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Finite groups of untwisted outer automorphisms of RAAGs
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For any right-angled Artin group A� , Charney, Stambaugh and Vogtmann showed that the subgroup
U 0.A�/�Out.A�/ generated by Whitehead automorphisms and inversions acts properly and cocompactly
on a contractible space K� . We show that any finite subgroup of U 0.A�/ fixes a point of K� . This
generalizes the fact that any finite subgroup of Out.Fn/ fixes a point of outer space, and implies that there
are only finitely many conjugacy classes of finite subgroups in U 0.A�/.

20F28, 20F36, 20F65

1 Introduction

A right-angled Artin group (RAAG) is a finitely generated group whose only defining relations are that
some of the generators commute. This can be encoded by forming a finite simplicial graph � with one
vertex for each generator and an edge between each pair of commuting generators; the associated RAAG
is then called A�. The extreme examples are the free group Fn (if � has no edges) and the free abelian
group Zn (if � is a complete graph). We are interested in studying finite subgroups of the group Out.A�/
of outer automorphisms of A�.

For A� D Zn, it follows from the classical Jordan–Zassenhaus theorem that there are only finitely many
conjugacy classes of finite subgroups in Out.A�/ D GL.n;Z/ (see eg Curtis and Reiner [6]). Since
GL.n;Z/ acts on the symmetric space GL.n;R/=O.n/ preserving a CAT(0) metric, any finite subgroup
fixes a point. Since GL.n;R/=O.n/ can be identified with the space of marked lattices ƒ�Rn, where a
marking is a choice of basis B, which gives an isomorphism ƒŠ Zn, it follows that any finite subgroup
G < GL.n;Z/ acts by isometries on a lattice ƒ. Equivalently, any finite subgroup G < GL.n;Z/ can be
embedded in the isometry group of a flat torus T, so that the induced action on �1 agrees with G.

For A� D Fn, there is a realization theorem that says any finite subgroup G of Out.Fn/ can be realized
as automorphisms of a finite graph X ; see Culler [5], Khramtsov [10] and Zimmermann [15]. This means
one can mark the graph by an isomorphism �1.X/ŠFn so that automorphisms of X induce the elements
of G on �1. Furthermore, one may assume that all vertices of X have valence at least three. Since there
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are only finitely many such graphs, this implies that there are only finitely many conjugacy classes of finite
subgroups of Out.Fn/. Thus one can study finite subgroups of Out.Fn/ by studying symmetries of such
graphs (see eg Levitt and Nicolas [12] and Smillie and Vogtmann [14]). An equivalent way to state the
realization theorem is that the action of the finite group G �Out.Fn/ on outer space CVn has a fixed point.

In previous work we constructed an outer space O� for an arbitrary RAAG A� that combines features
of both CVn and symmetric spaces [1]. The group Out.A�/ acts on O� with finite stabilizers, and it is
proved in [1] that O� is contractible. The group Out.A�/ contains a natural untwisted subgroup U 0.A�/,
which is the whole group in some cases, including when A� DFn. The results in [1] build on the fact that
O� contains a subspace K� on which the subgroup U 0.A�/ acts with compact quotient. The space K�
was first defined by Charney, Stambaugh and Vogtmann [4], who proved it to be contractible. Points
in K� are special types of cube complexes called �-complexes, with special types of markings called
untwisted markings. We prove the following theorem.

Theorem 8.1 Let � be a simplicial graph , G a finite group and � W G ! U 0.A�/ a homomorphism.
Then there is a �-complex X with an untwisted marking h WX ! S� on which � is realized by isometries.

The following corollary is immediate.

Corollary 8.2 Any finite subgroup of U 0.A�/ has a fixed point in K� (and therefore in O� ).

We conjecture that the entire fixed-point set is contractible, ie that K� is an EG for G D U 0.A�/.
Corollary 8.2 is a necessary first step towards this goal.

It is easy to see that there are only a finite number of combinatorial types of �-complexes, generalizing
the fact that there are only a finite number of combinatorial types of graphs in CVn. This gives us the
following information about finite subgroups of U 0.A�/.

Corollary 8.3 The group U 0.A�/ contains only finitely many conjugacy classes of finite subgroups.

Extending these theorems to all of Out.A�/ presents subtle difficulties that we do not address in this
paper. Among these is the problem of including outer automorphisms of A� that are induced by graph
automorphisms of �. More serious is the fact that the full group Out.A�/ may contain finite subgroups
of GL.n;Z/ which do not preserve any �-complex structure, so that understanding these will require
additional techniques involving the action of GL.n;Z/ on the symmetric space GL.n;R/=O.n/.

To prove Theorem 8.1, we use an inductive approach which starts from the realization theorem for Out.Fn/.
This was inspired by work of Hensel and Kielak [8], who proved that a finite subgroup G of U 0.A�/
can be realized on some cube complex, but it is not clear whether this can be taken to be a �-complex.
We borrow a number of ideas from [8], but our proof is shorter. In particular, much of our proof is
independent of the specific group G being considered, depending rather on the combinatorial structure of
the defining graph �.
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Structure of the paper and outline of the proof

In Sections 2 and 3, we review the group U 0.A�/ and the definition and basic properties of �-complexes.

The strategy of the proof is to build a marked �-complex realizing a finiteG<U 0.A�/ by gluing together
marked �-complexes for certain subgraphs �� �. The subgraphs we use are those whose associated
special subgroup A� is invariant (up to conjugacy) under U 0.A�/, which we will call U 0-invariant
subgraphs. The argument is inductive, and the induction parameter is the chain length of �, ie the
longest length of a chain of U 0-invariant subgraphs contained in �. In Section 4, we study U 0-invariant
subgraphs �, show there is a restriction homomorphism r� WU

0.A�/!U 0.A�/, and show that minimal
U 0-invariant subgraphs are discrete, providing a base case for our induction.

In Section 5, we show that a marked �-complex that realizes a finite subgroup G < U 0.A�/ contains
a subcomplex associated to each U 0-invariant subgraph � with empty link, and that the restriction of
the marking to this subcomplex realizes the restriction of G to U 0.A�/. In Section 6, we address the
opposite problem, establishing a necessary condition for extending a �-complex realizing the restriction
of G to a �-complex realizing G.

In Section 7, we show how to build marked �-complexes when � is a simplicial join or a disjoint union
of subgraphs � for which we already have marked �-complexes. We also show that, if � is a join or
disjoint union, and one can realize the restriction of a finite subgroup G < U 0.A�/ on each component,
then one can realize all of G.

Finally, in Section 8, we induct on the length of a maximal chain of U 0.A�/-invariant subgraphs to
construct a marked �-complex that realizes G.
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2 Review of RAAGs and the untwisted subgroup of Out.A�/

Let � be a finite simplicial graph. The right-angled Artin group (RAAG) A� is the group generated by
the vertices V of � with defining relations given by declaring that adjacent vertices commute.

By a subgraph of � we will always mean a full (induced) subgraph, unless otherwise specified. Given a
subgraph �� �, we write x 2� if x is a vertex of �.

For x 2 �, the link lk.x/ is the subgraph spanned by vertices adjacent to x. The link of a subgraph �� �
is the intersection of the links of all vertices of �. The double link dlk.x/ is the link of �D lk.x/. The
star st.x/ is the subgraph spanned by x and lk.x/.

Recall from [4] that a �-Whitehead partition P based at x 2 � is a partition of V ˙D V [V �1 into three
sets lk˙.x/; P1 and P2 satisfying certain conditions. The sets P1 and P2 are called the sides of P. A

Algebraic & Geometric Topology, Volume 25 (2025)
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�-Whitehead partition can be most easily described using the double �˙ of �, where the vertices of �˙

are V ˙ and two vertices are joined by an edge if they commute but are not inverses of each other. If P

is based at x, lk˙.x/ consists of all vertices adjacent to x in �˙, and each of P1 and P2 is a union of
(the vertices in) some connected components of �˙ n lk˙.x/. Furthermore, we require x and x�1 to be
in different sides of P, and each side must contain at least one additional element. We will abbreviate
�-Whitehead partition to simply �-partition.

A vertex y 2 V is split by a �-partition P if y is in one side and y�1 is in the other. If y is split by P,
then y and y�1 must lie in different components of �˙ n lk˙.x/; hence, lk.y/� lk.x/.

A �-partition P based at x determines a Whitehead automorphism '.P; x/, defined as follows. Let Pi
be the side of P containing x. If P splits y, then '.P; x/ sends y 7! yx�1 if y 2 Pi , and y 7! xy if
y�1 2 Pi . If both y and y�1 are in Pi , then '.P; x/.y/D xyx�1. For all other y, '.P; x/.y/D y. The
simplest Whitehead automorphisms are the folds sending y 7! yx�1 or y 7! xy for some x and y (and
fixing all generators other than y), and the partial conjugations sending y 7! xyx�1 for all y in some
component C of � n lk.x/. These correspond to partitions PD .lk˙.x/ jP1 jP2/ with P1 D fx; yg or
fx; y�1g (for a fold) or P1 D fx; C˙g (for a partial conjugation). Every Whitehead automorphism is a
product of folds and partial conjugations.

