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Kauffman bracket intertwiners and the volume conjecture

ZHIHAO WANG

The volume conjecture relates the quantum invariant and the hyperbolic geometry. Bonahon, Wong and
Yang introduced a new version of the volume conjecture by using the intertwiners between two isomorphic
irreducible representations of the skein algebra. The intertwiners are built from surface diffeomorphisms;
they formulated the volume conjecture when diffeomorphisms are pseudo-Anosov. We explicitly calculate
all the intertwiners for the closed torus using an algebraic embedding from the skein algebra of the closed
torus to a quantum torus, and show the limit superior related to the trace of these intertwiners is zero.
Moreover, we consider the periodic diffeomorphisms for surfaces with negative Euler characteristic, and
conjecture the corresponding limit is zero because the simplicial volume of the mapping tori for periodic
diffeomorphisms is zero. For the once punctured torus, we make precise calculations for intertwiners and
prove our conjecture.

14H10, 14H30, 14H45, 14H50, 14L10

1 Introduction

We first discuss irreducible representations for skein algebras of the closed torus and the once punctured
torus, which is related to Bonahon and Wong’s work [3; 4; 5; 6]. They explored the connection between
irreducible representations of skein algebras and the character variety related to the fundamental group of
a surface. In Section 3, we give more detailed discussions about this connection for the closed torus and
the once punctured torus.

A profound result of the skein algebra is the unicity theorem, which was conjectured by Bonahon and
Wong and was proved by Frohman, Kania-Bartoszynska and Lê [15]. Based on this result there is an
increased focus on the Azumaya locus. Ganev, Jordan and Safronov proved that the smooth part of the
character variety lives in the Azumaya locus when the surface is closed [16]. In Section 3, we give an
explicit description for the Azumaya locus for the skein algebra of the closed torus.

Let S be an oriented surface, let ' be a diffeomorphism for S , and let qn D e2�i=n with .qn/
1=2 D e� i=n

and n odd. Using these data, Bonahon, Wong and Yang built a sequence of intertwiners between
irreducible representations of the skein algebra of S [7; 8]. When S has negative Euler characteristic and
' is pseudo-Anosov, they formulated the volume conjecture using these intertwiners:

lim
odd n!1

1

n
logjTraceƒqn

';
 j D
1

4�
volhyp.M'/;

where volhyp.M'/ is the volume of the complete hyperbolic metric of the mapping torus M' .
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We explicitly compute the intertwiners corresponding to all diffeomorphisms of the closed torus using an
algebraic embedding from the skein algebra of the closed torus to a quantum torus [14]; see Section 3 for
more details. The representation theory for this quantum torus is well studied. We prove almost all the
irreducible representations of this quantum torus can be restricted to irreducible representations of the
skein algebra of the closed torus. So intertwiners between two isomorphic irreducible representations of
this quantum torus are also the intertwiners between irreducible representations for the skein algebra of
the closed torus. These intertwiners are built when the quantum parameter q for the skein algebra is a
primitive root of unity of odd order. We use ƒn to denote the intertwiner obtained as above when the
quantum parameter is qn D e2� i=n with .qn/

1=2 D e� i=n and n odd. We also normalize ƒn such that
jdet.ƒn/j D 1. Then we prove the following theorem; please refer to Theorem 4.15 for a more detailed
version.

Theorem 1.1 Let ƒn be defined as above; then

lim sup
odd n!1

log.jTraceƒnj/

n
D 0:

The volume conjecture was first introduced by Kashaev [19], and was rewritten and generalized to the
nonhyperbolic case by Hitoshi Murakami and Jun Murakami [22] using the simplicial volume.

Bonahon, Wong and Yang only formulated the conjecture when the diffeomorphisms are pseudo-Anosov
for surfaces with negative Euler characteristic. In this paper, we broaden the scope of the conjecture
to include periodic diffeomorphisms. When ' is a periodic diffeomorphism for the surface S , the
corresponding mapping torus M' is a Seifert manifold whose simplicial volume is zero. So we conjecture
the limits are zero for periodic diffeomorphisms. We prove our conjecture for the once punctured torus,
which serves as an example to confirm the limit is the simplicial volume of the corresponding mapping
torus.

Let S be an oriented surface with negative Euler characteristic, and let ' be a periodic diffeomorphism
for S . According to [13, page 371], ' fixes a point in the Teichmüller space of S . This fixed point in
the Teichmüller space offers a smooth '-invariant character 
 (that is 
 is a group homomorphism from
�1.S/ to SL.2;C/ such that 
'� and 
 have the same character, where '� is the isomorphism from
�1.S/ to �1.S/ induced by '). Suppose the quantum parameter for the skein algebra is qn D e2� i=n

with .qn/
1=2 D e�i=n and n odd. For each puncture v of S , we choose a complex number pv such that

pv D p'.v/ and Tn.pv/D�Trace.
 .˛v//, where Tn is the nth Chebyshev polynomial of the first type
and ˛v is the element in �1.S/ going around puncture v. According to Theorem 2.1, we know 
 and
pv uniquely determine an irreducible representation � of the skein algebra. Let '] be the isomorphism
from the skein algebra of S to itself induced by '. Since both 
 and pv are '-invariant, we have � and
�'] are isomorphic according to Theorem 2.2. Thus there exists the intertwiner ƒqn

';
 between these two
isomorphic irreducible representations. We normalize it such that jdet.ƒqn

';
 /j D 1. Then we formulate
the following conjecture, please refer to Conjecture 5.4 for a more detailed version.
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Conjecture 1.2 Let S be a surface with negative Euler characteristic , let ' be a periodic diffeomorphism
for S , and let ƒqn

';
 be defined as above; then

lim
odd n!1

1

n
logjTraceƒqn

';
 j D 0:

In Theorem 5.5, we prove the limit in Conjecture 1.2 is less than or equal to zero if it exists by using the
periodic property. It seems like we are halfway there to prove our conjecture. But proving that the limit
is greater than or equal to zero is harder, which is actually related to an interesting question raised by
Gerald Myerson [24] and Terry Tao [27]. By direct calculations and using some conclusions in [20; 24],
we prove the above conjecture for some special cases:

Theorem 1.3 For any surface with negative Euler characteristic , if ' is of order 2m where m is any
positive integer , then

lim
odd n!1

1

n
logjTraceƒqn

';
'
j D 0:

Theorem 1.4 Conjecture 1.2 holds if S is the once punctured torus.

Plan of the paper: In Section 2, we introduce the Kauffman bracket skein algebra, the classical shadow,
the volume conjecture, and the Chekhov–Fork algebra. Section 3 is about the discussion on the irreducible
representations of skein algebras of the closed torus and the once punctured torus. In Section 4, we
calculate the intertwiners for the closed torus and prove Theorem 1.1. In Section 5, we formulate our
conjecture for periodic diffeomorphisms and prove Theorems 1.3 and 1.4.

Acknowledgements The idea of considering the periodic case was suggested by my supervisor Andrew
James Kricker. We would like to thank Andrew James Kricker, Jeffrey Weenink, Roland van der Veen
and Xiaoming Yu for constructive discussion and help. We wish to thank the referee most warmly for
numerous suggestions that have improved the exposition of this paper. The research is supported by the
NTU research scholarship.

2 Preliminaries

2.1 The SL.2 ; C/ character variety and the Kauffman bracket skein algebra

Let S be an oriented surface of finite type. The corresponding character variety

XSL.2;C/.S/D Hom.�1.S/;SL.2;C//==SL.2;C/

is the set of the group homomorphisms from the fundamental group of S to SL.2;C/ with the equivalence
relation that two homomorphisms are equivalent if and only if they have the same character [9; 12; 25].

The Kauffman bracket skein algebra SKq1=2.S/ of a surface S , as a vector space over the complex field C,
is generated by all isotopic framed links in S � Œ0; 1�, subject to the skein relation

K1 D q�1=2K1C q1=2K0;

Algebraic & Geometric Topology, Volume 25 (2025)
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K1 K0 K1

Figure 1: The Kauffman bracket skein relation.

where K1, K1 and K0 are three links that differ in a small neighborhood as shown in Figure 1, and the
trivial knot relation K

`

D �.qC q�1/K, where
 is a simple knot bounding a disk that has no

intersection with K. For any two links ŒL1� and ŒL2�, the multiplication ŒL1�ŒL2� is defined by stacking
L2 above L1. Here q1=2 is a nonzero complex number. The skein algebra SKq1=2.S/ is a quantization
for the regular ring of the character variety XSL.2;C/.S/ [9].

2.2 Classical shadow and unicity theorem

We recall some notation and constructions for the classical shadow [3]. When q is a primitive nth root
of unity with n odd and .q1=2/n D�1, Bonahon and Wong found a fascinating algebra homomorphism
T q1=2

from SK�1.S/ to SKq1=2.S/, called the Chebyshev homomorphism. Bonahon and Wong proved
that Im.T q1=2

/ is contained in the center of SKq1=2.S/. If K is a simple knot with vertical framing, then
T q1=2

.ŒK�/D Tn.ŒK�/ where Tn is the nth Chebyshev polynomial of the first type.

Let � W SKq1=2.S/! End.V / be an irreducible representation of SKq1=2.S/. Then there exists an algebra
homomorphism �� from SK�1.S/ to C such that � ı T q1=2

.X / D ��.X /IdV for any X in SK�1.S/.
According to [9], there exists a unique character Œ
 � 2 XSL.2;C/.S/ such that Tr
 D ��. Recall that Tr


is an algebra homomorphism from SK�1.S/ to C defined by Tr
 .ŒK�/D�Trace 
 .K/ where ŒK� is a
simple knot. For every puncture v, we use Pv to denote the loop going around this puncture. There is a
complex number pv such that �.ŒPv �/D pvIdV . Then an irreducible representation of SKq1=2.S/ gives a
character Œ
 �, called the classical shadow of this irreducible representation, and puncture weights fpvgv,
with the relation that �Trace 
 .˛v/D Tn.pv/ where ˛v denotes the element in the fundamental group of
S going around the puncture v.

Theorem 2.1 [3; 5; 6; 7] Let q be a primitive nth root of unity with n odd and .q1=2/n D�1. Then an
irreducible representation � W SKq1=2 ! End.V / uniquely determines

(1) a character Œ
 � 2 XSL.2;C/.S/, represented by a group homomorphism 
 W �1.S/! SL.2;C/;

(2) a weight pv associated to each puncture v of S such that Tn.pv/D�Trace 
 .˛v/.

Conversely, every data of a character 
 2 XSL.2;C/.S/ and of puncture weights pv 2 C satisfying the
above condition is realized by an irreducible representation � W SKq1=2.S/! End.V /.

It turns out that every character in an open dense subset of XSL.2;C/.S/ corresponds to a unique irreducible
representation of the skein algebra.

Algebraic & Geometric Topology, Volume 25 (2025)
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Theorem 2.2 [7; 15; 16] Suppose that Œ
 � is in the smooth part of XSL.2;C/.S/ or , equivalently, that
it is realized by an irreducible homomorphism 
 W �1.S/! SL.2;C/. Then the irreducible represen-
tation � W SKq1=2.S/! End.V / in Theorem 2.1 is unique up to isomorphism of representations. This
representation has dimension dim V D n3gCp�3 if S has genus g and p punctures.

2.3 Volume conjecture for surface diffeomorphisms

Bonahon, Wong and Yang constructed the so called Kauffman bracket intertwiners [7; 8]. They used
these intertwiners to formulate the volume conjecture for surface diffeomorphisms. Here we recall their
construction for Kauffman bracket intertwiners.

For a surface S , let ' be a diffeomorphism of S . Obviously ' induces an isomorphism '� from �1.S/ to
�1.S/. Then '� induces an action on XSL.2;C/.S/ defined by '�.Œ
 �/D Œ
'�� where 
 is a representative
for Œ
 �. Although '� is only defined up to conjugation, '� is well defined. Actually the mapping
class group Mod.S/ acts on XSL.2;C/.S/. We say an element Œ
 � 2 XSL.2;C/.S/ is invariant under a
diffeomorphism ', or the element it represents in Mod.S/, if '�.Œ
 �/D Œ
 �.

The algebra isomorphism induced by ' from SKq1=2.S/ to itself is defined by '].ŒK�/D Œ' � IdŒ0;1�.K/�
where K is a framed link in S � Œ0; 1�. Actually the mapping class group Mod.S/ acts on SKq1=2.S/.

Let ' be any diffeomorphism for surface S , and let Œ
 � 2 XSL.2;C/.S/ be a '-invariant smooth character.
For each puncture v, select a complex number �v such that Trace 
 .˛v/ D �e�v � e��v . Since Œ
 � is
'-invariant, we can choose �v to be '-invariant, that is, �v D �'.v/. Then set pv D e�v=nC e��v=n; we
have that Tn.pv/D�Trace.˛v/ and fpvgv are invariant under the action of '. Suppose � is an irreducible
representation associated to Œ
 � and puncture weights pv . Then � ı'] is also an irreducible representation
associated to Œ
 � and puncture weights pv. By the unicity theorem, we know there exists an intertwiner
ƒ

q
';
 such that

� ı'].X /Dƒ
q
';
 ı �.X / ı .ƒ

q
';
 /
�1

for every X 2 SKq1=2.S/. We normalize the intertwiner such that jdet.ƒq
';
 /j D 1.

