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Kauffman bracket intertwiners and the volume conjecture

ZHIHAO WANG

The volume conjecture relates the quantum invariant and the hyperbolic geometry. Bonahon, Wong and
Yang introduced a new version of the volume conjecture by using the intertwiners between two isomorphic
irreducible representations of the skein algebra. The intertwiners are built from surface diffeomorphisms;
they formulated the volume conjecture when diffeomorphisms are pseudo-Anosov. We explicitly calculate
all the intertwiners for the closed torus using an algebraic embedding from the skein algebra of the closed
torus to a quantum torus, and show the limit superior related to the trace of these intertwiners is zero.
Moreover, we consider the periodic diffeomorphisms for surfaces with negative Euler characteristic, and
conjecture the corresponding limit is zero because the simplicial volume of the mapping tori for periodic
diffeomorphisms is zero. For the once punctured torus, we make precise calculations for intertwiners and
prove our conjecture.

14H10, 14H30, 14H45, 14H50, 14L10

1 Introduction

We first discuss irreducible representations for skein algebras of the closed torus and the once punctured
torus, which is related to Bonahon and Wong’s work [3; 4; 5; 6]. They explored the connection between
irreducible representations of skein algebras and the character variety related to the fundamental group of
a surface. In Section 3, we give more detailed discussions about this connection for the closed torus and
the once punctured torus.

A profound result of the skein algebra is the unicity theorem, which was conjectured by Bonahon and
Wong and was proved by Frohman, Kania-Bartoszynska and L& [15]. Based on this result there is an
increased focus on the Azumaya locus. Ganev, Jordan and Safronov proved that the smooth part of the
character variety lives in the Azumaya locus when the surface is closed [16]. In Section 3, we give an
explicit description for the Azumaya locus for the skein algebra of the closed torus.

Let S be an oriented surface, let ¢ be a diffeomorphism for S, and let g, = e27%/" with (g,)'/? = ™i/"
and n odd. Using these data, Bonahon, Wong and Yang built a sequence of intertwiners between
irreducible representations of the skein algebra of S’ [7; 8]. When S has negative Euler characteristic and
¢ is pseudo-Anosov, they formulated the volume conjecture using these intertwiners:
. 1 1
Oddl;n:) o log|Trace Al | = -
where volyy, (M) is the volume of the complete hyperbolic metric of the mapping torus M.
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We explicitly compute the intertwiners corresponding to all diffeomorphisms of the closed torus using an
algebraic embedding from the skein algebra of the closed torus to a quantum torus [14]; see Section 3 for
more details. The representation theory for this quantum torus is well studied. We prove almost all the
irreducible representations of this quantum torus can be restricted to irreducible representations of the
skein algebra of the closed torus. So intertwiners between two isomorphic irreducible representations of
this quantum torus are also the intertwiners between irreducible representations for the skein algebra of
the closed torus. These intertwiners are built when the quantum parameter ¢ for the skein algebra is a
primitive root of unity of odd order. We use A, to denote the intertwiner obtained as above when the
quantum parameter is ¢, = e27/" with (¢g,)'/? = ¢™/" and n odd. We also normalize A, such that
|det(A,)| = 1. Then we prove the following theorem; please refer to Theorem 4.15 for a more detailed

version.

Theorem 1.1 Let A, be defined as above; then

. log(|Trace Ay|)
limsup —— =

odd n—o0 n

0.

The volume conjecture was first introduced by Kashaev [19], and was rewritten and generalized to the
nonhyperbolic case by Hitoshi Murakami and Jun Murakami [22] using the simplicial volume.

Bonahon, Wong and Yang only formulated the conjecture when the diffeomorphisms are pseudo-Anosov
for surfaces with negative Euler characteristic. In this paper, we broaden the scope of the conjecture
to include periodic diffeomorphisms. When ¢ is a periodic diffeomorphism for the surface S, the
corresponding mapping torus M, is a Seifert manifold whose simplicial volume is zero. So we conjecture
the limits are zero for periodic diffeomorphisms. We prove our conjecture for the once punctured torus,
which serves as an example to confirm the limit is the simplicial volume of the corresponding mapping
torus.

Let S be an oriented surface with negative Euler characteristic, and let ¢ be a periodic diffeomorphism
for S. According to [13, page 371], ¢ fixes a point in the Teichmiiller space of S. This fixed point in
the Teichmiiller space offers a smooth g-invariant character y (that is y is a group homomorphism from
1(S) to SL(2, C) such that y¢, and y have the same character, where ¢, is the isomorphism from
71(S) to 71(S) induced by ¢). Suppose the quantum parameter for the skein algebra is ¢, = e27%/"
with (q,,)l/ 2 = ¢7i/" and n odd. For each puncture v of S, we choose a complex number p, such that
Pv = Dy(v) and T (py) = — Trace(y (ay)), where Ty, is the n™ Chebyshev polynomial of the first type
and «, is the element in 71 (S) going around puncture v. According to Theorem 2.1, we know y and
Pv uniquely determine an irreducible representation p of the skein algebra. Let ¢y be the isomorphism
from the skein algebra of S to itself induced by ¢. Since both y and p, are p-invariant, we have p and
pey are isomorphic according to Theorem 2.2. Thus there exists the intertwiner Ag’fy between these two
isomorphic irreducible representations. We normalize it such that |det(Ag’jy)| = 1. Then we formulate
the following conjecture, please refer to Conjecture 5.4 for a more detailed version.
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Conjecture 1.2 Let S be a surface with negative Euler characteristic, let ¢ be a periodic diffeomorphism
for S, and let Ag’f}, be defined as above; then

. 1
1 — log| T A2 | =0.
odd 100 71 og|Trace Al |

In Theorem 5.5, we prove the limit in Conjecture 1.2 is less than or equal to zero if it exists by using the
periodic property. It seems like we are halfway there to prove our conjecture. But proving that the limit
is greater than or equal to zero is harder, which is actually related to an interesting question raised by
Gerald Myerson [24] and Terry Tao [27]. By direct calculations and using some conclusions in [20; 24],
we prove the above conjecture for some special cases:

Theorem 1.3 For any surface with negative Euler characteristic, if ¢ is of order 2™ where m is any
positive integer, then

. 1
1 —log|Trace A", | = 0.
sl 7y 08T AT

Theorem 1.4 Conjecture 1.2 holds if S is the once punctured torus.

Plan of the paper: In Section 2, we introduce the Kauffman bracket skein algebra, the classical shadow,
the volume conjecture, and the Chekhov—Fork algebra. Section 3 is about the discussion on the irreducible
representations of skein algebras of the closed torus and the once punctured torus. In Section 4, we
calculate the intertwiners for the closed torus and prove Theorem 1.1. In Section 5, we formulate our
conjecture for periodic diffeomorphisms and prove Theorems 1.3 and 1.4.

Acknowledgements The idea of considering the periodic case was suggested by my supervisor Andrew
James Kricker. We would like to thank Andrew James Kricker, Jeffrey Weenink, Roland van der Veen
and Xiaoming Yu for constructive discussion and help. We wish to thank the referee most warmly for
numerous suggestions that have improved the exposition of this paper. The research is supported by the
NTU research scholarship.

2 Preliminaries

2.1 The SL(2, C) character variety and the Kauffman bracket skein algebra

Let S be an oriented surface of finite type. The corresponding character variety
XsL(2,c)(S) = Hom(rr;(S), SL(2, C)) //SL(2. C)

is the set of the group homomorphisms from the fundamental group of .S to SL(2, C) with the equivalence
relation that two homomorphisms are equivalent if and only if they have the same character [9; 12; 25].

The Kauffman bracket skein algebra SK1/2(S) of a surface S, as a vector space over the complex field C,
is generated by all isotopic framed links in .S x [0, 1], subject to the skein relation

Kl :q_l/zKoo +6]1/2K0,

Algebraic & Geometric Topology, Volume 25 (2025)



2146 Zhihao Wang
\ \/
AN RN

K Ko Ko
Figure 1: The Kauffman bracket skein relation.

where K1, K« and K are three links that differ in a small neighborhood as shown in Figure 1, and the
trivial knot relation K [[ O = —(¢ + ¢~ ') K, where () is a simple knot bounding a disk that has no
intersection with K. For any two links [L;] and [L,], the multiplication [L{][L,] is defined by stacking

1/2

L, above Ly. Here ¢°/* is a nonzero complex number. The skein algebra SK,1/2(S) is a quantization

for the regular ring of the character variety ¥s2,c)(S) [9].

2.2 Classical shadow and unicity theorem

We recall some notation and constructions for the classical shadow [3]. When ¢ is a primitive n'h root
of unity with n odd and (¢'/?)" = —1, Bonahon and Wong found a fascinating algebra homomorphism
79" from SK_1(S) to SK,1/2(S), called the Chebyshev homomorphism. Bonahon and Wong proved
that Im(7"9 1/2) is contained in the center of SK,1,2(S). If K is a simple knot with vertical framing, then

Ta'"? ([K]) = Tn([K]) where T, is the n™ Chebyshev polynomial of the first type.

Let p: SK;1/2(S) — End(V') be an irreducible representation of SK,1/2(S). Then there exists an algebra
homomorphism «, from SK_;(S) to C such that p o Ta'? (X) = kp(X)Idy for any X in SK_;(S).
According to [9], there exists a unique character [y] € ¥g1 (2,c)(S) such that Tr¥ = k,. Recall that Tr”
is an algebra homomorphism from SK_; (S) to C defined by Tr¥ (| K]) = — Trace y(K) where [K] is a
simple knot. For every puncture v, we use P, to denote the loop going around this puncture. There is a
complex number py such that p([Py]) = pyldy. Then an irreducible representation of SK;1/2(S) gives a
character [y], called the classical shadow of this irreducible representation, and puncture weights { py}v,
with the relation that — Trace y (cty) = T (py) Where oy, denotes the element in the fundamental group of
S going around the puncture v.

Theorem 2.1 [3;5; 6;7] Let g be a primitive n'™ root of unity with n odd and (ql/z)” = —1. Then an
irreducible representation p: SK,1/2 — End(V') uniquely determines

(1) acharacter [y] € Xs1(2,c)(S), represented by a group homomorphism y : 71(S) — SL(2, C);

(2) a weight p, associated to each puncture v of S such that T,(p,) = — Trace y (ay).
Conversely, every data of a character y € ¥gsy(2,c)(S) and of puncture weights p, € C satisfying the

above condition is realized by an irreducible representation p: SK;1/2(S) — End(V').

It turns out that every character in an open dense subset of ¥y (2,¢)(.S) corresponds to a unique irreducible
representation of the skein algebra.

Algebraic & Geometric Topology, Volume 25 (2025)
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Theorem 2.2 [7; 15; 16] Suppose that [y] is in the smooth part of gy, c)(S) or, equivalently, that
it is realized by an irreducible homomorphism y : 7w1(S) — SL(2,C). Then the irreducible represen-
tation p: SK;1/2(S) — End(V) in Theorem 2.1 is unique up to isomorphism of representations. This
representation has dimension dim V = n38 773 if S has genus g and p punctures.

