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A-polynomials, Ptolemy equations and Dehn filling

JOSHUA A HOWIE

DANIEL V MATHEWS

JESSICA S PURCELL

The A-polynomial encodes hyperbolic geometric information on knots and related manifolds. Historically,
it has been difficult to compute, and particularly difficult to determine A-polynomials of infinite families of
knots. Here, we compute A-polynomials by starting with a triangulation of a manifold, then using symplec-
tic properties of the Neumann–Zagier matrix encoding the gluings to change the basis of the computation.
The result is a simplification of the defining equations. We apply this method to families of manifolds
obtained by Dehn filling, and show that the defining equations of their A-polynomials are Ptolemy
equations which, up to signs, are equations between cluster variables in the cluster algebra of the cusp torus.
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1 Introduction

The A-polynomial is a polynomial associated to a knot that encodes a great deal of geometric information.
It is closely related to deformations of hyperbolic structures on knots, originally explored by Thurston [41].
Such deformations give rise to a one complex parameter family of representations of the knot group into
SL.2;C/. All representations form the representation variety, which was originally studied in pioneering
work of Culler and Shalen [10; 11] and Culler, Gordon, Luecke and Shalen [9], and remains a very active
area of research; see the survey by Shalen [39]. However representation varieties are difficult to compute,
and often have complicated topology. In the 1990s, Cooper, Culler, Gillet, Long and Shalen [5] realised
that a representation variety could be projected onto C2 using the longitude and meridian of the knot,
with a simpler image. The image is given by the zero set of a polynomial in two variables, up to scaling.
This is the A-polynomial.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1266 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

Among its geometric properties, the A-polynomial detects many incompressible surfaces, and gives
information on cusp shapes and volumes [5; 6]. It has relations to Mahler measure (Boyd [2]), and
appears in quantum topology through the AJ-conjecture (Garoufalidis [18]; Garoufalidis and Lê [19];
Frohman, Gelca and Lofaro [17]). Unfortunately, A-polynomials are also difficult to compute. Unlike
other knot polynomials, there are no skein relations to determine them. Originally, they were computed
by finding polynomial equations from a matrix presentation of a representation, and then using resultants
or Gröbner bases to eliminate variables; see, for example [6] by Cooper and Long. Unlike other knot
polynomials, they are known only for a handful of infinite examples, including twist knots, some double
twist knots, and small families of 2-bridge knots (Hoste and Shanahan [27]; Mathews [31]; Ham and
Lee [25]; Petersen [37]; Tran [43]), some pretzel knots (Tamura and Yokota [40]; Garoufalidis and
Mattman [20]), and cabled knots and iterated torus knots (Ni and Zhang [35]). Culler [7] has computed
A-polynomials for all knots with up to eight crossings, most nine-crossing knots, many ten-crossing knots,
and all knots that can be triangulated with up to seven ideal tetrahedra.

This paper gives a simplified method for determining A-polynomials, especially for infinite families
of knots obtained by Dehn filling. Our method is to change the variables in the defining equations.
Typically, defining equations for A-polynomials have high degree in the variables to eliminate, making
them computationally difficult. Under a change of variables, we show that all such equations can be
expressed in degree two in the variables to eliminate. For families of knots obtained by Dehn filling,
even more can be said. There will be a finite, fixed number of “outside equations”, and a sequence of
equations determined completely by the slope of the Dehn filling. All such equations exhibit Ptolemy-like
properties, with very similar behaviours to cluster algebras. We expect the method to greatly improve our
ability to compute families of A-polynomials. Indeed, of all the known examples of infinite families of
A-polynomials above, all except the cabled knots and iterated torus knots are obtained by Dehn filling a
fixed parent manifold.

1.1 Computing the A-polynomial

Champanerkar [4] introduced a geometric way to compute the A-polynomial based on a triangulation of
a knot complement. His method is to start with a collection of equations — one gluing equation for each
edge of the triangulation, and two equations for the cusp — and eliminate variables. The coefficients in
the gluing and cusp equations are effectively the entries in the Neumann–Zagier matrix [33]. This matrix
has interesting symplectic properties: its rows form part of a standard symplectic basis for a symplectic
vector space. Dimofte [12] and Dimofte and van der Veen [13] considered extending this collection of
vectors into a standard basis for R2n, and then changing the basis. This yields a change of variables, and
an equivalent set of equations. Eliminating variables again yields (up to technicalities) the A-polynomial;
effectively this can be considered a process of symplectic reduction.

There are a few issues with Dimofte’s calculations that have made them difficult to use in practice. First,
the result appears in physics literature, which makes it somewhat difficult for mathematicians to read.

Algebraic & Geometric Topology, Volume 25 (2025)



A-polynomials, Ptolemy equations and Dehn filling 1267

More importantly, to carefully perform the change of basis, in particular to nail down the correct signs in
the defining equations, a priori one needs to determine the symplectic dual vectors to the vectors arising
from gluing equations. These are not only nontrivial to compute, but also highly nonunique. Only after
obtaining such vectors can one invert a large symplectic matrix.

In this paper, we overcome these issues. Using work of Neumann [32], we show that we may “invert
without inverting”. That is, we show that Dimofte’s symplectic reduction can be read off of ingredients
already present in the Neumann–Zagier matrix, without having to compute symplectic dual vectors. As a
result, we may convert Champanerkar’s (possibly complicated) equations into simpler equations that have
Ptolemy-like structure.

There are other ways to compute A-polynomials. Zickert [46] and Garoufalidis, Thurston and Zickert [21]
introduced one in work on extended Ptolemy varieties, inspired by Fock and Goncharov [14]. Their
work also starts with a triangulation, but in the case of interest assigns six variables per tetrahedron,
and relates these by what are called Ptolemy relations and identification relations. After an appropriate
transformation, the corresponding variables satisfy gluing equations; see [21, Section 12]. Zickert notes a
“fundamental duality” between Ptolemy coordinates and gluing equations in [46, Remark 1.13]. However,
it is not clear why the duality arises. The equations we find in this paper are similar to the defining
equations of Zickert, but with fewer variables. We expect that the results of this paper may provide a
connection to two very different approaches to calculating A-polynomials. While we do not show that the
methods of that paper and this one are equivalent, we conjecture that they are, and thus the techniques
here may provide a geometric, symplectic explanation for the “fundamental duality”.

1.2 Neumann–Zagier matrices and the main theorem

Let M be a hyperbolic 3-manifold with a triangulation. Then it has an associated Neumann–Zagier
matrix, which we will denote by NZ. The properties of NZ are reviewed in Section 2. In short, gluing and
cusp equations give a system of the form NZ �Z DH C i�C , where Z is a vector of variables related to
tetrahedra, and H and C are both vectors of constants.

Neumann and Zagier showed that if M has one cusp, then the n rows of NZ corresponding to gluing
equations have rank n� 1. Thus a row can be removed, leaving n� 1 linearly independent rows. Denote
the matrix given by removing such a row of NZ by NZ[, and similarly denote the vector obtained from C

by removing the corresponding row by C [. We will refer to NZ[ as the reduced Neumann–Zagier matrix.
The vector C [ is called the sign vector. We will show that, after possibly relabelling the tetrahedra of a
triangulation, we may assume one of the entries of C [ corresponding to a gluing equation is nonzero.
Neumann [32] has shown that there always exists an integer vector B such that NZ[ �B D C [.

To state the main theorem, we introduce a little more notation. The last two rows of the matrix NZ[

correspond to cusp equations associated to the meridian and longitude. For ease of notation, we will

Algebraic & Geometric Topology, Volume 25 (2025)



1268 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

denote the entries in the row associated to the meridian and longitude, respectively, by�
�1 �0

1
�2 �0

2
: : :
�

and
�
�1 �0

1
�2 �0

2
: : :
�
:

Finally, suppose the edges of the tetrahedra are glued into n edges E1; : : : ;En. Label the ideal vertices
of each tetrahedron 0, 1, 2, and 3, with 1, 2, 3 in anticlockwise order when viewed from 0. Then there
are six edges, each labelled by a pair of integers ˛ˇ 2 f01; 02; 03; 12; 13; 23g. For the j th tetrahedron, let
j .˛ˇ/ denote the index of the edge class to which that edge is identified. That is, if the edge ˛ˇ is glued
to Ek , then j .˛ˇ/D k.

Theorem 1.1 Let M be a one-cusped manifold with a hyperbolic triangulation T , with associated
reduced Neumann–Zagier matrix NZ[ and sign vector C [ as above. Also as above , denote the entries
of the last two rows of NZ[ by �j ; �

0
j in the row corresponding to the meridian , and �j , �0j in the row

corresponding to the longitude. Let BD .B1;B
0
1
;B2;B

0
2
; : : :/ be an integer vector such that NZ[ �BDC [.

Define formal variables 1; : : : ; n, one associated with each edge of T . For a tetrahedron �j of T , and
edge ˛ˇ 2 f01; 02; 03; 12; 13; 23g, define j.˛ˇ/ to be the variable k such that the edge of �j between
vertices ˛ and ˇ is glued to the edge of T associated with k .

For each tetrahedron �j of T , define the Ptolemy equation of �j by

.�1/B
0
j `��j =2m�j =2j.01/j.23/C .�1/Bj `��

0
j
=2m�0

j
=2j.02/j.13/� j.03/j.12/ D 0:

When we solve the system of Ptolemy equations of T in terms of m and `, setting n D 1 and eliminating
the variables 1; : : : ; n�1, we obtain a factor of the PSL.2;C/ A-polynomial.

In fact, we obtain the same factor as Champanerkar. The precise version of this theorem is contained in
Theorem 2.58 below.

Remark 1.2 The Ptolemy equations above are always quadratic in the variables j . Moreover, their
form indicates intriguing algebraic structure that is not readily apparent from the gluing equations.

We find the simplicity and the algebraic structure of the equations of Theorem 1.1 to be a major feature
of this paper. The defining equations of the A-polynomial are quite simple! We note that using these
equations requires finding the vector B of Theorem 1.1. This is a problem in linear Diophantine equations.
Because B is guaranteed to exist, it can be found by computing the Smith normal form of the matrix NZ
(see, for example, Chapter II.21(c) of [34] by Newman). In practice, we were able to find B for examples
with significantly less work.

Remark 1.3 The  variables in Theorem 1.1 are precisely Dimofte’s  variables of [12], and these
Ptolemy equations are essentially equivalent to those of that paper.

The word “equivalent” here conceals a projective subtlety. The gluing and cusp equations are a set of nC2

equations in n tetrahedron parameters and `;m, but only nC 1 of them are independent. The Ptolemy
equations are however a set of n independent equations in n edge variables and `;m. Nonetheless, they

Algebraic & Geometric Topology, Volume 25 (2025)
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are homogeneous, and so 1; : : : ; n can be regarded as varying on CPn�1; alternatively, one can divide
through by an appropriate power of one i to obtain equations in the n� 1 variables,

1

i
; : : : ;

i�1

i
;
iC1

i
; : : : ;

n

i
;

which can be eliminated. Effectively, one can simply set one of the variables i to 1.

A further subtlety arises because our Ptolemy equations are not polynomials in m and `; they are rather
polynomials in m1=2 and `1=2. If we set M Dm1=2 and LD `1=2 then we obtain polynomial Ptolemy
equations. Moreover, the variables L and M so defined are essentially those appearing in the SL.2;C/ A-
polynomial: a matrix in SL.2;C/ with eigenvalues L;L�1 yields an element of PSL.2;C/ corresponding
to a hyperbolic isometry with holonomy L2 D `. Indeed, the Ptolemy varieties of [46] are calculated
from SL.2;C/ representations, rather than PSL.2;C/. We obtain:

Corollary 1.4 After setting M D˙m1=2 and LD˙`1=2, eliminating the  variables from the polynomial
Ptolemy equations of a one-cusped hyperbolic triangulation yields a polynomial in M and L which
contains , as a factor , the factor of the SL.2;C/ A-polynomial describing hyperbolic structures.

The precise version of this corollary is Corollary 2.59.

1.3 Ptolemy equations in Dehn filling

Our main application of Theorem 1.1 is to consider the defining equations of A-polynomials under Dehn
filling.

Consider a two-component link in S3 with component knots K0;K1. Consider Dehn filling K0 along
some slope p=q; K1 then becomes a knot in a 3-manifold. A Dehn filling can be triangulated using
layered solid tori, originally defined by Jaco and Rubinstein [30]; see also the work by Guéritaud and
Schleimer [24]. Building a layered solid torus yields a sequence of triangulations of a once-punctured
torus. The combinatorics of the 3-dimensional layered solid torus corresponds closely to the combinatorics
of 2-dimensional triangulations of punctured tori.

Triangulations of punctured tori can be endowed with �-lengths via work of Penner [36]. When one flips
a diagonal in a triangulation, the �-lengths are related by a Ptolemy equation. This gives the algebra
formed by �-lengths the structure of a cluster algebra (Fock and Goncharov [14]; Fomin, Shapiro and
Thurston [15]; Gekhtman, Shapiro and Vainshtein [22]). Cluster algebras arise in diverse contexts across
mathematics (see eg works by Fomin, Williams and Zelevinsky [16] and by Williams [45]).

We obtain two sets of Ptolemy equations: one for the cluster algebra of the punctured torus coming
from �-lengths, and one for the tetrahedra in the layered solid torus coming from Theorem 1.1. These
are identical except for signs. Thus we can regard the algebra generated by our Ptolemy equations as a
“twisted” cluster algebra, where the word “twisted” indicates some changes of sign.

Algebraic & Geometric Topology, Volume 25 (2025)



1270 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

Theorem 1.5 Suppose M has two cusps , c0; c1, and is triangulated such that only two tetrahedra meet c1,
and generating curves m0; l0 on the cusp triangulation of c0 avoid these tetrahedra. Then for any Dehn
filling on the cusp c1 obtained by attaching a layered solid torus , the Ptolemy equations satisfy:

(i) There are a finite number of fixed Ptolemy equations , independent of the Dehn filling , coming
from tetrahedra outside the Dehn filling. These are obtained as in Theorem 1.1 using the reduced
Neumann–Zagier matrix and B vector for the unfilled manifold.

(ii) The Ptolemy equations for the tetrahedra in the solid torus take the form

˙xy ˙ 
2
a � 

2
b D 0;

where a; b;x;y are slopes on the torus boundary and x;y are crossing diagonals. In addition , the
variable y will appear for the first time in this equation , with x , a, and b appearing in earlier
equations.

A precise version of this theorem is Theorem 3.17.

Theorem 1.5 in particular implies that each of the Ptolemy equations for the solid torus can be viewed
as giving a recursive definition of the new variable y . These equations are explicit, depending on the
slope. Since the outside Ptolemy equations are fixed, in practice this gives a recursive definition of the A-
polynomial in terms of the slope of the Dehn filling. If we take a sequence of Dehn filling slopes fpi=qig,
then the A-polynomials of the knots Ki DKpi=qi

, are closely related. The Ptolemy equations defining
AKiC1

are, roughly speaking, obtained from those for AKi
by adding a single extra Ptolemy relation.

We illustrate this theorem by example for twist knots, which are Dehn fillings of the Whitehead link.
While A-polynomials of twist knots are known (Hoste and Shanahan [27]; Mathews [31]), we still believe
this example is useful in showing the simplicity of the Ptolemy equations. In a follow up paper with
Thompson [28], we apply these tools to a new family of knots whose A-polynomials were previously
unknown, namely twisted torus knots obtained by Dehn filling the Whitehead sister.

1.4 Structure of this paper

In Section 2, we recall work of Thurston [41] and Neumann and Zagier [33], including gluing and cusp
equations, the Neumann–Zagier matrix, and its symplectic properties. We introduce a symplectic change
of basis, and show this leads to Ptolemy equations that give the A-polynomial, proving Theorem 1.1.

In Section 3, we connect to Dehn fillings. We review the construction of layered solid tori, and triangu-
lations of Dehn filled manifolds, and show how the triangulation adjusts the Neumann–Zagier matrix.
Using this, we find Ptolemy equations for any layered solid torus, completing the proof of Theorem 1.5.

Section 4 works through the example of knots obtained by Dehn filling the Whitehead link.
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2 From gluing equations to Ptolemy equations via symplectic reduction

In this section we discuss Dimofte’s symplectic reduction method and refine it to show how gluing and
cusp equations are equivalent to Ptolemy equations, proving Theorem 1.1.

2.1 Triangulations, gluing and cusp equations

Let M be a 3-manifold that is the interior of a compact manifold M with all boundary components tori.
Let the number of boundary tori be nc, so M has nc cusps. For example, M may be a link complement
S3�L, where L is a link of nc components, and M a link exterior S3�N.L/.

Suppose M has an ideal triangulation. Throughout this paper, unless stated otherwise, triangulation
means ideal triangulation, and tetrahedron means ideal tetrahedron. Throughout, n denotes the number of
tetrahedra in a triangulation.

Definition 2.1 An oriented labelling of a tetrahedron is a labelling of its four ideal vertices with the
numbers 0; 1; 2; 3, as in Figure 1, up to oriented homeomorphism preserving edges.

In an ideal tetrahedron with an oriented labelling, we call the opposite pairs of edges .01; 23/, .02; 13/,
.03; 12/ respectively the a-edges, b-edges and c-edges.

In an oriented labelling, around each vertex (as viewed from outside the tetrahedron), the three incident
edges are an a-, b-, and c-edge in anticlockwise order.

The number of edges in the triangulation is equal to the number n of tetrahedra, as follows: letting the
numbers of edges and faces in the triangulation temporarily be E and F , @M is triangulated with 2E

vertices, 3F edges and 4n triangles. As @M consists of tori, its Euler characteristic 2E � 3F C 4n is
zero. Since 2F D 4n, we have E D n.

Definition 2.2 A labelled triangulation of M is an oriented ideal triangulation of M, where

(i) the tetrahedra are labelled �1; : : : ; �n in some order,

0

1

2

3

a

a

b

b

cc

Figure 1: A tetrahedron with vertices labelled 0, 1, 2, 3 and opposite edges labelled a, b, c.

Algebraic & Geometric Topology, Volume 25 (2025)
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(ii) the edges are labelled E1; : : : ;En in some order, and

(iii) each tetrahedron is given an oriented labelling.

As in the introduction, we will need to refer to the edge Ek to which an edge of tetrahedron �j is glued.

Definition 2.3 For j 2 f1; : : : ; ng and distinct �; � 2 f0; 1; 2; 3g, the index of the edge to which the edge
.��/ of �j is glued is denoted j .��/. In other words, the edge .��/ of �j is identified to Ej.��/.

Suppose now that we have a labelled triangulation of M. To each tetrahedron �j we associate three
variables zj ; z

0
j ; z
00
j . These variables are associated with the a-, b- and c-edges of �j and satisfy the

equations

zj z0j z00j D�1;.2.4/

zj C .z
0
j /
�1
� 1D 0:.2.5/

If �j has a hyperbolic structure then these parameters are standard tetrahedron parameters; see [42].
Each of zj ; z

0
j ; z
00
j gives the cross ratio of the four ideal points, in some order. The arguments of zj ; z

0
j ; z
00
j

respectively give the dihedral angles of �j at the a-, b- and c-edges. Note that (2.4) and (2.5) imply that
none of zj ; z

0
j ; z
00
j can be equal to 0 or 1 (ie tetrahedra are nondegenerate).

Definition 2.6 In a labelled triangulation of M, we denote by ak;j ; bk;j ; ck;j respectively the number of
a-, b-, c-edges of �j identified to Ek .

Lemma 2.7 For each fixed j ,

.2.8/

nX
kD1

ak;j D 2;

nX
kD1

bk;j D 2 and
nX

kD1

ck;j D 2:

Proof Each tetrahedron �j has two a-edges, two b-edges and two c-edges, so for fixed j the total sum
over all k must be 2.

The nonzero terms in the first sum are aj.01/;j and aj.23/;j . Note that j .01/ could equal j .23/; this
occurs when the two a-edges of �j are glued to the same edge. In that case, aj.01/;j and aj.23/;j are
the same term, equal to 2. If the two a-edges are not glued to the same edge, then Ej.01/ and Ej.23/ are
distinct, each with one a-edge of �j identified to it, and aj.01/;j D aj.23/;j D 1. Similarly, the nonzero
terms in the second sum are bj.02/;j ; bj.13/;j and in the third sum cj.03/;j ; cj.12/;j .

The numbers ak;j ; bk;j ; ck;j can be arranged into a matrix.

Definition 2.9 The incidence matrix, In, of a labelled triangulation T is the n� 3n matrix whose k th

row is .ak;1; bk;1; ck;1; : : : ; ak;n; bk;n; ck;n/.
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Thus In has rows corresponding to the edges E1; : : : ;En, and the columns come in triples with the j th

triple corresponding to the tetrahedron �j .

The gluing equation for edge Ek is then

.2.10/

nY
jD1

z
ak;j

j .z0j /
bk;j .z00j /

ck;j D 1:

When the ideal triangulation T is hyperbolic, the gluing equations express the fact that tetrahedra fit
geometrically together around each edge.

Denote the nc boundary tori of M by T1; : : : ;Tnc . A triangulation of M by tetrahedra induces a
triangulation of each Tk by triangles. On each Tk we choose a pair of oriented curves mk ; lk forming
a basis for H1.Tk/. By an isotopy if necessary, we may assume each curve is in general position with
respect to the triangulation of Tk , without backtracking. Then each curve splits into segments, where
each segment lies in a single triangle and runs from one edge to a distinct edge. Each segment of mk or
lk can thus be regarded as running clockwise or anticlockwise around a unique corner of a triangle; these
directions are as viewed from outside the manifold. We count anticlockwise motion around a vertex as
positive, and clockwise motion as negative. Each vertex (resp. face) of the triangulation of Tk corresponds
to some edge (resp. tetrahedron) of the triangulation T of M ; thus each corner of a triangle corresponds
to a specific edge of a specific tetrahedron.

Definition 2.11 The a-incidence number (resp. b-, c-incidence number) of mk (resp. lk) with the
tetrahedron �j is the number of segments of mk (resp. lk) running anticlockwise (ie positively) through
a corner of a triangle corresponding to an a-edge (resp. b-, c-edge) of �j , minus the number of segments
of mk (resp. lk) running clockwise (ie negatively) through a corner of a triangle corresponding to an
a-edge (resp. b-edge, c-edge) of �j .

(i) Denote by am
k;j
; bm

k;j
; cm

k;j
the a-, b-, c-incidence numbers of mk with �j .

(ii) Denote by al
k;j
; bl

k;j
; cl

k;j
the a-, b-, c-incidence numbers of lk with �j .

To each cusp torus Tk we associate variables mk ; `k . The cusp equations at Tk are

.2.12/ mk D

nY
jD1

z
am

k;j

j .z0j /
bm

k;j .z00j /
cm

k;j ; `k D

nY
jD1

z
al

k;j

j .z0j /
bl

k;j .z00j /
cl

k;j

When T is a hyperbolic triangulation, meaning the ideal tetrahedra are all positively oriented and glue to
give a smooth, complete hyperbolic structure on the underlying manifold, the cusp equations give mk

and `k , the holonomies of the cusp curves mk and lk , in terms of tetrahedron parameters.

Any hyperbolic triangulation T gives tetrahedron parameters zj ; z
0
j ; z
00
j and cusp holonomies mk ; `k

satisfying the relationships (2.4)–(2.5) between the z variables, the gluing equations (2.10) and cusp
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equations (2.12); moreover, the tetrahedron parameters all have positive imaginary part. However, in
general there may be solutions of these equations which do not correspond to a hyperbolic triangulation, for
instance those with zj with negative imaginary part (which may still give M a hyperbolic structure), or with
branching around an edge (which will not). Additionally, not every hyperbolic structure on M may give
a solution to the gluing and cusp equations, since the triangulation T may not be geometrically realisable.

2.2 The A-polynomial from gluing and cusp equations

Suppose now that nc D 1, ie M has one cusp, and moreover, that M is the complement of a knot K in a
homology 3-sphere.

In this case, there is no need for the k D 1 subscript in notation for the lone cusp, and we may simply
write

mDm1; lD l1; mDm1; `D `1;

am
j D am

1;j ; bm
j D bm

1;j ; cmj D cm1;j ; al
j D al

1;j ; bl
j D bl

1;j ; clj D cl1;j ;

In this case we can take the boundary curves .m; l/ to be a topological longitude and meridian, respectively.
That is, we may take l to be primitive and nullhomologous in M, and m to bound a disc in a neighbourhood
of K.

We orient m and l so that the tangent vectors vm and vl to m and l, respectively, at the point where m inter-
sects l are oriented according to the right-hand rule: vm� vl points in the direction of the outward normal.

The equations (2.4)–(2.5) relating the z; z0; z00 variables, the gluing equations (2.10), and the cusp
equations (2.12) are equations in the variables zj ; z

0
j ; z
00
j and `;m. Solve these equations for `;m,

eliminating the variables zj ; z
0
j ; z
00
j to obtain a relation between ` and m.

Champanerkar [4] showed that the above equations can be solved in this sense to give divisors of the
PSL.2;C/ A-polynomial of M. Segerman showed that, if one takes a certain extended version of this
variety, there exists a triangulation such that all factors of the PSL.2;C/ A-polynomial are obtained [38].
See also [23] for an effective algorithm.

Theorem 2.13 (Champanerkar) When we solve the system of equations (2.4)–(2.5), (2.10) and (2.12)
in terms of m and `, we obtain a factor of the PSL.2;C/ A-polynomial.

2.3 Logarithmic equations and Neumann–Zagier matrix

We now return to the general case where the number nc of cusps of M is arbitrary.

Note that equation (2.4) relating zj ; z
0
j ; z
00
j , the gluing equations (2.10), and the cusp equations (2.12) are

multiplicative. By taking logarithms now we make them additive.
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Equation (2.4) implies that each zj ; z
0
j and z00j is nonzero. Taking (an appropriate branch of) a logarithm

we obtain
log zj C log z0j C log z00j D i�:

Define Zj D log zj and Z0j D log z0j , using the branch of the logarithm with argument in .��; ��, and
then define Z00j as

.2.14/ Z00j D i� �Zj �Z0j ;

so that indeed Z00j is a logarithm of z00j .

In a hyperbolic triangulation, each tetrahedron parameter has positive imaginary part. The arguments of
zj ; z

0
j ; z
00
j (ie the imaginary parts of Zj ;Z

0
j ;Z

00
j ) are the dihedral angles at the a-, b- and c-edges of �j ,

respectively. They are the angles of a Euclidean triangle, hence they all lie in .0; �/ and they sum to � .

The gluing equation (2.10) expresses the fact that tetrahedra fit together around an edge. Taking a
logarithm, we may make the somewhat finer statement that dihedral angles around the edge sum to 2� .
Thus we take the logarithmic form of the gluing equations as

.2.15/

nX
jD1

ak;j Zj C bk;j Z0j C ck;j Z00j D 2� i:

We similarly obtain logarithmic forms of the cusp equations (2.12) as

.2.16/ log mk D

nX
jD1

am
k;j Zj C bm

k;j Z0j C cmk;j Z00j ; log `k D

nX
jD1

al
k;j Zj C bl

k;j Z0j C clk;j Z00j :

We can then observe that any solution of (2.14) and the logarithmic gluing and cusp equations (2.15)–
(2.16) yields, after exponentiation, a solution of (2.4) and the original gluing equation (2.10) and cusp
equations (2.12). Moreover, any solution of (2.4), (2.10) and (2.12) has a logarithm which is a solution of
(2.14) and (2.15)–(2.16).

Using (2.14) we eliminate the variables Z00j (just as using (2.4) we can eliminate the variables z00j ). In
doing so, coefficients are combined in a way that persists throughout this paper, and so we define these
combinations as follows.

Definition 2.17 For a given labelled triangulation of M, we define

dk;j D ak;j � ck;j ; d 0k;j D bk;j � ck;j ; ck D

nX
jD1

ck;j for k D 1; 2; : : : ; n,

�k;j D am
k;j � cmk;j ; �0k;j D bm

k;j � cmk;j ; cmk D

nX
jD1

cmk;j for k D 1; 2; : : : ; nc,

�k;j D al
k;j � clk;j ; �0k;j D bl

k;j � clk;j ; clk D

nX
jD1

clk;j for k D 1; 2; : : : ; nc.

Note that the index k in the first line steps through the n edges, while the index k in the next two lines
steps through the nc cusps.
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When nc D 1 we can drop the k subscript on cusp terms, so we have

�j D am
j � cmj ; �0j D bm

j � cmj ; cm D

nX
jD1

cmj ; �j D al
j � clj ; �0j D bl

j � clj ; cl D

nX
jD1

clj :

We thus rewrite the logarithmic gluing and cusp equations (2.15)–(2.16) in terms of the variables Zj ;Z
0
j

and `k ;mk only, as
nX

jD1

dk;j Zj C d 0k;j Z0j D i�.2� ck/;.2.18/

nX
jD1

�k;j Zj C�
0
k;j Z0j D log mk � i�cmk ;.2.19/

nX
jD1

�k;j Zj C�
0
k;j Z0j D log `k � i�clk :.2.20/

Define the row vectors of coefficients in equations (2.18)–(2.20) as

RG
k WD

. dk;1 d 0
k;1

: : : dk;n d 0
k;n
/;

Rm
k WD

. �k;1 �0
k;1

: : : �k;n �0
k;n
/;

Rl
k WD

. �k;1 �0
k;1

: : : �k;n �0
k;n
/:

So RG
k

gives the coefficients in the logarithmic gluing equation for the k th edge Ek , and Rm
k
;Rl

k
give

respectively coefficients in the logarithmic cusp equations for mk and lk on the k th cusp.

When nc D 1 we again drop the k subscript on cusp terms and simply write Rm DRm
k

and Rl DRl
k

, so
that Rm D .�1; �

0
1
; : : : ; �n; �

0
n/ and Rl D .�1; �

0
1
; : : : ; �n; �

0
n/.

We observe natural meanings for the new d; d 0; �; �0; �; �0; c coefficients of Definition 2.17 by re-
exponentiating. The tetrahedron parameters and the holonomies mk ; `k satisfy versions of the gluing
and cusp equations without any z00j appearing, where the d; d 0 variables appear as exponents in gluing
equations, �;�0; �; �0 variables appear as exponents in cusp equations, and the c variables determine
signs:

nY
jD1

z
dk;j

j .z0j /
d 0

k;j D .�1/ck for k D 1; : : : ; n (indexing edges)

mk D .�1/c
m
k

nY
jD1

z
�k;j

j .z0j /
�0

k;j ; `k D .�1/c
l
k

nY
jD1

z
�k;j

j .z0j /
�0

k;j for k D 1; : : : ; nc (cusps):

When nc D 1, the notation for cusp equations again simplifies so we have

mD .�1/c
m

nY
jD1

z
�j

j .z0j /
�0

j and `D .�1/c
l

nY
jD1

z
�j

j .z0j /
�0

j :
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The matrix with rows RG
1
; : : : ;RG

n ;R
m
1
;Rl

1
; : : : ;Rm

nc
;Rl

nc
is called the Neumann–Zagier matrix, and we

denote it by NZ. The first n rows correspond to the edges E1; : : : ;En, and the next rows come in pairs
corresponding to the pairs .mk ; lk/ of basis curves for the cusp tori T1; : : : ;Tnc . The columns come
in pairs corresponding to the tetrahedra �1; : : : ; �n. Note that the data of a labelled triangulation of
Definition 2.2 give us the information to write down the matrix: the edge ordering E1; : : : ;En orders the
rows; the tetrahedron ordering �1; : : : ; �n orders pairs of columns; and the oriented labelling on each
tetrahedron determines each pair of columns:

.2.21/ NZD

26666666666664

RG
1
:::

RG
n

Rm
1

Rl
1
:::

Rm
nc

Rl
nc

37777777777775
D

266666666666664

�1 � � � �n

E1 d1;1 d 0
1;1

� � � d1;n d 0
1;n

:::
:::

: : :
:::

En dn;1 d 0
n;1

� � � dn;n d 0n;n
m1 �1;1 �0

1;1
� � � �1;n �0

1;n

l1 �1;1 �0
1;1

� � � �1;n �0
1;n

:::
:::

: : :
:::

mnc �nc;1 �0
nc;1
� � � �nc;n �nc;n

lnc �nc;1 �0
nc;1

� � � �nc;n �0nc;n

377777777777775
:

The gluing and cusp equations can then be written as a single matrix equation, if we make the following
definitions.

Definition 2.22 The Z-vector, z-vector, H -vector and C-vector are defined as

Z WD .Z1;Z
0
1; : : : ;Zn;Z

0
n/

T ;

z WD .z1; z
0
1; : : : ; zn; z

0
n/

T ;

H WD
�
0; : : : ; 0; log m1; log `1; : : : ; log mnc ; log `nc

�T
;

C WD
�
2� c1; : : : ; 2� cn;�cm1 ;�cl1; : : : ;�cmnc

;�clnc

�T
:

The vector Z contains the logarithmic tetrahedral parameters; the vector H contains the cusp holonomies,
and the vector C is a vector of constants derived from the gluing data, giving sign terms in exponentiated
equations.

We summarise our manipulations of the various equations in the following statement.

Lemma 2.23 Let T be a labelled triangulation of M.

(i) The logarithmic gluing and cusp equations can be written compactly as

.2.24/ NZ �Z DH C i�C:

That is , logarithmic gluing and cusp equations (2.18)–(2.20) are equivalent to (2.24).
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(ii) After exponentiation , a solution Z of (2.24) gives z which , together with z00j defined by (2.4), yields
a solution of the gluing equations (2.10) and cusp equations (2.12).

(iii) Conversely , any solution .zj ; z
0
j ; z
00
j / of (2.4), gluing equations (2.10) and cusp equations (2.12)

yields z with logarithm Z satisfying (2.24).

(iv) Any hyperbolic triangulation yields Z and H which satisfy (2.24).

2.4 Symplectic and topological properties of the Neumann–Zagier matrix

The matrix NZ has nice symplectic properties, due to Neumann–Zagier [33], which we now recall.

First, we introduce notation for the standard symplectic structure on R2N , for any positive integer N .
Denote by ei (resp. fi) the vector whose only nonzero entry is a 1 in the .2i�1/th coordinate (resp. 2i th

coordinate). Dually, let xi (resp. yi) denote the coordinate function which returns the .2i�1/th coordinate
(resp. 2i th coordinate). We define the standard symplectic form ! as

.2.25/ ! D dx1 ^ dy1C � � �C dxN ^ dyN D

NX
jD1

dxj ^ dyj :

Thus, given two vectors V D .V1;V
0

1
; : : : ;VN ;V

0
N
/ and W D .W1;W

0
1
; : : : ;WN ;W

0
N
/ in R2N ,

!.V;W /D

NX
jD1

Vj W 0j �V 0j Wj :

Alternatively, !.V;W /DV T JW D .JV /�W , where � is the standard dot product, and J is multiplication
by i on CN ŠR2N , ie J.ei/D fi and J.fi/D�ei (hence J 2 D�1). As a matrix,

J D

26666666664

0 �1

1 0

0 �1

1 0
: : :

0 �1

1 0

37777777775
:

The ordered basis .e1;f1; : : : ; eN ;fN / forms a standard symplectic basis, satisfying

!.ei ;fj /D ıi;j ; !.ei ; ej /D 0; !.fi ;fj /D 0

for all i; j 2 f1; : : : ;N g. Any sequence of 2N vectors on which ! takes the same values on pairs is a
symplectic basis.

Maps which preserve a symplectic form are called symplectomorphisms. We will need to use a few
particular linear symplectomorphisms. The proof below is a routine verification.
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Lemma 2.26 In the standard symplectic vector space .R2N; !/ as above , the following linear transfor-
mations are symplectomorphisms:

(i) For j ; k 2 f1; : : : ;N g, j ¤ k, and any a 2R, map ej 7! ej C afk , ek 7! ek C afj , and leave all
other standard basis vectors unchanged.

(ii) For j 2 f1; : : : ;N g and any a 2R, map ej 7! ej C afj , and leave all other standard basis vectors
unchanged.

In fact, it is not difficult to show that the linear symplectomorphisms above generate the group of linear
symplectomorphisms which fix all fj . If we reorder the standard basis .e1; : : : ; en;f1; : : : ;fn/, the
symplectic matrices fixing the Lagrangian subspace spanned by the fj have matrices of the form�

I 0

A I

�
;

where I is the n� n identity matrix and A is an n� n symmetric matrix. These form a group isomorphic
to the group of n� n real symmetric matrices under addition.

Returning to the Neumann–Zagier matrix NZ, observe that its row vectors lie in R2n, where n (as always)
is the number of tetrahedra. These vectors behave nicely with respect to !.

Theorem 2.27 (Neumann–Zagier [33]) With RG
k
;Rm

k
;Rl

k
and ! as above:

(i) For all j ; k 2 f1; : : : ; ng, we have !.RG
j ;R

G
k
/D 0.

(ii) For all j 2 f1; : : : ; ng and k 2 f1; : : : ; ncg, we have !.RG
j ;R

m
k
/D !.RG

j ;R
l
k
/D 0.

(iii) For all j ; k 2 f1; : : : ; ncg, we have !.Rm
j ;R

l
k
/D 2ıjk .

(iv) The row vectors RG
1
; : : : ;RG

n span a subspace of dimension n� nc.

(v) The rank of NZ is nC nc.

In light of Theorem 2.27(iv), by relabelling edges if necessary, we can assume a labelled triangulation
has the property that the first n� nc rows of its Neumann–Zagier matrix are linearly independent. We
will make this assumption throughout.

According to Theorem 2.27, the values of ! on pairs of vectors taken from the list of nC nc vectors
.RG

1
; : : : ;RG

n�nc
;Rm

1
; 1

2
Rl

1
; : : : ;Rm

nc
; 1

2
Rl

nc
/ agree with the value of ! on corresponding pairs in the

list .f1; : : : ;fn�nc ; en�ncC1;fn�ncC1; : : : ; en;fn/. For RG
1
; : : : ;RG

n�nc
linearly independent, there is a

linear symplectomorphism sending each vector in the first list to the corresponding vector in the second.

Accordingly, as observed by Dimofte [12] the list of nC nc vectors�
RG

1 ; : : : ;R
G
n�nc

;Rm
1 ;

1
2
Rl

1; : : : ;R
m
nc
; 1

2
Rl

nc

�
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extends to a symplectic basis for R2n,�
R�

1 ;R
G
1 ; : : : ;R

�
n�nc

;RG
n�nc

;Rm
1 ;

1
2
Rl

1; : : : ;R
m
nc
; 1

2
Rl

nc

�
;

with the addition of n� nc vectors, denoted R�
1
; : : : ;R�

n�nc
. Being a symplectic basis means that, in

addition to the equations of Theorem 2.27(i)–(iii), we also have

!.R�
j ;R

�
k /D 0 and !.R�

j ;R
G
k /D ıj ;k for all j ; k 2 f1; : : : ; n� ncg, and

!.R�
j ;R

m
k /D !.R

�
j ;R

l
k/D 0 for all j 2 f1; : : : ; n� ncg and k 2 f1; : : : ; ncg.

Indeed, the R�
j may be found by solving the equations above: given RG

k
;Rm

k
;Rl

k
, we may solve

successively for R�
1
;R�

2
; : : : ;R�

n�nc
. Being solutions of linear equations with rational coefficients, we

can find each R�
j 2Q2n.

Remark 2.28 The R�
j are not unique: there are many solutions to the above equations. Distinct solutions

are related precisely by the linear symplectomorphisms of R2n fixing an .nCnc/-dimensional coisotropic
subspace. Following the discussion after Lemma 2.26, such symplectomorphisms are naturally bijective
with .n � nc/ � .n � nc/ real symmetric matrices. Hence the space of possible .R�

1
; : : : ;R�

n�nc
/ has

dimension 1
2
.n� nc/.n� ncC 1/.

For k 2 f1; : : : ; n� ncg, write �
R�

k
D fk;1 f 0

k;1
: : : fk;n f 0

k;n

�
:

The symplectic basis
�
RG

1
;R�

1
; : : : ;RG

n�nc
;R�

n�nc
;Rm

1
; 1

2
Rl

1
; : : : ;Rm

nc
; 1

2
Rl

nc

�
forms the sequence of row

vectors of a symplectic matrix, which we call SY 2 Sp.2n;R/. When nc D 1, we have

.2.29/ SY WD

266666666666664

R�
1

RG
1
:::

R�
n�1

RG
n�1

Rm

1
2
Rl

377777777777775
D

266666666666664

f1;1 f 0
1;1

f1;2 f 0
1;2

� � � f1;n f 0
1;n

d1;1 d 0
1;1

d1;2 d 0
1;2

� � � d1;n d 0
1;n

:::
:::

:::
:::

: : :
:::

:::

fn�1;1 f 0
n�1;1

fn�1;2 f 0
n�1;2

� � � fn�1;n f 0
n�1;n

dn�1;1 d 0
n�1;1

dn�1;2 d 0
n�1;2

� � � dn�1;n d 0
n�1;n

�1 �0
1

�2 �0
2

� � � �n �0n
1
2
�1

1
2
�0

1
1
2
�2

1
2
�0

2
� � �

1
2
�n

1
2
�0n

377777777777775
:

As a symplectic matrix, SY satisfies .SY/T J.SY/D J , and for any vectors V;W ,

!.V;W /D !.SY �V;SY �W /:

2.5 Linear and nonlinear equations and hyperbolic structures

The symplectic matrix SY of (2.29) shares several rows in common with NZ. We will need to rearrange
rows of various matrices, and so we make the following definition.
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Definition 2.30 Let A be a matrix with nC 2nc rows, denoted A1; : : : ;AnC2nc
.

(i) The submatrices AI;AII;AIII consist of the first n� nc rows, the next nc rows, and the final 2nc

rows. That is,

AI
D

264 A1
:::

An�nc

375; AII
D

264An�ncC1
:::

An

375; AIII
D

264 AnC1
:::

AnC2nc

375; so AD

24 AI

AII

AIII

35 :
(ii) The matrix A[ consists of the rows of AI followed by the rows of AIII. In other words, it is the

matrix of nC nc rows

A[ D

�
AI

AIII

�
:

This matrix A of Definition 2.30 includes the case of a .nC2nc/� 1 matrix, ie a .nC2nc/-dimensional
vector.

Observe that Definition 2.30 applies to the Neumann–Zagier matrix NZ. The matrix NZI has rows
RG

1
; : : : ;RG

n�nc
, which we may assume are linearly independent. By Theorem 2.27(i) and (iv), the rows

of NZI form a basis of an isotropic subspace, and the rows of NZII also lie in this subspace. The matrix
NZIII has rows Rm

1
;Rl

1
; : : : ;Rm

nc
;Rl

nc
. Theorem 2.27(iv) and (v) imply that the rows of NZ[ form a basis

for the rowspace of NZ.

Similarly for the vector C , observe C I contains the entries .2� c1; : : : ; 2� cn�nc/, and C III contains
the entries .�cm

1
;�cl

1
; : : : ;�cmnc

;�clnc
/. For the holonomy vector H , we have that H I and H II are zero

vectors, while H III contains cusp holonomies.

The gluing equations (2.18) can be written as

.2.31/

�
NZI

NZII

�
�Z D i�

�
C I

C II

�
:

The first n� nc among these equations are given by

.2.32/ NZI
�Z D i�C I:

We have seen that the rows of NZI span the rows of NZII, so knowing NZI
�Z determines NZII

�Z. But
it is perhaps not so clear whether NZI

�Z D i�C I implies that NZII
�Z D i�C II. However, as we now

show, in a hyperbolic situation this is in fact the case.

Lemma 2.33 Suppose the triangulation T has a hyperbolic structure. Then a vector Z 2C2n satisfies
(2.31) if and only if it satisfies (2.32).

Proof Hyperbolic structures (not necessarily complete) give solutions to the gluing equations Z D

.Z1;Z
0
1
; : : : ;Zn;Z

0
n/ 2C2n; hence the solution space of (2.31) is nonempty. Since equations (2.32) are

a subset of those of (2.31), the solution space of (2.32) is also nonempty.
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Since both matrices
�

NZI

NZII

�
and NZI have rank n� nc, the solution spaces of both (2.31) and (2.32) have

the same dimension: 2n� .n� nc/D nC nc.

Thus, some of the gluing equations of (2.18), or equivalently of (2.31), are redundant. The same is true of
the larger system (2.24). So NZ[ is a more efficient version of the Neumann–Zagier matrix, containing
only necessary information for computing hyperbolic structures.

As discussed at the end of Section 2.1, the solution spaces of these equations do not in general coincide with
spaces of hyperbolic structures. The solution space of (2.32) contains the space of hyperbolic structures
on the triangulation T , but is strictly larger. These equations treat Zj and Z0j as independent variables, but
of course they are not. In a hyperbolic structure, zj D eZj and z0j D eZ 0

j are related by the equations (2.5).

Indeed, the solution space of the linear equations (2.32) has dimension nC nc, but there are a further
n conditions imposed by the relations zj C .z

0
j /
�1 � 1 D 0 of (2.5). As discussed in the proof of [33,

Proposition 2.3], these n conditions are independent and the result is a variety of dimension nc. However,
as we just saw, this variety may contain points that do not correspond to hyperbolic tetrahedra. Moreover,
it may not contain all hyperbolic structures, as not every hyperbolic structure may be able to be realised
by the triangulation T .

However, by Thurston’s hyperbolic Dehn surgery theorem [42], the space of hyperbolic structures on
M is also nc-dimensional. So at a point of the variety defined by the linear equations (2.32) and the
nonlinear equations (2.5) describing a hyperbolic structure, the variety locally coincides with the space of
hyperbolic structures.

We summarise this section with the following statement.

Lemma 2.34 Let T be a hyperbolic triangulation of M, labelled so that its Neumann–Zagier matrix NZ
has rows RG

1
; : : : ;RG

n�nc
linearly independent.

(i) The logarithmic gluing equations , expressed equivalently by (2.18) or (2.31), are equivalent to the
smaller independent set of equations (2.32).

(ii) The variety V defined by the solutions of these linear equations (2.32), together with the nonlinear
equations (2.5), has dimension nc. The hyperbolic structures on T correspond to a subset of V . Near
a point of V corresponding to a hyperbolic structure on T , V parametrises hyperbolic structures
on T .

(iii) The logarithmic gluing and cusp equations for T are equivalent to

.2.35/ NZ[ �Z DH [
C i�C [:

2.6 Symplectic change of variables

Dimofte in [12] considered using the matrix SY to change variables in the logarithmic gluing and cusp
equations.
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If M is hyperbolic, by Lemma 2.34 the gluing and cusp equations are equivalent to (2.35). Observe that
the rows of NZ[ are

�
up to a factor of 1

2
in the rows Rl

k

�
a subset of the rows of SY. Indeed, obtain SY

from NZ[ by multiplying Rl
k

rows by 1
2

, and inserting rows R�
1
; : : : ;R�

n�nc
.

In the equations of (2.35) Z D .Z1;Z
0
1
; : : : ;Zn;Z

0
n/

T are regarded as variables, and we now change
them using SY.

Definition 2.36 Given a labelled hyperbolic triangulation T and a choice of symplectic matrix SY, define
the collection of variables

� D
�
�1;G1; : : : ; �n�nc ;Gn�nc ;M1;

1
2
L1; : : : ;Mnc ;

1
2
Lnc

�T
by � D SY �Z.

In other words,

� D SY

2666664
Z1

Z0
1
:::

Zn

Z0n

3777775 ()

8̂̂̂<̂
ˆ̂:
�k DR�

k
�Z for k 2 f1; : : : ; n� ncg;

Gk DRG
k
�Z; for k 2 f1; : : : ; n� ncg,

Mk DRm
k
�Z for k 2 f1; : : : ; ncg;

1
2
Lk D

1
2
Rl

k
�Z for k 2 f1; : : : ; ncg:

Lemma 2.37 Let T be a labelled hyperbolic triangulation , and SY a matrix defining the variables � .
Then the logarithmic gluing and cusp equations are equivalent to

.2.38/ Gk D i�.2� ck/; Mj D log mj � i�cmj ; Lj D log j̀ � i�clj :

In the new variables, these equations are simplified. Note that the �k variables do not appear in (2.38).

Proof The first n � nc rows of (2.35) express the gluing equations as RG
k
� Z D i�.2 � ck/, for

k 2 f1; : : : ; n� ncg. Remaining rows of (2.35) express cusp equations as Rm
j �Z D log mj � i�cmj and

Rl
j �Z D log j̀ � clj .

The symplectic change of variables involves writing variables Z in terms of the variables � . That is, we
need to invert SY.

As SY is symplectic, .SY/T J.SY/D J , so its inverse is given by SY�1
D�J.SY/T J , or

.2.39/

2666666664

d 0
1;1
�f 0

1;1
� � � d 0

n�nc;1
�f 0

n�nc;1
1
2
�0

1;1
��0

1;1
� � �

1
2
�0

nc;1
��0

nc;1

�d1;1 f1;1 � � � �dn�nc;1 fn�nc;1 �
1
2
�1;1 �1;1 � � � �

1
2
�nc;1 �nc;1

:::
:::

: : :
:::

:::
:::

:::
: : :

:::
:::

d 0
1;n
�f 0

1;n
� � � d 0n�nc;n

�f 0n�nc;n
1
2
�0

1;n
��0

1;n
� � �

1
2
�0nc;n

��0nc;n

�d1;n f1;n � � � �dn�nc;n fn�nc;n �
1
2
�1;n �1;n � � � �

1
2
�nc;n �nc;n

3777777775
:
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Thus we explicitly express the Zj ;Z
0
j in terms of the variables of � , using Z D .SY/�1�:

Zj D

n�ncX
kD1

.d 0k;j�k �f
0

k;j Gk/C
1
2

ncX
kD1

.�0k;j Mk ��
0
k;j Lk/;.2.40/

Z0j D

n�ncX
kD1

.�dk;j�k Cfk;j Gk/C
1
2

ncX
kD1

.��k;j Mk C�k;j Lk/:.2.41/

2.7 Inverting without inverting

It is possible to explicitly compute a symplectic matrix SY, then invert it, express the variables Z in
terms of the variables � by (2.40)–(2.41), and then solve to obtain the A-polynomial. However, we now
show that we can perform this calculation without ever having to find SY or its inverse SY�1 explicitly —
provided that we can find a certain sign term.

To see why this should be the case, note the following preliminary observation. Equations (2.40)–(2.41)
express Zj and Z0j in terms of the �k , Gk , Mi and Li . The coefficients of the �k , Mi and Li are numbers
which appear in the Neumann–Zagier matrix. The only coefficients which do not appear in NZ are the
coefficients of the Gk . But the gluing equations (2.38) say Gk D i�.2� ck/, so upon exponentiation
these terms only contribute a sign. In other words, up to sign, all the information we need to write the Zj

in terms of the variables �k ;Gk ;Li ;Mi is already in the Neumann–Zagier matrix.

To implement this, observe that the matrix �J.NZ[/T shares many columns with SY�1:

.2.42/ �J.NZ[/T D

2666666664

d 0
1;1

d 0
2;1
� � � d 0

n�nc;1
�0

1;1
�0

1;1
� � � �0

nc;1
�0

nc;1

�d1;1 �d2;1 � � � �dn�nc;1 ��1;1 ��1;1 � � � ��nc;1 ��nc;1

:::
:::

: : :
:::

:::
:::

: : :
:::

:::

d 0
1;n

d 0
2;n
� � � d 0n�nc;n

�0
1;n

�0
1;n
� � � �0nc;n

�0nc;n

�d1;n �d2;n � � � �dn�nc;n ��1;n ��1;n � � � ��nc;n ��nc;n

3777777775
:

In particular, for any quantities A1; : : : ;An�nc ;A
�
1
;A

�
1
; : : : ;A�nc

;A
�
nc

,

SY�1
�
A1 0 A2 0 : : : An�nc 0 A�

1
A
�
1
: : : A�nc

A
�
nc

�T
D�J.NZ[/T

�
A1 A2 : : : An�nc �A

�
1

1
2
A�

1
: : : �A

�
nc

1
2
A�nc

�T
:

Splitting up the �k and Gk terms, using Definition 2.36 and informed by the gluing and cusp equations
(2.38), we obtain

.2.43/ Z D SY�1
�� D�J.NZ[/T�CSY�1G;

where � is the vector

� D
�
�1; : : : ; �n�nc ;�

1
2

log `1;
1
2

log m1; : : : ;�
1
2

log `nc ;
1
2

log mnc

�T
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and G is�
0;G1; : : : ; 0;Gn�nc ; .M1� log m1/;

1
2
.L1� log `1/; : : : ; .Mnc � log mnc/;

1
2
.Lnc � log `nc/

�T
The first term�J.NZ[/T� of (2.43) only involves NZ. The final vector G consists of the precise quantities
which are fixed to be constants by the gluing and completeness equations (2.38). Indeed, (2.38) says
precisely that the final vector in equation (2.43) is a vector of constants essentially identical in content to
� iC [. We define

C #
D
�
0; 2� c1; 0; 2� c2; : : : ; 0; 2� cn�nc ;�cm1 ;�

1
2
cl1; : : : ;�cmnc

;�1
2
clnc

�T
;

which is C [, with some zeroes inserted, and some factors of one half. So the final vector in (2.43) is set
to � iC #, and we obtain the following.

Proposition 2.44 Given a hyperbolic triangulation , labelled so that its Neumann–Zagier matrix NZ has
rows RG

1
; : : : ;RG

n�nc
linearly independent , and SY a matrix defining the variables � , the logarithmic

gluing and cusp equations are equivalent to

.2.45/ Z D .�J /.NZ[/T�C� i SY�1C #:

Once we find a vector B D SY�1C #, Proposition 2.44 allows us to express the Zj and Z0j in terms
of the variables �1; : : : ; �n�1, and the holonomies `k ;mk of the longitudes and meridians, using only
information already available in the Neumann–Zagier matrix. There is no need to find the extra vectors R�

k

of the symplectic basis, or the matrix SY. If in addition B is an integer vector, then when we exponentiate
(2.45) to obtain the tetrahedron parameters zj D eZj and z0j D eZ 0

j, B determines a sign. Hence we refer
to this term as a sign term.

The approach outlined above may sound paradoxical: we avoid calculating the symplectic matrix SY, by
finding a vector B D SY�1C #. This seems to involve the symplectic matrix SY anyway! However, in the
next section we show we can find B by solving a simpler equation, involving only the Neumann–Zagier
matrix, and then choose SY so that B D SY�1C #. That is, we may use the flexibility in choosing R�

k
of

Remark 2.28 to find appropriate SY.

2.8 The sign term

We now demonstrate the existence of an SY and an integer vector B satisfying SY �B D C #.

The rows of the matrix equation SY �B D C # are

R�
k �B D 0 for k D 1; : : : ; n� nc,.2.46/

RG
k �B D 2� ck for k D 1; : : : ; n� nc,.2.47/

Rm
k �B D�cmk ; Rl

k �B D�clk for k D 1; : : : ; nc..2.48/

Equations (2.47)–(2.48) are exactly the equations in the rows of a matrix equation with NZ[:

.2.49/ NZ[ �B D C [:
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This equation has been studied by Neumann; it is known to always have an integer solution.

Theorem 2.50 (Neumann [32, Theorem 2.4])

(i) There exists an integer vector B satisfying NZ �B D C .

(ii) Given an integer vector B0 such that NZ �B0 D C , the set of integer solutions to NZ �B D C

includes

B0CSpanZ.JRG
1 ; : : : ;JRG

n /D

�
B0C

nX
kD1

akJRG
k

ˇ̌̌
a1; : : : ; an 2 Z

�
:

Neumann’s result is more precise, incorporating a parity condition on B not needed here. Additionally,
we will not need part (ii) of the theorem until later, but we state it now. Note that, by taking a subset of
the rows, or equations, NZ �B D C implies NZ[ �B D C [.

In order to solve SY �B D C #, it remains to satisfy the equations (2.46). As discussed above, we do this
not by adjusting B, but by judicious choice of the vectors R�

k
, and hence the matrix SY. Recall from

Section 2.4 that there is substantial freedom in choosing the vectors R�
k

. But first we deal with a technical
condition on the triangulation, which we need for the argument. Recall ck D

Pn
jD1 ck;j (Definition 2.17),

where ck;j is the number of c-edges of the tetrahedron �j identified to edge Ek (Definition 2.6). So ck

is just the number of c-edges of tetrahedra identified to Ek .

Lemma 2.51 Any triangulation of M has a labelling such that

(i) its Neumann–Zagier matrix NZ has rows RG
1
; : : : ;RG

n�nc
linearly independent , and

(ii) there exists k 2 f1; : : : ; n� ncg with ck ¤ 2.

In other words, the conclusion of the lemma requires that some edge be incident to a number of c-edges
other than 2. In fact, we will see that one can start from any labelled triangulation, and it suffices to relabel
the vertices of at most one tetrahedron, and possibly reorder some edges. Moreover, we can choose any
edge Ek with nonzero RG

k
, and adjust so that this particular edge is incident to ck ¤ 2 c-edges.

The proof of Lemma 2.51 requires that n> nc. In fact, Adams and Sherman [1] proved that n� 2nc for
any finite volume orientable hyperbolic 3-manifold with nc cusps.

Proof Take a labelled triangulation T of M. Choose some k 2 f1; : : : ; ng such that RG
k

is nonzero.
(Such k certainly exists since the RG

k
span a space of rank n� nc � 1.) We claim that if ck D 2, then T

can be relabelled so that ck ¤ 2.

Let �t be a tetrahedron of T . The relabellings of �t have the effect of cyclically permuting the a-, b-
and c-edges, and hence cyclically permuting the triple .ak;t ; bk;t ; ck;t /; however other terms ck;j in the
sum for ck are unchanged. Hence, if one of ak;t or bk;t is not equal to ck;t , then a relabelling of �t will
change ck to a distinct value, not 2, as desired. Otherwise, all relabellings of �t leave ck D 2, and we
have ak;t D bk;t D ck;t , so dk;t D d 0

k;t
D 0 (Definition 2.17).

Algebraic & Geometric Topology, Volume 25 (2025)



A-polynomials, Ptolemy equations and Dehn filling 1287

The above argument applies to any tetrahedron�t of T . Thus, if every relabelling of any single tetrahedron
leaves ck D 2, then the numbers dk;t D d 0

k;t
D 0 for all t 2 f1; : : : ; ng. But these are precisely the entries

in the vector RG
k

forming a row of NZ[, so RG
k
D 0, contradicting RG

k
¤ 0 above. This contradiction

proves the claim. Moreover, after relabelling the tetrahedron, there still exists t 2 f1; : : : ; ng such that
ak;t ; bk;t ; ck;t are not all equal, and hence RG

k
is not zero.

Thus, there exists a relabelling of a single tetrahedron that makes ck ¤ 2, and RG
k

remains nonzero. Call
the resulting labelled triangulation T 0 and Neumann–Zagier matrix NZ0. Now by Theorem 2.27(iv), the
first n row vectors of NZ0 span an .n�nc/-dimensional space. Hence we may relabel the edges so that the
edges labelled 1; : : : ; n� nc have linearly independent row vectors, and our chosen edge is among them.
This relabelling satisfies the lemma.

For a triangulation as in Lemma 2.51, the nonzero entry of C [ provides the leverage to make a choice of
vectors R�

k
so that they satisfy (2.46).

Lemma 2.52 Suppose that T is labelled to satisfy Lemma 2.51. Let B 2 Z2n be a vector satisfying
NZ[ �B D C [. Then there exist vectors R�

1
; : : : ;R�

n�nc
in Q2n such that

(i)
�
R�

1
;RG

1
; : : : ;R�

n�nc
;RG

n�nc
;Rm

1
; 1

2
Rl

1
; : : : ;Rm

nc
; 1

2
Rl

nc

�
forms a symplectic basis , and

(ii) for all j 2 f1; : : : ; n� ncg we have R�
j �B D 0.

Proof We start from arbitrary choices of the R�
k
2Q2n such that�

R�
1 ;R

G
1 ; : : : ;R

�
n�nc

;RG
n�nc

;Rm
1 ;

1
2
Rl

1; : : : ;R
m
nc
; 1

2
Rl

nc

�
is a symplectic basis.

Lemma 2.26 allows us to adjust the R�
k

, without changing any RG
k

, Rm
j or Rl

j , so that we still have a
symplectic basis. In particular, we may make the following modifications:

(i) For j ¤ k 2 f1; : : : ; n� ncg, and a 2R, map R�
j 7!R�

j C aRG
k

, R�
k
7!R�

k
C aRG

j .

(ii) Take j 2 f1; : : : ; n� ncg and a 2R, and map R�
j 7!R�

j C aRG
j .

Let R�
j �B D aj . We will adjust the R�

j until all aj D 0.

We claim there exists a k 2 f1; : : : ; n� ncg such that RG
k
�B ¤ 0. Indeed, as T satisfies Lemma 2.51,

there exists a k 2 f1; : : : ; n� ncg such that ck ¤ 2. Then the k th row of the equation NZ[ �B D C [ says
that ˛ WDRG

k
�B D 2� ck , which is nonzero as claimed.

First, modify R�
k

by (ii), replacing R�
k

with .R�
k
/0 DR�

k
� .ak=˛/R

G
k

. Then

.R�
k /
0
�B DR�

k �B �
ak

˛
RG

k �B D 0:

Thus the modification makes ak D 0; the other aj are unchanged.
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Now consider j ¤ k. If RG
j �B ¤ 0, modify R�

j by (ii) to set aj D 0. Otherwise, RG
j �B D 0 and modify

R�
j and R�

k
by (i), replacing them with

.R�
j /
0
DR�

j �
aj

˛
RG

k and .R�
k /
0
DR�

k �
aj

˛
RG

j ;

respectively. Then

.R�
j /
0
�B DR�

j �B �
aj

˛
RG

k �B D 0 and .R�
k /
0
�B DR�

k �B �
aj

˛
RG

j �B D ak D 0:

Again the effect is to set aj D 0 and leave the other ai unchanged.

Modifying R�
j in this way for each j ¤ k, we obtain the desired vectors.

We summarise the result of this section in the following proposition.

Proposition 2.53 Let T be a hyperbolic triangulation labelled to satisfy Lemma 2.51. Let B be an integer
vector such that NZ[ �B D C [ (such a vector exists by Theorem 2.50). Then there exists a symplectic
matrix SY defining variables � , such that the logarithmic gluing and cusp equations are equivalent to the
equation

.2.54/ Z D .�J /.NZ[/T�C� iB:

We have now realised our claim of “inverting without inverting”. Proposition 2.53 allows us to convert
the variables Zi ;Z

0
i into the variables �i , together with the cusp holonomies `i ;mi , without having to

actually calculate the vectors R�
i or the matrix SY! The only information we need is the Neumann–Zagier

matrix NZ, and the integer vector B such that NZ[ �B D C [.

2.9 The A-polynomial from gluing equations and from Ptolemy equations

Suppose that nc D 1, we have a labelled triangulation T satisfying Lemma 2.51, and a vector B D

.B1;B
0
1
; : : : ;Bn;B

0
n/

T such that NZ[ �B D C [.

Proposition 2.53 converts the logarithmic gluing and cusp equations — linear equations — into the variables
�1; : : : ; �n�1, together with the cusp holonomies m; `. We now convert the nonlinear equations (2.5) into
these variables.

We first convert to the exponentiated variables zj . Let j D e�j . Using (2.54), and the known form of
.�J /.NZ[/T from (2.42), we obtain

.2.55/ zj D .�1/Bj `��
0
j
=2m�0

j
=2

n�1Y
kD1


d 0

k;j

k
; z0j D .�1/B

0
j `�j =2m��j =2

n�1Y
kD1


�dk;j

k
:

Then the nonlinear equation (2.5) for the tetrahedron �j becomes

.�1/Bj `��
0
j
=2m�0

j
=2

n�1Y
kD1


d 0

k;j

k
C .�1/B

0
j `��j =2m�j =2

n�1Y
kD1


dk;j

k
� 1D 0:
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Since dk;j D ak;j�ck;j and d 0
k;j
D bk;j�ck;j (Definition 2.17), we may multiply through by  ck;j ; then

the exponents become the incidence numbers ak;j ; bk;j ; ck;j of the various types of edges of tetrahedra
with edges of the triangulation (Definition 2.6):

.2.56/ .�1/Bj `��
0
j
=2m�0

j
=2

n�1Y
kD1


bk;j

k
C .�1/B

0
j `��j =2m�j =2

n�1Y
kD1


ak;j

k
�

n�1Y
kD1


ck;j

k
D 0:

Each product in the above expression is simpler than it looks: it is a polynomial of total degree at most 2
in the k , by Lemma 2.7! The product

Qn�1
kD1 

ak;j

k
has j fixed, referring to the tetrahedron �j . The

product is over the various edges Ek of the triangulation; the exponent ak;j is the incidence number of
the a-edges of �j with the edge Ek . But �j only has two a-edges, so at most two ak;j are nonzero, and
the ak;j sum to 2 as in (2.8).

Recall the notation j .��/ of Definition 2.3. For fixed j , the only nonzero ak;j are aj.01/;j and aj.23/;j

(which may be the same term). Thus the product
Qn�1

kD1 
ak;j

k
is equal to the product of j.01/ and

j.23/, with the caveat that n does not appear in the product. Indeed, in Definition 2.36 we only define
�1; : : : ; �n�1, so only 1; : : : ; n�1 are defined. However, it is worthwhile to introduce n as a formal
variable.

Definition 2.57 Let T be a labelled triangulation of a 3-manifold with one cusp, and let B be an integer
vector such that NZ[ �B D C [. The Ptolemy equation of the tetrahedron �j is

.�1/B
0
j `��j =2m�j =2j.01/j.23/C .�1/Bj `��

0
j
=2m�0

j
=2j.02/j.13/� j.03/j.12/ D 0:

The Ptolemy equations of T consist of Ptolemy equations for each tetrahedron of T .

Equation (2.56) is the Ptolemy equation for �j , with the formal variable n set to 1.

Let us now put the work of this section together.

Theorem 2.58 Let T be a hyperbolic triangulation of a one-cusped M, labelled to satisfy Lemma 2.51.
When we solve the system of Ptolemy equations of T in terms of m and `, setting nD1 and eliminating the
variables 1; : : : ; n�1, we obtain a factor of the PSL.2;C/ A-polynomial , which is also the polynomial
of Theorem 2.13.

(Note that the polynomial described here, arising by eliminating variables from a system of equations, is
only defined up to multiplication by units, and the equality of polynomials here should be interpreted
accordingly.)

Proof Theorem 2.13 tells us that solving equations (2.4)–(2.5), (2.10) and (2.12) for m and `, eliminating
the variables zj ; z

0
j ; z
00
j , yields a factor of the PSL.2;C/ A-polynomial. By Lemma 2.23, a solution of the

logarithmic gluing and cusp equations, after exponentiation, gives a solution of (2.4), (2.10) and (2.12);
and conversely any solution of (2.4), (2.10) and (2.12) has a logarithm solving the logarithmic gluing and
cusp equations.
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By Proposition 2.53, after introducing appropriate B and SY and variables � , which all exist, the logarith-
mic gluing and cusp equations are equivalent to (2.54). Exponentiating gives us that the equations (2.55)
imply (2.4), (2.10) and (2.12). Combining these with (2.5) yields the equations (2.56), one for each
tetrahedron. Therefore, any solution of the equations (2.56) for 1; : : : ; n�1;m; ` yields a solution of
(2.4)–(2.5), (2.10) and (2.12). Conversely, any solution of (2.4)–(2.5), (2.10) and (2.12) has a logarithm
satisfying the logarithmic gluing and cusp equations, hence yields solutions of (2.56).

Thus the pairs .`;m/ arising in solutions of (2.4)–(2.5), (2.10) and (2.12) are those arising in solutions
of (2.56). The latter equations are the Ptolemy equations of T with n set to 1. Thus, the .`;m/ satisfying
the polynomial obtained by solving the Ptolemy equations with n D 1 are also those satisfying the
polynomial of Theorem 2.13.

Corollary 2.59 With T and M as above , let A0.L;M/ denote the factor of the SL.2;C/ A-polynomial
describing hyperbolic structures on T . Letting LD `1=2 and MDm1=2 and solving the Ptolemy equations
with n D 1 as above , we obtain a polynomial in M and L which contains a factor either A0.L;M/ or
A0.�L;M/.

Proof Suppose .L;M/ lies in the zero set of the factor of the SL.2;C/ A-polynomial describing
hyperbolic structures on T . Then there is a representation �1.M /! SL.2;C/ sending the longitude to
a matrix with eigenvalues L;L�1 and the meridian to a matrix with eigenvalues M;M�1. Projecting
to PSL.2;C/ we have the holonomy of a hyperbolic structure on T whose cusp holonomies are given
by L2 D ` and M2 Dm, respectively. Hence .`;m/ and the tetrahedron parameters of the hyperbolic
structure solve the gluing and cusp equations T , and hence satisfy the polynomial of Theorem 2.58.

3 Dehn fillings and triangulations

3.1 Layered solid tori

Suppose we have a triangulation where a cusp c1 meets exactly two tetrahedra �c
1

and �c
2

in exactly one
ideal vertex per tetrahedron. (We show in Appendix A, Proposition A.1, that such a triangulation can be
constructed for quite general manifolds with two or more cusps.) These two tetrahedra together give a
triangulation of a manifold homeomorphic to T 2 � Œ0;1/ with a single point removed from T 2 � f0g.
The boundary component T 2�f0g of�c

1
[�c

2
is a punctured torus, triangulated by the two ideal triangles

of @�c
1

and @�c
2

that do not meet the cusp c1. We will remove �c
1
[�c

2
from our triangulated manifold,

and obtain a space with boundary a punctured torus, triangulated by the same two ideal triangles. We
will then replace �c

1
[�c

2
by a solid torus with a triangulation such that the boundary is a triangulated

once-punctured torus. This will give a triangulation of the Dehn filling.

A layered solid torus is a triangulation of a solid torus, first described by Jaco and Rubinstein [30]; see
also [24]. When working with ideal triangulations, as in our situation, the boundary of a layered solid
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torus consists of two ideal triangles whose union is a triangulation of a punctured torus. The space of all
two-triangle triangulations of punctured tori is described by the Farey graph. A layered solid torus can be
built using the combinatorics of the Farey graph.

Recall first the construction of the Farey triangulation of H2. We view H2 in the disc model, with
antipodal points 1=0 and 0=1 in @H2 lying on a horizontal line through the centre of the disc, and 1=1

at the north pole, �1=1 at the south pole. Two points a=b and c=d in Q[ f1g � @H2 have distance
measured by

�.a=b; c=d/D jad � bcj:

Here �. �; �/ denotes geometric intersection number of slopes on a punctured torus. We draw an ideal
geodesic between each pair a=b, c=d with jad � bcj D 1. This gives the Farey triangulation. The dual
graph of the Farey triangulation is an infinite trivalent tree, which we denote by F .

Any triangulation of a once-punctured torus consists of three slopes on the boundary of the torus, with
each pair of slopes having geometric intersection number 1. Denote the slopes by f , g, h. This triple
determines a triangle in the Farey triangulation. Moving across an edge .f;g/ of the Farey triangulation,
we arrive at another triangle whose vertices include f and g; but the slope h is replaced with some other
slope h0. This corresponds to changing the triangulation on the punctured torus, replacing lines of slope h

with lines of slope h0.

When we wish to perform a Dehn filling by attaching a solid torus to a triangulated once-punctured torus,
there are four important slopes involved. Three of the slopes are the slopes of the initial triangulation of
the once-punctured solid torus. For example, these might be 0=1, 1=0, and 1=1. We will typically denote
the slopes by .f;g; h/. These determine an initial triangle T0 in the Farey graph. The other important
slope is r , the slope of the Dehn filling.

Now consider the geodesic in H2 from the centre of T0 to the slope r � @H2. This geodesic passes
through a sequence of distinct triangles in the Farey graph, which we denote T0;T1; : : : ;TNC1. Each
TjC1 is adjacent to Tj . We regard this as a walk or voyage through the triangulation; more precisely, we
can regard T0; : : : ;TN as forming an oriented path in the dual tree F without backtracking. The slope r

appears as a vertex of the final triangle TNC1, but not in any earlier triangle.

We build the layered solid torus by stacking tetrahedra �0; �1; : : : onto the punctured torus, replacing
one set of slopes T0 with another T1, then another T2, and so on. That is, two consecutive punctured tori
always have two slopes in common and two that differ by a diagonal exchange. The diagonal exchange is
obtained in three-dimensions by layering a tetrahedron onto a given punctured torus such that the diagonal
on one side matches the diagonal to be replaced. See Figure 2.

For each edge crossed in the path from T0 to TN , layer on a tetrahedron, obtaining a collection of
tetrahedra homotopy equivalent to T 2 � I . After gluing k tetrahedra �0; : : : ; �k�1, the side T 2 � f0g

has the triangulation whose slopes are given by T0, and the side T 2�f1g has slopes given by Tk . Two of
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Figure 2: Constructing a layered solid torus.

the faces of �k�1 are glued to triangles of the previous layer, with slopes given by Tk�1, and the other
two faces form a triangulation of the “top” boundary T 2 � f1g; this triangulation has slopes given by Tk .
Continue until k DN , obtaining a triangulated complex consisting of N tetrahedra �0; : : : ; �N�1, with
boundary consisting of two once-punctured tori, one triangulated by T0 and the other by TN .

Recall we are trying to obtain a triangulation of a solid torus for which the slope r is homotopically
trivial. Note that r is a diagonal of the triangulation TN . That is, a single diagonal exchange replaces the
triangulation TN with TNC1; and TNC1 is a triangulation consisting of two slopes s and t in common
with TN , together with the slope r , which cuts across a slope r 0 of TN . To homotopically kill the slope r ,
fold the two triangles of TN across the diagonal slope r 0, as in Figure 3. Gluing the two triangles on one
boundary component of T 2 � I in this manner gives a quotient that is homeomorphic to a solid torus,
with boundary still triangulated by T0. Inside, the slopes s and t are identified. The slope r has been
folded onto itself, meaning it is now homotopically trivial. Note that N is the number of ideal tetrahedra
in the layered solid torus.

There are two exceptional cases. If N D 0 then no tetrahedra are layered to form a layered solid torus.
Instead, we fold across existing faces to homotopically “kill” the slope r that lies in one of the three
Farey triangles adjacent to .f;g; h/. This can be considered as attaching a degenerate layered solid torus,
consisting of a single face, folded into a Möbius band.

rr 0

s s

t

t

r

r 0

t

s

s

Figure 3: Folding makes the diagonal slope r homotopically trivial.
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There is one other extra-exceptional case. In this case, the slope r is one of f;g; h. We can triangulate the
Dehn filling: for example we can attach a tetrahedron covering the edge corresponding to r , performing a
diagonal exchange on the once-punctured torus triangulation, then immediately fold the two new faces
across the diagonal, creating an edge with valence one. This case will be ignored in the arguments below.

3.2 Notation for a voyage in the Farey triangulation

We now give notation to keep closer track of the slopes obtained at each stage of the construction of a
layered solid torus.

As we have seen, each tetrahedron �k�1 replaces one set of slopes with another; the set of slopes
corresponding to the triangle Tk�1 in the Farey triangulation is replaced with the set of slopes with the
triangle Tk . Thus, we associate to �k�1 an oriented edge of the dual tree F of the Farey triangulation,
from Tk�1 to Tk .

As F is an infinite trivalent tree, at each stage of a path in F without backtracking, after we begin and
before we stop, there are two choices: turning left or right. As is standard, we denote these choices by L
and R. Note that the choice of L or R is not well-defined when moving from T0 to T1, but thereafter the
choice of L or R is well-defined. Thus, to the path T0;T1; : : : ;TNC1 in F , there is a word of length N

in the letters fL,Rg. We call this word W . The j th letter of W corresponds to the choice of L or R when
moving from Tj to TjC1, which also corresponds to adding tetrahedron �j .

As we voyage at each stage from Tk to TkC1, we pass through an edge ek of the Farey triangulation
(dual to the corresponding edge of F), which has one endpoint to our left (port) and one to our right
(starboard).1 We leave behind an old slope, one of the slopes of Tk , namely the one not occurring in TkC1.
And we head towards a new slope, namely the slope of TkC1 which is not one of Tk .

Definition 3.1 As we pass from Tk to TkC1, across the edge ek , the slope corresponding to

(i) the endpoint of ek to our left is denoted pk (for port);

(ii) the endpoint of ek to our right is denoted sk (for starboard);

(iii) the vertex of Tk nTkC1 is denoted ok (old);

(iv) the vertex of TkC1 nTk is denoted hk (heading).

Thus, the initial slopes ff;g; hg are given by fo0; s0;p0g in some order, and the final, or Dehn filling
slope is given by r D hN . Adding the tetrahedron �k�1, we pass from Tk�1 to Tk , so the edges of �k�1

correspond to slopes pk�1; sk�1; ok�1; hk�1.

Lemma 3.2 (i) If the i th letter of W is an L , then oi D si�1, pi D pi�1, si D hi�1.

(ii) If the i th letter of W is an R , then oi D pi�1, pi D hi�1, si D si�1.

1As “left” and “right” are used in the context or the previous paragraph, we use the nautical terminology here.
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L R

h

sp

o

ahoy!

Figure 4: Labels on the slopes in the Farey graph.

Proof This is immediate upon inspecting Figure 4. If we tack left as we proceed from Ti�1 through
Ti to TiC1, then we wheel around the port side; our previous heading is now to starboard, and we leave
starboard behind. Similarly for turning right.

So ye sail, me hearty, until ye arrive at ye last tetrahedron�N�1, proceeding from triangle TN�1 into TN ,
with associated slopes oN�1; sN�1; hN�1;pN�1. We have made N � 1 choices of left or right, L or R.
The boundary T 2 � f1g of the layered solid torus constructed to this point has triangulation with slopes
given by TN , ie with slopes pN�1; sN�1; hN�1.

The final choice of L or R takes us from triangle TN into triangle TNC1, whose final heading hN is the
Dehn filling slope r . This final L or R determines how we fold up the two triangles with slopes TN on
the boundary of �N . As discussed in Section 3.1, we fold the two triangular faces of the boundary torus
together along an edge, so as to make a curve of slope r D hN homotopically trivial. This means folding
along the edge of slope oN . In the process, the edges of slopes pN and sN are identified. An example is
shown in Figure 5.

If the final, N th letter of W is an L, then sN D hN�1, pN D pN�1 and oN D sN�1; so we fold along
the edge of slope sN�1, identifying the edges of slopes hN�1 and pN�1 of the triangle TN describing
the slopes on the boundary torus after layering all the solid tori up to �N�1. Similarly, if the final letter
of W is an R, then sN D sN�1, pN D hN�1 and oN D pN�1, so we fold along the edge of slope pN�1,
identifying the edges of slopes sN�1 and hN�1 of TN .

3.3 Neumann–Zagier matrix before Dehn filling

Start with the unfilled manifold, and assume there are nc � 2 cusps. We consider two of these cusps c0; c1

with cusp tori T0;T1, respectively. Suppose the triangulation T has the property that T1 meets exactly
two ideal tetrahedra �1; �2, each in one ideal vertex, and there exist generators m0; l0 of H1.T0/ that
avoid �1 and �2. We prove such a triangulation always exists in Proposition A.1. Cusp c1 will be filled.
There is a unique ideal edge e running into the cusp c1; its other end is in c0. The labellings on T are (at
this stage) made arbitrarily.
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T0

o0

p0

s0

h0 D p1

T1
�0

�1

�2

o1

s1

h1 D p2 D p3

o2 s2
R

R

L

T2

T3

T4 h2 D s3

o3

h3 D r

Figure 5: Example of a voyage in the Farey graph when N D 3. The word W is RRL. There are three
tetrahedra in the layered solid torus, namely �0, �1, �2. The slopes along the way can have several
names; for example s0 D s1 D s2 D o3. No tetrahedron is added in the final step from T3 to T4.

Lemma 3.3 Let T , m0 and l0 be as above. There is a choice of curves m1; l1 on T1 generating H1.T1/

such that the corresponding Neumann–Zagier matrix NZ has the following form:

(i) The row of NZ corresponding to edge e contains only zeroes. In the cusp triangulation of c0, the
unique vertex corresponding to e is surrounded by six triangles , corresponding to ideal vertices of
�1 and �2 in alternating order , which form a hexagon h around e.

(ii) The six vertices of h correspond to the ends of three edges of T , denoted f;g; h. After possibly rela-
belling �1 and �2, the entries of NZ in the corresponding rows , and in the columns corresponding
to �1; �2, are as follows:

24
�1 �2

f 0 1 0 1

g �1 �1 �1 �1

h 1 0 1 0

35:
(iii) The rows of NZ corresponding to m1 and l1 contain entries as shown below in the columns

corresponding to �1; �2, with all other entries in those rows zero:

� �1 �2

m1 1 0 �1 0

l1 0 1 0 �1

�
:

(iv) All other rows of NZ contain only zeroes in the columns corresponding to �1 and �2.
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�1

a1

b1

c1

a2

a1

a2

a1

a2

b1

b1

c1
c1�1

�1�2

�2

�2

f

g

h

f

g

h

e

f

g h

a2

b2

c2

a1

b1

c1

�1

�2

e

f
b2

c2

b2

c2

c2

b2

Figure 6: Left: how tetrahedra �1 and �2 meet the cusp c1. Right: how they meet the cusp c0.

Proof The proof is obtained by considering carefully the gluing. The two tetrahedra �1 and �2 must
meet c1 as shown in Figure 6, left. The three additional edge classes meeting these tetrahedra are labelled
f , g, and h as in that figure. These three edges have both endpoints on c0. We may determine how they
meet c0 by tracing a curve in c0 around the edge e. This can be done by tracing a curve around the ideal
vertex of the punctured torus made up of the two faces of �1 and �2 that do not meet c1. The result is
the hexagon h shown on the right of Figure 6. Each of the eight ideal vertices of �1 and �2 have been
accounted for: two on c1 and six forming the hexagon h on c0.

Now label opposite edges of �1 and �2 as a-, b-, and c-edges respectively, as in Figure 6. These labels
determine the 4� 6 entries in the rows of the incidence matrix In, corresponding to edges e; f;g; h and
tetrahedra �1; �2, as follows: 2664

�1 �2

e 1 1 1 1 1 1

f 0 1 0 0 1 0

g 0 0 1 0 0 1

h 1 0 0 1 0 0

3775:
As the entries in the e row account for all edges of tetrahedra incident with e, all other entries of In in
this row are zero. Moreover, as the entries in the e; f;g; h rows account for all edges of �1 and �2, any
other row of In has all zeroes in the columns corresponding to �1 and �2.

Turning to the cusp c1, we can choose m1; l1 as shown in Figure 7. Then m1 has a-incidence number 1

with�1 and �1 with�2 (Definition 2.11), and all other incidence numbers zero. In other words, am
1;1
D 1

c2 a2

b2

a1

b1

c1

c2 a2

b2

a1

b1

c1

m1 l1

Figure 7: Choices for m1 and l1.
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and am
1;2
D�1 are the only nonzero incidence numbers a=b=cm

1;j
. Similarly, l1 has b-incidence numbers

1 with �1 and �1 with �2, ie bl
1;1
D 1 and bl

1;2
D�1, and all other incidence numbers zero.

Forming the Neumann–Zagier matrix by subtracting columns of In, and subtracting incidence numbers,
according to Definition 2.17, we obtain the form claimed in (i)–(iii).

It remains to show that in all rows of NZ other than the e; f;g; h;m1; l1 rows, there are zeroes in the �1

and �2 columns. We have seen that In contains only zeroes in the �1 and �2 columns in all rows other
than the e; f;g; h rows. Hence NZ also has zeroes in the corresponding rows and columns. The remaining
rows to consider are the mk and lk rows for k D 0 and k � 2. By hypothesis (or Proposition A.1(ii)),
m0; l0 avoid the tetrahedra�1 and�2, and hence the m0; l0 rows of NZ have zero in the�1; �2 columns.
For any k � 2, the cusp ck does not intersect �1 or �2, as these tetrahedra have all their ideal vertices on
c0 and c1. Thus whatever curves are chosen for mk and lk , the corresponding rows of NZ are zero in the
�1 and �2 columns.

Note that in the above proof, by relabelling the tetrahedra �1; �2 and cyclically permuting a-, b- and
c-edges, the effect is to cyclically permute the f;g; h rows in the NZ entries above.

To compute the Ptolemy equations for Dehn-filled manifolds, we need a vector B as in Theorem 2.50.

Lemma 3.4 Let M; T , cusp curves mk ; lk , tetrahedra �1; �2, and the matrix NZ be as above. Suppose
T consists of n tetrahedra. Then there exists a vector

B D .B1;B
0
1; : : : ;Bn;B

0
n/ 2 Z2n

with the following properties:

(i) NZ �B D C .

(ii) The entries B1;B
0
1

and B2;B
0
2

corresponding to �1 and �2 are all zero.

Proof By Theorem 2.50(i), there exists an integer vector AD .A1;A
0
1
; : : : ;An;A

0
n/ such that NZ�ADC .

The m1 and l1 rows of NZ are given by Lemma 3.3(iii), and the incidence numbers calculated in the proof
show that the corresponding entries of C are �cm

1
D 0 and �cl

1
D 0. Thus the m1; l1 rows of NZ �AD C

give equations A1�A2 D 0 and A0
1
�A0

2
D 0. Thus A1 DA2, A0

1
DA0

2
, and the �1 and �2 entries of

A are given by .A1;A
0
1
;A1;A

0
1
/.

We now adjust A to obtain the desired B, using Theorem 2.50(ii). Write RG
f

and RG
h

for the row vectors
in the NZ matrix corresponding to edges f and h. Lemma 3.3(ii) says that RG

f
has .0; 1; 0; 1/ in the �1

and �2 columns, and RG
h

has .1; 0; 1; 0/. Thus JRG
f

has .�1; 0;�1; 0/ in the �1 and �2 columns, and
JRG

h
has .0; 1; 0; 1/.

Now let B DACA1JRG
f
�A0

1
JRG

h
. By Theorem 2.50(ii), NZ �B D C , and we observe that its �1; �2

entries are

.B1;B
0
1;B2;B

0
2/D .A1;A

0
1;A1;A

0
1/CA1.�1; 0;�1; 0/�A01.0; 1; 0; 1/D .0; 0; 0; 0/:
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3.4 Neumann–Zagier matrix of a layered solid torus

Let the manifold M, triangulation T , cusp curves, tetrahedra and Neumann–Zagier matrix NZ be as in
the previous section.

To perform Dehn filling on c1, we first remove tetrahedra �c
1

and �c
2
, leaving a manifold with boundary

a once-punctured torus, triangulated by the boundary edges f , g, and h. Then we glue a layered solid
torus to this once-punctured torus.

Because generators m0, l0 of H1.T0/ were chosen to be disjoint from �c
1

and �c
2

before Dehn filling,
representatives of these generators avoid the hexagon h. When we pull out �c

1
and �c

2
, m0 and l0 still

avoid h, and consequently they will form generators of H1.T0/ that avoid the layered solid torus when
we perform the Dehn filling.

Note that, as in Figure 6, left, the edges f;g; h are each adjacent to a unique face with an ideal vertex
at c1. Via these faces, each of f;g; h corresponds to one of the three edges in the cusp triangulation of c1,
and hence to slopes on the torus T1. As we add tetrahedra of the layered solid torus, each edge similarly
corresponds to a slope on T1. We will in fact label edges by these slopes: we denote the edge corresponding
to the slope s by Es . Thus, we regard f;g; h as slopes, and these slopes form the triangle T0 of Section 3.1
in the Farey triangulation. In the notation of Section 3.2, ff;g; hg D fo0; s0;p0g in some order.

As discussed in Section 3.1, the layered solid torus that we glue is determined by the slope r of the filling,
and a path in the Farey triangulation from the triangle T0 with vertices f;g; h to the slope r . This path
passes through a sequence of triangles T0; : : : ;TNC1, where TNC1 contains r as a vertex (and previous
Tj do not). The layered solid torus contains N tetrahedra.

The j th tetrahedron (�j�1 in the notation of Section 3.2) of the layered solid torus corresponds to passing
from Tj�1 to Tj . The four vertices of these triangles are the slopes .oj�1;pj�1; sj�1; hj�1/ as discussed
in Section 3.2. Each edge of the tetrahedron corresponds to one of these four slopes. By Lemma 3.2, the
sequence of “old” slopes o0; o1; : : : consists of distinct slopes. We will label each tetrahedron by its “old”
slope: so rather than writing �j�1, we will write �oj�1

. Then in the final step we glue the two boundary
faces together along the edge of slope oN , which identifies the edges of slopes pN and sN . We denote
this edge by EpNDsN

.

We arrive at an ideal triangulation of the manifold M.r/ obtained by Dehn filling M along slope r on
cusp c1.

The tetrahedra of this triangulation are of two types: those inside and outside the layered solid torus. We
split the columns of the Neumann–Zagier matrix into two blocks accordingly. The N tetrahedra of the
layered solid torus are labelled by their “old” slopes, �o0

; : : : ; �oN�1
.

The edges are of three types:

� those lying outside the layered solid torus;
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� those lying on the boundary of the layered solid torus, ie f;g; h as above, which we call boundary
edges; and

� (for N � 1) the edges lying in the interior of the layered solid torus, labelled by the slopes
h0; h1; : : : ; hN�1.

Note that in the final folding, two of these edges are identified. Thus, the rows of the Neumann–Zagier
matrix of the triangulated Dehn-filled manifold come in four blocks, corresponding to the three types of
edges above, and the cusp rows for the remaining cusps c0 and ck for k � 2.

We regard the Dehn filled manifold M.r/ as built up, piece by piece, as follows. Let M0 denote the
original manifold M with the two tetrahedra �1; �2 removed. Let Mk denote the manifold obtained
from M0 after adding the first k tetrahedra of the layered solid torus. Thus

M0 �M1 � � � � �MN :

Note Mk has a triangulation of its boundary torus with slopes .ok ; sk ;pk/, the vertices of the triangle Tk

of the Farey triangulation.

Then M.r/ is obtained by folding together the two boundary faces of MN along the edge of the boundary
triangulation of slope oN , and identifying the edges of the 3-manifold triangulation of slopes sN and pN .

Even though each Mk is not a cusped 3-manifold, rather having boundary components, there is still a
well-defined notion of labelled triangulation and incidence matrix. Moreover, since by construction the
cusp curves m0; l0 avoid the removed tetrahedra �1; �2, they still have well-defined incidence numbers
with edges and tetrahedra. Thus there is a well-defined Neumann–Zagier matrix NZk for Mk , with rows
for the edges and two rows for the cusp c0 (but no rows for the boundary left behind from cusp c1).
Similarly, there is a well defined C-vector Ck for Mk (Definition 2.22).

Lemma 3.5 The matrix NZ0 of M0 is obtained from the incidence matrix NZ of M by deleting the
columns corresponding to the removed tetrahedra �1; �2, and deleting the rows corresponding to the
removed edge e and cusp c1.

The vector C0 is obtained from the C-vector C of M by deleting entries corresponding to edge e and
zeros corresponding to m1 and l1, and adding 2 to one of the entries corresponding to edges f;g or h; by
labelling �1; �2 appropriately, we can specify which entry.

Proof The deletion does not otherwise affect incidence relations, so the only effect on the Neumann–
Zagier matrix is to delete entries. We similarly delete the entries from C .

In Lemma 3.3, the incidence matrix entries calculated show that one edge, g, is identified with one c-edge
of �1 and �2, but edges f and h are not identified with any c-edges of �1 or �2. Thus the g entry of
C0 is 2 greater than the g entry of C .

As noted in the comment after the proof of Lemma 3.3, by labelling �1; �2 appropriately, we can
cyclically permute the f;g; h rows, so that we add 2 to the f or h entry of C instead.
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Figure 8: When attaching a nondegenerate layered solid torus, at each intermediate step a
tetrahedron is attached with labels as shown on the right.

As each successive tetrahedron is glued, the effect on the cusp triangulation of c0 is shown in Figure 8.
The hexagon h of Lemma 3.3 has been removed, leaving a hexagonal hole; this hole is partly filled in,
leaving a “smaller” hexagonal hole.

Lemma 3.6 For an appropriate labelling of the tetrahedron �kC1, the matrix NZkC1 is obtained from
NZk as follows.

(i) Add a pair of columns for the tetrahedron �ok
, and a row for the edge with slope hk . All entries of

the new row are zero outside of the �ok
columns.

(ii) The only nonzero entries in the �ok
columns are in the rows corresponding to edges of slope

ok ; sk ;pk ; hk and are as follows:

.3.7/

2664
�ok

Eok
1 0

Esk
�2 �2

Epk
0 2

Ehk
1 0

3775:
(iii) All other entries are unchanged.

The vector CkC1 is obtained from Ck by subtracting 2 from the Esk
entry , and inserting an entry 2 for

the row Ehk
.

Proof Of the six edges of �ok
, one of them is identified to Eok

, two opposite edges are identified
to Epk

, two opposite edges are identified to Esk
, and one is the newly added edge Ehk

. Observe that the
three slopes of a triangle in a two-triangle triangulation of a torus are in anticlockwise order if and only
if they form the vertices of a triangle of the Farey triangulation in clockwise order. Since .ok ; sk ;pk/

are in anticlockwise order around the triangle Tk of the Farey triangulation, they are slopes associated
to the edges of a triangle on the boundary of Mk in clockwise order. Hence we may label the edges of
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�ok
identified with Eok

(hence also Ehk
) as a-edges, those identified with Epk

as b-edges, and those
identified with Esk

as c-edges. This gives the entries of NZkC1 and the changes to C-vectors claimed.

No other changes occur with incidence relations of edges and tetrahedra. As cusp curves avoid the layered
solid torus, the cusp rows of the Neumann–Zagier matrix and the cusp entries of Ck are also unchanged.

Finally, we examine the effect of folding up the two boundary faces of MN , and identifying the two
edges EpN

;EsN
into an edge EpNDsN

to obtain the Dehn-filled manifold M.r/.

We denote the row vector of NZN corresponding to the edge Es of slope s by RG
s ; and we denote the

row vector of NZ.r/ corresponding to the identified edge EpNDsN
by RG

pNDsN
. Similarly, we denote

the entry of CN corresponding to slope s by .CN /s; and we denote the entry of C.r/ corresponding to
the identified edge EpNDsN

by C.r/pNDsN
.

Lemma 3.8 The Neumann–Zagier matrix NZ.r/ of M.r/ is obtained from NZN by replacing the rows
corresponding to edges EpN

and EsN
with their sum , corresponding to the edge EpNDsN

. The C-vector
C.r/ of M.r/ is obtained from CN by replacing the entries .CN /pN

, .CN /sN
corresponding to edges

EpN
;EsN

with an entry C.r/pNDsN
D .CN /pN

C .CN /sN
� 2, corresponding to edge EpNDsN

.

Thus row vectors RG
pN

and RG
sN

are replaced with RG
pNDsN

DRG
pN
CRG

sN
. Corresponding entries of

CN are also summed, but then we subtract 2 for the replacement entry.

Proof The only change in incidence relations between edges and tetrahedra after gluing is that all
tetrahedra that were incident to edges EpN

or EsN
are now incident to the identified edge EpNDsN

. Thus
we sum the two rows. The cusp rows are again unaffected.

Each C-vector entry corresponding to an edge Ek is of the form 2�ck, where ckD
P

j ck;j (Definition 2.22).
When we combine the two edges, the ck terms combine by a sum, but in place of 2C 2 we must have a
single 2; hence we subtract 2.

The effect on the cusp triangulation of c1 is to close the hexagonal hole by gluing its edges together as in
Figure 9.

As mentioned previously, the slopes .pN ; sN / are equal to .pN�1; hN�1/ if the last letter of W is an L,
and equal to .hN�1; sN�1/ if the last letter of W is an R. Either way, we observe that the slope hN�1 is
among those being identified. Thus the last new edge in the layered solid torus appears at step N � 1,
with label hN�2 at that step.

Alternatively, we may write the matrix NZ.r/ by deleting the row EhN�1
from NZN and adding it to the

row EpN�1
or EsN�1

accordingly as the last choice is an L or R. Then the edges are regarded as having
slopes ff;g; hg D fo0;p0; s0g, together with h0; h1; : : : ; hN�2.
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Figure 9: The last tetrahedron in the layered solid torus has its two interior triangles identified
together, either by folding over the edge labelled pN�1 or by folding over the edge labelled sN�1.
The two cases are shown.

With this notation, the Neumann–Zagier matrix NZ.r/ has pairs of columns corresponding to tetrahe-
dra, which consist of the tetrahedra of M n .�c

1
[�c

2
/, and the tetrahedra of the layered solid torus,

�o0
; : : : ; �oN�1

. The rows correspond to the edges of M disjoint from �c
1

and �c
2
, and then edges

Eo0
;Es0

;Ep0
on the boundary of the hexagon, then Eh0

;Eh1
; : : : ;EhN�2

inside the layered solid torus;
and cusp rows corresponding to m0; l0. The general form is shown in Figure 10.

Thus if there are n edges and tetrahedra in the triangulation, then outside the layered solid torus there are
n�N tetrahedra and n�N � 2 edges.

Lemma 3.8 includes the case where N D 0, ie where the layered solid torus is degenerate. In this case
we go directly from M to M0 (removing �c

1
[�c

2
) to M.r/. In this case the filling slope r is equal

to h0, so has distance 1 from two of the initial slopes f;g; h, and distance 2 from the other. These are

NZ.r/D

2666666666666666666666664

tet. of M n .�c
1
[�c

2
/ �o0

�o1
� � � �oN�1

edges of M � � � � � � 0 0 0 0 � � � 0 0

outside
:::
:::

: : :
:::

:::
:::

:::
:::
: : :

:::
:::

�c
1
[�c

2
� � � � � � 0 0 0 0 � � � 0 0

Eo0
� � � � � � 1 0 0 0 � � � 0 0

Es0
� � � � � � �2 �2 � � � � � � �

Ep0
� � � � � � 0 2 � � � � � � �

Eh0
0 0 � � � 0 � � � � � � � � �

Eh1
0 0 � � � 0 0 0 � � � � � � �

Eh2
0 0 � � � 0 0 0 0 0 � � � � �

:::
:::
:::

: : :
:::

:::
:::

:::
:::
: : :

:::
:::

EhN�2
0 0 � � � 0 0 0 0 0 � � � � �

m0 � � � � � � 0 0 0 0 � � � 0 0

l0 � � � � � � 0 0 0 0 � � � 0 0

3777777777777777777777775
Figure 10: Neumann–Zagier matrix of a Dehn-filled manifold.
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Figure 11: Left: Dehn filling along slope r1, r2, or r3 attaches a degenerate layered solid torus,
with no tetrahedra. Right: the effect of such a Dehn filling on the cusp triangulation of C0 is to
fold the hexagon, identifying two boundary edges together.

the slopes labelled r1, r2, and r3 in Figure 11, left. No tetrahedra are added, and we skip to the final
folding step, folding boundary faces of the boundary torus together along the edge of slope o0, and
identifying the edges corresponding to slopes s0 and p0. The effect is to combine and sum the rows of
NZ0 corresponding to Es0

and Ep0
.

The resulting matrix NZ.r/ is described explicitly in the following propositions; they simply describe the
result of applying the previous lemmas, and their proofs are immediate from those lemmas. Figure 10
shows most of the structure described.

Proposition 3.9 Suppose NZ.r/ is the Neumann–Zagier matrix of M.r/, obtained by Dehn filling the
manifold M of Lemma 3.3, with Neumann–Zagier matrix NZ, along the slope r on c1. Then the rows of
NZ.r/ corresponding to edges outside the layered solid torus and its boundary , and the rows corresponding
to m0 and l0, are as follows.

(i) Entries in columns corresponding to tetrahedra of the layered solid torus are all zero.

(ii) Entries in columns corresponding to tetrahedra outside the layered solid torus are unchanged from
their entries in NZ.

In the N D 0 case, by Lemma 3.8 and subsequent discussion, the only edge rows of the layered solid
torus are those with slopes o0 and s0 D p0, and there are no columns corresponding to tetrahedra in the
layered solid torus.

Proposition 3.10 Suppose N D 0. Then the entries in the rows of NZ.r/ corresponding to the edges of
the layered solid torus are as follows.

(i) The row corresponding to o0 has the same entries as corresponding columns of NZ.

(ii) The row corresponding to s0 D p0 is the sum of entries in s0 and p0 rows of NZ.
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Proposition 3.11 Suppose N � 1. The entries in the rows of NZ.r/ corresponding to the edges of the
layered solid torus are as follows.

(i) In columns corresponding to the tetrahedra outside the layered solid torus:

(a) The entries in the rows corresponding to the edges with slopes h0; : : : ; hN�2 are all zero (there
are no such edges if N D 1).

(b) The entries in the rows corresponding to the boundary edges , with slopes ff;g; hgDfo0;p0; s0g

are the same as in the corresponding rows and columns of NZ. (The p0 or s0 row may be
combined and summed with the hN�1 row in the final step , but being summed with zeroes , the
entries remain the same.)

(ii) The entries in the pair of columns corresponding to the tetrahedron �oj
, are as described in

Lemma 3.6, except that rows corresponding to slopes pN and sN are summed as in Lemma 3.8. In
particular , we have the following:

(a) The row of slope o0 has .1; 0/ in the �o0
columns , zero in every other �oj

column.

(b) Provided s0¤ sN , the row of slope s0 has a sequence of pairs .�2;�2/, followed by .1; 0/ and
then all zeroes. (The number of such pairs is kC 1, where W begins with a string of k Rs.)

(c) Provided p0 ¤ pN , the row of slope p0 has a sequence of pairs .0; 2/, followed by .1; 0/ and
then all zeroes. (The number of such pairs is kC 1, where W begins with a string of k Ls.)

(d) In the two columns for �oj
, entries in rows of slope hjC1; : : : ; hN�2 are zero.

3.5 Building up the sign vector

We will now show how to build up a vector B.r/ satisfying the sign equation (2.49) for the Dehn-filled
manifold M.r/; that is,

NZ.r/ �B.r/D C.r/:

We do this starting from the sign vector B found for the unfilled manifold M in Lemma 3.4. We build
up a sequence of vectors B0; : : : ;BN associated to the manifolds M0; : : : ;MN . These vectors “almost”
satisfy NZk �Bk D Ck . From BN we obtain the desired vector B.r/.

In Lemma 3.5, we showed that we can take C0 to be obtained from C by deleting the e entry, and adding
2 to one of the entries corresponding to slopes ff;g; hg D fo0; s0;p0g, whichever we prefer. For the
following, we want the 2 to be added to the entry corresponding to slope s0 or p0. For definiteness, we
take C0 to be obtained by adding 2 to the s0 entry.

Lemma 3.12 Let B0 be the vector obtained from B by removing the two pairs of entries corresponding
to the removed tetrahedra �c

1
; �c

2
. Then C0�NZ0 �B0 consists of all zeroes , except for a 2 in the entry

corresponding to the edge with slope s0.

Proof We have NZ�BDC . Examine the effect of changing the terms to NZ0 �B0 and C0. By Lemma 3.4,
the vector B has pairs of entries corresponding to �c

1
and �c

2
consisting of all zeroes. Consider the rows
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of NZ corresponding to edges away from �c
1

and �c
2
, together with the m0; l0 rows. These rows have

all zero entries in �c
1

and �c
2

columns, by Lemma 3.3. The corresponding rows of NZ0 are obtained by
deleting the zero entries in the�c

1
and�c

2
columns (Lemma 3.5). Thus the corresponding entries of NZ �B

and NZ0 �B0 are equal. Similarly, the corresponding entries of C and C0 are equal. So C0�NZ0 �B0

has zeroes in these entries.

By Lemma 3.5, the only remaining rows of NZ0 are those corresponding to rows with slopes ff;g; hg D
fo0; s0;p0g.

In both NZ �B and NZ0 �B0 we obtain exactly the same terms from the tetrahedra outside �c
1

and �c
2
,

by Lemma 3.5 and construction of B0. These account for all the terms in NZ0 �B0, but in NZ �B there
are also terms from the tetrahedra �c

1
and �c

2
. However, as the corresponding entries of B are zero,

these terms are zero. So NZ0 �B0 and NZ �B have the same entries in these rows, and hence also C .
However, as discussed above, we have chosen C0 to differ from C by 2 in the row with slope s0. Hence
C0�NZ0 �B0 is as claimed.

Observe from the proof that Lemma 3.12 works equally well with the slope s0 replaced with any of
ff;g; hg D fo0; s0;p0g.

As it turns out, going from B0 to B1 is a little different from the general case, and so we deal with it
separately.

Lemma 3.13 Let B1 be obtained from B0 by adding zero entries corresponding to�o0
Then C1�NZ1�B1

consists of all zeroes , except for a 2 in the new entry corresponding to Eh0
.

Proof By Lemma 3.6, NZ1 is obtained from NZ0 by adding a row for the edge with slope h0 and a pair
of columns for �o0

, with added nonzero entries as in (3.7). Also, C1 is obtained from C0 by subtracting
2 from the Es0

entry, and inserting an entry 2 for the row Eh0
.

Now each entry of NZ0 �B0 is equal to the corresponding entry in NZ1 �B1, since the terms are exactly
the same, except for the terms of NZ1 �B1 corresponding to the added tetrahedron �o0

, which are zero
since B1 has zero entries there. The extra entry in NZ1 �B1, corresponding to Eh0

, is also zero, since
this row of NZ1 only has nonzero entries in the terms corresponding to �o0

, where B1 is zero. Thus
NZ1 �B1 is equal to NZ0 �B0 with a 0 appended.

Similarly, each entry of C0 is equal to the corresponding entry of C1, except for the entry of slope s0,
where C1�C0 has a �2. The vector C1 also has a 2 appended.

From Lemma 3.12, each entry of C0�NZ0 �B0 is zero, except for the s0 entry, which is 2.

Putting these together, each entry of C0 �NZ0 �B0 equals the corresponding entry of C1 �NZ1 �B1,
except for the entry of slope s0, where C1 � NZ1 � B1 has entry 2 � 2 D 0. The additional entry of
C1�NZ1 �B1 of slope h0 is 2� 0D 2. Thus C1�NZ1 �B1 is as claimed.
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Had we chosen C0 to differ from C in the p0 entry, then C0�NZ0 �B0 would have a nonzero entry for
slope p0; in this case we could take B1 to be obtained from B0 by adding entries .0; 1/ and obtain the
same conclusion.

We now proceed to the general case, building BkC1 from Bk . We use the first N � 1 letters of the word
W in the letters fL,Rg.

Lemma 3.14 Suppose 1� k �N �1. If the k th letter of the word W is R (resp. L ), let BkC1 be obtained
from Bk by appending .0; 1/ (resp. .0; 0/) for the added tetrahedron �ok

. Then CkC1�NZkC1 �BkC1

consists of all zeroes except a 2 in the entry corresponding to Ehk
.

Proof Proof by induction on k; Lemma 3.13 provides the base case. Assume Ck �NZk �Bk has only
nonzero entry 2 in the row of slope hk�1, and we consider CkC1�NZkC1 �BkC1.

Again using Lemma 3.6, CkC1 and Ck differ only in that CkC1 has a 2 in the new entry Ehk
, and has 2

subtracted from the Esk
entry.

Suppose that the k th letter of W is an R. Then by Lemma 3.2 we have ok D pk�1, sk D sk�1 and
pk D hk�1. Thus the new entries in NZkC1 are given by

2664
�ok

Eok
DEsk�1

1 0

Esk
DEsk�1

�2 �2

Epk
DEhk�1

0 2

Ehk
1 0

3775:
So with BkC1 defined as stated, the entries of NZk �Bk differ from the corresponding entries of NZkC1 �

BkC1 in entries for rows of slope pk D hk�1 and sk . In the row of slope pk D hk�1, NZkC1 �BkC1 is
greater by 2, and in the row of slope sk , NZkC1 �BkC1 is lesser by 2. The new entry in NZkC1 �BkC1 of
slope hk is 0.

Putting the above together, we find that CkC1�NZkC1 �BkC1 has the same entries as Ck �NZk �Bk ,
except in the rows of slope: pk D hk�1, where they differ by �2; sk D sk�1, where they differ by
.�2/� .�2/D 0; and hk , where there is an extra entry of 2. Thus CkC1 �NZkC1 �BkC1 has unique
nonzero entry 2 in the Ehk

entry as desired.

Suppose that the k th letter is an L; then we have si D hi�1. The argument is simpler since BkC1 simply
appends zeroes to Bk . As we only append zeroes, there is no need to consider the new columns of NZkC1

in any detail. Indeed, NZkC1 �BkC1 and NZk �Bk have the same nonzero entries. Thus the nonzero
entries in CkC1�NZkC1 �BkC1 are those of Ck �NZk �Bk , with �2 added to the sk D hk�1 entry, and
2 inserted in the hk entry, giving the result.

We now consider the final step: the desired sign vector B.r/ is just BN .

Lemma 3.15 The vector BN of Lemma 3.14 satisfies NZ.r/ �BN D C.r/.
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Proof By Lemma 3.8, NZ.r/ is obtained from NZn by replacing the rows of slope pN and sN with their
sum, corresponding to the identified edge EpNDsN

. The row vectors RG
pN

and RG
sN

are replaced with

RG
pNDsN

DRG
pN
CRG

sN
:

Similarly, C.r/ is obtained from CN by replacing the corresponding entries .CN /pN
; .CN /sN

with the
combined entry

C.r/pNDsN
D .CN /pN

C .CN /sN
� 2:

By Lemma 3.14, CN �NZN �BN has only nonzero entry 2 corresponding to slope hN�1. Note that hN�1

is equal to one of the slopes pN ; sN to be combined (accordingly as the final letter of W is an L or R).

Consider any row other than those corresponding to slopes pN or sN . Such a row is unaffected by the
combination of rows or entries. Hence CN �NZN �BN has zero entry in this row; and since NZ.r/ and
C.r/ are equal to NZN and CN in these rows, C.r/�NZ.r/ �BN has zero entry in these rows.

It remains to consider the single row obtained by combining two rows. Since these two rows include the
row of slope hN�1, the two corresponding entries of CN �NZN �BN are 0 and 2 in some order. These
entries are .CN /pN

�RG
pN
�BN and .CN /sN

�RG
sN
�BN , so

.CN /pN
�RG

pN
�BN C .CN /sN

�RG
sN
�BN D 2:

Putting these together, we obtain the remaining entry of C.r/�NZ.r/ �BN as

C.r/pNDsN
�RG

pNDsN
�BN D .CN /pN

C .CN /sN
� 2� .RG

pN
CRG

sN
/ �BN

D .CN /pN
�RG

pN
�BN C .CN /sN

�RG
sN
�BN � 2D 0:

We have now proved the following.

Proposition 3.16 There exists an integer vector B.r/ such that NZ.r/ �B.r/D C.r/. The vector B.r/

is given by taking a vector B for the unfilled manifold M as in Lemma 3.4, removing the two pairs of
zeroes corresponding to removed tetrahedra �c

1
; �c

2
, and then appending

(i) a .0; 0/ corresponding to the tetrahedron �o0
; then

(ii) N � 1 pairs .0; 1/ or .0; 0/, corresponding to the first N � 1 letters of the word W . For each R we
append a .0; 1/, and for each L we append a .0; 0/.

In other words, the entry of B corresponding to the tetrahedron �ok
, for 1� k �N � 1, is .0; 1/ if the

k th letter of W is an R, and .0; 0/ if the k th letter of W is an L.

3.6 Ptolemy equations in a layered solid torus

We can now write down explicitly the Ptolemy equations for a Dehn filled manifold.
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To do so, we will suppose M has two cusps c0; c1, and is triangulated such that exactly two tetrahedra
�1

1
; �1

2
meet c1, each in a single ideal vertex. Suppose also that curves m0 and l0 represent generators of

the first homology of c0, and avoid triangles coming from �1
1

and �1
2

in the cusp triangulation of c0. We
show in Proposition A.1 that every 3-manifold of interest here admits such a triangulation, with such
curves on the cusp triangulation of c0.

Let NZ[ and C [ denote the reduced Neumann–Zagier matrix and C-vector associated with this triangulation
for M, where the triangulation is labelled to satisfy Lemma 2.51. Finally, suppose B is an integer vector
that satisfies NZ[ �B D C [.

Theorem 3.17 Let M be a two-cusped manifold with cusps c0, c1, triangulated as above so that only two
tetrahedra meet c1, and curves m0, l0 on the cusp triangulation of c0 avoid these tetrahedra. Perform Dehn
filling on the cusp c1 by attaching a layered solid torus with meridian slope r , consisting of tetrahedra
�o0

; : : : ; �oN�1
determined by the word W in the Farey graph. Then the Ptolemy equations of the Dehn

filled manifold M.r/ satisfy:

(i) There exist a finite number of outside equations , corresponding to tetrahedra of M and M.r/

lying outside the layered solid torus. These are obtained as in Definition 2.57 using the reduced
Neumann–Zagier matrix NZ[ and B for the unfilled manifold M. In particular , they are independent
of the Dehn filling.

(ii) For tetrahedra of the layered solid torus , Ptolemy equations are

�ok
hk
C  2

pk
�  2

sk
D 0 if k > 0 and the k th letter of W is an R;

ok
hk
C  2

pk
�  2

sk
D 0 if k D 0 or the k th letter of W is an L;

for 0� k �N � 1. We also set pN
D sN

.

Proof Item (i) follows from Propositions 3.11 and 3.16: The nonzero entries of the columns of NZ.r/ are
identical to those of NZ for tetrahedra outside the layered solid torus, and entries of B.r/ corresponding
to tetrahedra outside the layered solid torus are identical to those of B. Then (i) follows immediately
from Definition 2.57.

As for (ii), the tetrahedron �ok
has its a-edges identified to the edges Eok

and Ehk
, both its b-edges

identified to Epk
, and both its c-edges identified to Esk

, so the powers of  variables are as claimed.
They are disjoint from the cusp curves m0; l0, so no powers of ` or m appear in the Ptolemy equations.
The corresponding pair of entries of B is .0; 0/ for k D 0, and for k � 1, they are given by .0; 1/ if the
k th letter of W is an R, and .0; 0/ if the k th letter of W is an L. At the final step the edges with slopes
pN and sN are identified, with the effect of summing the corresponding rows of NZ matrices; this is also
the effect of setting the variables pN

; sN
equal in Ptolemy equations. Hence the Ptolemy equation of

Definition 2.57 takes the claimed form.
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tetrahedron face 012 face 013 face 023 face 123

0 3(021) 1(213) 2(130) 1(230)
1 4(102) 2(132) 0(312) 0(103)
2 2(203) 0(302) 2(102) 1(031)
3 0(021) 4(103) 4(203) 4(213)
4 1(102) 3(103) 3(203) 3(213)

Table 1: Five tetrahedra triangulation of the Whitehead link complement.

4 Example: Dehn-filling the Whitehead link

In this section, we work through the example of the Whitehead link and its Dehn fillings. The standard
triangulation of the Whitehead link has four tetrahedra meeting each cusp. To apply our results, we need
a triangulation with two tetrahedra meeting one of the cusps. This is obtained by a triangulation with five
tetrahedra. Its gluing information is shown in Table 1, where the notation is as in Regina [3]: tetrahedra
are labelled by numbers 0 through 4, with vertices labelled 0 through 3. Thus faces are determined by
three labels. The notation 3(021) in row 0 under column “Face 012” means that the face of tetrahedron 0
with vertices 012 is glued to the face of tetrahedron 3 with vertices 021, with 0 glued to 0, 1 to 2, and 2
to 1. And so on. Note the software Regina [3] and SnapPy [8] can be used to confirm that the manifold
produced is the Whitehead link complement.

In the triangulation, tetrahedra 3 and 4 are the only ones meeting one of the cusps, in vertices 3(3) and 4(3),
respectively. We have chosen the labelling so that the Neumann–Zagier matrix satisfies the conditions
of Lemma 3.3: see below. We will perform Dehn filling on the Whitehead link by replacing these two
tetrahedra with a layered solid torus.

0(1)
1(1)

0(0)

1(2)

0(2)

1(3)

2(2)

2(3)
2(0)

2(1)

1(0)

0(3)

a0

b0

b0

a0

c0

c0
a1 b1

c1

b0

b0

a0

a0

c0

c0

a1

a1a1

b1b1

b1

c1

c1c1

a2

b2

c2

a2

a2

a2

b2

b2

b2

c2

c2

c2

2=1

2=1

3=1

1

1

3=1

4(1)
3(2)

3(0)

4(2)
3(1)

4(0)a3
b4

c3
a4

c4

b3

Figure 12: Cusp triangulation of the Whitehead link, with triangles corresponding to tetrahedra 3
and 4 shaded. The edge e is at the centre of the hexagon, edges with slopes1D 1=0, 3=1, 2=1

on the boundary of the hexagon. The additional vertex in the figure corresponds to the edge we
call 0.23/. Note l is in red, m in blue.
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NZD

266666666666664

�0 �1 �2 �3 �4

E0.23/ 1 0 �1 �1 �2 �2 0 0 0 0

E3=1 0 1 1 0 0 1 1 0 1 0

E2=1 1 0 �1 �1 0 0 0 1 0 1

E1=0 �2 �1 1 2 2 1 �1 �1 �1 �1

Ee 0 0 0 0 0 0 0 0 0 0

m0 �1 �1 0 �1 0 0 0 0 0 0

l0 �1 �2 1 �1 0 0 0 0 0 0

m1 0 0 0 0 0 0 1 0 �1 0

l1 0 0 0 0 0 0 0 1 0 �1

377777777777775
Figure 13: The Neumann–Zagier matrix of the complement of the Whitehead link.

The cusp neighbourhood of the other cusp of the Whitehead link is shown in Figure 12. The shaded
hexagon consists of triangles from tetrahedra 3 and 4. Pulling out tetrahedra 3 and 4 will leave a manifold
with punctured torus boundary. The slopes of these boundary curves can be computed in terms of the
usual meridian/longitude of the cusp of the Whitehead link to be 3=1, 2=1, and 1=0 D 1 (we used
Regina [3] and SnapPy [8] to compare slopes under Dehn filling to identify these edges). Each slope
corresponds to an edge of the punctured torus, and an edge of the triangulation, and appears twice in the
hexagon of our cusp triangulation. The three slopes are labelled in Figure 12. There are two additional
edges; one e only meets tetrahedra 3 and 4. The other we denote by 0.23/ (because the edge 0.23/ in
Regina notation corresponds to this edge class). Finally, we choose generators of the fundamental group
of the cusp torus to be disjoint from the hexagon in the cusp neighbourhood.

We may now read the incidence matrix of the Whitehead link complement off of the cusp triangulation,
and use it to find the Neumann–Zagier matrix, which is shown in Figure 13.

The vector C is Œ�1; 2; 1;�2; 0;�1;�1; 0; 0 �T . Notice that the vector

B D Œ1; 1; 1;�1; 1; 0; 0; 0; 0; 0 �T

satisfies the properties of Lemma 3.4: NZ �BDC and the last four entries of B are all zero. We now have
enough information to determine the outside Ptolemy equations for any Dehn filling of the Whitehead
link complement. By Theorem 3.17 and Definition 2.57, they are

.4.1/

�0 W � `
1=2m�1=20.23/2=1� `

1=2m�13=11=0� 
2
1=0 D 0;

�1 W �m1=23=11=0� `
1=2m�1=2 2

1=0� 0.23/2=1 D 0;

�2 W  2
1=0� 1=03=1� 

2
0.23/ D 0:

Recall that we set nD 1, where n is such that the nth gluing equation is redundant in the Neumann–Zagier
matrix. For this example, we may always set 1=0 D 1, and then use the equation from �2 to write 3=1

in terms of 0.23/. Equations from �0 and �1 can then be used to write 0.23/ and 2=1 only in terms of
` and m. These may be substituted into additional Ptolemy equations that arise from Dehn filling.
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2=1

3=1

1=0

3=2Dm007
1=1D S3 n trefoil

1=2D S3 n .52 knot/

1=3D S3 n 72

�1D S3 n .41 knot/

�1=2D S3 n 61

�1=3D S3 n 81

T0

T1

T2

h0o1

s1

D p1

h1

LR

L
L

R
R

R

1=4D S3 n 92s0

o0

p0

Figure 14: Some Dehn fillings of the Whitehead link and their location in the Farey graph.

A Dehn filling is determined by a path in the Farey graph, giving a layered solid torus. Figure 14 shows
where we begin in the Farey graph, namely in the triangle T0 with slopes 3=1; 2=1; 1=0, and paths we
take to obtain well-known Dehn fillings, in particular twist knots.

For example, if we attach a degenerate layered solid torus, folding along the edge of slope 1=0, we will
perform 1=1 Dehn filling, which gives the trefoil knot complement. Since the trefoil is not hyperbolic,
Theorem 2.58 is not guaranteed to apply, so we skip this Dehn filling. To obtain other twist knots, first
cover slope 1=0, stepping into triangle T1 in the Farey graph, then swing R into triangle T2. From there,
the path depends on whether we wish to obtain an even twist knot or an odd one.

Consider performing �1=1 Dehn filling, to obtain the complement of the 41 knot, or figure-8 knot. This
Dehn filling is obtained by attaching a layered solid torus built of two tetrahedra, �3=1 and �2=1, where
our naming convention is as in Section 3.4: Tetrahedron �o0

D�3=1 is attached when we step from T0

to T1 in the Farey graph, and �o1
D�2=1 when we step from T1 to T2. Notice that this step in the Farey

graph is in the direction R. Then to obtain the 41 knot, from T2 we fold over the edge E1=1, identifying
E0=1 and E1=0.

Equations arising from the layered solid torus can be computed with reference only to Theorem 3.17,
without writing down the full Neumann–Zagier matrix:

.4.2/
�3=1 W 3=11=1C 

2
2=1� 

2
1=0 D 0;

�2=1 W �2=10=1C 
2
1=1� 

2
1=0 D 0:
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Observe that in the equation for �3=1, 3=1, 1=0, and 2=1 are already known in terms of m and ` alone.
Hence direct substitution allows us to write 1=1 in terms of m and `. Similarly for 0=1 in the equation
from �2=1.

The equations for the figure-8 knot are finally obtained by setting the variables 0=1 D 1=0. Then the
final equation turns the system into a single equation in m and `. The calculations for the figure-8 knot
are carried out in Appendix B.

Now consider the 52 knot. This is obtained by starting with the same two tetrahedra �3=1 and �2=1 as
in the case of the figure-8 knot. However, instead of folding across the edge E1=1, we fold across the
edge E1=0, and identify E1=1 to E0=1; see Figure 14. Thus the Ptolemy equations look identical to those
above for the figure-8 knot, except set the variables 1=1 and 0=1 to be equal. As before, substitution
gives the A-polynomial. Again the calculations are in Appendix B.

For the 72 knot: Turn left from the triangle T2 in the Farey graph, picking up equation

�1=0 W 1=01=2C 
2
1=1� 

2
0=1 D 0;

and identify variables 1=2 and 0=1. Substitution allows us to write 1=2 in terms of m and `, and then
use this to find the A-polynomial.

For the 92 knot: Turn right. Pick up a new equation,

�1=1 W �1=11=3C 
2
1=2� 

2
0=1 D 0;

and identify variables 1=3 and 0=1.

Any twist knot with 2N C 1 crossings is obtained similarly, for N � 4. The word W in the Farey graph
has the form RLRR: : :R. The Ptolemy equations include all the equations above, as well as a sequence of
equations

�1=k1=.kC2/C 
2
1=.kC1/� 

2
0=1 D 0 for 2� k �N � 1:

At the end, the variables 0=1 and 1=N�1 are identified.

In all cases, a step in the Farey graph gives an equation with a single new variable; we use this equation
to write the new variable in terms of m and `. Then direct substitution at the final step yields the
A-polynomial.

Twist knots with 2N crossings are obtained similarly from a word in the Farey graph of the form RRL: : :L,
with corresponding adjustments to the Ptolemy equations to determine the A-polynomial.

Appendix A Nice triangulations of manifolds with torus boundaries

In this appendix, we show that every 3-manifold admits a triangulation that behaves well with Dehn
filling by layered solid tori, such that the results of Section 3 apply.
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Proposition A.1 Let M be a connected , compact , orientable , irreducible , @-irreducible 3-manifold with
boundary consisting of mC 1� 2 tori. Then , for any torus boundary component T0, there exists an ideal
triangulation T of the interior M of M such that the following hold.

(i) If T1; : : : ;Tm are the torus boundary components of M disjoint from T0, then in M, the cusp
corresponding to Tj for any j D 1; : : : ;m meets exactly two ideal tetrahedra , �j ;1 and �j ;2. Each
of these tetrahedra meets Tj in exactly one ideal vertex.

(ii) There exists a choice of generators for H1.T0IZ/, represented by curves m0 and l0, such that m0

and l0 meet the cusp triangulation inherited from T in a sequence of arcs cutting off single vertices
of triangles , without backtracking , and such that m0 and l0 are disjoint from the tetrahedra �j ;1

and �j ;2, for all j D 1; : : : ;m.

In the notation of Section 2, the number of cusps here is nc DmC 1� 2.

Proof By work of Jaco and Rubinstein [29, Proposition 5.15, Theorem 5.17], M admits a triangulation
by finite tetrahedra, ie with material vertices, such that the triangulation has all its vertices in @M and
has precisely one vertex in each boundary component. Thus each component of @M is triangulated by
exactly two material triangles.

Adjust this triangulation to a triangulation of M with ideal and material vertices, as follows. For each
component of @M, cone the boundary component to infinity. That is, attach T 2 � Œ0;1/. Triangulate by
coning: over the single material vertex v in Tj , attach an edge with one vertex on the material vertex, and
one at infinity. Over each edge e in Tj , attach a 1/3-ideal triangle, with one side of the triangle on the
edge e with two material vertices, and the other two sides on the half-infinite edges stretching to infinity.
Finally, over each triangle T in Tj attach a tetrahedron with one face identified to T, with all material
vertices, and all other faces identified to the 1/3-ideal triangles lying over edges of the triangulation of @M.

Note that each cusp of M now meets exactly two tetrahedra, in exactly one ideal vertex of each tetrahedron.
To complete the proof, we need to remove material vertices.

Begin by removing a small regular neighbourhood of each material vertex; each such neighbourhood is a
ball B in M. Removing B truncates the tetrahedra incident to that material vertex. We will obtain the
ideal triangulation by drilling tubes from the balls to the cusp T0, disjoint from the tetrahedra meeting the
other cusps. Thus the triangulation of the distinguished cusp T0 will be affected, but the triangulations of
the other cusps will remain in the form required for the result.

To drill a tube, we follow the procedure of Weeks [44] in Section 3 of that paper (see also [26, Figures 10
and 11] for pictures of this process). That is, truncate all ideal vertices in the triangulation of M. Truncate
material vertices by removing a ball neighbourhood, giving a triangulation by truncated ideal tetrahedra of
the manifold M � .B0[ � � � [Bm/, where B0; : : : ;Bm are the ball neighbourhoods of material vertices.
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0

1

23

0

1

1

23

0

0.2/; 0.1/

0.3/0.0/

Figure 15: Gluing two tetrahedra as shown on the left yields a triangular pillowcase with a
predrilled tube, as shown on the right.

There exists an edge E0 of the truncated triangulation from T0 to exactly one of the Bi ; call it B0. Now
inductively order the Bi and choose edges E1; : : : ;Em such that Ej has one endpoint on Bk for some
k < j and one endpoint on Bj . Note these edges must necessarily be disjoint from the tetrahedra meeting
cusps of M disjoint from T0, since all edges in such a tetrahedron run from a ball to a different cusp,
or from a ball back to itself. Note also that such edges E0; : : : ;Em must exist, else M is disconnected,
contrary to assumption.

Starting with i D 0 and then repeating for each i D 1; : : : ;m, take a triangle Ti with a side on Ei . Cut M

open along the triangle Ti and insert a triangular pillow with a predrilled tube as in [44]. The gluing of the
two tetrahedra to form the tube is shown in Figure 15, with face pairings given in Table 2. The two unglued
faces are then attached to the two copies of Ti . This gives a triangulation of M � .BiC1[ � � � [Bm/ by
truncated tetrahedra, with the ball Bi merged into the boundary component corresponding to T0. Note it
only adds edges, triangles, and tetrahedra, without removing any or affecting the other edges Ej .

When we have repeated the process mC 1 times, we have a triangulation of M by truncated ideal
tetrahedra. By construction, each boundary component Tj , j D 1; : : : ;m, meets exactly two truncated
tetrahedra �j ;1 and �j ;2 in exactly two ideal vertices. This gives (i).

For (ii), we trace through the gluing data in Table 2 and Figure 15 to find the cusp triangulation of the
pillow with predrilled tube. These are shown in Figure 16. Note there are two connected components.
One is a disk made up of vertex 3 of tetrahedron 0 and vertex 2 of tetrahedron 1. The other is an annulus,
made up of the remaining truncated vertices.

The cusp triangulation of the manifold M � .B0[ � � � [Bm/ consists of two triangles per torus boundary
component, along with mC 1 triangulated 2-spheres. When we add the first pillow, we slice open a
triangle, which appears in three edges of the cusp triangulation: one on the torus T0, and the other two

012 013 023 123

0 1(013) — — 1(012)
1 0(123) 0(012) 1(123) 1(023)

Table 2: Gluing instructions to form a triangular pillow with a predrilled tube. Notation is as in [3].
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0 (1) 0 (0)

0 (2)

0 (3)
1(0)

1(1)

1(2)
1(3)

Figure 16: The cusp triangulations of the pillow. Each triangle in the cusp triangulation is labelled,
with tetrahedron number (vertex).

on the boundary of the ball B0. These edges of the cusp triangulation are sliced open, leaving a bigon on
T0 and two bigons on B0. When the pillow is glued in, the bigons are replaced. One, on the boundary of
the ball B0, is just filled with the disk on the right of Figure 16. One on T0 is filled with the annulus on
the left of Figure 16. The remaining one, on the boundary of B0, is glued to the inside of the annulus.
Thus the cusp triangulation of T0 is changed by cutting open an edge, inserting an annulus with the
triangulation on the left of Figure 16, and inserting a disk into the centre of that annulus with the (new)
triangulation of the boundary of B0.

When we repeat this process inductively for each Bi , we slice open edges of the cusp triangulation of the
adjusted T0, and add in an annulus and disks corresponding to the triangulation of the boundary of Bi .
This process only adds triangles; it does not remove or adjust existing triangles, except to separate them
by inserting disks.

Now let m0 and l0 be any generators of H1.T0IZ/. We can choose representatives that are normal with
respect to the triangulation of

M � .B0[ � � � [Bm/:

At each step, we replace an edge of the triangulation with a disk. However, note that all such disks must
be contained within the centre of the first attached annulus. Now suppose m0 runs through the edge that
is replaced in the first stage. Then keep m0 the same outside the added disk. Within the disc, let it run
from one side to the other by cutting off single corners of triangles 0(2), 1(1), 1(0), and 0(1). The new
curve is still a generator of homology along with l0. It meets the same tetrahedra as before, and the two
tetrahedra added to form the tube. It does not meet any of the vertices of the tetrahedra of the ball B0.
The curve l0 can also be replaced in the same manner, by a curve cutting through the same cusp triangles,
parallel to the segment of m0 within these triangles. Inductively, we may replace m0 and l0 at each stage
by curves that are identical to the previous stage, unless they meet a newly added disk, and in this case
they only meet the disk in triangles corresponding to the added pillow, not in triangles corresponding to
tetrahedra meeting other cusps. The result holds by induction.

Complete the proof by replacing truncated tetrahedra by ideal tetrahedra.
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Appendix B Calculations for some twist knots

In Section 4, we found Ptolemy equations for Dehn fillings of the Whitehead link. In this short appendix,
we explain how to use them and direct substitution to find an A-polynomial. This will not immediately
look like the standard A-polynomial, because we have chosen a nonstandard longitude and because our
equations have extra factors and square roots. After conjugation and a change of basis, we obtain the
usual A-polynomials.

To compute the polynomials, we use the equations corresponding to the tetrahedra �0, �1, and �2 of
the Whitehead link that lie outside the cusp we will fill, as in (4.1), as well as the equation 1=0 D 1. Via
direct substitution, �2 gives an equation for 3=1 in terms of 0.23/, which can then be substituted into
�1 to give an equation for 2=1 in terms of `, m, and 0.23/, which can then be substituted into �0 to
obtain an equation of 0.23/ in terms of ` and m. Substituting this into the equations for 2=1 and 3=1,
we obtain

.B.1/

 2
0.23/ D

m`1=2C `� `1=2�m

`1=2m� `1=2
;

2=1 D
1

0.23/

m2� `

m1=2`1=2.1�m/
; 3=1 D

`�m

`1=2.1�m/
; 1=0 D 1:

Note we have left 0.23/ in the equation for 2=1 for now, since it is a square root with possible positive
or negative sign.

We obtain two more Ptolemy equations from (4.2); the first gives us 1=1 in terms of m and `:

.B.2/ 1=1 D
`1=2�m2

.�1C `1=2/m
:

We can then use the second to solve for 0=1 in terms of m and ` (and 0.23/):

.B.3/ 0=1 D�0.23/

`1=2.�1Cm/2.1Cm/

.�1C `1=2/2m3=2
:

B.1 Figure-8 knot

An A-polynomial for the Figure-8 knot is now obtained by setting 0=1 D 1=0 D 1. To remove (some of)
the square roots coming from the 0.23/ term, square both sides of (B.3), obtaining

1D
`1=2.�1Cm/3.1Cm/2.`1=2Cm/

.�1C `1=2/3m3
:

Multiplying through the denominator and moving all terms to the left-hand side, we obtain the following
PSL A-polynomial:

.`1=2
�m2/.`1=2

Cm� `1=2m� 2`1=2m2
� `1=2m3

C `m3
C `1=2m4/:
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This will not give the usual PSL A-polynomial for the figure-8 knot, because our choice of longitude l

differs from the standard longitude. In fact, checking against SnapPy [8], the red curve shown in Figure 12
is isotopic to the “shortest” curve intersecting the meridian once, under the Euclidean metric inherited
from the hyperbolic structure. Thus the standard longitude differs from that shown by subtracting two
meridians. Propositions 5.11 and 5.12 of [28] then give the required change of basis for any Dehn filling
of the Whitehead link. For the figure-8 knot, the required change of basis is

.`;m/ 7! .`m�2;m/;

and after clearing the denominator, the PSL A-polynomial becomes

.`1=2
�m3/.m2

C `1=2.1�m� 2m2
�m3

Cm4/C `m2/:

Following Corollary 2.59, we note that the second factor gives the usual SL A-polynomial when we take
LD�`1=2 and M Dm1=2; compare to [7]:

.�L�M 6/.M 4
�L.1�M 2

� 2M 4
�M 6

CM 8/CL2M 4/:

B.2 The 52 knot

An A-polynomial for the 52 knot is obtained by setting 0=1 D 1=1. Set (B.2) equal to (B.3), square both
sides and subtract, to obtain the following PSL A-polynomial for the 52 knot:

`C `1=2m� 2`mC `3=2m� `1=2m2
� 2`m2

C 2`1=2m4
C `m4

�m5
C 2`1=2m5

� `m5
� `1=2m6:

Again we change the basis via .`;m/ 7! .`m�2;m/, and clear the denominator:

`C `3=2
� 2m`Cm2.`1=2

� 2`/�m3`1=2
Cm4`Cm5.2`1=2

� `/C 2m6`1=2
Cm7.�1� `1=2/:

To obtain the SL A-polynomial, following Corollary 2.59, we set LD˙`1=2 and M D˙m1=2. Again,
L D �`1=2 does the trick. To obtain a formula matching that of Culler [7], we then need to map L

to L�1, which corresponds to considering the mirror image of the 52 knot. After clearing denominators
and multiplying through by �1, the result is

1�L.1� 2M 2
� 2M 4

CM 8
�M 10/�L2M 4.�1CM 2

� 2M 6
� 2M 8

CM 10/CL3M 14:
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The Alexandrov theorem for 2C 1 flat radiant spacetimes

LÉO MAXIME BRUNSWIC

Fillastre showed that one can realize the universal covering of any locally Euclidean surface†with conical
singularities of angle bigger than 2� as the boundary of a convex Fuchsian polyhedron in 3-dimensional
Minkowski space in a unique manner, up to the action of SO.1; 2/ËR3, the affine isometry group of
Minkowski space. The proof used a so-called deformation method, which is nonconstructive. We adapt a
variational method previously used by Volkov, Bobenko, Izmestiev, and Fillastre on similar problems to
provide an effective proof of Fillastre’s theorem. In passing, we extend Fillastre’s theorem as follows.
Without assumptions on the conical angles �i of † and for any choice of nonnegative .�i /i2ŒŒ1;s�� such that
�i < �i and �i � 2� , there exists a unique couple .M;P / where M belongs to a class of singular locally
Minkowski manifolds we define with s singular lines of respective conical angle �i , and P is a convex
polyhedron inM whose boundary @P is a Cauchy surface isometric to†, the i th conical singularity of @P
lying on the i th singular line of M . Our result unifies Fillastre’s theorem and instances of Penner–Epstein
convex hull constructions, corresponding respectively to �i D 2� and �i D 0 for all i .
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1 Introduction

1.1 The Alexandrov theorem

Let C be a cube in the 3-dimensional Euclidean space E3 and consider † WD @C its boundary, as
represented in Figure 1. On the one hand, † is a surface homeomorphic to the 2-dimensional sphere S2;
on the other hand, † is naturally endowed with a locally Euclidean metric with six conical singularities,
each of angle 3

2
� .
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More generally, the boundary of any compact convex polyhedron in E3 is homeomorphic to the 2-
dimensional sphere. It is naturally endowed with a locally Euclidean metric with conical singularities of
angles less than 2� .

A classical theorem of Alexandrov [2] shows that this construction is actually bijective:

Theorem [2] Let † be a locally Euclidean surface with conical singularities of angles less than 2�
and homeomorphic to the sphere S2. There exists a compact convex polyhedron P in E3 such that @P is
isometric to †. Furthermore , two such polyhedra are congruent.

Using a so-called deformation method, Alexandrov proved generalizations to convex polyhedrons in H3

and S3; this method is, however, not effective since it does not provide an efficient way to construct the
convex polyhedra these theorems predict.

1.2 Generalizations to space forms and main result

In the 2000s, Izmestiev and Bobenko gave a new proof of the Alexandrov theorem by a variational,
therefore effective, method. See Kane, Price, and Demaine [23] for a complexity analysis of the resulting
algorithm. Rivin, Hodgson, Schlenker, and Fillastre proved generalizations to Lorentzian space forms
(Minkowski, de Sitter, and anti-de Sitter), in which case conical singularities of the locally Euclidean
surface have angles greater than 2� . The Alexandrov problem can then be stated in a more general
context that has been recently studied systematically by Fillastre and Izmestiev.

Problem Let † be a closed surface of genus g endowed with a singular metric of constant curvature
K 2 f�1; 0; 1g and cone angles all bigger that 2� (case "D�/ or all less than 2� (case "DC). Denote
by X"K the model space of constant curvature K. It is Riemannian if "DC and Lorentzian if "D�.

Is there a convex polyhedral Fuchsian realization of † in X"K? Furthermore , is this polyhedron unique up
to congruence?

Algebraic & Geometric Topology, Volume 25 (2025)
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g K " DM VM

0 0 C [2] [6]
0 �1 C [3]
0 1 C [3]
0 1 � [21]
1 �1 C [18]
1 1 � [19]
� 2 �1 C [15]
� 2 �1 � [17]
� 2 0 � [17] [B]
� 2 1 � [31]

Table 1: See Alexandrov [2; 3], Bobenko and Izmestiev [6], Fillastre [15; 17], Fillastre and
Izmestiev [18; 19], Hodgson and Rivin [21], and Schlenker [31].

The signature of the X"K and the Gauss–Bonnet formula impose constraints on .g;K; "/. Table 1 is based
upon work of Fillastre [16] and sums up all possible situations, together with references to proofs by
deformation (DM) and/or variational (VM) methods; [B] refers to the present work.

Proving Fillastre’s theorem — the case where .g;K; "/D .� 2; 0;�/ and X"K is Minkowski space E1;2 —
by a variational method is the primary motivation of the present work. Here “convex polyhedral Fuchsian
realization” means that we build a triple .�; �; P /, where � is a representation of �1.†/! Isom.E1;2/, � is
a �-equivariant embedding � W z†! E1;2 of the universal covering of †, and P is a convex globally
�-invariant polyhedron, with the additional hypothesis that � fixes a point and acts cocompactly on the
hyperboloid model of the hyperbolic plane H2 D f.t; x; y/ j t2� x2�y2 D 1; t > 0g � E1;2.

To this end, we adapt the variational method successfully used by Bobenko, Fillastre, and Izmestiev
[6; 18; 19]; we derive Alexandrov–Fillastre and obtain a generalization to a class of singular locally
Minkowski 3-manifolds: radiant singular flat spacetimes, which we shall describe thereafter.

Theorem Let † be a closed locally Euclidean surface of genus g with s marked conical singularities1of
angles .�i /i2ŒŒ1;s��. For all

� 2

� sY
iD1

Œ0;min.�i ; 2�/�
�
n f.�i /i2ŒŒ1;s��g;

there exists a radiant singular flat spacetime M homeomorphic to †�R with exactly s singular lines of
angles �1; : : : ; �s and a convex polyhedron P �M whose boundary is isometric to †. The boundary of
P is a Cauchy surface of M .

Furthermore , if for all i 2 ŒŒ1; s��; �i < �i , then .M;P / is unique up to equivalence.

Finally, if for some i 2 ŒŒ1; s��; �i �� and � 2Rs
C

is such that �i >�i , then there is no such couple .M;P /.
1We allow marked conical singularities with angle 2� , which are hence not singular but marked nonetheless.

Algebraic & Geometric Topology, Volume 25 (2025)
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Remark By taking all the �i > 2� and �i D 2� we obtain a manifold M whose universal covering is
isomorphic to a subdomain of Minkowski space X�0 (via a theorem of Mess [25]). Fillastre’s theorem
thus follows.

1.3 Radiant spacetimes

Before giving the outline of the variational method, we quickly describe radiant spacetimes. A more
thorough description is given in the appendix, together with technical results. We denote by E1;2

the 3-dimensional Minkowski space (the oriented affine space R3 together with the quadratic form2

g WD dt2� dx2� dy2 written in some fixed choice of Cartesian coordinates t; x; y) and by Isom0.E1;2/
the identity component of the Lie group of affine isometries of E1;2, namely SO0.1; 2/ËR3. We denote
by O WD .0; 0; 0/2E1;2 the origin of E1;2. A vector u¤ 0 is spacelike (resp. timelike, lightlike, causal) if
g.u/ < 0 (resp. g.u/ > 0, g.u/D 0, g.u/� 0). A causal vector is future (resp. past) if its t coordinate is
positive (resp. negative). Minkowski space is naturally endowed with two order relations: the causal order
� and the chronological order �� (the associated strict relation is denoted by�). Given p; q 2E1;2 then
p < q (resp. p� q) if q�p is future causal (resp. future timelike). The group Isom0.E1;2/ preserves
the orientation of E1;2 as well as the causal and the chronological orders. We define the causal future
of p, denoted by JC.p/ WD fq 2 M j p � qg, as well as the chronological future of p, denoted by
IC.p/ WD fq 2M j p� qg. The causal past, as well as the chronological past, are defined accordingly.
A plane in E1;2 is spacelike (resp. timelike, lightlike) if the induced quadratic form is positive definite
(resp. definite, degenerated), and a normal to such a plane is a timelike vector (resp. spacelike vector,
lightlike vector). By convention, all spacelike and lightlike planes are oriented by a future normal vector.

Radiant spacetimes are obtained via gluings of cones in JC.O/ of triangular basis, ie

C D fru j r 2R�C; u 2 T g;

with T some affine spacelike triangle in JC.O/. We will not consider any such gluing with boundary.

Such gluings have a natural .SO0.1; 2/; IC.O//-structure in the sense of Ehresmann [12], Thurston [33],
or Goldman [20] on the complement of the edges of the cones (the 1-facet of the simplicial complex).
These “singular” edges are one of two types:

� Timelike edges are locally modeled on so-called massive particles (the plane orthogonal to the
given edge is a Euclidean conical singularity of some angle � > 0).

� Lightlike edges are locally modeled on so-called extreme BTZ-like singularities (see the appendix
and Barbot, Bonsante and, Schlenker [4] for more details). The convention is that such an edge
bears a cone angle � D 0.

2Beware we chose a sign convention for g different from most of the literature to favor positive values of g on the relevant
domains and avoid defining two different quadratic forms.
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For brevity sake, we will write F instead of IC.O/ and F-manifold instead of .SO0.1; 2/;F/-manifold.
Cones in JC.O/ have a natural SO0.1; 2/-invariant 1-dimensional foliation formed by the rays from
the origin of the form Ru WD fru j r > 0g with u in JC.O/; therefore each radiant spacetime comes
with such a foliation. The statement “the surface † is a Cauchy surface of the radiant spacetime M ” is
understood in our context as ”the surface † is spacelike and intersects all rays of the natural foliation”.

Equivalence in our context has to be understood in the following way: two couples .M;P / and .M 0; P 0/
are equivalent if there exists an isomorphism M !M 0 of singular E1;2-manifolds (a homeomorphism
sending regular domain to regular domain and which is an E1;2-morphism on the regular domain) which
induces a bijection P ! P 0.

1.4 The variational method

Now that the terminology is clarified, the variational method proceeds as follows:

(1) Consider a closed locally Euclidean surface † of genus g with s 2N� marked conical singularities
�1; : : : ; �s 2R�

C
and define S the set of marked points.

(2) Choose an arbitrary couple .�; T / with � W S !RC and T a triangulation of † whose set of vertices
is S .

(3) For each triangle T of T , choose a direct affine isometric embedding

� W T ! JC.O/ WD ft > 0; g � 0g � E1;2

in such a way that for each vertex s of T we have g ı �.s/D �.s/.

(4) To each triangle T is then associated the cone of rays from O WD .0; 0; 0/ through T in E1;2; glue
these cones together following the same combinatorics as T . The gluing is a 3-manifold M endowed with
a flat Lorentzian metric on the complement of the rays through the vertices of T . Furthermore we have a
natural embedding � W†!M in such a way that �.†/ is the boundary of the polyhedron P WD JC.�.†//
of M .

(5) Study the domain of � 2 .RC/S such that the polyhedron P is convex; � is then called convex, and
show that for a given � there is at most one triangulation T (up to equivalence) for which the embedding
� is convex; a � is then admissible if it has such a triangulation.

(6) Choose some target Lorentzian angles N� and define an Einstein–Hilbert functional on the space of
admissible � 2 .RC/S in such a way that each of its critical points induces a manifold M with Lorentzian
cone angle N� around the rays through the vertices of T .

(7) Finally, study this functional and show it admits a unique critical point.

1.5 The special case �D 0

Penner gives another viewpoint on our result [27; 28], constructing a cellulation of the decorated
Teichmüller space of a closed surface † with s marked points S D f�1; : : : ; �sg viewed as the space of
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marked finite-volume complete hyperbolic surfaces with s cusps homeomorphic to † nS together with a
choice of a positive number on each cusp. Consider such a surface †�. The universal covering of †�

naturally identifies with the usual hyperbolic plane H2 WD f.t; x; y/2E1;2 jg.t; x; y/D 1; t > 0g in E1;2,
and the positive number �� on each cusp � corresponds to a point on the lightlike rays corresponding to
the cusp:

� There exists a unique horocycle H�;�� of length �� around � .

� Consider a ray R fixed by a parabolic holonomy of †� and a point p 2 R. The intersection of
the future light cone of p (the set fq 2E1;2 j g.q�p/D 0; t.q�p/ > 0g) with H2 is a horocycle
around R, and every horocycle is obtained in this manner.

Penner then considers the surface obtained as the boundary of the convex hull of these points.3 He shows
the surface obtained is locally Euclidean, its quotient by the holonomy of †� is a locally Euclidean
surface †E2 with s conical singularities. Furthermore, the convex hull is a polyhedron, the faces of which
induce a cellulation on †E2 with marked points S . He notes that this cellulation is simply the Delaunay
cellulation of .†E2 ; S/. It is not hard to see that

(1) this construction actually defines a natural bijection from the decorated Teichmüller space of .†; S/
to the deformation space of locally Euclidean metrics on † with arbitrary conical singularities
on S ,

(2) the quotient by the holonomy of †� of the union of IC.O/ with the rays fixed by parabolic
holonomy of †� is a radiant spacetime with s conical singularities of angle 0.

Penner construction can thus be seen as the special case of our theorem where � D 0 and .†; S/ runs
through all locally Euclidean surfaces with s conical singularities at S of arbitrary angles.
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2 Convex �-suspension and polyhedral embedding

In the present section, we shall define and study �-suspension of a singular locally Euclidean surface
.†; S/. A cellulation of † is a homeomorphism between † and a gluing of affine convex dimension-n
polyhedra along .n�1/-facets. We identify k-facets with their image in †. All cellulations considered in
this section have totally geodesic facets.

Definition 2.1 Let .†; S/ be a compact Euclidean surface with conical singularities with a finite subset
S of marked points such that Sing.†/� S , and let C be a cellulation of .†; S/. C is adapted if the set of
vertices of C is exactly S .

Definition 2.2 Let .†; S/ be a compact Euclidean surface with conical singularities with a finite subset
S of marked points such that Sing.†/�S . LetM be a singular E1;2-manifold. An embedding � W†!M

is polyhedral if there exists a geodesic adapted cellulation C of .†; S/ such that on each cell C , the
restriction of � to Int.C / is an isometric affine map into the regular locus of L.

The notion of an isometric affine map is well defined in this context. Indeed, both E2 and E1;2 are affine
spaces endowed with a semi-Riemannian metric; the regular loci of † and M are endowed with an
E2-structure and an E1;2-structure, respectively.

The quadratic form on E1;2 is a SO0.1; 2/-invariant function defined on the underlying vector space
��!
E1;2:

g W
��!
E1;2!R; .t; x; y/ 7! t2� x2�y2:

We extend the definition of g to E1;2 via the identification E1;2 !
��!
E1;2, x 7! x �O . The map g is

positive on the future of the origin in E1;2, namely JC.O/ WD f.t; x; y/2R3 j t2�x2�y2� 0 and t > 0g;
furthermore, it induces a Cauchy time function on IC.O/, ie an increasing map .IC.O/;�/! .R�

C
;�/

whose restriction to any nonextendible future causal curve of IC.O/ is surjective (see the appendix
for more details on the structure of singular F-manifolds). Since g is SO0.1; 2/-invariant, it induces a
well-defined nondecreasing function on every radiant singular flat spacetime.

In a radiant singular flat spacetime, the surface gD 1 is a hyperbolic surface with conical singularities and
cusps, which is complete and has finite volume. One can prove that the association M 7! fgD 1g induces
a bijection from the deformation space of marked radiant singular flat spacetimes to the deformation
space of marked finite-volume complete hyperbolic surfaces with conical singularities and cusps; see
Theorem 6 in the appendix.

2.1 Affine embedding of triangles into E1;2

The goal of this section is mainly to introduce terminology that will be used throughout the paper and
to prove a parametrization of polyhedral embeddings into radiant singular flat spacetimes of a singular
locally Euclidean surface by the class of distance-like function we introduce. This last point is the object
of Theorem 1.
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Lemma 2.3 Let T D ŒABC � be a nondegenerated Euclidean triangle and let � W fA;B;C g !R.

There exists a unique couple .�0; !/ 2R�E2 such that the map

Q� W E2!R; x 7! �0� d.x; !/
2

extends � .

Furthermore , if � � 0 then �0 > 0 and Q� > 0 on the triangle ŒABC �, except possibly at A, B , or C .

Proof Identify E2 to R2 via Cartesian coordinates .x; y/; without loss of generality, we can assume
A D .0; 0/, and we write B D .xB ; yB/ and C D .xC ; yC /. Finding Q� is equivalent to solving the
following system in ! D .x! ; y!/ and �0:8̂̂<̂

:̂
�A D �0� x

2
! �y

2
! ;

�B D �0� .x! � xB/
2
� .y! �yB/

2;

�C D �0� .x! � xC /
2
� .y! �yC /

2;

()

8̂̂<̂
:̂

x2! Cy
2
! C �A D �0;

�B � �AC x
2
B Cy

2
B D 2x!xB C 2y!yB ;

�C � �AC x
2
C Cy

2
C D 2x!xC C 2y!yC :

Since A, B and C are in general position, the second and third lines form a nonsingular linear system of
unknown .x! ; y!/. The first line is already solved. Existence and uniqueness of Q� follows.

Assume � � 0, since A, B and C are distinct, ! is distinct from one of them, say P 2 fA;B;C g. Then
0� �P D �0� d.P; !/

2 < �0. Furthermore, Q� is strictly concave, so its minimum on ŒABC � is reached
in the set of extremal points, eg fA;B;C g and nowhere else.

Lemma 2.4 Let A;B;A0; B 0 2 JC.O/, A¤B and A0¤B 0 be such that g.A/D g.A0/, g.B/D g.B 0/
and g.B �A/D g.B 0�A0/. Then there exists a unique isometry  2 SO0.1; 2/ such that AD A0 and
B D B 0. Furthermore , if C is on a given side of the oriented plane .OAB/, then C is on the same side
of .OA0B 0/.

Proof The group SO0.1; 2/ acts transitively on each of the sets .gjJC.O/nfOg/
�1.�0/ for �0 � 0. There

thus exists some 0 2 SO0.1; 2/ such that 0ADA0. The stabilizer of A0 under the action of SO0.1; 2/ is
a 1-parameter subgroup (either parabolic or elliptic depending on whether .OA0/ is lightlike or timelike);
under its action, the orbit of 0B is

fx 2 JC.O/ j g.x�A0/D g.0B �A
0/ and g.x/D g.0B/g:

The stabilizer of A0 acts freely on this set, so there exists a unique  with the wanted properties. Finally,
SO0.1; 2/ preserves orientation, and the result follows.

Proposition 2.5 Suppose that T D ŒABC � is an oriented nondegenerated Euclidean triangle and let
� W fA;B;C g ! RC. There exists a direct isometric affine embedding � W T ! JC.O/ such that � D
g ı �jfA;B;C g, where �.T / is endowed with the orientation induced by a future-pointing normal vector.

Furthermore ,

� such an embedding is unique up to the action of SO0.1; 2/,

� g ı �D Q� , where Q� is given by Lemma 2.3.
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Proof Endow E1;2 with Cartesian coordinates .t; x; y/, write O D .0; 0; 0/ the origin, and identify E2

with ft D 0g � E1;2. Take .�0; !/ 2R�E2 and Q� given by Lemma 2.3, and define

� W T ! E1;2; x 7! xC Eu with EuD

 p
�0

�
��!
O!

!
:

Write ! D .x! ; y!/. For .x; y/ 2 T , we have

g ı �.x; y/D
p
�0
2
� .x� x!/

2
� .y �y!/

2
D Q�.x; y/:

Since � � 0, by Lemma 2.3 Q� � 0; hence g ı �jT � 0. Moreover,
p
�0 > 0, thus �.T / � JC.O/. The

existence statement follows, as well as the second additional point.

If � and �0 are two such embeddings, by Lemma 2.4 there exists a unique isometry sending �.A/ on
�0.A/ and �.B/ on �0.B/. There thus exist exactly two points P1; P2 2 JC.O/ such that g.Pi /D �.C /,
d.A; C /2 D g.�.Pi /� �.A// and d.B; C /2 D g.�.Pi /� �.B// for i 2 f1; 2g. Since these two points are
each other’s images by the reflection across the plane .O�.A/�.B// which is orientation-reversing and
preserves �, exactly one induces the right orientation.

Definition 2.6 (f -triangulation) Let .†; S/ be a singular locally Euclidean surface and let f W†!R.
A triangulation T is an f -triangulation if T is a geodesic triangulation of † whose set of vertices
contains S and such that for all triangles T 2 T , there exists ! 2 E2 and �0 2R such that

for all x 2 T; f .x/D �0� d.D.x/; !/2;

where D W T ! E2 is a developing map of T .

Definition 2.7 (distance-like function) Let .†; S/ be a singular locally Euclidean surface. A function
f W†!R is distance-like if it admits an f -triangulation.

Remark Let .†; S/ be a singular locally Euclidean surface, and let M be a radiant spacetime. For any
polyhedral embedding � W†!M , the map g ı � W†!RC is distance-like.

Proposition 2.8 Let .†; S/ be singular locally Euclidean surface. Let T be an adapted triangulation
of .†; S/.

For all � W S !R, there exists a unique distance-like extension Q� such that T is a Q� -triangulation.

Proof Apply Lemma 2.3 to each triangle of T .

Definition 2.9 Let .†; S/ be a singular locally Euclidean surface. Let T be an adapted triangulation of
.†; S/ and let � W S !RC. We denote by Q��;T the extension of � given by Proposition 2.8.

Definition 2.10 (equivalent triangulations) Let .†; S/ be singular locally Euclidean surface. Let
� W S !RC. Two adapted triangulations T1 and T2 of .†; S/ are � -equivalent if

Q��;T1 D Q��;T2 :
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Definition 2.11 (� -suspension) Let .†; S/ be a singular locally Euclidean surface and f W†!RC be
distance-like.

Choose an f -triangulation T not necessarily adapted to .†; S/. For each T 2T , denote by �T WT!JC.O/

the affine embedding of T given by Proposition 2.5 and define CT WD ft � �T .x/ j t 2 R�
C
; x 2 T g. For

each edge e of T bounding T1; T2 2 T , let e be the isometry given by Lemma 2.4 sending the face of
CT2 associated to e to the face of CT1 associated to e.

Define M.f / as the radiant spacetime obtained by gluing the family .CT /T2T via the isometries
.e/e2edges.T /

Proposition 2.12 Let .†; S/ be a singular locally Euclidean surface and f W†!RC be distance-like.
The spacetime M.f / does not depend on the choice of the f -triangulation T .

Proof Consider two geodesic f -triangulations T1 and T2. There exists a geodesic f -triangulation of
.†; S/ such that any 2-facet of T1 or T2 is a union of adjacent 2-facets of T . It thus suffices to show that
on a given triangle T �† on which Q� is C 1, any decomposition of T into smaller triangles .Ti /i2ŒŒ1;n��
induces a gluing isomorphic to CT . We may assume T is obtained by inductively gluing TkC1 to

Sk
iD1 Ti

for k 2 ŒŒ1; n�1��. We give ourselves an embedding �0 W T ! JC.O/ given by Proposition 2.5. Start from
T1 with an embedding � W T1! JC.O/, using Lemma 2.4. Without loss of generality, we may assume
that �j0T1 D �, then glue the CTk for k 2 ŒŒ2; n�� naturally extending � W

Sk
iD1 Ti! JC.O/. By Lemma 2.4,

at each step, there is only one way to glue a cone CTkC1 to
Sk
iD1 CTi so that Q� D g ı �. Hence at each

step there is at most one extension of � to
Sk
iD1 Ti ; the embedding � thus coincides with the restriction of

�0 at each step, and thus on the whole T . Finally, CT is isomorphic to the gluing of the .CTi /i2ŒŒ1;n��.

Definition 2.13 (equivalent polyhedral embedding) Let .†; S/ be a singular locally Euclidean surface
and let .M1; �1/ and .M2; �2/ be two radiant spacetimes together with a polyhedral embedding of .†; S/.

We say that .M1; �1/ is equivalent to .M2; �2/ if there exists an isomorphism ' WM1 !M2 such that
�2 D ' ı �1.

Theorem 1 Denoting by � the equivalence relation among polyhedral embeddings , the function

f.M; �/ jM radiant; � polyhedral embeddingg=�! fQ� j Q� W†!RC distance-likeg; .�;M/ 7! g ı �

is bijective with inverse Q� 7!M. Q�/.

Remark The proof depends on a description of radiant spacetimes as suspensions of singular hyperbolic
surfaces; we give it in the appendix.

Proof Denote by ˆ the function above. For any Q� distance-like on .†; S/, by Proposition 2.5 the
construction of M. Q�/ ensures ˆ.M. Q�// D Q� . Hence ˆ is surjective. Let .M1; �1/ be the polyhedral
embedding of .†; S/, let Q� WDˆ.M1; �1/, and letM2DM. Q�/ with its polyhedral embedding �2 W†!M2.
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By Theorem 6, for i 2 f1; 2g, Mi is isomorphic to susp.†i / with †i the space of rays of the natural
causal foliation of Mi endowed with its H2

�0-structure. Define the natural projections �i WMi ! †i .
Denote by R W F !H2 the map that associates to any x 2 F the intersection point of the ray through x
with H2 � F .

For i 2 f1; 2g, the map �i ı �i W † ! †i is a homeomorphism. The map h WD �2 ı �2 ı .�1 ı �1/
�1

is then a homeomorphism. We shall prove g is an a.e. H2-morphism from †1 to †2 and hence that
susp.h/ WM1!M2 is an isomorphism.

Choose a geodesic triangulation T of † adapted to Q� . Its image by �i ı �i is a geodesic triangulation
of †i . Note that h sends a cell of †1 to a cell of †2. Thus in order to prove that h is an H2-morphism, it
suffices to prove that its restrictions to each cell of †1 are isometries.

Let T 2 T , x 2 T n S , and, for i 2 f1; 2g, choose a chart .Ui ;Vi ; 'i / of Mi around �i .x/ such that Vi
is a cone of F . Let T† � T n S be a triangle of † containing x. For i 2 f1; 2g, write TMi WD �i .T†/,
T†i WD �i ı �i .T†/, T

.i/
F WD 'i .TMi /, and T .i/

H2 WD R ı 'i .TMi /. By construction of the H2-structure
on †i , 'i induces a chart N'i W T†i ! T

.i/

H2 . By Lemma 2.4 there exists a unique � 2 SO0.1; 2/ such that
'2ı�2D�ı'1ı�1. Since R commutes with the action of SO0.1; 2/, we then have Rı'2ı�2D�ıRı'1ı�1.
The following commutative diagram sums up the situation:

†

�1ı�1�

��

†

�2ı�2 �

��

T†

�
bb

� �1

��

T†

� �2

��

�

<<

TM1

� �1

��

�

'1
// T
.1/
F

� R
��

9Š�2SO0.1;2/
// T
.2/
F

� R
��

TM2

� �2

��

�

'2
oo

†1 T†1
�

oo
�

N'1
// T
.1/

H2

�
// T
.2/

H2 T†2�

N'2
oo

�
// †2

Therefore the (co)restriction of h from T†1 to T†2 is an isometry. It follows that h is an isometry from a
triangle of �1 ı �1.T / to a triangle of �2 ı �2.T /.

2.2 Convex embeddings

We start by clarifying the notion of a convex embedding in Definition 2.14, and translate the notion in terms
of a Q-convex distance-like function. Proposition 2.23 is the main result of this subsection. It provides
a parametrization of convex polyhedral embeddings by a domain of RS

C
. Throughout the section, .†; S/

is a marked locally Euclidean surface with conical singularities included in the set of marked points S .

Definition 2.14 (convex polyhedral embedding) Let M be a radiant spacetime with � W † ! M a
polyhedral embedding.
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The embedding � is convex if JC.�.†// is convex in the sense that for any spacelike geodesic c W Œa; b�!M ,
if fc.a/; c.b/g � JC.�.†// then c.Œa; b�/� JC.�.†//.

Definition 2.15 (Q-convexity on R) Let I �R be an interval. A function f W I !R is Q-convex (resp.
Q-concave) if f is continuous, piecewise C 1 and if for all t0 2 I ,

lim
t�0

f 0 � lim
t
C

0

f 0
�
resp. lim

t�0

f 0 � lim
t
C

0

f 0
�
:

Definition 2.16 (Q-convexity on an E2>0-surface) A function Q� W†!R is Q-convex (resp. Q-concave)
if for all geodesics c W I !† nS , the restriction of Q� to c is Q-convex (resp. Q-concave).

Lemma 2.17 Let f; g W Œa; b�!R be two continuous functions piecewise of the form x 7!�x2C˛xCˇ

with f of class C 1.

� If g is Q-convex with f .a/� g.a/ and f .b/� g.b/ then g � f .

� If g is Q-concave with f .a/� g.a/ and f .b/� g.b/ then f � g.

Furthermore , if the Q-convexity (resp. Q-concavity) is strict , the inequalities are strict on �a; bŒ.

Proof First, g�f is piecewise affine; since f is C 1, the Q-convexity of g�f (and hence its convexity)
is the same as the Q-convexity of f . In the first (resp. second) case, since g� f is nonpositive (resp.
nonnegative) at a and b, it is thus nonpositive (resp. nonnegative) on Œa; b�. The strict case is obtained the
same way.

Lemma 2.18 Let M be a radiant singular flat spacetime and let †�M be a Cauchy surface. Denote by
R WM!† the function that associates to x 2M the unique intersection point with † of the ray through x
of the natural foliation of M ; denote by M>0 the complement in M of the singular lightlike lines.

Then
JCM .†/D fx 2M>0 j g.x/� g.R.x//g:

Proof Since † is a Cauchy surface of M , JCM .†/\J
�
M .†/D† and JCM .†/[J

�
M .†/DM . Since g

is increasing toward the future along the timelike rays of the natural foliation of M ,

fx 2M>0 j ˙g.x/�˙g.R.x//g � J˙M .†/:

Furthermore, since M is globally hyperbolic and † compact, J˙M .†/ are closed. Hence

fx 2M>0 j ˙g.x/�˙g.R.x//g � J˙M .†/:

Since M>0 is dense in M , we have[
�2fC;�g

fx 2M>0 j �g.x/� �g.R.x//g DM:
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Furthermore

†�
\

�2fC;�g

fx 2M>0 j �g.x/� �g.R.x//g � JCM .†/\J
�
M .†/D†;

and it follows that
fx 2M>0 j ˙g.x/�˙g.R.x//g D J˙M .†/:

Proposition 2.19 Let Q� W †! RC be distance-like , and M WD M. Q�/ with its associated polyhedral
embedding � W†!M .

The embedding � is convex if and only if Q� is Q-convex.

Proof We identify † with �.†/ and denote by R WM ! † the map that associates to any x 2M the
intersection point of the ray (of the natural foliation) through x with †. Consider a spacelike geodesic
c W Œa; b�!M such that c.a/; c.b/ 2 JC.†/. A direct computation in a chart gives that both g ı c and
g ıR ı c are continuous piecewise of the form s 7! �s2C˛sCˇ and that g ı c is C 1. Furthermore, the
derivatives of g ıR ı c and Q� ıR ı c may be discontinuous at s 2 Œa; b� only when the ray through c.s/
encounters an edge of †. At such an s, these two functions g ıR ı c have the same Q-convexity.

� Assume that Q� is Q-convex and consider a spacelike geodesic c W Œa; b�!M such that c.a/; c.b/ 2
JC.†/. By Lemma 2.17, g ı c �g ıR ı c is nonnegative and by Lemma 2.18 we thus have c.Œa; b�/�
JC.†/. Finally, JC.†/ is convex, and hence � is convex.

� Assume that Q� is not Q-convex. There thus exists an edge e in † around which Q� is strictly Q-concave.
Consider two points x and y in †, each on a different side of said edge. We can choose x and y close
enough so that they lie in a chart of M around �.e/. Then consider the geodesic c W Œa; b�!M in this
chart from x to y. It follows from Lemma 2.17 that g ı c < g ıR ı c on �a; bŒ. Thus by Lemma 2.18
c.�a; bŒ/ is not in JC.†/ and hence JC.†/ is not convex; neither is �.

Proposition 2.20 Let � 2RS
C

. Up to equivalence there is at most one adapted triangulation T such that
the distance-like extension Q��;T W†!RC is Q-convex.

Proof Let T1 and T2 be two adapted triangulations .†; S/ such that both f1 WD Q��;T1 and f2 WD Q��;T2
are Q-convex. For all edges e of T1, the function f j1e is continuous quadratic while the function f j2e
is piecewise quadratic and Q-convex; also, they are equal on the vertices of e. By Lemma 2.17 it thus
follows that f2 � f1 on e. For any triangle T of T1, f1 � f2 on @T , and applying again Lemma 2.17
along any segment Œa; b� of T with a; b 2 @T , we deduce that f1 � f2 on T . Therefore f1 � f2 on the
whole †. We show in the same way that f1 � f2, and hence f1 D f2. The triangulations T1 and T2 are
then equivalent.

Corollary 2.21 Let � 2RS
C

. There is at most one Q-convex distance-like extension Q� of � to the whole†.
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Definition 2.22 (admissible times) Define P to be the set of � 2RS
C

such that there exists an adapted
triangulation T of .†; S/ inducing a Q-convex distance-like extension Q��;T . Elements of P are called
admissible times.

For � 2 P , we denote by T� the unique adapted triangulation of † (up to equivalence) such that Q��;T� is
Q-convex. We define as well Q�� WD Q��;T� and M.�/ WDM. Q�� /.

As a corollary of Proposition 2.20 and Theorem 1, we obtain the following:

Proposition 2.23 With � the equivalence relation between polyhedral embeddings , the function

f.M; �/ jM radiant; � W†!M polyhedral convex embeddingg=�! P; .�;M/ 7! .g ı �/jS

is bijective.

3 The domain of admissible times

For this whole section, we give ourselves a marked locally Euclidean surface with conical singularities
.†; S/. While Proposition 2.23 parametrizes polyhedral embeddings by the domain P�RS , for now, little
is known about it, and before studying the image of � 7!M.�/ we shall provide a thorough description.
More precisely, we prove the following:

Theorem 2 Let 1S the indicator function of S , H the linear hyperplane of RS orthogonal to 1S , and �
the orthogonal projection onto H . Define P D �.P/�H . Then we have the following properties:

(a) P is a convex compact polyhedron.

(b) P D .PCR � 1S /\RS
C

.

(c) The interior of P contains 0 2RS .

(d) With T WD fT� j � 2Pg, each PT WD f�.�/ j T� D T g �P is a convex polyhedron of H for T 2E.
Furthermore , the family .PT /T 2T is a finite cellulation of P .

(e) The support planes … of P whose intersection with P has nonempty interior relative to … are
either of the form “�� D 0” for some � 2 S or “Q�.�/D 0” for some unflippable immersed hinge
Q around an edge of a triangulation T� for some � 2 P (see Definitions 3.1, 3.5, 3.8 and 3.15).

The starting point is to study “local” criteria for Q-convexity. By local, we mean at each edge of a given
triangulation; the following definitions make this notion precise:

Definition 3.1 (hinge) A hinge is a quadrilateral ŒABCD�� E2 together with a diagonal ŒAC � such
that ŒAC �� ŒABCD�.

Beware that the quadrilateral of a hinge need not be convex. If convex with vertices in general positions,
a quadrilateral may define two hinges: one for each interior diagonal. Otherwise only one hinge may be
defined.
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Figure 2: Projection of the domain of admissible � . On the left, the domain P of the surface
is obtained by gluing two copies of an equilateral triangle’s edges to edges. The central cell
(red) corresponds to the Delaunay triangulation of the surface. In contrast, each of the other cells
corresponds to the triangulations obtained after flipping an edge of the Delaunay triangulation.
On the right, the domain P of the surface is obtained by two copies of the triangle of vertices
.0; 0/, .1; 1/ and .0; 3/. The upper triangle corresponds to the Delaunay triangulation, while the
lower one corresponds to the triangulation obtained after the only flip possible from the Delaunay
triangulation. The domains are represented in an orthonormal basis of the plane H . The pictures
were generated using SageMath [29].

Definition 3.2 (flippable hinge and hinge flipping) Let QD .ŒABCD�; ŒAC �/ be a hinge. If ŒABCD�
is convex and the four points A, B , C and D are in general position, then Q is flippable, and its flipping
is the hinge Q0 D .ŒABCD�; ŒDB�/. If ŒABCD� is not convex or A, B , C and D are not in general
position, then Q is unflippable.

Definition 3.3 (weighted hinge) A weighted hinge is the datum of a hinge, QD .ŒABCD�; ŒAC �/, and
a function � W fA;B;C;Dg !R.

A

D

C

B

A

D

C

B

A
D

C

sB

Figure 3: Different hinges. Left: a hinge .ŒABCD�; ŒAC �/. Center: its flipping .ŒABCD�; ŒDB�/.
Right: a nonconvex hinge.
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Definition 3.4 (� -legal/� -critical hinge) Let .Q; �/ be a weighted hinge. Denote by Q��;Q WQ!R the
distance-like function induced by the triangulation T D .ŒABC �; ŒADC�/. A hinge Q is �-legal (resp.
� -critical, � -illegal) if Q��;Q is Q-convex (resp. C 1, strictly Q-concave).

Each edge e of a given triangulation T provides a hinge; indeed e bounds two triangles T1; T2 2 T , and
the gluing of these two triangles along e is a hinge. Beware that two such triangles might actually be the
same in T (a triangle glued to itself), but we take two copies to construct the hinge. More generally, we
will need to consider immersed hinges.

Definition 3.5 An immersed hinge is a couple .Q; �/ with Q a hinge in E2 and � WQ!† an isometric
immersion. An immersed hinge .Q; �/ is embedded if the restriction �jInt.Q/ to the interior of Q is
an embedding.

The hinge associated with an edge is embedded if and only if the triangles bounded by e are different in T .

After an analysis of criteria ensuring � -legality of a given hinge, we notice the set of � for which a given
hinge is � -legal is the set of solutions of an affine inequality, and hence a convex set. Then, we turn to the
whole surface and try to construct triangulations for which all hinges are � -legal for a given � .

Definition 3.6 (� -Delaunay triangulation) Let T be an adapted triangulation of †.

The triangulation T is � -Delaunay if the following equivalent properties are satisfied:

(i) Q��;T is Q-convex.

(ii) Every hinge of T is � -legal.

For a given triangulation T , the set of � 2RS
C

such that T is � -Delaunay is the set solutions of a system
of affine inequalities, and hence a convex set; hence the first part of Theorem 2(d). However, P is a
possibly infinite union of such domains; therefore Theorem 2(a) and the second part of (d) are not direct
corollaries. We thus reverse the problem and construct a � -Delaunay triangulation with � given a priori.

The definition of � -Delaunay triangulation is coherent with the usual definition of Delaunay triangulation.
Indeed, an adapted triangulation of .†; S/ is a subtriangulation of the Delaunay cellulation if and only if
it is 0-Delaunay. The Delaunay cellulation can either be constructed as the dual of the Voronoi cellulation
(see [24] for a thorough exposition) or via a flipping algorithm starting from a given adapted triangulation.
The flipping algorithm is based upon the following remark (Lemma 3.9): for a given � , if a hinge is
�-illegal, then its flipping (if it exists) is �-legal. The algorithm then proceeds by flipping �-illegal
hinges one by one in the hope that after finitely many iterations there will not be any � -illegal hinges left.
Proposition 3.17 ensures the algorithm behaves mostly as expected: it stops after finitely many iterations
on a triangulation without any flippable � -illegal hinges. To complete the analysis of the flipping algorithm,
we show the resulting triangulation is � -Delaunay if and only if there exists such a triangulation.

We end the section applying the results obtained on the flipping algorithm to prove Theorem 2.
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3.1 Q-convexity on hinges

Before going any further, we notice that the group Isom.E2/ acts naturally on weighted hinges and
preserves legality.

In this subsection, we give ourselves a hinge QD .ŒABCD�; ŒAC �/ and some weights � . For simplicity’s
sake, we choose a Cartesian coordinate system .x; y/ of E2, set ADO as the origin of this coordinate
system, and put C on the vertical axis above A. Denote by ! and �0 (resp. !0 and � 00) the parameters
given by Lemma 2.3 on ŒABC � (resp. ŒADC �) for the weights � ; define

�ABC W E
2
!R; x 7! �0� d.x; !/2; �ADC W E

2
!R; x 7! � 00� d.x; !0/2:

Figure 4 sums up the situation.

Remark Note that d.!; C /2�d.!;A/2D d.!0; C /2�d.!0; A/2 and hence
��!
!!0?

��!
AC . More generally,

from the proof of Lemma 2.3, one sees that the orthogonal projection of ! on the line .AC/ only depends
on A, C , �A, and �C .

Proposition 3.7 (Q-convexity criteria) Under this subsection’s hypotheses , the following are equivalent :

(i) Q��;Q is Q-convex.

(ii) Q��;Q is Q-convex along some segment crossing ŒAC �.

(iii) �ABC � �ACD on ŒACD� and �ABC � �ACD on ŒABC �.

(iv) �ABC .D/� �ACD.D/ or �ABC .B/� �ACD.B/.

(v) x! � x!0 .

(vi)
�
yB

jxB j
C
yD

jxDj

�
�C C

�
AC �yB

jxB j
C
AC �yD

jxDj

�
�A �

AC

jxDj
�DC

AC

jxB j
�B CK

with
K D

AC

jxB j
.AB2�ACyB/C

AC

jxDj
.AD2�ACyD/:
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(vii) Denoting by Eu^ Ev the determinant jEuEvj,

.
��!
AB ^

��!
AD/�C C .

��!
CD ^

��!
CB/�A� .

�!
CA^

��!
CB/�D � .

��!
AC ^

��!
AD/�B �K � 0

with
K D

��!
AC ^

��!
AD.
��!
AB �
��!
CB/C

�!
CA^

��!
CB.
��!
AD �

��!
CD/:

Proof � (i) D) (ii) This follows by definition.

� (ii) D) (i) Since the line .!!0/ is perpendicular to .AC/ it follows that @�ABC =@y D @�ACD=@y.
Then

��!
grad �ŒABC� �

��!
grad �ŒACD� is horizontal and the sign of h

��!
grad �ŒABC� �

��!
grad �ŒACD� j Eui does not

depend on Eu as long as Eu is directed toward increasing x.

� (i) D) (v) and (v) D) (ii) We have that .v/ is equivalent to @�ABC =@x � @�ACD=@x, which is
equivalent to Q-convexity along the direction perpendicular to ŒAC �.

� (i) D) (iii) Let P 2 ŒABC � and choose some P 0 2 ŒACD� such that ŒP 0P � crosses ŒAC �. The function
�ŒACD� is C 1 while Q��;Q is Q-convex along ŒP 0P �. The same argument as in the proof of Lemma 2.17
gives the first inequality. The second is proven the same way.

� (iii) D) (iv) This is trivial.

� (iv) D) (ii) Consider any segment ŒPB� with P 2 ŒACD�. Along such a segment, Q��;Q is either
Q-convex or strictly Q-concave. The inequality �ABC .B/� �ACD.B/ implies it is the former. The same
argument shows �ABC .D/� �ACD.D/D) (ii).

� (v) () (vi) Solve explicitly the system in the proof of Lemma 2.3 for both sides in .v/.

� (vii) () (vi) These are geometric rewritings of each other, which can be checked by rewriting terms
in coordinates.

The previous proposition shows that Q-convexity is an affine constraint on � for a given hinge. Since we
will have to consider multiple hinges for multiple triangulations, we introduce the following:

Definition 3.8 (affine form of a hinge) Letting QD .ŒABCD�; ŒAC �/ be a hinge, define the affine form
associated to Q by

Q� WRfA;B;C;Dg
C

!R; � 7! �C �C C�A�A��D�D ��B�B �K;

where

�C D
��!
AB ^

��!
AD; �A D

��!
CD ^

��!
CB; �D D

�!
CA^

��!
CB; �B D

��!
AC ^

��!
AD;

K D
��!
AC ^

��!
AD.
��!
AB �
��!
CB/C

�!
CA^

��!
CB.
��!
AD �

��!
CD/:

Remark The affine form Q� is defined in such a way that Q��;Q is Q-convex if and only if Q�.�/� 0.

Algebraic & Geometric Topology, Volume 25 (2025)



The Alexandrov theorem for 2C 1 flat radiant spacetimes 1339

Remark If .Q; �/ is an immersed hinge of .†; S/ with � sending vertices into S and with Q D
.ŒABCD�; ŒAC �/, we can then define a corresponding affine form RS

C
!R

RSC!R; � 7!Q�.� ı �jfA;B;C;Dg/:

If there is no ambiguity, we shall also denote it by Q�.

Remark A hinge Q is � -critical if and only if Q�.�/D 0.

Lemma 3.9 Let QD .ŒABCD�; ŒAC �/ be a flippable hinge and let Q0 be its flipped hinge. As functions
RfA;B;C;Dg!R we have

Q0� D�Q�:

Proof This can, of course, be checked directly in coordinates, but we provide a more geometric proof.
Following the notation of Definition 3.8 we write

Q� WRfA;B;C;Dg
C

!R; � 7! �C �C C�A�A��D�D ��B�B �K;

Q0� WRfA;B;C;Dg
C

!R; � 7! �0C �C C�
0
A�A��

0
D�D ��

0
B�B �K

0;

where

�C D
��!
AB ^

��!
AD; �A D

��!
CD ^

��!
CB; �D D

�!
CA^

��!
CB; �B D

��!
AC ^

��!
AD;

�0D D�
��!
BC ^

�!
BA; �0B D�

��!
DA^

��!
DC; �0A D�

��!
DB ^

��!
DC; �0C D�

��!
BD ^

�!
BA:

We check that

�0A D�
��!
DB ^

��!
DC D�.

��!
DC C

��!
CB/^

��!
DC D�

��!
CB ^

��!
DC D�

��!
CD ^

��!
CB D��A;

and we check the same way that �0B D��B , �0C D��C , and �0D D��D .

A quick way to prove that K 0 D�K is to notice that

K D .AB �CB �CD �DA/ sin.1BADC1DCB/; K 0 D .AB �CB �CD �DA/ sin.1CBAC1ADC/;
and that 1BADC1DCBC1CBAC1ADC D 0 mod 2� .

Corollary 3.10 Let .Q; �/ be a weighted flippable hinge. ThenQ is � -critical if and only if its flippingQ0

is � -critical.

Corollary 3.11 Let .Q; �/ be a weighted flippable hinge and Q0 the flipping of Q. If Q is not � -critical ,
then the following are equivalent :

(i) Q is � -legal.

(ii) Q0 is � -illegal.

Lemma 3.12 For any hinge Q, the indicator function 1S is in the kernel of the linear part of Q�, eg

for all � 2RS and � 2R; Q�.� C�1S /DQ
�.�/:
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Proof Using the notation of Definition 3.8, we have

�AC�C ��B��D D
��!
CD^

��!
CBC

��!
AB^

��!
AD�

��!
AC ^

��!
AD�

�!
CA^

��!
CB D

��!
AD^

��!
CBC

��!
CB^

��!
ADD 0:

Corollary 3.13 For all � 2 P and all � 2R,

� C�1S 2 P () � C�1S � 0:

Corollary 3.14 With the notation of Theorem 2,

P D .PCR � 1S /\RSC:

3.2 The flipping algorithm

Let T be an adapted triangulation of .†; S/. Consider .Q; �/ an immersed hinge given by an edge of T .
We would like to flip .Q; �/, ie construct a new triangulation of .†; S/ with �.Q/ replaced by �.Q0/
with Q0 the flip of Q. There are three cases:

� � is not an embedding. Then the diagonal one wants to replace is also a side of the hinge. Hence
one cannot simply replace it without modifying the triangulation T elsewhere.

� � is embedded but Q is not flippable.

� � is embedded and Q is flippable. Then the flipped hinge Q0 is well defined, � WQ0!† is well
defined, �.Q0/D �.Q/ so that we only modify T locally, and the new triangulation T 0 is composed
of nondegenerated triangles.

This remark motivates the following definitions:

Definition 3.15 (flippable immersed hinge) An immersed hinge .Q; �/ is flippable if it is embedded
and Q is flippable; it is unflippable otherwise.

Definition 3.16 (flipping algorithm) Let T0 be any adapted triangulation of .†; S/ and let � W S !RC.
The flipping algorithm proceeds as follows:

(1) Set i D 0.

(2) Let Li be the set of � -illegal flippable embedded hinges .Q; �/ induced by the edges of the current
triangulation Ti .

(3) If Li is nonempty,

(a) choose some immersed hinge .Q; �/ in Li ,

(b) replace the hinge .Q; �/ by its flipping .Q0; �/ in Ti to obtain a new triangulation TiC1,

(c) increment i and go to step .2/.

(4) If Li is empty, the algorithm stops and returns Ti .
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The goal of the section is to prove the following:

Proposition 3.17 Let � W S !RC. For any starting triangulation T0, the flipping algorithm for � starting
at T0 stops on some triangulation T� after finitely many iterations and every flippable immersed hinge in
T� is � -legal. Furthermore ,

� � 2 P if and only if T� is � -Delaunay,

� max† Q��;T� �maxS � Cmax† Q�0;T0 .

Remark The notation T� of this last proposition is consistent with the one introduced in Definition 2.22.

Two lemmas are key to the proof; the first is Lemma 3.18, which states that Q��;Ti is decreasing along the
iterations of the algorithm; the second is Lemma 3.22, which implies that immersed unflippable hinges
are always �-legal for � 2 P , even those that are not associated to an edge. Lemma 3.22 will again be
useful in the following section.

Lemma 3.18 Let � W S ! RC and let T0 be an adapted triangulation. Let .Ti /i2I be the sequence of
triangulation given by the flipping algorithm with weights � and starting at T0, where I D ŒŒ0; n�� or N.

Then the associated sequence of distance-like functions . Q��;Ti /i2I is decreasing:

� for all i; j 2 I with i � j we have Q��;Ti � Q��;Tj ,

� for all i; j 2 I with i < j there exists x 2† such that

Q��;Ti .x/ > Q��;Tj .x/:

Proof Let i 2 I be such that i C 1 2 I . The triangulation TiC1 is obtained from Ti by flipping an
embedded hinge, say .Q; �/, of Ti with QD .ŒABCD�; ŒAC �/. Then:

� For all x 2† n �.Int.Q//; Q��;Ti .x/D Q��;TiC1.x/. Indeed, for x … �.Q/, the triangle containing x
is the same in Ti and TiC1.

� For all x 2 �.Int.Q//; Q��;Ti .x/ > Q��;TiC1.x/. Indeed, Q��;Q and Q��;Q0 are equal on ŒAB�, ŒBC �,
ŒCD�, and ŒDA�; by hypothesis Q��;Q is strictly Q-concave and, from Corollary 3.11, Q��;Q0 is strictly
Q-convex. Applying Lemma 2.17 on segments going from side to side of ŒABCD� we obtain

for all x 2 Int.Q/; Q��;Q > Q��;Q0 :

Corollary 3.19 No triangulation appears twice in the sequence .Ti /i2I given by the flipping algorithm.

Lemma 3.20 Let Q� be a nonnegative distance-like function on .†; S/. If Q� is C 1 on some geodesic of
length ` then

max Q� � 1
4
`2:
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Proof Let c W Œa; b�!† be an arc length parametrization of such a geodesic and let f WD Q� ıc. We have

f W Œa; b�!R; x 7! �x2C˛xCˇ;

for some ˛; ˇ 2R. Furthermore Q� � 0, and so f .a/� 0 and g.b/� 0.

Define u W Œa; b�!R to be the unique affine function such that u.a/D f .a/ and u.b/D b. We thus have
for all x 2 Œa; b�; f .x/D u.x/� .x� a/.x� b/. On the one hand, f .a/ and f .b/ are nonnegative, so u
is nonnegative. On the other hand,

max
x2Œa;b�

.�.x� a/.x� b//D 1
4
.b� a/2 D 1

4
`2:

Lemma 3.21 For C 2R�
C

, let EC be the set of adapted triangulations T of .†; S/ such that

there exists � 2RSC with max Q��;T � C:

Then EC is finite.

Proof Let T be an adapted triangulation such that there exists � 2RS
C

with max Q��;T � C . Choose such
a � . Let e be the longest edge of T . From Lemma 3.20 with LD length.e/

1
4
L2 �max

e
Q��;T � C;

and thus L� 2
p
C . Therefore the triangulation T only has edges of length less than 2

p
C .

Consider a finite covering y† of † branched above S such that all cone angles of y† are bigger than 2� .
Note that y† is locally CAT(0), so its universal (unbranched) covering z† is CAT(0) by [1, Theorem 3.3.1],
and hence for any two points in z† above S there exists at most one geodesic; see [1, Section 2.2].
Furthermore, any geodesic of length at most 2

p
C in † from a point A of S to a point B of S lifts to a

geodesic in z† of the same length starting from a fixed yA to some unfixed lift yB of B in the ball of radius
2
p
L around yA. There are finitely many such yB 2 z†, thus finitely such geodesics in z†. There are thus

only finitely many geodesics of † from S to S of length bounded by 2
p
C ; hence there are only finitely

many triangulations with edges of length at most 2
p
C .

Lemma 3.22 Let Q be an unflippable hinge with QD .ŒABCD�; ŒAC �/. If there exists some distance-
like Q-convex function f on ŒABCD� extending � W fA;B;C;Dg !R, then Q is � -legal.

Remark Beware that f -triangulations of ŒABCD� may be very different from the one induced by the
hinge, ie .ŒABC �; ŒACD�/.

Proof Without loss of generality, we may assume that C is in the convex hull of ŒABD�. Define g WD Q��;Q
and h the distance-like extension of � jfA;B;Dg on ŒABD� given by Lemma 2.3. Both functions f and g
are defined on ŒABCD� � ŒABD� and h is defined on ŒABD�. Furthermore, g is either Q-convex or
Q-concave.
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Applying Lemma 2.17 on sides of the hinge Q and then on any edge within Q and with extremities on
the sides, we see that f � h and that either h � g or h � g, depending on whether g is Q-convex or
Q-concave.

Since g � h is affine on each triangle ŒACB� and ŒACD� and null at A, B , and D, we see that g � h
is nonpositive if and only if g.C /� h.C / � 0. However, g.C /D f .C / � h.C /, so g � h, and hence
g D Q��;Q is Q-convex.