Conjecture 2.3 [7; 8] Let the pseudo-Anosov surface diffeomorphism ' W S ! S , the '-invariant
smooth character Œ
 � 2XSL.2;C/.S/ and the '-invariant puncture weights pv as above be given. For every
odd n, consider the primitive nth root of unity qn D e2� i=n and choose .qn/

1=2 D e�i=n. Then

lim
odd n!1

1

n
logjTraceƒqn

';
 j D
1

4�
volhyp.M'/;

where volhyp.M'/ is the volume of the complete hyperbolic metric of the mapping torus M' .

2.4 Ideal triangulation and intertwiners obtained from Chekhov–Fock algebras

Let S be an oriented surface with punctures, and let � D fe1; : : : ; emg be an ideal triangulation for S ,
where e1; : : : ; em are nonisotopic disjoint embedded arcs in S connecting punctures such that all these
arcs cut S into triangles. We call e1; : : : ; em the edges of � . An edge weight system for � is an m-tuple,
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aD .a1; : : : ; am/, where ai is a nonzero complex number for each 1� i �m. The pair .�; a/ determines
a character Œ N
 � in XPSL.2;C/.S/; please refer to [1, Section 8] or [7, Section 3] for more details.

For each ideal triangulation � , there is a Chekhov–Fock algebra T
q
� corresponding to � , where q is

a nonzero complex number. As an algebra over C, the Chekhov–Fock algebra T
q
� is generated by

X˙1
1
;X˙1

2
; : : : ;X˙1

m subject to the relations

XiX
�1
i DX�1

i Xi D 1; XiXj D q2�ij Xj Xi :

Each Xi is associated to the i th edge in the ideal triangulation � , and �ij is an integer determined by � ;
see [1; 2; 21] for more details. If we replace q with q1=4, we get the so called Chekhov–Fock square root
algebra T

q1=4

� . It is well known that T
q
� is an Ore domain. We will use yTq

� to denote the ring of fractions
of T

q
� (that is the localization over all nonzero elements).

Let � and � 0 be any two ideal triangulations for S . Then there is an algebra isomorphism ˆ
q
�� 0 W
yT

q
� 0!

yT
q
� ,

called be the Chekhov–Fock coordinate change isomorphism [21].

For an ideal triangulation � , there are two operations.

(1) Reindexing Obtain a new ideal triangulation � 0 by reindexing all the edges in � .

(2) Diagonal exchange For any 1� i �m, define a new ideal triangulation � 0D fe0
1
; : : : ; e0mg, where

e0j D ej for every j ¤ i and e0i is the other diagonal of the square formed by the two faces of � that
are adjacent to ei .

Let � be an ideal triangulation, let a D .a1; : : : ; am/ be an edge weight system for � . Suppose
� 0 D fe0

1
; : : : ; e0mg is obtained from � by reindexing such that e0i D e�.i/ for 1 � i � m, where � is

a permutation for f1; : : : ;mg. Then we define an edge weight system a0 D .a0
1
; : : : ; a0m/ for � 0 by setting

a0i D a�.i/ for 1� i �m. If � 0 is obtained from � by the diagonal exchange, we define an edge weight
system a0 for � 0 using formulas in [21, Proposition 3]. We will say a0 is an edge weight system for � 0

derived from the pair .�; a/. Then .� 0; a0/ determines the same character in XPSL.2;C/.S/ as .�; a/ [1; 7].

A sequence of ideal triangulations � .0/; � .1/; : : : ; � .k/ is called an ideal triangulation sweep if, for each
1 � i � k � 1, we have that � .iC1/ is obtained from � .i/ by reindexing or the diagonal exchange. A
sequence of edge weight systems a.0/; a.1/; : : : ; a.k/ is called an edge weight system sweep for the
ideal triangulation sweep � .0/; � .1/; : : : ; � .k/, if the edge weight system a.iC1/ for � .iC1/ is derived from
.� .i/; a.i// for each 0� i � k � 1. Note that the sequence a.0/; a.1/; : : : ; a.k/ is completely determined
by a.0/. If in addition a.0/D a.k/, we call the sequence a.0/; a.1/; : : : ; a.k/ a periodic edge weight system
for the ideal triangulation sweep � .0/; � .1/; : : : ; � .k/.

Suppose q is a primitive nth root of unity with n odd. Let ' be an orientation preserving diffeomor-
phism for surface S , and let � D � .0/; � .1/; : : : ; � .k/ D '.�/ be an ideal triangulation sweep. Suppose
aD a.0/; a.1/; : : : ; a.k/ D a is a periodic edge weight system for � .0/; � .1/; : : : ; � .k/ (the existence of the
periodic edge weight system is guaranteed by [7, Lemma 11]), which defines a '-invariant character

Algebraic & Geometric Topology, Volume 25 (2025)



Kauffman bracket intertwiners and the volume conjecture 2149

Œ N
 � 2 XPSL.2;C/.S/. Then, for each puncture v, we can choose a nonzero complex number hv such that
hv D h'.v/ for every puncture v and .hv/n D ai1

ai2
� � � aij for every puncture v adjacent to the edges

ei1
; ei2

; : : : ; eij . From [7, Proposition 13], we know a and puncture weights hv uniquely determine an
irreducible representation N� W Tq

� ! End.V / for the Chekhov–Fock algebra T
q
� such that N�.X n

i / D ai

for 1� i �m and N�.Hv/D hv for each puncture v, where Hv is a central element in T
q
� associated to

each puncture v. Let ˆq
�'.�/ W

yTq
'.�/!

yT
q
� be the Chekhov–Fock coordinate change isomorphism, and let

‰q
'.�/� W

yT
q
� !

yTq
'.�/ be the algebra isomorphism induced by '. Then N�' N� ıˆq

�'.�/ ı‰
q
'.�/� , so there

exists an intertwiner ƒq
'; N
 such that

N� ıˆ
q

�'.�/
ı‰

q

'.�/�
.X /Dƒ

q
'; N
 ı N�.X / ı .ƒ

q
'; N
 /
�1

for every X 2 T
q
� .

Under certain conditions, the trace of intertwiners obtained from Chekhov–Fock algebras equals the trace
of intertwiners obtained from skein algebras; see [7, Theorem 16]. We will use this equality to calculate
the trace of intertwiners obtained from skein algebras for the once punctured torus in Section 5.

From now on, we will always assume q1=2 is a primitive nth root of �1 with n odd.

3 Irreducible representation construction for SKq1=2.T 2/ and SKq1=2.S1;1/

In order to get Kauffman bracket intertwiners, we want to find the explicit irreducible representations
associated to given characters and puncture weights. Here we construct irreducible representations for
skein algebras of the closed torus T 2 and the once punctured torus S1;1. In Section 4, we will use these
irreducible representations to calculate intertwiners for the closed torus.

3.1 An algebraic embedding for SKq1=2.T 2/

Let CŒX˙1;Y ˙1�q1=2 be the algebra generated by X , X�1, Y and Y �1, subject to the relations
XY D qYX , XX�1 DX�1X D 1 and Y Y �1 D Y �1Y D 1. Frohman and Gelca [14] built an algebraic
embedding

Gq1=2 W SKq1=2.T 2/!CŒX˙1;Y ˙1�q1=2 ; .a; b/T 7! �.a;b/C �.�a;�b/;

where .a; b/T is the simple link associated to two integers a and b, and �.a;b/ D q�ab=2X aY b . If
gcd.a; b/D 1 (with the convention that gcd.˙1; 0/D gcd.0;˙1/D 1), then .a; b/T is represented by
the simple knot .a; b/ in R2=Z2 with vertical framing. If gcd.a; b/ D k, a D a0k and b D b0k, then
.a; b/T D Tk..a

0; b0// where Tk is the k th Chebyshev polynomial of the first type. We have

�.a;b/�.c;d/ D q1=2
�

a
c

b
d

�
�.aCc;bCd/ and .�.a;b//

�1
D �.�a;�b/:

Since �.a;b/C �.�a;�b/ D q�ab=2.X aY bCX�aY �b/,

Im Gq1=2 D spanhX aY b
CX�aY �b

j .a; b/ 2 Z�Zi:

Algebraic & Geometric Topology, Volume 25 (2025)
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Let Tq1=2 be the Chebyshev homomorphism from the skein algebra SK�1.T
2/ to SKq1=2.T 2/ defined

in [3], and let Fq1=2 WCŒX˙1;Y ˙1��1!CŒX˙1;Y ˙1�q1=2 be defined by X 7!X n and Y 7! Y n. It is
easy to check that we have Fq1=2G�1 DGq1=2Tq1=2 .

3.2 Irreducible representations for SKq1=2.T 2/

Bonahon and Liu described the irreducible representations of CŒX˙1;Y ˙1�q1=2 [1]. Let V denote the
n-dimensional vector space over the complex field with basis e0; e1; : : : ; en�1, and let u and v be any
two nonzero complex numbers. Set �u;v.X /ei D uqiei and �u;v.Y /ei D veiC1, where the indices
are considered modulo n; then �u;v is an irreducible representation. Any irreducible representation of
CŒX˙;Y ˙�q1=2 is isomorphic to a representation �u;v, and �u;v ' �u0;v0 if and only if un D .u0/n and
vn D .v0/n.

It is well known that �1.T
2/ D Z ˚ Z D Z˛ ˚ Zˇ where ˛ D .1; 0/ and ˇ D .0; 1/. For any

Œ
 � 2 XSL.2;C/.T
2/, Œ
 � has a representative 
 such that


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
because �1.T

2/ is commutative.

For any given character Œ
 � 2XSL.2;C/.T
2/, the following theorem offers a representation of SKq1=2.T 2/

whose classical shadow is Œ
 �. For this theorem, we use the fact that abC aC b � gcd.a; b/ (mod 2) for
any two integers a and b (recall that gcd.˙1; 0/D gcd.0;˙1/D 1).

Theorem 3.1 Choose u; v 2 C such that un D ��1, vn D ��2 or un D ���1
1

, vn D ���1
2

; then the
classical shadow of �u;vGq1=2 is Œ
 �.

Proof To show the classical shadow of �u;vGq1=2 is Œ
 �, it suffices to show that

�u;vGq1=2.Tq1=2..a; b/T //D Tr
 ..a; b/T /IdV

for all .a; b/T 2 SK�1.T
2/. First we have

�u;vGq1=2.Tq1=2..a; b/T //D �u;v.Fq1=2G�1..a; b/T //

D �u;v.Fq1=2.�.a;b/C �.�a;�b///

D �u;v.�.na;nb/C �.�na;�nb//

D �u;v..�1/abX naY nb
C .�1/abX�naY �nb/

D .�1/ab Œ.�u;v.X //
na.�u;v.Y //

nb
C .�u;v.X //

�na.�u;v.Y //
�nb �

D .�1/ab Œ.un/a.vn/bC .un/�a.vn/�b �IdV

D .�1/abCaCb Œ�a
1�

b
2C�

�a
1 ��b

2 �IdV :
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Suppose gcd.a; b/D d and aD a0d; b D b0d ; then we have

Tr
 ..a; b/T /D Tr
 .Td ..a
0; b0///D Td .Tr
 ..a0; b0///

D Td .�Trace.
 ..a0; b0////

D Td .�Trace.
 .a0˛C b0ˇ///

D Td .�Trace..
 .˛//a
0

.
 .ˇ//b
0

//

D Td ..��
a0

1 �
b0

2 /C .��
�a0

1 ��b0

2 //

D .��a0

1 �
b0

2 /
d
C .���a0

1 ��b0

2 /d

D .�1/d Œ�da0

1 �db0

2 C��da0

1 ��db0

2 �

D .�1/abCaCb Œ�a
1�

b
2C�

�a
1 ��b

2 �:

We can easily get the following theorem by using the representation theory.

Theorem 3.2 Under the same assumption as in Theorem 3.1, we have the following conclusions:

(a) If �1 ¤˙1 or �2 ¤˙1, the representation �u;vGq1=2 is irreducible.

(b) If �1 D ˙1 and �2 D ˙1, then V has only two irreducible subrepresentations , V1 and V2,
V D V1˚V2, dim.V1/D .nC 1/=2, and dim.V2/D .n� 1/=2; especially

V1 D spanhe0; e1C en�1; e2C en�2; : : : ; e.n�1/=2C e.nC1/=2i;

V2 D spanhe1� en�1; e2� en�2; : : : ; e.n�1/=2� e.nC1/=2i

if uD˙1 and v D˙1.

Remark 3.3 The Azumaya locus of SKq1=2.T 2/ is a subset of XSL.2;C/.T
2/; an element in XSL.2;C/.T

2/

lives in the Azumaya locus if it corresponds to a unique irreducible representation of SKq1=2.T 2/ (the
correspondence is the one in Theorem 2.1). We know the PI-dimension of SKq1=2.T 2/ is n. Then
a character Œ
 � 2 XSL.2;C/.T

2/ lives in the Azumaya locus if and only if there exists an irreducible
representation of SKq1=2.T 2/ of dimension n whose classical shadow is Œ
 �. So by Theorem 3.2, Œ
 � lives
in the Azumaya locus if and only if �1 ¤˙1 or �2 ¤˙1, where


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
:

A contemporaneous paper by Karuo and Korinman [18] considered instead the case when q1=2 is an odd
order root of unity; both cases were studied through similar methods. They proved the character lives in
the Azumaya locus of the skein algebra of a closed surface if and only if the character is noncentral.