2.3 Volume conjecture for surface diffeomorphisms

Bonahon, Wong and Yang constructed the so called Kauffman bracket intertwiners [7; 8]. They used
these intertwiners to formulate the volume conjecture for surface diffeomorphisms. Here we recall their
construction for Kauffman bracket intertwiners.

For a surface S, let ¢ be a diffeomorphism of .S. Obviously ¢ induces an isomorphism ¢x from 71 (S) to
71(S). Then ¢4 induces an action on Xsy (2,c)(S) defined by ¢*([y]) = [y ¢«] where y is a representative
for [y]. Although ¢4 is only defined up to conjugation, ¢* is well defined. Actually the mapping
class group Mod(S) acts on &g (2,c)(S). We say an element [y] € Xsp(2,c)(S) is invariant under a
diffeomorphism ¢, or the element it represents in Mod(S), if ¢*([y]) = [y].

The algebra isomorphism induced by ¢ from SK,1/2(S) to itself is defined by ¢4 ([K]) = [¢ x1d[o,1}(K)]
where K is a framed link in S x [0, 1]. Actually the mapping class group Mod(S) acts on SK1/2(S).

Let ¢ be any diffeomorphism for surface S, and let [y] € ¥g1(2,c)(S) be a ¢-invariant smooth character.

O _ e=%_ Since [y] is

For each puncture v, select a complex number 6, such that Trace y (ay) = —e
@-invariant, we can choose 0, to be g-invariant, that is, 6 = 0,(). Then set p, = e/n 4 o=bu/n. e
have that Ty, (py) = — Trace(ay) and { py }, are invariant under the action of ¢. Suppose p is an irreducible
representation associated to [y] and puncture weights p,. Then p o @y is also an irreducible representation
associated to [y] and puncture weights p,. By the unicity theorem, we know there exists an intertwiner
A%, such that

powy(X) =A% op(X)o(Af )

for every X € SK,1/2(S). We normalize the intertwiner such that |det(Ag,y)| =1.

Conjecture 2.3 [7; 8] Let the pseudo-Anosov surface diffeomorphism ¢: S — S, the @-invariant
smooth character [y] € ¥s1(2,c)(S) and the g-invariant puncture weights p, as above be given. For every
odd n, consider the primitive n' root of unity g, = ¢*™/" and choose (¢,)'/? = e™/" Then
. 1 an | _ 1
Oddlzrgoo , log|Trace AJ", | = in VOlhyp(My),

where volpy, (M) is the volume of the complete hyperbolic metric of the mapping torus M.
2.4 Ideal triangulation and intertwiners obtained from Chekhov-Fock algebras

Let S be an oriented surface with punctures, and let t = {eq, ..., e, } be an ideal triangulation for S,
where eq, ..., e, are nonisotopic disjoint embedded arcs in S connecting punctures such that all these
arcs cut S into triangles. We call ey, ..., e, the edges of 7. An edge weight system for 7 is an m-tuple,
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a=(ay,...,am), where a; is a nonzero complex number for each 1 <i < m. The pair (z, @) determines
a character [y] in ¥pgp (2,c)(S); please refer to [1, Section 8] or [7, Section 3] for more details.

For each ideal triangulation 7, there is a Chekhov—Fock algebra 77 corresponding to 7, where ¢ is
a nonzero complex number. As an algebra over C, the Chekhov—Fock algebra 77 is generated by
Xlil, Xzi'l, el X,;,tl subject to the relations

XX '=X7'Xi=1. XiX; =4V X;X;.

Each X; is associated to the i™ edge in the ideal triangulation 7, and o; j 1s an integer determined by t;

see [1; 2; 21] for more details. If we replace ¢ with ql/ 4

, we get the so called Chekhov—Fock square root
/4 _ . . . . - . .
algebra 72 . It is well known that T is an Ore domain. We will use 7 to denote the ring of fractions

of 77 (that is the localization over all nonzero elements).

Let 7 and 7’ be any two ideal triangulations for .S. Then there is an algebra isomorphism @Zr, T z, — @z
called be the Chekhov—Fock coordinate change isomorphism [21].
For an ideal triangulation 7, there are two operations.

(1) Reindexing Obtain a new ideal triangulation t’ by reindexing all the edges in .

(2) Diagonal exchange Forany 1 <i <m, define a new ideal triangulation " = {e}.... ey, }, where

e} = e; for every j # i and e] is the other diagonal of the square formed by the two faces of 7 that

are adjacent to e;.

Let ¢ be an ideal triangulation, let a = (ay,...,a;) be an edge weight system for t. Suppose
t" ={e].....ep,} is obtained from r by reindexing such that e] = e,(;y for 1 <i < m, where o is
a permutation for {1,...,m}. Then we define an edge weight system a’ = (a}, ..., ay,) for 7’ by setting
a; = aq(;) for 1 <i <m. If v’ is obtained from 7 by the diagonal exchange, we define an edge weight
system @’ for ¢’ using formulas in [21, Proposition 3]. We will say a’ is an edge weight system for 7’
derived from the pair (z,a). Then (z’,a’) determines the same character in ¥pgy (2,c)(S) as (z,a) [1; 7].

A sequence of ideal triangulations (@, ™ . 7®) js called an ideal triangulation sweep if, for each
1 <i <k —1, we have that 7%+ js obtained from 7@ by reindexing or the diagonal exchange. A
sequence of edge weight systems a@, a1 . ,a® is called an edge weight system sweep for the
ideal triangulation sweep 1@ W 0 i the edge weight system a@+D for £+ is derived from
(r(i), a(i)) for each 0 <i <k — 1. Note that the sequence a® W ) g completely determined
by a© _1f in addition @@ = a®) | we call the sequence a(©), a®,. .. a® a periodic edge weight system
for the ideal triangulation sweep r(o), r(l), el 0,

Suppose ¢ is a primitive n™

root of unity with n odd. Let ¢ be an orientation preserving diffeomor-
phism for surface .S, and let t = 1@ O ) = ¢(7) be an ideal triangulation sweep. Suppose
a= a(o), a(l), ... ,a(k) = a is a periodic edge weight system for 7O, ‘L’(l), e, (0 (the existence of the

periodic edge weight system is guaranteed by [7, Lemma 11]), which defines a g-invariant character
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[V] € Xpsi(2,c)(S). Then, for each puncture v, we can choose a nonzero complex number /1, such that
hy = hy(y) for every puncture v and ()" = a;, aj, -+~ a;; for every puncture v adjacent to the edges
€y, €iys - - - €j;. From [7, Proposition 13], we know @ and puncture weights /4, uniquely determine an
irreducible representation 5: 77 — End(V') for the Chekhov—Fock algebra 77 such that p(X]') = a;
for 1 <i <m and p(H,) = hy for each puncture v, where H, is a central element in 57 associated to
each pun/c\ture v. Let @7 ;)" @Z,(r) — @z be the Chekhov—Fock coordinate change isomorphism, and let
W e J1— T Ee the algebra isomorphism induced by ¢. Then p >~ po ®% ) o W )., so there
exists an intertwiner AZ’); such that

PPN q _ A4 - A -1
PO ®Prpr) © Yooy (X) = Ay y 0 p(X) 0 (Ag 5)
for every X € 77,

Under certain conditions, the trace of intertwiners obtained from Chekhov—Fock algebras equals the trace
of intertwiners obtained from skein algebras; see [7, Theorem 16]. We will use this equality to calculate
the trace of intertwiners obtained from skein algebras for the once punctured torus in Section 5.

From now on, we will always assume ql/ 2 is a primitive n root of —1 with n odd.

3 Irreducible representation construction for SK, 1.2 (T %) and SK,1/2(S1,1)

In order to get Kauffman bracket intertwiners, we want to find the explicit irreducible representations
associated to given characters and puncture weights. Here we construct irreducible representations for
skein algebras of the closed torus 7' 2 and the once punctured torus Sp ;. In Section 4, we will use these
irreducible representations to calculate intertwiners for the closed torus.

3.1 An algebraic embedding for SK1/2(T 2)

Let C[X*!, Yil]ql/z be the algebra generated by X, X~!, Y and Y !, subject to the relations
XY =qYX, XX '=X"'X=1and YY~! =YY = 1. Frohman and Gelca [14] built an algebraic
embedding

CPVEE Squ/z(Tz) — (C[X:H, Yil]ql/Z, (a,b)T = Oa.p)y + O—a,—b)

where (a,b)r is the simple link associated to two integers @ and b, and 6, p) = g~abl2xayb If
gcd(a, b) = 1 (with the convention that gcd(£1, 0) = ged(0, £1) = 1), then (a, b) 7 is represented by
the simple knot (a, b) in R?/Z? with vertical framing. If gcd(a,b) = k, a = a’k and b = b’k, then
(a,b)T = Ty ((d', b')) where T} is the k'™ Chebyshev polynomial of the first type. We have

ab —
e iloepiay and Gap) ™ =0ca b,
Since Q(Q,b) + 9(—0,_b) = q_ab/z(XaYb + X_aY_b)$

Oab)Oic.dy =4

Im G2 = span(X*Y? + X79Y ™ | (a,b) € Z x Z).

Algebraic & Geometric Topology, Volume 25 (2025)
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Let 7},1/2 be the Chebyshev homomorphism from the skein algebra SK_; (T?) to SKg1/2(T 2) defined
in [3], and let Fj1/2: C[X = YE!_| - C[XE! YE!] 12 be defined by X +> X" and ¥ +> Y". Itis
easy to check that we have F1/2G_1 = G, 1/2T12.

3.2 Irreducible representations for SK,1,2(T 2)

Bonahon and Liu described the irreducible representations of C[X *!, Yil]ql/z [1]. Let V denote the
n-dimensional vector space over the complex field with basis eg, e1,...,e,—1, and let # and v be any
two nonzero complex numbers. Set py ,(X)e; = uqie,- and py (Y)e; = vejyq, where the indices
are considered modulo #; then p, , is an irreducible representation. Any irreducible representation of
ClX*, Yi]ql/z is isomorphic to a representation pyy, and py,y = py v if and only if u” = (u’)" and
" = (V)"

It is well known that 7{(7?) = Z ® Z = Zoa ® ZB where a = (1,0) and 8 = (0,1). For any
[v] e %SL(z,C)(Tz), [v] has a representative y such that

v = (g ) e o= (5 ,0)

because 71 (7'?) is commutative.

For any given character [y] € Xs1(2,cC) (T?), the following theorem offers a representation of SKy1/2 (T?)
whose classical shadow is [y]. For this theorem, we use the fact that ab + a + b = gcd(a, b) (mod 2) for
any two integers a and b (recall that ged(£1, 0) = ged(0, 1) = 1).