The subgroup of Out.A�/ generated by Whitehead automorphisms and by inversions of the generators is
denoted by U 0.A�/. If A� D Fn, this is the whole group, ie U 0.Fn/D Out.Fn/. If A� D Zn, there are
no Whitehead automorphisms, and Out.Zn/D GL.n;Z/ is generated by inversions and twists, where a
twist sends a generator y to xy for some y with st.y/� st.x/ and fixes all other generators. By a theorem
of Laurence and Servatius [11; 13], for a general RAAG the group Out.A�/ is generated by Whitehead
automorphisms, inversions, twists and automorphisms of �.

The subgroup generated by U 0.A�/ and graph automorphisms was called the untwisted subgroup and
denoted by U.A�/ in [4; 1].

3 Blowups and � -complexes

Let PD .lk˙.x/ jP1 jP2/ be a �-partition based at x. If lk.x/D lk.y/ and P splits y, then y can also
serve as a base for P. Specifying a choice of base specifies the corresponding Whitehead automorphism,
but we will often use �-partitions without specifying a base, in which case we write PD .lk.P/ jP1 jP2/.

We say �-partitions P;Q are adjacent if some (hence any) base of P commutes with some (any) base
of Q, and they are compatible if either they are adjacent or some side of Q is disjoint from some side
of P. A collection … of �-partitions is a compatible collection if its elements are distinct and pairwise
compatible. In [4], the authors constructed a labeled cube complex S…� called a blowup from a compatible
collection … of �-partitions. The underlying (unlabeled) cube complex is called a �-complex. In this
section we review some facts about special cube complexes and �-complexes that we will need.

Algebraic & Geometric Topology, Volume 25 (2025)
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Figure 1: Hyperplane collapse X !X==H.

3.1 Special cube complexes, collapsing and duplicating hyperplanes

Recall that a cube complex is called a special cube complex if it is locally CAT(0) and has no hyperplanes
that selfintersect or are one-sided, selfosculating or interosculating. We refer to the original article by
Haglund and Wise [7] for the basic definitions.

Let X be a special cube complex. If H is a hyperplane in X, the collapse map c WX !X==H collapses
the carrier �.H/ of H orthogonally onto H. We say the result X==H is obtained from X by a hyperplane
collapse (see Figure 1).

The edges that intersect a hyperplane H are said to be dual to H, and by an orientation on H we mean a
consistent choice of orientation of the edges dual to H.

If S is a collection of hyperplanes, we write X==S for the space obtained by collapsing all hyperplanes
in S (in any order). The collection S is acyclic if the collapse map X!X==S is a homotopy equivalence.

If H is a hyperplane in X with carrier �.H/, we can obtain a new cube complex by doubling �.H/ (see
Figure 2). We will refer to this as duplicating the hyperplane H. The resulting cube complex has two

Figure 2: Duplicating a hyperplane.

Algebraic & Geometric Topology, Volume 25 (2025)
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new hyperplanes H 0 and H 00, and collapsing either recovers the original complex X. We say H 0 and H 00

are parallel. A hyperplane is called a duplicate if it is parallel to another hyperplane.

3.2 Blowups

The blowup S…� associated to a compatible collection … of �-partitions is a special cube complex with
no separating hyperplanes and with some extra structure.

If � is discrete, then S…� is a finite connected graph with no separating edges or bivalent vertices, and the
extra structure consists of a maximal tree T and an orientation and label on each edge in S…� nT, where
the labels are the vertices of �. Each edge of T corresponds to a partition in …, determined by the labels
and orientations of the edges not in T.

If … is empty, then S…� is the Salvetti complex S� associated to A�. Recall that this is a cube complex
with a single 0-cell, one oriented 1-cell for each vertex of � and one k-torus for each k-clique in �. The
orientations on the 1-cells, which are labeled by vertices of �, determine an isomorphism �1.S�/Š A�,
and the cubical isomorphisms of S� can be identified with the automorphisms of the graph �.

In general, S…� has

� one hyperplane HP for each partition P 2…, and

� one hyperplane Hv for each vertex v 2 �.

The hyperplanes Hv are oriented, but the hyperplanes HP are not.

The set of hyperplanes labeled by partitions is acyclic, and the complex obtained by collapsing all
hyperplanes in this set is isomorphic to the Salvetti complex S� .

Collapsing a single hyperplane labeled by P 2… is equivalent to removing P from the collection ….
In particular, collapsing every hyperplane in … other than P results in a single blowup SP. This has
exactly two vertices x1 and x2, and one can recover P D .lk.P/ jP1 jP2/ from SP by looking at the
(oriented!) edges dual to the hyperplanes Hv: if there is only one edge dual to Hv and it terminates at xi ,
then v 2 Pi ; if it originates at xi , then v�1 2 Pi . If there are two edges dual to Hv , then v 2 lk.P/. The
carrier of HP in SP is isomorphic to the product of an interval with the Salvetti for lk.P/.

3.3 � -complexes

Definition 3.1 A cube complex is called a �-complex if it is isomorphic to the underlying cube complex
of a blowup S…� . A blowup structure on a �-complex X is a labeling of its hyperplanes that identifies X
with a blowup S…� , ie hyperplanes are labeled by �-partitions or by vertices of �, and the hyperplanes
labeled by vertices are oriented. A blowup structure determines a collapse map c� WX!S� that collapses
all hyperplanes labeled by partitions. If v 2 �, a characteristic cycle for v is a closed edge path which
crosses each hyperplane at most once, and whose image under c� is the loop labeled v.

Algebraic & Geometric Topology, Volume 25 (2025)
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In general, a �-complex may have several different blowup structures. For example, if � is discrete, a
�-complex is a graph, which may have several different maximal trees, and the remaining edges may be
oriented and labeled with the vertices of � in any way.

Definition 3.2 A set T of hyperplanes in a �-complex is called treelike if collapsing T gives a cube
complex isomorphic to S� .

The following proposition says that any treelike set of hyperplanes in a �-complex is the set of hyperplanes
labeled by partitions in at least one blowup structure. The only ambiguity comes from the assignment
of labels and orientations to the hyperplanes not in the treelike set, which can be permuted by any
automorphism of the graph �. If this assignment changes, the partitions labeling the hyperplanes in the
tree also change, by the same (signed) permutation of vertices.

Proposition 3.3 Let T be a treelike set of hyperplanes in a �-complex X. Then there is a compatible
set of �-partitions … and an isometry X Š S…� , such that T is the set of hyperplanes associated to the
partitions in ….

Proof We recall the construction. For complete details see [4, Section 4].

Label the edges dual to each hyperplane H 2 T by H. Choose an isomorphism of X==T with S� ; this
orients each hyperplane that is not in T and labels its dual edges by a vertex of �. The set of cubes in X
with all edge labels in T forms a CAT(0) subcomplex C that contains all vertices of X. A hyperplane
H 2 T cuts C into two pieces, so partitions the vertices of X into two sets, v1.H/ and v2.H/. Now
form a partition .lk.H/ jU1 jU2/ of V ˙ as follows:

(1) If the hyperplane Hv labeled by v intersects H, then v and v�1 are in lk.H/.

(2) If Hv \H D∅ and the terminal vertex of an edge dual to Hv is in vi .H/, then v 2 Ui .

(3) If Hv \H D∅ and the initial vertex of an edge dual to Hv is in vi .H/, then v�1 2 Ui .

Then the partition .lk.H/ jU1 jU2/ is a �-partition, the set of �-partitions for all H 2 T is a compatible
collection …, and X is isomorphic to S…� .

We note that condition (1) in the proof of Proposition 3.3 is equivalent to saying that, in the universal
cover fS…� , some lift of H contains an axis for v. Saying that v and v�1 are in different Pi is equivalent
to saying that an axis for v in fS…� intersects some lift of H transversally; in this case we say the axis
skewers H. Saying v and v�1 are in the same Pi is equivalent to saying that no axis for v intersects any
lift of H.

If we are given a special cube complex X which we do not know a priori is a �-complex, then, to prove
that it is, we first need to find an acyclic collection T of hyperplanes which collapses to give a cube
complex isomorphic to S� . Choosing an isomorphism X==TŠ S� gives a labeling and orientation on
all of the remaining hyperplanes. We then need to check that each hyperplane H 2 T determines a
�-partition. We can do this by collapsing all hyperplanes other than H to get a complex with two vertices,
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then checking whether the location of the initial and terminal vertices of edges labeled by v 2 � gives a
valid �-partition. By Proposition 3.3, the partitions for one treelike set T are all �–partitions if and only
if this holds for every treelike set.

3.4 Subdividing blowups

In a blowup S…� , no two hyperplanes are parallel, ie there are no duplicate hyperplanes. However, in
the arguments that follow we will need to allow cubical subdivisions of blowups that result in duplicate
hyperplanes. Duplicating HP can be thought of as subdividing its carrier �.HP/, and is equivalent to
adding a duplicate copy of P to …. We want both of the new hyperplanes we have created to be in the
treelike set since we must collapse both to recover S� . Subdividing the carrier of Hv is a little subtler;
here we want only one of the two new hyperplanes to be added to the treelike set, so that collapsing
the treelike set still gives S� . In other words, when we duplicate Hv, we want one of the two resulting
hyperplanes to be labeled Hv , and the other to correspond to a partition. We also need the new Hv to have
the orientation induced from the old Hv . This is accomplished by adding a “singleton partition” to …; this
is a partition based at v with one side containing only v (if we want the initial segment of the dual edge to
retain the v label) or v�1 (if we want the terminal segment to retain the v label). To make this a canonical
operation, we can consistently use the singleton partition Sv�1 D

�
lk˙.v/ j fv�1g j .V n lk.v//˙ n fv�1g

�
,

so that the terminal segment always retains the v label.