In [4], Bonahon and Wong proved the Witten–Reshetikhin–Turaev representation of the Kauffman
bracket skein algebra is irreducible and whose classical shadow is the trivial character. For the closed
torus T 2, we use VT 2 to denote the Witten–Reshetikhin–Turaev representation of SKq1=2.T 2/. We know
dim VT 2 D

1
2
.n�1/ with basis v1; v2; : : : ; v.n�1/=2 where vk is the skein in the solid torus represented by
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e1 e1

e2

e2

e3

Figure 2

2k�2 nontrivial parallel closed curves, which are parallel to the core of the solid torus, with the .2k�2/nd

Jones–Wenzel idempotent inserted. In Theorem 3.2 with �1 D �2 D 1, V2 and VT 2 are isomorphic as
representations for SKq1=2.T 2/, and the isomorphism is given by

e2k�1� en�2kC1 7! vk for all 1� k � 1
2
.n� 1/:

3.3 Irreducible representations for SKq1=2.S1;1/

We want to find the explicit irreducible representations of SKq1=2.S1;1/ corresponding to given characters
and puncture weights. Let Cq ŒX

˙1
1
;X˙1

2
;X˙1

3
� be the algebra generated by X1, X2 and X3 subject to

the relations

X1X2 D qX2X1; X2X3 D qX3X2; X3X1 D qX1X2; XiX
�1
i DX�1

i Xi D 1:

We have Cq ŒX
˙1
1
;X˙1

2
;X˙1

3
�D T

q1=4

� .S1;1/ where � is the ideal triangulation in Figure 2.

We define the skeins K1, K2 and K3 in the skein algebra SKq1=2.S1;1/ using Figure 3.

According to [10], the algebra SKq1=2.S1;1/ is generated by K1, K2 and K3 subject to the relations

q�1=2K1K2� q1=2K2K1 D .q
�1
� q/K3;

q�1=2K2K3� q1=2K3K2 D .q
�1
� q/K1;

q�1=2K3K1� q1=2K1K3 D .q
�1
� q/K2:

Let P be the loop around the puncture in S1;1. Then

P D q�1=2K1K2K3� q�1K2
1 � qK2

2 � q�1K2
3 C qC q�1:

K1 K2 K3

Figure 3
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Lemma 3.4 There is an algebraic embedding F W Sq1=2.S1;1/!Cq ŒX
˙1
1
;X˙1

2
;X˙1

3
� such that

F.K1/D ŒX2X3�C ŒX
�1
2 X�1

3 �C ŒX2X�1
3 �;

F.K2/D ŒX3X1�C ŒX
�1
3 X�1

1 �C ŒX3X�1
1 �;

F.K3/D ŒX1X2�C ŒX
�1
1 X�1

2 �C ŒX1X�1
2 �;

F.P /D ŒX 2
1 X 2

2 X 2
3 �C ŒX

�2
1 X�2

2 X�2
3 �:

Proof Actually, F is just the quantum trace map constructed in [2, Theorem 11] if we regard

Cq ŒX
˙1
1 ;X˙1

2 ;X˙1
3 �

as the Chekhov–Fock square root algebra associated to the ideal triangulation in Figure 2 where Xi

corresponds to ei for i D 1; 2; 3.

Let V be an n dimensional vector space over the complex field with basis w0; w1; : : : ; wn�1. We can
define a representation �r1;r2;r3

WCq ŒX
˙1
1
;X˙1

2
;X˙1

3
�! End.V / such that

�r1;r2;r3
.X1/wi D r1qiwi ;

�r1;r2;r3
.X2/wi D r2q�iwiC1;

�r1;r2;r3
.X3/wi D r3wi�1;

where r1, r2 and r3 are nonzero complex numbers. We can get �r1;r2;r3
.ŒX1X2X3�/D r1r2r3q1=2IdV .

Lemma 3.5 For any three nonzero complex numbers r1, r2 and r3, �r1;r2;r3
is an irreducible representa-

tion of Cq ŒX
˙1
1
;X˙1

2
;X˙1

3
�. Furthermore , every irreducible representation of Cq ŒX

˙1
1
;X˙1

2
;X˙1

3
� is

isomorphic to a representation �r1;r2;r3
, and �r1;r2;r3

' �s1;s2;s3
if and only if

rn
1 D sn

1 ; rn
2 D sn

2 ; rn
3 D sn

3 ; r1r2r3 D s1s2s3:

For any 
 2 XSL.2;C/.S1;1/ and a nonzero complex number p such that Tn.p/D�Trace 
 .P / where
P is the loop going around the only puncture in S1;1, let ti D�Trace 
 .Ki/ for i D 1; 2; 3. According
to [26], we have

Tn.p/D�t1t2t3� t2
1 � t2

2 � t2
3 C 2:

Lemma 3.6 Let x and y be two indeterminates such that xy D q�2yx. Then

Tn.xCx�1
Cy/D x�n

Cxn
Cyn

for n� 1.

For any given character Œ
 �2XSL.2;C/.S1;1/, the following theorem offers a representation of SKq1=2.S1;1/

whose classical shadow is Œ
 �.
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Theorem 3.7 With the above notation , �r1;r2;r3
F is a representation of SKq1=2.S1;1/. The classical

shadow of �r1;r2;r3
F is 
 and �r1;r2;r3

F.P /D pIdV if and only if we have the following equations:

(1)

rn
2 rn

3 C r�n
2 r�n

3 C rn
2 r�n

3 D�t1;

rn
3 rn

1 C r�n
3 r�n

1 C rn
3 r�n

1 D�t2;

rn
1 rn

2 C r�n
1 r�n

2 C rn
1 r�n

2 D�t3;

r2
1 r2

2 r2
3 qC r�2

1 r�2
2 r�2

3 q�1
D p:

Proof It is easy to see
ŒX2X3�ŒX2X�1

3 �D q�2ŒX2X�1
3 �ŒX2X3�;

ŒX3X1�ŒX3X�1
1 �D q�2ŒX3X�1

1 �ŒX3X1�;

ŒX1X2�ŒX1X�1
2 �D q�2ŒX1X�1

2 �ŒX1X2�:

From Lemma 3.6, we get

(2) Tn.�r1;r2;r3
F.K1//D Tn.�r1;r2;r3

.ŒX2X3�C ŒX
�1
2 X�1

3 �C ŒX2X�1
3 �//

D �r1;r2;r3
.Tn.ŒX2X3�C ŒX

�1
2 X�1

3 �C ŒX2X�1
3 �//

D �r1;r2;r3
.ŒX n

2 X n
3 �C ŒX

�n
2 X�n

3 �C ŒX n
2 X�n

3 �/

D �r1;r2;r3
.�.X n

2 X n
3 CX�n

2 X�n
3 CX n

2 X�n
3 //

D�.rn
2 rn

3 C r�n
2 r�n

3 C rn
2 r�n

3 /IdV :

Similarly we can get

(3)
Tn.�r1;r2;r3

F.K2//D�.r
n
3 rn

1 C r�n
3 r�n

1 C rn
3 r�n

1 /IdV ;

Tn.�r1;r2;r3
F.K3//D�.r

n
1 rn

2 C r�n
1 r�n

2 C rn
1 r�n

2 /IdV :

And

(4) �r1;r2;r3
F.P /D �r1;r2;r3

.ŒX 2
1 X 2

2 X 2
1 �C ŒX

�2
1 X�2

2 X�2
1 �/

D �r1;r2;r3
.ŒX 2

1 X 2
2 X 2

1 �/C �r1;r2;r3
.ŒX�2

1 X�2
2 X�2

1 �/

D .r2
1 r2

2 r2
3 qC r�2

1 r�2
2 r�2

3 q�1/IdV :

From (2), (3), (4) and the fact that K1, K2 and K3 generate the algebra SK�1.S1;1/, we can get the
conclusions in Theorem 3.7.

Remark 3.8 At first glance, it seems like, in (1), we may not be able to get solutions, but actually the forth
one is a consequence of first three equations because we have the relation Tn.p/D�t1t2t3�t2

1
�t2

2
�t2

3
C2.

In fact, to get solutions, we only need to solve the equations

yzCy�1z�1
Cyz�1

D�t1;

zxC z�1x�1
C zx�1

D�t2;

xyCx�1y�1
Cxy�1

D�t3:
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Let Yi DX 2
i for i D 1; 2; 3; then

Y1Y2 D q4Y2Y1;Y2Y3 D q4Y3Y2;Y3Y1 D q4Y1Y3;YiY
�1
i D Y �1

i Yi D 1:

The subalgebra of Cq ŒX
˙1
1
;X˙1

2
;X˙1

3
� generated by Y ˙1

1
, Y ˙1

2
and Y ˙1

3
is Cq4 ŒY ˙1

1
;Y ˙1

2
;Y ˙1

3
�.

Here we recall a lemma from [7] for irreducible representations for Cq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
�. Let V be an n

dimensional vector space over C with basis w0; w1; : : : ; wn�1. For any three nonzero complex numbers
y1, y2 and y3, define �y1;y2;y3

WCq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
�! End.V / such that

(5)

�y1;y2;y3
.Y1/.wi/D y1q4iwi ;

�y1;y2;y3
.Y2/.wi/D y2q�2iwiC1;

�y1;y2;y3
.Y3/.wi/D y3q�2iwi�1:

Lemma 3.9 [7] (1) For any three nonzero complex numbers y1, y2 and y3, the representation
�y1;y2;y3

is irreducible.

(2) Every irreducible representation of Cq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
� is isomorphic to a representation �y1;y2;y3

.

(3) The representations �y1;y2;y3
and �y0

1
;y0

2
;y0

3
are isomorphic if and only if yn

1
D .y0/n, yn

2
D .y0

2
/n,

yn
3
D .y0

3
/n and y1y2y3 D y0

1
y0

2
y0

3
.

4 Calculation of intertwiners for the closed torus

4.1 Construction of intertwiners for the closed torus

The mapping class group of the closed torus is SL.2;Z/ [13]. For any AD
�

a
c

b
d

�
2 SL.2;Z/, we hope to

find invariant characters under A. For a Œ
 � 2 XSL.2;C/.T
2/, we choose a representative with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
where ˛ and ˇ denote loops .1; 0/ and .0; 1/ in R2=Z2 respectively. We have Œ
 � is invariant under A if
and only if Trace.
 .A�.z///D Trace.
 .z// for all z 2 �1.T

2/. For any .k1; k2/ 2 Z˚Z, we have

A�.k1˛C k2ˇ/D .k1; k2/

�
a b

c d

�
D .k1aC k2c; k1bC k2d/D .k1aC k2c/˛C .k1bC k2d/ˇ;


 .A�.k1˛C k2ˇ//D 
 Œ.k1aC k2c/˛C .k1bC k2d/ˇ�

D

�
�1 0

0 ��1
1

�k1aCk2c �
�2 0

0 ��1
2

�k1bCk2d

D

 
�

k1aCk2c
1

�
k1bCk2d
2

0

0 �
�.k1aCk2c/
1

�
�.k1bCk2d/
2

!
;


 .k1˛C k2ˇ/D

�
�1 0

0 ��1
1

�k1
�
�2 0

0 ��1
2

�k2

D

 
�

k1

1
�

k2

2
0

0 �
�k1

1
�
�k2

2

!
:
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Then it is easy to show that Œ
 � is A-invariant if and only if �1 D �
a
1
�b

2
, �2 D �

c
1
�d

2
or �1 D �

�a
1
��b

2
,

�2 D �
�c
1
��d

2
.

A also induces two algebra isomorphisms, FA;C and FA;�, from CŒX˙1;Y ˙1�q1=2 to itself defined by

FA;C.�.i;j//D �.i;j/A; FA;�.�.i;j//D �.�i;�j/A:

FA;C and FA;� are well defined because

�.i;j/A�.k;l/A D q1=2
�

.i;j /A

.k;l/A

�
�.iCk;jCl/A D q1=2

�
i
k

j
l

�
ŒA��.iCk;jCl/A D q1=2

�
i
k

j
l

�
�.iCk;jCl/A;

and similarly

�.�i;�j/A�.�k;�l/A D q1=2
�

i
k

j
l

�
�.�i�k;�j�l/A:

From Section 3, we know there is an embedding

Gq1=2 W SKq1=2.T 2/!CŒX˙1;Y ˙1�q1=2 :

For the following discussion we will omit the subscript for Gq1=2 when there is no confusion.

Lemma 4.1 The following diagram is commutative:

SKq1=2.T 2/
G
//

A]

��

CŒX˙1;Y ˙1�q1=2

FA

��

SKq1=2.T 2/
G
// CŒX˙1;Y ˙1�q1=2

where FA is FA;C or FA;�.

Proof We only prove the case when FA D FA;C.