Theorem 3.1 Choose u,v € C such that u" = —A{, V" = —A, or u" = —kl_l, vt = —k;l; then the

classical shadow of py,yGg1/2 is [y].

Proof To show the classical shadow of p,,,G1/2 is [y], it suffices to show that

puwGyir2 (T2 ((@. b)) = T ((a. b)r)ldy
for all (a,b)T € SK_I(TZ). First we have
PupGg1/2(Ty12((a. D)1)) = pup(Fy12G-1((a,b)T))

= pu(Fq1/2(0@a,p) + O(—a,~b)))
= lou,v(e(na,nb) + 9(—na,—nb))
— pu,v((_l)abXnaan + (_l)abX—nay—nb)
= (= D*[(0u,0 (X))™ (Pu (V)™ + (pu,0 (X)) " (1,0 (¥)) "]
= (=D®[@"* ™’ + @)™ W") " lidy
— (—l)ab+a+b[)\‘f)\g + )Ll_a)\.;b]IdV.

Algebraic & Geometric Topology, Volume 25 (2025)
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Suppose ged(a,b) = d and a = d'd, b = b'd; then we have
TrY ((a,b)1) = TrY (Ta((d, b)) = Ty(Te¥ (¢, b))

= T4 (—Trace(y ((a',0))))
= T4(—Trace(y (d'a + b'B)))
= T (—Trace((y (@))* (¥ (B))""))
= Ty ((=2{ 25) + (=A7925%))
= (=242 + (=2 723")1
— (—l)d[)flla/)\gb/ +)»1_da/)»;db/]
= ()Tt RIS +AT950). =

We can easily get the following theorem by using the representation theory.

Theorem 3.2 Under the same assumption as in Theorem 3.1, we have the following conclusions:

(@) If Ay # £1 or Ay # *£1, the representation py,yG 41,2 is irreducible.

(b) If Ay = £1 and A, = =1, then V has only two irreducible subrepresentations, V| and V5,
V=V V,,dm(V;) =(n+1)/2, and dim(V,) = (n — 1)/2; especially

Vi = span(eq,eq +ey—1,€2+€n—2.....€(n-1)/2 + €n+1)/2)

Vo =span({e; —ep—1,€2 —€p—2.....€n—1)/2 = €(n+1)/2)
ifu==1andv==l.

Remark 3.3 The Azumaya locus of SK1/2 (T?) is a subset of XsL(2,C) (T'?); an element in XsL2,0) (T?)
lives in the Azumaya locus if it corresponds to a unique irreducible representation of SK1/2(T 2) (the
correspondence is the one in Theorem 2.1). We know the Pl-dimension of SK;1/2 (T?) is n. Then
a character [y] € %SL(Z,(C)(TZ) lives in the Azumaya locus if and only if there exists an irreducible
representation of SK 1 ,2(T?) of dimension 7 whose classical shadow is [y]. So by Theorem 3.2, [y] lives
in the Azumaya locus if and only if A; # 41 or A, # +1, where

v = 2) e = (0 0).

A contemporaneous paper by Karuo and Korinman [18] considered instead the case when ql/ 2 is an odd
order root of unity; both cases were studied through similar methods. They proved the character lives in
the Azumaya locus of the skein algebra of a closed surface if and only if the character is noncentral.

In [4], Bonahon and Wong proved the Witten—Reshetikhin—Turaev representation of the Kauffman
bracket skein algebra is irreducible and whose classical shadow is the trivial character. For the closed
torus 72, we use V2 to denote the Witten—Reshetikhin-Turaev representation of SKy1/2 (T'?). We know
dim Vg2 = %(n —1) with basis vy, va, ..., Vp—1)/2 Where vy is the skein in the solid torus represented by

Algebraic & Geometric Topology, Volume 25 (2025)
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€2

(&}
€1 €1

€2
Figure 2

2k — 2 nontrivial parallel closed curves, which are parallel to the core of the solid torus, with the (2k—2)™
Jones—Wenzel idempotent inserted. In Theorem 3.2 with A; = A, = 1, V; and V2 are isomorphic as
representations for SK1/2(T 2), and the isomorphism is given by

€rk—1—€n—2k+1 >V forall 1 <k =< %(n —1).
3.3 Irreducible representations for SK,1/2(S1,1)

We want to find the explicit irreducible representations of SK,;1/2(S1,1) corresponding to given characters
and puncture weights. Let C4[X lil , X zil , X 3i1] be the algebra generated by X7, X, and X3 subject to
the relations

XiXo=¢Xo X1, XoX3=¢X3Xp, X3Xi=¢XiXo, XX =X7'Xi=1
We have (Cq[XljEl , X2jEl , X;tl] = 9?1/4 (S1,1) where 7 is the ideal triangulation in Figure 2.
We define the skeins Ky, K and K3 in the skein algebra Squ/z (S1,1) using Figure 3.
According to [10], the algebra SK,1,2(S1,1) is generated by Ky, K> and K3 subject to the relations
g 'PKi Ky —q" P KKy = (g7 — 9)K3,
g 'PK K3 —q'PK3Ky = (¢ —9) K1,
g 'PK3 K1 —q"*K K3 = (g7 —q)K>.
Let P be the loop around the puncture in Sy ;. Then
P=q 'PK 1K K3 —q 'K} —qK3 —q ' K3 +q+q7".

/
/

K1 KZ K3

Figure 3
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Lemma 3.4 There is an algebraic embedding F: S,1/2(S1,1) = Cy[X;=!, X551, X35! such that

F(Kp) = [XaX3]+ [Xy ' X7+ [X0 X7,

F(Ky) = [X3 X1]+ X5 X7+ (XX,

F(K3) = [X1 0]+ [X7 X T+ (XX ],

F(P)=[X}X; X7+ (X2 X5 2 X5 2],
Proof Actually, F is just the quantum trace map constructed in [2, Theorem 11] if we regard
CalXF X35, X!

as the Chekhov—Fock square root algebra associated to the ideal triangulation in Figure 2 where X;

corresponds to ¢; fori =1, 2, 3. O

Let V be an n dimensional vector space over the complex field with basis wg, wy, ..., w,—1. We can
define a representation py,,r,,r; : Cq[XE!, XF1, X;E] — End(V) such that

i
Pry,rars (XDwi = r1q" w;,
—i
Pri,rars (X2)Wi = 12q " wity,
Pry,rar3 (X3)wi = r3w;—y,
where 7y, r, and r3 are nonzero complex numbers. We can get oy, r, r; ([X1X2X3]) = }"1}"2}"36]1/21(1[/.
Lemma 3.5 For any three nonzero complex numbers ry, ro and r3, py, r,,r, i an irreducible representa-

tion of (Cq[Xlil , X2jEl , X;Cl]. Furthermore, every irreducible representation of (Cq[le:1 , Xzil , X;El] is
isomorphic to a representation Pr, r,.ry, A0d Pr| ry.r3 =2 Psy,s0,53 1 and only if

. ry=sy, Ty =S5, rirpry =s15253.
For any y € ¥s1,(2,c)(S1,1) and a nonzero complex number p such that 7, (p) = — Trace y (P) where
P is the loop going around the only puncture in Sy j, let ; = —Trace y (K;) fori = 1,2, 3. According
to [26], we have
Tu(p) = —titats — 17 — 15 — 15 + 2.
Lemma 3.6 Let x and y be two indeterminates such that xy = ¢~ 2yx. Then
Tun(x+xVHp)=x""4+x" 4"
forn>1.
For any given character [y] € Xs1(2,c)(S1,1), the following theorem offers a representation of SK;1/2(S1,1)

whose classical shadow is [y].
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Theorem 3.7 With the above notation, pr, ,r,,rs F is a representation of SK;1/2(S1,1). The classical
shadow of py, r, ri F is y and py, r,r, F(P) = pldy if and only if we have the following equations:

n_n —n_,—n n_ —n __
ryrs +r2 T3 —|—r2r3 = —1,
n_n —n_,—n n_ —n __

0 r3ry +r3 r +r3 ry T =i,
n.n —n._.,—n n,.,—n __
rirsy —I—rl Ty +r1 Ty = —13,

2.,2.2 2

-2 — 1
Firaryq +1ry 7,

r3_2q_ = p.
Proof It is easy to see
XXX = ¢ [0 X; XX,
(XXX X = ¢ (X X X5 X,
(X1 X)X X5 = ¢ 72X X5 X X

From Lemma 3.6, we get

o) Tu(0r1.r2.rs F(KD) = Ta(pry s (X2 X314 (X5 X5+ (X2 X57'))
= Prirars (Ta((X2 Xa) + (X5 X5+ (X2 X571])
= Prira.rs (X3 X3+ (X5 X3 + (X7 X5™)
= Pri,rars (X3 X3 + X" X" + X7 X))
=—(ryry +ry "y +r)ryHIdy.

Similarly we can get

Tn(pry,raurs F(K2)) = —(rgr{ +r3"r " +r3ry™)dy,

3) o g
Tu(pry s F(K3)) = =(r{'ry +r{"ry " +rir,™)Idy.

And

4) Pri,rars F(P) = pry,ra e ([X12X22X12] + [X1_2X2_2X1_2])

= Pr1rars (XT X3 XED + ory s (X7 X52XT2)

= (r12r22r32q + V1_2r2_2}’3_2q_1)1d[/.
From (2), (3), (4) and the fact that Ky, K, and K3 generate the algebra SK_;(S;,1), we can get the
conclusions in Theorem 3.7. O

Remark 3.8 At first glance, it seems like, in (1), we may not be able to get solutions, but actually the forth
one is a consequence of first three equations because we have the relation 7, (p) = —t1t>13 —llz —t22 —t32 +2.
In fact, to get solutions, we only need to solve the equations

yz4y ey =,
x+z x4zl = —1,
xy—i-x_ly_1 +xy_1 = —1I3.
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Let Y; = X7 fori =1,2,3; then
V1Y, =q¢* Y oY =¢*YaY,, VY = ¢*Y Vs, Y =Yy = 1.
The subalgebra of (Cq[leEl,XzjEl , X;El] generated by Ylil, Y2jEl and Y3jEl is Cq4[Y1i1, Yzil, Y3i1].

Here we recall a lemma from [7] for irreducible representations for C q4[Y1:':1, Yzil, Y;H]. Let V be ann
dimensional vector space over C with basis wg, wq, ..., w,—;. For any three nonzero complex numbers
y1. y2 and y3, define py,,y,,y;: C Y Y55 YE] - End(V) such that

Pyl,yz,ys(Yl)(wi) = qu4iwi,
(5) Py1,¥2,¥3 (YZ)(wl) = qu_Ziwi-l-l’
Pyryays (Y3)(Wi) = y3g~Hw;_y.

Lemma 3.9 [7] (1) For any three nonzero complex numbers yi, y, and y3, the representation
Py1,ya,y5 18 irreducible.

