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Pullbacks of metric bundles and Cannon-Thurston maps
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PRANAB SARDAR

Metric (graph) bundles were defined by Mj and Sardar (Geom. Funct. Anal. 22 (2012) 1636—-1707). In
this paper, we introduce the notion of morphisms and pullbacks of metric (graph) bundles. Given a
metric (graph) bundle X over B where X and all the fibers are uniformly (Gromov) hyperbolic and
nonelementary, and a Lipschitz quasiisometric embedding i : A — B, we show that the pullback i * X is
hyperbolic and the map i *: i * X — X admits a continuous boundary extension, ie the Cannon-Thurston
(CT) map 9i*:9(i* X') — dX. As an application of our theorem, we show that given a short exact sequence
of nonelementary hyperbolic groups | - N — G 5 O — 1 and a finitely generated quasiisometrically
embedded subgroup Q0 < Q, G| := n~'(Q)) is hyperbolic and the inclusion G; — G admits the CT
map dG1 — dG. We then derive several interesting properties of the CT map.
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1 Introduction

Given a hyperbolic group G and a hyperbolic subgroup H a natural question to ask is if the inclusion
H — G always extends continuously to dH — dG (see [3, Q 1.19]). This question was posed by Mahan
Mitra (Mj) motivated by the seminal article of Cannon and Thurston [7]. In [7] the authors found the
first instance of this phenomenon where H is not quasiisometrically embedded in G. It follows from
their work that if G = 71 (M) where M is a closed hyperbolic 3-manifold fibering over a circle and
H = 71(S) with S (an orientable closed surface of genus at least 2) being the fiber, then the boundary
extension dH — dG exists. More generally, one may ask for a pair of (Gromov) hyperbolic metric spaces
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Y C X if there is a continuous extension of the inclusion ¥ — X to Y — d.X. Such an extension is by
definition unique (see Definition 2.47) when it exists and is popularly known as the Cannon—Thurston
map or “CT map” for short in geometric group theory. The above question of Mahan Mitra (Mj) has
motivated numerous works. The reader is referred to [22] for a detailed history of the problem. Although
the general question for groups has been answered in the negative recently by Baker and Riley [2], there
are many interesting questions to be answered in this context. In this paper, we pick up the following:

Question Suppose | - N — G 5 Q — 1 is a short exact sequence of hyperbolic groups. Suppose
0, < Q is quasiisometrically embedded and G; = 7~!(Q). Then does the inclusion G; < G admit the
CT map?

It follows by the results of Mj and Sardar [24] that G is hyperbolic (see [24, Remark 4.4]), and so the
question makes sense. In this paper, we answer the above question affirmatively. However, we reformulate
this question in terms of metric (graph) bundles as defined in [24] (see Section 3) and obtain the following
more general result. One is referred to Lemma 2.41 and the discussion following it for the definition of
barycenter map. Coarsely surjective maps are introduced in Definition 2.1(3).

Theorem 5.2 Suppose w: X — B is a metric (graph) bundle such that
(1) X is hyperbolic and

(2) all the fibers are uniformly hyperbolic and nonelementary, ie there are 6 > 0 and R > 0 such that
any fiber F is 6-hyperbolic and the barycenter map 8;’ F — F is R-coarsely surjective.

Suppose i: A — B is a Lipschitz, quasiisometric embedding and ny : Y — A is the pullback bundle
under i (see Definition 3.18). Theni*:Y — X admits the CT map.

There are two main sources of examples of metric graph bundles mentioned in this paper where the above
theorem can be applied. The first one is that of short exact sequences of groups.

Theorem 6.1 Suppose 1 - N — G > Q — 1 is a short exact sequence of hyperbolic groups. Suppose
01 < 0 is quasiisometrically embedded and Gy = w~'(Q1). Then G, is a hyperbolic group and the
inclusion G| < G admits the CT map.

We note that special cases of Theorems 5.2 and 6.1, namely when A4 is a point and Q1 = (1), respectively,
were already known. See [20, Theorem 4.3; 24, Theorem 5.3]. Another context where Theorem 5.2
applies is that of complexes of hyperbolic groups. We refer to Section 3.3.2 for relevant definitions.

Suppose ) is a finite simplicial complex and G () is a developable complex of nonelementary hyperbolic
groups over ). Suppose that for all face o of ), G is a nonelementary hyperbolic group and for any two
faces o0 C t the corresponding homomorphism G; — Gy is an isomorphism onto a finite index subgroup
of G. Suppose that the fundamental group of the complex of groups, G say, is hyperbolic. Suppose we
have a good subcomplex Yy C Y ie one for which the following two conditions are satisfied.
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(1) The natural homomorphism 71 (G, V1) — 71(G, )) is injective.

Let Gy = 71(G, Y1). Suppose G and G are both endowed with word metrics with respect to some finite
generating sets. Let G and él be the coned off spaces a la Farb [10], obtained by coning off all the face
groups in G and G respectively.

(2) Then the induced map 61 — G of the coned off spaces is a quasiisometric embedding. With these
hypotheses we have:

Theorem 6.2 The group G is hyperbolic and the inclusion G; — G admits the CT map.

Particularly interesting cases to which the above theorem applies are obtained in [18; 12]. There graphs of
groups are considered where all the vertex and edge groups are either surface groups [18] or free groups
of rank > 3 [12], respectively.

Next, we explore properties of the Cannon-Thurston map dY — dX proved in Theorem 5.2. Suppose F is
a fiber of the bundle Y over A. Then there is a CT map for the inclusions i y: F — X andipy: F — Y,
and the map i*:Y — X. Since dip x = 0i* 0 dif,y, if o, B € OF are identified under di g, x then under
di* the points dip,y («) and dip,y (B) are identified too. It turns out that a sort of “converse” of this is
also true.

Theorem 6.25 Suppose we have the hypotheses of Theorem 5.2 and also that the fibers of the bundle are
proper metric spaces. Suppose y is a (quasi)geodesic line in Y such that y (c0) and y (—o0) are identified
by the CT map i *: 0Y — 0X. Then ny (y) is bounded. In particular, given any fiber F of the metric
bundle, y is at a finite Hausdorff distance from a quasigeodesic line of F.

On the other hand as an immediate application of Theorem 6.25 (in fact, see Theorem 6.26 and
Proposition 6.6) we get the following:

Theorem Suppose we have the hypotheses of Theorem 5.2 and also that the fibers of the bundle are
proper metric spaces. Let F be the fiber over a point b € A. Then the CT map dif x: 0F — 0X is
surjective if and only if the CT maps diF,y, : 0F — dY¢ are surjective for all § € dB, where Yy is the
pullback of a (quasi)geodesic ray in B asymptotic to &.

In particular, 0i gy : 0F — 0Y is surjective if dif y: 0F — 0X is surjective.

Following Mitra [19] we define the Cannon—Thurston lamination ag)(F ) to be

{(21,22) €OF x0F 121 # 25, 0iF x(21) = 8iF,X(22)}
and following Bowditch [5, Section 2.3] we define for any point & € B a subset of this lamination
denoted by 823((F ) or simply 8;2)(F ) when X is understood, where (z1, z) € 8;?;((F ) if and only if
diF.x(z1) = 0iF x(z2) = ¥ (00), where ¥ is a quasiisometric lift in X" of a (quasi)geodesic ray y in B
converging to £. If (zq,z;) € Sg;((F ) and « is a (quasi)geodesic line in F connecting zy, z,, then « is
referred to be a leaf of the lamination 8223( (F). Leaves are assumed to be uniform quasigeodesics in the
following theorem using Proposition 2.37.
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Theorem (properties of 8(2)(F)' see Lemmas 6.17-6.24) (1) 8(2)(F) = ]_[geaB 8(2) ¥ (F).
2) 8(2)(F) and 8( v () are all closed subsets of 9 F, where 9® F = {(z1,z,) € 0F xF : 21 # z,}.
(3) The leaves of 8(2) X(F ), 8(2) X (F) are coarsely transverse to each other for al] &1 # &, € dB: given

& #& € 0B and D > 0 there exists R > 0 such that if y; is leaf of 0 )X(F) i = 1,2 then
y1 N Np(y») has diameter less than R.

4) If&, — & indB and oy, is a Ieafofaéz)X
o is a leaf of 8(2) (F).

(5) 8(2) v (F) = 8(2) y (F) for all § € A if we have the hypothesis of Theorem 5.2.

(F) for alln € N which converge to a geodesic line o then

Finally, we also prove the following interesting property of the CT lamination.

Theorem 6.30 Suppose X is a metric (graph) bundle over B satisfying the hypotheses of Theorem 5.2
such that X is a proper metric space. Let F = Fy, where b € B. Suppose dF is not homeomorphic to a
dendrite and also the CT map 0F — 0X is surjective.

Then for all £ € B we have ng((F) #* .

This applies in particular to the examples of short exact sequence of hyperbolic groups and the complexes
of hyperbolic groups mentioned in Theorems 6.1 and 6.2 above.

Outline of the paper In Section 2 we recall basic hyperbolic geometry, Cannon—Thurston maps, etc.
In Section 3 we recall the basics of metric (graph) bundles and we introduce morphisms of bundles,
pullbacks. Here we prove the existence of pullbacks under suitable assumptions. In Section 4 we mainly
recall the machinery of [24] and we prove a few elementary results. Section 5 is devoted to the proof of the
main theorem. In Section 6 we derive applications of the main result and we mention some related results.

Acknowledgements The authors gratefully acknowledge all the helpful comments, inputs, and sug-
gestions received from Mahan Mj and Michael Kapovich. We are very thankful to the referee also for
suggesting many changes that helped to improve the exposition of the paper and for pointing out a
number of gaps and inaccuracies in an earlier version of the paper. Sardar was partially supported by
DST INSPIRE grant DST/INSPIRE/04/2014/002236 and DST MATRICS grant MTR/2017/000485 of
the government of India. Finally, we thank Sushil Bhunia for a careful reading of an earlier draft of the

paper and for making numerous helpful suggestions.

2 Hyperbolic metric spaces

In this section, we remark on the notation and convention to be followed in the rest of the paper and
we put together basic definitions and results about hyperbolic metric spaces. We begin with some basic
notions from large scale geometry. Most of these are quite standard, eg see [13; 14]. We have used [24]
where all the basic notions can be quickly found in one place.
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Notation, convention and some metric space notions One is referred to [6, Chapters 1.1, 1.3] for the
definitions and basic facts about geodesic metric spaces, metric graphs and length spaces.

(0) For any set 4, Id4 will denote the identity map A — A. If A C B then we denote by iy p: A — B
the inclusion map of 4 into B.

(1) If x € X and A C X then d(x, A) will denote inf{d(x, y):y € A} and will be referred to as the
distance of x from A. For D > 0 and A C X, Np(A4) :={x € X :d(x,a) < D for some a € A} will
be called the D-neighborhood of A in X. For A, B C X we shall denote by d(A4, B) the quantity
inf{d(x, B):x € A} and by Hd(A, B) the quantity inf{D > 0: 4 C Np(B), B C Np(A4)} and will refer
to it as the Hausdorf{f distance of A, B.

(2) If X is a length space we consider only subspaces ¥ C X such that the induced length metric on Y’
takes values in [0, 00), or equivalently for any pair of points in Y there is a rectifiable path in X joining
them which is contained in Y. We shall refer to such subsets as rectifiably path connected. If y is a
rectifiable path in X then /(y) will denote the length of y.

(3) All graphs are connected for us. If X is a metric graph then V(X)) will denote the set of vertices of X.
Generally, we shall write x € X to mean x € V(X). In metric graphs (see [6, Chapter 1.1]) all the edges
are assumed to have length 1. In a graph X the paths are assumed to be a sequence of vertices. In other
words, these are maps I N Z — X, where [ is a closed interval in R with end points in Z U {£o0}. We
shall informally write this as &: I — X and sometimes refer to it as a dotted path for emphasis. Length
of such a path «: I — X is defined to be /(«) = ) d(a(i), (i 4+ 1)), where the sum is taken over all
i€Zsuchthati,i+1el.Ifa:[0,n] - X and B:[0,m] — X are two paths with «(n) = B(0), then
their concatenation « * 8 will be the path [0, m 4+ n] — X defined by o * (i) = «(i) if i € [0,n] and
axpB(j)=p(j—n)if j €[n,m+n].

(4) If X is a geodesic metric space and x, y € X then we shall use [x, y]x or simply [x, y] to denote a
geodesic segment joining x to y. This applies in particular to metric graphs. For x, y,z € X we shall
denote by Axyz some geodesic triangle with vertices x, y, z.

(5) If X is any metric space then for all A C X, diam(A) will denote the diameter of A.

2.1 Basic notions from large scale geometry

Suppose X, Y are any two metric spaces and k > 1, € >0, ¢/ > 0.

Definition 2.1 [24, Definition 1.1.1] (1) A map ¢: X — Y is said to be metrically proper if there
is an increasing function f: [0, 00) — [0, 00) with lim;_ f(¢) = oo such that for any x, y € X and
R €]0,00), dy(¢(x),¢(»)) < R implies dy (x, y) < f(R). In this case we say that ¢ is proper as
measured by f .

(2) A subset A of a metric space X is said to be r-dense in X for some r > 0 if N,(A) = X.
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(3) Suppose A isaset. Amap ¢: A — Y is said to be e-coarsely surjective if ¢ (A) is e-dense in Y. We
will say that it is coarsely surjective if it is e-coarsely surjective for some € > 0.

(4) A map ¢: X — Y is said to be coarsely (€, €’)-Lipschitz if for every x1,x, € X, we have
d(p(x1),d(x2)) < ed(x1,x2) + €. A coarsely (e, €)-Lipschitz map will be simply called a coarsely
€-Lipschitz map. A map ¢ is coarsely Lipschitz if it is coarsely e-Lipschitz for some € > 0.

(5) (1)) Amap¢: X — Y issaid to be a (k, €)-quasiisometric embedding if for every xi,x, € X, one
has

—e+d(x1,x2)/k <d(¢(x1),p(x2)) e+ kd(x1,x2).

A map ¢: X — Y will simply be referred to as a quasiisometric embedding if it is a (k, €)-
quasiisometric embedding for some £ > 1, € > 0. A (k, k)-quasiisometric embedding will be
referred to as a k-quasiisometric embedding.

(i) Amap ¢: X — Y isa (k, €)-quasiisometry (resp. k-quasiisometry) if it is a (k, €)-quasiisometric
embedding (resp. k-quasiisometric embedding) and moreover, it is D-coarsely surjective for

some D > 0.

(iii) A (k, €)-quasigeodesic (resp. a k-quasigeodesic) in a metric space X is a (k, €)-quasiisometric
embedding (resp. a k-quasiisometric embedding) y: I — X, where I C R is an interval.

We recall that a (1, 0)-quasigeodesic is called a geodesic.

If I =[0,00), then y will be called a quasigeodesic ray. If I = R, then we call it a quasigeodesic
line. One similarly defines a geodesic ray and a geodesic line. We refer to the constant(s) k (and €) as

quasigeodesic constant(s).

Quasigeodesics in a metric graph X will be maps I N Z — X, informally written as / — X where [ is a
closed interval in R.

(6) Suppose ¢, ¢’: X — Y are two maps and € > 0.

(i) We define d(¢, ¢’) to be the quantity sup{dy (¢ (x),¢’(x)):x € X} provided the supremum
exists in R; otherwise we write d(¢, ¢’) = oc.

(ii) A map ¥:Y — X is called an e-coarse left (right) inverse of ¢ if d(i o ¢,Idy) < € (resp.
d(poy,1dy) <e).

If ¢ is both an e-coarse left and right inverse then it is simply called an e-coarse inverse of ¢.

(7) Suppose S is any set. A map f: S — X satisfying some properties P, ..., P, will be called
coarsely unique if for any other map g: S — X with properties Pq, ..., P there is a constant D such
that d(f,g) < D.
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The definition (7) above is taken from [24]. See the definition following Lemma 2.9 there. In places
where this definition will be used the properties may not be explicitly stated but they will be clear from
the context. If S is finite then we talk about a finite subset of X to be coarsely unique, eg see the remark
following Lemma 2.56.

Remark on terminology (1) All the above definitions are about certain properties of maps and in each
case some parameters are involved.

(i) When the parameters are not important or they are clear from the context then we say that the map
has the particular property without explicit mention of the parameters, eg “¢: X — Y is metrically
proper” if ¢ is metrically proper as measured by some function.

(ii)) When we have a set of pairs of metric spaces and a map between each pair possessing the same
property with the same parameters then we say that the set of maps “uniformly” have the property,
eg uniformly metrically proper, uniformly coarsely Lipschitz, uniform qi embeddings, uniform
approximate nearest point projection etc.

(2) We often refer to a quasiisometric embedding as “qi embedding” and a quasiisometry as “qi”.

The following gives a characterization of quasiisometry to be used in the discussion on metric bundles.

Lemma 2.2 [24,Lemmal.1] (1) Forevery Ky, K;>1and D >0 thereare K, = K, (K1, K5, D),
such that the following holds:

A K-coarsely Lipschitz map with a K,-coarsely Lipschitz, D-coarse inverse is a K, >-quasiisometry.

(2) Given K> 1, € >0 and R > 0 there are constants Cy , = C, (K, €, R) and Dy , = D5 ,(K, €, R)
such that the following holds:
Suppose X,Y are any two metric spaces and f: X — Y is a (K, €)-quasiisometry which is
R-coarsely surjective. Then there is a (K, », C, »)-quasiisometric D, ;-coarse inverse of f.

The following lemmas follow from simple calculations and hence we omit their proofs.

Lemma 2.3 (1) Suppose we have a sequence of maps X L. ¥ & 7 where f, g are coarsely L -
Lipschitz and L,-Lipschitz, respectively. Then g o f is coarsely (L1 L,, L1L,+ L;)-Lipschitz.

(2) Suppose f: X — Y isa(Ky,€1)-qi embedding and g: Y — Z is a (K,, €3)-qi embedding. Then
gof: X —> Zisa(K{K;,, Kye1+€;)-qi embedding.

Moreover, if f is Dy -coarsely surjective and g is D,-coarsely surjective then go f is (K, D1+ €2+ D5)-
coarsely surjective.

In particular, the composition of finitely many quasiisometries is a quasiisometry.
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Lemma 2.4 Suppose X' is any connected graph and r > 0. Suppose X is another graph obtained
from X' by introducing some new edges to X’ where e = [v, w] is an edge in X but not in X' implies
dy'(v,w) <r. Then the inclusion map X’ — X is a quasiisometry.

The following lemma appears in [17, Section 1.5] in a somewhat different form. We include a proof for
the sake of completeness.

Lemma 2.5 Let X be any metric space, x,y € X, v be a (dotted) k-quasigeodesic joining x, y and
a: I — X is a (dotted) coarsely L-Lipschitz path joining x,y. Suppose moreover, ¢ iS a proper
embedding as measured by a function f : [0, c0) — [0, 00) and that Hd (e, y) < D for some D > 0. Then
a is (dotted) K> s = K, 5(k, f, D, L)-quasigeodesic in X .

Proof Suppose y is defined on an interval J. Let @, b € I. Then we have
d(a(a),a(b)) < Lla—b|+ L — (1)

since « is coarsely L-Lipschitz. Now let a’, b’ € J be such that d («(a), y(a’) < D and d(a(b), y (b)) < D.
Let R = d(a(a),a(b)). Then by triangle inequality d(y(a’),y(b’)) < 2D + R. Since y is a k-
quasigeodesic we have —k +|a’—b'|/ k <d(y(a’), y(b')) <2D+ R. Hence, |a' —b'| <k(2D + R) + k2.
Without loss of generality suppose a’ < b’. Consider the sequence of points ay = a’,a’,...,a, =b"in J
suchthata; , =1+a;for0<i <n—2anday,—a, ; <1. Wenotethatn <1+k(2D+ R) + k2. Let
a; € I be such that d(y(a;),a(a;)) < D, 0 <i <n, where ag = a, a, = b. Once again by the triangle
inequality we have

d(a(ai), a(ai+1)) = 2D +d(y(ay). y(a;1,)) <2D + 2k

for 0 <i <mn—1since y is a k-quasigeodesic. This implies |a; —a;+1| < f(2D + 2k) since « is a proper
embedding as measured by f. Hence,

n—1
la—b] <) lai —ai41| <nfQD+k) < (1 + k@D + R) +k?) f(2D + 2k).
i=0
Thus we have
1 +2kD + k? 1
B +kf(2D+2k)|a bl = d(a(a),a(b)) — (2)

Hence, by (1) and (2) we can take

Krys=14+2D+k+kf(2D+2k)+ L. d
The following lemma is implicit in the proof of [24, Proposition 2.10]. The proof of this lemma being
immediate we omit it.
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Lemma 2.6 Suppose X is a length space and Y is any metric space. Let f: X — Y be any map. Then f is
coarsely C -Lipschitz for some C > 0 if for all x1, x5 € X, dx (x1,x2) <1 implies dy ( f(x1), f(x3)) <C.

Remark We spend quite some time restating some results proved in [24] in the generality of length
spaces since the main result in our paper is about length spaces. For instance (1) the existence of pullback
of metric bundles to be defined below is unclear within the category of geodesic metric spaces; and (2)
we observe that for the definition of Cannon—Thurston maps the assumption of (Gromov) hyperbolic

geodesic metric spaces is rather restrictive and unnecessary.

In a length metric space geodesics may not exist joining a pair of points. However, we still have the
following.

Lemma 2.7 Suppose X is a length space.
(1) Given any € > 0, any pair of points of X can be joined by a continuous, rectifiable, arc length
parametrized path which is a (1, €)-quasigeodesic.

(2) Any pair of points of X can be joined by a dotted 1-quasigeodesic.

Metric graph approximation to a length space Given any length space X, we define a metric graph Y
as follows. We take the vertex set V(Y') = X. We join x, y € X by an edge (of length 1) if and only if
dxy(x,y) <1. Welet yx: X — V(Y) CY be the identity map. Let ¢y : Y — X be defined to be the
inverse of ¥y on V(Y') and for any point y in the interior of an edge ¢ of ¥ we define ¢x () to be one
of the end points of the edge e. The following hold.

Lemma 2.8 [17, Lemma 1.32] (1) Y isa(connected) metric graph.
(2) The maps Yx and ¢x |\ (y) are coarsely 1-surjective, (1, 1)-quasiisometries.

