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A-polynomials, Ptolemy equations and Dehn filling

JOSHUA A HOWIE
DANIEL V MATHEWS
JESSICA S PURCELL

The A-polynomial encodes hyperbolic geometric information on knots and related manifolds. Historically,
it has been difficult to compute, and particularly difficult to determine A-polynomials of infinite families of
knots. Here, we compute A-polynomials by starting with a triangulation of a manifold, then using symplec-
tic properties of the Neumann—Zagier matrix encoding the gluings to change the basis of the computation.
The result is a simplification of the defining equations. We apply this method to families of manifolds
obtained by Dehn filling, and show that the defining equations of their A-polynomials are Ptolemy
equations which, up to signs, are equations between cluster variables in the cluster algebra of the cusp torus.
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1 Introduction

The A-polynomial is a polynomial associated to a knot that encodes a great deal of geometric information.
It is closely related to deformations of hyperbolic structures on knots, originally explored by Thurston [41].
Such deformations give rise to a one complex parameter family of representations of the knot group into
SL(2, C). All representations form the representation variety, which was originally studied in pioneering
work of Culler and Shalen [10; 11] and Culler, Gordon, Luecke and Shalen [9], and remains a very active
area of research; see the survey by Shalen [39]. However representation varieties are difficult to compute,
and often have complicated topology. In the 1990s, Cooper, Culler, Gillet, Long and Shalen [5] realised
that a representation variety could be projected onto C? using the longitude and meridian of the knot,
with a simpler image. The image is given by the zero set of a polynomial in two variables, up to scaling.
This is the A-polynomial.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1266 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

Among its geometric properties, the A-polynomial detects many incompressible surfaces, and gives
information on cusp shapes and volumes [5; 6]. It has relations to Mahler measure (Boyd [2]), and
appears in quantum topology through the AJ-conjecture (Garoufalidis [18]; Garoufalidis and L& [19];
Frohman, Gelca and Lofaro [17]). Unfortunately, A-polynomials are also difficult to compute. Unlike
other knot polynomials, there are no skein relations to determine them. Originally, they were computed
by finding polynomial equations from a matrix presentation of a representation, and then using resultants
or Grobner bases to eliminate variables; see, for example [6] by Cooper and Long. Unlike other knot
polynomials, they are known only for a handful of infinite examples, including twist knots, some double
twist knots, and small families of 2-bridge knots (Hoste and Shanahan [27]; Mathews [31]; Ham and
Lee [25]; Petersen [37]; Tran [43]), some pretzel knots (Tamura and Yokota [40]; Garoufalidis and
Mattman [20]), and cabled knots and iterated torus knots (Ni and Zhang [35]). Culler [7] has computed
A-polynomials for all knots with up to eight crossings, most nine-crossing knots, many ten-crossing knots,
and all knots that can be triangulated with up to seven ideal tetrahedra.

This paper gives a simplified method for determining A-polynomials, especially for infinite families
of knots obtained by Dehn filling. Our method is to change the variables in the defining equations.
Typically, defining equations for A-polynomials have high degree in the variables to eliminate, making
them computationally difficult. Under a change of variables, we show that all such equations can be
expressed in degree two in the variables to eliminate. For families of knots obtained by Dehn filling,
even more can be said. There will be a finite, fixed number of “outside equations”, and a sequence of
equations determined completely by the slope of the Dehn filling. All such equations exhibit Ptolemy-like
properties, with very similar behaviours to cluster algebras. We expect the method to greatly improve our
ability to compute families of A-polynomials. Indeed, of all the known examples of infinite families of
A-polynomials above, all except the cabled knots and iterated torus knots are obtained by Dehn filling a
fixed parent manifold.

1.1 Computing the A-polynomial

Champanerkar [4] introduced a geometric way to compute the A-polynomial based on a triangulation of
a knot complement. His method is to start with a collection of equations — one gluing equation for each
edge of the triangulation, and two equations for the cusp— and eliminate variables. The coefficients in
the gluing and cusp equations are effectively the entries in the Neumann—Zagier matrix [33]. This matrix
has interesting symplectic properties: its rows form part of a standard symplectic basis for a symplectic
vector space. Dimofte [12] and Dimofte and van der Veen [13] considered extending this collection of
vectors into a standard basis for R?”, and then changing the basis. This yields a change of variables, and
an equivalent set of equations. Eliminating variables again yields (up to technicalities) the A-polynomial;

effectively this can be considered a process of symplectic reduction.

There are a few issues with Dimofte’s calculations that have made them difficult to use in practice. First,
the result appears in physics literature, which makes it somewhat difficult for mathematicians to read.

Algebraic € Geometric Topology, Volume 25 (2025)



A-polynomials, Ptolemy equations and Dehn filling 1267

More importantly, to carefully perform the change of basis, in particular to nail down the correct signs in
the defining equations, a priori one needs to determine the symplectic dual vectors to the vectors arising
from gluing equations. These are not only nontrivial to compute, but also highly nonunique. Only after
obtaining such vectors can one invert a large symplectic matrix.

In this paper, we overcome these issues. Using work of Neumann [32], we show that we may “invert
without inverting”. That is, we show that Dimofte’s symplectic reduction can be read off of ingredients
already present in the Neumann—Zagier matrix, without having to compute symplectic dual vectors. As a
result, we may convert Champanerkar’s (possibly complicated) equations into simpler equations that have
Ptolemy-like structure.

There are other ways to compute A-polynomials. Zickert [46] and Garoufalidis, Thurston and Zickert [21]
introduced one in work on extended Ptolemy varieties, inspired by Fock and Goncharov [14]. Their
work also starts with a triangulation, but in the case of interest assigns six variables per tetrahedron,
and relates these by what are called Ptolemy relations and identification relations. After an appropriate
transformation, the corresponding variables satisfy gluing equations; see [21, Section 12]. Zickert notes a
“fundamental duality” between Ptolemy coordinates and gluing equations in [46, Remark 1.13]. However,
it is not clear why the duality arises. The equations we find in this paper are similar to the defining
equations of Zickert, but with fewer variables. We expect that the results of this paper may provide a
connection to two very different approaches to calculating A-polynomials. While we do not show that the
methods of that paper and this one are equivalent, we conjecture that they are, and thus the techniques
here may provide a geometric, symplectic explanation for the ‘“fundamental duality”.

1.2 Neumann-Zagier matrices and the main theorem

Let M be a hyperbolic 3-manifold with a triangulation. Then it has an associated Neumann—Zagier
matrix, which we will denote by NZ. The properties of NZ are reviewed in Section 2. In short, gluing and
cusp equations give a system of the form NZ-Z = H +in C, where Z is a vector of variables related to
tetrahedra, and H and C are both vectors of constants.

Neumann and Zagier showed that if M has one cusp, then the n rows of NZ corresponding to gluing
equations have rank n — 1. Thus a row can be removed, leaving #n — 1 linearly independent rows. Denote
the matrix given by removing such a row of NZ by NZ’, and similarly denote the vector obtained from C
by removing the corresponding row by C”. We will refer to NZ as the reduced Neumann—Zagier matrix.
The vector C” is called the sign vector. We will show that, after possibly relabelling the tetrahedra of a
triangulation, we may assume one of the entries of C b corresponding to a gluing equation is nonzero.
Neumann [32] has shown that there always exists an integer vector B such that NZ". B = CP.

To state the main theorem, we introduce a little more notation. The last two rows of the matrix NZP
correspond to cusp equations associated to the meridian and longitude. For ease of notation, we will

Algebraic € Geometric Topology, Volume 25 (2025)



1268 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

denote the entries in the row associated to the meridian and longitude, respectively, by

(Ml [L/I 17%) ,bL/z ) and ()\.1 )\/1 )\.2 )\/2 )
Finally, suppose the edges of the tetrahedra are glued into n edges E1, ..., E,. Label the ideal vertices
of each tetrahedron 0, 1, 2, and 3, with 1, 2, 3 in anticlockwise order when viewed from 0. Then there
are six edges, each labelled by a pair of integers af € {01, 02,03, 12, 13, 23}. For the j th tetrahedron, let

j (o) denote the index of the edge class to which that edge is identified. That is, if the edge «f is glued
to Ey, then j(af) = k.

Theorem 1.1 Let M be a one-cusped manifold with a hyperbolic triangulation T, with associated
reduced Neumann—Zagier matrix NZ° and sign vector C b as above. Also as above, denote the entries
of the last two rows of NZ° by u s ,u;. in the row corresponding to the meridian, and 1;, k} in the row
corresponding to the longitude. Let B = (B, B, B>, B}, ...) be an integer vector such that NZ’-B=C".
Define formal variables y1, ..., yu, one associated with each edge of T For a tetrahedron A of T, and
edge aff € 101,02,03,12, 13,23}, define y;(qp) to be the variable yy such that the edge of A; between

vertices o and B is glued to the edge of T associated with yy,.

For each tetrahedron Aj of T, define the Ptolemy equation of Aj by

B y—u; . R A,
(D E e 2mb 2y 01y i@ + (DB il J/ZVj(OZ)Vj(B) —Yj03)Via2) =0.
When we solve the system of Ptolemy equations of T in terms of m and {, setting v, = 1 and eliminating
the variables y1, . . ., Yn—1, We obtain a factor of the PSL(2, C) A-polynomial.

In fact, we obtain the same factor as Champanerkar. The precise version of this theorem is contained in
Theorem 2.58 below.

Remark 1.2 The Ptolemy equations above are always quadratic in the variables y;. Moreover, their
form indicates intriguing algebraic structure that is not readily apparent from the gluing equations.

We find the simplicity and the algebraic structure of the equations of Theorem 1.1 to be a major feature
of this paper. The defining equations of the A-polynomial are quite simple! We note that using these
equations requires finding the vector B of Theorem 1.1. This is a problem in linear Diophantine equations.
Because B is guaranteed to exist, it can be found by computing the Smith normal form of the matrix NZ
(see, for example, Chapter I11.21(c) of [34] by Newman). In practice, we were able to find B for examples
with significantly less work.

Remark 1.3 The y variables in Theorem 1.1 are precisely Dimofte’s ¢ variables of [12], and these
Ptolemy equations are essentially equivalent to those of that paper.

The word “equivalent” here conceals a projective subtlety. The gluing and cusp equations are a set of n+2
equations in n tetrahedron parameters and £, m, but only n + 1 of them are independent. The Ptolemy
equations are however a set of # independent equations in n edge variables and £, m. Nonetheless, they
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are homogeneous, and so y, ..., ¥, can be regarded as varying on CP"~!; alternatively, one can divide
through by an appropriate power of one y; to obtain equations in the n — 1 variables,

Vi Yol Yier

vi v v v
which can be eliminated. Effectively, one can simply set one of the variables y; to 1.

A further subtlety arises because our Ptolemy equations are not polynomials in 72 and ¢; they are rather
polynomials in m'/2 and £1/2. If we set M = m'/2 and L = £!/2 then we obtain polynomial Ptolemy
equations. Moreover, the variables L and M so defined are essentially those appearing in the SL(2, C) A-
polynomial: a matrix in SL(2, C) with eigenvalues L, L™! yields an element of PSL(2, C) corresponding
to a hyperbolic isometry with holonomy L? = £. Indeed, the Ptolemy varieties of [46] are calculated
from SL(2, C) representations, rather than PSL(2, C). We obtain:

Corollary 1.4 After setting M = +m'/? and L = +¢'/2, eliminating the y variables from the polynomial
Ptolemy equations of a one-cusped hyperbolic triangulation yields a polynomial in M and L which
contains, as a factor, the factor of the SL(2, C) A-polynomial describing hyperbolic structures.

The precise version of this corollary is Corollary 2.59.

1.3 Ptolemy equations in Dehn filling

Our main application of Theorem 1.1 is to consider the defining equations of A-polynomials under Dehn
filling.

Consider a two-component link in S3 with component knots K, K. Consider Dehn filling K, along
some slope p/q; K; then becomes a knot in a 3-manifold. A Dehn filling can be triangulated using
layered solid tori, originally defined by Jaco and Rubinstein [30]; see also the work by Guéritaud and
Schleimer [24]. Building a layered solid torus yields a sequence of triangulations of a once-punctured
torus. The combinatorics of the 3-dimensional layered solid torus corresponds closely to the combinatorics
of 2-dimensional triangulations of punctured tori.

Triangulations of punctured tori can be endowed with A-lengths via work of Penner [36]. When one flips
a diagonal in a triangulation, the A-lengths are related by a Ptolemy equation. This gives the algebra
formed by A-lengths the structure of a cluster algebra (Fock and Goncharov [14]; Fomin, Shapiro and
Thurston [15]; Gekhtman, Shapiro and Vainshtein [22]). Cluster algebras arise in diverse contexts across
mathematics (see eg works by Fomin, Williams and Zelevinsky [16] and by Williams [45]).

We obtain two sets of Ptolemy equations: one for the cluster algebra of the punctured torus coming
from A-lengths, and one for the tetrahedra in the layered solid torus coming from Theorem 1.1. These
are identical except for signs. Thus we can regard the algebra generated by our Ptolemy equations as a
“twisted” cluster algebra, where the word “twisted” indicates some changes of sign.

Algebraic € Geometric Topology, Volume 25 (2025)
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Theorem 1.5 Suppose M has two cusps, ¢, ¢, and is triangulated such that only two tetrahedra meet ¢y,
and generating curves my, ly on the cusp triangulation of ¢o avoid these tetrahedra. Then for any Dehn
filling on the cusp ¢, obtained by attaching a layered solid torus, the Ptolemy equations satisty:

(i) There are a finite number of fixed Ptolemy equations, independent of the Dehn filling, coming
from tetrahedra outside the Dehn filling. These are obtained as in Theorem 1.1 using the reduced
Neumann-Zagier matrix and B vector for the unfilled manifold.

(i) The Ptolemy equations for the tetrahedra in the solid torus take the form

tyxyy £vs —vi =0,
where a, b, x, y are slopes on the torus boundary and x, y are crossing diagonals. In addition, the

variable yy, will appear for the first time in this equation, with yx, y4, and yp, appearing in earlier
equations.

A precise version of this theorem is Theorem 3.17.

Theorem 1.5 in particular implies that each of the Ptolemy equations for the solid torus can be viewed
as giving a recursive definition of the new variable y,,. These equations are explicit, depending on the
slope. Since the outside Ptolemy equations are fixed, in practice this gives a recursive definition of the A-
polynomial in terms of the slope of the Dehn filling. If we take a sequence of Dehn filling slopes { p;/¢i},
then the A-polynomials of the knots K; = K, /,., are closely related. The Ptolemy equations defining
Ak,

;41 are, roughly speaking, obtained from those for Ag; by adding a single extra Ptolemy relation.

We illustrate this theorem by example for twist knots, which are Dehn fillings of the Whitehead link.
While A-polynomials of twist knots are known (Hoste and Shanahan [27]; Mathews [31]), we still believe
this example is useful in showing the simplicity of the Ptolemy equations. In a follow up paper with
Thompson [28], we apply these tools to a new family of knots whose A-polynomials were previously
unknown, namely twisted torus knots obtained by Dehn filling the Whitehead sister.

1.4 Structure of this paper

In Section 2, we recall work of Thurston [41] and Neumann and Zagier [33], including gluing and cusp
equations, the Neumann—Zagier matrix, and its symplectic properties. We introduce a symplectic change
of basis, and show this leads to Ptolemy equations that give the A-polynomial, proving Theorem 1.1.

In Section 3, we connect to Dehn fillings. We review the construction of layered solid tori, and triangu-
lations of Dehn filled manifolds, and show how the triangulation adjusts the Neumann—Zagier matrix.
Using this, we find Ptolemy equations for any layered solid torus, completing the proof of Theorem 1.5.

Section 4 works through the example of knots obtained by Dehn filling the Whitehead link.
Acknowledgements
This work was supported by the Australian Research Council, grants DP160103085 and DP210103136.
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2 From gluing equations to Ptolemy equations via symplectic reduction

In this section we discuss Dimofte’s symplectic reduction method and refine it to show how gluing and
cusp equations are equivalent to Ptolemy equations, proving Theorem 1.1.

2.1 Triangulations, gluing and cusp equations

Let M be a 3-manifold that is the interior of a compact manifold M with all boundary components tori.
Let the number of boundary tori be ., so M has n, cusps. For example, M may be a link complement
S3 — L, where L is a link of n, components, and M a link exterior S3 — N(L).

Suppose M has an ideal triangulation. Throughout this paper, unless stated otherwise, triangulation
means ideal triangulation, and tetrahedron means ideal tetrahedron. Throughout, n denotes the number of
tetrahedra in a triangulation.

Definition 2.1 An oriented labelling of a tetrahedron is a labelling of its four ideal vertices with the
numbers 0, 1, 2, 3, as in Figure 1, up to oriented homeomorphism preserving edges.

In an ideal tetrahedron with an oriented labelling, we call the opposite pairs of edges (01, 23), (02, 13),
(03, 12) respectively the a-edges, b-edges and c-edges.

In an oriented labelling, around each vertex (as viewed from outside the tetrahedron), the three incident
edges are an a-, b-, and c-edge in anticlockwise order.

The number of edges in the triangulation is equal to the number n of tetrahedra, as follows: letting the
numbers of edges and faces in the triangulation temporarily be E and F, M is triangulated with 2 E
vertices, 3F edges and 4n triangles. As dM consists of tori, its Euler characteristic 2E — 3F + 4n is
zero. Since 2F = 4n, we have £ = n.

Definition 2.2 A labelled triangulation of M is an oriented ideal triangulation of M, where

(i) the tetrahedra are labelled Aq, ..., A, in some order,

2 b 0

Figure 1: A tetrahedron with vertices labelled 0, 1, 2, 3 and opposite edges labelled a, b, c.
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(ii) the edges are labelled Ey, ..., E, in some order, and

(iii) each tetrahedron is given an oriented labelling.
As in the introduction, we will need to refer to the edge £y to which an edge of tetrahedron A; is glued.

Definition 2.3 For j € {1,...,n} and distinct u, v € {0, 1, 2, 3}, the index of the edge to which the edge
(uv) of Aj is glued is denoted j(uv). In other words, the edge (uv) of A; is identified to Ej(,.).

Suppose now that we have a labelled triangulation of M. To each tetrahedron A; we associate three
variables Zj,zj’.,zj’.’ . These variables are associated with the a-, b- and c-edges of A; and satisfy the

equations

(2.4) zjzjz] =1,
. zj +(z; —1=0.
(2.5) i+ )T =1=0

If Aj has a hyperbolic structure then these parameters are standard tetrahedron parameters; see [42].
Each of z;, ZJ’. , zj’/ gives the cross ratio of the four ideal points, in some order. The arguments of z;, z]’. , Z]’.’
respectively give the dihedral angles of A; at the a-, b- and c-edges. Note that (2.4) and (2.5) imply that

none of zj, z}, z can be equal to 0 or 1 (ie tetrahedra are nondegenerate).

Definition 2.6 In a labelled triangulation of M, we denote by ay ;, by ;. cx,j respectively the number of
a-, b-, c-edges of A; identified to Ej.

Lemma 2.7 For each fixed j,
n n n
(2.8) Zak’j =2, Zbk’j =2 and ch’j =2.

Proof Each tetrahedron A; has two a-edges, two b-edges and two c-edges, so for fixed j the total sum
over all k£ must be 2. O

The nonzero terms in the first sum are a;(o1),; and @;(»3),;. Note that j(01) could equal j(23); this
occurs when the two a-edges of A; are glued to the same edge. In that case, aj(o1),; and aj(»3),; are
the same term, equal to 2. If the two a-edges are not glued to the same edge, then Ej(o1) and Ej(23) are
distinct, each with one a-edge of A; identified to it, and aj(o1),j; = dj(23),; = 1. Similarly, the nonzero
terms in the second sum are b;(o2),j,b;(13),; and in the third sum ¢;(93),;.¢j(12),;-

The numbers ay_j, by, . ck,;j can be arranged into a matrix.

Definition 2.9 The incidence matrix, In, of a labelled triangulation 7 is the n x 3n matrix whose kth

row is (ak,1,bk 1, Ch,1s -+ Ak s Dkens Chon)-
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Thus In has rows corresponding to the edges E1, ..., Ey, and the columns come in triples with the j™®
triple corresponding to the tetrahedron A;.

The gluing equation for edge Ej, is then
n
(2.10) 1_[ Z;’k,f (Z]{)bkaj (Zj’/)ck,j =1.
ji=1
When the ideal triangulation 7 is hyperbolic, the gluing equations express the fact that tetrahedra fit
geometrically together around each edge.

Denote the 1. boundary tori of M by T;,..., T,
triangulation of each T}, by triangles. On each Ty we choose a pair of oriented curves my, [ forming

.- A triangulation of M by tetrahedra induces a
a basis for H(Ty). By an isotopy if necessary, we may assume each curve is in general position with
respect to the triangulation of Ty, without backtracking. Then each curve splits into segments, where
each segment lies in a single triangle and runs from one edge to a distinct edge. Each segment of my or
[ can thus be regarded as running clockwise or anticlockwise around a unique corner of a triangle; these
directions are as viewed from outside the manifold. We count anticlockwise motion around a vertex as
positive, and clockwise motion as negative. Each vertex (resp. face) of the triangulation of T corresponds
to some edge (resp. tetrahedron) of the triangulation 7 of M ; thus each corner of a triangle corresponds
to a specific edge of a specific tetrahedron.

Definition 2.11 The a-incidence number (resp. b-, c-incidence number) of my (resp. [;) with the
tetrahedron A; is the number of segments of my (resp. [x) running anticlockwise (ie positively) through
a corner of a triangle corresponding to an a-edge (resp. b-, c-edge) of A;, minus the number of segments
of my (resp. [;) running clockwise (ie negatively) through a corner of a triangle corresponding to an
a-edge (resp. b-edge, c-edge) of A;.

(i) Denote by az’j,bl‘?’j,c}:j the a-, b-, c-incidence numbers of my with A;.

.o [ [ ,[ . . .
(i) Denote by ak,j*bk,j"k,j the a-, b-, c-incidence numbers of [ with A;.

To each cusp torus Ty we associate variables my, £;. The cusp equations at T}, are
oo =l [ [

I IPRAN H N g N AN AW N

(2.12) mie =[] ;" ki i e =[] 2" )0k ()%
j=1 j=1

When T is a hyperbolic triangulation, meaning the ideal tetrahedra are all positively oriented and glue to
give a smooth, complete hyperbolic structure on the underlying manifold, the cusp equations give my
and ¢, the holonomies of the cusp curves my and [z, in terms of tetrahedron parameters.

Any hyperbolic triangulation 7 gives tetrahedron parameters z;, z;, z/' and cusp holonomies ny, {x
satisfying the relationships (2.4)—(2.5) between the z variables, the gluing equations (2.10) and cusp
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equations (2.12); moreover, the tetrahedron parameters all have positive imaginary part. However, in
general there may be solutions of these equations which do not correspond to a hyperbolic triangulation, for
instance those with z; with negative imaginary part (which may still give M a hyperbolic structure), or with
branching around an edge (which will not). Additionally, not every hyperbolic structure on M may give
a solution to the gluing and cusp equations, since the triangulation 7 may not be geometrically realisable.

2.2 The A-polynomial from gluing and cusp equations

Suppose now that n. = 1, ie M has one cusp, and moreover, that M is the complement of a knot K in a
homology 3-sphere.

In this case, there is no need for the k£ = 1 subscript in notation for the lone cusp, and we may simply
write
m=my, [=, m=m, {=1{,

m m_m [ _ 1 [ _
njis ¢ =c 4y=ap;, bp=b

[ J_ 1
Ljc G =64

m__ m m __
aj =ay ;. bj =b

5]. ’
In this case we can take the boundary curves (m, [) to be a topological longitude and meridian, respectively.
That is, we may take [ to be primitive and nullhomologous in M, and m to bound a disc in a neighbourhood

of K.

We orient m and [ so that the tangent vectors vy, and v; to m and [, respectively, at the point where m inter-
sects [ are oriented according to the right-hand rule: vy, X v points in the direction of the outward normal.

The equations (2.4)—(2.5) relating the z, z’, z” variables, the gluing equations (2.10), and the cusp
equations (2.12) are equations in the variables Zj,z’.,z;f and £,m. Solve these equations for £, m,

eliminating the variables z;, ZJ’. , ZJ’.’ to obtain a relation between £ and m.
Champanerkar [4] showed that the above equations can be solved in this sense to give divisors of the
PSL(2, C) A-polynomial of M. Segerman showed that, if one takes a certain extended version of this
variety, there exists a triangulation such that all factors of the PSL(2, C) A-polynomial are obtained [38].

See also [23] for an effective algorithm.

Theorem 2.13 (Champanerkar) When we solve the system of equations (2.4)—2.5), (2.10) and (2.12)
in terms of m and £, we obtain a factor of the PSL(2, C) A-polynomial.

2.3 Logarithmic equations and Neumann-Zagier matrix

We now return to the general case where the number 7, of cusps of M is arbitrary.

Note that equation (2.4) relating z;, z;., z]/f , the gluing equations (2.10), and the cusp equations (2.12) are
multiplicative. By taking logarithms now we make them additive.

Algebraic € Geometric Topology, Volume 25 (2025)



A-polynomials, Ptolemy equations and Dehn filling 1275

Equation (2.4) implies that each z;, zj/. and z]’.’ is nonzero. Taking (an appropriate branch of) a logarithm
we obtain

logzj +logzj +logz] =im.
Define Zj =logzj and Z j/ = log z]/., using the branch of the logarithm with argument in (—, 7], and
then define Z/ as
(2.14) Z]!=in-Z2;-27;,
so that indeed Z ]’.’ is a logarithm of z]// )

Ina hyperbolic triangulation, each tetrahedron parameter has positive imaginary part. The arguments of
Zj,Z ], .’ (ie the imaginary parts of Z;, ZJ/., ZJ’.’) are the dihedral angles at the a-, b- and c-edges of A;,
respectlvely. They are the angles of a Euclidean triangle, hence they all lie in (0, ) and they sum to .
The gluing equation (2.10) expresses the fact that tetrahedra fit together around an edge. Taking a
logarithm, we may make the somewhat finer statement that dihedral angles around the edge sum to 2.
Thus we take the logarithmic form of the gluing equations as

n
(2.15) g Zj+ b Z)+ e ; Z) = 2mi.
j=1
We similarly obtain logarithmic forms of the cusp equations (2.12) as

n n
(2.16) logmk=Zaz1,ij +b5,Z; +ckJZ“ long=Za5€,ij —i—b,[(,j —i—ckJZ”
j=1 j=1
We can then observe that any solution of (2.14) and the logarithmic gluing and cusp equations (2.15)—
(2.16) yields, after exponentiation, a solution of (2.4) and the original gluing equation (2.10) and cusp
equations (2.12). Moreover, any solution of (2.4), (2.10) and (2.12) has a logarithm which is a solution of
(2.14) and (2.15)—(2.16).

Using (2.14) we eliminate the variables Z J// (just as using (2.4) we can eliminate the variables zj// ). In
doing so, coefficients are combined in a way that persists throughout this paper, and so we define these
combinations as follows.

Definition 2.17 For a given labelled triangulation of M, we define

/
di,j = ak,j—Ck,j dk,j = by, j —Ck,j» ck=ch,j fork =1,2,...,n,
Jj=1

. om m /o gm m m __ m _
Pi,j = Ak j = Ck.j» Mk,j—bk,j_ck,j’ ck—ch’j fork=1,2,...,n,

1 [ _ [ _ [ _
)“k,j_ak,j_ck,j’ k] bk] ,., Ck_ch,j fork=1,2,...,n..

Note that the index k in the first line steps through the n edges, while the index k in the next two lines
steps through the 7, cusps.
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When n, = 1 we can drop the k subscript on cusp terms, so we have

m

i =a™— m_ — I =p— ! L t
Wj =aj —cj', /Lj—b Zc, k—a c )»]—bj ¢ C—ZC].

We thus rewrite the logarithmic gluing and cusp equations (2.15)—(2.16) in terms of the variables Z;, Z ]’
and £y, my, only, as

(2.18) de,Z +di Z) =in(2—cp),
j=1
n

(2.19) D ki Zj+ e  Zj =logmy —imcy,
j=1

(2.20) ZA,”Z,H,” i =logly —imcy.
j=1

Define the row vectors of coefficients in equations (2.18)—(2.20) as
Rgi=(dk,1 dl/c,l oo dip dkn)
RE = (ke Wiy -+ M W)
Ry = (Mt My oo Men M)

So Rg gives the coefficients in the logarithmic gluing equation for the k™ edge Ey, and R}, R}c give
respectively coefficients in the logarithmic cusp equations for my and [; on the k™ cusp.

When n, = 1 we again drop the k subscript on cusp terms and simply write R™ = R;' and R'= R}c, o)
that R™ = (i1, (). ..., tn, i) and R'= (A1, A}, ..., An, A)).

We observe natural meanings for the new d,d’, u, ', A, A, ¢ coefficients of Definition 2.17 by re-
exponentiating. The tetrahedron parameters and the holonomies my, £} satisfy versions of the gluing
and cusp equations without any Z]’/ appearing, where the d, d’ variables appear as exponents in gluing
equations, i, ', A, A’ variables appear as exponents in cusp equations, and the ¢ variables determine

signs:
n
1_[ 2;1""" (zj/.)d//xzf = (—1)% for k =1, ...,n (indexing edges)
j=1
n , : n Ny ,
k= (1)K l_[ ZJ‘.“‘" (z})“lf,f, L = (—1)% l_[ ij” (zj’.))‘k.j fork =1,...,n. (cusps).
j=1 j=1

When n, = 1, the notation for cusp equations again simplifies so we have

n
m==D"T]47EpY  and £=(- 1)< ]‘[ Tt j.
j=1 j=
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The matrix with rows RlG, R Rg, ern, R[1 e Rz‘c, RLC is called the Neumann—Zagier matrix, and we
denote it by NZ. The first #n rows correspond to the edges E1, ..., Ey, and the next rows come in pairs
corresponding to the pairs (my, [) of basis curves for the cusp tori Ty, ..., Ty,,. The columns come
in pairs corresponding to the tetrahedra A, ..., A,. Note that the data of a labelled triangulation of
Definition 2.2 give us the information to write down the matrix: the edge ordering E1, ..., E, orders the
rows; the tetrahedron ordering Ay, ..., A, orders pairs of columns; and the oriented labelling on each
tetrahedron determines each pair of columns:

A An
FRG B[ dia dyy e din dy, ]
Rg E, dn,l dr/z,l oo dpn dr/z,n
m / /
(2.21) Nz=| B |= ™| K g Hin Rin
) | RY| T A A e A A
1 1 1,1 1,1 L,n 1,n
m /
R?c Mae /"an’l /"Ln‘_’l e I'an,n /"Lnun
/ /
-Rnc— [nc L }\'n‘-,l )\'nc,l )\‘nun )‘nc,n |

The gluing and cusp equations can then be written as a single matrix equation, if we make the following
definitions.

Definition 2.22 The Z-vector, z-vector, H-vector and C-vector are defined as

Z:=(Z,Z},....Zn, Z))T,

z = (ZI,Z;,...,Z,,,Z;,)T,

H:= (0,...,O,logml,logﬂl,...,logmnc,logﬁnc)T,
T

C:= (2—01,...,2—cn,—c;“,—c§,...,—c,':‘c,—c,[,c) .

The vector Z contains the logarithmic tetrahedral parameters; the vector H contains the cusp holonomies,
and the vector C is a vector of constants derived from the gluing data, giving sign terms in exponentiated
equations.

We summarise our manipulations of the various equations in the following statement.

Lemma 2.23 Let T be a labelled triangulation of M.
(i) The logarithmic gluing and cusp equations can be written compactly as
2.249) NZ-Z=H+inC.
That is, logarithmic gluing and cusp equations (2.18)—(2.20) are equivalent to (2.24).
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(ii) After exponentiation, a solution Z of (2.24) gives z which, together with z]’.’ defined by (2.4), yields
a solution of the gluing equations (2.10) and cusp equations (2.12).

(iti) Conversely, any solution (z;, ZJ/-, zJ’/) of (2.4), gluing equations (2.10) and cusp equations (2.12)
yields z with logarithm Z satisfying (2.24).

(iv) Any hyperbolic triangulation yields Z and H which satisfy (2.24). O

2.4 Symplectic and topological properties of the Neumann-Zagier matrix

The matrix NZ has nice symplectic properties, due to Neumann—Zagier [33], which we now recall.

First, we introduce notation for the standard symplectic structure on R?Y, for any positive integer N .
Denote by e; (resp. f;) the vector whose only nonzero entry is a 1 in the (2i —1)™ coordinate (resp. 2i™
coordinate). Dually, let x; (resp. y;) denote the coordinate function which returns the (2i —1)™ coordinate
(resp. 2i™ coordinate). We define the standard symplectic form o as

N
(2.25) a)=dx1/\dy1—i—-'-—l—de/\dyN:dej/\dyj.
j=1

Thus, given two vectors V = (V1. V],....Vy. V) and W = (W, W/, ..., Wy, Wy) in R2N,

N
o(V.W)=>"V;W/ - V/W;.
j=1

Alternatively, o(V, W)= VT JW = (JV)-W, where - is the standard dot product, and J is multiplication
by i on CN = R2V ie J(e;) = f; and J(f;) = —e; (hence J? = —1). As a matrix,

0 —1 -
1 0
0 —1
J = 1
0 —1
L 1 0]
The ordered basis (eq, f1,...,en, fn) forms a standard symplectic basis, satisfying
w(ei, fj) =38ij, w(ei.ej)=0, o(fi, fj)=0
foralli, j €{l,..., N}. Any sequence of 2N vectors on which w takes the same values on pairs is a

symplectic basis.

Maps which preserve a symplectic form are called symplectomorphisms. We will need to use a few
particular linear symplectomorphisms. The proof below is a routine verification.
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Lemma 2.26 In the standard symplectic vector space (R*N, w) as above, the following linear transfor-
mations are symplectomorphisms:

(i) Forj,ke{l,....,N},j#k,andanya € R, mape; — e; +afy, e; — ey +afj, and leave all
other standard basis vectors unchanged.

(ii)) Forje{l,...,N}andanya € R, mapej— e; +a f;, and leave all other standard basis vectors
unchanged. a

In fact, it is not difficult to show that the linear symplectomorphisms above generate the group of linear
symplectomorphisms which fix all fj. If we reorder the standard basis (ey,...,eu, f1,..., fn), the
symplectic matrices fixing the Lagrangian subspace spanned by the f; have matrices of the form

4]

where [ is the n X n identity matrix and A is an # X n symmetric matrix. These form a group isomorphic
to the group of n x n real symmetric matrices under addition.

Returning to the Neumann—Zagier matrix NZ, observe that its row vectors lie in R?”, where 7 (as always)
is the number of tetrahedra. These vectors behave nicely with respect to .

Theorem 2.27 (Neumann—Zagier [33]) With RY, Rz‘, R;c and w as above:
. . G pGy _
(i) Forall j,ke{l,...,n}, Wehavea)(Rj ,RY)=0.
(i) Forall j €{l,...,nyandk €{1,...,n., we have w(RY, R} = o(RY, R}c) =0.
(iii) Forall j,k €{l,...,nc}, we have (R}, R}) = 28
(iv) The row vectors RIG, el Rg span a subspace of dimension n —n..

(v) The rank of NZ isn + n..

In light of Theorem 2.27(iv), by relabelling edges if necessary, we can assume a labelled triangulation
has the property that the first n —n. rows of its Neumann—Zagier matrix are linearly independent. We
will make this assumption throughout.

According to Theorem 2.27, the values of w on pairs of vectors taken from the list of n + n. vectors

(RY,..., Rf_nc, RT, %R[I co R %Rﬁ,c) agree with the value of @ on corresponding pairs in the
list (f1,..., fa—ne>€n—n.+1, fn—n.+1,---,€n, fn). For RO, ..., Rg_nc linearly independent, there is a

linear symplectomorphism sending each vector in the first list to the corresponding vector in the second.
Accordingly, as observed by Dimofte [12] the list of n + 1, vectors
G G
(RY.....Ry , .RY.IR\.....R} IR} )
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extends to a symplectic basis for R%”,

(R{.RS.....R_, RS, R}.IR,,....R* IR!).

n—n.°> ““n—n.’ 2 ne 2
with the addition of n — n, vectors, denoted RlF e R{_nc. Being a symplectic basis means that, in
addition to the equations of Theorem 2.27(i)—(iii), we also have

(R}, RY)=0 and (R}, RY)=6;; forall j,ke{l,...,n—nc}, and
w(RY, RT) = o(R}, RY) =0 forall j €{l,....,n—nand k €{1,... n.}.

Indeed, the RJP may be found by solving the equations above: given RO, R, R}(, we may solve
successively for R, RZF, ey R{_nc. Being solutions of linear equations with rational coefficients, we
can find each RJP e Q3"

Remark 2.28 The RJF are not unique: there are many solutions to the above equations. Distinct solutions
are related precisely by the linear symplectomorphisms of R2” fixing an (n4-n.)-dimensional coisotropic
subspace. Following the discussion after Lemma 2.26, such symplectomorphisms are naturally bijective
with (n — n¢) x (n — n¢) real symmetric matrices. Hence the space of possible (RI, ..., R,{_nc) has
dimension %(n —n)(n—n+1).

For k € {1,...,n—n.}, write
(RE =i iy oo Jin S
The symplectic basis (R?, RIF, cees R,?_nc, R{_nc, RT, %R[l, o R %RLC) forms the sequence of row
vectors of a symplectic matrix, which we call SY € Sp(2#n, R). When n, = 1, we have
er fl,l fl/,l f1,2 fl/,2 fl,n f]l,n
RE dig dyy dip o di, o dia dy,
(2'29) SY:= R{_l = fn—l,l f,:_1,1 fn—1,2 f,:_l,z fn—l,n r;—l,n
Rg—l dn—1,1 d;;—l,l dn-1,2 dr,z—l,Z A1 drlz—l,n
R™ 1 4 2 I I
1Rt 1y Y 1y Y 1y 1Sy
L 2 L 21 21 272 272 2/tn 2%n

As a symplectic matrix, SY satisfies (SY)T J(SY) = J, and for any vectors V, W,
wo(V,W)=w(SY-V,SY-W).
2.5 Linear and nonlinear equations and hyperbolic structures

The symplectic matrix SY of (2.29) shares several rows in common with NZ. We will need to rearrange
rows of various matrices, and so we make the following definition.
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Definition 2.30 Let A be a matrix with n + 2n, rows, denoted A1, ..., Ap42n..

(i) The submatrices Al AT AT consist of the first n — n, rows, the next 7, rows, and the final 27,
rows. That is,

Ay Ap—n.+1 Apt1 Al
Sl — : L. : oA : , 0 A=| 4n
it

An—nc An An+2nc A

(ii) The matrix A” consists of the rows of A! followed by the rows of A'!. In other words, it is the

I
b A
4" = |:A1Hi|'

This matrix 4 of Definition 2.30 includes the case of a (n+42n,) x 1 matrix, ie a (n+2#n.)-dimensional

matrix of n + n, rows

vector.

Observe that Definition 2.30 applies to the Neumann—Zagier matrix NZ. The matrix NZ' has rows

RIG, ey R,(,;_nc, which we may assume are linearly independent. By Theorem 2.27(i) and (iv), the rows

of NZ! form a basis of an isotropic subspace, and the rows of NZ! also lie in this subspace. The matrix
NZ™ has rows RY, R[1 e Rz‘c, RE,(. Theorem 2.27(iv) and (v) imply that the rows of NZ’ form a basis
for the rowspace of NZ.

Similarly for the vector C, observe C I contains the entries 2—ct,....2—=cp—p,),and C II' contains

[
10

vectors, while A contains cusp holonomies.

the entries (—c[', —¢ ,—cp, —cy, ). For the holonomy vector H, we have that H' and H" are zero

The gluing equations (2.18) can be written as

NZ! e
(2.31) [NZH] Z=in [Cn]-

The first n — n. among these equations are given by
(2.32) NZ'.Z =inCl.

We have seen that the rows of NZ! span the rows of NZ!!, so knowing NZ!- Z determines NZ" - Z. But
it is perhaps not so clear whether NZ!- Z = i C! implies that NZ"'- Z = i 7 C'. However, as we now

show, in a hyperbolic situation this is in fact the case.

Lemma 2.33 Suppose the triangulation T has a hyperbolic structure. Then a vector Z € C?" satisfies
(2.31) if and only if it satisfies (2.32).

Proof Hyperbolic structures (not necessarily complete) give solutions to the gluing equations Z =
(Z4, Zg, s ZnZ)) € C2"; hence the solution space of (2.31) is nonempty. Since equations (2.32) are
a subset of those of (2.31), the solution space of (2.32) is also nonempty.
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Since both matrices [NZ” ] and NZ' have rank n — n., the solution spaces of both (2.31) and (2.32) have

the same dimension: 2n — (n —n.) = n + n.. a

Thus, some of the gluing equations of (2.18), or equivalently of (2.31), are redundant. The same is true of
the larger system (2.24). So NZ’ is a more efficient version of the N eumann—Zagier matrix, containing
only necessary information for computing hyperbolic structures.

As discussed at the end of Section 2.1, the solution spaces of these equations do not in general coincide with
spaces of hyperbolic structures. The solution space of (2.32) contains the space of hyperbolic structures
on the triangulation 7, but is strictly larger. These equations treat Z; and Z ! as independent variables, but

Z;

of course they are not. In a hyperbolic structure, z; = ¢/ and z = eZJ are related by the equations (2.5).

Indeed, the solution space of the linear equations (2.32) has dimension # + n,, but there are a further
n conditions imposed by the relations z; + (zj/.)_1 —1 =0 of (2.5). As discussed in the proof of [33,
Proposition 2.3], these n conditions are independent and the result is a variety of dimension n.. However,
as we just saw, this variety may contain points that do not correspond to hyperbolic tetrahedra. Moreover,
it may not contain all hyperbolic structures, as not every hyperbolic structure may be able to be realised
by the triangulation 7.

However, by Thurston’s hyperbolic Dehn surgery theorem [42], the space of hyperbolic structures on
M is also n.-dimensional. So at a point of the variety defined by the linear equations (2.32) and the
nonlinear equations (2.5) describing a hyperbolic structure, the variety locally coincides with the space of
hyperbolic structures.

We summarise this section with the following statement.

Lemma 2.34 Let 7 be a hyperbolic triangulation of M, labelled so that its Neumann—Zagier matrix NZ
has rows RIG, cee R,?_nc linearly independent.

(i) The logarithmic gluing equations, expressed equivalently by (2.18) or (2.31), are equivalent to the
smaller independent set of equations (2.32).

(ii) The variety V defined by the solutions of these linear equations (2.32), together with the nonlinear
equations (2.5), has dimension n.. The hyperbolic structures on T correspond to a subset of V. Near
a point of V' corresponding to a hyperbolic structure on T, V parametrises hyperbolic structures

onT.

(iii)) The logarithmic gluing and cusp equations for T are equivalent to
(2.35) NZ".Z = H’ +inC". O
2.6 Symplectic change of variables

Dimofte in [12] considered using the matrix SY to change variables in the logarithmic gluing and cusp
equations.
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If M is hyperbolic, by Lemma 2.34 the gluing and cusp equations are equivalent to (2.35). Observe that
the rows of NZ° are (up to a factor of % in the rows R}() a subset of the rows of SY. Indeed, obtain SY

from NZ° by multiplying R! rows by 1, and inserting rows R]",..., RI_, .
In the equations of (2.35) Z = (Zy, Z}, ..., Zn, Z;Z)T are regarded as variables, and we now change

them using SY.

Definition 2.36 Given a labelled hyperbolic triangulation 7 and a choice of symplectic matrix SY, define
the collection of variables

T
F = (FI,GI,---,Fn—ncaGn—nc’M17%L1,---,Mnc’%[4nc)
by [ =SY-Z.

In other words,

i=Rl-Z fork e {l,....,n—n},
! Gy=R¢.-Z, forkell,....n—ng,
My =R}-Z fork e {l,...,n,
L =3R\ -Z fork e{l,... ,nd.

L~ n

Lemma 2.37 Let T be a labelled hyperbolic triangulation, and SY a matrix defining the variables I".
Then the logarithmic gluing and cusp equations are equivalent to

(2.38) Gr=inm(Q2—cp). Mj=logmj—inc}, Lj=logl;—inc;.

In the new variables, these equations are simplified. Note that the [}, variables do not appear in (2.38).

Proof The first n — n, rows of (2.35) express the gluing equations as Rg -Z =in(2 —cy), for
ke{l,...,n—n. Remaining rows of (2.35) express cusp equations as R}?‘ -Z =logmj — inc}“ and
RS-Z =logt; —c;. m

The symplectic change of variables involves writing variables Z in terms of the variables I'. That is, we
need to invert SY.

As SY is symplectic, (SY)7 J(SY) = J, so its inverse is given by SY™! = —J(SY)T J, or

/ / / / 147/ / 147/ /
diy —fig o gy —Tumwn Mg MLy M1 THu
1 1
—di1 Si1 o —du—net Juenel —3A11 M1 —3Anal Had
(2.39) : : : : : : ’ : :
/ / / / 197 / 147 /
dl,n _fl,n  duenen ~Jn-nen 7}‘1,n K 2hnen “Huon
- 1 1
__dl,n fl,n _dn—nc,n fn—nc,n _5)\1,11 Hin _jknc,n Hnn |
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Thus we explicitly express the Z;, Z J’ in terms of the variables of I, using Z = (SY)~!T:

n—n. ne

(2.40) Zi=Y (di iTe— ;G0 +5 > Wi My — e ;L)
k=1 k=1
n—n. ne

(2.41) Zp =" (=di ;T + fi,jGi) + % Y (=hicj M + e ; L)
k=1 k=1

2.7 Inverting without inverting

It is possible to explicitly compute a symplectic matrix SY, then invert it, express the variables Z in
terms of the variables I' by (2.40)—(2.41), and then solve to obtain the A-polynomial. However, we now
show that we can perform this calculation without ever having to find SY or its inverse SY ™! explicitly —
provided that we can find a certain sign term.

To see why this should be the case, note the following preliminary observation. Equations (2.40)—(2.41)
express Zj and Z ]’ in terms of the [}, Gy, M; and L;. The coefficients of the I}, M; and L; are numbers
which appear in the Neumann—Zagier matrix. The only coefficients which do not appear in NZ are the
coefficients of the G. But the gluing equations (2.38) say Gy = iw(2 — ¢ ), SO upon exponentiation
these terms only contribute a sign. In other words, up to sign, all the information we need to write the Z;
in terms of the variables Iy, G, L;, M; is already in the Neumann—Zagier matrix.

To implement this, observe that the matrix —J (NZ")T shares many columns with SY™!:

di,l dé,l d1/1—nc,1 /‘,1,1 )‘/1,1 /‘;15,1 )‘;zc,l
—diy —dyy o —dp—nn 11 A o —Hal —Aagd
Q42 —JNZ)T =| L : . . . :
dig a0 pewen Bin Mo Baan Aun
__dl,n _d2,n s _dn—nc,n —Mi,n _)\l,n ot —Hngn _)\nc,n_
In particular, for any quantities Ay, ..., Ap—pn,, A)f’ A‘IL, ey Aﬁr, Affc,

Y ' | A4 A | A { T
S 1[ 1 0 2 0 “e n—n. O )1\’ IIL cee A’);C AZL(]

Splitting up the I, and Gy terms, using Definition 2.36 and informed by the gluing and cusp equations
(2.38), we obtain

(2.43) Z=SY'.T=—JWNZ")TT +SY"!G,

where T is the vector
= T
I = [Fl, e Fn_nc,—%logﬁl,%logml, .. .,—%logﬁnc, %logmnc]
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and G is
T
[O, Gi.....0,Gpp., (M| —logmy), %(Ll —logty), ..., (M, —logmy,), %(an —logﬁnc)]

The first term —J (NZb)T T of (2.43) only involves NZ. The final vector G consists of the precise quantities
which are fixed to be constants by the gluing and completeness equations (2.38). Indeed, (2.38) says
precisely that the final vector in equation (2.43) is a vector of constants essentially identical in content to
7iCP. We define

#_ m_ 1.1 m 1017
C —[0,2—(:1,0,2—(:2,...,O,Z—Cn_nc,—cl,—561,...,—0,1(,—56,,(] ,

which is C b, with some zeroes inserted, and some factors of one half. So the final vector in (2.43) is set
to 7iC*, and we obtain the following.

Proposition 2.44 Given a hyperbolic triangulation, labelled so that its Neumann—Zagier matrix NZ has

rowsRlG,...,RG

n—n, linearly independent, and SY a matrix defining the variables I', the logarithmic

gluing and cusp equations are equivalent to

(2.45) Z =(=J)(NZ)TT 4+ 7i SY~!1C*. O

Once we find a vector B = SY~!C*, Proposition 2.44 allows us to express the Z; and Z ]’ in terms
of the variables I7, ..., I;,—1, and the holonomies £, my of the longitudes and meridians, using only
information already available in the Neumann—Zagier matrix. There is no need to find the extra vectors R{
of the symplectic basis, or the matrix SY. If in addition B is an integer vector, then when we exponentiate

Z

/
(2.45) to obtain the tetrahedron parameters z; = ¢“/ and Z} = ¢Zi, B determines a sign. Hence we refer

to this term as a sign term.

The approach outlined above may sound paradoxical: we avoid calculating the symplectic matrix SY, by
finding a vector B = SY ! C*. This seems to involve the symplectic matrix SY anyway! However, in the
next section we show we can find B by solving a simpler equation, involving only the Neumann—Zagier
matrix, and then choose SY so that B = SY~!C*. That is, we may use the flexibility in choosing R{ of
Remark 2.28 to find appropriate SY.

2.8 The sign term

We now demonstrate the existence of an SY and an integer vector B satisfying SY - B = C*,

The rows of the matrix equation SY - B = C¥ are

(2.46) R -B=0 fork=1,...,n—n,
(2.47) Rg-B=2—ck fork=1,...,n—n,
(2.48) RY-B=—c], R,-B=-—¢, fork=1,...,n.

Equations (2.47)—(2.48) are exactly the equations in the rows of a matrix equation with NZ’:

(2.49) NZ’-B =CP".

Algebraic € Geometric Topology, Volume 25 (2025)



1286 Joshua A Howie, Daniel V Mathews and Jessica S Purcell

This equation has been studied by Neumann; it is known to always have an integer solution.

Theorem 2.50 (Neumann [32, Theorem 2.4])

(i) There exists an integer vector B satisfying NZ- B = C.
(i) Given an integer vector By such that NZ - By = C, the set of integer solutions to NZ- B = C
includes
n
Bo +Spany (JRY ..., JRY) = {BO + > apJRY ) ay,....an € Z}.
k=1
Neumann’s result is more precise, incorporating a parity condition on B not needed here. Additionally,

we will not need part (ii) of the theorem until later, but we state it now. Note that, by taking a subset of
the rows, or equations, NZ- B = C implies NZ’- B =C".

In order to solve SY - B = C*, it remains to satisfy the equations (2.46). As discussed above, we do this
not by adjusting B, but by judicious choice of the vectors RIE , and hence the matrix SY. Recall from
Section 2.4 that there is substantial freedom in choosing the vectors R{ . But first we deal with a technical
condition on the triangulation, which we need for the argument. Recall ¢ = Z;‘l=1 ¢k,j (Definition 2.17),
where ¢ ; is the number of c-edges of the tetrahedron A; identified to edge Ej (Definition 2.6). So ¢
is just the number of c-edges of tetrahedra identified to E.

Lemma 2.51 Any triangulation of M has a labelling such that
G

(i) its Neumann—Zagier matrix NZ has rows RG, e, Rn_nc linearly independent, and

(ii) thereexistsk € {1,...,n—n.} with ¢; # 2.

In other words, the conclusion of the lemma requires that some edge be incident to a number of c-edges
other than 2. In fact, we will see that one can start from any labelled triangulation, and it suffices to relabel
the vertices of at most one tetrahedron, and possibly reorder some edges. Moreover, we can choose any
edge Ej with nonzero RY, and adjust so that this particular edge is incident to ¢ # 2 c-edges.

The proof of Lemma 2.51 requires that # > n,. In fact, Adams and Sherman [1] proved that n > 2n, for
any finite volume orientable hyperbolic 3-manifold with 7. cusps.

Proof Take a labelled triangulation 7 of M. Choose some k € {1,...,n} such that Rg is nonzero.
(Such k certainly exists since the Rg span a space of rank n —n, > 1.) We claim that if ¢, = 2, then T
can be relabelled so that ¢ # 2.

Let A; be a tetrahedron of 7. The relabellings of A; have the effect of cyclically permuting the a-, b-
and c-edges, and hence cyclically permuting the triple (ax ;. bk ;. Ck ¢ ); however other terms ¢y ; in the
sum for ¢x are unchanged. Hence, if one of ay ; or by ; is not equal to ¢ ,, then a relabelling of A, will
change ¢, to a distinct value, not 2, as desired. Otherwise, all relabellings of A; leave ¢, = 2, and we
have ay ; = by s = cx s, 50 di s = dl’m = 0 (Definition 2.17).
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The above argument applies to any tetrahedron A, of 7. Thus, if every relabelling of any single tetrahedron
leaves cx = 2, then the numbers dy ; = dl/c, ,=0forallz €{l,... ,n}. Butthese are precisely the entries
in the vector R,‘f forming a row of NZ’, so Rg = 0, contradicting R,? # (0 above. This contradiction
proves the claim. Moreover, after relabelling the tetrahedron, there still exists ¢ € {1,...,n} such that
g ¢, by . ck are not all equal, and hence Rg is not zero.

Thus, there exists a relabelling of a single tetrahedron that makes ¢ # 2, and Rg remains nonzero. Call
the resulting labelled triangulation 7’ and Neumann—Zagier matrix NZ'. Now by Theorem 2.27(iv), the
first n row vectors of NZ' span an (n—n.)-dimensional space. Hence we may relabel the edges so that the
edges labelled 1, ...,n —n. have linearly independent row vectors, and our chosen edge is among them.
This relabelling satisfies the lemma. a

For a triangulation as in Lemma 2.51, the nonzero entry of C b provides the leverage to make a choice of
vectors RIE so that they satisfy (2.46).

Lemma 2.52 Suppose that T is labelled to satisfy Lemma 2.51. Let B € Z>" be a vector satisfying
NZ'. B = CP. Then there exist vectors RIF, ...,RI in Q2" such that

n—n.

6) (RIF, RIG, ...,RI' RY RT, %RII, e Rﬁc, %RLC) forms a symplectic basis, and

n—n. *\n—ng>
(i) forall j €{l,...,n—nc} wehave R} - B =0.
Proof We start from arbitrary choices of the R,f € Q2" such that
I pG r G 1 pl 1 pl
(R{.RY.....R,_, . R, .RT.FR\.....R} . 3R, )

is a symplectic basis.

Lemma 2.26 allows us to adjust the R, without changing any RY, R}T‘ or Rﬁ., so that we still have a
symplectic basis. In particular, we may make the following modifications:

(i) Forj#ke{l,...,n—n.},and a € R, map R{HRJr+aRG, R{HR{—i—aRjG.
(i) Take j €{l,...,n—n} and a € R, and map RJF»—>RJF+aRJG.
Let R} - B =aj. We will adjust the R} until all a; = 0.

We claim there exists a k € {1,...,n —n.} such that Rg - B # 0. Indeed, as 7T satisfies Lemma 2.51,
there exists a k € {1,...,n—n} such that ¢ # 2. Then the k™ row of the equation NZ"- B = C” says
that o := R,f - B =2 — ¢y, which is nonzero as claimed.

First, modify R} by (ii), replacing R} with (R})" = R} — (ax/a)RY. Then
(RLY-B=RF-B—2KRG.p =0,
o
Thus the modification makes ay = 0; the other ¢; are unchanged.
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Now consider j # k. If RjG - B # 0, modify R]r by (ii) to set aj = 0. Otherwise, RjG - B = 0 and modify
RJF and R,I; by (i), replacing them with

Iy _ pT' % G I'yv _ pT' % 1G

respectively. Then
(Rf)’-BzRJ-F-B—ﬂR,f-Bzo and (RL)-B :R};.B_QRJG.B:ak —0.
o o
Again the effect is to set @; = 0 and leave the other a; unchanged.

Modifying RJP in this way for each j # k, we obtain the desired vectors. O
We summarise the result of this section in the following proposition.

Proposition 2.53 Let T be a hyperbolic triangulation labelled to satisfty Lemma 2.51. Let B be an integer
vector such that NZ” - B = C” (such a vector exists by Theorem 2.50). Then there exists a symplectic
matrix SY defining variables I', such that the logarithmic gluing and cusp equations are equivalent to the
equation

(2.54) Z =(—J)(NZ")TT + riB. 0

We have now realised our claim of “inverting without inverting”. Proposition 2.53 allows us to convert
the variables Z;, Z; into the variables I}, together with the cusp holonomies ¢;, m;, without having to
actually calculate the vectors er or the matrix SY! The only information we need is the Neumann—Zagier
matrix NZ, and the integer vector B such that NZ’- B =C".

2.9 The A-polynomial from gluing equations and from Ptolemy equations

Suppose that n, = 1, we have a labelled triangulation 7 satisfying Lemma 2.51, and a vector B =
(By,B),..., By, B,)T such that NZ". B = C".

Proposition 2.53 converts the logarithmic gluing and cusp equations — linear equations — into the variables
I,..., -1, together with the cusp holonomies #z, £. We now convert the nonlinear equations (2.5) into
these variables.

We first convert to the exponentiated variables z;. Let y; = e/ Using (2.54), and the known form of
(-=J) (NZb)T from (2.42), we obtain

n—1 n—1
. ’ d . ’ . . _ .
(2.55) 2 = (DB T v 2= () B e 22 Ty
k=1 k=1
Then the nonlinear equation (2.5) for the tetrahedron A; becomes

n—1 n—1
o / dl . ’ . i .
(—1)Big Wil2,, 012 l_[ ykk,] + (_I)ng_u,/zmxj/z l—[ V:k.J _1=o0.
k=1 k=1
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Since dy ; = ay,j—ck,; and d]/w. = by, j —ck,; (Definition 2.17), we may multiply through by y %/ ; then
the exponents become the incidence numbers ay_;, by ;. ck,; of the various types of edges of tetrahedra
with edges of the triangulation (Definition 2.6):

n—1 n—1 n—1
(2.56) (—I)Bj E—M}/ka}/Z 1_[ ylfk.j + (_I)B]/ E—;Lj/Zm)\j/Z 1_[ )/Zk.j _ 1_[ yljk,]‘ =0.

k=1 k=1 k=1
Each product in the above expression is simpler than it looks: it is a polynomial of total degree at most 2
in the yg, by Lemma 2.7! The product ]_[Z;ll y]f *J has j fixed, referring to the tetrahedron A j- The
product is over the various edges Ey of the triangulation; the exponent ay ; is the incidence number of
the a-edges of A; with the edge E. But A; only has two a-edges, so at most two ay ; are nonzero, and
the ay ; sum to 2 as in (2.8).
Recall the notation j(uv) of Definition 2.3. For fixed j, the only NONZEro day ;j are dj(o1),; and da;(23),;
(which may be the same term). Thus the product ]_[Z;ll y,f ¥J"is equal to the product of Yj(o1) and
Yj(23)» With the caveat that y,, does not appear in the product. Indeed, in Definition 2.36 we only define
IN,..., -1, soonly y1, ..., Ys—1 are defined. However, it is worthwhile to introduce y;, as a formal
variable.

Definition 2.57 Let 7 be a labelled triangulation of a 3-manifold with one cusp, and let B be an integer
vector such that NZ”- B = CP. The Ptolemy equation of the tetrahedron A; is

— . C—wl )2
D)2 2mb 2y 00y + (DB PmM Py 00 via3 — Vies Viaz =0.

The Ptolemy equations of T consist of Ptolemy equations for each tetrahedron of 7.

Equation (2.56) is the Ptolemy equation for Aj, with the formal variable y; set to 1.

Let us now put the work of this section together.

Theorem 2.58 Let 7 be a hyperbolic triangulation of a one-cusped M, labelled to satisfy Lemma 2.51.
When we solve the system of Ptolemy equations of T in terms of m and £, setting y, = 1 and eliminating the
variables y1, ..., Yn—1, we obtain a factor of the PSL(2, C) A-polynomial, which is also the polynomial
of Theorem 2.13.

(Note that the polynomial described here, arising by eliminating variables from a system of equations, is
only defined up to multiplication by units, and the equality of polynomials here should be interpreted
accordingly.)

Proof Theorem 2.13 tells us that solving equations (2.4)—(2.5), (2.10) and (2.12) for m and £, eliminating
the variables z;, zj/. , z]// , yields a factor of the PSL(2, C) A-polynomial. By Lemma 2.23, a solution of the
logarithmic gluing and cusp equations, after exponentiation, gives a solution of (2.4), (2.10) and (2.12);
and conversely any solution of (2.4), (2.10) and (2.12) has a logarithm solving the logarithmic gluing and
cusp equations.
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By Proposition 2.53, after introducing appropriate B and SY and variables I", which all exist, the logarith-
mic gluing and cusp equations are equivalent to (2.54). Exponentiating gives us that the equations (2.55)
imply (2.4), (2.10) and (2.12). Combining these with (2.5) yields the equations (2.56), one for each
tetrahedron. Therefore, any solution of the equations (2.56) for y, ..., y,—1,m, £ yields a solution of
(2.4)—(2.5), (2.10) and (2.12). Conversely, any solution of (2.4)—(2.5), (2.10) and (2.12) has a logarithm
satisfying the logarithmic gluing and cusp equations, hence yields solutions of (2.56).

Thus the pairs (£, m) arising in solutions of (2.4)—(2.5), (2.10) and (2.12) are those arising in solutions
of (2.56). The latter equations are the Ptolemy equations of 7 with y,, set to 1. Thus, the (£, m) satisfying
the polynomial obtained by solving the Ptolemy equations with ¢, = 1 are also those satisfying the

polynomial of Theorem 2.13. a

Corollary 2.59 With T and M as above, let Ao(L, M) denote the factor of the SL(2, C) A-polynomial
describing hyperbolic structures on T . Letting £ = €12 and M =m*/? and solving the Ptolemy equations
with y, = 1 as above, we obtain a polynomial in M and £ which contains a factor either Ao(L, M) or
Ao(—L, M).

Proof Suppose (£, M) lies in the zero set of the factor of the SL(2, C) A-polynomial describing
hyperbolic structures on 7. Then there is a representation 71 (M) — SL(2, C) sending the longitude to
a matrix with eigenvalues £, £~! and the meridian to a matrix with eigenvalues M, M~!. Projecting
to PSL(2, C) we have the holonomy of a hyperbolic structure on 7 whose cusp holonomies are given
by £2 = £ and M? = m, respectively. Hence (£, m) and the tetrahedron parameters of the hyperbolic
structure solve the gluing and cusp equations 7, and hence satisfy the polynomial of Theorem 2.58. O

3 Dehn fillings and triangulations

3.1 Layered solid tori

Suppose we have a triangulation where a cusp ¢; meets exactly two tetrahedra A} and Af in exactly one
ideal vertex per tetrahedron. (We show in Appendix A, Proposition A.1, that such a triangulation can be
constructed for quite general manifolds with two or more cusps.) These two tetrahedra together give a
triangulation of a manifold homeomorphic to 72 x [0, c0) with a single point removed from 72 x {0}.
The boundary component 72 x {0} of AJUAS is a punctured torus, triangulated by the two ideal triangles
of A and dA’, that do not meet the cusp ¢;. We will remove Aj U A%, from our triangulated manifold,
and obtain a space with boundary a punctured torus, triangulated by the same two ideal triangles. We
will then replace A{ U A} by a solid torus with a triangulation such that the boundary is a triangulated
once-punctured torus. This will give a triangulation of the Dehn filling.

A layered solid torus is a triangulation of a solid torus, first described by Jaco and Rubinstein [30]; see
also [24]. When working with ideal triangulations, as in our situation, the boundary of a layered solid
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torus consists of two ideal triangles whose union is a triangulation of a punctured torus. The space of all
two-triangle triangulations of punctured tori is described by the Farey graph. A layered solid torus can be
built using the combinatorics of the Farey graph.

Recall first the construction of the Farey triangulation of H?. We view H? in the disc model, with
antipodal points 1/0 and 0/1 in dH? lying on a horizontal line through the centre of the disc, and 1/1
at the north pole, —1/1 at the south pole. Two points a/b and ¢/d in Q U {oo} C dH? have distance
measured by

t(a/b,c/d) = |lad — bc|.

Here ¢(-, -) denotes geometric intersection number of slopes on a punctured torus. We draw an ideal
geodesic between each pair a/b, ¢/d with |ad —bc| = 1. This gives the Farey triangulation. The dual
graph of the Farey triangulation is an infinite trivalent tree, which we denote by F.

Any triangulation of a once-punctured torus consists of three slopes on the boundary of the torus, with
each pair of slopes having geometric intersection number 1. Denote the slopes by f', g, h. This triple
determines a triangle in the Farey triangulation. Moving across an edge ( f, g) of the Farey triangulation,
we arrive at another triangle whose vertices include f and g; but the slope / is replaced with some other
slope i’. This corresponds to changing the triangulation on the punctured torus, replacing lines of slope /
with lines of slope /’.

When we wish to perform a Dehn filling by attaching a solid torus to a triangulated once-punctured torus,
there are four important slopes involved. Three of the slopes are the slopes of the initial triangulation of
the once-punctured solid torus. For example, these might be 0/1, 1/0, and 1/1. We will typically denote
the slopes by (f, g, /). These determine an initial triangle 7§ in the Farey graph. The other important
slope is r, the slope of the Dehn filling.

Now consider the geodesic in H? from the centre of T} to the slope r C dH?2. This geodesic passes
through a sequence of distinct triangles in the Farey graph, which we denote 7y, 77, ..., Ty +1. Each
Tj 41 is adjacent to 7. We regard this as a walk or voyage through the triangulation; more precisely, we
can regard Ty, ..., Tx as forming an oriented path in the dual tree F without backtracking. The slope r
appears as a vertex of the final triangle T 1, but not in any earlier triangle.

We build the layered solid torus by stacking tetrahedra Ag, Ay, ... onto the punctured torus, replacing
one set of slopes Ty with another 7, then another 75, and so on. That is, two consecutive punctured tori
always have two slopes in common and two that differ by a diagonal exchange. The diagonal exchange is
obtained in three-dimensions by layering a tetrahedron onto a given punctured torus such that the diagonal
on one side matches the diagonal to be replaced. See Figure 2.

For each edge crossed in the path from T to T, layer on a tetrahedron, obtaining a collection of
tetrahedra homotopy equivalent to 72 x I. After gluing k tetrahedra A, ..., Ax_;, the side 7% x {0}
has the triangulation whose slopes are given by T, and the side 72 x {1} has slopes given by T}. Two of
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Figure 2: Constructing a layered solid torus.

the faces of Ay _; are glued to triangles of the previous layer, with slopes given by 7j_;, and the other
two faces form a triangulation of the “top” boundary 72 x {1}; this triangulation has slopes given by T}.
Continue until £ = N, obtaining a triangulated complex consisting of N tetrahedra Ay, ..., Ay—q, with
boundary consisting of two once-punctured tori, one triangulated by 7} and the other by T.

Recall we are trying to obtain a triangulation of a solid torus for which the slope r is homotopically
trivial. Note that r is a diagonal of the triangulation 7. That is, a single diagonal exchange replaces the
triangulation 7 with T 41; and Ty is a triangulation consisting of two slopes s and # in common
with T, together with the slope r, which cuts across a slope r’ of T . To homotopically kill the slope r,
fold the two triangles of Ty across the diagonal slope r’, as in Figure 3. Gluing the two triangles on one
boundary component of 72 x I in this manner gives a quotient that is homeomorphic to a solid torus,
with boundary still triangulated by 7. Inside, the slopes s and ¢ are identified. The slope r has been
folded onto itself, meaning it is now homotopically trivial. Note that N is the number of ideal tetrahedra
in the layered solid torus.

There are two exceptional cases. If N = 0 then no tetrahedra are layered to form a layered solid torus.
Instead, we fold across existing faces to homotopically “kill” the slope r that lies in one of the three
Farey triangles adjacent to ( f, g, /). This can be considered as attaching a degenerate layered solid torus,
consisting of a single face, folded into a Mdbius band.