First we show A]..k; l/T /D ..k; l/A/T . Assume gcd.k; l/D j , k D k 0j and l D l 0j ; then

A]..k; l/T /DA].Tj ..k
0; l 0///D Tj .A]..k

0; l 0///D Tj ..k
0; l 0/A/D Tj .ak 0C cl 0; bk 0C dl 0/:

There exist integers u and v such that ukC vl D j , so
�

k
�v

l
u

�
D j and det

��
k
�v

l
u

�
A
�
D j . Then

det
��

k l

�v u

�
A

�
D

�
akC cl bkC dl

�v0 u0

�
D .akC cl/u0C .bkC dl/v0 D j:

We also have j j .akC cl/ and j j .bkCdl/. Thus gcd.akC cl; bkCdl/D j , akC cl D j .ak 0C cl 0/

and bkC dl D j .bk 0C dl 0/. Then

A]..k; l/T /D Tj .ak 0C cl 0; bk 0C dl 0/D .akC cl; bkC dl/T D ..k; l/A/T :

So
GA]..k; l/T /DG...k; l/A/T /D �.k;l/AC �

�1
.k;l/A;

FAG..k; l/T /D FA.�.k;l/C �
�1
.k;l//D �.k;l/AC �

�1
.k;l/A:

We have GA] D FAG because all .k; l/T span the skein algebra.
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The following two theorems give the intertwiners for the closed surface for all the diffeomorphisms. We
will give explicit formulas for these intertwiners and their trace in the following subsections.

Theorem 4.2 In the diagram

(6)

SKq1=2.T 2/
G
//

A]

��

CŒX˙1;Y ˙1�q1=2

�u;v
//

FA

��

End.V /

Gƒ

��

SKq1=2.T 2/
G
// CŒX˙1;Y ˙1�q1=2

�u;v
// End.V /

suppose AD
�

a
c

b
d

�
2 SL.2;Z/ and FA D FA;C. Let Œ
 � 2 XSL.2;C/.T

2/ with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
where �1 D �

a
1
�b

2
and �2 D �

c
1
�d

2
, and let u and v be two complex numbers such that un D ��1 and

vn D��2. We have the following conclusions:

(a) Œ
 � is invariant under A.

(b) The classical shadow of �u;vG is Œ
 �.

(c) �u;vFA ' �u;v.

(d) From (c), we know there exists an intertwinerƒn;C such that �u;vFA.Z/Dƒn;C�u;v.Z/ƒ
�1
n;C for

all Z 2CŒX˙1;Y ˙1�q1=2 . Then this intertwiner induces an intertwiner between two irreducible
representations of the skein algebra.

Proof Items (a) and (b) are already shown in the previous discussion.

To prove (c), we have

�u;vFA.X
n/D �u;vFA.�.n;0//D �u;v.�.n;0/A/

D �u;v.�.na;nb//

D �u;v..�1/abX naY nb/

D .�1/abunavnbIdV

D .�1/ab.��1/
a.��2/

bIdV

D .�1/abCaCb�a
1�

b
2IdV D��1IdV D unIdV :

Similarly we can show �u;vFA.Y
n/D vnIdV , thus �u;vFA ' �u;v.

For (d), if �1 ¤˙1 or �1 ¤˙1, Theorem 3.2 implies that ƒn;C itself is the intertwiner between two
irreducible representations of the skein algebra. If �1D˙1 and �1D˙1, Theorem 3.2 implies that V has
only two irreducible subrepresentations, V1 and V2, with dim.V1/D .nC1/=2 and dim.V2/D .n�1/=2.
We have that ƒn;C.V1/ is an irreducible subrepresentation of V and dim.ƒn;C.V1//D .nC 1/=2. Then
ƒn;C.V1/D V1. Thus ƒn;CjV1

is an intertwiner for V1. Similarly ƒn;CjV2
is an intertwiner for V2.
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Theorem 4.3 In the diagram (6), suppose AD
�

a
c

b
d

�
2SL.2;Z/ and FADFA;�. Let Œ
 �2XSL.2;C/.T

2/

with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
where �1 D �

�a
1
��b

2
and �2 D �

�c
1
��d

2
, and let u and v be two complex numbers such that un D���1

1

and vn D���1
2

. We have the following conclusions:

(a) Œ
 � is invariant under A.

(b) The classical shadow of �u;vG is Œ
 �.

(c) �u;vFA ' �u;v.

(d) From (c), we know there exists an intertwiner ƒn;� such that �u;vFA.Z/Dƒn;��u;v.Z/ƒ
�1
n;� for

all Z 2CŒX˙1;Y ˙1�q1=2 . Then this intertwiner induces an intertwiner between two irreducible
representations of the skein algebra.

Proof The proof is the same as in Theorem 4.2.

Note that a rescaling of the intertwinerƒn;C in Theorem 4.2 such that jdet.ƒn;C/jD1 makes jTraceƒn;Cj

independent of the choice of u and v. The same thing holds for the intertwiner in Theorem 4.3.

For the following discussion, we always require FA to be FA;C unless specified otherwise (parallel results
hold for FA;�). From the above discussion, we know there exists an intertwiner ƒn 2 End.V / such that
the diagram (6) commutes, where Gƒ.B/DƒnBƒ�1

n for all B 2 End.V /. Next we are going to find an
intertwiner ƒn under the assumption in Theorem 4.2.

4.2 Calculation for intertwiners

Under the assumption of Theorem 4.2, we have �u;vFA'�u;v . For any a2V and Z 2CŒX˙1;Y ˙1�q1=2 ,
we use Z � a and Z ? a to denote �u;v.Z/.a/ and �u;vFA.Z/.a/ respectively. Then we are trying to find
ƒn 2 End.V / such that ƒn.X � a/DX ? .ƒn.a// and ƒn.Y � a/D Y ? .ƒn.a// for all a 2 V .

Remark 4.4 Assume gcd.b; n/Dm and nDn0m. There exist two integers r and s such that brCsnDm.
Then we have

(7) .vn0bun0.a�1/qab.n0/2=2/m D vmn0bumn0.a�1/qabm.n0/2=2

D vnbun.a�1/qabnn0=2

D .��2/
b.��1/

a�1.�1/abn0
D .�1/abCbCa�1�b

2�
a�1
1 D 1;

and qan0 is a primitive mth root of unity. Then there exists a unique integer 0 � k0 �m� 1 such that
.vn0bun0.a�1/qab.n0/2=2/qan0k0 D 1 and .vn0bun0.a�1/qab.n0/2=2/qan0k ¤ 1 for k ¤ k0; 0 � k � m� 1.
We set rk0

D 1 and rk D 0 for k ¤ k0; 0� k �m� 1, and define rkCtb D rkv
tbut.a�1/qa.tkCbt2=2/ for
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all 0� k �m�1 and t 2Z, where we consider all indices modulo n. Since gcd.b; n/Dm and nDmn0,
we can reach all the indices. It is an easy check that rk1Ct1b D rk2Ct2b if k1C t1b � k2C t2b (mod n).
Then rk is well defined for each 0� k � n� 1.

It is easy to check that we have rkCtb D rkv
tbut.a�1/qatkCabt2=2 for all k; t 2 Z. Actually we have

rk0Ctb D v
tbut.a�1/qa.tk0Cbt2=2/ for all 0� t � n0� 1;

and all other rk are 0. We have

.vbua�1/n D .vn/b.un/a�1
D .��2/

b.��1/
a�1
D .�1/aCb�1�1

a�1�2
b
D .�1/aCb�1:

Then we get jrk j D 0 or 1 for all k 2 Z. From br C snDm, we get tmD tbr C tsn for all t 2 Z. Then
we have

rk0Ctm D rk0Ctrb D v
trbutr.a�1/qa.trk0Cbt2r2=2/ for all 0� t � n0� 1;

and all other rk are 0.

The following lemma offers an explicit formula for the intertwiner constructed in Theorem 4.2(d).

Lemma 4.5 Under the assumption of Theorem 4.2, suppose ƒn 2 End.V / and

ƒn.et /D
X

0�k�n�1

.ƒn/k;tek

for all 0� t � n� 1, where

.ƒn/k;t D rk�td .v
.d�1/uc/tqc.tk�dt2=2/:

Then ƒn satisfies the conditions in Theorem 4.2(d ).

Proof From direct calculations, we can get ƒn.X � et /DX ? .ƒn.et // and ƒn.Y � et /D Y ? .ƒn.et //

for all 0� t � n� 1.

We have .vd�1uc/n D .vn/d�1.un/c D .��2/
d�1.��1/

c D .�1/cCd�1�1
c�2

d�1
D .�1/cCd�1. Then

we can get j.ƒn/k;t j D 0 or 1. We have .ƒn/k;t D 0 if and only if rk�td D 0. Then it is easy to show
that .ƒn/ldCkmCk0;lCtm, for 0� l �m� 1 and 0� k; t � n0� 1, are the only nonzero entries.

For each 0� l �m� 1, we define an n0 � n0 matrix Bl such that .Bl/k;t D .ƒn/ldCkmCk0;lCtm for all
0� k; t � n0� 1. Then by Laplace expansion, we know jdet.ƒn/j D

Q
0�l�mjdet.Bl/j.

From pure calculations, we can get jdet.Bl/j D .n0/n
0=2. Then we have

jdet.ƒn/j D
Y

0�l�m

jdet.Bl/j D ..n0/n
0=2/m D .n0/mn0=2

D .n0/n=2:

Furthermore, jdet..n0/�1=2ƒn/j D 1.
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Remark 4.6 If zƒn is the intertwiner in Theorem 4.3, and we still suppose gcd.b; n/Dm, br C snDm

and nD n0m, then

rk0�tm D .v
�bu�a�1/tr q�trak0Cabt2r2=2 for all t 2 Z

with all other rk D 0, and

.zƒn/k;t D rkCtd .v
�d�1u�c/tq�tck�cdt2=2 for all 0� k; t � n� 1;

where 0� k0 �m� 1 such that

.v�bu�a�1/n
0

qab.n0/2=2q�n0ak0 D 1:

Also we can get jdet.zƒn/j D .n
0/n=2.

4.3 On the trace of intertwiners

Bonahon, Wong and Yang only formulated the conjecture when the mapping tori are hyperbolic. So
they considered surfaces with negative Euler characteristic because the mapping tori for the closed torus
can never be hyperbolic. Since the simplicial volume of mapping tori for the closed torus is zero — see
[13, page 380] — we expect the corresponding limit to be zero. In Theorem 4.15, we can show the limit
superior is zero for any diffeomorphism. But the limits are not zero for some cases; see Example 4.12.
Some diffeomorphisms even do not have invariant characters that live in the Azumaya locus, but the
intertwiners in Theorems 4.2 and 4.3 are very close to intertwiners constructed in [7].

When we consider the intertwiners in Theorems 4.2 and 4.3, we fix the mapping class A and the A-
invariant character Œ
 �. In this subsection we will use .l; s/ to denote gcd.l; s/ for any two integers l

and s.

Theorem 4.7 If we require jdet.ƒn/j D 1 for the intertwiner in Theorem 4.2, then jTraceƒnj � n3=2.

Proof Since any two intertwiners in Theorem 4.2 are different by a scalar multiplication or by conjugation
and we require jdet.ƒn/j D 1, the absolute value jTraceƒnj is independent of the choice of intertwiners.
Let ƒnD .n

0/�1=2ƒn; then jdet.ƒn/j D 1. Since j.ƒn/k;t j D 0 or 1 for all 0� k; t � n�1 and each row
has exactly n0 nonzero entries, we have the absolute value of every eigenvalue of ƒn is not more than n0.
Then

jTrace.ƒn/j D jTrace..n0/�1=2ƒn/j � .n
0/�1=2.nn0/D .n0/1=2n� n3=2:

Theorem 4.8 If we require jdet.ƒn/j D 1 for the intertwiner in Theorem 4.3, then jTraceƒnj � n3=2.

Proof It is similar to the proof for Theorem 4.7.

Lemma 4.9 Let k be any integer; then we haveˇ̌̌̌ X
0�t�n�1

.�q1=2/kt2

ˇ̌̌̌
D
p
.k; n/n:

Recall that q1=2 is a primitive nth root of �1.

Algebraic & Geometric Topology, Volume 25 (2025)



Kauffman bracket intertwiners and the volume conjecture 2161

Proof In [23] this result is proved for k D 2. Using the same trick, we can prove this generalized
lemma.

In the following of this section, we always assume q1=2 D e�i=n unless especially specified. Next we are
going to calculate Traceƒn, where ƒn is the intertwiner in Theorem 4.2 or 4.3 with jdetƒnj D 1. First
we give detailed discussion on the invariant character. Recall that for any AD

�
a
c

b
d

�
2 SL.2;Z/ and a

character Œ
 � 2 XSL.2;C/.T
2/ with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
;

we have that Œ
 � is A-invariant if and only if 1D �a�1
1

�b
2
, 1D �c

1
�d�1

2
or 1D �aC1

1
�b

2
, 1D �c

1
�dC1

2
.

Remark 4.10 We will provide a detailed discussion only for the case when 1D �a�1
1

�b
2

and 1D �c
1
�d�1

2
.

