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Finite groups of untwisted outer automorphisms of RAAGs

COREY BREGMAN
RUTH CHARNEY
KAREN VOGTMANN

For any right-angled Artin group Ar, Charney, Stambaugh and Vogtmann showed that the subgroup
U°(Ar) <Out(Ar) generated by Whitehead automorphisms and inversions acts properly and cocompactly
on a contractible space K. We show that any finite subgroup of U%(Ar) fixes a point of Kr. This
generalizes the fact that any finite subgroup of Out(F},) fixes a point of outer space, and implies that there
are only finitely many conjugacy classes of finite subgroups in U%(Ar).

20F28, 20F36, 20F65

1 Introduction

A right-angled Artin group (RAAG) is a finitely generated group whose only defining relations are that
some of the generators commute. This can be encoded by forming a finite simplicial graph I" with one
vertex for each generator and an edge between each pair of commuting generators; the associated RAAG
is then called Ar. The extreme examples are the free group Fj, (if I' has no edges) and the free abelian
group Z" (if T is a complete graph). We are interested in studying finite subgroups of the group Out(Ar)
of outer automorphisms of Ar.

For Ar = Z", it follows from the classical Jordan—Zassenhaus theorem that there are only finitely many
conjugacy classes of finite subgroups in Out(Ar) = GL(n,Z) (see eg Curtis and Reiner [6]). Since
GL(n, Z) acts on the symmetric space GL(n, R)/O(n) preserving a CAT(0) metric, any finite subgroup
fixes a point. Since GL(n, R)/O(n) can be identified with the space of marked lattices A C R”, where a
marking is a choice of basis B, which gives an isomorphism A = Z", it follows that any finite subgroup
G < GL(n, Z) acts by isometries on a lattice A. Equivalently, any finite subgroup G < GL(n, Z) can be
embedded in the isometry group of a flat torus 7, so that the induced action on 71 agrees with G.

For Ar = Fj, there is a realization theorem that says any finite subgroup G of Out(F},) can be realized
as automorphisms of a finite graph X; see Culler [5], Khramtsov [10] and Zimmermann [15]. This means
one can mark the graph by an isomorphism 71 (X) 2 F}, so that automorphisms of X induce the elements
of G on ;. Furthermore, one may assume that all vertices of X have valence at least three. Since there
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are only finitely many such graphs, this implies that there are only finitely many conjugacy classes of finite
subgroups of Out(Fy). Thus one can study finite subgroups of Out(F}) by studying symmetries of such
graphs (see eg Levitt and Nicolas [12] and Smillie and Vogtmann [14]). An equivalent way to state the
realization theorem is that the action of the finite group G < Out(F}) on outer space CV,, has a fixed point.

In previous work we constructed an outer space Or for an arbitrary RAAG Ar that combines features
of both CV,, and symmetric spaces [1]. The group Out(Ar) acts on Op with finite stabilizers, and it is
proved in [1] that O is contractible. The group Out(Ar) contains a natural untwisted subgroup U°(Ar),
which is the whole group in some cases, including when Ar = Fj,. The results in [1] build on the fact that
Or contains a subspace K on which the subgroup U%(Ar) acts with compact quotient. The space K1
was first defined by Charney, Stambaugh and Vogtmann [4], who proved it to be contractible. Points
in Kr are special types of cube complexes called I'-complexes, with special types of markings called
untwisted markings. We prove the following theorem.

Theorem 8.1 Let I be a simplicial graph, G a finite group and p: G — U°(Ar) a homomorphism.
Then there is a I'-complex X with an untwisted marking h: X — St on which p is realized by isometries.

The following corollary is immediate.
Corollary 8.2 Any finite subgroup of U®(Ar) has a fixed point in K (and therefore in Or).

We conjecture that the entire fixed-point set is contractible, ie that KT is an EG for G = U°(Ar).
Corollary 8.2 is a necessary first step towards this goal.

It is easy to see that there are only a finite number of combinatorial types of I'-complexes, generalizing
the fact that there are only a finite number of combinatorial types of graphs in CV,,. This gives us the
following information about finite subgroups of U°%(Ar).

Corollary 8.3 The group U°(Ar) contains only finitely many conjugacy classes of finite subgroups.

Extending these theorems to all of Out(Ar) presents subtle difficulties that we do not address in this
paper. Among these is the problem of including outer automorphisms of Ar that are induced by graph
automorphisms of I". More serious is the fact that the full group Out(Ar) may contain finite subgroups
of GL(n, Z) which do not preserve any I'-complex structure, so that understanding these will require
additional techniques involving the action of GL(n, Z) on the symmetric space GL(n,R)/O(n).

To prove Theorem 8.1, we use an inductive approach which starts from the realization theorem for Out(f7,).
This was inspired by work of Hensel and Kielak [8], who proved that a finite subgroup G of U°(Ar)
can be realized on some cube complex, but it is not clear whether this can be taken to be a I'-complex.
We borrow a number of ideas from [8], but our proof is shorter. In particular, much of our proof is
independent of the specific group G being considered, depending rather on the combinatorial structure of
the defining graph T'.
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Structure of the paper and outline of the proof

In Sections 2 and 3, we review the group U®(Ar) and the definition and basic properties of I'-complexes.

The strategy of the proof is to build a marked I"-complex realizing a finite G < U°(Ar) by gluing together
marked A-complexes for certain subgraphs A C I'. The subgraphs we use are those whose associated
special subgroup A is invariant (up to conjugacy) under U°(Ar), which we will call U°-invariant
subgraphs. The argument is inductive, and the induction parameter is the chain length of T, ie the
longest length of a chain of U °-invariant subgraphs contained in I'. In Section 4, we study U ®-invariant
subgraphs A, show there is a restriction homomorphism ra: U%(Ar) — U%(A4 ), and show that minimal
UP-invariant subgraphs are discrete, providing a base case for our induction.

In Section 5, we show that a marked I"-complex that realizes a finite subgroup G < U°(Ar) contains
a subcomplex associated to each U°-invariant subgraph A with empty link, and that the restriction of
the marking to this subcomplex realizes the restriction of G to U%(A ). In Section 6, we address the
opposite problem, establishing a necessary condition for extending a A-complex realizing the restriction
of G to a I'-complex realizing G.

In Section 7, we show how to build marked I'-complexes when I is a simplicial join or a disjoint union
of subgraphs A for which we already have marked A-complexes. We also show that, if I" is a join or
disjoint union, and one can realize the restriction of a finite subgroup G < U%(Ar) on each component,
then one can realize all of G.

Finally, in Section 8, we induct on the length of a maximal chain of U°(Ar)-invariant subgraphs to
construct a marked I'-complex that realizes G.
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2 Review of RAAGs and the untwisted subgroup of Out(Ay)

Let I' be a finite simplicial graph. The right-angled Artin group (RAAG) Ar is the group generated by
the vertices V' of I' with defining relations given by declaring that adjacent vertices commute.

By a subgraph of I we will always mean a full (induced) subgraph, unless otherwise specified. Given a
subgraph A C T', we write x € A if x is a vertex of A.

For x €T, the link 1k(x) is the subgraph spanned by vertices adjacent to x. The link of a subgraph A C I’
is the intersection of the links of all vertices of A. The double link dlk(x) is the link of A = 1k(x). The
star st(x) is the subgraph spanned by x and 1k(x).

Recall from [4] that a ["-Whitehead partition P based at x € I is a partition of V* =V UV~ into three
sets kT (x), P1 and P, satisfying certain conditions. The sets Py and P, are called the sides of . A
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I'-Whitehead partition can be most easily described using the double T'F of T, where the vertices of '+
are V* and two vertices are joined by an edge if they commute but are not inverses of each other. If %
is based at x, kT (xx) consists of all vertices adjacent to x in I'*, and each of P; and P» is a union of
(the vertices in) some connected components of r+ \lki (x). Furthermore, we require x and x~! to be
in different sides of %, and each side must contain at least one additional element. We will abbreviate
I'-Whitehead partition to simply I'-partition.

A vertex y € V is split by a I'-partition % if y is in one side and y~!

then y and y~! must lie in different components of T'* \ Ik* (x); hence, 1k(y) < 1k(x).

is in the other. If y is split by P,

A T-partition P based at x determines a Whitehead automorphism ¢(%, x), defined as follows. Let P;
be the side of P containing x. If @ splits y, then ¢(?, x) sends y — yx~1if y € P;, and y — xy if
y~l e P;. If both y and y~! are in P;, then (%, x)(y) = xyx~!. For all other y, (%, x)(y) = y. The

simplest Whitehead automorphisms are the folds sending y +— yx ™!

or y — xy for some x and y (and
fixing all generators other than y), and the partial conjugations sending y — xyx~! for all y in some
component C of I" \ Ik(x). These correspond to partitions P = (kT (x) | P1 | P,) with P; = {x, y} or
{x,y™ 1} (for a fold) or P; = {x, C*} (for a partial conjugation). Every Whitehead automorphism is a

product of folds and partial conjugations.