Figure 3: Folding makes the diagonal slope r homotopically trivial.
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There is one other extra-exceptional case. In this case, the slope r is one of f, g, 1. We can triangulate the
Dehn filling: for example we can attach a tetrahedron covering the edge corresponding to r, performing a
diagonal exchange on the once-punctured torus triangulation, then immediately fold the two new faces
across the diagonal, creating an edge with valence one. This case will be ignored in the arguments below.

3.2 Notation for a voyage in the Farey triangulation

We now give notation to keep closer track of the slopes obtained at each stage of the construction of a
layered solid torus.

As we have seen, each tetrahedron Aj_; replaces one set of slopes with another; the set of slopes
corresponding to the triangle 7 _ in the Farey triangulation is replaced with the set of slopes with the
triangle 7% . Thus, we associate to Ag_; an oriented edge of the dual tree F of the Farey triangulation,
from Ty _4 to Ty.

As F is an infinite trivalent tree, at each stage of a path in F without backtracking, after we begin and
before we stop, there are two choices: turning left or right. As is standard, we denote these choices by L
and R. Note that the choice of L or R is not well-defined when moving from 7 to 77, but thereafter the
choice of L or R is well-defined. Thus, to the path Ty, T, ..., Tn+1 in F, there is a word of length N
in the letters {L,R}. We call this word W. The j™ letter of W corresponds to the choice of L or R when
moving from 7} to Tj 4, which also corresponds to adding tetrahedron A;.

As we voyage at each stage from 7Ty to T, we pass through an edge ¢j of the Farey triangulation
(dual to the corresponding edge of F), which has one endpoint to our left (port) and one to our right
(starboard).! We leave behind an old slope, one of the slopes of T, namely the one not occurring in Ty 1.
And we head towards a new slope, namely the slope of 7 which is not one of 7.

Definition 3.1 As we pass from 7} to Ty 1, across the edge ¢y, the slope corresponding to

(i) the endpoint of ey to our left is denoted pj (for port);
(i1) the endpoint of e to our right is denoted s (for starboard);
(iii) the vertex of T \ Tk 41 is denoted oy (old);

(iv) the vertex of Ty \ Tk is denoted /iy (heading).

Thus, the initial slopes { f, g, h} are given by {0g, ¢, po} in some order, and the final, or Dehn filling
slope is given by r = . Adding the tetrahedron Ay _, we pass from Tj_ to Ty, so the edges of Aj_;
correspond to slopes pr_1,Sk—1,0k—1>Nk—1-
Lemma 3.2 (i) Ifthei™ letter of W is an L, then 0; = s;_;, Pi = Pi—1> Si = hj_1.

(i) Ifthei'h letter of W is an R, then 0; = Pi—1, Pi = hi—1, si =s;_1.

1 As “left” and “right” are used in the context or the previous paragraph, we use the nautical terminology here.
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Figure 4: Labels on the slopes in the Farey graph.

Proof This is immediate upon inspecting Figure 4. If we tack left as we proceed from 7;_; through
T; to T; 41, then we wheel around the port side; our previous heading is now to starboard, and we leave
starboard behind. Similarly for turning right. a

So ye sail, me hearty, until ye arrive at ye last tetrahedron A y_1, proceeding from triangle 7 —; into Ty,
with associated slopes oy —1,SN—1,2n—1, PN—1. We have made N — 1 choices of left or right, L or R.
The boundary T2 x {1} of the layered solid torus constructed to this point has triangulation with slopes
given by Ty, ie with slopes py—1, Sy—1, AN—1-

The final choice of L or R takes us from triangle T into triangle Tx 1, whose final heading /4 is the
Dehn filling slope r. This final L or R determines how we fold up the two triangles with slopes 7 on
the boundary of Ay . As discussed in Section 3.1, we fold the two triangular faces of the boundary torus
together along an edge, so as to make a curve of slope r = A homotopically trivial. This means folding
along the edge of slope op. In the process, the edges of slopes py and sy are identified. An example is
shown in Figure 5.

If the final, N letter of W is an L, then sy = hy—1, pN = pN—1 and oy = sy—_1; so we fold along
the edge of slope sy —1, identifying the edges of slopes sy —; and py—; of the triangle T describing
the slopes on the boundary torus after layering all the solid tori up to A y—;. Similarly, if the final letter
of WisanR, then sy =sy—1, py =hny—1 and oy = py—1, so we fold along the edge of slope py—_1,
identifying the edges of slopes sy—; and siy—1 of Th.

3.3 Neumann-Zagier matrix before Dehn filling

Start with the unfilled manifold, and assume there are n. > 2 cusps. We consider two of these cusps ¢q, ¢;
with cusp tori Tg, T, respectively. Suppose the triangulation 7 has the property that T meets exactly
two ideal tetrahedra A, A,, each in one ideal vertex, and there exist generators mg, [y of H;(Tg) that
avoid A; and A,. We prove such a triangulation always exists in Proposition A.1. Cusp ¢; will be filled.
There is a unique ideal edge e running into the cusp cy; its other end is in ¢g. The labellings on 7 are (at
this stage) made arbitrarily.
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Figure 5: Example of a voyage in the Farey graph when N = 3. The word W is RRL. There are three
tetrahedra in the layered solid torus, namely Ag, A, A;. The slopes along the way can have several
names; for example so = 51 = §2 = 03. No tetrahedron is added in the final step from 73 to Ty.

Lemma 3.3 Let 7, mq and [y be as above. There is a choice of curves my, [{ on T generating H;(T{)
such that the corresponding Neumann—Zagier matrix NZ has the following form:

(i) The row of NZ corresponding to edge e contains only zeroes. In the cusp triangulation of ¢y, the
unique vertex corresponding to e is surrounded by six triangles, corresponding to ideal vertices of
A and A, in alternating order, which form a hexagon b around e.

(ii) The six vertices of by correspond to the ends of three edges of T, denoted f, g, h. After possibly rela-
belling A1 and A,, the entries of NZ in the corresponding rows, and in the columns corresponding
to A1, A,, are as follows:

A Ap
1 0 1 0 1
g|-1-1 —-1-1
h 1 0 1 0

(iii)) The rows of NZ corresponding to my and [; contain entries as shown below in the columns
corresponding to Ay, A,, with all other entries in those rows zero:

A A
mj 1 0 —1 0
I 01 0 -1 7
(iv) All other rows of NZ contain only zeroes in the columns corresponding to A; and A,.
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Figure 6: Left: how tetrahedra A; and A, meet the cusp ¢;. Right: how they meet the cusp co.

Proof The proof is obtained by considering carefully the gluing. The two tetrahedra A{ and A, must
meet ¢; as shown in Figure 6, left. The three additional edge classes meeting these tetrahedra are labelled
/', g, and & as in that figure. These three edges have both endpoints on ¢y. We may determine how they
meet ¢ by tracing a curve in ¢¢ around the edge e. This can be done by tracing a curve around the ideal
vertex of the punctured torus made up of the two faces of Ay and A, that do not meet ¢;. The result is
the hexagon h shown on the right of Figure 6. Each of the eight ideal vertices of A; and A, have been
accounted for: two on ¢; and six forming the hexagon h on cg.

Now label opposite edges of A; and A, as a-, b-, and c-edges respectively, as in Figure 6. These labels
determine the 4 x 6 entries in the rows of the incidence matrix In, corresponding to edges e, f, g,/ and
tetrahedra A, A,, as follows:

Ay As
e 111 111
f1 010 010
g 001 001
h 100 100

As the entries in the e row account for all edges of tetrahedra incident with e, all other entries of In in
this row are zero. Moreover, as the entries in the e, f, g, h rows account for all edges of A; and A,, any
other row of In has all zeroes in the columns corresponding to A and A,.

Turning to the cusp ¢y, we can choose my, [; as shown in Figure 7. Then m; has a-incidence number 1
with A; and —1 with A, (Definition 2.11), and all other incidence numbers zero. In other words, a‘fl =1

aq C1 aq C1
by by
2
m N RS

by by

Ca as C2 ar

Figure 7: Choices for m; and [;.
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and af', = —1 are the only nonzero incidence numbers a/b/ct' ;- Similarly, [; has b-incidence numbers
1 with A; and —1 with A,, ie bg , = land b[1 , = —1, and all other incidence numbers zero.

Forming the Neumann—Zagier matrix by subtracting columns of In, and subtracting incidence numbers,
according to Definition 2.17, we obtain the form claimed in (i)—(iii).

It remains to show that in all rows of NZ other than the e, f, g, &k, my, [ rows, there are zeroes in the A
and A, columns. We have seen that In contains only zeroes in the A{ and A, columns in all rows other
than the e, f, g, h rows. Hence NZ also has zeroes in the corresponding rows and columns. The remaining
rows to consider are the my and [; rows for k = 0 and k > 2. By hypothesis (or Proposition A.1(ii)),
my, lp avoid the tetrahedra A and A,, and hence the my, [, rows of NZ have zero in the A, A, columns.
For any k > 2, the cusp ¢ does not intersect A or A,, as these tetrahedra have all their ideal vertices on
¢o and ¢;. Thus whatever curves are chosen for my and [, the corresponding rows of NZ are zero in the

A1 and A, columns. O

Note that in the above proof, by relabelling the tetrahedra A, A, and cyclically permuting a-, b- and
c-edges, the effect is to cyclically permute the f, g,/ rows in the NZ entries above.

To compute the Ptolemy equations for Dehn-filled manifolds, we need a vector B as in Theorem 2.50.

Lemma 3.4 Let M, T, cusp curves my, [y, tetrahedra Ay, A,, and the matrix NZ be as above. Suppose
T consists of n tetrahedra. Then there exists a vector
B= (B, B},...,By B))€Z*"
with the following properties:
(i) NZ2-B=C.

(i1) The entries By, B’1 and B», B; corresponding to Ay and A, are all zero.

Proof By Theorem 2.50(i), there exists an integer vector A = (A1, A’1 yevuoy An, A)) such that NZ-4 = C.
The m; and [; rows of NZ are given by Lemma 3.3(iii), and the incidence numbers calculated in the proof
show that the corresponding entries of C are —c{' = 0 and —c: = 0. Thus the my, [; rows of NZ- 4 =C
give equations A} — A, =0 and A} — A’ =0. Thus 4 = A5, A} = A, and the A and A entries of
A are given by (41, A}, A1, A)).

We now adjust A4 to obtain the desired B, using Theorem 2.50(ii). Write R}? and R,? for the row vectors
in the NZ matrix corresponding to edges f and 4. Lemma 3.3(ii) says that chf has (0, 1,0, 1) in the A4
and A; columns, and R}Cj has (1,0, 1,0). Thus JR? has (—1,0,—1,0) in the A; and A, columns, and
JRY has (0,1,0,1).

Now let B = A+ A, JR}? — A} JRY . By Theorem 2.50(ii), NZ- B = C, and we observe that its Ay, A,
entries are

(B1., By. By, By) = (A1, 4}, A1, A}) + 41 (=1,0,-1,0) — 47(0, 1,0, 1) = (0,0,0,0). o
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3.4 Neumann-Zagier matrix of a layered solid torus

Let the manifold M, triangulation 7T, cusp curves, tetrahedra and Neumann—Zagier matrix NZ be as in
the previous section.

To perform Dehn filling on ¢y, we first remove tetrahedra A{ and A3, leaving a manifold with boundary
a once-punctured torus, triangulated by the boundary edges f, g, and 4. Then we glue a layered solid
torus to this once-punctured torus.

Because generators my, [p of H1(To) were chosen to be disjoint from A and A} before Dehn filling,
representatives of these generators avoid the hexagon ). When we pull out Aj and A}, mg and [o still
avoid b, and consequently they will form generators of H;(Ty) that avoid the layered solid torus when
we perform the Dehn filling.

Note that, as in Figure 6, left, the edges f, g, h are each adjacent to a unique face with an ideal vertex
at c¢1. Via these faces, each of f, g, h corresponds to one of the three edges in the cusp triangulation of ¢y,
and hence to slopes on the torus T¢. As we add tetrahedra of the layered solid torus, each edge similarly
corresponds to a slope on T¢. We will in fact label edges by these slopes: we denote the edge corresponding
to the slope s by E. Thus, we regard f, g, / as slopes, and these slopes form the triangle 7} of Section 3.1
in the Farey triangulation. In the notation of Section 3.2, { f, g, 4} = {09, S0, po} in some order.

As discussed in Section 3.1, the layered solid torus that we glue is determined by the slope r of the filling,
and a path in the Farey triangulation from the triangle T, with vertices f, g, & to the slope r. This path
passes through a sequence of triangles Ty, ..., Tn4+1, where Ty contains 7 as a vertex (and previous
T do not). The layered solid torus contains N tetrahedra.

The ;" tetrahedron (A j—1 in the notation of Section 3.2) of the layered solid torus corresponds to passing
from 7;_; to T;. The four vertices of these triangles are the slopes (0j_1, pj—1,Sj—1,hj—1) as discussed
in Section 3.2. Each edge of the tetrahedron corresponds to one of these four slopes. By Lemma 3.2, the
sequence of “old” slopes 0g, 01, . .. consists of distinct slopes. We will label each tetrahedron by its “old”
slope: so rather than writing Aj_1, we will write A,;_,. Then in the final step we glue the two boundary
faces together along the edge of slope o, which identifies the edges of slopes py and sp. We denote
this edge by Epy=sy-

We arrive at an ideal triangulation of the manifold M (r) obtained by Dehn filling M along slope r on
cusp 1.

The tetrahedra of this triangulation are of two types: those inside and outside the layered solid torus. We
split the columns of the Neumann—Zagier matrix into two blocks accordingly. The N tetrahedra of the
layered solid torus are labelled by their “old” slopes, Ay, ..., Apy_;-

The edges are of three types:

¢ those lying outside the layered solid torus;
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¢ those lying on the boundary of the layered solid torus, ie f, g,/ as above, which we call boundary
edges; and

e (for N > 1) the edges lying in the interior of the layered solid torus, labelled by the slopes
ho,hi,....hn—1.

Note that in the final folding, two of these edges are identified. Thus, the rows of the Neumann—Zagier
matrix of the triangulated Dehn-filled manifold come in four blocks, corresponding to the three types of
edges above, and the cusp rows for the remaining cusps ¢¢ and ¢ for k > 2.

We regard the Dehn filled manifold M (r) as built up, piece by piece, as follows. Let My denote the
original manifold M with the two tetrahedra A, A, removed. Let M} denote the manifold obtained
from M after adding the first k tetrahedra of the layered solid torus. Thus

MoyCM;C---C My.

Note M}, has a triangulation of its boundary torus with slopes (o, Sk, px), the vertices of the triangle 7}
of the Farey triangulation.

Then M (r) is obtained by folding together the two boundary faces of M along the edge of the boundary
triangulation of slope o, and identifying the edges of the 3-manifold triangulation of slopes sy and py.

Even though each M} is not a cusped 3-manifold, rather having boundary components, there is still a
well-defined notion of labelled triangulation and incidence matrix. Moreover, since by construction the
cusp curves my, [y avoid the removed tetrahedra Ay, A,, they still have well-defined incidence numbers
with edges and tetrahedra. Thus there is a well-defined Neumann—Zagier matrix NZ; for M}, with rows
for the edges and two rows for the cusp ¢ (but no rows for the boundary left behind from cusp ¢y).
Similarly, there is a well defined C-vector Cy, for M}, (Definition 2.22).

Lemma 3.5 The matrix NZy of M is obtained from the incidence matrix NZ of M by deleting the
columns corresponding to the removed tetrahedra A, A,, and deleting the rows corresponding to the
removed edge e and cusp c;.

The vector Cy is obtained from the C-vector C of M by deleting entries corresponding to edge e and
zeros corresponding to m; and |y, and adding 2 to one of the entries corresponding to edges f, g or h; by
labelling A1, A, appropriately, we can specify which entry.

Proof The deletion does not otherwise affect incidence relations, so the only effect on the Neumann—
Zagier matrix is to delete entries. We similarly delete the entries from C.

In Lemma 3.3, the incidence matrix entries calculated show that one edge, g, is identified with one c-edge
of A; and A,, but edges f and / are not identified with any c-edges of A; or A,. Thus the g entry of
Cy is 2 greater than the g entry of C.

As noted in the comment after the proof of Lemma 3.3, by labelling Ay, A, appropriately, we can
cyclically permute the f, g, 4 rows, so that we add 2 to the f or /4 entry of C instead. a
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Sk Ck Dy, Pk
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Figure 8: When attaching a nondegenerate layered solid torus, at each intermediate step a
tetrahedron is attached with labels as shown on the right.

As each successive tetrahedron is glued, the effect on the cusp triangulation of ¢q is shown in Figure 8.
The hexagon h of Lemma 3.3 has been removed, leaving a hexagonal hole; this hole is partly filled in,
leaving a “smaller” hexagonal hole.

Lemma 3.6 For an appropriate labelling of the tetrahedron Ay 41, the matrix NZy ;1 is obtained from
NZ, as follows.

(i) Add a pair of columns for the tetrahedron A, , and a row for the edge with slope hy.. All entries of
the new row are zero outside of the A,, columns.

(ii) The only nonzero entries in the A,, columns are in the rows corresponding to edges of slope
Ok Sk» Pk » h and are as follows:

Aoy,
E,, 1 0
E -2 -2

7 K
3.7) Ep, 0 2
E;, 1 0

(iii)) Al other entries are unchanged.

The vector Cy 4 is obtained from Cy by subtracting 2 from the Ej, entry, and inserting an entry 2 for
the row Ep, .

Proof Of the six edges of A,, , one of them is identified to E,, , two opposite edges are identified
to Ep, , two opposite edges are identified to Ej, , and one is the newly added edge Ej, . Observe that the
three slopes of a triangle in a two-triangle triangulation of a torus are in anticlockwise order if and only
if they form the vertices of a triangle of the Farey triangulation in clockwise order. Since (og, Sk, px)
are in anticlockwise order around the triangle 7} of the Farey triangulation, they are slopes associated
to the edges of a triangle on the boundary of M}, in clockwise order. Hence we may label the edges of
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Ay, identified with E,, (hence also Ej, ) as a-edges, those identified with £, as b-edges, and those
identified with Ej, as c-edges. This gives the entries of NZy 1 ; and the changes to C-vectors claimed.

No other changes occur with incidence relations of edges and tetrahedra. As cusp curves avoid the layered
solid torus, the cusp rows of the Neumann—Zagier matrix and the cusp entries of Cy, are also unchanged. O

Finally, we examine the effect of folding up the two boundary faces of My, and identifying the two
edges £,y , Esy into an edge Ej, =g, to obtain the Dehn-filled manifold M (r).

We denote the row vector of NZ corresponding to the edge E of slope s by Rg; and we denote the
row vector of NZ(r) corresponding to the identified edge £, =s5 by RI(,;N —sy - Similarly, we denote
the entry of Cp corresponding to slope s by (Cy)s; and we denote the entry of C () corresponding to

the identified edge Epy=sn by C(r)py=sn-

Lemma 3.8 The Neumann—Zagier matrix NZ(r) of M (r) is obtained from NZp by replacing the rows
corresponding to edges Ej,, and Eg, with their sum, corresponding to the edge Ep, =55 . The C-vector
C(r) of M(r) is obtained from Cy by replacing the entries (Cn)p,, (Cn)sy corresponding to edges
Epy. Esy withan entry C(r)py=sy = (CN)py + (Cn)sy — 2, corresponding to edge Epy =y, -

G
PN=SN

Cyx are also summed, but then we subtract 2 for the replacement entry.

G G ; — RG G ; ;
Thus row vectors Ry and Ry are replaced with R = R, + Ry, . Corresponding entries of

Proof The only change in incidence relations between edges and tetrahedra after gluing is that all
tetrahedra that were incident to edges Ep, or Ej,, are now incident to the identified edge Ep, =s5. Thus
we sum the two rows. The cusp rows are again unaffected.

Each C-vector entry corresponding to an edge Ey, is of the form 2—cy, where ¢ =) j Ck,j (Definition 2.22).
When we combine the two edges, the ¢j terms combine by a sum, but in place of 2 4+ 2 we must have a
single 2; hence we subtract 2. |

The effect on the cusp triangulation of ¢; is to close the hexagonal hole by gluing its edges together as in
Figure 9.

As mentioned previously, the slopes (py, sy) are equal to (py—1, iny—1) if the last letter of W is an L,
and equal to (hpn—1, sy—1) if the last letter of W is an R. Either way, we observe that the slope /iy —; is
among those being identified. Thus the last new edge in the layered solid torus appears at step N — 1,
with label /1, at that step.

Alternatively, we may write the matrix NZ(r) by deleting the row Ej,,_, from NZy and adding it to the
row Ep,_, or Eg,_ accordingly as the last choice is an L or R. Then the edges are regarded as having
slopes { f, g, h} = {00, po, S0}, together with hg, hy,..., hn—_>.
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ON—1
a
PN-1 b ¢ SN—1
a
b C
b
C a
SN-1 c b PN—-1
a
ON-1

Figure 9: The last tetrahedron in the layered solid torus has its two interior triangles identified
together, either by folding over the edge labelled py—; or by folding over the edge labelled sy —;.
The two cases are shown.

With this notation, the Neumann—Zagier matrix NZ(r) has pairs of columns corresponding to tetrahe-
dra, which consist of the tetrahedra of M \ (A U Af), and the tetrahedra of the layered solid torus,
Aoy, ---»Aoy_;- The rows correspond to the edges of M disjoint from Aj and A5, and then edges
Eoy, Esy, Ep, on the boundary of the hexagon, then Ey, Ej ..., Ep,_, inside the layered solid torus;
and cusp rows corresponding to myg, [y. The general form is shown in Figure 10.

Thus if there are n edges and tetrahedra in the triangulation, then outside the layered solid torus there are
n— N tetrahedra and n — N — 2 edges.

Lemma 3.8 includes the case where N = 0, ie where the layered solid torus is degenerate. In this case
we go directly from M to My (removing A U AS) to M(r). In this case the filling slope r is equal
to /g, so has distance 1 from two of the initial slopes f, g, &, and distance 2 from the other. These are

tetof M\(AJUAS) Ao, Doyt Bon_y
edgesof M| * % -« % 0 0 0 O0--- 0 O
outside Do T T
ASUAS | x % * 0 0 0 O- 0 0
Eoy k% * 1 0 0 O - 0 0
Es, * %k * =2 =2 % x - * ok
Ep, k% * 0 2 *x x - k%
NZ(r) = Ep, 0 0 0 % * % % - * %
Ep, 0 0 0 0 0 = =x - * %k
Ep, 0 0 0O 00 0 O - * ok
Enn_s 0 0 0 0 0 * ok
mg - %x 0 0 0 0. 0O

lo | x % - % 00 0 0-- 0 0 |

Figure 10: Neumann—Zagier matrix of a Dehn-filled manifold.
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/ /

g+h

r

Figure 11: Left: Dehn filling along slope ry, r», or r3 attaches a degenerate layered solid torus,
with no tetrahedra. Right: the effect of such a Dehn filling on the cusp triangulation of Cj is to
fold the hexagon, identifying two boundary edges together.

the slopes labelled rq, r;, and r3 in Figure 11, left. No tetrahedra are added, and we skip to the final
folding step, folding boundary faces of the boundary torus together along the edge of slope o0q, and
identifying the edges corresponding to slopes so and pg. The effect is to combine and sum the rows of
NZ, corresponding to Eg, and Ep,,.

The resulting matrix NZ(r) is described explicitly in the following propositions; they simply describe the
result of applying the previous lemmas, and their proofs are immediate from those lemmas. Figure 10
shows most of the structure described.

Proposition 3.9 Suppose NZ(r) is the Neumann—Zagier matrix of M (r), obtained by Dehn filling the
manifold M of Lemma 3.3, with Neumann—Zagier matrix NZ, along the slope r on ¢1. Then the rows of
NZ(r) corresponding to edges outside the layered solid torus and its boundary, and the rows corresponding
tomg and |y, are as follows.

(i) Entries in columns corresponding to tetrahedra of the layered solid torus are all zero.

(ii) Entries in columns corresponding to tetrahedra outside the layered solid torus are unchanged from
their entries in NZ. |

In the N = 0 case, by Lemma 3.8 and subsequent discussion, the only edge rows of the layered solid
torus are those with slopes 0g and sg = pg, and there are no columns corresponding to tetrahedra in the
layered solid torus.

Proposition 3.10 Suppose N = 0. Then the entries in the rows of NZ(r) corresponding to the edges of
the layered solid torus are as follows.
(i) The row corresponding to o has the same entries as corresponding columns of NZ.

(i1) The row corresponding to so = pg is the sum of entries in sy and py rows of NZ. O
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Proposition 3.11 Suppose N > 1. The entries in the rows of NZ(r) corresponding to the edges of the

layered solid torus are as follows.

(i) In columns corresponding to the tetrahedra outside the layered solid torus:

(a) The entries in the rows corresponding to the edges with slopes hy, . .., hn—, are all zero (there
are no such edges if N = 1).

(b) The entries in the rows corresponding to the boundary edges, with slopes{ f, g, h} = {09, po, So}
are the same as in the corresponding rows and columns of NZ. (The po or s row may be
combined and summed with the h—; row in the final step, but being summed with zeroes, the
entries remain the same.)

(ii) The entries in the pair of columns corresponding to the tetrahedron A,;, are as described in
Lemma 3.6, except that rows corresponding to slopes py and sy are summed as in Lemma 3.8. In
particular, we have the following:

(a) The row of slope o has (1, 0) in the A,, columns, zero in every other Aoj column.

(b) Provided sog # sn, the row of slope s¢ has a sequence of pairs (—2, —2), followed by (1, 0) and
then all zeroes. (The number of such pairs is k + 1, where W begins with a string of k Rs.)

(¢) Provided py # pn ., the row of slope pq has a sequence of pairs (0, 2), followed by (1, 0) and
then all zeroes. (The number of such pairs is k + 1, where W begins with a string of k Ls.)

(d) In the two columns for A, , entries in rows of slope hjyi1,...,hn— are zero. O

3.5 Building up the sign vector

We will now show how to build up a vector B(r) satisfying the sign equation (2.49) for the Dehn-filled
manifold M (r); that is,

NZ(r)- B(r) = C(r).
We do this starting from the sign vector B found for the unfilled manifold M in Lemma 3.4. We build

up a sequence of vectors By, ..., By associated to the manifolds My, ..., Mp. These vectors “almost
satisfy NZy, - By, = Cj.. From By we obtain the desired vector B(r).

In Lemma 3.5, we showed that we can take C to be obtained from C by deleting the e entry, and adding
2 to one of the entries corresponding to slopes { f, g, h} = {09, 5o, po}, whichever we prefer. For the
following, we want the 2 to be added to the entry corresponding to slope sg or pg. For definiteness, we
take Cy to be obtained by adding 2 to the s¢ entry.

Lemma 3.12 Let By be the vector obtained from B by removing the two pairs of entries corresponding
to the removed tetrahedra Aj, A5. Then Cy —NZg - By consists of all zeroes, except for a 2 in the entry

corresponding to the edge with slope .

Proof We have NZ- B = C. Examine the effect of changing the terms to NZq- By and Cy. By Lemma 3.4,
the vector B has pairs of entries corresponding to A{ and A, consisting of all zeroes. Consider the rows
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of NZ corresponding to edges away from Af and A}, together with the my, [p rows. These rows have
all zero entries in A§ and A, columns, by Lemma 3.3. The corresponding rows of NZg are obtained by
deleting the zero entries in the A} and A} columns (Lemma 3.5). Thus the corresponding entries of NZ- B
and NZg - By are equal. Similarly, the corresponding entries of C and Cy are equal. So Cy —NZg - By
has zeroes in these entries.

By Lemma 3.5, the only remaining rows of NZq are those corresponding to rows with slopes { f, g, h} =
{00, 50, Po}-

In both NZ- B and NZ, - By we obtain exactly the same terms from the tetrahedra outside A} and AS,
by Lemma 3.5 and construction of By. These account for all the terms in NZg - By, but in NZ- B there
are also terms from the tetrahedra Aj and A%. However, as the corresponding entries of B are zero,
these terms are zero. So NZ - By and NZ - B have the same entries in these rows, and hence also C.
However, as discussed above, we have chosen Cy to differ from C by 2 in the row with slope s¢. Hence
Co —NZ, - By is as claimed. O

Observe from the proof that Lemma 3.12 works equally well with the slope so replaced with any of
{/.8. 1} ={00.50. po}-

As it turns out, going from By to Bj is a little different from the general case, and so we deal with it
separately.

Lemma 3.13 Let By be obtained from By by adding zero entries corresponding to A,, Then C{—NZ;-B
consists of all zeroes, except for a 2 in the new entry corresponding to Ep.

Proof By Lemma 3.6, NZ; is obtained from NZ by adding a row for the edge with slope /¢ and a pair
of columns for A,,, with added nonzero entries as in (3.7). Also, C; is obtained from Cy by subtracting
2 from the Ej, entry, and inserting an entry 2 for the row Ey,.

Now each entry of NZ - By is equal to the corresponding entry in NZ; - By, since the terms are exactly
the same, except for the terms of NZ; - B; corresponding to the added tetrahedron A,,, which are zero
since By has zero entries there. The extra entry in NZ; - By, corresponding to Ey,, is also zero, since
this row of NZ; only has nonzero entries in the terms corresponding to A,,, where Bj is zero. Thus
NZ; - By is equal to NZg - By with a 0 appended.

Similarly, each entry of Cy is equal to the corresponding entry of Cy, except for the entry of slope s,
where C; — Cy has a —2. The vector C; also has a 2 appended.

From Lemma 3.12, each entry of Cy —NZg - By is zero, except for the sg entry, which is 2.

Putting these together, each entry of Cy — NZg - By equals the corresponding entry of C; —NZ; - By,
except for the entry of slope sy, where C; — NZ; - B; has entry 2 — 2 = 0. The additional entry of
C1 —NZ; - By of slope hg is 2—0 = 2. Thus C; —NZ; - By is as claimed. O
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Had we chosen Cj to differ from C in the pq entry, then Cy — NZq - By would have a nonzero entry for
slope pg; in this case we could take B; to be obtained from B by adding entries (0, 1) and obtain the
same conclusion.

We now proceed to the general case, building By 41 from By. We use the first N — 1 letters of the word
W in the letters {L,R}.

Lemma 3.14 Suppose | <k < N —1. If the k™ letter of the word W is R (resp. L), let By 11 be obtained
from By by appending (0, 1) (resp. (0, 0)) for the added tetrahedron A,, . Then Cy 11 —NZj 41 - By 44
consists of all zeroes except a 2 in the entry corresponding to Ep, .

Proof Proof by induction on k; Lemma 3.13 provides the base case. Assume Cy —NZy - By has only
nonzero entry 2 in the row of slope /41, and we consider Cg 41 —NZ 41 - Bg41.-

Again using Lemma 3.6, C 1 and Cy differ only in that Cy 4| has a 2 in the new entry Ej, , and has 2
subtracted from the Ej, entry.

Suppose that the k™ letter of W is an R. Then by Lemma 3.2 we have oy = pi_i, S = sx—; and
Pk = hg—1. Thus the new entries in NZ 4 are given by

Aoy

Eo.=Ey, _, 1 0
Es=Es;_, -2 -2
Ep,=Ep,_, | 0 2
Ej, 1 0

So with By 1 defined as stated, the entries of NZy - By differ from the corresponding entries of NZ 41 -
By 41 in entries for rows of slope py = hj_; and si. In the row of slope px = hyx—1, NZj 41 B4 is
greater by 2, and in the row of slope sg, NZg 41 - Br 41 is lesser by 2. The new entry in NZg | - By of
slope Ay, is 0.

Putting the above together, we find that Cy 1 —NZj 41 - B+ has the same entries as Cy — NZy - By,
except in the rows of slope: pi = hj_1, where they differ by —2; s; = s;_1, where they differ by
(—2) — (—2) = 0; and Ay, where there is an extra entry of 2. Thus Cyxy1 —NZg 41 - Bi+1 has unique
nonzero entry 2 in the Ey, entry as desired.

Suppose that the k" letter is an L; then we have s; = /;_1. The argument is simpler since Bj_ | simply
appends zeroes to By. As we only append zeroes, there is no need to consider the new columns of NZy
in any detail. Indeed, NZy 4 - Br4+1 and NZj - By have the same nonzero entries. Thus the nonzero
entries in Cxy1 —NZg 41 - Bryq are those of Cy —NZy, - By, with —2 added to the s; = hy_; entry, and
2 inserted in the /1 entry, giving the result. |

We now consider the final step: the desired sign vector B(r) is just By.
Lemma 3.15 The vector By of Lemma 3.14 satisfies NZ(r)- By = C(r).
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Proof By Lemma 3.8, NZ(r) is obtained from NZ, by replacing the rows of slope pp and sn with their
sum, corresponding to the identified edge E, =5, . The row vectors RgN and RSGN are replaced with

G _ pG G
R = RS +RY,.

PN=SN

Similarly, C(r) is obtained from Cp by replacing the corresponding entries (Cn)py . (Cn)sy With the
combined entry

C(V)pN=SN = (CN)PN + (CN)SN -2.

By Lemma 3.14, Cyy —NZy - By has only nonzero entry 2 corresponding to slope /1 —;. Note that /iy
is equal to one of the slopes py, sy to be combined (accordingly as the final letter of W is an L or R).

Consider any row other than those corresponding to slopes py or sn. Such a row is unaffected by the
combination of rows or entries. Hence Cy — NZjp - By has zero entry in this row; and since NZ(r) and
C(r) are equal to NZy and Cyp in these rows, C(r) —NZ(r) - By has zero entry in these rows.

It remains to consider the single row obtained by combining two rows. Since these two rows include the

row of slope /&1, the two corresponding entries of Cpy —NZp - By are 0 and 2 in some order. These
: G G

entries are (Cn)py — Ry - By and (Cn)sy — R, - BN, s0

(CN)px = Ry - BN +(CN)sy — RS, - By =2.
Putting these together, we obtain the remaining entry of C(r) —NZ(r)- By as

C(r)py=sy — RS —sn " BN = (CN)py + (CN)sy —2— (RS + RE ) By
= (CN)pny — RS, - By + (Cn)sy — RS - By —2=0. O

We have now proved the following.

Proposition 3.16 There exists an integer vector B(r) such that NZ(r) - B(r) = C(r). The vector B(r)
is given by taking a vector B for the unfilled manifold M as in Lemma 3.4, removing the two pairs of
zeroes corresponding to removed tetrahedra A{, A’,, and then appending

(i) a(0,0) corresponding to the tetrahedron A,,; then

(i) N —1 pairs (0, 1) or (0, 0), corresponding to the first N — 1 letters of the word W . For each R we
append a (0, 1), and for each L we append a (0, 0). m|

In other words, the entry of B corresponding to the tetrahedron A, , for 1 <k < N —1,is (0, 1) if the
k™ letter of W is an R, and (0, 0) if the k™ letter of W is an L.

3.6 Ptolemy equations in a layered solid torus

We can now write down explicitly the Ptolemy equations for a Dehn filled manifold.
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To do so, we will suppose M has two cusps ¢g, ¢y, and is triangulated such that exactly two tetrahedra
A%, A; meet c¢q, each in a single ideal vertex. Suppose also that curves mq and [y represent generators of
the first homology of ¢¢, and avoid triangles coming from A% and A; in the cusp triangulation of ¢g. We
show in Proposition A.1 that every 3-manifold of interest here admits such a triangulation, with such
curves on the cusp triangulation of ¢g.

Let NZ” and C? denote the reduced Neumann—Zagier matrix and C-vector associated with this triangulation
for M, where the triangulation is labelled to satisfy Lemma 2.51. Finally, suppose B is an integer vector
that satisfies NZ" - B = C".

Theorem 3.17 Let M be a two-cusped manifold with cusps ¢y, ¢, triangulated as above so that only two
tetrahedra meet ¢, and curves my, [y on the cusp triangulation of ¢y avoid these tetrahedra. Perform Dehn
filling on the cusp ¢y by attaching a layered solid torus with meridian slope r, consisting of tetrahedra
Aoy - .. Aoy _, determined by the word W' in the Farey graph. Then the Ptolemy equations of the Dehn
filled manifold M (r) satisfy:

(i) There exist a finite number of outside equations, corresponding to tetrahedra of M and M (r)
lying outside the layered solid torus. These are obtained as in Definition 2.57 using the reduced
Neumann—-Zagier matrix NZ’ and B for the unfilled manifold M. In particular, they are independent
of the Dehn filling.

(ii) For tetrahedra of the layered solid torus, Ptolemy equations are

~Yor Vi + )/;k — yszk =0 ifk >0 and the k' letter of W is an R,
Yoi Vi T yl,zk — yszk =0 ifk =0 orthe k" letter of W isanL,

forO0 <k <N —1. We also set ypn = Vsy -

Proof Item (i) follows from Propositions 3.11 and 3.16: The nonzero entries of the columns of NZ(r) are
identical to those of NZ for tetrahedra outside the layered solid torus, and entries of B(r) corresponding
to tetrahedra outside the layered solid torus are identical to those of B. Then (i) follows immediately
from Definition 2.57.

As for (ii), the tetrahedron A, has its a-edges identified to the edges E,, and Ej, , both its h-edges
identified to Ej, , and both its c-edges identified to Ejy, , so the powers of y variables are as claimed.
They are disjoint from the cusp curves my, [y, S0 no powers of £ or m appear in the Ptolemy equations.
The corresponding pair of entries of B is (0, 0) for k = 0, and for k > 1, they are given by (0, 1) if the
k™ letter of W is an R, and (0, 0) if the k™ letter of W is an L. At the final step the edges with slopes
pn and sy are identified, with the effect of summing the corresponding rows of NZ matrices; this is also
the effect of setting the variables y, ., s, equal in Ptolemy equations. Hence the Ptolemy equation of
Definition 2.57 takes the claimed form. O
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tetrahedron face 012 face 013 face 023 face 123
0 3(021) 1(213) 2(130) 1(230)
1 4(102) 2(132) 0(312) 0(103)
2 2(203) 0(302) 2(102) 1(031)
3 0(021) 4(103) 4(203) 4(213)
4 1(102) 3(103) 3(203) 3(213)

1309

Table 1: Five tetrahedra triangulation of the Whitehead link complement.
4 Example: Dehn-filling the Whitehead link

In this section, we work through the example of the Whitehead link and its Dehn fillings. The standard
triangulation of the Whitehead link has four tetrahedra meeting each cusp. To apply our results, we need
a triangulation with two tetrahedra meeting one of the cusps. This is obtained by a triangulation with five
tetrahedra. Its gluing information is shown in Table 1, where the notation is as in Regina [3]: tetrahedra
are labelled by numbers O through 4, with vertices labelled O through 3. Thus faces are determined by
three labels. The notation 3(021) in row 0 under column “Face 012” means that the face of tetrahedron 0
with vertices 012 is glued to the face of tetrahedron 3 with vertices 021, with 0 glued to 0, 1 to 2, and 2
to 1. And so on. Note the software Regina [3] and SnapPy [8] can be used to confirm that the manifold
produced is the Whitehead link complement.

In the triangulation, tetrahedra 3 and 4 are the only ones meeting one of the cusps, in vertices 3(3) and 4(3),
respectively. We have chosen the labelling so that the Neumann—Zagier matrix satisfies the conditions
of Lemma 3.3: see below. We will perform Dehn filling on the Whitehead link by replacing these two
tetrahedra with a layered solid torus.

Co b <o b
o0 o) AN 0 24,
ao f 1(1) as ao f
32 2/1N\ 203) by o\ 1(0)
2000 \2\\U
b N2
c by
bo NG 2(1)
02) o D AN
C1
¢ 13) &
. 0
o 12 T < | o

Figure 12: Cusp triangulation of the Whitehead link, with triangles corresponding to tetrahedra 3
and 4 shaded. The edge e is at the centre of the hexagon, edges with slopes co = 1/0, 3/1,2/1
on the boundary of the hexagon. The additional vertex in the figure corresponds to the edge we
call 0(23). Note [ is in red, m in blue.
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A A Ay As Ay
Eoop[ 1 0| =1 —-1[=2-=2] 0 0| 0 07

Esn| O 1] 1 0] 0 1] 1 0] 1 0

Exy| 1 0] =1 -1 0 0| 0 1| 0 1
Eyo|—=2-1] 1 2| 2 1|=1—-1]-1—-1

NZ= E 0 0] 0 0] o0 o] 0 o 0 o
mo | =1 =1 0—-1] 0 0] 0 0] 0 0©

w | =1 =2| 1=1] 0 o] 0 o 0 o0

my 0 0/ 0 0| 0 0| 1 of=1 0
v Lo ol o o o of o 1] 0-—1]

Figure 13: The Neumann—Zagier matrix of the complement of the Whitehead link.

The cusp neighbourhood of the other cusp of the Whitehead link is shown in Figure 12. The shaded
hexagon consists of triangles from tetrahedra 3 and 4. Pulling out tetrahedra 3 and 4 will leave a manifold
with punctured torus boundary. The slopes of these boundary curves can be computed in terms of the
usual meridian/longitude of the cusp of the Whitehead link to be 3/1, 2/1, and 1/0 = oo (we used
Regina [3] and SnapPy [8] to compare slopes under Dehn filling to identify these edges). Each slope
corresponds to an edge of the punctured torus, and an edge of the triangulation, and appears twice in the
hexagon of our cusp triangulation. The three slopes are labelled in Figure 12. There are two additional
edges; one e only meets tetrahedra 3 and 4. The other we denote by 0(23) (because the edge 0(23) in
Regina notation corresponds to this edge class). Finally, we choose generators of the fundamental group
of the cusp torus to be disjoint from the hexagon in the cusp neighbourhood.

We may now read the incidence matrix of the Whitehead link complement off of the cusp triangulation,
and use it to find the Neumann—Zagier matrix, which is shown in Figure 13.

The vector C is [—1,2,1,-2,0,—1,—1,0, O]T. Notice that the vector
B=[1,1,1,—-1,1,0,0,0,0,0]"

satisfies the properties of Lemma 3.4: NZ- B = C and the last four entries of B are all zero. We now have
enough information to determine the outside Ptolemy equations for any Dehn filling of the Whitehead
link complement. By Theorem 3.17 and Definition 2.57, they are

Ao —2m ™ 2yo0ny a1 =2 m™ sy g0 — 1/12/0 =0,
4.1) Ay —m1/2V3/1V1/0 _51/2m—1/2y12/0 —Yo23)72/1 =0,

Ay )/12/0 —Y1/0V3/1 — V02(23) =0.

Recall that we set y, = 1, where  is such that the n'" gluing equation is redundant in the Neumann—Zagier
matrix. For this example, we may always set 1 /o = 1, and then use the equation from A to write 3/
in terms of yg(23). Equations from Ag and A; can then be used to write Yo(23) and y,/; only in terms of
£ and m. These may be substituted into additional Ptolemy equations that arise from Dehn filling.
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—1 =83\ (4 knot)

Figure 14: Some Dehn fillings of the Whitehead link and their location in the Farey graph.

A Dehn filling is determined by a path in the Farey graph, giving a layered solid torus. Figure 14 shows
where we begin in the Farey graph, namely in the triangle 7 with slopes 3/1,2/1, 1/0, and paths we
take to obtain well-known Dehn fillings, in particular twist knots.

For example, if we attach a degenerate layered solid torus, folding along the edge of slope 1/0, we will
perform 1/1 Dehn filling, which gives the trefoil knot complement. Since the trefoil is not hyperbolic,
Theorem 2.58 is not guaranteed to apply, so we skip this Dehn filling. To obtain other twist knots, first
cover slope 1/0, stepping into triangle 77 in the Farey graph, then swing R into triangle T5. From there,
the path depends on whether we wish to obtain an even twist knot or an odd one.

Consider performing —1/1 Dehn filling, to obtain the complement of the 4, knot, or figure-8 knot. This
Dehn filling is obtained by attaching a layered solid torus built of two tetrahedra, A3/ and A;/, where
our naming convention is as in Section 3.4: Tetrahedron A,, = A3/ is attached when we step from T}
to 71 in the Farey graph, and A, = A,/; when we step from 77 to T5. Notice that this step in the Farey
graph is in the direction R. Then to obtain the 4 knot, from 7, we fold over the edge £/, identifying
Eoy/1 and Eq ).

Equations arising from the layered solid torus can be computed with reference only to Theorem 3.17,
without writing down the full Neumann—Zagier matrix:

Azjq: Vi + Vs —vie =0,
4.2) / 1Y/ 2/1 1/0

Arjit —Y2/1%0/1 +V12/1 _V12/0 =0.
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Observe that in the equation for A3y, ¥3/1, ¥1/0, and ¥, are already known in terms of 72 and £ alone.
Hence direct substitution allows us to write /1 in terms of 7 and £. Similarly for y,,; in the equation
from Ay /q.

The equations for the figure-8 knot are finally obtained by setting the variables yo/1 = ¥1/0. Then the
final equation turns the system into a single equation in m and £. The calculations for the figure-8 knot
are carried out in Appendix B.

Now consider the 5, knot. This is obtained by starting with the same two tetrahedra A3,y and A, /q as
in the case of the figure-8 knot. However, instead of folding across the edge E/1, we fold across the
edge E /9, and identify £/ to Eg,q; see Figure 14. Thus the Ptolemy equations look identical to those
above for the figure-8 knot, except set the variables y; /1 and yo,; to be equal. As before, substitution
gives the A-polynomial. Again the calculations are in Appendix B.

For the 7, knot: Turn left from the triangle 7> in the Farey graph, picking up equation

Atjo: Yijov1/2 +J/12/1 _V()2/1 =0,

and identify variables ;5 and y;,1. Substitution allows us to write ¥y, in terms of m and ¢, and then
use this to find the A-polynomial.

For the 9; knot: Turn right. Pick up a new equation,
Ay =i +vipn—vn =0
and identify variables y;/3 and yg/1.

Any twist knot with 2N + 1 crossings is obtained similarly, for N > 4. The word W in the Farey graph
has the form RLRR. . .R. The Ptolemy equations include all the equations above, as well as a sequence of
equations

—Y1/kV1/(k+2) T V12/(k+1) - J/o2/1 =0 for2=k=N-1.

At the end, the variables yo/; and y1,y_; are identified.

In all cases, a step in the Farey graph gives an equation with a single new variable; we use this equation
to write the new variable in terms of m and £. Then direct substitution at the final step yields the
A-polynomial.

Twist knots with 2V crossings are obtained similarly from a word in the Farey graph of the form RRL. . .L,
with corresponding adjustments to the Ptolemy equations to determine the A-polynomial.

Appendix A Nice triangulations of manifolds with torus boundaries

In this appendix, we show that every 3-manifold admits a triangulation that behaves well with Dehn
filling by layered solid tori, such that the results of Section 3 apply.
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Proposition A.1 Let M be a connected, compact, orientable, irreducible, d-irreducible 3-manifold with
boundary consisting of m + 1 > 2 tori. Then, for any torus boundary component T, there exists an ideal
triangulation T of the interior M of M such that the following hold.

(i) If Ty,..., T, are the torus boundary components of M disjoint from T, then in M, the cusp
corresponding to T; forany j =1,...,m meets exactly two ideal tetrahedra, A; ; and A; ,. Each
of these tetrahedra meets T in exactly one ideal vertex.

(i) There exists a choice of generators for Hy(Ty; Z), represented by curves mq and ly, such that mg
and [y meet the cusp triangulation inherited from T in a sequence of arcs cutting off single vertices
of triangles, without backtracking, and such that mg and [y are disjoint from the tetrahedra A; ;
and Aj 5, forall j =1,...,m.

In the notation of Section 2, the number of cusps here is n =m + 1 > 2.

Proof By work of Jaco and Rubinstein [29, Proposition 5.15, Theorem 5.17], M admits a triangulation
by finite tetrahedra, ie with material vertices, such that the triangulation has all its vertices in M and
has precisely one vertex in each boundary component. Thus each component of M is triangulated by
exactly two material triangles.

Adjust this triangulation to a triangulation of M with ideal and material vertices, as follows. For each
component of d M, cone the boundary component to infinity. That is, attach 7% x [0, 0o). Triangulate by
coning: over the single material vertex v in T}, attach an edge with one vertex on the material vertex, and
one at infinity. Over each edge e in T}, attach a 1/3-ideal triangle, with one side of the triangle on the
edge e with two material vertices, and the other two sides on the half-infinite edges stretching to infinity.
Finally, over each triangle 7" in T; attach a tetrahedron with one face identified to 7, with all material
vertices, and all other faces identified to the 1/3-ideal triangles lying over edges of the triangulation of M.

Note that each cusp of M now meets exactly two tetrahedra, in exactly one ideal vertex of each tetrahedron.
To complete the proof, we need to remove material vertices.

Begin by removing a small regular neighbourhood of each material vertex; each such neighbourhood is a
ball B in M. Removing B truncates the tetrahedra incident to that material vertex. We will obtain the
ideal triangulation by drilling tubes from the balls to the cusp T, disjoint from the tetrahedra meeting the
other cusps. Thus the triangulation of the distinguished cusp T will be affected, but the triangulations of
the other cusps will remain in the form required for the result.

To drill a tube, we follow the procedure of Weeks [44] in Section 3 of that paper (see also [26, Figures 10
and 11] for pictures of this process). That is, truncate all ideal vertices in the triangulation of M. Truncate
material vertices by removing a ball neighbourhood, giving a triangulation by truncated ideal tetrahedra of
the manifold M — (BoU---U By,), where By, ..., By, are the ball neighbourhoods of material vertices.
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! 1 0(2),0(1)

0(0) 0(3)

0 1

Figure 15: Gluing two tetrahedra as shown on the left yields a triangular pillowcase with a
predrilled tube, as shown on the right.

There exists an edge E( of the truncated triangulation from T to exactly one of the B;; call it By. Now
inductively order the B; and choose edges E1, ..., Ey, such that E; has one endpoint on By for some
k < j and one endpoint on B;. Note these edges must necessarily be disjoint from the tetrahedra meeting
cusps of M disjoint from T, since all edges in such a tetrahedron run from a ball to a different cusp,
or from a ball back to itself. Note also that such edges Ey, ..., E;, must exist, else M is disconnected,
contrary to assumption.

Starting with i = 0 and then repeating for each i =1, ..., m, take a triangle 7; with a side on E;. Cut M
open along the triangle 7; and insert a triangular pillow with a predrilled tube as in [44]. The gluing of the
two tetrahedra to form the tube is shown in Figure 15, with face pairings given in Table 2. The two unglued
faces are then attached to the two copies of 7;. This gives a triangulation of M — (Bj;{ U---U By,) by
truncated tetrahedra, with the ball B; merged into the boundary component corresponding to Tq. Note it
only adds edges, triangles, and tetrahedra, without removing any or affecting the other edges E;.

When we have repeated the process m + 1 times, we have a triangulation of M by truncated ideal
tetrahedra. By construction, each boundary component T;, j =1,...,m, meets exactly two truncated
tetrahedra A; ; and A; ; in exactly two ideal vertices. This gives (i).

For (ii), we trace through the gluing data in Table 2 and Figure 15 to find the cusp triangulation of the
pillow with predrilled tube. These are shown in Figure 16. Note there are two connected components.
One is a disk made up of vertex 3 of tetrahedron 0 and vertex 2 of tetrahedron 1. The other is an annulus,
made up of the remaining truncated vertices.

The cusp triangulation of the manifold M — (By U --- U B,,) consists of two triangles per torus boundary
component, along with m + 1 triangulated 2-spheres. When we add the first pillow, we slice open a
triangle, which appears in three edges of the cusp triangulation: one on the torus Ty, and the other two

\ 012 013 023 123
0 | 1(013) — — 1(012)
1 | 0(123)  0012)  1(123)  1(023)

Table 2: Gluing instructions to form a triangular pillow with a predrilled tube. Notation is as in [3].
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Figure 16: The cusp triangulations of the pillow. Each triangle in the cusp triangulation is labelled,
with tetrahedron number (vertex).

on the boundary of the ball By. These edges of the cusp triangulation are sliced open, leaving a bigon on
Ty and two bigons on By. When the pillow is glued in, the bigons are replaced. One, on the boundary of
the ball By, is just filled with the disk on the right of Figure 16. One on T is filled with the annulus on
the left of Figure 16. The remaining one, on the boundary of By, is glued to the inside of the annulus.
Thus the cusp triangulation of Ty is changed by cutting open an edge, inserting an annulus with the
triangulation on the left of Figure 16, and inserting a disk into the centre of that annulus with the (new)
triangulation of the boundary of By.

When we repeat this process inductively for each B;, we slice open edges of the cusp triangulation of the
adjusted T, and add in an annulus and disks corresponding to the triangulation of the boundary of B;.
This process only adds triangles; it does not remove or adjust existing triangles, except to separate them
by inserting disks.

Now let mg and [y be any generators of H;(Ty; Z). We can choose representatives that are normal with
respect to the triangulation of
M —(ByU---U By,).

At each step, we replace an edge of the triangulation with a disk. However, note that all such disks must
be contained within the centre of the first attached annulus. Now suppose mg runs through the edge that
is replaced in the first stage. Then keep mq the same outside the added disk. Within the disc, let it run
from one side to the other by cutting off single corners of triangles 0(2), 1(1), 1(0), and 0(1). The new
curve is still a generator of homology along with [y. It meets the same tetrahedra as before, and the two
tetrahedra added to form the tube. It does not meet any of the vertices of the tetrahedra of the ball By.
The curve [y can also be replaced in the same manner, by a curve cutting through the same cusp triangles,
parallel to the segment of m( within these triangles. Inductively, we may replace mg and [y at each stage
by curves that are identical to the previous stage, unless they meet a newly added disk, and in this case
they only meet the disk in triangles corresponding to the added pillow, not in triangles corresponding to
tetrahedra meeting other cusps. The result holds by induction.

Complete the proof by replacing truncated tetrahedra by ideal tetrahedra. O
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Appendix B Calculations for some twist knots

In Section 4, we found Ptolemy equations for Dehn fillings of the Whitehead link. In this short appendix,
we explain how to use them and direct substitution to find an A-polynomial. This will not immediately
look like the standard A-polynomial, because we have chosen a nonstandard longitude and because our
equations have extra factors and square roots. After conjugation and a change of basis, we obtain the
usual A-polynomials.

To compute the polynomials, we use the equations corresponding to the tetrahedra Ay, A1, and A, of
the Whitehead link that lie outside the cusp we will fill, as in (4.1), as well as the equation y /9 = 1. Via
direct substitution, A gives an equation for )3/ in terms of y(23), which can then be substituted into
A1 to give an equation for y,; in terms of £, m, and y(23), Which can then be substituted into Ag to
obtain an equation of (23 in terms of £ and m. Substituting this into the equations for y,,; and y3/,
we obtain

,  me2 g2y
B.1) Yo23) = 012 — g1/2 ’
) 1 m*—¢ {—m
Y2/1 s V3= » V0= 1L

= Yoy m' 202 (1 —m) 021 —m)

Note we have left yg(23) in the equation for y,/; for now, since it is a square root with possible positive
or negative sign.
We obtain two more Ptolemy equations from (4.2); the first gives us y;; in terms of m and ¢:
012 _ 2
B.2 =

We can then use the second to solve for yy/; in terms of m and £ (and yy(23)):

Y21+ m)2(1 + m)
(_1 _{_51/2)2,”3/2

(B.3) Yo/1 = —Y0(23)

B.1 Figure-8 knot

An A-polynomial for the Figure-8 knot is now obtained by setting yo/1 = y1/0 = 1. To remove (some of)
the square roots coming from the yo(23) term, square both sides of (B.3), obtaining

L 21+ m)3 (1 +m)2 (Y2 +m)
B (—14£1/2)3m3 '

Multiplying through the denominator and moving all terms to the left-hand side, we obtain the following

PSL A-polynomial:
(£1/2_m2)(£1/2 +m_€1/2m_2€1/2m2_€1/2m3 +€m3 +£1/2m4)'
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This will not give the usual PSL A-polynomial for the figure-8 knot, because our choice of longitude [
differs from the standard longitude. In fact, checking against SnapPy [8], the red curve shown in Figure 12
is isotopic to the “shortest” curve intersecting the meridian once, under the Euclidean metric inherited
from the hyperbolic structure. Thus the standard longitude differs from that shown by subtracting two
meridians. Propositions 5.11 and 5.12 of [28] then give the required change of basis for any Dehn filling
of the Whitehead link. For the figure-8 knot, the required change of basis is

(£, m) > (tm™2,m),
and after clearing the denominator, the PSL. A-polynomial becomes
@2 Py m? + 02 (1 = m = 2m% —m® + m*) + tm?).

Following Corollary 2.59, we note that the second factor gives the usual SL. A-polynomial when we take
L=—¢"Y2and M =m/?, compare to [7]:

(—L—MHM*—L(1—M?*—2M*— M+ M¥ + L>M*).
B.2 The 5, knot

An A-polynomial for the 5, knot is obtained by setting 39,1 = y1/1. Set (B.2) equal to (B.3), square both
sides and subtract, to obtain the following PSL A-polynomial for the 5, knot:

C4+02m—20m + 03 2m —02m? = 20m? + 20 2m* + tm* —m® + 201 2m® — tm® — 01/ 2mS.
Again we change the basis via (£, m) — ({m~2,m), and clear the denominator:
C+ 0372 —2ml+m? (V% = 20) =m0 4+ m* 0+ m> 202 —0) + 2m%V 2 + 7 (=1 — 012,

To obtain the SL. A-polynomial, following Corollary 2.59, we set L = +£1/2 and M = +m!/2. Again,
L = —£'/2 does the trick. To obtain a formula matching that of Culler [7], we then need to map L
to L1, which corresponds to considering the mirror image of the 5, knot. After clearing denominators
and multiplying through by —1, the result is

1—L(A—2M?-2M*+ M8 — M) —L2M*(—1+ M*—2MS —2M3 + MO+ L3 M4,
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The Alexandrov theorem for 2 + 1 flat radiant spacetimes

LEO MAXIME BRUNSWIC

Fillastre showed that one can realize the universal covering of any locally Euclidean surface X with conical
singularities of angle bigger than 27 as the boundary of a convex Fuchsian polyhedron in 3-dimensional
Minkowski space in a unique manner, up to the action of SO(1,2) x R3, the affine isometry group of
Minkowski space. The proof used a so-called deformation method, which is nonconstructive. We adapt a
variational method previously used by Volkov, Bobenko, Izmestiev, and Fillastre on similar problems to
provide an effective proof of Fillastre’s theorem. In passing, we extend Fillastre’s theorem as follows.
Without assumptions on the conical angles ¢; of X and for any choice of nonnegative (k;);ef1,s such that
ki < 0; and k; <27, there exists a unique couple (M, P) where M belongs to a class of singular locally
Minkowski manifolds we define with s singular lines of respective conical angle k;, and P is a convex
polyhedron in M whose boundary 9P is a Cauchy surface isometric to X, the i conical singularity of dP
lying on the i singular line of M. Our result unifies Fillastre’s theorem and instances of Penner—Epstein
convex hull constructions, corresponding respectively to k; = 27 and x; = 0 for all 7.
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1 Introduction

1.1 The Alexandrov theorem

Let C be a cube in the 3-dimensional Euclidean space E3 and consider ¥ := dC its boundary, as
represented in Figure 1. On the one hand, ¥ is a surface homeomorphic to the 2-dimensional sphere S?;
on the other hand, ¥ is naturally endowed with a locally Euclidean metric with six conical singularities,
each of angle %n.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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More generally, the boundary of any compact convex polyhedron in E3 is homeomorphic to the 2-
dimensional sphere. It is naturally endowed with a locally Euclidean metric with conical singularities of
angles less than 2.

A classical theorem of Alexandrov [2] shows that this construction is actually bijective:

Theorem [2] Let ¥ be a locally Euclidean surface with conical singularities of angles less than 27
and homeomorphic to the sphere S?. There exists a compact convex polyhedron P in E3 such that dP is
isometric to . Furthermore, two such polyhedra are congruent.

Using a so-called deformation method, Alexandrov proved generalizations to convex polyhedrons in H?
and S3; this method is, however, not effective since it does not provide an efficient way to construct the
convex polyhedra these theorems predict.

1.2 Generalizations to space forms and main result

In the 2000s, Izmestiev and Bobenko gave a new proof of the Alexandrov theorem by a variational,
therefore effective, method. See Kane, Price, and Demaine [23] for a complexity analysis of the resulting
algorithm. Rivin, Hodgson, Schlenker, and Fillastre proved generalizations to Lorentzian space forms
(Minkowski, de Sitter, and anti-de Sitter), in which case conical singularities of the locally Euclidean
surface have angles greater than 2. The Alexandrov problem can then be stated in a more general
context that has been recently studied systematically by Fillastre and Izmestiev.

Problem Let X be a closed surface of genus g endowed with a singular metric of constant curvature
K €{—1,0, 1} and cone angles all bigger that 27 (case ¢ = —) or all less than 2t (case ¢ = +). Denote
by Xg the model space of constant curvature K. It is Riemannian if ¢ = + and Lorentzian if & = —.

Is there a convex polyhedral Fuchsian realization of ¥ in X g ? Furthermore, is this polyhedron unique up
to congruence?

Algebraic € Geometric Topology, Volume 25 (2025)
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g K e DM VM
0 0 + [2]1 [6]
0 -1 + [3]

0 1 + [3]
0 I - [21]
I -1 + [18]
1 1 - [19]

>2 -1 + [15]

>2 -1 — [I7]

=2 0 — [17] [B]

>2 1 — [31]

Table 1: See Alexandrov [2; 3], Bobenko and Izmestiev [6], Fillastre [15; 17], Fillastre and
Izmestiev [18; 19], Hodgson and Rivin [21], and Schlenker [31].

The signature of the X and the Gauss—Bonnet formula impose constraints on (g, K, €). Table 1 is based
upon work of Fillastre [16] and sums up all possible situations, together with references to proofs by
deformation (DM) and/or variational (VM) methods; [B] refers to the present work.

Proving Fillastre’s theorem — the case where (g, K, &) = (> 2,0, —) and X is Minkowski space EL2 —
by a variational method is the primary motivation of the present work. Here “convex polyhedral Fuchsian
realization” means that we build a triple (p, ¢, P), where p is a representation of 71 (X) — Isom(E1?2), ¢ is
a p-equivariant embedding ¢: S — E2 of the universal covering of ¥, and P is a convex globally
p-invariant polyhedron, with the additional hypothesis that p fixes a point and acts cocompactly on the
hyperboloid model of the hyperbolic plane H? = {(¢, x, y) | t? —=x2—y? =1, > 0} C E1-2,

To this end, we adapt the variational method successfully used by Bobenko, Fillastre, and Izmestiev
[6; 18; 19]; we derive Alexandrov—Fillastre and obtain a generalization to a class of singular locally
Minkowski 3-manifolds: radiant singular flat spacetimes, which we shall describe thereafter.

Theorem Let X be a closed locally Euclidean surface of genus g with s marked conical singularities' of
angles (6;); e[1,s7- For all

N
K€ (H[O,min(Qi,Zﬂ)]) \{6i)ieq1.s7}
i=1
there exists a radiant singular flat spacetime M homeomorphic to ¥ x R with exactly s singular lines of
angles k1, ..., ks and a convex polyhedron P C M whose boundary is isometric to X. The boundary of
P is a Cauchy surface of M.

Furthermore, if for all i € [[1,s],k; < 6;, then (M, P) is unique up to equivalence.
Finally, if for somei €1, s]], ; < and k € Rﬂ_ is such that k; > 6;, then there is no such couple (M, P).

IWe allow marked conical singularities with angle 277, which are hence not singular but marked nonetheless.
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Remark By taking all the 6§; > 27 and k; = 27 we obtain a manifold M whose universal covering is
isomorphic to a subdomain of Minkowski space X, (via a theorem of Mess [25]). Fillastre’s theorem
thus follows.

1.3 Radiant spacetimes

Before giving the outline of the variational method, we quickly describe radiant spacetimes. A more
thorough description is given in the appendix, together with technical results. We denote by E!-2
the 3-dimensional Minkowski space (the oriented affine space R3 together with the quadratic form?
g := dt? — dx? — dy? written in some fixed choice of Cartesian coordinates ¢, x, y) and by Isomg (E!-?)
the identity component of the Lie group of affine isometries of E!2, namely SOg(1,2) x R3. We denote
by O :=(0,0,0) € E-? the origin of E1-2. A vector u # 0 is spacelike (resp. timelike, lightlike, causal) if
g(u) <0 (resp. g(u) >0, g(u) =0, g(u) > 0). A causal vector is future (resp. past) if its ¢ coordinate is
positive (resp. negative). Minkowski space is naturally endowed with two order relations: the causal order
< and the chronological order << (the associated strict relation is denoted by ). Given p, q € E12 then
p < q (resp. p < q) if ¢ — p is future causal (resp. future timelike). The group Isomg(E!-?) preserves
the orientation of E1-? as well as the causal and the chronological orders. We define the causal future
of p, denoted by J T (p) :={qg € M | p < g}, as well as the chronological future of p, denoted by
I (p):={q €M | p < q}. The causal past, as well as the chronological past, are defined accordingly.
A plane in E!-2 is spacelike (resp. timelike, lightlike) if the induced quadratic form is positive definite
(resp. definite, degenerated), and a normal to such a plane is a timelike vector (resp. spacelike vector,
lightlike vector). By convention, all spacelike and lightlike planes are oriented by a future normal vector.

Radiant spacetimes are obtained via gluings of cones in J 7 (0) of triangular basis, ie
C={rulreR}, ueTl},
with 7 some affine spacelike triangle in J +(Q). We will not consider any such gluing with boundary.

Such gluings have a natural (SOg(1,2), I 7(0))-structure in the sense of Ehresmann [12], Thurston [33],
or Goldman [20] on the complement of the edges of the cones (the 1-facet of the simplicial complex).
These “singular” edges are one of two types:

¢ Timelike edges are locally modeled on so-called massive particles (the plane orthogonal to the
given edge is a Euclidean conical singularity of some angle « > 0).

o Lightlike edges are locally modeled on so-called extreme BTZ-like singularities (see the appendix
and Barbot, Bonsante and, Schlenker [4] for more details). The convention is that such an edge
bears a cone angle k = 0.

2Beware we chose a sign convention for g different from most of the literature to favor positive values of g on the relevant
domains and avoid defining two different quadratic forms.
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For brevity sake, we will write F instead of I T (0) and F-manifold instead of (SOg(1, 2), F)-manifold.
Cones in J 7 (0) have a natural SOg(1, 2)-invariant 1-dimensional foliation formed by the rays from
the origin of the form R, := {ru | r > 0} with u in J7(0); therefore each radiant spacetime comes
with such a foliation. The statement “the surface ¥ is a Cauchy surface of the radiant spacetime M” is
understood in our context as “the surface 3 is spacelike and intersects all rays of the natural foliation”.

Equivalence in our context has to be understood in the following way: two couples (M, P) and (M, P’)
are equivalent if there exists an isomorphism M — M’ of singular E!-2-manifolds (a homeomorphism
sending regular domain to regular domain and which is an E'>2-morphism on the regular domain) which
induces a bijection P — P’.

1.4 The variational method

Now that the terminology is clarified, the variational method proceeds as follows:

(1) Consider a closed locally Euclidean surface ¥ of genus g with s € N* marked conical singularities
01,...,65 € Ri and define S the set of marked points.

(2) Choose an arbitrary couple (z,7) with 7: S — R4 and 7 a triangulation of X whose set of vertices
is S.
(3) For each triangle T" of T, choose a direct affine isometric embedding
T —JT(0):={t>0,g>0cE?
in such a way that for each vertex s of T we have g o ((s) = t(s).

(4) To each triangle T is then associated the cone of rays from O := (0, 0, 0) through T in E'2; glue
these cones together following the same combinatorics as 7. The gluing is a 3-manifold M endowed with
a flat Lorentzian metric on the complement of the rays through the vertices of 7. Furthermore we have a
natural embedding (: ¥ — M in such a way that ((X) is the boundary of the polyhedron P := J *(1(X))
of M.

(5) Study the domain of € (R4)S such that the polyhedron P is convex; ¢ is then called convex, and
show that for a given t there is at most one triangulation 7" (up to equivalence) for which the embedding
¢ is convex; a t is then admissible if it has such a triangulation.

(6) Choose some target Lorentzian angles k¥ and define an Einstein—Hilbert functional on the space of
admissible 7 € (R4)S in such a way that each of its critical points induces a manifold M with Lorentzian
cone angle i around the rays through the vertices of 7.