Note that duplicate partitions fit the definition of “compatible with each other”, and a singleton partition
is compatible with every �-partition. A set of pairwise compatible partitions that is allowed to have
singletons and duplicates will be called a compatible multiset. By the above remarks, compatible multisets
correspond to subdivided blowups.

4 U 0-invariant subgraphs

Recall that a marking on a �-complex is a homotopy equivalence h WX ! S� . Let G be a finite group
and � WG! Out.A�/ a homomorphism.

Definition 4.1 A marked �-complex .X; h/ realizes � if there is an action f WG! Aut.X/ of G on X
by cubical automorphisms such that h ıf .g/ ı h�1 induces �.g/ on �1.S�/D A� for all g 2G.

Our goal is to build a marked �-complex that realizes (the inclusion of) a finite subgroupG<U 0.A�/. Our
approach is inductive. Specifically, we will build our �-complex by gluing together marked �-complexes
for subgraphs � which are U 0-invariant, in the sense that elements of U 0.A�/ preserve the special
subgroupA� (up to conjugacy). We will induct on the length of a maximal chain ofU 0-invariant subgraphs.
In this section we prepare for this by establishing some basic facts about U 0-invariant subgraphs.

Definition 4.2 Given � 2 Out.A�/, a subgraph � of � is �-invariant if y�.A�/ is conjugate to A� for
some lift y� of � to Aut.A�/. Since any two such lifts differ by an inner automorphism, this is well
defined. A subgraph � is U 0-invariant if it is �-invariant for every � 2 U 0.A�/.
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The next lemma gives a criterion for U 0-invariance.

Lemma 4.3 Let� be a subgraph of �. Then� is U 0-invariant if and only if the following two conditions
hold for all x; y 2 �:

(i) If x 2� and lk.x/� lk.y/, then y 2�.

(ii) If � intersects more than one component of � n st.y/, then y 2�.

Proof Since every subgraph �� � is invariant under inversions, a subgraph � is U 0-invariant if and
only if it is invariant under the remaining generators of U 0.A�/, ie all folds and partial conjugations.
There is a fold � W x 7! xy if and only if lk.y/� lk.x/, so � maps x 2� to A� if and only if y 2�. If �
intersects two different components C and C 0 of � n st.y/, then A� is sent to a conjugate of itself under
the partial conjugation C 7! yCy�1 if and only if y 2�.

Proposition 4.4 Let � be a simplicial graph.

(1) If † is a subgraph of �, then �D lk.†/ is U 0-invariant.

(2) If �1 and �2 are two U 0-invariant subgraphs of �, then �1\�2 is U 0-invariant.

(3) If �1 and �2 are two U 0-invariant subgraphs of � whose join �1 ��2 is also a subgraph , then
�1 ��2 is U 0-invariant.

(4) If † is a nonsingleton connected component of a U 0-invariant subgraph �, then † is U 0-invariant.

(5) If � is U 0-invariant and N.�/ is the subgraph spanned by � and all vertices adjacent to �, then
N.�/ is U 0-invariant.

Proof In each case we check conditions (i) and (ii) of Lemma 4.3:

(1) (i) x 2�D lk.†/ if and only if †� lk.x/. If lk.x/� lk.y/, then †� lk.y/, so y 2 lk.†/.

(ii) Suppose that � D lk.†/ intersects two different components C1 and C2 of � n st.y/, say
x1 2 C1\� and x2 2 C2\�. If z 2†, then x1 and x2 are both connected to z, so z must be
in lk.y/. Thus, †� lk.y/, so y 2 lk.†/.

(2) (i) Let x 2�1\�2. If lk.y/� lk.x/, then y 2�1 by invariance of �1; similarly, y 2�2, so y
is in the intersection.

(ii) If �1\�2 intersects two components of � n st.y/, then the same is true of both �1 and �2,
so y is in both.

(3) (i) If x 2�1 and lk.y/� lk.x/, then y 2�1, and similarly if x 2�2.

(ii) Suppose�D�1��2 intersects two different components C and C 0 of �nst.y/. Let x 2C\�
and x0 2 C 0 \�. Then x and x0 must be in the same �i , since otherwise there is an edge
connecting them. But �i is U 0-invariant, so y 2�i ��.

(4) (i) Suppose x 2†, and lk.y/� lk.x/. Since † is not a singleton, lk.x/\† contains a vertex z.
Since z is in the links of both x and y, y is also in †.

Algebraic & Geometric Topology, Volume 25 (2025)



2422 Corey Bregman, Ruth Charney and Karen Vogtmann

(ii) Suppose x; z 2 † are in different components of � n st.y/. Since � is U 0-invariant, this
implies y 2�, but then st.y/ cannot separate x from z unless y 2†.

(5) (i) If x 2 N.�/, then either x 2 � or lk.x/\�¤ ∅. If the distance from y to � is at least 2,
then lk.y/\�D∅, so lk.x/ 6� lk.y/.

(ii) If y … N.�/, then �\ st.y/D ∅. Since � is U 0-invariant, it lies in a single component of
� n st.y/, so all x 2N.�/ n st.y/ must lie in the same component.

Recall from [1] that two vertices are called fold-equivalent if they have the same link in �, and we order
the set of fold-equivalence classes by inclusion of their links. The following two propositions will allow
us to establish the base case of our induction.

Proposition 4.5 Let �� � be a minimal U 0-invariant subgraph. Then � is a maximal fold-equivalence
class. In particular , � is discrete.

Proof If Œu� is a maximal fold-equivalence class, then it is easy to check using Lemma 4.3 that Œu� is
U 0-invariant. On the other hand, if � � � is any U 0-invariant subgraph, then � contains a maximal
equivalence class Œu� by condition (1) of Lemma 4.3, so Œu�D� by the minimality of �.

Proposition 4.6 Let � be a U 0-invariant subgraph of �. Then there is a restriction homomorphism
r� W U

0.A�/! U 0.A�/.

Proof Let � be an element of U 0.A�/. Since � is U 0-invariant, there is a lift y� of � to Aut0.A�/ with
y�.A�/D A�. Define r�.�/ to be the image in Out.A�/ of the restriction of y� to A�.

To check that r� is well defined, suppose y�0 is another lift of � sending A� to itself. Then y�0 D �g ı�,
where �g is conjugation by some g 2 A� that normalizes A�. By [3, Lemma 2.2], the normalizer of A�
is A� �Alk.�/. Since elements of Alk.�/ act trivially by conjugation, y�0 D �h ı y� for some h 2 A�, ie
the images of y� and y�0 in Out.A�/ are equal. Moreover, if �1 and �2 are two elements of U 0.A�/ and
� D �1 ı �2, then y� D y�1 ı y�2 is a lift of � which preserves A�. Thus, r� W U 0.A�/! Out.A�/ is a
homomorphism.

To see that this lands in U 0.A�/, we check that this is the case for the generators of U 0.A�/. Let �
be a generator that lifts to a fold y� W x 7! xy, so lk.x/� lk.y/. If x …�, then y� restricts to the identity
on A�. If x 2�, then U 0-invariance of � implies that y is also in �, so the restriction is the lift of a fold
in U 0.A�/. Now suppose y� is a partial conjugation by x. If x …�, then the fact that � is U 0-invariant
implies that � lies entirely in one component of � n st�.x/, so the action of y� to A� is trivial. If x 2�,
then st�.x/� st�.x/, so the components of �n st�.x/ are contained in components of � n st�.x/. Thus,
y� restricts to a (product of) partial conjugation(s) by x on A�.

Definition 4.7 If � is a U 0-invariant subgraph and f WH ! U 0.A�/ is any homomorphism, we call
f� D r� ıf WH ! U 0.A�/ the restriction of f to �.
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5 U 0-invariant subcomplexes of marked � -complexes

Throughout this section we assume � � � is a U 0-invariant subgraph with lk.�/ D ∅ and .X; h/ is
a �-complex with an untwisted marking. This means that, for any blowup structure S…� on X with
associated collapse map c� WX! S� , the composition c�h�1 induces an untwisted automorphism of A�,
that is, an element of U.A�/. The aim is to identify a subcomplex X� �X which is invariant under the
action of isometries that induce elements of U 0.A�/. The reason for the restriction that lk.�/D∅ is
that in this case the subcomplex X� is unique. Remark 5.8 discusses the general case.

The following lemma deals with the discrepancy between the subgroups U.A�/ and U 0.A�/.

Lemma 5.1 If X is a �-complex with an untwisted marking h, then X has a blowup structure S…� with
collapse map c� WX D S…� ! S� such that .c�h�1/� 2 U 0.A�/.

Proof U 0.A�/ is normal in the untwisted subgroup U.A�/ of Out.A�/, and the quotientQ is a subgroup
of Aut.�/, the group of graph automorphisms of �. The short exact sequence

1! U 0.A�/! U.A�/!Q! 1

splits, so U.A�/D U 0.A�/ÌQ.