The subgroup of Out(Ar) generated by Whitehead automorphisms and by inversions of the generators is
denoted by U%(Ar). If Ap = Fy,, this is the whole group, ie U°(F;,) = Out(F,). If Ay = Z", there are
no Whitehead automorphisms, and Out(Z") = GL(n, Z) is generated by inversions and twists, where a
twist sends a generator y to xy for some y with st(y) C st(x) and fixes all other generators. By a theorem
of Laurence and Servatius [11; 13], for a general RAAG the group Out(Ar) is generated by Whitehead
automorphisms, inversions, twists and automorphisms of T'.

The subgroup generated by U°(Ar) and graph automorphisms was called the untwisted subgroup and
denoted by U(Ar) in [4; 1].

3 Blowups and I' -complexes

Let ® = (IkY(x) | P | P2) be a I"-partition based at x. If Ik(x) = 1k(y) and & splits y, then y can also
serve as a base for ?. Specifying a choice of base specifies the corresponding Whitehead automorphism,
but we will often use I"-partitions without specifying a base, in which case we write ? = (Ik(P) | P1 | P2).

We say I'-partitions %, 2 are adjacent if some (hence any) base of ¥ commutes with some (any) base
of 2, and they are compatible if either they are adjacent or some side of 2 is disjoint from some side
of ?. A collection IT of I'-partitions is a compatible collection if its elements are distinct and pairwise
compatible. In [4], the authors constructed a labeled cube complex SF called a blowup from a compatible
collection IT of I'-partitions. The underlying (unlabeled) cube complex is called a I'-complex. In this
section we review some facts about special cube complexes and I'-complexes that we will need.
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Figure 1: Hyperplane collapse X — X/ H.
3.1 Special cube complexes, collapsing and duplicating hyperplanes

Recall that a cube complex is called a special cube complex if it is locally CAT(0) and has no hyperplanes
that selfintersect or are one-sided, selfosculating or interosculating. We refer to the original article by
Haglund and Wise [7] for the basic definitions.

Let X be a special cube complex. If H is a hyperplane in X, the collapse map c: X — X JH collapses
the carrier x (H) of H orthogonally onto H. We say the result X /H is obtained from X by a hyperplane
collapse (see Figure 1).

The edges that intersect a hyperplane H are said to be dual to H, and by an orientation on H we mean a
consistent choice of orientation of the edges dual to H.

If & is a collection of hyperplanes, we write X /& for the space obtained by collapsing all hyperplanes
in ¥ (in any order). The collection & is acyclic if the collapse map X — X /& is a homotopy equivalence.

If H is a hyperplane in X with carrier k (H), we can obtain a new cube complex by doubling k (H) (see
Figure 2). We will refer to this as duplicating the hyperplane H. The resulting cube complex has two

Figure 2: Duplicating a hyperplane.
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new hyperplanes H’ and H”, and collapsing either recovers the original complex X. We say H’ and H"”
are parallel. A hyperplane is called a duplicate if it is parallel to another hyperplane.

3.2 Blowups

The blowup Sll:l associated to a compatible collection IT of I'-partitions is a special cube complex with
no separating hyperplanes and with some extra structure.

If T is discrete, then SII:I is a finite connected graph with no separating edges or bivalent vertices, and the
extra structure consists of a maximal tree 7" and an orientation and label on each edge in SF \ T, where
the labels are the vertices of I'. Each edge of T' corresponds to a partition in I1, determined by the labels
and orientations of the edges not in 7.

If IT is empty, then Sll:l is the Salvetti complex St associated to Ar. Recall that this is a cube complex
with a single O-cell, one oriented 1-cell for each vertex of I' and one k-torus for each k-clique in I'. The
orientations on the 1-cells, which are labeled by vertices of I, determine an isomorphism 771 (Sr) = Ar,
and the cubical isomorphisms of St can be identified with the automorphisms of the graph I'.

In general, SII:I has

¢ one hyperplane Hg for each partition % € II, and

¢ one hyperplane H, for each vertex v € I'.
The hyperplanes H, are oriented, but the hyperplanes Hg are not.

The set of hyperplanes labeled by partitions is acyclic, and the complex obtained by collapsing all
hyperplanes in this set is isomorphic to the Salvetti complex Sr.

Collapsing a single hyperplane labeled by & € II is equivalent to removing % from the collection IT.
In particular, collapsing every hyperplane in IT other than % results in a single blowup S”. This has
exactly two vertices x; and x», and one can recover P = (Ik(®) | P1 | P») from S? by looking at the
(oriented!) edges dual to the hyperplanes H,: if there is only one edge dual to H, and it terminates at x;,
then v € P;; if it originates at x;, then v~1 e P;. If there are two edges dual to Hy, then v € 1k(?%). The
carrier of Hyp in S? is isomorphic to the product of an interval with the Salvetti for 1k(%).

3.3 TI'-complexes

Definition 3.1 A cube complex is called a I'-complex if it is isomorphic to the underlying cube complex
of a blowup Srl:l. A blowup structure on a I'-complex X is a labeling of its hyperplanes that identifies X
with a blowup ST, ie hyperplanes are labeled by I'-partitions or by vertices of T, and the hyperplanes
labeled by vertices are oriented. A blowup structure determines a collapse map c : X — Sr that collapses
all hyperplanes labeled by partitions. If v € T, a characteristic cycle for v is a closed edge path which
crosses each hyperplane at most once, and whose image under ¢ is the loop labeled v.

Algebraic € Geometric Topology, Volume 25 (2025)



Finite groups of untwisted outer automorphisms of RAAGs 2419

In general, a I'-complex may have several different blowup structures. For example, if I" is discrete, a
I'-complex is a graph, which may have several different maximal trees, and the remaining edges may be
oriented and labeled with the vertices of I" in any way.

Definition 3.2 A set J of hyperplanes in a I'-complex is called freelike if collapsing J gives a cube
complex isomorphic to Sr.

The following proposition says that any treelike set of hyperplanes in a I'-complex is the set of hyperplanes
labeled by partitions in at least one blowup structure. The only ambiguity comes from the assignment
of labels and orientations to the hyperplanes not in the treelike set, which can be permuted by any
automorphism of the graph I'. If this assignment changes, the partitions labeling the hyperplanes in the
tree also change, by the same (signed) permutation of vertices.

Proposition 3.3 Let J be a treelike set of hyperplanes in a I'-complex X. Then there is a compatible
set of T'-partitions T1 and an isometry X >~ SII_ such that J is the set of hyperplanes associated to the
partitions in IT.

Proof We recall the construction. For complete details see [4, Section 4].

Label the edges dual to each hyperplane H € J by H. Choose an isomorphism of X /J with Sr; this
orients each hyperplane that is not in & and labels its dual edges by a vertex of I". The set of cubes in X
with all edge labels in I forms a CAT(0) subcomplex C that contains all vertices of X. A hyperplane
H € 7 cuts C into two pieces, so partitions the vertices of X into two sets, vy (H) and vo(H). Now
form a partition (Ik(H) | Uy | Us) of V* as follows:

(1) If the hyperplane H, labeled by v intersects H, then v and v~! are in Ik(H).
(2) If Hy N H = & and the terminal vertex of an edge dual to H, is in v; (H), then v € U;.
(3) If H, N H = @ and the initial vertex of an edge dual to H, is in v; (H), then v™1 € U;.

Then the partition (Ik(H) | U; | U3) is a I'-partition, the set of I'-partitions for all H € I is a compatible
collection II, and X is isomorphic to Srr,[. O

We note that condition (1) in the proof of Proposition 3.3 is equivalent to saying that, in the universal
cover Srr,[, some lift of H contains an axis for v. Saying that v and v~ ! are in different P; is equivalent
to saying that an axis for v in SII:I intersects some lift of H transversally; in this case we say the axis
skewers H. Saying v and v™! are in the same P; is equivalent to saying that no axis for v intersects any
lift of H.

If we are given a special cube complex X which we do not know a priori is a I'-complex, then, to prove
that it is, we first need to find an acyclic collection J of hyperplanes which collapses to give a cube
complex isomorphic to St. Choosing an isomorphism X /7 = St gives a labeling and orientation on
all of the remaining hyperplanes. We then need to check that each hyperplane H € J determines a
T"-partition. We can do this by collapsing all hyperplanes other than H to get a complex with two vertices,
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then checking whether the location of the initial and terminal vertices of edges labeled by v € T" gives a
valid I"-partition. By Proposition 3.3, the partitions for one treelike set I are all ['—partitions if and only
if this holds for every treelike set.