Suppose �1 D ˛1ei�1 and �2 D ˛2ei�2 ; then we get

1D ˛a�1
1 ˛b

2 ; 1D ˛c
1˛

d�1
2 ;

.a� 1/�1C b�2 D 2k1�; c�1C .d � 1/�2 D 2k2�:(8)

Since un D ��1 and vn D ��2, we can suppose uD �˛
1=n
1

ei�1=nqr1 and v D �˛1=n
2

ei�2=nqr2 where
both r1 and r2 are integers. Then we have

(9)
ua�1vb

D .�1/aCb�1qr1.a�1/Cr2be.i=n/..a�1/�1Cb�2/ D .�1/aCb�1qr1.a�1/Cr2bCk1 ;

ucvd�1
D .�1/cCd�1qr1cCr2.d�1/e.i=n/.c�1C.d�1/�2/ D .�1/cCd�1qr1cCr2.d�1/Ck2 :

Define s1 D r1.a� 1/C r2bC k1 and s2 D r1cC r2.d � 1/C k2. Then ua�1vb D .�1/aCb�1qs1 and
ucvd�1 D .�1/cCd�1qs2 .

From 1D �a�1
1

�b
2

and 1D �c
1
�d�1

2
, we can get 1D �

.a�1/c
1

�bc
2

and 1D �
.a�1/c
1

�
.a�1/.d�1/
2

. Thus we
have

�bc
2 D �

.a�1/.d�1/
2

D �
ad�.aCd/C1
2

D) 1D �
ad�bc�.aCd/C1
2

D �
2�.aCd/
2

:

If aC d ¤ 2, then �2 is a root of unity with �2�.aCd/
2

D 1. Similarly we can show �1 is also a root of
unity, with �2�.aCd/

1
D 1, under the assumption aC d ¤ 2.

We look at the case when .b; n/D 1, and suppose br C snD 1. Then we have

qbr
D q; qbr=2

D .�1/sq1=2; .�1/s D .�1/brC1:

When .b; n/D 1, we can choose k0 D 1 and set rk0
D r0 D 1. Then we have

rtb D v
tbut.a�1/qabt2=2 for all t 2 Z:

For any k 2 Z, we have k D krbC ksn. Then

rk D rkrb D v
krbukr.a�1/qabk2r2=2:
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From the above discussion, we know we can choose ƒn to be n�1=2ƒn. We have

.ƒn/t;t D rt�td .v
d�1uc/t qct2�cdt2=2

D .�1/cdt rt�td qs2t qct2�cdt2=2

D .�1/cdt .vbua�1/r.t�td/qabr2.t�td/2=2qs2t qct2�cdt2=2

D .�1/cdt .�1/abr.t�td/qs1r.t�td/qabr2.t�td/2=2qs2t qct2�cdt2=2

D .�1/cdt .�1/abr.t�td/.qs1r.1�d/qs2/t ..qbr=2/ar.1�d/2qc�cd=2/t
2

D .�1/cdt .�1/abr.t�td/.qs1r.1�d/qs2/t ...�1/sq1=2/ar.1�d/2qc�cd=2/t
2

D .�1/cdt .�1/abr.t�td/.�1/tsar.1�d/2.qs1r.1�d/qs2/t .qar=2q�ard qard2=2qc�cd=2/t
2

D .�1/cdt .�1/abr.t�td/.�1/tsar.1�d/2.qs1r.1�d/qs2/t .qar=2q�r q�rbcqrd=2qrbcd=2qc�cd=2/t
2

D .�1/cdt .�1/abr.t�td/.�1/tsar.1�d/2.qs1r.1�d/qs2/t .qar=2q�r q�cqrd=2..�1/sq1=2/cd qc�cd=2/t
2

D .�1/cdt .�1/abr.t�td/.�1/tsar.1�d/2.�1/tscd .qs1r.1�d/qs2/t .q.aCd�2/r=2/t
2

D .�1/cdt .�1/abr.t�td/.�1/t.brC1/ar.1�d/.�1/t.brC1/cd .qs1r.1�d/qs2/t .q.aCd�2/r=2/t
2

D .�1/tar .�1/tard .�1/trd.adC1/.qs1r.1�d/qs2/t .q.aCd�2/r=2/t
2

D .�1/tar .�1/trd .qs1r.1�d/qs2/t .q.aCd�2/r=2/t
2

D ..�1/.aCd�2/r /t .qs1r.1�d/qs2/t .q.aCd�2/r=2/t
2
:

Since qs2 D qrs2b , we have

(10) .ƒn/t;t D ..�1/.aCd�2/r /tq.r=2/..aCd�2/t2C2.s1.1Cd/�s2b/t/;

and

(11) Traceƒn D n�1=2
X

0�t�n�1

..�1/.aCd�2/r /tq.r=2/..aCd�2/t2C2.s1.1Cd/�s2b/t/:

Remark 4.11 Here we state the parallel results for 1 D �aC1
1

�b
2
, 1 D �c

1
�dC1

2
, un D ���1

1
, and

vn D���1
2

.

Suppose �1 D ˛1ei�1 and �2 D ˛2ei�2 ; then we get

1D ˛aC1
1

˛b
2 ; 1D ˛c

1˛
dC1
2

;

.aC 1/�1C b�2 D 2k1�; c�1C .d C 1/�2 D 2k2�:

Since un D���1
1

and vn D���1
2

, we can suppose uD�˛
�1=n
1

e�i�1=nqr1 and v D�˛�1=n
2

e�i�2=nqr2

where both r1 and r2 are integers. Then we have

uaC1vb
D .�1/aCbC1qr1.aC1/Cr2b�k1 ;

ucvdC1
D .�1/cCdC1qr1cCr2.dC1/�k2 :
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Similarly we set s1D r1.aC1/Cr2b�k1 and s2D r1cCr2.dC1/�k2. Then uaC1vbD .�1/aCbC1qs1

and ucvdC1 D .�1/cCdC1qs2 . If aC d ¤�2, then ˛1 D ˛2 D 1.

For the case when .b; n/D 1 and br C snD 1, we have

.zƒn/t;t D ..�1/.aCdC2/r /tq.r=2/..aCdC2/t2C2.s1.1Cd/�s2b/t/

and

(12) Traceƒn D n�1=2
X

0�t�n�1

..�1/.aCdC2/r /tq.r=2/..aCdC2/t2C2.s1.1Cd/�s2b/t/:

Example 4.12 Let AD
�

2
�7

1
�3

�
. If we try to solve 1D �a�1

1
�b

2
and 1D �c

1
�d�1

2
, we get

(13) �1C �2 D 2�; �7�1� 4�2 D 2�:

We have �1D�
10�

3
and �2D

16�
3

; thus �1D e2� i=3 and �2D e4�i=3. So if we set uD�e�10�i=3n and
v D�e16�i=3n, then ua�1vb D q and ucvd�1 D�q. We have s1 D s2 D 1. Since b D 1, we get r D 1.
Then from (11), we have

Traceƒn D n�1=2
X

0�t�n�1

.�1/tq.�3t2C10t/=2:

Note that when n is a multiple of 3, we have Traceƒn D 0.

Example 4.13 Let A be the same matrix as above. But this time we try to solve 1 D �aC1
1

�b
2

and
1D �c

1
�dC1

2
; then we get �2CaCd

1
D �2CaCd

2
D 1. Since 2C aC d D 1, we have �1 D �2 D 1. If we

set uD v D�1, then s1 D s2 D 0. From (11), we have

jTraceƒnj D n�1=2

ˇ̌̌̌ X
0�t�n�1

.�1/tqt2=2

ˇ̌̌̌
D 1:

Lemma 4.14 Let AD
�

a
c

b
d

�
, where .b; n/D 1 and jaCd j D 2. Then we have the following statements:

(1) If aC d D 2 and ƒn is the intertwiner obtained in Theorem 4.2 such that jdet.ƒn/j D 1, then
jTraceƒnj D

p
n.

(2) If aC d D �2 and ƒn is the intertwiner obtained in Theorem 4.3 such that jdet.ƒn/j D 1, then
jTraceƒnj D

p
n.

Proof We only prove the statement (1) (the proof for statement (2) is similar). Let Œ
 � 2 XSL.2;C/.T
2/,

with

 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
;

be any A-invariant character.

We use the same notation as in Remark 4.10. Then we have
s1.1� d/C s2b D r1.a� 1/.1� d/C r2b.1� d/C k1.1� d/C r1cbC r2.d � 1/bC k2b

D k1.1� d/C k2b:
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From (8), we can get

2�..1� d/k1C k2b/D .1� d/2�k1C b2�k2

D .1� d/.a� 1/�1C b.1� d/�2C bc�1C b.d � 1/�2 D 0:

Thus we have
.1� d/k1C k2b D s1.1� d/C s2b D 0:

From (11), we know

Traceƒn D n�1=2
X

0�t�n�1

..�1/.aCd�2/r /tq.r=2/..aCd�2/t2C2.s1.1�d/Cs2b/t/
D n�1=2nD

p
n:

The following theorem shows the limit superior related to the trace of intertwiners for any diffeomorphism
of the closed torus is zero, which equals the simplicial volume of the corresponding mapping torus.

Theorem 4.15 Let AD
�

a
c

b
d

�
be any fixed element in the mapping class group for the closed torus , and

let Œ
 � be any fixed A-invariant character with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
:

If 1D �a�1
1

�b
2

and 1D �c
1
�d�1

2
, let fƒngn22Z�0C1 be intertwiners obtained in Theorem 4.2 such that

jdet.ƒn/j D 1 for all n 2 2Z�0C 1. If 1D �aC1
1

�b
2

and 1D �c
1
�dC1

2
, let fƒngn22Z�0C1 be intertwiners

obtained in Theorem 4.3 such that jdet.ƒn/j D 1 for all n 2 2Z�0C 1. Then we have

lim sup
odd n!1

log.jTraceƒnj/

n
D 0:

Proof Since Œ
 � is A-invariant, we have 1D�a�1
1

�b
2

, 1D�c
1
�d�1

2
or 1D�aC1

1
�b

2
, 1D�c

1
�dC1

2
. We look

at the case when 1D �a�1
1

�b
2

, 1D �c
1
�d�1

2
. Then we can set ƒn to be anƒn, where an D jdet.ƒn/j

�1=n.

Case I Suppose b D 0. In this case we know jdet.ƒn/j D 1 since n0 D 1.

We have A D
�

1
c

0
1

�
or
�
�1
c

0
�1

�
. We first consider the case when A D

�
1
c

0
1

�
. If c D 0, it is trivial. So

suppose c ¤ 0. Since we have �a�1
1

�b
2
D 1, �c

1
�d�1

2
D 1, we get �c

1
D 1. Suppose �1 D ei� ; then we get

�c D 2k� where k is an integer. Since un D��1, we can choose uD�ei�=nqr where r is an integer.
Then we have

uc
D .�1/cei�c=nqcr

D .�1/ce2k�i=nqcr
D .�1/cqkCcr :

Note that jTraceƒnj is independent of the choice of r .

From Remark 4.4 and Lemma 4.5, ƒn is a diagonal matrix, and

.ƒn/t;t D .v
.d�1/uc/tqc.t2�dt2=2/:

Then we have

Traceƒn D

X
0�t�n�1

vt.d�1/utcqcdt2=2
D

X
0�t�n�1

.�1/ctqct2=2q.kCcr/t :
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Let fnigi2N be a subsequence of 2Z�0C 1 such that .ni ; c/D 1 for all i . Then for every i there exists r

such that kC cr � 0 (mod ni); thus

jTraceƒni
j D

ˇ̌̌̌ X
0�t�ni�1

.�1/ctqct2=2

ˇ̌̌̌
D
p
.ni ; c/ni D

p
ni � 1:

Thus we have
0� lim sup

odd n!1

log.jTraceƒnj/

n
:

According to Theorem 4.7, we also have

lim sup
odd n!1

log.jTraceƒnj/

n
� lim sup

odd n!1

log.n3=2/

n
D 0:

We look at the case when AD
�
�1
c

0
�1

�
. Then we get .�1/

2 D 1 and �1 D˙1. We can choose uD˙1.
From Remark 4.4 and Lemma 4.5 we get

.ƒn/t;k D rk�td .v
.d�1/uc/tqc.tk�dt2=2/;

where rk D 1 if k is a multiple of n and it is zero otherwise. Then .ƒn/t;t ¤ 0 if and only if r2t ¤ 0 if and
only if n j .2t/, which means there is only one nonzero diagonal element. Then we get jTraceƒnj D 1

for any n, which proves this special case.

Case II Suppose b ¤ 0.

We first consider the subcase when aC d ¤ 2. From the above discussion we know �1 and �2 are both
roots of unity; thus we can suppose �1 D ei�1 , �2 D ei�2 and we can get (8) where �1, �2, k1 and k2

are determined by 
 . Since un D��1 and vn D��2, we can write uD�ei�1=nqr1 and v D�ei�2=nqr1 .
Then we have (9). Note that jTraceƒnj is independent of the choice of r1 and r2.