Let S…� be any blowup structure on X such that .c�h�1/� is untwisted. By the above observation, if
.c�h

�1/� is not in U 0.A�/, we can compose it with a graph automorphism ˛ to produce an element
of U 0.A�/. Realize ˛ by an isometry f˛ of S� . Composing c� with f˛ is equivalent to changing the
labels and orientations of the vertex-labeled hyperplanes in S…� by ˛; this changes the partitions by the
same relabeling, giving a new set of partitions ˛…. In other words, this gives a blowup structure S˛…�
on X such that .h�1c˛…/� 2 U 0.A�/.

Now fix a blowup structure S…� on X such that .c�h�1/� 2 U 0.A�/. In any �-partition, all bases have
the same link. Since � is U 0-invariant, Lemma 4.3 implies that either all bases of a partition in … are
in �, or none are. So we may write … D fQ1; : : : ;Qk;P1; : : : ;Plg, where the Qi are based in � and
the Pj are based in � n�.

Lemma 5.2 Each Pi has a unique side P�i such that�˙�P�i [lk.P/ and�˙\P�i ¤∅. Furthermore ,
if Pi and Pj are not adjacent , then P�i \P

�
j ¤∅.

Proof Let yi 2 � n� be a base for Pi . Recall that we have assumed lk.�/ is empty; this implies that
� n st.yi / is nonempty. Since � is U 0-invariant, it intersects at most one component of � n st.yi /. Each
side of Pi is a union of components of � nst.yj /. Thus, there is a unique side P�i such that�˙\P�i ¤∅
and �˙ � P�i [ lk.Pi /˙.

If Pi and Pj are compatible but not adjacent and P�i \P
�
j D∅, then P�i \ lk.Pj /DP�j \ lk.Pi /D∅

as well (see [1, Lemma 2.9]), forcing �˙ � lk.Pi / \ lk.Pj /. This contradicts our assumption that
�˙\P�i ¤∅.
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Figure 3: Left: a graph � and U 0-invariant subgraph �. Right: four different �-partitions with
the same link and their restrictions to�˙. In the restriction, the innermost and outermost partitions
become trivial and the middle two become equal.

Recall from [4] that vertices of S…� correspond to collections fQ�1 ; : : : ;Q
�
k
; P�1 ; : : : ; P

�
l
g, where the

superscript � indicates a choice of side. Each pair of sides in the collection must be consistent, which
means either they intersect nontrivially or their bases commute. We define K� to be the subcomplex
of S…� consisting of vertices of the form fQ�1 ; : : : ;Q

�
k
; P�1 ; : : : ; P

�
l
g, edges obtained by switching a

side of some Qi or labeled by some v 2�, and all higher-dimensional cubes spanned by these edges.

Proposition 5.3 The subcomplex K� is a subdivided blowup of S�.

Proof Let fQ1; : : : ;Qkg be the partitions of … based in �, let � be the multiset of �-partitions obtained
by intersecting the Qi with �˙ (see Figure 3), and let S�� be the corresponding subdivided blowup.
If the bases of Qi and Qj don’t commute, then exactly one pair of sides has empty intersection (see
[4, Lemma 3.6]). The Qi \�

˙ are �-partitions, and the corresponding pair of sides still has empty
intersection. This means that they are compatible, and all other pairs of sides must intersect. Since the Qi

are based in�, this means that fQ�1 ; : : : ;Q
�
k
g is consistent in �˙ if and only if fQ�1 \�

˙; : : : ;Q�
k
\�˙g

is consistent in �˙, ie defines a vertex of S��. Note that, for each j D 1; : : : ; k, either Pi is adjacent
to Qj or P�i intersects both sides of Qj nontrivially, since Qj splits its own base, which is in � n lk.Pi /.
Therefore, the map sending

fQ�1 \�
˙; : : : ;Q�k \�

˙
g ! fQ�1 ; : : : ;Q

�
k ; P

�
1 ; : : : ; P

�
l g

is well defined, and induces an isomorphism of S��

� with K�.

A priori, our marking h WX ! S� maps K� to S� , but we can adjust it within its homotopy class to map
K� to S�. This is because hD u ı c� , where u W S� ! S� induces an element � 2 U 0.A�/. We can
choose a representative y� 2 Aut.A�/ that sends A� to itself, so, adjusting u by a homotopy, we get a
map sending S� to itself. Since c� sends K� to S�, we may assume the composition hD uıc� restricts
to a marking on K�.
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We constructed the subcomplex K� �X using the blowup structure that we chose on X. We now show
that K� is essentially independent of this choice.

Proposition 5.4 The subcomplex K� is independent of the blowup structure S…� as long as this blowup
structure satisfies .c�h�1/� 2 U 0.A�/.

Proposition 5.4 can be proved combinatorially by keeping track of how the partitions change when we
change the treelike set of hyperplanes or the labelings and orientations on the hyperplanes not in the treelike
set. Being based in � turns out to be a property of hyperplanes in the treelike set, independent of the
partitions used to describe them. The same is true for the property of being the�-side of a hyperplane based
in � n�. Since these properties are what is used to define K�, the subcomplex K� itself is independent
of the blowup structure. Furthermore, an isometry f WX !X satisfying .hf h�1/� 2 U 0.A�/ preserves
these properties, so preserves K�.

Below we give a different proof of Proposition 5.4 in terms of the action of A� on zX determined by h.
This proof is more in the spirit of our previous paper [1] and more amenable to generalization. We
continue to assume that lk.�/D∅.

The universal cover zX is a CAT(0) cube complex, and we will take advantage of the following facts
about isometries of CAT(0) cube complexes. We say that a hyperbolic automorphism g of a CAT(0) cube
complex skewers a hyperplane H if some axis for g crosses H transversely.

Lemma 5.5 Let g be a hyperbolic automorphism of a CAT (0) cube complex zX and letH be a hyperplane
in zX . If some axis for g skewers H, then every axis for g skewers H. If no axis for g skewers H, then
either all axes for g are on the same side of H, or H contains an axis for g.

Proof Let ˛1 and ˛2 be two axes for g. Suppose ˛1 crosses H but not ˛2 does not. Let HC denote
the half-space containing ˛2 and H� the complementary half-space. Set ˛˙1 DH

˙ \ ˛1. Let 
 be a
geodesic connecting a point in ˛�1 to a point in ˛2. Any such path must cross H.

The action of g preserves both axes, so either g or g�1 maps ˛C1 into itself. Without loss of generality,
assume g.˛C1 /� ˛

C
1 or, equivalently, ˛�1 � g.˛

�
1 /. Consider the action on zX by positive powers of g.

Since H does not intersect ˛2, the hyperplanes gkH also do not intersect ˛2. Thus, gkH separates ˛�1
from ˛C2 for all k > 0. But this means that the path 
 must cross infinitely many hyperplanes, which is
impossible.

Now suppose ˛1 and ˛2 lie on opposite sides of H. The min set of g decomposes as an orthogonal
product of an axis ˛ and a convex subspace of zX. It follows that ˛1 and ˛2 span a strip ˛� I for some
interval I. This strip intersects H in a convex set which separates these two axes. Any such set must
contain ˛�y for some point y 2 I.
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Proof of Proposition 5.4 Fix a basepoint at a vertex x0 2X, and let p0 denote the base vertex of S� .
We may assume the marking h W X ! S� sends x0 to p0, so induces an isomorphism �1.X; x0/ Š

�1.S� ; p0/� A�. The collapse map c� WX D S…� ! S� gives another marking, and by construction the
composition � D .hıc�1� /� WA�!A� lies in U 0.A�/ (as an automorphism). Since A� is U 0-invariant,
� sends A� to a conjugate of itself. We may therefore homotope h, by dragging the basepoint p0 around
a loop in S� , so that � sends A� isomorphically to A�. If we choose a lift Qx0 of x0 to the universal
cover zX, we obtain two actions of A� on zX, one from h and the other from c� . Since � preserves A�,
this means that the axes for elements of A� under both actions coincide setwise.

Our goal will now be to characterize K� as subcomplex of X purely in terms of the U 0-marking
h WX ! S� , or equivalently, in terms of the action of A� on zX. The preceding paragraph implies that, if
we can characterize K� in terms of the set of axes of elements of A�, it does not matter whether we use
the action from h or c….

Now let H be the set of hyperplanes in zX that are not skewered by any element of A�. By Lemma 5.5,
this is the same set whether we are considering the action defined by h or by c� .

Claim If H 2H, then exactly one half-space HC � zX contains an axis for every element of A�.

Proof Let zK� be the lift of K� preserved by the action of A�. The lift zK� is convex, and hence is
connected and contains an axis for every element of A�.

Let H be a hyperplane in zX. We claim that H 2H if and only if H \ zK� D∅, so that all of zK� is on
the same side of H, and that side contains an axis for every g 2 A�.

If H \ zK� ¤∅, then zK� contains an edge dual to H. Lemma 3.10 of [1] implies that every edge in zK�
is in some axis for some g 2A�, so H is skewered by an element of A�, ie H is not in H. Conversely, if
H is skewered by an element g 2 A�, then, by Lemma 5.5, every axis for g skewers H, so in particular
some axis contained in zK� skewers H, so H intersects zK�.