(3) The map ¢x is a (1, 3)-quasiisometry and it is a 1-coarse inverse of Yy .

Remark We shall refer to the space Y constructed in the proof of the above lemma as the (canonical)
metric graph approximation to X. We also preserve the notation ¥y and ¢x to be used in this context only.

Definition 2.9 (Gromov inner product) Let X be any metric space and let p, x, y € X. Then the Gromov
inner product of x, y with respect to p is defined to be the number %(d(p, x)+d(p,y)—d(x,y)). Itis
denoted by (x.y),.

Lemma 2.10 Suppose X is a length space and x1, x2,x3 € X. Lety;j, i <j, 1 <1, j <3 denote (1, 1)-
quasigeodesics joining the respective pairs of points x;, Xj. Suppose there are points wy € Y23, Wz € ¥13
and w3 € Y1, such that d(wq, w;) < R for some R >0, i =2,3. Then |(x3.X3)x, —d(x1,w1)| <3+2R.
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Proof By triangle inequality we have |d(x;, wy) — d(xz, wz)| < R, |d(x3,wy) —d(x3,wz)| < R,
|d(x1,wy) —d(x1,w;)| < R, i =2,3. Since the y;;’s are (1, 1)-quasigeodesics it is easy to see that

d(x1,w3) +d(ws, x3) <d(xy1,x2) +3, d(xy,wz) +d(wz, x3) <d(x1,x3)+ 3,
d(xz, w1) +d(wy, x3) < d(x2,x3) + 3.
It then follows by a simple calculation that
2d(x1,w1) —6—4R <d(x1,x3) +d(x1,x3)—d(x2,x3) <2d(x1,wq) +3+4R.

Hence, we have |(x3.x3)x, —d(x1, w1)] <3+ 2R. O

Definition 2.11 (1) Suppose X is a length space and Y7, Y,, Z are nonempty subsets of X. We say
that Z coarsely disconnects Y1,Y, in X if 1) Y; \ Z # &, i = 1,2 and (ii) for all K > 1 there is
R > 0 such that the following holds: for any y; € ¥;, i = 1,2 and any K-quasigeodesic y in X
joining y1, y, we have y N Ng(Z) # @.

(2) SupposeY,Z C X, Y1,Y, CY. We say that Z coarsely bisects Y into Y1, Y, in X if Y =Y, UY)
and Z coarsely disconnects Y7, Y, in X.

(3) Suppose {X;} is a collection of length spaces and there are nonempty sets Y;, Z; C Xj, Yl-+, Yo CY;
such that Y; = Y;* UY,", ¥, \ Z; # @, and Y;" \ Z; # @ for all i. We say that Z;’s uniformly
coarsely bisect Y;’s into Yl.+’s, and Y;’s if for all K > 1 there is R = R(K) > 0 with the following
property: for any i, and for any xl."' € Yi"', x; € Y; and any K-quasigeodesic y; C X joining xii
we have Ngr(Z;) Ny; # @.

We note that the first part of the above definition implies Y; N Y, C Ng(1)(Z). Moreover one would like
to impose the condition that Y; \ Z are of infinite diameter. Keeping the application we have in mind we
do not assume that.

Definition 2.12 (approximate nearest point projection) (1) Suppose X is any metric space, 4 C X,
and x € X. Given € > 0 and y € A we say that y is an e-approximate nearest point projection of
x on A if for all z€ A we have d(x,y) <d(x,z)+e.

(2) Suppose X is any metric space, A C X and € > 0. An e-approximate nearest point projection map
f:X — Aisamap such that f(a) =a forall a € A4 and f(x) is an e-approximate nearest point
projection of x on A4 for all x € X \ 4.

For € = 0 an e-approximate nearest point projection is simply referred to as a nearest point projection.
A nearest point projection map from X onto a subset A will be denoted by P4 x: X — A or simply
P4: X — A when there is no possibility of confusion.

We note that given a metric space X and 4 C X a nearest point projection map X — A may not be
defined in general but an e-approximate nearest point projection map X — A exists by axiom of choice
for all € > 0.
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Lemma 2.13 Suppose X is a metric space and A C X. Suppose y € A is an e-approximate nearest
point projection of x € X. Suppose a: I — X is a (1, 1)-quasigeodesic joining x, y. Then y is an
(e+3)-approximate nearest point of x’ on A for all x' € .

Proof Suppose z € A is any point. Then we know that d(x, y) < d(x,z) + €. Since « is a (1, 1)-
quasigeodesic it is easy to see that d(x,x’) + d(x’,y) <d(x,y) + 3. Hence, d(x,x") +d(x’, y) <
d(x,z)+ 3+ € which in turn implies that d (x’, y) <d(x,z)—d(x,x’)+3+€ <d(x', z) + € + 3. Hence,
y is an (e+3)-approximate nearest point projection of x” on A. |

Corollary 2.14 Suppose X is any metric space and x, y,z € X. Suppose «, 8 are (1, 1)-quasigeodesics
joining x, y and y, z, respectively. If y is an e-approximate nearest point projection of x on B then « * 8
is (3, 3+¢€)-quasigeodesic.

Proof Let x’ € @ and ' € B. Let 8’ denote the segment of 8 from y to y’. Then y is an e-approximate
nearest point projection of x on 8’ too. Hence, by the previous lemma y is an (e+3)-approximate nearest
point projection of x” on B’. Without loss of generality, suppose a(a) = x’, a(a+m) =y, B(0) =y, and
B(n)=y'. Now,d(x', y) <d(x',y")+e+3. Hence d(y, y') <d(x', y)+d(x', y) <2d(x’, y') +€+3.
Since «, § are both (1, 1)-quasigeodesics it follows that m — 1 < d(x’,y) < d(x’,)’) + € + 3 and
n—1<d(y,y) <2d(x',y’) + e+ 3. Adding these we get m +n —2 < 3d(x’, y’) + 2¢ + 6. On the
other hand, d(x’/, y') <d(x’, y) + d(y,y’) <m + n + 2. Putting everything together we get

%(m+n)—%(26+8)§d(x’,y/)§(m +n)+2

from which the corollary follows immediately. O

2.2 Rips hyperbolicity vs Gromov hyperbolicity

This subsection gives a quick introduction to some basic notions and results about hyperbolic metric
spaces. One is referred to [1; 13; 14] for more details. The following definition of hyperbolic metric
spaces is due to E Rips and hence we refer to this as the Rips hyperbolicity.

Definition 2.15 (1) Suppose Ax;x,x3 is a geodesic triangle in a metric space X and § >0, K >0. We
say that the triangle Axx,x3 is §-slim if any side of the triangle is contained in the §-neighborhood
of the union of the remaining two sides.

(2) Letd > 0and X be a geodesic metric space. We say that X is §-hyperbolic (in the sense of Rips)
if all geodesic triangles in X are §-slim.

A geodesic metric space is said to be (Rips) hyperbolic if it is §-hyperbolic in the sense of Rips for some

§>0.

However, in this paper we need to deal with length spaces a lot which a priori need not be geodesic. The
following definition is more relevant in that case.
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Definition 2.16 (Gromov hyperbolicity) Suppose X is any metric space, not necessarily geodesic and
§=0.

(1) Let p € X. We say that the Gromov inner product on X with respect to p, ie the map X x X — R
defined by (x, ) = (x.y)p, is §-hyperbolic if

(xp)p = min{(x.2)p. (1.2)p} 8
for all x, y,z € X.

(2) The metric space X is called §-hyperbolic in the sense of Gromov if the Gromov inner product on
X is §-hyperbolic with respect to any point of X'.

A metric space is called (Gromov) hyperbolic if it is §-hyperbolic in the sense of Gromov for some § > 0.
However, it is a standard fact that for geodesic metric spaces the two concepts are equivalent. See [14,

Section 6.3C], or [6, Proposition 1.22, Chapter III.H] for instance. In this subsection we observe an
analog of Rips hyperbolicity in Gromov hyperbolic length spaces using the next two lemmas.

The following lemma is a crucial property of Rips hyperbolic metric spaces.
Lemma 2.17 (stability of quasigeodesics in a Rips hyperbolic space [13]) For all § > 0 and k > 1,
€ > 0 there is a constant D, 17 = D;.17(8, k, €) such that the following holds:

Suppose Y is a geodesic metric space §-hyperbolic in the sense of Rips. Then the Hausdorff distance
between a geodesic and a (k, €)-quasigeodesic joining the same pair of end points is less than or equal
to D 17.

One is referred to [25, Theorems 3.18, 3.20] for a proof of the following lemma.

Lemma 2.18 Suppose X is a metric space which is -hyperbolic in the sense of Gromov. If f: X — Y
is a R-coarsely surjective, (1, C)-quasiisometry then Y is D = D, 13(8, R, C)-hyperbolic in the sense
of Gromov.

Using metric graph approximations to length spaces (Lemma 2.8) and the fact that for geodesic metric
spaces Gromov hyperbolicity implies Rips hyperbolicity we obtain the following three corollaries.

Corollary 2.19 (stability of quasigeodesics in a Gromov hyperbolic space) Given§ >0, k> 1, € >0
there is D = D5 19(8, k, €) such that the following holds:

Suppose X is metric space which is §-hyperbolic in the sense of Gromov. Then given (k, €)-quasigeodesics
yi, i = 1,2 with the same end points we have Hd(y1,y,) < D.
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Corollary 2.20 (analog of Rips hyperbolicity for length spaces) Suppose X is a length space. If X is
8-hyperbolic in the sense of Gromov then for all K > 1, € > 0 all (K, €)-quasigeodesic triangles in X are
D320 = D2.20(8, K, €)-slim.

Conversely if all (K, €)-quasigeodesic triangles in X are R-slim for some R > 0 and for some sufficiently
large K, € then X is Ay 20 = A2.20(R, K, €)-hyperbolic in the sense of Gromoyv.

Slimness of triangles immediately implies slimness of polygons:

Corollary 2.21 (slimness of polygons) Suppose that X is a length space. If X is §-hyperbolic in the
sense of Gromov then for all K > 1, € > 0 all (K, €)-quasigeodesic n-gons in X are (n—2)D, 59 =
(n—2)D; »0(6, K, €)-slim.

Convention 2.22 For the rest of the paper a §-hyperbolic (or simply hyperbolic) space will refer either
to (1) a §-hyperbolic (resp. hyperbolic) space in the sense of Rips if it is a geodesic metric space or
(2) a 6-hyperbolic (resp. hyperbolic) space in the sense of Gromov if it is not a geodesic metric space.
However, in this case the space will be assumed to be a length space. The constant § will be referred to

as the hyperbolicity constant for the space involved.

2.3 Quasiconvex subspaces of hyperbolic spaces

Definition 2.23 Let X be a hyperbolic geodesic metric space and let A € X. For K > 0, we say that 4
is K-quasiconvex in X if any geodesic with end points in A is contained in Ng (A4).

If X is a Gromov hyperbolic length space and A C X then we will say that 4 is K-quasiconvex if any
(1, 1)-quasigeodesic joining a pair of points of A is contained in Ng (A).

A subset A C X is said to be quasiconvex if it is K-quasiconvex for some K > 0.

The following lemma relates quasiconvexity with qi embedding. It is straightforward and is proved in the
context of geodesic metric spaces in [17, Chapter 1, Section 1.11]. Hence we skip the proof.

Lemma 2.24 (1) Given§ > 0 and k > 0 there are constants D = D(8, k) and K = K(§, k) such that
the following holds:
Suppose X is a §-hyperbolic metric space and A C X is k-quasiconvex. Then Np(A) is path
connected and with respect to the induced path metric on Np(A) from X the inclusion map
Np(A) — X is a K-qi embedding.

(2) Suppose X is a hyperbolic metric space and Y is a quasiconvex subset. Suppose Y is path connected
and with respect to the induced path metric on Y from X the inclusion map Y — X is metrically
proper. Then the inclusion map is a qi embedding.
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In this subsection, in a Gromov hyperbolic setting, we prove a number of results about quasiconvex sets
analogous to those in [24, Section 1.2] which were proved in a Rips hyperbolic setting. The importance
of the following lemma for this paper can be hardly exaggerated.

Lemma 2.25 (projection on a quasiconvex set) Let X be a §-hyperbolic metric space, U C X a
K-quasiconvex set and € > 0. Suppose y € U is an e-approximate nearest point projection of a point
x € X onU. Letz € U. Suppose « is a (dotted) k-quasigeodesic joining x to y and B is a (dotted)
k-quasigeodesic joining y to z. Then o *x B is a (dotted) K, »5 = K5 »25(8, K, k, €)-quasigeodesic in X.

In particular, if y is k-quasigeodesic joining x, z then y is contained in the D; »5(68, K, k, €)-neighborhood
of y.

Proof Without loss of generality we shall assume that X is a §-hyperbolic length space. Suppose 8
is a (1, 1)-quasigeodesic in X joining y,z. Since U is K-quasiconvex it is clear that y is an (e+ K)-
approximate nearest point projection of x on 8;. Hence, if oy is a (1, 1)-quasigeodesic joining x, y
then oy * By is a (3, 3+€+ K)-quasigeodesic in X by Corollary 2.14. By stability of quasigeodesics
Hd(a,01) < D5 19(8,k,€),and Hd(B, B1) < D>.19(8, k,€). Hence, Hd(a*B,01%B1) < D> 19(6, k, €).
By Lemma 2.5 it is enough to show now that y = « * 8 is uniformly properly embedded. Let y; = oy * 8
and R = D;.19(8,k,€). Suppose «: [0,/] - X with «(0) = x, a(/) = y and B: [0,m] — X with
BO)=y, B(m)==z. Lets <t [0,/ +m]and d(y(s),y(t)) < D for some D > 0. We need to find a
constant Dy such that t —s < D{, where Dy depends on §, k, K and D only. However, if s,¢ € [0, /] or
s,t € [l,] + m] then we have —k + (¢t — s)/k < D since both «, B are k-quasigeodesics. Hence, in that
case t —s < k% +kD.

Suppose s € [0,/) and ¢t € (/,m]. In this case y(s) = a(s), y() = Bt —1). Let x’ € ay, V' € By
be such that d(x’,y(s)) < R and d()’, y(¢t)) < R. Then d(x’,y’) < 2R + D. Suppose y;(s') = x/,
vty =", y1(u) = y, where s’ <u <t'. Since y; is a (3, 3+€+ K)-quasigeodesic we have |s' —¢'| <
334+€+ K)+3d(x",y') <33+ €+ K)+ 3(2R + D). It follows that |s" — u| and |u —¢’| are both
atmost 3(3+¢€+ K)+32R+ D)=9+3¢+3K +6R+3D. Hence, d(x’, y),d(y, y') are both at
most 3(9+ 3¢ +3K +6R+3D)+3+e¢+ K =30+ 10c + 10K + 18R + 9D = D’, say. Hence,
d(y(s), ), d(y,y(t)) are both at most R + D’. Since «, B are k-quasigeodesics it follows that / — s
and ¢ — [ are both at most k% + k(R + D’). Hence, t —s < 2(k*> + k(R + D’)). Hence, we can take
Dy =2k? +2kR + 2k D’. This completes the proof of the existence of K »s.

Clearly one can set D3 »5(8, K, k,€) = D;.19(3, K3.25(8, K, k. k), K3.25(8, K, k., k)). ]
Corollary 2.26 Suppose X is a §-hyperbolic metric space and « is a k-quasigeodesic in X with an end

point y. Suppose x € X and y is an e-approximate nearest point projection of x on «. Suppose  is a
k-quasigeodesic joining x to y. Then 8 x o is a K5 »6(8, k, €)-quasigeodesic.
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Proof We briefly indicate the proof. One first notes by stability of quasigeodesics that images of uniform
quasigeodesics are uniformly quasiconvex. Then one applies the preceding lemma. a

The following corollary easily follows from Lemmas 2.25 and 2.13. For instance, the proof is similar to
that of [24, Lemma 1.32].

Corollary 2.27 (projection on nested quasiconvex sets) Suppose X is a §-hyperbolic metric space and
V C U are two K-quasiconvex subsets of X. Suppose x € X and x1 € U, x, € V are e-approximate
nearest point projection of x on U and V, respectively. Suppose X3 is an €-approximate nearest point
projection of x1 on V. Then d(x;,x3) < D5 17(8, K, €).

In particular, for any two €-approximate nearest point projections x1, x, of x on U we have

d(x1,x2) < D327(8, K, €).

Corollary 2.28 Givend >0, K > 0,¢ > 0 there are constants L = L, »5(8, K,€), D = D5 73(8, K, €)
and R = R, »3(8, K, €) such that the following hold:

(1) Suppose X is a §-hyperbolic metric space and U is a K-quasiconvex subset of X . Then for all € > 0
any e-approximate nearest point projection map P: X — U is coarsely L-Lipschitz.

(2) Suppose V is another K-quasiconvex subset of X and vy,v, € V and u; = P(v;), i = 1,2. If
d(ul, Uz) > D thenuy,u, € NR(V)

In particular, if the diameter of P(V) is at least D then d(U, V) < R.

Proof (1) Suppose x,y € X with d(x, y) < 1. Then P(x) is an (¢+1)-approximate nearest point
projection of y on U. Hence, by Corollary 2.27 we have d(P(x), P(y)) < D5,7(8, K,e 4+ 1) and we
may take L, 23(8, K,€) = D5 57(8, K, e + 1) by Lemma 2.6.

(2) Consider the quadrilateral formed by (1, 1)-quasigeodesics joining the pairs (11, u5), (13, v2), (v2, V1)
and (vy,u1). This is 2D5 50(8, 1, 1)-slim by Corollary 2.21. Let §' = 2D> 50(8,1,1). Suppose no
point of the side vqv; is contained in a §’-neighborhood of the side uu,. Then there are two points
say X1,Xp € vivy such that x; € Ng(ujv;), i = 1,2 and d(x1,x;) < 2. Hence there are points
Yi € ujvi, i = 1,2 such that d(y1, y) < 2 + 28’. However, u; is an (e+3)-approximate nearest
point projection of y; on U by Lemma 2.13. Hence, by the first part of Corollary 2.28 we have
d(uy,us) < Ly»3(8, K,e+3)+ (2+28")L,.253(8, K, € + 3). Hence, if the diameter of P(V') is bigger
than D = L, 53(8, K, € +3) + (2 +28")L.28(8, K, € + 3) then there is a point x € v{v, and y € uquy
such that d(x, y) < §’. Since U is K-quasiconvex we have thus x € Ng 5 (U). Thus we may choose
R=K+4¢'. ]

The second part of the above corollary is implied in Lemma 1.35 of [24] too. The next lemma roughly
says that the nearest point projection of a quasigeodesic on a quasiconvex set is close to a quasigeodesic.
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Lemma 2.29 Given K >0, R>0, 6 > 0 there is a constant D = D, »9(R, K, §) such that the following
holds:

Suppose X is a §-hyperbolic metric space and A is a K-quasiconvex subset of X. Suppose x, y € X and
X,y € A, respectively, are their 1-approximate nearest point projections on A. Let [x, y],[X, y] denote
1-quasigeodesics in X joining x, y and X, y, respectively. Suppose z € [x, y] and Z is a 1-approximate
nearest point projection of z on A and d(z,z) < R. Thend(z,[x, y]) < D.

Proof By Corollary 2.21, quadrilaterals in X formed by 1-quasigeodesics are 2D; »0(6, 1, 1)-slim.
Hence, there is z’ € [x,X] U [x, p]U[y, ¥] such that d(z,z") < 2D5,0(8,1,1). If z' € [X, J] then we
are done. Suppose not. Without loss of generality let us assume that z’ € [x,X]. Then d(z’, A) <
d(z,z')+d(z, A) <2D;50(8,1,1) + R. Since X is a l-approximate nearest point projection of x on A4,
X is a 4-approximate nearest point projection of z’ on A4 by Lemma 2.13. Hence, by Corollary 2.28,
d(X,2) < L13(8, K, 4)d(z',z) < Ly.28(5,K,4)(2D550(8,1,1) + R). But d(z,Z) < R. Hence,

d(z,X) < R+ L323(8,K,4)(2D2.29(8,1,1) + R).
Thus we can take D, »,9(R, K,8) = max{2D2_20(8, 1,1), R+ L, 3(8, K,4)(2D5.0(8,1,1) + R)}. O

The following lemma asserts that quasiconvexity and nearest point projections are preserved under qi
embeddings.

Lemma 2.30 Suppose X is a 6-hyperbolic metric graph and Y C X is a connected subgraph such that
the inclusion (Y, dy) — (X, dy) is a k-qi embedding. Suppose A C Y is K-quasiconvex in Y. Then the
following hold:

(1) Ais Ky30(8,k, K)-quasiconvex in X.

(2) Foranyx €Y ifxy,x, € A are the nearest point projections of x on A inY and X, respectively,
then dy (x1, x2) < D3.30(8, k, K).

Proof (1) Suppose x, y € A and let «, B be geodesics joining x, y in Y and X, respectively. Since Y
is k-qi embedded, « is a (k, k)-quasigeodesic in X by Lemma 2.3. Hence, by stability of quasigeodesics
Hd(a, B) < D;3.17(8, k, k). However, A being K-quasiconvex in ¥, @ C Ng(A) in Y and hence in X
as well. Thus B C Nk 4 p, 14(5.k,k)(A) in X. Hence, we can take K3 30(8,k, K) = K+ D5 17(8, k. k).

(2) Suppose K1 = K5 30(8,k, K). Then x, € Np([x, x1]x) in X, where D = D, »5(8, Ky, 1, 1).
We have Hd([x, x1]y.[x, x1]lx) < D,.17(8, k, k) by stability of quasigeodesics. Thus there is a point
x5 € [x,x1]y such that dx(x2,x5) < D+ D, 17(8,k, k) = Dy, say. Then dy(x;,x5) < k(D + k)
since Y is k-qi embedded in X. Since x; is a nearest point projection of x on A in Y, it is also a
nearest point projection of x on A in Y. Hence, dy(x},x) < dy(x}.x;) < k(D; + k). Hence,
dy (x1,x2) < 2k(D; + k) by triangle inequality. Thus we can take D, 39(8,k, K) =2k(D;+ k). O
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Definition 2.31 Suppose X is a é-hyperbolic metric space and A4, B are two quasiconvex subsets.
Let R > 0. We say that 4, B are mutually R-cobounded, or simply R-cobounded, if the set of all
I-approximate nearest point projections of the points of 4 on B has a diameter at most R and vice versa.