(7) Finally, study this functional and show it admits a unique critical point.
1.5 The special case k =0

Penner gives another viewpoint on our result [27; 28], constructing a cellulation of the decorated
Teichmiiller space of a closed surface ¥ with s marked points S = {071, ..., 05} viewed as the space of
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marked finite-volume complete hyperbolic surfaces with s cusps homeomorphic to X \ S together with a
choice of a positive number on each cusp. Consider such a surface X*. The universal covering of X*
naturally identifies with the usual hyperbolic plane H? := {(¢, x, y) e E}? | g(t,x,y)=1,¢t >0} in E1-2,
and the positive number A, on each cusp o corresponds to a point on the lightlike rays corresponding to
the cusp:

* There exists a unique horocycle H, ;. of length A, around o.

e Consider a ray R fixed by a parabolic holonomy of ¥* and a point p € R. The intersection of
the future light cone of p (the set {g € E? | g(¢ — p) = 0,t(g — p) > 0}) with H? is a horocycle
around R, and every horocycle is obtained in this manner.

Penner then considers the surface obtained as the boundary of the convex hull of these points.> He shows
the surface obtained is locally Euclidean, its quotient by the holonomy of X* is a locally Euclidean
surface X2 with s conical singularities. Furthermore, the convex hull is a polyhedron, the faces of which
induce a cellulation on X2 with marked points S. He notes that this cellulation is simply the Delaunay
cellulation of (X2, S). It is not hard to see that

(1) this construction actually defines a natural bijection from the decorated Teichmiiller space of (X, S)
to the deformation space of locally Euclidean metrics on ¥ with arbitrary conical singularities
on S,

(2) the quotient by the holonomy of X* of the union of 7 (0) with the rays fixed by parabolic
holonomy of X* is a radiant spacetime with s conical singularities of angle 0.

Penner construction can thus be seen as the special case of our theorem where x = 0 and (X, S) runs
through all locally Euclidean surfaces with s conical singularities at S of arbitrary angles.
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2 Convex 7-suspension and polyhedral embedding

In the present section, we shall define and study 7-suspension of a singular locally Euclidean surface
(X, S). A cellulation of ¥ is a homeomorphism between X and a gluing of affine convex dimension-n
polyhedra along (n—1)-facets. We identify k-facets with their image in X. All cellulations considered in
this section have totally geodesic facets.

Definition 2.1 Let (X, S) be a compact Euclidean surface with conical singularities with a finite subset
S of marked points such that Sing(X) C S, and let C be a cellulation of (X, S). C is adapted if the set of
vertices of C is exactly S.

Definition 2.2 Let (X, S) be a compact Euclidean surface with conical singularities with a finite subset
S of marked points such that Sing(X) C S. Let M be a singular E!2-manifold. An embedding (: ¥ — M
is polyhedral if there exists a geodesic adapted cellulation C of (X, ) such that on each cell C, the
restriction of ¢ to Int(C) is an isometric affine map into the regular locus of L.

The notion of an isometric affine map is well defined in this context. Indeed, both E2 and E1-2 are affine
spaces endowed with a semi-Riemannian metric; the regular loci of £ and M are endowed with an
[E2-structure and an |E!2-structure, respectively.

—
The quadratic form on E!+2 is a SOg (1, 2)-invariant function defined on the underlying vector space E12:
—
g:EV2 SR, (tx,y)—>t2—x?—y2

We extend the definition of g to E!? via the identification E1? — IE%, X+ x — O. The map g is
positive on the future of the origin in E2, namely J *(0):={(¢, x, y) e R3|[t?—x?—y%2>0and t > 0};
furthermore, it induces a Cauchy time function on I *(0), ie an increasing map (I 7(0), <) — R%, <)
whose restriction to any nonextendible future causal curve of I T(0) is surjective (see the appendix
for more details on the structure of singular F-manifolds). Since g is SO¢(1, 2)-invariant, it induces a
well-defined nondecreasing function on every radiant singular flat spacetime.

In a radiant singular flat spacetime, the surface g = 1 is a hyperbolic surface with conical singularities and
cusps, which is complete and has finite volume. One can prove that the association M +— {g = 1} induces
a bijection from the deformation space of marked radiant singular flat spacetimes to the deformation
space of marked finite-volume complete hyperbolic surfaces with conical singularities and cusps; see
Theorem 6 in the appendix.

2.1 Affine embedding of triangles into E!-2

The goal of this section is mainly to introduce terminology that will be used throughout the paper and
to prove a parametrization of polyhedral embeddings into radiant singular flat spacetimes of a singular
locally Euclidean surface by the class of distance-like function we introduce. This last point is the object
of Theorem 1.
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Lemma 2.3 Let T = [ABC] be a nondegenerated Euclidean triangle and let t: {A, B,C} — R.
There exists a unique couple (g, w) € R x E? such that the map

7:E?2 >R, x> 19—d(x,0)?

extends t.

Furthermore, if T > 0 then to > 0 and T > 0 on the triangle [A BC], except possibly at A, B, or C.

Proof Identify E? to R? via Cartesian coordinates (x, y); without loss of generality, we can assume
A = (0,0), and we write B = (xp,yp) and C = (xc, yc). Finding 7 is equivalent to solving the
following system in w = (X, Vo) and o:

TA=T0—X3,—y3,, x3)+y3,+fA=To,

=10~ (X0 —XB)>— (Vo —YB)?, < | tB—Ta+x5+VE =2XuXB +2V0)B,

¢ =10 — (X0 —xc)* — (Vo — yc)?, TC —TA + XE + Y& = 2X0XC +2Yw)C.
Since A, B and C are in general position, the second and third lines form a nonsingular linear system of
unknown (X, V). The first line is already solved. Existence and uniqueness of T follows.
Assume 7 > 0, since A, B and C are distinct, w is distinct from one of them, say P € {4, B, C}. Then
0<t1p =19—d(P,w)* < 19. Furthermore, T is strictly concave, so its minimum on [4 BC] is reached
in the set of extremal points, eg {A, B, C'} and nowhere else. O

Lemma24 Let A,B,A',B' € J7(0), A# B and A’ # B’ be such that g(A) = g(A’), g(B) = g(B’)
and g(B — A) = g(B’ — A’). Then there exists a unique isometry y € SOg(1, 2) such that yA = A’ and

yB = B’. Furthermore, if C is on a given side of the oriented plane (OAB), then yC is on the same side
of (OA’B’).

Proof The group SOy (1,2) acts transitively on each of the sets (g| J+(O)\{O})_1 (o) for tg > 0. There
thus exists some Yo € SOg(1, 2) such that y94 = A’. The stabilizer of A" under the action of SOg (1, 2) is
a 1-parameter subgroup (either parabolic or elliptic depending on whether (OA’) is lightlike or timelike);
under its action, the orbit of yg B is

{(xeJT(0)|g(x—A)=g(yoB—A') and g(x) = g(yo B)}.
The stabilizer of A" acts freely on this set, so there exists a unique y with the wanted properties. Finally,

SOg(1,2) preserves orientation, and the result follows. m]

Proposition 2.5 Suppose that T = [ABC] is an oriented nondegenerated Euclidean triangle and let
1:{A, B,C} — R. There exists a direct isometric affine embedding 1: T — J T (0O) such that T =
g otlg4,B,c}» Where ((T) is endowed with the orientation induced by a future-pointing normal vector.

Furthermore,

e such an embedding is unique up to the action of SOy (1, 2),

e got=1, whereT is given by Lemma 2.3.
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Proof Endow E!:2 with Cartesian coordinates (t,x,y), write O = (0,0, 0) the origin, and identify E2
with {t = 0} C E12. Take (19, @) € R x E? and 7 given by Lemma 2.3, and define

T
T —EY2, XX+ withﬁz(@).
—Ow
Write w = (X, Yo)- For (x,y) € T, we have
2 -
goux,y) =V —(x—x0)’> = (y = yu)® = T(x, ).

Since 7 > 0, by Lemma 2.3 7 > 0; hence g ot|7 > 0. Moreover, /7o > 0, thus «(T) C JT(0). The
existence statement follows, as well as the second additional point.

If ¢ and ¢/ are two such embeddings, by Lemma 2.4 there exists a unique isometry sending ¢(A4) on
t'(A) and «(B) on /(B). There thus exist exactly two points Py, P> € J 7 (0) such that g (P;) = 7(C),
d(A,C)?> = g(1(P;)—1(A)) and d(B, C)? = g (1.(P;) —1(B)) for i € {1,2}. Since these two points are
each other’s images by the reflection across the plane (Ot(A)¢(B)) which is orientation-reversing and
preserves <, exactly one induces the right orientation. |

Definition 2.6 ( f-triangulation) Let (X, S) be a singular locally Euclidean surface and let f: ¥ — R.
A triangulation 7 is an f-triangulation if 7 is a geodesic triangulation of ¥ whose set of vertices
contains S and such that for all triangles T € T, there exists @ € E? and 79 € R such that

forallx e T, f(x)=19—d(D(x),w)>,

where D: T — E? is a developing map of T.

Definition 2.7 (distance-like function) Let (X, .S) be a singular locally Euclidean surface. A function
f: ¥ — R is distance-like if it admits an f -triangulation.

Remark Let (X, S) be a singular locally Euclidean surface, and let M be a radiant spacetime. For any
polyhedral embedding ¢: ¥ — M, the map g ot: ¥ — R is distance-like.

Proposition 2.8 Let (X, S) be singular locally Euclidean surface. Let T be an adapted triangulation
of (£,5).

For all t: S — R, there exists a unique distance-like extension T such that T is a T-triangulation.
Proof Apply Lemma 2.3 to each triangle of 7. |

Definition 2.9 Let (X, S) be a singular locally Euclidean surface. Let 7 be an adapted triangulation of
(2,S5) and let t: S — R 4. We denote by 7, 7 the extension of 7 given by Proposition 2.8.

Definition 2.10 (equivalent triangulations) Let (X, S) be singular locally Euclidean surface. Let
7: S — R4. Two adapted triangulations 77 and 7> of (X, S) are t-equivalent if

ft,ﬂ = 1157—2'
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Definition 2.11 (z-suspension) Let (X, S) be a singular locally Euclidean surface and f: ¥ — R be
distance-like.

Choose an f -triangulation 7 not necessarily adapted to (X, S). Foreach T € T, denote by t7: T — J T (0)
the affine embedding of T given by Proposition 2.5 and define C7 := {t - 17 (x) | t € R* , x € T}. For
each edge e of 7 bounding 77, 7> € T, let y, be the isometry given by Lemma 2.4 sending the face of
Cr, associated to e to the face of C7, associated to e.

Define M(f) as the radiant spacetime obtained by gluing the family (Cr)re7 via the isometries
(Ve)eeedges(T)

Proposition 2.12 Let (X, S) be a singular locally Euclidean surface and f: ¥ — R be distance-like.
The spacetime M ( f) does not depend on the choice of the f -triangulation T .

Proof Consider two geodesic f -triangulations 77 and 7. There exists a geodesic f'-triangulation of
(X, S) such that any 2-facet of 77 or 75 is a union of adjacent 2-facets of 7. It thus suffices to show that
on a given triangle 7 C ¥ on which 7 is ¢!, any decomposition of T into smaller triangles (T)ieq1,n]
induces a gluing isomorphic to C7. We may assume 7 is obtained by inductively gluing Ty 41 to Uf;l T;
for k € [1,n — 1]. We give ourselves an embedding ty: 7 — J T (O) given by Proposition 2.5. Start from
Ty with an embedding ¢: 71 — J T (0), using Lemma 2.4. Without loss of generality, we may assume
that t|o7, = ¢, then glue the Cr, for k € [[2, n]] naturally extending ¢: U;;l T; — J(0). By Lemma 2.4,
at each step, there is only one way to glue a cone Cr, ,, to Uf-czl Cr; so that T = g o. Hence at each
step there is at most one extension of ¢ to U;c:l T;; the embedding ¢ thus coincides with the restriction of
Lo at each step, and thus on the whole T'. Finally, Cr is isomorphic to the gluing of the (Cr;);ef1,,]- O

Definition 2.13 (equivalent polyhedral embedding) Let (X, S) be a singular locally Euclidean surface
and let (M1, 1) and (M3, 1) be two radiant spacetimes together with a polyhedral embedding of (X, §).
We say that (M7, ;) is equivalent to (M3, t») if there exists an isomorphism ¢: My — M, such that
lp =@oly.
Theorem 1 Denoting by ~ the equivalence relation among polyhedral embeddings, the function

{(M, 1) | M radiant, | polyhedral embedding}/~ — {T | T: ¥ — R4 distance-like}, (,M)+> got
is bijective with inverse T + M (7).

Remark The proof depends on a description of radiant spacetimes as suspensions of singular hyperbolic
surfaces; we give it in the appendix.

Proof Denote by @ the function above. For any 7 distance-like on (X, §), by Proposition 2.5 the
construction of M(7) ensures ®(M (7)) = 7. Hence ® is surjective. Let (M1, 1) be the polyhedral
embedding of (X, S), let 7 := ®(My, (1), and let M, = M(T) with its polyhedral embedding (5 : ¥ — M>.

Algebraic € Geometric Topology, Volume 25 (2025)



The Alexandrov theorem for 2 + 1 flat radiant spacetimes 1331

By Theorem 6, for i € {1,2}, M; is isomorphic to susp(X;) with X; the space of rays of the natural
causal foliation of M; endowed with its Hio-structure. Define the natural projections n;: M; — %;.
Denote by R: F — H? the map that associates to any x € F the intersection point of the ray through x
with H? C F.

For i € {1,2}, the map mw; o(;: ¥ — X; is a homeomorphism. The map & := w013 o (7] 1)t
is then a homeomorphism. We shall prove g is an a.e. H?-morphism from X; to ¥, and hence that
susp(h): My — M5 is an isomorphism.

Choose a geodesic triangulation 7 of ¥ adapted to 7. Its image by ; o; is a geodesic triangulation
of X;. Note that /& sends a cell of X1 to a cell of X5. Thus in order to prove that / is an Hz-morphism, it
suffices to prove that its restrictions to each cell of X; are isometries.

LetT e T,xeT\S, and, fori € {l,2}, choose a chart (I;, V;, ¢;) of M; around (; (x) such that V;
isacone of 7. Let T, C T \ § be a triangle of X containing x. For i € {1, 2}, write Ty, := 1;(Tx),
Ty, :=mio;i(Tx), T}i) = ¢;(Ty;), and Tléfg := R o@;(Ty;). By construction of the H?2-structure
on X;, ¢; induces a chart ¢; : Ty, — TIE]Q' By Lemma 2.4 there exists a unique ¢ € SOg(1,2) such that
@201y = ¢opiotl. Since R commutes with the action of SOg(1, 2), we then have Rog, 0t = ¢poRogjoly.
The following commutative diagram sums up the situation:

b)) b))
'\ /
Tx Ty
Q| w24 2 mon |
ANpeS0o (1,2
Ty, o 70 S0, 7@ 2 gy
| ZlR ZlR |72
) @ ¢ @ C
DY Ts, — T];;; ***** -+ T}}(sz) —— T, 22

Therefore the (co)restriction of /& from Tx, to T, is an isometry. It follows that / is an isometry from a
triangle of 71 0 ¢1(7) to a triangle of 73 0 15 (7). a

2.2 Convex embeddings

We start by clarifying the notion of a convex embedding in Definition 2.14, and translate the notion in terms
of a Q-convex distance-like function. Proposition 2.23 is the main result of this subsection. It provides
a parametrization of convex polyhedral embeddings by a domain of Ri. Throughout the section, (X2, S)
is a marked locally Euclidean surface with conical singularities included in the set of marked points S.

Definition 2.14 (convex polyhedral embedding) Let M be a radiant spacetime with (: ¥ — M a
polyhedral embedding.
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The embedding ¢ is convex if J T (:(X)) is convex in the sense that for any spacelike geodesic ¢ : [a, b] — M,
if {c(a),c(b)} C JT(1(2)) then c([a,b]) C J T ((D)).

Definition 2.15 (Q-convexity on R) Let / C R be an interval. A function f:/ — R is Q-convex (resp.
Q-concave) if f is continuous, piecewise ¢ Vandif forall tg € I,

lim £/ <lim f’ (resp. lim £/ Zlimf/).
% I X I

Definition 2.16 (Q-convexity on an Eio-surface) A function 7: ¥ — R is Q-convex (resp. Q-concave)
if for all geodesics ¢: I — X\ S, the restriction of 7 to ¢ is Q-convex (resp. Q-concave).

Lemma 2.17 Let f, g:[a,b] — R be two continuous functions piecewise of the form x — —x? +ax + f8
with f of class €.

e If g is Q-convex with f(a) > g(a) and f(b) > g(b) theng < f.

o If g is Q-concave with f(a) < g(a) and f(b) < g(b) then f < g.

Furthermore, if the Q-convexity (resp. Q-concavity) is strict, the inequalities are strict on |a, b|.

Proof First, g — f is piecewise affine; since f is ¢!, the Q-convexity of g — f (and hence its convexity)
is the same as the Q-convexity of f. In the first (resp. second) case, since g — f is nonpositive (resp.
nonnegative) at a and b, it is thus nonpositive (resp. nonnegative) on [a, b]. The strict case is obtained the
same way. |

Lemma 2.18 Let M be a radiant singular flat spacetime and let ¥ C M be a Cauchy surface. Denote by
R: M — X the function that associates to x € M the unique intersection point with ¥ of the ray through x
of the natural foliation of M ; denote by M~ the complement in M of the singular lightlike lines.

Then

Ty (B) = {x € M>o | g(x) > g(R(x))}.

Proof Since X is a Cauchy surface of M, JAJ,;(Z) NJy(X) = X and J][;(E) UJy (X)) =M. Since g
is increasing toward the future along the timelike rays of the natural foliation of M,

(x € Msg | £g(x) > £g(R(X))} C Ji5 (D).

Furthermore, since M is globally hyperbolic and ¥ compact, J 5(2) are closed. Hence

(X eM-o | £g(x) = £g(R(X))} C J(X).
Since M-~ is dense in M, we have

U freMaolegx) = eg(R)} =M.
ec{+,—}
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Furthermore

Sc () reMaoleg(x)ZegRX)}C L (E) NI (B) =2,
ee{+,—}
and it follows that

(X €M=o| £g(x) = 2g(R(x))} = J3:(Z). O

Proposition 2.19 Let 7: X — R4 be distance-like, and M := M (7) with its associated polyhedral
embedding 1: ¥ — M.

The embedding t is convex if and only if T is Q-convex.

Proof We identify X with ¢(X) and denote by R: M — X the map that associates to any x € M the
intersection point of the ray (of the natural foliation) through x with . Consider a spacelike geodesic
c:[a,b] = M such that c(a), c(b) € JT(Z). A direct computation in a chart gives that both g o ¢ and
g o R oc are continuous piecewise of the form s > —s? 4 s + B and that g o c is . Furthermore, the
derivatives of g o R oc and T o R o ¢ may be discontinuous at s € [a, b] only when the ray through c¢(s)
encounters an edge of ¥. At such an s, these two functions g o R o ¢ have the same Q-convexity.

¢ Assume that T is Q-convex and consider a spacelike geodesic c: [a, b] — M such that c(a), c(b) €
JT(X). By Lemma 2.17, g oc — g o R o ¢ is nonnegative and by Lemma 2.18 we thus have ¢([a, b]) C
JT(X). Finally, J T (X) is convex, and hence ¢ is convex.

e Assume that 7 is not Q-convex. There thus exists an edge e in X around which 7 is strictly Q-concave.
Consider two points x and y in X, each on a different side of said edge. We can choose x and y close
enough so that they lie in a chart of M around ¢(e). Then consider the geodesic c: [a, b] — M in this
chart from x to y. It follows from Lemma 2.17 that g oc < g o Roc on |a, b[. Thus by Lemma 2.18
c(Ja, b[) is not in J T (X) and hence J *(X) is not convex; neither is . O

Proposition 2.20 Let t € Ri. Up to equivalence there is at most one adapted triangulation 7 such that
the distance-like extension T, 7: ¥ — R is Q-convex.

Proof Let 77 and 7, be two adapted triangulations (X, S) such that both f; := 7, 7; and f> := T 1
are Q-convex. For all edges e of T, the function f|i, is continuous quadratic while the function f|»,
is piecewise quadratic and Q-convex; also, they are equal on the vertices of e. By Lemma 2.17 it thus
follows that f> < f1 on e. For any triangle T of 7y, f1 > f> on dT, and applying again Lemma 2.17
along any segment [a, b] of T with a,b € 0T, we deduce that f; > f> on T. Therefore f1 > f> on the
whole X. We show in the same way that f; < f>, and hence f; = f>. The triangulations 77 and 75 are
then equivalent. O

Corollary 2.21 Lett € Ri. There is at most one Q-convex distance-like extension T of t to the whole X.
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Definition 2.22 (admissible times) Define P to be the set of T € Ri such that there exists an adapted
triangulation 7 of (X, §) inducing a Q-convex distance-like extension 7; 7. Elements of P are called
admissible times.

For T € P, we denote by 7; the unique adapted triangulation of X (up to equivalence) such that 7 7, is
Q-convex. We define as well 7; := T 7, and M(7) := M (7).

As a corollary of Proposition 2.20 and Theorem 1, we obtain the following:

Proposition 2.23 With ~ the equivalence relation between polyhedral embeddings, the function
{(M, 1) | M radiant, 1: ¥ — M polyhedral convex embedding}/~ — P, (1, M)+ (got)|s

is bijective.
3 The domain of admissible times

For this whole section, we give ourselves a marked locally Euclidean surface with conical singularities
(, S). While Proposition 2.23 parametrizes polyhedral embeddings by the domain P C RS, for now, little
is known about it, and before studying the image of 7 > M(7) we shall provide a thorough description.
More precisely, we prove the following:

Theorem 2 Let 1g the indicator function of S, H the linear hyperplane of RS orthogonal to 1g, and 7
the orthogonal projection onto H . Define P = m(P) C H. Then we have the following properties:

(a) P is a convex compact polyhedron.

— (D S

(b) P=P+R-15)NRA.

(c) The interior of P contains 0 € RS.

(d) With 7 :={T; |t € P}, each Py :={m(x) | T = T} C P is a convex polyhedron of H forT € E.

Furthermore, the family (P7)re7 is a finite cellulation of P.

(e) The support planes I1 of P whose intersection with P has nonempty interior relative to I1 are
either of the form “ty = 0” for some o € S or “Q*(t) = 0” for some unflippable immersed hinge
Q around an edge of a triangulation T; for some t € P (see Definitions 3.1, 3.5, 3.8 and 3.15).

The starting point is to study “local” criteria for Q-convexity. By local, we mean at each edge of a given
triangulation; the following definitions make this notion precise:

Definition 3.1 (hinge) A hinge is a quadrilateral [ABCD] C E? together with a diagonal [AC] such
that [AC] C [ABCD].

Beware that the quadrilateral of a hinge need not be convex. If convex with vertices in general positions,
a quadrilateral may define two hinges: one for each interior diagonal. Otherwise only one hinge may be
defined.
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Figure 2: Projection of the domain of admissible 7. On the left, the domain P of the surface
is obtained by gluing two copies of an equilateral triangle’s edges to edges. The central cell
(red) corresponds to the Delaunay triangulation of the surface. In contrast, each of the other cells
corresponds to the triangulations obtained after flipping an edge of the Delaunay triangulation.
On the right, the domain P of the surface is obtained by two copies of the triangle of vertices
(0,0), (1, 1) and (0, 3). The upper triangle corresponds to the Delaunay triangulation, while the
lower one corresponds to the triangulation obtained after the only flip possible from the Delaunay
triangulation. The domains are represented in an orthonormal basis of the plane H. The pictures
were generated using SageMath [29].

Definition 3.2 (flippable hinge and hinge flipping) Let Q = ([ABCD],[AC]) be a hinge. If [ABCD]
is convex and the four points A, B, C and D are in general position, then Q is flippable, and its flipping
is the hinge Q' = ([ABCD], [DB]). If [ABCD] is not convex or A, B, C and D are not in general
position, then @ is unflippable.

Definition 3.3 (weighted hinge) A weighted hinge is the datum of a hinge, Q@ = ([ABCD], [AC]), and
afunction t: {4, B,C,D} —> R.

C C C

A sB
A A D

Figure 3: Different hinges. Left: a hinge ([ABCD], [AC]). Center: its flipping ([A BC D], [DB]).
Right: a nonconvex hinge.
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Definition 3.4 (r-legal/t-critical hinge) Let (Q, 7) be a weighted hinge. Denote by 7, 0: O — R the
distance-like function induced by the triangulation 7 = ([ABC],[ADC]). A hinge Q is t-legal (resp.
T-critical, -illegal) if 7 ¢ is Q-convex (resp. ¢ 1 strictly Q-concave).

Each edge e of a given triangulation 7 provides a hinge; indeed e bounds two triangles 77, 7> € T, and
the gluing of these two triangles along e is a hinge. Beware that two such triangles might actually be the
same in 7 (a triangle glued to itself), but we take two copies to construct the hinge. More generally, we
will need to consider immersed hinges.

Definition 3.5 An immersed hinge is a couple (Q, 1) with Q a hinge in E? and n: Q — ¥ an isometric
immersion. An immersed hinge (Q,n) is embedded if the restriction 7|y (p) to the interior of Q is

an embedding.

The hinge associated with an edge is embedded if and only if the triangles bounded by e are different in 7.

After an analysis of criteria ensuring 7-legality of a given hinge, we notice the set of t for which a given
hinge is 7-legal is the set of solutions of an affine inequality, and hence a convex set. Then, we turn to the
whole surface and try to construct triangulations for which all hinges are t-legal for a given .

Definition 3.6 (r-Delaunay triangulation) Let 7 be an adapted triangulation of X.
The triangulation 7 is t-Delaunay if the following equivalent properties are satisfied:
(1) Te,7 1is Q-convex.

(i) Every hinge of T is t-legal.

For a given triangulation 7, the set of 7 € Rf_ such that 7 is t-Delaunay is the set solutions of a system
of affine inequalities, and hence a convex set; hence the first part of Theorem 2(d). However, P is a
possibly infinite union of such domains; therefore Theorem 2(a) and the second part of (d) are not direct
corollaries. We thus reverse the problem and construct a 7-Delaunay triangulation with 7 given a priori.

The definition of t-Delaunay triangulation is coherent with the usual definition of Delaunay triangulation.
Indeed, an adapted triangulation of (X, .S) is a subtriangulation of the Delaunay cellulation if and only if
it is 0-Delaunay. The Delaunay cellulation can either be constructed as the dual of the Voronoi cellulation
(see [24] for a thorough exposition) or via a flipping algorithm starting from a given adapted triangulation.
The flipping algorithm is based upon the following remark (Lemma 3.9): for a given t, if a hinge is
t-illegal, then its flipping (if it exists) is r-legal. The algorithm then proceeds by flipping t-illegal
hinges one by one in the hope that after finitely many iterations there will not be any t-illegal hinges left.
Proposition 3.17 ensures the algorithm behaves mostly as expected: it stops after finitely many iterations
on a triangulation without any flippable t-illegal hinges. To complete the analysis of the flipping algorithm,
we show the resulting triangulation is 7-Delaunay if and only if there exists such a triangulation.

We end the section applying the results obtained on the flipping algorithm to prove Theorem 2.
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Figure 4

3.1 Q-convexity on hinges

Before going any further, we notice that the group Isom(E?) acts naturally on weighted hinges and

preserves legality.

In this subsection, we give ourselves a hinge Q = ([ABCD], [AC]) and some weights . For simplicity’s
sake, we choose a Cartesian coordinate system (x, y) of E2, set A = O as the origin of this coordinate
system, and put C on the vertical axis above A. Denote by w and 7o (resp. ' and 7)) the parameters
given by Lemma 2.3 on [ABC] (resp. [ADC]) for the weights 7; define

apc:E? >R, xa—>ro—d(x,a))2, wapc:E? —> R, xr—>t6—d(x,a)/)2.

Figure 4 sums up the situation.

_ N
Remark Note that d(w, C)?—d(w, A)?> =d(w’, C)?> —d(w’, A)? and hence ww’ L. AC. More generally,
from the proof of Lemma 2.3, one sees that the orthogonal projection of w on the line (AC) only depends
on A, C, t4, and (.

Proposition 3.7 (Q-convexity criteria) Under this subsection’s hypotheses, the following are equivalent:
(1) Te,0 is Q-convex.
(ii) 7,0 is Q-convex along some segment crossing [AC].
(i) Tapc < tacp on[ACD] and tagpc > tacp on [ABC].
(iv) tapc (D) =tacp(D) ortapc(B) = tacp(B).

(V) Xo = Xo'-

AC — AC — AC AC
(vi) (y—B—i-y—D)rc—l-( yB—I— yD)rAf—ID+—TB+K
lxg| ~ |xpl| |xB] |xp| [xp] |xB]
with AC AC
K =-—(AB?> - ACyp)+ —(AD?* — ACyp).
|xB] [xD]|
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(vii) Denoting by i A ¥ the determinant |1 V|,

— — — —> — —> — —
(ABAAD)tc + (CDACB)ty—(CAANCB)tp —(ACANAD)1g — K <0
with

— = > = = —> —> —
K =AC ANAD(AB-CB)+ CAACB(AD -CD).

Proof e (i) = (ii) This follows by definition.

e (ii) = (i) Since the line (ww’) is perpendicular to (AC) it follows that dt4gc/dy = dtacp/0y.
— —_— ) ) . —_— — -

Then grad 74 pc] — grad tp4c pj is horizontal and the sign of (grad tj4pc] — grad 1 4cpj | u) does not

depend on 1 as long as u is directed toward increasing x.

e (i) = (v) and (v) = (ii) We have that (v) is equivalent to dt4pc/0x > dt4cp/0x, which is
equivalent to Q-convexity along the direction perpendicular to [AC].

e (i) = (iii) Let P €[ABC] and choose some P’ € [AC D] such that [P’ P] crosses [AC]. The function
T[4cD] 18 € ! while 77,0 is Q-convex along [P’ P]. The same argument as in the proof of Lemma 2.17

gives the first inequality. The second is proven the same way.
e (iii) = (iv) This is trivial.

e (iv) = (ii) Consider any segment [PB] with P € [ACD]. Along such a segment, 7, ¢ is either
Q-convex or strictly Q-concave. The inequality 74 pc (B) > t4cp (B) implies it is the former. The same
argument shows 74gc (D) < t4cp (D) = (ii).

¢ (v) < (vi) Solve explicitly the system in the proof of Lemma 2.3 for both sides in (v).
e (vii) &= (vi) These are geometric rewritings of each other, which can be checked by rewriting terms

in coordinates. O

The previous proposition shows that Q-convexity is an affine constraint on t for a given hinge. Since we
will have to consider multiple hinges for multiple triangulations, we introduce the following:

Definition 3.8 (affine form of a hinge) Letting Q = ([ABCD], [AC]) be a hinge, define the affine form
associated to Q by

Q*IRT’B’C’D}ﬁR, T Actc +Aata—Aptp —Aptp — K,

where
AC:E/\E), )&Aza))/\c_é, XDZC_A)/\C_B>, XBZﬁ/\AD,
K =AC NAD(AB-CB)+ CAACB(AD -CD)

Remark The affine form Q* is defined in such a way that 7, g is Q-convex if and only if 0*(7) <0.
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Remark If (Q,n) is an immersed hinge of (X, S) with n sending vertices into S and with Q =
([ABCD],[AC]), we can then define a corresponding affine form Rf_ —-R

RY >R, > Q*(tonlia,p.c,py)-

If there is no ambiguity, we shall also denote it by Q*.
Remark A hinge Q is t-critical if and only if Q*(z) = 0.

Lemma 3.9 Let Q = ([ABCD],[AC]) be a flippable hinge and let Q' be its flipped hinge. As functions
R{4.B.C.D} R we have
Ql* — Q *k
Proof This can, of course, be checked directly in coordinates, but we provide a more geometric proof.
Following the notation of Definition 3.8 we write
0*: RE_A’B’C’D} —R, t+—=Actc+Igta—Aptp —Agte —K,

o Rf’B’C’D} —R, tAgtc+Au—Aptp—Age— K,

where

We check that
, —_— — —_— = — —
Ay=—DBADC=—(DC+CB)ADC=—-CBADC =—-CD ACB = —Ay4,
and we check the same way that A\’ = —Ap, A, = —Ac,and A} = —Ap.
A quick way to prove that K’ = —K is to notice that
K =(AB-CB-CD-DA)sin(BAD + DCB), K’ =(AB-CB-CD-DA)sin(CBA+ ADC),
and that BAD + DCB + CBA + ADC = 0 mod 2. O

Corollary 3.10 Let (Q, t) be a weighted flippable hinge. Then Q is t-critical if and only if its flipping Q'
is T-critical.

Corollary 3.11 Let (Q, ) be a weighted flippable hinge and Q' the flipping of Q. If Q is not t-critical,
then the following are equivalent:

(i) Q ist-legal.
(ii) Q' is t-illegal.

Lemma 3.12 For any hinge Q, the indicator function 1g is in the kernel of the linear part of Q*, eg
forallt e RS and A € R, Q*(r + Alg) = 0*(2).
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Proof Using the notation of Definition 3.8, we have

— = = — — — —> —> —» —> —> —
Ad+Ac—Ap—Ap=CDACB+ABAAD—-ACANAD—-CAACB=ADACB+CBAAD =0. O

Corollary 3.13 Forall t € P and all A € R,

T4+ AlgeP < t+Alg>0.

Corollary 3.14 With the notation of Theorem 2,
P={P+R-15)NRS.

3.2 The flipping algorithm

Let 7 be an adapted triangulation of (X, ). Consider (Q, 1) an immersed hinge given by an edge of 7.
We would like to flip (Q, 1), ie construct a new triangulation of (X, S) with n(Q) replaced by n(Q’)
with Q the flip of Q. There are three cases:

e 7 1is not an embedding. Then the diagonal one wants to replace is also a side of the hinge. Hence
one cannot simply replace it without modifying the triangulation 7 elsewhere.

¢ 7 is embedded but Q is not flippable.

e 7 is embedded and Q is flippable. Then the flipped hinge Q’ is well defined, n: Q' — X is well
defined, n(Q’) = n(Q) so that we only modify 7 locally, and the new triangulation 7" is composed
of nondegenerated triangles.

This remark motivates the following definitions:

Definition 3.15 (flippable immersed hinge) An immersed hinge (Q, 1) is flippable if it is embedded
and Q is flippable; it is unflippable otherwise.

Definition 3.16 (flipping algorithm) Let 7o be any adapted triangulation of (X, S) and let t: S — R.
The flipping algorithm proceeds as follows:
(1) Seti =0.

(2) Let L; be the set of t-illegal flippable embedded hinges (Q, 1) induced by the edges of the current
triangulation 7;.

(3) If L; is nonempty,
(a) choose some immersed hinge (Q,n) in L;,
(b) replace the hinge (Q, n) by its flipping (Q’, 1) in 7; to obtain a new triangulation 7; 41,

(¢) increment i and go to step (2).

(4) If L; is empty, the algorithm stops and returns 7;.
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The goal of the section is to prove the following:

Proposition 3.17 Let 7: S — R4. For any starting triangulation Ty, the flipping algorithm for T starting
at 7o stops on some triangulation 7T after finitely many iterations and every flippable immersed hinge in
T is T-legal. Furthermore,

e t e Pifandonly if T; is T-Delaunay,

* maxy Tr,7, < Maxg T+ maxy 70,7, -
Remark The notation 77 of this last proposition is consistent with the one introduced in Definition 2.22.

Two lemmas are key to the proof; the first is Lemma 3.18, which states that 7, 7; is decreasing along the
iterations of the algorithm; the second is Lemma 3.22, which implies that immersed unflippable hinges
are always t-legal for T € P, even those that are not associated to an edge. Lemma 3.22 will again be
useful in the following section.

Lemma 3.18 Let t: S — R4 and let Ty be an adapted triangulation. Let (T;);es be the sequence of
triangulation given by the flipping algorithm with weights t and starting at Tg, where I = [0, n]] or N.
Then the associated sequence of distance-like functions (T, 7;)ier is decreasing:

o foralli,j €l withi < j we have Tr,7; > Tr,7;,

e foralli,j €l withi < j there exists x € X such that

‘Zr,ﬁ ()C) > ‘L:r’7;- (x)

Proof Leti € I be such thati 4+ 1 € I. The triangulation 7; 1 is obtained from 7; by flipping an
embedded hinge, say (Q, 1), of T; with Q = ([ABCD],[AC]). Then:

e Forall x € £\ n(Int(Q)), Tr,7; (x) = Tr, 774, (x). Indeed, for x ¢ n(Q), the triangle containing x
is the same in 7; and 7; 4+1.

 For all x € n(Int(Q)), Tr,7; (x) > Tr, 774, (x). Indeed, 7¢, ¢ and 7o’ are equal on [AB], [BC],
[CD], and [ DA]; by hypothesis 7 ¢ is strictly Q-concave and, from Corollary 3.11, 7 ¢ is strictly
Q-convex. Applying Lemma 2.17 on segments going from side to side of [A BC D] we obtain

forall x € Int(Q), T0 > Tr,0'- d
Corollary 3.19 No triangulation appears twice in the sequence (T;);ey given by the flipping algorithm.

Lemma 3.20 Let T be a nonnegative distance-like function on (X, S). If T is ¢! on some geodesic of
length £ then
max T > %62.
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Proof Letc:[a,b] — X be an arc length parametrization of such a geodesic and let f := T oc. We have
fila.b] >R, x> —x%>+ax+p,
for some «, B € R. Furthermore T > 0, and so f(a) > 0 and g(b) > 0.

Define u: [a, b] — R to be the unique affine function such that u(a) = f(a) and u(b) = b. We thus have
for all x € [a, b], f(x) =u(x) — (x —a)(x —b). On the one hand, f(a) and f(b) are nonnegative, so u
is nonnegative. On the other hand,

max (—(x —a)(x—b)) = %(b —a)? = %62. |
x€la,b]

Lemma 3.21 For C € R, let Ec be the set of adapted triangulations T of (X, S) such that

there exists T € Ri with max 7,7 < C.
Then E is finite.

Proof Let 7 be an adapted triangulation such that there exists t € Ri with max 77 < C. Choose such
a 7. Let e be the longest edge of 7. From Lemma 3.20 with L = length(e)

TL? < max Z, 7 < C,
and thus L < 2+/C. Therefore the triangulation 7 only has edges of length less than 2+/C.

Consider a finite covering S of  branched above S such that all cone angles of S are bigger than 2.
Note that ¥ is locally CAT(0), so its universal (unbranched) covering T is CAT(0) by [1, Theorem 3.3.1],
and hence for any two points in ¥ above S there exists at most one geodesic; see [1, Section 2.2].
Furthermore, any geodesic of length at most 2+/C in X from a point A of S to a point B of S lifts to a
geodesic in S of the same length starting from a fixed A to some unfixed lift B of B in the ball of radius
2+/L around A. There are finitely many such B e S, thus finitely such geodesics in S. There are thus
only finitely many geodesics of ¥ from S to S of length bounded by 2+/C; hence there are only finitely
many triangulations with edges of length at most 2+/C. a

Lemma 3.22 Let Q be an unflippable hinge with Q = ([ABCD], [AC]). If there exists some distance-
like Q-convex function f on [ABCD] extending t: {A, B,C, D} — R, then Q is t-legal.

Remark Beware that f-triangulations of [A BC D] may be very different from the one induced by the
hinge, ie ([ABC], [ACD]).

Proof Without loss of generality, we may assume that C is in the convex hull of [A BD]. Define g := 7 ¢
and h the distance-like extension of 7|4 g py on [ABD] given by Lemma 2.3. Both functions f and g
are defined on [ABCD] C [ABD] and #h is defined on [ABD]. Furthermore, g is either Q-convex or
Q-concave.
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Applying Lemma 2.17 on sides of the hinge O and then on any edge within Q and with extremities on
the sides, we see that f < h and that either 7 > g or h < g, depending on whether g is Q-convex or
Q-concave.

Since g — h is affine on each triangle [ACB] and [ACD] and null at A, B, and D, we see that g — h
is nonpositive if and only if g(C) — h(C) < 0. However, g(C) = f(C) < h(C), so g < h, and hence
g = T,0 is Q-convex. |

Lemma 3.23 Let t: S — R4 and let (Q, n) be an immersed hinge with Q = ([AB-1 BoB1],[ABo])
such that [A Bg B1] is obtained from [A B—_1 By] via a rotation and n([A Bo]) = n([AB1]) = n([AB-1)).
Then there exists an immersed hinge (Q, 1) with Q unflippable such that (Q, n) is t-legal if and only if
(0. 1) is T-legal.

Proof Letf = Im andn = [x/0]—1.1f 0 > %n then take O = Q and /) = 7.

Otherwise, construct the polygon [AB_; --- Bg --- B,] such that for each k € [[1 —n, n]], the triangle
[A By By 1] is obtained from [ABo B;] via the rotation of center A and angle oy = k6. Define Q =

110 =3, x€[AByBoks1] > 1(p—2a; (X)), x € [ABo_1 Bor] = 1(p—20 (%)),
where pg denotes the rotation of center A and angle j; see Figure 5.

We have for all k € [-n, 1], 7(Bx) = n(Bo). The weights € RS thus induce weights 7 := 7 o 7} such
that 7(By) = 1(Bo) = 7(B1) = ©(B-1). For I, J,K € {A, B, ..., By}, denote by w7 k) the center
of T, [77k] and by w7 s the orthogonal projection of w7 sk} on the line (1J). From the remark before
Proposition 3.7, the orthogonal projection of w7 sx] on the line (/J) only depends on 7(/), 7(J), and
[1J]; in other words w7 7] does not depend on K.
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Since 7(By) = 7(Bo) = T(B-1), we have that wp, p,] (resp. w[p,B_,]) is the middle of [ By B,] (resp.
of [BoB—y]). Since the lengths (A By )re[—n,n] are equal, the perpendicular bisectors of [Bo B—] and
[Bo B, ] intersect at A. Therefore wqp_, B, is on the right of w4 g, B, on the perpendicular to (4 By) at
w[4B,] if and only if w[4p,] is on the ray [ABg). Hence, by Proposition 3.7(v), the hinge Q is 7-legal if
and only if w[4p,) is on the ray [ABy).

The same argument shows Q is z-legal if and only if w[4p,] is on the ray [ABp). Finally, (Q,n) is
t-legal if and only if (Q, 1) is t-legal. |

Proof of Proposition 3.17 By Lemma 3.18, the sequence of distance-like functions given by the flipping
algorithm is bounded above by the first of the sequence 7, 7,. Since 77,7, — To,7; is affine on each triangle
of 7o it is bounded by its value on S, and thus by maxgs 7. Hence, for all 7, 7, 7; < maxg T +max 7o 7,. By
Lemma 3.21, the flipping algorithm runs through a finite set of triangulations. Finally, by Corollary 3.19,
the algorithm reaches a given triangulation at most once and thus stops after finitely many steps, say
n € N*. The algorithm stops when the set of flippable t-illegal hinges is empty, so 7, has no flippable
t-illegal hinges.

If the final triangulation 7, is t-Delaunay then by definition t € P. Assume t € P and consider (Q, 1)
some unflippable hinge of 7. Either 7 is an embedding, in which case the weighted hinge (Q, t o)
satisfies the hypotheses of Lemma 3.22 and the immersed hinge (Q, 1) is then t-legal, or 5 is not an
embedding, in which case (Q, ) satisfies the hypotheses of Lemma 3.23, so the immersed hinge (Q 1)
provided by Lemma 3.23 satisfies the hypotheses of Lemma 3.22, thus being t-legal, and so (Q, n) is
t-legal as well. Finally, 7, is T-Delaunay. |

3.3 Description of the domain of admissible times

We may interpret Lemma 3.22 together with Lemma 3.23 in the following way: if t € P, then all
unflippable immersed hinges of (X, S) with vertices in S are tr-legal. Furthermore, Proposition 3.17
shows the converse: the flipping algorithm stops on a triangulation 7, whose flippable hinges are all
t-legal if all unflippable hinges of (X, S) are t-legal, in particular those of 7 are 7-legal, and hence 7 is
t-Delaunay. We thus proved the following:

Proposition 3.24 Let UFlip be the set of the unflippable immersed hinges of (X, S) with vertices in S.
Then

P= () (@95 'R-).

(Q,n)€UFlip

In particular P is a convex domain of R‘i.

Remark Lemma 3.29 implies that UFlip is nonempty. We take the convention that the intersection is
RS if UFlip = 2.
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Proposition 3.25 For t € P, if T is the unique Q-convex distance-like extension of t to (X, S) then
% = n;_i/n ;E'L',T/’
where T" runs through all adapted triangulations of (X, S).

Proof Take any adapted triangulation 7 of (X, S) and consider 7 a triangle of 7. On T, T, 1 is €}
while 7 is Q-convex. By Lemma 2.17, T < 7,7 on T'. The triangle T is arbitrary; thus 7 < 7,7 on X. O

Proposition 3.26 The indicator function 15 of S is in the interior of P.

Proof To begin with, by [24, Theorem 4.4], each cell of the Delaunay cellulation C of (X, S) is isometric
to a polygon inscribed into a circle of E2 whose center is a vertex of the Voronoi cellulation. For any
given cell C of the Delaunay cellulation, with R¢ the radius and w € E? the center of the circumscribed
circle of the image of a development D: C — [E2, the function

f:C—R4, x> REZ—-d(D(x),w)>?,

is distance-like €' on C and f(p) = 0 for any vertex p of C; hence, for any adapted subtriangulation 7~
of C, forall x € C, 79,7(x) = f(D(x)).

Let e be an edge of the Delaunay cellulation, let C and C’ be the two cells on each side of e, and denote
by C and C’ lifts in a covering branched above S such that C # C’ and such that C N C’ = ¢ with & a
lift of e. Choose a development D of cuc'. By abuse of notation let w and w’ denote the centers of the
images of C and C’, respectively.

Denote by Q;"T the affine form associated with the hinge of axis e for any subtriangulation T of C.

Claim 0. +(0) #0.

This is equivalent to @ # w’. Assume for the sake of contradiction that @ = w’. Then vertices of
D(C)UD(C’) are cocyclic; hence C and C' are in the same Delaunay cell, ie C is glued to itself via e.

Without loss of generality, we may assume that  is on the side (inclusively) of D(C’ ’); hence e is strictly
longer than every other edge of C. We deduce that C cannot be glued to itself via e, a contradiction.

Claim Q.70 <0.

We may assume that the hinge at e is developed as in Figure 4. We take the notation of the proposition.
Notice that assuming condition (v) is not satisfied, either B is in the interior of the circumscribed circle
of ACD or D is in the interior of the circumscribed circle of ABC. This violates a characterization of
the Delaunay cellulation.

Define
—1
u:=R3in () (s 'RY)
TeD e
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where D is the set of adapted subtriangulations of the Delaunay cellulation, and e runs through the
edges of the Delaunay cellulation. The intersection is finite since there are only finitely many such
subtriangulations and edges. I/ is thus an open subset of Rf_ which contains R 15.

We now show U C P. Apply the flipping algorithm for some t € I/ and start from some 7o € D of the
Delaunay cellulation. Let 7Ty, ..., 7, be the sequence of triangulations given by the flipping algorithm. By
induction we have 7o € D, and assuming 7, € D for some k < n, the conditions Q:’Tk (7) <0 ensure that
the edges e are t-legal and thus not flipped. Hence 741 € D. From Proposition 3.17, the triangulation
Tn is such that all flippable hinges are t-legal. On the one hand, the edges of C are t-legal since t € U.
On the other hand, all hinges inside a cell of the Delaunay cellulation are flippable. Finally, all the edges
of T, are t-legal and U is a subset of P. a

In order to obtain a finite cellulation of P as well as characterize its boundary, we prove its transverse
compactness. By transverse compactness of P we mean that the projection of P into the hyperplane
{‘L’ eRS | D oses T(s) = 0} is compact. Note that, for instance, if P were equal to the whole Ri then
it wouldn’t be transversely compact in this sense. The proof that P is transversely compact relies upon
the construction of affine constraints of the form t4 — t¢ < ée(tg4 + 13 + 7¢ + 1p) + K with ¢ > 0
arbitrarily small, and A and C arbitrary in S. Such constraints are provided by type-(x, L) hinges; see
Definition 3.27, via Lemma 3.28. Lemma 3.29 focuses on the construction of such immersed hinges.

Definition 3.27 (type-(x, L) hinge) Let x, L > 0. A hinge ((ABCD], [AC]) of E? is of type (x, L) if
it is nonconvex with C € [ABD] and
d(B,A)<x, d(D,A)<x, AB>L, AD>L,

where A is the line (AC).

Lemma 3.28 Let [/ > 0 and x > 0. For a hinge Q, write

0%t a(Q)ta+ B(Q)te +y(Q)tc +8(Q)tp + K(Q)
for the affine form associated to Q.

Then, for all sequences (Qp),eN of hinges such that for all n € N, Q,, is of type (x, n) and axis length [,
we have

@WQn) _ o PQa o 8@ e N p(0,) > 0.

ot y(Qn) 1 notoo p(Qn)  ntoo y(Qn)

Proof Let L >0, and let Q = ([ABCD], [AC]) be a hinge of type (x, L) such that AC = [. Without
loss of generality, we may choose Cartesian coordinates of E2 such that A4 : (0, 0) is the origin, C : (0, ),
xp >0, and xp <O0.
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There exists some A > 0 such that

[ [ — [ — [
BO)=A——, a(0) =A( IB | “’), 50)=i——. 10 :A(Y_BN_D)-
|xB| |xB| XD |xD| lxg| ~ |xp|
We have |xg| < x, |xp| <x, ygp > VL% —x2% and yp > v L? — x2; thus y(Q) > 0 and
B <0l(Q)<_1+ [ 0<,3(Q)< l 0<5(Q)< [ -
- (o)~ VI2=x2' T y(0) T VL2=x? ~y(Q) T JL2=x2

Lemma 3.29 Let e be nontrivial geodesic segment of (X2, S) going from some 61 € S to some a2 € S
whose relative interior is in X*.

There exists xo > 0 such that for all L > 0, there is an immersed hinge Q = ([ABCD], [AC], n) of type
(x0, L) such that n([AC]) = e.

Proof Let M := maxyex d(x, S) and m := minges mingeg\ ¢53 d(s, s”).

Define ®: U/ — ¥ as the exponential map at oy defined on some maximal star-shaped open neighborhood
U of 0 in the tangent plane Ty, X above o such that @/ \ {0}) C =\ S. We identify Ty, = with E2,
where « is the cone angle at 07, so that ® is an isometric immersion from an open set of E2 to £. We
choose polar coordinates (7, §) of E2 so that the direction § = 0 is the initial derivative of the segment e.

With g = min(%a, %71’) define

Fmax: =B, B[ — R} U{+o0}, 6> max{r eRy |(r,0) U},
R+:]0,f[ > RL U{+o0}, 6O 0/131({10] Fmax (£6).

For any given 6 € |—8, B, if rmax () < +00 we extend ® continuously to (rmax(0), 8); note that in this
case O(rmax(0),0) € S.
Claim limsup OR 4 (0) <2M.

6—0+
Let 6 € ]0, B[. @ is defined on the interior of the triangle [OAB] C E2 with 4 = (R4(6),0) and
B = (R4+(0), 0) in polar coordinates. The inscribed circle of [OA B] bounds an open disc whose image
by ® does not contain any element of S, and hence the radius %R+(9)(cos(9) + sin(f) — 1) of this
inscribed circle is less than M. One easily checks that cos(8) + sin(f) — 1 ~g_, o+ 6. The result follows
for R4, and one may proceed the same way for R_; see Figure 6.

Claim lim R4(6) = +o0.
0—0+

The function R4 is nondecreasing by definition, so the limit is well defined. Define a sequence (6, ),eN
as follows: choose some 8y € |0, B[ such that rpyax(6o) = R+(8p) and sin(6p) < %m; then for alln € N
take 0,41 € ]O, %9,,[ such that 7y (6p4+1) = R4+(64+1). The map @ can be continuously extended to
the domain

D:= [ J{(r.0) 6 €[0.6,). r < R(6,)}.
neN
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P
0 P

P,

Figure 6

Write Py, := (R4 (6,), 0,); since for alln € N, &(P,) € S, foralln € N,

Ry (Bpt1) — R (0n) + 0y —Opt1 =dp(Py, Ppt1) > ds(®(Py), D(Ppt1)) > m.
Thus
foralln e N, Ry (6,)>nm+ Ry(0y)+ 60g— 06, n—too | oo

One may proceed the same way for R_.

We now come back to the proof of the lemma. Take some x¢ > M, for any L € R. From the claims
above, there exists some 6 €]0, B[ and 60— € |—p, O] such that |sin(0+)rmax(60+)] < x¢ and rpa(0+) > L.
Choose such a 61 € |—pf, B[ and notice @ is well defined on the hinge O = [ABCD] with A = O,
B := (rmax(0-), 6-), C := (length(e), 0), and D := (rmax(0+), 6+). The hinge Q is of type (xo, L) and
n := ®|p is an isometric immersion. The immersed hinge (Q, 1) is then of type (xo, L) with vertices in
S and such that ®([AC]) =e. |
Lemma 3.30 There exists C > 0 such that forall A, B € S andall t € P,

|z7(4) —z(B)| = C.

Proof From Corollary 3.13, it is enough to find a C > 0 such that
forallteP, mint=0 = maxt <C.

From Lemmas 3.28 and 3.29 and from Proposition 3.24, for all ¢ > 0, and A, B € S, if there exists
a geodesic from A to B whose relative interior is in X \ S, then there exists K > 0 such that for all
T1€P,|ty—tp| <emaxt+ K. Forall 4, B € § there exists a geodesic from A to B possibly intersecting
S in his relative interior. Hence

Ve>0,VA,B €S, 3K >0suchthat VT € P, |[tg4 —tp| < emaxt + K.

Since S is finite,
3K >0,YA,B€ S, VT eP, [ty — 15| < 3 maxt + K.

Choose such a K > 0 and define C = 2K. Then for all T € P such that mint = 0,
max T = |max t —min 7| < %maxr—i—K.
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Thus for such a
maxt <2K =C. O

Proof of Theorem 2 Let 7 be the orthogonal projection of RS onto H := {t e RS | " ¢ 7(s) = 0}.
Note that the kernel of 7 is R -1g. For each triangulation 7, the set of 7 € Ri such that 7, 7 is Q-convex
is the domain
Pre=Rin ] (©@H'R-).
e€Edge(T)
since 1 is in the kernel of the linear part of all the affine forms Q). Since the number of edges of 7 is
finite, P7 := 7 (P7r) is a convex polyhedron and P+ = (Pr +R-15) N Ri.

On the one hand,
P=JPr,
pe

where 7 runs through all adapted triangulations of (X, S). Then defining P := Ur P, we have
P=({P+R-15)NRS.

On the other hand, by Lemma 3.30, P = 7 (P) is compact. Furthermore, by Proposition 3.24, P is convex.
Hence P is convex.

Then consider the set T of triangulations that are t-Delaunay for some 7 € P. For any admissible 7 € P,
it follows from Lemma 3.12 that t’ := t —min t € P and that the set of T-Delaunay triangulations is equal
to the set of t’-Delaunay triangulations. Therefore T is the set of triangulations that are t-Delaunay for
some T € Py := {tr € P | mint = 0}. By Lemma 3.30, there exists a constant C that only depends on X
such that for all T € Py, v < C. By Proposition 3.17, there thus exists a constant A that only depends on
> such that 7; 7 < A for all z-Delaunay triangulation 7 and all € Py. Using notation of Lemma 3.21,
we deduce that T C Eg4 is finite; hence T is finite. The domain 7 is thus a polyhedron.

Choose any triangulation 7o and define A := SUPep, MaXxex Te,75(X); by compactness of P, the set Py
is bounded. Hence A < +oc0. Consider the finite family (Q;);e[1,47 of unflippable immersed hinges
around edges of triangulations in E4 and define Py := ;1:1 of TRO). By Proposition 3.24 P4 D P.
In addition, for any 7 € P4 the flipping algorithm starting at 7o € E4 stops after finitely many iterations
on some 7, € E4; Proposition 3.17 ensures that flippable hinges of 7, are t-legal and the definition of
‘P4 ensures that unflippable hinges of 7, are also t-legal. We deduce that 7, is t-Delaunay, and hence

T € P. We conclude that P = Py, so that essential support planes of P4 are either
¢ essential support planes of ]R:g|r and thus of the form 7, = 0 for some o € S, or
* given by “QF = 0” for some i € [[1,q].

Finally, since P is a finite union of cells, essential support planes of the second kind correspond to a facet
of some cell P7. Theorem 2(e) follows. O
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4 The Volkov lemma for Lorentzian convex cones

In effective methods used to prove Alexandrov-like theorems, at some point a Volkov lemma bounding the
cone angle ® around a singular line of angle « in a Riemannian manifold is needed. This is used to exclude
some positions of critical points of the Einstein—Hilbert functional introduced in the following section.

We consider spacelike convex cones in E,ﬁ’z for k > 0, eg the model space of the timelike singular
lines of angle k as R3 endowed with the metric dt? — dr? — (k/(27))? d§2. There are many ways to
rigorously define a spacelike cone in IE,lc’z. In our context, we define a cone D as the graph of some
Lipschitz 1-homogeneous function ¢ : R% — R. The cone is spacelike if the graph in R? identified to ,1;2
is spacelike. The cone D is then convex if the future J T (D) is convex in the sense that any spacelike
geodesic with extremities in J (D) is in J (D). The Lorentzian structure of E ;,2 induces complete
metric space structure on the cone, which is locally Euclidean except possibly at {r = 0}. In other words,
D is isometric to IE%9 for some ® > 0; this O is its so-called cone angle.

Let D be a cone defined as the graph of #: R? — R. A wedge is the graph of ¢ on some domain
{6 € I, r > 0} with [ an interval; Such a wedge is coplanar if it is totally geodesic. A wedge is isometric
to some domain {(r,0) | r > 0,0 <6 <z} in (R?,dr? + (a/7)*r? d6?); the value of « is unique and

we refer to it as the Euclidean angle of the wedge.

Theorem 3 Let ® > 0 and « > 0. Let D be a convex spacelike cone in E,l’z of cone angle ® whose
vertex is on the singular line of ]E,i’z.

Assuming D has a coplanar wedge of Euclidean angle at least min(r, ®),

o if ® > 2m thenk > 27,
if ® =2m thenk =27,
if ® €|, 2| thenk > O,

if ® = thenk =,

if ® < 7 then k €]0, ®] with k = O if and only if D is the horizontal plane,

and all the bounds above are sharp.

Remark Though results such as stated above are used one way or another in [3; 6; 18; 19; 22; 26], to
our knowledge, a complete proof of the bounds we use is not available in English (one may appear in the
original thesis of Volkov which is in Russian, and only a summary is available in English [34]). We thus

provide a complete proof.

Remark In Minkowski, a convex cone always has a cone angle bigger than 2. One may expect this to
be carried out in E4? for arbitrary k > 0. Theorem 3 shows this intuition is valid for x € [0, 7] U {27}
but not for k € |xr, 27].
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When considering a cone D in E3, an elementary remark is that the angle of the conical singularity is, in
fact, the length of its stalk: the curve given by the intersection D N S2. By extension “stalk” refers to
curves in S? or S1! that are graphs over the “equator”. As in the Euclidean case, we may notice that the
angle ® of the conical singularity of a spacelike cone in E,l’z is given by the length of the spacelike curve
induced on S,l’l ={(t,r0)e E,i’z | 2 —t2 = 1}. However, the relation between « and @ is far from
trivial, and the Lorentzian nature of S1-! does not help. One may devise an analytical proof of the needed
Volkov lemma [9], but a more geometrical one is provided based on a suggestion of Graham Smith.

The key idea developed in Section 4.1 is that to each cone stalk p: R/kZ — S,l’l corresponds a dual stalk
y:R/OZ — Sé. The length of p is the Euclidean cone angle ® while the length of y is the Lorentzian
cone angle «.

4.1 Stalks of Lorentzian cones

Although we defined cones with Lipschitz regularity, we will focus our argumentation on polyhedral
cones that are simpler to describe. A density argument allows us to generalize to lower regularity.

Definition 4.1 (stalk of a spacelike cone) Let x > 0, ® > 0 and D be a spacelike cone of E ;’2 of cone
angle ©. In cylindrical coordinates (r, 0, t), the set S,l’l N D can be parametrized by arc length with
increasing 6 coordinate:

t(s)
DNSH =31r@s) | |seR

0(s)

The stalk pp of D is the function ¢: R — R of this parametrization.
Remark The stalk p of a cone is unique up to precomposition by an affine transformation of slope £1.

Proposition 4.2 Let « > 0, ® > 0 and D be a cone of IE,%’Z of cone angle ® whose vertex is on the
origin and of stalk p := pp. We have the following:

(1) p:R — R is ®-periodic and Lipschitz continuous.
(2) D is polyhedral if and only if p is piecewise trigonometric (piecewise of the form 6 +— A cos(6 +¢)).
(3) If D is polyhedral then

D is convex <= p is Q-convex.

@) k= [T+ p@)% + p'(0)2/(1 + p(8)*) db.

Proof The first three points are simple enough. To obtain the last item, we first choose a parametrization
by arc length s — (¢, 7,0) of DNSY! with § increasing and notice

6 2
_ ’ 22 _ (N2 "2 K 20012 —
271_/0 0'(s)ds, ri—p*=1, —(p)%+(") +(—2n) P2(0)% = 1.
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Therefore rr’ = pp’ and

na (202 1+ (02 =) o \2 1+ ()2 —(pp' /1) 22 \2 (14 (p)D)(1+p?)—p*(p)?
¢ )2—(7) ——(_) _(_)

r2 K 1+ p2 K (14+p2)2
_ (2_77)2 1+(0)*+p”
Nk (1+p2)?
and so
g 2n V1 ()2 +p?
K 1 + p? '
Insert the last line in 277 = f()@ 6’ to get the result. O

Remark For p: I — R continuous piecewise trigonometric, p is Q-convex if and only if s — p(—s) is

Q-convex.

Definition 4.3 (mass of a stalk) For p: [a,b] — R (resp. p: R/OZ — R), define

e [ I (o [P

a 1+ p? 0 1+ p?
Remark Every p: R — R piecewise trigonometric Q-convex and ®-periodic induces a convex polyhedral
embedding of ]E(z9 into ]Ei’(i). Furthermore, this embedding is essentially unique: from Proposition 4.2,
the mass « is given by p; there is thus no choice for the space IE,%’Z and two embeddings of the same germ

only differ by a rotation or a symmetry.

Corollary 4.4 Let k > 0, ® > 0 and D be a spacelike polyhedral cone in E,lc’z of cone angle ©.

If its stalk p is €' then k(p) = ©. Furthermore, if i is not a multiple of 27 then p = 0.

Proof To begin with, since p is piecewise trigonometric and continuously differentiable, p is in fact
trigonometric. Then either 27 is the minimal period of p or p = 0. If p = 0, the result follows from
Proposition 4.2(4). Otherwise ® € 2z N and we notice that for any A and ¢ we have k(s A cos(s+¢)) =
2k if © =2k, |

Lemma 4.5 Let I be an interval, p: I — R be piecewise trigonometric Q-convex, and let 6y € I.
Let p be the unique trigonometric function such that p(6y) = p(6y) and p’ (95r ) = p'(6p). Then for all
0 elN[by, b+ 7],

p(8) = p(8).
Furthermore:

there exists 0 € |6y, 6y + 7 [ such that p(0) = p(8) <= for all 6 € [0y, Oy + 7], p(0) = p(H).

Proof Let (6y,01,...,0, = 69+ m) be subdivision adapted to p. For k € [[1,n], denote by p: R — R
the unique trigonometric function such that p|gg, _,.6,]1 = Pl[6,_,,6,] and define po = p.
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For k € [[0,n —1]|, we have pg(6k) = px+1(6k)- If p3(6k) = pj, 1 (6k) then px = p1;. Otherwise
04 (Ox) < Py, +1(0k); thus pg < g1 onanontrivial interval [0, Ok +¢]. These two trigonometric functions
are in particular distinct and intersect each other on the set 6y + 7 Z. Hence py — pg+1 has constant sign
on the interval [0, 6k + 7] and pg < pg+1 on [6k, Ok + 7]. By induction, the result follows. O

Definition 4.6 Let S2, be the universal covering of the round sphere branched over its north and south

poles, eg [——JT, én] x R/~ endowed with the metric

2 = d¢? + cos(¢)? d6?,

where ~ identifies all points such that ¢ = %71 together as the north pole N and all points such that
¢ = 7r as the south pole S.

Definition 4.7 A piecewise geodesic curve y: I — SZ, is Q-convex if § o y is injective and ¢ o y is
Q-convex.

Lemmad4.8 Letp:[a,b] — R be Lipschitz continuous and define y : [a, b] — S2,, 6 + (arctan p(6), 9).
Then

k(p) = length(y).
Furthermore, y is a piecewise geodesic Q-convex curve if and only if p is piecewise trigonometric
Q-convex.

Proof By direct computation:

N2(9 b "N2(0 1
length(y) = / \/(1:{);2((9)))2 + cos?(arctan op(6)) df :/a \/(1('_:_);2((9)))2 + 11 02(0)

(p)?(0) + 1+ p*(0)

= YN df = «(p).
a (14 0%(0))

Then it sufﬁces to note that curves of the form ¢ — (¢ (1), 0(¢)) with ¢ (¢) = arctan(« cos(0(¢) + ¢o) ¢

{ 27r, 2 } and 6(¢) =t are exactly the nonmeridional geodesic segment of S2_. |

Proposition 4.9 Let Sg be the set of Lipschitz stalks of convex spacelike cones of cone angle ® admitting
a coplanar wedge of Euclidean angle min(®, ) endowed with the Lipschitz norm

p(s1) — p(s2) .

llollLip —suplp(S)IvL sup
51— 82

S17£S52

Then the subspace of piecewise trigonometric Q-convex functions is dense in Sg.

Sketch of proof Consider the stalk pp: R — R of a (Lipschitz) spacelike convex cone D and its
associated geodesics y in S2,. Consider [a,a + «] + OZ with & > min(0, ) and Plla+k®,a+kO+a)
trigonometric for all k € Z.
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The curve y divides Sgo into two parts (north and south); the epigraph of y is the northern domain.
Convexity of the spacelike cone translates in S, into the local convexity of the epigraph of y. We may
construct an approximating sequence (y,),eN of y interpolating by geodesics, say between points of
the form (s, y(sx)) with (sx)xez € RZ increasing such that [sg 1 —sg| < 1/(1 4 1), limeo 55 = 00,
and {a +k®,a+a+ kO |k € Z} C {5 | k € Z}. Then notice that for n big enough, the geodesics
are not meridional and thus correspond to a piecewise trigonometric ®-periodic stalk p,. By convexity
of y, each y, is Q-convex for n big enough, and so are the p,. We note that y is Lipschitz and that the
sequence y, converges in Lipschitz norm to y. a

4.2 Lower bounds

Lemma 4.8 provides a neat geometrical translation from Lorentzian to Riemannian. Indeed, an issue with
the geometry of Lorentzian manifolds is that spacelike geodesics are not characterized as minimizers
of the usual energy Lagrangian [ g(y,y). The description of convex polyhedral cones as Q-convex
piecewise geodesics in Sgo allows us to leverage the usual Riemannian theory of geodesics.

Proposition 4.10 Let ® > . Then
inf k(p) = min(2x, V),
PESe
the infimum being taken over the set S@ of stalks p: R/®Z — R of convex spacelike cones admitting a
coplanar wedge of Euclidean angle at least . Furthermore, the infimum is achieved if and only if ® <2x.

Proof Note that by Proposition 4.9, piecewise trigonometric elements of Sg form a dense subspace for
a norm for which « is continuous. By abuse of language, we say that “p is a Q-convex stalk”, meaning

that p is a Lipschitz limit of piecewise trigonometric Q-convex stalks.
e Assume ® > 2. Consider for o > 0 the stalk
. . 3 1
pR/OZ —R. 01> S%nh(oz) sin(@) for 0 G' [_5”’ E”]’
sinh(«) otherwise,

so that p is Q-convex and k(p) = 27 + (© —27)/ cosh(«). As a result, inf,e s K (p) < 2.

e Assume ® < 2m. Then the stalk p = 0 is such that k(p) = ©.

e Let y:[0,0 — ] — S2 be a Lipschitz curve from (¢g, 0) to (—po, ® — ) minimizing the length

with y(0), y(® — ) ¢ {N, S}. The curve y is a geodesic with possibly intermediate points in {N, S}.

