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Let G DH1 � � � � �Hk �Fr be a finitely generated torsion-free group and � an automorphism of G that
preserves this free factor system. We show that when � is fully irreducible and atoroidal relative to this
free factor system, the mapping torus � DG Ì� Z acts relatively geometrically on a hyperbolic CAT(0)
cube complex. This is a generalisation of a result of Hagen and Wise for hyperbolic free-by-cyclic groups.
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1 Introduction

Consider a finitely generated free group F and an automorphism � W F ! F . Hagen and Wise showed
in [HW16] that if � is atoroidal and fully irreducible, then the mapping torus F Ì� Z acts properly and
cocompactly on a hyperbolic CAT(0) cube complex. It often happens that automorphisms of free groups
are neither atoroidal nor fully irreducible, suggesting various directions of generalisation. In [HW15],
Hagen and Wise relaxed the requirement of full irreducibility and, using the sophisticated machinery of
relative train track maps, showed that the mapping torus still acts geometrically on a CAT(0) cube complex.
They asked (see the discussion around [HW15, Problem B]) if a systematic answer to which free-by-cyclic
groups admit cubulations is possible, especially in the presence of polynomially growing subgroups.

Here, by investigating relative cubulations instead of usual cubulations, we provide an answer in great
generality as to when such groups are relatively cubulated. Let � be an automorphism of F and let
F DH1 �H2 � � � � �Hk �Fr be a free decomposition that is preserved by � (up to taking conjugates
of the factors). Such a free decomposition always exists for any �. In particular, when � is not fully
irreducible, there exists a free decomposition preserved by �, relative to which � is fully irreducible. Let
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us also assume that � is atoroidal relative to the free decomposition. We will clarify the meanings of both
these terms more precisely, using the notion of free factor systems, in Section 2. In our setting, we allow,
for instance, elements to have polynomial growth under � as long as they are elliptic in the free product.
Under a mild complexity condition, the first author and Li showed in [DL22] that the mapping torus
F Ì�Z is hyperbolic relative to the suspensions of the free factorsHi . A particular case of our main result
shows that such a mapping torus acts relatively geometrically on a hyperbolic CAT(0) cube complex.

1.1 Main result

Let G be a finitely generated group, � an automorphism of G and H a subgroup of G whose conjugacy
class is preserved by a power of �. Let n be the minimal positive power of � such that �n.H/ D
g�1Hg. Then we say that the suspension of H by � in the semidirect product G Ì� hti is the group
H Ìadgı�n htng�1i, where adg WG!G denotes the inner automorphism given by h 7! ghg�1.

To state our main result for automorphisms of free products of groups, we need the notions of full
irreducibility and atoroidality relative to a free factor system. These are analogous to the corresponding
notions for automorphisms of free groups, with the condition that the free decomposition is preserved, but
within a free factor there are no restrictions. We also need a technical notion of no twinned subgroups.1

We refer the reader to Section 2 for the definitions.

We also recall the notion of relative cubulation introduced by Einstein and Groves in [EG20]: a relatively
hyperbolic group .�;P/ is relatively cubulated if it acts cocompactly on a CAT(0) cube complex with
cell stabilisers either trivial or conjugate to a finite index subgroup in P.

Theorem 1.1 Let G be a finitely generated torsion-free group and let G ŠH1 � � � � �Hk �Fr be a free
decomposition such that each Hi is nontrivial. Let � be an automorphism that preserves the associated
free factor system. Assume that kC r � 3, that � is fully irreducible relative to the free factor system and
atoroidal relative to the free factor system , and that there exist no twinned subgroups. Then the mapping
torus � DG Ì� Z admits a relative cubulation for the peripheral structure of the suspensions of the free
factors Hi .

We recover the result of [HW16] when G D Fr above,2 as well as some cases of [HW15], through a
telescopic argument of Groves and Manning [GM23, Theorem D]. In general, the relatively geometric
action on CAT(0) cube complexes that we obtain otherwise still has interesting consequences.

Note that any group acting on a CAT(0) cube complex admits an action on an `2-space built using
characteristic functions of hyperplane-halfspaces; see Niblo and Reeves [NR97]. We thus have:

Corollary 1.2 Let G and � be as in Theorem 1.1. Then the mapping torus � acts on a Hilbert space
with unbounded orbits , with no global fixed point for G.

1This requirement can in fact be removed; see work of the authors and Mutanguha [DMM25, Lemma 3.3] or Remark 2.5.
2It is stated there in terms of irreducible atoroidal automorphisms, which are fully irreducible by Dowdall, Kapovich, and
Leininger [DKL15, Corollary B.4].
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In addition, whenG is residually finite, using a generalisation by Einstein and Groves [EG22, Theorem 1.6]
of a well-known result of Haglund and Wise [HW08], we have:

Corollary 1.3 Let G and � be as in Theorem 1.1. Further , let G be residually finite. Then every full
relatively quasiconvex subgroup of the mapping torus � is separable.

Another consequence of Theorem 1.1 can be seen in our recent work with Mutanguha [DMM25], where
we showed that all hyperbolic hyperbolic-by-cyclic groups are virtually special.

1.2 Method

Our procedure to cubulate follows the scheme laid out by Hagen and Wise [HW16]. The goal is to obtain
a collection of codimension-1 subgroups of � and then apply Sageev’s dual cube complex construction
[Sag95]. The codimension-1 subgroups we build will be stabilised by full relatively quasiconvex subgroups
in the relatively hyperbolic group � . We then apply the boundary criterion of Einstein and Groves [EG20].

In order to do this, an important tool is Francaviglia and Martino’s absolute train tracks for free products
[FM15]. Given G and an automorphism � satisfying the hypotheses of the main result, there exists a
G-tree T and a train track map f W T ! T representing �. Taking mapping cylinders for f , one then
obtains a flow space on which � acts. The flow space has the structure of a tree of spaces, where the
underlying graph is a line and vertex and edge spaces are copies of the tree T . The map f “flows” a
point on any tree to its image in the next tree. We describe the flow space and various properties we need
in order to define walls in the flow space in Section 2.

Before explaining how we build walls in our setup, let us motivate our construction in the surface case.
Let Mf be the mapping torus of a closed hyperbolic surface Sg under a pseudo-Anosov map f . Cooper,
Long and Reid showed in [CLR94] that in this case there exists an immersed quasi-Fuchsian surface in
Mf (and hence a quasiconvex wall in the universal cover). First, take a simple closed curve C in Sg
which is disjoint from its f -image. Such a simple closed curve exists up to taking a finite cover of Mf .
The required immersed surface in Mf is then obtained by cutting Sg along C and f .C / and gluing C˙
to f .C�/ (the cut-and-cross-join technique).

Hagen and Wise mimicked this construction for the setup of hyperbolic free-by-cyclic groups in the fully
irreducible case. A surface with a pseudo-Anosov map is now replaced by a graph with a train track
map. The analogue of cutting along a simple closed curve is cutting along a point in the graph. However,
the situation here is more complicated as a train track map is only a homotopy equivalence and not a
homeomorphism. A point often has multiple preimages and the cut-and-cross-join operation is performed
along all points with the same image.

We use the same operation, but now our train track representative is defined not on a finite graph but on
the G-tree T . The lack of local finiteness of the tree T gives rise to additional difficulties, but we were
able to manage them because of the behaviour of train track maps in this setting, and considerations of
angles at vertices under relative hyperbolicity.
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While cocompact cubulations require walls to be (relatively) quasiconvex, relative cubulations require
walls to also be full. This forced us to introduce saturations of our walls in order to ensure fullness. The
construction of walls and their saturations can be found in Section 4.

Finally, in order to use the boundary criterion, we need sufficiently many wall saturations to not only cut
biinfinite geodesics in the flow space, but also to cut pairs of principal flow lines that are stabilised by
maximal parabolic subgroups and pairs consisting of a geodesic ray and a principal flow line. We show
this in Section 5, ensuring the separation of every pair of points in the Bowditch boundary. We verify the
latter in Section 6, where we also give a proof of Theorem 1.1.

1.3 Questions

We end this introduction with three questions arising from this work.

Question 1.4 LetGDA�B be a torsion-free group and � be an automorphism that is fully irreducible and
atoroidal relative to the above free decomposition. Does the mapping torus ofG admit a relative cubulation?

The above makes a case for a combination theorem of relatively cubulated groups, which is as yet a
largely unexplored area of research.

Question 1.5 Let G be a free product and � be an automorphism that is fully irreducible but not
necessarily atoroidal, relative to the given free decomposition. Let P be the peripheral structure of
suspensions of maximal subgroups of G on which iterations of � make lengths of conjugacy classes grow
at most polynomially. Does the mapping torus of G admit a relative cubulation?

Motivated by work of the first author and Li [DL22], such a construction would apply to free group
automorphisms, refining the cartography of possible cubulations of free-by-cyclic groups.

In [DM23], we showed that the mapping torus of a torsion-free hyperbolic group is hyperbolic relative to
the suspensions of the maximal polynomially growing subgroups. This leads to a natural question:

Question 1.6 Let G be a torsion-free hyperbolic group and � be an automorphism of G. Does the
mapping torus of G admit a relative cubulation?

The answer is yes when � is atoroidal; see our work with Mutanguha [DMM25].
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2 The flow space

2.1 Free G -trees relative to H, and train track maps

Let us fix G to be a finitely generated group for the rest of the paper.

A free factor system for G is a tuple .H1; : : : ;Hk/ of subgroups such that there exists a free subgroup
F < G for which G DH1 �H2 � � � � �Hk �F . Another free factor system .J1; : : : ; J`/ of G is strictly
larger if each Hi is conjugate into some Jr , and one inclusion is strict.

A G-tree is a metric tree endowed with an isometric action of G.

A free G-tree relative to H D fH1; : : : ;Hkg is a G-tree which is minimal for its G-action, its edge
stabilisers are trivial, and its nontrivial elliptic subgroups are exactly the conjugates of the fH1; : : : ;Hkg
in G. We may as well require that there is no vertex of valence 2 that has trivial stabiliser.

A vertex is singular if its stabiliser is nontrivial.

Observe that, because G is finitely generated, any such G-tree has finite quotient by G. There is a whole
space of such free G-trees relative to fH1; : : : ;Hkg, as studied in [GL07].

It is convenient to have a notion of angle in these nonlocally finite trees. Let T be a free G-tree relative
to H. Let us choose a word metric for each Hj , which is finitely generated as G is. Let vj 2 T be the
unique vertex fixed by Hj , and finally choose a finite set of orbit representatives for the Hj -action of
edges issuing from vj . Define the angle between two edges e and e0 issuing from the vertex fixed by
Hj to be the word length of the element hh0�1 given by h and h0 sending e and e0, respectively, into our
set of representatives. If e and e0 are distinct edges in the finite set of orbit representatives, the angle
between them is one. It is clear that the Stab.v/-action on edges adjacent to v preserves angles. We hence
complete the definition by G-equivariance: it defines the angle between two edges adjacent to singular
vertices stabilised by conjugates of the Hj . In other (locally finite) vertices, we may say that angles are 0
(if edges are equal) or 1 (if they are different). Observe that only finitely many edges make a given angle
with a given edge, and that angles (around a given vertex) satisfy the triangle inequality.

Let � be an automorphism of G that preserves the conjugacy class of each Hi . Consider a free G-tree T
relative to fH1; : : : ;Hkg. One says that a continuous map f W T ! T realises the automorphism � if it is
equivariant in the sense that for all p 2 T and all g 2 G, f .gp/D �.g/f .p/. Such maps realising �
exist in our context [FM15, Lemma 4.2]. Such a map is also, by equivariance, a quasiisometry of T .