When the constant R is understood or is not important we just say that A, B are cobounded.

The following corollary is an immediate consequence of Corollary 2.28(2).

Corollary 2.32 [24, Lemma 1.35] Given 6 > 0,k > 0 there are constants D = D, 3,(8,k) and
R = R; 3,(6, k) such that the following holds:

Suppose X is a 6-hyperbolic metric space and A, B C X are two k-quasiconvex subsets. If d(A, B) > D
then A, B are mutually R-cobounded.

The following proposition and its proof are motivated by an analogous result due to Hamenstidt [16,
Lemma 3.5]. See also [24, Corollary 1.52]. Before we state the proposition let us explain the set-up.

(PO) Suppose X is a §-hyperbolic metric graph and Y C X is a K-quasiconvex subgraph, for some § > 0,
K > 0. Suppose [ is an interval in R with end points in Z U {co, —oo} and I1: Y — [ is a map such that
INZCTII(Y). Let Y; := T~ 1(i) foralli € INZ and Y;; = T~ ([i, j]) foralli, j e INZ withi < j
such that the following hold:

(P1) All the sets ¥; and Y;;, i, j € I, i < j are K-quasiconvex in X.

(P2) Y; uniformly coarsely bisects Y into ¥;~ := M= '((—o0,i]N I) and Yl.+ =TI~ 1([i, 00) N I) for
alli € I. Let R > 0 be such that any geodesic in Y joining YiJr and Y; passes through Ng(Y;) for all
ielNZ.

(P3) d(Yiit1.Yjj41)>2K +1foralli,jelif j+1elandi+1< ;.

(P4) There is D > 0 such that the sets ¥; and Y; are D-cobounded in X forall i, j € I NZ withi < j
unless j =i+ 1 and i, j are the end points of /.

The proposition below is about a description of uniform quasigeodesics in X joining points of Y.

Proposition 2.33 Given§ >0, K >0, D>0, A>1, € > 1 and R > 0 there are
)x/ = )\2.33(5, K, D,)\., €, R) Z 1 and U233 = /12.33(8, K, D, €, R) Z 0
such that the following holds.

Suppose we have the aforementioned hypotheses (P0)—(P4). Supposem,n € INZ and y € Yy, V' € Yy
Suppose y; € Y, m < i < n are defined as follows: y, = y, y;41 IS an e-approximate nearest point
projection of y; on Yj4q form <i <n—1. Suppose o; C Y;;+1 is a A-quasigeodesic in X joining y; and
Yi+1, m <i <n—1 and B is a A-quasigeodesic joining y, and y’.

Then the concatenation of the all the «; s and B is a A’ -quasigeodesic in X joining y, y'. Moreover, each
y; is an [, 33-approximate nearest point projection of y on Y; form +2 <i <n.
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Proof The proof is broken into the following three claims. In course of the proof we shall denote the

concatenation of the ¢;’s and 8 by «.

Claim 1 Suppose x € Y;~ for some i. Let X be an e-approximate nearest point projection of x on Y;.
Then X is an €' -approximate nearest point projection of x on YiJr where €' depends only on € and the
parameters 6, D, K and R.

Proof Suppose x’ is a 1-approximate nearest point projection of x on Yl.+. Since Yl.Jr is K-quasiconvex,
[x,x']x[x/, x]is a K525(8, K, 1, 1)-quasigeodesic by Lemma 2.25. Let k; = K5 55(5, K, 1,1). Then
by stability of quasigeodesics there is a point z € [x, X] such that d(x’,z) < D, 17(8, k1) = Dy, say.
We claim that z is uniformly close to Y;. Since Y;” is K-quasiconvex there is a point w € ¥;~ such
that d(z, w) < K. It follows that d(w,x’) < D; + K. By (P2), there is a point z; € [w, x’] such
that d(z1,Y;) < R. Since d(z1,w) < d(w,x’) < Dy + K and d(w, z) < K, it follows by the triangle
inequality that d(z, Y;) < 2K + Dy 4+ R. Now, by Lemma 2.13 X is an (¢+3)-approximate nearest point
projection of z on Y;. Hence, d(x’,X) < d(x’,z) +d(z,X) < D1 + €+ 3 +d(z,Y;). It follows that
€ =3+¢e¢+2K+2D; + R works. 4

Note We shall use D again in the proof of Claim 3 to denote the same constant as in the proof of Claim 1
above.

Claim 2 Next we claim that for allm + 2 < i <n — 1 there is uniformly bounded set A; C Y; such that
€-nearest point projection of any point of Yj_, J <ionY,; is contained in A;.

Proof Consider any Y;, m+2 <i <n—1. Let B; C Y; be the set of all 1-approximate nearest point
projections of points of ¥;_; on Y; in X. Then the diameter of B; is at most D by (P4). Suppose x € Yj_,
J <i.Letxy,Xx, be e-approximate nearest point projections of x on ¥;_; and Y;, respectively. Let x3 be
an e-nearest point projection of x; on Y;. Now, by Step 1 x; is an €’-approximate nearest point projection
of x on Y:l and x,, x3 are €’-approximate nearest point projection of x and x1, respectively, on Yl.+.
Therefore, by the first part of Corollary 2.27 we have d(x,, x3) < D, ,7(8, K, €'). However, if x’l € B;
is a 1-approximate nearest point projection of x; on ¥; then by the second part of Corollary 2.27 we have
d(xs3, Bj) < d(x3,x1) < D;,,7(8, K, €) since € > 1. Hence, d(x,, B;) <2D;, »7(6, K, €). Therefore, we
can take A; = Ny p, ,,8,k,¢)(Bi) N Y;. <

Let r = sup,, 1 2<j<p—1tdiam(A4;)}. We note that r < D + 2D, 57(8, K, €).

Claim 3 Finally we claim that (1) « is contained in a uniformly small neighborhood of a geodesic joining
v, y' and (2) « is uniformly properly embedded in X .

We note that the proposition follows from Claim 3 using Lemma 2.5.

Proof of Claim 3 Suppose x, x’ € a, IT1(x) < I1(x’). Choose smallest k,/ such that x € @ N Yix41,
x' €aNYyyq, where m <k <[ <n. Let y be a geodesic in X joining x, x’.
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(1) Tt is enough to show that the segment of « joining x to x’ is contained in a uniformly small
neighborhood of y. Hence, without loss of generality k& < /. Due to Corollary 2.21 it is enough to prove
that the points y;, kK +1 <i </ —1 are contained in a uniformly small neighborhood of y in order to
show that the segment of « joining x to x’ is contained in a uniformly small neighborhood of y. (We
note that the path a1 * B is a D »5(8, K, A, €)-quasigeodesic joining y,_1 and y’.) For this first we
note that x is on a. Let y; be a geodesic joining yg, Vi +1. Then by stability of quasigeodesics there
is a point x; € ¢ such that d(xq,x) < D, 19(8,A,A). Since yx; is an e-approximate nearest point
projection of y on Yx 41, by Lemma 2.13 yj 4 is an (e+3)-approximate nearest point projection of x;
on Yz 1. Hence, yg 41 is an (€+3+4D; 19(8, A, A))-approximate nearest point projection of x; on Yz .

Lete; =€ +3+4 D3 19(8,A,1). By Step 1 yg; is an €] -nearest point projection of x on Y, ., where

€, =3+ € + 2Dy + 42K + R. Now the concatenation of a geodesic joining yx4 to fcj_z)vith the
segment of « from x to yg; is a uniform quasigeodesic by Lemma 2.25. Thus by Corollary 2.19 yj 41
is uniformly close to y. On the other hand by Step 2 y; is an (e+r)-approximate nearest point projection
of x on Y; and hence an (e+r) -approximate nearest point projection on Yl.Jr forallk +2<i </—-1.
Hence, again by Lemma 2.25 and Corollary 2.19 y; is within a uniformly small neighborhood of y. This

proves (1).

(2) Suppose L =sup{d(yi,y):k+1<i <I—1}. Suppose x, x" € a as above with d(x, x") < N. Once
again, without loss of generality k < /. We claim that / <k + N. To see this consider two adjacent vertices
Vi, Virg ony. If v; € Ng(Ys541) and v;41 € Ng(Yys41) with s < ¢ then by (P3) we have t = 5 + 1.
The claim follows from this. Suppose a(sx) = x, a(s;) = y; fork +1<i <[ —1and a(s;) = x’. We
note that d(oe(s;), ®(sj+1)) <N +2L fork <i <[—1. Since / —k < N and since the segments of «
joining a(s;7), o (Si+1), kK <i </ —1 are uniform quasigeodesics, we are done. <

For the second part of the proposition we have already noticed that y; is an (¢+r)-approximate nearest
point projection of any point Yj_, in particular of y, on Y; forall j <i, m+2 <i <n—1. On the other
hand, y,—; is an (e +r) = (e +r + 3+ 2D; + 2K + R)-approximate nearest point projection of y
on Yntl. Hence, by Corollary 2.27 if y;, is a l-approximate point projection of y on Y, C Yntl then
d(yy. yn) < D3 27(8, K, (€ +r)). Thus yy is an (1 + D3 »7(8, K, (¢ + r)’))-approximate nearest point
projection of y on Y. a

Lemma 2.34 Given$§ >0, k > 1, € > 0, there is a constant D = D, 34(6, k, €) such that the following
is true:
Suppose X is a §-hyperbolic metric space. Suppose x1, X3, p € X and « is a (k, €)-quasigeodesic in X

joining x1, x3. Then |(x1.x2)p, —d(p, )| < D.

Proof Without loss of generality, we shall assume that X is a length space §-hyperbolic in the sense
of Gromov. Let w € o be a 1-approximate nearest point projection of p on «. Let 81, B, be (1,1)-
quasigeodesics joining the pairs of points (x1, p), (x2, p), respectively. Let y be a (1, 1)-quasigeodesic
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joining p, w and let o’ be a (1, 1)-quasigeodesic joining x1,x;. Let C = D; 19(8,k,e + 1). Now,
by Corollary 2.19 Hd(«a,a’) < C and « is C-quasiconvex. Let oy be the portion of « from x; to w
and let a» be the portion of « from w to x,. Then oy * y, ay x Y are K = K, 5(8,C, k + €,k + €)-
quasigeodesics. Hence by Corollary 2.19 Hd(B;, o * ) < D3.19(8, K, K). Let w; € B; be such that
d(w,w;) < D319(8, K, K). Since Hd(a,a’) < C, there is a point w’ € o’ such that d(w,w’) < C.
Hence, d(w’, w;) < C + D, 19(8, K, K) = R, say. Now by Lemma 2.10 |(x;.x2), —d(p. w')| <3+2R.
It follows that |(x;.x2)p, —d(p,w)| <3+ 2R+ C. Since w is a 1-approximate nearest point projection
of p on @ we have for all z € «, d(p,w) < d(p,z) + 1. Thus |d(p,a) —d(p,w)| < 1. Hence,
|(x1.x2)p —d(p,a)| <4+2R+C. |

2.4 Boundaries of hyperbolic spaces and CT maps

Given a hyperbolic metric space, there are the following three standard ways to define a boundary. Some
of the results in this subsection are mentioned without proof. One may refer to [1; 6] and for details.

Definition 2.35 (1) Geodesic boundary Suppose X is a (geodesic) hyperbolic metric space. Let G
denote the set of all geodesic rays in X. The geodesic boundary X of X is defined to be G/~,
where ~ is the equivalence relation on G defined by setting o ~ § if and only if Hd(«, ) < cc.

(2) Quasigeodesic boundary Suppose X is a hyperbolic metric space in the sense of Gromov. Let Q
be the set of all quasigeodesic rays in X. Then the quasigeodesic boundary 04X is defined to be
Q/~, where ~ is defined as above.

(3) Gromov boundary or sequential boundary Suppose X is a hyperbolic metric space in the sense
of Gromov and p € X. Let S be the set of all sequences {x,} in X" such that lim; ; so0(X;.X})p = 00.
All such sequences are said to converge to infinity. On S we define an equivalence relation where
{xn} ~ {yn} if and only if lim; j o0 (x;.yj)p = 00 for some (any) base point p € X. The Gromov
boundary or the sequential boundary ds X of X, as a set, is defined to be S/~.

Notation and convention (1) The equivalence class of a geodesic ray or a quasigeodesic ray « in 0X
or d4X is denoted by a(oo). It is customary to fix a base point and require that all the rays start from
there to define X" and d,X but it is not essential.

(2) If o is a (quasi)geodesic ray with «(0) = x, a(oco) = £ then we say that o joins x to £&. We use
[x, &) to denote any (quasi)geodesic ray joining x to & when the parametrization of the (quasi)geodesic
ray is not important or is understood.

(3) If « is a quasigeodesic line with a(c0) = &, a(—00) =&, € 0, X then we say that « joins &;, &>.
We denote by (&1, &>) any quasigeodesic line joining &1, £, when the parameters of the quasigeodesic are
understood.
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4) If & = [{xu}] € 05X then we write x, — & or § = lim, o X, and say that the sequence {x,}

converges to &.

(5) We shall denote by X the set X U dsX.

The following lemma and proposition summarizes all the basic properties of the boundary of hyperbolic
spaces that we will need in this paper.

Lemma 2.36 [9, Theorem 11.108] Let X, Y be hyperbolic metric spaces.

(1) Given a gi embedding ¢: X — Y we have an injective map d¢: d; X — d5Y.

2) () Ifx Sy ¥ 7 are gi embeddings then (Y o ¢) = Y o0 d¢p.
(i) d(Idy) is the identity map on dg X .
(iii)) A qi induces a bijective boundary map.

The following proposition relates the three definitions of boundaries.

Proposition 2.37 (1) Forany metric space X the inclusion G — Q induces an injective map 0X — 04 X .
(2) Given a quasigeodesic ray o, lim, o @ (n) is well defined and o ~ 8 implies limy,_— oo (1) =
limy, o0 B(n). This induces an injective map dg X — 05X .

(3) If X is a proper geodesic hyperbolic metric space then the map 0X — 04X is a bijection.

(4) The map 04X — 05X is a bijection for all Gromov hyperbolic length spaces.

In fact, given § > 0 there is a constant k, 37 = k. 37(8) such that given any 6-hyperbolic length space X ,
any pair of points x, y € X can be joined by a k, 37-quasigeodesic.

Proof Properties (1), (2), (3) are standard. See [6, Chapter III.H], for instance. Property (4) is proved for
geodesic metric spaces in Section 2 of [24]. See Lemma 2.4 there. The same result for a general length
space then is a simple consequence of the existence of a metric graph approximation of a length space
and the preceding lemma. |

Lemma 2.38 (ideal triangles are slim) Suppose X is a 6-hyperbolic metric space in the sense of Rips
or Gromov. Suppose X, y,z € X and we have three k-quasigeodesics joining each pair of points from
{x, y, z}. Then the triangle is R = R; 33(6, k)-slim.

In particular, if y;,y, are two k-quasigeodesic rays with y1(0) = y,(0) and y;(c0) = y,(o0) then
Hd(y1,y2) = R
The proof of the above lemma is pretty standard and hence we omit it. However, slimness of ideal

triangles immediately implies slimness of ideal polygons:
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Corollary 2.39 (ideal polygons are slim) Suppose X is a §-hyperbolic metric space in the sense of
Rips or Gromov. Suppose x1,X3,...,Xn € X aren points and we have n k-quasigeodesics joining pairs
of points (x1, x2), (x2,X3), ..., (Xp—1,Xn) and (x,, x1). Then this n-gon is R = R, 39(6, k, n)-slim, ie
every side is contained in R-neighborhood of the union of the remaining n — 1 sides.

The following lemma gives a geometric interpretation for sequential boundary in terms of quasigeodesics.

Lemma 2.40 Let x € X be any point. Suppose {x,} is any sequence of points in X and B, is a
k-quasigeodesic joining x, to x, for all m,n € N. Suppose oy, is a k-quasigeodesic joining x to xy.
Then:

(1) {xn} € S ifand only if limy, n—oo d(x, Bm,n) = oo if and only if there is a constant D such that
for all M > 0 there is N > 0 with Hd (am N B(x: M),a, N B(x; M)) < D forallm,n > N.

(2) Suppose moreover £ € d; X and y, is a k-quasigeodesic in X joining x, to & for alln € N and « is
a k-quasigeodesic joining x to &.

Then x,, — & if and only if d(x, y,) — oo if and only if there is constant D > 0 such that for all M > 0
there is N > 0 with Hd(oe NB(x; M), ay ﬂB(x;M)) <D foralln> N.

We skip the proof of this lemma. In fact, the first statement of the lemma is an easy consequence of
Lemma 2.34 and stability of quasigeodesics. The second statement is a simple consequence of Lemma 2.34,
stability of quasigeodesics and Lemma 2.38.

The following lemma is proved in Section 2 of [24] (see Lemmas 2.7 and 2.9 there) for hyperbolic
geodesic metric spaces. The same statements are true for length spaces too. To prove it for length spaces
one just takes a metric graph approximation. Since the proof is straightforward we omit it.

Lemma 2.41 (barycenters of ideal triangles) Given é > 0 there is ro > 0 such that for any §-hyperbolic
length space X, any three distinct points x, y, z € X and any three k, 37(8)-quasigeodesics joining x, y, z
in pairs there is a point xo € X such that Ny, (x¢) intersects all the three quasigeodesics.

We refer to a point with this property to be a barycenter of the ideal triangle Axyz. There is a constant
L such that if x¢, x1 are two barycenters of Axyz then d(xg,x1) < Ly.

Thus we have a coarsely well-defined map 83)( — X. We shall refer to this map as the barycenter map.
It is a standard fact that for a nonelementary hyperbolic group G if X is a Cayley graph of G then the
barycenter map 33 X — X is coarsely surjective and vice versa. If X is a hyperbolic metric space such
that the barycenter map for X is coarsely surjective then X will be called a nonelementary hyperbolic
space. In Sections 4 and 5 we deal with spaces with this property.

The following lemma is clear. For instance, we can apply the proof of [24, Lemma 2.9].

Lemma 2.42 Barycenter maps being coarsely surjective is a gi invariant property among hyperbolic
length spaces.
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2.4.1 Topology on d5 X and Cannon-Thurston maps

Definition 2.43 (1) If {&,} is a sequence of points in dg X, we say that {£,} converges to & € 05 X if the
following holds: Suppose &, = [{x} }x] and & = [{xy }]. Then limy— o (liminf;, j >0 (x,'.x;.’)p) = 0.

(2) A subset A C dsX is said to be closed if for any sequence {&,} in A4, &, — & implies & € A.

The definition of convergence that we have stated here is equivalent to the one stated in [1]. Moreover,
that the convergence mentioned above is well-defined follows from [1] and hence we skip it. The next
two lemmas give a geometric meaning of the convergence.

Lemma 2.44 Given k > 1 and § > 0, there are constants D = Dy 44(k,8), L = Ly 44(k,8) and
I = ry.44(k, 8) with the following properties:

Suppose a, B are two k-quasigeodesic rays starting from a point x € X such that a(o0) # B(o0) and y is
a k-quasigeodesic line joining a(c0) and B(00). Then the following hold:

(1) There exists N € N such that |(«(m).f(n))x —d(x,y)| < D forallm,n> N.
In particular, | lim infy, o0 (2 (m).f(n))x —d(x,y)| < D.

(2) Suppose R =d(x,y) then Hd(a N B(x; R—r),BNB(x; R—r)) < L.

Proof (1) Since a(oco) # B(co) by Lemma 2.38 there is N € N such that for all m,n > N, a(m) €
NR, 1x(y) and B(n) € N, ,4(v). Let X, yu € y be such that

d(xm,a(m)) < Ry3g and d(yn,B(n)) < Ry 3s.

Then by joining x,,, «(m) and y,, B(n) and applying Corollary 2.21 we see that Hausdorff distance
between any (1, 1)-quasigeodesic joining «(m), B(n), say ¢, and the portion of y between X, y, is at
most Ry 38 +2D;50(8, k, k). Itis clear that for large enough N, d(x, y) is the same as the distance of x
and the segment of y between X, y, if m,n > N. Thus for such m,n we have |d(x, ¢ n) —d(x,y)| <
R; 38 + 2D 20(8,k, k). But by Lemma 2.34, |(a(m).B(n))x — d(x,cmun| < D2.34(8,k, k). Hence,
[(a(m).p(n))x —d(x,y)| = Ra38 +2D3.20(8. k. k) + D3 34(8, k. k) for all large m, n.

(2) To see this we take a 1-approximate nearest point projection, say z, of x on y. Let xz denote a
I-quasigeodesic joining x, z. Then by Corollary 2.26 concatenation of xz and the portions of y joining z
to y(£00) respectively are both K, 26(6, k, k)-quasigeodesics. Call them o’ and B/, respectively. Note
that a(o0) = o’(00) and B(c0) = B’(00). Let K = max{k, K 16(8,k,€)}. Then by the last part of
Lemma 2.38 it follows that z € N, (@) N N,(B) where r = R, 35(8, K). Suppose x’ € a, y' € B are
such that d(z,x") <r and d()’, z) <r. By Corollary 2.20 the Hausdorff distance between xz and the
portions of « from x to x” and the portion of B from x to ) are each at most D, »0(8, k, k) + r. Thus
these segments of o and B are at a Hausdorff distance at most L = 2D, 50(8, k, k) 4+ 2r from each other.
This completes the proof. O
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Lemma 2.45 Letx € X be any point. Suppose {£,} is any sequence of points in ds X . Suppose B, is a
k-quasigeodesic line joining &, to &, for allm,n € N and «,, is a k-quasigeodesic ray joining x to &, for
alln € N. Then:

(1) limy p—soo d(x, Bm,n) = oo if and only if there is a constant D = D(k, §) such that for all M > 0
there is N > 0 with Hd (o N B(x: M),y N B(x; M)) < D for allm,n > N and in this case
{&n} converges to some point of 95 X.

(2) Suppose moreover & € ;X , yy is a k-quasigeodesic ray in X joining &, to & for all n, and « is a
k-quasigeodesic ray joining x to . Then &, — & if and only if d(x, y,) — oo if and only if there is
constant D’ = D'(k, §) such that for all M > 0 there is N > 0 with

Hd(eN B(x;:M),a, N B(x; M)) < D

foralln > N. In this case limy, n—so0 d (X, Bm.n) = 00.