If both half-spaces determined by H contain axes for every element of A�, then, by Lemma 5.5, H itself
contains an axis for every element of A�. Let eH be an edge dual to H. Then eH is contained in an axis
for some element w 2 A� , since that is true of every edge in zX, and w … A� since w skewers H. By [1,
Lemma 3.10], all of H is contained in the min set for w so w commutes with every element of A�, ie
A� has nontrivial centralizer. This contradicts the assumption that lk.�/D∅. G

We now define
zX� D

\
H2H

H�;

where H� DHC n �.H/ is the largest subcomplex of zX contained in HC. This is independent of the
blowup structure, and coincides with zK� for the action defined by c� . Therefore, the image K� of zX�
in X is independent of the blowup structure.
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Remark 5.6 In the terminology of [2], the set of hyperplanes H occurring in the proof of Proposition 5.4
are exactly those which are inessential for the action of A�. Indeed, by [2, Proposition 3.2(ii)], the
essential core Ess. zX;A�/ for the action of A� on zX consists of those hyperplanes skewered by some
axis of A�, ie the complement of H. Thus, the proposition asserts the existence of a convex subcomplex
of zX whose hyperplanes extend exactly to Ess. zX;A�/, and on which A� acts cocompactly.

Notation Since Proposition 5.4 shows that K� is independent of the blowup structure, we emphasize
this by using the notation X� instead of K� for the image of zX� in X.

Corollary 5.7 Let � be a U 0-invariant subgraph with lk.�/D∅, and G < U 0.A�/ a finite subgroup
which is realized on a �-complex X with an untwisted marking h WX ! S� . Then the restriction of G is
realized on .X�; hjX�

/.

Proof An element of G is realized by an isometry f W X ! X. An isometry of X sends any blowup
structure to a new blowup structure. If the isometry induces an element of U 0.A�/, we have shown that
X� has not changed, so f must send X� to itself.

Remark 5.8 We constructed X� assuming that lk.�/D∅. If this is not the case, we can look instead
at st.�/, which always has empty link. We will see in Section 7 that the complex for st.�/D�� lk.�/
breaks into a product X� �Xlk.�/, where X� and Xlk.�/ are �- and lk.�/-complexes, respectively.

6 Extendable �-complexes

Let � be a U 0-invariant subgraph of �, � W G ! U 0.A�/ a homomorphism from a finite group G
and .X; h/ a marked �-complex realizing �. In the last section we found a G-invariant �-complex
(possibly subdivided) sitting inside X. In this section we consider the opposite problem: given a marked
�-complex Y realizing the restriction �� WG! U 0.A�/, when can Y sit equivariantly inside a marked
�-complex? If there is such a marked �-complex, we say Y is extendable. To determine when Y is
extendable, we first define what it means for a �-partition to be extendable.

Definition 6.1 Let � � � be a U 0-invariant subgraph and let Q be a �-partition. We say that Q is
extendable if there exists a �-partition yQ such that yQ\�˙ D Q.

Proposition 6.2 Let � be a U 0-invariant subgraph of � and Q a �-partition. Then Q is extendable if
and only if there is some base m of Q such that

(1) lk�.v/� lk�.m/ for every v split by Q, and

(2) if v1 and v2 are in the same component of � n st�.m/, then v˙1 , v˙2 are all in the same side of Q.

Proof The “only if” direction is immediate, since any extension of Q is a �-partition. Note that any
extension of Q also splits m. In fact, it has to be based at m since � is U 0-invariant, which implies there
is no v 2 � n� with lk.v/� lk.m/.
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For the converse, suppose QD .lk˙�.m/ jQ1 jQ2/ satisfies conditions (1) and (2). We build a �-partition
.lk˙� .m/ j yQ1 j yQ2/ based at m as follows.

If v 2 lk�.m/, then v 2 lk�.m/. If v (resp. v�1) is in Qi , put v (resp. v�1) in yQi . This determines where
to place all v˙1 for v 2�.

Now suppose v 2� n.�[st�.m// and let C be the component of � nst�.m/ containing v. If C \�D∅,
put all vertices of C and their inverses in the same side of yQ (either side will do). If C \� is nonempty,
then some side Qi of Q contains an element w 2�. We must have w�1 2Qi as well, since otherwise
lk.w/� lk.m/ by condition (1), which would imply that w was the only vertex of C. By condition (2),
the side Qi is independent of the choice of w. Put all vertices of C and their inverses into yQi .

Definition 6.3 A blowup S�� is extendable if every Q 2 � is extendable. Note we are not assuming
the extended partitions are compatible. A �-complex is extendable if it can be given the structure of an
extendable blowup.

Remark 6.4 It is not hard to show that, if a �-complex is extendable with respect to one blowup
structure, then it is extendable with respect to any blowup structure, but we will not need this fact.

6.1 U 0-invariant subgraphs and extendability

In this subsection we give a condition that guarantees that a �-complex realizing �� is extendable.

Definition 6.5 A G-action on a �-complex X is reduced if no orbit of hyperplanes is contained in any
treelike set. A marked �-complex .X; h/ realizing � WG!Out.A�/ is reduced if the associated G-action
on X is reduced.

If a marked �-complex .X; h/ realizing � is not reduced, then some orbit G:H is acyclic since it is
contained in the treelike (acyclic) set associated to some blowup structure on X. We can collapse every
hyperplane in G:H to produce a new marked �-complex. The following lemma guarantees that the new
�-complex still realizes �.

Lemma 6.6 Let X be an NPC cube complex and let G � Isom.X/ be a subgroup. Suppose S is a
collection of hyperplanes that is acyclic and G-invariant. If G ! Out.�1.X// is injective , then the
collapse map c WX !X==S induces an injection G! Isom.X==S/.

Proof Let � D �1.X/. Since S is acyclic, c is a homotopy equivalence. The fact that G preserves S

means there is an induced map Nc WG! Isom.X==S/. We obtain a commutative diagram

(1)

G //

Nc
��

Out.�/

Š

��

Isom.X==S/ // Out.�/

By assumption, G � Isom.X/ injects into Out.�/; hence, G also injects under Nc.
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Let .X; h/ be a marked �-complex realizing �. By Lemma 6.6, we may continue to collapse G-orbits of
hyperplanes until we obtain a reduced marked �-complex realizing �. Note that the result of this process
is not unique, but depends on the set of orbits we choose to collapse.

In Section 5 we produced a subcomplex X� of X for any U 0-invariant subgraph � with empty link.
If .X; h/ is reduced, then in any blowup structure the orbit of any hyperplane labeled by a partition P

contains a hyperplane labeled by an element of V. Since the action of G preserves the subcomplex X�,
the same must be true for orbits in X�, so the action of G on X� is also reduced. As an example, note
that, if .X; h/ is reduced and the restriction of G to U 0.A�/ is trivial, then the subcomplex X� must
be equal to the Salvetti complex S�. This follows since no nontrivial blowup of S� is reduced with
respect to the trivial action. Thus, reduced realizations of G may be thought of as “minimal” �-complexes
realizing G.

Let � be a U 0-invariant subgraph of �. The next proposition states that being reduced is sufficient to
guarantee extendability for any �-complex realizing the restriction ��.

Proposition 6.7 Let .X�; h�/ be a marked �-complex that realizes ��. If the action of G on X� is
reduced , then X� is extendable.

Proof Let V be the set of vertices in �. Choose a blowup structure X� Š S��. Since the G-action is
reduced, for every Q 2� there exists g 2G such that g:HQ DHw for some w 2 V. By Proposition 6.2,
in order to verify extendability we must show:

(i) There is some base m of Q such that lk�.v/� lk�.m/ for every v split by Q.

(ii) If v1 and v2 are in the same component of � n st�.m/, then v˙1 , v˙2 are all in the same side of Q.

Proof of (i) Let � be a characteristic cycle for v in S��. The image g:� is a path that crosses each
hyperplane of S�� at most once, so the edge labels that are not in � spell a cyclic word that is the image
of v under g,

(2) g.v/D x
�1

1 � � � x
�k

k
;

where all the xi are distinct and �i D˙1.

Claim 6.8 If xi 2 V labels an edge in g:�, then lk�.v/� lk�.xi /. If Q 2� labels an edge in g:�, then
Q splits some xi .

Proof The double link dlk.v/D lk.lk.v// is U 0-invariant by Proposition 4.4(1). Since v 2 dlk.v/, this
implies that each xi appearing in (2) must be in dlk.v/, ie lk�.v/ � lk�.xi /. Now suppose Q labels
an edge of g:� for some Q 2�. We claim that Q splits at least one of the xi . Indeed, after choosing a
basepoint �2X�, we see that g:� is freely homotopic to a concatenation of edge paths �1�2 � � � �k , where
�i is an edge path based at � representing the element xi . Each �i is freely homotopic to a characteristic
cycle for xi ; hence, �i crosses the hyperplane HQ an odd number of times if and only if Q splits xi . Since
�1 � � � �k is freely homotopic to g:� and g:� crossesHQ exactly once, we must have that Q splits some xi . G
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The proof of (i) now follows directly from the following claim.

Claim 6.9 For every Q 2�, there exists m 2 split.Q/ such that lk�.v/� lk�.m/ for every v 2 split.Q/.
Moreover , defining lk�.Q/D lk�.m/, the action of G preserves lk�.E/ for every edge label E 2 V [�.

Proof Define an increasing filtration ∅D V0 ¨ V1 ¨ � � �¨ Vr D V, where, for i � 1, Vi nVi�1 consists
of all v 2 � such that lk�.v/ is maximal among elements of V n Vi�1. Every partition E in � splits
some element of V, so we can extend this to an increasing filtration ∅D F0 ¨ F1 ¨ � � �¨ Fr D V [�,
by letting E 2 Fi if HE splits some generator of Vi . We will prove by induction that:

(a) For every Q 2 Fi , there exists m 2 split.Q/\Vi such that lk�.v/� lk�.m/ for every v 2 split.Q/.