A turn is a pair of edges e1 and e2 in T starting at a common vertex v. The pair is a proper turn if e1
and e2 are distinct. We say that e1 and e2 make a legal turn if the two paths f .e1/ and f .e2/ starting
at f .v/ share no proper common subpath. In other words, by definition, f sends legal turns to proper
turns. We say that f is a train track map if it sends edges to reduced paths without nonlegal turns, and if
moreover, for all such e1 and e2 in T making a legal turn, their images f .e1/ and f .e2/ are two paths
starting at f .v/ by two edges that themselves make a legal turn. In other words, by definition, f is a
train track map if it sends legal turns to legal turns.
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It is far from obvious that train track maps representing automorphisms exist. A theorem of Francaviglia
and Martino [FM15] ensures that if � is fully irreducible relative to fH1; : : : ;Hkg, then there exists a
free G-tree relative to fH1; : : : ;Hkg, which we denote by T , and there exists f W T ! T continuous,
with constant speed on edges, that realises � and is a train track map.

Recall that, if .H1; : : : ;Hk/ is a free factor system of G, and if � is an automorphism permuting it (ie
preserving the set of conjugacy classes fŒH1�; : : : ; ŒHk�g), we say that � is fully irreducible relative to
fH1; : : : ;Hkg [FM15, Definition 8.2] if no positive power of � preserves any larger free factor system.

We recall for later use an equivalent formulation of irreducibility (see [FM15, Definition 8.1 and
Lemma 8.3]). Let f W T ! T be a map realising the automorphism �. We say f is irreducible if
for every proper subgraph W of T that is f -invariant and G-invariant, the quotient of W by G is a forest
such that each component subtree contains at most one nonfree vertex. The map f is fully irreducible
if f i is irreducible for all i > 0. We say � is (fully) irreducible relative to fH1; : : : ;Hkg if every f
realising � is (fully) irreducible.

2.2 The flow space of an automorphism

From now on T and f are thus chosen so that f is a train track map on T representing the relatively
fully irreducible �.

Define for all i 2Z a tree Ti equivariantly isomorphic to T . Let us denote by .p 7! pi / the identification
T ! Ti . Define the action of G on Ti as g:pi D .�i .g/p/i . Observe that this makes Ti a free G-tree
relative to fH1; : : : ;Hkg. Define fi W Ti ! TiC1 by fi .pi /D .f .p//iC1. Observe, by the property of
train tracks, how fi sends a turn: if it is legal when seen in T , its image is a legal turn when seen in T .
We will make the abuse of language that any composition of the form fiCk ı fiCk�1 ı � � � ı fiC1 ı fi

(from Ti to TiCkC1) is called a (positive) iteration of f .

Start with the disjoint union of all the Ti for i 2 Z. For each i , and each (unoriented) edge ei in Ti ,
we choose an orientation and glue a rectangle Rei

D Œ0; 1�� Œ0; 1� so that f0g � Œ0; 1� is glued to ei and
f1g � Œ0; 1� is glued on the path fi .ei / in TiC1 (respecting orientation). See Figure 1 for an illustration.
Finally, for each vertex vi , we glue together the sides Œ0; 1�� f0g of the rectangles Rei

for all ei starting
at this vertex, and the sides Œ0; 1�� f1g of the rectangles Rei

for all ei terminating at this vertex. The
resulting space, with a natural structure of a cell complex, is denoted by zX . We call this space the flow
space of � (with respect to H, T and f ). Thus the flow space is a tree of spaces, where the underlying
tree is a biinfinite combinatorial line and vertex spaces are the trees Ti .

In zX , we will call any edge in some tree Ti a vertical edge, and the image of a side Œ0; 1� � f1g or
Œ0; 1��f0g of the rectangle R.ei / a horizontal edge. We call a path horizontal if it intersects rectangles in
horizontal segments Œ0; 1�� fhg.

Algebraic & Geometric Topology, Volume 25 (2025)
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e0

T0 T1 T2

Re0

f1 Rf1

Figure 1: 2-cells in the flow space. The 2-cell Re0
is bounded by the vertical edge e0 on the left,

two horizontal edges, and three vertical edges (including f1) in T1.

If f W T ! T is a train track map realising �, then for all L� 1, the map f L is a train track map realising
the automorphism �L. Keeping the same T and f we may thus produce the space zXL by using the map
f L realising �L. We will prefer to index the trees by LZ though.

Observe that zXL need not be isomorphic to zX . However we have a natural map %L W zXL ! zX : it is
obviously defined on the trees TLi , and on a rectangle R.eLi /, one sends a horizontal edge onto the
unique reduced concatenation of horizontal edges of zX with the same endpoints.

2.3 Action on the flow space

Consider the semidirect productGÌ�Z, and write t for the generator of Z that induces the automorphism �

by conjugation on G: G Ì� ZD hG; t j t�1gt D �.g/; 8g 2Gi. Then G Ì� Z acts cofinitely on zX by
defining the action of G on each Ti as above, and defining the action of t to be the shift of indices: t
maps Ti on TiC1 isometrically, through the identification with T .

The group G preserves each of the trees Ti , and in each of them it induces the action of G on T
precomposed by �i . So the orbits ofG on each of the Ti are the same, after identification to T . In particular:

Lemma 2.1 If x; y 2 T are such that there is g 2 G for which gx D y, and if i1; i2 2 Z, then there
exists 
 2G Ì� Z for which 
xi1 D yi2 .

2.4 Forward flow, backward flow and principal flow lines

For each i , from each point xi of Ti , there is a unique horizontal ray starting at xi , containing all its
images by positive iterates of f . We denote it by �.xi /, and �k.xi / is its initial subsegment of length k.
Its endpoint is denoted (slightly abusively) by f k.xi / as already mentioned. The segment �1.xi / of this
ray whose endpoints are xi and fi .xi / 2 TiC1 is called the midsegment at xi . We call the ray �.xi / the
forward flow (ray) from xi (forward path in [HW16]). It is sometimes useful to use the forward flow

Algebraic & Geometric Topology, Volume 25 (2025)
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x

f .x/
f 2.x/

f 3.x/

Figure 2: The orange segment between x and f 3.x/ is the forward flow of length 3 from x. Its
forward ladder is the union of the 2-cells in the picture.

of length L, which is the initial subsegment of length L of the forward flow ray (see Figure 2 for an
illustration). The forward ladder of a forward flow (ray or segment) � , denoted by N.�/, is the smallest
subcomplex of the cell complex zX containing � .

We emphasise that the forward flow is different from the action of t .

In the backward direction, we note the following:

Lemma 2.2 For any xi 2 Ti with xi not a singular vertex, its preimage f �1i�1.xi / in Ti�1 is finite. In
particular , every vertical edge of zX is contained in finitely many 2-cells.

Proof It suffices to prove that each edge of T is contained in finitely many images of edges of T under f .
Assume on the contrary that there are infinitely many such edges ek , whose images meet xi . Since there
are finitely many G-orbits of edges in T , we may assume that all edges ek are images of e0 by some
elements gk 2 G, all different. The map f being a quasiisometry of T , all edges ek are at bounded
distances, so the gk have bounded displacement. This forces that for large k, the gk and their images
by � have a contribution in some of the free factors Hi that is larger than the maximal angle of the
path f .e0/. However f .ek/D f .gk.e0//D �.gk/f .e0/. This forces f .ek/ and f .e0/ to be disjoint, a
contradiction.

In the case of the preimage of an infinite-valence vertex of Ti , we have an even clearer picture. For j 2N,
let us denote by f �j .v/ the set .f j /�1.v/.

Lemma 2.3 Let v 2 Ti be a singular vertex of Ti . Then for each j 2N, the set f �j .v/ is finite and
contains a unique singular vertex.

Proof We may assume that v 2 T . The set f �j .v/ lies in T . We will first show that there is a unique
singular vertex in f �j .v/ and then show that the set is finite.

Algebraic & Geometric Topology, Volume 25 (2025)
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x

Figure 3: The backward flow of length 3 from x (in orange).

Assume that it contains two different singular vertices w1 and w2 such that f j .w1/D f j .w2/D v. By
equivariance of f , the stabilisers Gw1

and Gw2
of w1 and w2 are sent by �j inside the stabiliser of Gv .

But they are also sent onto stabilisers of vertices, since � preserves the conjugacy classes of the Hk . Thus
�j .Gw1

/D �j .Gw2
/, and therefore Gw1

D Gw2
. In particular, the tree-geodesic between the vertices

w1 and w2 is pointwise fixed by Gw1
, and since w1 ¤ w2, this contradicts the triviality of stabilisers of

edges of the tree.

Assume now that the preimage f �j .v/ has infinitely many nonsingular points. Denote by .ei /i2N the
collection of edges containing a preimage. Since f is a quasiisometry, they are all at a bounded distance
from each other. Up to extracting a subsequence, we may assume they are in the same G-orbit: write
ei D gie0. Being at bounded distance from each other, the displacement of gi remains bounded. Consider
the segment si between e0 and ei D gie0 containing both. Taking a subsequence if necessary, we may
assume that there is a vertex w for which the si have the same prefix until w and then start having angles
going to infinity at this vertex. Consider f .ei /D �.gi /f .e0/. The displacement of �.gi / also remains
bounded, and the angle of f .si / at the image f .w/ tends to infinity. After w, all these images of the
f .si / are thus disjoint. It follows that all the images ei are either disjoint, or share possibly only f .w/.
In other words, the f .ei n fwg/ are disjoint. Since at w, angles are arbitrarily large, it is a singular point,
contradicting the initial assumption that the ei each contain a nonsingular preimage of a point.

We may now define the backward flow. For a point xi 2 Ti the backward flow (level in [HW16]) �L.xi /
from xi of length L is the union of length L forward flows from each point in f �L.xi /; see Figure 3.
Note that �L.xi / is a rooted tree, rooted at xi . When x … zX0, by Lemma 2.2, �L.x/ is a finite rooted tree.
In particular, [HW16, Proposition 2.5] gives the following observation:

Algebraic & Geometric Topology, Volume 25 (2025)
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Proposition 2.4 Let x … zX0. Then for anyL� 0, there exists a topological embedding �L.x/�Œ�1; 1�!
zX such that �L.x/� f0g maps isomorphically onto �L.x/.

Finally, by Lemma 2.3, there is a unique singular vertex vj in each Tj for j < i that is in the backward
flow of a singular vertex vi of Ti . Hence we can construct the principal flow line of vi to be the direct
limit of the forward flow rays of vj , for j !�1. It is well defined, biinfinite, as all vj as above, and all
images of vi by positive iterates of f have the same principal flow line.

2.5 Geometry of the flow space

In order to have relative hyperbolicity for the group � WDG Ì� Z, following [DL22], we will need the
following three additional properties, which we will assume to hold from now on:

� Any fundamental domain of T contains at least two edges, ie kC r � 3 or r � 2.

� The automorphism � is atoroidal relative to fH1; : : : ;Hkg: given any element g 2G such that g
is not contained in any conjugate of any Hi , then for all n 2N, Œ�n.g/�¤ Œg�.

� The automorphism � has no twinned subgroups: given two subgroupsH¤K such that ŒH �; ŒK�2H,
then given any g 2G and any m 2N, �m.H/¤ gHg�1 whenever �m.K/D gKg�1.

Remark 2.5 We in fact do not need to assume the no twinning property, as by [DMM25, Lemma 3.3], it
automatically holds whenever � is relatively fully irreducible and kC r � 3. We clarify that the case
r � 2 is redundant if k D 0 as there are no atoroidal maps of F2.