Lemma 3.23 Let � W S ! RC and let .Q; �/ be an immersed hinge with Q D .ŒAB�1B0B1�; ŒAB0�/
such that ŒAB0B1� is obtained from ŒAB�1B0� via a rotation and �.ŒAB0�/D �.ŒAB1�/D �.ŒAB�1�/.

Then there exists an immersed hinge . yQ; O�/ with yQ unflippable such that .Q; �/ is � -legal if and only if
. yQ; O�/ is � -legal.

Proof Let � D 2B0AB1 and nD d�=�e� 1. If � � 1
2
� then take yQDQ and O�D �.

Otherwise, construct the polygon ŒAB�n � � �B0 � � �Bn� such that for each k 2 ŒŒ1� n; n��, the triangle
ŒABkBkC1� is obtained from ŒAB0B1� via the rotation of center A and angle ˛k D k� . Define yQ WD
ŒABnB0B�n� and

O� W yQ!†; x 2 ŒAB2kB2kC1� 7! �.��2˛k .x//; x 2 ŒAB2k�1B2k� 7! �.��2˛k .x//;

where �ˇ denotes the rotation of center A and angle ˇ; see Figure 5.

We have for all k 2 ŒŒ�n; n��; O�.Bk/D �.B0/. The weights � 2RS thus induce weights O� WD � ı O� such
that O�.Bk/D �.B0/D O�.B1/D O�.B�1/. For I; J;K 2 fA;B�n; : : : ; Bng, denote by !ŒIJK� the center
of Q��;ŒIJK� and by !ŒIJ � the orthogonal projection of !ŒIJK� on the line .IJ /. From the remark before
Proposition 3.7, the orthogonal projection of !ŒIJK� on the line .IJ / only depends on O�.I /; O�.J /, and
ŒIJ �; in other words !ŒIJ � does not depend on K.
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Since O�.Bn/D O�.B0/D O�.B�1/, we have that !ŒB0Bn� (resp. !ŒB0B�n�) is the middle of ŒB0Bn� (resp.
of ŒB0B�n�). Since the lengths .ABk/k2ŒŒ�n;n�� are equal, the perpendicular bisectors of ŒB0B�n� and
ŒB0Bn� intersect at A. Therefore !AB�nB0 is on the right of !ABnB0 on the perpendicular to .AB0/ at
!ŒAB0� if and only if !ŒAB0� is on the ray ŒAB0/. Hence, by Proposition 3.7(v), the hinge yQ is O� -legal if
and only if !ŒAB0� is on the ray ŒAB0/.

The same argument shows Q is O�-legal if and only if !ŒAB0� is on the ray ŒAB0/. Finally, .Q; �/ is
� -legal if and only if . yQ; O�/ is � -legal.

Proof of Proposition 3.17 By Lemma 3.18, the sequence of distance-like functions given by the flipping
algorithm is bounded above by the first of the sequence Q��;T0 . Since Q��;T0 � Q�0;T0 is affine on each triangle
of T0 it is bounded by its value on S , and thus by maxS � . Hence, for all i; Q��;Ti �maxS �Cmax Q�0;T0 . By
Lemma 3.21, the flipping algorithm runs through a finite set of triangulations. Finally, by Corollary 3.19,
the algorithm reaches a given triangulation at most once and thus stops after finitely many steps, say
n 2N�. The algorithm stops when the set of flippable �-illegal hinges is empty, so Tn has no flippable
� -illegal hinges.

If the final triangulation Tn is �-Delaunay then by definition � 2 P . Assume � 2 P and consider .Q; �/
some unflippable hinge of Tn. Either � is an embedding, in which case the weighted hinge .Q; � ı �/
satisfies the hypotheses of Lemma 3.22 and the immersed hinge .Q; �/ is then �-legal, or � is not an
embedding, in which case .Q; �/ satisfies the hypotheses of Lemma 3.23, so the immersed hinge . yQ; O�/
provided by Lemma 3.23 satisfies the hypotheses of Lemma 3.22, thus being �-legal, and so .Q; �/ is
� -legal as well. Finally, Tn is � -Delaunay.

3.3 Description of the domain of admissible times

We may interpret Lemma 3.22 together with Lemma 3.23 in the following way: if � 2 P , then all
unflippable immersed hinges of .†; S/ with vertices in S are �-legal. Furthermore, Proposition 3.17
shows the converse: the flipping algorithm stops on a triangulation T , whose flippable hinges are all
� -legal if all unflippable hinges of .†; S/ are � -legal, in particular those of T are � -legal, and hence T is
� -Delaunay. We thus proved the following:

Proposition 3.24 Let UFlip be the set of the unflippable immersed hinges of .†; S/ with vertices in S .
Then

P D
\

.Q;�/2UFlip

.Q�/�1.R�/:

In particular P is a convex domain of RS
C

.

Remark Lemma 3.29 implies that UFlip is nonempty. We take the convention that the intersection is
RS
C

if UFlipD∅.
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Proposition 3.25 For � 2 P , if Q� is the unique Q-convex distance-like extension of � to .†; S/ then

Q� Dmin
T 0
Q��;T 0 ;

where T 0 runs through all adapted triangulations of .†; S/.

Proof Take any adapted triangulation T of .†; S/ and consider T a triangle of T . On T , Q��;T is C 1

while Q� is Q-convex. By Lemma 2.17, Q� � Q��;T on T . The triangle T is arbitrary; thus Q� � Q��;T on †.

Proposition 3.26 The indicator function 1S of S is in the interior of P .

Proof To begin with, by [24, Theorem 4.4], each cell of the Delaunay cellulation C of .†; S/ is isometric
to a polygon inscribed into a circle of E2 whose center is a vertex of the Voronoi cellulation. For any
given cell C of the Delaunay cellulation, with RC the radius and ! 2 E2 the center of the circumscribed
circle of the image of a development D W C ! E2, the function

f W C !RC; x 7!R2C � d.D.x/; !/2;

is distance-like C 1 on C and f .p/D 0 for any vertex p of C ; hence, for any adapted subtriangulation T
of C, for all x 2 C , Q�0;T .x/D f .D.x//.

Let e be an edge of the Delaunay cellulation, let C and C 0 be the two cells on each side of e, and denote
by zC and zC 0 lifts in a covering branched above S such that zC ¤ zC 0 and such that zC \ zC 0 D Qe with Qe a
lift of e. Choose a development D of zC [ zC 0. By abuse of notation let ! and !0 denote the centers of the
images of zC and zC 0, respectively.

Denote by Q�e;T the affine form associated with the hinge of axis e for any subtriangulation T of C.

Claim Q�e;T .0/¤ 0.

This is equivalent to ! ¤ !0. Assume for the sake of contradiction that ! D !0. Then vertices of
D. zC/[D. zC 0/ are cocyclic; hence C and C 0 are in the same Delaunay cell, ie C is glued to itself via e.

Without loss of generality, we may assume that ! is on the side (inclusively) of D. zC 0/; hence e is strictly
longer than every other edge of C . We deduce that C cannot be glued to itself via e, a contradiction.

Claim Q�e;T .0/� 0.

We may assume that the hinge at e is developed as in Figure 4. We take the notation of the proposition.
Notice that assuming condition (v) is not satisfied, either B is in the interior of the circumscribed circle
of ACD or D is in the interior of the circumscribed circle of ABC . This violates a characterization of
the Delaunay cellulation.

Define
U WDRSC\

\
T 2D

\
e

Q�e;T
�1
.R��/;
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where D is the set of adapted subtriangulations of the Delaunay cellulation, and e runs through the
edges of the Delaunay cellulation. The intersection is finite since there are only finitely many such
subtriangulations and edges. U is thus an open subset of RS

C
which contains RC1S .

We now show U � P . Apply the flipping algorithm for some � 2 U and start from some T0 2D of the
Delaunay cellulation. Let T0; : : : ; Tn be the sequence of triangulations given by the flipping algorithm. By
induction we have T0 2D, and assuming Tk 2D for some k < n, the conditions Q�e;Tk .�/ < 0 ensure that
the edges e are � -legal and thus not flipped. Hence TkC1 2D. From Proposition 3.17, the triangulation
Tn is such that all flippable hinges are �-legal. On the one hand, the edges of C are �-legal since � 2 U .
On the other hand, all hinges inside a cell of the Delaunay cellulation are flippable. Finally, all the edges
of Tn are � -legal and U is a subset of P .

In order to obtain a finite cellulation of P as well as characterize its boundary, we prove its transverse
compactness. By transverse compactness of P we mean that the projection of P into the hyperplane˚
� 2 RS j

P
s2S �.s/D 0

	
is compact. Note that, for instance, if P were equal to the whole RS

C
then

it wouldn’t be transversely compact in this sense. The proof that P is transversely compact relies upon
the construction of affine constraints of the form �A � �C � ".�A C �B C �C C �D/CK with " > 0
arbitrarily small, and A and C arbitrary in S . Such constraints are provided by type-.x; L/ hinges; see
Definition 3.27, via Lemma 3.28. Lemma 3.29 focuses on the construction of such immersed hinges.

Definition 3.27 (type-.x; L/ hinge) Let x;L > 0. A hinge .ŒABCD�; ŒAC �/ of E2 is of type .x; L/ if
it is nonconvex with C 2 ŒABD� and

d.B;�/� x; d.D;�/� x; AB > L; AD > L;

where � is the line .AC/.

Lemma 3.28 Let l > 0 and x > 0. For a hinge Q, write

Q� W � 7! ˛.Q/�ACˇ.Q/�B C .Q/�C C ı.Q/�DCK.Q/

for the affine form associated to Q.

Then , for all sequences .Qn/n2N of hinges such that for all n 2N, Qn is of type .x; n/ and axis length l ,
we have

lim
n!C1

˛.Qn/

.Qn/
D�1; lim

n!C1

ˇ.Qn/

.Qn/
D 0; lim

n!C1

ı.Qn/

.Qn/
D 0 for all n 2N; .Qn/ > 0:

Proof Let L> 0, and let QD .ŒABCD�; ŒAC �/ be a hinge of type .x; L/ such that AC D l . Without
loss of generality, we may choose Cartesian coordinates of E2 such that A W .0; 0/ is the origin, C W .0; l/,
xB > 0, and xD < 0.
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There exists some � > 0 such that

ˇ.Q/D �
l

jxB j
; ˛.Q/D �

�
l �yB

jxB j
C
l �yD

jxDj

�
; ı.Q/D �

l

jxDj
; .Q/D �

�
yB

jxB j
C
yD

jxDj

�
:

We have jxB j � x, jxDj � x, yB �
p
L2� x2, and yD �

p
L2� x2; thus .Q/ > 0 and

�1�
˛.Q/

f .Q/
� �1C

l
p
L2�x2

; 0�
ˇ.Q/

.Q/
�

l
p
L2�x2

; 0�
ı.Q/

.Q/
�

l
p
L2�x2

:

Lemma 3.29 Let e be nontrivial geodesic segment of .†; S/ going from some �1 2 S to some �2 2 S
whose relative interior is in †�.

There exists x0 > 0 such that for all L> 0, there is an immersed hinge QD .ŒABCD�; ŒAC �; �/ of type
.x0; L/ such that �.ŒAC �/D e.

Proof Let M WDmaxx2† d.x; S/ and m WDmins2S mins02Snfsg d.s; s0/.

Define ˆ W U!† as the exponential map at �1 defined on some maximal star-shaped open neighborhood
U of 0 in the tangent plane T�1† above �1 such that ˆ.U n f0g/ � † n S . We identify T�1† with E2˛,
where ˛ is the cone angle at �1, so that ˆ is an isometric immersion from an open set of E2˛ to †. We
choose polar coordinates .r; �/ of E2˛ so that the direction � D 0 is the initial derivative of the segment e.

With ˇ Dmin
�
1
2
˛; 1
6
�
�

define

rmax W ��ˇ; ˇŒ!R�C[fC1g; � 7!maxfr 2RC j .r; �/ 2 Ug;

R˙ W �0; ˇŒ!R�C[fC1g; � 7! min
� 02�0;��

rmax.˙�
0/:

For any given � 2 ��ˇ; ˇŒ, if rmax.�/ <C1 we extend ˆ continuously to .rmax.�/; �/; note that in this
case ˆ.rmax.�/; �/ 2 S .

Claim lim sup
�!0C

�R˙.�/� 2M .

Let � 2 �0; ˇŒ. ˆ is defined on the interior of the triangle ŒOAB� � E2˛ with A D .RC.�/; 0/ and
B D .RC.�/; �/ in polar coordinates. The inscribed circle of ŒOAB� bounds an open disc whose image
by ˆ does not contain any element of S , and hence the radius 1

2
RC.�/.cos.�/C sin.�/� 1/ of this

inscribed circle is less than M . One easily checks that cos.�/C sin.�/� 1��!0C � . The result follows
for RC, and one may proceed the same way for R�; see Figure 6.

Claim lim
�!0C

R˙.�/DC1.

The function RC is nondecreasing by definition, so the limit is well defined. Define a sequence .�n/n2N

as follows: choose some �0 2 �0; ˇŒ such that rmax.�0/DRC.�0/ and sin.�0/� 1
2
m; then for all n 2N

take �nC1 2
�
0; 1
2
�n
�

such that rmax.�nC1/D RC.�nC1/. The map ˆ can be continuously extended to
the domain

D WD
[
n2N

f.r; �/ j � 2 Œ0; �n�; r �R.�n/g:
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O

P0
P1

P2

P3

Figure 6

Write Pn WD .RC.�n/; �n/; since for all n 2N; ˆ.Pn/ 2 S , for all n 2N,

RC.�nC1/�RC.�n/C �n� �nC1 D dD.Pn; PnC1/� d†.ˆ.Pn/; ˆ.PnC1//�m:

Thus
for all n 2N; RC.�n/� nmCRC.�0/C �0� �n

n!C1
�����!C1:

One may proceed the same way for R�.

We now come back to the proof of the lemma. Take some x0 >M , for any L 2RC. From the claims
above, there exists some �C 2 �0; ˇŒ and �� 2 ��ˇ; 0Œ such that jsin.�˙/rmax.�˙/j � x0 and rmax.�˙/�L.
Choose such a �˙ 2 ��ˇ; ˇŒ and notice ˆ is well defined on the hinge Q D ŒABCD� with A D O ,
B WD .rmax.��/; ��/, C WD .length.e/; 0/, and D WD .rmax.�C/; �C/. The hinge Q is of type .x0; L/ and
� WDˆjQ is an isometric immersion. The immersed hinge .Q; �/ is then of type .x0; L/ with vertices in
S and such that ˆ.ŒAC �/D e.

Lemma 3.30 There exists C > 0 such that for all A;B 2 S and all � 2 P ,

j�.A/� �.B/j � C:

Proof From Corollary 3.13, it is enough to find a C > 0 such that

for all � 2 P; min � D 0 D) max � � C:

From Lemmas 3.28 and 3.29 and from Proposition 3.24, for all " > 0, and A;B 2 S , if there exists
a geodesic from A to B whose relative interior is in † n S , then there exists K > 0 such that for all
� 2P; j�A��B j � "max �CK. For all A;B 2S there exists a geodesic from A to B possibly intersecting
S in his relative interior. Hence

8" > 0; 8A;B 2 S; 9K > 0 such that 8� 2 P; j�A� �B j � "max � CK:

Since S is finite,
9K > 0; 8A;B 2 S; 8� 2 P; j�A� �B j � 1

2
max � CK:

Choose such a K > 0 and define C D 2K. Then for all � 2 P such that min � D 0,

max � D jmax � �min � j � 1
2

max � CK:
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Thus for such a �
max � � 2K D C:

Proof of Theorem 2 Let � be the orthogonal projection of RS onto H WD
˚
� 2RS j

P
s2S �.s/D 0

	
.

Note that the kernel of � is R �1S . For each triangulation T , the set of � 2RS
C

such that Q��;T is Q-convex
is the domain

PT WDRSC\
\

e2Edge.T /

.Q�e /
�1.R�/;

since 1S is in the kernel of the linear part of all the affine forms Q�e . Since the number of edges of T is
finite, PT WD �.PT / is a convex polyhedron and PT D .PT CR � 1S /\RS

C
.

On the one hand,
P D

[
T

PT ;

where T runs through all adapted triangulations of .†; S/. Then defining P WD
S

T PT , we have
P D .PCR � 1S /\RS

C
.

On the other hand, by Lemma 3.30, P D�.P/ is compact. Furthermore, by Proposition 3.24, P is convex.
Hence P is convex.

Then consider the set T of triangulations that are � -Delaunay for some � 2 P . For any admissible � 2 P ,
it follows from Lemma 3.12 that � 0 WD ��min � 2P and that the set of � -Delaunay triangulations is equal
to the set of � 0-Delaunay triangulations. Therefore T is the set of triangulations that are � -Delaunay for
some � 2 P0 WD f� 2 P jmin � D 0g. By Lemma 3.30, there exists a constant C that only depends on †
such that for all � 2 P0; � � C . By Proposition 3.17, there thus exists a constant A that only depends on
† such that Q��;T � A for all � -Delaunay triangulation T and all � 2 P0. Using notation of Lemma 3.21,
we deduce that T �EA is finite; hence T is finite. The domain P is thus a polyhedron.

Choose any triangulation T0 and define A WD sup�2P0 maxx2† Q��;T0.x/; by compactness of P , the set P0
is bounded. Hence A < C1. Consider the finite family .Qi /i2ŒŒ1;q�� of unflippable immersed hinges
around edges of triangulations in EA and define PA WD

Tq
iD1Q

�
i
�1.R�/. By Proposition 3.24 PA � P .

In addition, for any � 2 PA the flipping algorithm starting at T0 2EA stops after finitely many iterations
on some Tn 2EA; Proposition 3.17 ensures that flippable hinges of Tn are �-legal and the definition of
PA ensures that unflippable hinges of Tn are also �-legal. We deduce that Tn is �-Delaunay, and hence
� 2 P . We conclude that P D PA, so that essential support planes of PA are either

� essential support planes of RS
C

and thus of the form �� D 0 for some � 2 S , or

� given by “Q�i D 0” for some i 2 ŒŒ1; q��.

Finally, since P is a finite union of cells, essential support planes of the second kind correspond to a facet
of some cell PT . Theorem 2(e) follows.
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4 The Volkov lemma for Lorentzian convex cones

In effective methods used to prove Alexandrov-like theorems, at some point a Volkov lemma bounding the
cone angle‚ around a singular line of angle � in a Riemannian manifold is needed. This is used to exclude
some positions of critical points of the Einstein–Hilbert functional introduced in the following section.

We consider spacelike convex cones in E1;2� for � > 0, eg the model space of the timelike singular
lines of angle � as R3 endowed with the metric dt2 � dr2 � .�=.2�//2 d�2. There are many ways to
rigorously define a spacelike cone in E1;2� . In our context, we define a cone D as the graph of some
Lipschitz 1-homogeneous function t WR2 7!R. The cone is spacelike if the graph in R3 identified to E1;2�
is spacelike. The cone D is then convex if the future JC.D/ is convex in the sense that any spacelike
geodesic with extremities in JC.D/ is in JC.D/. The Lorentzian structure of E1;2� induces complete
metric space structure on the cone, which is locally Euclidean except possibly at fr D 0g. In other words,
D is isometric to E2‚ for some ‚> 0; this ‚ is its so-called cone angle.

Let D be a cone defined as the graph of t W R2 ! R. A wedge is the graph of t on some domain
f� 2 I; r � 0g with I an interval; Such a wedge is coplanar if it is totally geodesic. A wedge is isometric
to some domain f.r; �/ j r � 0; 0� � � �g in .R2; dr2C .˛=�/2r2 d�2/; the value of ˛ is unique and
we refer to it as the Euclidean angle of the wedge.

Theorem 3 Let ‚ > 0 and � > 0. Let D be a convex spacelike cone in E1;2� of cone angle ‚ whose
vertex is on the singular line of E1;2� .

Assuming D has a coplanar wedge of Euclidean angle at least min.�;‚/,

� if ‚> 2� then � > 2� ,

� if ‚D 2� then � D 2� ,

� if ‚ 2 ��; 2�Œ then � �‚,

� if ‚D � then � D � ,

� if ‚< � then � 2 �0;‚� with � D‚ if and only if D is the horizontal plane ,

and all the bounds above are sharp.

Remark Though results such as stated above are used one way or another in [3; 6; 18; 19; 22; 26], to
our knowledge, a complete proof of the bounds we use is not available in English (one may appear in the
original thesis of Volkov which is in Russian, and only a summary is available in English [34]). We thus
provide a complete proof.

Remark In Minkowski, a convex cone always has a cone angle bigger than 2� . One may expect this to
be carried out in E1;2� for arbitrary � � 0. Theorem 3 shows this intuition is valid for � 2 Œ0; ��[f2�g
but not for � 2 ��; 2�Œ.
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When considering a cone D in E3, an elementary remark is that the angle of the conical singularity is, in
fact, the length of its stalk: the curve given by the intersection D\S2. By extension “stalk” refers to
curves in S2 or S1;1 that are graphs over the “equator”. As in the Euclidean case, we may notice that the
angle ‚ of the conical singularity of a spacelike cone in E1;2� is given by the length of the spacelike curve
induced on S1;1� WD f.t; r; �/ 2 E1;2� j r

2� t2 D 1g. However, the relation between � and ‚ is far from
trivial, and the Lorentzian nature of S1;1 does not help. One may devise an analytical proof of the needed
Volkov lemma [9], but a more geometrical one is provided based on a suggestion of Graham Smith.

The key idea developed in Section 4.1 is that to each cone stalk � WR=�Z! S1;1� corresponds a dual stalk
 WR=‚Z! S2‚. The length of � is the Euclidean cone angle ‚ while the length of  is the Lorentzian
cone angle �.

4.1 Stalks of Lorentzian cones

Although we defined cones with Lipschitz regularity, we will focus our argumentation on polyhedral
cones that are simpler to describe. A density argument allows us to generalize to lower regularity.

Definition 4.1 (stalk of a spacelike cone) Let � > 0, ‚> 0 and D be a spacelike cone of E1;2� of cone
angle ‚. In cylindrical coordinates .r; �; t/, the set S1;1� \D can be parametrized by arc length with
increasing � coordinate:

D\S1;1� D

8<:
0@t .s/r.s/

�.s/

1A ˇ̌̌̌ˇ s 2R

9=; :
The stalk �D of D is the function t WR!R of this parametrization.

Remark The stalk � of a cone is unique up to precomposition by an affine transformation of slope ˙1.

Proposition 4.2 Let � > 0, ‚ > 0 and D be a cone of E1;2� of cone angle ‚ whose vertex is on the
origin and of stalk � WD �D. We have the following:

(1) � WR!R is ‚-periodic and Lipschitz continuous.

(2) D is polyhedral if and only if � is piecewise trigonometric (piecewise of the form � 7!A cos.�C'/).

(3) If D is polyhedral then
D is convex () � is Q-convex:

(4) � D
R ‚
0

p
1C �.�/2C �0.�/2=.1C �.�/2/ d� .

Proof The first three points are simple enough. To obtain the last item, we first choose a parametrization
by arc length s 7! .t; r; �/ of D\S1;1 with � increasing and notice

2� D

Z ‚

0

� 0.s/ ds; r2� �2 D 1; �.�0/2C .r 0/2C
�
�

2�

�2
r2.� 0/2 D 1:
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Therefore rr 0 D ��0 and

.� 0/2D
�
2�

�

�2 1C.�0/2�.r 0/2
r2

D

�
2�

�

�2 1C.�0/2�.��0=r/2
1C�2

D

�
2�

�

�2 .1C.�0/2/.1C�2/��2.�0/2
.1C�2/2

D

�
2�

�

�2 1C.�0/2C�2
.1C�2/2

;

and so

� 0 D
2�

�

p
1C .�0/2C �2

1C �2
:

Insert the last line in 2� D
R ‚
0 � 0 to get the result.

Remark For � W I !R continuous piecewise trigonometric, � is Q-convex if and only if s 7! �.�s/ is
Q-convex.

Definition 4.3 (mass of a stalk) For � W Œa; b�!R (resp. � WR=‚Z!R), define

�.�/ WD

Z b

a

p
1C �2C �02

1C �2

�
resp.

Z ‚

0

p
1C �2C �02

1C �2

�
:

Remark Every � WR!R piecewise trigonometric Q-convex and‚-periodic induces a convex polyhedral
embedding of E2‚ into E1;2

�.�/
. Furthermore, this embedding is essentially unique: from Proposition 4.2,

the mass � is given by �; there is thus no choice for the space E1;2� and two embeddings of the same germ
only differ by a rotation or a symmetry.

Corollary 4.4 Let � > 0, ‚> 0 and D be a spacelike polyhedral cone in E1;2� of cone angle ‚.

If its stalk � is C 1 then �.�/D‚. Furthermore , if � is not a multiple of 2� then �D 0.

Proof To begin with, since � is piecewise trigonometric and continuously differentiable, � is in fact
trigonometric. Then either 2� is the minimal period of � or � D 0. If � D 0, the result follows from
Proposition 4.2(4). Otherwise‚22�N and we notice that for anyA and ' we have �.s 7!A cos.sC'//D
2k� if ‚D 2k� .

Lemma 4.5 Let I be an interval , � W I ! R be piecewise trigonometric Q-convex , and let �0 2 I .
Let N� be the unique trigonometric function such that �.�0/D N�.�0/ and �0.�C0 /D N�

0.�0/. Then for all
� 2 I \ Œ�0; �0C��,

�.�/� N�.�/:

Furthermore:

there exists � 2 ��0; �0C�Œ such that N�.�/D �.�/ () for all � 2 Œ�0; �0C��; �.�/D N�.�/:

Proof Let .�0; �1; : : : ; �n D �0C�/ be subdivision adapted to �. For k 2 ŒŒ1; n��, denote by �k WR!R

the unique trigonometric function such that �jkŒ�k�1;�k� D �jŒ�k�1;�k� and define �0 D N�.
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For k 2 ŒŒ0; n� 1��, we have �k.�k/ D �kC1.�k/. If �0
k
.�k/ D �

0
kC1

.�k/ then �k D �kC1. Otherwise
�0
k
.�k/<�

0
kC1

.�k/; thus �k<�kC1 on a nontrivial interval Œ�k; �kC"�. These two trigonometric functions
are in particular distinct and intersect each other on the set �kC�Z. Hence �k � �kC1 has constant sign
on the interval Œ�k; �kC�� and �k � �kC1 on Œ�k; �kC��. By induction, the result follows.

Definition 4.6 Let S21 be the universal covering of the round sphere branched over its north and south
poles, eg

�
�
1
2
�; 1

2
�
�
�R=� endowed with the metric

ds2 D d�2C cos.�/2 d�2;

where � identifies all points such that � D 1
2
� together as the north pole N and all points such that

� D�1
2
� as the south pole S .

Definition 4.7 A piecewise geodesic curve  W I ! S21 is Q-convex if � ı  is injective and � ı  is
Q-convex.

Lemma 4.8 Let � W Œa; b�!R be Lipschitz continuous and define  W Œa; b�! S21, � 7! .arctan �.�/; �/.
Then

�.�/D length./:

Furthermore ,  is a piecewise geodesic Q-convex curve if and only if � is piecewise trigonometric
Q-convex.

Proof By direct computation:

length./D
Z b

a

s
.�0/2.�/

.1C �2.�//2
C cos2.arctan ı�.�// d� D

Z b

a

s
.�0/2.�/

.1C �2.�//2
C

1

1C �2.�/
d�

D

Z b

a

s
.�0/2.�/C 1C �2.�/

.1C �2.�//2
d� D �.�/:

Then it suffices to note that curves of the form t 7! .�.t/; �.t// with �.t/D arctan.˛ cos.�.t/C�0/ …˚
�
1
2
�; 1

2
�
	

and �.t/D t are exactly the nonmeridional geodesic segment of S21.

Proposition 4.9 Let S‚ be the set of Lipschitz stalks of convex spacelike cones of cone angle‚ admitting
a coplanar wedge of Euclidean angle min.‚; �/ endowed with the Lipschitz norm

k�kLip WD sup
s2I

j�.s/jC sup
s1¤s2

ˇ̌̌̌
�.s1/� �.s2/

s1� s2

ˇ̌̌̌
:

Then the subspace of piecewise trigonometric Q-convex functions is dense in S‚.

Sketch of proof Consider the stalk �D W R ! R of a (Lipschitz) spacelike convex cone D and its
associated geodesics  in S21. Consider Œa; aC ˛�C‚Z with ˛ � min.‚; �/ and �jŒaCk‚;aCk‚C˛/
trigonometric for all k 2 Z.
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The curve  divides S21 into two parts (north and south); the epigraph of  is the northern domain.
Convexity of the spacelike cone translates in S21 into the local convexity of the epigraph of  . We may
construct an approximating sequence .n/n2N of  interpolating by geodesics, say between points of
the form .sk; .sk// with .sk/k2Z 2RZ increasing such that jskC1� skj � 1=.1Cn/, lim˙1 sk D˙1,
and faC k‚; aC ˛C k‚ j k 2 Zg � fsk j k 2 Zg. Then notice that for n big enough, the geodesics
are not meridional and thus correspond to a piecewise trigonometric ‚-periodic stalk �n. By convexity
of  , each n is Q-convex for n big enough, and so are the �n. We note that  is Lipschitz and that the
sequence n converges in Lipschitz norm to  .

4.2 Lower bounds

Lemma 4.8 provides a neat geometrical translation from Lorentzian to Riemannian. Indeed, an issue with
the geometry of Lorentzian manifolds is that spacelike geodesics are not characterized as minimizers
of the usual energy Lagrangian

R
g. P; P/. The description of convex polyhedral cones as Q-convex

piecewise geodesics in S21 allows us to leverage the usual Riemannian theory of geodesics.

Proposition 4.10 Let ‚� � . Then

inf
�2S‚

�.�/Dmin.2�;‚/;

the infimum being taken over the set S‚ of stalks � WR=‚Z!R of convex spacelike cones admitting a
coplanar wedge of Euclidean angle at least � . Furthermore , the infimum is achieved if and only if ‚� 2� .

Proof Note that by Proposition 4.9, piecewise trigonometric elements of S‚ form a dense subspace for
a norm for which � is continuous. By abuse of language, we say that “� is a Q-convex stalk”, meaning
that � is a Lipschitz limit of piecewise trigonometric Q-convex stalks.

� Assume ‚� 2� . Consider for ˛ > 0 the stalk

� WR=‚Z!R; � 7!

�
sinh.˛/ sin.�/ for � 2

�
�
3
2
�; 1

2
�
�
;

sinh.˛/ otherwise;

so that � is Q-convex and �.�/D 2� C .‚� 2�/= cosh.˛/. As a result, inf�2S‚ �.�/� 2� .

� Assume ‚� 2� . Then the stalk �D 0 is such that �.�/D‚.

� Let  W Œ0;‚� ��! S21 be a Lipschitz curve from .�0; 0/ to .��0; ‚� �/ minimizing the length
with .0/; .‚��/ … fN;Sg. The curve  is a geodesic with possibly intermediate points in fN;Sg.

– Assume  does not intersect fN;Sg. Then up to reparametrization � ı  is of the form � 7!

arctan.˛ cos.� C �0//. If ‚� 2� , then the length of such a curve is at least � . Otherwise, since
�ı.0/D��ı.‚��/ up to reparametrization, �.�/D sinh.˛/ sin.�/with � 2

�
m� 1

2
�; 1

2
��m

�
and mD � � 1

2
‚. Then

�.�/D � � 2 arctan
�

tan.m/
cosh.˛/

�
;

which is minimal if and only if ˛ D 0, in which case the length of  is ‚�� .
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– Assume  intersects fN;Sg exactly once. Then  is formed of a geodesic from .0/ to N (resp. S )
followed by a geodesic from N (resp. S ) to .‚/. Such geodesics are meridional; hence the length
of  is exactly � .

– Assume  intersects fN;Sg at least twice. Then it contains a meridional geodesic from N to S
and its length is strictly bigger than � .

In any case, the length of the curve associated by Lemma 4.8 to a stalk � in S‚ is bounded from below
by � plus the length of such a minimizing curve  . Hence inf�2S‚ �.�/Dmin.‚; 2�/. Furthermore, the
infimum is achieved if and only if the minimizing geodesic can be associated with a stalk, which is only
possible if the geodesic  considered above reaches neither N nor S ; this is possible only if ‚ � 2� .
Reciprocally, if ‚� 2� , then the stalk �D 0 achieves the infimum.

Proposition 4.11 Let ‚< � . Then
inf
S‚
�.�/D 0;

the infimum being taken over the set S‚ of stalks � WR=‚Z!R of convex spacelike cones admitting a
coplanar wedge of Euclidean angle at least ‚.

Furthermore , among such stalks , �.�/�‚ with equality if and only if �D 0.

Proof Any element of S‚ is of the form

�˛ WR=‚Z!R; � C‚Z; � 2 Œ�‚=2;‚=2� 7! sinh.˛/ cos.� C �0/;

for some ˛ 2 R; �0 2 ���; �Œ. If ˛ D 0 we may choose �0 D 0; otherwise, up to translation, we may
assume that �

�
�
1
2
‚
�
D �

�
1
2
‚
�
, which implies that

�
1
2
‚C �0

�
D˙

�
�
1
2
‚C �0

�
C 2k� for some k 2 Z.

Therefore either ‚D 2k� or �0 D k� ; since 0 < ‚ < � and j�0j< � , it follows that �0 D 0.

In particular, all elements of S‚ are piecewise trigonometric. On the one hand, since �˛ is Q-convex only
for ˛ � 0,

for all ˛ 2R; �˛ 2 S‚ () ˛ � 0:

On the other hand

for all ˛ � 0; �.�˛/D 2 arctan
�

tan
�
1
2
‚
�

cosh.˛/

�
˛!C1
�����! 0:

It follows that inf�2S‚ �.�/D 0. Note that ˛ 7! �.�˛/ is decreasing; the maximum is thus reached for
˛ D 0; hence �D 0. The formula above gives �.0/D �.�0/D 2 arctan

�
tan
�
1
2
‚
��
D‚.

4.3 Proof of the Volkov lemma

We now compile and complete the elements proven in the previous section.

Proof of Theorem 3 Proposition 4.10 implies the first and third claims, and partially the second. The
fifth claim is a consequence of Proposition 4.11
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To complete the second consider the stalk � of a convex spacelike cone of Euclidean angle 2� having a
coplanar wedge of angle � . By Proposition 4.9 we may assume � is piecewise trigonometric. Using the
remark just before Definition 4.3, assume without loss of generality that �.0/D��.�/� 0 and �jŒ�;2��
is trigonometric. Using Lemma 4.5 we see that if � is not trigonometric on Œ0; �� then ��.0/D �.�/ >
N�.�/D� N�.0/D��.0/ for some trigonometric function N�, a contradiction. Therefore � is trigonometric
on Œ0; �� and on Œ�; 2�� so that �.�/D 2� .

The same argument allows us to prove the fourth claim.

5 The Einstein–Hilbert functional

We give ourselves a Euclidean surface † with conical singularities and marked points S � Sing.†/; we
will keep this surface fixed in the whole section.

To sum up the results of the preceding sections, we have a construction that associates to any � 2 P a
radiant spacetime M.�/ and a convex polyhedral embedding �� of .†; S/ into M.�/. We know from
Proposition 2.23 this construction reaches every equivalence classes of such a couple .M; �/ and is
injective. By Theorem 2, P is a convex domain of RS

C
and is the union of finitely many convex cells,

each corresponding to a triangulation of .†; S/.

The objective is now to construct polyhedral embeddings .M; �/ such that the singularities of M have
cone angles we gave ourselves a priori.

Definition 5.1 (mass function) Let � 2 P and .M.�/; �� / be its associated polyhedral embedding of
.†; S/. For � 2 S define �� .�/ the (Lorentzian) cone angle of M.�/ at �� .�/ 2M.�/.

We define � W P!RS
C

the map that associates to � the vector .�� .�//�2S .

Remark On each cell PT WD f� 2P j T� D T g, the function � 7! �.�/ is continuous and furthermore C 1.
Since we will actually compute the derivative later on, we do not prove it now.

Furthermore, if � 2 PT \ PT 0 the triangulations T and T 0 are �-equivalent; � computed with either
triangulation yields the same result since M.�/ may be constructed using T or T 0. The map � 7! � is
thus continuous on P .

Remark As a complement to the previous remark, we do not neglect the limit case �� D 0 for which
�� D 0 by convention. One may check directly that lim��!0C �� .�/D 0.

Reformulating with this notation, we thus aim to solve the following:

Problem Let N� 2RS
C

. Is there some � 2 P such that �.�/D N�, and if so , is it unique?

There is a restriction on the possible N�. Indeed, for any � 2P , the spacetimeM.�/ is the suspension of some
marked closed hyperbolic surface with conical singularities and cusp4 .†H2 ; S 0/marked by .†; S/, and the

4See Definitions A.6 and A.7 in the appendix.
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cone angles at S 0 are �.�/. Therefore, by the Gauss–Bonnet formula,
P
�2S .2���.�/� /�Area.†H2/D

2��.†/D
P
�2S .2� � �� /. Hence

for all � 2 P;
X
�2S

�� >
X
�2S

�.�/� :

In addition to this global constraint, there are local constraints due to upper bounds in the Volkov lemma.
We do not systematically explore the local upper bounds and only provide the one that is consistent with
the boundary condition (ie the last item of Theorem 3). We settle for an incomplete statement.

Theorem 4 Let .†; S/ be a closed locally Euclidean surface of genus g with conical singularities of
angles .�� /�2S . Using notation of the previous sections ,

for all N� 2
� Y
�2S

Œ0;min.�� ; 2�/�
�
n f.�� /�2Sg there exists � 2 P such that �.�/D N�:

Furthermore , if for all � 2 S; N�� < �� , then such a � is unique. Finally , if �� � � for some � 2 S then
for all � 2 P; �� .�/� �� .

The proof relies on the analysis of a so-called Einstein–Hilbert functional; the first step is to define a
functional H N� on P for a given N� whose critical points are solution to the problem before Theorem 4. In
fact, one could check that such a functional exists by checking @��1=@h�2 D @��2=@h�1 .

For technical reasons which will shortly make themselves clear, it will be more appropriate to define such
a functional on the domain P1=2 WD fh 2RS

C
j h2 2 Pg. Elements of P1=2 will be denoted systematically

by h, while elements of P will be denoted by � . Going from the one to the other being simple, we extend
all definitions to P1=2: M.h/ WDM.h2/, etc.

A standard analysis of the critical points of H N� as well as its gradient on the boundary of P1=2 follows.
Under the assumption that for all � 2 S , N�� is no greater than 2� and less than the cone angle of † at � ,
we show that critical points of H N� are positive definite and that the gradient of H on the boundary of P is
homotopic to an outward vector field.

5.1 Reminders on Lorentzian angles and Schläffli’s Formula

The following is an adaptation of the exposition of Rabah Souam [32].

To begin with, the modulus juj of a vector u of E1;2 is

juj D
p
hu j ui;

with the convention that when hu j ui< 0 we have that juj D �i with � > 0 and i2 D�1. Let u and v be
two vectors of E1;2. Then the angle †uv is defined so that it satisfies the following properties:

(1) For all vectors u and v, †uv 2RC iR=.2�Z/.

(2) For all vectors u and v, hu j vi D jujjvj cosh.†uv/.

(3) For all vectors u, v and w coplanar, †uvC†vw D†uv.
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Beware that if u and v are spacelike, †uv is not the usual angle cuv but actually cuv � i . Angles are well
defined only if neither u nor v are lightlike.

Definition 5.2 (type of a vector of E1;1) Choose a direct Cartesian coordinate system .t; x/ of the
vector space underlying E1;1. Let u be a nonlightlike vector of E1;1. The type ku 2Z=4Z of u is defined
as follows:

� ku D 0 if u is future timelike.

� ku D 1 if u is spacelike with negative spacelike coordinate.

� ku D 2 if u is past timelike.

� ku D 3 if u is spacelike with positive spacelike coordinate.

Definition 5.3 Define H1
C

as the Riemannian submanifold of unit future timelike vectors in E1;1. We
choose the orientation Ex of H1

C
so that .Ex; En/ induces the same orientation as E1;1 for any future timelike

vector En.

Definition 5.4 Let u and v be two linearly independent nonlightlike unit vectors in E1;2 and let … the
vectorial plane generated by u and v.

� If … is spacelike,

†uv D i�;

with � the angle from u to v in … oriented by the future timelike normal.

� If … is timelike and u and v of types ku and kv in … are identified with E1;1 and oriented by the basis
.u; v/, then

†uv D ˛C i.kv � ku/
1
2
�;

with ˛ the (oriented) length of the geodesics from u0 to v0 in H1
C

, where u0 (resp. v0) is the unique future
unit timelike vector of … orthogonal or colinear to u (resp. v).

Definition 5.5 (dihedral angle) Let …1 and …2 be two vectorial half-planes that intersect along their
common boundary�. Assume none of…1, …2, and� are lightlike and write �i D�?\…i for i 2 f1; 2g.
We choose some u 2 � and for i 2 f1; 2g define ni , the unique unit vector normal to …i such that
.u; �i ; ni / is a direct basis. The dihedral angle †…1…2 between the planes …1 and …2 is then defined as

†…1…2 WD

�
Real.†n1n2/ if �? is Lorentzian;
Im.†n1n2/ 2 ���; �� if �? is Riemannian:

Remark In the definition above, the dihedral angle does not depend on the choice of u.
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Definition 5.6 (1-parameter family of oriented polyhedra) A 1-parameter family of oriented locally
Minkowski polyhedra is the data of an oriented simplicial complex K and a map  W Œ0; 1��K! E1;2

such that

(1) for all simplices P of K and all t 2 Œ0; 1�,  jftg�P is an orientation-preserving smooth embedding
and  .t; P / a polyhedron of E1;2,

(2) for all simplices P the restriction of  to Œ0; 1��P is smooth.

Let .K;  / be a 1-parameter family of locally Minkowski polyhedra. If e is an edge of K, then for all
t 2 Œ0; 1�, we write le;t � 0 for the length of the edge  .e; t/� E1;2 and �e;t for the sum of the dihedral
angles between the faces of the simplices of K around the edge e.

We will also have to assume that adjacent 2-facets never change convexity. This can be made rigorous by
saying that the family fu; �1; �2g used in the definition of the dihedral angle above always is such that
det.u�1�2/ has constant sign (but can be 0).

Theorem (Schläffli’s formula [32]) Let .K;  / be a 1-parameter family of oriented locally Minkowski
polyhedra such that none of its faces or edges are lightlike and such that adjacent 2-facets never change
convexity. Denoting by E the set of edges of K, we haveX

e2E

le;t
d�e;t

dt
D 0:

Remark The convexity condition is always satisfied by construction for the polyhedra we consider.

5.2 Kites and angles

Consider an adapted triangulation T of .†; S/ and consider a cell P1=2T of h 2 P1=2 of nonempty interior.

For h 2 P1=2T , the past of † in M.h/ is a locally Minkowski polyhedron with each simplex being a
pyramid of E1;2 as represented in Figure 7, the notation of which we give a more precise meaning. If T is
a triangle of T of vertices �1, �2, and �3, while e D���!�1�2 and e0 D���!�1�3 are two edges on the boundary
of T , define �e the real part of the angle from

��!
�1O to ���!�1�2, �ee0 the real part of the angle from ���!�1�2 to

���!�1�3 and ˛e the real part of the dihedral angle from the plane .O�1�1/ to the plane .�1�2�3/. In this
section, edges are oriented so that we distinguish ˛e and ˛�e: the angle ˛e is on the left of e, and thus
˛�e is the angle on the right of e.

We aim at proving � is continuous and computing the partial derivatives

@��1
@h�2

for �1; �2 2 S:

If there is no edge from �1 to �2, then this derivative is null. If there is an edge e from �1 to �2, then
in both pyramids PC and P� on both sides of e, we need to study the variations of the dihedral angle
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�2

�3

�1

O

e0

e
�ee0

�e

�3

O

e ˛e

e0

�2

�1

Figure 7: The simplex cell of the past of † in M.h/. The following angles are represented: �e
the angle from

��!
�1O to ��!�1�2, �ee0 the angle from ��!�1�2 to ��!�1�3 and ˛e the angle from the plane

.0�1�1/ to the plane .�1�2�3/.

on the edge ŒO�1� with respect to h�2 and h�1 . Since the algebraic relationship between �� and h� is
complicated, a key to obtaining meaningful relations is to draw the kite associated with each embedded
triangle E1;2.

Definition–Proposition 5.7 (kite, [14, pages 90–91]) A hyperbolic kite (resp. Euclidean kite) is a
quadrangle ABCD in X D H2 (resp. in X D E2) with two opposite right angles and possibly with
self-intersections. We parametrize kites by fixing a convex quadrangle decorated as in Figure 8 and
constructing it as follows:

(1) choose some point A in X and some direction Eu 2 TAX ,

(2) move �1 along the oriented line .AEu/ to reach at B D expA.�1 Eu/,

(3) turn 1
2
� (counterclockwise) to obtain the new direction Ev 2 TBX ,

‚

�

˛1 ˛2

�2 �1

Figure 8
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(4) move ˛2 on the oriented line .B Ev/ to reach C D expB.˛2Ev/,

(5) turn � �‚ to obtain Ew,

(6) move a distance ˛1 on the oriented line .C Ew/ to reach D,

(7) turn 1
2
� to obtain Ek,

(8) move a distance �2 on the oriented line .D Ek/ to reach A0,

(9) turn � � � to obtain Eu0.

For any choices of three out of the six parameters ˛1, ˛2, �1, �2, �, and‚, there exists a unique choice for
the three others so that the construction above yields a hyperbolic kite , ie X DH2, A0 D A, and Eu0 D Eu.
Furthermore , for such six parameters ,

cos.�/D
sinh.�1/ sinh.�2/� cos.‚/

cosh.�1/ cosh.�2/
; sinh.�2/D

cos.�/ sinh.˛1/C sinh.˛2/
sin.�/ cosh.˛1/

;

sin.�/
sin.‚/

D
cosh.˛2/
cosh.�2/

D
cosh.˛1/
cosh.�1/

:

Consider PC and use the notation of Figure 7. Then consider the quadrilateral of H2 given by the
sequence of geodesics in the set of future unit timelike vectors identified with the hyperbolic plane H2:

.O�1/! .O�1�2/\ .�1�2/
?
! .�1�2/

?
\ .�1�3/

?
! .�1�3/

?
\ .O�1�3/! .O�1/:

To identify the parameters .�1; ˛2; ˛1; �2; �;‚/ as in Figure 9, we note the following.

� �e WDReal.†
��!
�1O
���!�1�2/ WD dH..O�1/; .O�1�2/\ .�1�2/

?/ since .O�1�2/ is the (timelike) vectorial
plane containing both vectors and ���!�1�2 is spacelike, and

��!
�1O is past timelike. So the (oriented) length of

the geodesic .O�1/! .O�1�2/\ .�1�2/
? is �e, and thus �1 D �e.

.O�1�2/\H2

.O�1�3/\H2

.�1�2/
?\H2

.�1�3/
?\H2

�ee0

���ee0

O

�3

�2

�1

�e�0e

˛e

�ee0

˛�e0
� � �ee0

Figure 9: The kite associated to an edge, with e the edge ��!�1�2 and e0 the edge ��!�1�3.
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Mutatis mutandis, we show the same way ��2 D��e0 ; thus �2 D �e0 .

� ˛e WD Real.†.O�1�2/.�1�2�3//D Real.†n1n2/, where n1 and n2 are respectively the normals to
the planes .O�1�2/ and .�1�2�3/ such that .���!�1�2;

��!
�1O; n1/ and .���!�1�2;

���!�1�3; n2/ are direct bases. We
thus have n2 2 .�1�2�3/? D .�1�2/

? \ .�1�3/
? future timelike and n1 2 .O�1�2/? spacelike, so

†n1n2D†n3n2 with n3 2 ..O�1�2/?/?\.n1n2/D .O�1�2/\.�1�2/?. Therefore ˛e is the (oriented)
length of the geodesic

.O�1�2/\ .�1�2/
?
! .�1�2/

?
\ .�1�3/

?:

We thus have shown that ˛2 D ˛e.

Mutatis mutandis, we show the same way that �˛�e0 D�˛1; thus ˛e0 D ˛1.

� The parameter � is given by the dihedral angle †.O�1�2/.O�1�3/; thus � D �ee0 .

� Finally, to compute ‚, notice that the radial projection of the hyperbolic kite on the spacelike plane
.�1�2�3/ yields a Euclidean kite with the same signs of oriented lengths of sides and whose � parameter
is �ee0 . Furthermore, the plane .�1�2�3/ is orthogonal to the timelike line from O to .�1�2/?\ .�1�3/?,
so the angle in H2 at H2 \ .�1�2/

? \ .�1�3/
? is the same as the Euclidean angle in .�1�2�3/ at

.�1�2�3/\ .�1�2/
?\ .�1�3/

?. We deduce that ‚D � � �ee0 .

Corollary 5.8 Using the same notation as in Definition–Proposition 5.7 and choosing ‚, �1, and �2 as
parameters ,

@�

@�1
D�

tanh.˛2/
cosh.�1/

:

We thus need to compute the derivative of �e with respect to the heights .h� /�2S for each edge e.

Lemma 5.9 Using the notation of Figure 7,

d�e D�
.h2�1 C h

2
�2
C l2e / dh�1 � 2h�1h�2 dh�2
2leh2�1 cosh.�e/

:

Proof From the cosine law in E1;2:

�h2�2 D�h
2
�1
C l2e � 2leh�1 sinh.�e/;

cosh.�e/ d�e D
h�1.�2h�1/� .h

2
�2
C l2e � h

2
�1
/

2leh2�1
dh�1 C

2h�2h�1
2leh2�1

dh�2 ;

d�e D�
.h2�2 C l

2
e C h

2
�1
/ dh�1 � 2h�1h�2 dh�2

2leh2�1 cosh.�e/
:

5.3 The Einstein–Hilbert functional

We give ourselves someZ�S , and define z WD jZj and s WD jS j. Define PZ WD f� 2RS j 8� 2Z; �� D0g

as well as P1=2Z WD fN� 2RS
C
j 8� 2Z; N�� D 0g. Recall that we set �� .�/D 0 if �� D 0.
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Definition 5.10 (Einstein–Hilbert functional) Let N� 2KZ . For h 2 P1=2Z and for an edge e of Th, we
denote by le the length of e and by �e the dihedral angle of the embedding �h at the edge e.

The Einstein–Hilbert functional is defined as follows:

H N� W P
1=2
Z !R; h 7!

X
�2S

h� .�� � N�� /C
X

e2Edge.Th/

le�e:

Lemma 5.11 Letting � 2 S , the map h 7! �� .h/ is continuous on P1=2 and C 1 on each cell P1=2T
of P1=2.

Proof From �h2�2 D �h
2
�1
C l2e � 2leh�1 sinh.�e/— the cosine law in E1;2 — together with the first

equality of Definition–Proposition 5.7, the restriction of �� to H�C
T WD fh 2 P1=2T j h.�/ > 0g for each

triangulation T is C 1. Let h 2 @P1=2T . Then for all cells P1=2T 0 containing h, the triangulations T and T 0

are equivalent by Proposition 2.20, so Mh;T 'Mh;T 0 . Hence ��;T .h/D ��;T 0.h/, and we deduce that ��
is continuous on H�C WD fh 2 P1=2 j h.�/ > 0g. Again using the cosine law, for any edge e D Œ�� 0� in
some triangulation T and any Nh 2 P1=2T such that Nh.�/D 0, we have

lim
h!Nh
h2H

�C
T

�e D lim
h!Nh
h2H

�C
T

sinh�1
l2e � h

2
� C h

2
� 0

leh�
DC1:

The first equality of Definition–Proposition 5.7 yields

lim
h!N�
h2H

�C
T

cos �� .h/D 1;

and since 0� � � � we deduce that lim
h!Nh;h2H

�C
T
�� .h/D 0. Hence �� is continuous on P1=2T . From

Corollary 5.8 and lim
h!Nh;h2H

�C
T
�e DC1, we also obtain that

lim
h!Nh
h2H

�C
T

@��

@h� 00
.h/D 0

for any � 002S , and obviously .@�=@h� 00/.h/D0 if h.�/D0 and � 00¤� . We deduce that � is continuously
differentiable on P1=2T .

Finally, since P1=2 is the union of finitely many such cells P1=2T , we get continuity on P1=2.

Lemma 5.12 Let T be a triangulation associated with a cell P1=2T of P1=2. For any edge e of T , the
map h 7! �e.h/ is C 1 on P1=2T .

Proof By construction of the polyhedral embedding, it suffices to show the “half” dihedral angle ˛e
is C 1, effectively reducing the problem to the embedding of a fixed triangle T D Œ�1�2�3� 2 T . Note that
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although the edge ŒO�i � may become lightlike when h�i ! 0, the planes .O�i�j / (resp. .�1�2�3/) are
never degenerated and stay timelike (resp. spacelike) for i; j 2 f1; 2; 3g. Therefore the angle ˛e is well
defined and depends in a C 1 manner in the coordinates of the embeddings of the �i for i 2 f1; 2; 3g.

Using notation of Lemma 2.3, the center ! is the orthogonal projection of O on .�1�2�3/. We may
choose the embedding of T in such a way that .�1�2�3/ is the plane ft D

p
�0g, ie ! D .t; 0; 0/. Recall

that �0.h/ is positive and depends polynomially on h. We may in addition fix the embedding � so that
�.�1/D .h; x; 0/ with x > 0. Then elementary trigonometry in the spacelike plane .�1�2�3/ yields that
the coordinates of �.�i / are C 1 functions in h.

Proposition 5.13 Let N� 2RS
C

. The functional H N� is well defined , C 1 on P1=2Z , and

dH N� D
X

�2SnZ

.�� � N�� / dh� :

Proof We prove the proposition for Z D∅; the other cases are corollaries.

Consider the family of compact locally Minkowski polyhedra .Qh/h2P1=2 given by the past of the
polyhedral Cauchy surface �h.†/�M.h/. For any triangulation T defining a cell PT of P , the underlying
simplicial complex Kh of Qh is constant on PT . The edges of T are always spacelike, � is well defined
and continuous on P1=2T , and Kh is a continuous family of polyhedra. All the angles in the definition of
H N� are C 1 on each cell P1=2T by Lemmas 5.11 and 5.12. In addition, Lemma 5.11 gives continuity of
h 7!

P
�2S h� .�� � N�� / on the whole P1=2. Continuity of

P
e2Edge.Th/ le�e follows from the remark that

at some h on the interface of adjacent cells P1=2T and P1=2T 0 , one obtains T 0 from T by flipping h-critical
edges. On such edges e one has �e D 0, so the sums

P
e2Edge.Th/ le�e and

P
e2Edge.T 0

h
/ le�e only differ

by null terms. We conclude that H N� is continuous on P1=2 and its restriction to any cell is C 1.

Schläffli’s formula thus applies to the interior of any cell P1=2T where h > 0 and givesX
�2S

h� d�� C
X
e2Ah

le d�e D 0:

Hence

dH N� D
X
�2S

.�� � N�� / dh� C
X
�2S

h� d�� C
X
e2Ah

le d�e D
X
�2S

.�� � N�� / dh� :

We have thus proved the result for the restriction to the interior of any cell P1=2T , and hence on a dense
subset of P1=2. Finally, by continuity of h 7!

P
�2S .��� N�� / dh� and dH N� on P1=2, the result follows.

We now study the Hessian of the Einstein–Hilbert functional on the interior of the domain of admissible
times P1=2.
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Lemma 5.14 The map � is C 1 on P1=2Z , and for all h in P1=2Z and all � 2 S nZ, we have

dh�� D
X

e2Eh;e W � � 0
� 02SnZ

.tanh.˛e/C tanh.˛�e//
.h2� 0 C l

2
e C h

2
� / dh� � 2h�h� 0 dh� 0

2lec2e
;

where Eh is the set of edges of any h-Delaunay triangulation and where

ce D

�
cosh.�e/h� if h� ¤ 0;
.l2e C h

2
� 0/=le if h� D 0:

Proof By Lemma 5.11, the restriction of � is C 1 on each cell P1=2Z;T . To prove � is C 1 on the whole P1=2Z ,
it suffices to show that the equality holds on the relative interiors of cells and that the right-hand side is
well defined and continuous on the whole P1=2Z .

As argued in the proof of Lemma 5.12, for any edge e W � � 0, the angles ˛e and ˛�e are well defined
and continuous even at h with null coordinates. In addition, by the cosine law, when h! Nh for some Nh
such that Nh� D 0, we have �e!C1 and

cosh.�e/h� � sinh.�e/h� �
l2e C h

2
� 0

le
:

The right-hand side is then well defined and continuous when restricted to a given cell P1=2Z;T .

As before, critical edges e in the sum yield zero terms as 0 D �e D ˛e C ˛�e, ie ˛e D �˛�e, so
that tanh˛e D � tanh˛�e. We conclude that the right-hand side does not depend on the h-Delaunay
triangulation and is thus well defined and continuous on the whole P1=2Z .

For h in the relative interior of a cell P1=2Z;T associated to a triangulation T and for � 2 S nZ, denote by
.ei /i2Z=nZ the family of outgoing edges from � enumerated coherently with the orientation of †. Define
�i 2 S the other end of ei so that

dh�� D
X

i2Z=nZ

dh�eieiC1 D
X

i2Z=nZ

�
�

tanh.˛ei /
cosh.�ei /

d�ei �
tanh.˛�eiC1/
cosh.�eiC1/

d�eiC1

�

D�

X
i2Z=nZ

�
tanh.˛ei /
cosh.�ei /

C
tanh.˛�ei /
cosh.�ei /

�
d�ei D�

X
i2Z=nZ

tanh.˛ei /C tanh.˛�ei /
cosh.�ei /

d�ei

D

X
i2Z=nZ

tanh.˛ei /C tanh.˛�ei /
cosh.�ei /

.h2� C h
2
�i
C l2e / dh� � 2h�h�i dh�i
2leh2� cosh.�e/

D

X
i2Z=nZ

tanh.˛ei /C tanh.˛�ei /
cosh2.�ei /

.h2� C h
2
�i
C l2e / dh� � 2h�h�i dh�i

2leh2�
:

Proposition 5.15 For N� 2RS
C

, the functional H N� is convex on P1=2Z and strictly convex on the relative
interior of P1=2Z .
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Proof From Proposition 5.13 and Lemma 5.14, H N� is C 2 on P1=2Z and its Hessian matrix H has the
following coefficients for h 2 P1=2Z , an h-Delaunay triangulation being chosen, for all �; � 0 2 S nZ
with � ¤ � 0:

H�;� 0 D�
X

e W � � 0

.tanh.˛e/C tanh.˛�e//
2h�h� 0

2lec2e
� 0

H�;� D
X
� 02S

X
e W � � 0

.tanh.˛e/C tanh.˛�e//
h2� C h

2
� 0 C l

2
e

2lec2e
�

X
e W � �

.tanh.˛e/C tanh.˛�e//
2h�h�

2lec2e
:

Since the embedding of † into M.h/ is convex, tanh.˛e/C tanh.˛�e/ � 0 with equality if and only if
the edge is h-critical. Therefore, for all � 2 S ,

H�;� C
X
� 0¤�

H�;� 0 D
X
� 02S

X
e W � � 0

.tanh.˛e/C tanh.˛�e//
h2� 0 C l

2
e C h

2
� � 2h�h� 0

2lec2e

D

X
� 02S

X
e W � � 0

.tanh.˛e/C tanh.˛�e//
.h� 0 � h� /

2C l2e
2lec2e

� 0:

The Hessian matrix of H N� is thus diagonally dominant on P1=2Z .

Consider some h in P1=2Z and � 2 S nZ such that H�;� �
P
� 0¤� jH�;� 0 j D 0. Then all outgoing edges

from � are h-critical. We build a hinge as follows.

(1) Take any h-Delaunay triangulation of† and enumerate counterclockwise the p vertices .�k/k2Z=pZ

of the neighborhood of � .

(2) Consider the hinge QD .Œ���2��1�0�; Œ���1�/.

(3) If Q is unflippable return Q.

(4) Otherwise, flipQ; the neighborhood vertices of � are now .�k/k2Z=.p�1/Z. Then return to step (2).

Since at each step, the number of neighbors of � decreases, the algorithm eventually stops after finitely
many iterations and thus returns an unflippable immersed hinge in the neighborhood of � . Such a hinge
is h-critical and unflippable; hence h2 is in a boundary facet of P not of the type h� 0 D 0. We conclude
that h is not in the relative interior of P1=2Z . Finally, the Hessian matrix H is strictly diagonally dominant
on the relative interior of P1=2Z .

5.4 Proof of the main theorem

Theorem 5 Let † be a closed locally Euclidean surface of genus g with s marked conical singularities
of angles .�i /i2ŒŒ1;s��. For all

N� 2

� sY
iD1

Œ0;min.�i ; 2�/�
�
n f.�1; : : : ; �s/g;

there is a radiant singular flat spacetimeM homeomorphic to†�R with exactly s marked lines�1; : : : ; �s
of respective cone angles N�1; : : : ; N�s and a convex polyhedral embedding � W .†; S/! .M; .�i /i2ŒŒ1;s��/.
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Furthermore , if for all i 2 ŒŒ1; s��; N�i < �i , then such a couple .M; �/ is unique up to equivalence.

Finally, if for some i 2 ŒŒ1; s��; �i � � , there is no such convex polyhedral embedding such that �i > �i .

Denoting by �.x/ the cone angle at x if x is a point in an H2
�0-manifold, in view of Theorem 6 the main

case of the theorem can also be stated as follows:

Corollary 5.16 Let † be a closed locally Euclidean surface of genus g with s marked conical singularities
of angles .�� /�2S . For all N� 2

Q
�2S Œ0; 2��\ Œ0; �� Œ, there exists a closed H2

�0-manifold † N� together
with a homeomorphism h W†!† N� and a convex polyhedral embedding � W .†; S/! susp.† N�/s such that

� for all � 2 S , N�� D �.h.�//,

� with susp.† N�/
�
�!† N� the natural projection , we have � ı �D h.

Furthermore , such a triple .† N� ; h; �/ is unique up to equivalence.

Remark Equivalence between triples .†.i/
N� ; h

.i/; �.i// for i 2 f1; 2g is understood as an isomorphism
' W†

.1/
N� !†

.2/
N� such that �.2/ D O' ı �.1/ with O' W susp.†.1/

N� / ��! sup.†.2/
N� / the isomorphism induced by '.

Let us prove a last lemma:

Lemma 5.17 With � D .�� /�2S the cone angles of †, we have

lim
�2P

�!C1

�.�/D �:

Proof We use the same notation as in the preceding section. In a given cell PT of P , for each vertex
� 2 S and for all edges e of T outgoing from � to some �2, by the cosine law

���2 D��� C l
2
e � 2le

p
�� sinh.�e/:

Since j��1 � ��2 j is uniformly bounded on P and le is constant, �e
�!C1
�����! 0. Then from Definition–

Proposition 5.7, with e0 the subsequent edge around � , we have �ee0
�!C1
�����! �ee0 . Hence,

�� .�/
�2PT ;�!C1
����������! �� :

Finally, there are only finitely many cells PT , and S is finite.

Proof of Theorem 5 Let Z � S . We prove the theorem for N� such that f� 2 S j N�� D 0g DZ. It suffices
to show that for such N� the Einstein–Hilbert functional H N� has exactly one critical point in P1=2Z . Define
KZ WD

˚
N� 2

Q
�2S Œ0; 2��\ Œ0; �� Œ j 8� 2Z; N�� D 0

	
. We need to prove the existence and uniqueness

of critical points of H N� for any N� 2KZ .

If z D s then KZ D f0g and PZ D f0g by Theorem 2(c), and there is nothing else to prove. Otherwise,
we proceed as follows.
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By Proposition 5.15 the functional H N� is strictly convex in the relative interior of P1=2Z ; thus the critical
points are of index 1 when considered as a function on the relative interior of PZ .

Let � 2 @PZ , the relative boundary of PZ , and let N� 2 KZ . By Theorem 2(e), on @PZ there exists
� 2 S nZ such that either �� D 0 or � is in the kernel of the affine form of an unflippable immersed
hinge. In the former situation, 0D �� < N�� . In the latter situation, consider such a hinge .Q; �/ with
QD .ŒABCD�; ŒAC �/.

� If .Q; �/ is embedded, then Q is unflippable. Without loss of generality, we may assume C 2 ŒABD�,
the cone around � D �.C / is then convex and contains a coplanar wedge of Euclidean angle at least � ;
in particular �� � � . By the Lorentzian Volkov’s lemma (Theorem 3),

– if �� > 2� we have �� > 2� � N�� ,

– if � � �� � 2� we have �� � �� > N�� .

� If � is not an embedding, then without loss of generality we may assume �.A/ D �.B/ D �.D/;
being h-critical, all edges have null dihedral angles so that the stalk of the cone around � WD �.C / is
trigonometric (without breaking point). In particular, �� D �� > N�.

Either way, �� > N�� . Together with Proposition 5.13 this implies that H N� has no critical points on @P1=2Z .

If z D s� 1, then � is a function defined on an interval, and is continuous and increasing from 0 to some
�max > N�. The result follows.

We now assume z � s�2. Define P1=2Z WD P1=2Z if Z ¤∅ and P1=2Z WD P1=2Z [f1g if Z D∅. This way
P1=2Z is homeomorphic to an s � z dimensional closed ball and its boundary @P1=2Z is homeomorphic
to an .s�z�1/-dimensional sphere. The homeomorphism may be made explicit by the radial map from
some �0 2 Int.P1=2Z /, the relative interior of P1=2Z . Consider the family of vector fields indexed on KZ ,

X N� W P
1=2
Z !Rs�z; h¤1 7! .�� .h/� N�� /�2SnZ ; 1 7! .�� � N�� /�2SnZ ;

and notice thatX j N� Int.P1=2Z / is the gradient of Hj N� Int.P1=2Z / for N� 2KZ by Proposition 5.13. By Lemma 5.17,
X is continuous at1 ifZD∅; thus N�; h 7!X N�.h/ are continuous onKZ�P

1=2
Z and, from the discussion

above, nonsingular on the boundary of P1=2Z . By Proposition 5.15 and the Poincaré-Hopf theorem
[8, Theorem 12.13], the number of singular points of the vector field X N� in the interior of P1=2Z is equal
to the index of X N�=kX N�k on @P1=2Z . Since N� 7!X. N�; � / is continuous and KZ is connected, the index of
X N�=kX N�k is independent from N�.

Finally, take some N� 2KZ and Nh in the interior of P1=2Z close enough to 0 that
Q
�2SnZ Œ0; 2

Nh� �� P1=2Z

and consider the vector field Y Wh! .h� Nh/=kh� Nhk on @P1=2Z , which can be continuously extended to the
whole @P1=2Z since limh!C1 Y.h/D 1S . On the one hand, for h on an “h� D 0” boundary component,
Y.h/� < 0 while �� .h/D 0; on the other hand, for h on a “Q�.h/D 0” boundary component, there is a
� 2 S nZ such that �� � N�� > 0, and on such a component, for all � 0 2 S nZ; .h� Nh/� 0 > 0. At infinity,
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both X and Y have positive coordinates. In any case for all h 2 @P1=2Z ; Y ¤�X N�=kX N�k; thus X N�=kX N�k
is homotopic to Y among nonsingular vector fields on @P1=2Z . The latter has index 1; thus so does the
former. Finally, for all N� 2 KZ , H N� has exactly one critical point on P1=2Z . Existence and uniqueness
follow for N� 2KZ .

By continuity of � and compactness of P1=2Z , any N� 2
Q
�2S Œ0; 2��\ Œ0; �� � is in the image of h 7!

.�� .h//�2S , except possibly . N�� /�2S D .�� /�2S , which is the limit at1.

Finally, the last point follows from the case ‚� � of Theorem 3.

Appendix Radiant 2C 1 singular spacetimes

Before providing a more thorough description of our singularities, allow us to stress that there is a subtle
point one needs to be aware of. We construct 3-manifolds with a geometric structure locally modeled on
the Minkowski space E1;2 except on a discrete family of lines we deem reasonable to call “singular”.
The geometric E1;2-structure (in a sense described below) on the complement of the singular lines is
easily defined, but our manifolds are not naturally metric spaces; they are spacetimes and come with a
natural local order relation: the causal order. As a consequence, characterizing the isomorphism classes
of the singular lines requires some care in general, especially for lightlike lines. We refer to [4] for the
zoology of Lorentzian singular lines obtained via finite polyhedra gluings in dimension 2C 1, which
should convince the reader that one should be slightly careful.

The causal structure is a tool to characterize lightlike singularities; furthermore, the boundary of the
polyhedron we will construct has a special role with respect to this structure: it is a Cauchy surface, as
defined below.

In this section, we discuss the isomorphisms classes of singularities in our manifolds: their local description
as well as constructions with the addition of some more general background.

A.1 Singular .G;X/-manifolds

Let .G;X/ be an analytical structure, ie a group G acting on a locally connected Hausdorff space X
by homeomorphisms so that any element g 2G is completely determined by its action on a nontrivial
open subset. Following [11], we define a singular .G;X/-manifold as a Hausdorff second countable
topological M space endowed with a .G;X/-structure on an open and dense subset U locally connected
inM . There exists a unique maximal extension of this .G;X/-structure to a maximal open and dense subset
Reg.M/ locally connected in M called the regular locus of M . An a.e. .G;X/-morphism is a continuous
map sending regular locus to regular locus and which is a .G;X/-morphism on the regular locus.

A singular .G;X/-manifold is locally modeled on a family .X˛/˛2A if for all ˛ 2 A, X˛ is a singular
.G;X/-manifold and for all x 2M , there exists a neighborhood U of x and an open V of some X˛ such
that U is isomorphic to V .
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In our situation, the singular locus is a union of 1-dimensional submanifolds of a 3-manifold. The
hypotheses of [11] are then satisfied, and the isomorphism class of a singular point is thus well defined.

A.2 Local models of singular lines

We now introduce the local models of the singular F-manifolds we will consider.

Definition A.1 (massive particles model space) Let ˛ 2R�
C

. The manifold E1;2˛ is R3 endowed with
the flat Lorentzian metric

ds2˛ D�dt2C dr2C
�
˛

2�
r
�2

d�2

on Reg.E1;2˛ / WD fr > 0g, the complement of the line Sing.E1;2˛ / WD fr D 0g, where .t; r; �/ are cylindrical
coordinates of R3.

For ˛ > 0, the metric on E1;2˛ induces a unique .Isom0.E1;2/;E1;2/-structure on Reg.E1;2˛ / such that the
curves t 7! c.t/D .t; r0; �0/ are future causal for r0 > 0 and all �0 2R=2�Z.

Definition A.2 (BTZ line model space) The manifold E1;20 is R3 endowed with the flat Lorentzian
metric

ds20 D�2 d� drC dr2C r2 d�2

on Reg.E1;20 / WD fr>0g, the complement of the line Sing.E1;20 / WD frD 0g, where .�; r; �/ are cylindrical
coordinates of R3.

The metric on E1;20 induces a unique .Isom0.E1;2/;E1;2/-structure on Reg.E1;20 / such that the curves
� 7! c.�/ D .�; r0; �0/ are future causal for r0 > 0 and all �0 2 R=2�Z. The model spaces E1;2

�0 are
singular E1;2-manifolds but not singular F-manifolds. We thus introduce the following:

Definition A.3 For ˛ � 0 define F˛ WD Int.JC.O// with O D .0; 0; 0/ 2 E1;2˛ .

By [10, Proposition 1.3], if ' W U˛ ! Uˇ is an a.e. SO0.1; 2/-isomorphism between neighborhoods of
singular points in F˛ and Fˇ , then ˛D ˇ and ' is induced by an element of SO0.1; 2/. The local models
are thus nonisomorphic as singular F-manifolds. Note that the singular line of a massive particle is
timelike while the singular line of E1;20 is lightlike.

A.3 Causal structure

An F-manifold M comes with a causal structure, eg a family .�U ;�U /U of transitive relations, each
defined on an open subset U of M which is inherited from the causal and chronological relation of F .
The causal structure on Reg.F˛/ can be extended to F˛ so that any F�0-manifold M comes with a causal
structure. A future causal curve is then a curve in M , which is locally increasing for �. The causal
past/future of a point p can then be defined accordingly, and we denote them by J�.p/ and JC.p/,
respectively.
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Note that �U is an order relation for U small enough, but this is not necessarily the case for �M . We
say that an F�0-manifold M is causal if �M is an order relation; we say furthermore that M is globally
hyperbolic if it is causal and for any p; q 2M , JC.p/\ J�.q/ is compact. A Cauchy surface of M
is a topological 2-dimensional submanifold † in M which intersects every future causal curve exactly
once. One can prove a version of the Geroch theorem valid for F�0-manifolds [5] which states that an
F�0-manifold M admits a Cauchy surface if and only if it is globally hyperbolic. An F�0-manifold is
Cauchy-compact if it admits a compact Cauchy surface.

A morphism M1 ! M2 between globally hyperbolic F�0-manifolds is a Cauchy-embedding if it is
injective and sends a Cauchy surface of M1 to a Cauchy surface of M2; the latter is then called a
Cauchy-extension of M1. A manifold M1 is Cauchy-maximal if, for any Cauchy-embedding M1

'
�!M2,

the map ' is an isomorphism. One can prove [9; 10] a version of the Choquet–Bruhat–Geroch theorem
for F�0-manifolds following the lines of [30], which states that any F�0-manifold admits a unique
Cauchy-maximal Cauchy-extension.

A.4 Rays, suspensions, and the structure theorem

Letting M be an F�0-manifold, Reg.M/ admits a natural causal geodesic foliation, the leaves of which
we call rays. We notice that in the model spaces, F˛ the foliation can be extended to the whole F˛;
furthermore, the extended foliation to the whole F˛ induces a causal foliation on M .

Definition A.4 For ˛ 2 RC, define H2
˛ as the space of ray of F˛ and define the natural projection

�˛ W F˛!H2
˛.

Proposition A.5 For ˛ � 0, H2
˛ is homeomorphic to R2 and comes with a natural singular H2-structure

whose singular locus contains at most one point. Furthermore ,

� if ˛ D 2� , H2
˛ is regular and isomorphic to H2,

� if 2� ¤ ˛ > 0, the singular point is a conical singularity of angle ˛,

� if ˛ D 0, the singular point is a cusp.

Proof � To begin with, in F˛ , define the plane … WD ft D 1g if ˛ > 0 and … WD f� D 1g if ˛ D 0. The
plane … intersects each ray exactly once and �j… is a homeomorphism.

� Define the surface H� WD f� D .1C r2/=.2r/; r> 0g if ˛D 0 and H� WD ft2� r2D 1; r > 0g if ˛ > 0.
The Lorentzian metric of F˛ induces a hyperbolic metric on H� which intersects each ray of Reg.F˛/
exactly once, and the projection F˛!H2

˛ induces a homeomorphism H� ' .H2
˛ n Sing.F˛//. Hence

H2
˛ has an H2-structure defined on the complement of Sing.F˛/, eg on the complement of a subset

containing at most one point.

� If ˛ D 2� then F˛ ' F and the result follows.

� If ˛ D 0, one can check that H� is complete and that the singular point of H2
˛ has a neighborhood of

finite volume. The singular point is thus a cusp.
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� If 2� ¤ ˛ > 0, then one can check that the length of the circle of radius r > 0 in H2
˛ around the

singular point is ˛r . The singular point is a conical singularity of angle ˛.

Definition A.6 An H2
�0-manifold is a singular H2-manifold whose singular locus is locally modeled on

H2
˛ for some ˛ � 0.

Definition A.7 Let † be an H2
�0-manifold, let .Ui ;Vi ; 'i ; ˛i /i2I be an H2

�0-atlas of † with Vi �H2
˛i

,
and let Uij WD Ui \Uj and Vij WD 'i .Ui \Uj / for i; j 2 I such that Ui \Uj ¤∅. We add the convention
that ˛i ¤ 2� if and only if Vi contains a neighborhood of the singular point of H2

˛i
such that for any

i; j 2 I where Uij ¤∅ and Ui contains a singular point, ˛i D j̨ and the change of charts Vij
'ij
��! Vj i

comes from some �ij 2 SO0.1; 2/ acting both on H2
˛i

and F˛i .

Define the suspension susp.†/ of † as the gluing of .��1˛i .Vi //i2I via .��1˛i .Vij /
�ij
��! ��1

j̨
.Vj i //i;j2I .

Remark The suspension susp is a functor from the category of H2
�0-manifolds to the category of

F�0-manifolds.

Remark By construction, susp.†/ is an F�0-manifold with a natural projection susp.†/! †. One
can check that diamonds JC.p/\ J�.q/ are compact and that susp.†/ is causal, and hence globally
hyperbolic. Furthermore, the natural projection induces a homeomorphism � W†0!† for any Cauchy
surface †0.

Remark Be wary that the following simpler construction might be deceptively wrong. Start from
.H2

˛;h˛/ as a hyperbolic conical singularity (or a cusp) with h˛ its Riemannian metric; then define the
suspension as

F 0˛ WD .R
�
C �H2

˛;g˛/; g˛ WD �dt2C t2h˛:

Though one indeed obtains F 0˛ ' F˛ for ˛ > 0 as well as Reg.F0/ ' Reg.F 00/, note that F 00 is not
isomorphic to F0 and not isomorphic to a neighborhood of a singular point of E1;20 . To see this, notice
that the past causal geodesics in Reg.F 0˛/ that “should” hit the singular line all converge to the same ideal
point in the past (the origin) but never actually hit the singular line.

Definition A.8 A radiant spacetime is a Cauchy-compact Cauchy-maximal globally hyperbolic F�0-
manifold M .

We have a structure theorem for radiant spacetimes. This result is in the line of Mess’s theorem [25] and
is akin to previous results by Bonsante and Seppi [7], or the author [10] though in a much simpler context.
To the author’s knowledge, while this result is expected and “folkloric”, there is no existing reference to
point to. We therefore provide a proof.

Theorem 6 Let M be a radiant spacetime. There exists a compact singular H2
�0-manifold † such that

M ' susp.†/.
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Proof Let †0 be a Cauchy surface of M and consider the natural projections �˛ W F˛!H2
˛ . Consider

an F-atlas .'i ;Ui ;Vi /i2I of Reg.M/ such that each Vi is causally convex in F . Write Uij WD Ui \Uj for
i 2 I , and for i; j 2 I such that Ui \Uj ¤∅ write Vij WD 'i .Ui \Uj / as well as Wij WD �.Vij /�H2.
We then have a unique � 2 SO0.1; 2/ such that for all x 2 Vij ; 'j ı'i .x/D � �x. Hence, for any i; j 2 I
such that Ui \Uj ¤∅, we have the following commutative diagram:

†0 M †0

†0\Ui

OO

'

��

Ui
�
oo

'i

��

�

55

Uij

OO

'

'j
))

'i

'

uu

Uj
�
//

�

ii

'j

��

†0\Uj

OO

'

��

Vij
�

// F
9Š�2SO0.1;2/

// F Vj i
�

oo

Vi

�

��

Vijoo

�

��

�
// ��1.Wij /

OO

�
//

�

��

��1.Wj i /

OO

�

��

Vj i
�
oo //

�

��

Vj

�

��

Wi Wij
oo Wij

�
// Wj i Wij

// Wj

Since †0 is acausal, the projection the maps †0\Ui !Wi are injective and by definition surjective; †0
as well as all the Wi are 2-dimensional manifolds; by invariance of domain, the maps †0\Ui !Wi are
then homeomorphisms. The F-structure on M thus induces on †0 a singular H2-structure; we call this
singular H2-manifold †. Proceeding the same way around singular points of M , the local models F˛ of
M induce a local model H2

˛ for each singular point of †. The suspension susp.†/ of † is then given by
the induced gluing of the cones ��1˛i .Wi / along the ��1˛ .Wij /.

One can then define a natural map M �
�! susp.†/ on each chart .U ;V; '/ of the .F˛/˛�0-atlas of M with

V � F˛ as � W U ! ��1˛ .�˛.V//, x 7! '.x/. By construction, the map � is an injective a.e. F-morphism.
Since M is Cauchy-maximal and Cauchy-compact, it follows from [10, Proposition 2.20] that the map �
is surjective, and thus an isomorphism.

Corollary A.9 Any radiant spacetime admits an embedded natural H2
>0-surface which is a Cauchy

surface of its F>0 part.

Another way to construct the suspension of an H2
�0-surface † (and hence a radiant spacetime) is to

choose a geodesic cellulation of † such that each cell is a polygon of H2. The surface † can thus be seen
as a gluing of a family of cells P D .Pi /i2I along their edges E D .e.j /i /i2I;j2Ji (where Ji parametrizes
the edges of Pi ) via isometries �e;e0 2 SO0.1; 2/ sending the edge e to the edge e0. We denote by G the
set of couples .e; e0/ 2 E such that e is glued to e0. We can then construct susp.†/ by gluing the cones
Ci WD �

�1.Pi / for i 2 I along their faces .��1.e//e2E via the isometries .�e;e0/.e;e0/2G . We thus have
the following:
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Proposition A.10 Any gluing of cones of F D JC.O/ with polygonal basis , gluing couples of distinct
2-facets together via elements of SO0.1; 2/ and without leaving unglued 2-facets , is a radiant spacetime.
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Real algebraic overtwisted contact structures on 3-spheres

ŞEYMA KARADERELI

FERIT ÖZTÜRK

A real algebraic link in the 3-sphere is defined as the zero locus in the 3-sphere of a real algebraic function
from R4 to R2 with an isolated singularity at the origin. A real algebraic open book decomposition on
the 3-sphere is by definition the Milnor fibration of such a real algebraic function. We prove that every
overtwisted contact structure on the 3-sphere with positive three-dimensional invariant d3 (apart from
13 exceptions) are real algebraic via functions of the form f Ng with f; g complex algebraic and with the
pages of the associated open books planar.

32S55, 57K33; 32C05

1 Introduction

A Milnor fillable 3-manifold is a connected closed oriented contact 3-manifold which is contact isomorphic
to the contact link manifold of a complex analytic surface with isolated singularity. We know that any such
manifold admits a unique Milnor fillable contact structure up to contactomorphism — see Caubel, Némethi
and Popescu-Pampu [5] — and moreover a Milnor fillable contact structure is tight. For instance there is
a unique tight contact structure on the 3-sphere S3 and it is Milnor fillable (by eg the nonsingularity 0
in C2).

Here we ask a similar question regarding overtwisted contact structures. We confine ourselves to S3

although the definitions and questions below can be easily generalized. We investigate fibered links in S3

which are given real algebraically (or more generally real analytically). Let us call an oriented link in S3

weakly real algebraic if it is isotopic to the link of a real algebraic surface with an isolated singularity at 0
(ie it is the zero locus of an algebraic map h WR4!R2 with an isolated critical point on its zero locus). It
is well known that every link in S3 is weakly real algebraic; see Akbulut and King [1]. Nevertheless the
map h may have singularities outside its zero locus arbitrarily close to 0. If 0 is an isolated critical point
of h, we call the associated oriented link in S3 real algebraic. This condition of isolatedness is called the
Milnor condition. In such a case there is a Milnor fibration on the link exterior in S3 over S1; see Milnor
[16, Section 11]. In other words the real algebraic link is the binding of an (in general rational) open
book with the open book decomposition given as the Milnor fibration (see eg Baker and Etnyre [2] for
rational open books). If moreover the Milnor fibration is given by h=khk we call the associated open
book (and the supported contact structure) on S3 real algebraic.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Although the fibration is given by h=khk in a tubular neighborhood of the zero set of h and that fibration
can always be inflated to a Milnor fibration on S3 (see eg the survey of Seade [21]), it is not always true
that this Milnor fibration coincides with the one given by h=khk on S3. A quite simple counterexample
is given in [16, Section 11].

On the other hand, compared to weakly real algebraic ones it is rather hard to construct examples of
real algebraic maps with an isolated singularity and this issue has been long studied. For example it is
known that the fibered figure-eight knot is not complex algebraic but is real algebraic; see Perron [18].
Meanwhile since every real algebraic link is fibered, a nonfibered weakly real algebraic link cannot be
real algebraic. We believe it is still unknown whether every fibered link is real algebraic (see eg Bode [4]).

An obvious way to produce real algebraic links in S3 is as follows. Take two nonconstant complex
algebraic maps f; g WC2!C and consider the real algebraic map hD f Ng. The oriented link L that is
the zero locus of h in S3 has components ff D 0g\S3 with canonical orientations and fg D 0g\S3

with the reverse orientations. Such links are special examples of graph links, ie spliced Seifert links; see
Eisenbud and Neumann [7]. Moreover h has an isolated singularity at 0 if and only if L is fibered, and in
that case the Milnor fibration is given by h=khk; see Pichon [19]. Now, as a corollary to Ishikawa [15]
the real algebraic open book corresponding to such h determines an overtwisted contact structure on S3.

We recall that there are countably infinite number of overtwisted contact structures in S3. They are
distinguished by the half-integer-valued d3 invariant (see eg Ding, Geiges and Stipsicz [6]) or equivalently
the Hopf invariant H of the monodromy vector field; on S3 these two invariants satisfy H D�d3�

1
2

(see eg Tagami [22]). They are also related to the enhanced Milnor number � of the binding of an open
book that supports the contact structure: � D �H (see eg Hedden [13]; for the introduction of � see
Neumann and Rudolph [17]). Inaba [14] has already proven that all overtwisted structures in S3 are
real algebraic, by explicitly constructing real algebraic maps for any given � 2 Z. More precisely these
maps are mixed polynomials of the form f Ng, are polar weighted homogenous and conveniently strongly
nondegenerate. The computation of � uses the ideas introduced in [17] for multilinks that are given by
splice diagrams. The constructed open books have pages with varying genera.

In this article we are interested in the genera of the pages of the real algebraic open books. Recall that
any overtwisted contact structure is planar, ie it is supported by a planar open book; see Etnyre [9]. Here
we prove the following planarity result in the real algebraic setup.

Theorem 1.1 All overtwisted contact structures on S3 with d3 > 0 and

d3C
1
2
… f4; 5; 9; 11; 17; 19; 25; 37; 47; 61; 79; 95; 109g

are real algebraic , with the associated real algebraic open books having planar pages. These planar , real
algebraic overtwisted structures are exactly the ones which can be obtained by functions of the form f Ng

with f; g WC2!C complex algebraic.
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We remark that the polynomials f Ng that we construct have real coefficients. Also recall the supporting
genus results for tight contact structures: not only a tight structure may have positive minimal supporting
genus among supporting open books, it has been also shown that the Milnor fillable (tight) contact
structures may have Milnor genus strictly greater than the support genus; see Bhupal and Ozbagci [3].

In order to build the overtwisted structures in the theorem we consider all fibered Seifert/graph multilinks
with planar fibers; these turn out to be exactly the ones that appear in [7, page 123] and their possible
splicings. Going through all these fibered links which are also known to be real algebraic, we prove the
theorem. In this way we exhaust all Seifert/graph multilinks that are given by real analytic functions
of the form f Ng. To come up with new real algebraic planar open books one has to use real analytic
functions of different forms.

We believe that the 13 sporadic exceptions that appear in the theorem are real algebraic, planar as well,
although the families of real algebraic Milnor fibrations that we have produced via functions f Ng miss
them. The nonnegativity that emerges might be more resilient. Thus we ask

Question 1.2 Is there a real algebraic , planar overtwisted contact structure on S3 with negative d3? The
supporting real algebraic open book is rational in general ; ie the fibered link is a multilink. Can the open
book be made an integral open book? That is , can the binding be a simple link which is not a multilink?

Generalizing our definitions we ask

Question 1.3 Is it true that every overtwisted contact structure on a Milnor fillable 3-manifold is real
algebraic? Can the associated real algebraic open books have planar pages?

To proceed towards the proof of Theorem 1.1, we recall in Section 2 the Seifert and graph multilinks and
the splicing operation. There we also give our families of fibered graph multilinks in S3 and compute the
associated monodromy maps. In Section 3 we demonstrate that those families of graph multilinks and the
corresponding open book decompositions are real algebraic via functions of the form f Ng. In Section 4
we briefly recall a way to compute the d3 invariant, by constructing almost complex 4-manifolds that fill
the given open book decompositions in S3. Finally in Section 5 we prove Theorem 1.1 by computing
the d3 invariants explicitly for our families of examples. It turns out that one of our families of graph
multilinks exhausts all the overtwisted structures with d3 > 461. Then by computer aid we show that
those with 0 < d3 < 461 (except the 13 values given in the theorem) are realized by our families of graph
multilinks as well. In the computation of d3 the constructed 4-manifolds have large intersection matrices.
For the clarity of the exposition, those intersection matrices are presented in Appendix A and the tedious
computations regarding those matrices are given in Appendix B.
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2 Seifert multilinks and splicing

In this section we recall introductory information on Seifert and graph multilinks and present several
families of examples which, as to be argued in the next sections, are planarly fibered and real algebraic
via functions of the form f Ng. Our discussion here is based on [7].

2.1 Seifert multilinks

A Seifert fibered manifold is a closed 3-manifold given as an S1-bundle with the orbit space a 2-orbifold.
A Seifert multilink in a Seifert fibered 3-sphere is an oriented link L that is constituted of a finite number
of Seifert fibers Si and an integer multiplicity mi assigned to each component. In this work we are solely
interested in Seifert multilinks in S3. We are going to denote a Seifert multilink with n components by
L.m1; : : : ; mn/. L is canonically oriented by the sign of the multiplicities mi . In this setup the homology
class mD .m1; : : : ; mn/ 2H1.L/' Zn determines a cohomology class in the link complement as well,
since H1.L/'H

1.M �L/. That class is given by

m./D lk.L; /D
nX

iD1

mi � lk.Si ; /:

Let �i denote the meridian of the i th link component. Then we havem.�i /Dmi . Moreover we can realize
the Seifert surface of the multilink as an embedded oriented surface whose intersection with the boundary of
a tubular neighborhood of Si is .ıi � .mi=ıi ;�.mi /

0=ıi //-cable of Si , where .mi /
0D

Pn
j¤i mj lk.Si ; Sj /

and ıi D gcd.mi ; m
0
i / [7, page 30].

Multilinks are represented by splice diagrams as exemplified in Figure 1. The central node represents the
ambient Seifert manifold. The numbers adjacent to the node for each branch are called the weights and
the numbers next to the arrowheads are the multiplicities mi .

(I) (II) (III) (IV)

u

1

1

u

�1

�1

1
1

1

1

1

p

p� 1

S2

�1

S1

u 1

1

T2

1
1

1

1

u

�1

�1

T3

q 1

T1

uC 1

1

1

u

�1

�1

P3

P4

P2

P1

�1

�1

1
1

1

1 2

3

u
˙1

˙1
1

1
0 1

Figure 1: Splice diagrams for Seifert multilinks of type (I), (II), (III) and (IV). These are exactly
all fibered Seifert multilinks with trivial geometric monodromy.
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An arrowhead with weight C1 (respectively > 1) corresponds to a regular (respectively singular) Seifert
fiber. The multilink (I) in Figure 1 has 2uC 2 connected components in the underlying manifold S3 on
which the Seifert fibration is given by the S1-action .x; y/ 7! .tp�1x; tpy/ for t 2 S1. Here the orbit
fx D 0g corresponds to the singular fiber S1 with weight p and fy D 0g corresponds to the singular fiber
S2 with weight p� 1. The linking numbers of link components can be computed easily using the splice
diagram [7, Proposition 7.4]. For instance, the linking number of any nonsingular fiber with the singular
fiber S1 (respectively with S2) is the product of weights of the remaining vertices, which equals p� 1
(respectively p). The linking number of S1 and S2 is 1. Thus the multilink (I) is isotopic to the negative
Hopf link union u positively oriented and u negatively oriented isotopic copies of the .p; p� 1/ torus
knot cabled around S1.

A multilink L.m/ is fibered if there exists a locally trivial fibration M �L! S1 in the homotopy class
corresponding to m, whose fibers are minimal Seifert surfaces for the multilink. Using the analytic
description of the Seifert fibration of the link exterior, it can be easily seen that a Seifert multilink is
fibered if and only if the linking number of any nonsingular fiber  with the multilink does not vanish [7,
page 90]. In other words, denoting by ˛i the weight of the i th link component Si , the integer

l Dm./D

nX
iD1

mi lk.; Si /D

nX
iD1

mi˛1 � � � Ǫ i � � �˛n

is nonzero. Moreover if l D 1 then the pages of the corresponding open book are planar. The families of
diagrams in Figure 1 are exactly those Seifert multilinks with l D 1 [7, page 123].

A fibered multilink determines a rational open book decomposition for the ambient Seifert manifold. If
each mi D˙1 then the open book is an integral open book.

The monodromy of the fibration can be represented as the flow along the Seifert fibers. Thus in the
interior of the pages it is isotopic to a homeomorphism of order l . On the other hand the monodromy
flow near each boundary component is computed as a .�.ıi=mi l/˛i /-worth (in general rational) twist
along a boundary parallel curve [7, page 108].

Example 2.1 For the multilinks of type (I) given in Figure 1, the multilink is fibered since we have
l D .�1/ �.p�1/C1 �pCu �.1/ �p.p�1/Cu �.�1/ �p.p�1/D 1¤ 0. The pages are .2uC2/-punctured
spheres. The monodromy flow is trivial in the interior of the pages. However near the boundary components
corresponding to the singular fibers, the flow is given as � 1

�1�1
p D p and � 1

1�1
.p � 1/ D �.p � 1/

twists. Along the boundary components corresponding to the nonsingular fibers with positive and negative
multiplicities, the flow is �1 and C1 twist respectively. Therefore the monodromy is given as

(2-1) � D ap
� b�.p�1/

� c�1
1 � � � c

�1
u � d

1
1 � � � d

1
u :

Here, a and b denote Dehn twists along curves parallel to the boundary components fx D 0g and fy D 0g
respectively; ci and di are twists along curves parallel to the nonsingular components with positive and
negative multiplicities respectively.
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Similarly, as noted above, the multilinks of type (II) and (III) in Figure 1 are fibered multilinks in S3 with
l D 1 too. The pages of the multilink of type (II) are .2uC1/-punctured spheres and the monodromy is

(2-2) � D a�q
� b�1

� c�1
1 � � � c

�1
u�1 � d

1
1 � � � d

1
u :

The pages of the multilink of type (III) are .2uC 3/-punctured spheres and the monodromy is

(2-3) � D a3
� b2
� c�1

1 � � � c
�1
uC1 � d

1
1 � � � d

1
u :

2.2 Splicing multilinks

The splice of two multilinks along a specified pair of link components is constructed topologically by
excising tubular neighborhoods of the given link components and gluing the remaining manifolds in a
meridian-to-longitude fashion. Note that topologically splicing multilinks in S3 produces a multilink
still in S3. Moreover a cohomology class is determined by the multiplicities of the components of the
resulting multilink. For the splicing operation we require that the restriction of this cohomology class on
each manifold gives the cohomology class of the splice component. This condition is equivalent to the
following. Let S0 and zS0 with multiplicities m0 and zm0 be the spliced link components; .�0; �0/ and
. Q�0; Q�0/ be the meridians and longitudes on the tori on which the splicing occurs. Then we must have

m0 Dm.�0/D zm. Q�0/D . zm0/
0;

zm0 D zm. Q�0/Dm.�0/D .m0/
0;

where . zm0/
0 and .m0/

0 are defined as in Section 2.1. Observe that these requirements are exactly the
conditions for the Seifert surfaces in each splice component to glue together along the splicing tori.
Moreover since Seifert surfaces approach the spliced link components as ı0 D gcd.m0; .m0/

0/ copies of
the .m0=ı0; .m0/

0=ı0/ curve, the Seifert surfaces are pasted together along ı0 tori.

Splicing of two multilinks is represented by a splice diagram (with more than one node) obtained by
joining the two diagrams along the arrowheads corresponding to the link components at which splicing
occurs. A multilink with such a splice diagram is called a graph multilink.

As an example, consider the multilink (I) in Figure 1 and there the link component S1 of weight p. Since
m.�1/D .1/ � 1 � � � 1Cu � .1/ � 1 � � � 1 � .p� 1/Cu � .�1/ � 1 � � � 1 � .p� 1/D 1 and m.�1/D�1, one can
splice S1 only with a link component whose multiplicity is zm1 D 1 and . zm1/

0 D�1, ie the pages must
approach the link component as .1;�1/ curves. Similarly for the link component S2 of weight p � 1,
we have m.�2/D .�1/ � 1 � � � 1Cu � .1/ � 1 � � � 1 �pCu � .�1/ � 1 � � � 1 �p D�1 and m.�2/D 1. Therefore,
given two multilinks of type (I) one can only splice S1 in one with S2 in the other.

Another possible splicing occurs between the splice multilink (II) and the multilink (I) in a single case;
that occurs when q D 2. In fact, computing m.Tj / for Tj as in Figure 1 we obtain 0, 1� q and 1C q for
j D 1; 2; 3 respectively. Thus splicing is only possible when q D 2 and the splicing occurs between the
knot S1 of type (I) and T2 of type (II).
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(I-I) (II-I)

(III-I) (II-III)

u

1

1

u

�1

�1

1
1

1

1 p� 1

p

1

�1 1 q� 1
1
1

1

1q

v1

1

v

�1

�1
�1

v� 1 1

1

v

�1

�1
1

1
1

1

1 2

1 p

1
1

1

1p� 1

u1

1

u

�1

�1
1

vC 1
1

1

v

�1

�1
�1

1
1

1

1 2

3 p� 1

1
1

1

1p

u1

1

u

�1

�1
�1

u� 1 1

1

u

�1

�1
1

1
1

1

1 2

1 3

1
1

1

12

vC 11

1

v

�1

�1
�1

Figure 2: All possible splice diagrams consisting of (I), (II) and (III) are made up of these pieces.

Similarly splicing is possible between the knot S2 of type (I) and P1 of type (III), and between the knot
T2 of type (II) and P1 of type (III). Here P1 is as in Figure 1. Going through all possible cases we obtain
the following list.

Lemma 2.2 All possible splice diagrams in S3 that can be obtained via the multilinks (I), (II) and (III)
are trees where each splicing is one of those in Figure 2.

A graph multilink is fibered if and only if it is an irreducible link and each of its splice components is
fibered [7, Theorem 4.2]. The monodromy is pieced together from the monodromy maps of the splice
components. In each splice component the monodromy is given by the flow along the corresponding
Seifert fibers whereas on the tubular neighborhoods of the separating tori, it has two different flows in
each end given by the Seifert fibration of each Seifert component. Therefore after splicing, the Dehn
twists corresponding to glued boundaries become trivial and on the separating annuli the monodromy acts
as a twist map which measures the difference between the two flows of Seifert fibers. In [7, Theorem 13.1]
the monodromy flow on a separating annulus is computed as a � -worth twist along the core of the annulus
with

(2-4) � D
�ı0

l1 � l2
.˛0ˇ0�˛1 � � �˛n �ˇ1 � � �ˇm/;

Algebraic & Geometric Topology, Volume 25 (2025)
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u v w

1 1 1 1 1 1

1
p� 1 p q� 1 q r � 1 r

�1

� � � � � � � � �

� � � � � � � � �

�1 �1 �1 �1 �1 �1

u v w

Figure 3: Splice diagram for (I-I-I).

where ˛0; ˇ0 are the weights of the spliced components and ˛i ; ǰ are the weights of the remaining link
components around the two nodes.

Example 2.3 Consider the multilink (I-I) given in Figure 2. Note that when q D p the graph multilink
is simply a Seifert multilink [7, Theorem 8.1(6)]. So let us consider the case q > p.

By the previous discussion we know that l1 D l2 D 1; also ı D gcd.�1; 1/D 1. Thus (2-4) gives

� D�
1

1�1
.p.q� 1/� q.p� 1//D p� q:

Since ı D 1, we glue the pages of the spliced components, which are .2uC2/- and .2vC2/-punctured
spheres respectively, along a single annulus neighborhood of the spliced boundary components. Conse-
quently the pages of the spliced multilink are .2uC2vC2/-punctured spheres.

As given in (2-1) the splice components have monodromies �1 D ˛
p � a�.p�1/ � c�1

1 � � � c
�1
u � d

1
1 � � � d

1
u

and �2D b
q �ˇ�.q�1/ � e�1

1 � � � e
�1
v �f

1
1 � � � f

1
v . The monodromy flow is q�p negative Dehn twists about

the core circle, say  , in the annulus. Therefore the monodromy of the spliced multilink is

(2-5) � D a�.p�1/
� c�1

1 � � � c
�1
u � d

1
1 � � � d

1
u � 

�.q�p/
� bq
� e�1

1 � � � e
�1
v �f

1
1 � � � f

1
v :

Example 2.4 Similarly let us consider a graph multilink of the form (I-I-I) as in Figure 3. Recall that we
splice the knot with weight q of the first splice component to the knot with weight .r � 1/ of the second
splice component.

As in the previous examples l1 D l2 D 1 and ı D gcd.m1; m2/D 1. Assuming r > q, we have

� D�
ı

l1l2
.q.r � 1/� r.q� 1/D q� r < 0:

The page of the splice multilink is a union of the pages of the splice components joined together along a
boundary by a .q�r/-twisted annulus (since ı D 1). Since the splice components have .2uC2vC2/- and
.2wC2/-punctured sphere pages, the pages for the splice link are .2uC2vC2wC2/-punctured spheres.
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The monodromy of the new fibration is

(2-6) � D a�.p�1/c�1
1 � � � c

�1
u d1

1 � � � d
1
u
�.q�p/e�1

1 � � � e
�1
v f 1

1 � � � f
1

v �
�.r�q/brg�1

1 � � �g
�1
w h1

1 � � � h
1
w

where � denotes the Dehn twist about the core circle in the latter annulus.

Example 2.5 As in the previous example one can compute the monodromies of the other multilinks
given in Figure 2. Among these we will need the monodromy of the splicing (III-I),

(2-7) � D a.p/
� c�1

1 � � � c
�1
u � d

1
1 � � � d

1
u � 

�.p�3/
� b2
� e�1

1 � � � e
�1
vC1 �f

1
1 � � � f

1
v :

Here, we assume that p � 4 because the graph multilink is simply a Seifert multilink when p D 3 [7,
Theorem 8.1(6)].

3 Real algebraic singularities and associated contact structures

In this section we assert that the graph multilinks and the associated open books that have been considered
in the previous section with explicit monodromy can be realized real algebraically via functions of the
form f Ng.

For an isolated singularity of a holomorphic (or a complex algebraic) function from C2 to C, the
corresponding Milnor fibration defines an open book structure on S3, whose binding is isotopic to the
singularity link. In such a setup we call the singularity link and the open book and the supported tight
contact structure complex analytic/algebraic. Any complex algebraic link in S3 is a graph multilink and
the corresponding splice diagram can be deduced from the Puiseux pairs [7, Appendix 1]. Of course not
all the graph multilinks in S3 are complex algebraic. Eisenbud and Neumann [7, Theorem 9.4] gave the
precise condition for a graph multilink to be complex algebraic.

Similarly an isolated singularity of a real analytic function h WR4!R2 determines a Milnor fibration in
S3 under the condition that the Jacobian matrix of h has rank 2 on an open neighborhood of the origin,
except the origin. This is the Milnor condition. A link is said to be real analytic/algebraic if it is the
singularity link of a real analytic/algebraic map h WR4!R2 that satisfies the Milnor condition. In the
absence of the Milnor condition, there might not even exist a Milnor fibration. In the particular case
hD f Ng where f and g are holomorphic functions, [19] and [20] discuss the Milnor fibration in the link
exterior and the geometry of the fibration near the singularity link.

The isotopy class of a multilink is encoded in a plumbing tree that is decorated with arrows having
multiplicities for the link components. When a multilink is isotopic to the singularity of a holomorphic
germ, the plumbing tree for the multilink can be obtained as the dual tree of any normal crossing resolution
of the function. Since Lf Ng as an unoriented link is Lf [Lg , it follows that the resolution graph of a
real algebraic germ of the form f Ng is nothing but the resolution graph of fg with negative signs for the
multiplicities of the link components corresponding to g. Passing to the corresponding splice diagram as
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described in [7, Section 20], we conclude that the conditions in [7, Theorem 9.4] are necessary for real
algebraicity via f Ng. Namely these conditions are:

(i) the weights of all vertices are positive;

(ii) for every splicing ˛0ˇ0 > ˛1 � � �˛n �ˇ1 � � �ˇm where ˛0, ˇ0 are the weights of the spliced compo-
nents and ˛i ; ǰ are the remaining weights around the two nodes.

Thus we immediately conclude that (IV) in Figure 1 fails (i) for real algebraicity via f Ng, and the splicings
(II-I) and (II-III) fail (ii). Moreover any splicing involving (IV) either fails (i) or (ii). So the only cases in
the previous section that satisfy the necessary conditions (i) and (ii) are (I), (II), (III) and any segment of
(III-I-I-. . . ).

Having said these, the following theorem explains exactly when the singularity link of a real algebraic
germ of the form f Ng has a real algebraic open book.

Theorem 3.1 [19, Theorem 5.1] Let f W .C2; 0/! .C; 0/ and g W .C2; 0/! .C; 0/ be two holomorphic
germs with isolated singularities and having no common branches. Then the real analytic germ f Ng has an
isolated singularity at 0 if and only if the link Lf �Lg is fibered.

Moreover , if this condition holds , then the Milnor fibration of the link Lf �Lg is given by f Ng=kf Ngk.

Let us elaborate in our running examples.

Example 3.2 For �2uC1 D 1 consider the functions

f .x; y/D y

uY
iD1

.xp
C �iyp�1/ and g.x; y/D x

2uY
jDuC1

.xp
C �jyp�1/:

After resolving the germ of fg, we obtain the plumbing diagram of Lf Ng given in Figure 4. As in [7,
Section 20], we can obtain the splice diagram of the singularity link from the plumbing diagram and see
that it is isotopic to the multilink of type (I) in Figure 1. Since we have already noted that the multilink is
fibered, it follows from Theorem 3.1 that f Ng has an isolated singularity and the fibration of the multilink
which we investigated in the previous section is the Milnor fibration of the germ. Observe also that the
branch f Nx D 0g corresponds to the singular link component of weight p, fy D 0g corresponds to the
singular component of weight p � 1 and the positively (respectively negatively) oriented u copies of
.p; p � 1/ cables around fx D 0g component correspond to the branches

˚Qu
iD1.x

p C �iyp�1/ D 0
	

(respectively
˚Qu

iD1 .x
pC �iyp�1/D 0

	
).

Example 3.3 Similarly we observe that the singularity links of the real algebraic germs�
xy

uY
iD1

.xq
C�iy/

�
�

�u�1Y
jD1

.xqC �uCjy/

�
and

�uC1Y
iD1

.x3
C�iy2/

�
�

�
Nx Ny

uY
jD1

.x3C �uCjC1y2/

�
are isotopic to the fibered multilinks of type (II) and (III) in Figure 1 respectively; therefore have isolated
singularities at the origin and engender Milnor fibrations.

Algebraic & Geometric Topology, Volume 25 (2025)



Real algebraic overtwisted contact structures on 3-spheres 1387

u

u

p� 2

�1 �2 �2 �2

�p

�
p2

p2� 1

� �
p2� 2p� 2

p2� 2p� 3

� �
p2� 3p� 3

p2� 3p� 4

� �
p

p

�

�
p2�p� 1

p2�p� 2

�
Figure 4: Dual tree of a resolution � of fg with associated multiplicities given in the parentheses
which are the multiplicities mf

i and mg
i of f ı� and g ı� , respectively, along the irreducible

component for the i th exceptional divisor. As a side remark we recall that Lf �Lg is fibered if
and only if mf

i ¤m
g
i at the rupture vertices [20, Corollary 2.2].

As for the graph multilinks obtained via splicing in the previous section, a priori they might not be
algebraic. Consider the positively oriented graph multilink isotopic to the multilink (I-I). This multilink is
complex algebraic when q > p [7, Theorem 9.4]. The corresponding holomorphic function can be easily
deduced from the holomorphic germs related to the spliced components as follows. Recall that we splice
the component corresponding to the branch fxD 0g of a multilink L1 of type (I) with weights for singular
fibers p; p�1 with the component fyD 0g of a multilink L2 of type (I) with weights q; q�1. By isotopy,
the nonsingular link components of L1 which are .p; p�1/ cables of fxD 0g can be realized as .p�1; p/
cables of the fy D 0g component of L1. As we splice, we remove the spliced link components and keep
the remaining ones. The resulting multilink is a positive Hopf link with 2u many .p�1; p/ cables around
the link component fy D 0g (coming from L1) and 2v many .q; q� 1/ cables around the link component
fx D 0g (coming from L2). Again by isotopy, .p � 1; p/ cables around the former component can be
seen as .p; p� 1/ cable around the latter. The resulting multilink is the union of all components of the
spliced multilinks except the ones we spliced. Thus the corresponding holomorphic function is nothing
but the product of the algebraic functions corresponding to branches. Since the spliced multilink (I-I) is
the above multilink where some of the link components are oriented negatively, it becomes real algebraic
when q > p and the corresponding real algebraic map is the map where we take the conjugate of the
algebraic functions corresponding to the branches that are oriented negatively. The real algebraic map
corresponding to this graph multilink is of the form f Ng and is given by

(3-1) Nxy

uY
iD1

.xp
C �iyp�1/

2uY
jDuC1

.xpC �jyp�1/

vY
iD1

.xq
C �iyq�1/

2vY
jDuC1

.xqC �jyq�1/:

Thus Theorem 3.1 assures real algebraicity of the open book. Similarly, the graph multilink (I-I-I) is real
algebraic when p < q < r and the multilink (III-I) is real algebraic when p > 3.
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In [15] it is proven that if the link components of a fibered multilink in a homology 3-sphere are canonically
oriented (or all those orientations are reversed), then the multilink is the binding of an open book which
supports a tight contact structure; otherwise the supported contact structure is overtwisted. So one can
conclude that the Milnor open books of the real algebraic links we have constructed so far support
overtwisted contact structures in S3.

4 Calculation of the 3-dimensional invariant from open books

In this section we recall how to detect the overtwisted contact structures compatible with the Milnor
fibered multilinks constructed in the previous sections using the monodromy data.

Recall that two overtwisted contact structures on S3 are contact isotopic if and only if they are homotopic
as 2-plane fields [8]. Moreover the homotopy class of a 2-plane field is determined by the induced spinc

structure and the d3 invariant (see [12; 23]). Since S3 has a unique spinc structure, the overtwisted
structures on S3 are classified by their d3 invariants, which take values in ZC 1

2
(see eg [6]). There may

be various ways to compute the d3 invariant of a given contact structure. One can even compute the
enhanced Milnor number as explained in [17] or in a way similar to [14] (in the latter the real algebraic
functions are so-called “convenient” while ours in Section 3 are not). Here, bearing in mind the fillings
of contact 3-manifolds, we will use the method in [11] to calculate d3 from the monodromy data of the
compatible open book.

It is known that given an achiral Lefschetz fibration on a 4-manifold W with fibers F with boundary, W
can be described as F �D2 with 2-handles attached to some vanishing cycles i with appropriate framings.
The Lefschetz fibration on W induces an open book decomposition and hence a contact structure on @W .
The contact structure induced on @W is obtained by contact .C1/=.�1/-surgeries on the Legendrian
realizations of the vanishing cycles of respectively negative/positive critical points, each embedded in
distinct fibers of the open book; the contribution to the monodromy is respectively a left/right handed
Dehn twist about the vanishing cycle. In the reverse direction given a 3-manifold with an open book
decomposition, the monodromy data determines an achiral Lefschetz fibration on a 4-manifold which on
the boundary gives the given open book.

It should be noted that 2-handle attachments with .�1/ framing result in an honest Lefschetz fibration
carrying a natural almost complex structure which is the extension of the one on D2 � F . However,
attaching a 2-handle with .C1/ framing gives an achiral Lefschetz fibration which does not have a natural
almost complex structure that comes from extending the older one. It is shown in [6] that if W0 is
the handlebody decomposition of the 4-manifold admitting the Lefschetz fibration constructed via k
.C1/-surgeries, W D W0 # kCP 2 (with the same boundary) has a natural almost complex structure.
When the second cohomology has no torsion (where W is assumed to have no 1-handles) one has the
following formula (see [10] or [11]) which is the generalization of the similar statement in [6]:

(4-1) d3.�/D
1
4
.c2.W /� 2�.W /� 3�.W //C k:
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Here �.W / and �.W / are the signature and the Euler characteristic ofW . The Chern class c 2H 2.W IZ/

is the Poincaré dual to
Pn

iD1 r.i /Ci where Ci is the cocore of the 2-handle attached along the vanishing
cycle i , and r.i / is the rotation number of i . Since c.W /j@W D c.�/ is zero, c.W / 2H 2.W / comes
from a class in H 2.W; @W / thus can be squared. A way to calculate r.i / on a page is explained in [11]
in detail. The rotation number is equal to the winding number of the projection of the curve to a page
with respect to the orientation on the Kirby diagram obtained by the usual orientation of D2 extended
over 1-handles.

5 Proof of Theorem 1.1

We have seen that the multilinks (I), (II) and (III) in Figure 1 are fibered with planar pages (see Section 2.1)
and are real algebraic via functions of the form f Ng while the multilink (IV) is not (see Section 3). Splicing
together these multilinks in the forms (III-I), (I-I), (I-I-. . . ), (III-I-I-. . . ) leads wider families of planarly
fibered multilinks (Section 2.2) which are also real algebraic via functions of the form f Ng (Section 3). Our
ongoing discussion shows that these are all possible fibered multilinks which are real algebraic via functions
of the form f Ng. Moreover there is no other fibered multilink in S3 with planar pages. In fact, for a fibered
Seifert multilink with n components the Euler number of a page F is �.F /D jl j �

�
2�kC

Pk
jDnC1 1= j̨

�
with k � n and j̨ � 1 [7, page 91]. In order to have F planar, �.F / must equal 2�n. Equating, we get
either nD 2 or jl j D 1. In both cases k is arbitrary and j̨ D 1 for all n < j � k. The case nD 2 gives
nothing but a Hopf link in S3. The latter case where jl j D 1 is all that appear in Figure 1.

Furthermore we have noted that the corresponding contact structures are overtwisted (see Section 3). In
this section, we calculate their d3 invariants and show what overtwisted contact structures on S3 are
supported by those real algebraic planar open books. We only focus on the graph multilinks (I-I), (III-I)
and (I-I-I) as the families (III-I-I-. . . ) and (I-I-. . . ) with larger d3 invariants do not provide different
contact structures. This discussion will be tied in Section 5.7 to prove Theorem 1.1.

5.1 Overtwisted structures via (I)

We first consider the family of multilinks of type (I). Recall that the open books that they determine have
pages .2uC 2/ times punctured spheres (denoted by †0;2uC2). Moreover the monodromy (2-1) of the
open book is

� D ap
� b�.p�1/

� c�1
1 � � � c

�1
u � d

1
1 � � � d

1
u ;

where a, b and c are boundary parallel curves. Observe that the number of negative Dehn twists in this
expression is pCu� 1.

As we discussed in Section 4, via the monodromy information of the given open book decomposition we
can construct a 4-manifold with boundary S3 as the underlying space of an achiral Lefschetz fibration. In
that way we can calculate the d3 invariant of the overtwisted contact structure on S3 supported by the
open book. Now, since the pages have .2uC2/ boundary components, we first attach .2uC1/ 1-handles
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< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > < l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

< l a t e x i t  s h a 1 _ b a s e 6 4 = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

X Z1 � � � Z2u�1 Yc1

.C1/

du

.�1/

.�1/

a1 � � � ap

.C1/

b1 � � � bp�1

X Z1
� � �

Z2u�1 Y

Figure 5: Kirby diagram for the 4-manifold corresponding to (I).

to D4 to get D2 �†0;2uC2. Then, we attach 2-handles along Legendrian copies of boundary parallel
curves on †0;2uC2 with framing˙1, depending on the parity of the Dehn twist. The resulting 4-manifold
W is given in Figure 5.

The 1-chain group C1.W / of W has a basis fX; Y;Z1; : : : ; Z2u�1g and C2.W / has a basis

fa1; : : : ; ap; b1; : : : ; bp�1; c1; : : : ; cu; d1; : : : ; dug:

The boundary map D W C2.W /! C1.W / is given by

D.aj /DX; j D 1; : : : p;

D.bj /D Y; j D 1; : : : p� 1;

D.c1/DZ1�X; D.ci /DZi �Zi�1; i D 2; : : : u;

D.du/D Y �Z2u�1; D.di /DZuCi �ZuCi�1; i D 1; : : : u� 1:

Thus, H2.W / has a basis with generators�
a1� a2; : : : ; ap�1� ap; b1� b2; : : : ; bp�2� bp�1; b1�

uX
iD1

.ci C di /� ap

�
:

Since rankH0 D 1, rankH1 D 0 and rankH2 D 2p� 2, we get �.W /D 2p� 1.

Note that a2
j D�1D d

2
j and b2

j D 1D c
2
j . So the squares of the basis elements are .aj � ajC1/

2 D�2,
.bj �bjC1/

2D 2 and
�
b1�

Pu
iD0.ciCdi /�ap

�2
D 0. Thus in this basis the intersection matrix is QI as

given in Appendix A. We also compute in Appendix B that �.W /D �.QI/D 0, and detQI D .�1/
p�1.

To calculate the square of the first Chern class, we chose an orientation of the curves and compute the
rotation numbers of the curves with respect to the orientation induced from blackboard. Thus we get
r.a/ D 0 D r.b/, r.ci / D �1 and r.di / D �1. Note that the calculation of c2 is independent of the
chosen orientations. Let us denote the cocores of the 2-handles attached along ai , bj , ck and dl by Ai ,
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Bj , Ck and Dl respectively. Then c.W / is Poincaré dual to �
�Pu

iD1 Ci C
Pu

jD1Dj

�
. This evaluates

on the basis above as w D .0; : : : ; 2u/T . Hence,

c2.W /DQW .PD.c.W ///D w
TQ�1w D

4u2 � .�1/p�1 � .p� 1/ �p

.�1/p�1
D 4u2p.p� 1/:

Inserting the results of the previous steps in (4-1) we get

(5-1) d3.�/D
1
4

�
4u2.p� 1/p� 2.2p� 1/� 3 � 0

�
C .pCu� 1/D u2p.p� 1/Cu� 1

2
:

5.2 Overtwisted structures via (II)

We perform similar calculation for the multilinks (II) given in Figure 1. The associated monodromy (2-2)
has qCu negative Dehn twists. After following the same steps to construct the 4-manifold W we find
�.W /D qC 1, and as pointed out in Appendix B, �.W /D q. Similarly as before, we have

c2.W /D .2u� 1/2q:

Inserting in (4-1) we get

(5-2) d3.�/D
1
4

�
.2u� 1/2q� 2.qC 1/� 3q

�
C .qCu/D u.u� 1/qCu� 1

2
:

5.3 Overtwisted structures via (III)

As for the multilinks (III) in Figure 1, the associated monodromy (2-3) has uC 1 negative Dehn twists.
The constructed 4-manifold W has �.W /D 5, and as pointed out in Appendix B, �.W /D�2. Moreover,

c2.W /D
.2uC 1/2 � �6

�1
D 6.2uC 1/2:

Inserting in (4-1) we get

(5-3) d3.�/D
1
4

�
6.2uC 1/2� 2 � 5� 3 � .�2/

�
C .uC 1/D 6u.uC 1/CuC 2� 1

2
:

5.4 Overtwisted structures via (I-I)

We consider the graph multilinks (I-I) obtained by splicing two multilinks of type (I), as we have
constructed in Figure 2, top left. The monodromy (2-5) of the associated open book has qCuC v� 1
negative Dehn twists.

Since the monodromy is obtained by the monodromies of the splice components, to construct the 4-
manifold, we can use the Kirby diagrams for the splice components. One can see that the Kirby diagram of
the spliced multilink can be constructed as follows. We identify the 1-handles corresponding to the spliced
boundary components, thus the 2-handles whose attaching circles corresponds to the Dehn twists along
that boundary components cancel. By means of the new Dehn twist contributions to the monodromy, we
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= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t > = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

.�1/ .C1/ .�1/ .C1/
� � � � � �

du c1 fv e1

.C1/

a1 � � � ap�1

.C1/

1 � � � q�p

.�1/

b1� � �bq

˛1

� � �

p̨ ˇ1

� � �

ˇq�1

� � � � � �

Figure 6: Kirby diagram for the 4-manifold corresponding to (I-I). The faded ends of the previous
diagrams are the deleted blocks.

add new 2-handles whose attaching circles are along the identified boundary component. Consequently,
we see that the corresponding 4-manifold has the Kirby diagram given in Figure 6.

Furthermore, H2.W / has a basis with generators

a1� a2; : : : ; ap�2� ap�1; 1� 2; : : : ; k�1� k; b1� b2; : : : ; bq�1� bq;

1C

� uX
iD1

ci C di

�
� ap�1; b1C

� vX
iD1

ei Cfi

�
� k :

Since rankH0 D 1, rankH1 D 0 and rankH2 D 2q� 2, we have �.W /D 2q� 1.

Note that, a2
j D c

2
j D e

2
j D 

2
j D 1 and b2

j D d
2
j D f

2
j D �1. So the squares of the basis elements

are .aj � ajC1/
2 D 2, .j � jC1/

2 D 2, .bj � bjC1/
2 D�2,

�
1C

�Pu
iD1 ci C di

�
� ap�1

�2
D 2 and�

b1C
�Pv

iD1 ei C fi

�
� k

�2
D 0. In this basis the intersection matrix is QI-I as given in Appendix A.

We compute in Appendix B that �.W /D �.QI-I/D 0, and detQI-I D .�1/
q�1.

Note that, r.a/D r./D r.b/D 0, r.ci /D�1, r.di /D�1, r.ei /D�1 and r.fi /D�1. Therefore,

c.W /D�

uX
iD1

.Ci CDi /�

vX
jD1

.Ej CFj /:

This evaluates on the basis above as w D .0; : : : ;�2u;�2v/T . In order to calculate c2, it is sufficient to
calculate the inverse of last 2� 2 block of QI-I. We deduce that

c2.W /D 4u2p.p� 1/C 8uvq.p� 1/C 4v2q.q� 1/:

Explicit calculations can be found in Appendix B.

Inserting all these results in (4-1) we get

d3.�/D
1
4
.4u2p.p� 1/C 8uvq.p� 1/C 4v2q.q� 1/� 2.2q� 1/� 3 � 0/C qCuC v� 1

D u2p.p� 1/C v2q.q� 1/C 2uvq.p� 1/CuC v� 1
2
:

As we have seen, the information about the resulting graph link and its fibration can be deduced from the
splice components easily. In the next example, we will construct a wider family of overtwisted contact
structures and observe how the procedure goes on.
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5.5 Overtwisted structures via (I-I-I)

We consider the graph multilinks (I-I-I) obtained by splicing three multilinks of type (I), as we have
constructed in Figure 3. The monodromy (2-6) of the associated open book has rCuCvCw�1 negative
Dehn twists. By the same arguments as in the previous example, the corresponding 4-manifold has the
Kirby diagram given in Figure 7.

Then H2.W / has a basis with generators

a1� a2; : : : ; ap�2� ap�1; 1� 2; : : : ; q�p�1� q�p;

�1� �2; : : : ; �r�q�1� �r�q; b1� b2; : : : ; br�1� br ; 1C

� uX
iD1

ci C di

�
� ap�1;

�1C

� vX
iD1

ei Cfi

�
� q�p; b1C

� wX
iD1

gi C hi

�
� �r�q:

Since rankH0 D 1, rankH1 D 0 and rankH2 D 2r � 2, we have �.W /D 2r � 1.

Note that a2
j D c

2
j D e

2
j D g

2
j D 

2
j D �

2
j D 1 and b2

j D d
2
j D f

2
j D h

2
j D�1. So the squares of the basis

elements are

.aj�ajC1/
2
D 2; .j�jC1/

2
D 2; .�j��jC1/

2
D 2; .bj�bjC1/

2
D�2;�

1�

� uX
iD1

ciCdi

�
�ap�1

�2

D 2;

�
�1�

� vX
iD1

eiCfi

�
�q�p

�2

D 2;

�
b1�

� wX
iD1

giChi

�
��r�q

�2

D 0:

In this basis the intersection matrix is QI-I-I as given in Appendix A. We compute in Appendix B that
detQI-I-I D .�1/

q�1.

As we discussed in the previous example the number of positive eigenvalues is

.p� 2/C .q�p� 1/C .r � q� 1/C 3D r � 1

and the number of negative eigenvalues is .r � 1/. Thus, �.W /D 0.

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t > = " ( n u l l ) " > ( n u l l ) < / l a t e x i t > = " ( n u l l ) " > ( n u l l ) < / l a t e x i t >= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

= " ( n u l l ) " > ( n u l l ) < / l a t e x i t >

.�1/ .C1/ .�1/ .C1/ .�1/ .C1/
� � � � � �

du c1 fv e1 hy
g1

.C1/

a1 � � � ap�1

.C1/

1 q�p

.C1/

�1 �r�q

.�1/

b1 � � � br

� � � � � �

Figure 7: Kirby diagram for the 4-manifold corresponding to (I-I-I).
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Note that, r.a/D r.b/D r./D r.�/D 0, whereas r.ci /D�1, r.di /D�1, r.ei /D�1, r.fi /D�1,
r.gi /D�1 and r.hi /D�1. Therefore, we have

c.W /D�

uX
iD1

.Ci CDi /�

vX
jD1

.Ej CFj /�

wX
jD1

.Gj CHj /:

This evaluates on the basis above as w D .0; : : : ;�2u;�2v;�2w/T . In order to calculate c2, it is
sufficient to calculate the inverse of the last 3� 3 block of QI-I-I. The calculations in Appendix B show

c2.W /D 4u2p.p� 1/C 4v2q.q� 1/C 4w2r.r � 1/C 8uvq.p� 1/C 8uwr.p� 1/C 8vwr.q� 1/:

Inserting in (4-1) we get

(5-4) d3.�/D
1
4

�
4u2p.p�1/C4v2q.q�1/C4w2r.r�1/C8uvq.p�1/

C8uwr.p�1/C8vwr.q�1/�2�.2r�1/�3�.0/
�
C.rCuCvCw�1/

D u2p.p�1/Cv2q.q�1/Cw2r.r�1/

C2uvq.p�1/C2uwr.p�1/C2vwr.q�1/CuCvCw� 1
2
:

5.6 Overtwisted structures via (III-I)

We consider the graph multilinks (III-I) obtained by splicing two multilinks of type (III) and (I), as
constructed in Figure 2, bottom left. The monodromy (2-7) of the associated open book has pCuCv�2
negative Dehn twists. H2.W / has a basis with generators

a1� a2; : : : ; ap�1� ap; 1� 2; : : : ; p�4� p�3; b1� b2;

1�

� uX
iD1

ci C di

�
� ap; b1�

vC1X
iD1

ei �

vX
iD1

fi � p�3:

In this basis the intersection matrix is QIII-I as given in Appendix A. Similar calculations as before show
that �.W /D 2p� 1, �.W /D�2, detQIII-I D .�1/

p and

c2.W /D .2u; 2vC1/

�
p.p� 1/ 2p

2p 6

�
.2u; 2vC1/T D 4u2p.p�1/C24v2

C8up.2vC1/C24vC6:

Inserting the results of the previous steps into the formula of d3 invariant, we obtain

d3.�/D
1
4
.4u2p.p� 1/C 24v2

C 8up.2vC 1/C 24vC 6� 2.2p� 1/� 3.�2//CpCuC v� 2

D u2p.p� 1/C 6v2
C 2pu.2vC 1/C 6vCuC vC 2� 1

2
:

5.7 Proof of the main theorem

Finally here we prove our main theorem by showing first that the family of fibered multilinks we obtained
by splicing (I-I-I) gives us all the overtwisted contact structures with d3C

1
2
� 431 except d3C

1
2
D 461.

Then we show that all the remaining ones, except for the ones with

d3C
1
2
2 f4; 5; 9; 11; 17; 19; 25; 37; 47; 61; 79; 95; 109g;
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are obtained by the other ways of splicing that we have presented in the previous paragraphs of the present
section. We will give a list for that at the end of the section. We do not know yet if the 13 overtwisted
structures that we have missed are real algebraic.

Let d 2 Z denote the sum d3C
1
2

in (5-4),

d D u2p.p�1/Cv2q.q�1/Cw2r.r�1/C2uvq.p�1/C2uwr.p�1/C2vwr.q�1/CuCvCw;

where the variables are positive integers with the algebraicity condition p < q < r . We fix v D w D 1
once and for all. We will use the three moves below:

(i) Replacing q and r with .qC 1/ and .r � 1/; this increases d by 2.

(ii) As long as p D 2 replacing u with .uC 2/ and r with .r � 2/; this increases d by 4uC 12.

(iii) When p D 2, increasing r by 1; this increases d by 2.r CuC q� 1/.

We start from the state .p; q; r; u; v; w/D .2; 3; r; 1; 1; 1/. These values give d D r2C5rC17, which is
odd. Any application of the moves above produces an odd number. First we will tell how to obtain all
odd integers greater than 431 (except 461) via these moves.

Starting from the initial state and applying the move (iii) for each r increases the sum by 2r C 6. We
discuss how to obtain any odd number between d D r2C5rC17 and dC2rC6D .rC1/2C5.rC1/C17
using the first two moves, provided that r is large enough.

Now starting from the initial state the application of (ii) k times increases d by 4k2C 12k Let k be
the largest integer satisfying 4k2C 12k < 2r C 6. Note that we have k D 1 for 5 < r � 17, k D 2 for
17 < r � 33 and k D 3 for 33 < r � 53.

Furthermore any odd number between d C 4c2C 12c and d C 4.cC 1/2C 12.cC 1/ for 0� c < k can
be obtained by applying move (i) 1

2
.8cC 16/� 1 D 4cC 7 times. Recall that we have the restriction

q < r and that application of moves (i) and (ii) decreases r . Hence in order to obtain all the values in
between we must have qC 4cC 7 < .r � 2c/� 4c � 7, ie r > 10cC 17 for any 0� c < k.

When c D 0, any odd number between d and d C 16 can be obtained by applying move (i) 7 times.
Therefore, we have the restriction that qC 7 < r � 7, hence r > 17.

We have observed above that for 17 < r � 33, the move (ii) is applied twice. Hence for c D 1 any odd
number between d C 16 and d C 40 can be obtained for r > 27. For 17 < r � 27, there are few values
less than d C 40 that we cannot obtain in this way.

As for 33 < r � 53, we can apply move (ii) thrice. Since r > 27, we have observed above that any sum
between d and d C 40 can be obtained. For c D 2 for the numbers between d C 40 and d C 72, we
must have r > 37. Hence whenever 37 < r � 53 we can obtain any odd number between d and d C 72.
For 33 < r � 37 we cannot obtain all the numbers in between though. For larger r (more precisely for
r > 37) the inequality r > 10cC 17 is always satisfied so that we can obtain any odd number between
d C 4c2C 12c and d C 4.cC 1/2C 12.cC 1/.
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Finally in order to obtain any odd number between d C4k2C12k and d C2rC6 via move (i), we must
have

r � 2k�

�
2r C 6� 4k2� 12k

2
� 1

�
> 3C

2r C 6� 4k2� 12k

2
� 1;

ie r < 4k2C 10k � 7. Recall that k is the largest integer satisfying 4k2C 12k < 2r C 6. Comparing
these inequalities, one can see that when r > 33 any odd number in between can be obtained via move (i).
As a result we conclude that for r � 18, ie starting from d D 431 all the odd integers are obtained, except
some finitely many missed ones for 29� r � 37. Precisely the number of these missed ones is 45.

Here one can find the exact states that give these missing numbers on a computer. Instead we try to enrich
our set of moves in order to obtain most of these 45 numbers. Indeed, at the state .2; 3; r�2; 3; 1; 1/ when
we have the sum d C16, we increase p and q by 1, decrease r by 4 to get to the state .3; 4; r �6; 3; 1; 1/
and the sum d C 36. Then applying the move (i) successively produces the missing numbers between
d C 36 and d C 40. Thereby, we can obtain 18 out of 30 missing odd numbers between 17 < r � 27.
For the 15 missing odd numbers between 29 � r � 37, we replace p; q; r by pC 2, qC 5 and r � 11
at the state .2; 3; r � 2; 3; 1; 1/ to get to the state .4; 8; r � 13; 3; 1; 1/ and the sum d C 62. Again, the
application of the move (i) successively produces all the odd numbers between d C 62 and d C 2r C 6.
For the remaining 12 missing odd numbers smaller than dC36, at the state .2; 3; r�2; 3; 1; 1/ we replace
u with uC 4, and r with r � 5. Application of this move increases the sum by 6u� 2rC 30, thus we can
obtain all the odd numbers except d D 461.

To obtain even numbers, we start from the state .2; 3; r; 2; 1; 1/ that gives the even integer d D r2C7rC30.
Then move (iii) increases the sum by 2r C 8. We will now obtain any even number between d and
d C 2r C 8 D .r C 1/2C 7.r C 1/C 30 by applying the first two moves. Let k be the largest integer
satisfying 4k2C 16k < 2r C 8. Applying (ii) k times takes us to the state .2; 3; r � 2k; 2C 2k; 1; 1/
and increases the value by 4k2 C 16k. Each application of (ii), while passing from the step uC 2k
to uC 2.kC 1/, increases the value by 8kC 20. Note that k D 1 for 6 < r � 20, we have k D 2 for
20 < r � 38 and k D 3 for 38 < r � 60.

Any number between d C 4c2C 16c and d C 4.cC 1/2C 16.cC 1/ for 0� c < k can be obtained by
applying move (i) 4cC 9 times. In order to obtain all the sums in between we must have r > 10cC 21
for any 0 � c < k. When c D 0 any even number between d and d C 20 can be obtained by applying
move (i) 9 times for r > 21. We observed above that for 20 < r � 38 we apply (ii) twice. Hence any even
number between d C 20 and d C 48 (ie for c D 1) can be obtained whenever r > 31. For 20 < r � 31
there are few values less than d C 48 that we cannot obtain in this way.

For 38 < r � 60 we can apply (ii) thrice. Any sum between d and d C 48 can be obtained as discussed
in the previous arguments. For c D 2, for the numbers between d C 48 and d C 84 we must have r > 41.
As a result, when 41 < r � 60, we can obtain any even number between d and d C 84. Moreover, larger
r values always satisfy r > 10cC 21 and we can obtain any even number between d C 4c2C 16c and
d C 4.cC 1/2C 16.cC 1/.
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state d3C
1
2

state d3C
1
2

state d3C
1
2

state d3C
1
2

Type I, (p,u) (2,1) 3 (5,1) 21 (2,5) 55 (10,1) 91
(3,1) 7 (6,1) 31 (8,1) 57 (11,1) 111
(4,1) 13 (7,1) 43 (9,1) 73 (12,1) 133

Type II, (q,u) (2,1) 1 (5,3) 33 (7,3) 45 (12,3) 75
(4,3) 27 (6,3) 39 (10,3) 63 (15,3) 93

Type III, (u) (0) 2 (1) 15 (3) 77
Type III-I, (p,u,v) (4,1,0) 23 (2,2,1) 49 (10,1,0) 113 (4,5,0) 347

(2,3,0) 35 (7,1,0) 59
Type I-I, (p,q,u,v) (2,3,2,1) 29 (3,5,2,1) 87 (4,5,2,1) 131 (2,6,3,2) 215

(2,4,2,1) 39 (3,4,1,2) 89 (2,7,4,1) 135 (2,14,2,1) 249
(2,3,1,2) 41 (2,5,4,1) 97 (4,6,2,1) 153 (2,7,3,2) 275
(2,5,2,1) 51 (3,6,2,1) 105 (4,5,1,2) 155 (2,4,3,4) 313
(2,6,2,1) 65 (2,6,4,1) 115 (2,8,4,1) 157 (3,11,4,1) 387
(2,4,1,2) 69 (2,9,2,1) 119 (2,11,2,1) 165 (7,8,1,2) 461
(3,4,2,1) 71 (2,3,1,4) 127 (3,6,1,2) 177
(2,7,2,1) 81 (3,5,1,2) 129 (2,9,4,1) 181

Type I-I-I, (p,q,r,u,v,w) (2,3,4,1,1,1) 53 (3,5,8,1,1,1) 201 (2,4,6,2,1,2) 281 (2,6,13,1,1,1) 359
(2,3,5,1,1,1) 67 (3,6,7,1,1,1) 203 (2,3,14,1,1,1) 283 (2,7,12,1,1,1) 361
(2,3,6,1,1,1) 83 (4,5,7,1,1,1) 205 (2,4,13,1,1,1) 285 (2,8,11,1,1,1) 363
(2,4,5,1,1,1) 85 (2,3,6,5,1,1) 207 (2,5,12,1,1,1) 287 (2,9,10,1,1,1) 365
(2,3,4,3,1,1) 99 (2,3,9,3,1,1) 209 (2,6,11,1,1,1) 289 (2,3,9,3,3,1) 367
(2,3,7,1,1,1) 101 (2,4,8,3,1,1) 211 (2,3,9,5,1,1) 291 (2,3,14,3,1,1) 369
(2,4,6,1,1,1) 103 (2,5,7,3,1,1) 213 (2,4,8,5,1,1) 293 (2,4,13,3,1,1) 371
(3,4,5,1,1,1) 107 (2,3,4,3,3,1) 217 (2,5,7,5,1,1) 295 (2,5,12,3,1,1) 373
(2,3,5,3,1,1) 117 (2,3,7,1,3,1) 219 (4,6,9,1,1,1) 297 (2,6,11,3,1,1) 375
(2,3,8,1,1,1) 121 (2,3,12,1,1,1) 221 (2,3,12,3,1,1) 299 (2,7,10,3,1,1) 377
(2,3,4,1,1,1) 123 (2,4,11,1,1,1) 223 (2,4,11,3,1,1) 301 (2,8,9,3,1,1) 379
(2,5,6,1,1,1) 125 (2,5,10,1,1,1) 225 (2,5,10,3,1,1) 303 (2,4,5,3,2,2) 381
(2,3,6,3,1,1) 137 (2,6,9,1,1,1) 227 (2,6,9,3,1,1) 305 (2,3,4,3,5,1) 383
(2,4,5,3,1,1) 139 (2,7,8,1,1,1) 229 (2,7,8,3,1,1) 307 (2,3,7,1,5,1) 385
(2,3,5,2,2,1) 141 (3,6,8,1,1,1) 231 (2,4,9,2,2,1) 309 (3,4,10,3,1,1) 389
(2,3,9,1,1,1) 143 (2,3,7,5,1,1) 233 (2,3,7,2,1,2) 311 (2,3,17,1,1,1) 391
(2,4,8,1,1,1) 145 (2,4,6,5,1,1) 235 (2,5,7,2,2,1) 315 (2,4,16,1,1,1) 393
(2,5,7,1,1,1) 147 (2,3,10,3,1,1) 237 (2,3,15,1,1,1) 317 (2,5,15,1,1,1) 395
(3,4,7,2,1,1) 149 (2,4,9,3,1,1) 239 (2,4,14,1,1,1) 319 (2,6,14,1,1,1) 397
(3,5,6,1,1,1) 151 (2,5,8,3,1,1) 241 (2,5,13,1,1,1) 321 (2,7,13,1,1,1) 399
(2,3,7,2,1,1) 159 (2,6,7,3,1,1) 243 (2,6,12,1,1,1) 323 (2,3,4,8,1,2) 401
(2,4,6,3,1,1) 161 (2,3,4,3,2,2) 245 (2,7,11,1,1,1) 325 (2,9,11,1,1,1) 403
(2,3,6,2,2,1) 163 (2,3,6,2,1,2) 247 (2,8,10,1,1,1) 327 (2,3,4,7,3,1) 405
(2,3,10,1,1,1) 167 (2,3,13,1,1,1) 251 (2,6,7,5,1,1) 329 (2,3,15,3,1,1) 407
(2,4,9,1,1,1) 169 (2,4,12,1,1,1) 253 (3,8,9,1,1,1) 331 (2,4,14,3,1,1) 409
(2,5,8,1,1,1) 171 (2,5,11,1,1,1) 255 (2,3,13,3,1,1) 333 (2,5,13,3,1,1) 411
(2,6,7,1,1,1) 173 (2,6,10,1,1,1) 257 (2,4,12,3,1,1) 335 (2,6,12,3,1,1) 413
(3,5,7,1,1,1) 175 (2,7,9,1,1,1) 259 (2,5,11,3,1,1) 337 (2,7,11,3,1,1) 415
(4,5,6,1,1,1) 179 (2,3,8,5,1,1) 261 (2,6,10,3,1,1) 339 (2,8,10,3,1,1) 417
(2,3,8,3,1,1) 183 (2,4,7,5,1,1) 263 (2,7,9,3,1,1) 341 (2,3,4,7,3,1) 419
(2,4,7,3,1,1) 185 (2,5,6,5,1,1) 265 (2,4,10,2,2,1) 343 (2,3,8,1,5,1) 421
(2,5,6,3,1,1) 187 (2,3,11,3,1,1) 267 (2,4,5,3,3,1) 345 (2,3,5,2,2,3) 423
(2,3,5,2,1,2) 191 (2,4,10,3,1,1) 269 (2,5,8,2,2,1) 349 (2,3,10,7,1,1) 425
(2,3,11,1,1,1) 193 (2,5,9,3,1,1) 271 (2,3,7,1,2,2) 351 (2,4,9,7,1,1) 427
(2,4,10,1,1,1) 195 (2,6,8,3,1,1) 273 (2,3,16,1,1,1) 353 (2,4,10,1,3,1) 429
(2,5,9,1,1,1) 197 (2,3,9,1,3,1) 277 (2,4,15,1,1,1) 355
(2,6,8,1,1,1) 199 (2,3,5,2,4,1) 279 (2,5,14,1,1,1) 357

Table 1: How to obtain the overtwisted structures with d3C
1
2
� 461 (except 4, 5, 9, 11, 17, 19,

25, 37, 47, 61, 79, 95 and 109).
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Finally in order to obtain any even number between dC4k2C16k and dC2rC8 via move (i), we must
have r < 4k2C 14k� 9. Checking for the values of k, one can see that the above condition is satisfied
for r > 41. As a result we conclude that for r � 17, ie starting from d D 438 all the even integers are
obtained, except some finitely many missed ones. Precisely the number of these missed ones is 78.

We have the following additional operations to produce the missed even numbers. To obtain the ones
between d C 14 and d C 20, at the state .2; 3; r; 2; 1; 1/ we increase p and q by 1 and decrease r by 3.
The new state .3; 4; r � 3; 2; 1; 1/ gives the sum d C 12. Then we apply the move (i) successively to
produce all the missing even numbers in between. For the missed even numbers between d C 48 and
d C 84, at the state .2; 3; r � 4; 6; 1; 1/ we decrease u by 4, r by 14 and increase p and q by 6 to get the
state .8; 9; r � 18; 2; 1; 1/ and the sum d C 72. Then applying the move (i) successively produces all the
missing even integers between d C 78 and d C 84.

Moreover, at the state .2; 3; r �2; 4; 1; 1/ with dC20, in order to obtain the missed ones between dC20
and d C 48, we decrease u by 2, r by 7 and increase p and q by 3 which increases the sum by 16. As
before, we can successively apply the move (i) to obtain the missing ones between d C 36 and d C 48.
However, for the small values of r , 18 of the missing even numbers cannot be obtained because of the
restriction q < r in each step. We have realized that 12 of these 18 missing numbers can be produced
by the application of the move (i) successively at the states .2; 3; r � 7; 8; 1; 1/ with the sum d C 38.
Lastly, one can see that the remaining sums 520, 558, 714, 766, 820, 876 can be obtained by the states
.5; 6; 8; 1; 2; 1/, .4; 6; 10; 1; 2; 1/, .5; 7; 10; 1; 2; 1/, .5; 7; 11; 1; 2; 1/, .5; 7; 12; 1; 2; 1/, .5; 7; 13; 1; 2; 1/.

Up to now we have proved that any overtwisted structure with d3C
1
2
� 431 (except 461) can be obtained

by (I-I-I) splicing. Note that for the multilinks (II), the supported contact structures have d3C
1
2
D 2qC2

whenever uD 2. Therefore the even values of d3C
1
2

which are between 6 and 431 can be obtained by
the multilinks of type (II). Via computer assistance we find that the ones with all the other smaller d3’s
(except 4; 5; 9; 11; 17; 19; 25; 37; 47; 61; 79; 95; 109) are obtained via splicings as shown in Table 1 (note
that usually there is more than one way to construct each case; here we give single samples).

Appendix A Intersection matrices

Here, we give the intersection matrices of the 4-manifolds that we have constructed in Section 5, in the
bases we presented there.

Let Jn and QJn be the matrices

Jn D

0BBBBBBB@

2 �1 0 � � � 0

�1 2 �1 0
:::

0 �1
: : : � � � 0

::: 0 � � � 2 �1

0 � � � 0 �1 2

1CCCCCCCA
n�n

; QJn D

0BBBBBBB@

�2 1 0 � � � 0

1 �2 1 0
:::

0 1
: : : � � � 0

::: 0 � � � �2 1

0 � � � 0 1 �2

1CCCCCCCA
n�n

:
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Then the intersection matrices for (I), (II) and (III) are

QI D

0BBBBBBBBB@

QJp�1

�1

1

Jp�2

�1 1 0

1CCCCCCCCCA
; QII D

0BB@ Jq�1

1

1 1

1CCA ; QIII D

0BB@
�2 1 0 0

1 �2 0 �1

0 0 �2 �1

0 �1 �1 �1

1CCA :

The intersection matrices for the 4-manifolds obtained for the spliced graph multilinks (I-I) and (I-I-I) are
respectively as follows; here a D �1 if q D pC 1 and a D 0 for q > pC 1; b D �1 if r D qC 1 and
b D 0 for r > qC 1:

QI-ID

0BBBBBBBBBBBBBBBBBBBB@

Jp�2

1

1

Jq�p�1

1

�1

QJq�1

1 1 2 a

1 �1 a 0

1CCCCCCCCCCCCCCCCCCCCA

; QI-I-ID

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Jp�2

1

1

Jq�p�1

1

1

Jr�q�1

1

�1

QJr�1

1 1 2 a

1 1 2 b

1 �1 a b 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Finally here is the intersection matrix for the 4-manifold obtained for the spliced graph multilink (III-I);
here aD�1 if p D 4 and aD 0 for p � 4:

QIII-I D

0BBBBBBBBBBBBB@

QJp�1

�1

1

Jp�4

1

�2 �1

�1 1 0 a

1 �1 a 1

1CCCCCCCCCCCCCA
:
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Appendix B Determinant, signature and c2 computation

Here, we give detailed calculations for the results about the intersection matrices we used in Section 5.
For practical reference we summarize these results in Table 2.

B.1 The matrix QI

First we compute the diagonalization of the intersection matrix QI above. Consider the lower triangular
matrix Sn with its ij entry (i � j ) being equal to j=i . It can be easily seen that JnD SnDnS

T
n and QJnD

Sn.�Dn/S
T
n whereDnD diag

�
2; 3

2
; : : : ; nC1

n

�
. It follows that detJnD nC1 and det QJnD .�1/

n.nC1/.

Thus we see that QI D SDS
T where

D D diag
�
�2;�

3

2
; : : : ;�

p

p� 1
; 2;

3

2
; : : : ;

p� 1

p� 2
;

1

p.p� 1/

�
and

S D

0BBBBBBBBB@

Sp�1

�1

1

Sp�2

�
1
p
� � � �

p�1
p
�

p�2
p�1

� � � �
1

p�1
1

1CCCCCCCCCA
:

We conclude that �.QI/D 0 and detQI D .�1/
p�1.

Similarly, signatures and determinants of the intersection matrices for (II) and (III) can be calculated as
given in Table 2.

B.2 The matrix QI-I

As for the intersection matrix QI-I above for the splicing (I-I), we first show that detQI-I D .�1/
q�1.

Then we compute the signature and c2.

� det c2

QI 0 .�1/p�1 4u2p.p� 1/

QII q 1 .2u� 1/2q

QIII �2 �1 6.2uC 1/2

QI-I 0 .�1/q�1 4u2p.p� 1/C 8uvq.p� 1/C 4v2q.q� 1/

QI-I-I 0 .�1/q�1 4u2p.p�1/C4v2q.q�1/C4w2r.r�1/C8uvq.p�1/C8uwr.p�1/C8vwr.q�1/

QIII-I 0 1 8u2C 24v2C 32uvC 8uC 8v

Table 2: Signatures and determinants of the intersection matrices and the corresponding c2.
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Let J 0n (respectively J 00n ) be the matrix obtained by removing the last (respectively the first) column of
the matrix Jn.

We assume that q > pC 1, ie a D 0 in QI-I; it can be shown that the results are the same in the case
q D pC 1. Now we calculate detQI-I via its last row. We observe that it is equal to .�1/q�1 times the
sum of the determinantsˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1

1

J 0q�p�1

1

�1
QJq�1

1 1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1

1

Jq�p�1

1

�1
QJ 00q�1

1 1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

:

Now we move the last column of each matrix above to the positions of the removed columns, ie in the first
matrix we move the .2q�3/rd column to the .q�3/rd position and in the second matrix to the .q�2/nd

position. These row exchanges multiply the determinants by .�1/.2q�3�qC3/ and .�1/.2q�3�qC2/,
respectively. Since ˇ̌̌̌

J 0n
1

ˇ̌̌̌
D detJn�1;

ˇ̌̌̌
ˇ̌ �1

QJ 00n

ˇ̌̌̌
ˇ̌D� det QJn�1 D .�1/

nn;

we have

detQI-I D .�1/
q�1

�
.�1/q�1

�detJ 0p�2 �detJ 0q�p�1 �
QJq�1C.�1/

q�1
�detJp�2 �detJ 000q�p�1 �det QJq�1

C.�1/q �2�detJp�2 �detJ 0q�p�1 �det QJq�1

�
C.�1/q�1

�
.�1/q �detJ 0p�2 �detJq�p�1 � QJ

00
q�1C.�1/

q
�detJp�2 �detJ 00q�p�1 �det QJ 00q�1

C.�1/q�1
�2�detJp�2 �detJq�p�1 �det QJ 00q�1

�
D .�1/qq.q�2/�.�1/q.q�1/2

D .�1/q�1:

Now we compute the signature of QI-I. This matrix is of the form�
A BT

B C

�
where A, B and C are .2q� 4/� .2q� 4/, 2� .2q� 4/ and 2� 2 symmetric matrices respectively. Let
S1 and S2 be the orthogonal matrices that diagonalize A and C �BA�1BT respectively. Define

S D

�
S1 0

�S2BA
�1 S2

�
:
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It can be easily seen that

SQST
D

"
S1AS

T
1 0

0 S2.C �BA
�1BT /ST

2

#
:

Hence

�.QI-I/D �.SQI-IS
T /D �.S1AS

T
1 /C �.S2.C �BA

�1BT /ST
2 /

D �.A/C �.C �BA�1BT /:

We know that Jn and QJn are diagonalizable and are positive definite and negative definite respectively.
Therefore, A has .p�2/C.q�p�1/D q�3 positive and q�1 negative eigenvalues. Moreover it is easy
to observe that C �BA�1BT is positive definite, hence has 2 positive eigenvalues. Thus �.QI-I/D 0.

Now we compute c2. As we have observed, the basis of H2.W IZ/ given in Section 5.1, c.W / evaluates
on as w D .0; : : : ;�2u;�2v/T . Hence, in order to calculate c2, it is sufficient to calculate the inverse of
the last 2� 2 block of QI-I. Let D denote this matrix and dij be its .i; j / entry. We claim

d11 D
cofac11

detQI-I
D p.p� 1/; d12 D d21 D q.p� 1/; d22 D q.q� 1/:

To prove these we compute the cofactors explicitly. First,

cofac11 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

Jq�p�1

1

�1
QJq�1

1 �1 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

D .�1/q.�1/q�1 detJp�2�detJ 0q�p�1�det QJq�1C.�1/
q.�1/q�2 detJp�2�detJq�p�1�det QJ 00q�1

D .�1/qq.p�1/.q�p�1/C.�1/q�1.q�1/.p�1/.q�p/

D .�1/q�1p.p�1/:

The following determinants are evaluated by induction:

J n D

ˇ̌̌̌
J 00n

1

ˇ̌̌̌
D .�1/2J n�1 D 1 and

ˇ̌̌̌
Jn

1

ˇ̌̌̌
D 0:
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Therefore,

cofac12 D .�1/
p�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

J 0p�2

Jq�p�1

1

�1
QJq�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
C .�1/p

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

Jp�2

J 00q�p�1

1

�1
QJq�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

D 0C .�1/p.�1/p�1.�1/q�1q.p� 1/

D .�1/qq.p� 1/;

cofac22 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1

1

Jq�p�1

QJq�1

1 1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

D .�1/p�1.�1/p detJ 0p�2 � detJq�p�1 � det QJq�1

C .�1/p.�1/p�1 detJp�2 � detJ 00q�p�1 � det QJq�1C 2 detJp�2 � detJq�p�1 � det QJq�1

D .�1/q�1q.q� 1/:

As a result, we conclude that

c2.W /D .�2u;�2v/

�
p.p� 1/ q.p� 1/

q.p� 1/ q.q� 1/

�
.�2u;�2v/T D 4u2p.p�1/C8uvq.p�1/C4v2q.q�1/:

B.3 The matrix QI-I-I

Now we consider the splicing (I-I-I) and the associated intersection matrix QI-I-I given in Appendix A. We
omit the calculations of the cases when a and b are nonzero since they give the same results. Calculating
the determinant of the intersection matrix with a D b D 0 with respect to its last three rows as in the
previous example we have

detQI-I-I D .�1/
r�1r.r�q�1/.q�2/C.�1/r�1r.r�q�2/.q�1/�2.�1/r�1r.r�q�1/.q�1/

C.�1/r.r�1/.r�q/.q�2/C.�1/r.r�1/.r�q�1/.q�1/�2.�1/r.r�1/.r�q/.q�1/

D .�1/r�1:
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Moreover c.W / evaluates on the given basis of H2.W IZ/ as w D .0; : : : ;�2u;�2v;�2y/T . In order
to calculate c2, it is sufficient to calculate the inverse of the last 3� 3 block D of QI-I-I. We have

D D

0@p.p� 1/ q.p� 1/ r.p� 1/q.p� 1/ q.q� 1/ r.q� 1/

r.p� 1/ r.q� 1/ r.r � 1/

1A :
We see that

cofac11 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

Jq�p�1

1

1

Jr�q�1

1

�1
QJr�1

1 1 2

1 �1 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;

which can be calculated with respect to the last two rows, yielding

cofac11 D detJp�2 �detJ 0q�p�1 �detJ 0r�q�1 �det QJr�1CdetJp�2 �detJq�p�1 �detJ 000r�q�1 �det QJr�1

�2 detJp�2 �detJq�p�1 �detJ 0r�q�1 �det QJr�1CdetJp�2 �detJ 0q�p�1 �detJr�q�1 �det QJ 00r�1

CdetJp�2 �detJq�p�1 �detJ 00r�q�1 �det QJ 00r�1�2 detJp�2 �detJq�p�1 �detJr�q�1 �det QJ 00r�1

D .�1/r�1r.p�1/.p�rC1/C.�1/r.r�1/.p�q/.p�r/

D .�1/r�1p.p�1/:

Meanwhile,

cofac22 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1

1

Jq�p�1

Jr�q�1

1

�1
QJr�1

1 1 2

1 �1 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;
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which can be calculated with respect to the last two rows, yielding

cofac22 D detJ 0p�2 � detJq�p�1 � detJ 0r�q�1 � det QJr�1C detJp�2 � detJ 00q�p�1 � detJ 0r�q�1 � det QJr�1

� 2 detJp�2 � detJq�p�1 � detJ 0r�q�1 � det QJr�1C detJ 0p�2 � detJq�p�1 � detJr�q�1 � det QJ 00r�1

C detJp�2 � detJ 00q�p�1 � detJr�q�1 � det QJ 00r�1� 2 detJp�2 � detJq�p�1 � detJr�q�1 � det QJ 00r�1

D .�1/rq..p� 2/.q�p/C .p� 1/.q�p� 1/� 2.p� 1/.q�p//D .�1/r�1q.q� 1/:

Similarly,

cofac33 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1
1

Jq�p�1

1
1

Jr�q�1

QJr�1

1 1 2
1 1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;

which can be calculated with respect to the last two rows, yielding

cofac33 D detJ 0p�2 � detJ 0q�p�1 � detJr�q�1 � det QJr�1C detJp�2 � detJ 000q�p�1 � detJr�q�1 � det QJr�1

� 2 detJp�2 � detJ 0q�p�1 � detJr�q�1 � det QJr�1C detJ 0p�2 � detJq�p�1 � detJ 00r�q�1 � det QJr�1

C detJp�2 � detJ 00q�p�1 � detJ 00r�q�1 � det QJr�1� 2 detJp�2 � detJq�p�1 � detJ 00r�q�1 � det QJr�1

C 2 detJ 0p�2 � detJq�p�1 � detJr�q�1 � det QJr�1C 2 detJp�2 � detJ 00q�p�1 � detJr�q�1 � det QJr�1

C 4 detJp�2 � detJq�p�1 � detJr�q�1 � det QJr�1

D .�1/r�1r.r � 1/:

Note also that
Jm D

ˇ̌̌̌
1

J 0m

ˇ̌̌̌
D .�1/m�1;

which follows by induction. Thus

cofac12 D .�1/
r�1.�1/q�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Jp�2

1
1

J 0q�p�1

J 0r�q�1

1
�1

QJr�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Algebraic & Geometric Topology, Volume 25 (2025)
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C.�1/r�1.�1/q

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Jp�2

1
1

Jq�p�1

J 000r�q�1

1
�1

QJr�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

C .�1/r�1.�1/q�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Jp�2

1
1

J 0q�p�1

Jr�q�1

1
�1

QJ 00r�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

C .�1/r�1.�1/q

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Jp�2

1
1

Jq�p�1

J 00q�r�1

1
�1

QJ 00r�1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

D .�1/r�1r.p� 1/.r � q� 1/C 0C .�1/r .r � 1/.p� 1/.r � q/C 0D�.�1/r�1q.p� 1/:

Similarly,

cofac13 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

Jp�2

1
1

Jq�p�1

1
1

Jr�q�1

QJr�1

1 1 2
1 �1 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

;
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which can be calculated with respect to the last two rows, yielding

cofac13 D�.�1/
r�1.�1/p�1 detJp�2 � detJ 0q�p�1 � detJ 0r�q�1 � det QJr�1

C .�1/r�1.�1/p�1 detJp�2 � detJ q�p�1 � detJ 000r�q�1 � det QJr�1

� .�1/r�1.�1/q2 detJp�2 � detJq�p�1 � detJ 0r�q�1 � det QJr�1

� .�1/r�1.�1/p�1 detJp�2 � detJ 0q�p�1 � detJ r�q�1 � det QJ 00r�1

C .�1/r�1.�1/p�1 detJp�2 � detJ q�p�1 � detJ 00r�q�1 � det QJ 00r�1

� .�1/r�1.�1/q2 detJp�2 � detJq�p�1 � detJ r�q�1 � det QJ 00r�1

C2.�1/q�1.�1/p�1 detJp�2 �detJ 0q�p�1 �detJr�q�1 �det QJr�1

C2.�1/q.�1/p�1 detJp�2�detJ q�p�1�detJ 00r�q�1�det QJr�1

C 4 detJp�2 � detJq�p�1 � detJr�q�1 � det QJr�1

D .�1/r�1r.p� 1/:

Finally,

cofac23 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Jp�2

1

1

Jq�p�1

1

1

Jr�q�1

QJr�1

1 1 2

1 �1 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

which can be calculated with respect to the last two rows, yielding

cofac23 D .�1/
r�1.�1/q�1 detJ 0p�2 � detJq�p�1 � detJ 0r�q�1 � det QJr�1

C .�1/r�1.�1/q�1 detJp�2 � detJ 00q�p�1 � detJ 0r�q�1 � det QJr�1

� .�1/r�1.�1/q�12 detJp�2 � detJq�p�1 � detJ 0r�q�1 � det QJr�1

C .�1/r�1.�1/q�1 detJ 0p�2 � detJq�p�1 � detJ r�q�1 � det QJ 00r�1

C .�1/r�1.�1/q�1 detJp�2 � detJ 00q�p�1 � detJ r�q�1 � det QJ 00r�1

�.�1/r�1.�1/q�12 detJp�2�detJq�p�1�detJ r�q�1�det QJ 00r�1

D�.�1/r�1r.q� 1/:
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As a result, we conclude that

c2.W /D .�2u;�2v;�2y/

0@p.p� 1/ q.p� 1/ r.p� 1/q.p� 1/ q.q� 1/ r.q� 1/

r.p� 1/ r.q� 1/ r.r � 1/

1A .�2u;�2v;�2y/T
D 4u2p.p� 1/C 4v2q.q� 1/C 4y2r.r � 1/C 8uvq.p� 1/C 8uyr.p� 1/C 8vyr.q� 1/:
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Fully augmented links in the thickened torus

ALICE KWON

We study the geometry of fully augmented link complements in the thickened torus and describe their
geometric properties, generalizing the study of fully augmented links in S3. We classify which fully
augmented links in the thickened torus are hyperbolic, and show that their complements in the thickened
torus decompose into ideal right-angled torihedra. We also study volume density of fully augmented
links in S3, defined to be the ratio of its volume and the number of augmentations. We prove the volume
density conjecture for fully augmented links, which states that the volume density of a sequence of fully
augmented links in S3 which diagrammatically converges to a biperiodic link converges to the volume
density of that biperiodic link. Furthermore, we show that the complement of a sequence of these links
approaches the complement of the biperiodic link as a geometric limit.

57K10, 57K32, 57M50

1 Introduction

We study a class of links called fully augmented links. Fully augmented links in S3 are obtained from
diagrams of links in S3 as follows. Let K be a link in S3 with a given planar link diagram D.K/. We
encircle each twist region (a maximal string of bigons) of D.K/ with a single unknotted component,
called a crossing circle. The complement of the resulting link is homeomorphic to the link obtained by
removing all full-twists, ie pairs of crossings from each twist region. Therefore a diagram of the fully
augmented link contains a finite number of crossing circles, each encircling two strands of the link. These
crossing circles are perpendicular to the projection plane and the other link components are embedded on
the projection plane, except possibly for a finite number of single crossings, called half-twists, which are
adjacent to the crossing circles; see Figure 1.

The geometry of fully augmented link complements in S3 can be explicitly described in terms of an ideal
right-angled polyhedral decomposition which is closely related to the link diagram. This geometry has
been studied in detail by Adams [2], Agol and D Thurston [15, Appendix], Purcell [17] and Chesebro,
Deblois and Wilton [12]. In [11] Champanerkar, Kofman and Purcell studied the geometry of alternating
link complements in the thickened torus and described their decompositions into torihedra, which are
toroidal analogs of polyhedra. We combine the methods used to study fully augmented links in S3 and
alternating links in the thickened torus to study the geometry of fully augmented link complements in the
thickened torus. We generalize many geometric properties of fully augmented links in S3 to those in the
thickened torus T 2 � I , where I D .�1; 1/.
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Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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1412 Alice Kwon

A biperiodic link L is an infinite link in R2� I with a projection on R2�f0g which is invariant under an
action of a two-dimensional lattice ƒ by translations. The quotient LD L=ƒ is a link in T 2 � I with a
projection on T 2 � f0g. This projection on T 2 � f0g is the link diagram of L.

Volume density of a link K was first introduced by Champanerkar, Kofman and Purcell in [10] as the ratio of
its hyperbolic volume, vol.K/, and its crossing number, c.K/. In [10; 11] they studied volume densities of
sequences of alternating links in S3 which diagrammatically converge to two specific biperiodic links called
the square weave and the triaxial link. They proved that volume density of such a sequence of alternating
links converges to that of the corresponding biperiodic link. In general, they conjectured the following:

Conjecture 1.1 (volume density conjecture [11]) Let L be any biperiodic alternating link with alternat-
ing quotient link L. Let fKng be a sequence of alternating hyperbolic links which Følner converges to L.
Then

lim
n!1

vol.Kn/

c.Kn/
D

vol..T 2 � I/�L/

c.L/
:

Definition 1.2 A fully augmented biperiodic link L is a fully augmented infinite link in R2 � I with a
projection on R2 � f0g which is invariant under an action of a two-dimensional lattice ƒ by translations.
The quotient LD L=ƒ is a fully augmented link in T 2 � I with a projection on T 2 � f0g.

We define the volume density of a fully augmented link in S3 (with or without half-twists) to be the ratio
of its volume and the number of augmentations. We similarly define volume density of fully augmented
links in the thickened torus. Using the geometry of fully augmented link complements in S3 studied
previously, and our results on the geometry of fully augmented link complements in the thickened torus,
we prove the volume density conjecture for fully augmented links.

In Section 2 we classify hyperbolic fully augmented links in the thickened torus.

Theorem 2.11 Let K be a link in T 2 � I with a weakly prime , twist-reduced cellular link diagram D.
Let L be a link obtained by fully augmenting D. Then T 2 � I �L decomposes into two isometric totally
geodesic right-angled torihedra , and hence L is hyperbolic.

Remark 1.3 Augmented link diagrams are link diagrams obtained by adding crossing circles to some of
the twist sites of a given link diagram, and are different from fully augmented links. Kwon and Tham [14]
proved that augmented links in the thickened torus are hyperbolic. A generalization to thickened surfaces
was also proved by Adams, Capovilla-Searle, D Li, L Q Li, McErlean, Simons, Stewart and Wang [4].
Theorem 2.11 gives a much stronger result for fully augmented links, as it describes the right-angled
geometry of the complement and uses very different proof techniques than [4; 14]. The decomposition
of the link L in Theorem 2.11 into right-angled torihedra (see Definition 2.6) is very important for
Theorem 3.20, which investigates limit points of volume densities of fully augmented links.

Algebraic & Geometric Topology, Volume 25 (2025)



Fully augmented links in the thickened torus 1413

Figure 1: Left: link diagram of K. Center left: crossing circles added to each twist region. Center
right: a fully augmented link diagram with all full-twists removed. Right: fully augmented link
diagram with no half-twists.

In Section 3 we discuss volume density and the volume density spectrum of fully augmented links in S3,
and give many examples. In Section 3.2 we define Følner convergence for fully augmented links and
prove the volume density conjecture for fully augmented links. Følner convergence for links was first
defined by Champanerkar, Kofman and Purcell [10] for alternating links; we adapt the definition of Følner
convergence for sequences of fully augmented links.

Theorem 3.20 Let L be a biperiodic fully augmented link with quotient link L. Let fKng be a sequence
of hyperbolic fully augmented links in S3 such that Kn Følner converges to L geometrically. Then

lim
n!1

vol.Kn/

a.Kn/
D

vol..T 2 � I/�L/

a.L/
;

where a.K/ denotes the number of augmentations of a fully augmented link K.

As an application in Corollary 3.23 we show that the endpoint 10vtet of the volume density spectrum of fully
augmented links in S3 is a limit point, by constructing a sequence of hyperbolic fully augmented links in
S3 which Følner converge everywhere to a fully augmented biperiodic link whose volume density is 10vtet.

Acknowledgments I would like to thank my advisor Abhijit Champanerkar for guidance in this paper. I
would also like to thank Ilya Kofman and Jessica Purcell for helpful conversations in regards to this project.

2 Hyperbolicity of fully augmented links in the thickened torus and volume
bounds

To define fully augmented links in the thickened torus we first need to define twist-reduced diagrams for
links in T 2� I . Howie and Purcell defined twist-reduced diagrams for links in thickened surfaces in [13].
However for links in the thickened torus we can also define twist-reduced diagrams using the biperiodic
link diagram in R2:

Definition 2.1 A twist region in the biperiodic link diagram L is a maximal string of bigons, or a single
crossing. A twist region in the link diagram LD L=ƒ is a quotient of a twist region in L.

Algebraic & Geometric Topology, Volume 25 (2025)



1414 Alice Kwon

A or B

A B

Figure 2: Twist-reduced diagram.

A biperiodic link L is called twist-reduced if for any simple closed curve on the plane that intersects L
transversely in four points, with two points adjacent to one crossing and the other two points adjacent to
another crossing, the simple closed curve bounds a subdiagram consisting of a (possibly empty) collection
of bigons strung end-to-end between these crossings; see Figure 2. We say L is twist-reduced if it is the
quotient of a twist-reduced biperiodic link.

Definition 2.2 A fully augmented link diagram in T 2 � I is a diagram of a link L that is obtained from
a twist-reduced diagram K in T 2 � I as follows: augment every twist region with a circle component,
called a crossing circle, and get rid of all full-twists; see Figure 3. A fully augmented link in T 2 � I is a
link which has a fully augmented link diagram in T 2 � I .

Remark 2.3 For fully augmented links in S3, depending on the parity of the number of crossings in
a twist region, the fully augmented link may or may not have a half-twist at that crossing circle; see
Figure 1, center right. Similarly, depending on the parity of the number of crossings at a twist region, a
fully augmented link in the thickened torus may or may not have a half-twist at that crossing circle.

Definition 2.4 A graph GD .V;E/ on the torus is cellular if its complement is a collection of open disks.

Torihedra were first defined in [11] and play the role of polyhedra in polyhedral decompositions of link
compliments in S3, eg it is proved in [11] that a complement of a link in the thickened torus decomposes
into torihedra. Here we recall the definition of a torihedron.

2.1 Torihedral decomposition

Definition 2.5 A torihedron is a cone on the torus, T 2 � Œ0; 1�=.T 2 � f1g/, with a cellular graph G on
T 2�f0g. The edges and faces of G are called the edges and faces of the torihedron. An ideal torihedron

Figure 3: Left: a fully augmented triaxial link. Right: a fully augmented link on the square weave.

Algebraic & Geometric Topology, Volume 25 (2025)



Fully augmented links in the thickened torus 1415

Figure 4: Left: a fundamental domain for a fully augmented square weave, L. Center left: disks
cut in half at each crossing circle. Center right: sliced and flattened half-disks at each crossing
circle. Right: collapsing the strands of the link and parts of the augmented circles (shown in bold)
to ideal points gives the bowtie graph �L. The disks become shaded bowties and the white regions
become hexagons.

is a torihedron with the vertices of G and the vertex T 2 � f1g removed. Hence, an ideal torihedron is
homeomorphic to T 2� Œ0; 1/ with a finite set of points (ideal vertices) removed from T 2�f0g. The graph
G is called the graph of the torihedron.

Definition 2.6 An angled torihedron is a torihedron with an angle assignment on each edge of the graph
of the torihedron. An assignment of the angle 1

2
� on each edge is called a right-angled torihedron.

Proposition 2.7 Let L be a fully augmented link in T 2 � I . Then there is a decomposition of the link
complement .T 2 � I/�L into two combinatorially isomorphic torihedra such that

(i) the faces of each torihedron can be checkerboard colored so that the shaded faces are triangular and
arise from the bowties corresponding to crossing circles ,

(ii) the graph of each torihedron is 4-valent.

Proof We follow the cut-slice-flatten construction described in [15]. Let L be a fully augmented link in
T 2 � I . We begin by assuming that there are no half-twists, the crossing circles are lateral to T 2 � f0g

and the components of L that are not crossing circles lie flat on T 2 � f0g. There are twice-punctured
disks bounded by the crossing circles which are perpendicular to the projection plane.

(i) Cut T 2 � I along the projection surface T 2 � f0g into two pieces. This cuts each of the twice-
punctured disks bounded by a crossing circle in half; see Figure 4, center left.

(ii) For each of the two pieces resulting from (i), slice the middle of the halves of twice-punctured
disks and flatten the half-disks out; see Figure 4, center right.

(iii) Collapse strands of the link and parts of the augmented circles to ideal vertices in each of the two
pieces; see Figure 4, right.

It follows from (i)–(iii) that each piece of the decomposition is homeomorphic to T 2 � Œ0; 1/, with the
same graph on T 2 � f0g with vertices deleted. Hence .T 2 � I/�L decomposes into two identical ideal
torihedra.

Algebraic & Geometric Topology, Volume 25 (2025)



1416 Alice Kwon

Figure 5: The gluing of the torihedra when a half-twist is present (disk B) and when a half-twist
is absent (disk A). This figure, adapted from [18], is for links in S3, but since this is a local move
the same gluing works for links in T 2 � I .

After (ii), the cut-sliced-flattened half-disks become a hexagon with an edge in the middle corresponding
to the strand of half of a crossing circle. Upon collapsing the crossing circle this becomes a bowtie; see
Figure 4, center right and far right. Each vertex of the graph is 4-valent since it is shared by two triangles
of either two different bowties or one bowtie. Again by construction, each edge is shared by a triangle of
a bowtie and a polygon that does not come from a bowtie; see Figure 4, right. Hence we can shade each
triangle of the bowtie to get a checkerboard coloring on the graph of the torihedron such that the shaded
faces are bowties.

The two torihedra are glued together as follows: the white faces are glued to the corresponding white
faces, and the bowties are glued as shown in Figure 6, left.

In the case when there is a half-twist at a crossing circle, we split the whole twice-punctured disk into
two copies, and flip one of the disks to remove the half-twist. This only affects the gluing of faces of
the torihedra. Hence if there are half-twists, then we get the same torihedra but with a different gluing
pattern on the bowties as shown in Figure 5 and Figure 6, right.

Definition 2.8 For a fully augmented link L in the thickened torus, the decomposition of T 2 � I �L

described above is called the bowtie torihedral decomposition of L. We call the graph of the torihedra
the bowtie graph of L and denote it by �L.

Lemma 2.9 Let L be a hyperbolic fully augmented link in T 2�I . The following surfaces are embedded
totally geodesic surfaces in the hyperbolic structure on the link complement :

(i) each twice-punctured disk bounded by a crossing circle ,

(ii) each connected component of the projection surface.

A1

A1

A1

A2

A2

A2

B1 B1

B1

B2

B2

B2

Figure 6: Left: gluing information on the edges of the bowtie without half-twists. Right: gluing
information on the edges of the bowtie a with half-twist.

Algebraic & Geometric Topology, Volume 25 (2025)
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A B

A or B

Figure 7: Prime diagram.

Proof (i) The disk E bounded by a crossing circle is punctured by two arcs of the link diagram lying on
the projection plane. Adams [1] showed that any incompressible twice-punctured disk properly embedded
in a hyperbolic 3-manifold is totally geodesic. Hence it suffices to show that E is incompressible. Let
L be a hyperbolic fully augmented link in T 2 � I . Since T 2 � I ' S3�H , where H is the Hopf link,
L[H is a hyperbolic link in S3.

Suppose there is a compressing disk D with @D � E. Since @D is an essential closed curve on E, it
must encircle one or two punctures of E. Suppose it encircles only one puncture. This means that the
union of D and the disk bounded by @D inside the closure of E forms a sphere in S3 met by the link
exactly once. This is a contradiction to the generalized Jordan curve theorem. Hence @D must bound a
twice-punctured disk E0 on E. This means .E �E0/[D is a boundary-compressing disk for the crossing
circle, contradicting the boundary irreducibility of S3� .L[H /.

(ii) Notice that the reflection through the projection surface (T 2 � f0g) preserves the link complement,
fixing the plane pointwise. Then it is a consequence of Mostow–Prasad rigidity that such a surface must
be totally geodesic; see [17, Lemma 2.1].

2.2 Hyperbolicity

Definition 2.10 Let L be a biperiodic link with diagram D.L/. We say D.L/ is prime if whenever a
disk embedded in R2�f0g meets D.L/ transversely in exactly two edges, then the disk contains a simple
edge of the diagram and no crossings; see Figure 7.

A diagram of a link L in T 2 � I , denoted by D.L/, is weakly prime if D.L/ is a quotient of a prime
biperiodic link diagram D.L/ in R2 � f0g.

Theorem 2.11 Let K be a link in T 2 � I with a weakly prime twist-reduced cellular link diagram D.
Let L be a link obtained by fully augmenting D. Then T 2 � I �L decomposes into two isometric totally
geodesic right-angled torihedra , and hence L is hyperbolic.

The proof of Theorem 2.11 relies on a result about the existence of certain circle patterns on the torus due
to Bobenko and Springborn [7]. We use similar ideas from [11] to prove Theorem 2.11

Theorem 2.12 [7] Suppose G is a 4-valent graph on the torus T 2, and � 2 .0; 2�/E is a function on
edges of G that sums to 2� around each vertex. Let G� denote the dual graph of G. Then there exists

Algebraic & Geometric Topology, Volume 25 (2025)



1418 Alice Kwon

a circle pattern on T 2 with circles circumscribing faces of G (after isotopy of G) and having exterior
intersection angles � if and only if the following condition is satisfied :

Suppose we cut the torus along a subset of edges of G�, obtaining one or more pieces. For any piece that
is a disk , the sum of � over the edges in its boundary must be at least 2� , with equality if and only if the
piece consists of only one face of G� (only one vertex of G).

The circle pattern on the torus is uniquely determined up to similarity.

Proof of Theorem 2.11 Decompose .T 2 � I/�L into two torihedra using Proposition 2.7. Let �L

be the bowtie graph on T 2 � f0g. Assign angles �.e/D 1
2
� for every edge e in �L. We now verify the

condition of Theorem 2.12. This will prove the existence of an orthogonal circle pattern (circle pattern
whose angle at the intersection of any two circles is orthogonal) circumscribing the faces of �L.

Let C be a loop of edges of ��
L

enclosing a disk D. Suppose C intersects n edges of �L transversely.
Let V denote the number of vertices of �L that lie in D, and let E denote the number of edges of �L

inside D disjoint from C . Because the vertices of �L are 4-valent and since the edges inside D which
are disjoint from C get counted twice for each of its end vertices, nC 2E D 4V . This implies n is even.
Since K is weakly prime and C is made up of edges dual to �L this implies n> 2. Since n is even, n� 4.
Hence the sum of the angles for all edges of C must be at least 2� .

We now show that this is an equality if and only if C consists of one face of ��
L

, ie C encloses only one
vertex. Suppose that

P
e2C �.e/ > 2� . Since �.e/D 1

2
� for every e 2�L, and n is even, n� 6. Moreover

n� 6 D) 4V � 2E � 6 D) 2V �E � 3 D) V � 2:

Hence C encloses more than one vertex.

Conversely, let
P

e2C �.e/D 2� . This implies nD 4.

Let the edges of C be ei for 0 � i � 3, with ei incident to vertices vi and viC1, and v0 D v4. Let the
faces dual to vi be Fvi

. Without loss of generality, let Fv0
be a shaded triangular face. Since �L is

checkerboard colored, Fv2
is also a shaded triangular face.

Suppose Fv0
\Fv2

D ∅. Then the edge e2 must enter a white face Fv3
which has empty intersection

with Fv0
; see Figure 8, left.

Since the bowties correspond to crossing circles (see Figure 9, left) the loop C gives a loop which
intersects L. At the vertex v0, which is in the shaded bowtie, at least one of the edges incident to v0 has to
intersect L. If only one edge at v0 intersects L, since C bounds a disk, only one edge at v2 intersects L,
giving the case shown in Figure 9, center. Similarly if both edges incident to v0 intersect L, since C

bounds a disk, then the same is true for both edges incident at v2, giving the case shown in Figure 9, right.
If C intersects two strands of L as in Figure 9, center, since C bounds a disk, this contradicts the weakly
prime condition of K. If C intersects two strands on each side as in Figure 9, right, this will contradict
the twist-reduced condition on K.

Algebraic & Geometric Topology, Volume 25 (2025)
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v3

e2e1

v1

e0

Tv0

v0

v2

v1
e1

e0

e2

v3
e2 Tv0

v2

v0

Figure 8: Left: when n� 5 and C closes with � 5 edges. Right: when nD 4 and C closes with four edges.

Therefore Fv0
\Fv2

¤ �. Since both faces are triangles, they can only intersect in a vertex. This implies
that C encloses a single vertex; see Figure 8, right.

Now, since we showed that �L is a graph on the torus which satisfies the conditions of Theorem 2.12,
there exists an orthogonal circle pattern on the torus with circles circumscribing the faces of �L. Since a
white face of the decomposition intersects any other white face only at ideal vertices, the circles which
circumscribe the white faces create a circle packing, where the points of tangency are those corresponding
to the associated ideal vertices. Since �L is 4-valent and every edge has been assigned an angle of 1

2
� ,

the circles of the shaded faces meet orthogonally.

Figure 9: Left: the crossing circle splits into a bowtie. Center: C is in red. C intersects the
original link in two points and hence must be a trivial edge. Right: C is in red. C can intersect
the original link at four points and therefore must bound a twist region on one side.

Algebraic & Geometric Topology, Volume 25 (2025)
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Lifting the circle pattern to the universal cover of the torus defines an orthogonal biperiodic circle pattern
on the plane. Considering the plane z D 0 as a part of the boundary of H3, this circle pattern defines
a right-angled biperiodic ideal hyperbolic polyhedron in H3. The torihedron of the decomposition of
.T 2�I/�L is the quotient of H3 by Z�Z which is now realized as a right-angled hyperbolic torihedron.
It follows from [13, Theorem 1.1] that .T 2 � I/�L is hyperbolic.

Remark 2.13 Adams [2] proved that fully augmented link complements in S3 are hyperbolic. We have
proved an analogous result for fully augmented link complements in T 2 � I . Our method of finding an
orthogonal circle pattern which circumscribed the faces of the bowtie graph can also be applied to the
case of fully augmented links in S3. In this we have to use Andreev’s theorem [19] to ensure a totally
geodesic right-angled polyhedra.

2.3 Volume bounds

We show that a hyperbolic fully augmented link with c crossings in the thickened torus has an upper
volume bound of 10cvtet. In the next section we show volume density convergence of fully augmented
links. This means if we can find a link in the thickened torus whose volume is exactly 10cvtet the
corresponding biperiodic link will have volume density 10vtet. We will use this to show that an endpoint
of the volume density spectrum of fully augmented links can be obtained as a limit.

Proposition 2.14 Let L be a hyperbolic fully augmented link with c crossing circles. Then

2cvoct � vol.T 2
� I �L/� 10cvtet;

where voctD 3:66386 : : : is the volume of a regular ideal octahedron and vtetD 1:01494 : : : is the volume
of a regular ideal tetrahedron.

Proof We will first prove the lower bound. By work of Adams [2], the volume of the complement of L

in T 2 � I agrees with that of the fully augmented link with no half-twists. This means a lower volume
bound for the complement of L in T 2 � I with half-twists will be a lower volume bound of the fully
augmented link with no half-twists. Hence we will assume L has no half-twists and obtain a lower bound
for T 2 � I �L.

Cut T 2 � I �L along the reflection plane T 2 � f0g, dividing it into two isometric hyperbolic manifolds.
The boundary of each of these consists of the regions of L on the projection surface with punctures for
the crossing circles. By Lemma 2.9 these regions are geodesic. Hence cutting along the projection surface
divides T 2 � I �L into isometric hyperbolic manifolds with totally geodesic boundary.

Miyamoto showed that if N is a hyperbolic 3-manifold with totally geodesic boundary, then vol(N )
� �voct�.N / [16], with equality exactly when N decomposes into regular ideal octahedra. In our case,
the manifold N consists of two copies of T 2� Œ0; 1/ with half-annuli removed for half the crossing circles.

Algebraic & Geometric Topology, Volume 25 (2025)



Fully augmented links in the thickened torus 1421

For every half a crossing circle removed, we are removing one edge and two vertices. Hence for each
crossing circle removed the Euler characteristic changes by �1. Since there are c crossing circles, the
Euler characteristic would be �c for each half-cut T 2 � Œ0; 1/. The lower bound now follows.

We now prove the upper bound. The torihedral decomposition of the link complement gives a decom-
position into two identical ideal torihedra. Every triangular shaded face which comes from a bowtie
corresponding to a crossing circle gives a tetrahedron when coned to the ideal vertex T 2 � f1g on each
torihedra. Since there are c crossing circles, this gives c bowties; hence this gives 2c triangular shaded
faces, and hence 4c tetrahedra. The cones on the white faces in each torihedra can be glued to make
bipyramids on the white faces. These bipyramids can then be stellated into tetrahedra. Hence the number
of tetrahedra coming from stellated bipyramids equals the number of edges of all the white faces. Since
an edge of a white face is shared with an edge of a black triangle, this equals the number of edges of
the torihedral graph, which has 6c edges. Hence the bipyramids on the white faces decompose into 6c

tetrahedra. Thus the total count of tetrahedra is 4cC 6c D 10c. Since the volume of an ideal tetrahedron
is bounded by the volume of the regular ideal tetrahedron vtet, the upper bound now follows.

Remark 2.15 In Proposition 3.7 below we show that our upper bound is sharp by showing that the fully
augmented square weave achieves the upper bound.

3 The volume density convergence conjecture

3.1 Volume density and its spectrum

In this section we discuss volume density of fully augmented links in S3, its spectrum and asymptotic
behavior. Champanerkar, Kofman and Purcell [10] defined volume density of a hyperbolic link in S3

as the ratio of the volume of the link complement to its crossing number, and studied the asymptotic
behavior of the volume density for sequences of alternating links which diagrammatically converge to a
biperiodic alternating link.

For a hyperbolic link L in S3, let vol.L/ denote the hyperbolic volume of S3 �L. In this section we
assume that all links are hyperbolic.

Definition 3.1 Let L be a fully augmented link in S3 with or without half-twists. The volume density of L

is defined to be the ratio of the volume of L and the number of augmentations, ie vol.L/=a.L/ where
a.L/ is the number of augmentations of the link L. We similarly define the volume density of a fully
augmented link in T 2 � I .

Remark 3.2 Adams [2] showed that the volume of an augmented link with a half-twist at the crossing
circle of the augmentation is equal to the volume without a half-twist. However, fully augmented links
with and without half-twists have different crossing numbers. Hence in our definition above we divide by
the number of augmentations rather than the number of crossings.
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Figure 10: Left: the fundamental domain of the square weave W . Center left: the fundamental
domain of the fully augmented square weave, denoted by Wf . Center right: the bowtie graph �Wf

of the square weave on the left. Right: a quotient of Wf with same volume as the triaxial link.

Remark 3.3 For a fully augmented link without half-twists, the crossing number of the diagram is
4a.L/. Thus the volume density of such a fully augmented link L is related to the volume density of L

as defined in [10] by a factor of 4.

Throughout this section and the next we consider fully augmented links without half-twists.

Example 3.4 The Borromean rings B has vol.B/D 2voct and a.L/D 2, and hence the volume density
vol.B/=a.B/ equals voct.

Definition 3.5 The volume density spectrum of fully augmented links in S3 is defined as Saug D

fvol.L/=a.L/ WL is a fully augmented link in S3g.

Proposition 3.6 The volume density spectrum Saug is a subset of Œvoct; 10vtet/.

Proof Let L be a fully augmented link. Then by [17, Proposition 3.8] the volume of L is at least
2voct.a.L/� 1/. Since L is hyperbolic, a.L/� 2, which implies

vol.L/
a.L/

�
2vocta.L/

a.L/
�

2voct

a.L/
> 2voct

�
1�

1

a.L/

�
� voct:

Since the volume density of the Borromean rings is voct, the lower bound is realized. Agol and D Thurston
[15, Appendix] showed that vol.L/� 10vtet.a.L/�1/. Hence the volume density of L is at most 10vtet.

We show below that 10vtet occurs as a volume density of the fully augmented square weave. Let Wf
denote the fully augmented square weave as in Figure 10, center left.

Proposition 3.7
vol.T 2 � I �Wf /

a.Wf /
D 10vtet.

Proof A fourfold quotient of Wf as shown in Figure 10, right, was studied in [8]. The authors proved
that the volume of this link complement in the thickened torus is 10vtet. Hence vol.T 2�I�Wf /D 40vtet,
and its volume density is 10vtet.
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Remark 3.8 The quotient of Wf as in Figure 10, right, has the same volume as that of a quotient of
a triaxial link which is not a fully augmented link; see Figure 3, left. However the two links are not
the same, as they have different numbers of cusps. The triaxial link has five cusps — three from each
link component in the thickened torus and two from each link component of the Hopf Link — whereas
the quotient of Wf in Figure 10, right, has four cusps — two from each component of the link in the
thickened torus (which includes the crossing circle) and two from each link component of the Hopf Link.

3.2 Følner convergence

The volume density of the fully augmented square weave is 10vtet. We will prove below that 10vtet is
also a limit point of the Saug by investigating the asymptotic behavior of volume density of a sequence of
fully augmented links in S3 which diagrammatically converge to the biperiodic fully augmented square
weave, as defined below. We use the notion of Følner convergence, which was first introduced in [10].
We begin by modifying its definition.

In [10] the authors used the Tait graph (checkerboard graph) of alternating links to define Følner con-
vergence. We will use bowtie graphs to define Følner convergence for fully augmented links; see
Definition 2.8 and [17, Proposition 2.2].

Definition 3.9 Let L be a biperiodic fully augmented link. We will say that a sequence of fully augmented
links fKng in S3 Følner converges almost everywhere geometrically to L, denoted by Kn

GF
��! L, if the

respective bowtie graphs f�Kn
g and �L satisfy the following: there are subgraphs Gn � �Kn

such that

(i) Gn �GnC1, and
S

Gn D �L,

(ii) limn!1j@Gnj=jGnj D 0, where j � j denotes the number of vertices and @Gn � �L consists of the
vertices of Gn that share an edge in �L with a vertex not in Gn,

(iii) Gn � �L\ .nƒ/, where nƒ represents n2 copies of the fundamental domain for the lattice ƒ such
that LD L=ƒ,

(iv) limn!1jGnj=3a.Kn/D 1.