(b) Define lk�.Q/D lk�.m/; then, for any A;B 2 Fi , if g:HA DHB , then lk�.A/D lk�.B/.

The base case F0 D∅ holds vacuously. Suppose by induction that, for some i � 1, we have verified (a)
and (b) for Fi�1. Since the G-orbit of every HQ contains Hw for some w 2 V, it follows from (b) that
Fi�1 is the union of all G-orbits of elements of Vi�1. Consider now Q 2 Fi nFi�1. Then any generator
in split.Q/ lies in V nVi�1, and Q splits somem2Vi nVi�1. Let g 2G be such that g:HQDHw for some
w 2 V. For any v 2 split.Q/, we know that lk�.v/� lk�.w/ by Claim 6.8. In particular, lk�.m/� lk�.w/
and therefore w 2 Vi . On the other hand, since Fi�1 is a union of G-orbits and does not contain Q, we
know that w … Vi�1. Hence, w 2 Vi nVi�1 and therefore lk�.w/D lk�.m/ as m is maximal among all
elements of V nVi�1. It follows that lk�.v/� lk�.w/D lk�.m/ for any v 2 split.Q/, which proves (a).

Let � be a characteristic cycle for v 2 Vi nVi�1. Claim 6.8 implies that any hyperplane crossed by g:� has
a �-link that contains lk�.v/, and hence its label is in Fi . Since Fi�1 is a union of G-orbits, if some label
appearing in g:� is not in Fi�1, it must be in Fi nFi�1, and therefore is equivalent to v. In particular, if
g:Hv DHA, then lk�.A/D lk�.v/. Since every label in Fi nFi�1 appears in such an orbit, we conclude
that G preserves the �-link of each element of Fi , which proves (b) and completes the inductive step. G

Proof of (ii) Suppose Q 2� is based at m and v˙1 , v˙2 lie on opposite sides of Q. Since X� is a blowup
of S�, we know that v1 and v2 lie in different components of � n st�.m/. We must show that they lie in
different components of � n st�.m/.

As shown in [1], the inverse image of the (unique) vertex of S� under the collapse map S��! S� is
a CAT(0) subcomplex of S��, consisting of cubes whose edges are all labeled by partitions. Denote
this subcomplex by C�. Choose a minimal length edge path ˛ in C� between any characteristic cycle
for v1 and any characteristic cycle for v2. Then ˛ crosses exactly those hyperplanes labeled by partitions
containing v˙1 and v˙2 on opposite sides. In particular, it crosses the hyperplane labeled Q. For i D 1; 2,
let �i be a characteristic cycle for vi starting at either end of ˛, and consider the edge path 
 D �1˛�2 x̨.
Under the collapse map to S�, the loop 
 represents the element v1v2. Observe that, by the minimality
of ˛, the hyperplanes crossed by ˛, �1 and �2 are pairwise disjoint. Given an element g 2G, we have

g�.
/D g�.�1/g�.˛/g�.�2/g�.x̨/D g�.�1/g�.˛/g�.�2/g�.˛/:
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Since ˛, �1 and �2 cross each hyperplane of X� at most once, and cross pairwise distinct sets of
hyperplanes, the same is true of g�.˛/, g�.�1/ and g�.�2/. Therefore, the hyperplanes crossed by g�.
/
that are not labeled by partitions define a (cyclic) word in the generators that is the image of v1v2 under
the action of g. Thus, we may write g�.v1v2/D w1uw2u�1, where

uD y
ı1

1 � � �y
ır
r

is a word in pairwise distinct generators yj and ıj D˙1.

Since X� is reduced, there exists some g 2G such that g maps the hyperplane labeled P to a hyperplane
labeled by one of the yj , and, by Claim 6.9, m and yj belong to the same �-equivalence class. It thus
suffices to prove that v1 and v2 lie in different components of � n st.yj / for each j.

For any vertex v in �, dlk.v/ is U 0-invariant, up to conjugacy. Thus, the cyclically reduced form of the
word g�.v1/, namelyw1, must be a word in dlk.v1/, and similarlyw2 must be a word in dlk.v2/. Choosing
the representative of g� in Aut.A�/ to be one that takes v1 to w1, we then have g�.v2/ D uw2u�1,
where u is a product of generators yi such that st.yi / separates some element of dlk.v1/ from some
element of dlk.v2/. But, in this case, st.yi / must also separate v1 from v2, as required.

7 � -complexes for joins and disjoint unions

In this section we describe procedures for constructing �-complexes realizing G when � is either a join
or a disjoint union of U 0-invariant subgraphs realizing the restriction of G. We begin with the case where
� D �1 ��2 is a join, which is straightforward.

Proposition 7.1 If � D �1 ��2, then any �-complex is a product of a �1-complex and a �2-complex.
Conversely, any product of a �1-complex and a �2-complex is a �1 ��2-complex.

Proof Suppose S…� is a blowup structure on a �-complex X. Write

…D fP1; : : : ;Pk;Q1; : : : ;Qlg;

where Pi is based at xi 2 �1 and Qj is based at yj 2 �2. (Note that, if one base is in �i , then all bases are
in �i .) Since � D �1 ��2, every xi is adjacent to every yj , intersecting each Pi with V ˙.�1/ gives a
�1-partition P1i , and intersecting each Qj with V ˙.�2/ gives a �2-partition Q2j . Thus, … is a compatible
collection of �-partitions if and only if …1 D fP11; : : : ;P

1
k
g is a compatible collection of �1-partitions

and …2 D fQ21; : : : ;Q
2
l
g is a compatible collection of �2-partitions. We conclude that X is a product of

the �i complexes with blowup structures S…1

�1
and S…2

�2
, respectively.

Proposition 7.2 Suppose � D �1 ��2 and let � W G! U 0.A�/ be a homomorphism. Then �1 and �2
are U 0-invariant and , if .Xi ; hi / for i D 1; 2 are marked �i -complexes that realize the restrictions �i
of � to �i , their product X� DX1 �X2, equipped with the product action of G and the product marking
hD h1 � h2, is a marked �-complex realizing �. Moreover , the action of G on X� given by � is reduced
if and only if the actions on X1 and X2 are.
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Figure 4: Building a �-complex for a disjoint union � D �1 t�2 t�3 tƒ.

Proof Observe that �1D lk.�2/ and �2D lk.�1/; hence, by Proposition 4.4, both are proper U 0-invariant
subgraphs. For i D 1; 2, suppose Xi is a �i -complex and that hi WXi!S�i

is a marking which realizes the
restriction �i . DefineX� DX1�X2 and letG act via the product action. Blowup structures onX1 andX2
give a blowup structure to X1 �X2 by Proposition 7.1, and the product marking hD h1 � h2 WX� ! S�
realizes the action of G. The final statement of the lemma follows from the fact that hyperplanes of X�
are all of the form H1 �X2 for H1 a hyperplane of X1 or X1 �H2 for H2 a hyperplane of X2, and that
the action of G preserves the product decomposition.

We next consider the case when � is a disjoint union of (not necessarily connected) subgraphs. Given a
�i -complex Xi for each subgraph �i that is not a singleton, we construct a �-complex X that contains
each Xi as a subcomplex.

Definition 7.3 (�-amalgam) Suppose � is a disjoint union �1 t � � � t�k tƒ, where ƒ is discrete. Let
Zƒ be a graph satisfying:

� The rank of Zƒ is equal to jƒj.

� k vertices of Zƒ are labeled by f1; : : : ; kg.

� Any unlabeled vertex of Zƒ has valence at least 3.

For each i 2 f1; : : : ; kg, let Xi be a �i -complex. Form a new cube complex Y� , called a �-amalgam, as
follows. For each vertex v of Zƒ, set Xv DXi if v is labeled by i , and set Xv to be a point otherwise.
Now construct a complex by starting from the disjoint union

F
Xv and attaching an edge from Xv to Xw

whenever fv;wg is an edge in Zƒ. When Xv D Xi , we may attach the edge anywhere. The resulting
complex can be given the structure of a cube complex: if the endpoint of one of the added edges lies at
a point p in the interior of a cube C � Xi , we perform the cubical subdivision of C at p. Define the
resulting cube complex to be Y� . (See Figure 4.)

Observe that Y� contains a subdivided copy X 0i of Xi as a subcomplex for each i . Moreover, collapsing
each of these subcomplexes separately to a point defines a natural map Y� !Zƒ, which is a bijection
away from the Xi . Since each Xi is a �i -complex, it does not have any separating hyperplanes. It follows
that a hyperplane of Y� is separating if and only if it comes from a separating edge of Zƒ.
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�C1

��1 �C2
��2

X 02 X 03

H

Figure 5: Determining the �-partition associated to a hyperplane H in X� . All hyperplanes in
the treelike set forX 01 other thanH have been collapsed in this figure (see proof of Proposition 7.4).

Proposition 7.4 Let � D �1 t � � � t�k tƒ, where ƒ is discrete , and let Y� be a �-amalgam formed
from �i -complexes Xi and a graph Zƒ. Let X� be the complex formed from Y� by collapsing all
separating edges from Z� . Then X� is a �-complex , ie there exists a collection of �-partitions … such
that X� Š S…� .