Since b ¤ 0 and 2� .aC d/¤ 0, let fnj gj2N be a subsequence of 2Z�0C 1 such that

.nj ; b/D .nj ; 2� .aC d//D 1:

Since
�

a�1
c

b
d�1

�
D 2� .aCd/ and .nj ; 2� .aCd//D 1, the following equations always have solutions

in Znj
:

r1.a� 1/C r2bC k1 D 0; r1cC r2.d � 1/C k2 D 0:

Thus for every j , there always exist integers r1 and r2 such that s1 D s2 D 0 in Znj
. Then, from (11),

jTraceƒnj
j D n

�1=2
j

ˇ̌̌̌ X
0�t�nj�1

..�1/.aCd�2/r /tq.r=2/..aCd�2/t2C2.s1.1�d/Cs2b/t/

ˇ̌̌̌

D n
�1=2
j

ˇ̌̌̌ X
0�t�nj�1

..�1/.aCd�2/r /tq.r=2/..aCd�2/t2/

ˇ̌̌̌

D n
�1=2
j

ˇ̌̌̌ X
0�t�nj�1

.�q1=2/r.aCd�2/t2

ˇ̌̌̌
D n
�1=2
j

q
.r.aC d � 2/; nj /nj D 1:
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Then we have
0� lim sup

odd n!1

log.jTraceƒnj/

n
:

By Theorem 4.7,

lim sup
odd n!1

log.jTraceƒnj/

n
D 0:

The other subcase is when aCd D 2. Since b ¤ 0, let fnkgk2N be a subsequence of 2Z�0C 1 such that
.nk ; b/D 1 for all k. From Lemma 4.14, we have jTraceƒnk

j D
p

nk � 1. Similarly, we get

lim sup
odd n!1

log.jTraceƒnj/

n
D 0:

From now on we discuss the periodic mapping class. Recall that AD
�

a
c

b
d

�
is periodic if and only if

jaC d j 2 f0; 1g. Suppose Œ
 � is an A-invariant character with


 .˛/D

�
�1 0

0 ��1
1

�
and 
 .ˇ/D

�
�2 0

0 ��1
2

�
:

Then we have 1D �a�1
1

�b
2
, 1D �c

1
�d�1

2
or 1D �aC1

1
�b

2
, 1D �c

1
�dC1

2
. For the case when 1D �a�1

1
�b

2
,

1 D �c
1
�d�1

2
, the above discussion implies 1 D �

2�.aCd/
1

D �
2�.aCd/
2

. So if a C d D 0, we have
�2

1
D �2

2
D 1; thus �1D˙1 and �2D˙1. Hence there is no A-invariant character living in the Azumaya

locus if �1 D ˙1 and �2 D ˙1. But we can still get intertwiners in Theorems 4.2 and 4.3, although
�1 D˙1 and �2 D˙1. Now we consider intertwiners if we choose �1 D �2 D 1.

Theorem 4.16 Let A be a periodic mapping class , and let ƒn be the intertwiner obtained in Theorem 4.2
or 4.3 by using the trivial A-invariant character , that is �1 D �2 D 1, and we require jdet.ƒn/j D 1. We
have the following conclusions:

(1) If aC d D 1 and ƒn is obtained in Theorem 4.2, then jTrace.ƒn/j D 1 for any odd n.

(2) If aC d D�1 and ƒn is obtained in Theorem 4.3, then jTrace.ƒn/j D 1 for any odd n.

(3) If aC d D 0 and ƒn is obtained in Theorem 4.2 or 4.3, then jTrace.ƒn/j D 1 for any odd n.

Proof Suppose A D
�

a
c

b
d

�
, .b; n/ D m, br C sn D m and n D mn0. Since �1 D �2 D 1, we can set

uD v D�1. From the previous discussion we know

.ƒn/k;t D .�1/cdt rk�tdqc.tk�dt2=2/

for all 0� k; t � n� 1, where

rtm D .�1/abrtqabt2r2=2 for all 0� t � n0� 1;

and all other rk are 0. For the l th column, we have f.ƒn/ldCkm;lg0�k�n0�1 are the only nonzero entries.
Then the l th column contains a nonzero diagonal entry if and only if ld C km � l (mod n) for some
0� k � n0�1. It is easy to show ldCkm� l (mod n) for some 0� k � n0�1 if and only if m j .ld� l/.
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Now we suppose .m; d � 1/D 1. Then the l th column of ƒn contains a nonzero diagonal entry if and
only if m j l . Thus .ƒn/tm;tm, 0� t � n0� 1, are the only nonzero diagonal entries, and

.ƒn/tm;tm D .�1/cdtmrtm�tmdqc.t2m2�dt2m2=2/

D .�1/cdtm.�1/abr.t�td/qabr2.1�d/2t2=2qc.t2m2�dt2m2=2/:

After a similar calculation as in Remark 4.10, we can get

.ƒn/tm;tm D .�1/.arCdr�2r/t .qm=2/.arCdr�2r/t2

:

Then we have

Traceƒn D

X
0�t�n0�1

.�1/.arCdr�2r/t .qm=2/.arCdr�2r/t2

:

Similarly if .m; d C 1/D 1, then

Trace zƒn D

X
0�t�n0�1

.�1/.arCdrC2r/t .qm=2/.arCdrC2r/t2

:

(1) Since the intertwiner is obtained in Theorem 4.2, we can setƒnD .n
0/�1=2ƒn. We have d�1D�a

because aC d D 1. Then we get .d � 1;m/D 1 because .a; b/D 1 and m is a divisor of b. Then
from the above discussion, we get

jTraceƒnj D .n
0/�1=2

ˇ̌̌̌ X
0�t�n0�1

.�1/.arCdr�2r/t .qm=2/.arCdr�2r/t2

ˇ̌̌̌

D .n0/�1=2

ˇ̌̌̌ X
0�t�n0�1

.�1/�rt .qm=2/�rt2

ˇ̌̌̌
D .n0/�1=2

p
.�r; n0/n0 D 1:

(2) The proof is similar to that of (1).

(3) First we show .m; d �1/D .m; dC1/D 1 if aCd D 0. From ad �bcD 1, we get �bcD d2C1.
Suppose p jm and p j d � 1. Then p j .d2C 1/ and p j .d2� 1/. Thus we get p j 2, which means
p D 1 because .m; 2/D 1. Similarly we can show .m; d C 1/D 1. If ƒn D .n

0/�1=2ƒn, then

jTraceƒnj D .n
0/�1=2

ˇ̌̌̌ X
0�t�n0�1

.�1/.arCdr�2r/t .qm=2/.arCdr�2r/t2

ˇ̌̌̌

D .n0/�1=2

ˇ̌̌̌ X
0�t�n0�1

.qm/�rt2

ˇ̌̌̌
D .n0/�1=2

p
.�r; n0/n0 D 1:

If ƒn D .n
0/�1=2 zƒn, we can similarly show that jTraceƒnj D 1.
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5 The volume conjecture for surface diffeomorphisms: periodic case

5.1 Preliminaries for the volume conjecture for periodic surface diffeomorphisms

If we want to formulate the parallel conjecture for periodic diffeomorphisms as in [7; 8], we have to find
a good invariant character that lives in the smooth part of XSL.2;C/.S/.

Lemma 5.1 [11] Let A;B 2 SL.2;C/. If Trace.ŒA;B�/ D 2 where ŒA;B� D ABA�1B�1, then
G D hA;Bi � SL.2;C/ is not free of rank two where hA;Bi is the group generated by A and B.

Lemma 5.2 Let G be a subgroup of SL.2;C/ freely generated by two elements , and let R be the
subalgebra of Mat.2;C/ generated by G, where Mat.2;C/ is the algebra of all 2 by 2 complex matrices.
Then RDMat.2;C/.

Proof Suppose G is freely generated by A and B. We know there exists X 2 GL.2;C/ such that
XAX�1 D

�
u
0
v

u�1

�
and XBX�1 D

�
a
c

b
d

�
. Then XGX�1 is a free subgroup generated by XAX�1 and

XBX�1, and XRX�1 is the subalgebra generated by XGX�1. Since XRX�1 DMat.2;C/ if and only
if RDMat.2;C/, we can assume AD

�
u
0
v

u�1

�
and B D

�
a
c

b
d

�
.

(I) Suppose v D 0. Then A D
�

u
0

0
u�1

�
and u2 ¤ 1, otherwise A D

�
1
0

0
1

�
or A D

�
�1
0

0
�1

�
, which

contradicts the fact that G is freely generated by A and B. We also get b ¤ 0 and c ¤ 0, since
otherwise Trace.ŒA;B�/D 2, which contradicts the fact that A and B freely generate G by Lemma 5.1.
Since

�
u
0

0
u�1

�
;
�

1
0

0
1

�
2 R and u ¤ ˙1, we have

�
1
0

0
0

�
;
�

0
0

0
1

�
2 R. Then

�
0
c

b
0

�
2 R. By multiplication,�

0
0

b
0

�
;
�

0
c

0
0

�
2R, which implies RDMat.2;C/ since b ¤ 0 and c ¤ 0.

(II) Suppose v ¤ 0. In this case we should have c ¤ 0, otherwise Trace.ŒA;B�/ D 2, which is a
contradiction.

If uD˙1, then A=
�

u
0
v
u

�
2R. Remember we also have

�
1
0

0
1

�
2R, which implies

�
0
0
v
0

�
2R. Furthermore,�

0
0

1
0

�
2 R because v ¤ 0. Since

�
1
0

0
1

�
;
�

0
0

1
0

�
;
�

a
c

b
d

�
2 R, we have

�
a
c

0
d

�
2 R, and also

�
a�d

c
0
0

�
2 R.

By multiplication,
�

0
0

1
0

��
a�d

c
0
0

�
D
�

c
0

0
0

�
2 R, which implies

�
1
0

0
0

�
2 R because c ¤ 0. We have�

1
0

0
1

�
;
�

0
0

1
0

�
;
�

1
0

0
0

�
2R, so

�
0
0

0
1

�
;
�

0
0

1
0

�
;
�

1
0

0
0

�
2R. Remember we also have

�
a
c

b
d

�
2R and c ¤ 0, which

implies RDMat.2;C/.

If u ¤ ˙1, then
�

u�u�1

0
v
0

�
;
�

0
0

v
u�1�u

�
2 R, so

�
1
0

k
0

�
;
�

0
0
�k
1

�
2 R where k D v=.u� u�1/. Then from

multiplication, we get �
1 k

0 0

��
a b

c d

�
D

�
aC kc bC kd

0 0

�
2R:

Next we want to show bCkd ¤ k.aCkc/. Suppose the contrary. Then bCkd D k.aCkc/D kaCk2c.
With k D v=.u�u�1/, we can get

bC
dv

u�u�1
D

av

u�u�1
C

cv2

.u�u�1/2
D) 2b D bu2

C bu�2
C dvu� dvu�1

� avuC avu�1
� cv2:
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Then we get

Trace.ŒA;B�/D ad C acuvC cdvu�1
C c2v2

� cbu2
� cduv� cbu�2

� cau�1vC ad

D 2ad � c.�auv� dvu�1
� cv2

C bu2
C duvC bu�2

C au�1v/D 2ad � 2cb D 2:

Since Trace.ŒA;B�/D 2 is a contradiction, we have bC kd ¤ k.aC kc/. We then get
�

1
0

0
0

�
;
�

0
0

1
0

�
2R

because
�

aCkc
0

bCkd
0

�
;
�

1
0

k
0

�
2R. We also have

�
1
0

0
1

�
;
�

a
c

b
d

�
2R, so

�
1
0

0
0

�
;
�

0
0

1
0

�
;
�

0
0

0
1

�
;
�

a
c

b
d

�
2R. Thus,

RDMat.2;C/ because c ¤ 0.

Proposition 5.3 Let 
 W �1.S/! SL.2;C/ be a representative of an element in the character variety
XSL.2;C/.S/. Then 
 is irreducible if Im 
 contains a subgroup of SL.2;C/ freely generated by two
elements. In particular , 
 is irreducible if S has negative Euler characteristic and 
 is injective.

Proof This is a direct consequence of Lemma 5.2.

5.2 Statement of the conjecture

To get the intertwiner, we first have to get a '-invariant smooth character 
 2 XSL.2;C/.S/. In [13,
page 371] it is proved that every periodic diffeomorphism fixes a point in the Teichmüller space. This
means there is a discrete and faithful group homomorphism N
 W �1.S/! PSL.2;R/ such that N
'� is
conjugate to N
 by an element in PSL.2;R/, where '� is the isomorphism from �1.S/ to �1.S/ induced
by '.

Since PSL.2;R/ � PSL.2;C/, we can regard N
'� and N
 as two elements in XPSL.2;C/.S/. Then N
'�
is conjugate to N
 by an element in PSL.2;C/. Thus N
 can be extended to a group homomorphism
from �1.M'/ to PSL.2;C/; we use O
 to denote this homomorphism. Then we can lift O
 to a group
homomorphism Q
 from �1.M'/ to SL.2;C/. The restriction of Q
 to �1.S/ is '-invariant, and we use 

to denote this group homomorphism. Note that 
 is a group homomorphism from �1.S/ to SL.2;C/.
Let " be the projection from SL.2;C/ be PSL.2;C/; then we have " Q
 D O
 . Furthermore,

"
 D " Q
 j�1.S/ D O
 j�1.S/ D N
 :

Since N
 is injective, 
 is injective. From Proposition 5.3, we know 
 is irreducible. Thus we get a
'-invariant smooth character 
 2 XSL.2;C/.S/. From now on, we use 
' to denote 
 and N
' to denote N
 .