Remark 3.10 The number 3 appears in the denominator in the last condition for the definition of Følner
convergence because the number of vertices of the bowtie polyhedron for Kn equals three times the
number of augmentations. To see this, note that every bowtie shares two vertices with another bowtie
and hence contributes three vertices to the graph. Since each bowtie corresponds to a crossing circle, the
number of vertices of the graph is 3a.K/.

Remark 3.11 Many fully augmented links can have the same bowtie graph. For example, a fully
augmented link with and without half-twists have the same bowtie graph but different gluing; see
Figures 11 and 12. Another example of this is when the bowtie graphs are same but with different pairing
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Figure 11: Left: the quotient of the square weave. Center left: Wf with half-twists at each
crossing circle. Center right and far right: the bowtie graph with blue (red) face bowtie of the top
torihedron being glued to a blue (red) face of the bottom torihedron

of triangles; see Figure 13 for an example of two links with same bowtie graphs but different pairings.
In our definition above, we are using only the polyhedral graphs but not the pairing information of the
bowties. Hence we call our Følner convergence geometric. This has the advantage of having many more
sequences converging to a given biperiodic fully augmented link.

3.3 Volume density conjecture

Conjecture 3.12 (volume density conjecture) Let L be any biperiodic alternating link with alternating
quotient link L. Let fKng be a sequence of alternating hyperbolic links such that Kn Følner converges
to L. Then

lim
n!1

vol.Kn/

c.Kn/
D

vol..T 2 � I/�L/

c.L/
:

Champanerkar, Kofman and Purcell proved this conjecture when L is the square weave [10] and the
triaxial link [9] by finding upper and lower bounds on vol.Kn/ such that for a sequence of alternating
links Kn

F
�! L, these bounds are equal in the limit. One of the key tools in their proof is the use of

right-angled circle patterns. Using the right-angled decomposition of fully augmented link complements
in S3, we construct right-angled circle patterns, and use these to prove the volume density conjecture for
fully augmented links in S3.

Figure 12: Left: the quotient of the square weave. Center left: Wf with no half-twists at each
crossing circle. Center right and far right: the bowtie graph with blue (red) face bowtie of the top
torihedron being glued to a blue (red) face of the bottom torihedron
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Figure 13: The fully augmented links above and below are two different links with the same
bowtie graph with different pairing information.

The idea is as follows: As described in [17], each hyperbolic fully augmented link complement in S3 can
be decomposed into two right-angled ideal polyhedra which are described by a right-angled circle pattern.
By Theorem 2.11 each torihedra of the bowtie torihedral decomposition is right-angled and described by
another right-angled circle pattern on the torus. The Z�Z lift of this circle pattern is the circle pattern
associated to L. We show below that when a sequence of fully augmented links Kn converges to L,
Kn

GF
��! L, the circle pattern for Kn converges to an infinite circle pattern for L. As a consequence we

obtain the volume density convergence.

In order to work with circle patterns and convergence of circle patterns, we recall the following definitions
from [5]:

Definition 3.13 A disk pattern is a collection of closed round disks in the plane such that no disk is the
Hausdorff limit of a sequence of distinct disks and such that the boundary of any disk is not contained in
the union of two other disks.

Definition 3.14 A simply connected disk pattern is a disk pattern in the plane such that the union of the
disks is simply connected.
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i

S.d/ S.di/

C.d/

4 3

5
1

2

Figure 14: Left: S.d/\S.d 0/. Right: C(d).

Let D be a disk pattern in C. Let G.D/ be the graph with a vertex for each disk and an edge between
any two vertices when the corresponding disks overlap. The graph G.D/ inherits an embedding in the
plane from the disk pattern and we will identify G.D/ with its plane embedding. A face of G.D/ is an
unbounded component of the complement of G.D/ in the plane. We can label the edges of G.D/ with
the angles between the intersecting disks.

Definition 3.15 A disk pattern D is called an ideal disk pattern if the labels of edges of G.D/ are in the
interval

�
0; 1

2
�
�

and the labels around each triangle or quadrilateral in G.D/ sum to � or 2� , respectively.

It is clear that ideal disk patterns in C correspond to ideal polyhedra in H3, with the disks corresponding
to the faces of the ideal polyhedron.

Definition 3.16 Let D and D0 be disk patterns. Give G.D/ and G.D0/ the path metric in which each
edge has length 1. For disks d in D and d 0 in D0, we say .D; d/ and .D0; d 0/ agree to generation n if the
balls of radius n centered at vertices corresponding to d and d 0 admit a graph isomorphism with labels
on edges preserved.

Definition 3.17 For a disk d in a disk pattern D, we let S.d/ be the geodesic hyperplane in H3 whose
boundary agrees with that of d . That is, S.d/ is the Euclidean hemisphere in H3 with boundary coinciding
with the boundary of d . For a disk pattern coming from a right-angled ideal polyhedron, the planes S.d/

form the boundary faces of the polyhedron. In this case, the disk pattern D is simply connected and ideal,
since it corresponds to an ideal polyhedron.

Similarly, for a disk d in D with intersecting neighboring disks d1; : : : ; dm, the intersection S.d/\S.di/

is a geodesic i in H3. The geodesics i for i D 1; : : : ;m on S.d/ bound an ideal polygon in H3. The
cone of this polygon to the point at infinity is denoted by C.d/; see Figure 14.

Definition 3.18 A disk pattern D is said to be rigid if G.D/ has only triangular and quadrilateral faces,
and each quadrilateral face has the property that the four corresponding disks of the disk pattern intersect
in exactly one point.
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Lemma 3.19 (Atkinson [5]) Let D1 be an infinite rigid disk pattern. Then there exists a bounded
sequence 0� �l � b <1 converging to zero such that if D is a simply connected ideal rigid finite disk
pattern containing a disk d such that .D1; d1/ and .D; d/ agree to generation l , then

jvol.C.d//� vol.C.d1//j � �l :

Note that the sequence f�lg in above lemma only depends on D1.

Theorem 3.20 (volume density conjecture for fully augmented links) Let L be a biperiodic fully
augmented link with quotient link L. Let fKng be a sequence of hyperbolic fully augmented links in S3.
Then

Kn
GF
��! L D) lim

n!1

vol.Kn/

a.Kn/
D

vol..T 2 � I/�L/

a.L/
:

Proof Let PL be the bowtie torihedron with bowtie graph �L of L. Let P1 be the infinite polyhedron
in H3 which is the biperiodic lift of PL with its cone vertex taken to be1. P1 can be seen to be made
up of Z2 copies of an embedding of PL in H3 with its cone vertex taken to be1, glued according to the
biperiodic lift. Note that since the graph of PL is the bowtie graph �L of L, which is toroidal, the graph
of P1 is a biperiodic lift of �L and is isomorphic to the bowtie graph �L coming from L. Let D1 be the
infinite disk pattern coming from the infinite polyhedron P1. Since PL is a right-angled torihedron, P1

is also right-angled, and hence D1 is a right-angled disk pattern.

Since fKng is a sequence of fully augmented links, each Kn is a fully augmented hyperbolic link in S3.
The bowtie polyhedron of Kn is a right-angled ideal hyperbolic polyhedron with the same graph as
the bowtie graph �Kn

. The assumption that the sequence fKng Følner converges almost everywhere
geometrically to L implies that there are subgraphs Gn � �Kn

which satisfy the conditions of Følner
convergence in Definition 3.9. Hence we can embed bowtie polyhedra of Kn in H3 so that a vertex in
�Kn
�Gn is sent to infinity, and Gn � GnC1. We denote this polyhedron in H3 by Pn. First note that

vol.Kn/D 2 vol.Pn/. Let v.Pn/ denote the number of vertices of Pn. Since Pn is a 4-valent checkerboard
graph whose shaded faces are triangles coming from the bowties, one for each augmentation, every vertex
is shared by two triangles. Hence v.Pn/D 3 � 2a.Kn/

1
2
D 3a.Kn/. Therefore,

vol.Kn/

3a.Kn/
D 2

vol.Pn/

v.Pn/
:

Let Dn be the disk pattern of the polyhedron Pn. It follows that Dn is a right-angled simply connected
disk pattern. Since Dn corresponds to a disk pattern arising from a fully augmented link, Dn is rigid (see
Definition 3.18 and Figure 15). We will now use Følner convergence to relate Dn and D1.

Let Fn
l

be the set of disks d in Dn such that .Dn; d/ agrees to generation l but not to generation l C 1

with .D1; d1/. For every positive integer k, let jf n
k
j denote the number of faces of Pn with k sides that

are not contained in
S

l Fn
l

and do not meet the point at infinity. By counting vertices we obtainX
k

kjf n
k j � 4j�Kn

�Gnj:
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Figure 15: Left: an n� n copy of the fundamental domain of ƒ with an arbitrary closure, and a
marked point P on the crossing of the closure. Right: the point P moved to the cone point at1.

The term j�Kn
�Gnj counts the number of vertices that are in �Kn

but not in Gn. Since all the vertices of
the graph �Kn

are 4-valent we get a factor of 4. Hence j�Kn
j D v.Pn/D 3a.Kn/, and

(1) lim
n!1

jGnj

3a.Kn/
D 1 D) lim

n!1

4j�Kn
�Gnj

v.Pn/
D 0 D) lim

n!1

P
k kjf n

k
j

v.Pn/
D 0:

Let d 2 Fn
l

and let v1; : : : ; vm be the vertices of Gn which lie on the boundary of d ; see Figure 16. Let
B.v; r/�Gn denote the ball centered at vertex v of radius r in the path metric on Gn. It follows from the
definition of Fn

l
and the fact that Gn is the planar dual of the graph of the disk pattern G.Dn/— without the

vertex corresponding to the unbounded face — that d 2Fn
l

implies B.vi ; l/�Gn but B.vi ; lC1/šGn for
iD1; : : : ;m. Hence the distance from vi to @Gn is l , ie vi 2@B.x; l/ for some x2@Gn for all iD1; : : : ;m.

Hence Fn
l
�
S

x2@Gn
@B.x; l/.

d

v1 v2

v3

Figure 16: The circle in black is an example of B.vi ; 1/, and the boundary of the union over all i

of B.vi ; 1/ is colored in red.
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Lemma 3.21 lim
n!1

ˇ̌S
l Fn

l

ˇ̌
v.Pn/

D 1:

Proof We begin by showing that there exists m > 0 such that j@B.x; l/j � ml for any x 2 Gn. By
definition of Følner convergence, Gn � �L. Babai [6] showed that the growth rate for almost vertex-
transitive graphs with one end is quadratic, that is, growth of jB.x; l/j is quadratic in l . Since �L is a
biperiodic 4-valent planar graph, it satisfies the conditions of Babai’s theorem, and hence has quadratic
growth rate. By definition, the vertices in @B.x; l/ are incident to vertices in B.x; l � 1/, and hence
j@B.x; l/j has linear growth rate in l .

Thus jFn
l
j �ml j@Gnj and we obtain

lim
n!1

jFn
l
j

v.Pn/
� lim

n!1

ml j@Gnj

3a.Kn/
D

ml

3
lim

n!1

j@Gnj

jGnj

jGnj

a.Kn/
D 0:

Since Gn � G.L/, every vertex of Gn lies on a disk in Fn
l

for some l , and for every disk in Fn
l

there
are no vertices in G.Kn/�Gn which lie on the disk. Now, by assumption, limn!1jGnj=.3a.Kn//D 1.
Hence limn!1

ˇ̌S
l Fn

l

ˇ̌
=v.Pn/D limn!1jGnj=.3a.Kn//D 1.

Let f n
k

be the face with k sides that is not contained in
S

l Fn
l

which does not meet the point at infinity.
For each n, vol.C.f n

k
//� k�

�
1
6
�
�
, where �.�/ is the Lobachevsky function defined as

�.�/D�

Z �

0

log j2 sin.t/j dt;

whose maximum value is �
�

1
6
�
�

[19]; see also [3].

Let En denote the sum of the actual volumes of all the cones over the faces f n
k

, for every integer k. Then

(2) En
�

X
k

X
f n

k

k�
�

1
6
�
�
D

X
k

kjf n
k j�

�
1
6
�
�
:

As mentioned before, every vertex of Gn lies on a disk in Fn
l

for some l , and for every disk in Fn
l

there are
no vertices in �Kn

�Gn which lie on the disk. By assumption Gn � �L\ .nƒ/, where nƒ represents n2

copies of the fundamental domain for the lattice ƒ such that LD L=ƒ.

Since the cone vertex of the torihedron for T 2� I �L is at infinity, the disk pattern obtained from taking
n2 copies of L just extends the disk pattern from one copy of L to n�n grid, as in Figure 17. The graph
for the disk pattern for n2 copies of L intersects �Kn

in Gn, as in Figure 15.

For any face f in Fn
l

, let ın
l

be a positive number such that vol.C.f //D vol.C.f 0//˙ ın
l

, where f 0 is
a face in the disk pattern of L such that the graph isomorphism between G.Dn/ and G.D1/ sends f
to f 0. Furthermore, we choose ın

l
so that we can bound the sequence of ın

l
by a sequence which will

converge to zero, as in Lemma 3.19.
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L L

Figure 17: Two copies of the link L coned to the point at infinity. The disk pattern from one copy
of L extends to the next copy.

Then

(3) vol.Pn/D
X

l

X
f 2F n

l

.vol.f 0/˙ ın
l /CEn:

By (3) we get

(4) vol.Pn/D
1
2
n2 vol..T 2

� I/�L/C
X

l

X
f 2F n

l

.˙ın
l /CEn:

We divide each term by a.Kn/ and take the limit. For the first term of (4) we obtain

lim
n!1

1

2

n2 vol..T 2 � I/�L/

a.Kn/
D

1

2

n2 vol..T 2 � I/�L/

n2a.L/
D

1

2

vol..T 2 � I/�L/

a.L/
:

From our assumption of Følner convergence, the last condition gives us

lim
n!1

a.Kn/

n2a.L/
D 1:

By Lemma 3.19 there are positive numbers �l such that ın
l
� �l , so the second term of (4) becomes

lim
n!1

j
P

l

P
f 2F n

l
.˙ın

l
/j

a.Kn/
� lim

n!1

P
l jF

n
l
j�l

a.Kn/
:

Lemma 3.22 lim
n!1

P
l jF

n
l
j�l

a.Kn/
D 0.

Proof Fix any � > 0. Because liml!1 �l D 0, there is K large enough that �l <
1
3
� for l >K. ThenPK

lD1 �l is a finite number, say M . Since we’ve seen above that limn!1

S
l jF

n
l
j=v.Pn/ D 1 and

limn!1jF
n
l
j=v.Pn/D 0, there exists N such that if n>N then maxl�LjF

n
l
j=v.Pn/ < �=.3MK/ andˇ̌S

l Fn
l

ˇ̌
=v.Pn/ < .1C �/. Then for n>N ,P

l jF
n
l
j�l

v.Pn/
D

PK
lD1jF

n
l
j�l

v.Pn/
C

P
l>K jF

n
l
j�l

v.Pn/
<

�K

3MK
C .1C �/

�

3
< �:

Now setting v.Pn/D 3a.Kn/ we get that the limit of the second term is zero.
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Finally, by (1) and (2) we get that the third term of (4) equals zero:

lim
n!1

En

a.Kn/
� lim

n!1

P
k kjf n

k
j�
�

1
6
�
�

a.Kn/
D 0:

Therefore limn!1 vol.Pn/=a.Kn/D
1
2

vol.T 2�I�L/=a.L/, which means limn!1 vol.Kn/=a.Kn/D

vol.T 2 � I �L/=a.L/.

Recall that Wf denotes the fully augmented square weave link whose quotient is Wf with volume 10cvtet.

Corollary 3.23 Let Kn be any sequence of hyperbolic fully augmented links such that Kn Følner
converges everywhere to Wf . Then

lim
n!1

vol.Kn/

a.Kn/
D 10vtet:

Proof This follows from Proposition 3.7 and Theorem 3.20.
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Unbounded sl3-laminations and their shear coordinates

TSUKASA ISHIBASHI

SHUNSUKE KANO

Generalizing the work of Fock and Goncharov on rational unbounded laminations, we give a geometric
model of the tropical points of the cluster variety Xsl3;†, which we call unbounded sl3-laminations, based
on Kuperberg’s sl3-webs. We introduce their tropical cluster coordinates as an sl3-analogue of Thurston’s
shear coordinates associated with any ideal triangulation. As a tropical analogue of gluing morphisms
among the moduli spaces PPGL3;† of Goncharov and Shen, we describe a geometric gluing procedure of un-
bounded sl3-laminations with pinnings via “shearings”. We also investigate a relation to the graphical basis
of the sl3-skein algebra of Ishibashi and Yuasa (2023), which conjecturally leads to a quantum duality map.

13F60, 57K20, 57K31

1 Introduction

1.1 Background

The notion of measured geodesic laminations (or its equivalent, measured foliations) on a surface was
first introduced by W Thurston [43], as a powerful geometric tool to study the mapping class groups and
the large-scale geometry of the Teichmüller space. After a couple of decades, Fock and Goncharov [11]
studied Thurston’s shear coordinates on the space bML.†/ of (enhanced) measured geodesic laminations
on a marked surface †, which gives a global coordinate system parametrized by the interior edges of an
ideal triangulation 4 of †: bML.†/ ��! Reint.4/. Moreover, they observed that these coordinates can
be viewed as a “tropical analogue” of the cross-ratio coordinates1 on the enhanced Teichmüller space
yT .†/ ��!Reint.4/

>0 studied by Fock and Chekhov [8], as their coordinate transformation rule is exactly
the tropical analogue of that for the latter. These facts indicate that there would be a universal algebraic
object behind the Teichmüller and lamination spaces: this idea leads to the theory of cluster varieties
developed by Fock and Goncharov [13]. In their terms, there is a cluster X -variety2 X uf

† associated with
† such that the spaces yT .†/ and bML.†/ are naturally identified with the spaces X uf

† .R>0/, X
uf
† .R

T / of
positive real points and the real tropical points, respectively. We call the latter space X uf

† .R
T / the tropical

cluster X -variety for short.

1The cross-ratio coordinate is an exponential version of the shear coordinate on the Teichmüller space. In this paper, we always
use the term “shear coordinates” for those on the lamination spaces.
2Here, the superscript “uf” just indicates that it has only unfrozen coordinates. It corresponds to the situation where the
shear/cross-ratio coordinates are defined only for internal edges eint.4/ of an ideal triangulation4.
© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1434 Tsukasa Ishibashi and Shunsuke Kano

In general, cluster varieties are schemes constructed from combinatorial data s (such as quivers) equipped
with a birational atlas whose coordinate changes are given by specific rational transformations, called
cluster transformations (see the appendix for a short review of this theory). They always come in a dual
pair .As;Xs/, forming a cluster ensemble. The duality conjecture is a profound conjecture of Fock and
Goncharov [13] that asks for a construction of “duality maps”

IX W Xs.Z
T /!O.As_/ .resp. IA WAs.Z

T /!O.Xs_//

which parametrizes a linear basis of the function ring O.As_/ (resp. O.Xs_/) of the dual cluster variety
by the space Xs.ZT /� Xs.RT / (resp. As.ZT /�As.RT /) of integral tropical points, satisfying certain
strong axioms such as the positivity of structure constants.

In the surface case, the spaces A†.R>0/ and A†.RT / are identified with the decorated Teichmüller and
lamination spaces — see Papadopoulos and Penner [39; 40] — via the �-length and intersection coordi-
nates [11]. The geometric realization of the tropical spaces A†.ZT / X uf

† .Z
T / by integral laminations

[11] leads to a topological construction of the duality maps IX and IA, and their required properties were
proved recently by Mandel and Qin [37] based on a comparison with the theta basis of Gross, Hacking,
Keel and Kontsevich [22]. These duality maps are two kinds of generalizations of the trace function basis
for the function ring of the SL2-character variety of a closed surface, parametrized by loops.

Strongly expected are “higher rank” generalizations of the above picture. The cluster varieties X uf
† and

A† are birationally isomorphic to certain generalizations of the PGL2- and SL2-character varieties;
see Fock and Goncharov [10]. As a generalization for higher rank algebraic groups, there are cluster
varieties X uf

g;† and Ag;† which are birationally isomorphic to the same kind of generalizations XG0;† and
AG;† of character varieties — see Fock, Goncharov and Shen [10; 21] and Le [35] — where the defining
combinatorial data for these cluster varieties only depend on the surface † and a semisimple Lie algebra g.
In particular, X uf

sl2;†
D X uf

† and Asl2;† DA† correspond to the case mentioned above. Goncharov and
Shen [21] introduced a cluster variety Xg;† with frozen coordinates, which is birational to some extension
PG0;† of XG0;†. Hereupon, we have combinatorially defined tropical spaces Ag;†.RT / and Xg;†.RT /,
which should parametrize linear bases of the function rings of the dual varieties with good properties by
the duality conjecture. The spaces Ag;†.RT / and Xg;†.RT / are widely expected to be certain spaces of
g-webs on †, so that the duality maps are built from the web functions on the character variety. However,
such a web description is still missing in general. We remark here that Le [34] gave a description of
these spaces in terms of certain configurations in the affine buildings, which should be ultimately related
to g-webs based on the geometric Satake correspondence (see, for instance, Fontaine, Kamnitzer and
Kuperberg [18]).

For the first nontrivial case gD sl3, major progress on the space Asl3;†.Z
T / has been made by Douglas

and Sun [6; 7] and Kim [32]. They describe this space as an appropriate space of Kuperberg’s sl3-webs
[33] by introducing an sl3-version of the intersection coordinates with an ideal triangulation. Their
coordinates can also be extended to the space Asl3;†.Q

T / by scaling equivariance.

Algebraic & Geometric Topology, Volume 25 (2025)
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1.2 Geometric model for the tropical space X uf
sl3;†

.QT /

Our aim in this paper is to describe the tropical cluster variety Xsl3;†.Q
T / on the dual side as a space of

sl3-webs with a different type of boundary conditions and some additional structures at punctures. We
introduce the space Lxsl3.†;Q/ of rational unbounded sl3-laminations on†, which are certain equivalence
classes of nonelliptic signed sl3-webs with positive rational weights (see Section 2.2). Then we define an
sl3-version of the shear coordinates of these objects with respect to an ideal triangulation 4. As in the
sl2-case, we need to perturb the ends incident at punctures (and thus make them spiraling) so that they
intersect with 4 transversely. The spiraling directions are controlled by the signs assigned to each end
of the sl3-web, and this procedure leads to the notion of spiraling diagrams (Definition 3.8) associated
with signed sl3-webs. After a careful study on the “good positions” of a spiraling diagram, we obtain
well-defined shear coordinates.

Theorem 1 (Theorem 3.20) For any marked surface † satisfying conditions (S1)–(S4) in Section 2.1
and its ideal triangulation4 without self-folded triangles , we have a bijection

(1-1) xuf
4
W Lxsl3.†;Q/

��!QIuf.4/;

which we call the shear coordinate system associated with4. Moreover , for any another ideal triangulation
40 of †, the coordinate transformation x40 ı x

�1
4

is a composite of tropical cluster X -transformations.

As a consequence, the shear coordinates combine to give an MC.†/-equivariant bijection

(1-2) xuf
�
W Lxsl3.†;Q/

��! X uf
sl3;†

.QT /:

Therefore, our space Lxsl3.†;Q/ of unbounded sl3-laminations gives a geometric model for the tropical
cluster X -variety X uf

sl3;†
.QT /. In other words, the space Lxsl3.†;Q/ can be viewed as a tropical analogue

of the moduli space XPGL3;† of framed PGL3-local systems [10].

In Section 3.4, we give an explicit inverse map of xuf
4

by gluing local building blocks according to the
shear coordinates, in the same spirit as Fock and Goncharov. The coordinate transformation formula
could be obtained by case-by-case as in [7] for the A-side. However, in order to reduce the length of
computation, we choose to derive it from the computation on the A-side performed by Douglas and Sun
after investigating their relation in detail (see Theorem 2 below). So the second statement in Theorem 1
follows from Theorem 2.

1.3 Unbounded sl3-laminations with pinnings and their gluing

In order to supply the frozen coordinates, we further introduce a larger space Lpsl3.†;Q/ of unbounded
sl3-laminations with pinnings by attaching additional data on boundary intervals, in the same spirit as

Algebraic & Geometric Topology, Volume 25 (2025)



1436 Tsukasa Ishibashi and Shunsuke Kano

Goncharov and Shen’s construction of the moduli space PG0;† [21]. As in their work, these additional
data allow us to glue the sl3-laminations along boundary intervals, which leads to the gluing map

(1-3) qEL;ER W L
p
sl3
.†;Q/! Lpsl3.†

0;Q/

where †0 is the marked surface obtained from † by gluing two boundary intervals EL and ER.

The space Lpsl3.†;Q/ is also suited for the comparison with the works of Douglas and Sun [6; 7] and
Kim [32]. Let Lasl3.†;Q/ denote the space of rational bounded sl3-laminations, which essentially appears
in these works. See Remark 2.10. Then we define a geometric ensemble map

(1-4) Qp W Lasl3.†;Q/! Lpsl3.†;Q/

by forgetting the peripheral components, and assigning pinnings in a certain way. When † has no
punctures, Qp gives a bijection. For these structures, we obtain the following:

Theorem 2 (Theorems 4.7 and 4.11 and Proposition 4.10) Under the same assumption as in Theorem 1,
we have a bijection

(1-5) x4 W L
p
sl3
.†;Q/ ��!QI.4/;

whose coordinate transformations are given by tropical cluster X -transformations (including frozen
coordinates). Via these coordinate systems:

(1) The gluing map qEL;ER coincides with the tropicalization of the amalgamation map [9].

(2) The geometric ensemble map Qp coincides with the tropicalization of the Goncharov–Shen extension
of the ensemble map (A-6).

We will also see in Section 4.4 that the shear coordinates are equivariant under the Dynkin involution �,
which generates Out.SL3/. In particular, we have an MC.†/�Out.SL3/-equivariant bijection

(1-6) x4 W L
p
sl3
.†;Q/ ��! Xsl3;†.Q

T /:

In other words, the space Lpsl3.†;Q/ can be viewed as a tropical analogue of the Goncharov and Shen’s
moduli space PPGL3;† [21].

Property (1) allows one to reduce the computation of coordinate transformations to those for smaller
surfaces. For a surface without punctures, the map Qp is a bijection and property (2) shows that this
map intertwines the two types of cluster transformations. This is our strategy to obtain the coordinate
transformation formula for (1-5).

In our sequel paper [28], we will investigate the unbounded sl3-laminations around punctures in detail,
and study the tropicalizations of the cluster exact sequence of Fock and Goncharov [13] and the Weyl
group actions at punctures introduced by Goncharov and Shen [20] in terms of sl3-laminations. In
the end, the bijections (1-2) and (1-6) turn out to be equivariant under the natural action of the group
.MC.†/�Out.SL3//ËW.sl3/Mı .

Algebraic & Geometric Topology, Volume 25 (2025)
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1.4 Relation to the graphical basis of the skein algebra Sq

sl3;†

As mentioned in the beginning, our space Lpsl3.†;Z/Š Xsl3;†.Z
T / is expected to parametrize a linear

basis of the function ring O.Asl3;†/. When the marked surface has no punctures (hence the exchange
matrix has full-rank), it is also expected to parametrize a linear basis of the quantum upper cluster
algebra Oq.Asl3;†/ of Berenstein and Zelevinsky [3]. On the other hand, a skein model for Oq.Asl3;†/

is investigated in [30] by the first named author and W Yuasa. They study a skein algebra S
q
sl3;†

with
appropriate “clasped” skein relations at marked points, and constructed an inclusion of its boundary-
localization S

q
sl3;†

Œ@�1� into the quantum cluster algebra (and hence into Oq.Asl3;†/). Conjecturally
these algebras coincide with each other. They give a Zq-basis BWebsl3;† of the skein algebra S

q
sl3;†

consisting of flat trivalent graphs. In this paper, we relate our integral sl3-laminations with pinnings to
the basis webs:

Theorem 3 (Theorem 5.2) Assume that † has no punctures. Then we have an MC.†/�Out.SL3/-
equivariant bijection

IqX W L
p
sl3
.†;Z/C ��! BWebsl3;† � S

q
sl3;†

;

where Lpsl3.†;Z/C � Lpsl3.†;Z/ denotes the subspace of dominant integral sl3-laminations. Moreover ,
it is extended to a map IqX W L

p
sl3
.†;Z/ ,! S

q
sl3;†

Œ@�1�, whose image gives a Zq-basis of S
q
sl3;†

Œ@�1�.

The latter correspondence should be a basic ingredient for a construction of the quantum duality map [13]
(see Qin [41, Conjecture 4.14] for a finer formulation as well as Davison and Mandel [5]). See Section 5
for a detailed discussion. Our general expectation is the following:

Conjecture 4 The basis IqX .L
p
sl3
.†;Z// is parametrized by tropical points in the sense of [41, Defini-

tion 4.13]. Namely, for any integral sl3-lamination yL 2 Lpsl3.†;Z/, the quantum Laurent expression of
IqX .yL/ 2A

q
sl3;†

in the quantum cluster fAigi2I associated with a vertex ! 2 Exchsl3;† has the leading
term

�Q
i2I A

xi .yL/
i

�
with respect to the dominance order [41, Definition 4.6], where x.!/ D .xi /i2I is the

shear coordinate system associated with !.

Currently we do not know if it gives a basis with positivity (of Laurent expressions and/or structure
constants), or it requires a modification by using an sl3-version of bracelets; see D Thurston [42]. See
also Allegretti and Kim [1; 2] and Cho, Kim, Kim and Oh [4] for the progress on the positivity problem
for the sl2-case.

1.5 Future directions: real unbounded sl3-laminations

Let Lxsl3.†;R/ be the completion of the space Lxsl3.†;Q/ such that each shear coordinate system
(1-1) extends to a homeomorphism xuf

4
W Lxsl3.†;R/

��! RIuf.4/. It is well defined since the cluster
X -transformations are Lipschitz continuous with respect to the Euclidean metrics on QIuf.4/. We call an

Algebraic & Geometric Topology, Volume 25 (2025)
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element of Lxsl3.†;R/ a real unbounded sl3-lamination, which is represented by a Cauchy sequence in
Lxsl3.†;Q/ with respect to shear coordinates. The space Lxsl3.†;R/ has a natural PL structure, and is
considered to be an sl3-analogue of the space bML.†/ of measured geodesic laminations. Recall that in
the Teichmüller–Thurston theory, the latter PL manifold plays the following roles (among others):

Boundary at infinity of the Teichmüller space The Thurston compactification is a compactification
of the Teichmüller space into a topological disk obtained by attaching the projectivization of bML.†/,
so that the mapping class group action is continuously extended. The measured geodesic laminations
encode the “rate” of degenerations of geodesics in a divergent sequence in the Teichmüller space.
The Thurston compactification is identified with the Fock–Goncharov compactification [14; 24; 34]
X†.R>0/D X†.R>0/[SX†.RT /, which is defined for any cluster X -variety.

Place for analyzing the pseudo-Anosov dynamics The PL action of the mapping class group on
bML.†/ provides us rich information on the dynamics of pseudo-Anosov mapping classes. In particular,
each pseudo-Anosov mapping class has the north-south dynamics on the projectivized space, and its
unique attracting/repelling points are represented by a transverse pair of measured geodesic laminations.
A generalization of these specific properties for elements of a general cluster modular group is proposed
in [25; 26; 27], which we call the sign stability. The equivalence between the “uniform” sign stability and
the pseudo-Anosov property is discussed in [25], based on the identification bML.†/Š X uf

† .R
T /.

It is natural to expect that the space Lxsl3.†;R/ plays the same role in the sl3-case. Since the positive
real part X uf

sl3;†
.R>0/ has been identified with the moduli space of convex RP2-structures on †, the real

unbounded sl3-laminations are expected to encode their degenerations. The PL action of a pseudo-Anosov
mapping class on the space Lxsl3.†;R/ is expected to provide more rich information, which may possibly
lead to a finer classification of pseudo-Anosov mapping classes. Although a concrete description of a
real unbounded sl3-lamination as a certain geometric object (rather than a sequence) is still missing, the
cluster algebraic interpretation of Thurston’s train tracks studied in [31] will be a useful tool.

Generalizations of Thurston’s earthquake maps and the Hubbard–Masur theorem that relates measured
foliations with quadratic differentials will be also interesting topics. A study on a cluster algebraic
analogue of these theories is in progress by the authors with Takeru Asaka.

Organization of the paper

Main part (Sections 2–4) In Section 2, we introduce rational unbounded sl3-laminations and briefly
discuss the relation to the works of Douglas and Sun [6; 7] and Kim [32]. We study the associated
spiraling diagrams and define the shear coordinates in Section 3. The bijectivity of the shear coordinate
systems (1-1) is proved. In Section 4, we introduce pinnings for rational unbounded sl3-laminations
and discuss their gluing and the extended ensemble map. Theorem 2 is proved, and hence the proof of
Theorem 1 is completed.
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Relation to skein theory (Section 5) We investigate the relation to the skein algebra and quantum
duality map in Section 5. Theorem 3 is proved here.

Proofs for the technical statements (Section 6) The proofs of Theorems 3.10 and 3.19 are placed in
Section 6. Logically they do not depend on the contents after the places where the statements are written.

Basic terminology on the cluster varieties and the known results we need for the sl3-case are collected in
the appendix.
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2 Unbounded sl3-laminations and their shear coordinates

2.1 Marked surfaces and their triangulations

A marked surface .†;M/ is a compact oriented surface † together with a fixed nonempty finite set
M�† of marked points. When the choice of M is clear from the context, we simply denote a marked
surface by †. A marked point is called a puncture if it lies in the interior of †, and a special point
otherwise. Let Mı DMı.†/ (resp. M@ DM@.†/) denote the set of punctures (resp. special points), so
that MDMı tM@. Let †� WD† nMı. We always assume the following conditions:

(S1) Each boundary component (if exists) has at least one marked point.

(S2) �2�.†�/CjM@j> 0.

(S3) .†;M/ is not a once-punctured disk with a single special point on the boundary.

We call a connected component of the punctured boundary @�† WD @† nM@ a boundary interval. The
set of boundary intervals is denoted by BD B.†/. We always endow each boundary interval with the
orientation induced from @†. Then we have jM@j D jBj.

Unless otherwise stated, an isotopy in a marked surface .†;M/ means an ambient isotopy in † relative
to M, which preserves each boundary interval setwise. An ideal arc in .†;M/ is an immersed arc in †
with endpoints in M which has no self-intersection except possibly at its endpoints, and not isotopic to
one point.
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E

i1.E/

i2.E/

Figure 1: The set I.4/ of distinguished points.

An ideal triangulation is a triangulation 4 of † whose set of 0-cells (vertices) coincides with M.
Conditions (S1) and (S2) ensure the existence of such an ideal triangulation, and the positive integer in
(S2) gives the number of 2-cells (triangles). The 1-cells (edges) are necessarily ideal arcs. In this paper,
we always consider an ideal triangulation without self-folded triangles of the form

Such an ideal triangulation exists by condition (S3). See, for instance, [15, Lemma 2.13]. For an ideal
triangulation4, denote the set of edges (resp. interior edges, triangles) of4 by e.4/ (resp. eint.4/, t .4/).
Since the boundary intervals belong to any ideal triangulation, e.4/D eint.4/tB. By a computation on
the Euler characteristics, we get

je.4/j D �3�.†�/C 2jM@j; jeint.4/j D �3�.†
�/CjM@j; jt .4/j D �2�.†

�/CjM@j:

It is useful to equip 4 with two distinguished points on the interior of each edge and one point in the
interior of each triangle, as shown in Figure 1. The set of such points is denoted by I.4/ D Isl3.4/.
This set will give the vertex set of the quiver Q4 associated with 4; see Section A.3. Let I edge.4/

(resp. I tri.4/) denote the set of points on edges (resp. faces of triangles) so that I.4/D I edge.4/tI tri.4/,
where we have a canonical bijection

t .4/ ��! I tri.4/; T 7! i.T /:

When we need to label the two vertices on an edge E 2 e.4/, we endow E with an orientation. Then
let i1.E/ 2 I.4/ (resp. i2.E/ 2 I.4/) denote the vertex closer to the initial (resp. terminal) endpoint
of E. Let I.4/f � I edge.4/ (“frozen”) be the subset consisting of the points on the boundary, and let
I.4/uf WD I.4/ n I.4/f (“unfrozen”). The numbers

jI.4/j D 2je.4/jC jt .4/j D �8�.†�/C 5jM@j;

jI.4/ufj D 2jeint.4/jC jt .4/j D �8�.†
�/C 3jM@j

will give the dimensions of the PL manifolds Lpsl3.†;R/ and Lxsl3.†;R/ respectively.
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2.2 Unbounded sl3-laminations

Recall that a uni-trivalent graph is a (possibly disconnected and/or infinite) graph whose vertices have
valency either one or three. It is allowed to have a loop component (ie a connected component without
vertices). An orientation of a uni-trivalent graph is an assignment of an orientation on each edge and loop
such that any trivalent vertex is either a sink or a source, respectively:

An sl3-web (or simply a web) on a marked surface † is an immersed oriented uni-trivalent graph W on
† such that each univalent vertex lie in Mı[ @�†, and the other part is embedded into int†�. It is said
to be nonelliptic if it has none of the following elliptic faces:

(2-1)

(2-2)

A web is said to be bounded if none of its univalent vertices lie in Mı.

We will mostly deal with finite webs, while infinite ones appear when (and only when) we discuss spiraling
diagrams (Definition 3.8), which are still locally finite except possibly around punctures. When we simply
say an (sl3-)web below, it will mean a finite web. When the web in consideration can be infinite, we will
say a “possibly infinite web”.

Remark 2.1 The exclusion of the internal faces in (2-1) is usual in literature. Indeed, a web containing
these faces can be written as a linear combination of nonelliptic webs in the skein algebra (see Section 5),
and hence not needed as a basis element. The first two faces in (2-2) are excluded as variants of boundary
skein relations [30]. It is also related to the weakly reduced condition in [19]. The third one can be
regarded as a variant for a boundary component without marked points.

Example 2.2 (honeycomb webs) Let T � int†� be an embedded triangle. For each positive integer n,
the incoming (resp. outgoing) honeycomb-web (or pyramid web) in T of height n is the sl3-web dual to
the n-triangulation of T , oriented so that the outer-most edges are incoming to (resp. outgoing from) T .
See the left picture in Figure 2 for an example. We will also use a short-hand presentation as shown in
the right of Figure 2. The embedded image of a honeycomb web in † is simply called a honeycomb. The
ends of a honeycomb can be connected with other oriented arcs or honeycombs on †.
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DW

Figure 2: A honeycomb-web on a triangle T of height nD 4 (left) and its short-hand presentation (right).

A signed web is a web on † together with a sign (C or �) assigned to each end incident to a puncture.
The following patterns (and their orientation-reversals) of signed ends are called bad ends:

(2-3)
�� �

� � � �

Here � 2 fC;�g. A signed web is said to be admissible if it has no bad ends. In this paper, we always
assume that the signed webs are admissible unless otherwise stated. A bounded web is naturally regarded
as a signed web since we do not need to specify any signs.

Remark 2.3 The latter two types of bad ends will be excluded simply because they will not contribute
to the shear coordinates. On the other hand, a pair of the first type will have nontrivial coordinates, while
there is always another web that attains the same coordinates. So we only need admissible signed webs
to realize the tropical space. It turns out that we need to include the bad ends of first type to define the
Weyl group actions at punctures [28].

Elementary moves of signed webs We are going to introduce several elementary moves for signed
webs. The first two are defined for a web without signs.

(E1) Loop parallel-move (aka flip move [19] or global parallel move [6]):

(2-4) �

(E2) Boundary H-move:

(2-5) �

Similarly for the opposite orientation. We call the face in the left-hand side a boundary H-face.
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(E3) Puncture H-moves:

(2-6) �� � ��

for � 2 fC;�g, and

(2-7) C � � � C � C �

Similarly for the opposite orientation. We call the face in the left-hand side of (2-6) a puncture
H-face.

The following lemma is verified by using (E2) and the first one in (E3):

Lemma 2.4 From the boundary and puncture H-moves , we get the following “arc parallel-moves”
swapping parallel arcs with opposite orientations:

�
�

�
�

�

�

�

�

�0

�0
�

�

�

�0

�0

Here white (resp. black ) circles stand for punctures (resp. special points), and �; �0 2 fC;�g.

Also note that we can always transform any signed web to a signed web without boundary H-faces
(resp. puncture H-faces) by applying (E2) and (E3), respectively. Slightly generalizing the terminology
in [19], such a signed web is said to be boundary-reduced (resp. puncture-reduced). It is said to be
reduced if it is both boundary- and puncture-reduced.

(E4) Peripheral move: removing or creating a peripheral component:

(2-8)

Moreover, we have the moves

C

CC
� C

C
C �

�
� � �

�
�

Similarly for the opposite orientation.
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We will consider the equivalence relation on signed webs generated by isotopies of marked surfaces and
the elementary moves (E1)–(E4). Observe that the moves (E1)–(E4) preserves the admissibility. On the
other hand, a nonelliptic signed web may be equivalent to an elliptic web as the following example shows.

Example 2.5 We have

CC �CC � CC C � � � C

by the puncture H-moves (2-6) and (2-7), where the resulting signed webs are elliptic (having interior
4-gon faces).

Definition 2.6 (rational unbounded sl3-laminations) A rational unbounded sl3-lamination (or a rational
sl3-X -lamination) on † is an admissible, nonelliptic signed sl3-web W on † equipped with a positive
rational number (called the weight) on each component, which is considered modulo the equivalence
relation generated by isotopies and the following operations:

(1) Elementary moves (E1)–(E4) for the underlying signed webs. Here the corresponding components
are assumed to have the same weights.

(2) Combine a pair of isotopic loops with the same orientation with weights u and v into a single loop
with the weight uC v. Similarly combine a pair of isotopic oriented arcs with the same orientation
(and with the same signs if some of their ends are incident to punctures) into a single one by adding
their weights.

(3) For an integer n 2Z>0 and a rational number u 2Q>0, replace a component with weight nu with
its n-cabling with weight u, which locally looks like

nu
�

nn

n

u

�
nu

n

u

u

For a loop or arc component, it is just a successive applications of operation (2). One can also verify
that the cabling operation is associative in the sense that the n-cabling followed by the m-cabling
agrees with the nm-cabling, since nm-cabling is dual to the mth subdivision of an n-triangulation
(recall Figure 2).

See Figure 3 for a global example. Let Lxsl3.†;Q/ denote the set of equivalence classes of the rational
unbounded sl3-laminations on †. We have a natural Q>0-action on Lxsl3.†;Q/ that simultaneously
rescales the weights. A rational unbounded sl3-lamination is said to be integral if all the weights are
integers. The subset of integral unbounded sl3-laminations is denoted by Lxsl3.†;Z/.
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C
C C

�

u1

u2

u3

Figure 3: An example of a rational unbounded sl3-lamination. Here u1, u2 and u3 are arbitrary
positive rational weights.

The sets Lxsl3.†;Q/ and Lxsl3.†;Z/ will be identified with the unfrozen part X uf
sl3;†

.QT / and X uf
sl3;†

.ZT /,
respectively, of the tropical cluster X -variety associated with the pair .sl3; †/ (see Section A.3).

Notation 2.7 In view of the equivalence relation (4), we will occasionally use the following equivalent
notations for honeycombs:

nn

n

�

nn

n

�

nn

n1 n2

with n1 C n2 D n. We may also split an edge of weight n with k edges of weight n1; : : : ; nk with
n1C � � �Cnk D n.

Definition 2.8 (Dynkin involution) The Dynkin involution is the involutive automorphism

�W Lxsl3.†;Q/! Lxsl3.†;Q/; yL 7! yL�;

where yL� is obtained from yL by reversing the orientation of every components of the underlying web,
and keeping the signs at punctures intact. Since all the elementary moves (E1)–(E4) are equivariant under
the orientation-reversion, this indeed defines an automorphism on Lxsl3.†;Q/.

Bounded laminations and the ensemble map

Definition 2.9 (rational bounded sl3-laminations) A rational bounded sl3-lamination (or a rational
sl3-A-lamination) on † is a bounded nonelliptic sl3-web W on † equipped with a rational number
(called the weight) on each component such that the weight on a nonperipheral component is positive.
It is considered modulo the equivalence relation generated by isotopies and the operations (2)–(4) in
Definition 2.6.
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Let Lasl3.†;Q/ denote the space of rational bounded sl3-laminations. We have a natural Q>0-action on
Lasl3.†;Q/ that simultaneously rescales the weights. A rational bounded sl3-lamination is said to be
integral if all the weights are integers. The subset of integral bounded sl3-laminations is denoted by
Lasl3.†;Z/.

Remark 2.10 The space Lasl3.†;Z/ is the same one as the space AL.†IZ/ that appears in Kim’s
work [32, Definition 3.9].3 The space W† in Douglas and Sun’s work [6, Definition 6] is the subset of
Lasl3.†;Z/ consisting of elements with positive peripheral weights. It is straightforward to extend their
coordinate systems by Q>0-equivariance to the rational case, and the space Lasl3.†;Q/ is identified with
the tropical cluster A-variety Asl3;†.Q

T / [32, Theorem 3.39].4

By forgetting the peripheral components, we get the geometric ensemble map

(2-9) p W Lasl3.†;Q/! Lxsl3.†;Q/:

We will see in Section 4 that the geometric ensemble map coincides with the cluster ensemble map (A-2)
via the Douglas–Sun coordinates and our shear coordinates.

3 Shear coordinates

3.1 Essential webs on polygons

Let Dk denote a disk with k � 2 special points. In what follows, we simply refer to Dk as a k-gon. We
say that an sl3-web W on Dk is taut if for any compact embedded arc ˛ whose endpoints lie in a common
boundary interval E, the number of intersection points of W with E does not exceed that of W with ˛.
See Figure 4. Following [6], we call a nonelliptic, taut sl3-web an essential web. These essential webs on
polygons are basic building blocks for the bounded sl3-laminations studied in [6]. We recall the concrete
description of the essential webs for k D 2; 3 following [6, Sections 2.7 and 2.8] and [19, Sections 8
and 9], including additional infinite webs needed for our purpose.

The biangle (2-gon) case Let EL and ER denote the boundary intervals of a biangle D2. A (finite)
symmetric strand set on D2 is a pair S D .SL; SR/ of finite collections of disjoint oriented strands (ie
germs of oriented arcs), where the oriented strands in SZ are located on EZ for Z 2 fL;Rg such that the
number of incoming (resp. outgoing) strands on EL is equal to the outgoing (resp. incoming) strands
on ER. See the left-most picture in Figure 5 for an example.

3Indeed, an element of our space Lasl3.†;Z/ can be represented by a reduced web [32, Definition 3.3] by applying the boundary
H-moves, and we can rescale the weights on honeycombs to be 1 by the operation (4) in Definition 2.6.
4Here note that there is a subset of Lasl3.†;Z/ formed by congruent laminations [32, Definition 3.38] which is identified with

the tropical cluster A-variety Asl3;†.Z
T /.
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˛

W

Figure 4: Example of a nontaut web in D3.

Given a symmetric strand set S D .SL; SR/, the associated ladder-web W.S/ on D2 is constructed as
follows. First, let Wbr.S/ be the unique (up to ambient isotopy of D2) collection of oriented curves
connecting strands in SL with those in SR in the order-preserving and minimally intersecting way. See
the middle picture in Figure 5. It is characterized by the pairing map f W SL! SR, which is an order-
preserving bijection that maps each incoming (resp. outgoing) strand of SL to an outgoing (resp. incoming)
strand of SR. The associated ladder-web W.S/ is obtained from Wbr.S/ by replacing each intersection
with an H-web, as follows:

(3-1)  

Conversely, the collection Wbr.S/ is called the braid representation of the ladder-web W.S/. It is known
that all the essential webs on D2 arise in this way:

Proposition 3.1 [6, Proposition 19; 19, Section 8] The ladder-web W.S/ is an essential web on D2
for any symmetric strand set S . Conversely , given an essential web W on D2, there exists a unique
symmetric strand set S such that W DW.S/.

For the study of unbounded sl3-webs, we need the following infinite extension of the symmetric strand
sets.

Figure 5: Construction of the ladder-webs. Left: a symmetric set S . Middle: the corresponding
collection of oriented curves Wbr.S/. Right: the associated ladder-web W.S/.
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K

˛1

˛2

K 0

˛01

˛02

Figure 6: An asymptotically periodic symmetric strand set and the associated ladder webs
corresponding to the two choices of compact strips K and K 0.

Definition 3.2 (asymptotically periodic symmetric strand sets) An asymptotically periodic symmetric
strand set S D .SL; SR/ on D2 consists of countable collections SL and SR of disjoint oriented strands,
where the oriented strands in SZ are located on EZ without accumulation points for Z 2 fL;Rg. The
oriented strands are required to be symmetric, and periodic away from a compact set (see Figure 6).
Namely, we require that there exists a compact strip K �D2 nM such that

� K is bounded by two parallel arcs, ˛1 and ˛2, transverse to the boundary intervals of D2, and
˛1[˛2 avoiding the strand sets SL and SR;

� the pair .SL\K;SR \K/ is a finite symmetric strand set;

� the orientation patterns of the strands in the sets SL and SR that belong to D2 nK are periodic,
and the pairing map fK W SL\K! SR \K of finite symmetric strand set can be extended to an
order-preserving bijection f W SL! SR that maps each incoming (resp. outgoing) strand of SL to
an outgoing (resp. incoming) strand of SR.

Unlike the finite case, the pairing map f may not be unique, as it depends on the choice of the compact
strip K. Given such a pair .S; f /, we get a collection Wbr.S; f / of oriented curves mutually in a minimal
position, and the associated ladder-web W.S; f / just in the same manner as in the finite case. We call
W.S; f / the ladder-web associated with the pair .S; f /. It is possibly an infinite web.

Definition 3.3 An unbounded essential web on D2 is the isotopy class of the ladder-web associated with
a pair .S; f / as above.

Among the others, the following way of fixing a pairing map turns out to be useful in this paper.

Definition 3.4 A pinning of an asymptotically periodic symmetric strand set S D .SL; SR/ is a pair
pZD .p

C

Z ; p
�
Z/ of points inEZ away from the set SZ forZ2fL;Rg. The resulting tuple yS WD .S I pL; pR/

is called a pinned symmetric strand set.
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Figure 7: The H-move across an arc.

Then we define the pairing map as follows. For Z 2 fL;Rg, let us decompose SZ D SCZ tS
�
Z , where SCZ

(resp. S�Z ) denotes the subset of incoming (resp. outgoing) strands. Then there exist orientation-reversing
homeomorphisms f˙ WEL!ER such that f˙.S˙L /D S

�

R and f˙.p˙L /D p
�

R . Then we get the unique
pairing map

f yS WD fC tf� W S
C

L tS
�
L ! S�R tS

C

R ;

which determines the collection Wbr. yS/ WDWbr.S; f yS / of oriented curves and the associated ladder-web
W. yS/ WDW.S; f yS /.

The triangle (3-gon) case Let D3 be a triangle. Recall that we have honeycomb-webs on D3, which are
dual to n-triangulations of D3.

Proposition 3.5 [6, Proposition 22; 19, Theorem 19] A honeycomb-web is reduced (rung-less in terms
of [6]) and essential. Conversely , any connected reduced essential web on D3 having at least one trivalent
vertex is a honeycomb-web.

Consequently, any reduced essential web on D3 consists of a unique (possibly empty) honeycomb
component together with a collection of disjoint oriented arcs located on the corners of D3. These oriented
arcs are called corner arcs. Similarly to the biangle case, we may allow the collection of corner arcs to be
semi-infinite and asymptotically periodic.

Definition 3.6 An unbounded reduced essential web on D3 is the isotopy class of a disjoint union of a
(possibly empty) reduced essential web on D3 and at most one semi-infinite periodic collection of corner
arcs around each corner.

3.2 Good position of an unbounded sl3-lamination

Let 4 be an ideal triangulation of † without self-folded triangles. Recall from [6, Section 3] that a
bounded sl3-web W on † is generic with respect to 4 if none of its trivalent vertices intersect with the
edges of4, andW intersects with4 transversely. A generic isotopy is an isotopy of webs through generic
webs. Recall the parallel-equivalence of bounded webs, which is the equivalence relation generated by
isotopies of marked surface and the loop parallel-move (E1). A generic bounded web W is said to be in
minimal position with respect to 4 if it minimizes the sum of the intersection numbers with the edges of
4 among those parallel-equivalent to W . Then we have:

Algebraic & Geometric Topology, Volume 25 (2025)



1450 Tsukasa Ishibashi and Shunsuke Kano

Figure 8: The intersection reduction moves across an arc.

Proposition 3.7 [6, Proposition 27; 19, Section 6] Any parallel-equivalence class of nonelliptic bounded
webs on † has a representative in minimal position with respect to4. Moreover , such a representative
is unique up to a sequence of H -moves across edges of4 (Figure 7), loop parallel-moves , and generic
isotopies.

Indeed, the minimal position is realized by appropriately applying the intersection reduction moves (aka
tightening moves) across edges of 4 shown in Figure 8.

The split ideal triangulation y4 is obtained from 4 by replacing each edge E into a biangle BE . We
say that a bounded web W on † is in good position with respect to y4 if the restrictions W \BE for
E 2 e.4/ (resp. W \T for T 2 t .4/) are an essential (resp. reduced essential) webs. Then it is known
that any parallel-equivalence class of nonelliptic bounded webs on † has a representative in good position
with respect to y4; such a representative is unique up to a sequence of modified H-moves (Figure 9),
loop parallel-moves, and generic isotopies for y4 [6, Proposition 30; 19, Corollary 18]. Using such a
representative, the Douglas–Sun coordinates are defined [6, Section 4].

Now let us consider a signed web W on †. In this case, W is no more parallel-equivalent to a web in
good position in the above sense. To resolve this, we introduce the following notion:

Definition 3.8 (spiraling diagram) Let W be a nonelliptic signed web on †. Then the associated
spiraling diagram W is a (possibly infinite and noncompact) sl3-web obtained by the following two steps.

(1) In a small disk neighborhood Dp of each puncture p 2Mı, deform each end of W incident to p
into an infinitely spiraling curve, according to their signs as shown in Figure 10. Let W 0 be the
resulting diagram.

Figure 9: The modified H-move [6] (aka crossbar pass [19]) across a corner.
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W

Cp

Figure 10: Construction of a spiraling diagram. The negative sign similarly produce an end
spiraling counterclockwise.

(2) A pair of ends incident to a common puncture p with the opposite sign produce infinitely many
intersections in W 0. We then modify these intersections into H-webs in a periodic manner, as
follows. By applying an isotopy in Dp , we can make these intersections only occurring in a single
half-biangle Bp in Dp with special point p, without producing additional intersections.5 Then
W 0\Bp DWbr.Sp/ for an asymptotically periodic symmetric strand set Sp on Bp. By replacing
the biangle part Wbr.Sp/ with the associated ladder-web W.Sp/, we get the spiraling diagram W .
Since W \ .Dp nBp/ consists of oriented corner arcs, the result does not depend on the choice
of Bp.

See Figure 11 for a local example. A global example arising from Figure 3 is shown in Figure 12.

Definition 3.9 The spiraling diagram W is in a good position with respect to a split triangulation y4 if
the intersection W \BE (resp. W \T ) is an unbounded essential (resp. reduced essential) local web for
each E 2 e.4/ and T 2 t .4/.

The loop parallel-move and the boundary H-move of a spiraling diagram are similarly defined as before,
so that the construction of spiraling diagram from a signed web is equivariant under these moves. We
define the modified periodic H-move of a spiraling diagram in a good position across a corner to be the
periodic application of the modified H-move to be the periodic parts of the unbounded essential local
webs on biangles. By a strict isotopy relative to a split triangulation y4, we mean an isotopy on a marked
surface † which is the identity on each edge of y4 and a neighborhood of each puncture.

Theorem 3.10 (proof in Section 6.1) Any spiraling diagram arising from a nonelliptic signed web on
† can be isotoped into a good position with respect to y4 by a finite sequence of intersection reduction

5Concretely, this can be done as follows. If we fix a polar coordinates .r; �/, r < r0 for some r0 > 0 on the punctured disk
Dp n fpg, each spiraling curve can be modeled by the logarithmic spiral `˙.a/: � D ˙ log.ar/ for some parameter a > 0.
Then an elementary calculation shows that the intersection points of `C.a1/ and `�.a2/ lie on a single line, which is viewed as
the union of two rays. Then we can collectively push these rays into a chosen half-biangle Bp only by smoothly varying the
coordinate function � . By the standard argument involving a smooth cut-off function, we can also modify this “angular” isotopy
to be identity near @Dp .
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Figure 11: Construction of a spiraling diagram. Replace intersections with H-webs in a periodic manner.

moves , H-moves , and strict isotopies relative to y4. Moreover , such a good position is unique up to a
sequence of modified H-moves , modified periodic H-moves , loop parallel-moves , boundary H-moves ,
and strict isotopies relative to y4.

Indeed, we can obtain a representative in a good position by successively applying the intersection
reduction moves (Figure 8) and then pushing the H-faces into biangles by the H-move (Figure 7). An
example of this procedure is illustrated in Figure 13. The main issue here is to ensure that this procedure
always terminates in finite steps, which is discussed in Section 6.1 in detail.

While the spiraling diagram itself is suited to discuss its good position, the following braid representation
will be useful to define the shear coordinates:

Definition 3.11 (braid representation of a spiraling diagram) Let W be a spiraling diagram in a good
position with respect to y4. Then its braid representation W4br is obtained from W by replacing the
unbounded essential web W \BE on each biangle BE with its braid representation.

The braid representation is closely related to (an unbounded version of) global picture [6, Definition 55].
See also Section 6.2.

Figure 12: A global example of spiraling diagram arising from the underlying signed nonelliptic
web in Figure 3.
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C �
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Figure 13: An example of the procedure to place a spiraling diagram in good position.

3.3 Definition of the shear coordinates

Now we define the shear coordinates associated with an ideal triangulation 4 of † without self-folded
triangles. Let y4 be the associated split triangulation.

Given a rational sl3-lamination yL 2 Lxsl3.†;Q/, represent it by an sl3-web W together with rational
weights on its components and signs at the ends incident to punctures. Let W be the associated spiraling
diagram together with rational weights on the components, placed in good position with respect to y4.
Let W4br be its braid representation, together with well-assigned rational weights on its components. The
shear coordinates of yL are going to be defined out of W4br .

For each E 2 eint.4/, let QE be the unique quadrilateral containing E as its diagonal, regarded as the
union of two triangles, TL and TR, and the biangle BE . By Proposition 3.5, the restriction of W4br to
each of TL and TR has at most one honeycomb web, which is represented by a triangular symbol as in
Notation 2.7. We call any strand in the braid representative W4br \QE that is incident to the triangular
symbol in TL (if exists) a TL-strand. Similarly, we define TR-strands. It is possible that an arc is both
TL- and TR-strand, in which case it connects the two honeycombs. By removing the TL- and TR-strands,
remaining is a collection of (possibly intersecting) oriented curves, which we call the curve components.
See Figure 17 below.
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Figure 14: Contributions from curve components.

Definition 3.12 (sl3-shear coordinates) The (sl3-)shear coordinate system

xuf
4
.yL/D .x4i .

yL//i2Iuf.4/ 2QIuf.4/

is defined as follows. First, for each E 2 eint.4/, the coordinates assigned to the four vertices in the
interior of QE only depends on the restriction W4br \QE .

(1) Each curve component contributes to the edge coordinates according to the rule shown in Figure 14.

(2) The honeycomb on the triangle TL contributes to xuf
4
.yL/ as in Figure 15. Namely, the face

coordinate counts the height of the honeycomb web, where a sink (resp. source) is counted
positively (resp. negatively). The edge coordinates counts the contributions from TL-strands,
where we have n1 left-turning ones, n2 straight-going ones (which are also TR-strands), and n3
right-turning ones.

(3) The honeycomb on the triangle TR and the TR-strands contribute in the symmetric way with respect
to the � rotation of the figure.

Then the shear coordinates are defined to be the weighted sums of these contributions.

Remark 3.13 (1) Notice that the rule shown in Figure 14 is an “oriented version” of the Thurston’s
shear coordinates (see Section 3.5). Indeed, the sign of contribution is determined by the crossing
pattern as in the sl2-case, and it contributes to the coordinates on the right side of the oriented
curve.
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TL TR

n

n

n2

n1

n3

xuf
4

0n

�n1

0

TL TR

n

n

n2

n1

n3

xuf
4

0�n

0

n3

Figure 15: Contributions from the honeycomb of height nD n1C n2C n3 on the triangle TL.
Observe that the n2 straight-going TL-strands do not contribute.

(2) The shear coordinates of the first honeycomb component shown in Figure 15 is the same as the
sum of shear coordinates of the three honeycomb components shown in Figure 16.

Proposition 3.14 The shear coordinate system xuf
4
.yL/ 2QIuf.4/ is well defined , and we get a map

xuf
4
W Lxsl3.†;Q/!QIuf.4/:

Proof It is not hard to see that the operations appearing in Theorem 3.10 that move a spiraling diagram in
a good position to another good position do not change the shear coordinates. For example, the modified
H-move always involves a pair of oriented curves in the opposite directions in the braid representation,

n1

n1

n1

n2

n2

n2

n3

n3

n3

Figure 16: Basic honeycomb components.
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C

C

W W W4br

xuf
4

13

0

�1

Figure 17: An example of a signed web W restricted to QE , the associated spiraling diagram W ,
its braid representation W4br , its shear coordinates are shown order. In W4br , there are two
honeycomb components and infinitely many curve components.

and hence preserves the contribution from the pair. It follows that the shear coordinates are well defined
for a given spiraling diagram, not depending on the choice of a good position with respect to y4.

We need to check that the elementary moves (E1)–(E4) of signed webs do not change the shear coordinates.
It is easy to see the invariance for the loop parallel-move (E1). The braid representatives of spiraling
diagrams associated with the local signed webs in (2-5)–(2-7) are obtained as follows:

W W CC CC � C C �

W W

W4br W

D

�
D  

�

  

�

 

 D  D  D

D

Here the braid representatives are not quite the same in the first two cases, but both have the same shear
coordinates. Thus the shear coordinates are invariant under the moves (E2) and (E3). The invariance
under the peripheral move (E4) is similarly verified, where the signed web in the left-hand side produces
a peripheral component in its spiraling diagram.

The shear coordinates are clearly invariant under operations (2) and (3) in Definition 2.6, and hence do
not depend on the choice of a signed Q>0-weighted web representing an unbounded sl3-lamination.

Notation 3.15 We will write x4T WD x4
i.T /

for a triangle T of 4, and x4E;s WD x4
is.E/

for an oriented edge
E of 4 and s D 1; 2. Here recall the notations in Section 2.1.
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Figure 18: The building block for reconstruction from the shear coordinates when xT DC3.

3.4 Reconstruction

We are going to give an inverse map �4 WQIuf.4/!Lxsl3.†;Q/ of the shear coordinate system associated
with an ideal triangulation 4.

Given .Qxi /i 2QIuf.4/, choose a positive integer u2Z>0 such that xi WD uQxi are integral for all i 2 Iuf.4/.
We will use a notation similar to Notation 3.15 for these tuples. On each triangle T 2 t .4/, first draw a
honeycomb web of height jxT j of sink type (resp. source type) if xT � 0 (resp. xT < 0). Moreover, on
each corner of T , draw an semi-infinite collection of disjoint corner arcs with alternating orientations
such that

� they are disjoint from the honeycomb web (placed on the center of T ),

� they accumulate only at the marked points of the triangle, and

� the farthest one from the marked point is oriented clockwise.

See Figure 18. Then we get an unbounded reduced essential web WT on each triangle T . We are going
to glue these local blocks together to form an integral unbounded sl3-lamination �4..xi /i / 2 Lxsl3.†;Z/.

Now let us concentrate on a quadrilateral QE in the ideal triangulation 4 which contains two triangles
TL and TR that share an interior edge E. We fix an orientation of E such that TL lies on the left; hence
we have two edge coordinates xE;1 and xE;2 as well as two face coordinates xTL and xTR :

xTRxTL

xE;1

xE;2

Consider a biangle BE in the split ideal triangulation y4 obtained by fattening E, which is bounded
by boundary intervals EL and ER of TL and TR, respectively. For Z 2 fL;Rg, let SZ D SCZ t S

�
Z
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denote the set of ends of the web WTZ on EZ , where SCZ (resp. S�Z ) consists of the ends incoming to
(resp. outgoing from) the biangle BE . Then S D .SL; SR/ defines an asymptotically periodic symmetric
strand set (Definition 3.2). Let us define its pinning by the following rule:

� For Z 2 fL;Rg, choose orientation-preserving parametrizations

�˙Z WR!EZ

so that �˙Z
�
1
2
CZ

�
D S˙Z , and �˙Z .R<0/\S

˙
Z consists of all the strands coming from the corner

arcs around the initial marked point of EZ .

� Let p˙Z WD �
˙
Z .n

˙
Z/ 2EZ for Z 2 fL;Rg, where n˙Z 2 Z are given by

(3-2) nCL WD xE;1; n�L WD ŒxTL �C; nCR WD xE;2; n�R WD ŒxTR �C;

where we use the notation Œx�C WDmaxf0; xg.

Then we get a pinned symmetric strand set ySE WD .S I pL; pR/ with the pinnings pZ WD .p
C

Z ; p
�
Z/ for

Z 2 fL;Rg. Let Wbr. ySE / denote the associated collection of oriented curves in BE .

Remark 3.16 The resulting collection Wbr. ySE / is invariant under the transformation

nCL 7! nCL � k; n�L 7! n�L � l; nCR 7! nCR C l; n�R 7! n�RC k;

for k; l 2 Z.

Gluing together the local webs WT for T 2 t .4/ and the curves in Wbr. ySE / for E 2 e.4/, we get a
(possibly infinite) collection W4br ..xi /i / of webs on †. The following lemma shows that it has correct
shear coordinates.

Lemma 3.17 We have x4
k
.W4br ..xi /i //D xk for all k 2 Iuf.4/.

Proof Let us concentrate on a quadrilateral Q D TL [BE [ TR. It is easy to see x4TZ .
yL/D xTZ for

Z 2 fL;Rg. The equalities x4E;1.yL/D xE;1 and x4E;2.
yL/D xE;2 can be also verified case-by-case, divided

according to the signs of xTL and xTR . See Figures 19–21. Here we draw the pictures by separating the
gluing procedures S�L ! SCR and SCL ! S�R into two sheets; the result is obtained by overlaying the two
diagrams drawn on the right.

For example, let us consider the example shown in Figure 19. In the case xE;2 � 0 (as in this example),
there are xE;2 many lines from south-east to north-west that contribute positively. One can imagine the
other cases by varying this example: if we decrease xE;2, then the point pCR moves upward and the gluing
pattern is shifted. When �xTL � xE;2 <0, negative contributions come from the honeycomb in TL. When
xE;2 < �xTL , there are also lines from south-west to north-east that contribute negatively. Thus we get
x4E;2.

yL/D xE;2. The check for xE;1 is similar. One can check the other cases from Figures 20 and 21 in
a similar manner.
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S�L

0

p�L

SCR

0

pCR

SCL

0

pCL

S�R

0

p�R

.xTL ; xTR ; xE;1; xE;2/D .2; 3;�2; 1/

Figure 19: An example for the case xTL � 0 and xTR � 0.

The collection W4br ..xi /i / is the braid representative of the spiraling diagram associated to an unbounded
integral sl3-lamination �4..xi /i /, which is obtained as follows:

Step 1 First remove the peripheral components around the marked points (both special points and
punctures) from W4br ..xi /i /. Then, remaining are finitely many components.

Step 2 Replace each spiraling end around a puncture p with an end incident to p, while encoding the
spiraling directions in signs by reversing the rule in Figure 10. Then we get a collection W 4br ..xi /i / of
signed webs, which we call a braid representative of a signed web. It contains at most finitely many
intersections of curves only in biangles. Here we can rearrange W 4br ..xi /i / so that no pair of curves form
a bigon by applying a Reidemeister II-type isotopy if necessary (cf square removing algorithm in [6]).
See Figure 22. Observe that this operation does not affect the shear coordinates.

Step 3 Replace each intersection of curves in a biangle with an H-web by the rule (3-1). Then we get
a signed sl3-web W on †, which has no elliptic faces. Indeed, we have no 0-gon or 2-gon faces by
construction, and possible emergence of 4-gon faces has been eliminated in Step 2.

Then �4..xi /i / 2 Lxsl3.†;Z/ is defined to be the unbounded integral sl3-lamination represented by the
nonelliptic signed web W (with weight 1 on each component). Set

�4..Qxi /i / WD u
�1
� �4..xi /i / 2 Lxsl3.†;Q/:
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S�L

0

p�L

SCR

0

pCR

SCL

0

pCL

0

S�R

0
p�R

.xTL ; xTR ; xE;1; xE;2/D .2;�3;�2; 1/

Figure 20: An example for the case xTL � 0 and xTR � 0. The case xTL � 0 and xTR � 0 follows
by symmetry (Remark 3.16).

Thus we get the map �4 W QIuf.4/ ! Lxsl3.†;Q/, which is clearly Q>0-equivariant. We are going to
show that this map indeed gives the inverse map of xuf

4
. The following direction is easier:

Proposition 3.18 We have xuf
4
ı �4 D idQIuf.4/ .

Proof By Q>0-equivariance, it suffices to consider an integral tuple .xi /i 2 ZIuf.4/. Notice that by
construction, the collection W4br ..xi /i / arising from the gluing construction above is exactly the braid
representative of the spiraling diagram associated with the underlying signed web of the sl3-lamination
yL WD �4..xi /i / 2 Lxsl3.†;Z/. Therefore the shear coordinates .x4i .yL// can be directly read off from the
collection W4br ..xi /i /. Hence the assertion follows from Lemma 3.17.

Theorem 3.19 (proof in Section 6.2) We have �4ıxuf
4
D idLxsl3 .†;Q/

. In particular , the shear coordinates
gives a bijection �4 WQIuf.4/ ��! Lxsl3.†;Q/.

See Section 6.2 for a proof. The main ingredient of the proof is an unbounded version of the fellow-traveler
lemma [6, Lemma 57] with respect to the shear coordinates.

Recall from Section A.3 that the ideal triangulations 4 correspond to certain seeds in the mutation class
s.†; sl3/. The following theorem states that the associated shear coordinate systems xuf

4
are related by

tropical cluster Poisson transformations:
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S�L

0
p�L

SCR

0pCR

SCL

0

pCL

S�R

0
p�R

.xTL ; xTR ; xE;1; xE;2/D .�2;�3;�2; 1/

Figure 21: An example for the case xTL � 0 and xTR � 0.

Theorem 3.20 For any two ideal triangulations4 and40 of †, the coordinate transformation

xuf
40
ı .xuf
4
/�1 WQIuf.4/!QIuf.4/

is a composite of tropical cluster Poisson transformations. In particular , we get an MC.†/-equivariant
identification xuf

�
W Lxsl3.†;Q/

��! X uf
sl3;†

.QT /.

1 2

1

2

 

�

 

Figure 22: Reidemeister II-type isotopy. We have two ways of applications of this isotopy, which
produce equivalent webs.
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Since it is classically known that any two ideal triangulations of the same marked surface can be connected
by a finite sequence of flips, it suffices to show that a flip corresponds to a composite of tropical cluster
Poisson transformations. Although it can be directly checked in a similar way to [7, Section 4], we are
going to reduce it to Douglas and Sun’s result via the ensemble map and the gluing technique developed
in Section 4.

3.5 Relation to the rational unbounded sl2-laminations

Recall the space Lxsl2.†;Q/ of rational unbounded (sl2-)laminations from [11]. It consists of the following
data:

� A collection of immersed unoriented loops and arcs such that each endpoint lies in Mı[@�†, and
the other part is embedded in int†. It is required to have no elliptic faces (the first one in (2-1) or
the first and last ones in (2-2)).

� A positive rational weight on each component.

� A sign �p 2 fC; 0;�g for each puncture p 2Mı such that �p D 0 if and only if there are no
components incident to p.

They are considered modulo removal/creation of peripheral components as in (2-8), and the weighted
isotopy as in Definition 2.6(2). Given an ideal triangulation 4 of †, the (sl2-)shear coordinate

x4 D .x
4
E /E2e.4/ W L

x
sl2
.†;Q/ ��!Qe.4/

(see [11]) is defined by first constructing a spiraling diagram according to the sign �p, and counting
contributions with weights from the curves in that diagram, as in Figure 23.

An embedding �prin W Lxsl2.†;Q/! Lxsl3.†;Q/ is defined so that

� each curve  with weight u 2Q>0 is sent to its parallel copies, 1 and 2, with the same weight u
with the opposite orientations;

� if an arc  is incident to a puncture p, then the corresponding ends of the oriented curves 1 and
2 are assigned the sign �p 2 fC;�g.

C1 �1

Figure 23: Contributions to the sl2-shear coordinates.
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One can easily verify that it is indeed well defined. We call �prin the principal embedding, as it is a
tropical analogue of the morphism XSL2;†! XSL3;† induced by the principal embedding sl2! sl3. The
following is a tropical analogue of the statement given in [12, Section 2.5.3]:

Proposition 3.21 The image �prin.Lxsl2.†;Q// coincides with the fixed point locus of the Dynkin involu-
tion � (Definition 2.8). In the shear coordinate system x4 associated with any ideal triangulation4, it is
characterized by the equations

x4E;1 D x4E;2 for each E 2 e.4/;

x4T D 0 for each T 2 t .4/:

Proof The first assertion follows from the second one, by Proposition 4.13 below. The second assertion
is easily verified by comparing the definitions of sl2- and sl3-shear coordinates. Indeed, we have
x4E .
yL/D x4E;1.�prin.yL//D x4E;2.�prin.yL// and x4T .�prin.yL//D 0, where .x4E /E2e.4/ denotes the sl2-shear

coordinate system.

4 Rational P-laminations, their gluing and the mutation equivariance

In this section, we introduce the space of rational P-laminations by considering some additional data on
boundary intervals and define a coordinate system x4 extending xuf

4
. These additional data allow us to

introduce the gluing map between these spaces. Under this extended situation, we discuss the relation
to Douglas and Sun’s tropical A-coordinates [6], and prove that the coordinates x4 transform correctly
under flips.

4.1 Rational unbounded sl3-laminations with pinnings

It has been stated that the space Lxsl3.†;Q/ of rational unbounded sl3-laminations is identified with the
unfrozen part X uf

sl3;†
.QT / of the tropical cluster X -variety. In order to obtain the entire tropical cluster

X -variety, we further equip the rational laminations with additional data on boundary intervals. Let
P_ D Z$_1 ˚Z$_2 be the coweight lattice of sl3, and P_Q WD P_˝Q. Let us consider the direct sum

H@.Q
T / WD

M
E2B

P_Q

of the coweight lattices over Q, one for each boundary interval.

Definition 4.1 (rational unbounded sl3-laminations with pinnings) We introduce the space

Lpsl3.†;Q/ WD Lxsl3.†;Q/�H@.Q
T /;

and call its elements rational unbounded sl3-laminations with pinnings (or rational (sl3-)P-laminations).
The datum in the second factor is written as � D .�E /E2B with �E D �CE$

_
1 C �

�
E$

_
2 , �˙E 2Q.
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E

m

T

˛�E

˛CE

Figure 24: The corner arcs relevant to the boundary shear coordinate.

The data � D .�E /E will be related to the pinning in the sense of Definition 3.4 when we consider their
gluings, thus the terminology. We have a natural Q>0-action on Lpsl3.†;Q/ given by

u:.yL; �/ WD .u:yL; .u�E /E /

for u 2Q>0 and .yL; � D .�E /E / 2 L
p
sl3
.†;Q/. The Dynkin involution (Definition 2.8) is extended as

(4-1) �W Lpsl3.†;Q/! Lpsl3.†;Q/; .yL; .�E /E2B/ 7! .yL�; .��E /E2B/;

where �� D .��E /E2B is obtained from � by the Dynkin involution on the coweight lattice: $�s WD$3�s
for s D 1; 2. There is a projection

�uf W L
p
sl3
.†;Q/! Lxsl3.†;Q/

forgetting the second factor, which is equivariant under these structures. A rational P-lamination .yL; �/
is said to be integral if yL 2 Lxsl3.†;Z/ and pE 2 P_ for all E 2 B.

Remark 4.2 The space Lpsl3.†;Q/ is introduced as a tropical analogue of the moduli space PPGL3;† of
framed PGL3-local systems with pinnings on† [21]. We have a dominant morphism PPGL3;†!XPGL3;†,
which is a principal H@ WDHB-bundle over its image. Here H � PGL3 denote the Cartan subgroup. As
a tropical analogue, we may naturally consider the bundle

(4-2) 0!H@.Q
T /! PPGL3;†.Q

T /! XPGL3;†.Q
T /! 0:

The space Lpsl3.†;Q/ is regarded as the total space PPGL3;†.Q
T / with a fixed trivialization. See also

Remark 4.8 below.

Shear coordinates on Lp

sl3
.†; Q/ Given an ideal triangulation 4 of †, we are going to define a shear

coordinate system
x4 D .x

4
i /i2I.4/ W L

p
sl3
.†;Q/!QI.4/

which extends xuf
4

on Lxsl3.†;Q/. For .yL; �/ 2 Lpsl3.†;Q/ and an unfrozen index i 2 Iuf.4/, let
x4i .
yL; �/ WD x4i .

yL/ be the shear coordinate of the underlying rational unbounded lamination.

We define the frozen coordinate x4E;s.
yL; �/ for s D 1; 2 associated to a boundary interval E 2 B, as

follows. LetW be a nonelliptic signed Q>0-weighted web without peripheral components representing yL,
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and W its spiraling diagram in a good position with respect to the split triangulation y4. By convention,
E is endowed with the orientation induced from @†. Then x4E;1 (resp. x4E;2) is assigned to the vertex
of the sl3-triangulation on E closer to the initial (resp. terminal) endpoint. Let m 2M@ be the initial
endpoint of E, and T 2 t .4/ the unique triangle having E as an edge. Let ˛CE .yL/ (resp. ˛�E .yL/) be
the total weight of the oriented corner arcs in W \ T bounding the special point m in the clockwise
(resp. counterclockwise) direction, hence incoming to (resp. outgoing from) the external biangle BE if
we consider the split triangulation y4. See Figure 24. Then we define

(4-3)
x4E;1.

yL; �/ WD �CE �˛
C

E .
yL/;

x4E;2.
yL; �/ WD ��E �˛

�
E .
yL/� ŒxT .yL/�C:

Proposition 4.3 The shear coordinate system gives a bijection x4 W L
p
sl3
.†;Q/ ��!QI.4/.

Proof Given .xi /i2I.4/ 2QI.4/, we can reconstruct the underlying rational unbounded lamination yL
from the unfrozen part .xi /i2I.4/uf as in Section 3.4. Then the datum � is uniquely determined by the
relation (4-3).

The following is immediate from the definition:

Lemma 4.4 The map �uf W L
p
sl3
.†;Q/ ! Lxsl3.†;Q/ is a cluster projection. Namely, we have a

commutative diagram
Lpsl3.†;Q/ QI.4/

Lxsl3.†;Q/ QIuf.4/

x4

�uf

xuf
4

for any ideal triangulation 4 of †, where the right vertical map is the projection forgetting the frozen
coordinates.

4.2 Gluing of laminations

Let † be a (possibly disconnected) marked surface, and EL; ER 2 B.†/ distinct boundary intervals.
Then we can form a new marked surface †0 from † by gluing EL with ER. As a tropical analogue of
the gluing morphism PPGL3;†! PPGL3;†0 [21, Lemma 2.14], we are going to introduce a map

qEL;ER W L
p
sl3
.†;Q/! Lpsl3.†

0;Q/

between the corresponding spaces of rational P-laminations. The map qEL;ER will be defined to be
equivariant with respect to the Q>0-action, and invariant under the action ˛EL;ER W P

_
QÕ Lpsl3.†;Q/

given by the shift

(4-4) �:.�EL ; �ER/ WD .�EL C�; �ER ��
�/

for �D a$_1 C b$
_
2 2 P

_
Q, where �� WD b$_1 C a$

_
2 , and keeping other �E , E ¤EL; ER intact.
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Let .yL; �/ 2 Lpsl3.†;Z/ be an integral P-lamination. Represent the integral unbounded sl3-lamination
yL by a nonelliptic signed web W with weight 1 on every component. Around each special point of
EL and ER, draw a semi-infinite collection of disjoint corner arcs with alternating orientations that
accumulates only at the special point so that they are disjoint from W . Here we choose the orientation
of the farthest corner arc from the special point to be clockwise, as in Section 3.4. Insert a biangle B
between EL and ER, and identify †0 D†[B . Notice that the ends of W on EL and ER, together with
those of the additional corner arcs, defines an asymptotically periodic symmetric strand set S D .SL; SR/
on B . We equip S with a pinning p˙Z for Z 2 fL;Rg by the following rule:

� Choose continuous parametrizations  ˙Z WR!EZ so that  ˙Z
�
1
2
CZ

�
DS˙Z , and  ˙Z .R<0/\S

˙
Z

consists of all the strands coming from the additional corner arcs around the initial marked point
of EZ .

� Then set p˙Z WD  
˙
Z .�

˙
EZ
/ 2EZ .

Then we get a pinned symmetric strand set yS WD .S I pL; pR/ on the biangle B . Let Wbr. yS/ be the
associated collection of oriented curves in B . Gluing the web W with the collection Wbr. yS/, we get
an infinite collection W 0br of webs on †0 D †[B . The initial (resp. terminal) marked point of EL is
identified with the terminal (resp. initial) marked point of ER, and regarded as new marked points in †0.
For each of these new marked points, do the following:

� If it is a special point, then remove the peripheral components around this point from W 0br.

� If it is a puncture, then remove the peripheral components and replace each spiraling end around
this point with a signed end, while encoding the spiraling directions in signs by reversing the rule
in Figure 10. Then there remain at most finitely many intersections in B .

� Finally, replace each intersection of curves in B with an H-web by the rule (3-1).

Thus we get a nonelliptic signed web W 0 on †0, which represents an integral P-lamination

yL0 D qEL;ER.
yL/ 2 Lpsl3.†;Z/:

The construction is clearly invariant for the action of H@.QT / by Remark 3.16, and Z>0-equivariant.
Thus it can be extended Q>0-equivariantly.

Definition 4.5 The thus obtained map qEL;ER WL
p
sl3
.†;Q/!Lpsl3.†

0;Q/ is called the gluing map along
EL and ER.

In view of Remark 3.16, we immediately have:

Lemma 4.6 The gluing map qEL;ER is invariant under the shift action (4-4) of P_Q.

Any ideal triangulation 4 of † naturally induces a triangulation 40 of †0, where the edges EL and ER
are identified and give an interior edge E of 4. The points in I.4/ on these edges are identified as
is.EL/D i

s�.ER/ for s D 1; 2 with s� WD 3� s. The points of I.4/ away from the edges EL and ER
are naturally identified with the corresponding points of I.40/.
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 CL .0/

�CL .0/

˛CEL

TL

EL

Figure 25: Comparison of two edge parametrizations. A part of the web representing yL which
will be incoming to the bigon BE is shown in red, and the additional corner arcs are shown in
blue.

Theorem 4.7 The gluing map qEL;ER is the tropicalized amalgamation. Namely, for any ideal
triangulation4 of † and the induced triangulation40 of †0, it satisfies

q�EL;ERx
40

E;s D x4EL;sC x4ER;s�

for s D 1; 2. Here E inherits an orientation from EL (so that from the bottom to the top , when we draw
EL on the left). The other coordinates are kept intact : q�EL;ERx

40

i D x4i for i 2 I.40/ n fis.E/gsD1;2.

Proof The last statement is clear from the definition. To see the relation between the coordinates on the
edges EL, ER and E, it suffices to consider an integral lamination yL 2 Lpsl3.†;Z/ by Q>0-equivariance.
Write L0 WD qEL;ER.yL/ and xi WD x4i .

yL/ for i 2 I.4/. Recall the reconstruction procedure of the integral
lamination yL0 from its shear coordinates, and compare the gluing parameters

(4-5)
�CEL D xEL;1C˛

C

EL
; ��ER D xER;2C ŒxTR �CC˛

�
ER
;

��EL D xEL;2C ŒxTL �CC˛
�
EL
; �CER D xER;1C˛

C

ER
;

with the integers appearing in (3-2). By Lemma 4.6, the result of gluing is unchanged under the
modification

(4-6)
Q�CEL WD .xEL;1C xER;2/C˛

C

EL
; Q��ER WD ŒxTR �CC˛

�
ER
;

Q��EL WD ŒxTL �CC˛
�
EL
; Q�CER WD .xEL;2C xER;1/C˛

C

ER

by the shift action (4-4). On the other hand, since there are “original” corner arcs of yL in TL and TR
before adding infinite collections of corner arcs in the gluing procedure, the parametrizations of edges are
related by

�˙Z .n/D  
˙
Z .nC˛

˙
EZ
/

for n 2 Z and Z 2 fL;Rg. See Figure 25. These comparisons on the two gluing constructions show that
yL0 D qEL;ER.

yL/ if and only if xE;s.yL0/D xEL;s.
yL/C xER;s�.

yL/ for s D 1; 2.
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Remark 4.8 In view of the gluing construction presented above, the definition of the integral unbounded
sl3-laminations with pinnings can be modified slightly more geometrically as integral unbounded sl3-
laminations equipped with infinitely many corner arcs around special points and choices of points p˙E 2E
for each E 2 B, in place of the datum �E 2 P

_. It gives a right description of the tropical analogue of
PPGL3;†.Z

T / without fixing a trivialization of the bundle (4-2). We do not pursue an extension of this
description to the rational case.

4.3 Extended ensemble map

Recall the geometric ensemble map (2-9). We extend it by

Qp W Lasl3.†;Q/! Lpsl3.†;Q/; L 7! .p.L/; .�E /E /;

where �CE (resp. ��E ) is minus the total weight of the peripheral components with the clockwise (resp. coun-
terclockwise) orientation around the initial marked point of E. We have a commutative diagram

Lasl3.†;Q/ Lpsl3.†;Q/

Lxsl3.†;Q/

Qp

p
�uf

Lemma 4.9 If † has no punctures , then Qp W Lasl3.†;Q/! Lpsl3.†;Q/ gives a bijection.

Proof In this case, the only datum that the map p loses is the weights of peripheral components around
special points. This can be uniquely recovered from the tuple .�E /E .

On the integral points, we have Qp.Lasl3.†;Z//� Lpsl3.†;Z/.

Proposition 4.10 The extended geometric ensemble map Qp W Lasl3.†;Q/! Lpsl3.†;Q/ coincides with
the Goncharov–Shen extension of the ensemble map (A-6). Namely, it satisfies

(4-7) Qp�x4i D
X

j2I.4/

."4ij Cmij /a
4
j

for any ideal triangulation4 of † and i 2 I.4/, where

� .a4j /j2I.4/ denotes the tropical A-coordinates on Lasl3.†;Q/ associated with4, which is one-third
of the Douglas–Sun coordinates;

� "4 D ."4ij /i;j2I.4/ denotes the exchange matrix defined in Section A.3;

� M D .mij /i;j2If.4/ is the half-integral symmetric matrix given in (A-5).

In particular, by forgetting the pinnings and frozen coordinates, we see that the geometric ensemble map
p W Lasl3.†;Q/! Lxsl3.†;Q/ coincides with the ensemble map (A-2).
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Proof In view of the local nature of the definitions of coordinate systems and the exchange matrix, it
suffices to consider the case where † is a triangle or a quadrilateral. Indeed, for i D i.T / 2 I tri.4/,
it suffices to focus on the triangle T containing it; for i D is.E/ 2 I edge.4/ \ Iuf.4/ consider the
quadrilateral containing the interior edge E as a diagonal; for i D is.E/ 2 I edge.4/\ If.4/ consider the
triangle T having the boundary interval E as one of its sides.

Triangle case For the sl3-quiver associated with the unique ideal triangulation of a triangle T , label its
vertices as:

1

2

3 4

5

6

0

Then the expected relation (4-7) reads as

Qp�x0 D a2C a4C a6� .a1C a3C a5/;

Qp�x1 D a0� a1� a6;

Qp�x2 D a1C a3� a2� a0;

Qp�x3 D a0� a3� a2;

Qp�x4 D a3C a5� a4� a0;

Qp�x5 D a0� a5� a4;

Qp�x6 D a5C a1� a6� a0:

The tropical A-coordinates of essential webs on T are defined as the weighted sum of the coordinates of
its components. See [6, Section 4.3]. Therefore it suffices to check the relations for the corner arcs and
the sink-/source-honeycombs of height 1, whose coordinates are shown in Figure 26. Then the relations
between the two coordinates can be easily verified.

Quadrilateral case For the sl3-quiver associated with an ideal triangulation 4 of a quadrilateral Q,
label its vertices as:

1

3

2

5

6

7

8

4

9

10

11

12
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˛

1=3

2=3

0 0

2=3

1=3

2=3

a4.˛/

0

�1

0 0

0

0

0

x4.˛/

˛�

2=3

1=3

0 0

1=3

2=3

1=3

a4.˛
�/

�1

0

0 0

0

0

0

x4.˛
�/

�C

1=3

2=3

1=3 2=3

1=3

2=3

1

a4.�C/

0

�1

0 �1

0

�1

1

x4.�C/

��

2=3

1=3

2=3 1=3

2=3

1=3

1

a4.��/

0

0

0 0

0

0

�1

x4.��/

Figure 26: Two types of coordinates of component webs on a triangle T . All the webs shown
here have weight 1.

The remaining relations to be checked are

(4-8)
Qp�x1 D a5C a4� a2� a12;

Qp�x3 D a2C a9� a4� a8:

The tropical A-coordinate assigned to a vertex i 2 I.4/ only depends on the restriction of a given web to
the triangle which contains i . In particular, we can choose the braid representative with respect to y4 for the
computation, since the biangle part does not matter. Then both A- and X -coordinates are weighted sums of
contributions from the components of the braid representative. It is easy to verify that the both sides of the
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equations in (4-8) vanish for the corner arcs around the marked points Q. For the curve and honeycomb
components that contribute to the shear coordinates, the expected relations are easily verified from
Figures 27 and 28. Here notice that, for instance, the coordinates of the honeycomb component Hn1;n2;n3
shown in the top of Figure 15 can be computed as z4.Hn1;n2;n3/D n1z4.�

L
C
/Cn2z4.h/Cn3z4.�

R
C
/

for z 2 fa; xg. Together with this observation, the eight patterns shown in Figures 27 and 28 exhausts all
the patterns up to symmetry.

The following states an extension of Theorem 3.20 with pinnings/frozen variables, as promised before.

Theorem 4.11 For any two ideal triangulations4 and40 of †, the coordinate transformation

x4;40 WD x40 ı x
�1
4 WQ

I.4/
!QI.4/

is a composite of tropical cluster Poisson transformations. In particular , we get an MC.†/-equivariant
identification x� W L

p
sl3
.†;Q/ ��! Xsl3;†.Q

T /.

As a corollary, combining with Lemma 4.4, we get a proof of Theorem 3.20.

Proof From Lemma 4.9 and Proposition 4.10, the statement is true when† has no puncture (in particular,
a quadrilateral). Indeed, the corresponding transformation a4;40 WD a40ıa

�1
4
WQI.4/!QI.4/ is shown to

be a composite of tropical cluster A-transformations [7, Proposition 4.2]. Then x4;40D . Qp
�1/�ıa4;40ı Qp

�

is the corresponding composite of tropical cluster X -transformations, since the extended ensemble map
commutes with the tropical cluster transformations and is a bijection in this case.

For the general case, it suffices to consider two triangulations, 4 and 40, related by a single flip along an
edge E 2 eint.4/. Let Q be the unique quadrilateral in4 containing E as a diagonal, and †0 WD†n intQ
the complement marked surface. It is obvious that the shear coordinates assigned to the vertices outside
Q are unchanged. On the other hand, the coordinates assigned to the vertices on Q transform correctly
from the argument above under the corresponding coordinate transformation on Lpsl3.Q;Q/. Since †
is obtained by gluing Q with †0 and the shear coordinates are obtained by amalgamating those on
Lpsl3.Q;Q/ and Lpsl3.†

0;Q/ by Theorem 4.7; the statement follows from the fact that the amalgamations
commute with cluster X -transformations [9, Lemma 2.2].

Remark 4.12 For an unpunctured surface †, the fastest way to introduce the coordinate system x4

on Lpsl3.†;Q/ which transforms correctly under the flips would be to define it via the relation (4-7) in
view of Lemma 4.9. Then, however, it becomes rather difficult to obtain the amalgamation formula in
Theorem 4.7, since the (tropical) A-coordinates do not behave so simply as the (tropical) X -coordinates
under the gluing. Indeed, the following naive diagram does not commute:

Asl3;†.Q
T / Asl3;†0.Q

T /

Xsl3;†.Q
T / Xsl3;†0.Q

T /:

Qp† Qp†0

qEL;ER
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˛C

2=3

1=3

0

01=3

2=3

0

0

2=3

1=3

1=32=3

a4.˛C/
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0

0
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x4.�
R
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0
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Figure 27: Two types of coordinates of component webs on a quadrilateral Q. All the webs
shown here have weight 1. (Continued in Figure 28.)
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0
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�1
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�1

0

0

�11

x4.h/

Figure 28: Two types of coordinates of component webs on a quadrilateral Q. All the webs
shown here have weight 1. (Continued from Figure 27.)

Here the top right arrow denotes the quotient map given by the equation ai D aj for any pair fi; j g of quiver
vertices that are identified under the gluing. Actually, we need to “rescale” some of the A-coordinates for
a correct gluing; see [29, Section 6.1] for a more detail. In particular, the sum Qp�†x

4
i C Qp

�
†x
4
j does not

compute Qp�†0x
40

Ni
, where the pair fi; j g is amalgamated into Ni .

4.4 Dynkin involution

Let us discuss the equivariance of the shear coordinates under the Dynkin involution (4-1). The cluster
action �4 (see the last paragraph of the appendix) of the Dynkin involution in the cluster chart associated
to 4 is given by the mutation sequence

� D �e.4/ ı�t.4/;
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where �e.4/ denotes the composite of the transpositions of the labels of the two vertices on each edge
of 4, and �t.4/ is the composite of mutations at the vertex on each triangle of 4. It induces the tropical
cluster X -transformation

�
x
4 W xT 7! �xT for T 2 t .4/;

xE;1 7! xE;2C ŒxTL �C� Œ�xTR �C;

xE;2 7! xE;1C ŒxTR �C� Œ�xTL �C for E 2 e.4/;

where we use the local labeling as in Section 3.4 for each edge E.

Proposition 4.13 We have the commutative diagram

Lpsl3.†;Q/ QI.4/

Lpsl3.†;Q/ QI.4/:

x4

� �4

x4

In particular , the orientation-reversing action of the Dynkin involution coincides with the cluster action.

Proof Mutations commute with amalgamations [9, Lemma 2.2]. Moreover, the permutation term �e.4/

also commutes with the amalgamation of edge vertices corresponding to the gluing. Hence �4 commutes
with the gluing map. It is also clear from the definitions that the Dynkin involution (4-1) commutes with
gluing maps. Therefore it suffices to prove the statement for triangles.

It is easy to verify the equation

(4-9) �4 ı x4.W /D x4.W
�/

for each component web W shown in Figure 26 by inspection. Consider a disjoint union W DW1tW2 of
webs on a triangle T , and suppose that the (4-9) is true for W DW1; W2. Since sink/source honeycombs
cannot coexist, we have fsgn xT .W1/; sgn xT .W2/g ¤ fC;�g. Therefore the coordinate vectors x4.W1/

and x4.W2/ belong to the same cone on which the tropical cluster transformation �4 is linear. Hence,

�4 ı x4.W /D �4.x4.W1/C x4.W1//

D �4 ı x4.W1/C�4 ı x4.W2/D x4.W
�
1 /C x4.W

�
2 /D x4.W

�/:

5 A relation to the graphical basis and quantum duality map

Let † be a marked surface without punctures. Recall from [30] the skein algebra S
q
sl3;†

, which is a
noncommutative algebra over Zq WD ZŒq˙1=2� consisting of tangled trivalent graphs in † with endpoints
in M, subject to the sl3-skein relations

D q2 C q�1 ;(5-1)
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D q�2 C q ;(5-2)

D C ;(5-3)

D�.q3C q�3/ ;(5-4)

D .q6C 1C q�6/ D ;(5-5)

and the boundary skein relations

D q2 D q

D D D 0;

together with their Dynkin involutions. We included the square-root parameter q1=2 so that we can
consider the simultaneous crossing (or the Weyl normalization) as

D q D q1=2 :

It is proved in [30] that the localized skein algebra S
q
sl3;†

Œ@�1� along the oriented arcs parallel to boundary
intervals is contained in the quantum cluster algebra [3] A

q
sl3;†

associated with a certain choice of
compatibility pairs over the mutation class s.sl3; †/ At least in the classical limit q D 1, we have the
equalities [29]

(5-6) S1sl3;†Œ@
�1�DAsl3;† DO.Asl3;†/:

The skein algebra S
q
sl3;†

has a natural Zq-basis BWebsl3;† consisting of nonelliptic flat trivalent graphs.
Here a flat trivalent graph is an immersed oriented uni-trivalent graph on † such that each univalent vertex
lies in M, and the other part is embedded into int†. In particular, it is required to have simultaneous
crossings at each special point. It is said to be nonelliptic if it has none of the following elliptic faces:

(5-7)

Algebraic & Geometric Topology, Volume 25 (2025)



1476 Tsukasa Ishibashi and Shunsuke Kano

Elements of BWebsl3;† are also called the basis webs. We are going to relate the integral sl3-laminations
with pinnings to the basis webs.

Definition 5.1 (negative M-shifting of webs (cf “moving left” in [36, Figure 2])) Given a web W
on † in the sense of Section 2.2, let WM 2 S

q
sl3;†

be the flat trivalent graph obtained by shifting the
endpoints of W to the nearest special point in the negative direction along the boundary (with respect to
the orientation induced from †), and taking the simultaneous crossing. See Figure 30.

For an integral sl3-lamination with pinnings .yL; �/ 2 Lpsl3.†;Z/, represent yL by a nonelliptic sl3-web
W only with components with weight one, and define

IqX .yL/ WD

�
WM

�

Y
E2B

.eCE /
�
C

E .e�E /
��E

�
2 S

q
sl3;†

Œ@�1�:

Here �E D �CE$
_
1 C�

�
E$

_
2 2 P

_ for each E 2 B, and the symbol Œ�� stands for the Weyl normalization.
Then IqX .yL/ does not depend on the choice of the representative W , since the loop parallel-move is also
realized in the skein algebra (by using the Reidemeister II move twice), and the boundary H-move exactly
corresponds to the third boundary skein relation. Moreover, it is a basis web since the two notions of
elliptic faces correspond to each other via the shift of endpoints.

Note that IqX .yL/ 2 S
q
sl3;†

if and only if �E 2 P_C WDZC$_1 CZC$_2 for all E 2 B. In this case, we say
that .yL; .�E //2L

p
sl3
.†;Z/ is dominant. Let Lpsl3.†;Z/C�Lpsl3.†;Z/ denote the subspace of dominant

integral sl3-laminations. From the above discussion, we get:

Theorem 5.2 Assume that† has no punctures. Then we have an MC.†/�Out.SL3/-equivariant bijection

IqX W L
p
sl3
.†;Z/C ��! BWebsl3;† � S

q
sl3;†

:

Moreover , it is extended to a map IqX W L
p
sl3
.†;Z/ ,! S

q
sl3;†

Œ@�1�, whose image again gives a Zq-basis.

The latter correspondence should be a basic ingredient for a construction of Fock and Goncharov’s
quantum duality map [13] (see [41, Conjecture 4.14] for a finer formulation as well as [5]), which requires
a basis of the quantum upper cluster algebra parametrized by the tropical set Xsl3;†.Z

T /D Lpsl3.†;Z/
with certain positivity properties. Let us interpret Theorem 5.2 in this context.

Langlands dual coordinates It turns out that it is more convenient to use a slight modification6 of
frozen shear coordinates to make the correspondence suited to the Fock–Goncharov conjecture. For an
ideal triangulation 4 of †, we define the Langlands dual coordinates

Lx4 D .Lx
4
i /i2I.4/ W L

p
sl3
.†;Q/ ��!QI.4/

6In the language of Goncharov and Shen [21], it amounts to take the decoration at the terminal endpoint of a boundary interval
rather than its initial endpoint along the boundary orientation to make a pinning.
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E

m

T

˛CE

˛�E

Figure 29: The corner arcs relevant to the Langlands dual coordinate.

as follows. For i 2 Iuf.4/, let Lx4i WD x4i . For E 2 B, we define the frozen coordinates on E by

Lx4E;1.
yL; �/ WD �CE C L̨

C

E .
yL/C ŒxT .yL/�C;

Lx4E;2.
yL; �/ WD ��E C L̨

�
E .
yL/:

Here T is the unique triangle having E as an edge; L̨CE .yL/ (resp. L̨�E .yL/) is the total weight of the oriented
corner arcs in W \ T bounding the terminal endpoint of E in the counterclockwise (resp. clockwise)
direction. Compare with (4-3). The map Lx4 gives a bijection, which can be verified similarly to the proof
of Proposition 4.3.

We define the Langlands dual ensemble map

(5-8) Lp W Lasl3.†;Q/! Lpsl3.†;Q/

by forgetting the peripheral components, and defining the pinning �CE 2Q (resp. ��E 2Q) to be the weight
of the peripheral component around the terminal endpoint of E in the counterclockwise (resp. clockwise)
direction. The name “Langlands dual” is inspired by the following property:

Proposition 5.3 The Langlands dual ensemble map (5-8) satisfies

Lp�x4i D
X

j2I.4/

."4ij �mij /a
4
j

for any ideal triangulation.

Compare with (A-2), and observe that the presentation matrix is changed to the Langlands dual

�."4CM/> D "4�M:

The verification of Proposition 5.3 is similar to Proposition 4.10, which is left to the reader.

For each v 2 Exchsl3;† and k 2 I , the elementary lamination is the tropical point `.v/
k
2 Xsl3;†.Z

T /

characterized by Lx.v/i .`
.v/

k
/D ıi;k . We have the cone

CC
.v/
WD spanRCf`

.v/

k
j k 2 I g D f` 2 Xsl3;†.R

T / j Lx
.v/

k
.`/� 0 for all k 2 I g
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1

1

Figure 30: Negative M-shifting of elementary laminations associated with a triangulation. Here
exactly one of the Langlands dual coordinates Lx4i isC1, while the others are zero (including the
frozen ones).

and its integral points CC
.v/
.Z/ WD CC

.v/
\ Xsl3;†.Z

T /. The following gives a partial verification of a
condition for the quantum duality map:

Lemma 5.4 For any elementary lamination `.v/
k

associated with a labeled sl3-triangulation vD .4; `/ in
Exchsl3;†, the element IqX .`

.v/

k
/ coincides with the quantum cluster variable A.v/

k
2A

q
sl3;†

. In particular ,
any point `D

P
k xk`

.v/

k
2 CC

.v/
.Z/ gives a quantum cluster monomial

�Q
k.A

.v/

k
/xk
�
.

Proof Via the isomorphism
Lx�14 W Xsl3;†.Z

T /Š Lpsl3.†;Z/;

the elementary laminations `.v/
k

for unfrozen k 2 I.4/uf correspond to the integral sl3-laminations as
shown in the left of Figure 30. The elementary laminations `.v/

k
for frozen kD is.E/2 I.4/f with E 2B

and s 2 f1; 2g correspond to the pinning data �E D$_s . Then via the quantum duality map

IqX W L
p
sl3
.†;Z/C ��! BWebsl3;† � S

q
sl3;†

these laminations are sent to the elementary webs associated with4 in the sense of [30]. They correspond
to the quantum cluster variables [30, Section 5].

Remark 5.5 By the equivariance of the map IqX under the Dynkin involution, the above lemma can be
immediately generalized for decorated triangulations (see [30, Section 1]).
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Figure 31: An elementary lamination of H-shape. Its shear coordinates associated with a triangu-
lation is shown in the bottom left, and their transformations under the mutation sequence shown
in red circles continue to the right.

Remark 5.6 When † is not a k-gon with k D 3; 4; 5, the mutation class s.sl3; †/ is of infinite-mutation
type. In this case, the union

S
v2Exchsl3;†

CC
.v/

is not dense in Xsl3;†.R
trop/ [44, Theorem 2.27]. Therefore

Lemma 5.4 is far from characterizing the map IqX .

For the simplest cases that † is a triangle or a quadrilateral (where the mutation class s.sl3; †/ is finite
types A1 and D4, respectively), we actually get a quantum duality map:

Proposition 5.7 When † is a triangle or a quadrilateral , the image IqX .L
p
sl3
.†;Z//�Oq.Asl3;†/ gives

a Zq-basis consisting of quantum cluster monomials. In particular , it has positive structure constants.

Proof For these cases, it is easy to see that S
q
sl3;†

Œ@�1� D A
q
sl3;†

D Oq.Asl3;†/ [30, Corollary 6.1].
Moreover, the tropical set Xsl3;†.Z

T / is covered by finitely many cones CC
.v/
.ZT / for v 2 Exchsl3;†.

For the triangle case, we have only two clusters (up to permutations), and hence Lemma 5.4 with
Remark 5.5 already gives the desired statement. For the quadrilateral case (typeD4), we have 16 unfrozen
variables and 8 frozen variables. For instance, see [30, Appendix A and Corollary 6.1]. Up to symmetry,
we have already seen in the proof of Lemma 5.4 (see Figure 30) that all of them are the images of some
elementary laminations under the map IqX , except for the one represented by the elementary web

This one also comes from an elementary lamination, as seen from Figure 31.
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Conjecture 5.8 The basis IqX .L
p
sl3
.†;Z// is parametrized by tropical points in the sense of [41, Definition

4.13]. Namely, for any integral sl3-lamination yL 2 Lpsl3.†;Z/, the quantum Laurent expression of
IqX .yL/ 2A

q
sl3;†

in the quantum cluster fAigi2I associated with a vertex ! 2 Exchsl3;† has the leading
term

�Q
i2I A

Lxi .yL/
i

�
with respect to the dominance order [41, Definition 4.6], where Lx.!/ D .Lxi /i2I is the

Langlands dual shear coordinate system associated with !.

Classical limit Recall that the set BWebsl3;† also gives a Z-basis of the classical (commutative) skein
algebra S1sl3;†. Then Theorem 5.2 tells us that the map IqX induces a bijection

IX W L
p
sl3
.†;Z/C ��! BWebsl3;† � S1sl3;†;

which is also extended to a map IX W L
p
sl3
.†;Z/ ,! S1sl3;†Œ@

�1�. Then by (5-6), we get the following:

Corollary 5.9 The image IX .L
p
sl3
.†;Z// gives a Z-basis of the cluster algebra Asl3;†.

6 Proofs of Theorems 3.10 and 3.19

6.1 Proof of Theorem 3.10

General position Recall that an ideal arc in .†;M/ is an immersed arc  in † with endpoints in M

which has no self-intersection except possibly at its endpoints, and not isotopic to one point. In particular
 is one-sided differentiable at each endpoint p, hence there exists a small coordinate neighborhood Dp
of p such that Dp \  consists of (at most two) rays incident to p.

We say that two immersed arcs or webs in † are in general position with each other if their intersections
are finite, transverse and avoiding the trivalent vertices. Moreover, we say that the spiraling diagram W
(Definition 3.8) associated with a nonelliptic signed web is in general position with an ideal arc if their
intersection points do not accumulate in int†, transverse and avoiding the trivalent vertices. We may
always assume the general position by the concrete construction of a spiraling diagram as logarithmic
spirals near punctures.

Relative intersection number Let  and  0 be two ideal arcs isotopic to each other with common
endpoints p1; p2 2M, and W a spiraling diagram. Assume that these three are in a general position
with each other. Then the ideal arcs  and  0 bounds a region B.;  0/, which is a union of finitely many
biangles (or such a region minus small biangles; see  and  02 in Figure 35).

By the construction of the spiraling diagram, there exists a small disk neighborhood pi 2Di for i D 1; 2
such that �i WD  \Di and �0i WD 

0\Di are rays incident to pi , and W\Di is a logarithmic spiral. The
rays �i and �0i separate Di into two sectors, and exactly one of them corresponds to the region bounded
by  and  0. Then we can find a circular segment in this sector which does not intersect with W , and the
restriction of W to the circular sector separated by this segment is a periodic ladder-web. We call this
circular sector S.pi / a cut-off sector at pi . See Figure 32. Then Wreg WDW \ .B nS.p1/[S.p2// is a
finite web.
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p1 p2

W

�

�0

Figure 32: Two isotopic ideal arcs and a spiraling diagram. A cut-off sector is shown in gray in the right.

Definition 6.1 (relative intersection number) Let  ,  0 and W be as above, and choose cut-off sectors
S.p1/ and S.p2/ at the common endpoints p1; p2 2M. Then we define the relative intersection number
of W with .;  0/ to be

i.WI ;  0/ WD i.Wreg; /� i.Wreg; 
0/:

Here i.�;�/ denotes the usual geometric intersection number of two webs.

Notice that it is independent of the choice of the cut-off sectors since a periodic ladder-web has an equal
number of intersections with  and  0 in each of its period. Clearly, we have i.WI  0; /D�i.WI ;  0/.

Lemma 6.2 Let 1, 2 and 3 be three ideal arcs isotopic to each other with common endpoints , and W
a spiraling diagram. Assume that they are in general position with each other. Then we have

i.WI 1; 3/D i.WI 1; 2/C i.WI 2; 3/:

Proof Immediately verified by choosing a common cut-off sector.

Definition 6.3 We say that an ideal arc  is in minimal position with a spiraling diagram W if it satisfies
i.WI  0; /� 0 for any ideal arc  0 isotopic to  with common endpoints, and in general position with W .

See Figure 33 for an example of an ideal arc not in a minimal position.

Realization of a minimal position We are going to prove:

Proposition 6.4 (unbounded version of [19, Corollary 12]) Let W be the spiraling diagram associated
with a nonelliptic signed web , and  an ideal arc in a general position with W . Then we can isotope W



 0

W

Figure 33: A spiraling diagram W that is not in minimal position with an ideal arc  . Indeed,
i.WI  0; /D�4.
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‹

‹

Figure 34: The restriction of a spiraling diagram W to a biangle bounded by two ideal arcs.
Its loose part is shown in orange, which can be pushed out through a sequence of intersection
reduction moves and H-moves.

into a spiraling diagram W 0 in minimal position with  via a finite sequence of intersection reduction
moves , H-moves , and an isotopy relative to  .

To prove this, the following lemma is useful:

Lemma 6.5 (unbounded version of [19, Lemma 15]) Let B be a biangle in† bounded by two immersed
arcs ˛ and ˛0, and W a spiraling diagram in a general position. If some of the endpoints of ˛ and ˛0

are punctures , then choose any cut-off sectors and consider Wreg as above. Otherwise , set Wreg WDW .
Then Wreg can be isotoped through a finite number of intersection reduction moves and H-moves so that
Wreg\B consists of disjoint parallel arcs connecting ˛ and ˛0. This can be done by preserving the cut-off
sectors , and the resulting web does not depend on the choice of cut-offs.

Proof Since Wreg is finite, the statement follows from [19, Lemma 15].

Notice that each of the H-moves and the intersection reduction moves are accompanied with a small
biangle (shown by dashed lines in Figures 7 and 8) that cuts out a part of the web which we push out.
Therefore the finite sequence of these moves in Lemma 6.5 is accompanied with a finite collection
fB.j /gj2J of biangles that is partially ordered for the inclusion according to the order of moves, which we
call the tightening biangles. Let us denote by W .j / the part of W cut out by the tightening biangle B.j /,
which we call the loose part of W . See Figure 34.

The following lemma ensures that the intersection reduction procedures of a spiraling diagram associated
with a nonelliptic signed web always terminate in finite steps.

Lemma 6.6 For any spiraling diagram W associated with a nonelliptic signed web W and an ideal arc 
in general position , the relative intersection number i.WI ;  0/ is bounded from above when  0 runs over
the ideal arcs homotopic to  and in general position with  and W .

Proof If W has punctured H-faces, then applying appropriate puncture H-moves, we obtain another
signed web W 0 which is puncture-reduced. The corresponding spiraling diagrams W and W 0 differ
only by some finitely many H-shaped parts in the spiraling part, and hence i.WI ;  0/D i.W 0I ;  0/.
Therefore it suffices to consider the case where the signed web W giving rise to W is puncture-reduced.
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‹

‹



 0n1

 0n2z†

‹



 0n1

 0n2

W

† ‹

CC
C

W

Figure 35: The situation that the relative intersection numbers i.WI ;  0n/ diverge. The top left
shows a covering of † around the puncture. The infinite sequence of portions are projected to the
same portion of W .

We prove the assertion by contradiction: suppose that there exists a sequence  0n' of ideal arcs satisfying
the condition and i.WI ;  0n/� n for all n2Z�0. Let fB.j /n gj2Jn be the collection of tightening biangles
for the pair .;  0n/, and W .j /

n �W the corresponding loose part.

(a) Since we are interested in a sequence  0n such that i.WI ;  0n/ diverges, we may assume that
all of the tightening biangles B.j /n are stuck to  rather than  0n. Otherwise, a biangle stuck to
 0n contributes negatively to i.WI ;  0n/. Then we may isotope  0n to avoid this biangle without
decreasing i.WI ;  0n/.

(b) Shrinking each tightening biangle (without changing the intersection number of its boundary
with W) if necessary, we may assume that either B.j /n \B

.`/
m D∅, B.j /n � B

.`/
m or B.`/m � B

.j /
n

holds for any pair in this collection. Also we can ensure that each tightening biangle does not
intersect with the cut-off sectors at punctures.

Let us consider the compact intervalKDn.cut-off sectors/. From the assumption of general position, the
intersection of W withK is finite. The intersections I .j /n WD \intB.j /n give open intervals inK. Observe
that the union

S
n�0; j2Jn

I
.j /
n has finitely many path-connected components, since each such component

contains a distinct point in W \K, which is finite. Therefore we see that there exist subsequences nk and
jk 2 Jnk such that B.jk/nk � B

.jkC1/
nkC1 .

Such a nested situation is illustrated in Figure 35. Indeed, the situation says that distinct reduction moves
are applied infinitely many times, while the original signed webW is finite. It means that there is a portion
P of the signed web that is referred infinitely many times. Therefore the nested biangles B.jk/nk (or the
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CC CC CC

Figure 36: The correspondence between the puncture-faces (top) and the faces stuck to  (bottom).

arcs  0nk ) must be winding around one of the punctures p1 or p2, while the portion P in W corresponding
to P is spiraling around the same puncture as in the bottom left of the figure. Notice that such a spiraling
diagram W arises from the signed web W shown in the bottom right.

Moreover, observe the correspondence shown in Figure 36 between the faces stuck to  and the puncture-
faces. Therefore, the sequence of loose parts W .jk/

nk must come from these puncture-faces in the signed
web W , which contradicts to either the puncture-reduced assumption, nonelliptic condition, or the no bad
ends condition. Thus the assertion is proved.

Proof of Proposition 6.4 Suppose that W is not in minimal position with  . Then there exists an ideal
arc 0'  such that i.WI ; 0/ > 0 and in general position with  and W . Choose 0 so that i.WI ; 0/
is maximal, whose existence is ensured by Lemma 6.6. Then for any other ideal arc  0 isotopic to  , we
have

i.WI  0; 0/D i.WI  0; /C i.WI ; 0/D�i.WI ;  0/C i.WI ; 0/� 0

by Lemma 6.2 and the maximality of 0. It implies that 0 is in minimal position with W , as desired.

Corollary 6.7 (cf [19, Corollary 12 and Proposition 13]) Any spiraling diagram W associated with a
signed web on † can be isotoped through a finite number of intersection reduction moves and H-moves
so that it is in minimal position simultaneously with any disjoint finite collection figNiD1 of ideal arcs.
Such a minimal position with figNiD1 is unique up to isotopy relative to these arcs , H-moves , periodic
H-moves and parallel moves.

Proof As in the discussion above, we isotope the arcs instead of the spiraling diagram. Let figi be
the original collection of ideal arcs, and f 0igi the collection of modified arcs such that i.WI i ;  0i / is
maximal. Let Bi be the biangle bounded by i and  0i . We claim that we can slightly modify Bi as in
(b) above so that it does not cross  0j for any i ¤ j . Indeed, suppose Bi crosses  0j . If we can shrink Bi
without changing the intersection with W , do so. Otherwise, it implies that i and  0j bound together at
least one biangle B 0 �Bj , for which we can apply a reduction move (see Figure 37). It contradicts to the
maximality of i.WI j ;  0j /.
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j

 0i

 0j

Figure 37: Situations where Bi essentially crosses  0j (left) and Bi crosses j essentially (right).
Both pictures show the case where Bi intersects Bj only once.

Hence, the biangle Bi is either disjoint from Bj or intersect with Bj only through j . In the former
case, the reduction moves are independently applied. In the latter case, some of the reduction moves are
common for i and j but still the minimal positions can be simultaneously realized. Thus we get the
first statement.

The second one is proved by induction on the number N of arcs, just in the same way as the proof of [19,
Proposition 13].

Proof of Theorem 3.10: realization of a good position By Corollary 6.7, we can place any spiraling
diagram W in a minimal position with the ideal arcs in the split triangulation y4. Then by applying a finite
number of H-moves and periodic H-moves, we can push all the ladders as in Figure 38 into biangles (the
“tidying up” operation in [19]). Assume that these moves can be no longer applied to W . We are going to
prove that this position (the “joy-sparking” position in [19]) is a good position with respect to y4.

For each E 2 e.4/, the intersection W \BE is an unbounded essential web by Lemma 6.5, since it is in
minimal position with the ideal arcs bounding BE . For each T 2 t .4/, we see that the only components
of W \T which do not touch all sides of T are corner arcs by Lemma 6.5. Indeed, such a component
can be viewed as a web in a biangle obtained from T by collapsing one edge that is not touched, and
the ladders in the periodic part have been pushed into the biangles neighboring to T . Let W 0 be the web

Figure 38: Pushing a ladder into a biangle.
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obtained from W \T by removing these corner arcs, which must be finite. Then we see that W 0 must
be a honeycomb in the same as in the last part in the proof of [19, Theorem 19]. Hence W \ T is an
unbounded rung-less essential web. The uniqueness statement follows from that of Corollary 6.7. Thus
Theorem 3.10 is proved.

6.2 Proof of Theorem 3.19

We are going to prove Theorem 3.19 by following the strategy for the proof of [6, Theorem 47]. We
remark here that another proof of the latter statement is given in [19, Section 14] based on the graded
skein algebras.

The main issue here is that we have fixed the periodic pattern of corner arcs in the reconstruction procedure.
Hence the resulting spiraling diagram may differ from the original one by a periodic permutation of
corner arcs (“periodic local parallel-moves”) on each triangle. Our claim is that these local adjustments
glue together to give a global parallel-move, thus we get equivalent sl3-laminations. See Figure 40 for a
typical example.

By the Q>0-equivariance, it suffices to consider integral unbounded sl3-laminations, which are represented
by signed nonelliptic webs. Therefore it suffices to prove the following statement:

Proposition 6.8 If two signed nonelliptic webs W1 and W2 have the same shear coordinates .xi /i2Iuf.4/

with respect to an ideal triangulation4, then W1 and W2 are equivalent as unbounded sl3-laminations.

In what follows, the index � 2 f1; 2g will always given to the objects associated to the web W� . For a
discrete subset A � R (eg A D Z), we call a subset I � A of the form I D Œa; b�\A for a (possibly
unbounded) interval Œa; b��R an interval in A.

Global pictures Let W1 and W2 be as in Proposition 6.8. For � D 1; 2, we may assume that the
associated spiraling diagram W� is placed in a good position with respect to the split triangulation y4
by Theorem 3.10. Then its braid representative W4�;br has at most one honeycomb component on each
triangle. Let †ı be the holed surface, which is a compact surface obtained by removing a small open
disk DT in each T 2 t .�/ from †. We may isotope the unique honeycomb component of W4�;br into the
disk DT , so that hW�i WDW4�;br \†

ı is a collection of oriented curves, whose ends either lie on @†ı

or spiral around punctures. Following [6], we call hW�i the global picture associated with W4�;br. It is
obvious to reconstruct the braid representative from its global picture. We call each oriented curve in
hW�i a traveler.

Recall from Steps 1 and 2 in the reconstruction procedure (Section 3.4) that we can construct a braid
representative W 4�;br of signed web by replacing the spiraling ends with signed ends. We similarly define
its global picture by hW�i WDW 4�;br\†

ı. For the scheme of our proof, see Figure 39. Our strategy is as
follows:
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signed web W� spiraling diagram W�

global picture hW�iglobal picture hW�i ZIuf.4/
1 W 1

Steps 1 & 2

1 W 1Step 3

1 W 1

Lemma 3.17

x4

�4

Figure 39: The scheme for a proof of Proposition 6.8. It is obvious that the three objects W� ,
hW�i and hW�i are in one-to-one correspondences (up to strict isotopies), when one fixes a
triangulation4. It will be proved that we get the identity (up to equivalence of signed webs) after
going through the square.

(1) Starting from the assumption in Proposition 6.8, we are going to make a correspondence between
the topological data of global pictures hW1i and hW2i (namely, their travelers and intersection
points among them) by an unbounded version of the “fellow-traveler lemma” [6, Lemma 57].

(2) From such a correspondence, we can describe a sequence of elementary moves relation W1 and
W2 by just following the argument of Douglas and Sun [6, Section 7.4] for the bounded case.

Unbounded fellow-traveler lemma For each traveler  in hW�i, fix a basepoint x0 2  so that it
does not lie on any edge of 4. Associated to such a based traveler .; x0/ is the route .Ei /i2I , where
I � Z is an interval and Ei is the i th edge of 4 crossed by  listed in order according to the orientation
of  : the 0th edge is the first one encountered by  after passing x0. We also define the turning pattern
.�i /i2I � fL; S;Rg

I of the based traveler .; x0/ as follows:

�i WD

8<:
L if EiC1 follows Ei in the counterclockwise direction at their common endpoints;
S if  ends at the boundary of DT right after passing Ei ;
R if EiC1 follows Ei in the clockwise direction at their common endpoints:

The following is immediately verified:

Lemma 6.9 The topological types of the travelers  are distinguished by the periodicity of the data
.Ei ; �i /i2I , as follows:

�  is a bounded arc both of whose ends lie on @†ı if I � Z is bounded ;

�  is a loop if I D Z and the route is totally periodic .namely , EiCk D Ei for some k 2 Z/.
Moreover , it is peripheral if the turning pattern .�i /i2I is constant ;

�  has an end spiraling to a puncture p, say in the forward direction , if I � Z is unbounded from
above , the route .Ei /i is not totally periodic but eventually periodic , and the turning pattern .�i /i
is eventually constant in the forward direction.
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Figure 40: Example of local picture of a pair .hW1i; hW2i/ having the same shear coordinates.
Here the top (resp. bottom) picture shows the collection of oriented curves going through the
central biangle from the right to the left (resp. from the left to the right), which is common for
hW1i and hW2i except for 7.

We say that two travelers  .1/ in hW1i and  .2/ in hW2i are fellow-travelers if their data .E.1/i ; �
.1/
i /i2I1

and .E.2/i ; �
.2/
i /i2I2 are the same, in the sense that there exists an order-preserving bijection f W I1! I2

such that E.2/
f .i/
D E

.1/
i and � .2/

f .i/
D �

.1/
i for all i 2 I1. Notice that the notion of fellow-traveler does

not depend on the choice of basepoints, and that two fellow-travelers have the same topological type by
Lemma 6.9.

Lemma 6.10 (unbounded fellow-traveler lemma, cf [6, Lemma 57]) Under the assumption of Proposi-
tion 6.8, there exists a bijection

' W fnonperipheral travelers in hW1ig
��! fnonperipheral travelers in hW2ig

such that  and './ are fellow-travelers.

Traveler identifier In order to prove Lemma 6.10, let us introduce another data that identifies the traveler
and can be characterized by the shear coordinates. Let us consider two triangles TL; TR 2 t .4/ that
shares a biangle BE . For Z 2 fL;Rg, let EZ denote the edge of y4 shared by TZ and BE . Let SC;.�/EZ

(resp. S�;.�/EZ
) denote the set of strands on EZ incoming to (resp. outgoing from) the biangle BE , which

are given by the intersections of travelers in hW�i and EZ for �D 1; 2. We endow EZ with the orientation
induced from the triangle TZ .

Choose two orientation-preserving parametrizations of EZ in the same way as in Section 3.4. Namely,
choose �˙;.�/EZ

W R ! EZ so that the inverse image of S˙;.�/EZ
is an interval I˙;.�/EZ

�
1
2
C Z, and

�
˙;.�/
EZ

.R<0/\S
˙;.�/
EZ

consists of all the strands coming from the corner arcs around the initial marked
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point ofEZ . Let f ˙;.�/EZ
WEZ!R be the inverse map of �˙;.�/EZ

. For a traveler  .�/ in hW�i that intersects
with the edge EZ at a point x, its traveler identifier at EZ is the pair .k; �/ 2

�
1
2
CZ

�
� f˙1g given by

.k; �/ WD

(
.f
C;.�/
EZ

.x/;C/ if  enters BE from EZ ;

.f
�;.�/
EZ

.x/;�/ if  exits BE from EZ :

Then we write  .�/ D  .�/EZ .k; �/.

Example 6.11 In the example shown in Figure 40, we have

1 D 
.�/
E1
.5=2;�/D 

.�/
E2
.�1=2;C/D 

.�/
E3
.3=2;�/;

2 D 
.�/
E1
.3=2;�/D 

.�/
E2
.1=2;C/;

3 D 
.�/
E1
.1=2;�/D 

.�/
E2
.3=2;C/;

4 D 
.�/
E1
.3=2;C/D 

.�/
E2
.�5=2;�/D 

.�/
E3
.5=2;C/;

5 D 
.�/
E1
.1=2;C/D 

.�/
E2
.�3=2;�/D 

.�/
E3
.3=2;C/;

6 D 
.�/
E1
.�1=2;C/D 

.�/
E2
.�1=2;�/D 

.�/
E3
.1=2;C/;

7 D 
.�/
E1
.�3=2;C/D 

.�/
E2
.1=2;C/:

Lemma 6.12 Let  .�/ be a traveler in hW�i that passes through BE from EL to ER. Let .kL;C/ and
.kR;�/ be its traveler identifier at EL and ER, respectively. Then we have

kLC kR D xE;1.W�/C ŒxTR.W�/�C:

If  .�/ passes through BE from ER to EL, then its traveler identifiers .kR;C/ and .kL;C/ satisfy
kLC kR D xE;2.W�/C ŒxTL.W�/�C.

Proof Just observe that our choice of parametrizations �˙;.�/EZ
is the same as in the reconstruction

procedure (Section 3.4), except for the difference that we do not necessarily have an infinite number of
corner arcs here. Then the assertion is obtained from the gluing rule (3-2).

Lemma 6.13 The traveler identifiers characterizes the traveler and its topological type. Namely,

(1) the traveler identifier determines the data .Ei ; �i /i2I for each traveler;

(2) if  .1/E .k; �/D 
.1/
E 0 .k

0; �0/ for two edges E and E 0 of the split triangulation y4, then


.2/
E .k; �/D 

.2/
E 0 .k

0; �0/:

Proof (1) The initial edge E0 is determined from the basepoint x0. Assume that we have determined
the data Ei for 0 � i � k and �j for 0 � j � k � 1. Let E WD Ek . Then Ek�1 and �k�1 tell us from
which direction our traveler passes through the biangle BE . Assume it is from TL to TR, without loss of
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0

ŒxTR �C



Figure 41: The turning pattern determined by the value of kR.

generality. Then by Lemma 6.12, we have kR D xE;1.W�/C ŒxTR.W�/�C� kL. Then by the choice of
the parametrization ��;.�/ER

, we see that

�k D

8<:
L if kR < 0;
S if 0 < kR < ŒxTR.W�/�C;
R if kR > ŒxTR.W�/�C:

See Figure 41. Moreover, the pattern �k tells us the next edge EkC1 or its absence.

(2) Recall that the shear coordinates of W1 and W2 are the same. Since the reconstruction given in (1) is
characterized by the shear coordinates, the assertion follows.

Proof of Lemma 6.10 Define the bijection ' by

(6-1) ' W 
.1/
E .k; �/ 7! 

.2/
E .k; �/:

It is well defined by Lemma 6.13(2), and preserves the topological types of travelers by Lemma 6.13(1).

Remark 6.14 From the proof of Lemma 6.12, a traveler  D  .1/E .k; �/ with k 2 I �;.1/E n I
�;.2/
E must

be peripheral. For example, if  D  .1/EL.kL;C/ and kL <min I �;.2/EL
is a lower excess, then it must have

�k D R, since otherwise it has a nontrivial contribution to the edge coordinates. It follows that such
a traveler also has an identifier of lower excess in the next biangle, concluding �k D R for all k 2 Z

inductively for both directions. See 7 in Figure 40 for an example.

Correspondence between the global pictures hW1i and hW2i Let W1 and W2 be as in Proposition 6.8.
Then by the unbounded fellow-traveler Lemma, we have a bijective correspondence ' between the
travelers in hW1i and hW2i. Let us consider the global pictures hW1i and hW2i, and call each oriented
curve in hW�i a traveler again. Since the bijection ' preserves the spiraling types of travelers in hW�i, it
induces a bijection

(6-2) ' W ftravelers in hW1ig ��! ftravelers in hW2ig:

Here we make the intersection of each traveler in hW�i with each edge of y4 minimal, by applying the
same isotopy for each pair .; '.// of travelers. Notice that each traveler in hW�i is either a closed loop
or a compact arc, and their intersections are finite. Therefore we can proceed by applying Douglas and
Sun’s argument [6, Section 7.4] for the rest of discussion.
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Recall the notion of a shared route of two ordered travelers .;  0/ from [6, Definition 59]. Roughly
speaking, it is a maximal interval shared by the routes of two travelers with opposite orientations. The
definition is extended for the travelers in hW�i in a straightforward way. A shared route is either crossing
or noncrossing. A noncrossing shared route is said to be left-oriented if one traveler is always seen on the
left from the other traveler. A crossing shared route is said to be left-oriented if the same situation occurs
near its source-end [6, Definition 61].

By applying the boundary and puncture H-moves if necessary, we may assume that these webs are reduced.
Then we see that each shared route has at most one intersection point (see [6, Lemma 60]). Indeed, two
intersecting travelers cannot have a common endpoint at a puncture, since such a situation would come
from a puncture H-face. Hence the situation regarding the crossing shared routes is exactly the same as in
the bounded case. From these observations, together with the bijection (6-2), we get:

Lemma 6.15 (cf [6, Corollary 64]) For � D 1; 2, let PhW�i denote the set of intersections of travelers
in hW�i. Then we have a bijection

'int W PhW1i
��! PhW2i

such that the unique intersection point p of a left-oriented shared route of two travelers .;  0/ in hW1i is
sent to the unique intersection point 'int.p/ of the corresponding shared route of .'./; '. 0// in hW2i.

Proof of Proposition 6.8: a sequence of elementary moves relating W1 and W2 As in the previous
paragraph, we may assume that W1 and W2 are reduced by applying the boundary/puncture H-moves.
Moreover by applying the loop parallel-moves and the arc parallel-moves (Lemma 2.4), we may assume
that both W1 and W2 are left-oriented in the sense that for each pair of parallel loop or arc components
with opposite orientations, one is always seen on the left from the other. It includes the closed-left-
oriented condition [6, Definition 62]. Now we are going to see that the intersection points p 2 PhW1i and
'int.p/ 2PhW2i can be adjusted to a common position by a sequence of modified H-moves; see Figure 42.
The techniques developed in [6, Section 7.8] can be directly applied to our situation without any essential
modification, since the situation around a crossing shared route is exactly the same as in the bounded
case, and the sets PhW�i are finite. Then we get:

Lemma 6.16 (cf [6, Lemma 66]) There are sequences of modified H-moves applicable to the webs W1
and W2 respectively , after which the bijection 'int satisfies the property that for each intersection point p
in hW1i, the two points p and 'int.p/ lie in the same shared-route-biangle [6, Definition 65].

Apply the sequence of modified H-moves to W1 and W2 prescribed above. We claim that the two signed
webs W1 and W2 are now isotopic.

In the same way as in the proof of [6, Lemma 67], we see that the finite sequences of oriented strands on
each edge of the split triangulation y4 are the same for hW1i and hW2i. We have a correspondence (6-2)
that relates the travelers in hW1i and hW2i, in particular the ends incident to punctures and their signs.
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:::
:::

p

'int.p/

hW1i hW2i

Figure 42: Adjustment of intersection points. Here only the difference from the situation in [6] is
that some of the travelers can end at a puncture.

The travelers can intersect with each other inside biangles, whose pattern is uniquely determined by the
sequence of oriented strands on the side edges. Thus hW1i and hW2i restricts to the same collection of
oriented curves (with signed ends at punctures) in each triangle and biangle in y4. Since we can uniquely
recover the honeycombs from these diagrams, we get W1 DW2 up to isotopy. Thus Proposition 6.8 is
proved.

Proof of Theorem 3.19 Let us consider an integral unbounded sl3-lamination, which is represented
by a signed nonelliptic web W1. Let W2 WD �4 ı xuf

4
.W1/ be the signed nonelliptic web obtained from

the reconstruction. By Proposition 3.18, we have xuf
4
.W1/D xuf

4
.W2/. Then Proposition 6.8 tells us that

W1 and W2 determine an equivalent sl3-lamination. Combining with the Q>0-equivariance, we get the
desired assertion.

Appendix Cluster varieties associated with the pair .sl3; †/

Here we briefly recall the general theory of cluster varieties [13], and the construction of the seed pattern
s.sl3; †/ that encodes the cluster structures of the spaces of sl3-laminations in consideration.

A.1 Seeds, mutations and the labeled exchange graph

Fix a finite set I D f1; : : : ; N g of indices, and let FA and FX be fields both isomorphic to the field
Q.z1; : : : ; zN / of rational functions on N variables. We also fix a subset Iuf � I (“unfrozen”) and let
If WD I n Iuf (“frozen”). A (labeled, skew-symmetric) seed in .FA;FX / is a triple .";A;X/, where

� "D ."ij /i;j2I is a skew-symmetric matrix (exchange matrix) with values in 1
2
Z such that "ij 2 Z

unless .i; j / 2 If � If;

Algebraic & Geometric Topology, Volume 25 (2025)



Unbounded sl3-laminations and their shear coordinates 1493

� A D .Ai /i2I and X D .Xi /i2I are tuples of algebraically independent elements (cluster A- and
X -variables) in FA and FX , respectively.

The exchange matrix " can be encoded in a quiver with vertices parametrized by the set I and j"ij j arrows
from i to j (resp. j to i) if "ij > 0 (resp. "j i > 0). In figures, we draw n dashed arrows from i to j if
"ij D n=2 for n 2 Z, where a pair of dashed arrows is replaced with a solid arrow.

For an unfrozen index k 2 Iuf, the mutation directed to k produces a new seed ."0;A0;X 0/D�k.";A;X/
according to an explicit formula [17]. See, for instance, [23, (2.1), (2.3) and (2.4)] for a formula which fits
in with our convention. A permutation � 2SIuf�SIf induces a transformation � W .";A;X/! ."0;A0;X 0/

by the rule

(A-1) "0ij WD "��1.i/;��1.j /; A0i WD A��1.i/; X 0i WDX��1.i/:

We say that two seeds in .FA;FX / are mutation-equivalent if they are transformed to each other by a
finite sequence of mutations and permutations. The equivalence class is usually called a mutation class.

The relations among the seeds in a given mutation class s can be encoded in the (labeled) exchange graph
Exchs. It is a graph with vertices v corresponding to the seeds s.v/ in s, together with labeled edges of
the following two types:

� edges of the form v k
�� v0 whenever the seeds s.v/ and s.v

0/ are related by the mutation �k for
k 2 Iuf;

� edges of the form v �
��v0 whenever the seeds s.v/ and s.v

0/ are related by the transposition �D .j k/
for .j; k/ 2 Iuf � Iuf or If � If.

When no confusion can occur, we simply denote a vertex of the labeled exchange graph by v 2 Exchs in-
stead of v2V.Exchs/. When we write s.v/D.".v/;A.v/;X .v//, it is known that .".v/;A.v//D.".v

0/;A.v0//

if and only if .".v/;X .v//D .".v
0/;X .v0// for two vertices v and v0 (the synchronicity phenomenon [38]).

We call .".v/;A.v// and .".v/;X .v// an A-seed and an X -seed, respectively. We also remark that the
labeled exchange graph depends only on the mutation class of the underlying exchange matrices. Indeed,
it is unchanged if we transform the cluster variables simultaneously by an automorphism of the ambient
field.

Remark A.1 In geometric applications, A- and X -seeds are constructed in the field of rational functions
on a space of interest. For Z 2 fA;X g, a cluster Z-atlas on a variety (scheme, stack) V is a collection of
Z-seeds in the field K.V / of rational functions which are mutation-equivalent to each other. A cluster
atlas can be uniquely extended to a cluster Z-structure, which is a maximal collection of Z-seeds in K.V /,
thus forming a mutation class s. See Remark A.3 below.

A.2 Cluster varieties

The cluster varieties associated with a mutation class s are constructed by patching algebraic tori
parametrized by the vertices of the labeled exchange graph.
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Notation A.2 A multiplicative algebraic group is denoted by Gm D Spec ZŒu; u�1�. For a lattice ƒ (ie
a free abelian group of finite rank), let Tƒ WD Hom.ƒ;Gm/ denote the associated algebraic torus. For a
(split) algebraic torus T Š .Gm/

N , let

X�.T / WD Hom.T;Gm/ and X�.T / WD Hom.Gm; T /

denote the lattices of characters and cocharacters, respectively. These lattices are dual to each other by via
the canonical pairing X�.T /˝X�.T /! Hom.Gm;Gm/Š Z. The contravariant functors T� Wƒ 7! Tƒ
and X� W T 7!X�.T / are inverses to each other: ƒDX�.Tƒ/, T D TX�.T /. A vector � 2ƒ gives rise
to a character �� W Tƒ!Gm.

For v 2Exchs, consider a latticeN .v/D
L
i2I Ze.v/i with a fixed basis and its dualM .v/D

L
i2I Zf .v/i .

Let X.v/ WD TN .v/ and A.v/ WD TM .v/ denote the associated algebraic tori of dimension jI j. The
characters X .v/i WD �e.v/i W X.v/!Gm and A.v/i WD �f .v/i

WA.v/!Gm are called the cluster coordinates.
The exchange matrix ".v/ defines a 1

2
Z-valued bilinear form onN .v/ by .e.v/i ; e

.v/
j / WD "

.v/
ij , which induces

Poisson and K2-structures on X.v/ and A.v/, respectively. The mutation rule turns into birational maps
�x
k
W X.v/! X.v0/ and �a

k
WA.v/!A.v0/, called the cluster transformations [13, (13) and (14)]. Then the

cluster X - and A-varieties are the schemes defined as

Xs WD

[
v2Exchs

X.v/; As WD

[
v2Exchs

A.v/:

Here for .z;Z/ 2 f.a;A/; .x;X /g, (open subsets of) tori Z.v/ and Z.v0/ are identified via the cluster
transformation �z

k
if there is an edge of the form v k

�� v0, or via the coordinate permutation (A-1) if
there is an edge of the form v �

�� v0. As a slight variant, let X uf
.v/
WDT

N
.v/
uf

, and X uf
s WD

S
v2Exchs X

uf
.v/

the
cluster X -variety without frozen coordinates. Since the cluster transformation of unfrozen X -coordinates
does not refer the frozen ones, we have a natural projection Xs!X uf

s . We remark that the cluster varieties
are constructed only from the mutation class of the underlying exchange matrices.

For .Z;Z/ 2 f.A;A/; .X;X /g, each pair .".v/; .Z.v/i /i2I / of the exchange matrix and the cluster Z-
coordinates defines a Z-seed in the field FZ WD K.Zs/ of rational functions in the sense of the previous
section. The rings O.As/� FA and O.Xs/� FX of regular functions are called the upper cluster algebra
and the cluster Poisson algebra, respectively. The cluster algebra [16] is the subring As � O.As/

generated by all the cluster coordinates A.v/i , i 2 I , v 2 Exchs.

Ensemble maps and their extensions The cluster varieties Xs and As are coupled as a cluster ensemble.
For v 2Exchs, let N .v/

uf �N
.v/ denote the sublattice spanned by e.v/i for i 2 Iuf. Then by the assumption

on the exchange matrix, we have the linear map

(A-2) p�.v/ WN
.v/
uf !M .v/; e

.v/
i 7!

X
j2I

"
.v/
ij f

.v/
j :

Moreover, it can be verified that the maps between tori induced by (A-2) commute with cluster trans-
formations, and combine to give a morphism p W As ! X uf

s . We call this map the ensemble map,
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and the triple .As;Xs; p/ the cluster ensemble associated with s. If we pick up a suitable extension
Qp�
.v/
WN .v/!M .v/ of the map (A-2) (see [22, (A.2)] for the required condition), then it still commutes

with cluster transformations and hence we get an extended ensemble map Qp W As! Xs. It is shown in
[21, Section 13.3] that such a choice exactly corresponds to a choice of compatibility pairs [3] defining a
quantum cluster algebra.

Tropicalizations The positive structures on the cluster varieties allow us to consider their semifield-
valued points. For AD Z, Q or R, let AT WD .A;max;C/ denote the corresponding tropical semifield
(or the max-plus semifield). For an algebraic torus H , let H.AT / WD X�.H/˝Z .A;C/. A positive
rational map f WH !H 0 between algebraic tori naturally induces a piecewise-linear (PL for short) map
f T WH.AT /!H 0.AT /. We call f T the tropicalized map. In particular we have the tropicalized cluster
transformations �T

k
W Z.v/.AT /! Z.v0/.AT / for .z;Z/ 2 f.a;A/; .x;X /g, explicitly given as

.�Tk /
�x
.v0/
i D

(
�x
.v/

k
if i D k;

x
.v/
i � "

.v/

ik
Œ� sgn.".v/

ik
/x
.v/

k
�C if i ¤ k;

(A-3)

.�Tk /
�a
.v0/
i D

(
�a

.v/

k
Cmax

˚P
j2I Œ"

.v/

kj
�Ca

.v/
j ;

P
j2I Œ�"

.v/

kj
�Ca

.v/
j

	
if i D k;

a
.v/
i if i ¤ k:

(A-4)

Here x
.v/
i and a

.v/
i are the coordinate functions induced by the basis vectors e.v/i and f .v/i respectively,

and Œu�C WDmaxf0; ug for u 2A. We can use them to define the tropical cluster varieties

Xs.A
T / WD

[
v2Exchs

X.v/.AT /; As.A
T / WD

[
v2Exchs

A.v/.AT /;

which are naturally equipped with canonical PL structures. Since the PL maps are equivariant for the
scaling action of A>0, the tropical cluster varieties inherit this A>0-action. We also consider the tropical
X -varieties X uf

s .A
T / without frozen coordinates. In the body of this paper, the main objects of study are

the spaces X uf
s .Q

T / and Xs.QT / associated with a particular mutation class s.

Cluster modular group The cluster ensemble is naturally equipped with a discrete symmetry group.
Let Mats denote the mutation class of exchange matrices underlying the mutation class s. Then we have a
map

"� W V.Exchs/!Mats; v 7! ".v/:

Then the cluster modular group �s � Aut.Exchs/ consists of graph automorphism � which preserves
the fibers of the map "� and the labels on the edges. An element of the cluster modular group is
called a mutation loop. The cluster modular group acts on the cluster varieties As and Xs so that
��Z

.v/
i DZ

.��1.v//
i for all � 2�s, v 2Exchs and i 2 I , where .Z;Z/2 f.A;A/; .X;X /g. These actions

commute with the ensemble map.

Since the actions are by positive rational maps, they induce actions of �s on As.AT / and Xs.AT / by PL
automorphisms, which commute with the (extended) ensemble map. Moreover, these actions commute
with the rescaling action of A>0.
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A.3 The cluster ensemble associated with the pair .sl3; †/

Here we quickly recall the cluster structures on the moduli spaces ASL3;†, XPGL3;† and PPGL3;† con-
structed in [10; 21]. We are going to recall the Fock–Goncharov atlas associated with ideal triangulations
of † and their mutation-equivalences, since it is typical difficult to describe the entire cluster structure.

Let4 be an ideal triangulation of †. Then we construct a quiverQ4 with the vertex set I.4/ by drawing
the quiver

on each triangle, and glue them by the amalgamation construction [9]. In our case, this just means that
we glue the quivers on adjacent triangles by identifying the two vertices on the shared edge and eliminate
the pair of opposite dashed arrows. The vertices on the boundary intervals of † are declared to be frozen,
forming the subset If.4/� I.4/ as in Section 2.1. Let "4D ."4ij /i;j2I.4/ be the corresponding exchange
matrix.

These quivers Q4 (or the exchange matrices "4) associated with ideal triangulations of † are mutation-
equivalent to each other. Indeed, the quivers Q4 and Q4

0

associated with two triangulations 4 and 40

connected by a single flip fE W 4!40 are transformed to each other via one of the mutation sequences
shown in Figure 43. Then the assertion follows from the classical fact that any two ideal triangulations of
the same marked surface can be transformed to each other by a finite sequence of flips.

Remark A.3 For each ideal triangulation 4, we can associate an A-seed ."4;A4/ (resp. X -seed
."4;X4/) in the field of rational functions on the moduli space ASL3;† (resp. PPGL3;†). Forgetting the
frozen part in the latter, we get an X -seed for the moduli space XPGL3;†. See [10, Section 9] or [21,
Section 3] for construction. These birational coordinate systems define cluster atlases on these moduli
spaces in the sense of Remark A.1.

Then there exists a unique mutation class s.sl3; †/ containing the seeds associated with any ideal
triangulations 4. More precisely, a labeled sl3-triangulation .4; `/, namely an ideal triangulation 4
together with a bijection ` W I.4/! f1; : : : ; N g, give rise to vertices of the labeled exchange graph
Exchs.sl3;†/. Figure 43 describes a subgraph containing .4; `/ and .40; `0/, where the labels ` and `0 are
consistently chosen. Let us simply denote the objects related to s.sl3; †/ by

Asl3;† WDAs.sl3;†/; Xsl3;† WD Xs.sl3;†/; Exchsl3;† WD Exchs.sl3;†/; �sl3;† WD �s.sl3;†/;

and so on.

Algebraic & Geometric Topology, Volume 25 (2025)



Unbounded sl3-laminations and their shear coordinates 1497

E

.4; `/

1

4

3

9

10

11

12

2

5

6

7

8

1

3
4

2

5

6

7

8 9

10

11

12

E 0

1

2

4

5

6 11

12

3

9

107

8 .40; `0/

�1

�3

�3

�1

�2

�4

�4

�2

Figure 43: Some of the sequences of mutations that realize the flip fE W 4 ! 40. Here we
partially fix labelings ` and `0 of vertices in I.4/ and I.40/, respectively.

The following can be verified from (A-3) by a direct computation:

Lemma A.4 For two labeled sl3-triangulations v D .4; `/; v0 D .40; `0/ 2 Exchsl3;† as in Figure 43,
the (max-plus) tropical coordinates xi WD x

.v/
i and x0i WD x

.v0/
i for i 2 f1; : : : ; 12g are related as follows:

x01 D x2C Œx3; x4; x1�C� Œx1; x2; x3�C; x02 D�x1� x2C Œx1�C� Œx3�C;

x03 D x4C Œx1; x2; x3�C� Œx3; x4; x1�C; x04 D�x3� x4C Œx3�C� Œx1�C;

x05 D x5C Œx1�C; x06 D x6C Œx1; x2; x3�C� Œx1�C;

x07 D x7C x1C x2C Œx3�C� Œx1; x2; x3�C; x08 D x8� Œ�x3�C;

x09 D x9C Œx3�C; x010 D x10C Œx3; x4; x1�C� Œx3�C;

x011 D x11C x3C x4C Œx1�C� Œx3; x4; x1�C; x012 D x12� Œ�x1�C:

Here Œx�C WDmaxf0; xg and Œx; y; z�C WDmaxf0; x; xCy; xCyC zg.

Goncharov–Shen extension of the ensemble map Following [21], we choose the following extension
of the ensemble map. Let

C.sl3/D .Cst /s;t2f1;2g D

�
2 �1

�1 2

�
denote the Cartan matrix of the Lie algebra sl3. For an ideal triangulation 4, let Q"4 D .Q"4ij /i;j2I.4/ be
the matrix given by Q"4ij WD "

4
ij Cmij , where

(A-5) mij WD

�
�
1
2
Cst if i D is.E/ and j D i t .E/ lie on a common boundary interval E 2 B;

0 otherwise:
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Then we define Qp�
4
WN4!M4 by e4i 7!

P
i;j2I.4/ Q"

4
ij f
4
j inducing a morphism

(A-6) QpGS WAsl3;†! Xsl3;†;

which we call the Goncharov–Shen extension of the ensemble map. This choice naturally comes from the
geometry of the moduli spaces of local systems on †, so QpGS agrees with the map p WA�SL3;†

! PPGL3;†

[21, Proposition 9.4].

Cluster modular group Although the entire structure of the cluster modular group �sl3;† is yet unknown,
it is known to include the subgroup .MC.†/ � Out.SL3// ËW.sl3/Mı � �sl3;† [20]. Here MC.†/
denotes the mapping class group of the marked surface †, Out.SL3//D Aut.SL3/=Inn.SL3/ is the outer
automorphism group of SL3, and W.sl3/ is the Weyl group of the Lie algebra sl3. The group Out.SL3/
has order 2, and generated by the Dynkin involution �W G ! G, g 7! .g�1/T. For each element � in
this subgroup, let us call the induced PL action � W Zsl3;†.Q

T /! Zsl3;†.Q
T / the cluster action, in

comparison to the geometric action we introduce in the body of this paper in terms of signed sl3-webs.
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We adapt Seifert’s algorithm for classical knots and links to the setting of triplane diagrams for bridge
trisected surfaces in the 4-sphere. Our approach allows for the construction of a Seifert solid that is
described by a Heegaard diagram. The Seifert solids produced can be assumed to have exteriors that
can be built without 3-handles; in contrast, we give examples of Seifert solids (not coming from our
construction) whose exteriors require arbitrarily many 3-handles. We conclude with two classification
results. The first shows that surfaces admitting doubly standard shadow diagrams are unknotted. The
second says that a b-bridge trisection in which some sector contains at least b� 1 patches is completely
decomposable, thus the corresponding surface is unknotted. This settles affirmatively a conjecture of the
second and fourth authors.

57K45; 57K10

1 Introduction

One of the most important avenues available for study in knotted surfaces in 4-space is the analysis of the
3-dimensional Seifert solids bounded by such surfaces. There are many situations in which information
about such a Seifert solid gives rise to useful information about the corresponding knotted surface.
Examples, ranging from classical to modern, include Gordon’s proof that 2-knots are not determined by
their complements [7], Cochran’s characterization of fibered homotopy-ribbon 2-knots [3], and recent
work of Dai and Miller analyzing the relevance of homology cobordism invariants of Seifert solids [4].

Here we show how topological information about a knotted surface can be recovered from a bridge
trisection of the surface, which allows for the diagrammatic study of knotted surfaces and their Seifert
solids. A bridge trisection of a surface S in S4 is a certain decomposition of .S4;S/ into three trivial
disk systems .B4

1
;D1/, .B4

2
;D2/, and .B4

3
;D3/ that can be encoded diagrammatically either as a triple

of tangles called a triplane diagram or as a corresponding shadow diagram.

In Section 3, we give a version of Seifert’s algorithm for bridge-trisected surfaces, showing how a triplane
diagram can be used to produce a 3-manifold bounded by a connected surface S with normal Euler
number zero.
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Theorem 3.4 If S is connected and e.S/D 0, then there is a procedure to produce a Seifert solid for S
that takes as input a triplane diagram for S.

In Section 3.2, we give an explicit procedure for constructing a Heegaard diagram for such a 3-manifold
when S Š S2. As a corollary of the work in building Seifert solids, we recover a combinatorial proof of
the existence of Seifert solids. Although the literature already contains a method for producing a Heegaard
diagram for a Seifert solid — namely, the work of Carter and Saito [2] — the procedure described here is
a bit more practical. In [2, Section 3], the authors employ their methods to take a broken surface diagram
and produce a genus 21 Heegaard diagram for a punctured L.3; 1/ #

�
#3
.S1 � S2/

�
bounded by the

2-twist spun trefoil, noting that this solid is nonminimal, since the same 2-knot also bounds a punctured
L.3; 1/. In contrast, in Section 3.3 we use our procedure to find genus three Heegaard diagrams for Seifert
solids bounded by the spun trefoil and 1-twist spun trefoil, where these solids are minimal. For the 2-twist
spun trefoil, the procedure yields a genus four Heegaard diagram for a Seifert solid (calculations omitted
here). The 2-dimensional data contained in a triplane diagram can often be easier to manipulate and
simplify than the data in a broken surface diagram; as such, both the solids and their Heegaard diagrams
produced by Theorem 3.4 are likely to be less complicated.

We also show that certain bridge trisected surfaces are unknotted.

Theorem 3.3 If a surface S has a doubly standard shadow diagram , then S is unknotted.

In practice, Theorem 3.3 offers a new and effective method to show unknottedness for bridge trisected
surfaces. The doubly standard criterion has considerable potential to aid in the tabulation of low-complexity
knotted surfaces, since verifying that a shadow diagram is doubly standard can be much easier than
proving unknottedness via other methods.

One of the key features of trisection theory is that it provides a vehicle to adapt 3-dimensional ideas
to dimension four, and in Section 4, we prove another result that fits into this line of research. It is
well-known that the complement of every canonical Seifert surface (ie one obtained from Seifert’s
algorithm) is a handlebody. Thus, it is natural to attempt to extend this notion to dimension four. In this
vein, we call a Seifert solid canonical if it is obtained from the procedure presented in Section 3, and we
call a Seifert solid spinal if its exterior in S4 can be built without 3-handles. We prove the following two
results relating (and distinguishing) these concepts:

Theorem 4.1 If a surface-knot S admits a Seifert solid , then it admits a canonical Seifert solid that
is spinal.

In fact, modulo some additional, easily satisfied connectivity conditions, every canonical Seifert solid is
spinal. The next result shows that some Seifert solids (in contrast to canonical Seifert solids and many
standard examples) are “far” from being spinal.

Algebraic & Geometric Topology, Volume 25 (2025)
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Theorem 4.2 Given any n 2N, there exists a 2-knot K that bounds a Seifert solid Y homeomorphic to
.S1 �S2/ı such that S4 n �.Y / requires at least n 4-dimensional 3-handles.

Finally, in Section 5 we prove the following standardness result, affirmatively settling Conjecture 4.3 of
Meier and Zupan [15].

Theorem 5.2 Let T be a .bI c/-bridge trisection with ci D b� 1 for some i 2 Z3. Then T is completely
decomposable , and the underlying surface-link is either the unlink of minfcig 2-spheres or the unlink of
minfcig 2-spheres and one projective plane , depending on whether jci�1� ciC1j D 1 or 0.

The proof relies on theorems of Scharlemann [19] and Bleiler and Scharlemann [1] regarding planar
surfaces in 3-manifolds. The methods of the proof are somewhat unrelated to the methods used in the
preceding sections and may be of independent interest. The second and fourth authors previously handled
this case when ci D b for some i 2 Z3 [15, Proposition 4.1]. Theorem 5.2 can be seen as the analog
for bridge trisections of Theorem 1.2 of Meier, Schirmer and Zupan [13], which establishes a similar
standardness result for trisections of closed manifolds; as such, our theorem fills an important gap in the
trisections literature and provides yet another avenue to verify that a surface in S4 is unknotted.

Acknowledgements
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2 Preliminaries

We work in the smooth category. This section includes an abbreviated introduction to the concepts relevant
to this paper, but the interested reader is encouraged to consult [5] for further information about 4-manifold
trisections and [9, Section 2; 15] for more detailed discussions of bridge trisections. We limit our work
here to surfaces in S4, but there is also a theory of bridge trisections in arbitrary 4-manifolds; see [16].
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2.1 Bridge trisections

Let S be an embedded surface in S4, let b be a positive integer, and let c D .c1; c2; c3/ be a triple of
positive integers. A .bI c/-bridge trisection of .S4;S/ is a decomposition

.S4;S/D .X1;D1/[ .X2;D2/[ .X3;D3/

such that

(1) each Di is a collection of ci boundary-parallel disks in the 4-ball Xi ,

(2) each intersection Ti DDi�1\Di is a boundary-parallel tangle in the 3-ball Hi DXi�1\Xi (with
indices considered mod 3),

(3) the triple intersection D1\D2\D3 is a collection of b points in the 2-sphere †DX1\X2\X3.

In [15], it was proved that every surface S admits a .bI c/-bridge trisection for some .bI c/. We choose
orientations so that @.Xi ;Di/D .Hi ; Ti/[ .H iC1; T iC1/. When we wish to be succinct, we use T to
represent a bridge trisection, with components labeled as above.

2.2 Diagrams for bridge trisections

The existence of bridge trisections gives rise to a new diagrammatic theory for surfaces in S4, using an
object called a triplane diagram, a triple D D .D1;D2;D3/ of trivial planar diagrams with the additional
condition that each Di [DiC1 is a classical diagram for an unlink. In [15], it was shown that every
triplane diagram determines a bridge trisection T. Conversely, given a bridge trisection T of .S4;S/,
we can choose a triple of disks Ei �Hi with common boundary and project the tangles Ti onto Ei to
obtain a triplane diagram. Of course, the choices of disks and projections are not unique, but any two
triplane diagrams corresponding the same bridge trisection T are related by a finite collection of interior
Reidemeister moves and mutual braid transpositions, while any two bridge trisections T and T0 for the
same surface S are related by perturbation and deperturbation moves.

In addition, bridge trisections yield another type of diagram: each trivial tangle Ti can be isotoped
rel-boundary into the surface †, yielding a triple .A;B;C / of pairwise disjoint collections of arcs called
a shadow diagram, which has the property that @AD @B D @C , and the pairwise unions of any two of
the tangles TA, TB , and TC determined by the arcs are unlinks. As with triplane diagrams, any shadow
diagram determines a bridge trisection. Further details about shadow diagrams can be found in [14].

Here we consider special types of shadow diagrams. We say that a pair of collections of arcs in a shadow
diagram is standard if their union is embedded. Any bridge trisection admits a shadow diagram .A;B;C /

in which one of the pairs is standard. If two or three pairs of shadows in a shadow diagram .A;B;C / are
standard, then we say that .A;B;C / is doubly standard or triply standard, respectively. Theorem 3.3
says that doubly standard (and thus triply standard) diagrams always describe unknotted surfaces.

Algebraic & Geometric Topology, Volume 25 (2025)
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PC P�

Figure 1: Triplane diagrams for PC and P�.

2.3 Unknotted surfaces

In this subsection, we review standard notions of unknottedness for surfaces in S4. A closed connected
orientable surface S in S4 is unknotted if it bounds an embedded 3-dimensional handlebody H �S4. For
nonorientable surfaces, the definition is slightly more involved. We define the two unknotted projective
planes, P˙, to be the two standard projective planes in S4, pictured via their triplane diagrams in Figure 1,
where e.P˙/D˙2.

In general, for a nonorientable surface S, we say that S is unknotted if S is isotopic to a connected sum
of some number of copies of PC and P�. See [9, Remark 2.6] for a detailed discussion of the orientation
conventions used here.

3 Seifert solids

Classical results of Gluck [6] (resp. Gordon–Litherland [8]) assert that every orientable surface S (resp.
surface S with e.S/D 0) in S4 bounds an embedded 3-manifold, called a Seifert solid in the orientable
case. In the setting of broken surface diagrams, Carter and Saito provided a procedure that in many respects
mimics Seifert’s algorithm for classical knots [2]. In this section, we describe an extension of Seifert’s
algorithm that takes an oriented triplane diagram D and produces a Seifert solid whose intersection
with @Xi agrees with the classical Seifert algorithm performed on the oriented unlink diagram Di [DiC1.
We also obtain alternative proofs of the theorems of Gluck and Gordon–Litherland mentioned above.

3.1 Existence of Seifert solids

Given a spanning surface F for an unlink U , we define the cap-off F of F to be the closed surface
F � S4 obtained by gluing a collection of trivial disks in B4

� to F along U . (There is a unique such
choice of disks up to isotopy rel-boundary in B4

� by eg [10] or [12].) Let FC � S3 denote the Möbius
band bounded by the unknot so that FC contains a positive half-twist and has boundary slope C2, and
let F� � S3 denote the Möbius band bounded by the unknot with a negative half-twist and boundary
slope �2. For n > 0, let Fn be the connected surface obtained by attaching n� 1 trivial bands to the
split union of n copies of FC; that is, Fn is obtained by taking the boundary connected sum of n copies
of FC. For n< 0, let Fn be obtain by taking the boundary connected sum of .�n/ copies of F�. Finally,
let F0 be the disk bounded by the unknot in S3. Additionally, let Fn be the cap-off of Fn. In Figure 1,
the negative Möbius band is shown to cap off into B4

C to obtain PC; see also [9, Figure 2]. Here, we
are capping off into B4

�, so that by definition the cap-off F�1 of the negative Möbius band F� is P�. In

Algebraic & Geometric Topology, Volume 25 (2025)
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contrast, the cap-off F1 of the positive Möbius band FC is PC. (Recall that PC and P� denote the two
unknotted projective planes in S4; see Section 2.3.) It follows that

Fn D

8<:
a connected sum of n copies of PC if n> 0;

a connected sum of �n copies of P� if n< 0;

an unknotted 2-sphere if nD 0:

The intent of the cap-off notation is to emphasize the way in which Fn can be obtained from a specific
surface in S3, which will be useful in the rest of this section — especially given the following lemma:

Lemma 3.1 Every incompressible spanning surface F for the unknot is isotopic to Fn for some n 2 Z.

Proof First, we argue that Fn is incompressible for all n. This follows from [20], but we include a proof
here. Certainly, F0 and F˙1 are incompressible, since a compression increases Euler characteristic by
two. Suppose now that Fn is compressible for some n> 1, and let F 0n be the component of the surface
obtained by compressing Fn so that @F 0n D @Fn. In addition, let F 0n � S4 be the cap-off of F 0n. Then the
embedded surface Fn can be obtained from F 0n by a 1-handle attachment, and thus e.F 0n/D e.Fn/D 2n.
However, since the nonorientable genus of F 0n is strictly less than n, this contradicts the Whitney–Massey
theorem (see discussion in [9]). We conclude that Fn is incompressible.

On the other hand, suppose that F is an arbitrary incompressible spanning surface for the unknot U . The
exterior of U is a solid torus V , and every simple closed curve c � @V is homotopic to a .p; q/-curve,
where a .0; 1/-curve is the boundary of a meridian disk of V and a .1; 0/-curve is the boundary of
a meridian disk of N.U /. The boundary of F is a .2k; 1/-curve for some integer k. (The spanning
surface F intersects the disk bounded by U in some number of arcs, the endpoints of which correspond
to the intersections of the .p; q/-curve with the .0; 1/-curve.) If F is orientable, then it is well-known
that F is isotopic to the meridian disk F0.

Suppose that F is nonorientable. By [20, Corollary 12], the nonorientable genus of F is equal to jkj.
Assuming that @F and @F0 meet efficiently, isotope F so that it intersects F0 minimally. By standard
cut-and-paste arguments, an arc of F \F0 which is outermost in F0 gives rise to a boundary-compressing
disk � for F . Since @F and @F0 meet efficiently, the result F 0 of boundary-compressing F along � has
a single boundary component and nonorientable genus k � 1. Reversing the process, we see that F can
be obtained from F 0 by attaching a boundary-parallel band to F 0 along opposite sides of @F 0. Note that
@V n @F 0 is an annulus and the band is determined by a spanning arc. Working rel-boundary, all choices
of spanning arcs are related by Dehn twists about @F 0, and so it follows that up to isotopy, there is a
unique band taking F 0 to F .

Finally, we claim that F is isotopic to Fk , and we prove this fact by inducting on k. If k D˙1, then F

has genus one and is obtained from the disk F 0DF0 by a single boundary tubing. By the above argument,
there is precisely one way to do this, and thus F D F˙1. Now suppose that k > 1 and the claim holds for
j D k�1. As above, isotope F to meet F0 minimally, and since k > 1, there are at least two arcs a0 and
a1 of F \F0 that are outermost in F0. Let ` be a .0; 1/-curve that meets @F in a single point contained
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in a0. Then a1 gives rise to a boundary-compressing disk �1 and the result F 0 of boundary-compressing
F along �1 also satisfies j@F 0\ `j D 1, since the modification was carried out away from the arc a0. We
conclude that F 0 has genus k � 1 and boundary slope .2.k � 1/; 1/. By induction F 0 D Fk�1, and since
there is a unique way to obtain F from F 0 by boundary-tubing, it follows that F D Fk . The case k <�1

follows symmetrically.

In the next proposition, we use Lemma 3.1 to understand the cap-off of any spanning surface F for an
unlink in S3:

Proposition 3.2 Let F be a spanning surface for an unlink U in S3.

(1) If every component of @F has slope 0, then the cap-off F bounds a (possibly nonorientable ,
possibly disconnected ) handlebody V � B4 such that V \ @B4 D F .

(2) The normal Euler number e.F/ is equal to the sum of the slopes of the boundary components of F .

(3) The cap-off F is a split union of unknotted surfaces in S4.

Proof Suppose F and F 0 are two spanning surfaces for an unlink U in S3 such that F 0 is isotopic
relative to U to the surface obtained by surgering F along a compressing disk D for F . Then there is a
compression body C � S3 � Œ0; 1� such that

� C \ .S3 � f1g/D F � f1g,

� C \ .S3 � f0g/D F 0 � f0g, and

� @C D .F � f1g/[ .F 0 � f0g/[ .U � Œ0; 1�/,

and C has a single critical point (of index 1) with respect to the Morse function S3� Œ0; 1�! Œ0; 1�, which
we assume lies in S3 �

˚
1
2

	
. Note that C is a product cobordism above and below S3 �

˚
1
2

	
.

Any spanning surface F for U can be reduced to F 0, a union of 2-spheres and incompressible spanning
surfaces for components of U via a sequence of compressions and isotopies. If each component of @F
has slope 0, then F 0 is a collection of disks and spheres. Applying the compression body construction
described above for each compression taking F to F 0 and stacking the results, we get a compression
body C cobounded by F and F 0. Since F 0 is a collection of disks and spheres, there is a handlebody with
boundary F D F [D, where D D F 0 [ .U � Œ0; 1�/ is a collection of properly embedded disks in B4:
simply cap-off the sphere components of C with 3-balls whose interiors are pushed sufficiently deep
into B4. This handlebody is nonorientable (resp. disconnected) if and only if F is. This establishes (1).

Let F be any spanning surface for an unlink U D
Fn

iD1 Ui . Let B D
Fn

iD1 Bi be a collection of disjoint
3-balls with Ui � Int.Bi/. Let F 0D

Fn
iD1 Fi be a split union of incompressible spanning surfaces for the

components of U , with Fi � Int.Bi/, so that the slopes of F and F 0 agree at each component of U . Let F 00

be the result of surgering F 0 along a collection of arcs so that F 00 and F have the same homeomorphism
type relative to U ; moreover, assume that every arc of the collection intersects each component of @B
in at most one point. It follows that F 00 decomposes as a split union of connected sums of surfaces, each
summand of which is either a torus or an incompressible spanning surface for an unknot. Therefore, the
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cap-off F 00 is the split union of connected sums of surfaces, each summand of which is an unknotted
surface in S4. Livingston showed that F and F 00 are isotopic rel-boundary in B4 [12]. It follows that
the cap-off F will isotopic to the cap-off F 00, which completes the proof of (3). Since (2) holds for F1

and F�1, and since the normal Euler number is additive under connected sum, (2) follows, as well.

Recall that a shadow diagram is doubly standard if two of the pairings of arcs yield embedded curves.
We can use Proposition 3.2 to obtain the following classification result for doubly standard diagrams:

Theorem 3.3 If S has a doubly standard shadow diagram , then S is unknotted.

Note that Theorem 3.3 also applies to surfaces with triply standard shadow diagrams, as a special class of
doubly standard shadow diagrams.

Proof Suppose S has a shadow diagram .A;B;C / such that the pairings .A;B/ and .B;C / are standard.
Consider the standard Heegaard splitting @X3 D S3 DHC[† H�, and let †˙ be a parallel copy of †
pushed slightly into H˙. Note that A[B may have nested components (so that components of A[B

don’t necessarily bound a collection of disjoint disks). After a sequence of arc slides, however, performed
only on the arcs in A, we obtain arcs A0 such that the embedded curves A0[B bound a pairwise disjoint
collection of disks. We perform a similar procedure with B [C to obtain B [C 0. Now embed parallel
copies A0C[BC of the curves A0[B in †C so that they bound a pairwise disjoint collection DC of disks
in †C, and embed parallel copies B�[C 0� of the curves B [C 0 in †� so that they bound a pairwise
disjoint collection D� of disks in †�. In HC, there is an isotopy of BC to B �† taking the disks DC

to disks D1 � HC such that D1 \† D B. The tangle T1 D S \ .HC/ is the image of A0C under this
isotopy. Similarly, in H� there is an isotopy of B� to B taking the disks D� to disks D2 �H� such that
D2\†D B. The tangle T3 D S \H� is the image of C 0� under this isotopy. See Figure 2.

By construction D1\D2 D B, so that F DD1[D2 is a spanning surface for the unlink T1[ T3. Note
further that D1 is a trivial disk system for T1[B, and D2 is a trivial disk system for B [ T3; hence, S is

Figure 2: Left: a doubly standard shadow diagram .A;B;C /; the pairings .A;B/ and .B;C /
are standard. Middle: disks in †C and †� bounded by parallel copies of A[B and B [ C ,
respectively. Right: a spanning surface F for T1[ T2 in @X3 D S3.
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the union of D1, D2, and D3, where D3 is a trivial disk system for T1[ T3 pushed into B4. However,
since F DD1[D2 � S3, it follows that S is also isotopic to the cap-off F of F , which is unknotted by
Proposition 3.2.

We are now ready to prove our main result:

Theorem 3.4 If S is connected and e.S/D 0, then there is a procedure to produce a Seifert solid for S
that takes as input a triplane diagram for S.

Proof The proof follows from the proofs of Propositions 3.5 and 3.6 below.

In Section 3.2, we show that there is a procedure to produce a Heegaard splitting for the Seifert solid
when S is a 2-knot.

In addition to providing the proof of the above theorem, the next two propositions provide alternative
proofs of the results in [6; 8] mentioned above.

Proposition 3.5 Every orientable surface-link S bounds a Seifert solid in S4.

Proof Let D be a triplane diagram for S, with induced orientation on the bridge points x. Perform
mutual braid transpositions so that the bridge points alternate sign (orientation). Then there are b pairwise
disjoint arcs " contained in the equator e connecting bridge points of opposite signs, so that Di [ " is an
oriented link diagram. Let Fi be the Seifert surface obtained by performing Seifert’s procedure on the
diagram Di [ ", and let yFi D Fi [F iC1 be the spanning surface obtained by gluing Fi to F iC1 along ".
By Proposition 3.2, there exists a handlebody Vi �Xi such that @Vi D

yFi[Di and Vi\@Xi D
yFi . Finally,

Y D V1 [ V2 [ V3 is an embedded 3-manifold whose boundary is D1 [D2 [D3 D S , and so Y is a
Seifert solid for S.

Proposition 3.6 If S is connected and e.S/D 0, then S bounds a spanning solid in S4.

Proof Consider a bridge trisection T of S, with Ui D @Di and � D T1[T2[T3. By taking, for example,
a triplane diagram D and compatible checkerboard surfaces in Di , we can produce spanning surfaces yFi

for Ui such that yFi\HiD
yFi�1\Hi . Let Fi denote yFi\Hi . For each component J of UiD@ yFi , let � yF .J /

denote the induced boundary slope on the curve J by the surface yFi . Then by Proposition 3.2, we haveX
J�U1[U2[U3

� yF .J /D 0:

Choose a triple of spanning surfaces yFi such that
P
j� yF .J /j is minimal over all possible choices. We

claim that
P
j� yF .J /j D 0. If not, then there exist boundary curves JC and J� such that � yF .JC/ > 0 and

� yF .J�/ < 0. Noting that the surface S contains all curves J �Ui � � , push each curve J �Ui slightly off
of � into the corresponding disk component of Di , so that the collection of curves J is embedded in S and
disjoint from � . Choose a path  � S from JC to J�, avoiding the bridge points, noting that j \ � j> 0.
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At each point of  \� , modify the corresponding component of Fi by taking the boundary connected sum
of Fi with a trivial Möbius band to obtain new surfaces yF 0i and F 0i , so that the corresponding boundary
curves satisfy � yF 0.J

0
C/D � yF .JC/�2, � yF 0.J

0
�/D � yF .J�/C2, and � yF 0.J

0/D � yF .J / for all other curves J 0.
It follows that

P
j� yF 0.J

0/j<
P
j� yF .J /j, contradicting our assumption of minimality. (Note that � yF .J /

is always even, since it represents the number of intersection points between the boundary curves of
spanning surfaces; see the proof of Lemma 3.1.)

We conclude that � yF .J / D 0 for all curves J , and thus by Proposition 3.2, each spanning surface yFi

cobounds a (possibly) nonorientable handlebody Vi �Xi with the disks Di . It follows that V1[V2[V3

is a spanning solid for S in S4.

3.2 Procedure to find a Heegaard diagram for a Seifert solid

In this subsection, we describe a procedure for finding a Heegaard diagram for the Seifert solid coming
from a bridge trisection T of a 2-knot S. We use labels consistent with those appearing above in the proof
of Proposition 3.5. The process is illustrated in Figures 3–6.

Step 1 Given a triplane diagram D for S, perform interior Reidemeister moves and mutual braid
transpositions so that the induced Seifert surfaces satisfy the following conditions:

(a) Each of F1, F2, and yF1 is a collection of disks.

(b) Surfaces yF2 and yF3 are connected.

(c) g. yF2/D g.F3/.

See Figure 3. Note that attaining condition (a) is possible since any triplane diagram can be converted to
one in which two of the tangles have no crossings. Condition (b) can be attained by performing interior
Reidemeister moves on the diagram D3. Attaining condition (c) is possible since we can arrange so
that F2 is a collection of b bridge disks, in which case yF2 deformation retracts onto F3 (although in
general, we need not assume that F2 has b components, as shown below).

Step 2 Following the proof of Proposition 3.2, the surfaces yF2 and yF3 compress completely to disks
in S3. Let ˛ be a complete collection of pairwise disjoint compressing curves in yF3, and let ˇ be a
complete collection of pairwise disjoint compressing curves in yF2. See Figure 4 (top row).

Step 3 If necessary, slide the curves ˇ over the components of @D2 to obtain a collection of curves
ˇ0 � F3. Note that since g.F3/D g. yF2/, as curves in F2 D

yF2[D2, the collection ˇ can be isotoped to
be contained in F3, and any isotopy of a curve over a disk component of D2 can be realized as a slide
over @D2. Thus, such a sequence of slides exists. See Figure 4 (middle row).

Step 4 Let P D D1 [D2, so that P is a planar surface with c3 boundary components, let Q be the
surface obtained by gluing P to yF3 along their boundaries, and let ˛� be a choice of c3 � 1 boundary
components of P and some minimal number of curves in ˛ such that ˛� forms a cut system for Q.
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F1 F2 F3

Figure 3: To perform the Seifert solid procedure on a triplane diagram, we first perform mutual
braid transposition until the tangle diagrams in V1 and V2 have no crossings. Then we perform
the usual Seifert’s procedure for knot diagrams to obtain surfaces F1, F2, and F3 that agree in the
bridge sphere †, with F1, F2, and yF1 all collections of disks and g. yF2/D g.F3/.

Step 5 Let ˇ� be the union of ˇ0 and a collection of curves in Q obtained by the following instructions:
For each component of J of @D1, suppose that J meets d disk components of F2. Choose d �1 of these
components, isotope them off of F2 in F2 D F2[F3[D2, and add these d � 1 curves to ˇ�. Discard
any superfluous curves of ˇ0 so that ˇ� is a cut system for Q.

Proposition 3.7 Using the procedure described above , S bounds a punctured copy of the 3-manifold
determined by the Heegaard diagram .QI˛�; ˇ�/.

Proof Suppose that D is a triplane diagram satisfying conditions (a), (b), and (c) given in Step 1 above.
Following the proofs of Propositions 3.2 and 3.5, for each i , the surface yFi [Di bounds a handlebody Vi ,
where V1 is a collection of 3-balls, say B1; : : : ;Bn, and V2 and V3 are connected. Moreover, ˛ contains a
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˛ ˇ

˛0 ˇ0

Š

Figure 4: Top: we find complete sets of compressing curves ˛ and ˇ for yF3 and yF2, respectively.
Middle: we slide ˛ and ˇ (with slides indicated in top row) over @ yF3 and @ yF2 to obtain curve
systems ˛0 and ˇ0 that are each completely within F3. Bottom: We obtain ˛� (red and purple
curves) by adding boundary curves as in Step (4) of Section 3.2. We obtain ˇ� by adding arcs
as in Step (5). Then .QI˛�; ˇ�/ is a Heegaard diagram for a (closure of a) Seifert solid for the
2-knot described by the initial triplane diagram.

cut system for V3 and ˇ contains a cut system for V2. Since ˇ0 is homotopic to ˇ in @V2, it follows that ˇ0

also contains a cut system for V2. Thus, the Seifert solid bounded by S is equal to V2[V3[B1[� � �[Bn.
Let Y be the closed 3-manifold obtained by capping off the boundary S of this Seifert solid with an
abstract 3-ball B0. We will show that .QI˛�; ˇ�/ is a Heegaard diagram for Y .
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yF3
yF2

Figure 5: We start performing the Seifert solid procedure (Section 3.2) on the triplane diagram in
the top row.

To this end, consider W D V3[B0 and W 0D V2[B1[� � �[Bn. Considering that @V2DF2[F3[D2

and @.B1[ � � � [Bn/D F1[F2[D1, we have that

@W 0 D F3[F1[D2[D1 D
yF3[P DQ:

Additionally, the 3-balls Bi are attached to V2 along F2, which is a collection of disks by condition (a). It
follows that the curves ˇ0[ @F2 bound compressing disks in W 0 cutting W 0 into a collection of 3-balls,
so W 0 is a handlebody. In addition, choosing all but one curve of @F2 for each component Bi and a
subset of ˇ0 as in Step 5 above yields a cut system ˇ� for W 0.

Turning our attention to W , we have @V3D
yF3[D3 and @B0DD1[D2[D3, so @W D yF3[D1[D2DQ,

and in addition, the curves ˛ and @D3 bound disks cutting W into 3-balls. Choosing ˛� to contain all but
one curve of @D3 and a subset of ˛ as in Step 4, the curves in ˛� bound disks cutting W into a single 3-ball,
so ˛� is a cut system for W . We conclude that .QI˛�; ˇ�/ is a Heegaard diagram for Y , as desired.

Remark 3.8 It may be the case that the surface F3 compresses in H3, in which case ˛ and ˇ could
have one or more curves in F3 in common. Following the procedure with such ˛ and ˇ produces one or
more extra S1 �S2 summands for the 3-manifold Y , and a simpler Seifert solid can be obtained by first
compressing F3 maximally in H3.
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˛0 ˇ0

Š

Figure 6: Left: the curves ˛0 in F3. Center left: the curves ˇ0 in F2. Center right: we add some
boundary curves of F2 to ˛ to obtain ˛� and some arc to ˇ0 to obtain ˇ�. Right: we simplify the
resulting Heegaard diagram .†I˛�; ˇ�/ to see that it is a diagram of S3. Thus, the initial 2-knot
bounds a copy of B3 in S4, so is unknotted.

Remark 3.9 The procedure above can be generalized: We can relax conditions (a), (b), and (c) from
Step 1; the only assumption necessary to ensure that V1[V2 is a handlebody is that their intersection F2

is a collection of disks. However, the weaker conditions make it somewhat more difficult to draw the
diagram, since we are no longer guaranteed the existence of the slides of Step 3 — it may be the case that
ˇ curves necessarily intersect the disks D1 and D2.

Remark 3.10 The observant reader might notice that we call our process the Seifert solid procedure,
rather than algorithm. An algorithm gives an output completely determined from the input, independent
of further choices. A procedure may require additional choices for the output to be determined. In the
procedure we give in this section to find a description of a Seifert solid for a 2-knot, we are forced to
choose compressing circles for surfaces in S3. These circles are generally not unique (and in fact, different
choices can determine different Seifert solids), so we do not refer to this procedure as an algorithm.

3.3 Some examples

In this subsection, we carry out the procedure described above for a couple of specific examples. The first
is the spun trefoil. In Figure 3, we see a triplane diagram for the spun trefoil coming from [15], followed
by the result of performing triplane moves so that the induced Seifert surfaces Fi satisfy conditions (a), (b),
and (c) from Step 1 above.

In the top row of Figure 4, we find the compressing curves ˛ on yF3 and ˇ on yF2. Note that in this case D3

contains two disks, so that P D D1[D2 is an annulus, and QD yF3[P can be obtained by identifying
the two boundary components of yF3. Under this identification, the identified boundary components
constitute the third curve in the cut system ˛�. In the second row at left, we slide the two curves of ˛
over the third curve of ˛� in Q. In the second row at right, we slide the two curves of ˇ over a boundary
component as shown to get the curves ˇ0 � F3 (which are identical to the image of ˛ under the slides
described above). Finally, the third curve of ˇ� consists of the teal arc depicted in F3 and a spanning arc
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in the annulus A, or equivalently, we can identify the endpoints of the teal arc. In the lower row, we see
the diagram for the Seifert solid, the standard (once-stabilized) Heegaard diagram for #2

.S1 �S2/.

Remark 3.11 These diagrams and arguments easily generalize to produce the Seifert solid #p�1
.S1�S2/

for the spun .p; 2/-torus knot. Miyazaki proved that the degree of the Alexander polynomial (over
QŒt; t�1�) is a lower bound for the second Betti number of any Seifert solid [17]. Since the degree of the
Alexander polynomial of T .2;p/ is p� 1, these solids are minimal in the sense that the corresponding
2-knots cannot bound any 3-manifold with a smaller second Betti number, eg fewer S1 �S2 summands.

For the second example, we find a Seifert solid for the 1-twist spun trefoil (which is unknotted by [23]). In
Figure 5, we include a simplified triplane diagram for the 1-twist spun trefoil along with the surfaces yF2

and yF3 this diagram generates.

Next, we find the compressing curves ˛ for yF3 and ˇ for yF2. As in the spun trefoil example above,
P DD1[D2 is an annulus, so we view Q as being obtained by identifying the two boundary components
of yF3, with this identified boundary the third curve in ˛�. Figure 6 shows the curves ˛, ˇ, and the union
of the sets in Q, yielding the standard diagram for S3, in which the third curve of ˇ� appears as a teal arc
with boundary points identified (as above). Note that the existence of the curves ˛ and ˇ is guaranteed by
Proposition 3.2; in practice, however, these curves are found using ad hoc methods.

4 Spinal Seifert solids

A natural aspect of the study of Seifert surfaces for links in the 3-sphere is the consideration of their
exteriors. We call a Seifert surface F for L canonical if it is isotopic to a surface obtained by applying
Seifert’s procedure to a diagram for L. We call a Seifert surface F free if its exterior S3 n �.F / is a
3-dimensional handlebody — equivalently, has free fundamental group. It is an easy exercise to see that a
canonical Seifert surface is free, provided that it is connected; so every link admits a free Seifert surface,
by the application of Seifert’s algorithm to a nonsplit diagram. However, such a surface can be far from
minimal genus. M Kobayashi and T Kobayashi showed that the difference between the genus of a knot
and the minimal genus of a free Seifert surface for the knot can be arbitrarily large, and that moreover
the difference between the minimal genus of a free Seifert surface for a knot and the minimal genus
of a canonical Seifert surface can also be arbitrarily large [11]. (In fact, they show that both of these
differences can be made arbitrarily large at the same time.)

In this section, we introduce 4-dimensional analogs of the notions of canonical and free Seifert surfaces.
Going forward, let S � S4 be a surface-link admitting a Seifert solid. (This is equivalent to the condition
that S be orientable or have normal Euler number zero.) We call a Seifert solid Y canonical if it is
isotopic to a Seifert solid obtained by the procedure given in Section 3.1 (see Propositions 3.5 and 3.6).
We call a Seifert solid Y spinal if S4 n �.Y / deformation retracts onto a finite 2-complex. Equivalently,
S4 n �.Y / can be built with handles of index at most two.
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Theorem 4.1 If a surface-knot S admits a Seifert solid , then it admits a canonical Seifert solid that
is spinal.

Proof First, note that in the proof of Propositions 3.5 and 3.6, it is possible to arrange that each Seifert
surface Fi is connected: for example, this is assured if each Di [ " is nonsplit. Let Y be a canonical
Seifert solid for S given by Proposition 3.5 or Proposition 3.6 such that the canonical surface Fi D Y \Hi

is connected for each i 2Z3. We make use of the notation of the proof of Proposition 3.5 in what follows.

Recall that Vi D Xi \ Y is a handlebody with @Vi D
yFi [Di . Moreover, Vi is built relative to yFi by

attaching 3-dimensional 2- and 3-handles. It follows that Xi n�.Vi/ can be built with 4-dimensional 0-, 1-,
and 2-handles.

Next, recall that Fi is a canonical Seifert surface for the link Di[", considered in S3DHi[† B3. Since
we have assumed Fi is connected, Fi is free in Hi [† B3. Since "� @Hi , it follows that Hi nFi is also
a 3-dimensional handlebody.

Finally, we can build S4 n �.Y / by taking the Xi n �.Vi/ and gluing them along the Hi n �.Fi/. Since
the three gluings occur along 3-dimensional handlebodies, S4 n �.Y / is obtained from the disjoint union
of the Xi n �.Vi/ by attaching 4-dimensional 1- and 2-handles. Because each of the Xi n �.Vi/ were built
with 4-dimensional handles of index at most two, the same is true for S4 n �.Y /. This shows that Y is
spinal, as desired.

When studying Seifert surfaces, the genus of the surface is the obvious measure of complexity that one
might try to minimize. In contrast, there are many ways one might try to quantify the complexity of a
Seifert solid Y for a surface-knot; indeed, any complexity one might associate to a 3-manifold could be
interesting to consider. Here we content ourselves to give some examples showing that there is at least
one sense in which a simple Seifert solid for a surface-knot can be arbitrarily far from being spinal.

Theorem 4.2 Given any n 2N, there exists a 2-knot K that bounds a Seifert solid Y homeomorphic to
.S1 �S2/ı such that S4 n �.Y / requires at least n 4-dimensional 3-handles.

Proof Let J be an arbitrary knot, and let K DWh0.J # J / be the untwisted Whitehead double of the
connected sum of J with its mirror. Let F be the standard genus one Seifert surface for K, and let 
be the curve on F that is isotopic to J # J . (Alternatively, F is obtained by taking a 0-framed annular
thickening of a curve  isotopic to J # J and plumbing on a Hopf band.)

Let E be the standard ribbon disk for  , so that .B4;E/D .S3;J /ı � I . The surface F can be surgered
along E in the 4-ball to get a slice disk D for K, and the trace of this surgery yields a solid torus V with
@V D F [D.

Let KDD[K D be the 2-knot obtained by doubling D, and let Y DV [F V be the double of V along F .
Then Y is a Seifert solid for K and Y Š .S1 �S2/ı.
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We claim that �1.S
4 n �.Y //Š �1.S

3 n �.J //. First, �1.S
4 n �.Y //Š �1.B

4 nV /, since the former
exterior is the double of the latter exterior along the exterior of F in S3 and �1.S

3 n �.F // surjects onto
�1.B

4 nV / under inclusion. Next, by construction, V is obtained by thickening the slice disk E and
attaching a trivial 3-dimensional 1-handle. It follows that

�1.B
4
n �.V //Š �1.B

4
n �.E//Š �1.S

3
n �.J //;

as desired.

To complete the proof, let n2N be given, and choose J to be any knot with rank.�1.S
3 n�.J ///� nC2

(eg take J to be a connected sum of nC 1 trefoils [21]). The exterior S4 n �.Y / can be built relative to
@.S4 n �.Y // Š .S1 �S2/ # .S1 �S2/ with some number of 4-dimensional 1-, 2-, 3-, and 4-handles.
Since the 1-handles correspond to generators of the fundamental group, at least n are required; the
boundary @.S4 n �.Y // contributes only two to the rank of the fundamental group. Similarly, since we
can obtain another presentation of �1.S

4 n�.Y // with generators corresponding to 3-handles, the number
of 3-handles in this decomposition is at least nC 2.

We note that the construction of K given in the above proof is closely related to an interesting construction
of 2-knots given by Cochran [3].

Next, we observe that many important examples of Seifert solids are, in fact, spinal:

(1) Every ribbon 2-knot bounds a Seifert solid Y that is homeomorphic to
�
#m

.S1 � S2/
�ı for

some m [22]. The manifold Y is obtained by taking a Seifert surface F for some ribbon knot in
an equatorial S3, thickening it, and attaching trivial 2-handles above and below the equator. By attaching
tubes to F (at the cost of increasing m), we can arrange for F to be free. Then Y is spinal.

(2) If K is fibered with fiber Y , then S4 n �.Y /Š Y � I is spinal, since Y is a punctured 3-manifold.

