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On contact mapping classes of prequantizations

SOUHEIB ALLOUT

MURAT SAĞLAM

We present examples of prequantizations over integral symplectic manifolds which admit infinitely many
smoothly trivial contact mapping classes. These classes are given by the connected components of the
strict contactomorphism group which project to the identity component of the symplectomorphism group
of the base manifold. Along the way, we study the lifting problem of symplectomorphisms of the base
manifold to strict contactomorphisms of the prequantization.

53D10, 53D12, 53D22

1 Introduction

One of the fundamental questions in contact topology is to understand the group Cont.V; �/ of coorien-
tation preserving contactomorphisms of a given cooriented contact structure � on a closed manifold V .
Understanding Cont.V; �/ requires studying its identity component Cont0.V; �/ and the contact mapping
class group �0.Cont.V; �//. The aim of this paper is to study �0.Cont.V; �// for a particular class of
contact manifolds called prequantizations. These are total spaces of principal circle bundles V !M ,
with a connection 1-form � which is a contact form whose Reeb vector field generates the circle action
and, therefore, the curvature form of � is an integral symplectic form ! on M .

Concerning the contact mapping class group, it is interesting to study the homomorphism

J W �0.Cont.V; �//! �0.Diff.V //

where Diff.V / is the group of diffeomorphisms of V which preserve the orientation determined by the
coorientation of � . Our main results, which rely solely on algebraic topological methods, provide a large
class of examples of prequantizations .V; �/ for which the kernel of J contains an infinite subgroup of
�0.Cont.V; �//. This subgroup is given as follows. Given a prequantization .V; �/! .M; !/, we get a
natural homomorphism

(1) �0.SCont.V; �//! �0.Symp.M; !//

where SCont.V; �/ is the group of strict contactomorphisms, that is, contactomorphisms which preserve
the contact form �, and Symp.M; !/ is the group of symplectomorphisms of .M; !/. It turns out that
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2508 Souheib Allout and Murat Sağlam

the kernel of the above homomorphism is isomorphic to H 1
dR
.M;Z/=�! , where �! is the flux group

of .M; !/; see Theorem 2.10. Then we show that for a large class of integral symplectic manifolds for
which �! turns out to be trivial, the composition

I WH 1
dR.M;Z/! �0.SCont.V; �//! �0.Cont.V; �//

is injective. More precisely, we prove the following.

Theorem 1.1 Let .M; !/ be a closed integral symplectic manifold such that either Œ!� vanishes on �2.M /

or .M; !/ is monotone on �2.M / with a nonvanishing monotonicity constant. Suppose , in addition , that
any abelian subgroup of �1.M / has rank at most one. If .V; �/! .M; !/ is a prequantization , then the
homomorphism I is injective.

The idea of the proof is as follows. For a given class ˛ 2H 1
dR
.M;Z/, the associated strict contactomor-

phism L˛ acts on a loop ı in the conformally symplectic frame bundle CSp.�/, up to free homotopy, by
concatenation with an iterate of the Reeb frame loop, which is defined by picking a symplectic frame of a
contact hyperplane and pushing it forward by the Reeb flow along a circle fiber. The amount of iteration
of the Reeb frame loop is hŒ˛�; Œ Nı�i, where Nı is the projection of ı to M . Then, we associate a Maslov-type
index to the Reeb frame loop which we use to show that the resulting loop L˛ ı ı is not freely homotopic
to ı whenever hŒ˛�; Œ Nı�i ¤ 0. Using this Maslov-type index, we show the following statement:

Proposition 1.2 Let .V; �/! .M; !/ be a prequantization. Suppose that either Œ!� vanishes on �2.M /

or .M; !/ is monotone on �2.M / with nonvanishing monotonicity constant. Then the Reeb frame loop
is of infinite order in �1.CSp.�//. In particular , the Reeb flow, seen as a loop in Cont.V; �/, is of infinite
order in �1.Cont.V; �//.

We note that the Maslov index that we associate to the Reeb frame loop can be seen as a reformulation
of the first Maslov index, which is a homomorphism from �1.Cont.V; �// to Z, of Casals, Ginzburg
and Presas [7], applied to the Reeb loop (see also [8; 9]). A similar result was also obtained by Albers,
Shelukhin, and Zapolsky, as an application (among other applications) of some spectral invariants which
they associate to contactomorphisms of prequantization bundles (see [1] for more details).

Theorem 1.3 Let .†g; !0/ be a surface of genus g � 2 with an integral symplectic form and !FS be
the Fubini–Study form on CPn, which is normalized so that the standard CP1 � CPn has unit area.
Consider a prequantization .V; �/! .CPn �†g; !FS˚!0/. Then the homomorphism

I WH 1
dR.†g;Z/! �0.Cont.V; �//

is injective. Moreover , ker.J/ contains the image of I for n odd , and contains I.2H 1
dR
.†g;Z// for n

even.

More generally, we describe a setting for which the composition J ı I fails to be injective; see
Proposition 3.12. In principle, this provides examples other than the ones given in the above theorem.
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In what follows we give an account of previous results in the direction of this work. The first result we
want to mention is given by Giroux [16], which says that J is injective for V D T3 and � the standard
tight contact structure (see also [13, Proposition 2]). The first example, according to our knowledge,
of a closed contact manifold for which the kernel of J is nontrivial is attributed to Chekanov; see
Eliashberg and Fraser [12] and Vogel [25]. The statement here is that for any overtwisted contact structure
� on S3, �0.Cont.S3; �// is either Z2 or Z2 ˚ Z2 depending on the Hopf invariant. Later in [11],
Dymara introduced an invariant for overtwisted contact structures on S3, which enabled her to show that
a homomorphism from �0.Cont.S3; �// to Z2 that she constructed is surjective for every overtwisted �.

The first example where the contact structure is tight and also the kernel of J is infinite was given by
Ding and Geiges in [10], following an observation made by Gompf in [18]. Here the contact manifold is
S1�S2 with the standard tight contact structure. Later in [17], Giroux and Massot showed that the kernel
of J is Zd for V the d-fold fiber cover of the unit cotangent bundle of a suitable surface of genus at
least 2. In [21], Massot and Niederkrüger constructed hypertight contact manifolds in every odd dimension
for which the kernel of J contains nontrivial but finite-order elements. Lanzat and Zapolsky [20] then
constructed an embedding of certain (braid) subgroups G of the symplectic mapping class group of the
Am-Milnor fiber, which is noncompact and exact, to the contact mapping class group of the associated
contactization and showed that G is contained in the kernel of J.