Let us recall that the cone-off of a graph Z over a family of subgraphs L, which we denote here by yZ, is
the graph obtained by adding to Z a vertex vL for each L 2 L and an edge between each vertex of L
and vL. Usually, each such edge is assigned to have length 1

2
.

It can help to picture T as equivariantly quasiisometric (by a collapse map) to a cone-off of the Cayley
graph of G over the left cosets of the free factors, and to picture zX as equivariantly quasiisometric to a
cone-off of the Cayley graph of � over the left cosets of the same free factors of G < � . Finally, one
can see the cone-off of zX over principal flow lines as equivariantly quasiisometric to the cone-off of the
Cayley graph of � over the cosets of the suspensions of the free factors of G.

Theorem 2.6 The 1-skeleton zX1 is ı-hyperbolic for some ı > 0. Moreover , the cone-off of zX1 over the
principal flow lines is also hyperbolic.

This is essentially proved in [DL22]. Let us cover how to obtain it. We want to use [MR08, Theorem 4.5].
However, a little care is in order. The assumption of this theorem is that one has a tree (denoted by T
in [MR08], and temporarily denoted by TMR here) of relatively hyperbolic spaces Sv , for v 2 T .0/MR, with
some properties, and the conclusion is that the whole space, denoted by X in [MR08] and temporarily
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denoted by XMR, is itself hyperbolic relative to maximal cone subtrees. Here the tree TMR is just a
biinfinite line Z indexing our trees Ti , and the spaces Si for i 2 Z are indeed the trees Ti , all isometric
to T , on which G acts through �i , and the total space XMR is zX . The different assumptions of the
theorem were checked in [DL22, Section 2.3], and the conclusion is that zX is hyperbolic relative to
a collection of quasiconvex lines (the principal flow lines of singular vertices). It follows that zX is
hyperbolic itself. It also implies that its cone-off over those lines is hyperbolic as well.

Recall that a graph is said to be fine if for each n 2N, every edge of the graph belongs to only finitely
many simple cycles of length n. Recall also that a finitely generated group � is hyperbolic relative to a
finite collection of finitely generated subgroups P if the cone-off of a Cayley graph of � over the left
cosets of elements of P is hyperbolic and fine [Bow12].

The main result of [DL22] (Theorem 0.2) was actually a related statement, that the group G Ì� hti is
itself relatively hyperbolic with respect to the collection P consisting of mapping tori of the subgroups
H1; : : : ;Hk . Since the stabiliser of a singular vertex in T0 is a conjugate of some Hi , each principal flow
line is in fact cocompactly stabilised by the suspension of a conjugate of some Hi (this can, for instance,
be deduced from Lemma 2.15(2)).

2.6 Quasiconvexity and divergence of forward flow rays

We first observe, following [HW16], that forward flow rays are uniformly quasiconvex (Proposition 2.7).

From xi 2 Ti to f n.xi / any path intersects each tree TiCk and therefore has at least n horizontal edges.
However, the forward-path has exactly n horizontal edges and no vertical contribution. If D is an upper
bound to the diameter of 2-cells, we see that the intersection of the forward flow ray with

S
i Ti is a D-

bilipschitz embedding of N in the 1-skeleton of zX . Since the latter is hyperbolic, we have quasiconvexity.
We thus have:

Proposition 2.7 [HW16, Proposition 2.3] There exists � � 0 such that the 1-skeleton N.�/1 of any
forward ladder is �-quasiconvex in zX1.

Second, two flow rays starting at different points in the same edge of Ti diverge from each other:

Lemma 2.8 Given � > 0, there exists N > 0 such that for any two points x and y contained in any
vertical edge ei � Ti with d.x; y/ � �, the distance in TiCN between f N .x/ and f N .y/ is at least
e100.ıC�/ (and thus the forward rays from x and y diverge).

Proof The forward images of a single edge are all legal paths, and by [DL22, Lemma 1.11] f applies a
uniform stretching factor > 1 on all legal paths.

Finally, two flow rays starting at different points in the star of a vertex either uniformly diverge from each
other or fellow-travel forever. More precisely we have the following:

Algebraic & Geometric Topology, Volume 25 (2025)



1572 François Dahmani and Suraj Krishna Meda Satish

Proposition 2.9 For all � > 0, there exists N > 0 such that , for all singular vertices v 2 Ti , for all
edges e1 ¤ e2 in Ti starting at v, and for all x1 and x2 in e1 and e2, respectively, at distance at least �
from v, either the distance in TiCN between f N .x1/ and f N .x2/ is at least e100.ıC�/, or the forward
rays fellow-travel until infinity.

Proof We fix � and v. For each edge e issued at v, and x 2 e at distance at least � from v, we know by
Lemma 2.8 that there is N� such that, for all n�N�, f n.x/ is at distance (in TiCn) at least e1000.ıC�/

from the principal flow line of v.

By [DL22, Lemma 2.6] f induces a quasiisometry on angles: there exists �1 > 1 such that, if e1 and e2
issued at v make an angle � , then the paths f .e1/ and f .e2/ make an angle at least �=�1 � �1 at their
common initial point f .v/— while it is slightly stronger than the stated lemma, the claim is still true with
same proof, however, the stated lemma is also sufficient to be used in a similar way. Call �.�/D �=�1��1.
Calculus ensures that it is possible to find �0 such that �N0.�0/ > 0. If e1 and e2 issued at v make an
angle greater than �0, the paths f N0.e1/ and f N0.e2/ make a positive angle at their initial common
point f N0.v/. In particular, they do not overlap. It follows that, measured in TiCN0

, the distance
d.f N0.x1/; f

N0.x2// is equal to d.f N0.x1/; f
N0.v//C d.f N0.v/; f N0.x2//. It is then greater than

2e1000.ıC�/. Since the two rays are quasiconvex in the hyperbolic space zX and have started to diverge
after N0 edges, they will diverge onward after that point.

It remains to treat the case of two edges making an angle less than �0. There are finitely many Stab.v/-
orbits of such pairs of edges. Partition them into classes of those whose forward rays fellow-travel, and
those whose forward rays exponentially diverge. Since there are finitely many, one can choose N that is
suitable for all of those in the second class, and larger than N0.

Observe that this does not prevent some points in different edges from having fellow-travelling forward
rays, with the same endpoint at infinity. However, if the origins of the flow rays are translates of each
other by an elliptic element g in Ti , they diverge, provided that g is not a torsion element:

Lemma 2.10 For any point xi in Ti , and for each g 2G elliptic in Ti such that gnxi ¤ xi for any n2N,
the flow rays from gxi and xi do not fellow-travel until infinity.

Proof Note that the midpoint of the segment of Ti between xi and gxi is fixed by g, and is hence a
singular vertex vi . If the flow rays from xi and gxi fellow-travel until infinity, then by equivariance, so
do the flow rays from gnxi and gn

0

xi , for all n; n0 2 Z. But for large enough powers, the segments from
vi to gnxi and xi make arbitrarily large angles. By arguing as in Proposition 2.9, we can conclude that
the flow rays from xi and gnxi cannot fellow-travel for arbitrarily large powers, a contradiction.

Henceforth, we will assume that the group G is torsion-free, so the above result always holds for elliptic
elements.

Let us also record a basic observation about principal flow lines:
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Lemma 2.11 Let v1 ¤ v2 be two singular vertices in zX . Then either the principal flow lines of v1
and v2 coincide or uniformly diverge from each other in both the forward and backward directions , ie for
each R > 0 there exists BR > 0 such that for any pair of singular vertices v1 ¤ v2, either the principal
flow lines ƒvi

through vi coincide , or NR.ƒv1
/\ƒv2

has diameter at most BR.

Proof Observe that by Lemma 2.3, for each singular vertex there exists a unique principal flow line going
through this vertex. Since the automorphism � has no twinned subgroups for the (finite) collection H, if
two principal flow lines are different, they must uniformly diverge as required.

2.7 Periodic points and forward flow rays

In the case of certain special points called periodic points, we have no fellow-travelling of flow rays
between any translates, which we prove below. We will also show that periodic points with flow rays
(lines, in fact) diverging from every principal flow line are dense in edges of T (Lemma 2.18).

A point x 2 T is a periodic point if there exist g D gx 2G and nD nx > 0 such that f n.x/D gx. If x
is periodic, then we will also call each xi 2 Ti a periodic point. We say that the periodic point x 2 T has
period n if f n.x/D gx as above and for all 0 < k < n, f k.x/¤ hx for any h 2G.

Proposition 2.12 For any periodic point xi in Ti , and for each g 2G with gxi ¤ xi , the flow rays from
gxi and xi diverge.

Proof Observe that by Lemma 2.10, the statement has to be proved only for loxodromic elements g.
Since xi is periodic, there is a minimal positive ki and gi 2G such that gixiCki

D .f ki .xi // (which is
in TiCki

). Thus the element gi tki sends xi to f ki .xi / in the flow space. This flow space is hyperbolic,
and this element is loxodromic, since for any x 2 T0, d zX1..gi t

ki /rx; x/� rki (the distance separating T0
from Trki

). It follows that the forward flow from xi remains at bounded distance from ..gi t
ki /nxi /n2N ,

and hence from the axis of .gi tki /. Now, from gxi , the forward flow remains close to the axis of
g.gi t

ki /g�1.

Since the element g is loxodromic on Ti , g and gi tki generate a nonelementary subgroup of isometries
of zX , because their axes eventually diverge. It follows that the limit points of gi tki and of g in the
boundary of zX1 cannot be the same. One concludes that g does not fix the limit points of gi tki , and
g.gi t

ki /g�1 and .gi tki / thus have divergent axes.

Lemma 2.13 For all edges e and e0 in T , there exist n� 0 and g 2G such that f n.e/ contains ge0.

Proof Assume that for some e and e0, for every n, the path f n.e/ does not contains any G-translate
of e0. Note that this means that no G-translate of f n.e/ contains any G-translate of e0. Let W be the
union of all G-translates of all paths f n.e/. Then W is a proper subgraph which is both f -invariant

Algebraic & Geometric Topology, Volume 25 (2025)



1574 François Dahmani and Suraj Krishna Meda Satish

and G-invariant. By the irreducibility of f , the quotient of W by G is a (bounded) forest with at most
one nonfree vertex in each component. Thus the quotient of each f n.e/ is a segment with at most one
nonfree vertex. This is not possible as the lengths of f n.e/ are arbitrarily long.

Lemma 2.14 For each � > 0 and each closed subinterval d of any edge e in T of length �, there exists a
periodic point x in d .

Proof Lemma 1.11 of [DL22] ensures that there exists a growth factor �> 1 such that every subsegment
of every edge of T expands under f by �. Thus, given d � e, there exists n such that f n.d/ contains an
edge. The result then follows from Lemma 2.13, by applying Brouwer’s fixed-point theorem.

Let us now observe the following useful facts about periodic points. Given a periodic point x of period n,
the preimage f �n.x/ contains a G-translate of x (Lemma 2.15(1)). One can then define a periodic flow
line through x as the direct limit of forward flow rays from the G-translates of x at the various f �nk.x/.
We will show in Lemma 2.15(2) that a periodic flow line is really periodic, ie there is an infinite subgroup
of � that stabilises the line and acts cocompactly on the line.

Lemma 2.15 Let x 2 T be a periodic point of period n. Then:

(1) There exists g0 2G such that g0x 2 f �n.x/.

(2) The periodic flow line through x is periodic. In particular , principal flow lines are periodic and
stabilised by suspensions of the relevant free factors of G.