(2) Every irreducible representation of Ca[YE!, Y;E! Y 1] is isomorphic to a representation py, ., ;.
(3) The representations py,,y,,y; and py: .« are isomorphic if and only if y} = 0" ¥y = )",
y3 = (¥3)" and y1y2y3 = ¥\ 73 ;3.

4 Calculation of intertwiners for the closed torus

4.1 Construction of intertwiners for the closed torus

The mapping class group of the closed torus is SL(2, Z) [13]. For any 4 = (‘C’ Z) € SL(2, Z), we hope to
find invariant characters under A. For a [y] € ¥sy,2,c)(T 2), we choose a representative with

v = (4,0 wa v = (%)
1 2

where o and B denote loops (1,0) and (0, 1) in R?/Z? respectively. We have [y] is invariant under 4 if
and only if Trace(y (A(2))) = Trace(y(z)) for all z € w;(T?). For any (ky,k») € Z & Z, we have

b
Ax(kia + ko) = (k1. k2) (? d) = (kia+kyc, kb +kad) = (kya + kye)a + (k1b + kod)B,
Y(As(kia +kyB)) = yl(kia + kyc)a + (k1b + kod) B]
B )\‘1 0 kia+kac )\2 0 ki1b+kod
Lo At 0 At

_ ()\Ifla‘f'kZC)\]zClb"‘kzd 0 )
= —(k1a+kac) y —(kib+kad) | *
0 )\1 1 2 )\2 1 2

ky ko kiyk
a0 0\ iRk o
y(k10l—|—k2,8)_(0 )\1—1) (0 )\;1) _< 0 )\,l_kl)\;kz .

Algebraic & Geometric Topology, Volume 25 (2025)



2156 Zhihao Wang

Then it is easy to show that [y] is A-invariant if and only if A; = A‘I’AIZ’, Ay = )\ikg or Ay = Al_”)»gb,

Ay =AT6A57.

A also induces two algebra isomorphisms, F4 4 and Fy _, from C[X +1 Yil]ql/z to itself defined by
Fat+0a.p) = 0ajpas  Fa-065) =0-i—ja

F4,4+ and F4 _ are well defined because

(i.j)A i i
O,y 40uk.na = 611/2[("'*”“]9(1'+k,j+1)/1 = ql/z[" ’][A]Q(H-k,j—H)A = 611/2[" ’]9(i+k,j+1)A,
and similarly
0 0 —2lii]g
(—i,—j)AY(—k,—A =4 (—i—k,—j—1A-
From Section 3, we know there is an embedding
qu/z : SKq1/2 (Tz) — (C[X:H, Y:H]ql/z.

For the following discussion we will omit the subscript for G,1/2 when there is no confusion.
Lemma 4.1 The following diagram is commutative:
SK,1/2(T2) —& Clx £ v )
P
SK,1/2(T2) —& ClxE! v )

where Fqis Fq, 4 or Fy _.

Proof We only prove the case when Fyq = Fyq 4.

First we show Ay((k,!/)7) = ((k,[)A)r. Assume gcd(k,/) = j, k =k'j and [ =1'j; then
Ay((k. D) = Ag(Ty (k' 1)) = Ty (Ag (k' 1) = Tj (k' 1) A) = Ty (ak’ + eI’ . bk + d1').

There exist integers # and v such that uk 4+ v/ = j, so [_k l] = j and det((_kv Lll)A) = j. Then

vu

det((k I)A) _ |:ak+/cl bk:;dl] _ (ak el + bk +d)' = .

-V u —v

We also have j | (ak +c¢l) and j | (bk 4+ d!). Thus ged(ak + cl, bk +dl) = j, ak + ¢l = j(ak’ +cl’)
and bk +dl = j(bk' +dl’). Then

Ag((k, 1)7) = Tj(ak’ + ¢l', bk’ +dl') = (ak + cl, bk +dI)p = ((k.])A)7.

So
GAy((k,)7) = G((k, DA)T) = ey a + O3 1y a0
FaG((k, D7) = Fa(O,1) + 9@31)) =0%k,nat+ 9(7;1),1-
We have GAy = F4G because all (k,/)r span the skein algebra. |
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The following two theorems give the intertwiners for the closed surface for all the diffeomorphisms. We
will give explicit formulas for these intertwiners and their trace in the following subsections.

Theorem 4.2 In the diagram
SK,1/2(T%) —& CLY ! Y1 12— End(V)
(©) lAﬁ lFA 6a
Pu.,v M

SK,1/2(T2) —& Clx#! v 2" End(V)

suppose A = (% f}) €SL(2,Z) and F4q = F4 4. Let[y] € XsL2.c)(T?) with

y(a) = ()&01 A?I) and y(B)= (AOZ )\(231)

where Ay = A‘l‘kg and A, = Af)\g, and let u and v be two complex numbers such that u™ = —X, and
v" = —A,. We have the following conclusions:

(a) [y] is invariant under A.

(b) The classical shadow of py G is [y].

©) puwFa > puyp.

(d) From (c), we know there exists an intertwiner A, 4 such that py  F4(Z) = An,+,0u,v(Z)A;’1+ for

all Z e C[X*!, Y+ 4172 Then this intertwiner induces an intertwiner between two irreducible
representations of the skein algebra.

Proof Items (a) and (b) are already shown in the previous discussion.
To prove (c), we have
Pup Fa(X™) = puw Fa(0n,0)) = Pu,v(0n,0)4)
= Puv(Oma.nb))
= pup (1) X"y ")
— (_1)abunavandV
= (=D® (=A% (=12) Ly
= (—1)abratbrarbigy, — i 1dy = u"ldy.
Similarly we can show py , F4(Y") = v"1dy, thus py v Fq4 >~ puv.

For (d), if A} # £1 or A; # %1, Theorem 3.2 implies that A, 4 itself is the intertwiner between two
irreducible representations of the skein algebra. If A; = £1 and A; = =1, Theorem 3.2 implies that V' has
only two irreducible subrepresentations, V; and V5, with dim(V;) = (n+ 1)/2 and dim(V,) = (n—1)/2.
We have that A, 4 (V}) is an irreducible subrepresentation of V' and dim(A,,+ (V1)) = (n +1)/2. Then
Ap,+ (V1) = Vi. Thus Ay 4|y, is an intertwiner for V;. Similarly Ay 4|y, is an intertwiner for V,. O
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Theorem 4.3 In the diagram (6), suppose A = (’Z 3) €SL(2,Z)and Fq=F4,_. Let [y] € %SL(Z,(C)(TZ)

with
(A1 O (A2 O
y(@) = (O )Ll_l) and y(B) = ( ; kzl)
where A1 = )»1_“)\2_” and Ay = kl_ck;d, and let u and v be two complex numbers such that u" = —)»1_1
and V" = —)\;1. We have the following conclusions:

(a) [y] is invariant under A.

(b) The classical shadow of py G is [y].

(©) /Ou,vFA = Puv.

(d) From (c), we know there exists an intertwiner A, _ such that p, , F4(Z) = An,_pu,v(Z)A;,l_ for
all Z e C[X*!, Y:tl]ql s2. Then this intertwiner induces an intertwiner between two irreducible
representations of the skein algebra.

Proof The proof is the same as in Theorem 4.2. |

Note that a rescaling of the intertwiner A, 4 in Theorem 4.2 such that |det(A,, +)| = 1 makes |Trace Ay, + |
independent of the choice of # and v. The same thing holds for the intertwiner in Theorem 4.3.

For the following discussion, we always require F4 to be F4 4 unless specified otherwise (parallel results
hold for F4 _). From the above discussion, we know there exists an intertwiner A, € End(}') such that
the diagram (6) commutes, where G (B) = A, BA};! for all B € End(V'). Next we are going to find an
intertwiner A, under the assumption in Theorem 4.2.

4.2 Calculation for intertwiners

Under the assumption of Theorem 4.2, we have py, y Fq >~ py,y. Foranya €V and Z € Clx =1, Yil]ql/z,
we use Z -a and Z x a to denote py (Z)(a) and py oy F4(Z)(a) respectively. Then we are trying to find
A, € End(V) such that A, (X -a) = X * (An(a)) and A (Y -a) =Y » (An(a)) foralla e V.

Remark 4.4 Assume ged(b, n) =m and n = n’m. There exist two integers r and s such that br +sn = m.
Then we have

7 (vn’bun’(a—l)qab(n’)2/2)m — vmn/bumn’(a—l) abm@n’)?/2

q

_ ’
— vnbun(a 1) ,abnn’/2

q
— (—)\z)b(—)\l)a_l(—l)ab”/ _ (_l)ab+b+a—lkgki¢—l =1,

and q“"/ is a primitive m™ root of unity. Then there exists a unique integer 0 < ko < m — 1 such that

(vn’bun’(a—l)qab(n’)Z/Z)qan’ko = 1 and (vn’bun’(a—l)qab(n’)z/Z)qan’k £ 1fork #ko,0<k <m—1.
We set 1y, = 1 and ry = 0 for k # ko, 0 <k <m—1, and define ry,p = revtyt @1 gatk+bi2/2) fo;
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all0 <k <m—1 and t € Z, where we consider all indices modulo n. Since ged(b, n) = m and n = mn’,
we can reach all the indices. It is an easy check that 1, s,p = T'ky+41, if k1 + 11D = ky + 1,0 (mod n).
Then ry, is well defined for each 0 <k <n—1.

It is easy to check that we have ry 4, = rkvtbut(”_l)q”’kJr”b‘Z/z for all k, ¢ € Z. Actually we have

Tkottb = vtbut(”_l)q”(tk°+bt2/2) forall 0 <t <n'—1,

and all other r; are 0. We have
(vbua—l)n — (vn)b(un)a—l — (_)\Z)b(_)"l)a_l — (_1)a+b—1)\‘la—1)\’2b — (_l)a—i-b—l‘

Then we get || = 0 or 1 for all k € Z. From br + sn = m, we get tm = tbr + tsn for all t € Z. Then

we have
- 2,2
Fhottm = Thotirb = virhytra l)qa(trko—i-bt r*/2)  forall 0 <t<n—1,

and all other r; are 0.
The following lemma offers an explicit formula for the intertwiner constructed in Theorem 4.2(d).

Lemma 4.5 Under the assumption of Theorem 4.2, suppose A, € End(V) and
Anle) =Y (Rnrsek

0<k=<n-—-1

forall 0 <t <n-—1, where
—_ _ _d+2
Andies = rie—ea ™D uc)!qeCh=ar/2),
Then A, satisfies the conditions in Theorem 4.2(d).