The last two works we want to mention are due to Gironella. In [14] he constructed examples of
overtwisted contact manifolds, in every odd dimension, admitting smoothly trivial finite order contact
mapping classes. Lastly, in [15] Gironella generalized the constructions in [10] to provide examples of
tight contact manifolds in all odd dimensions, which admit smoothly trivial contact mapping classes of
infinite order.

Questions and further discussion

Given a prequantization bundle .V; �/ over an integral symplectic manifold .M; !/, the kernel of the
homomorphism (1) is naturally identified with H 1

dR
.M;Z/=�! — see Theorem 2.10 — and one obtains

a homomorphism
I WH 1

dR.M;Z/=�!! �0.Cont.V; �//:

We do not know any example for which the homomorphism I fails to be injective.

One may perhaps find situations where the image of I contains elements which are isotopic to the identity
in the group of formal contactomorphisms, namely the group of pairs .';ˆ/, where ' 2 Diff.V / and ˆ
is a bundle map of T V covering ' and preserving � conformally symplectically. A candidate setting for
this is when the Reeb frame loop is contractible, in other words, when M admits an element in �2.M /

of unit symplectic area on which c1.TM / vanishes.

On the other hand, the noninjectivity of I has the potential to provide examples of strict contactomorphisms
that are contact isotopic to the identity but without translated points in the sense of Sandon [23]. The
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2510 Souheib Allout and Murat Sağlam

setting of such an example could be that there is some ˛ 2 ker I represented by a nonsingular closed
1-form on M such that the time-one-map of its symplectic gradient flow is without fixed points. Recently,
Cant [6] provided examples of contactomorphisms on standard contact spheres that are contact isotopic to
identity yet without translated points. However there is no known example of a strict contactomorphism
with these properties.

Outline of the paper

In Section 2, we discuss generalities about prequantizations, and study the homomorphism (1). In
Section 3, we give our main results, namely Theorem 3.11, Proposition 3.12 and Corollary 3.13.
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2 Generalities on strict contactomorphisms of prequantizations

In this section we fix our setting, recall some generalities on prequantizations and determine the kernel of
the homomorphism (1). Most of the results presented in this section can be found in the classical books
of Banyaga [2] and Souriau [24]. We try to keep our presentation minimal and we refer to [2; 24] for
further details.

Let .M; !/ be a 2n-dimensional closed integral symplectic manifold, that is, the value of Œ!� over any
integral homology 2-cycle is an integer. Then a classical fact due to Kobayashi provides our main object
of study. We fix S1 WDR=Z for the rest of this manuscript.

Theorem 2.1 [4; 19] Let � W V !M be a principal S1-bundle whose Euler class is a lift of �Œ!�. Then
there is a contact form � on the total space V such that

(p1) the vector field that generates the S1-action is the Reeb vector field of �;

(p2) ��! D d�.

We call such a bundle .V; �/, together with a contact form as above, a prequantization over .M; !/.

Algebraic & Geometric Topology, Volume 25 (2025)
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Given a prequantization .V; �/ over .M; !/ we want to understand the induced homomorphism

(2) SCont.V; �/! Symp.M; !/; ' 7! x';

where SCont.V; �/ is the group of strict contactomorphisms of .V; �/, that is, diffeomorphisms of V

that preserve �, and Symp.M; !/ is the group of symplectomorphisms of .M; !/. Notice that any strict
contactomorphism ' of .V; �/ is in particular an S1-equivariant diffeomorphism of V and therefore
descends to a diffeomorphism x' of M , which preserves ! due to (p2).

Our main objective is to characterize the image and the kernel of the map (2) and of the induced map

(3) �0.SCont.V; �//! �0.Symp.M; !//

on mapping class groups. The surjectivity of the map (2), and of the map (3), relies on the answer to the
question whether a given x' 2Symp.M; !/ can be lifted (maybe after an isotopy) to a map ' 2SCont.V; �/.

In order to study this lifting problem, we fix the S1-bundle � W V !M as in Theorem 2.1 and consider
the space P of all contact forms on V that satisfy (p1) and (p2). Notice that P is an affine space given by

(4) PD f�Cˇ j ˇ 2�1
cl.V / and ˇ.X /D 0g D f�C��˛ j ˛ 2�1

cl.M /g

for any fixed � 2 P, where ��cl denotes the space of closed forms. Let DiffS1.V / be the group of
S1-equivariant diffeomorphisms of V . We consider the action of the subgroups

(5) Diff!S1.V /D f' 2 DiffS1.V / j x'�! D !g

and

(6) DiffId
S1.V /D f' 2 DiffS1.V / j x' D Idg:

on P by the pull-back. We note that ' 2 Diff!
S1.V / if and only if ' 2 DiffS1.V / and '�.d�/D d� for

all � 2 P and the stabilizer of any � 2 P in Diff!
S1.V / is precisely SCont.V; �/. On the other hand we

have the identification

(7) DiffId
S1.V /Š C1.M;S1/

since any ' 2 DiffId
S1.V / is given by

(8) '.p/D �X
f .�.p//.p/

for a unique smooth map f WM ! S1, where �X
t denotes the flow of the vector field X that generates

the S1-action.

Theorem 2.2 Let .V; �/ be a prequantization over .M; !/ and assume that H 2.M;Z/ is torsion-free.
Then the homomorphism (3) is surjective.

Proof We first show that the identity component of Diff!
S1.V / acts transitively on P. In fact, given

the line segment �t D �C tˇ, t 2 Œ0; 1�, joining � and �Cˇ, we define the vector field Y on V by the
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equations �.Y /D 0 and ˇ D�{Y d�. Note that P�t D ˇ, d�t D d� and �t .Y /D 0 for all t 2 Œ0; 1�. Now
let �t be the flow of Y . We get

d

dt
��t �t D �

�
t .
P�t CLY �t /D �

�
t

�
ˇC {Y d�t C d.�t .Y //

�
D ��t .ˇC {Y d�/D 0:

Hence ��t .�C tˇ/D � and �t 2 Diff!
S1.V / for all t 2 Œ0; 1�. In fact ŒX;Y �D 0 since

0D �.ŒX;Y �/DX.�.Y //�Y .�.X //� d�.X;Y /

and
0D {ŒX ;Y �d�D LX {Y d�� {Y LX d�D�LX ˇ D 0:

Note that any ' 2 Symp.M; !/ lifts to some z' 2Diff!
S1.V / since ' pulls back the circle bundle V !M

to a circle bundle on M , which has the same Euler class since H 2.M;Z/ is torsion-free. The resulting
bundle equivalence provides z'. Then there is some ' in the identity component of Diff!