Proof First note that the hyperplanes of X� consist of the hyperplanes of each X 0i (which remain in X 0i )
and the midpoints of nonseparating edges of Zƒ. Choose a subdivided blowup structure on each X 0i � Y� ,
corresponding to a compatible multiset of partitions …i . Then choose a maximal tree Tƒ in Zƒ and label
and orient the edges not in Tƒ by the elements of ƒ. Let T be the union of all hyperplanes with labels in
the …i and those dual to edges in Tƒ. Collapsing all hyperplanes in T gives the Salvetti S� .

To see that T is the treelike set for a blowup structure, we need to check that each H 2 T determines a
�-partition. Cut all edges of Zƒ that are labeled by elements of ƒ, labeling the initial half-edge ��1

and the terminal half-edge � (see Figure 5). Each hyperplane in T now determines an evident partition
of the vertices of �˙. First consider the partition associated to an edge e of Tƒ. Since we chose Tƒ
after collapsing each X 0i to a point, no element of �i is split by this partition. The fact that Zƒ has no
separating edges implies that the partition associated to e separates some � 2ƒ from its inverse, so this
gives a �-partition based at �.

A hyperplane in Xi partitions the vertices of �˙i , and the only new vertices of � that might be split are
in ƒ, so have empty links; hence, the resulting partition is still a valid �-partition with its original base.

We must also check that the duplicate partitions in the …i give distinct �-partitions, and the singleton
partitions in the …i give rise to legitimate �-partitions. Singleton and duplicate partitions in …i result
from attaching an edge e of Zƒ to the middle of a cube, which we then subdivide by duplicating all
hyperplanes that intersect the cube. The edge e lies on a characteristic cycle for some w 2ƒ.

Let H be one of the hyperplanes that has been duplicated to form new hyperplanes H 0 and H 00, so that
now e terminates at a point between H 0 and H 00. If H was labeled by a partition P in …i , the new
partitions P0 and P00 corresponding to H 0 and H 00 agree on �˙, but either w or w�1 (depending on the
orientation of the cycle) lies in opposite sides of the extensions of P0 and P00 to �-partitions. If H was
labeled by a vertex v, let H 0 be the duplicate hyperplane that did not get the label v, so H 0 corresponds
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to a singleton partition S. Then v (or v�1) and w (or w�1) lie on the same side of the extension of S

to �˙, so the corresponding �-partition is not a singleton.

In passing from Y� to X� in the proof of Proposition 7.4, we had to collapse the set of separating edges
in Z� . Since the collection of all separating hyperplanes in an NPC cube complex X is acyclic and
invariant under Aut.X/, Lemma 6.6 implies that collapsing them has no effect on realizing actions of
finite subgroups of Out.A�/ by isometries.

Proposition 7.5 Let � D �1 t � � � t �k t ƒ, where ƒ is discrete , and let � W G ! U 0.A�/ be a
homomorphism. If .Xi ; hi / are marked �i -complexes realizing the restriction of � to �i , then there exists
a marked �-complex .X� ; h/ realizing � such that each Xi is a subcomplex of X� and hjXi

D hi .

Proof Let xA� and xA�i
be the finite extensions of A� and A�i

, respectively, determined by G. We apply
[9, Proposition 7.5] to � D �1 t � � � t�k tƒ, with marked complexes .Xi ; hi / as input. The result is a
marked cube complex X realizing the action of G on A� . In the construction (see [9, Proposition 3.1 and
Theorem 4.1]), the marked complex .X� ; h/ is formed from a graph-of-groups decomposition of xA� . The
edge stabilizers are all finite, vertex stabilizers are the corresponding finite extensions of the xA�i

, and the
rank of the underlying graph is jƒj. Each vertex is then “blown up” to a (possibly subdivided) copy of Xi
equipped with the marking hi , to which edges are attached (see [9, Remark 7.7]), though we only subdivide
where necessary, ie where an added edge meets the interior of a cube. In particular, collapsing each of
the Xi separately to points yields a graph of rank jƒj. Thus, the hypotheses of Proposition 7.4 are satisfied,
and, by Lemma 6.6, the resulting marked �-amalgam .X� ; h/ is a marked �-complex which realizes �.

Remark 7.6 In Proposition 6.7, the hypothesis that action of G on X� is reduced is essential. In
Proposition 7.5, given a graph � D �1t� � �t�k tƒ and a collection of �i -complexes Xi , we constructed
a �-amalgam, X� , whose restriction to each �i is a subdivision of the given complexes Xi . While we
may assume that the original complexes Xi are reduced, the resulting subdivisions need not be, since a
subdivided ev edge has one segment labeled ev and the rest labeled by partitions. If X� is not reduced,
we can collapse an acyclic set of hyperplanes in X� so that the resulting complex X 0� is reduced, and
hence its restriction X 0i to each �i -subcomplex is also reduced. We claim that X 0i is still a subdivision
of the original Xi . To see this, note that, since the orbit of every edge eP in Xi contains an ev edge,
after subdividing, the orbit of at least one segment of this edge will also contains an ev edge. Thus, this
segment will not be collapsed in the reduction process.

8 Realizing finite subgroups of U 0.A�/

In this section we prove our main theorem.

Theorem 8.1 Let � be a simplicial graph , G a finite group and � W G ! U 0.A�/ a homomorphism.
Then there is a �-complex X with an untwisted marking h WX ! S� on which � is realized by isometries.
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„ ˆ ‚

�

�i

Figure 6: Subgraphs of � referred to in the proof of Theorem 8.1.

We are especially interested in the case that � is an inclusion, but the proof is inductive and the general
case is used in the induction. The proof borrows a number of ideas from [8].

Proof For any U 0-invariant subgraph �, we will say a marked �-complex .X�; h�/ “realizes G”
as shorthand for “realizes the restriction �� D r� ı � W G ! U 0.A�/”. Here the target of h� is the
subcomplex S� � S� .

We proceed by constructing marked�-complexes realizingG for larger and larger U 0-invariant subgraphs
� of �, until we have one for all of �. Specifically, we define the chain length `D `.�/ to be the length
of a maximal chain of U 0-invariant subgraphs ∅D �0 ¨ �1 ¨ � � �¨ �̀ ¨� and proceed by induction
on `.�/. At each stage we ensure that the G-action is reduced, so that the complexes we construct are
extendable.

If `.�/ D 0, Proposition 4.5 says that � is discrete, ie A� is a free group. The classical realization
theorem for free groups [5; 10; 15] says we can find a marked graph .X�; h�/ on which G is realized
by isometries. After collapsing G-invariant forests, we may assume X� is reduced (in particular has no
separating edges), so .X�; h�/ is the desired marked �-complex.

Now suppose `.�/D i � 1. Note that any proper U 0-invariant subgraph of � has chain length strictly
smaller than i , so we can construct marked complexes realizing G for any such subgraph by induction.
Fix a maximal U 0-invariant chain ∅ D �0 ¨ �1 ¨ � � � ¨ �i ¨ � and let ‚ D � n �i . The next claim
follows from maximality of the chain.

Claim If w;w0 2‚, then lk.w/\�i D lk.w0/\�i .

Proof By Proposition 4.4(5), the subgraph spanned by �i and all vertices adjacent to �i is invariant, so,
by maximality of the chain, either every element of ‚ is adjacent to �i , or none of them are. In the latter
case, the claim is vacuously true because lk.w/\�i D∅ for every w 2‚. In the former case, choose
w 2‚ such that lk.w/\�i is maximal, let W D fw0 2‚ j lk.w0/\�i D lk.w/\�ig and let �0 be the
subgraph spanned by �i and W.
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We will now show that �0 is U 0-invariant, so, by maximality of the chain, �0 D� and ‚ is the graph
spanned by W. By Lemma 4.3, we need to prove:

(1) If x 2�0 and lk.x/� lk.y/, then y 2�0.

(2) If �0 intersects more than one component of � n st.y/, then y 2�0.

We know that � is U 0-invariant, so, under the hypotheses of either (1) or (2), y must be in �. If y 2 �i ,
we are done, so assume instead that y 2‚. We need to show that y 2W. If x 2�0 and lk.x/� lk.y/,
the invariance of �i , together with the assumption that y … �i , guarantees that x … �i . That is, x 2W, so,
by maximality, y is also in W. In case (2), the invariance of �i guarantees that st.y/ does not separate �i ,
so either it separates �i from W, or it separates two elements of W from each other. In either case, we
must have lk.w/� st.y/, so lk.w/\�i � lk.y/\�i ; hence, y 2W. G

Now set ˆD lk.‚/\�i , and let .Xi ; hi / be a reduced marked �i -complex realizing G. Note that ˆ is
U 0-invariant by Proposition 4.4.

If ˆ D �i , then the above claim implies that � is the join �i � ‚, and that ‚ D lk.�i / \ �, so is
U 0-invariant. By induction, we can find a reduced marked‚-complex .X‚; h‚/ which realizes the action
of G, so, by Proposition 7.2, the product .Xi �X‚; hi � h‚/ is a �-complex realizing G.

If ˆD∅, then � is the disjoint union of �i and ‚, so, by Proposition 7.5, we can build a �-complex real-
izing G using .Xi ; hi / and complexes for the components of ‚ that are not singletons (these components
are U 0-invariant by Proposition 4.4(4)).