Proof From direct calculations, we can get A, (X -e;) = X * (An(ez)) and Ay(Y -e;) =Y * (An(er))
forall0 <t <n-—1. |

We have (¥~ 'u¢)" = (V)41 (u")¢ = (=A2)? 1 (=A1)¢ = (1)1 097 = (=1)+1 Then
we can get |(/_\n)k,t| =0 or 1. We have (/_\,,)k,, = 0 if and only if r,_;; = 0. Then it is easy to show
that ([_\n)ld—l—km—i-ko,l—i-tm’ for0 </ <m—1and 0 <k,t <n’—1, are the only nonzero entries.

For each 0 </ < m — 1, we define an n’ x n’ matrix B such that (Bl)k,t = (/_\n)ld+km+ko,l+tm for all
0 <k,t <n’ —1. Then by Laplace expansion, we know |det(A,)| = ﬂ0515m|det(Bl)|.

From pure calculations, we can get |det(B)| = (n’ )"/2. Then we have

detAn)l = [ Idet(BN = (@)™ = y™"/? = ("2

0</<m

Furthermore, |det((n/)_1/21_\n)| =1.
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Remark 4.6 If A, is the intertwiner in Theorem 4.3, and we still suppose ged(b,n) =m, br +sn=m
and n = n’m, then

Tko—tm = (v_bu_a_l)"q_tmkoJrabtzrz/2 forall t € Z
with all other r; = 0, and
(Kn)k,t = rk+,d(v_d_lu_c)tq_tCk_Cdtz/z forall 0<k,t<mn-—1,

where 0 < kg < m — 1 such that

(v—bu—a—l)n’qab(n’)z/Zq—n’ako = 1.
Also we can get |det(A,)| = (n/)"/2.
4.3 On the trace of intertwiners

Bonahon, Wong and Yang only formulated the conjecture when the mapping tori are hyperbolic. So
they considered surfaces with negative Euler characteristic because the mapping tori for the closed torus
can never be hyperbolic. Since the simplicial volume of mapping tori for the closed torus is zero —see
[13, page 380] — we expect the corresponding limit to be zero. In Theorem 4.15, we can show the limit
superior is zero for any diffeomorphism. But the limits are not zero for some cases; see Example 4.12.
Some diffeomorphisms even do not have invariant characters that live in the Azumaya locus, but the
intertwiners in Theorems 4.2 and 4.3 are very close to intertwiners constructed in [7].

When we consider the intertwiners in Theorems 4.2 and 4.3, we fix the mapping class 4 and the A-
invariant character [y]. In this subsection we will use (/, s) to denote gcd(/, s) for any two integers /
and s.

Theorem 4.7 If we require |det(A,)| = 1 for the intertwiner in Theorem 4.2, then |Trace A,| < n3/2.

Proof Since any two intertwiners in Theorem 4.2 are different by a scalar multiplication or by conjugation
and we require |det(A,)| = 1, the absolute value |Trace A | is independent of the choice of intertwiners.
Let A, = (n')~Y/2A,; then |det(A,)| = 1. Since |([_\n)k,t| =0or1forall0<k,t <n—1 and each row
has exactly n’ nonzero entries, we have the absolute value of every eigenvalue of A, is not more than 7’

Then

|Trace(A,)| = |Trace((n') " 2A,)| < )"V 2(mn') = (') ?n < n?/2. O
Theorem 4.8 If we require |det(A,)| = 1 for the intertwiner in Theorem 4.3, then |Trace A,| < n3/2.
Proof It is similar to the proof for Theorem 4.7. a

Lemma 4.9 Let k be any integer; then we have

o (=" = Ve mn.

0<t=<n—1

Recall that ¢'/? is a primitive n" root of —1.
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Proof In [23] this result is proved for k = 2. Using the same trick, we can prove this generalized
lemma. |

In the following of this section, we always assume ql/ 2 — ¢7i/7 ypless especially specified. Next we are
going to calculate Trace A,, where A, is the intertwiner in Theorem 4.2 or 4.3 with |det A,| = 1. First
we give detailed discussion on the invariant character. Recall that for any A = (Z 3) € SL(2,Z) and a
character [y] € %s1(2,c)(T?) with

)\1 0 )\2 0
= d =
v = (0, 0) e ve= (7 ,0).
o A iouationg e _ja—13b 1 _ycyd—1 _yat+ly b 1 _ycyd+1
we have that [y] is A-invariant if and only if 1 = A{7'A5, 1 =A(A5 " or 1 = ATT A5, 1 =AM,

Remark 4.10 We will provide a detailed discussion only for the case when 1 = A‘I‘_l Alz’ and 1 = Aikg_l.
Suppose A1 = a1 and A, = a,e'%2; then we get

1 =a‘1’_lo{§, 1 =ozfoz§_l,
() (a—1)01 + b0y =2k, b1+ (d—1)0, =2k,m.
Since u" = —A; and v"* = —A,, we can suppose u = —all/"eiel/”qu and v = —a;/"eiez/”qrz where

both r; and r, are integers. Then we have

ua—lvb — (_l)a-i—b—lqu (a—1)+r2be(i/n)((a—1)91 +b6>) _ (_l)a-i—b—lqr] (a—1)+r2b+ky ’

€)

ucvd—l — (_1)c+d—1 r1c+r2(d—1)e(i/n)(c01+(d—1)92) — (_1)c+d—1 rlc+r2(d—1)+k2'

q q
Define s; = ri(a — 1) 4+ ryb + ky and s = ryc + ra(d — 1) + ky. Then u®'v? = (—1)"+b_1qs1 and
ucvd—l — (_1)C+d—1qS2.

From 1 = )\(11—1)\12) and 1 = Aikg_l, we can get 1 = )\(la_l)ckgc and 1 = )\(la_l)ckga_l)(d_l). Thus we
have

If a + d # 2, then A, is a root of unity with )é—(a—i—d) = 1. Similarly we can show A is also a root of

unity, with )\?_(‘Hd) = 1, under the assumption a + d # 2.
We look at the case when (b, n) = 1, and suppose br + sn = 1. Then we have
qbr =q, qbr/2 — (—1)Sq1/2, (—1)S — (_l)br+1.
When (b, n) = 1, we can choose ko = 1 and set r¢, = ro = 1. Then we have
Fip = vtbut(“_l)q“btz/2 for all ¢ € Z.

For any k € 7Z, we have k = krb + ksn. Then

krbukr(a—l) abk?r2/2

e =Tkrp =V q
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From the above discussion, we know we can choose A, to be n 127 n. We have

_ ~ s
(An)ee = r,_,d(vd luC)tqct cdt=/2

= (_1)Cdl”t—qusthaz_c‘hzﬂ

= (_1)cdt(vbua—l)r(t—z‘d)qaer(t_td)z/2qs2tqct2_w,t2/2

= (= 1)edt (—1)abr Gt g1 t=td) gabr>(=td)2[2 gt ger?~edi/2

= (_I)Cdt (_l)abr(t—td) (qslr(l—d)qs2)t ((qbr/2)a’(1—d)qu—cd/z)tZ

= (—I)Cdt(_l)ﬂbr(t—td)(qslr(l—d)qsz)t(((_l)sq1/2)ar(1—d)2qc_cd/2)t2

= (_1)Cdt (_1)abr(t7td) (_1)tsar(lfd)2 (qSJr(lfd)qsz)t(qar/2q7ardqardz/zqcicd/z)tz

= (= 1) (= 1yabra—td) (pyrsar Q=2 (o1rQ=d) ooyt qar/2=r =rberd/2 grbed/2 ye=cd/2yr>

= (_1)cdt (_1)abr(t—td) (_1)tsar(l—d)2 (qslr(l—d)qsz)t (qar/zq—rq—cqrd/z((_l)sql/z)cdqc_cd/z)t2

- (_I)Cdt (_1)abr(t—td) (_l)tsar(l—d)z (—l)tsc‘i (qsl’(l—d)qsz)t(q(a+d—2)r/2),2

= (= 1) (1)@t (pyrbraDar Q=) pyrbrned (gsi7(=d) gsayt (g a+d=2r/2y>

- - 2
= (_l)tar(_l)tard(_l)trd(ad+l)(qs1r(l d)qsz)t(q(a+d 2)r/2)t
= (=) (—1)/79 (g1 =D g2yt (glatd=2r/2)2

_ ((_1)(a+d—2)r)t(qslr(l—d)qsz)t(q(a+d—2)r/2)t2.

Since ¢%2 = ¢"52%, we have
(10) (/_\n)t = ((_1)(a+d—2)r)tq(r/2)((a+d—2)t2+2(sl(1+d)—s2b)t)’
and
an Trace A, = n—1/2 Z ((_1)(a+d—2)r)tq(r/Z)((a+d—2)t2+2(s1(1+d)—szb)t).
0<t<n—1

Remark 4.11 Here we state the parallel results for 1 = k‘f‘“kg, 1 = Aﬁk‘zﬂ'l, u" = —kl_l, and
v = A7

2

Suppose A1 = a1 and A, = a,e'%2; then we get

_ a+1_b _ ¢ d+1
1_051 o, 1—051052

(a+1)01 + b0y =2k, O+ (d+1)0y =2k,

’

. _ _ —1/n _—; —1/n i
Since u" =—k11 and v" =—k21,we can suppose u = —o, /ne i01/ng4r: and v = —a, /ng=iba/n

where both r; and r, are integers. Then we have

q"

ua—i—l vb — (_l)a—l—b—{—lqu(a-i—l)—i-rzb—kl i

ucvd+l — (_1)C+d+1quc+r2(d+l)—k2.
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Similarly we set s1 = rq(a+ 1) +r,b—ky and 55 = ric +ra(d + 1) —ky. Then u®t1p? = (—1)a+b+14s
and uCvt! = (—=1)ctd+1g52 Ifg4+d # -2, then oy = ap = 1.

For the case when (b,n) = 1 and br + sn = 1, we have

(/’{n)t ;= ((_1)(a+d+2)r)tq(r/Z)((a+d+2)t2+2(s1(H—d)—szb)t)

and
(12) Trace A, = n™ Z (- 1)(a+d+2)r)t r/2)((a+d+2)t2+2(s; (1 +d)— —520)1)

0=<t=<mn—1

Example 4.12 Let 4 = (_27 _13) If we try to solve 1 = )\4?_1)\,12) and 1 = A.i)\‘zi_l, we get

(13) 014+ 6, =27, —701—40, =2m.
We have 6, = 10” and 6, = lg”; thus Ay = e2™/3 and Ay = e*7/3. So if we set u = —e~107/37 4pq
v = —elomi/3n then u® b =g and uv?~! = —¢. We have s; =5, = 1. Since b = 1, we get r = 1.

Then from (11), we have
Trace A, = n~1/2 Z (_l)tq(—312+10t)/2'
0<t=<n-—1

Note that when # is a multiple of 3, we have Trace A, = 0.