3.4 Subdividing blowups

In a blowup SX, no two hyperplanes are parallel, ie there are no duplicate hyperplanes. However, in
the arguments that follow we will need to allow cubical subdivisions of blowups that result in duplicate
hyperplanes. Duplicating Hg can be thought of as subdividing its carrier k(Hg), and is equivalent to
adding a duplicate copy of % to I1. We want both of the new hyperplanes we have created to be in the
treelike set since we must collapse both to recover St. Subdividing the carrier of H), is a little subtler;
here we want only one of the two new hyperplanes to be added to the treelike set, so that collapsing
the treelike set still gives St. In other words, when we duplicate H,, we want one of the two resulting
hyperplanes to be labeled H,, and the other to correspond to a partition. We also need the new H, to have
the orientation induced from the old H,. This is accomplished by adding a “singleton partition” to IT; this
is a partition based at v with one side containing only v (if we want the initial segment of the dual edge to
retain the v label) or v=! (if we want the terminal segment to retain the v label). To make this a canonical
operation, we can consistently use the singleton partition & ,—1 = (lkjE ) [{v™ 1 [(V \ Ik(v)E \ {v! }),
so that the terminal segment always retains the v label.

Note that duplicate partitions fit the definition of “compatible with each other”, and a singleton partition
is compatible with every I'-partition. A set of pairwise compatible partitions that is allowed to have
singletons and duplicates will be called a compatible multiset. By the above remarks, compatible multisets
correspond to subdivided blowups.

4 U'-invariant subgraphs

Recall that a marking on a I'-complex is a homotopy equivalence #: X — Sr. Let G be a finite group
and p: G — Out(Ar) a homomorphism.

Definition 4.1 A marked ['-complex (X, h) realizes p if there is an action f: G — Aut(X) of G on X
by cubical automorphisms such that 4o f(g) o h~! induces p(g) on 71 (Sr) = Ar for all g € G.

Our goal is to build a marked I"-complex that realizes (the inclusion of) a finite subgroup G < U°(Ar). Our
approach is inductive. Specifically, we will build our I'-complex by gluing together marked A-complexes
for subgraphs A which are U®-invariant, in the sense that elements of U%(Ar) preserve the special
subgroup A (up to conjugacy). We will induct on the length of a maximal chain of U ®-invariant subgraphs.
In this section we prepare for this by establishing some basic facts about U ®-invariant subgraphs.

Definition 4.2 Given ¢ € Out(Ar), a subgraph A of T is ¢-invariant if $(A A) is conjugate to A for
some lift $ of ¢ to Aut(Ar). Since any two such lifts differ by an inner automorphism, this is well
defined. A subgraph A is U°-invariant if it is ¢-invariant for every ¢ € U°(Ar).
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The next lemma gives a criterion for U °-invariance.

Lemmad4.3 Let A be a subgraph of T. Then A is U°-invariant if and only if the following two conditions
hold for all x,y € T":
(1) If x € A and lk(x) C1k(y), then y € A.

(i) If A intersects more than one component of T \ st(y), then y € A.

Proof Since every subgraph A C I' is invariant under inversions, a subgraph A is U°-invariant if and
only if it is invariant under the remaining generators of U°%(Ar), ie all folds and partial conjugations.
There is a fold t: x > xy if and only if Ik(y) D Ik(x), so 7 maps x € Ato Ax ifand only if y € A. If A
intersects two different components C and C’ of T \ st(y), then A is sent to a conjugate of itself under
the partial conjugation C — yCy~! if and only if y € A. m|

Proposition 4.4 Let I" be a simplicial graph.
(1) If ¥ is a subgraph of T, then A = 1k(X) is U°-invariant.
(2) IfA; and A, are two U°-invariant subgraphs of T', then Ay N A, isU 0_invariant.
(3) If Ay and A, are two U°-invariant subgraphs of ' whose join A * A, is also a subgraph, then
A1 % A, is U%-invariant.
(4) If ¥ is a nonsingleton connected component of a U°-invariant subgraph A, then ¥ is U °-invariant.

(5) If A is U°-invariant and N(A) is the subgraph spanned by A and all vertices adjacent to A, then
N(A) is UC-invariant.

Proof In each case we check conditions (i) and (ii) of Lemma 4.3:

(1) () xe A=1k(2)if and only if ¥ C Ik(x). If Ik(x) C Ik(y), then ¥ C Ik(y), so y € Ik(X).

(i1) Suppose that A = 1k(X) intersects two different components C; and C, of T\ st(y), say
x1€CiNAand x, € CoNA. If z € X, then x; and x5 are both connected to z, so z must be
in Ik(y). Thus, ¥ C 1k(y), so y € Ik(X).

(2) (1) Letx e A;N Ay Iflk(y) 21k(x), then y € Ay by invariance of Aq; similarly, y € A,, so y
is in the intersection.

(i) If A; N Aj intersects two components of "\ st(y), then the same is true of both A and A,
so y is in both.

(3) () Ifx e A andlk(y) D 1k(x), then y € Ay, and similarly if x € As.

(ii) Suppose A = Ay *A; intersects two different components C and C’ of I"\st(y). Let x e CNA

and x’ € C’ N A. Then x and x" must be in the same A;, since otherwise there is an edge

connecting them. But A; is U-invariant, so y € A; C A.

(4) (i) Suppose x € X, and 1k(y) D 1k(x). Since X is not a singleton, 1k(x) N X contains a vertex z.
Since z is in the links of both x and y, y is also in X.
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(ii) Suppose x,z € ¥ are in different components of I" \ st(y). Since A is U°-invariant, this

implies y € A, but then st(y) cannot separate x from z unless y € X.

(5) () If x € N(A), then either x € A or Ik(x) N A # @. If the distance from y to A is at least 2,
then Ik(y) N A = &, so lk(x) Z Ik(y).

(i) If y ¢ N(A), then ANst(y) = @. Since A is U -invariant, it lies in a single component of

'\ st(y), so all x € N(A) \ st(y) must lie in the same component. |

Recall from [1] that two vertices are called fold-equivalent if they have the same link in I', and we order
the set of fold-equivalence classes by inclusion of their links. The following two propositions will allow
us to establish the base case of our induction.

Proposition 4.5 Let A C I' be a minimal U°-invariant subgraph. Then A is a maximal fold-equivalence
class. In particular, A is discrete.

Proof If [u] is a maximal fold-equivalence class, then it is easy to check using Lemma 4.3 that [u] is
UO-invariant. On the other hand, if A C T is any U 0_invariant subgraph, then A contains a maximal
equivalence class [u] by condition (1) of Lemma 4.3, so [u] = A by the minimality of A. m|

Proposition 4.6 Let A be a U°-invariant subgraph of T. Then there is a restriction homomorphism
ra:U%(Ar) — U%(4,).

Proof Let ¢ be an element of U%(Ar). Since A is U°-invariant, there is a lift ¢ of ¢ to Aut’(Ar) with
<}5 (AA) = AA. Define ra(¢) to be the image in Out(A ) of the restriction of qg to Aa.

To check that ra is well defined, suppose qAV is another lift of ¢ sending A to itself. Then qAﬁ/ =1g0¢,
where (g is conjugation by some g € Ar that normalizes Ax. By [3, Lemma 2.2], the normalizer of Aa
is AA X Aja). Since elements of Ay ) act trivially by conjugation, $’ =0 qAS for some h € Ap, ie
the images of $ and ¢7 in Out(A ) are equal. Moreover, if ¢; and ¢, are two elements of U°(Ar) and
¢ = ¢1 0 ¢y, then qAS = $1 o $2 is a lift of ¢ which preserves Aa. Thus, ra: U%(Ar) — Out(4p) is a
homomorphism.

To see that this lands in U%(AA), we check that this is the case for the generators of U%(Ar). Let ¢
be a generator that lifts to a fold $ i X xy,solk(x) Clk(y). If x ¢ A, then $ restricts to the identity
on Ap. If x € A, then U%-invariance of A implies that y is also in A, so the restriction is the lift of a fold
in U°(Aa). Now suppose ¢ is a partial conjugation by x. If x ¢ A, then the fact that A is U °-invariant
implies that A lies entirely in one component of T \ str(x), so the action of q§ to A is trivial. If x € A,
then sta (x) C str(x), so the components of A \ sta (x) are contained in components of I' \ str(x). Thus,
$ restricts to a (product of) partial conjugation(s) by x on AA. |

Definition 4.7 If A is a U°-invariant subgraph and f: H — U°(Ar) is any homomorphism, we call
fa=rao f:H— U°AR) the restriction of f to A.
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5 U'-invariant subcomplexes of marked I' -complexes

Throughout this section we assume A C T is a U°-invariant subgraph with 1k(A) = @ and (X, h) is
a I'-complex with an untwisted marking. This means that, for any blowup structure Sll:l on X with
associated collapse map ¢ : X — St the composition ¢4 ™! induces an untwisted automorphism of Ar.,
that is, an element of U(Ar). The aim is to identify a subcomplex XA C X which is invariant under the
action of isometries that induce elements of U%(Ar). The reason for the restriction that Ik(A) = & is
that in this case the subcomplex X A is unique. Remark 5.8 discusses the general case.

The following lemma deals with the discrepancy between the subgroups U(Ar) and U°(Ar).