S1.V / such that
 �.z'��/D �. So z' ı 2 SCont.V; �/ and z' ı is isotopic to ' in Symp.M; !/.

Lemma 2.3 Let � 2 P and ' 2 SCont.M; �/ be such that x' D Id. Then ' D �X
t for some t 2 S1.

Proof Given ' 2 DiffId
S1.V / as in (8), an easy computation shows that

(9) '��D �C��df

where df is the differential of f WM ! S1 viewed as the 1-form f �dt . Now if ' preserves �, then f is
a constant map and therefore ' D �X

t for some t 2 S1.

Theorem 2.4 Let .V; �/ be a prequantization over .M; !/ and assume that H 2.M;Z/ is torsion-free.
Then the following are equivalent.

(1) The action of DiffId
S1.V / on P is transitive.

(2) The first cohomology group H 1
dR
.M;R/ is trivial.

(3) The homomorphism (2) is surjective. In other words , the sequence

0! S1
! SCont.V; �/! Symp.M; !/! 0

is exact.

Proof We recall that every class in H 1
dR
.M;Z/ is represented by the differential of a circle valued

function. Combining this fact with (9) gives the noncanonical identification

P=DiffId
S1.V /'H 1

dR.M;R/=H 1
dR.M;Z/;

which shows the equivalence of (1) and (2).

Now assume that DiffId
S1.V / acts transitively on P and let ' 2 Symp.M; !/. Then ' lifts to some

z' 2 Diff!
S1.V / as in the proof of Theorem 2.2. We have some  2 DiffId

S1.V / such that  �.z'��/D �.
Hence z' ı is in SCont.V; �/ and lifts '. Together with Lemma 2.3 we get the exact sequence above.
For the converse statement, we take �0 2 P and by the proof of Theorem 2.2, there is some ' in the
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identity component of Diff!
S1.V / such that '��0 D � and x' 2 Symp.M; !/. By assumption there is a lift

z' 2 SCont.V; �/ of x'. Then we get ' ı z'�1 2 DiffId
S1.V / and .' ı z'�1/��0 D �.

Remark 2.5 The assumption that H 2.M;Z/ is torsion-free is essential for Theorems 2.2 and 2.4. It is
possible to construct an integral symplectic manifold .M; !/ with nontrivial torsion in H 2.M;Z/ and a
symplectomorphism that does not preserve a class e 2H 2.M;Z/ that lifts �Œ!�. Such a symplectomor-
phism cannot be lifted even to an S1-equivariant map of the circle bundle with Euler class e.

Given a prequantization .V; �/! .M; !/, we now want to understand the kernel of the map (3). To this
end we define the subgroups

L WD f' 2 Symp.M; !/ j ' lifts to SCont.V; �/g

and
H WD L\Symp0.M; !/

where Symp0.M; !/ is the identity component.

By Lemma 2.3, the map (2) now fits into the exact sequence

0! S1
! SCont.V; �/! L! 0

which defines a Serre fibration. In fact, it is easy to see that once restricted to the identity components,
the above sequence reads

0! S1
! SCont0.V; �/! Ham.M; !/! 0

where Ham.M; !/ is the group of Hamiltonian diffeomorphisms. Then the homotopy lifting property for
0-cells follows from the nontrivial fact that any path of Hamiltonian diffeomorphism starting at Id is a
Hamiltonian isotopy. For the details, we refer to [3].

An immediate consequence of the above lemma is the following exact sequence of mapping class groups:

0! �0.SCont.V; �//! �0.L/! 0:

On the other hand if H 2.M;Z/ is torsion-free we have the exact sequence

0! �0.H/! �0.L/! �0.Symp.M; !//! 0:

It turns out that the elements of L are characterized by their effect on holonomy and this effect is explicitly
determined for the elements of H. Let 
 W Œ0; 1�!M be a piecewise smooth curve and p 2 ��1.
 .0//.
Then there exists a unique curve O
 W Œ0; 1�! V such that

O
 .0/D p; � ı O
 D 
; �. PO
 /D 0:

We call O
 , suppressing its initial condition, the horizontal lift of 
 . If 
 is a loop, that is 
 .0/D 
 .1/,
then the holonomy Hol.
 / 2 S1 of 
 is defined by

�X
Hol.
 /. O
 .1//D O
 .0/:

Algebraic & Geometric Topology, Volume 25 (2025)
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We note that the holonomy does not depend on Q
 .0/ and it is invariant under positive reparameterizations
of 
 . Moreover, Hol.
�1/D�Hol.
 / where 
�1 is some (hence any) negative reparametrization of 
 .
Now given a diffeomorphism ' of M one considers its effect on holonomy, namely the map

(10) E' W Loop.M /! S1; 
 7! Hol.' ı 
 /�Hol.
 /;

where Loop.M / is the space of piecewise smooth maps from S1 to M . The following fact, which we
spell out in accordance with our purposes, is due to Kostant and says that the holonomy effect determines
whether a symplectomorphism ' lifts to SCont.V; �/.

Theorem 2.6 (Kostant [22, Proposition 3.3]) A symplectomorphism ' 2 Symp.M; !/ admits a lift to
SCont.V; �/ if and only if E' D 0.

Proof We fix a point x 2M and put y D '.x/. After trivializing the circle bundle near x and y, we
fix a map � W ��1.x/! ��1.y/, which reads as a rotation with respect to any other choice of such
trivializations. Now given p 2 V we take a path 
 such that 
 .0/D �.p/ and 
 .1/D x and we define
z'.p/ by the equation

1' ı 
 .1/D �. O
 .1//
where 1' ı 
 is the horizontal lift of ' ı 
 with 1' ı 
 .0/ D z'.p/ and O
 is the horizontal lift of 
 with
O
 .0/D p.

Note that z' is well defined if and only if E' D 0. Moreover z', whenever is well defined, is an S1-
equivariant lift of ', which maps horizontal lifts of curves in M to horizontal lifts of their images under '.
It is not difficult to show that this property together with the fact that ' is symplectic implies that z' is in
SCont.V; �/.