Example 4.13 Let A be the same matrix as above. But this time we try to solve 1 = k‘f“kg and
1= k"kd‘H then we get Af+a+d = A§+“+d =1.Since2+a+d=1,wehave \; = A, = 1. If we

setu =v = —1, then s; = s, = 0. From (11), we have
|Trace A,| = n~1/? Z (—1)¢q"*/?| =
0<t<n-—1

Lemma4.14 Let A= (% b) where (b,n) = 1 and |a + d| = 2. Then we have the following statements:
(1) If a4+ d = 2 and A, is the intertwiner obtained in Theorem 4.2 such that |det(A,)| = 1, then

|Trace A, | = /1.
(2) If a+d = -2 and A, is the intertwiner obtained in Theorem 4.3 such that |det(A,)| = 1, then
|Trace A, | = /1.

Proof We only prove the statement (1) (the proof for statement (2) is similar). Let [y] € %SLQ,C)(TZ),

with 0 -
y()—(o = 1) and V(ﬁ)=(02 AEI),

be any A-invariant character.

We use the same notation as in Remark 4.10. Then we have
si(l=d)+s:b=ri(a— 1)1 —=d)+rb(l—d)+ki(1—=d)+richb+ry(d—1)b+ kb
=ki(1—d) + kyb.
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From (8), we can get
2rn((1 —d)ky + kyb) = (1 —d)2nky + b2k,
={1-d)a-1)0,+b(1—-d)0,+bcOd; +b(d—1)0, =0.
Thus we have
(1—=d)k1 4+ kob=s51(1—d)+s,b=0.
From (11), we know
Trace A, = n~1/2 Z ((_1)(a+d—2)r)tq(r/2)((a+d—2)t2+2(s1(1—d)+s2b)t) —n 2= n 0O

0=<t=<n—1

The following theorem shows the limit superior related to the trace of intertwiners for any diffeomorphism
of the closed torus is zero, which equals the simplicial volume of the corresponding mapping torus.

Theorem 4.15 Let A = (‘Cl 2) be any fixed element in the mapping class group for the closed torus, and
let [y] be any fixed A-invariant character with

ver= (g ) wmd ve= (0.

If1 = k‘f_l)\lz’ and 1 = kfkg_l, let {Ay}ne27z.-,+1 be intertwiners obtained in Theorem 4.2 such that
|det(Ap)|=1foralln € 2Z>o+ 1. If 1 = )»‘f“)»é’ and 1 = Aikg“, let {An}ne2z-,+1 be intertwiners
obtained in Theorem 4.3 such that |det(A,)| = 1 for all n € 2Z>¢ + 1. Then we have

) log(|Trace Ay|)
limsup —— =

odd n—o0 n

0.

Proof Since [y]is A-invariant, we have 1 = k‘f_lklz’, 1= )»f)»g_l orl= )»‘f“)»lz’, 1= kikg“. We look
at the case when 1 = k‘f‘lkg, 1= Xflg_l. Then we can set A, to be a,A,, where a, = |det(1_\n)|_1/”.

Case I Suppose b = 0. In this case we know |det(A,)| = 1 since n’ = 1.

We have 4 = (i (1)) or (_cl _01 ) We first consider the case when 4 = (i (1)) If ¢ =0, it is trivial. So
suppose ¢ # 0. Since we have )»’1‘_1)\12’ =1, )\ikg_l =1, we get A{ = 1. Suppose A = e'?; then we get
¢ = 2k where k is an integer. Since u” = —A;, we can choose u = —e'%/"¢” where r is an integer.
Then we have
u€ = (_1)0610c/nqcr — (_1)cezkm/nqcr — (_1)ch+cr‘
Note that |Trace A,| is independent of the choice of r.
From Remark 4.4 and Lemma 4.5, A is a diagonal matrix, and
(Rn)es = =D eyl ge@=dr/2),
Then we have
Trace A, = Z vt(d—l)uthcdtz/z — Z (_l)ctqth/Zq(k-i-cr)t.
0=<t=n—1 0=<r=n-—1
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Let {n;};eN be a subsequence of 2Z>g + 1 such that (n;,c) = 1 for all i. Then for every i there exists r
such that k + ¢r = 0 (mod #n;); thus

Trace A | =| > (=D)q/?| = Vi, omi = i = 1.
0=<t=<n;—1
Thus we have
0 < limsup log(|Trace Ay|)
" odd n—00 n

According to Theorem 4.7, we also have

. log(|Trace Aj|) . log(n3/2)
limsup —— = =< limsup —— =0
odd n—o00 n odd n—o00 n

We look at the case when A = (_C1 _01). Then we get (A1)>=1and A; = £1. We can choose u = +1.

From Remark 4.4 and Lemma 4.5 we get

A - —dr?
(An)t .k :rk—td(v(d 1)u0)tqc(tk dt /2)’

where r; = 1 if k is a multiple of 7 and it is zero otherwise. Then (A ), # 0 if and only if 75, # 0 if and
only if n | (2¢), which means there is only one nonzero diagonal element. Then we get |Trace A,| = 1
for any n, which proves this special case.

Case II Suppose b # 0.

We first consider the subcase when a + d # 2. From the above discussion we know A; and A, are both
roots of unity; thus we can suppose A; = e, %, = ¢'% and we can get (8) where 6y, 05, k1 and k,
are determined by y. Since u” = —A; and v" = —A,, we can write u = —e!%1/7¢" and v = —e!02/7g"1
Then we have (9). Note that |Trace A,| is independent of the choice of r; and 7.

Since b # 0 and 2 — (a +d) # 0, let {n;}jen be a subsequence of 2Z>¢ + 1 such that

(nj,b)y=mj,2—(a+d))=1.

b

Since [azl d—1] =2—(a+d)and (nj,2—(a+d)) =1, the following equations always have solutions
inZp;:

ra—10)+rmnb+ki =0, ric+ra(d—-1)+ky,=0.
Thus for every j, there always exist integers 1 and r such that s; = s = 0 in Zj, . Then, from (11),

|Trace An<| — I’l~_1/2 Z ((_1)(a+d—2)r)tq(r/z)((a+d—2)t2+2(s1(l—d)—i-szb)t)
j j

0<t<n;—1

—1/2 — 942
=n; / Z ((_1)(a+d 2)r)tq(r/2)((a+d 2)12)

0<t<n;—1

-1/2 )2
=n; / Z (_ql/Z)r(a—i—d 2)t

=nj_1/2\/(r(a+d—2),nj)nj =1.

0<t<n;—1
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Then we have
log(|Trace Ay|)

0 < limsup
odd n—00 n

By Theorem 4.7,
. log(|Trace Ay|)
limsuyp ———— =

odd n—o00 n

0.
The other subcase is when a + d = 2. Since b # 0, let {ny }ren be a subsequence of 2Z > + 1 such that
(ng,b) =1 for all k. From Lemma 4.14, we have |Trace Ay, | = /n; > 1. Similarly, we get
. log(|Trace Ay|)
limsup —— =

odd n—o00 n

0. O

From now on we discuss the periodic mapping class. Recall that A = (? z,) is periodic if and only if

|a 4+ d| € {0, 1}. Suppose [y] is an A-invariant character with

v = ,0) wa v = (%)
1 2

Then we have 1 = )\(11—1)\12)’ 1= ki)\‘zi_l orl= )L‘IHIAIZ’, 1= kﬁkg“. For the case when 1 = A‘I‘_lkg,

amlakd) _ 527@H) 5o if a + d = 0, we have

)\f = k% = 1; thus Ay = £1 and A, = £1. Hence there is no A-invariant character living in the Azumaya

1 = Ai X‘zi_l, the above discussion implies 1 = A

locus if A; = 1 and A, = £1. But we can still get intertwiners in Theorems 4.2 and 4.3, although
A1 = *£1 and A, = +1. Now we consider intertwiners if we choose A1 = A, = 1.

Theorem 4.16 Let A be a periodic mapping class, and let A, be the intertwiner obtained in Theorem 4.2
or 4.3 by using the trivial A-invariant character, that is Ay = A, = 1, and we require |det(A,)| = 1. We
have the following conclusions:

(1) Ifa+d =1 and A, is obtained in Theorem 4.2, then |Trace(A,)| = 1 for any odd n.

(2) If a4+ d = —1 and A, is obtained in Theorem 4.3, then |Trace(A,)| = 1 for any odd n.

(3) If a+d = 0 and A, is obtained in Theorem 4.2 or 4.3, then |Trace(A,)| = 1 for any odd n.

Proof Suppose 4 = (Z Z), (b,n) =m, br + sn =m and n = mn’. Since Ay = A, = 1, we can set
u = v = —1. From the previous discussion we know

(Anks = (=1 rg_yaq k=471
forall 0 <k,t <n—1, where

Fim = (—l)ab”q"btz’z/2 forall 0 <t <n'—1,

[™ column, we have {(Kn)ldJrkm,l}OSkSn/_l are the only nonzero entries.

and all other r; are 0. For the
Then the /™ column contains a nonzero diagonal entry if and only if /d + km = [ (mod n) for some

0<k <n'—1.1tis easy to show /d +km = [ (mod n) for some 0 <k <n’—1if and only if m | (Id —1).
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Now we suppose (m,d — 1) = 1. Then the /™ column of A, contains a nonzero diagonal entry if and
only if m | /. Thus (/_\n),m,tm, 0 <t <n’—1, are the only nonzero diagonal entries, and

A 2.9 1.2, 2
(An)tmem = (—I)Cdtmrtm_tmqu(t m2—dt2m?2/2)

— (_1)cdtm (_l)abr(t—td)qabr2(1—d)2t2/2qc(t2m2—dt2m2/2).

After a similar calculation as in Remark 4.10, we can get

(Kn)tm tm = (_1)(ar+dr—2r)z (qm/Z)(ar—{—dr_zr)tZ'

Then we have
Trace /_\n = Z (_1)(ar+dr—2r)t(qm/2)(ar+dr—2r)t2'

0<t<n'—1
Similarly if (m,d 4+ 1) = 1, then

Trace Kn = Z (_1)(ar+dr+2i’)t(qm/Z)(ar+dr+2r)t2.

0=<t=n'—1

(1) Since the intertwiner is obtained in Theorem 4.2, we can set A, = (')~ Y/2A,,. Wehave d —1 = —a
because @ + d = 1. Then we get (d — 1,m) = 1 because (a,b) = 1 and m is a divisor of b. Then
from the above discussion, we get

|Trace An| _ (n/)—1/2 Z (_1)(ar+dr—2r)t(qm/Z)(ar+dr—2r)t2

0<t=<n'—1

Z (_1)—rt(qm/2)—rt2

0<t<n’'—1
= (n/)_l/2 V(=r,n)n' =1.

(2) The proof is similar to that of (1).

— (n/)—1/2

(3) First we show (m,d —1)= (m,d+1)=1ifa+d =0. Fromad —bc =1, we get —bc = d? + 1.
Suppose p |mand p |d —1. Then p | (d?>+ 1) and p | (d? —1). Thus we get p | 2, which means
p = 1 because (m, 2) = 1. Similarly we can show (m,d + 1) = 1. If A, = (n')~"/2A,,, then

|Trace A,| = (n/)—l/2 Z (_1)(ar+dr—2r)t(qm/2)(ar+dr—2r)t2

0<t=<n'—1

S @

0=<t=<n’'—1
— (n/)—1/2 /(_r’n/)nl =1.

