of the Corollary 3.5. For point (8) of Corollary 3.5, we note that by [8, Theorem E], if A� 2 AD\AP

then A� is not virtually cocompactly cubulated.

Finding out the exact probability for an Artin group to be 2-dimensional (or equivalently, .2; 2/-free) at
f .N /DN 3=2 requires more work. In Theorem 3.3, we gave an upper bound for this probability. The
goal of the following lemma is to give an explicit formula for the value of Pf ŒA� 2AB� at f .N /DN 3=2.
Later, we give a conjecture on the exact value.

Lemma 3.6 For all nondecreasing , divergent functions f WN!N we have that

Pf ŒA� 2 AB�D lim
N!1

�
f .N /� 1

f .N /

�.N2 /�bN=2cX
kD1

NŠ.f .N /� 1/�k

.N � 2k/Š kŠ 2k
C 1

�
:

Proof Let Ek be the family of defining graphs that have exactly k edges labelled by a 2, and consider
the associated family AEk of Artin groups. Note that each edge is attached to two vertices, so by the
pigeonhole principle, if k > N=2 then Pf Œ� 2B\Ek�D 0. Hence

P Œ� 2B j � 2 GN;f .N/�D

bN=2cX
kD0

P Œ� 2B\Ek j � 2 GN;f .N/�:

As usual, the total number of graphs in GN;f .N/ is f .N /.
N
2 /. On the other hand, we must compute how

many of these graphs have exactly k edges labelled by a 2, while these edges are never adjacent.

First of all, when k D 0, we have P Œ� 2B\Ek j � 2 GN;f .N/�D ..f .N /� 1/=f .N //.
N
2 /.

For the case when 0 < k � bN=2c, we look at how many ways we have of placing the k edges labelled by
a 2. For the first such edge, we have

�
N
2

�
choices. The two vertices of the first edge must not appear in any

other edge labelled by a 2, so for the second edge we only have
�
N�2
2

�
choices left. This goes on until the

kth edge labelled by a 2, for which we have
�
N�2.k�1/

2

�
choices. As the order in which we have chosen

these edges do not matter, we must divide this product by kŠ. Now for the remaining
�
N
2

�
� k edges, we

can use any label other than a 2. Hence we multiply the previous product by .f .N /� 1/.
N
2 /�k . Hence,

for 0 < k � bN=2c, we have

P Œ� 2B\Ek j � 2 GN;f .N/�D
.f .N /� 1/.

N
2 /�k �

Qk�1
iD0

�
N�2i
2

�
f .N /.

N
2 / � kŠ

:

Therefore,

Pf ŒA� 2 AB�D lim
N!1

bN=2cX
kD1

P Œ� 2B\Ek j � 2 GN;f .N/�CP Œ� 2B\E0 j � 2 GN;f .N/�

D lim
N!1

bN=2cX
kD1

.f .N /� 1/.
N
2 /�k �

Qk�1
iD0

�
N�2i
2

�
f .N /.

N
2 / � kŠ

C

�
f .N /� 1

f .N /

�.N2 /
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D lim
N!1

�
f .N /� 1

f .N /

�.N2 /�bN=2cX
kD1

NŠ.f .N /� 1/�k

.N � 2k/Š kŠ 2k
C 1

�
;

where we go from the second to the third line by noting that

k�1Y
iD0

�
N � 2i

2

�
D

1

2k
N.N � 1/.N � 2/ � � � .N � 2.k� 1//.N � 2.k� 1/� 1/D

NŠ

.N � 2k/Š2k
:

Now, by Lemma 3.2 at f .N /D N 3=2 we have Pf ŒA� 2 AD�D Pf ŒA� 2 AB�; hence Lemma 3.6 also
holds for Pf ŒA� 2 AD�. We have computed this expression in Python for N up to 190, which leads us to
the following conjecture.