Given ' 2 Symp0.M; !/, it is easy to understand its effect on holonomy. We begin with the following
observation.

Lemma 2.7 Let 
1; 
2; : : : ; 
k W S
1 !M be a family of smooth loops. Suppose there is an oriented

surface † with boundary @†D S1[S2[ � � � [Sk consisting of k circles and a smooth map � W†!M

extending each 
j , that is , for each j , once Sj is oriented as the boundary of † and identified with S1,
� jSj D 
j . Then we have

kX
jD1

Hol.
j /D
Z
†

��! mod Z:

Proof We first note that for any smooth 
 W S1!M ,

Hol.
 /D
Z
Q


� mod Z

where Q
 is any loop that lifts 
 . In fact, given a lift Q
 W S1! V , we consider the horizontal lift O
 of 

with O
 .0/D Q
 .0/ and define a smooth map � W Œ0; 1�! S1 such that

�X
�.s/. O
 .s//D Q
 .s/:
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Note that �.1/DHol.
 / modulo Z. We lift � to a map into R, still denoted by � , such that �.0/D 0 and
consider the smooth map

� W�! V; .s; t/ 7! �X
t . O
 .s//

on the domain � WD f.s; t/ 2R2 j 0� t � �.s/; s 2 Œ0; 1�g. Note that ��d�D 0. By Stokes’ theorem,

0D

Z
�

��d�D

Z
O


�C �.1/�

Z
Q


�

and the claim follows.

Now let � W†!M be as in the statement. Since † has the homotopy type of a graph, there exists a lift
Q� W†! V of '. By the above observation we getZ

†

��! D

Z
†

Q��d�D

Z
@†

Q���D

kX
jD1

Hol.
j / mod Z:

An immediate consequence of this lemma is the following.

Proposition 2.8 For any ' 2 Symp.M; !/, the map (10) descends to a homomorphism

E' WH1.M;Z/! S1; Œ
 � 7!E'.
 /:

Moreover the map

(11) Symp0.M; !/! Hom.H1.M;Z/;S1/; ' 7!E'

is a homomorphism.

Proof Given smooth loops 
1 and 
2 representing the same class in H1.M;Z/, there is an oriented
surface † with two oriented boundary components S1 and S2 and a smooth map � W†!M such that
� jS1

D 
1 and � jS2
D 
�1

2
. We get

Hol.
1/CHol.
�1
2 /D Hol.
1/�Hol.
2/D

Z
†

��!

and therefore

E'.
1/�E'.
2/D

Z
†

.' ı �/�! �

Z
†

��! D

Z
†

��.'�!/�

Z
†

��! D 0:

Now given '1; '2 2 Symp0.M; !/ and Œ
 � 2H1.M;Z/, we have Œ'2 ı 
 �D Œ
 � in H1.M;Z/ and

E'1ı'2
.
 /DE'1

.'2 ı 
 /CE'2
.
 /DE'1

.
 /CE'2
.
 /:

Notice that H is precisely the kernel of the homomorphism (11). Our next objective is to relate the
homomorphism (11) to the flux homomorphism

(12) Flux W Symp0.M; !/!H 1
dR.M;R/=�! :

Algebraic & Geometric Topology, Volume 25 (2025)
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Recall that if .'t /t2Œ0;1� is a symplectic isotopy of a closed symplectic manifold .M; !/, not necessarily
integral, generated by the time dependent symplectic vector field Xt , the flux of .'t /t2Œ0;1� is defined by

Flux.'t /D

Z 1

0

Œ{Xt
!�dt 2H 1

dR.M;R/:

It turns out that Flux.'t / stays invariant under any homotopy of the path .'t /t2Œ0;1� in Symp0.M; !/,
which fixes the end points Id and '1 and consequently defines a homomorphism

Flux WBSymp0.M; !/!H 1
dR.M;R/

where BSymp0.M; !/ is the universal cover of Symp0.M; !/, seen as the space of homotopy classes, in
the above sense, of paths in Symp0.M; !/ starting form the identity. Viewing �1.Symp0.M; !/; Id/ as a
subgroup of BSymp0.M; !/, one defines the flux group

�! WD Flux
�
�1.Symp0.M; !/; Id/

�
�H 1

dR.M;R/

and obtains the homomorphism (12). It turns out that Flux.'t / vanishes if and only if .'t / is homotopic
to a Hamiltonian isotopy. Hence the kernel of (12) is precisely the group Ham.M; !/ of Hamiltonian
diffeomorphisms.

The following observation relates Flux to the homomorphism (11) if ! is integral.

Lemma 2.9 Let .'t / be a symplectic isotopy starting at Id. Then for any smooth loop 
 W S1!M , we
have Z




Flux.'t /DE'1
.
 / mod Z:

Proof Given 
 and 't as above, one defines the smooth map � W Œ0; 1��S1!M by �.s; t/D 't .
 .s//.
An easy computation shows that

(13)
Z
Œ
 �

Flux.'t /D

Z
Œ0;1��S1

��!

and from Lemma 2.7 it follows thatZ
Œ0;1��S1

��! D Hol.
�1/CHol.'1 ı 
 /DE'1
.
 / mod Z:

We have the following characterization of the mapping class group �0.H/.

Theorem 2.10 We have the following canonical isomorphisms of groups:

(14) �0.H/DH=Ham.M; !/ŠH 1
dR.M;Z/=�! :

Proof The statement follows immediately from Lemma 2.9 and the fact that �! is contained in
H 1

dR
.M;Z/ as ! is integral.
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3 H 1
dR
.M;Z/ in �0.Cont.V; �// and in �0.Diff.V //

The aim of this section is to provide a class of examples of prequantizations .V; �/! .M; !/ such that
�0.H/ is an infinite subgroup of �0.SCont.V; �// and the homomorphism

(15) �0.H/! �0.Cont.V; �//

is injective, while the homomorphism

(16) �0.H/! �0.Diff.V //

is trivial. Here � stands for the kernel of �, Cont.V; �/ is the group of coorientation (given by �)
preserving contactomorphisms of .V; �/ and Diff.V / is the group of orientation (determined by �)
preserving diffeomorphisms of V .