If Ay = (n')"Y/2A,, we can similarly show that |Trace A,| = 1. o

— (n/)—1/2
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S The volume conjecture for surface diffeomorphisms: periodic case

5.1 Preliminaries for the volume conjecture for periodic surface diffeomorphisms

If we want to formulate the parallel conjecture for periodic diffeomorphisms as in [7; 8], we have to find
a good invariant character that lives in the smooth part of ¥y (2,c)(S).

Lemma 5.1 [11] Let A, B € SL(2,C). If Trace([4, B]) = 2 where [A, B] = ABA™'B~!, then
G = (A, B) <SL(2,C) is not free of rank two where (A, B) is the group generated by A and B.

Lemma 5.2 Let G be a subgroup of SL(2,C) freely generated by two elements, and let R be the
subalgebra of Mat(2, C) generated by G, where Mat(2, C) is the algebra of all 2 by 2 complex matrices.
Then R = Mat(2, C).

Proof Suppose G is freely generated by A and B. We know there exists X € GL(2, C) such that
XAX'=(5,2)and XBX 1 = (4 Z) Then XGX ! is a free subgroup generated by X4X ~! and

XBX~!, and XRX ! is the subalgebra generated by XGX ~!. Since XRX~! = Mat(2, C) if and only
if R =Mat(2,C), we can assume 4 = (; ,%1) and B = (¢ 2)

0ul
() Suppose v = 0. Then 4 = (3u91) and u? # 1, otherwise 4 = ((1)(1)) or A = (_01 _01), which
contradicts the fact that G is freely generated by A and B. We also get b # 0 and ¢ # 0, since
otherwise Trace([4, B]) = 2, which contradicts the fact that 4 and B freely generate G by Lemma 5.1.

since (4 %), (§9) € Rand u # £1, we have (§9).(39) € R. Then (°2) € R. By multiplication,

0u! 00
(g g) (2 g) € R, which implies R = Mat(2, C) since b # 0 and ¢ # 0.

(IT) Suppose v # 0. In this case we should have ¢ # 0, otherwise Trace([4, B]) = 2, which is a
contradiction.

Ifu = %1, then A= (§ V) € R. Remember we also have () € R, which implies ( ) € R. Furthermore,

(g(l)) € R because v # 0. Since ((1)(1)), (g(l)), (?Z) € R, we have (Zg’) € R, and also (“;d 8) € R.
By multiplication, (§ 1)(“_d 0 = (52) € R, which implies () € R because ¢ # 0. We have

00/\ ¢ o 00 00
((1)(1)), (8(1)), ((l)g) € R, so (g?), (8(1)), ((1)8) € R. Remember we also have (ZZ,) € R and ¢ # 0, which

implies R = Mat(2, C).

If u # +1, then (”_6’_1 ). (9 ,-V_,) € R, s0 ((1)]8) (8_1k) € R where k = v/(u—u~"). Then from

multiplication, we get
1 k\ (a b\ (a+kc b+kd c R
00)\cd) 0 0 ’

Next we want to show b +kd # k(a+kc). Suppose the contrary. Then b +kd = k(a+kc) =ka+k?c.
With k = v/(u —u~"), we can get
dv av cv? )

b+ = + = 2b=bu’+bu"?+dvu—dou"" —avu + avu™! — cv?.
u—u—l!  u—ul! (u—u1)2
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Then we get
Trace([A, B]) = ad + acuv + cdvu™"' + ¢*v? — cbu® — cduv — cbu™* — cau™ v + ad
= 2ad — c(—auv — dvu™" — cv? + bu® + duv + bu™? + au”"v) = 2ad —2cbh = 2.
Since Trace([4, B]) = 2 is a contradiction, we have b + kd # k(a + kc). We then get (§0). (04) € R
because (“H50), (1£) € R We aso have (32), (22) € R.so (19). (94). (29). (¢) € R. Thus,
R = Mat(2, C) because ¢ # 0. |

Proposition 5.3 Let y: 71(S) — SL(2, C) be a representative of an element in the character variety
Xs1(2,0)(S). Then y is irreducible if Imy contains a subgroup of SL(2, C) freely generated by two
elements. In particular, y is irreducible if S has negative Euler characteristic and y is injective.

Proof This is a direct consequence of Lemma 5.2. |
5.2 Statement of the conjecture

To get the intertwiner, we first have to get a @-invariant smooth character y € ¥g2,c)(S). In [13,
page 371] it is proved that every periodic diffeomorphism fixes a point in the Teichmiiller space. This
means there is a discrete and faithful group homomorphism y: 71(S) — PSL(2, R) such that p gy is
conjugate to y by an element in PSL(2, R), where ¢y is the isomorphism from 71 (.S) to 71 (S) induced
by ¢.

Since PSL(2, R) C PSL(2, C), we can regard y ¢« and y as two elements in ¥pgy (2,c)(S). Then y ¢y
is conjugate to y by an element in PSL(2, C). Thus y can be extended to a group homomorphism
from 73 (My) to PSL(2, C); we use p to denote this homomorphism. Then we can lift  to a group
homomorphism y from 71 (M) to SL(2, C). The restriction of y to 1 (S) is g-invariant, and we use y
to denote this group homomorphism. Note that y is a group homomorphism from 7 (S) to SL(2, C).
Let ¢ be the projection from SL(2, C) be PSL(2, C); then we have ¢y = p. Furthermore,

&Y =&V|n (8) = Vlmi(s) = V-

Since y is injective, y is injective. From Proposition 5.3, we know y is irreducible. Thus we get a
@-invariant smooth character y € g (2,c)(S). From now on, we use y,, to denote y and y,, to denote y.

For every puncture v in S, we know Trace y, (aty) = 32 where o, is the loop going around puncture v.
If Trace Y, (aty) = 2, we choose py = —(¢ +¢~!). Then

Tu(pv) = (=¢)" + (=g~ )" = =1 =1 = — Trace yy ().
If Trace yy(ay) = —2, we choose p, =1+ 1. Then
Tu(py) =1"+1" =141 = —Trace y, (o).

Since Trace yy(ay) = Trace yy(¢(ay)) = Trace Yy (Qg(v)), We have py = pyy). So now we have
everything we want. Then we obtain the Kauffman bracket intertwiner Ag,y@ associated to these data. We
require |det(Ag’yw)| = 1. With the fixed S, ¢, ¥, and {py}v, we have |Trace AJ , | is only related to g.
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Conjecture 5.4 Suppose S is an oriented surface with negative Euler characteristic, and ¢ is a periodic
diffeomorphism for S. Let y, be the p-invariant smooth character defined as in the second paragraph of
this subsection. For each puncture v, let p, be the complex number defined as in the third paragraph of
this subsection. Let g, = e2™/" with (q,)'/? = e™'/". Then

. 1
1 — log|T Adn | =0.
odd 100 71 og|Trace Ay, |

5.3 Proofs for the conjecture for some special cases

In the remaining part of this paper, we will present some results related to our conjecture. Especially, we
will give a proof for our conjecture when the surface S is the once punctured torus.

In the following theorem, we use the periodic property of the diffeomorphisms to prove that the limit in
Conjecture 5.4 is less than or equal to zero if it exists.

Theorem 5.5 If limyddn— 00 ,ll log|Trace AZ,’fr w| exists, the limit is less than or equal to zero.

Proof Let p: Squ /2(S) — End(V) be an irreducible representation of the skein algebra associated to
Yo and weight system { p, },. From the definition of intertwiners Ag’frw, we know

poy(X) = A&, o p(X)o (AL, )™

for all X € Squ/z(S). We have

P(@*)3(X) = ppy(ep(X)) = AL, 0 pey(X) o (AL, )T = (AL, )? 0 ppy(X) o (AL, )72
Then it is easy to show that, with any integer j, we have
pp))(X) = (AL, ) 0 ppy(X) o (AL, )7
Since ¢ is periodic, there exists a positive integer k£ such that (pk = Idg. Then we have
p(X) = p(eF)p(X) = (AL, YE o p(X)o (AL, )7

for all X € SK;1/2(S). We must have (Ag’f, w)k = Al because p is irreducible, where [ is the identity

matrix and A is a nonzero complex number. But we require |det(Ag’,‘rw)| = 1; thus |A| = 1. Actually we

can always choose a good AZ,',’, » such that (Ag’jr w)k = 1. Since x¥ — 1 has no multiple roots, Az’jr o 18

always diagonalizable. All its eigenvalues are k' roots of unity. Then

TraceAg’jrwz Z Ai,

0<i<n—1

wherekf.‘ =l1lforall0<i<n-—1.
We have |Trace Ag’:r »| = n. So if the limit exists, the limit is less than or equal to zero. |
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From the proof of Theorem 5.5, we know |Trace Ag’f, | 1s simply the absolute value of the sum of roots
of unity. We are only concerned with how small |Trace Ag’,’rw| can be because of Theorem 5.5. Actually
this problem was already asked by Myerson [24] and Tao [27]. For any two positive integers k£ and n,
let f'(n, k) be the least absolute value of a nonzero sum of 7 (not necessarily distinct) k' roots of unity.
Myerson gave the lower bound for all positive integers k and »n:

(14) fn,k)=n"k.

According to [20], we know Trace Ag’f, = 0 if the order of ¢ is 2" for some positive integer m.

Theorem 5.6 If ¢ is of order 2" where m is any positive integer, then for any surface with negative
Euler characteristic, .
lim = log|Trace A" | =0.
oddn—oo N g| (p,r(p|

Proof Since for any odd 7, we have Trace Ag", # 0. Then

n* < f(n, k) <|Trace A

rl

where k = 2™, So we get
1

- 1 1
;logn k < Elog|Trace Adn | = Elogn.

Then limodd n—oo + log|Trace AZ", | = 0. 0

Proposition 5.7 If ¢ is of order p" where p is any positive prime number and m is any positive integer,
then for any surface with negative Euler characteristic,

. 1 "
limsup —log|Trace A", |=0.
odd n—00

Proof The proof is similar to that of Theorem 5.6. |

For the following discussion, we will use some notation and terminology in [7]. Suppose the surface
S has at least one puncture, that is, it has ideal triangulations. Let t be an ideal triangulation of S,
and let ¢ be any periodic map of S. Suppose T = 1@ O ) = @(7) is an ideal triangulation
sweep. Since ¢ fixes a point in the Teichmiiller space, there exists a periodic edge weight system
a=a® a® . a® =q4e (R.g)® where a is the shear parameter corresponding to this fixed point in
the Teichmiiller space. Then [y] € Xpsy(2,c)(S) is the character associated to the weight system a. From
the above discussion, we know [y,] can be lift to a smooth g-invariant character [y, ] in Xsp.(2,c)(S).