Lemma 5.1 If X is a I"'-complex with an untwisted marking h, then X has a blowup structure SII:I with
collapse map c,: X = Sll:[ — Sr such that (cxh™ ')« € U%(Ar).

Proof U°(Ar) is normal in the untwisted subgroup U(Ar) of Out(Ar), and the quotient Q is a subgroup
of Aut(T"), the group of graph automorphisms of I'. The short exact sequence

1 - U%Ar) - U(Ar) » Q — 1
splits, so U(Ar) = U%(Ar) x Q.

Let Sp be any blowup structure on X such that (c,42~1)4 is untwisted. By the above observation, if
(cxh™ 1) is not in U%(Ar), we can compose it with a graph automorphism o to produce an element
of U%(Ar). Realize @ by an isometry fy of Sp. Composing ¢, with f, is equivalent to changing the
labels and orientations of the vertex-labeled hyperplanes in Sll:l by «; this changes the partitions by the
same relabeling, giving a new set of partitions «I1. In other words, this gives a blowup structure S‘I"-H
on X such that (A cqmr)« € U%(Ar). |

Now fix a blowup structure Sll:l on X such that (c,h~ 1), € U%(Ar). In any I'-partition, all bases have
the same link. Since A is U%-invariant, Lemma 4.3 implies that either all bases of a partition in IT are
in A, or none are. So we may write I[1 = {94,...,9,%1,...,?;}, where the 9; are based in A and
the %; are based in I" \ A.

Lemma 5.2 Each®; has a unique side P such that A* C P2 UIK(®) and A* N P2 # @. Furthermore,
if P; and %; are not adjacent, then Pl.A N PJ.A # 2.

Proof Let y; € I'\ A be a base for %;. Recall that we have assumed 1k(A) is empty; this implies that
A\ st(y;) is nonempty. Since A is U%-invariant, it intersects at most one component of I" \ st(y;). Each
side of %; is a union of components of I'\ st(y;). Thus, there is a unique side Pl.A such that AT N Pl.A e 3%]
and AT € PAULK(P)*.

If P; and %; are compatible but not adjacent and Pl.A N PjA = ¢, then Pl.A NIk(P;) = PjA NIk(P;) =
as well (see [1, Lemma 2.9]), forcing AT C 1k(%;) N Ik(%;). This contradicts our assumption that
AENPA +£o. O
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Figure 3: Left: a graph I' and U°-invariant subgraph A. Right: four different I'-partitions with
the same link and their restrictions to A, In the restriction, the innermost and outermost partitions
become trivial and the middle two become equal.

Recall from [4] that vertices of SII:I correspond to collections {Q7, ..., Q;é, P PIX}, where the
superscript X indicates a choice of side. Each pair of sides in the collection must be consistent, which
means either they intersect nontrivially or their bases commute. We define K to be the subcomplex
of Sll:[ consisting of vertices of the form {Q], ..., Q;, PIA, ey PIA}, edges obtained by switching a
side of some 2; or labeled by some v € A, and all higher-dimensional cubes spanned by these edges.

Proposition 5.3 The subcomplex K A is a subdivided blowup of S .

Proof Let{21,...,2} be the partitions of I based in A, let 2 be the multiset of A-partitions obtained
by intersecting the 9; with A* (see Figure 3), and let S% be the corresponding subdivided blowup.
If the bases of 9; and 9; don’t commute, then exactly one pair of sides has empty intersection (see
[4, Lemma 3.6]). The 9; N AT are A-partitions, and the corresponding pair of sides still has empty
intersection. This means that they are compatible, and all other pairs of sides must intersect. Since the 9;
are based in A, this means that {Q', ..., O} is consistent in '+ ifandonly if {Q7NA*, ..., orn AE)
is consistent in AT, ie defines a vertex of S%. Note that, for each j = 1,...,k, either %; is adjacent
to 9; or Pl.A intersects both sides of 2; nontrivially, since 2; splits its own base, which is in A \ 1k(%;).
Therefore, the map sending

(OFNAE, . 0XNAYY - {0F,...,0F PP,.... PP}

is well defined, and induces an isomorphism of S%A with KA. |

A priori, our marking /: X — St maps K to St, but we can adjust it within its homotopy class to map
Ka to Sa. This is because /1 = u o ¢, where u: Sy — Sr induces an element ¢ € U%(Ar). We can
choose a representative &5 € Aut(Ar) that sends A to itself, so, adjusting ¥ by a homotopy, we get a
map sending S to itself. Since ¢, sends K to Sa, we may assume the composition # = u o ¢, restricts
to a marking on K.
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We constructed the subcomplex Ko C X using the blowup structure that we chose on X. We now show

that K A is essentially independent of this choice.

Proposition 5.4 The subcomplex K is independent of the blowup structure Sll:[ as long as this blowup
structure satisfies (cxh™ 1)« € U%(Ar).

Proposition 5.4 can be proved combinatorially by keeping track of how the partitions change when we
change the treelike set of hyperplanes or the labelings and orientations on the hyperplanes not in the treelike
set. Being based in A turns out to be a property of hyperplanes in the treelike set, independent of the
partitions used to describe them. The same is true for the property of being the A-side of a hyperplane based
in I\ A. Since these properties are what is used to define K A, the subcomplex K itself is independent
of the blowup structure. Furthermore, an isometry f: X — X satisfying (hfh~ '), € U%(Ar) preserves
these properties, so preserves Ka.

Below we give a different proof of Proposition 5.4 in terms of the action of Ar on X determined by h.
This proof is more in the spirit of our previous paper [1] and more amenable to generalization. We

continue to assume that Ik(A) = @.

The universal cover X is a CAT(0) cube complex, and we will take advantage of the following facts
about isometries of CAT(0) cube complexes. We say that a hyperbolic automorphism g of a CAT(0) cube
complex skewers a hyperplane H if some axis for g crosses H transversely.

Lemma 5.5 Let g be a hyperbolic automorphism of a CAT(0) cube complex X andlet H bea hyperplane
in X. If some axis for g skewers H, then every axis for g skewers H. If no axis for g skewers H, then
either all axes for g are on the same side of H, or H contains an axis for g.

Proof Let oy and o, be two axes for g. Suppose o crosses H but not o, does not. Let H * denote
the half-space containing o and H ™~ the complementary half-space. Set af: =H*No;. Letybea
geodesic connecting a point in @] to a point in «3. Any such path must cross H.

The action of g preserves both axes, so either g or g~!

maps afr into itself. Without loss of generality,
assume g(oz1+) C af’ or, equivalently, @] C g(a; ). Consider the action on X by positive powers of g.
Since H does not intersect oz, the hyperplanes gk H also do not intersect ap. Thus, gk H separates o
from o@L for all k > 0. But this means that the path y must cross infinitely many hyperplanes, which is

impossible.

Now suppose o1 and a5y lie on opposite sides of H. The min set of g decomposes as an orthogonal
product of an axis o and a convex subspace of X. It follows that or; and oz span a strip o x I for some
interval I. This strip intersects H in a convex set which separates these two axes. Any such set must
contain « x y for some point y € I. O
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Proof of Proposition 5.4 Fix a basepoint at a vertex xo € X, and let pg denote the base vertex of Sr.
We may assume the marking #: X — St sends xg to pg, so induces an isomorphism 71 (X, x¢) =
71(St, po) = Ar. The collapse map ¢, : X = Sll:[ — St gives another marking, and by construction the
composition ¢ = (hocy;1)x: Ar — Ar lies in U%(Ar) (as an automorphism). Since A is U-invariant,
¢ sends A to a conjugate of itself. We may therefore homotope /, by dragging the basepoint pg around
a loop in Sr, so that ¢ sends Aa 1somorphlcally to Aa. If we choose a lift X¢ of x¢ to the universal
cover X, we obtain two actions of Ar on X, one from / and the other from ¢ . Since ¢ preserves Aa,
this means that the axes for elements of A A under both actions coincide setwise.

Our goal will now be to characterize K5 as subcomplex of X purely in terms of the U°-marking
h: X — Sr, or equivalently, in terms of the action of Ar on X. The preceding paragraph implies that, if
we can characterize K A in terms of the set of axes of elements of A, it does not matter whether we use
the action from # or cpg.

Now let %€ be the set of hyperplanes in X that are nor skewered by any element of Ax. By Lemma 5.5,
this is the same set whether we are considering the action defined by 4 or by ¢y .

Claim If H € ¥, then exactly one half-space H C X contains an axis for every element of Ap.

Proof Let K A be the lift of KA preserved by the action of Aa. The lift K A 1s convex, and hence is
connected and contains an axis for every element of Aa.

Let H be a hyperplane in X. We claim that H € % if and only if H N Ka = @, so that all of KA is on
the same side of H, and that side contains an axis for every g € Aa.