(3) Connected Seifert solids arising from broken surface diagrams via the construction given by Carter
and Saito [2] are spinal. Recall that a connected canonical Seifert surface is free because it deformation
retracts to a graph so that on each edge, there is one local maximum and no local minima with respect
to the radial height function on S3. (Here the vertices of the graph correspond to the disks produced in
Seifert’s procedure while the edges correspond to the half-twisted bands.) This ensures that the exterior
of a canonical surface can be built with 0- and 1-handles. Similarly, a Seifert solid constructed à la [2]
deformation retracts to a 2-complex with one local maximum and no other critical points in the interior
of each 1- and 2-cell. Thus, the exterior of such a Seifert solid can be built with 0-, 1-, and 2-handles.

Finally, we can formulate a question analogous to the 3-dimensional results in [11] in the setting of
surface-knots.

Question 4.3 Define the genus of an orientable surface-knot S in S4 to be the minimal first Betti number
of any Seifert solid bounded by S, and define the spinal genus and canonical genus similarly, using
spinal Seifert solids and canonical Seifert solids , respectively. Do there exist surface-knots for which
these three measures of complexity differ?
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We remark that using techniques as in the proof of Theorem 4.2, one can show that for some of the known
classical knots K whose genus and free genus are sufficiently different (see [18], for example), the spun
knots S.K/ admit low-complexity nonspinal Seifert solids, whereas the obvious spinal and canonical
Seifert solids have greater complexity. However, it is likely to be considerably more difficult to obstruct
the existence of low-complexity spinal or canonical Seifert solids, even for these examples.

5 On standardness of bridge trisections

The goal of this section is to prove Theorem 5.2, which states that a .bI c1; c2; c3/-bridge trisection that
satisfies ci � b � 1 for some i 2 Z3 can be completely decomposed into standard pieces. This proves
Conjecture 4.3 of [15], and the theorem can be viewed as the bridge trisection analog of the main result
in [13], which states that every .gI k1; k2; k3/-trisection with ki � g� 1 for some i is standard in that it
decomposes into genus one summands.

We encourage the reader to recall the notions of perturbation and connected summation for bridge
trisections. The former was first introduced in [15, Section 6], where it was referred to as stabilization,
and the latter can be reviewed in [15, Subsection 2.2]. See also [14, Section 3] for a succinct description
of these concepts.

We call a surface-link an unlink if it is the split union of unknotted surface-knots, though we allow the
topology of each component to vary. For example, one might have a 2-component unlink that is the
split union of an unknotted 2-sphere and an unknotted projective plane. (See [14, Subsection 2.2] and
Section 2.3 above for a brief discussion of unknotted surface-knots.)

Before proving Theorem 5.2 in generality, we recall the case in which ci D b for some i 2 Z3. This was
addressed as [15, Proposition 4.1]. A bridge trisection is called completely decomposable if it is a disjoint
union of perturbations of one-bridge and two-bridge trisections.

Proposition 5.1 [15, Proposition 4.1] Let T be a .bI c1; c2; c3/-bridge trisection with ci D b for some
i 2 Z3. Then T is completely decomposable , and the underlying surface-link is the unlink of minifcig

2-spheres.

Note that if ci D b for some i 2 Z3, then ci�1 D ciC1. Similarly, in what follows we will see that if
ciDb�1 for some i 2Z3, then jci�1�ciC1j�1. We now present and prove the main result of this section:

Theorem 5.2 Let T be a .bI c1; c2; c3/-bridge trisection with ci D b � 1 for some i 2 Z3. Then T is
completely decomposable , and the underlying surface-link is either the unlink of minfcig 2-spheres or
the unlink of minfcig 2-spheres and one projective plane , depending on whether jci�1 � ciC1j D 1 or
ci�1 D ciC1.
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The key ingredient in the proof of the theorem is a pair of results of Bleiler and Scharlemann about planar
surfaces in 3-manifolds [1; 19]. We refer the reader to Section 1 of each of these papers, as we will adopt
the notation of [1, Theorem 1.3; 19, Theorem 1.1] in the proof below.

Proof of Theorem 5.2 We induct on the bridge number b of the bridge trisection. When b D 1 or b D 2,
there is an easy classification of b-bridge trisections [15, Subsection 4.3], which we take as the base case.
Assume the theorem holds when the bridge number is less than b, and let T be a .bI c1; c2; c3/-bridge
trisection. Assume without loss of generality that c3 D b� 1.

Suppose that T1, T2, and T3 are the three tangles comprising the spine of the bridge trisection. Every
b-bridge splitting of a c-component unlink with b > c is a perturbation of the standard c-bridge splitting
of the c-component unlink, which is itself unique up to isotopy [15, Proposition 2.3]. It follows that
there exist collections �1 and �3 of bridge disks for T1 and T3, respectively, such that the shadows
��

1
D �1 \† and ��

3
D �3 \† have the property that ��

1
[��

3
is an embedded collection of b � 2

bigons and a single quadrilateral. Let ˛�
0

denote one of the arcs of ��
1

in the quadrilateral.

Let L D T2 [ T 3, and let b be the band for L that is framed by † and whose core is ˛�
0

. Then the
data .†;L; b/ encodes a banded b-bridge splitting, since the resolution Lb is the unlink L0 D T2[ T 1.
(Here, we think of b as being slightly perturbed to lie in the 3-ball containing T3.) We refer the reader to
Section 3 of [15], especially Lemma 3.3, for more details about banded bridge splittings and how they
arise from bridge trisections.

Assume without loss of generality that c2 D jLj is greater than or equal to c1 D jL
0j. We break the

remainder of the proof into two cases: Either c2 > c1 or c2 D c1. Note that since there is only one
band present, we must have c2 � c1 � 1. The proofs of the two cases are very similar, except that we
apply [19, Theorem 1.1] in the first case and [1, Theorem 1.3] in the second.

Case 1 If c2 D c1 C 1, then b connects distinct components K1 and K2 of L. Let K0 denote the
component of L0 obtained as the resolution .K1[K2/b. We now translate this setup into the notation
of [19, Section 1]. Let N D �.K1[ b[K2/, a genus two handlebody, and let M DS3n�.Ln.K1tK2//.
Let E1 denote the spanning disk bounded by K1. Let P 0 D @�.E1/, a 2-sphere disjoint from K1 tK2

in M . Let Q0 denote a spanning disk bounded by K0 in M . Let P D P 0 nN , and let QDQ0 nN .

It is clear from this setup that P \ @N is a collection of m parallel separating curves Am for some odd
m, since P 0 was disjoint from K1 and K2, but intersects b transversely; see [19, Figure 1]. Similarly,
Q\ @N agrees with the curves Bn, since @Q0 DK0 and Q0 may crash through b in arcs parallel to its
core. Thus, M , N , P , and Q satisfy the hypotheses of [19, Theorem 1.1]. The relevant conclusion is
that A1 and B0 bound embedded disks E and F in M nN that intersect in a single arc; compare with
the proof of [19, Main Theorem].

Translating this conclusion back into the setting of interest, the disk E is properly embedded in S3 n�.b/

and F is a spanning disk for K0. This implies that the pair .B3;T /D .S3;L/ n .�.b/; �.L\ b// is the
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split union of a trivial tangle and an unlink: the strands of the trivial tangle are parallel into pushoffs of E

via the components of F n �.E/, at which point they are parallel into @�.b/ via the pushoffs of E.

The bridge sphere † induces a bridge splitting .B3;T /. By [24, Theorem 2.2], † is either minimal for
.B3;T / or perturbed.1 If the splitting were minimal, we would have b D c2, so T would be completely
decomposable by Proposition 5.1. If the splitting is perturbed, then T is perturbed, since each bridge arc
of T3 that is disjoint from �.b/ is a strand of a 1-bridge splitting of a component of L3 D T3[ T 1. After
deperturbing T, we find that T is completely decomposable, by the inductive hypothesis.

Case 2 If c2 D c1, then b connects a component K of L to itself. Let K0 DKb. We now translate this
setup into the notation of [1, Section 1], abbreviating the discourse where it is overly repetitive of the
previous case. Let M D S3 n�.LnK/, and let N D �.K[b/. Let P 0 be a spanning disk bounded by K

in M , and let Q0 be a spanning disk bounded by K0 in M . Let P D P 0 nN , and let QDQ0 nN .

It is clear from the setup that the hypotheses of [1, Theorem 1.3] are satisfied, so we can conclude that
some A0 and B0 bound embedded disks EP and EQ, respectively, in M nN . Moreover, there is a
properly embedded disk D in M nN , disjoint from EP and EQ, that runs once over one of the handles
of N and is disjoint from the other handle. We can extend EP to a spanning disk F for K; compare with
the proof of [1, Theorem 1.8].

The strands of Kn�.b/ are parallel into pushoffs of D via the components of EP n�.D/, at which point they
are parallel into @�.b/ via the pushoffs of D. It follows that the tangle .B3;T /D .S3;L/n.�.b/; �.b\K//

is the split union of a trivial tangle and an unlink, and † gives rise to a bridge splitting of .B3;T /. As
before, this splitting is either minimal or perturbed. The case that the splitting is perturbed has the same
consequence as in Case 1 above.

If the splitting is minimal, then it is a split union of a 2-bridge splitting of the trivial tangle and a .b�2/-
bridge splitting of an unlink. It follows that the bridge trisection is a split union: TD T0 tT00, where T0

is a .2; 1/-bridge trisection (of a projective plane, necessarily), and T00 is a .b�2I c1�1; c2�1; b�2/-
bridge trisection (of an unlink of 2-spheres, necessarily). The latter is completely decomposable by
Proposition 5.1.

We can also use Theorem 5.2 to understand surface-links with particular banded link presentations, where
a banded link presentation .L; v/ consists of an unlink L� S3 and a collection of bands v such that the
resolution Lv of L along v is also an unlink. Every banded link presentation gives rise to a surface S
in S4, and conversely, every surface-link S in S4 can be presented by a banded link [10].

In [15, Section 3], the authors introduced the notion of banded bridge splitting of .L; v/, a bridge splitting
of L such that the bands v are isotopic into the bridge sphere with the surface framing and are dual to
a collection of bridge disks on one side. They showed that .S4;S/ admits a .bI c/-bridge trisection if

1Although [24, Theorem 2.2], as stated, applies to a closed 3-manifold M and a link K in M , a verbatim proof establishes the
more general case where the 3-manifold M is replaced by a punctured 3-manifold and the link K is a tangle.
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and only if a banded link presentation .L; v/ of S admits a banded b-bridge splitting such that jLj D c1,
jvj D b � c2, and jLvj D c3. As a corollary to Theorem 5.2, we obtain the following, which states, in
essence, that a surface is unknotted if the bands are attached in a relatively simple way to the maxima or
minima disks.

Corollary 5.3 Suppose a surface-link S in S4 is presented by a banded link .L; v/ with a banded
b-bridge splitting such that bD jLjC1 or bD jLvjC1. Then S is an unlink of 2-spheres or an unlink of
2-spheres and an unknotted projective plane.

The corollary exploits a feature of trisection theory called handle triality: If .L; v/ admits a banded bridge
splitting as in the corollary, then it admits a .b; c/-bridge trisection such that c1 D b� 1 or c3 D b� 1.
By the three-fold symmetry of the trisection setup, we can extract a different banded link presentation
with a single band, as in the proof of Theorem 5.2, and now we rely on known results about surface-links
built with a single band to classify S. The result can be interpreted as an analog for knotted surfaces
of [13, Theorem 1.2].
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Random Artin groups

ANTOINE GOLDSBOROUGH

NICOLAS VASKOU

We introduce a new model of random Artin groups. The two variables we consider are the rank of the
Artin groups and the set of permitted coefficients of their defining graphs.

The heart of our model is to control the speed at which we make that set of permitted coefficients grow
relatively to the growth of the rank of the groups, as it turns out different speeds yield very different
results. We describe these speeds by means of (often polynomial) functions. In this model, we show that
for a large range of such functions, a random Artin group satisfies most conjectures about Artin groups
asymptotically almost surely.

Our work also serves as a study of how restrictive the commonly studied families of Artin groups are,
as we compute explicitly the probability that a random Artin group belongs to various families of Artin
groups, such as the classes of 2-dimensional Artin groups, FC-type Artin groups, large-type Artin groups,
and others.

20F36, 20F65, 20F69, 20P05; 20F67

1 Introduction

Artin groups are a family of groups that have drawn an increasing interest in the past few decades. They
are defined as follows. Let � be a defining graph, that is a simplicial graph with vertex set V.�/ and
edge set E.�/, such that every edge eab of � connecting two vertices a and b is given a coefficient
mab 2 f2; 3; : : :g. Then � defines an Artin group:

A� WD hV.�/ j aba � � �„ƒ‚…
mab terms

D bab � � �„ƒ‚…
mab terms

;8eab 2E.�/i:

The cardinality of V.�/, that is the number of standard generators of A� , is called the rank of A� . When
a and b are not connected by an edge we set mab WD1.

One of the main reasons why Artin groups have become of such great interest is because of the amount of
(often easily stated) conjectures and problems about them that are still to be solved. While some of these
conjectures are algebraic (torsion, centres), some others are more geometric (acylindrical hyperbolicity,
CAT(0)-ness), algorithmic (word and conjugacy problems, biautomaticity), or even topological. Although
close to none of these conjectures or problems has been answered in the most general case, there has

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.1523
http://www.ams.org/mathscinet/search/mscdoc.html?code=20F36, 20F65, 20F69, 20P05, 20F67
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1524 Antoine Goldsborough and Nicolas Vaskou

been progress on each of them. A common theme towards proving these conjectures has been to prove
them for smaller families of Artin groups.

The goal of this paper is to consider Artin groups with a probabilistic approach. One might wonder what
a typical Artin group looks like, and hence want to define a notion of randomness for Artin groups. By
computing the different “sizes” of the most commonly studied classes of Artin groups, we give a way to
quantify how restrictive these different classes really are. In light of that, our model provides a novel and
explicit way of quantifying the state of the common knowledge about the aforementioned conjectures and
problems about Artin groups.

Although Artin groups are defined using defining graphs, it is not known in general when two defining
graphs give rise to isomorphic Artin groups. This problem, known as the isomorphism problem, is
actually quite hard to solve even for restrictive classes of Artin groups. With our current knowledge, any
(reachable) theory of randomness for Artin groups must then be based on the randomness of defining
graphs, and not of the Artin groups themselves.

Random right-angled Coxeter (and Artin) groups have been studied by several authors in the literature
(see Behrstock, Hagen and Sisto [1] and Charney and Farber [4]), using the Erdős–Rényi model. While
in [4] the authors fix the probability of apparition of an edge as some constant 0 � p � 1, in [1] this
model is refined: p D p.N/ depends on the rank N of the group. That said, these models restrict to
right-angled groups, where the associated defining graphs are not labelled. In [7], Deibel introduces a
model of randomness for Coxeter groups in general. There are similarities between this model and ours,
although the former revolves more about making the probabilities of apparition of specific coefficients
vary. In particular, this model is not very well suited to provide insights on the “sizes” of the most
commonly studied classes of Coxeter and Artin groups. On the contrary, this is a central goal of our
model.

The two variables that come to mind when thinking about Artin groups are their rank, that is the number
of vertices of the defining graph, as well as the choice of the associated coefficients. A first step in the
theory is to consider what happens if we restrict ourselves to the family GN;M of all the defining graphs
with N vertices and with coefficients in f1; 2; 3; : : : ;M g, for some N � 1 and M � 2. As we want any
possible rank and any possible coefficient to eventually appear in a random Artin group, a convenient way
to think about randomness is to pick a defining graph at random in the family GN;M, and then to make N
and M grow to infinity. Note that isomorphic labelled graphs may be counted multiples times in GN;M.

As it turns out, randomness of defining graphs highly depends on the speed at which N and M grow.
A prime example of this is that the probability for a defining graph of GN;M to give an Artin group of
large-type (meaning that none of the coefficients is 2) tends to 1 when M grows much faster than N ,
and tends to 0 when N grows much faster than M . To solve this problem, we decide to relate N and M
through a function f such that M WD f .N /. This way, we only have to look at the family GN;f .N/ when
N goes to infinity.
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If AF is a family of Artin groups coming from a family of defining graphs F, a way of measuring the
“size” of AF is to compute the limit

lim
N!1

#.F\GN;f .N//

#.GN;f .N//
:

Of course, this ratio depends on the choice we make for the function f . When the above limit is 1, that is
when the probability that a graph picked at random in GN;f .N/ will give an Artin group that belongs to
the said family AF tends to 1, we say that a random Artin group (with respect to f ) is asymptotically
almost surely in AF.

One may wonder why our model only considers graphs of rank N , and not all graphs with rank at
most N . As it turns out, the size of the set of all graphs with at most N vertices (and coefficients in
f1; 2; : : : ; f .N /g) is asymptotically the same as the size of GN;f .N/, in the sense that the quotient of
the two values tends to 1 when N approaches1. Thus asymptotically it is not an actual restriction to
only consider graphs with precisely N vertices.

Now, there are families AF of Artin groups for which the above limit tends to 1 no matter what (sensible)
choice we make for the function f . We say that such a family is uniformly large (resp. uniformly small if
that limit is always 0). Our first result concern such families of Artin groups:

Theorem 1.1 The family of irreducible Artin groups and the family of Artin groups with connected
defining graphs are uniformly large. On the other hand , the family of Artin groups of type FC is uniformly
small. In particular , the same applies to the families of RAAGs and triangle-free Artin groups.

As mentioned earlier, there are numerous families of Artin groups whose “size” depends on the choice
of function f . When f is large enough, which means that the choice of possible coefficients for the
defining graphs grows fast enough compared to the rank of the Artin group, we obtain much stronger
results. This is made explicit in the next two theorems.

For two nondecreasing divergent functions f; g WN!N we say that f 4 g if the limit

lim
N!1

f .N /

g.N /

exists and is finite. If f 4 g and f < g then we will write f ' g. Finally if f 4 g but f 6' g then we
will write f � g, and similarly for f � g.

Theorem 1.2 Let AF be any family of Artin groups defined by forbidding a finite number of coefficients
from their defining graphs , and consider a function f W N ! N. Let � be a graph picked at random
in GN;f .N/.

(1) If f .N /�N 2, then A� asymptotically almost surely belongs to AF.

(2) If f .N /�N 2, then A� asymptotically almost surely does not belong to AF.

(3) If f .N /'N 2, then the probability that A� belongs to AF is strictly between 0 and 1.
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Note that the previous theorem applies to the families of large-type, extra-large-type, or large-type and
free-of-infinity Artin groups. There are strong results in the literature about these families of Artin groups,
as most of the famous conjectures and problems about Artin groups have been solved for at least one of
them (see Section 2).

While these different families of Artin groups have the same threshold at f .N /' N 2 no matter how
many coefficients we forbid, the class of 2-dimensional Artin groups turns out to be substantially bigger.
Studying this class, we obtain the following result:

Theorem 1.3 Consider a nondecreasing divergent function f W N ! N. Let � be a graph picked at
random in GN;f .N/.

(1) If f .N /�N 3=2, then A� asymptotically almost surely is 2-dimensional.

(2) If f .N /�N 3=2, then A� asymptotically almost surely is not 2-dimensional.

A consequence of the two previous theorems is that we are able, when f grows fast enough, to show that
a random Artin group asymptotically almost surely satisfies most of the main conjectures about Artin
groups:

Theorem 1.4 Let f W N ! N be such that f .N / � N 3=2, and let � be a graph picked at random in
GN;f .N/. Then asymptotically almost surely, the following properties hold :

(1) A� is torsion-free;

(2) A� has trivial centre;

(3) A� has solvable word and conjugacy problem;

(4) A� satisfies the K.�; 1/-conjecture;

(5) the set of parabolic subgroups of A� is closed under (arbitrary) intersections;

(6) A� is acylindrically hyperbolic;

(7) A� satisfies the Tits alternative;

(8) A� is not virtually cocompactly cubulated.

Moreover , if f .N /�N 2 then asymptotically almost surely the following properties also hold :

(1) A� is CAT (0);

(2) A� is hierarchically hyperbolic;

(3) A� is systolic and thus biautomatic;

(4) A� is rigid ;

(5) Aut.A�/Š A� Ì Out.A�/, where Out.A�/Š Aut.�/� .Z=2Z/ is finite.
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N

f .N/

� is not a cone

N 1�˛

� acylindrically hyperbolic
� trivial center

2-dimensional Artin groups

N 3=2

� acylindrically hyperbolic
� trivial centre
� solvable conjugacy problem
� K.�; 1/-conjecture holds
� parabolic subgroups stable

under intersections
� Tits alternative holds
� not virtually cocompactly cubulated

large, XL, XXL, free-of-1, . . .

N 2

� CAT(0)
� hierarchically hyperbolic
� systolic
� rigid
� finite Out.A�/

Figure 1: The axis represents various (polynomial) functions f . Above the main axis are
described the classes of Artin groups that we obtain asymptotically almost surely with respect to f ,
while under this axis we list the properties that we know these groups will satisfy asymptotically
almost surely.

At last, we also prove interesting results for families of Artin groups in which the number M of permitted
coefficients grows “slowly enough” compared to the rank N . We focus on the class of Artin groups A�
whose associated graphs � are not cones, and we prove that for most (nondecreasing divergent) functions,
the probability that a random Artin group is acylindrically hyperbolic and has trivial centre tends to 1.

Theorem 1.5 Let ˛ 2 .0; 1/ and let f W N ! N be a nondecreasing divergent function satisfying
f .N /�N 1�˛ . Let now � be a graph picked at random in GN;f .N/. Then the associated Artin group A�
is acylindrically hyperbolic and has trivial centre asymptotically almost surely.

The results of the above theorems for polynomial functions is encapsulated in Figure 1.

The previous results shows that we are very close to being able to state that “almost all Artin groups
are acylindrically hyperbolic and have trivial centres”. It is conjectured that all irreducible nonspherical
Artin groups are acylindrically hyperbolic; see Charney and Morris-Wright [5]. Although proving this
conjecture for all Artin groups seems to be a difficult problem, some progress has been made in recent
years; see Kato and Oguni [13] and Vaskou [17]. It would seem to be an interesting line of research to try
to expand the spectrum of families of Artin groups for which one can prove acylindrical hyperbolicity, in
order to “fill in” the gap of functions at which a random Artin group is acylindrically hyperbolic. This
leads to the following question.
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Question 1.6 Construct a family AF of acylindrically hyperbolic Artin groups or of Artin groups with
trivial centres for which the following holds:

There exists an ˛ 2 .0; 1/ such that for all functions f W N ! N satisfying N 1�˛ 4 f .N / 4 N 3=2, a
graph � picked at random in GN;f .N/ is such that A� asymptotically almost surely belongs to AF.
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2 Preliminaries and first results

In this section we bring more details about some of the notions discussed in the introduction. This includes
discussions about most of the commonly studied classes of Artin groups, as well as discussions regarding
open conjectures related to Artin groups.

Throughout this paper, we will often call a triangle in a graph � any subgraph of � that is generated by 3
vertices. This notion will be convenient, although one must note that with this definition, triangles may
have strictly fewer than 3 edges, as subgraphs of � .

Most of the main conjectures about Artin groups are still open in general. That said, many of them have
been proved for smaller families of Artin groups. Two important of these families are the families of
2-dimensional Artin groups and the family of Artin groups of type FC. These two families have been
extensively studied following the work of Charney and Davis [3]. The other well-studied families are
usually subfamilies of these.

Before coming to these definitions, we first recall what a parabolic subgroup of an Artin group is. Let A�
be any Artin group, and let � 0 be a full subgraph of � . A standard result about Artin groups states that
the subgroup of A� generated by the vertices of � 0 is also an Artin group, that is isomorphic to A� 0 [14].
Such a subgroup is called a standard parabolic subgroup of A� . The conjugates of these subgroups are
called the parabolic subgroups of A� .

Definition 2.1 (0) An Artin group A� is said to be spherical if the associated Coxeter group W� is
finite.
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(1) An Artin group A� is said to be 2-dimensional if for every triplet of distinct standard generators
a; b; c 2 V.�/, the subgraph � 0 spanned by a, b and c corresponds to an Artin group A� 0 that is not
spherical. By a result of [3], this is equivalent to requiring that

1

mab
C

1

mac
C

1

mbc
� 1:

We let D be the set of graphs � such that the above condition is satisfied. We let AD be the set of
2-dimensional Artin groups. The family of 2-dimensional Artin groups contains the well-studied families
of large-type Artin groups (every coefficient is at least 3), extra-large-type Artin groups (every coefficient
is at least 4), or XXL Artin groups (every coefficient is at least 5).

(2) An Artin group A� is said to be of type FC if every complete subgraph � 0 � � generates an Artin
group A� 0 that is spherical. Let FC be the set of graphs � that give rise to an Artin group of type FC and
let AFC be the set of Artin groups of type FC.

The family of Artin groups of type FC contains the family of right-angled Artin groups, also called RAAGs
(the only permitted coefficients are 2 and1), the family of spherical Artin groups, and the family of
triangle-free Artin groups (the Artin groups whose associated graphs don’t contain any 3-cycles). Being
triangle-free is actually equivalent to being both of type FC and 2-dimensional.

We now move towards the main conjectures related to Artin groups. For each conjecture, we will briefly
describe the state of the common research towards proving it, by mentioning the one or two result(s) that
will turn out to be the more “probabilistically relevant” in our model — in other words, the results that
cover the largest classes.

Conjecture 2.2 Let A� be any Artin group. Then:

(1) A� is torsion-free.
,! This was proved for 2-dimensional Artin groups [3].

(2) If A� is irreducible and nonspherical, then A� has trivial centre.
,! This was proved for 2-dimensional Artin groups [17], and for Artin groups whose graph is not

the cone of a single vertex [5].

(3) A� has solvable word and conjugacy problems.
,! This was proved for 2-dimensional Artin groups [11].

(4) A� satisfies the K.�; 1/-conjecture.
,! This was proved for 2-dimensional Artin groups [3].

(5) Intersections of parabolic subgroups of A� give parabolic subgroups of A� .
,! This was proved for large-type Artin groups [6] and more generally for .2; 2/-free 2-dimensional

Artin groups [2].

(6) A� is CAT(0).
,! This was proved for XXL Artin groups [9].
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(7) If A� is irreducible and nonspherical, then A� is acylindrically hyperbolic.
,! This was proved for 2-dimensional Artin groups [17], and for Artin groups whose graph is not

the cone of a single vertex [13].

(8) A� is hierarchically hyperbolic.
,! This was proved for extra-large-type Artin groups [10].

(9) A� is systolic and biautomatic.
,! This was proved for large-type Artin groups [12].

(10) A� satisfies the Tits alternative.
,! This was proved for 2-dimensional Artin groups [15].

In addition to these conjectures, the following questions have been raised:

Question 2.3 Let A� be any Artin group.

(1) When is A� not virtually cocompactly cubulated?
,! This was proved to be the case when A� is 2-dimensional and satisfies the condition of [8,

Conjecture B].

(2) When is Out.A�/ finite?
,! This was proved to be the case for large-type free-of-infinity Artin groups [18].

(3) When is A� rigid, in the sense of [16]?
,! This was proved to be the case for large-type Artin groups that have no separating edges [16,

Theorem B]. This includes the class of large-type free-of-infinity Artin groups.

Definition 2.4 Let F be a family of defining graphs and let AF be the corresponding class of Artin
groups. Let f WN!N be a nondecreasing divergent function. We say that a random Artin group (with
respect to f ) A� belongs to AF with probability

Pf ŒA� 2 AF� WD lim
N!1

P Œ� 2 F j � 2 GN;f .N/�D lim
N!1

#.F\GN;f .N//

#.GN;f .N//
;

when the limit exists. Furthermore, we say that a random Artin group A� (with respect to f ) is
asymptotically almost surely in AF if Pf ŒA� 2 AF� D 1. Similarly, we say that A� is asymptotically
almost surely not in AF if Pf ŒA� 2 AF�D 0.

Definition 2.5 Let AF be a family of Artin groups. Then we say that AF is uniformly large if for
every nondecreasing divergent function f W N ! N, a random Artin group A� (with respect to f ) is
asymptotically almost surely in AF. We say that F is uniformly small if A� is asymptotically almost
surely not in AF.

We now move towards our first results. The first thing we will prove is that the family of irreducible
Artin groups and the family of Artin groups with connected defining graphs are uniformly large. This is
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important as many results regarding Artin groups assume that the corresponding groups are irreducible
and/or have a connected defining graph. Our work shows that these two hypotheses are very much not
restrictive.

Definition 2.6 Let �1 and �2 be two defining graphs. The graph �1 �k �2 is the graph obtained by
attaching every vertex of �1 to every vertex of �2 by an edge with label k (with k 2 f1; 2; 3; : : :g).

Let now � be any defining graph. Then � is called a k-join relative to �1 and �2 if there are two
subgraphs �1; �2 � � such that V.�1/tV.�2/D V.�/ and such that � D �1 �k �2.

We will denote by AJk the class of Artin groups whose defining graphs decompose as k-joins.

Remark 2.7 (1) If � 2 J2 then A� decomposes as a direct product A�1 �A�2 in an obvious way. In
that case, � is called reducible. The class JC2 of irreducible defining graphs will be denoted by Irr.

(2) If � 2 J1 then it is disconnected. The class JC1 of connected defining graphs will be denoted
by Con.

Lemma 2.8 For all k 2 f1; 2; 3; : : :g, the family AJk is uniformly small. In particular , the classes AIrr

and ACon of Artin groups are both uniformly large.

Proof We will count the number of decompositions of the graph � as � D �1 �k �2. Without loss
of generality, we will let �1 denote the subgraph with the lower rank, so that jV.�1/j � bN=2c. Let
f WN!N be a nondecreasing divergent function and consider the family Jk . For a given N � 1,

P Œ� 2Jk j� 2GN;f .N/�DP
�
9�1; �2 with jV.�1/j �N=2 such that �D�1 �k �2 j� 2GN;f .N/

�
�

bN=2cX
jD1

P
�
9�1; �2 with jV.�1/jD j such that �D�1 �k �2 j� 2GN;f .N/

�

D

bN=2cX
jD1

�
N

j

��
1

f .N /

�j.N�j /

�

bN=2cX
jD1

�
Ne

jf .N /N=2

�j
�

Ne

f .N /N=2
�

�
1� .Ne=f .N /N=2/N=2C1

1�Ne=f .N /N=2

�
where we used the bound �N

j

�
�

�
Ne

j

�j
:

Now limN!1Ne=f .N /N=2 D 0 for any nondecreasing divergent function f , so we obtain

Pf ŒA� 2 AJk �D lim
N!1

P Œ� 2 Jk j � 2 GN;f .N/�D 0 �
�
1�0

1�0

�
D 0:

This proves the main statement of the lemma. The second then directly follows from Remark 2.7.

Our next result concerns the class of Artin groups of type FC.
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Lemma 2.9 The family AFC of Artin groups of type FC is uniformly small. In particular , the family
of triangle-free Artin groups , the family of spherical Artin groups and the family of RAAGs are also
uniformly small.

Proof Let f be any nondecreasing divergent function, and let � 2 GN;f .N/. We want to bound the
probability that � belongs to FC\GN;f .N/. Let a, b and c be three vertices of � . The probability that any
of the three corresponding coefficients mab , mac and mbc is not 2 or1 is precisely .f .N /� 2/=f .N /,
and hence the probability that the three coefficients are not 2 nor1 is ..f .N /� 2/=f .N //3. Note that
when this happens, the subgraph � 0 � � spanned by a, b and c is complete but generates an Artin group
A� 0 which is nonspherical (the sum of the inverses of the three corresponding coefficients is � 1). In
particular, � is not of type FC. We obtain

Pf ŒA� … AFC�D lim
N!1

#.GN;f .N/nFC/

#.GN;f .N//
� lim
N!1

�
f .N /� 2

f .N /

�3
D lim
N!1

�
1�

2

f .N /

�3
D 1:

As mentioned in the introduction, there are interesting classes of Artin groups for which the probability
that a graph taken at random will belong to the class highly depends on the choice of function f . Some
examples are given through the following theorem.

Theorem 2.10 Let F be any family of graphs defined by forbidding a finite number k of coefficients and
let AF be the family of corresponding Artin groups. Consider a function f WN!N. Let A� be a random
Artin group (with respect to f ).

(1) If f .N /�N 2, then A� asymptotically almost surely belongs to AF.

(2) If f .N /�N 2, then A� asymptotically almost surely does not belong to AF.

(3) If f .N /'N 2 then asymptotically we have Pf ŒA� 2AF� 2 .0; 1/. Moreover , if f .N /D �N 2 for
some � > 0, then Pf ŒA� 2 AF�D e

�k=2�.

Proof A graph with N vertices has 1
2
N.N � 1/ pairs of vertices, each of which is given one of f .N /

possible coefficients. Hence, direct computations on the possible number of graphs give

#GN;f .N/ D .f .N //
N.N�1/

2 :

Similarly, we have
#.F\GN;f .N//D .f .N /� k/

N.N�1/
2 :

And thus we obtain

Pf ŒA� 2 AF�D lim
N!1

#.F\GN;f .N//

#.GN;f .N//
D lim
N!1

�
f .N /� k

f .N /

�N.N�1/
2

D lim
N!1

�
f .N /� k

f .N /

�f .N/�N.N�1/
2f.N/

�
:
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Observe that

lim
N!1

�
f .N /� k

f .N /

�f .N/
D e�k :

In particular, for any � > 0 there is a big enough N� such that for all N �N� we have

e�k � � �

�
f .N /� k

f .N /

�f .N/
� e�kC �:

Hence for N �N�,

.e�k � �/r.N/ �

�
f .N /� k

f .N /

�f .N/�N.N�1/
2f.N/

�
� .e�kC �/r.N/;

where r.N /DN.N � 1/=.2f .N //.

Therefore, if f .N / �N 2, there is a function h with limN!1 h.N /D1 such that f .N /D h.N /N 2,
and hence r.N /D .N � 1/=.2Nh.N // which tends to 0 as N !C1. Thus, in this case

Pf ŒA� 2 A_F�D lim
N!1

�
f .N /� k

f .N /

�f .N/r.N/
D 1:

If f .N /�N 2, there exists a function h with limN!1 h.N /D1 such that f .N /h.N /DN 2, and here
r.N /D .N � 1/h.N /=.2N / which tends to1 as N !1, so in this case

Pf ŒA� 2 A_F�D lim
N!1

�
f .N /� k

f .N /

�f .N/r.N/
D 0:

If f .N /'N 2, then limN!1 f .N /=N 2 is a nonzero constant and hence limN!1 r.N /DM for some
constant M > 0. Thus in this case,

Pf ŒA� 2 A_F�D e�kM :

Finally, if f .N /D �N 2, we obtain r.N /! 1=.2�/DWM and the result follows.

The previous theorem has many consequences, as it can be applied to the families of large-type, extra-
large-type, XXL or free-of-infinity Artin groups, for which much is known. Before stating an explicit
result in Corollary 2.12, we prove the following small lemma:

Lemma 2.11 Let A_F and A_H be two families of Artin groups , let f W N ! N be a nondecreasing
divergent function , and suppose that Pf ŒA� 2 A_H�D 1. Then

Pf ŒA� 2 A_F�D Pf ŒA� 2 A_F\A_H�:

Proof This is straightforward:

Pf ŒA� 2 A_F�D Pf ŒA� 2 A_F\A_H�CPf ŒA� 2 A_F[A_H�„ ƒ‚ …
D1

�Pf ŒA� 2 A_H�„ ƒ‚ …
D1

D Pf ŒA� 2 A_F\A_H�:
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Corollary 2.12 Let f WN!N be a function satisfying f .N / �N 2. Then a random Artin group A�
(with respect to f ) satisfies any of the following properties asymptotically almost surely:

(1) A� is CAT (0);

(2) A� is hierarchically hyperbolic;

(3) A� is systolic and biautomatic;

(4) A� is rigid ;

(5) Aut.A�/Š A� Ì Out.A�/, where Out.A�/Š Aut.�/� .Z=2Z/ is finite.

Proof Let AK be the class of XXL free-of-infinity Artin groups, and let AL WD AIrr\ACon\AK. Using
Lemmas 2.8 and 2.11 we can see that Pf ŒA� 2 AL� D Pf ŒA� 2 AK�. The class AK has been defined
as forbidding 4 coefficients from the defining graph; hence by Theorem 2.10 a random Artin group A�
(with respect to f ) is asymptotically almost surely in AK and therefore asymptotically almost surely
in AL. The various results given in Conjecture 2.2 concern families of Artin groups that all contain the
family AL. In particular, every Artin group in AL satisfies the ten points of Conjecture 2.2. The results
given in items (6), (8) and (9) of Conjecture 2.2 are precisely those needed for items (1), (2) and (3) of
Corollary 2.12. Similarly, every Artin group in AK is rigid, as per item (3) of Question 2.3. This proves
point (4) of Corollary 2.12. For item (5), this follows from [18, Theorem A] which shows that this result
holds for large-type free-of-infinity Artin groups, and in particular for Artin groups in the family AK.

Remark 2.13 The previous corollary proves the five points in the second half of Theorem 1.4. Note that
at this point, we could already prove the eight points in the first half of Theorem 1.4 for f .N /�N 2. We
did not include this proof as it will be extended to all functions f .N /�N 3=2 in the following section.

3 Two-dimensional Artin groups

This section aims at studying from our probabilistic point of view the family of 2-dimensional Artin
groups. This family is particularly important in the study of Artin groups, and many authors in the
literature have obtained strong results for this class (see Conjecture 2.2).

Our goal will be to show that if f .N /�N 3=2 then asymptotically almost surely a random Artin group
(with respect to f ) will be 2-dimensional and if f .N / � N 3=2 then asymptotically almost surely a
random Artin group (with respect to f ) will not be 2-dimensional. In particular, we will be able to
improve the result of Corollary 2.12, thus proving Theorem 1.4.

The condition of being 2-dimensional (see Definition 2.1(1)) is quite specific, which makes it hard to
compute the “size” of the family. As it turns out, the size of this family is comparable to the size of
another family of Artin groups, which is slightly easier to compute (see Lemma 3.2 and Theorem 3.3).
This other family resembles the family introduced in [2]. We introduce it here:
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Definition 3.1 We say an Artin group A� is .2; 2/-free if � does not have any two adjacent edges
labelled by 2. We denote by B the set of graphs that do not have two adjacent edges labelled by 2. We
define AB to be the family of .2; 2/-free Artin groups.

Recall that in Definition 2.1(1), we have defined the set of graphs D and the set of Artin groups AD. The
following lemma is a key result. It will allow us to restrict to the study of .2; 2/-free Artin groups, as
asymptotically this family has the same size as the family AD.

Lemma 3.2 For all nondecreasing divergent functions f WN!N,

� Pf ŒA� 2 AD�� Pf ŒA� 2 AB�;

� further , if f .N /�N , then Pf ŒA� 2AD�D Pf ŒA� 2 AB�.

Proof The probability that a random Artin group A� gives rise to a 2-dimensional Artin group can be
found by conditioning on the event “� 2B”:

(�) P Œ� 2 D j � 2 GN;f .N/�D P
�
� 2 D j .� 2B/\ .� 2 GN;f .N//

�
P
�
� 2B j � 2 GN;f .N/

�
CP

�
� 2 D j .� …B/\ .� 2 GN;f .N//

�
P
�
� …B j � 2 GN;f .N/

�
:

Note that once we have two adjacent edges e1 and e2 labelled by 2, then the probability that the triangle
spanned by fe1; e2g generates an Artin groups of spherical type is exactly the probability that the last
edge is not labelled by1. This probability is .f .N /� 1/=f .N /; hence we have

P
�
� 2 D j .� …B/\ .� 2 GN;f .N//

�
� 1�

f .N /� 1

f .N /
D

1

f .N /
:

Whence we get the following upper bound for (�), for any nondecreasing function f :

P Œ� 2 D j � 2 GN;f .N/�� P Œ� 2B j � 2 GN;f .N/�CP Œ� …B j � 2 GN;f .N/� �
1

f .N /
:

By noting that for any nondecreasing divergent function f we have that 1=f .N /! 0, we get

Pf ŒA� 2 AD�D lim
N!1

P Œ� 2 D j � 2 GN;f .N/�� lim
N!1

P Œ� 2B j � 2 GN;f .N/�D Pf ŒA� 2 AB�:

We now deal with the lower bound. The probability that a given triangle � is of spherical type is the
quotient

(��)
# ways that � can be spherical

# possible coefficients on �
:

In general, the only triangles that give spherical Artin groups are of the form .2; 3; 3/, .2; 3; 4/, .2; 3; 5/,
and .2; 2; k/ for k � 2. In our case, it is given that A� is .2; 2/-free, so the only triangles which are of
spherical type are of the form .2; 3; 3/, .2; 3; 4/ or .2; 3; 5/. When considering the possible permutations
of the order of the coefficients, this gives 15 possibilities. This yields the numerator of (��).

In order to find an upper bound for (��), it remains to find a lower bound for the denominator. In a graph
� that we know is .2; 2/-free, a triangle whose edges are all labelled by coefficients other than 2 will
always be a possible combination of coefficients for a triangle � of � . Hence the number of possible
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coefficients for a triangle � of a .2; 2/-free graph is at least .f .N /� 1/3. This yields

(���)
# ways that � can be spherical

# possible coefficients on �
�

15

.f .N /� 1/3
:

Hence, by an union bound we get

P
�
� …D j .� 2B/\.� 2GN;f .N//

�
�

X
� triangle in �

P
�
� is of spherical type j .� 2B/\.� 2GN;f .N//

�
�

�
N

3

�
15

.f .N /�1/3
:

Therefore, by (�) we get

(����) P Œ� 2 D j � 2 GN;f .N/��

�
1�

�
N

3

�
15

.f .N /� 1/3

�
P Œ� 2B j � 2 GN;f .N/�:

Hence, if f .N /�N , we have

lim
N!1

��
N

3

�
15

.f .N /� 1/3

�
D 0:

This means that

Pf ŒA� 2 AD�D lim
N!1

P Œ� 2 D j � 2 GN;f .N/�

� lim
N!1

P Œ� 2B j � 2 GN;f .N/� (by (����))

D Pf ŒA� 2 AB�:

We now move towards determining for which (nondecreasing divergent) functions a random Artin group
is asymptotically almost surely 2-dimensional, or not 2-dimensional. In view of Lemma 3.2, looking at
.2; 2/-free Artin groups will be enough to give a conclusion for 2-dimensional Artin groups. The result
we want to prove is the following:

Theorem 3.3 Let f WN!N; then , for a random Artin group A� (with respect to f ):

(1) If f .N /�N 3=2, then asymptotically almost surely A� is 2-dimensional.

(2) If f .N /�N 3=2, then asymptotically almost surely A� is not 2-dimensional.

(3) If f .N /'N 3=2 then Pf ŒA� 2 AD� < 1. Moreover , if f .N /DN 3=2 then Pf ŒA� 2 AD�� 2=3.

Proof Let f be any nondecreasing, divergent function. We need to compute Pf ŒA� 2 AD�. In view of
Lemma 3.2, it is enough to compute Pf ŒA� 2 AB�, ie the probability that an Artin group A� picked at
random is .2; 2/-free. To do this, we will use the second moment method.

Let us consider a graph � 2 GN;f .N/. For any ordered triplet .v1; v2; v3/ of distinct vertices of � , we
let I.v1;v2;v3/ W G

N;f .N/! f0; 1g be the random variable which takes 1 on � 2 GN;f .N/ precisely when
.v1; v2; v3/ spans a triangle with mv1;v2 Dmv1;v3 D 2. We let

X D

� X
.v1;v2;v3/2V.�/3

I.v1;v2;v3/

�
W GN;f .N/!N;
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where the sum is taken over all triplets of distinct vertices. The variable X counts the number of pairs of
adjacent edges labelled by a 2, twice (because of the permutation of these edges).

We can compute the expectation EŒI.v1;v2;v3/�D f .N /
�2 and hence

EŒX�D
X

.v1;v2;v3/

EŒI.v1;v2;v3/�DN.N � 1/.N � 2/f .N /
�2
�N 3f .N /�2:

Now, we use the second moment method, as in [4, Theorem 6]:

P ŒX ¤ 0��
EŒX�2

EŒX2�
:

We have already computed EŒX�, so we now compute EŒX2� by dividing into several cases the sum

X2 D
X

I.v1;v2;v3/I.w1;w2;w3/:

Note that the sum is taken over all ordered triplets .v1; v2; v3/ and .w1; w2; w3/ of vertices, where the vi
are distinct, and the wi are distinct. Also note that if one of the two triangles does not have two edges
labelled by 2, then the corresponding term in the sum is trivial. In other words, it is enough to only sum
over pairs of triangles that both have at least two edges labelled by 2. In a triangle .v1; v2; v3/ such that
mv1v2 Dmv1v3 D 2, we shall call v1 the central vertex of the triangle. The different cases are treated
below. They can be seen in Figure 2.

Case 1 Let X1 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that no vertex appears in both
triples. Then

EŒX1�D
NŠ

.N � 6/Š
f .N /�4 �N 6f .N /�4:

Case 2 Let X2 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex and the vertex they share is central in both triangles (ie v1 D w1). Then we have

EŒX2�D
NŠ

.N � 5/Š
f .N /�4 �N 5f .N /�4:

Case 3 Let X3 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex, where this vertex is the central vertex for one triangle and not a central vertex for the
other triangle (for example v2 D w1). In this case

EŒX3�D 4
N Š

.N � 5/Š
f .N /�4 � 4N 5f .N /�4:

Case 4 Let X4 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly one vertex, where this vertex is not central for either triangle (for example v2 D w2). Then

EŒX4�D 4
N Š

.N � 5/Š
f .N /�4 � 4N 5f .N /�4:
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v1

v2 v3

2 2

w1

w2 w3

2 2
v1

v2

v3

w2

w3

2 2

2 2

v1

v2

v3

w2

w3

2 2

2

v1

v2

v3

w1

w3

2

2 2

2 v1

v2

v3

w1

2 2

2 2

v1

v2

v3

w2

2 2

2

v1

v2

w1

w2

2

2

2

v1

v2

v3

w1

2 2

2

2

v1 D w1

v2 v3

2 2

v1 D w2

v2 v3

2 2

2

Figure 2: From top-left to bottom-right: the ten cases described in the proof of Theorem 3.3. The
edges that are not explicitly labelled by 2 can be labelled by any coefficient, including1.

Case 5 Let X5 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices and these two vertices are not central for either triangle (for example v2 D w2 and
v3 D w3). In this case

EŒX5�D 2
N Š

.N � 4/Š
f .N /�4 � 2N 4f .N /�4:

Case 6 Let X6 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices and one of these is central in both triangles and the other is not (for example v1Dw1
and v3 D w2). In this case

EŒX6�D 4
N Š

.N � 4/Š
f .N /�3 � 4N 4f .N /�3:

Case 7 Let X7 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices where one of these is central for the triangle .v1; v2; v3/ but not for .w1; w2; w3/,
and the other vertex is central for the triangle .w1; w2; w3/ but not for .v1; v2; v3/ (for example v1 Dw3
and w1 D v3). In this case

EŒX7�D 4
N Š

.N � 4/Š
f .N /�3 � 4N 4f .N /�3:

Case 8 Let X8 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
exactly two vertices where one of these is central for the triangle .v1; v2; v3/ but none of the two vertices
is central for .w1; w2; w3/ (for example v1 D w2 and v3 D w3). In this case

EŒX8�D 4
N Š

.N � 4/Š
f .N /�4 � 4N 4f .N /�4:
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Case 9 Let X9 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share all
three vertices, and such the central vertices of both triangles are the same (ie v1 D w1). In this case

EŒX9�D 2
N Š

.N � 3/Š
f .N /�2 � 2N 3f .N /�2:

Case 10 Let X10 denote the sum of products I.v1;v2;v3/I.w1;w2;w3/ such that these two triangles share
all three vertices, and such that the central vertex of the first triangle is not the central vertex of the second
triangle (for example v1 D w2). We get

EŒX10�D 4
N Š

.N � 3/Š
f .N /�3 � 2N 3f .N /�3:

Therefore, we have

EŒX2�

EŒX�2
D

8X
iD1

EŒXi �

EŒX�2

�
N 6f .N /�4C9N 5f .N /�4C6N 4f .N /�4C8N 4f .N /�3C2N 3f .N /�3C2N 3f .N /�2

N 6f .N /�4

� 1C
9

N
C

6

N 2
C
8f .N /

N 2
C
2f .N /

N 3
C
2f .N /2

N 3
:

Hence, if f .N /�N 3=2 then by definition there exists a nondecreasing divergent function h such that
f .N /h.N /DN 3=2. In this case we get

P ŒX ¤ 0��

�
EŒX2�

EŒX�2

��1
�

�
1C

9

N
C

6

N 2
C

8

h.N /N 1=2
C

4

h.N /N 3=2
C

2

h.N /2

��1
:

When f .N /�N 3=2, we obtain

Pf ŒA� 2 AB�D lim
N!1

P Œ� 2B j � 2 GN;f .N/�D lim
N!1

P ŒX D 0�D 1� lim
N!1

P ŒX ¤ 0�D 0:

Thus asymptotically almost surely A� is not .2; 2/-free. In view of Lemma 3.2, this also means that
asymptotically almost surely A� is not of dimension 2, this proves item (2) in Theorem 3.3.

If f .N /'N 3=2 then the quotient f .N /=N 3=2 tends to M for some constant M >0. Hence in this case,

P ŒX ¤ 0�&
�
1C

9

N
C

6

N 2
C
8f .N /

N 2
C
2f .N /

N 3
C
2f .N /2

N 3

��1
� .1C 2M 2/�1 > 0:

Therefore Pf ŒA� 2 AB� < 1 at f .N /'N 3=2 and hence by Lemma 3.2 we have that Pf ŒA� 2 AD� < 1.

We note that the above calculation allows us to find a better upper bound for Pf ŒA� 2AB� at f .N /DN 3=2.
Indeed, this implies that M D 1 and hence we get P ŒX ¤ 0� & 1

3
, and so at f .N / D N 3=2 we have

Pf ŒA� 2 AB��
2
3

. Hence by Lemma 3.2, this proves item (3) in the theorem.

We note that P Œ� 2B j � 2 GN;f .N/�D 1�P ŒX � 1� and by the Markov inequality,

P ŒX � 1�� EŒX��N 3f .N /�2:
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Hence if f .N /�N 3=2 then we can write f .N /DN 3=2g.N / for some nondecreasing divergent function
g WN!N and in this case

P ŒX � 1��
1

g.N /2
:

Therefore, for f .N /�N 3=2 we have

Pf ŒA� 2 AB�D lim
N!1

P Œ� 2B j GN;f .N/�D 1� lim
N!1

P ŒX � 1�� 1� lim
N!1

1

g.N /2
D 1:

In particular, asymptotically almost surely A� is .2; 2/-free. By applying Lemma 3.2 (as f .N /�N ), we
get that asymptotically almost surely A� is 2-dimensional. This proves item (1) and hence Theorem 3.3.

Before stating a corollary which will be a refinement of Corollary 2.12, we prove a small lemma which
will allow us to study the problem of (virtual) cocompact cubulation of random Artin groups. We note
that the class P defined below is point 3 in [8, Conjecture B].

Lemma 3.4 Let P be the class of defining graphs � for which there exist 4 distinct a; b; c; d 2 V.�/
such that mab … f2;1g; mac ; mbd ¤1 and mad ; mbc ¤ 2. Then AP is uniformly large.

Proof Let f WN!N be any nondecreasing, divergent function. Fix a, b, c and d to be any distinct
vertices. The probability that these vertices and their corresponding coefficients satisfy the defining
condition of P is at exactly �

f .N /� 1

f .N /

�4�f .N /� 2
f .N /

�
:

This tends to 1 for all nondecreasing divergent functions f .

Corollary 3.5 Let f WN!N be a function satisfying f .N /�N 3=2. Then a random Artin group A�
(with respect to f ) satisfies any of the following properties asymptotically almost surely:

(1) A� is torsion-free;

(2) A� has trivial centre;

(3) A� has solvable word and conjugacy problems;

(4) A� satisfies the K.�; 1/-conjecture;

(5) the set of parabolic subgroups of A� is closed under arbitrary intersections;

(6) A� is acylindrically hyperbolic;

(7) A� satisfies the Tits alternative;

(8) A� is not virtually cocompactly cubulated.

Proof By Theorem 3.3, A� is asymptotically almost surely 2-dimensional. Using Lemma 3.2, A� is
also asymptotically almost surely .2; 2/-free. Using Lemma 2.8, we also know that A� is asymptotically
almost surely irreducible. By Lemma 3.4 we know that A� is asymptotically almost surely in AP. Using
Lemma 2.11 three times, this ensures that A� is asymptotically almost surely in the class

AK WD AIrr\AD\AB\AP:
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Note that the results given for points (1), (2), (3), (4), (5), (7) and (10) of Conjecture 2.2 concern families
of Artin groups that all contain AK. In particular, every Artin group of AK satisfies the first seven points
of the Corollary 3.5. For point (8) of Corollary 3.5, we note that by [8, Theorem E], if A� 2 AD\AP

then A� is not virtually cocompactly cubulated.

Finding out the exact probability for an Artin group to be 2-dimensional (or equivalently, .2; 2/-free) at
f .N /DN 3=2 requires more work. In Theorem 3.3, we gave an upper bound for this probability. The
goal of the following lemma is to give an explicit formula for the value of Pf ŒA� 2AB� at f .N /DN 3=2.
Later, we give a conjecture on the exact value.

Lemma 3.6 For all nondecreasing , divergent functions f WN!N we have that

Pf ŒA� 2 AB�D lim
N!1

�
f .N /� 1

f .N /

�.N2 /�bN=2cX
kD1

NŠ.f .N /� 1/�k

.N � 2k/Š kŠ 2k
C 1

�
:

Proof Let Ek be the family of defining graphs that have exactly k edges labelled by a 2, and consider
the associated family AEk of Artin groups. Note that each edge is attached to two vertices, so by the
pigeonhole principle, if k > N=2 then Pf Œ� 2B\Ek�D 0. Hence

P Œ� 2B j � 2 GN;f .N/�D

bN=2cX
kD0

P Œ� 2B\Ek j � 2 GN;f .N/�:

As usual, the total number of graphs in GN;f .N/ is f .N /.
N
2 /. On the other hand, we must compute how

many of these graphs have exactly k edges labelled by a 2, while these edges are never adjacent.

First of all, when k D 0, we have P Œ� 2B\Ek j � 2 GN;f .N/�D ..f .N /� 1/=f .N //.
N
2 /.

For the case when 0 < k � bN=2c, we look at how many ways we have of placing the k edges labelled by
a 2. For the first such edge, we have

�
N
2

�
choices. The two vertices of the first edge must not appear in any

other edge labelled by a 2, so for the second edge we only have
�
N�2
2

�
choices left. This goes on until the

kth edge labelled by a 2, for which we have
�
N�2.k�1/

2

�
choices. As the order in which we have chosen

these edges do not matter, we must divide this product by kŠ. Now for the remaining
�
N
2

�
� k edges, we

can use any label other than a 2. Hence we multiply the previous product by .f .N /� 1/.
N
2 /�k . Hence,

for 0 < k � bN=2c, we have

P Œ� 2B\Ek j � 2 GN;f .N/�D
.f .N /� 1/.

N
2 /�k �

Qk�1
iD0

�
N�2i
2

�
f .N /.

N
2 / � kŠ

:

Therefore,

Pf ŒA� 2 AB�D lim
N!1

bN=2cX
kD1

P Œ� 2B\Ek j � 2 GN;f .N/�CP Œ� 2B\E0 j � 2 GN;f .N/�

D lim
N!1

bN=2cX
kD1

.f .N /� 1/.
N
2 /�k �

Qk�1
iD0

�
N�2i
2

�
f .N /.

N
2 / � kŠ

C

�
f .N /� 1

f .N /

�.N2 /
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D lim
N!1

�
f .N /� 1

f .N /

�.N2 /�bN=2cX
kD1

NŠ.f .N /� 1/�k

.N � 2k/Š kŠ 2k
C 1

�
;

where we go from the second to the third line by noting that

k�1Y
iD0

�
N � 2i

2

�
D

1

2k
N.N � 1/.N � 2/ � � � .N � 2.k� 1//.N � 2.k� 1/� 1/D

NŠ

.N � 2k/Š2k
:

Now, by Lemma 3.2 at f .N /D N 3=2 we have Pf ŒA� 2 AD�D Pf ŒA� 2 AB�; hence Lemma 3.6 also
holds for Pf ŒA� 2 AD�. We have computed this expression in Python for N up to 190, which leads us to
the following conjecture.

Conjecture 3.7 For f .N /DN 3=2 we have

Pf ŒA� 2 AB �D 1� e
�1:

In particular, we also have
Pf ŒA� 2 AD�D 1� e

�1:

4 Acylindrical hyperbolicity and centres

Two open questions in the study of Artin groups is whether all irreducible nonspherical Artin groups are
acylindrically hyperbolic and have trivial centres (see Conjecture 2.2). In this section, we study these two
aspects of Artin groups for another family of Artin groups, that we will denote ACC . The families of
Artin groups studied in Sections 2 and 3 are very large when f .N / grows fast enough compared to N .
While the spirit of this section resembles that of Sections 2 and 3, ACC will turn out to be very large
when f .N / grows slowly enough compared to N .

Definition 4.1 A graph � is said to be a cone if it has a join decomposition as a subgraph consisting of a
single vertex v0 and a subgraph � 0 such that � D v0 �� 0. Let C be the class of defining graphs that are
cones and CC the class of defining graphs which are not cones.

Recall that Irr is the class of irreducible graphs. By [13, Theorem 1.4], we have that if � has at least 3
vertices, is irreducible and is not a cone then A� is acylindrically hyperbolic. Hence it suffices to find the
probability that a random Artin group is irreducible and is not a cone.

Proposition 4.2 For all ˛ 2 .0; 1/ and all nondecreasing functions f .N /�N 1�˛ we have that

Pf ŒA� 2 ACC �D 1:

Proof Fix ˛ 2 .0; 1/ and f .N /�N 1�˛ a nondecreasing divergent function. Then, by definition, there
exists a nondecreasing divergent function h such that f .N /h.N /DN 1�˛.
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By the definition of a cone and by a union bound, we get

P Œ� 2 C j � 2 GN;f .N/��
X

v02V.�/

P
�
8u 2 V.�/� v0 Wmu;v0 ¤1 j � 2 GN;f .N/

�
D

X
v02V.�/

�
f .N /� 1

f .N /

�N�1

DN

�
f .N /� 1

f .N /

�N�1
DN

��
f .N /� 1

f .N /

�f .N/�h.N/N˛� f .N /

f .N /� 1

�
:

Thus,
Pf ŒA� 2 AC�D lim

N!1
P Œ� 2 C j � 2 GN;f .N/�D lim

N!1
Ne�N

˛h.N/
D 0:

Hence for f .N /�N 1�˛ we have Pf ŒA� 2 ACC �D 1, proving the proposition.

Corollary 4.3 Let ˛ 2 .0; 1/ and let f .N / � N 1�˛ be a nondecreasing divergent function. Then a
random Artin group (with respect to f ) asymptotically almost surely is acylindrically hyperbolic and has
a trivial centre.

Proof We note that by Lemmas 2.8 and 2.11 we have Pf ŒA� 2 AIrr\ACC �D Pf ŒA� 2 ACC �. As we
noted above, by [13, Theorem 1.4], if � is irreducible and not a cone then A� is acylindrically hyperbolic.
Hence, by Proposition 4.2, for a function f as in the statement of the corollary, we get that a random
Artin group (relatively to f ) is asymptotically almost surely irreducible and a cone, hence asymptotically
almost surely acylindrically hyperbolic.

Further, by [5, Theorem 3.3], we have that if � is irreducible and not a cone then A� has trivial centre.
Hence a random Artin group (relatively to f ) asymptotically almost surely has a trivial centre.

Let ˛ 2 .0; 1/, by Corollary 4.3 and Corollary 3.5-(6), we have shown that for all nondecreasing divergent
functions f such that either

� f .N /�N 1�˛, or

� f .N /�N 3=2,

a random Artin group A� (relatively to f ) is asymptotically almost surely acylindrically hyperbolic and
has trivial centre. This motivates the following:

Question 4.4 For which nondecreasing divergent functions f do we have that a random Artin group
(relatively to f ) is asymptotically almost surely acylindrically hyperbolic and has trivial centre?

References
[1] J Behrstock, M F Hagen, A Sisto, Thickness, relative hyperbolicity, and randomness in Coxeter groups,

Algebr. Geom. Topol. 17 (2017) 705–740 MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

https://doi.org/10.2140/agt.2017.17.705
http://msp.org/idx/mr/3623669
http://msp.org/idx/zbl/1435.20051


1544 Antoine Goldsborough and Nicolas Vaskou

[2] M A Blufstein, Parabolic subgroups of two-dimensional Artin groups and systolic-by-function complexes,
Bull. Lond. Math. Soc. 54 (2022) 2338–2350 MR Zbl

[3] R Charney, M W Davis, The K.�; 1/–problem for hyperplane complements associated to infinite reflection
groups, J. Amer. Math. Soc. 8 (1995) 597–627 MR Zbl

[4] R Charney, M Farber, Random groups arising as graph products, Algebr. Geom. Topol. 12 (2012)
979–995 MR Zbl

[5] R Charney, R Morris-Wright, Artin groups of infinite type: trivial centers and acylindrical hyperbolicity,
Proc. Amer. Math. Soc. 147 (2019) 3675–3689 MR Zbl

[6] M Cumplido, A Martin, N Vaskou, Parabolic subgroups of large-type Artin groups, Math. Proc. Cambridge
Philos. Soc. 174 (2023) 393–414 MR Zbl

[7] A Deibel, Random Coxeter groups, Int. J. Algebra Comput. 30 (2020) 1305–1321 MR Zbl

[8] T Haettel, Virtually cocompactly cubulated Artin–Tits groups, Int. Math. Res. Not. 2021 (2021) 2919–2961
MR Zbl

[9] T Haettel, XXL type Artin groups are CAT.0/ and acylindrically hyperbolic, Ann. Inst. Fourier (Grenoble)
72 (2022) 2541–2555 MR Zbl

[10] M Hagen, A Martin, A Sisto, Extra-large type Artin groups are hierarchically hyperbolic, Math. Ann. 388
(2024) 867–938 MR Zbl

[11] J Huang, D Osajda, Metric systolicity and two-dimensional Artin groups, Math. Ann. 374 (2019) 1311–
1352 MR Zbl

[12] J Huang, D Osajda, Large-type Artin groups are systolic, Proc. Lond. Math. Soc. 120 (2020) 95–123 MR
Zbl

[13] M Kato, S-i Oguni, Acylindrical hyperbolicity of Artin groups associated with graphs that are not cones,
Groups Geom. Dyn. 18 (2024) 1291–1316 MR Zbl

[14] H van der Lek, The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit
te Nijmegen (1983) Available at https://repository.ubn.ru.nl/handle/2066/148301

[15] A Martin, The Tits alternative for two-dimensional Artin groups and Wise’s power alternative, J. Algebra
656 (2024) 294–323 MR Zbl

[16] A Martin, N Vaskou, Characterising large-type Artin groups, Bull. Lond. Math. Soc. (online publication
August 2024)

[17] N Vaskou, Acylindrical hyperbolicity for Artin groups of dimension 2, Geom. Dedicata 216 (2022) art. id. 7
MR Zbl

[18] N Vaskou, Automorphisms of large-type free-of-infinity Artin groups, Geom. Dedicata 219 (2025) art. no. 16
MR Zbl

School of Mathematics & Computer Sciences, Heriot-Watt University
Edinburgh, United Kingdom
Department of Mathematics, University of Bristol
Bristol, United Kingdom

ag2017@hw.ac.uk, nicolas.vaskou@bristol.ac.uk

Received: 25 January 2023 Revised: 30 October 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1112/blms.12697
http://msp.org/idx/mr/4549124
http://msp.org/idx/zbl/1523.20061
https://doi.org/10.2307/2152924
https://doi.org/10.2307/2152924
http://msp.org/idx/mr/1303028
http://msp.org/idx/zbl/0833.51006
https://doi.org/10.2140/agt.2012.12.979
http://msp.org/idx/mr/2928902
http://msp.org/idx/zbl/1280.20046
https://doi.org/10.1090/proc/14503
http://msp.org/idx/mr/3993762
http://msp.org/idx/zbl/1483.20068
https://doi.org/10.1017/S0305004122000342
http://msp.org/idx/mr/4545212
http://msp.org/idx/zbl/1516.20074
https://doi.org/10.1142/S0218196720500423
http://msp.org/idx/mr/4155423
http://msp.org/idx/zbl/1530.20119
https://doi.org/10.1093/imrn/rnaa013
http://msp.org/idx/mr/4218342
http://msp.org/idx/zbl/1499.20103
https://doi.org/10.5802/aif.3524
http://msp.org/idx/mr/4500363
http://msp.org/idx/zbl/1511.20128
https://doi.org/10.1007/s00208-022-02523-4
http://msp.org/idx/mr/4693949
http://msp.org/idx/zbl/1536.20049
https://doi.org/10.1007/s00208-019-01823-6
http://msp.org/idx/mr/3985112
http://msp.org/idx/zbl/1512.20136
https://doi.org/10.1112/plms.12284
http://msp.org/idx/mr/3999678
http://msp.org/idx/zbl/1481.20159
https://doi.org/10.4171/ggd/783
http://msp.org/idx/mr/4797629
http://msp.org/idx/zbl/1512.20117
https://repository.ubn.ru.nl/handle/2066/148301
https://doi.org/10.1016/j.jalgebra.2023.08.012
http://msp.org/idx/mr/4759506
http://msp.org/idx/zbl/07877997
https://doi.org/10.1112/blms.13136
https://doi.org/10.1007/s10711-021-00664-5
http://msp.org/idx/mr/4366944
http://msp.org/idx/zbl/1515.20175
https://doi.org/10.1007/s10711-024-00951-x
http://msp.org/idx/mr/4848803
http://msp.org/idx/zbl/07972370
mailto:ag2017@hw.ac.uk
mailto:nicolas.vaskou@bristol.ac.uk
http://msp.org
http://msp.org


msp

Algebraic & Geometric Topology 25:3 (2025) 1545–1560
DOI: 10.2140/agt.2025.25.1545

Published: 20 June 2025

A deformation of Asaeda–Przytycki–Sikora homology

ZHENKUN LI

YI XIE

BOYU ZHANG

We define a 1-parameter family of homology invariants for links in thickened oriented surfaces. It recovers
the homology invariant of Asaeda, Przytycki and Sikora (Algebr. Geom. Topol. 4 (2004) 1177–1210)
and the invariant defined by Winkeler (Michigan Math. J. 74 (2024) 1–31). The new invariant can be
regarded as a deformation of Asaeda–Przytycki–Sikora homology; it is not a Lee-type deformation as the
deformation is only nontrivial when the surface is not simply connected. Our construction is motivated
by computations in singular instanton Floer homology. We also prove a detection property for the new
invariant, which is a stronger result than our previous work (Selecta Math. 29 (2023) art. id. 84).

57K18

1 Introduction

Khovanov homology [9] is a link invariant that assigns a bigraded homology group to every oriented link
in R3. Asaeda, Przytycki and Sikora [1] introduced a generalization of Khovanov homology for links
in .�1; 1/-bundles over surfaces, where the bundles are required to be oriented as 3-manifolds. Such
.�1; 1/-bundles are called thickened surfaces. When the surface is an annulus, Asaeda–Przytycki–Sikora
homology is also called annular Khovanov homology. Khovanov homology and Asaeda–Przytycki–
Sikora homology have been essential tools for the study of knots and links for decades. More recently,
Winkeler [16] introduced another variation of Khovanov homology for links in thickened multipunctured
disks, which is different from the invariant of Asaeda, Przytycki and Sikora.

Suppose † is an oriented surface. We define a 1-parameter family of homology invariants for oriented
links in .�1; 1/�†. As bigraded modules, the new invariant recovers both Asaeda–Przytycki–Sikora
homology and the invariant of Winkeler, and it can be interpreted as a 1-parameter deformation of Asaeda–
Przytycki–Sikora homology. The deformation is not a Lee-type deformation as it is only nontrivial when
the surface has a nontrivial fundamental group. The construction is motivated by computations from
singular instanton Floer homology. We also use instanton Floer theory to prove a detection result for
the deformed Asaeda–Przytycki–Sikora homology, which gives a stronger rank estimate than the main
theorem of Li, Xie and Zhang [12].
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1546 Zhenkun Li, Yi Xie and Boyu Zhang

The paper is organized as follows. Section 2 introduces some notation and conventions. Sections 3 and 4
define the differential map and prove that d2D 0. Section 5 defines the homology invariant and proves the
invariance under Reidemeister moves. Section 6 explains the motivation from instanton Floer homology
and proves the aforementioned detection result in Theorem 6.1.

Acknowledgments Xie is supported by the National Key R&D Program of China 2020YFA0712800
and NSFC 12071005.

2 Notation

Throughout this paper we use R to denote a fixed commutative ring with unit. We use † to denote an
oriented surface, possibly with boundary and possibly noncompact.

For every embedded closed 1-manifold c �†, we assign an R-module V .c/ to c as follows:

(1) If  is a contractible simple closed curve on †, define V . / to be the free R-module generated by
v. /C and v. /�, where v. /C and v. /� are formal generators associated with  .

(2) If  is a noncontractible simple closed curve, let o and o0 be the two orientations of  . Define V . /

to be the free module generated by v. /o and v. /o0 , where v. /o and v. /o0 are formal generators.

(3) In general, suppose the connected components of c are 1; : : : ; k . Define V .c/ to be
Nk

iD1 V .i/.

When the choice of † needs to be emphasized, we will write V .c/ as V †.c/, and write v. /o and v. /˙

as v†. /o and v†. /˙, respectively.

If o is an orientation of a curve  , we use o to denote the corresponding oriented curve.

3 Band surgery homomorphisms

Suppose c is an embedded closed 1-manifold on †, suppose b is an embedded disk on † such that the
interior of b is disjoint from c and the boundary of b intersects c at two arcs (see Figure 1). The surgery
of c along b yields another embedded closed 1-manifold on †, which we denote by cb . We will call the
disk b a band that is attached to c.

the manifold c the band b the manifold cb

Figure 1: Band surgery.

Algebraic & Geometric Topology, Volume 25 (2025)
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For later reference, we record the following two elementary lemmas:

Lemma 3.1 The change from c to cb has three possibilities:

(1) two circle components of c are merged to one circle ,

(2) one circle component of c is split to two circles ,

(3) one circle component of c is modified by the surgery to another circle.

Proof Since @b\ c contains two arcs, at most two components of c are affected by the surgery. If the
arcs of @b\ c are on two different components of c, then the surgery merges these two components into
one circle. If the arcs of @b\ c are on one component of c, then the boundary orientation of b defines an
orientation on both components of @b\ c, so we have two oriented arcs embedded in one component 
of c. If these two arcs induce the same orientation on  , then the surgery splits one component of c to
two circles. If these two arcs induce opposite orientations on  , then the surgery changes this component
to another circle.

Recall that if o is an orientation of a curve  , we use o to denote the corresponding oriented curve.

Lemma 3.2 Suppose  is a simple closed curve on a connected surface †, and assume † is not
diffeomorphic to S2. Suppose o and o0 are the two orientations of  . Then o and o0 are not isotopic on†.

Proof If  is nonseparating, there exists an oriented simple closed curve ˇ such that the algebraic
intersection number of ˇ and  is nonzero. Since isotopies preserve the sign of algebraic intersection
numbers, the desired result follows.

If  is separating and @†¤∅, then every orientation of  defines an ordering of the two components
of †n , which defines an ordered partition of the components of @†. Since every isotopy of  on † can
be extended to an isotopy of † fixing the boundary, the desired result is proved.

If  is separating and † is closed, then every orientation of  defines an ordering of the two components
of †n . Suppose †1 and †2 are the two components of †n ordered by an orientation o of  . Since
† is not a sphere, the images of H1.†1IZ/ and H1.†2IZ/ are distinct in H1.†IZ/. The images of
H1.†1IZ/ and H1.†2IZ/ are invariant under isotopies of o, so the desired result is proved.

Taking an arbitrary element � 2R, we define a homomorphism

T�.b/ W V .c/! V .cb/

associated with the band surgery along b. When the choice of † needs to be emphasized, we will write
T�.b/ as T†

�
.b/.

We first assume that the intersection of @b with every component of c is nonempty. The general case will
be discussed later. By Lemma 3.1, if the intersection of @b with every component of c is nonempty, then
there are three cases:

Algebraic & Geometric Topology, Volume 25 (2025)



1548 Zhenkun Li, Yi Xie and Boyu Zhang

Case 1 (c has two components 1 and 2 and they are merged into one circle  D cb after the surgery)
In this case, we define T�.b/ W V .1/˝V .2/! V . / as follows:

(1) If both 1 and 2 are contractible circles, then  is also contractible, and we define T�.b/ by

v.1/C˝ v.2/C 7! v. /C; v.1/C˝ v.2/� 7! v. /�;

v.1/�˝ v.2/C 7! v. /�; v.1/�˝ v.2/� 7! 0:

(2) If 1 is contractible and 2 is noncontractible, then 2 is isotopic to  . The existence of noncontractible
curves on † implies that † is not diffeomorphic to S2. By Lemma 3.2, the orientations of 2 are
canonically identified with the orientations of  via an isotopy. This identification defines a canonical
isomorphism from V .2/ to V . /, which we denote by �. In this case, the homomorphism T�.b/ is
defined by

v.1/C˝x 7! �.x/; v.1/�˝x 7! 0

for all x 2 V .2/.

(3) If 1 is noncontractible and 2 is contractible, define T�.b/ by requiring the map to be symmetric
with respect to 1 and 2 and reducing to (2) above.

(4) If 1 and 2 are both noncontractible and 3 is contractible, then 1 and 2 must be isotopic. By
Lemma 3.2, the orientations of 1 and 2 are canonically identified by the isotopy. Let o and o0 be the
two orientations of 1, and use the same notation to denote the corresponding orientations of 2. The
map T�.b/ is then defined by

v.1/o˝ v.2/o 7! 0; v.1/o0 ˝ v.2/o0 7! 0;

v.1/o˝ v.2/o0 7! v. /�; v.1/o0 ˝ v.2/o 7! v. /�:

(5) If all of 1, 2, and  are noncontractible, let N be the regular neighborhood of b[1[2. Then N

is a sphere with three disks removed, and the three boundary components of N are parallel to 1, 2

and  . Since N �† is oriented, the boundary orientation of N defines an orientation on each of 1, 2

and  , and we denote these orientations by o1, o2 and o, respectively. Denote their opposite orientations
by o0

1
, o0

2
and o0. Then T�.b/ is defined by

v.1/o0
1
˝ v.2/o0

2
7! � � v. /o; v.1/o0

1
˝ v.2/o2

7! 0;

v.1/o1
˝ v.2/o0

2
7! 0; v.1/o1

˝ v.2/o2
7! 0:

Case 2 (c contains one component  and cb has two components 1 and 2) In this case, we define
T�.b/ W V . /! V .1/˝V .2/ as follows:

(1) If 1 and 2 are both contractible circles, then  is also contractible, and we define T�.b/ by

v. /C 7! v.1/C˝ v.2/�C v.1/�˝ v.2/C; v. /� 7! v.1/�˝ v.2/�:

(2) If one of f1; 2g is contractible and the other is noncontractible, assume without loss of generality
that 1 is contractible and 2 is noncontractible. Then  is isotopic to 2, and the orientations of  and

Algebraic & Geometric Topology, Volume 25 (2025)
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2 are canonically identified. Let o and o0 be the two orientations of  , and use the same notation to
denote the corresponding orientations of 2. Define the map T�.b/ by

v. /o 7! v.1/�˝ v.2/o; v. /o0 7! v.1/�˝ v.2/o0 :

(3) If both 1 and 2 are noncontractible and  is contractible, then 1 and 2 are isotopic to each other,
and the orientations of 1 are 2 are canonically identified. Let o and o0 be the orientations of 1 and use
the same notation for the orientations of 2. Define the map T�.b/ by

v. /C 7! v.1/o˝ v.2/o0 C v.1/o0 ˝ v.2/o; v. /� 7! 0:

(4) If all of  , 1 and 2 are noncontractible, let N be the regular neighborhood of b[  . Then N is a
sphere with three disks removed, and the three boundary components of N are parallel to 1, 2 and  .
The boundary orientation of N defines an orientation on each of 1, 2 and  , and we denote them by o1,
o2 and o, respectively. Denote their opposite orientations by o0

1
, o0

2
and o0. Define the map T�.b/ by

v. /o0 7! � � v.1/o1
˝ v.2/o2

; v. /o 7! 0:

Case 3 (both c and cb have exactly one component) In this case, define T�.b/ to be zero.

In general, suppose c D c.1/ t c.2/ such that @b is disjoint from c.2/ and intersects every component
of c.1/. We define the band surgery homomorphism T�.b/ W V�.c/! V�.cb/ to be

(3-1) T�.b/D T�.b/jV .c.1//˝ idjV .c.2//:

Remark 3.3 In the above definition, the coefficient � only appeared in Cases 1(5) and 2(4).

4 Commutativity of band surgery homomorphisms

The main result of this section is the following proposition:

Proposition 4.1 Suppose c is an embedded closed 1-manifold on †, and suppose b1 and b2 are two
disjoint bands attached to c. Then for all � 2R,

(4-1) T�.b1/ ıT�.b2/D T�.b2/ ıT�.b1/:

The key idea is to use the following two lemmas to reduce Proposition 4.1 to the case when † has genus 0

or 1.

Lemma 4.2 Suppose † is an oriented surface , and †0 �† is an embedded surface whose orientation
is induced by †. Suppose the embedding of †0 in † is �1-injective. Suppose c is an embedded closed
1-manifold in †0, and b1 and b2 are two disjoint bands in †0 attached to c. Then

T†0

� .b1/ ıT†0

� .b2/D T†0

� .b2/ ıT†0

� .b1/

on V†0.c/ if and only if
T†.b1/ ıT†.b2/D T†.b2/ ıT†.b1/

on V†.c/.

Algebraic & Geometric Topology, Volume 25 (2025)
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Proof Since the embedding of †0 in † is �1-injective, there is a canonical isomorphism from V†0.c/ to
V†.c/ for every embedded 1-manifold c �†0 which takes the generators of V†0.c/ to the corresponding
generators of V†.c/, and this isomorphism intertwines with T†0

�
and T†

�
, so the lemma is proved.

Lemma 4.3 Assume Proposition 4.1 holds whenever † is a sphere , finitely punctured sphere , torus or
finitely punctured torus. Then Proposition 4.1 holds for all cases.

Proof Without loss of generality, we may assume that every component of c intersects b1 and b2

nontrivially, and that c [ b1[ b2 is connected.

In this case, c [ b1[ b2 is homotopy equivalent to the wedge sum of three circles. Therefore its Euler
characteristic is �2.

Let N be a closed regular neighborhood of c [ b1[ b2 in †. Let †0 be obtained from N as follows: For
each component  of @N , if  is contractible in † but not contractible in N , then  bounds a disk D in
† such that D \N D  . Define †0 to be the union of N and all disks D as above. Then the embedding
of †0 in † is �1-injective. Note that �.†0/ � �.N / D �2. If �.†0/ D �.N / D �2, then no disk D

appears in the construction of †0, so @†0 ¤∅. Therefore the genus of †0 is 0 or 1. By assumption, (4-1)
holds on †0. Hence by Lemma 4.2, the desired equation also holds on †.

The rest of this section proves Proposition 4.1 when † is a sphere, finitely punctured sphere, torus or
finitely punctured torus.

4.1 The genus-zero case

We first establish (4-1) when † is a sphere or a finitely punctured sphere. Our argument here is inspired
by the work of Winkeler [16].

Lemma 4.4 Equation (4-1) holds if † is a sphere or a finitely punctured sphere.

Proof If † is a sphere or a disk, then every curve is contractible, and Lemma 3.1(3) is not possible. In
this case, our definition of T�.b/ does not depend on � and it coincides with the definition of the merge
and split maps in standard Khovanov theory. Therefore (4-1) holds.

When † has n� 2 boundary components, we view † as a disk B with n� 1 interior disks B1; : : : ;Bn�1

removed. Assume the orientation of † is defined so that the boundary orientation on @B is given by the
counterclockwise orientation, and the boundary orientation on @Bi is the clockwise orientation.

Recall that when the surface † needs to be emphasized, we write V .c/, v. /o, v. /˙ and T�.b/ as
V †.c/, v†. /o, v†. /˙ and T†

�
.b/, respectively.

For each embedded closed 1-manifold c � †, define an isomorphism ˆ W V B.c/! V †.c/ as follows.
For each component  of c, if  is contractible in †, define

ˆ.vB. /˙/D v†. /˙:
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If  is noncontractible in †, let o denote the counterclockwise orientation of  , let o0 denote the clockwise
orientation of  , and define

ˆ.vB. /C/D v†. /o; ˆ.vB. /�/D v†. /o0 :

Since T B
�
.b/ does not depend on �, we denote it by T B.b/. Then

ˆ ıT B.b/ ıˆ�1

is a homomorphism from V †.c/ to V †.cb/.

For each i 2 f1; : : : ; n�1g, define a grading on V †.c/ as follows. If a circle  is a contractible curve on†,
define the degree of v†. /˙ to be zero. If  is noncontractible, for each orientation o of  , define the
degree of v†. /o to be the rotation number of o around Bi . Here our convention on the rotation number
is defined so that counterclockwise orientations always have nonnegative rotation numbers. Define the
grading of the tensor product of a set of generators to be the sum of the grading of each generator.

By checking all the cases in the definition of T�.b/, it is straightforward to verify that the map T†.b/ pre-
serves all the n�1 gradings defined above. Moreover, for each i 2f1; : : : ; n�1g, the mapˆıT B.b/ıˆ�1

does not increase the i th grading. The components ofˆıT B.b/ıˆ�1 that preserve all the n�1 gradings is
equal to the map T†

1
.b/, which is the map T†

�
when �D 1. Since T B.b1/ıT

B.b2/DT B.b2/ıT
B.b1/

on B, we conclude that (4-1) holds for T†
1

.

To show that (4-1) holds for general �, define T†
ı
D T†

1
�T†

0
. Then

T†
� D T†

0 C� �T
†
ı :

We define another grading on V †.�/ as follows. If a circle  is a contractible curve on †, define the
degree of v†. /˙ to be zero. If  is noncontractible, for each orientation o of  , define the degree of
v†. /o to be 1 if o is the counterclockwise orientation, and define the degree of v†. /o to be �1 if o is
the clockwise orientation. Define the grading of the tensor product of a set of generators to be the sum of
the grading of each generator.

By checking all the cases in the definition of T†
�

, it is straightforward to verify that under the above
grading, the map T†

0
is homogeneous with degree 0, and T†

ı
is homogeneous with degree �1. Since

(4-1) holds for �D 1, we have

T†
0 .b1/ ıT†

0 .b2/D T†
0 .b2/ ıT†

0 .b1/;

T†
ı .b1/ ıT†

0 .b2/CT†
0 .b1/ ıT†

ı .b2/D T†
ı .b2/ ıT†

0 .b1/CT†
0 .b2/ ıT†

ı .b1/;

T†
ı .b1/ ıT†

ı .b2/D T†
ı .b2/ ıT†

ı .b1/:

Therefore (4-1) holds for all � 2R.
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4.2 The genus-one case

Now we prove Proposition 4.1 when† is a torus or a finitely punctured torus. Let†0 be a torus and suppose
†D†0nfp1; : : : ;png with n� 0. Let c, b1 and b2 be as in Proposition 4.1. By the definition of T�, we
may assume without loss of generality that every component of c intersects @.b1[ b2/ nontrivially.

Lemma 4.5 Assume every simple closed curve 0�†0 that is disjoint from c[b1[b2 is contractible in
†0. Then up to orientation-preserving diffeomorphisms of †0, there are only eight possible configurations
of c, b1 and b2 as subsets of †0, which are shown in Figure 2.

In each case of Figure 2, the torus †0 is the quotient space obtained by gluing the two boundary
components of the annulus. The blue curves denote the 1-manifold c, and the disks b1 and b2 are defined
to be the thickening of the red arcs.

Proof We discuss the following cases:

If c contains two circles 1 and 2, and both of them are contractible, let D1;D2 �† denote the disks
bounded by 1 and 2. Then D1[D2[b1[b2 is a disk or an annulus, and hence there exists a circle 0

in the complement of c [ b1[ b2 that is contractible, contradicting the assumptions.

If c contains two circles 1 and 2 such that both 1 and 2 are noncontractible, then 1 and 2 must be
parallel to each other. The complement †0n.1[ 2/ contains two components. If every simple closed
curve in †0n.c [ b1 [ b2/ is contractible in †0, then the interior of b1 and b2 must be contained in
different components of †0n.1[2/, and @bi must intersect both components of c for each i . Therefore,
up to orientation-preserving diffeomorphisms of †0, the configuration is given by Figure 2(1).

If c contains two circles 1 and 2, where 1 is contractible and 2 is not contractible, let D1 be the disk
bounded by 1. If either b1 or b2 is contained in D1, then D1[ c[ b1[ b2 deformation retracts onto 2,
so there exists a noncontractible simple closed curve in †0 that is disjoint from D1[ c [ b1[ b2, which

(5) (6) (7) (8)

(1) (2) (3) (4)

Figure 2: All possible configurations.
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contradicts the assumptions. Therefore both b1 and b2 must be on the outside of D1, so b1[D1[ b2

deformation retracts onto an arc with both endpoints on 2. The assumptions then imply that c [ b1[ b2

is given by Figure 2(2) up to orientation-preserving diffeomorphisms of †0.

If c consists of one simple closed curve  that is contractible in †0, let D be the disk bounded by  .
Then b1 and b2 must be the thickening of two disjoint arcs r1 and r2 in †0nD. For i D 1; 2, let Nri be the
circle obtained by the union of ri with an arc in D. Since r1 and r2 are disjoint arcs, we may choose
the arcs in D so that Nr1 and Nr2 are either disjoint or intersect transversely at one point. The assumptions
then imply that Nr1 and Nr2 must intersect transversely at one point. Hence the configuration is given by
Figure 2(3) up to orientation-preserving diffeomorphisms of †0.

If c consists of one noncontractible simple closed curve, then the possible configurations are given by
Figure 2(4)–(8).

Lemma 4.6 Equation (4-1) holds if † is a torus or a finitely punctured torus.

Proof If there exists a noncontractible simple closed curve 0 �†0 that is disjoint from c [ b1 [ b2,
we may cut open †0 along 0, and the desired result follows from Lemmas 4.4 and 4.2. Therefore, by
Lemma 4.5, we only need to consider the eight cases given by Figure 2.

In (2) and (4)–(8), both sides of (4-1) are zero because Lemma 3.1(3) appears on both sides of the equations.

For (1) and (3), the complement†n.c[b1[b2/ has two connected components. Therefore, by Lemma 4.2
again, we only need to consider the cases when there is at most one puncture on each component.

Recall that n denotes the number of punctures on †0. For (1) with nD 0 or 2, and for (3), there is an
orientation-preserving diffeomorphism of †0 that preserves c and †, is orientation-preserving on c, and
switches b1 and b2. Therefore (4-1) holds.

For (1) with nD 1, it is straightforward to verify that both sides of (4-1) are zero.

5 Khovanov homology

Suppose L� .�1; 1/�† is a link. For each �, we define a homology invariant for L using the maps T�.

Suppose a link L is given by a diagram D on † with k crossings, and fix an ordering of the crossings.
For v D .v1; v2; : : : ; vk/ 2 f0; 1g

k , resolving the crossings of D by a sequence of 0-smoothings and
1-smoothings (see Figure 3) by v turns D into an embedded closed 1-manifold in †. Denote the resolved
diagram by Dv.

Whenever u is obtained from v by changing one coordinate from 0 to 1, there is a band b near the crossing
such that v is obtained from u by a band surgery along b. Define d�vu W V .Dv/! V .Du/ to be T�.b/.
Let ei be the i th standard basis vector of Zk . Define

CKh†;�.L/D
M

v2f0;1gk

V .Dv/;
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a crossing 0-smoothing 1-smoothing

Figure 3: Two types of smoothings.

and define an endomorphisms on CKh†.L/ by

D†;� D
X

i

X
u�vDei

.�1/
P

i<j�c vj dvu:

By (4-1), we have D2
†;�
D 0.

We define a quantum grading and a homological grading on CKh�;†.L/ as follows. For each circle  ,
if  is noncontractible, define the quantum grading on V . / to be zero. If  is contractible, define the
quantum grading of v. /C to be 1 and the quantum grading of v. /� to be �1. This grading then extends
to a grading on CKh�;†.L/. Define the homology grading of V .Dv/ � CKh�;†.L/ to be the sum of
coordinates in v.

There is also a grading on CKh�;†.L/ over H1.†IZ/ defined as follows. For each circle  , if  is
contractible, define the grading on V . / to be zero. If  is noncontractible, for each orientation o of  ,
define the grading of v. /o to be the fundamental class of o.

Following the standard convention, we use curly brackets flg to denote the shifting in quantum gradings
by l (namely, adding the quantum grading to each homogeneous element by l); we use the square brackets
Œl � to denote the shifting in homology gradings by l .

Theorem 5.1 The homology of

.CKh�;†.L/Œ�n��fnC� 2n�g;D†;�/

as a Z˚Z˚H1.†IZ/-graded module is independent of the diagram or the ordering of the crossings ,
where nC and n� denote the number of positive and negative crossings of the diagram.

Proof The proof is identical to the proof of the invariance of the standard Khovanov homology under
Reidemeister moves in [6]. Besides (3-1) and (4-1), the only properties about the band homomorphisms
T�.b/ needed in the proof are the following:

(1) If  is a contractible circle, then V . / is rank 2 with two generators v. /˙.

(2) Suppose the band surgery along b merges two circles 1 and 2 to  , where 1 is contractible.
Then 2 and  are isotopic, and this isotopy defines a canonical isomorphism � W V .2/! V . /. Then
T�.b/.v.1/C˝x/D �.x/ for all x 2 V .2/.
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(3) Suppose the band surgery along b splits one circle  to circles 1 and 2, where 1 is contractible.
Then 2 and  are isotopic, and this isotopy defines a canonical isomorphism � W V . /! V .2/. Then
the composition map

V . /
T�.b/
����! V .1/˝V .2/

=v.1/CD0
��������! spanfv.1/�g˝V .2/

is given by the tensor product with v.1/�, where the second map above is a quotient map.

The only remark worth making is that there is a typo in the definition of the “transpose” map in
[6, Section 3.5.5]. The map ‡ on the top layer should map the quotient image of the pair .ˇ1; 1/

to the quotient image of the pair .ˇ2; 2/ such that 1C �1ˇ1 D 2C �2ˇ2. The italicized phrases and
the last equation in the previous sentence were missing in [6].

Definition 5.2 We define the homology of

.CKh�;†.L/Œ�n��fnC� 2n�g;D†;�/

as a Z˚Z˚H1.†IZ/-module to be the Khovanov invariant of L � .�1; 1/ � †, and denote it by
†Kh�;†.LIR/.

When there is no risk of confusion on the surface † and the coefficient ring R, we will also denote
†Kh�;†.LIR/ by †Kh�.L/.

Remark 5.3 When � D 0, the differential map D†;� is identical to the differential map of Asaeda–
Przytycki–Sikora homology defined in [1]. When RDZ, �D 1 and † is a punctured disk, the homology
†Kh� recovers the invariant defined by Winkeler [16].

6 Relations with instanton Floer homology

This section explains the motivation of the definition of T�.b/ from instanton homology. We will also
prove the following detection result:

Theorem 6.1 Suppose that † is a surface with genus zero , and L � .�1; 1/ � † is a link. Then
rankZ=2†Kh1.LIZ=2/� 2, and equality holds if and only if L is isotopic to an embedded knot in †.

The detection problems of Khovanov homology and other quantum invariants of knots and links have
attracted considerable attention since the introduction of the invariants. Kronheimer and Mrowka [10]
proved that the standard Khovanov homology detects the unknot; see also [7; 8]. Since then, a large
number of detection results on Khovanov homology were obtained using different versions of Floer
theory, for example, by [2; 3; 4; 5; 13; 14; 19; 20]. The main theorem in [12] gave the first detection
result on Khovanov homology that is valid on an infinite family of manifolds. Theorem 6.1 above is an
improvement of the main theorem of [12].
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In fact, by a spectral sequence of Winkeler [16, Theorem 1.3], we have

(6-1) rankZ=2†Kh0.LIZ=2/� rankZ=2†Kh1.LIZ=2/:

The main result in [12] states a classification of all links L such that †Kh0.LIZ=2/ has the minimum
possible rank. Theorem 6.1 immediately implies the result in [12] because of (6-1).

6.1 Motivation from instanton Floer homology

We start by discussing the motivation of the definition of T�.b/ from computations in instanton Floer
homology. All instanton homology groups here will be defined with C coefficients. We refer the reader to
[12, Section 2] for the general notation and properties of singular instanton Floer homology. In particular,
we will use I.Y;L; !/ to denote the instanton homology of a nonintegral triple .Y;L; !/, where Y is a
closed 3-manifold, L� Y is a link and .!; @!/� .Y;L/ is an embedded 1-manifold. The nonintegral
condition is a technical condition to ensure that Floer homology is well-defined, and the statement
of the condition can be found in [12, Section 2.3]. If † � Y is an oriented embedded surface, then
I.Y;L; ! j†/ denotes a subspace of I.Y;L; !/ introduced by [18]; the complete definition can be found
in [12, Definition 2.10]. If † is connected, one may regard I.Y;L; ! j†/ as the component of I.Y;L; !/
at the maximum possible grading with respect to a grading induced by †.

Suppose Q is a closed oriented surface, and let L be a link in .�1; 1/�Q. Let p be a point on Q that is
disjoint from the projection of L to Q. In [12], the authors studied the instanton homology group

(6-2) †HIQ;p.L/ WD I.S1
�Q;L;S1

� fpgjft�g �Q/;

where S1 is viewed as the quotient space of Œ�1; 1� with �1 identified with 1, and t� 2 S1 is a fixed
basepoint.

Remark 6.2 The closed surface in (6-2) was denoted by R instead of Q in [12]. We use the notation Q

here to avoid collision of notation with the coefficient ring.

Suppose c is an embedded 1-manifold in Q, and b is a band attached to c that is disjoint from p. Then
the band surgery along b defines a link cobordism from c to cb as links in .�1; 1/�Q. Therefore it
induces a cobordism map for Floer homology groups (up to sign)

†HIQ;p.b/ W†HIQ;p.c/!†HIQ;p.cb/:

It was proved in [12, Proposition 6.12] that the maps †HIQ;p.b/ are components of the second page of a
variant of Kronheimer and Mrowka’s spectral sequence which abuts to †HIQ;p.L/. In [12, Proposition
6.11], the cobordism maps †HIQ;p.b/ were computed for multiple special cases; in all the computed
cases, †HIQ;p.b/ is equal to T�.b/ for some � 2C in a suitable sense. This motivated our definition of
the map T�.b/. It is natural to conjecture that the second page of Kronheimer and Mrowka’s spectral
sequence is isomorphic to †Kh�;Q.LIC/ for some � 2C.
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Conjecture 6.3 Suppose Q is a closed oriented surface , and let L be a link in .�1; 1/�Q given by
a diagram D on Q. Let p be a fixed point on Q that is disjoint from D. Then there exist � 2 C and
a spectral sequence that abuts to †HIQ;p.L/ whose second page is isomorphic to .CKh�;Q.L/;D†;�/
(with C-coefficients) as a chain complex.

6.2 Proof of Theorem 6.1

We may assume without loss of generality that † is connected and compact. If †D S2, the desired result
follows from the unknot detection theorem for the standard Khovanov homology [10]. We assume in the
following that @†¤∅.

Assume F is a connected oriented surface such that @F equals @† with the reversed orientation. Let
QD†[@F . By [12, Proposition 6.12], there is a spectral sequence that abuts to†HIQ;p.L/whose second
page is given by maps of the form †HIQ;p.b/, where b is a band corresponding to a crossing change
between different smoothings of the diagram D. By [12, Lemma 5.2], the second page of Kronheimer
and Mrowka’s spectral sequence, as a linear space, is isomorphic to CKh�;Q.L/ (with C-coefficients).

By [12, Proposition 6.11], after conjugating by an isomorphism from V .�/ to †HIQ;p.�/ defined in
[12, Section 5.2], each component of the differential map on the second page has the form ikT�.b/ for
some � 2C and k 2Z. We show that it is possible to choose an isomorphism from V .�/ to †HIQ;p.�/

such that after conjugation, the coefficients � are the same (up to sign) on all the components of the
differential map. Moreover, we show that the coefficient � must be nonzero.

In the following, we will denote †HIQ;p.�/ by †HI.�/ to simplify notation.

Let �1; : : : ; �4 be the constants from [12, Section 6]. By [12, Lemma 6.9], one can rescale the isomor-
phisms in [12, Section 5.2] so that �1 D˙1 and �3 D˙1.

Lemma 6.4 Assume the generator w0 defined in [12, Section 5.2.1] is chosen so that �1 D ˙1 and
�3 D˙1. Then �2 D˙�4.

Proof Consider the two bands in Figure 4 and apply the TQFT property of †HI.b/.

Lemma 6.5 The coefficients �2 and �4 are both nonzero.

Figure 4: Two bands.
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Figure 5: The diagram D on †.

Proof Suppose † is a sphere with three open disks removed, and let D be a diagram on † as shown in
Figure 5. Let D0 D  be the resolution of D into one circle, let D1 D 1 [ 2 be the resolution of D

into two circles and let b be the band relating D0 and D1. Let K be the knot represented by D. Then by
[10, Theorem 6.8], there is an exact triangle

� � � !†HI. / †HI.b/
�����!†HI.1[ 2/!†HI.K/!†HI. / †HI.b/

�����!†HI.1[ 2/! � � � :

By [12, Lemma 6.4], �2 D �4 D 0 if and only if †HI.b/ D 0 in the above exact sequence. By
[12, Lemma 5.2], we have dim†HI.1[2/D 4 and dim†HI. /D 2. Therefore we only need to show

(6-3) dim†HI.K/ < 6:

Let L be the link in the thickened annulus as shown in Figure 6. Pick a meridional disk in the thickened
annulus which intersects L at two points. We decompose the thickened annulus along this disk and obtain
a product sutured thickened disk with a tangle T in it. The sutured instanton Floer homology of this
sutured manifold with tangle T is isomorphic to AHI.L; 2/ according to [11, Theorem 2.14], where
AHI.L; 2/ denotes the component of the annular instanton Floer homology with Alexander grading 2.
(The Alexander grading is also called the annular grading, the f-grading or the k-grading in the literature.
We follow the terminology of [15, Definition 2.2] here, which agrees with the notation in [12].)

The tangle T has two product vertical components. We remove the tubular neighborhoods of the two
vertical components and add a meridian suture to the boundary of each neighborhood to obtain a sutured

Figure 6: The annular link L.
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manifold M 0 with a knot K0 in it. Moreover, this process does not change the sutured instanton Floer
homology according to [18, Lemma 7.10] and its proof. Therefore

SHI.M 0; M 0 ;K
0/Š AHI.K; 2/:

Notice that in the definition of sutured instanton Floer homology, the pairs .M 0;K0/ and .M;K/ can be
given the same closure; therefore their sutured instanton homologies are isomorphic. As a result, we have

(6-4) SHI.Œ�1; 1��†; f0g �†;K/Š AHI.L; 2/:

A straightforward calculation shows that

AKh.L; 2IC/ŠC4;

where AKh.L; 2IC/ denotes the component of the annular Khovanov homology of L with Alexander
grading 2 and with coefficient ring C. According to [17, Theorem 5.16], we have

dim AHI.L; 2IC/� dim AKh.L; 2IC/D 4:

Therefore, (6-4) implies

dim†HI.K/D dim SHI.Œ�1; 1��†; f0g �†;K/� 4:

This verifies (6-3), and hence the desired result is proved.

Theorem 6.1 can now be proved using an argument from [12].

Proof of Theorem 6.1 When † is a compact surface with genus zero, there is a grading on V .�/ such
that T0.b/ is homogeneous with degree zero and T1.b/ is homogeneous with degree �1. Since �2¤ 0, we
can rescale the map‚w0;� in [12] by a factor of �k

2
at degree k. By the discussion in [12, Section 6], there

is a spectral sequence of chain complexes in C-coefficients that converges to I.Œ�1; 1��†; f0g � @†;L/,
whose second page .E2; d2/ is isomorphic to the chain complex .CKh†;1.L/;D†;1/ up to multiplications
by integer powers of i on the components of the differential map. In other words, there exists a chain
complex .C; d/ defined with ZŒi � coefficients, such that when reducing to C coefficients, it is isomorphic
to .E2; d2/; when reducing to ZŒi �=.i � 1/ Š Z=2 coefficients, it is isomorphic to the chain complex
.CKh†;1.L/;D†;1/. By the universal coefficient theorem,

rankZ=2†Kh†;1.LIZ=2/� rankZŒi�H.C; d/D dimC H.E2; d2/

� dimC I.Œ�1; 1��†; f0g � @†;L/;

and the desired result follows from [12, Theorem 1.3].
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Let G DH1 � � � � �Hk �Fr be a finitely generated torsion-free group and � an automorphism of G that
preserves this free factor system. We show that when � is fully irreducible and atoroidal relative to this
free factor system, the mapping torus � DG Ì� Z acts relatively geometrically on a hyperbolic CAT(0)
cube complex. This is a generalisation of a result of Hagen and Wise for hyperbolic free-by-cyclic groups.
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1 Introduction

Consider a finitely generated free group F and an automorphism � W F ! F . Hagen and Wise showed
in [HW16] that if � is atoroidal and fully irreducible, then the mapping torus F Ì� Z acts properly and
cocompactly on a hyperbolic CAT(0) cube complex. It often happens that automorphisms of free groups
are neither atoroidal nor fully irreducible, suggesting various directions of generalisation. In [HW15],
Hagen and Wise relaxed the requirement of full irreducibility and, using the sophisticated machinery of
relative train track maps, showed that the mapping torus still acts geometrically on a CAT(0) cube complex.
They asked (see the discussion around [HW15, Problem B]) if a systematic answer to which free-by-cyclic
groups admit cubulations is possible, especially in the presence of polynomially growing subgroups.

Here, by investigating relative cubulations instead of usual cubulations, we provide an answer in great
generality as to when such groups are relatively cubulated. Let � be an automorphism of F and let
F DH1 �H2 � � � � �Hk �Fr be a free decomposition that is preserved by � (up to taking conjugates
of the factors). Such a free decomposition always exists for any �. In particular, when � is not fully
irreducible, there exists a free decomposition preserved by �, relative to which � is fully irreducible. Let
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Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.1561
http://www.ams.org/mathscinet/search/mscdoc.html?code=20E08, 20E36, 20F65, 20F67
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1562 François Dahmani and Suraj Krishna Meda Satish

us also assume that � is atoroidal relative to the free decomposition. We will clarify the meanings of both
these terms more precisely, using the notion of free factor systems, in Section 2. In our setting, we allow,
for instance, elements to have polynomial growth under � as long as they are elliptic in the free product.
Under a mild complexity condition, the first author and Li showed in [DL22] that the mapping torus
F Ì�Z is hyperbolic relative to the suspensions of the free factorsHi . A particular case of our main result
shows that such a mapping torus acts relatively geometrically on a hyperbolic CAT(0) cube complex.

1.1 Main result

Let G be a finitely generated group, � an automorphism of G and H a subgroup of G whose conjugacy
class is preserved by a power of �. Let n be the minimal positive power of � such that �n.H/ D
g�1Hg. Then we say that the suspension of H by � in the semidirect product G Ì� hti is the group
H Ìadgı�n htng�1i, where adg WG!G denotes the inner automorphism given by h 7! ghg�1.

To state our main result for automorphisms of free products of groups, we need the notions of full
irreducibility and atoroidality relative to a free factor system. These are analogous to the corresponding
notions for automorphisms of free groups, with the condition that the free decomposition is preserved, but
within a free factor there are no restrictions. We also need a technical notion of no twinned subgroups.1

We refer the reader to Section 2 for the definitions.

We also recall the notion of relative cubulation introduced by Einstein and Groves in [EG20]: a relatively
hyperbolic group .�;P/ is relatively cubulated if it acts cocompactly on a CAT(0) cube complex with
cell stabilisers either trivial or conjugate to a finite index subgroup in P.

Theorem 1.1 Let G be a finitely generated torsion-free group and let G ŠH1 � � � � �Hk �Fr be a free
decomposition such that each Hi is nontrivial. Let � be an automorphism that preserves the associated
free factor system. Assume that kC r � 3, that � is fully irreducible relative to the free factor system and
atoroidal relative to the free factor system , and that there exist no twinned subgroups. Then the mapping
torus � DG Ì� Z admits a relative cubulation for the peripheral structure of the suspensions of the free
factors Hi .

We recover the result of [HW16] when G D Fr above,2 as well as some cases of [HW15], through a
telescopic argument of Groves and Manning [GM23, Theorem D]. In general, the relatively geometric
action on CAT(0) cube complexes that we obtain otherwise still has interesting consequences.

Note that any group acting on a CAT(0) cube complex admits an action on an `2-space built using
characteristic functions of hyperplane-halfspaces; see Niblo and Reeves [NR97]. We thus have:

Corollary 1.2 Let G and � be as in Theorem 1.1. Then the mapping torus � acts on a Hilbert space
with unbounded orbits , with no global fixed point for G.

1This requirement can in fact be removed; see work of the authors and Mutanguha [DMM25, Lemma 3.3] or Remark 2.5.
2It is stated there in terms of irreducible atoroidal automorphisms, which are fully irreducible by Dowdall, Kapovich, and
Leininger [DKL15, Corollary B.4].
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In addition, whenG is residually finite, using a generalisation by Einstein and Groves [EG22, Theorem 1.6]
of a well-known result of Haglund and Wise [HW08], we have:

Corollary 1.3 Let G and � be as in Theorem 1.1. Further , let G be residually finite. Then every full
relatively quasiconvex subgroup of the mapping torus � is separable.

Another consequence of Theorem 1.1 can be seen in our recent work with Mutanguha [DMM25], where
we showed that all hyperbolic hyperbolic-by-cyclic groups are virtually special.

1.2 Method

Our procedure to cubulate follows the scheme laid out by Hagen and Wise [HW16]. The goal is to obtain
a collection of codimension-1 subgroups of � and then apply Sageev’s dual cube complex construction
[Sag95]. The codimension-1 subgroups we build will be stabilised by full relatively quasiconvex subgroups
in the relatively hyperbolic group � . We then apply the boundary criterion of Einstein and Groves [EG20].

In order to do this, an important tool is Francaviglia and Martino’s absolute train tracks for free products
[FM15]. Given G and an automorphism � satisfying the hypotheses of the main result, there exists a
G-tree T and a train track map f W T ! T representing �. Taking mapping cylinders for f , one then
obtains a flow space on which � acts. The flow space has the structure of a tree of spaces, where the
underlying graph is a line and vertex and edge spaces are copies of the tree T . The map f “flows” a
point on any tree to its image in the next tree. We describe the flow space and various properties we need
in order to define walls in the flow space in Section 2.

Before explaining how we build walls in our setup, let us motivate our construction in the surface case.
Let Mf be the mapping torus of a closed hyperbolic surface Sg under a pseudo-Anosov map f . Cooper,
Long and Reid showed in [CLR94] that in this case there exists an immersed quasi-Fuchsian surface in
Mf (and hence a quasiconvex wall in the universal cover). First, take a simple closed curve C in Sg
which is disjoint from its f -image. Such a simple closed curve exists up to taking a finite cover of Mf .
The required immersed surface in Mf is then obtained by cutting Sg along C and f .C / and gluing C˙
to f .C�/ (the cut-and-cross-join technique).

Hagen and Wise mimicked this construction for the setup of hyperbolic free-by-cyclic groups in the fully
irreducible case. A surface with a pseudo-Anosov map is now replaced by a graph with a train track
map. The analogue of cutting along a simple closed curve is cutting along a point in the graph. However,
the situation here is more complicated as a train track map is only a homotopy equivalence and not a
homeomorphism. A point often has multiple preimages and the cut-and-cross-join operation is performed
along all points with the same image.

We use the same operation, but now our train track representative is defined not on a finite graph but on
the G-tree T . The lack of local finiteness of the tree T gives rise to additional difficulties, but we were
able to manage them because of the behaviour of train track maps in this setting, and considerations of
angles at vertices under relative hyperbolicity.
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While cocompact cubulations require walls to be (relatively) quasiconvex, relative cubulations require
walls to also be full. This forced us to introduce saturations of our walls in order to ensure fullness. The
construction of walls and their saturations can be found in Section 4.

Finally, in order to use the boundary criterion, we need sufficiently many wall saturations to not only cut
biinfinite geodesics in the flow space, but also to cut pairs of principal flow lines that are stabilised by
maximal parabolic subgroups and pairs consisting of a geodesic ray and a principal flow line. We show
this in Section 5, ensuring the separation of every pair of points in the Bowditch boundary. We verify the
latter in Section 6, where we also give a proof of Theorem 1.1.

1.3 Questions

We end this introduction with three questions arising from this work.

Question 1.4 LetGDA�B be a torsion-free group and � be an automorphism that is fully irreducible and
atoroidal relative to the above free decomposition. Does the mapping torus ofG admit a relative cubulation?

The above makes a case for a combination theorem of relatively cubulated groups, which is as yet a
largely unexplored area of research.

Question 1.5 Let G be a free product and � be an automorphism that is fully irreducible but not
necessarily atoroidal, relative to the given free decomposition. Let P be the peripheral structure of
suspensions of maximal subgroups of G on which iterations of � make lengths of conjugacy classes grow
at most polynomially. Does the mapping torus of G admit a relative cubulation?

Motivated by work of the first author and Li [DL22], such a construction would apply to free group
automorphisms, refining the cartography of possible cubulations of free-by-cyclic groups.

In [DM23], we showed that the mapping torus of a torsion-free hyperbolic group is hyperbolic relative to
the suspensions of the maximal polynomially growing subgroups. This leads to a natural question:

Question 1.6 Let G be a torsion-free hyperbolic group and � be an automorphism of G. Does the
mapping torus of G admit a relative cubulation?

The answer is yes when � is atoroidal; see our work with Mutanguha [DMM25].
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2 The flow space

2.1 Free G -trees relative to H, and train track maps

Let us fix G to be a finitely generated group for the rest of the paper.

A free factor system for G is a tuple .H1; : : : ;Hk/ of subgroups such that there exists a free subgroup
F < G for which G DH1 �H2 � � � � �Hk �F . Another free factor system .J1; : : : ; J`/ of G is strictly
larger if each Hi is conjugate into some Jr , and one inclusion is strict.

A G-tree is a metric tree endowed with an isometric action of G.

A free G-tree relative to H D fH1; : : : ;Hkg is a G-tree which is minimal for its G-action, its edge
stabilisers are trivial, and its nontrivial elliptic subgroups are exactly the conjugates of the fH1; : : : ;Hkg
in G. We may as well require that there is no vertex of valence 2 that has trivial stabiliser.

A vertex is singular if its stabiliser is nontrivial.

Observe that, because G is finitely generated, any such G-tree has finite quotient by G. There is a whole
space of such free G-trees relative to fH1; : : : ;Hkg, as studied in [GL07].

It is convenient to have a notion of angle in these nonlocally finite trees. Let T be a free G-tree relative
to H. Let us choose a word metric for each Hj , which is finitely generated as G is. Let vj 2 T be the
unique vertex fixed by Hj , and finally choose a finite set of orbit representatives for the Hj -action of
edges issuing from vj . Define the angle between two edges e and e0 issuing from the vertex fixed by
Hj to be the word length of the element hh0�1 given by h and h0 sending e and e0, respectively, into our
set of representatives. If e and e0 are distinct edges in the finite set of orbit representatives, the angle
between them is one. It is clear that the Stab.v/-action on edges adjacent to v preserves angles. We hence
complete the definition by G-equivariance: it defines the angle between two edges adjacent to singular
vertices stabilised by conjugates of the Hj . In other (locally finite) vertices, we may say that angles are 0
(if edges are equal) or 1 (if they are different). Observe that only finitely many edges make a given angle
with a given edge, and that angles (around a given vertex) satisfy the triangle inequality.

Let � be an automorphism of G that preserves the conjugacy class of each Hi . Consider a free G-tree T
relative to fH1; : : : ;Hkg. One says that a continuous map f W T ! T realises the automorphism � if it is
equivariant in the sense that for all p 2 T and all g 2 G, f .gp/D �.g/f .p/. Such maps realising �
exist in our context [FM15, Lemma 4.2]. Such a map is also, by equivariance, a quasiisometry of T .

A turn is a pair of edges e1 and e2 in T starting at a common vertex v. The pair is a proper turn if e1
and e2 are distinct. We say that e1 and e2 make a legal turn if the two paths f .e1/ and f .e2/ starting
at f .v/ share no proper common subpath. In other words, by definition, f sends legal turns to proper
turns. We say that f is a train track map if it sends edges to reduced paths without nonlegal turns, and if
moreover, for all such e1 and e2 in T making a legal turn, their images f .e1/ and f .e2/ are two paths
starting at f .v/ by two edges that themselves make a legal turn. In other words, by definition, f is a
train track map if it sends legal turns to legal turns.
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It is far from obvious that train track maps representing automorphisms exist. A theorem of Francaviglia
and Martino [FM15] ensures that if � is fully irreducible relative to fH1; : : : ;Hkg, then there exists a
free G-tree relative to fH1; : : : ;Hkg, which we denote by T , and there exists f W T ! T continuous,
with constant speed on edges, that realises � and is a train track map.

Recall that, if .H1; : : : ;Hk/ is a free factor system of G, and if � is an automorphism permuting it (ie
preserving the set of conjugacy classes fŒH1�; : : : ; ŒHk�g), we say that � is fully irreducible relative to
fH1; : : : ;Hkg [FM15, Definition 8.2] if no positive power of � preserves any larger free factor system.

We recall for later use an equivalent formulation of irreducibility (see [FM15, Definition 8.1 and
Lemma 8.3]). Let f W T ! T be a map realising the automorphism �. We say f is irreducible if
for every proper subgraph W of T that is f -invariant and G-invariant, the quotient of W by G is a forest
such that each component subtree contains at most one nonfree vertex. The map f is fully irreducible
if f i is irreducible for all i > 0. We say � is (fully) irreducible relative to fH1; : : : ;Hkg if every f
realising � is (fully) irreducible.

2.2 The flow space of an automorphism

From now on T and f are thus chosen so that f is a train track map on T representing the relatively
fully irreducible �.

Define for all i 2Z a tree Ti equivariantly isomorphic to T . Let us denote by .p 7! pi / the identification
T ! Ti . Define the action of G on Ti as g:pi D .�i .g/p/i . Observe that this makes Ti a free G-tree
relative to fH1; : : : ;Hkg. Define fi W Ti ! TiC1 by fi .pi /D .f .p//iC1. Observe, by the property of
train tracks, how fi sends a turn: if it is legal when seen in T , its image is a legal turn when seen in T .
We will make the abuse of language that any composition of the form fiCk ı fiCk�1 ı � � � ı fiC1 ı fi

(from Ti to TiCkC1) is called a (positive) iteration of f .

Start with the disjoint union of all the Ti for i 2 Z. For each i , and each (unoriented) edge ei in Ti ,
we choose an orientation and glue a rectangle Rei

D Œ0; 1�� Œ0; 1� so that f0g � Œ0; 1� is glued to ei and
f1g � Œ0; 1� is glued on the path fi .ei / in TiC1 (respecting orientation). See Figure 1 for an illustration.
Finally, for each vertex vi , we glue together the sides Œ0; 1�� f0g of the rectangles Rei

for all ei starting
at this vertex, and the sides Œ0; 1�� f1g of the rectangles Rei

for all ei terminating at this vertex. The
resulting space, with a natural structure of a cell complex, is denoted by zX . We call this space the flow
space of � (with respect to H, T and f ). Thus the flow space is a tree of spaces, where the underlying
tree is a biinfinite combinatorial line and vertex spaces are the trees Ti .

In zX , we will call any edge in some tree Ti a vertical edge, and the image of a side Œ0; 1� � f1g or
Œ0; 1��f0g of the rectangle R.ei / a horizontal edge. We call a path horizontal if it intersects rectangles in
horizontal segments Œ0; 1�� fhg.
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e0

T0 T1 T2

Re0

f1 Rf1

Figure 1: 2-cells in the flow space. The 2-cell Re0
is bounded by the vertical edge e0 on the left,

two horizontal edges, and three vertical edges (including f1) in T1.

If f W T ! T is a train track map realising �, then for all L� 1, the map f L is a train track map realising
the automorphism �L. Keeping the same T and f we may thus produce the space zXL by using the map
f L realising �L. We will prefer to index the trees by LZ though.

Observe that zXL need not be isomorphic to zX . However we have a natural map %L W zXL ! zX : it is
obviously defined on the trees TLi , and on a rectangle R.eLi /, one sends a horizontal edge onto the
unique reduced concatenation of horizontal edges of zX with the same endpoints.

2.3 Action on the flow space

Consider the semidirect productGÌ�Z, and write t for the generator of Z that induces the automorphism �

by conjugation on G: G Ì� ZD hG; t j t�1gt D �.g/; 8g 2Gi. Then G Ì� Z acts cofinitely on zX by
defining the action of G on each Ti as above, and defining the action of t to be the shift of indices: t
maps Ti on TiC1 isometrically, through the identification with T .

The group G preserves each of the trees Ti , and in each of them it induces the action of G on T
precomposed by �i . So the orbits ofG on each of the Ti are the same, after identification to T . In particular:

Lemma 2.1 If x; y 2 T are such that there is g 2 G for which gx D y, and if i1; i2 2 Z, then there
exists  2G Ì� Z for which xi1 D yi2 .

2.4 Forward flow, backward flow and principal flow lines

For each i , from each point xi of Ti , there is a unique horizontal ray starting at xi , containing all its
images by positive iterates of f . We denote it by �.xi /, and �k.xi / is its initial subsegment of length k.
Its endpoint is denoted (slightly abusively) by f k.xi / as already mentioned. The segment �1.xi / of this
ray whose endpoints are xi and fi .xi / 2 TiC1 is called the midsegment at xi . We call the ray �.xi / the
forward flow (ray) from xi (forward path in [HW16]). It is sometimes useful to use the forward flow
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x

f .x/
f 2.x/

f 3.x/

Figure 2: The orange segment between x and f 3.x/ is the forward flow of length 3 from x. Its
forward ladder is the union of the 2-cells in the picture.

of length L, which is the initial subsegment of length L of the forward flow ray (see Figure 2 for an
illustration). The forward ladder of a forward flow (ray or segment) � , denoted by N.�/, is the smallest
subcomplex of the cell complex zX containing � .

We emphasise that the forward flow is different from the action of t .

In the backward direction, we note the following:

Lemma 2.2 For any xi 2 Ti with xi not a singular vertex, its preimage f �1i�1.xi / in Ti�1 is finite. In
particular , every vertical edge of zX is contained in finitely many 2-cells.

Proof It suffices to prove that each edge of T is contained in finitely many images of edges of T under f .
Assume on the contrary that there are infinitely many such edges ek , whose images meet xi . Since there
are finitely many G-orbits of edges in T , we may assume that all edges ek are images of e0 by some
elements gk 2 G, all different. The map f being a quasiisometry of T , all edges ek are at bounded
distances, so the gk have bounded displacement. This forces that for large k, the gk and their images
by � have a contribution in some of the free factors Hi that is larger than the maximal angle of the
path f .e0/. However f .ek/D f .gk.e0//D �.gk/f .e0/. This forces f .ek/ and f .e0/ to be disjoint, a
contradiction.

In the case of the preimage of an infinite-valence vertex of Ti , we have an even clearer picture. For j 2N,
let us denote by f �j .v/ the set .f j /�1.v/.

Lemma 2.3 Let v 2 Ti be a singular vertex of Ti . Then for each j 2N, the set f �j .v/ is finite and
contains a unique singular vertex.

Proof We may assume that v 2 T . The set f �j .v/ lies in T . We will first show that there is a unique
singular vertex in f �j .v/ and then show that the set is finite.
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x

Figure 3: The backward flow of length 3 from x (in orange).

Assume that it contains two different singular vertices w1 and w2 such that f j .w1/D f j .w2/D v. By
equivariance of f , the stabilisers Gw1

and Gw2
of w1 and w2 are sent by �j inside the stabiliser of Gv .

But they are also sent onto stabilisers of vertices, since � preserves the conjugacy classes of the Hk . Thus
�j .Gw1

/D �j .Gw2
/, and therefore Gw1

D Gw2
. In particular, the tree-geodesic between the vertices

w1 and w2 is pointwise fixed by Gw1
, and since w1 ¤ w2, this contradicts the triviality of stabilisers of

edges of the tree.

Assume now that the preimage f �j .v/ has infinitely many nonsingular points. Denote by .ei /i2N the
collection of edges containing a preimage. Since f is a quasiisometry, they are all at a bounded distance
from each other. Up to extracting a subsequence, we may assume they are in the same G-orbit: write
ei D gie0. Being at bounded distance from each other, the displacement of gi remains bounded. Consider
the segment si between e0 and ei D gie0 containing both. Taking a subsequence if necessary, we may
assume that there is a vertex w for which the si have the same prefix until w and then start having angles
going to infinity at this vertex. Consider f .ei /D �.gi /f .e0/. The displacement of �.gi / also remains
bounded, and the angle of f .si / at the image f .w/ tends to infinity. After w, all these images of the
f .si / are thus disjoint. It follows that all the images ei are either disjoint, or share possibly only f .w/.
In other words, the f .ei n fwg/ are disjoint. Since at w, angles are arbitrarily large, it is a singular point,
contradicting the initial assumption that the ei each contain a nonsingular preimage of a point.

We may now define the backward flow. For a point xi 2 Ti the backward flow (level in [HW16]) �L.xi /
from xi of length L is the union of length L forward flows from each point in f �L.xi /; see Figure 3.
Note that �L.xi / is a rooted tree, rooted at xi . When x … zX0, by Lemma 2.2, �L.x/ is a finite rooted tree.
In particular, [HW16, Proposition 2.5] gives the following observation:
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Proposition 2.4 Let x … zX0. Then for anyL� 0, there exists a topological embedding �L.x/�Œ�1; 1�!
zX such that �L.x/� f0g maps isomorphically onto �L.x/.

Finally, by Lemma 2.3, there is a unique singular vertex vj in each Tj for j < i that is in the backward
flow of a singular vertex vi of Ti . Hence we can construct the principal flow line of vi to be the direct
limit of the forward flow rays of vj , for j !�1. It is well defined, biinfinite, as all vj as above, and all
images of vi by positive iterates of f have the same principal flow line.

2.5 Geometry of the flow space

In order to have relative hyperbolicity for the group � WDG Ì� Z, following [DL22], we will need the
following three additional properties, which we will assume to hold from now on:

� Any fundamental domain of T contains at least two edges, ie kC r � 3 or r � 2.

� The automorphism � is atoroidal relative to fH1; : : : ;Hkg: given any element g 2G such that g
is not contained in any conjugate of any Hi , then for all n 2N, Œ�n.g/�¤ Œg�.

� The automorphism � has no twinned subgroups: given two subgroupsH¤K such that ŒH �; ŒK�2H,
then given any g 2G and any m 2N, �m.H/¤ gHg�1 whenever �m.K/D gKg�1.

Remark 2.5 We in fact do not need to assume the no twinning property, as by [DMM25, Lemma 3.3], it
automatically holds whenever � is relatively fully irreducible and kC r � 3. We clarify that the case
r � 2 is redundant if k D 0 as there are no atoroidal maps of F2.

Let us recall that the cone-off of a graph Z over a family of subgraphs L, which we denote here by yZ, is
the graph obtained by adding to Z a vertex vL for each L 2 L and an edge between each vertex of L
and vL. Usually, each such edge is assigned to have length 1

2
.

It can help to picture T as equivariantly quasiisometric (by a collapse map) to a cone-off of the Cayley
graph of G over the left cosets of the free factors, and to picture zX as equivariantly quasiisometric to a
cone-off of the Cayley graph of � over the left cosets of the same free factors of G < � . Finally, one
can see the cone-off of zX over principal flow lines as equivariantly quasiisometric to the cone-off of the
Cayley graph of � over the cosets of the suspensions of the free factors of G.

Theorem 2.6 The 1-skeleton zX1 is ı-hyperbolic for some ı > 0. Moreover , the cone-off of zX1 over the
principal flow lines is also hyperbolic.

This is essentially proved in [DL22]. Let us cover how to obtain it. We want to use [MR08, Theorem 4.5].
However, a little care is in order. The assumption of this theorem is that one has a tree (denoted by T
in [MR08], and temporarily denoted by TMR here) of relatively hyperbolic spaces Sv , for v 2 T .0/MR, with
some properties, and the conclusion is that the whole space, denoted by X in [MR08] and temporarily
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denoted by XMR, is itself hyperbolic relative to maximal cone subtrees. Here the tree TMR is just a
biinfinite line Z indexing our trees Ti , and the spaces Si for i 2 Z are indeed the trees Ti , all isometric
to T , on which G acts through �i , and the total space XMR is zX . The different assumptions of the
theorem were checked in [DL22, Section 2.3], and the conclusion is that zX is hyperbolic relative to
a collection of quasiconvex lines (the principal flow lines of singular vertices). It follows that zX is
hyperbolic itself. It also implies that its cone-off over those lines is hyperbolic as well.

Recall that a graph is said to be fine if for each n 2N, every edge of the graph belongs to only finitely
many simple cycles of length n. Recall also that a finitely generated group � is hyperbolic relative to a
finite collection of finitely generated subgroups P if the cone-off of a Cayley graph of � over the left
cosets of elements of P is hyperbolic and fine [Bow12].

The main result of [DL22] (Theorem 0.2) was actually a related statement, that the group G Ì� hti is
itself relatively hyperbolic with respect to the collection P consisting of mapping tori of the subgroups
H1; : : : ;Hk . Since the stabiliser of a singular vertex in T0 is a conjugate of some Hi , each principal flow
line is in fact cocompactly stabilised by the suspension of a conjugate of some Hi (this can, for instance,
be deduced from Lemma 2.15(2)).

2.6 Quasiconvexity and divergence of forward flow rays

We first observe, following [HW16], that forward flow rays are uniformly quasiconvex (Proposition 2.7).

From xi 2 Ti to f n.xi / any path intersects each tree TiCk and therefore has at least n horizontal edges.
However, the forward-path has exactly n horizontal edges and no vertical contribution. If D is an upper
bound to the diameter of 2-cells, we see that the intersection of the forward flow ray with

S
i Ti is a D-

bilipschitz embedding of N in the 1-skeleton of zX . Since the latter is hyperbolic, we have quasiconvexity.
We thus have:

Proposition 2.7 [HW16, Proposition 2.3] There exists � � 0 such that the 1-skeleton N.�/1 of any
forward ladder is �-quasiconvex in zX1.

Second, two flow rays starting at different points in the same edge of Ti diverge from each other:

Lemma 2.8 Given � > 0, there exists N > 0 such that for any two points x and y contained in any
vertical edge ei � Ti with d.x; y/ � �, the distance in TiCN between f N .x/ and f N .y/ is at least
e100.ıC�/ (and thus the forward rays from x and y diverge).

Proof The forward images of a single edge are all legal paths, and by [DL22, Lemma 1.11] f applies a
uniform stretching factor > 1 on all legal paths.

Finally, two flow rays starting at different points in the star of a vertex either uniformly diverge from each
other or fellow-travel forever. More precisely we have the following:

Algebraic & Geometric Topology, Volume 25 (2025)



1572 François Dahmani and Suraj Krishna Meda Satish

Proposition 2.9 For all � > 0, there exists N > 0 such that , for all singular vertices v 2 Ti , for all
edges e1 ¤ e2 in Ti starting at v, and for all x1 and x2 in e1 and e2, respectively, at distance at least �
from v, either the distance in TiCN between f N .x1/ and f N .x2/ is at least e100.ıC�/, or the forward
rays fellow-travel until infinity.

Proof We fix � and v. For each edge e issued at v, and x 2 e at distance at least � from v, we know by
Lemma 2.8 that there is N� such that, for all n�N�, f n.x/ is at distance (in TiCn) at least e1000.ıC�/

from the principal flow line of v.

By [DL22, Lemma 2.6] f induces a quasiisometry on angles: there exists �1 > 1 such that, if e1 and e2
issued at v make an angle � , then the paths f .e1/ and f .e2/ make an angle at least �=�1 � �1 at their
common initial point f .v/— while it is slightly stronger than the stated lemma, the claim is still true with
same proof, however, the stated lemma is also sufficient to be used in a similar way. Call �.�/D �=�1��1.
Calculus ensures that it is possible to find �0 such that �N0.�0/ > 0. If e1 and e2 issued at v make an
angle greater than �0, the paths f N0.e1/ and f N0.e2/ make a positive angle at their initial common
point f N0.v/. In particular, they do not overlap. It follows that, measured in TiCN0

, the distance
d.f N0.x1/; f

N0.x2// is equal to d.f N0.x1/; f
N0.v//C d.f N0.v/; f N0.x2//. It is then greater than

2e1000.ıC�/. Since the two rays are quasiconvex in the hyperbolic space zX and have started to diverge
after N0 edges, they will diverge onward after that point.

It remains to treat the case of two edges making an angle less than �0. There are finitely many Stab.v/-
orbits of such pairs of edges. Partition them into classes of those whose forward rays fellow-travel, and
those whose forward rays exponentially diverge. Since there are finitely many, one can choose N that is
suitable for all of those in the second class, and larger than N0.

Observe that this does not prevent some points in different edges from having fellow-travelling forward
rays, with the same endpoint at infinity. However, if the origins of the flow rays are translates of each
other by an elliptic element g in Ti , they diverge, provided that g is not a torsion element:

Lemma 2.10 For any point xi in Ti , and for each g 2G elliptic in Ti such that gnxi ¤ xi for any n2N,
the flow rays from gxi and xi do not fellow-travel until infinity.

Proof Note that the midpoint of the segment of Ti between xi and gxi is fixed by g, and is hence a
singular vertex vi . If the flow rays from xi and gxi fellow-travel until infinity, then by equivariance, so
do the flow rays from gnxi and gn

0

xi , for all n; n0 2 Z. But for large enough powers, the segments from
vi to gnxi and xi make arbitrarily large angles. By arguing as in Proposition 2.9, we can conclude that
the flow rays from xi and gnxi cannot fellow-travel for arbitrarily large powers, a contradiction.

Henceforth, we will assume that the group G is torsion-free, so the above result always holds for elliptic
elements.

Let us also record a basic observation about principal flow lines:
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Lemma 2.11 Let v1 ¤ v2 be two singular vertices in zX . Then either the principal flow lines of v1
and v2 coincide or uniformly diverge from each other in both the forward and backward directions , ie for
each R > 0 there exists BR > 0 such that for any pair of singular vertices v1 ¤ v2, either the principal
flow lines ƒvi

through vi coincide , or NR.ƒv1
/\ƒv2

has diameter at most BR.

Proof Observe that by Lemma 2.3, for each singular vertex there exists a unique principal flow line going
through this vertex. Since the automorphism � has no twinned subgroups for the (finite) collection H, if
two principal flow lines are different, they must uniformly diverge as required.

2.7 Periodic points and forward flow rays

In the case of certain special points called periodic points, we have no fellow-travelling of flow rays
between any translates, which we prove below. We will also show that periodic points with flow rays
(lines, in fact) diverging from every principal flow line are dense in edges of T (Lemma 2.18).

A point x 2 T is a periodic point if there exist g D gx 2G and nD nx > 0 such that f n.x/D gx. If x
is periodic, then we will also call each xi 2 Ti a periodic point. We say that the periodic point x 2 T has
period n if f n.x/D gx as above and for all 0 < k < n, f k.x/¤ hx for any h 2G.

Proposition 2.12 For any periodic point xi in Ti , and for each g 2G with gxi ¤ xi , the flow rays from
gxi and xi diverge.

Proof Observe that by Lemma 2.10, the statement has to be proved only for loxodromic elements g.
Since xi is periodic, there is a minimal positive ki and gi 2G such that gixiCki

D .f ki .xi // (which is
in TiCki

). Thus the element gi tki sends xi to f ki .xi / in the flow space. This flow space is hyperbolic,
and this element is loxodromic, since for any x 2 T0, d zX1..gi t

ki /rx; x/� rki (the distance separating T0
from Trki

). It follows that the forward flow from xi remains at bounded distance from ..gi t
ki /nxi /n2N ,

and hence from the axis of .gi tki /. Now, from gxi , the forward flow remains close to the axis of
g.gi t

ki /g�1.

Since the element g is loxodromic on Ti , g and gi tki generate a nonelementary subgroup of isometries
of zX , because their axes eventually diverge. It follows that the limit points of gi tki and of g in the
boundary of zX1 cannot be the same. One concludes that g does not fix the limit points of gi tki , and
g.gi t

ki /g�1 and .gi tki / thus have divergent axes.

Lemma 2.13 For all edges e and e0 in T , there exist n� 0 and g 2G such that f n.e/ contains ge0.

Proof Assume that for some e and e0, for every n, the path f n.e/ does not contains any G-translate
of e0. Note that this means that no G-translate of f n.e/ contains any G-translate of e0. Let W be the
union of all G-translates of all paths f n.e/. Then W is a proper subgraph which is both f -invariant
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and G-invariant. By the irreducibility of f , the quotient of W by G is a (bounded) forest with at most
one nonfree vertex in each component. Thus the quotient of each f n.e/ is a segment with at most one
nonfree vertex. This is not possible as the lengths of f n.e/ are arbitrarily long.

Lemma 2.14 For each � > 0 and each closed subinterval d of any edge e in T of length �, there exists a
periodic point x in d .

Proof Lemma 1.11 of [DL22] ensures that there exists a growth factor �> 1 such that every subsegment
of every edge of T expands under f by �. Thus, given d � e, there exists n such that f n.d/ contains an
edge. The result then follows from Lemma 2.13, by applying Brouwer’s fixed-point theorem.

Let us now observe the following useful facts about periodic points. Given a periodic point x of period n,
the preimage f �n.x/ contains a G-translate of x (Lemma 2.15(1)). One can then define a periodic flow
line through x as the direct limit of forward flow rays from the G-translates of x at the various f �nk.x/.
We will show in Lemma 2.15(2) that a periodic flow line is really periodic, ie there is an infinite subgroup
of � that stabilises the line and acts cocompactly on the line.

Lemma 2.15 Let x 2 T be a periodic point of period n. Then:

(1) There exists g0 2G such that g0x 2 f �n.x/.

(2) The periodic flow line through x is periodic. In particular , principal flow lines are periodic and
stabilised by suspensions of the relevant free factors of G.

Proof (1) Let g 2G be such that f n.x/D gx. Observe that, by equivariance of f , for g0D ��n.g�1/,
g0x 2 f �n.x/. Indeed, f n.��n.g�1/x/D �n.��n.g�1//f n.x/D g�1f n.x/D x.

(2) Consider the flow segment �n.x/ from x 2 T0 to fn�1 ı � � � ı f0.x/ 2 Tn. Recall that the element t
acts by shifting indices, and therefore, fn�1 ıfn�2 ı� � �ıf0.x/D tnf n.x/. This implies that tng.�n.x//
is the flow segment from tngx 2 Tn to tngtnf n.x/ 2 T2n. Using the facts that gtn D tn�n.g/ and
gx D f n.x/, we conclude that tng.�n.x// is the flow segment from tnf n.x/ to t2n�n.g/f n.x/. Since
�n.g/f n.x/D f n.gx/D f 2n.x/, we have that �n.x/ � tng.�n.x//D �2n.x/. It is also easy to check
that the flow segment of length n from t�ng0.x/ is equal to .tng/�1.�n.x//. Thus the periodic flow line
through x is the union over all k 2 Z of .tng/k.�n.x//.

Lemma 2.16 If a periodic flow line is asymptotic to another periodic flow line in one direction , they are
asymptotic in both directions.

Proof We will prove the contrapositive. Assumeƒ0 andƒ00 are periodic flow lines that are nonasymptotic
in the forward direction (the other case is similar). Since they are periodic, there are elements  0 and  00

in the group � (Lemma 2.15(2)) that fix the endpoints of ƒ0 and ƒ00, respectively, in the boundary @ zX1 of
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the hyperbolic space zX1. In particular,  0 and  00 cannot be elements of the same parabolic subgroup of � .
Assume that the backward directions of ƒ0 and ƒ00 converge to the same point of @ zX1. It would follow
that the commutator Œ 0;  00� is in G and has small displacement on infinitely many T�i for i 2N, realised
near the ray ƒ0. Since  0 and  00 have different axes, they do not commute. However, by hyperbolicity of
the automorphism, Œ 0;  00� must be elliptic, and hence it is in a unique conjugate of a free factor of the
free product G. It hence fixes nonfree vertices in each T�i , at bounded distance from ƒ0, and all in the
same principal flow line. It then follows that both ƒ0 and ƒ00 are asymptotic to the same principal flow
line, and therefore that the elements  0 and  00 preserving them fix a point fixed by a parabolic group,
thus ensuring that they are in the same parabolic subgroup, contradicting what we previously had.

Given two flow lines that intersect the tree T0 in x and y, we say that the two flow lines are separated by
the segment Œx; y� in T0. The next statement says that a periodic flow line either diverges from every
principal flow line, or it is asymptotic to a principal flow line which is Hausdorff-close to it in terms of
both distance and angle.

Lemma 2.17 There exist constants ı0 and �0 such that the following holds: Let ƒ be a periodic flow line
in zX and x be its intersection with T0. If a principal flow line ƒ0, with intersection y at T0, is asymptotic
to ƒ, then dT0

.x; y/ � ı0. Further , there exists a principal flow line ƒ00, asymptotic to ƒ and ƒ0, such
that if z 2ƒ00\T0, then for every vertex v in the interior of the segment Œx; z�T0

the angle subtended by
Œx; z�T0

at v is less than �0.

Proof Consider a geodesic Œx; y� zX1 in zX1. By asymptoticity of the biinfinite lines ƒ and ƒ0 in the
hyperbolic space zX1, its length is at most ı. Denote by e1; : : : ; er its consecutive vertical edges, let Tki

be the tree containing ei and write ei D .v
ki

i ; w
ki

i /. Observe that r � ı and jki j � ı for all i .

Since e1 is the first vertical edge, x 2 f �k1.v
k1

1 /, and similarly, y 2 f �kr .w
kr
r /. Take, for all i < r ,

xi 2f
�ki .w

ki

i /. Such a point xi is in T0 and is in f �kiC1.v
kiC1

iC1 /. Therefore, for all i <r , dT0
.xi ; xiC1/�

K jkiC1j, where K is the Lipschitz constant of f . Since for all i , jkiC1j � ı, and r � ı, it follows that
dT0

.x; y/� ıKı .

We turn to the second part of the statement. By Lemma 2.10, for any edge e incident to a vertex w, and
any g 2 Stab.w/, e and ge form a legal turn and so their iterates under f subtend a positive angle at
all f n.w/. Since there are finitely many orbits of edges incident to w, there are only finitely many edges
incident to w that make an illegal turn with e. Since there are finitely many orbits of vertices, there exists
a maximal angle, which we call �0� 1, such that any illegal turn between any pair of edges at any vertex
subtends an angle of at most �0� 1.

Assume now that there exists v 2 Œx; y�T0
such that AngvŒx; y�T0

� �0. We choose v to be closest
to x with this property. Note that, after changing �0 if necessary, v is a singular vertex. Let ƒv be the
associated principal flow line.
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For all n 2N, let us denote by x�n the point f �n.x/\ƒ and by y�n the point f �n.y/\ƒ0. Let us
also write xn D f n.x/, yn D f n.y/, vn D f n.v/ and v�n the point f �n.v/\ƒv.

Since �0� 1 is the maximal angle at an illegal turn, for all n 2N, Angvn
Œxn; yn�Tn

� 1. In particular, vn
is between xn and yn in Tn for all n 2N, and so the principal flow line ƒv is asymptotic to ƒ in one and
hence both directions.

Lemma 2.18 For each � > 0 and each closed subinterval d of any edge e in T of length �, there exists a
periodic point x in d such that the periodic flow line through x diverges from every principal flow line in
both the forward and backward directions.

Proof There are finitely many orbits of vertices, and hence finitely many orbits of periodic lines
containing a vertex. Let n0 be the maximum of their period. If a subinterval d of e is given, one may
take a sufficiently small subinterval d 0 such that its images by f k for k D 1; : : : ; n0 do not meet any
vertex. This, together with the periodicity of periodic points, guarantees that any periodic point in this
subinterval will have a periodic flow line that misses all vertices.

There are only finitely many vertices in the tree T0 that are at distance � ıKıC1 from d with a path that
makes no angle greater than �1. Let N be this number. This produces N principal flow lines.

Consider 2N C 1 periodic points in the subinterval d 0. Since the interval between any two of them is a
legal path, their forward flow rays diverge from each other. Therefore at least one of these periodic points,
say x, belongs to a periodic flow line that diverges from the N principal flow lines in both directions. By
Lemma 2.17 it diverges from all principal flow lines.

3 Relative cubulation

In this section, we will recall the notion of relative cubulation and the boundary criterion for relative
cubulation. We will construct walls in Section 4 for the flow space zX and show in Sections 5 and 6
that the stabilisers in � DG Ì� Z of “wall saturations” satisfy the hypotheses required for the boundary
criterion to hold.

Definition 3.1 [EG20] Let � be hyperbolic relative to a collection of subgroups P. Then .�;P/ is
relatively cubulated if there exists a CAT.0/ cube complex C such that

(1) there is a cubical cocompact action of � on C ,

(2) each element of P is elliptic, and

(3) the stabiliser of any cube of C is either finite or conjugate to a finite-index subgroup of an element
of P.

We call such an action of � on C a relatively geometric action.
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Let us recall a few definitions before stating the boundary criterion for relative cubulation. A subgroup
H �� is relatively quasiconvex (with respect to P) if there exists a constantK such that given h1; h2 2H ,
any geodesic path  between h1 and h2 in the cone-off y� (with respect to P) is such that every noncone
vertex of  is at �-distance at most K from a vertex of H ; see [Hru10; Osi06].

A subgroup H of .�;P/ is full if the intersection of any conjugate of H with any element P 2P is
either finite or is of finite index in P .

A subgroup H of � is a codimension-1 subgroup if for some r � 0, � nNr.H/ contains at least two
orbits of components that are not contained in any finite neighbourhood of H .

Let us also recall a definition (of the many equivalent ones) of the Bowditch boundary of a relatively
hyperbolic group .�;P/: it is a compact metrisable space @B.�;P/ such that

(1) � acts properly discontinuously on the space of distinct triples of @B.�;P/,

(2) each point of @B.�;P/ is either a conical point or a bounded parabolic point, and

(3) the stabiliser of a bounded parabolic point is a conjugate of an element of P.

As a set, @B.�;P/ is the union of the Gromov boundary of the cone-off y� relative to P and the set of
cone vertices of y� . We refer to [Bow12, Section 9] for more details, in particular for the definitions of
conical and bounded parabolic points, which will not be needed here.

The following theorem is implicit in the work of Bergeron and Wise [BW12] and explicitly stated and
proved by Einstein and Groves [EG20].

Theorem 3.2 (boundary criterion for relative cubulation) Let .�;P/ be relatively hyperbolic with
one-ended parabolics. Suppose that for each pair of distinct points u; v 2 @B.�;P/ there exists a full
relatively quasiconvex codimension-1 subgroup H of � such that u and v lie in H -distinct components
of @B.�;P/ nƒH . Then there exists a finite collection of full relatively quasiconvex codimension-1
subgroups such that the action of � on the dual cube complex is relatively geometric.

We note that since our parabolics are suspensions of the infinite free factors of G, they are always
one-ended.

4 Walls in the flow space

4.1 Constructing immersed walls

Our construction of walls starts with that of Hagen and Wise in [HW16], although they work in a locally
finite setup. However, the stabilisers of walls thus obtained would not be full subgroups in general, so we
later “saturate” these walls to obtain full codimension-1 subgroups.
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Let us explain the construction of Hagen and Wise. Fix a fundamental domain D � T for the G-action
on T , ie a smallest subtree that contains exactly one edge from each orbit of edges. In order to construct
immersed walls in zX , we need the following data: a choice of a tunnel length L 2N and a choice of a
subinterval of each open edge of D, called a primary bust.

Choose the tunnel length L 2 N. The immersed wall will be first constructed in zXL and then pushed
to zX via %L W zXL! zX .

Choose a closed subinterval in the interior of each edge of D. This choice extends equivariantly to a
choice of a subinterval dk in every edge ek of T . For each i 2 Z, the copy dk;Li in TLi of each dk � ek
is a primary bust. Note that f �L.dk/ is a union of finitely many subintervals fdkj g � T , by Lemma 2.2.
For each i 2Z, the copy dkj;Li in TLi of each fdkj g is a secondary bust. We will always choose primary
busts satisfying the following:

Lemma 4.1 Let L 2N and � > 0. Let fxkg be a collection of points in D, with exactly one point in any
edge of D. The collection of primary busts in zXL can be chosen so that

(1) every primary bust is disjoint from every secondary bust in the collection ,

(2) the primary busts in D lie in the �-neighbourhood of fxkg,

(3) the flow rays from the endpoints of the primary busts do not meet any vertex of zXL,

(4) if the flow ray from xk does not meet a vertex, then one of the endpoints of the primary bust dk
in D can be chosen to be xk ,

(5) the f L-image of any primary bust does not contain two points in the same G-orbit ,

(6) if f L.xk/¤ f L.xj / whenever k ¤ j , then f L.dk/\f L.dj /D∅.

The lemma is a reproduction of [HW16, Lemma 3.5], whose proof can be replicated in our case. Since
there are several properties to check, the proof is long, but not difficult, based on Brouwer’s fixed-point
theorem. We thus refer the reader to [HW16] for the proof. In fact, (3) can be obtained either by the proof
of Hagen and Wise [HW16], or by applying Lemma 2.18.

Denote by TLiC1=2 D T 0Li � zXL the parallel copy of T at distance 1
2

from TLi and distance L� 1
2

from
T.iC1/L. We will denote by d 0

k;Li
and d 0

kj;Li
, respectively, the copies of dk;Li and dkj;Li in T 0Li . We

refer the reader to Figure 4 for an illustration of what follows.

(1) Consider the subspace CLi of T 0Li obtained by removing each open primary bust and each open
secondary bust in T 0Li . A component NLi of CLi is a nucleus. Note that each nucleus is either a
subinterval of some edge or contained in the star of a vertex.

(2) The endpoints of the nuclei are endpoints of either primary busts or of secondary busts. To each
endpoint of each secondary bust d 0

kj;L.i�1/
in a nucleus, glue a forward flow segment of length L� 1

2
.

Note that this flow segment ends at the primary bust dk;Li . The union of all flow segments which end at
a common endpoint (an endpoint of some dk;Li ) is a level L. Such an endpoint is a forward endpoint.
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Figure 4: A part of a wall in zXL. Brown paths are nuclei, blue paths are levels and green paths are slopes.

(3) Join the endpoints d˙
k;Li

of each primary bust dk;Li to the endpoints d 0�
k;Li

(note the change in order)
of its parallel copy d 0

k;Li
by segments called slopes. A slope is denoted by S .

The graph W L is constructed as a quotient of the disjoint union of the nuclei, levels and slopes, with the
gluing performed in a natural way: an endpoint of a primary bust of a nucleus is glued to an endpoint of
the corresponding slope, an endpoint of a secondary bust in a nucleus is glued to the initial point of the
relevant flow segment of a level, while a forward endpoint is glued to the relevant endpoint of a slope.
There exists a noncombinatorial immersion of the graph W L in zXL, with loss of injectivity at midpoints
of slopes. Let W be the graph obtained from W L by “folding” its levels according to %L so that the
following diagram commutes:

W L
zXL

W zX

%L

A component Wu of W is an immersed wall.3

Remark 4.2 The immersion Wu! zX extends to a local homeomorphism Wu � Œ�1; 1�! zX , with Wu
identified with Wu � f0g. Indeed, this is because the embedding of each nucleus, level and slope of Wu
in zX extends to a local homeomorphism of the above type.

We will denote by N.Wu/1� zX1 the 1-skeleton of the smallest subcomplex of zX that containsWu. When
the tunnel length L is sufficiently large, it turns out that N.Wu/1 ,! zX1 is a quasiconvex embedding
(Proposition 4.6) and that Wu separates zX into exactly two components (Proposition 4.8). Thus the local
homeomorphism of Remark 4.2 is in fact a homeomorphism in that case.

3The subscript u in Wu denotes “unsaturated”, as we will soon saturate Wu in order to obtain a full codimension-1 subgroup.
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Figure 5: A part of a wall saturation. The red line is a principal flow line, with two unsaturated
components (on the left and right) attached.

4.2 Wall saturations

Let Wu be an immersed wall as above, which is a component of the graph W . Fix a saturation length
M 2LN. We will define below the M -saturation W of Wu as a union of components of W and principal
flow lines. We start with a definition:

Let v 2 TLi be a singular vertex. The M -saturation of v is the set ff Mk.v/ 2 TMkCLigk2Z of singular
vertices. (Recall that for each k 2Z, there is a unique singular vertex f Mk.v/, by Lemma 2.3.) By abuse
of notation, for a vertex v in a “fractional” copy T1=2CLi , we will denote by the M -saturation of v the
intersection points of the principal flow line of v in the trees T1=2CMkCLi .

Let v 2 T1=2CLi be a singular vertex in a nucleus of W . Denote by W.v/ �W the smallest union of
components of W such that each vertex in the M -saturation of v is contained in the nucleus of some
component of W.v/.

Let Wu be an immersed wall. Let W 0u �W be the smallest subgraph of W satisfying

� Wu �W
0
u, and

� for each singular vertex v 2W 0u, either the principal flow line of v intersects a component infinitely
many times, or W.v/�W 0u (but not both).

The M -saturation W of Wu is defined as the union of W 0u with the principal flow lines of all singular
vertices of W 0u. We refer the reader to Figure 5 for an illustration.

Lemma 4.3 Let Wu be an immersed wall. For any M 2 LN, the M -saturation W of Wu is a connected
graph.

Proof We will prove the lemma by showing that a certain connected subgraph containing Wu in W is in
fact equal to W . Consider the subgraph W 0 of W built inductively as the ascending union of subgraphs
W n as follows: W 1 DWu. W 2 is the union of each principal flow line intersecting Wu with the union of
all W.v/, where v is a singular vertex in W 1. W n is the union of each principal flow line intersecting
W n�1 along with the union of all W.v/, where v is a singular vertex in W n�1 with the property that
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Figure 6: The approximation of the part of the wall from Figure 4 is indicated in thick orange.

W.v/ � W . Note that W 0 is a connected subgraph of W , by construction. Further, the subgraph W 0u
(introduced in the definition of the M -saturation W of Wu) is contained in W 0. This gives the reverse
containment W 0 �W .

4.3 Approximations of walls

In order to show that families of immersed walls are uniformly quasiconvex, Hagen and Wise use a
technical construction called approximations. Approximations are not walls in zX (they are walls in zXL,
as it turns out), but have the advantage that, unlike immersed walls, they do not have backward flows that
can have long fellow-travelling subpaths.

We will first state the definition of approximations given in [HW16] and then extend their definition to
saturations. Let Wu! zX be an immersed wall of tunnel length L. The approximation A WWu! zX is
defined as below. We refer the reader to Figure 6 for an illustration.

(1) For each x0 2Wu such that x0 lies in a nucleus NLi � TLiC1=2, let x 2 TLi denote the parallel copy
of x0 behind it at distance 1

2
. Then A.x0/ WD f L.x/ 2 TLiCL � zX .

(2) For each x in a level of Wu, A.x/ is the unique forward endpoint of the level.

(3) Let S be a slope in Wu associated to the primary bust d . Recall that S is a segment from an endpoint
dC (say) of d to the other endpoint d 0� of d 0, where d 0 is the parallel copy of d at distance 1

2
. A maps

S homeomorphically to the concatenation of d and the forward flow segment of length L from d�.

Let M 2 LN and let W ! zX be an M -saturation of Wu. The approximation of the M -saturation
A WW ! zX is defined the same way on nuclei, slopes and levels. On each point x of a principal flow line,
by abuse of notation, A.x/ WD f L�1=2.x/.

We will denote by N.A.Wu//1 and N.A.W //1 the 1-skeletons of the smallest subcomplexes of zX
containing A.Wu/ and A.W /, respectively.
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4.4 Large tunnel length and quasiconvexity

In this subsection, we recall results from [HW16, Section 4] towards quasiconvexity of immersed walls.
We note that their methods do not require local finiteness of zX1 and thus work in our case as well, both
for immersed walls and their saturations.

The main lemma that we will repeatedly use is the following. Recall that Nr.Y / denotes the r-
neighbourhood of Y .

Lemma 4.4 [HW16, Lemma 4.3] Let Z be a ı-hyperbolic space and let P D ˛0ˇ1˛1 : : : ˇk˛k be a
path such that each ˛i is a .�1; �2/-quasigeodesic and each ˇi is a .�1; �2/-quasigeodesic. Suppose that
for each R � 0 there exists a BR � 0 such that for all i each intersection below has diameter � BR:

N3ıCR.ˇi /\ˇiC1; N3ıCR.ˇi /\˛i ; N3ıCR.ˇi /\˛i�1:

Then there exists L0 such that if each ˇi is of length at least L0, then the path P is a
�
4�1�1;

1
2
�2
�
-

quasigeodesic.

Let W WD fWu ! zXg be a family of immersed walls in zX . In order to use Lemma 4.4, we need the
following property to be satisfied:

Definition 4.5 [HW16, Definition 3.15] The family of immersed walls W has the ladder overlap
property if there exists B � 0 such that for all Wu 2W and all distinct slopes S1;S2 �Wu,

diam.N3ıC2�.N.A.S1//
1/\N3ıC2�.N.A.S2///

1/� B;

where � is the quasiconvexity constant for forward ladders (Proposition 2.7).

In practice, any family of immersed walls is constructed in the following way: We will first choose a
finite set of periodic points in the fundamental domain D of T such that the flow rays from these points
diverge and do not meet any vertex. The various immersed walls of the family will then be constructed by
choosing tunnel lengths and by choosing primary busts in small neighbourhoods of these periodic points,
with the size of the neighbourhoods depending on the chosen tunnel lengths. The ladder overlap property
will then hold because the finitely many flow rays from the periodic points have bounded overlaps.

Proposition 4.6 Let W be a family of immersed walls satisfying the ladder overlap property. Then
there exist L0, �1 and �2 such that for all Wu 2 W with tunnel length at least L0, the inclusion
N.A.Wu//

1 ,! zX1 is a .�1; �2/-quasiisometric embedding.

We refer to [HW16, Proposition 4.1] for a proof. They show that when tunnels are long enough, the
hypotheses of Lemma 4.4 are satisfied. The same proof works in our case, as Lemma 4.4 works for any
hyperbolic space, not necessarily proper. The main point is that geodesic paths in N.A.Wu//1 can be
written as alternating paths P D ˛0ˇ1˛1 : : : ˇk˛k satisfying the conditions of Lemma 4.4, where each
ˇi is a geodesic fellow-travelling with a forward flow segment of length L� L0.
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We note that the constants depend only on the following data: L0 depends on the quasiconvexity constant�
of nuclei of walls (there is a uniform quasiconvexity constant � as nuclei are either subintervals of edges
or stars of vertices) and the constant B of the ladder overlap property. The constants �1 and �2 depend on
L0 and �, but not on the tunnel length L� L0 of individual immersed walls in W.

Proposition 4.7 Let W be a family of immersed walls with the ladder overlap property. Then there exists
L1 � L0 such that for each Wu 2W with tunnel length at least L1, A.Wu/ is a tree.

This is a consequence of Proposition 4.6: Indeed, any closed path in A.Wu/ has length at most �1�2. Thus
if L1�L0; �1�2C1, then no closed path can contain a forward flow segment from a slope approximation.
This implies that the closed path has to be contained in the intersection of a tree Ti in the flow space with
the approximation of Wu, which is impossible. See [HW16, Proposition 4.4] for a precise proof.

Recall that a wall is a subspace Y � zX such that zX nY has exactly two components, neither of which is
contained in any finite neighbourhood of Y (ie components are deep). We now state the main result of
this subsection:

Proposition 4.8 Let W be a family of immersed walls with the ladder overlap property and let L1 be the
constant from Proposition 4.7. Then for each Wu 2W with tunnel length at least L1, Wu is a wall.

Again, a detailed proof is given in [HW16, Proposition 4.6]. Since the flow space zX is simply connected,
it is enough to show that Wu locally separates (a small neighbourhood) into two components. Using
Remark 4.2, the only place where this can fail is when two distinct slopes intersect in their interior. But
when the tunnel length L is at least L1, such a scenario would contradict the fact that A.Wu/ is a tree.

Proposition 4.9 (approximations of saturations are quasiconvex) Let W be a family of immersed walls
satisfying the ladder overlap property. Then there exists L2 � L1 such that for all Wu 2W with tunnel
length L � L2, there exist M0, ‚1 and ‚2 such that for any M -saturation W of Wu with M �M0L,
the inclusion N.A.W //1 ,! zX1 is a .‚1; ‚2/-quasiisometric embedding.

Proof We will prove the statement by again using Lemma 4.4. Let P be a path in N.A.W //1 such that
P is a concatenation ˛0ˇ1˛1 : : : ˇk˛k , with each ˛i a geodesic in the approximation of a component
subgraph of W and each ˇi a geodesic segment in a principal flow line. By Proposition 4.6, each ˛i
is a .�1; �2/-quasigeodesic, while Proposition 2.7 ensures that each ˇi is a .�1; �2/-quasigeodesic. We
choose tunnel length L large enough so that, in length smaller than L, ˛i and ǰ diverge from each other:
recall that primary bust endpoints are chosen so that their flow rays are not asymptotic to any principal
flow line (Lemma 2.18). By choosing L larger than the minimal divergence distance between the flow
ray of any primary bust endpoint and a principal flow line, we obtain the required bounds.

We also observe that since any immersed wall Wu (respectively its M -saturation W ) of tunnel length L
is at Hausdorff distance L from its approximation A.Wu/ (respectively A.W /), we have:
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Figure 7: The busts in olive are all in a single complementary component.

Lemma 4.10 For any wall Wu (with M -saturationW ), the limit sets in @ zX1 of N.Wu/1 and N.A.Wu//1

coincide , as do those of N.W /1 and N.A.W //1.

Lemma 4.11 Let d and d 0 be primary busts such that for some m;m0 2 Z, we have d � TmL and
d 0 � Tm0L, and one of the endpoints of each of d and d 0 is contained in Wu. Then the interiors of d
and d 0 lie in the same complementary component of Wu.

Proof For the purposes of this argument, we endow Wu with a graph structure where the vertices are
vertices of nuclei and the endpoints of various primary and secondary busts. Edges consist of forward
flow segments in levels, slopes and segments in nuclei between vertices. Let us assume that d � T0 and
let P be a (geodesic) path in Wu between the endpoints of d and d 0. The edge of P with endpoint dC

(say), which is either a slope starting at dC or a forward flow segment ending at dC, leads to a nucleus N

in a “fractional” tree T1=2 or T�LC1=2. Except for the central vertex, every vertex of this nucleus is the
endpoint of either a primary bust or of a secondary bust. In the latter case, note that each such secondary
bust (in this fractional copy of T ) meets the same complementary component C as d (see Figure 7),
and thus flowing such a secondary bust to a primary bust in TL or T0 (along an edge of Wu without
crossing it) will not lead to a change of components. In the former case, the primary bust in the fractional
copy, with an endpoint in N , is not in C , but travelling back along the slope will lead to its parallel copy
(in either T0 or T�L), and this primary bust is contained in C . One can now proceed by induction on the
distance between d and d 0 to obtain the desired result.

Proposition 4.12 Let Wu 2W be an immersed wall with tunnel length at least L2 (from Proposition 4.8).
Then Stab.Wu/ < � is a codimension-1 subgroup that stabilises each complementary component of Wu
and acts cocompactly on Wu.

Proof Complementary components are not flipped: as a consequence of Lemma 4.11, if  2 Stab.Wu/
and C is a complementary component of Wu, we have that C D C .
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Let us show cocompactness. Recall (from Section 4.1) that Wu is a component of the graph W . For a
point x 2 zX such that x 2W (the image of W , to be precise), denote by W.x/ the component of W that
contains x. Observe that for two points x; y 2W , W.x/DW.y/ if and only if y 2W.x/ (and x 2W.y/).

Let L be the tunnel length of Wu. Denote by �L the subgroup of � generated by G and tL. We first note
that, by the equivariant choice of primary busts, and the fact that no primary bust intersects any secondary
bust (Lemma 4.1(1)), the action of �L on the flow space restricts to an action on W .

Let x 2Wu. Let us denote by H <� the stabiliser of Wu. For an element  2 �L, we observe that  2H
if and only if x 2Wu. Indeed, x 2Wu if and only if WuDW.x/DW.x/, with the latter being equal
to W.x/. Let us denote by X the compact quotient of zX by the action of � . Observe that X is the
mapping torus of the compact graph GnT by the map induced by f . There are finitely many images
in X of busts and nuclei of Wu, and hence the image of Wu in X is compact. This implies that H acts
cocompactly on Wu.

Finally, we show that Stab.Wu/ has codimension 1. There is a continuous equivariant collapse map from
a Cayley graph of � to zX1 which crushes free factors of G to points. Since Wu separates zX into deep
components, so does its preimage in � , giving us the desired result.

Note that if Wu is a wall, then any M -saturation of Wu separates zX1 into several deep components and
therefore separates the boundary @ zX1. In fact:

Proposition 4.13 Let Wu 2W be a wall with tunnel length at least L2 (from Proposition 4.9). Then there
exists L3 � L2 such that for all L> L3 and for all M large enough , the stabiliser of the M -saturation
W of Wu is a relatively quasiconvex full subgroup. Further , W separates the flow space into at least two
deep components.

Proof To prove separation with deep components, sinceWu itself is of codimension 1 by Proposition 4.12,
it suffices to find, for each deep component of zX nWu, a ray starting at a point of Wu, entering the given
component, and never encountering W again. To do that, it suffices to find a ray avoiding all the principal
flow lines issued from Wu, and diverging from each of them within 1

10
M of distance from Wu. Since zX

is nonelementary hyperbolic and principal flow lines are disjoint and diverge from each other in bounded
time, it is possible to find such a ray, provided M is sufficiently large compared to ı.

Since W is quasiconvex, an application of [EGN21, Theorem 1.2] implies that the stabiliser of W is
relatively quasiconvex in � . Let us show that Stab.W / is also full. To this end, consider a principal
flow line ƒ whose associated parabolic group (a suspension of a vertex stabiliser in T0 by an element
translating along ƒ) intersects Stab.W /. We want to show that Stab.W / contains a finite-index subgroup
of the parabolic group. For this it is sufficient to show thatƒ intersectsW , since in that case, the saturation
property of W ensures that W is stabilised by such a subgroup.

Thus, let Stab.W / intersect Stab.ƒ/. We distinguish whether the intersection contains an element
translating along ƒ or an element fixing a vertex in ƒ.
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First assume that Stab.W / contains an element of � which acts loxodromically on ƒ. This implies that a
finite neighbourhood of W contains ƒ. Since every pair of principal flow lines diverge, either a vertex of
ƒ is contained in W (and we are done, by the property of saturations), or there exists a periodic union of
tunnels, slopes and nuclei of W that fellow-travels with ƒ. Assume the latter. If there exists a singular
vertex (of some nucleus) in this periodic union, then the no twinning property ensures a contradiction.
Let  be translating along ƒ, and such that k stabilises W (for some large k). Let x 2W be near ƒ, and
consider a shortest path p in W from x to kx 2W . Since W is assumed not to cross ƒ, the path p does
not contain an arc of ƒ. Thus p consists of nuclei, slopes and levels, and is a quasigeodesic that must
remain close to ƒ. Note that p does not contain any piece of a principal flow line by the no twinning
assumption. Since p moves from a tree Tr to a tree TrCk for some large k, there must be a level in p.
As a subpath of p, it travels close to ƒ. But a level is a piece of a periodic flow line, and by our choice
of primary bust endpoints (Lemma 2.18) and large tunnel length, levels diverge from any principal flow
line ƒ. Hence p does not stay close to ƒ, as promised.

Assume now that the stabiliser of W contains an elliptic element g, fixing some vertex v of T0. Let
x 2 T0 be in W so that for each n 2 Z, gnx 2 W . Since the T0-distance between gmx and gnx is
bounded for all m and n (it equals twice the T0-distance between x and v), there exists K � 0 such that
any geodesic path ˛m;n in the quasiconvex space W between gmx and gnx does not meet Ti for i > K.
We flow each such geodesic to TK to obtain a path in TK between f K.gmx/ and f K.gnx/. Observe
that there is a uniform bound on the length of each such path. Thus, up to taking a subsequence, there is
an infinite valence vertex of TK contained in each of the flowed paths between f K.gmx/ and f K.gnx/.
By equivariance of f , this vertex w is fixed by �K.gn/. By uniqueness of vertex stabilisers under the
G-action on TK , we have w D f K.v/. We claim that this implies that infinitely many of the paths ˛m;n
intersect the principal flow line ƒv of v. Indeed, by Lemma 2.3 the intersection of the backward flow
of w with the trees Ti intersects the infinite collection ˛m;n in a finite set. Let w0 2 Ti be one such point
that lies in infinitely many ˛m;n. If w0 is in ƒv , we are done. If not, then by equivariance, we again have
that w0 is stabilised by �i .gk/ for infinitely many k, a contradiction.

4.5 Many effective walls

Recall that D � T denotes the fixed fundamental domain.

Definition 4.14 Using the terminology of [HW16], we say zX has many effective walls if the following
two conditions are satisfied:

(1) For each y 2 D � T0 such that the flow ray from y does not meet a vertex, there exists a set W
of immersed walls with the ladder overlap property such that for every � > 0, there exists Wu 2W of
arbitrarily large tunnel length L and a primary bust in the �-neighbourhood of y. We will call such a set
of walls a regular effective set of walls.
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(2) For each periodic point a 2D, there exists kD k.a/ and a set of immersed walls Wa with the ladder
overlap property such that for each primary bust d 0 � T 0 D T1=2 that is joined to a0 D a1=2 2 T 0 by a
path in Wu disjoint from the slopes of Wu, we have that d zX1.f

n.a/; f n.d// � 3ıC 2�, for all n � k.
We will call such a set of walls a periodic effective set of walls.

Let us comment on why one needs the property of many effective walls. The full details are available
in [HW16, Section 5]. For a hyperbolic group to admit a proper cocompact cubulation, the boundary
criterion of [BW12] stipulates that every pair of distinct points in the boundary of the group (equivalently,
the limit set of every biinfinite geodesic of zX1 in the setup of [HW16]) should be separated by the limit
set of a quasiconvex codimension-1 subgroup (equivalently, a quasiconvex wall in zX1). Having many
effective walls assures that this can be done in zX1. Indeed, there are two types of biinfinite geodesics
in zX1, “horizontal” geodesics and “nonhorizontal” geodesics, which we define below. If zX1 has many
effective walls, then each horizontal geodesic is cut by a wall from a periodic effective set, while each
nonhorizontal geodesic is cut by a wall from a regular effective set.

Definition 4.15 (geodesic classification) Let N > 0. A biinfinite geodesic  in zX1 is N -horizontal
(N -ladderlike in [HW16]) if there exists a forward flow segment � of length N such that a geodesic
of the forward ladder N.�/ joining the endpoints of � fellow-travels with a subpath of  at distance at
most 2ıC�. Here ı is the hyperbolicity constant of zX1 and � is the quasiconvexity constant of forward
ladders (Proposition 2.7). Otherwise,  is N -nonhorizontal (N -deviating in [HW16]).

Theorem 4.16 The flow space zX has many effective walls.

This is proved in [HW16, Theorem 6.16], to which we refer the reader for a detailed proof. The main
ingredients of their proof, which are available in our case as well, are the facts that periodic points
are dense in T (Lemma 2.14) and that flow rays starting from translates of a periodic point diverge
(Proposition 2.12). With these ingredients at hand, here is a brief sketch of the proof. The first condition
of Definition 4.14 can be verified by first choosing a periodic point in an �-neighbourhood of the given
point y and then choosing one periodic point in each edge of D so that pairwise, their flow lines diverge.
This will ensure that the ladder overlap property holds when primary busts are chosen in small enough
neighbourhoods of these points, depending on the tunnel length. The family of walls is now constructed
by choosing tunnel lengths to be large common multiples of the periods of the chosen periodic points, and
choosing primary busts as above. To verify the second condition, we choose one periodic point per edge
of D as above, including one for the edge containing a, while ensuring that pairwise, the flow lines of the
periodic points and of a diverge. The family of walls is then constructed as done for the first condition.

Let us conclude this section with another property that will be useful in the next section. Following
[HW16], we say zX is level-separated if for each N >0 and K � 0, and each N -nonhorizontal geodesic  ,
there exists a point y 2 zX such that the backward flow of length n meets  in an odd-cardinality set for all
large n, and the intersection is at distance at least N CK from both y and the leaves of the backward flow.
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Lemma 4.17 The flow space zX is level-separated.

In order to prove this statement, we will make use of an R-tree T1 obtained as a limit of the trees Tm in
the flow space with metrics dm D d jTm

=�m, where � is the (maximal) stretching factor of the train track
map f . We will not go into details, but refer the reader to [HW16, Section 6; Hor17] . Formally, T1 is
an ultralimit; its points are equivalence classes of sequences of points in the Tm. In particular, to each
point in T0 (and in zX ), its flow ray defines a point in T1. This defines a tautological map � W zX ! T1.

The main points we will use are easy facts: that the map � W zX!T1 is continuous, restricts to an isometric
embedding on any vertical edge (as f is a train track map) and that the preimage of any point in T1
consists of points whose forward flow rays either intersect or remain at bounded Hausdorff distances
from each other.

Proof Let  W R ! zX1 be an N -nonhorizontal geodesic. Observe that the flow-like parts of  are
horizontal segments starting and ending at vertices and that the vertical parts are paths in trees Tk . Since 
is N -nonhorizontal, it maps infinitely many unit subintervals of R to vertical edges, which we call
“vertical” subintervals.

First, we make a slight change. Let vert be the union of paths defined on the vertical subintervals of  ,
but now reparametrised on R.

Let 1 D � ı vert W R! T1 be the image of vert (and also of  , in fact) in T1. Call vert.s/ a “flat”
point if s is a point of discontinuity for vert. Observe that this happens only when .s/ is the starting
point in  of a horizontal segment, and that there are only countably many flat points. Since all points in
any horizontal segment have the same flow, all such points have the same image in T1. Therefore the
map 1 WR! T1 is continuous, and in fact, 1-Lipschitz.

Further, there exists D such that the preimage of a point in 1 is of diameter �D. Indeed, if s1 and s2
have the same 1-image, observe that vert.s1/ and vert.s2/ correspond to points in the image of 
which fellow-travel a forward flow segment. Since  is N -nonhorizontal, there exists a D as required.

In fact, the same argument shows that 1.RC/ and 1.R�/ have infinite diameter and go to ends 1
C

and 1� of T1, respectively. Note that, by the bound on the diameter of preimages, 1
C
¤ 1� . In

particular, there are uncountably many points that cut 1.R/ into two unbounded components, with each
such point contained in 1.R/ (as T1 is an R-tree).

Let us now show that there exists D0 such that the preimage of a point under 1 has cardinality at
most D0. Indeed, if there are many points in the preimage, there must be many in the same tree Tk , and
their diameter being bounded, either they accumulate or have to be placed so that there is a vertex and
a huge angle to reach them. Accumulation is not permitted since all edges are stretched by the scaling
factor (more precisely, we are guaranteed that two points in the same edge are flown to different points
of T1). Also for two points separated by a huge angle, we already noticed that their flow lines cannot
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fellow-travel (see Proposition 2.9), and hence they must diverge with speed defined by the stretch factor �,
thus defining different points in the limit tree T1.

Call 1.s/ a “backtrack” point if there are two intervals Œs�; s/ and .s; sC� that are sent by 1 to the
same component of T1 n f1.s/g.

Observe that since the map � is injective on edges, if 1.s/ is a backtrack point, then vert.s/ is a vertex.
Therefore there are countably many backtrack points in 1.

There are two kinds of backtrack points: those such that the component of the intervals Œs�; s/ and .s; sC�
contains both the ends 1

C
and 1� , and those that don’t. For the former, take the centre of the tripod

.1
C
; 1� ; 

1.s//, and call it a “crossroad” point.

There are countably many backtrack points, so the union of flat points, backtrack points and crossroad
points is a countable set.

Pick a point � in 1.R/ that is not a backtrack point nor a crossroad point nor a flat point, and such that �
separates 1.R/ in two infinite components. Since it is not a backtrack point, there is a well-defined
direction of crossing � at each preimage s (a small interval around s such that .s�; s/ and .s; sC/ are sent
on different sides of �, each containing only one of the ends 1

C
and 1� ).

Since preimages in vert are finite, for � there can only be an odd number of preimages in vert. Since � is
not a flat point, it has the same (odd) number of preimages in both  and vert. Then at least one of the
points x in the preimage is such that for a large n, if y D f n.x/, then the backward flow of large enough
length from x meets  in an odd-cardinality set, with the intersection at a large distance from y and the
leaves of the backward flow, as required.

5 Cutting principal flow lines and geodesics by wall saturations

In this section, we will show that three types of subsets of zX1 are separated by the saturations of walls.
In [HW16], they show that all biinfinite geodesics are separated by (unsaturated) walls. For relative
cubulation (see Section 3), we will need more: that saturations of walls also separate principal flow lines
from geodesic rays and pairs of principal flow lines.

Let us begin with a tautological observation in preparation for the future coning-off of principal flow lines:

Lemma 5.1 Let Wu be a quasiconvex wall in zX and W an M -saturation of Wu. Then for each principal
flow line ƒ of a singular vertex , either ƒ � W or the two points of @ƒ lie in a single component
of @ zX1 n @W .

We will also need the notion of “cut” in order to disconnect points in the Bowditch boundary:
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Figure 8: Proof of Proposition 5.3. The geodesic  hits the approximation of a slope of Wu. The
red dotted line indicates a flow line in the saturation of Wu.

Definition 5.2 Let Wu be a quasiconvex wall in zX and let W be an M -saturation of Wu. Let A be a
quasiconvex subspace of zX1 such that @A has at least two points. We say that W cuts A if

(1) @A\ @W D∅ (as subsets of @ zX1), and

(2) @W separates @A, ie @A nontrivially intersects at least two components of @ zX1 n @W .

5.1 Cutting geodesics

Recall that there are two types of geodesics (see Definition 4.15) in zX1. In this subsection, we will show that
for each geodesic line that is not a principal flow line, there exists a wall whose saturation cuts the geodesic.

Proposition 5.3 Let  WR! zX1 be an N -nonhorizontal biinfinite geodesic in the flow space. Then there
exists a quasiconvex wall Wu! zX and an M -saturation W of Wu such that W cuts  .

Proof Proposition 5.18 of [HW16] shows that in this case, there exists a quasiconvex wall Wu which
separates @ . Let us quickly explain the idea behind their proof. We refer the reader to Figure 8 for an
illustration of what follows. We choose a wall Wu from a regular effective set of walls (Definition 4.14(1))
with tunnel length L sufficiently larger than N , while ensuring that the approximation A.S/ of some
slope S of Wu intersects a vertical segment of  in an odd number of points (in the interior of some
vertical edges), and far away from the endpoints of A.S/ (arguing exactly as in [HW16] while using
Lemma 4.17 for level separatedness). Such a Wu exists because of Theorem 4.16. The fact that  is
N -nonhorizontal will ensure that  does not have long subpaths which .3ıC2�/-fellow-travel with Wu
(as the tunnel length L of Wu is much larger than N ). This implies, by Lemma 4.4, that the union of 
and N.A.Wu//1 quasiisometrically embeds in zX1 and thus @Wu is disjoint from, and separates, @ in
@ zX1.

We now chooseM 2LN sufficiently large, and letW be theM -saturation ofWu. Since @Wu separates @ ,
and Wu �W , in order to show that @W also separates @ , it suffices to show that @ is disjoint from @W ,

Algebraic & Geometric Topology, Volume 25 (2025)



Cubulating a free-product-by-cyclic group 1591



a

Wu A.Wu/

Figure 9: Proof of Proposition 5.4. The geodesic  is cut along a nucleus of Wu at a. The red
dotted line indicates the principal flow line ƒa.

and for that it suffices to show that the union of  and N.A.W //1 quasiisometrically embeds in zX1.
Since we already know that the union of  and N.A.Wu//1 quasiisometrically embeds in zX1 and that the
saturation consists of translates of Wu that are at distance larger than M from each other, and of principal
flow lines between them, a failure of quasiconvexity for the union of  and N.A.W //1 would mean
that  fellow-travels with a principal flow line for a long distance (at least M by definition of saturation).
This contradicts the N -nonhorizontality of  .

Proposition 5.4 Let  WR! zX1 be a biinfinite geodesic in the flow space such that

(1)  is N -horizontal for all large N , and

(2) no ray of  is asymptotic to any ray of a principal flow line.

Then there exists a quasiconvex wall Wu! zX and an M -saturation W of Wu such that W cuts  .

Proof Proposition 5.19 of [HW16] ensures that there exists a quasiconvex wall Wu which separates
@ ; the wall Wu is chosen from a periodic effective set of walls Wa (Definition 4.14(2)) so that, up
to translation, the point a in the nucleus of Wu intersects  roughly in the middle of a long horizontal
subpath of  , whose length is much bigger than the tunnel length of Wu (Figure 9). Such a Wu exists,
again, by Theorem 4.16. By the way Wu was chosen, slope approximations of Wu do not have long
.3ıC2�/-fellow-travelling subpaths with the flow line of a, and therefore with  . Lemma 4.4 now ensures
that the union of  and N.A.Wu/1/ quasiisometrically embeds in zX1. Therefore @Wu is disjoint from,
and separates, @ in @ zX1.

In order to prove the proposition, we will now choose an M -saturation W of Wu with M much larger
than the length of the maximal subpath of  that .3ıC2�/-fellow-travels with the principal flow line ƒa
through a. Observe that this maximal subpath is bounded as @ is disjoint from @ƒa. An application of
Lemma 4.4 now shows that the union of N.A.W //1 with  is a quasiisometric embedding and thus W
cuts  .

5.2 Separating geodesics from principal flow lines

In this subsection, we will show that the union of a principal flow line and a geodesic ray is cut by a wall.
More precisely:
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Figure 10: The wall Wu is chosen so as to hit the geodesic ray  far from the principal flow line ƒ.

Proposition 5.5 Let ƒ be a principal flow line and  be a geodesic ray starting at some point on ƒ.
Suppose that  and ƒ are not asymptotic. Then there exists a quasiconvex wall Wu ! zX and an
M -saturation W of Wu, such that

(1) W does not separate @ƒ, and

(2) W cuts ƒ[  .

Proof Let p 2 ƒ be the starting point of  . Denote by ƒC and ƒ� the two geodesic subrays of ƒ
starting at p. Denote the endpoints at infinity of these rays by ƒC.1/, ƒ�.1/ and .1/. Let � be the
maximal Gromov product at p D .0/ of .1/ and ƒ˙.1/. Then both the concatenations  [ƒ˙ are
.1; 2�C10ı/-quasigeodesic lines. We will now choose a quasiconvex wall Wu (see Figure 10) such that

(1) Wu\ . [ƒ�/DWu\ . [ƒC/�  ,

(2) the union of the quasigeodesic lines  [ƒ˙ with N.A.Wu/1/ embeds quasiisometrically, and

(3) @Wu separates .1/ from ƒC.1/ and ƒ�.1/.

The choice of Wu that will work for us is a wall given by either Proposition 5.3 or 5.4 depending on
whether or not  is N -horizontal for all N .

Let � be the quasiconvexity constant from Proposition 2.7, and � as before. Let � and L be the
quasiconvexity constants for N.A.Wu//1 and the tunnel length of Wu, respectively, for such walls,
as guaranteed by Proposition 4.6. We choose Wu so that Wu intersects  at points at distance much larger
than 2�C 20ıC 2�C�CL from p.

Thanks to the large distance between the point p andWu\ , Lemma 4.4 says that the union ofN.A.Wu/1/
with  [ƒ embeds quasiisometrically and both Wu and A.Wu/ are disjoint from ƒ. This implies that
@Wu does not separate @ƒ. We now choose an M -saturation W of Wu with M much larger than the
maximal .3ıC2�/-fellow-travelling length between pairs of principal flow lines. This choice ensures, yet
again by Lemma 4.4, that W is disjoint from ƒ and therefore cuts  [ƒ but does not separate @ƒ.
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5.3 Cutting pairs of principal flow lines

Proposition 5.6 Let ƒ1¤ƒ2 be two principal flow lines. Then there exists a quasiconvex wall Wu! zX
and an M -saturation W of Wu such that

(1) W cuts ƒ1[ƒ2, and

(2) @W does not separate @ƒi .

Proof Let  be a geodesic segment between ƒ1 and ƒ2. Note that  contains at least one vertical edge e,
sinceƒ1¤ƒ2. By Lemma 2.18, there exists a periodic point x in the edge e such that the periodic flow line
ƒx is disjoint from the linesƒi and diverges fromƒi in both the forward and backward directions. We now
choose an immersed wall Wu from a regular effective set (Definition 4.14(1)) and satisfying the following:

(1) Wu has tunnel length L much larger than the .3ıC2�/-fellow-travelling length of ƒx with each ƒi ,

(2) the intersection of ƒx with the approximation A.Wu/ is a segment of length L with centre x,

(3) the approximation A.Wu/ intersects the edge e at the singleton fxg and the geodesic  in an odd
cardinality set, and

(4) the intersection of the unionƒ1[ƒ2[ withA.Wu/ coincides with the intersection of  withA.Wu/.

Such a Wu exists as zX is level-separated (Lemma 4.17) and has many effective walls (Theorem 4.16).
Property (1) above allows us to apply Lemma 4.4 to the union ofƒ1[ƒ2[ withN.A.W //1 and conclude
that it is a quasiisometric embedding in zX1. Therefore @Wu is disjoint from, and separates, @.ƒ1[ƒ2/.
Further, by (4), it does not separate @ƒi . We now choose an M -saturation W of Wu for M much larger
than L. By applying Lemma 4.4 again and arguing as above for Wu, we obtain the desired result.

6 Separating pairs of points in the Bowditch boundary

The goal of this section is to show that the mapping torus � D G Ì� Z satisfies the hypothesis of
Theorem 3.2. Recall that � is hyperbolic relative to the collection P consisting of the suspensions of the
free factors Hi of G.

We first make two observations connecting the Gromov boundary of the flow space zX1 with the Bowditch
boundary @B.�;P/. We denote by czX1 the cone-off of the (1-skeleton of the) flow space zX1 over the set
of principal flow lines. Recall also that y� denotes the cone-off of � relative to P.

As a consequence of the relative Švarc–Milnor lemma [CC07, Theorem 5.1], we obtain:

Proposition 6.1 The cone-off czX1 is �-equivariantly quasiisometric to the cone-off y� .

Let ˇ W zX1! czX1 denote the inclusion map from the flow space to its cone-off. We will denote by @ˇ the
induced map from @ zX1 to the Bowditch boundary @B.�;P/. Observe that @ˇ maps the limit points of
any principal flow line ƒ to the corresponding cone vertex vƒ. In fact:
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Corollary 6.2 The map @ˇ W @ zX1! @B.�;P/ is continuous and surjective. Further , for all � 2 @B.�;P/,
@ˇ�1.�/ is either a singleton or contains two points. The latter arises if and only if � is a cone vertex.

Proposition 6.3 If � and � are points in @ zX1 that are preimages of conical limit points of the Bowditch
boundary, then there exists a geodesic line in zX1 joining them.

If � 2 @ zX1 is the preimage of a conical limit point of the Bowditch boundary , and z0 a vertex in zX , then
there exists a geodesic ray from z0 that converges to �.

Proof Let .xn/ and .yn/ be sequences of vertices in zX going to � and �, respectively, and let Œxn; yn� be
a geodesic in zX1. Let z0 2 T0 minimise the Gromov product .�; �/z0

2N, and let R0 be the minimum.

Let B.z0; R/ be the ball of zX1 of radius R centred at z0. We aim to prove that for all R>R0, there exists
m2N such that fB.z0; R/\Œxn; yn� jn>mg is a finite collection of segments of length�2R�2R0�10ı.

First, for n large enough, B.z0; R/\ Œxn; yn� is indeed such a segment, otherwise one easily gets that
.�; �/z0

>R0.

If for some R the collection is infinite, let k be such that in Tk the intersection Tk\B.z0; R/\ Œxn; yn� is
an infinite collection of segments as n varies (since horizontal segments are determined by their endpoints,
such a k exists). Let zk 2 Tk , and let un be in Tk \B.z0; R/\ Œxn; yn�. Assume that the maximal angle
of Œzk; un�Tk

goes to infinity with n. Let vk be the closest vertex to zk at which the angle goes to infinity.
Then the same is true for the initial vertical segment of either Œzk; xn� or Œzk; yn�. It follows that either
.xn/ or .yn/ converges to a point that is an image of the parabolic point of the principal flow line of vk ,
contrary to our assumption.

The number of subsegments of Œxn; yn� around z0 of a given length is therefore bounded when n
varies. One can thus diagonally extract subsequences such that, inductively, for each given length, the
subsegments of this length of Œxn; yn� around z0 make a constant sequence. We thus obtain a biinfinite
geodesic between � and � in zX .

The second assertion is obtained with a similar argument.

Proposition 6.4 Let � and � be two distinct points in the Bowditch boundary, and let W be the M -
saturation of a quasiconvex wall Wu such that W cuts a geodesic between ˇ�1.�/ and ˇ�1.�/. Then
@ˇ.@W / D @Stab.W / separates � and � and there exists a subgroup K of index at most 2 of Stab.W /
such that � and � are in K-distinct components of @B.�;P/ n @ˇ.@W /.

Let us mention a word of caution here. Though Stab.W / is a codimension-1 subgroup (Proposition 4.13)
of � , the statement above is necessary because, in general, a codimension-1 subgroup need not separate
the Bowditch boundary. As an example, take the cyclic subgroup P D haba�1b�1i of the free group
F.a; b/ with peripheral structure P D P . Here P is a maximal parabolic subgroup that is full, relatively
quasiconvex and codimension-1, but does not separate the Bowditch boundary, a circle.
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Proof Let � and �, and Wu be as in the statement, and Q� and Q� be two points in zX1 in the preimages
@ˇ�1.�/ and @ˇ�1.�/, respectively. Let U� and U� be a clopen partition of @ zX1 n@W containing Q� and Q�,
respectively. Consider points in @ zX1 identified in @B.�;P/. By Corollary 6.2 they are at the end of the
same principal flow line, and by Lemma 5.1, if one is in U� , so is the other one. It follows that the map
@ˇ sends U� and U� on disjoints subsets @ˇ.U�/ and @ˇ.U� / of @B.�;P/n@ˇ.@W /. By surjectivity, they
provide a partition of @B.�;P/ n @ˇ.@W /, each containing � and �, respectively.

We need to check that both @ˇ.U�/ and @ˇ.U� / are closed. By symmetry, it is enough to check that one
is closed. If a sequence .xn/ in @ˇ.U�/ converges in @B.�;P/ n @ˇ.@W /, lift it to a sequence .x0n/ in
@ zX1 n @W . Since @ zX1 is not compact, the sequence .x0n/ may or may not have an accumulation point. If
it does, then the fact that U� is closed, along with the continuity of @ˇ, gives us the necessary conclusion.
Now consider the case where it has no accumulation point in @ zX1. If x0n is a point represented by a
ray �0n in zX1 nW (from a given basepoint) that lives in the component of which � is adherent, it means
that, up to taking a subsequence, all the rays �0n pass through a singular vertex, and make an angle �n at
that vertex such that �n!1 with n. Take v to be the closest singular vertex to the basepoint with this
property. The limit of .xn/ in @B.�;P/ n @ˇ.@W / is then the parabolic point associated to the principal
flow line of this vertex v. Since the rays live in the component of zX1 nW adherent to �, this principal
flow line has at least one endpoint not in U� . By the property of saturations, either both endpoints are
in U� , or both are in @W , and in that case the limit of .xn/ is in @ˇ.@W /, which we assumed otherwise.
So both points of the line are in U� , and their images, which are the limit of .xn/, are in @ˇU� . Therefore
this set is closed.

Therefore � and � are separated by @ˇ.@W /, which is @Stab.W /, since the action of the latter is cocompact
on W .

Fix a basepoint in the complement of W . Let A be the union of components C of zX nW such that
there is a path from the basepoint to C that crosses the set W 0u an even number of times. Recall that W 0u
is the complement in W of the set of its principal flow lines. We note that zX nW is thus partitioned
into two subsets: A and its complement, which we denote here by B . Since the stabiliser of W sends
complementary components of W to complementary components, it preserves this partition of W into A
and B . Therefore there exists a subgroup of index at most 2 which preserves A (and hence also B).

By the way the saturation W of Wu cuts the preimages of � and � (as in Proposition 5.3, 5.4, 5.5 or 5.6),
it is easy to see that � and � do not both lie in the limit set of A, or in the limit set of B , which gives us
the desired result.