— Assume y does not intersect {N, S}. Then up to reparametrization ¢ o y is of the form 6

arctan(a cos(6 + 6p)). If ® > 27, then the length of such a curve is at least r. Otherwise, since
¢oy(0) =—¢poy(®—m) up to reparametrization, p(6) = sinh(e) sin(6) with 6 € [m—%zr, %n—m]
andm =mw — %@. Then

k(p) =m — 2arctan( tan(m) )

cosh(a)

which is minimal if and only if @ = 0, in which case the length of y is ® — 7.
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— Assume y intersects {N, S} exactly once. Then y is formed of a geodesic from y(0) to N (resp. S)
followed by a geodesic from N (resp. S) to y(®). Such geodesics are meridional; hence the length
of y is exactly .

— Assume y intersects {N, S} at least twice. Then it contains a meridional geodesic from N to S
and its length is strictly bigger than 7.

In any case, the length of the curve associated by Lemma 4.8 to a stalk p in Sg is bounded from below
by 7 plus the length of such a minimizing curve y. Hence inf,es¢ € (p) = min(®, 277). Furthermore, the
infimum is achieved if and only if the minimizing geodesic can be associated with a stalk, which is only
possible if the geodesic y considered above reaches neither N nor §; this is possible only if ® < 2.
Reciprocally, if ® < 27, then the stalk p = 0 achieves the infimum. O

Proposition 4.11 Let ® < . Then

inf =0,

inf k(p)
the infimum being taken over the set S@ of stalks p: R/®Z — R of convex spacelike cones admitting a
coplanar wedge of Euclidean angle at least ®.

Furthermore, among such stalks, k(p) < ® with equality if and only if p = 0.

Proof Any element of Sg is of the form
0e:R/OZ —>R, 0+4+0OZ,0e[-0/2,0/2]+ sinh(x)cos(f + ),

for some o € R, 0y € |—m, w[. If @ = 0 we may choose 6y = 0; otherwise, up to translation, we may
assume that p(—%@) = p(%@), which implies that (%@ + 60) = :i:(—%@ + 60) + 2k for some k € Z.
Therefore either ® = 2k or 6y = kr; since 0 < ® < 7 and |0y| < 7, it follows that 8y = 0.

In particular, all elements of S@ are piecewise trigonometric. On the one hand, since p, is Q-convex only
for o > 0,
forallo e R, py €S < a>0.

On the other hand tan(l®)
foralla >0, «(pg)= 2arctan( Coshz(a) ) a—>too

It follows that inf,e s, k() = 0. Note that o = k(pg) is decreasing; the maximum is thus reached for

a = 0; hence p = 0. The formula above gives k(0) = x(pg) =2 arctan(tan(%@)) = 0. O

4.3 Proof of the Volkov lemma

We now compile and complete the elements proven in the previous section.

Proof of Theorem 3 Proposition 4.10 implies the first and third claims, and partially the second. The
fifth claim is a consequence of Proposition 4.11
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To complete the second consider the stalk p of a convex spacelike cone of Euclidean angle 2 having a
coplanar wedge of angle 7v. By Proposition 4.9 we may assume p is piecewise trigonometric. Using the
remark just before Definition 4.3, assume without loss of generality that p(0) = —p(r) > 0 and p|[z,25]
is trigonometric. Using Lemma 4.5 we see that if p is not trigonometric on [0, 7] then —p(0) = p(7) >
p(m) = —p(0) = —p(0) for some trigonometric function p, a contradiction. Therefore p is trigonometric
on [0, ] and on [, 27] so that k(p) = 2.

The same argument allows us to prove the fourth claim. |

5 The Einstein—Hilbert functional

We give ourselves a Euclidean surface ¥ with conical singularities and marked points S D Sing(X); we
will keep this surface fixed in the whole section.

To sum up the results of the preceding sections, we have a construction that associates to any 7 € P a
radiant spacetime M (7) and a convex polyhedral embedding ¢; of (3, S) into M(7). We know from
Proposition 2.23 this construction reaches every equivalence classes of such a couple (M, () and is
injective. By Theorem 2, P is a convex domain of Ri and is the union of finitely many convex cells,
each corresponding to a triangulation of (X, §).

The objective is now to construct polyhedral embeddings (M, ¢) such that the singularities of M have
cone angles we gave ourselves a priori.

Definition 5.1 (mass function) Let t € P and (M(7), 1) be its associated polyhedral embedding of
(X,S). For o € § define k() the (Lorentzian) cone angle of M(t) at t;(0) € M(7).

We define k: P — Ri the map that associates to 7 the vector (kg (7))ges-

Remark On each cell Py :={r € P|7; = T}, the function 7 > «(7) is continuous and furthermore '!.
Since we will actually compute the derivative later on, we do not prove it now.

Furthermore, if T € Py N Py the triangulations 7 and 7’ are t-equivalent; ¥ computed with either
triangulation yields the same result since M (7) may be constructed using 7 or 7’. The map t > « is
thus continuous on P.

Remark As a complement to the previous remark, we do not neglect the limit case t; = 0 for which
kg = 0 by convention. One may check directly that lim;__, ¢+ ko (7) = 0.

Reformulating with this notation, we thus aim to solve the following:
Problem Let ik € Ri. Is there some t € P such that k(t) = k, and if so, is it unique?

There is a restriction on the possible . Indeed, for any t € P, the spacetime M (7) is the suspension of some
marked closed hyperbolic surface with conical singularities and cusp* (g2, S”) marked by (Z, S), and the

4See Definitions A.6 and A.7 in the appendix.
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cone angles at S’ are k(7). Therefore, by the Gauss—Bonnet formula, ) . ¢(27 —k(7)s) —Area(Xpp2) =
2nx(2) =) ses(2m —05). Hence

for all T € P, Z Oy > Z k(1t)g.
ogeS oeS
In addition to this global constraint, there are local constraints due to upper bounds in the Volkov lemma.
We do not systematically explore the local upper bounds and only provide the one that is consistent with

the boundary condition (ie the last item of Theorem 3). We settle for an incomplete statement.

Theorem 4 Let (X, S5) be a closed locally Euclidean surface of genus g with conical singularities of

angles (05 )ocs. Using notation of the previous sections,

forall k € ( 1_[ [0, min(6,, 27r)]) \ {(65)ses} there exists T € P such that k(1) = k.

ogeS
Furthermore, if for all 0 € S, ks < 04, then such a t is unique. Finally, if 6, < for some o € S then
forall t € P,kg(t) < O5.

The proof relies on the analysis of a so-called Einstein—Hilbert functional; the first step is to define a
functional Hg on P for a given k whose critical points are solution to the problem before Theorem 4. In
fact, one could check that such a functional exists by checking dkq, /0hg, = 0Kkg,/0hg, .

For technical reasons which will shortly make themselves clear, it will be more appropriate to define such
a functional on the domain P'/2 := {h € Ri | h2 € P}. Elements of P1/2 will be denoted systematically

by &, while elements of P will be denoted by 7. Going from the one to the other being simple, we extend
all definitions to P/2: M(h) := M(h?), etc.

A standard analysis of the critical points of Hz as well as its gradient on the boundary of P1/2 follows.
Under the assumption that for all o € S, ks is no greater than 27 and less than the cone angle of ¥ at o,
we show that critical points of Hg are positive definite and that the gradient of H on the boundary of P is
homotopic to an outward vector field.

5.1 Reminders on Lorentzian angles and Schléffli’s Formula

The following is an adaptation of the exposition of Rabah Souam [32].
To begin with, the modulus |u| of a vector u of E!-2 is
ul = v/ (u [u),

with the convention that when (u | u) < 0 we have that |u| = Ai with A > 0 and i> = —1. Let u and v be
two vectors of E!-2. Then the angle Zuv is defined so that it satisfies the following properties:

(1) For all vectors u and v, Zuv e R+iR/(2nZ).
(2) For all vectors u and v, (u | v) = |u||v|cosh(Luv).

(3) For all vectors u, v and w coplanar, Zuv + Zvw = Zuv.
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Beware that if u and v are spacelike, Zuv is not the usual angle uv but actually uv -i. Angles are well
defined only if neither u nor v are lightlike.

Definition 5.2 (type of a vector of E!'!) Choose a direct Cartesian coordinate system (¢, x) of the
vector space underlying E1-!. Let u be a nonlightlike vector of E!1. The type ky, € Z /47 of u is defined
as follows:

e k, = 0if u is future timelike.

e ky, = 1if u is spacelike with negative spacelike coordinate.

o ky, =2 if u is past timelike.

e ky, =3 if u is spacelike with positive spacelike coordinate.

Definition 5.3 Define H! as the Riemannian submanifold of unit future timelike vectors in E!-!. We
choose the orientation X of H}i- so that (X, 71) induces the same orientation as E1»! for any future timelike
vector 7.

Definition 5.4 Let u and v be two linearly independent nonlightlike unit vectors in E!-2 and let IT the
vectorial plane generated by u and v.

e If IT is spacelike,
Zuv =10,

with 0 the angle from u to v in IT oriented by the future timelike normal.

o If IT is timelike and u and v of types ky, and k, in IT are identified with E!-! and oriented by the basis
(u, v), then
Zuv =a +i(ky —ku)%n,

with « the (oriented) length of the geodesics from u’ to v’ in HL , where u’ (resp. v’) is the unique future
unit timelike vector of IT orthogonal or colinear to u (resp. v).

Definition 5.5 (dihedral angle) Let I1; and I15 be two vectorial half-planes that intersect along their
common boundary A. Assume none of I, IT,, and A are lightlike and write v; = AL NTI; fori € {1, 2}.
We choose some u € A and for i € {1,2} define n;, the unique unit vector normal to I1; such that
(u, v;,n;) is a direct basis. The dihedral angle ZIT;I1, between the planes I1; and IT5 is then defined as

Real(£Lniny) if A+ is Lorentzian,

ZH]HZ = . 1. . .
Im(Zniny) € |—n, 7] if A— is Riemannian.

Remark In the definition above, the dihedral angle does not depend on the choice of u.
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Definition 5.6 (1-parameter family of oriented polyhedra) A 1-parameter family of oriented locally
Minkowski polyhedra is the data of an oriented simplicial complex K and a map ¥: [0, 1] x K — E1-2
such that

(1) for all simplices P of K and all ¢ € [0, 1], ¥|¢yx p is an orientation-preserving smooth embedding
and ¥ (¢, P) a polyhedron of E1-2,

(2) for all simplices P the restriction of { to [0, 1] x P is smooth.

Let (K, ¥) be a 1-parameter family of locally Minkowski polyhedra. If e is an edge of K, then for all
t €0, 1], we write [, ; > 0 for the length of the edge ¥ (e, ) C E!2 and 6, for the sum of the dihedral
angles between the faces of the simplices of I around the edge e.

We will also have to assume that adjacent 2-facets never change convexity. This can be made rigorous by
saying that the family {u, v1, v2} used in the definition of the dihedral angle above always is such that
det(uviv,) has constant sign (but can be 0).

Theorem (Schliffli’s formula [32]) Let (K, ) be a 1-parameter family of oriented locally Minkowski
polyhedra such that none of its faces or edges are lightlike and such that adjacent 2-facets never change
convexity. Denoting by £ the set of edges of K, we have

do
Z Ze,t d—e’t =0.
ees !

Remark The convexity condition is always satisfied by construction for the polyhedra we consider.

5.2 Kites and angles

Consider an adapted triangulation 7 of (X, S') and consider a cell 77;/ 2of he P2 of nonempty interior.

For h € 731/2

pyramid of E!+2 as represented in Figure 7, the notation of which we give a more precise meaning. If T is

, the past of ¥ in M (h) is a locally Minkowski polyhedron with each simplex being a

a triangle of 7 of vertices 01, 02, and 03, while e = 01—05 and e’ = al—ag are two edges on the boundary
of T, define p, the real part of the angle from 51—3 to (71_05, Oce’ the real part of the angle from 01—05 to
0103 and a. the real part of the dihedral angle from the plane (Oo101) to the plane (010203). In this
section, edges are oriented so that we distinguish o, and o—,: the angle o, is on the left of e, and thus
o, 1s the angle on the right of e.

We aim at proving « is continuous and computing the partial derivatives

for 01,02 € S.

If there is no edge from o, to 05, then this derivative is null. If there is an edge e from o; to 03, then
in both pyramids P4 and P— on both sides of e, we need to study the variations of the dihedral angle
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0 )
Figure 7: The simplex cell of the past of ¥ in M (#). The following angles are represented: p,

the angle from o7 O to 0103, 6./ the angle from 0105 to 0103 and o, the angle from the plane
(00101) to the plane (010203).

on the edge [Oo1] with respect to g, and Ay, . Since the algebraic relationship between ks and hg is
complicated, a key to obtaining meaningful relations is to draw the kite associated with each embedded
triangle E1-2,

Definition—Proposition 5.7 (kite, [14, pages 90-91]) A hyperbolic kite (resp. Euclidean kite) is a
quadrangle ABCD in X = H? (resp. in X = E?) with two opposite right angles and possibly with
self-intersections. We parametrize kites by fixing a convex quadrangle decorated as in Figure 8 and
constructing it as follows:

(1) choose some point A in X and some directionii € T4 X,
(2) move py along the oriented line (Au) to reach at B = exp4(p11),

(3) turn %7‘[ (counterclockwise) to obtain the new directionv € Tg X,

Figure 8
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(4) move ay on the oriented line (BYV) to reach C = expg (a2 V),
(5) turnm — © to obtain W,
(6) move a distance o on the oriented line (C w) to reach D,
(7) turn %7[ to obtain 12,
(8) move a distance p, on the oriented line (DIZ) to reach A’,
(9) turn m — «k to obtain u’.
For any choices of three out of the six parameters o1, &2, p1, P2, k, and ©, there exists a unique choice for

the three others so that the construction above yields a hyperbolic kite, ie X = H?, A’ = A, and i’ = 1.
Furthermore, for such six parameters,
sinh(p1) sinh(pz) — cos(®) i cos(x) sinh(aq) + sinh(ap)
cosh(py) cosh(pz) sinh(pz) = sin(x) cosh(ay) '
sin(k) _ cosh(az)  cosh(a)
sin(®)  cosh(pa)  cosh(p)’

cos(k) =

Consider Py and use the notation of Figure 7. Then consider the quadrilateral of H? given by the
sequence of geodesics in the set of future unit timelike vectors identified with the hyperbolic plane H?:

(001) = (00102) N (0102) — (0102)1 N (0103) — (0103)F N (O0103) — (0071).
To identify the parameters (p1, o2, o1, p2, &, ®) as in Figure 9, we note the following.

e pe:=Real(L0o100103) := du((001), (00102) N (0102)T) since (Oo107) is the (timelike) vectorial
5 —

plane containing both vectors and 0107 is spacelike, and o; O is past timelike. So the (oriented) length of

the geodesic (Oa1) — (00102) N (6102)L is pe, and thus p; = pe.

02

(0(71(72) n H2

(0(71(73) N Hz

Figure 9: The kite associated to an edge, with e the edge 0105 and ¢’ the edge 6703.
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Mutatis mutandis, we show the same way —p, = —pe’; thus ps = per.

* o, := Real(£L(00102)(010203)) = Real(Lnny), where ny and n, are respectively the normals to
the planes (Oo107) and (010203) such that (01—05 , 0—16 ,n1) and (51?5, 5173,) ,np) are direct bases. We
thus have n, € (010203)J- = (0’102)J' N (0103)J- future timelike and n; € (Oalaz)J- spacelike, so
Zniny = Znsny withnz € ((00102)J-)L N(niny) =(0c102)N (oloz)J-. Therefore «, is the (oriented)
length of the geodesic

(00102) N (0102)" — (0102)" N (0103) .

‘We thus have shown that oy = «.
Mutatis mutandis, we show the same way that —o_.s = —o/1; thus oy = .
¢ The parameter « is given by the dihedral angle Z(00102)(00103); thus k = Kee'.

¢ Finally, to compute ®, notice that the radial projection of the hyperbolic kite on the spacelike plane
(010203) yields a Euclidean kite with the same signs of oriented lengths of sides and whose k parameter
is 6. Furthermore, the plane (010203) is orthogonal to the timelike line from O to (0702)* N (o103)+,
so the angle in H? at H? N (0102) N (0103)* is the same as the Euclidean angle in (010203) at
(010203) N (0102) N (0103)+. We deduce that © = 77 — O,

Corollary 5.8 Using the same notation as in Definition—Proposition 5.7 and choosing ©, p1, and p, as

parameters,
oK tanh(az)

1 cosh(pr)’
We thus need to compute the derivative of p, with respect to the heights (ks )ses for each edge e.
Lemma 5.9 Using the notation of Figure 7,

(h(zyl + h(z72 +12) dhg, —2hg, he, dhe,
2lehZ, cosh(pe) )

dpe =

Proof From the cosine law in E!2:

_h(z72 = _h<271 + le2 —2lohg, sinh(pe),

hoy (Z2hay) = (hG, +1¢ =13, 2hg,ho
cosh(pe) dpe = 2 Y dh,. + 2o g
) : Zlehgl 7 2lehgl 2
dpe = — (h2, + 12 + h2,) dhg, — 2ho, hoy dho, | ]

2loh2 cosh(p,)
5.3 The Einstein—Hilbert functional

We give ourselves some Z C S, and define z := | Z| and s := | S|. Define Pz :={r RS |Vo € Z, 1, =0}
as well as Pé/z ={k e Rf_ | Vo € Z, ky = 0}. Recall that we set k5 (7) = 0 if 15 = 0.
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Definition 5.10 (Einstein—Hilbert functional) Letk € Kz. For & € P;/ 2 and for an edge e of T, we

denote by /, the length of e and by 6, the dihedral angle of the embedding ¢, at the edge e.
The Einstein—Hilbert functional is defined as follows:

He:PY? >R, hes Y holko—Ro)+ Y lebe.
o€eS ecEdge(Ty)
Lemma 5.11 Letting o € S, the map h — k4 (h) is continuous on P'/% and €' on each cell 73;/2
of P1/2,

Proof From —h2 = —h2 + 12 —2l.hs, sinh(p.) — the cosine law in E!-2 — together with the first
equality of Definition—Proposition 5.7, the restriction of x4 to H?-Jr ={he 73;/ 2 | h(o) > 0} for each
triangulation 7 is €. Let h € 87371-/ 2 Then for all cells 7371-{ 2 containing £, the triangulations 7 and 7’
are equivalent by Proposition 2.20, so My, 7 ~ M}, 7. Hence k4 7(h) = kg 77(h), and we deduce that k

is continuous on H°t := {h € P1/2 | h(c) > 0}. Again using the cosine law, for any edge ¢ = [00”] in

some triangulation 7 and any & € P}r/ 2 such that & (o) =0, we have
12— h2 +h2,
lim pe= lim sinh™!£—2 9 — 4o0.
h—h h—h leho
heHST heHIT

The first equality of Definition—Proposition 5.7 yields
lim coskgs(h) =1,
h—i
heHST

and since 0 < k¥ < 7 we deduce that lim, - o+ kg (h) = 0. Hence k4 is continuous on 731/ 2 From
h—>h,he HY T

Corollary 5.8 and limh i heHO+ Pe = 00, we also obtain that
> T

0
lim % () =0
h—h a’
heHST

for any 6 € S, and obviously (dk/dhe)(h) =0if h(c) =0 and 6" # 0. We deduce that k is continuously

differentiable on P}/ 2,

Finally, since P1/2 is the union of finitely many such cells 77;/ 2 we get continuity on pl/2, a
Lemma 5.12 Let 7 be a triangulation associated with a cell 7371-/ % of PY/2. For any edge e of T, the

map h+— 6. (h) is ¢! on Pflr/z.

Proof By construction of the polyhedral embedding, it suffices to show the “half” dihedral angle c,
is ¢!, effectively reducing the problem to the embedding of a fixed triangle T = [010203] € 7. Note that
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although the edge [Oo;] may become lightlike when /5, — 0, the planes (Oo;o0;) (resp. (010203)) are
never degenerated and stay timelike (resp. spacelike) for i, j € {1, 2, 3}. Therefore the angle «, is well
defined and depends in a ¢! manner in the coordinates of the embeddings of the o; for i € {1,2,3}.

Using notation of Lemma 2.3, the center w is the orthogonal projection of O on (010203). We may
choose the embedding of 7" in such a way that (010203) is the plane {t = ,/70}, ie w = (1,0, 0). Recall
that 7o (/) is positive and depends polynomially on 2. We may in addition fix the embedding ¢ so that
t(o1) = (h, x,0) with x > 0. Then elementary trigonometry in the spacelike plane (010203) yields that
the coordinates of (07) are 4! functions in /. |

Proposition 5.13 Let k € Ri. The functional Hy is well defined, €' on Pé/z, and

dHe = ) (ko — ko) dhy.
oceS\Z

Proof We prove the proposition for Z = &; the other cases are corollaries.

Consider the family of compact locally Minkowski polyhedra (Qp),epi/2 given by the past of the
polyhedral Cauchy surface (5, (X) C M (k). For any triangulation 7 defining a cell P of P, the underlying
simplicial complex K, of Qy, is constant on Py. The edges of T are always spacelike, « is well defined

and continuous on 73;/ 2, and X’y is a continuous family of polyhedra. All the angles in the definition of

Hi are €' on each cell P}/ 2 by Lemmas 5.11 and 5.12. In addition, Lemma 5.11 gives continuity of
hi> Y ses ho (ke —is) on the whole P1/2. Continuity of 3 ecEdge(Ty,) lefe follows from the remark that

73%/ 2 and P}{ 2. one obtains 77 from 7 by flipping h-critical

at some £ on the interface of adjacent cells
edges. On such edges e one has 6, = 0, so the sums ZeeEdge(Th) .0, and ZeeEdge(Th/) l¢0, only differ

by null terms. We conclude that H is continuous on P1/2 and its restriction to any cell is 1.

Schléffli’s formula thus applies to the interior of any cell 73%/ % where h > 0 and gives

Zhodlcg-i- Z l,db, = 0.

€S ecAy

Hence

dHe =Y (ko —ko)dhg + Y hodko + > ledfe =Y (ko — ko) dhg.

o€esS o€esS ecA, oesS
We have thus proved the result for the restriction to the interior of any cell p}r/ 2, and hence on a dense
subset of P1/2. Finally, by continuity of s > Y ves (ko —kg) dhg and d Hi on P12 the result follows. O
We now study the Hessian of the Einstein—Hilbert functional on the interior of the domain of admissible
times P1/2.
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Lemma 5.14 The map « is €' on Pé/z, and for all h in 77;/2 andall o € S\ Z, we have

2l,c2

dpke = Z (tanh(cre) 4 tanh(o—))

ecsy,e:ama’
o’eS\Z

’

where &y, is the set of edges of any h-Delaunay triangulation and where

B {cosh(pe)hg if he #0,
a2 +h2)/1e if he = 0.

Proof By Lemma 5.11, the restriction of « is 4! on each cell Pé/ 5_ To prove k is €' on the whole Pé/ 2,

it suffices to show that the equality holds on the relative interiors of cells and that the right-hand side is

well defined and continuous on the whole 77%/ 2,

As argued in the proof of Lemma 5.12, for any edge e¢: o »> ¢’, the angles o, and o_, are well defined
and continuous even at 4 with null coordinates. In addition, by the cosine law, when & — h for some h
such that ﬁo = 0, we have p, — +00 and

12+ hZ,
cosh(pe)hg ~ sinh(pe)hg ~ - ; o .
e
The right-hand side is then well defined and continuous when restricted to a given cell Pé/ i
As before, critical edges e in the sum yield zero terms as 0 = 6, = e + @, i€ Xe = —QA—¢, SO
that tanh o, = —tanhw_.. We conclude that the right-hand side does not depend on the s-Delaunay
1/2

triangulation and is thus well defined and continuous on the whole P, ~.

For £ in the relative interior of a cell Pé/ 5_ associated to a triangulation 7 and for o € S\ Z, denote by
(€i)iez/nz the family of outgoing edges from o enumerated coherently with the orientation of X. Define
o; € S the other end of e; so that
tanh(ae; ) tanh(a—¢; )
diko = Y, dikeierr = ) (_W(e) dpe; —#dpem
ie€Z/nZ ieZ/nZ Pei Peit1)
tanh(ae; tanh(a—,; tanh(a,; ) + tanh(a—,;
Loy (lwhlee) | mnhg)), g anhiee) +unheg)
cosh(pe;) ~ cosh(p,,) cosh(p,,)

€
i€Z/nZ i€Z/nZ

Z tanh(cte, ) + tanh(a—, ) (3 + h3 +12) dhg —2hshg; dhg,
cosh(pe;) 21 hZ cosh(pe)

i€Z/nZ

- ¥

i€Z/nZ

tanh(ce, ) + tanh(a—, ) (3 + h% +12) dhg —2hshg; dho,
cosh?(oe;) 2l.h2 )

Proposition 5.15 Fork € Ri, the functional Hj is convex on Pé/ % and strictly convex on the relative

interior of Pé/ 2,
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Proof From Proposition 5.13 and Lemma 5.14, H; is €2 on P;/ % and its Hessian matrix H has the

1/2

following coefficients for 4 € P./~, an h-Delaunay triangulation being chosen, for all 0,0’ € S \ Z

with o # o

Hy o = — Z (tanh(cte) + tanh(cr—e))

e:o~>0’

Hyo =Y Y (tanh(a,)+ tanh(a—.))—~

g’eSe:ovwa’

2ho’hg’ <
2lec? ~

2+h +iZ

ee

Z (tanh(ae ) + tanh(a— e)) 2le 2 .

e.ov>0 e
Since the embedding of X into M (%) is convex, tanh(w,) + tanh(¢—,) > 0 with equality if and only if
the edge is h-critical. Therefore, for all o € S,

2lec?

(ho’ - ha)2 + lez >0.
2lec? -

Hy o + Z Hy o = Z Z (tanh(ate ) + tanh(c—)

o'#0 o’eSe:omo’

= Z Z (tanh(ore) + tanh(a—))

o’eS e:o~v0’

The Hessian matrix of Hj is thus diagonally dominant on P, 1/2

Consider some /4 in P /2 andoe S \ Z such that Hy o — 20,#U|Hg,0/| = 0. Then all outgoing edges
from ¢ are h-critical. We build a hinge as follows.

(1) Take any h-Delaunay triangulation of ¥ and enumerate counterclockwise the p vertices (0x )kez/pz
of the neighborhood of o.

(2) Consider the hinge Q = ([co—20-100], [00-1]).
(3) If Q is unflippable return Q.
(4) Otherwise, flip Q; the neighborhood vertices of o are now (0 )kez/(p—1)z- Then return to step (2).

Since at each step, the number of neighbors of o decreases, the algorithm eventually stops after finitely
many iterations and thus returns an unflippable immersed hinge in the neighborhood of o. Such a hinge
is h-critical and unflippable; hence 12 is in a boundary facet of P not of the type s, = 0. We conclude

that & is not in the relative interior of 73;/ 2 Finally, the Hessian matrix H is strictly diagonally dominant

on the relative interior of 731/ 2, O

5.4 Proof of the main theorem

Theorem 5 Let X be a closed locally Euclidean surface of genus g with s marked conical singularities
of angles (0;);e[1,s7- For all

N

ke (]‘[[o,min(e,-,zn)]) \{(61.....65)}.
i=1
there is a radiant singular flat spacetime M homeomorphic to xR with exactly s marked lines A1, ..., Ag
of respective cone angles k1, . .., ks and a convex polyhedral embedding ¢: (X, S) — (M, (A;);e[1,s7)-
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Furthermore, if for all i € [1,s]),k; < 6;, then such a couple (M, 1) is unique up to equivalence.

Finally, if for some i € [[1,s]], 8; < m, there is no such convex polyhedral embedding such that k; > 6;.

Denoting by «(x) the cone angle at x if x is a point in an Hio—manifold, in view of Theorem 6 the main
case of the theorem can also be stated as follows:

Corollary 5.16 Let X be a closed locally Euclidean surface of genus g with s marked conical singularities

of angles (05)ges. Forall k € [[,¢g[0,27] N[0, 05, there exists a closed Héo—manifold 3 together

with a homeomorphism h: ¥ — Xz and a convex polyhedral embedding ¢: (X, S') — susp(Zg)s such that
e forall 0 € S, ks = k(h(0)),

o with susp(Z;) &> Z¢ the natural projection, we have w o1 = h.

Furthermore, such a triple (X¢, h, t) is unique up to equivalence.

Remark Equivalence between triples (Eg), R (@) for i € {1,2} is understood as an isomorphism
@: El(zl) — EI(EZ) such that (® = ¢ o/ with ¢: susp(El(El)) = sup(El(zz)) the isomorphism induced by ¢.

Let us prove a last lemma:

Lemma 5.17 With 0 = (65)qes the cone angles of X, we have
li =0.
i <=0
T—>+00

Proof We use the same notation as in the preceding section. In a given cell Py of P, for each vertex
o € § and for all edges e of 7 outgoing from o to some o7, by the cosine law

—To, = —To + le2 — 2l /T sinh(pe).

Since |74, — To,| is uniformly bounded on P and [, is constant, p, =12 (. Then from Definition—

Proposition 5.7, with ¢’ the subsequent edge around o, we have ke Todoo, O..’. Hence,

T€EPT, T—>+00
ko (T) —1———=5 6.

Finally, there are only finitely many cells Py, and S is finite. |

Proof of Theorem 5 Let Z C S. We prove the theorem for k such that {o € S | ko = 0} = Z. It suffices
to show that for such « the Einstein—Hilbert functional #; has exactly one critical point in Pé/ % Define
Kz := {/Z €[lyesl0.27]N[0,05[ | Vo € Z, ks = 0}. We need to prove the existence and uniqueness
of critical points of Hy for any k € K7.

If z = s then Kz = {0} and Pz = {0} by Theorem 2(c), and there is nothing else to prove. Otherwise,
we proceed as follows.

Algebraic € Geometric Topology, Volume 25 (2025)



1368 Léo Maxime Brunswic

By Proposition 5.15 the functional #j is strictly convex in the relative interior of Pé/ 2. thus the critical

points are of index 1 when considered as a function on the relative interior of Pz.

Let T € 0Pz, the relative boundary of Pz, and let k € Kz. By Theorem 2(e), on dPz there exists
o € S\ Z such that either 7, = 0 or 7 is in the kernel of the affine form of an unflippable immersed
hinge. In the former situation, 0 = ks < k. In the latter situation, consider such a hinge (Q, n) with
0 = ([ABCD],[AC)).

e If (Q,n) is embedded, then Q is unflippable. Without loss of generality, we may assume C € [ABD],
the cone around o = 1(C) is then convex and contains a coplanar wedge of Euclidean angle at least 7;
in particular 6, > 7. By the Lorentzian Volkov’s lemma (Theorem 3),

— if 65 > 27 we have ks > 27 > kg,

— if 1 <05 <27 we have kg > 05 > Ko

e If 5 is not an embedding, then without loss of generality we may assume 7(A4) = n(B) = n(D);
being h-critical, all edges have null dihedral angles so that the stalk of the cone around o := n(C) is
trigonometric (without breaking point). In particular, 6, = k5 > k.

Either way, ks > k. Together with Proposition 5.13 this implies that H; has no critical points on 8731/ 2,

If z =5 —1, then « is a function defined on an interval, and is continuous and increasing from 0 to some
Kmax > K. The result follows.

We now assume z < s —2. Define 771/2 = 731/2 if Z # @ and 731/2 = 731/2 U{oo} if Z = @. This way
731/ % is homeomorphic to an s — z dimensional closed ball and its boundary 87_312/2 is homeomorphic
to an (s—z—1)-dimensional sphere. The homeomorphism may be made explicit by the radial map from
1/2

some 79 € Int(P, °), the relative interior of P 12 Consider the family of vector fields indexed on Kz,

Xe: PY2 > R7TZ bt oo (ko(h) —Ro)oes\z: 00+ (5 —Ro)ges\z-

and notice that X | i(PY2) is the gradient of H| mi(PY/?) for k € Kz by Proposition 5.13. By Lemma 5.17,

X is continuous at oo if Z = &; thus ik, h — X (h) are continuous on Kz x P Z/ and, from the discussion

=1/2

above, nonsingular on the boundary of P, ~. By Proposition 5.15 and the Poincaré-Hopf theorem

[8, Theorem 12.13], the number of singular points of the vector field X in the interior of Pé/ % is equal
to the index of X /|| X&|| on BP Y2 Since & 1> X(k,-) is continuous and Kz is connected, the index of

X/ Xz |l is independent from #.

Finally, take some & € Kz and / in the interior of Pé/ % close enough to 0 that [ ] S\ ~z[0, 2hs] C P

and consider the vector field Y : h — (h—h)/||h—h| on 377%/ 2 which can be continuously extended to the

1/2

whole 37_712/2 since limy,_, 4 oo Y(h) = 1g. On the one hand, for 4 on an “hs = 0” boundary component,
Y (h)s < 0 while k4 (1) = 0; on the other hand, for 2 on a “Q*(h) = 0” boundary component, there is a
o €S\ Z such that k, — kg > 0, and on such a component, for all ¢’ € S\ Z, (h —h)o’ > 0. At infinity,
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both X and Y have positive coordinates. In any case for all & € 37_312/2, Y # —Xi/|| X |l; thus Xe /|| Xz |l
is homotopic to ¥ among nonsingular vector fields on 87_312/2. The latter has index 1; thus so does the

former. Finally, for all K € Kz, Hi has exactly one critical point on Pé/ 2. Existence and uniqueness

follow for k € K.

By continuity of x and compactness of 7_312/2, any k € [[;eg[0,27] N[0, B5] is in the image of /

(ko (h))ges, except possibly (kg)ges = (05)ges, which is the limit at oo.

Finally, the last point follows from the case ® < & of Theorem 3. |

Appendix Radiant 2 + 1 singular spacetimes

Before providing a more thorough description of our singularities, allow us to stress that there is a subtle
point one needs to be aware of. We construct 3-manifolds with a geometric structure locally modeled on
the Minkowski space E!-2 except on a discrete family of lines we deem reasonable to call “singular”.
The geometric E!2-structure (in a sense described below) on the complement of the singular lines is
easily defined, but our manifolds are not naturally metric spaces; they are spacetimes and come with a
natural local order relation: the causal order. As a consequence, characterizing the isomorphism classes
of the singular lines requires some care in general, especially for lightlike lines. We refer to [4] for the
zoology of Lorentzian singular lines obtained via finite polyhedra gluings in dimension 2 4 1, which
should convince the reader that one should be slightly careful.

The causal structure is a tool to characterize lightlike singularities; furthermore, the boundary of the
polyhedron we will construct has a special role with respect to this structure: it is a Cauchy surface, as
defined below.

In this section, we discuss the isomorphisms classes of singularities in our manifolds: their local description
as well as constructions with the addition of some more general background.

A.1 Singular (G, X)-manifolds

Let (G, X) be an analytical structure, ie a group G acting on a locally connected Hausdorff space X
by homeomorphisms so that any element g € G is completely determined by its action on a nontrivial
open subset. Following [11], we define a singular (G, X)-manifold as a Hausdorff second countable
topological M space endowed with a (G, X)-structure on an open and dense subset I/ locally connected
in M. There exists a unique maximal extension of this (G, X )-structure to a maximal open and dense subset
Reg(M) locally connected in M called the regular locus of M. An a.e. (G, X)-morphism is a continuous
map sending regular locus to regular locus and which is a (G, X )-morphism on the regular locus.

A singular (G, X)-manifold is locally modeled on a family (Xy)qey4 if for all @ € A, X is a singular
(G, X)-manifold and for all x € M, there exists a neighborhood ¢/ of x and an open V of some X, such
that ¢/ is isomorphic to V.
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In our situation, the singular locus is a union of 1-dimensional submanifolds of a 3-manifold. The
hypotheses of [11] are then satisfied, and the isomorphism class of a singular point is thus well defined.

A.2 Local models of singular lines
We now introduce the local models of the singular F-manifolds we will consider.

Definition A.1 (massive particles model space) Leta € Rj_. The manifold Eé’z is R3 endowed with

the flat Lorentzian metric
2 2 2 @ \? .42
ds? = —dr? +dr? + (Er) do

on Reg(Eé’z) := {r > 0}, the complement of the line Sing(Eé’z) :={r =0}, where (¢, r, 0) are cylindrical
coordinates of R3.

For a > 0, the metric on IE;’Z induces a unique (Isomg(E!+?), E!-2)-structure on Reg(IEé’z) such that the
curves t — ¢(t) = (¢, ro, 6p) are future causal for ro > 0 and all 6y € R/27Z.

Definition A.2 (BTZ line model space) The manifold ]Eé’2 is R3 endowed with the flat Lorentzian

metric
ds§ = —2drde+ de? + 12 d6?

on Reg(]E(l)’z) := {t > 0}, the complement of the line Sing(IE(l)’z) := {v =0}, where (z, ¢, 8) are cylindrical
coordinates of R3.

The metric on IE(l)’z induces a unique (Isomg(EE!-?), E!-2)-structure on Reg(IE(I)’z) such that the curves
T ¢(1) = (1,9, 6p) are future causal for vty > 0 and all 6y € R/2x7Z. The model spaces Elzg are
singular E!-2-manifolds but not singular F-manifolds. We thus introduce the following:

Definition A.3 For a > 0 define 7, := Int(J T(0)) with O = (0,0,0) € E}>.

By [10, Proposition 1.3], if ¢: Uy — Ug is an a.e. SOg(1, 2)-isomorphism between neighborhoods of
singular points in Fy and Fg, then « = 8 and ¢ is induced by an element of SOg(1, 2). The local models
are thus nonisomorphic as singular #-manifolds. Note that the singular line of a massive particle is
timelike while the singular line of E " is lightlike.

A.3 Causal structure

An F-manifold M comes with a causal structure, eg a family (<y, <)y, of transitive relations, each
defined on an open subset I/ of M which is inherited from the causal and chronological relation of F.
The causal structure on Reg(F) can be extended to Fy so that any F>o-manifold M comes with a causal
structure. A future causal curve is then a curve in M, which is locally increasing for <. The causal
past/future of a point p can then be defined accordingly, and we denote them by J~(p) and J ™ (p),
respectively.
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Note that <, is an order relation for ¢/ small enough, but this is not necessarily the case for <ps. We
say that an F>¢-manifold M is causal if <ps is an order relation; we say furthermore that M is globally
hyperbolic if it is causal and for any p,q € M, J*(p) N J~(q) is compact. A Cauchy surface of M
is a topological 2-dimensional submanifold ¥ in M which intersects every future causal curve exactly
once. One can prove a version of the Geroch theorem valid for F>¢-manifolds [5] which states that an
F>o-manifold M admits a Cauchy surface if and only if it is globally hyperbolic. An F=o-manifold is
Cauchy-compact if it admits a compact Cauchy surface.

A morphism M; — M, between globally hyperbolic F=o-manifolds is a Cauchy-embedding if it is
injective and sends a Cauchy surface of M; to a Cauchy surface of M»; the latter is then called a
Cauchy-extension of Mj. A manifold My is Cauchy-maximal if, for any Cauchy-embedding My & M,
the map ¢ is an isomorphism. One can prove [9; 10] a version of the Choquet-Bruhat-Geroch theorem
for F>o-manifolds following the lines of [30], which states that any F>o-manifold admits a unique
Cauchy-maximal Cauchy-extension.

A.4 Rays, suspensions, and the structure theorem

Letting M be an F>o-manifold, Reg(M') admits a natural causal geodesic foliation, the leaves of which
we call rays. We notice that in the model spaces, F the foliation can be extended to the whole Fy;
furthermore, the extended foliation to the whole F, induces a causal foliation on M.

Definition A.4 For o € R, define ng as the space of ray of F, and define the natural projection
Ty Fo — H2.

Proposition A.5 Fora > 0, H2 is homeomorphic to R? and comes with a natural singular H?-structure
whose singular locus contains at most one point. Furthermore,

e if @ =27, H2 is regular and isomorphic to H?,

e if 2w # « > 0, the singular point is a conical singularity of angle «,

e if o =0, the singular point is a cusp.

Proof e To begin with, in Fy, define the plane [T:={f = 1} if« >0 and [1:= {r = 1} if « = 0. The
plane IT intersects each ray exactly once and 7 |f is a homeomorphism.

e Define the surface H* :={r = (1+1t2)/(2v),t>0}ifa =0and H* :={t2—r>=1,7r >0} ifa > 0.
The Lorentzian metric of Fy induces a hyperbolic metric on #* which intersects each ray of Reg(F)
exactly once, and the projection F,, — H2 induces a homeomorphism #* ~ (H32 \ Sing(F,)). Hence
Hi has an H?2-structure defined on the complement of Sing(Fy), eg on the complement of a subset
containing at most one point.

o If o = 2m then F, >~ F and the result follows.
e If o =0, one can check that 7* is complete and that the singular point of H2 has a neighborhood of

finite volume. The singular point is thus a cusp.
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e If 2w # « > 0, then one can check that the length of the circle of radius r > 0 in Hz around the
singular point is or. The singular point is a conical singularity of angle c. a

Definition A.6 An H;O—manifold is a singular H2-manifold whose singular locus is locally modeled on
H2 for some o > 0.

Definition A.7 Let X be an Hio-manifold, let (Ui, Vi, @i, ai)ies be an Hio—atlas of X with V; C Hgi,
and let U;; :=U; NU; and V;; :; @i (Ui NU;) for i, j € I such that U; ﬂuj_;é @. We add the convention
that «; # 2 if and only if V; contains a neighborhood of the singular point of Héi such that for any
i,j € I where U;; # & and U; contains a singular point, o; = «; and the change of charts V;; LN Vi
comes from some ¢;; € SOp(1,2) acting both on ng[ and Fy, .

Define the suspension susp(X) of X as the gluing of (n;il Vi))ier via (T[a_il Vij) LIIN 7Ta_,-1 Vji))i,jer-

Remark The suspension susp is a functor from the category of H;O—manifolds to the category of
F>o-manifolds.

Remark By construction, susp(X) is an F>o-manifold with a natural projection susp(X) — X. One
can check that diamonds J *(p) N J~(g) are compact and that susp(X) is causal, and hence globally
hyperbolic. Furthermore, the natural projection induces a homeomorphism 7 : X9 — X for any Cauchy
surface Y.

Remark Be wary that the following simpler construction might be deceptively wrong. Start from
(H2, hy) as a hyperbolic conical singularity (or a cusp) with k its Riemannian metric; then define the

suspension as
Fl=R* xH2, g4), ga:=—dt>+1?hq.

Though one indeed obtains F, =~ Fy for o > 0 as well as Reg(Fo) >~ Reg(F;), note that F is not
isomorphic to Fy and not isomorphic to a neighborhood of a singular point of IE(I)’Z. To see this, notice
that the past causal geodesics in Reg(F,,) that “should” hit the singular line all converge to the same ideal
point in the past (the origin) but never actually hit the singular line.

Definition A.8 A radiant spacetime is a Cauchy-compact Cauchy-maximal globally hyperbolic F>¢-
manifold M.

We have a structure theorem for radiant spacetimes. This result is in the line of Mess’s theorem [25] and
is akin to previous results by Bonsante and Seppi [7], or the author [10] though in a much simpler context.
To the author’s knowledge, while this result is expected and “folkloric”, there is no existing reference to
point to. We therefore provide a proof.

Theorem 6 Let M be a radiant spacetime. There exists a compact singular Hio-mam’fold 3 such that
M ~ susp(X).
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Proof Let ¥ be a Cauchy surface of M and consider the natural projections 7y : Fo — Hz. Consider
an F-atlas (¢;,U;, V;)ier of Reg(M) such that each V; is causally convex in F. Write U;; := U; NU; for
i €l,andfori,j €l suchthatl; NU; # @ write V;; := ¢; (U; NU;) as well as W;; 1= (Vi) C H?2.
We then have a unique ¢ € SOq(1, 2) such that for all x € V;;, ¢; o; (x) = ¢ -x. Hence, forany i, j € /
such that U; NU; # <&, we have the following commutative diagram:

o M >0
2o NU; <—ul U o NY)
Aesoo(lz)\)

i sz _> .7: ********* ]: <— V]l @i
Vi Vu C N_I(Wij) ***** - n_l(wﬁ) S Vii Vi
ln l” l” ln ln ln

Wi +—— Wi
Since 3¢ is acausal, the projection the maps X NU; — W; are injective and by definition surjective; g
as well as all the W; are 2-dimensional manifolds; by invariance of domain, the maps Xo NU; — W; are
then homeomorphisms. The F-structure on M thus induces on X a singular H?2-structure; we call this
singular H?-manifold ¥. Proceeding the same way around singular points of M, the local models Fy of
M induce a local model H2 for each singular point of X. The suspension susp(X) of X is then given by
the induced gluing of the cones Jr;il (W) along the 7t 1 (Wij).

One can then define a natural map M > susp(X) on each chart (U4, V, ¢) of the (Fy)g>o-atlas of M with
V C Fyast:U— 1 (e (V)), x = ¢(x). By construction, the map ¢ is an injective a.e. F-morphism.
Since M is Cauchy-maximal and Cauchy-compact, it follows from [10, Proposition 2.20] that the map ¢
is surjective, and thus an isomorphism. O

Corollary A.9 Any radiant spacetime admits an embedded natural Hio—surface which is a Cauchy

surface of its F~¢ part.

Another way to construct the suspension of an Hio-surface 3 (and hence a radiant spacetime) is to
choose a geodesic cellulation of ¥ such that each cell is a polygon of HZ2. The surface X can thus be seen
as a gluing of a family of cells P = (P;);es along their edges £ = (el.(j )),-e 1,jeJ; (where J; parametrizes
the edges of P;) via isometries ¢, - € SOp(1,2) sending the edge e to the edge e’. We denote by G the
set of couples (e, e’) € £ such that e is glued to ¢’. We can then construct susp(X) by gluing the cones
C; =~ 1(P;) for i € I along their faces (77! (e))eece via the isometries (¢e,e’)(e,e’yeg- We thus have
the following:

Algebraic € Geometric Topology, Volume 25 (2025)



1374

Léo Maxime Brunswic

Proposition A.10 Any gluing of cones of F = J T (0) with polygonal basis, gluing couples of distinct

2-facets together via elements of SOg(1,2) and without leaving unglued 2-facets, is a radiant spacetime.
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Real algebraic overtwisted contact structures on 3-spheres

SEYMA KARADERELI
FERIT OZTURK

A real algebraic link in the 3-sphere is defined as the zero locus in the 3-sphere of a real algebraic function
from R* to R? with an isolated singularity at the origin. A real algebraic open book decomposition on
the 3-sphere is by definition the Milnor fibration of such a real algebraic function. We prove that every
overtwisted contact structure on the 3-sphere with positive three-dimensional invariant d5 (apart from
13 exceptions) are real algebraic via functions of the form f'g with f, g complex algebraic and with the
pages of the associated open books planar.

32855, 57K33; 32C05

1 Introduction

A Milnor fillable 3-manifold is a connected closed oriented contact 3-manifold which is contact isomorphic
to the contact link manifold of a complex analytic surface with isolated singularity. We know that any such
manifold admits a unique Milnor fillable contact structure up to contactomorphism — see Caubel, Némethi
and Popescu-Pampu [5] — and moreover a Milnor fillable contact structure is tight. For instance there is
a unique tight contact structure on the 3-sphere S and it is Milnor fillable (by eg the nonsingularity 0
in C?).

Here we ask a similar question regarding overtwisted contact structures. We confine ourselves to S3
although the definitions and questions below can be easily generalized. We investigate fibered links in S3
which are given real algebraically (or more generally real analytically). Let us call an oriented link in S3
weakly real algebraic if it is isotopic to the link of a real algebraic surface with an isolated singularity at O
(ie it is the zero locus of an algebraic map 4: R* — R? with an isolated critical point on its zero locus). It
is well known that every link in S 3is weakly real algebraic; see Akbulut and King [1]. Nevertheless the
map & may have singularities outside its zero locus arbitrarily close to 0. If 0 is an isolated critical point
of h, we call the associated oriented link in S3 real algebraic. This condition of isolatedness is called the
Milnor condition. In such a case there is a Milnor fibration on the link exterior in S3 over S!; see Milnor
[16, Section 11]. In other words the real algebraic link is the binding of an (in general rational) open
book with the open book decomposition given as the Milnor fibration (see eg Baker and Etnyre [2] for
rational open books). If moreover the Milnor fibration is given by 4/||1| we call the associated open
book (and the supported contact structure) on S3 real algebraic.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Although the fibration is given by //||/]| in a tubular neighborhood of the zero set of & and that fibration
can always be inflated to a Milnor fibration on S3 (see eg the survey of Seade [21]), it is not always true
that this Milnor fibration coincides with the one given by //||/| on S3. A quite simple counterexample
is given in [16, Section 11].

On the other hand, compared to weakly real algebraic ones it is rather hard to construct examples of
real algebraic maps with an isolated singularity and this issue has been long studied. For example it is
known that the fibered figure-eight knot is not complex algebraic but is real algebraic; see Perron [18].
Meanwhile since every real algebraic link is fibered, a nonfibered weakly real algebraic link cannot be
real algebraic. We believe it is still unknown whether every fibered link is real algebraic (see eg Bode [4]).

An obvious way to produce real algebraic links in S3 is as follows. Take two nonconstant complex
algebraic maps f, g: C? — C and consider the real algebraic map h = f g. The oriented link L that is
the zero locus of / in S3 has components { f = 0} N S3 with canonical orientations and {g = 0} N $3
with the reverse orientations. Such links are special examples of graph links, ie spliced Seifert links; see
Eisenbud and Neumann [7]. Moreover A has an isolated singularity at O if and only if L is fibered, and in
that case the Milnor fibration is given by //||/]|; see Pichon [19]. Now, as a corollary to Ishikawa [15]
the real algebraic open book corresponding to such /& determines an overtwisted contact structure on S3.

We recall that there are countably infinite number of overtwisted contact structures in S3. They are
distinguished by the half-integer-valued d3 invariant (see eg Ding, Geiges and Stipsicz [6]) or equivalently
the Hopf invariant H of the monodromy vector field; on S these two invariants satisfy H = —d3 — %
(see eg Tagami [22]). They are also related to the enhanced Milnor number A of the binding of an open
book that supports the contact structure: A = —H (see eg Hedden [13]; for the introduction of A see
Neumann and Rudolph [17]). Inaba [14] has already proven that all overtwisted structures in S3 are
real algebraic, by explicitly constructing real algebraic maps for any given A € Z. More precisely these
maps are mixed polynomials of the form f g, are polar weighted homogenous and conveniently strongly
nondegenerate. The computation of A uses the ideas introduced in [17] for multilinks that are given by
splice diagrams. The constructed open books have pages with varying genera.

In this article we are interested in the genera of the pages of the real algebraic open books. Recall that
any overtwisted contact structure is planar, ie it is supported by a planar open book; see Etnyre [9]. Here
we prove the following planarity result in the real algebraic setup.

Theorem 1.1 All overtwisted contact structures on S with d3 > 0 and

dy+ 1 ¢14,5,9,11,17,19,25,37,47,61, 79, 95, 109}

are real algebraic, with the associated real algebraic open books having planar pages. These planar, real
algebraic overtwisted structures are exactly the ones which can be obtained by functions of the form f g
with f, g: C? — C complex algebraic.

Algebraic € Geometric Topology, Volume 25 (2025)
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We remark that the polynomials f g that we construct have real coefficients. Also recall the supporting
genus results for tight contact structures: not only a tight structure may have positive minimal supporting
genus among supporting open books, it has been also shown that the Milnor fillable (tight) contact
structures may have Milnor genus strictly greater than the support genus; see Bhupal and Ozbagci [3].

In order to build the overtwisted structures in the theorem we consider all fibered Seifert/graph multilinks
with planar fibers; these turn out to be exactly the ones that appear in [7, page 123] and their possible
splicings. Going through all these fibered links which are also known to be real algebraic, we prove the
theorem. In this way we exhaust all Seifert/graph multilinks that are given by real analytic functions
of the form fg. To come up with new real algebraic planar open books one has to use real analytic
functions of different forms.

We believe that the 13 sporadic exceptions that appear in the theorem are real algebraic, planar as well,
although the families of real algebraic Milnor fibrations that we have produced via functions f g miss
them. The nonnegativity that emerges might be more resilient. Thus we ask

Question 1.2 Is there a real algebraic, planar overtwisted contact structure on S3 with negative d3? The
supporting real algebraic open book is rational in general; ie the fibered link is a multilink. Can the open
book be made an integral open book? That is, can the binding be a simple link which is not a multilink?

Generalizing our definitions we ask

Question 1.3 s it true that every overtwisted contact structure on a Milnor fillable 3-manifold is real
algebraic? Can the associated real algebraic open books have planar pages?

To proceed towards the proof of Theorem 1.1, we recall in Section 2 the Seifert and graph multilinks and
the splicing operation. There we also give our families of fibered graph multilinks in S3 and compute the
associated monodromy maps. In Section 3 we demonstrate that those families of graph multilinks and the
corresponding open book decompositions are real algebraic via functions of the form fg. In Section 4
we briefly recall a way to compute the d3 invariant, by constructing almost complex 4-manifolds that fill
the given open book decompositions in S3. Finally in Section 5 we prove Theorem 1.1 by computing
the d3 invariants explicitly for our families of examples. It turns out that one of our families of graph
multilinks exhausts all the overtwisted structures with d3 > 461. Then by computer aid we show that
those with 0 < d3 < 461 (except the 13 values given in the theorem) are realized by our families of graph
multilinks as well. In the computation of d3 the constructed 4-manifolds have large intersection matrices.
For the clarity of the exposition, those intersection matrices are presented in Appendix A and the tedious
computations regarding those matrices are given in Appendix B.
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Karadereli would like to express gratitude to ESI and Vera Vertesi for their hospitality during the visit.
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2 Seifert multilinks and splicing

In this section we recall introductory information on Seifert and graph multilinks and present several
families of examples which, as to be argued in the next sections, are planarly fibered and real algebraic
via functions of the form f g. Our discussion here is based on [7].

2.1 Seifert multilinks

A Seifert fibered manifold is a closed 3-manifold given as an S!-bundle with the orbit space a 2-orbifold.
A Seifert multilink in a Seifert fibered 3-sphere is an oriented link L that is constituted of a finite number
of Seifert fibers S; and an integer multiplicity m; assigned to each component. In this work we are solely
interested in Seifert multilinks in S>. We are going to denote a Seifert multilink with n components by
L(my,...,my). L is canonically oriented by the sign of the multiplicities ;. In this setup the homology
class m = (my,...,my) € H1(L) ~ Z" determines a cohomology class in the link complement as well,
since H(L) ~ H'(M — L). That class is given by

n
m(y) =Ik(L.y) =Y _m;-1k(S;.y).
i=1
Let u; denote the meridian of the i™ link component. Then we have m(u;) = m;. Moreover we can realize
the Seifert surface of the multilink as an embedded oriented surface whose intersection with the boundary of
a tubular neighborhood of S; is (&; - (m; /8;, —(m;)'/8;))-cable of S;, where (m;)" =37 _,; m; 1k(S;, Sj)
and §; = ged(m;,m}) [7, page 30].

Multilinks are represented by splice diagrams as exemplified in Figure 1. The central node represents the
ambient Seifert manifold. The numbers adjacent to the node for each branch are called the weights and
the numbers next to the arrowheads are the multiplicities m; .

@ ey (11T av)

Figure 1: Splice diagrams for Seifert multilinks of type (I), (II), (IIT) and (IV). These are exactly
all fibered Seifert multilinks with trivial geometric monodromy.
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An arrowhead with weight 4-1 (respectively > 1) corresponds to a regular (respectively singular) Seifert
fiber. The multilink (I) in Figure 1 has 2u + 2 connected components in the underlying manifold S on
which the Seifert fibration is given by the S!-action (x, y) — (t?~!x,t?y) for t € S!. Here the orbit
{x = 0} corresponds to the singular fiber S; with weight p and {y = 0} corresponds to the singular fiber
S» with weight p — 1. The linking numbers of link components can be computed easily using the splice
diagram [7, Proposition 7.4]. For instance, the linking number of any nonsingular fiber with the singular
fiber S (respectively with S») is the product of weights of the remaining vertices, which equals p — 1
(respectively p). The linking number of S and S5 is 1. Thus the multilink (I) is isotopic to the negative
Hopf link union u positively oriented and u negatively oriented isotopic copies of the (p, p — 1) torus
knot cabled around S.

A multilink L (m) is fibered if there exists a locally trivial fibration M — L — S in the homotopy class
corresponding to m, whose fibers are minimal Seifert surfaces for the multilink. Using the analytic
description of the Seifert fibration of the link exterior, it can be easily seen that a Seifert multilink is
fibered if and only if the linking number of any nonsingular fiber y with the multilink does not vanish [7,
page 90]. In other words, denoting by «; the weight of the i™ link component S;, the integer

n n
l=m()/) =Zmi lk()/, Sl') =Zmia1"‘&i"‘an

is nonzero. Moreover if /[ = 1 then the pages of the corresponding open book are planar. The families of
diagrams in Figure 1 are exactly those Seifert multilinks with / = 1 [7, page 123].

A fibered multilink determines a rational open book decomposition for the ambient Seifert manifold. If
each m; = %1 then the open book is an integral open book.

The monodromy of the fibration can be represented as the flow along the Seifert fibers. Thus in the
interior of the pages it is isotopic to a homeomorphism of order /. On the other hand the monodromy
flow near each boundary component is computed as a (—(8; /m;/)a;)-worth (in general rational) twist
along a boundary parallel curve [7, page 108].

Example 2.1 For the multilinks of type (I) given in Figure 1, the multilink is fibered since we have
I==D)-(p—=D+1-p+u-()-p(p—1)+u-(—1)- p(p—1) =1 #0. The pages are (2u+2)-punctured
spheres. The monodromy flow is trivial in the interior of the pages. However near the boundary components
corresponding to the singular fibers, the flow is given as —ﬁp = p and —ﬁ(p —H=—-(p-1)
twists. Along the boundary components corresponding to the nonsingular fibers with positive and negative
multiplicities, the flow is —1 and +1 twist respectively. Therefore the monodromy is given as

(2-1) p=aP b= PV .l d) e al

Here, a and b denote Dehn twists along curves parallel to the boundary components {x = 0} and {y = 0}
respectively; ¢; and d; are twists along curves parallel to the nonsingular components with positive and
negative multiplicities respectively.

Algebraic € Geometric Topology, Volume 25 (2025)



1382 Seyma Karadereli and Ferit Oztiirk

Similarly, as noted above, the multilinks of type (IT) and (IIT) in Figure 1 are fibered multilinks in S3 with
[ =1 too. The pages of the multilink of type (II) are (2u+ 1)-punctured spheres and the monodromy is

(2-2) p=a9-b et et d! - d)
The pages of the multilink of type (III) are (2u + 3)-punctured spheres and the monodromy is

(2-3) ¢203'b2'01_1"'C;irdf'“dz}-
2.2 Splicing multilinks

The splice of two multilinks along a specified pair of link components is constructed topologically by
excising tubular neighborhoods of the given link components and gluing the remaining manifolds in a
meridian-to-longitude fashion. Note that topologically splicing multilinks in S produces a multilink
still in S3. Moreover a cohomology class is determined by the multiplicities of the components of the
resulting multilink. For the splicing operation we require that the restriction of this cohomology class on
each manifold gives the cohomology class of the splice component. This condition is equivalent to the
following. Let Sg and So with multiplicities m¢ and 771 be the spliced link components; (ito, Ag) and
(fo, )10) be the meridians and longitudes on the tori on which the splicing occurs. Then we must have

mo = m(po) = (o) = (i)',

fitg = iii(flo) = m(Ao) = (mo)’,
where ()’ and (mg)’ are defined as in Section 2.1. Observe that these requirements are exactly the
conditions for the Seifert surfaces in each splice component to glue together along the splicing tori.

Moreover since Seifert surfaces approach the spliced link components as §o = ged(my, (m¢)’) copies of
the (mg /8o, (mo)’/8o) curve, the Seifert surfaces are pasted together along Jg tori.

Splicing of two multilinks is represented by a splice diagram (with more than one node) obtained by
joining the two diagrams along the arrowheads corresponding to the link components at which splicing
occurs. A multilink with such a splice diagram is called a graph multilink.

As an example, consider the multilink (I) in Figure 1 and there the link component S of weight p. Since
mA)=1m0-1---14u-()-1---1-(p—D+u-(=1)-1---1-(p—1)=1and m(u1) = —1, one can
splice S1 only with a link component whose multiplicity is 71y = 1 and (7717)’ = —1, ie the pages must
approach the link component as (1, —1) curves. Similarly for the link component S, of weight p — 1,
we have m(A;) = (—1)-1---14u-(1)-1---1-p+u-(—=1)-1---1- p =—1 and m(u,) = 1. Therefore,
given two multilinks of type (I) one can only splice S in one with S3 in the other.

Another possible splicing occurs between the splice multilink (II) and the multilink (I) in a single case;
that occurs when ¢ = 2. In fact, computing m(7}) for 7 as in Figure 1 we obtain 0, 1 —¢ and 1 + ¢ for
j = 1,2, 3 respectively. Thus splicing is only possible when ¢ = 2 and the splicing occurs between the
knot S; of type (I) and 7 of type (II).
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1 1
(II-I) (II-11I)

Figure 2: All possible splice diagrams consisting of (I), (II) and (III) are made up of these pieces.

Similarly splicing is possible between the knot S» of type (I) and P; of type (III), and between the knot
T3 of type (II) and P; of type (III). Here P; is as in Figure 1. Going through all possible cases we obtain
the following list.

Lemma 2.2 All possible splice diagrams in S 3 that can be obtained via the multilinks (I), (II) and (III)
are trees where each splicing is one of those in Figure 2.

A graph multilink is fibered if and only if it is an irreducible link and each of its splice components is
fibered [7, Theorem 4.2]. The monodromy is pieced together from the monodromy maps of the splice
components. In each splice component the monodromy is given by the flow along the corresponding
Seifert fibers whereas on the tubular neighborhoods of the separating tori, it has two different flows in
each end given by the Seifert fibration of each Seifert component. Therefore after splicing, the Dehn
twists corresponding to glued boundaries become trivial and on the separating annuli the monodromy acts
as a twist map which measures the difference between the two flows of Seifert fibers. In [7, Theorem 13.1]
the monodromy flow on a separating annulus is computed as a t-worth twist along the core of the annulus
with

—8o

Il

(2-4) T= (oBo—a1--opn-B1---Bm),
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Figure 3: Splice diagram for (I-I-I).

where g, Bo are the weights of the spliced components and «;, B; are the weights of the remaining link
components around the two nodes.

Example 2.3 Consider the multilink (I-I) given in Figure 2. Note that when ¢ = p the graph multilink
is simply a Seifert multilink [7, Theorem 8.1(6)]. So let us consider the case g > p.
By the previous discussion we know that /; = [, = 1; also § = ged(—1, 1) = 1. Thus (2-4) gives
1
t=—17rlg-D-q(p-1)=p—q.

Since § = 1, we glue the pages of the spliced components, which are (2u+2)- and (2v+2)-punctured
spheres respectively, along a single annulus neighborhood of the spliced boundary components. Conse-
quently the pages of the spliced multilink are (2u+2v+2)-punctured spheres.

As given in (2-1) the splice components have monodromies ¢; = o? -q~(P~1 -(:1_1 et -dll ced)
and ¢ = b9 - =@~V cepl-oeyt- fl-- f,}. The monodromy flow is ¢ — p negative Dehn twists about
the core circle, say y, in the annulus. Therefore the monodromy of the spliced multilink is

(2-5) p=a"P D7l gl g cy~a=p)  pa el e e fL
Example 2.4 Similarly let us consider a graph multilink of the form (I-I-I) as in Figure 3. Recall that we

splice the knot with weight ¢ of the first splice component to the knot with weight (# — 1) of the second
splice component.

As in the previous examples /; =/, = 1 and § = ged(m,my) = 1. Assuming r > g, we have
r=—i(q(r—l)—r(q—1) =qg—r<0.
Ly

The page of the splice multilink is a union of the pages of the splice components joined together along a
boundary by a (¢—r)-twisted annulus (since § = 1). Since the splice components have (2u+2v+2)- and
(2w+2)-punctured sphere pages, the pages for the splice link are (2u+2v+2w+2)-punctured spheres.
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The monodromy of the new fibration is
(2—6) ¢ = a_(p_l)cl_l .. .c;ldll .. .dl})/_(q_p)el_l ...e;lfll . fvle_(r_q)brgl_l . ..g;lhi . “hlll)

where 6 denotes the Dehn twist about the core circle in the latter annulus.

Example 2.5 As in the previous example one can compute the monodromies of the other multilinks
given in Figure 2. Among these we will need the monodromy of the splicing (III-I),

(2—7) ¢:a(p)'c1_1“'cu_l'dll“'dL}'y_(p_3)'b2'e1_1'“e;-|1-1'f11"'fvl'

Here, we assume that p > 4 because the graph multilink is simply a Seifert multilink when p = 3 [7,
Theorem 8.1(6)].

3 Real algebraic singularities and associated contact structures

In this section we assert that the graph multilinks and the associated open books that have been considered
in the previous section with explicit monodromy can be realized real algebraically via functions of the
form fg.

For an isolated singularity of a holomorphic (or a complex algebraic) function from C? to C, the
corresponding Milnor fibration defines an open book structure on S3, whose binding is isotopic to the
singularity link. In such a setup we call the singularity link and the open book and the supported tight
contact structure complex analytic/algebraic. Any complex algebraic link in S3 is a graph multilink and
the corresponding splice diagram can be deduced from the Puiseux pairs [7, Appendix 1]. Of course not
all the graph multilinks in S3 are complex algebraic. Eisenbud and Neumann [7, Theorem 9.4] gave the
precise condition for a graph multilink to be complex algebraic.

Similarly an isolated singularity of a real analytic function /: R* — R? determines a Milnor fibration in
S3 under the condition that the Jacobian matrix of / has rank 2 on an open neighborhood of the origin,
except the origin. This is the Milnor condition. A link is said to be real analytic/algebraic if it is the
singularity link of a real analytic/algebraic map /: R* — R? that satisfies the Milnor condition. In the
absence of the Milnor condition, there might not even exist a Milnor fibration. In the particular case
h = fg where f and g are holomorphic functions, [19] and [20] discuss the Milnor fibration in the link
exterior and the geometry of the fibration near the singularity link.

The isotopy class of a multilink is encoded in a plumbing tree that is decorated with arrows having
multiplicities for the link components. When a multilink is isotopic to the singularity of a holomorphic
germ, the plumbing tree for the multilink can be obtained as the dual tree of any normal crossing resolution
of the function. Since Ly as an unoriented link is Ly U Lg, it follows that the resolution graph of a
real algebraic germ of the form f g is nothing but the resolution graph of fg with negative signs for the
multiplicities of the link components corresponding to g. Passing to the corresponding splice diagram as
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described in [7, Section 20], we conclude that the conditions in [7, Theorem 9.4] are necessary for real
algebraicity via f g. Namely these conditions are:

(i) the weights of all vertices are positive;

(i) for every splicing aofo > @1 -+ &ty - B1 - - - B Where @, Bo are the weights of the spliced compo-

nents and «;, B; are the remaining weights around the two nodes.

Thus we immediately conclude that (IV) in Figure 1 fails (i) for real algebraicity via f g, and the splicings
(II-I) and (II-IID) fail (ii). Moreover any splicing involving (IV) either fails (i) or (ii). So the only cases in
the previous section that satisfy the necessary conditions (i) and (ii) are (I), (I), (III) and any segment of
(I-I-1-.. ).

Having said these, the following theorem explains exactly when the singularity link of a real algebraic
germ of the form f g has a real algebraic open book.

Theorem 3.1 [19, Theorem 5.1] Let f:(C2,0) — (C,0) and g: (C2,0) — (C, 0) be two holomorphic
germs with isolated singularities and having no common branches. Then the real analytic germ f g has an
isolated singularity at 0 if and only if the link L — L is fibered.

Moreover, if this condition holds, then the Milnor fibration of the link Ly — L is given by fg/| f gl

Let us elaborate in our running examples.