Proof (1) The “if and only if” part is an immediate consequence of Lemma 2.44. We prove the last
part. Let n; be an increasing sequence in N such that for all m,n > n; we have

Hd (o, N B(x;1), 0N B(x;i)) < D.

Let y; be a point of o, N B(x; i) such that d(x, y;) + 1 = sup{d(x, y) : x € ap; N B(x;7)}. We claim
that y; converges to a point of d; X. Clearly d(x, y;) — co. Giveni < j € N we have d(y;,®,) < D and
d(yj,an) < D forall n > nj. By slimness of polygons we see that any (1, 1)-quasigeodesic joining y;, y;
is uniformly close to ay. It follows that lim; j oo (yi.yj)x = 00. Let & = [{yx}]. It is clear that &, — &.

(2) Both if and only if statements are immediate from Lemma 2.44. The last part follows from slimness
of ideal triangle since d (x, y,) — oo. |

Corollary 2.46 Suppose {x,} is a sequence of points in X such that {xn} C X or{x,} C dsX. Suppose
Xn —> & € 05X and yy, is a k-quasigeodesic joining x,, to & for eachn. Let y, € yy, such that d(x, y,) — oo.
Then limy, o0 yy = £.

Definition 2.47 (Cannon—Thurston map [21]) If f: Y — X is any map of hyperbolic metric spaces
then we say that the Cannon—Thurston or the CT map exists for f or that f* admits the CT map if f
gives rise to a continuous map df : 3Ys — d.X; in the following sense:

Given any £ € d5Y and any sequence of points {y,} in Y converging to &, the sequence { f ()} converges

to a definite point of d5 X" independent of the {y,} and the resulting map 9/ : 95Y — d5 X is continuous.

Generally, one assumes that the map f is a proper embedding but for the sake of the definition it is
unnecessary. We note that the CT map is unique when it exists. The following lemma gives a sufficient
condition for the existence of CT maps.
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Lemma 2.48 (Mitra’s criterion [21, Lemma 2.1]) Suppose X, Y are geodesic hyperbolic metric spaces
and f:Y — X is a metrically proper map. Then [ admits the CT map if the following holds:

(*) Let yg € Y. There exists a function 7 : R>y — R, with the property that T(n) — co as n — oo such
that for all geodesic segments [y1, y»]y in Y lying outside the n-ball around yq € Y, any geodesic
segment [ f(y1), f(2)]x in X joining the pair of points f(y1), f(y2) lies outside the t(n)-ball
around f(yg) € X.

Remark (1) The main set of examples where Lemma 2.48 applies comes from taking Y to be a
rectifiably path connected subspace of a hyperbolic space X with induced length metric and the map f
is assumed to be the inclusion map. One also considers the orbit map G — X where G is a hyperbolic
group acting properly by isometries on a hyperbolic metric space X . In these examples, the map f is
coarsely Lipschitz as well as metrically proper. The proof of the lemma by Mitra also assumes that X,
Y are proper geodesic metric spaces and Mitra considered the geodesic boundaries. However, these
conditions are not necessary as the following lemma and examples show.

(2) The proof of Lemma 2.48 by Mitra only checks that the map is a well-defined extension of f rather
than it is continuous. However, with very little effort the condition () can be shown to be sufficient for
the well-definedness as well as the continuity of the CT map.

(3) One can easily check that the condition () is also necessary provided X, Y are proper hyperbolic
spaces and f is coarsely Lipschitz and metrically proper.

The following lemma is the main tool for the proof of our theorem of Cannon—Thurston map. We shall
refer to this as Mitra’s lemma.

Lemma 2.49 Suppose X, Y are length spaces hyperbolic in the sense of Gromov, and f:Y — X is any
map. Let p €Y.

(*%) Suppose for all N > 0 there is M = M (N) > 0 such that N — oo implies M — oo with the fol-
lowing property: for any yy, y, € Y, any (1, 1)-quasigeodesic « in Y joining y1, y, and any (1, 1)-
quasigeodesic 8 in X joining f(y1), f(y2), B(p, N) Na = & implies B(f(p), M) N B = @.

Then the CT map exists for f:Y — X.

Proof Suppose {y,} is any sequence in Y. Suppose «; ; is a (1, 1)-quasigeodesic in Y joining
vi,y;j and suppose y; j is a (1, 1)-quasigeodesic in X joining f(;), f(yj). Then by Lemma 2.34
lim;, j 00 (yi.yj)p = 00 if and only if lim; j 00 d(p, ;,j) = 00 and lim;, j 00 (f (¥i). /(7)) f(p) = 00
if and only if lim; j 00 dx (f(p). vi,j) = 0o. On the other hand, by (xx), lim; j s00 d(p, i j) = 00
implies lim; j 00 dx (f(p). ¥i,j) = 00. Thus {y,} converges to a point of d5Y implies { f ()} converges
to a point of ds X'. The same argument shows that if {y,} and {z,} are two sequences in Y representing
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the same point of dsY then { f(y,)} and { f(z,)} also represent the same point of d3 X. Thus we have a
well-defined map df: d;Y — d;X.

Now we prove the continuity of the map. We need to show that if &, — £ in d;Y then df(&,) — df (§).
Suppose &, is represented by the class of {y; }x and & is the equivalence class of {yx}. Then

lim (liminf(y;.y;),) = oo.
n—o0 i’j—)oo

By Lemma 2.34 then we have
n

lim (liminfd(p, o ;) =00

n—00 i, j—00
for any (1, €)-quasigeodesic a;”j in Y joining y;’ and y;. By (x) then we have
Jim (iminf d(f(p). Viij) = 0,
where yl.',’j is any (1, €)-quasigeodesic in X joining f(y}'), f(y;). This in turn implies by Lemma 2.34

that
Jim (lminf(f 7). S 0))s () = o0

Therefore, df (£,) — 0f(£) as was required. a

Examples and remarks (1) Suppose f:R>o — Rx¢ is the function f(x) =e* —1. Then f is not
coarsely Lipschitz but f admits the CT map.

(2) One can easily cook up an example along the line of the above example where metric properness
is also violated but the CT map exists as we see in the example below. We will see another interesting
example in Corollary 6.10.

(3) The condition () in the above lemma is also not necessary in general for the existence of the CT
map. Here is an example in which both metric properness and () fail to hold but nevertheless the CT
map exists. Suppose X is a tree built in two steps. First we have a star, ie a tree with one central vertex
on which end points of finite intervals are glued where the lengths of the intervals are unbounded. Then
two distinct rays are glued to each vertex of the star other than the central vertex. Suppose Y is obtained
by collapsing the central star in X to a point and f is the quotient map. Then clearly the CT map exists
but () is violated.

The following lemma is very standard and hence we skip mentioning its proof.

Lemma 2.50 (functoriality of CT maps) (1) Suppose X, Y, Z are hyperbolic metric spaces and
f: X —>Yandg:Y — Z admit the CT maps. Then so does go f and d(go f) = dgodf.

(2) Ifi: X — X is the identity map then it admits the CT map di which is the identity map on ds X .
(3) Iftwomaps f,h: X — Y are at a finite distance admitting the CT maps then they induce the same
CT map.
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(4) Suppose f: X — Y is a qi embedding of hyperbolic length spaces. Then f admits the CT map
df : 0sX — d5Y which is a homeomorphism onto the image.

If f is a quasiisometry then df is a homeomorphism. In particular, the action by left multiplication of a
hyperbolic group G on itself induces an action of G on G by homeomorphisms.

2.4.2 Limit sets

Definition 2.51 Suppose X is a hyperbolic metric space and A C X. Then the limit set of A in X is the
set Ay (A4) = {limy—oo an € ds X :{an} is a sequence in A}.

When X is understood then the limit set of 4 C X will be denoted simply by A(A). In this subsection,
we collect some basic results on limit sets that we need in Section 6 of the paper. In each case, we briefly
indicate the proofs for the sake of completeness. The following is straightforward.

Lemma 2.52 Suppose X is a hyperbolic metric space and A, B C X with Hd(A, B) < co. Then
A(A) = A(B).

Lemma 2.53 Suppose X is a hyperbolic metric space and Y C X . Suppose Z C Y coarsely bisects Y
in X into Yy,Y, where Z C Y1 NY,. Then A(Y1) N A(Y3) = A(Z).

Proof This is a straightforward consequence of Lemma 2.34. a

Lemma 2.54 Suppose X is a §-hyperbolic metric space and A C X is A-quasiconvex. Suppose & € A(A)
and y is a K-quasigeodesic ray converging to &. Then there are N € N and D = Dj 54(8, A, K) > 0 such
that y(n) € Np(A) foralln > N.

Proof Rather than explicitly computing the constants we indicate how to obtain them. Suppose {x,}
is a sequence in A4 such that x, — &. Let y; € y be a 1-approximate nearest point projection of x;
on y. Let oy denote a (1, 1)-quasigeodesic joining x1, y1. Then the concatenation, say 1, of &y and the
segment of y from y; to £ is a uniform quasigeodesic by Corollary 2.26. For all m > 1, let y,, denote a
I-approximate nearest point projection of x,, on y;. Then yy, is contained in y; for all large m. However,
once again by Corollary 2.26 the concatenation of the portion of y; between x1, y,, and a 1-quasigeodesic
joining X, Ym is a uniform quasigeodesic. Now it follows by stability of quasigeodesics that the segment
of y1 between y1, ys, is contained in a uniformly small neighborhood of A4 since 4 is quasiconvex. O

Lemma 2.55 Suppose X, Y are hyperbolic metric spaces, and f: Y — X is any metrically proper map.
Suppose that the CT map exists for f. Then we have A( f(Y)) = df(dY) in each of the following cases:

(1) Y is a proper metric space.

(2) f is aqi embedding.
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Proof (1) Itis clear that df(0Y) C A(f(Y)). Suppose y, is any sequence such that f(y,) — & for
some £ € d;X. Since f is proper {y,} is an unbounded sequence. Since Y is a proper length space
it is a geodesic metric space by Hopf—Rinow theorem (see [6], Proposition 3.7, Chapter 1.3). Now it
is a standard fact that any unbounded sequence in a proper geodesic metric space has a subsequence
converging to a point of the Gromov boundary of the space. Since Y is proper, we have a subsequence
{¥n, } of {yn} such that y,, — n for some n € d,Y. It is clear that f(n) =&. Hence A(f(Y)) Caf(dY).

(2) Let yeY and x = f(y). Suppose {y,} is a sequence of points in ¥ such that
lim (fOm)-fOm)x =00 and n=[{fOm)}]

Then by Lemma 2.34 for any 1-quasigeodesic B, , in X joining f(ym), f(yn) for all m,n € N, we have
limy, n—o00 dx (X, Bm,n) = 00. Since f is a qi embedding if o, 5 is a 1-quasigeodesic in Y joining yu, yn
for all m,n € N then f(a, ) are uniform quasigeodesics in X. Hence, by stability of quasigeodesics in
X we have Hd (f(otm,n), Pm,n) < D for some constant D > 0. Thus limy, n—soeo dx (X, f(0m,n)) = 00.
Since f is a qi embedding and x = f(y) it follows that limy, n— 0o dy (¥, tm.n) = 0o. Therefore,
limy, 00 (Ym-yn)y = 00 again by Lemma 2.34. Hence, if £ = [{y,}] then 9f(§) = 1. m|

Lemma 2.56 (projection of boundary points on quasiconvex sets) Given§ > 0 and k > 0 there is a
constant R = R, 5¢(8, k) such that the following holds:

Suppose X is a §-hyperbolic metric space, A C X is k-quasiconvex and & € 0X \ A(A). Then there is a
point x € A with the following property: Suppose {x,} is any sequence where x,, — £. Then there is an
N > 0 such that for alln > N we have P4(x,) € AN B(x, R).

Proof Suppose {x,},{y,} are two sequences in X such that x, — & and y, — &. Let oy, be a
1-quasigeodesic in X joining X, y, for all m,n € N. Let P4: X — A be a 1-approximate nearest point
projection on A.

Claim There is a constant Ry > 0 depending only on § and k and there is N > 0 such that

diam(Py4(am,n)) < Ry forallm,n> N.

We first note that limy, ;o0 d(A4, &m,n) = 00. In fact, if this is not the case then there is r > 0 such
that for all N > 0 there are my,ny > N with d(A, dmy,ny) < r. In that case let ayy € 4 be such
that d(an, otmy ,ny) < r. Itis then clear that ay — & by Lemma 2.40(1), contradicting the hypothesis
that £ &€ A(A). By stability of quasigeodesics, any 1-quasigeodesic is uniformly quasiconvex in X
and A is given to be k-quasiconvex. Hence, by Corollary 2.32 there are constants Dy, Ry such that
d(A, am,n) > Do implies that diam(Pg(cm.n)) < Ro. Since, lim;; 00 d(A, 0t n) = 00 there is N > 0
such that d(A, am,n) > Dy for all m,n > N. This proves the existence of N and Ry.
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Now, by specializing the claim to the case {x,} = {y,} we have Ny > 0 such that if f,,, is a 1-
quasigeodesic joining X, x, then diam(Py4(Bm,n)) < Ro for all m,n > Ny. Let x = P4(xn,). Now,
given any sequence {x,} in X with x;, — & by the claim there is M > 0 such that for all m,n > M,
d(P4(xm), P4(x})) < Ro. Hence, if N = max{Ny, M } then

d(x, P4(x,)) <d(x, P4(xN)) +d(Pa(xn), Pa(x,)) < 2Ro.

Thus we can take R = 2R,,. O

Since the point x € A4 in the above lemma is coarsely unique we shall call any such point to be the nearest
point projection of £ on A and we shall denote it by P4(§).

3 Metric bundles

In this section, we recall necessary definitions and some elementary properties of the primary objects
of study in this paper namely, metric bundles and metric graph bundles from [24]. We make a minor
modification (see Definition 3.2) to the definition of a metric bundle but use the same definition of metric
graph bundles as in [24].

3.1 Basic definitions and properties

Definition 3.1 (metric bundles [24, Definition 1.2]) Suppose (X, d) and (B, dg) are geodesic metric
spaces; let ¢ > 1 and let 1: [0, 00) — [0, 0o0) be a function. We say that X is an (1, ¢)-metric bundle over
B if there is a surjective 1-Lipschitz map 7 : X — B such that the following conditions hold:

(1) For each point z € B, F, := n~!(z) is a geodesic metric space with respect to the path metric d,
induced from X. The inclusion maps i : (¥, d;) — X are uniformly metrically proper as measured
by 7.

(2) Suppose z1,z, € B, dp(z1,z2) <1 and let y be a geodesic in B joining them. Then for any point
z €y and x € F; there is a path ¥: [0, 1] — 771 (y) C X of length at most ¢ such that 7(0) € F,,
y(1)e Fz,and x € ).

If X is a metric bundle over B in the above sense then we shall refer to it as a geodesic metric bundle in
this paper. However, the above definition seems a little restrictive. Therefore, we propose the following.

Definition 3.2 (length metric bundles) Suppose (X, d) and (B, dp) are length spaces, ¢ > 1 and we
have a function 7: [0, c0) — [0, 00). We say that X is an (7, ¢)-length metric bundle over B if there is a
surjective 1-Lipschitz map 7 : X — B such that the following conditions hold:

(1) For each point z € B, F, := 7~ !(z) is a length space with respect to the path metric d, induced
from X. The inclusion maps i : (F;, d;) — X are uniformly metrically proper as measured by 7.
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(2) Suppose z1,z3 € B, and let y be a path of length at most 1 in B joining them. Then for any point
z €y and x € F; there is a path #: [0, 1] — 771 (y) C X of length at most ¢ such that (0) € F;,,
y(1)e Fz, andx € ).

Given length spaces X and B we will say that X is a length metric bundle over B if X is an (7, ¢)-length
metric bundle over B in the above sense for some function n: RT — R™ and some constant ¢ > 1.

Convention 3.3 From now on whenever we speak of a metric bundle we mean a length metric bundle.

Definition 3.4 (metric graph bundles [24, Definition 1.5]) Suppose X and B are metric graphs. Let
n: [0, 00) — [0, 00) be a function. We say that X is an n-metric graph bundle over B if there exists a
surjective simplicial map w: X — B such that:

(1) ForeachbeV(B), Fj:=m"1(b) is a connected subgraph of X and the inclusion maps i : F — X
are uniformly metrically proper as measured by 7 for the path metrics dp induced on Fp.

(2) Suppose by, by € V(B) are adjacent vertices. Then each vertex x; of Fj, is connected by an edge
with a vertex in Fp,.

Remark Since the map m is simplicial it follows that it is 1-Lipschitz.

For a metric (graph) bundle the spaces (F;, d), z € B will be referred to as fibers and the d,-distance
between two points in F; will be referred to as their fiber distance. A geodesic in F,; will be called a fiber
geodesic. The spaces X and B will be referred to as the total space and the base space of the bundle
respectively. By a statement of the form “X is a metric bundle (resp. metric graph bundle)” we will mean
that it is the total space of a metric bundle (resp. metric graph bundle).

Most of the results proved for geodesic metric bundles in [24] have their analogs for length metric bundles.
We explicitly prove this phenomenon or provide sufficient arguments for all the results needed for our

purpose.

Convention 3.5 Very often in a lemma, proposition, corollary, or theorem we shall omit explicit mention
of some of the parameters on which a constant may depend if the parameters are understood.
Definition 3.6 Suppose 7: X — B is a metric (graph) bundle.

(1) Suppose A C B and k > 1. A k-qi section over A is a k-qi embedding s: 4 — X (resp. s: V(A) = X)
such that r os = Id4 (resp. w o s = Idy(4)), where A has the restricted metric from B and Id4 (resp.
Idy( 4)) denotes the identity map on 4 — A (resp. V(A4) — V(A4)).

(2) Given any metric space (resp. graph) Z and any qi embedding f: Z — B (resp. f:V(Z) — V(B))a
k-qi lift of f is a k-qi embedding f Z — X (resp. f: V(Z) — V(X)) such that 7 o f = f.
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Convention 3.7 (1) Most of the time we shall refer to the image of a qi section (or a qi lift) to be the qi
section (resp. the qi lift).

(2) Suppose y: I — B is a (quasi)geodesic and ¥ is a qi lift of y. Let b = y(¢) for some ¢ € I. Then
we will denote ¥ (¢) by ¥ (b) also.

(3) In the context of a metric graph bundle (X, B, 7), when we talk about a point in X, B or a fiber, we
mean that the point is a vertex in the corresponding space.

The following lemma is immediate from the definition of a metric (graph) bundle. Hence we briefly
indicate its proof.

Lemma 3.8 (path lifting lemma) Suppose 7w: X — B is an (1, ¢)-metric bundle or an n-metric graph
bundle.

(1) Suppose by, b, € B. Suppose y: [0, L] — B is a continuous, rectifiable, arc length parametrized
path (resp. an edge path) in B joining by to by. Given any x € Fy, there is a path ¥ in ()
such that [(y) < (L + 1)c (resp. [(Y) = L) joining x to some point of Fy, .

In particular, when X is a metric graph bundle over B, any geodesic y of B can be lifted to a
geodesic starting from any given point of 7~ (y).

(2) Foranyk > 1 and e > 0, any dotted (k, €)-quasigeodesic f: [m,n] — B has a lift B starting from
any point of Fg,,) such that the following hold, where we assume ¢ = 1 for metric graph bundles.
For alli, j € [m,n] we have

1,. . SN Dy . .
—e+ i = jl = dx(B(). B - (k+e+ Dli = |
In particular it is a ¢ - (k+€+1)-qi lift of B. Also we have

1(B) < ck(k + €+ 1)(e +dg(by, ba)).

Proof (1) We fix a sequence of points 0 =g, 1, ...,% = L in [0, L] such that /(y | ;,.,1) = 1 for
0<i<n—1and I(y|y,_, 1)) <1 for the metric bundle case. For the metric graph bundle y (7;) are the
consecutive vertices on y, 0 <i < L = n. Now given any x =: x¢ € Fy, we can inductively construct a
sequence of points x; € Fy,, 0 <i <n and a sequence of paths «; of length at most ¢ (resp. an edge)
joining x; to x; 41 for 0 <i <n— 1. Concatenation of these paths gives a candidate for y.

The second statement for metric graph bundles follow because 7 : X — B is a 1-Lipschitz map.

(2) We construct a lift E of B starting from any point x € Fg,,) inductively as follows. We know that
dp(B(i), B +1)) <k +e€. Let B; be a path in B joining 8(i) to B(i + 1) which is of length at most
k+e+1form <i <n—1. We can then find a sequence of paths of length at most (k +¢+1)-¢ in
7~ 1(B;) (where ¢ = 1 for metric graph bundle) m <i < n — 1 using the first part of the lemma such that
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Bm starts at x and B; 4 starts at the end point of 8; for m 4+ 1 <i <n— 1. Let x; be the starting point
of B; for m <i <n—1 and let x, be the end point of 8,_;. Then we define E by setting B(i) = Xi,
m=i=<n.

Clearly dy (B(i), B(j)) <c-(k + €+ 1)|i — j|. Also,
dp(m o B(i), mo B(j)) = dp(BG), B(j)) < dx(B(i), B(j))

since 7 is 1-Lipschitz. Since S is a dotted (k, €) quasigeodesic, we have —e + %|l —Jjl1=<dp(B@i),B())).
This proves that
1,. . SN Dy .
—e+ i —jI=dx(B(). B())) =c-(k+e+Di —jl.

For the last part of (2) we see that

n—1 n—1
IB)="Y dx(B@).BG+ )<Y c-(k+e+1)=@n—m-(k+e+1).

i=m i=m

On the other hand since f is a (k, €)-quasigeodesic we have —e + %(n —m) <dpg(by, by). The conclusion
immediately follows from these two inequalities. |

The following corollary follows from the proof of Proposition 2.10 of [24]. We include it for the sake of
completeness.

Corollary 3.9 Given any metric (graph) bundle w: X — B and b{,b, € B we can define a map
¢: Fp, — Fp, such that dy(x,¢(x)) < 3¢ + 3cdp(by.by) (resp. d(x,¢(x)) = dp(by,b;)) for all
X € Fp,.

Proof The statement about the metric graph bundle is trivially true by Lemma 3.8(1). For the metric
bundle case, fix a dotted 1-quasigeodesic y joining b; to b. Then for all x € F},, fix for once and all a
dotted lift 3 as constructed in the proof of Lemma 3.8 which starts from x and set ¢ (x) = y(b;). The
statement then follows from Lemma 3.8(2). O

Remark For all by,b; € B any map f: Fp — Fp, such that dy (x, f(x)) < D for some constant D
independent of x will be referred to as a fiber identification map.