If HNKa # &, then K a contains an edge dual to H. Lemma 3.10 of [1] implies that every edge in Ka
is in some axis for some g € Aa, so H is skewered by an element of Aa, ie H is not in €. Conversely, if
H is skewered by an element g € A, then, by Lemma 5.5, every axis for g skewers H, so in particular
some axis contained in K A skewers H, so H intersects K A-

If both half-spaces determined by H contain axes for every element of A, then, by Lemma 5.5, H itself
contains an axis for every element of Ax. Let ey be an edge dual to H. Then ey is contained in an axis
for some element w € Ar, since that is true of every edge in )Z and w ¢ A since w skewers H. By [1,
Lemma 3.10], all of H is contained in the min set for w so w commutes with every element of A,, ie
A has nontrivial centralizer. This contradicts the assumption that 1k(A) = &. <

‘We now define

Xp= ﬂ HAp,
He%

where Ha = H™' \ k(H) is the largest subcomplex of X contained in H*. This is independent of the
blowup structure, and coincides with K A for the action defined by c,. Therefore, the image K of X A
in X is independent of the blowup structure. O
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Remark 5.6 In the terminology of [2], the set of hyperplanes ¢ occurring in the proof of Proposition 5.4
are exactly those which are inessential for the action of Ax. Indeed, by [2, Proposition 3.2(ii)], the
essential core Ess(X, A A) for the action of Ax on X consists of those hyperplanes skewered by some
axis of A, ie the complement of #. Thus, the proposition asserts the existence of a convex subcomplex
of X whose hyperplanes extend exactly to Ess()? , AA), and on which A acts cocompactly.

Notation Since Proposition 5.4 shows that K A is independent of the blowup structure, we emphasize
this by using the notation X A instead of K A for the image of Xain X.

Corollary 5.7 Let A be a U°-invariant subgraph with 1k(A) = @, and G < U°(Ar) a finite subgroup
which is realized on a I'-complex X with an untwisted marking h: X — St. Then the restriction of G is
realized on (Xa, h|x,).

Proof An element of G is realized by an isometry f: X — X. An isometry of X sends any blowup
structure to a new blowup structure. If the isometry induces an element of U%(Ar), we have shown that
X A has not changed, so f must send X to itself. a

Remark 5.8 We constructed X assuming that 1Ik(A) = &. If this is not the case, we can look instead
at st(A), which always has empty link. We will see in Section 7 that the complex for st(A) = A x1k(A)
breaks into a product XA X Xy (a), where XA and Xj(a) are A- and Ik(A)-complexes, respectively.

6 Extendable A-complexes

Let A be a U%-invariant subgraph of T, p: G — U°(Ar) a homomorphism from a finite group G
and (X, h) a marked I'-complex realizing p. In the last section we found a G-invariant A-complex
(possibly subdivided) sitting inside X. In this section we consider the opposite problem: given a marked
A-complex Y realizing the restriction pp: G — U°%(Ar), when can Y sit equivariantly inside a marked
I'-complex? If there is such a marked I"-complex, we say Y is extendable. To determine when Y is
extendable, we first define what it means for a A-partition to be extendable.

Definition 6.1 Let A C I" be a U%-invariant subgraph and let 9 be a A-partition. We say that 9 is
extendable if there exists a I'-partition 9 such that ) N AT = 9.

Proposition 6.2 Let A be a U°-invariant subgraph of I' and 9 a A-partition. Then 9. is extendable if
and only if there is some base m of Q such that

(1) Ikp(v) € lkr(m) for every v split by 9, and

(2) if v and vy are in the same component of T \ sty (m), then vit, vit are all in the same side of 9.

Proof The “only if” direction is immediate, since any extension of 9 is a I"-partition. Note that any
extension of 9 also splits 7. In fact, it has to be based at m since A is U°-invariant, which implies there
isnov e I'\ A with Ik(v) D lk(m).
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For the converse, suppose 2 = (lki (m)| Q1] Q») satisfies conditions (1) and (2). We build a I"-partition
(lk% (m) | Ql | Qz) based at m as follows.

If v € Ika (m), then v € Ikp (m). If v (resp. v~ 1) is in Q;, put v (resp. v~ ') in Qi. This determines where
to place all vE! for v € A.

Now suppose v € I'\ (A Ustr(m)) and let C be the component of I"\ st () containing v. If C NA =@,
put all vertices of C and their inverses in the same side of ) (either side will do). If C N A is nonempty,
then some side Q; of 2 contains an element w € A. We must have wle Q; as well, since otherwise
Ik(w) < Ik(m) by condition (1), which would imply that w was the only vertex of C. By condition (2),
the side Q; is independent of the choice of w. Put all vertices of C and their inverses into Q i |

Definition 6.3 A blowup S% is extendable if every 9 € Q is extendable. Note we are not assuming
the extended partitions are compatible. A A-complex is extendable if it can be given the structure of an
extendable blowup.

Remark 6.4 It is not hard to show that, if a A-complex is extendable with respect to one blowup
structure, then it is extendable with respect to any blowup structure, but we will not need this fact.

6.1 U'-invariant subgraphs and extendability
In this subsection we give a condition that guarantees that a A-complex realizing pa is extendable.

Definition 6.5 A G-action on a ['-complex X is reduced if no orbit of hyperplanes is contained in any
treelike set. A marked I'-complex (X, k) realizing p: G — Out(Ar) is reduced if the associated G -action
on X is reduced.

If a marked I'-complex (X, &) realizing p is not reduced, then some orbit G.H is acyclic since it is
contained in the treelike (acyclic) set associated to some blowup structure on X. We can collapse every
hyperplane in G.H to produce a new marked I'-complex. The following lemma guarantees that the new
I'-complex still realizes p.

Lemma 6.6 Let X be an NPC cube complex and let G < Isom(X) be a subgroup. Suppose & is a
collection of hyperplanes that is acyclic and G-invariant. If G — Out(x1(X)) is injective, then the
collapse map c: X — X //¥ induces an injection G — Isom(X /).

Proof Let 7 = m;(X). Since ¥ is acyclic, ¢ is a homotopy equivalence. The fact that G preserves &
means there is an induced map ¢: G — Isom(X /¥). We obtain a commutative diagram

G —— Out(n)

T

Isom(X /¥) —— Out(x)

By assumption, G < Isom(X) injects into Out(); hence, G also injects under c. m|
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Let (X, h) be a marked I"-complex realizing p. By Lemma 6.6, we may continue to collapse G-orbits of
hyperplanes until we obtain a reduced marked I"'-complex realizing p. Note that the result of this process
is not unique, but depends on the set of orbits we choose to collapse.

In Section 5 we produced a subcomplex X of X for any U°-invariant subgraph A with empty link.
If (X, h) is reduced, then in any blowup structure the orbit of any hyperplane labeled by a partition %
contains a hyperplane labeled by an element of V. Since the action of G preserves the subcomplex Xa,
the same must be true for orbits in XA, so the action of G on X is also reduced. As an example, note
that, if (X, h) is reduced and the restriction of G to U%(Ap) is trivial, then the subcomplex X must
be equal to the Salvetti complex Sa. This follows since no nontrivial blowup of Sa is reduced with
respect to the trivial action. Thus, reduced realizations of G may be thought of as “minimal” I"-complexes
realizing G.

Let A be a U%-invariant subgraph of T. The next proposition states that being reduced is sufficient to
guarantee extendability for any A-complex realizing the restriction pa.

Proposition 6.7 Let (Xa,ha) be a marked A-complex that realizes pa. If the action of G on X is
reduced, then X A is extendable.

Proof Let V' be the set of vertices in A. Choose a blowup structure X = S%. Since the G-action is
reduced, for every 9 € 2 there exists g € G such that g. Hy = H,, for some w € V. By Proposition 6.2,
in order to verify extendability we must show:

(i) There is some base m of 9 such that Ikp(v) C lkp(m) for every v split by 9.

(i) If vy and v, are in the same component of ' \ sty (m), then vft, véﬁ are all in the same side of 9.

Proof of (i) Let y be a characteristic cycle for v in S%. The image g.y is a path that crosses each
hyperplane of S% at most once, so the edge labels that are not in €2 spell a cyclic word that is the image
of v under g,

2 g) =xi' - xk,

where all the x; are distinct and ¢; = +1.

Claim 6.8 If x; € V labels an edge in g.x, then lkp (v) C Ik (x;). If 2 € Q2 labels an edge in g.y, then
9 splits some Xx;.

Proof The double link dlk(v) = lk(Ik(v)) is U°-invariant by Proposition 4.4(1). Since v € dlk(v), this
implies that each x; appearing in (2) must be in dlk(v), ie Ikr(v) < lkr(x;). Now suppose 2 labels
an edge of g.y for some 2 € Q2. We claim that 9 splits at least one of the x;. Indeed, after choosing a
basepoint % € XA, we see that g. y is freely homotopic to a concatenation of edge paths 1173 - - - ng, where
n; is an edge path based at * representing the element x;. Each 7; is freely homotopic to a characteristic
cycle for x;; hence, n; crosses the hyperplane Hy an odd number of times if and only if 2 splits x;. Since
n1 -+ - g is freely homotopic to g. y and g. y crosses Ho exactly once, we must have that 9 splits some x;. <
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The proof of (i) now follows directly from the following claim.