Example 3.2 For n?*T1 = 1 consider the functions
U ) 2u ‘
Sy =y [P +9y?™) and gx.y)=x [] P+n/y?™".
i=1 j=u+1

After resolving the germ of fg, we obtain the plumbing diagram of Ly given in Figure 4. As in [7,
Section 20], we can obtain the splice diagram of the singularity link from the plumbing diagram and see
that it is isotopic to the multilink of type (I) in Figure 1. Since we have already noted that the multilink is
fibered, it follows from Theorem 3.1 that f g has an isolated singularity and the fibration of the multilink
which we investigated in the previous section is the Milnor fibration of the germ. Observe also that the
branch {x = 0} corresponds to the singular link component of weight p, {y = 0} corresponds to the
singular component of weight p — 1 and the positively (respectively negatively) oriented u copies of
(p, p — 1) cables around {x = 0} component correspond to the branches {[[{_; (x? + 5’ y?~1) = 0}
(respectively {[T/_; (x? +n' yP~1) =0}).

Example 3.3 Similarly we observe that the singularity links of the real algebraic germs

u u—I1
(xy [+ niy)) : (]_[ (x4 + n“*fy)) and (
j=1

i=1

u+1

H(x?’ + nlyZ)) . ()_6)7 1_[ (X3 + nu+j+1y2))

i=1 Jj=1

are isotopic to the fibered multilinks of type (II) and (III) in Figure 1 respectively; therefore have isolated
singularities at the origin and engender Milnor fibrations.
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(p2 -p- 1)
p*—p-2
Figure 4: Dual tree of a resolution 7 of fg with associated multiplicities given in the parentheses

which are the multiplicities m lf and m;-g of f om and g o 7, respectively, along the irreducible

component for the i " exceptional divisor. As a side remark we recall that L r — Lg is fibered if
and only if mlf # mf at the rupture vertices [20, Corollary 2.2].

As for the graph multilinks obtained via splicing in the previous section, a priori they might not be
algebraic. Consider the positively oriented graph multilink isotopic to the multilink (I-I). This multilink is
complex algebraic when g > p [7, Theorem 9.4]. The corresponding holomorphic function can be easily
deduced from the holomorphic germs related to the spliced components as follows. Recall that we splice
the component corresponding to the branch {x = 0} of a multilink L of type (I) with weights for singular
fibers p, p— 1 with the component {y = 0} of a multilink L, of type (I) with weights ¢, g — 1. By isotopy,
the nonsingular link components of L ; which are (p, p—1) cables of {x =0} can be realized as (p—1, p)
cables of the {y = 0} component of L. As we splice, we remove the spliced link components and keep
the remaining ones. The resulting multilink is a positive Hopf link with 2u many (p — 1, p) cables around
the link component {y = 0} (coming from L) and 2v many (¢, g — 1) cables around the link component
{x = 0} (coming from L;). Again by isotopy, (p — 1, p) cables around the former component can be
seen as (p, p — 1) cable around the latter. The resulting multilink is the union of all components of the
spliced multilinks except the ones we spliced. Thus the corresponding holomorphic function is nothing
but the product of the algebraic functions corresponding to branches. Since the spliced multilink (I-I) is
the above multilink where some of the link components are oriented negatively, it becomes real algebraic
when g > p and the corresponding real algebraic map is the map where we take the conjugate of the
algebraic functions corresponding to the branches that are oriented negatively. The real algebraic map
corresponding to this graph multilink is of the form f g and is given by

u 2u v 2v
G- xy[Je?+n'y?Y [T «P+niyr H [+ ] &a+n/ya).
i=1 j=u+1 i=1 j=u+1

Thus Theorem 3.1 assures real algebraicity of the open book. Similarly, the graph multilink (I-I-I) is real
algebraic when p < g < r and the multilink (III-I) is real algebraic when p > 3.
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In [15] it is proven that if the link components of a fibered multilink in a homology 3-sphere are canonically
oriented (or all those orientations are reversed), then the multilink is the binding of an open book which
supports a tight contact structure; otherwise the supported contact structure is overtwisted. So one can
conclude that the Milnor open books of the real algebraic links we have constructed so far support
overtwisted contact structures in S3.

4 Calculation of the 3-dimensional invariant from open books

In this section we recall how to detect the overtwisted contact structures compatible with the Milnor
fibered multilinks constructed in the previous sections using the monodromy data.

Recall that two overtwisted contact structures on S3 are contact isotopic if and only if they are homotopic
as 2-plane fields [8]. Moreover the homotopy class of a 2-plane field is determined by the induced spin®
structure and the ds invariant (see [12; 23]). Since S3 has a unique spin® structure, the overtwisted
structures on S3 are classified by their d3 invariants, which take values in Z + % (see eg [6]). There may
be various ways to compute the d3 invariant of a given contact structure. One can even compute the
enhanced Milnor number as explained in [17] or in a way similar to [14] (in the latter the real algebraic
functions are so-called “convenient” while ours in Section 3 are not). Here, bearing in mind the fillings
of contact 3-manifolds, we will use the method in [11] to calculate d3 from the monodromy data of the
compatible open book.

It is known that given an achiral Lefschetz fibration on a 4-manifold W with fibers F' with boundary, W
can be described as F x D? with 2-handles attached to some vanishing cycles y; with appropriate framings.
The Lefschetz fibration on W induces an open book decomposition and hence a contact structure on dW.
The contact structure induced on dW is obtained by contact (41)/(—1)-surgeries on the Legendrian
realizations of the vanishing cycles of respectively negative/positive critical points, each embedded in
distinct fibers of the open book; the contribution to the monodromy is respectively a left/right handed
Dehn twist about the vanishing cycle. In the reverse direction given a 3-manifold with an open book
decomposition, the monodromy data determines an achiral Lefschetz fibration on a 4-manifold which on
the boundary gives the given open book.

It should be noted that 2-handle attachments with (—1) framing result in an honest Lefschetz fibration
carrying a natural almost complex structure which is the extension of the one on D? x F. However,
attaching a 2-handle with (41) framing gives an achiral Lefschetz fibration which does not have a natural
almost complex structure that comes from extending the older one. It is shown in [6] that if Wy is
the handlebody decomposition of the 4-manifold admitting the Lefschetz fibration constructed via k
(+1)-surgeries, W = W, # kC P? (with the same boundary) has a natural almost complex structure.
When the second cohomology has no torsion (where W is assumed to have no 1-handles) one has the
following formula (see [10] or [11]) which is the generalization of the similar statement in [6]:

(4-1) d3(§) = (2 (W) =21 (W) =30(W)) + k.
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Here o(W) and y(W) are the signature and the Euler characteristic of W. The Chern class c € H>(W; Z)
is the Poincaré dual to Y 7_; r(y;)C; where C; is the cocore of the 2-handle attached along the vanishing
cycle y;, and r(y;) is the rotation number of y;. Since c(W)|sw = c(£) is zero, c(W) € H?(W) comes
from a class in H2(W, W) thus can be squared. A way to calculate (y;) on a page is explained in [11]
in detail. The rotation number is equal to the winding number of the projection of the curve to a page
with respect to the orientation on the Kirby diagram obtained by the usual orientation of D? extended
over 1-handles.

5 Proof of Theorem 1.1

We have seen that the multilinks (I), (I) and (III) in Figure 1 are fibered with planar pages (see Section 2.1)
and are real algebraic via functions of the form f g while the multilink (IV) is not (see Section 3). Splicing
together these multilinks in the forms (III-I), (I-I), (I-I-...), (ILI-I-I-...) leads wider families of planarly
fibered multilinks (Section 2.2) which are also real algebraic via functions of the form f g (Section 3). Our
ongoing discussion shows that these are all possible fibered multilinks which are real algebraic via functions
of the form f g. Moreover there is no other fibered multilink in S with planar pages. In fact, for a fibered
Seifert multilink with n components the Euler number of a page F is y(F) =|!|- (2 —k+ Z;;n 1 l/a j)
with k > n and ; > 1 [7, page 91]. In order to have F planar, y(F) must equal 2 —n. Equating, we get
either n =2 or |/| = 1. In both cases k is arbitrary and o; = 1 for all n < j < k. The case n =2 gives
nothing but a Hopf link in 3. The latter case where |/| = 1 is all that appear in Figure 1.

Furthermore we have noted that the corresponding contact structures are overtwisted (see Section 3). In
this section, we calculate their d3 invariants and show what overtwisted contact structures on S3 are
supported by those real algebraic planar open books. We only focus on the graph multilinks (I-I), (III-I)
and (I-I-I) as the families (III-I-I-...) and (I-I-...) with larger d3 invariants do not provide different
contact structures. This discussion will be tied in Section 5.7 to prove Theorem 1.1.

5.1 Overtwisted structures via (I)

We first consider the family of multilinks of type (I). Recall that the open books that they determine have
pages (2u + 2) times punctured spheres (denoted by X 2y+2). Moreover the monodromy (2-1) of the
open book is

¢ =ap.b—(p—l).cl—l ceetedl-dl,
where a, b and ¢ are boundary parallel curves. Observe that the number of negative Dehn twists in this
expression is p +u — 1.

As we discussed in Section 4, via the monodromy information of the given open book decomposition we
can construct a 4-manifold with boundary S as the underlying space of an achiral Lefschetz fibration. In
that way we can calculate the d3 invariant of the overtwisted contact structure on S supported by the
open book. Now, since the pages have (2u + 2) boundary components, we first attach (2u + 1) 1-handles
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Figure 5: Kirby diagram for the 4-manifold corresponding to (I).

to D* to get D? x X 2,+2. Then, we attach 2-handles along Legendrian copies of boundary parallel
curves on Xg 2,42 With framing 1, depending on the parity of the Dehn twist. The resulting 4-manifold
W is given in Figure 5.

The 1-chain group C1(W) of W has a basis {X, Y, Z1,..., Za,—1} and C>(W) has a basis
{al,...,ap,bl,...,bp_l,cl,...,cu,dl,...,du}.

The boundary map D : Co(W) — C1(W) is given by

D(a)) = X, i=1,...p
D(b)) =Y, j=1,...p—1,
D(cy)=7Z1—-X, D(ci)=Z2;—Z;_1, 1=2,...u,

D(dy) =Y —Zoy—1, D) =Zuti—Zuti-1, 1=1,...u—1L

Thus, H, (W) has a basis with generators

u
ay—daz,...,dp—1 —ap,bl —bz,...,bp_z—bp_l,bl —Z(C‘i —i—di)—ap} .

i=1

Since rank Hy = 1, rank H1 = 0 and rank H, =2p —2, we get y(W) =2p — 1.

Note that a]? =—1= dj2 and b]? =1= c]z. So the squares of the basis elements are (a; —a;4+1)* = -2,
(bj —bj+1)2 =2and (b1 =Y o(ci+di) —ap)2 = 0. Thus in this basis the intersection matrix is Q7 as
given in Appendix A. We also compute in Appendix B that o (W) = o(Q1) = 0, and det Q1 = (—1)?~L.

To calculate the square of the first Chern class, we chose an orientation of the curves and compute the
rotation numbers of the curves with respect to the orientation induced from blackboard. Thus we get
r(a) =0 =r(b), r(c;) = —1 and r(d;) = —1. Note that the calculation of ¢? is independent of the
chosen orientations. Let us denote the cocores of the 2-handles attached along a;, b;, cx and d; by A;,
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Bj, Ci and D respectively. Then ¢(W) is Poincaré dual to —(ZLI C + Z}Ll D j). This evaluates
on the basis above as w = (0, ... ,2u)T. Hence,

42 (1P (p—1)-p
(—Hp1

W)= Qw(PD(c(W)) =w" 07w = =4u’p(p—1).

Inserting the results of the previous steps in (4-1) we get

-1 ds®) =14 (p-1)p-22p—1)—=3-0)+(p+u—D)=ulp(p—1)+u—1.
5.2 Overtwisted structures via (II)

We perform similar calculation for the multilinks (II) given in Figure 1. The associated monodromy (2-2)
has g + u negative Dehn twists. After following the same steps to construct the 4-manifold W we find
x(W) =g+ 1, and as pointed out in Appendix B, o (W) = ¢. Similarly as before, we have

c2(W) = Qu—1)%g.
Inserting in (4-1) we get

(5-2) d3(§) = 2(Qu—-12%q—2(g+1)—3¢) +(q+u) =u(u—1)g +u—3.
5.3 Overtwisted structures via (III)

As for the multilinks (III) in Figure 1, the associated monodromy (2-3) has u 4 1 negative Dehn twists.
The constructed 4-manifold W has y(W) =5, and as pointed out in Appendix B, o(W) = —2. Moreover,

2._
(W) = (2’”_# — 6Q2u+ 1),
Inserting in (4-1) we get
(5-3) d3(§) = +(6Qu+1)>—2-5-3-(-2)) +(u+ 1) =6u(u+1)+u+2-1.

5.4 Overtwisted structures via (I-I)

We consider the graph multilinks (I-I) obtained by splicing two multilinks of type (I), as we have
constructed in Figure 2, top left. The monodromy (2-5) of the associated open book has ¢ +u +v —1
negative Dehn twists.

Since the monodromy is obtained by the monodromies of the splice components, to construct the 4-
manifold, we can use the Kirby diagrams for the splice components. One can see that the Kirby diagram of
the spliced multilink can be constructed as follows. We identify the 1-handles corresponding to the spliced
boundary components, thus the 2-handles whose attaching circles corresponds to the Dehn twists along
that boundary components cancel. By means of the new Dehn twist contributions to the monodromy, we
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(+1) (+D)

@ @ -@( )

(+1

31 ﬁ(/*l :

Figure 6: Kirby diagram for the 4-manifold corresponding to (I-I). The faded ends of the previous
diagrams are the deleted blocks.

add new 2-handles whose attaching circles are along the identified boundary component. Consequently,
we see that the corresponding 4-manifold has the Kirby diagram given in Figure 6.

Furthermore, H, (W) has a basis with generators

ar—az,...,dp—2—0p—1,Y1—=V2+-- > Vk—1 —Vk-b1—b2,... . bg—1—byq,

u v
+ (Zci +di)—ap—1,b1 + (Zei +fi)—yk

i=1 i=1
Since rank Hy = 1, rank H1 = 0 and rank H, = 2¢g — 2, we have y(W) =2q — 1.

Note that, a] = 6]2 = ej = yj =1 and b2 = d2 f2 —1. So the squares of the basis elements
2
are (aj —aj+1)* =2, (yj —yj+1)* =2, (b —bj+1) 2, (y1+ (X2 ¢i +di)—ap—1)” =2 and

(b1 + (Z};l e + fl) — )/k)z = 0. In this basis the intersection matrix is Q. as given in Appendix A.
We compute in Appendix B that o(W) = o(Q1.1) =0, and det Q11 = (—1)47 L.

Note that, r(a) =r(y) =r(b) =0, r(c;) = —1,r(d;) = —1, r(e;) = —1 and r( f;) = —1. Therefore,
c(W) == (Ci+ D)= Y (Ej + F)).
i=1 ji=1

This evaluates on the basis above as w = (0, ..., —2u, —2v)7 . In order to calculate 2, it is sufficient to
calculate the inverse of last 2 x 2 block of Q1. We deduce that

W) =4u’p(p—1)+8uvg(p—1) + 4v3%q(g - 1).
Explicit calculations can be found in Appendix B.
Inserting all these results in (4-1) we get
ds;(§) = %(4u2p(p— 1) +8uvg(p—1)+4v2g(g—1)—2Q2g—1)—3-0)+qg+u+v—1
=u’p(p—1)+v%q(g—1)+2uvg(p—1)+u +v—%.
As we have seen, the information about the resulting graph link and its fibration can be deduced from the

splice components easily. In the next example, we will construct a wider family of overtwisted contact
structures and observe how the procedure goes on.
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5.5 Overtwisted structures via (I-I-I)

We consider the graph multilinks (I-I-I) obtained by splicing three multilinks of type (I), as we have
constructed in Figure 3. The monodromy (2-6) of the associated open book has r 4+ u 4+ v + w — 1 negative
Dehn twists. By the same arguments as in the previous example, the corresponding 4-manifold has the
Kirby diagram given in Figure 7.

Then H,(W) has a basis with generators

ay—az,...,dp—2 —A4p—1,Y1—¥Y2s--->,¥Yqg—p—1 —VYq—p>
u
Or—02,...,0r—g—1—0r—g.b1—b2,....,br—1 —br,y1+ (Zci + di) —ap-1,
i=1
v w
01 + (Z e + fi) —Yg—p-b1+ (Z gi +hi) —Or—g.
i=1 i=1
Since rank Hyp = 1, rank H; = 0 and rank H, = 2r — 2, we have y(W) =2r — 1.
Note that a]? = cjz = e} = gj? = yj2 = 9]-2 =1and b]? = a,’j2 = sz = hjz. = —1. So the squares of the basis

elements are

(@j—aj+1)> =2, (yj=yvj+1>=2, (0;=0j+1)>=2, (bj—bj+1)>=-2,

(Vl—(i ci +di) —Olp—l)2 =2, (ﬁ—(i €i+fi) —Vq—p)2 =2, (bl—(i gi +hi)_9r—q)2 =0.

In this basis the intersection matrix is Qryp as given in Appendix A. We compute in Appendix B that
det Qpp1 = (—1)97L

As we discussed in the previous example the number of positive eigenvalues is
p—-2)+@—p—-D+@r—gq-1)+3=r—1

and the number of negative eigenvalues is (r — 1). Thus, o (W) = 0.

(=1) (+1) (=1) (+1) (=1 (+1)
L, -dy - - - €r - - - fo- -eér- - hy - - -81- -
(. : : : : : : : : !

o 0uboto 0.

Figure 7: Kirby diagram for the 4-manifold corresponding to (I-I-I).

attoa e ale,
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Note that, r(a) = r(b) = r(y) =r(f) =0, whereas r(¢;) = —1, r(d;) = =1, r(e;) = =1, r(fi) = —1,
r(gi) = —1 and r(h;) = —1. Therefore, we have

u v w
c(W)==Y (Ci+Di)=Y (Ej+F)— ) (Gj+ H)).
i=1 j=1 j=1
This evaluates on the basis above as w = (0,...,—2u, —2v, —2w)T. In order to calculate ¢2, it is
sufficient to calculate the inverse of the last 3 x 3 block of Qr.11. The calculations in Appendix B show

W) =4u’p(p—1)+4v%q(g —1) + 4w?r(r — 1) + Suvg(p — 1) + Suwr(p — 1) + Svwr(qg — 1).
Inserting in (4-1) we get
(5-4) dz(§) = %(4u2p(p—1)+4v2q(q—1)+4w2r(r—1)+8uvq(p—1)
+8uwr(p—1)+8vwr(q—1)—2-(2r—1)—3-(0))+(r+u+v+w—1)
=u’p(p—1)+vq(g—1)+w’r(r—1)
+2uvq(p—l)+2uwr(p—1)+2vwr(q—l)+u+v+w—%.

5.6 Overtwisted structures via (II1-I)

We consider the graph multilinks (III-I) obtained by splicing two multilinks of type (III) and (I), as
constructed in Figure 2, bottom left. The monodromy (2-7) of the associated open book has p +u +v—2
negative Dehn twists. H, (W) has a basis with generators

a1—az,...,dp—1—Aap, Y1 = V2, -, Yp—4 — Vp—3,b1 — b2,
u v+1 v
y1— (Zcz- +di) —ap.bi—Y ei— Y fi—vp-3.

In this basis the intersection matrix is Q. as given in Appendix A. Similar calculations as before show
that y(W)=2p—1,0(W) = =2, det Opr.1 = (—1)? and

C2(W) = Qu, 20+ 1) (1’(1;; D 26”) Qu, 20+ 1T = 4u? p(p— 1) + 2402 + Sup(2v + 1) + 24v + 6.

Inserting the results of the previous steps into the formula of d3 invariant, we obtain
d3(§) = (@u?p(p— 1) + 240> + 8up(2v + 1) + 240+ 6 —2(2p— 1) =3(=2)) + p+u +v—2
=u’p(p—1)+6v2+2puv + 1)+6v+u+v+2—%.

5.7 Proof of the main theorem

Finally here we prove our main theorem by showing first that the family of fibered multilinks we obtained
by splicing (I-I-I) gives us all the overtwisted contact structures with dz + % > 431 except d3 + % =461.
Then we show that all the remaining ones, except for the ones with

dy+ 1 €4,5,9,11,17,19,25,37,47,61, 79, 95, 109},
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are obtained by the other ways of splicing that we have presented in the previous paragraphs of the present
section. We will give a list for that at the end of the section. We do not know yet if the 13 overtwisted
structures that we have missed are real algebraic.

Let d € Z denote the sum d3 + % in (5-4),
d=u’p(p—1)+v3q(q—1)+w?r(r—1)+2uvg(p—1)+2uwr(p—1) +2vwr(g—1) +u+v+w,

where the variables are positive integers with the algebraicity condition p < g <r. Wefixv=w =1
once and for all. We will use the three moves below:

(i) Replacing ¢ and r with (g + 1) and (r — 1); this increases d by 2.
(i) Aslong as p = 2 replacing u with (4 + 2) and r with (r — 2); this increases d by 4u + 12.
(iii) When p = 2, increasing r by 1; this increases d by 2(r +u + g — 1).

We start from the state (p,q,r,u,v,w) = (2,3,r, 1,1, 1). These values give d = r2 4+ 5r + 17, which is
odd. Any application of the moves above produces an odd number. First we will tell how to obtain all
odd integers greater than 431 (except 461) via these moves.

Starting from the initial state and applying the move (iii) for each r increases the sum by 2r 4+ 6. We
discuss how to obtain any odd number between d =r? +5r+17andd +2r +6 = (r +1)2+5(r +1)+17
using the first two moves, provided that r is large enough.

Now starting from the initial state the application of (ii) k times increases d by 4k? + 12k Let k be
the largest integer satisfying 4k? 4 12k < 2r 4 6. Note that we have k = 1 for 5 <r < 17, k = 2 for
17 <r <33 and k =3 for 33 < r <53.

Furthermore any odd number between d + 4c¢2 + 12c and d +4(c + 1)> +12(c + 1) for 0 < ¢ < k can
be obtained by applying move (i) %(8c 4+ 16) — 1 = 4c + 7 times. Recall that we have the restriction
g < r and that application of moves (i) and (ii) decreases r. Hence in order to obtain all the values in
between we must have ¢ +4c +7 < (r —2c¢) —4c—7,ier > 10c + 17 forany 0 < ¢ < k.

When ¢ = 0, any odd number between d and d + 16 can be obtained by applying move (i) 7 times.
Therefore, we have the restriction that ¢ +7 < r — 7, hence r > 17.

We have observed above that for 17 < r < 33, the move (ii) is applied twice. Hence for ¢ = 1 any odd
number between d + 16 and d + 40 can be obtained for r > 27. For 17 < r < 27, there are few values
less than d + 40 that we cannot obtain in this way.

As for 33 < r <53, we can apply move (ii) thrice. Since r > 27, we have observed above that any sum
between d and d + 40 can be obtained. For ¢ = 2 for the numbers between d + 40 and d + 72, we
must have r > 37. Hence whenever 37 < r < 53 we can obtain any odd number between d and d + 72.
For 33 < r < 37 we cannot obtain all the numbers in between though. For larger » (more precisely for
r > 37) the inequality r > 10c 4 17 is always satisfied so that we can obtain any odd number between
d+4c?+12candd +4(c+ 1) +12(c + 1).
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Finally in order to obtain any odd number between d + 4k? 4 12k and d + 2r + 6 via move (i), we must
have

ok (2r+6—4k2—12k _1) S 2r +6— 4k — 12k 1,
2 2
ie r < 4k? + 10k — 7. Recall that k is the largest integer satisfying 4k> + 12k < 2r + 6. Comparing
these inequalities, one can see that when r > 33 any odd number in between can be obtained via move (i).
As a result we conclude that for r > 18, ie starting from d = 431 all the odd integers are obtained, except
some finitely many missed ones for 29 < r < 37. Precisely the number of these missed ones is 45.

Here one can find the exact states that give these missing numbers on a computer. Instead we try to enrich
our set of moves in order to obtain most of these 45 numbers. Indeed, at the state (2,3,r—2,3, 1, 1) when
we have the sum d + 16, we increase p and g by 1, decrease r by 4 to get to the state (3,4,r—6,3,1,1)
and the sum d + 36. Then applying the move (i) successively produces the missing numbers between
d + 36 and d + 40. Thereby, we can obtain 18 out of 30 missing odd numbers between 17 < r < 27.
For the 15 missing odd numbers between 29 < r < 37, we replace p,q,r by p+2,g+5and r — 11
at the state (2,3,r —2,3,1, 1) to get to the state (4,8,r —13,3,1, 1) and the sum d + 62. Again, the
application of the move (i) successively produces all the odd numbers between d + 62 and d + 2r + 6.
For the remaining 12 missing odd numbers smaller than d + 36, at the state (2, 3,r—2, 3,1, 1) we replace
u with u + 4, and r with r — 5. Application of this move increases the sum by 6u —2r + 30, thus we can

obtain all the odd numbers except d = 461.

To obtain even numbers, we start from the state (2, 3, r, 2, 1, 1) that gives the even integer d = r2+7r +30.
Then move (iii) increases the sum by 2r 4+ 8. We will now obtain any even number between d and
d+2r +8=(r+1)24+7( + 1) + 30 by applying the first two moves. Let k be the largest integer
satisfying 4k2? + 16k < 2r 4 8. Applying (ii) k times takes us to the state (2,3,r —2k,2 + 2k, 1,1)
and increases the value by 4k? + 16k. Each application of (ii), while passing from the step u + 2k
to u + 2(k + 1), increases the value by 8k + 20. Note that k = 1 for 6 < r < 20, we have k = 2 for
20 <r <38 and k =3 for 38 < r < 60.

Any number between d + 4c¢? + 16¢ and d + 4(c + 1)% + 16(c + 1) for 0 < ¢ < k can be obtained by
applying move (i) 4c + 9 times. In order to obtain all the sums in between we must have r > 10c 4- 21
for any 0 < ¢ < k. When ¢ = 0 any even number between d and d + 20 can be obtained by applying
move (i) 9 times for r > 21. We observed above that for 20 < r < 38 we apply (ii) twice. Hence any even
number between d + 20 and d + 48 (ie for ¢ = 1) can be obtained whenever r > 31. For 20 < r < 31
there are few values less than d + 48 that we cannot obtain in this way.

For 38 < r < 60 we can apply (ii) thrice. Any sum between d and d + 48 can be obtained as discussed
in the previous arguments. For ¢ = 2, for the numbers between d + 48 and d + 84 we must have r > 41.
As a result, when 41 < r < 60, we can obtain any even number between d and d + 84. Moreover, larger
r values always satisfy r > 10c 4+ 21 and we can obtain any even number between d + 4¢2 4 16¢ and
d+4(c+1)2+16(c+1).
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state ds + % state ds + % state ds + % state ds + %

Type I, (p,u) 2,1) 3 5,1 21 2,5 55 (10,1) 91
A3,1) 7 6,1) 31 (8,1) 57 (11,1) 111
1) 13 1) 43 .1 73 (12,1) 133

Type 11, (q,u) 2,1) 1 5,3) 33 (7,3) 45 (12,3) 75
4,3) 27 (6,3) 39 (10,3) 63 (15,3) 93

Type 11, (u) 0) 2 ) 15 3) 77

Type II-L, (p,u,v) (4,1,0) 23 2,2,1) 49 (10,1,0) 113 4,5,0) 347
(2,3,0) 35 (7,1,0) 59

Type I-1, (p,q,u,v) 2,3,2,1) 29 3,5,2,1) 87 4,5,2,1) 131 (2,6,3,2) 215
2,4,2,1) 39 (3,4,1,2) 89 2,7.4,1) 135 (2,14,2,1) 249
(2,3,1,2) 41 (2,54,1) 97 (4,6,2,1) 153 (2,7,3,2) 275
(2,5,2,1) 51 (3,6,2,1) 105 (4,5,1,2) 155 (2,4,3,4) 313
(2,6,2,1) 65 (2,6,4,1) 115 (2,8,4,1) 157 3,11,4,1) 387
2,4,1,2) 69 (2,9,2,1) 119 (2,11,2,1) 165 (7,8,1,2) 461
3,4,2,1) 71 2,3,1,4) 127 (3,6,1,2) 177
(2,7,2,1) 81 (3,5,1,2) 129 (2,94,1) 181

Type LI-L, (p.qruviw) | 2.3.4.1,1,1) 53 (G581 201 (246212 281 2.613.1,1,1) 359
(2,3,5,1,1,1) 67 (3,6,7,1,1,1) 203 (2,3,14,1,1,1) 283 2,7,12,1,1,1) 361
2,3,6,1,1,1) 83 4,5,7,1,1,1) 205 (2,4,13,1,1,1) 285 2,8,11,1,1,1) 363
2,4,5,1,1,1) 85 (2,3,6,5,1,1) 207 (2,5,12,1,1,1) 287 (2,9,10,1,1,1) 365
2,3,4,3,1,1) 99 (2,3,9,3,1,1) 209 2,6,11,1,1,1) 289 (2,3,9,3,3,1) 367
(2,3,7,1,1,1) 101 2,4,8,3,1,1) 211 (2,3,9,5,1,1) 291 (2,3,14,3,1,1) 369
(2,4,6,1,1,1) 103 (2,5,7,3,1,1) 213 (2,4,8,5,1,1) 293 (2,4,13,3,1,1) 371
3,4,5,1,1,1) 107 2,3,4,3,3,1) 217 2,5,7,5,1,1) 295 (2,5,12,3,1,1) 373
(2,3,5,3,1,1) 117 2,3,7,1,3,1) 219 4,6,9,1,1,1) 297 2,6,11,3,1,1) 375
(2,3,8,1,1,1) 121 2,3,12,1,1,1) 221 (2,3,12,3,1,1) 299 (2,7,10,3,1,1) 377
2,3,4,1,1,1) 123 24,11,1,1,1) 223 (2,4,11,3,1,1) 301 (2,8,9,3,1,1) 379
2,5,6,1,1,1) 125 (2,5,10,1,1,1) 225 (2,5,10,3,1,1) 303 (2,4,5,3,2,2) 381
(2,3,6,3,1,1) 137 (2,6,9,1,1,1) 227 (2,6,9,3,1,1) 305 2,3,4,3,5,1) 383
(2,4,5,3,1,1) 139 2,7,8,1,1,1) 229 (2,7,8,3,1,1) 307 (2,3,7,1,5,1) 385
(2,3,5,2,2,1) 141 (3,6,8,1,1,1) 231 (2,49,2,2,1) 309 (3,4,10,3,1,1) 389
2,3,9,1,1,1) 143 2,3,7,5,1,1) 233 (2,3,7,2,1,2) 311 2,3,17,1,1,1) 391
2,4,8,1,1,1) 145 (2,4,6,5,1,1) 235 (2,5,7,2,2,1) 315 2,4,16,1,1,1) 393
(2,5,7,1,1,1) 147 (2,3,10,3,1,1) 237 2,3,15,1,1,1) 317 2,5,15,1,1,1) 395
(3,4,7,2,1,1) 149 (2,49,3,1,1) 239 (2,4,14,1,1,1) 319 (2,6,14,1,1,1) 397
3,5,6,1,1,1) 151 2,5,8,3,1,1) 241 (2,5,13,1,1,1) 321 2,7,13,1,1,1) 399
2,3,7,2,1,1) 159 (2,6,7,3,1,1) 243 (2,6,12,1,1,1) 323 (2,3,4,8,1,2) 401
(2,4,6,3,1,1) 161 (2,3,4,3,2,2) 245 2,7,11,1,1,1) 325 29,11,1,1,1) 403
(2,3,6,2,2,1) 163 (2,3,6,2,1,2) 247 (2,8,10,1,1,1) 327 (2,3,4,7,3,1) 405
2,3,10,1,1,1) 167 2,3,13,1,1,1) 251 (2,6,7,5,1,1) 329 (2,3,15,3,1,1) 407
2,4,9,1,1,1) 169 24,12,1,1,1) 253 3,8,9,1,1,1) 331 (2,4,14,3,1,1) 409
(2,5,8,1,1,1) 171 2,5,11,1,1,1) 255 (2,3,13,3,1,1) 333 (2,5,13,3,1,1) 411
(2,6,7,1,1,1) 173 (2,6,10,1,1,1) 257 (2,4,12,3,1,1) 335 (2,6,12,3,1,1) 413
3,5,7,1,1,1) 175 2,7,9,1,1,1) 259 (2,5,11,3,1,1) 337 2,7,11,3,1,1) 415
4,5,6,1,1,1) 179 (2,3,8,5,1,1) 261 (2,6,10,3,1,1) 339 (2,8,10,3,1,1) 417
(2,3,8,3,1,1) 183 2,4,7,5,1,1) 263 (2,79,3,1,1) 341 2,3,4,7,3,1) 419
(2,4,7,3,1,1) 185 (2,5,6,5,1,1) 265 (2,4,10,2,2,1) 343 (2,3,8,1,5,1) 421
2,5,6,3,1,1) 187 2,3,11,3,1,1) 267 (2,4,5,3,3,1) 345 2,3,5,2,2,3) 423
2,3,5,2,1,2) 191 2,4,10,3,1,1) 269 (2,5,8,2,2,1) 349 (2,3,10,7,1,1) 425
2,3,11,1,1,1) 193 (2,5,9,3,1,1) 271 2,3,7,1,2,2) 351 2,49,7,1,1) 427
2,4,10,1,1,1) 195 (2,6,8,3,1,1) 273 (2,3,16,1,1,1) 353 (2,4,10,1,3,1) 429
2,5,9,1,1,1) 197 2,3,9,1,3,1) 277 (2,4,15,1,1,1) 355
2,6,8,1,1,1) 199 (2,3,5,2,4,1) 279 (2,5,14,1,1,1) 357

Table 1: How to obtain the overtwisted structures with ds + % <461 (except 4, 5,9, 11,17, 19,
25,37,47, 61,79, 95 and 109).
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Finally in order to obtain any even number between d 4 4k? + 16k and d + 2r + 8 via move (i), we must
have r < 4k? + 14k — 9. Checking for the values of k, one can see that the above condition is satisfied
for r > 41. As a result we conclude that for » > 17, ie starting from d = 438 all the even integers are
obtained, except some finitely many missed ones. Precisely the number of these missed ones is 78.

We have the following additional operations to produce the missed even numbers. To obtain the ones
between d + 14 and d + 20, at the state (2, 3,r,2, 1, 1) we increase p and g by 1 and decrease r by 3.
The new state (3,4,r —3,2,1,1) gives the sum d + 12. Then we apply the move (i) successively to
produce all the missing even numbers in between. For the missed even numbers between d + 48 and
d + 84, at the state (2,3,r —4,6, 1, 1) we decrease u by 4, r by 14 and increase p and g by 6 to get the
state (8,9,r — 18,2, 1, 1) and the sum d + 72. Then applying the move (i) successively produces all the
missing even integers between d + 78 and d + 84.

Moreover, at the state (2,3,r —2,4, 1, 1) with d 4 20, in order to obtain the missed ones between d + 20
and d + 48, we decrease u by 2, r by 7 and increase p and ¢ by 3 which increases the sum by 16. As
before, we can successively apply the move (i) to obtain the missing ones between d + 36 and d + 48.
However, for the small values of r, 18 of the missing even numbers cannot be obtained because of the
restriction g < r in each step. We have realized that 12 of these 18 missing numbers can be produced
by the application of the move (i) successively at the states (2,3,r — 7,8, 1, 1) with the sum d + 38.
Lastly, one can see that the remaining sums 520, 558, 714, 766, 820, 876 can be obtained by the states
(5,6,8,1,2,1), (4,6,10,1,2,1), (5,7,10,1,2,1), (5,7,11,1,2,1), (5,7,12,1,2,1), (5,7,13, 1,2, 1).

Up to now we have proved that any overtwisted structure with d3 + % > 431 (except 461) can be obtained
by (I-I-I) splicing. Note that for the multilinks (IT), the supported contact structures have d3 + % =2qg+2
whenever u = 2. Therefore the even values of d3 + % which are between 6 and 431 can be obtained by
the multilinks of type (II). Via computer assistance we find that the ones with all the other smaller d3’s
(except 4,5,9,11,17,19,25,37,47,61,79, 95, 109) are obtained via splicings as shown in Table 1 (note
that usually there is more than one way to construct each case; here we give single samples).

Appendix A Intersection matrices

Here, we give the intersection matrices of the 4-manifolds that we have constructed in Section 5, in the
bases we presented there.

Let J, and f,, be the matrices

21 0 - 0 2 1.0 - 0
1 2 -1 0 12 1 0

=l 0-1 . ol - =0 1" - 0
0 e 2 0 e 21
0 - 0 -1 2} 0 -0 1-2)
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Then the intersection matrices for (I), (I) and (III) are

O1=

The intersection matrices for the 4-manifolds obtained for the spliced graph multilinks (I-I) and (I-I-I) are
respectively as follows; herea = —1ifg=p+landa=0forg>p+1;b=—1ifr =g+ 1 and

—1

b=0forr>qg+1:

Q=

0

Jg—p-1

[am—

-2
, Om=

1399

1 0 0
1 -2 0 -1
0 0-2-1
0—-1-1-1

Ja—p-1

QI-I-I =

Jr—q—l

Finally here is the intersection matrix for the 4-manifold obtained for the spliced graph multilink (III-I);
herea =—1if p=4anda =0 for p > 4:

Q -1 =

Jp—1
—1
1
Jp—a
1
-2 -1
—1]1 0 a
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Appendix B Determinant, signature and ¢? computation

Here, we give detailed calculations for the results about the intersection matrices we used in Section 5.

For practical reference we summarize these results in Table 2.

B.1 The matrix Q;

First we compute the diagonalization of the intersection matrix Qp above. Consider the lower triangular
matrix S, with its ij entry (i > j) being equal to j/i. It can be easily seen that J, = S, Dy, S,? and J, =

Sn (—Dn)S,T where D, = diag(2, %, ey ”nll) It follows that det J, =n + 1 and det J, = (=1)"(n +1).

Thus we see that Q1 = SDST where

3 3 —1 1
D=diag(—2,——,...,—L,2,—,---,p—,—)
2 p—1 2 p—2 p(p—1)
and (

-1

S = 1

k_l e, —p=1_p=2 1 |

p 4 p—1 p—1

We conclude that o(Q;) = 0 and det Q; = (—1)?71.

Similarly, signatures and determinants of the intersection matrices for (II) and (III) can be calculated as
given in Table 2.

B.2 The matrix Qy;

As for the intersection matrix Qpy above for the splicing (I-I), we first show that det Qrj = (—1)97!.
Then we compute the signature and ¢2.

o det c?
o 0 (=P~ 4u’p(p—1)
On q 1 (Qu—1)*q
QIII —2 —l 6(2M + 1)2

Ou | 0 (D" 4u®p(p—1)+8uvg(p—1)+4v3q(g—1)
Or11 0 (=191 4u?p(p—1)+4v2q(g—1)+4w?r(r—1)+8uvg(p—1)+8uwr(p—1)+8vwr(g—1)
Ot 0 1 8u? + 24v2 + 32uv + 8u + 8v

Table 2: Signatures and determinants of the intersection matrices and the corresponding ¢2.
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Let J, (respectively J,') be the matrix obtained by removing the last (respectively the first) column of
the matrix Jj,.

We assume that ¢ > p + 1, ie a = 0 in Qyy; it can be shown that the results are the same in the case
g = p + 1. Now we calculate det Qp via its last row. We observe that it is equal to (—1)?~! times the
sum of the determinants

1 1
1 1
J! Jg—p—1
qg—p—1 q—p
1 + 1
-1 -1
11 2 1|1 2

Now we move the last column of each matrix above to the positions of the removed columns, ie in the first
matrix we move the (2¢—3)™ column to the (¢—3)™ position and in the second matrix to the (g—2)"
position. These row exchanges multiply the determinants by (—1)(24=374+3) and (—1)24—3-4+2),

/
I =det J,_1, =—detJ,—1 = (—1)"n,
1 T
Jn

det Qrp = (D27 ((=1)?  det J,_p-det J)_, - Jg—1+ (=1 det Jpp-det J)” ,_-det g1
+(=1)?-2-det Jp_p-det J,_, ;-detJy_1)
+ (=D (=) det J)_p-det Jy—p—1-J) 1 +(—1)-det Jp_p-det ), -detJ]
+ (=171 2 det Jp_p-det Jy_p—q-det J] ;)

respectively. Since

we have

= (=D)7q(g-2)~ ()% (g1
= (=D
Now we compute the signature of Q. This matrix is of the form
[+t ]
B| C
where A, B and C are (2g —4) x (2q —4), 2 x (29 —4) and 2 x 2 symmetric matrices respectively. Let
S1 and S, be the orthogonal matrices that diagonalize 4 and C — BA™! BT respectively. Define

G S1 0
| =S,BATLS, |
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It can be easily seen that

sgsT — S1AST | 0
0 |$2(C—BA71BT)ST |

Hence
o(Qr) =0 (SOL1ST) =0 (5148T) +0(S(C — BA™IBT)ST)

= 0(A)+0(C — BA7'BT).

We know that J,, and J,, are diagonalizable and are positive definite and negative definite respectively.
Therefore, A has (p—2)+ (¢ — p—1) = g—3 positive and g — 1 negative eigenvalues. Moreover it is easy
to observe that C — BA~! BT is positive definite, hence has 2 positive eigenvalues. Thus o (Q1.1) = 0.

Now we compute ¢2. As we have observed, the basis of H,(W;Z) given in Section 5.1, ¢(W) evaluates
onasw = (0,...,—2u,—2v)T. Hence, in order to calculate c2, it is sufficient to calculate the inverse of
the last 2 x 2 block of Qp1. Let D denote this matrix and d;; be its (7, j) entry. We claim

B cofacqi
~ det Qup

11 =pp—1), dia=dy=q(p—-1), dan=q(g—1).

To prove these we compute the cofactors explicitly. First,

Jqg—p—1
cofacy] = a-p

1/-1 0
= (—1)4(=1)7 " det Jp_o-det J]_,_-det Jy_1+(—1)7(=1)?"2 det Jp_p-det Jy_p—q-det J_,
= (=1)2q(p—1)(g—p—-D+(=D?" (=D (p—1)(g—p)
= (D)7 p(p—D).

The following determinants are evaluated by induction:

"
n

Jn = (—l)zfn_l =1 and

5
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Therefore,

‘]1;—2 Jp—2

cofaciz = (—=1)7~! Jg—p—1 +(=D? Jg=p—1

=0+ (—DP(=1)?" (=12 g(p—1)

= (=D?q(p-1),
1
1
cofacyy = Ja=p—1
111 2

= (=D N (=D det J,_,-det Jy_p_1-det Ty
+ (=D)P(=1)P" " det Jp 5 -det J]_, | -det g1 +2detJ, 5 -det Jy—p_1-det Sy
= (=D q(g - D).

As a result, we conclude that

c2(W) = (—2u, —2v) (2((;):3 ZES:B) (—2u, —2v)T =4u’p(p—1)+8uvg(p—1)+4v3q(g—1).

B.3 The matrix Q.

Now we consider the splicing (I-I-I) and the associated intersection matrix Q.11 given in Appendix A. We
omit the calculations of the cases when a and b are nonzero since they give the same results. Calculating
the determinant of the intersection matrix with a = b = 0 with respect to its last three rows as in the
previous example we have

det Qi = (=) "'r(r—g—1)(@g-2)+(=1)"r(r—q-2)(g—1)=-2(-1)""'r(r—g—1)(g—1)
+(=D)"(r=)(r—g)(q—2)+ ()" (r—1)(r—qg—1)(g—1)-2(-1)" (r—1)(r—q)(g—1)
=1y,
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Moreover ¢(W) evaluates on the given basis of Hy(W;Z) as w = (0, ..., —2u, —2v, —2y)T. In order
to calculate ¢2, it is sufficient to calculate the inverse of the last 3 x 3 block D of O111. We have

pip—1 q(p—1) r(p—1)
D=\q(p—-1) qlg—1) r(g—1)
r(p=1) r(g=1 r(r—1)

‘We see that

Jo—p-1

cofacy; = J .
r—q—

1[—-1 0

which can be calculated with respect to the last two rows, yielding
cofacyy = det Jp—»-det J,;_p_l -det Jr/_q_1 -det J,—1 +det Jp_p-det J,— p—-det J,”Lq_l det J,_q
—2det Jpp-det Jy_p_y-det ], y-detJ,_i+detJp 5-detJ] , |-detJp_q -detJ]
+det Jp_p-det Jg—p_1-detJ)  -det ) —2detJp 5-detJy_p 1-detJp_g_1-detJ]
=D (p=D@-r+D+ED" 0 =D(p-9)(p—7)
= (=) p(p-1).

Meanwhile,

Ja—p-1

cofacy, = 7 1
r—q—
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which can be calculated with respect to the last two rows, yielding
cofacyy =det J;_, -det Jy_p—1-detJ]_, | -detJ,_j +detJp_p-detJ] , | -detJ]_, ,-detJ,_;
—2det Jp_p-det Jy_p_1-detJ/_, | -detJp_y +detJ)_,-detJg_p_y-detJp_q_1-detJ/ |
+detJpo-detJ) , ;-detJr_gy-det ) | —2detJp 5 detJy_p_y-det g y-detJ] |
==D"q((p=2@-p)+(P-Dg-p-1)=2(p=D(g—p) = (=1)"""q(g - D).
Similarly,

Jp—2
1
1
Jg—p-1
1
_ 1
cofacz3 = Jr—q1 ,
jr—l

1 1 2

1 1 2

which can be calculated with respect to the last two rows, yielding
cofacsz =det J,_,-detJ,_, -detJ,_4; -det Jr—1 +det J,_ - det JyL 1 -det gy - det Jrq
—2det Jp_5 - det J;_p_l -det Jy_g—1 - det Jr_1 + det J1;—2 -det J,—p—1 -det J,”_q_1 -det J,_;
+detJpo-detJ) , -detJ , y-det ],y —2detJp -detJy_p_y-detJ) ,  -det],_
+2detJ)_,-detJy_p_y-detJy_g_y-detJ,_y +2det Jp_p-detJ) , | -detJ,_q_1-detJ,_;
+ddet J,_p-det Jy—p—y -det J,_g—; -det Jr—
=(=D)""r(r-1).
Note also that

_ 1 1
w= g =
which follows by induction. Thus
Jp—2
1
1
/!
Tg-p-1
cofacyy = (—1) "1 (=1)77!
Jlf—q—l
1
R —1
Jr—l
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Jp—a
1
1
Jg—p-1
+H=DH =D
‘,r//iq—l
jr—l
Jp—2
1
1
1
Jq—P—l
+ (=D =D
Jr—q—l
v
Jp—a
1
1
Jg—p-1
+ (=D (=17
‘](;Ifrfl
1
~ —1
i,

=D -DE—g=D+0+ (=) (= D(p-Dr—g) +0=—~(=1)"""q(p-1).

Similarly,

Jp—2

1

1
Ja—p-1 |
" _ 1

coraciz = Jr—q—l s
jr—l

1 1 2

1|-1 2
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which can be calculated with respect to the last two rows, yielding

cofacys = —(—1)" "' (=1)? " det Jp—»-det J,_, -detJ,_, _;-detJ,_;
+ (=D =)P det Jp o - det Ty poy -det T,y -det g
— (=17 (=1)?2det Jp5 -det Jy_p_y -det J}_,_;-det Jr_;
— (=)' (=1)P " det Jpp-det J,_, | -detJ,_g_1-det ],
+ (1) (=1)P det Jp—p - det Jg—p—y -det ), -det ]|

— (=) "N (=1)?2det Jp—p -det Jy—p—1 -det Jp_g—q -det J_,
+2(=D)T N (=1)P" det Jp 5 -det J),_, | -detJ,_g—1-det
+2(=D)?(=1)? " det Jp_o-det g p—1-det J/.__-det Jp_

+ 4det J,—o -det J,— p—q -det Jy—y—1 -det Jr—;

=(=D)""r(p-1).

Finally,
1
1
Jg—p—1
1
cofaco3 = !
23 = Jr—g1
jr—l

1 1 2

1]—1 0

which can be calculated with respect to the last two rows, yielding

cofacpsz = (—1)" " 1(—=1)77! det JI;_Z -det Jg—p—1 - det .7/,_q_1 -det J,_q
+ (=)= det Jp—p -det J)_, y-det T, -detJr
—(=1)""N (=D "2det Jp 5 -det Jy_p—1 -det T,y -det S,y
+ (D) =D det J)_, -det Jg—p—q -det T, g1 -det J)_|
+ ()N =D det Jpp -det J)_, det g1 -det J]
—(=D)" N (=172 det Jp_p-det Jy— p_1-det Jp_g_q-det J/_,
=—(=D"""r@g-1).
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As a result, we conclude that

p(p—=1) q(p—=1) r(p—1)

(W) = (=2u,—2v,-2y) | g(p—1) q(g—1) r(g—1) | (—2u,—2v,-2y)"

rip—=1) rig—=1) r(r—1)
=d4u’p(p—1)+402q(g— 1) +4y%r(r — 1) + 8uvg(p — 1) + 8uyr(p — 1) + 8vyr(g — 1).
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Fully augmented links in the thickened torus

ALICE KwON

We study the geometry of fully augmented link complements in the thickened torus and describe their
geometric properties, generalizing the study of fully augmented links in S3. We classify which fully
augmented links in the thickened torus are hyperbolic, and show that their complements in the thickened
torus decompose into ideal right-angled torihedra. We also study volume density of fully augmented
links in S, defined to be the ratio of its volume and the number of augmentations. We prove the volume
density conjecture for fully augmented links, which states that the volume density of a sequence of fully
augmented links in S3 which diagrammatically converges to a biperiodic link converges to the volume
density of that biperiodic link. Furthermore, we show that the complement of a sequence of these links
approaches the complement of the biperiodic link as a geometric limit.

57K10, 57K32, 57TM50

1 Introduction

We study a class of links called fully augmented links. Fully augmented links in S* are obtained from
diagrams of links in S3 as follows. Let K be a link in S with a given planar link diagram D(K). We
encircle each twist region (a maximal string of bigons) of D(K) with a single unknotted component,
called a crossing circle. The complement of the resulting link is homeomorphic to the link obtained by
removing all full-twists, ie pairs of crossings from each twist region. Therefore a diagram of the fully
augmented link contains a finite number of crossing circles, each encircling two strands of the link. These
crossing circles are perpendicular to the projection plane and the other link components are embedded on
the projection plane, except possibly for a finite number of single crossings, called half-twists, which are
adjacent to the crossing circles; see Figure 1.

The geometry of fully augmented link complements in S can be explicitly described in terms of an ideal
right-angled polyhedral decomposition which is closely related to the link diagram. This geometry has
been studied in detail by Adams [2], Agol and D Thurston [15, Appendix], Purcell [17] and Chesebro,
Deblois and Wilton [12]. In [11] Champanerkar, Kofman and Purcell studied the geometry of alternating
link complements in the thickened torus and described their decompositions into torihedra, which are
toroidal analogs of polyhedra. We combine the methods used to study fully augmented links in S and
alternating links in the thickened torus to study the geometry of fully augmented link complements in the
thickened torus. We generalize many geometric properties of fully augmented links in S* to those in the
thickened torus 72 x I, where I = (-1, 1).

© 2025 Work by the US Government, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative
Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.


http://msp.org
http://dx.doi.org/10.2140/agt.2025.25.1411
http://www.ams.org/mathscinet/search/mscdoc.html?code=57K10, 57K32, 57M50
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/

1412 Alice Kwon

A biperiodic link £ is an infinite link in R? x I with a projection on R? x {0} which is invariant under an
action of a two-dimensional lattice A by translations. The quotient L = £/A is a link in 7% x I with a
projection on 7% x {0}. This projection on T2 x {0} is the link diagram of L.

Volume density of alink K was first introduced by Champanerkar, Kofman and Purcell in [10] as the ratio of
its hyperbolic volume, vol(K), and its crossing number, ¢(K). In [10; 11] they studied volume densities of
sequences of alternating links in '3 which diagrammatically converge to two specific biperiodic links called
the square weave and the triaxial link. They proved that volume density of such a sequence of alternating
links converges to that of the corresponding biperiodic link. In general, they conjectured the following:

Conjecture 1.1 (volume density conjecture [11]) Let £ be any biperiodic alternating link with alternat-
ing quotient link L. Let {K,} be a sequence of alternating hyperbolic links which Fglner converges to L.
Then

i vol(K,) _ vol((T?xI)—L)
oo oK) @)

Definition 1.2 A fully augmented biperiodic link L is a fully augmented infinite link in R? x I with a
projection on R? x {0} which is invariant under an action of a two-dimensional lattice A by translations.
The quotient L = £/A is a fully augmented link in 72 x I with a projection on 72 x {0}.

We define the volume density of a fully augmented link in S3 (with or without half-twists) to be the ratio
of its volume and the number of augmentations. We similarly define volume density of fully augmented
links in the thickened torus. Using the geometry of fully augmented link complements in S3 studied
previously, and our results on the geometry of fully augmented link complements in the thickened torus,
we prove the volume density conjecture for fully augmented links.

In Section 2 we classify hyperbolic fully augmented links in the thickened torus.

Theorem 2.11 Let K be a link in T? x I with a weakly prime, twist-reduced cellular link diagram D.
Let L be a link obtained by fully augmenting D. Then T? x I — L decomposes into two isometric totally
geodesic right-angled torihedra, and hence L is hyperbolic.

Remark 1.3 Augmented link diagrams are link diagrams obtained by adding crossing circles to some of
the twist sites of a given link diagram, and are different from fully augmented links. Kwon and Tham [14]
proved that augmented links in the thickened torus are hyperbolic. A generalization to thickened surfaces
was also proved by Adams, Capovilla-Searle, D Li, L Q Li, McErlean, Simons, Stewart and Wang [4].
Theorem 2.11 gives a much stronger result for fully augmented links, as it describes the right-angled
geometry of the complement and uses very different proof techniques than [4; 14]. The decomposition
of the link L in Theorem 2.11 into right-angled torihedra (see Definition 2.6) is very important for
Theorem 3.20, which investigates limit points of volume densities of fully augmented links.

Algebraic € Geometric Topology, Volume 25 (2025)



Fully augmented links in the thickened torus 1413

Figure 1: Left: link diagram of K. Center left: crossing circles added to each twist region. Center
right: a fully augmented link diagram with all full-twists removed. Right: fully augmented link
diagram with no half-twists.

In Section 3 we discuss volume density and the volume density spectrum of fully augmented links in S3,
and give many examples. In Section 3.2 we define Fglner convergence for fully augmented links and
prove the volume density conjecture for fully augmented links. Fglner convergence for links was first
defined by Champanerkar, Kofman and Purcell [10] for alternating links; we adapt the definition of Fglner
convergence for sequences of fully augmented links.

Theorem 3.20 Let L be a biperiodic fully augmented link with quotient link L. Let {K,} be a sequence
of hyperbolic fully augmented links in S3 such that K, Fglner converges to £ geometrically. Then
i vol(K,) vol((T?xI)—1L)
im = ,
n—co a(Kp) a(L)

where a(K) denotes the number of augmentations of a fully augmented link K.

As an application in Corollary 3.23 we show that the endpoint 10vy of the volume density spectrum of fully
augmented links in S3 is a limit point, by constructing a sequence of hyperbolic fully augmented links in
S3 which Fglner converge everywhere to a fully augmented biperiodic link whose volume density is 10v;.

Acknowledgments I would like to thank my advisor Abhijit Champanerkar for guidance in this paper. I
would also like to thank Ilya Kofman and Jessica Purcell for helpful conversations in regards to this project.

2 Hyperbolicity of fully augmented links in the thickened torus and volume
bounds

To define fully augmented links in the thickened torus we first need to define twist-reduced diagrams for
links in 72 x I. Howie and Purcell defined twist-reduced diagrams for links in thickened surfaces in [13].
However for links in the thickened torus we can also define twist-reduced diagrams using the biperiodic

link diagram in R2:

Definition 2.1 A twist region in the biperiodic link diagram £ is a maximal string of bigons, or a single
crossing. A twist region in the link diagram L = £/ A is a quotient of a twist region in L.
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Figure 2: Twist-reduced diagram.

A biperiodic link £ is called twist-reduced if for any simple closed curve on the plane that intersects £
transversely in four points, with two points adjacent to one crossing and the other two points adjacent to
another crossing, the simple closed curve bounds a subdiagram consisting of a (possibly empty) collection
of bigons strung end-to-end between these crossings; see Figure 2. We say L is twist-reduced if it is the
quotient of a twist-reduced biperiodic link.

Definition 2.2 A fully augmented link diagram in T? x I is a diagram of a link L that is obtained from
a twist-reduced diagram K in T2 x I as follows: augment every twist region with a circle component,
called a crossing circle, and get rid of all full-twists; see Figure 3. A fully augmented link in T* x I is a
link which has a fully augmented link diagram in 72 x I.

Remark 2.3 For fully augmented links in S, depending on the parity of the number of crossings in
a twist region, the fully augmented link may or may not have a half-twist at that crossing circle; see
Figure 1, center right. Similarly, depending on the parity of the number of crossings at a twist region, a
fully augmented link in the thickened torus may or may not have a half-twist at that crossing circle.

Definition 2.4 A graph G = (V, E) on the torus is cellular if its complement is a collection of open disks.

Torihedra were first defined in [11] and play the role of polyhedra in polyhedral decompositions of link
compliments in S3, eg it is proved in [11] that a complement of a link in the thickened torus decomposes
into torihedra. Here we recall the definition of a torihedron.

2.1 Torihedral decomposition

Definition 2.5 A forihedron is a cone on the torus, 72 x [0, 1]/(T'? x {1}), with a cellular graph G on
T2 x{0}. The edges and faces of G are called the edges and faces of the torihedron. An ideal torihedron

Figure 3: Left: a fully augmented triaxial link. Right: a fully augmented link on the square weave.
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Figure 4: Left: a fundamental domain for a fully augmented square weave, L. Center left: disks
cut in half at each crossing circle. Center right: sliced and flattened half-disks at each crossing
circle. Right: collapsing the strands of the link and parts of the augmented circles (shown in bold)
to ideal points gives the bowtie graph I'r,. The disks become shaded bowties and the white regions
become hexagons.

7

is a torihedron with the vertices of G and the vertex 72 x {1} removed. Hence, an ideal torihedron is
homeomorphic to 7% x [0, 1) with a finite set of points (ideal vertices) removed from 7% x {0}. The graph
G is called the graph of the torihedron.

Definition 2.6 An angled torihedron is a torihedron with an angle assignment on each edge of the graph
of the torihedron. An assignment of the angle %71 on each edge is called a right-angled torihedron.

Proposition 2.7 Let L be a fully augmented link in T? x I. Then there is a decomposition of the link
complement (T2 x I) — L into two combinatorially isomorphic torihedra such that

(i) the faces of each torihedron can be checkerboard colored so that the shaded faces are triangular and
arise from the bowties corresponding to crossing circles,

(ii) the graph of each torihedron is 4-valent.

Proof We follow the cut-slice-flatten construction described in [15]. Let L be a fully augmented link in
T2 x I. We begin by assuming that there are no half-twists, the crossing circles are lateral to T2 x {0}
and the components of L that are not crossing circles lie flat on 72 x {0}. There are twice-punctured
disks bounded by the crossing circles which are perpendicular to the projection plane.

(i) Cut T2 x I along the projection surface 72 x {0} into two pieces. This cuts each of the twice-
punctured disks bounded by a crossing circle in half; see Figure 4, center left.

(i) For each of the two pieces resulting from (i), slice the middle of the halves of twice-punctured
disks and flatten the half-disks out; see Figure 4, center right.
(iii)) Collapse strands of the link and parts of the augmented circles to ideal vertices in each of the two

pieces; see Figure 4, right.

It follows from (i)—(iii) that each piece of the decomposition is homeomorphic to 72 x [0, 1), with the
same graph on T2 x {0} with vertices deleted. Hence (7% x I) — L decomposes into two identical ideal
torihedra.

Algebraic € Geometric Topology, Volume 25 (2025)
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Figure 5: The gluing of the torihedra when a half-twist is present (disk B) and when a half-twist
is absent (disk A). This figure, adapted from [18], is for links in .S 3 but since this is a local move
the same gluing works for links in 72 x 1.

After (ii), the cut-sliced-flattened half-disks become a hexagon with an edge in the middle corresponding
to the strand of half of a crossing circle. Upon collapsing the crossing circle this becomes a bowtie; see
Figure 4, center right and far right. Each vertex of the graph is 4-valent since it is shared by two triangles
of either two different bowties or one bowtie. Again by construction, each edge is shared by a triangle of
a bowtie and a polygon that does not come from a bowtie; see Figure 4, right. Hence we can shade each
triangle of the bowtie to get a checkerboard coloring on the graph of the torihedron such that the shaded
faces are bowties.

The two torihedra are glued together as follows: the white faces are glued to the corresponding white
faces, and the bowties are glued as shown in Figure 6, left.

In the case when there is a half-twist at a crossing circle, we split the whole twice-punctured disk into
two copies, and flip one of the disks to remove the half-twist. This only affects the gluing of faces of
the torihedra. Hence if there are half-twists, then we get the same torihedra but with a different gluing
pattern on the bowties as shown in Figure 5 and Figure 6, right. |

Definition 2.8 For a fully augmented link L in the thickened torus, the decomposition of 72 x I — L
described above is called the bowtie torihedral decomposition of L. We call the graph of the torihedra
the bowtie graph of L and denote it by I'z.

Lemma 2.9 Let L be a hyperbolic fully augmented link in T2 x I. The following surfaces are embedded
totally geodesic surfaces in the hyperbolic structure on the link complement:

Figure 6: Left: gluing information on the edges of the bowtie without half-twists. Right: gluing
information on the edges of the bowtie a with half-twist.

(i) each twice-punctured disk bounded by a crossing circle,

(i1) each connected component of the projection surface.

Algebraic € Geometric Topology, Volume 25 (2025)



Fully augmented links in the thickened torus 1417

Figure 7: Prime diagram.

Proof (i) The disk E bounded by a crossing circle is punctured by two arcs of the link diagram lying on
the projection plane. Adams [1] showed that any incompressible twice-punctured disk properly embedded
in a hyperbolic 3-manifold is totally geodesic. Hence it suffices to show that E is incompressible. Let
L be a hyperbolic fully augmented link in 72 x I. Since 72 x I ~ S* — H, where H is the Hopf link,
L U H is a hyperbolic link in S3.

Suppose there is a compressing disk D with dD C E. Since dD is an essential closed curve on E, it
must encircle one or two punctures of E. Suppose it encircles only one puncture. This means that the
union of D and the disk bounded by 3D inside the closure of E forms a sphere in S3 met by the link
exactly once. This is a contradiction to the generalized Jordan curve theorem. Hence 0D must bound a
twice-punctured disk £’ on E. This means (E — E’)U D is a boundary-compressing disk for the crossing
circle, contradicting the boundary irreducibility of S3 — (L U H).

(i) Notice that the reflection through the projection surface (72 x {0}) preserves the link complement,
fixing the plane pointwise. Then it is a consequence of Mostow—Prasad rigidity that such a surface must
be totally geodesic; see [17, Lemma 2.1]. |

2.2 Hyperbolicity

Definition 2.10 Let £ be a biperiodic link with diagram D(L). We say D(L) is prime if whenever a
disk embedded in R? x {0} meets D(L) transversely in exactly two edges, then the disk contains a simple
edge of the diagram and no crossings; see Figure 7.

A diagram of a link L in 7% x I, denoted by D(L), is weakly prime if D(L) is a quotient of a prime
biperiodic link diagram D(£) in R? x {0}.

Theorem 2.11 Let K be a link in T? x I with a weakly prime twist-reduced cellular link diagram D.
Let L be a link obtained by fully augmenting D. Then T? x I — L decomposes into two isometric totally
geodesic right-angled torihedra, and hence L is hyperbolic.

The proof of Theorem 2.11 relies on a result about the existence of certain circle patterns on the torus due
to Bobenko and Springborn [7]. We use similar ideas from [11] to prove Theorem 2.11

Theorem 2.12 [7] Suppose G is a 4-valent graph on the torus T?, and 6 € (0, 27)E is a function on
edges of G that sums to 27 around each vertex. Let G* denote the dual graph of G. Then there exists
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a circle pattern on T? with circles circumscribing faces of G (after isotopy of G) and having exterior
intersection angles 0 if and only if the following condition is satisfied:

Suppose we cut the torus along a subset of edges of G*, obtaining one or more pieces. For any piece that
is a disk, the sum of 6 over the edges in its boundary must be at least 27, with equality if and only if the
piece consists of only one face of G* (only one vertex of G).

The circle pattern on the torus is uniquely determined up to similarity.

Proof of Theorem 2.11 Decompose (7> x I) — L into two torihedra using Proposition 2.7. Let I'z
be the bowtie graph on 7% x {0}. Assign angles 0(e) = %n for every edge e in I'z. We now verify the
condition of Theorem 2.12. This will prove the existence of an orthogonal circle pattern (circle pattern
whose angle at the intersection of any two circles is orthogonal) circumscribing the faces of I'y.

Let C be a loop of edges of I'/" enclosing a disk D. Suppose C intersects n edges of I'; transversely.
Let V denote the number of vertices of I’y that lie in D, and let E denote the number of edges of I’z
inside D disjoint from C. Because the vertices of ', are 4-valent and since the edges inside D which
are disjoint from C get counted twice for each of its end vertices, n + 2E = 4V. This implies 7 is even.
Since K is weakly prime and C is made up of edges dual to I'y, this implies #n > 2. Since 7 is even, n > 4.
Hence the sum of the angles for all edges of C must be at least 2.

We now show that this is an equality if and only if C consists of one face of I'*, ie C encloses only one
vertex. Suppose that ), 0(e) > 2. Since 6(e) = %n for every e € 'z, and n is even, n > 6. Moreover

n>6 = 4V -2EF>6 = 2V—-FE>3 = V > 2.
Hence C encloses more than one vertex.
Conversely, let ), 0(e) = 2. This implies n = 4.

Let the edges of C be e; for 0 <i < 3, with ¢; incident to vertices v; and v; 41, and vg = v4. Let the
faces dual to v; be Fy;. Without loss of generality, let F, be a shaded triangular face. Since I’y is
checkerboard colored, I, is also a shaded triangular face.

Suppose Fy, N Fy, = &. Then the edge e, must enter a white face F,; which has empty intersection
with Fy,; see Figure 8, left.

Since the bowties correspond to crossing circles (see Figure 9, left) the loop C gives a loop which
intersects L. At the vertex vg, which is in the shaded bowtie, at least one of the edges incident to vy has to
intersect L. If only one edge at vq intersects L, since C bounds a disk, only one edge at v, intersects L,
giving the case shown in Figure 9, center. Similarly if both edges incident to v, intersect L, since C
bounds a disk, then the same is true for both edges incident at v,, giving the case shown in Figure 9, right.
If C intersects two strands of L as in Figure 9, center, since C bounds a disk, this contradicts the weakly
prime condition of K. If C intersects two strands on each side as in Figure 9, right, this will contradict
the twist-reduced condition on K.
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Figure 8: Left: when n > 5 and C closes with > 5 edges. Right: when n = 4 and C closes with four edges.

N

Therefore Fy, N Fy, 7# ¢. Since both faces are triangles, they can only intersect in a vertex. This implies
that C encloses a single vertex; see Figure 8, right.

Now, since we showed that I'7, is a graph on the torus which satisfies the conditions of Theorem 2.12,
there exists an orthogonal circle pattern on the torus with circles circumscribing the faces of ['z. Since a
white face of the decomposition intersects any other white face only at ideal vertices, the circles which
circumscribe the white faces create a circle packing, where the points of tangency are those corresponding
to the associated ideal vertices. Since I'7, is 4-valent and every edge has been assigned an angle of %J‘[,
the circles of the shaded faces meet orthogonally.

ey ———
......

4

~
.

.

pmmm—,

Semmmm-

o
‘N

........................

Figure 9: Left: the crossing circle splits into a bowtie. Center: C is in red. C intersects the
original link in two points and hence must be a trivial edge. Right: C is in red. C can intersect
the original link at four points and therefore must bound a twist region on one side.
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Lifting the circle pattern to the universal cover of the torus defines an orthogonal biperiodic circle pattern
on the plane. Considering the plane z = 0 as a part of the boundary of H?, this circle pattern defines
a right-angled biperiodic ideal hyperbolic polyhedron in H3. The torihedron of the decomposition of
(T?x I)— L is the quotient of H? by Z x Z which is now realized as a right-angled hyperbolic torihedron.
It follows from [13, Theorem 1.1] that (72 x 1) — L is hyperbolic. a

Remark 2.13 Adams [2] proved that fully augmented link complements in S3 are hyperbolic. We have
proved an analogous result for fully augmented link complements in 7% x I. Our method of finding an
orthogonal circle pattern which circumscribed the faces of the bowtie graph can also be applied to the
case of fully augmented links in S3. In this we have to use Andreev’s theorem [19] to ensure a totally
geodesic right-angled polyhedra.