The proof of the first part of the following lemma is immediate from Corollary 3.9 whereas the next two
parts essentially follow from the proof of Proposition 2.10 of [24]. Hence we skip the proofs.

Lemma 3.10 Suppose n: X — B is an (n, ¢)-metric bundle or an n-metric graph bundle and R > 0.
Suppose by, b, € B. The we have the following.
(1) Hd(Fbl ) sz) <3c+ 3CdB(b17 b2) (resp' Hd(Fbl ’ sz) = dB(bh bZ))
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(2) Suppose ¢p,p,: Fp, = Fp, is a map such that for all x € Fp,,, d(x, ¢p,p,(x)) < R forall x € Fp,.
Then ¢p, p, is a K3.10 = K3.10(R)-quasiisometry which is D3 1q-surjective.

(3) If Yp,b,: Fp, — Fp, is any other map such that d(x,V¥p,p,(x)) < R’ for all x € Fp, then

d( @b,y Vbyby) = N(R+ R).
In particular, the maps ¢y, p, are coarsely unique (see Definition 2.1(7)).

In this lemma, we deliberately suppress the dependence of K3 1o on the parameter(s) of the bundle.

Corollary 3.11 Suppose 7w: X — B is a metric (graph) bundle and by, b, € B (resp. by, b, € V(B))
such that dg(by, by) < R. Suppose ¢p,p, : Fp, — F}, is a fiber identification map as constructed in the
proof of Corollary 3.9. Then ¢y, p, is a K3.11 = K3.11(R)-quasiisometry.

Proof By Corollary 3.9 dx (x,¢p,p,(x)) < 3¢ + 3cdp(by,b3) < 3c + 3¢R for all x € Fp, (resp.
dx (X, ¢p,p,(x)) = dp(b1,b2) < R for all x € V(B)). Hence by Lemma 3.10(2) ¢p,5, is K3.11 =
K3.10(3¢c+3cR)-qi for the metric bundle and K3 11 = K3.19(R)-qi for the metric graph bundle case. O

The following corollary is proved as a simple consequence of Lemma 3.10 and Corollary 3.9. (See
Corollaries 1.14 and 1.16 of [24].) Therefore, we skip the proof of it.

Corollary 3.12 (bounded flaring condition) For all k € R, k > 1 there is a function ;. : N — N such
that the following holds:

Suppose w: X — B is an (1, ¢)-metric bundle or an n-metric graph bundle. Let y C B be a dotted
(1, 1)-quasigeodesic (resp. a geodesic) joining by, b, € B, and let y1, y» be two k-qi lifts of y in X .
Suppose y;(b1) = x; € Fp, and y;(by) = y; € Fp,, i =1,2.

Then

dp,(¥1,¥2) < i (N) max{dp, (x1,x2), 1}.
ifdg(by,by) < N.

In the rest of the paper, we will summarize the conclusion of Corollary 3.12 by saying that a metric
(graph) bundle satisfies the bounded flaring condition.

Remark (metric bundles in the literature) Metric (graph) bundles appear in several places in other
people’s work. In [5, Section 2.1] Bowditch defines stacks of (hyperbolic) spaces which can easily be shown
to be quasiisometric to metric graph bundles over an interval in R. Conversely, a metric (graph) bundle
whose base is an interval in R is clearly a stack of spaces as per [5, Section 2.1]. In [26] Whyte defines
coarse bundles which are also quasiisometric to metric graph bundles but with additional restrictions.
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3.2 Some natural constructions of metric bundles

In this section, we discuss a few general constructions that produce metric (graph) bundles.

Definition 3.13 (1) Metric bundle morphisms Suppose (X;, B;, w;), i = 1,2 are metric bundles.
A morphism from (X7, By, m1) to (X2, By, m5) (or simply from X7 to X, when there is no possibility
of confusion) consists of a pair of coarsely L-Lipschitz maps f: X1 — X, and g: By — B, for some
L > 0 such that 7 o f = g o7y, ie this diagram is commutative:

X X,
ﬂlJ ‘772
B; B,

4

(2) Metric graph bundle morphisms Suppose (X;, B;, w;), i = 1,2 are metric graph bundles. A
morphism from (X7, By, 1) to (X3, By, m3) (or simply from X7 to X, when there is no possibility of
confusion) consists of a pair of coarsely L-Lipschitz maps f: V(X;) — V(X3) and g: V(B;) = V(B3)
for some L > 0 such that 7, 0 f = gomy.

(3) Isomorphisms A morphism ( f, g) from a metric (graph) bundle (X7, By, 1) to a metric (graph)
bundle (X;, By, ;) is called an isomorphism if there is a morphism (f”/, g’) from (X;, By, m3) to
(X1, By, ) such that f” is a coarse inverse of f and g’ is a coarse inverse of g.

We note that for any morphism ( f, g) from a metric (graph) bundle (X, By, 7r1) to a metric (graph) bundle
(X5, By, mp) we have f(nl_1 (b)) C 7r2_1 (g(b)) forall b € By. We will denote by f}: nl_l (b)— n2_1 (g(b))
the restriction of f to Nl_l(b) for all b € By. We shall refer to these maps as the fiber maps of the
morphisms. We also note that in the case of metric graph bundles coarse Lipschitzness is equivalent to
Lipschitzness.

Lemma 3.14 Givenk > 1, K > 1 and L > 0 there are constants L3 14, K3.14 such that the following
holds.

Suppose ( f, g) is a morphism of metric (graph) bundles as in the definition above. Then the following
hold:

(1) Forallb € By the map fj: nl_l (b) — nz_l (g(b)) is coarsely L3 14-Lipschitz with respect to the
induced length metric on the fibers.

(2) Suppose y: I — B is adotted (1, 1)-quasigeodesic (or simply a geodesic in the case of a metric
graph bundle) and suppose y is a k-qi lift of y. If g is a K-qi embedding then f oy is a
K314 =K3.14(k. K, L)-qiliftof goy.
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Proof We shall check the lemma only for the metric bundle case because for metric graph bundles the
proofs are similar and in fact easier.

Suppose 7;: X; — Bj, i = 1,2 are (n;, ¢;)-metric bundles.

(1) Letb € By and x,y € nl_l(b) be such that dp(x,y) < 1. Since f is coarsely L-Lipschitz,
dx,(f(x), f(y)) = L + Ldyx,(x,y) < L + Ldp(x,y) < 2L. Now, the fibers of 7, are uniformly
properly embedded as measured by 1. Hence, dg(p)(f(x). f(¥)) < n2(2L). Therefore, by Lemma 2.6
the fiber map fp: nl_l(b) — nz_l (g(b)) is n2(2L)-coarsely Lipschitz. Hence, L3 14 = 1,(2L) will do.

(2) Lety, =goy and y, = foy. Then clearly, 7, oy, = y, whence 9, is a lift of y,. By Lemma 2.3(1)
¥, = f oy is coarsely (kL,k L+ L)-Lipschitz. Hence, for all s,¢ € I we have

dx,(2(s), ¥2(t)) <kL|s—t|+ (kL +L).
On the other hand, for s, ¢ € I we have
dx, (V2(5), ¥2(1)) = dp, (72 0 ¥2(s5), w2 0 ¥2(1)) = d, (v2(s), y2(1)).
However, by Lemma 2.3(2) y, = goy is a (K, 2K)-qi embedding. Hence, we have
~ ~ 1
dx, (V2(5). Y2(0) Z d, (y2(s). 2(1) = =2K + s —1].
Therefore, it follows that 7, is a K3.14 = max{2K, kL + L}-qi lift of y,. O
The following theorem characterizes isomorphisms of metric (graph) bundles.
Theorem 3.15 If ( f, g) is an isomorphism of metric (graph) bundles as in the above definition then the
maps f, g are quasiisometries and all the fiber maps are uniform quasiisometries.
Conversely, if the map g is a gi and the fiber maps are uniform qi then ( f, g) is an isomorphism.
Proof We shall prove the theorem in the case of a metric bundle only. The proof in the case of a metric
graph bundle is very similar and hence we skip it.

If (f, g) is an isomorphism then f, g are qi by Lemma 2.2(1). We need to show that the fiber maps are
quasiisometries.

Suppose (f’, g’) is a coarse inverse of ( f, g) such that
dx,(f o f'(x2).x2) <R and dx,(f"o f(x1),x1) =R

for all x; € X; and x, € X;. It follows that for all by € By, b, € B, we have dp, (b1, g 0g(b1)) < R and
dp, (b2, gog'(bs)) < R since the maps my, 7, are 1-Lipschitz. Suppose f”, g’ are coarsely L’-Lipschitz.
Let L1 = ny(2L) and L, = n{(2L’). Then for all u € By, fy: nl_l(u) — nz_l(g(u)) is coarsely
L-Lipschitz and for all v € B, f;: 71’2_1 v) —> 711_1 (g’ (v)) is coarsely L,-Lipschitz by Lemma 3.14(1).
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Let b € B;. To show that fp: nl_l(b) — 1(g(b)) is a uniform quasiisometry, it is enough by
Lemma 2.2(1) to find a uniformly coarsely Lipschitz map 7, L(g(b)) - T 1(b) which is uniform coarse
inverse of f;. We already know that f;(b) is Lj-coarsely Lipschitz. Let by = g’ o g(b). We also
noted that dp, (b, b1) < R. Hence, it follows by Corollaries 3.9 and 3.11 that we have a K3 j9(R)-qi
bbb JTl_l(bl) — JTl_l(b) such that dy, (x,¢p,p(x)) < 3c¢1 + 3¢ R for all x € nl_l(bl). Let h =
db,po f, é )’ We claim that / is a uniformly coarsely Lipschitz, uniform coarse inverse of f3. Since f g’ ®)
is Ly-coarsely Lipschitz and clearly ¢, 5 is K3.19(R)-coarsely Lipschitz, it follows by Lemma 2.3(1)
that /1 is (L, K3.190(R)+ K3.10(R))-coarsely Lipschitz.

Moreover, for all x € 711_1 (b) we have

dx, (x. o f(x)) < dx, (5. [ © S5+ dx, (L) © f(x). o fy(x)) < R+3c1 + 31 R.
Hence, dp(x,ho f3(x)) <ni(R+3c1 +3c¢1R). Let y € nz_l(g(b)). Then

dx,(y. fpoh(p)) = dx, (. fogppo f' () <dx,(y, fo f' () +dx,(fo f' (). fodppof'(¥)
<R+L3Bc;+3cR)+L,

since dx, (/"(), by50 /(1)) < 3¢1 +3¢1 R. Hence, dg(py (v, foh(»)) < na(R+L(3¢1 +3¢; R)+ L),
Hence by Lemma 2.2(1), fp is a uniform qi.

Conversely, suppose all the fiber maps of the morphism ( f, g) are (A, €)-qi which are R-coarsely surjective
and g is a (A1, €1)-qi which is Rq-surjective. Let g’ be a coarsely (K, C)-quasiisometric, D-coarse
inverse of g where K = K, 5(A1,€1, Ry), C = Cy.5(A1,€1, Ry) and D = D, »(Ay, €1, Ry). For all
u € By, let fu be a D;-coarse inverse of fy: Fyy — Fg(,). We will define amap /”: X, — X; such that
(f', g’) is morphism from X, to X and f” is a coarse inverse of f as follows.

For all u € B, we define f;: F;, — Fg(y) as the composition f_g/(u) °© Pug(g’(u)) Where @ug(g(u)) 18 @
fiber identification map as constructed in the proof of Corollary 3.9. Collectively this defines /. Now we
shall check that f” satisfies the desired properties.

(i) We first check that ( /7, g’) is a morphism. It is clear from the definition that 71 o /" = g’ o 7,. Hence
we will be done by showing that f” is coarsely Lipschitz. By Lemma 2.6 it is enough to show that for all
Uy, vy € Byand x € Fy,, y € Fyy, with dy, (x, y) <1, dx, (f'(x), f'(»)) is uniformly small. We note that
dp,(uz,v2) <1. Letu; = g’'(u;) and vy = g’'(v2). Then dp, (u1,v;) < K+C, dp,(us, g(u;)) < D and
dp,(v2, g(v1)) < D. This means dx, (X, ¢y, g(u,) (X)) <3Dcy + 3¢y and dx, (¥, y,g(v)) < 3Dcr + 3¢
by Lemma 3.8 and Corollary 3.9. Hence,

dXz (¢u2g(u1)(x)» ¢v2g(v1)(y)) <1+ 602 + 6DCZ-

Let x, = ¢u2g(u1)(x)’ Y2 = ¢v2g(v1)(y)’ X1 = f,(x2) = f;r(ul)(x2) and y; = f/(J/Z) = f:g(vl)(J/'Z)-
Therefore, dy, (x2, y2) <14 6c; +6Dcy = R;, say and we want to show that dy, (x1, y1) is uniformly

small. Let x}, = f(x1) = fu, (x1), 5= f(¥1) = fo,(¥1). Then dx, (x2,x3) < Dy and dx, (y2, y3) < D;.
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Hence, dy, (x5, y5) < Ry 4+ 2D;. Since dp,(u1,v1) < K + C there is a point y| € F,, such that
dy, (x1,y]) < (K + C)ecy +c;. Hence, dy, (x5, f(])) < (K + C)cy +c¢1).L + L. Hence,

dx, (f (V). ¥3) = dx, (f(¥}). X3) +dx, (x3. 3) < (K + C)ey +¢1).L + L+ 2D + Ry,

This implies that dy, (£ (¥]), f (1)) < n2(((K+ C)ey +c¢1).L + L +2Dy + Ry) = D,, say. Since fy,
is a (A, €)-qi we have —e + )lba’v1 (»1,¥1) < Ds. Hence, dy, (y1, y]) < (€ + D3)A. Thus,

dx, (x1,y1) <dx, (x1,¥]) +dx, (1. y1) < (K +C)cq +¢1 + (€ + Dy)A.

(ii) We already know that g’ is a coarse inverse of g. Hence we will be done by checking that f” is a
coarse inverse of f. We will check only that d( f”o f,Idy, ) < oo leaving the proof of d( f o f/,Idy,) < oo
for the reader. Suppose b € By and x € 7 L(b). Then

FI(f(X) = ferogv) © Bebygog’ (b)) © fb(X).

We want to show that dx, (x, f”(f(x))) is uniformly small. Let & = fgr0g(p) © f;,/og(b). Then

dx, (f (). f(/'(f(x)))

=dx, (fp(X), h o Pg(b)gog'(g(b)) © S (X))

< dx, (f5(X). Bgt)gog’ (26) (b (X)) + dx (D b)gog (261 (J5(X)). 10 Pe(b)gog (g(8)) © S5 (X))
Now since, d(g o g’,Idp,) < D,

dx, (/5(x). Pg(b)gog (b)) (f6(x))) < 3Dcs + 3ca.

Since d(h.1dF,,  ,(y),)) < D1 we have dx, (bgp)gog'(z(6) (f5(X). h © bgprgog'(gv)) © f6(¥)) < Di.
Thus dx, (f(x), f(/'(f(x)))) < 3Dc; + 3¢; + Dy. Hence, it is enough to show that f is a proper
embedding. Here is how this is proved. Suppose b,b’ € B, x € nl_l(b) and x’ € nl_l(b’). Suppose
dx,(f(x), f(x")) <N forsome N >0. This implies dp, (g(b), g(b')) =dp, (w20 f(x), w20 f(x')) < N.
Since g isa (A1, €1)-qi we have —ey +dp, (b, b') /A1 < N,iedp,(b.b') < (N +€;)A1 = Ny, say. Hence
by Corollary 3.9 there is a point x” € 77! (b') such that dx, (x, x”) < 3Njc;y + 3cy. Since f is coarsely
L-Lipschitz we have dy, (f(x), f(x”)) < L(3Nycy + 3¢1) + L. It follows that

d(f(x), (X)) =d(f(X), f(X) +d(f(x), [(x") <N + LBNicy +3c) + L =N,
say. Hence, dg ) (f(x'), f(x")) < n2(N>). Since fp is a (A, €)-qi we have dy, (x', x”) <dp (x', x") <
A(€ +n2(N2)). Hence, dy, (x,x") < dy, (x,x") 4+ dx, (x',x") <3Njc1 + 3c1 + A€ + n2(N2)). |

Definition 3.16 (subbundle) Suppose (X;, B, 7;), i = 1,2 are metric (graph) bundles with the same
base space B. We say that (X, B, 1) is subbundle of (X3, B, i) or simply X; is a subbundle of X, if
there is a metric (graph) bundle morphism ( f, g) from (X7, B, ) to (X5, B, m>) such that all the fiber
maps fp, b € B are uniform qi embeddings and g is the identity map on B (resp. on V(B)).

Algebraic € Geometric Topology, Volume 25 (2025)



2704 Swathi Krishna and Pranab Sardar

By — B

Figure 1

The most important example of a subbundle that concerns us is that of ladders which we discuss in a later
section. The following gives another way to construct a metric (graph) bundle. We omit the proof since it
is immediate.

Lemma 3.17 (restriction bundle) Suppose w: X — B is a metric (graph) bundle and A C B is a
connected subset such that any pair of points in A can be joined by a path of finite length in A (resp. A
is a connected subgraph). Then the restriction of w to Y = 7~ (A) gives a metric (graph) bundle with
the same parameters as that of m: X — B where A and Y are given the induced length metrics from B

and X, respectively.

Moreover, if f:Y — X and g: A — B are the inclusion maps then ( f, g): (Y, A) — (X, B) is a morphism
of metric (graph) bundles.

Definition 3.18 (1) Pullback of a metric bundle Given a metric bundle (X, B, ) and a coarsely
Lipschitz map g: By — B a pullback of (X, B, 7) under g is a metric bundle (X, By, 1) together
with a morphism (f: X7 — X, g: By — B) such that the following universal property holds: Suppose
751 Y — Bj is another metric bundle and ( /Y, g) is a morphism from Y to X . Then there is a coarsely
unique morphism ( f”, Idg,) from Y to X; making the diagram of Figure 1 commutative.

(2) Pullback of a metric graph bundle In the case of a metric graph bundle, the diagram is replaced

by one where we have the vertex sets instead of the whole spaces.

The following lemma follows by a standard argument.

Lemma 3.19 Suppose we have a metric bundle (X, B, ) and a coarsely Lipschitz map g: By — B for

which there are two pullbacks ie metric bundles (X;, By, m;) together with morphisms
(fi:Xi—>X,g:By—~>B), i=1,2

satisfying the universal property of Definition 3.18. Then there is a coarsely unique metric (graph) bundle
isomorphism from X to X,.
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B,
Figure 2

With the above lemma in mind, in the context of Definition 3.18, we say that f: X7 — X is the pullback
of X under g: By — B or simply X is the pullback of X under g when all the other maps are understood.

Lemma 3.20 Suppose we are given L > 0 and functions ¢y, ¢, : [0, 0c0) — [0, 00) and the commutative
diagram of maps between metric spaces shown in Figure 2 satisfies these three properties:

(1) All the maps (except possibly f') are coarsely L-Lipschitz.
(2) Ifdg,(b,b") < N then Hd(x;'(b), 7w (b')) < ¢1(N) forallb,b’ € By and N € [0, 00).

(3) The restrictions of f on the fibers of 7 are uniformly properly embedded as measured by ¢,.

Then there is a function ¢ : [0, 00) — [0, 00) such that dy (y, ') < R implies dx, (f'(»). ' (»")) < ¢(R)
forall y',y € Y and R € [0, 00). In particular, if Y is a length space or the vertex set of a connected
metric graph with restricted metric then f” is coarsely ¢ (1)-Lipschitz.

Moreover, [’ is coarsely unique, ie there is a constant D > 0 such that if f”': Y — X is another map
making the above diagram commutative then d( f’, f"') < D.
Proof Suppose y, )y’ €Y withdy(y,y") < R. Letx = f'(y),x" = f'(y'). Then dp, (1 (x), 71 (x")) =
dp,(m2(y), m2(y")) S LR+ L. Let b = m5(p). b’ = m()’). Then

Hd(z ' (b), 77 ' (b)) <¢1(LR+ L) = Ry,

say. Let x| € w1(?’) be such that dx, (x,x}) < Ry. Then dy(f(x), f(x})) < LRy + L. On the

other hand dy (f(x), f(x") = dx(fY(»). f¥()’)) < LR + L. By triangle inequality, we have
dy(f(x"), f(x})) < LR+ L+ LRy + L =2L + RL + R{L. Hence, by the hypothesis (3) of
the lemma dy, (x’,x]) < ¢2(2L + RL + R L). Thus

dy, (x,x") < dx,(x,x}) +dx,(x",x]) <Ry +¢2(2L+ RL + R, L).
Hence, we may choose ¢(z) = ¢y (Lt + L)+ ¢po(QL +tL + Lo (Lt + L)).

If Y is a length space or the vertex set of a connected metric graph, it follows by Lemma 2.6 that /" is
coarsely ¢ (1)-Lipschitz.

Algebraic € Geometric Topology, Volume 25 (2025)



2706 Swathi Krishna and Pranab Sardar

Lastly, suppose f”:Y — X7 is another map making the diagram commutative. In particular we have
fY = fof'=fof” Henceforall yeY wehave f(f'(y) = f(f"(y)). Since 71 (f'(y)) =
71(f”(y)) = m2(y) by the hypothesis (3) of the lemma it follows that dx, (f'(»), /" (¥)) < $2(0).
Hence d(f', f") < ¢2(0). O

Remark We note that the condition (2) of the lemma above holds when 71 : X7 — B; is a metric (graph)
bundle.

Proposition 3.21 (pullbacks of metric bundles) Suppose (X, B, ) is a metric bundle and g: By — B
is a Lipschitz map. Then there is a pullback.

More precisely the following hold: Suppose X is the set theoretic pullback with the induced length
metric from X x By and let w1 : X1 — Bj be the projection on the second coordinate and let f: X; — X
be the projection on the first coordinate. Then:

(1) my: X7 — Bj is metric bundle and f is a coarsely Lipschitz map so that ( f, g) is a morphism from
XitoX.

(2) f:X; — X is the metric bundle pullback of X under g.
(3) All the fiber maps f}: 711_1 (b) = n~'(g(b)), b € B are isometries with respect to induced length

metrics from X and X, respectively.