Proof (1) Let g 2G be such that f n.x/D gx. Observe that, by equivariance of f , for g0D ��n.g�1/,
g0x 2 f �n.x/. Indeed, f n.��n.g�1/x/D �n.��n.g�1//f n.x/D g�1f n.x/D x.

(2) Consider the flow segment �n.x/ from x 2 T0 to fn�1 ı � � � ı f0.x/ 2 Tn. Recall that the element t
acts by shifting indices, and therefore, fn�1 ıfn�2 ı� � �ıf0.x/D tnf n.x/. This implies that tng.�n.x//
is the flow segment from tngx 2 Tn to tngtnf n.x/ 2 T2n. Using the facts that gtn D tn�n.g/ and
gx D f n.x/, we conclude that tng.�n.x// is the flow segment from tnf n.x/ to t2n�n.g/f n.x/. Since
�n.g/f n.x/D f n.gx/D f 2n.x/, we have that �n.x/ � tng.�n.x//D �2n.x/. It is also easy to check
that the flow segment of length n from t�ng0.x/ is equal to .tng/�1.�n.x//. Thus the periodic flow line
through x is the union over all k 2 Z of .tng/k.�n.x//.

Lemma 2.16 If a periodic flow line is asymptotic to another periodic flow line in one direction , they are
asymptotic in both directions.

Proof We will prove the contrapositive. Assumeƒ0 andƒ00 are periodic flow lines that are nonasymptotic
in the forward direction (the other case is similar). Since they are periodic, there are elements 
 0 and 
 00

in the group � (Lemma 2.15(2)) that fix the endpoints of ƒ0 and ƒ00, respectively, in the boundary @ zX1 of
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the hyperbolic space zX1. In particular, 
 0 and 
 00 cannot be elements of the same parabolic subgroup of � .
Assume that the backward directions of ƒ0 and ƒ00 converge to the same point of @ zX1. It would follow
that the commutator Œ
 0; 
 00� is in G and has small displacement on infinitely many T�i for i 2N, realised
near the ray ƒ0. Since 
 0 and 
 00 have different axes, they do not commute. However, by hyperbolicity of
the automorphism, Œ
 0; 
 00� must be elliptic, and hence it is in a unique conjugate of a free factor of the
free product G. It hence fixes nonfree vertices in each T�i , at bounded distance from ƒ0, and all in the
same principal flow line. It then follows that both ƒ0 and ƒ00 are asymptotic to the same principal flow
line, and therefore that the elements 
 0 and 
 00 preserving them fix a point fixed by a parabolic group,
thus ensuring that they are in the same parabolic subgroup, contradicting what we previously had.

Given two flow lines that intersect the tree T0 in x and y, we say that the two flow lines are separated by
the segment Œx; y� in T0. The next statement says that a periodic flow line either diverges from every
principal flow line, or it is asymptotic to a principal flow line which is Hausdorff-close to it in terms of
both distance and angle.

Lemma 2.17 There exist constants ı0 and �0 such that the following holds: Let ƒ be a periodic flow line
in zX and x be its intersection with T0. If a principal flow line ƒ0, with intersection y at T0, is asymptotic
to ƒ, then dT0

.x; y/ � ı0. Further , there exists a principal flow line ƒ00, asymptotic to ƒ and ƒ0, such
that if z 2ƒ00\T0, then for every vertex v in the interior of the segment Œx; z�T0

the angle subtended by
Œx; z�T0

at v is less than �0.

Proof Consider a geodesic Œx; y� zX1 in zX1. By asymptoticity of the biinfinite lines ƒ and ƒ0 in the
hyperbolic space zX1, its length is at most ı. Denote by e1; : : : ; er its consecutive vertical edges, let Tki

be the tree containing ei and write ei D .v
ki

i ; w
ki

i /. Observe that r � ı and jki j � ı for all i .

Since e1 is the first vertical edge, x 2 f �k1.v
k1

1 /, and similarly, y 2 f �kr .w
kr
r /. Take, for all i < r ,

xi 2f
�ki .w

ki

i /. Such a point xi is in T0 and is in f �kiC1.v
kiC1

iC1 /. Therefore, for all i <r , dT0
.xi ; xiC1/�

K jkiC1j, where K is the Lipschitz constant of f . Since for all i , jkiC1j � ı, and r � ı, it follows that
dT0

.x; y/� ıKı .

We turn to the second part of the statement. By Lemma 2.10, for any edge e incident to a vertex w, and
any g 2 Stab.w/, e and ge form a legal turn and so their iterates under f subtend a positive angle at
all f n.w/. Since there are finitely many orbits of edges incident to w, there are only finitely many edges
incident to w that make an illegal turn with e. Since there are finitely many orbits of vertices, there exists
a maximal angle, which we call �0� 1, such that any illegal turn between any pair of edges at any vertex
subtends an angle of at most �0� 1.

Assume now that there exists v 2 Œx; y�T0
such that AngvŒx; y�T0

� �0. We choose v to be closest
to x with this property. Note that, after changing �0 if necessary, v is a singular vertex. Let ƒv be the
associated principal flow line.
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For all n 2N, let us denote by x�n the point f �n.x/\ƒ and by y�n the point f �n.y/\ƒ0. Let us
also write xn D f n.x/, yn D f n.y/, vn D f n.v/ and v�n the point f �n.v/\ƒv.

Since �0� 1 is the maximal angle at an illegal turn, for all n 2N, Angvn
Œxn; yn�Tn

� 1. In particular, vn
is between xn and yn in Tn for all n 2N, and so the principal flow line ƒv is asymptotic to ƒ in one and
hence both directions.

Lemma 2.18 For each � > 0 and each closed subinterval d of any edge e in T of length �, there exists a
periodic point x in d such that the periodic flow line through x diverges from every principal flow line in
both the forward and backward directions.

Proof There are finitely many orbits of vertices, and hence finitely many orbits of periodic lines
containing a vertex. Let n0 be the maximum of their period. If a subinterval d of e is given, one may
take a sufficiently small subinterval d 0 such that its images by f k for k D 1; : : : ; n0 do not meet any
vertex. This, together with the periodicity of periodic points, guarantees that any periodic point in this
subinterval will have a periodic flow line that misses all vertices.

There are only finitely many vertices in the tree T0 that are at distance � ıKıC1 from d with a path that
makes no angle greater than �1. Let N be this number. This produces N principal flow lines.

Consider 2N C 1 periodic points in the subinterval d 0. Since the interval between any two of them is a
legal path, their forward flow rays diverge from each other. Therefore at least one of these periodic points,
say x, belongs to a periodic flow line that diverges from the N principal flow lines in both directions. By
Lemma 2.17 it diverges from all principal flow lines.

3 Relative cubulation

In this section, we will recall the notion of relative cubulation and the boundary criterion for relative
cubulation. We will construct walls in Section 4 for the flow space zX and show in Sections 5 and 6
that the stabilisers in � DG Ì� Z of “wall saturations” satisfy the hypotheses required for the boundary
criterion to hold.

Definition 3.1 [EG20] Let � be hyperbolic relative to a collection of subgroups P. Then .�;P/ is
relatively cubulated if there exists a CAT.0/ cube complex C such that

(1) there is a cubical cocompact action of � on C ,

(2) each element of P is elliptic, and

(3) the stabiliser of any cube of C is either finite or conjugate to a finite-index subgroup of an element
of P.

We call such an action of � on C a relatively geometric action.
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Let us recall a few definitions before stating the boundary criterion for relative cubulation. A subgroup
H �� is relatively quasiconvex (with respect to P) if there exists a constantK such that given h1; h2 2H ,
any geodesic path 
 between h1 and h2 in the cone-off y� (with respect to P) is such that every noncone
vertex of 
 is at �-distance at most K from a vertex of H ; see [Hru10; Osi06].

A subgroup H of .�;P/ is full if the intersection of any conjugate of H with any element P 2P is
either finite or is of finite index in P .

A subgroup H of � is a codimension-1 subgroup if for some r � 0, � nNr.H/ contains at least two
orbits of components that are not contained in any finite neighbourhood of H .

Let us also recall a definition (of the many equivalent ones) of the Bowditch boundary of a relatively
hyperbolic group .�;P/: it is a compact metrisable space @B.�;P/ such that

(1) � acts properly discontinuously on the space of distinct triples of @B.�;P/,

(2) each point of @B.�;P/ is either a conical point or a bounded parabolic point, and

(3) the stabiliser of a bounded parabolic point is a conjugate of an element of P.

As a set, @B.�;P/ is the union of the Gromov boundary of the cone-off y� relative to P and the set of
cone vertices of y� . We refer to [Bow12, Section 9] for more details, in particular for the definitions of
conical and bounded parabolic points, which will not be needed here.

The following theorem is implicit in the work of Bergeron and Wise [BW12] and explicitly stated and
proved by Einstein and Groves [EG20].

Theorem 3.2 (boundary criterion for relative cubulation) Let .�;P/ be relatively hyperbolic with
one-ended parabolics. Suppose that for each pair of distinct points u; v 2 @B.�;P/ there exists a full
relatively quasiconvex codimension-1 subgroup H of � such that u and v lie in H -distinct components
of @B.�;P/ nƒH . Then there exists a finite collection of full relatively quasiconvex codimension-1
subgroups such that the action of � on the dual cube complex is relatively geometric.

We note that since our parabolics are suspensions of the infinite free factors of G, they are always
one-ended.

4 Walls in the flow space

4.1 Constructing immersed walls

Our construction of walls starts with that of Hagen and Wise in [HW16], although they work in a locally
finite setup. However, the stabilisers of walls thus obtained would not be full subgroups in general, so we
later “saturate” these walls to obtain full codimension-1 subgroups.
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Let us explain the construction of Hagen and Wise. Fix a fundamental domain D � T for the G-action
on T , ie a smallest subtree that contains exactly one edge from each orbit of edges. In order to construct
immersed walls in zX , we need the following data: a choice of a tunnel length L 2N and a choice of a
subinterval of each open edge of D, called a primary bust.

Choose the tunnel length L 2 N. The immersed wall will be first constructed in zXL and then pushed
to zX via %L W zXL! zX .

Choose a closed subinterval in the interior of each edge of D. This choice extends equivariantly to a
choice of a subinterval dk in every edge ek of T . For each i 2 Z, the copy dk;Li in TLi of each dk � ek
is a primary bust. Note that f �L.dk/ is a union of finitely many subintervals fdkj g � T , by Lemma 2.2.
For each i 2Z, the copy dkj;Li in TLi of each fdkj g is a secondary bust. We will always choose primary
busts satisfying the following:

Lemma 4.1 Let L 2N and � > 0. Let fxkg be a collection of points in D, with exactly one point in any
edge of D. The collection of primary busts in zXL can be chosen so that

(1) every primary bust is disjoint from every secondary bust in the collection ,

(2) the primary busts in D lie in the �-neighbourhood of fxkg,

(3) the flow rays from the endpoints of the primary busts do not meet any vertex of zXL,

(4) if the flow ray from xk does not meet a vertex, then one of the endpoints of the primary bust dk
in D can be chosen to be xk ,

(5) the f L-image of any primary bust does not contain two points in the same G-orbit ,

(6) if f L.xk/¤ f L.xj / whenever k ¤ j , then f L.dk/\f L.dj /D∅.

The lemma is a reproduction of [HW16, Lemma 3.5], whose proof can be replicated in our case. Since
there are several properties to check, the proof is long, but not difficult, based on Brouwer’s fixed-point
theorem. We thus refer the reader to [HW16] for the proof. In fact, (3) can be obtained either by the proof
of Hagen and Wise [HW16], or by applying Lemma 2.18.