We begin with an explicit description of the inverse of the isomorphism (14). Let ˛ be a closed integral
1-form on M given by ˛ D df for some f 2 C1.M;S1/. We define the symplectic gradient X˛ of ˛
via �˛ D {X˛! and we let .x't / denote its flow. Then the time-one-map x'1 belongs to H with a lift

(17) L˛ W V ! V; L˛ D �
X
f ı� ı'1

in SCont.V; �/, where '1 is the time-one-map of the flow .'t / of the horizontal lift Xh of X˛ and the
map �X

f ı�
is given by (8). Indeed as we saw in the proof of Theorem 2.2,

(18) .'t /
��D �� t��˛:

Together with (9) we see that L˛ preserves �. We also note that the maps �X
f ı�

and 't commute for all
t 2R. Indeed as in the proof of Theorem 2.2, the vector fields X and Xh commute and the map f ı� is
invariant under the flow of Xh. We have the following observation on the action of L˛ on loops in V .

Lemma 3.1 Let ı W S1 ! V be a loop. Then L˛ ı ı is freely homotopic to the loop ı � 
 k
V

where

V W S

1! V denotes the parameterized Reeb orbit starting at the point ı.0/ and k D
R
ı �
�˛.

Proof Note that the loop L˛ ı ı is freely homotopic to the loop �X
f ı�
ı ı via the isotopy .'t / so it is

enough to show that ı�
 k
V

is freely homotopic to the loop �X
f ı�
ıı. To this end we consider the pull-back

bundle Nı�V ! S1, where Nı D � ı ı and trivialize it via the section ı. After identifying the total space
with T2 D S1 �S1, where the bundle projection � corresponds to the projection to the first circle, the
loop ı �
 k

V
reads .S1�f0g/� .f0g�S1/k and the loop �X

f ı�
ı ı reads t 7! .t; f .t//, where f W S1! S1

is of degree k. It is clear that these loops are homotopic in T2.

As a consequence of the lemma we get the following class of prequantizations where the map (15) is
injective due to topological reasons; more precisely, due to the fact that (16) is injective.

Proposition 3.2 Let .M; !/ be a closed integral symplectic manifold such that

(1) Œ!� vanishes on �2.M /;

(2) any abelian subgroup of �1.M / has rank at most one.
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Let .V; �/! .M; !/ be a prequantization. Then for any closed integral 1-form ˛ on M , L˛ is isotopic
to Id in Diff.V / if and only if Œ˛� is trivial in H 1

dR
.M;Z/.

Lemma 3.3 Let H be an abelian group of rank at most one. Then every Z-central extension of H is
trivial. More precisely, if G is a group with a central subgroup C isomorphic to Z and G=C is isomorphic
to H then G is isomorphic to H �Z. In particular , G is abelian.

Proof The commutator subgroup ŒG;G� is contained in C D Z. The map G �G ! Z that sends a
couple .a; b/ to the commutator aba�1b�1 factors to a skew-symmetric bilinear map B WH �H ! Z.
Since H has rank at most one, it follows that B is identically zero.

Proof of Proposition 3.2 The homotopy exact sequence associated to the bundle V !M reads

(19) � � � ! �2.V /! �2.M /! �1.S
1/! �1.V /! �1.M /! 0

where the connecting homomorphism is given by integrating ! over spheres in M . By the first assumption,
the fiber 
V is of infinite order in �1.V /. We note also that the image of �1.S

1/ is always central in �1.V /,
that is 
V commutes with every element of �1.V /. In fact, given any loop � in V (having the same base
point with 
V ) and its projection N� in M , 
V and � can be seen as loops in the total space of the pull-back
bundle N��V ! S1, which is diffeomorphic to T2 and therefore has abelian fundamental group.

Now if L˛ is isotopic to Id and ı is a loop in V , then by Lemma 3.1, ı is freely homotopic to ı � 
 k
V

.
Then there is a loop ˇ in V such that ˇ � ı �ˇ�1 D ı � 
 k

V
in �1.V /. We write Nı D � ı ı and Ň D � ıˇ.

Then Nı commutes with Ň in �1.M / and by assumption Nı and Ň are contained in a subgroup H of rank at
most one. Then, by Lemma 3.3, the subgroup ��1

� .H / is abelian. As ı and ˇ are contained in ��1
� .H /,

we conclude that 
 k
V

is contractible and therefore k D
R
Nı
˛ D 0. Since ı is arbitrary we get Œ˛�D 0.

Remark 3.4 The above statement shows that the flux group �! is trivial in this case and �0.H/, being
isomorphic to H 1

dR
.M;Z/, injects into �0.Diff.V //.

Example 3.5 A typical example for the above proposition is an oriented surface of genus at least two.

Our next objective is to use Proposition 3.2 as a springboard to describe prequantizations for which the
homomorphism (15) is injective for contact topological reasons. We want to replace the role of the Reeb
orbit with the loop induced by the Reeb flow in the bundle CSp.�/!V of conformally symplectic frames
of �.

The bundle CSp.�/! V is a principal CSp.2n;R/-bundle, where CSp.2n;R/ denotes the group of con-
formally symplectic matrices. As the symplectic group Sp.2n;R/ is a deformation retract of CSp.2n;R/,
it is natural to consider the isomorphism, called the Maslov index, given by

Index W �1.CSp.2n;R//D �1.Sp.2n;R//! �1.U.n//! �1.S
1/Š Z
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where the first arrow is given by the polar decomposition and the second arrow is induced by the
determinant map. We have the homotopy exact sequence

(20) � � � ! �2.V /! �1.CSp.2n;R//! �1.CSp.�//! �1.V /! 0

and it is easy to see that the connecting homomorphism is given by integrating the first Chern class c1.�/

over spheres in V . Here we view � as a complex vector bundle of rank n, by choosing a complex structure
on � compatible with d�. We note that the space of such complex structures is nonempty and contractible.
In the same vein, c1.TM / is well defined and we have c1.�/D �

�c1.TM /. Combining this with (20),
we conclude that the homomorphism

(21) �1.CSp.2n;R//! �1.CSp.�//

is injective if and only if c1.TM / vanishes on every sphere of vanishing symplectic area in M . Note that
this is equivalent to assuming that .M; !/ is monotone on �2.M /, that is, there is some � 2R (in fact
� 2Q), which we call the monotonicity constant, such that c1.TM /D �! on �2.M /. We also remark
that the image of �1.CSp.2n;R// in �1.CSp.�// is always central. This follows from the argument given
in the proof of Proposition 3.2 for the bundle V !M and the fact that �1.CSp.2n;R// is abelian.