Proof By definition X7 = {(x,?) € X x By :g(t) = m(x)}. We put on it the induced length metric from
X x B;. Let mq: X1 — By be the restriction of the projection map X x By — Bj to X;. We first show that
X is a length space. Suppose g is L-Lipschitz. Let (x,s), (y,7) € X;. Let « be a rectifiable path joining
s,tin By. Then g o« is a rectifiable path in B of length at most /() L. By Lemma 3.8 and Corollary 3.9
this path can be lifted to a rectifiable path in X starting from x and ending at some point say z in F; such
that the length of the path is at most 3¢ + 3¢ L/(«). By construction this lift is contained in X7. Finally
we can join (y,1), (z, t) by a rectifiable path in F;. This show that (x, s) and (y, ¢) can be joined in X
by a rectifiable path. This proves that X7 is a length space. Now, since 7~ 1) = 71 (g(¢t)) is uniformly
properly embedded in X for all 7 € By and X is properly embedded in X x By, 7, 1(¢) is uniformly
properly embedded in X for all # € By. The same argument also shows that any path in B; of length
at most 1 can be lifted to a path of length at most 3¢ + 3¢ L verifying the condition (2) of metric bundles.

Hence (X, By, m) is a metric bundle. Let f: X; — X be the restriction of the projection map
X x By — X to X;. Clearly f: X; — X is a morphism of metric bundles. Finally, we check the universal
property. If there is a metric bundle 7,: Y — B; and a morphism ( /Y, g) from Y to X then there is
amap f’:Y — X; making the diagram 1 commutative since we are working with the set theoretic
pullback. That f” is a coarsely unique, coarsely Lipschitz map now follows from Lemma 3.20. In fact,
condition (2) of that lemma follows from Lemma 3.10(1) since 71 : X7 — B; is a metric bundle and (3)
follows because fibers of metric bundles are uniformly properly embedded and in this case the restriction
of f, my 1(b) = n~ (g (b)) C X is an isometry with respect to the induced path metric on JTI_I (b) and
71 (g(b)) for all b € B;. O
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Bi—— B
g
Figure 3

Corollary 3.22 Suppose (X, B, ) is a metric bundle and g: By — B is a Lipschitz map. Suppose
7y Xy — By is an arbitrary metric bundle and (f5: X, — X, g) is a morphism of metric bundles. If
X, is the pullback of X under g and f5: X, — X is the pullback map then for all b € B, the fiber map
(f2)p: 7y L(b) = = 1(g(b)) is a uniform quasiisometry with respect to the induced length metrics on
the fibers of m, and m, respectively.

Proof Suppose X; is the pullback of X under g as constructed in the proof of Proposition 3.21. Then
the fiber maps fp: 7, 1(b) = n~1(g(b)) are isometries with respect to the induced metrics on the fibers
of 7 and 7, respectively. On the other hand by Lemma 3.19 there is a coarsely unique metric bundle
isomorphism (%, Id) from X, to X; making the diagram of Figure 3 commutative.

Now, by Theorem 3.15 the fiber maps /p: 75 L(b) — nl_l (b) are uniform quasiisometries with respect to
the induced length metrics on the fibers of 7, and 71, respectively. Since (f2)p = fp o hp for all b € B,
are done by Lemma 2.3(2). O

Example Suppose (X, B, ) is a metric bundle and B; C B which is path connected and such that with
respect to the path metric induced from B, B; is a length space. Let X; = 7~ (B;) be endowed with
the induced path metric from X. Let 7;: X; — Bj be the restriction of 7 to X;. Let g: By — B and
f: X1 — X be the inclusion maps. It is clear that (X, By, 71) is a metric bundle and also that X7 is the
pullback of g.

Remark The notion of morphisms of metric bundles was implicit in the work of Whyte [26]. Along the
line of [26], one can define a more general notion of metric bundles by relaxing the hypothesis of length
spaces. In that category of spaces, pullbacks should exist under any coarsely Lipschitz maps. However,
we do not delve into it here.

Proposition 3.23 (pullbacks for metric graph bundles) Suppose (X, B, 7) is an n-metric graph bundle,
By is a metric graph and g: V(B1) — V(B) is a coarsely L-Lipschitz map for some constant L > 1. Then
there is a pullback w1 : X7 — B of g such that all the fiber maps f}: nl_l(b) — 1 1(g(b)), b e V(B))
are isometries with respect to induced length metrics from X1 and X, respectively.
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fY

o 7~

V(X1) LV(X)

o

V(B1) =z V(B)
Figure 4

Proof The proof is a little long. Hence we break this into steps for the sake of clarity.

Step 1 (construction of X1 and w1: X1 — By and f:V(X1) = V(X)) We first construct a metric
graph X7, a candidate for the total space of the bundle. The vertex set of X is the disjoint union of the
vertex sets of 77 1(g (b)), b € V(B;). There are two types of edges. First of all for all b € V(B;), we
take all the edges appearing in 7~ !(g(b)). In other words, the full subgraph 7~!(g(b)) is contained
in X;. Let us denote that by F}. For all adjacent vertices s,¢ € B; we introduce some other edges with
one end point in Fy and the other in F;. We note that Fy, F; C X; are identical copies of Fg(y) and
Fq(r), respectively. Let fs: Fs — Fg(5) denote this identification. Let e be an edge joining s, 7 and let
« be a geodesic in B joining g(s), g(¢). Now for each x € Fg we lift the path « starting from f;(x)
isometrically by Lemma 3.8(1) to say &. For each such lift we join x by an edge to y € V(Fy) if and
only if f;(y) = @(g(¢)). This completes the construction of X;. We note that dg(g(s), g(¢)) <2L and
hence /(&) < 2L too. Now we define f: V(X;) — V(X) by setting f(x) = fr,(x)(x) for all x € V(X;).
It is clear that this map is 2 L-Lipschitz.

Step 2 (;r1: X1 — By is a metric graph bundle and ( f, g) is a morphism) We need to verify that the
fibers are uniformly properly embedded in X so that X is a metric graph bundle. Suppose x, y € Fg and
dy,(x,y) =< D. Let  be a (dotted) geodesic in X joining x, y. Then f o« is a (dotted) path of length
at most 2L D. Thus dy (f(x), f(¥)) <2LD. Since X is an n-metric graph bundle dg(5)(f(x), f(y)) <
n(2L D). Since f is an isometry when restricted to Fs we have ds(x, y) < n(2L D). This proves that
X1 is a metric graph bundle over Bj.

On the other hand, f is 2L-Lipschitz by step 1 and g is coarsely L-Lipschitz by hypothesis. It is also
clear that w o f = g oy by the definition of f. Thus ( f, g) is a morphism of metric graph bundles from
Xl to X.

Step 3 (X, is a pullback) Now we check that X is a pullback of X under g. Suppose 7,: Y — Bj is
a metric graph bundle and ( /Y, g) is a morphism of metric graph bundles from Y to X where /7 is
coarsely L1-Lipschitz We need to find a coarsely unique, coarsely Lipschitz map f”: V(Y) — V(X1)
such that ( //,1d) is a morphism from Y to X and the whole diagram of Figure 4 is commutative, where
Id: V(B1) — V(B)) is the identity map.
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The map f’ Forall s € V(B;) we define f” on V(5 1(s)) as the composition fs_l o st. Collectively
these maps define f”. It is clear that f” makes the whole diagram above commutative.

The rest of the argument follows from Lemma 3.20. In fact, condition (2) of that lemma follows from
Lemma 3.10(1) since ;1 : X7 — Bj is a metric graph bundle and (3) follows because fibers of metric graph
bundles are uniformly properly embedded and in this case the restriction of f, 711_1 b)—-nl(gbh)ycx
is an isometry with respect to the induced path metric on 7~ L(b) and 7~ 1(g(b)) forall b € V(B;). O

The corollary below follows immediately from the proof of the above proposition.

Corollary 3.24 Suppose 7w: X — B is a metric graph bundle. Suppose A is a connected subgraph
of B. Let g: A — B denote the inclusion map. Let X4 = n~'(A), m4 be the restriction of = and let
f: X4 — X denote the inclusion map. Then X4 is the pullback of X under g.

The proof of the following corollary is similar to that of Corollary 3.22 and hence we omit the proof.

Corollary 3.25 Suppose (X, B, 7) is a metric graph bundle and g: V(B1) — V(B) is a coarsely Lipschitz
map. Suppose 1, : X, — By is an arbitrary metric graph bundle and ( f5:V(X3) = V(X), g) is a morphism
of metric graph bundles. If X, is the pullback of X under g and f,: V(X,) — V(X)) is the pullback map
then for all b € V(By) the fiber map ( f2)p: 1)(712_1 (b)) = V(r~(g(b))) is a uniform quasiisometry with
respect to the induced length metrics on the fibers of m, and m, respectively.

3.3 Some examples

In this section we discuss in detail two main sources of examples for metric graph bundles to which the
main theorem of this paper will be applied.

3.3.1 Short exact sequence of groups Given a short exact sequence of finitely generated groups
I1-N->G50—1

we have a naturally associated metric graph bundle. This is the main motivating example of metric graph
bundles. We recall the definition from [24, Example 1.8] with a minor modification.

Suppose H < Q is a finitely generated subgroup. Let G; = w1 (H). We fix a generating set Sy
of N, a generating set S 2 Sy of G such that S contains a generating set S; of G;, Sy C S
and N NS = Sy. Let Sg = 7(S) \ {1} and Sy = 7(S7) \ {1}. Then we have a metric graph
bundle 7: I'(G, S) — I'(Q, Sg). Clearly I'(H, Sg) is a subgraph of I'(Q, Sp) and I'(Gy, S1) =
7~ Y(I'(H, Sg)). Hence, by Corollary 3.24 it follows that I'(G, S;) is the pullback of I'(G, S) under
the inclusion I'(H, Sg) — I'(Q, Sg).
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3.3.2 Complexes of groups For this example, we refer to [15]. Suppose ) is a finite simplicial complex
and G ()) is a developable complex of groups defined over ). (See [15, Definition 2.2].) For any
face o of ), let K, be a K(Gg, 1)-space. Then by [15, Theorem 3.4.1] there is a complex of spaces
p: X — Y (compare with good complexes of spaces due to Corson [8]) which is a cellular aspherical
realization (see [15, Definition 3.3.4]) of the complex of groups G ()) such that inverse image under p
of the barycenter of each face o is K. It follows from the construction of X that there is a continuous
section s of p: X — Y over the 1-skeleton V(1) of 1. We fix a maximal tree of s()(1)) and a base vertex
vo € YO init. Let G = 71 (X, s(vg)). Thus for any v € Y(© we have a natural injective homomorphism
w1 (Xy, s(v)) = G. We identify the image of the same with G,. Next following Corson [8] we take the
universal cover 7y : X —> X. We put a CW complex structure on X in the standard way so that 7y is a
cellular map. Then for all y € ), we collapse each connected component of (p o 73) ™1 () to a point.
Suppose B is the quotient complex thus obtained and let ¢: X — B be the quotient map. Then we note
that there is a cellular map 7, : B — ) making the following diagram commutative:

Now for our purpose, we shall also assume that all the face groups G, are finitely generated, the 0-skeleton
of each K is a point X, the 1-skeleton is a wedge of finitely many circles and the developable complex
of groups satisfies the qi condition as defined below.

Definition 3.26 Suppose we have a developable complex of groups (G, )).

(1) We say that it satisfies the gi condition if for any faces o C t of ) the corresponding homomorphism
G; — Gy is an isomorphism onto a finite index subgroup of G.

(2) If all the face groups of G, satisfies a group theoretic property P then we shall say that (G, Y) is a
developable complex of groups with property P.

For instance, we shall work in Section 6 with the developable complexes of nonelementary hyperbolic
groups.

However, we now aim to associate to the complex of groups a metric graph bundle as follows. Let
X' =(po nX)_l(y(l))(l) and B = ﬁ;l(y(l))(l), where we denote by Z(!) the 1-skeleton of any
CW complex Z. Now we construct a metric graph bundle w: X — B as follows. For all v € B©
let Fy := ¢~ ' (v)V. Suppose v, w € B© are connected by an edge e. We look at the subcomplex
X =4 ([v, w]). Let vg = Ty (v), wo = Ty (w) and eq = Ty (€). Then X[y 1) C 75" (p~" ([vo, o))
However, we recall from Haefliger [15] how p~!([vg, wo]) C & is built from the spaces the Ky, K,
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and K,,. There are injective homomorphisms G, — G, and G¢, — Gy,,. We choose cellular maps
Jo: Key — Ky, and f7: Ko, — Ky, such that the induced maps in the fundamental groups are those group
homomorphisms. Then one glues K¢, x [0, 1] to Ky, || Ky, by gluing K¢, x {0} to Ky, and K¢, x {1}
to Ky, using the maps fy, f1, respectively. Let mg be the midpoint of x, x [0, 1] C p~!([ve, wo]) and
let m € e be the midpoint of e. Then through any a € ¢! (m)© we lift Xeo X [0, 1]. The liftis a 1-cell
joining @y € ¢~ (V)@ to ay € ¢~ (w)©®. Let us denote the map a > ay by Je,v and the map a — ay,
by few-

Lemma3.27 (1) Themap foy:q " (m)©@ — ¢~ ()@ s uniformly coarsely surjective with respect
to the graph metric on g~' (m)©@, ¢~ (v)©@ coming from ¢~ (M), ¢~ (v)D, respectively.
(2) A similar statement holds for fe 4.

Proof We will only prove (1) as the proof of (2) is similar. The group G, < G is isomorphic to Gy,
and ¢~ !(v) is a universal cover of Ky, since the complex of groups is developable. The groups G, acts
properly discontinuously with quotient Ky,. Since the action is cellular the action of G on ¢! )M is
simply transitive. Similarly the action of G, is simply transitive on ¢~ (m)(). We note that G,, < G,
and the map [,y is equivariant. It is also clear that [Gy : G| =[Gy, : Ge,]. Finally we note that ¢~ ! (v)®
is naturally isometric to a Cayley graph of G, when ¢~ (v)") is given graph metric where each edge has
length 1. The lemma is immediate from this. O

Let R > 0 be such that f, , is coarsely R-surjective for all O-cell v and 1-cell e of B where e is incident
on v. Then we construct a graph X from X’ by introducing new edges as follows. Given v, w € BO
connected by an edge e we join all x € ¢~ (v) to y € ¢! (w) by an edge if there is a € ¢~ (1) such
that d(x, fe,p(a)) < R and d(y, fe,w(a)) < R, where the distances are taken in the respective 1-skeletons
of ¢~ '(v) and g~ (w).

Proposition 3.28 Suppose we identify G as the group of deck transformation on the covering map
Ty X — X. Then we have the following:
(1) G acts on X and on B through simplicial maps. The map q is G-equivariant.
(2) The G-action is proper and cofinite on X but it is only cofinite on B. Also B/G is isomorphic
to Y,
(3) ForallveY©® andv e ﬁ;l (v), Gy is a conjugate of Gy in G.
(4) The action of G on X5 = q~'(¥) is proper and cocompact. In fact the action on V(X3) is transitive
and on E(Xy) is cofinite. In particular if the G, is hyperbolic for all v € Y© then for all v € Y(©
and v € 7, !(v), X5 is uniformly hyperbolic.

(5) m: X — B is a metric graph bundle.

Proof The group G acts through deck transformations of the covering map 7, : X — X. Hence it follows
that G permutes the connected components of (p o m,)~!(y) for all y € Y. The action is also simplicial.
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Hence, (1) follows from this. For (2) we note that the action of G on X' is proper and cofinite. On
the other hand, the inclusion map X’ — X is a G-equivariant quasiisometry by Lemma 2.4. Hence the
G-action on X is proper and cofinite. Clearly, B/G is isomorphic to YU whence the G-action on B is
cofinite. Property (3) is a consequence of a basic covering space argument using the G-equivariance of
the map ¢. In (4) the properness follows from the properness of the action of G on X’. Cocompactness
is due to the fact that X’/ G is finite. The second part also follows from the nature of K(Gy, 1) used
to construct X, where v = 7, (v). The last part follows from the second by Milnor—Schwarz lemma.
What remains is to prove (5). For all § € V(B), let X5 = 7~ !(9). Since B/G is finite and the map ¢
is G-equivariant the X3’s are uniformly properly embedded in X if and only if for all w € V(B/G)
there is one W € 7, I(w) such that Xg is uniformly properly embedded in X’. However, each inclusion
Xy — X' is Gy-equivariant, the G action on Xj is proper and cocompact and Gy is a finitely generated
subgroup of G'. Since each finitely generated subgroup of a finitely generated group is uniformly properly
embedded it follows that X7 is properly embedded in X”. Since X" is quasiisometric to X, it follows that
the X3’s are properly embedded in X . This verifies property (1) of metric graph bundles. Property (2)
follows from Lemma 3.27 and the construction of the new edges. a

Subcomplexes of groups In the above set-up we now assume further that we have a connected sub-
complex Y; C V. Let &} = p~1(1). We shall assume that the base point x¢ € X is contained in &
and a maximal tree of s(yl(l)) is chosen so that it is contained in the chosen maximal tree of s(J(1).
Suppose the inclusion X; — X’ is 71-injective. Then the restriction G ()1) of G'()) to ), is a developable
complex of groups by [6, Corollary 2.15]. Let G| = 1 (X1, xo). However, Xy — ) is a complex of
spaces which is a cellular aspherical realization of the complex of groups G ());). Hence, we can build a
metric graph bundle 7;: X1 — B; as described in Proposition 3.28.

In fact fixing a point X € JT/;I (xo) we may identify G as the group of deck transformations on X. Then
G stabilizes the connected component of 7! (X;) containing X¢. Since X; — X is 7;-injective this
connected component, say X1, is a universal cover of X;. We set By = q(/’?l) N Band X; =71 (B)).
The following proposition records these in a nutshell.

Proposition 3.29 Suppose ) is a finite connected simplicial complex and G ()) is a developable complex
of groups with gi condition and with fundamental group G and suppose Y is a connected subcomplex
of Y. Suppose G is the fundamental group of G ()1). Suppose the inclusion G (1) — G ()’) induces
injective homomorphism G| — G.

Then there is a metric graph bundle w: X — B, a connected subgraph By C B such that the following
hold:

(1) G acts on X and on B through simplicial maps. The map m is G-equivariant. The action is
proper and cofinite on X but it is only cofinite on B. Also, there is a simplicial G-equivariant map
B — Y with trivial action on YV inducing an isomorphism of graphs B/ G — V). The group

Algebraic € Geometric Topology, Volume 25 (2025)



Pullbacks of metric bundles and Cannon—Thurston maps 2713

Gp < G is a conjugate of G in G, where b is the image of b under the map B — Y1), Also the
Gp-action on F}, is proper and cofinite for all b € V(B).

(2) Let X, = 7~ (B)). Then G, stabilizes X and the G-action on X is proper and cofinite. Also

the restriction of the map B/ G — YV to By /G is an isomorphism of graphs B,/ Gy — yfl).

Later on we shall work with rather special subcomplexes of groups as defined below.

Definition 3.30 Suppose ) is a finite connected simplicial complex and (G, ) is a developable complexes
of groups with gi condition over )). We shall call a connected subcomplex )y C ) a good subcomplex if
the following hold:

(1) The induced natural homomorphism (G, Y1) — 71(G, )) is injective. Suppose the image is G;.

(2) If m: X — B is a metric graph bundle obtained as in Proposition 3.28 from (G, )) and By C B is
as in Proposition 3.29. Then the inclusion B; C B is a qi embedding.

We note that X is quasiisometric to G and X is quasiisometric to G;. Thus it follows that B is
quasiisometric to the “coned-off” space a la Farb [10] obtained from G by coning off the cosets of the
various face groups of (G, ). Similarly B is obtained by coning off various cosets of the face groups
of (G, Y1). Thus condition (2) of the above definition is intrinsic and independent of the particular metric
graph bundle obtained from (G, ).

4 Geometry of metric bundles

In this section, we recall some results from [24] and also add a few of our own which are going to be
useful for the proof of our main theorem in the next section. Especially some of the results which were
stated for geodesic metric spaces in [24] but whose proofs require little adjustments to hold true for length
spaces are mentioned here.

4.1 Metric graph bundles arising from metric bundles

An analog of the following result is proved in [24, Lemmas 1.17-1.21]. We give an independent and
relatively simpler proof here. We also construct an approximating metric graph bundle morphism starting
with a given metric bundle morphism. However, one disadvantage of our construction is that the metric
graphs so obtained are never proper.

Proposition 4.1 Suppose n’: X' — B’ is an (1, ¢)-metric bundle. Then there is a metric graph bundle
7: X — B along with quasiisometries Y g: B’ — B and ¥y : X' — X such that

(1) moyy =ypgon’ and

(2) forall b € B’ the map Vx restricted to 7'~1(b) is a (1, 1)-quasiisometry onto 7~ (¥ g(b)).
Moreover, the maps ¥ x , g have coarse inverses ¢x, ¢p, respectively, making the diagram of Figure 5

commutative.
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Figure 5

Proof (1) For the proof we use the construction of Lemma 2.8. We shall briefly recall the construction
of the spaces. We define V(B) = B’ and s, € V(B) are connected by an edge if and only if s # ¢ and
dp/(s,t) < 1. This defines the graph. We also have a natural map ¥ g: B’ — B which is just the inclusion
map when B’ is identified with the vertex set of B. To define X, we take V(X) = X’. Edges are of two

types.
Type 1 edges Forall s € B, x, y € 7'~!(s) are connected by an edge if and only if d;(x, y) < I.

Type 2 edges If s #¢ e B, x e n’~!(s) and y € n/~1(¢) then x, y are connected by an edge if and only
ifdp/(s,t) <1and dy/ (x,y) <c.