We now prove the main result Theorem 1.1, namely, in our current notation, that the relatively hyperbolic
group .�;P/ is relatively cubulated:

Proof of Theorem 1.1 We will show that the boundary criterion Theorem 3.2 holds. Let � ¤ � be two
points in the Bowditch boundary @B.�;P/. We have three cases:
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Case 1 (both � and � are conical points) By abuse of notation, we denote by � and � the unique
preimages in @ zX1 of � and � (Corollary 6.2). Let  be a geodesic in zX1 joining � and � as given by
Proposition 6.3. Then Propositions 5.3 and 5.4 ensure that there exists a wall saturation W that cuts  .
An application of Proposition 6.4 gives the desired result.

Case 2 (without loss of generality, � is conical while � is parabolic) We consider a geodesic ray 
in zX1, between a vertex of the principal flow line ƒ associated to � and the preimage of �, as given
by Proposition 6.3. Proposition 5.5 ensures that the union of  and ƒ is cut by a wall saturation W .
Proposition 6.4 then gives the result.

Case 3 (both � and � are parabolic points) Proposition 5.6 ensures that the principal flow lines associated
to � and � are cut by a wall saturation W . The result then follows from Proposition 6.4.
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Virtual domination of 3-manifolds, III

HONGBIN SUN

We prove that for any oriented cusped hyperbolic 3-manifold M and any compact oriented 3-manifold N

with tori boundary, there exists a finite cover M 0 of M that admits a degree-8 map f WM 0!N , ie M

virtually 8-dominates N .

57K32, 57M10; 30F40

1 Introduction

We assume all manifolds are compact, connected and oriented, unless otherwise indicated. By a cusped
hyperbolic 3-manifold, we mean a compact 3-manifold with nonempty tori boundary, such that its interior
admits a complete hyperbolic structure with finite volume, unless otherwise indicated.

For two closed oriented n-manifolds M and N , and a map f WM !N , a natural quantity associated to
f is its mapping degree. The mapping degree of f is d 2Z if f�.ŒM �/D d ŒN � for oriented fundamental
classes ŒM �2Hn.M IZ/ and ŒN �2Hn.N IZ/. The notion of mapping degree can be generalized to proper
maps between manifolds with boundary. For two compact oriented n-manifolds M and N with boundary,
a map f WM !N is proper if f �1.@N /D @M . The mapping degree of a proper map f WM !N is
d 2 Z if f�.ŒM; @M �/D d ŒN; @N � for oriented relative fundamental classes ŒM; @M � 2Hn.M; @M IZ/

and ŒN; @N � 2Hn.N; @N IZ/. In either of the above cases, f is a nonzero degree map if the degree of f
is not zero. If the mapping degree d ¤ 0, we say that M d -dominates N , and we say that M dominates
N if M d-dominates N for some nonzero integer d . In this paper, we will work on 3-manifolds with
nonempty boundary, and all maps f WM !N between such 3-manifolds are proper, unless otherwise
indicated.

Roughly speaking, if M dominates (or 1-dominates) N , then M is topologically more complicated
than N . For certain invariants of manifolds, eg ranks of fundamental groups, Betti numbers, simplicial
volumes, representation volumes, etc, this impression on behavior of topological invariants under nonzero
degree maps (or degree-1 maps) forms classical results. However, for some other invariants, eg Heegaard
genera and Heegaard Floer homology of 3-manifolds, it is unknown whether the above impression is
correct.

Carlson and Toledo [7] asked whether there is an easily described class C of closed oriented n-manifolds,
such that any closed oriented n-manifold is dominated by some M 2 C. Gaifullin [9] proved that, for any
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positive integer n, there exists a closed oriented n-manifold M0, such that any closed oriented n-manifold
is dominated by a finite cover of M0 (virtually dominated by M0), ie we can take C to be the set of all
finite covers of M0. In [14; 19; 23], the author and Liu proved the following result.

Theorem 1.1 [14; 19; 23] For any closed oriented 3-manifold M with positive simplicial volume
and any closed oriented 3-manifold N , there exists a finite cover M 0 of M that admits a degree-1 map
f WM 0!N .

So for any closed oriented 3-manifold M with positive simplicial volume, we can take C to be the set of
all finite covers of M .

Note the condition that M has positive simplicial volume is necessary for Theorem 1.1, since a manifold
with zero simplicial volume does not dominate any manifold with positive simplicial volume, and the
simplicial volume has the covering property.

In this paper, we generalize the above virtual domination result from closed 3-manifolds to 3-manifolds
with tori boundary. The following theorem is the main result of this paper.

Theorem 1.2 For any oriented cusped hyperbolic 3-manifold M and any compact oriented 3-manifold N

with nonempty tori boundary , there exists a finite cover M 0 of M that admits a proper map f WM 0!N

with deg.f /D 8.

The proof of Theorem 1.2 can also be applied to prove a similar result on certain mixed 3-manifolds.
Here a mixed 3-manifold is a compact oriented irreducible 3-manifold with empty or tori boundary, such
that it has nontrivial JSJ decomposition and at least one hyperbolic JSJ piece.

Theorem 1.3 For any compact oriented mixed 3-manifold M with nonempty tori boundary such that a
hyperbolic piece of M intersects with @M , and any compact oriented 3-manifold N with nonempty tori
boundary, there exists a finite cover M 0 of M that admits a proper map f WM 0!N with deg.f /D 8.

We cannot prove virtual 1-domination for Theorems 1.2 and 1.3. Although we can prove virtual 1-, 2-, or
4-domination in certain special cases, we do need to state our result as virtual 8-domination.

Moreover, if M d-dominates N , then M .kd/-dominates N for any positive integer k, by taking a
degree-k cyclic cover of M (since M has nonempty tori boundary). In some sense, the above degree-.kd/

map is not significantly different from the degree-d map, and one may only be interested in (virtually)
�1-surjective domination maps. In fact, the virtual 8-domination maps in Theorems 1.2 and 1.3 can be
�1-surjective. The virtual 2-domination map in Proposition 4.5 is always �1-surjective. For Theorem 5.1,
the statement only gives a virtual domination of degree 1, 2 or 4, because we did not work hard enough
to make the 2-complex Z connected. Actually, we can work harder to make Z connected and obtain a
�1-surjective virtual 4-domination.
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For technical reasons, we cannot prove Theorem 1.3 for other mixed 3-manifolds with tori boundary,
although we do expect the virtual domination result still holds in that case. To fully resolve this problem,
it remains to study mixed 3-manifolds such that all of their boundary components are contained in Seifert
pieces.

Question 1.4 Let M be a compact oriented 3-manifold with nonempty tori boundary and positive
simplicial volume. Does M virtually (1-)dominate all compact oriented 3-manifolds with tori boundary?

For a statement as Theorem 1.2, we do not have to restrict to compact oriented 3-manifolds with tori
boundary, and we ask what happens for all compact oriented 3-manifolds with nonempty (possibly higher
genus) boundary.

Question 1.5 Which compact oriented 3-manifold M with boundary virtually dominates all compact
oriented 3-manifolds with boundary?

Two necessary conditions for Question 1.5 are: M has a boundary component of genus at least 2, and the
double of M has positive simplicial volume. If the boundary of M only consists of 2-spheres and tori, so
does any finite cover M 0 of M . Then M 0 does not dominate any 3-manifold with higher genus boundary,
by considering the restriction map on the boundary. Moreover, if M virtually dominates N and both
manifolds have boundary, then D.M / virtually dominates D.N /. Since we can choose N so that D.N /

has positive simplicial volume, then so does D.M /.

Before we sketch the proof of Theorem 1.2, let’s first recall the proof of virtual domination results
(Theorem 1.1) of closed 3-manifolds in [14; 19; 23]. These three proofs roughly follow the same circle of
ideas, and we sketch the proof of the most general result in [23] here. First, by Boileau and Wang [4], we
can assume the target manifold N is a closed hyperbolic 3-manifold, and we take a geometric triangulation
of N . Since M has positive simplicial volume, let M0 be a hyperbolic JSJ piece of a prime summand
of M . Then we construct a map j 1 W N .1/ ! M0 from the 1-skeleton N .1/ of N to M0, such that
j 1 maps the boundary of each triangle � in N to a null-homologous closed curve in M0. For each
triangle � in N , we construct a compact orientable surface S� with connected boundary and a map
S� # M0 that maps @S� to j 1.@�/, so that S� is mapped to a nearly geodesic subsurface in M0.
Then the maps j 1 WN .1/!M0 and fS� # M0g together give a map j WZ # M0 from a 2-complex
Z to M0. If we construct the maps fS� # M0g carefully enough, j W Z # M0 induces an injective
homomorphism on �1. Since j�.�1.Z//<�1.M0/<�1.M / is a separable subgroup in �1.M / (by [21],
which generalizes Agol’s celebrated result on LERF-ness of hyperbolic 3-manifold groups in [2]), the
map j WZ # M lifts to an embedding j 0 WZ ,!M 0 into a finite cover M 0 of M . A neighborhood of Z

in M 0 is a compact oriented 3-manifold Z with boundary, and is homeomorphic to the manifold obtained
from a neighborhood N.N .2// of N .2/ in N , by replacing each �� I by S� � I . Then there is a proper
degree-1 map g W Z! N.N .2// that maps each S� � I � Z to �� I � N.N .2//. This proper degree-1
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map g W Z! N.N .2// extends to a degree-1 map f WM 0!N , by mapping each component of M 0 nZ

to the union of some components of N nN.N .2// (each component is a 3-ball) and a finite graph in N .

In the context of manifolds with boundary, the above proof fails in the last step, but we need to fix it
from the very first step. For example, if we apply the above approach to manifolds with boundary, it is
possible that some component C of M 0nZ does not intersect with @M 0, but a component of N nN.N .2//

intersecting g.@C / may contain some component of @N . In this case g W Z! N.N .2// does not extend
to a proper map f WM 0 ! N . Moreover, even if each component C of M 0 nZ intersects with @M 0,
it is also difficult to construct the desired extension f WM 0! N . So we need to take a more careful
construction for proving Theorem 1.2, which is sketched in the following.

In Section 4, we reduce the proof of Theorem 1.2 to 3-manifolds M and N satisfying the following extra
assumptions.

� M has two components T1 and T2, such that the kernel of H1.T1[T2IZ/!H1.M IZ/ contains
an element with nontrivial components in both H1.T1IZ/ and H1.T2IZ/.

� N is a finite volume hyperbolic 3-manifold with a single cusp.

In Section 5.1, we take a geometric cellulation of a compact core N0 of N which has extra edges than
a geometric triangulation, such that each triangle contained in @N0 is almost an equilateral triangle. In
Section 5.2, we construct two maps j

.1/
s WN

.1/!M for s D 1; 2 such that the following hold:

(1) For each triangle � of N0 contained in @N0, j
.1/
s .@�/ bounds a geodesic triangle in M .

(2) For each s D 1; 2, the union of geodesic triangles in M bounded by j
.1/
s .@�/ in item (1) gives a

mapped-in torus T !M homotopic into Ts .

(3) For each triangle or bigon � of N0 not contained in @N0, j
.1/
1
.@�/[j

.1/
2
.@�/ is null-homologous

in M .

For each triangle � of N0 as in item (3), we construct a compact orientable surface S� and a nearly
geodesic immersion S� # M bounded by two copies of j

.1/
1
.@�/[ j

.1/
2
.@�/. Then two copies of

j
.1/
s WN

.1/!M with s D 1; 2, two copies of the tori in item (2) and the maps fS� # M g together give
a 2-complex Z and a map j WZ # M . In Section 6, we prove that if the construction is done carefully,
j WZ # M is �1-injective. After this step, the construction of the virtual domination (proper) map is
similar to the closed manifold case. We first use Agol’s result [2] that j�.�1.Z// < �1.M / is a separable
subgroup to lift Z to an embedded 2-complex in a finite cover M 0 of M , and take a neighborhood of Z

in M 0 denoted by Z. Then we have a proper degree-4 map g W Z! N.N .2//, such that the following
holds.

� For the component T 0 D @N0 of @N.N .2//, each component of g�1.T 0/ is a torus in M 0 parallel
to a component of @M 0.

Algebraic & Geometric Topology, Volume 25 (2025)



Virtual domination of 3-manifolds, III 1603

This key property implies that g can be extended to a proper degree-4 map f WM 0!N , as desired (see
Section 5.3).

Note that the �1-injectivity of j W Z # M cannot be proved by exactly the same way as in [14; 19;
23]. In [14; 19; 23], we equipped Z with a natural metric and proved that the map Qj W zZ! zM DH3

on universal covers is a quasi-isometric embedding. However, in the current case, Qj W zZ ! zM is not
a quasi-isometric embedding anymore, since j .Z/ contains some tori homotopic into @M . To prove
the �1-injectivity of j , we modify Z as follows. For each torus T in Z as in item (2) above (that is
homotopic into a horotorus in M ), we add the cone of T to Z with the cone point deleted, and get an
ideal 3-complex Z3 (a 3-complex with certain vertices deleted). The map j WZ # M extends to a map
j1 WZ

3 # M that maps ideal vertices of Z3 to corresponding ends of M . In Section 6, we prove the
�1-injectivity of j WZ # M by proving that Qj1 W

zZ3! zM DH3 is a quasi-isometric embedding.

Although the above description of j WZ # M is mostly topological, we actually need geometric methods
to construct it. Our main geometric tool for constructing various geometric objects is the good pants
construction. Roughly speaking, the good pants construction is a tool box that uses so called good curves,
good pants and other good objects to construct geometrically nice objects in hyperbolic 3-manifolds.
The good pants construction was initiated by Kahn and Markovic [10], for constructing nearly geodesic
�1-injective immersed closed subsurfaces in closed hyperbolic 3-manifolds, with good pants as building
blocks. Then in [11], Kahn and Wright generalized Kahn and Markovic’s work to construct nearly geodesic
�1-injective immersed closed subsurfaces in cusped hyperbolic 3-manifolds. These geometrically nice
subsurfaces of Kahn–Wright are basic pieces for constructing our 2-complex j W Z # M in cusped
hyperbolic 3-manifolds. More details on the good pants construction can be found in Section 2.

Now we summarize the organization of this paper. In Section 2, we review the good pants construction
in closed and cusped hyperbolic 3-manifolds, including works in [10; 11; 13; 22]. In Section 3, we
review and prove some elementary geometric estimates in hyperbolic geometry. In Section 4, we prove
preparational results that reduce the domain and target manifolds in Theorems 1.2 and 1.3. The technical
heart of this paper is in Sections 5 and 6. In Section 5, we construct the mapped-in 2-complex j WZ # M

and the virtual domination map from M to N , modulo the �1-injectivity of j WZ # M (Theorem 5.17).
The �1-injectivity of j will be proved in Section 6.

Acknowledgements The author thanks the referee for very helpful suggestions for improving this paper.
The author is partially supported by Simons Collaboration Grant 615229.

2 Preliminaries on the good pants construction

In this section, we review the good pants construction on finite-volume hyperbolic 3-manifolds, including
constructions of nearly geodesic subsurfaces [10; 11], works on panted cobordism groups [13; 22] and
the connection principle of cusped hyperbolic 3-manifolds [22].
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2.1 Constructing nearly geodesic subsurfaces in finite-volume hyperbolic 3-manifolds

In [10], Kahn and Markovic proved the following surface subgroup theorem. This work initiates the
development of the good pants construction, and it was the first step of Agol’s proof of Thurston’s virtual
Haken and virtual fibering conjectures [2].

Theorem 2.1 (surface subgroup theorem [10]) For any closed hyperbolic 3-manifold M , there exists
an immersed closed hyperbolic subsurface f W S # M , such that f� W �1.S/! �1.M / is injective.

The immersed subsurface of Kahn and Markovic is geometrically nice, and it is built by pasting a large
collection of .R; �/-good pants along .R; �/-good curves in a nearly geodesic way. These terminologies
are summarized in the following.

We fix a closed oriented hyperbolic 3-manifold M , a small number � > 0 and a large number R> 0.

Definition 2.2 An .R; �/-good curve is an oriented closed geodesic in M with complex length satisfying
jl. /� 2Rj< 2�. The (finite) set consisting of all such .R; �/-good curves is denoted by �R;�.

Here the complex length of  is defined by l. /D l C i� 2C=2� iZ, where l 2R>0 is the length of  ,
and � 2R=2�Z is the rotation angle of the loxodromic isometry of H3 corresponding to  . In this paper,
we adopt the convention in [11] that good curves have length close to 2R, instead of the convention in
[10] that good curves have length close to R.

Definition 2.3 We use †0;3 to denote the oriented topological pair of pants. A pair of .R; �/-good pants
is a homotopy class of immersion †0;3 # M , denoted by …, such that all three cuffs of †0;3 are mapped
to .R; �/-good curves 1; 2; 3 2 �R;� , and the complex half length hl….i/ of each i with respect to
… satisfies

jhl….i/�Rj< �:

We use …R;� to denote the finite set of all .R; �/-good pants.

Here the complex half length hl….i/ measures the complex distance between two vectors Evi�1 and EviC1

along i , where Evi�1 and EviC1 are tangent vectors of oriented common perpendicular segments (seams)
from i to i�1 and iC1 respectively. See [10, Section 2.1] for the precise definition of complex half
length. If  2 �R;� is a cuff of … 2…R;�, then hl…. / is uniquely determined by l. /, and we denote
this value by hl. / if no confusion is caused.

For  2 �R;� , we can identify its unit normal bundle as N 1. /DC=.l. /ZC 2� iZ/, then its half-unit
normal bundle is defined to be

N 1.
p
 /DC=.hl. /ZC 2� iZ/:

Given … 2…R;� with one cuff  D i , the pair of normal vectors Evi�1 and EviC1 used to define hl…. /
gives a unique vector foot .…/ 2N 1.

p
 /, called the formal foot of … on  .
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In [10], to obtain the nearly geodesic subsurface, .R; �/-good pants are pasted along .R; �/-good curves
with nearly 1-shifts, rather than exactly matching seams along common cuffs. More precisely, in the
nearly geodesic subsurface S # M , for any two .R; �/-good pants …1 2 …R;� and …2 2 …R;� in
S pasted along  2 �R;�, such that  is an oriented boundary of …1, after identifying N 1.

p
 / with

N 1.
p
N / naturally, it is required that

jfoot .…1/� foot N .…2/� .1C� i/j<
�

R
in N 1.

p
 /:

This nearly 1-shift is a crucial condition to guarantee the injectivity of f� W �1.S/! �1.M /. Kahn and
Markovic showed that, for any .R; �/-good curve  , the formal feet of .R; �/-good pants with cuff  are
nearly evenly distributed along  . So M contains a large collection of .R; �/-good pants, and they can
be pasted together by nearly 1-shifts. Therefore, the asserted �1-injective immersed closed subsurface
can be constructed.

In [11], Kahn and Wright generalized Kahn and Markovic’s surface subgroup theorem in closed hyperbolic
3-manifolds (Theorem 2.1) to cusped hyperbolic 3-manifolds.

Theorem 2.4 [11, Theorem 1.1] Let � < PSL2.C/ be a Kleinian group and assume that H3=� has
finite volume and is not compact. Then for all K > 1, there exist K-quasi-Fuchsian (closed ) surface
subgroups in � .

The main difficulty for proving Theorem 2.4 is that, for cusped hyperbolic 3-manifolds, good pants are
not evenly distributed along good curves, especially for those good curves that run into cusps very deeply
(with high heights).

We first define the height function on a cusped hyperbolic 3-manifold M . By the Margulis lemma, there
exists �0> 0 such that the subset of M consisting of points of injectivity radii at most �0 is a disjoint union
of solid tori and cusp neighborhoods of ends (simply called cusps). For any point in M not belonging to
any cusps, we define its height to be 0. For any point p in a cusp C �M , we define the height of p to be
the distance between p and the boundary of C . For a compact geodesic segment or a closed geodesic
in M , we define its height to be the maximal height of points on it. For a pair of .R; �/-good pants in M ,
we define its height to be the maximal height of its three cuffs.

For any h> 0, we use �<h
R;�

(resp. …<h
R;�

) to denote the set of all .R; �/-good curves (resp. the set of all
.R; �/-good pants) in M with height less than h. We can define ��h

R;�
and …�h

R;�
similarly.

To construct nearly geodesic subsurfaces in cusped hyperbolic 3-manifolds, Kahn and Wright introduced a
new geometric object called .R; �/-good hamster wheel. For a positive integer R, let QR be the oriented
hyperbolic pants with cuff lengths 2, 2 and 2R. The R-perfect hamster wheel HR is the cyclic R-sheet
regular cover of QR with RC 2 boundary components, such that all cuffs of HR have length 2R. An
.R; �/-good hamster wheel (or simply an .R; �/-hamster wheel) H is a map f WHR!M up to homotopy,
such that the image of each cuff of HR lies in �R;� , and f is approximately a totally geodesic immersion.
For each .R; �/-good hamster wheel H and each cuff  2 �R;� of H , a foot foot .…/ 2N 1.

p
 / can
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be defined that approximates the tangent direction of H . See [11, Section 2.9] for the precise definition
of .R; �/-hamster wheels and their feet.

In [11], Kahn and Wright defined the .R; �/-well-matched condition for pasting finitely many .R; �/-good
pants and .R; �/-good hamster wheels together in a nearly geodesic manner. A good assembly in a cusped
hyperbolic 3-manifold is a compact oriented subsurface (possibly with boundary) obtained by pasting
finitely many .R; �/-good pants and .R; �/-good hamster wheels according to the .R; �/-well-matched
condition. Then Kahn and Wright proved that an immersed subsurface in a cusped hyperbolic 3-manifold
arising from a good assembly is �1-injective.

To construct a closed subsurface in a cusped hyperbolic 3-manifold arising from a good assembly, Kahn
and Wright defined a more complicated geometric object called an umbrella. An umbrella U consists of
a compact planar surface U decomposed as a finite union of subsurfaces homeomorphic to HR and a
map f W U !M , such that the restriction of f on each HR subsurface (under the decomposition) gives
an .R; �/-good hamster wheel, and these .R; �/-good hamster wheels are .R; �/-well-matched with each
other. For each umbrella U and each cuff  2 �R;� of U , we define foot .U / 2N 1.

p
 / to be the foot

of the .R; �/-hamster wheel in U containing  . Umbrellas are used to take care of the undesired property
that feet of good pants are not evenly distributed on N 1.

p
 / for some  2 �R;� , especially when  has

high height.

In [11], Kahn and Wright took constants hT � 6 log R and hc � hT C 44 log R. Then they considered
the collection of all .R; �/-good pants … with at least one cuff of height less than hc . For any .…;  /
such that … 2…�hc

R;�
and  2 �<hc

R;� is a cuff of …, in [11, Theorem 4.15], Kahn and Wright constructed a
QC-combination of umbrellas yU .…;  / with coefficients sum to 1 such that the following hold:

(1) As a QC-linear combination of umbrellas, the boundary of yU .…;  / contains one copy of  , and
all of its other boundary components have height less than hT .

(2) yU .…;  / is .R; �/-well-matched with any .R; �/-good pants that is .R; �/-well-matched with …
along  .

Then they used yU .…;  / to replace … in the above collection of good pants.

After the above replacement process, we obtain two finite linear combinations of .R; �/-good objects.
The first one is the sum of all .R; �/-good pants in …<hc

R;�
, and the second one is the sum of QC-linear

combinations of umbrellas constructed above:

A0 D

X
…2…

<hc
R;�

…; A1 D

X
2�

<hc
R;�

X
…2…

�hc
R;�

;�@…

yU .…;  /:

Then Kahn and Wright proved that, for any  2 �<hc
R;� , the feet of .R; �/-pants and umbrellas in

ADA0CA1 are evenly distributed on N 1.
p
 /. After eliminating denominators in A by multiplying a

large integer, they could paste good pants and umbrellas in A[A (A denotes the orientation reversal
of A) to get the desired nearly geodesic closed subsurface.
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2.2 Panted cobordism groups of finite volume hyperbolic 3-manifolds

In [13], Liu and Markovic introduced panted cobordism groups of closed oriented hyperbolic 3-manifolds
and computed these groups. In [22], the author generalized some results in [13] to oriented cusped
hyperbolic 3-manifolds. In this section, we review these results and their consequence Proposition 2.11,
which is the main input from the good pants construction to this work.

We first fix a closed oriented hyperbolic 3-manifold M , a small number � > 0 and a large number R> 0.
Let Z�R;� be the free abelian group generated by �R;� , modulo the relation  C N D 0 for all  2 �R;� .
Here N denotes the orientation reversal of  . Let Z…R;� be the free abelian group generated by …R;�,
modulo the relation …C…D 0 for all … 2…R;� . By taking the oriented boundary of .R; �/-good pants,
we get a homomorphism @ W Z…R;�! Z�R;� . The panted cobordism group �R;�.M / is defined as the
following in [13].

Definition 2.5 The panted cobordism group �R;�.M / is defined to be the cokernel of the homomor-
phism @, ie �R;�.M / fits into the exact sequence

Z…R;�
@
�! Z�R;�!�R;�.M /! 0:

To state the result in [13], we need the following definition.

Definition 2.6 For an oriented hyperbolic 3-manifold M and a point p 2M , a special orthonormal frame
(or simply a frame) of M at p is a triple of unit tangent vectors .Etp; Enp; Etp � Enp/ such that Etp; Enp 2 T 1

p M

with Etp ? Enp, and Etp � Enp 2 T 1
p M is the cross product with respect to the orientation of M . We use

SO.M / to denote the frame bundle of M consisting of all special orthonormal frames of M .

For simplicity, we denote each element in SO.M / by its basepoint and the first two vectors of the frame,
as .p; Etp; Enp/, since the third vector is determined by the first two. We call Etp and Enp the tangent vector
and the normal vector of this frame, respectively.

In [13], Liu and Markovic proved the following result on �R;�.M /.

Theorem 2.7 [13, Theorem 5.2] For any closed oriented hyperbolic 3-manifold M , small enough � > 0

depending on M , and large enough R> 0 depending on � and M , there is a natural isomorphism

ˆ W�R;�.M /!H1.SO.M /IZ/:

In [22], the author generalized Theorem 2.7 to oriented cusped hyperbolic 3-manifolds. The corresponding
result in [22] has some height conditions on involved curves and pants, and we need the following definition.

For any h0 > h > 0, Z�<h
R;� is naturally a subgroup of Z�<h0

R;� . For the boundary homomorphism
@ W Z…<h0

R;�
! Z�<h0

R;�
, we use Z…h;h0

R;�
to denote the @-preimage of Z�<h

R;�
< Z�<h0

R;�
in Z…<h0

R;�
. We first

recall the following definition in [22].
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Definition 2.8 For an oriented cusped hyperbolic 3-manifold M and any h0>h> 0, we define the .R; �/-
panted cobordism group of height .h; h0/, denoted by �h;h0

R;�
.M /, to be the cokernel of the homomorphism

@jW Z…h;h0

R;�
! Z�<h

R;�
. Thus �h;h0

R;�
.M / fits into the exact sequence

Z…h;h0

R;�

@j
�! Z�<h

R;�!�
h;h0

R;�
.M /! 0:

In [22], the author proved the following analogy of Theorem 2.7 for oriented cusped hyperbolic 3-
manifolds.

Theorem 2.9 [22, Theorem 1.1] For any oriented cusped hyperbolic 3-manifold M , any numbers
ˇ > ˛ � 4 with ˇ � ˛ � 3 and any � 2 .0; 10�2/, there exists R0 D R0.M; �/ > 0, such that for any
R>R0, we have a natural isomorphism

ˆ W�
˛ log R;ˇ log R

R;�
.M /!H1.SO.M /IZ/:

Moreover, for Theorem 2.9 (and Theorem 2.7), if we compose the isomorphism

ˆ W�
˛ log R;ˇ log R

R;�
.M /!H1.SO.M /IZ/

with the homomorphism �� W H1.SO.M /IZ/! H1.M IZ/ induced by the bundle projection, �� ıˆ
maps the equivalent class of each .R; �/-multicurve to its homology class in H1.M IZ/.

To give the geometric meaning of �h;h0

R;�
.M /, we define the following two types of subsurfaces in an

oriented cusped hyperbolic 3-manifold M .

Definition 2.10 For any small � > 0 and large number R> 0, we define the following terms.

(1) An .R; �/-panted subsurface in a hyperbolic 3-manifold M consists of a (possibly disconnected)
compact oriented surface F with a pants decomposition and an immersion i W F # M , such that
the restriction of j to each pair of pants in the pants decomposition of F gives a pair of .R; �/-good
pants.

(2) If R is also an integer, an .R; �/-nearly geodesic subsurface in a cusped hyperbolic 3-manifold M

consists of a compact oriented surface F decomposed as pants and R-hamster wheels (by a family
of disjoint essential curves C), and an immersion i W F # M , such that the following hold. The
restriction of i on each pants or R-hamster wheel subsurface of F is an .R; �/-good pants or an
.R; �/-good hamster wheel respectively, and these .R; �/-good components are pasted together by
the .R; �/-well-matched condition.

The .R; �/-panted subsurface was originally defined by Liu and Markovic [13], and it does not require any
feet-matching condition when two .R; �/-good pants are pasted along an .R; �/-good curve. Geometrically,
an .R; �/-multicurve L 2 Z�<h

R;�
represents the trivial element in �h;h0

R;�
.M / if and only if it bounds an

.R; �/-panted subsurface of height at most h0. The definition of an .R; �/-nearly geodesic subsurface is
same as an .R; �/-good assembly in [11], but we stick to this terminology since we have been using it
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throughout [14; 19; 23]. Theorem 2.2 of [11] implies that, if � > 0 is small enough and R> 0 is large
enough, an .R; �/-nearly geodesic subsurface is �1-injective.

In [23, Proposition 3.11], the author proved the following result, which generalizes [19, Corollary 2.11].

Proposition 2.11 [23, Proposition 3.11] Let M be an oriented cusped hyperbolic 3-manifold. Then for
any constant ˛ � 4, any small � > 0 depending on M and any large real number R> 0 depending on M

and �, the following statement holds. For any null-homologous oriented .R; �/-multicurve L2Z�<˛ log R

R;�
,

there is a nontrivial invariant �.L/ 2Z2 such that �.L1[L2/D �.L1/C�.L2/ and the following hold.

If �.L/D 0, for any integer R0 �R, L is the oriented boundary of an immersed subsurface f W S # M

satisfying the following conditions.

(1) If we write L as a union of its components LDL1[ � � � [Lk , then S is decomposed as oriented
subsurfaces S D

�Sk
iD1…i

�
[S 0 with disjoint interior , such that …i \ @S is a single curve ci that

is mapped to Li .

(2) The restriction f j…i
W…i #M is a pair of pants such that jhl…i

.Li/�Rj<�, and jhl…i
.s/�R0j<�

holds for any other component s � @…i .

(3) If we fix a normal vector Evi 2 N 1.
p

Li/ for each component Li of L, then we can make sure
jfootLi

.…i/� Evi j< � holds for all i .

(4) The restriction f jS 0 W S 0# M is an oriented .R0; �/-nearly geodesic subsurface.

(5) For any component s � S 0\…i that is mapped to  2 �R0;�, we take its orientation induced from
…i , then we have

jfoot .…i/� foot N .S 0/� .1C� i/j<
�

R
:

We call the immersed pants in condition (2) .R;R0; �/-good pants, and we call the immersed subsurface
f W S # M constructed in Proposition 2.11 an .R0; �/-nearly geodesic subsurface with .R; �/-good
boundary. We can also assume that S has no closed component.

Remark 2.12 For the immersed subsurface S # M constructed in Proposition 2.11, the collection of
curves C� S (giving the decomposition of S ) gives a graph-of-space structure on S with dual graph �:
each component of S nC gives a vertex of � , and each component of C gives an edge of � . Let vi be the
vertex of � corresponding to …i � S . We can further modify the nearly geodesic subsurface S # M as
in [20, Section 3.1, Step IV], such that the combinatorial length of any topological essential path in �
from vi to vj (possibly i D j ) is at least R0eR0=2.

Moreover, if we endow S with a hyperbolic metric such that all @-curves of S have length 2R and all
curves in C have length 2R0. Since all seams (shortest geodesic segments between boundary components)
have lengths at least e�R0=2 and each geodesic segment in a pair of pants or a hamster wheel from a cuff
to itself has length at least R, any proper essential path in S from Li to Lj (possibly i D j ) has length at
least R.
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2.3 The connection principle of finite-volume hyperbolic 3-manifolds

The connection principle is a fundamental tool that constructs geometric segments and @-framed segments
in finite volume hyperbolic 3-manifolds. The idea of connection principle was initiated in [10], and
the first officially stated connection principle is given in [13, Lemma 4.15]. In [22], the author proved
a version of connection principle for oriented cusped hyperbolic 3-manifolds, which is the connection
principle will be used in this paper. In [12; 23], connection principles with homological control in frame
bundles are obtained for oriented closed and cusped hyperbolic 3-manifolds respectively.

At first, we recall the definition of oriented @-framed segments and associated objects [13, Definition 4.1].
They are the geometric objects constructed by our connection principle.

Definition 2.13 An oriented @-framed segment in M is a triple

sD .s; Enini; Enter/

such that s is an immersed oriented compact geodesic segment (simply called a geodesic segment), Enini

and Enter are unit normal vectors of s at its initial and terminal points respectively.

We have the following objects associated to an oriented @-framed segment s:

� The carrier segment of s is the (oriented) geodesic segment s, and the height of s is the height of s.

� The initial endpoint pini.s/ and the terminal endpoint pter.s/ are the initial and terminal points of
s respectively.

� The initial framing Enini.s/ and the terminal framing Enter.s/ are the unit normal vectors Enini and Enter

respectively.

� The initial direction Etini.s/ and the terminal direction Etter.s/ are the unit tangent vectors in the
direction of s at pini.s/ and pter.s/ respectively.

� The initial frame and the terminal frame of s are .pini.s/; Etini.s/; Enini.s// and .pter.s/; Etter.s/; Enter.s//

respectively.

� The length l.s/ 2 .0;1/ of s is the length of its carrier s, the phase '.s/ 2 R=2�Z of s is the
angle from the parallel transport of Enini along s to Enter.

� The orientation reversal of sD .s; Enini; Enter/ is defined to be

NsD .Ns; Enter; Enini/:

� For any angle � 2R=2�Z, the frame rotation of s by � is defined to be

s.�/D
�
s; cos� � EniniC sin� � .Etini � Enini/; cos� � EnterC sin� � .Etter � Enter/

�
:

Now we state the connection principle in [23, Theorem 3.7]. Since we do not need a homological
statement in frame bundles, we only state a weaker version of condition (3) here.
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Theorem 2.14 [23, Theorem 3.7] Let M be an oriented cusped hyperbolic 3-manifold , and let

p D .p; Etp; Enp/; q D .q; Etp; Enp/ 2 SO.M /

be two frames based at p; q 2M respectively. Let � 2H1.M; fp; qgIZ/ be a relative homology class
with boundary @� D Œq�� Œp�.

Then for any ı 2 .0; 10�2/, there exists T D T .M; �; ı/ depending on M , � and ı, such that for any
t > T , there is a @-framed segment s from p to q such that the following hold.

(1) The heights of p and q are at most log t , and the height of s is at most 2 log t .

(2) The length and phase of s are ı-close to t and 0 respectively. The initial and terminal frames of s

are ı-close to p and q respectively.

(3) The relative homology class of the carrier of s equals � 2H1.M; fp; qgIZ/.

3 Preliminaries on hyperbolic geometry

In this section, we give some geometric estimates on @-framed segments and geodesic segments, by using
elementary hyperbolic geometry. Most of these results can be found in [22, Section 3], while some of
them were originally proved in [13]. We have a new result (Proposition 3.5) that estimates the length of a
consecutive chain of geodesic segments (see definition below), where some involved geodesic segments
can be short.

We first need a few geometric definitions on @-framed segments from [13, Section 4].

Definition 3.1 Let 0< ı < �
3

, L> 0 and 0< � < � be three constants.

(1) Two oriented @-framed segments s and s0 are ı-consecutive if the terminal point of s is the initial
point of s0, and the terminal framing of s is ı-close to the initial framing of s0. The bending angle
between s and s0 is the angle between the terminal direction of s and the initial direction of s0.

(2) A ı-consecutive chain of oriented @-framed segments is a finite sequence s1; : : : ; sm such that each
si is ı-consecutive to siC1 for i D 1; : : : ;m� 1. It is a ı-consecutive cycle if furthermore sm is
ı-consecutive to s1. A ı-consecutive chain or cycle is .L; �/-tame if each si has length at least 2L

and each bending angle is at most � .

(3) For an .L; �/-tame ı-consecutive chain s1; : : : ; sm, the reduced concatenation, denoted by s1 � � � sm,
is the oriented @-framed segment defined as the following. The carrier segment of s1 � � � sm is
homotopic to the concatenation of carrier segments of s1; : : : ; sm, with respect to endpoints. The
initial and terminal framings of s1 � � � sm are the closest unit normal vectors to the initial framing
of s1 and the terminal framing of sm respectively.

(4) For an .L; �/-tame ı-consecutive cycle s1; : : : ; sm, the reduced cyclic concatenation, denoted by
Œs1 � � � sm�, is the oriented closed geodesic freely homotopic to the cyclic concatenation of carrier
segments of s1; : : : ; sm, assuming it is not null-homotopic.
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Without considering initial and terminal framings, we can also talk about the following terms on geodesic
segments: consecutive geodesic segments and their bending angles, a consecutive chain and a consecutive
cycle of geodesic segments and their .L; �/-tameness, the reduced concatenation of a consecutive chain
of geodesic segments, and the reduced cyclic concatenation of a consecutive cycle of geodesic segments.

The following lemma from [13] is very useful for estimating length and phase of a concatenation of
oriented @-framed segments. The function I. � / is defined by I.�/D 2 log

�
sec 1

2
�
�
.

Lemma 3.2 [13, Lemma 4.8] Given positive constants ı, � and L with 0<�<� and L�I.�/C10 log 2,
the following statements hold in any oriented hyperbolic 3-manifold.

(1) If s1; : : : ; sm is an .L; �/-tame ı-consecutive chain of oriented @-framed segments , denoting the
bending angle between si and siC1 by �i 2 Œ0; �/, thenˇ̌̌̌

l.s1 � � � sm/�

mX
iD1

l.si/C

m�1X
iD1

I.�i/

ˇ̌̌̌
<
.m� 1/e.�LC10 log 2/=2 sin .�=2/

L� log 2

and ˇ̌̌̌
'.s1 � � � sm/�

mX
iD1

'.si/

ˇ̌̌̌
< .m� 1/.ıC e.�LC10 log 2/=2 sin .�=2//;

where j � j on R=2�Z is understood as the distance from zero valued in Œ0; ��.

(2) If s1; : : : ; sm is an .L; �/-tame ı-consecutive cycle of oriented @-framed segments , denoting the
bending angle between si and siC1 by �i 2 Œ0; �/ with smC1 equal to s1 by convention , thenˇ̌̌̌

l.Œs1 � � � sm�/�

mX
iD1

l.si/C

mX
iD1

I.�i/

ˇ̌̌̌
<

me.�LC10 log 2/=2 sin .�=2/
L� log 2

and ˇ̌̌̌
'.Œs1 � � � sm�/�

mX
iD1

'.si/

ˇ̌̌̌
<m.ıC e.�LC10 log 2/=2 sin .�=2//;

where j � j on R=2�Z is understood as the distance from zero valued in Œ0; ��.

For an .L; �/-tame ı-consecutive chain of @-framed segments s1; : : : ; sm, we need the following lemma
in [23] to bound the difference between initial frames of s1 and s1 � � � sm.

Lemma 3.3 [23, Lemma 3.4] Let ı, � and L be positive constants with 0<�<� and L�I.�/C10 log 2.
If s1; : : : ; sm is an .L; �/-tame ı-consecutive chain of oriented @-framed segments , then the distance
between the initial frames of s1 and s1 � � � sm in SO.M /pini.s1/ is at most 8e�L.

The following lemma in [22] bounds the distance between a ı-consecutive cycle of geodesic segments
and the corresponding closed geodesic, which is useful for bounding heights of closed geodesics arising
from geometric constructions.
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Lemma 3.4 [22, Lemma 3.7] Given positive constants � and L with 0<�<� and L�4.I.�/C10log 2/,
the following statement holds in any oriented hyperbolic 3-manifold. If s1; : : : ; sm is an .L; �/-tame cycle
of geodesic segments with m � L, and the bending angle between si and siC1 lies in Œ0; �/ for each i ,
with smC1 equal to s1 by convention , then the closed geodesic Œs1 � � � sm� lies in the 1-neighborhood of
the union

Sm
iD1 si .

The following result generalizes Lemma 3.2(1), which estimates the length of a consecutive chain of
geodesic segments where some involved geodesic segments are short.

Proposition 3.5 Given any positive constants � and L with 0< � < �
2

and

L�max
˚
12I.� � �/C 80 log 2; 24 log 2� 16 log

�
�
2
� �

�	
;

the following statement holds in any hyperbolic 3-manifold. Let s1; : : : ; sm be a consecutive chain of
geodesic segments such that one of the following hold for each i D 1; : : : ;m� 1:

(1) either both si and siC1 have length at least L, and the bending angle between si and siC1 lies in
Œ0; � � ��, or

(2) exactly one of si and siC1 has length at least L, and the bending angle between si and siC1 lies in�
0; �

2
� �

�
.

Then we have

l.s1 � � � sm/�
1

2

mX
iD1

l.si/:

Proof We lift the consecutive chain of geodesic segments s1; : : : ; sm to the universal cover, and work
on a consecutive chain of geodesic segments in H3. If mD 1 or 2, the result follows directly from the
cosine law of hyperbolic geometry (see also estimates below), so we assume that m� 3.

Let x1 be the initial point of s1 and let xmC1 be the terminal point of sm. For any i D 2; : : : ;m, let xi be
the terminal point of si�1, which is also the initial point of si . Let y1 D x1;ym D xmC1, and let yi be
the middle point of si for each i D 2; : : : ;m�1. For any i D 1; : : : ;m�1, let ti be the geodesic segment
from yi to yiC1. We will use Lemma 3.2(1) to estimate l.t1 � � � tm�1/D l.s1 � � � sm/.

We need to estimate lengths of ti and bending angles between ti and tiC1. We claim that

(3-1) l.ti/�
2
3
.d.yi ;xiC1/C d.xiC1;yiC1//�

1
3
L:

Case I Both l.si/ and l.siC1/ are at least 1
4
L. Then d.yi ;xiC1/; d.xiC1;yiC1/�

1
8
L and by assumption

at least one of them is greater than 1
2
L. By [13, Lemma 4.10(2)], we have

l.ti/D d.yi ;yiC1/� d.yi ;xiC1/C d.xiC1;yiC1/� I.� �†yixiC1yiC1/

� d.yi ;xiC1/C d.xiC1;yiC1/� I.� � �/

�
2
3
.d.yi ;xiC1/C d.xiC1;yiC1//�

1
3
L:
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Case II Otherwise, one of l.si/; l.siC1/ is at most 1
4
L, and we assume that l.si/�

1
4
L. By assumption

of this lemma, we have l.siC1/ >L and †yixiC1yiC1 >
�
2
C � . So we have d.yi ;xiC1/� l.si/�

1
4
L

and d.xiC1;yiC1/�
1
2
l.siC1/�

1
2
L. Since †yixiC1yiC1 >

�
2

, we have

l.ti/D d.yi ;yiC1/� d.xiC1;yiC1/�
2
3
.d.yi ;xiC1/C d.xiC1;yiC1//�

1
3
L:

So (3-1) holds in both cases.

Then we claim that †yiyiC1xiC1 <
�
2
� � . In Case I above, we apply [13, Lemma 4.10(1)] to get

†yiyiC1xiC1 < e.�
1
8

LC3 log 2/=2 < �
2
� �:

In Case II above, †yixiC1yiC1 >
�
2
C � implies †yiyiC1xiC1 <

�
2
� � directly.

The same argument implies †yiC2yiC1xiC2 <
�
2
� � . So we get

(3-2) †yiyiC1yiC2 � � �†yiyiC1xiC1�†yiC2yiC1xiC2 � � � 2
�
�
2
� �

�
D 2�:

For the consecutive chain of geodesic segments t1; : : : ; tm�1, by (3-1) and (3-2), each segment has length
at least 1

3
L and each bending angle is at most � � 2� . By Lemma 3.2(1), we have

l.s1 � � � sm/D l.t1 � � � tm�1/�

m�1X
iD1

l.ti/� .m� 2/I.� � 2�/� .m� 2/
e.�

1
6

LC10 log 2/=2

1
6
L� log 2

�

m�1X
iD1

l.ti/� .m� 2/.I.� � 2�/C 1/�
3

4

m�1X
iD1

l.ti/:

Here the last inequality holds since 1
4
l.ti/�

1
12

L� I.� � 2�/C 1 for each ti , by (3-1). By (3-1) again,
we have

l.s1 � � � sm/�
3

4

m�1X
iD1

l.ti/�
1

2

m�1X
iD1

.d.yi ;xiC1/C d.xiC1;yiC1//

D
1

2

�
d.y1;x2/C

m�1X
iD2

.d.xi ;yi/C d.yi ;xiC1//C d.xm;ym/

�

D
1

2

mX
iD1

l.si/:

4 Reduction of the domain and target in Theorem 1.2

In this section, we prove a few preparational results that reduce the domain and target manifolds M and N

in Theorem 1.2 to some convenient form. Recall that when talking about a cusped hyperbolic 3-manifold,
we mean a compact 3-manifold with tori boundary whose interior admits a complete hyperbolic metric
with finite volume, unless otherwise indicated.
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4.1 Reducing the domain manifold M

At first, we prove that any cusped hyperbolic 3-manifold M has a finite cover that satisfies a convenient
homological condition.

Proposition 4.1 For any oriented cusped hyperbolic 3-manifold M , it has a finite cover M 0 with two
distinct boundary components T1;T2 � @M

0, such that the kernel of

H1.T1[T2IZ/!H1.M
0
IZ/

contains an element ˛1C˛2 2H1.T1[T2IZ/ such that 0¤ ˛1 2H1.T1IZ/ and 0¤ ˛2 2H1.T2IZ/.

Note that we do need at least two boundary components of M 0 in Proposition 4.1. If all boundary
components of M are H1-injective (eg M is the complement of a two-component hyperbolic link with
nonzero linking number), then any boundary component of any finite cover of M is H1-injective.

Proof We take a boundary component T of M , a slope c on T , and a slope l on T that intersects c once.

By [17, Proposition 4.6] and its proof, there is a geometrically finite �1-injective connected oriented
immersed subsurface i W S # M , such that the following hold:

� S has exactly two oriented boundary components, C1 and C2.

� i maps both C1 and C2 to T , and i�ŒC1�D�i�ŒC2�D d Œc� for some positive integer d .

For any positive integer D, let TD be the covering space of T corresponding to hdc;Dli< hc; liŠ�1.T /.
Let SD be the 2-complex obtained by pasting S and two copies of TD (denoted by TD;1 and TD;2), such
that C1;C2 � @S are pasted with curves in TD;1 and TD;2 corresponding to ˙dc, respectively. Then the
map i W S # M and covering maps TD;1;TD;2! T �M together induce a map iD W SD # M . By [15,
Theorem 1.1], when D is large enough, iD is a �1-injective map.

Since hyperbolic 3-manifold groups are LERF [2] and SD embeds into the covering space of M corre-
sponding to .iD/�.�1.SD// < �1.M /, there is a finite cover M 0 of M , such that iD W SD # M lifts to
an embedding QiD W SD ,!M 0. Since QiD is an embedding, T1 D

QiD.TD;1/ and T2 D
QiD.TD;2/ are two

distinct boundary components of M 0. Since QiD jS W S ,!M 0 gives an embedded oriented subsurface of
M 0 whose boundary consists of a pair of essential curves on T1 and T2 respectively,

H1.T1[T2IZ/!H1.M
0
IZ/

is not injective. Let ˛1 be the intersection of @S \T1, and let ˛2 be the intersection of @S \T2, then
˛1C˛2 2H1.T1[T2IZ/ is an element in the kernel with the desired form.

A similar argument as in Proposition 4.1 proves a similar result on certain mixed 3-manifolds.
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Proposition 4.2 Let M be an oriented mixed 3-manifold with tori boundary such that @M intersects
with a hyperbolic piece M0 of M . Then M has a finite cover M 0 with a hyperbolic piece M 0

0
of M 0,

such that M 0
0
\ @M 0 contains two components T1 and T2, and the kernel of

H1.T1[T2IZ/!H1.M
0
0IZ/

contains an element ˛1C˛2 2H1.T1[T2IZ/ such that 0¤ ˛1 2H1.T1IZ/ and 0¤ ˛2 2H1.T2IZ/.

Proof Let T be a component of M0 \ @M . By the proof of Proposition 4.1, there is a �1-injective
2-complex iD W SD # M0 ,!M , such that SD is a union of three surfaces, S , TD;1 and TD;2, and both
TD;1 and TD;2 are mapped to T via covering maps.

Since iD W SD # M is mapped into a hyperbolic piece M0 of M , by [21], .iD/�.�1.SD// is a
separable subgroup of �1.M /. Since SD embeds into the covering space of M corresponding to
.iD/�.�1.SD// < �1.M /, there is a finite cover M 0 of M , such that iD WSD # M lifts to an embedding
QiD W SD ,!M 0. Since SD is connected, the image of QiD is contained in a hyperbolic piece M 0

0
�M 0.

Since QiD is an embedding, T1 D
QiD.TD;1/ and T2 D

QiD.TD;2/ are two distinct boundary components of
M 0

0
and they are both contained in M 0

0
\ @M 0. Similar to the proof of Proposition 4.1, the existence of

the subsurface QiD jS W S !M 0 implies that

H1.T1[T2IZ/!H1.M
0
IZ/

is not injective, and the kernel contains an element in the desired form.

4.2 Reducing the target manifold N

To reduce the target manifold N , we first need to prove two topological lemmas. The first one is quite
elementary, while the second one uses results on branched coverings between 3-manifolds.

Lemma 4.3 For any compact oriented 3-manifold N with nonempty tori boundary , there exists a proper
map g WN !D2 �S1 such that the following hold.

(1) The degree of g is at least 3.

(2) g induces a surjective homomorphism on �1.

(3) The restriction of g to each boundary component of N is a covering map to S1�S1 �D2�S1 of
positive degree.

Conditions (2) and (3) in this lemma imply that g is an “allowable primitive map”, according to the
terminology in [8].

Proof Let the boundary components of N be T1; : : : ;Tk . For each i D 1; : : : ; k, let ji W Ti ! N

be the inclusion map, then the free rank of the image of .ji/� W H1.Ti IZ/! H1.N IZ/ is at least 1.
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So there exists a surjective homomorphism ˛ W H1.N IZ/! Z such that ˛ ı .ji/� W H1.Ti IZ/! Z is
nontrivial for all i . We consider ˛ as an element in Hom.H1.N IZ/IZ/ Š H 1.N IZ/, then the dual
of ˛ in H2.N; @N IZ/ is represented by a compact oriented (possibly disconnected) proper subsurface
† � N . By doing surgery, we can assume that for each i , †\Ti consists of parallel essential circles
with consistent orientation. By our choice of ˛, † intersects with each Ti nontrivially.

We take a proper map h0 W†!D2 DD2 � fptg of degree at least 3, such that for any Ti , the restriction
of h0jW † \ Ti ! S1 D @D2 on each component of † \ Ti has the same positive degree di . This
map h0 can be constructed by first pinching † n N.@†/ to a point, with the resulting space being a
one-point union of discs, then each disc is mapped to D2 by a branched cover of positive degree. The
restriction h0jW†\Ti!S1DS1�fptg can be extended to a covering map hi WTi!S1�S1 of positive
degree as following. Since each component A of Ti n .†\ Ti/ is an annulus, and its two boundary
components are mapped to S1 � fptg with the same degree di , we define hi jA to be a (orientation
preserving) covering map to .S1�S1/n.S1�fptg/ of degree di . Then we have h�1

i .S1�fptg/D†\Ti

and deg.hi/D deg.h0jW†\Ti! S1/.

The maps h0 and hi , i D 1; : : : ; k together give a map

h W†[

� k[
iD1

Ti

�
! .D2

� fptg/[ .S1
�S1/�D2

�S1:

The map h extends to a proper map g WN !D2�S1, since it extends to a neighborhood of†[.[Ti/�N

and .D2 �S1/ n
�
.D2 � fptg/[ .S1 �S1/

�
is a 3-ball.

By construction, we have deg.g/ D
Pk

iD1 deg.hi/ D deg.h0/ � 3; thus condition (1) holds. For the
composition N

g
�!D2�S1!S1, the preimage of pt 2S1 is exactly †, so the induced homomorphism

H1.N IZ/!H1.S
1IZ/ is the same as ˛ WH1.N IZ/! Z. Since ˛ is surjective, g induces a surjective

homomorphism on both H1 and �1; thus condition (2) holds. Since g WN !D2 �S1 is an extension of
hi W Ti! S1 �S1, condition (3) holds.

Lemma 4.4 For any compact oriented 3-manifold N with nonempty tori boundary, there exists a compact
oriented 3-manifold M with connected torus boundary, such that M virtually properly 2-dominates N .

Proof We first take a proper map g W N ! D2 � S1 satisfying the conclusion of Lemma 4.3. These
conditions make [8, Theorem 4.1] applicable, so g WN !D2 �S1 is homotopic to a branched covering
map relative to the boundary, such that the branching locus is a link (a disjoint union of circles) in D2�S1.
By [3, Theorem 6.5], g WN !D2 �S1 is further homotopic to a simple branched covering, and we still
denote this map by g. Here by simple branched covering, we mean that g is a branched covering of
degree d 2 Z>0, such that for any p 2D2 �S1, g�1.p/ consists of at least d � 1 points.

Note that if g W N ! D2 � S1 is a nonbranched cover, then N D D2 � S1 and we can simply take
M DD2 �S1. So we can assume that g is a genuine branched cover.
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Let L�D2 �S1 be the branched locus of the simple branched covering g WN !D2 �S1, and write
LDL1[ � � � [Lk as a union of its components. We take a tubular neighborhood

N.L/D N.L1/[ � � � [N.Lk/

of LDL1[ � � � [Lk . On the torus @N.Li/, we take an oriented meridian mi that bounds the meridian
disc of N.Li/, and take an oriented longitude li that intersects with mi exactly once. For each Li , we
take Mi to be a copy of †1;1 �S1, and take a linear homeomorphism

�i W @Mi D @†1;1 �S1
! @N.Li/

that maps oriented curves @†1;1 � f�g and f�g�S1 to mi and li respectively. Then we take M to be

M D .D2
�S1

nN.L//
[
f�i g

k
iD1

� k[
iD1

Mi

�
:

Now we need to construct a finite cover M 0!M and a degree-2 map M 0!N .

Let LD g�1.L/�N . Since g WN !D2 �S1 is a branched covering, there is a tubular neighborhood
N.L/ of L in N , such that the restriction map gjW N nN.L/!D2 �S1 nN.L/ is a covering map of
degree d D deg.g/.

Let Li D g�1.Li/. Since g WN !D2 �S1 is a simple branched covering, there is a unique component
L0

i of Li such that g is locally a 2-to-1 map near L0
i , and g is a local homeomorphism near any point

in Li nL0
i D

Sni

jD1
L

j
i . The restriction of g to @N.L0

i /! @N.Li/ is a finite cover corresponding to a
subgroup of �1.@N.Li// in one of the following two types:

(1) h2mi ; kilii< �1.@N.Li// or

(2) h2mi ; kili Cmii< �1.@N.Li//

for some positive integer ki . For any j 2 f1; : : : ; nig, the restriction of g to @N.L
j
i /! @N.Li/ is a finite

cover corresponding to subgroup

(3) hmi ; k
j
i lii< �1.@N.Li//

for some positive integer k
j
i .

In case (3), let Qmj
i ;
Ql
j
i � @N.L

j
i / be one (oriented) component of the preimage of mi ; li � @N.Li/,

respectively. Then Qmj
i !mi and Qlj

i ! li are covering maps of degree 1 and k
j
i respectively, and these

two curves intersect once on @N.L
j
i /. We take M

j
i D†1;1 �S1 and a degree-kj

i covering map

p
j
i WM

j
i D†1;1 �S1

!Mi D†1;1 �S1;

that is the product of id W†1;1!†1;1 and the degree-kj
i covering map S1! S1. Let

 
j
i W @M

j
i D @†1;1 �S1

! @N.L
j
i /
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be the linear homeomorphism that maps oriented curves @†1;1�f�g and f�g�S1 to Qmj
i and Qlj

i respectively.
Then we have the following commutative diagram:

(4-1)

@M
j
i D @†1;1 �S1 @N.L

j
i /�N nN.L/

@Mi D @†1;1 �S1 @N.Li/�D2 �S1 nN.L/

 
j

i

p
j

i
j gj

�i

In case (1) above, let Qm0
i ;
Ql0
i � @N.L0

i / be one (oriented) component of the preimage of mi ; li � @N.Li/,
respectively. Then Qm0

i !mi and Ql0
i ! li are covering maps of degree 2 and ki respectively, and these

two curves intersect once on @N.L0
i /. We take M 0

i D†2;2 �S1, and take a degree-4ki covering map

p0
i WM

0
i D†2;2 �S1

!Mi D†1;1 �S1:

It is the product of the degree-4 covering map †2;2!†1;1 that factors through †1;2 (which restricts to
a degree-2 cover on each boundary component), and the degree-ki covering map S1! S1. Let

 0
i W @M

0
i D @†2;2 �S1

! @N.L0
i /

be a linear map that restricts to a homeomorphism on each component of @M 0
i , such that it maps

each oriented boundary component of @†2;2 � f�g to Qm0
i , and maps oriented curves f�g �S1 on both

components of @M 0
i to Ql0

i . Then we have the following commutative diagram:

(4-2)

@M 0
i D @†2;2 �S1 @N.L0

i /�N nN.L/

@Mi D @†1;1 �S1 @N.Li/�D2 �S1 nN.L/

 0
i

p0
i
j gj

�i

In case (2) above, let Qm0
i ;
Ql0
i � @N.L

0
i / be one (oriented) component of the preimage of mi ; li � @N.Li/,

respectively. There is actually a unique Ql0
i . Then Qm0

i !mi and Ql0
i ! li are covering maps of degree 2 and

2ki respectively, and these two curves intersect (algebraically) twice on @N.L0
i /. Here Ql0

i corresponds
to 2.kili Cmi/� .2mi/ D 2kili 2 �1.@N.Li//. We take M 0

i D †2;2 � I=.x; 0/ � .�.x/; 1/, where
� W†2;2!†2;2 is the nontrivial deck transformation of the double cover q W†2;2!†1;2. Note that q

restricts to a degree-2 cover on each boundary component of †2;2. Then we take the degree-4ki covering
map

p0
i WM

0
i D†2;2 � I=�!Mi D†1;1 �S1

that is a composition †2;2 � I=� ! †1;2 � S1 ! †1;1 � S1. Here the first map takes the double
covering map q W†2;2!†1;2 on each fiber and takes the identity map on the base S1, the second map
is the product of the double cover †1;2!†1;1 and the degree-ki covering map S1! S1. Then each
oriented component of the p0

i -preimage of @†1;1 � f�g is a component of @†2;2 � f�g. Each oriented
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component of the p0
i -preimage of f�g�S1 is a flow line of M 0

i along the I -direction, and it intersects
the corresponding component of @†2;2 � f�g algebraically twice.

There exists a linear map

 0
i W @M

0
i D @†2;2 � I=�! @N.L0

i /

that restricts to a homeomorphism on each component of @M 0
i , such that it maps each oriented boundary

component of @†2;2 � f�g to Qm0
i , and maps an I -flow line on each component of @M 0

i to Ql0
i . Then we

have the following commutative diagram:

(4-3)

@M 0
i @N.L0

i /�N nN.L/

@Mi @N.Li/�D2 �S1 nN.L/

 0
i

p0
i
j gj

�i

Now we take two copies of N nN.L/ and denote them by .N nN.L//1 and .N nN.L//2 respectively.
For any i D 1; : : : ; k and j D 1; : : : ; ni , we take two copies of M

j
i and denote them by .M j

i /1 and
.M

j
i /2. For any i D 1; : : : ; k, M 0

i has two boundary components, and we denote them by .@M 0
i /1 and

.@M 0
i /2 respectively. Then we take M 0 to be the union of manifolds

.N nN.L//1; .N nN.L//2; .M
j
i /1; .M

j
i /2; M 0

i for i D 1; : : : ; k; j D 1; : : : ; ni ;

by pasting maps

. 
j
i /1 W @.M

j
i /1! .@N.L

j
i //1 � .N nN.L//1; . 

j
i /2 W @.M

j
i /2! .@N.L

j
i //2 � .N nN.L//2;

. 0
i j/1 W .@M

0
i /1! .@N.L0

i //1 � .N nN.L//1; . 0
i j/2 W .@M

0
i /2! .@N.L0

i //2 � .N nN.L//2:

The homeomorphisms . j
i /1 and . j

i /2 denote copies of the map  j
i on the corresponding copy of @M j

i ,
while . 0

i j/1 and . 0
i j/2 denote the restriction of  0

i on the corresponding component of @M 0
i .

The covering map � WM 0!M is defined by the following covering maps on pieces of M 0:

� gj maps .N nN.L//1; .N nN.L//2 �M 0 to D2 �S2 nN.L/�M ,

� p
j
i maps .M j

i /1; .M
j
i /2 �M 0 to Mi �M for i D 1; : : : ; k and j D 1; : : : ; ni ,

� p0
i maps M 0

i �M 0 to Mi �M for i D 1; : : : ; k.

Here � is a well-defined map because of three commutative diagrams (4-1), (4-2) and (4-3).

The degree-2 map f WM 0!N is defined by the following maps on pieces of M 0:

� The identity map that maps .N nN.L//1; .N nN.L//2 �M 0 to N nN.L/�N .

� A pinching map that maps .M j
i /1; .M

j
i /2 D†1;1 �S1 �M 0 to N.L

j
i /DD2 �S1 �N . This

map is the product of a degree-1 pinching map †1;1!D2 and the identity map S1! S1.
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� A pinching map that maps M 0
i D †2;2 � I=� � M 0 to N.L0

i / D D2 � S1 � N , where � is
induced by the identity map of †2;2 or the nontrivial deck transformation of †2;2!†1;2. Here
we take a fixed degree-2 pinching map †2;2 ! D2 on each fiber, such that it commutes with
monodromy homeomorphisms of M 0

i and N.L0
i /, and restricts to a homeomorphism on each

boundary component.

Then f is a degree-2 proper map from M 0 to N .

Now we are ready to prove the following result.

Proposition 4.5 For any compact oriented 3-manifold N with nonempty tori boundary, there exists a
one-cusped oriented hyperbolic 3-manifold M , such that M virtually properly 2-dominates N .

Proof By Lemma 4.4, N is virtually 2-dominated by a compact oriented 3-manifold N 0 with connected
torus boundary. By [23, Lemma 4.1], N 0 is 1-dominated by a compact oriented irreducible 3-manifold
N 00 with connected torus boundary.

This result follows from the proof of Proposition 3.2 of [4], although the result in [4] is only stated for
closed 3-manifolds. By [16, Theorem 7.2], there exists a hyperbolic knot K �N 00 that is null-homotopic
in N 00. We take M to be a hyperbolic Dehn-filling of N 00 nN.K/, then M is a one-cusped hyperbolic
3-manifold. The proof of Proposition 3.2 of [4] constructs a degree-1 map f WM !N 00. More precisely,
the map f is identity on N 00 nN.K/, it extends to the meridian disc of the filled-in solid torus since K is
null-homotopic in N 00, and it extends to the whole solid torus since N 00 is irreducible.

5 Topological construction of virtual domination

In this section, we give the topological part of the proof of Theorem 1.2, and we also point out how to
modify the works to prove Theorem 1.3.

To prove Theorem 1.2, it suffices to prove the following result.

Theorem 5.1 Let M be a compact oriented hyperbolic 3-manifold , such that @M has two components
T1 and T2 and the kernel of H1.T1[T2IZ/!H1.M IZ/ contains an element ˛1C˛2 2H1.T1[T2IZ/

with 0¤ ˛1 2H1.T1IZ/ and 0¤ ˛2 2H1.T2IZ/. Let N be a compact oriented hyperbolic 3-manifold
with connected torus boundary. Then M has a finite cover M 0, such that there is a proper map f WM 0!N

with deg.f / 2 f1; 2; 4g.

We first prove that Theorem 5.1 implies Theorem 1.2.

Proof of Theorem 1.2 (by assuming Theorem 5.1) Let M be a compact oriented cusped hyperbolic
3-manifold, and let N be a compact oriented 3-manifold with tori boundary, as in Theorem 1.2. By

Algebraic & Geometric Topology, Volume 25 (2025)



1622 Hongbin Sun

Lemmas 4.1 and 4.5, there are compact oriented 3-manifold M1 and N1 with tori boundary, such that the
following hold:

(1) M1 is a finite cover of M and @M1 contains two components, T1 and T2, such that the ker-
nel of H1.T1 [ T2IZ/ ! H1.M1IZ/ contains an element ˛1 C ˛2 2 H1.T1 [ T2IZ/ with
0¤ ˛1 2H1.T1IZ/ and 0¤ ˛2 2H1.T2IZ/.

(2) N1 is an oriented one-cusped hyperbolic 3-manifold that admits a finite cover p WN2!N1 and a
degree-2 map g WN2!N .

Theorem 5.1 implies that M1 has a finite cover M2 and there is a proper map h WM2! N1 such that
deg.h/ 2 f1; 2; 4g.

Let q WM3!M2 be the covering space of M2 corresponding to .h�/�1.p�.�1.N2///, then we have the
following commutative diagram:

M3 N2

M2 N1

h0

q p

h

Here
deg.q/D Œ�1.M2/ W q�.�1.M3//�D Œ�1.M2/ W .h�/

�1.p�.�1.N2///�

is a factor of deg.p/ D Œ�1.N1/ W p�.�1.N2//�. Since deg.h/ � deg.q/ D deg.p/ � deg.h0/, deg.h0/ is a
factor of deg.h/ 2 f1; 2; 4g. So f 0 D g ı h0 WM3

h0
�!N2

g
�!N is a map such that deg.f 0/ 2 f2; 4; 8g.

Since M3 has tori boundary, b1.M3/ � 1 holds. So M3 has a cyclic cover r W M 0 ! M3 of degree
8=deg.f 0/. Then f D f 0 ı r WM 0!N is a proper map of degree 8, as desired.

The following three subsections are devoted to prove Theorem 5.1, modulo a �1-injectivity result
(Theorem 5.17). We always assume that M and N satisfy the assumption of Theorem 5.1.

5.1 Initial data of the construction

In this section, we first give some geometric data deduced from N , then we give some related geometric
notions on M .

We first prove the following lemma on triangulation of flat tori. The resulting triangulation will be the
restriction of our desired triangulation of a cusped hyperbolic 3-manifold to its horotorus.

Lemma 5.2 For any flat torus T , any primitive closed geodesic l on T , and any � 2 .0; 0:1/, T has a
geometric triangulation such that the following hold.

(1) l is contained in the 1-skeleton of this triangulation.

(2) There exists r 2 .0; �/, such that all edges have length in Œr; .1C 2�/r/.

(3) Any inner angle of any triangle is �-close to �
3

.
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Proof Up to multiplying the flat Riemannian metric on T with a positive real number, we can assume
that T is isometric to C=Z˚Zz0 for some complex number z0 2 C with Im.z0/ > 0, and the closed
geodesic l corresponds to the edge from 0 to 1.

We consider the lattice ƒ0 D Z˚Z!0 of C for !0 D
1
2
.1C
p

3i/. For large N 2N, we take ! to be
the point in ƒ0 closest to Nz0. Note that Im.!/ > 0 holds if N > 1=Im.z0/.

Let T WC!C be the linear transformation that maps N; ! 2ƒ0 to N;Nz0 2Z˚Zz0 respectively. Then
1
N

T maps ƒ0 to a lattice of C that contains Z˚Zz0. The equilateral triangulation of C corresponding
to ƒ0 induces a triangulation of T , and l is contained in the 1-skeleton.

It is straight forward to check that, if N is large enough (say N > 6=.� � Im.z0//), then all inner angles of
the above triangulation of T are �-close to �

3
. So we get an �-almost-equilateral geodesic triangulation

of T , such that all triangles are isometric to each other.

For each triangle in this triangulation of T , we take middle points of its edges and divide it into four
smaller triangles, to get a finer �-almost-equilateral geodesic triangulation, such that all smaller triangles
are similar to the original ones. We do this process repeatedly so that all edges have length at most �. Let
r be the length of the shortest edge, then the Euclidean sine law implies that all edges have length in
Œr; .1C 2�/r/.

Let �0 > 0 be a constant smaller than the 3-dimensional Margulis constant. For the one-cusped hyperbolic
3-manifold N as in Theorem 5.1 (considered as an open complete Riemannian manifold), let Nc be the
complement of the cusp end with injectivity radius at most �0=10, and let Tc be the boundary of Nc . By
a classical application of the Lefschetz duality, there is a primitive closed geodesic l on Tc that spans
ker.H1.Tc IR/!H1.Nc IR//.

Construction 5.3 We construct a geometric triangulation of a compact submanifold of N containing Nc ,
whose geometry near @Nc is quite special. In the process, we also construct two submanifolds of N ,
which are denoted by Ncollar and N0. These notations will be used several times in the remaining of this
paper.

Let � 2 .0; �0=100/ be a constant smaller than the injectivity radius of Nc .

(1) By Lemma 5.2 (applied to �=100), the horotorus Tc (also called the outside torus) has a geometric
triangulation, such that l is contained in the 1-skeleton, all edges have length in Œr; .1C 2�=100/r/

for some r 2 .0; �=100/, and all inner angles of triangles are �=100-close to �
3

.

(2) Let T 0c be the horotorus in Nc that has distance .
p

6=3/r from Tc , which is also called the inside
torus. For any triangle � in Tc , we take its circumcenter, and let v� be its closest point on T 0c . For
any vertex n of the triangulation of Tc , let its closest point on T 0c be vn.

(3) We connect v� to the three vertices of � and obtain a (hyperbolic) tetrahedron in N . All inner
angles of all triangles on the boundary of this tetrahedron are �-close to �

3
. Note that the triangle �
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n

vn

v�1

v�2

Figure 1: A picture of the triangulation near @N0, viewing from the outside of N0. Each black
triangle lies in the outside torus Tc . Up to homotopy, blue edges connect Tc (the outside torus)
and T 0c (the inside torus), while red and green edges lie in T 0c .

contained in Tc is not a face of this tetrahedron, since � is only a Euclidean triangle but not a
hyperbolic one.

(4) For any two triangles �1 and �2 contained in Tc that share an edge, we add an edge connecting
v�1

and v�2
. This edge and the edge �1\�2 together give a hyperbolic tetrahedron in N .

(5) For any vertex n and two triangles �1 and �2 contained in Tc , such that �1 \�2 is an edge
containing n, we get a hyperbolic tetrahedron with vertices n, vn, v�1

and v�2
. A picture of the

tetrahedra we have constructed can be found in Figure 1, which gives a triangulation of a compact
submanifold containing Tc .

(6) Let Ncollar be the union of tetrahedra (with disjoint interior) constructed in previous steps, and let
N0 be the union of Nc and Ncollar, which is compact and is a deformation retract of N . Then we
extend the above triangulation of Ncollar to a geometric triangulation of N0.

For the above geometric triangulation of N0, we use VN D fn1; n2; : : : ; nlg to denote the set of vertices,
and let VN;@ D VN \ @N0. If there is an oriented edge from ni to nj , we denote it by eij and denote its
orientation reversal by eji . For each triangle with vertices ni , nj and nk , we denote the corresponding
marked triangle by �ijk (with an order on its vertices). We can naturally identify @N0 with @Nc D Tc ,
and identify their triangulations.
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nl nj

ni

eijk

nk eij

Figure 2: Construction of the new edge eijk near @N0, where vertex nk is to the left of eij . Here
the black and blue edges are the same as in Figure 1, while the red edges are the new edges
constructed in Construction 5.4.

Instead of directly working with the above geometric triangulation of N0, we add more edges to get a
cellulation of N0.

Construction 5.4 For any triangle �ijk that only intersects with @N0 along an edge eij , we add an
oriented path eijk in �ijk from ni to nj of constant geodesic curvature, such that the tangent vector of
eijk at ni is �=200-close to the average of tangent vectors of eij and eik , and the same for the tangent
vector of eijk at nj . See Figure 2 for a picture of eijk . After this construction, there are two edges from
ni to nj .

The new edge eijk divides �ijk to a bigon and a triangle. We denote the bigon by Bijk , and abuse
notation to denote the new triangle by �ijk . For a triangle �ijk obtained by this modification process, it
is called a modified triangle. The original triangle �ijk (defined in Construction 5.3) will not be used
anymore.

After adding these edges to the triangulation of N0 in Construction 5.3, we get a cellulation of N0, which
is called a geometric cellulation.

We use N .1/ and N .2/ to denote the 1- and 2-skeletons of the above geometric cellulation of N respectively.
This cellulation also gives a handle structure of a neighborhood of N0 in N , and we use N.1/ and N.2/ to
denote the union of 0-, 1-handles, and 0-, 1-, 2-handles.

Let m be a simple closed curve on Tc that intersects with l exactly once. We isotope m to a curve  in
N0 nNcollar, so that it is disjoint from N .1/, and intersects with all triangles in N .2/ transversely. Let
N. / be the union of all tetrahedra that intersect with  , then we can assume that N. / is a neighborhood
of  homeomorphic to the solid torus. Let N be N0 n int.N. //. The above cellulation of N0 induces a
cellulation of N , and we denote the 2-skeleton of N by N

.2/
 .
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Since the 2-skeleton carries the first homology group, we have the following commutative diagram:

(5-1)
H1.N

.2/
 IZ/ H1.N IZ/

H1.N
.2/IZ/ H1.N0IZ/ H1.N IZ/

Here all homomorphisms are induced by inclusions, and all horizontal homomorphisms are isomorphisms.

The following lemma provides some elementary properties of vertical homomorphisms in diagram (5-1).

Lemma 5.5 Let i WN
.2/
 !N be the inclusion map , and let c be the meridian of N. /, then the following

hold.

(1) i� WH1.N
.2/
 IZ/!H1.N IZ/ is surjective.

(2) The kernel of i� is spanned by a nontorsion element Œc� 2H1.N
.2/
 IZ/, and Œc�� Œl � is a torsion

element in H1.N
.2/
 IZ/.

(3) The inclusion @N0!N
.2/
 induces an injective homomorphism on H1. � IZ/.

Proof Since horizontal homomorphisms in diagram (5-1) are isomorphisms, it suffices to study the
inclusion N !N0. We consider the Mayer–Vietoris sequence given by N0 DN [N. /:

H1.@N. /IZ/!H1.N IZ/˚H1.N. /IZ/!H1.N0IZ/! 0:

Item (1) follows from the surjectivity of H1.N IZ/˚H1.N. /IZ/!H1.N0IZ/ and the surjectivity
of H1.@N. /IZ/!H1.N. /IZ/.

Now we prove item (2). By the Mayer–Vietoris sequence, the kernel of H1.N IZ/! H1.N0IZ/ is
spanned by the meridian c of N. /. Since Œl � spans ker.H1.@N0IR/!H1.N0IR//, we take the minimal
d 2 Z>0 such that d Œl �D 0 2H1.N0IZ/. So dl bounds a compact oriented surface S in N0, and the
algebraic intersection number between m� @N0 and S is d . Since  is isotopic to m in N0, the algebraic
intersection number between  and S is d . So S \N is a compact oriented surface in N and it implies
that d Œl �� d Œc�D 0 2H1.N IZ/, so Œc�� Œl � is a torsion element in H1.N

.2/
 IZ/. Moreover, the above

argument also shows that kl does not bound a compact oriented surface in N for any k 2 Z>0. So Œl � is
not a torsion element in H1.N IZ/, and Œc� is not a torsion element either.

For the composition H1.@N0IZ/ ! H1.N IZ/ ! H1.N0IZ/, its kernel is spanned by a multiple
of Œl �. Since item (2) implies that Œl � is not an torsion element in H1.N IZ/, the homomorphism
H1.@N0IZ/!H1.N IZ/ is injective.

Recall that M has two boundary components, T1 and T2, such that the kernel of

H1.T1[T2IZ/!H1.M IZ/
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contains ˛1C ˛2 2H1.T1 [T2IZ/ with 0¤ ˛1 2H1.T1IZ/ and 0¤ ˛2 2H1.T2IZ/. Now we treat
M as a noncompact open hyperbolic 3-manifold, and consider T1 and T2 as two horotori of M . The
following lemma gives some data that will instruct us to construct the mapped-in 2-complex j WZ # M .

Lemma 5.6 For any � 2 .0; 10�2/, there exist R0> 0, such that for any R>R0, there exist the following
maps and homomorphisms:

� up to rechoosing the horotori T1 and T2 in M (by changing their heights), we have maps
i@;1 W @N0! T1 and i@;2 W @N0! T2,

� i1 WH1.N
.2/
 IZ/!H1.M IZ/ and i2 WH1.N

.2/
 IZ/!H1.M IZ/,

� i WH1.N IZ/!H1.M IZ/,

� i1; i2 WN
.1/
 !M (note that N .1/ DN

.1/
 holds),

such that the following properties hold.

(1) For any s D 1; 2, i@;s maps each triangle in @N0 to a Euclidean geometric triangle in Ts such that
each inner angle is �-close to �

3
, and the length of each edge lies in ŒR; .1C �/R�.

(2) For any s D 1; 2, the following diagram commutes:

H1.@N0IZ/ H1.N
.2/
 IZ/

H1.TsIZ/ H1.M IZ/

.i@;s/� is

(3) The following diagram commutes:

H1.N
.2/
 IZ/ H1.M IZ/

H1.N IZ/

i1Ci2

i

(4) For any sD1; 2, isjN .0/ is an embedding , isj@N .1/

0

D i@;sj@N .1/

0

and the following diagram commutes:

H1.N
.1/
 IZ/ H1.M IZ/

H1.N
.2/
 IZ/

.is/�

is

Here all undefined homomorphisms are induced by inclusions.

Proof By Lemma 5.5(3), the inclusion induced homomorphism H1.@N0IZ/!H1.N IZ/ is injective.
So H1.N IZ/ has a direct summand H Š Z2 that contains H1.@N0IZ/ as a finite index subgroup, with
H1.N IZ/ŠH ˚H 0 and let ŒH WH1.@N0IZ/�D k.
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Recall that by Lemma 5.2, @N0 is equipped with a triangulation induced by a geometric triangulation of
the Euclidean torus @Nc , such that each triangle of @Nc is almost an equilateral triangle with length at
most 2�. We identify @N0 and @Nc with the quotient of R2 by a lattice

ƒDAZC .BCC!0/Z;

such that each triangle in @N0 and @Nc corresponds to an equilateral triangle in R2 of edge length 1 (this
identification is not an isometry). Here A;B;C 2 Z with A;C ¤ 0 and !0 D

1
2
.1C
p

3i/. Moreover,
we can assume that the R-coefficient null-homologous curve l � @N0 corresponds to A 2ƒ.

Similarly, by Lemma 5.2, for any s D 1; 2, Ts has a geodesic triangulation such that the following hold.

� Any inner angle of a triangle is �
10

-close to �
3

.

� There exists rs 2
�
0; �

10

�
, such that all edges of triangles have length in

�
rs;
�
1C �

5

�
rs

�
.

� The homology class ˛s 2H1.TsIZ/ is represented by the ds
th power of a simple closed geodesic

ls for some ds 2 Z>0, and ls is contained in the 1-skeleton of this triangulation.

By the same process as above, we identify Ts with the quotient of R2 by a lattice

ƒs DAsZC .BsCCs!0/Z;

with As;Cs¤0 and ls corresponds to As 2ƒs . By subdividing triangles, we can assume that A1d1DA2d2

holds. Moreover, by rechoosing horotori parallel to T1 and T2 respectively, we can assume that r1 D r2

holds, and let r D r1 D r2.

Let D be the least common multiple of A1C1d1 and A2C2d2. For any a 2 Z>0, we construct a map
i@;s W @N0! Ts as following. We have

ƒs DAsZC .BsCCs!/Z> akD �ƒD .akDA/ZC .akD.BCC!0//Z;

since

(5-2) akDAD
�
akA

D

As

�
As

and

(5-3) akD.BCC!0/D
�
akB

D

As
� akCBs

D

AsCs

�
AsC

�
akC

D

Cs

�
.BsCCs!0/:

So the scaling by akD gives a map from R2=ƒ to R2=ƒs , and it maps each equilateral triangle of length
1 to an equilateral triangle of length akD. Since we identified @N0 and Ts with R2=ƒ and R2=ƒs

respectively, the akD-scaling map induces i@;s W @N0! Ts , such that it maps each triangle in @N0 to a
triangle in Ts of inner angle �-close to �

3
, and with edge length contained in

�
akDr;

�
1C �

5

�
akDr

�
. If

R>R0 D 2kDr=�, there exists a positive integer a, such that
�
akDr;

�
1C �

5

�
akDr

�
� ŒR; .1C �/R�.

So we can choose a such that item (1) holds for both i@;1 and i@;2.
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Note that the simple closed curve l in @N0 corresponds to A 2ƒ, which is mapped to akDA 2ƒs via
the akD-scaling map. Since ˛s D dsls corresponds to dsAs 2ƒs , .i@;s/� maps l to�

akA
D

dsAs

�
˛s 2H1.TsIZ/:

Since we assumed A1d1 DA2d2 and ˛1C˛2 D 0 2H1.M IZ/, we have

(5-4) .i@;1/�.l/C .i@;2/�.l/D akA
D

d1A1
.˛1C˛2/D 0 2H1.M IZ/:

Now we define is WH1.N
.2/
 IZ/!H1.M IZ/ for s D 1; 2. By (5-2) and (5-3),

.i@;s/� WH1.@N0IZ/!H1.TsIZ/

maps each element to a k-multiple of an element in H1.TsIZ/. Since

H1.N
.2/
 IZ/ŠH1.N IZ/DH ˚H 0

for some H containing H1.@N0IZ/ with ŒH WH1.@N0IZ/�D k, the homomorphism

.i@;s/� WH1.@N0IZ/!H1.TsIZ/

uniquely extends to a homomorphism hs WH!H1.TsIZ/, and we define is WH1.N
.2/
 IZ/!H1.M IZ/

to be
H1.N

.2/
 IZ/!H

hs
�!H1.TsIZ/!H1.M IZ/:

Here the first homomorphism is the projection to the direct summand H , and the third homomorphism is
induced by inclusion. It is straight forward to check that the commutative diagram in item (2) holds.

Note that N deformation retracts to N0 D N [N. / and N. / is a solid torus. Once we prove that
the meridian c of N. / lies in the kernel of i1C i2 WH1.N

.2/
 IZ/!H1.M IZ/, then i1C i2 induces a

homomorphism i WH1.N IZ/!H1.M IZ/ and the commutative diagram in item (3) holds. Recall that
Lemma 5.5(2) implies that Œl �� Œc� is a torsion element in H1.N

.2/
 IZ/DH ˚H 0. Since H Š Z2, we

have Œc�� Œl � 2H 0. By the definition of i1 and i2 above, i1.Œc�� Œl �/D i2.Œc�� Œl �/D 0 holds. So we have

.i1C i2/.Œc�/D .i1C i2/.Œl �/C .i1C i2/.Œc�� Œl �/D .i1C i2/.Œl �/D .i@;1/�.Œl �/C .i@;2/�.Œl �/D 0:

Here the third equation follows from item (2) and the fourth equation follows from (5-4).

To define is W N
.1/
 !M , we first define isj@N .1/

0
D i@;sj@N .1/

0
, and arbitrarily extend is to a maximal

subcomplex K of N
.1/
 that deformation retracts to @N0. Then since edges in N

.1/
 nK form a basis of

H1.N
.1/
 IZ/=H1.@N

.1/
0
IZ/, we can extend is to N

.1/
 so that the commutative diagram in item (4) holds.

Finally, we slightly perturb is if necessary, so that isjN .0/ is an embedding.

Now we give some notation on the geometry of N . Most of the items (except item (3)) are similar to
those of [23, Notation 4.4].
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Notation 5.7 (1) For any oriented edge eij (or eijk) in N .1/, let Evij (Evijk) be the unit tangent vector of
eij (eijk) based at ni . By Construction 5.4, Evijk lies in the plane in Tvi

M containing Evij and Evik , and is
�=200-close to .Evij C Evik/=jEvij C Evik j. For any marked geodesic triangle �ijk in N .2/, let

Enijk D
Evij � Evik

jEvij � Evik j
;

then it is a normal vector of �ijk at ni , and we have a frame

Fijk D .ni ; Evij ; Enijk/ 2 SO.N /ni
:

For any marked modified triangle �ijk defined in Construction 5.4, with eij contained in @N0 (which is
not an edge of �ijk), the frames Fkij and Fkji are defined as in the previous case. For Fijk , let

Enijk D
Evijk � Evik

jEvijk � Evik j
D
Evij � Evik

jEvij � Evik j
;

and we get a frame
Fijk D .ni ; Evijk ; Enijk/ 2 SO.N /ni

:

For each frame Fijk , we denote �Fijk D .ni ;�Evij ;�Enijk/, then we have a finite collection of frames
in N :

FN D f˙Fijk j�ijk is a marked triangle in N .2/
g:

(2) For any sD 1; 2, let mk;sD is.nk/ and VM;sD is.VN /. We take an isometry ts WTN jVN
!TM jVM;s

that descends to is W VN ! VM;s , such that the following holds for any nk 2 VN;@. At nk 2 VN;@, there
is a frame .Evk ; Enk/ such that Evk is tangent to the direction of l � @Nc , and Evk � Enk points up straightly
into the cusp. We require that ts maps Evk and Enk to Ev0

k
and En0

k
based at mk;s respectively, such that Ev0

k

is tangent to the direction of ls � Ts and Ev0
k
� En0

k
points up straightly into the cusp. Then ts induces

an SO.3/-equivariant isomorphism ts W SO.N /jVN
! SO.M /jVM;s

, denoted by the same notation. We
denote F M

ijk;s
D .mi;s; Ev

M
ij ;s; En

M
ijk;s

/D ts.Fijk/ 2 SO.M /jmi;s
, and let

FM;s D ts.FN /� SO.M /:

(3) Since N .2/ contains finitely many 2-cells, there exists �0 2 .0; �/, such that all inner angles of
bigons and triangles in N .2/ and all dihedral angles between adjacent 2-cells of N .2/ lie in Œ�0; ��.

Remark 5.8 Let ni and nj be two vertices of @N0 such that eij is contained in @N0, and let nk be the
vertex not contained in @N0 such that ni , nj and nk span an triangle in the original triangulation of N0

and it lies to the left of eij , as in Figure 2. We give coordinates of T 1
ni

N such that Evij � .1; 0; 0/ with
vanishing second coordinate and the vector pointing to the cusp is .0; 0; 1/.

Let

Ev0 D

�
1

2
;

1

2
p

3
;
r

6
�

1� e�
2
p

6
3

r

2r

�
:

Algebraic & Geometric Topology, Volume 25 (2025)



Virtual domination of 3-manifolds, III 1631

Assuming all triangles in Tc �N are equilateral triangles of length r , an elementary computation gives

Evik D Ev1 D
Ev0

kEv0k
�

�
1

2
;

1

2
p

3
;�

p
6

3

�
; Evijk D Ev2 �

Ev1C .1; 0; 0/

kEv1C .1; 0; 0/k
�

�p
3

2
;
1

6
;�

p
2

3

�
;

Enijk D Ev3 D
Ev2 � Ev1

kEv2 � Ev1k
�

�
0;

2
p

2

3
;
1

3

�
:

In this remark, the actual vectors are all �
20

-close to their numerical approximations above.

Remark 5.9 Although the frame bundle of a compact orientable 3-manifold N with connected torus
boundary is trivial, there may not be a trivialization of SO.N / such that its restriction to @N has third
vector pointing outward. So we do not have a homological instruction as good as [23, Proposition 4.5],
which reduces the degree of virtual domination by a half.

5.2 Construction of the immersion j W Z # M

In this section, we construct the �1-injective immersion j WZ # M . Since Z is a 2-complex, we will
inductively construct the 0-, 1-, 2-skeletons of Z and the restrictions of j on these skeletons. Throughout
this section, we fix a small number � 2 .0; 10�2/ and a sufficiently large number R 2

�
1
�
;C1

�
such that

all (finitely many) constructions below (invoking Theorems 2.11 and 2.14) are applicable.

Construction 5.10 We define Z0 to be a finite set fv1;1; v1;2; v2;1; v2;2; : : : ; vl;1; vl;2g, whose cardinality
doubles the cardinality of VN DN .0/. Then we define j 0 WZ0!M by j 0.vk;s/Dmk;s D is.nk/ 2M

for any k 2 f1; 2; : : : ; lg and s 2 f1; 2g.

Here we take two copies of N .0/ since we work with two boundary components T1 and T2 of M . Now
we construct the 1-complex Z1 of Z.

Construction 5.11 For any unoriented edge eij (or eijk) in N .1/, it gives two edges eZ
ij ;1

and eZ
ij ;2

(or
eZ

ijk;1
and eZ

ijk;2
) in Z1, such that eZ

ij ;s (or eZ
ijk;s

) connects vi;s and vj ;s for s D 1; 2. So Z1 consists of
two isomorphic components Z1

1
and Z1

2
, and each of them is isomorphic to N .1/. For the vertices and

edges of Z1 corresponding to vertices and edges in N .1/\ @N0, they form a subcomplex of Z1 and we
denote it by @pZ1.

A picture of Z1 near a vertex of @pZ1 is shown in Figure 1.

The indices of vertices induce a total order on the set of vertices in N .0/, and also induce total orders on
the vertex set of Z1

1
and the vertex set of Z1

2
. Any edge eij (or eijk) in N .1/ between ni and nj with

i < j has an orientation that goes from ni to nj , and we always fix such a preferred orientation. Edges of
Z1

1
and Z1

2
have identical orientations.

The map j 1 WZ1!M on 1-skeleton is given in the following construction, which consists of two maps
j 1

1
WZ1

1
!M and j 1

2
WZ1

2
!M on the two (identical) components of Z1.
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Construction 5.12 For any s D 1; 2, we do the following construction.

(1) For each oriented edge eZ
ij ;s �Z1

s with i < j contained in @pZ1
s , we map it to the oriented geodesic

segment homotopic to is.eij / relative to endpoints, via a homeomorphism. Note that these geodesic
segments have length contained in Œ2 log R; 2 log RC 4�� (by Lemma 5.6(1)).

(2) For each oriented edge eZ
ij ;s �Z1

s with i < j not contained in @pZ1
s , we apply Theorem 2.14 to

construct a @-framed segment sij ;s in M from mi;s to mj ;s such that the following conditions hold,
and we map eZ

ij ;s to the carrier of sij ;s via a homeomorphism.

(a) The length and phase of sij ;s are �
10

-close to 2R and 0 respectively, and the height of sij ;s is
at most 2 log RC 2.

(b) Let k be the smallest index such that ni , nj and nk form a triangle in N .2/, the initial and
terminal frames of sij ;s are �

10
-close to F M

ijk;s
and �F M

jik;s
respectively.

(c) The relative homology class of the carrier of sij ;s in H1.M; fmi;s;mj ;sgIZ/ equals the relative
homology class of is.eij /.

(3) For any oriented edge eZ
ijk;s

� Z1
s with i < j that corresponds to eijk � N .1/, we apply

Theorem 2.14 to construct a @-framed segment sijk;s in M from mi;s to mj ;s such that the
following conditions hold, and we map eZ

ijk;s
to the carrier of sijk;s via a homeomorphism.

(a) The length and phase of sijk;s are �
10

-close to 2R and 0 respectively, and the height of sijk;s

is at most 2 log RC 2.

(b) The initial and terminal frames of sijk;s are �
10

-close to F M
ijk;s

and �F M
jik;s

respectively.

(c) The relative homology class of the carrier of sijk;s in H1.M; fmi;s;mj ;sgIZ/ equals the relative
homology class of is.eijk/.

Figure 1 shows the geometry of j 1.Z1
s / near a vertex vi;s corresponding to ni 2 @N0.

Remark 5.13 (1) In Construction 5.12(1), the tangent vector of j 1.eZ
ij ;s/ at mi;s is almost .0; 0; 1/

(with respect to the preferred coordinate system), while the tangent vector of F M
ijk;s

is almost .1; 0; 0/.
This is the crucial reason why we need extra edges (eijk and eZ

ijk;s
) in N .1/ and Z1, which takes care of

this difference. We map eZ
ij ;s � @pZ1

s to the geodesic segment in the relative homotopy class of is.eij /,
instead of prescribing its tangent vectors at initial and terminal points, since we need to construct proper
maps between 3-manifolds with tori boundary.

(2) In Construction 5.12(2), if we take another vertex nk0 of N such that ni , nj and nk0 also form a
triangle in N .2/, then we can rechoose frames of sij ;s so that it still satisfies item (2), with respect to
F

M;s
ijk0

and �F
M;s

jik0
in item (2)(b). The reason is that Fijk0 D Fijk �A and �Fjik0 D .�Fjik/ �A for the

same A 2 SO.3/, while ts is SO.3/-equivariant.

(3) In Construction 5.12(3), by our construction of the triangulation of N near @N0 in Construction 5.3(1),
the third coordinate of EvM

ij ;s is at most �=100. Up to changing coordinate, we assume that EvM
ij ;s has trivial
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second coordinate, then it is �=100-close to .1; 0; 0/. We suppose that nk lies to the left of eij , as shown
in Figure 2, then EvM

ik;s
is �

20
-close to

�
1
2
;
p

3
6
;�
p

6
3

�
, and the initial frame of sijk;s is �

5
-close to��p

3

2
;
1

6
;�

p
2

3

�
;

�
0;

2
p

2

3
;
1

3

��
:

See also Remark 5.8.

Moreover, the common perpendicular vector of j1.e
Z
ij ;s/ and j 1.eZ

ijk;s
/ at mi;s is �

5
-close to

�
�1

2
p

7
; 3
p

3

2
p

7
; 0
�
.

If we consider Figure 2 as a picture of j 1
s .Z

1/ in M , the dihedral angle between the hyperplane determined
the above vector and the geodesic triangle homotopic to Ts (relative to vertices) is �-close to

arccos
��
�

1

2
p

7
;
3
p

3

2
p

7
; 0

�
�

�
�

p
3

2
;�

1

2
; 0

��
D arccos

�
�

p
3

2
p

7

�
� 0:606�:

Note that this computation will be crucial for our proof of Theorem 5.17 in Section 6.

Before we construct the 2-complex Z, we need the following lemma that proves certain closed curves
arising from Construction 5.12 are good curves.

Lemma 5.14 Under the conditions in Construction 5.12, if R is large enough , we have the following
good curves.

(1) For any bigon Bijk in N .2/, the concatenation of j 1.eZ
ij ;s/; j

1.eZ
ijk;s

/ is homotopic to a null-
homologous .Rij ; �/-good curve ijk;s of height at most 2 log RC 3 in M , with

Rij DRC log lij � log 6

3C
p

2
:

Here lij denotes the length of the Euclidean geodesic segment i@;s.eij / and lij 2 ŒR; .1C �/R�.

(2) For any triangle�ijk in N .2/ with vertices ni , nj and nk , the concatenation of j 1.eZ
ij ;s/, j 1.eZ

jk;s
/

and j 1.eZ
ki;s
/ is an .Rijk ; �/-good curve ijk;s of height at most 2 log RC 3 in M , with

Rijk D 3R� .I.� � �ijk/C I.� � �jki/C I.� � �kij //:

(Here j 1.eZ
ij ;s/ is replaced by j 1.eZ

ijk;s
/ if�ijk is a modified triangle.) Here �ijk is the inner angle

of the triangle�ijk at vertex ni . Moreover , if�ijk is contained in N
.2/
 , ijk;s is null-homologous

in M ; if �ijk is not contained in N
.2/
 , then ijk;1[ ijk;2 is null-homologous in M .

Note that if R is large enough, all good curves in this lemma have length contained in Œ2R; 6R�.

Proof (1) Note that j 1.eZ
ijk;s

/ is the carrier of sijk;s , and we assumed that EvM
ij ;s has trivial second

coordinate as in Remark 5.13(2). So by Remark 5.13(3), the initial and terminal frames of sijk;s are
�
5

-close to ��p
3

2
;
1

6
;�

p
2

3

�
;

�
0;

2
p

2

3
;
1

3

��
and

��p
3

2
;�

1

6
;

p
2

3

�
;

�
0;

2
p

2

3
;
1

3

��
Algebraic & Geometric Topology, Volume 25 (2025)



1634 Hongbin Sun

respectively (with respect to preferred coordinates). For �D��arcsin 1p
7

, the initial and terminal frames
of the frame rotation sijk;s.�/ are �

5
-close to��p

3

2
;
1

6
;�

p
2

3

�
;

�
1

2
p

7
;�

3
p

3

2
p

7
; 0

��
and

��p
3

2
;�

1

6
;

p
2

3

�
;

�
�

1

2
p

7
;�

3
p

3

2
p

7
; 0

��
respectively.

For j 1.eZ
ij ;s/, its initial and terminal directions are .2=R/-close to .0; 0; 1/ and .0; 0;�1/ respectively.

Since j 1.eZ
ij ;s/ is a geodesic segment in a cusp, it parallel transports .0; 1; 0/ to .0; 1; 0/. We obtain

a @-framed segment t with phase 0, by equipping j 1.eZ
ij ;s/ with initial and terminal framings .0; 1; 0/.

Then for �0 D � C arcsin 1

2
p

7
, its �0-rotation t.�0/ is a @-framed segment with 0-phase, with initial and

terminal frames .4=R/-close to�
.0; 0; 1/;

�
1

2
p

7
;�

3
p

3

2
p

7
; 0

��
and

�
.0; 0;�1/;

�
�

1

2
p

7
;�

3
p

3

2
p

7
; 0

��
respectively.

If R > 20
�

, then t.�0/; sijk;s.�/ is a
�

2
5
�
�
-consecutive cycle of @-framed segments, with both bending

angles
�

2
5
�
�
-close to arccos

p
2

3
. By elementary hyperbolic geometry, the length of t.�0/ equals

2 log

p
l2
ij C 4C lij

2
:

Lemma 3.2(2) implies that the concatenation of j 1.eZ
ij ;s/; j

1.eZ
ijk;s

/ is homotopic to a closed geodesic
ijk;s with complex length 2�-close to

2Rij D 2RC 2 log lij � 2 log 6

3C
p

2
:

So ijk;s is an .Rij ; �/-good curve.

We take large enough R, so that heights of T1 and T2 are at most log R. Since the heights of sijk;s

and t are at most 2 log RC 2, Lemma 3.4 implies the height of ijk;s is at most 2 log RC 3. By the
homological conditions in Construction 5.12(1) and (3)(c), j 1.eZ

ij ;s/ and j 1.eZ
ijk;s

/ represent the same
relative homology class, so ijk;s is a null-homologous closed geodesic in M .

(2) We prove this result in the case that �ijk is not a modified triangle, and the case of modified triangles
can be proved similarly.

By our constructions of j 1.eZ
ij ;s/, j 1.eZ

jk;s
/ and j 1.eZ

ki;s
/ in Construction 5.12(2), we equip them with

initial and terminal frames as following to get three @-framed segments.

� Equip j 1.eZ
ij ;s/ with initial and terminal frames that are �

10
-close to EnM

ijk;s
and �EnM

jik;s
respectively.

� Equip j 1.eZ
jk;s

/ with initial and terminal frames that are �
10

-close to EnM
jki;s

and �EnM
kji;s

respectively.

� Equip j 1.eZ
ki;s
/ with initial and terminal frames that are �

10
-close to EnM

kij ;s
and �EnM

ikj ;s
respectively.
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By Construction 5.12(2) and Remark 5.13(2), the phases of these @-framed segments are �
10

-close to 0.
Since EnM

ijk;s
D�EnM

ikj ;s
, these three @-framed segments form a �

5
-consecutive cycle. Then Lemma 3.2(2)

implies that the concatenation is homotopic to a closed geodesic ijk;s with complex length 2�-close to

2Rijk D 6R� 2.I.� � �ijk/C I.� � �jki/C I.� � �kij //:

So ijk;s is an .Rijk ; �/-good curve. The height bound of ijk;s follows from the argument in (1).

By Construction 5.12(2), ijk;s is homologous to the concatenation of is.eij /, is.ejk/ and is.eki/. If�ijk

is a triangle in N
.2/
 , Lemma 5.6(4) implies that ijk;s is null-homologous in M . If �ijk is not contained

in N
.2/
 , it is a meridian disc of N. /, then Lemma 5.6(4) implies that ijk;1[ ijk;2 is homologous to

i1.@�ijk/C i2.@�ijk/, which is null-homologous in M by Lemma 5.6(3).

Now we construct the 2-complex Z, by adding surfaces to two copies of Z1. Rigorously speaking, two
copies of Z1 are not the 1-skeleton of Z as a CW-complex, but we still call it the 1-skeleton of Z, for
our convenience. The map j 1 WZ1!M and the construction of Z below automatically give the desired
immersion j WZ # M .

Construction 5.15 We take R0 to be an integer greater than all the Rij and Rijk in Lemma 5.14.

(1) Recall that Z1 has two components: Z1
1

and Z1
2

, and each of them is isomorphic to N .1/. The
1-skeleton Z.1/ of Z consists of two copies of Z1, so we have Z.1/ DZ

1;1
1
[Z

1;1
2
[Z

1;2
1
[Z

1;2
2

. For
any s D 1; 2, the restriction of j to Z

1;1
s and Z

1;2
s equals j 1jZ1

s
. We denote the two copies of @pZ1 in

Z.1/ by @pZ.1/.

(2) For any triangle �ijk in @N0 with vertices ni , nj and nk , and any component Z
1;t
s of Z.1/ with

s; t 2 f1; 2g, we paste a triangle �Z;t
ijk;s

to Z
1;t
s along the concatenation of edges eZ

ij ;s , eZ
jk;s

and eZ
ki;s

in Z
1;t
s . Since eZ

ij ;s is mapped to a path homotopic to is.eij / (Construction 5.12(1)) and isj@N .1/

0

extends
to i@;s W @N0! Ts (Lemma 5.6(4)), the j 1-image of this concatenation is null-homotopic in M , so we
map the triangle �Z;t

ijk;s
to the corresponding totally geodesic triangle in M .

(3) For any bigon Bijk in N
.2/
 containing an edge eij � @N0 and any s D 1; 2, we do the following

construction.

By Lemma 5.14(1), the concatenation of j 1.eZ
ij ;s/; j

1.eZ
ijk;s

/ is homotopic to a null-homologous .Rij ; �/-
good curve ijk;s in M , via a nearly geodesic two-cornered annulus Aijk;s (see Figure 3, left). Let Ewijk;s

be the tangent vector of the shortest geodesic in Aijk;s from ijk;s to mi;s , and let

Evijk;s D Ewijk;sC .1C� i/ 2N 1.
p
ijk;s/:

By Proposition 2.11 and Remark 2.12, two copies of ijk;s bound an .Rij ;R
0; �/-nearly geodesic

subsurface Sijk;s # M , such that the following hold.

(a) The two feet of Sijk;s on two copies of ijk;s are both .�=R/-close to Evijk;s .

(b) Any essential path in Sijk;s with end points in @Sijk;s must have combinatorial length (with respect
to the decomposition of Sijk;s to pants and hamster wheels) at least R0eR0=2.
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We identify the two boundary components of Sijk;s with the two copies of concatenations of eZ
ij ;s , eZ

jk;s

and eZ
ki;s

in Z
1;1
s and Z

1;2
s respectively. The restriction of j on Sijk;s is naturally defined by two copies

of the nearly geodesic 2-cornered annulus Aijk;s and the above .Rij ;R
0; �/-nearly geodesic subsurface

Sijk;s # M .

(4) For any triangle�ijk in N
.2/
 not contained in @N0 and any sD1; 2, we do the following construction.

By Lemma 5.14(2), the concatenation of j 1.eZ
ij ;s/, j 1.eZ

jk;s
/ and j 1.eZ

ki;s
/ is homotopic to a null-

homologous .Rijk ; �/-good curve ijk;s in M , via a nearly geodesic three-cornered annulus Aijk;s (see
Figure 3, right). Let Ewijk;s be the tangent vector of the shortest geodesic in Aijk;s from ijk;s to mi;s ,
and let Evijk;s D Ewijk;sC .1C� i/ 2N 1.

p
ijk;s/. By Proposition 2.11 and Remark 2.12, two copies of

ijk;s bound an .Rijk ;R
0; �/-nearly geodesic subsurface Sijk;s # M , such that conditions (a) and (b)

in item (3) hold.

We identify the two boundary components of Sijk;s with the two copies of concatenations eZ
ij ;s , eZ

jk;s

and eZ
ki;s

in Z
1;1
s and Z

1;2
s respectively. The restriction of j on Sijk;s is naturally defined by two copies

of the nearly geodesic 3-cornered annulus Aijk;s and the above .Rijk ;R
0; �/-nearly geodesic subsurface

Sijk;s # M .

(5) Up until now, the 2-complex we have constructed has (at least) two components, one containing
Z

1;1
1
[Z

1;2
1

and one containing Z
1;1
2
[Z

1;2
2

. For any triangle �ijk in N .2/ not contained in N
.2/
 , we

do the following construction.

By Lemma 5.14(3), for any s D 1; 2, the concatenation j 1.eZ
ij ;s/; j

1.eZ
jk;s

/; j 1.eZ
ki;s
/ is homotopic to

an .Rijk ; �/-good curve ijk;s via a three-cornered annulus Aijk;s in M , and ijk;1 [ ijk;2 is null-
homologous in M . Let Ewijk;s be the tangent vector of the shortest geodesic in Aijk;s from ijk;s to mi;s ,
and let Evijk;s D Ewijk;sC .1C� i/ 2N 1.

p
ijk;s/. By Proposition 2.11 and Remark 2.12, two copies of

ijk;1[ ijk;2 bound an .Rijk ;R
0; �/-nearly geodesic surface Sijk # M , such that conditions (a) and

(b) in item (3) hold, with Sijk;s replaced by Sijk .

We identify the four boundary components of Sijk with two copies of concatenations of eZ
ij ;1
; eZ

jk;1
; eZ

ki;1

and eZ
ij ;2
; eZ

jk;2
; eZ

ki;2
in Z

1;1
1
;Z

1;2
1

and Z
1;1
2
;Z

1;2
2

respectively. The restriction of j on Sijk is naturally
defined by two copies of the nearly geodesic 3-cornered annuli Aijk;1[Aijk;2, and the above .Rijk ;R

0; �/-
nearly geodesic subsurface Sijk # M .

Note that the surfaces Sijk;s and Sijk in Construction 5.15(3), (4) and (5) may not be connected, so Z

may not be connected and has at most four connected components. One can actually work harder as in
[13] to make sure these surfaces are connected, but we choose to save some work here.

Alternatively, Z is obtained from four copies of N .2/, denoted by N
.2/;1
1

, N
.2/;1
2

, N
.2/;2
1

and N
.2/;2
2

respectively, by making the following modifications.

(1) Each triangle in N .2/\ @N0 is not modified.
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Figure 3: The two-cornered annulus and three-cornered annulus in Construction 5.15.

(2) For any bigon Bijk or triangle �ijk in N
.2/
 n @N0 and any s D 1; 2, the two copies of Bijk or

�ijk in N
.2/;1
s ;N

.2/;2
s are replaced by a compact orientable surface Sijk;s with two boundary

components.

(3) For each triangle �ijk in N .2/ not contained in N
.2/
 , its four copies are replaced by a compact

orientable surface Sijk with four boundary components.

5.3 Construction of virtual proper domination

In this section, we construct the desired finite cover M 0 of M and the proper nonzero map f WM 0!N ,
modulo a �1-injectivity result (Theorem 5.17).

Recall that the 1-skeleton Z.1/ of Z has four identical components. So Z has at most four components,
and we take a component of Z that contains the least number (one, two or four) of components of the
1-skeleton. We abuse notation and still denote this component by Z, and we still denote the restriction of
j on this component by j .

The next section is devoted to prove the �1-injectivity of j WZ # M and some further refinements. To
state this result, we first need to define a compact 3-manifold Z with boundary.

Recall that the cellulation of N0 in Construction 5.4 induces a handle structure on a compact neighborhood
N.N0/ of N0. Let N.1/ be the union of 0- and 1-handles of this handle structure. Then we define a
compact oriented 3-manifold Z as following.

Construction 5.16 (1) We start with four copies of N.1/, denoted by N
.1/;1
1

, N
.1/;1
2

, N
.1/;2
1

and N
.1/;2
2

respectively.

(2) For any triangle �ijk contained in N .2/\@N0, the corresponding 2-handle is pasted to N.1/ along
an annulus Lijk . Then for each copy of N.1/, we attach a 2-handle along the same annulus Lijk .

(3) For any bigon Bijk or triangle �ijk in N
.2/
 n @N0, the corresponding 2-handle is pasted to N.2/

along an annulus Lijk . For any s D 1; 2, we take the surface Sijk;s from Construction 5.15(3)
or (4), which has two boundary components. Then we attach Sijk;s � I to N

.1/;1
s [N

.1/;2
s via an

orientation reversing homeomorphism from @Sijk;s � I to copies of Lijk in N
.1/;1
s [N

.1/;2
s .
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(4) For any triangle �ijk in N .2/ not contained in N
.2/
 , the corresponding 2-handle is pasted to N.1/

along an annulus Lijk . We take the surface Sijk constructed in Construction 5.15(5), which has
four boundary components. Then we paste Sijk � I to the four copies of N.1/ via an orientation
reversing homeomorphism from @Sijk � I to the four copies of Lijk .

Then we take Z to be the component of the resulting manifold containing the least number (1; 2 or 4) of
components of N.1/.

In the construction of Z (Construction 5.16), after the second step, we obtain four copies of the same
3-manifold, which is homeomorphic to the union of N.1/ and a neighborhood of @N0. Here each copy has a
unique boundary component homeomorphic to the torus. Since further constructions in Construction 5.16
do not affect these four tori, we obtain at most four tori components of @Z and we denote their union
by @pZ.

Now we can state the result to be proved in Section 6.

Theorem 5.17 For any small � 2 .0; 10�2/, there exists R0 > 0 depending on M and �, such that the
following statement holds for any R>R0. If the construction of j WZ # M satisfies all conditions in
Constructions 5.11, 5.12 and 5.15 (involving � and R), then j WZ # M is �1-injective and the �1-image
j�.�1.Z// < �1.M / is a geometrically finite subgroup.

Moreover , the convex core of the covering space zM of M corresponding to j�.�1.Z// < �1.M / is
homeomorphic to the 3-manifold Z n @pZ as oriented manifolds , and the cusp ends of zM corresponding
to @pZ are mapped to T1[T2 � @M via the covering map.

The proof of Theorem 5.17 is more complicated than proofs of corresponding �1-injectivity results in
[19; 23], since the construction of the mapped-in 2-complex j WZ # M is more complicated. The proof
of Theorem 5.17 is more geometric, which is in different flavor from other constructions in this section,
so we defer its proof to Section 6.

For N.2/, it has a unique boundary component homeomorphic to the torus, and we denote it by @pN.2/.
The following elementary property of Z is important for the construction of virtual domination.

Lemma 5.18 There exists a proper map g W .Z; @Z/! .N.2/; @N.2// of deg.g/ 2 f1; 2; 4g, such that
g�1.@pN.2// D @pZ, and the restriction of g on each component of @pZ is an orientation preserving
homeomorphism to @pN.2/.

Proof We construct g by following the steps in Construction 5.16 that constructs Z.

First, g maps one, two or four copies of N.1/ in Z to N.1/ �N.2/ by identity. Then g maps each 2-handle
in Z corresponding to �ijk � @N0 to the corresponding 2-handle in N.2/ by homeomorphism. So g

maps @pZ to @pN.2/, and the restriction of g on each component of @pZ is an orientation preserving
homeomorphism to @pN.2/.
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In steps (3) and (4) of Construction 5.16, each 2-handle in N.2/ not contained in @N0 corresponds to
a bigon Bijk or triangle �ijk , and it gives .Sijk;1 � I/ [ .Sijk;2 � I/ or Sijk � I in Z. Then each
component of .Sijk;1 � I/[ .Sijk;2 � I/ or Sijk � I in Z is mapped to the corresponding 2-handle
Bijk � I or �ijk � I in N.2/, via the product of a pinching map on surfaces and the identity on I . Then
we get a proper map g W .Z; @Z/! .N .2/; @N .2// that maps @Z n @pZ to @N.2/ n @pN.2/.

We have deg.g/ 2 f1; 2; 4g since g�1.N.1// consists of 1, 2 or 4 copies of N.1/, and the restriction of g

on each such component is identity.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 We first consider M as a noncompact 3-manifold with cusp ends. We take
small � > 0 and large enough R> 0 such that Constructions 5.12, 5.15 and Theorem 5.17 hold, and we
construct a mapped in 2-complex j WZ # M . By Theorem 5.17, j� W �1.Z/! �1.M / is injective and
the convex core of j�.�1.Z// < IsomC.H3/ is homeomorphic to Z n @pZ. Let zM be the covering space
of M corresponding to j�.�1.Z// < �1.M /, then it contains a submanifold homeomorphic to Z n @pZ,
such that ends of Z n @pZ correspond to cusp ends of zM .

Now we chop off cusp ends of M and consider it as a compact 3-manifold with boundary. As a manifold
with boundary, zM contains a compact submanifold homeomorphic to Z such that Z\ @ zM D @pZ.

By Agol’s celebrated result that hyperbolic 3-manifold groups are LERF [2], the covering map zM !M

factors through a finite cover M 0 of M , such that Z is mapped into M 0 via embedding, we have
Z\ @M 0 D @pZ.

Recall that we have a handle decomposition of a neighborhood N.N0/ of N0, and we can identify N.N0/

with N . By Lemma 5.18, there is a proper map g W .Z; @Z/! .N.2/; @N.2// such that g�1.@pN.2//D @pZ

and deg.g/ 2 f1; 2; 4g. Note that each component of @N .2/ n@pN .2/ is the boundary of a 3-cell, which is
homeomorphic to S2. Then we extend g to a proper map f WM 0!N as following.

Let K be a component of M 0 nZ, then K is disjoint from @pZ and @K is the union of @pK DK\ @M 0

and @iK D K \Z. Then @iK has a neighborhood @iK � I in K. Since g maps each component of
@iK � @Z to an S2-component of @N.2/ that bounds a 3-cell, we first map @iK � I �K to a union of
3-cells in N0 that maps @iK � 0 D @iK via g and maps @iK � 1 to centers of 3-cells. Then we map
K n .@iK� I/ to a graph in N.N0/ such that each component of @iK�1 is mapped to the corresponding
center of 3-cell and each component of @pK is mapped to a point in @.N.N0//. Moreover, we can assume
that this graph misses N.1/. By the above definition of f on components of M 0 nZ, we get a proper map
f W .M 0; @M 0/! .N.N0/; @N.N0//D .N; @N /.

For any point p 2N.1/, we have f �1.p/D g�1.p/, while f and g have the same local mapping degree
at f �1.p/. So deg.f /D deg.g/ 2 f1; 2; 4g holds.

Algebraic & Geometric Topology, Volume 25 (2025)



1640 Hongbin Sun

5.4 Proof of Theorem 1.3

The proof of Theorem 1.3 is similar to the proof of Theorem 1.2, and we sketch the proof in the following.

We start with a compact oriented mixed 3-manifold M with tori boundary such that its boundary intersects
with a hyperbolic JSJ piece, and a compact oriented 3-manifold N with tori boundary.

Propositions 4.2 and 4.5 imply the following hold.

� M has a finite cover M 0 with two boundary components T1 and T2 contained in the same hyperbolic
JSJ piece M 0

0
�M 0, such that the kernel of H1.T1[T2IZ/!H1.M

0
0
IZ/ induced by inclusion

contains an element that has nontrivial components in both H1.T1IZ/ and H1.T2IZ/.

� N is virtually 2-dominated by a one-cusped oriented hyperbolic 3-manifold N 0.

By the argument at the beginning of Section 5 (Theorem 5.1 implies Theorem 1.2), it suffices to prove
that M 0 virtually dominates N 0 with virtual mapping degree in f1; 2; 4g. By abusing notation, we still use
M and N to denote M 0 and N 0 respectively, and use M0 to denote the hyperbolic piece of M containing
T1;T2 � @M .

Then we take a geometric cellulation of N as in Constructions 5.3 and 5.4, and construct instructional
maps and homomorphisms as in Lemma 5.6, with M replaced by M0. Then we choose small enough
� > 0 and large enough R > 0, and follow Constructions 5.10, 5.11, 5.12 and 5.15 to construct a map
j W Z # M0. By Theorem 5.17 (to be proved in Section 6), if R is large enough, j W Z # M0 is
�1-injective, and the convex core of j�.�1.Z// < �1.M0/ < IsomC.H3/ is homeomorphic to Z n @pZ.

So the covering space zM0 of M0 corresponding to j�.�1.Z// < �1.M0/ contains a submanifold
homeomorphic Z n @pZ, and @pZ corresponds to cusp ends of zM0. Now we chop off cusp ends of
M0 and consider it as a compact 3-manifold with tori boundary, the corresponding zM0 contains a
compact submanifold homeomorphic to Z such that @ zM0 \ Z D @pZ, and @ zM0 \ Z is mapped to
T1[T2 � @M0\ @M .

Let zM be the covering space of M corresponding to j�.�1.Z// < �1.M0/ < �1.M /, then it contains a
submanifold homeomorphic to zM0. Since @M contains the tori boundary components T1 and T2 of M0,
Z� zM0 is also a compact submanifold of zM such that @ zM \ZD @pZ. Since j WZ!M maps into a
JSJ hyperbolic piece M0 �M , by [21] (which heavily relies on [2]), j�.�1.Z// is a separable subgroup
of �1.M /. Then by [18], there is an intermediate finite cover M 0 of zM !M , such that Z is mapped
into M 0 via embedding, and Z\ @M 0 D @pZ holds.

Again, we identify N with a neighborhood N.N0/ of N0, which has an induced handle structure. By
Lemma 5.18, there is a proper map g W .Z; @Z/ ! .N.2/; @N.2// such that g�1.@pN.2// D @pZ and
deg.g/ 2 f1; 2; 4g. Then we extend g to a proper map f W .M 0; @M 0/! .N.N0/; @N.N0//. For each
component K of M 0 nZ, the map f can be defined exactly as in the proof of Theorem 5.1, which maps
each component of K\ @M 0 to a point in @N.N0/. Then we have deg.f /D deg.g/ 2 f1; 2; 4g.
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6 Proof of �1-injectivity

In this section, we devote to prove the �1-injectivity result Theorem 5.17, and the proof is more difficult
than the �1-injectivity results in [19; 23]. One reason is that our constructions of Z and j WZ # M are
more complicated. The more important reason is that the induced map Qj W zZ! zM DH3 on universal
covers is not a quasi-isometric embedding.

We sketch the structure of this section in the following. In Section 6.1, we define an (ideal) 3-complex
Z3 that contains Z as a deformation retract, then we define a family of representations

�t W �1.Z
3/! Isom.H3/

and a family of maps Qjt W
zZ3!H3 that is �t -equivariant, such that Qj1j zZ

D Qj and �1D j�. In Section 6.2,
we prove that Qj0 W

zZ3 ! H3 is a quasi-isometric embedding and some further details, via a more
complicated definition of modified sequence than in [19]. In Section 6.3, we prove that any Qjt is a
quasi-isometric embedding, and finish the proof of Theorem 5.17.

6.1 An extension of Z and a family of maps

By Construction 5.15(2), for any s; t 2 f1; 2g, each triangle �ijk � @N0 gives a triangle �Z;t
ijk;s

in Z with
s; t 2 f1; 2g. If we fix s and t , then the union of all such �Z;t

ijk;s
gives a torus T t

s �Z. Each T t
s �Z is

combinatorially isomorphic to @N0, and the restriction of j on T t
s is homotopic to a covering map to

Ts �M . Since both T1 and T2 are peripheral tori in M , the lifting of j jW T t
s !M to the universal cover

is not a quasi-isometric embedding, so neither is Qj W zZ! zM DH3. To treat this undesired situation, we
extend Z to an ideal 3-complex Z3 as following.

Definition 6.1 For each triangulated torus T t
s �Z with s; t D 1; 2, we take a cone over T t

s and delete
the cone point, and denote the resulting ideal 3-complex by C.T t

s /. We define Z3 to be the union of Z

and all these C.T t
s /.

It is clear that Z3 deformation retracts to Z. For any vertex vt
i;s , edge e

Z;t
ij ;s and triangle�Z;t

ijk;s
(copies of vi ,

eZ
ij , �ijk in T t

s ) contained in T t
s , their cones give an edge, a triangle and a tetrahedron in Z3 respectively,

with the cone point deleted. We denote these cones by e
Z;t
i1;s , �Z;t

ij1;s and T
Z;t
ijk1;s

respectively.

We define j1 WZ
3 # M as following, which is an extension of j WZ # M . We require that j1 maps eZ;t

i1;s

to the geodesic ray from j .vt
i;s/ to the ideal point corresponding to the cusp end Ts of @M , maps �Z;t

ij1;s

to the ideal triangle given by j .e
Z;t
ij ;s/ and the ideal point, and maps T

Z;t
ijk1;s

to the ideal tetrahedron
given by j .�

Z;t
ijk;s

/ and the ideal point. To prove Theorem 5.17, the main step is to prove that the lifting
Qj1 W
zZ3! zM DH3 of j1 WZ

3 # M to the universal cover is a quasi-isometric embedding.

Now we define a family of maps f Qjt W
zZ3!H3 j t 2 Œ0; 1�g (the map given by t D 1 is the above Qj1)

and a family of representations f�t W �1.Z
3/! IsomC.H3/ j t 2 Œ0; 1�g, such that Qjt is �t -equivariant.

We also have the property that Qj0 maps each component of the preimage of Z nZ.1/ in zZ3 to a totally
geodesic subsurface of H3.

Algebraic & Geometric Topology, Volume 25 (2025)



1642 Hongbin Sun

The map j1 WZ
3 # M gives us the following parameters. All parameters are similar to the ones given in

[23, Parameter 5.4], except items (3) and (4).

Parameter 6.2 (1) For each vertex vt
i;s 2Z.0/ and each edge e

Z;t
ij ;s �Z.1/ n@pZ.1/ (or e

Z;t
ijk;s

) adjacent
to vi;s , the initial frame of sij ;s (or sijk;s) equals FM

ijk
�Aij ;s (or FM

ijk;s
�Aijk;s) for some Aij ;s 2 SO.3/

(or Aijk;s) that is �
10

-close to id 2 SO.3/ (see Construction 5.12(2)(b) and (3)(b)).

(2) For each edge e
Z;t
ij ;s 2 Z.1/ n @pZ.1/ (or e

Z;t
ijk;s

), the complex length of the associated @-framed
segment sij ;s (or sijk;s) equals 2RC�ij ;s (or 2RC�ijk;s) for some complex number �ij ;s (or �ijk;s)
with modulus at most �

5
(see Construction 5.12(2)(a) and (3)(a)).

(3) For each edge e
Z;t
ij ;s � @pZ.1/, j .e

Z;t
ij ;s/ is homotopic to an Euclidean geodesic segment gij ;s in the

horotorus Ts �M of length .1C �ij ;s/R with j�ij ;sj< � (see Construction 5.12(1) and Lemma 5.6(1)).

(4) For each vertex vt
i;s 2 @pZ.1/, we take a preferred edge e

Z;t
ij ;s � @pZ.1/, and let nk be the vertex of

N such that ni ; nj ; nk form a triangle in N .2/ not contained in @N0, and nk lies to the left of the edge
eij (as in Figure 2). Let Fi;s D .j .v

t
i;s/; Evij ;s; Eni;s/ be the frame based at j .vt

i;s/ such that Evij ;s is tangent
to gij ;s (in item (3)) and Eni;s is tangent to j1.e

Z;t
i1;s/. Then we have

F M
ijk;s D Fi;s �X �Bi;s;

where X 2 SO.3/ satisfies �
EvT

2
EvT

3
.Ev2 � Ev3/

T
�
D

0@1 0 0

0 0 �1

0 1 0

1A �X
for vectors Ev2 and Ev3 in Remark 5.8 and Bi;s 2 SO.3/ is �-close to id 2 SO.3/.

(5) For each decomposition curve C of some surface Sijk;s (or Sijk) and is not an inner cuff of any
hamster wheel, the corresponding good curve has complex length 2R0C �C , for some complex number
�C with j�C j< 2� (the condition of .R0; �/-good curves).

(6) For each hamster wheel H in some Sijk;s or Sijk , it has R0 rungs (common perpendicular segments
of its two outer cuffs) rH ;1; : : : ; rH ;R0 , and these rungs divide both outer cuffs c and c0 to R0 geodesic
segments sH ;1; : : : ; sH ;R0 and s0

H ;1
; : : : ; s0

H ;R0
respectively. Then for any i D 1; : : : ;R0, the complex

distance between c and c0 along rH ;i is R0�2 log sinh 1C�H ;i with j�H ;i j< �=R
0 [11, (2.9.1)]; and for

any i D 1; : : : ;R0� 1, the complex distance between rH ;i and rH ;iC1 along sH ;i and s0
H ;i

are 2C �H ;i

and 2C �0
H ;i

respectively, with j�H ;i j; j�
0
H ;i
j< �=R0 [11, (2.9.3)].

(7) For each decomposition curve C of some surface Sijk;s (or Sijk), the feet of its two adjacent
good components differ by 1C� i C �C , for some complex number �C with j�C j < 100� (the .R; �/-
well-matched condition in [11, Section 2.10]) and j�C j< �=R

0 if formal feet are defined on both sides
of C . Here if C is contained in @Sijk;s , the foot from the three-cornered annulus (or two-cornered
annulus) Aijk;s is the foot of the shortest geodesic segment from ijk;s to a preferred vertex vi;s , as in
Construction 5.15(3), (4) and (5).
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So we have parameters

Aij ;s;Aijk;s;Bi;s 2 SO.3/; �ij ;s; �ijk;s; �C ; �C ; �H ;i ; �H ;i ; �
0
H ;i 2C; �ij ;s 2R

associated to j1 W Z
3 # M , and these parameters are very small with respect to metrics of SO.3/, C

and R, respectively.

Note that the data in Parameter 6.2(5) and (6) determine shapes of all .R0; �/-good components, as in the
discussion after [23, Parameter 5.4].

For any t 2 Œ0; 1�, we take parameters

tAij ;s; tAijk;s; tBi;s 2 SO.3/; t�ij ;s; t�ijk;s; t�C ; t�C ; t�H ;i ; t�H ;i ; t�
0
H ;i 2C; t�ij ;s 2R:

Here for any A 2 SO.3/ close to id, tA denotes the image of t 2 Œ0; 1� under the shortest geodesic
Œ0; 1�! SO.3/ from id to A. These parameters give rise to a map Qjt W

zZ3!H3 that is equivariant with
respect to a representation �t W �1.Z

3/! IsomC.H3/, and Qjt can be defined by a developing argument
as following.

We use Z0 to denote the subcomplex of Z3 consisting of following pieces:

� Z.1/ �Z (as in Construction 5.11),

� all triangles �t
ijk;s
�Z corresponding to triangles �ijk � @N0,

� all ideal edges e
Z;t
i1;s , ideal triangles �Z;t

ij ;1;s and ideal tetrahedra T
Z;t
ijk1;s

.

We define Z00 to be the union of Z0 and all decomposition curves and boundary components of Sijk;s

and Sijk . The inclusion Z00 ,!Z3 is �1-injective on each component. We further define Z000 to be the
union of Z00 and following pieces:

� For each two-cornered or three-cornered annulus At
ijk;s

in Z �Z3, take an edge from a vertex
vt

i;s to the corresponding good curve  t
ijk;s

.

� For each pair of pants in Z �Z3, take its three seams.

� For each hamster wheel in Z �Z3, take all of its short seams between adjacent inner cuffs, and
2R0 seams from two outer cuffs to all inner cuffs.

Let � W zZ3 ! Z3 be the universal cover of Z3, then each component of ��1.Z0/ D zZ0 � zZ3 is the
universal cover of a component of Z0. We also use �M WH

3!M to denote the universal cover of M .
The construction of Qjt W

zZ3!H3 is given in the following.

Construction 6.3 We will first define Qjt W
zZ3!H3 on zZ00 D ��1.Z00/� zZ3, by the following steps.

(1) We start with a vertex Qv1
i;1
2 zZ3 such that �. Qv1

i;1
/D v1

i;1
, and a point p 2H3 such that �M .p/D

j .v1
i;1
/ 2M . Then we have an isometry of tangent spaces .d�M /p W TpH3 ! T�M .p/.M /, and we

define Qjt . Qv
1
i;1
/D p.
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(2) Let QeZ;1
ij ;1

be an edge from Qv1
i;1

to another vertex Qv1
j ;1

such that it projects to e
Z;1
ij ;1
�Z1 n @pZ. We

map QeZ;1
ij ;1

to a geodesic segment in H3 of length RC t Re.�ij ;1/ from p to some q 2H3, such that its
tangent vector at p is the tangent vector of

zF M
ijk;1.t/ WD .d�M /�1

p .F M
ijk;1 � tAij ;1/:

We parallel transport � zF M
ijk;1

.t/.t Im�ij ;1/ � .tAji;1/
�1 along this geodesic segment to get a frame

zF M
jik;1

.t/ 2 SOq.H3/. Here zF M
ijk;1

.t/.t Im�ij ;1/ denotes the frame rotation of zF M
ijk;1

.t/ by angle
t Im�ij ;1. Then we take an isometry

TqH3
! Tj.v1

j ;1
/M

that identifies zF M
jik;1

.t/ with F M
jik;1

2 SOj.v1
j ;1
/.M /. Under this identification, we can further define the

map Qjt on edges adjacent to Qv1
j ;1

that do not project to @pZ, as in item (1).

(3) If Qv1
i;1

corresponds to a vertex ni 2 @N0, then v1
i;1

is contained in the torus T 1
1
� @pZ and let zT 1

1
be

the component of ��1.T 1
1
/� zZ3 containing Qv1

i;1
, then we do the following construction. Let QeZ;1

ij ;1
� zZ.1/

be the edge of zZ.1/ adjacent to Qv1
i;1

corresponding to the preferred edge eij 2 @N0 as in Parameter 6.2(4),
and let nk be the vertex of N .0/ as in Figure 2. The geodesic ray starting from p D Qjt . Qv

1
i;1
/ and tangent

with the normal vector of
.d�M /�1

p .F M
ijk;1 � .X � tBi;1/

�1/

gives an ideal point b 2 @H3, and it determines a horoplane P going through p. Then we take an
Euclidean geodesic segment in P tangent to the tangent vector of .d�M /�1

p .F M
ijk;1
� .X � tBi;1/

�1/ with
length .1C t�ij ;1/R and map Qv1

j ;1
to its endpoint. The parameters �st;1 (in Parameter 6.2(3)) inductively

give triangles in P with edge length .1C t�st;1/R. In this way, we get a map Qit W
zT 1

1
! P .

(4) For Qit W
zT 1

1
! P defined in (3), we homotopy each edge in zT 1

1
to a geodesic segment in H3 (relative

to endpoints) and each triangle in zT 1
1

to the corresponding totally geodesic triangle, to get the desired
map Qjt jW

zT 1
1
!H3. For each ideal edge e

Z;1
i1;1

, ideal triangle �Z;1
ij1;1

, ideal tetrahedron T
Z;1
ij1;1

in zZ3

adjacent to zT 1
1

, we map them to the geodesic ray, the ideal geodesic triangle and the ideal hyperbolic
tetrahedron determined by the ideal point b 2 @H3 and Qjt W

zT 1
1
!H3, respectively.

(5) For any vertex Qv1
i0;1
2 zT 1

1
that corresponds to v1

i0;1
2 T 1

1
, there is an preferred edge QeZ;1

i0j 0;1
adjacent to

Qv1
i0;1
2 zT 1

1
. Then we get a frame zFi0;1 based at Qjt . Qv

1
i0;1
/ such that its tangent vector is tangent to Qit . Qe

Z;1
i0j 0;1

/

and its normal vector points to b 2 @H3. We take the isometry T Qjt .Qv
1
i0;1
/
H3! Tj.v1

i0;1
/M that maps zFi0;1

to F M
i0j 0k0;1

�X � .tBi0;1/. Then we construct Qjt on edges of zZ.1/ adjacent to Qv1
i0;1
2 zT 1

1
as in item (2).

(6) By applying the construction in items (2), (3), (4) and (5) inductively, we define Qjt on the component
zW of zZ0 � zZ3 containing Qv1

i;1
, and let W be the image of zW in Z0. Note that when t D 0, for any

triangle �ijk (or bigon Bijk) in N0 n @N0, the Qj0-image of any component of ��1.e
Z;1
ij ;1
[ e

Z;1
jk;1
[ e

Z;1
ki;1

/

(or ��1.e
Z;1
ijk;1
[e

Z;1
ji;1

/) lies in a hyperbolic plane in H3. For �ijk , this claim follows from item (2) since
the normal vector of zFM

ijk;1
.0/ is parallel transported to the normal vector of � zFM

jik;1
.0/, and the same
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holds if i , j and k are permuted. For Bijk , this claim follows from Remark 5.8 that the t D 0 case is
modeled by an equilateral tessellation of the horoplane.

When t D 1, Qj1 is exactly the restriction of Qj W zZ ! H3 on zW . Since Qjt j zW
is defined by geometric

parameters, it induces a representation � zWt W �1.W /! IsomC.H3/, such that Qjt j zW
is � zWt -equivariant.

(7) Now we work on zZ000. For any line component l � zZ000 of the preimage of some C � @Sijk;1 (or
@Sijk) that is adjacent to zW , it corresponds to a bi-infinite concatenation of edges in zW , and Qjt maps
this concatenation to a bi-infinite quasigeodesic in H3. We map l to the bi-infinite geodesic that share
end points with the above quasigeodesic, equivariant under the �1.C /-action (via � zWt ). For each edge e

of zZ000 adjacent to l that is mapped to an edge contained in a three-cornered annulus (or two-cornered
annulus) in Z, we map it to the shortest geodesic segment between the corresponding vertex in zW and
the bi-infinite geodesic Qjt .l/ in H3.

(8) For each line component l 0 � zZ00 in the preimage of an .R0; �/-good curve C 0 in Sijk and adjacent
to l in zZ00, we map the seam s between l and l 0 to the geodesic segment whose feet are the .1C� iCt�C /-
shift of the closest feet on Qjt .l/ (arising from an edge in a three-cornered or a two-cornered annulus in
item (7)). The complex length of Qjt .s/ is determined by the parameters of this good component, which
determines the Qjt -image of l 0, a bi-infinite geodesic in H3. Let �1.C

0/ acts on H3 by translating along
Qjt .l
0/, with complex translation length 2R0C �C 0 , and we define Qjt on l 0 to be �1.C

0/-equivariant.

Then we apply this process inductively to define Qjt on one component of zZ3 n zZ0. For a hamster wheel,
the complex lengths of its seams are determined by parameters �H ;i ; �H ;i ; �

0
H ;i

in Parameter 6.2(6) and
complex lengths of its outer cuffs.

(9) Then we define Qjt on zZ000 inductively by the process in items (2)–(8). Again, since Qjt W
zZ000!H3

is defined by geometric parameters, it induces a representation �t W �1.Z
3/ ! Isom.H3/ and Qjt is

�t -equivariant.

At the end, since each component of Z3 nZ000 is topologically a disc, we can further triangulate Z3 and
map each new triangle in Z3 to a geodesic triangle in H3. Then the map Qjt W

zZ000!H3 extends to a
�t -equivariant map Qjt W

zZ3!H3. Here Qj1 W
zZ!H3 is the lifting of j WZ3 # M to universal covers,

and Qj0 maps each component of zZ3 n zZ0 into a hyperbolic plane in H3.

Note that Qj0 W
zZ3!H3 maps each component of zZ3 n zZ0 to a totally geodesic subsurface of H3, maps

each ideal tetrahedron in zZ3 to an ideal tetrahedron in H3, and the union of these pieces is zZ3. Then Qj0

pulls back the hyperbolic metric on H3 to metrics on aforementioned pieces of zZ3, and further induces a
path metric on zZ3. Each component of zZ3 n zZ.1/ is called a 2-dimensional piece or a 3-dimensional
piece of zZ3, according to its dimension.

Now we prove a lemma that describes the coarse geometry of zZ3, with respect to the above metric. These
estimates may not be optimal.
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Lemma 6.4 If R > 0 is large enough , the following estimates hold for zZ3, with respect to the above
metric.

(1) For any vertex v 2 zZ3 and any edge e 2 zZ.1/ not containing v, d zZ3.v; e/� log R.

(2) For any two distinct 3-dimensional pieces of zZ3, their distance is at least 9
10

log R.

(3) For any two distinct edges e1; e2 2
zZ.1/ that do not share a vertex and do not lie in the same

3-dimensional piece of zZ3, we have d zZ3.e1; e2/�
1
3

log R.

(4) For any two distinct vertices v1; v2 2
zZ3, we have d zZ3.v1; v2/� log R.

Proof We take R> 0 large enough that

log R�max f4; 2I.� ��0/C 10;�10 log .sin�0/g:

Note that all edges of zZ.1/ that project to @pZ have length at least 2 log R (Construction 5.12(1)), and
all other edges have length at least 2R� 1> 2 log R (Construction 5.12(2) and (3)).

(1) Let e be an edge of zZ.1/, let v be a vertex of zZ3 not contained in e, and let  be the shortest oriented
path in zZ3 from v to e.

If v and e do not lie in the closure of the same component of zZ3 n zZ.1/, then the interior of  intersects
with zZ.1/ at finitely many edges, and let e0 be the first such edge. Then e0 and v lie in the same component
of the closure of zZ3 n zZ.1/ and v is not a vertex of e0. So it suffices to assume that v and e lie in the
closure C of the same component of zZ3 n zZ.1/.

(a) We first suppose that C is a 3-dimensional piece. Let the ideal point corresponding to C be1,
then the projection of C gives a tessellation of R2 consisting of equilateral triangles of length R.
A computation in hyperbolic geometry gives d zZ3.v; e/ > log R. So we can assume that C is a
2-dimensional piece.

(b) If  intersects with the preimage of some surface piece zSijk;s or zSijk , Remark 2.12 implies that
d zZ3.v; e/D l. /�R> log R. So  does not intersect with any zSijk;s or zSijk , and is homotopic
to a concatenation of subsegments of edges in zZ.1/ relative to endpoints, as shown in Figure 4.

(c) There must be k � 2 edges in Figure 4, and all edges have length at least 2 log R except the last
one. Since  lies in a 2-dimensional piece, each inner angle between edges is at least �0. If the
last edge has length at least 1

4
log R, then Lemma 3.2(1) implies

d zZ3.v; e/D l. /� .k � 1/ � 2 log RC 1
4

log R� .k � 1/.I.� ��0/C 1/

� log RC .k � 1/
�

1
2

log R� I.� ��0/� 1
�
� log R:

If the last edge has length less than 1
4

log R, then Lemma 3.2(1) implies

d zZ3.v; e/D l. /� .k � 1/ � 2 log R� .k � 2/.I.� ��0/C 1/� 1
4

log R

� log RC .k � 2/.2 log R� I.� ��0/� 1/� log R:
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v

e



� � � � � �

Figure 4: The shortest path in a piece of zZ3 n zZ.1/ from v to e, without intersecting zSijk;s of zSijk .

(2) Let C1 and C2 be two distinct 3-dimensional pieces of zZ3; then C1\C2 D∅ holds. Let  be the
shortest path in zZ3 between C1 and C2. We call intersections of  with 3-dimensional and 2-dimensional
pieces of zZ3 n zZ.1/ as 3-dimensional subsegments and 2-dimensional subsegments of  . We can assume
that  does not have any 3-dimensional subsegment, otherwise the proof can be reduced to a subsegment
of  . So we can assume that  only has 2-dimensional subsegments.

(a) If  intersects with some component of zSijk;s or zSijk , then d zZ3.v; e/D l. /�R> log R as in
(1)(b). So we assume that  does not intersect with any such zSijk;s or zSijk , and the intersection of
 with 2-dimensional pieces of zZ3 n zZ.1/ are as shown in Figure 5.

(b) If a 2-dimensional subsegment of  is homotopic to a concatenation of k � 3 subsegments of
edges of zZ.1/ relative to endpoints, as in Figure 5, left, then all such subsegments have lengths
at least 2 log R except the first and last one. We divide into three cases. If both the first and last
subsegments of edges have length at least 1

4
log R, by Lemma 3.2(1), we have

l. /� 2� 1
4

log RC .k � 2/2 log R� .k � 1/.I.� ��0/C 1/

D
3
2

log RC .2k � 5/.log R� 2I.� ��0/� 2/C .3k � 9/.I.� ��0/C 1/

� log R:

If exactly one of the first and last subsegment of edges has length at least 1
4

log R, we have

l. /� 1
4

log RC .k � 2/2 log R� .k � 2/.I.� ��0/C 1/� 1
4

log R

D
3
2

log RC
�
2k � 11

2

�
.log R� 2I.� ��0/� 2/C .3k � 9/.I.� ��0/C 1/

� log R:

If both the first and last subsegments of edges have length at most 1
4

log R, we have

l. /� .k � 2/2 log R� .k � 3/.I.� ��0/C 1/� 2 � 1
4

log R

D
5
4

log RC
�
2k � 23

4

�
.log R� 2I.� ��0/� 2/C

�
3k � 17

2

�
.I.� ��0/C 1/

� log R:
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Figure 5: Intersection of  and components of zZ3 n zZ.1/.

(c) By (2)(b) above, we can assume that only Figure 5, right, shows up. If all subsegments of edges in
Figure 5, right, have length less than log R, since all edges of zZ.1/ have length at least 2 log R, the
vertices in each occurrence of Figure 5, right, must be the same vertex, contradicting with the fact
that  connects two distinct 3-dimensional pieces. So some subsegment of edge in Figure 5, right,
must have length at least log R. Since the angle in Figure 5, right, is at least �0, a computation in
hyperbolic geometry gives sinh.l. //� sinh.log R/ � sin�0; thus

l. /� log RC log .sin�0/ >
9

10
log R:

(3) Let e1 and e2 be two distinct edges of zZ.1/ that do not share a vertex and do not lie in the same
3-dimensional piece of zZ3. Let  be the shortest path in zZ3 between e1 and e2. If  intersects with a
component of zSijk;s or zSijk , then l. /� log R as in (1)(b) above. So we assume that  does not intersect
with any such zSijk;s or zSijk , and we consider the intersection of  with components of zZ3 n zZ.1/, as the
following cases.

(a) If  has a 2-dimensional subsegment as shown in Figure 5, left, with k � 3 edges in zZ.1/ show up
in the picture. Then (2)(b) implies l. /� log R holds. So we can assume that all 2-dimensional
subsegments of  are as shown in Figure 5, right.

(b) If some subsegment of edge in Figure 5, right, has length at least 2
3

log R, then the argument
as in (2)(c) implies l. / > 2

3
log RC log .sin�0/ >

1
2

log R. So we can assume that, for any
2-dimensional subsegment of  as in Figure 5, right, all subsegments of edges have length smaller
than 2

3
log R.

(c) We call concatenations of adjacent 2-dimensional subsegments of  as 2-dimensional pieces of  ,
and we also call 3-dimensional subsegments of  as 3-dimensional pieces. Note that by (3)(b),
each 2-dimensional piece of  lies in the link of a vertex of zZ3. In particular,  cannot be a single
2-dimensional piece, since e1 and e2 do not share a vertex of zZ3, thus  must contain at least one
3-dimensional piece.

(d) If  contains two 3-dimensional pieces, since each 3-dimensional piece of zZ3 is convex (as a
subset of H3), these two 3-dimensional pieces of  must be contained in two distinct 3-dimensional
pieces of zZ3. Then item (2) implies that l. /� 9

10
log R holds. So we can assume that  has at

most one 3-dimensional piece.
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(e) So  is a concatenation of one 2-dimensional piece, one 3-dimensional piece and one 2-dimensional
piece. It is possible that one 2-dimensional piece of  may degenerate, but these 2-dimensional
pieces cannot both degenerate, since e1 and e2 do not lie in the same 3-dimensional piece of zZ3.
If exactly one of the two 2-dimensional pieces of  degenerates, we assume that the degenerated
edge contains the terminal point of  . The unique 2-dimensional piece of  lies in the

�
2
3

log R
�
-

neighborhood of a vertex v. Then v is a vertex of e1, and is contained in a 3-dimensional piece C

of zZ3 n zZ.1/. Since e1 and e2 do not share a vertex, e2 is contained in C and does not have v as
its vertex. By (1), d zZ3.e2; v/� log R holds. So we have l. /� log R� 2

3
log RD 1

3
log R.

If neither two 2-dimensional pieces of  degenerate, then there are two vertices v1 and v2 of the
same 3-dimensional piece C of zZ3, such that the two 2-dimensional pieces of  lie in

�
2
3

log R
�
-

neighborhoods of v1 and v2 respectively. Since e1 and e2 do not share a common vertex, v1

and v2 are two distinct vertices of C . Since d zZ3.v1; v2/D dC .v1; v2/� 2 log R holds, we have
l. /� 2 log R� 2 � 2

3
log RD 2

3
log R.

(4) Let v1 and v2 be two distinct vertices of zZ3, and let  be the shortest path in zZ3 between v1 and v2.
If  intersects with some component of zSijk;s or zSijk , or if  intersects with some 2-dimensional piece
of zZ3 as in Figure 5, left, with k � 3, then (1)(b) and (2)(b) imply l. /� log R hold, respectively. So
we assume that each 2-dimensional subsegment of  is as shown in Figure 5, right.

(a) If the initial point v1 of  is contained in a 2-dimensional subsegment of  , as in Figure 5, right,
then the subsegment of edge containing v1 has length at least 2 log R. So as in (2)(c), we have
l. /� log R.

(b) If the initial point v1 of  is contained in a 3-dimensional subsegment of  , then the other end
point of this 3-dimensional subsegment is contained in an edge not containing v1. Then by (1), we
have l. /� log R.

6.2 Estimation on the ideal model of Z

In this section, we prove the following result on the map Qj0 W
zZ3!H3 defined in the last section.

Proposition 6.5 Given the metric on zZ3, for large enough R> 0, the following statements hold.

(1) The map Qj0 W
zZ3!H3 is a quasi-isometric embedding.

(2) The representation �0 W �1.Z
3/! IsomC.H3/ is injective.

(3) The map Qj0 W
zZ3!H3 is an embedding.

(4) The convex core of H3=�0.�1.Z
3// is homeomorphic to the 3-manifold Zn@pZ in Theorem 5.17,

as oriented manifolds.

The idea of the proof of Proposition 6.5 is similar to proofs of corresponding results in [19; 23], but
the actual proof is more complicated, since the construction of the 3-complex Z3 is more involved. In
particular, we will have a more complicated definition of the modified sequence.
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We take large enough R so that there is an L satisfying the inequality

(6-1) max f1000; 2I.� ��0/g �L� 1
320

log R:

Here �0 is as defined in Notation 5.7(3).

For any two points x;y 2 zZ00� zZ3, we will estimate dH3. Qj0.x/; Qj0.y//. Let  be the shortest path in zZ3

from x to y, and we will assume that  intersects with zZ.1/ nontrivially in its interior. Let x1;x2; : : : ;xn

be the intersection points of  \ zZ.1/ that follow the orientation of  . If  contains a subsegment of an
edge in zZ.1/, we only record the endpoints of this subsegment. This sequence x1;x2; : : : ;xn is called the
intersection sequence of  , and let x0 D x and xnC1 D y. We use i D xixiC1 to denote the subsegment
of  (and the geodesic segment) from xi to xiC1. Such a i is called a 3-dimensional piece of  if it is
contained in the union of ideal tetrahedra of zZ3.

Now we make the following assumption on  .

Assumption 6.6 For the segment xx1, we assume the following hold.

(1) Either x is a vertex of zZ3, or x lies on an edge of zZ.1/ and its distance to any vertex of zZ3 is at
least L, or the distance between x and any vertex of zZ3 is at least LC 1

160
log R.

(2) If xx1 is not a 3-dimensional piece, then d.x;x1/�
1

160
log R.

We also assume the same condition holds for xny.

If  satisfies Assumption 6.6, we construct the modified sequence of  as follows.

Construction 6.7 For any i D 1; : : : ; n, we do the following modification.

(1) If neither i�1 nor i are 3-dimensional pieces and both of following hold:
� d.xi ; vi/ < L for some vertex vi ¤ xi (then xi and vi lie on the same edge of zZ3 and vi is

unique, by Lemma 6.4(1)(4)),
� d.xi�1;xi/ <

1
160

log R or d.xi ;xiC1/ <
1

160
log R,

then we replace xi by vi .

(2) If i�1 or i is a 3-dimensional piece, then exactly one of them is. Without loss of generality, we
assume i (from xi to xiC1) is a 3-dimensional piece, and i�1 is not. Then we do the following
two steps.

(a) If d.xi ; vi/ < L for some vertex vi ¤ xi and d.xi�1;xi/ <
1

160
log R, we replace xi by vi .

Similarly, if d.xiC1; viC1/ <L for some vertex viC1 ¤ xiC1, then xiC1 ¤ y and xiC2 exists
by Assumption 6.6(1). In this case, if d.xiC1;xiC2/ <

1
160

log R, we replace xiC1 by viC1.

(b) If the modification in step (1) is done for xi but not for xiC1 and d.xiC1; vi/ < L, then by
Lemma 6.4(1), vi is contained in an edge containing xiC1, and we replace xiC1 by vi . We do
a similar process if the modification in step (1) is done for xiC1 but not for xi .

Note that during the modification process, if some xi is replaced by vi , then they lie on the same edge of
zZ.1/ and we must have d.xi ; vi/ <L.
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After doing the above process, by replacing certain xi by corresponding vertices of zZ3, we get the modified
sequence x D y0;y1; : : : ;ym;ymC1 D y of  . Note that a few points in the intersection sequence might
be replaced by the same point yi . Then yi and yiC1 lie in the same component of zZ3 n zZ.1/. Each
component of zZ3 n zZ.1/ is either a simply connected convex hyperbolic surface with piecewise geodesic
boundary, or a convex hyperbolic 3-manifold obtained by an infinite union of ideal tetrahedra. Let
 0i D yiyiC1 be the shortest path in the piece of zZ3 n zZ.1/ from yi to yiC1, and we say that  0i is a
2-dimensional or a 3-dimensional piece if it lies in a 2-dimensional or a 3-dimensional piece of zZ3 n zZ.1/,
respectively. We define the modified path  0 of  to be the concatenation of  0

0
;  0

1
; : : : ;  0m.

Any yi that also lies in the intersection sequence of  is called an unmodified point, otherwise it is called
a modified point. Any  0i that is also a piece of  is called an unmodified piece of  0.

We will prove a few properties of the modified path in the following.

Lemma 6.8 If  satisfies Assumption 6.6, then for any i D 0; 1; : : : ;m,  0i is either an unmodified
3-dimensional piece or satisfies l. 0i /�L.

Proof Case I If both yi and yiC1 are modified points, by Lemma 6.4(4), we have

l. 0i /D d.yi ;yiC1/� log R�L:

Case II If both yi and yiC1 are unmodified points, we divide into the following subcases.

� If  0i is a 3-dimensional piece, then it is unmodified and the result trivially holds. So we assume
that  0i is not a 3-dimensional piece in the following.

� If yi D x of yiC1 D y, we assume yi D x without loss of generality. Then Assumption 6.6(2)
implies l. 0i / D d.yi ;yiC1/ �

1
160

log R > L. So we assume that yi and yiC1 are not x and y

respectively.

� If  0i intersects with any component of zSijk;s or zSijk , then l. 0i /�R>L, by Remark 2.12.

� If  0i does not intersect with zSijk;s or zSijk , we have two cases. If l. 0i /�
1

160
log R, then the result

trivially holds. If l. 0i / <
1

160
log R, then by Lemma 6.4(3), yi and yiC1 must lie on two adjacent

edges of zZ.1/, with a common vertex v. Then we must have d.yi ; v/; d.yiC1; v/�L, otherwise
yi or yiC1 should be modified in Construction 6.7(1) or (2)(a). Since we have †yivyiC1 � �0

(Notation 5.7(3)), we get

d.yi ;yiC1/� d.yi ; v/C d.yiC1; v/� I.� ��0/� 2L� I.� ��0/�L:

Case III If exactly one of yi and yiC1 is modified, we assume that yi is unmodified and yiC1 is modified.
Then there are xi and xiC1 in the intersection sequence of  , such that xi D yi and xiC1 is modified
to yiC1 (in Construction 6.7). If yi D xi D x, then since yiC1 is a vertex of zZ3 and distinct from yi ,
Assumption 6.6(1) implies d.yi ;yiC1/�L. So we assume that yi ¤ x in the following; thus it lies on
an edge of zZ.1/.
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yiC1

xiC1

yi D xi

Figure 6: The position of xi D yi ;xiC1 and yiC1.

If yi and yiC1 do not lie on the same edge of zZ.1/, since yiC1 is a vertex of zZ.1/, Lemma 6.4(1) implies
d.yi ;yiC1/� log R>L.

So yi and yiC1 lie on the same edge, and the picture is shown in Figure 6. Suppose that d.yi ;yiC1/ <L

holds. Since xiC1 is modified to yiC1, we have d.xiC1;yiC1/ <L. Since xi D yi , we have

d.xi ;xiC1/ < 2L<
1

160
log R:

If xixiC1 is not a 3-dimensional piece, then xi should be modified, according to Construction 6.7(1) or
(2)(a), and we get a contradiction. If xixiC1 is a 3-dimensional piece, then the fact that xiC1 is modified
implies that xi should be modified, according to Construction 6.7(2)(b), which is impossible. So we must
have d.yi ;yiC1/�L.

The next job is to estimate the angle †yi�1yiyiC1. To obtain this estimate, we first prove the following
lemma.

Lemma 6.9 We suppose that  satisfies Assumption 6.6. Let xi and xiC1 be two consecutive points in
the intersection sequence of  with xi ¤ x, such that when producing the modified sequence , xi is not
modified (thus yi D xi) and xiC1 is replaced by yiC1, then the following hold.

(1) If xixiC1 is not a 3-dimensional piece , then †xiC1yiyiC1 � 2e�L=2.

(2) If xixiC1 is a 3-dimensional piece , while xi and yiC1 do not lie in the same edge of zZ.1/, then
†xiC1yiyiC1 � 2e�L=2.

(3) If xixiC1 is a 3-dimensional piece , while xi and yiC1 lie in the same edge of zZ.1/, then
†xiC1yiyiC1 <

�
2

.

Proof Since xiC1 is replaced by yiC1, by Construction 6.7, we have d.xiC1;yiC1/ <L. Since yiyiC1

is a piece of the modified sequence and is not an unmodified 3-dimensional piece, Lemma 6.8 implies
d.xi ;yiC1/D d.yi ;yiC1/�L.
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Case I Suppose that yi D xi does not lie in any edge of zZ.1/ containing yiC1. Since yiC1 is a vertex of
zZ.1/, by Lemma 6.4(1), we have d.yi ;yiC1/� log R. Then we get

(6-2) †xiC1yiyiC1 � 2 sin†xiC1yiyiC1 � 2
sinh d.yiC1;xiC1/

sinh d.yi ;yiC1/
� 2e�L=2:

So the proof of (2) is done.

Case II Suppose that yi D xi lies in an edge of zZ.1/ containing yiC1, the picture is shown in Figure 6.

(a) Suppose that xixiC1 is not a 3-dimensional piece. Then the triangle in Figure 6 does not lie in a
3-dimensional piece of zZ3 n zZ.1/, we have †yiyiC1xiC1 � �0, and

d.yi ;xiC1/� d.yi ;yiC1/C d.yiC1;xiC1/� I.� ��0/

� d.yiC1;xiC1/C .L� I.� ��0//� d.yiC1;xiC1/C
1
2
L:

So we have

(6-3) †xiC1yiyiC1 � 2 sin†xiC1yiyiC1 � 2
sinh d.xiC1;yiC1/

sinh d.yi ;xiC1/
� 2e�L=2:

Then (6-2) and (6-3) together imply (1).

(b) Suppose that xixiC1 is a 3-dimensional piece. Since xi is not modified, by Construction 6.7(2)(b),
we have d.yi ;yiC1/�L> d.xiC1;yiC1/. So †xiC1xiyiC1 <

�
2

, and the proof of (3) is done.

The next technical lemma estimates the angle †yi�1yiyiC1 in the modified path.

Lemma 6.10 There exists �0 > 0 (only depend on the geometry of the triangulation of N ) such that
for large enough L > 0 (depending on �0) and large enough R > 0 (depending on L), the following
statements hold for any  satisfying Assumption 6.6.

(1) If neither  0
i�1

nor  0i are unmodified 3-dimensional pieces , then †yi�1yiyiC1 � �0.

(2) If either  0
i�1

or  0i is an unmodified 3-dimensional piece , then †yi�1yiyiC1 �
�
2
C �0.

Note that it is impossible that both  0
i�1

and  0i are unmodified 3-dimensional pieces.

Proof Recall that the constant �0 > 0 defined in Notation 5.7(3) is a lower bound of all inner angles of
triangles in N and all dihedral angles between intersecting totally geodesic triangles in N . We take a
smaller �0 if necessary, such that �0 2

�
0; �

20

�
.

For any vertex vZ of zZ3, we have a subspace SvZ � T 1
Qj0.vZ/

D S2, consisting of all unit tangent vectors
at vZ tangent to Qj0-images of pieces of zZ3 n zZ.1/ that are adjacent to vZ . If vZ corresponds to a vertex
v in N0 n @N0, SvZ is a union of finitely many geodesic arcs in S2, and it is determined by the geometry
of N near v. If vZ corresponds to a vertex in @N0, SvZ is a union of finitely many geodesic arcs and
one hexagon in S2 (corresponding to a 3-dimensional component of zZ3 n zZ.1/; see Figure 1). Moreover,
in the second case, SvZ also depends on R. The hexagon degenerates to a point when R goes to infinity,
and the limit geometry only depends on the geometry of N . The metric on S2 induces a path metric on
each SvZ . For fixed R, we only have finitely many isometric classes of SvZ , since the vertex set of zZ.1/
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is a finite union of �1.Z/-orbits. So there exists R0 > 0 and a constant �0 > 0, such that for any R>R0,
any vertex vZ of zZ3 and any two vectors v1; v2 2 SvZ � S2, if their distance under the path metric of
SvZ is at least �0, then the angle between them is at least �0.

We take �0Dmin
˚

1
2
�0;

1
2
�0

	
. We also take large L and R such that L> 2 log.8=�0/, R>.8=�0/

640 and
(6-1) holds. Since the definition of the modified sequence is complicated, we need to run a case-by-case
argument.

Case I We first assume that yi is an unmodified point.

(1) Both yi�1 and yiC1 are unmodified points. Then the concatenation of yi�1yi and yiyiC1 is the
shortest path in zZ3 from yi�1 to yiC1.

(a) We first suppose that neither of yi�1yi or yiyiC1 are 3-dimensional pieces. Since the dihedral
angle between corresponding totally geodesic subsurfaces in H3 is at least �0 (Notation 5.7(3)),

(6-4) †xi�1xixiC1 D†yi�1yiyiC1 � �0 > �0:

(b) We suppose that one of yi�1yi and yiyiC1 is a 3-dimensional piece. By the explicit vectors in
Remark 5.13(3), the dihedral angle between the boundary of an ideal tetrahedron and an adjacent
geodesic subsurface (not the boundary of an ideal tetrahedron) in zZ3 is at least arccos

�
�

p
3

2
p

7

�
> 3�

5
.

So we have

(6-5) †xi�1xixiC1 D†yi�1yiyiC1 >
3�
5
> �

2
C �0:

Note that (6-4) and (6-5) will be repeatedly used in the remainder of this proof.

(2) Exactly one of yi�1 and yiC1 is a modified point, and we assume that yi�1 is unmodified and yiC1

is modified. Then we have yi�1 D xi�1, yi D xi , and yiC1 is replaced by xiC1 as in Construction 6.7.
In particular, we have d.xiC1;yiC1/ <L holds.

(a) We first suppose that xixiC1 is not a 3-dimensional piece. Then Lemma 6.9(1) implies that
†xiC1yiyiC1 � 2e�L=2 < 1

2
�0. By (6-4) and (6-5) respectively, †yi�1yixiC1 is at least �0 or

3�
5

in the two cases of this lemma. So we get that †yi�1yiyiC1 is at least �0 or �
2
C �0 in these

two cases.

(b) Now we suppose that xixiC1 is a 3-dimensional piece, then xi�1xi is not a 3-dimensional piece. So
neither yi�1yi nor yiyiC1 are unmodified 3-dimensional pieces, and d.yi�1;yi/; d.yi ;yiC1/�L

by Lemma 6.8.

(i) If yi and yiC1 do not lie on the same edge of zZ.1/, then Lemma 6.9(2) implies

†xiC1yiyiC1 � 2e�L=2;

and (6-4) implies †yi�1yiyiC1 � �0.

(ii) If yi and yiC1 lie on the same edge of zZ.1/, then Lemma 6.9(3) implies †xiC1yiyiC1 �
�
2

.
Since  is the shortest path in zZ3, (6-5) implies

†yi�1yiyiC1 D†xi�1xiyiC1 �†xi�1xixiC1�†xiC1yiyiC1 �
3�
5
�
�
2
> �0:
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(3) Both yi�1 and yiC1 are modified points. So yi D xi , while yi�1 and yiC1 are modified from xi�1

and xiC1 respectively. In this case, neither yi�1yi nor yiyiC1 are unmodified 3-dimensional pieces, and
d.yi�1;yi/; d.yi ;yiC1/�L by Lemma 6.8.

(a) Neither xi�1xi nor xixiC1 are 3-dimensional pieces. By Lemma 6.9(1), we have

†xi�1yiyi�1;†xiC1yiyiC1 � 2e�L=2:

Then by (6-4), we have †xi�1yixiC1 � �0, so

†yi�1yiyiC1 � �0� 4e�L=2
�

1
2
�0 � �0:

(b) Both xi�1xi and xixiC1 are 3-dimensional pieces. It is impossible.

(c) Exactly one of xi�1xi and xixiC1 is a 3-dimensional piece. We assume that xi�1xi is not a 3-
dimensional piece and xixiC1 is a 3-dimensional piece. By Lemma 6.9(1),†xi�1yiyi�1�2e�L=2.
� If yi and yiC1 do not lie on the same edge of zZ.1/, then Lemma 6.9(2) implies

†xiC1yiyiC1 � 2e�L=2:

Since †xi�1yixiC1 � �0 (equation (6-4)), we have †yi�1yiyiC1 � �0�4e�L=2 �
1
2
�0 � �0.

� If yi and yiC1 lie on the same edge of zZ.1/, then Lemma 6.9(3) implies †xiC1yiyiC1 �
�
2

.
Since †xi�1yixiC1 �

3�
5

(equation (6-5)), we get

†yi�1yiyiC1 �†xi�1yixiC1�†xi�1yiyi�1�†xiC1yiyiC1

�
3�
5
� 2e�L=2

�
1
2
� � �0:

So the proof of Case I is done.

Case II Now we assume that yi is a modified point. In this case, there might be several consec-
utive points xi ; : : : ;xiCk in the intersection sequence of  that are modified to yi ; then we have
d.yi ;xi/; : : : ; d.yi ;xiCk/ < L. Note that neither yi�1yi nor yiyiC1 are unmodified 3-dimensional
pieces in this case.

(1) Both yi�1 and yiC1 are unmodified points.

(a) We assume that k D 0 holds; then the picture is shown as in Figure 7(a). This figure shows
a flattened picture of zZ3 in a hyperbolic plane, while the actual picture is bended in H3. By
Construction 6.7, at least one of d.xi�1;xi/ and d.xi ;xiC1/ is smaller than 1

160
log R and we

assume d.xi�1;xi/ <
1

160
log R. Then we have

d.xi�1;yi/� d.xi�1;xi/C d.xi ;yi/ <
1

160
log RCL:

By Assumption 6.6(1), even if xi�1 D x, we know that xi�1 lies on an edge of zZ.1/. Since

d.xi�1;yi/ <
1

160
log RCL<

1

80
log R;

by Lemma 6.4(1), xi�1 and yi must lie on the same edge of zZ.1/.
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yi yi
yi

xi�1

xi�1 xi�1

xi xixixiC1 xiC1 xiC1

xiC2 xiCk

xiCkC1

� � �

Figure 7: yi is a modified point, while yi�1 D xi�1 and yiC1 D xiCkC1 are not.

� If xi�1xi is not a 3-dimensional piece, then †xi�1yixi � �0 holds by the definition of �0 in
Notation 5.7(3).

� If xi�1xi is a 3-dimensional piece, then xixiC1 is not a 3-dimensional piece. Since xi is a
modified point and xi�1 is not, by Construction 6.7(2), we have d.xi ;xiC1/ <

1
160

log R. The
same argument as above implies †xiyixiC1 � �0.

Let S be the subset of S2 corresponding to vertex yi given in the beginning of this proof, and
let Evi�1 and EviC1 be points in S given by tangent vectors of yixi�1 and yixiC1 respectively.
The above inequalities on †xi�1yixi and †xiyixiC1 imply dS .Evi�1; EviC1/� �0, otherwise the
concatenation xi�1xi �xixiC1 is not the shortest path in zZ3 from xi�1 to xiC1. The choice of �0

implies †yi�1yiyiC1 D†xi�1yixiC1 � �0 � �0 holds. This argument will be used repeatedly in
the following part of this proof, referred as “the argument in Case II(1)(a)”.

(b) We assume that k D 1 holds; then the picture is shown in Figure 7(b).
� If xixiC1 is not a 3-dimensional piece, then we have †xiyixiC1 � �0. The argument in

Case II(1)(a) implies †yi�1yiyiC1 D†xi�1yixiC1 � �0 � �0.
� If xixiC1 is a 3-dimensional piece, then by Construction 6.7(2), either d.xi�1;xi/<

1
160

log R

or d.xiC1;xiC2/ <
1

160
log R holds. We assume that d.xi�1;xi/ <

1
160

log R holds. By
Assumption 6.6(1) and Lemma 6.4(1) again, even if xi�1 D x holds, xi�1 lies on an edge of
zZ.1/ containing yi . Since xi�1xi is not a 3-dimensional piece, we have †xi�1yixi � �0. The
argument in Case II(1)(a) implies †yi�1yiyiC1 D†xi�1yixiC2 � �0 � �0.

(c) We assume that k � 2 holds; then the picture is shown in Figure 7(c). Here either xixiC1 or
xiC1xiC2 is not a 3-dimensional piece; thus either †xiyixiC1 � �0 or †xiC1yixiC2 � �0 holds.
Again, the argument in Case II(1)(a) implies †yi�1yiyiC1 D†xi�1yixiCkC1 � �0 � �0.

(2) Exactly one of yi�1 and yiC1 is a modified point, and we assume yi�1 is modified (from xi�1) and
yiC1 is unmodified (equals xiCkC1). Since yi�1 and yi are distinct vertices of zZ.1/, by Lemma 6.4(4),
we have d.yi�1;yi/ � log R. Since xi�1 and xi are modified to yi�1 and yi respectively, we have
d.xi�1;yi�1/; d.xi ;yi/ <L. So we have

†xi�1yiyi�1 � 2 sin†xi�1yiy�1 � 2
sinh d.xi�1;yi�1/

sinh d.yi�1;yi/
� 2e�R=2:

Moreover,

d.xi�1;xi/� d.yi�1;yi/� d.xi�1;yi�1/� d.xi ;yi/� log R� 2L� 1
2

log R:
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yi yi
yi

xi�1

xi�1 xi�1

xi xi
xixiC1 xiC1 xiC1

xiC2 xiCk

xiCkC1

� � �

yi�1
yi�1yi�1

Figure 8: yi�1 and yi are modified points, while yiC1 D xiCkC1 is not.

Now we claim that †xi�1yixiCkC1 � �0 holds, and the proof divides into following cases.

(a) We first assume that k D 0 holds; then the picture is shown in Figure 8, left. Since xi is mod-
ified to yi , by Construction 6.7, xixiC1 cannot be a 3-dimensional piece, and we must have
d.xi ;xiC1/ <

1
160

log R. By Assumption 6.6(1) and Lemma 6.4(1), even if xiC1 D y holds,
xiC1 lies on an edge of zZ.1/ containing yi , and we have †xiyixiC1 � �0. By the argument in
Case II(1)(a), we have †xi�1yixiC1 � �0.

(b) We assume that k D 1 holds, then the picture is shown in Figure 8, middle.

� If xixiC1 is not a 3-dimensional piece, then we have †xiyixiC1 � �0. The argument in
Case II(1)(a) implies †xi�1yixiC2 � �0.

� If xixiC1 is a 3-dimensional piece, then xiC1xiC2 is not a 3-dimensional piece. Since
d.xi�1;xi/�

1
2

log R, by Construction 6.7(2), we must have d.xiC1;xiC2/ <
1

160
log R. By

Assumption 6.6(1) and Lemma 6.4(1), even if xiC2 D y holds, xiC2 lies on an edge of zZ.1/

containing yi , and †xiC1yixiC2 � �0 holds. Again, the argument in Case II(1)(a) implies
†xi�1yixiC2 � �0.

(c) We assume that k � 2 holds; then the picture is shown in Figure 8, right. Then either xixiC1 or
xiC1xiC2 is not a 3-dimensional piece; thus either †xiyixiC1 � �0 or †xiC1yixiC2 � �0 holds.
Again, the argument in Case II(1)(a) implies †xi�1yixiCkC1 � �0.

So the claim is established, and we have

†yi�1yiyiC1 D†yi�1yixiCkC1 �†xi�1yixiCkC1�†xi�1yiyi�1 � �0� 2e�R=2
� �0:

(3) Both yi�1 and yiC1 are modified points. Then yi�1 and yiC1 are obtained by modifying xi�1 and
xiCkC1 respectively. Since yi�1, yi and yiC1 are distinct vertices of zZ, by Lemma 6.4(4), we have
d.yi�1;yi/; d.yi ;yiC1/� log R. By the modification process in Construction 6.7,

d.xi�1;yi�1/; d.xi ;yi/; : : : ; d.xiCk ;yi/; d.xiCkC1;yiC1/ <L:

By the computation at the beginning of Case II(2), we have

†xi�1yiyi�1;†xiCkC1yiyiC1 � 2e�R=2; d.xi�1;xi/; d.xiCk ;xiCkC1/ >
1
2

log R:

As in Case II(2), we claim that †xi�1yixiCkC1 � �0, and the proof divides into following cases.
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xi�1
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� � �
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yiC1 yiC1 yiC1

Figure 9: All of yi�1, yi and yiC1 are modified points.

(a) We first assume that k D 0 holds; then the picture is shown in Figure 9, left. Since

d.xi�1;xi/; d.xi ;xiC1/ >
1
2

log R;

Construction 6.7 implies that xi should not be modified. This case is impossible.

(b) We assume that k D 1 holds; then the picture is shown in Figure 9, middle.
� If xixiC1 is not a 3-dimensional piece, then we have †xiyixiC1 � �0. The argument in

Case II(1)(a) implies †xi�1yixiC2 � �0.
� If xixiC1 is a 3-dimensional piece, then since

d.xi�1;xi/; d.xiCk ;xiCkC1/ >
1
2

log R;

Construction 6.7(2) implies that xi and xiC1 should not be modified. This case is impossible.

(c) We assume that k � 2 holds; then the picture is shown in Figure 9, right. Then either xixiC1 or
xiC1xiC2 is not a 3-dimensional piece; thus either †xiyixiC1 � �0 or †xiC1yixiC2 � �0 holds.
Again, the argument in Case II(1)(a) implies †xi�1yixiCkC1 � �0.

So the claim is established, and we have

†yi�1yiyiC1 �†xi�1yixiCkC1�†xi�1yiyi�1�†xiCkC1yiyiC1 � �0� 4e�R=2
� �0:

The proof of Case II is done and the proof of this lemma is finished.

Now we are ready to prove Proposition 6.5.

Proof of Proposition 6.5 We first take �0 > 0 in Lemma 6.10, and take L> 0 such that 1
2
L satisfies the

assumption of Proposition 3.5 with respect to 1
2
�0. Then we enlarge L and take large R> 0 so that (6-1)

and Lemma 6.10 hold.

(1) Qj0 W zZ3 ! H3 is a quasi-isometric embedding Since zZ00 (defined before Construction 6.3) is
2-dense in zZ3, we only need to prove that the restriction Qj0jW

zZ00!H3 is a quasi-isometric embedding.
More precisely, for any x;y 2 zZ00, we will prove that

(6-6) 1
2
d zZ3.x;y/�

3
40

log R� 4L� dH3. Qj0.x/; Qj0.y//� d zZ3.x;y/C
3

40
log RC 4L:

We first do the following two-step modification on x and y.
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Modification I If x or y lie in the
�
LC 1

80
log R

�
-neighborhood of some vertex of zZ3 (which is unique

by Lemma 6.4(4)), we replace it by the corresponding vertex. So we can assume that x and y are
either vertices of zZ3 or do not lie in the

�
LC 1

80
log R

�
-neighborhood of any vertex of zZ3. Under this

assumption, we only need to prove the following estimate, which implies (6-6):

(6-7) 1
2
d zZ3.x;y/�

1
40

log R� dH3. Qj0.x/; Qj0.y//� d zZ3.x;y/C
1

40
log R:

Let  be the shortest path in zZ3 from x to y. If the interior of  is contained in zZ3 n zZ.1/, then Qj0. /

is a geodesic segment in H3; thus d zZ3.x;y/ D dH3. Qj0.x/; Qj0.y// holds and (6-7) holds. So we can
assume that  is not contained in zZ3 n zZ.1/.

Modification II We take the intersection sequence x1; : : : ;xn. If

d.x;x1/ <
1

160
log R or d.xn;y/ <

1

160
log R;

we replace x or y by x1 or xn respectively. We still denote the new initial and terminal points by x and y,
and still denote the new shortest path between x and y by  . Then we only need to prove the following
estimate, which implies (6-7):

(6-8) 1
2
d zZ3.x;y/� dH3. Qj0.x/; Qj0.y//� d zZ3.x;y/:

We claim that the path  obtained by Modifications I and II satisfies Assumption 6.6. We will only argue
for the initial point x, and the proof for the terminal point y is the same.

� If we did Modification I for x, then the new x is a vertex of zZ3 and its distance to any edge of
zZ.1/ not containing x is at least log R (by Lemma 6.4(1)). So Modification II is not applied to x,
and Assumption 6.6 holds.

� If we did not do Modification I but did Modification II for x, then the new x lies on an edge of
zZ.1/ and its distance to any vertex of zZ3 is at least

�
LC 1

80
log R

�
�

1
160

log RDLC 1
160

log R.
After Modification II, if xx1 is not a 3-dimensional piece and d.x;x1/ <

1
160

log R, then the edges
of zZ.1/ containing x and x1 share a vertex v (by Lemma 6.4(3)) and †xvx1 � �0 holds. So we
have

d.x;x1/� d.x; v/C d.v;x1/� I.� ��0/�
�
LC

1

160
log R

�
� I.� ��0/ >

1

160
log R;

which is impossible. So Assumption 6.6 holds in this case. If xx1 is a 3-dimensional piece,
Assumption 6.6 trivially holds.

� If we do neither Modification I nor Modification II for x, then the distance between x and any
vertex of zZ3 is at least LC 1

80
log R > LC 1

160
log R, and we have d.x;x1/ �

1
160

log R. So
Assumption 6.6 holds.

Now we take the modified sequence y1; : : : ;ym of  , and let  0i be the shortest path (in a piece of
zZ3 n zZ.1/) from yi to yiC1. The modified path  0 is the concatenation of  0

0
;  0

1
; : : : ;  0m.
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For each consecutive  0i and  0
iC1

in the modified path  , we have the following possibilities.

� If neither of them are unmodified 3-dimensional pieces, then Lemma 6.8 implies l. 0i /; l.
0
iC1

/�L,
and Lemma 6.10(1) implies the bending angle is at most � � �0.

� If either  0i or  0
iC1

is an unmodified 3-dimensional piece, exactly one of them is. Then Lemma 6.8
implies that one of l. 0i / or l. 0

iC1
/ is at least L, and Lemma 6.10(2) implies the bending angle is

at most �
2
� �0.

Then Proposition 3.5 implies

(6-9) dH3. Qj0.x/; Qj0.y//D l. 00
0
1 � � � 

0
m/�

1

2

mX
iD0

l. 0i /D
1

2

mX
iD0

d zZ3.yi ;yiC1/�
1

2
d zZ3.x;y/:

On the other hand, since the metric on zZ3 is a path metric induced by the metric of H3, we always have
dH3. Qj0.x/; Qj0.y//� d zZ3.x;y/. So (6-8) holds for the path  obtained after Modifications I and II; thus
(6-6) holds for any x;y 2 zZ00. This implies that

(6-10) 1
2
d zZ3.x;y/�

3
40

log R� 4L� 8� dH3. Qj0.x/; Qj0.y//� d zZ3.x;y/C
3

40
log RC 4LC 8

holds for any x;y 2 zZ3, by the 2-denseness of zZ00 � zZ3. So Qj0 W
zZ3 ! H3 is a quasi-isometric

embedding.

(2) �1-injectivity of �0 Since �1.Z/Š �1.Z
3/ is torsion-free and Qj0 W

zZ3!H3 is �0-equivariant,
the fact that Qj0 is a quasi-isometric embedding implies that �0 is injective.

Moreover, since �1.Z
3/ is neither a surface group nor a free group, the covering theorem [6] implies that

�0.�1.Z
3// < IsomC.H3/ is a geometrically finite subgroup.

(3) Injectivity of Qj0 Now we prove that Qj0 W
zZ3!H3 is injective. For x;y 2 zZ3 such that

d zZ3.x;y/ >
1
5

log R> 3
20

log RC 8LC 16;

the left hand side of (6-10) implies Qj0.x/¤ Qj0.y/. Moreover, if x and y lie in the same component of
zZ3 n zZ.1/, then since Qj0 restricts to an embedding on this component, we have Qj0.x/¤ Qj0.y/.

So we can assume that d zZ3.x;y/�
1
5

log R holds, while x and y lie in different components of zZ3n zZ.1/.
We take the shortest path  in zZ3 from x to y and take the intersection sequence x1; : : : ;xn. Let x D x0

and y D xnC1, and we denote the subpath of  from xi to xiC1 by i . Then we have l.i/�
1
5

log R for
all i D 0; : : : ; n. So for any i with i D 1; : : : ; n� 1, one of the following hold:

(i) either i is a 3-dimensional piece,

(ii) or i is a 2-dimensional piece, and by Lemma 6.4(3), the two edges of zZ.1/ containing xi and xiC1

share a vertex vi ; moreover, since †xivixiC1 � �0, we have d.xi ; vi/; d.xiC1; vi/ <
2
5

log R.

Moreover,  contains at most one 3-dimensional piece, since by Lemma 6.4(2), any two different
3-dimensional components of zZ3 n zZ.1/ have distance at least 9

10
log R.
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Now we prove Qj0.x/¤ Qj0.y/ by dividing into the following cases.

(a) If  contains no 3-dimensional pieces, then all vertices vi in item (ii) above must be the same
vertex, thus x and y lie in two 2-dimensional pieces of zZ3 n zZ.1/ that share a vertex. Since Qj0

maps these two pieces to two totally geodesic subsurfaces in H3 that are disjoint except at the
common edge or vertex, we have Qj0.x/¤ Qj0.y/. So we can assume that  contains exactly one
3-dimensional piece in the following.

(b) If 0 or n is a 3-dimensional piece, we assume that 0 is. Then by item (ii) again, the 3-dimensional
piece of zZ3 n zZ.1/ containing x and the 2-dimensional piece of zZ3 n zZ.1/ containing y share a
vertex. Then as in case (a), the geometry of Qj0 implies Qj0.x/¤ Qj0.y/. So we further assume that
neither 0 nor n are 3-dimensional pieces, and n� 2 holds in the following.

(c) If nD 2, then 1 is a 3-dimensional piece. By the proof of Lemma 6.10, Case I (1)(b), the bending
angle at y1 and y2 are both at most 2

5
� < �

2
, so we have Qj0.x/¤ Qj0.y/. So we can further assume

that n� 3 in the following.

(d) So n � 3. For some 1 � i � n � 1, i is the unique 3-dimensional piece of  . Then xi is�
2
5

log R
�
-close to a vertex vi of zZ.1/, and xiC1 is

�
2
5

log R
�
-close to a vertex viC1. We must

have vi D viC1, otherwise d zZ3.vi ; viC1/� log R by Lemma 6.4(4) and d zZ3.xi ;xiC1/�
1
5

log R,
which is impossible. So both xi and xiC1 lie on edges of zZ.1/ containing vi , and by item (ii),
the 2-dimensional pieces of zZ3 n zZ.1/ containing x and y share the vertex vi . So we obtain
Qj0.x/¤ Qj0.y/ as in case (a).

The proof of the injectivity of Qj0 W
zZ3!H3 is finished.

(4) Homeomorphic type of the convex core Since Qj0 W
zZ3!H3 is injective and is �0-equivariant, the

image Qj0. zZ
3/ has a closed �0.�1.Z

3//-equivariant neighborhood N. zZ3/ in H3. By the construction
of Z, we can see that N. zZ3/=�0.�1.Z

3// is homeomorphic to Z n @pZ, as oriented manifolds.

Also note that N. zZ3/=�0.�1.Z
3// is a finite volume submanifold of H3=�0.�1.Z

3// such that the
inclusion induces an isomorphism on �1. Since all boundary components of Z are incompressible, by
tameness of open hyperbolic 3-manifolds [1; 5], each component of�

H3=�0.�1.Z
3//
�
n
�
N. zZ3/=�0.�1.Z

3//
�

is homeomorphic to the product of a surface and .0;1/. So H3=�0.�1.Z
3// is homeomorphic to Zn@pZ.

Since �0.�1.Z
3// < IsomC.H3/ is a geometrically finite subgroup and @pZ corresponds to cusp ends of

H3=�0.�1.Z
3//, the convex core of H3=�0.�1.Z

3// is homeomorphic to Z n @pZ. Note that all above
homeomorphisms preserve natural orientations on involved manifolds.

6.3 Proof of quasi-isometric embedding

The following proposition is the main result of this subsection, which is the last technical piece of the
proof of Theorem 5.17.
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Proposition 6.11 For any t 2 Œ0; 1�, Qjt W
zZ3!H3 is a quasi-isometric embedding.

To prove Proposition 6.11, we need the following two lemmas. The first lemma appeared as Lemma 5.7
of [23], which estimates the geometry of Qjt on 2-dimensional pieces of zZ3 n zZ.1/.

Lemma 6.12 For any ı 2 .0; 10�6/, there exists �0 > 0 and R0 > 0, such that for any positive numbers
� 2 .0; �0/, R>R0 and any positive integer R0 greater than all of the Rij and Rijk in Lemma 5.14, the
following statement holds.

If f Qjt W
zZ3!H3 j t 2 Œ0; 1�g is constructed with respect to �, R and R0, then for any t 2 Œ0; 1� and any x

and y lying in the closure of a 2-dimensional piece C � zZ3 n zZ.1/ such that x 2 @C , we have

(6-11) 1
2
dH3. Qjt .x/; Qjt .y//� d zZ3.x;y/� 2dH3. Qjt .x/; Qjt .y//:

Moreover , let e be an edge in zZ.1/ containing x (with a preferred orientation). If d.x;y/� 100, then

(6-12) dS2

�
‚.x;y; e/;‚. Qjt .x/; Qjt .y/; Qjt .e//

�
< 10ı:

Here ‚.x;y; e/ denotes the point in S2 determined by the tangent vector of xy in H3, with respect to
a coordinate of Tx.H3/ given by a frame p D .x; Ev; En/, where Ev is tangent to e and En is tangent to C

(points inward ). Similarly , ‚. Qjt .x/; Qjt .y/; Qjt .e// is defined with respect to a frame based at Qjt .x/, with
the first vector tangent to Qjt .e/, and the second vector is �-close to be tangent to Qjt .C / (points inward ).

The second lemma estimates the geometry of Qjt on 3-dimensional pieces of zZ3 n zZ.1/. Since this lemma
only concerns 3-dimensional pieces of zZ3, we do not need the Rij , Rijk and R0 part of zZ3, but we still
state them in the following lemma, so that its statement is parallel with the statement of Lemma 6.12. We
will only give a sketch of the proof of this lemma and some computations are skipped.

Lemma 6.13 For any ı 2 .0; 10�6/, there exists �0 > 0 and R0 > 0, such that for any positive numbers
� 2 .0; �0/, R>R0 and any positive integer R0 greater than all of the Rij and Rijk in Lemma 5.14, the
following statement holds.

If f Qjt W
zZ3 ! H3 j t 2 Œ0; 1�g is constructed with respect to �, R and R0, then for any t 2 Œ0; 1�, the

following hold. For any x and y lying in the closure of a 3-dimensional piece C � zZ3 n zZ.1/, we have

(6-13) .1� ı/dH3. Qjt .x/; Qjt .y//� d zZ3.x;y/� .1C ı/dH3. Qjt .x/; Qjt .y//:

Moreover , if x belongs to an oriented edge e � zZ.1/ contained in the boundary of C , then

(6-14) dS2

�
‚.x;y; e/;‚. Qjt .x/; Qjt .y/; Qjt .e//

�
< 10ı:

Here ‚.x;y; e/ denotes the point in S2 determined by the tangent vector of xy in H3, with respect to a
coordinate of Tx.H3/ given by a frame p D .x; Ev; En/, where Ev is tangent to e and En is tangent to a face
of C (points inward ). ‚. Qjt .x/; Qjt .y/; Qjt .e// is defined by a similar frame based at Qjt .x/, given by Qjt .e/

and Qjt .C /.
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Proof Note that we did not give a precise definition of Qjt on ideal tetrahedra of zZ3 in Construction 6.3(4),
so it suffices to prove this lemma for some choice of Qjt .

We can use the Klein model of the hyperbolic space to (noncanonically) identify each ideal tetrahedron in
zZ3 with a 3-simplex in the 3-ball (with one vertex on the boundary). Then we use the linear structure of
the 3-simplex to define the Qjt map on each tetrahedron, which is piecewise smooth on C . Moreover, if
� > 0 is small enough, the restriction of Qjt on each ideal tetrahedron is very close to an isometry, up to
the second derivative, in the following sense.

(1) For any two unit tangent vectors Ev1 and Ev2 based at the same point z 2 C , we have

(6-15) jhEv1; Ev2i � hD Qjt .Ev1/;D Qjt .Ev1/ij< ı
3:

Here if z lies in the boundary of an ideal tetrahedron, then Ev1 and Ev2 point toward the same ideal
tetrahedron.

(2) For any geodesic  contained in an ideal tetrahedron contained in C , the geodesic curvature of
Qjt ı  is always bounded above by ı3.

Equation (6-15) implies that Qjt jC is a .1Cı/-bi-Lipschitz map, so (6-13) holds.

Now we work on the angle estimate, and we identify both C and Qjt .C / with convex subsets of the upper
half space model of H3, such that all vertices have z-coordinate 1. We take projections of x and y to R2,
and let the Euclidean distance between these projections by d .

Case I We first suppose that d � 4R=ı. Since the z-coordinate of x is at most
p
.R=2/2C 1 (by

Construction 6.3(3)), an elementary computation implies that the tangent vector of xy at x is at most ı
away from .0; 0; 1/. Since Qjt jC is induced by an almost isometry of the equilateral tessellation of R2, the
Euclidean distance between the projections of Qjt .x/ and Qjt .y/ to R2 is at least 2R=ı. So the tangent
vector of Qjt .x/ Qjt .y/ at Qjt .x/ is at most 2ı away from .0; 0; 1/. Since the geometry of C and Qjt .C / are
close on their boundaries, (6-14) holds in this case.

Case II Now we suppose that d � 4R=ı. Since the equilateral tessellation of R2 has side length R,
an elementary area estimate implies that xy intersects with m � 20=ı ideal tetrahedra of C . Let
1; 2; : : : ; m be the intersections of xy with these tetrahedra such that their concatenation gives xy.
Then Qjt ı 1; Qjt ı 2; : : : ; Qjt ı m are smooth curves in tetrahedra of Qjt .C / such that their concatenation
is homotopic to Qjt .x/ Qjt .y/, and their geodesic curvatures are always bounded above by ı3.

For each i D 1; 2; : : : ;m� 1, by (6-15), the angle between the terminal tangent vector of Qjt .i/ and the
initial tangent vector of Qjt .iC1/ is at most 4ı3.

Let  0i be the geodesic segment that share endpoints with Qjt .i/. The condition on geodesic curvatures
implies that the initial tangent vectors of  0i and Qjt .i/ differ by at most 2ı3, and the same holds for their
terminal tangent vectors. So the angle between the terminal tangent vector of  0i and the initial tangent
vector of  0

iC1
is at most 10ı3.
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Since we have m� 20=ı geodesic segments  0i , then initial tangent vectors of  0
1

and Qjt .x/ Qjt .y/ differ
by at most 10ı3 � 20=ı D 200ı2 � ı. Since the tangent vector of  0

1
is 2ı3-close to the tangent vector of

Qjt ı 1, (6-14) holds in this case.