Denote by TLiC1=2 D T 0Li � zXL the parallel copy of T at distance 1
2

from TLi and distance L� 1
2

from
T.iC1/L. We will denote by d 0

k;Li
and d 0

kj;Li
, respectively, the copies of dk;Li and dkj;Li in T 0Li . We

refer the reader to Figure 4 for an illustration of what follows.

(1) Consider the subspace CLi of T 0Li obtained by removing each open primary bust and each open
secondary bust in T 0Li . A component NLi of CLi is a nucleus. Note that each nucleus is either a
subinterval of some edge or contained in the star of a vertex.

(2) The endpoints of the nuclei are endpoints of either primary busts or of secondary busts. To each
endpoint of each secondary bust d 0

kj;L.i�1/
in a nucleus, glue a forward flow segment of length L� 1

2
.

Note that this flow segment ends at the primary bust dk;Li . The union of all flow segments which end at
a common endpoint (an endpoint of some dk;Li ) is a level L. Such an endpoint is a forward endpoint.
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Figure 4: A part of a wall in zXL. Brown paths are nuclei, blue paths are levels and green paths are slopes.

(3) Join the endpoints d˙
k;Li

of each primary bust dk;Li to the endpoints d 0�
k;Li

(note the change in order)
of its parallel copy d 0

k;Li
by segments called slopes. A slope is denoted by S .

The graph W L is constructed as a quotient of the disjoint union of the nuclei, levels and slopes, with the
gluing performed in a natural way: an endpoint of a primary bust of a nucleus is glued to an endpoint of
the corresponding slope, an endpoint of a secondary bust in a nucleus is glued to the initial point of the
relevant flow segment of a level, while a forward endpoint is glued to the relevant endpoint of a slope.
There exists a noncombinatorial immersion of the graph W L in zXL, with loss of injectivity at midpoints
of slopes. Let W be the graph obtained from W L by “folding” its levels according to %L so that the
following diagram commutes:

W L
zXL

W zX

%L

A component Wu of W is an immersed wall.3

Remark 4.2 The immersion Wu! zX extends to a local homeomorphism Wu � Œ�1; 1�! zX , with Wu
identified with Wu � f0g. Indeed, this is because the embedding of each nucleus, level and slope of Wu
in zX extends to a local homeomorphism of the above type.

We will denote by N.Wu/1� zX1 the 1-skeleton of the smallest subcomplex of zX that containsWu. When
the tunnel length L is sufficiently large, it turns out that N.Wu/1 ,! zX1 is a quasiconvex embedding
(Proposition 4.6) and that Wu separates zX into exactly two components (Proposition 4.8). Thus the local
homeomorphism of Remark 4.2 is in fact a homeomorphism in that case.

3The subscript u in Wu denotes “unsaturated”, as we will soon saturate Wu in order to obtain a full codimension-1 subgroup.
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Figure 5: A part of a wall saturation. The red line is a principal flow line, with two unsaturated
components (on the left and right) attached.

4.2 Wall saturations

Let Wu be an immersed wall as above, which is a component of the graph W . Fix a saturation length
M 2LN. We will define below the M -saturation W of Wu as a union of components of W and principal
flow lines. We start with a definition:

Let v 2 TLi be a singular vertex. The M -saturation of v is the set ff Mk.v/ 2 TMkCLigk2Z of singular
vertices. (Recall that for each k 2Z, there is a unique singular vertex f Mk.v/, by Lemma 2.3.) By abuse
of notation, for a vertex v in a “fractional” copy T1=2CLi , we will denote by the M -saturation of v the
intersection points of the principal flow line of v in the trees T1=2CMkCLi .

Let v 2 T1=2CLi be a singular vertex in a nucleus of W . Denote by W.v/ �W the smallest union of
components of W such that each vertex in the M -saturation of v is contained in the nucleus of some
component of W.v/.

Let Wu be an immersed wall. Let W 0u �W be the smallest subgraph of W satisfying

� Wu �W
0
u, and

� for each singular vertex v 2W 0u, either the principal flow line of v intersects a component infinitely
many times, or W.v/�W 0u (but not both).

The M -saturation W of Wu is defined as the union of W 0u with the principal flow lines of all singular
vertices of W 0u. We refer the reader to Figure 5 for an illustration.

Lemma 4.3 Let Wu be an immersed wall. For any M 2 LN, the M -saturation W of Wu is a connected
graph.

Proof We will prove the lemma by showing that a certain connected subgraph containing Wu in W is in
fact equal to W . Consider the subgraph W 0 of W built inductively as the ascending union of subgraphs
W n as follows: W 1 DWu. W 2 is the union of each principal flow line intersecting Wu with the union of
all W.v/, where v is a singular vertex in W 1. W n is the union of each principal flow line intersecting
W n�1 along with the union of all W.v/, where v is a singular vertex in W n�1 with the property that
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Figure 6: The approximation of the part of the wall from Figure 4 is indicated in thick orange.

W.v/ � W . Note that W 0 is a connected subgraph of W , by construction. Further, the subgraph W 0u
(introduced in the definition of the M -saturation W of Wu) is contained in W 0. This gives the reverse
containment W 0 �W .

4.3 Approximations of walls

In order to show that families of immersed walls are uniformly quasiconvex, Hagen and Wise use a
technical construction called approximations. Approximations are not walls in zX (they are walls in zXL,
as it turns out), but have the advantage that, unlike immersed walls, they do not have backward flows that
can have long fellow-travelling subpaths.

We will first state the definition of approximations given in [HW16] and then extend their definition to
saturations. Let Wu! zX be an immersed wall of tunnel length L. The approximation A WWu! zX is
defined as below. We refer the reader to Figure 6 for an illustration.

(1) For each x0 2Wu such that x0 lies in a nucleus NLi � TLiC1=2, let x 2 TLi denote the parallel copy
of x0 behind it at distance 1

2
. Then A.x0/ WD f L.x/ 2 TLiCL � zX .

(2) For each x in a level of Wu, A.x/ is the unique forward endpoint of the level.

(3) Let S be a slope in Wu associated to the primary bust d . Recall that S is a segment from an endpoint
dC (say) of d to the other endpoint d 0� of d 0, where d 0 is the parallel copy of d at distance 1

2
. A maps

S homeomorphically to the concatenation of d and the forward flow segment of length L from d�.

Let M 2 LN and let W ! zX be an M -saturation of Wu. The approximation of the M -saturation
A WW ! zX is defined the same way on nuclei, slopes and levels. On each point x of a principal flow line,
by abuse of notation, A.x/ WD f L�1=2.x/.

We will denote by N.A.Wu//1 and N.A.W //1 the 1-skeletons of the smallest subcomplexes of zX
containing A.Wu/ and A.W /, respectively.
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4.4 Large tunnel length and quasiconvexity

In this subsection, we recall results from [HW16, Section 4] towards quasiconvexity of immersed walls.
We note that their methods do not require local finiteness of zX1 and thus work in our case as well, both
for immersed walls and their saturations.

The main lemma that we will repeatedly use is the following. Recall that Nr.Y / denotes the r-
neighbourhood of Y .

Lemma 4.4 [HW16, Lemma 4.3] Let Z be a ı-hyperbolic space and let P D ˛0ˇ1˛1 : : : ˇk˛k be a
path such that each ˛i is a .�1; �2/-quasigeodesic and each ˇi is a .�1; �2/-quasigeodesic. Suppose that
for each R � 0 there exists a BR � 0 such that for all i each intersection below has diameter � BR:

N3ıCR.ˇi /\ˇiC1; N3ıCR.ˇi /\˛i ; N3ıCR.ˇi /\˛i�1:

Then there exists L0 such that if each ˇi is of length at least L0, then the path P is a
�
4�1�1;

1
2
�2
�
-

quasigeodesic.

Let W WD fWu ! zXg be a family of immersed walls in zX . In order to use Lemma 4.4, we need the
following property to be satisfied:

Definition 4.5 [HW16, Definition 3.15] The family of immersed walls W has the ladder overlap
property if there exists B � 0 such that for all Wu 2W and all distinct slopes S1;S2 �Wu,

diam.N3ıC2�.N.A.S1//
1/\N3ıC2�.N.A.S2///

1/� B;

where � is the quasiconvexity constant for forward ladders (Proposition 2.7).

In practice, any family of immersed walls is constructed in the following way: We will first choose a
finite set of periodic points in the fundamental domain D of T such that the flow rays from these points
diverge and do not meet any vertex. The various immersed walls of the family will then be constructed by
choosing tunnel lengths and by choosing primary busts in small neighbourhoods of these periodic points,
with the size of the neighbourhoods depending on the chosen tunnel lengths. The ladder overlap property
will then hold because the finitely many flow rays from the periodic points have bounded overlaps.

Proposition 4.6 Let W be a family of immersed walls satisfying the ladder overlap property. Then
there exist L0, �1 and �2 such that for all Wu 2 W with tunnel length at least L0, the inclusion
N.A.Wu//

1 ,! zX1 is a .�1; �2/-quasiisometric embedding.

We refer to [HW16, Proposition 4.1] for a proof. They show that when tunnels are long enough, the
hypotheses of Lemma 4.4 are satisfied. The same proof works in our case, as Lemma 4.4 works for any
hyperbolic space, not necessarily proper. The main point is that geodesic paths in N.A.Wu//1 can be
written as alternating paths P D ˛0ˇ1˛1 : : : ˇk˛k satisfying the conditions of Lemma 4.4, where each
ˇi is a geodesic fellow-travelling with a forward flow segment of length L� L0.
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We note that the constants depend only on the following data: L0 depends on the quasiconvexity constant�
of nuclei of walls (there is a uniform quasiconvexity constant � as nuclei are either subintervals of edges
or stars of vertices) and the constant B of the ladder overlap property. The constants �1 and �2 depend on
L0 and �, but not on the tunnel length L� L0 of individual immersed walls in W.

Proposition 4.7 Let W be a family of immersed walls with the ladder overlap property. Then there exists
L1 � L0 such that for each Wu 2W with tunnel length at least L1, A.Wu/ is a tree.

This is a consequence of Proposition 4.6: Indeed, any closed path in A.Wu/ has length at most �1�2. Thus
if L1�L0; �1�2C1, then no closed path can contain a forward flow segment from a slope approximation.
This implies that the closed path has to be contained in the intersection of a tree Ti in the flow space with
the approximation of Wu, which is impossible. See [HW16, Proposition 4.4] for a precise proof.

Recall that a wall is a subspace Y � zX such that zX nY has exactly two components, neither of which is
contained in any finite neighbourhood of Y (ie components are deep). We now state the main result of
this subsection:

Proposition 4.8 Let W be a family of immersed walls with the ladder overlap property and let L1 be the
constant from Proposition 4.7. Then for each Wu 2W with tunnel length at least L1, Wu is a wall.

Again, a detailed proof is given in [HW16, Proposition 4.6]. Since the flow space zX is simply connected,
it is enough to show that Wu locally separates (a small neighbourhood) into two components. Using
Remark 4.2, the only place where this can fail is when two distinct slopes intersect in their interior. But
when the tunnel length L is at least L1, such a scenario would contradict the fact that A.Wu/ is a tree.

Proposition 4.9 (approximations of saturations are quasiconvex) Let W be a family of immersed walls
satisfying the ladder overlap property. Then there exists L2 � L1 such that for all Wu 2W with tunnel
length L � L2, there exist M0, ‚1 and ‚2 such that for any M -saturation W of Wu with M �M0L,
the inclusion N.A.W //1 ,! zX1 is a .‚1; ‚2/-quasiisometric embedding.