Our aim now is to study the loop in CSp.�/ that is associated to the Reeb flow and to determine sufficient
conditions such that it is of infinite order in �1.CSp.�//. Let p 2 V and Fp be a symplectic frame of �p .
We define the Reeb frame loop in the frame bundle by

(22) �V W S
1
! CSp.�/; t 7! .�X

t /�Fp;

which defines an element in �1.CSp.�/;Fp/. Next we assume that the Reeb orbit 
V is contractible. Let
j WD! V be a capping disc, that is j D 
V on @D. Let F be a symplectic framing of j �� . Writing �V

with respect to the framing Fj@D, we get the loop

�
j
V
W S1
! CSp.2n;R/

to which we can associate its Maslov index.

Lemma 3.6 Let Nj W S2 WDD=@D!M be the sphere given by Nj D � ı j . Then we have

Index.�j
V
/D�hc1. Nj

�TM /;S2
i D �hc1.TM /; Nj .S2/i:

In particular , Index.�j
V
/ does not depend on F. Moreover , Index.�j

V
/ is independent of the capping disc

if and only if .M; !/ is monotone on �2.M /.

Proof Let x 2 S2 denote the image of @D in the quotient. We take a collar neighborhood U of @D in
D and let U be the corresponding disc neighborhood of x 2 S2. We pick a symplectic framing G of
Nj �TM jU , say extending ��Fp, and lift it to a Reeb invariant framing G of j ��jU extending Fp. Note
that this is possible since U is contractible. On the other hand, F descends to a symplectic framing F of
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Nj �TM jS2nfxg. Viewing c1. Nj
�TM / as the homotopy class of the clutching function that is used to glue

the trivial bundles . Nj �TM jS2nU ;F/ and . Nj �TM jU ;G/ along @U , we get

hc1. Nj
�TM /;S2

i D Index.Fj@U /D� Index.Gj@U /

where we view Fj@U (resp. Gj@U ) as a loop in CSp.2n;R/ using the framing Gj@U (resp. Fj@U ). Using
the symplectic isomorphism ��, we get

hc1. Nj
�TM /;S2

i D � Index.Gj�/

where � denotes the preimage of @U in D and the loop Gj� is obtained via the framing F. Since Gj� is
homotopic to the loop Gj@D , which is defined via the framing F, and since �j

V
reads as the constant loop

with respect to the framing Gj@D, we get

hc1. Nj
�TM /;S2

i D � Index.Gj@D/D� Index.�j
V
/;

where the left hand side is clearly independent of the framing F.

Recall that .M; !/ is monotone on �2.M / if and only if c1.�/ vanishes on �2.V /. Now given two
capping discs j1; j2 WD! V , we glue them together, say after reversing the orientation of the second, to
get a sphere j W S2! V . We have

Index.�j1

V
/� Index.�j2

V
/D hc1.j

��/;S2
i:

Hence Index.�j1

V
/D Index.�j2

V
/ if c1.�/ vanishes on �2.V /. On the other hand, given a sphere S in V ,

one can choose some capping disc j1 WD! V with j1.0/ 2 S and define the capping disc j2 to be the
concatenation of j1 and S . Repeating the above construction for these two capping discs leads to a sphere
j in the homotopy class of S . Then the above formula says that c1.�/ vanishes on S if the index is
independent of the capping discs.

Remark 3.7 The above construction of the Maslov index can also be carried out in the case where 
V

is null homologous. In this case the capping disc is replaced by a capping surface j W †! V and the
relative index is given by evaluating c1.TM / over the closed surface Nj W† WD†=@†!M .

An immediate consequence of the above lemma is the following.

Proposition 3.8 Let .V; �/! .M; !/ be a prequantization. Suppose that either Œ!� vanishes on �2.M /

or .M; !/ is monotone on �2.M / with nonvanishing monotonicity constant. Then the Reeb frame loop
�V is of infinite order in �1.CSp.�//.

Proof Notice that if Œ!� is trivial on �2.M / then the Reeb orbit is of infinite order in �1.V /. Since �V

projects to 
V the statement follows.

Now assume that there is sphere in M with unit symplectic area. Then 
V is contractible. Given a
capping disc j W D! V with p D j .1/, with a framing F of j �� extending Fp, the loop �V based at
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Fp is homotopic to a loop in CSp.�p/ based at Fp, whose homotopy class is given by Index.�j
V
/ after

.CSp.�p/;Fp/ is identified by .CSp.2n;R/; Id/. By monotonicity, the homomorphism (21) is injective.
Hence �V is of infinite order in �1.CSp.�/;Fp/ if and only if Index.�j

V
/ is nonzero.

On the other hand,

1D

Z

V

�D

Z
D

j �d�D

Z
S2

Nj �!:

Since the monotonicity constant is assumed to be nonzero, Index.�j
V
/ does not vanish.

Finally, if 
V is torsion, say of order d , in �1.V /, then we consider the loop �d
V

in �1.CSp.�// and apply
the Maslov index construction to �d

V
. The argument above applies word by word to �d

V
and we conclude

that �d
V

and consequently �V is of infinite order.

Given p 2 V and a symplectic frame Fp of �p, we define a map

Cont.V; �/! CSp.�/; ' 7! '�Fp

and get the induced homomorphisms �1.Cont.V; �/; Id/! �1.CSp.�/;Fp/ which maps the homotopy
class of the Reeb loop .�X

t /t2S1 to the homotopy class of �V . Hence the Reeb loop is of infinite order in
�1.Cont.V; �/; Id/ if �V is of infinite order in �1.CSp.�/;Fp/. Hence we get the following corollary.

Corollary 3.9 Let .V; �/! .M; !/ be a prequantization. Suppose that either Œ!� vanishes on �2.M / or
.M; !/ is monotone on �2.M / with nonvanishing monotonicity constant. Then the Reeb loop .�X

t /t2S1

is of infinite order in �1.Cont.V; �//.

After establishing the setting in which �V is suitable to take the role of 
V in the proof of Proposition 3.2,
we are ready to prove the lemma that is analogous to Lemma 3.1.

Lemma 3.10 Let Oı W S1! CSp.�/ be a loop with its projection ı W S1! V . Then .L˛/� ı Oı is freely
homotopic to the loop Oı � �k

V
where �V W S1 ! CSp.�/ is the Reeb frame loop based at Oı.0/ and

k D
R
ı �
�˛.