For every puncture v in S , we know Trace 
'.˛v/D˙2 where ˛v is the loop going around puncture v.
If Trace 
'.˛v/D 2, we choose pv D�.qC q�1/. Then

Tn.pv/D .�q/nC .�q�1/n D�1� 1D�Trace 
'.˛v/:

If Trace 
'.˛v/D�2, we choose pv D 1C 1. Then

Tn.pv/D 1n
C 1n

D 1C 1D�Trace 
'.˛v/:

Since Trace 
'.˛v/ D Trace 
'.'.˛v// D Trace 
'.˛'.v//, we have pv D p'.v/. So now we have
everything we want. Then we obtain the Kauffman bracket intertwiner ƒq

';
'
associated to these data. We

require jdet.ƒq
';
'

/j D 1. With the fixed S , ', 
' and fpvgv, we have jTraceƒq
';r j is only related to q.
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Conjecture 5.4 Suppose S is an oriented surface with negative Euler characteristic , and ' is a periodic
diffeomorphism for S . Let 
' be the '-invariant smooth character defined as in the second paragraph of
this subsection. For each puncture v, let pv be the complex number defined as in the third paragraph of
this subsection. Let qn D e2� i=n with .qn/

1=2 D e�i=n. Then

lim
odd n!1

1

n
logjTraceƒqn

';r j D 0:

5.3 Proofs for the conjecture for some special cases

In the remaining part of this paper, we will present some results related to our conjecture. Especially, we
will give a proof for our conjecture when the surface S is the once punctured torus.

In the following theorem, we use the periodic property of the diffeomorphisms to prove that the limit in
Conjecture 5.4 is less than or equal to zero if it exists.

Theorem 5.5 If limodd n!1
1
n

logjTraceƒqn
';r'
j exists , the limit is less than or equal to zero.

Proof Let � W SK
q

1=2
n
.S/! End.V / be an irreducible representation of the skein algebra associated to


' and weight system fpvgv. From the definition of intertwiners ƒqn
';r'

, we know

�'].X /Dƒ
qn
';r'
ı �.X / ı .ƒqn

';r'
/�1

for all X 2 SK
q

1=2
n
.S/. We have

�.'2/].X /D �'].'].X //Dƒ
qn
';r'
ı �'].X / ı .ƒ

qn
';r'

/�1
D .ƒqn

';r'
/2 ı �'].X / ı .ƒ

qn
';r'

/�2:

Then it is easy to show that, with any integer j , we have

�.'j /].X /D .ƒ
qn
';r'

/j ı �'].X / ı .ƒ
qn
';r'

/�j :

Since ' is periodic, there exists a positive integer k such that 'k D IdS . Then we have

�.X /D �.'k/].X /D .ƒ
qn
';r'

/k ı �.X / ı .ƒqn
';r'

/�k

for all X 2 SKq1=2.S/. We must have .ƒqn
';r'

/k D �I because � is irreducible, where I is the identity
matrix and � is a nonzero complex number. But we require jdet.ƒqn

';r'
/j D 1; thus j�j D 1. Actually we

can always choose a good ƒqn
';r'

such that .ƒqn
';r'

/k D I . Since xk � 1 has no multiple roots, ƒqn
';r'

is
always diagonalizable. All its eigenvalues are k th roots of unity. Then

Traceƒqn
';r'
D

X
0�i�n�1

�i ;

where �k
i D 1 for all 0� i � n� 1.

We have jTraceƒqn
';r'
j � n. So if the limit exists, the limit is less than or equal to zero.
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From the proof of Theorem 5.5, we know jTraceƒqn
';r'
j is simply the absolute value of the sum of roots

of unity. We are only concerned with how small jTraceƒqn
';r'
j can be because of Theorem 5.5. Actually

this problem was already asked by Myerson [24] and Tao [27]. For any two positive integers k and n,
let f .n; k/ be the least absolute value of a nonzero sum of n (not necessarily distinct) k th roots of unity.
Myerson gave the lower bound for all positive integers k and n:

(14) f .n; k/� n�k :

According to [20], we know Traceƒqn
';r ¤ 0 if the order of ' is 2m for some positive integer m.

Theorem 5.6 If ' is of order 2m where m is any positive integer , then for any surface with negative
Euler characteristic ,

lim
odd n!1

1

n
logjTraceƒqn

';r'
j D 0:

Proof Since for any odd n, we have Traceƒqn
';r ¤ 0. Then

n�k
� f .n; k/� jTraceƒqn

';r j;

where k D 2m. So we get

1

n
log n�k

�
1

n
logjTraceƒqn

';r'
j �

1

n
log n:

Then limodd n!1
1
n

logjTraceƒqn
';r'
j D 0.

Proposition 5.7 If ' is of order pm where p is any positive prime number and m is any positive integer ,
then for any surface with negative Euler characteristic ,

lim sup
odd n!1

1

n
logjTraceƒqn

';r'
j D 0:

Proof The proof is similar to that of Theorem 5.6.

For the following discussion, we will use some notation and terminology in [7]. Suppose the surface
S has at least one puncture, that is, it has ideal triangulations. Let � be an ideal triangulation of S ,
and let ' be any periodic map of S . Suppose � D � .0/; � .1/; : : : ; � .k/ D '.�/ is an ideal triangulation
sweep. Since ' fixes a point in the Teichmüller space, there exists a periodic edge weight system
aD a.0/; a.1/; : : : ; a.k/ D a 2 .R>0/

e where a is the shear parameter corresponding to this fixed point in
the Teichmüller space. Then Œ N
' � 2XPSL.2;C/.S/ is the character associated to the weight system a. From
the above discussion, we know Œ N
' � can be lift to a smooth '-invariant character Œ
' � in XSL.2;C/.S/.

We also have ai1
ai2
� � � aij D 1, where ei1

; ei2
; : : : ; eij are all the edges connecting to a common vertex,

because a corresponds to a complete hyperbolic structure. If Trace 
'.˛v/D 2, set hv D q2. Then hn
v D 1

and p2
v D hv C h�1

v C 2. If Trace 
'.˛v/ D �2, set hv D 1. Then hn
v D 1 and p2

v D hv C h�1
v C 2.

Obviously hv D h'.v/ for any puncture v. Proposition 15 of [7] implies that we can obtain an intertwiner
ƒ

q
'; Nr'

with jdet.ƒq
'; Nr'

/j D 1. According to [7, Theorem 16], we have jTraceƒq
'; Nr'
j D jTraceƒq

';r'
j.
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Figure 4

For the once punctured torus S1;1, we only have one puncture v. Let ˛ DK2 and ˇ DK1 denote two
elements in �1.S1;1/; see Figure 3. It is well known that ˛ and ˇ freely generate �1.S1;1/. Let ˛v be
the loop around v. Then ˛v D ˇ˛ˇ�1˛�1. From Lemma 5.1, we have

Trace 
'.˛v/D Trace 
'.ˇ˛ˇ�1˛�1/D Trace 
'.ˇ/
'.˛/
'.ˇ/�1
'.˛/
�1
¤ 2

because 
' is injective. Thus we must have Trace 
'.˛v/D�2, which means hv D 1.

Lemma 5.8 Let the surface be S1;1. Then Conjecture 5.4 holds if ' is
�

0
�1

1
�1

�
or
�

1
�1

1
0

�
.

Proof We only prove the case when ' D
�

0
�1

1
�1

�
(the proof for the other one is similar). Let � be the

ideal triangulation in Figure 2. Then '.�/ is the ideal triangulation in Figure 4.

Thus from � to '.�/ is relabeling. Suppose the shear parameter for � is a� D .a1; a2; a3/; then the shear
parameter for '.�/ is a'.�/ D .a3; a1; a2/. From a� D a'.�/, we get a1 D a2 D a3. Since we also have
a2

1
a2

2
a2

3
D 1 and ai 2R>0, we have a1 D a2 D a3 D 1.

Recall that the Chekhov–Fock algebra associated to the ideal triangulation � is Cq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
�,

where Yi corresponds to edge ei for i D 1; 2; 3. The algebra Cq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
� is generated by Y1,

Y2 and Y3, and subject to the relations

Y1Y2 D q4Y2Y1; Y2Y3 D q4Y3Y2; Y3Y1 D q4Y1Y3; YiY
�1
i D Y �1

i Yi D 1:

Define the irreducible representation � of Cq4 ŒY ˙1
1
;Y ˙1

2
;Y ˙1

3
� as �1;1;1 in Lemma 3.9, that is, set

y1 D y2 D y3 D 1 in (5). Then

�.Y n
1 /D IdV D a1IdV ; �.Y n

2 /D IdV D a2IdV ; �.Y n
3 /D IdV D a3IdV

and
�.Hv/D �.ŒY

2
1 Y 2

2 Y 2
3 �/D IdV D hvIdV :

It is easy to calculate that ˆqn

�'.�/
‰

qn

'.�/�
is actually an isomorphism from Cq4 ŒY ˙1

1
;Y ˙1

2
;Y ˙1

3
� to itself

and
ˆ

qn

�'.�/
‰

qn

'.�/�
.Y1/D Y3; ˆ

qn

�'.�/
‰

qn

'.�/�
.Y2/D Y1; ˆ

qn

�'.�/
‰

qn

'.�/�
.Y3/D Y2:

We use �0 to denote the irreducible representation �ˆqn

�'.�/
‰'.�/� . Then � is isomorphic to �0.
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For each 0� k � n� 1, set
vk D

X
0�i�n�1

qk2Ci2C4ikCi�k
n wi :

Then we have

�0.Y1/.vk/D q4k
n vk ; �0.Y2/.vk/D q�2k

n vkC1; �0.Y3/.vk/D q�2k
n vk�1:

Define invertible operatorƒ for V such thatƒ.wk/D vk for all 0� k � n�1. Then, for all 0� k � n�1,
we have

�0.Y1/.ƒ.wk//D �
0.Y1/.vk/D q4k

n vk Dƒ.q
4k
n wk/Dƒ.�.Y1/wk/:

Thus we get �0.Y1/Dƒı�.Y1/ıƒ
�1. Similarly, �0.Y2/Dƒı�.Y2/ıƒ

�1 and �0.Y3/Dƒı�.Y3/ıƒ
�1.

Thus ƒ is the intertwiner. As a matrix, we have ƒi;k D qk2Ci2C4ikCi�k
n .

From direct calculation, we get jdet.ƒ/j D nn=2. Thus we can set ƒqn

'; Nr'
D n�1=2ƒ. Then

jTraceƒqn
';r'
j D jTraceƒqn

'; Nr'
j D n�1=2

X
0�i�n�1

q6i2

n D n�1=2
p
.6; n/nD

p
.6; n/:

Obviously we get
lim

odd n!1

1

n
logjTraceƒqn

';r'
j D 0:

Remark 5.9 In the proof of Lemma 5.8, when we try to find the periodic edge weight system for the
triangulation sweep �; '.�/, we require ai 2R>0 because we want to get the fixed character corresponding
to a point in the Teichmüller space. Actually we still get the same intertwiner ƒ as in Lemma 5.8 without
requiring ai 2R>0, that is, for any periodic edge weight system, the intertwiner we get is ƒ. This means
Lemma 5.8 still holds when we choose any other '-invariant smooth character (without the restriction for
only choosing the one corresponding to a fixed point in the Teichmüller space). Readers can check the
same arguments hold for Theorems 5.6 and 5.13.

Let � be a pseudo-Anosov map for S , and let f be any diffeomorphism for surface S . Then f �f �1 is
also a pseudo-Anosov map. Then we have the following conclusion:

Lemma 5.10 Let � be any pseudo-Anosov map for S , and let f be any diffeomorphism for S . If
Conjecture 2.3 holds for �, then it also holds for f �f �1.

Proof We will use the same notation as in Conjecture 2.3. Let f �1
� be the isomorphism from �1.S/ to

itself induced by f �1. Then Œ
f �1
� � is a smooth f �f �1-invariant character. Set � 0v D �f �1.v/; then � 0v

are invariant under the action of f �f �1 and

Trace 
f �1
� .˛v/D Trace 
 . f̨ �1.v//D�e

�
f�1.v/ � e

��
f�1.v/ D�e�

0
v � e��

0
v :

Set p0v D e�
0
v=nC e��

0
v=n D e

�
f�1.v/

=n
C e
��

f�1.v/
=n
D pf �1.v/; then

Tn.p
0
v/D�Trace 
f �1

� .˛v/:
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Recall that we use f �1
]

to denote the isomorphism from SKq1=2.S/ to itself induced by f �1. Let � be
the irreducible representation associated to Œ
 � and puncture weights pv. Then �f �1

]
is an irreducible

representation associated to the character Œ
f �1
� � and puncture weights p0v.

With the assumption for Conjecture 2.3, we have

��].X /Dƒ
qn

�;r
ı �.X / ı .ƒ

qn

�;r
/�1

for any element X 2 SKq1=2.S/ and jdet.ƒqn

�;r
/j D 1. Then we get

�f �1
] .f �f �1/].X /D �f

�1
] f]�]f

�1
] .X /D ��]f

�1
] .X /Dƒ

qn

�;r
ı �.f �1

] .X // ı .ƒ
qn

�;r
/�1:

Thus we get ƒqn

f�f �1;rf �1
�

Dƒ
qn

�;r
, and

lim
odd n!1

1

n
logjTraceƒqn

f�f �1;rf �1
�

j D lim
odd n!1

1

n
logjTraceƒqn

�;r
j

D
1

4�
volhyp.M�/D

1

4�
volhyp.Mf�f �1/:

From [8], we know Conjecture 2.3 holds for � D
�

2
1

1
1

�
.