Claim 6.9 For every 2 € €2, there exists m € split(9) such that lkr (v) C Ik (m) for every v € split(2).
Moreover, defining Ikr (2) = Ikr(m), the action of G preserves Ikr (E) for every edge label E € V U Q.

Proof Define an increasing filtration @ = Vo C V1 S --- &V, =V, where, fori > 1, V; \ V;_1 consists
of all v € A such that Ikp(v) is maximal among elements of V' \ V;_1. Every partition E in Q splits
some element of V, so we can extend this to an increasing filtration @ = %o S F; S --- C F, = V U Q,
by letting E € &; if Hg splits some generator of V;. We will prove by induction that:

(a) Forevery 2 € ¥;, there exists m € split(2) N V; such that Ikp(v) C Ik (m) for every v € split(2).
(b) Define Ikr(92) = lkr(m); then, for any 4, B € %;, if g.H4 = Hp, then lkp(A4) = Ik (B).

The base case F¢ = & holds vacuously. Suppose by induction that, for some i > 1, we have verified (a)
and (b) for &;_;. Since the G-orbit of every Hy contains Hy, for some w € V, it follows from (b) that
F;_1 is the union of all G-orbits of elements of V;_;. Consider now 9 € %; \ %;_;. Then any generator
in split(2) lies in V' \ V;_1, and 9 splits some m € V; \ V;_;. Let g € G be such that g. Hy, = H,, for some
w € V. For any v € split(2), we know that Ikr(v) € Ikp(w) by Claim 6.8. In particular, lkr () C Ikt (w)
and therefore w € V;. On the other hand, since %;_1 is a union of G-orbits and does not contain 9, we
know that w ¢ V;_;. Hence, w € V; \ V;—1 and therefore Ikp (w) = lkr (m) as m is maximal among all
elements of V' \ V;_;. Tt follows that Ikp (v) C lkr(w) = lkp(m) for any v € split(2), which proves (a).

Let y be a characteristic cycle for v € V; \ V;_;. Claim 6.8 implies that any hyperplane crossed by g.y has
a ['-link that contains Ik (v), and hence its label is in %;. Since %;_1 is a union of G-orbits, if some label
appearing in g.x is not in %;_1, it must be in F; \ %;_1, and therefore is equivalent to v. In particular, if
g.Hy = Hy, then Ikr (A) = lIkr(v). Since every label in &; \ %;_; appears in such an orbit, we conclude
that G preserves the I'-link of each element of &;, which proves (b) and completes the inductive step. <

Proof of (ii) Suppose 2 € 2 is based at m and vfc, véc lie on opposite sides of 9. Since X A is a blowup
of Sa, we know that v; and v, lie in different components of A \ sta (). We must show that they lie in
different components of I" \ sty (m).

As shown in [1], the inverse image of the (unique) vertex of SA under the collapse map S% — Sa is
a CAT(0) subcomplex of S, consisting of cubes whose edges are all labeled by partitions. Denote
this subcomplex by C2. Choose a minimal length edge path « in C2 between any characteristic cycle
for vy and any characteristic cycle for v,. Then « crosses exactly those hyperplanes labeled by partitions
containing vli and vit on opposite sides. In particular, it crosses the hyperplane labeled 2. Fori =1, 2,
let y; be a characteristic cycle for v; starting at either end of ¢, and consider the edge path y = yiay2c.
Under the collapse map to Sa, the loop y represents the element vjv,. Observe that, by the minimality
of «, the hyperplanes crossed by «, y1 and y» are pairwise disjoint. Given an element g € G, we have

g+ (1) = g (X1) g+ (@) g+ (12) g% (@) = g+ (x1) g+ (@) g+ (x2) g ().
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Since «, y1 and y» cross each hyperplane of XA at most once, and cross pairwise distinct sets of
hyperplanes, the same is true of g«(«), g«(x1) and g«()2). Therefore, the hyperplanes crossed by g« (y)
that are not labeled by partitions define a (cyclic) word in the generators that is the image of v; v, under
the action of g. Thus, we may write g« (v1v2) = wiuw,u~', where

8 8
u = yll e yrr
is a word in pairwise distinct generators y; and §; = %1.

Since X a is reduced, there exists some g € G such that g maps the hyperplane labeled % to a hyperplane
labeled by one of the y;, and, by Claim 6.9, m and y; belong to the same I'-equivalence class. It thus
suffices to prove that vy and v, lie in different components of I" \ st(y;) for each j.

For any vertex v in I, dlk(v) is U -invariant, up to conjugacy. Thus, the cyclically reduced form of the
word g« (v1), namely w1y, must be a word in dlk(v1), and similarly w, must be a word in dlk(v3). Choosing
the representative of g4 in Aut(Ar) to be one that takes vq to wy, we then have g«(v2) = uwou~1,
where u is a product of generators y; such that st(y;) separates some element of dlk(v;) from some

element of dlk(v,). But, in this case, st(y;) must also separate v; from vy, as required. |

7 TI'-complexes for joins and disjoint unions

In this section we describe procedures for constructing I"'-complexes realizing G when I is either a join
or a disjoint union of U -invariant subgraphs realizing the restriction of G. We begin with the case where
I' =TI * I} is a join, which is straightforward.

Proposition 7.1 If I' = Il % I3, then any I"'-complex is a product of a I'1-complex and a 1 -complex.
Conversely, any product of a I'1 -complex and a I’ -complex is a I7 * I3 -complex.

Proof Suppose Sll:l is a blowup structure on a I'-complex X. Write
O={P1,.... P, 21,.... 21},

where P; is based at x; € I'1 and 9; is based at y; € I;. (Note that, if one base is in I3, then all bases are
in I.) Since I' = Il * I, every x; is adjacent to every y;, intersecting each %; with VE() gives a
Iy -partition 931.1, and intersecting each 9; with V*E(I%) gives a D>-partition 9212 Thus, IT is a compatible
collection of I'-partitions if and only if TT; = {P!, ... ,9]’,1(} is a compatible collection of I'}-partitions
and I, = {92, ... ,9212} is a compatible collection of I;-partitions. We conclude that X is a product of

1

the I} complexes with blowup structures Sg and Sriz, respectively. |

Proposition 7.2 Suppose I' =T « I, and let p: G — U%(Ar) be a homomorphism. Then I and T
are U°-invariant and, if (X;, h;) for i = 1,2 are marked I} -complexes that realize the restrictions p;
of p to I}, their product Xr = X1 x X», equipped with the product action of G and the product marking
h = hy1 X hy, is a marked I" -complex realizing p. Moreover, the action of G on X given by p is reduced
if and only if the actions on X1 and X» are.
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A
— .@ (x) b@@
ZA Yr Xr

Figure 4: Building a I'-complex for a disjoint union ' =T U U T3 U A.

Proof Observe that IT =1k(I%) and I; = 1k(I'); hence, by Proposition 4.4, both are proper U 0_invariant
subgraphs. Fori =1, 2, suppose X; is a I;-complex and that h; : X; — Sr; is a marking which realizes the
restriction p;. Define X1 = X1 x X, and let G act via the product action. Blowup structures on X; and X»
give a blowup structure to X; X X» by Proposition 7.1, and the product marking 4 = h{ X hp: Xr — St
realizes the action of G. The final statement of the lemma follows from the fact that hyperplanes of Xt
are all of the form H; x X, for H; a hyperplane of X; or X; x H, for H» a hyperplane of X,, and that
the action of G preserves the product decomposition. O

We next consider the case when I' is a disjoint union of (not necessarily connected) subgraphs. Given a
Ii-complex X; for each subgraph I} that is not a singleton, we construct a I'-complex X that contains
each X; as a subcomplex.

Definition 7.3 (I"-amalgam) Suppose I' is a disjoint union I U--- U Tk LI A, where A is discrete. Let
Z A be a graph satisfying:

e The rank of Z, is equal to |A].
e k vertices of Z are labeled by {1, ..., k}.

¢ Any unlabeled vertex of Z 5 has valence at least 3.

Foreachi € {1,...,k}, let X; be a [;-complex. Form a new cube complex Y, called a I"-amalgam, as
follows. For each vertex v of Z 4, set X, = X; if v is labeled by i, and set X, to be a point otherwise.
Now construct a complex by starting from the disjoint union |_| X, and attaching an edge from X, to Xy,
whenever {v, w} is an edge in ZA. When X, = X;, we may attach the edge anywhere. The resulting
complex can be given the structure of a cube complex: if the endpoint of one of the added edges lies at
a point p in the interior of a cube C C X;, we perform the cubical subdivision of C at p. Define the
resulting cube complex to be Yr. (See Figure 4.)

Observe that YT contains a subdivided copy X/ of X; as a subcomplex for each i. Moreover, collapsing
each of these subcomplexes separately to a point defines a natural map Yr — Z A, which is a bijection
away from the X;. Since each X; is a [;-complex, it does not have any separating hyperplanes. It follows
that a hyperplane of Yr is separating if and only if it comes from a separating edge of Z 4.