Proof Recall that L˛ D '1 ı�
X
f ı�

where ˛ D df for some f WM ! S1 and '1 is the time-one-map of
the flow .'t / of the horizontal vector field Xh. From (18) it follows that

.'t /� W .�0; d�/! .�t ; d�/; t 2 Œ0; 1�

is a smooth path of isomorphisms of rotating contact structures

�t WD ker.�C .t � 1/��˛/; t 2 Œ0; 1�;

seen as symplectic vector bundles. Note that �1 D ker�D � and by (9) we have that

.�X
f ı�/� W .�1; d�/! .�0; d�/
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is also an isomorphism. Notice that the vector field X is the Reeb vector field for every contact form
�C .t � 1/��˛ and by projecting along X , we get a smooth path

Pt W .�t ; d�/! .�1; d�/

of isomorphisms of symplectic vector bundles. Observe that P1 is the identity map. Now we define a
path of loops

� W S1
� Œ0; 1�! CSp.�/; .s; t/ 7! Pt ı .'t /� ı .�

X
f ı�/� ı

Oı.s/;

which defines a free homotopy between �. � ; 0/D P0 ı .�
X
f ı�

/� ı Oı and �. � ; 1/D .L˛/� ı Oı.

We claim that P0 ı .�
X
f ı�

/� ı Oı is freely homotopic to Oı ��k
V

in CSp.�/. To see this, we write Nı WD � ı ı
and consider the pull-back bundle Nı�V ! S1. Let � W Nı�V ! V be the bundle map covering Nı. Next
we take a symplectic trivialization of Nı�TM and lift it to an S1-invariant trivialization of the pull-back
bundle ���! Nı�V . Pairing this trivialization with the trivialization of Nı�V ! S1 described in the proof
of Lemma 3.1, we identify CSp.���/ with T2 �CSp.2n;R/ in such a way that Oı reads as .S1 � f0g/ in
T2 paired with a loop � in CSp.2n;R/ based at Id, and �k

V
reads as .f0g �S1/k in T2 paired with the

constant loop Id in CSp.2n;R/ since ��� is trivialized in an S1-invariant fashion. Hence Oı ��k
V

reads
as .S1�f0g/� .f0g�S1/k paired with �. On the other hand since P0 is given by the projection along X ,
for any s 2 S1 and u 2 Oı.s/, we have

P0 ı .�
X
f ı�/�uD P0

�
d.�X

f . Nı.s//
/ı.s/Œu�C˛ Nı.s/.��u/X

�
D d.�X

f . Nı.s//
/ı.s/Œu�:

Again since ��� is trivialized in an S1-invariant fashion, P0 ı .�
X
f ı�

/� ı Oı reads

s 7!
�
.s; f .s//; �.s/

�
2 T2

�CSp.2n;R/;

where f W S1 ! S1 is of degree k. Therefore, P0 ı .�
X
f ı�

/� ı Oı is freely homotopic to Oı � �k
V

in
T2 �CSp.2n;R/.

Now we are ready to state our first main result.

Theorem 3.11 Let .M; !/ be a closed integral symplectic manifold such that either Œ!� vanishes on
�2.M / or .M; !/ is monotone on �2.M / with a nonvanishing monotonicity constant. Suppose that
any abelian subgroup of �1.M / has rank at most one. If .V; �/! .M; !/ is a prequantization , then
for any closed integral 1-form ˛ on M , L˛ is isotopic to Id in Cont.V; �/ if and only if Œ˛� is trivial in
H 1

dR
.M;Z/.

Proof If Œ!� vanishes on �2.M / then this follows from Proposition 3.2. Now, suppose Œ!� does not
vanish on �2.M / and .M; !/ is monotone on �2.M / with a nonvanishing monotonicity constant. If L˛

is isotopic to Id in Cont.V; �/ and Oı is a loop in CSp.�/, then by Lemma 3.10 Oı is freely homotopic to
Oı ��k

V
. So there is a loop Ǒ in CSp.�/ such that Ǒ � Oı � Ǒ�1 D Oı ��k

V
in �1.CSp.�//. Let ı and ˇ be

the projections of Oı and Ǒ to V respectively. Then ı�1ˇıˇ�1 D 
 k
V

where 
 k
V

is the projection of �k
V

.
But, we can assume 
 k

V
is contractible by iterating L˛ (or equivalently, by considering a suitable multiple
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n˛ of ˛). In this case, ı commutes with ˇ in �1.V /. It follows that ı and ˇ are contained in an abelian
subgroup H of rank at most one since the S1-fiber of V is torsion in �1.V / (by the assumption that
Œ!� does not vanish on �2.M /) and every abelian subgroup of �1.M / has rank at most one. It follows,
by Lemma 3.3, that the subgroup ��1

� .H / is an abelian subgroup of �1.CSp.�// since it is a Z-central
extension of H (the Reeb frame loop is of infinite order by Proposition 3.8). Hence Oı and Ǒ are contained
in the abelian subgroup ��1

� .H / and therefore �k
V

is contractible. But by Proposition 3.8 this is possible
only if k D

R
Nı
˛ D 0. Since ı is arbitrary we get ˛ D 0 in H 1

dR
.M;Z/.

Now let .W; !W / be a simply connected integral symplectic manifold. Consider the product symplectic
manifold M WDW �†g, ! WD !W ˚!0, where !0 is any integral symplectic form on the surface †g of
genus g � 2 and let � W .V; �/! .M; !/ be a prequantization. Then V restricted to W � fptg, denoted
by V jW , defines a prequantization of .W; !W /. Note that �1.M /D �1.†g/ and �! is trivial (see, for
example, [5, Theorem 3]). Then by Theorem 2.10, the kernel of the homomorphism (which is surjective
in this case)

�0.SCont.V; �//! �0.Symp.M; !//

is given by H 1
dR
.M;Z/DH 1

dR
.†g;Z/Š Z2g. So we get the homomorphism

I WH 1
dR.†g;Z/! �0.Cont.V; �//

and we have the natural homomorphism J W �0.Cont.V; �//! �0.Diff.V //.

Proposition 3.12 Suppose that the S1-action on V jW , given by the Reeb flow , defines a torsion loop in
�1.Diff0.V jW // of order k. Then every mapping class in the subgroup kH 1

dR
.†g;Z/��0.SCont.V; �//

is smoothly trivial.