The map ¥y : X' — X is defined as before to be the inclusion map. By Lemma 2.8 ¥p is a qi. We also
note that 7 oy = g omr’. We need to verify that Yx is a qi. For that, it is enough to produce Lipschitz
coarse inverses @y, ¢p as claimed in the second part of the proposition and then apply Lemma 2.2 since
it is clear that vy is 1-Lipschitz. We first choose a coarse inverse ¢ of ¥ g as follows. On V(B) it is
simply the identity map. The interior of each edge is then sent to one of its end points. The map ¢y on
V(X) is also defined as the identity map. The interior of a type 1 edge is sent to one of its end points.
Then interior of each type 2 edge e = [x, y] is sent to one of the end points x or y according as the edge
7 (e) is mapped by ¢p to 7w (x) or m(y), respectively. It follows that the diagram of Figure 5 commutes.
We just need to check that ¢y is coarsely Lipschitz, since ¢p, ¢px are inverses of ¥ g, ¥y, respectively
on a 1-dense subset, they will be coarse inverse automatically. However, by Lemma 2.6 it is enough to
show that edges are mapped to small diameter sets. This is again clear. In fact, the image of an edge has
diameter at most ¢. This proves the first part of the proposition.

(2) This is immediate from the definition of ¥y and the construction in Lemma 2.8.

(3) Finally, we need to check that (X, B, ) is a metric graph bundle. Let s € B and x, y € 771 (s)
such that dy (x, y) < M for some M > 0. Since ¢y is a quasiisometry, dyx-(x, y) < M’, where M’ > 0
depends on M and ¢y. Since 7'~ !(¢p(s)) is properly embedded in X’ as measured by 7, we have
dpp(s)(x, ) < n(M’). Now, using the above fact that 77 (¢p(s)) is (1, 1)-quasiisometric to 771 (s),
we have dg(x, y) < n(M’)+ 1. Hence, 7~ (s) is uniformly properly embedded in X. Next we check
the condition (2) of Definition 3.4. Suppose s,¢ € V(B) are adjacent vertices. Then, dp/(s,t) < 1. Let
be a path in B’ joining s, # with /g/(a) < 1. Then, for any x € 7'~ (s), & can be lifted to a path of length
at most ¢, joining x to some y € /"1 (¢). Then there exists an edge joining x and y in X, which is a lift
of the edge joining s and 7 in B. O
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Remark We shall refer to the metric graph bundle X obtained from X" as the canonical metric graph bun-
dle associated to the bundle X . Since we are working with length metric spaces some of the machinery of
[24] may not apply directly. Proposition 4.1 then comes to the rescue. We sometimes modify our definitions
suitably to make things work. Consequently, all the results proved for metric graph bundles have their close
analogs in metric bundles. We shall make this precise for instance in Proposition 4.3 and Definition 4.5.

Approximating a metric bundle morphism Suppose 7’: X’ — B’ is a metric bundle and g: A’ — B’
is a Lipschitz map. Suppose Y is the pullback of the bundle under the map g as constructed in the proof
of Proposition 3.21, ie Y’ is also the set theoretic pullback. Let g*n’: Y’ — A’ be the corresponding
bundle projection map and f: Y’ — X’ be the pullback map. Suppose we use the recipe of the above
proposition to construct metric graph bundles rx : X — B, my : Y — A with quasiisometries ¥ 4: A’ — A,
Yp:B - B, yy:Y' - Y and Yx: X' — X such that ry oy = Y40g*n’ and my oy = Ygpon’.

Suppose ¢x, ¢B, Py, ¢4 are the coarse inverses (as constructed in the proposition above) of Vx, ¥, ¥y,
and 4, respectively. We then have a commutative diagram

Yy Vx
) D ——— > Y’ ), ¢ —— X
oy dx
7TY g*T[/ JT/ T[X
b4 B
Ammmoe- o ) B
V4 & VB

Let f , & denote the restrictions of Yy o f o¢y and Y go gogp,4 on the vertex sets of ¥ and A, respectively.

Proposition 4.2 (1) The pair of maps (f, g) gives a morphism of metric graph bundles from Y to X.
Moreover, if Y’ is the pullback of X’ under g and f is the pullback map then Y is the pullback of
X under g and f is the pullback map.

(2) If X', Y’ are hyperbolic, then f admits the CT map if and only if 1 does also.

Proof (1) Since all the maps in consideration, ie Yy, f, ¢y, VB, g, ¢4 are coarsely Lipschitz the maps
£, g are also coarsely Lipschitz by Lemma 2.3(1). It also follows that 7y o f = gony. Thus (f,g) isa
morphism.

Suppose Y’ is a the pullback of X’ under g. To show that Y is the pullback of X we need to verify
the universal property. Suppose 7 : Y1 — A is any metric bundle and f;:V(Y;) — V(X)) is a coarsely
Lipschitz map such that the pair ( f7, g) is a morphism of metric graph bundles from Y7 to X'. We note that
7'o(px o f1) =go(pgomy). Since Y’ is a set theoretic pullback there is a unique map f>: V(Y1) — Y’
making the whole diagram of Figure 6 commutative.
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1
Y
Yy Yx
T S Y ——— X o2
oy dx
Ty g’ ! TTx
®4 ¢B
A —————— > A/ N B/ === ==
Va4 J 7]
Figure 6

Now, by Lemma 2.3(1) the maps ¢x o f1 and ¢4 o 7y are coarsely Lipschitz. Hence, it follows by
Lemma 3.20 and the subsequent Remark on page 2706 that the map f; is coarsely Lipschitz. Let
h =y o f5. Then h is coarsely Lipschitz by Lemma 2.3(1) and we have foh=fiand wy oh = ;.
Hence, (4, 1d4) is a morphism from Y7 to Y. Finally coarse uniqueness of /4 follows from Lemma 3.20.

(2) This is a simple application of Lemma 2.50. |
4.2 Maetric bundles with hyperbolic fibers

For the rest of this section we shall assume that all our metric (graph) bundles 7: X — B have the
following property:

(t) Each of the fibers Fj, b € B (resp. b € V(B)) is a §’-hyperbolic metric space with respect to the
path metric dj induced from X.

We will refer to this by saying that the metric (graph) bundle has uniformly hyperbolic fibers. Moreover,
the following property is crucial for the existence of (global) qi sections:

(+1) There is N > 0 such that for all b € B the barycenter map ¢y, : 9° Fp — F}, is coarsely N-surjective.
(Recall that barycenter maps were defined right after Lemma 2.41.)

Proposition 4.3 (global qi sections for metric (graph) bundles [24, Propositions 2.10, 2.12]) For all
8',¢>0, N>0andn:[0,00) — [0, 00) there exists Ko = Ko(c,n,8’, N) such that the following holds.

Suppose p: X' — B’ is an (n, ¢)-metric bundle or an n-metric graph bundle satisfying (1) and (11). Then
there is a K(-qi section over B’ through each point of X’ (where we assume ¢ = 1 for the metric graph
bundle).

Convention 4.4 (1) With the notation of Proposition 4.1, we note that for any qi section X in X over B,
¢x () = X since ¢y is the identity map when restricted to V(X'). We shall refer to it as a qi section of
the metric graph bundle transported to the metric bundle.

(2) Whenever we talk about a K-qi section in a metric bundle we shall mean that it is the transport of a
K-qi section contained in the associated canonical metric graph bundle.
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Definition 4.5 [24, Definition 2.13] Suppose X1 and X, are two K-qi sections of the metric graph
bundle X. For each b € V(B) we join the points 31 N Fp, ¥, N Fp by a geodesic in F. We denote the
union of these geodesics by IL(X1, X5), and call it a K-ladder (formed by the sections X and X,).

For a metric bundle by a ladder, we will mean one transported from the canonical metric graph bundle
associated to it (by the canonical map ¢x as in Proposition 4.1.)

The following are the most crucial properties of a ladder summarized from [24].

Proposition 4.6 Given K >0, § >0 there are C = C4.4(K) >0, R= R4 6(K)>0and K4.¢(5, K) >0
such that the following holds:

Suppose 7 : X — B is an n-metric graph bundle satistying (1). Suppose X1, ¥, are two K-qi sections in
X and L = 1L(Xq, X3) is the ladder formed by them. Then the following hold:

(1) Ladders are coarse Lipschitz retracts There is a coarsely C -Lipschitz retraction ng,: X — L
defined as follows:

For all x € X we define mr,(x) to be a nearest point projection of x in Fy(xy onIL N Fr(y).

(2) Given a k-qgi section y in X over a geodesic in B, 7y, (y) is a (C+2kC)-qi section in X contained in
L over the same geodesic in B.

(3) QI sections in ladders If X also satisfies (1) then through any point of IL there is (1+2K)C -qi
section contained in L.

(4) Quasiconvexity of ladders The R-neighborhood of IL is (i) connected and (ii) uniformly qi
embedded in X .

In particular if X is §-hyperbolic then L is K4 ¢(8, K)-quasiconvex in X .

Proof (1) This is stated as Theorem 3.2 in [24].
(2),(3) These are immediate from (1) or one can refer to Lemma 3.1 of [24].

(4) This is proved in Lemma 3.6 in [24] assuming (f1). However, we briefly indicate the argument here
without assuming (7).

(4)(1) Suppose b,b’ € B, dg(b,b’) = 1. Let x € L N F},. Then there is a point x’ € Fp/ such that
d(x,x’) = 1. Hence, d(71,(x), 7L (x")) = d(x, 7L (x")) < 2C. If we define R = 2C then clearly the
R-neighborhood of L is connected.

(4)(ii) We first claim that the Ng(IL) = Y say, is also properly embedded in X . Suppose x’, y’ € Y with
dy(x’,y") < N. Let x, y € L be such that d(x,x’) < Rand d(y,y’) < R. Then d(x,y) <2R+ N.
Hence, dp(m(x), 7(y)) <2R+ N. Let o be a geodesic in B joining 7(x), w(y). Then by Lemma 3.8
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there is a geodesic lift & of « starting from x. It follows that for all adjacent vertices by, b, € & we have
d(mr, (@) (by), 7, (@) (hy)) < 2C. Hence, the length of 7, (&) is at most 2C(2R + N). Hence,
d(y. 7 (@(7(y)))) <d(x,y)+d(x, 7L (&(7(y)))) <2R+ N +[(n1,(@)) <2R+ N +2C(2R+ N).
Hence, dy () (. 71, (@((»)))) <n(2R+ N +4CR+2CN). Since 7, (@) C Y,

dy (x, ) < dpy) (v, 7L (@@ () + (7L (@) <n(2R+ N +4CR+2CN) +4CR + 2CN.
Hence, dy (x', y') <4CR +2CN +n(2R+ N +4CR +2CN).

Finally we prove the qi embedding. Let f(N)=n2R+ N +4CR+2CN)+4CR+2CN forall N € N.
Given x, y € L, dx (x, y) = n and a geodesic y: [0, n] = X joining them. By the proof of (4)(i) we have
dy (L (y(@)), np(y(i+1)) < f(2C) forall 0 <i <n—1, whence d,(x, y) <nf(2C) = f(2C)dx(x, y).
Clearly dy (x, y) < dr(x, y). This proves the qi embedded part.

It follows that for all x, y € I a geodesic joining x, y in Y is a ( f(2C), 0)-quasigeodesic in X. Since X
is §-hyperbolic stability of quasigeodesics implies that I is uniformly quasiconvex. In fact, we can take
K4.6(8,K) = R+ D;.19(8, /(2C),0). 0

Remark Part (3) and (4) are clearly also true for metric bundles which satisfy the properties (1) and (7).
The following corollary is immediate.

Corollary 4.7 (ladders form subbundles) Suppose w: X — B is an n-metric graph bundle satisfying
() and (7). Let C, R be as in the previous proposition. Suppose L. = 1L.(X{, X,) is a K-ladder. Consider
the metric graph Z obtained from IL by introducing some extra edges as follows: Suppose b,b’ € B
are adjacent vertices then for all x € L. N Fp, x’ € L. N Fp we join x, x” by an edge if and only if
dy(x,x") <C +2KC. Let 7 : Z — B be the simplicial map such that 1 = w7 on V(Z) and the extra
edges are mapped isometrically to edges of B.

Then Z is a metric graph bundle and the natural map Z — X gives a subbundle of X which is also a

(uniform) gi onto Ng(IL) and hence a (uniform) qi embedding in X .

In the next section of the paper, we will exclusively deal with bundles 7 : X — B which are hyperbolic
satisfying (1) and (1) and we will need to understand geodesics in X. Since ladders are quasiconvex we
look for quasigeodesics contained in ladders. The lemma below is the last technical piece of information
needed for that purpose. However, we need the following definitions for stating the lemma.

Definition 4.8 Suppose X is a metric graph bundle over B and suppose X1, X, are any two qi sections.

(1) Neck of ladders [24, Definition 2.16] Suppose R > 0. Then the set
Ur(Z1,Zy)={beB:dpy(X21NFp, 22N Fp) < R}

is called the R-neck of the ladder L (X1, X»,).
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For a metric bundle the R-neck of a ladder will be defined to be the one transported from the canonical
metric graph bundle associated to it, ie the image under ¢p.

(2) Girth of ladders [24, Definition 2.15] The quantity min{dp (X1 N Fp, X, N F}) :b € B} is called
the girth of the ladder IL(X1, ;) and it will be denoted by dj (X1, X»).

Motivated by the hallway flaring condition of Bestvina and Feighn [4], flaring conditions for metric
(graph) bundles were defined in [24, Definition 1.12]. Below we slightly modify those definitions to suit
to our context and to add a little more clarity.

Definition 4.9 (flaring for metric graph bundles [24, Definition 1.12]) (1) Let kK > 1 be a constant. We
say that a metric graph bundle 7 : X — B satisfies a flaring condition for k-qi lifts if there exist constants
v >1,and n, M € N such that the following holds:

Suppose y : [-n,n] — B is any geodesic, and suppose 7 and 7, are any two k-qi lifts of y in X. If
dy0)(71(0), 72(0)) = M, then we have

v.dy (0)(71(0), 72(0)) = max{dy () (71 (n). 72()). dy(—n)(F1 (=) P2(=n))}.

(2) We say that the metric graph bundle 7 : X — B satisfies a flaring condition if it satisfies a flaring
condition for k-qi lifts for all kK > 1.

We note that the assertion that a metric graph bundle “satisfies a flaring condition” means that for any k > 1
there are three constants v > 1, and n, M € N (depending on k) with the said property in Definition 4.9(1).
However, when we wish to emphasize the dependence of these three numbers on k, we say that the metric
bundle satisfies a (v, My, ny)-flaring condition. This property is independent of the hypotheses about
metric graph bundles and the conditions () and (77) mentioned in the beginning of this subsection.

Definition 4.10 (flaring for metric bundles) We shall say that a metric bundle 7: X — B satisfies a
(vg, My, ny)-flaring condition if the canonical metric graph bundle associated to it satisfies a (vi, My, ng)-
flaring condition.

Remark (1) Since the base for a metric bundle need not be a geodesic metric space, it is not reasonable
to use [24, Definition 1.12] of flaring for metric bundles. However, one can formulate analogous flaring
of gi sections over uniform quasigeodesics in the base and then show that this is indeed equivalent to
Definition 4.10. Since this discussion is not directly related to the rest of the paper we move it to the end
of the paper and we include it as an appendix. See Lemmas A.5 and A.6.

(2) This definition of flaring for metric bundles is equivalent to [24, Definition 1.12] in the case of
geodesic metric bundles. In fact it follows from Lemmas A.5 and A.6 that a geodesic metric bundle
satisfies flaring as per [24, Definition 1.12] if and only if the canonical metric graph bundle associated to
it also satisfies flaring.
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The following lemma will be crucial for the next section of the paper.

Lemma 4.11 (quasiconvexity of necks of ladders [24, Lemma 2.18]) Let X be an n-metric graph bundle
over B satistying (vi , My, , ny )-flaring condition for all k > 1. Then for all ¢y > 1 and R > 1 there are
constants D4 11 = D4 11(c1, R) and K411 = K4.11(c1) such that the following holds:
Suppose X1, X, are two c1-qi sections of B in X and let L > max{M,,,dp(2;,Z>)}.
(1) Lety:][ty,t1] = B be a geodesic, ty,t; € Z, such that
@) dy1)(Z1 0 Fy o), 2N Fy ) = LR,
(b) y(t1) eUr :=Up(XZy,X,) butforallt €ty,t1) NZ, y(t) € UL.
Then the length of y is at most D4 11(cy, R).

(2) Foranyby,b, € Ur and any geodesic [by, b,] joining them in B, we have [b;, b,] C Nk, ,,(UL).
In particular, if B is hyperbolic then Uy, is K4 11-quasiconvex in B.

(3) Ifdy(X,X;) > M, then the diameter of the set Uy, is at most D, |, = D), |, (cy, L).

Part (2) of the above lemma is slightly different from that of [24, Lemma 2.18] but the proof there actually

showed this. However, ladders with short necks to which Lemma 4.11 applies are given a special name:

Definition 4.12 (small girth ladders) Given two K-qi sections X1, X, in a metric graph bundle satisfying
a flaring condition the ladder IL(X ¢, X,) is called a small girth ladder it U (21, X,) # &, where L = M.

Remark Suppose X’ — B’ is a metric bundle and X — B is the canonical metric graph bundle associated
to it. Suppose a flaring condition holds for X . This is the case for instance when X or equivalently X" is
hyperbolic. In such a case, a small girth ladder in X” for us will be, by definition, the transport of a small
girth ladder from X under ¢y (as in Proposition 4.1).

We end this section with two simple lemmas. We note that flaring condition is not needed for these to
hold.

Lemma 4.13 Given D > 0, K > 1 there is R = R4.13(D, K) such that the following holds.

Suppose X is K-qi sectionin X and x € X. Letb = w(x). Thend(x,X) > D ifdp(x, XN Fp) > R.
Proof Suppose y € X anearest point from x. Let o C X be the lift of a geodesic [b, ()] joining b to ()
joining y to XN Fj. We note that dg(b, w(y)) <d(x, y). Hence, d(y,a(b)) < Kd(x, y) + K. Therefore,
d(x,a()) <d(x,y)+d(y,ab)) < (K + 1)d(x,y)+ K. This implies d(x, y) > %Hd(x,a(b))

since all distances are integers in this case. Now fibers of X are properly embedded as measured by 7.
Thus if dp(x, 2 (b)) > n((K + 1) D) then d(x, y) = D. Hence, we can take R = n(KD + D). |

The corollary below gives a relation between the girth of a ladder L (X, ¥,) and d(Z, X»).

Corollary 4.14 Given D > 0, K > 1 there is an R = R4 14(D, K) such that the following holds:
Suppose X1, X, are two K-qi sections in X. Then d(21,X,) > D ifUgr(Z¢,%,) = &.
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The next lemma is a generalization of Lemma 4.13. Nevertheless we keep both of them since they are
used many times in the next section.

Lemma 4.15 Given K, D there is R = R4.15(K, D) such that the following holds.

Suppose X1, X, are two K-qi sections in X and L. =1L(X, X,). Suppose x € X and w(x) = b. Then
d(x,L) > D ifdy(x,L N Fp) > R.

Proof Suppose y € L is a nearest point from x. Let o be a geodesic lift of any geodesic [b, 7w(y)] joining
b to (y) such that « joins y to Fp. Now 7, (@) is a 2C-qi lift of [b, w())] where C = Cy4 ¢(K). Thus
d(y, m,(@)(b)) <2Cdg(b, w(y) +2C <2Cd(x, y) + 2C. Hence,

d(x,LNFp)<d(x,y)+d(y,nar(x)(b)) <2C + 1)d(x, y) +2C.

1
>
Therefore, d(x, y) > 2+l

d(x,IL N Fp). Hence, we can take R = n((2C + 1) D). ad

5 Cannon-Thurston maps for pullback bundles

In this section, we prove the main result of the paper. Here is the set-up. From now on we suppose that
m: X — Bisan (7, c)-metric bundle or an n-metric graph bundle satisfying the following hypotheses:

(H1) B is a §p-hyperbolic metric space.

(H2) Each of the fibers F},, b € B is a p-hyperbolic metric space with respect to the path metric induced
from X.

(H3) The barycenter maps 0> F, — Fp, b € B (resp. b € V(B)) are Ny-coarsely surjective for some
constant Ng.

(H4) The (vg, My, ny)-flaring condition is satisfied for all k > 1.

The following theorem is the main result of [24]:

Theorem 5.1 [24, Theorem 4.3 and Proposition 5.8] If 7: X — B is a geodesic metric bundle or a
metric graph bundle satisfying (H1)—-(H3) then X is a hyperbolic metric space if and only if X satisfies a
flaring condition.

5.1 Proof of the main theorem

We are now ready to state and prove the main theorem of the paper.

Theorem 5.2 (main theorem) Suppose w: X — B is a metric (graph) bundle satisfying the hypotheses
(H1)-(H4). Suppose g: A — B is a Lipschitz k-qi embedding and suppose p:Y — A is the pullback
bundle. Let f: Y — X be the pullback map.

Then Y is a hyperbolic metric space and the CT map exists for f:Y — X.
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Proof We first note that X is hyperbolic. This follows from Theorem 5.1 if X is a metric graph bundle
(or a geodesic metric bundle). If X is a (Iength) metric bundle, one may first pass to the canonical metric
graph bundle associated to it, and then verify the hypotheses of Theorem 5.1 for it. In fact, if any metric
bundle satisfies (H1), (H2), and (H3) then the canonical metric graph bundle associated to it also has these
properties with possibly different values of the respective parameters. Flaring condition (H4) follows
from Definition 4.10. It then follows that the metric graph bundle is hyperbolic. Consequently, X is
hyperbolic by Proposition 4.1. We shall assume that X is §-hyperbolic. We begin with the following
reductions:

(1) It is enough to prove the theorem only for metric graph bundles.

Indeed this follows from Proposition 4.2(2). So for the rest of the proof we shall assume that 7: X — B
is a metric graph bundle satisfying (H1)-(H4).

Since we work with graphs from now, for the rest of the section by hyperbolicity we shall mean Rips
hyperbolicity.

(2) We may moreover assume that A is a connected subgraph, g: A — B is the inclusion map and Y is

the restriction bundle for that inclusion. In particular, f:Y — X is the inclusion map and Y = 7w~ 1(A).

Since g: A — B is a k-qi embedding and B is d¢p-hyperbolic, g(A) is D, 19(8¢, k, k)-quasiconvex in B.
Let A’ be the D, 19(8o, k, k)-neighborhood of g(A4) in B. Then clearly A’ is connected subgraph of B
and g: A — A’ is a quasiisometry with respect to the induced path metric on A’ from B. Clearly A’
is (1,4D, 19(80. k., k))-gi embedded. Let 7’': X’ = 7~1(A4’) — A’ be the restriction of 7 on X’. Then
7’1 X' — A’ is a metric graph bundle by Lemma 3.17. Also, we note that (£, g): Y — X’ is a morphism
of metric graph bundles. By Corollary 3.25 the fiber maps of the morphism f: Y — X’ are uniform quasi-
isometries and hence by Theorem 3.15 we see that f: Y — X’ is an isomorphism of metric graph bundles.
Since (Rips) hyperbolicity of graphs is a qi invariant, we are reduced to proving hyperbolicity of X’ and
also by Lemma 2.50(1) we are reduced to proving the existence of the CT map for the inclusion X" — X.