Algebraic € Geometric Topology, Volume 25 (2025)



Finite groups of untwisted outer automorphisms of RAAGs 2433

H

Figure 5: Determining the I'-partition associated to a hyperplane i in Xr. All hyperplanes in
the treelike set for X other than H have been collapsed in this figure (see proof of Proposition 7.4).

Proposition 7.4 Let I' =17 U---U Ty UA, where A is discrete, and let Y1 be a I'-amalgam formed
from I;-complexes X; and a graph Z . Let Xt be the complex formed from YT by collapsing all
separating edges from Zr. Then Xt is a I'-complex, ie there exists a collection of I'-partitions I1 such
that Xr = ST.

Proof First note that the hyperplanes of X1 consist of the hyperplanes of each X/ (which remain in X)
and the midpoints of nonseparating edges of Z 5. Choose a subdivided blowup structure on each X/ C YT,
corresponding to a compatible multiset of partitions IT;. Then choose a maximal tree T in Z 5 and label
and orient the edges not in 7A by the elements of A. Let J be the union of all hyperplanes with labels in
the IT; and those dual to edges in 7. Collapsing all hyperplanes in J gives the Salvetti Sr.

To see that J is the treelike set for a blowup structure, we need to check that each H € J determines a
I"-partition. Cut all edges of Z 4 that are labeled by elements of A, labeling the initial half-edge A ™!
and the terminal half-edge A (see Figure 5). Each hyperplane in 7 now determines an evident partition
of the vertices of I'*. First consider the partition associated to an edge e of 7. Since we chose Tp
after collapsing each X/ to a point, no element of I} is split by this partition. The fact that Z 5 has no
separating edges implies that the partition associated to e separates some A € A from its inverse, so this
gives a I"-partition based at A.

A hyperplane in X; partitions the vertices of I‘ii, and the only new vertices of I' that might be split are
in A, so have empty links; hence, the resulting partition is still a valid I"-partition with its original base.

We must also check that the duplicate partitions in the II; give distinct I'-partitions, and the singleton
partitions in the IT; give rise to legitimate I'-partitions. Singleton and duplicate partitions in IT; result
from attaching an edge e of Z 4 to the middle of a cube, which we then subdivide by duplicating all
hyperplanes that intersect the cube. The edge e lies on a characteristic cycle for some w € A.

Let H be one of the hyperplanes that has been duplicated to form new hyperplanes H' and H”, so that
now e terminates at a point between H’ and H”. If H was labeled by a partition % in I1;, the new
partitions %" and ®” corresponding to H’ and H"” agree on AT, but either w or w™! (depending on the
orientation of the cycle) lies in opposite sides of the extensions of %’ and %" to I'-partitions. If H was
labeled by a vertex v, let H’ be the duplicate hyperplane that did not get the label v, so H’ corresponds
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to a singleton partition ¥, Then v (or v~1) and w (or w™1) lie on the same side of the extension of &
to I'*, so the corresponding I'-partition is not a singleton. a

In passing from YT to XT in the proof of Proposition 7.4, we had to collapse the set of separating edges
in Zr. Since the collection of all separating hyperplanes in an NPC cube complex X is acyclic and
invariant under Aut(X ), Lemma 6.6 implies that collapsing them has no effect on realizing actions of
finite subgroups of Out(Ar) by isometries.

Proposition 7.5 Let I' = I U--- U I} U A, where A is discrete, and let p: G — U°(Ar) be a
homomorphism. If (X;, h;) are marked T} -complexes realizing the restriction of p to I}, then there exists
a marked I'-complex (Xt , h) realizing p such that each X; is a subcomplex of Xt and h|x; = h;.

Proof Let At and fTri be the finite extensions of Ar and Ar;, respectively, determined by G. We apply
[9, Proposition 7.5] to ' = I U--- U I} U A, with marked complexes (X;, ;) as input. The result is a
marked cube complex X realizing the action of G on Ar. In the construction (see [9, Proposition 3.1 and
Theorem 4.1]), the marked complex (Xt /) is formed from a graph-of-groups decomposition of Ar. The
edge stabilizers are all finite, vertex stabilizers are the corresponding finite extensions of the /T]"i , and the
rank of the underlying graph is |A|. Each vertex is then “blown up” to a (possibly subdivided) copy of X;
equipped with the marking 4;, to which edges are attached (see [9, Remark 7.7]), though we only subdivide
where necessary, ie where an added edge meets the interior of a cube. In particular, collapsing each of
the X; separately to points yields a graph of rank |A|. Thus, the hypotheses of Proposition 7.4 are satisfied,
and, by Lemma 6.6, the resulting marked I"-amalgam (X, /) is a marked I"-complex which realizes p. O

Remark 7.6 In Proposition 6.7, the hypothesis that action of G on X is reduced is essential. In
Proposition 7.5, given a graph I' = I U -- LU I} U A and a collection of I};-complexes X;, we constructed
a ['-amalgam, X1, whose restriction to each I; is a subdivision of the given complexes X;. While we
may assume that the original complexes X; are reduced, the resulting subdivisions need not be, since a
subdivided e, edge has one segment labeled e, and the rest labeled by partitions. If X is not reduced,
we can collapse an acyclic set of hyperplanes in X so that the resulting complex X7. is reduced, and
hence its restriction X/ to each I}-subcomplex is also reduced. We claim that X/ is still a subdivision
of the original X;. To see this, note that, since the orbit of every edge e» in X; contains an e, edge,
after subdividing, the orbit of at least one segment of this edge will also contains an e, edge. Thus, this
segment will not be collapsed in the reduction process.

8 Realizing finite subgroups of U’(Ar)

In this section we prove our main theorem.

Theorem 8.1 Let I' be a simplicial graph, G a finite group and p: G — U°(Ar) a homomorphism.
Then there is a I'-complex X with an untwisted marking h: X — St on which p is realized by isometries.
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Figure 6: Subgraphs of A referred to in the proof of Theorem 8.1.

We are especially interested in the case that p is an inclusion, but the proof is inductive and the general
case is used in the induction. The proof borrows a number of ideas from [8].

Proof For any U-invariant subgraph A, we will say a marked A-complex (Xa,%a) “realizes G”
as shorthand for “realizes the restriction pp = rpaop: G - U 0(4A)”. Here the target of hp is the
subcomplex Sp C St.

We proceed by constructing marked A-complexes realizing G for larger and larger U °-invariant subgraphs
A of T, until we have one for all of I". Specifically, we define the chain length £ = £(A) to be the length
of a maximal chain of U°-invariant subgraphs @ =T S I  --- & I} $ A and proceed by induction
on £(A). At each stage we ensure that the G-action is reduced, so that the complexes we construct are
extendable.

If £(A) = 0, Proposition 4.5 says that A is discrete, ie A is a free group. The classical realization
theorem for free groups [5; 10; 15] says we can find a marked graph (Xa, #a) on which G is realized
by isometries. After collapsing G-invariant forests, we may assume X A is reduced (in particular has no
separating edges), so (X, ha) is the desired marked A-complex.

Now suppose £(A) =i > 1. Note that any proper U ®-invariant subgraph of A has chain length strictly
smaller than i, so we can construct marked complexes realizing G for any such subgraph by induction.
Fix a maximal U%-invariant chain @ =) C T} S --- C I} € A and let ® = A\ T}. The next claim

follows from maximality of the chain.
Claim If w,w’ € ©, thenlk(w) N T; = lk(w’) N T;.

Proof By Proposition 4.4(5), the subgraph spanned by I; and all vertices adjacent to I is invariant, so,
by maximality of the chain, either every element of ® is adjacent to I3, or none of them are. In the latter
case, the claim is vacuously true because lk(w) N I[; = & for every w € ®. In the former case, choose
w € O such that Ik(w) N T} is maximal, let W = {w’ € © | Ik(w’) N T; = lk(w) N T;} and let A’ be the
subgraph spanned by I; and W.
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We will now show that A’ is U%-invariant, so, by maximality of the chain, A’ = A and © is the graph
spanned by W. By Lemma 4.3, we need to prove:

(1) If x € A and Ik(x) C Ik(y), then y € A.

(2) If A intersects more than one component of " \ st(y), then y € A

We know that A is U%-invariant, so, under the hypotheses of either (1) or (2), y must be in A. If y € I3,
we are done, so assume instead that y € ®. We need to show that y € W. If x € A’ and lk(x) C lk(y),
the invariance of I}, together with the assumption that y ¢ I}, guarantees that x ¢ I;;. That is, x € W, so,
by maximality, y is also in W. In case (2), the invariance of I; guarantees that st(y) does not separate [},
so either it separates I; from W, or it separates two elements of W from each other. In either case, we
must have lk(w) C st(y), so Ik(w) N I; C1k(y) NI;; hence, y € W. N

Now set ® = 1k(®) NI}, and let (X;, h;) be a reduced marked [;-complex realizing G. Note that ® is
U%-invariant by Proposition 4.4.