Proof Let � WS1�Œ0; "�!†g be a symplectic embedding of a small cylinder and let f W Œ0; "�!S1DR=Z

be a smooth function that vanishes near 0 and ". Now, f induces a function Qf W †g ! S1 as follows:
extend f to S1 � Œ0; "� in the obvious way, so it induces a function on the image of � which can be
extended to be identically zero outside. The differential form d Qf represents an integral cohomology class
and, conversely, every integral cohomology is represented by such a function (with a suitable choice of �
and the degree of f ). Therefore, every element of H 1

dR
.M;Z/ can be represented as the differential of a

function Qf ıp where p WM !†g is the projection and Qf is as above.

Recall that by (17), the lift of d. Qf ıp/ to SCont.V; �/ is given by �X

. Qf ıp/ı�
ı'1 where '1 is the time-

one-map of the flow .'t / of the horizontal lift of the symplectic gradient of d. Qf ıp/. Since '1 is isotopic
to the identity, one needs only to show that if the degree of f is k (where f W Œ0; "�! S1 is seen as a
loop) then �X

. Qf ıp/ı�
is isotopic to the identity.

Let � W S1 � Œ0; "�! †g be as above and f W Œ0; "�! S1 be such a map of degree k. Denote by C the
image of � . Let V jC denote the restriction of the S1-bundle V to W �C and Z D V jW denote the
restriction of V to W � fptg. Then the map p ı� W V jC ! C defines a fiber bundle with fiber Z and the
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S1-action preserves each fiber. Our claim is that p ı� W V jC ! C is equivalent, in an S1-equivariant
way, to Z �C ! C where Z is seen as the prequantization of .W; !W /.

We first show that the bundle p ı � W V jC ! C is trivial, in an S1-equivariant way, when restricted
to S1 � f0g � C , where C is identified with S1 � Œ0; "�. Fix y0 2 W and suppose, without loss of
generality, that the loop Sy0

WD fy0g � S1 � f0g has zero holonomy. Then for every y 2W , the loop
Sy WD fyg � S1 � f0g also has zero holonomy since for some ' 2 Ham.W; !W / with '.y0/ D y, the
Hamiltonian diffeomorphism ' � Id of M maps Sy0

to Sy . Now, horizontal lifts of the loops Sy for
y 2W produce an S1-equivariant identification of all the fibers .p ı�/�1.z/ for z 2 S1 � f0g. Now we
can argue in the same fashion and identify all the fibers .p ı�/�1.z/, for z 2 S1� Œ0; "�, S1-equivariantly
just by considering the foliation of S1 � Œ0; "� by intervals fsg � Œ0; "� and their associated horizontal lifts.

Now, the map �X

. Qf ıp/ı�
reads

�X

. Qf ıp/ı�
WZ �C !Z �C; .q; .x;y// 7! .f .y/ � q; .x;y//

where f .y/ � q means the action of f .y/ 2 S1 on q. So, �X

. Qf ıp/ı�
has the form

.q; .x;y// 7! .�y.q/; .x;y//

where � W Œ0; "�!Diff0.Z/ is a loop based at Id. In our case, � is contractible if f has degree k (since, by
assumption, the Reeb flow defines a torsion loop of order k in �1.Diff0.Z//). This shows that �X

. Qf ıp/ı�
is isotopic to the identity.

Corollary 3.13 Let .†g; !0/ be a surface of genus g � 2 with an integral symplectic form and !FS be
the Fubini–Study form on CPn, which is normalized so that the standard CP1 � CPn has unit area.
Consider a prequantization .V; �/! .CPn �†g; !FS˚!0/. Then the homomorphism

I WH 1
dR.†g;Z/! �0.Cont.V; �//;

is injective. Moreover , ker.J/ contains the image of I for n odd , and contains I.2H 1
dR
.†g;Z// for n

even.

Proof The injectivity of I follows from Theorem 3.11. Note that the prequantization V jCPn is the Hopf
bundle S2nC1! CPn and the Reeb loop is given by the loop t 7! diag.e2�it ; : : : ; e2�it / in U.nC 1/.
This defines a loop in SO.2nC 2/ which is contractible if n is odd and of order 2 if n is even. The rest is
a direct consequence of Proposition 3.12.
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[23] S Sandon, A Morse estimate for translated points of contactomorphisms of spheres and projective spaces,
Geom. Dedicata 165 (2013) 95–110 MR Zbl

[24] J-M Souriau, Structure of dynamical systems: a symplectic view of physics, Progr. Math. 149, Birkhäuser,
Boston, MA (1997) MR Zbl

[25] T Vogel, Non-loose unknots, overtwisted discs, and the contact mapping class group of S3, Geom. Funct.
Anal. 28 (2018) 228–288 MR Zbl

Fakultät für Mathematik, Ruhr-Universität Bochum
Bochum, Germany

Department Mathematik/Informatik, Abteilung Mathematik, Universität zu Köln
Köln, Germany

souheib.allout@rub.de, msaglam@math.uni-koeln.de

Received: 7 March 2024 Revised: 7 May 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1007/s10711-012-9741-1
http://msp.org/idx/mr/3079344
http://msp.org/idx/zbl/1287.53067
https://doi.org/10.1007/978-1-4612-0281-3
http://msp.org/idx/mr/1461545
http://msp.org/idx/zbl/0884.70001
https://doi.org/10.1007/s00039-018-0439-x
http://msp.org/idx/mr/3777417
http://msp.org/idx/zbl/1388.57022
mailto:souheib.allout@rub.de
mailto:msaglam@math.uni-koeln.de
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Octav Cornea Université’ de Montreal
cornea@dms.umontreal.ca

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Kristen Hendricks Rutgers University
kristen.hendricks@rutgers.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US $760/year for the electronic version, and $1110/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:cornea@dms.umontreal.ca
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:mhedden@math.msu.edu
mailto:kristen.hendricks@rutgers.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 4 (pages 1917–2526) 2025

1917The zero stability for the one-row colored sl3-Jones polynomial

WATARU YUASA

1945Quillen homology of spectral Lie algebras with application to mod p homology of labeled configuration spaces

ADELA YIYU ZHANG

1999Coarse Alexander duality for pairs and applications

G CHRISTOPHER HRUSKA, EMILY STARK and HÙNG CÔNG TRẦN
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