2.3 Volume bounds

We show that a hyperbolic fully augmented link with ¢ crossings in the thickened torus has an upper
volume bound of 10cv. In the next section we show volume density convergence of fully augmented
links. This means if we can find a link in the thickened torus whose volume is exactly 10cv the
corresponding biperiodic link will have volume density 10v. We will use this to show that an endpoint
of the volume density spectrum of fully augmented links can be obtained as a limit.

Proposition 2.14 Let L be a hyperbolic fully augmented link with ¢ crossing circles. Then
2¢CVoet < vol(T2 X I — L) < 10¢cvy,

where voor = 3.66386. .. is the volume of a regular ideal octahedron and v = 1.01494 . . . is the volume
of a regular ideal tetrahedron.

Proof We will first prove the lower bound. By work of Adams [2], the volume of the complement of L
in 72 x I agrees with that of the fully augmented link with no half-twists. This means a lower volume
bound for the complement of L in T2 x I with half-twists will be a lower volume bound of the fully
augmented link with no half-twists. Hence we will assume L has no half-twists and obtain a lower bound
for T2 x 1 — L.

Cut T2 x I — L along the reflection plane 7' x {0}, dividing it into two isometric hyperbolic manifolds.
The boundary of each of these consists of the regions of L on the projection surface with punctures for
the crossing circles. By Lemma 2.9 these regions are geodesic. Hence cutting along the projection surface
divides T2 x I — L into isometric hyperbolic manifolds with totally geodesic boundary.

Miyamoto showed that if N is a hyperbolic 3-manifold with totally geodesic boundary, then vol(V)
> —Voet X (V) [16], with equality exactly when N decomposes into regular ideal octahedra. In our case,
the manifold N consists of two copies of 7% x [0, 1) with half-annuli removed for half the crossing circles.
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For every half a crossing circle removed, we are removing one edge and two vertices. Hence for each
crossing circle removed the Euler characteristic changes by —1. Since there are ¢ crossing circles, the
Euler characteristic would be —c¢ for each half-cut 72 x [0, 1). The lower bound now follows.

We now prove the upper bound. The torihedral decomposition of the link complement gives a decom-
position into two identical ideal torihedra. Every triangular shaded face which comes from a bowtie
corresponding to a crossing circle gives a tetrahedron when coned to the ideal vertex 72 x {1} on each
torihedra. Since there are ¢ crossing circles, this gives ¢ bowties; hence this gives 2¢ triangular shaded
faces, and hence 4c¢ tetrahedra. The cones on the white faces in each torihedra can be glued to make
bipyramids on the white faces. These bipyramids can then be stellated into tetrahedra. Hence the number
of tetrahedra coming from stellated bipyramids equals the number of edges of all the white faces. Since
an edge of a white face is shared with an edge of a black triangle, this equals the number of edges of
the torihedral graph, which has 6¢ edges. Hence the bipyramids on the white faces decompose into 6¢
tetrahedra. Thus the total count of tetrahedra is 4c 4+ 6¢ = 10c. Since the volume of an ideal tetrahedron
is bounded by the volume of the regular ideal tetrahedron v, the upper bound now follows. |

Remark 2.15 In Proposition 3.7 below we show that our upper bound is sharp by showing that the fully
augmented square weave achieves the upper bound.

3 The volume density convergence conjecture

3.1 Volume density and its spectrum

In this section we discuss volume density of fully augmented links in S3, its spectrum and asymptotic
behavior. Champanerkar, Kofman and Purcell [10] defined volume density of a hyperbolic link in S3
as the ratio of the volume of the link complement to its crossing number, and studied the asymptotic
behavior of the volume density for sequences of alternating links which diagrammatically converge to a
biperiodic alternating link.

For a hyperbolic link L in S3, let vol(L) denote the hyperbolic volume of S3 — L. In this section we
assume that all links are hyperbolic.

Definition 3.1 Let L be a fully augmented link in S* with or without half-twists. The volume density of L
is defined to be the ratio of the volume of L and the number of augmentations, ie vol(L)/a(L) where
a(L) is the number of augmentations of the link L. We similarly define the volume density of a fully
augmented link in 7% x 1.

Remark 3.2 Adams [2] showed that the volume of an augmented link with a half-twist at the crossing
circle of the augmentation is equal to the volume without a half-twist. However, fully augmented links
with and without half-twists have different crossing numbers. Hence in our definition above we divide by
the number of augmentations rather than the number of crossings.
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Figure 10: Left: the fundamental domain of the square weave V. Center left: the fundamental
domain of the fully augmented square weave, denoted by Wy. Center right: the bowtie graph 'y,
of the square weave on the left. Right: a quotient of Wy with same volume as the triaxial link.
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Remark 3.3 For a fully augmented link without half-twists, the crossing number of the diagram is
4a(L). Thus the volume density of such a fully augmented link L is related to the volume density of L
as defined in [10] by a factor of 4.

Throughout this section and the next we consider fully augmented links without half-twists.

Example 3.4 The Borromean rings B has vol(B) = 2v, and a(L) = 2, and hence the volume density
vol(B)/a(B) equals voct.

Definition 3.5 The volume density spectrum of fully augmented links in S3 is defined as Saug =
{vol(L)/a(L) : L is a fully augmented link in S3}.

Proposition 3.6 The volume density spectrum Syyg is a subset of [Voct, 10Ve).

Proof Let L be a fully augmented link. Then by [17, Proposition 3.8] the volume of L is at least
2voct(@(L) —1). Since L is hyperbolic, a(L) > 2, which implies

vol(L) > Vet (L) B 2Voct - Uoct<1 B L) —_

a(L) a(L)  a(L) a(L)
Since the volume density of the Borromean rings is v, the lower bound is realized. Agol and D Thurston
[15, Appendix] showed that vol(L) < 10v(a(L)—1). Hence the volume density of L is at most 10v. O

We show below that 10v; occurs as a volume density of the fully augmented square weave. Let Wy
denote the fully augmented square weave as in Figure 10, center left.

vol(T? x I — W)
a(Wy)

Proposition 3.7 = 10V.

Proof A fourfold quotient of Wy as shown in Figure 10, right, was studied in [8]. The authors proved
that the volume of this link complement in the thickened torus is 10v¢. Hence Vol(T2 X I —Wyr) =400,
and its volume density is 10v. O
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Remark 3.8 The quotient of Wy as in Figure 10, right, has the same volume as that of a quotient of
a triaxial link which is not a fully augmented link; see Figure 3, left. However the two links are not
the same, as they have different numbers of cusps. The triaxial link has five cusps — three from each
link component in the thickened torus and two from each link component of the Hopf Link — whereas
the quotient of Wy in Figure 10, right, has four cusps —two from each component of the link in the
thickened torus (which includes the crossing circle) and two from each link component of the Hopf Link.

3.2 Fglner convergence

The volume density of the fully augmented square weave is 10v,;. We will prove below that 10v is
also a limit point of the S, by investigating the asymptotic behavior of volume density of a sequence of
fully augmented links in S* which diagrammatically converge to the biperiodic fully augmented square
weave, as defined below. We use the notion of Fglner convergence, which was first introduced in [10].
We begin by modifying its definition.

In [10] the authors used the Tait graph (checkerboard graph) of alternating links to define Fglner con-
vergence. We will use bowtie graphs to define Fglner convergence for fully augmented links; see
Definition 2.8 and [17, Proposition 2.2].

Definition 3.9 Let £ be a biperiodic fully augmented link. We will say that a sequence of fully augmented
links {K,} in S Fplner converges almost everywhere geometrically to £, denoted by K, SE, £, if the
respective bowtie graphs {I', } and I'; satisfy the following: there are subgraphs G, C I'g, such that

(i) G C Gpprsand Gy =T,

(i) limy—o0|0Gy|/|Gy| = 0, where | - | denotes the number of vertices and dG,, C I’z consists of the
vertices of G, that share an edge in Iz with a vertex not in G,

(iii) G, C Tz N(nA), where nA represents n? copies of the fundamental domain for the lattice A such
that L = L/A,

Remark 3.10 The number 3 appears in the denominator in the last condition for the definition of Fglner
convergence because the number of vertices of the bowtie polyhedron for K, equals three times the
number of augmentations. To see this, note that every bowtie shares two vertices with another bowtie
and hence contributes three vertices to the graph. Since each bowtie corresponds to a crossing circle, the
number of vertices of the graph is 3a(K).

Remark 3.11 Many fully augmented links can have the same bowtie graph. For example, a fully
augmented link with and without half-twists have the same bowtie graph but different gluing; see
Figures 11 and 12. Another example of this is when the bowtie graphs are same but with different pairing
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Figure 11: Left: the quotient of the square weave. Center left: Wy with half-twists at each
crossing circle. Center right and far right: the bowtie graph with blue (red) face bowtie of the top
torihedron being glued to a blue (red) face of the bottom torihedron

of triangles; see Figure 13 for an example of two links with same bowtie graphs but different pairings.
In our definition above, we are using only the polyhedral graphs but not the pairing information of the
bowties. Hence we call our Fglner convergence geometric. This has the advantage of having many more
sequences converging to a given biperiodic fully augmented link.

3.3 Volume density conjecture

Conjecture 3.12 (volume density conjecture) Let £ be any biperiodic alternating link with alternating
quotient link L. Let {K,} be a sequence of alternating hyperbolic links such that K, Fglner converges

to L. Then
i vol(K,) vol((T?xI)—1L)
im =

n>oo c(Kn) c(L)

Champanerkar, Kofman and Purcell proved this conjecture when L is the square weave [10] and the
triaxial link [9] by finding upper and lower bounds on vol(K},) such that for a sequence of alternating
links Kj £, £, these bounds are equal in the limit. One of the key tools in their proof is the use of
right-angled circle patterns. Using the right-angled decomposition of fully augmented link complements
in S3, we construct right-angled circle patterns, and use these to prove the volume density conjecture for
fully augmented links in S3.
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Figure 12: Left: the quotient of the square weave. Center left: Wy with no half-twists at each
crossing circle. Center right and far right: the bowtie graph with blue (red) face bowtie of the top
torihedron being glued to a blue (red) face of the bottom torihedron
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Figure 13: The fully augmented links above and below are two different links with the same
bowtie graph with different pairing information.

The idea is as follows: As described in [17], each hyperbolic fully augmented link complement in S can
be decomposed into two right-angled ideal polyhedra which are described by a right-angled circle pattern.
By Theorem 2.11 each torihedra of the bowtie torihedral decomposition is right-angled and described by
another right-angled circle pattern on the torus. The Z x Z lift of this circle pattern is the circle pattern
associated to £. We show below that when a sequence of fully augmented links K, converges to L,
K, S5 L, the circle pattern for K, converges to an infinite circle pattern for £. As a consequence we
obtain the volume density convergence.

In order to work with circle patterns and convergence of circle patterns, we recall the following definitions

from [5]:

Definition 3.13 A disk pattern is a collection of closed round disks in the plane such that no disk is the
Hausdorff limit of a sequence of distinct disks and such that the boundary of any disk is not contained in
the union of two other disks.

Definition 3.14 A simply connected disk pattern is a disk pattern in the plane such that the union of the
disks is simply connected.
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Figure 14: Left: S(d) N S(d’). Right: C(d).

Let D be a disk pattern in C. Let G(D) be the graph with a vertex for each disk and an edge between
any two vertices when the corresponding disks overlap. The graph G (D) inherits an embedding in the
plane from the disk pattern and we will identify G(D) with its plane embedding. A face of G(D) is an
unbounded component of the complement of G(D) in the plane. We can label the edges of G(D) with
the angles between the intersecting disks.

Definition 3.15 A disk pattern D is called an ideal disk pattern if the labels of edges of G(D) are in the
interval (0, %n] and the labels around each triangle or quadrilateral in G(D) sum to 7 or 27, respectively.

It is clear that ideal disk patterns in C correspond to ideal polyhedra in H3, with the disks corresponding
to the faces of the ideal polyhedron.

Definition 3.16 Let D and D’ be disk patterns. Give G(D) and G(D’) the path metric in which each
edge has length 1. For disks d in D and d’ in D’, we say (D, d) and (D', d’) agree to generation n if the
balls of radius n centered at vertices corresponding to d and d’ admit a graph isomorphism with labels
on edges preserved.

Definition 3.17 For a disk  in a disk pattern D, we let S(d) be the geodesic hyperplane in H? whose
boundary agrees with that of d. That is, S(d) is the Euclidean hemisphere in H?3 with boundary coinciding
with the boundary of d. For a disk pattern coming from a right-angled ideal polyhedron, the planes S(d)
form the boundary faces of the polyhedron. In this case, the disk pattern D is simply connected and ideal,
since it corresponds to an ideal polyhedron.

Similarly, for a disk d in D with intersecting neighboring disks d, . .., dp, the intersection S(d) NS (d;)
is a geodesic y; in H>. The geodesics y; fori = 1,...,m on S(d) bound an ideal polygon in H?. The
cone of this polygon to the point at infinity is denoted by C(d); see Figure 14.

Definition 3.18 A disk pattern D is said to be rigid if G(D) has only triangular and quadrilateral faces,
and each quadrilateral face has the property that the four corresponding disks of the disk pattern intersect
in exactly one point.
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Lemma 3.19 (Atkinson [5]) Let Do, be an infinite rigid disk pattern. Then there exists a bounded
sequence 0 < ¢; < b < oo converging to zero such that if D is a simply connected ideal rigid finite disk
pattern containing a disk d such that (Deo, dso) and (D, d) agree to generation [, then

[vol(C(d)) — vol(C(dwo))| < €;.
Note that the sequence {¢;} in above lemma only depends on Dx.

Theorem 3.20 (volume density conjecture for fully augmented links) Let £ be a biperiodic fully
augmented link with quotient link L. Let {K,} be a sequence of hyperbolic fully augmented links in S3.
Then

K, S5 7 — lim vol(Ky) _ vol((T? xI)— L)
n—>oo a(Ky) a(L)
Proof Let P be the bowtie torihedron with bowtie graph I'7, of L. Let Py, be the infinite polyhedron
in H3 which is the biperiodic lift of Py with its cone vertex taken to be co. Ps, can be seen to be made
up of Z? copies of an embedding of Py in H? with its cone vertex taken to be oo, glued according to the
biperiodic lift. Note that since the graph of Py is the bowtie graph I'y, of L, which is toroidal, the graph
of P is a biperiodic lift of I'z, and is isomorphic to the bowtie graph I’z coming from L. Let D, be the
infinite disk pattern coming from the infinite polyhedron Ps,. Since Py, is a right-angled torihedron, P
is also right-angled, and hence D is a right-angled disk pattern.

Since {K}} is a sequence of fully augmented links, each K, is a fully augmented hyperbolic link in S3.
The bowtie polyhedron of K, is a right-angled ideal hyperbolic polyhedron with the same graph as
the bowtie graph I'g,. The assumption that the sequence {K} Fglner converges almost everywhere
geometrically to £ implies that there are subgraphs G, C I'g,, which satisfy the conditions of Fglner
convergence in Definition 3.9. Hence we can embed bowtie polyhedra of K, in H? so that a vertex in
I'k,, — Gy is sent to infinity, and G, C G,41. We denote this polyhedron in H?3 by P,. First note that
vol(K,) = 2 vol(Py). Let v(Py,) denote the number of vertices of Py,. Since Py, is a 4-valent checkerboard
graph whose shaded faces are triangles coming from the bowties, one for each augmentation, every vertex
is shared by two triangles. Hence v(P,) = 3- 2a(Kn)% = 3a(Kp). Therefore,

vol(Kn) 2V01(Pn)

3a(Kn) —~ v(Pa) |
Let D, be the disk pattern of the polyhedron P,. It follows that D,, is a right-angled simply connected

disk pattern. Since D, corresponds to a disk pattern arising from a fully augmented link, D, is rigid (see
Definition 3.18 and Figure 15). We will now use Fglner convergence to relate D, and Deo.

Let F}' be the set of disks d in Dy such that (Dy, d) agrees to generation / but not to generation / + 1
with (Doo, deo). For every positive integer k, let | ;| denote the number of faces of P, with k sides that
are not contained in (_J; F]' and do not meet the point at infinity. By counting vertices we obtain

Y kIff < 41Tk, = Gal.
k
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Figure 15: Left: an n x n copy of the fundamental domain of A with an arbitrary closure, and a
marked point P on the crossing of the closure. Right: the point P moved to the cone point at co.

The term |k, — G| counts the number of vertices that are in I'x, but not in G,. Since all the vertices of
the graph I'k,, are 4-valent we get a factor of 4. Hence |I'k, | = v(Py) = 3a(K,), and

|Gn| . 4|FK _Gnl . Zkk|f/?|
1 A 3Ky A (P A P
Letd € F l” and let vy, ..., vy be the vertices of G, which lie on the boundary of d; see Figure 16. Let

B(v,r) C G, denote the ball centered at vertex v of radius r in the path metric on G,,. It follows from the
definition of F7' and the fact that Gy, is the planar dual of the graph of the disk pattern G(D;) — without the
vertex corresponding to the unbounded face — that d € F;' implies B(v;, /) C Gy but B(vi,/+1) ¢ Gy for
i =1,...,m. Hence the distance from v; to dG, is [, ie v; € dB(x, /) for some x € dG,, foralli =1,...,m.

Hence F}' C Uyepg, 9B(x,1).

A A A4
. /vl‘ V2
B |

Figure 16: The circle in black is an example of B(v;, 1), and the boundary of the union over all i
of B(v;, 1) is colored in red.
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Fn
Lemma 3.21 lim M =1.
n—oo v(Py)

Proof We begin by showing that there exists m > 0 such that |0B(x, /)| < ml for any x € G,. By
definition of Fglner convergence, G, C I'x. Babai [6] showed that the growth rate for almost vertex-
transitive graphs with one end is quadratic, that is, growth of | B(x, /)| is quadratic in /. Since I is a
biperiodic 4-valent planar graph, it satisfies the conditions of Babai’s theorem, and hence has quadratic
growth rate. By definition, the vertices in dB(x, /) are incident to vertices in B(x,/ — 1), and hence
|0B(x,1)| has linear growth rate in /.

Thus | F['| < ml|dGy| and we obtain

. |F]n| . ml|oG,| _ ml 0G| |Gl
lim < lim ——— = — lim =
n—oo v(Py) T n—oo 3a(K,) 3 n—oo |Gyl a(Ky)

Since G, C G(L), every vertex of Gy lies on a disk in F}' for some /, and for every disk in F}' there
are no vertices in G(Kj) — G, which lie on the disk. Now, by assumption, lim, .0 |G|/(3a(Ky)) = 1.
Hence lim,,_mo‘Ul Fl’"/v(P,,) = limy—o0|Gn|/(Ba(Ky)) = 1. |

Let f{ be the face with & sides that is not contained in U, F ;' which does not meet the point at infinity.
For each n, vol(C(f}")) = kk(%n), where A(6) is the Lobachevsky function defined as

6
A(0) = —/ log |2 sin(¢)| dt,
0

whose maximum value is k(%n) [19]; see also [3].

Let E" denote the sum of the actual volumes of all the cones over the faces /", for every integer k. Then

) E" <> kh(gm) =Dk (37).
k fr k
As mentioned before, every vertex of Gy, lies on a disk in F l” for some /, and for every disk in F l” there are

no vertices in I'x,, — G, which lie on the disk. By assumption G, C I'; N (nA), where nA represents n?
copies of the fundamental domain for the lattice A such that L = L/A.

Since the cone vertex of the torihedron for 72 x I — L is at infinity, the disk pattern obtained from taking
n? copies of L just extends the disk pattern from one copy of L to n x n grid, as in Figure 17. The graph
for the disk pattern for n2 copies of L intersects I'g, in Gy, as in Figure 15.

For any face f in F}', let §] be a positive number such that vol(C(f)) = vol(C(f")) £ 6}, where f” is
a face in the disk pattern of £ such that the graph isomorphism between G(D;) and G(Deo) sends f
to f’. Furthermore, we choose 8 so that we can bound the sequence of §; by a sequence which will
converge to zero, as in Lemma 3.19.
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A
AV

Figure 17: Two copies of the link L coned to the point at infinity. The disk pattern from one copy
of L extends to the next copy.

Then
3) vol(Py) =Y > (vol(f') £8)) + E".
I feF}
By (3) we get
@ vol(P) = $n? vol(T2x D)= L) + Y Y (8]) + E™.

I feFy
We divide each term by a(K}) and take the limit. For the first term of (4) we obtain

172 vol((T* x 1) =L) _ 1n*vol((T?xI)=L) _ 1vol((T*x 1) L)

lim
n—o0 2 a(Ky) 2 n2a(L) 2 a(l)
From our assumption of Fglner convergence, the last condition gives us
a(Knp) i
im =
n—o00 nza(L)

By Lemma 3.19 there are positive numbers €; such that §;' < €, so the second term of (4) becomes

21 pery DL X F e

T aKe) itk a(Ke)
Fle
Lemma 3.22 lim M =
n—00 a(Kn)

Proof Fix any € > 0. Because lim;_, o, €; = 0, there is K large enough that ¢; < %e for / > K. Then
ZIK=1 €/ is a finite number, say M. Since we’ve seen above that limy— oo | J;|F]'[/v(Py) = 1 and
limy— oo F}'|/v(Pn) = 0, there exists N such thatif n > N then max;<r | F]'|/v(Pn) < €/(3M K) and
|Ul Fl”|/v(Pn) < (1+¢€). Then forn > N,
K
YulFler Yol Flle YsglFlle €K

€
oB) - wPy T ey amk TUt93=e -

Now setting v(Py,) = 3a(K,) we get that the limit of the second term is zero.
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Finally, by (1) and (2) we get that the third term of (4) equals zero:
B Tkl (Em)

1 <1
nl>oo a(Kn) _nl>oo a(Kn)

Therefore lim,,— o0 vol(Py) /a(Ky) = % vol(T?x I —L)/a(L), which means lim, o0 vol(K,)/a(K,) =
vol(T? x I —L)/a(L). m|

Recall that Wy denotes the fully augmented square weave link whose quotient is Wy with volume 10¢ vye.

Corollary 3.23 Let K, be any sequence of hyperbolic fully augmented links such that K, Fglner
converges everywhere to Wy. Then

vol(Kp)
im ———— = 10v.
n—oo a(Ky)
Proof This follows from Proposition 3.7 and Theorem 3.20. |
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Unbounded sl3-laminations and their shear coordinates

TSUKASA ISHIBASHI
SHUNSUKE KANO

Generalizing the work of Fock and Goncharov on rational unbounded laminations, we give a geometric
model of the tropical points of the cluster variety Xy, 5, which we call unbounded sl3-laminations, based
on Kuperberg’s sl3-webs. We introduce their tropical cluster coordinates as an sl3-analogue of Thurston’s
shear coordinates associated with any ideal triangulation. As a tropical analogue of gluing morphisms
among the moduli spaces PpgL,,x of Goncharov and Shen, we describe a geometric gluing procedure of un-
bounded s(3-laminations with pinnings via “shearings”. We also investigate a relation to the graphical basis
of the s(3-skein algebra of Ishibashi and Yuasa (2023), which conjecturally leads to a quantum duality map.

13F60, 57K20, 57K31

1 Introduction

1.1 Background

The notion of measured geodesic laminations (or its equivalent, measured foliations) on a surface was
first introduced by W Thurston [43], as a powerful geometric tool to study the mapping class groups and
the large-scale geometry of the Teichmiiller space. After a couple of decades, Fock and Goncharov [11]
studied Thurston’s shear coordinates on the space /T/I\L(E) of (enhanced) measured geodesic laminations
on a marked surface 3, which gives a global coordinate system parametrized by the interior edges of an
ideal triangulation A of X: /T/I\E(E) =5 Rem(2)  Moreover, they observed that these coordinates can
be viewed as a “tropical analogue” of the cross-ratio coordinates! on the enhanced Teichmiiller space
’?(E) - Ri“(;(m studied by Fock and Chekhov [8], as their coordinate transformation rule is exactly
the tropical analogue of that for the latter. These facts indicate that there would be a universal algebraic
object behind the Teichmiiller and lamination spaces: this idea leads to the theory of cluster varieties
developed by Fock and Goncharov [13]. In their terms, there is a cluster X'-variety? ng associated with
¥ such that the spaces 7 (X) and /\//I\E(E) are naturally identified with the spaces X;;f(R>0), X%f(]RT) of
positive real points and the real tropical points, respectively. We call the latter space ng(RT) the tropical
cluster X -variety for short.

mcoordinate is an exponential version of the shear coordinate on the Teichmiiller space. In this paper, we always
use the term “shear coordinates” for those on the lamination spaces.

2Here, the superscript “uf” just indicates that it has only unfrozen coordinates. It corresponds to the situation where the
shear/cross-ratio coordinates are defined only for internal edges ejn:(A) of an ideal triangulation A.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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1434 Tsukasa Ishibashi and Shunsuke Kano

In general, cluster varieties are schemes constructed from combinatorial data s (such as quivers) equipped
with a birational atlas whose coordinate changes are given by specific rational transformations, called
cluster transformations (see the appendix for a short review of this theory). They always come in a dual
pair (As, X;), forming a cluster ensemble. The duality conjecture is a profound conjecture of Fock and
Goncharov [13] that asks for a construction of “duality maps”

Ly: X(ZT) = O(Asv)  (resp. Ia: AJ(ZT) — O(X))

which parametrizes a linear basis of the function ring O(Asv) (resp. O(X,v)) of the dual cluster variety
by the space X;(ZT) € X(RT) (resp. As(ZT) c A(RT)) of integral tropical points, satisfying certain
strong axioms such as the positivity of structure constants.

In the surface case, the spaces Ax(Rx¢) and Ax(R7) are identified with the decorated Teichmiiller and
lamination spaces — see Papadopoulos and Penner [39; 40] — via the A-length and intersection coordi-
nates [11]. The geometric realization of the tropical spaces Ax(Z7T) X%f(ZT) by integral laminations
[11] leads to a topological construction of the duality maps Iy and I 4, and their required properties were
proved recently by Mandel and Qin [37] based on a comparison with the theta basis of Gross, Hacking,
Keel and Kontsevich [22]. These duality maps are two kinds of generalizations of the trace function basis
for the function ring of the SL,-character variety of a closed surface, parametrized by loops.

Strongly expected are “higher rank™ generalizations of the above picture. The cluster varieties X%f and
Ay are birationally isomorphic to certain generalizations of the PGL;,- and SL,-character varieties;
see Fock and Goncharov [10]. As a generalization for higher rank algebraic groups, there are cluster
varieties Xg“fi and Ay > which are birationally isomorphic to the same kind of generalizations Xg 5 and
Ag,x of character varieties — see Fock, Goncharov and Shen [10; 21] and Le [35] — where the defining
combinatorial data for these cluster varieties only depend on the surface ¥ and a semisimple Lie algebra g.
In particular, X’ ;[22 = ng and A, s = Ay correspond to the case mentioned above. Goncharov and
Shen [21] introduced a cluster variety X 5 with frozen coordinates, which is birational to some extension
Pg,x of X/ 5. Hereupon, we have combinatorially defined tropical spaces Ag,E(RT) and XQ’E(RT),
which should parametrize linear bases of the function rings of the dual varieties with good properties by
the duality conjecture. The spaces AQ,E(RT) and XQ,E(RT) are widely expected to be certain spaces of
g-webs on X, so that the duality maps are built from the web functions on the character variety. However,
such a web description is still missing in general. We remark here that Le [34] gave a description of
these spaces in terms of certain configurations in the affine buildings, which should be ultimately related
to g-webs based on the geometric Satake correspondence (see, for instance, Fontaine, Kamnitzer and
Kuperberg [18]).

For the first nontrivial case g = sl3, major progress on the space A5[3,E(ZT) has been made by Douglas
and Sun [6; 7] and Kim [32]. They describe this space as an appropriate space of Kuperberg’s sl3-webs
[33] by introducing an sl3-version of the intersection coordinates with an ideal triangulation. Their
coordinates can also be extended to the space .Ag[%z(QT) by scaling equivariance.

Algebraic € Geometric Topology, Volume 25 (2025)
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1.2 Geometric model for the tropical space Xs“lg - QT

Our aim in this paper is to describe the tropical cluster variety Xsb,g(QT) on the dual side as a space of
sl3-webs with a different type of boundary conditions and some additional structures at punctures. We
introduce the space £ (X, Q) of rational unbounded s[3-laminations on X, which are certain equivalence
classes of nonelliptic signed sl3-webs with positive rational weights (see Section 2.2). Then we define an
sl3-version of the shear coordinates of these objects with respect to an ideal triangulation A. As in the
slp-case, we need to perturb the ends incident at punctures (and thus make them spiraling) so that they
intersect with A transversely. The spiraling directions are controlled by the signs assigned to each end
of the sl3-web, and this procedure leads to the notion of spiraling diagrams (Definition 3.8) associated
with signed s(3-webs. After a careful study on the “good positions” of a spiraling diagram, we obtain

well-defined shear coordinates.

Theorem 1 (Theorem 3.20) For any marked surface X satistfying conditions (S1)—(S4) in Section 2.1
and its ideal triangulation A without self-folded triangles, we have a bijection

(1-1) XN L2 (2,Q) = QFur(d)

sl3

which we call the shear coordinate system associated with A. Moreover, for any another ideal triangulation
A’ of X, the coordinate transformation x s o le is a composite of tropical cluster X -transformations.

As a consequence, the shear coordinates combine to give an MC(X)-equivariant bijection
(1-2) X L3(2.Q) = XY 5 (@),

Therefore, our space E;‘B (2, Q) of unbounded s(3-laminations gives a geometric model for the tropical
cluster X-variety Xs“é’z (QT). In other words, the space Efb (2, Q) can be viewed as a tropical analogue
of the moduli space Xpg,,5 of framed PGL3-local systems [10].

In Section 3.4, we give an explicit inverse map of x“Af by gluing local building blocks according to the
shear coordinates, in the same spirit as Fock and Goncharov. The coordinate transformation formula
could be obtained by case-by-case as in [7] for the .A-side. However, in order to reduce the length of
computation, we choose to derive it from the computation on the .A-side performed by Douglas and Sun
after investigating their relation in detail (see Theorem 2 below). So the second statement in Theorem 1

follows from Theorem 2.

1.3 Unbounded sl3-laminations with pinnings and their gluing

In order to supply the frozen coordinates, we further introduce a larger space Ei (2, Q) of unbounded
slz-laminations with pinnings by attaching additional data on boundary intervals, in the same spirit as

Algebraic € Geometric Topology, Volume 25 (2025)
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Goncharov and Shen’s construction of the moduli space Pg/,x [21]. As in their work, these additional
data allow us to glue the sl3-laminations along boundary intervals, which leads to the gluing map

(1-3) qE. . Ex: L5, (2, Q) — L1 (', Q)
where X/ is the marked surface obtained from X by gluing two boundary intervals E, and ER.

The space 55[3(2, Q) is also suited for the comparison with the works of Douglas and Sun [6; 7] and
Kim [32]. Let E;’[3 (2, Q) denote the space of rational bounded s[3-laminations, which essentially appears
in these works. See Remark 2.10. Then we define a geometric ensemble map

(1-4) PiLe(Z,Q) - LI (Z,Q)

by forgetting the peripheral components, and assigning pinnings in a certain way. When % has no
punctures, p gives a bijection. For these structures, we obtain the following:

Theorem 2 (Theorems 4.7 and 4.11 and Proposition 4.10) Under the same assumption as in Theorem 1,
we have a bijection

(1-5) xa: L0 (2,Q) = Q'™

sl3

whose coordinate transformations are given by tropical cluster X -transformations (including frozen
coordinates). Via these coordinate systems:

(1) The gluing map qEg, g, coincides with the tropicalization of the amalgamation map [9].

(2) The geometric ensemble map p coincides with the tropicalization of the Goncharov—Shen extension
of the ensemble map (A-6).

We will also see in Section 4.4 that the shear coordinates are equivariant under the Dynkin involution *,
which generates Out(SL3). In particular, we have an MC(X)xOut(SL3)-equivariant bijection

(1-6) xa: LR (3, Q) <> Xy 2(QT).

In other words, the space 553 (X, Q) can be viewed as a tropical analogue of the Goncharov and Shen’s
moduli space Ppgr,,x [21].

Property (1) allows one to reduce the computation of coordinate transformations to those for smaller
surfaces. For a surface without punctures, the map p is a bijection and property (2) shows that this
map intertwines the two types of cluster transformations. This is our strategy to obtain the coordinate
transformation formula for (1-5).

In our sequel paper [28], we will investigate the unbounded sl3-laminations around punctures in detail,
and study the tropicalizations of the cluster exact sequence of Fock and Goncharov [13] and the Weyl
group actions at punctures introduced by Goncharov and Shen [20] in terms of sl3-laminations. In
the end, the bijections (1-2) and (1-6) turn out to be equivariant under the natural action of the group
(MC(Z) x Out(SL3)) x W(sl3)Meo.
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1.4 Relation to the graphical basis of the skein algebra 8’;"3 -

As mentioned in the beginning, our space 5513 (X,2) =~ X5[3,Z(ZT) is expected to parametrize a linear
basis of the function ring O(As;,x). When the marked surface has no punctures (hence the exchange
matrix has full-rank), it is also expected to parametrize a linear basis of the quantum upper cluster
algebra O4(Aqi;,x) of Berenstein and Zelevinsky [3]. On the other hand, a skein model for Oy (Aq;,5)
is investigated in [30] by the first named author and W Yuasa. They study a skein algebra 8’;1[3’2 with
appropriate “clasped” skein relations at marked points, and constructed an inclusion of its boundary-
localization 9’;1[3’2[8_1] into the quantum cluster algebra (and hence into Oy (As(;,%)). Conjecturally
these algebras coincide with each other. They give a Z,-basis BWeb,(, 5 of the skein algebra 8’;1[3’2
consisting of flat trivalent graphs. In this paper, we relate our integral s(3-laminations with pinnings to

the basis webs:

Theorem 3 (Theorem 5.2) Assume that ¥ has no punctures. Then we have an MC(X)xOut(SL3)-
equivariant bijection

]:[g{ 553(2’ Z)+ = BWeb5[3’2 C 93[3,2’

where Ci (X,2)+ C £§3 (X, Z) denotes the subspace of dominant integral sl3-laminations. Moreover,

p

it is extended to a map ]Igg Loy,

(2,Z2) — 93[3’2[8_1], whose image gives a Z 4-basis of 9’;1[3’2[8_1].

The latter correspondence should be a basic ingredient for a construction of the quantum duality map [13]
(see Qin [41, Conjecture 4.14] for a finer formulation as well as Davison and Mandel [5]). See Section 5
for a detailed discussion. Our general expectation is the following:

Conjecture 4 The basis I[g( (£§3 (X, 7)) is parametrized by tropical points in the sense of [41, Defini-
tion 4.13]. Namely, for any integral sl3-lamination Le £§3 (X, Z), the quantum Laurent expression of
]1;1( (Z) € &43[3,2 IP the quantum cluster {A; }; ey associated with a vertex w € Exchq(, » has the leading
term []_[ie 7 A7 (L)] with respect to the dominance order [41, Definition 4.6], where x(@) = (xi)ier is the
shear coordinate system associated with w.

Currently we do not know if it gives a basis with positivity (of Laurent expressions and/or structure
constants), or it requires a modification by using an sl3-version of bracelets; see D Thurston [42]. See
also Allegretti and Kim [1; 2] and Cho, Kim, Kim and Oh [4] for the progress on the positivity problem
for the sl,-case.

1.5 Future directions: real unbounded s[3-laminations

Let E;‘[%(Z,R) be the completion of the space £§[3 (X,Q) such that each shear coordinate system
(1-1) extends to a homeomorphism x“Af: £§[3 (2, R) = RI(®) | Tt is well defined since the cluster

X-transformations are Lipschitz continuous with respect to the Euclidean metrics on Qv (A) We call an
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element of L;C[S (2, R) a real unbounded sl3-lamination, which is represented by a Cauchy sequence in

L3, (X, Q) with respect to shear coordinates. The space £§[3 (X, R) has a natural PL structure, and is
considered to be an sl3-analogue of the space .A//I\E(E) of measured geodesic laminations. Recall that in
the Teichmiiller—Thurston theory, the latter PL manifold plays the following roles (among others):

Boundary at infinity of the Teichmiiller space The Thurston compactification is a compactification
of the Teichmiiller space into a topological disk obtained by attaching the projectivization of /\//I\E(E),
so that the mapping class group action is continuously extended. The measured geodesic laminations
encode the “rate” of degenerations of geodesics in a divergent sequence in the Teichmiiller space.
The Thurston compactification is identified with the Fock—Goncharov compactification [14; 24; 34]
X5 (R>0) = X5 (R>0) USXs(RT), which is defined for any cluster X'-variety.

Place for analyzing the pseudo-Anosov dynamics The PL action of the mapping class group on
J\//I\E(E) provides us rich information on the dynamics of pseudo-Anosov mapping classes. In particular,
each pseudo-Anosov mapping class has the north-south dynamics on the projectivized space, and its
unique attracting/repelling points are represented by a transverse pair of measured geodesic laminations.
A generalization of these specific properties for elements of a general cluster modular group is proposed
in [25; 26; 27], which we call the sign stability. The equivalence between the “uniform” sign stability and
the pseudo-Anosov property is discussed in [25], based on the identification /\//l\ﬁ(E) = X%f(IR{T).

It is natural to expect that the space £§[3 (2, R) plays the same role in the sl3-case. Since the positive
real part X 5“[2’2(R>0) has been identified with the moduli space of convex RIP2-structures on X, the real
unbounded sl3-laminations are expected to encode their degenerations. The PL action of a pseudo-Anosov
mapping class on the space £§[3 (2, R) is expected to provide more rich information, which may possibly
lead to a finer classification of pseudo-Anosov mapping classes. Although a concrete description of a
real unbounded sl3-lamination as a certain geometric object (rather than a sequence) is still missing, the
cluster algebraic interpretation of Thurston’s train tracks studied in [31] will be a useful tool.

Generalizations of Thurston’s earthquake maps and the Hubbard—Masur theorem that relates measured
foliations with quadratic differentials will be also interesting topics. A study on a cluster algebraic
analogue of these theories is in progress by the authors with Takeru Asaka.

Organization of the paper

Main part (Sections 2—4) In Section 2, we introduce rational unbounded s(3-laminations and briefly
discuss the relation to the works of Douglas and Sun [6; 7] and Kim [32]. We study the associated
spiraling diagrams and define the shear coordinates in Section 3. The bijectivity of the shear coordinate
systems (1-1) is proved. In Section 4, we introduce pinnings for rational unbounded sl3-laminations
and discuss their gluing and the extended ensemble map. Theorem 2 is proved, and hence the proof of
Theorem 1 is completed.
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Relation to skein theory (Section 5) We investigate the relation to the skein algebra and quantum
duality map in Section 5. Theorem 3 is proved here.

Proofs for the technical statements (Section 6) The proofs of Theorems 3.10 and 3.19 are placed in
Section 6. Logically they do not depend on the contents after the places where the statements are written.

Basic terminology on the cluster varieties and the known results we need for the sl3-case are collected in
the appendix.
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2 Unbounded sl3-laminations and their shear coordinates

2.1 Marked surfaces and their triangulations

A marked surface (X, M) is a compact oriented surface X together with a fixed nonempty finite set
M C X of marked points. When the choice of M is clear from the context, we simply denote a marked
surface by 3. A marked point is called a puncture if it lies in the interior of 3, and a special point
otherwise. Let Mo = M, () (resp. My = M3(X)) denote the set of punctures (resp. special points), so
that Ml = M, LU My. Let * := X\ M,. We always assume the following conditions:

(S1) Each boundary component (if exists) has at least one marked point.

(S2) —2x(X*) 4 |[My| > 0.

(S3) (X2,M) is not a once-punctured disk with a single special point on the boundary.

We call a connected component of the punctured boundary 0* X := 90X \ My a boundary interval. The

set of boundary intervals is denoted by B = B(X). We always endow each boundary interval with the
orientation induced from dX. Then we have |Mj| = |B]|.

Unless otherwise stated, an isofopy in a marked surface (¥, M) means an ambient isotopy in X relative
to M, which preserves each boundary interval setwise. An ideal arc in (X, M) is an immersed arc in X
with endpoints in M which has no self-intersection except possibly at its endpoints, and not isotopic to
one point.
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E o

i'(E)

Figure 1: The set /(A) of distinguished points.

An ideal triangulation is a triangulation A of ¥ whose set of O-cells (vertices) coincides with M.
Conditions (S1) and (S2) ensure the existence of such an ideal triangulation, and the positive integer in
(S2) gives the number of 2-cells (triangles). The 1-cells (edges) are necessarily ideal arcs. In this paper,
we always consider an ideal triangulation without self-folded triangles of the form

Such an ideal triangulation exists by condition (S3). See, for instance, [15, Lemma 2.13]. For an ideal
triangulation A, denote the set of edges (resp. interior edges, triangles) of A by e(A) (resp. einc(A), 1 (A)).
Since the boundary intervals belong to any ideal triangulation, e(A) = ej(A) LU B. By a computation on
the Euler characteristics, we get

le(A)| = =3x(Z) +2[Mjl. e (D) ==3x(Z%) + M|, [1(A)]=-2x(E") + [My].

It is useful to equip A with two distinguished points on the interior of each edge and one point in the
interior of each triangle, as shown in Figure 1. The set of such points is denoted by I(A) = I5;(A).
This set will give the vertex set of the quiver Q% associated with A; see Section A.3. Let 7°92¢(A)
(resp. I (A)) denote the set of points on edges (resp. faces of triangles) so that 1(A) = 14 (A)LT"(A),
where we have a canonical bijection

1(A) = IY(A), T i(T).

When we need to label the two vertices on an edge E € e(A), we endow E with an orientation. Then
letil(E) € I(A) (resp. i%(E) € 1(A)) denote the vertex closer to the initial (resp. terminal) endpoint
of E. Let I(A); C 1°92°(A) (“frozen”) be the subset consisting of the points on the boundary, and let
1(A)ys := I1(A) \ I(A)f (“unfrozen”). The numbers

[1(D)] =2le(D)] +[t(A)] = =8 x(X7) + 5|My|,
[1(A)ut] = 2lein(D)] + (D) = =8 (Z*) + 3[M|
will give the dimensions of the PL. manifolds £§3 (X,R) and £§[3(E , R) respectively.
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2.2 Unbounded sl3-laminations

Recall that a uni-trivalent graph is a (possibly disconnected and/or infinite) graph whose vertices have
valency either one or three. It is allowed to have a loop component (ie a connected component without
vertices). An orientation of a uni-trivalent graph is an assignment of an orientation on each edge and loop
such that any trivalent vertex is either a sink or a source, respectively:

An sl3-web (or simply a web) on a marked surface X is an immersed oriented uni-trivalent graph W on
¥ such that each univalent vertex lie in M, U 0* X, and the other part is embedded into int X*. It is said
to be nonelliptic if it has none of the following elliptic faces:

/ \ !/ \ / \
- ! I | |
2-1) | I I |
\ \ \

’ ’

~ // \\ Phg \\ —
PN 7T~ s N
v N ’ N / \
/ \ / \ 1 \
22 / \ / \ I |
- [ [ \
\ i
\
~

A web is said to be bounded if none of its univalent vertices lie in M.

We will mostly deal with finite webs, while infinite ones appear when (and only when) we discuss spiraling
diagrams (Definition 3.8), which are still locally finite except possibly around punctures. When we simply
say an (sl3-)web below, it will mean a finite web. When the web in consideration can be infinite, we will

say a “possibly infinite web”.

Remark 2.1 The exclusion of the internal faces in (2-1) is usual in literature. Indeed, a web containing
these faces can be written as a linear combination of nonelliptic webs in the skein algebra (see Section 5),
and hence not needed as a basis element. The first two faces in (2-2) are excluded as variants of boundary
skein relations [30]. It is also related to the weakly reduced condition in [19]. The third one can be
regarded as a variant for a boundary component without marked points.

Example 2.2 (honeycomb webs) Let 7' C int X* be an embedded triangle. For each positive integer n,
the incoming (resp. outgoing) honeycomb-web (or pyramid web) in T of height n is the slz-web dual to
the n-triangulation of T, oriented so that the outer-most edges are incoming to (resp. outgoing from) 7.
See the left picture in Figure 2 for an example. We will also use a short-hand presentation as shown in
the right of Figure 2. The embedded image of a honeycomb web in X is simply called a honeycomb. The
ends of a honeycomb can be connected with other oriented arcs or honeycombs on 3.
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Figure 2: A honeycomb-web on a triangle T of height n = 4 (left) and its short-hand presentation (right).

A signed web is a web on X together with a sign (4 or —) assigned to each end incident to a puncture.
The following patterns (and their orientation-reversals) of signed ends are called bad ends:

// \\ // \\ // \\
Il \ l/ \ I/ \
(2-3) ——O—— . exode . exe !

Here € € {+, —}. A signed web is said to be admissible if it has no bad ends. In this paper, we always
assume that the signed webs are admissible unless otherwise stated. A bounded web is naturally regarded
as a signed web since we do not need to specify any signs.

Remark 2.3 The latter two types of bad ends will be excluded simply because they will not contribute
to the shear coordinates. On the other hand, a pair of the first type will have nontrivial coordinates, while
there is always another web that attains the same coordinates. So we only need admissible signed webs
to realize the tropical space. It turns out that we need to include the bad ends of first type to define the
Weyl group actions at punctures [28].

Elementary moves of signed webs We are going to introduce several elementary moves for signed
webs. The first two are defined for a web without signs.

(E1) Loop parallel-move (aka flip move [19] or global parallel move [6]):

(2-4) ~
(E2) Boundary H-move:
(2_5) I// ~ ( A \\\ ~ l// \\\

Similarly for the opposite orientation. We call the face in the left-hand side a boundary H-face.

Algebraic € Geometric Topology, Volume 25 (2025)



Unbounded sl3-laminations and their shear coordinates 1443

(E3) Puncture H-moves:

7 \\ /v\\

4 \ / \

/ \ / \

(2-6) : ege ! ~ . edYe
e N e N N

4 \ 4 \ 4 \

\ \ \

(2_7) : o ! ~ : ~ | ~ : + Y - |

Similarly for the opposite orientation. We call the face in the left-hand side of (2-6) a puncture
H-face.

The following lemma is verified by using (E2) and the first one in (E3):

Lemma 2.4 From the boundary and puncture H-moves, we get the following “arc parallel-moves”

_—

[ ] [ ] [ ] [ ] [ ]

swapping parallel arcs with opposite orientations:

AN Y
Y e

.
J&)

Here white (resp. black) circles stand for punctures (resp. special points), and €, €’ € {+, —}.

Also note that we can always transform any signed web to a signed web without boundary H-faces
(resp. puncture H-faces) by applying (E2) and (E3), respectively. Slightly generalizing the terminology
in [19], such a signed web is said to be boundary-reduced (resp. puncture-reduced). It is said to be
reduced if it is both boundary- and puncture-reduced.

(E4) Peripheral move: removing or creating a peripheral component:

-

N
’

\

’ - TN \
I/ | I/ |
(2_8) \ ,'
\ /
N 7
Moreover, we have the moves

7 \\
4 \
/ v \
~ : Nt )
\ . /
\ /
N ,
N .

Similarly for the opposite orientation.
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We will consider the equivalence relation on signed webs generated by isotopies of marked surfaces and
the elementary moves (E1)—(E4). Observe that the moves (E1)—(E4) preserves the admissibility. On the
other hand, a nonelliptic signed web may be equivalent to an elliptic web as the following example shows.

Example 2.5 We have

N N N N N
4 \ 4 \ 4 \ 4 \ 4 \
4 \ 4 \ 4 \ 4 \ 4 \
I/ \ I/ \ I/ \ I/ n \ I/ \
[ oAv | - oA — 1
LY+ S A | ! | +
\ / \ / \ / \ / \ /
\ / \ / \ / \ / \ /
N Va N Va N Ve N\ 7/ N\ 7
~ - ~ - ~ - ~ - ~ -

by the puncture H-moves (2-6) and (2-7), where the resulting signed webs are elliptic (having interior
4-gon faces).

Definition 2.6 (rational unbounded s(3-laminations) A rational unbounded s|3-lamination (or a rational
sl3-X-lamination) on X is an admissible, nonelliptic signed sl3-web W on X equipped with a positive
rational number (called the weight) on each component, which is considered modulo the equivalence
relation generated by isotopies and the following operations:

(1) Elementary moves (E1)—(E4) for the underlying signed webs. Here the corresponding components
are assumed to have the same weights.

(2) Combine a pair of isotopic loops with the same orientation with weights u and v into a single loop
with the weight ¥ + v. Similarly combine a pair of isotopic oriented arcs with the same orientation
(and with the same signs if some of their ends are incident to punctures) into a single one by adding
their weights.

(3) For an integer n € Z~¢ and a rational number u € Q ¢, replace a component with weight nu with
its n-cabling with weight u, which locally looks like

n /’—u N n - N e N
ﬂ . ‘\\ // \\ , u \\
I " Conu ———
~ | ! — ~ l : '}n
\ ) \ ) \ . 3
\ )/ Noou
L - -
n

For a loop or arc component, it is just a successive applications of operation (2). One can also verify
that the cabling operation is associative in the sense that the n-cabling followed by the m-cabling
agrees with the nm-cabling, since nm-cabling is dual to the m™ subdivision of an n-triangulation
(recall Figure 2).

See Figure 3 for a global example. Let £§I3 (X, Q) denote the set of equivalence classes of the rational
unbounded sl3-laminations on X. We have a natural (Q¢-action on £;‘[3(Z, Q) that simultaneously
rescales the weights. A rational unbounded sl3-lamination is said to be integral if all the weights are

integers. The subset of integral unbounded s[3-laminations is denoted by E;‘h (2,72).
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N

Figure 3: An example of a rational unbounded s[3-lamination. Here u;, u, and u3 are arbitrary
positive rational weights.

The sets £3, (2, Q) and £, (£, Z) will be identified with the unfrozen part X;[; 5 (QT) and Xsué 5 VAD)
respectively, of the tropical cluster X'-variety associated with the pair (s(3, X) (see Section A.3).

Notation 2.7 In view of the equivalence relation (4), we will occasionally use the following equivalent
notations for honeycombs:

with n1 4+ np, = n. We may also split an edge of weight n with k edges of weight ny,...,n; with
ny—+---+ng=n.

Definition 2.8 (Dynkin involution) The Dynkin involution is the involutive automorphism

%: L2 (2,Q) > L5 (2,Q), L L*,

sl3 sl3
where L* is obtained from L by reversing the orientation of every components of the underlying web,
and keeping the signs at punctures intact. Since all the elementary moves (E1)—(E4) are equivariant under
the orientation-reversion, this indeed defines an automorphism on £§[3 (2,Q).

Bounded laminations and the ensemble map

Definition 2.9 (rational bounded sl3-laminations) A rational bounded s\3-lamination (or a rational
sl3-A-lamination) on ¥ is a bounded nonelliptic sl3-web W on ¥ equipped with a rational number
(called the weight) on each component such that the weight on a nonperipheral component is positive.
It is considered modulo the equivalence relation generated by isotopies and the operations (2)—(4) in
Definition 2.6.
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Let £%

sl3
Ligh (X, Q) that simultaneously rescales the weights. A rational bounded s(3-lamination is said to be

(X, Q) denote the space of rational bounded s(3-laminations. We have a natural Q- g-action on

integral if all the weights are integers. The subset of integral bounded sl3-laminations is denoted by
Lo, (2. 2).

Remark 2.10 The space £§[3(Z, 7) is the same one as the space Az (X;Z) that appears in Kim’s
work [32, Definition 3.9].3 The space Wy in Douglas and Sun’s work [6, Definition 6] is the subset of
£§[3 (X, Z) consisting of elements with positive peripheral weights. It is straightforward to extend their
coordinate systems by Q= g-equivariance to the rational case, and the space 53[3 (X, Q) is identified with
the tropical cluster A-variety Asb’z(QT) [32, Theorem 3.39].#

By forgetting the peripheral components, we get the geometric ensemble map

(2-9) P LY (2,Q) = L5, (S, Q).

We will see in Section 4 that the geometric ensemble map coincides with the cluster ensemble map (A-2)
via the Douglas—Sun coordinates and our shear coordinates.

3 Shear coordinates

3.1 Essential webs on polygons

Let Dy denote a disk with k > 2 special points. In what follows, we simply refer to Dy as a k-gon. We
say that an sl3-web W on Dy, is faut if for any compact embedded arc o whose endpoints lie in a common
boundary interval E, the number of intersection points of W with E does not exceed that of W with «.
See Figure 4. Following [6], we call a nonelliptic, taut sl3-web an essential web. These essential webs on
polygons are basic building blocks for the bounded sl3-laminations studied in [6]. We recall the concrete
description of the essential webs for k = 2, 3 following [6, Sections 2.7 and 2.8] and [19, Sections 8
and 9], including additional infinite webs needed for our purpose.

The biangle (2-gon) case Let E7 and Er denote the boundary intervals of a biangle D,. A (finite)
symmetric strand set on D, is a pair S = (Sg, Sg) of finite collections of disjoint oriented strands (ie
germs of oriented arcs), where the oriented strands in Sz are located on Ez for Z € {L, R} such that the
number of incoming (resp. outgoing) strands on Ep is equal to the outgoing (resp. incoming) strands
on ER. See the left-most picture in Figure 5 for an example.

3Indeed, an element of our space [lg[3 (X, Z) can be represented by a reduced web [32, Definition 3.3] by applying the boundary
H-moves, and we can rescale the weights on honeycombs to be 1 by the operation (4) in Definition 2.6.

4Here note that there is a subset of 52[3 (X2, Z) formed by congruent laminations [32, Definition 3.38] which is identified with
the tropical cluster A-variety Agr,, 5 @T).
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Figure 4: Example of a nontaut web in D5.

Given a symmetric strand set S = (57, Sr), the associated ladder-web W(S) on D, is constructed as
follows. First, let Wy, (S) be the unique (up to ambient isotopy of D,) collection of oriented curves
connecting strands in Sz, with those in Sg in the order-preserving and minimally intersecting way. See
the middle picture in Figure 5. It is characterized by the pairing map f: Sy — Sg, which is an order-
preserving bijection that maps each incoming (resp. outgoing) strand of Sz, to an outgoing (resp. incoming)
strand of Sg. The associated ladder-web W(S) is obtained from W,(S) by replacing each intersection
with an H-web, as follows:

// \ //_(__);\
3-1) :><; v
\, \ﬁ__h/

Conversely, the collection Wi (S) is called the braid representation of the ladder-web W(S). It is known
that all the essential webs on D, arise in this way:

Proposition 3.1 [6, Proposition 19; 19, Section 8] The ladder-web W (S) is an essential web on D,
for any symmetric strand set S. Conversely, given an essential web W on D,, there exists a unique
symmetric strand set S such that W = W(S).

For the study of unbounded sl3-webs, we need the following infinite extension of the symmetric strand
sets.

D

¥ AN~ A~ AN
A N ANY

C

Figure 5: Construction of the ladder-webs. Left: a symmetric set S. Middle: the corresponding
collection of oriented curves W;,(S). Right: the associated ladder-web W(S).
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Figure 6: An asymptotically periodic symmetric strand set and the associated ladder webs
corresponding to the two choices of compact strips K and K’.

Definition 3.2 (asymptotically periodic symmetric strand sets) An asymptotically periodic symmetric
strand set S = (Sr,, SR) on D, consists of countable collections Sy and S of disjoint oriented strands,
where the oriented strands in Sz are located on Ez without accumulation points for Z € {L, R}. The
oriented strands are required to be symmetric, and periodic away from a compact set (see Figure 6).
Namely, we require that there exists a compact strip K C D5 \ M such that

e K is bounded by two parallel arcs, o1 and o, transverse to the boundary intervals of D,, and
o1 U ap avoiding the strand sets Sz, and Sg;

e the pair (S, N K, Sg N K) is a finite symmetric strand set;

* the orientation patterns of the strands in the sets Sz, and Sg that belong to D, \ K are periodic,
and the pairing map fx: Sy N K — Sg N K of finite symmetric strand set can be extended to an
order-preserving bijection f: S; — Sg that maps each incoming (resp. outgoing) strand of Sy, to
an outgoing (resp. incoming) strand of Sg.

Unlike the finite case, the pairing map f may not be unique, as it depends on the choice of the compact
strip K. Given such a pair (S, /), we get a collection Wi,(S, f') of oriented curves mutually in a minimal
position, and the associated ladder-web W (S, f) just in the same manner as in the finite case. We call
W(S, f) the ladder-web associated with the pair (S, f). It is possibly an infinite web.

Definition 3.3 An unbounded essential web on D5 is the isotopy class of the ladder-web associated with
a pair (S, f) as above.

Among the others, the following way of fixing a pairing map turns out to be useful in this paper.

Definition 3.4 A pinning of an asymptotically periodic symmetric strand set S = (S, SR) is a pair
pz = (p}, p7) of points in Ez away from the set Sz for Z € {L, R}. The resulting tuple S:= (S;pL,PR)

is called a pinned symmetric strand set.
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Figure 7: The H-move across an arc.

Then we define the pairing map as follows. For Z € {L, R}, let us decompose Sz = S %L US,, where S }'
(resp. S) denotes the subset of incoming (resp. outgoing) strands. Then there exist orientation-reversing
homeomorphisms f1: E; — Eg such that fi (S f) = S;F and fi( pLi) = plf. Then we get the unique
pairing map

foi=fruf:SfuS; - SguSE,

which determines the collection Wbr(§ ) := Whx(S, f3) of oriented curves and the associated ladder-web
W(S) = W(S. f3).

The triangle (3-gon) case Let D3 be a triangle. Recall that we have honeycomb-webs on D3, which are
dual to n-triangulations of D3.

Proposition 3.5 [6, Proposition 22; 19, Theorem 19] A honeycomb-web is reduced (rung-less in terms
of [6]) and essential. Conversely, any connected reduced essential web on D3 having at least one trivalent
vertex is a honeycomb-web.

Consequently, any reduced essential web on D3 consists of a unique (possibly empty) honeycomb
component together with a collection of disjoint oriented arcs located on the corners of D3. These oriented
arcs are called corner arcs. Similarly to the biangle case, we may allow the collection of corner arcs to be
semi-infinite and asymptotically periodic.

Definition 3.6 An unbounded reduced essential web on D3 is the isotopy class of a disjoint union of a
(possibly empty) reduced essential web on D3 and at most one semi-infinite periodic collection of corner
arcs around each corner.

3.2 Good position of an unbounded sl3-lamination

Let A be an ideal triangulation of ¥ without self-folded triangles. Recall from [6, Section 3] that a
bounded sl3-web W on X is generic with respect to A if none of its trivalent vertices intersect with the
edges of A, and W intersects with A transversely. A generic isotopy is an isotopy of webs through generic
webs. Recall the parallel-equivalence of bounded webs, which is the equivalence relation generated by
isotopies of marked surface and the loop parallel-move (E1). A generic bounded web W is said to be in
minimal position with respect to A if it minimizes the sum of the intersection numbers with the edges of
A among those parallel-equivalent to W. Then we have:
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:_>>

Figure 8: The intersection reduction moves across an arc.

Proposition 3.7 [6, Proposition 27; 19, Section 6] Any parallel-equivalence class of nonelliptic bounded
webs on X has a representative in minimal position with respect to /A. Moreover, such a representative
is unique up to a sequence of H -moves across edges of A (Figure 7), loop parallel-moves, and generic
isotopies.

Indeed, the minimal position is realized by appropriately applying the intersection reduction moves (aka
tightening moves) across edges of A shown in Figure 8.

The split ideal triangulation A is obtained from A by replacing each edge E into a biangle Bg. We
say that a bounded web W on X is in good position with respect to A if the restrictions W N B g for
E ee(A) (resp. WNT for T € t(A)) are an essential (resp. reduced essential) webs. Then it is known
that any parallel-equivalence class of nonelliptic bounded webs on ¥ has a representative in good position
with respect to A; such a representative is unique up to a sequence of modified H-moves (Figure 9),
loop parallel-moves, and generic isotopies for A [6, Proposition 30; 19, Corollary 18]. Using such a
representative, the Douglas—Sun coordinates are defined [6, Section 4].

Now let us consider a signed web W on X. In this case, W is no more parallel-equivalent to a web in
good position in the above sense. To resolve this, we introduce the following notion:
Definition 3.8 (spiraling diagram) Let W be a nonelliptic signed web on X. Then the associated

spiraling diagram VV is a (possibly infinite and noncompact) s(3-web obtained by the following two steps.

(1) In a small disk neighborhood D, of each puncture p € M, deform each end of W incident to p
into an infinitely spiraling curve, according to their signs as shown in Figure 10. Let VW’ be the
resulting diagram.

Figure 9: The modified H-move [6] (aka crossbar pass [19]) across a corner.
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\ P+

Figure 10: Construction of a spiraling diagram. The negative sign similarly produce an end
spiraling counterclockwise.

(2) A pair of ends incident to a common puncture p with the opposite sign produce infinitely many
intersections in WW’'. We then modify these intersections into H-webs in a periodic manner, as
follows. By applying an isotopy in D), we can make these intersections only occurring in a single
half-biangle B, in D, with special point p, without producing additional intersections.® Then
W' N B, = Wi(Sp) for an asymptotically periodic symmetric strand set S, on B,. By replacing
the biangle part W;,(S,) with the associated ladder-web W(S,), we get the spiraling diagram W.
Since W N (D, \ Bp) consists of oriented corner arcs, the result does not depend on the choice
of By.

See Figure 11 for a local example. A global example arising from Figure 3 is shown in Figure 12.

Definition 3.9 The spiraling diagram W is in a good position with respect to a split triangulation A if
the intersection W N Bg (resp. W N T') is an unbounded essential (resp. reduced essential) local web for
each E ce(A)and T €t(A).

The loop parallel-move and the boundary H-move of a spiraling diagram are similarly defined as before,
so that the construction of spiraling diagram from a signed web is equivariant under these moves. We
define the modified periodic H-move of a spiraling diagram in a good position across a corner to be the
periodic application of the modified H-move to be the periodic parts of the unbounded essential local
webs on biangles. By a strict isotopy relative to a split triangulation A, we mean an isotopy on a marked
surface ¥ which is the identity on each edge of Aanda neighborhood of each puncture.

Theorem 3.10 (proof in Section 6.1) Any spiraling diagram arising from a nonelliptic signed web on
3 can be isotoped into a good position with respect to A by a finite sequence of intersection reduction

5Concretely, this can be done as follows. If we fix a polar coordinates (r, 8), r < ro for some r¢9 > 0 on the punctured disk
Dp \ {p}, each spiraling curve can be modeled by the logarithmic spiral {4 (a): 8 = % 1log(ar) for some parameter a > 0.
Then an elementary calculation shows that the intersection points of £+ (a1) and £—(a3) lie on a single line, which is viewed as
the union of two rays. Then we can collectively push these rays into a chosen half-biangle B, only by smoothly varying the
coordinate function 6. By the standard argument involving a smooth cut-off function, we can also modify this “angular” isotopy
to be identity near dDp.
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Figure 11: Construction of a spiraling diagram. Replace intersections with H-webs in a periodic manner.

moves, H-moves, and strict isotopies relative to A. Moreover, such a good position is unique up to a
sequence of modified H-moves, modified periodic H-moves, loop parallel-moves, boundary H-moves,

and strict isotopies relative to A.

Indeed, we can obtain a representative in a good position by successively applying the intersection
reduction moves (Figure 8) and then pushing the H-faces into biangles by the H-move (Figure 7). An
example of this procedure is illustrated in Figure 13. The main issue here is to ensure that this procedure

always terminates in finite steps, which is discussed in Section 6.1 in detail.

While the spiraling diagram itself is suited to discuss its good position, the following braid representation

will be useful to define the shear coordinates:

Definition 3.11 (braid representation of a spiraling diagram) Let WV be a spiraling diagram in a good
position with respect to A. Then its braid representation W@ is obtained from W by replacing the
unbounded essential web YW N Bg on each biangle Bg with its braid representation.

The braid representation is closely related to (an unbounded version of) global picture [6, Definition 55].

See also Section 6.2.

N

Figure 12: A global example of spiraling diagram arising from the underlying signed nonelliptic
web in Figure 3.
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Figure 13: An example of the procedure to place a spiraling diagram in good position.
3.3 Definition of the shear coordinates

Now we define the shear coordinates associated with an ideal triangulation A of X without self-folded
triangles. Let A be the associated split triangulation.

Given a rational sl3-lamination Le £§[3 (X, Q), represent it by an sl3-web W together with rational

weights on its components and signs at the ends incident to punctures. Let W be the associated spiraling
diagram together with rational weights on the components, placed in good position with respect to A.
Let Wﬁ be its braid representation, together with well-assigned rational weights on its components. The
shear coordinates of L are going to be defined out of W@.

For each E € ejy(A), let Q g be the unique quadrilateral containing E as its diagonal, regarded as the
union of two triangles, 77, and Tg, and the biangle Bg. By Proposition 3.5, the restriction of WbAr to
each of 77, and Tg has at most one honeycomb web, which is represented by a triangular symbol as in
Notation 2.7. We call any strand in the braid representative W@ N Q g that is incident to the triangular
symbol in 77, (if exists) a T -strand. Similarly, we define Tg-strands. It is possible that an arc is both
T1 - and Tg-strand, in which case it connects the two honeycombs. By removing the 77 - and Tg-strands,
remaining is a collection of (possibly intersecting) oriented curves, which we call the curve components.
See Figure 17 below.
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Figure 14: Contributions from curve components.

Definition 3.12 (sl3-shear coordinates) The (sl3-)shear coordinate system
XA (L) = (< (L))ier(a) € QM)

is defined as follows. First, for each E € ejy(A), the coordinates assigned to the four vertices in the
interior of Q g only depends on the restriction VVbAr NQOE.

(1) Each curve component contributes to the edge coordinates according to the rule shown in Figure 14.

(2) The honeycomb on the triangle 77, contributes to x“Af(Z) as in Figure 15. Namely, the face
coordinate counts the height of the honeycomb web, where a sink (resp. source) is counted
positively (resp. negatively). The edge coordinates counts the contributions from 77 -strands,
where we have n; left-turning ones, n, straight-going ones (which are also 7g-strands), and n3
right-turning ones.

(3) The honeycomb on the triangle T and the T g-strands contribute in the symmetric way with respect

to the  rotation of the figure.

Then the shear coordinates are defined to be the weighted sums of these contributions.

Remark 3.13 (1) Notice that the rule shown in Figure 14 is an “oriented version” of the Thurston’s
shear coordinates (see Section 3.5). Indeed, the sign of contribution is determined by the crossing

pattern as in the sly-case, and it contributes to the coordinates on the right side of the oriented

curve.
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—nNq

0

—no o0

ns

Figure 15: Contributions from the honeycomb of height n = n; 4 n, + n3 on the triangle 77 .
Observe that the n, straight-going 77 -strands do not contribute.

(2) The shear coordinates of the first honeycomb component shown in Figure 15 is the same as the
sum of shear coordinates of the three honeycomb components shown in Figure 16.

Proposition 3.14 The shear coordinate system quf (Z) € Q1w js well defined, and we get a map

xlg:ﬁx (Z,Q)_)Qluf(A)'

sl3

Proof It is not hard to see that the operations appearing in Theorem 3.10 that move a spiraling diagram in
a good position to another good position do not change the shear coordinates. For example, the modified
H-move always involves a pair of oriented curves in the opposite directions in the braid representation,

ns
ns
ns

Figure 16: Basic honeycomb components.

nq

ni
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30 ol

Figure 17: An example of a signed web W restricted to Q g, the associated spiraling diagram W,
its braid representation WbAr, its shear coordinates are shown order. In Wﬁ, there are two
honeycomb components and infinitely many curve components.

and hence preserves the contribution from the pair. It follows that the shear coordinates are well defined
for a given spiraling diagram, not depending on the choice of a good position with respect to A.

We need to check that the elementary moves (E1)—(E4) of signed webs do not change the shear coordinates.
It is easy to see the invariance for the loop parallel-move (E1). The braid representatives of spiraling
diagrams associated with the local signed webs in (2-5)—(2-7) are obtained as follows:

/‘ N i N v N - N // N
‘'Y A\ 4 \ / \ / \ / \
w - I// \\r\\ ~ I/ ) I/ ‘o~ I/ ! I/ ‘o~
. A~ ) )
R R o
\ / \ / \ /
\ ’ \ ’ \ ’
N N N

- - -

20

NN
RS SR AN : \

W@:' . ! .