Conjecture 3.7 For f .N /DN 3=2 we have

Pf ŒA� 2 AB �D 1� e
�1:

In particular, we also have
Pf ŒA� 2 AD�D 1� e

�1:

4 Acylindrical hyperbolicity and centres

Two open questions in the study of Artin groups is whether all irreducible nonspherical Artin groups are
acylindrically hyperbolic and have trivial centres (see Conjecture 2.2). In this section, we study these two
aspects of Artin groups for another family of Artin groups, that we will denote ACC . The families of
Artin groups studied in Sections 2 and 3 are very large when f .N / grows fast enough compared to N .
While the spirit of this section resembles that of Sections 2 and 3, ACC will turn out to be very large
when f .N / grows slowly enough compared to N .

Definition 4.1 A graph � is said to be a cone if it has a join decomposition as a subgraph consisting of a
single vertex v0 and a subgraph � 0 such that � D v0 �� 0. Let C be the class of defining graphs that are
cones and CC the class of defining graphs which are not cones.

Recall that Irr is the class of irreducible graphs. By [13, Theorem 1.4], we have that if � has at least 3
vertices, is irreducible and is not a cone then A� is acylindrically hyperbolic. Hence it suffices to find the
probability that a random Artin group is irreducible and is not a cone.

Proposition 4.2 For all ˛ 2 .0; 1/ and all nondecreasing functions f .N /�N 1�˛ we have that

Pf ŒA� 2 ACC �D 1:

Proof Fix ˛ 2 .0; 1/ and f .N /�N 1�˛ a nondecreasing divergent function. Then, by definition, there
exists a nondecreasing divergent function h such that f .N /h.N /DN 1�˛.
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By the definition of a cone and by a union bound, we get

P Œ� 2 C j � 2 GN;f .N/��
X

v02V.�/

P
�
8u 2 V.�/� v0 Wmu;v0 ¤1 j � 2 GN;f .N/

�
D

X
v02V.�/

�
f .N /� 1

f .N /

�N�1

DN

�
f .N /� 1

f .N /

�N�1
DN

��
f .N /� 1

f .N /

�f .N/�h.N/N˛� f .N /

f .N /� 1

�
:

Thus,
Pf ŒA� 2 AC�D lim

N!1
P Œ� 2 C j � 2 GN;f .N/�D lim

N!1
Ne�N

˛h.N/
D 0:

Hence for f .N /�N 1�˛ we have Pf ŒA� 2 ACC �D 1, proving the proposition.

Corollary 4.3 Let ˛ 2 .0; 1/ and let f .N / � N 1�˛ be a nondecreasing divergent function. Then a
random Artin group (with respect to f ) asymptotically almost surely is acylindrically hyperbolic and has
a trivial centre.

Proof We note that by Lemmas 2.8 and 2.11 we have Pf ŒA� 2 AIrr\ACC �D Pf ŒA� 2 ACC �. As we
noted above, by [13, Theorem 1.4], if � is irreducible and not a cone then A� is acylindrically hyperbolic.
Hence, by Proposition 4.2, for a function f as in the statement of the corollary, we get that a random
Artin group (relatively to f ) is asymptotically almost surely irreducible and a cone, hence asymptotically
almost surely acylindrically hyperbolic.

Further, by [5, Theorem 3.3], we have that if � is irreducible and not a cone then A� has trivial centre.
Hence a random Artin group (relatively to f ) asymptotically almost surely has a trivial centre.

Let ˛ 2 .0; 1/, by Corollary 4.3 and Corollary 3.5-(6), we have shown that for all nondecreasing divergent
functions f such that either

� f .N /�N 1�˛, or

� f .N /�N 3=2,

a random Artin group A� (relatively to f ) is asymptotically almost surely acylindrically hyperbolic and
has trivial centre. This motivates the following:

Question 4.4 For which nondecreasing divergent functions f do we have that a random Artin group
(relatively to f ) is asymptotically almost surely acylindrically hyperbolic and has trivial centre?
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