Given these two lemmas, we are ready to prove Proposition 6.11.

Proof of Proposition 6.11 For �0 given in Lemma 6.10, we take ı 2 .0; �0=40/. Then we take small
� > 0 and large R> 0 satisfying Lemmas 6.12 and 6.13.

To prove Qjt is a quasi-isometric embedding, for any two points x;y 2 zZ3, we want to prove the following
inequality:

(6-16) 1

4
d zZ .x;y/� 5

�
LC

3

160
log RC 2

�
� dH3. Qjt .x/; Qjt .y//

� 4d zZ3.x;y/C 12
�
LC

3

160
log RC 2

�
:

As in the proof of Proposition 6.5, we replace x and y by two 2-close points in zZ00 and then do
Modifications I and II. After this modification process, the shortest path  in zZ3 from x to y satisfies
Assumption 6.6.

Recall that the modification process moves both x and y by distance at most LC 3
160

log RC2. Lemmas
6.12 and 6.13 imply that Qjt .x/ and Qjt .y/ are moved by distance at most 2

�
LC 3

160
log RC 2

�
. So to

prove (6-16), it suffices to prove the following inequality for points x;y 2 zZ00 satisfying Assumption 6.6:

(6-17) 1
4
d zZ3.x;y/� dH3. Qjt .x/; Qjt .y//� 4d zZ3.x;y/:

For the new x and y, we take the shortest path  in zZ3 from x to y, and take the modified sequence
y1; : : : ;yn. Let  0i be the shortest path in zZ3 from yi to yiC1 (in the closure of a component of zZ3n zZ.1/),
and let  0 be the concatenation of  0i for i D 0; 1; : : : ; n. Since  satisfies Assumption 6.6, Lemmas 6.8
and 6.10 imply the following:

� Each  0i is either an unmodified 3-dimensional piece, or l. 0i /�L holds.

� If neither  0
i�1

nor  0i are unmodified 3-dimensional pieces, then †yi�1yiyiC1 � �0.

� If  0
i�1

or  0i is an unmodified 3-dimensional piece, then †yi�1yiyiC1 �
�
2
C �0.

Let zi D Qjt .yi/, and let ıi be the geodesic segment in H3 from zi to ziC1. Then we have z0 D
Qjt .x/ and

znC1 D
Qjt .y/. By Lemmas 6.12 and 6.13, since ı < �0=40, the following conditions hold for ıi .

(1) For any i D 0; : : : ; n, we have 1
2
l. 0i / � l.ıi/ � 2l. 0i /. Moreover, if  0i is not an unmodified

3-dimensional piece, l.ıi/�
1
2
L holds.

(2) If neither  0
i�1

nor  0i are unmodified 3-dimensional pieces, then †zi�1ziziC1 �
1
2
�0.

(3) If  0
i�1

or  0i is an unmodified 3-dimensional piece, then †zi�1ziziC1 �
�
2
C

1
2
�0.
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On one hand, we have

dH3. Qjt .x/; Qjt .y//�

nX
iD0

l.ıi/

� 2

nX
iD0

l. 0i / .by item (1)/

� 4dH3. Qj0.x/; Qj0.y// .by (6-9)/

� 4d zZ3.x;y/:

On the other hand, since L is large with respect to �0, items (2) and (3) and Proposition 3.5 imply that

dH3. Qjt .x/; Qjt .y//�
1

2

nX
iD0

l.ıi/ .by Proposition 3.5/

�
1

4

nX
iD0

l. 0i / .by item (1)/

�
1

4
d zZ3.x;y/:

We have proved (6-17) holds for the modified endpoints x and y; thus (6-16) holds for any x;y 2 zZ3.
So Qjt W

zZ3!H3 is a quasi-isometric embedding.

Now we finish the proof of Theorem 5.17.

Proof of Theorem 5.17 By Proposition 6.11, each Qjt W
zZ3 ! H3 is a quasi-isometric embedding.

Moreover, since �1.Z
3/ is torsion free and Qjt is �t -equivariant, each representation

�t W �1.Z
3/! IsomC.H3/

is injective. Again, since Qjt W
zZ3!H3 is a quasi-isometric embedding and Z3D zZ3=�1.Z

3/ is compact
after truncating cusp ends, �t .�1.Z

3// < IsomC.H3/ is a geometrically finite subgroup.

So f�t .�1.Z
3// j t 2 Œ0; 1�g forms a continuous family of geometrically finite subgroups of IsomC.H3/.

Then the convex core of H3=j�.�1.Z
3// D H3=�1.�1.Z

3// is homeomorphic to the convex core of
H3=�0.�1.Z

3//, which is homeomorphic to Z n @pZ (as oriented manifolds) by Proposition 6.5(4).
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The Kakimizu complex for genus one hyperbolic knots in the 3-sphere

LUIS G VALDEZ-SÁNCHEZ

The Kakimizu complex MS.K/ for a knot K � S3 is the simplicial complex with vertices the isotopy
classes of minimal genus Seifert surfaces in the exterior of K and simplices any set of vertices with
mutually disjoint representative surfaces. We determine the structure of the Kakimizu complex MS.K/ of
genus one hyperbolic knots K � S3. In contrast with the case of hyperbolic knots of higher genus, it is
known that the dimension d of MS.K/ is universally bounded by 4, and we show that MS.K/ consists of
a single d-simplex for d D 0; 4 and otherwise of at most two d-simplices which intersect in a common
.d�1/-face. For the cases 1 � d � 3 we also construct infinitely many examples of such knots where
MS.K/ consists of two d -simplices.

57K10; 57K30

1 Introduction

Let K be a knot in the 3-sphere S3 with exterior XK D S3 n int N.K/, where N.K/ � S3 is regular
neighborhood of K. The knot K is the boundary of orientable, compact and connected surfaces embedded
in S3, called Seifert surfaces for the knot. Equivalently, there is a unique slope J � @XK , the longitude
of K, that bounds orientable compact surfaces in XK which correspond in a natural way to the Seifert
surfaces in S3 bounded by the knot. The genus of the knot K, a topological invariant of K, is then defined
as the smallest genus of the Seifert surfaces bounded by the knot.

The Kakimizu complex MS.K/ was defined in [12] for knots (and links) K�S3 as the simplicial complex
with vertices the equivalence isotopy classes of minimal genus Seifert surfaces for K in XK , such that
any set of vertices with mutually disjoint representative surfaces comprise a simplex. For instance, it is
well known that the figure-eight knot bounds a unique Seifert torus and so its Kakimizu complex consists
of a single 0-simplex.

For hyperbolic knots K � S3 much is known about the complex MS.K/. It is a consequence of
Eisner [4] that MS.K/ is a finite complex. It is also known that MS.K/ is a flag simplicial complex, by
Schultens [19], which is connected, by Scharlemann and Thompson [18], and contractible, by Przytycki
and Schultens [15].

For the family of hyperbolic knots K � S3 of a fixed genus g� 2 no universal bound on the dimension of
MS.K/ is known. Moreover, Y Tsutsumi [22] shows that for each genus g � 2 there are hyperbolic knots
K�S3 of genus g such that the number of vertices of MS.K/, and hence of simplices, is arbitrarily large.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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In [17] M Sakuma and K J Shackleton provide a bound for the diameter of the (1-skeleton of) MS.K/,
quadratic in the genus of the knot, and show that the diameter of MS.K/ is 1 or 2 for genus one knots,
with an example that realizes the diameter of 2. These bounds on the diameter of MS.K/ do not however
bound the number of top-dimensional simplices present in MS.K/.

In this paper we determine the structure of the Kakimizu complex for genus one hyperbolic knots K � S3

and obtain a picture opposite to that of the case of genus g � 2. Our main result is the following.

Theorem 1 If K � S3 is a genus one hyperbolic knot and d D dim MS.K/ then

(1) 0� d � 4;

(2) MS.K/ consists of at most two d -dimensional simplices which intersect in a common .d�1/-face ,
and exactly one d -simplex if d D 0; 4;

(3) for each integer 1� d � 3 there are infinitely many genus one hyperbolic knots K � S3 such that
MS.K/ consists of two d -simplices.

A simplex of MS.K/ corresponds to a collection of mutually disjoint and nonparallel Seifert tori

T D T1 t � � � tTN �XK :

We refer to T as a simplicial collection of Seifert tori for short and assume that its components are labeled
consecutively as they appear around XK , as shown in Figure 4. The collection T is maximal if its number
of components jT j D N is largest among all possible simplicial collections of Seifert tori in XK , in
which case dim MS.K/DN � 1. Components Ti and Tj of T then cobound a region Ri;j in XK with
boundary a surface of genus two that contains the longitude slope J of K.

It was proved in [24] that the exterior XK of a genus one hyperbolic knot in S3 contains at most 5
mutually disjoint and nonparallel Seifert tori, which gives the bound dim MS.K/� 4 in Theorem 1(1).
This was achieved by studying the properties of maximal simplicial collections T of Seifert tori in XK

with at least 5 components; all but at most one of the complementary regions Ri;iC1 �XK of T are then
genus two handlebodies whose structure was determined in [24].

It is the low genus of the complementary handlebody regions of T that makes it possible to establish
Theorem 1(2) and construct the examples in Theorem 1(3). One of the difficulties here, which need not
be handled in detail in [24], is that some region Ri;iC1 �XK in a maximal simplicial collection may not
be a handlebody.

The paper is organized as follows. Most of Sections 2 and 3 contain background material and extension of
definitions from [24] adapted to the needs of the present paper. Specifically, in Section 2 we introduce the
notation and some basic results that are used throughout the paper. The definition of a pair .H;J / given
in [24], that H is a genus two handlebody and J � @H a separating circle which is nontrivial in H , is
updated to include 3-manifolds H other than handlebodies. Pairs of the form .Ri;j ;J /, where J � @Ri;j

is the longitudinal slope in @XK , are then naturally produced by any maximal simplicial collection of
Seifert tori T �XK . The structure of several types of handlebody pairs is also described in some detail.

Algebraic & Geometric Topology, Volume 25 (2025)
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In Section 4 (see Lemma 4.2.1) the structure of MS.K/ is shown to depend on the presence of annular
pairs .Ri;j ;J /: pairs such that Ri;j contains an incompressible spanning annulus with one boundary
component in Ti and the other in Tj .

The properties of general annular pairs are established in Section 3, while the properties of the annular
pairs in XK � S3 for K a hyperbolic knot are developed further in Section 5. Two major restrictions
arise once we restrict our attention to annular pairs .Ri;j ;J / in S3. The first one concerns the case where
Ri;j is not a genus two handlebody. In this case Ri;j must be an atoroidal, irreducible and boundary
irreducible manifold which is the complement in S3 of a genus two handlebody V � S3. In the context of
Koda and Ozawa [13], V is a nontrivial genus two handlebody knot in S3 and as such it has a restricted
structure outlined in Lemma 5.1.1. The second one, the content of Proposition 5.2.3, restricts even further
the structure of the annular pair .Ri;j ;J / so that Ri;j D Ri;iC1 or Ri;j D Ri;iC2; that is, Ri;j may
contain at most one Seifert torus not parallel to Ti or Tj . It is also established in Proposition 5.2.3 that
MS.K/ has more than one top-dimensional simplex if and only if for each maximal simplicial collection
T �XK there is at least one annular pair of the form .Ri;iC2;J /.

We call an annular pair of the form .Ri;iC2;J / an exchange pair, given that there is a Seifert torus T 0
iC1

in Ri;iC2 that can be exchanged with TiC1 � Ri;iC2 to construct a new simplicial collection T 0 not
isotopic to T in XK . The properties of this exchange trick are established in Sections 5.2 and 5.3.

In Section 6 we show that any maximal simplicial collection T �XK of size 5 does not produce exchange
pairs and hence that such a collection T is unique up to isotopy. Maximal simplicial collections T �XK

of size 2� jT j � 4 are handled in Section 7, where it is shown in Proposition 7.0.2 that T produces at
most one exchange pair and hence that, up to isotopy, there are at most two maximal simplicial collections
of Seifert tori in XK . The results so far make possible the proof of parts (1) and (2) of Theorem 1 by the
end of Section 7.

Section 8 is devoted to the construction of examples of genus one hyperbolic knots in S3 with maximal
simplicial collections satisfying various conditions. The extreme examples in Section 8.2 where jT j D 4

and MS.K/ consists of two 3-simplices are particularly challenging to construct since each of the
four complementary regions Ri;iC1 of T must be genus two handlebodies. These examples establish
Theorem 1(3) in the case dim MS.K/D 3.

For the cases dim MS.K/D 1; 2 in Theorem 1(3) there are two possible types of examples, depending
on whether the exchange region Ri;iC2 is a handlebody or not. These examples are constructed in
Sections 8.3 and 8.5.

For the examples in Section 8.5 where the exchange region Ri;iC2 is not a handlebody we use the
construction in [13] of genus two nontrivial handlebody knots in S3 whose exteriors contain essential
annuli and of excellent 1-submanifolds of 3-manifolds of Myers [14]. Separating the cases dim MS.K/D1

and dim MS.K/D 2 requires the use of another special type of handlebody pair, the general basic pair,
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K DK.2; 2/

MS.K/

T1T2

T3 T4

hyperbolic pair

hyperbolic pair

simple
index 2

simple
index 2

K2 K K4

Figure 1: The genus one hyperbolic knot K DK.2; 2/� S3 with MS.K/ a single 3-simplex.

whose classification is discussed in Lemma 2.4.1. The proof of Theorem 1(3) is given at the end of
Section 8.5.

Examples of knots K � S3 with a maximal simplicial collection of size 4 as above are not easy to render
in a regular projection. However, making use of basic hyperbolic pairs, in Section 8.4 we construct an
infinite family of genus one hyperbolic knots K.p; q/� S3 with MS.K/ consisting of a single 3-simplex,
all of which have the simple projections shown in Figure 25. The smallest member K.2; 2/ of this family
is represented in Figure 1 with a crossing number of 141 along with the structure of the pairs in their
exteriors XK (see Section 2.3 for definitions).

In Section 8.3 an infinite family of genus one hyperbolic knots K DK.�1; n; 2/, jnj � 2, with at most
14C6jnj crossings is constructed such that MS.K/ consists of two 2-dimensional simplices. The structure
of their exteriors is represented in Figure 2 (where n stands for n full twists).

Examples of genus one satellite knots K � S3 for which the dimension of MS.K/ is arbitrarily large,
showing that the restriction to hyperbolic knots is necessary, can be explicitly constructed as follows: Let
A1;A2 � S3 be trivial unlinked and untwisted annuli connected by a band B whose core follows the
pattern of a connected sum of nontrivial knots K1 # � � � # Kn, n� 2, with K the boundary component of
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nfull
twists

K DK.�1; n; 2/

MS.K/

T1

T2

T3

K1

K

K3

simple
index 2

index 1

simple
index jnj � 2

Figure 2: The genus one hyperbolic knot K DK.�1; n; 2/� S3 with MS.K/ consisting of two 2-simplices.

the resulting pants indicated in Figure 3. The knot K is then a nontrivial zero winding number satellite of
each knot Ki . Attaching an annulus to the free boundary components of A1 and A2 that swallows the
factors K1 # � � � # Ks and follows the factors KsC1 # � � � # Kn produces a Seifert torus Ts �XK . It is not
hard to see that the Seifert tori T1; : : : ;Tn � XK can be constructed so as to be mutually disjoint and
hence nonparallel in XK .

On the structure of maximal simplicial collections T � XK some questions remain unresolved. For
instance, an infinite family of genus one hyperbolic knots K � S3 with jT j D 5 was constructed in [24],
all of whose pairs .Ri;iC1;J / are of a type called simple (see Section 2.3). It is not known if hyperbolic
knots with a simplicial collection of size jT j D 5 can be constructed where at least one pair .Ri;iC1;J /

is not simple.

K1 Ks KsC1 Kn

Ts
K

B

A1 A2

Figure 3: The satellite knot K � S3 and the swallow-follow Seifert torus Ts �XK .
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More specifically, in the case jT j D 5 there are two options for a nonsimple pair .Ri;iC1;J /: a primitive
pair or a hyperbolic pair (see Lemma 3.1.1). Realizing the case jT jD 5 where one of the pairs .Ri;iC1;J /

is primitive could produce an example of a hyperbolic knot in S3 with a nonintegral Seifert surgery. One
example realizing such a primitive pair is constructed in Proposition 8.2.1 (see Figure 21, bottom) but
with a maximal simplicial collection of size jT j D 3.
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2 Preliminaries

We work in the PL category. For definitions of basic concepts see [10] or [11]. We will make use of many
of the definitions and results in [24], some of which are reproduced throughout the paper.

Unless otherwise stated, submanifolds are assumed to be properly embedded. For A a submanifold of B,
cl.A/, int.A/ and fr.A/D cl.@A n @B/ denote the closure, interior and frontier of A in B, respectively.

If A is a finite set or a manifold then jAj denotes the cardinality or the number of components of A,
respectively.

The isotopy class of a circle in a surface is the slope of the circle. The circle is nontrivial if it does not
bound a disk in the surface.

Any two circles ˛ and ˇ in a surface can be isotoped so as to intersect transversely and minimally, in
which case j˛\ˇjmin denotes their minimal number of intersections.

The algebraic intersection number between 1-submanifolds ˛ and ˇ of a surface will be denoted by
˛ �ˇ 2 Z.

Let M be a 3 manifold and F �M a surface. The components of @F � @M are sometimes indexed as
@F D @1F t @2F t � � � .

The manifold obtained by cutting M along the surface F �M is denoted by M jF D clŒM nN.F /�.
Two surfaces F and G in M are parallel if they cobound a product region in M of the form F �I , where
F � f0g corresponds to F and F � f1g to G.

Observe that if two properly embedded surfaces F and G in M intersect transversely and j@F \ @Gj is
not as small as possible then it is possible to isotope F and G near @M to reduce j@F \ @Gj without
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increasing jF \Gj. Hence we will say that F and G intersect minimally if they intersect transversely
so that the pair .j@F \ @Gj; jF \Gj/ is smallest in the lexicographic order, in which case jF \Gjmin

denotes the number of components in the minimal intersection.

For a 1-submanifold � � @M we let M.�/ denote the 3-manifold obtained by adding 2-handles to @M
along the components of � and capping off any resulting 2-sphere boundary components with 3-balls. For
a surface F �M we denote by yF �M.@F / the closed surface obtained by capping off @F with disks.

Let  � @M be a circle which is nontrivial in M . An annulus A�M is a companion annulus for  if
the circles @A cobound an annular regular neighborhood of  in @M and A is not parallel to @M . The
following result on the properties of companion annuli is established in [23, Lemma 5.1].

Lemma 2.0.1 [23] Let M be an irreducible and atoroidal 3-manifold with boundary. If a circle  � @M
has a companion annulus A�M then

(1) A is unique up to isotopy;

(2) A cobounds with @M a companion solid torus V around which A runs p � 2 times.

We denote by F.a; b; : : :/ a Seifert fiber space over the surface F with singular fibers of indices a; b; : : :�1.
Typically the surface F will be a disk D2, an annulus A2 or a 2-sphere S2. Lp ¤ S3;S1 �S2 stands for
a lens space with finite fundamental group of order p � 2

2.1 Genus one hyperbolic knots

With very few exceptions, for the rest of this paper we restrict our attention to hyperbolic knots in S3. For
notation, let K � S3 be a genus one hyperbolic knot and J � @XK D @N.K/ the longitudinal slope of K.

Recall that by a simplicial collection of Seifert tori in XK we mean a collection T � XK of mutually
disjoint and nonparallel Seifert tori in XK . The collection T is maximal if its number of components jT j
is as large as possible. By [24] we have that jT j � 5, with jT j D 5 being the largest attainable bound.

The components of T are labeled consecutively following their order of appearance around @XK as
T1;T2; : : : ;TN , N D jT j. For jT j > 2 we denote by Ri;iC1 the region in XK cobounded by Ti and
TiC1 which contains no components of T other than Ti ;TiC1; if jT j D 2 then a region cobounded by
T1 tT2 is chosen as R1;2, and if T D T1 then we define R1;1 as the complement of a product region
cl.XK nT1 � Œ�1; 1�/. Here we interpret a label i modulo N D jT j, so N C 1D 1 etc. Notice that @Ti

and @TiC1 cobound the annulus @Ri;iC1\ @XK whose core has slope J in @XK .

More generally we set Ri;i D cl.XK n Ti � Œ�1; 1�/ and Ri;j D Ri;iC1 [ � � � [Rj�1;j . A simplicial
collection T �XK of size jT j D 5 is represented in Figure 4.

The next result summarizes the general properties of the regions Ri;j � XK , which follow from [24,
Lemmas 3.7 and 4.1].
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T1

T2T3

T4

T5

R1;2

R2;3

R3;4

R4;5 R5;1

N.K/

Figure 4: The knot K � S3 and a simplicial collection T D T1 t � � � tT5 �XK .

Lemma 2.1.1 [24] Let K � S3 be a hyperbolic knot with a simplicial collection of Seifert tori T �XK .

(P1) The manifold Ri;j is either a genus two handlebody or an irreducible , boundary irreducible ,
atoroidal 3-manifold.

(P2) If Ri;j is not a handlebody then Rj ;i is a handlebody.

(P3) If Rk;` �Ri;j and Ri;j is a handlebody then Rk;` is a handlebody.

(P4) At most one region Ri;iCi is not a handlebody, and if such a region is present then jT j � 4.

In [24] a pair .H;J / consists of a genus two handlebody H and a separating circle J � @H which is
nontrivial in H ; they were used to model the handlebody regions Ri;j produced by a simplicial collection
T �XK . By [24, Lemma 4.3], if jT j D 5 then all regions Ri;iC1 are genus two handlebodies, but in the
cases jT j � 4 some region Ri;iC1 may not be a handlebody. In the next section we update this definition
of a pair appropriately so as to be able to deal with nonhandlebody regions Ri;j .

2.2 Pairs

A pair .H;J / consists of an irreducible, atoroidal, connected 3-manifold H with boundary a genus two
surface and J � @H a separating circle which in H is nontrivial and has no companion annulus.

In the pair .H;J / the circle J separates @H into two once-punctured tori, T1 and T2, such that
@H D T1[J T2, each of which is necessarily incompressible in H .

For convenience, a once-punctured torus in H with boundary slope J will be called a J -torus.

A pair .H;J / is minimal if any J -torus in H is parallel into T1 or T2.

The next result shows that handlebodies and atoroidal regions Ri;j �XK for arbitrary genus one knots
K � S3 satisfy this more general definition of pair.

Lemma 2.2.1 (1) If .H;J / is a pair then

(a) H is either boundary irreducible or a genus two handlebody;

(b) if H is a handlebody then .H;J / is a pair for any nontrivial separating circle J � @H .
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(2) If K � S3 is a genus one knot and T D T1t� � �tTN �XK is a simplicial collection of Seifert tori
such that the region Ri;j is atoroidal , as is the case when K is hyperbolic , then .Ri;j ;J / is a pair.

Proof Part (1)(a) follows as in the proof of [24, Lemma 4.1] and (1)(b) from [24, Lemma 3.3].

For (2), if Ri;j is atoroidal and the circle J � @Ri;j has a companion annulus then by Lemma 2.0.1 J

has a companion solid torus V �Ri;j around which it runs p � 2 times, which implies that Ri;j .J / has
a lens space connected summand Lp . However, by [7, Corollary 8.3] the manifold XK .J / is irreducible
and each torus yTi �XK .J / is incompressible; hence the manifold Ri;j .J /�XK .J / is irreducible. This
contradiction shows that J has no companion annuli in Ri;j and hence that .Ri;j ;J / is a pair.

2.3 Handlebody pairs

If H is a genus two handlebody then we call .H;J / a handlebody pair. Handlebody pairs were introduced
in [24] and play a prominent role in the structure of a genus one knot exterior. In this section we gather
the main examples and properties of handlebody pairs.

As usual we write @H DT1[J T2. Two nonseparating circles in T1 and T2 are coannular if they cobound
an annulus in H .

2.3.1 Primitive and power circles The fundamental group of handlebody H (of any genus) is a free
group. We say that a circle in @H is primitive or a power in H if it represents a primitive or a power
p � 2 of a nontrivial element in the fundamental group �1.H / of H , in which case the circle must be
nonseparating in @H (see [24]). By [24, Lemma 3.3], a circle ! � @H is primitive or a power in H if
and only if the surface @H n! compresses in H .

By [1], if ! � @H is a power circle then ! is a power of a primitive element in �1.H /. Equivalently, the
circle ! � @H is a power circle if and only if it has a companion annulus in H , in which case ! is a
power of primitive element of �1.H / represented by the core of its companion solid torus.

In the special case that H is a genus two handlebody, if w.x;y/ is a cyclically reduced word representing
a primitive element of the free group �1.H /D hx;y j �i other than x, x�1, y, or y�1 then by [2] there is
an " 2 f˙1g and an integer n 2Z such that in w.x;y/ all exponents of x (resp. y) are " and all exponents
of y (resp. x) are n or nC 1. The same conclusion holds when w.x;y/ is a power of some primitive
word w0.x;y/, as w0.x;y/ must then be cyclically reduced.

2.3.2 Circles with companion annuli in general pairs By [24, Lemma 3.1], if .H;J / is a general
pair with @H D T1[J T2 and i 2 f1; 2g then up to isotopy there is at most one circle !i � Ti which has
a companion annulus and companion solid torus in H , and these companion objects are unique in H up
to isotopy.

Handlebody pairs .H;J / include the following types. Here we write @H D T1[J T2.
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T � f0g

T � f1=2g
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1
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Figure 5: The core knot K1 and the annuli A1 and A0
1

in a simple pair .H;J /.

2.3.3 Trivial pair H D T � I for T a once-punctured torus and J the slope of the core of the annulus
.@T /� I . By [24, Lemma 3.7(4)] a handlebody pair .H;J / with @H D T1[J T2 is trivial if and only if
H.J /� yT1 � I .

2.3.4 Simple pair H D .T �I/[B V where V is a solid torus, BD .T �f0g/\@V is a closed annular
neighborhood of a nonseparating circle ! � f0g in T � f0g, and B runs p1 � 2 times around V . The
separating circle J corresponds to @T �f1=2g. The core of the annulus @V nB � T2 is then coannular in
H to ! � f0g � T1.

Simple pairs are discussed in detail in [24, Sections 3.2 and 6.1]. In this case, for @H D T1[J T2, there
are coannular p-power circles !1 D ! � f0g � T1 and !2 � T2 which cobound a nonseparating annulus
A in H and there is a nonseparating disk D �H nA, all unique under isotopy.

The minimal intersection of D and J satisfies jD\J j D 2. In fact, by [24, Lemma 3.11] a handlebody
pair .H;J / is trivial or simple if and only if there is a disk in H which minimally intersects J in two
points.

The core K1 (defined up to isotopy) of the solid torus H jD obtained by cutting H along D is called the
core of the pair .H;J /.

Thus K1 is isotopic in H D .T � I/[B V to the core of the solid torus V . It follows that, in the exterior
XHK1

DH n int N.K1/ of K1 in H , there are disjoint annuli A1 and A0
1

such that

@1A1 D !1 � T1; @1A01 D !
0
1 � T2; @2A1 t @2A01 � @N.K1/;

and each circle @2A1; @2A0
1

has nonintegral boundary slope in @N.K1/ of the form r1 D a1=p1 with
gcd.a1;p1/D 1. These objects are represented in Figure 5. Figure 6, top left, shows an actual simple
pair .H;J / with the disk D � J that intersects J in two points.

The index of the simple pair .H;J / is defined as the integer p1 � 2; we also say that its core K1 has
index p1.
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2.3.5 Operations with simple pairs Let .H;J / be a pair with @H D T1[J T2 and T �H a J -torus
such that H jT consists of two components, H1 and H2, with H D H1 [T H2 and @Hi D T [J Ti .
Suppose that .H1;J / is a simple pair of index p � 2 and !1 � T1 and ! � T are the coannular p-power
circles in H1 in Section 2.3.4. The following observations will be useful in the analysis of general pairs.

(1) If V1�H1 is the companion solid torus of !1�T1 then H2� clŒH nV1�. Equivalently, if A1�H1

is the companion annulus of !1 � T1 then the components of H jA1 are homeomorphic to H2

and V1.

(2) If V �H1 is the companion solid torus of ! � T then H �H2[V .

(3) H is a handlebody if and only if H2 is a handlebody and ! � T is a primitive circle in H2.

(4) If H is a handlebody and T is not parallel into @H then at least one of the pairs .H1;J / and
.H2;J / is simple; hence there is a circle in T1 or T2 which is a power in H .

Items (1) and (2) follow by construction of the simple pair .H1;J / and Figure 5. Item (3) is the content
of [24, Lemma 6.3], and (4) follows from [24, Lemma 3.7(3)].

2.3.6 Primitive pair A nontrivial pair .H;J / such that there is a nonseparating annulus A�H with
each boundary component @1A � T1 and @2A � T2 a primitive circle in H . By [24, Lemma 6.9] the
circle @iA� Ti is the unique circle in Ti which is primitive in H , and A is also unique up to isotopy.

2.3.7 Basic pair We say that a pair of circles !1 � T1 and !2 � T2 are basic in H if, relative to some
base point �, the circles represent a basis for the free group �1.H;�/. By [24, Section 3] this is equivalent
to saying that in H the circles !1 � T1 and !2 � T2 are primitive and separated by a disk.

A pair .H;J / is basic if it contains a pair of basic circles as above.

2.3.8 Double pair This is a variation of a simple pair, essentially the union of two simple pairs. Let T

be a once-punctured torus and !0; !1 � T two circles which intersect minimally in one point. Then the
circles !0�f0g � T �f0g and !1�f1g � T �f1g are basic in T � Œ0; 1�. Attaching solid tori V0 and V1

to T � I along annular neighborhoods B0 � T � f0g and B1 � T � f1g of !0 � f0g and !1 � f1g, with
the circles !0 � f0g and !1 � f1g running p0;p1 � 2 times around V0 and V1, respectively, produces a
handlebody H D T � I [B0

V0[B1
V1, with J corresponding to the circle .@T /� f1=2g.

The J -torus T � f1=2g �H separates H into two handlebodies H0 � T � f0g and H1 � T � f1g such
that .H0;J / and .H1;J / are simple pairs of indices p0 and p1, respectively, with the power circles
!0�f1=2g � T �f1=2g �H0 and !1�f1=2g � T �f1=2g �H1 intersecting minimally in one point in
T � f1=2g.

By [24, Lemma 6.8(2)(a)], any J -torus in the double pair .H;J / is parallel to a boundary J -torus or to
the J -torus T that splits it into the simple subpairs .H0;J / and .H1;J /.

Figure 6, top right, shows a double pair .H;J / that splits into simple subpairs of index 2.
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2.3.9 Maximal pair If .H;J / is a genus two handlebody pair then there are at most two J -tori in H

that are mutually disjoint and nonparallel, and not parallel to @H ; this follows from Lemma 2.0.1 and the
fact that any J -torus in H is boundary compressible (see [21]). The pair .H;J / is maximal if it contains
two such J -tori.

By [24, Lemma 6.8], a maximal pair .H;J / contains two disjoint J -tori T 0
1
;T 0

2
�H such that, in H ,

the J -tori Ti and T 0i cobound a simple pair .Hi ;J / for i D 1; 2 and T 0
1

and T 0
2

cobound a nontrivial
basic pair .H0;J /. Specifically, the circles !0

1
� T 0

1
and !0

2
� T 0

2
that are power circles in H1 and H2,

respectively, are basic circles in H0. The situation is represented in Figure 6, bottom left.

Moreover no circle in T1 or T2 is primitive in H , as otherwise by Section 2.3.5(2) and (3) it would
be possible to construct a handlebody pair .H 0;J / that contains 3 J -tori that are mutually disjoint and
nonparallel, and not parallel to @H 0, which is impossible.

2.3.10 Induced simple pair and induced J -torus Suppose that .H;J / is a general pair and !1 � T1

a circle with companion annulus A�H . Let V �H be the companion solid torus cobounded by A and
an annulus neighborhood B � T1 of !1 (Lemma 2.0.1), such that !1 runs p � 2 times around V .

Then a small regular neighborhood H 0 DN.T1[V /�H is a genus two handlebody and .H 0;J / is a
simple pair of index p with !1 a p-power circle in H 0.

We say that the pair .H 0;J / and J -torus T 0
1
D fr.H 0/�H are the simple pair and J -torus induced by T1,

and more specifically by the power circle !1 � T1. Since by Section 2.3.2 the J -torus T1 contains at
most one circle with a companion annulus and solid torus, all of which are unique up to isotopy, it follows
that the J -torus T 0

1
and simple pair .H 0;J / induced by T1 are unique in H up to isotopy. The situation

is represented in Figure 6, bottom right.

Minimal handlebody pairs are characterized as follows.

Lemma 2.3.11 If .H;J / is a minimal nontrivial handlebody pair then

H.J /D

8<:
A2.p/ if .H;J / is a simple pair of index p � 2;

toroidal if .H;J / is a primitive pair;
hyperbolic otherwise:

Proof By [24, Lemma 3.7(1)] the manifold H.J / is irreducible and boundary irreducible, so if H.J / is
anannular and atoroidal then it is hyperbolic by [20].

Since H is a handlebody, by [5, Theorems 1 and 2] if H.J / contains an incompressible annulus or torus
which is not boundary parallel then H contains an incompressible annulus A disjoint from J which is
not boundary parallel.

Let @H D T1[J T2. If @A� Ti then by [24, Lemma 3.3(2)] A is a companion annulus for a power circle
in Ti and hence the pair .H;J / is simple by [24, Lemma 6.2]. In this case the manifold H.J / is a cable
space of the form A2.�/.
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Figure 6: Examples of simple, double, maximal and induced pairs.

Suppose now that @1A� T1 and @2A� T2. By [24, Lemma 3.4] the components of @A are both power
circles or both primitive circles in H . In the first case the pair .H;J / is simple by [24, Lemma 6.2].

In the second case the pair .H;J / is primitive. Let W be a regular neighborhood of yT1[
yT2[A in H.J /.

Then W is a composing space of the form P �S1 for some pants P and @W D yT1t
yT2tT where T is a

torus. Since H.J / is irreducible and boundary irreducible, if T compresses in H.J / then it bounds a solid
torus V �H.J / and hence H.J /DW [T V is a Seifert fiber space of the form A2.�/. Thus H.J /.ˇ/

is an atoroidal Seifert fiber space of the form D2.�;�/ for each circle ˇ � T1 with �.ˇ; @1A/ � 2,
contradicting [24, Lemma 6.9] that the manifold H.ˇ/ D H.J /.ˇ/ is toroidal. Therefore H.J / is a
toroidal manifold.

In light of Lemma 2.3.11, we will say that a handlebody pair .H;J / is hyperbolic if the manifold H.J /

is hyperbolic.

Examples of hyperbolic pairs are provided by some basic pairs as established in the next result.

Lemma 2.3.12 (1) Primitive , simple , basic and hyperbolic handlebody pairs are minimal.

(2) A primitive pair is neither basic nor simple.

(3) A basic pair is trivial , simple or hyperbolic.

Proof Simple pairs are minimal by [24, Lemma 3.9(2)].
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If .H;J / is a handlebody pair and T �H is a J -torus not parallel into @H D T1[J T2 then

H1.J /¤ yT � I ¤H2.J /

by [24, Lemma 3.7(4)] and so yT is an incompressible torus in H.J / D H1.J /[ yT H2.J / that is not
boundary parallel. It follows that any hyperbolic handlebody pair is minimal.

We claim that if a handlebody pair .H;J / is simple or nonminimal then there is a circle ˇ � @H n J

which is a p-power circle in H for some p � 2. In such case H.ˇ/ is a reducible manifold of the form
H.ˇ/D S1 �D2 # Lp for some lens space Lp with finite fundamental group of order p.

In the case where .H;J / is a simple pair a p-power circle ˇ exists in each component of @H n J by
definition. If there is a J -torus T �H which is not parallel to T1 or T2 then by [24, Lemma 3.7(3)] T

separates H into two genus two handlebodies H1 and H2 with @Hi D T [Ti , where we may assume that
.H1;J / is a simple pair. Thus there is a circle ˇ � T1 which is a power circle in H1 and hence in H .

Now, if .H;J / is a primitive pair then by Section 2.3.6 the circles ˛1 � T1 and ˛2 � T2 which are
primitive in H are unique and coannular, hence not basic in H , so .H;J / is not a basic pair, and by [24,
Lemma 6.9] the manifold H.ˇ/ is irreducible for each circle ˇ � T1 other than the primitive circle ˛1,
so .H;J / is minimal and not a simple pair by Section 2.3.5(4).

Suppose now that the pair .H;J / is basic, with basic circles ˛1 � T1 and ˛2 � T2 that are separated
by a disk D � H (see Section 2.3.7), and T � H is a J -torus which is not parallel to T1 or T2. We
may assume that D intersects T minimally, so that D \ T consists of a nonempty collection of arcs.
Let E � D be a subdisk cut off by an arc in D \ T which is outermost in D, with .int E/\ T D ∅,
and suppose that E � H1. Then jE \ J j D jE \ @T j D 2 and so the pair .H1;J / is simple by [24,
Remark 3.8 and Lemma 3.11]. As the circle ˛1 � T1 is primitive in H , it must be primitive in H1 and
hence it must intersect E minimally in one point by [24, Lemma 6.2(5)]. Thus ˛1 intersects D, which is
not the case. This contradiction shows that the basic pair .H;J / is minimal. Therefore (1) and (2) hold,
and (3) follows now by Lemma 2.3.11

2.4 Construction of basic pairs

Recall from Lemma 2.3.12 that any basic pair is trivial, simple or hyperbolic. In this section we construct
all basic pairs and give simple conditions to determine their nature.

In preparation for this we set up the following items:

(i) A genus two handlebody H .

(ii) Circles !1; !2 � @H that are basic in H and separated by a disk D �H .

(iii) A decomposition H D V1 [ .D � I/[ V2 where V1 and V2 are solid tori with meridian disks
D1 � V1 and D2 � V2, such that jD1\!1jmin D 1D jD2\!2jmin.
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Figure 7: Construction of the basic pair .H;J /, with k representing k parallel strands.

(iv) A decomposition @H D S1[A[S2 with the once-punctured tori and annulus S1 D @V1\ @H ,
S2 D @V2\ @H , and AD .@D/� I .

(v) We remark that D1 and D2 are up to isotopy the only disks in H that satisfy the conditions

jDi \!j j D ıi;j D

�
1 if i D j ;

0 if i ¤ j ;
for all fi; j g D f1; 2g:

If .H;J / is a basic pair with basic circles !1 and !2 then J can be isotoped in @H n.!1t!2/ to intersect
the circles @D1 t @D2 t @A minimally, in which case:

(vi) For i D 1; 2, J \Si is a collection of 2m� 2 parallel arcs disjoint from !i .

(vii) The arcs J \A split into 4 collections of parallel arcs each of size n or 2m� n, where n is an
integer such that 1� n�m and gcd.n; 2m/D 1.

The situation is represented in Figure 7, where each arc represents one of the collections of parallel arcs
in (vi)-(vii) of the size indicated by the number in the box of top of the arc.

It is then always possible to construct a nonseparating disk E�H which satisfies the following properties:

(E1) E \D1 D∅DE \D2,

(E2) E intersects each circle !1 and !2 minimally in one point,

(E3) E intersects J minimally in 2n points.

The boundary of one such disk E is shown in Figure 7.

Lemma 2.4.1 Any disk in H which satisfies (E2) is isotopic to a disk obtained by performing some
number of half-Dehn twists to E along the separating disk D and hence intersects J in at least 2n points.

Proof It suffices to show that any disk in H which satisfies (E2) can be isotoped to satisfy (E2) and be
disjoint from D1 tD2.
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So let F �H be a disk that satisfies (E2). It is then possible to isotope F so that it satisfies (E2) and
intersects D1 tD2 minimally; in particular F \ .D1 tD2/ has no circle components.

If F \ .D1 tD2/¤∅, say F \D1 ¤∅ for definiteness, then there is an outermost arc c of the graph
F \D1 �D1 which cobounds a disk face D0 �D1 disjoint from !1. The frontier of N.F [D0/ then
consists of three disks, F0, F1 and F2, properly embedded in H , say with F0 parallel to F .

If the arc c � F separates the points F \!1 and F \!2 then may assume that jFi \!j j D ıi;j for all
fi; j g D f1; 2g. By (v) it follows that in H the disks F1 and F2 are isotopic to D1 and D2, respectively,
and hence that F can be isotoped to be disjoint from D1 tD2, contradicting our hypothesis.

If the arc c � F does not separate the points F \!1 and F \!2 then one of the disks, say F1, is disjoint
from the basic circles !1t!2 and hence must be parallel into @H . This implies that it is possible to reduce
jF \ .D1 tD2/j by an isotopy that replaces a component of F n c with the disk D0, again contradicting
our hypothesis.

Therefore F may be assumed to be disjoint from D1 tD2 and hence isotopic to a disk obtained by
performing some number of half-Dehn twists to the disk E along D. Since 1� n�m holds by (vii), and
hence n� 2m� n, it is then not hard to see that F must intersect J in at least 2n points.

The next result classifies the basic pair .H;J / in terms of the numbers m and n in (vi) and (vii).

Lemma 2.4.2 The basic pair .H;J / is trivial for mD 1, simple of index m� 2 if nD 1, and otherwise
hyperbolic.

Proof Let @H D T1[J T2. For mD 1 it is not hard to see that H � T1 � I and hence that .H;J / is a
trivial pair.

If nD 1 and m� 2 then it is not hard to find a circle in, say, T1, which represents the power .D1D2/
m

in �1.H /D hD1;D2 j �i. Since by Lemma 2.3.12(1) the pair .H;J / is minimal, by Section 2.3.10 it
must be simple.

Conversely, if .H;J / is a simple pair then by Section 2.3.4 and [24, Lemma 6.2(5)] there is a disk F �H

that intersects J minimally in two points and satisfies (E2). Since by Lemma 2.4.1 the disk F must
intersect J in at least 2n points it follows that nD 1.

Finally, if n� 2 then by the above argument the pair .H;J / is neither primitive nor simple and hence
must be hyperbolic by Lemma 2.3.12(3).

Remark 2.4.3 The simplest example of a basic hyperbolic pair .H;J / is constructed in Section 8.4 and
represented in Figure 24, top. In Proposition 8.4.1 this hyperbolic pair is used to construct an example of
a genus one hyperbolic knot K � S3 with a simplicial collection T �XK which decomposes XK into
two simple pairs and two hyperbolic pairs homeomorphic to .H;J /.
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3 Annular pairs

Here we generalize the notions of simple and primitive handlebody pairs to arbitrary pairs.

3.1 Spanning annuli

Let .H;J / be a pair with @H D T1 [J T2. A spanning annulus for .H;J / is an annulus A�H with
@1A � T1 and @2A � T2 nonseparating circles, in which case we say that the circles @A � @H are
coannular in H .

Any spanning annulus A for a pair .H;J / is nonseparating and incompressible. If H is a genus two
handlebody then by [24, Lemma 3.4] the boundary circles @1AD A\T1 and @2AD A\T2 are both
primitive or both p-power circles in H for some p � 2 and cobound at most two nonisotopic spanning
annuli in H . The next result generalizes these facts to arbitrary pairs.

Lemma 3.1.1 Let .H;J / be a pair with @H D T1[J T2.

(1) Any two spanning annuli A1 and A2 for the pair .H;J / which intersect transversely with

@A1\ @A2\Ti D∅

for some i D 1; 2 can be isotoped so as to be mutually disjoint.

(2) If .H;J / contains two spanning annuli with nonempty minimal intersection then .H;J / is a trivial
pair.

(3) A nontrivial pair .H;J / admits at most two isotopy classes of spanning annuli. Specifically,
any two nonisotopic spanning annuli A1 and A2 for the pair .H;J / that intersect minimally are
mutually disjoint and cobound a solid torus region V �H such that A1 and A2 each run p � 2

times around V .

In particular , for any nontrivial pair .H;J / with a spanning annulus ,

(4) the boundary slopes !1 � T1 and !2 � T2 of spanning annuli in H are unique up to isotopy,

(5) .H;J / admits two nonisotopic spanning annuli if and only if !1�T1 or !2�T2 has a companion
annulus in H , in which case

(a) in H each slope !1 � T1 and !2 � T2 has a companion annulus and a companion solid torus
around which the slope runs p � 2 times ,

(b) if the pair .H;J / is minimal then it is simple.

Proof For part (1), let A1;A2 � H be any two spanning annuli for the pair .H;J / which intersect
transversely. We assume that @iAj � Ti for all i; j 2 f1; 2g, and that @2A1\ @2A2 D∅ for definiteness.
It follows that any arc component of A1\A2 is parallel to @1A1 and @1A2 in A1 and A2, respectively,
and hence, by a standard outermost arc/innermost circle argument (using the fact that H is irreducible
and T1 is incompressible in H ), that A1 and A2 can be isotoped to intersect minimally so that each
component of A1\A2, if any, is a nontrivial circle in A1 and A2.
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Figure 8: The spanning annuli A1 and A2 in H .

Now, each pair of circles @1A1 t @1A2 � T1 and @2A1 t @2A2 � T2 cobound annuli B1 � T1 and
B2 � T2, respectively. Let C1;C2 � A2 be the annular closures of the components of A2 nA1 that
contain the circles @1A2 and @2A2, respectively, and let C 0

1
;C 0

2
� A1 be the annuli cobounded by the

pairs of circles .C1\A1/t @1A1 and .C2\A1/t @2A1, respectively. By the minimality of A1\A2,
for i D 1; 2 the annulus Ci [C 0i is a companion annulus in H for the core circle of Bi , and hence Bi

and Ci [C 0i cobound a solid torus Vi �H , with Bi running at least twice around Vi . The situation is
represented in Figure 8.

It follows that the manifold M D N.A1 [ V1 [ V2/ � H is a Seifert fiber space over the disk with
two singular fibers, contradicting Lemma 2.0.1 applied to the torus @M �H . Therefore we must have
A1\A2 D∅ and so (1) holds.

For (2), let A1;A2 �H be any two spanning annuli for the pair .H;J / which intersect minimally with
A1 \ A2 ¤ ∅. By (1), for i D 1; 2 the circles @iA1; @iA2 � Ti intersect minimally and, as Ti is a
once-punctured torus, coherently in Ti , and so A1 \A2 consists of a nonempty disjoint collection of
mutually parallel spanning arcs in A1 and A2. If A1\A2 has at least two arc components then, from
the closure of a rectangular component of A2 nA1, it is possible to construct a spanning annulus A0

2
for

.H;J / which intersects A1 minimally in one arc. We may therefore assume that A1 \A2 is a single
spanning arc, in which case S1 DN.@1A1[ @1A2/� T1 is a once-punctured torus with @S1 parallel in
T1 to J D @T1, while N.A1 [A2/ �H is homeomorphic to the genus two handlebody S1 � I , with
A1[A2 corresponding to .@1A1[ @1A2/� f1=2g.

It follows that the frontier A of N.A1[A2/�H is an annulus with boundary circles @A parallel to J

in H . Since the circle J has no companion annuli in H , the annulus A must be parallel to @H in H ,
which implies that H is homeomorphic to S1 � I and hence that the pair .H;J / is trivial, so (2) holds.

Suppose now that .H;J / is a nontrivial pair. By (1) any two spanning annuli A1 and A2 for .H;J / can
be isotoped so as to be disjoint, whence the circles @1A1; @1A2 � T1 and @2A1; @2A2 � T2 cobound
annuli B1 � T1;B2 � T2, respectively. By Lemma 2.0.1, the torus A1[A2[B1[B2 bounds a solid
torus V .A1;A2/ �H , with each annulus A1;A2 � @V .A1;A2/ running n.A1;A2/ � 1 times around
V .A1;A2/.
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If n.A1;A2/D 1 for all spanning annuli A1;A2 of .H;J / then any two such spanning annuli are mutually
isotopic, so .H;J / contains a unique spanning annulus.

Otherwise, suppose that p D n.A1;A2/ � 2 for some mutually disjoint spanning annuli A1;A2 �H ,
and let A�H be any spanning annulus for .H;J /. Isotope A so as to be disjoint from A1, whence A

and A1 have the same boundary slope, and then isotope A so as to intersect A2 minimally subject to
A\A1 D∅. An argument similar to the one used in the proof of part (1) then shows that we must have
A\A2 D ∅ too, whence A can be isotoped so as to be disjoint from A1 tA2. It follows that either
A� V .A1;A2/ or Ai � V .A;Aj / for some fi; j g D f1; 2g, which implies that A is parallel to A1 or A2.

Therefore A1 and A2 are up to isotopy the only spanning annuli in H , hence their boundary slopes are the
only slopes in T1 and T2 that cobound a spanning annulus in H ; and as p � 2 the solid torus V .A1;A2/

is a companion solid torus for each slope !1 D @1A1 � T1 and !2 D @2A1 � T2.

Conversely, if A is a spanning annulus for .H;J / and V �H is a companion solid torus for, say, the circle
!1 DA\T1 � T1, so that !1 runs p � 2 times around V , then A can be isotoped so that A\ int V D∅
and A\V DA\T1, in which case N.A[V /�H is a solid torus whose frontier consists of two disjoint
spanning annuli for .H;J /, each of which runs p times around N.A[V /. Therefore the first part of (5)
holds.

Finally, let V1 be the solid torus obtained by pushing V .A1;A2/ slightly off T2. Then V1 is a companion
solid torus for !1 D @1A1 � T1 which by Section 2.3.10 induces a J -torus T �H that splits H into
genus two handlebodies H1 D N.T1 [ V1/ and H2 � H , with @H1 D T1 [J T and @H2 D T2 [J T ,
such that .H1;J / is a simple pair of index p � 2. Thus if the pair .H;J / is minimal then T is parallel to
T2 and so the pair .H;J / is simple. A similar conclusion holds if we push the solid torus V .A1;A2/

slightly off T1 to obtain a companion solid torus for !2 D @2A1 � T2. Therefore (4) and (5) hold.

3.2 The index of an annular pair

We make the following definitions and observations based on the properties obtained in Lemma 3.1.1.

(A1) A pair .H;J / is said to be annular if it is nontrivial and contains a spanning annulus.

(A2) If .H;J / is an annular pair and A�H is a spanning annulus then the index of .H;J / and A is
the number p D n.A1;A2/� 2 given in Lemma 3.1.1(3) if A is not unique, and otherwise it is 1.

(A3) By [24, Lemma 3.4(4)(a)], a handlebody pair .H;J / is annular of index 1 if and only if it is a
primitive pair.

(A4) For an annular pair .H;J / with a spanning annulus A of index p � 2, the solid torus

V D V .A1;A2/�H

in Lemma 3.1.1(3) is unique up to isotopy and its core is called the core knot of .H;J /.
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Figure 9: The J -tori T 0
1
;T 0

2
�R1;2 induced along T1 and T2 in the annular pair .R1;2;J /.

Also, following the notation in the proof of Lemma 3.1.1(3), for each fi; j g D f1; 2g the manifold
Wi DN.Ti [V /�H is a handlebody which, after being pushed slightly off from Tj , produces a
simple pair .Wi ;J / of index p � 2 cobounded by its two frontier J -tori Ti and T 0i �H . As in
Section 2.3.10 the pair .Wi ;J / and T 0i are the simple pair and J -torus induced by the annular pair
.H;J / along Ti , unique up to isotopy in H . The situation is represented in Figure 9.

4 Seifert tori in XK

In this section we establish several properties of Seifert tori in the exterior of a hyperbolic knot K � S3.
In particular we determine the structure of the pairs generated by a simplicial collection of Seifert tori in
XK in the presence of a Seifert torus not isotopic to any of those in the collection.

4.1 General properties

We use the following notation. Let T �XK be a J -torus and T � Œ�1; 1� a product neighborhood of T in
XK with T corresponding to T � f0g. For a surface F �XK , not necessarily properly embedded, such
that T \ int F D∅ and T \@F ¤∅, we say that F locally lies on one side of T if F \ .T � Œ�1; 0�/D∅
or F \ .T � Œ0; 1�/D∅, and otherwise that F locally lies on both sides of T . For instance, a companion
annulus for a slope in T locally lies on one side of T , while @XK locally lies on both sides of T .

Lemma 4.1.1 Let T1;T2;T3 �XK be J -tori in the exterior of a hyperbolic knot K � S3.

(1) If F �XK is a properly embedded surface which intersects T1 transversely with .@T1/\ .@F /D∅
then the number of circle components of T1\F that are nonseparating in T1 is even.

(2) If A is an annulus in XK with A\T1 D .@A/\T1 such that each of the circles @A is nonseparating
in T1 and �.@1A; @2A/D 0 then A is a companion annulus that locally lies on one side of T1.

(3) Any two companion annuli for a circle in T1 locally lie on the same side of T1 and are mutually
isotopic.
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(4) If T1 and T2 are mutually disjoint and A is a spanning annulus for the pair .R1;2;J / then the circles
@A are not coannular in R2;1 and not both have companion annuli in R2;1. Moreover , if a component of
@A has a companion annulus in R2;1 then A�R1;2 has index 1.

(5) If B � R1;2 is an annulus with @1B a nonseparating circle in T1 and @2B a circle in Ti for some
i D 1; 2 then @2B is also a nonseparating circle in Ti .

(6) Suppose that T1;T2;T3 �XK are mutually disjoint and nonparallel Seifert tori with T2 �R1;3. If
A�R1;3 is a spanning annulus which intersects T2 minimally then A1 DA\R1;2 and A2 DA\R2;3

are spanning annuli in R1;2 and R2;3, respectively, and .R1;3;J / has index p � 1 if and only if one of
the pairs .R1;2;J / or .R2;3;J / has index 1 and the other index p � 1.

(7) If the J -tori T1, T2 and T3 are mutually disjoint and nonparallel in XK , T2 lies in the region R1;3,
and the pair .R1;2;J / is simple with ! � T2 a p � 2 power circle in R1;2, then R1;3 is a handlebody if
and only if R2;3 is a handlebody and ! is a primitive circle in R2;3.

In particular , if the pair .R2;3;J / is primitive then R1;3 is a handlebody if and only if the slopes of the
spanning annuli in R1;2 and R2;3 agree on T2.

Proof For part (1), observe that if @F ¤ ∅ then, after suitably capping off with disks any boundary
components of @F that are trivial in XK , we may assume that each component of @F is a nontrivial circle
in XK of slope J .

T1 \F has no arc components since .@T1/\ .@F / D ∅ and so each component of T1 \F is a circle
which either is parallel to @T1, bounds a disk in T1, or does not separate T1. Let N � T1 \F be the
collection of circles that are nonseparating in T1 and assume that N¤∅. As the circles in N are mutually
parallel in T , there is a circle ˇ � T1 which intersects each component of N transversely in one point and
is disjoint from T1\F nN. After pushing ˇ slightly away from T1, we may assume that ˇ is disjoint
from T1 and intersects F transversely in jNj points. If F separates XK then jNj is even, so we may
further assume that F does not separate XK . Since H2.XK .J /IZ2/ D Z2, the nonseparating closed
surfaces yT1; yF �XK .J / belong to the only nontrivial homology class of H2.XK .J /IZ2/; hence yT1 and
yF must have the same homological intersection number mod 2 with ˇ, ie

0� ˇ � yT1 � ˇ � yF � jNj mod 2

and so jNj is even.

For part (2) suppose that A does not locally lie on one side of T1. Since �.@1A; @2A/D 0, the circles
@A have the same slope in T1 and hence A can be isotoped in XK so that A\ T1 D .@A/\ T1 and
@1AD @2A, in which case the resulting closed surface A contradicts the conclusion of part (1). Therefore
A locally lies on one side of T1.

Part (3) is the content of [24, Lemmas 3.1 and 5.1].

For part (4), if B is an annulus in R2;1 with @B D @A then A[B �XK is a closed surface in XK that
intersects T1 minimally in one circle, contradicting (1); thus the circles @A are not coannular in R2;1.
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Suppose now that B1;B2�R2;1 are companion annuli for the circles @1A and @2A, respectively, isotoped
so as to intersect minimally, and let V1;V2 �R2;1 be the companion solid tori cobounded by B1;T1 and
B2;T2, respectively. Let A1 and A2 be mutually disjoint spanning annuli for the pair .R1;2;J / that are
parallel to A with @A1 t @A2 D @B1 t @B2.

If B1 \B2 ¤ ∅ then each component of B1 \B2 is a core circle of B1 and B2, so it is possible to
construct a spanning annulus B for the pair .R2;1;J / with @B D @A, contradicting the argument above.
And if B1\B2 D∅ then B1 and A1[B2[A2 are companion annuli for the circle T1\ @A that lie on
opposite sides of T1, contradicting (3).

Finally, if A has index p�2 then each circle @iA�Ti has a companion annulus in R1;2 by Lemma 3.1.1(5),
and hence by (3) cannot have a companion annulus in R2;1. Therefore (4) holds.

For part (5) if in yTi � XK .J / the circle @2B � Ti bounds a disk then the disk yB1 compresses the
nonseparating torus yT1 in XK .J / into a nonseparating 2-sphere, contradicting [7, Corollary 8.3] that the
manifold XK .J / is irreducible. Therefore @2B is nonseparating in yTi and hence in Ti .

For part (6), each component of A\T2 is a nontrivial circle in A and in T2 and so each component of
A\R1;2 and A\R2;3 is an annulus.

Let A1 be the component of A\R1;2 with A\T1 �A1\T1. Then necessarily A1\T2 ¤∅ and so
by (5) the circle ˛1 DA1\T2 is nonseparating in T2, hence A1 is a spanning annulus in R1;2. Similarly
the component A2 of A\R2;3 with A\T3 �A2\T3 is a spanning annulus in R2;3 with ˛2DA2\T2

a nonseparating circle in T2. In particular either ˛1 D ˛2 or ˛1 and ˛2 are disjoint and mutually parallel
circles in T2.

If ˛1 ¤ ˛2 then by (5) the component of A\R2;3 which contains ˛1 is a companion annulus for ˛1

in R2;3, and similarly ˛1 has a companion annulus in R1;2, contradicting (3). Therefore ˛1 D ˛2 and so
ADA1[A2.

Suppose now that B � R1;3 is a spanning annulus disjoint from A. By the argument above we may
assume that B1DB\R1;2 �R1;2 and B2DB\R2;3 �R2;3 are spanning annuli. Let V be the region
in R1;3 cobounded by A and B, and let C � V be the annulus cobounded by the circles .AtB/\T2.
By Lemma 3.1.1(3) the region V is a solid torus and so C separates V into two solid tori V1 D V \R1;2

and V2 D V \R2;3. Necessarily C runs once around one of the solid tori V1 or V2.

If the pair .R1;3;J / has index p � 2 and A runs p times around V then necessarily A1, say, runs p times
around V1. Therefore the pair .R1;2;J / has index p � 2, while by Lemma 3.1.1(5) the core of C � T2

has a companion annulus in R1;2 and so by (3) the core of C cannot have a companion annulus in R2;3,
which implies that the pair .R2;3;J / has index 1.

Conversely, if .R1;2;J /, say, has index p � 2 then there is a spanning annulus and A0
1
�R1;2 disjoint

from A1 that cobounds with A1 a solid torus V 0 �R1;2 around which each annulus runs p times. Thus
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W DN.A1[V 0/ is a solid torus in R1;3 and its frontier consists of two spanning annuli in R1;3 each of
which runs p times around W , so the pair .R1;3;J / has index p. Therefore (6) holds.

The first part of (7) follows from Section 2.3.5(2) and (3). If the pair .R2;3;J / is primitive then by [24,
Lemma 6.9(2)] the slope !0 � T2 of the spanning annulus in R2;3 is the unique circle which is primitive
in R2;3, while ! � T2 is the slope of the spanning annulus in R1;2. Therefore R1;3 is a handlebody if
and only if ! and !0 have the same slope in T2.

4.2 Intersections of Seifert tori

By [17, Lemma 5.2] the minimal intersection between two nonisotopic Seifert tori in XK � S3 (which is
assumed to be only atoroidal) consists of two circles which are nonseparating in each of the surfaces.
Here we extend this result to give a more detailed picture of the minimal intersection between a Seifert
torus S and a simplicial collection of Seifert tori T �XK . In particular we will see that a nontrivial such
intersection produces an annular pair of index 1 within a complementary region of T .

The next result is the first approximation to the main classification given in Proposition 7.0.2.

Lemma 4.2.1 Let T D T1 t � � � tTN be a simplicial collection of Seifert tori in XK and let S �XK be
a Seifert torus which is not isotopic in XK to any component of T , such that either

(i) S intersects the collection T minimally, or

(ii) N � 2, S �Ri;j (i D j allowed ), and S intersects the collection T \Ri;j minimally.

Then:

(1) For each j , S \Tj is either empty or consists of two circle components that are nonseparating in S

and Tj ; in particular , S and Tj intersect minimally in XK .

(2) The closure of each component of S nT is either a pants P or an annulus.

(3) P \T D P \Ti for some 1� i �N .

(4) There is a Seifert torus T �XK n .P [T / such that if R;R0 �XK are the regions cobounded by
T tTi and P �R then

(a) R\T D Ti ,

(b) the pair .R;J / is annular of index 1 with spanning annulus AR �R,

(c) the pair .R0;J / is nontrivial and AD S \R0 is a companion annulus; moreover , P and A lie
on opposite sides of Ti and the annuli A and AR have the same boundary slope in Ti .

Proof (I) Since S and T have the same boundary slopes, by conditions (i) and (ii) we have that
@S \ @T D∅ and so S \T is a nonempty collection of circles that are nontrivial in S and T .

(II) For each j , S\Tj consists of a collection circles that are nonseparating in S and Tj , hence mutually
disjoint and parallel in S and Tj . Thus (1) holds.
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For let c be a circle component of S \T ; by (I) c is nontrivial in S and T . Consider the case where c is
parallel to @S in S ; the case where c is parallel to @T can be dealt with in a similar way. We may assume
that c is outermost in S , that is, c cobounds with @S an annulus Ac � S with interior disjoint from T .

Let Tj � T be the component containing c. By Lemma 4.1.1(5) the circle c separates Tj and so it
cobounds an annulus A0c � Tj with @Tj . The annulus Ac [c A0c is then properly embedded in XK with
J as boundary slope, and as the knot K is hyperbolic this annulus must be parallel in XK into an annulus
B � @XK . Thus the annuli Ac [c A0c and B cobound a solid torus V �XK around which each annulus
runs once and such that V \ T D A0c . It is then possible to reduce jS \ T j by an isotopy of T that
exchanges the annulus A0c with Ac within the solid torus V and pushes the resulting surface slightly
off S , contradicting the minimality of jS \T j.

(III) S \Tj has an even number of components by Lemma 4.1.1(1).

(IV) If S \Tj ¤∅ then jS \Tj j D 2 and the closures of the components of S nTj are a pants Pj and
a companion annulus Aj that locally lie on opposite sides of Tj , with Pj \Tj DAj \Tj D @Aj .

By (II) and (III) the closures of the components of S nTj consist of a pants component Pj and an odd
number of annuli. By Lemma 4.1.1(3), each such annulus component is a companion annulus for the
slope of the circles S \Tj � S , and all such annular components lie on the same side of Tj . Therefore
there can be only one such annular component Aj , so jS \Tj j D 2 and the rest of the properties of Pj

and Aj follow.

(V) Similarly, by (II) and (III) S \ T consists of an even number of circle components which are
nonseparating in S and so the closures of the components of S nT consist of a pants component P and
an odd number of annuli. If @P D @S t˛1t˛2 then by (IV) P \Ti DS\Ti D ˛1t˛2 for some Ti �T

and the annulus AD clŒS nP � is a companion annulus of the slope of the circles S \Ti , with P and A

lying on opposite sides of Ti and P \T D P \Tj . Thus (2) and (3) hold.

(VI) Let P , A and Ti be as in (V) so that S D P [A. Since P and T nTi are disjoint, there is regular
neighborhood N.P [Ti/�XK which is disjoint from T nTi . The frontier of N.P [Ti/�XK contains
two J -tori, TP and T 0

P
, with TP on the same side of Ti as P and T 0

P
on the opposite side and parallel

to Ti .

Let R;R0 � XK be the two regions cobounded by TP and Ti , with P D S \R and A D S \R0. If
TP and Ti are parallel in R or R0 then by [25, Corollary 3.2] P or A is parallel in R or R0 into Ti ,
respectively, and so S can be isotoped by pushing P or A across and to the other side of Ti , thus reducing
jS \T j, which is not possible. Therefore TP and Ti are not parallel in XK and so the pairs .R;J / and
.R0;J / are nontrivial.

Let B � Ti be the annulus cobounded by the circles ˛1 t˛2 D P \Ti . Then the J -torus P [B �R is
parallel in R to TP , that is, the region in R between TP and P[B is a product of the form .P[B/� Œ0; 1�,
with TP D .P [B/� f0g and P [B D .P [B/� f1g. It follows that AR D ˛1 � Œ0; 1� is a spanning
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annulus for the region R. Since the annulus AD S \R0 is a companion for the slope ˛1 � Ti outside R,
AR has index 1 by Lemma 4.1.1(4) and so the pair .R;J / is annular of index 1. Therefore (4) holds.

5 Minimality of index 1 annular pairs in XK

Suitably gluing together two annular pairs of index 1 results in a new annular pair of index 1 which is
not minimal. In this section we show that an annular pair of index 1 produced by two Seifert tori in the
exterior of a hyperbolic knot in S3 must be minimal.

5.1 Annular pairs in XK

Let K � S3 be a genus one hyperbolic knot and let .R;J / and .R0;J / be pairs cobounded by two
mutually disjoint and nonparallel Seifert tori in XK , so that XK DR[R0.

If .R0;J / is an annular pair and the region R0 �XK is boundary irreducible then by Lemma 2.1.1(P2)
the region R� S3 is a genus two handlebody, an example of a nontrivial handlebody knot in S3. In [13,
Lemma 3.8] Y Koda and M Ozawa classify R as a certain type of handlebody knot using a result of
C Gordon [13, Lemma 3.6], along with that any 4-punctured sphere with integral boundary slope in a
knot exterior in S3 is compressible. We remark that the compressibility of many-punctured spheres with
nonintegral and nonmeridional boundary slope follows from the results in [3, Sections 2.5 and 2.6], in
particular Proposition 2.5.6.

We use a similar strategy to impose restrictions on the pairs .R;J / or .R0;J / in XK whenever one of
them is an annular pair. A classification of handlebody annular pairs is obtained which will be extended
and refined in Proposition 5.2.3 to arbitrary annular pairs in a knot exterior XK . We will see in Section 7
that the properties of this type of pair are the key to bound the number of maximal simplicial collections
of Seifert tori in XK .

Lemma 5.1.1 Let K � S3 be a genus one hyperbolic knot and T1 tT2 � XK a simplicial collection
of Seifert tori such that the pair .R1;2;J / is annular with spanning annulus A�R1;2. Then one of the
following holds:

(1) The region R1;2 is a genus two handlebody and the pair .R1;2;J / is either primitive , simple , or
splits along some J -torus in R1;2 into a simple and a primitive pair.

(2) The region R2;1 is a genus two handlebody, the circles @1A� T1 and @2A� T2 are separated in
R2;1 and one of the following holds:

(a) The pair .R2;1;J / is basic , with the components of @A as basic circles in R2;1.

(b) One of the two components of @A, say @2A� T2, is a power circle in R2;1 which induces a
J -torus T3 �R2;1, such that the pair .R2;3;J / is simple with spanning annulus B of index
p� 2 and the pair .R3;1;J / is basic with A\T1 and B\T basic circles in R3;1; in particular ,
any J -torus in R2;1 is isotopic in R2;1 to T1, T2 or T3.
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Proof Let the knot L � S3 be the core of A. Then N.A/ � R1;2 is a solid torus neighborhood of
L and so XL can be identified with S3 n int N.A/. Extending T1 and T2 radially in N.K/ so that
@T1 D K D @T2 yields the genus two surface F D T1 [ T2 such that P D clŒF n N.A/� � F is a
4-punctured 2-sphere in XL. Notice that P has integral boundary slope in @XL and separates XL into
two components, W1 D clŒR1;2 nN.A/��R1;2 and W2 DR2;1[N.A/�R2;1.

By [13, Lemma 3.6] the 4-punctured sphere P compresses in XL along some disk E. We consider two
cases.

Case 1 E �W1.

Then E � R1;2, so @R1;2 compresses in R1;2 and so the region R1;2 is a genus two handlebody by
Lemma 2.1.1(P1); hence the pair .R1;2;J / is primitive if A has index 1.

Suppose now that A has index p�2, so that @1ADA\T1 is a p-power circle in R1;2. If the pair .R1;2;J /

is minimal then it is simple by Lemma 3.1.1(5). If the pair .R1;2;J / is not minimal and Ta �R1;2 is
some J -torus not parallel to T1 or T2 then by [24, Lemma 3.7(2)(3)] each region R1;a;Ra;2 � R1;2

is a handlebody and we may assume that .R1;a;J / is simple, hence annular of index p, and hence by
Lemma 4.1.1(6) that the pair .Ra;2;J / is annular of index 1, primitive. Therefore (1) holds.

Case 2 E �W2.

The disk E is disjoint from N.A/ and so it is properly embedded in R2;1; therefore R2;1 is a genus two
handlebody by Lemma 2.1.1(P1). We also have that the circles @A; @E are mutually disjoint and, as T1

and T2 are incompressible in R2;1, @E is not parallel to any component of @A.

If the disk E � R2;1 is nonseparating then by [24, Lemma 3.4] the circles @A are coannular in R2;1,
contradicting Lemma 4.1.1(4). Therefore E must be a separating disk in R2;1 and so by [24, Lemma 3.4]
each circle @1A and @2A is a primitive or power circle in R2;1, and by Lemma 4.1.1(4) not both can be
power circles.

In R2;1, if the separated circles !1D@1A�T1 and !2D@2A�T2 are both primitive then by Section 2.3.7
they are basic circles in R2;1 and so the pair .R2;1;J / is basic.

Suppose now for definiteness that, in R2;1, !1 � T1 is a primitive circle and !2 � T2 is a p � 2 power
circle. Since !2 is disjoint from the separating disk E �R2;1 a companion solid torus of V2 �R2;1 of
!2 can be isotoped so as to be disjoint from E. Therefore we may assume that the J -torus T3 �R2;1

induced by !2 as in Section 2.3.10 is disjoint from E, the pair .R2;3;J / is simple of index p, and
E �R3;1.

Let !3�T3 be the power circle of the simple pair .R2;3;J /. As R2;1 is a handlebody, by Section 2.3.5(3)
the circle !3 � T3 is primitive in R3;1. The circle !1 � T1 is primitive in R2;1 and hence it must be
primitive in R3;1. Since E �R3;1 separates !3 and !1 it follows from Section 2.3.7 that the circles !3

and !1 are basic in R3;1 and hence that the pair .R3;1;J / is basic.
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Suppose now that S is a J -torus in R2;1. If S is not isotopic to T1, T2 or T3 in R2;1 then by
Lemma 4.2.1(3) applied to S and the collection T3 � R2;1 we have that one of the pairs .R2;3;J /

or .R3;1;J / must be primitive, which is not the case by Lemma 2.3.12(2). Therefore S is isotopic in
R2;1 to T1, T2 or T3 and hence (2) holds.

Remark 5.1.2 (1) The handlebody region R1;2 in conclusion (1) of Lemma 5.1.1 which splits into a
primitive and a simple pair is an example of an exchange region. These regions are classified in general
in Section 5.3 and their properties will be used in Sections 6 and 7 to obtain the restricted structure of the
complex MS.K/ in Theorem 1.

(2) The 4-punctured sphere P � XL constructed in the proof of Lemma 5.1.1 compresses in XL on
one of its sides along a disk which is also a compression disk of either @R1;2 in R1;2 or @R2;1 in R2;1,
corresponding to conclusions (1) and (2) of the lemma. If P compresses on both sides then conclusions
(1) and (2) hold simultaneously and hence a maximal simplicial collection of Seifert tori in XK has at
most 4 components.

An example where the surface P �XL compresses only on its side contained in the annular pair .R1;2;J /

is provided by the family of knots constructed in Proposition 8.4.1(1) and represented in Figure 27, right.
In these examples the pair .R2;3;J / is simple, hence annular, but R3;2 does not satisfy conclusion (2) of
Lemma 5.1.1.

5.2 Index 1 annular pairs in XK

By Lemma 2.1.1, for an index 1 annular pair .Ri;j ;J / in XK the region Ri;j may be a handlebody or a
boundary irreducible manifold, and in the latter case the complementary region Rj ;i must be a handlebody.
In this section we will see that this relationship between the regions Ri;j and Rj ;i , whose union is the
exterior XK of the knot K � S3, greatly limits the topology of the annular pair .Ri;j ;J /.

We first establish a technical result that applies to manifolds like the regions Ri;j �XK .

Lemma 5.2.1 Let H be an irreducible manifold with @H a surface of genus two , and let ˛; ˇ;  � @H
be nonseparating circles such that

(1) ˛ is disjoint from ˇ[  ,

(2) ˇ and  intersect minimally in one point ,

(3) ˛ and ˇ cobound an annulus A�H ,

(4) H.˛/ and H. / are solid tori.

Then H.˛ t  / D S3 and H is either a genus two handlebody or a toroidal irreducible manifold with
irreducible boundary.

Proof Conditions (1)–(4) imply that the circles ˛, ˇ and  are nontrivial in H and the circle ˛ is not
parallel in @H to ˇ or  . Also the nonseparating annulus A�H in (3) turns into the meridian disk yA
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of the solid torus H.˛/ with ˇ D @ yA intersecting  � @H.˛/ minimally in one point. Therefore  is a
longitude of H.˛/ and so

S3
DH.˛/. /DH.˛ t  /DH. /.˛/;

which implies that ˛ is a longitude of the solid torus H. /.

Let � be the core of the 2-handle D2 � I used in the construction of H. /. Then � is an arc properly
embedded in the solid torus H. / with regular neighborhood N.�/DD2 � I �H. /, such that

(i) H �H. / is the closure of H. / nN.�/;

(ii) N. /D .@D2/� I � @H is an annular neighborhood of  in @H ;

(iii) S0 D clŒ@H. / nN.�/�D clŒ@H nN. /� is a twice punctured torus such that @H D S0[ @N. /;

(iv) ˇ D ˇ1[ˇ2, where

� ˇ1 D ˇ\S0 is an arc properly embedded in S0 connecting the boundary components of S0,

� ˇ2 D ˇ\N. / is a spanning arc of the annulus N. / which intersects  minimally in one
point.

The situation is represented in Figure 10, top.

Since the circle ˛ and the arc ˇ1 are disjoint and properly embedded in the twice punctured torus
S0 � @H. / and the circle ˛ is a longitude of the solid torus H. /, there is a meridian disk E �H. /

such that @E lies in S0 � @H. /, intersects ˛ minimally in one point, is disjoint from ˇ1, and intersects
the arc � �H. / minimally among all meridian disks of H. / satisfying the previous conditions.

We may therefore assume that F DE \H is a punctured disk with boundary the circle @E � S0 � @H

and some circle components parallel to  in the annulus N. / � @H . Keeping @F fixed, we further
isotope F in H so as to intersect the annulus A�H minimally.

Since ˛ � @A intersects @E � @F in one point, and each component of @F in N. / � @H intersects
ˇ � @A in one point, it follows that the graph GA DA\F �A consists of one spanning arc a0 �A and
perhaps some arcs bi , 1� i � n, each with both boundary points on the subarc ˇ2 of the circle ˇ � @A.

The presence of the spanning arc a0 implies that any circle component of A\F is trivial in A. If an
innermost such circle component c is nontrivial in F then surgery of E along the disk bounded in A by c

produces a meridian disk for H. / satisfying all conditions above but having fewer intersections with A,
contradicting the minimality of A\F . Therefore A\F has no circle components and so the graph GA

consists only of arc components, as represented in Figure 10, bottom.

If the arcs bi are present then the graph GA has a disk face Dj cobounded by a subarc of ˇ and an
outermost arc bj ; but then the disk Dj may be used to boundary compress F in H and reduce by 2 the
number of intersections in H. / between E and � , contradicting the minimality of E \ � .
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Figure 10: The circles ˛, ˇ D ˇ1[ˇ2,  and @E in @H (top) and the graph GA DA\E �A (bottom).

Therefore E \ � consists of a single point, so F � H is an annulus and A\F consists of the single
arc a0. This final situation is represented in Figure 10, top.

It follows that W D N.A [ F / � H is a product of the form T0 � I , where T0 D T0 � f0g is the
once-punctured torus N.˛ [ @E/ � @H and T0 � f1g the once-punctured torus N.ˇ [  / � @H . The
circles @T0 and @T1 are then separating and disjoint in @H and hence cobound an annulus B0 � @H ;
moreover B D fr W D .@T0/� I is a separating annulus properly embedded in H with @B D @B0.

Let V D clŒH nW � � H be the region in H cobounded by B0 and B, so that H D W [B V . Since
@V D B0 [B is a torus and V �H � S3, V is either a solid torus or the exterior of a nontrivial knot
in S3. Since the circle @T0 � @V bounds the surface T0 outside V , if V � S3 is a solid torus then @T0

runs once around V . Therefore @T0 � @B0 is a longitude of V and so V is a parallelism between the
annuli B0 and B in H DW [B V . It follows that H �W D T0 � I is a genus two handlebody.

Suppose now that V is the exterior of a nontrivial knot in S3. Then the torus @V is incompressible in V

and the annulus B D .@T0/� I , which is incompressible in W D T0 � I , is therefore incompressible in
H DW [B V . It follows that H is an irreducible and boundary irreducible manifold and that @V , when
pushed slightly into the interior of H , is an incompressible torus in H .

With the help of Lemmas 5.1.1 and 5.2.1 we now obtain more information about the topology of an index
1 annular pair .Ri;j ;J / in XK and spanning annulus A�Ri;j by analyzing the manifold Ri;j .@A/.
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Lemma 5.2.2 Let T1 tT2 �XK be a simplicial collection of Seifert tori that cobound an annular pair
.R1;2;J / of index 1 with spanning annulus A�R1;2, such that @1A� T1 and @2A� T2. Then

(1) there is a closed 3-manifold M such that , for fi; j g D f1; 2g, R1;2.@iA/D S1�D2 #M with @j A

the slope of the meridian of the solid torus summand S1 �D2;

(2) if R1;2.@1A/ is a solid torus then R1;2 is a handlebody and so the pair .R1;2;J / is primitive , hence
minimal.

Proof Observe that for fi; j g D f1; 2g the boundary of the manifold R1;2.@iA/ is a torus. Since the
spanning annulus A�R1;2 turns into a disk in R1;2.@iA/ with boundary the circle @j A� @R1;2.@iA/,
it follows that R1;2.@iA/D S1 �D2 # Mi for some closed 3-manifold Mi , where the meridian slope of
the solid torus factor S1 �D2 is @j A. Therefore,

R1;2.@A/DR1;2.@1A/.@2A/D S1
�S2 # M1 DR1;2.@2A/.@1A/D S1

�S2 # M2;

whence M1 �M2 by uniqueness of prime factorization. Thus (1) holds.

For part (2) suppose that R1;2.@1A/ is a solid torus and R1;2 is not a handlebody. By Lemma 5.1.1 the
region R2;1 is a handlebody, the circles @1A� T1 and @2A� T2 are separated by a disk in R2;1, and
we may assume that @1A� T1 is a primitive circle in R2;1. Therefore there is a disk D �R2;1 which
intersects @1A transversely in one point and is disjoint from @2A.

Let V � R2;1 be the solid torus R2;1jD and denote its core by L � V . The exterior of the knot
L� S3 DR1;2[R2;1 is then the manifold XL D S3 n int V �R1;2.@D/

By (1) the manifold R1;2.@2A/ is a solid torus with meridian slope the circle @1A, and since�.@D;@1A/D1

and @D\ @2AD∅ it follows that

S3
DR1;2.@2A/.@D/DR1;2.@D/.@2A/DXL.@2A/:

Since @2A does not bound a disk in R2;1, hence neither in the solid torus V , by [8] the knot L � S3

is trivial and hence R1;2.@D/ � XL is a solid torus. But then by Lemma 5.2.1 applied to the 4-tuple
.H; ˛; ˇ;  /D .R1;2; @1A; @2A; @D/ the manifold R1;2 must be toroidal, contradicting Lemma 2.1.1(P1).
Therefore R1;2 is a handlebody and so the pair .R1;2;J / is primitive, hence minimal by Lemma 2.3.12.

The above results can now be combined to obtain the minimality of any index 1 annular pair in XK . As a
consequence we extend the classification of handlebody annular pairs in XK given in Lemma 5.1.1(1) to
include nonhandlebody such pairs.

For convenience we may denote by RS;S 0 and RS 0;S the regions in XK cobounded by two disjoint Seifert
tori S;S 0 �XK , so that XK DRS;S 0 [RS 0;S .

Proposition 5.2.3 Let T D T1 t � � � tTN , N � 1, be a simplicial collection of Seifert tori in XK with
minimal pairs. Then:
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(1) Any index 1 annular pair .Ri;j ;J / (i D j allowed ) in XK is minimal , and if Ri;j is not a
handlebody then jT j � 3.

(2) If jT j � 2 and for some k � 2 the nonminimal pair .R1;1Ck ;J / is annular of index p � 2 then
k D 2 and R1;1Ck DR1;3, and if T 0

1
;T 0

3
�R1;3 are the J -tori induced by T1 and T3, respectively ,

then

(a) T 0
1

and T 0
3

are not isotopic in XK ,

(b) any J -torus in R1;3 (T2 for instance) is isotopic to T1, T3, T 0
1

or T 0
3
,

(c) the pair .RT1;T 0
1
;J / is simple of index p and .RT 0

1
;T3
;J / is annular of index 1,

(d) the pair .RT1;T 0
3
;J / is annular of index 1 and .RT 0

3
;T3
;J / is simple of index p.

Proof If the annular pair .Ri;j ;J / is minimal and Ri;j is not a handlebody then Rj ;i is a handlebody
by Lemma 2.1.1(P2), in which case by Lemma 5.1.1(2) either:

� The pair .Rj ;i ;J / is basic, hence minimal by Lemma 2.3.12(1); in this case we obtain jT j � 2,
where jT j D 1 if the basic pair .Rj ;i ;J / is trivial.

� Rj ;i contains exactly one J -torus not parallel to Ti or Tj , in which case jT j D 3.

Therefore the second part of (1) follows from the first part. For the first part of (1) we argue by
contradiction. For definiteness suppose that the pair .R1;j ;J / is annular of index 1 for some j ¤ 1; 2, so
that R1;3 �R1;j with .R1;3;J / a nonminimal pair. By Lemma 4.1.1(6) we may therefore assume that
j D 3. Let A�R1;3 be a spanning annulus.

(I) By Lemma 4.1.1(6) we may assume that A1 DA\R1;2 and A2 DA\R2;3 are spanning annuli of
index 1 in R1;2 and R2;3, respectively. Therefore each of the pairs .R1;2;J / and .R2;3;J / is annular of
index 1 and so the region R1;3 is not a handlebody by [24, Lemma 3.7(3)].

(II) R1;2 and R2;3 are handlebodies.

If R1;2 is not a handlebody then R2;3 �R2;1 is a handlebody by Lemma 2.1.1(P2) and (P3), and hence
the pair .R2;3;J / is primitive by (I). This contradicts Lemma 5.1.1(2)(b) since a primitive pair is neither
basic nor simple by Lemma 2.3.12. Therefore R1;2 is a handlebody, and by a similar argument R2;3 is
also a handlebody.

(III) R1;3.@1A/ is a solid torus.

By (I) and (II) the pairs .R1;2;J / and .R2;3;J / are primitive with spanning annuli A1 �R1;2 and R2;3.
Denote the boundary components of A1 by !1 DA1\T1 and !2 DA1\T2; these are primitive circles
in R1;2, and !2 DA2\T2 is primitive in R2;3. Therefore R1;2.!1/ is a solid torus with meridian disk
yA1 such that @ yA1 D !2 � @R1;2.!1/, and R2;3.!2/ is also a solid torus.

For i D 1; 2 each manifold Ri;iC1.J / has boundary the tori yTi and yTiC1, and

R1;3.J /DR1;2.J /[ yT2
R2;3.J /:
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Therefore,

R1;3.@1A/DR1;3.!1/DR1;3.J /.!1/

D ŒR2;3.J /[ yT2
R1;2.J /�.!1/

DR2;3.J /[ yT2
ŒR1;2.J /.!1/�DR2;3.J /.@ yA1/DR2;3.!2/D solid torus:

This contradicts Lemma 5.2.2(2) since by (I) the region R1;3 is not a handlebody. Therefore (1) holds.

Part (2)(a) will be established in the next section in Lemma 5.3.2. Parts (2)(c) and (2)(d) follow from
Lemma 4.1.1(6) and the properties of induced tori in Section 2.3.10.

For part (2)(b) suppose that S �R1;3 is a J -torus that is not parallel to T1 or T3. By Lemma 4.1.1(6) we
may assume that the pair .RT1;S ;J / is annular of index p � 2 while .RS;T3

;J / is annular of index 1.

By Section 3.2(A4) the J -torus T 0
1

induced by T1 in RT1;S is isotopic to the J -torus induced by T1

in R1;3, so it is not parallel to T3 in R1;3, and cobounds a region RT1;T 0
1
� RT1;S such that the pair

.RT1;T 0
1
;J / is simple of index p � 2.

By Lemma 4.1.1(6) the pair .RT 0
1
;T3
;J / is then annular of index 1 and hence minimal by (1). As

RT 0
1
;T3
DRT 0

1
;S [S RS;T3

and the pair .RS;T3
;J / is nontrivial, it follows that the pair .RT 0

1
;S ;J / must

be trivial and hence that S is parallel to T 0
1
. Therefore (2)(b) holds.

Examples of genus one hyperbolic knots in S3 realizing the conditions of Proposition 5.2.3(1), with Ri;j

a handlebody or not, can be found in Sections 8.2, 8.3 and 8.5.

5.3 Exchange regions and the exchange trick

By Proposition 5.2.3(2)(c) and (d), given an annular pair .R1;3;J / of index p�2 of a simplicial collection
of Seifert tori T �XK with minimal pairs, the region R1;3�XK contains two nontrivial minimal subpairs
.RT1;T ;J / and RT;T3

;J / where the nature of each subpair alternates between being simple of index p

or annular of index 1 depending on the choice of splitting J -torus T �R1;3.

We will refer to any region in XK with properties similar to those of the region R1;3�XK as an exchange
region, to the pair .R1;3;J / as an exchange pair, and to the switch of type of subpair in R1;3 adjacent to
T1 or T3 between a simple and an index 1 pair as the exchange trick.

In this section we prove Lemma 5.3.2 which states that the two induced J -tori in an exchange region are
not isotopic in XK , thus completing the proof of Proposition 5.2.3(2)(a). We first review the construction
of the induced J -tori T 0

1
;T 0

3
�R1;3 given in Section 2.3.10 and Section 3.2(A4).

By hypothesis the pair .R1;3;J / is annular of index p � 2 and so by Lemma 3.1.1(5) there are disjoint
spanning annuli A;A0�R1;3 which cobound a solid torus V �R1;3 around which each spanning annulus
runs p times.
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T1 T 0
1

T3T 0
3

P1 P3

A

A0

˛

ˇ

V B3 W B1

P1 P3

N.K/

Figure 11: The induced J -tori T 0
1

and T 0
3

in the exchange region R1;3 �XK .

Push V off T3 and into R1;3 to obtain a companion solid torus V1 � R1;3 of the circle !1 D A\ T1.
Similarly the circle !3 � T3 has a companion solid torus V3 �R1;3. For i D 1; 3 the frontier of a thin
regular neighborhood N.Ti [ Vi/ � R1;3 then consists of Ti and the J -torus T 0i induced by Ti . The
situation is represented in Figure 11.

Notice that T 0
1

and T 0
3

intersect transversely in two circles T 0
1
\T 0

3
D ˛ tˇ that are nonseparating in T 0

1

and T 0
3
. The closures of the components of T 0

1
nT 0

3
consist of an annulus B1 and a pants P1, and those of

T 0
3
nT 0

1
of an annulus B3 and a pants P3, with @B1 D ˛ tˇ D @B3 as shown in Figure 11.

By the construction of the induced tori T 0
1

and T 0
3
, the torus B1 [ B3 � R1;3 bounds a solid torus

W �R1;3 obtained by pushing the solid torus V �R1;3 off from T1 and T3, as represented in Figure 11.
Since the index of .R1;3;J / is p � 2, each spanning annulus runs p times around V and hence each
circle ˛ and ˇ runs p times around W .

In order to establish the isotopy properties of the induced J -tori T 0
1
;T 0

3
� R1;3 we use the following

result of [16, Proposition 4.8], an elaboration of the results in [25].

Let P and Q be surfaces properly embedded in a 3-manifold M and which intersect transversely. A
product region between P and Q is an embedded copy of a manifold of the form z†D†� I=� in M ,
where † is a surface, b is a compact 1-submanifold of @†, and

(i) for each x 2 b the relation � collapses the arc fxg � I to a point,

(ii) †� f0g � P , †� f1g �Q, and clŒ.@†� b/�� I � @M ,

(iii) P \ int z†D∅, and Q\ int z† may be nonempty only when † is a disk and P \ @M is connected.

Lemma 5.3.1 [16] Let M be a Haken 3-manifold with incompressible boundary, and let P;Q�M be
properly embedded incompressible and boundary incompressible surfaces which intersect transversely
with @P \ @QD∅. If in M the surfaces P and Q are isotopic or P is isotopic to a surface disjoint from
Q then there is a product region between P and Q.
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In the presence of a product region z† between P and Q it is possible to reduce jP \Qj by an isotopy
that exchanges †� f1g �Q with †� f0g and pushes the resulting new surface Q slightly off P .

We will apply the lemma to surfaces with disjoint boundary, in which case the 1-submanifold b � @† is
simply a union of components of @†� @P t @Qt .P \Q/.

Lemma 5.3.2 The Seifert tori T 0
1
;T 0

3
�XK are nonisotopic in XK .

Proof By Lemma 5.3.1 it suffices to show that there are no product regions in XK between T 0
1

and T 0
3
.

By Proposition 5.2.3(2) for iD1; 3 the pairs .RT1;T 0
i
;J / and .RT 0

i
;T3
;J / are nontrivial and so the induced

J -tori T 0
1

and T 0
3

are not parallel to T1 or T3 in R1;3. Therefore T 0
1

and T 0
3

intersect minimally in R1;3

and so by Lemma 5.3.1 there are no product regions between T 0
1

and T 0
3

contained in the region R1;3.

By the above construction of the induced tori T 0
1

and T 0
3

any product region z† in XK between T 0
1

and T 0
3

must run between the following subsurfaces of T 0
1

and T 0
3
:

(a) B1 and B3: Here the only possible product region z†�XK must be constructed from †DB1 and
b D @B1 D @B3 with

z†\T 01 D†� f0g D B1; z†\T 03 D†� f1g D B3; z†\ @XK D∅;

whence necessarily z†DW �R1;3, contradicting the argument above that z† 6�R1;3.

(b) P1 and P3: The surface P1 [ P3 is a separating twice punctured torus properly embedded in
XK and so any product region z† between P1 and P3 must be constructed from † D P1 and
b D @P1\ @P3 D ˛ tˇ with

z†\T 01 D†� f0g D P1; z†\T3 D†� f1g D P3; z†\ @XK D .@T
0
1/� I:

Thus z†�P1�I is a genus two handlebody such that each component of @P1�˛tˇ is a primitive
circle in z†. However, as z† 6�R1;3, we must have W � z† (see Figure 11) which implies that ˛
and ˇ are p � 2 power circles in z†.

This last contradiction shows that there are no product regions in XK between T 0
1

and T 0
3
.

6 No exchange regions for jT j D 5

In this section we assume that K � S3 is a genus one hyperbolic knot which bounds a maximal simplicial
collection of five Seifert tori T D T1 t � � � tT5 �XK . Our goal is to prove the following result:

Proposition 6.0.1 If jT j D 5 then no pair .Ri;iC2;J / is an exchange pair and the maximal simplicial
collection T �XK is unique up to isotopy.

A sketch of the proof goes like this. Both an exchange region, say R1;3, and its complementary region
R3;1 must be genus two handlebodies; thus the pair .R3;1;J / is maximal. At this point we use a
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method developed in [24, Section 7.3] to construct a Heegaard diagram from the Heegaard decomposition
R1;3 [ R3;1 which applies whenever one of the pairs .R1;3;J / or .R3;1;J / is maximal. That the
Heegaard decomposition R1;3[R3;1 cannot correspond to S3 can then be detected from the fact that
otherwise the core knot of a simple pair in R1;3 should be a trivial or torus knot in S3, which we show
cannot be the case.

6.1 The regions Ri;iC1

The following general result restricts the types of pairs .Ri;iC1;J / produced by the simplicial collection
T �XK . Its proof relies on an analysis of the essential graphs of intersection between T and a Gabai
meridional planar surface for T from [7], along with some basic results from [24, Sections 2.1 and 2.2].

Lemma 6.1.1 For each 1 � i � 5 the region Ri;iC1 is a handlebody, the pair .Ri;iC1;J / is minimal ,
and at least one of the pairs .Ri;iC1;J / or .RiC1;iC2;J / is simple.

Proof Each pair .Ri;iC1;J / is minimal since the simplicial collection T is maximal, and each region
Ri;iC1 is a handlebody by [24, Lemma 4.1(3)]. We show that of any two consecutive pairs, say .R1;2;J /

and .R2;3;J /, at least one of them is simple.

Let T 0 D T1 tT2 tT3. By [7] there is a planar surface Q�XK with meridional boundary slope which
intersects T 0 transversely in essential graphs GQ DQ\T 0 �Q and G0 DQ\T 0 � T 0. Necessarily
each cycle around a face of GQ has an even number of edges.

If the graph GQ has no parallel edges then it is a reduced graph and the degree of each of its vertices is 3;
therefore by [24, Lemma 2.3(2)] GQ has a disk face D4 with 4 edges around its boundary. Otherwise
GQ has parallel edges, that is, GQ has a disk face D2 with 2 edges around its boundary.

The disk face E2fD2;D4g of GQ lies in one of the regions R1;2, R2;3 or R3;1, and by [24, Lemma 2.1(3)]
intersects J minimally in 2 or 4 points.

If E � Ri;j then Ri;j is a handlebody by Lemma 2.1.1(P1) and so, by [24, Lemma 6.1], .Ri;j ;J / is
either a simple pair, which is minimal, or a nonminimal double pair. However, by Section 2.3.8, in a
double pair any J -torus is parallel to a boundary J -torus or to the J -torus separating the double pair into
simple subpairs. Since R3;1 contains the two J -tori T4 and T5, which are not parallel to the boundary or
to each other, it follows that Ri;j ¤R3;1.

Therefore E �R1;2 or E �R2;3, in which case, respectively, the minimal pair .R1;2;J / or .R2;3;J / is
simple by [24, Lemma 6.1].

For the rest of Section 6 we assume that R1;3 is the exchange region for the simplicial collection T with
exchange J -tori T2 and T20 as shown in Figure 12. In the figure the elements of each simple pair will
be represented using the notation set up in Section 2.3.4 and Figure 5. Circles of distinct slope, like
!1; !

0
5
� T1, are represented as nonoverlapping.
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Figure 12: The knot K � S3 with the exchange pair .R1;3;J /.

In the exchange region R1;3 the pairs .R1;2;J / and .R20;3;J / in Figure 12 are simple with core knots
K1 and K20 , respectively.

6.2 The regions Ri;j

In this section we establish some of the general properties of the pairs .Ri;j ;J /. We will see that indeed
each of the pairs .Ri;iC1;J / is simple for i D 3; 4; 5 as represented in Figure 12.

We will use the following notation: a circle  in the boundary of a genus two handlebody H is a Seifert
circle if H.!/DD2.p; q/ for some integers p; q � 2.

(E1) By Lemma 6.1.1 applied to the regions R2;4 and R5;20 , each of the pairs .R3;4;J / and .R5;1;J /

is simple, with cores the knots K3 and K5, respectively.

In Figure 12, left, !0
2
¤ !3 by Lemma 4.1.1(4) and so the region R2;4 is not a handlebody by

Lemma 4.1.1(7). Therefore the region R4;2 is a handlebody by Lemma 2.1.1(P2) and so the pair
.R4;2;J / is maximal. By [24, Lemma 6.8] it follows that

(a) .R4;5;J / is a simple pair with core the knot K4,

(b) the simple pair .R5;1;J / is a basic pair with basic circles !0
4
� T5 and !1 � T1,

(c) �.!0
4
; !5/D 1D�.!0

5
; !1/.

A similar argument using Figure 12, right, shows that

(d) the simple pair .R3;4;J / is a basic pair with basic circles !0
2
� T3 and !4 � T4,

(e) �.!0
2
; !3/D 1D�.!0

3
; !4/.

Let p1;p2;p3;p4;p5 � 2 be the indices of the simple pairs .R1;2;J /, .R20;3;J /, .R3;4;J /, .R4;5;J /

and .R5;1;J /, respectively.
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(E2) The region R3;1 is a handlebody and the core knots K3 and K5 are hyperbolic Eudave-Muñoz
knots of indices p3 D 2D p5.

Let W3 be the solid torus neighborhood of K3 tA0
3

in R3;4 indicated in Figure 12, left, where A0
3

is the
annulus constructed in Section 2.3.4 (see also Figure 5) such that the slope r3 of the boundary circle
A0

3
\ @N.K3/ is nonintegral (relative to N.K3/) of the form �=p3. We identify the exterior XK3

� S3

of the core knot K3 with S3 n int W3. Back in Figure 12, left, observe that

� by (E1), .R3;4;J / is a simple pair and R2;4 is not a handlebody,

� R3;2 is not a handlebody by Lemma 2.1.1 and Section 2.3.9.

Therefore [24, Lemma 7.1(1)] applies to the simple pair .R3;4;J / (denoted by .R3;4;K/ in [24]) and the
J -tori T2, T3 and T4 to conclude that the separating two-punctured torus F D clŒT2[T4 nW3� is incom-
pressible in XK3

and the torus yF is incompressible in XK3
.r3/. Moreover, the closures FC and F� of the

components of XK3
nF can be identified with the handlebodies FCDR4;2 and F�DclŒR2;4nW3��R2;3

(by Section 2.3.5(1)), and since the slope r3 � @XK3
is nonintegral (with denominator p3 � 2) it follows

from [13, Lemma 3.14] that K3 is a hyperbolic Eudave-Muñoz knot.

By [9] r3 is the unique nonintegral toroidal slope for K3 and we must have p3 D 2. By [6, Theorem 2.1
and Proposition 2.2] the torus yF is the unique essential torus in XK3

.r3/ and it decomposes XK3
.r3/ into

a union of two Seifert fiber spaces of the form D2.�;�/ for � � 2. As

XK3
.r3/�R2;3.!

0
2/[ yF R4;2.!

0
3/;

it follows that R4;2.!
0
3
/ is a space of the form D2.�;�/ for �� 2 and hence that !0

3
�T4 is a Seifert circle

in the handlebody R4;2. As @R4;2n!
0
3

contains the power circle !0
1
�T2, [24, Lemma 6.10(2)(b)] applied

to the pair .R4;2;K/ and the J -torus T1�R4;2 yields that !0
3

is a primitive circle in the handlebody R4;1,
which by [24, Lemma 7.2(5)] implies that R3;1 is a handlebody.

Using Figure 12, right, a symmetric argument shows that K5 is also a hyperbolic Eudave-Muñoz knot
and p5 D 2.

(E3) The core knot K1 (Figure 12, left) is a trivial or torus knot.

Since the pair .R2;3;J / is primitive with spanning annulus A, R2;3.!
0
1
/ is a solid torus with meridian

disk yA and hence meridian slope @ yAD !0
2
� T3. As the circles !0

2
and !4 are basic in R3;4, it follows

that V3 DR2;4.!
0
1
/DR2;4.J /.!

0
1
/ is a solid torus with meridian slope that intersects !4 in one point.

Similarly, as the circles !1 and !0
4

are basic in R5;1, V5DR5;1.!1/DR5;1.J /.!1/ is a solid torus with
meridian slope that intersects !0

4
in one point. Therefore, if r1 � @N.K1/ is the nonintegral slope �=p1

of the boundary circle A1\ @N.K1/ (see Figure 12, left) constructed in Section 2.3.4, then we have

XK1
.r1/�R2;1.!1 t!

0
1/DR2;1.J /.!1 t!

0
1/

D .R2;4[R4;5[R5;1/.J /.!1 t!
0
1/�R4;5.J /[V3[V5 D S2.p4; 1; 1/
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and so XK1
.r1/ is either S3, S1�S2 or a lens space. In fact, as r1 is a nonintegral slope, for homological

reasons XK1
.r1/ cannot be S1 �S2. Therefore by [3] and [8] K1 is a trivial or torus knot.

(E4) The circles !1 and !0
2

are Seifert circles in R3;1.

Since the region R4;2 in Figure 12, left, is a handlebody, the circle !1 is primitive in R4;1 by [24,
Lemma 6.8(1)(b)]; hence !1 is a Seifert circle in R3;1 by [24, Lemma 6.8(1)(d)].

A similar argument applied to the handlebody region R20;5 of Figure 12, right, shows that !0
2

is also a
Seifert circle in R3;1.

6.3 The maximal pair .R3;1; K /

For the rest of this section we assume that the regular neighborhood N.K/ � S3 has been retracted
radially onto K, so that the circles J and @Ti become identified with K. Thus we use the notation
.Ri;iC1;K/ for the pairs .Ri;iC1;J /

We construct a complete disk system for the maximal pair .R3;1;K/ as follows. First observe that by
Lemma 4.1.1(6) the maximal pair .R3;1;K/ is not annular; hence by [24, Lemma 3.4] there is a disk
E �R3;1, unique up to isotopy, which separates the power circles !3; !

0
5
�R3;1. Thus R3;1jE consists

of two solid tori V3 and V5 with the power circles !3 � @V3 and !0
5
� @V3 intersecting meridian disks

D3 � V3 and D5 � V5 in p3 D 2 and p5 D 2 points, respectively. Using the method outlined in [24,
Section 7.3 and Lemma 7.6(2)], the 6-tuple .@E;K; !1; !

0
2
; !3; !

0
5
/ is homeomorphic to the 6-tuple in

Figure 13, top, or to the 6-tuple obtained by reflecting @R3;1 across the plane of the page. The two
6-tuples are then homeomorphic and hence we only consider the case of Figure 13, top.

The meridian circles @D3; @D5 � @R3;1 can then be constructed as homological sums of the form

@D3 D q3!3C a3ˇ3 and @D5 D q5!
0
5C a5ˇ5;

where gcd.a3; q3/ D 1 D gcd.a5; q5/ and ˇ3 � @V3 and ˇ5 � @V5 are the two circles indicated in
Figure 13, bottom, such that

�.ˇ3; !3/D 1D�.ˇ5; !
0
5/:

The values of a3, a5, q3 and q5 can be found by performing some computations in the fundamental
group of R3;1. To this end we set x D @D3, y D @D5, and �1.R3;1/D hx;y j �i relative to some base
point. Thus a circle c � @R3;1 which intersects x ty transversely is represented by an unreduced word
c.x;y/ 2 �1.R3;1/D hx;y j �i obtained by reading the consecutive signed intersections of c with x and
y without introducing any cancellations, relative to a base point in c n .x ty/. Notice that if the word
c.x;y/ is cyclically reduced then c intersects x ty minimally, but not conversely.

For convenience we use the notation X Dx�1 and Y Dy�1 to denote the inverses of x and y in hx;y j �i.

The following relations now follow from Figure 13, bottom (relative to some base point and intersection
signs scheme):
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Figure 13: Construction of the circles @D3 D q3!3Cp3ˇ3 and @D5 D q5!
0
5
Cp5ˇ5 in @R3;1

(with p4 D 2).

(E5) (a) !3.x;y/D xa3 and !0
5
.x;y/D ya5 . Since !3 and !0

5
are p3 and p4 power circles in R3;1,

respectively, we may choose a3 D p3 D 2 and a5 D p5 D 2;

(b) !1.x;y/D .y
p5xp3/p4yq5 and !0

2
.x;y/D .yp5xp3/p4xq3 . Observe that !1.x;y/DW .xp3 ;y/

where W .x;y/ D .yp5x/p4yq5 . As !1 is a Seifert circle in R3;1, by the argument of [24,
Lemma 7.11] we must have that W .x;y/ is a primitive word in the free group hx;y j �i and hence
that q5 D˙1. In a similar way we must have that q3 D˙1.

For each circle !3, !0
5
, ˇ3 and ˇ5 in Figure 13, bottom, the coefficient in the box on top of the circle

represents the number of copies of that circle used in the homological sum construction of a given meridian
circle x D @D3 and y D @D5.
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We summarize the above facts in the next result.

Lemma 6.3.1 The 7-tuple .@R3;1; @E;K; !1; !
0
2
; !3; !

0
5
/ is homeomorphic to the 7-tuple in Figure 13,

top (where we use p4 D 2 for simplicity). Moreover , the circles @D3; @D5 � @R3;1 can be represented as
the homological sums

@D3 D q3!3Cp3ˇ3 and @D5 D q5!
0
5Cp5ˇ5

where ˇ3 and ˇ5 are the circles indicated in Figure 13, bottom , with p3D 2Dp5 and q3; q5D˙1.

Since the circles !1; !
0
2
� @R1;3 cobound an annulus in R1;3, by [24, Lemma 3.4] the surface

@R1;3 n .!1 t!
0
2/

compresses along a nonseparating disk D �R1;3 (unique up to isotopy), and necessarily R1;3jD is a
solid torus neighborhood of the knot K1. Therefore we may set

XK1
DR3;1.@D/

By (E3) the core knot K1 � S3 of the simple pair .R1;2;K/ is either trivial or a torus knot. Therefore
XK1

D R3;1.@D/ is either a solid torus or a Seifert fiber space of the form D2.�;�/ for � � 2, or,
equivalently:

(E6) The circle @D is either primitive or Seifert in R3;1.

The next two results will be useful in restricting the possible embeddings of the circle @D in @R3;1.

Lemma 6.3.2 Let ! � @R3;1 be any circle that intersects x t y � @R3;1 minimally. If some cyclic
reorderings of the word !.x;y/ 2 �1.R3;1/ contain strings of the form xa and yb for some integers
jaj; jbj � 2 then !.x;y/ is cyclically reduced and ! is neither a primitive nor a power circle in R3;1.

Proof Let Q be the 4-punctured 2-sphere @R3;1 n int N.x ty/ with boundary components the circles
xC;x� and yC;y� corresponding to the two sides of x and y in @R3;1, respectively. Since ! intersects
x t y minimally, ! \Q consists of a collection of properly embedded arcs none of which is parallel
into @Q.

By hypothesis, some cyclic reordering of the word !.x;y/ contains a string of the form xa for some
integer jaj � 2 and so there is an arc component cx �Q with one endpoint in xC and the other in x�.
Thus the circle  D fr N.xC[ cx [x�/�Q separates xC tx� from yC ty�.

Suppose that some cyclic reordering of the word !.x;y/ has a canceling string of the form yY or Yy.
Then there is an arc component cy � ! \Q with both endpoints on, say, the boundary component
yC � @Q. As cy is disjoint from cx , it is also disjoint from  and so cy separates xCtx� from y� in Q

(see Figure 14), which is impossible since ! is a closed circle in @R3;1.

Therefore, no cyclic reordering of the word !.x;y/ has canceling strings of the form yY or Yy, and in a
similar way neither of the form xX or Xx; hence it is a cyclically reduced word. Since the word !.x;y/

Algebraic & Geometric Topology, Volume 25 (2025)



The Kakimizu complex for genus one hyperbolic knots in the 3-sphere 1707

xC
Q

yC

cx cy

x�  y� @R3;1

Figure 14: The arc components cx ; cy � ! \Q.

contains strings of the form xa and yb for some jaj; jbj � 2, by Section 2.3.1 the circle ! � @R3;1 is
neither primitive nor a power in R3;1.

We now take parallel copies !C
1
; !�

1
of !1 and !0

2
C
; !0

2
� of !0

2
in @R3;1 as shown in Figure 13, bottom,

and let P be the 4-punctured 2-sphere in @R3;1 cobounded by the 4 circles !C
1

, !�
1

, !0
2
C and !0

2
�.

For each pair of values of q3; q5 D ˙1 let � � P denote the graph P \ .@D3 t @D5/ and � � P the
reduced graph obtained by amalgamating each collection of parallel edges of � into a single edge. By
minimality of j.x t y/\ @D3j and j.x t y/\ @D5j, no edge of � or � is parallel into @P , that is, the
graphs � and � are essential.

Lemma 6.3.3 If a circle c � P intersects the reduced graph � minimally then the word c.x;y/ is
cyclically reduced. In particular , any circle in P which is primitive in R3;1 is isotopic to the circle ˛ � P

in Figure 13, bottom.

Proof We consider the case q3 DC1 and q5 D�1; the other cases being similar. Figure 15, top, shows
the graph � � P where the thicker lines represent 2 amalgamated parallel edges of one of the circles
@D3 or @D5 (corresponding to the values p3 D 2D p5), while the thinner lines represent single arcs.

The reduced graph � � P is shown in Figure 15, middle, where each amalgamated edge shows the
common orientation of its components. The set of faces of � consists of the two 4-sided disk faces R1

and R2 in Figure 15, bottom, where each edge of Ri is labeled and oriented as the corresponding edge in
the unreduced graph � � P .

Let c � P be any circle which intersects � � P minimally. Then the sink/source pattern of the oriented
edges around the faces R1 and R2 guarantee that the word c.x;y/ does not contain any of the canceling
pairs xX , Xx, yY or Yy, and hence that it is cyclically reduced.

Notice that if c intersects any of the horizontal edges of � then the word c.x;y/ contains one of the
strings x2y2, y2x2 or their inverses, and hence by Section 2.3.1 the word c.x;y/ cannot be primitive
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Figure 15: The circles @D3; @D5 � @R3;1 for q3 DC1 and q5 D�1.

in the free group �1.R3;1/D hx;y j �i. Therefore if c � P is a primitive circle in R3;1 then c can be
isotoped in P so as to be disjoint from the horizontal edges of the graph � � P . As the horizontal edges
of � cut P into an annulus with core the circle ˛ � P , it follows that c must be isotopic to ˛ in P , hence
in @R3;1.

Proof of Proposition 6.0.1 By (E6) the circle @D � @R3;1 is either a primitive or a Seifert circle in R3;1.
We consider two cases and arrive at a contradiction in each.
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Case 1 @D � @R3;1 is a primitive circle in R3;1 (K1 � S3 is a trivial knot).

As the circle @D � @R3;1 is disjoint from the circles !1 t !
0
2
� @R3;1 it can be isotoped so as to

lie in P and so by Lemma 6.3.3 it must be isotopic in P to the circle ˛ in Figure 13, top. Since
j@D \Kj D j˛ \Kj D 2 and D �R1;3 by Section 2.3.4 the pair .R1;3;K/ is simple, hence minimal,
which is not the case. Therefore this case does not occur.

Case 2 @D � P is a Seifert circle in R3;1 (K1 � S3 is a nontrivial torus knot).

By [24, Lemma 6.7] there is a circle h� @R3;1 n @D which is a power circle in R3;1.

By Lemma 6.3.3 isotopying @D in P so as intersect � minimally yields a cyclically reduced word
@D.x;y/. Once @D has been isotoped, isotopying h in @R3;1 n @D so as to intersect x ty D @D3 t @D5

minimally produces the minimal intersection in @R3;1 between h and x ty.

Now, by [24, Lemma 6.7] the circle h�R3;1.@D/DXK1
is a fiber of the Seifert fiber space XK1

DD2.�;�/.
Since by (E3) XK1

.r1/ � R3;1.@D/.!1/ � R3;1.@D/.!
0
2
/ is either S3 or a lens space, it follows that

�.h; !1/D 1D�.h; !0
2
/ in @XK1

and hence that h intersects each circle !1 and !0
2

nontrivially in @R3;1.

Therefore there is an arc component h0 of h\P with one endpoint in !C
1
t!�

1
and the other endpoint in

!0
2
C
t!0

2
�.

If h0 intersects transversely at least one of the horizontal edges in the reduced graph � � P then the
word h0.x;y/, and hence h.x;y/, contains one of the strings x2y2, y2x2 or their inverses, contradicting
Lemma 6.3.2 since h is a power circle in R3;1. So if h0 has endpoints on !C

1
t!0

2
C or !�

1
t!0

2
� then

h0 can be isotoped so as to be parallel to one of the horizontal edges of � � P , which implies that @D,
being disjoint from h0, is isotopic in P to the primitive circle ˛ � P , contradicting the hypothesis that
@D is a Seifert circle in R3;1.

Therefore the arc h0 � P must have endpoints on, say, !C
1

and !0
2
�. As @D and h0 are disjoint, in the

first integral homology group

H1.R3;1/DH1.R3;1IZ/D xZ˚yZ;

the circle @D is the homological sum !C
1
Ch0 !0

2
� of !C

1
and !0

2
� along the arc h0 � P . Using

the orientations for !C
1

and !0
2
� in Figure 13, top, and the relations !C

1
.x;y/ D .y2x2/p4yq5 and

!0
2
�
.x;y/D .x2y2/p4xq3 (up to conjugation) found in (E5)(b) we obtain, in H1.R3;1/,

!C
1
D 2p4xC .2p4C q5/y and !02

�
D .2p4C q3/xC 2p4y

D) @D D !C
1
C!02

�
D .4p4C q3/xC .4p4C q5/y:

On the other hand, as R3;1.@D/ is a knot exterior in S3 and hence a homology solid torus, the circle @D
must be primitive in the abelian group H1.R3;1/D xZ˚yZ, so we must have

1D gcd.4p4C q3; 4p4C q5/D gcd.4p4C q3; q3� q5/D gcd.4p4C q3; 1� q3q5/:
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As q3; q5 2 f˙1g and p4 � 2 this implies that

q3q5 D�1;

and hence that

H1.XK1
.r1//DH1

�
R3;1.!

C

1
t!0

C

2 /
�

D xZ˚yZ=h2p4xC .2p4C q5/y; .2p4C q3/xC 2p4yi

D f0g since det
�

2p4 2p4C q5

2p4C q3 2p4

�
D 1:

Since by (E3) the manifold XK1
.r1/ is S3 or a lens space, it follows that XK1

.r1/D S3. But then, as r1

is a nonintegral slope of the form a1=p1, p1 � 2, by [3] K1 is a trivial knot, contradicting the fact that
K1 is a nontrivial torus knot.

Therefore Case 2 does not occur and so the simplicial collection T �XK does not produce any exchange
regions. By Lemma 4.2.1(4) any Seifert torus in XK is then isotopic to some component of T (see the
proof of Proposition 7.0.2 for more details); hence the collection T �XK is unique up to isotopy.

7 Simplicial collections T �XK with minimal pairs .Ri;iC1; J /

In this section we show that for a genus one hyperbolic knot K � S3 there are, up to isotopy, at most two
maximal simplicial collections of Seifert tori in XK . This restricted number of such collections is the
result of the interplay between the restrictions on the complementary regions of a maximal simplicial
collection T � XK in Lemma 4.1.1, the small size of an annular pair .Ri;j ;J / of index � 2 found in
Proposition 5.2.3, and the bound jT j � 5.

Lemma 7.0.1 Any simplicial collection T of Seifert tori in XK with minimal pairs .Ri;iC1;J / has at
most one exchange region , and if so then 2� jT j � 4.

Proof Set jT j DN where 1�N � 5 by [24]. Clearly there are no exchange regions when N D 1. If
N D 2 then by Lemma 4.1.1(4) only one of R1;1 or R2;2 can be an exchange region, while in the case
N D 5 there are no exchange regions by Proposition 6.0.1.

Therefore we may assume that N D 3; 4 in which case any two exchange regions must intersect. Arguing
by contradiction, we only need to consider the following two cases.

Case 1 R1;3 and R2;4 are exchange regions (with T1 D T4 allowed).

The situation is represented in Figure 16, left. By the exchange trick of Section 5.3 we may assume that the
pair .R2;3;J / is annular of index 1 while the pairs .R1;2;J / and .R3;4;J / are simple of indices � 2. So
if A and B are spanning annuli for R1;3 and R2;4, respectively, then by Lemma 4.1.1(6) we may assume
that A\R2;3 and B \R2;3 are spanning annuli of index 1 in R2;3, hence isotopic by Lemma 3.1.1.
Thus the circles A\ T2 and B \ T2 have the same slope on T2, and similarly the circles A\ T3 and
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simple index 1 simple

A

B

T1 T2 T3 T4

N.K/

index 1 simple index 1 simple

index 1 index 1

A

B

T1 T2 T3 T4 T1

N.K/

Figure 16: Intersecting exchange regions in XK .

B \T3 have the same slope on T3. This implies that the boundary components of the spanning annulus
A\R2;3 �R2;3 have companion annuli in R1;2 and R3;4, contradicting Lemma 4.1.1(4).

Case 2 N D 4 and R1;3 and R3;1 are exchange regions.

Let A and B be spanning annuli for R1;3 and R3;1, respectively, and let �3 D�.A\T3;B \T3/.

Suppose that �3 D 0. By the exchange trick and Lemma 4.1.1(6) we may assume that A\R2;3 and
B \R3;4 are spanning annuli of index 1 in R2;3 and R3;4, respectively, as shown in Figure 16, right,
below the dashed line.

Therefore the annulus A\R2;3 can be isotoped in R2;3 so that A\R2;3 D B \R3;4, in which case
their union becomes an index 1 spanning annulus for the region R2;4, contradicting Proposition 5.2.3(1).

Therefore �3 ¤ 0 and, by the exchange trick, this time we may assume that the pairs .R1;2;J / and
.R3;4;J / are annular of index 1 while the pairs .R2;3;J / and .R4;5;J / are simple of index � 2, as
shown in Figure 16, right, above the dashed line.

If R2;4 is a handlebody then R3;4 is a handlebody by Lemma 2.1.1(3) and so, being of index 1, .R3;4;J /

is a primitive pair with spanning annulus B\R3;4. On the other hand A\R2;3 is a spanning annulus for
the simple pair .R2;3;J /. As �3 ¤ 0, the slopes of the spanning annuli A\R2;3 and B\R3;4 disagree
on T3, contradicting Lemma 4.1.1(7). Therefore R2;4 is not a handlebody and hence the region R4;2 is a
handlebody by Lemma 2.1.1(P2).

However, as N D 4, by the argument above we also have that �1 D�.A\T1;B \T1/¤ 0 and hence
that the region R4;2 is not a handlebody, a contradiction.

Therefore there cannot be two exchange regions for the collection T in XK .

Proposition 7.0.2 Let K be a hyperbolic knot in S3.

(1) A simplicial collection T D
F

i Ti �XK of Seifert tori is maximal if and only if its complementary
pairs .Ri;iC1;J / are all minimal. In particular , any simplicial collection of Seifert tori in XK can
be extended to a maximal such collection by suitably adding J -tori to each nonminimal pair of the
collection.
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(2) Up to isotopy, there are at most two maximal simplicial collections of Seifert tori in XK . Specifi-
cally, if T �XK is a maximal such collection then either:

(a) T has no exchange region and T is the unique maximal simplicial collection of Seifert tori
in XK ; any Seifert torus in XK is isotopic to some component of T .

(b) 2� jT j � 4 and T has a unique exchange region Ri�1;iC1 with induced tori

TiC1;T
0
iC1 �Ri�1;iC1;

and T and .T nTi/tT 0
iC1

are the unique maximal simplicial collections of Seifert tori in XK ;
any Seifert torus in XK is isotopic to some component of T or to T 0

iC1
.

Proof Let T D T1 t � � � t TN � XK be a simplicial collection of Seifert tori such that each pair
.Rj ;jC1;J / is minimal, and let S �XK be any simplicial collection of Seifert tori.

Isotope S in XK so as to intersect T minimally with @S\ @T D∅. By the argument in Lemma 4.2.1(1)
it follows that each component of S is either disjoint from T and hence parallel to some component of T ,
or intersects T minimally in XK .

Suppose that S � S is a Seifert torus which is not isotopic to any component of T . By Lemma 4.2.1
there is a component Tj � T such that

(i) jS \Tj j D 2;

(ii) the closures of the components of S nT consist of a pants P and a companion annulus A with
P \Tj D P \T DA\Tj that lie on opposite sides of Tj ;

(iii) there is a Seifert torus T �XK n .P [T / which is not parallel to Tj in XK ;

(iv) if R�XK is the region cobounded by T and Tj that contains P then the pair .R;J / is annular
of index 1 with spanning annulus AR � R having the same boundary slope on Tj as A, and
R�Rj�1;j or R�Rj ;jC1.

Since each pair .Rk;kC1;J / is minimal, by (iii) we must have N � 2 and by (iv) and Proposition 5.2.3(1)
we may assume that RDRj�1;j , in which case by (ii) we have A�Rj ;j�1.

If A\TjC1 ¤ ∅ then some component of A\Rj ;jC1 is a spanning annulus of Rj ;jC1, of the same
boundary slope on Tj as AR by (iv), and some component of A\RjC1;j�1 is a companion annulus.
Therefore by Lemma 4.1.1(6) the pair .Rj ;jC1;J / is annular of index 1 and so the pair .Rj�1;jC1;J / is
also annular of index 1, contradicting Proposition 5.2.3(1).

It follows that the companion annulus A lies in Rj ;jC1 and hence that the minimal pair .Rj ;jC1;J /

is simple by Lemma 3.1.1(5)(b). Therefore the pair .Rj�1;jC1;J / is annular of index � 2 and hence
Rj�1;jC1 is the unique exchange region of T . Moreover, since S �Rj�1;jC1 and Tj �Rj�1;jC1 is the
J -torus induced by TjC1, by Proposition 5.2.3(2) S is isotopic in Rj�1;jC1 to the J -torus T 0j �Rj�1;jC1

induced by Tj�1 and 2� jT j � 4.
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Therefore the collection S is isotopic to some subset of one of the collections T or .T nTj /tT 0j , both of
which have size jT j, and so the collection T is maximal.

That a maximal simplicial collection produces minimal pairs follows by definition of maximality. Therefore
(1) holds, and now (2) holds by the above argument.

Proof of Theorem 1(1)–(2) Set d D dim MS.K/. That 0� d � 4 follows from the bound jT j � 5 given
in [24] for any maximal simplicial collection of Seifert tori T �XK . Hence part (1) holds.

Each d -dimensional simplex of MS.K/ corresponds to the isotopy class of some such maximal collection
T �XK , and by Proposition 7.0.2(2) any two such maximal collections differ up to isotopy by at most
one component. Therefore MS.K/ consists of at most two d -simplices, and two d -dimensional simplices
in MS.K/ intersect in a common .d�1/-face. Hence part (2) holds.

8 Examples of hyperbolic knots in S3

By Propositions 6.0.1 and 7.0.2, a maximal simplicial collection T � XK of size jT j D 5 produces
no exchange regions and is therefore unique up to isotopy. In this section we construct examples of
hyperbolic knots K � S3 with maximal simplicial collections of Seifert tori T �XK of sizes 2� jT j � 4

that produce exchange regions and hence MS.K/ consists of two top-dimensional simplices.

One example of such a knot K with a collection T �XK having an exchange region was constructed in
[17, Section 6]. In that example it is proved that there are nonisotopic Seifert tori in XK that intersect
nontrivially and hence the diameter of MS.K/ must be 2; thus the presence of an exchange region for T

is inferred from Proposition 7.0.2(2). We follow a different strategy in the construction of examples along
with the results obtained so far which allows us to determine both the size of their maximal simplicial
collection of Seifert tori and the Kakimizu complex of the constructed knots.

8.1 Detecting primitive pairs and exchange pairs

In the case of handlebody pairs by Section 2.3.5(3) and (4) an exchange pair can be thought of as an
extension of a primitive pair by a simple pair. Both simple and exchange pairs are annular pairs of
index � 2, and the next result will be useful in distinguishing these types of pairs form each other.

Lemma 8.1.1 Let .H;J / be a handlebody pair with @H D T1[J T2, !1 � T1 and !2 � T2 coannular
circles in H , and  � T1 a circle with �.!1;  /D 1. Then the surface @H n .!1 t!2/ compresses in H

along a nonseparating disk D �H , unique up to isotopy, and the following hold :

(1) !1 and !2 are both primitive in H or both p-power circles for some p � 2;

(2)  � @D D˙1;

(3) j \ @Djmin D 1 if and only if .H;J / is a trivial or simple pair;

(4) if j \ @Djmin > 1 then .H;J / is a primitive or an exchange pair if !1 is a primitive or a power
circle in H , respectively.
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Proof That the surface @H n .!1 t !2/ compresses in H along a nonseparating disk D � H which
unique up to isotopy and part (1) follow from [24, Lemma 3.4].

Isotope @D in @H n .!1 t!2/ so as to intersect  minimally. As the circles !1 t!2 t @D separate @H
into two pants the circle @D is homologous in @H to !1 t!2, and since @D\!2 D∅ we must have (up
to some orientation scheme)

 � @D D  �!1C  �!2 D  �!1 D˙1;

so (2) holds.

Since j!1\ jminD 1 and !1[ � T1, it follows that the circles J and @N.!1[ /� T1 are parallel in
T1 and hence that

jJ \ @Djmin D 2 � j \ @Djmin:

By Section 2.3.4 the pair .H;J / is trivial or simple if and only if the disk D intersects J minimally in
two points; hence if and only if D intersects  minimally in one point, so (3) holds.

For the case j \ @Djmin > 1 by (3) the pair .H;J / is nontrivial and not simple, so if !1 is a primitive
circle in H then .H;J / is a primitive pair. Otherwise by (1) !1 is a p � 2 power circle in H and so
.H;J / is an exchange pair by Lemma 5.1.1(1) and Remark 5.1.2(1); hence (4) holds.

In the construction of examples of knots K � S3 we will make use of Lemma 2.2.1 to justify that
the regions Ri;j involved form pairs .Ri;j ;J / or .Ri;j ;K/ before knowing that the knot K � S3 is
hyperbolic. As this is automatically the case whenever the region Ri;j is a handlebody, we will only
invoke Lemma 2.2.1 when Ri;j is not a handlebody.

8.2 Hyperbolic knots with jT j D 4 and one exchange region

Suppose that T �XK is a maximal simplicial collection of size jT j D 4 such that R1;3 is an exchange
region with .R1;2;J / an index one annular pair. By Proposition 5.2.3(1) the region R1;2 must then be a
handlebody, in which case the pair .R1;2;J / is primitive and R1;3 is a handlebody by Section 2.3.5(3).
Arguments similar to those in Sections 6.1 and 6.2 can be used to prove that the region R3;1 must also be
a handlebody and at least one of the pairs .R3;4;J / or .R4;1;J / be simple.

In this section we construct a family of knots KDK.q; k; "/� S3 for integers q � 1, k 2Z, and "D˙1,
each of which bounds a maximal simplicial collection of 4 Seifert tori T D T1 tT2 tT3 tT4 with an
exchange region R1;3 such that the regions R1;3 and R3;1 are handlebodies and both pairs .R3;4;J / and
.R4;1;J / are simple. The collection T �XK is represented in Figure 17.

(I) Construction of the circles !1; !
0
4
� T1 and !0

2
; !3 � T3 relative to the handlebody R3;1.

Figure 18 shows the genus two handlebody R3;1 with complete meridian system given by the disks
x ty �R3;1 and a disk E �R3;1 separating x and y. We identify �1.R3;1/ with the free group

�1.R3;1/D hx;y j �i
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R2;3

T2

!2 !0
1

!0
2 !1

KT3
!3

T1

K2

R1;2

A

!0
4

R3;4

K3
!0

3

T4

!4
K4

R4;1

R20;3

T20

R1;20

!2 !0
1

A0
K1

T3
!3

!0
2

K
!1

!0
4

T1

R3;4

K3
!0

3

T4

!4
K4

R4;1

Figure 17: The knot K DK.q; k; "/� S3 with exchange pair .R1;3;J /.

relative to some base point. For w1; w2 2 hx;y j �i we write w1 � w2 to indicate that the words differ
by a cyclic permutation.

The circles !1, !0
4

and !0
2

in @R3;1 are constructed as indicated in Figure 18, along with an extra circle u.
Notice that to the left of the separating disk E all arcs in the figure are mutually parallel and intersect the
disk x minimally in one point. To the right of E there are 3 disjoint arcs which intersect y minimally
in q, qC " and 2qC " points, as well as the circle !0

4
which intersects y minimally in 2qC " points

(since it is disjoint from the arc that intersects y in 2qC " points). Figure 18 corresponds to the case
.q; "/D .1;�1/.

yq

yqC"
y2qC"

u

!02 !04

!1

R3;1 x E y

Figure 18: The circles !1, !02, !04 and u in @R3;1 for .q; "/D .1;�1/.
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!1

!0
2

!3

!0
4

y2qC"

yq

R3;1 x E y

Figure 19: The circles !1, !02, !3 and !04 in @R3;1.

The circle !3 � T2 is constructed in Figure 19. With their given orientations these circles satisfy the
relations

.!1[!
0
4/\ .!

0
2[!3/D∅; �.!1; !

0
4/D 1D�.!02; !3/;

!1.x;y/� xyqxy2qC"; !04.x;y/� y2qC"; !02.x;y/D x; !3.x;y/� .xy2qC"/2:

Therefore we define
K D @N.!1 t!

0
4/� @R3;1:

yq

yqC"

y2qC"

u

!0
2

v0

R3;1
x E y

Figure 20: The circles !02, u and v0 in @R3;1.
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Notice that for .q; "/ D .1;�1/ we have !1.x;y/ � .xy/2 � !3.x;y/, and in fact from Figure 19 it
follows directly that in this case the power circles !1 and !0

3
are coannular in R3;1.

(II) Construction of the handlebody R1;3.

We construct two disjoint and nonseparating circles u; v � @R3;1 D @R1;3 representing the boundary of
the complete system of disks for R1;3.

The circle uD @D � @R3;1 D @R1;3 is given in Figure 18 and satisfies the relations

u\ .!1 t!
0
2/D∅ and u.x;y/D .xyq/3y"

D primitive in R3;1:

To obtain the circle v � @R1;3 nu we first construct the auxiliary circle v0 � @R1;3 in Figure 20 such that

v0\uD∅; jv0\!
0
2j D 1; v0.x;y/D y" in �1.R3;1/:

The circle v � @R1;3 nu is then constructed in @R1;3 as the homological sum

v D .1C 3k/ �!02C ŒqC k.3qC "/�" � v0

where k 2 Z.

(III) The Heegaard decomposition R1;3[@ R3;1 � S3.

In the first integral homology group H1.R3;1/DH1.R3;1IZ/D xZ˚yZ we have

uD 3xC .3qC "/y and v D .1C 3k/xC ŒqC k.3qC "/�y

where

det
�

3 3qC "

1C 3k qC k.3qC "/

�
D�"D˙1:

Therefore,

H1.R3;1.ut v//D xZ˚yZ=h3xC .3qC "/y; .1C 3k/xC ŒqC k.3qC "/�yi D 0;

and since
R1;3[@ R3;1 �R3;1.ut v/DR3;1.u/.v/

and R3;1.u/ is a solid torus it follows that R1;3[@ R3;1 � S3.

(IV) The exchange region R1;3.

By construction, in �1.R1;3/D hu; v j �i we have !0
2
� vp for p D jqC k.3qC "/j.

Since u\.!1t!
0
2
/D∅ by (II), the nonseparating disk u�R1;3 is a compression disk for @R1;3n.!1t!

0
2
/

and so the circles !1 and !0
2

are coannular in R1;3 by [24, Lemma 3.4(2)]. From Figure 18 we can
see that ju\!0

4
jmin D 3 in @R1;3 and so, by Lemma 8.1.1, .R1;3;J / is an exchange pair if and only if

p D jqC k.3qC "/j � 2.

We summarize the information above in the next result.
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Proposition 8.2.1 For integers q� 1, k, and "D˙1, except for .q; k/D .1; 0/ and .q; "/D .1;�1/, each
of the knots K in the family K.q; k; "/� S3 is hyperbolic and bounds a maximal simplicial collection
T D T1 tT2 tT3 tT4 �XK of 4 Seifert tori such that

(1) the regions R1;3 and R3;1 are handlebodies;

(2) .R1;3;J / is an exchange pair of index p D jqC k.3qC "/j � 2;

(3) .R3;4;J / is a simple pair of index 2 and .R4;1;J / is a simple pair of index 2qC "� 3;

(4) �.!0
2
; !3/D�.!

0
3
; !4/D�.!

0
4
; !1/D 1;

(5) the Kakimizu complex MS.K/ is a union of two 3-simplices intersecting in a common 2-face , and
each surgery manifold XK .r/ is hyperbolic whenever �.r;J /� 2.

In the two exceptional cases .q; k; "/ D .1; 0;�1/; .1;�1;�1/ the knot K is hyperbolic and bounds a
maximal collection of 2 Seifert tori T1tT3 with .R3;3;J / an exchange pair (where R3;3DclŒXKnT3�I �),
and MS.K/ the union of two 1-simplices along a common vertex (Figure 21, top left).

In the exceptional case .q; k; "/ D .1; 0; 1/ the knot K is hyperbolic and bounds a unique maximal
collection of 3 Seifert tori T1 tT3 tT4 with no exchange region (Figure 21, bottom).

In the remaining exceptional cases .q; k; "/ D .1; k;�1/ with k ¤ 0;�1 the knot K is a satellite of a
.2; 2kC 1/ torus knot (Figure 21, top right).

Proof Observe that

q � 1 D) 0<
q

3qC "
< 1 and q � 2 D) 0<

q˙ 1

3qC "
�

qC 1

3q� 1
< 1

and so, for q � 1,

jqC k.3qC "/j � 1 () jqC k.3qC "/j D 1 () �k D
q˙ 1

3qC "
2 Z

() q D 1 and
�

k D 0 or
k D�1 and qC "D 0:

Therefore for integers q � 1, k, and "D˙1 with .q; k/¤ .1; 0/ and .q; "/¤ .1;�1/ we have

p D jqC k.3qC "/j � 2 and 2qC "� 3;

and so by (IV) .R1;3;J / is an exchange pair. Moreover the circles !1 � T1 and !0
2
� T3 are coannular

in R1;3 and !1 � v
p in �1.R1;3/, therefore the index of each core knot K1;K2 �R1;3 in Figure 17 is

p D jqC k.3qC "/j � 2.

By (I) !3.x;y/ � .xy2qC"/2 and !0
4
.x;y/ � y2qC" in �1.R3;1/ and so !3 � T3 and !0

4
� T4 are

noncoannular power circles in R3;1. By the argument in the proof of [24, Lemma 3.4(3)] it follows that
there is a properly embedded disk E �R3;1 that separates !3 and !0

4
. So if A3 and A4 are companion

annuli in R3;1 for the circles !3 and !0
4
, respectively, then A3 and A4 can be isotoped to be disjoint from

E and hence from each other. Therefore the J -tori T 0
3

and T4 induced by !3 and !0
4

in R3;1, respectively,
are disjoint in R3;1.
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index 3

Figure 21: The Seifert tori bounded by the knot K.q; k; "/ in the exceptional cases.

As we also have !0
2
.x;y/ D x in �1.R3;1/, the circle !0

2
� T3 is primitive in R3;1 and so the pair

.R3;1;J / is not maximal by Section 2.3.9. This implies that the J -tori T 0
3

and T4 are mutually parallel
in R3;1, and since by construction they cobound simple pairs with T3 and T1, respectively, by [24,
Lemma 6.8(2)] .R3;1;J / is a double pair with T4 �R3;1 the unique J -torus not parallel into T3 or T1

and �.!0
3
; !4/D 1 in T4.

It now follows that the indices of the core knots K3 and K4 of the simple pairs .R3;4;J / and .R4;1;J /

are 2 and 2qC "� 3, respectively.

Finally, in the case of T1, the circle !1 � T1 has a companion annulus in R1;3 since it is the boundary of
a spanning annulus in R1;3 of index p � 2, while !0

4
� T1 has a companion annulus in R3;1 since it is a

power circle in R3;1. As �.!1; !
0
4
/D 1 and by construction each region R1;3 and R3;1 is a handlebody,

hence atoroidal, it follows from Lemma 2.0.1 that no circle on T1 has a companion annulus on either side
of T1. A similar conclusion holds for the Seifert torus T3 �XK using the circles !0

2
t!3.

Therefore, by [24, Lemma 8.1] applied to the simplicial collection T1 tT3 �XK , the knot

K DK.q; k; "/� S3

is hyperbolic and each surgery manifold XK .r/ is hyperbolic for any slope r � @XK with �.r;J /� 2.
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Since each of the pairs .Ri;iC1;J / is minimal and R1;3 is an exchange region, by Proposition 7.0.2 the
collection T D T1 tT2 tT3 tT4 is maximal and MS.K/ consists of two 3 simplices intersecting in a
common 2-face. Therefore (1)–(5) hold.

In the cases .q; "/D .1;�1/ we have 2qC "D 1 and by definition the simple pair .R4;1;J / degenerates
into a trivial pair. Moreover, by (I) the 2-power circles !3 � T3 and !1 � T1 become coannular in R3;1,
so .R3;1;J / becomes a simple pair of index 2.

If k D 0;�1 then p D 1 and so .R2;3;J / becomes a trivial pair, whence .R1;3;J / becomes a primitive
pair with primitive circles !1 and !0

2
. It follows that the region R3;3 is an exchange region for the

collection T1 tT3. Since �.!0
2
; !3/D 1, by the above general argument the knot K is hyperbolic and

bounds the maximal simplicial collection T1tT3 with exchange region R3;3; hence MS.K/ is the union
of two 1-simplices along a vertex (see Figure 21, top right).

If k¤ 0;�1 then pD j2kC1j � 3 and so the spanning annulus A in R1;2 has companion annuli on either
boundary circle, so K is not a hyperbolic knot by Lemma 4.1.1(4); more precisely, by [24, Lemma 5.1]
the knot K is a satellite of a .2; 2kC 1/ torus knot (see Figure 21, top left).

In the last exceptional case .q; k; "/D .1; 0; 1/ we have p D 1 and 2qC "D 3. By a similar argument it
follows that K is a hyperbolic knot that bounds the unique maximal simplicial collection T1tT3tT4 of
3 Seifert tori with no exchange region (see Figure 21, bottom) and so MS.K/ is a single 2-simplex.

8.3 Hyperbolic knots with jT j D 2 ; 3 and one exchange handlebody region

We construct a family of hyperbolic knots KDK.�1; n; 2/�S3, n2Z, each of which bounds a maximal
simplicial collection T � XK of jT j D 2; 3 Seifert tori with a handlebody exchange region R1;3. A
projection of the knot K.�1; n; 2/ with at most 14C 6jnj crossings is shown in Figure 2.

Unlike the case jT j D 4 of Section 8.2, for jT j D 2; 3 the exchange region R1;3 need not be a handlebody;
examples where R1;3 is not a handlebody will be constructed in Section 8.5.

(1) Construction of the primitive pair .R1;2;J /. Figure 22 shows a genus two handlebody R1;2 standardly
embedded in S3 with the following features:

(I) The disks x ty �R1;2 form a complete disk system.

(II) The complementary handlebody R2;1 D S3 n int R1;2 has complete disk system at b �R2;1.

(III) The circles !1; !
0
1
� @R1;2 are disjoint from each other and from the disk x � R1;2, and each

intersects the disk y minimally in one point. Thus !1 and !0
1

cobound an annulus A�R1;2 nx,
and by [24, Lemma 3.4] x is the unique compression disk of the surface @R1;2 n .!1 t!

0
1
/.

(IV) The circles !0
1

and 0 intersect minimally in one point labeled � in the figure.

(V) 0 and @x intersect minimally in 3 points.
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y b !1

!0
1

0

�
a x

R1;2

Figure 22: The complete disk systems x ty �R1;2 and at b �R2;1, and the circles !1; !
0
1; 0 � @R1;2.

For any circle ı � @R1;2 and integers k; n 2 Z we denote by ı.k; n/ � @R1;2 the circle obtained by
performing k full Dehn twists on ı around @x and n full Dehn twists around @y, where the Dehn twists
are performed by cutting @R1;2 along the circles @x t @y and twisting on the side of these circles in the
direction indicated by the arrows for positive twists.

For integers k; n;p 2 Z we construct the following circles in @R1;2:

(VI) The homological sum p D 0Cp!0
1
� @R1;2, constructed so that it intersects !0

1
minimally in

one point.

(VII) The circles !1.k; n/, !01.k; n/ and p.k; n/� @R1;2.
By (4) the circles !0

1
.k; n/ and p.k; n/ intersect minimally in one point, and p.k; n// and @x

intersect minimally in 3 points by (5).

(VIII) The separating circle J D J.k; n;p/D @N.!0
1
.k; n/[ p.k; n//� @R1;2.

(2) Fundamental groups.

The fundamental groups of R1;2 and R2;1 have the presentations

�1.R1;2/D hx;y j �i and �1.R2;1/D ha; b j �i

relative to the base point � D !0
1
\ 0 in Figure 22. Therefore in �1.R1;2/ we have

!1.k; n/.x;y/D !
0
1.k; n/.x;y/D y and p.k; n/.x;y/D xyXyxyp;

while in �1.R2;1/ we compute

!1.k; n/.a; b/D bn; !01.k; n/.a; b/D bna; p.k; n/.a; b/D akbnAkbnakC1.bna/p

where X D x�1 and AD a�1 as usual. Thus !0
1
.k; n/ is a primitive circle in R2;1.

(3) The knot K DK.k; n;p/� S3.
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The circle J DJ.k; n;p/ separates @R1;2 into two once-punctured tori T1;T2�@R1;2 with !1.k; n/�T1

and !0
1
.k; n/[ p.k; n/� T2. We let K DK.k; n;p/� S3 be the knot represented by J.k; n;p/ and

consider T1;T2 �XK as Seifert tori for K.

By (I)(3), (I)(7) and Lemma 8.1.1 it follows that the pair .R1;2;J / is primitive.

Since by (II) the circle !0
1
.k; n/ � T2 is primitive in R2;1, the pair .R2;1;J / is not maximal by

Section 2.3.9.

(4) The power circles !1.k; n/ and p.k; n/ in R2;1.

By [1], p.k; n/ � T2 is a power circle in R2;1 if and only if the word p.k; n/.a; b/ is a power of
some primitive word w.a; b/ in �1.R2;1/, where by Section 2.3.1 in the cyclic reduction of w.a; b/ all
exponents of a (b) are 1 or all �1 while all the exponents of b (a, respectively) are of the form `; `C 1

for some integer `.

Now, the following words are powers in �1.R2;1/:

!1.k; n/D bn for jnj � 2;

2.�1; n/� .b2na/2 for all n;

�1.0; n/D bn for jnj � 2;

and we claim that these are the only cases when both !1.k; n/ and p.k; n/ are power circles in R2;1.
Indeed, suppose that jnj � 2 so that !1.k; n/ is a power circle.

If k ¤ 0;�1 then the cyclic reduction of the word p.k; n/.a; b/ contains both a and A factors and hence
it is not a power. If k D 0 then p.0; n/D bn.bna/pC1 is a power if and only if pD�1, while if k D�1

then

p.�1; n/.a; b/DAbnabn.bna/p DABn
� .b2na/2 � .bna/p�2

� bna� .b2na/2 � .bna/p�2

is a power if and only if p D 2.

The next result summarizes the information above.

Proposition 8.3.1 For jnj � 2,

(1) the knot K DK.�1; n; 2/ � S3 is hyperbolic and bounds a maximal collection of 3 Seifert tori
T D T1tT2tT3�XK with one exchange pair .R3;2;J / of index jnj and a simple pair .R2;3;J /

of index 2, and MS.K/ is the union of two 2-simplices along a common 1-subsimplex (see Figure 2
and Figure 23, left);

(2) the knot K DK.0; n;�1/ � S3 is hyperbolic and bounds a maximal collection of 2 Seifert tori
T D T1tT2 �XK with one exchange pair .R1;1;J / of index jnj, and MS.K/ is the union of two
1-simplices along a common vertex (see Figure 23, right).

Proof We sketch the proof following the argument in Proposition 8.2.1 closely.
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T2
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index 2 T3

index jnj � 2

R1;2 index 1
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!0
1

K
!1 T1

R2;1

K2

index jnj � 2

Figure 23: The Seifert tori bounded by the knots K.�1; n; 2/ and K.0; n;�1/.

By (III), for all k, n and p the pair .R1;2;J / with J D J.k; n;p/ is primitive with primitive circles
!1.k; n/� T1 and !0

1
.k; n/� T2. Let jnj � 2.

For the knot K DK.�1; n; 2/� S3, by (IV) the circles !1.�1; n/� T1 and 2.�1; n/� T2 are power
circles in R2;1 with words of the form bn and .b2na/2, respectively, and hence are not coannular in R2;1.
Since by (III) the pair .R2;1;J / is not maximal, either power circle !1.�1; n/ or 2.�1; n/ induces
a J -torus T3 � R2;1 which splits the pair .R2;1;J / into two simple pairs .R2;3;J / and .R3;1;J / of
indices 2 and jnj, respectively. Therefore R3;2 DR3;1[T1

R1;2 is an exchange region of index jnj.

For the knot K DK.0; n;�1/� S3, by (IV) we have !1.0; n/D bn � �1.0; n/ in �1.R2;1/, and it can
be seen directly from the corresponding diagram in Figure 22 that !1.0; n/ and �1.0; n/ are coannular
jnj-power circles in R2;1. It is also not hard to see that a�R2;1 is the compression disk of the surface
@R2;1 n Œ!1.0; n/t �1.0; n/�. Since the disk a�R2;1 intersects !0

1
.0; n/� T2 minimally in one point,

by the definition of J and Lemma 8.1.1 it follows that .R2;1;J / is a simple pair of index jnj. Therefore
R1;1 D clŒXK nN.T1/� is an exchange region of index jnj.

As in the proof of Proposition 8.2.1, that the knots K.�1; n; 2/ and K.0; n;�1/ are hyperbolic now
follows from [24, Lemma 8.1]. Therefore (1) and (2) hold.

8.4 Hyperbolic knots with jT j D 4, two hyperbolic pairs, and no exchange region

We will use the notation set up in Lemma 2.4.1 in the classification of basic pairs.

Figure 24, top, shows a basic pair .H;J / constructed as in Lemma 2.4.1 using basic circles ˛ tˇ � @H
separated by the disk D �H , with parameters set for this example as mD 4 and nD 3. By Lemma 2.4.2
the pair .H;J / is therefore hyperbolic.

Cutting H along D produces two solid tori, V1 and V2, with H D V1[ .D� Œ�1; 1�/[V2, ˛ � @V1 and
ˇ � @V2, as shown in Figure 24.

We assume that the handlebody H is standardly embedded in S3 with complete disk system D1tD2. Its
complementary handlebody H 0DS3nint H has complete disk system D0

1
tD0

2
such that j@Di\@D

0
j jD 0

for i ¤ j and 1 for i D j .
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nD 3

D1
D0

1

˛

T1

J

T2

ˇ

D0
2 D2

V1

D � Œ�1; 1�
V2

J.p; q/

ˇq

D1
D0

1
D0

2 D2

T1
p̨

T2

V1

D � Œ�1; 1�
V2

Figure 24: The hyperbolic basic pair .H;J / (top) and the associated hyperbolic pair .H;J.p; q//
for p D 2 and q D 1 (bottom).

Specifically the following circles are constructed on @H D @H 0.

(H1) Basic circles ˛ tˇ � @H parallel to @D0
1

and @D0
2
, respectively.

(H2) The circle @D � @H D @H 0 bounds a nontrivial separating disk D0 �H 0.

(H3) We write @H D T1[J T2 with ˛ � T1 and ˇ � T2.

(H4) For integers p; q2Z (and some orientation scheme) let p̨�T1 be a circle homologous to @D1Cp˛,
ˇq � T2 a circle homologous to @D2C q˛, and construct the separating circle J.p; q/� @H by
matching the endpoints of 8 arcs in @V1 n p̨ with those of 8 arcs in @V2 nˇq using the same pattern
as for J .

The circle J.p; q/ is represented in Figure 24, bottom, for jpj D 2 and jqj D 1.
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p full
twists qfull

twists

Figure 25: The knot K.p; q/� S3.

We denote by K D K.p; q/ the knot in S3 corresponding to J.p; q/. Thus K bounds two simplicial
Seifert tori T1 tT2 �XK with R1;2 DH and R2;1 DH 0.

Equivalently K.p; q/ is the knot obtained by performing p and q full twists on the indicated strands of
the trivial knot K.0; 0/ shown in Figure 25.

If p D 0 then T1 compresses in H 0 along the disk D0
1

an so the knots K.0; q/ are trivial. Similarly the
knots K.p; 0/ are trivial. The knot K.2; 2/ is represented in Figure 1.

(H5) By (H2) and (H4) the circles p̨; ˇq � @H
0 are basic circles in H 0 separated by the disk D0 �H 0

with @D0 D @D.

Recall from Lemma 2.4.1 that the construction parameters m and n of a circle like J.p; q/� @H 0

depend only on the distribution of parallel arcs in the intersection of J.p; q/ with the annulus
.@D0/� I � @H 0. As @D0 D @D, the circles J and J.p; q/ share the same parameters, mD 4 and
nD 3, and so the basic pair .H 0;J.p; q// is hyperbolic and homeomorphic to .H;J /.

Similarly, for jpj D 1D jqj the pair .H;J.p; q// is hyperbolic and homeomorphic to .H;J /.

Proposition 8.4.1 For integers p; q ¤ 0 the knot K DK.p; q/� S3 is hyperbolic. Specifically, setting
J� D J.p; q/:

(1) For jpj; jqj � 2 the knot K bounds a unique maximal simplicial collection of four Seifert tori
T D T1 tT2 tT3 tT4 � XK , such that the pairs .R1;2;J

�/ and .R3;4;J
�/ are homeomorphic

to the hyperbolic pair .H;J /, while the pairs .R2;3;J
�/ and .R4;1;J

�/ are simple of index jqj
and jpj, respectively.

(2) If jpj � 2 and jqj D 1 then in (1) the pair .R4;1;J
�/ becomes a trivial pair and so K bounds the

unique maximal simplicial collection of three Seifert tori T1 tT2 tT3 with the pairs .R1;2;J
�/

and .R3;1;J
�/ homeomorphic to the hyperbolic pair .H;J /, and .R2;3;J

�/ a pair of index jpj. A
similar conclusion holds when jpj D 1 and jqj � 2.
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R1;2 DH 0

T2
ˇq

K
p̨ T1

B

V W

A
R2;1 DH

T3 T4

Figure 26: Construction of the Seifert tori T3;T4 �XK .

(3) If jpj D 1 D jqj then K bounds the unique maximal simplicial collection of two Seifert tori
T1 tT2 �XK with .R1;2;J

�/ and .R2;1;J
�/ homeomorphic to the hyperbolic pair .H;J /.

Proof Set R1;2 DH 0, R2;1 DH and J� D J.p; q/.

Suppose that jpj; jqj � 2. Then in R2;1 DH the circle p̨ � T1 is a jpj-power circle and ˇq � T2 is a
jqj-power circle. Let T3;T4�R2;1 be the J�-tori induced by ˇq and p̨ , respectively, so that .R2;3;J

�/

and .R4;1;J
�/ are simple pairs of indices jqj and jpj, respectively (see Section 2.3.10).

Let B;V �R2;3 be the companion annulus and solid torus of the power circle ˇq � T2, with V \T2

an annular regular neighborhood of ˇq in T2. Similarly let A;W � R2;3 be the companion annulus
and solid torus of the power circle p̨ � T1, with W \T1 an annular regular neighborhood of p̨. The
situation is represented in Figure 26.

Then J� is disjoint in @R1;2 of the annuli W \T1 and V \T2, and we may assume that V and W are
disjoint from the separating disk D �H .

Let H� �R2;1 DH be the genus two handlebody component of R2;1 cut along the companion annuli
AtB. By Section 2.3.5(1) the pair .H�;J�/ is homeomorphic to .R3;4;J

�/, and by [24, Lemma 6.8]
the core circles ˛0p and ˇ0q of the companion annuli A and B are basic circles in H� disjoint from J�.

The disk D �H separates the solid tori V and W and hence it lies in H�, which by the argument in
(H5) implies that the pairs .H�;J�/� .R3;4;J

�/ are homeomorphic to .H;J /, hence hyperbolic. Thus
(1) holds, and (2) and (3) follow by a similar argument.

.H;J /
T2

ˇ ˛

T1

.H;J /
K

K3

index
jpj

T3

T2
.H;J /

T1
ˇ ˛

index
jqj K2 K K4

index
jpj

T3
.H;J /

T4

Figure 27: The Seifert tori in XK for jpj � 2 and jqj D 1 (left) and jpj; jqj � 2 (right).
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Remark 8.4.2 (1) In Figure 27, right, K2 tK4 � S3 is the unlink formed by the cores of the solid
tori components of H jD0 in Figure 24, bottom. This is one of the reasons why it is easy to
render a projection of the knots K.p; q/ as in Figure 25. Moreover the regions R1;3 and R3;1 are
handlebodies but R2;1 and R4;3 are not, making the latter the exteriors of nontrivial handlebody
knots in S3 with an interesting internal structure.

(2) Similarly in Figure 27, left, the knot K3 � S3 is trivial and the region R1;3 is not a handlebody.

(3) We have used the values mD 4 and nD 3 for the parameters defined in Lemma 2.4.1; conclusions
similar to those reached in Proposition 8.4.1 can be reached for any other suitable values of m

and n.

8.5 Hyperbolic knots with jT j D 2 ; 3 and one exchange nonhandlebody region

In this section we construct hyperbolic knots that bound a maximal simplicial collection T � XK of
jT j D 2; 3 Seifert tori with a nonhandlebody exchange region R1;3.

The pair .R3;1;J / is necessarily basic by Lemma 5.1.1(2) and in the context of [13] represents a
handlebody knot in S3 whose exterior R1;3 contains an essential annulus. Such handlebody knots are
completely classified in [13] and the spanning annulus in R1;3 corresponds to a type 3-3 annulus as
constructed in [13, Section 3, Figure 8].

As in Section 6.3 we retract the regular neighborhood N.K/� S3 radially onto K so that the circles J

and @Ti become identified with K and use the notation .Ri;iC1;K/ for the pairs .Ri;iC1;J /

(I) Construction of handlebody knots V � S3 with an incompressible type 3-3 annulus in their exterior.

(i) Let L� S3 be a fixed knot with exterior XL D S3 n int N.L/� S3 and let ˛ � @XL D @N.L/ be a
circle of nonintegral slope of the form r D a=p for some p � 2. If L is the trivial knot we choose ˛ to be
a nontrivial torus knot.

Let L0 � int XL be a knot which cobounds an annulus with ˛; thus L0 � S3 is a nontrivial knot which
is a cable of L. The exterior X D S3 n intŒN.L/ [N.L0/� of the link L tL0 � S3 then contains a
properly embedded annulus A with the circle ˛ D @A\ @N.L/ of nonintegral slope in N.L/, and the
circle @A\ @N.L0/ of integral slope r 0 in @N.L0/. The situation is represented in Figure 28, top.

Since at least one component of the link LtL0 is a nontrivial knot, the boundary tori @X and the annulus
A are incompressible in X .

(ii) Let N.A/ be a thin regular neighborhood of A in X and M D clŒX nN.A/� the exterior of A in X ;
thus @M is a torus. By [14, Theorem 1.1] there is a properly embedded arc e �M such that

(M1) e has one endpoint on each of the annuli @N.L/\ @M and @N.L0/\ @M ;
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e

N.L/
r D a=p r 0

˛ A
N.L0/

D

W

N.e/

V
˛ A

Figure 28: Construction of the genus two handlebody knot V � S3 with exterior W .

(M2) e is an excellent 1-submanifold of M ; that is, the exterior Me D clŒM nN.e/� of e in M is
irreducible, boundary irreducible, atoroidal and anannular (any incompressible annulus in Me is
boundary parallel).

(iii) We set

V DN.L/[N.L0/[N.e/� S3 and W D S3
n int V D clŒX nN.e/�DMe [N.A/:

Thus V is a genus two handlebody knot in S3 whose exterior W contains the nonseparating annulus A.

Being a subset of X � S3, the manifold W is irreducible and the annulus A�W is incompressible in W .
It is then not hard to see from (M2) that W is boundary irreducible and atoroidal, and that any annulus in
W is isotopic to A.

(iv) The cocore disk D of the 1-handle N.e/ attached to N.L/tN.L0/ is a nontrivial disk in V which
separates the components of @A� V . By (i), in V the circle ˛ D @A\ @N.L/ is a p � 2 power circle
and @A\ @N.L0/ is a primitive circle. The situation is represented in Figure 28, bottom.

(II) The genus one hyperbolic knots K � S3.

We consider the family of knots K�S3 consisting of separating circles in @V D @W that are disjoint from
@A and nontrivial in V , or, equivalently, such that K and @D � V intersect minimally in jK\ @Dj � 4

points.

Since the circle K � @V D @W is nontrivial in V and W , K is a genus one knot in S3 that bounds
two Seifert tori from the decomposition @V D T1 [K T2. We set R1;2 D W and R2;1 D V , so that
N.L/tD �R2;1, and choose the notation @1A� T1 and @2AD ˛ � T2.

We summarize the above conclusions in the next result.

Proposition 8.5.1 There exist infinitely many genus one hyperbolic knots K � S3 which bound a
maximal simplicial collection of 2 or 3 Seifert tori with one nonhandlebody exchange region.
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Proof By (iii) and Lemma 2.2.1(2) .R1;2;K/ and .R2;1;K/ are pairs. Since the region R1;2 contains
the spanning annulus A, which is unique by (M2), the pair .R1;2;K/ is annular of index 1.

By (I)(iv) the circle @2AD ˛ � T2 is a power p-circle in R2;1 with companion solid torus constructed
out of N.L/�R2;1, and we set T3 �R2;1 as the K-torus induced by ˛ so that .R2;3;K/ is a simple
pair of index p � 2. Therefore,

� the pair .R1;3;K/ is an exchange pair,

� R1;3 is not a handlebody by Section 2.3.5(3),

� the knot K � S3 is hyperbolic by the argument used in Proposition 8.2.1,

� .R3;1;K/ is a basic pair by Lemma 5.1.1.

If the pair .R3;1;K/ is trivial then T1 and T3 are parallel in XK and so, by Proposition 7.0.2(1),
T D T1 t T2 � XK is a maximal simplicial collection of Seifert tori bounded by K. Otherwise
T D T1 tT2 tT3 �XK is such a maximal simplicial collection.

Knots with a maximal simplicial collection of size jT j D 3 can be constructed by choosing K � @V to
follow the pattern of the knot J.p; q/� @H with q D 1 in Figure 24, bottom, so that

.V;K; @1A; @2A; @D/D .H;J.p; q/; ˇq; p̨;D/:

By the argument in the proof of Proposition 8.4.1 the pair .R3;1;K/ is then homeomorphic to the basic
hyperbolic pair .H;J.1; 1//.

By Lemma 2.4.2 replacing J.p; q/�H in Section 8.4 with a similar circle constructed with parameters
m� 2 and nD 1 then turns .H;J.1; 1// into a simple pair of index m.

Finally, to obtain a maximal simplicial collection of size jT j D 2 it suffices to choose K � @V with
jK\ @Dj D 4 in which case the pair R2;1 is simple of index p as in Figure 6, top left.

Proof of Theorem 1(3) The claim follows from Propositions 8.2.1, 8.3.1 and 8.5.1.
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Band diagrams of immersed surfaces in 4-manifolds
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We study immersed surfaces in smooth 4-manifolds via singular banded unlink diagrams. Such a
diagram consists of a singular link with bands inside a Kirby diagram of the ambient 4-manifold,
representing a level set of the surface with respect to an associated Morse function. We show that every
self-transverse immersed surface in a smooth, orientable, closed 4-manifold can be represented by a
singular banded unlink diagram, and that such representations are uniquely determined by the ambient
isotopy or equivalence class of the surface up to a set of singular band moves which we define explicitly.
By introducing additional finger, Whitney and cusp diagrammatic moves, we can use these singular band
moves to describe homotopies or regular homotopies as well.

Using these techniques, we introduce bridge trisections of immersed surfaces in arbitrary trisected 4-
manifolds and prove that such bridge trisections exist and are unique up to simple perturbation moves.
We additionally give some examples of how singular banded unlink diagrams may be used to perform
computations or produce explicit homotopies of surfaces.
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4. Some example applications 1782
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1 Introduction

Immersed surfaces are fundamental objects in low-dimensional topology, showing up frequently in the
study of 4-manifolds. For example, immersed disks play a key role in Freedman’s proof of the topological
h-cobordism theorem and the homeomorphism classification of simply connected smooth 4-manifolds [6].
One reason for the prominent part they play lies in how abundant they are when compared to their
embedded counterparts. In particular, maps of surfaces into smooth 4-manifolds can always be perturbed
slightly to yield smooth immersions with transverse double points.
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Despite their importance, immersed surfaces and their isotopies are difficult to describe explicitly outside
of a few concrete examples. While diagrammatic techniques have been developed to describe both
smooth 4-manifolds and embedded surfaces (see eg Carter and Saito [3; 4], Hughes, Kim and Miller [14],
Kamada [17; 19], Meier and Zupan [26; 27] and Roseman [29]), methods of studying immersed surfaces
diagrammatically have not been established as fully in the literature, aside from a few examples (see eg
Kamada, Kawauchi, Kim and Lee [20] for a diagrammatic framework for representing immersed surfaces
in R4 via marked graph diagrams).

In this paper, we introduce a new diagrammatic system for describing immersed surfaces in smooth,
oriented, closed 4-manifolds, called singular banded unlink diagrams. Such a diagram consists of a Kirby
diagram for the ambient 4-manifold along with a decorated singular (4-valent) link with bands attached
away from vertices (see Section 2.2 for details). As a Kirby diagram of X is uniquely determined by
a Morse function h and its gradient rh, given two singular banded unlink diagrams in the same Kirby
diagram (induced by the same Morse function on X), it makes sense to ask whether they determine
isotopic surfaces. Even with singular banded unlink diagrams in two different Kirby diagrams of X, we
can still ask whether they describe equivalent surfaces. With this in mind, we define a set of moves, called
singular band moves, in Figures 3 and 4, which allow us to relate the diagrams of any two immersed
surfaces which are ambiently isotopic. When combined with Kirby moves to the ambient diagram, these
moves are also sufficient to relate equivalent surfaces. That is, we show the equivalence

{singular banded unlink diagrams}
singular band moves

$
fself-transversely immersed surfaces in 4-manifoldsg

ambient diffeomorphism
:

We make this equivalence precise in Corollary 2.40 (and for isotopy rather than diffeomorphism in
Theorem 2.39). This work generalizes earlier results in [14], where the authors define banded unlink
diagrams of smoothly embedded surfaces in smooth 4-manifolds, and present a family of moves (called
band moves) to describe isotopies between such surfaces. More precisely, given a smoothly embedded
surface † in a smooth oriented closed 4-manifold X and a self-indexing Morse function h W X ! R,
we obtain a diagram D.†/ which is well defined up to band moves and depends only on the ambient
isotopy class of † inside X. Furthermore, given the diagram D.†/, we may recover the pair .X;†/ up to
diffeomorphism. If we also specify the Morse function h WX !R, then the surface †�X is determined
up to isotopy. In the special case that X4 D S4 and h is standard (ie h has no index 1, 2 or 3 critical
points), these results are originally due to Swenton [32] and Kearton and Kurlin [22].

Unless otherwise stated, we will assume that X is a closed, smooth, oriented 4-manifold. Our main
theorems are as follows:

Theorem 2.39 Let † be a smoothly immersed , self-transverse surface in a 4-manifold X. Then any
choice of a self-indexing Morse function h WX!R (with one index 0 point) and a gradientlike vector field
rh on X induces a singular banded unlink diagram D.†/ of .X;†/ that is well defined up to singular
band moves.

Algebraic & Geometric Topology, Volume 25 (2025)
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Furthermore , let D.†/ and D.†0/ be singular banded unlink diagrams of immersed surfaces † and †0

in X.

(i) The diagrams D.†/ and D.†0/ are related by band moves and Kirby moves if and only if there is a
diffeomorphism .X;†/Š .X;†0/.

(ii) If D.†/ and D.†0/ are induced by the same self-indexing Morse function h and gradientlike
vector field rh (which are suitably generic so as to ensure the underlying Kirby diagrams of D.†/

and D.†0/ agree), then D.†/ and D.†0/ are related by band moves if and only if † and †0 are
ambiently isotopic.

In other words , if D.†/ and D.†0/ are banded unlink diagrams whose underlying Kirby diagrams
are identified , then † and †0 are smoothly ambiently isotopic if and only if D.†/ and D.†0/ are
related by singular band moves.

In the opening paragraph of Theorem 2.39, we say that D.†/ is well defined only up to singular band
moves, even though rh is specified. This is because, in order to obtain D.†/, we also need to choose a
gradientlike vector field of hj†, which is not canonically determined by .h;rh;†/.

Note that part (ii) of Theorem 2.39 clearly implies part (i), so we will focus on proving part (ii).
Furthermore, since Kirby diagrams of two 4-manifolds can be related by a sequence of Kirby moves if
and only if they are diffeomorphic, we obtain the following corollary:

Corollary 2.40 Let D and D0 be singular banded unlink diagrams of surfaces † and †0 self-transversely
immersed in diffeomorphic 4-manifolds X and X 0. There is a diffeomorphism taking .X;†/ to .X 0; †0/
if and only if there is a sequence of singular band moves and Kirby moves taking D to D0.

Without much extra work, we may also extend Theorem 2.39 to consider homotopy instead of isotopy:

Corollary 2.41 Let † and †0 be self-transverse surfaces smoothly immersed in X, and let D.†/

and D.†0/ be singular banded unlink diagrams in the same Kirby diagram of X.

(i) The surfaces † and †0 are regularly homotopic if and only if D.†/ and D.†0/ can be related by a
sequence of singular band moves and the finger/Whitney moves illustrated in Figure 15.

(ii) The surfaces† and †0 are homotopic (without specifying regularity) if and only if D.†/ and D.†0/

are related by singular band moves , finger/Whitney moves and cusp moves as illustrated in
Figure 15.

One application of the authors’ results in [14] was to prove the uniqueness of bridge trisections of surfaces
in arbitrary trisected 4-manifolds up to perturbation. In Section 3.2, we define the notions of bridge
position and bridge trisections for immersed surfaces in trisected 4-manifolds, and in Section 3.5 we
prove an analogous uniqueness statement:

Theorem 3.36 Let .X4;T/ be a trisected 4-manifold. Let † be a self-transverse immersed surface
in X4. Then † can be isotoped into bridge position with respect to T, yielding a bridge trisection of †

Algebraic & Geometric Topology, Volume 25 (2025)
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with respect to T. Moreover , any two bridge trisections of † with respect to T are related by T-preserving
isotopy, perturbations and vertex perturbations (and their inverses).

The moves referenced in Theorem 3.36 are defined in Section 3.1. For experts, we will say now that
the perturbation move is the standard perturbation move that increases the number of disks of † in one
section of the trisection, while vertex perturbation is supported in a neighborhood of the trisection surface
and simply passes a self-intersection of † from one piece of the trisection to another.

Organization

In Section 2 we lay out the framework of singular banded unlink diagrams. We begin in Section 2.1 with
a discussion on marked singular banded links. In Section 2.2, we describe how to use these decorated
singular links to obtain immersed surfaces. In Section 2.3, we discuss two subclasses of immersed surfaces
that will be needed to prove Theorem 2.39 and its corollaries in Section 2.4.

In Section 3 we turn our attention to bridge trisections. We review the theory of bridge trisections of
embedded surfaces in Section 3.1. In Section 3.2, we adapt the notions of trivial tangles and bridge
position to singular links, before defining bridge position for immersed surfaces in Section 3.3 and showing
that every immersed surface in a smooth 4-manifold can be arranged in this position. It is here that we
define the various moves on immersed bridge trisections referenced in Theorem 3.36. In Section 3.4, we
then proceed to adapt the singular banded unlinks developed in Section 2 to bridge trisections, before
using the uniqueness results for singular banded unlinks to prove Theorem 3.36 in Section 3.5.

In Section 4 we give some additional sample applications of the usefulness of singular banded unlink
diagrams. In Section 4.1, we show how one may compute the Kirk invariant (see Schneiderman and
Teichner [30]) of a spherical link using these diagrams. In Section 4.2, we prove that homologous
immersed oriented surfaces with the same number of positive and negative self-intersections are stably
isotopic (ie become isotopic after surgery along some collection of arcs). Finally, in Section 4.3, we show
that certain 2-spheres embedded in S4 can be trivialized by a single finger and Whitney move (recovering
a fact originally proved by Joseph, Klug, Ruppik and Schwartz [16]).
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2 Singular banded unlink diagrams

2.1 Marked singular banded links

In this section we introduce marked singular banded links, which are the combinatorial objects we will
use to describe self-transverse immersed surfaces in 4-manifolds. In what follows, all manifolds and maps
between them should be assumed to be smooth. All isotopies of immersed (or embedded) submanifolds
are assumed to be ambient isotopies unless otherwise specified. Note that we are isotoping the images of
immersions rather than immersions themselves.

2.1.1 Marked singular links We begin by defining special singular links with additional data recorded
at their double points.

Definition 2.1 Let M 3 be an orientable 3-manifold. A singular link L in M is the image of an
immersion � W S1 t � � � t S1 ! M which is injective except at isolated double points that are not
tangencies. At every double point p we include a small disk v Š D2 embedded in M such that
.v; v\L/Š

�
D2; f.x; y/ 2D2 j xy D 0g

�
. We refer to these disks as the vertices of L.

(Equivalently, a singular link is a 4-valent fat-vertex graph smoothly embedded in M.) For now, our
motivating idea is that M will correspond to some level set of a 4-manifold X, and the double points of a
singular link L in M will correspond to the isolated double points an immersed surface in X. Because
these double points are isolated, we expect the singularities of L to be resolved away from the level set M.
We must make a choice of how to resolve each double point.

Definition 2.2 A marked singular link .L; �/ in M is a singular link L along with decorations � on
the vertices of L, as follows: say that v is a vertex of L, with @v\ .L n v/ consisting of the four points
p1; p2; p3; p4 in cyclic order. Choose a coorientation of the disk v. On the positive side of v, add an arc
connecting p1 and p3. On the negative side of v, add an arc connecting p2 and p4. See Figure 1, left. A
choice of � involves making a fixed choice of decoration on v for all vertices v of L.

Note that, if L has n vertices, there are 2n choices of decorations � such that .L; �/ is a marked singular
link.

Definition 2.3 Let .L; �/ be a marked singular link in a 3-manifold M. Let v be a vertex of L; say that
on the positive side of v there is an arc with endpoints p1 and p3, and on the negative side of v there is
an arc with endpoints p2 and p4.

Let LC denote the link in M obtained from .L; �/ by pushing the arc of L between p1 and p3 off v in
the positive direction, and repeating for each vertex in L. We call LC the positive resolution of .L; �/
(see Figure 1).
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.L; �/ L� LC

Figure 1: Left: a marked singular link .L; �/. Middle and right: the negative and positive
resolutions of .L; �/, respectively.

Similarly, let L� denote the link in M obtained from .L; �/ by pushing the arc of L between p1 and p3
off v in the negative direction, and repeating for each vertex in L. We call L� the negative resolution
of .L; �/ (see Figure 1).

Informally, LC is obtained from .L; �/ by turning the decorations of � into new overstrands, while L�

is obtained by turning the decorations of � into new understrands.

To ease notation, from now on we will always take singular links to be marked. We will generally not
specify the decorations � , and will instead write “L is a marked singular link”, with � implicitly fixed.

2.1.2 Banded singular links Let L be a singular link, and let �L denote the union of the vertices of
L. A band b attached to L is the image of an embedding � W I � I ,!M n�L, where I D Œ�1; 1�, and
b\LD �.f�1; 1g � I /. We call �

�
I �

˚
1
2

	�
the core of the band b. Let Lb be the singular link defined

by

Lb D
�
L n�.f�1; 1g � I /

�
[�.I � f�1; 1g/:

Then we say that Lb is the result of performing band surgery to L along b. If B is a finite family of
pairwise disjoint bands for L, then we will let LB denote the link we obtain by performing band surgery
along each of the bands in B. We say that LB is the result of resolving the bands in B. Note that the
self-intersections of LB naturally correspond to those of L, so a choice of markings for L yields markings
for LB . A triple .L; �; B/, where .L; �/ is a marked singular link and B is a family of disjoint bands
for L, is called a marked singular banded link. To ease notation, we may refer to the pair .L;B/ as a
singular banded link and implicitly remember that L is actually a marked singular link.

2.2 Singular banded links describing surfaces

In this section, we use marked singular banded links to describe surfaces in 4-manifolds. Thinking of M
as a level set of the 4-manifold X, we’ll begin by defining what the surface looks like in a product tubular
neighborhood of M.
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L� � f0g

†\
�
M �

˚
1
3

	�

LC �
˚
1
2

	

Figure 2: Left: a vertex v of a marked singular link .L;B/. Right: part of the surface † built
from .L;B/ near v.

2.2.1 Realizing surfaces in M3 � Œ0; 1� Let .L;B/ be a marked singular banded link in the oriented
3-manifold M. We will describe how to construct a surface † in M � Œ0; 1� using .L;B/.

Recall first that L� is the (nonsingular) link obtained by negatively resolving each vertex of L. Also
notice that L� differs from LC only in a neighborhood of the vertices of L, where at each vertex a single
strand of L is pushed in the positive direction to give LC, and the negative direction to give L�. For
each vertex v of L, these two opposite pushoffs form a bigon in a neighborhood of v, which bounds
an embedded disk Dv. This disk Dv can be chosen so that its interior intersects L transversely in a
single point near v. For each vertex v, select such a disk Dv (ensuring that all of these disks are pairwise
disjoint), and let DL denote the union of all of these embedded disks.

We can then define the surface †�M � Œ0; 1� by

†\
�
M �

�
0; 1
3

��
D L� �

�
0; 1
3

�
;

†\
�
M �

˚
1
3

	�
D .L�[DL/�

˚
1
3

	
;

†\
�
M �

�
1
3
; 2
3

��
D LC �

�
1
3
; 2
3

�
;

†\
�
M �

˚
2
3

	�
D
�
LC[B

�
�
˚
2
3

	
;

†\
�
M �

�
2
3
; 1
��
D LCB �

�
2
3
; 1
�
:

In total, † is a surface properly immersed in M � Œ0; 1� with boundary .L� � f0g/t .LCB � f1g/, and
with isolated transverse self-intersections all contained in M �

˚
1
3

	
corresponding to the vertices of L.

Definition 2.4 Let †.L;B/ be a surface properly immersed in M � Œ0; 1� obtained from † by smoothing
corners. We refer to †.L;B/ as a surface segment realizing .L;B/.
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Proposition 2.5 Up to ambient isotopy of M � Œ0; 1�, the surface segment †.L;B/ depends only on the
singular banded link .L;B/.

Proof There is a unique way (up to isotopy) to smooth the corners of† in a neighborhood ofM �
˚
1
3
; 2
3

	
.

The disks Dv in M �
˚
1
3

	
are determined up to isotopy by the links L� and LC, which are well defined

up to isotopy in M. No other choices were made in constructing †.L;B/.

Note that, by rescaling the interval parameter, we can similarly define a surface segment realizing .L;B/
in any product of the form M � Œt1; t2�. As above, the ambient isotopy class of †.L;B/ will depend only
on .L;B/.

2.2.2 Morse functions and projections between level sets Before describing how to construct a closed
realizing surface in a 4-manifold from a singular banded unlink, it will be convenient to take a brief detour
to set up some useful notation. Let X be a closed, oriented, 4-manifold equipped with a self-indexing
Morse function h WX ! Œ0; 4�, where h has exactly one index 0 critical point. In what follows, it will be
helpful to have a way of identifying subsets of distinct level sets h�1.t1/ and h�1.t2/.

Suppose then that t1 � t2, and let x1; : : : ; xp denote the critical points of h which satisfy t1 � h.xj /� t2.
Let Xt1;t2 denote the complement in X of the ascending and descending manifolds of the critical
points x1; : : : ; xp. Then the gradient flow of h defines a diffeomorphism �t1;t2 W h

�1.t1/ \Xt1;t2 !

h�1.t2/\Xt1;t2 .

Definition 2.6 We call �t1;t2 the projection of h�1.t1/ to h�1.t2/. Similarly, we call ��1t1;t2 the projection
of h�1.t2/ to h�1.t1/, which we likewise denote by �t2;t1 .

Note that, despite calling �t1;t2 the projection from h�1.t1/ to h�1.t2/, it is only defined on the complement
of the ascending and descending manifolds of the critical points that sit between t1 and t2. These projection
maps allow us to define local product structures away from the ascending and descending manifolds of
the critical points of h.

2.2.3 Singular banded unlinks and closed realizing surfaces We are now able to define a closed
realizing surface associated to a given singular banded unlink, which we define below. As above, let X be
a closed, oriented 4-manifold equipped with a self-indexing Morse function h WX ! Œ0; 4�, with exactly
one index 0 critical point.

Definition 2.7 Let .L;B/ be a marked singular banded link in the 3-manifold M WD h�1
�
3
2

�
such

that L;B �X1=2;5=2. Suppose furthermore that �3=2;1=2.L�/ bounds a collection of disjoint embedded
disksD� in h�1

�
1
2

�
, and that �3=2;5=2.L

C

B / bounds a collection of disjoint embedded disksDC in h�1
�
5
2

�
.

Then we say that .L;B/ is a singular banded unlink in the manifold X.

Algebraic & Geometric Topology, Volume 25 (2025)



Band diagrams of immersed surfaces in 4-manifolds 1739

In plain English, .L;B/ is a singular banded unlink when both

(1) L� is an unlink when viewed as a link in h�1
�
3
2

�
(“below the 2-handles”),

(2) LCB is an unlink when viewed as a link in h�1
�
5
2

�
(“above the 2-handles”).

Fix "2
�
0; 1
2

�
. Given a singular banded unlink .L;B/ in M D h�1

�
3
2

�
, and families of disks DC and D�

as in Definition 2.7, we can construct an immersed surface with corners †�X as follows:

(i) †\ h�1.t/D∅ for t < 1
2

or t > 5
2

.

(ii) †\ h�1
�
1
2

�
DD�.

(iii) †\ h�1.t/D �1=2;t .@D�/ for t 2
�
1
2
; 3
2
� "
�
.

(iv) † \ h�1
��
3
2
� "; 3

2
C "

��
is a realizing surface segment in the product h�1

��
3
2
� "; 3

2
C "

��
Š

M �
�
3
2
� "; 3

2
C "

�
for the singular banded link .L;B/ in M.

(v) †\ h�1.t/D �5=2;t .@DC/ for t 2
�
3
2
C "; 5

2

�
.

(vi) †\ h�1
�
5
2

�
DDC.

That is, † consists from bottom to top of minimum disks, a realizing surface segment (which we recall
has self-intersections and index 1 critical points) and maximum disks.

Note that the identification of h�1
��
3
2
� "; 3

2
C "

��
with M �

�
3
2
� "; 3

2
C "

�
in part (iv) above is made

using the projection maps �3=2;t W h�1
�
3
2

�
! h�1.t/, which is a diffeomorphism for t 2

�
3
2
� "; 3

2
C "

�
and small ". Under this identification, the boundary of the realizing surface segment will be precisely
�5=2;3=2C".@DC/t �1=2;3=2�".@D�/, and hence the surface † constructed above will be closed.

Definition 2.8 Let †.L;B/ be an immersed surface in X obtained from † by smoothing corners. We
refer to †.L;B/ as a (closed) realizing surface for the singular banded unlink .L;B/ in X.

The surface †.L;B/ is an immersed surface in X with isolated, transverse self-intersections. Note that
†.L;B/ is obtained (up to isotopy) by smoothing the result of capping off the boundary components
of †.L;B/ by horizontal disks, which is possible exactly when .L;B/ is a singular banded unlink.

Proposition 2.9 Any two realizing surfaces for the singular banded unlink .L;B/ are smoothly isotopic.

Proof We first note that choosing a different value for " changes † by an isotopy through realizing
surfaces. Second, by Proposition 2.5 any two choices of surface segment †.L;B/� h�1

��
3
2
� "; 3

2
C "

��
are isotopic, and this isotopy can be extended to the rest of † \ h�1

��
1
2
; 5
2

��
using the projection

maps �t1;t2 . Finally, any choice of embedded disks †\h�1
�
1
2

�
and †\h�1

�
5
2

�
are isotopic rel boundary

in h�1
��
0; 1
2

��
and h�1

��
5
2
; 4
��

, respectively, which follows from the fact that h�1
��
0; 1
2

��
Š B4 and

h�1
��
5
2
; 4
��
Š \k.S

1 �B3/.

As the realizing surface †.L;B/ is determined by the singular banded unlink .L;B/ up to isotopy, we
will often think of †.L;B/ as representing an isotopy class of immersed surfaces, rather than a particular
representative.
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2.2.4 Singular banded unlink diagrams and Kirby diagrams We now make sense of how to describe
a realizing surface as in Section 2.2.3 via a Kirby diagram. If one is comfortable with these diagrams,
then the contents of this subsection are clear from Definition 2.7: simply draw L and B inside a diagram
for X in a natural way. We now review some basic notions about Kirby diagrams.

Let h W X !R be a self-indexing Morse function with a unique index 0 critical point, and let n be the
number of index 1 critical points of h. Fix a gradientlike vector field rh for h. Let M D h�1

�
3
2

�
, and let

L2 be the intersection of M with the descending manifolds of the index 2 critical points of h. Perturb
rh slightly if necessary so that this intersection is transverse, so that L2 is a link in the 3-manifold
M Š #n S1 �S2. To each component of L2, assign the framing induced by the descending manifold of
the associated index 2 critical point, so that L2 is actually a framed link in M.

Fix an n-component unlink L1 in S3. Let V denote the complement of the unique (up to isotopy rel
boundary) boundary-parallel disks bounded by L1 in B4. Then V is diffeomorphic to \n S

1 �B3, and
we can therefore find a diffeomorphism � W V ! h�1

��
0; 3
2

��
. By Laudenbach and Poénaru [24] and

Laudenbach [23], the choice of � is natural up to isotopy and moves that correspond to slides of L1 (as a 0-
framed link) in S3. Moreover, @V can be naturally identified with the result of performing 0-surgery on S3

along L1, which we denote by S30 .L1/. By perturbing rh, we may assume that ��1.L2/� @V ŠS30 .L1/
is disjoint from the surgery solid tori, and hence we can think of ��1.L2/ as a link in S3. By abuse of
notation, we will also refer to this link as L2.

Definition 2.10 Let K WD .L1; L2/ be a pair of disjoint links in S3 with L1 an unlink and L2 framed.
Suppose there is a 4-manifold X, a Morse function h WX !R and a gradientlike vector field rh for h
such that h�1

�
3
2

�
may be identified with S30 .L1/ and the descending manifolds of the index 2 critical

points of h meet h�1
�
3
2

�
in the framed link L2. Then we call K a Kirby diagram of X corresponding to

.h;rh/.

Remark 2.11 In [28], the third author and Naylor showed that a smooth, closed, nonorientable 4-manifold
X4 is also determined up to diffeomorphism by (framed) attaching regions of 0-, 1- and 2-handles. If
desired, one could thus make sense of diagrams of closed (immersed) surfaces in Kirby diagrams of
nonorientable 4-manifolds. We choose not to pursue this explicitly in this paper for sake of simplicity.

Remark 2.12 Given h and rh, a Kirby diagram K corresponding to .h;rh/ is well defined up to isotopy
and slides over L1 as long as there is no flowline of rh between two index 2 critical points of h. That is,
generically we expect h and rh to determine a Kirby diagram.

Conversely, given K, the triple .X; h;rh/ is determined up to diffeomorphism.

Let E.K/ denote the complement S3 n �.K/ of a small tubular neighborhood of the links L1 and L2
that form a Kirby diagram K. Then we may think of a link L�E.K/ as describing a link in h�1.t/ for
any t 2 .0; 3/ via the projection map �3=2;t .
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Definition 2.13 A singular banded unlink diagram in the Kirby diagram K D .L1; L2/ is a triple
.K; L; B/, where L�E.K/ is a marked singular link and B �E.K/ is a finite family of disjoint bands
for L, such that L� bounds a family of pairwise disjoint embedded disks in h�1

�
1
2

�
, and LCB bounds a

family of pairwise disjoint embedded disks in h�1
�
5
2

�
.

By comparing Definition 2.13 to Definition 2.7, we see that a singular banded unlink diagram describes an
immersed realizing surface, as follows. We first note that we can identify E.K/ with a subset of h�1

�
3
2

�
in a natural way (ie via rh/. Since the banded link L[B is disjoint from L1, it can be identified with
a subset of h�1

�
3
2

�
, which we denote by L0 [B 0. This subset avoids the descending manifolds of the

index 2 critical points of h.

Since L0� is disjoint from L1, we can isotope it vertically downwards via the projection map �3=2;t
from h�1

�
3
2

�
to h�1

�
1
2

�
, where it can be capped off by a family of disjoint embedded disks in h�1

�
1
2

�
.

Similarly, we can extend the surgered link L0CB 0 vertically upwards from h�1
�
3
2

�
to h�1

�
5
2

�
, where it can

be capped off by disks. As these families of disks are unique up to isotopy rel boundary, the surface we
obtain in this way from the banded unlink diagram .K; L; B/ is well defined up to isotopy. (See also
Proposition 2.9.) We denote this surface by †.K; L; B/.

Definition 2.14 We say that †.K; L; B/ is a realizing surface for .K; L; B/, or that .K; L; B/ describes
the surface †.K; L; B/.

Definition 2.15 If † is a realizing surface of a singular banded unlink diagram .K; L; B/, then we say
that .K; L; B/ is a singular banded unlink diagram for †, and we write D.†/ WD .K; L; B/. (In practice,
we might drop the word “singular”, since this will be clear when † is immersed.) Note that † determines
D.†/ uniquely up to isotopy, assuming that † is a realizing surface for some diagram.

Definition 2.16 Let † be a subset of X. Then we say that hj† is Morse if there is a surface F and an
immersion f W F !X such that †D f .F /, and such that h ı f is a Morse function on F. An index k
critical point of hj† is a point of the form f .p/, where p is an index k critical point of h ıf.

Lemma 2.17 Let X be a closed 4-manifold , and K a Kirby diagram for X. Then any immersed
surface † in X is ambient isotopic to a realizing surface †.K; L; B/ for some singular banded unlink
diagram .K; L; B/.

Proof After a small ambient isotopy we may assume that hj† is Morse. Isotope all of the maxima of †
vertically upward into h�1

��
5
2
; 4
��

(generically, maxima of † do not lie in the descending manifolds of
index 1 or 2 critical points of h). Similarly isotope the minima of † vertically downward into h�1

��
0; 3
2

��
.

Isotope all of the index 1 critical points of hj† vertically into h�1
��
3
2
; 5
2

��
(again, index 1 critical points

of hj† generically do not lie in the ascending manifolds of index 3 critical points or the descending
manifolds of index 1 critical points). Finally, isotope the self-intersections of † to lie in h�1

��
3
2
; 5
2

��
in

such a way that they do not coincide with index 1 critical points of hj†.
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Now flatten † as in [21]. In words, notice that h and �rh, when restricted to †, generically induce a
CW decomposition of † in which 0-cells are the index 0 critical points of hj†, one point in the interior
of each 1-cell is an index 1 critical point of hj†, and one point in the interior of each 2-cell is an index 2
critical point of hj†. Perturb, if necessary, so that self-intersections of † all lie outside the descending
and ascending manifolds in † of index 1 critical points of hj†.

The family of gradient flowlines of rh in X which originate on the ascending manifolds of an index 1
critical point of hj† is 2-dimensional, as is the family of gradient flowlines of �rh in X which originate
on the descending manifolds of an index 1 critical point of hj†. Thus, we may generically take them all
to be disjoint and also disjoint from ascending and descending manifolds of index 2 points of h. (We
discuss this more in Section 2.3. While this condition is generic, it is not natural — this lack of generality
precisely corresponding to the singular band moves of Theorem 2.39.)

Fix " > 0, and let L� D†\ h�1
�
3
2
� "
�
. Isotope † near height 3

2
so that †\ h�1

��
3
2
� "; 3

2
C "

��
is of

the form L� �
�
3
2
� "; 3

2
C "

�
. A neighborhood of each 1-cell of † can be isotoped via �rh to a band in

h�1
�
3
2

�
that is attached to a parallel copy of L�. Let B be the collection of all such bands (one for each

1-cell in †).

Now isotope † near each self-intersection s of † as in Figure 2, right, ie make one of the sheets of †
at s include a small region that is horizontal with respect to h and which contains s. Isotope this sheet
via �rh to push this horizontal region to h�1

�
3
2

�
, where it can be interpreted as a marked fat vertex as in

Figure 2, left. Repeating for every self-intersection of †, we obtain a marked singular banded link L
in h�1

�
3
2

�
whose negative resolution is L�.

Now † intersects regions of X in the following ways:

h�1
��
0; 3
2
� "
��

in boundary parallel disks with boundary L�,

h�1
��
3
2
� "; 3

2
C "

��
in the realizing surface segment for .L;B/,

h�1
��
3
2
C "; 5

2

��
in an embedded surface on which h has no critical points,

h�1
��
5
2
; 4
��

in boundary parallel disks with boundary LCB .

We conclude that † is isotopic to †.K; L; B/.