Proof We will prove the statement by again using Lemma 4.4. Let P be a path in N.A.W //1 such that
P is a concatenation ˛0ˇ1˛1 : : : ˇk˛k , with each ˛i a geodesic in the approximation of a component
subgraph of W and each ˇi a geodesic segment in a principal flow line. By Proposition 4.6, each ˛i
is a .�1; �2/-quasigeodesic, while Proposition 2.7 ensures that each ˇi is a .�1; �2/-quasigeodesic. We
choose tunnel length L large enough so that, in length smaller than L, ˛i and ǰ diverge from each other:
recall that primary bust endpoints are chosen so that their flow rays are not asymptotic to any principal
flow line (Lemma 2.18). By choosing L larger than the minimal divergence distance between the flow
ray of any primary bust endpoint and a principal flow line, we obtain the required bounds.

We also observe that since any immersed wall Wu (respectively its M -saturation W ) of tunnel length L
is at Hausdorff distance L from its approximation A.Wu/ (respectively A.W /), we have:
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Figure 7: The busts in olive are all in a single complementary component.

Lemma 4.10 For any wall Wu (with M -saturationW ), the limit sets in @ zX1 of N.Wu/1 and N.A.Wu//1

coincide , as do those of N.W /1 and N.A.W //1.

Lemma 4.11 Let d and d 0 be primary busts such that for some m;m0 2 Z, we have d � TmL and
d 0 � Tm0L, and one of the endpoints of each of d and d 0 is contained in Wu. Then the interiors of d
and d 0 lie in the same complementary component of Wu.

Proof For the purposes of this argument, we endow Wu with a graph structure where the vertices are
vertices of nuclei and the endpoints of various primary and secondary busts. Edges consist of forward
flow segments in levels, slopes and segments in nuclei between vertices. Let us assume that d � T0 and
let P be a (geodesic) path in Wu between the endpoints of d and d 0. The edge of P with endpoint dC

(say), which is either a slope starting at dC or a forward flow segment ending at dC, leads to a nucleus N

in a “fractional” tree T1=2 or T�LC1=2. Except for the central vertex, every vertex of this nucleus is the
endpoint of either a primary bust or of a secondary bust. In the latter case, note that each such secondary
bust (in this fractional copy of T ) meets the same complementary component C as d (see Figure 7),
and thus flowing such a secondary bust to a primary bust in TL or T0 (along an edge of Wu without
crossing it) will not lead to a change of components. In the former case, the primary bust in the fractional
copy, with an endpoint in N , is not in C , but travelling back along the slope will lead to its parallel copy
(in either T0 or T�L), and this primary bust is contained in C . One can now proceed by induction on the
distance between d and d 0 to obtain the desired result.

Proposition 4.12 Let Wu 2W be an immersed wall with tunnel length at least L2 (from Proposition 4.8).
Then Stab.Wu/ < � is a codimension-1 subgroup that stabilises each complementary component of Wu
and acts cocompactly on Wu.

Proof Complementary components are not flipped: as a consequence of Lemma 4.11, if 
 2 Stab.Wu/
and C is a complementary component of Wu, we have that 
C D C .
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Let us show cocompactness. Recall (from Section 4.1) that Wu is a component of the graph W . For a
point x 2 zX such that x 2W (the image of W , to be precise), denote by W.x/ the component of W that
contains x. Observe that for two points x; y 2W , W.x/DW.y/ if and only if y 2W.x/ (and x 2W.y/).

Let L be the tunnel length of Wu. Denote by �L the subgroup of � generated by G and tL. We first note
that, by the equivariant choice of primary busts, and the fact that no primary bust intersects any secondary
bust (Lemma 4.1(1)), the action of �L on the flow space restricts to an action on W .

Let x 2Wu. Let us denote by H <� the stabiliser of Wu. For an element 
 2 �L, we observe that 
 2H
if and only if 
x 2Wu. Indeed, 
x 2Wu if and only if WuDW.x/DW.
x/, with the latter being equal
to 
W.x/. Let us denote by X the compact quotient of zX by the action of � . Observe that X is the
mapping torus of the compact graph GnT by the map induced by f . There are finitely many images
in X of busts and nuclei of Wu, and hence the image of Wu in X is compact. This implies that H acts
cocompactly on Wu.

Finally, we show that Stab.Wu/ has codimension 1. There is a continuous equivariant collapse map from
a Cayley graph of � to zX1 which crushes free factors of G to points. Since Wu separates zX into deep
components, so does its preimage in � , giving us the desired result.

Note that if Wu is a wall, then any M -saturation of Wu separates zX1 into several deep components and
therefore separates the boundary @ zX1. In fact:

Proposition 4.13 Let Wu 2W be a wall with tunnel length at least L2 (from Proposition 4.9). Then there
exists L3 � L2 such that for all L> L3 and for all M large enough , the stabiliser of the M -saturation
W of Wu is a relatively quasiconvex full subgroup. Further , W separates the flow space into at least two
deep components.

Proof To prove separation with deep components, sinceWu itself is of codimension 1 by Proposition 4.12,
it suffices to find, for each deep component of zX nWu, a ray starting at a point of Wu, entering the given
component, and never encountering W again. To do that, it suffices to find a ray avoiding all the principal
flow lines issued from Wu, and diverging from each of them within 1

10
M of distance from Wu. Since zX

is nonelementary hyperbolic and principal flow lines are disjoint and diverge from each other in bounded
time, it is possible to find such a ray, provided M is sufficiently large compared to ı.

Since W is quasiconvex, an application of [EGN21, Theorem 1.2] implies that the stabiliser of W is
relatively quasiconvex in � . Let us show that Stab.W / is also full. To this end, consider a principal
flow line ƒ whose associated parabolic group (a suspension of a vertex stabiliser in T0 by an element
translating along ƒ) intersects Stab.W /. We want to show that Stab.W / contains a finite-index subgroup
of the parabolic group. For this it is sufficient to show thatƒ intersectsW , since in that case, the saturation
property of W ensures that W is stabilised by such a subgroup.

Thus, let Stab.W / intersect Stab.ƒ/. We distinguish whether the intersection contains an element
translating along ƒ or an element fixing a vertex in ƒ.
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First assume that Stab.W / contains an element of � which acts loxodromically on ƒ. This implies that a
finite neighbourhood of W contains ƒ. Since every pair of principal flow lines diverge, either a vertex of
ƒ is contained in W (and we are done, by the property of saturations), or there exists a periodic union of
tunnels, slopes and nuclei of W that fellow-travels with ƒ. Assume the latter. If there exists a singular
vertex (of some nucleus) in this periodic union, then the no twinning property ensures a contradiction.
Let 
 be translating along ƒ, and such that 
k stabilises W (for some large k). Let x 2W be near ƒ, and
consider a shortest path p in W from x to 
kx 2W . Since W is assumed not to cross ƒ, the path p does
not contain an arc of ƒ. Thus p consists of nuclei, slopes and levels, and is a quasigeodesic that must
remain close to ƒ. Note that p does not contain any piece of a principal flow line by the no twinning
assumption. Since p moves from a tree Tr to a tree TrCk for some large k, there must be a level in p.
As a subpath of p, it travels close to ƒ. But a level is a piece of a periodic flow line, and by our choice
of primary bust endpoints (Lemma 2.18) and large tunnel length, levels diverge from any principal flow
line ƒ. Hence p does not stay close to ƒ, as promised.

Assume now that the stabiliser of W contains an elliptic element g, fixing some vertex v of T0. Let
x 2 T0 be in W so that for each n 2 Z, gnx 2 W . Since the T0-distance between gmx and gnx is
bounded for all m and n (it equals twice the T0-distance between x and v), there exists K � 0 such that
any geodesic path ˛m;n in the quasiconvex space W between gmx and gnx does not meet Ti for i > K.
We flow each such geodesic to TK to obtain a path in TK between f K.gmx/ and f K.gnx/. Observe
that there is a uniform bound on the length of each such path. Thus, up to taking a subsequence, there is
an infinite valence vertex of TK contained in each of the flowed paths between f K.gmx/ and f K.gnx/.
By equivariance of f , this vertex w is fixed by �K.gn/. By uniqueness of vertex stabilisers under the
G-action on TK , we have w D f K.v/. We claim that this implies that infinitely many of the paths ˛m;n
intersect the principal flow line ƒv of v. Indeed, by Lemma 2.3 the intersection of the backward flow
of w with the trees Ti intersects the infinite collection ˛m;n in a finite set. Let w0 2 Ti be one such point
that lies in infinitely many ˛m;n. If w0 is in ƒv , we are done. If not, then by equivariance, we again have
that w0 is stabilised by �i .gk/ for infinitely many k, a contradiction.

4.5 Many effective walls

Recall that D � T denotes the fixed fundamental domain.

Definition 4.14 Using the terminology of [HW16], we say zX has many effective walls if the following
two conditions are satisfied:

(1) For each y 2 D � T0 such that the flow ray from y does not meet a vertex, there exists a set W
of immersed walls with the ladder overlap property such that for every � > 0, there exists Wu 2W of
arbitrarily large tunnel length L and a primary bust in the �-neighbourhood of y. We will call such a set
of walls a regular effective set of walls.
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(2) For each periodic point a 2D, there exists kD k.a/ and a set of immersed walls Wa with the ladder
overlap property such that for each primary bust d 0 � T 0 D T1=2 that is joined to a0 D a1=2 2 T 0 by a
path in Wu disjoint from the slopes of Wu, we have that d zX1.f

n.a/; f n.d// � 3ıC 2�, for all n � k.
We will call such a set of walls a periodic effective set of walls.

Let us comment on why one needs the property of many effective walls. The full details are available
in [HW16, Section 5]. For a hyperbolic group to admit a proper cocompact cubulation, the boundary
criterion of [BW12] stipulates that every pair of distinct points in the boundary of the group (equivalently,
the limit set of every biinfinite geodesic of zX1 in the setup of [HW16]) should be separated by the limit
set of a quasiconvex codimension-1 subgroup (equivalently, a quasiconvex wall in zX1). Having many
effective walls assures that this can be done in zX1. Indeed, there are two types of biinfinite geodesics
in zX1, “horizontal” geodesics and “nonhorizontal” geodesics, which we define below. If zX1 has many
effective walls, then each horizontal geodesic is cut by a wall from a periodic effective set, while each
nonhorizontal geodesic is cut by a wall from a regular effective set.

Definition 4.15 (geodesic classification) Let N > 0. A biinfinite geodesic 
 in zX1 is N -horizontal
(N -ladderlike in [HW16]) if there exists a forward flow segment � of length N such that a geodesic
of the forward ladder N.�/ joining the endpoints of � fellow-travels with a subpath of 
 at distance at
most 2ıC�. Here ı is the hyperbolicity constant of zX1 and � is the quasiconvexity constant of forward
ladders (Proposition 2.7). Otherwise, 
 is N -nonhorizontal (N -deviating in [HW16]).

Theorem 4.16 The flow space zX has many effective walls.