If ˆ is a proper subgraph of �i , let „D lk.ˆ/\�i (see Figure 6). Now

�D �i [ st�.ˆ/D �i [ .ˆ� .„t‚//

and �i \ st�.ˆ/Dˆ�„. Both ˆ and „ are U 0-invariant, so ˆ�„ is also U 0-invariant by Proposition
4.4(3). Since lk�i

.ˆ �„/D ∅, Xi contains a unique invariant (possibly subdivided) .ˆ�„/-complex
Xˆ�„ D Xˆ �X„ realizing G, by Corollary 5.7. We may choose hi so that it restricts to a marking
hˆ�„ D hˆ � h„ on Xˆ�„.

The subgraph st�.ˆ/ is also U 0-invariant, and we build a st�.ˆ/-complex Xst.ˆ/ realizing G as follows.
We first build a complex Xlk.ˆ/ for lk�.ˆ/D„t‚ using a copy of the complex X„ we already found
in Xi and complexes for the components of ‚ that are not singletons, as we did in the case that ˆD∅
above. After reducing, Proposition 6.7 ensures that Xlk.ˆ/ is extendable. By Remark 7.6, the reduced
complex still contains a subdivided copy of X„. We then take the product of Xlk.ˆ/ with a copy of the
complex Xˆ �Xi to obtain a complex for Xst.ˆ/ realizing G with respect to the product marking.

If „¤∅, then lkst.ˆ/.ˆ�„/D∅, so the complex Xst.ˆ/ that we just built contains a unique (possibly
subdivided) .ˆ�„/-complex realizingG. By construction, this is identical to the complexXˆ�„ contained
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in Xi , so we may glue Xi to Xst.ˆ/ by identifying these subcomplexes, thus forming a new complex X�.
The markings hi and hst.ˆ/ agree on Xˆ�„, so we obtain a marked complex .X�; h�/ realizing G.

If „D∅, then lkst.ˆ/.ˆ/D‚, so Xst.ˆ/ DXˆ �X‚. The following claim will allow us to pick out a
particular slice Xˆ � fpg �Xˆ �X‚ to glue to the (unique) copy of Xˆ contained in Xi .

Claim The restriction �‚ WG! U 0.A‚/ lifts to a homomorphism G! Aut.A‚/.

Proof We use [3, Lemma 2.2], which says:

(�) If † is a subgraph of �, then the normalizer in A� of A† is Ast�.†/ D A† �Alk�.†/.

(��) If †1; †2 ��, then xA†2
x�1 �A†1

if and only if †2 �†1 and xD x1x2 with x1 2NA�
.A†1

/

and x2 2NA�
.A†2

/.

Since all normalizers will be taken with respect to A�, for the rest of this proof we omit A� from the
notation for normalizers.

We are assuming „ D ∅, so ˆ D lk�.‚/ and ‚ D lk�.ˆ/. Then (�) says N.Aˆ/ D N.A‚/ D

N.Aˆ�‚/D Aˆ�‚. Furthermore, if lk�.�i /¤∅, then �i Dˆ and �Dˆ�‚. We have already taken
care of this case, so we may assume that lk�.�i /D∅ and we have N.A�i

/D A�i
.

Let g 2G. Since �i , ‚, ˆ and ˆ�‚ are all U 0-invariant, the corresponding special subgroups of A�
are all sent to conjugates of themselves by any representative of g in Aut.A�/. Pick a representative Og
that sends A�i

to itself, and suppose Og.Aˆ/D xAˆx�1. Since Og.Aˆ/� Og.A�i
/D A�i

, (��) says that
x D x1x2 with x1 2 N.A�i

/D A�i
and x2 2 N.Aˆ/. Then xAˆx�1 D x1x2Aˆx�12 x�11 D x1Aˆx

�1
1 ,

so, after composing Og with conjugation by x1, we may assume Og sends both A�i
and Aˆ to themselves.

Now ˆ � ˆ �‚, so Og.Aˆ/ � Og.Aˆ�‚/ D yAˆ�‚y
�1 for some y. Since Og.Aˆ/ D Aˆ, this gives

y�1Aˆy � Aˆ�‚, so, by (��), y 2 N.Aˆ�‚/N.Aˆ/ D Aˆ�‚, ie Og.Aˆ�‚/ D yAˆ�‚y�1 D Aˆ�‚.
Finally, ‚ � ˆ �‚, so Og.‚/ D zA‚z

�1 � Og.ˆ �‚/ D ˆ �‚ for some z, so (��) gives that z 2
N.Aˆ�‚/N.A‚/D Aˆ�‚ DN.A‚/, so Og.A‚/D A‚ as well.

Now let g1; g2 2 G with g1g2 D g3, and find representatives Og1, Og2 and Og3 as above. We know that
Og1 Og2 Og

�1
3 is inner and preserves A�i

and A‚, so the conjugating element lives in N.A�i
/\N.A‚/D

A�i
\Aˆ�‚ D Aˆ. But conjugation by an element of Aˆ is trivial on A‚, ie the restriction of Og1 Og2 Og�13

to A‚ is the identity. Thus, g 7! Og gives a lift of G to Aut.A‚/. G

By the claim, the action of G on X‚ lifts to an action on zX‚. Since zX‚ is CAT.0/ this action has a fixed
point; projecting this fixed point back down gives a fixed point p 2 X‚. We now build X� by gluing
Xi to Xˆ�‚ D Xˆ �X‚ along their common subspace Xˆ D Xˆ � fpg. As above, the markings hi
and hˆ�‚ agree on the overlap, so give a marking h� WX�! S� realizing G.
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It remains to check that the complexes X� that we have just built are actually �-complexes. We start by
choosing a blowup structure Xi Š S�i

�i
. Since the action of G on Xi is reduced, this blowup structure is

extendable, and induces (possibly subdivided) extendable blowup structures on the subcomplexes Xˆ,
X„ and Xˆ �X„.

If „D∅, then finding a blowup structure is slightly easier, so we do that case first. In this case, ‚ is
U 0-invariant, and we can choose an extendable blowup structure S�‚

‚ on X‚. Recall that we may have
needed to subdivide X‚ in order to make the fixed point a vertex; this means that �‚ may contain trivial
or duplicate partitions. The fixed point p 2X‚ now lies in a region, ie a consistent choice of sides for
each element of �‚. The structure on X‚ together with the blowup structure on Xˆ now give a blowup
structure on Xˆ�X‚, by Proposition 7.1. The partitions in �i and �‚ are all extendable, so in particular
can be extended to �. We need to find extensions that form a compatible collection of �-partitions.

If P 2 �i , we need to decide where to put the vertices v˙ 2 ‚˙ in our extension yP. If P is based at
m 2ˆ, they must all go into lk.yP/. If m is distance at least 2 from ‚, there is some u 2ˆ with u … lk.m/
(since „D∅), so all vertices of ‚ are in the same component of � n st.m/ as u, so all of ‚˙ must go
into the same side of P as u. (Note that the extendability of P guarantees that, since any two choices for u
lie in the same component of � n st.m/, they must lie on the same side of P, so there is no ambiguity
here.) We also need to extend the partitions Q 2�‚ to �˙. All vertices in ˆ must go into the link of
each extension. Since �i is U 0-invariant, no vertex in ‚ has a star that separates �i , so vertices of �i nˆ
and their inverses all have to go in the same side of Q for each Q 2�‚. We put them all into the region
determined by the fixed point p. It is now routine to check that all the extensions yQ and yP we have
constructed are compatible. This verifies that X� is a �-complex in the case „D ∅. If the G-action
on X� is not reduced, we can reduce it to obtain an extendable �-complex.

If „¤∅, we can find a blowup structure Xlk.ˆ/ Š S
�lk.ˆ/

lk.ˆ/ that restricts to the given blowup structure
on X„ by Proposition 7.4.

The procedure we used in the case„D∅ to extend PD .P1jP2jlk.P//2�i to�˙ works again unless P is
based atm2„. In this case, each P\„˙ is also the restriction of a partition QD .Q1 jQ2 jlk.Q//2�st.ˆ/.
We form yP by adding Qi \‚˙ to Pi for i D 1; 2.

We also need to extend partitions Q 2�st.ˆ/ that are based at m 2‚ to �-partitions yQ. The star st.m/
cannot disconnect „ or �i since both are U 0-invariant, so we add all of �i nˆ to the same side of yQ as „.

The extensions yP and yQ are now a compatible collection of �-partitions, giving X� a blowup structure.
Reducing X� if necessary, this completes the induction and concludes the proof of the theorem.

Recall from [4] that K� is a contractible subspace of O� which is invariant under the action of U 0.A�/.
Points of K� are �-complexes with untwisted markings, so, if � is an inclusion, Theorem 8.1 gives the
following statement.

Corollary 8.2 The action of any finite subgroup of U 0.A�/ on K� has a fixed point.

Algebraic & Geometric Topology, Volume 25 (2025)
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Finally, we obtain the following information about finite subgroups of U 0.A�/.

Corollary 8.3 The group U 0.A�/ contains only finitely many conjugacy classes of finite subgroups.

Proof By Theorem 8.1, every finite subgroup of U 0.A�/ is realized on a �-complex. Changing the
marking produces a conjugate subgroup, so we may ignore the markings. There are only finitely many
�-complexes since there are only finitely many partitions of �˙, so only finitely many compatible
collections of �-partitions, each of which determines a unique blowup of S� . Finally, there are only
finitely many cubical isometries of a finite cube complex.
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