If ® = I3, then the above claim implies that A is the join [} * ®, and that ® = 1k([3) N A, so is
U%-invariant. By induction, we can find a reduced marked ®-complex (X g, hg) which realizes the action
of G, so, by Proposition 7.2, the product (X; x X@, h; x he) is a A-complex realizing G.

If ® = &, then A is the disjoint union of [; and ®, so, by Proposition 7.5, we can build a A-complex real-
izing G using (X;, h;) and complexes for the components of ® that are not singletons (these components
are U%-invariant by Proposition 4.4(4)).

If @ is a proper subgraph of I3, let E = 1k(®) N I; (see Figure 6). Now
A=TUsta(P)=T; U (P = (E LUB))

and I} Nsta(®) = ® * E. Both ® and E are UC-invariant, so ® * E is also U -invariant by Proposition
4.4(3). Since Ikr; (® * E) = &, X; contains a unique invariant (possibly subdivided) (®* & )-complex
Xoxz = Xo X Xg realizing G, by Corollary 5.7. We may choose %; so that it restricts to a marking
hexg =he X hg on Xexz.

The subgraph sta (®) is also U -invariant, and we build a st (®)-complex X, st(®) Tealizing G as follows.
We first build a complex Xjy(g) for Ika(®) = E U O using a copy of the complex Xz we already found
in X; and complexes for the components of ® that are not singletons, as we did in the case that ® = &
above. After reducing, Proposition 6.7 ensures that X () is extendable. By Remark 7.6, the reduced
complex still contains a subdivided copy of Xg. We then take the product of Xj(¢) with a copy of the
complex X C X; to obtain a complex for Xy 4) realizing G with respect to the product marking.

If E # 9, then Ik () (P * E) = @, so the complex X (q) that we just built contains a unique (possibly
subdivided) (®* &)-complex realizing G. By construction, this is identical to the complex X ¢«z contained
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in X;, so we may glue X; to X (q) by identifying these subcomplexes, thus forming a new complex Xa.
The markings /; and hy(g) agree on Xz, S0 we obtain a marked complex (Xa, ) realizing G.

If E = &, then Ikg(g)(P) = O, so Xy () = Xo X X@. The following claim will allow us to pick out a
particular slice X¢ x {p} C X X Xg to glue to the (unique) copy of X¢ contained in X;.

Claim The restriction pg: G — U°(Ag) lifts to a homomorphism G — Aut(Ag).

Proof We use [3, Lemma 2.2], which says:

(*) If X is a subgraph of A, then the normalizer in Ap of Ay is Ay, (z) = Az X A, (D)-

(xx) If X1,3, C A, then xAgzx_1 <Ay, ifand only if ¥» C ¥ and x = x1x2 with x1 € Ny, (Ax,)
and x2 € Ng, (4x,).

Since all normalizers will be taken with respect to Aa, for the rest of this proof we omit A from the
notation for normalizers.

We are assuming E = &, so ® = lka(®) and ® = lka(P). Then (x) says N(Aep) = N(Adg) =
N(Ap+«e) = Apxe-. Furthermore, if 1k (I7) # &, then [; = ® and A = & x ©. We have already taken
care of this case, so we may assume that lka (I37) = @ and we have N(Ar;) = Ar;.

Let g € G. Since I}, ®, ® and ® * O are all U -invariant, the corresponding special subgroups of A
are all sent to conjugates of themselves by any representative of g in Aut(Ar). Pick a representative g
that sends Ar; to itself, and suppose g(Ae) = xApx~!. Since g(Ap) < §(Ar,) = Ary, (**) says that
X = x1x2 with x; € N(Ar;) = Ar; and x2 € N(Ag). Then xApx~! = x1x2Aq>x2_1x1_1 = x1A¢x1_1,
so, after composing ¢ with conjugation by x1, we may assume g sends both Ar; and A¢ to themselves.

Now ® C ® x ®, 50 §(Ae) < §(Aa+0) = yAesey ! for some y. Since g(4e) = Ag, this gives
y 48y < Agxe, 50, by (%), y € N(Apx0)N(As) = Ao, ic §(Ax0) = yAs+0Yy ' = Aoso.
Finally, ® C ® * O, so g(0) = zAgz~! < g(P * ©) = ® x © for some z, so (x*) gives that z €
N(Agxe)N(Ap) = Apxe = N(Ap), so g(4e) = Ae as well.

Now let g1, g2 € G with g1g2 = g3, and find representatives g1, > and g3 as above. We know that
2182 g;l is inner and preserves Ar, and Ag, so the conjugating element lives in N(Ar;) N1 N(dg) =
Ar, N Agxe = Ae. But conjugation by an element of Ag is trivial on Ag, ie the restriction of 12> g;l
to Ag is the identity. Thus, g +> g gives a lift of G to Aut(A4g). <

By the claim, the action of G on Xg lifts to an action on Xe. Since Xg is CAT(0) this action has a fixed
point; projecting this fixed point back down gives a fixed point p € X@. We now build XA by gluing
X; to Xoxe = Xo X Xg along their common subspace X¢ = X¢ X {p}. As above, the markings A;
and he«@ agree on the overlap, so give a marking sa: XA — Sa realizing G.
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It remains to check that the complexes X A that we have just built are actually A-complexes. We start by
choosing a blowup structure X; = Sg_ !, Since the action of G on X; is reduced, this blowup structure is
extendable, and induces (possibly subdivided) extendable blowup structures on the subcomplexes X ¢,
X = and X d X X =.

If E = o, then finding a blowup structure is slightly easier, so we do that case first. In this case, © is
U%-invariant, and we can choose an extendable blowup structure Sg@ on X@. Recall that we may have
needed to subdivide X@ in order to make the fixed point a vertex; this means that 2@ may contain trivial
or duplicate partitions. The fixed point p € Xg now lies in a region, ie a consistent choice of sides for
each element of Qg. The structure on Xg together with the blowup structure on X¢ now give a blowup
structure on X ¢ X X@, by Proposition 7.1. The partitions in £2; and Qg are all extendable, so in particular
can be extended to A. We need to find extensions that form a compatible collection of A-partitions.

If ? € Q;, we need to decide where to put the vertices vt € ©F in our extension P. If P is based at
m € @, they must all go into lk(@). If m is distance at least 2 from ©, there is some u € ® with u ¢ 1k(m)
(since & = @), so all vertices of ® are in the same component of A \ st(m) as u, so all of ®F must go
into the same side of % as u. (Note that the extendability of % guarantees that, since any two choices for u
lie in the same component of A \ st(m), they must lie on the same side of %, so there is no ambiguity
here.) We also need to extend the partitions 2 € Qg to A% All vertices in ® must go into the link of
each extension. Since I} is U-invariant, no vertex in © has a star that separates I}, so vertices of I; \ ®
and their inverses all have to go in the same side of 2 for each 9 € Q2g. We put them all into the region
determined by the fixed point p. It is now routine to check that all the extensions 9 and # we have
constructed are compatible. This verifies that X a is a A-complex in the case & = &. If the G-action
on XA is not reduced, we can reduce it to obtain an extendable A-complex.

Q . .
If E # &, we can find a blowup structure X (g) = Slkéﬁg’) that restricts to the given blowup structure

on Xz by Proposition 7.4.

The procedure we used in the case E = @ to extend P = (P1 | P2 |Ik(P)) € Q; to AT works again unless P is
based at m € E. In this case, each PN E¥ is also the restriction of a partition 2 = (Q1]Q2|1k(2)) € Qg (®)-
We form % by adding Q; N O* to P; fori =1,2.

We also need to extend partitions 2 € {24(¢) that are based at m € © to A-partitions 9. The star st(m)
cannot disconnect E or I} since both are U %-invariant, so we add all of T} \ ® to the same side of 9 as E.

The extensions % and 9 are now a compatible collection of A-partitions, giving XA a blowup structure.
Reducing XA if necessary, this completes the induction and concludes the proof of the theorem. |

Recall from [4] that KT is a contractible subspace of O which is invariant under the action of U 0(Ar).
Points of Kt are I'-complexes with untwisted markings, so, if p is an inclusion, Theorem 8.1 gives the
following statement.

Corollary 8.2 The action of any finite subgroup of U®(Ar) on Kr has a fixed point.

Algebraic € Geometric Topology, Volume 25 (2025)



Finite groups of untwisted outer automorphisms of RAAGs 2439

Finally, we obtain the following information about finite subgroups of U%(Ar).
Corollary 8.3 The group U°(Ar) contains only finitely many conjugacy classes of finite subgroups.

Proof By Theorem 8.1, every finite subgroup of U°(Ar) is realized on a I'-complex. Changing the
marking produces a conjugate subgroup, so we may ignore the markings. There are only finitely many
I'-complexes since there are only finitely many partitions of I'*, so only finitely many compatible
collections of I'-partitions, each of which determines a unique blowup of St. Finally, there are only

finitely many cubical isometries of a finite cube complex. a
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