This is proved in [HW16, Theorem 6.16], to which we refer the reader for a detailed proof. The main
ingredients of their proof, which are available in our case as well, are the facts that periodic points
are dense in T (Lemma 2.14) and that flow rays starting from translates of a periodic point diverge
(Proposition 2.12). With these ingredients at hand, here is a brief sketch of the proof. The first condition
of Definition 4.14 can be verified by first choosing a periodic point in an �-neighbourhood of the given
point y and then choosing one periodic point in each edge of D so that pairwise, their flow lines diverge.
This will ensure that the ladder overlap property holds when primary busts are chosen in small enough
neighbourhoods of these points, depending on the tunnel length. The family of walls is now constructed
by choosing tunnel lengths to be large common multiples of the periods of the chosen periodic points, and
choosing primary busts as above. To verify the second condition, we choose one periodic point per edge
of D as above, including one for the edge containing a, while ensuring that pairwise, the flow lines of the
periodic points and of a diverge. The family of walls is then constructed as done for the first condition.

Let us conclude this section with another property that will be useful in the next section. Following
[HW16], we say zX is level-separated if for each N >0 and K � 0, and each N -nonhorizontal geodesic 
 ,
there exists a point y 2 zX such that the backward flow of length n meets 
 in an odd-cardinality set for all
large n, and the intersection is at distance at least N CK from both y and the leaves of the backward flow.
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Lemma 4.17 The flow space zX is level-separated.

In order to prove this statement, we will make use of an R-tree T1 obtained as a limit of the trees Tm in
the flow space with metrics dm D d jTm

=�m, where � is the (maximal) stretching factor of the train track
map f . We will not go into details, but refer the reader to [HW16, Section 6; Hor17] . Formally, T1 is
an ultralimit; its points are equivalence classes of sequences of points in the Tm. In particular, to each
point in T0 (and in zX ), its flow ray defines a point in T1. This defines a tautological map � W zX ! T1.

The main points we will use are easy facts: that the map � W zX!T1 is continuous, restricts to an isometric
embedding on any vertical edge (as f is a train track map) and that the preimage of any point in T1
consists of points whose forward flow rays either intersect or remain at bounded Hausdorff distances
from each other.

Proof Let 
 W R ! zX1 be an N -nonhorizontal geodesic. Observe that the flow-like parts of 
 are
horizontal segments starting and ending at vertices and that the vertical parts are paths in trees Tk . Since 

is N -nonhorizontal, it maps infinitely many unit subintervals of R to vertical edges, which we call
“vertical” subintervals.

First, we make a slight change. Let 
vert be the union of paths defined on the vertical subintervals of 
 ,
but now reparametrised on R.

Let 
1 D � ı 
vert W R! T1 be the image of 
vert (and also of 
 , in fact) in T1. Call 
vert.s/ a “flat”
point if s is a point of discontinuity for 
vert. Observe that this happens only when 
.s/ is the starting
point in 
 of a horizontal segment, and that there are only countably many flat points. Since all points in
any horizontal segment have the same flow, all such points have the same image in T1. Therefore the
map 
1 WR! T1 is continuous, and in fact, 1-Lipschitz.

Further, there exists D such that the preimage of a point in 
1 is of diameter �D. Indeed, if s1 and s2
have the same 
1-image, observe that 
vert.s1/ and 
vert.s2/ correspond to points in the image of 

which fellow-travel a forward flow segment. Since 
 is N -nonhorizontal, there exists a D as required.

In fact, the same argument shows that 
1.RC/ and 
1.R�/ have infinite diameter and go to ends 
1
C

and 
1� of T1, respectively. Note that, by the bound on the diameter of preimages, 
1
C
¤ 
1� . In

particular, there are uncountably many points that cut 
1.R/ into two unbounded components, with each
such point contained in 
1.R/ (as T1 is an R-tree).

Let us now show that there exists D0 such that the preimage of a point under 
1 has cardinality at
most D0. Indeed, if there are many points in the preimage, there must be many in the same tree Tk , and
their diameter being bounded, either they accumulate or have to be placed so that there is a vertex and
a huge angle to reach them. Accumulation is not permitted since all edges are stretched by the scaling
factor (more precisely, we are guaranteed that two points in the same edge are flown to different points
of T1). Also for two points separated by a huge angle, we already noticed that their flow lines cannot
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fellow-travel (see Proposition 2.9), and hence they must diverge with speed defined by the stretch factor �,
thus defining different points in the limit tree T1.

Call 
1.s/ a “backtrack” point if there are two intervals Œs�; s/ and .s; sC� that are sent by 
1 to the
same component of T1 n f
1.s/g.

Observe that since the map � is injective on edges, if 
1.s/ is a backtrack point, then 
vert.s/ is a vertex.
Therefore there are countably many backtrack points in 
1.

There are two kinds of backtrack points: those such that the component of the intervals Œs�; s/ and .s; sC�
contains both the ends 
1

C
and 
1� , and those that don’t. For the former, take the centre of the tripod

.
1
C
; 
1� ; 


1.s//, and call it a “crossroad” point.

There are countably many backtrack points, so the union of flat points, backtrack points and crossroad
points is a countable set.

Pick a point � in 
1.R/ that is not a backtrack point nor a crossroad point nor a flat point, and such that �
separates 
1.R/ in two infinite components. Since it is not a backtrack point, there is a well-defined
direction of crossing � at each preimage s (a small interval around s such that .s�; s/ and .s; sC/ are sent
on different sides of �, each containing only one of the ends 
1

C
and 
1� ).

Since preimages in 
vert are finite, for � there can only be an odd number of preimages in 
vert. Since � is
not a flat point, it has the same (odd) number of preimages in both 
 and 
vert. Then at least one of the
points x in the preimage is such that for a large n, if y D f n.x/, then the backward flow of large enough
length from x meets 
 in an odd-cardinality set, with the intersection at a large distance from y and the
leaves of the backward flow, as required.

5 Cutting principal flow lines and geodesics by wall saturations

In this section, we will show that three types of subsets of zX1 are separated by the saturations of walls.
In [HW16], they show that all biinfinite geodesics are separated by (unsaturated) walls. For relative
cubulation (see Section 3), we will need more: that saturations of walls also separate principal flow lines
from geodesic rays and pairs of principal flow lines.

Let us begin with a tautological observation in preparation for the future coning-off of principal flow lines:

Lemma 5.1 Let Wu be a quasiconvex wall in zX and W an M -saturation of Wu. Then for each principal
flow line ƒ of a singular vertex , either ƒ � W or the two points of @ƒ lie in a single component
of @ zX1 n @W .

We will also need the notion of “cut” in order to disconnect points in the Bowditch boundary:
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Figure 8: Proof of Proposition 5.3. The geodesic 
 hits the approximation of a slope of Wu. The
red dotted line indicates a flow line in the saturation of Wu.

Definition 5.2 Let Wu be a quasiconvex wall in zX and let W be an M -saturation of Wu. Let A be a
quasiconvex subspace of zX1 such that @A has at least two points. We say that W cuts A if

(1) @A\ @W D∅ (as subsets of @ zX1), and

(2) @W separates @A, ie @A nontrivially intersects at least two components of @ zX1 n @W .

5.1 Cutting geodesics

Recall that there are two types of geodesics (see Definition 4.15) in zX1. In this subsection, we will show that
for each geodesic line that is not a principal flow line, there exists a wall whose saturation cuts the geodesic.

Proposition 5.3 Let 
 WR! zX1 be an N -nonhorizontal biinfinite geodesic in the flow space. Then there
exists a quasiconvex wall Wu! zX and an M -saturation W of Wu such that W cuts 
 .

Proof Proposition 5.18 of [HW16] shows that in this case, there exists a quasiconvex wall Wu which
separates @
 . Let us quickly explain the idea behind their proof. We refer the reader to Figure 8 for an
illustration of what follows. We choose a wall Wu from a regular effective set of walls (Definition 4.14(1))
with tunnel length L sufficiently larger than N , while ensuring that the approximation A.S/ of some
slope S of Wu intersects a vertical segment of 
 in an odd number of points (in the interior of some
vertical edges), and far away from the endpoints of A.S/ (arguing exactly as in [HW16] while using
Lemma 4.17 for level separatedness). Such a Wu exists because of Theorem 4.16. The fact that 
 is
N -nonhorizontal will ensure that 
 does not have long subpaths which .3ıC2�/-fellow-travel with Wu
(as the tunnel length L of Wu is much larger than N ). This implies, by Lemma 4.4, that the union of 

and N.A.Wu//1 quasiisometrically embeds in zX1 and thus @Wu is disjoint from, and separates, @
 in
@ zX1.

We now chooseM 2LN sufficiently large, and letW be theM -saturation ofWu. Since @Wu separates @
 ,
and Wu �W , in order to show that @W also separates @
 , it suffices to show that @
 is disjoint from @W ,
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a

Wu A.Wu/

Figure 9: Proof of Proposition 5.4. The geodesic 
 is cut along a nucleus of Wu at a. The red
dotted line indicates the principal flow line ƒa.

and for that it suffices to show that the union of 
 and N.A.W //1 quasiisometrically embeds in zX1.
Since we already know that the union of 
 and N.A.Wu//1 quasiisometrically embeds in zX1 and that the
saturation consists of translates of Wu that are at distance larger than M from each other, and of principal
flow lines between them, a failure of quasiconvexity for the union of 
 and N.A.W //1 would mean
that 
 fellow-travels with a principal flow line for a long distance (at least M by definition of saturation).
This contradicts the N -nonhorizontality of 
 .

Proposition 5.4 Let 
 WR! zX1 be a biinfinite geodesic in the flow space such that

(1) 
 is N -horizontal for all large N , and

(2) no ray of 
 is asymptotic to any ray of a principal flow line.

Then there exists a quasiconvex wall Wu! zX and an M -saturation W of Wu such that W cuts 
 .

Proof Proposition 5.19 of [HW16] ensures that there exists a quasiconvex wall Wu which separates
@
 ; the wall Wu is chosen from a periodic effective set of walls Wa (Definition 4.14(2)) so that, up
to translation, the point a in the nucleus of Wu intersects 
 roughly in the middle of a long horizontal
subpath of 
 , whose length is much bigger than the tunnel length of Wu (Figure 9). Such a Wu exists,
again, by Theorem 4.16. By the way Wu was chosen, slope approximations of Wu do not have long
.3ıC2�/-fellow-travelling subpaths with the flow line of a, and therefore with 
 . Lemma 4.4 now ensures
that the union of 
 and N.A.Wu/1/ quasiisometrically embeds in zX1. Therefore @Wu is disjoint from,
and separates, @
 in @ zX1.

In order to prove the proposition, we will now choose an M -saturation W of Wu with M much larger
than the length of the maximal subpath of 
 that .3ıC2�/-fellow-travels with the principal flow line ƒa
through a. Observe that this maximal subpath is bounded as @
 is disjoint from @ƒa. An application of
Lemma 4.4 now shows that the union of N.A.W //1 with 
 is a quasiisometric embedding and thus W
cuts 
 .

5.2 Separating geodesics from principal flow lines

In this subsection, we will show that the union of a principal flow line and a geodesic ray is cut by a wall.
More precisely:
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ƒ




Figure 10: The wall Wu is chosen so as to hit the geodesic ray 
 far from the principal flow line ƒ.

Proposition 5.5 Let ƒ be a principal flow line and 
 be a geodesic ray starting at some point on ƒ.
Suppose that 
 and ƒ are not asymptotic. Then there exists a quasiconvex wall Wu ! zX and an
M -saturation W of Wu, such that

(1) W does not separate @ƒ, and

(2) W cuts ƒ[ 
 .