Corollary 5.11 Conjecture 2.3 holds for all f �f �1 where f is any element in GL.2;Z/.

Let ' be a periodic map for S , and let g be any diffeomorphism for S . Then g'g�1 is also a periodic
map. The same discussion as in Lemma 5.10 implies the following conclusion.

Lemma 5.12 Let ' be any periodic map for S , and let g be any diffeomorphism for S . If Conjecture 5.4
holds for ', then it also holds for g'g�1.

The following theorem shows Conjecture 5.4 holds for the once punctured torus. This confirms the
relation between the intertwiner and the simplicial volume of the corresponding mapping torus.

Theorem 5.13 Conjecture 5.4 holds for the once punctured torus.

Proof Let ' be any periodic map for S1;1. Then the order of ' could be 1, 2, 3, 4 or 6. According to
Theorem 5.6, Conjecture 5.4 holds if the order of ' is 2 or 4.

If the order of ' is 1, then ' is just the identity map. In this case, we can just choose the intertwiner to be
the identity operator. Then Conjecture 5.4 holds trivially.

We look at the case when the order of ' is 3 or 6. For these two cases, we have jTrace'j D 1. According
to [17], we know there exists an element g 2 GL.2;Z/ such that ' D g

�
0
�1

1
�1

�
g�1 or ' D g

�
1
�1

1
0

�
g�1.

By Lemmas 5.8 and 5.12, Conjecture 5.4 holds for these two cases.
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Remark 5.14 From the proof of Theorem 5.6, we know if we can show Traceƒqn
';r ¤ 0 after n is big

enough, then we can prove
lim

odd n!1

1

n
logjTraceƒqn

';r'
j D 0:

Remark 5.15 From Section 2.4, we know the periodic edge weight system aD a.0/; a.1/; : : : ; a.k/ D a

for the ideal triangulation sweep � D � .0/; � .1/; : : : ; � .k/D '.�/ and '-invariant puncture weights hv can
give us the intertwiner ƒq

'; N
 such that

N� ıˆ
q

�'.�/
ı‰

q

'.�/�
.X /Dƒ

q
'; N
 ı N�.X / ı .ƒ

q
'; N
 /
�1

for every X 2 T
q
� .

It is easy to verify that .ˆq

�'.�/
ı‰

q

'.�/�
/m D .ˆ

q

�'m.�/
ı‰

q

'm.�/�
/, and

aD a.0/; a.1/; : : : ; a.k/; : : : ; a.0/; a.1/; : : : ; a.k/ D a

is the periodic edge weight system for the ideal triangulation sweep

� D � .0/; � .1/; : : : ; � .k/ D '.�/; '.� .1//; : : : ; '.� .k//D '2.�/; : : :

: : : ; 'm�1.�/D 'm�1.� .0//; 'm�1.� .1//; : : : ; 'm�1.� .k//D 'm.�/

and h'm.v/ D hv.

Suppose ' is periodic with order m, then

.ƒ
q
'; N
 /

m
ı N�.X / ı .ƒ

q
'; N
 /
�m
D N� ıˆ

q

�'m.�/
ı‰

q

'm.�/�
.X /D N�.X /

for every X 2 T
q
� . Then .ƒq

'; N
 /
m is a scalar matrix since N� is irreducible. Actually we can choose good

ƒ
q
'; N
 such that .ƒq

'; N
 /
m is the identity matrix. We have all the eigenvalues of ƒq

'; N
 are mth roots of unity,
and jTraceƒq

'; N
 j D 0 or jTraceƒq
'; N
 j � n�m.

From [7, Lemma 11], we know the complex dimension of the space of all periodic edge weight systems for
the fixed ideal triangulation is more than or equal to 1. Thus this space is connected. In a local open subset
of this space, we can choose '-invariant puncture weights such that these puncture weights smoothly vary
according to periodic edge weight systems. Then jTraceƒq

'; N
 j smoothly varies according to periodic edge
weight systems in a local open subset by using the similar argument in [6, Complement 10]. Since this
space is connected and 0 is an isolated point in the image, we have jTraceƒq

'; N
 j D 0 for all periodic edge
weight systems with the chosen puncture weights, or jTraceƒq

'; N
 j � n�m for all periodic edge weight
systems with the chosen puncture weights.

If we can find one periodic edge weight system with the chosen puncture weights such that

lim
odd n!1

1

n
logjTraceƒqn

'; N
 j D 0;

we can conclude that the above equation is true for every periodic edge weight system with the chosen
puncture weights.

Algebraic & Geometric Topology, Volume 25 (2025)



2176 Zhihao Wang

References
[1] F Bonahon, X Liu, Representations of the quantum Teichmüller space and invariants of surface diffeomor-

phisms, Geom. Topol. 11 (2007) 889–937 MR Zbl

[2] F Bonahon, H Wong, Quantum traces for representations of surface groups in SL2.C/, Geom. Topol. 15
(2011) 1569–1615 MR Zbl

[3] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, I: Invariants and miraculous
cancellations, Invent. Math. 204 (2016) 195–243 MR Zbl

[4] F Bonahon, H Wong, The Witten–Reshetikhin–Turaev representation of the Kauffman bracket skein algebra,
Proc. Amer. Math. Soc. 144 (2016) 2711–2724 MR Zbl

[5] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, II: Punctured surfaces,
Algebr. Geom. Topol. 17 (2017) 3399–3434 MR Zbl

[6] F Bonahon, H Wong, Representations of the Kauffman bracket skein algebra, III: Closed surfaces and
naturality, Quantum Topol. 10 (2019) 325–398 MR Zbl

[7] F Bonahon, H Wong, T Yang, Asymptotics of quantum invariants of surface diffeomorphisms, I: Conjecture
and algebraic computations, preprint (2021) arXiv 2112.12852

[8] F Bonahon, H Wong, T Yang, Asymptotics of quantum invariants of surface diffeomorphisms, II: The
figure-eight knot complement, preprint (2022) arXiv 2203.05730

[9] D Bullock, Rings of SL2.C/-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72
(1997) 521–542 MR Zbl

[10] D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, Proc.
Amer. Math. Soc. 128 (2000) 923–931 MR Zbl

[11] M Conder, Discrete and free subgroups of SL2, PhD thesis, University of Cambridge (2020) Available at
https://doi.org/10.17863/CAM.60353

[12] M Culler, P B Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117
(1983) 109–146 MR Zbl

[13] B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Ser. 49, Princeton Univ. Press
(2012) MR Zbl

[14] C Frohman, R Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000)
4877–4888 MR Zbl

[15] C Frohman, J Kania-Bartoszynska, T Lê, Unicity for representations of the Kauffman bracket skein
algebra, Invent. Math. 215 (2019) 609–650 MR Zbl

[16] I Ganev, D Jordan, P Safronov, The quantum Frobenius for character varieties and multiplicative quiver
varieties, J. Eur. Math. Soc. (online publication February 2024)

[17] O N Karpenkov, Continued fractions and SL.2;Z/ conjugacy classes: elements of Gauss reduction theory,
from “Geometry of continued fractions”, Algor. Computat. Math. 26, Springer (2013) 67–85 Zbl

[18] H Karuo, J Korinman, Azumaya loci of skein algebras, preprint (2022) arXiv 2211.13700

[19] R M Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997)
269–275 MR Zbl

[20] T Y Lam, K H Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000) 91–109 MR Zbl

Algebraic & Geometric Topology, Volume 25 (2025)

https://doi.org/10.2140/gt.2007.11.889
https://doi.org/10.2140/gt.2007.11.889
http://msp.org/idx/mr/2326938
http://msp.org/idx/zbl/1134.57008
https://doi.org/10.2140/gt.2011.15.1569
http://msp.org/idx/mr/2851072
http://msp.org/idx/zbl/1227.57003
https://doi.org/10.1007/s00222-015-0611-y
https://doi.org/10.1007/s00222-015-0611-y
http://msp.org/idx/mr/3480556
http://msp.org/idx/zbl/1383.57015
https://doi.org/10.1090/proc/12927
http://msp.org/idx/mr/3477089
http://msp.org/idx/zbl/1336.57043
https://doi.org/10.2140/agt.2017.17.3399
http://msp.org/idx/mr/3709650
http://msp.org/idx/zbl/1422.57032
https://doi.org/10.4171/QT/125
https://doi.org/10.4171/QT/125
http://msp.org/idx/mr/3950651
http://msp.org/idx/zbl/1447.57017
http://msp.org/idx/arx/2112.12852
http://msp.org/idx/arx/2203.05730
https://doi.org/10.1007/s000140050032
http://msp.org/idx/mr/1600138
http://msp.org/idx/zbl/0907.57010
https://doi.org/10.1090/S0002-9939-99-05043-1
http://msp.org/idx/mr/1625701
http://msp.org/idx/zbl/0971.57021
https://doi.org/10.17863/CAM.60353
https://doi.org/10.17863/CAM.60353
https://doi.org/10.2307/2006973
http://msp.org/idx/mr/683804
http://msp.org/idx/zbl/0529.57005
https://www.jstor.org/stable/j.ctt7rkjw
http://msp.org/idx/mr/2850125
http://msp.org/idx/zbl/1245.57002
https://doi.org/10.1090/S0002-9947-00-02512-5
http://msp.org/idx/mr/1675190
http://msp.org/idx/zbl/0951.57007
https://doi.org/10.1007/s00222-018-0833-x
https://doi.org/10.1007/s00222-018-0833-x
http://msp.org/idx/mr/3910071
http://msp.org/idx/zbl/1491.57014
https://doi.org/10.4171/JEMS/1427
https://doi.org/10.4171/JEMS/1427
https://doi.org/10.1007/978-3-642-39368-6_7
http://msp.org/idx/zbl/1273.11111
http://msp.org/idx/arx/2211.13700
https://doi.org/10.1023/A:1007364912784
http://msp.org/idx/mr/1434238
http://msp.org/idx/zbl/0876.57007
https://doi.org/10.1006/jabr.1999.8089
http://msp.org/idx/mr/1736695
http://msp.org/idx/zbl/1099.11510


Kauffman bracket intertwiners and the volume conjecture 2177

[21] X Liu, The quantum Teichmüller space as a noncommutative algebraic object, J. Knot Theory Ramifications
18 (2009) 705–726 MR Zbl

[22] H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta
Math. 186 (2001) 85–104 MR Zbl

[23] H Murakami, T Ohtsuki, M Okada, Invariants of three-manifolds derived from linking matrices of framed
links, Osaka J. Math. 29 (1992) 545–572 MR Zbl

[24] G Myerson, How small can a sum of roots of unity be?, Amer. Math. Monthly 93 (1986) 457–459 MR Zbl

[25] J H Przytycki, A S Sikora, On skein algebras and Sl2.C/-character varieties, Topology 39 (2000) 115–148
MR Zbl

[26] N Takenov, Representations of the Kauffman skein algebra of small surfaces, preprint (2015) arXiv
1504.04573

[27] T Tao, How small can a sum of a few roots of unity be?, MathOverflow question (2010) Available at
https://mathoverflow.net/q/46068

Bernoulli Institute, University of Groningen
Groningen, Netherlands

zhihao003@e.ntu.edu.sg

Received: 9 February 2023 Revised: 15 February 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1142/S0218216509007129
http://msp.org/idx/mr/2527682
http://msp.org/idx/zbl/1204.57033
https://doi.org/10.1007/BF02392716
http://msp.org/idx/mr/1828373
http://msp.org/idx/zbl/0983.57009
http://projecteuclid.org/euclid.ojm/1200783947
http://projecteuclid.org/euclid.ojm/1200783947
http://msp.org/idx/mr/1181121
http://msp.org/idx/zbl/0776.57009
https://doi.org/10.2307/2323469
http://msp.org/idx/mr/1540889
http://msp.org/idx/zbl/0602.10026
https://doi.org/10.1016/S0040-9383(98)00062-7
http://msp.org/idx/mr/1710996
http://msp.org/idx/zbl/0958.57011
http://msp.org/idx/arx/1504.04573
http://msp.org/idx/arx/1504.04573
https://mathoverflow.net/q/46068
https://mathoverflow.net/q/46068
mailto:zhihao003@e.ntu.edu.sg
http://msp.org
http://msp.org




ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Octav Cornea Université’ de Montreal
cornea@dms.umontreal.ca

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Kristen Hendricks Rutgers University
kristen.hendricks@rutgers.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US $760/year for the electronic version, and $1110/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:cornea@dms.umontreal.ca
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:mhedden@math.msu.edu
mailto:kristen.hendricks@rutgers.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 4 (pages 1917–2526) 2025

1917The zero stability for the one-row colored sl3-Jones polynomial

WATARU YUASA

1945Quillen homology of spectral Lie algebras with application to mod p homology of labeled configuration spaces

ADELA YIYU ZHANG

1999Coarse Alexander duality for pairs and applications

G CHRISTOPHER HRUSKA, EMILY STARK and HÙNG CÔNG TRẦN
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