Here the braid representatives are not quite the same in the first two cases, but both have the same shear
coordinates. Thus the shear coordinates are invariant under the moves (E2) and (E3). The invariance
under the peripheral move (E4) is similarly verified, where the signed web in the left-hand side produces

a peripheral component in its spiraling diagram.

The shear coordinates are clearly invariant under operations (2) and (3) in Definition 2.6, and hence do
not depend on the choice of a signed Q- -weighted web representing an unbounded sl3-lamination. O

Notation 3.15 We will write x% = xiA(T) for a triangle T of A, and x]%’ 5= xl.% (E) for an oriented edge
E of A and s = 1, 2. Here recall the notations in Section 2.1.
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Figure 18: The building block for reconstruction from the shear coordinates when xy = +3.

3.4 Reconstruction

We are going to give an inverse map £ : Q7u(&) — £§[3 (X, Q) of the shear coordinate system associated

with an ideal triangulation A.

Given (%;); € QT2 choose a positive integer u € Z~ such that x; := u%; are integral for all i € I ;(A).
We will use a notation similar to Notation 3.15 for these tuples. On each triangle 7" € ¢ (A), first draw a
honeycomb web of height |x7| of sink type (resp. source type) if xz > 0 (resp. x7 < 0). Moreover, on
each corner of T', draw an semi-infinite collection of disjoint corner arcs with alternating orientations
such that

¢ they are disjoint from the honeycomb web (placed on the center of 7'),

¢ they accumulate only at the marked points of the triangle, and

¢ the farthest one from the marked point is oriented clockwise.

See Figure 18. Then we get an unbounded reduced essential web Wr on each triangle 7. We are going
to glue these local blocks together to form an integral unbounded sl3-lamination £A ((x;);) € £§[3 (2,7).

Now let us concentrate on a quadrilateral Q g in the ideal triangulation A which contains two triangles
T1, and Tg that share an interior edge E. We fix an orientation of E such that 77 lies on the left; hence
we have two edge coordinates xg 1 and xg 2 as well as two face coordinates x7, and x7:

XE .2
XTp o y oXTg

XE,1

Consider a biangle Bfg in the split ideal triangulation A obtained by fattening E, which is bounded
by boundary intervals E;7, and Eg of T, and Tg, respectively. For Z € {L, R}, let Sz = S ; us,
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denote the set of ends of the web Wz, on Ez, where S ; (resp. S,) consists of the ends incoming to
(resp. outgoing from) the biangle Bg. Then S = (SL, Sg) defines an asymptotically periodic symmetric
strand set (Definition 3.2). Let us define its pinning by the following rule:

e For Z € {L, R}, choose orientation-preserving parametrizations
¢ R — Ez

so that qﬁfZ‘:(% + Z) =S éc, and qﬁ% R<o)NS éﬁ consists of all the strands coming from the corner
arcs around the initial marked point of Ez.

o Let pfzE = ¢§(n§) € Ez for Z € {L, R}, where anE € Z are given by
(3-2) nz_ = XE,1» I’lz = [XTL]+, I’l; = XE 2, nE = [XTR]+,
where we use the notation [x]4+ := max{0, x}.

Then we get a pinned symmetric strand set S E := (S;pr,pr) with the pinnings pz := ( p}', p) for
Z €{L,R}. Let Wbr(§ E ) denote the associated collection of oriented curves in Bg.

Remark 3.16 The resulting collection Wbr(§ E) is invariant under the transformation

+

+ + k, n;—n; -1, n >nh 41, np—nptk,
L L R R R R

VlL |—>nL—

fork,l € Z.

Gluing together the local webs Wr for T' € t(A) and the curves in Wbr(§ ) for E € e(A), we get a
(possibly infinite) collection W@((xi)i) of webs on X. The following lemma shows that it has correct
shear coordinates.

Lemma 3.17 We have x> (W5 ((xi)i)) = xi for all k € Iug(2).

Proof Let us concentrate on a quadrilateral Q = Ty, U Bg U Tg. It is easy to see x%z (Z) = xr, for
Z €{L, R}. The equalities x% 1(Z) =xg,1 and x% 2(lA,) = xg > can be also verified case-by-case, divided
according to the signs of x7;, and x7,. See Figures 19-21. Here we draw the pictures by separating the

J’_

gluing procedures §; — Sp and S ZF — Sx into two sheets; the result is obtained by overlaying the two

diagrams drawn on the right.

For example, let us consider the example shown in Figure 19. In the case xg » > 0 (as in this example),
there are xg > many lines from south-east to north-west that contribute positively. One can imagine the
other cases by varying this example: if we decrease xg 2, then the point p; moves upward and the gluing
pattern is shifted. When —x7, <xg » <0, negative contributions come from the honeycomb in 77,. When
XE 2 < —xr, , there are also lines from south-west to north-east that contribute negatively. Thus we get
x% 2(Z) = xg 2. The check for xg ;1 is similar. One can check the other cases from Figures 20 and 21 in
a s’imilar manner. O
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Figure 19: An example for the case xr;, > 0 and x7, > 0.

The collection WbAr((xi)i) is the braid representative of the spiraling diagram associated to an unbounded
integral sl3-lamination £ ((x;);), which is obtained as follows:

Step 1 First remove the peripheral components around the marked points (both special points and
punctures) from WbAr((xi),-). Then, remaining are finitely many components.

Step 2 Replace each spiraling end around a puncture p with an end incident to p, while encoding the
spiraling directions in signs by reversing the rule in Figure 10. Then we get a collection WbrA((xi)i) of
signed webs, which we call a braid representative of a signed web. It contains at most finitely many
intersections of curves only in biangles. Here we can rearrange WbrA ((xi)#) so that no pair of curves form
a bigon by applying a Reidemeister II-type isotopy if necessary (cf square removing algorithm in [6]).
See Figure 22. Observe that this operation does not affect the shear coordinates.

Step 3 Replace each intersection of curves in a biangle with an H-web by the rule (3-1). Then we get
a signed sl3-web W on X, which has no elliptic faces. Indeed, we have no 0-gon or 2-gon faces by
construction, and possible emergence of 4-gon faces has been eliminated in Step 2.

Then £a((x7)i) € £§I3 (X, Z) is defined to be the unbounded integral sl3-lamination represented by the

nonelliptic signed web W (with weight 1 on each component). Set
En(Gi)i) i=u""Ea((xi)i) € L3, (2, Q).
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Sk

Figure 20: An example for the case x7;, > 0 and x7, < 0. The case x7, <0 and xr, > 0 follows
by symmetry (Remark 3.16).

Thus we get the map £ : QTu(A) — £§[3 (X,Q), which is clearly Q- ¢-equivariant. We are going to
show that this map indeed gives the inverse map of x“Af. The following direction is easier:

Proposition 3.18 We have x“Af oA =idgyrea)-

Proof By Q- -equivariance, it suffices to consider an integral tuple (x;); € Z% (&) Notice that by
construction, the collection WbAr ((x;);) arising from the gluing construction above is exactly the braid
representative of the spiraling diagram associated with the underlying signed web of the s(3-lamination
L:= En((xi)i) € £§[3 (X, 7Z). Therefore the shear coordinates (xiA (lA,)) can be directly read off from the
collection WbAr ((x;)i). Hence the assertion follows from Lemma 3.17. m|

Theorem 3.19 (proofin Section 6.2) We have £ ox“Af =id £3,(5.Q)- In particular, the shear coordinates
gives a bijection £ : QTu(A) >~ L£3.(Z,Q). )

See Section 6.2 for a proof. The main ingredient of the proof is an unbounded version of the fellow-traveler
lemma [6, Lemma 57] with respect to the shear coordinates.

Recall from Section A.3 that the ideal triangulations A correspond to certain seeds in the mutation class
s(X, sl3). The following theorem states that the associated shear coordinate systems x“Af are related by
tropical cluster Poisson transformations:
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Figure 21: An example for the case x7;, <0 and x7, <O0.

Theorem 3.20 For any two ideal triangulations A and A" of X, the coordinate transformation
Xug/ ° (XuAf)—l . Qluf(A) N Qluf(A)
is a composite of tropical cluster Poisson transformations. In particular, we get an MC(X)-equivariant

identification x3": £ (2, Q) = X4 (QT).

\
4
Y S

1 > 1]

<+

Figure 22: Reidemeister II-type isotopy. We have two ways of applications of this isotopy, which

produce equivalent webs.
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Since it is classically known that any two ideal triangulations of the same marked surface can be connected
by a finite sequence of flips, it suffices to show that a flip corresponds to a composite of tropical cluster
Poisson transformations. Although it can be directly checked in a similar way to [7, Section 4], we are
going to reduce it to Douglas and Sun’s result via the ensemble map and the gluing technique developed
in Section 4.

3.5 Relation to the rational unbounded s[,-laminations

Recall the space E;‘[z (2, Q) of rational unbounded (sl>-)laminations from [11]. It consists of the following
data:

e A collection of immersed unoriented loops and arcs such that each endpoint lies in M, U 0* X, and
the other part is embedded in int . It is required to have no elliptic faces (the first one in (2-1) or
the first and last ones in (2-2)).

¢ A positive rational weight on each component.
e A sign 0, € {+,0,—} for each puncture p € M, such that 0, = 0 if and only if there are no

components incident to p.

They are considered modulo removal/creation of peripheral components as in (2-8), and the weighted
isotopy as in Definition 2.6(2). Given an ideal triangulation A of X, the (sl-)shear coordinate

xa = (x5) Eee(n): L5, (2, Q) => Q«A)

(see [11]) is defined by first constructing a spiraling diagram according to the sign o, and counting
contributions with weights from the curves in that diagram, as in Figure 23.

An embedding tpin: £, (2, Q) — L;‘[3(2, Q) is defined so that

X
153
e each curve y with weight u € Q¢ is sent to its parallel copies, y; and y», with the same weight u

with the opposite orientations;

e if an arc y is incident to a puncture p, then the corresponding ends of the oriented curves y; and
y2 are assigned the sign 0, € {+, —}.

+1 —1

Figure 23: Contributions to the sl,-shear coordinates.
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One can easily verify that it is indeed well defined. We call (4, the principal embedding, as it is a
tropical analogue of the morphism Xsp, » — Xsp,,» induced by the principal embedding sl, — sl3. The
following is a tropical analogue of the statement given in [12, Section 2.5.3]:

x
sl

tion * (Definition 2.8). In the shear coordinate system x associated with any ideal triangulation A, it is

Proposition 3.21 The image t,in (£}, (2, Q)) coincides with the fixed point locus of the Dynkin involu-

characterized by the equations
x%)l = X%,z foreach E € e(A),

x% =0 foreach T €t(D).

Proof The first assertion follows from the second one, by Proposition 4.13 below. The second assertion
is easily verified by comparing the definitions of sl- and sl3-shear coordinates. Indeed, we have
x]% (Z) = xél (Lprin(Z)) = X%,z (Lprin(Z)) and x% (tprin (Z)) =0, where (Xﬁ)EEe(A) denotes the sl,-shear
coordinate system. O

4 Rational P-laminations, their gluing and the mutation equivariance

In this section, we introduce the space of rational P-laminations by considering some additional data on
boundary intervals and define a coordinate system xa extending x“Af. These additional data allow us to
introduce the gluing map between these spaces. Under this extended situation, we discuss the relation
to Douglas and Sun’s tropical .A-coordinates [6], and prove that the coordinates xa transform correctly
under flips.

4.1 Rational unbounded s(3-laminations with pinnings

It has been stated that the space £§I3 (X, Q) of rational unbounded sl3-laminations is identified with the
unfrozen part XE“[g,E(QT) of the tropical cluster X'-variety. In order to obtain the entire tropical cluster
X-variety, we further equip the rational laminations with additional data on boundary intervals. Let
PV =Zw & Zw, be the coweight lattice of s[3, and P¢) := P¥ ® Q. Let us consider the direct sum
Hy@Q") = P Pg
EeB

of the coweight lattices over Q, one for each boundary interval.

Definition 4.1 (rational unbounded sl3-laminations with pinnings) We introduce the space

Lh(2.Q) =L, (2.Q) x Hy(@QT),

and call its elements rational unbounded s\s3-laminations with pinnings (or rational (sl3-)P-laminations).

The datum in the second factor is written as v = (Vg ) geg With vEg = v'E w + Vg w,, v% € Q.
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Figure 24: The corner arcs relevant to the boundary shear coordinate.

The data v = (vg) g will be related to the pinning in the sense of Definition 3.4 when we consider their

gluings, thus the terminology. We have a natural Q- ¢-action on £§3 (2,Q) given by
u.(L,v):=.L,(uvg)Eg)

for u € Q¢ and (Z, v=(vg)E) € LY (2, Q). The Dynkin involution (Definition 2.8) is extended as

sl3
(4-1) «: L0 (2.Q) > £} (2.Q). (L.(vE)geB) = (L*. (v})EeB).

where v* = (UE) EcB is obtained from v by the Dynkin involution on the coweight lattice: @, 1= w3_g
for s = 1, 2. There is a projection

st L0, (2. Q) — £, (2.Q)

forgetting the second factor, which is equivariant under these structures. A rational P-lamination (Z, V)
is said to be integral if Le ﬁ;‘h (X,Z) and pg € PY forall E € B.

Remark 4.2 The space £§3 (2, Q) is introduced as a tropical analogue of the moduli space Ppgy,,x of
framed PGL3-local systems with pinnings on X [21]. We have a dominant morphism Ppgy 5,5 — ApGL;, 5,
which is a principal Hy := H®-bundle over its image. Here H C PGL3 denote the Cartan subgroup. As
a tropical analogue, we may naturally consider the bundle

(4-2) 0— Hp(Q") = Peors, = (QT) = Xpar,, 2(QT) — 0.
The space 55[3(2, Q) is regarded as the total space PPGL3,E(QT) with a fixed trivialization. See also

Remark 4.8 below.

Shear coordinates on Esp [3(2 , Q) Given an ideal triangulation A of X, we are going to define a shear
coordinate system

xa = (Pieray: L0, (2.Q) » Q1)

whicAh extends x‘g on C;C[S(E,Q). For (f,, V) € £§3(E,Q) and an unfrozen index i € [ (A), let
xl.A (L,v):= xl.A (L) be the shear coordinate of the underlying rational unbounded lamination.

We define the frozen coordinate x% S(Z, v) for s = 1,2 associated to a boundary interval £ € B, as
follows. Let W be a nonelliptic signed Q- -weighted web without peripheral components representing L,
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and W its spiraling diagram in a good position with respect to the split triangulation A. By convention,
E is endowed with the orientation induced from dX. Then xé’l (resp. X%,z) is assigned to the vertex
of the sl3-triangulation on E closer to the initial (resp. terminal) endpoint. Let m € My be the initial
endpoint of E, and T € ¢(A) the unique triangle having £ as an edge. Let ay (L) (resp. o (L)) be
the total weight of the oriented corner arcs in W N T" bounding the special point m in the clockwise
(resp. counterclockwise) direction, hence incoming to (resp. outgoing from) the external biangle Bg if
we consider the split triangulation A. See Figure 24. Then we define

xE 1(L V) = VE —aE(L)

(4-3) ~
xE’z(L, V) =Vg —af (L) — [xr(L)]+.

Proposition 4.3 The shear coordinate system gives a bijection x : £F (X, Q) = Q(4),

sl3

Proof Given (x;);er(p) € Qf (A), we can reconstruct the underlying rational unbounded lamination L
from the unfrozen part (x;);er(a), as in Section 3.4. Then the datum v is uniquely determined by the
relation (4-3). O

The following is immediate from the definition:

Lemma 4.4 The map my: Lf[%(E, Q) - L

ol (X, Q) is a cluster projection. Namely, we have a

commutative diagram
LE(2,Q —— Q'®

P!

(2.Q) — > QM®

5[3

for any ideal triangulation A of ¥, where the right vertical map is the projection forgetting the frozen
coordinates.

4.2 Gluing of laminations

Let ¥ be a (possibly disconnected) marked surface, and E7, Eg € B(X) distinct boundary intervals.
Then we can form a new marked surface ¥’ from ¥ by gluing E;, with Eg. As a tropical analogue of

the gluing morphism Ppgr,, 5 — Ppcrs,x [21, Lemma 2.14], we are going to introduce a map
qE, Er: L0,(2,Q) — LL. (2, Q)

between the corresponding spaces of rational P-laminations. The map ¢g, g, will be defined to be
equivariant with respect to the Q- -action, and invariant under the action «g, g : Q ~ LP ol (Z,Q)
given by the shift

(4-4) w(VE, VER) = (VE, + 1, VER, — 1)
for p = aw’ +bw, € Py, where u* := bw)" + aw,’, and keeping other vg, E # E, ER intact.
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Let (f,, V) € Ei (X2, Z) be an integral P-lamination. Represent the integral unbounded s(3-lamination
L by a nonelliptic signed web W with weight 1 on every component. Around each special point of
E; and ER, draw a semi-infinite collection of disjoint corner arcs with alternating orientations that
accumulates only at the special point so that they are disjoint from W. Here we choose the orientation
of the farthest corner arc from the special point to be clockwise, as in Section 3.4. Insert a biangle B
between E;, and Eg, and identify X’ = X U B. Notice that the ends of W on E;, and Eg, together with
those of the additional corner arcs, defines an asymptotically periodic symmetric strand set S = (S, SR)
on B. We equip S with a pinning pfzE for Z € {L, R} by the following rule:

¢ Choose continuous parametrizations wéc :R — Ez so that wéc (% + Z) =S éc, and w% R<o)NS éﬁ

consists of all the strands coming from the additional corner arcs around the initial marked point
of E7.
e Then set prE = Wéc(vfz) e Ez.
Then we get a pinned symmetric strand set S = (S;pr,pRr) on the biangle B. Let Wbr(§ ) be the
associated collection of oriented curves in B. Gluing the web W with the collection Wbr(§ ), we get
an infinite collection W{)r of webs on X/ = ¥ U B. The initial (resp. terminal) marked point of Ey is
identified with the terminal (resp. initial) marked point of Eg, and regarded as new marked points in X'
For each of these new marked points, do the following:
o If it is a special point, then remove the peripheral components around this point from W .

e [f it is a puncture, then remove the peripheral components and replace each spiraling end around
this point with a signed end, while encoding the spiraling directions in signs by reversing the rule
in Figure 10. Then there remain at most finitely many intersections in B.

¢ Finally, replace each intersection of curves in B with an H-web by the rule (3-1).
Thus we get a nonelliptic signed web W’ on X/, which represents an integral 7P-lamination
L'=qg, gx(L) e LE (2. 2).

The construction is clearly invariant for the action of Hy(Q7) by Remark 3.16, and Z - ¢-equivariant.
Thus it can be extended Q- p-equivariantly.

Definition 4.5 The thus obtained map gg, g,: th (Z,Q)— th (X', Q) is called the gluing map along
E; and ER.

In view of Remark 3.16, we immediately have:
Lemma 4.6 The gluing map qg, gy is invariant under the shift action (4-4) of Pé.

Any ideal triangulation A of ¥ naturally induces a triangulation A’ of ¥/, where the edges Er and Eg
are identified and give an interior edge E of A. The points in /(A) on these edges are identified as
iS(Er) =i%"(ER) for s = 1,2 with s* := 3 — . The points of /(A) away from the edges E; and ER
are naturally identified with the corresponding points of 7(A").
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Ey

AU
SRR A

Figure 25: Comparison of two edge parametrizations. A part of the web representing L which
will be incoming to the bigon Bg is shown in red, and the additional corner arcs are shown in
blue.

Theorem 4.7 The gluing map qg, g, is the tropicalized amalgamation. Namely, for any ideal
triangulation A of X and the induced triangulation A’ of ¥, it satisfies

% A A A
4dE; ExXE,s = XE;,s T XEg.s*

for s = 1,2. Here E inherits an orientation from Ej, (so that from the bottom to the top, when we draw
E on the left). The other coordinates are kept intact: q}L EinA/ = xl.A fori € I(A)\{i*(E)}s=1,2-

Proof The last statement is clear from the definition. To see the relation between the coordinates on the
edges Er, Er and E, it suffices to consider an integral lamination Le th (X, Z) by Qx¢-equivariance.
Write L' :=qEg, gr(L) and x; := xl-A (L) fori € I(A). Recall the reconstruction procedure of the integral
lamination L’ from its shear coordinates, and compare the gluing parameters

VEL :XEL;I +aEL’ VER :XERa2+[XTR]++aER’

(4-5) - - + +
UEL = XEL,Z + [XTL]+ +aEL’ VER :XER,I +O!ER’

with the integers appearing in (3-2). By Lemma 4.6, the result of gluing is unchanged under the

modification
St + 5= =

@6 Vg, = (XE; 1 +XER.2) +OlEL, VER = [X7r]+ T OUg,,
S - S+ +
Vg, = [x7, ]+ +“E,_a VER = (XE, 2 +XEg,1) +O‘ER

by the shift action (4-4). On the other hand, since there are “original” corner arcs of L in Ty, and Tg
before adding infinite collections of corner arcs in the gluing procedure, the parametrizations of edges are
related by

¢z () =yZ(n+a%,)
forn € Z and Z € {L, R}. See Figure 25. These comparisons on the two gluing constructions show that
L= 4E; Er (L) if and only if xE,S(Z\/) = XEL,s(Z) + XE g5 (L) fors =1,2. O
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Remark 4.8 In view of the gluing construction presented above, the definition of the integral unbounded
sl3-laminations with pinnings can be modified slightly more geometrically as integral unbounded sl(3-
laminations equipped with infinitely many corner arcs around special points and choices of points p% eE
for each E € B, in place of the datum vg € PY. It gives a right description of the tropical analogue of
PPGL3,Z(ZT) without fixing a trivialization of the bundle (4-2). We do not pursue an extension of this
description to the rational case.

4.3 Extended ensemble map

Recall the geometric ensemble map (2-9). We extend it by

ﬁ: 2[3(E7Q)_)£5p[3(2’@)v LH(P(L)’(VE)E),

where vg (resp. v ) is minus the total weight of the peripheral components with the clockwise (resp. coun-
terclockwise) orientation around the initial marked point of E. We have a commutative diagram

£8 (£.Q) —2 £2 (5.Q)

503

x lnuf

£5.(5.Q)

Lemma 4.9 If ¥ has no punctures, then p: Ef‘_’h(E, Q) — L2

53

(X, Q) gives a bijection.

Proof In this case, the only datum that the map p loses is the weights of peripheral components around
special points. This can be uniquely recovered from the tuple (Vg )E. O

On the integral points, we have ﬁ(£§[3 (X,2)) C £ﬁ3 (%,7).

Proposition 4.10 The extended geometric ensemble map p: 5213 (Z,Q) = £E (2, Q) coincides with

sl3
the Goncharov—Shen extension of the ensemble map (A-6). Namely, it satisfies
(4-7) PxE =)0 (eff +mijar
JEI(D)

for any ideal triangulation A of ¥ and i € I(A), where
e (a jA )je1(a) denotes the tropical A-coordinates on E;’[3 (X, Q) associated with A, which is one-third
of the Douglas—Sun coordinates;
o 8= (el%)i’j e1(A) denotes the exchange matrix defined in Section A.3;

* M = (mjj); jer«n) is the half-integral symmetric matrix given in (A-5).

In particular, by forgetting the pinnings and frozen coordinates, we see that the geometric ensemble map
p: L% (X,Q)— LY (X,Q) coincides with the ensemble map (A-2).

sl3 sl3
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Proof In view of the local nature of the definitions of coordinate systems and the exchange matrix, it
suffices to consider the case where X is a triangle or a quadrilateral. Indeed, for i = i(T) € I1"(A),
it suffices to focus on the triangle 7 containing it; for i = iS(E) € 1°92°(A) N Is(A) consider the
quadrilateral containing the interior edge E as a diagonal; for i = i*(E) € 1°%°(A) N If(A) consider the
triangle T having the boundary interval E as one of its sides.

Triangle case For the sl3-quiver associated with the unique ideal triangulation of a triangle 7, label its

vertices as:

Then the expected relation (4-7) reads as

P*xo = az +as +a¢ — (a1 + a3z + as),

*x1 =ap—a1 —ae,

ST

~%
P X2 =a1 +asz—az—ao,

~%
P X3 =ap—az—az,

Pxa = a3 +as—ag —ao,
~%

P X5 =ap—a5—a4,
ﬁ*x6=35+31—a6—ao.

The tropical .A-coordinates of essential webs on 7" are defined as the weighted sum of the coordinates of
its components. See [6, Section 4.3]. Therefore it suffices to check the relations for the corner arcs and
the sink-/source-honeycombs of height 1, whose coordinates are shown in Figure 26. Then the relations

between the two coordinates can be easily verified.

Quadrilateral case For the sl3-quiver associated with an ideal triangulation A of a quadrilateral Q,

label its vertices as:

AN
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2/3  1/3

an(t-) xa(T-)

Figure 26: Two types of coordinates of component webs on a triangle 7. All the webs shown
here have weight 1.

The remaining relations to be checked are

prx1 =as+ag—ax—a,
(4-8) .

P X3 =ap+ag—ag—ag.
The tropical A-coordinate assigned to a vertex i € I(A) only depends on the restriction of a given web to
the triangle which contains 7. In particular, we can choose the braid representative with respect to A for the
computation, since the biangle part does not matter. Then both .A- and X-coordinates are weighted sums of

contributions from the components of the braid representative. It is easy to verify that the both sides of the
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equations in (4-8) vanish for the corner arcs around the marked points Q. For the curve and honeycomb
components that contribute to the shear coordinates, the expected relations are easily verified from
Figures 27 and 28. Here notice that, for instance, the coordinates of the honeycomb component Hy, 55,15
shown in the top of Figure 15 can be computed as za (Hp nyn5) = nle(ri) +nzza(h) +ns3za (tf)
for z € {a, x}. Together with this observation, the eight patterns shown in Figures 27 and 28 exhausts all
the patterns up to symmetry. d

The following states an extension of Theorem 3.20 with pinnings/frozen variables, as promised before.

Theorem 4.11 For any two ideal triangulations A and A’ of X, the coordinate transformation
XA, N = XA/ OXZI : QI(A) N QI(A)

is a composite of tropical cluster Poisson transformations. In particular, we get an MC(X)-equivariant
identification x,: L5 (2, Q) = Xy, £(QT).

As a corollary, combining with Lemma 4.4, we get a proof of Theorem 3.20.

Proof From Lemma 4.9 and Proposition 4.10, the statement is true when X has no puncture (in particular,
a quadrilateral). Indeed, the corresponding transformation aa A’ :=ap’ an1 Q1A - Q1A s shown to
be a composite of tropical cluster A-transformations [7, Proposition 4.2]. Thenxa ar = (p~1)*oap a0 p*
is the corresponding composite of tropical cluster X'-transformations, since the extended ensemble map
commutes with the tropical cluster transformations and is a bijection in this case.

For the general case, it suffices to consider two triangulations, A and A’, related by a single flip along an
edge E € ejn(A). Let Q be the unique quadrilateral in A containing E as a diagonal, and X’ := X \int Q
the complement marked surface. It is obvious that the shear coordinates assigned to the vertices outside
Q are unchanged. On the other hand, the coordinates assigned to the vertices on Q transform correctly
from the argument above under the corresponding coordinate transformation on £§3 (0,Q). Since X
is obtained by gluing Q with ¥’ and the shear coordinates are obtained by amalgamating those on
653 (0,Q) and 653 (¥, Q) by Theorem 4.7, the statement follows from the fact that the amalgamations
commute with cluster X'-transformations [9, Lemma 2.2]. O

Remark 4.12 For an unpunctured surface X, the fastest way to introduce the coordinate system xa
on £§3 (2, Q) which transforms correctly under the flips would be to define it via the relation (4-7) in
view of Lemma 4.9. Then, however, it becomes rather difficult to obtain the amalgamation formula in
Theorem 4.7, since the (tropical) .A-coordinates do not behave so simply as the (tropical) X-coordinates

under the gluing. Indeed, the following naive diagram does not commute:

Aﬁ[:;,E(QT) E— AS[:;,E/(QT)

ps| |7

Yo 5(QT) g Xay m(Q7).
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1/30 02/3 0o

1/3 2/3 0 0

aa(a-) xa(

1/3 2/3
2 2/3 1/3
ol/3

1/3 1/3 0

3A(T+)

1/3 1/3 2/3 0

1o 02/3 _lo

1/3 0 0

2
&> 5 & & &

an(eh) xa(eh)

Figure 27: Two types of coordinates of component webs on a quadrilateral Q. All the webs
shown here have weight 1. (Continued in Figure 28.)
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J
&

an(h) xa (h)

Figure 28: Two types of coordinates of component webs on a quadrilateral Q. All the webs
shown here have weight 1. (Continued from Figure 27.)

Here the top right arrow denotes the quotient map given by the equation a; = a; for any pair {i, j } of quiver
vertices that are identified under the gluing. Actually, we need to “rescale” some of the .4-coordinates for
a correct gluing; see [29, Section 6.1] for a more detail. In particular, the sum ﬁgxiA + ﬁngA does not
compute ﬁ;,x?/, where the pair {7, j} is amalgamated into i.

4.4 DynKkin involution

Let us discuss the equivariance of the shear coordinates under the Dynkin involution (4-1). The cluster
action * p (see the last paragraph of the appendix) of the Dynkin involution in the cluster chart associated
to A is given by the mutation sequence

Ky = 0Oe(A) © Kt (A)>
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where 0,(a) denotes the composite of the transpositions of the labels of the two vertices on each edge
of A, and j;(p) is the composite of mutations at the vertex on each triangle of A. It induces the tropical
cluster X'-transformation
¥\ IXT > —XT for T € t(A),
XE,1 > XE 2 + [x1 ]+ — [—xTR ]+
xg2 P> XE1 + [xrgly =[x, ]+ for E €e(D),

where we use the local labeling as in Section 3.4 for each edge E.

Proposition 4.13 We have the commutative diagram

£7,(2.Q) = Q'@

q) l*A

p
L (2.Q) — Q1.
In particular, the orientation-reversing action of the Dynkin involution coincides with the cluster action.

Proof Mutations commute with amalgamations [9, Lemma 2.2]. Moreover, the permutation term o, (a)
also commutes with the amalgamation of edge vertices corresponding to the gluing. Hence * o commutes
with the gluing map. It is also clear from the definitions that the Dynkin involution (4-1) commutes with
gluing maps. Therefore it suffices to prove the statement for triangles.

It is easy to verify the equation
(4-9) *A oxa (W) =xa(WF)

for each component web W shown in Figure 26 by inspection. Consider a disjoint union W = W; U W, of
webs on a triangle 7', and suppose that the (4-9) is true for W = Wj, W5. Since sink/source honeycombs
cannot coexist, we have {sgnx7 (Wy), sgnxy (W)} # {4+, —}. Therefore the coordinate vectors xa (W1)
and xa (W) belong to the same cone on which the tropical cluster transformation * A is linear. Hence,

*A oxa (W) = xa(xa(Wr) +xa(W1))
= #p 0xA(W1) 4+ %4 oxpa (Wa) = xa (W) +xa (W) = xa (WF). O

5 A relation to the graphical basis and quantum duality map

Let ¥ be a marked surface without punctures. Recall from [30] the skein algebra 9’5‘1[3 5;» which is a
noncommutative algebra over Zg := Z[qil/ 2] consisting of tangled trivalent graphs in ¥ with endpoints
in M, subject to the sl3-skein relations

/\ \\ 5 / \\ 1 // \\
! ! —1
(5_1) ! \ Il =q Il +CI [ Il ’
\ / \ / \ /
\ Y \ / N /
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> X

- \
I/ \ \\ \\
(5-3) D G N + . s
\\ < / /
d /

(5-4)

(5-5)

Il
oy
+
+
Q
A

Il

x\ \/ \ / =4/ A

together with their Dynkin involutions. We included the square-root parameter ql/ 2 so that we can

consider the simultaneous crossing (or the Weyl normaltzatzon) as

NSNS SN

It is proved in [30] that the localized skein algebra &4 o133 [0~!] along the oriented arcs parallel to boundary

intervals is contained in the quantum cluster algebra [3] &i;][} 5, associated with a certain choice of
compatibility pairs over the mutation class s(sl3, X) At least in the classical limit ¢ = 1, we have the
equalities [29]

(5-6) Fa 5071 = sl 5 = O(Asty, 3).

The skein algebra El’sql 5 has a natural Z,-basis BWeb,, 5 consisting of nonelliptic flat trivalent graphs.
Here a flat trivalent graph is an immersed oriented uni-trivalent graph on X such that each univalent vertex
lies in M, and the other part is embedded into int X. In particular, it is required to have simultaneous
crossings at each special point. It is said to be nonelliptic if it has none of the following elliptic faces:

(5-7) O
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Elements of BWeby, 5 are also called the basis webs. We are going to relate the integral sl3-laminations
with pinnings to the basis webs.

Definition 5.1 (negative M-shifting of webs (cf “moving left” in [36, Figure 2])) Given a web W
on X in the sense of Section 2.2, let WM ¢ 95[2 5, be the flat trivalent graph obtained by shifting the
endpoints of W to the nearest special point in the negative direction along the boundary (with respect to

the orientation induced from X), and taking the simultaneous crossing. See Figure 30.

For an integral s(3-lamination with pinnings (L,v) e [,f[%(E, Z), represent L by a nonelliptic s(3-web
W only with components with weight one, and define

19.(L) := [WM~ I1 (eg)vif (eg)vi} egh, 207"
EcB

Here vg = vg o) + Vg w, € PY for each E € B, and the symbol [—] stands for the Weyl normalization.

Then I[g((Z) does not depend on the choice of the representative W, since the loop parallel-move is also
realized in the skein algebra (by using the Reidemeister II move twice), and the boundary H-move exactly
corresponds to the third boundary skein relation. Moreover, it is a basis web since the two notions of
elliptic faces correspond to each other via the shift of endpoints.

Note tilat ]Ig((lA,) € Ef’fk,z if and only if vg € PY := Z @' 4+ Z 1w, forall E € B. In this case, we say
that (L, (vg)) € L’i (X, Z) is dominant. Let £ (Z,7Z)+ C £F (X, 7Z) denote the subspace of dominant

5l3 sl3
integral sl3-laminations. From the above discussion, we get:

Theorem 5.2 Assume that 3 has no punctures. Then we have an MC(X) xOut(SL3)-equivariant bijection

14: L8 (2,7Z)+ => BWebg, 5 C ¥2

sl3 sl3,2°

Moreover, it is extended to a map ]I/,qv : Eﬁ} (2,Z2) — 93[3 5 [071], whose image again gives a 7 4-basis.

The latter correspondence should be a basic ingredient for a construction of Fock and Goncharov’s
quantum duality map [13] (see [41, Conjecture 4.14] for a finer formulation as well as [5]), which requires
a basis of the quantum upper cluster algebra parametrized by the tropical set Xsb,g(ZT) = 553 (2,72)
with certain positivity properties. Let us interpret Theorem 5.2 in this context.

Langlands dual coordinates It turns out that it is more convenient to use a slight modification® of
frozen shear coordinates to make the correspondence suited to the Fock—Goncharov conjecture. For an
ideal triangulation A of X, we define the Langlands dual coordinates

Xa = (&)ier(a): L, (2.Q) => Q1®)

6In the language of Goncharov and Shen [21], it amounts to take the decoration at the terminal endpoint of a boundary interval
rather than its initial endpoint along the boundary orientation to make a pinning.
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Figure 29: The corner arcs relevant to the Langlands dual coordinate.

as follows. For i € Iys(A), let >V<.A = x.A. For E € B, we define the frozen coordinates on E by
XE ((Lv) = Vg +a +(L) + [xr (D)4,
XE,Z(L’ V) 1 =Vvg +dg (L).

Here T is the unique triangle having E as an edge; & (L) (resp. a (L)) is the total weight of the oriented
corner arcs in W N T bounding the terminal endpoint of E in the counterclockwise (resp. clockwise)
direction. Compare with (4-3). The map xa gives a bijection, which can be verified similarly to the proof
of Proposition 4.3.

We define the Langlands dual ensemble map

(5-8) L4, (2,Q) - L£E.(2,Q)

by forgetting the peripheral components, and defining the pinning v}; € Q (resp. v € Q) to be the weight
of the peripheral component around the terminal endpoint of E in the counterclockwise (resp. clockwise)
direction. The name “Langlands dual” is inspired by the following property:

Proposition 5.3 The Langlands dual ensemble map (5-8) satisfies
PP = ) (e —mija)

Jjel(b)
for any ideal triangulation.

Compare with (A-2), and observe that the presentation matrix is changed to the Langlands dual
—EA+M)T =2 - M.
The verification of Proposition 5.3 is similar to Proposition 4.10, which is left to the reader.

For each v € Exchg(,,x and k € I, the elementary lamination is the tropical point ﬁ,(c V) ¢ X5[3,E(ZT)
characterized by x(v)(ﬁ(v)) = §; . We have the cone

Cly = spang {1 | k € I} ={£ € Xy x(RT) | %" () > 0 for all k & I}

(v
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./
LN

\”

Figure 30: Negative M-shifting of elementary laminations associated with a triangulation. Here
exactly one of the Langlands dual coordinates >V<l.A is +1, while the others are zero (including the
frozen ones).

and its integral points C(”; )(Z) = C(T) y N X5[3,E(ZT). The following gives a partial verification of a
condition for the quantum duality map:

Lemma 5.4 For any elementary lamination El(cv) associated with a labeled sl3-triangulation v = (A, £) in
Exchg,, 5, the element ]I;I((E,(cv)) coincides with the quantum cluster variable A,(cv) € &43[3 5,- In particular,
any point £ =) xkﬁl(cv) € C(J;)(Z) gives a quantum cluster monomial [Hk (A,(CU))xk].

Proof Via the isomorphism
Xpl Xy 2 (21) 2= L (2. 2),

sl3

the elementary laminations KI(CU) for unfrozen k € I(A)ys correspond to the integral sl3-laminations as
shown in the left of Figure 30. The elementary laminations EI(CU) for frozen k = i*(E) € I(A)sf with E € B
and s € {1, 2} correspond to the pinning data vg = w,’. Then via the quantum duality map

I%: L8, (S.Z) 4 => BWebg, 5 C 94 x

sl3

these laminations are sent to the elementary webs associated with A in the sense of [30]. They correspond
to the quantum cluster variables [30, Section 5]. O

Remark 5.5 By the equivariance of the map ]1;1( under the Dynkin involution, the above lemma can be

immediately generalized for decorated triangulations (see [30, Section 1]).
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Figure 31: An elementary lamination of H-shape. Its shear coordinates associated with a triangu-
lation is shown in the bottom left, and their transformations under the mutation sequence shown
in red circles continue to the right.

Remark 5.6 When X is not a k-gon with k = 3, 4, 5, the mutation class s(sl3, X) is of infinite-mutation
type. In this case, the union | J,, €Exchy(; 5 C(J; ) is not dense in X[, » (R'P) [44, Theorem 2.27]. Therefore

Lemma 5.4 is far from characterizing the map ]I?\,.

For the simplest cases that X is a triangle or a quadrilateral (where the mutation class s(sl3, X) is finite
types A1 and Dy, respectively), we actually get a quantum duality map:

Proposition 5.7 When X is a triangle or a quadrilateral, the image Hi(ﬁi (2,Z)) C Oy4(As13,x) gives
a Z.4-basis consisting of quantum cluster monomials. In particular, it has positive structure constants.

Proof For these cases, it is easy to see that 9’5‘1[3 z:[8_1] = &43[3 5, = Oq(As3,3) [30, Corollary 6.1].
Moreover, the tropical set X5[3,E(ZT) is covered by finitely many cones C(J; ) (ZT) forv e Exchg,, 5.

For the triangle case, we have only two clusters (up to permutations), and hence Lemma 5.4 with
Remark 5.5 already gives the desired statement. For the quadrilateral case (type D4), we have 16 unfrozen
variables and 8 frozen variables. For instance, see [30, Appendix A and Corollary 6.1]. Up to symmetry,
we have already seen in the proof of Lemma 5.4 (see Figure 30) that all of them are the images of some
elementary laminations under the map 1%, except for the one represented by the elementary web

This one also comes from an elementary lamination, as seen from Figure 31. O
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Conjecture 5.8 The basis 15(L], (2, Z)) is parametrized by tropical points in the sense of [41, Definition
4.13]. Namely, for any integral sl3-lamination Le £§3(E, 7)), the quantum Laurent expression of
]I?Y (Z) € 5&3{3,2 iP the quantum cluster {4, }; s associated with a vertex w € Exchg,, » has the leading
term []_[ie I Af" (L)] with respect to the dominance order [41, Definition 4.6], where x(@) = (Xi)ier is the

Langlands dual shear coordinate system associated with w.

Classical limit Recall that the set BWeb,(, x also gives a Z-basis of the classical (commutative) skein
algebra 51’51[3 5;- Then Theorem 5.2 tells us that the map H;]( induces a bijection

Iy: L2 (2,Z)4 => BWeby, v C 9)51[3,2’

sl3
which is also extended to a map I y: £§3 (X,Z2) — 9’;[3 Z[8_1]. Then by (5-6), we get the following:

p
sl3

Corollary 5.9 The image I x (L, (2,7Z)) gives a Z-basis of the cluster algebra A, 5.

6 Proofs of Theorems 3.10 and 3.19

6.1 Proof of Theorem 3.10

General position Recall that an ideal arc in (3, M) is an immersed arc y in X with endpoints in M
which has no self-intersection except possibly at its endpoints, and not isotopic to one point. In particular
y is one-sided differentiable at each endpoint p, hence there exists a small coordinate neighborhood D,
of p such that D, Ny consists of (at most two) rays incident to p.

We say that two immersed arcs or webs in X are in general position with each other if their intersections
are finite, transverse and avoiding the trivalent vertices. Moreover, we say that the spiraling diagram W
(Definition 3.8) associated with a nonelliptic signed web is in general position with an ideal arc if their
intersection points do not accumulate in int ¥, transverse and avoiding the trivalent vertices. We may
always assume the general position by the concrete construction of a spiraling diagram as logarithmic
spirals near punctures.

Relative intersection number Let y and y’ be two ideal arcs isotopic to each other with common
endpoints p1, p» € M, and W a spiraling diagram. Assume that these three are in a general position
with each other. Then the ideal arcs y and y’ bounds a region B(y, y’), which is a union of finitely many
biangles (or such a region minus small biangles; see y and y} in Figure 35).

By the construction of the spiraling diagram, there exists a small disk neighborhood p; € D; fori =1,2
such that p; :=y N D; and p; := y" N D; are rays incident to p;, and W N D; is a logarithmic spiral. The
rays p; and p; separate D; into two sectors, and exactly one of them corresponds to the region bounded
by y and y’. Then we can find a circular segment in this sector which does not intersect with ¥V, and the
restriction of W to the circular sector separated by this segment is a periodic ladder-web. We call this
circular sector S(p;) a cut-off sector at p;. See Figure 32. Then Wiee := W N (B\ S(p1) U S(p2)) isa
finite web.
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Figure 32: Two isotopic ideal arcs and a spiraling diagram. A cut-off sector is shown in gray in the right.

Definition 6.1 (relative intersection number) Let y, ¥’ and W be as above, and choose cut-off sectors
S(p1) and S(p2) at the common endpoints py, p» € M. Then we define the relative intersection number
of W with (y,y’) to be

iV 7. 7)) =1 (Weeg. V) =1 Wieg. V).

Here i (—, —) denotes the usual geometric intersection number of two webs.

Notice that it is independent of the choice of the cut-off sectors since a periodic ladder-web has an equal
number of intersections with y and y’ in each of its period. Clearly, we have i W;y’, y) = —i(W; ¥, y').

Lemma 6.2 Let y1, y» and y3 be three ideal arcs isotopic to each other with common endpoints, and WV
a spiraling diagram. Assume that they are in general position with each other. Then we have

iW:iy1.y3) =iWViy1.y2) +i(Wiy2. v3).
Proof Immediately verified by choosing a common cut-off sector. |

Definition 6.3 We say that an ideal arc y is in minimal position with a spiraling diagram W if it satisfies
i(W;y’,y) > 0 for any ideal arc y’ isotopic to y with common endpoints, and in general position with W.

See Figure 33 for an example of an ideal arc not in a minimal position.
Realization of a minimal position We are going to prove:

Proposition 6.4 (unbounded version of [19, Corollary 12]) Let W be the spiraling diagram associated
with a nonelliptic signed web, and y an ideal arc in a general position with WW. Then we can isotope WV

Figure 33: A spiraling diagram »V that is not in minimal position with an ideal arc y. Indeed,
iw;y',y) =—4

Algebraic € Geometric Topology, Volume 25 (2025)



1482 Tsukasa Ishibashi and Shunsuke Kano

Figure 34: The restriction of a spiraling diagram W to a biangle bounded by two ideal arcs.
Its loose part is shown in orange, which can be pushed out through a sequence of intersection
reduction moves and H-moves.

into a spiraling diagram W' in minimal position with y via a finite sequence of intersection reduction
moves, H-moves, and an isotopy relative to y.

To prove this, the following lemma is useful:

Lemma 6.5 (unbounded version of [19, Lemma 15]) Let B be a biangle in ¥ bounded by two immersed
arcs o and o', and W a spiraling diagram in a general position. If some of the endpoints of « and o’
are punctures, then choose any cut-off sectors and consider Wieg as above. Otherwise, set Wieg := W.
Then Wyeg can be isotoped through a finite number of intersection reduction moves and H-moves so that
Wreg N B consists of disjoint parallel arcs connecting o and «'. This can be done by preserving the cut-off
sectors, and the resulting web does not depend on the choice of cut-offs.

Proof Since W is finite, the statement follows from [19, Lemma 15]. O

Notice that each of the H-moves and the intersection reduction moves are accompanied with a small
biangle (shown by dashed lines in Figures 7 and 8) that cuts out a part of the web which we push out.
Therefore the finite sequence of these moves in Lemma 6.5 is accompanied with a finite collection
{BU)} jeJ of biangles that is partially ordered for the inclusion according to the order of moves, which we
call the tightening biangles. Let us denote by W) the part of WV cut out by the tightening biangle B,
which we call the loose part of W. See Figure 34.

The following lemma ensures that the intersection reduction procedures of a spiraling diagram associated
with a nonelliptic signed web always terminate in finite steps.

Lemma 6.6 For any spiraling diagram VV associated with a nonelliptic signed web W and an ideal arc y
in general position, the relative intersection number i (W; y, y’) is bounded from above when y’ runs over
the ideal arcs homotopic to y and in general position with y and W.

Proof If W has punctured H-faces, then applying appropriate puncture H-moves, we obtain another
signed web W’ which is puncture-reduced. The corresponding spiraling diagrams W and W' differ
only by some finitely many H-shaped parts in the spiraling part, and hence i (W; v, y") =i(W';y,y').
Therefore it suffices to consider the case where the signed web W giving rise to WV is puncture-reduced.
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Figure 35: The situation that the relative intersection numbers i (W; y, y;,) diverge. The top left
shows a covering of ¥ around the puncture. The infinite sequence of portions are projected to the
same portion of W.

We prove the assertion by contradiction: suppose that there exists a sequence y;, >~ y of ideal arcs satisfying
the condition and i (W; y, y,,) > n foralln € Zs¢. Let {B,Sj )} jedJ, be the collection of tightening biangles
for the pair (y, y,,), and Wn(j ) C W the corresponding loose part.

(a) Since we are interested in a sequence y, such that i(W;y, y)) diverges, we may assume that
all of the tightening biangles B,gj ) are stuck to y rather than y;,. Otherwise, a biangle stuck to
y,, contributes negatively to i (WW; y, y,,). Then we may isotope y;, to avoid this biangle without
decreasing i WV; y, ;).

(b) Shrinking each tightening biangle (without changing the intersection number of its boundary
with W) if necessary, we may assume that either B,Sj ’n B,gf ) = a, B,gj ) C B,Sf ) or B,Sf ) C B,Sj )
holds for any pair in this collection. Also we can ensure that each tightening biangle does not
intersect with the cut-off sectors at punctures.

Let us consider the compact interval K =y \ (cut-off sectors). From the assumption of general position, the
intersection of W with K is finite. The intersections /. ,5’ )= y Nint B,gj ) give open intervals in K. Observe
that the union UnZO, jed, I,Sj ) has finitely many path-connected components, since each such component
contains a distinct point in W N K, which is finite. Therefore we see that there exist subsequences 7 and

jk € Juy such that BY®) ¢ BYEHD.

Such a nested situation is illustrated in Figure 35. Indeed, the situation says that distinct reduction moves
are applied infinitely many times, while the original signed web W is finite. It means that there is a portion
P of the signed web that is referred infinitely many times. Therefore the nested biangles B,g{(k) (or the
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Figure 36: The correspondence between the puncture-faces (top) and the faces stuck to y (bottom).

arcs y;, ,) must be winding around one of the punctures py or p», while the portion P in W corresponding
to P is spiraling around the same puncture as in the bottom left of the figure. Notice that such a spiraling
diagram W arises from the signed web W shown in the bottom right.

Moreover, observe the correspondence shown in Figure 36 between the faces stuck to y and the puncture-
faces. Therefore, the sequence of loose parts Wn(,{k ) must come from these puncture-faces in the signed
web W, which contradicts to either the puncture-reduced assumption, nonelliptic condition, or the no bad
ends condition. Thus the assertion is proved. a

Proof of Proposition 6.4 Suppose that WV is not in minimal position with y. Then there exists an ideal
arc yo =~ y such that i WV; y, yo) > 0 and in general position with y and W. Choose yq so that i OV; ¥, o)
is maximal, whose existence is ensured by Lemma 6.6. Then for any other ideal arc y’ isotopic to y, we

have
iV Y v0) =iy y) iV v, v0) = —iOV; v, Y) +iWs v, 70) = 0

by Lemma 6.2 and the maximality of yg. It implies that yg is in minimal position with W, as desired. O

Corollary 6.7 (cf [19, Corollary 12 and Proposition 13]) Any spiraling diagram VV associated with a
signed web on X can be isotoped through a finite number of intersection reduction moves and H-moves
so that it is in minimal position simultaneously with any disjoint finite collection {y; }lN= | of ideal arcs.
Such a minimal position with {)/,-}lN: | 1s unique up to isotopy relative to these arcs, H-moves, periodic
H-moves and parallel moves.

Proof As in the discussion above, we isotope the arcs instead of the spiraling diagram. Let {y;}; be
the original collection of ideal arcs, and {y/}; the collection of modified arcs such that i WV; y;, y;) is
maximal. Let B; be the biangle bounded by y; and y;. We claim that we can slightly modify B; as in
(b) above so that it does not cross )/J/. for any i # j. Indeed, suppose B; crosses )/J/.. If we can shrink B;
without changing the intersection with WV, do so. Otherwise, it implies that y; and y]’. bound together at
least one biangle B’ C B}, for which we can apply a reduction move (see Figure 37). It contradicts to the
maximality of i W:y;, y}).
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Figure 37: Situations where B; essentially crosses yj’- (left) and B; crosses y; essentially (right).
Both pictures show the case where B; intersects B; only once.

Hence, the biangle B; is either disjoint from B; or intersect with B; only through y;. In the former
case, the reduction moves are independently applied. In the latter case, some of the reduction moves are
common for y; and y; but still the minimal positions can be simultaneously realized. Thus we get the

first statement.

The second one is proved by induction on the number N of arcs, just in the same way as the proof of [19,

Proposition 13]. |

Proof of Theorem 3.10: realization of a good position By Corollary 6.7, we can place any spiraling
diagram W in a minimal position with the ideal arcs in the split triangulation A. Then by applying a finite
number of H-moves and periodic H-moves, we can push all the ladders as in Figure 38 into biangles (the
“tidying up” operation in [19]). Assume that these moves can be no longer applied to VW. We are going to
prove that this position (the “joy-sparking” position in [19]) is a good position with respect to A.

For each E € e(A), the intersection YW N Bg is an unbounded essential web by Lemma 6.5, since it is in
minimal position with the ideal arcs bounding Bg. For each T € t(A), we see that the only components
of W N T which do not touch all sides of T are corner arcs by Lemma 6.5. Indeed, such a component
can be viewed as a web in a biangle obtained from T by collapsing one edge that is not touched, and
the ladders in the periodic part have been pushed into the biangles neighboring to 7. Let W’ be the web

Figure 38: Pushing a ladder into a biangle.
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obtained from W N T by removing these corner arcs, which must be finite. Then we see that W’ must
be a honeycomb in the same as in the last part in the proof of [19, Theorem 19]. Hence W N T is an
unbounded rung-less essential web. The uniqueness statement follows from that of Corollary 6.7. Thus
Theorem 3.10 is proved.

6.2 Proof of Theorem 3.19

We are going to prove Theorem 3.19 by following the strategy for the proof of [6, Theorem 47]. We
remark here that another proof of the latter statement is given in [19, Section 14] based on the graded
skein algebras.

The main issue here is that we have fixed the periodic pattern of corner arcs in the reconstruction procedure.
Hence the resulting spiraling diagram may differ from the original one by a periodic permutation of
corner arcs (“periodic local parallel-moves”) on each triangle. Our claim is that these local adjustments
glue together to give a global parallel-move, thus we get equivalent s(3-laminations. See Figure 40 for a
typical example.

By the Q- ¢-equivariance, it suffices to consider integral unbounded s(3-laminations, which are represented
by signed nonelliptic webs. Therefore it suffices to prove the following statement:

Proposition 6.8 If two signed nonelliptic webs Wy and W5 have the same shear coordinates (X; ); e ,:(a)
with respect to an ideal triangulation A, then Wy and W, are equivalent as unbounded s|3-laminations.

In what follows, the index v € {1, 2} will always given to the objects associated to the web W,,. For a
discrete subset A C R (eg A = Z), we call a subset I C A of the form I = [a,b] N A for a (possibly
unbounded) interval [a, b] C R an interval in A.

Global pictures Let W) and W, be as in Proposition 6.8. For v = 1,2, we may assume that the

associated spiraling diagram W), is placed in a good position with respect to the split triangulation A

A
v,br

triangle. Let X° be the holed surface, which is a compact surface obtained by removing a small open

by Theorem 3.10. Then its braid representative WW:" has at most one honeycomb component on each

disk D ineach T € t(A) from X. We may isotope the unique honeycomb component of Wfbr into the
disk D7, so that (W)} := wa

v,br
or spiral around punctures. Following [6], we call (W,) the global picture associated with Wfbr. Itis

N X° is a collection of oriented curves, whose ends either lie on 9X°

obvious to reconstruct the braid representative from its global picture. We call each oriented curve in
(Wh) a traveler.

Recall from Steps 1 and 2 in the reconstruction procedure (Section 3.4) that we can construct a braid

representative Wvar

its global picture by (W, ) := WA N X°. For the scheme of our proof, see Figure 39. Our strategy is as

v,br

of signed web by replacing the spiraling ends with signed ends. We similarly define

follows:
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_______________________________________

51gned web Wv _ [splrahng diagram Wv]
TStep 3 Il 01 X

. . g
[global picture (W,,)] (# [global picture (W,,)] (% 71w (D)
Steps 1 & 2 Lemma 3.17 '
N el ___o___ ( ____________________________________ 4

Figure 39: The scheme for a proof of Proposition 6.8. It is obvious that the three objects W,),
(W) and (W,) are in one-to-one correspondences (up to strict isotopies), when one fixes a
triangulation A. It will be proved that we get the identity (up to equivalence of signed webs) after
going through the square.

(1) Starting from the assumption in Proposition 6.8, we are going to make a correspondence between
the topological data of global pictures (W7) and (W>) (namely, their travelers and intersection
points among them) by an unbounded version of the “fellow-traveler lemma” [6, Lemma 57].

(2) From such a correspondence, we can describe a sequence of elementary moves relation W; and
W, by just following the argument of Douglas and Sun [6, Section 7.4] for the bounded case.

Unbounded fellow-traveler lemma For each traveler y in (W),), fix a basepoint xo € y so that it
does not lie on any edge of A. Associated to such a based traveler (y, xo) is the route (E;);cy, where
I C Z is an interval and E; is the i™ edge of A crossed by y listed in order according to the orientation
of y: the 0 edge is the first one encountered by y after passing xo. We also define the rurning pattern
(ti)ier C{L,S, R} of the based traveler (y, xo) as follows:

L if E; 4, follows E; in the counterclockwise direction at their common endpoints,

7; ;=418 if y ends at the boundary of Dt right after passing E;,
R if E; 4, follows E; in the clockwise direction at their common endpoints.

The following is immediately verified:

Lemma 6.9 The topological types of the travelers y are distinguished by the periodicity of the data
(Ei,ti)ier, as follows:

e v is a bounded arc both of whose ends lie on 0X° if I C Z is bounded;

e yisaloopif I = 7 and the route is totally periodic (namely, E; ., = E; for some k € 7).

Moreover, it is peripheral if the turning pattern (t;); ey is constant;

e v has an end spiraling to a puncture p, say in the forward direction, it I C Z is unbounded from
above, the route (E;); is not totally periodic but eventually periodic, and the turning pattern (t; );
is eventually constant in the forward direction.
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Figure 40: Example of local picture of a pair ((W;), (W,)) having the same shear coordinates.
Here the top (resp. bottom) picture shows the collection of oriented curves going through the
central biangle from the right to the left (resp. from the left to the right), which is common for
(Wr) and (W) except for 7.

We say that two travelers ¥ in (W;) and y@ in (W5) are fellow-travelers if their data (El.(l), rl.(l))ie I

and (E i(2)’ rl-(z) )iel, are the same, in the sense that there exists an order-preserving bijection f': I1 — I
such that E](fz(l.) = El.(l) and T;%?) = ‘El-(l) for all i € I;. Notice that the notion of fellow-traveler does
not depend on the choice of basepoints, and that two fellow-travelers have the same topological type by
Lemma 6.9.

Lemma 6.10 (unbounded fellow-traveler lemma, cf [6, Lemma 57]) Under the assumption of Proposi-
tion 6.8, there exists a bijection

¢ : {nonperipheral travelers in (WW;)} = {nonperipheral travelers in (W)}

such that y and ¢(y) are fellow-travelers.

Traveler identifier In order to prove Lemma 6.10, let us introduce another data that identifies the traveler
and can be characterized by the shear coordinates. Let us consider two triangles 77, Tr € t(A) that
shares a biangle Bg. For Z € {L, R}, let Ez denote the edge of A shared by Tz and Bg. Let Sgé(v)
(resp. S E’Z(v)) denote the set of strands on Ez incoming to (resp. outgoing from) the biangle Bg, which
are given by the intersections of travelers in (W, ) and Ez for v =1, 2. We endow Ez with the orientation
induced from the triangle 77.

Choose two orientation-preserving parametrizations of £z in the same way as in Section 3.4. Namely,

choose ¢;5t’(v): R — Ez so that the inverse image of S]}té(v) is an interval [ 25;”) C % + Z, and

¢§’Z(v)(R<o) ns Eiz’(v) consists of all the strands coming from the corner arcs around the initial marked
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pointof Ez. Let f ];ZEZ’(") : Ez — R be the inverse map of ¢]:5t’z(v). For a traveler y ) in (W), ) that intersects
with the edge Ez at a point x, its traveler identifier at Ez is the pair (k,€) € (% + Z) x {£1} given by

(fbfz’(")(x), +) if y enters Bg from Ez,

(k’ 6) = —, ) . .
(fEZ’ (x),—) if y exits Bg from Ez.

Then we write y) = yg)Z) (k,€).

Example 6.11 In the example shown in Figure 40, we have
yl—yE,)(S/z S =y =1/2.4) =y (3/2.-),
2=y (3/2.-) =y (1/2.+),
y3 =y (1/2.-) =y (3/2.+),
ya=vy)(3/2.4) = yp(=5/2.-) = ) (5/2.+).
ys =y (1/2.4) =y (=3/2.-) = ) (3/2.+).
Ve =y (—1/2.4) =y (—1/2.-) =y (1/2.+),
y1=v2)(=3/2.4) =y (1/2.4).

Lemma 6.12 Let y") be a traveler in (W, ) that passes through Bg from Ej, to Eg. Let (kg +) and
(kr,—) be its traveler identifier at Ej, and E g, respectively. Then we have

kp +kr =xg1(Wy) + [xrp (W))]+.
If )/(") passes through Bg from ER to Ej, then its traveler identifiers (kgr,+) and (kp,+) satisfy
kp +kgr =xg2(Wy) + [x, (Wy)]+.

+,0) .

Proof Just observe that our choice of parametrizations ¢ Ey is the same as in the reconstruction

procedure (Section 3.4), except for the difference that we do not necessarily have an infinite number of
corner arcs here. Then the assertion is obtained from the gluing rule (3-2). |

Lemma 6.13 The traveler identifiers characterizes the traveler and its topological type. Namely,

(1) the traveler identifier determines the data (E;, t;);jey for each traveler;

(2) if y(l)(k, €)= )/E,) (k'.€') for two edges E and E’ of the split triangulation A, then
@
vi (k.e) =y (K .€).

Proof (1) The initial edge Ej is determined from the basepoint x¢. Assume that we have determined
the data E; for0 <i <k and 7; for0 < j <k —1. Let E := E;. Then E;_; and t3_; tell us from
which direction our traveler passes through the biangle Bg. Assume it is from 77, to Tg, without loss of
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Figure 41: The turning pattern determined by the value of kg.

generality. Then by Lemma 6.12, we have kg = xg,1 (W) + [x1x (Wy)]+ — k1. Then by the choice of
,(v)

, we see that
R

the parametrization ¢
L ifkgr <0,
T =19 if0<kR<[XTR(Wv)]+,
R ifkp> [XTR (Wv)]+.

See Figure 41. Moreover, the pattern 7 tells us the next edge Ej; or its absence.

(2) Recall that the shear coordinates of W) and W5 are the same. Since the reconstruction given in (1) is
characterized by the shear coordinates, the assertion follows. |

Proof of Lemma 6.10 Define the bijection ¢ by
(6-1) @ )/g)(k, €) > yg)(k, €).

It is well defined by Lemma 6.13(2), and preserves the topological types of travelers by Lemma 6.13(1). O

Remark 6.14 From the proof of Lemma 6.12, a traveler y = )/g)(k, €) withk e ;’(1) \ 7 E’(Z) must
be peripheral. For example, if y = yJ(EIL) (kr,+) and k7, < min IJEE’L(Z) is a lower excess, then it must have
7 = R, since otherwise it has a nontrivial contribution to the edge coordinates. It follows that such
a traveler also has an identifier of lower excess in the next biangle, concluding t; = R for all k € Z
inductively for both directions. See y7 in Figure 40 for an example.

Correspondence between the global pictures (W;) and (W,) Let W; and W, be as in Proposition 6.8.
Then by the unbounded fellow-traveler Lemma, we have a bijective correspondence ¢ between the
travelers in (W;) and (W,). Let us consider the global pictures (W;) and (W>), and call each oriented
curve in (W,,) a traveler again. Since the bijection ¢ preserves the spiraling types of travelers in (W, ), it
induces a bijection

(6-2) @ {travelers in (W;)} = {travelers in (W5)}.

Here we make the intersection of each traveler in (W, ) with each edge of A minimal, by applying the
same isotopy for each pair (y, ¢(y)) of travelers. Notice that each traveler in (W,,) is either a closed loop
or a compact arc, and their intersections are finite. Therefore we can proceed by applying Douglas and
Sun’s argument [6, Section 7.4] for the rest of discussion.
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Recall the notion of a shared route of two ordered travelers (y,y’) from [6, Definition 59]. Roughly
speaking, it is a maximal interval shared by the routes of two travelers with opposite orientations. The
definition is extended for the travelers in (W,,) in a straightforward way. A shared route is either crossing
or noncrossing. A noncrossing shared route is said to be left-oriented if one traveler is always seen on the
left from the other traveler. A crossing shared route is said to be left-oriented if the same situation occurs
near its source-end [6, Definition 61].

By applying the boundary and puncture H-moves if necessary, we may assume that these webs are reduced.
Then we see that each shared route has at most one intersection point (see [6, Lemma 60]). Indeed, two
intersecting travelers cannot have a common endpoint at a puncture, since such a situation would come
from a puncture H-face. Hence the situation regarding the crossing shared routes is exactly the same as in
the bounded case. From these observations, together with the bijection (6-2), we get:

Lemma 6.15 (cf [6, Corollary 64]) For v = 1,2, let Py, ) denote the set of intersections of travelers
in (W,,). Then we have a bijection
¢inc: Powy) = Pows)

such that the unique intersection point p of a left-oriented shared route of two travelers (y, y’) in (W) is
sent to the unique intersection point @iy (p) of the corresponding shared route of (¢(y), ¢(y')) in (W3).

Proof of Proposition 6.8: a sequence of elementary moves relating Wi and W, As in the previous
paragraph, we may assume that W; and W, are reduced by applying the boundary/puncture H-moves.
Moreover by applying the loop parallel-moves and the arc parallel-moves (Lemma 2.4), we may assume
that both W) and W, are left-oriented in the sense that for each pair of parallel loop or arc components
with opposite orientations, one is always seen on the left from the other. It includes the closed-left-
oriented condition [6, Definition 62]. Now we are going to see that the intersection points p € Py, and
@int(p) € Pyw,) can be adjusted to a common position by a sequence of modified H-moves; see Figure 42.
The techniques developed in [6, Section 7.8] can be directly applied to our situation without any essential
modification, since the situation around a crossing shared route is exactly the same as in the bounded
case, and the sets Py, ) are finite. Then we get:

Lemma 6.16 (cf [6, Lemma 66]) There are sequences of modified H-moves applicable to the webs Wy
and W, respectively, after which the bijection @iy satisfies the property that for each intersection point p
in (Wy), the two points p and @iy (p) lie in the same shared-route-biangle [6, Definition 65].

Apply the sequence of modified H-moves to W and W, prescribed above. We claim that the two signed
webs W) and W, are now isotopic.

In the same way as in the proof of [6, Lemma 67], we see that the finite sequences of oriented strands on
each edge of the split triangulation A are the same for (W1) and (W5). We have a correspondence (6-2)
that relates the travelers in (W;) and (W,), in particular the ends incident to punctures and their signs.
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Figure 42: Adjustment of intersection points. Here only the difference from the situation in [6] is
that some of the travelers can end at a puncture.

The travelers can intersect with each other inside biangles, whose pattern is uniquely determined by the
sequence of oriented strands on the side edges. Thus (W) and (W5) restricts to the same collection of
oriented curves (with signed ends at punctures) in each triangle and biangle in A. Since we can uniquely
recover the honeycombs from these diagrams, we get W; = W, up to isotopy. Thus Proposition 6.8 is
proved.

Proof of Theorem 3.19 Let us consider an integral unbounded sl3-lamination, which is represented
by a signed nonelliptic web Wj. Let Wp :=&p o x“Af(Wl) be the signed nonelliptic web obtained from
the reconstruction. By Proposition 3.18, we have x“Af(Wl) = quf(Wz). Then Proposition 6.8 tells us that
W1 and W, determine an equivalent sl3-lamination. Combining with the Qs ¢-equivariance, we get the
desired assertion. |

Appendix Cluster varieties associated with the pair (sl3, X)

Here we briefly recall the general theory of cluster varieties [13], and the construction of the seed pattern
s(sl3, X) that encodes the cluster structures of the spaces of sl3-laminations in consideration.

A.1 Seeds, mutations and the labeled exchange graph

Fix a finite set / = {1,..., N} of indices, and let 74 and Fx be fields both isomorphic to the field
Q(z1,...,zn) of rational functions on N variables. We also fix a subset Iys C I (“unfrozen”) and let
I := 1\ Iy (“frozen”). A (labeled, skew-symmetric) seed in (F4, Fx) is a triple (g, A, X), where

* &=(¢&;j)i,jer is a skew-symmetric matrix (exchange matrix) with values in %Z such that ¢;; € Z
unless (i, j) € It x If;
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e A =(Aj)ier and X = (X;)jes are tuples of algebraically independent elements (cluster A- and
X-variables) in F4 and Fy, respectively.

The exchange matrix & can be encoded in a quiver with vertices parametrized by the set / and |g;; | arrows
from i to j (resp. j toi)if &; > O (resp. &;; > 0). In figures, we draw n dashed arrows from i to j if
eij =n/2 for n € Z, where a pair of dashed arrows is replaced with a solid arrow.