Proof Let p 2 ƒ be the starting point of 
 . Denote by ƒC and ƒ� the two geodesic subrays of ƒ
starting at p. Denote the endpoints at infinity of these rays by ƒC.1/, ƒ�.1/ and 
.1/. Let � be the
maximal Gromov product at p D 
.0/ of 
.1/ and ƒ˙.1/. Then both the concatenations 
 [ƒ˙ are
.1; 2�C10ı/-quasigeodesic lines. We will now choose a quasiconvex wall Wu (see Figure 10) such that

(1) Wu\ .
 [ƒ�/DWu\ .
 [ƒC/� 
 ,

(2) the union of the quasigeodesic lines 
 [ƒ˙ with N.A.Wu/1/ embeds quasiisometrically, and

(3) @Wu separates 
.1/ from ƒC.1/ and ƒ�.1/.

The choice of Wu that will work for us is a wall given by either Proposition 5.3 or 5.4 depending on
whether or not 
 is N -horizontal for all N .

Let � be the quasiconvexity constant from Proposition 2.7, and � as before. Let � and L be the
quasiconvexity constants for N.A.Wu//1 and the tunnel length of Wu, respectively, for such walls,
as guaranteed by Proposition 4.6. We choose Wu so that Wu intersects 
 at points at distance much larger
than 2�C 20ıC 2�C�CL from p.

Thanks to the large distance between the point p andWu\
 , Lemma 4.4 says that the union ofN.A.Wu/1/
with 
 [ƒ embeds quasiisometrically and both Wu and A.Wu/ are disjoint from ƒ. This implies that
@Wu does not separate @ƒ. We now choose an M -saturation W of Wu with M much larger than the
maximal .3ıC2�/-fellow-travelling length between pairs of principal flow lines. This choice ensures, yet
again by Lemma 4.4, that W is disjoint from ƒ and therefore cuts 
 [ƒ but does not separate @ƒ.
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5.3 Cutting pairs of principal flow lines

Proposition 5.6 Let ƒ1¤ƒ2 be two principal flow lines. Then there exists a quasiconvex wall Wu! zX
and an M -saturation W of Wu such that

(1) W cuts ƒ1[ƒ2, and

(2) @W does not separate @ƒi .

Proof Let 
 be a geodesic segment between ƒ1 and ƒ2. Note that 
 contains at least one vertical edge e,
sinceƒ1¤ƒ2. By Lemma 2.18, there exists a periodic point x in the edge e such that the periodic flow line
ƒx is disjoint from the linesƒi and diverges fromƒi in both the forward and backward directions. We now
choose an immersed wall Wu from a regular effective set (Definition 4.14(1)) and satisfying the following:

(1) Wu has tunnel length L much larger than the .3ıC2�/-fellow-travelling length of ƒx with each ƒi ,

(2) the intersection of ƒx with the approximation A.Wu/ is a segment of length L with centre x,

(3) the approximation A.Wu/ intersects the edge e at the singleton fxg and the geodesic 
 in an odd
cardinality set, and

(4) the intersection of the unionƒ1[ƒ2[
 withA.Wu/ coincides with the intersection of 
 withA.Wu/.

Such a Wu exists as zX is level-separated (Lemma 4.17) and has many effective walls (Theorem 4.16).
Property (1) above allows us to apply Lemma 4.4 to the union ofƒ1[ƒ2[
 withN.A.W //1 and conclude
that it is a quasiisometric embedding in zX1. Therefore @Wu is disjoint from, and separates, @.ƒ1[ƒ2/.
Further, by (4), it does not separate @ƒi . We now choose an M -saturation W of Wu for M much larger
than L. By applying Lemma 4.4 again and arguing as above for Wu, we obtain the desired result.

6 Separating pairs of points in the Bowditch boundary

The goal of this section is to show that the mapping torus � D G Ì� Z satisfies the hypothesis of
Theorem 3.2. Recall that � is hyperbolic relative to the collection P consisting of the suspensions of the
free factors Hi of G.

We first make two observations connecting the Gromov boundary of the flow space zX1 with the Bowditch
boundary @B.�;P/. We denote by czX1 the cone-off of the (1-skeleton of the) flow space zX1 over the set
of principal flow lines. Recall also that y� denotes the cone-off of � relative to P.

As a consequence of the relative Švarc–Milnor lemma [CC07, Theorem 5.1], we obtain:

Proposition 6.1 The cone-off czX1 is �-equivariantly quasiisometric to the cone-off y� .

Let ˇ W zX1! czX1 denote the inclusion map from the flow space to its cone-off. We will denote by @ˇ the
induced map from @ zX1 to the Bowditch boundary @B.�;P/. Observe that @ˇ maps the limit points of
any principal flow line ƒ to the corresponding cone vertex vƒ. In fact:
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Corollary 6.2 The map @ˇ W @ zX1! @B.�;P/ is continuous and surjective. Further , for all � 2 @B.�;P/,
@ˇ�1.�/ is either a singleton or contains two points. The latter arises if and only if � is a cone vertex.

Proposition 6.3 If � and � are points in @ zX1 that are preimages of conical limit points of the Bowditch
boundary, then there exists a geodesic line in zX1 joining them.

If � 2 @ zX1 is the preimage of a conical limit point of the Bowditch boundary , and z0 a vertex in zX , then
there exists a geodesic ray from z0 that converges to �.

Proof Let .xn/ and .yn/ be sequences of vertices in zX going to � and �, respectively, and let Œxn; yn� be
a geodesic in zX1. Let z0 2 T0 minimise the Gromov product .�; �/z0

2N, and let R0 be the minimum.

Let B.z0; R/ be the ball of zX1 of radius R centred at z0. We aim to prove that for all R>R0, there exists
m2N such that fB.z0; R/\Œxn; yn� jn>mg is a finite collection of segments of length�2R�2R0�10ı.

First, for n large enough, B.z0; R/\ Œxn; yn� is indeed such a segment, otherwise one easily gets that
.�; �/z0

>R0.

If for some R the collection is infinite, let k be such that in Tk the intersection Tk\B.z0; R/\ Œxn; yn� is
an infinite collection of segments as n varies (since horizontal segments are determined by their endpoints,
such a k exists). Let zk 2 Tk , and let un be in Tk \B.z0; R/\ Œxn; yn�. Assume that the maximal angle
of Œzk; un�Tk

goes to infinity with n. Let vk be the closest vertex to zk at which the angle goes to infinity.
Then the same is true for the initial vertical segment of either Œzk; xn� or Œzk; yn�. It follows that either
.xn/ or .yn/ converges to a point that is an image of the parabolic point of the principal flow line of vk ,
contrary to our assumption.

The number of subsegments of Œxn; yn� around z0 of a given length is therefore bounded when n
varies. One can thus diagonally extract subsequences such that, inductively, for each given length, the
subsegments of this length of Œxn; yn� around z0 make a constant sequence. We thus obtain a biinfinite
geodesic between � and � in zX .

The second assertion is obtained with a similar argument.

Proposition 6.4 Let � and � be two distinct points in the Bowditch boundary, and let W be the M -
saturation of a quasiconvex wall Wu such that W cuts a geodesic between ˇ�1.�/ and ˇ�1.�/. Then
@ˇ.@W / D @Stab.W / separates � and � and there exists a subgroup K of index at most 2 of Stab.W /
such that � and � are in K-distinct components of @B.�;P/ n @ˇ.@W /.

Let us mention a word of caution here. Though Stab.W / is a codimension-1 subgroup (Proposition 4.13)
of � , the statement above is necessary because, in general, a codimension-1 subgroup need not separate
the Bowditch boundary. As an example, take the cyclic subgroup P D haba�1b�1i of the free group
F.a; b/ with peripheral structure P D P . Here P is a maximal parabolic subgroup that is full, relatively
quasiconvex and codimension-1, but does not separate the Bowditch boundary, a circle.
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Proof Let � and �, and Wu be as in the statement, and Q� and Q� be two points in zX1 in the preimages
@ˇ�1.�/ and @ˇ�1.�/, respectively. Let U� and U� be a clopen partition of @ zX1 n@W containing Q� and Q�,
respectively. Consider points in @ zX1 identified in @B.�;P/. By Corollary 6.2 they are at the end of the
same principal flow line, and by Lemma 5.1, if one is in U� , so is the other one. It follows that the map
@ˇ sends U� and U� on disjoints subsets @ˇ.U�/ and @ˇ.U� / of @B.�;P/n@ˇ.@W /. By surjectivity, they
provide a partition of @B.�;P/ n @ˇ.@W /, each containing � and �, respectively.

We need to check that both @ˇ.U�/ and @ˇ.U� / are closed. By symmetry, it is enough to check that one
is closed. If a sequence .xn/ in @ˇ.U�/ converges in @B.�;P/ n @ˇ.@W /, lift it to a sequence .x0n/ in
@ zX1 n @W . Since @ zX1 is not compact, the sequence .x0n/ may or may not have an accumulation point. If
it does, then the fact that U� is closed, along with the continuity of @ˇ, gives us the necessary conclusion.
Now consider the case where it has no accumulation point in @ zX1. If x0n is a point represented by a
ray �0n in zX1 nW (from a given basepoint) that lives in the component of which � is adherent, it means
that, up to taking a subsequence, all the rays �0n pass through a singular vertex, and make an angle �n at
that vertex such that �n!1 with n. Take v to be the closest singular vertex to the basepoint with this
property. The limit of .xn/ in @B.�;P/ n @ˇ.@W / is then the parabolic point associated to the principal
flow line of this vertex v. Since the rays live in the component of zX1 nW adherent to �, this principal
flow line has at least one endpoint not in U� . By the property of saturations, either both endpoints are
in U� , or both are in @W , and in that case the limit of .xn/ is in @ˇ.@W /, which we assumed otherwise.
So both points of the line are in U� , and their images, which are the limit of .xn/, are in @ˇU� . Therefore
this set is closed.

Therefore � and � are separated by @ˇ.@W /, which is @Stab.W /, since the action of the latter is cocompact
on W .

Fix a basepoint in the complement of W . Let A be the union of components C of zX nW such that
there is a path from the basepoint to C that crosses the set W 0u an even number of times. Recall that W 0u
is the complement in W of the set of its principal flow lines. We note that zX nW is thus partitioned
into two subsets: A and its complement, which we denote here by B . Since the stabiliser of W sends
complementary components of W to complementary components, it preserves this partition of W into A
and B . Therefore there exists a subgroup of index at most 2 which preserves A (and hence also B).

By the way the saturation W of Wu cuts the preimages of � and � (as in Proposition 5.3, 5.4, 5.5 or 5.6),
it is easy to see that � and � do not both lie in the limit set of A, or in the limit set of B , which gives us
the desired result.

We now prove the main result Theorem 1.1, namely, in our current notation, that the relatively hyperbolic
group .�;P/ is relatively cubulated:

Proof of Theorem 1.1 We will show that the boundary criterion Theorem 3.2 holds. Let � ¤ � be two
points in the Bowditch boundary @B.�;P/. We have three cases:
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Case 1 (both � and � are conical points) By abuse of notation, we denote by � and � the unique
preimages in @ zX1 of � and � (Corollary 6.2). Let 
 be a geodesic in zX1 joining � and � as given by
Proposition 6.3. Then Propositions 5.3 and 5.4 ensure that there exists a wall saturation W that cuts 
 .
An application of Proposition 6.4 gives the desired result.

Case 2 (without loss of generality, � is conical while � is parabolic) We consider a geodesic ray 

in zX1, between a vertex of the principal flow line ƒ associated to � and the preimage of �, as given
by Proposition 6.3. Proposition 5.5 ensures that the union of 
 and ƒ is cut by a wall saturation W .
Proposition 6.4 then gives the result.

Case 3 (both � and � are parabolic points) Proposition 5.6 ensures that the principal flow lines associated
to � and � are cut by a wall saturation W . The result then follows from Proposition 6.4.
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