Remark 2.18 In the proof of Lemma 2.17, we made several references to genericity. That is, we made
several choices of how to perturb † in order to obtain .K; L; B/. It may be helpful to imagine the
lower-dimensional analogue of knots in S3: every knot in S3 is isotopic to one that projects to a knot
diagram. However, not every knot in S3 actually projects to a knot diagram. An arbitrary knot may,
for example, have a projection that includes a cusp, self-tangency or triple point. These conditions are
not generic and can be corrected by a slight perturbation, but therein involves a choice that can yield
diagrams differing by a Reidemeister move (RI, RII or RIII, respectively). There are, of course, even
“worse” conditions, such as a knot whose projection involves a quadruple intersection. However, this
condition is even “less” generic, by which we mean:

Algebraic & Geometric Topology, Volume 25 (2025)



Band diagrams of immersed surfaces in 4-manifolds 1743

� A generic knot in S3 admits a projection with no triple points.

� A generic 1-parameter family of smoothly varying knots in S3 admits projections with finitely
many triple points but no quadruple points.

� A generic 2-parameter family of smoothly varying knots in S3 admits projections with 1-dimensional
families of triple points and finitely many quadruple points.

Thus, in a 1-parameter family of knots (ie a knot isotopy), we expect to obtain diagrams that differ by an
RIII move (and similarly for RI and RII), but need never consider moves involving quadruple intersections.

Moving back to the 4-dimensional world, in order to understand to what extent a singular banded unlink
diagram is well defined up to isotopy of an immersed surface, we must understand which nongeneric
behaviors of projections we expect to see a finite number of times in a 1-dimensional family of immersed
surfaces. We discuss this more formally in Sections 2.3 and 2.4.

2.2.5 Singular band moves The Kirby diagram K only determines the described 4-manifold X up to
diffeomorphism. Therefore, .K; L; B/ only determines the pair .X;†.K; L; B// up to diffeomorphism;
it does not make sense to say that .K; L; B/ determines †.K; L; B/ up to isotopy. However, if we have
already identified X with the manifold described by K, then we can consider †.K; L; B/ up to isotopy.
In particular, given another singular banded unlink diagram .K; L0; B 0/ in the same Kirby diagram K,
there is a natural (up to isotopy) diffeomorphism between the 4-manifolds containing †.K; L0; B 0/
and†.K; L; B/. Therefore, it does make sense to ask whether†.K; L; B 0/ and†.K; L; B/ are ambiently
isotopic, regularly homotopic or homotopic in X. In this section, we define moves of singular banded
unlink diagrams that describe ambient isotopies of immersed surfaces; in Sections 2.3 and 2.4, we show
that indeed these moves are sufficient.

Definition 2.19 Let D WD .K; L; B/ and D0 WD .K; L0; B 0/ be singular banded unlink diagrams. We say
that D0 is related to D by singular band moves if D0 is obtained from D by a finite sequence of the moves
in Figures 3 and 4, which we call singular band moves. (This relationship is clearly symmetric.)

Specifically, the singular band moves (illustrated in Figures 3 and 4) are

(i) isotopy in E.K/,

(ii) cup/cap moves,

(iii) band slides,

(iv) band swims,

(v) slides of bands over components of L2 (band/2-handle slide),

(vi) swims of bands about L2 (band/2-handle swim),

(vii) slides of unlinks and bands over L1,

(viii) sliding a vertex over a band (intersection/band slide),

(ix) passing a vertex past the edge of a band (intersection/band pass).
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cap cup

(ii) (ii)

isotopy in E.K/

(i)

band
slide

(iii)

band/
2-handle

slide

(v)

band/2-handle
swim

(vi)

slides over dotted circles

(vii)

(vii)

n n

n

n

band
swim

(iv)

n

Figure 3: The band moves that do not involve the self-intersections of the described surface.

We may refer to moves (i)–(vii) (illustrated in Figure 3) as band moves (omitting the word “singular”)
since they do not involve the self-intersections of L. The remaining moves are illustrated in Figure 4.

Exercise 2.20 If D and D0 are related by singular band moves, then †.D/ and †.D0/ are ambiently
isotopic.

In the future, we will refer to moves by name rather than number to avoid confusion.

In Figures 5–10, we illustrate some other useful moves on singular banded unlink diagrams that are
achievable by a combination of singular band moves. We call these moves ? (Figure 5), the intersection/
band swim (Figure 6), the upside-down intersection/band swim (Figure 7), the intersection pass (Figure 8),
the intersection swim (Figures 9 and 10), the intersection/2-handle slide (Figure 11) and the intersection/
2-handle swim (Figure 12).

intersection/band
pass

(ix)

intersection/band
slide

(viii)

Figure 4: The singular band moves that involve self-intersections of the described surface.

Algebraic & Geometric Topology, Volume 25 (2025)



Band diagrams of immersed surfaces in 4-manifolds 1745

cup
tw

ice is
ot

op
y

F

int/band
slide

int/band
slide

Figure 5: The ? move moves a vertex onto two new unlink components (or the reverse). In
Figures 7, 9 and 10, we see that the ?-move can be used (in conjunction with singular band moves)
to achieve other seemingly natural moves.

In an earlier version of this paper, we included the intersection/band swim of Figure 6 as one of the
singular band moves (as move (x)). Jablonowski [15] noticed that this move is redundant, so we have
modified the list accordingly.

Remark 2.21 While the length of the list in Definition 2.19 may seem unwieldy, there is a general
principle at play: singular band moves allow us to isotope a singular banded unlink .L;B/ within K; or to

cap band swim
int/band

pass

intersection/band
swim

cap
int/band

pass

Figure 6: We can achieve an intersection/band swim by performing singular band moves. This
sequence of moves was observed by Jablonowski [15].
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upside-down
intersection/band

swim

F

isotopy band swim

F

Figure 7: We can achieve the upside-down intersection/band swim by performing ? and singular
band moves.

push any vertex in L or band in B slightly into the past or future, do further isotopy there, and then push
the vertex or band back into the present. In practice, when using these diagrams, we do not explicitly
break a described isotopy into a sequence of the moves of Definition 2.19, just as how in practice one
does not typically break an isotopy of a knot explicitly into a sequence of Reidemeister moves.

2.3 Ascending/descending manifolds and 0- and 1-standard surfaces

So far, we have only used singular banded unlink diagrams to describe realizing surfaces, which are
incredibly nongeneric. One goal of this paper is to use singular banded unlink diagrams to describe any

intersection
pass

int/band
pass isotopy

F F

Figure 8: We can achieve an intersection pass by performing ? and singular band moves.
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intersection
swim

F

int/band
swim isotopy

F

Figure 9: We can achieve an intersection swim by performing ? and singular band moves.

self-transverse immersed surface †. In Lemma 2.17, we showed that any such † is isotopic to a realizing
surface. However, it is not obvious that any two realizing surfaces isotopic to † have singular banded
unlink diagrams that are related by singular band moves. In order to prove this, we must first restrict
ourselves to understanding surfaces that intersect the ascending and descending manifolds of critical
points of h in prescribed ways, but yet are still more generic than realizing surfaces.

isotopy

isotopy

intersection
swim

Figure 10: We achieve an alternative version of the intersection swim of Figure 9, in which one
marking and one crossing are changed via isotopy and intersection swim.
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n

nn

intersection/2-handle
slide

n

nn nn

isotopy
band/2-handle

slide

F F

Figure 11: We achieve an intersection/2-handle slide by performing ? and singular band moves.

We will now consider not only the ascending/descending manifolds of critical points of h, but also the
ascending and descending manifolds of critical points of the restricted Morse function hj†. From now on,
fix a gradientlike vector field rh for the Morse function h WX !R, and let Z denote X4 n �.†/.

In order to obtain a gradientlike vector field on † itself, we choose a splitting TX j† D T†˚N and let
projT† W TX j†! T† be the associated bundle projection. We can assume that the splitting is chosen so

intersection/2-handle
swim

n n

n

n

n

n

n

n

int/band

pass iso
top

y

band/

2-handle

swim

int
/ba

nd
pa

ss

int/band

pass

cap

isotopy

Figure 12: We achieve an intersection/2-handle swim by performing singular band moves.
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that projT†.rh/j† is a gradientlike vector field for hj† on †, which we denote by r.hj†/. Note that this
is actually not a vector field on the immersed surface † (although we could pull it back to a vector field
on the abstract surface F ), since there are two associated vectors at each point of self-intersection of †
(the projections of rh onto the tangent planes of each local sheet); however, we think that the language
“gradientlike vector field” is not confusing in this context. The vector field r.hj†/ is not canonically
determined by h, rh and †, since to obtain it we have to choose a splitting of TX†.

In what follows, we will often refer to the ascending or descending manifolds of critical points of hj† or of
self-intersections of †. Unless we specify otherwise, assume that this always refers to the corresponding
manifolds in X with respect to rh as defined above, rather than ascending or descending manifolds
in † with respect to r.hj†/. These points are generally not critical points of h, but their ascending and
descending manifolds can be studied as usual.

2.3.1 1-standard surfaces Suppose that † is a self-transverse immersed surface in X. The following
definition will be important as we consider 1-parameter families of immersed surfaces:

Definition 2.22 We say that † is 1-standard if the following are true:

(1) The surface † is disjoint from the critical points of h.

(2) The restriction hj† is Morse except for possibly at most one birth/death degeneracy, ie a point of †
about which hj† can be represented as hj†.x; y/D x2�y3 in some local coordinates on †.

(3) For k � nC 1, the descending manifolds (with respect to rh) of index n critical points of h and
index n� 1 critical points of hj† are disjoint from the ascending manifolds of index k critical
points of h and index k � 1 critical points of hj†. Moreover, self-intersections of † are disjoint
from the ascending manifolds of index 3 critical points of h and descending manifolds of index 1
critical points of h. In other words, we ask for n-dimensional descending manifolds to be disjoint
from .4�n�1/-dimensional ascending manifolds.

Remark 2.23 Definition 2.22 is essentially a list of all ascending/descending manifold pairs that we
expect to be disjoint in a 1-parameter family of immersed surfaces by dimensional considerations, as
explained in Proposition 2.24. This motivates the name “1-standard”.

Proposition 2.24 Let †t be an isotopy between 1-standard surfaces †0 and †1. After an arbitrarily
small perturbation of the isotopy †t , we can assume that †t is 1-standard for all t .

Proof We prove that, after a small perturbation, †t satisfies each property of Definition 2.22 for all t .

(1) The critical point set of h in X �I is 1-dimensional, while the isotopy †t in X �I is 3-dimensional.
Generically, we do not expect †t to intersect a critical point of h for any t .

(2) This follows from Cerf’s filtration on the space of surfaces (see eg [9, Chapter 1, Section 2]). This
is a filtration on the space C.F / of all smooth maps F ! X4 for F a surface. The codimension-0
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stratum consists of all maps f W F !X4 with hjf .F / Morse with critical points at distinct heights. The
codimension-1 stratum includes f if either of the following is true:

� The restriction hjf .F / is Morse with exactly two critical points at the same height, but all other
critical points sit at distinct heights.

� The restriction hjf .F / is Morse except for one birth or death degeneracy. This degeneracy and all
critical points are at distinct heights.

Suppose†0 has n points of self-intersection. Fix 2n points x1, y2,: : :, xn, yn in F and choose ft WF !X

so that ft .F /D†t and ft .xi /D ft .yi / for all i and t . Now a small perturbation of the path ft from
f0 to f1 in C.F / yields a path gt that is completely contained in the codimension-0 and codimension-1
strata of Cerf’s filtration with g0 D f0; g1 D f1. Since gt lies in these strata, gt .F / has property (2) of
Definition 2.22 for all t . Moreover, if the perturbation is sufficiently small, we may assume that gt .F /
is an immersed surface with n transverse double points for all t , all of which are contained in a fixed
small tubular neighborhood of †t . (Recall that smooth or PL self-transversely immersed surfaces in
4-manifolds have tubular neighborhoods; use local coordinates to choose a tubular neighborhood near
each of the finitely many self-intersections and then extend over the whole surface using the tubular
neighborhood theorem.)

While gt is a homotopy from g0 to g1, we may view its image as an isotopy between the singular
submanifolds †0 and †1 in X. We must now check that this isotopy extends to an ambient isotopy of X.
That is, while we have argued that we may perturb ft to achieve property (2), we must explain why
this perturbation may be achieved by perturbing the ambient isotopy from †0 to †1, since there is a
distinction between the immersions ft and their images ft .F /D †t . This is relatively standard (and
indeed stated without proof in eg [7]): choose small disjoint closed disks Dxi

;Dyi
(i D 1; : : : ; n) in F,

centered at xi and yi , respectively. We can fix a family of coordinates on a closed tubular neighborhood
of gt .F / near the self-intersections such that, centered about gt .xi / D gt .yi /, we have a closed ball
Bi D gt .Dxi

/�gt .Dyi
/ intersecting gt .F / in

.gt .Dxi
/� f0g/[ .f0g �gt .Dyi

//

.gt .xi /� 0/� .0�gt .yi //
:

Now we may extend the isotopy†0!†1 that is the image of gt to an isotopy �t of†0[B1[� � �[Bn by
specifying that �t .g0.a/; g0.b//D .gt .a/; gt .b// for all a2Dxi

; b2Dyi
, sinceBi Dg0.Dxi

/�g0.Dyi
/.

Then �t .Bi /D gt .Dxi
/� gt .Dyi

/. Since the Bi are balls, the isotopy �t jSi Bi
extends to an ambient

isotopy  t of X. The composition  �1t �t then fixes Bi pointwise for each i .

Now, since †0\ .X n int.B1 t � � � tBn// is an embedded submanifold (whose boundary is not tangent
to the boundary of X n int.B1[ � � � [Bn/; ie †0\ .X n int.B1 t � � � tBn// is neat in the sense of [12])
whose boundary is fixed by  �1t �t , we may use usual isotopy extension to extend  �1t �t to an ambient
isotopy. Then, since  �1t is an ambient isotopy (and hence a diffeotopy starting at the identity map), we
conclude that �t extends to a diffeotopy starting at the identity map, ie an ambient isotopy.
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We conclude that our original ambient isotopy from †0 to †1 may be perturbed to another ambient
isotopy of †0 to †1 which satisfies property (2) of 1-standardness at all times.

(3) Note that both ascending and descending manifolds are parallel to rh, so, rather than counting
transverse intersections, we count the dimension of the space of line intersections (parallel to rh) of
these ascending and descending manifolds. (In other words, we count the dimension of the moduli space
of unparametrized flowlines of �rh from one critical or intersection point to another.) An n-dimensional
descending manifold and a .4�k/-dimensional ascending manifold thus have expected dimension

.n� 1/C ..4� k/� 1/� .4� 1/D n� k� 1

as a space of lines. For k � nC 1, this expected dimension is at most �2, so we conclude that we may
perturb †t (which by the previous item we see may be obtained by perturbing a path of immersions ft
in C.F /) to achieve property (3).

2.3.2 0-standard surfaces In Remark 2.23, we explained that the definition of 1-standardness comes
from studying generic 1-parameter families. That is, the conditions in Definition 2.22 are generically true
for 1-parameter families of surfaces. We now define a slightly more restrictive condition on the surfaces
we study, which we expect to be violated a finite number of times in a generic 1-parameter family.

Definition 2.25 We say that † is 0-standard if it is 1-standard and the following are true:

(1) The restriction hj† is Morse.

(2) Whenever p and q are either index 2 critical points of h, index 1 critical points of hj†, or self-
intersections of † (not necessarily of the same type), and p ¤ q, the descending manifold of p
is disjoint from the ascending manifold of q. In short: 2-dimensional descending manifolds are
disjoint from 2-dimensional ascending manifolds.

Remark 2.26 Roughly speaking, a surface † is 0-standard if its index 1 critical points (viewed as bands)
and self-intersections do not lie above each other, or above or below any index 2 critical points of h.
This is all with respect to rh; we are not discussing r.hj†/. These forbidden conditions, allowed in
a 1-standard surface, would cause a projection of † to a singular banded unlink diagram to not be well
defined, motivating the cup/cap moves, band swims, band/2-handle slides and swims. Most of the other
singular band moves are related to the choice of r.hj†/ (specifically the band slide, intersection/band slide
and pass, and intersection pass). Isotopy in E.K/ and slides over L1 correspond to horizontal isotopy.

Proposition 2.27 Let †t be an isotopy between 0-standard surfaces †0 and †1. After an arbitrarily
small perturbation of the isotopy †t , it is true that †t is 1-standard for all t , and 0-standard for all but
finitely many t .

Proof It follows from Proposition 2.24 that 1-parameter families†t of surfaces are generically 1-standard
for all t . We now consider the conditions of Definition 2.25 separately.

(1) This is well known, due to Cerf (see eg [9, Chapter 1, Section 2]).
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(2) A pair of complementary-dimension descending and ascending manifolds meet with expected
dimension �1 (as a space of lines parallel to rh). Therefore, property (2) is generically true at all
but finitely many times during a 1-parameter family of surfaces.

Proposition 2.28 Suppose † is 0-standard. Fix r.hj†) with the property that , for p and q distinct
index 1 points of hj† or self-intersections of †, the descending manifold of p with respect to r.hj†/ is
disjoint from the ascending manifold of q with respect to r.hj†/. Then there is a singular banded unlink
diagram D determined by †, rh and r.hj†/ up to isotopy and slides over the 1-handle circles L1.

Proof Since † is 0-standard (and hence 1-standard), we may vertically isotope † so that the minima
of hj† lie below h�1

�
3
2

�
, the maxima of hj† lie above h�1

�
5
2

�
, and the self-intersections/bands of † lie

in h�1
��
3
2
; 5
2

��
.

By assumption, the descending manifolds (using r.hj†/) of index 1 critical points of hj† end at index 0
points of hj† without meeting any index 1 points or self-intersections of †. Similarly, flowlines of
�r.hj†/ originating at self-intersections of † also end at index 0 points of hj† without meeting any
other index 1 critical points or self-intersections of †.

Now let S be the 1-skeleton of † determined by r.hj†/, ie the 1-complex with

(1) 0-cells at index 0 points of hj†,

(2) 1-cells along the descending manifolds of index 1 critical point of hj†,

(3) additional 1-cells consisting of pairs of flowlines of �r.hj†/ glued together at self-intersections
of †.

Isotope † vertically so that the index 1 critical points of hj† and self-intersections of † lie disjointly
in h�1

�
3
2

�
. (Here we are implicitly using the fact that, since † is 0-standard, these points do not lie

directly above one another nor above index 2 critical points of h.) Flatten † near h�1
�
3
2

�
to turn index 1

points of hj† into bands whose cores are contained in 1-cells of S.

Since † is 0-standard, the bands and self-intersections of †\h�1
�
3
2

�
are disjoint from the descending

manifolds of index 2 critical points of h, ie they are disjoint from the attaching circles L2 of the 2-handles
in K.

Then †\h�1
�
3
2

�
is a singular banded link .L;B/, where L� is isotopic to †\h�1

�
3
2
� "
�
, and LCB is

isotopic to†\h�1
�
3
2
C"
�
. We conclude that .L;B/ is well defined up to isotopy in h�1

�
3
2

�
n.descending

manifolds of index 2 critical points of h). Therefore, .K; L; B/ is well defined up to slides of L and B
over the dotted circles L1 of K.

Corollary 2.29 Let †0 and †1 be 0-standard surfaces. Suppose there is an isotopy †t from †0 to †1
that is 0-standard for all t , with r.hj†1

/ obtained from r.hj†0
/ by the isotopy-induced map on T†.

Then the singular banded unlink diagrams D0 and D1 for K0 and K1 produced by Proposition 2.28 are
related by isotopy in E.K/ and slides over L1.
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Figure 13: The cases of Proposition 2.30. At the left of each quadrant we draw a local model
about the flowline of �r.hj†1=2

/ that causes Proposition 2.28 to not apply. At the top right of
each quadrant, we draw a schematic of the projection of †1=2 to E.K/, where two bands, two
self-intersections, or one of each coincide. We draw arrows to indicate the two diagrams that arise
if we perturb †1=2 to be 0-standard.

We can improve Proposition 2.28 by considering the difference between two choices for r.hj†/. First
note that, if V0 and V1 are two such vector fields, then by considering the expected dimension of the
space of flowlines between critical points of a Morse function on a surface, we find that V0 and V1 are
isotopic through a sequence Vt of gradientlike vector fields for r.hj†/ with the property that, for all but
finitely many t , Vt satisfies the conditions of Proposition 2.28. We can take the exceptional Vt1 ; : : : ; Vtn
to each satisfy the conditions of Proposition 2.28 except for one disallowed flowline from an index 1
point or self-intersection to another (not necessarily the same type).

Proposition 2.30 Suppose Vt satisfies the conditions of Proposition 2.28 except for t ¤ 1
2

. Let D0

and D1 be the singular banded unlink diagrams obtained from † as in Proposition 2.28 using V0 and V1,
respectively. Then D0 and D1 are related by isotopy in E.K/, slides over L1, and possibly a band slide ,
intersection/band slide , intersection/band pass or intersection pass.

Proof Let p and q be the index 1 or self-intersection points in † with a flowline of �V1=2 from p to q.
The proof of Proposition 2.28 fails for †1=2 precisely because p lying above q in † causes indeterminacy
in the 1-skeleton S. There are then two choices (up to small isotopy through 0-standard surfaces) in how
to perturb † near p to obtain a 0-standard surface. See Figure 13. The resulting two singular banded
unlink diagrams differ by one of the following moves:

band slide
intersection/band slide
intersection/band pass

intersection pass

9>>>=>>>; if

8̂̂̂<̂
ˆ̂:
p and q are index 1 points
p is a self-intersection and q is an index 1 point
p is an index 1 point and q is a self-intersection
p and q are self-intersections
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Letting Dt denote the diagram obtained using Vt for t ¤ 1
2

, we conclude that D1=2�" and D1=2C"
are either isotopic or isotopic after one of the above moves. The same is then true of D0 and D1 by
Corollary 2.29.

The following proposition and corollary now follow immediately from Propositions 2.28 and 2.30:

Proposition 2.31 Suppose† is 0-standard. Then there is a singular banded unlink diagram D determined
by †;rh up to isotopy in E.K/, slides over L1, band slides , intersection/band slides , intersection/band
passes and intersection passes.

Corollary 2.32 Let †0 and †1 be 0-standard surfaces. Suppose there is an isotopy †t from †0 to †1
that is 0-standard for all t , with r.hj†1

/ obtained from r.hj†0
/ by the isotopy-induced map on T†.

Then D0 and D1 are related by isotopy in E.K/, slides over L1, band slides , intersection/band slides ,
intersection/band passes and intersection passes.

2.4 Conclusion: uniqueness of singular banded unlink diagrams

2.4.1 Singular band moves and isotopy We are now in a position to prove our main results.

Theorem 2.33 Let †0 and †1 be 0-standard self-transverse immersed surfaces. Suppose there exists an
isotopy †t such that †t is 1-standard for all t , and 0-standard for all t ¤ 1

2
.

Set Dt WD D.†t /. Then D0 and D1 are related by singular band moves.

We break Theorem 2.33 into Propositions 2.34–2.37, in which we separately consider different ways in
which †1=2 may fail to be 0-standard.

Proposition 2.34 Suppose that †1=2 would be 0-standard if not for a single birth or death degeneracy.
Then D0 and D1 are related by the singular band moves appearing in Proposition 2.30 and possibly a cup
or cap move.

Proof Combined with Corollary 2.32, this is a standard fact about the local model of a degenerate critical
point appearing in a generic 1-parameter family of Morse functions. See eg [1].

Proposition 2.35 Suppose that †1=2 would be 0-standard if not for the descending manifold of p with
respect to rh meeting the ascending manifold of q with respect to rh, where p and q are each index 1
critical points of hj† or self-intersections of †, and their ascending/descending manifolds intersect in their
interiors (rather than in just †, as in Proposition 2.30). Then D0 and D1 are related by the singular band
moves appearing in Proposition 2.30 and possibly a band swim , intersection/band swim , upside-down
intersection/band swim or intersection swim.

Proof The proof of Proposition 2.31 fails for †1=2 because, when we attempt to project the 1-skeleton
of † to h�1

�
3
2

�
, the edges corresponding to p and q will intersect. There are then two choices (up to

small isotopy through 0-standard surfaces) in how to perturb † near p to obtain a 0-standard surface. See
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Figure 14: The cases of Proposition 2.35. At the left of each quadrant we draw a local model
about the flowline that causes †1=2 to not be 0-standard. At the top right of each quadrant, we
draw a schematic of the projection of †1=2 to E.K/, where two bands, two self-intersections, or
one of each coincide. We draw arrows to indicate the two diagrams that arise if we perturb †1=2
to be 0-standard.

Figure 14. The resulting two singular banded unlink diagrams differ by one of the following moves:

band swim
intersection/band swim

upside-down intersection/band swim
intersection swim

9>>>=>>>; if

8̂̂̂<̂
ˆ̂:
p and q are index 1 points
p is a self-intersection q is an index 1 point
p is an index 1 point q is a self-intersection
p and q are self-intersections

We conclude that D1=2�" and D1=2C" are either isotopic or isotopic after one of the above moves. The
same is then true of D0 and D1 (up to the relevant moves) by Corollary 2.32.

Proposition 2.36 Suppose that †1=2 would be 0-standard if not for the descending manifold of p
intersecting the ascending manifold of q, where p is an index 1 critical point of hj† or a self-intersection
of † and q is an index 2 critical point of h. Then D0 and D1 are related by the singular band moves
appearing in Proposition 2.30 and possibly a band/2-handle slide or intersection/2-handle slide.

Proof The proof of Proposition 2.31 fails because we cannot project the edge of the 1-skeleton of †
corresponding to p to the level h�1

�
3
2

�
. There are then two choices (up to small isotopy through 0-standard

surfaces) in how to perturb † near p to obtain a 0-standard surface, with resulting singular banded unlink
diagrams differing by a slide over a 2-handle. That is, the resulting two singular banded unlink diagrams
differ by one of the following moves:

band/2-handle slide
intersection/2-handle slide

�
if

�
p is an index 1 point
p is a self-intersection

We conclude that D1=2�" and D1=2C" are either isotopic or isotopic after one of the above moves. The
same is then true of D0 and D1 (up to the relevant moves) by Corollary 2.32.
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Proposition 2.37 Suppose that †1=2 would be 0-standard if not for the descending manifold of p
intersecting the ascending manifold of q, where p is an index 2 critical point of h and q is either an
index 1 critical point of hj† or a self-intersection of †. Then D0 and D1 are related by the singular band
moves appearing in Proposition 2.30 and possibly a band/2-handle swim or intersection/2-handle swim.

Proof The proof of Proposition 2.31 fails for†1=2 because after we project the 1-skeleton of† to h�1
�
3
2

�
,

the edge corresponding to q will intersect the component of L2 � K corresponding to p. There are then
two choices (up to small isotopy through 0-standard surfaces) in how to perturb † near p to obtain a
0-standard surface, with resulting singular banded unlink diagrams differing by a swim through a 2-handle
attaching circle. That is, the resulting two singular banded unlink diagrams differ by one of the following
moves:

band/2-handle swim
intersection/2-handle swim

�
if

�
p is an index 1 point
p is a self-intersection

We conclude that D1=2�" and D1=2C" are either isotopic or isotopic after one of the above moves. The
same is then true of D0 and D1 (up to the relevant moves) by Corollary 2.32.

This completes the proof of Theorem 2.33, since Propositions 2.34–2.37 cover all of the cases in which
†1=2 is 1-standard and not 0-standard (of course, if †1=2 is 0-standard then Theorem 2.33 follows from
Corollary 2.32) except for the case that there are flowlines of �rh between index 2 critical points.
However, h and rh are fixed during the isotopy, so this does not happen.

Corollary 2.38 Let †0 and †1 be 0-standard self-transverse immersed surfaces. Suppose there exists
an isotopy †t and values t1 < t2 < � � �< tn 2 .0; 1/ such that †t is 0-standard for all t … ft1; t2; : : : ; tng,
and †ti is 1-standard for each i D 1; 2; : : : ; n.

Let Dt WD D.†t /. Then D0 and D1 are related by a sequence of singular band moves.

Proof For each i D 1; : : : ; n� 1, let si be a value in .ti ; tiC1/. By Corollary 2.32:

� D0 is related to Ds1 by singular band moves.

� Dsi is related to DsiC1
by singular band moves for i D 1; : : : ; n� 1.

� Dsn�1
is related to D1 by singular band moves.

We conclude that D0 and D1 are related by singular band moves.

2.4.2 Proof of uniqueness theorems We finally prove that singular banded unlink diagrams of isotopic
(resp. regularly homotopic, homotopic) surfaces exist for arbitrary immersed self-transverse surfaces
and are well defined up to singular band moves. At this point, not much is left to do — the material in
Section 2.4 is essentially the whole proof that diagrams exist and are unique up to singular band moves.

Algebraic & Geometric Topology, Volume 25 (2025)



Band diagrams of immersed surfaces in 4-manifolds 1757

Theorem 2.39 Let † be a self-transverse smoothly immersed surface in X. Then there is a singular
banded unlink diagram D.†/, well defined up to singular band moves , such that † is isotopic to the
closed realizing surface for D.†/. Moreover , if † is isotopic to †0, then D.†/ and D.†0/ are related by
singular band moves.

We say that D.†/ is a singular banded unlink diagram for †, or simply that D.†/ is a diagram for †.

Proof Via a small perturbation, † is isotopic to a 0-standard surface †0. Set D.†/ WDD.†0/. To show
that D.†/ is well defined, suppose that †1 is another 0-standard surface that is isotopic to †, and hence
isotopic to †0. By Proposition 2.27, there is an isotopy †t from †0 to †1 such that †t is 1-standard
for all t and 0-standard for all but finitely many t . By Corollary 2.38, D.†0/ and D.†1/ are related by
singular band moves.

Since this argument applies to any 0-standard surface †1 isotopic to †, we conclude that, if † and †0

are isotopic, then D.†/ and D.†0/ are related by singular band moves.

Corollary 2.40 Let D and D0 be singular banded unlink diagrams of surfaces † and †0 immersed in
diffeomorphic 4-manifolds X and X 0. There is a diffeomorphism taking .X;†/ to .X 0; †0/ if and only if
there is a sequence of singular band moves and Kirby moves taking D to D0.

In addition, we can use these moves to describe homotopies of surfaces in terms of singular banded unlink
diagrams.

Corollary 2.41 Let D and D0 be singular banded unlink diagrams for surfaces † and †0 immersed in X.
If † and †0 are homotopic , then D and D0 are related by a finite sequence of singular band moves and
the following moves (illustrated in Figure 15):

� introducing or canceling two oppositely marked vertices (a “finger move” or “Whitney move” ), as
illustrated ;

� replacing a nugatory crossing with a vertex or vice versa (a “cusp move” ), as illustrated.

In addition , if † and †0 are regularly homotopic , then D and D0 are related by a finite sequence of
singular band moves , finger moves and Whitney moves (ie a sequence of the given moves that does not
include any cusp moves).

Proof Say † and †0 are homotopic and have self-intersection numbers s and s0, respectively. By work
of Hirsch [11] and Smale [31], † and †0 are regularly homotopic if and only if s D s0.

After performing a cusp move on D, a realizing surface for the resulting diagram has self-intersection
s˙ 1, with sign depending on the choice of cusp move. Perform js0� sj cusp moves of the appropriate
sign to D to obtain a diagram D2 whose realizing surface †2 has self-intersection number s0. Now †2

and †0 are regularly homotopic.
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finger move

Whitney move

cusp move

cusp move

Figure 15: The new moves describing homotopy of a surface in a 4-manifold. There are two
versions of the cusp move. One involves a positive self-intersection and one involves a negative
self-intersection of the described immersed surface. To describe regular homotopy we only need
finger and Whitney moves.

We recommend the reference [7] for exposition on regular homotopy of surfaces. In brief, there exists a
sequence of finger moves on †2 along framed arcs �1; : : : ; �n yielding a surface †3, and a sequence of
finger moves on †0 along framed arcs �01; : : : ; �

0
m yielding a surface †00, so that †3 and †00 are ambiently

isotopic.

We isotope �1 to lie completely in h�1
�
3
2

�
(which may involve isotopy of †2 inducing singular band

moves on its singular banded unlink diagram according to Theorem 2.39) and then shrink �1 to be short
and contained in a neighborhood identical to the far left of Figure 15. Twist the diagram as necessary so

F

int/band passes

isotopy

F

isotopy

Figure 16: There are two seemingly different finger moves (differing in the decorations on the
relevant vertices), but they yield singular banded unlink diagrams that differ by singular band moves.
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that the framing of �1 is untwisted. Then we perform a finger move to D2 in that neighborhood. Repeat
for each i D 2; : : : ; n, and call the resulting diagram D3. A realizing surface for D3 is isotopic to †3.

Now repeat for †0 by performing singular band moves and finger moves to its diagram D0 until obtaining
a diagram D00 whose realizing surface is isotopic to †00. Since †00 and †3 are isotopic, by Theorem 2.39
it follows that D3 and D00 are related by singular band moves.

We thus conclude that D can be transformed into D0 by a sequence of singular band moves, cusp moves,
finger moves and Whitney moves (which are the inverses to finger moves).

Remark 2.42 When performing a finger move to a singular banded unlink diagram, there are seemingly
two choices (related by a local symmetry) of how to mark the new vertices. However, the choices yield
diagrams related by singular band moves, as shown in Figure 16.

3 Bridge trisections

3.1 Bridge trisections of embedded surfaces

In Section 3.2, we prove that self-transverse immersed surfaces in 4-manifolds can be put into bridge
position, a notion introduced for embedded surfaces by Meier and Zupan [26; 27]. Meier and Zupan
showed that a bridge trisection of a surface in S4 (with respect to a standard trisection of S4) is unique up to
perturbation [26], using the work of Swenton [32] and Kearton and Kurlin [22] on banded unlink diagrams
in S4. The authors of this paper then used a general version of this theorem in arbitrary 4-manifolds to
show that bridge trisections of surfaces in any trisected manifold are unique up to perturbation. In what
follows, we will apply Theorem 2.39 to prove an analogous uniqueness result for bridge trisections of
immersed surfaces. In this section, we will review the situation where the surface is embedded.

First, we recall the definition of a trisection of a closed 4-manifold. Similar exposition can be found
in [14]. We do not require much knowledge of trisections; for more detailed exposition, the interested
reader may refer to [8].

Definition 3.1 [8] Let X4 be a connected, closed, oriented 4-manifold. A .g; k/-trisection of X4 is a
triple .X1; X2; X3/ where

(i) X1[X2[X3 DX
4,

(ii) Xi Š \ki
S1 �B3,

(iii) Xi \Xj D @Xi \ @Xj Š \g S
1 �B2,

(iv) X1\X2\X3 Š†g ,

where †g is a closed orientable surface of genus g. Here, g is an integer while kD .k1; k2; k3/ is a triple
of integers. If k1 D k2 D k3, then the trisection is said to be balanced.
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Briefly, a trisection is a decomposition of a 4-manifold into three elementary pieces, analogous to a
Heegaard splitting of a 3-manifold into two elementary pieces.

Theorem 3.2 [8] Any smooth , connected , closed , oriented 4-manifold X4 admits a trisection. More-
over , any two trisections of X4 are related by a stabilization operation.

Note that, from the definition, †g is a Heegaard surface for @Xi , inducing the Heegaard splitting
.Xi\Xj ; Xi\Xk/. By Laudenbach and Poénaru [24], X4 is specified by its spine, †g[

S
i¤j .Xi\Xj /.

Therefore, we usually describe a trisection .X1; X2; X3/ by a trisection diagram .†g I˛; ˇ; /. Here each
of ˛, ˇ and  consist of g independent curves on †g (abusing notation to take †g as both an abstract
surface and the surface X1\X2\X3 in X ), which bound disks in the handlebodies X1\X2, X2\X3
and X1\X3, respectively. Given .X1; X2; X3/, such a diagram is well defined up to slides of ˛, ˇ and 
and automorphisms of †g .

Definition 3.3 Let X4 be a 4-manifold with trisection T D .X1; X2; X3/. We say that an isotopy ft
of X4 is T-regular if ft .Xi /DXi for each i D 1; 2; 3 and for all t .

Definition 3.4 The standard trisection of S4 is the unique .0; 0/-trisection .X01 ; X
0
2 ; X

0
3 /. View S4 D

R4 [1, with coordinates .x; y; r; �/ on R4, where .x; y/ are Cartesian planar coordinates and .r; �/
are polar planar coordinates. Up to isotopy, X0i D

˚
� 2

�
2
3
�i; 2

3
�.i C 1/

�	
[1. Then X0i Š B4,

X0i \X
0
iC1 D

˚
� D 2

3
�.i C 1/

	
[1Š B3, and X01 \X

0
j \X

0
k
D fr D 0g[1Š S2.

From a trisection .X1; X2; X3/ of X4, we can obtain a handle decomposition of X4 in which X1 contains
the 0- and 1-handles, X2 is built from .X1\X2/� I by attaching the 2-handles, and X3 contains the 3-
and 4-handles. The following definition encapsulates this construction:

Definition 3.5 Let T D .X1; X2; X3/ be a trisection of a 4-manifold X4. Let h W X4 ! Œ0; 4� be a
self-indexing Morse function. We say that h is T-compatible if all of the following are true:

(i) X1 D h
�1
��
0; 3
2

��
.

(ii) X2 � h
�1
��
3
2
; 5
2

��
contains all of the index 2 critical points of h.

(iii) X1[X2 contains the descending manifolds of all index 2 critical points of h.

Given any trisection T, there always exists a Morse function compatible with T (see [8] or [25]).

Meier and Zupan used trisections to give a new way of describing a surface smoothly embedded in a
4-manifold.

Definition 3.6 [26; 27] Let T D .X1; X2; X3/ be a trisection of a closed 4-manifold X4. Let S be
a surface embedded in X4. We say that S is in .b; c/-bridge position with respect to T if, for every
i ¤ j 2 f1; 2; 3g:
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X1\X2X3\X1 X2\X3 X1\X2X3\X1 X2\X3

S S 0

�

@� @�

Figure 17: Left: a surface S in .b; c/-bridge position with respect to a trisection T. We draw a
neighborhood of an intersection of S with the central surface of T. Right: we perturb S to obtain
a surface S 0 in .c0; bC1/-bridge position.

(i) S \Xi is a disjoint union of ci boundary parallel disks.

(ii) S \Xi \Xj is a trivial tangle of b arcs.

Here b is an integer and c D .c1; c2; c3/ is a triple of integers. Note that �.S/D
P
ci � b.

Theorem 3.7 [26; 27] Let S be a surface embedded in a 4-manifold X4 with trisection T D

.X1; X2; X3/. Then , for some c and b, S can be isotoped into .b; c/-bridge position with respect
to T. We may take c1 D c2 D c3.

Because a collection of boundary parallel disks in \.S1�B3/ is uniquely determined by its boundary (up
to isotopy rel boundary), a surface S in bridge position is determined up to isotopy by S\

�S
i¤j Xi\Xj

�
.

There is a natural perturbation of a surface in bridge position, analogous to perturbation of a knot in bridge
position within a 3-manifold. We define the simplest version of Meier and Zupan’s original perturbation
operation [26; 27].

Definition 3.8 Let S �X4 be a surface in .b; c/-bridge position with respect to TD .X1; X2; X3/. Let
S 0 be the surface obtained from S as in Figure 17. In words, we take a small disk D contained in S \X1
whose boundary consists of an arc ı1 in the interior of X1, an arc ı2 in X1\X2, and an arc ı3 in X3\X1.
We take a parallel copy � of D pushed off S away from ı1, so � meets S in the arc ı1 � @� and the
remaining boundary of � is an arc ı0 in @X1 that meets X1\X2\X3 transversely in one point. Using
the direction from which we obtained � from D, we frame � and isotope S along � to introduce two
more intersection points between S and X1\X2\X3. We call the resulting surface S 0 and say that S 0 is
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obtained from S by elementary perturbation. We likewise say that S is obtained from S 0 by elementary
deperturbation.

We may exchange the roles of X1, X2 and X3 cyclically when performing this operation, ie alternatively
obtain S 0 from this compression operation in either X2 or X3. We still say S 0 is obtained from S by
elementary perturbation and that S is obtained from S 0 by elementary deperturbation.

Proposition 3.9 [27, Lemma 5.2] Let S be a surface in .b; c/-bridge position with respect to a trisection
TD .X1; X2; X3/, with c D .c1; c2; c3/. Let S 0 be obtained from S by elementary perturbation , using
a disk in Xi . Then S 0 is in .c0; bC1/-bridge position with respect to T, with c0j D cj for j ¤ i and
c0i D ci C 1.

In previous work, the authors of this paper showed that any two bridge trisections of a surface are related
by elementary perturbations.

Theorem 3.10 [14] Let S and S 0 be surfaces in bridge position with respect to a trisection T of a
4-manifold X4. Suppose S is isotopic to S 0. Then S can be taken to S 0 by a sequence of elementary
perturbations and deperturbations , followed by a T-regular isotopy.

When T is the standard trisection of S4, Theorem 3.10 is a result of Meier and Zupan [26].

3.2 Basic definitions for singular links and immersed surfaces

In Definition 3.6 of a bridge trisection of an embedded surface, we cut a 4-manifold into simple pieces so
that an embedded surface is cut into systems of boundary-parallel disks. To describe immersed surfaces,
we need to describe this notion with slightly different language.

Definition 3.11 Let C1; : : : ; Ck be arcs properly immersed in a 3-manifold M 3. Assume that all
intersections (including self-intersections) of C1; : : : ; Ck are isolated points that are not tangencies. Let
V D .@M 3/� I be a collar neighborhood of @M 3 and let h W V ! I be projection onto the second factor.

We say that .C1; : : : ; Ck/ is a trivial immersed tangle if the following are satisfied:

(i) Each Ci is contained in V.

(ii) All self-intersections of Ci and intersections of Ci with Cj are contained in the interior of M.

(iii) There is an immersed tangle .C 01; : : : ; C
0
k
/ that is isotopic rel boundary to .C1; : : : ; Ck/ so that

hjC 0i is Morse with a single critical point for all i .

Definition 3.12 LetD1; : : : ;Dk be 2-dimensional disks properly immersed in a 4-manifoldX4. Assume
that all intersections (including self-intersections) of D1,: : :, Dk are isolated, transverse intersections
contained in @X4 (so @

�S
Di
�

is a singular link in @X ). Let V D @X � I be a neighborhood of @X and
let h W V ! I be projection onto the second factor.
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H1

F

H2

Figure 18: A singular link in bridge position.

We say that .D1; : : : ;Dk/ is a trivial immersed disk system if the following are satisfied (up to isotopy
rel boundary):

(i) Each Di is contained in V.

(ii) The restriction hjDi is Morse with a single critical point for all i .

Trivial immersed tangles and disk systems are the immersed analogue to systems of boundary parallel
embedded tangles and disks. With immersed tangles we can easily define an analogue of bridge position
for singular links.

Definition 3.13 Let L be a singular link in a 3-manifold M with a Heegaard splitting .H1;H2/. Let
F WDH1\H2.

We say that L is in bridge position with respect to F if L\Hi is a trivial immersed tangle for i D 1; 2.
See Figure 18. If .L; �/ is a marked singular link, then we say that .L; �/ is in bridge position if L is in
bridge position.

We can perturb immersed tangles just as we perturb embedded tangles, but we must also account for
vertices.

Definition 3.14 Let L be a marked singular link in a 3-manifold M with Heegaard splitting .H1;H2/.
Suppose L is in bridge position with respect to † WDH1[H2.

Let L0 be a marked singular link obtained from L by perturbation near †, as in Figure 19. Note that we
allow up to one vertex of L to be between the original intersection of L with † and the newly created
pair of intersections. Then we say L0 is obtained from L by elementary perturbation, and L is obtained
from L0 by elementary deperturbation.
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L

†

L0

perturbation

L

†

L0

perturbation

Figure 19: An elementary perturbation of a marked singular link in bridge position.

Let L00 be a marked singular link obtained from L by moving a vertex in L through † as in the local
model shown in Figure 20. Then we say L00 is obtained from L (and vice versa) by vertex perturbation.

Theorem 3.15 Let L and L0 be isotopic marked singular links in a 3-manifold M with Heegaard
splitting .H1;H2/. Assume L and L0 are in bridge position with respect to † WDH1\H2. Then there
exists a marked singular link L00 that can be obtained from L and from L0 by sequences of elementary
perturbations , vertex perturbations and isotopies fixing † setwise.

Proof When L and L0 are nonsingular, this is a theorem of Hayashi and Shimokawa [10]. We will apply
a version of this theorem for nonsingular banded links due to Meier and Zupan [26; 27] by using the
following observation. First, recall from Section 2.1 that, if L is a marked singular link, then LC denotes
the nonsingular link obtained by positively resolving the vertices of L.

Observation 3.16 There exist disjoint framed arcs a1; : : : ; an with endpoints onLC such that contracting
LC along a1; : : : ; an yields L.

Similarly, let a01; : : : ; a
0
n be framed arcs with endpoints onL0C such that contractingL0C along a01; : : : ; a

0
n

yields L0.
L

†

L0

vertex
perturbation

Figure 20: A vertex perturbation of a marked singular link in bridge position.
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Figure 21: Two ..2; 1; 1/; 2/-bridge trisections of immersed 2-spheres in S4. Left: this 2-sphere
has a pair of self-intersections of opposite sign. Right: this 2-sphere has a single self-intersection.

Now, by Meier and Zupan [26; 27], there exists a link J that can be obtained from LC and from L0
C

by elementary perturbations and isotopies fixing † setwise. Moreover, these isotopies and perturbations
may be chosen to carry ai and a0i to framed arcs bi and b0i , respectively, with endpoints on J, so that bi
and b0i are parallel to † with surface framing, and are parallel to each other (though possibly on opposite
sides of †). In Meier and Zupan’s construction, during this sequence of perturbations and isotopies
of LC (resp. L0C), ai (resp. a0i ) never intersect †, so these perturbations and isotopies may be achieved
by perturbations and isotopies of L (resp. L0). Let yJ and yJ 0 be the marked singular links obtained by
contracting J along

S
bi and

S
b0i , respectively, and with markings induced by those of L and L0. Then

yJ 0 can be transformed into yJ by isotopy fixing † and a vertex perturbation for each pair ai ; a0i separated
in different components of M n†. Therefore, the claim holds with L00 D yJ.

3.3 Bridge trisections of immersed surfaces

We now use the definitions from Section 3.2 to define bridge trisections of self-transverse immersed
surfaces.

Definition 3.17 Let T D .X1; X2; X3/ be a trisection of a closed 4-manifold X4. Let S be a self-
transverse immersed surface in X4. We say that S is in .b; c/-bridge position with respect to T if, for
each i ¤ j 2 f1; 2; 3g:

(i) S \Xi is a trivial immersed disk system of ci disks.

(ii) S \Xi \Xj is a trivial immersed tangle of b strands.

Here, b is a positive integer and c D .c1; c2; c3/ is a triple of positive integers.

In Figure 21, we give some small examples of bridge trisections of 2-spheres immersed in S4.
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Xi \Xj Xj \Xk Xk \Xi

† † †

vertex perturbation

† † †

Figure 22: A vertex perturbation of a triplane diagram.

There is again a natural notion of perturbing an immersed surface in .b; c/-bridge position. More precisely,
the notion of perturbing an embedded surface in bridge position works perfectly well for an immersed
surface in bridge position. We write the definition below, believing that the value of transparency outweighs
the cost of redundancy.

Definition 3.18 Let S be a self-transverse immersed surface in bridge position with respect to a trisection
TD .X1; X2; X3/. In Figure 17, we depict a small neighborhood of a point in S\† for† WDX1\X2\X3.
Let S 0 be the surface obtained from S as in Figure 17. We say that S 0 is obtained from S by elementary
perturbation, and that S is obtained from S 0 by elementary deperturbation.

If S is in bridge position with respect to a trisection TD .X1; X2; X3/, then elementary perturbation and
T-regular isotopy cannot move a self-intersection of S from Xi to Xj for i ¤ j. Thus, we introduce one
new kind of perturbation for immersed surfaces in bridge position, based on the most elementary way
one might move a self-intersection of S from Xi to Xj .

Definition 3.19 Let v be a vertex of the singular link S \Xi \XiC1 for some i (where the indices are
understood to be taken mod 3), so that v is a self-intersection of S. Suppose v has a neighborhood as in
Figure 22, so that v is near † WDX1\X2\X3. We may isotope S to move v into † and then into either
XiC1\XiC2 or Xi�1\Xi , producing a new surface S 0 in .b; c/-bridge position. See Figures 22 and 23.
We say that S 0 is obtained from S (and vice versa) by vertex perturbation.

Remark 3.20 Let S be an immersed surface in .bI c1; c2; c3/-bridge position with respect to T D

.X1; X2; X3/.

(1) If S 0 is obtained from S by elementary perturbation along a disk inXi , then S 0 is in .bC1I c01; c
0
2; c
0
3/-

bridge position with c0i D ci C 1 and c0j D cj for j ¤ i .

(2) If S 0 is obtained from S by vertex perturbation, then S 0 is in .bI c1; c2; c3/-bridge position.
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Xj

Xi

Xk
†

Xi \Xj Xj \Xk Xk \Xi

† † †

vertex perturbation

Xj

Xi

Xk
†

† † †

Figure 23: Pushing a self-intersection point from Xi \Xj to Xj \Xk during a vertex perturbation.

Definition 3.21 If a surface S 0 in bridge position with respect to a trisection T is obtained from a
surface S in bridge position with respect to T by a sequence of elementary and vertex perturbations, then
we simply say that S 0 is obtained from S by perturbation (with T implicit). If S 0 is obtained from S by a
sequence of elementary perturbations and deperturbations and vertex perturbations, then we say that S 0 is
obtained from S (or “related to S”) by perturbation and deperturbation.

Theorem 3.22 Let S be a self-transverse immersed surface in a 4-manifold X4 with trisection T D

.X1; X2; X3/. Then , for some c and b, S can be isotoped into .b; c/-bridge position with respect to T.

Proof Let h be a self-indexing Morse function of X4 that is T-compatible. Let .L;B/ be a singular
banded unlink diagram for S, so L is a singular link in M WD h�1

�
3
2

�
, and B is a set of bands for L in M.

Let H1 WDX3\X1 and H2 WDX1\X2, so that † WDH1\H2 is a Heegaard surface for M.
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(i) .K;L;B/

L B

†

H2
�1

H1

(ii) B �H2 parallel to †

L

B
†

H2
�1

H1

(iii) L in bridge position with respect to †

L

B
†

H2

�1

H1

(iv) extra perturbations at @B

L

B †

H2
�1

H1

H1

H1 DX3\X1
(change markings)

H2 DX1\X2 H3 DX2\X3

�1

Figure 24: We illustrate how a surface that realizes a banded unlink diagram .K; L; B/ may be
isotoped to lie in bridge position. See the proof of Theorem 3.22.
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By dimensionality, we may isotope L;B to be contained in †� Œ�1; 1��M (ie we isotope L and B to
avoid a 1-skeleton of H1 and H2), with †� Œ�1; 0��H1; †� Œ0; 1��H2. Isotope L so that the vertices
of L are disjoint from †, and so that B consists of short straight bands parallel to † in H2 that are far
from each other, as in Figure 24(ii). Let � W †� Œ0; 1�! Œ0; 1� be the projection, and perform a small
isotopy of L so that �jL is Morse. Isotope the index 0 critical points of �jL vertically with respect to �
to be contained in H1, and the index 1 critical points of �jL vertically with respect to � to be contained
in H2, isotoping horizontally first if necessary to avoid introducing self-intersections of L or intersections
of L with B. Now L is in bridge position with respect to †. Perturb L again near @B as in Figure 24(iv),
and isotope all bands in B to lie in H2.

By Theorem 2.39, S is isotopic to S 0 WD†.L;B/. We investigate the intersections of S 0 with the pieces
of T:

(i) S 0 \ X1 D S 0 \ h�1
�
3
2

�
consists of the minimum disks of S 0. All self-intersections of S 0 are

contained in @X1.

(ii) S 0 \ X2 contains the index 1 critical points of hjS 0 . This surface is built from the singular
tangle L\H2 by extending vertically and then attaching bands according to B. By construction,
these bandings are trivial and the components of S 0 \X2 are boundary-parallel away from the
intersections.

(iii) S 0\X3 contains the maximum disks of hjS 0 . In particular, .X3; S 0\X3/ can be strongly deformation
retracted to

�
h�1

��
5
2
; 4
��
; S 0\ h�1

��
5
2
; 4
���

.

(iv) S 0\X1\X2 D L\H2.

(v) S 0\X2\X3 is equivalent to the tangle obtained from LC\H2 by surgery on B.

(vi) S 0\X3\X1 D L\H1. Note the reversed orientation; this is because H1 is oriented as being in
the boundary of X1, but X3\X1 is oriented as the boundary of X3.

We conclude that S 0 is in .b; c/-bridge position with respect to T for some b and c.

3.4 Bridge splittings of singular banded links

The proof of Theorem 3.22 motivates the following definition:

Definition 3.23 Let L be a singular link in a 3-manifold M, and let B D b1; : : : ; bn be a set of bands
for L. Let F be a Heegaard surface for M. We say that the singular banded link .L;B/ is in bridge
position with respect to F if L is in bridge position with respect to F, and each band bi is contained in a
3-ball Ui as in Figure 25, with Ui \Uj D∅ for i ¤ j.

The proof of Theorem 3.22 can be broken down into the following two lemmas, which are useful to state
directly:

Lemma 3.24 Let L be a singular link in a 3-manifold M, and let B be a set of bands for L. Fix a
Heegaard surface F for M. Then .L;B/ can be isotoped to lie in bridge position with respect to F.
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F

Figure 25: If a singular banded link .L;B/ is in bridge position with respect to a Heegaard
surface F, then every band in B has a neighborhood as pictured here. That is, every band in B has
a neighborhood U containing two components C1; C2 of L nF (on which B has ends), meeting
F in a disk, and not meeting any other bands in B or other components of L n F. Moreover,
C1[C2[B may be isotoped rel @.C1[C2/ in U to lie in F.

H2

H1

X1\X2 X2\X3 X3\X1

@X1 @X2 @X3

slightly inside X1 slightly inside X2 slightly inside X3

Figure 26: Top row: part of a singular banded unlink in bridge position. Second row: we obtain
the singular tangles T1, T2 and T3 as in Definition 3.26. Third row: the singular links that are
the intersection of the associated bridge trisected surface with @X1, @X2 and @X3. Bottom row:
we draw the resolutions of these tangles in the interiors of X1, X2 and X3. Note that vertices in
Xi \XiC1 are resolved negatively into Xi , while vertices in Xi�1 \Xi are resolved positively
into Xi .
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Lemma 3.25 Let T D .X1; X2; X3/ be a trisection of a 4-manifold X4. Let h be a T-compatible
Morse function on X4, and K a Kirby diagram induced by h and a gradientlike vector field rh. Then
H1 D X3 \X1 and H2 D X1 \X2 give a Heegaard splitting .H1;H2/ for h�1

�
3
2

�
, in which † WD

H1\H2 �E.K/ is a Heegaard surface.

Suppose a banded unlink .K; L; B/ is in bridge position with respect to †. Then a realizing surface
†.K; L; B/ is in bridge position with respect to T.

Definition 3.26 Let S be a self-transverse immersed surface in a 4-manifold X4 with trisection TD

.X1; X2; X3/. Assume S is in .b; c/-bridge position. We call the triple of singular marked tangles

.T1; T2; T3/D .S \X1\X2; S \X2\X3; S \X3\X1/ a bridge trisection diagram of S. The markings
of each tangle should be chosen so that:

� In Xi , cross-sections of S are the negative resolution of S \Xi \XiC1.

� In Xi , cross-sections of S are the positive resolution of S \Xi�1\Xi .

Note that we choose the marking convention to be symmetric with respect to the trisection, even though
in the construction of Theorem 3.22, we used a Morse function h in which the pieces X1, X2 and X3
were not symmetric. If .L;B/ is a singular banded unlink diagram for S and we follow the construction
of Theorem 3.22, then we obtain a bridge trisection diagram .T1; T2; T3/ of S with:

(i) T1 D L\H2 with markings agreeing with those of L.

(ii) T2 D .L\H2/
C

B .

(iii) T3 D L\H1 with markings opposite those of L.

We include a local example in Figure 26.

From a bridge trisection diagram of S, we can reconstruct a surface that is ambiently isotopic to S as
usual. For convenience (to mirror the construction in Theorem 3.22), we assume all self-intersections lie
in H1 and H2 (ie in @X1 and not in X2\X3).

Lemma 3.27 Let S be a self-transverse immersed surface in a 4-manifold X4 that is in bridge position
with respect to a trisection TD .X1; X2; X3/. Assume that S has no self-intersections in X2\X3.

Let h be a T-compatible Morse function on X4, and fix a gradientlike vector field rh inducing a Kirby
diagram K. Then there is a singular banded unlink diagram .K; L; B/ such that .L;B/ is in bridge
position with respect to the Heegaard surface †DX1\X2\X3 �E.K/, and S is T-regularly isotopic
to the surface †.K; L; B/.

Proof Isotope S to be 0-standard (with respect to h;rh). Since S is in bridge position, we may take
this isotopy to be T-regular.

Let L WD S \ h�1
�
3
2

�
. Recall h�1

�
3
2

�
D @X1 D H1 [H2, where H1 D X3 \X1 and H2 D X1 \X2.

Then L is a singular link whose vertices are either in H1 or H2. Mark L so that the negative resolutions
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of the vertices in H1 and the positive resolutions of the vertices in H2 correspond to the resolutions of
the immersed disk system S \X1. Then L is a marked singular link and L� is an unlink.

Now S\X2 is a trivial immersed disk system with all intersections inX1\X2. Let zX2 be obtained fromX2

by deleting a small neighborhood of each intersection, so that zX2 is still a 4-dimensional 1-handlebody,
but S \ zX2 is a trivial embedded disk system D. Let zH2 denote the closure of .@ zX2/ n .X2\X3/.

Now D is a collection of boundary parallel disks in zX2, and @ zX2 has a Heegaard splittings ( zH2; X2\X3/,
which in respect to @D is in bridge position. We proceed as in [26, Lemma 3.3]: For each component
Di of D, let ai be one component of @D n .X2\X3/. Then let yi be an arc in @ zX2 parallel to @Di n ai
with endpoints on @D, with framing induced by Di . Isotope yi in @X2 into the Heegaard surface for @ zX2,
twisting yi around @D as necessary so that the framing of yi agrees with the framing induced by the
Heegaard surface. Finally, project yi to @X2, push slightly into H2, and thicken (according to the framing
of yi ) to obtain a band attached to S \H2 (ie a band bi in h�1

�
3
2

�
attached to L, with bi in H2 parallel

to H1\H2).

Repeat this for every component of D to obtain a collection B of bands for L. By construction, LCB is an
unlink when projected to h�1

�
5
2

�
. More specifically, in K the link LCB (projected to h�1

�
5
2

�
) can be made

to agree with the link S \ h�1
�
5
2

�
via an isotopy rel boundary in H2 and slides in H2 over curves in K.

We conclude immediately that .K; L; B/ is a singular banded unlink for some surface S 0 WD†.K; L; B/
in X. Moreover, S 0 is in bridge position with respect to T, and by the above paragraph can be T-regularly
isotoped so that it agrees with S in Xi \Xj for all i ¤ j. Therefore, S and S 0 are T-regularly isotopic.

Remark 3.28 Fix a trisection TD .X1; X2; X3/ ofX, a T-compatible Morse function h and a gradientlike
vector field rh, so that .h;rh/ induce a Kirby diagram K ofX in which† WDX1\X2\X3 is a Heegaard
surface. Definition 3.26 and Lemma 3.27 can be combined to form the equivalence
fbridge trisections with respect to T with no self-intersections in X2\X3g

T-regular isotopy

$
fSBUDs in K in bridge position with respect to †g

singular band moves preserving † setwise
:

The restriction of bridge position to not include self-intersections in X2\X3 is merely a diagrammatic
convenience from the viewpoint of singular banded unlinks diagrams (SBUDs).

Lemma 3.29 Let S be in bridge position with respect to TD .X1; X2; X3/. There exists a sequence
of perturbations of S yielding a surface S 0 in bridge position such that S 0 has no self-intersections in
X2\X3.

To inductively prove Lemma 3.29, it is clearly sufficient to prove the following proposition:

Proposition 3.30 Suppose there are n > 0 self-intersections of S in X2 \X3. Then , after T-regular
isotopy of S, there is a surface S 0 obtained from vertex perturbation on S such that S 0 has n � 1
self-intersections in X2\X3.
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L

†

perturbation

L0

L

†

perturbation

L0

L

†

perturbation

L0

L

†

perturbation

L0

Figure 27: When performing a perturbation on the diagram in the top left, we allow the blue arc
to intersect at most one band and one vertex, as shown in the other three diagrams.

Proof Following from Definition 3.11 of a trivial immersed tangle, some T-regular isotopy of S can
arrange for the tangle T D S \ X2 \ X3 to lie inside a collar neighborhood † � I � X2 \ X3 of
@.X2 \ X3/ D †, so that projection to the I factor is Morse on T with one maximum on each arc
component. Further isotope so that the self-intersections of S in †� I lie at different values of the I
factor. In particular, one self-intersection c lies strictly closest to †. Then by T-regular isotopy of S
near † (sometimes called “mutual braid transposition” when performed diagrammatically), we can
arrange for c to have a neighborhood as in Figure 22, and thus apply a vertex perturbation to S to obtain
a surface S 0 with one less self-intersection in X2\X3.

3.5 Uniqueness of bridge trisections of immersed surfaces

Perturbation of bridge trisections is conveniently very similar to perturbation of a banded link in bridge
position. When perturbing a banded link .L;B/ with respect to a Heegaard surface †, we allow at most
one band and one vertex to be between the intersection of L and † at which the perturbation is based and
the two newly introduced intersections. See Figure 27.

Lemma 3.31 Let TD .X1; X2; X3/ be a trisection of a 4-manifold X4. Let h be a T-compatible Morse
function on X4, and K a Kirby diagram induced by h. Let H1 WDX3\X1 and H2 WDX1\X2 give the
usual Heegaard splitting .H1;H2/ for K, in which † WDH1\H2 is the Heegaard surface.

Suppose a singular banded unlink diagram .K; L; B/ is in bridge position with respect to †. Let
.K; L0; B 0/ be obtained from .K; L; B/ by perturbation near L\†. Then †.K; L0; B 0/ can be obtained
from †.K; L; B/ by perturbation followed by T-regular isotopy.

Proof See Figure 28, top.
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X1\X2 X2\X3 X3\X1
L

†
H1

perturbation

L0

†

L

H2

†

H1

perturbation

L0

†

Figure 28: Perturbation of a singular banded unlink .L;B/ in bridge position induces perturbation
of †.L;B/. Top: elementary perturbation. Bottom: vertex perturbation.

Lemma 3.32 Let TD .X1; X2; X3/ be a trisection of a 4-manifold X4. Let h be a T-compatible Morse
function on X4, and K a Kirby diagram induced by h. Let H1 WDX3\X1 and H2 WDX1\X2 give the
usual Heegaard splitting .H1;H2/ for K, in which † WDH1\H2 is the Heegaard surface.

Suppose a singular banded unlink diagram .K; L; B/ is in bridge position with respect to † and that v is
a vertex of L that is close to † as in Figure 20. Let .K; L0; B 0/ be obtained from .K; L; B/ by isotoping
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v through †. (We call this a vertex perturbation of the banded link .L;B/.) Then †.K; L0; B 0/ can be
obtained from †.K; L; B/ by one vertex perturbation followed by T-regular isotopy.

Proof See Figure 28, bottom.

The following uniqueness of bridge splittings of banded links motivates the uniqueness of bridge trisections:

Theorem 3.33 Let .L;B/ and .L0; B 0/ be isotopic banded singular marked links in a 3-manifold M
that has a Heegaard splitting .H1;H2/. Assume that both .L;B/ and .L0; B 0/ are in bridge position with
respect to† WDH1\H2, and that B and B 0 are both contained inH2. Then there exists a banded singular
marked link .L00; B 00/ in bridge position with respect to † that can be obtained from both .L;B/ and
.L0; B 0/ by sequences of elementary perturbations , vertex perturbations and isotopies that fix † setwise.

Theorem 3.33 is similar to a theorem for nonsingular banded links due to Meier and Zupan [26; 27].

Remark 3.34 Meier and Zupan study banded links by viewing each band as a framed arc with endpoints
on a link. They give moves to perturb a link in order to make these framed arcs parallel to a bridge
surface with correct framing. In the setting of singular banded links, we are able to use their proof by
viewing both self-intersections and bands as framed arcs, applying the theorem and then contracting the
self-intersection arcs to yield a singular link in bridge position.

Proof As in Theorem 3.15, there exist disjoint framed arcs a1; : : : ; an with endpoints on LC such that
contracting LC along a1; : : : ; an yields L. Similarly, there exist framed arcs a01; : : : ; a

0
n with endpoints

on L0C such that contracting L0C along a01; : : : ; a
0
n yields L0.

Now, by Meier and Zupan [26; 27], there exists a link J that can be obtained from LC and from L0
C

by elementary perturbations and isotopies fixing † setwise. Moreover, these isotopies and perturbations
carry ai and a0i to framed arcs bi and b0i , respectively, with endpoints on J, so that bi and b0i are each
parallel to † with surface framing, and either agree or could be isotoped to agree if the endpoints of b0i
were allowed to pass through † (ie bi and b0i are parallel and both lie close to †, but potentially on
opposite sides). Moreover, during the perturbations and isotopies of LC (resp. L0C), ai (resp. a0i ) never
intersect †, so these perturbations and isotopies may be achieved by perturbations and isotopies of L
(resp. L0).

Meier and Zupan’s proof allows us to not only control the framed arcs ai , a0i , but also the framed arcs
that are the cores of the bands B and B 0. That is, by perhaps perturbing J even further, we may also
assume that B and B 0 are taken to bands BJ , and B 0J whose i th bands either agree or are parallel and
close to † but on opposite sides, and that .J; BJ / and .J; B 0J / are both in bridge position. Let yJ and yJ 0

be the marked singular links obtained by contracting J along bi and b0i , respectively, and with markings
induced by L and L0. Then yJ 0 can be transformed into yJ by isotopy fixing † and a vertex perturbation
for each pair ai and a0i in different components of M n†. Therefore, the claim holds with L00 D yJ
and B 00 D BJ .
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Corollary 3.35 If DD .L;B/ and D0 D .L0; B 0/ are isotopic banded unlink diagrams that are each in
bridge position with respect to†, then S WD†.D/ and S 0 WD†.D0/ are related by elementary perturbation
and deperturbation , vertex perturbation and T-regular isotopy.

Proof By Theorem 3.33, D and D0 are related by a sequence of elementary perturbations and depertur-
bations, vertex perturbations and isotopies fixing † setwise. It is therefore sufficient to show that the
claim is true if D0 is obtained from D by a single one of these moves. We have already shown the claim
to be true when D0 is obtained from D by either a perturbation/deperturbation (Lemma 3.31), or a vertex
perturbation (Lemma 3.32). So suppose that D0 is obtained from D by an isotopy ft of M that fixes †
setwise.

The surface †3=2 WD† is a separating surface in M D h�1
�
3
2

�
. For every t 2 Œ0; 4�, there is a separating

surface †t in h�1.t/ that is vertically above or below †. Then ft can be extended to a horizontal isotopy
of the whole 4-manifold X4 that fixes every †t horizontally. Since all index 2 critical points of h are
contained in one component of X4 n

S
t †t , this isotopy can be chosen to take S to S 0. Since this isotopy

is horizontal, it fixes X1 D h�1
��
0; 3
2

��
and X2 [X3 D h�1

��
3
2
; 4
��

setwise. Since this isotopy fixes
X2\X3D

S
Œ3=2;4�†t setwise, it also fixes X2 and X3 setwise. Therefore, this is a T-regular isotopy.

The main theorem of this section is that bridge position and hence bridge trisection diagrams are essentially
unique. The proof uses Theorem 2.39.

Theorem 3.36 Let S and S 0 be self-transverse immersed surfaces in bridge position with respect to a
trisection TD .X1; X2; X3/ of a closed 4-manifold X4. Suppose S is ambiently isotopic to S 0. Then S
can be taken to S 0 by a sequence of elementary perturbations and deperturbations , vertex perturbations
and T-regular isotopy.

Proof Let h W X ! Œ0; 4� be a T-compatible Morse function on X4. Let K be a Kirby diagram for X
induced by h and a fixed choice of rh. As usual, we view † WDX1\X2\X3 as a Heegaard surface for
the ambient space of K, with the dotted circles of K contained in one handlebody H1 of this splitting and
the 2-handle circles of K contained in the other handlebody H2.

By Lemma 3.29, we may T-regularly isotope and perturb S and S 0 so that they do not include self-
intersections in X2\X3. Then, by Lemma 3.27, there are banded unlink diagrams D WD .K; L; B/ and
D0 WD .K; L0; B 0/ such that .L;B/ and .L0; B 0/ are in bridge position with respect to † and such that S
and S 0 are T-regular isotopic to †.D/ and †.D0/, respectively.

By Theorem 2.39, D and D0 are related by a sequence of singular band moves. By Corollary 3.35, if D

and D0 are isotopic, then the theorem holds.

Assume that D0 is obtained from D by one singular band move (other than isotopy). We will show that S 0

and S become T-regular isotopic after some sequence of perturbations and deperturbations. The theorem
will then hold via induction on the length of a sequence of band moves relating D and D0.
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X3\X1 X1\X2 X2\X3
L00 Z H2

† H1

vertex perturbation

L000 H2

H1

vertex perturbation

Figure 29: Left: the singular banded unlink .L000; B 000/ is obtained from .L00; B 00/ by an intersec-
tion/band pass. Right: we show that†.L000; B 000/ (bottom) may be obtained from†.L00; B 00/ (top)
by two vertex perturbations and T-regular isotopy.

Meier and Zupan [26] previously showed that the claim holds when the move turning D into D0 is a cup,
cap, band swim or band slide. The authors of this paper [14] showed the claim is true when the move is a
2-handle/band slide, 2-handle/band swim or dotted circle slides. These arguments were technically only
made for nonsingular banded unlinks, so we repeat them in the singular setting for clarity, often repeating
Meier and Zupan’s arguments. In the following paragraphs, we consider every singular band move that
might transform D into D0.

Intersection/band pass Suppose D0 is obtained from D by an intersection/band pass along a framed
arc z in L between a vertex of L and a band in B. Isotope .L;B/ so that z is as in Figure 29, top left.
Then isotope the rest of L and B outside a neighborhood of z to obtain a banded link .L00; B 00/ in bridge
position. This banded singular link is isotopic to .L;B/, so, by Corollary 3.35, S 00 WD †.L00; B 00/ is
obtainable from S by (de)perturbations and T-regular isotopy. Let .L000; B 000/ be obtained from .L00; B 00/

by performing the intersection/band pass along z, and let S 000 WD†.L000; B 000/. Now the intersection of S 000

with each Xi \Xj is isotopic rel boundary to the intersection of S 00 with Xi \Xj , so S 000 is T-regular
isotopic to S 00. Finally, by Corollary 3.35, we find that S 000 can be transformed into S 0 by (de)perturbations
and T-regular isotopy.

Intersection/band slide Suppose D0 is obtained from D by an intersection/band slide along a framed
arc z in L between a vertex of L and a band in B. Isotope .L;B/ so that z is short and contained
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X3\X1 X1\X2 X2\X3z H2

†
H1

vertex perturbation

H2

H1
†
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Figure 30: Left: the singular banded unlink .L000; B 000/ is obtained from .L00; B 00/ by an intersec-
tion/band slide. Right: we show that †.L000; B 000/ (bottom) may be obtained from †.L00; B 00/

(top) by two vertex perturbations and T-regular isotopy.

in H2 in a neighborhood as in Figure 30. Then isotope the rest of L and B outside this neighborhood
to obtain a banded link .L00; B 00/ in bridge position. This banded singular link is isotopic to .L;B/, so,
by Corollary 3.35, S 00 WD†.L00; B 00/ is obtainable from S by (de)perturbations and T-regular isotopy.
Let .L000; B 000/ be obtained from .L00; B 00/ by performing the intersection/band slide along z, and let
S 000 WD †.L000; B 000/. In Figure 30, we show that S 000 can be obtained from S 00 by perturbation and
T-regular isotopy. Finally, by Corollary 3.35, S 000 can be transformed into S 0 by (de)perturbations and
T-regular isotopy.

Cup Suppose D0 is obtained from D by a cup move. It does not matter in which direction we take the
move, so assume that L0 is obtained from L by adding a new unlink component O contained in a ball
not meeting L or B, and B 0 is obtained from B by adding a trivial band bO from L to O. By isotopy
and intersection/band passes, we may take O to be in 1-bridge position with respect to †, and bO to be
in H2, contained in a neighborhood as in Figure 31. Performing the cup move yields a diagram D00 that
is related to D0 by isotopy and intersection/band passes; by Corollary 3.35 and the already-considered
intersection/band pass case, †.D00/ can be transformed into S 0 by perturbation and T-regular isotopy.
Finally, we observe that †.D00/ is obtained from the (perturbed) surface S by perturbation (see Figure 31).
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X3\X1 X1\X2 X2\X3H2

H1†

perturb along a disk in X1

H2

H1†

Figure 31: Left: the singular banded unlink .L000; B 000/ is obtained from .L00; B 00/ by a cup
move. Right: we show that †.L000; B 000/ (bottom) may be obtained from †.L00; B 00/ (top) by an
elementary perturbation and T-regular isotopy.

Cap Suppose D0 is obtained from D by a cap move. Again, it does not matter in which direction we
take the move, so assume that L0 D L and B 0 is obtained from B by adding a trivial band b. By isotopy
and intersection/band passes, we may take b to have a neighborhood as in Figure 32. Performing the cap
move yields a diagram D00 that is related to D0 by isotopy and intersection/band passes; by Corollary 3.35
and the case for intersection/band pass, †.D00/ can be transformed into S 0 by perturbation and T-regular
isotopy. Finally, we observe that †.D00/ is obtained from the (perturbed) surface S by perturbation and
deperturbation (see Figure 32).

Band swim Suppose D0 is obtained from D by a band swim. Isotope D to obtain a diagram in which the
band swim looks as in Figure 33. Perform the band swim to obtain a diagram D00 that is related to D0

by isotopy; by Corollary 3.35 and the intersection/band swim case, †.D00/ can be transformed into S 0

by perturbation and T-regular isotopy. Finally, we observe that †.D00/ is obtained from the (perturbed)
surface S by T-regular isotopy (see Figure 33).

Band slide Suppose D0 is obtained from D by a band slide. Isotope D to obtain a diagram in bridge
position in which the desired band slide looks like Figure 34. By Corollary 3.35, the effect on S can be
achieved by (de)perturbation and T-regular isotopy. Call the result of the band slide D00; by Corollary 3.35,
the surface †.D00/ can be transformed into S 0 by (de)perturbation and T-regular isotopy. In Figure 34,
we observe that †.D00/ is obtained from S by perturbation and deperturbation.
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X3\X1 X1\X2 X2\X3H2

H1†

perturb along a disk in X3

H2

H1†

perturb along a disk in X2

Figure 32: Left: the singular banded unlink D00 is obtained from D by a cap move. Right: we
show that †.D00/ (bottom) may be obtained from †.D/ (top) by an elementary perturbation and
deperturbation and T-regular isotopy.

2-handle/band slide Suppose D0 is obtained from D by sliding a band over a 2-handle via a framed arc z
between a band in B and a 2-handle attaching circle in K. As in the band slide case, we may perturb D so
that z is contained in H2 (see Figure 35). Now, performing the slide along z yields a diagram D00 that is

X3\X1 X1\X2 X2\X3H2

H1
†

isotopy

H2

H1†

Figure 33: Left: the singular banded unlink D00 is obtained from D by a band swim. Right: we
show that †.D00/ (bottom) may be obtained from †.D/ (top) by T-regular isotopy.
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X3\X1 X1\X2 X2\X3H2

H1†

perturbation

H2

H1†

perturbation

Figure 34: Left: the singular banded unlink D00 is obtained from D by a band slide. Right: we
show that †.D00/ (bottom) may be obtained from †.D/ (top) by an elementary perturbation and
deperturbation and T-regular isotopy.

related to D0 by isotopy; by Corollary 3.35, the surface †.D00/ can be transformed into S 0 by perturbation
and T-regular isotopy. Finally, we observe that †.D00/ is obtained from the (perturbed) surface S by
T-regular isotopy supported in X2 and X3.

X3\X1 X1\X2 X2\X3
z H2

H1†

isotopy

H2

H1†

Figure 35: Left: the singular banded unlink D00 is obtained from D by a 2-handle/band slide.
Right: we show that †.D00/ (bottom) may be obtained from †.D/ (top) by T-regular isotopy.

Algebraic & Geometric Topology, Volume 25 (2025)



1782 Mark Hughes, Seungwon Kim and Maggie Miller

X3\X1 X1\X2 X2\X3
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†
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Figure 36: Left: the singular banded unlink D00 is obtained from D by a 2-handle/band swim.
Right: we show that †.D00/ (bottom) may be obtained from †.D/ (top) by T-regular isotopy.

2-handle/band swim Suppose D0 is obtained from D by swimming a 2-handle through a band. Isotope
D0 so that the swim looks like the one in Figure 36. By Corollary 3.35, this can be achieved by
(de)perturbations and T-regular isotopy of S. Now, performing the swim along z yields a diagram D00

that is related to D0 by isotopy; by Corollary 3.35, the surface †.D00/ can be transformed into S 0 by
perturbation and T-regular isotopy. Finally, we observe that †.D00/ is obtained from the (perturbed)
surface S by T-regular isotopy supported in X2 and X3.

Slide of a band or L over a dotted circle This follows from Theorem 3.33, as slides over dotted circles
are simply isotopies of the banded link .L;B/ in M3=2.

4 Some example applications

In this (comparatively short) section, we give a few sample applications of the diagrammatic theory of
singular banded unlink diagrams.

4.1 Calculating the Kirk invariant

Schneiderman and Teichner [30] classified all 2-component spherical links in S4 up to link homotopy
using the Kirk invariant �i .F1; F2/ WD �.Fi ; F 0i /. Here i 2 f1; 2g, F 0i is a parallel pushoff of Fi , and
�.Fi ; F

0
i / is Wall’s intersection invariant. Furthermore, Fi denotes an oriented immersed 2-sphere in S4,

with F1 and F2 disjoint. The Kirk invariant takes values in ZŒZ�D ZŒx˙�.

Schneiderman and Teichner showed that the set of all 2-component spherical links in S4 up to link
homotopy is a free R-module, where RD ZŒz1; z2�=.z1z2/ is freely generated by the Fenn–Rolfsen link
FR depicted in Figure 37.

Algebraic & Geometric Topology, Volume 25 (2025)



Band diagrams of immersed surfaces in 4-manifolds 1783

F1

F2
w1

w2

w1

w2

Figure 37: The Fenn–Rolfsen link. At the indicated points with arrows, a positive basis of the
normal bundle is .w1; w2/, where w1 is the drawn arrow pointing upward and w2 points out of
the page toward the reader.

In this subsection, we show how to compute the Kirk invariant of FR. This computation can be adapted
to compute Wall’s self-intersection invariant for general 2-component spherical links in arbitrary closed
orientable 4-manifolds. Since FR has a symmetry between its two components that reverses the orientation
on one component, we have �2 D��1 and thus only compute �1.

Consider the singular banded unlink diagram of FRD F1 tF2 as in Figure 37. Choose a basepoint p
far away from FR and an arc  from p to a point q in F1. Take a pushoff F 01 of F1 that transversely
intersects F1; simultaneously push off  to obtain an arc  0 from p to a point q0 of F 01.

We thus have two parallel arcs  0 and  from p to F 01 and from p to F1, respectively (as in Figure 38).
Now delete a neighborhood of F2 as in Figure 39.

Pick a vertex v between the diagrams of F1 and F 01, and choose arcs �; �0 contained in F1 and F 01,
respectively, from q and q0, respectively, to v. Let Cv be the based loop obtained by concatenating  , �,

p

F2

F 01

F1

v1
v3

v2
v4 0



Figure 38: A parallel pushoff F 01 of F1 that intersects F1 transversely in four points yielding
vertices v1, v2, v3 and v4 in the singular banded unlink diagram. The intersections have respective
signs sv1

D 1, sv2
D�1, sv3

D�1 and sv4
D 1.
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0

Figure 39: We delete a neighborhood of F2. The resulting singular banded unlink diagram of
F1[F

0
1 is in a Kirby diagram with one 1-handle and one 2-handle.

��0 and � 0. There are four vertices v1, v2, v3 and v4 shared between the diagrams of F1 and F 01; see
Figure 40 for potential loops Cvi

for all i D 1; 2; 3; 4. Note that each loop might pass through the other
intersections in the singular banded unlink diagram, but we always can perturb each loop a little bit on
the actual surface FR to miss the intersections.

Now each loop Cvi
represents some element of H1.S4�F2/D Z. In addition, each vertex has a sign

svi
2 f�1;C1g given by the sign of the corresponding intersection of F1 and F 01, which agrees with the

sign of the crossing when the marking is resolved negatively. The values of ŒCvi
� and svi

are as follows:

i svi
ŒCvi

�

1 1 0

2 �1 1

3 �1 �1

4 1 0

The Kirk invariant �1 is then given by

�1.FR/D
4X
iD1

svi
xŒCvi

�
D�xC 2� x�1:

The above computation generalizes for any singular banded unlink diagram of a 2-component spherical
link .F1; F2/ in S4; use whiskers from a basepoint p to F1 and a parallel pushoff F 01 intersecting F1
in v1; : : : ; vn to form a loop Cvi

for each vi representing ŒCvi
� 2H1.S nF2/D Z. Then �1.F1; F2/DPn

iD1 svi
xŒCvi

�.

4.2 Immersed surfaces and stabilization

Hosokawa and Kawauchi [13] showed that any pair of embedded oriented surfaces in S4 become isotopic
after some number of stabilizations.
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ŒCv1
�D 0

ŒCv3
�D�1

ŒCv2
�D 1

ŒCv4
�D 0

0 0

0 0

Figure 40: The loops Cv1
, Cv2

, Cv3
and Cv4

, respectively, represent the elements 0, 1, �1 and 0
in H1.S4 nF2/D Z.

Definition 4.1 Let F be a connected, self-transversely immersed genus g oriented surface in S4. Let
 be an arc with endpoints on F and which is normal to F near @ , but with the interior of  disjoint
from F. Frame  so that  �D2 is a 3-dimensional 1-handle with ends on F, and so that surgering F
along this 1-handle yields an oriented genus gC 1 surface F 0. Then we say F 0 is obtained from F by
stabilization.

Remark 4.2 In Definition 4.1, there are two distinct ways to frame  to obtain a 3-dimensional 1-handle
with ends on F. However, one of these choices will yield a nonorientable surface after surgery, so in fact
the framing of  need not be specified.

More generally, Baykur and Sunukjian [2] extended this result for any pair of homologous embedded
oriented surfaces in a closed orientable 4-manifold, and Kamada [18] extended it to immersed oriented
surfaces in S4 using singular braid charts. In this subsection, we extend these results in full generality, ie
for any pair of homologous immersed surfaces in a closed orientable 4-manifold.

Theorem 4.3 Let F and F 0 be oriented self-transversely immersed surfaces in a closed , orientable
4-manifold X which are homologous and have the same number of transverse double points of each sign.
Then F and F 0 become isotopic after a sequence of stabilizations.

To prove Theorem 4.3, we rely on the following diagrammatic lemma:
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vi

Fi

Gi

FiC1 #U�i

stabilize ba
nd

/in
t

pa
ss

band/int

slide

de
co

m
po

se
as

co
nn

ec
t s

um

w1 w1
w2w2

Figure 41: Top left: Fi is an oriented surface with k� i > 0 transverse self-intersections. Here
we draw part of a singular banded unlink diagram for Fi near a vertex vi representing a self-
intersection of Fi . (In this drawing, it is a negative self-intersection. Changing the marking at vi
yields a positive self-intersection.) We draw a positive normal basis .w1; w2/ along each local
sheet of Fi and indicate an arc  along which we may stabilize Fi . From left to right following
the arrows: we stabilize Fi to obtain a surface Gi , and then isotope Gi to realize a connect sum of
a surface FiC1 with U�i , where �i is the sign of the self-intersection represented by vi .

Lemma 4.4 Let F be an oriented self-transversely immersed surface in a closed , orientable 4-manifold.
Suppose F has p positive and n negative self-intersections. After some number of stabilizations ,
F becomes isotopic to the connected-sum of an embedded surface with p copies of UC and n copies
of U�, where U˙ denotes the result of performing a cusp move to the embedded unknotted 2-sphere to
create a˙ self-intersection.

Proof Let .K; L; B/ be a singular banded unlink diagram of F0 WDF. Suppose that F has kDpCn> 0
self-intersections. Fix a vertex v0 of L. Stabilize F0 as in Figure 41, ie along an arc in h�1

�
3
2

�
that lies

close to v0. Call the resulting surface G0. Now perform singular band moves as in Figure 41 to see that
G0 is isotopic to a connect sum F1 #U�0 , where �0 is the sign of v0 and F1 is a self-transverse immersed
surface with k� 1 self-intersections.

If k�1 > 0, then repeat this argument on F1 near another vertex v1, stabilizing F1 to obtain a surface G1
that is isotopic to F2 # U�1 , where F2 has k � 2 self-intersections. Note F is then stably isotopic
to F2 #U�1 #U�0 .
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n

bm b1

am a1

bm b1

am a1

�bm�b1

�am�a1

Figure 42: Top: a 2-bridge knot K in normal form. Here, ai and bi indicate signed numbers of
whole twists (so each box has an even number of half-twists). Bottom: the n-twist spin �nK of K.

Repeat inductively to find that F is stably isotopic to Fk #
�
#p UC

�
#
�
#n U�

�
for Fk an embedded

surface, as desired.

Proof of Theorem 4.3 By Lemma 4.4, F may be stabilized to a surface isotopic to yF #
�
#p UC

�
#
�
#n U�

�
,

where yF is an embedded surface and p and n are (respectively) the numbers of positive and negative

n

n

n

n

n

n

n

n

isotopy

int/band
slide

isotopy

isotopy

isotopy

isotopy

isotopy

Figure 43: The first frame is (a portion of the diagram) obtained from Figure 42, bottom, by a
finger move. We begin applying singular band moves with the goal of decreasing ja1j by 1. In the
last frame we indicate three band/intersection passes that yield the first frame of Figure 44.
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n

n

n

n

n

n

n

isotopy

band/int
passes

band/int
sw

im
s

isotopy

isotopy

isotopy

Figure 44: Continuing from Figure 43, we perform more singular band moves. In the last frame,
the two vertices can be removed by a Whitney move, yielding the diagram from Figure 42, bottom,
but with ja1j decreased by 1.

self-intersections of F. Applying the lemma also to F 0 (recalling that F 0 also has p positive and n
negative self-intersections), we find that, after suitable stabilizations, F 0 becomes isotopic to

yF 0 #
�
#p UC

�
#
�
#n U�

�
for some embedded surface yF 0. Since U˙ is nullhomologous, yF and yF 0 are homologous to F and F 0 and
hence to each other. Then, by [2], we know that yF and yF 0 (and hence F and F 0) are stably isotopic.

4.3 Unknotting 2-knots with regular homotopies

Joseph, Klug, Ruppik and Schwartz [16] introduced the notion of the Casson–Whitney number of a 2-knot,
which is half the minimal number of finger and Whitney moves needed to change a given 2-knot to an
unknot. They showed that the Casson–Whitney number of any nontrivial twist spin of a 2-bridge knot
is 1; ie that any nontrivial twist spin of a 2-bridge knot can be unknotted via one finger move followed by
one Whitney move. In this subsection, we explicitly realize such a regular homotopy via singular banded
unlink diagrams.
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n

n

n

n

n

n

n

int/band
passes

int/band
slide

intersection
passes

band
swims

int/band
slide

is
ot

op
y

n

int/band
pass

Figure 45: The first frame agrees with the last frame of Figure 44 after ja1j is decreased to zero.
We can then perform singular band moves to the diagram to decrease jb1j by 1.

Theorem 4.5 [16] The Casson–Whitney number of the n-twist spin (jnj ¤ 1) �nK of a 2-bridge knotK
is 1.

Proof First, as in [16], we assume that the 2-bridge knot K is in normal form [5] with the number of
half-twists in each twist region even, as in Figure 42. That is, using the standard correspondence between
2-bridge link diagrams and continued fraction expansion, we arrange for a diagram of K to correspond to
a continued fraction .a1; b1; : : : ; am; bm/ of all even integers. We write K DK.a1; b1; : : : ; am; bm/.

Apply a finger move to the diagram of �nK in Figure 42 to obtain the first frame of Figure 43 (the visible
twists are contained in the ˙a1 twist boxes). In Figures 43 and 44, we show how to perform singular
band moves with the result of decreasing ja1j by 1. Repeating this sequence, we eventually arrange for
a1 to become 0.

In Figure 45, we give another sequence of band moves (now assuming a1 D 0) that decrease jb1j by 1.
Repeating this sequence, we eventually arrange for a1 D b1 D 0.

We repeat these sequences of band moves to undo the twist boxes labeled˙a2;˙b2; : : : ;˙am;˙bm, and
then finally apply a Whitney move to remove the two vertices and obtain a singular banded unlink diagram
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for the n-twist spin of the unknot. This is an unknotted sphere, so we conclude that the Casson–Whitney
number of �nK is 1.
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Anosov flows and Liouville pairs in dimension three

THOMAS MASSONI

Building upon the work of Mitsumatsu and Hozoori, we establish a complete homotopy correspondence
between three-dimensional Anosov flows and certain pairs of contact forms that we call Anosov Liouville
pairs. We show a similar correspondence between projectively Anosov flows and bicontact structures,
extending the work of Mitsumatsu and Eliashberg–Thurston. As a consequence, every Anosov flow on a
closed oriented three-manifold M gives rise to a Liouville structure on R�M which is well-defined up
to homotopy, and which only depends on the homotopy class of the Anosov flow. Our results also provide
a new perspective on the classification problem of Anosov flows in dimension three.
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1 Introduction

Throughout this article, M denotes a closed, oriented, smooth manifold of dimension three. We will
always assume that the Anosov and projectively Anosov flows on M under consideration are oriented, ie
their stable and unstable foliations are oriented. This can always be achieved by passing to a suitable
double cover of M. For simplicity, we will only consider smooth (ie C1) flows, as we are primarily
interested in smooth contact and symplectic structures. Our main results hold for (projectively) Anosov
flows generated by C1 vector fields with minor changes. Moreover, the structural stability of C1 Anosov
vector fields (Robinson [29]) ensures that any Anosov flow generated by a C1 vector field is topologically
equivalent to a smooth Anosov flow, and these two flows are dynamically identical. The definitions and
basic properties of Anosov and projectively Anosov flows are recalled in Section 3.1.

© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
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The notion of Anosov flow, originally introduced by Anosov [1; 2] as a generalization of the geodesic
flow on hyperbolic manifold, plays a central role in the theory of smooth dynamical systems. The
interplay between the dynamical and topological properties of Anosov flows is particularly rich and
striking in dimension three. We refer to the nice survey by Barthelmé [4] for many relevant results and
references, and to the book by Fisher and Hasselblatt [14] for a more complete exposition. Eliashberg
and Thurston [13], and independently Mitsumatsu [28], introduced the more general concept of a
conformally/projectively Anosov flow on three-manifolds, and established a correspondence between
such flows and bicontact structures, ie transverse pairs of contact structures with opposite orientations.
Recently, Hozoori [21] extended this correspondence to Anosov flows, and showed that (oriented) Anosov
flows can be completely characterized in terms of bicontact structures admitting a pair of contact forms
satisfying a natural symplectic condition. More precisely, Hozoori showed:

Theorem [21, Theorem 1.1] Let ˆ be a nonsingular flow on a closed oriented 3-manifold M, generated
by a vector field X. The flow ˆ is oriented Anosov if and only if there exist transverse contact structures
�� and �C, negative and positive , respectively , and contact forms ˛� and ˛C for �� and �C, respectively ,
such that the 1-forms

.1� t / ˛�C .1C t / ˛C and �.1� t / ˛�C .1C t / ˛C

are positively oriented Liouville forms on Œ�1; 1�t �M.

Recall that a Liouville form on a smooth manifold with boundary V is a 1-form � such that ! D d� is
symplectic, ie nondegenerate, and the Liouville vector fieldZ defined by !.Z; � /D� is outward-pointing
along the boundary of V. The pair .V; �/ is called a Liouville domain. The above theorem shows in
particular that an Anosov flow on a 3-manifold M (under some suitable orientability assumptions recalled
in Definition 3.1) gives rise to a Liouville structure on Œ�1; 1��M which is not Weinstein, since the latter
manifold has a nontrivial third homology group and disconnected boundary. It is natural to ask:

Questions How do the Liouville structures constructed by Hozoori depend on the underlying Anosov
flow? More precisely:

(1) For a given Anosov flow ˆ, is the space of pairs of contact forms .˛�; ˛C/ as in the previous
theorem path-connected?

(2) Does a path of Anosov flows induce a path of Liouville structures on Œ�1; 1��M ?

(3) Does every bicontact structure .��; �C/ supporting an Anosov flow admit a pair of contact forms
.˛�; ˛C/ as in the previous theorem?

Here, we say that a bicontact structure .��; �C/ supports a nonsingular flow generated by a vector field
X if X 2 ��\ �C (in the more precise Definition 2.1, we also add a condition on the orientations of �˙).
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In the present article, we give a complete answer to these questions and upgrade Hozoori’s correspondence
to a homotopy equivalence between the space of Anosov flows on M, and a space of suitable pairs of
contact forms on M. To that extent, we will consider a different condition on the pair .˛�; ˛C/ than the
one in Hozoori’s theorem, and we first show:

Theorem 1 Let ˆ be a nonsingular flow on a closed oriented 3-manifold M, generated by a vector
field X . The flow ˆ is oriented Anosov if and only if there exists a pair of contact forms .˛�; ˛C/ on M
such that X 2 ker˛�\ ker˛C, and the 1-forms

e�s˛�C e
s˛C and � e�s˛�C e

s˛C

are positively oriented Liouville forms on Rs �M.

In the terminology of Massot, Niederkrüger and Wendl [25, Definition 1], we say that a pair of contact
forms .˛�; ˛C/ on a manifold M is a Liouville pair if the 1-form

�´ e�s˛�C e
s˛C

is a positively oriented Liouville form on Rs �M. By positively oriented, we mean that the volume form
d�^ d� is compatible with the natural orientation on R�M induced by the natural orientation on R

and the orientation on M.

Warning At first glance, Theorem 1 seems almost identical to Hozoori’s theorem. However, we warn
the reader that the condition on .˛�; ˛C/ that we consider is different than Hozoori’s one. Indeed, there
exist pairs of contact forms .˛�; ˛C/ which are Liouville pairs as defined above, but such that

.1� t /˛�C .1C t /˛C

is not a Liouville form on Œ�1; 1�t �M ; see Lemma 5.6. It turns out that our condition enjoys some
nice symmetries (see Lemma 2.4) which make it much easier to work with. For instance, our notion of
Liouville pair is easier to characterize than Hozoori’s one (compare Lemma 2.7 which involves a single
equation between three quantities, and Lemma 5.2 which involves two independent equations between
four quantities). More importantly, we do not know if our main results (Theorems 3 and 10 below) are
true for Hozoori’s notion of Liouville pair. The corresponding computations are much more complicated
because of their lack of symmetry.

Theorem 1 motivates the following:

Definition 2 An Anosov Liouville pair (AL pair for short) on an oriented 3-manifold M is a pair
of contact forms .˛�; ˛C/ such that both .˛�; ˛C/ and .�˛�; ˛C/ are Liouville pairs. We denote by
AL´AL.M/��1.M/��1.M/ the space of Anosov Liouville pairs on M.

Notice that we do not assume that �˙´ ker˛˙ are transverse, since this is implied by the Liouville
conditions; see Proposition 2.9. By Theorem 1, the intersection �� \ �C is spanned by an Anosov
vector field. A positive time reparametrization of an Anosov flow remains Anosov, and we denote by
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AF´AF.M/ the space of smooth oriented Anosov flows on M up to positive time reparametrization.
Alternatively, AF can be viewed as the space of smooth unit Anosov vector fields on M for an arbitrary
Riemannian metric on M, or the space of smooth 1-dimensional oriented foliations spanned by Anosov
vector fields on M, together with some extra orientation data. Hence, there is a natural continuous
intersection map,

I WAL!AF ; .˛�; ˛C/ 7! ker˛�\ ker˛C;

which sends an AL pair to the 1-dimensional (oriented) distribution obtained by intersecting the underlying
contact structures. Here, we endow the spaces AL and AF with the C1 topology. Denoting by BC the
space of smooth bicontact structures onM and by PAF the space of smooth oriented projectively Anosov
flows on M up to positive time reparametrization, we have a similar intersection map,

PI W BC! PAF ; .��; �C/ 7! ��\ �C;

as well as a kernel map,

ker WAL! BC; .˛�; ˛C/ 7! .ker˛�; ker˛C/:

The main results of this paper, answering the Questions (1), (2) and (3) above, can be summarized as
follows.

Theorem 3 The maps in the commutative diagram

AL BC

AF PAF

ker

I PI

satisfy the following properties.

� I and PI are acyclic Serre fibrations (Theorems 4.8 and 4.9).

� ker is an acyclic Serre fibration onto its image (Theorem 4.13).

� The inclusion ker.AL/ � PI�1.AF/ is strict in general (Theorem 3.15), but it is a homotopy
equivalence (Theorem 4.15).

Recall that an acyclic Serre fibration is a Serre fibration which is also a weak homotopy equivalence, or
equivalently, whose fibers are weakly contractible. All the topological spaces under consideration have
the homotopy type of a CW complex (see the beginning of Section 4), so these acyclic Serre fibrations
are homotopy equivalences by the Whitehead theorem. Unpacking the notations,

� ker.AL/ is the space of bicontact structures .��; �C/ admitting contact forms ˛�; ˛C such that
.˛�; ˛C/ is an AL pair,

� PI�1.AF/ is the space of bicontact structures supporting an Anosov flow.

We emphasize that the top row in the diagram of Theorem 3 only involves concepts from contact and
symplectic geometry. This enables us to identify projectively Anosov flows with bicontact structures, and
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Anosov flows with bicontact structures satisfying a quantitative constraint, coming from the existence of a
suitable pair of contact forms. Moreover, the space of AL pairs for a fixed underlying bicontact structure
is (weakly) contractible if nonempty. Hence, AL pairs can be thought of as auxiliary data attached to
bicontact structures.

Our results can be summarized by the following slogan:

The topological properties of the spaces AF , PAF and the inclusion AF � PAF can be
translated into topological properties of the spaces AL, BC, and the map ker W AL! BC,
and vice versa.

One important missing piece in this correspondence between Anosov dynamics and contact topology is
the mirror notion of topological or orbit equivalence of flows in the contact world.

Definition 4 Two Anosov flows ˆD f�tg and ‰ D f tg on M are topologically equivalent, or orbit
equivalent, if there exist a homeomorphism h WM !M and a continuous map � WR�M !R such that
�.t; x/� 0 for t � 0, and

 �.t;x/ D h ı�t ı h�1.x/

for every t 2R and x 2M.

In other words, the topological equivalence h sends the oriented trajectories of � onto the oriented trajecto-
ries of  , but does not necessarily preserves the parametrization. The structural stability of Anosov flows
with smooth dependence on parameters (de la Llave, Marco and Moriyón [22, Theorem A.1]) implies that
two smooth Anosov flows which are homotopic through smooth Anosov flows are topologically equivalent
through a topological equivalence which is isotopic to the identity. We do not know if the converse is true.

Question 5 If two (smooth) Anosov flows on M are topologically equivalent (via a topological equiva-
lence which is merely continuous), what can be said about the spaces of AL pairs supporting them? How
to characterize topological equivalence in terms of AL pairs?

It is not clear to us how the (hyper)tight contact structure �˙ associated with a Anosov flow behave under
topological equivalence. Solving these questions could have a significant impact in the understanding
of Anosov flows from the perspective of contact geometry. For instance, a fundamental problem in
3-dimensional Anosov dynamics is the following:

Question 6 (Barthelmé [4]) On a closed 3-manifold, are there finitely many Anosov flows up to
topological equivalence?

It is known by the work of Colin, Giroux and Honda [10] that an atoroidal 3-manifold carries finitely
many isotopy classes of tight contact structures. Although toroidal (and irreducible) 3-manifolds can carry
infinitely many isotopy classes of tight contact structures, all of them can be obtained from finitely many
contact structures by performing Lutz twists along suitable tori; see [10]. The authors also show that there
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are finitely many tight contact structures for a prescribed Giroux torsion, up to isotopy and Dehn twists.
Since the contact structures defined by (Anosov) Liouville pairs are by definition exactly semifillable,
they are strongly fillable (Eliashberg [12, Corollary 1.4]), hence they have zero Giroux torsion (Gay [15,
Corollary 3]). This observation plays an essential role in the recent solution of Question 6 for the class of
R-covered Anosov flows (Barthelmé and Mann [5]; Marty [23]).

We hope that this coarse classification of tight contact structures together with our homotopy correspon-
dence could lead to important results in the classification of Anosov flows on 3-manifolds. To this end, it
is crucial to understand the following.

Question 7 Let .˛�; ˛C/ be an AL pair on M. Fixing ˛C, what can be said about the Anosov flow
supported by an AL pair .˛0�; ˛C/, where ˛0� is isotopic to ˛�?

The main difficulty here is that a path .˛t�/t2Œ0;1� of contact forms from ˛0� D ˛� to ˛1� D ˛
0
� might not

induce a path of bicontact structures, as � t�D ker˛t� and �CD ker˛C might fail to be transverse for some
t 2 .0; 1/. Even if transversality holds, .˛t�; ˛C/ might fail to be an AL pair. Nevertheless, one could try
to analyze the failure of these properties for a generic path .˛t�/t , and apply suitable modifications to it.
We wish to explore this direction in future work.

A closely related question, already raised by Hozoori [21, Question 7.2] is the following.

Question 8 Let ˆ0 and ˆ1 be two Anosov flows on M and assume that they are homotopic through
projectively Anosov flows. Equivalently, assume that there exist two AL pairs .˛0�; ˛

0
C
/ and .˛1�; ˛

1
C
/

supportingˆ0 andˆ1, respectively, such that their underlying bicontact structures are homotopic (through
bicontact structures). Are ˆ0 and ˆ1 homotopic through Anosov flows, ie are .˛0�; ˛

0
C
/ and .˛1�; ˛

1
C
/

homotopic through AL pairs? Are ˆ0 and ˆ1 topologically equivalent?

From the point of view of Liouville geometry, it is natural to weaken the definition of AL pairs as follows.

Definition 9 A Liouville pair .˛�; ˛C/ on M is a weak Anosov Liouville pair (wAL pair for short) if it
satisfies the following two conditions.

(1) The contact plane fields �˙´ ker˛˙ are everywhere transverse.

(2) The intersection ��\ �C is spanned by an Anosov vector field.

An Anosov Liouville structure (AL structure for short) on V DRs �M is a pair .!; �/, where ! D d� is
a symplectic form and

�D e�s˛�C e
s˛C

for a weak Anosov Liouville pair .˛�; ˛C/. We call the triple .V; !; �/ an Anosov Liouville manifold.

An Anosov flow ˆ is supported by the AL structure .!; �/ if the vector field X generating ˆ satisfies
X 2 ��\ �C.
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Note that the definition of wAL pairs does make reference to the underlying Anosov flow, as opposed to
AL pairs. By Theorem 1, there is an inclusion AL�ALw , where ALw denotes the space of wAL pairs
on M. This inclusion is strict in general. The map I naturally extends to a map Iw WALw !AF , and
similarly to the first bullet of Theorem 3, we have:

Theorem 10 The map Iw WALw !AF is an acyclic Serre fibration , hence a homotopy equivalence.

Corollary 11 Let ˆ0 and ˆ1 be two Anosov flows on M, supported by AL structures .!0; �0/ and
.!1; �1/, respectively. If ˆ0 and ˆ1 are homotopic through Anosov flows , then .!0; �0/ and .!1; �1/
are homotopic through AL structures , and .V; !0; �0/ and .V; !1; �1/ are exact symplectomorphic.

Here, an exact symplectomorphism  W .V; !0; �0/! .V; !1; �1/ is a diffeomorphism such that  ��1 D
�0 C df for some smooth function f W V ! R. In Corollary 11, we can further assume that df has
compact support.

Proof of Corollary 11 If ˆ0 and ˆ1 are homotopic through Anosov flows, Theorem 10 provides a
continuous path of smooth AL structures from .!0; �0/ to .!1; �1/. This path can be smoothed while
ensuring the existence of some number A > 0 such that the corresponding Liouville vector fields are
all transverse to f˙Ag �M. Then Cieliebak and Eliashberg [7, Proposition 11.8] provide an exact
symplectomorphism  such that  ��1��0 is compactly supported.

Anosov Liouville manifolds have numerous interesting invariants coming from Floer theory, eg symplectic
cohomology and wrapped Fukaya category. As an important consequence of Corollary 11, these are
invariants of the underlying Anosov flow, and only depend on its homotopy class in the space of Anosov
flows. Some of these invariants were studied in detail with Cieliebak, Lazarev and Moreno [8]. To
our knowledge, this is the first thorough analysis of symplectic invariants of non-Weinstein Liouville
manifolds.

One can also consider Liouville pairs .˛�; ˛C/whose underlying contact planes are everywhere transverse.
We call such pairs transverse Liouville pairs. They correspond to particular projectively Anosov flow that
we call semi-Anosov flows, see Remark 3.12 below. General Liouville pairs (without the transversality
assumption) are more complicated to understand, but their underlying contact planes can only intersect
positively, see Remark 2.10 below. In the terminology of Colin and Firmo [9], they constitute positive
contact pairs.

These geometric structures are summarized in the following diagram; the ones in blue are the main
protagonists of this article. Liouville pairs and positive contact pairs will be investigated in forthcoming
work [24]:

fAL pairsg fweak AL pairsg ftransverse Liouville pairsg fLiouville pairsg

fbicontact structuresg fpositive contact pairsg

�

ker

� �

ker ker

�
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2 Anosov Liouville pairs

2.1 Preliminary definitions

If X is a nonsingular vector field on M, we write

NX ´ TM=hXi:

An orientation on M naturally determines an orientation on the plane bundle NX !M. We denote by
� W TM !NX the quotient map. There is a correspondence between n-forms ˛ on M satisfying �X˛D 0
and n-forms ˛ on NX . Moreover, a vector field Y on M induces a section Y ´ �.Y / on NX . The
operator LX , the Lie derivative along X , naturally induces an operator, still denoted by LX , on sections
of NX and on n-forms on NX .

Definition 2.1 A bicontact structure on an oriented 3-manifold M is a pair of cooriented contact
structures .��; �C/ such that �� is negative, �C is positive and �� and �C are transverse everywhere.

A nonsingular flow ˆ on M generated by a vector field X is supported by a bicontact structure .��; �C/
if X 2 ��\�C, and the following orientation compatibility condition holds. Let �˙�NX be the image of
�˙ under the quotient map � W TM !NX . The orientations on M, �˙ and X induce natural orientations
on NX and �˙. We require that the orientation on NX coincides with the one on ��˚ �C (see Figures 1
and 2).

Similarly, ˆ is supported by a (weak) Anosov Liouville pair .˛�; ˛C/ if it is supported by the bicontact
structure .��; �C/D .ker˛�; ker˛C/.

Note that the definitions of bicontact structures and (weak) Anosov Liouville pairs still make sense if �˙,
or ˛˙, are merely C1. We will always assume that bicontact structures and (weak) Anosov Liouville pairs
are smooth unless stated otherwise. Bicontact structures and (weak) Anosov Liouville pairs obviously
constitute open subsets of the space of pairs of 2-plane fields on M and the space of pairs of 1-forms
on M, respectively, since they are defined by open conditions.

If .��; �C/ is a bicontact structure supporting a nonsingular flow ˆD f�tg, then the bicontact structure
obtained from .��; �C/ by reversing the coorientations of both �� and �C supports ˆ as well. Reversing
the coorientation of �� or �C only yields a bicontact structure supporting the reversed flow ˆ�1 D f��tg.

It is easy to deduce from Theorem 1 the very well-known corollary:
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�� �C

X

Figure 1: Coorientation convention for bicontact structures supporting a vector field or a flow.

Corollary 2.2 The space of (smooth , C1) Anosov vector fields on M is open in the C1 topology.

Proof Let X be an Anosov vector field on M and .˛�; ˛C/ be an AL pair supporting X . We choose a
1-form � such that �.X/� 1. If X 0 is another vector field which is sufficiently C1-close to X , the pair
.˛0�; ˛

0
C
/ defined by

˛0˙´ ˛˙�
˛˙.X

0/

�.X 0/
�

is an AL pair supporting X 0 and by Theorem 1, X 0 is Anosov.

If .˛�; ˛C/ is an AL pair on M and � WM !R is a smooth function, it follows from the definition that

� � .˛�; ˛C/´ .e��˛�; e
�˛C/

is also an AL pair that defines the same bicontact structure as .˛�; ˛C/. These two AL pairs will be
called equivalent. This defines an action of C1.M;R/ on the space of AL pairs.

Definition 2.3 A pair of contact forms .˛�; ˛C/ on M, negative and positive, respectively, is balanced if

˛C ^ d˛C D�˛� ^ d˛�:

In other words, .˛�; ˛C/ is balanced if ˛˙ define opposite volume forms on M.

Lemma 2.4 Two equivalent AL pairs on M define Liouville isomorphic Liouville structures on R�M.
Any AL pair on M is equivalent to a (unique) balanced one.

Proof Let .˛�; ˛C/ be an AL pair on M and �´ e�s˛�C e
s˛C be the corresponding Liouville form.

If � 2 C1.M;R/ and �0´ e�.sC�/˛�C e
sC�˛C, the diffeomorphism

‰ WR�M !R�M; .s; x/ 7! .s� �.x/; x/;

Algebraic & Geometric Topology, Volume 25 (2025)



1802 Thomas Massoni

satisfies ‰��0 D �. Moreover, if f WM !R>0 is such that

˛� ^ d˛� D�f ˛C ^ d˛C;

then � � .˛�; ˛C/ is balanced if and only if � D 1
4

lnf .

As a straightforward application of Gray’s stability theorem and the above lemma, we have:

Lemma 2.5 Let .˛�; ˛C/ be an AL pair and let �C´ ker˛C. If � 0
C
D ker˛0

C
is a contact structure

homotopic to �C, then there exists a path of AL pairs .˛t�; ˛
t
C
/, t 2 Œ0; 1�, such that .˛0�; ˛

0
C
/D .˛�; ˛C/

and ˛1
C
D ˛0
C

.

Definition 2.6 A pair of contact forms .˛�; ˛C/ on M, negative and positive, respectively, is closed if
˛� ^˛C is a closed 2-form.

It is straightforward to check that a closed pair .˛�; ˛C/ is an AL pair (see also Lemma 2.7 below). As we
will see in Proposition 3.13, closed AL pairs are in correspondence with volume preserving Anosov flows.

2.2 Elementary properties of Anosov Liouville pairs

The notion of Anosov Liouville pair can be conveniently characterized in the following way, which only
involves the forms and their exterior differentials.

Lemma 2.7 Let .˛�; ˛C/ be a pair of 1-forms on M. We write

˛C ^ d˛C D fC dvol; ˛� ^ d˛� D�f� dvol; d.˛� ^˛C/D f0 dvol;

where dvol is any volume form on M and f˙; f0 WM ! R are smooth functions. Then .˛�; ˛C/ is an
AL pair if and only if f˙ > 0, and

(2-1) f 20 < 4f�fC:

Proof Following [25, Lemma 9.4], .˛�; ˛C/ is a Liouville pair if and only if for all constants C�; CC� 0
with .C�; CC/¤ .0; 0/,

.CC˛C�C�˛�/^ .CCd˛CCC�d˛�/ > 0;

which is equivalent to
C 2CfCCC�CCf0CC

2
�f� > 0:

Applying this fact to .˛�; ˛C/ and .�˛�; ˛C/, we obtain that .˛�; ˛C/ is an AL pair if and only if
f˙ > 0 and for every x 2R,

x2fCC xf0Cf� > 0;

which is equivalent to (2-1) by the quadratic formula.
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Remark 2.8 The proof also shows that .˛�; ˛C/ is a Liouville pair if and only if

f˙ > 0 and �f0 < 2
p
f�fC:

We now use this criterion to show some natural geometric properties of Anosov Liouville pairs.

Proposition 2.9 Let .˛�; ˛C/ be an Anosov Liouville pair. Then it defines a bicontact structure
.��; �C/D .ker˛�; ker˛C/. Moreover , if X 2 ��\ �C is a nowhere vanishing vector field and R˙ is the
Reeb vector field of ˛˙, then fX;R�; RCg is a basis at every point of M.

Proof We first show that �� and �C intersect transversally everywhere. Assume by contradiction that
there exist a point x2M and two linearly independent vectorsX; Y 2TxM such that ˛˙.X/D˛˙.Y /D0.
In what follows, all the quantities will be implicitly evaluated at this point x. We can assume without loss
of generality that d˛C.X; Y / > 0 and dvol.X; Y;RC/D 1. We compute

˛C ^ d˛C.X; Y;RC/D d˛C.X; Y /D fC;

˛� ^ d˛�.X; Y;RC/D ˛�.RC/ d˛�.X; Y /D�f�;

˛� ^ d˛C.X; Y;RC/D ˛�.RC/ d˛C.X; Y /;

˛C ^ d˛�.X; Y;RC/D d˛�.X; Y /;

hence

f 20 � 4f�fC D .d˛�.X; Y //
2
� 2 ˛�.RC/ d˛�.X; Y / d˛C.X; Y /

C˛�.RC/
2 .d˛C.X; Y //

2
C 4 ˛�.RC/ d˛�.X; Y / d˛C.X; Y /

D
�
d˛�.X; Y /C˛�.RC/ d˛C.X; Y /

�2
� 0;

contradicting (2-1).

For the second part, we write

˛� ^ d˛C D gC dvol; ˛C ^ d˛� D g� dvol;

where g˙ WM !R are smooth functions (note that f0 D g��gC) and we compute

˛C ^ d˛C.X;RC; � /D�d˛C.X; � /D fC dvol.X;RC; � /;

˛� ^ d˛�.X;RC; � /D�˛�.RC/ d˛�.X; � /C d˛�.X;RC/˛� D�f� dvol.X;RC; � /;

˛� ^ d˛C.X;RC; � /D�˛�.RC/ d˛C.X; � /D gC dvol.X;RC; � /;

˛C ^ d˛�.X;RC; � /D�d˛�.X; � /C d˛�.X;RC/˛C D g� dvol.X;RC; � /:

Let us assume that dvol.X;R�; RC/ D 0 at a point x 2M. In what follows, all the quantities will be
implicitly evaluated at this point x. Plugging in R� in the first two of the four equations above yields

d˛�.X;RC/D d˛C.X;R�/D 0:
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Note that X and RC are not colinear since ˛C.X/ D 0 and ˛C.RC/ D 1. The last two of the four
equations above imply ˛�.RC/¤ 0 and

fC D
1

˛�.RC/
gC; f� D�˛�.RC/g�:

Finally,
f 20 � 4f�fC D .g��gC/

2
C 4g�gC D .g�CgC/

2
� 0;

contradicting (2-1).

Remark 2.10 A (non-Anosov) Liouville pair may not define a bicontact structure, namely �� D ker˛�
and �C D ker˛C may not be transverse everywhere. Nevertheless, the first part of the proof can easily
be adapted to show that at a point where �� and �C coincide, and their orientations coincide (and their
coorientations are opposite). In the terminology of [9], .��; �C/ is a positive pair of contact structures.
After a generic perturbation of ˛� and/or ˛C, the singular set �´ fx 2 M W ��.x/ D �C.x/g is a
smoothly embedded link in M. Moreover, it can be shown that f0 > 0 along �, so the Liouville condition
of Remark 2.8 is largely satisfied. We refer to our article [24] for detailed proofs of these facts and a
thorough investigation of general Liouville pairs.

For any AL pair .˛�; ˛C/, if X (or dvol) is chosen so that dvol.X;R�; RC/D 1, then

fC D d˛C.X;R�/D LX˛C.R�/; gC D ˛�.RC/fC;

f� D d˛�.X;RC/D LX˛�.RC/; g� D�˛C.R�/f�:

Moreover, if .˛�; ˛C/ is balanced, ie if fC D f�, the condition (2-1) becomes

(2-2) j˛�.RC/C˛C.R�/j< 2:

In fact, (balanced) AL pairs can be completely characterized by their Reeb vector fields.

Proposition 2.11 Let .˛�; ˛C/ be a pair of contact forms on M, negative and positive , respectively , and
assume that it is balanced. Then it is an AL pair if and only if (2-2) is satisfied.

Proof We only have to show that under these hypothesis, the conclusions of Proposition 2.9 are satisfied,
since these imply that gC D ˛�.RC/fC and g� D�˛C.R�/f� and Lemma 2.7 concludes the proof.

Assume first that �� and �C are not transverse at a point x 2M. With the same notation as in the proof of
Proposition 2.9, similar computations show that at this point,

˛C ^ d˛C.X; Y;RC/D d˛C.X; Y /D fC;

˛� ^ d˛�.X; Y;RC/D ˛�.RC/ d˛�.X; Y /D�f�;

˛C ^ d˛C.X; Y;R�/D ˛C.R�/ d˛C.X; Y /D fC dvol.X; Y;R�/;

˛� ^ d˛�.X; Y;R�/D d˛�.X; Y /D�f� dvol.X; Y;R�/;
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hence by the first and third equalities,

dvol.X; Y;R�/D ˛C.R�/;

and by the second and fourth equalities,

˛�.RC/˛C.R�/D 1;

contradicting (2-2) by the inequality of arithmetic and geometric means.

Assuming now that dvol.X;R�; RC/D 0 at a point x 2M, the proof of Proposition 2.9 showed that at
this point,

d˛�.X;RC/D d˛C.X;R�/D 0;

and
gC D ˛�.RC/fC:

Similarly,
˛C ^ d˛C.X;R�; � /D�˛C.R�/ d˛C.X; � /D fC dvol.X;R�; � /;

˛� ^ d˛C.X;R�; � /D�d˛C.X; � /D gC dvol.X;R�; � /;
hence

fC D ˛C.R�/gC:

Once again, we obtain that
˛�.RC/˛C.R�/D 1;

contradicting (2-2).

3 From Anosov flows to Anosov Liouville pairs and back

In this section, we adapt the proof of [21, Theorem 1.1] to the setting of Anosov Liouville pairs as defined
in the introduction.

3.1 Anosov and projectively Anosov flows

We recall the definitions of Anosov and projectively Anosov flows with an emphasis on our orientation
conventions, and recast them in terms of the existence of suitable 1-forms.

Definition 3.1 Let ˆD f�tgt2R be a flow on M generated by a nonsingular C1 vector field X .

� ˆ is Anosov if there exists a continuous invariant hyperbolic splitting

(3-1) TM D hXi˚Es˚Eu;

where Es; Eu are 1-dimensional bundles such that for some (any) Riemannian metric g on M, there exist
constants C; a > 0 such that for all v 2Es and t � 0,

kd�t .v/k � Ce�atkvk;

and for all v 2Eu and t � 0,
kd�t .v/k � Ceatkvk:
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Es and Eu are called the (strong) stable and unstable bundles of ˆ, respectively.

� ˆ is projectively Anosov if there exists a continuous invariant splitting

(3-2) TM=hXi DNX DE
s
˚Eu;

where Es; Eu are 1-dimensional bundles such that for some (any) Riemannian metric Ng on NX , there
exist constants C; a > 0 such that for all unit vectors vs 2Es , vu 2Eu, and t � 0,

kd�t .vu/k � Ce
at
kd�t .vs/k:

Such a splitting is called a dominated splitting. We denote by Ews´ ��1.Es/ and Ewu´ ��1.Eu/

the weak-stable and weak-unstable bundles of ˆ, respectively.

� In both cases, if the constant C can be chosen to be 1, the corresponding metrics g and Ng are called
adapted to ˆ.

� The Anosov (resp. projectively Anosov) flow ˆ is oriented if Es and Eu are oriented (resp. Es and
Eu are oriented) and their orientations are compatible with the splitting (3-1) (resp. the splitting (3-2)).
See Figure 2.

Anosov flows are projectively Anosov, with dominated splitting NX D �.Es/˚ �.Eu/. Every three
dimensional (projectively) Anosov flow admits a smooth adapted metric; see [14, Proposition 5.1.5].1

Anosov famously showed that the weak and strong stable/unstable bundles of an Anosov flow are uniquely
integrable. Moreover, Ews and Ewu integrate into taut foliations Fws and Fwu, respectively. This is
not true for projectively Anosov flows; see [13, Example 2.2.9].

In the rest of the article, we implicitly assume that all of the Anosov and projectively Anosov flows under
consideration are oriented.

The following definition appears in [21, Definition 3.11]; see also [21, Proposition 3.12].

Definition 3.2 Let ˆ be a projectively Anosov flow on M generated by a vector field X and Ng be a
Riemannian metric on NX . The expansion rates in the stable and unstable directions for Ng are continuous
functions rs; ru WM !R defined by

rs´
@

@t

ˇ̌̌
tD0

ln kd�t . Nes/k; ru´
@

@t

ˇ̌̌
tD0

ln kd�t . Neu/k;

where Nes and Neu are unit sections of Es and Eu, respectively, which are continuous and continuously
differentiable along the flow ˆ.2 Moreover,

LX Nes D�rs Nes; LX Neu D�ru Neu:
1The proof is given for Anosov flows but it easily generalizes to projectively Anosov flows in dimension three; note that it is not
sufficient to integrate an arbitrary metric along the flow for a large time!
2In particular, the function t 7! d�t . Nes;u/ is differentiable and has positive norm, so rs;u is well-defined.
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X
es Es

Eu

eu

�� �C

Figure 2: Orientation convention for the Anosov splitting. There is a similar picture for the
dominated splitting. The vector field X points toward the reader; watch out.

The Lie derivative above means the following: if es;u is a vector field on M which is a lift of Nes;u with
the same regularity, the quantity LX Nes;u´ �.LXes;u/ is a section of Es;u which is independent of the
choice of the lift. Here, LXes;u denotes the usual Lie derivative along X , defined by

LXes;u´
@

@t

ˇ̌̌
tD0

.�t /�es;u:

Notice that this involves the pullback along �t , and thus the differential of the inverse of the flow, which
explains the presence of negative signs in the previous formulas.

Many natural quantities (eg functions, vector fields, 1-forms, Riemannian metrics) defined for (projectively)
Anosov flows are continuous and can be upgraded to quantities which are continuous and continuously
differentiable along the flow by considering the averaging

1

T

Z T

0

.�t /� dt

for some T > 0. Nevertheless, these quantities may not be C1. It is therefore natural to consider the
following spaces (only the cases k D 0; 1 and nD 0; 1 will be relevant for us).

Definition 3.3 Let X be a smooth, nonsingular vector field on M, and k � 0 be a nonnegative integer.

� An n-form ˛ onM is of class CkX if ˛ is differentiable along X , and both ˛ and LX˛ are of class Ck .
We denote by �n

X;k
the space of n-forms on M of class CkX satisfying �X˛ D 0 (which is vacuous

for nD 0, ie for functions). We also denote by �nX D�
n
X;1 ��

n the space of smooth n-forms
satisfying �X˛ D 0.

Algebraic & Geometric Topology, Volume 25 (2025)



1808 Thomas Massoni

� On �n
X;k

, there is a natural norm defined by

j˛jCk
X
´ j˛jCk CjLX˛jCk ;

making .�n
X;k
; j � jCk

X
/ a Banach space. �nX is naturally a Fréchet space as a closed subspace of �n.

These definitions naturally extend to sections of NX and n-forms on NX .

In Appendix A, we show some density results for these spaces which are particularly useful when dealing
with (projectively) Anosov flows generated by C1 vector fields and can be used to bypass Hozoori’s
delicate approximation techniques in [21, Section 4]. The results in Appendix A are not needed (except in
the proof of Theorem 4.4) if we restrict our attention to smooth Anosov flows in view of Lemma 3.5 below.

In dimension three, the definitions of Anosov and projectively Anosov flows can be rephrased in terms
of the existence of certain 1-forms. The following lemma is essentially an adaptation of results of
Mitsumatsu [28] and Hozoori [21; 20].

Lemma 3.4 Let ˆ be a smooth , nonsingular flow on M generated by a vector field X. Then

(1) ˆ is oriented projectively Anosov if and only if there exist .˛s; ˛u/ 2�1X;0 ��
1
X;0 and continuous

functions ru; rs WM !R such that

˛s ^˛u > 0; LX˛s D rs˛s; LX˛u D ru˛u;

and rs < ru. Here , ˛s and ˛u denote the 1-forms on NX induced by ˛s and ˛u, respectively.

(2) ˆ is oriented Anosov if and only if there exist ˛s , ˛u, rs , ru as above such that rs < 0 < ru.

(3) ˆ is oriented volume preserving Anosov if and only if there exist ˛s , ˛u, rs , ru as above such that
ruC rs D 0.

Moreover , ker˛u DEws and ker˛s DEwu.

Proof (1) This essentially follows from [21, Proposition 3.15]. We recall the main arguments. If ˆ is
projectively Anosov, we can choose an adapted metric and unit vector fields Nes and Neu 2NX of class C0X
such that Nes spans Es , Neu spans Eu and . Nes; Neu/ is positively oriented. The inequality rs < ru follows
from the definition of a dominated splitting and the fact that the metric is adapted. If .˛s; ˛u/ denotes
the dual basis of . Nes; Neu/, it induces a pair .˛s; ˛u/ 2�1X;0 ��

1
X;0, and the relations LX Nes D�rs Nes and

LX Neu D �ru Neu imply the desired relations for ˛s and ˛u. Reciprocally, if .˛s; ˛u/ is such a pair, we
define . Nes; Neu/ as the dual basis of .˛s; ˛u/ and we easily check that it yields a projectively Anosov
splitting of NX . This is essentially because for ? 2 fs; ug, �T� Ne? D exp

�R T
0 r? ı �

t dt
�
Ne? and rs < ru,

where ˆDf�tg. In particular, we have ker˛s DEwu and ker˛uDEws since these bundles are uniquely
determined by the flow.

(2) This follows from (1) and [21, Proposition 3.17].

(3) The forward direction follows from the proof of [28, Theorem 3]. Indeed, assuming that ˆ is volume
preserving Anosov, we can arrange that ruC rs D 0 in the following way. If dvol is a (smooth) volume
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form preserved by ˆ, then �´ �Xdvol is a nondegenerate 2-form on NX invariant under ˆ. There exists
an adapted metric g of class C0X for which the Anosov splitting is orthogonal and the volume form for
the induced metric Ng on NX is precisely � .3 Hence, if es and eu are C0X unit vector fields spanning Es

and Eu, respectively, then �. Nes; Neu/ D 1. Differentiating this equality along X yields ruC rs D 0 as
desired, and we obtain .˛s; ˛u/ by dualization as before. For the reverse direction, rs < 0 < ru, since
rs < ru and rs D�ru, so ˆ is Anosov by (2). Moreover, if � is a smooth 1-form satisfying �.X/� 1,
then dvol´ ˛s ^˛u ^ � is a C0X volume form preserved by X and by [22, Corollary 2.1], this volume
form is smooth.

It is well-known that in dimension three, the regularity of the weak-stable and weak-unstable bundles of a
smooth (even C2) Anosov flow are C1. We have:

Lemma 3.5 If ˆ is Anosov and smooth , we can further assume that ˛s , ˛u, rs and ru as in Lemma 3.4
are C1, ie ˛s and ˛u are C1X .

Proof By [19, Corollary 1.8], Ews and Ewu are C1 and an adapted metric can always be assumed to
be smooth, so the construction in Lemma 3.4 yields C1 1-forms ˛s and ˛u. The C1 regularity of rs and
ru follows from a trick of Simić [30]. First, let us choose a C1 1-form ˛u such that ker˛u D Ews and
LX˛u D ru ˛u, where ru is continuous and positive. Fix a smooth vector field Z positively transverse to
Ews , so that f ´ ˛u.Z/ > 0. Here, f is C1 and can be approximated by a smooth function Qf > 0 so
that h´ Qf =f is C1-close to 1. Setting z̨u´ h˛u, z̨u is C1 and satisfies LX z̨u D zru z̨u, where zru is
C0-close to ru and can be assumed to be positive. We now show that zru is C1. Indeed, z̨u.Z/D Qf and

zru Qf D .LX z̨u/.Z/D LX .z̨u.Z//� z̨u.LXZ/DX � Qf � z̨u.LXZ/;

and the last quantity is C1 since X � Qf and LXZ are smooth and z̨u is C1. The same argument applies
to ˛s .

Remark 3.6 The proof actually shows more. Since zru D uC z̨u.V / for some smooth function u
and some smooth vector field V , and LX z̨u D zru z̨u, an immediate induction argument shows that for
every integer n � 0, LnX z̨u and LnXzru exist and are C1, where LnX ´ LX ı � � � ı LX denotes the Lie
derivative along X iterated n times. In fact, it is well known that in our setting, the individual leaves of
the weak-(un)stable foliation are smooth (see [22, Lemma 2.1]).

Remark 3.7 The same argument works for smooth projectively Anosov flow whose weak-stable and
weak-unstable distributions are C1. However, there are known examples of smooth projectively Anosov
flows in dimension three whose weak distributions are not C1; see [13, Example 2.2.9].

3The induced metric Ng is the pushforward of the restriction of g to Es ˚Eu along the projection Es ˚Eu! NX , which is
an isomorphism. Concretely, if Nv1; Nv2 are vectors in NX with lifts v1; v2 2Es ˚Eu, then Ng. Nv1; Nv2/D g.v1; v2/. Since X is
orthogonal to Es ˚Eu for g, the latter quantity does not depend on the choice of such lifts.
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We call a pair of 1-forms .˛s; ˛u/ as in Lemma 3.4 (1) (resp. (2), (3)) a defining pair for the projectively
Anosov (resp. Anosov, volume preserving Anosov) flow ˆ. We further require defining pairs for (volume
preserving) Anosov flows to be C1. We also impose the following conditions on orientations:

� The orientation on Ews , induced by the orientation of X and the orientation on Es or Es which
implicitly comes with ˆ, agrees with the one induced by ˛u,

� The orientation on Ewu, induced by the orientation of X and the orientation on Eu or Eu which
implicitly comes with ˆ, agrees with the one induced by �˛s .4

Concretely, these properties mean that if ? 2 fs; ug and Ne? 2E? forms an oriented basis, then ˛?. Ne?/ > 0.

We denote by Dˆ the space of defining pairs for ˆ endowed with the C0X topology in the projectively
Anosov case, and with the C1 topology in the (volume preserving) Anosov case.

Lemma 3.8 The space Dˆ of defining pairs for a projectively Anosov (resp. Anosov , volume preserving
Anosov) flow ˆ with its corresponding topology is contractible.

Proof Let us fix a defining pair .˛s; ˛u/ 2 Dˆ for a projectively Anosov flow ˆ generated by a vector
field X . If .˛0s; ˛

0
u/ 2 Dˆ is any other defining pair, then ker˛u D ker˛0u and ker˛s D ker˛0s , and the

orientations on these spaces agree. Hence, there exist (unique) functions �s; �u WM !R of class C0X such
that ˛0u D e

�u˛u and ˛0s D e
�s˛s , and they satisfy

(3-3) r 0u� r
0
s DX � .�u� �s/C ru� rs > 0:

Here, r 0u and r 0s are such that LX˛0s D r 0s ˛0s and LX˛0u D r 0u ˛0u.

Reciprocally, if �s; �u WM !R are functions as above satisfying (3-3), then .˛0s; ˛
0
u/´ .e�s˛s; e

�u˛u/

is also a defining pair for ˆ.

It follows that Dˆ is homeomorphic to

R´
˚
.�s; �u/ 2 C0X � C0X WX � .�u� �s/C ru� rs > 0

	
;

and R is obviously convex, hence contractible. The proof for Anosov flows and volume preserving
Anosov flows is similar. The condition on �s and �u becomes

(3-4) X � �uC ru > 0 and X � �sC rs < 0

if ˆ is Anosov, and

(3-5) X � .�u� �s/C ru� rs > 0 and X � .�uC �s/D 0

if ˆ is volume preserving Anosov. Both conditions (3-4) and (3-5) are convex in .�s; �u/.
4The somewhat strange minus sign is explained by the following remark. In the Euclidean plane R2 with its standard oriented
basis .e1; e2/, the dual basis .e�1 ; e

�
2 / induces coorientations on the x and y-axis corresponding to the natural orientation on the

x-axis and to the opposite of the natural orientation on the y-axis.
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Remark 3.9 If ˆ is a (projectively, volume preserving) Anosov flow generated by a vector field X ,
f WM!R>0 is a positive function andˆ0 is the (projectively, volume preserving) Anosov flow generated
by fX , then Dˆ D Dˆ0 . Indeed, if .˛s; ˛u/ 2 Dˆ then for ? 2 fs; ug,

LfX˛? D f r?˛?:

Since the stable/unstable bundles of ˆ0 are the same as the ones of ˆ, .˛s; ˛u/ is a defining pair for ˆ0

with expansion rates r 0s;u D f rs;u.

Therefore, there is a well-defined notion of defining pairs for (projectively, volume preserving) oriented
Anosov line distributions.

3.2 From Anosov flows to Anosov Liouville pairs

Throughout this section, we assume that ˆ is a smooth Anosov flow on M and we construct an AL pair
supporting ˆ, proving the first part of Theorem 1. We choose a C1 defining pair .˛s; ˛u/ 2 Dˆ as in
Lemma 3.4(2). Following [21, Section 4], we define

(3-6) ˛�´ ˛uC˛s; ˛C´ ˛u�˛s:

Note that ˛˙ is of class C1X , and the orientation compatibility conditions of Definition 2.1 are satisfied.
Let dvol be the C1 volume form on M defined by ˛s ^˛u D �Xdvol. We will make use of the elementary
identities:

˛s ^ d˛u D�ru dvol; ˛u ^ d˛s D rs dvol; ˛s ^ d˛s D 0; ˛u ^ d˛u D 0:

The first one follows from

�X .˛s ^ d˛u/D�˛s ^ �Xd˛u D�˛s ^LX˛u D�ru ˛s ^˛u D�ru dvol;

and the three others can be obtained by similar computations. We easily deduce

˛C ^ d˛C D .ru� rs/ dvol; ˛� ^ d˛� D�.ru� rs/ dvol; d.˛� ^˛C/D 2.ruC rs/ dvol:

Since rs < 0 < ru, ˛� and ˛C are contact forms and the criterion of Lemma 2.7 is satisfied.5 Therefore,
.˛�; ˛C/ is a C1 AL pair supporting ˆ.

Definition 3.10 A standard AL pair supporting ˆ is a C1 AL pair obtained by the previous construction.
We denote by ALstd

ˆ the space of these AL pairs, endowed with the C1 topology.

There is an obvious (linear) homeomorphism between Dˆ and ALstd
ˆ induced by the map

.s; u/ 7! .uC s; u� s/:

Since Dˆ is contractible by Lemma 3.8, ALstd
ˆ is contractible as well.

5Note that �´ e�s˛�C e
s˛C is a Liouville form if and only if ru > 0.
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A standard AL pair .˛�; ˛C/ is not necessarily smooth by definition; it is smooth exactly when the weak-
stable and weak-unstable foliations of ˆ are smooth, which is a quite restrictive situation.6 Nevertheless,
any pair of smooth 1-forms .˛0�; ˛

0
C
/ sufficiently C1-close to .˛�; ˛C/ and satisfying ˛0

˙
.X/D 0 is a

smooth AL pair supporting ˆ. This shows the forward implication in Theorem 1.

Let R˙ denote the Reeb vector fields of ˛˙, defined by

˛˙.R˙/D 1; d˛˙.R˙; � /D 0:

Rewriting these equations in terms of ˛s and ˛u, and using the equalities

�Xd˛s D LX˛s D rs ˛s; �Xd˛u D LX˛u D ru ˛u;

one easily computes

˛s.R�/D
ru

ru� rs
> 0; ˛u.R�/D

�rs

ru� rs
> 0;

˛s.RC/D
�ru

ru� rs
< 0; ˛u.RC/D

�rs

ru� rs
> 0:

Therefore,

� R� is positively transverse to Ews and Ewu,

� RC is positively transverse to Ews and negatively transverse to Ewu,

and this remains true for a smoothing of .˛�; ˛C/ as above.7 Since Fws is a taut foliation, we obtain
that R˙ has no contractible closed Reeb orbit, thus �˙D ker˛˙ is hypertight. This was already observed
by Hozoori [21, Theorem 1.11].

3.3 From Anosov Liouville pairs to Anosov flows

We now turn to the second part of the proof of Theorem 1. Let us assume that ˆ is a smooth nonsingular
flow on M generated by a vector field X and suppose that it is supported by an AL pair .˛�; ˛C/. By
Proposition 2.9, .˛�; ˛C/ defines a bicontact structure .��; �C/ supporting X, soˆ is projectively Anosov
and there exists a dominated splitting NX ŠEs˚Eu as in Definition 3.1. We shall construct a defining
pair .˛s; ˛u/ as in Lemma 3.4(2), implying that ˆ is Anosov.

The proof of [13, Proposition 2.2.6] (see also [21, Remark 3.10]) shows that �˙ is everywhere transverse
to Ews and Ewu. By our orientation conventions, there exist two continuous functions �s; �u WM !R

such that
kerfe��u˛�C e

�u˛Cg DE
ws; kerfe��s˛�� e

�s˛Cg DE
wu:

6By [17, Theorem 4.7], the smoothness of the weak-(un)stable implies that ˆ is topologically equivalent to an algebraic Anosov
flow, ie the suspension of an Anosov diffeomorphism of the 2-torus, or the geodesic flow on a closed hyperbolic surface, up to
finite cover.
7These transversality properties for the Reeb vector fields are a key feature of Anosov flows and are not satisfied for projectively
Anosov flows which are not Anosov, see [21, Theorem 6.3].
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Note that �u and �s are also continuously differentiable along X.8 Indeed, if Nes is any vector field of
class C0X spanning Es �NX , then

e�u˛C. Nes/C e
��u˛�. Nes/D 0;

hence

�u D
1
2

ln
�
�
˛�. Nes/

˛C. Nes/

�
;

and this quantity is continuously differentiable along X; the same argument applies to �s .

We define9

˛u´
1

2
p

cosh.�u� �s/
.e��u˛�C e

�u˛C/; ˛s´
1

2
p

cosh.�u� �s/
.e��s˛�� e

�s˛C/;

so that

ker˛u DEws; ker˛s DEwu;

and

˛� D
1

p
cosh.�u��s/

.e�s˛uC e
�u˛s/;(3-7)

˛C D
1

p
cosh.�u��s/

.e��s˛u� e
��u˛s/:(3-8)

Note that ˛u and ˛s are continuously differentiable along X , and since Ews and Ewu are invariant
under ˆ, there exist continuous functions rs; ru WM !R such that

LX˛s D rs ˛s; LX˛u D ru ˛u:

Moreover,

˛� ^˛C D 2 ˛s ^˛u;

so ˛s ^˛u > 0. We are left to show that rs < 0< ru, which will follow from Lemma 2.7. Let dvol be the
unique volume form on M such that ˛s ^˛u D �X dvolµ � .

Lemma 3.11 With the same notation as in Lemma 2.7, we have

fC D
e�.�sC�u/

cosh.�u��s/
.X � .�u� �s/C ru� rs/;(3-9)

f� D
e.�sC�u/

cosh.�u��s/
.�X � .�u� �s/C ru� rs/;(3-10)

f0 D 2.ruC rs/:(3-11)

8We cannot assume that they are C1 yet, since we do not know that ˆ is Anosov!
9The seemingly strange conformal factors will greatly simplify some computations later, in particular the inequality (4-2) in the
proof of Lemma 4.7.
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Proof Although ˛˙ are smooth, the quantities ˛s , ˛u, �s and �u are not C1 so we cannot compute d˛˙
directly by differentiating from (3-7) and (3-8). However, these quantities are differentiable along X and
the functions f0, f� and fC can be computed from

˛C ^LX˛C D�fC�; ˛� ^LX˛� D f��; LX˛� ^˛CC˛� ^LX˛C D f0�:

Moreover, the quantities LX˛˙ can be computed from (3-7) and (3-8) by differentiating along X . The
calculations are left to the reader.

Since f˙ > 0, (3-9) and (3-10) imply

0� jX � � j< ru� rs;

where �´ �u� �s , and the inequality f 20 < 4f�fC gives

.ruC rs/
2
� cosh2.�/.ruC rs/2 < .ru� rs/2� .X � �/2 � .ru� rs/2;

yielding rs < 0 < ru as desired. This concludes the proof of Theorem 1.

Remark 3.12 Similar computations (and Lemma A.2) show that if ˆ is a nondegenerate flow on M, the
following are equivalent:

(1) ˆ is supported by a transverse Liouville pair .˛�; ˛C/.

(2) ˆ is projectively Anosov and admits a defining pair .˛s; ˛u/ with ru > 0.

Note that in case, the Reeb vector fields for the standard construction of Section 3.2 are still transverse to
the weak-unstable bundle of ˆ, but are not necessarily transverse to the weak-stable bundle of ˆ. We
wish to call ˆ a semi-Anosov flow. Our techniques would also show that the space of semi-Anosov flows
on M is homotopy equivalent to the space of transverse Liouville pairs on M.

3.4 Volume preserving Anosov flows

Volume preserving Anosov flows, ie Anosov flows preserving a volume form, constitute a remarkable
class of Anosov flows. They are topologically transitive, in the sense that they admit a dense orbit. A deep
theorem of Asaoka [3] implies that on closed 3-manifold, every transitive Anosov flow is topologically
equivalent to a volume preserving one. In this section, we show some striking connections between
volume preserving Anosov flows and Anosov Liouville pairs.

Proposition 3.13 Let ˆ be a smooth nonsingular flow on M. Then ˆ is a volume preserving Anosov
flow if and only if it is supported by a closed AL pair.
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Proof Let us first assume that ˆ preserves a (smooth) volume form dvol, and let �´ �Xdvol. Note that
� is closed. Let .��; �C/ be any bicontact structure supporting ˆ, and ˛˙ two contact forms such that
ker˛˙ D �˙. There exists a smooth positive function � WM !R>0 such that

˛� ^˛C D � �:

The positivity of � follows from our conventions on the coorientations of bicontact structures. Then,�
˛�;

1
�
˛C
�

is a closed pair as in Definition 2.6, and it is automatically an AL pair in view of Lemma 2.7
since the corresponding function f0 vanishes.

Let us now assume that ˆ is supported by a closed AL pair .˛�; ˛C/. By Theorem 1, ˆ is Anosov. Let
� be any smooth 1-form on M satisfying �.X/� 1, where X is the vector field generating ˆ, and define
dvol´ ˛� ^˛C ^ � . It is easy to check that it is a volume form, and

LXdvolD LX .˛� ^˛C/^ � C˛� ^˛C ^LX� D ˛� ^˛C ^ d�.X; � /D 0I

hence ˆ preserves a smooth volume form.

Remark 3.14 A special class of closed AL pairs is given by Geiges pairs, defined in [25, Section 8.5] as
pairs of contact forms .˛�; ˛C/ satisfying

˛C ^ d˛C D�˛� ^ d˛� > 0; ˛C ^ d˛� D ˛� ^ d˛C D 0:

Geiges pairs are called .�1/-Cartan structures in [20], and they are shown to be in correspondence
with volume preserving Anosov flows. Here, we note that .˛�; ˛C/ is a C1 Geiges pair if and only if
.˛��˛C; ˛�C˛C/ is a defining pair for the underlying volume preserving Anosov flow. As a result,
the space of Geiges pairs supporting a given flow is contractible. Not every (smooth) volume preserving
Anosov flow is supported by a smooth (or even C2) Geiges pair, as it would imply that the weak-stable
and weak-unstable bundles are C2, so the flow would be smoothly equivalent to an algebraic Anosov
flow; see [16, théorème A].

The previous proof shows more: for a volume preserving Anosov flow, any supporting bicontact structure
can be realized as the kernel of an AL pair. Surprisingly, this is a characteristic feature of volume
preserving Anosov flows.

Theorem 3.15 Let ˆ be a smooth Anosov flow on M. Then ˆ preserves a volume form if and only if
for every (smooth ) supporting bicontact structure .��; �C/, there exists an AL pair .˛�; ˛C/ such that
�˙ D ker˛˙.

Proof The forward direction follows from the first part of the proof of Proposition 3.13. Let us assume
that every (smooth) bicontact structure .��; �C/ supporting ˆ is defined by a (smooth) AL pair, and let us
fix a defining pair .˛s; ˛u/ for ˆ with associated expansion rates rs and ru as in Lemma 3.4. Let A > 0
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be a positive real number and f˛nugn2N and f˛ns gn2N be sequences of smooth 1-forms converging to ˛u
and ˛s , respectively, in the C1 topology. For every n 2N, we define

˛nC´ ˛nu � e
�A˛ns ; ˛n�´ ˛nuC e

A˛ns :

We also let
˛C´ ˛u� e

�A˛s; ˛�´ ˛uC e
A˛s:

Then, for n sufficiently large (depending on A), .˛n�; ˛
n
C
/ defines a (smooth) bicontact structure .�n�; �

n
C
/

supportingˆ. By assumption, there exists a smooth positive function fn WM!R>0 such that .˛n�; fn˛
n
C
/

is an AL pair defining .�n�; �
n
C
/. Lemma 2.7 will imply the following:

Claim For every � > 0, there exists a smooth function h� WM !R such that

(3-12) jX � h�C ruC rsj � �:

Assuming Claim for now, it follows that if � is a smooth 1-form such that �.X/� 1, then for every closed
orbit  of X , Z



.ruC rs/ � D 0:

If the flow is transitive, a classical theorem of Livšic implies that there exists a continuous function
h WM !R which is differentiable along X and satisfies

X � hC ruC rs D 0:

Writing dvol0´ eh dvolD eh ˛s ^˛u ^ � , LXdvol0 D 0 so ˆ preserves a positive continuous measure,
and by [22, Corollary 2.1], this measure is a smooth volume form.

It turns out that the condition (3-12) implies that the flow is transitive. We have not been able to find a proof
of this fact in the literature. We refer to Appendix B for a proof using the theory of Sinai–Ruelle–Bowen
measures.

We now prove Claim. Let � > 0 and choose A > 0 such that

supM .ru� rs/
cosh.A/

� �=3:

Let es and eu be C1 vector fields satisfying

˛s.es/D 1; ˛s.eu/D 0;

˛u.es/D 0; ˛u.eu/D 1;

so that ˛s ^ ˛u.es; eu/ D dvol.X; es; eu/ D 1. Since .˛n�; fn˛
n
C
/ is an AL pair for n large enough,

Lemma 2.7 implies the inequalityˇ̌̌̌
X � lnfnC

d.˛n� ^˛
n
C
/.X; es; eu/

˛n� ^˛
n
C
.es; eu/

ˇ̌̌̌
<
2
p
�.˛n� ^ d˛

n
�.X; es; eu// � .˛

n
C
^ d˛n

C
.X; es; eu//

j˛n� ^˛
n
C
.es; eu/j

:
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One computes

lim
n!1

d.˛n� ^˛
n
C
/.X; es; eu/

˛n� ^˛
n
C
.es; eu/

D ruC rs;

lim
n!1

2
p
�.˛n� ^ d˛

n
�.X; es; eu// � .˛

n
C
^ d˛n

C
.X; es; eu//

j˛n� ^˛
n
C
.es; eu/j

D
ru� rs

cosh.A/
;

by first replacing ˛n
˙

by ˛˙ and then writing these expressions in terms of ˛s and ˛u. We obtain that for
n large enough such that the above two sequences are �=3-close to their limits,

jX � lnfnC ruC rsj �
ru� rs

cosh.A/
C �=3C �=3� �;

hence h�´ lnfn satisfies the required inequality and Claim is proved.

Remark 3.16 The proof can be adapted to show that if every bicontact structure supporting ˆ is realized
as the kernel of a Liouville pair, then the determinant of the Poincaré return map for every closed orbit of
ˆ is bigger than or equal to 1. We expect that this should also imply that ˆ is volume preserving.

4 Spaces of Anosov Liouville pairs and bicontact structures

This section is dedicated to the proof of Theorem 3 from the introduction. We first describe the main
strategy in a more general setting. Let E and B be topological spaces and f WE! B be a continuous
map. We can assume that E and B have the homotopy type of CW complexes. This is the case for
the spaces we consider (eg AL, BC, AF , PAF , etc.) as they are open subsets of Fréchet spaces.10 To
show that f is a homotopy equivalence, it is enough to show that it is a Serre fibration with (weakly)
contractible fibers. However, it seems rather hard to show that the maps we care about (eg I, PI) satisfy
a homotopy lifting property, as this would require a careful understanding of how the stable and unstable
bundles depend on the (projectively) Anosov flow. Instead, we choose a more indirect approach: we first
show that these maps have contractible fibers, and we then show that they are topological submersions.

Definition 4.1 f W E ! B is a topological submersion if it is surjective, and for every x 2 E, there
exists a neighborhood U of x in E such that if we write y´ f .x/ and V ´ U \f �1.y/, there exists a
homeomorphism U ��! f .U /�V making the following diagram commute:

U f .U /�V

f .U /

�

f pr1

Here, pr1 denotes the projection onto the first factor.

10Indeed, Fréchet spaces are absolute neighborhood retracts (ANRs) by a theorem of Dugundji; an open subset of an ANR is an
ANR; every ANR has the homotopy type of a CW complex by a theorem of Milnor and Whitehead. However, it is known that an
open subset of an infinite dimensional Fréchet space is not a CW complex.
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f

B

E

f .U / y

V

x

U

Figure 3: A topological submersion.

Fiber bundles are topological submersions, but the converse is not true since the product structure of
topological submersions is only local on the domain and is not “uniform in the fibers”; see Figure 3.
However, we have:

Lemma 4.2 If f W E ! B is a topological submersion with (weakly) contractible fibers , then f an
acyclic Serre fibration.

Proof Since projections are open and openness is a local property, f is open. By [26, Lemma 6], f is a
homotopic submersion (see [26, Definition 1]), also known as a Serre microfibration [18]. The result then
follows from [26, Corollary 13] (see also [31, Lemma 2.2]).

4.1 Contractibility of fibers

In this section, we show:

Theorem 4.3 Let ˆ be a smooth Anosov flow on M. The spaces of AL pairs and weak AL pairs
supporting ˆ are both contractible.

We also show a similar result for projectively Anosov flows:

Theorem 4.4 Let ˆ be a smooth projectively Anosov flow on M. The space of bicontact structures
supporting ˆ is contractible.

We obtain a version for volume preserving Anosov flows as well:

Theorem 4.5 Let ˆ be a smooth volume preserving Anosov flow on M. The space of closed AL pairs
supporting ˆ is contractible.
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If ˆ is a smooth Anosov flow on M,

� ALˆ denotes the space of smooth AL pairs on M supporting ˆ, endowed with the C1 topology,

� AL1ˆ denotes the space of C1 AL pairs on M supporting ˆ, endowed with the C1 topology.

Smooth AL pairs supporting ˆ form a dense subset of AL1ˆ. Recall that Dˆ denotes the space of C1

defining pairs on M for ˆ, and ALstd
ˆ �AL1ˆ denotes the space of C1 standard AL pairs supporting ˆ,

both endowed with the C1 topology. Theorem 4.3 will be a consequence of the contractibility of ALstd
ˆ

and the following two lemmas.

Lemma 4.6 The natural map ALˆ!AL1ˆ is a homotopy equivalence.

Proof This follows from some standard facts in algebraic topology. We will use that homotopy equiva-
lences are local in the following sense:

Fact A continuous map f WX ! Y between topological spaces is a homotopy equivalence if there exists
a numerable open cover U of Y satisfying:

(1) U is stable under finite intersections.

(2) For every U 2 U , f W f �1.U /! U is a homotopy equivalence.

See [11, Theorem 1] for a proof of this fact. Recall that an open cover is numerable if it admits a
subordinate partition of unity. In our context, covers are automatically numerable since all the spaces
under consideration are metrizable. We can simply cover AL1ˆ by sufficiently small open C1 balls and
refine this cover by taking all possible finite intersections. These balls are convex as subsets of the space
of pairs of C1 1-forms on M, and so are finite intersections thereof, so all of the open subsets in our cover
are contractible. Since smooth AL pairs supporting ˆ are dense in AL1ˆ, every open C1 ball in AL1ˆ
intersects ALˆ. The intersection of such a ball with ALˆ is also convex as a subset of �1.M/��1.M/,
and so are finite intersections of such balls with ALˆ. Thus, the conditions (1) and (2) of Fact are trivially
satisfied.

Lemma 4.7 ALstd
ˆ is a strong deformation retract of AL1ˆ.

Proof Let .˛�; ˛C/ 2AL1ˆ. As in Section 3.3, there exist functions �s; �u WM !R satisfying

(4-1) kerfe��u˛�C e
�u˛Cg DE

ws; kerfe��s˛�� e
�s˛Cg DE

wu:

If es and eu are C1 vector fields such that Nes spans Es and Neu spans Eu, we can write

�s D
1
2

ln
�
˛C.eu/

˛�.eu/

�
; �u D

1
2

ln
�
�
˛�.es/

˛C.es/

�
;
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so �s and �u are C1. Moreover, the map S W .˛�; ˛C/ 7! .�s; �u/ is continuous in the C1 topology. As
before, we define

˛u´
1

2
p

cosh.�u��s/
.e��u˛�C e

�u˛C/; ˛s´
1

2
p

cosh.�u��s/
.e��s˛�� e

�s˛C/:

The computations of Section 3.3 show that .˛s; ˛u/ 2 Dˆ. Therefore, we obtain a continuous map
D W .˛�; ˛C/ 7! .˛s; ˛u/. We now define a strong deformation retraction r W AL1ˆ � Œ0; 1�! AL1ˆ. Let
.˛�; ˛C/ 2 AL1ˆ, and .�s; �u/ D S.˛�; ˛C/ and .˛s; ˛u/ D D.˛�; ˛C/ as before. For t 2 Œ0; 1�, we
define

˛t�´
1p

cosh..1�t /�/
.e.1�t/�s˛uC e

.1�t/�u˛s/;

˛tC´
1p

cosh..1� t /�/
.e�.1�t/�s˛u� e

�.1�t/�u˛s/;

where � D �u� �s . We then have

� .˛0�; ˛
0
C
/D .˛�; ˛C/,

� .˛1�; ˛
1
C
/D .˛uC˛s; ˛u�˛s/ 2ALstd

ˆ ,

� if .˛�; ˛C/ 2ALstd
ˆ , then .˛t�; ˛

t
C
/D .˛�; ˛C/ for every t 2 Œ0; 1�.

We claim that .˛t�; ˛
t
C
/ is an AL pair for every t 2 Œ0; 1�. Indeed, by Lemmas 2.7 and 3.11, it is enough

to show the inequality

(4-2) cosh2..1� t /�/.ruC rs/2C .1� t /2.X � �/2 < .ru� rs/2:

It holds for t D 0 since .˛�; ˛C/ is an AL pair, and the left-hand side is obviously a nonincreasing
function of t , so it holds for every t 2 Œ0; 1�.

We finally define r..˛�; ˛C/; t/´ .˛t�; ˛
t
C
/ so that r WAL1ˆ � Œ0; 1�!AL1ˆ is continuous, and by the

three bullets above, it is a strong deformation retraction of AL1ˆ onto ALstd
ˆ .

Proof of Theorem 4.3 For AL pairs, combine Lemmas 3.8, 4.6 and 4.7. For weak AL pairs, the
argument can be modified as follows. Lemma 4.6 can be easily adapted to the case of weak AL pairs.
Lemma 4.7 can be adapted to show that the space of C1 weak AL pairs supporting a smooth Anosov flow
ˆ deformation retracts onto the space of pairs of the form ˛˙ D ˛u� ˛s , where .˛s; ˛u/ satisfies the
conditions of a defining pair for ˆ without the condition rs < 0 (but still satisfies rs < ru and 0 < ru; see
Remark 3.12). The latter space is convex, hence contractible.

Proof of Theorem 4.4 We only sketch how to modify the proof of Theorem 4.3 and we leave the details
to the interested reader.

First of all, we shall introduce the space of C0X bicontact structures. Those are continuous pairs of
codimension 1 distributions .��; �C/ which are continuously differentiable along X and which are defined
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by some 1-forms ˛�; ˛C 2�0X satisfying

(4-3) ˛� ^˛C > 0; ˛� ^LX˛� < 0; ˛C ^LX˛C > 0;
as forms on NX .

For the purpose of the proof, we choose an arbitrary C0X vector field eu such that Neu spans Eu � NX
and defines the prescribed orientation. This is equivalent to choosing a 1-form ˛u 2 �

1
X;0 such that

ker˛u DEws as oriented 2-plane fields, with the normalization ˛u.eu/� 1.

We denote by BCˆ (resp. BC0ˆ) the space of smooth (resp. C0X ) bicontact structures supporting ˆ. We
write BCstd

ˆ � BC0ˆ for the space of standard bicontact structures supporting ˆ, of the form�
ker.˛uC˛s/; ker.˛u�˛s/

�
;

where ˛u is fixed by the condition ˛u.eu/� 1.

Lemma 4.6 can be easily adapted to show that the natural map BCˆ! BC0ˆ is a homotopy equivalence,
using Lemma A.2.

Lemma 4.7 can be modified as follows. For .��; �C/ 2 BC0ˆ, we denote by .˛�; ˛C/ the unique pair of
1-forms in �0X satisfying ker˛˙ D �˙ and ˛˙.eu/D 1. We define a C0X function � WM !R by

kerfe��˛�C e�˛Cg DEws;
so that

˛u D
1

2 cosh.�/
.e��˛�C e

�˛C/;

and we define
˛s´

1

2 cosh.�/
.˛��˛C/

so that ˛s 2�1X;0, and
ker˛s DEwu:

This readily implies that
˛� D ˛uC e

�˛s; ˛C D ˛u� e
��˛s:

Writing LX˛u D ru˛u and LX˛s D rs˛s , where rs; ru WM !R are continuous, the last two inequalities
in (4-3) are equivalent to

jX � � j< ru� rs:

Moreover,
˛� ^˛C D 2 cosh.�/˛s ^˛u:

This shows that .˛s; ˛u/ is a defining pair for ˆ that satisfies ˛u.eu/� 1. For t 2 Œ0; 1�, we define

˛t�´ ˛uC e
.1�t/�˛s; � t�´ ker˛t�;

˛tC´ ˛u� e
�.1�t/�˛s; � tC´ ker˛tC:

These formulas define a strong deformation retraction of BC0ˆ onto BCstd
ˆ . Moreover, BCstd

ˆ is homeomor-
phic to the space of defining pairs .˛s; ˛u/ for ˆ satisfying ˛u.eu/� 1, and one easily checks that this
space is contractible.
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Proof of Theorem 4.5 The result essentially follows from Theorem 4.4. Let dvol be a smooth volume
form preserved by ˆ and �´ �Xdvol. If .˛�; ˛C/ is a closed AL pair supporting ˆ, there exists a smooth
positive function �´M !R>0 such that

˛� ^˛C D � �:

Moreover, X ��D 0 and since ˆ is topologically transitive, � is constant. One easily checks that the space
of closed AL pairs supporting ˆ is homotopy equivalent to the space of balanced pairs of contact forms
.˛�; ˛C/ supporting ˆ and satisfying ˛� ^ ˛C D � . We denote this space by BC�ˆ. There is a natural
continuous map K W BC�ˆ! BCˆ, obtained by taking kernels, which is surjective by Theorem 3.15. One
easily checks that K is injective and that it is a homeomorphism. Theorem 4.4 finishes the proof.

4.2 Homotopy equivalences

Let us recall some notation.

� AL denotes the space of smooth AL pairs on M.

� AF denotes the space of smooth Anosov flows on M, up to positive time reparametrization.

� PAF denotes the space of smooth projectively Anosov flows onM, up to positive time reparametriza-
tion.

Recall that there is a continuous map,

I WAL!AF ; .˛�; ˛C/ 7! ker˛�\ ker˛C;

where we identify an oriented 1-dimensional distribution with any flow spanned by it. Similarly, there is
a continuous map

PI W BC! PAF ; .��; �C/ 7! ��\ �C:

In this section, we show the main theorems of this article:

Theorem 4.8 The map I is an acyclic Serre fibration.

Our argument can easily be adapted to the case of projectively Anosov flows (this result might already be
known to some experts):

Theorem 4.9 The map PI is an acyclic Serre fibration.

Remark 4.10 With more work, it is possible to show that I is shrinkable: it is homotopy equivalent
over AF to id W AF ! AF . Concretely, this means that there exists a section s of I such that s ı I is
fiberwise homotopic to id. This implies that the space sections of I is nonempty and contractible. To
prove this statement, one would need to upgrade the results of Section 4.1 to hold in family over AF .
A key ingredient is [22, Lemma 2.1], which shows that for smooth Anosov flows, the Anosov splitting
depends continuously on the flow. We are not aware of a similar result for projectively Anosov flows.
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We will need the following

Lemma 4.11 I is a topological submersion.

Proof By Theorem 1, I is surjective. We fix some auxiliary Riemannian metric g on M and identify AF
with the space of unit Anosov vector fields on M. Let ˛0 D .˛0�; ˛

0
C
/ 2AL and let X be the unit vector

field generating I.˛0/, whose flow is denoted by ˆ. We choose an arbitrary smooth 1-form � such that
�.X/� 1. For a unit vector field X 0 sufficiently close to X (so that �.X 0/ > 0) and ˛D .˛�; ˛C/2ALˆ,
we define

˛0˙´ ˛˙�
˛˙.X

0/

�.X 0/
�;

so that ˛0
˙
.X 0/D 0. Since AL��1��1 is open, we can find an open neighborhood N˛0 of ˛0 in ALˆ

and an open neighborhood Nˆ of ˆ in AF such that the map

 WNˆ �N˛0 !AL; .X 0;˛/ 7! ˛0;

is well-defined. It is continuous and satisfies I ı D pr1. Moreover, the restriction of  to fXg�N˛0 is
the inclusion N˛0 �AL. One easily checks that  is injective, has open image and has an inverse given
by  �1.˛0/´ .X 0;˛/, where

˛˙´ ˛0˙�˛
0
˙.X/�;

and X 0 is the unit vector field spanning I.˛0/. Therefore,  �1 is a local trivialization of I around ˛0.

Proof of Theorem 4.8 By Theorem 4.3 and Lemma 4.11, I is a topological submersion with contractible
fibers, hence an acyclic Serre fibration by Lemma 4.2.

Proof of Theorem 10 Lemma 4.11 and its proof hold verbatim for Iw so the previous proof applies to
Iw as well.

Proof of Theorem 4.9 By Theorem 4.4, we already know that the fibers of PI are contractible so it is
enough to adapt Lemma 4.11. It can be done by choosing an auxiliary smooth vector field Z, depending
on an initial choice of .�0�; �

0
C
/ 2 BC, which is positively transverse to �0

˙
and satisfies �.Z/� 0. We

can uniquely choose contact forms ˛0
˙

for �0
˙

by imposing ˛˙.Z/� 1. The proof of Lemma 4.11 can be
reproduced with minor changes to provide a suitable trivialization near .�0�; �

0
C
/.

4.3 The kernel map

Recall that we have a continuous map

ker WAL! BC; .˛�; ˛C/ 7! .ker˛�; ker˛C/;

where the spaces AL and BC are endowed with the C1 topology.

Lemma 4.12 The map ker is open.
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Proof It easily follows from the openness of AL and BC in the space of smooth 1-forms on M and the
space of smooth plane fields on M, respectively, and the following elementary fact. If V�1 ��1 denotes
the space of nowhere vanishing 1-forms on M and … denotes the space of smooth cooriented plane fields
on M, the natural map

ker W V�1!…; ˛ 7! ker˛;

is open (for the C1 topology on the domain and target). Indeed, after trivializing the tangent bundle of M
and fixing an auxiliary Riemannian metric, we can identify … with the space of smooth maps M ! S3

(via the unit normal vector) and V�1 with the space of smooth maps M !R3 n f0g, so that ker becomes
the composition with the standard projection R3 n f0g ŠR�S3! S3. Ultimately, ker boils down to the
projection C1.M;R/� C1.M; S3/! C1.M; S3/ onto the second factor, which is clearly open.

Theorem 4.13 The map ker is an acyclic Serre fibration onto its image.

Proof As before, by Lemma 4.2, it is enough to show the following properties.

(1) The fibers of ker over its image are contractible.

(2) ker is a topological submersion onto its image.

We can simplify the situation by restricting to the space ALb of balanced AL pairs, since there is a
homeomorphism

# W C1.M;R/�ALb ��!AL; .�; .˛�; ˛C// 7! .e��˛�; e
�˛C/;

and ker is compatible with this homeomorphism in the obvious way.

Let us consider a bicontact structure .��; �C/ defined by a balanced AL pair .˛�; ˛C/, and let dvol´
˛C ^ d˛C. We also consider a vector field X 2 ��\ �C normalized so that ˛� ^˛C D �Xdvol.

To show (1), note that any other balanced AL pair defining .��; �C/ is of the form .e�˛�; e
�˛C/ for a

smooth function � WM !R satisfying

j2X � � Cf0j< 2;

where we use the notation of Lemma 2.7. By assumption, jf0j < 2, so the space of � such that
.e�˛�; e

�˛C/ is a balanced AL pair defining .��; �C/ is convex, hence contractible.

To show (2), we consider an open neighborhood V of .˛�; ˛C/ in ALb . We can find a smaller neighborhood
V 0 � V such that for every .˛0�; ˛

0
C
/ 2 V 0, the pair

.z̨0�; z̨
0
C/´

�
1p
f 0
˛0�;

1p
f 0
˛0C

�
is in V , where

˛0˙ ^ d˛
0
˙ D˙f

0 dvol:
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Note that .z̨0�; z̨
0
C
/ is a balanced AL pair satisfying z̨0

C
^d z̨0

C
D dvol. Since ker is open by the previous

lemma, U 0´ ker.V 0/� BC is an open neighborhood of .��; �C/. Let zV 0 � V be the subspace of elements
of the form .z̨0�; z̨

0
C
/ for .˛0�; ˛

0
C
/ 2 V 0. One easily checks that ker W zV 0! U 0 is injective and open. It

is surjective by definition, hence it is a homeomorphism. By the previous paragraph, there is an open
neighborhood of .˛�; ˛C/ in ker�1f.��; �C/g\ALb homeomorphic to

†�´f� WM !R W jX � � j< �g

for some small � > 0. Therefore, after possibly shrinking �, the map

zV 0 �†�!ALb; ..z̨0�; z̨
0
C/; �/ 7! .e� z̨0�; e

�
z̨
0
C/;

induces a local trivialization of ALb! ker.AL/ around .˛�; ˛C/.

This proves that ker restricted to ALb is a topological submersion with contractible fibers, and the same
holds for ker on AL via the homeomorphism # .

Remark 4.14 Since ker is open, its image has the homotopy type of a CW complex.

There is an inclusion ker.AL/ � PI�1.AF/ which is strict according to Theorem 3.15.11 In more
concrete terms, there exist bicontact structures supporting Anosov flows which cannot be represented as
the kernel of an AL pair. Nevertheless, we have:

Theorem 4.15 The inclusion ker.AL/� PI�1.AF/ is a homotopy equivalence.

Proof It immediately follows from Theorems 4.8, 4.9, 4.13 and the commutative diagram

AL ker.AL/ PI�1.AF/ BC

AF PAF

�

�

I

�

�PI
y

�PI

Note that the corestriction of PI over AF is also an acyclic Serre fibration, and all the spaces in this
diagram have the homotopy type of CW complexes.

5 Linear Liouville pairs

As explained in the introduction, there exist other possible definitions for Liouville pairs. The following
one is used by some authors (eg [21; 28]).

11Indeed, any volume preserving Anosov flow can be perturbed near a closed orbit in such a way that the new Poincaré return
map for this orbit has determinant different than 1, so the flow is not volume preserving anymore.
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Definition 5.1 A pair of contact forms .˛�; ˛C/ on M is a linear Liouville pair if the 1-form

.1� t /˛�C .1C t /˛C

on Œ�1; 1�t �M is a positively oriented Liouville form.

The pair .˛�; ˛C/ is a linear Anosov Liouville pair (`AL pair for short) if both .˛�; ˛C/ and .�˛�; ˛C/
are linear Liouville pairs.

Note that for this definition, Œ�1; 1��M is a Liouville domain instead of a Liouville manifold. In this
section, we study some similarities and differences between Liouville pairs and linear Liouville pairs. In
particular, we show that those are two different notions (Lemma 5.6). Moreover, a pair a contact forms
which is both a Liouville pair and a linear Liouville pair defines Liouville structures in two different
ways, and we show that they are homotopic (Proposition 5.8). We believe that this result is relevant since
all of the natural constructions of Liouville pairs we are aware of satisfy both definitions. The linear
formulation might be more convenient in some situations. The results in this section are independent
from the main results of this article.

5.1 Elementary properties

The results in Section 2.2 can be adapted to `AL pairs. First of all, `AL pairs can be characterized in the
following way (see Lemma 2.7):

Lemma 5.2 Let .˛�; ˛C/ be a pair of contact forms on M. We write

˛C ^ d˛C D fC dvol; ˛� ^ d˛� D�f� dvol; ˛� ^ d˛C D gC dvol; ˛C ^ d˛� D g� dvol;

where dvol is any volume form on M and f˙; g˙ WM ! R are smooth functions. Then .˛�; ˛C/ is a
`AL pair if and only if

(5-1) jg�j< f� and jgCj< fC:

Proof The pair .˛�; ˛C/ is a linear Liouville pair if and only if for every t 2 Œ�1; 1�,

.˛C�˛�/^
�
d˛CC d˛�C t .d˛C� d˛�/

�
> 0;

which is equivalent to

fCCf�Cg��gCC t .fC�f��g��gC/ > 0:

This inequality is satisfied for every t 2 Œ�1; 1� if and only if it is satisfied for t D�1 and t D 1, which is
equivalent to gC < fC and �g� < f�.

Similarly to Proposition 2.9, we also have:
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Proposition 5.3 Let .˛�; ˛C/ be a `AL pair. Then it defines a bicontact structure

.��; �C/D .ker˛�; ker˛C/:

Moreover , if X 2 ��\ �C is a nowhere vanishing vector field , then .X;R�; RC/ is a basis at every point
of M.

Proof To see that �� and �C are everywhere transverse, we argue by contradiction and assume that they
coincide at a point x 2M. With the same notations as in the proof of 2.9, we readily get

fC D d˛C.X; Y /; gC D ˛�.RC/ d˛C.X; Y /;

f� D�˛�.RC/ d˛�.X; Y /; g� D d˛�.X; Y /;

hence
jg�gCj D j˛�.RC/ d˛�.X; Y / d˛C.X; Y /j D f�fC;

contradicting (5-1).

Now, assuming that dvol.X;R�; RC/D0 at a point x2M, the computations in the proof of Proposition 2.9
show

f� D�˛�.RC/g�; fC D
1

˛�.RC/
gC;

hence
jg�gCj D f�fC;

contradicting (5-1) once again.

Remark 5.4 A main difference between Anosov Liouville pairs as in Definition 2 and linear Anosov
Liouville pairs as in Definition 5.1 is that there does not seem to be a natural action of C1.M;R/ on
`AL pairs. Moreover, we do not know if there is a natural modification making a `AL pair balanced.

The `AL pairs can also be characterized by their Reeb vector fields (see Proposition 2.11):

Proposition 5.5 Let .˛�; ˛C/ be a pair of contact forms on M, negative and positive , respectively. Then
it is a `AL pair if and only if

(5-2) j˛�.RC/j< 1 and j˛C.R�/j< 1:

Proof If .˛�; ˛C/ is a `AL pair, then Proposition 5.3 and the computations in the proof of Proposition 2.9
imply

gC D ˛�.RC/ fC; g� D�˛C.R�/ f�;

and (5-2) follows from Lemma 5.2.

Now, assuming that .˛�; ˛C/ satisfies (5-2), it is enough to prove that the conclusions of Proposition 5.3
are satisfied. This follows exactly from the proof of Proposition 2.11.
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Combining Proposition 2.11 and Proposition 5.5, we obtain that any balanced `AL pair is an AL pair.
The converse is not true by the following lemma. It also implies that the two definitions of Liouville pairs
(Definitions 2 and 5.1) are different:

Lemma 5.6 Every smooth volume preserving Anosov flow on M admits a supporting balanced AL pair
which is not a `AL pair , and whose underlying bicontact structure is not defined by a `AL pair.

Proof Let .˛s; ˛u/ be a defining pair for a volume preserving Anosov flow ˆD f�tg. For A� 1, we
define

˛�´ e�A˛uC e
A˛s; ˛C´ eA˛u� e

�A˛s:

If dvol is such that �XdvolD ˛s ^ ˛u, where X is the vector field generating the flow, then one easily
computes

f˙ D ru� rs D 2ru; g˙ D�2 sinh.2A/ru;

so .˛�; ˛C/ is a C1 closed balanced AL pair, but it is not a `AL pair since jg˙j> f˙. This remains true
for a suitable smoothing of .˛�; ˛C/.

Let us assume for simplicity that the pair .˛�; ˛C/ as above is smooth. We show that there are no
functions h˙ WM !R>0 such that .h�˛�; hC˛C/ is a `AL pair. Indeed, let us assume by contradiction
that such functions exist. By Lemma 5.2 they would satisfy the following inequalities:

j cosh.2A/hCX � h�� sinh.2A/ruh�hCj< ruh2�;

j cosh.2A/h�X � hCC sinh.2A/ruh�hCj< ruh2C:

Writing �˙´ 1=h˙, these are equivalent to

jX � ��C tanh.2A/ru��j<
ru

cosh.2A/
�C; jX � �C� tanh.2A/ru�Cj<

ru

cosh.2A/
��:

Fixing a point x 2M, we define y˙ WR!R>0 by

y˙.t/´ �˙ ı�
t .x/:

There exists C > 0 such that 0 < y˙ < C . Moreover, these functions satisfyˇ̌̌
d

dt
y�C ay�

ˇ̌̌
< �yC;

ˇ̌̌
d

dt
yC� ayC

ˇ̌̌
< �y�;

where

a.t/´ tanh.2A/ ru ı�t .x/ > 0; �.t/´
ru ı�

t .x/

cosh.2A/
> 0:

Since A� 1, we have a > 2�. It follows that for every T > 0,Z T

0

ayC dt �

Z T

0

�y� dt CyC.T /Cy0.T /�
1
2

Z T

0

ay� dt C 2C �
1
2

Z T

0

�yC dt C 3C

�
1
4

Z T

0

ayC dt C 3C;
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and hence Z T

0

ayC dt � 4C:

However, ayC is bounded from below by some positive constant, which contradicts the previous inequality
for T large enough.

If .˛�; ˛C/ is only C1, this strategy still applies to a suitable smoothing of .˛�; ˛C/ which is sufficiently
C1-close to .˛�; ˛C/.

Remark 5.7 We also expect that there exist (unbalanced) `AL pairs which are not AL pairs, but the
construction seems more delicate.

5.2 Induced Liouville structures

The “standard construction” of Section 3.2 yields a pair of contact forms which is both an AL pair and a
`AL pair (after smoothing). If .˛�; ˛C/ is a pair of contact forms which is both a Liouville pair and a
linear Liouville pair, we can consider two Liouville structures on Rs �M :

(1) The completion y�lin of the Liouville domain Œ�1; 1�t �M with the “linear” Liouville form

�lin´ .1� t /˛�C .1C t /˛C:

(2) The Liouville structure induced by the “exponential” Liouville form

�exp´ e�s˛�C e
s˛C:

Here, the completion of a Liouville domain V is obtained by attaching to @V the symplectization
Œ0;1/� @V of the contact structure at the boundary. This procedure yields an open manifold yV with
controlled geometry at infinity. See [7, Section 11.1] for a precise definition. The next proposition shows
in particular that (1) and (2) above produce equivalent Liouville structures on R�M.

Proposition 5.8 Let .˛�; ˛C/ be a pair of contact forms which is both a Liouville pair and a linear
Liouville pair. The Liouville structures y�lin and �exp on R�M are Liouville homotopic.

Proof We choose an arbitrary volume form dvol and we define f˙, g˙ as in Lemma 5.2. We also choose
A > 0 such that f˙ < A and jg˙j< A. We proceed in three steps.

Step 1 (extending �lin) Let � > 0. We choose a smooth function � D �� WR!R�0 satisfying

� �.s/D 0 for s � �1� �,

� �.s/ > 0 for s > �1� �,

� �.s/D 1C s for s � �1C �,

� � is nondecreasing and convex.
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�1� � �1 �1C � 0

1

�

Figure 4: The function �.

We claim that for � sufficiently small, the 1-form

�0´ �.�s/˛�C�.s/˛C

on Rs � M is Liouville. On Œ�1 C �; 1 � �� � M, it coincides with �lin which is Liouville. On
.�1;�1� ���M, it coincides with .1� s/˛� which is Liouville since ˛� is a negative contact form.
On Œ1C �;1/�M, it coincides with .1C s/˛C which is Liouville since ˛C is positive contact form. If
s 2 Œ1� �; 1C ��, we compute

d�0 ^ d�0 D
˚
.1C s/.fC��

0.�s/gC/C�.�s/.�
0.�s/f�Cg�/

	
ds ^ dvolD F ds ^ dvol:

Note that
0� �.�s/� �; 0� �0.�s/� 1;

hence
F � .2� �/minffC; fC�gCgC 2�A;

where fC>0 and fC�gC>0 by Lemma 5.2; thus F >0 for � small enough. The case s2 Œ�1��;�1C��
is similar.

Step 2 (�0 is Liouville homotopic to y�lin) We will use the following elementary fact: if two Liouville
structures on a manifold with boundary V are Liouville homotopic, then their completions on yV are
Liouville homotopic; see [7, Lemma 11.6]. By definition, .Œ�1� �; 1C ���M;�0/ is a Liouville domain
whose completion is exactly .R�M;�0/. Moreover, if � is small enough, then .Œ�1� �; 1C ���M;�0/
and .Œ�1C �; 1� ���M;�0/D .Œ�1C �; 1� ���M;�lin/ are Liouville domains which are Liouville
homotopic (after identifying Œ�1� �; 1C �� and Œ�1C �; 1� ��), and .Œ�1C �; 1� �� �M;�lin/ and
.Œ�1; 1� �M;�lin/ are also Liouville homotopic (after identifying Œ�1C �; 1 � �� and Œ�1; 1�). This
shows that .Œ�1� �; 1C ���M;�0/ and .Œ�1; 1��M;�lin/ are Liouville homotopic (after identifying
Œ�1� �; 1C �� with Œ�1; 1�), and so are their completions.
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Step 3 (�0 is Liouville homotopic to �exp) For � 2 Œ0; 1�, we set

 � .s/´ �esC .1� �/�.s/; and �� ´  � .�s/˛�C � .s/˛C:

The family f��g�2Œ0;1� interpolates between �0 and �1 D e�s˛�C es˛C. It is enough to show that for
every � 2 .0; 1/, d�� ^ d�� is a positive volume form on R�M. By symmetry, it is enough to show it
for s � 0. The computation of d�� ^ d�� reveals that the latter is equivalent to

(5-3) fCC a� .s/g�� b� .s/gCC a� .s/b� .s/f� > 0;

where
a� .s/´

 � .�s/

 � .s/
; b� .s/D

 0� .�s/

 0� .s/
:

It is easy to check that for � 2 .0; 1/ and s � 0, 0� a� .s/� 1 and 0� b� .s/� 1. Since .˛�; ˛C/ is both
an exponential and a linear Liouville pair, we have that for every a 2 Œ0; 1�,

fCC ag�� agCC a
2f� > 0; fCC ag��gCC af� > 0;

so for every a 2 Œ0; 1� and b 2 Œa; 1�, we have

(5-4) fCC ag�� bgCC abf� > 0:

By compactness, there exists ı > 0, only depending on .˛�; ˛C/, such that for every a 2 Œ0; 1� and
b 2 Œa� ı; 1�, the inequality (5-4) is satisfied. We claim that for every � 2 .0; 1/ and s � 0, we have

(5-5) b� .s/� a� .s/� ��:

Indeed, fixing � 2 .0; 1/, we consider two cases.

Case 1 If s 2 Œ0; 1� �/[ Œ1C �;1/,

 � .s/�  
0
� .s/;  0� .�s/�  � .�s/;

and (5-5) follows trivially since the left-hand side is nonnegative.

Case 2 If s 2 Œ1� �; 1C �/,

 � .s/D �e
s
C .1� �/.1C s/� 1;  0� .s/D �e

s
C .1� �/� 1;

and we compute

 0� .�s/ � .s/D �
2
C �.1� �/f.1C s/e�sC es�0.�s/gC .1� �/2.1C s/�0.�s/;

 0� .s/ � .�s/D �
2
C �.1� �/fes�.�s/C e�sgC .1� �/2�.�s/;

hence

 0� .�s/ � .s/� 
0
� .s/ � .�s/

D .1� �/
n
�
� .1/‚ …„ ƒ
es.�0.�s/��.�s//C se�s

�
C .1� �/

�
.1C s/�0.�s/��.�s/„ ƒ‚ …

.2/

�o
:

Since �0.�s/� 0 and 0� �.�s/� �,

(1)� �e1C��C .1� �/e�.1C�/; (2)� ��:
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For � small enough, say � � 1
100

, (1)� 0, and (5-5) follows.

This shows that for � small enough, only depending on .˛�; ˛C/, the inequality (5-3) is satisfied for every
� 2 .0; 1/ and s � 0. The case s � 0 can be treated similarly.

Remark 5.9 As mentioned in the introduction, we do not know if Theorems 4.3 and 4.8 are also true for
linear Anosov Liouville pairs. The proof of Theorem 4.8 would immediately adapt to the linear case,
provided that the space of `AL pairs supporting a given flow is (weakly) contractible. Our attempts at
proving this fact for `AL pairs were fruitless because of the complexity and the lack of symmetry of the
equations we obtained.

Appendix A Smoothing lemmas

This appendix concerns useful smoothing lemmas which are required to extend the results of this paper
to Anosov flows generated by C1 vector fields, as their weak-stable and weak-unstable bundles are not
necessarily C1. The approach can also be used to bypass Hozoori’s delicate approximation techniques
in [21, Section 4]. We state the results in greater generality than needed. M now denotes a closed
n-dimensional manifold (n� 1) and X denotes a nonsingular vector field on M of class Ck, 1� k �1
(without any Anosovity condition). We fix an arbitrary auxiliary metric on M.

The first smoothing lemma follows from [21, Lemma 4.3] and the regular approximation of differentiable
functions by smooth ones.

Lemma A.1 Let f WM ! R be a continuous function which is continuously differentiable along X.
Then for every � > 0, there exists a smooth function f � WM !R satisfying

jf � �f jC0 � � and jX �f � �X �f jC0 � �:

In other words, with the notations of Definition 3.3, C1 is dense in C0X . The same holds with C`X in place
of C0X , for 0� `� k� 1. We will need a similar result for 1-forms on M.

Lemma A.2 The space of Ck 1-forms on M vanishing along X is dense in �1
X;`

for 0� `� k� 1.

Proof This is a straightforward adaptation of the proof of [21, Lemma 4.3].

By compactness ofM, we can find a positive real number � >0 and a finite collection f.Ui ; Vi ; �i /g1�i�N
where:

� Vi � Ui �M are open subsets of M.

� fVig1�i�N is a covering of M.

� �i WUi! .�2�; 2�/t �D is a Ck diffeomorphism such that �i .Vi /D .��; �/�D and d�i .X/D @t .
Here, D denotes the open unit disk in Rn�1.
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�2� �� 0 � 2�

Dr

D

Figure 5: The nested open sets in the proof of Lemma A.2. The support of ˛0i is contained in the
hashed region.

Such a collection can be obtained by taking a finite collection of sufficiently small flow-boxes for X
covering M.

Let f ig1�i�N be a partition of unity subordinate to the open covering fVig1�i�N . For every i , the
support of  i is contained in Vi so we can find 0 < r < 1 such that the support of  i ı��1i is contained
in .��; �/�Dr , where Dr denotes the open disk of radius r .

Let h WR!R�0 be a smooth bump function satisfying

� for jt j � � , h.t/D 1,

� for jt j � 2� , h.t/D 0,

� h is nondecreasing on .�1; 0/ and nonincreasing on .0;1/.

Let ˛ 2�1
X;`

. By definition, ˛ D
PN
iD1  i˛. For every i , we write ˛i ´  i˛ and ˛0i ´ .�i /�˛i . We

have reduced the problem to a single flow-box .�2�; 2�/�D.

Let � > 0. In what follows, the symbol “.” means “less than or equal to, up to a constant factor that does
not depend on �”. For a fixed i , let ˇ0i be a smooth 1-form on D with support contained in Dr satisfying

jˇ0i �˛
0
i jf0g�DjC` � �:

By definition, L@t˛0i is C` and vanishes along @t . Therefore, we can find a smooth 1-form �i on
.�2�; 2�/�D with support contained in .��; �/�Dr satisfying

�i .@t /D 0; j�i �L@t˛0i jC` � �:

We can extend ˇ0i to a smooth 1-form ˇi on .�2�; 2�/�D by setting

ˇi .@t /´ 0; L@tˇi ´ �i :
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Finally, we define ˇ0i ´ hˇi . This is a smooth 1-form with support in .�2�; 2�/�Dr . Note that at a
point .t; x/ 2 .�2�; 2�/�D, we have

.ˇi �˛
0
i /.t;x/ D .ˇ

0
i �˛

0
i jf0g�D/xC

Z t

0

.�i �L@t˛0i /.s;x/ ds;

so

jˇi �˛
0
i jC` � jˇ0i �˛

0
i jf0g�DjC` C 2� j�i �L@t˛0i jC` . �; jL@tˇi �L@t˛0i jC` D j�i �L@t˛0i jC` � �:

Since the support of ˛0i is contained in .��; �/�Dr , we readily get

jˇi j..�2�;��/[.�;2�//�DjC` . �:

Moreover,

� On ..�2�;��/[ .�; 2�//�D,

ˇ0i �˛
0
i D hˇi ; L@tˇ0i �L@t˛0i D .@th/ˇi ;

� On .��; �/�D,

ˇ0i �˛
0
i D ˇi �˛

0
i ; L@tˇ0i �L@t˛0i D �i �L@t˛0i ;

and we obtain

jˇ0i �˛
0
i jC` . �; jL@tˇ0i �L@t˛0i jC` . �:

Finally, we define

ˇ´
X
i

��i ˇ
0
i ;

so that ˇ is a Ck 1-form on M satisfying ˇ.X/D 0, and

jˇ�˛jC` �

NX
iD1

j��i ˇ
0
i ��

�
i ˛
0
i jC` .

NX
iD1

jˇ0i �˛
0
i jC` . �;

jLXˇ�LX˛jC` �

NX
iD1

j��i .L@tˇ
0
i /��

�
i .L@t˛

0
i /jC` .

NX
iD1

jL@tˇ0i �L@t˛0i jC` . �:

This finishes the proof.

Appendix B Almost volume preserving Anosov flows

In this appendix, we prove a technical result used in the proof of Theorem 3.15. Let us recall the setup.
ˆ is a smooth Anosov flow on a closed oriented 3-manifold M, generated by a vector field X. For an
adapted metric g, ru > 0 and rs < 0 denote the expansion rates in the unstable and stable directions,
respectively. The divergence of X for this metric is simply divg X D ruC rs . We say that ˆ is almost
volume preserving if it satisfies one of the following equivalent conditions (compare with (3-12)):
Algebraic & Geometric Topology, Volume 25 (2025)
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(C1) For every � > 0, there exists a smooth function f� WM !R satisfying

j divg X CX �f�j � �:

(C2) For every � > 0, there exists a smooth volume form dvol� on M satisfying

j div� X j D
ˇ̌̌̌
LXdvol�

dvol�

ˇ̌̌̌
� �;

where div� X denotes the divergence of X with respect to dvol�.

Proposition B.1 If ˆ is a smooth almost volume preserving Anosov flow on M , then ˆ is volume
preserving.

Proof As noted in the proof of Theorem 3.15, it is enough to show that ˆ is topologically transitive,
ie ˆ has a dense orbit. We closely follow the strategy from [27] that relies on some key properties of
Sinai–Ruelle–Bowen (SRB) measures for Anosov diffeomorphisms. To adapt the proof to the case of
Anosov flows, we rely on the results of [6].

Let ƒ�M be an attractor for ˆ as defined in [6]. It exists thanks to Smale’s spectral decomposition of
the nonwandering set of ˆ into basic sets. We will show that ƒ is also an attractor for ˆ�1, implying
that ƒDM. Since ˆ is topologically transitive on ƒ, it will be topologically transitive on M, as desired.