For an unfrozen index k € Iy, the mutation directed to k produces a new seed (¢, A, X') = (s, A, X)
according to an explicit formula [17]. See, for instance, [23, (2.1), (2.3) and (2.4)] for a formula which fits
in with our convention. A permutation o € Sy, xSy, induces a transformation o : (¢, A, X ) — (¢/, A’, X')
by the rule

(A—l) 8;1 = 80—1(1-),0—](]-), A: = Ao_l(i)’ Xl/: XU_l(i)'

We say that two seeds in (Fy4, Fy) are mutation-equivalent if they are transformed to each other by a
finite sequence of mutations and permutations. The equivalence class is usually called a mutation class.

The relations among the seeds in a given mutation class s can be encoded in the (labeled) exchange graph
Exchs. It is a graph with vertices v corresponding to the seeds s in s, together with labeled edges of
the following two types:

¢ edges of the form v & _ 3" whenever the seeds s® and s are related by the mutation puj for

k € Lus;

o edges of the form v -Z- v’ whenever the seeds s*) and s("") are related by the transposition o = (j k)
for (j, k) € Iy x Iy or Iy x It.

When no confusion can occur, we simply denote a vertex of the labeled exchange graph by v € Exchg in-
stead of v € V(Exchs). When we write s® = (¢, 4 ®) X ®))jtis known that (6™, A ®)) = (), 4 @?)
if and only if (¢, X @) = (@), X ) for two vertices v and v’ (the synchronicity phenomenon [38)).
We call (6™, A®™) and (e, X)) an A-seed and an X-seed, respectively. We also remark that the
labeled exchange graph depends only on the mutation class of the underlying exchange matrices. Indeed,
it is unchanged if we transform the cluster variables simultaneously by an automorphism of the ambient
field.

Remark A.1 In geometric applications, .A- and X'-seeds are constructed in the field of rational functions
on a space of interest. For Z € {A, X'}, a cluster Z-atlas on a variety (scheme, stack) V' is a collection of
Z-seeds in the field (V) of rational functions which are mutation-equivalent to each other. A cluster
atlas can be uniquely extended to a cluster Z-structure, which is a maximal collection of Z-seeds in (V')
thus forming a mutation class s. See Remark A.3 below.

A.2 Cluster varieties

The cluster varieties associated with a mutation class s are constructed by patching algebraic tori
parametrized by the vertices of the labeled exchange graph.
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Notation A.2 A multiplicative algebraic group is denoted by G,, = Spec Z[u,u~!]. For a lattice A (ie
a free abelian group of finite rank), let T p := Hom(A, G;,) denote the associated algebraic torus. For a
(split) algebraic torus T = (G,,) ", let

X*(T) :=Hom(T,G,,) and X«(T):=Hom(G,,T)

denote the lattices of characters and cocharacters, respectively. These lattices are dual to each other by via
the canonical pairing X«(7) ® X *(T) — Hom(G,,, G,,) = Z. The contravariant functors T,: A +> T'p
and X*: T + X*(T') are inverses to each other: A = X*(Tp), T = Tx=«(r). A vector A € A gives rise
to a character y;: Tao — Gyy,.

For v € Exch,, consider a lattice N = @, ., Zel-(v) with a fixed basis and its dual M® =@, ; Zfl-(v).
Let X(y) := Tyw and Ag) := Ty denote the associated algebraic tori of dimension |[7]. The

characters X; @ .- = Xe™: X) = G and A( V). = X £V Aw) = Gy are called the cluster coordinates.

(v) (v)) —:®
ij

Poisson and K>-structures on X{y) and A(v), respectively. The mutation rule turns into birational maps

The exchange matrix 8(”) defines a 3 5Z-valued bilinear form on N @) by (e; which induces
uz: Xy — Xy and uz: Aw) = A, called the cluster transformations [13, (13) and (14)]. Then the
cluster X- and A-varieties are the schemes defined as

X = U Xy, As:= U Aw)-

vEExchs vE€Exchs
Here for (z,7) € {(a, A), (x, X)}, (open subsets of) tori Z(,) and Z(, are identified via the cluster
transformation j; if there is an edge of the form v L v/, or via the coordinate permutation (A 1) if
there is an edge of the form v = v’. As a slight variant, let X(” )= TNu(f”)’ and XM = UveExeh, ¥, (v) the
cluster X'-variety without frozen coordinates. Since the cluster transformation of unfrozen X'-coordinates
does not refer the frozen ones, we have a natural projection X5 — Xs“f. We remark that the cluster varieties

are constructed only from the mutation class of the underlying exchange matrices.

For (Z, Z) € {(A, A), (X, X)}, each pair (€@, (Zl.(v)),-el) of the exchange matrix and the cluster Z-
coordinates defines a Z-seed in the field 7z := K(Z;) of rational functions in the sense of the previous
section. The rings O(As) C F4 and O(X;) C Fx of regular functions are called the upper cluster algebra
and the cluster Poisson algebra, respectively. The cluster algebra [16] is the subring b C O(As)
generated by all the cluster coordinates Al(v), i €1l,v e Exch,.

Ensemble maps and their extensions The cluster varieties X5 and A are coupled as a cluster ensemble.
For v € Exchg, let Nu(fv ) ¢ N® denote the sublattice spanned by el.(v) for i € Iys. Then by the assumption
on the exchange matrix, we have the linear map

(A-2) Pl N(v) > M®, l(v) . Zg(v) f.(v).
jeIl
Moreover, it can be verified that the maps between tori induced by (A-2) commute with cluster trans-

formations, and combine to give a morphism p: A, — X". We call this map the ensemble map,
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and the triple (As, X5, p) the cluster ensemble associated with s. If we pick up a suitable extension
152“ ) N® 5 M® of the map (A-2) (see [22, (A.2)] for the required condition), then it still commutes
with cluster transformations and hence we get an extended ensemble map p: As — Xs. It is shown in
[21, Section 13.3] that such a choice exactly corresponds to a choice of compatibility pairs [3] defining a
quantum cluster algebra.

Tropicalizations The positive structures on the cluster varieties allow us to consider their semifield-
valued points. For A = Z, Q or R, let AT := (A, max, +) denote the corresponding tropical semifield
(or the max-plus semifield). For an algebraic torus H, let H(AT) := X4« (H) ®7z (A, +). A positive
rational map f: H — H’ between algebraic tori naturally induces a piecewise-linear (PL for short) map
fT:HAT)— H'(AT). We call fT the tropicalized map. In particular we have the tropicalized cluster
transformations ,u,{: Z(U)(AT) — Z) (AT) for (z, Z) € {(a, A), (x, X)}, explicitly given as

V) ifi =k,
‘“) e —sgn(e W ifi #k,

(A-4) (ul)*a! W) _ _a](€)+maX{Z]€I[8kj)]+a(v) > jerl —Skj)] a(v)} ifi =k,
ar” ifi k.

(v)

Here X; (v)

(v)

and a; " are the coordinate functions induced by the basis vectors e; * and fi(v) respectively,

and [u]4 := max{O, u} for u € A. We can use them to define the tropical cluster varieties
A= J awm@h), A@T):= | An@&h,
veExchg veExchg
which are naturally equipped with canonical PL structures. Since the PL. maps are equivariant for the
scaling action of A, the tropical cluster varieties inherit this A g-action. We also consider the tropical
X-varieties Xsuf(AT) without frozen coordinates. In the body of this paper, the main objects of study are
the spaces Xs“f(QT) and X,(QT) associated with a particular mutation class s.

Cluster modular group The cluster ensemble is naturally equipped with a discrete symmetry group.
Let Mat, denote the mutation class of exchange matrices underlying the mutation class s. Then we have a
map
*: V(Exchs) > Mat;, v+>e®.

Then the cluster modular group T's C Aut(Exchs) consists of graph automorphism ¢ which preserves
the fibers of the map ¢° and the labels on the edges. An element of the cluster modular group is
called a mutatzon loop. The cluster modular group acts on the cluster varieties A5 and X, so that
¢* 2" =7@" ) forall g e Ty, v e Exch and i € I, where (Z, Z) € {(A. A), (X. X)}. These actions

commute with the ensemble map.

Since the actions are by positive rational maps, they induce actions of I's on Ag(AT) and X,(AT) by PL
automorphisms, which commute with the (extended) ensemble map. Moreover, these actions commute

with the rescaling action of A~.
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A.3 The cluster ensemble associated with the pair (sl3, X)

Here we quickly recall the cluster structures on the moduli spaces Ag 5,5, Apgr;,= and Ppgr;,x con-
structed in [10; 21]. We are going to recall the Fock—Goncharov atlas associated with ideal triangulations
of ¥ and their mutation-equivalences, since it is typical difficult to describe the entire cluster structure.

Let A be an ideal triangulation of . Then we construct a quiver Q o with the vertex set /(A) by drawing

the quiver

on each triangle, and glue them by the amalgamation construction [9]. In our case, this just means that
we glue the quivers on adjacent triangles by identifying the two vertices on the shared edge and eliminate
the pair of opposite dashed arrows. The vertices on the boundary intervals of X are declared to be frozen,
forming the subset /;(A) C I(A) as in Section 2.1. Let £2 = (el%),-, jeI(n) be the corresponding exchange
matrix.

These quivers Q% (or the exchange matrices £2) associated with ideal triangulations of ¥ are mutation-
equivalent to each other. Indeed, the quivers Q% and QA/ associated with two triangulations A and A’
connected by a single flip fg: A — A’ are transformed to each other via one of the mutation sequences
shown in Figure 43. Then the assertion follows from the classical fact that any two ideal triangulations of
the same marked surface can be transformed to each other by a finite sequence of flips.

Remark A.3 For each ideal triangulation A, we can associate an A-seed (¢2, A2) (resp. X-seed
(2, X 2)) in the field of rational functions on the moduli space Agy ;,» (resp. PpgL,,x). Forgetting the
frozen part in the latter, we get an X'-seed for the moduli space Apgr,,». See [10, Section 9] or [21,
Section 3] for construction. These birational coordinate systems define cluster atlases on these moduli
spaces in the sense of Remark A.1.

Then there exists a unique mutation class s(sl3, X) containing the seeds associated with any ideal
triangulations A. More precisely, a labeled sl3-triangulation (A, £), namely an ideal triangulation A
together with a bijection £: I(A) — {1,..., N}, give rise to vertices of the labeled exchange graph
Exchgs15, 5. Figure 43 describes a subgraph containing (A, £) and (A’, £’), where the labels £ and £’ are
consistently chosen. Let us simply denote the objects related to s(sl3, X) by

Asiy,® = Asel3, D), Xol3, B 1= X(ei3, ), EXChgpy,z i= Exchyery, 3y, Tsig,z = Tsei3,3)

and so on.
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(A, 0)

Figure 43: Some of the sequences of mutations that realize the flip fg: A — A’. Here we
partially fix labelings £ and £’ of vertices in 1(A) and I(A’), respectively.

The following can be verified from (A-3) by a direct computation:

Lemma A.4 For two labeled sl3-triangulations v = (A, {),v' = (A, £) € Exchg,, 5 as in Figure 43,

the (max-plus) tropical coordinates x; := xl(v) and x; := xl(v/) fori € {1,...,12} are related as follows:
X1 = x2 + [x3, x4, x1]4 — [x1,x2, x3] 4, x5 = —x1 —x2 + [x1]+ — [xa]+,
X3 = x4 + [x1, %2, X3]+ — [x3, X4, X1] 4, Xy = —x3 —x4 + [x3]+ — [x1]+,
x'5=xs+[x1]+, x'6=x6+[x1,x2,X3]+—[x1]+,
x'7 =x7 +x1 +x2 + [x3]+ — [x1, X2, X3] +, XIS =xg — [—x3]+,
Xo = x9 + [x3]+. X10 = x10 + [x3. x4, x1]+ — [x3]+.

X11 =x11 +x3 +xa + [x1]+ — [x3, x4, x1]4,  Xjp =x12 — [-x1]+.

Here [x]+ := max{0,x} and [x, y,z]+ :=max{0,x,x + y,x + y + z}.

Goncharov-Shen extension of the ensemble map Following [21], we choose the following extension
of the ensemble map. Let

2 —1
C(sl3) = (Cst)s,IE{l,Z} = (_1 2)

denote the Cartan matrix of the Lie algebra s(3. For an ideal triangulation A, let §* = (§$)i jel(n) be
the matrix given by él.% = 81% + m;;, where

—%Cst if i =i%(E) and j = i’(E) lie on a common boundary interval E € B,

A-5 jj =
(A=) mij 0 otherwise.
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Then we define p : N2 - M2 by el.A D jern) El% fjA inducing a morphism

(A-6) Das: Asiz,x —> Xals, xs

which we call the Goncharov—Shen extension of the ensemble map. This choice naturally comes from the
geometry of the moduli spaces of local systems on X, so pgs agrees with the map p: .A§<L3 s = PpGL3,=
[21, Proposition 9.4].

Cluster modular group Although the entire structure of the cluster modular group Iy, 5 is yet unknown,
it is known to include the subgroup (MC(X) x Out(SL3)) x W(sl3)Me Is5,» [20]. Here MC(X)
denotes the mapping class group of the marked surface X, Out(SL3)) = Aut(SL3)/Inn(SL3) is the outer
automorphism group of SL3, and W(sl3) is the Weyl group of the Lie algebra sl3. The group Out(SL3)
has order 2, and generated by the Dynkin involution *: G — G, g — (g~ )7
this subgroup, let us call the induced PL action ¢: 25[3,E(QT) — 25[3,2(QT) the cluster action, in

comparison to the geometric action we introduce in the body of this paper in terms of signed s(3-webs.

. For each element ¢ in
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Bridge trisections and Seifert solids

JASON JOSEPH
JEFFREY MEIER
MAGGIE MILLER

ALEXANDER ZUPAN

We adapt Seifert’s algorithm for classical knots and links to the setting of triplane diagrams for bridge
trisected surfaces in the 4-sphere. Our approach allows for the construction of a Seifert solid that is
described by a Heegaard diagram. The Seifert solids produced can be assumed to have exteriors that
can be built without 3-handles; in contrast, we give examples of Seifert solids (not coming from our
construction) whose exteriors require arbitrarily many 3-handles. We conclude with two classification
results. The first shows that surfaces admitting doubly standard shadow diagrams are unknotted. The
second says that a h-bridge trisection in which some sector contains at least » — 1 patches is completely
decomposable, thus the corresponding surface is unknotted. This settles affirmatively a conjecture of the
second and fourth authors.

57K45; 57K10

1 Introduction

One of the most important avenues available for study in knotted surfaces in 4-space is the analysis of the
3-dimensional Seifert solids bounded by such surfaces. There are many situations in which information
about such a Seifert solid gives rise to useful information about the corresponding knotted surface.
Examples, ranging from classical to modern, include Gordon’s proof that 2-knots are not determined by
their complements [7], Cochran’s characterization of fibered homotopy-ribbon 2-knots [3], and recent
work of Dai and Miller analyzing the relevance of homology cobordism invariants of Seifert solids [4].

Here we show how topological information about a knotted surface can be recovered from a bridge
trisection of the surface, which allows for the diagrammatic study of knotted surfaces and their Seifert
solids. A bridge trisection of a surface S in S* is a certain decomposition of (S*, S) into three trivial
disk systems (B%, D;), (B, D,), and (B#, D;) that can be encoded diagrammatically either as a triple
of tangles called a triplane diagram or as a corresponding shadow diagram.

In Section 3, we give a version of Seifert’s algorithm for bridge-trisected surfaces, showing how a triplane
diagram can be used to produce a 3-manifold bounded by a connected surface S with normal Euler
number zero.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.
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Theorem 3.4 If S is connected and e(S) = 0, then there is a procedure to produce a Seifert solid for S

that takes as input a triplane diagram for S.

In Section 3.2, we give an explicit procedure for constructing a Heegaard diagram for such a 3-manifold
when S = S2. As a corollary of the work in building Seifert solids, we recover a combinatorial proof of
the existence of Seifert solids. Although the literature already contains a method for producing a Heegaard
diagram for a Seifert solid — namely, the work of Carter and Saito [2] — the procedure described here is
a bit more practical. In [2, Section 3], the authors employ their methods to take a broken surface diagram
and produce a genus 21 Heegaard diagram for a punctured L (3, 1) # (#°(S' x $2)) bounded by the
2-twist spun trefoil, noting that this solid is nonminimal, since the same 2-knot also bounds a punctured
L(3,1). In contrast, in Section 3.3 we use our procedure to find genus three Heegaard diagrams for Seifert
solids bounded by the spun trefoil and 1-twist spun trefoil, where these solids are minimal. For the 2-twist
spun trefoil, the procedure yields a genus four Heegaard diagram for a Seifert solid (calculations omitted
here). The 2-dimensional data contained in a triplane diagram can often be easier to manipulate and
simplify than the data in a broken surface diagram; as such, both the solids and their Heegaard diagrams
produced by Theorem 3.4 are likely to be less complicated.

We also show that certain bridge trisected surfaces are unknotted.
Theorem 3.3 If a surface S has a doubly standard shadow diagram, then S is unknotted.

In practice, Theorem 3.3 offers a new and effective method to show unknottedness for bridge trisected
surfaces. The doubly standard criterion has considerable potential to aid in the tabulation of low-complexity
knotted surfaces, since verifying that a shadow diagram is doubly standard can be much easier than
proving unknottedness via other methods.

One of the key features of trisection theory is that it provides a vehicle to adapt 3-dimensional ideas
to dimension four, and in Section 4, we prove another result that fits into this line of research. It is
well-known that the complement of every canonical Seifert surface (ie one obtained from Seifert’s
algorithm) is a handlebody. Thus, it is natural to attempt to extend this notion to dimension four. In this
vein, we call a Seifert solid canonical if it is obtained from the procedure presented in Section 3, and we
call a Seifert solid spinal if its exterior in S* can be built without 3-handles. We prove the following two
results relating (and distinguishing) these concepts:

Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert solid that
is spinal.

In fact, modulo some additional, easily satisfied connectivity conditions, every canonical Seifert solid is
spinal. The next result shows that some Seifert solids (in contrast to canonical Seifert solids and many
standard examples) are “far” from being spinal.
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Theorem 4.2 Given any n € N, there exists a 2-knot C that bounds a Seifert solid Y homeomorphic to
(S x §2)° such that S* \ v(Y) requires at least n 4-dimensional 3-handles.

Finally, in Section 5 we prove the following standardness result, affirmatively settling Conjecture 4.3 of
Meier and Zupan [15].

Theorem 5.2 Let ¥ be a (b; ¢)-bridge trisection with ¢; = b — 1 for some i € Z53. Then ¥ is completely
decomposable, and the underlying surface-link is either the unlink of min{c;} 2-spheres or the unlink of
min{c; } 2-spheres and one projective plane, depending on whether |c;—; —c¢;41| =1 or 0.

The proof relies on theorems of Scharlemann [19] and Bleiler and Scharlemann [1] regarding planar
surfaces in 3-manifolds. The methods of the proof are somewhat unrelated to the methods used in the
preceding sections and may be of independent interest. The second and fourth authors previously handled
this case when ¢; = b for some i € Z3 [15, Proposition 4.1]. Theorem 5.2 can be seen as the analog
for bridge trisections of Theorem 1.2 of Meier, Schirmer and Zupan [13], which establishes a similar
standardness result for trisections of closed manifolds; as such, our theorem fills an important gap in the
trisections literature and provides yet another avenue to verify that a surface in S* is unknotted.
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2 Preliminaries

We work in the smooth category. This section includes an abbreviated introduction to the concepts relevant
to this paper, but the interested reader is encouraged to consult [5] for further information about 4-manifold
trisections and [9, Section 2; 15] for more detailed discussions of bridge trisections. We limit our work
here to surfaces in S*, but there is also a theory of bridge trisections in arbitrary 4-manifolds; see [16].
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2.1 Bridge trisections

Let S be an embedded surface in S, let b be a positive integer, and let ¢ = (cq, ¢3, ¢3) be a triple of
positive integers. A (b; ¢)-bridge trisection of (S*,S) is a decomposition

(5*,8) = (X1,D1) U (X2, D) U (X3, D3)
such that

(1) each D; is a collection of ¢; boundary-parallel disks in the 4-ball X;,

(2) each intersection 7; = D;_; ND; is a boundary-parallel tangle in the 3-ball H; = X;_; N X; (with
indices considered mod 3),

(3) the triple intersection D1 N D, N Dj is a collection of b points in the 2-sphere ¥ = X7 N X, N X3.

In [15], it was proved that every surface S admits a (b; ¢)-bridge trisection for some (b; ¢). We choose
orientations so that 3(X;, D;) = (H;, Ti) U (H;4+1.Ti+1). When we wish to be succinct, we use T to
represent a bridge trisection, with components labeled as above.

2.2 Diagrams for bridge trisections

The existence of bridge trisections gives rise to a new diagrammatic theory for surfaces in S*, using an
object called a friplane diagram, a triple D = (D, D,, D3) of trivial planar diagrams with the additional
condition that each ID; U E,‘_H is a classical diagram for an unlink. In [15], it was shown that every
triplane diagram determines a bridge trisection T. Conversely, given a bridge trisection T of (S*,S),
we can choose a triple of disks E; C H; with common boundary and project the tangles 7; onto E; to
obtain a triplane diagram. Of course, the choices of disks and projections are not unique, but any two
triplane diagrams corresponding the same bridge trisection T are related by a finite collection of interior
Reidemeister moves and mutual braid transpositions, while any two bridge trisections T and ¥’ for the
same surface S are related by perturbation and deperturbation moves.

In addition, bridge trisections yield another type of diagram: each trivial tangle 7; can be isotoped
rel-boundary into the surface X, yielding a triple (A, B, C) of pairwise disjoint collections of arcs called
a shadow diagram, which has the property that d4 = dB = dC, and the pairwise unions of any two of
the tangles 74, Tp, and 7¢ determined by the arcs are unlinks. As with triplane diagrams, any shadow
diagram determines a bridge trisection. Further details about shadow diagrams can be found in [14].

Here we consider special types of shadow diagrams. We say that a pair of collections of arcs in a shadow
diagram is standard if their union is embedded. Any bridge trisection admits a shadow diagram (A, B, C)
in which one of the pairs is standard. If two or three pairs of shadows in a shadow diagram (A, B, C) are
standard, then we say that (4, B, C) is doubly standard or triply standard, respectively. Theorem 3.3
says that doubly standard (and thus triply standard) diagrams always describe unknotted surfaces.

Algebraic € Geometric Topology, Volume 25 (2025)
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Figure 1: Triplane diagrams for Py and P_.

2.3 Unknotted surfaces

In this subsection, we review standard notions of unknottedness for surfaces in S*. A closed connected
orientable surface S in S* is unknotted if it bounds an embedded 3-dimensional handlebody H C S*. For
nonorientable surfaces, the definition is slightly more involved. We define the two unknotted projective
planes, P, to be the two standard projective planes in S*, pictured via their triplane diagrams in Figure 1,
where e(P1) = £2.

In general, for a nonorientable surface S, we say that S is unknotted if S is isotopic to a connected sum
of some number of copies of Py and P_. See [9, Remark 2.6] for a detailed discussion of the orientation
conventions used here.

3 Seifert solids

Classical results of Gluck [6] (resp. Gordon—Litherland [8]) assert that every orientable surface S (resp.
surface S with e(S) = 0) in S* bounds an embedded 3-manifold, called a Seifert solid in the orientable
case. In the setting of broken surface diagrams, Carter and Saito provided a procedure that in many respects
mimics Seifert’s algorithm for classical knots [2]. In this section, we describe an extension of Seifert’s
algorithm that takes an oriented triplane diagram D and produces a Seifert solid whose intersection
with 0X; agrees with the classical Seifert algorithm performed on the oriented unlink diagram ID; UD; ;.
We also obtain alternative proofs of the theorems of Gluck and Gordon-Litherland mentioned above.

3.1 Existence of Seifert solids

Given a spanning surface F for an unlink U, we define the cap-off F of F to be the closed surface
F C S* obtained by gluing a collection of trivial disks in B* to F along U. (There is a unique such
choice of disks up to isotopy rel-boundary in B* by eg [10] or [12].) Let F C S 3 denote the Mobius
band bounded by the unknot so that F contains a positive half-twist and has boundary slope +2, and
let F_ C S3 denote the M6bius band bounded by the unknot with a negative half-twist and boundary
slope —2. For n > 0, let F;, be the connected surface obtained by attaching » — 1 trivial bands to the
split union of n copies of F_ ; thatis, F}, is obtained by taking the boundary connected sum of 7 copies
of F4. For n <0, let F,, be obtain by taking the boundary connected sum of (—#n) copies of F_. Finally,
let Fy be the disk bounded by the unknot in S3. Additionally, let F;, be the cap-off of F,. In Figure 1,
the negative Mobius band is shown to cap off into Bi to obtain P4 ; see also [9, Figure 2]. Here, we
are capping off into B*, so that by definition the cap-off F_; of the negative Mobius band F_ is P—. In
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contrast, the cap-off F; of the positive Mobius band F is P4. (Recall that P and P_ denote the two
unknotted projective planes in S*; see Section 2.3.) It follows that

a connected sum of n copies of P if n >0,
Fn = 3 a connected sum of —n copies of P_ ifn <0,
an unknotted 2-sphere ifn=0.
The intent of the cap-off notation is to emphasize the way in which F;, can be obtained from a specific
surface in S, which will be useful in the rest of this section— especially given the following lemma:

Lemma 3.1 Every incompressible spanning surface F' for the unknot is isotopic to F, for somen € 7.

Proof First, we argue that F}, is incompressible for all #. This follows from [20], but we include a proof
here. Certainly, Fy and F1 are incompressible, since a compression increases Euler characteristic by
two. Suppose now that Fj, is compressible for some n > 1, and let F,, be the component of the surface
obtained by compressing F, so that dF), = dF,. In addition, let ), C S* be the cap-off of F),. Then the
embedded surface 7, can be obtained from 7, by a 1-handle attachment, and thus e(F),) = e(F,) = 2n.
However, since the nonorientable genus of 7, is strictly less than 7, this contradicts the Whitney—Massey
theorem (see discussion in [9]). We conclude that F}, is incompressible.

On the other hand, suppose that F is an arbitrary incompressible spanning surface for the unknot U. The
exterior of U is a solid torus V, and every simple closed curve ¢ C dV is homotopic to a (p, g)-curve,
where a (0, 1)-curve is the boundary of a meridian disk of V' and a (1, 0)-curve is the boundary of
a meridian disk of N(U). The boundary of F is a (2k, 1)-curve for some integer k. (The spanning
surface F intersects the disk bounded by U in some number of arcs, the endpoints of which correspond
to the intersections of the (p, ¢)-curve with the (0, 1)-curve.) If F is orientable, then it is well-known
that F is isotopic to the meridian disk Fj.

Suppose that F is nonorientable. By [20, Corollary 12], the nonorientable genus of F' is equal to |k]|.
Assuming that dF and dF, meet efficiently, isotope F so that it intersects Fy minimally. By standard
cut-and-paste arguments, an arc of F' N Fy which is outermost in Fy gives rise to a boundary-compressing
disk A for F. Since dF and dF, meet efficiently, the result F’ of boundary-compressing F along A has
a single boundary component and nonorientable genus £ — 1. Reversing the process, we see that F can
be obtained from F’ by attaching a boundary-parallel band to F’ along opposite sides of dF’. Note that
dV \ 0F' is an annulus and the band is determined by a spanning arc. Working rel-boundary, all choices
of spanning arcs are related by Dehn twists about 0F’, and so it follows that up to isotopy, there is a
unique band taking F’ to F.

Finally, we claim that F is isotopic to Fj, and we prove this fact by inducting on k. If k = %1, then F
has genus one and is obtained from the disk F’/ = F by a single boundary tubing. By the above argument,
there is precisely one way to do this, and thus F' = F;. Now suppose that k > 1 and the claim holds for
j =k —1. As above, isotope F' to meet Fy minimally, and since k > 1, there are at least two arcs a¢ and
ay of F N Fy that are outermost in Fy. Let £ be a (0, 1)-curve that meets dF in a single point contained
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in ag. Then a; gives rise to a boundary-compressing disk A and the result F” of boundary-compressing
F along Ay also satisfies [0F’ N €| = 1, since the modification was carried out away from the arc ag. We
conclude that F’ has genus k — 1 and boundary slope (2(k — 1), 1). By induction F’ = Fj_;, and since
there is a unique way to obtain F from F’ by boundary-tubing, it follows that F = F. The case k < —1
follows symmetrically. |

In the next proposition, we use Lemma 3.1 to understand the cap-off of any spanning surface F for an
unlink in §3:
Proposition 3.2 Let F be a spanning surface for an unlink U in S3.

(1) If every component of dF has slope 0, then the cap-oftf F bounds a (possibly nonorientable,
possibly disconnected) handlebody V C B* such that V N dB* = F.
(2) The normal Euler number e(F) is equal to the sum of the slopes of the boundary components of F.

(3) The cap-off F is a split union of unknotted surfaces in S*.

Proof Suppose F and F’ are two spanning surfaces for an unlink U in S3 such that F’ is isotopic
relative to U to the surface obtained by surgering F along a compressing disk D for F. Then there is a
compression body C C S* x [0, 1] such that

o CN(S3x{1})=Fx{l},

e CN(S3x{0}) = F x{0},and

e 0C = (Fx{l})U(F' x{0}Hh U U x][0,1)]),

and C has a single critical point (of index 1) with respect to the Morse function S* x [0, 1] — [0, 1], which
we assume lies in S3 x {%} Note that C is a product cobordism above and below S x {%}

Any spanning surface F for U can be reduced to F’, a union of 2-spheres and incompressible spanning
surfaces for components of U via a sequence of compressions and isotopies. If each component of dF
has slope 0, then F”’ is a collection of disks and spheres. Applying the compression body construction
described above for each compression taking F to F’ and stacking the results, we get a compression
body C cobounded by F and F’. Since F” is a collection of disks and spheres, there is a handlebody with
boundary F = F U D, where D = F' U (U x [0, 1]) is a collection of properly embedded disks in B*:
simply cap-off the sphere components of C with 3-balls whose interiors are pushed sufficiently deep
into B*. This handlebody is nonorientable (resp. disconnected) if and only if F is. This establishes (1).

Let F be any spanning surface for an unlink U = |_|/_, U;. Let B = |7_, B; be a collection of disjoint
3-balls with U; C Int(B;). Let F” =|_|!_, F; be a split union of incompressible spanning surfaces for the
components of U, with F; C Int(B;), so that the slopes of F and F’ agree at each component of U. Let F”
be the result of surgering F’ along a collection of arcs so that F” and F have the same homeomorphism
type relative to U ; moreover, assume that every arc of the collection intersects each component of dB
in at most one point. It follows that F” decomposes as a split union of connected sums of surfaces, each
summand of which is either a torus or an incompressible spanning surface for an unknot. Therefore, the
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cap-off F” is the split union of connected sums of surfaces, each summand of which is an unknotted
surface in S*. Livingston showed that F and F” are isotopic rel-boundary in B* [12]. It follows that
the cap-off F will isotopic to the cap-off 7", which completes the proof of (3). Since (2) holds for F;
and F_1, and since the normal Euler number is additive under connected sum, (2) follows, as well. O

Recall that a shadow diagram is doubly standard if two of the pairings of arcs yield embedded curves.
We can use Proposition 3.2 to obtain the following classification result for doubly standard diagrams:

Theorem 3.3 If S has a doubly standard shadow diagram, then S is unknotted.

Note that Theorem 3.3 also applies to surfaces with triply standard shadow diagrams, as a special class of
doubly standard shadow diagrams.

Proof Suppose S has a shadow diagram (A, B, C) such that the pairings (4, B) and (B, C) are standard.
Consider the standard Heegaard splitting X3 = S3 = H, Uy, H_, and let X be a parallel copy of ¥
pushed slightly into H.. Note that A U B may have nested components (so that components of A U B
don’t necessarily bound a collection of disjoint disks). After a sequence of arc slides, however, performed
only on the arcs in A, we obtain arcs A’ such that the embedded curves A’ U B bound a pairwise disjoint
collection of disks. We perform a similar procedure with B U C to obtain B U C’. Now embed parallel
copies A’+ U B of the curves A’U B in X4 so that they bound a pairwise disjoint collection Dy of disks
in ¥4, and embed parallel copies B_ U C” of the curves B U C’ in X_ so that they bound a pairwise
disjoint collection D_ of disks in ¥_. In H, there is an isotopy of B4 to B C X taking the disks Dy
to disks Dy C Hy such that D; N X = B. The tangle 7; = SN (H<) is the image of A’, under this
isotopy. Similarly, in H_ there is an isotopy of B_ to B taking the disks D_ to disks D, C H_ such that
D> N X = B. The tangle 73 = SN H_ is the image of C’ under this isotopy. See Figure 2.

By construction Dy N D, = B, so that F' = Dy U D, is a spanning surface for the unlink 77 U 73. Note
further that D; is a trivial disk system for 7; U B, and D, is a trivial disk system for B U 73; hence, S is

-
-------------

-
-
————————

-
-
--------

Figure 2: Left: a doubly standard shadow diagram (A4, B, C); the pairings (4, B) and (B, C)
are standard. Middle: disks in ¥ and ¥_ bounded by parallel copies of A U B and BU C,
respectively. Right: a spanning surface F for 7; U 75 in dX3 = S3.
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the union of Dy, D,, and D3, where Dj is a trivial disk system for 7; U T3 pushed into B*. However,
since F = D; U D, C S3, it follows that S is also isotopic to the cap-off F of F, which is unknotted by
Proposition 3.2. O

We are now ready to prove our main result:

Theorem 3.4 If S is connected and e(S) = 0, then there is a procedure to produce a Seifert solid for S
that takes as input a triplane diagram for S.

Proof The proof follows from the proofs of Propositions 3.5 and 3.6 below. O

In Section 3.2, we show that there is a procedure to produce a Heegaard splitting for the Seifert solid
when S is a 2-knot.

In addition to providing the proof of the above theorem, the next two propositions provide alternative
proofs of the results in [6; 8] mentioned above.

Proposition 3.5 Every orientable surface-link S bounds a Seifert solid in S*.

Proof Let D be a triplane diagram for S, with induced orientation on the bridge points x. Perform
mutual braid transpositions so that the bridge points alternate sign (orientation). Then there are b pairwise
disjoint arcs € contained in the equator e connecting bridge points of opposite signs, so that D; U ¢ is an
oriented link diagram. Let F; be the Seifert surface obtained by performing Seifert’s procedure on the
diagram D; U g, and let ﬁ,- = F; U F; 4 be the spanning surface obtained by gluing F; to F;; along «.
By Proposition 3.2, there exists a handlebody V; C X; such that dV; = ﬁ,- UD; and V;NOX; = F ;. Finally,
Y =V, UV, U V; is an embedded 3-manifold whose boundary is D; UD, U D3 = S, andso Y is a
Seifert solid for S. O

Proposition 3.6 If S is connected and e(S) = 0, then S bounds a spanning solid in S*.

Proof Consider a bridge trisection ¥ of S, with U; = dD; and t = T; U T, U T3. By taking, for example,
a triplane diagram D and compatible checkerboard surfaces in ID;, we can produce spanning surfaces ﬁi
for U; such that ﬁi NH; = ﬁ,-_l N H;. Let F; denote ﬁ,ﬂHi. For each component J of U; = 8ﬁ,~, let LI;(J)
denote the induced boundary slope on the curve J by the surface F;. Then by Proposition 3.2, we have
> p(h)=0.
JCUUU,UU;
Choose a triple of spanning surfaces F; such that >l £(J)| is minimal over all possible choices. We
claim that ) _ |t z(J)| = 0. If not, then there exist boundary curves J and J_ such that tz(J+) > 0 and
tp(J-) <0. Noting that the surface S contains all curves J C U; C 7, push each curve J C Uj slightly off
of 7 into the corresponding disk component of D;, so that the collection of curves J is embedded in S and
disjoint from 7. Choose a path y C S from J4 to J_, avoiding the bridge points, noting that |y N t| > 0.
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At each point of y N 7, modify the corresponding component of F; by taking the boundary connected sum
of F; with a trivial Mobius band to obtain new surfaces ﬁi’ and F7, so that the corresponding boundary
curves satisfy (g, (J}) = 15(J4) =2, 1, (JL) =1p(J-)+2,and 1 5,(J') = 1 z(J) for all other curves J'.
It follows that ) |¢5,(J)| < X_ |t 5(J)], contradicting our assumption of minimality. (Note that ¢ 5(J)
is always even, since it represents the number of intersection points between the boundary curves of
spanning surfaces; see the proof of Lemma 3.1.)

We conclude that ¢ z(J) = 0 for all curves J, and thus by Proposition 3.2, each spanning surface ﬁi
cobounds a (possibly) nonorientable handlebody V; C X; with the disks D;. It follows that V; U V, U V3
is a spanning solid for S in 4. i

3.2 Procedure to find a Heegaard diagram for a Seifert solid

In this subsection, we describe a procedure for finding a Heegaard diagram for the Seifert solid coming
from a bridge trisection T of a 2-knot S. We use labels consistent with those appearing above in the proof
of Proposition 3.5. The process is illustrated in Figures 3-6.

Step 1 Given a triplane diagram D for S, perform interior Reidemeister moves and mutual braid
transpositions so that the induced Seifert surfaces satisfy the following conditions:

(a) Each of Fy, F,, and F 1 1s a collection of disks.

(b) Surfaces ﬁz and ﬁ3 are connected.
© g(Fy) = g(Fs).

See Figure 3. Note that attaining condition (a) is possible since any triplane diagram can be converted to
one in which two of the tangles have no crossings. Condition (b) can be attained by performing interior
Reidemeister moves on the diagram 3. Attaining condition (c) is possible since we can arrange so
that F, is a collection of b bridge disks, in which case ﬁz deformation retracts onto F3 (although in
general, we need not assume that F, has b components, as shown below).

Step 2 Following the proof of Proposition 3.2, the surfaces F » and F 3 compress completely to disks
in S3. Let o be a complete collection of pairwise disjoint compressing curves in F 3, and let 8 be a
complete collection of pairwise disjoint compressing curves in F ». See Figure 4 (top row).

Step 3 If necessary, slide the curves 8 over the components of 0D, to obtain a collection of curves
B’ C F5. Note that since g(F3) = g(ﬁz), as curves in F = F, UD,, the collection B can be isotoped to
be contained in F3, and any isotopy of a curve over a disk component of D, can be realized as a slide
over dD,. Thus, such a sequence of slides exists. See Figure 4 (middle row).

Step 4 Let P = Dy UD;,, so that P is a planar surface with ¢3 boundary components, let Q be the
surface obtained by gluing P to ﬁ3 along their boundaries, and let a* be a choice of ¢3 — 1 boundary
components of P and some minimal number of curves in & such that «* forms a cut system for Q.
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Figure 3: To perform the Seifert solid procedure on a triplane diagram, we first perform mutual
braid transposition until the tangle diagrams in V; and V; have no crossings. Then we perform
the usual Seifert’s procedure for knot diagrams to obtain surfaces Fy, F», and Fj3 that agree in the
bridge sphere X, with Fy, F», and F} all collections of disks and g(ﬁz) = g(F3).

I

Step 5 Let 8* be the union of 8’ and a collection of curves in Q obtained by the following instructions:
For each component of J of D1, suppose that J meets d disk components of F,. Choose d — 1 of these
components, isotope them off of F, in 7, = F, U F3 U D,, and add these d — 1 curves to 8*. Discard
any superfluous curves of 8’ so that 8* is a cut system for Q.

Proposition 3.7 Using the procedure described above, S bounds a punctured copy of the 3-manifold
determined by the Heegaard diagram (Q; o™, B*).

Proof Suppose that D is a triplane diagram satisfying conditions (a), (b), and (c) given in Step 1 above.
Following the proofs of Propositions 3.2 and 3.5, for each i, the surface F; UD; bounds a handlebody V;,
where V] is a collection of 3-balls, say By, ..., By, and V; and V3 are connected. Moreover, « contains a
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9 R
@ W

Figure 4: Top: we find complete sets of compressing curves « and § for Fs and P, respectively.
Middle: we slide @ and B (with slides indicated in top row) over IF 3 and OF » to obtain curve
systems o’ and B’ that are each completely within F3. Bottom: We obtain «* (red and purple
curves) by adding boundary curves as in Step (4) of Section 3.2. We obtain f* by adding arcs
as in Step (5). Then (Q; a*, B*) is a Heegaard diagram for a (closure of a) Seifert solid for the
2-knot described by the initial triplane diagram.

cut system for V3 and S contains a cut system for V5. Since 8 is homotopic to 8 in dV>, it follows that 8’
also contains a cut system for V,. Thus, the Seifert solid bounded by S is equal to V, U V3 U By U---U By,.
Let Y be the closed 3-manifold obtained by capping off the boundary S of this Seifert solid with an
abstract 3-ball By. We will show that (Q;a™, B*) is a Heegaard diagram for Y.
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%

A Vay 1S

Figure 5: We start performing the Seifert solid procedure (Section 3.2) on the triplane diagram in
the top row.

To this end, consider W = V3 U By and W’ = V, U By U---U B,,. Considering that 9V, = F, U F3 UD,
and (B U---U By,) = F; U F, UDj, we have that

W' =F3UF,UD,UD; = F;UP = Q.

Additionally, the 3-balls B; are attached to 1, along F,, which is a collection of disks by condition (a). It
follows that the curves 8’ U dF, bound compressing disks in W' cutting W' into a collection of 3-balls,
so W' is a handlebody. In addition, choosing all but one curve of dF, for each component B; and a
subset of B as in Step 5 above yields a cut system g* for W’'.

Turning our attention to W, we have dV3 = ﬁ3 UD3 and 0By =D1UD,UD3, 50 dW = ﬁ3 UDUD, =0,
and in addition, the curves « and dD3 bound disks cutting W into 3-balls. Choosing o* to contain all but
one curve of 3D3 and a subset of « as in Step 4, the curves in «* bound disks cutting W into a single 3-ball,
so a™ is a cut system for W. We conclude that (Q; a™*, *) is a Heegaard diagram for Y, as desired. O

Remark 3.8 It may be the case that the surface F3 compresses in H3, in which case o and 8 could
have one or more curves in F3 in common. Following the procedure with such & and 8 produces one or
more extra S! x $2 summands for the 3-manifold Y, and a simpler Seifert solid can be obtained by first

compressing F3 maximally in Hj.
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Figure 6: Left: the curves &’ in F3. Center left: the curves 8’ in F,. Center right: we add some
boundary curves of F, to « to obtain o* and some arc to B’ to obtain 8*. Right: we simplify the
resulting Heegaard diagram (Z; o*, B*) to see that it is a diagram of S*. Thus, the initial 2-knot
bounds a copy of B? in S*, so is unknotted.

Remark 3.9 The procedure above can be generalized: We can relax conditions (a), (b), and (c) from
Step 1; the only assumption necessary to ensure that V; U V5 is a handlebody is that their intersection F
is a collection of disks. However, the weaker conditions make it somewhat more difficult to draw the
diagram, since we are no longer guaranteed the existence of the slides of Step 3 — it may be the case that
B curves necessarily intersect the disks Dy and D,.

Remark 3.10 The observant reader might notice that we call our process the Seifert solid procedure,
rather than algorithm. An algorithm gives an output completely determined from the input, independent
of further choices. A procedure may require additional choices for the output to be determined. In the
procedure we give in this section to find a description of a Seifert solid for a 2-knot, we are forced to
choose compressing circles for surfaces in S*. These circles are generally not unique (and in fact, different
choices can determine different Seifert solids), so we do not refer to this procedure as an algorithm.

3.3 Some examples

In this subsection, we carry out the procedure described above for a couple of specific examples. The first
is the spun trefoil. In Figure 3, we see a triplane diagram for the spun trefoil coming from [15], followed
by the result of performing triplane moves so that the induced Seifert surfaces F; satisfy conditions (a), (b),
and (c) from Step 1 above.

In the top row of Figure 4, we find the compressing curves ¢ on F 3 and B on ﬁz. Note that in this case D
contains two disks, so that P = Dy U D, is an annulus, and Q = F 3 U P can be obtained by identifying
the two boundary components of F 3. Under this identification, the identified boundary components
constitute the third curve in the cut system «*. In the second row at left, we slide the two curves of «
over the third curve of «* in Q. In the second row at right, we slide the two curves of 8 over a boundary
component as shown to get the curves 8’ C F3 (which are identical to the image of o under the slides
described above). Finally, the third curve of B* consists of the teal arc depicted in F3 and a spanning arc
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in the annulus A, or equivalently, we can identify the endpoints of the teal arc. In the lower row, we see
the diagram for the Seifert solid, the standard (once-stabilized) Heegaard diagram for #2(S L% §2).

Remark 3.11 These diagrams and arguments easily generalize to produce the Seifert solid #” - (S1xS?)
for the spun (p, 2)-torus knot. Miyazaki proved that the degree of the Alexander polynomial (over
Q[t,t™1]) is a lower bound for the second Betti number of any Seifert solid [17]. Since the degree of the
Alexander polynomial of 7'(2, p) is p — 1, these solids are minimal in the sense that the corresponding
2-knots cannot bound any 3-manifold with a smaller second Betti number, eg fewer S! x S2 summands.

For the second example, we find a Seifert solid for the 1-twist spun trefoil (which is unknotted by [23]). In
Figure 5, we include a simplified triplane diagram for the 1-twist spun trefoil along with the surfaces F )
and F 3 this diagram generates.

Next, we find the compressing curves « for ﬁ3 and B for ﬁz. As in the spun trefoil example above,
P =D; UD, is an annulus, so we view Q as being obtained by identifying the two boundary components
of F 3, with this identified boundary the third curve in «*. Figure 6 shows the curves «, 8, and the union
of the sets in Q, yielding the standard diagram for S, in which the third curve of B* appears as a teal arc
with boundary points identified (as above). Note that the existence of the curves @ and B is guaranteed by
Proposition 3.2; in practice, however, these curves are found using ad hoc methods.

4 Spinal Seifert solids

A natural aspect of the study of Seifert surfaces for links in the 3-sphere is the consideration of their
exteriors. We call a Seifert surface F for L canonical if it is isotopic to a surface obtained by applying
Seifert’s procedure to a diagram for L. We call a Seifert surface F free if its exterior S \ v(F) is a
3-dimensional handlebody — equivalently, has free fundamental group. It is an easy exercise to see that a
canonical Seifert surface is free, provided that it is connected; so every link admits a free Seifert surface,
by the application of Seifert’s algorithm to a nonsplit diagram. However, such a surface can be far from
minimal genus. M Kobayashi and T Kobayashi showed that the difference between the genus of a knot
and the minimal genus of a free Seifert surface for the knot can be arbitrarily large, and that moreover
the difference between the minimal genus of a free Seifert surface for a knot and the minimal genus
of a canonical Seifert surface can also be arbitrarily large [11]. (In fact, they show that both of these
differences can be made arbitrarily large at the same time.)

In this section, we introduce 4-dimensional analogs of the notions of canonical and free Seifert surfaces.
Going forward, let S C S* be a surface-link admitting a Seifert solid. (This is equivalent to the condition
that S be orientable or have normal Euler number zero.) We call a Seifert solid Y canonical if it is
isotopic to a Seifert solid obtained by the procedure given in Section 3.1 (see Propositions 3.5 and 3.6).
We call a Seifert solid Y spinal if S*\ v(Y') deformation retracts onto a finite 2-complex. Equivalently,
S*\ v(Y) can be built with handles of index at most two.
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Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert solid that
is spinal.

Proof First, note that in the proof of Propositions 3.5 and 3.6, it is possible to arrange that each Seifert
surface F; is connected: for example, this is assured if each D; U ¢ is nonsplit. Let ¥ be a canonical
Seifert solid for S given by Proposition 3.5 or Proposition 3.6 such that the canonical surface F; =Y N H;
is connected for each i € Z3. We make use of the notation of the proof of Proposition 3.5 in what follows.

Recall that V; = X; N'Y is a handlebody with 8V; = F; U D;. Moreover, V; is built relative to F; by
attaching 3-dimensional 2- and 3-handles. It follows that X; \ v(V;) can be built with 4-dimensional 0-, 1-,
and 2-handles.

Next, recall that F; is a canonical Seifert surface for the link ID; U e, considered in S3 = H; Ux, B3. Since
we have assumed F; is connected, F; is free in H; Us, B3. Since ¢ C dH;, it follows that H; \ Fj is also
a 3-dimensional handlebody.

Finally, we can build S*\ v(Y) by taking the X; \ v(V;) and gluing them along the H; \ v(F;). Since
the three gluings occur along 3-dimensional handlebodies, S* \ v(Y’) is obtained from the disjoint union
of the X; \ v(V;) by attaching 4-dimensional 1- and 2-handles. Because each of the X; \ v(V;) were built
with 4-dimensional handles of index at most two, the same is true for S*\ v(Y). This shows that Y is
spinal, as desired. O

When studying Seifert surfaces, the genus of the surface is the obvious measure of complexity that one
might try to minimize. In contrast, there are many ways one might try to quantify the complexity of a
Seifert solid Y for a surface-knot; indeed, any complexity one might associate to a 3-manifold could be
interesting to consider. Here we content ourselves to give some examples showing that there is at least
one sense in which a simple Seifert solid for a surface-knot can be arbitrarily far from being spinal.

Theorem 4.2 Given any n € N, there exists a 2-knot KC that bounds a Seifert solid Y homeomorphic to
(ST x §2)° such that S*\ v(Y) requires at least n 4-dimensional 3-handles.

Proof Let J be an arbitrary knot, and let K = Whq(J #J) be the untwisted Whitehead double of the
connected sum of J with its mirror. Let F be the standard genus one Seifert surface for K, and let y
be the curve on F that is isotopic to J # J. (Alternatively, F is obtained by taking a 0-framed annular
thickening of a curve y isotopic to J # J and plumbing on a Hopf band.)

Let E be the standard ribbon disk for y, so that (B*, E) = (S3, J)° x I. The surface F can be surgered
along E in the 4-ball to get a slice disk D for K, and the trace of this surgery yields a solid torus V with
dV =FUD.

Let K = DUk D be the 2-knot obtained by doubling D, and let Y = V U V be the double of V along F.
Then Y is a Seifert solid for K and ¥ = (S x §2)°.
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We claim that 71 (S*\ v(Y)) = 7;(S3\ v(J)). First, 7;(S*\ v(Y)) = 71 (B*\ V), since the former
exterior is the double of the latter exterior along the exterior of F in S3 and ; (S \ v(F)) surjects onto
m1(B*\ V) under inclusion. Next, by construction, V is obtained by thickening the slice disk E and
attaching a trivial 3-dimensional 1-handle. It follows that

m (B \v(V)) = m (B \ v(E)) = m((S \ v(J)).
as desired.

To complete the proof, let # € N be given, and choose J to be any knot with rank(rr; (S3\ v(J))) >n+2
(eg take J to be a connected sum of 7 + 1 trefoils [21]). The exterior S*\ v(Y') can be built relative to
IS\ v(Y)) = (ST x S%) #(S! x S?) with some number of 4-dimensional 1-, 2-, 3-, and 4-handles.
Since the 1-handles correspond to generators of the fundamental group, at least n are required; the
boundary 9(S*\ v(Y)) contributes only two to the rank of the fundamental group. Similarly, since we
can obtain another presentation of 77 (S*\ v(Y)) with generators corresponding to 3-handles, the number
of 3-handles in this decomposition is at least n 4 2. |

We note that the construction of K given in the above proof is closely related to an interesting construction
of 2-knots given by Cochran [3].

Next, we observe that many important examples of Seifert solids are, in fact, spinal:

(1) Every ribbon 2-knot bounds a Seifert solid Y that is homeomorphic to (#m(S1 x S 2))0 for
some m [22]. The manifold Y is obtained by taking a Seifert surface F for some ribbon knot in
an equatorial S3, thickening it, and attaching trivial 2-handles above and below the equator. By attaching
tubes to F (at the cost of increasing m), we can arrange for F to be free. Then Y is spinal.

(2) If K is fibered with fiber Y, then S*\ v(Y) 2 Y x I is spinal, since Y is a punctured 3-manifold.

(3) Connected Seifert solids arising from broken surface diagrams via the construction given by Carter
and Saito [2] are spinal. Recall that a connected canonical Seifert surface is free because it deformation
retracts to a graph so that on each edge, there is one local maximum and no local minima with respect
to the radial height function on S*. (Here the vertices of the graph correspond to the disks produced in
Seifert’s procedure while the edges correspond to the half-twisted bands.) This ensures that the exterior
of a canonical surface can be built with 0- and 1-handles. Similarly, a Seifert solid constructed a la [2]
deformation retracts to a 2-complex with one local maximum and no other critical points in the interior
of each 1- and 2-cell. Thus, the exterior of such a Seifert solid can be built with 0-, 1-, and 2-handles.

Finally, we can formulate a question analogous to the 3-dimensional results in [11] in the setting of
surface-knots.

Question 4.3 Define the genus of an orientable surface-knot S in S* to be the minimal first Betti number
of any Seifert solid bounded by S, and define the spinal genus and canonical genus similarly, using
spinal Seifert solids and canonical Seifert solids, respectively. Do there exist surface-knots for which
these three measures of complexity differ?
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We remark that using techniques as in the proof of Theorem 4.2, one can show that for some of the known
classical knots K whose genus and free genus are sufficiently different (see [18], for example), the spun
knots S(K) admit low-complexity nonspinal Seifert solids, whereas the obvious spinal and canonical
Seifert solids have greater complexity. However, it is likely to be considerably more difficult to obstruct
the existence of low-complexity spinal or canonical Seifert solids, even for these examples.

5 On standardness of bridge trisections

The goal of this section is to prove Theorem 5.2, which states that a (b; ¢y, ¢2, ¢3)-bridge trisection that
satisfies ¢; > b — 1 for some i € Z3 can be completely decomposed into standard pieces. This proves
Conjecture 4.3 of [15], and the theorem can be viewed as the bridge trisection analog of the main result
in [13], which states that every (g; k1, k3, k3)-trisection with k; > g — 1 for some i is standard in that it
decomposes into genus one summands.

We encourage the reader to recall the notions of perturbation and connected summation for bridge
trisections. The former was first introduced in [15, Section 6], where it was referred to as stabilization,
and the latter can be reviewed in [15, Subsection 2.2]. See also [14, Section 3] for a succinct description
of these concepts.

We call a surface-link an unlink if it is the split union of unknotted surface-knots, though we allow the
topology of each component to vary. For example, one might have a 2-component unlink that is the
split union of an unknotted 2-sphere and an unknotted projective plane. (See [14, Subsection 2.2] and
Section 2.3 above for a brief discussion of unknotted surface-knots.)

Before proving Theorem 5.2 in generality, we recall the case in which ¢; = b for some i € Z3. This was
addressed as [15, Proposition 4.1]. A bridge trisection is called completely decomposable if it is a disjoint
union of perturbations of one-bridge and two-bridge trisections.

Proposition 5.1 [15, Proposition 4.1] Let ¥ be a (b; ¢y, ¢3, ¢3)-bridge trisection with ¢; = b for some
i € Z3. Then ¥ is completely decomposable, and the underlying surface-link is the unlink of min;{c; }
2-spheres.

Note that if ¢; = b for some i € Z3, then ¢;—; = ¢;+1. Similarly, in what follows we will see that if
ci =b—1forsomei € Zs, then |c;—1—c;+1]| < 1. We now present and prove the main result of this section:

Theorem 5.2 Let ¥ be a (b; ¢y, ca, c3)-bridge trisection with ¢; = b — 1 for some i € Z3. Then ¥ is
completely decomposable, and the underlying surface-link is either the unlink of min{c;} 2-spheres or
the unlink of min{c;} 2-spheres and one projective plane, depending on whether |c;—1 — cj+1| = 1 or

Ci—1 = Ci+1-
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The key ingredient in the proof of the theorem is a pair of results of Bleiler and Scharlemann about planar
surfaces in 3-manifolds [1; 19]. We refer the reader to Section 1 of each of these papers, as we will adopt
the notation of [1, Theorem 1.3; 19, Theorem 1.1] in the proof below.

Proof of Theorem 5.2 We induct on the bridge number b of the bridge trisection. When b =1 or b = 2,
there is an easy classification of b-bridge trisections [15, Subsection 4.3], which we take as the base case.
Assume the theorem holds when the bridge number is less than b, and let ¥ be a (b; ¢y, ¢3, ¢3)-bridge
trisection. Assume without loss of generality that c3 = b — 1.

Suppose that 77, 7>, and T3 are the three tangles comprising the spine of the bridge trisection. Every
b-bridge splitting of a c-component unlink with » > ¢ is a perturbation of the standard c¢-bridge splitting
of the c-component unlink, which is itself unique up to isotopy [15, Proposition 2.3]. It follows that
there exist collections A; and Aj of bridge disks for 7; and 73, respectively, such that the shadows
AT = AN X and A} = A3 N X have the property that AT U AJ is an embedded collection of b — 2
bigons and a single quadrilateral. Let «; denote one of the arcs of A7 in the quadrilateral.

Let L = 7, U T3, and let b be the band for L that is framed by ¥ and whose core is oz(’)". Then the
data (X, L, b) encodes a banded b-bridge splitting, since the resolution Ly is the unlink L' =7, U T ;.
(Here, we think of b as being slightly perturbed to lie in the 3-ball containing 73.) We refer the reader to
Section 3 of [15], especially Lemma 3.3, for more details about banded bridge splittings and how they
arise from bridge trisections.

Assume without loss of generality that ¢, = |L| is greater than or equal to ¢; = |L’|. We break the
remainder of the proof into two cases: Either ¢, > ¢y or ¢; = ¢1. Note that since there is only one
band present, we must have ¢, —c; < 1. The proofs of the two cases are very similar, except that we
apply [19, Theorem 1.1] in the first case and [1, Theorem 1.3] in the second.

Case 1 If ¢; = ¢y + 1, then b connects distinct components K; and K, of L. Let K’ denote the
component of L’ obtained as the resolution (K; U K5)p. We now translate this setup into the notation
of [19, Section 1]. Let N = v(K; Ub U K,), a genus two handlebody, and let M = S3\v(L\(K;UK>)).
Let E denote the spanning disk bounded by K;. Let P’ = dv(E1), a 2-sphere disjoint from K; Ul K,
in M. Let Q' denote a spanning disk bounded by K’ in M. Let P = P\ N,and let Q = Q' \ N.

It is clear from this setup that P N 0N is a collection of m parallel separating curves A,, for some odd
m, since P’ was disjoint from K and K, but intersects b transversely; see [19, Figure 1]. Similarly,
Q NIN agrees with the curves By, since Q" = K’ and Q' may crash through b in arcs parallel to its
core. Thus, M, N, P, and Q satisfy the hypotheses of [19, Theorem 1.1]. The relevant conclusion is
that A; and By bound embedded disks E and F in M \ N that intersect in a single arc; compare with
the proof of [19, Main Theorem].

Translating this conclusion back into the setting of interest, the disk E is properly embedded in S3 \ v(b)
and F is a spanning disk for K’. This implies that the pair (B3, T) = (S3, L) \ (v(b), v(L N b)) is the
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split union of a trivial tangle and an unlink: the strands of the trivial tangle are parallel into pushoffs of £
via the components of F \ v(E), at which point they are parallel into dv(b) via the pushoffs of E.

The bridge sphere ¥ induces a bridge splitting (B3, T'). By [24, Theorem 2.2], ¥ is either minimal for
(B3, T) or perturbed.! If the splitting were minimal, we would have b = ¢;, so T would be completely
decomposable by Proposition 5.1. If the splitting is perturbed, then ¥ is perturbed, since each bridge arc
of T3 that is disjoint from v(b) is a strand of a 1-bridge splitting of a component of L3 = 73 U T 1. After
deperturbing ¥, we find that ¥ is completely decomposable, by the inductive hypothesis.

Case 2 If ¢c; = ¢q, then b connects a component K of L to itself. Let K’ = K. We now translate this
setup into the notation of [1, Section 1], abbreviating the discourse where it is overly repetitive of the
previous case. Let M = S3\ v(L\ K), and let N = v(K Ub). Let P’ be a spanning disk bounded by K
in M, and let Q’ be a spanning disk bounded by K’ in M. Let P = P’\ N,andlet Q = Q' \ N.

It is clear from the setup that the hypotheses of [1, Theorem 1.3] are satisfied, so we can conclude that
some Ao and By bound embedded disks Ep and E g, respectively, in M \ N. Moreover, there is a
properly embedded disk D in M \ N, disjoint from Ep and E - that runs once over one of the handles
of N and is disjoint from the other handle. We can extend E p to a spanning disk F' for K; compare with
the proof of [1, Theorem 1.8].

The strands of K\ v(b) are parallel into pushoffs of D via the components of Ep\v(D), at which point they
are parallel into dv(b) via the pushoffs of D. It follows that the tangle (B3, T) = (S3, L)\ (v(b), v(bN K))
is the split union of a trivial tangle and an unlink, and ¥ gives rise to a bridge splitting of (B3, T). As
before, this splitting is either minimal or perturbed. The case that the splitting is perturbed has the same
consequence as in Case 1 above.

If the splitting is minimal, then it is a split union of a 2-bridge splitting of the trivial tangle and a (b—2)-
bridge splitting of an unlink. It follows that the bridge trisection is a split union: € =%’ U %", where T’
is a (2, 1)-bridge trisection (of a projective plane, necessarily), and " is a (b—2;c1—1,cy—1,b=2)-
bridge trisection (of an unlink of 2-spheres, necessarily). The latter is completely decomposable by
Proposition 5.1. O

We can also use Theorem 5.2 to understand surface-links with particular banded link presentations, where
a banded link presentation (L, v) consists of an unlink L C S3 and a collection of bands v such that the
resolution L, of L along v is also an unlink. Every banded link presentation gives rise to a surface S
in S*, and conversely, every surface-link S in S* can be presented by a banded link [10].

In [15, Section 3], the authors introduced the notion of banded bridge splitting of (L, v), a bridge splitting
of L such that the bands v are isotopic into the bridge sphere with the surface framing and are dual to
a collection of bridge disks on one side. They showed that (S*, S) admits a (b; ¢)-bridge trisection if

1 Although [24, Theorem 2.2], as stated, applies to a closed 3-manifold M and a link K in M, a verbatim proof establishes the
more general case where the 3-manifold M is replaced by a punctured 3-manifold and the link K is a tangle.
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and only if a banded link presentation (L, v) of S admits a banded b-bridge splitting such that |L| = ¢y,
|[v| = b —cy, and |Ly| = ¢3. As a corollary to Theorem 5.2, we obtain the following, which states, in
essence, that a surface is unknotted if the bands are attached in a relatively simple way to the maxima or
minima disks.

Corollary 5.3 Suppose a surface-link S in S* is presented by a banded link (L,v) with a banded
b-bridge splitting such that b = |L|+ 1 orb = |L,| + 1. Then S is an unlink of 2-spheres or an unlink of
2-spheres and an unknotted projective plane.

The corollary exploits a feature of trisection theory called handle triality: If (L, v) admits a banded bridge
splitting as in the corollary, then it admits a (b, ¢)-bridge trisection such that ¢y =b—1orc3 =b—1.
By the three-fold symmetry of the trisection setup, we can extract a different banded link presentation
with a single band, as in the proof of Theorem 5.2, and now we rely on known results about surface-links
built with a single band to classify S. The result can be interpreted as an analog for knotted surfaces
of [13, Theorem 1.2].
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Random Artin groups

ANTOINE GOLDSBOROUGH
NICOLAS VASKOU

We introduce a new model of random Artin groups. The two variables we consider are the rank of the
Artin groups and the set of permitted coefficients of their defining graphs.

The heart of our model is to control the speed at which we make that set of permitted coefficients grow
relatively to the growth of the rank of the groups, as it turns out different speeds yield very different
results. We describe these speeds by means of (often polynomial) functions. In this model, we show that
for a large range of such functions, a random Artin group satisfies most conjectures about Artin groups
asymptotically almost surely.

Our work also serves as a study of how restrictive the commonly studied families of Artin groups are,
as we compute explicitly the probability that a random Artin group belongs to various families of Artin
groups, such as the classes of 2-dimensional Artin groups, FC-type Artin groups, large-type Artin groups,
and others.

20F36, 20F65, 20F69, 20P05; 20F67

1 Introduction

Artin groups are a family of groups that have drawn an increasing interest in the past few decades. They
are defined as follows. Let I" be a defining graph, that is a simplicial graph with vertex set I/(I") and
edge set E(I'), such that every edge e, of I' connecting two vertices a and b is given a coefficient
mgp €1{2,3,...}. Then I' defines an Artin group:

Ari=(V(T) | gba--; = . Veap € E(T)).

bab --
N’
Mmgyp terms  mgp terms

The cardinality of V(I"), that is the number of standard generators of Ar, is called the rank of Ar. When
a and b are not connected by an edge we set m,p 1= 00.

One of the main reasons why Artin groups have become of such great interest is because of the amount of
(often easily stated) conjectures and problems about them that are still to be solved. While some of these
conjectures are algebraic (torsion, centres), some others are more geometric (acylindrical hyperbolicity,
CAT(0)-ness), algorithmic (word and conjugacy problems, biautomaticity), or even topological. Although
close to none of these conjectures or problems has been answered in the most general case, there has

© 2025 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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been progress on each of them. A common theme towards proving these conjectures has been to prove
them for smaller families of Artin groups.

The goal of this paper is to consider Artin groups with a probabilistic approach. One might wonder what
a typical Artin group looks like, and hence want to define a notion of randomness for Artin groups. By
computing the different “sizes” of the most commonly studied classes of Artin groups, we give a way to
quantify how restrictive these different classes really are. In light of that, our model provides a novel and
explicit way of quantifying the state of the common knowledge about the aforementioned conjectures and
problems about Artin groups.

Although Artin groups are defined using defining graphs, it is not known in general when two defining
graphs give rise to isomorphic Artin groups. This problem, known as the isomorphism problem, is
actually quite hard to solve even for restrictive classes of Artin groups. With our current knowledge, any
(reachable) theory of randomness for Artin groups must then be based on the randomness of defining
graphs, and not of the Artin groups themselves.

Random right-angled Coxeter (and Artin) groups have been studied by several authors in the literature
(see Behrstock, Hagen and Sisto [1] and Charney and Farber [4]), using the Erd6s—Rényi model. While
in [4] the authors fix the probability of apparition of an edge as some constant 0 < p < 1, in [1] this
model is refined: p = p(N) depends on the rank N of the group. That said, these models restrict to
right-angled groups, where the associated defining graphs are not labelled. In [7], Deibel introduces a
model of randomness for Coxeter groups in general. There are similarities between this model and ours,
although the former revolves more about making the probabilities of apparition of specific coefficients
vary. In particular, this model is not very well suited to provide insights on the “sizes” of the most
commonly studied classes of Coxeter and Artin groups. On the contrary, this is a central goal of our
model.

The two variables that come to mind when thinking about Artin groups are their rank, that is the number
of vertices of the defining graph, as well as the choice of the associated coefficients. A first step in the
theory is to consider what happens if we restrict ourselves to the family 4V-™ of all the defining graphs
with N vertices and with coefficients in {00, 2,3,..., M}, for some N > 1 and M > 2. As we want any
possible rank and any possible coefficient to eventually appear in a random Artin group, a convenient way
to think about randomness is to pick a defining graph at random in the family 4™ and then to make N
and M grow to infinity. Note that isomorphic labelled graphs may be counted multiples times in 4V-M

As it turns out, randomness of defining graphs highly depends on the speed at which N and M grow.
A prime example of this is that the probability for a defining graph of 4™ to give an Artin group of
large-type (meaning that none of the coefficients is 2) tends to 1 when M grows much faster than N,
and tends to O when N grows much faster than M. To solve this problem, we decide to relate N and M
through a function f such that M := f(N). This way, we only have to look at the family $V-/ ) when
N goes to infinity.
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If Ag is a family of Artin groups coming from a family of defining graphs %, a way of measuring the

“size” of Ag is to compute the limit
#(F NGNS (V)

N T RGN T
Of course, this ratio depends on the choice we make for the function /. When the above limit is 1, that is
when the probability that a graph picked at random in 4™/ (V) will give an Artin group that belongs to
the said family Ay tends to 1, we say that a random Artin group (with respect to f') is asymptotically
almost surely in Ag.

One may wonder why our model only considers graphs of rank N, and not all graphs with rank at
most N. As it turns out, the size of the set of all graphs with at most N vertices (and coefficients in
{00,2,..., f(N)}) is asymptotically the same as the size of 4¥/) in the sense that the quoti