We also have a;,a;, ---a;j; = 1, where ¢;,, ¢j,, ..., e;; are all the edges connecting to a common vertex,
because @ corresponds to a complete hyperbolic structure. If Trace y,(ay) = 2, set i1, = 2. Then h? = 1
and pg = hy +h;1 + 2. If Trace yyp(ay) = —2, set hy = 1. Then A} = 1 and pg = hy -l—hgl + 2.
Obviously /1y = /iy (y) for any puncture v. Proposition 15 of [7] implies that we can obtain an intertwiner
ngw with |det(Kij)| = 1. According to [7, Theorem 16], we have |Trace 1_\3’%| = |Trace Ad ;.

Algebraic & Geometric Topology, Volume 25 (2025)
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Figure 4

For the once punctured torus S, 1, we only have one puncture v. Let « = K, and 8 = K; denote two
elements in 71 (S},1); see Figure 3. It is well known that « and B freely generate 71 (S,1). Let « be
the loop around v. Then ay, = BB~ 'a™!. From Lemma 5.1, we have

Trace yp (@) = Trace yp (BB~ a ™) = Trace vy (B) v (@)1 (B) ™ o (@) ™" # 2

because y,, is injective. Thus we must have Trace y,(oy) = —2, which means A, = 1.

Lemma 5.8 Let the surface be S 1. Then Conjecture 5.4 holds if ¢ is (_01 _11) or (_11 (1))

Proof We only prove the case when ¢ = (_01 _11) (the proof for the other one is similar). Let 7 be the
ideal triangulation in Figure 2. Then ¢(7) is the ideal triangulation in Figure 4.

Thus from 7 to ¢(7) is relabeling. Suppose the shear parameter for 7 is a® = (a1, a3, a3); then the shear
parameter for ¢ () is a®® = (a3,a;, as). From a® = a®® we get a; = a, = a3. Since we also have
2,22 _

a1a2a3 =

Recall that the Chekhov—Fock algebra associated to the ideal triangulation 7 is C q4[Y1i1, Yzil, Y3i1],
where Y; corresponds to edge e¢; fori =1, 2, 3. The algebra (Cq4[Yli1, Yzil, Y3il] is generated by Y7,

1 and a; € R.y, we have a; = a, = a3 = 1.

Y, and Y3, and subject to the relations
L =¢'LY, ©LhYs=¢'Y3Y,, YY1 =¢'VYs;, Y7 '=Ylvi=1

Define the irreducible representation p of C q4[Y1i1, Yzil, Y3il] as p1,1,1 in Lemma 3.9, that is, set
y1 =2 =y3 = 11in (5). Then

p(Y) =Idy =a1ldy, p(Yy)=1dy =ayldy, pY3)=I1dy =asldy

and
p(Hy) = P([Y12Y22Y32]) =Idy = hyldy.

It is easy to calculate that ®%* _ Ww?”

ro(r) Yo(r)r 18 actually an isomorphism from CelYEL Y YiE to itself

and
qn qn _ dn qn _ qn qn _
o) Yo (Y1) =13, @)W (Y2) = Y1, oo\ Wiy (Y3) = 1.

We use o’ to denote the irreducible representation p@f’; ) W, (r)r- Then p is isomorphic to p'.

Algebraic & Geometric Topology, Volume 25 (2025)
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Foreach0 <k <n—1, set
2 .2 . s
T Z Cl,lf +iZ4+4ik+i kw,‘.
0<i<n—1

Then we have

P YD) =gk vk, o' (V) (k) = gy F vk, 0/ (V3) (k) = gy F gy

Define invertible operator A for V such that A(wy) = v forall0 <k <n—1. Then, forall0 <k <n—1,
we have

P YDA wR) = o' (V) (Wr) = g3 vie = Mg wie) = Ap(Y)wp).
Thus we get p'(Y1) = Aop(Y1)o AL, Similarly, p'(Y5) = Aop(Y2)oA~ ! and p/(Y3) = Aop(Y3)o A~ L.

. . . . 242 ; i —
Thus A is the intertwiner. As a matrix, we have A; = gk Ti7+4ik+i-k,

From direct calculation, we get |det(A)| = n/2. Thus we can set Ki”;w =n"'2A. Then

| Trace Ag’jrw| = |Trace /_\Z’ffw| =n~1/2 Z q,fiz = n_l/z\/(6,n)n =/(6,n).
0<i<n—1
Obviously we get

) 1
lim = log|Trace A?" | =0. m]
odd n—>o00 N gl P:To |

Remark 5.9 In the proof of Lemma 5.8, when we try to find the periodic edge weight system for the
triangulation sweep 7, (), we require a; € R o because we want to get the fixed character corresponding
to a point in the Teichmiiller space. Actually we still get the same intertwiner A as in Lemma 5.8 without
requiring a; € R, that is, for any periodic edge weight system, the intertwiner we get is A. This means
Lemma 5.8 still holds when we choose any other g-invariant smooth character (without the restriction for
only choosing the one corresponding to a fixed point in the Teichmiiller space). Readers can check the
same arguments hold for Theorems 5.6 and 5.13.

Let ¢ be a pseudo-Anosov map for S, and let f be any diffeomorphism for surface S. Then f¢f ! is
also a pseudo-Anosov map. Then we have the following conclusion:

Lemma 5.10 Let ¢ be any pseudo-Anosov map for S, and let f be any diffeomorphism for S. If
Conjecture 2.3 holds for ¢, then it also holds for f¢f!.

Proof We will use the same notation as in Conjecture 2.3. Let f,~! be the isomorphism from 7 (S) to
itself induced by f~!. Then [y f; ] is a smooth f¢f~!-invariant character. Set 0;, = 0—1(y); then 0y,
are invariant under the action of f¢f ! and

0

’/ 7
1w = —eev —e_ev,

Trace y f; ! (o) = Trace Y(op-1)) = —e¥rtw) — ™
Ut/ = Pf—1(v); then
Ta(p,) = —Trace y £~ (o).
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Recall that we use fﬁ_l to denote the isomorphism from SK,1/2(S) to itself induced by f 1 Let p be
the irreducible representation associated to [y] and puncture weights p,. Then p fﬁ_1 is an irreducible
representation associated to the character [y f, '] and puncture weights Do

With the assumption for Conjecture 2.3, we have
poy(X) =AY, 0 p(X)o (A )
for any element X € SK,1,2(S) and |det(A3>’jr)| = 1. Then we get
ply (oS8 = pfy! fagp Sy (X) = poy 71 (X) = AL o p(fT (X)) 0 (MG )T

qn — Aqn
Thus we get AZY -, 1 = Ay, and

. 1 qn _ : 1 qn
oddlilrgoo E log|Trace Af‘f’f_l,'"f*_l | - oddliln—l>oo ; 10g|Trace A¢’r

1 1
= E VOlhyp(M¢) = E VOlhyp(Mf¢f—l ) O
From [8], we know Conjecture 2.3 holds for ¢ = (f })

Corollary 5.11 Conjecture 2.3 holds for all f¢f~" where f is any element in GL(2, Z).

1

Let ¢ be a periodic map for S, and let g be any diffeomorphism for S. Then gpg™" is also a periodic

map. The same discussion as in Lemma 5.10 implies the following conclusion.

Lemma 5.12 Let ¢ be any periodic map for S, and let g be any diffeomorphism for S. If Conjecture 5.4

holds for ¢, then it also holds for gpg™!.

The following theorem shows Conjecture 5.4 holds for the once punctured torus. This confirms the
relation between the intertwiner and the simplicial volume of the corresponding mapping torus.

Theorem 5.13 Conjecture 5.4 holds for the once punctured torus.
Proof Let ¢ be any periodic map for S; ;. Then the order of ¢ could be 1, 2, 3, 4 or 6. According to

Theorem 5.6, Conjecture 5.4 holds if the order of ¢ is 2 or 4.

If the order of ¢ is 1, then ¢ is just the identity map. In this case, we can just choose the intertwiner to be
the identity operator. Then Conjecture 5.4 holds trivially.

We look at the case when the order of ¢ is 3 or 6. For these two cases, we have |Trace ¢| = 1. According
to [17], we know there exists an element g € GL(2, Z) such that ¢ = g(_o1 _ll)g_1 or ¢ = g(_l1 (l))g_l.

By Lemmas 5.8 and 5.12, Conjecture 5.4 holds for these two cases. |
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Remark 5.14 From the proof of Theorem 5.6, we know if we can show Trace Ag’fr # 0 after n is big
enough, then we can prove

. 1 w1
lim o log|Trace A", | =0.

odd n—o00
Remark 5.15 From Section 2.4, we know the periodic edge weight system a = a©® a® . a® =4
for the ideal triangulation sweep = (@, (D | 10 = ¢(7) and @-invariant puncture weights /1, can

give us the intertwiner /_\q - such that

pod? (X) = A2 5 0p(X)o (AL )7

70(z) (r)r
for every X € 7.

It is easy to verify that (CDW(r) o \I’Z(T)r) = (Cbz(pm(r) m (t)r) and
a=a9.q40, . 4P a® oM a® =4

g e 5 g e e ey

is the periodic edge weight system for the ideal triangulation sweep
r=7O@ (O 0= (1), <p(r(1)), . ,<p(r(k)) =¢%(1), ...
¢" @ =" )" D) O =0 ()
and higm () = hy.
Suppose ¢ is periodic with order m, then
(R 5™ 0 5(X) 0 (R ;)™ = 50 By © Wiy (X) = (LX)

for every X € 2. Then (AZ )7)'” is a scalar matrix since p is irreducible. Actually we can choose good
Ki 7 such that (Kz 17)m is the identity matrix. We have all the eigenvalues of /_\Z 5 are m™ roots of unity,

A4 — A4 —m
and |Trace Aw,)?l = 0 or |Trace A(m;| >n~".

From [7, Lemma 11], we know the complex dimension of the space of all periodic edge weight systems for
the fixed ideal triangulation is more than or equal to 1. Thus this space is connected. In a local open subset
of this space, we can choose g-invariant puncture weights such that these puncture weights smoothly vary
according to periodic edge weight systems. Then |Trace Ki} J7| smoothly varies according to periodic edge
weight systems in a local open subset by using the similar argument in [6, Complement 10]. Since this
space is connected and 0 is an isolated point in the image, we have |Trace KZM;| = 0 for all periodic edge
weight systems with the chosen puncture weights, or |Trace /_\Z,);| > n~"™ for all periodic edge weight
systems with the chosen puncture weights.

If we can find one periodic edge weight system with the chosen puncture weights such that

] —q
1 —log|Trace A" | = 0,
oo OB TraCE A

we can conclude that the above equation is true for every periodic edge weight system with the chosen
puncture weights.
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