Let g be a Riemannian metric on M adapted to ˆ (so that rs < 0 < ru), and let � D �1 be the time-one
map of ˆ. By [6], there exists a unique Borel probability measure �u´ �'.u/ on ƒ satisfying the Pesin
entropy formula

(B-1) P.ˆjƒ; '
.u//D h�u

.�/C

Z
ƒ

'.u/ d�u D 0;

where '.u/´�ru, h�u
.�/ denotes the topological entropy of � with respect to �u, and P denotes the

topological pressure. Moreover, by [6, Theorem 5.5], this measure is ergodic on the basin W s
ƒ of ƒ:

for every continuous function g WM !R and almost every point x 2W s
ƒ with respect to the Lebesgue

measure, one has

(B-2)
Z
ƒ

g d�u D lim
T!C1

1

T

Z T

0

g.�t .x// dt:

The hypothesis on ˆ implies that for every x 2M,12

(B-3) lim
T!C1

1

T

Z T

0

.ruC rs/.�
t .x// dt D 0:

12This exactly means that the sum of the nonzero Lyapunov exponents ƒuCƒs of ˆ vanishes wherever they are both defined.
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Indeed, let � >0 and choose a smooth (hence bounded) function f� WM!R such that jruCrsCX �f�j<�.
Then we have

lim sup
T!C1

ˇ̌̌̌
1

T

Z T

0

.ruC rs/ ı�
t dt

ˇ̌̌̌
� lim sup
T!C1

1

T

Z T

0

jruC rsCX �f�j ı�
t dt C lim sup

T!C1

1

T

ˇ̌̌̌Z T

0

.X �f�/ ı�
t dt

ˇ̌̌̌
� �C lim sup

T!C1

1

T
jf� ı�

T
�f�j

D �:

Then, applying (B-2) to g D ruC rs and using (B-3), we readily obtainZ
ƒ

.ruC rs/ d�u D 0; and hence h�u
.�/C

Z
ƒ

rs d�u D 0:

However, since h�u
.�/D h�u

.��1/, the left-hand side of the previous equation is exactly

h�u
.��1/C

Z
ƒ

'.s/ d�u;

where '.s/ plays the role of '.u/ for ˆ�1. This implies that

0D h�u
.��1/C

Z
ƒ

'.s/ d�u � P.ˆ
�1
jƒ ; '

.s//� 0;

where the first inequality follows from [6, Section 3] and the second from [6, Proposition 4.4]. Therefore,
P.ˆ�1

jƒ
; '.s//D 0 and ƒ is an attractor for ˆ�1 by [6, Theorem 5.6].

Remark B.2 The proof can be adapted to show that any almost volume preserving Anosov flow of class
C2 on a closed manifold of any dimension is volume preserving.

Remark B.3 The main result of [27] asserts that an Anosov diffeomorphism of class C2 on a closed
manifold M satisfying that at every periodic point the Poincaré return map has determinant one is volume
preserving. The same result remains true for an Anosov flow whose Poincaré return map at every closed
orbit has determinant one. As in the proof in [27], this condition and Anosov’s shadowing property
imply that the sum of the Lyapunov exponents ƒuCƒs vanishes almost everywhere, which is enough to
conclude.
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[30] S Simić, Codimension one Anosov flows and a conjecture of Verjovsky, Ergodic Theory Dynam. Systems 17
(1997) 1211–1231 MR Zbl

[31] M Weiss, What does the classifying space of a category classify?, Homology Homotopy Appl. 7 (2005)
185–195 MR Zbl

Department of Mathematics, Princeton University
Princeton, NJ, United States

Current address: Department of Mathematics, Stanford University
Stanford, CA, United States

tmassoni.math@gmail.com

Received: 8 June 2023 Revised: 27 August 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1007/s00222-012-0412-5
http://msp.org/idx/mr/3044125
http://msp.org/idx/zbl/1277.57026
https://doi.org/10.1090/S0002-9947-02-02972-0
http://msp.org/idx/mr/1911521
http://msp.org/idx/zbl/1001.55016
https://doi.org/10.1016/j.jmaa.2022.126433
http://msp.org/idx/mr/4444739
http://msp.org/idx/zbl/1502.37033
https://doi.org/10.5802/aif.1500
http://msp.org/idx/mr/1370752
http://msp.org/idx/zbl/0988.57521
https://doi.org/10.1007/BFb0082629
http://msp.org/idx/mr/650640
http://msp.org/idx/zbl/0307.58012
https://doi.org/10.1017/S0143385797086318
http://msp.org/idx/mr/1477039
http://msp.org/idx/zbl/0903.58026
https://doi.org/10.4310/HHA.2005.v7.n1.a10
http://msp.org/idx/mr/2175298
http://msp.org/idx/zbl/1093.57012
mailto:tmassoni.math@gmail.com
http://msp.org
http://msp.org


msp

Algebraic & Geometric Topology 25:3 (2025) 1839–1876
DOI: 10.2140/agt.2025.25.1839

Published: 20 June 2025

Hamiltonian classification of toric fibres and symmetric probes

JOÉ BRENDEL

In a toric symplectic manifold, regular fibres of the moment map are Lagrangian tori which are called toric
fibres. We discuss the question of which two toric fibres are equivalent up to a Hamiltonian diffeomorphism
of the ambient space. On the construction side of this question, we introduce a new method of constructing
equivalences of toric fibres by using a symmetric version of McDuff’s probes. On the other hand, we
derive some obstructions to such equivalence by using Chekanov’s classification of product tori together
with a lifting trick from toric geometry. Furthermore, we conjecture that (iterated) symmetric probes yield
all possible equivalences and prove this conjecture for Cn, CP 2, C �S2, C2 �T �S1, T �S1 �S2 and
monotone S2 �S2.

This problem is intimately related to determining the Hamiltonian monodromy group of toric fibres, ie
determining which automorphisms of the homology of the toric fibre can be realized by a Hamiltonian
diffeomorphism mapping the toric fibre in question to itself. For the above list of examples, we determine
the Hamiltonian monodromy group for all toric fibres.

53D12; 53D20

1 Introduction

1.1 Symmetric probes

Probes were introduced by McDuff [23] to prove that some toric fibres are displaceable. Probes are
rational segments in the base of a toric base polytope which hit the boundary integrally transversely in
one point. The latter condition implies that one can perform symplectic reduction on a probe and obtain
a two-disk as reduced space; see also the exposition of Abreu and Macarini [2]. Toric fibres map to
circles in the reduced space, where displaceability questions are easy to settle since they boil down to
area arguments.

Symmetric probes are rational segments in which both endpoints hit the boundary of the moment polytope
integrally transversely. They were introduced in a follow-up paper to [23] by Abreu, Borman and
McDuff [1] to settle some more subtle displaceability questions. Here, we use them to a different end.
The reduced space associated to a symmetric probe is a two-sphere and the quotient map takes toric fibres
to orbits of the standard S1-action on the two-sphere. Observe that — except for the equator — orbits
of this circle action in S2 appear in pairs which are Hamiltonian isotopic. Our main observation is that,
since Hamiltonian isotopies in reduced spaces can be lifted, this proves that toric fibres corresponding to
such pairs of circles are Hamiltonian isotopic, as well. This is illustrated in Figure 1.

© 2025 The Author, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.1839
http://www.ams.org/mathscinet/search/mscdoc.html?code=53D12, 53D20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1840 Joé Brendel

�

x

�

x0

S1x

S1
x0

S2

Figure 1: A symmetric probe � in a moment polytope � with points x and x0 at equal distance to
the boundary. The toric fibres T .x/ and T .x0/ map to the circles S1x ; S

1
x0
� S2 under symplectic

reduction.

To state this formally, let us introduce some notation. Let .X2n; !/ be a (not necessarily compact) toric
symplectic manifold with moment map � WX !Rn and moment polytope �.X/D�. For x 2 int� the
set T .x/D ��1.x/ is a Lagrangian torus, called a toric fibre. A symmetric probe � � � is a rational
segment intersecting @� integrally transversely in the in interior of two facets; see also [1, Definition 2.2.3].
An intersection of a rational line and a rational hyperplane is called integrally transverse if their union
contains a Z-basis of Zn. See also Definition 3.1 and the surrounding discussion or [23, Section 2.1] for
more details.

Theorem A Let .X; !/ be a toric symplectic manifold and let � �� be a symmetric probe in its moment
polytope. Furthermore , let x; x0 2 � be two points at equal distance to the boundary @�. Then T .x/ and
T .x0/ are Hamiltonian isotopic.

1.2 Classification of toric fibres

Deciding which two given Lagrangians L and L0 in .X; !/ can be mapped to one another by a symplec-
tomorphism or by a Hamiltonian diffeomorphism is a central question in symplectic geometry. In many
situations, it is quite hopeless to give a full classification — even constructing examples of Lagrangians
that are not equivalent to known ones (so-called exotic Lagrangians) is an active area of research where
many questions are open; see for example Auroux [5], Chekanov and Schlenk [14], and Vianna [30; 31].
In this paper we care about the following classification question of Lagrangian submanifolds.

Question 1.1 In a toric symplectic manifold .X; !/, give a classification of toric fibres up to Hamiltonian
diffeomorphisms of the ambient space.

Remark 1.2 One can ask the same questions for symplectomorphisms of the ambient space. In this
paper we focus on the case of Hamiltonian diffeomorphisms. See also Remark 4.2.

Algebraic & Geometric Topology, Volume 25 (2025)
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Although Question 1.1 is a much less ambitious question than a full classification of all Lagrangian tori
(since we exclude exotic tori a priori) of X , it is open except for a few special cases and surprisingly
absent from the literature. To our knowledge, it has only been answered for Cn (where toric fibres are
simply product tori) by Chekanov [12, Theorem A] and for CP 2 by Shelukhin, Tonkonog and Vianna [27,
Proposition 7.1].

Let us make some conventions. From now on, we call T .x/ and T .x0/ equivalent and write T .x/Š T .x0/
if they can be mapped to one another by a Hamiltonian diffeomorphism of the ambient space. Furthermore,
let

(1) Hx D fx
0
2 int� j T .x/Š T .x0/g;

the set of toric fibres equivalent to T .x/. A first guess may be that Hx D fxg, since the zero-section in
T �T n is nondisplaceable (see McDuff and Salamon [24, Section 11.3]) and thus this is true if we restrict
our attention to Hamiltonian diffeomorphisms supported in a Weinstein neighbourhood of T .x/. However,
a glance at S2 shows that this guess is wrong, since one can use the topology of the ambient space to
obtain nontrivial equivalences of toric fibres. More generally, by Theorem A, symmetric probes (and their
concatenations) can be used to construct equivalences of toric fibres up to Hamiltonian diffeomorphisms.
Let us also point out that symmetric probes are abundant in arbitrary toric manifolds — at least close to
the boundary of the moment polytope; see Section 5.7. We conjecture that the method of constructing
equivalent toric fibres by symmetric probes gives a complete answer to the classification question.

Conjecture 1.3 Two toric fibres T .x/; T .x0/�X are equivalent if and only if they are equivalent by a
sequence of symmetric probes.

In Section 5, we verify this conjecture for Cn and CP 2 (where the classification was previously known),
for C � S2, C2 � T �S1, T �S1 � S2 and for monotone S2 � S2 (where we classify toric fibres). The
classification of toric fibres in nonmonotone S2 �S2 is more intricate and is given in [7].

On the side of obstructions to Hamiltonian equivalence, we prove the following.

Theorem B If toric fibres T .x/; T .x0/ � X of a compact toric manifold X are Hamiltonian isotopic ,
then the following three invariants agree:

(2) d.x/D d.x0/; #d .x/D #d .x
0/; �.x/D �.x0/:

The invariant d.x/ 2R is the integral affine distance of x to the boundary of the moment polytope. The
invariant #d .x/ 2N>1 is the number of facets of � realizing the minimal distance d.x/. Both of these
invariants are hard in the symplectic sense. The last invariant is the subgroup

(3) �.x/D Zh`1.x/� d.x/; : : : ; `N .x/� d.x/i �R

and it is soft. Here `i .x/ denotes the integral affine distance of x to the i th facet of �. Since these
invariants are derived from Chekanov’s invariants [12, Theorem A] of product tori in R2n DCn, we call
them Chekanov invariants.

Algebraic & Geometric Topology, Volume 25 (2025)
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Let us outline the proof of Theorem B. Suppose T .x/; T .x0/� X are Hamiltonian isotopic fibres. By
a construction going back to Delzant [18], we can view X as a symplectic quotient of CN , where N
is the number of facets of �. The preimages of the tori T .x/ and T .x0/ under the symplectic quotient
map are the product tori T .`.x//; T .`.x0// � CN , where ` D .`1; : : : ; `N /. The Hamiltonian isotopy
mapping T .x/ to T .x0/ lifts to a Hamiltonian isotopy of CN mapping T .`.x// to T .`.x0//. This means
that Chekanov’s invariants for product tori have to agree on T .`.x// and T .`.x0//, which yields the
statement. To our knowledge, this lifting trick first appeared in [2] to prove nondisplaceability of certain
fibres and it was also heavily used in [6]. It is not obvious to us how to prove Theorem B directly, ie
without using the lifting trick. The first two invariants are clearly related to the area and the number of
nontrivial Maslov two J -holomorphic disks of minimal area with boundary on the corresponding tori,
respectively. It is not obvious how to pursue this due to the lack of monotonicity, although an approach in
the spirit of [27] may be promising, especially in dimension four; see the remark in [27, Section 5.6].

The invariants in Theorem B are not complete, even in very simple examples such as CP 2; see Example 4.4.
We suspect that the first two invariants are all there is in terms of hard obstructions, but that the soft
invariant �. � / is far from optimal — this is the case in all examples where we know the classification.

1.3 Examples

Let us give some examples of symmetric probes. In dimension two, there are not many toric spaces. The
main examples are T �S1 D S1 �R equipped with the standard exact symplectic form and moment map
given by projection to the R-coordinate, CDR2 equipped with the standard symplectic form and moment
map z 7! �jzj2, and S2 equipped with the height function. We normalize the symplectic form !S2 such
that

R
S2 !S2 D 2 meaning that the corresponding moment polytope is Œ�1; 1�. In the two-dimensional

setting, symmetric probes are not interesting and the classification of toric fibres boils down to simple
area arguments. However, some four-dimensional products of the above examples (equipped with the
product symplectic and toric structures) already contain nontrivial probes.

In C2, there is one nontrivial probe in direction .1;�1/, which can be used to show that T .x; y/ŠT .y; x/,
which also follows from the fact that all elements in U.2/ can be realized by Hamiltonian diffeomorphisms.
These are all possible equivalences in C2, as was shown by Chekanov [12]. In T �S1 �S2, all directions
.k; 1/ for k 2 Z give symmetric probes; see Figure 2. This proves that T .x; y/ is Hamiltonian isotopic
to all T .xC 2ky;˙y/. Note that this also follows from a suspension argument due to Polterovich [25,
Example 6.3.C] and the discussion of Mak and Smith in [22, Section 1.3]. The example C � S2 is
obtained from the previous one by a vertical symplectic cut and we will see in Section 5.3 that there
are slightly more equivalences between toric fibres. In CP 2 and monotone S2 � S2, it is easy to see
that symmetric probes realize all equivalences of toric fibres coming from symmetries of the moment
polytope. In all of these examples, the method by probes is sharp and the classification of toric fibres is
discussed in detail in Section 5.
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.x; y/

Figure 2: The set H.x;y/ for T .x; y/� T �S1 �S2 and some symmetric probes.

In dimensions > 6, the situation is quantitatively different from the above examples. Indeed, the set Hx
has accumulation points in � for many x 2 int�, see Corollary 5.16. This already occurs in the case
of C3, treated by Chekanov [12]; see also Theorem 4.3. In essence, this is due to the existence of a
symmetric probe in direction .1; 1;�1/ (or coordinate permutations thereof); see Figure 7. In Section 5.6,
we show that one can recover Chekanov’s classification using symmetric probes. The property that Hx
has accumulation points is not exclusive to dimension six and above. In fact, in the forthcoming [7], we
show that this occurs in S2 �S2 equipped with any nonmonotone symplectic form.

In light of this, it would be very interesting to characterize the toric manifolds having the property that
there exists x 2 int� with Hx not discrete.

1.4 Hamiltonian monodromy of toric fibres

Let x 2 � �� be the midpoint of a symmetric probe. The corresponding toric fibre T .x/ projects to the
equator of the sphere obtained as a reduced space and thus we do not get any equivalence with another
toric fibre by the above method. However, we still get information about T .x/. Indeed, we can lift a
Hamiltonian isotopy mapping the equator in the reduced sphere to itself but changing the orientation of the
equator. By lifting such a Hamiltonian isotopy, we obtain a Hamiltonian isotopy mapping T .x/ to itself
with nontrivial homological monodromy, meaning that it induces a nontrivial map in AutH1.T .x/IZ/.
An explicit formula for this monodromy map in terms of data related to the symmetric probe � is given
in (22).

Definition 1.4 Let L� .X; !/ be a compact Lagrangian submanifold. The Hamiltonian monodromy
group is given by

(4) HL D f.�jL/� 2 AutH1.LIZ/ j � 2 Ham.X; !/; �.L/D Lg:

The analogous monodromy group for symplectomorphisms was computed by Chekanov for product tori
and Chekanov tori in [12, Theorem 4.5] and, in that case, the Hamiltonian monodromy group actually
agrees with it. To our knowledge this is the first occurrence of this kind of question in the literature. See
also Yau [32] for related results and Hu, Lalonde and Leclercq [21] which establishes that weakly exact
Lagrangian manifolds have trivial Hamiltonian monodromy group. See Porcelli [26] for recent progress
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in the same direction. Another recent work is Augustynowicz, Smith and Wornbard [4] which makes
significant progress in case L is a monotone Lagrangian torus and provides an excellent overview of the
topic in its introduction.

Let �1; : : : ; �N 2 Zn be the set of inward pointing primitive normal vectors to the facets of �, as in (6).
The vectors �i naturally determine homology classes �i 2H1.T .x// for every toric fibre T .x/. See for
example the discussion surrounding (16). Let D.x/ be the subset of those normal vectors realizing the
minimal integral affine distance of x to facets,

(5) D.x/D f�i j `i .x/D d.x/g:

We call elements of this subset distinguished classes. Note that #D.x/ D #d .x/. The following is an
obstruction result for Hamiltonian monodromy of toric fibres.

Theorem C Let T .x/�X be a toric fibre in a compact toric manifold. Every element in the Hamiltonian
monodromy group HT.x/ acts by a permutation on the set D.x/ of distinguished classes.

This theorem again follows from Chekanov’s work [12, Theorem 4.5] together with the lifting trick
discussed in Section 1.2. In fact, we get a stronger statement; see Theorem 4.7. The number #d .x/ of
distinguished classes is maximal if T .x/ is monotone, since all integral affine distances are equal in that
case. In fact, in the monotone case, we recover [4, Theorem 2] for Hamiltonian diffeomorphisms; see
Corollary 4.9. Note that Theorem C does not require monotonicity.

In terms of examples, we give a complete description of HL for all toric fibres in S2�S2, CP 2, C�S2,
C2 � T �S1 and T �S1 � S2, and show that all Hamiltonian monodromy elements can be realized by
symmetric probes as outlined above.

1.5 Outline

In Section 2, we review the relevant toric geometry and in particular we discuss toric reduction, a version
of symplectic reduction which is compatible with the toric structure and on which we rely to prove
Theorems A, B and C. Section 3 is the heart of this paper, where we discuss symmetric probes and prove
Theorem A. In Section 4, we discuss obstructions to the equivalence of toric fibres and prove Theorem B.
Furthermore, we discuss obstructions to which Hamiltonian monodromy can be realized for toric fibres.
Section 5 is dedicated to examples and serves to illustrate the results of the previous sections.

Acknowledgements

We cordially thank Jonny Evans, Joontae Kim and Felix Schlenk for many useful discussions. We are
grateful to Jack Smith for generously sharing his insights on Hamiltonian monodromy and offering
explanations about [4]. This work was started at Université de Neuchâtel, partially supported by SNF
grant 200020-144432/1, and continued at Tel Aviv University, partially supported by the Israel Science
Foundation grant 1102/20 and by the ERC Starting Grant 757585.

Algebraic & Geometric Topology, Volume 25 (2025)



Hamiltonian classification of toric fibres and symmetric probes 1845

2 Some toric symplectic geometry

In this section, we review toric geometry with special emphasis on a certain type of symplectic reduction,
which we call toric reduction. Toric reduction generalizes probes as well as Delzant’s construction of
toric symplectic manifolds, both of which heavily feature in this paper.

2.1 Toric manifolds

A symplectic manifold .X2n; !/ together with a moment map � WX ! t� is called toric if � generates
an effective Hamiltonian action of the n-torus T n. By t� we denote the dual of the Lie algebra t of T n.
Choosing an identification T n ŠRn=Zn induces an identification t� ŠRn and, depending on context,
we will use both the invariant way and the coordinate-dependent way of seeing things. Note that some
symplectic manifolds admit distinct toric structures and hence we are really concerned with the triple
.X; !; �/ when we say toric manifold although we may just write X or .X; !/ for simplicity.

A classical result by Delzant [18] states that if X is compact toric,1 then the image � D �.X/ is a
so-called Delzant polytope, and that Delzant polytopes (up to integral affine transformations) classify toric
manifolds up to equivariant symplectomorphism. There are many classical references for toric manifolds,
eg [3; 11; 20], and we refer to these for details. We revisit part of Delzant’s result in Section 2.3.

Due to Delzant’s theorem, the moment polytope associated to a toric manifold X is a crucial object of
study. We view it as

(6) �D fx 2 t� j `i .x/> 0g; `i .x/D hx; �i iC�i :

Here, we view the vectors �i in t and h � ; � i denotes the natural pairing of t and its dual. Note that t
contains a natural lattice ƒ obtained as the kernel of the exponential map exp W t! T n. Similarly, the
dual t� contains the dual lattice ƒ�. If we choose a basis, we can identify ƒŠ Zn and dually ƒ� Š Zn.
Again, depending on context, we use both the invariant viewpoint and the coordinate-dependent one.
Furthermore, since � is rational (with respect to ƒ�), we can choose the vectors �i to be primitive in ƒ.

Definition 2.1 A vector v 2ƒ in a lattice ƒ is called primitive if ˛v …ƒ for all 0 < ˛ < 1.

Together with (6), this condition uniquely determines �i and �i in terms of � and vice versa. As we have
mentioned above, � is a Delzant polytope, meaning that at every vertex the vectors �i determining the
facets meeting at that vertex form a basis of the lattice ƒ over the integers. There is a natural symmetry
group acting on �� t� without changing the toric manifold determined by �.

Definition 2.2 The integral affine transformations of .t�; ƒ�/Š .Rn;Zn/ are the elements in the group

(7) Autƒ� Ë t� Š GL.nIZ/Ë Rn:

1Many authors include compactness in the definition of toric, but we do not.

Algebraic & Geometric Topology, Volume 25 (2025)



1846 Joé Brendel

The elements in Autƒ� Š GL.nIZ/ correspond to base changes in the torus T n, whereas the translation
part t�ŠRn corresponds to adding constant elements to the moment map. Neither of these transformations
changes the Hamiltonian T n-action.

2.2 Toric reduction

In this paragraph we are interested in symplectic reduction with respect to subtori of a toric T n-action. We
call symplectic reduction of this type toric reduction. The symplectic quotient of this operation inherits a
toric structure with moment polytope obtained by intersecting � with an affine rational subspace in t�.
Roughly speaking, toric reductions are in bijection with inclusions (which are compatible in the sense
of Definition 2.3) of the moment polytope of the reduced space into the moment polytope of the initial
space. Although we could not find a precise statement of sufficient generality in the literature, this idea is
hardly new — see for example [2]. In fact, as we will discuss in Section 2.3, the Delzant construction and
McDuff’s probes are special cases of Theorem 2.4. What may be new is the precise formulation we give
in Definition 2.3 of the conditions for this reduction to yield a smooth symplectic quotient in terms of the
geometry of �.

Let X be a toric manifold and � its moment polytope. Note that symplectic reduction with respect to
the full T n-action is pointless. Indeed, the reduced spaces are zero-dimensional. However, it is quite
fruitful to perform symplectic reduction with respect to a subtorus K � T n. Dually, we may look at
affine rational subspaces V � Rn Š t�. Indeed, to any affine rational subspace V we can associate its
complementary torus

(8) KV D exp.V 0/; V 0 D f� 2 t j hx� x0; �i D 0; x; x0 2 V g � t;

and vice versa. Rationality of V is equivalent to the compactness of KV . The subspace V is a level set of
the natural projection t�! Lie.KV /�, meaning that the moment map �KV

WX ! Lie.KV /� generating
the induced KV -action on X has level set ��1.�\V / for some suitable level. Thinking in terms of V
and instead of KV or �KV

has the advantage that both the subtorus and the level at which we wish to
carry out reduction are fixed by a choice of V . Furthermore, one can easily read off the integral affine
geometry of the pair .�; V / whether the action of KV on ��1.�\V / is free (and hence the reduction
admissible). Obviously, this is not always the case, since V may contain a vertex of � for example.

Definition 2.3 Let � be a Delzant polytope and let V be an affine rational subspace. We call the pair
.�; V / reduction-admissible if, for every face F �� intersecting V , the union of (the linear part of) F
and (the linear part of) V contains a basis of the lattice ƒ�.

Analogously we call a polytope�0�� reduction-admissible if it is obtained as the intersection�0D�\V
of � with a reduction-admissible V . Note that one only needs to check reduction-admissibility at the
faces F of the smallest dimension for which V \F is nonempty, ie at the vertices of the polytope �0.
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Theorem 2.4 (toric reduction) Let��Rn be a Delzant polytope and V �Rn an affine rational subspace
such that the pair .�; V / is reduction-admissible. Then the action ofKV D exp.V 0/ on ZD��1.�\V /
is free and the reduced space X 0 DZ=KV is itself toric with moment polytope �0 D�\V .

Proof Let e�1 ; : : : ; e
�
n 2 Rn D t� be the standard basis. Reduction-admissibility implies that, up to

applying an integral affine transformation, we may assume that

(9) V D spanRfe
�
1 ; : : : ; e

�
i g; F D spanRfe

�
j ; : : : ; e

�
ng; j 6 i C 1:

In this normal form, we have V 0 D spanRfeiC1; : : : ; eng and hence KV D f1g � T n�i . This subtorus
acts freely on ��1.F /. Since this holds for any facet F intersecting V , the action of KV is free and thus
symplectic reduction is admissible.

The quotient manifold carries a residual T n=KV -action. It is effective, since the T n-action on X is. Since
� is invariant under the T n-action, it is in particular invariant under the induced KV -action and thus its
restriction to Z D ��1.�\V / factors through the quotient by KV and has image �0 D�\V . It is not
hard to check that the map obtained in this way is a moment map generating the T n=KV -action on the
quotient. For dimensional reasons, the resulting action is toric.

Let M D T n=KV be the torus acting by the residual action. Note that, by definition, �0 is contained in
t� instead of Lie.M/� Dm�. However, one can pick an identification of .m�; ƒ�M / with .V;ƒ\V / and,
up to an element in the integral affine transformations of .m�; ƒ�M /, this yields a well-defined polytope
�0 �m�. Conversely, given an integral affine embedding

(10) � W .m�; ƒM / ,! .t�; ƒ/; �.�0/D �.t�/\�

such that .�; �.m�// is reduction-admissible, there is a symplectic reduction from X to X 0. To summarize,
there is a short exact sequence of tori,

(11) 0!KV ,! T n „
�!M ! 0;

where T n acts on X and M acts on the reduced space X 0 such that the reduction map p W Z! X 0 is
equivariant with respect to the T n- and M -actions, meaning that

(12) p.t:x/D„.t/:p.x/; t 2 TN ; x 2X:

In particular, orbits are mapped to orbits under toric reduction. This will be used in Section 2.4.

2.3 Delzant construction

The Delzant construction gives a recipe for constructing a toric manifold .X; !; �/ from a compact
Delzant polytope �. We review it here, since it will be used in Section 4, and refer to [20] for details.
Actually, the Delzant construction is a special case of toric reduction as discussed in Section 2.2 where X
is obtained as a symplectic quotient of some CN equipped with its standard toric structure.

Algebraic & Geometric Topology, Volume 25 (2025)



1848 Joé Brendel

� `.�/

Figure 3: The idea of the Delzant construction in the case of X DCP 2. The complement of im `

generates the circle action by which the symplectic reduction is performed.

Let �� t� be a Delzant polytope with N facets. Since � is compact, we have N > n. Let .CN ; !0/ be
the standard symplectic vector space equipped with the moment map

(13) �0 WC
N
! .tN /� ŠRN ; .z1; : : : ; zN / 7! .�jz1j

2; : : : ; �jzN j
2/;

which generates the standard TN -action on CN by rotation in the factors. Its image is the positive
orthant RN

>0. Instead of starting with the subtorus K � TN by which to reduce, we start by defining an
inclusion

(14) ` W t� ,!RN ; x 7! .`1.x/; : : : ; `N .x//;

which maps � to RN
>0. The components `i defined in (6) are the functions measuring the integral affine

distance of a given point to the facets of �. The map ` is an integral affine embedding as in (10) and the
subtorus K by which we reduce is given K D exp.im `/0 � TN . Using the Delzant condition on �, it is
easy to check that the inclusion `.�/�RN

>0 is admissible in the sense of Definition 2.3. Thus the toric
symplectic manifold .X; !; �/ is obtained as symplectic quotient X D ��10 .`.�//=K.

Let us illustrate this by a simple example.

Example 2.5 (complex projective plane) Let �� t� DR2 be the simplex defined by

(15) `1.x/D x1C 1; `2.x/D x2C 1; `3.x/D�x1� x2C 1:

This simplex is Delzant and since N D 3, we will obtain X as a symplectic reduced space of C3. The
map ` is depicted in Figure 3. The orthogonal complement .im `/? is spanned by .1; 1; 1/ and thus
K D f.t; t; t / j t 2 S1g � T 3 and �K.z/D �.jz1j2C jz2j2C jz3j2/. We conclude that the symplectic
reduction ��1K .3/ D S5.3/! CP 2 corresponds to the Hopf fibration map. The symplectic form one
obtains by this procedure is the Fubini–Study form !CP 2 with normalization

R
CP 1 !CP 2 D 3.

2.4 Toric fibres

Every toric manifold X2n contains an n-parametric family of Lagrangian tori called toric fibres.
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Definition 2.6 Let x 2 int� be a point in the interior of a toric moment polytope. The corresponding
preimage T .x/D ��1.x/ is called a toric fibre.

Example 2.7 (product tori) The toric fibres of the standard toric structure (13) are product tori

��10 .a1; : : : ; aN /D S
1.a1/� � � � �S

1.aN /�CN ;

where ai > 0. Here, S1.a/�C denotes the circle bounding a disk of area a.

Toric fibres are orbits with trivial stabilizer of the T n-action. This means that the torus action gives a
canonical identification T n Š T .x/ and

(16) ƒD ker.exp W t! T n/D �1.T .x//DH1.T .x/IZ/:

Let us now discuss what happens to toric fibres under toric reduction. In general, let p W Z ! X be
the quotient map of a symplectic reduction. If L � X is Lagrangian, then p�1.L/ is Lagrangian as
well and we call it the lift of L. Conversely, any Lagrangian contained in Z is automatically invariant
under the group action and projects to a Lagrangian in the reduced space. Adopting our notation from
Section 2.2, let X 0 be a quotient obtained from X by toric reduction and let �.�0/�� be the inclusion
of the corresponding moment polytopes. Furthermore, we denote the reduction map by p WZ!X 0 and
the toric fibres in X by T . � / and those in X 0 by T 0. � /.

Proposition 2.8 In the above notation , we have the following correspondence of toric fibres in X and X 0,

(17) p�1.T 0.x//D T .�.x//�X; x 2 int�0:

Proof This follows directly from the definition of the moment map �0 on the quotient X 0.

In later sections, we will heavily use the second relative homotopy/homology groups of toric fibres, which
is why we will discuss them here. Recall from (6) that the vectors �i 2ƒ are defined as orthogonal vectors
to the facets of �. We prove the following well-known fact using the Delzant construction together with
Proposition 2.8.

Proposition 2.9 Let .X; T .x// be a pair of a toric symplectic manifold and a toric fibre. Then
�2.X; T .x// Š ZN , where N is the number of facets of �. Furthermore , there is a canonical basis
D1; : : : ;DN 2 �2.X; T .x// bounding the classes @Di D �i 2ƒD �1.T .x//.

Proof By the Delzant construction and Proposition 2.8, the toric fibre T .x/ lifts to a product torus
T .`.x// � CN under the reduction map p W Z ! X , where N is the number of facets of �. Let
zD1; : : : ; zDN be the obvious basis of �2.CN ; T .`.x///. Note that these can be chosen to lie in Z �CN

since the image of Z under the moment map �0 is equal to the image of the embedding ` from (14).
Furthermore, reduction maps induce isomorphisms of relative homotopy groups; see for example the
proof of [28, Proposition 3.2]. This shows that �2.CN ; T .`.x/// and �2.X; T .x// are isomorphic, and
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we denote the image of zDi under the isomorphism by Di . In order to compute the boundary operator @,
consider the commutative diagram

(18)
�2.CN ; T .`.x/// �1.T .`.x///

�2.X; T .x// �1.T .x//

@0

p� p�

@

The boundary operator @0 is an isomorphism mapping zDi to the i th standard basis vector ei and therefore
it suffices to understand p� on the fundamental group. Recall from the discussion surrounding (11) that
p is equivariant in the sense that p.t:z/D„.t/:p.z/ for all t 2 TN and z 2CN . In the special case of
the Delzant construction, one can easily check that „�.ei /D �i and thus this proves the last claim.

The homotopy long exact sequence for the pair .X; T .x// gives a short exact sequence,

(19) 0! �2.X/! �2.X; T .x//! �1.T .x//! 0:

Indeed, the higher homotopy groups of the torus vanish and toric manifolds are simply connected. In
homology (with integer coefficients) we obtain the same short exact sequence,

(20) 0!H2.X/!H2.X; T .x//!H1.T .x//! 0:

Indeed, the maps H�.T .x// ! H�.X/ are zero, since there is a contractible subset � � X such
that T .x/ � � � X . Take for example � D ��1.int� [ U/, where U is a small neighbourhood
of a vertex of �. There are obvious identifications of the respective groups in (19) and (20) which
commute with the maps of these short exact sequences and thus we use homology and homotopy groups
interchangeably.

Note that this discussion yields a very effective way to read off �2.X/DH2.X/ from the moment polytope
of a toric manifold. It is the kernel of @, ie the lattice of integral relations among the vectors �1; : : : ; �N
orthogonal to the facets of �. This in turn has a nice geometric interpretation in terms of the singular
fibration structure of the moment map � W X ! �. Indeed, when moving from the interior of the
moment polytope to the interior of a facet Fi , the circle S1.�i / � T n collapses, where by S1.�i / we
have denoted the circle generated by the orthogonal vector � 2 ƒ � t to the facet Fi . The canonical
basis D1; : : : ;DN 2 �2.X; T .x// corresponds to the disks coming from these circles collapsing, which
explains @Di D �i . Furthermore, let

P
i aiDi be an integral combination of such disks with

P
i ai�i D 0.

The latter condition means that the corresponding concatenation of curves representing the �i bound in
the fibre T .x/. Thus they define a homotopy class in �2.X/, which illustrates ker @D �2.X/.

3 Symmetric probes

Symmetric probes were first defined in [1], where they were used to a different end. Let .X; !; �/ be a
toric symplectic manifold with moment polytope �.
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Definition 3.1 A symmetric probe � �� is a reduction-admissible line segment; see Definition 2.3.

Let us unpack this definition and introduce some notation. By l � t� we denote the line containing
the symmetric probe � , by v 2 ƒ� a primitive directional vector of l , and by F and F 0 the facets
of � which � intersects. We choose F and F 0 so that v points away from F and towards F 0. See
Figure 4 for an illustration of the set-up. Note that symmetric probes indeed do intersect facets, and not
lower-dimensional faces. Definition 3.1 implies that there is a basis of ƒ� contained in the unions l [F
and l [F 0, respectively. This means that, locally, all intersections of symmetric probes with a facet are
equivalent under integral affine transformations. After choosing a basis, we can work in .Rn;Zn/ and
assume that

(21) v D e�n ; F D spanRfe
�
1 ; : : : ; e

�
n�1g:

This follows from the fact that GL.nIZ/ acts transitively on the set of bases of Zn. We take (21) to be the
normal form of an intersection of a symmetric probe with a facet. McDuff [23] calls these intersections
integrally transverse and we refer to her paper for a detailed discussion of this notion. In the above
notation we have hv; �i D �hv; � 0i D 1, where �; � 0 2ƒ are the normal vectors to F and F 0, respectively.
By the normal form (21), it follows that we can assume � D en, which implies that � 0 D

Pn�1
iD1 kiei � en.

The numbers k1; : : : ; kn�1 2 Z completely determine the toric structure of a neighbourhood of the
symmetric probe � and they are topological invariants of the torus bundle coming from the reduction
map ��1.�/! S2 appearing in the proof of Theorem 3.2.

Theorem 3.2 Let � �� be a symmetric probe and x; y 2 � be a pair of points lying at equal distance
to the boundary of � . Then the toric fibres T .x/ and T .y/ are Hamiltonian isotopic by a Hamiltonian
isotopy inducing the map

(22) ˆ� WH1.T .x//!H1.T .y//; a 7! aChv; ai.� 0� �/

on the first homology of the toric fibres.

In particular, this proves Theorem A. In (22), we have used the identificationƒDH1.T .x//DH1.T .y//
induced by the torus action. The map ˆ� is an involution and its .C1/-eigenspace is .n�1/-dimensional
and given by the complement �0 D v0 � tDƒ˝R. Its .�1/-eigenspace is spanned by � 0� � . Note also
that ˆ� is uniquely determined by � �� and more precisely by an arbitrarily small neighbourhood of �
in �. Indeed, if we exchange � and � 0, then v changes its sign by our convention.

In case x D y, we obtain an interesting corollary about the Hamiltonian monodromy group (see
Definition 1.4) of the corresponding toric fibre.

Corollary 3.3 Let x be the midpoint of a symmetric probe � . Then the Hamiltonian monodromy
group HT.x/ contains the element ˆ� .
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Figure 4: A symmetric probe � �� and the surrounding notation.

Proof of Theorem 3.2 Since � � � is reduction-admissible, we can perform toric reduction by
Theorem 2.4. The reduced space is a copy of S2 with a standard symplectic form of total area equal to
the integral affine length of � . Under the reduction, the fibres T .x/ and T .y/ are mapped to a pair of
circles S1x ; S

1
y � S

2 which are orbits of the residual Hamiltonian circle action on S2; see Proposition 2.8.
Since x and y are at equal distance to the boundary of � , the circles S1x and S1y bound disks of the same
area and thus can be exchanged by a Hamiltonian isotopy ' on S2. Lift this Hamiltonian isotopy from S2

to X by lifting its Hamiltonian function by the reduction map to ��1.�/ and extending it (for example
by cut-off) to the total space. See for example [2, Lemma 3.1] or [6, Lemma 3.1] for details on lifting
Hamiltonian isotopies.

Let us now compute the map induced by ' on ƒ. We work with homotopy groups here, but the
problem is exactly the same in homology by the discussion in Section 2.4. Let dx; d 0x 2 �2.S

2; S1x / and
dy ; d

0
y 2 �2.S

2; S1y / be the generators of relative homotopy groups such that dx and dy contain the south
pole, d 0x and d 0y contain the north pole, and dxC d 0x D dy C d

0
y D ŒS

2� for a chosen orientation on S2.
The map '� induced by the Hamiltonian isotopy ' on relative homotopy groups satisfies '�dx D d 0y and
'�dy D d

0
x . Furthermore, the map ˆ� is uniquely determined by the properties

(23) ˆ� .�/D �
0; ˆ� jv0 D idv0 ;

where v0 � ƒ denotes the elements on which v 2 ƒ� vanishes. Indeed, � is transverse to v0 since
hv; �i D 1. We show that the lift of ' satisfies (23), which proves the claim. The second property in (23)
follows from the K� -equivariance of the lift of ' where K� D exp �0 is the complementary torus of the
probe � . Indeed, K� � T n is the subtorus with respect to which the symplectic reduction ��1.�/! S2

is carried out — see also (8) and the proof of Theorem 2.4 — and thus any Hamiltonian isotopy lifted
from the reduced space is equivariant with respect to this group action. For the first property in (23), note
that the map p� W �2.��1.�/; T .x//! �2.S

2; S1x / induced by symplectic reduction is an isomorphism.
See for example the proof of [28, Proposition 3.2]. Therefore �2.��1.�/; T .x� // is generated by Dx
and D0x with ��.Dx/D dx and ��.D0x/D d

0
x , and similarly for T .y/. This allows us to conclude that
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the lift of ' maps Dx to D0y and Dy to D0x . Since @xDx D @yDy D � and @yDy D @yD0y D �
0, this

finishes the proof.

Note that we have actually computed the map induced on relative second homology,

(24) H2.X; T .x//!H2.X; T .y//; b 7! bChv; @bi.D0�D/;

where D and D0 denote the homology classes of the canonical basis in Proposition 2.9 corresponding to
F and F 0, respectively. Note also that the lift of ' in the proof of Theorem 3.2 depends on the extension
of the Hamiltonian function to X and is thus not uniquely defined by '.

Remark 3.4 By choosing a suitable cut-off of the lifted Hamiltonian function in the proof of Theorem 3.2,
one can choose the Hamiltonian isotopy to be supported in an arbitrarily small neighbourhood of � ��.

4 Chekanov invariants

The main idea of this section is to use the Delzant construction to lift toric fibres of certain toric manifolds
to product tori in some CN via Proposition 2.8 and to make use of the various results on product tori
in [12]. In particular, this yields strong obstructions to the equivalence of toric fibres (Theorem B) and
their Hamiltonian monodromy (Theorem C). As we shall discuss, similar results can be obtained by hand
(ie avoiding the lifting trick) via displacement energy and versal deformations, which comes in handy in
case X cannot be seen as a toric reduction of CN . However, we note that the approach by hand runs into
the question of determining the displacement energy of toric fibres, which turns out to be very subtle
in general; see for example the papers [1; 23] for detailed discussions of the (qualitative) question of
displaceability and [6, Section 3] for the quantitative question about displacement energy. In case X can
be seen as a toric reduction of CN , this question can be completely avoided by the lifting trick.

Definition 4.1 A toric symplectic manifold X is called of reduction type if it can be obtained as a toric
reduction of some CN .

By the Delzant construction in Section 2.3, all compact toric manifolds are of reduction type. The space
X DC �S2, which will be discussed in Section 5.3, is an example of a noncompact space which is of
reduction type.

Before moving to the Chekanov invariants, let us point out the following.

Remark 4.2 (classification up to symplectomorphisms) We focus on equivalence of toric fibres up to
Hamiltonian diffeomorphisms. One may ask an analogue of Question 1.1 for the group of symplecto-
morphisms. Note that a toric symplectic manifold X is simply connected whenever its moment polytope
has at least one vertex, meaning that the distinction between the two classification questions is, at best, a
question about connected components of Symp.X; !/. In fact, both classifications agree in all simply
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connected examples we consider in Section 5 of this paper. This is not always true, as the following
example illustrates. Let X be the space obtained from CP 2 by three small toric blow-ups of the same
size " > 0 at the vertices of the original moment triangle. The resulting symplectic manifold is toric
and its moment polytope is a hexagon with three long and three short edges. Near each of the short
edges, there is a nondisplaceable toric fibre, as was proved in [16, Section 5.5]. In particular, these
three nondisplaceable fibres are not equivalent under Hamiltonian diffeomorphisms. However they are
symplectomorphic. Indeed, their base points can be permuted by integral affine symmetries of the moment
polytope and such symmetries lift to symplectomorphisms of the corresponding toric manifold; see for
example [8, Lemma 4.3] for a proof of this well-known fact.

In particular, Conjecture 1.3 is false for equivalence up to symplectomorphisms.

4.1 Equivalence of toric fibres

As we have seen in Example 2.7, the product tori

(25) T .a/D T .a1; : : : ; aN /D S
1.a1/� � � � �S

1.aN /�CN

are a special case of toric fibres. Chekanov has given a classification of product tori2 up to symplectomor-
phism in [12, Theorem A]. A complete set of invariants is given by

d.a/Dminfa1; : : : ; aN g;(26)

#d .a/D #fi 2 f1; : : : ; N g j ai D d.a/g;(27)

�.a/D Zha1� d.a/; : : : ; aN � d.a/i;(28)

where we write aD .a1; : : : ; aN / 2RN>0. The first invariant is a positive real number and corresponds to
the displacement energy3 d.a/D e.CN ; T .a//. The second invariant is a positive integer less than or
equal to N (with equality if T .a/ is monotone) which comes from versal deformations and displacement
energy. As it turns out, versal deformations of product tori are given as the minimum of #d .a/ linear
functionals, and they contain no other information beyond this number. The third invariant �.a/�R is a
subgroup of R generated by N � #d .a/ elements and is a purely soft invariant. In fact, it is the set of
symplectic areas of disks with vanishing Maslov class m. � /. Note that in the case of CN , the symplectic
form has a primitive � and thus we can express �.a/ as

(29) �.a/D

�Z


� 2R
ˇ̌̌
 2H1.T .a//; m./D 0

�
:

This invariant can be more explicitly expressed as �.a/D Zha1� d.a/; : : : ; an� d.a/i.

Theorem 4.3 (Chekanov) The product tori T .a/ and T .a0/ are symplectomorphic in CN if and only if

(30) d.a/D d.a0/; #d .a/D #d .a
0/; �.a/D �.a0/:

2Chekanov calls these tori elementary tori.
3In the original paper, Chekanov uses the first Ekeland–Hofer capacity instead.
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Let us now get back to the case of toric fibres and prove Theorem B. Recall from Section 1.2 that
the Chekanov invariants of a toric fibre T .x/� X are defined in terms of the integral affine distances
`.x/D .`1.x/; : : : ; `N .x// of the point x to the facets of �,

d.x/Dminf`1.x/; : : : ; `N .x/g;(31)

#d .x/D #fi 2 f1; : : : ; N g j `i .x/D d.x/g;(32)

�.x/D Zh`1.x/� d.x/; : : : ; `N .x/� d.x/i:(33)

Proof of Theorem B We prove the result for all toric manifolds of reduction type; see Definition 4.1. Let
X be a toric manifold of reduction type and T .x/; T .x0/�X be toric fibres which are equivalent under
Hamiltonian isotopies. Recall from Section 2.3 that we may view X as a toric reduction of CN , where the
inclusion map of the moment polytope � of X into RN is given by the map `.x/D .`1.x/; : : : ; `N .x//.
Furthermore, the toric fibre T .x/ lifts to the product torus T .`.x// in CN by Proposition 2.8 and similarly
for T .x0/. Since T .x/Š T .x0/, we obtain that T .`.x//Š T .`.x0//. Indeed, Hamiltonian isotopies can
be lifted through symplectic reductions by lifting the corresponding Hamiltonian function and extending
it to CN by cut-off. It is easy to see that any such lift will map the lift of T .x/ to the lift of T .x0/.
Theorem B now follows from Theorem 4.3.

The Chekanov invariants are not complete, as the following example illustrates.

Example 4.4 Let CP 2 the complex projective plane equipped with the toric structure described in
Example 2.5 and with moment polytope �, and set

(34) x D
�
�
5

10
;�

2

10

�
; x0 D

�
�
5

10
;
1

10

�
2�:

Since `.x/D .1C x1; 1C x2; 1� x1� x2/, we obtain

(35) `.x/D
�
5

10
;
8

10
;
17

10

�
; `.x0/D

�
5

10
;
11

10
;
14

10

�
2R3>0:

By the classification of toric fibres in CP 2 from [27, Proposition 7.1] — see also Section 5.2 — the fibres
T .x/ and T .x0/ are not Hamiltonian isotopic. However, their Chekanov invariants agree. Indeed, we find

(36) d.x/D d.x0/D
1

2
; #d .x/D #d .x

0/D 1; �.x/D �.x0/D Z
D
3

10

E
:

4.2 Hamiltonian monodromy

Let � 2 Ham.X; !/ be a Hamiltonian diffeomorphism of a toric manifold .X; !/ mapping a toric fibre
T .x/ to a toric fibre T .x0/. Then one can consider the map induced on relative second homology,

(37) �� WH2.X; T .x//!H2.X; T .x
0//:

We call this map ambient monodromy. In the same vein as in Section 4.1, we derive obstructions to which
maps �� can be obtained in this way by using the Delzant construction to lift Hamiltonian isotopies. Note
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that by setting xD x0 and by projecting to the first homology (see (20)), we can extract information about
the Hamiltonian monodromy question as a special case.

The key result by Chekanov is [12, Theorem 4.5].

Theorem 4.5 (Chekanov) Let T .a/; T .a0/�CN be product tori. An isomorphism

(38) ˆ WH1.T .a//!H1.T .a
0//

can be realized as .�jT.a//� Dˆ by a symplectomorphism � 2 Symp.CN ; !0/ mapping T .a/ to T .a0/
if and only if the following conditions hold :

(39) ˆ.D.a//D D.a0/; ˆ�mT.a0/ DmT.a/; ˆ��T.a0/ D �T.a/:

Here mT.a/ 2H 1.T .a/IZ/ and �T.a/ 2H 1.T .a/IR/ are the Maslov class and the symplectic area class,
respectively. By D.a/ � H1.T .a// we denote the set of distinguished classes. In the standard basis
e1; : : : ; eN 2H1.T .a// the basis vector ei is called a distinguished class if the corresponding component
in aD .a1; : : : ; aN / is minimal, ie if ai D d.a/.

Let us now move to toric fibres. Recall from Proposition 2.8 that for any toric fibre T .x/�X , the relative
second homology H2.X; T .x// has a canonical basis D1; : : : ;DN , where Di corresponds to the i th facet
of the moment polytope � of X .

Definition 4.6 Let T .x/�X be a toric fibre. The distinguished classes of T .x/ are the elements of the
set

(40) D.x/D fDi j `i .x/D d.x/g �H2.X; T .x//;

ie elements of the canonical basis for which the distance of x 2 int� to the corresponding facet of � is
minimal.

Recall that there is a canonical inclusion H2.X/�H2.X; T .x//, meaning that there is a distinguished
subspace which is independent of the choice of x. We prove the following.

Theorem 4.7 Let T .x/; T .x0/�X be toric fibres in a compact toric manifold X such that there exists a
Hamiltonian diffeomorphism � 2 Ham.X; !/ mapping T .x/ to T .x0/. Then the induced map

(41) �� WH2.X; T .x//!H2.X; T .x
0//

on relative homology groups satisfies

(42) ��.D.x//D D.x0/; ��mT.x0/ DmT.x/; ���T.x0/ D �T.x/; ��jH2.X/ D id:

Proof The second and third identity in (42) are general facts about the Maslov and the symplectic area
class. The last identity is straightforward since Hamiltonian diffeomorphisms are isotopic to the identity
on X and hence the map �� WH�.X/!H�.X/ is the identity. For the first identity in (42), we again
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use the Delzant construction together with lifting the Hamiltonian isotopy. The following groups are
canonically isomorphic:

(43) H2.X; T .x//ŠH2.C
N ; T .`.x///ŠH1.T .`.x///;

See the proof of Proposition 2.9, where this is proved for the corresponding (relative) homotopy groups.
Thus the map H1.T .`.x///!H1.T .`.x

0/// induced by the lifted Hamiltonian diffeomorphism is conju-
gate to �� by the canonical isomorphism (43). It is easy to see that the distinguished classes D.x/ of T .x/
are by definition mapped under (43) to the distinguished classes D.`.x// of the product torus T .`.x//
and thus the first identity in (42) follows from Theorem 4.5.

It seems reasonable to guess that these constraints are sufficient. More precisely, note that there is
a canonical identification H2.X; T .x// D H2.X; T .x

0// for any two points x; x0 2 int�. Then we
conjecture the following.

Conjecture 4.8 An isomorphism ˆ 2 AutH2.X; T .x// can be realized as ambient monodromy of a
Hamiltonian diffeomorphism mapping T .x/ to T .x0/ if and only if the identities in (42) hold.

We show that this conjecture holds in all examples discussed in Section 5. In fact, we use the ambient
monodromy and Theorem 4.7 to classify toric fibres and determine the Hamiltonian monodromy groups in
these examples. The area class �T.x/ determines x and hence proving this conjecture gives, in particular,
an answer to Question 1.1.

Let us now move to the ordinary Hamiltonian monodromy group of toric fibres, see Definition 1.4.
To derive information about HT.x/ from Theorem 4.7, fix x D x0 and let � 2 Ham.X; !/ be a Hamil-
tonian isotopy such that �.T .x//D T .x/. Note that the ambient monodromy �� determines the map
.�jT.x//� 2 AutH1.T .x// by the short exact sequence (20).

Proof of Theorem C Any element in the Hamiltonian monodromy group HT.x/ comes from an ambient
monodromy element �� by (20) and hence the theorem follows directly from Theorem 4.7 where the set
of distinguished classes in H1.T .x// is given by

(44) @D.x/D f�i j `i .x/D d.x/g �H1.T .x//;

where �i 2 t Š H1.T .x// is a primitive defining vector of the i th facet of �. Indeed, recall from
Proposition 2.9 that the boundary of a canonical basis element Di is �i .

It follows from Theorem C that if the distinguished classes span the lattice H1.T .x//, then HT.x/ is a
subgroup of the group of permutations on #d .x/ elements. In particular, the Hamiltonian monodromy
group is finite in this case. See also [4, Theorem 1]. In contrast, we shall see that the Hamiltonian
monodromy group is infinite in some examples; see Sections 5.3, 5.4 and 5.5. The number #d .x/ is
maximal if T .x/ is the monotone toric fibre of a (monotone) toric manifold X . In that case, we obtain
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the obstructive statement of [4, Theorem 2] for the group of Hamiltonian diffeomorphisms as a special
case of Theorem 4.7.

Corollary 4.9 Let T .x/�X be a monotone toric fibre. Then any element in HT.x/ acts as a permutation
on the set f�1; : : : ; �N g of defining vectors of the polytope and the corresponding ambient monodromy
acts as the identity on H2.X/.

4.3 Displacement energy and versal deformations of toric fibres

In this subsection, we discuss obstructions for the equivalence of toric fibres and their Hamiltonian mon-
odromy relying on versal deformations instead of the lifting trick employed in the proofs of Theorems B
and 4.7. This comes in handy in cases where X cannot be seen as a toric reduction of some CN , and
we will use them in Sections 5.4 and 5.5. Note that the direct approach by versal deformations has the
drawback that it requires a computation of the displacement energy of toric fibres, at least on an open
dense subset. See Assumption 4.12.

Let us briefly discuss displacement energy and versal deformations. We refer to [12] and especially [14;
15] for more details. The displacement energy of a compact subset A� .X; !/ is defined as the infimum
of the Hofer norm taken over all Hamiltonian isotopies displacing A from itself,

(45) e.X;A/D inffkHk j �H1 .A/\AD¿g;

and by convention e.X;A/D1 if the infimum is taken over the empty set. The displacement energy is a
symplectic invariant and we will use it only if A is a Lagrangian.

For a compact Lagrangian L�X , Chekanov introduced a way to strengthen a given symplectic invariant
by looking at the invariant on Lagrangian neighbours of L. This is called versal deformation of L.
Perturbing L in a Weinstein neighbourhood, we find that nearby Lagrangians correspond to graphs of
closed one-forms on L. Furthermore, we can associate to every such perturbation an element inH 1.LIR/,
by taking its (Lagrangian) flux. Two such perturbations are Hamiltonian isotopic (with support in the
Weinstein neighbourhood of L) if and only if they map to the same element in H 1.LIR/. Thus we
obtain a continuous bijection between locally supported Hamiltonian isotopy classes of Lagrangian
neighbours of L and a neighbourhood of the origin of H 1.LIR/. As the flux description suggests, this
correspondence is independent of the chosen Weinstein neighbourhood.

We may postcompose any symplectic invariant with the map from U �H 1.LIR/ to classes of nearby
Lagrangians. Here, we use displacement energy to obtain a function U !R[f1g. By taking its germ,
we obtain

(46) EL WH
1.LIR/!R[f1g:

Definition 4.10 We call the function (46) the displacement energy germ of L�X .
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The displacement energy germ is a symplectic invariant in the sense that if � 2 Symp.X; !/, then

(47) EL ı�j
�
L D E�.L/;

where �j�L is the transpose of the isomorphism .�jL/� WH1.L/!H1.�.L//. In particular, this can be
used to derive obstructions to Hamiltonian monodromy.

Proposition 4.11 Let L � X be a compact Lagrangian submanifold. If ˆ 2 HL is an element in the
Hamiltonian monodromy group , then EL ıˆ

� D EL.

Let us discuss this in more detail in the special case where L D T .x/ � X is a toric fibre of a toric
manifold .X; !/. Coming up with a versal deformation of toric fibres is straightforward. Indeed, a versal
deformation of T .x/ is obtained by varying the base point, a 7! T .xC a/ for small enough a, where
we identify H 1.T .x/IR/Š t� as usual via the T n-action. Thus the crucial point in computing ET.x/ is
finding the displacement energy of toric fibres e.X; T .x// as a function of x 2 int.T .x//. Let us make
the following assumption.

Assumption 4.12 On an open and dense subset of the moment polytope �, we assume that

(48) e.X; T .x//D d.x/Dminf`1.x/; : : : ; `N .x/g:

Here, d. � / denotes the integral affine distance to the boundary of � as in (14). Recall that the functionals
`i . � /D h � ; �i iC�i measure the integral affine distance of x to the i th facet of �. Let f and g be two
functions defined on a vector space V . Since equalities on open and dense subsets will come up quite
often and are in fact sufficient for our purposes, we write f ' g if f and g agree on an open and dense
subset of V .

Let us briefly discuss why Assumption 4.12 is reasonable. First, we note that e.X; T .x//>d.x/ whenever
X is compact toric, and more generally, whenever X can be seen as the toric reduction of some CN . This
follows again from toric reduction and the lifting trick; see also [6, Section 3.2]. Indeed, if T .x/� X
can be displaced with energy e, then so can the corresponding product torus T .`.x//�CN obtained by
Proposition 2.8. The displacement energy of the latter is precisely given by d.x/Dminf`1.x/; : : : ; `N .x/g.
Although this inequality may fail to be sharp (for example for nondisplaceable tori), in all the examples
we know of, it fails only on the complement of an open dense subset, meaning that Assumption 4.12
still holds. Furthermore, the assumption holds for all compact monotone toric symplectic manifolds of
dimension 6 18 as was checked computationally. The monotone case in arbitrary dimension is related
to the so-called Ewald conjecture. See [23] or [6, Section 3.4] for a detailed discussion. The following
proposition is [6, Proposition 4.3].

Proposition 4.13 Under Assumption 4.12, the displacement energy germ of T .x/ is given by

(49) ET.x/.a/' min
i2I.x/

f`i .xC a/g;

where I.x/� f1; : : : ; N g is the subset of indices for which `i .x/ is minimal.
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Under Assumption 4.12, we can prove the symplectically hard part of Theorem B and a weaker form
of the hard part of Theorem 4.7, where ambient monodromy is replaced by the map induced on first
homology.

Theorem 4.14 Let X be a toric manifold for which Assumption 4.12 holds. Let � be a Hamiltonian
diffeomorphism mapping a toric fibre T .x/ to a toric fibre T .x0/. Then we have

(50) d.x/D d.x0/; #d .x/D #d .x
0/:

Furthermore , the map .�jT.x//� WH1.T .x//!H1.T .x
0// acts by a permutation on distinguished classes ,

.�jT.x//�D.x/D D.x0/.

Proof Let U � int� be an open dense subset such that (48) holds for all x 2U . For x; x0 2U , we have
d.x/D d.x0/. If x … U or x0 … U , use Proposition 4.13 to see that

min
i2I.x/

f`i .xC a/g ' min
i2I.x0/

f`i .x
0
C a/g:

Thus these two continuous functions of a are actually equal near aD 0, and they yield d.x/ and d.x0/,
respectively, when evaluated at aD 0. The second invariance property in (50) similarly follows from (47)
and Proposition 4.13 by noting that #d .x/D #I.x/. The claim about .�jT.x//� follows from (47) and
Proposition 4.13. Indeed, recall that the distinguished classes of T .x/ are the vectors �i for which the
corresponding `i is minimal; see (44).

To illustrate that the methods of this paragraph can be applied to a broader set of examples than toric
fibres, we include the following example.

Example 4.15 (Vianna tori in CP 2) Using Proposition 4.11, one can show that all Vianna tori in CP 2,
except for the first and the second one, have trivial Hamiltonian monodromy groups. The Vianna tori in
CP 2 form a countable family of monotone Lagrangian tori which are not pairwise symplectomorphic.
They are in bijection with so-called Markov triples, ie triples of natural numbers solving the Markov
equation. We refer to [30] for a detailed description. We denote the Vianna torus corresponding to a
Markov triple .a; b; c/ by T .a; b; c/�CP 2. This torus appears as a monotone fibre of an almost toric
fibration of CP 2 with base diagram given by a certain triangle �a;b;c . On an open and dense subset of
a neighbourhood of the origin in H 1.T .a; b; c/IR/, the displacement energy germ ET.a;b;c/ has level
sets given by scalings of @�a;b;c . This means that the versal deformation sees the corresponding almost
toric base diagram, and thus the integral affine equivalence class of �a;b;c is an invariant of T .a; b; c/.
In particular, this can be used to distinguish the Vianna tori as was noted by Chekanov and Schlenk in
private communications. For a proof of this claim, see the forthcoming paper [9].

Using Proposition 4.11, we note that a necessary condition for T .a; b; c/ to admit nontrivial monodromy is
that the corresponding almost toric base diagram admits some integral affine symmetry. Such a symmetry
can only exist if at least two vertices are of the same integral affine type, ie if the same Markov number
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appears at least twice in the same triple. This is only the case for .1; 1; 1/ and .1; 1; 2/. The former is the
Clifford torus which has Hamiltonian monodromy group isomorphic to the dihedral group D6 and the
latter is the first nontrivial Vianna torus T .1; 1; 2/ having monodromy group isomorphic to Z2. For all
other Vianna tori, we obtain HT.a;b;c/ D f1g. In particular, the Hamiltonian monodromy group does not
contain enough information to distinguish Vianna tori.

5 Examples

In Sections 5.1–5.5, we classify toric fibres and determine their Hamiltonian monodromy in some examples.
With the exception of C2 �T �S1, our examples are four-dimensional. This comes from the fact that the
classification question in dimensions > 6 is qualitatively very different — provided the moment polytope
has at least one vertex. Indeed, in that case, there are toric fibres T .x/ for which Hx has accumulation
points; see Corollary 5.16.

The proofs of the results of this section all follow the same pattern. Equivalences and monodromy elements
are constructed by symmetric probes. The main ingredients for the obstructive side are Theorems B and 4.7
applied to the ambient monodromy map �� WH2.X; T .x//!H2.X; T .x

0// induced by a Hamiltonian
diffeomorphism �. The conceptual reason why constraints on ambient monodromy give constraints on
equivalences of toric fibres is the observation that the symplectic area class of a toric fibre determines
x 2�. These methods probably apply to most four-dimensional toric manifolds, with the computational
complexity increasing with the number of edges of the moment polytope. The examples we chose are
diverse in the sense that S2�S2 and CP 2 are compact toric and thus the Delzant construction can be used
directly; C �S2 is noncompact, but still a toric reduction of C3; the spaces C2 �T �S1 and T �S1 �S2

are noncompact and cannot be seen as toric reductions of any CN. However, the latter is a toric reduction
of the former. In the case of the former, we apply the direct methods from Section 4.3. Note also
that the spaces C2 � T �S1 and T �S1 � S2 are not simply connected, whence the classification up to
symplectomorphisms is drastically different from the classification up to Hamiltonian diffeomorphisms.

In Section 5.6, we revisit Chekanov’s classification result and prove Conjecture 1.3 for Cn. In Section 5.7,
we collect some remarks on how to construct symmetric probes in arbitrary toric manifolds.

Let us point out that all monodromy results for monotone toric fibres in this section also follow from the
methods developed in [4].

5.1 The case of monotone X D S 2 �S 2

Let S2�S2 be equipped with the monotone product symplectic structure ! D !S2˚!S2 , where !S2 is
the area form with normalization

R
S2 !S2 D 2. Then the corresponding moment polytope is given by

the square �D Œ�1; 1�� Œ�1; 1�. There are probes with four different directional vectors. The probes
with v D e�1 ; e

�
2 are admissible everywhere in the interior of the polytope. The probes with v D e�1 C e

�
2
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Figure 5: Some symmetric probes in the monotone S2 �S2. Points of the same colour denote
equivalent fibres.

and v D e�1 � e
�
2 are admissible everywhere except for the two main diagonals of the square. Note that

the equivalences of toric fibres generated by these probes can also be read off from the symmetries of
�D Œ�1; 1�� Œ�1; 1�. Let us turn to the classification of toric fibres.

Proposition 5.1 The classification of toric fibres of monotone S2 �S2 is given by

(51) Hx D f.˙x1;˙x2/; .˙x2;˙x1/g; x D .x1; x2/ 2 int�:

Note that the sets Hx contain eight elements if x1 ¤ x2 and both are nonzero, four elements if x1 D x2
or if one of the xi is zero, and one element (the monotone fibre) if x1 D x2 D 0. See Figure 5.

Proof The constructive side follows either from the symmetric probes listed above or from the symmetries
of �. For the obstructions, we will use Chekanov’s invariants as expressed in Theorems B and 4.7.
Let T .x/D T .x1; x2/. By Chekanov’s first invariant from Theorem B, we can restrict our attention to
the set Dx lying at distance d.x/ to the boundary of �. This set is the boundary of a square of size
2.1�d.x// and it is stratified by the second Chekanov invariant. Indeed, we have #d .x/D 2 whenever x
is a vertex of Dx and #d .x/D 1 elsewhere on Dx . This means that we are left with proving the result on
the interior of the four edges of Dx . Using the symmetries of Dx ��, we can restrict our attention to
the segment Œ0; x2/� fx2g since this is a fundamental domain for Dx under the symmetries.

Claim If T .x1; x2/Š T .x01; x2/ for some x1; x01 2 Œ0; x2/, then x1 D x01.

We use Theorem 4.7 to prove the claim. Suppose there is � 2Ham.X; !/mapping T .x1; x2/ to T .x01; x2/.
This induces

(52) �� WH2.X; T .x1; x2//!H2.X; T .x
0
1; x2//:
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Let D1, D2, D3 and D4 be the canonical basis of H2.X; T .x1; x2// as in Proposition 2.9 where D1 is
the disk corresponding to the facet f1g � Œ�1; 1� and the remaining ones are ordered in the anticlockwise
direction. Let D01, D02, D03 and D04 be the corresponding basis elements for H2.X; T .x01; x2//. The
distinguished classes are D.x1; x2/ D fD2g and D.x01; x2/ D fD

0
2g, meaning that Theorem 4.7 yields

��D2 DD
0
2. Set

(53) ��D1 D a1D
0
1C a2D

0
2C a3D

0
3C a4D

0
4; ai 2 Z:

Since the Maslov class is preserved, we obtain a1Ca2Ca3Ca4D 1, meaning that a4D 1�a1�a2�a3.
Since the induced map .�jT.x1;x2//� is invertible, we deduce that det.@��D1; @��D2/ D ˙1 which
yields a1� a3 D˙1. Preservation of symplectic area,

R
D1
! D

R
��D1

!, yields

(54) 1� x1 D a1.1� x
0
1/C a2.1� x2/C a3.1C x

0
1/C a4.1C x2/

since the areas of the disks D0i are just given by the distances of .x01; x2/ to the respective facets of �. In
case a1�a3 DC1, we use the above relations on the ai to find a3 D a1� 1 and a4 D 2� 2a1�a2, and
thus

(55) x1� x
0
1 D 2x2.a1C a2� 1/ 2 2x2Z:

Since jx1� x01j< x2, we conclude x1 D x01. In case a1� a3 D�1, we find by the same reasoning,

(56) x1C x
0
1 D 2x2.a1C a2/ 2 2x2Z:

Since 06 x1C x
0
1 < 2x2, we deduce x01 D�x1 and hence x1 D x01 D 0

Proposition 5.2 Let 06 x1 6 x2. Then the Hamiltonian monodromy group of the toric fibre

T .x1; x2/� S
2
�S2

in the monotone S2 �S2 is given by

(57) HT.x1;x2/ D

8̂<̂
:
˝�
�1
0
0
1

�˛
Š Z2 if x1 D 0 and x2 ¤ 0;˝�

0
1
1
0

�˛
Š Z2 if x1 D x2 ¤ 0;˝�

1
0

0
�1

�
;
�
�1
0
0
1

�˛
Š Z2 �Z2 if x1 D x2 D 0;

and by HT.x1;x2/ D f1g in all other cases.

Note that any other toric fibre is Hamiltonian isotopic to a fibre with 0 6 x1 6 x2, meaning that its
Hamiltonian monodromy group is conjugate to one of the above. Thus the only isomorphism types of
groups which appear are Z2, Z2 �Z2 and the trivial group. The astute reader may have wondered why
H.0;0/ is not the full symmetry group of �D Œ�1; 1�� Œ�1; 1�. This comes from the fact that some of
these symmetries act nontrivially on H2.S2 �S2/ (by exchanging the obvious generators) and thus they
can be realized by symplectomorphisms, but not by Hamiltonian diffeomorphisms. We refer to [4], where
the monodromy group generated by symplectomorphisms is determined for monotone toric fibres.
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Proof Again, the construction side can be obtained by symmetric probes and Theorem 3.2. For the
obstruction side, let T .x1; x2/ be a toric fibre of S2 � S2 and � 2 Ham.S2 � S2/ a Hamiltonian
diffeomorphism mapping this fibre to itself. We again analyze the map

�� 2 AutH2.X; T .x1; x2//

and use the fact that �� determines .�jT.x1;x2//�. Let us start with the case of the monotone fibre
T .0; 0/ � S2 � S2, which is also a special case of [4, Theorem 2]. In this case, the distinguished
classes are D.0; 0/D fD1;D2;D3;D4g. Therefore Theorem 4.7 implies that the ambient monodromy
is a permutation of these classes. Since D1 C D3;D2 C D4 2 H2.X/, these two classes must be
preserved under �� which implies the claim. In the case x1 D x2 ¤ 0, the distinguished classes are
D.x1; x1/D fD1;D2g, and hence only permutations of D1 and D2 are permitted by Theorem 4.7. Now
let 0 6 x1 < x2. Then the set of distinguished classes is D.x1; x2/ D fD2g, and hence the ambient
monodromy map takes D2 to D2. We set x1 D x01 in (55) and (56). In the first case, we find that
a1C a2 D 1 and a computation using the expressions for a3 and a4 from the proof of Proposition 5.1,
this yields that the monodromy is trivial. In the second case, we find that x1 D 0 and a1C a2 D 0 and
a similar computation shows that the monodromy maps e1 7! �e1 in that case. We conclude that the
monodromy group is trivial whenever x1 ¤ 0 and that it is generated by the map e1 7! �e1 and e2 7! e2

if x1 D 0.

Remark 5.3 If S2 �S2 is equipped with a nonmonotone symplectic form, the classification as well as
the Hamiltonian monodromy is drastically different. Indeed, some equivalence classes Hx of fibres have
accumulation points in � and some fibres have infinite Hamiltonian monodromy groups. We refer to [7]
for details.

5.2 The case of X DCP2

Let CP 2 be equipped with the symplectic form and moment polytope as in Example 2.5. We give the
classification of toric fibres and the Hamiltonian monodromy groups without proof since the proofs are
the same as for S2 �S2. The classification of toric fibres was first given in [27, Proposition 7.1]. Note
that all equivalences and Hamiltonian monodromies in the case of the monotone S2 �S2 are induced by
symmetries of the moment polytope. The same holds in the case of CP 2.

Proposition 5.4 Toric fibres T .x/; T .y/�CP 2 are equivalent if and only if x can be mapped to y by an
integral symmetry of �. Similarly , the Hamiltonian monodromy group HT.x/ consists of transformations
induced by integral symmetries of � fixing the point x.

5.3 The case of X DC �S 2

Let C �S2 be equipped with the symplectic form ! D !C˚!S2 . We normalize the moment map such
that its moment polytope is given by �DR>�1 � Œ�1; 1�. There are symmetric probes with directional
vector e�2Cke

�
1 for every k 2Z. The probe with kD 0 is admissible everywhere. For kD˙1, the probes
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Figure 6: Some symmetric probes in C �S2. Points of the same colour denote equivalent fibres.

are admissible everywhere except when they hit a vertex of �. The symmetric probes with k … f�1; 0; 1g
are admissible whenever they hit both facets R>�1 � f1g and R>�1 � f�1g. As we shall see the latter
types of symmetric probes are obsolete as all results can be proven using only those with k 2 f�1; 0; 1g.

Proposition 5.5 The classification of fibres in .X; !/ is as follows. For x D .x1; 0/ 2 int� with x1 > 0,
we have Hx Dfxg, ie the corresponding toric fibre is not equivalent to any other fibres. For xD .x1;˙x1/
with x1 < 0, we have Hx D f.x1; x1/; .x1;�x1/g. For x D .0; x2/ with x2 > 0, we have

(58) Hx D f.2nx2;˙x2/ j n 2Ng[ f.�x2; 0/g:

For x D .x1;˙x1/ with x1 > 0, we have

(59) Hx D f..2nC 1/x1;˙x1/ j n 2Ng:

For x D .x1; x2/ with 0 < x1 < x2, we have

(60) Hx D f.˙x1C 2nx2;˙x2/ j n 2Ng[ f.�x2;˙x1/g:

All y 2 int� are in one of the above Hx .

Proof For the construction of the equivalences, we use concatenations of the probes with directional
vectors e�2 C ke

�
1 for k 2 f�1; 0; 1g, as we discuss below on a case by case basis. For the obstruction

side, note that we cannot directly apply Theorems B and 4.7, since X is noncompact. However, X is
of reduction type; see Definition 4.1. Indeed, the toric reduction of C2 to S2 coming from the Delzant
construction yields a toric reduction of C �C2 to C �S2. Therefore, the results of Theorems B and 4.7
still apply.

By the first Chekanov invariant from Theorem B, the polytope � decomposes into subsets Dx of constant
distance 0 < d.x/6 1 to the boundary @�. First, let 0 < d.x/ < 1. The toric fibres of the type .x1;˙x1/
with x1 < 0 are the only ones having #d D 2, which distinguishes them from all others. Note that for any
other x 2� with d.x/ < 1, the torus T .x/ is equivalent by symmetric probes to exactly one torus on the
segment Œ0; x2��fx2g with x2D 1�d.x/. It is easy to see that by probes with directional vectors e2Ce1
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and e2 � e1, any fibre is equivalent to one on the segment Œ�x2; x2�� fx2g. Now note that fibres on
this segment come in equivalent pairs as can be seen by noting that .x1; x2/ is equivalent to .�x2;�x1/
which is equivalent (by a vertical probe) to .�x2; x1/ which in turn is equivalent to .�x1; x2/. Thus the
problem of classifying fibres with d.x/ < 1 boils down to classifying fibres on the segment Œ0; x2��fx2g.

Claim If T .x1; x2/Š T .x01; x2/ for x1; x01 2 Œ0; x2� and x2 D 1� d.x/, then x1 D x01.

To prove the claim, we follow the same strategy as in the proof of Proposition 5.1. Suppose there
is � 2 Ham.X; !/ mapping T .x1; x2/ to T .x01; x2/ and let �� be the ambient monodromy induced
by this map. Let D1, D2 and D3 be the canonical basis of H2.X; T .x1; x2// where D1 is the disk
corresponding to the facet f�1g � Œ�1; 1� and the remaining ones ordered in the anticlockwise direction.
Let D01;D

0
2;D

0
3 2H2.X; T .x

0
1; x2// be the disks obtained by the same convention. The distinguished

classes are D.x1; x2/D fD3g and D.x01; x2/D fD
0
3g meaning that ��D3 DD03. Set

(61) ��D1 D a1D
0
1C a2D

0
2C a3D

0
3; ai 2 Z:

By the invariance of the Maslov class, we obtain a1Ca2Ca3D 1. Since the induced map .�jT.x1;x2//� is
invertible, we deduce that det.@��D1; @��D3/D˙1 which yields a1 D˙1. Preservation of symplectic
area,

R
D1
! D

R
��D1

!, yields

(62) 1C x1 D a1.1C x
0
1/C a2.1C x2/C a3.1� x2/:

In the case a1 D�1, we find

(63) x1C x
0
1 D 2x2.a2� 1/;

from which we deduce that x1 D x01. Similarly, for a1 D 1, we find

(64) x1� x
0
1 D 2x2a2;

which implies the same conclusion and thus proves the claim.

Let us now turn to the case d.x/D 1, ie tori of the form T .x1; 0/ with x1 > 0. Note that T .0; 0/ is the
only monotone fibre and thus not equivalent to any other fibre. We will show that the same remains
true for x1 > 0. Indeed, if T .x1; 0/ and T .x01; 0/ were equivalent, then the same arguments as above
apply to the ambient monodromy �� except that now D.x1; 0/D fD2;D3g. Equations (63) and (64) for
x2D 0 imply the claim. Equivalently, one can use [19, Theorem 1.1] to find that e.X; T .x1; 0//D 1Cx1,
meaning that these fibres are also distinguished by their displacement energy.

Proposition 5.6 Let .x1; x2/ 2 int�. The Hamiltonian monodromy group of the toric fibre

T .x1; x2/�C �S2

is given by

(65) HT.x1;x2/ D

8̂<̂
:
˝�

0
�1
�1
0

�˛
Š Z2 if x1 D�x2 and x2 > 0;˝�

1
0

0
�1

�˛
Š Z2 if x1 6 0 and x2 D 0;˝�

1
0

0
�1

�
;
�
1
0

2
�1

�˛
Š Z2 Ë Z if x1 > 0 and x2 D 0;
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and is given by a group conjugated to the above if T .x1; x2/ is equivalent to one of the above cases
according to Proposition 5.5, and by HT.x1;x2/ D f1g in all other cases.

Proof If x1 D�x2 and x2 > 0, we have D.x1; x2/D fD1;D3g and thus any monodromy matrix has to
permute @D1 D e1 and @D3 D�e2. This permutation is realized by a symmetric probe with directional
vector e�1 C e

�
2 . For the case x1 6 0 and x2 D 0, note that the vertical symmetric probe realizes the

claimed monodromy. In terms of obstructions, note that D.0; 0/D fD1;D2;D3g, which yields the claim
for T .0; 0/. In case x1 < 0, note that T .x1; 0/ is Hamiltonian isotopic to T .0; x1/ to which we can apply
(63) and (64) to find that the only possible monodromy for T .0; x1/ is e1 7! �e1 and e2 7! e2. Under
the conjugation induced by the equivalence of T .x1; 0/ and T .0; x1/, this yields the answer. Now let
x1 2 .0; x2� and x2 > 0. Then the Hamiltonian monodromy group is trivial by (63) and (64). Now
let us turn to the case of the infinite monodromy groups for the fibres T .x1; 0/ with x1 > 0. The two
generators given in (65) correspond to the vertical probe and the probe with directional vector �e�1 C e

�
2 .

Since D.x1; 0/D fD2;D3g, we distinguish the cases D2 7!D2;D3 7!D3 and D2 7!D3;D3 7!D2.
Let us first restrict our attention to the former case. We use (61) with Di DD0i . Recall that a1 D˙1.
Since (63) cannot be satisfied for x1D x01 and x2D 0, we deduce that a1D 1. A computation shows that

(66) .�jT.x1;0//�e1 D @��D1 D e1C 2a2e2;

which proves the claim in case det.�jT.x1;0//� D 1 (this corresponds to the powers of the product of the
two generators given in (65)). The case D2 7!D3 and D3 7!D2 is completely analogous.

5.4 The case of X DC2 �T �S 1

Let X DC2 �T �S1 be equipped with the exact symplectic form

! D d�D !C2 ˚!T �S1 D d�C2 ˚ d�T �S1

and the product toric structure with moment polytope �DR2
>0 �R. Note that X is not a toric reduction

of CN and hence we cannot apply the techniques from Sections 4.1 and 4.2 as in the previous examples.
Instead, we rely on Section 4.3, meaning that we need to compute the displacement energy of toric fibres.

Lemma 5.7 The displacement energy of toric fibres is given by

(67) e.X; T .x1; x2; x3//Dminfx1; x2g:

In particular , equality (48) (and thus also Assumption 4.12) holds for all toric fibres in X .

Proof The upper bound is obvious, either by using probes or the fact that e.C2; T .x1; x2//Dminfx1; x2g.
For the lower bound, we use Chekanov’s theorem [13], which we briefly recall here. Let L � X be
a compact Lagrangian submanifold of a tame symplectic manifold and let J 2 J.X; !/ be a tame
almost complex structure. Furthermore, denote by �.X;LIJ / the infimum of symplectic areas over all
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nonconstant J -holomorphic disks with boundary on L. If this set is empty, set �.X;LIJ / D 1. If
the set is not empty, we obtain a strictly positive value which is attained by Gromov compactness. The
quantity �.X IJ / is defined similarly for J -holomorphic spheres in X . Then Chekanov’s theorem gives
the lower bound

(68) e.X;L/> minf�.X IJ /; �.X;LIJ /g:

Now let X D C2 � T �S1 and L D T .x1; x2; x3/ a toric fibre. Note that X is aspherical, and thus
�.X IJ /D1. Let J0 2 J.X; !/ be the complex structure obtained from the identification X DC2�C�.
There are two obvious families of J0-holomorphic disks,

u˛1;˛2
.z/D

�
z;

r
x2

�
ei˛1 ; ex3Ci˛2

�
;(69)

v˛1;˛2
.z/D

�r
x1

�
ei˛1 ; z; ex3Ci˛2

�
; ˛1; ˛2 2 S

1:(70)

These disks have area
R
u�˛1;˛2

! D x2 and
R
v�˛1;˛2

! D x1 for all ˛ 2 S1. We show that the minimal
one among these two disks realizes the minimum �.X;LIJ0/. For a similar argument, see [5, Lemma 4].
Now let u W .D; @D/! .X;L/ be a nontrivial J0-holomorphic disk. First note that the map p2 ıu, where
p2 WX ! T �S1 ŠC� is the projection, is constant. This follows from the maximum principle. Indeed,
by the maximum principle this map takes values in the unit disk. Since 0 is not contained in its image,
we can precompose it with z 7! 1

z
, to see that it actually takes values in the unit circle. Since it is

holomorphic, it is actually constant. By considering p1ıu, where p1 W .X; J0/! .C2; i˚ i/ is the natural
projection, it is sufficient to understand holomorphic disks in C2 with boundary on the product torus
T .x1; x2/. The group �2.C2; T .x1; x2// is generated by the two coordinate disks, D1 and D2. We have
Œp1 ıu�D k1D1C k2D2, where k1 and k2 are the algebraic intersection numbers with coordinate axes.
By positivity of intersections, we deduce k1; k2 > 0. Since

R
D1
!C2 D x1 and

R
D2
!C2 D x2, we obtain

(71) �.X;LIJ0/> minfk1x1C k2x2 j k1; k2 > 0; k1k2 ¤ 0g Dminfx1; x2g:

This minimum is realized by the disks u˛1;˛2
or v˛1;˛2

.

Using Theorem 4.14, we can now classify toric fibres and determine their Hamiltonian monodromy
groups.

Proposition 5.8 The classification of toric fibres T .x/D T .x1; x2; x3/ in X DC2 �T �S1 is given by

(72) Hx D f.x1; x2; x3C k.x2� x1//; .x2; x1; x3C k.x2� x1// j k 2 Zg:

Furthermore , all Hamiltonian monodromy groups are trivial except when x1 D x2, in which case

(73) HT.x1;x1;x3/ D

*0@1 0 1

0 1 �1

0 0 1

1A ;
0@0 1 01 0 0

0 0 1

1A+ :
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Proof The equivalences are easy to construct using probes with direction e�1 � e
�
2 Cke

�
3 with k 2Z. Let

� be a Hamiltonian diffeomorphism mapping T .x/ to T .x0/. First note that the long exact sequence for
relative homology looks quite different than in the compact toric case. Indeed, we obtain

(74) 0!H2.X; T .x//!H1.T .x//!H1.X/! 0;

and H1.T .x// Š H2.X; T .x// ˚H1.X/ Š Z2 ˚ Z. Then the induced map .�jT.x//� on the first
homology is of the form

(75) .�jT.x//� D

0@a1 a2 b1a3 a4 b2
0 0 1

1A ; ai ; bj 2 Z:

This follows from the fact that � induces the identity on H1.X/. First suppose that x1 D x2. Then,
by Theorem 4.14 and Lemma 5.7, we obtain x01 D x

0
2 D x1 and .�jT.x//� either swaps the first two

coordinates or acts by the identity on them. By preservation of the Maslov index, we obtain b2 D�b1.
Note that all monodromies of these tori can be realized by symmetric probes of direction e�1 � e

�
2 C ke

�
3 ,

proving (73). To prove that x3 D x03, compute

(76) x3 D

Z
e3

�jT.x/ D

Z
.�jT .x//�e3

�jT.x0/ D b1.x
0
1� x

0
2/C x3;

proving the claim. In the case x1 ¤ x2, suppose without loss of generality that x1 < x2 and x01 < x
0
2. By

Theorem 4.14 and Lemma 5.7, we obtain x1 D x01 and a1 D 1, a3 D 0 and a4 D 1, a2 D 0 or a4 D�1,
a2 D�1. The latter case is actually impossible. Indeed, if a4 D�1, a2 D�1, then

(77) x2 D

Z
e2

�jT.x/ D

Z
.�jT .x//�e2

�jT.x0/ D 2x
0
1� x

0
2;

contradicting x1 < x2; x01 < x
0
2. The rest of the proof is as in the case x1 D x2 and the claim b1 D 0

follows from (76).

5.5 The case of X D T �S 1 �S 2

Let X D T �S1 � S2 be equipped with the product symplectic form ! D !T �S1 ˚!S2 . The moment
polytope is �DR� Œ�1; 1�. Note that X is not a toric reduction of any CN , but it is a toric reduction of
C2 �T �S1, meaning that we can use Proposition 5.8 together with the lifting trick.

Proposition 5.9 The classification of toric fibres T .x/D T .x1; x2/ in X D T �S1 �S2 is given by

(78) Hx D f.x1C 2kx2;˙x2/ j k 2 Zg:

Furthermore , all Hamiltonian monodromy groups are trivial , except for x2 D 0, in which case ,

(79) HT.x1;0/ D

��
1 0

2k ˙1

� ˇ̌̌
k 2 Z

�
:
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Proof Again, all constructions immediately follow from symmetric probes. For the obstructions, we
view X as a toric reduction of C2 �T �S1. Perform toric reduction on C2 �T �S1 with respect to the
plane V D fx1Cx2 D 1g �R3 to obtain X . This corresponds to the Hamiltonian H D �jz1j2C�jz2j2.
The classification of toric fibres follows immediately from Propositions 2.8 and 5.8 and the lifting trick,
as in the proof of Theorem B. The obstructions to monodromy similarly follow from Proposition 5.8 and
the lifting trick, as in the proof of Theorem 4.7.

5.6 Chekanov’s classification revisited

In this subsection, we prove Conjecture 1.3 in the case of Cn. The classification of product tori goes
back to Chekanov — see Theorem 4.3 — meaning that we only need to prove that all equivalences of
toric fibres can be realized by iterated symmetric probes.

Theorem 5.10 Product tori T .x/; T .y/�Cn are Hamiltonian isotopic if and only if they are equivalent
by a sequence of symmetric probes.

Before proving this result, let us revisit Chekanov’s classification. In C2, it states that

(80) Hx D f.x1; x2/; .x2; x1/g; .x1; x2/ 2R2>0:

In Cn with n > 3, however, the situation is much richer. Note for example that all tori T .1; 2; k/
with k 2 N>2 are Hamiltonian isotopic, since their Chekanov invariants agree. The set Hx even has
accumulation points in many cases; see Corollary 5.16. To discuss this further, we slightly reformulate
Chekanov’s invariants. Since coordinate permutations can be realized by Hamiltonian isotopies, we may
assume that T .x/ is given under the form

(81) T .x/D T .x; : : : ; x„ ƒ‚ …
#d .x/

; xC Ox1; : : : ; xC Oxs/;

for Oxi > 0 and s D n� d.x/. We call Ox D . Ox1; : : : ; Oxs/ 2Rs>0 the reduced vector associated to x.

Theorem 4.3 can be reformulated as follows.

Corollary 5.11 Product tori T .x/; T .y/ � Cn are Hamiltonian isotopic if and only if d.x/ D d.y/,
#d .x/D #d .y/ and there is M 2 GL.sIZ/ such that M Ox D Oy.

Proof Note that the Oxi are exactly the nontrivial generators of the lattice �.x/,

(82) �.x/D Zh Oxi D fk1 Ox1C � � �C ks Oxs j ki 2 Zg �R:

Furthermore, Zh Oxi is a complete invariant for GL.sIZ/-orbits. See for example Cabrer and Mundici [10,
Proposition 1].

This allows us to gain a good qualitative understanding of Hx .
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Corollary 5.12 The inclusion

(83) Hx � fy 2Rn>0 j d.y/D d.x/; #d .y/D #d .x/g

is dense if and only if rank�.x/> 2.

Proof Let Ox 2Rs>0 be the reduced vector as in (81). It follows from Corollary 5.11 that the inclusion (83)
is dense if and only if the GL.sIZ/-orbit of Ox is dense in Rs>0. The latter is equivalent to rank�.x/> 2

by a classical theorem of Dani [17, Theorem 17]; see also [10].

Let us now have a look at the discrete case, ie the case where rank.�.x//D 1. In that case, the reduced
vector Ox 2 Rs>0 is a real multiple of a lattice vector, Ox D `int. Ox/k with k 2 Zs a primitive vector and
where `int. Ox/ > 0 denotes the integral affine length.

Corollary 5.13 The product tori T .x/; T .y/�Cn with d.x/D d.y/, #d .x/D #d .y/ and

rank.�.x//D rank.�.y//D 1

are Hamiltonian isotopic if and only if their reduced vectors have the same integral affine length ,
`int. Ox/D `int. Oy/.

Proof Write Ox D `int. Ox/k and Oy D `int. Oy/k
0, and note that GL.sIZ/ acts transitively on the set of

primitive lattice vectors and preserves integral affine length; thus the claim follows from Corollary 5.11.

Let us now turn to the proof of Theorem 5.10. The following lemma is key.

Lemma 5.14 Let x D .x1; x2; x3/ 2R3>0 with x1 < x2; x3. Then there is a symmetric probe showing

(84) T .x1; x2; x3/Š T .x3; x2C x3� x1; x1/�C3:

Proof The directional vector � D e�1 C e
�
2 � e

�
3 defines a probe � D R3

>0 \ fx C t� j t 2 Rg which
realizes the equivalence (84); see Figure 7. Indeed, since x1 < x2, the probe intersects the boundary
@R3

>0 in the points .0; x2� x1; x3C x1/ and .x1C x3; x2C x3; 0/ which lie in the interior of the facets
fy1 D 0g and fy3 D 0g respectively. Since h�; e1i D 1 and h�; e3i D �1, both intersections are integrally
transverse and hence the probe is admissible. Furthermore, since x1 6 x2; x3, the points .x1; x2; x3/ and
.x3; x2Cx3�x1; x1/ both lie at integral distance x1 to the boundary and hence the corresponding fibres
are Hamiltonian isotopic.

Proof of Theorem 5.10 Let T .x/; T .y/�Cn be product tori whose Chekanov invariants agree. First
note that coordinate permutations

(85) .x1; : : : ; xi ; : : : ; xj ; : : : ; xn/ 7! .x1; : : : ; xj ; : : : ; xi ; : : : ; xn/

can be realized by symmetric probes. Therefore, we may assume that both tori are given in the normal
forms

(86) x D .x; : : : ; x; xC Ox1; : : : ; xC Oxs/; y D .x; : : : ; x; xC Oy1; : : : ; xC Oys/;
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y1

y2

y3

.x3; x2; x1/ .x3; x2C x3� x1; x1/

.x1; x2; x3/

Figure 7: Two symmetric probes in C3, one realizes a coordinate permutation, the other is used
in the proof of Lemma 5.14

where the reduced vectors Ox; Oy 2Rs>0 are GL.sIZ/-equivalent by Corollary 5.11. We thus need to prove
that all GL.sIZ/-transformations on the reduced vectors can be realized by symmetric probes. The group
GL.sIZ/ is generated by coordinate permutations together with the transformation

(87) . Ox1; Ox2; : : : ; Oxs/ 7! . Ox1C Ox2; Ox2; : : : ; Oxs/I

see for example [29]. Coordinate permutations can be realized by symmetric probes as we have just
seen. By Lemma 5.14, the generator (87) can also be realized by a symmetric probe. Indeed, note
that the reduced vectors associated to the tori T .x1; x2; x3/ � C3 and T .x3; x2C x3 � x1; x1/ � C3

are given by .x2 � x1; x3 � x1/ 2 R2>0 and .x2 C x3 � 2x1; x3 � x1/ 2 R2>0 which corresponds to
. Ox1; Ox2/ 7! . Ox1C Ox2; Ox2/ in terms of the reduced vectors. Hence (87) can be realized by a symmetric
probe lying in an appropriately chosen coordinate subspace C3 �Cn.

Remark 5.15 Let us briefly discuss a quantitative version of Theorem 5.10. More specifically, For every
" > 0, we can find a Hamiltonian isotopy which has support in the ball B6.x1C x2C 2x3C "/ realizing
the equivalence in Lemma 5.14. Indeed, note that the closure of B6.x1Cx2C2x3/ is the smallest closed
ball containing the symmetric probe � in the proof of Lemma 5.14, and the support of the Hamiltonian
isotopy can be chosen to lie in an arbitrarily small neighbourhood of � . This yields a simple proof of [15,
Lemma 4.1]. Furthermore, by the same argument as in the proof of [15, Theorem 1.1(ii)], this remark
implies that for

(88)
nX
iD1

xi C d.x/ < a;

nX
iD1

yi C d.y/ < a;
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the product tori T .x/ and T .y/ are Hamiltonian isotopic by iterated symmetric probes inside the
ball B2n.a/. In other words, given a ball B2n.a/, there is a region R.a/ � B2n.a/ in its (open)
moment polytope

(89) R.a/D ��10

�
x 2Rn>0

ˇ̌̌ nX
iD1

xi C d.x/ < a

�
in which the classification of product tori in B2n.a/ coincides with the classification of product tori in all
of Cn and all symmetric probes producing the equivalences are contained in �0.R.a//. Together with
Chekanov’s classification Theorem 4.3, this shows Corollary 5.16, which also follows from the methods
in [15]. Let us point out that one cannot drop (88) as was shown in [15, Theorem 1.2]. A reasonable
guess would be that in the complement of R.a/, only coordinate permutations are allowed, since these
are the only symmetric probes admissible in that region. However, we do not know the classification of
product tori in the ball outside of R.a/.

Corollary 5.16 Let X be a toric manifold of dimension > 6 whose moment polytope has at least one
vertex. Then X contains toric fibres such that Hx has accumulation points.

5.7 In arbitrary toric manifolds

The goal of this section is to illustrate that there are many symmetric probes in arbitrary toric manifolds.
We focus on constructions near the boundary of the moment polytope � using normal forms of Delzant
polytopes. For example each vertex v 2� yields an equivariant symplectic ball embedding B2n.a/!X ,
for each a smaller than the integral length of the shortest edge adjacent to v. Note that this ball embedding is
unique up to coordinate permutations. Let us denote the corresponding subset by Bv.a/�X . Furthermore,
denote the image of a product torus T .x/� B2n.a/ under the equivariant embedding by Tv.x/� Bv.a/.
From Remark 5.15, we deduce that there is a region Rv.a/ � Bv.a/ in which the same probes are
admissible as those that are admissible in Cn. Let us show the following result about the classification of
toric fibres close to vertices.

Proposition 5.17 Let B2nv .a/ and B2nv0 .a/ be balls at vertices v; v0 2� with

(90) 0 < a <minf`int.e/ j e edge of �g:

Then Tv.x/Š Tv0.x/. In particular , we have Tv.x/Š Tv.y/ if and only if Tv0.x/Š Tv0.y/.

This means that in small enough neighbourhoods of vertices, the classification problem of toric fibres
does not depend on the choice of vertex.

Proof The main idea of the proof is to use the edges of � to construct symmetric probes exchanging a
pair of toric fibres sitting close to the vertices at the endpoints of the given edge.

Algebraic & Geometric Topology, Volume 25 (2025)



1874 Joé Brendel

Let e �� be an edge of the moment polytope with directional vector ve 2ƒ�. Let F;F 0 �� be the
two facets of � adjacent to the endpoints of e but not containing e. We note that the Delzant condition at
the vertices adjacent to e implies that ve intersects F and F 0 integrally transversely. This can be easily
seen by using the corresponding normal form mapping e to the span of e�n and F (or F 0) to the span
of e�1 ; : : : ; e

�
n�1. In other words, we obtain symmetric probes parallel to e, as long as both endpoints

intersect F and F 0. If a <minf`int.e/ j e edge of �g, then every Tv.x/�Bv.a/ can be accessed by such
a symmetric probe. Any two vertices v; v0 2 � can be linked by a chain of edges and this proves the
claim, up to performing coordinate permutations in one of the two ball embeddings (which can always be
realized by symmetric probes).

The technique used in the previous proof can be generalized to any symmetric probe in a face �0 of a
Delzant polytope. Recall that any face of a Delzant polytope is itself Delzant.

Proposition 5.18 Let �0 � � be a face and � 0 � �0 a symmetric probe therein. Then there is a
neighbourhood U of � 0 such that any parallel translate of � 0 in U \ int� is a symmetric probe.

Proof Let � 0 � �0 be a symmetric probe with endpoints on the facets f; f 0 � �0. We can write
f D �0 \F and similarly f 0 D �\F 0 for facets F and F 0 of �. Let us now show that any parallel
translate of � 0 with endpoints on F and F 0 is an admissible symmetric probe in�. At the face f D�0\F ,
we can choose a normal form such that �0 spans the coordinate subspace spanned by e�1 ; : : : ; e

�
k

and
F the one spanned by e�2 ; : : : ; e

�
n . Integral transversality of the intersection of � 0 and f implies that

v� 0 ; e
�
2 ; : : : ; e

�
k

is a lattice basis for the sublattice spanned by e�1 ; : : : ; e
�
k

. Here, we have denoted the
directional vector of the symmetric probe � 0 by v� 0 . This implies that v� 0 ; e�2 ; : : : ; e

�
n is a lattice basis of

the full lattice in the ambient space, proving integral transversality.
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An example of higher-dimensional Heegaard Floer homology

YIN TIAN

TIANYU YUAN

We count pseudoholomorphic curves in the higher-dimensional Heegaard Floer homology of disjoint
cotangent fibers of a two-dimensional disk. We show that the resulting algebra is isomorphic to the Hecke
algebra associated to the symmetric group.

53D40; 53D10

1 Introduction

Many topological properties of a manifold M can be recovered from the symplectic geometry of its
cotangent bundle T �M . An example is the A1-equivalence between the wrapped Floer homology
CW�.T �qM/ of a cotangent fiber and the space C��.�qM/ of chains on the based loop space of M ,
proved by Abbondandolo and Schwarz [1] and Abouzaid [2].

On the symplectic side, there is a generalization, the wrapped Floer homology CW�
�F�

iD1 T
�
qi
M
�

of �
disjoint cotangent fibers in the framework of higher-dimensional Heegaard Floer homology (abbreviated
HDHF) established by Colin, Honda and Tian [3]. It is related to the braid group of M on the topological
side.

When M D† is a real oriented surface, the HDHF was recently studied by Honda, Tian and Yuan [7].
Pick � basepoints q D fq1; : : : ; q�g �†. By definition, CW�

�F
i T
�
qi
†
�

is an A1 algebra over ZŒŒ„��,
where „ keeps track of the Euler characteristic of the holomorphic curves that are counted in the definition
of the A1-operations. If † is not a two sphere, then CW�

�F
i T
�
qi
†
�

is supported in degree zero. Hence,
it is isomorphic to its homology HW�

�F
i T
�
qi
†
�

as an ordinary algebra. The main result of [7] is that
the algebra HW�

�F
i T
�
qi
†
�

is isomorphic to the braid skein algebra BSk�.†/ of †, which was defined
by Morton and Samuelson [9]. Roughly speaking, BSk�.†/ is a quotient of the group algebra of the
braid group of † by the HOMFLY skein relation, which is expressed in terms of „. The skein relation has
an explanation as holomorphic curve counting due to Ekholm and Shende [4]. This is one of the keys to
build the bridge between HW�

�F
i T
�
qi
†
�

and BSk�.†/.

Morton and Samuelson showed that BSk�.†/ is isomorphic to the double affine Hecke algebra associated
to gl� when † is a torus. Based on this result, Honda, Tian and Yuan proved the isomorphisms between
HW�

�F
i T
�
qi
†
�

and various Hecke algebras of type A for † being a disk, a cylinder or a torus.
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Here we focus on the local case: †DD2 is a disk. Let End.L˝�/ denote the algebra HW�
�F

i T
�
qi
D2
�

throughout the paper. It is isomorphic to the finite Hecke algebra associated to the symmetric group S�
over ZŒŒ„��; see [7]. The main result of this paper is to show that End.L˝�/ can be defined over ZŒ„�,
and the isomorphism to the finite Hecke algebra still holds.

The reduction from ZŒŒ„�� to ZŒ„� has two advantages regarding connections to other fields. The first one
is topological. The HOMFLYPT polynomial of links takes values in the ring of Laurent polynomials
of „. This polynomial can be obtained from a trace function on the Hecke algebra; see Jones [8]. Note
that the HOMFLYPT polynomial has a Floer-theoretic interpretation due to Ekholm and Shende [4]. It is
interesting to look for connections between our curve counting for the Hecke algebra and theirs for the
link invariant.

The second one is algebraic. We expect that the HDHF Fukaya category of T �† is related to the category of
modules over the algebra HW�

�F
i T
�
qi
†
�
. Representation theory over ZŒŒ„�� and ZŒ„� could be different.

Modules over ZŒ„� or ZŒq; q�1� are commonly used in representation theory of various Hecke algebras.

We explicitly describe our main result in the following. The Floer generators of End.L˝�/ are tuples of
intersection points between the cotangent fibers T �qi

D2. They are in one-to-one correspondence to elements
of the symmetric group S� . Let Tw 2 End.L˝�/ denote the corresponding Floer generator for w 2 S� .

For the Hecke algebra, we change the variable from q to „ via „ D q� q�1 for our purpose.

Definition 1.1 The Hecke algebra H� is a unital ZŒ„�-algebra generated by zT1; : : : ; zT��1, with relations

zT 2i D 1C„
zTi ; zTi zTj D zTj zTi for ji � j j> 1 and zTi zTiC1 zTi D zTiC1 zTi zTiC1:

It is known that the Hecke algebra H� is a free ZŒ„�-module with a basis zTw for w 2 S� , called the
standard basis. Here zTi D zTsi for the transposition si D .i; i C 1/. There is a length function on S�
defined by l.w/Dminfl jwD si1 � � � sil g. The basis zTw D zTi1 � � � zTil if wD si1 � � � sil is an expression of
minimal length. Moreover, the algebra structure on H� is uniquely determined by

(1-1) zTi zTw D

�
zTsiw if l.siw/ > l.w/;
zTsiw C„

zTw if l.siw/ < l.w/:

Our main result is the following.

Theorem 1.2 The HDHF homology End.L˝�/ is defined over ZŒ„�. Moreover , there is an isomorphism
of unital algebras � WH�! End.L˝�/ such that �. zTw/D Tw for w 2 S� .

In other words, we give a Floer-theoretic explanation of the standard basis of the Hecke algebra H� .

Unlike the method presented in [7], our proof takes a different approach by directly counting holomorphic
curves in HDHF. Curve counting is in general a challenging task unless the ambient symplectic manifold
is of real dimension two. We arrange the Lagrangian boundary conditions in a split form such that the
curve counting problem reduces to the case of two copies of C. Our strategy consists of two main steps:
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(1) When � D 2, we are able to show that there exists a nontrivial holomorphic disk, which corresponds
to the „ term in the quadratic relation of the Hecke algebra; see Lemma 3.5. To see this curve, in each
copy of C, the counting is combinatorial and provides a relative homology class within the moduli space
of a hexagon. The nontrivial intersection number of two relative classes from the two copies of C then
shows the existence of such a curve.

(2) To prove the Hecke relation holds in HDHF in general, we proceed by induction on �. By stretching
the Lagrangians in a certain order, the corresponding family of holomorphic curves degenerates into
several pieces due to Gromov compactness. The degenerated curves live in the moduli space associated
to �0 D � � 1 or � � 2. Therefore we can do induction on �.

Further directions (1) It is natural to ask whether the HDHF homology End
�F

i T
�
qi
†
�

of disjoint
fibers of T �† can be defined over ZŒ„� for a general surface †. We hope to generalize our result from
local to global by using some sheaf-theoretic techniques, for instance those of Ganatra, Pardon and Shende
[6]. The idea is to establish a pushout diagram so that End

�F
i T
�
qi
†
�

can be realized as a homotopy
colimit of the local pieces which is defined over ZŒ„�.

(2) It is interesting to explain the geometric meaning of the change of variables „ D q� q�1. Note that
the canonical basis of the Hecke algebra is defined over ZŒq; q�1�. We will express the canonical basis
via HDHF in an upcoming paper.

(3) When the symplectic manifold is of dimension greater than four, a similar technique can be
used to compute the local case T �Dm for m > 2. In this case, we expect that the HDHF homology
HW�

�F
i T
�
qi
Dm

�
is a nontrivial A1 algebra. Its nontrivial higher A1 relation can be viewed as a

generalization of the quadratic relation in the Hecke algebra.

Acknowledgements The authors thank Ko Honda for numerous ideas and suggestions. Tian is supported
by NSFC 11971256. Yuan is supported by China Postdoctoral Science Foundation 2023T160002.

2 Preliminaries

We first specify the ambient manifold and Lagrangian submanifolds of interest. For convenience of curve
counting, we set D2 D I1 � I2 with I1 D I2 D Œ0; 1�, which is topologically the same as the unit disk.
Let X D T �D2 D T �I1 �T �I2 be the total space of the cotangent bundle of D2.

Consider the canonical Liouville form � on T �D2, which induces a contact manifold structure at the
infinity of .T �D2; �/. For a Lagrangian L� T �D2, denote its boundary at infinity by @1L. An isotopy
of Lagrangians Lt in T �D2 is called positive if ˛.@t@1Lt / > 0 for all t . Let T �v D

2 D T �D2j@D2 be
the vertical boundary of T �D2 over @D2. We require that any isotopy Lt cannot cross T �v D

2. A positive
isotopy is also called a “partially wrapping”. For the details of partially wrapped Fukaya categories, we
refer to [10] by Sylvan and [5] by Ganatra, Shende, and Pardon.
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z0

L2 z2

L1

Figure 1: Left: D3, the A1 base direction. Center: the Lagrangians in the T �I1 direction.
Right: the Lagrangians in the T �I2 direction.

We next consider the generalization to wrapped HDHF. Pick � disjoint basepoints q D fq1; : : : ; q�g �
D2n@D2 and consider the � cotangent fibersL0iDT �qi

D for iD1; : : : ; �. We define L0DfL01; : : : ; L0�g.
An isotopy of a �-tuple of Lagrangians Lt D fLt1; : : : ; Lt�g is called positive if ˛.@t@1Lti / > 0 for all
i D 1; : : : ; � and all t . For a pair of �-tuples of Lagrangians A and B, we write A B if there is an
positive isotopy from A to B.

We then perform positive wrapping on L0 to get Lj D fLj1; : : : ; Lj�g for j D 1; 2. Specifically, we put
L0, L1 and L2 in the position as in Figure 1, center and right, which represent the T �I1-direction and
T �I2-direction, respectively. It is easy to check that

L0 L1 L2:

The HDHF cochain complex CF�.Li ;Lj / for i < j is defined as the free abelian group generated by �-
tuples of intersection points between Li and Lj over ZŒŒ„��. By definition, CF�.Li ;Lj / is an A1-algebra.
We refer the reader to [7] for details of the definition of HDHF in this case.

There is an absolute grading on CF�.Li ;Lj / and the degree is supported at zero by [7, Proposition 2.9].
Hence, its homology HF�.Li ;Lj / is an ordinary algebra over ZŒŒ„��. We denote it by End.L˝�/.

Remark 2.1 Strictly speaking, the algebra structure of End.L˝�/ is given by the composition map

�2 W HF�.L1;L2/˝HF�.L0;L1/! HF�.L0;L2/;

together with the continuation maps

c12 ı�W HF�.L0;L1/ ��! HF�.L0;L2/;(2-1)

�ı c01 W HF�.L1;L2/ ��! HF�.L0;L2/;(2-2)

where c12 2 HF�.L1;L2/ and c01 2 HF�.L0;L1/ are two specific generators, both denoted by Tid in
Section 3. In this way, we have defined the algebra structure on HF�.L0;L2/.

In order to compute the algebra End.L˝�/, we need to explicitly compute the maps (2-1) and (2-2). It
is then necessary that (2-1) and (2-2) are indeed identity maps (with respect to some choice of basis of
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Floer generators) instead of just isomorphisms. With our specific choice of wrapping, we can show that
the continuation maps preserve the Floer generators for different HF�.Li ;Lj / with i < j . In other words,
we show that Tid behaves as the identity of the algebra; see Proposition 3.1.

Remark 2.2 We fix the special wrapping of L0, L1 and L2, which is crucial for our counting of curves.
We remark that the algebraic count is invariant under compactly supported perturbation of Lagrangians;
see [3, Section 6]. Indeed, we can show that the specific choice of Figure 1, right, is only for computing
convenience, and the count remains the same if we rearrange Figure 1, right, eg to be like Figure 1, center.
However, currently we do not know whether the same holds if we perturb the Lagrangians at infinity
without keeping the Lagrangians in a product form.

We describe the �2-composition map of End.L˝�/ in the following. We set yX DD3 �X as the target
manifold, where D3 is the unit disk with three boundary punctures, and refer to it as the “A1 base
direction”. Let z0, z1 and z2 be the boundary punctures of D3 and let ˛0, ˛1 and ˛2 be the boundary
arcs. We extend Li to the D3 direction by setting bLi D ˛i �Li and yLij D ˛i �Lij for i D 0; 1; 2 and
j D 1; : : : ; �, which are Lagrangian submanifolds of yX .

For i D 1; 2, let yi D fyi1; : : : ; yi�g be a tuple of intersection points yij 2 yL.i�1/j \ yLij 0 , where
f10; : : : ; �0g is some permutation of f1; : : : ; �g. Let J be a small generic perturbation of JD3

�J1 �J2,
where JD3

, J1 and J2 are the standard complex structures on D3, T �I1 and T �I2, viewed as subsets
of C. Let M.y1;y2;y0/ be the moduli space of maps

(2-3) u W . PF ; j /! . yX; J /;

where .F; j / is a compact Riemann surface with boundary, pi are disjoint tuples of boundary punctures
of F for i D 0; 1; 2, and PF D F n

S
i pi . The map u satisfies

(2-4)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

du ı j D J ı du,
each component of @ PF is mapped to a unique yLij ,
�X ıu tends to yi as si !C1 for i D 1; : : : ; m,
�X ıu tends to y0 as s0!�1,
�D3
ıu is a �-fold branched cover of D3,

where the third condition means that �X ıu maps the neighborhoods of the punctures of pi asymptotically
to the Reeb chords of yi for i D 1; : : : ; m at the positive ends. The fourth condition is similar.

The �2-composition map of End.L˝�/ is then defined as

(2-5) �2.y1;y2/D
X

y0;���

#MindD0;�.y1;y2;y0/ � „
���
�y0;

where the superscript “ind” denotes the Fredholm index and “�” denotes the Euler characteristic of F ;
the symbol # denotes the signed count of the corresponding moduli space.
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A choice of spin structures on the Lagrangians determines a canonical orientation of the moduli space.
The Lagrangian in our case is the cotangent fiber, which is topologically R2. So there is a unique spin
structure. We omit the details about the orientation, and refer the reader to [3, Section 3].

3 The case of �D 2

In this section we compute End.L˝2/ as a model case. The general case will be discussed in Section 4.

For 0� i < j � 2, there are two Floer generators of CF�.Li ;Lj /: Tid and T1, where Tid D .q1; q2/ with
q1 2 Li1 \Lj1 and q2 2 Li2 \Lj2, and T1 D .q1; q2/ with q1 2 Li1 \Lj2 and q2 2 Li2 \Lj1. The
main result of this section is the following:

Proposition 3.1 The multiplication on End.L˝2/ is given by

Tid �Tid D Tid; Tid �T1 D T1; T1 �Tid D T1 and T1 �T1 D 1C„T1:

Hence Theorem 1.2 holds for � D 2.

The proof of this proposition occupies the rest of the section. We directly compute the moduli spaces.
There are trivial curves with � D 2 accounting for the „0 terms in the multiplication. We show that
M�<2
J .y1;y2;y0/D ∅ for almost all cases except that M�D1

J .T1; T1; T1/¤ ∅ accounting for the „1

term in T1 �T1. The main strategy to prove the nonexistence of curves is to stretch the Lagrangians in the
T �I1-direction and apply Gromov compactness.

For later use, we make the following conventions:

� We denote the length of the line segment of L1� in the I1-direction by d ; see Figure 1, center.

� For q 2X , we denote its projection in the T �I1 (resp. T �I2) direction by q0 (resp. q00).

� We denote the line segment between q1 and q2 by .q1q2/.

� When plotting figures, we denote the intersections qi by i .

� When taking the limit, we denote the degenerated domain by PF 0 and its irreducible component
containing fp1; p2; : : : g by PF 0

.12::: /
.

Lemma 3.2 Tid �Tid D Tid:

Proof We first show that

(3-1) #M�.Tid; Tid; Tid/D

�
1 if �D 2;
0 if � < 2:

The Floer generators are shown in Figure 2.

If �D 2, there is a unique trivial holomorphic curve consisting of two disks. So #M�D2.Tid; Tid; Tid/D 1.

If � < 2, let d ! 0, ie let q01 and q02 get closer. In the limit, since there are no slit or branch points
separating q01 and q02, PF 0

.12/
bubbles off as a triangle with vertices fp1; p2; pag, where fpag is a boundary
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Figure 2: Generators for M.Tid; Tid; Tid/.

nodal point. The projection of PF 0
.12/

under �T �I2
ıu is a homeomorphism to the triangle with vertices

fq001 ; q
00
2 ; q
00
3g. Hence the projection of PF 0

.3/
under �T �I2

ıu is a constant map to q003 . Since �T �I2
ıu is of

degree zero or one near q003 , the image �T �I2
ıu. PF n. PF 0

.12/
[ PF 0

.3/
// is disjoint from q003 . So PF 0

.12/
[ PF 0

.3/

is a connected component of PF 0. Therefore PF consists of two components before the degeneration, which
are homeomorphically mapped to the triangles fq001 ; q

00
2 ; q
00
3g and fq004 ; q

00
5 ; q
00
6g under �T �I2

ıu, respectively.
So �D 2, which is a contradiction. We conclude that #M�.Tid; Tid; Tid/D 0 if � < 2.

We next show that #M.Tid; Tid; T1/D 0. The generators are shown in Figure 3. As d ! 0, PF 0
.12/

bubbles
off as a triangle with vertices fp1; p2; pag, where pa 2 PF 0 is a nodal point. Denote the union of irreducible
components of PF 0 containing the preimage of the dashed lines in the T �I1-direction by PF 0dash. Since
p3, p6 and pa are mapped to z0 under �D3

ıu in the limit, the preimages of the dashed lines are also
mapped to z0. Hence PF 0dash is mapped to the constant point z0 under �D3

ı u. Since .q05q
0
6/ cannot be

separated by slits, q05 2 PF
0
dash and �D3

ıu.q05/D z0. This contradicts with the fact that �D3
ıu.q05/D z2.

Therefore M.Tid; Tid; T1/D∅.

Lemma 3.3 Tid �T1 D T1:

Proof First we show that

(3-2) #M�.Tid; T1; T1/D

�
1 if �D 2;
0 if � < 2:

The generators are shown in Figure 4.

If �D 2, there is a unique trivial holomorphic curve consisting of two disks. So #M�D2.Tid; T1; T1/D 1.

L22

L0
z1

L1

z2
L2

z0
L11

L12

L21
L01

L02

6 5

3 2

1

4

4

12

5

6 3

c

Figure 3: Generators for M.Tid; Tid; T1/.
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Figure 4: Generators for M.Tid; T1; T1/.

If � < 2, as d ! 0, there are two cases:

� If the orange slit extending .q06q
0
5/ is not long, then PF 0

.12/
bubbles off as a triangle with vertices

fp1; p2; pag. The remaining proof is the same as that of #M�.Tid; Tid; Tid/D 0 for � < 2 in Lemma 3.2.
Hence, the limiting curve does not exist.

� If the orange slit extending .q06q
0
5/ is long, then there is a branch point approaching the interior of L2 in

the D3-direction (as in the left of Figure 4). In the limit, the preimage of the branch point on the domain
tends to some nodal point pn such that �D3

ıu.pn/ 2L2. This implies that �T �I2
ıu.pn/ 2L21\L22.

This contradicts with the fact that L21\L22 D∅ in the T �I2-direction.

Next we show that #M�.Tid; T1; Tid/D 0 for �� 2. The generators are shown in Figure 5. As d ! 0,
PF 0
.12/

bubbles off as a triangle fp1; p2; pag. Then pa should be mapped to the intersection of the extension
of the line segments .q001q

00
6/ and .q002q

00
3/. But this is impossible since the degree of the projection �T �I2

ıu

is zero near the intersection.

Similar arguments will be used in the proofs of Propositions 4.1 and 4.2. In general, PF 0
.12/

always bubbles
off as a triangle as d ! 0. Here q01 and q02 are on the bottom Lagrangian L1� in the T �I1-direction. We
then analyze the remaining irreducible components of PF 0 and reduce the problem to simpler cases.

Lemma 3.4 T1 �Tid D T1:

Proof This is similar to the proof of Lemma 3.3.

L0 z1

L1

z2
L2

z0

L01

L02

L21

L22

L11

L12
2

5

3

6

1

4

3

6

4

12

5

Figure 5: Generators for M.Tid; T1; Tid/.
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Figure 6: Generators for M.T1; T1; Tid/.

Lemma 3.5 T1 �T1 D TidC„T1:

Proof We first show that

(3-3) #M�.T1; T1; Tid/D

�
1 if �D 2;
0 if � < 2:

The generators are shown in Figure 6.

If �D 2, there is a unique trivial holomorphic curve consisting of two disks, so #M�D2.T1; T1; Tid/D 1.

If � < 2, then PF 0
.12/

bubbles off as a triangle as d ! 0. The projection of PF 0
.12/

under �T �I2
ı u is a

homeomorphism to the triangle fq001 ; q
00
2 ; q
00
3g. Hence the projection of PF 0

.3/
under �T �I2

ıu is the constant
map to q003 . Since �T �I2

ıu is of degree zero or one near q003 , the image of �T �I2
ıu. PF n. PF 0

.12/
[ PF 0

.3/
// is

disjoint from q003 . It follows that PF 0
.12/
[ PF 0

.3/
is a connected component of PF 0. Therefore PF consists of two

components before the degeneration, which are homeomorphically mapped to the triangles fq001 ; q
00
2 ; q
00
3g

and fq004 ; q
00
5 ; q
00
6g under �T �I2

ıu, respectively. So �D 2, which is a contradiction.

We next show that

(3-4) #M�.T1; T1; T1/D

�
1 if �D 1;
0 if �¤ 1:

The generators are shown in Figure 7.
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Figure 7: Generators for M.T1; T1; T1/.
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p4

p3p2

p1

p6 p5

Figure 8: A disk PF DD6 which satisfies the involution condition.

We denote the moduli space of domain . PF ; j / by M. PF /. By the Riemann–Roch formula, dimM. PF /D

3.� � �/. Consider the moduli space of pseudoholomorphic maps from . PF ; j / to each direction D3,
T �I1 and T �I2, denoted by M.D3/, M.T �I1/ and M.T �I2/, respectively. The index formula says

dimM.D3/D dimM.T �I1/D dimM.T �I2/D 2.� ��/;

for generic J . We have

(3-5) M.T1; T1; T1/DM.D3/\M.T �I1/\M.T �I2/:

Our main strategy to count curves in M.T1; T1; T1/ is computing the moduli space for each direction
and then counting their intersection number.

The moduli space of curves restricted to each direction has an explicit parametrization. For example,
�D3
ı u from PF to D3 is a �-fold branched cover, and its restriction to @ PF is a �-fold cover over S1.

Generically, �D3
ıu is parametrized by the positions of � �� double branch points on PF over D3.

In the case �D 2 and �D 1, PF DD6 is a disk with six boundary punctures. The moduli space of . PF ; j / is

M. PF /'R3:

Then we consider the cut-out moduli space M.D3/, viewed as a subset of M. PF /. The deck transformation
of �D3

ı u imposes an involution condition on PF . In other words, we require that fpi ; piC3g lie on a
diameter for i D 1; 2; 3 after some fractional linear transformation. Therefore,

M.D3/'R2:

The moduli space M.D3/ admits a compactification M.D3/, which is described in Figure 9.

We first consider @M.D3/\M.T �I1/; see Figure 7, center. A map in M.T �I1/ may have a double
branch point inside the inner region with degree two. As the branch point touches the boundary of the
inner region, it is replaced by a slit with two switch points along the Lagrangians. Since we are interested
in @M.D3/, the bubbling behavior in Figure 9 requires the slit to be very long, so that some switch point
meets another Lagrangian. The involution condition further requires that such switch points come in pairs.
We conclude that @M.D3/\M.T �I1/ consists of two points: one passes q05 to its left extending the
line segment .q04q

0
5/ and downwards extending .q06q

0
5/; the other passes p4 to its right extending .q05q

0
4/

and downwards extending .q03q
0
4/. The two points are depicted as the two circles on the boundary of the

hexagon in Figure 10.
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.123/.456/

.23/.56/

.234/.561/

.34/.61/

.345/.612/

.12/.45/

Figure 9: The compactified moduli space M.D3/ is described by the hexagon. The index i stands
for pi 2 @ PF . The indices inside brackets describe the bubbling behavior, eg .12/.45/ means p1 is
close to p2 and p4 is close to p5. The involution condition is preserved on boundary strata, eg the
cross ratio of the two bubble disks on the stratum .123/.456/ are the same.

For @M.D3/\M.T �I2/, see the Figure 7, right. Similar to the previous paragraph, the degeneration
of D6 requires the existence of long slits. There are two curves: one with a slit passing q006 to its left
and downwards; the other lies on the Lagrangian .q001q

00
2/ or .q004q

00
5/ with one switch point meeting the

intersection point .q001q
00
2/\ .q

00
4q
00
5/. The two curves are depicted as the dots on the hexagon in Figure 10.
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Figure 10: The orange arcs in the pictures outside the hexagon represent slits. The intersection of
the two dashed arcs inside the hexagon represents a curve in M.D3/\M.T �I1/\M.T �I2/.
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The relative position of dots and circles on @M.D3/ indicate M.D3/\M.T �I1/ and M.D3/\M.T �I2/

have intersection of algebraic count one inside M.D3/. Thus,

(3-6) #M�D1.T1; T1; T1/D #M.D3/\M.T �I1/\M.T �I2/D 1:

If � ¤ 1, we show that #M�.T1; T1; T1/ D 0. As d ! 0, PF 0
.12/

bubbles off as a triangle. Since the
projection of PF 0n PF 0

.12/
to T �I2 is of degree one to its image (the polygon composed of fq003 ; q

00
4 ; q
00
5 ; q
00
6 ; q
00
b
g

in Figure 7), the domain before degeneration has to be a disk. This contradicts with the fact that �¤ 1.

The counting in (3-6) is essentially the only case where a nontrivial curve exists in our direct computation.
It corresponds to the deformation zT 2i D 1C„zTi from the symmetric group to the Hecke algebra.

4 The general case

In this section, we compute End.L˝�/ by induction on �. Recall that End.L˝�/ is freely generated by
Tw D fy1; : : : ; y�g, where yj 2 L0j \L1w.j / and w 2 S� is viewed as a permutation. We compute
Tw1
�Tw2

for w1; w2 2 S� by a case-by-case discussion depending on how w1 acts on the last one or two
elements of f1; : : : ; �g.

The first case is when w1 fixes the last element. The schematic picture is shown in Figure 11. The
following proposition is a generalization of Lemmas 3.2 and 3.3:

Proposition 4.1 For w1; w2; w3 2 S� , suppose w1 D w01 and w2 D w02s��1s��2 � � � s��m, where
w01; w

0
2 2 S��1 and m� 0. We have

#M�.Tw1
; Tw2

; Tw3
/D

�
#M��1.Tw 01

; Tw 02
; Tw 03

/ if w3 D w03s��1s��2 � � � s��m;
0 otherwise;

where w03 2 S��1.

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �

w03

w02

w1

w2

w3

��m

��m1

1 �

�

w01

Figure 11: The case for Proposition 4.1.
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L21

L2�

L11

L1�

L01
L0�

L0� L01
L1�

L11

L2�

L21

T �I2T �I1

p3

p1p2

a

2 1

3

3

1

2

Figure 12: The case t D � �m.

Proof Suppose that the strand of w3 starting from the position � ends on the position t ; see Figure 11,
right. Here, we are reading the picture for w3 from top to bottom. We consider the following three cases
depending on t :

(1) (t D � �m) Let w3 D w03s��1s��2 � � � s��m for w03 2 S��1. This case is shown in Figure 12. The
last vertical strand of w1 in Figure 11 corresponds to p1 in Figure 12. As d ! 0, PF 0

.12/
bubbles off as

a triangle with vertices fp1; p2; pag. The image of PF 0
.12/

in the T �I2-direction is the orange triangle
and the image of PF 0

.3/
is the constant point q003 . Since �T �I2

ı u is of degree zero or one near q003 , the
image �T �I2

ı u. PF n. PF 0
.12/
[ PF 0

.3/
// is disjoint from q003 . This implies that PF 0

.12/
[ PF 0

.3/
is a connected

component of PF 0. Therefore PF.123/ is a connected component of PF before the degeneration, and it is
mapped homeomorphically to the triangle fq001 ; q

00
2 ; q
00
3g under �T �I2

ıu. After removing the component
PF.123/, we see that #M�.Tw1

; Tw2
; Tw3

/D #M��1.Tw 01
; Tw 02

; Tw 03
/.

(2) (t > ��m) This case is shown in Figure 13. As d ! 0, PF 0
.12/

bubbles off as a triangle with vertices
fp1; p2; pag. There is a vertex pb in the component PF 0

.3/
which is adjacent to pa. Since �T �I2

ıu has
degree zero near the intersection between the extensions of .q001q

00
b
/ and .q002q

00
3/, PF

0
.12/

cannot be a triangle.
This leads to a contradiction. Therefore #M�.Tw1

; Tw2
; Tw3

/D 0.

L21

L2�

L01

L0�

L11

L1�

T �I1 T �I2

L21

L2�

L11

L1�
L01L0�

3

a

2
1

PF 0

b
3

b

2 1

b

3

2

1

Figure 13: The case t > � �m.
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L21

L2�

L01

L0�

L11

L1�

T �I1

L0 z1

L1

z2
L2

z0

D3 PF 0

3
b

a

1
2

2 1

b 3

Figure 14: The case t < � �m.

(3) (t < ��m) This case is shown in Figure 14. As d ! 0, PF 0
.12/

bubbles off as a triangle with vertices
fp1; p2; pag. On one hand, similar to the proof of #M.Tid; Tid; T1/D 0 of Lemma 3.2, the projection of
PF 0
.b/

under �D3
ıu is the constant map to z0. On the other hand, the line denoted by the orange arrow

is disjoint from L0i for i D 1; : : : ; � � 1 since .q01q
0
b
/ lies on L0� . So q0

b
cannot be separated from the

bottom left region. But the generators in this region are mapped to z2 in the D3-direction. We conclude
that �D3

ıu. PF 0
.b/
/ cannot be far from z2. This is a contradiction. Therefore #M�.Tw1

; Tw2
; Tw3

/D 0.

The second case is when w1 exchanges the last two elements. The schematic pictures are shown in
Figures 15 and 16, which correspond to two subcases depending on the action of w2 on the last two
elements. The following proposition is a generalization of Lemmas 3.4 and 3.5:

Proposition 4.2 For w1; w2; w3 2 S� , suppose that w1 D w001s��1, where w001 2 S��2.

(1) If w2 D w002s��2 � � � s��ms��1s��2 � � � s��l , where w002 2 S��2 and m> l � 0, we have

#M�.Tw1
; Tw2

; Tw3
/D

�
#M��2.Tw 001

; Tw 002
; Tw 003

/ if w3 D w003s��1s��2 � � � s��ms��1s��2 � � � s��l ;
0 otherwise;

where w003 2 S��2.

w003
w3

w2

w1 w001

w002

� � �

� � �

� � �

� � � � � � � � �

� � � � � � � � �

� � �

��m ��l �

���l��m1

1

Figure 15: The case for Proposition 4.2(1).
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� � �

� � � � � � � � �� � � � � � � � �

� � �

� � �

III

���l��m���l��m

���l��m

w3

w003w003

w3
w001w1

w2 w002

11

1

� � �

� � �

� � � � � � � � �

Figure 16: The case for Proposition 4.2(2).

(2) If w2 D w002s��1s��2 � � � s��ms��1s��2 � � � s��l , where w002 2 S��2 and m> l � 0, we have

#M�.Tw1
; Tw2

; Tw3
/D

8<:
#M��2.Tw 001

; Tw 002
; Tw 003

/ if w3 D w003s��2 � � � s��ms��1s��2 � � � s��l ;
#M��1.Tw 001

; Tw 002
; Tw 003

/ if w3 D w003s��1s��2 � � � s��ms��1s��2 � � � s��l ;
0 otherwise;

where w003 2 S��2.

Proof The proof is similar to but slightly longer than that of Proposition 4.1 since we need to discuss
the last two strands of w1 instead of one. We keep track of the following labels:

� the strands of w3 which start from the positions � and ��1 end on positions t1 and t2, respectively,

� the strands of w3 which end on the positions � �m and � � l start from positions r1 and r2,
respectively.

Figure 17 describes the part of generators Tw1
and Tw2

corresponding to the last two strands of w1, where
the dashed circles describe the undetermined Tw3

. We discuss Cases 1 and 2 separately.

Case 1 (t1 D ��m and t2 D �� l) This is equivalent to w3 Dw003s��1s��2 � � � s��ms��1s��2 � � � s��l ,
for some w003 2 S��2. Consider a holomorphic curve in M�.Tw1

; Tw2
; Tw3

/ which contains two trivial

T �I1 T �I2 T �I1 T �I2

��m

��l

��1
�

�

��1

�

��1��1�

��l

��m

��m

��l

�

��1

��1
�

�

��1��1�

��l

��m

Figure 17: The part of generators Tw1
and Tw2

for Cases 1 (left) and 2 (right).
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Figure 18: The subcases of Case 1.

disks corresponding to the last two strands of w1. The remaining components represent a curve in
M��2.Tw 001

; Tw 002
; Tw 003

/. Thus M��2.Tw 001
; Tw 002

; Tw 003
/ can be viewed as a subset of M�.Tw1

; Tw2
; Tw3

/.
We show that no other curve exists in the rest of the proof. The subcases are shown in Figure 18.

(i) (t2 D k � l and t1 > k � l) As d ! 0, PF.12/ bubbles off as a triangle with vertices fp1; p2; pag,
where pa 2 PF 0 is the nodal point mapped to the limit of q01 and q02 in the T �I1-direction. Then the
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projection of PF 0
.3/

to the T �I2-direction must be the constant map to q003 . Since �T �I2
ıu is of degree zero

or one near q3, the image �T �I2
ıu. PF n. PF 0

.12/
[ PF 0

.3/
// is disjoint from q003 . This implies that PF 0

.12/
[ PF 0

.3/

is a connected component of PF 0. Therefore the triangle fp1; p2; p3g forms a connected component of
PF before the degeneration. By removing the triangle fp1; p2; p3g, the problem reduces to case (2) of the

proof of Proposition 4.1 with � � 1 strands. Hence #M�.Tw1
; Tw2

; Tw3
/D 0.

(ii) (t2 D k � l and t1 < k � l) As d ! 0, PF.12/ bubbles off as a triangle with vertices fp1; p2; pag
and the projection of PF 0

.3/
to the T �I2-direction must be the constant map to q003 . Moreover PF 0

.3/
is a

bigon with possible nodal degeneration points which are connected to other irreducible components of PF 0.
Denote one such nodal point on PF 0 by pn, whose images in T �I1 and T �I2 are drawn as the crossings in
Figure 18(ii). We now remove the bigon PF 0

.3/
from PF 0 but keep pn. We denote the irreducible component

containing pn in the remaining part of PF 0 by PF 0pn
.

In the T �I2-direction, the projection of u. PF 0n PF 0
.3/
/ to the left side of the vertical dotted line is of degree

one. Let C be the boundary of the image �T �I2
ı . PF 0pn

/. Then the part of C near L0�\L2.��l/ is locally
drawn as the orange lines which go from L2i to L2j on L0� for i > �� l and j < ��m. We denote the
preimage of the orange arrow from L2i to L2j by Carrow. It has the positive boundary orientation.

In the T �I1-direction, the position of the crossing must be above L0� since �D3
ıu.pn/D z0. However,

the image of Carrow, denoted by the orange arrow, has the negative boundary orientation. This leads to a
contradiction. Therefore #M�.Tw1

; Tw2
; Tw3

/D 0.

(iii) (t2 > k � l , r2 < k � 1 and t1 > k � l) As d ! 0, PF.12/ bubbles off as a triangle with vertices
fp1; p2; pag. Since on T �I2, �T �I2

ı u is of degree zero near the intersection of the extension of
.q001q

00
c / and .q002q

00
3/, fp1; p2; pag cannot form a triangle. This leads to a contradiction. Therefore

#M�.Tw1
; Tw2

; Tw3
/D 0.

(iv) (t2 > k � l , r2 < k � 1 and t1 < k � l) As d ! 0, PF.12/ bubbles off as a triangle with vertices
fp1; p2; pag, where pa is mapped to a point in T �I2, denoted by a crossing. We denote the preimage of
this crossing in the irreducible component other than PF.12/ and PF.3/ by pn. The image of pn in T �I1 is
also denoted by a crossing. It sits above L0� for the same reason as in (ii). The remaining argument is
the same as in (ii). We conclude that #M�.Tw1

; Tw2
; Tw3

/D 0.

(v) (t2 > k� l and r2 > k� 1) As d ! 0, PF.12/ bubbles off as a triangle T with vertices fp1; p2; pag,
where pa is mapped to the crossing in T �I2. The other irreducible component of PF 0 containing pa is
the quadrilateral Q with vertices fp3; pc ; pa; pbg, which is the bottom-left part in the T �I2-direction.
Figure 19 describes the degenerated domain PF 0.

Removing T and Q from PF 0 corresponds to removing the orange polygon in the T �I1-direction. As a
result, the vertices fp1; p2; p3; pcg are replaced by pb . Then the problem is reduced to case (2) of the
proof of Proposition 4.1 with � � 1 strands. Hence, #M�.Tw1

; Tw2
; Tw3

/D 0.
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c

b

3

Q

a

1

2

T

Figure 19: The subcase (v).

(vi) (t2 < k� l and r2 > k� 1) This is similar to (ii). The orientation of the orange arrows leads to a
contradiction. Hence #M�.Tw1

; Tw2
; Tw3

/D 0.

(vii) (t2 < k� l and r2 < k� 1) This is similar to (ii). So #M�.Tw1
; Tw2

; Tw3
/D 0.

Case 2 The subcases are shown in Figure 20. The proofs of all subcases are similar to those in Case 1
except for (v). We discuss (v) only and omit the others.

(v) (t2 > k �m and r1 > k � 1) The proof is similar to that of subcase (v) of Case 1. As d ! 0,
PF.12/ bubbles off as a triangle T with vertices fp1; p2; pag, where pa is mapped to the crossing in T �I2,

and fp3; pc ; pa; pbg forms a quadrilateral Q, as the bottom-left part in the T �I2-direction. Figure 19
describes the degenerated domain PF 0. Removing T and Q from PF 0 corresponds to removing the orange
polygon in the T �I1-direction. As a result, the vertices fp1; p2; p3; pcg are replaced by pb . Then the
problem is reduced to the case with � � 1 strands. There are three possibilities:

(a) (t2 D � � l) This is similar to (1) in the proof of Proposition 4.1. If the limiting curve exists,
then fp1; p2; p3; p4; p5; pcg must forms a (hexagon) disk component H of PF . The count of
u 2M�.Tw1

; Tw2
; Tw3

/ restricted to H is exactly the count of M�D1.T1; T1; T1/ in Lemma 3.5,
which is equals one. The count of u restricted to PF nH is the count of M��1.Tw 001

; Tw 002
; Tw 003

/.
Therefore #M�.Tw1

; Tw2
; Tw3

/D #M��1.Tw 001
; Tw 002

; Tw 003
/.

(b) (t2 > � � l) This is similar to (2) in the proof of Proposition 4.1. So #M�.Tw1
; Tw2

; Tw3
/D 0.

(c) (t2 < �� l) This is similar to (3) in the proof of Proposition 4.1. So #M�.Tw1
; Tw2

; Tw3
/D 0.

The following corollaries are direct consequences by inductively using the two propositions above.

Corollary 4.3 The generator Tid is the identity in End.L˝�/.

Corollary 4.4 TiTw D

�
Tsiw if l.siw/ > l.w/;
Tsiw C„Tw if l.siw/ < l.w/:
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Figure 20: The subcases of Case 2.

Corollary 4.5 The generators Ti satisfy the relations in the Hecke algebra

T 2i D 1C„Ti ;(4-1)

TiTj D TjTi for ji � j j> 1;(4-2)

TiTiC1Ti D TiC1TiTiC1:(4-3)
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Proof of Theorem 1.2 Define a unital ZŒ„�-algebra map � WH�! End.L˝�/ on the algebra generators
by �. zTi /D Ti . The map is well defined by Corollary 4.5. The multiplication rules on H� in (1-1) and
that of End.L˝�/ in Corollary 4.4 are the same. So �. zTw/D Tw for all w 2 S� .
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Fibered 3-manifolds and Veech groups
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We study Veech groups associated to the pseudo-Anosov monodromies of fibers and foliations of a fixed
hyperbolic 3-manifold. Assuming Lehmer’s conjecture, we prove that the Veech groups associated to
fibers generically contain no parabolic elements. For foliations, we prove that the Veech groups are always
elementary.

57K32; 57K20

1 Introduction

A pseudo-Anosov homeomorphism f W S ! S on an orientable surface determines a complex structure
and holomorphic quadratic differential, .X; q/, up to Teichmüller deformation, for which the vertical and
horizontal foliations are the stable and unstable foliations of f . The pseudo-Anosov generates an infinite
cyclic subgroup of the full group of orientation preserving affine homeomorphisms, AffC.X; q/.

For a finite type surface S , we say that the pseudo-Anosov homeomorphism f is lonely if hf i<AffC.S; q/
has finite index. The motivation for this paper is the following; see eg Hubert, Masur, Schmidt and
Zorich [11] and Lanneau [15]

Conjecture 1.1 (lonely pseudo-Anosov) There exist lonely pseudo-Anosov homeomorphisms. In fact ,
lonely pseudo-Anosov homeomorphisms are generic.

There is not an agreed upon notion of “generic”, and some care must be taken: work of Calta [2] and
McMullen [19; 20] shows that no pseudo-Anosov homeomorphism on a surface of genus 2, with orientable
stable/unstable foliation is lonely. In fact, in this case, not only are the pseudo-Anosov homeomorphisms
not lonely, but their Veech groups always contain parabolic elements.

In this paper, we consider infinite families of pseudo-Anosov homeomorphisms arising as follows; see
Section 2.1. Suppose f W S ! S is a pseudo-Anosov homeomorphism of a finite type surface S and
Mf is the mapping torus (which is hyperbolic by Thurston’s hyperbolization theorem; see Otal [21]).
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The connected cross sections of the suspension flow are organized by their cohomology classes (up to
isotopy), which are primitive integral classes in the cone on the open fibered face F �H 1.M;R/ of the
Thurston norm ball containing the Poincaré–Lefschetz dual of the fiber S . Given such an integral class ˛,
the first return map to the cross section S˛ is a pseudo-Anosov homeomorphism f˛ W S˛! S˛. When
b1.M/ > 1, there are infinitely many such pseudo-Anosov homeomorphisms; in fact, j�.S˛/j is a linear
function of ˛, and hence tends to infinity with ˛.

We let N̨ 2 F denote the projection of the primitive integral class ˛ in the cone over F , and let FQ be the
set of all such projections, which is precisely the (dense) set of rational points in F .

Question 1.2 Given a fibered hyperbolic 3-manifold and fibered face F , are the pseudo-Anosov homeo-
morphisms f˛ for N̨ 2 FQ generically lonely?

We will provide two pieces of evidence that the answer to this question is “yes”. Write AffC.X˛; q˛/ for
the orientation preserving affine group containing f˛; see Section 2.3 for more details.

Theorem 1.3 Suppose F is the fibered face of an orientable, fibered, hyperbolic 3-manifold. Assuming
Lehmer’s conjecture, the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is discrete
in F .

In certain examples, the set of classes whose associated Veech group contains parabolics is actually
finite (again, assuming Lehmer’s conjecture); see Theorem 4.2. In Section 3 we describe some explicit
computations that illustrate this finite set. If M is the orientation cover of a nonorientable, fibered
3-manifold, then the conclusion of Theorem 1.3 holds on the invariant cohomology of the covering
involution without assuming the validity of Lehmer’s conjecture; see Theorem 4.3.

Much of the defining structure survives for nonintegral classes ˛ 2 F �FQ; see Section 2.2 for details.
Briefly, we first recall that every ˛ 2F �FQ is represented by a closed 1-form !˛ which is positive on the
vector field generating the suspension flow. The kernel of !˛ is tangent to a foliation F˛ , and the flow can
be reparameterized to send leaves of F˛ to other leaves. There is no longer a first return time, but rather
a higher rank abelian group of return times, H˛, to any given leaf S˛ of F˛. Work of McMullen [18]
associates a leafwise complex structure and quadratic differential .X˛; q˛/ to each ˛ 2 F �FQ such that
the leaf-to-leaf maps of the flow are all Teichmüller maps. For every leaf S˛ of F˛, the return maps to
S˛ thus determine an isomorphism from H˛ < R to a subgroup we denote by HAff

˛ < AffC.X˛; q˛/,
an abelian group of pseudo-Anosov elements. Our second piece of evidence for a positive answer to
Question 1.2 is the following.

Theorem 1.4 If F is a fibered face of a closed, orientable, fibered, hyperbolic 3-manifold, then for all
˛ 2 F �FQ, and any leaf S˛ of F˛, the abelian group HAff

˛ < AffC.X˛; q˛/ has finite index.

For ˛ 2 F �FQ, the leaves S˛ are infinite type surfaces. In general, there is much more flexibility in
constructing affine groups for infinite type surfaces, and exotic groups abound. Indeed, work of Przytycki,
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Schmithüsen and Valdez [22] and Ramírez Maluendas and Valdez [23] proves that any countable subgroup
of GL2.R/ without contractions is the derivative-image of some affine group. (See also Bowman [1] for
a “naturally occurring” lonely pseudo-Anosov homeomorphism on an infinite type surface of finite area.)
Theorem 1.4 says that for the leaves S˛ of the foliations and their associated quadratic differentials, the
situation is much more rigid.
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2 Definitions and background

2.1 Fibered 3-manifolds

Here we explain the set up and background for our work in more detail. For a pseudo-Anosov homeo-
morphism f W S! S of an orientable, finite type surface S , let �.f / denote its stretch factor (also called
its dilatation); see [3]. We write

M DMf D S � Œ0; 1�=.x; 1/� .f .x/; 0/

to denote the mapping torus of the pseudo-Anosov homeomorphism f . The suspension flow  s of f is
generated by the vector field � D @

@t
, where t is the coordinate on the Œ0; 1� factor. Alternatively, we have

the local flow of the same name  s.x; t/D .x; t C s/ on S � Œ0; 1�, defined for t; sC t 2 Œ0; 1�, which
descends to the suspension flow.

A cross section (or just section) of the flow is a surface S˛ �M transverse to � , such that for all x 2 S˛ ,
 s.x/ 2 S˛ for some s > 0. If s.x/ > 0 is the smallest such number, then the first return map of  s is the
map f˛ W S˛! S˛ defined by f˛.x/D  s.x/.x/ for x 2 S˛. Note that S.D S � f0g/�M is a section,
and the first return map to S is precisely the map f D  1jS .

Cutting open along an arbitrary section S˛ we get a product S˛ � Œ0; 1� where the slices fxg � Œ0; 1� are
arcs of flow lines. Thus, M can also be expressed as the mapping torus of f˛ , or alternatively, M fibers
over the circle with monodromy f˛ . Up to isotopy, the fiber S˛ is determined by its Poincaré–Lefschetz
dual cohomology class ˛ D ŒS˛� 2H 1.M IZ/�H 1.M IR/DH 1.M/. To see how these are organized,
we first recall the following theorem of Thurston [27]

Theorem 2.1 For M D Mf as above , there is a finite union of open , convex , polyhedral cones
C1; : : : ;Ck � H

1.M/ such that ˛ 2 H 1.M IZ/ is dual to a fiber in a fibration over S1 if and only
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if ˛ 2 Cj for some j . Moreover , there is a norm k � kT on H 1.M/ so that for each Cj , k � kT restricted to
Cj is linear , and if ˛ 2 Cj \H

1.M IZ/ then k˛kT is the negative of the Euler characteristic of the fiber
dual to ˛.

The unit ball B of k � kT is a polyhedron, and each Cj is the cone over the interior of a top dimensional
face Fj of B.

The cones in the theorem are called the fibered cones of M and the Fj the fibered faces of B. It follows
from Thurston’s proof of Theorem 2.1 that each of the sections S˛ of . s/ described above must lie
in a single one of the fibered cones C over a fibered face F . The following theorem elaborates on this,
combining results of Fried from [5; 6].

Theorem 2.2 For M DMf as above , there is a fibered cone C � H 1.M/ such that ˛ 2 H 1.M IZ/

is dual to a section of . s/ if and only if ˛ 2 C. Moreover , there is a function h W C! RC which is
continuous , convex, and homogenous of degree �1, with the following properties.

� For any ˛ 2 C\H 1.M IZ/, f˛ is pseudo-Anosov and h.˛/D log.�.f˛//.

� For any f˛ng � C with ˛n! @C, we have h.˛n/!1.

We let CZ � C denote the primitive integral classes in the fibered cone C; that is, the integral points
which are not nontrivial multiples of another element of H 1.M IZ/. These correspond precisely to the
connected sections of . s/.

McMullen [18] refined the analysis of h, proving for example that it is actually real-analytic. For this, he
computed the stretch factors using his Teichmüller polynomial ‚C. This polynomial

‚C D

X
g2G

agg

is an element of the group ring ZŒG� where G DH1.M IZ/=torsion. For ˛ 2 CZ, the specialization of
the Teichmüller polynomial is

‚˛C.t/D
X
g2G

ag t
˛.g/
2 ZŒt˙1�

where we view ˛2H 1.M IZ/ŠHom.GIZ/. Further,GŠH˚Z whereHDHom.H 1.S;Z/f;Z/ŠZm

and H 1.S;Z/f are the f -invariant cohomology classes. So we can regard ‚C as a Laurent polynomial
on the generators x1; x2; : : : ; xm of H and the generator u of Z. Then specialization to the dual of an
element .a1; a2; : : : ; am; b/ 2 C\H 1.M IZ/ amounts to setting xi D tai for 1 � i � m and u D tb .
McMullen proves that the specializations and the pseudo-Anosov first return maps are related by the
following.

Theorem 2.3 For any ˛ 2 CZ, the stretch factor �.f˛/ is a root of ‚˛C with the largest modulus.

Combining the linearity of k � kT on C together with the homogeneity of h, we have the following
observation of McMullen; see [18].
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Corollary 2.4 The function ˛ 7! k˛kT h.˛/ is continuous and constant on rays from 0. In particular , if
K � C is any compact subset , then k � kT h. � / is bounded on RCK.

The key corollary for us is the following, also observed by McMullen in the same paper.

Corollary 2.5 If f˛ngn � CZ is any infinite sequence of distinct elements , then j�.S˛n/j !1, and if
the rays RC˛n do not accumulate on @C, then

log.�.f˛n//�
1

j�.S˛n/j
:

In particular , �.f˛n/! 1.

Remark 2.6 One can sometimes promote the final conclusion to any infinite sequence of distinct
elements, without the assumption about nonaccumulation to @C; see the examples in Section 3. This is
not always the case, and the accumulation set of stretch factors can be fairly complicated, as described by
work of Landry, Minsky and Taylor [14].

2.2 Foliations in the fibered cone

Fried’s work described above [5; 6] implies that any ˛ 2 C may be represented by a closed 1-form !˛ for
which !˛.�/ > 0 at every point of M . For integral classes, !˛ is the pull-back of the volume form from
the fibration over the circle R=Z, and in general, !˛ is a convex combination of such 1-forms. The kernel
of !˛ defines a foliation F˛ transverse to � whose leaves are injectively immersed surfaces S˛ �M .
We consider the reparameterized flow f ˛s g defined by scaling the generating vector field � by �=!˛.�/.
Then for every leaf S˛ �M of F˛ and for every s 2 R, the image by the flow  ˛s .S˛/ is another leaf
of F˛. The subgroup H˛ <R mentioned in the introduction is precisely the set of return times of  ˛s
to S˛. As such, H˛ acts on S˛ so that s 2H˛ acts by s � x D  ˛s .x/, for all x 2 S˛.

The group H˛ Š Zn for some nD n˛ � b1.M/, and can alternatively be defined as the set of periods
of ˛ (ie the ˛-homomorphic image of H1.M IZ/). A leaf S˛ is a closed surface, and in fact a fiber as
above if and only if n˛ D 1 in which case H˛ is a discrete subgroup of R and N̨ 2 FQ. On the other hand,
n˛ � 2 if and only if the group of return times H˛ is indiscrete, and so S˛ is dense in M .

2.3 Teichmüller flows and Veech groups

In [18], McMullen defines a conformal structure and quadratic differential, .X˛; q˛/, on the leaves S˛ of
the foliation F˛ , for all ˛ 2 C, with the following properties. For each s 2R and leaf S˛ , the leaf-to-leaf
map  ˛s W S˛!  ˛s .S˛/ is a Teichmüller map with initial/terminal quadratic differentials given by q˛
on the respective leaves. In fact, there exists some K˛ > 1 such that  ˛s is a K jsj˛ -Teichmüller map, and
hence K2jsj˛ -quasiconformal.

Remark 2.7 The notation .X˛; q˛/ is somewhat ambiguous: this really denotes a family of structures,
one on every leaf, though we abuse notation and also use this same notation to denote the restriction to
any given leaf.
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The vertical and horizontal foliations of q˛ on the leaves S˛ of F˛ are obtained by intersecting with
a fixed singular foliation on the 3-manifold; namely, the suspension of the unstable/stable foliations
for the original pseudo-Anosov homeomorphism f . In particular, the cone points (ie zeros) of q˛ are
precisely the intersections of S˛ with the  s-flowlines through the cone points on the original surface S .
Consequently, the cone points are isolated, and the cone angles are bounded by those of the original
surface, and are hence bounded independent of ˛.

For s 2H˛,  ˛s W S˛! S˛ is (a remarking) of the Teichmüller map, and thus an affine pseudo-Anosov
homeomorphism with respect to q˛. In this way, we obtain an isomorphism from H˛ to a subgroup
HAff
˛ < AffC.X˛; q˛/, the group of orientation preserving affine homeomorphisms of the leaf S˛ with

respect to .X˛; q˛/. The derivative with respect to the preferred coordinates defines a map

D˛ W AffC.X˛; q˛/! GLC2 .R/=˙ I;

which is called the Veech group of .X˛; q˛/. A parabolic element of AffC.X˛; q˛/ is one whose image
by D˛ is parabolic.

Remark 2.8 The preferred coordinates for a quadratic differential are only defined up to translation and
rotation through angle � , so the derivative is only defined up to sign. If all affine homeomorphisms are
area preserving (eg if the surface has finite area) then the derivative maps to PSL2.R/D SL2.R/=˙ I .

Since the vertical/horizontal foliations are the stable/unstable foliations, the image of HAff
˛ , which we

denote by HD
˛ DD˛.H

Aff
˛ / is contained in the diagonal subgroup of PSL2.R/,

HD
˛ <�D

��
a 0

0 1
a

�
2 SL2.R/

ˇ̌̌
a > 0

�ı
˙I:

Define SAff.X˛; q˛/ < AffC.X˛; q˛/ to be the area preserving subgroup of orientation preserving affine
homeomorphisms; this is the preimage of PSL2.R/ under D˛. In particular, HAff

˛ < SAff.X˛; q˛/.

2.4 Trace fields

A number field is totally real if the image of every embedding into C lies in R. Hubert and Lanneau [9]
proved the following.

Theorem 2.9 If a nonelementary Veech group contains a parabolic element , then the trace field is totally
real.

A pseudo-Anosov f being lonely implies that there are no parabolic elements in the Veech group, but not
conversely; see [10].

McMullen [20, Corollary 9.6] proved the following fact about the trace field of a Veech group; see also
Kenyon and Smillie [12].

Theorem 2.10 The trace field of a Veech group containing a pseudo-Anosov is generated by the trace of
that pseudo-Anosov. That is , the trace field is given by Q.�.f /C�.f /�1/.
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Thus, this trace field is totally real precisely when the trace of the pseudo-Anosov has only real Galois
conjugates.

Remark 2.11 Theorems 2.9 and 2.10 are proved for complex structures with an abelian differential,
rather than a quadratic differential. The proof of Theorem 2.9 for the more general case of quadratic
differentials follows verbatim since the key ingredient is the so-called Thurston–Veech construction,
which works for both quadratic differentials and abelian differentials (see [28, Section 6]). Theorem 2.10
for quadratic differentials follows from the case of abelian differentials since every affine homeomorphism
lifts to the canonical 2-fold cover where a quadratic differential pulls back to a square of an abelian
differential, and thus the preimage of the Veech group of the original surface in SL2.R/ is contained in
the Veech group for the abelian differential.

2.5 Lehmer’s conjecture

Theorem 1.3 is dependent on the validity of what is known as Lehmer’s conjecture [16] though Lehmer
did not actually conjecture the statement we will use. See [26]. To state this conjecture, we need the
following.

Definition 2.12 Let p.x/ 2CŒx� with factorization over C,

p.x/D a0

mY
iD1

.x� i /:

The Mahler measure of p is

M.p/D ja0j

mY
iD1

.max 1; ji j/:

With this definition, we state the conjecture we assume.

Conjecture 2.13 (Lehmer) There is a constant � > 1 such that for every p.x/ 2 ZŒx� with a root not
equal to a root of unity, M.p/� �.

Lehmer’s conjecture is known in some special cases, including the following result of Schinzel [25] which
will be important in the proof of Theorem 4.3.

Theorem 2.14 If p.t/ is the minimal polynomial for an algebraic integer not equal to 0 or ˙1, all of
whose roots are real , then

M.p/�
�
1C
p
5

2

�deg.p/=2
:

3 Examples

Here we provide examples of fibered faces of fibered 3-manifolds and examine arithmetic features of the
Veech groups of the corresponding pseudo-Anosov homeomorphisms.
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3.1 Example 1

Let ˇ D �1��12 be an element of the braid group B3 on three strands (viewed as the mapping class
group of a four-punctured sphere, S ), where �1 and �2 denote the standard generators. Let M denote the
mapping torus of ˇ. McMullen computes the Teichmüller polynomial for this manifold in detail in [18].
See also Hironaka [7].

Since ˇ permutes the strands of the braid cyclically, b1.M/D 2. Choosing appropriate bases, we obtain
an isomorphism H 1.M IZ/Š Z2 such that the starting fiber surface S is dual to .0; 1/, the fibered cone
is

CD f.a; b/ 2R2 j b > 0;�b < a < bg

and the Teichmüller polynomial for this cone is

‚C.x; u/D u
2
�u.xC 1C x�1/� 1:

Specialization to an integral class .a; b/ 2 CZ equates to setting x D ta and uD tb and yields

‚
.a;b/
C .t/D‚C.t

a; tb/D t2b � tbCa � tb � tb�aC 1:

We used the mathematics software system SageMath [24] to factor‚.a;b/C .t/ for all primitive integral pairs
.a; b/2C with b < 50, to determine the stretch factors �.a;b/ of the corresponding monodromies and their
minimal polynomials. We then computed the conjugates of the corresponding traces, �.a;b/C 1=�.a;b/,
to determine whether the trace field of each associated Veech group is totally real. The results are shown
in Figure 1. Recall that by Theorem 2.9, when this trace field is not totally real, the Veech group has no
parabolic elements.

These computations suggest that there are only finitely many pairs .a; b/ where the trace field is not
totally real. This is not a coincidence as we will see below. For this, we record the following improvement
on Corollary 2.5 for the cone C for this example.

Lemma 3.1 For any sequence ˛n D .an; bn/ 2 CZ of distinct elements , we have �.f˛n/! 1.

Proof Since h is convex, the maximum value of h.a; b/D log.�.f.a;b///, for points .a; b/ 2 CZ and a
fixed b, occurs at either .b� 1; b/ or .1� b; b/.

First we consider the points of the form .b� 1; b/. The specialization of ‚C in this case takes the form

‚
.b�1;b/
C .t/D t2b � t2b�1� tb � t C 1:

Recall that �b D �.f.b�1;b// > 1. As b!1, we claim that �b! 1. Suppose instead that the sequence
is bounded below by 1C �, for � > 0 on some subsequence. Then in this subsequence we have

‚
.b�1;b/
C .�b/D �

2b
b .1��

�1
b ��

�b
b ��

1�2b
b /C 1

� .1C �/2b
�
1� .1C �/�1� .1C �/�b � .1C �/1�2b

�
:
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Veech group trace field is totally real
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Figure 1: Primitive integral elements in a fibered cone for the mapping torus of the three-strand
braid �1��12 . Elements marked with green triangles have corresponding Veech group with trace
field that is not totally real.

The first factor on the right hand side tends to infinity when b does, while the second factor tends toward
1� .1C �/�1 D �=.1C �/ > 0. This implies that ‚.b�1;b/C .�b/ approaches infinity, whereas instead it is
identically equal to 0. This contradiction proves the claim.

For points of the form .1� b; b/, the specialization takes the form

‚
.1�b;b/
C .t/D t2b � t � tb � t2b�1C 1D‚

.b�1;b/
C .t/:

Therefore, �.f.1�b;b//D �.f.b�1;b//D �b and as b!1; these both tend to 1.

One of the difficulties in the proof of Theorem 1.3 is understanding the degrees of the trace field. This is
complicated by the fact that the Teichmüller polynomial need not be irreducible in general. For example,
when specialized to .a; b/D .9; 14/, the Teichmüller polynomial in this example splits into the cyclotomic
polynomials t2� t C 1 and t4� t2C 1, plus the minimal polynomial of the corresponding stretch factor.
However, in other cases, such as the specialization to .a; b/D .5; 14/, the Teichmüller polynomial remains
irreducible. We refer the reader to [4] for more on the factorizations of the specialized polynomials in the
example above. As we will see in the example below, the Teichmüller polynomial also sometimes admits
additional noncyclotomic factors aside from the minimal polynomial of the corresponding stretch factor.
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3.2 Example 2

Let ˇ0 D ˇ2, for ˇ from the preceding example. Let M 0 denote the mapping torus on ˇ0 and � 0C0 the
Teichmüller polynomial of the fibered cone C0 containing the dual of ˇ0. Here we will observe three
different splitting behaviors of specializations of the Teichmüller polynomial. In particular, we see that
certain specializations of � 0C0 split into multiple noncyclotomic factors, limiting what information can be
derived about conjugates of the corresponding stretch factors and their traces by looking at the collection
of all roots of � 0C0 .

The Teichmüller polynomial here is

� 0C0.x; u/D u2�u.x2C 2xC 1C 2x�1C x�2/C 1

over the cone
CD

˚
.a; b/ 2R2 j b > 0;�1

2
b < a < 1

2
b
	
:

The specialization to .a; b/D .6; 17/ is irreducible over Z,

t34� t29� 2t23� t17� 2t11� t5C 1;

while the specialization to .a; b/D .7; 17/ splits as a cyclotomic and noncyclotomic factor,

.t4C t3C t2C t C 1/
�
t30� t29� t27C t26C t25� t24� t22C t21� t20C t19� t17C t16

� t15C t14� t13C t11� t10C t9� t8� t6C t5C t4� t3� t C 1
�
;

and the specialization to .a; b/D .7; 18/ has multiple noncyclotomic factors,

.t2� t C 1/.t4C t3C t2C t C 1/.t12� t9� t8C t7C t6C t5� t4� t3C 1/.t18� t16� t9� t2C 1/:

Figure 2 shows whether the Veech groups corresponding to elements of C0 have totally real trace field.
For all three specializations described in this example, the corresponding Veech group trace field is not
totally real.

The analog to Lemma 3.1 holds in this example as well. M 0 is a 2-fold cover of M so the stretch factors
in C0Z are at most squares of the stretch factors in CZ.

4 Most Veech groups have no parabolics

We are now ready for the proof of the first theorem from the introduction.

Theorem 1.3 Suppose F is the fibered face of an orientable, fibered, hyperbolic 3-manifold. Assuming
Lehmer’s conjecture, the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is discrete
in F .

Proof Consider any sequence of distinct elements ˛n in CZ such that N̨n does not accumulate on @F .
We need to show that Aff.X˛; q˛n/ contains a parabolic for at most finitely many n. According to

Algebraic & Geometric Topology, Volume 25 (2025)



Fibered 3-manifolds and Veech groups 1907

50

40

30

20

10

0

�10

�40 �20 0 20 40

b

a

Veech group trace field is totally real

Veech group trace field is not totally real

Figure 2: Primitive integral elements in a fibered cone for the mapping torus of the three-strand
braid .�1��12 /2. Elements marked with green triangles have a not totally real corresponding Veech
group.

Theorem 2.9, it suffices to prove that the trace field is totally real for at most finitely many n. Setting
�n D �.f˛n/, Theorem 2.10 implies that the trace field of Aff.X˛n ; q˛n/ is Q.�nC��1n /.

Next, let N be the number of terms of the Teichmüller polynomial, ‚C for C. The stretch factor �n is the
largest modulus root of the specialization ‚˛nC .t/ by Theorem 2.3. We observe that this polynomial has
no more nonzero terms than ‚C, and thus has at most N terms. Descartes’s rule of signs implies that the
number of real roots of ‚˛nC is at most 2N � 2.

Suppose that pn.t/ is the minimal polynomial of �n, which is thus a factor of ‚˛nC .t/ (up to powers
of t , which we will ignore). In particular, note that �n bounds the modulus of all other roots of pn.t/.
The stretch factors are always algebraic integers, and hence pn.t/ is monic. The Mahler measure is
therefore the product of the moduli of the roots outside the unit circle. There are at most 2N � 2 real
roots of ‚˛nC .t/, and hence the same is true of pn.t/. Write

M.pn/D AnBn

where An is the product of the moduli of the real roots and Bn is the product of the moduli of the nonreal
roots outside the unit circle (and 1 if there are none). Thus, we have

(1) An � �
2N�2
n :
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Now, as n!1, we have j�.S˛n/j D k˛nkT !1 as n!1. Since N̨n does not accumulate on @F ,
Corollary 2.5 implies �nD�.f˛n/! 1. By (1), it follows that An! 1 as n!1. Since we are assuming
Lehmer’s conjecture, it follows that Bn > 1 for all but finitely many n. That is, there is at least one
nonreal root �n of pn.t/ outside the unit circle. (In fact, the number of such roots tends to infinity linearly
with j�.S˛n/j since �n has the maximum modulus of any root of pn.t/).

Therefore, for all but finitely many n, the embedding of Q.�nC��1n / to C sending �nC��1n to �nC��1n
has nonreal image, since �n is nonreal and lies off the unit circle. Therefore, Q.�nC��1n / is totally real
for at most finitely many n, as required.

Remark 4.1 The proof of Theorem 1.3 follows a strategy of Craig Hodgson [8] for understanding trace
fields under hyperbolic Dehn filling.

The key ingredient is that for sequences f˛ng in CZ, we have �.f˛n/! 1. Sometimes this happens for
any sequence of distinct elements in the cone, and then one obtains the following stronger result.

Theorem 4.2 Suppose F is the fibered face of an orientable , fibered , hyperbolic 3-manifold and that 1 is
the only accumulation point of the set

f�.f˛/ j N̨ 2 FQg:

Assuming Lehmer’s conjecture , the set of N̨ 2 FQ such that AffC.X˛; q˛/ contains a parabolic element is
finite.

Proof This is exactly the same as the proof of Theorem 1.3, except that the assumption that 1 is the only
accumulation point of f�.f˛/ j N̨ 2 FQg replaces the references to Corollary 2.5, and does away with the
requirement that N̨n does not accumulate on @F .

Returning to the examples from Section 3, Lemma 3.1 and the discussion in both examples implies that
the hypotheses of Theorem 4.2 are satisfied. Thus only finitely many elements ˛ 2 CZ are such that
AffC.X˛; q˛/ can contain parabolics. We refer the reader to [14] for more on the accumulation set of
f�.f˛/ j ˛ 2 CZg

If p WM ! N is the orientation double cover of a nonorientable fibered 3-manifold N with covering
involution � W M ! M , then p� W H 1.N /! H 1.M/ is an isomorphism onto the ��-fixed subspace.
There is a well-defined Thurston norm on H 1.N /, and the induced homomorphism �1N ! �1S

1 D Z

determines an element ˛ 2H 1.N / which lies in an open cone of a fibered face. Indeed, the p�-image of
this cone is the intersection of p�.H 1.N // with an open cone on a fibered face F for M , or equivalently,
the cone over the ��-fixed set F � � F ; see [13, Theorem 2.11]. In this setting, and appealing to work of
Liechti and Strenner [17] we can remove the assumption that Lehmer’s conjecture holds, at the expense
of restricting to F � .
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Theorem 4.3 With the assumptions above on M ! N D M=h�i, the set of N̨ 2 F �Q such that
AffC.X˛; q˛/ contains a parabolic element is discrete in F � .

Proof For every N̨ � F �Q, the associated monodromy f˛ W S˛ ! S˛ is the lift of the monodromy for
some fibration of N . Then either S˛ covers a nonorientable surface S 0˛ and f˛ is the lift of a pseudo-
Anosov homeomorphism on S 0˛, or else f˛ is the square of an orientation reversing pseudo-Anosov
homeomorphism. In either case, [17, Theorem 1.10] implies that if p.t/ is the minimal polynomial
for �.f˛/, then p.t/ has no roots on the unit circle.

Now suppose f N̨ng � F �Q is any infinite sequence of distinct elements not accumulating on the boundary
of F and �n D �.f˛n/. As in the proof of Theorem 1.3, write pn.t/ for the minimal polynomial and
M.pn/D AnBn. Again, An! 1, and thus by Theorem 2.14, there is a nonreal root �n of pn.t/ for all
n sufficiently large (regardless of the behavior of Bn). By the previous paragraph �n is not on the unit
circle, and thus �nC ��1n …C; hence Q.�nC��1n / is not totally real, proving our result.

5 Veech groups of leaves

We now turn our attention to the nonintegral points in the cone and the second theorem from the
introduction.

Theorem 1.4 If F is a fibered face of a closed, orientable, fibered, hyperbolic 3-manifold, then for all
˛ 2 F �FQ, and any leaf S˛ of F˛, the abelian group HAff

˛ < AffC.X˛; q˛/ has finite index.

For the rest of the paper, we assume M is a closed, fibered, hyperbolic 3-manifold. The results of this
section are only nontrivial if b1.M/ > 1, since otherwise F �FQ D∅ for any fibered face F (since in
that case F DFQ is a point). Given ˛ 2F , we recall that  ˛s is the reparameterized flow as in Section 2.2,
that sends leaves of F˛ to leaves. Furthermore, .X˛; q˛/ is the leafwise conformal structure and quadratic
differential, and there is K˛ > 1 such that  ˛s is the K jsj˛ -Teichmüller map; hence K2jsj˛ -quasiconformal
and K jsj˛ -bi-Lipschitz.

Lemma 5.1 For any ˛ 2 F �FQ there exists a compact subsurface Z � S˛ such that

M D
[

s2Œ0;1�

 ˛s .Z/:

Proof Choose an exhaustion of S˛ by a sequence of compact subsurfaces,

Z1 ¨Z2 ¨Z3 ¨ � � �¨ S˛ and
1[
nD1

Zn D S˛;

and observe that � [
s2.0;1/

 ˛s .int.Zn//
�1
nD1
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is an open cover of M since every leaf is dense. Since M is compact, the open cover admits a finite
subcover of M . As the compact surfaces Zn are nested, there exists an index N such that for Z DZN
we have

M D
[

s2Œ0;1�

 ˛s .Z/:

The isomorphism H˛ ŠH
Aff
˛ is given by s 7!  ˛s jS˛ . We write

HAff
˛ Œ0; 1��HAff

˛

for the image ofH˛\Œ0; 1� under this isomorphism. Note that every element ofHAff
˛ isK2˛-quasiconformal

and K˛-bi-Lipschitz since s � 1. As a consequence of Lemma 5.1, we have the following.

Corollary 5.2 For ˛ 2 F �FQ and Z � S˛ as in Lemma 5.1 we have

S˛ D
[

h2HAff
˛ Œ0;1�

h.Z/:

Proof Let Z � S˛ be the compact subsurface from Lemma 5.1, so that for every x 2 S˛ �M , we have
x 2  ˛s .Z/ for some s 2 Œ0; 1�. Since x 2 S˛, this implies that s 2H˛. Therefore,

S˛ D
[

s2H˛\Œ0;1�

 ˛s .Z/D
[

h2HAff
˛ Œ0;1�

h.Z/:

Corollary 5.3 For any ˛ 2 F �FQ there exists C > 0 such that for any leaf S˛ of F˛, the geometry of
q˛ is bounded. Specifically,

(1) there is a lower bound on the length of any saddle connection , in particular a lower bound on the
distance between any two cone points ,

(2) all cone points have finite (uniformly bounded ) cone angle , and

(3) .X˛; q˛/ is complete.

Proof Let S˛ be any leaf, and consider the compact surface Z from Corollary 5.2. By making Z slightly
larger, we can assume that no singular points of q˛ lie on the boundary of Z. Denote the set of all
singularities of q˛ by A. Let d@Z.a/ denote the distance of a singularity a 2A to the boundary of Z, and
let dZ.a; b/ denote the minimal length of a saddle connection in Z between two (not necessarily distinct)
singularities a; b 2 A\Z. Since Z is compact, we have that

� Dmin
˚

min
a;b2A\Z

dZ.a; b/;min
a2A

d@Z.a/
	
> 0:

Pick a saddle connection ! connecting any singularity a to any singularity b. There exists an h2HAff
˛ Œ0; 1�

such that h.Z/ contains a. Since h is K˛-bi-Lipschitz, either ! is contained in h.Z/ and has length
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at least �K�1˛ , or it leaves h.Z/ and we again deduce that ! has length at least the distance from a to
@h.Z/, which is at least �K�1˛ . In either case, we obtain a uniform lower bound �K�1˛ to the length of !,
proving (1).

As was noted in Section 2.3, we have that all cone points have finite cone angle which proves (2).
Since Z is compact, there is an �0 so that the �0-neighborhood of Z also has compact closure, which
is thus complete. Any Cauchy sequence has a tail that is contained in the h-image of the closure of
this neighborhood for some h 2HAff

˛ Œ0; 1�. Since this h-image is also complete, the Cauchy sequence
converges, and we have that .X˛; q˛/ is complete which proves (3).

Remark 5.4 Note that Corollary 5.3 implies that our surfaces are tame in the sense of [22, Definition 2.1].

An important observation is the following: for any element of g 2 AffC.X˛; q˛/, we can choose some
element h 2HAff

˛ Œ0; 1� so that h ıg.Z/\Z ¤∅, and furthermore, if g is K-quasiconformal, then h ıg
is .KK2˛/-quasiconformal.

Proposition 5.5 Suppose ˛ 2 F �FQ, K0 > 1, and fgng1nD1 �AffC.X˛; q˛/ is a sequence of elements
with K.gn/�K0. Then there is a subsequence fgnkg

1
kD0

and fhnkg
1
kD0
�HAff

˛ Œ0; 1� such that

hnk ıgnk D hn0 ıgn0

for all k � 0.

Proof From the observation before the statement, we can find hn2HAff
˛ Œ0;1� such that hnıgn.Z/\Z¤∅.

Next, observe that hn ıgn is .K0K2˛/-quasiconformal, so by compactness of quasiconformal maps, after
passing to a subsequence, hnk ıgnk converges uniformly on compact sets to a map f . The maps hnk ıgnk
are affine, so they must map cone points to cone points. Since the cone points are uniformly separated
by Corollary 5.3, there is a pair of cone points a; b such that for k sufficiently large hnk ı gnk .a/D b.
Moreover, if we pick a pair of saddle connections in linearly independent directions emanating from a,
then for n sufficiently large hnk ıgnk all agree on this pair, again by Corollary 5.3. But these conditions
uniquely determines the affine homeomorphism, and hence hnk ıgnk is eventually constant, and passing
to a tail-subsequence of this subsequence completes the proof.

From this we can prove a special case of Theorem 1.4:

Proposition 5.6 If ˛ 2 F �FQ, then HAff
˛ has finite index in SAff.X˛; q˛/.

Proof Suppose HAff
˛ is not finite index and consider the closure of the D˛-image in PSL2.R/,

G DD˛.SAff.X˛; q˛//:

Since ˛ 2 F �FQ, every leaf S˛ of F˛ is dense in M . Therefore HD
˛ <�ŠR is an abelian subgroup

with rank at least 2, and hence is dense in �. Consequently, �<G.
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By the classification of Lie subalgebras of sl2.R/ (or a direct calculations) we observe that, after replacing
G with a finite index subgroup, we must be in one of the following situations:

(1) G D PSL2.R/,

(2) G is the subgroup of upper triangular matrices, or

(3) G D�.

In any case, we claim that there is a sequence of elements fgng � SAff.X˛; q˛/ such that D˛.gn/! I in
PSL2.R/ and so that HAff

˛ gn are distinct cosets of HAff
˛ . Assuming the claim, we prove the proposition.

For this, we simply apply Proposition 5.5, pass to a subsequence (of the same name) so that hnıgnDh0ıg0
for all n� 0. This contradicts the fact that fHAff

˛ gng are all distinct cosets.

To prove the claim, notice that in the first two cases, a finite index subgroup of D˛.SAff.X˛; q˛// is
dense in the Lie subgroup G � PSL2.R/, and � < G is a 1-dimensional submanifold of G, which
itself has dimension 3 or 2 in cases (1) and (2), respectively. This implies that there exists a sequence
fgng2SAff.X˛; q˛/ such thatD˛.gn/! I as n!1 butD˛.gn/…�. By way of contradiction, suppose
that there exists a subsequence fgni g such that gni are in the same coset HAff

˛ g where D˛.g/ …�. This
implies that D˛.gni /��D˛.g/, which is a 1-manifold parallel to � and does not accumulate to I . This
contradicts the fact that D˛.gni /! I . Therefore, there exists a subsequence of fgng such that fHAff

˛ gng

are all distinct cosets.

To prove the claim in the final case, we note that by assumption there exists a sequence of distinct cosets
HAff
˛ bAff

n of HAff
˛ in SAff.X˛; q˛/. Since both HD

˛ and D˛.SAff.X˛; q˛// are dense in �, so is every
coset of HD

˛ . Therefore, we can find a sequence faAff
n g �H

Aff
˛ so that D˛.aAff

n /D˛.b
Aff
n /! I as n!1.

Let gn D aAff
n bAff

n , so that D˛.aAff
n / ! I and HAff

˛ gn are distinct cosets of HAff
˛ , as required. This

completes the proof of the claim. Since we already proved the proposition assuming the claim, we are
done.

To complete the proof of Theorem 1.4, we need only prove the following.

Proposition 5.7 AffC.X˛; q˛/D SAff.X˛; q˛/.

Proof First, observe that SAffC.X˛; q˛/ is a normal subgroup of AffC.X˛; q˛/ since it is precisely the
kernel of the homomorphism given by the determinant of the derivative. In fact, from this homomorphism,
either AffC.X˛; q˛/D SAff.X˛; q˛/ or else the index is infinite; ŒAffC.X˛; q˛/ W SAff.X˛; q˛/�D1.

After passing to a finite index subgroup, � < AffC.X˛; q˛/, if necessary, the conjugation action of � on
SAffC.X˛; q˛/ preserves the finite index subgroup HAff

˛ (and without loss of generality, HAff
˛ < �). It

thus suffices to prove � < SAffC.X˛; q˛/, or equivalently, D˛.�/ < PSL2.R/.

Consider any element

g D

�
a b

c d

�
2D˛.�/ and hD

�
� 0

0 ��1

�
2HD

˛ ;
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with �¤˙1. Then ghg�1 2HD
˛ , and is given by

ghg�1 D
1

det.g/

�
a b

c d

��
� 0

0 ��1

��
d �b

�c a

�
D

1

det.g/

�
ad�� bc��1 ab.����1/

cd.����1/ ad��1� bc�

�
:

In order for this element to be in HD
˛ (hence diagonal), we must have that ab D 0 and cd D 0. Suppose

that aD 0. If c D 0, then we have the zero matrix, so we must have that c ¤ 0 and instead that d D 0.
This gives us that g is a matrix of the form

g D

�
0 b

c 0

�
:

We note that the square of a matrix of this form is a diagonal matrix. Similarly, if b D 0, we must have
that c D 0 and we have that g is a matrix of the form

g D

�
a 0

0 d

�
:

Together, these two conclusions imply that either g or g2 is diagonal.

Now we show that D˛.�/ < PSL2.R/. If not, then there exists g 2D˛.�/ with 0 < det.g/¤ 1. After
squaring and inverting if necessary, we may assume that g is diagonal,

g D

�
� 0

0 �

�
;

and 0 < det.g/D �� < 1. Without loss of generality, suppose � < 1. Notice that there exists an element
h 2HD

˛ such that

hD

�
� 0

0 ��1

�
and there exist n; k 2 Z such that

mD gnhk D

�
r 0

0 s

�
where 0 < r; s < 1. Therefore, mj is a contraction for all j > 0, which implies that it is contracting in
both directions. Fixing a saddle connection ! of q˛, it follows that the length of mj .!/ tends to 0 as
j !1. This contradicts Corollary 5.3, part (1), and thus proves that g 2 PSL2.R/, as required.

Remark 5.8 The final contradiction in the above proof also follows from [22, Theorem 1.1], since
D˛.AffC.X˛; q˛// is necessarily of type (i) in that theorem.

References
[1] J P Bowman, The complete family of Arnoux–Yoccoz surfaces, Geom. Dedicata 164 (2013) 113–130 MR

Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

https://doi.org/10.1007/s10711-012-9762-9
http://msp.org/idx/mr/3054619
http://msp.org/idx/zbl/1277.30026


1914 Christopher J Leininger, Kasra Rafi, Nicholas Rouse, Emily Shinkle and Yvon Verberne

[2] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871–908
MR Zbl

[3] A Fathi, F Laudenbach, V Poénaru (editors), Travaux de Thurston sur les surfaces, Astérisque 66-67, Soc.
Math. France, Paris (1979) MR Zbl

[4] M Filaseta, S Garoufalidis, Factorization of polynomials in hyperbolic geometry and dynamics, preprint
(2022) arXiv 2209.08449

[5] D Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57
(1982) 237–259 MR Zbl

[6] D Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983) 299–303 MR Zbl

[7] E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom.
Topol. 10 (2010) 2041–2060 MR Zbl

[8] C Hodgson, Commensurability, trace fields, and hyperbolic Dehn filling, unpublished notes

[9] P Hubert, E Lanneau, Veech groups without parabolic elements, Duke Math. J. 133 (2006) 335–346 MR
Zbl

[10] P Hubert, E Lanneau, M Möller, The Arnoux–Yoccoz Teichmüller disc, Geom. Funct. Anal. 18 (2009)
1988–2016 MR Zbl

[11] P Hubert, H Masur, T Schmidt, A Zorich, Problems on billiards, flat surfaces and translation surfaces,
from “Problems on mapping class groups and related topics”, Proc. Sympos. Pure Math. 74, Amer. Math.
Soc., Providence, RI (2006) 233–243 MR Zbl

[12] R Kenyon, J Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000) 65–108 MR
Zbl

[13] S Khan, C Partin, R R Winarski, Pseudo-Anosov homeomorphisms of punctured nonorientable surfaces
with small stretch factor, Algebr. Geom. Topol. 23 (2023) 2823–2856 MR Zbl

[14] M P Landry, Y N Minsky, S J Taylor, Flows, growth rates, and the veering polynomial, Ergodic Theory
Dynam. Systems 43 (2023) 3026–3107 MR Zbl

[15] E Lanneau, Raconte-moi . . . un pseudo-Anosov, Gaz. Math. (2017) 52–57 MR Zbl Translated in Eur.
Math. Soc. Newsl. 106 (2017) 12–16

[16] D H Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933) 461–479 MR Zbl

[17] L Liechti, B Strenner, Minimal pseudo-Anosov stretch factors on nonoriented surfaces, Algebr. Geom.
Topol. 20 (2020) 451–485 MR Zbl

[18] C T McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations,
Ann. Sci. École Norm. Sup. 33 (2000) 519–560 MR Zbl

[19] C T McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16
(2003) 857–885 MR Zbl

[20] C T McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003) 191–223 MR Zbl

[21] J-P Otal, Thurston’s hyperbolization of Haken manifolds, from “Surveys in differential geometry, III”,
International, Boston, MA (1998) 77–194 MR Zbl

[22] P Przytycki, G Schmithüsen, F Valdez, Veech groups of Loch Ness monsters, Ann. Inst. Fourier (Grenoble)
61 (2011) 673–687 MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

https://doi.org/10.1090/S0894-0347-04-00461-8
http://msp.org/idx/mr/2083470
http://msp.org/idx/zbl/1073.37032
http://numdam.org/item/AST_1979__66-67_/
http://msp.org/idx/mr/568308
http://msp.org/idx/zbl/0406.00016
http://msp.org/idx/arx/2209.08449
https://doi.org/10.1007/BF02565860
http://msp.org/idx/mr/684116
http://msp.org/idx/zbl/0503.58026
https://doi.org/10.1016/0040-9383(83)90015-0
http://msp.org/idx/mr/710103
http://msp.org/idx/zbl/0516.58035
https://doi.org/10.2140/agt.2010.10.2041
http://msp.org/idx/mr/2728483
http://msp.org/idx/zbl/1221.57028
https://doi.org/10.1215/S0012-7094-06-13326-4
http://msp.org/idx/mr/2225696
http://msp.org/idx/zbl/1101.30044
https://doi.org/10.1007/s00039-009-0706-y
http://msp.org/idx/mr/2491696
http://msp.org/idx/zbl/1179.32004
https://doi.org/10.1090/pspum/074/2264543
http://msp.org/idx/mr/2264543
http://msp.org/idx/zbl/1307.37019
https://doi.org/10.1007/s000140050113
http://msp.org/idx/mr/1760496
http://msp.org/idx/zbl/0967.37019
https://doi.org/10.2140/agt.2023.23.2823
https://doi.org/10.2140/agt.2023.23.2823
http://msp.org/idx/mr/4640141
http://msp.org/idx/zbl/1536.57023
https://doi.org/10.1017/etds.2022.63
http://msp.org/idx/mr/4624489
http://msp.org/idx/zbl/1533.37078
http://msp.org/idx/mr/3643215
http://msp.org/idx/zbl/1386.57025
https://doi.org/10.4171/news/106/6
https://doi.org/10.4171/news/106/6
https://doi.org/10.2307/1968172
http://msp.org/idx/mr/1503118
http://msp.org/idx/zbl/0007.19904
https://doi.org/10.2140/agt.2020.20.451
http://msp.org/idx/mr/4071380
http://msp.org/idx/zbl/1437.57017
https://doi.org/10.1016/S0012-9593(00)00121-X
http://msp.org/idx/mr/1832823
http://msp.org/idx/zbl/1013.57010
https://doi.org/10.1090/S0894-0347-03-00432-6
http://msp.org/idx/mr/1992827
http://msp.org/idx/zbl/1030.32012
https://doi.org/10.1007/BF02392964
http://msp.org/idx/mr/2051398
http://msp.org/idx/zbl/1131.37052
https://academic.hep.com.cn/fcs/CN/chapter/9781571462145/chapter02
http://msp.org/idx/mr/1677888
http://msp.org/idx/zbl/0997.57001
https://doi.org/10.5802/aif.2625
http://msp.org/idx/mr/2895069
http://msp.org/idx/zbl/1266.32016


Fibered 3-manifolds and Veech groups 1915

[23] C Ramírez Maluendas, F Valdez, Veech groups of infinite-genus surfaces, Algebr. Geom. Topol. 17 (2017)
529–560 MR Zbl

[24] SageMath, version 9.3 (2021) Available at https://www.sagemath.org

[25] A Schinzel, Addendum to ‘On the product of the conjugates outside the unit circle of an algebraic number’,
24 (1973) 385–399, Acta Arith. 26 (1974/75) 329–331 MR Zbl

[26] C Smyth, The Mahler measure of algebraic numbers: a survey, from “Number theory and polynomials”,
Lond. Math. Soc. Lect. Note Ser. 352, Cambridge Univ. Press (2008) 322–349 MR Zbl

[27] W P Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc.,
Providence, RI (1986) MR Zbl

[28] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19
(1988) 417–431 MR Zbl

CJL: Department of Mathematics, Rice University
Houston, TX, United States

KR: Department of Mathematics, University of Toronto
Toronto, ON, Canada

NR: Department of Mathematics, University of British Columbia
Vancouver, BC, Canada

ES: Department of Mathematics, University of Illinois at Urbana-Champaign
Urbana, IL, United States

YV: Department of Mathematics, Western University
London, ON, Canada

cjl12@rice.edu, rafi@math.toronto.edu, rouse@math.ubc.ca, esshinkle@gmail.com,
verberne.math@gmail.com

Received: 14 October 2023 Revised: 10 January 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.2140/agt.2017.17.529
http://msp.org/idx/mr/3604384
http://msp.org/idx/zbl/1407.30019
https://www.sagemath.org
https://doi.org/10.4064/aa-26-3-329-331
https://doi.org/10.4064/aa-24-4-385-399
https://doi.org/10.4064/aa-26-3-329-331
https://doi.org/10.4064/aa-24-4-385-399
http://msp.org/idx/mr/371853
http://msp.org/idx/zbl/0312.12001
https://doi.org/10.1017/CBO9780511721274.021
http://msp.org/idx/mr/2428530
http://msp.org/idx/zbl/1334.11081
http://msp.org/idx/mr/823443
http://msp.org/idx/zbl/0585.57006
https://doi.org/10.1090/S0273-0979-1988-15685-6
http://msp.org/idx/mr/956596
http://msp.org/idx/zbl/0674.57008
mailto:cjl12@rice.edu
mailto:rafi@math.toronto.edu
mailto:rouse@math.ubc.ca
mailto:esshinkle@gmail.com
mailto:verberne.math@gmail.com
http://msp.org
http://msp.org




Guidelines for Authors

Submitting a paper to Algebraic & Geometric Topology

Papers must be submitted using the upload page at the AGT website. You will need to choose a suitable editor
from the list of editors’ interests and to supply MSC codes.

The normal language used by the journal is English. Articles written in other languages are acceptable,
provided your chosen editor is comfortable with the language and you supply an additional English version of
the abstract.

Preparing your article for Algebraic & Geometric Topology

At the time of submission you need only supply a PDF file. Once accepted for publication, the paper must be
supplied in LATEX, preferably using the journal’s class file. More information on preparing articles in LATEX for
publication in AGT is available on the AGT website.

arXiv papers

If your paper has previously been deposited on the arXiv, we will need its arXiv number at acceptance time.
This allows us to deposit the DOI of the published version on the paper’s arXiv page.

References

Bibliographical references should be listed alphabetically at the end of the paper. All references in the
bibliography should be cited at least once in the text. Use of BibTEX is preferred but not required. Any
bibliographical citation style may be used, but will be converted to the house style (see a current issue for
examples).

Figures

Figures, whether prepared electronically or hand-drawn, must be of publication quality. Fuzzy or sloppily
drawn figures will not be accepted. For labeling figure elements consider the pinlabel LATEX package, but other
methods are fine if the result is editable. If you’re not sure whether your figures are acceptable, check with
production by sending an email to graphics@msp.org.

Proofs

Page proofs will be made available to authors (or to the designated corresponding author) in PDF format.
Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may cause
publication to be postponed.

http://dx.doi.org/10.2140/agt
http://dx.doi.org/10.2140/agt
https://www.ctan.org/pkg/pinlabel
mailto:graphics@msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 3 (pages 1265–1915) 2025

1265A-polynomials, Ptolemy equations and Dehn filling

JOSHUA A HOWIE, DANIEL V MATHEWS and JESSICA S PURCELL

1321The Alexandrov theorem for 2 C 1 flat radiant spacetimes

LÉO MAXIME BRUNSWIC

1377Real algebraic overtwisted contact structures on 3-spheres
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