Hyperbolicity of Y Y is hyperbolic by Remark 4.4 of [24]. In fact, by Theorem 5.1 it is enough to
check that flaring holds for the bundle Y — A. This is a consequence of flaring of the bundle 7: X’ — B
and bounded flaring.

Remark (1) The sole purpose of (H3) is to have global uniform qi sections through every point of X
which is guaranteed by Proposition 4.3. For the rest of this section, we shall also assume:
(H3’) Through any point of X there is a global K¢-qi section.

(2) Clearly Y is an n-metric graph bundle over A satisfying (H2) and (H3). We shall assume that A is
§o-hyperbolic. We shall also assume the bundle Y satisfies a (v}, M, , n) )-flaring condition for all k > 1.
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Existence of CT map Outline of the proof: To prove the existence of the CT map we use Lemma 2.49.
The different steps used in the proof are as follows. (1) Given y, )y’ € Y first we define a uniform
quasigeodesic ¢(y, ') in X joining y, y’. This is extracted from [24]. (2) In the next step we modify
¢(y,y’) to obtain a path ¢(y, y') in Y. (3) We then check that these paths are uniform quasigeodesics
in Y. (4) Finally we verify the condition of Lemma 2.49 for the paths ¢(y, y’) and ¢(y, y’). Since X, Y
are hyperbolic metric spaces, stability of quasigeodesics and Lemma 2.49 finishes the proof. To maintain
modularity of the arguments we state intermediate observations as lemma, proposition etc.

Remark Although we assumed that y, y’ € Y as is necessary for our proof, ¢(y, y’) as defined below is
a uniform quasigeodesic for all y, y’ € X as it will follow from the proof.

However, we would like to note that description of uniform quasigeodesics in a metric graph bundle with
the above properties (H1)—(H4) is already contained in [24], eg see Propositions 3.4 and 3.14 of [24]. We
make it more explicit with the help of Proposition 2.33.

Step 1 (descriptions of the uniform quasigeodesic ¢(y, y')) The description of the paths and the proof
that they are uniform quasigeodesics in X is broken up into three further substeps.

Step 1(a) (choosing a ladder containing y, y’) We begin by choosing any two K-qi sections X, ¥’
in X containing y, y’, respectively. Let (X, X’) be the ladder formed by them. Throughout Step 1 we
shall work with these gi sections and ladder. The path ¢(y, y’) that we shall construct in Step 1(c) will be
contained in this ladder.

Step 1(b) (decomposition of the ladder into small girth ladders) We next choose finitely many qi
sections in IL(X, ¥’) after [24, Proposition 3.14] in a way suitable for using Proposition 2.33. This
requires a little preparation. We start with the following.

Lemma 5.3 For all K > 1 there is D5 3(K) such that the following holds in X.
Suppose X1, X, are two K-qi sections and dp(X, ¥,) = Mg . Then X1, ¥, are D5 3(K)-cobounded.
Proof We note that X, X, are K’ = D, 19(6, K, K)-quasiconvex in X. Suppose P: X — X is a

1-approximate nearest point projection map and the diameter of P(X,) is bigger than D = D »g(8, K’, 1).
Then d (21, ¥3) < R = R,.3(8, K’,1). If x € ¥, such that d(x, £{) < R and b = 7(x) then

dp(x, 21 N Fp) < Ry 13(R, K') = R,

say. Hence, w(P(X3)) C Uz(X1, X3). However, by Lemma 4.11 the diameter of Ug(X1, X7) is at most
D), ,,(K’, R). It follows that the diameter of P(X,) is at most K + KD/, |, (K’, R). Hence we may

choose D5 3(K) = max{D; »3(8, K', 1), K+ KD} |, (K’, R)}. O

Lemma 5.4 Suppose X1, X, are two K-qi sections and ¥ C IL(X, X,) is K-qi section. Then X coarsely
uniformly bisects IL(X1, X») into the subladders L.(X1, X) and L(XZ, X5).
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Proof First of all any ladder formed by K-qi sections is K4 (8, K)-quasiconvex. Let K = K4 (8, K).
Letk >1,and x; € ¥;,i =1, 2 be any points. Let yx, x, : I — X be a k-quasigeodesic joining them where
I is an interval. Then there are points ¢, , € I with |[f; —#,| <1 such that yx, x,(¢;) € Ng/(L(2, X)) and
Yx1x2 (t2) € Ngr(L(X, X3)). Let yy € L(2y, ¥) and y; € (X, £3) be such that d(y;, yx,x, (%)) < K,
i =1,2. We note that d (yx, x,(11), ¥x,x, (t2)) < 2k. Hence, d(y1, y2) <2K'+2k. Let b = 7(y1). Then
dp(y1,L(Z,25) N Fp) < R4.15(K, 2K’ + 2k). This implies dp(y1, X N Fp) < R4.15(K, 2K’ + 2k).
Thus d(Yx,x,(t1), £) < K’ 4+ Ry4.15(K, 2K’ + 2k). This proves the lemma. O

Lemma 5.5 If Q is a K-qi section in X then QNY isa K5 5(K)-qi sectionof A inY.

Proof Suppose s: B — X is the K-qi embedding such that s(B) = Q. Let s also denote the restriction
on A. Since the bundle map Y — A is 1-Lipschitz we have d4(u, v) < dy(s(u), s(v)) for all u,v € A.
Thus it is enough to show that s: A — Y is uniformly coarsely Lipschitz. Suppose u, v € A are adjacent
vertices. Then dx (s(u),s(v)) < 2K. Now, there is a vertex x € F, adjacent to s(u) € F,. Hence,
dy(s(v),x) <1+ 2K. Therefore, d,(s(v),x) < n(1+2K). Hence, dy(s(u),s(v)) <1+ n(1 +2K).
It follows that for all u, v € A we have dy (s(u), s(v)) < (1 +n(1 +2K))d4(u,v). Hence, we can take
Kss5(K)=1+n(1+2K). m|

The following corollary is proved exactly as Lemma 5.3. Hence we omit the proof.

Corollary 5.6 For all K > 1 there is D5 ¢(K) > 0 such that the following holds.

Suppose X1, X, are two K-qi sections in X and dy(X1,X,) > Mg. Then X1 NY, X, NY are D5 ¢(K)-
cobounded in'Y.

Before describing the decomposition of ladders the following conclusions and notation on qi sections and
ladders will be useful to record.

Convention 5.7 (CO) We recall that 4 is k-qi embedded in B. We let kg = D5.17(8o, k, k) so that A
is ko-quasiconvex in B. Finally we assume that Y is §’ hyperbolic.

(C1) Let Kj+1 = (14+2K()Cq.6(K;) for all i € N where Ky is as in (H3'). Therefore, through any
point of a K;-ladder in X, there is a K;11-qi section contained in the ladder. Let Klf = K5.5(K;).

(C2) Welet A; =max{D; 19(8. K;, K;). K4.6(8. Ki), D2.19(8', K, K}), K4.6(8', K})} so that any K;-
qi section @ C X and any ladder . C X formed by two K;-qi sections in X are A;-quasiconvex in X

and moreover QNY and L NY are A;-quasiconvex in Y.

(C3) If ¥, X, are two K;-qi sections in X and d;,(Z;, £,) > Mk, then they are D;-cobounded in X,
asare X1 NY, ¥,NY in Y, where D; = max{Ds 3(K;), Ds.¢(K;)}.
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(C4) For each pair of K;-qi sections X, ¥, in X that satisfies
dp(Z1,32) > ri =max{R4.14(2%; + 1, K;), R4.14(24; + 1, K})}

we have dy (X, 3,) >2 A+ landdy (2, NY,Z,NY)>2X; + 1.

The following proposition is extracted from Proposition 3.14 of [24]. The various parts of this proposition
are contained in the different steps of the proof of [24, Proposition 3.14].

Let us fix a point by € A once and for all. Suppose «: [0, /] = Fp, NIL(X, X’) is an isometry such that
a(0) =X N Fp, and X' N Fp, = a(l).

Proposition 5.8 (see [24, Corollary 3.13 and Proposition 3.14]) There is a constant L such that for
all L > L there is a partition 0 =ty <ty <---<t, =1 of [0,/] and K;-qi sections ¥; passing through
a(t), 0 <i <n inside L(X, ') such that the following hold:

1) Zo=23, X, =Y.

(2) For0<i<n-2, X;y; CL(Z;, Y).

(3) For0 <i <n-—2either (I) d,(X;,%;4+1) = L, or (Il) dp(X;, ¥;+1) > L and there is a K;-
qi section X} through a(t; 41 — 1) inside IL(X;, X; 1) such that dj(3;, X)) < C + CL, where
C = Cy.6(K1).

4) dp(Zy—1,20) < L.

However, we will need a slightly different decomposition of IL(X, X’) than what is described here. It is
derived as the following corollary to Proposition 5.8.

Convention 5.9 We shall fix L = Lo + Mg, + r3 and denote it by R for the rest of the paper. Also
we shall define Ry = C 4+ CRg, where C = C4.¢(K1). Thus we have the following.

Corollary 5.10 (decomposition of IL(X, X’)) There is a partition 0 =ty < t; < --- <ty =1 of [0,]
and K -qi sections X; passing through a(t;), 0 <i <n inside IL(X, X’) such that the following hold:
() Zp=3%, %,=%".
(2) For0<i<n-2, ¥;41 CL(Z;, Y).

(3) For0<i <n-—2either (I) dj(X;, Xj+1) = Rg, or Il) dy(X;, Z;41) > Ry and there is a K,-qi
section X} through a(t; 41 — 1) inside L.(X;, X;4.1) such that dy(3;, X}) < R;.
In either case dy (Xi, X;j4+1) > 2A1 + 1 and X;, ;4 are Dy-cobounded in X.

(4) dh(zn—la En) = R0~
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We note that the second part of (3) follows from (C1), (C2), (C3) above. However, a subladder L(%;, X;4+1)
of L(XZ, X') will be referred to as a type (1) subladder or a type (1) subladder according as dj, (i, Xj41) =
Ro or dj (X, Zj+1) > Ry respectively.

Remark (1) We note that by the choice of Ry, R it follows that dy (£; N Y, X; 41 NY) >2A; + 1
and ¥; NY,X¥;11NY are D;-cobounded in Y for 0 <i <n—2.

(2) We shall use X; to mean qi sections in L(X, X') exactly as in the corollary above for the rest of this
section.

(3) Finally we note that X,, ¥,,_; need not be cobounded in general and the same remark applies to
YaNY, Eo1NY.

Lemma 5.11 LetI1:1L(X, X') — [0, n] be any map that sends X; to i € [0, n] N Z and sends any point of
L(%;, E;41)\{Z;UZX;4+1} toapointin (i,i + 1). Then the hypotheses of Proposition 2.33 are verified
for both I1 and its restriction L(X, ') N Y — [0, n].

Proof For both IT and its restriction to IL(2, ') N'Y, (P0) and (P1) follow from (C2), (P2) follows from
Lemma 5.4, and (P3) follows from (C4). For IT (P4) follows from (C3) and for the restriction of IT to
L(Z,%)NY from (1) of the Remark. |

Step 1(c) (joining y, ¥ inside L(X, X)) We now inductively define a finite sequence of points y; € ¥;,
0<i <n+1with yg =y, yy+1 =y’ such that each y;, 1 <i <n, is a uniform approximate nearest
point projection of y;_; on X; in X. We also define uniform quasigeodesics y; in X joining y;, yi+1.
The concatenation of these y;’s then forms a uniform quasigeodesic in X joining y, y’ by Proposition 2.33
and Lemma 5.11.

We define yy to be the lift of [t(¥n), 7 (yn+1)] in Z'.

Suppose )y, ...,y and yy, ..., yi— are already constructed, 0 <i < n — 2. We next explain how to
define y;; and y;.

Case I Suppose L; = L(X;, Z;j4+1) is of type (I) ie dp(Z;, X;j4+1) = Ro or i = n — 1. Then,
Ug,(Zi, Zi41) is nonempty. Let u; be a nearest point projection of 7(y;) on Ug,(Z;, Zj41). We
define y; 1 = X;41 N Fy;. Let «; be the lift of [7(y;),u;] in ¥;, and let o; be the subsegment of
Fy, NL; joining c; (#;) and y; 4. We define y; to be the concatenation of «; and o;. Then clearly y; is a
(K14 Ry)-quasigeodesic in X. That y;;{ is a uniform approximate nearest point projection of y; on
3+ follows from the following lemma.

Lemma 5.12 Given K > 1 and R > M there are constants €51, (K, R) and 6/5.12(](, R) such that the
following holds.
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Suppose Q1, Q, are two K-qi sections and dy(Q1,Q3) < R. Let x € Q1 and let U = Ugr(Qy, Q).
Suppose b is a nearest point projection of w(x) on U. Then Q, N F}, is €5.12 (K, R)-approximate nearest
point projection of x on Q5.

Ifdy(Q1, Q) = My then for any b’ € U the point Q, N Fp/ is an 6/5.12(K’ R)-approximate nearest point
projection of any point of Q1 on Q>.

This lemma follows from Corollary 1.40 and Proposition 3.4 of [24] given that ladders are quasiconvex.
However, we give an independent proof using the hyperbolicity of X.

Proof Suppose X is a nearest point projection of x on Q; and let x’ = Q, N Fj,. Let yxx/ be the concate-
nation of the lift in @; of any geodesic in B joining 7 (x) to b and any geodesic in F}, joining Q1 N Fj,
to Q> N Fp. Clearly it is a (K4 R)-quasigeodesic in X . Also by Lemma 2.25 the concatenation of any
1-quasigeodesics joining x, X and X, x" is a K, »5(8, K, 1, 0)-quasigeodesic. Hence, by stability of quasi-
geodesics we have X € Np(y;) where D = D 19(8, K/, K') and K’ = max{K + R, K> »5(5, K, 1,0)}.
This implies there is a point z € yxy such that d(z,X) < D. If z € Fp N yxx then d(X,x’) < D+ R
and hence x’ is a (D+ R)-approximate nearest point projection of x on Q5.

Suppose z € Q1 N yxx. Then dy(;)(z, Q2 N Fr(z)) < R4.13(D, K). Hence, by Lemma 4.11 we have
dg(m(z),b) < D4.11(K, R'), where R' = R4.13(D, K)/R. Therefore,

dx.x)<d(*,z)+d(z, Q1N Fp)+d(Q1 N Fp,x") <D+ (K+ KD4s 1:(K.R")) +R.

Hence in this case x’ is a (D+ K+ K D4 11(K, R')+ R)-approximate nearest point projection of x on Q».
We may set €5.12(K, R) =D+ K+ KD411(K, R") + R.

For the last part, we note that the diameter of U is at most D;_l (K, R). Thus clearly 6;,12(K ,R) =

€5.12(K, R)+ K + KD} ,,(K, R) works. 0

Case IT Suppose L; =L(X;, X;41) is of type (II), ie dj (i, ;41) > Rp. In this case there exists a
K>-qi section X} inside L; = IL(X;, X; ) passing through a(#;11 — 1) such that d;(2;, X}) < R;. We
thus use Case (I) twice as follows. First we project y; on X}. Suppose the projection is y;. Then we
project y; on X; 4 which we call y; ; and so on. Here are the details involved.

Let v; be a nearest point projection of 77(y;) on Ug, (X;, ) and let w; be a nearest point projection v; on
Ugr, (2}, Zi41). Then y; 41 = i1 N Fy,. In this case we let o; denote the lift of [7(y;), v;] in X; and
let B; denote the lift of [v;, w;] in Z;.. Then y; is the concatenation of the paths «;, [¥; N Fy,, Z;. N Fy, lv;»
Bi and [X; N Fy,, ;41 N Fy;]w,. That y; ; is a uniform approximate nearest point projection of y; on
3;+1 and that y; is a uniform quasigeodesic follow immediately from Lemma 5.12 and the last part of
Proposition 2.33.
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Remark We note that (X, X')NY is a ladder in Y formed by the gi sections XNY and £’ NY defined
over A. However, in this case the subladders L(%;, ¥;41) N'Y may not be of type (I) or (IT). Therefore,
we cannot directly use the above procedure to construct a uniform quasigeodesic in Y joining y, y’.

Step 2 (modification of the path ¢(y, y')) In this step we shall construct a path ¢(y, »’) in Y joining
y and y’ by modifying ¢(y, y’). For 0 <i <n, let b; be a nearest point projection of 7(y;) on A and
let y; = Fp, N X;. We define a path y; C Y joining the points y;, ;41 for 0 </ < n. Finally the path
¢(y, ) is defined to be the concatenation of these paths. The path v, is the lift of [T (yn+1), 7 (Pn)]a in
¥’ N Y. The definition of ¥;, for 0 <i <n — 1, depends on the type of the subladder L; = L(Z;, X;41)
given by Corollary 5.10(3).

Case 2(I) Suppose L; is of type (I) or i =n — 1. Let &; denote the lift of [b;, b;+1]4 in X; starting at y;.
The path y; is defined to be the concatenation of @; and the fiber geodesic Fp, ,  NL(X;, Xjyq).

Case 2(II) Suppose L; is of type (II). In this case, we apply Case 2(I) to each of the subladders
L(X;, X)) and L(X}, X;41). Let y; be as defined in Step 1(c). Let b; € A be a nearest point projection
7(y}) on A and y; = 7~ !(b}) N =}. Next we connect j;, y! and y/, ;41 as in Case 2(I) inside the
ladders L(X; N Y, X/ NY) and L(X; NY, X;4 NY) respectively. We shall denote by &; and Bi the
lift of [b;, b;]4 in X; NY and [b], b;jy1]4 in X; NY respectively. The concatenation of the paths &;;,
[N Fyy. S0 Fylpy CL(S. X)), Bi and [S)N Fy, . S 1 N Fy CL(X, %) is defined to be 7;.

i+1° i+1]bi+l

Step 3 (proving that ¢(y, y') is a uniform quasigeodesic in Y) To show that ¢(y, ') is a quasigeodesic
it is enough, by Proposition 2.33, to show that the paths y; are all uniform quasigeodesics in ¥ and that
for 0 <i <n—1, y;41 is an approximate nearest point projection of y; in ;1 N Y. The proof of this is
broken into three cases depending on the type of the ladder IL;. We start with the following lemma as a
preparation for the proof.

The lemma below is true for any metric bundle that satisfies the hypotheses (H1)—(H4) and (H3'), although
we are stating it for X only. For instance, it is true for Y too.

Lemma 5.13 Suppose b € B, x,y € Fp. Suppose for all K > Ky and R > M there is a constant
D = D(K, R) > 0 such that for all x', y' € [x, y], and any two K-qi sections Q; and Q, in X passing
through x', y’, respectively, either Ur(Q1, Q2) = @ or dg(b, Ur(Q1, Q>)) < D. Then the following
hold:

(1) [x, y]p is a As.13-quasigeodesic in X, where A5 13 depends on the function D (and the parameters
of the metric bundle).

(2) IfQ and Q' are two K-qi sections passing through x, y respectively then x is a uniform approximate
nearest point projection of y on Q and y is a uniform approximate nearest point projection of x

on Q.
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Proof (1) Since the arc length parametrization of [x, y] is a uniform proper embedding, by Lemma 2.5
it is enough to show that [x, y], is uniformly close to a geodesic in X joining x, y.

Claim Suppose X, X, are two K(-qi sections passing through x, y respectively. Given any z € [X, y]p
and any K -qi section X, passing through z contained in the ladder IL.(Xx, X)) the nearest point projection
of x on X is uniformly close to z.

We note that once the claim is proved then applying Proposition 2.33 to the ladder L(Xx, Xy) =
L(Xx, 2;) UL(Z;, Xy) it follows that z is uniformly close to a geodesic joining x, y. From this (1)
follows immediately.

Proof of Claim First suppose Upz (X4, X7) # @. Then we can find a uniform approximate nearest
point projection of x on X, using Step 1(c), Case I and Lemma 5.12 above which is uniformly close to z
by hypothesis. <

Now suppose Upzy, (Zx, X7) =9. Letazx:[0, /] — F} be the unit speed parametrization of the geodesic
L(Zx, X;) N Fp joining z to x. By Corollary 5.10 there is a K,-qi section X,/ contained in the ladder
L(Z, X) passing through z’ = & (¢) for some 7 € [0, /] such that L(XZ,, ¥,/) is a K;-ladder of type (I)
or (IT). Let x’ be a nearest point projection of x on X,/. By the last part of Proposition 2.33 applied to
L(Zx, X;), it is enough to find a uniform approximate nearest point projection of x’ on X, which is
also uniformly close to z. However, in this case X, ¥,/ are D,-cobounded. Hence it is enough to find a
uniform approximate nearest point projection of z’ on X, which is uniformly close to z. The proof of
this is broken into two cases as follows.

(I) Suppose dp(Z;, X;7) = Ry. By the last part of Lemma 5.12 if v € Ug,(X;, X;/) then F, N X, isa
uniform approximate nearest point projection of any point of X,/. Since d4(b, v) is uniformly small by
hypothesis, d(z, F, N X;) is also uniformly small.

(II) Suppose dp(Xz,X,/) > Rg. Then there is a K3-qi section X, in IL(X;, X,/) passing through
2" = 0z (t — 1) such that Ug,(X;, X.7) # @. Let v’ be a nearest point projection of » on Ug, (X, X7).
Then by hypothesis d(b,v’) is uniformly small whence d(z, F,y N X;) is uniformly small. Also by
Lemma 5.12 the point X, N Fy is a uniform approximate nearest point projection of z” on X . It follows
that z is a uniform approximate nearest point projection of z”” on X. Finally, since d(z’,z") <1,z isa
uniform approximate nearest point projection of z’.

(2) We shall prove only the first statement since the proof of the second would be an exact copy. Suppose
X1 € Q is a nearest point projection of y on Q. Consider the K-qi section over [b, (x1)] contained in Q.
This is a K-quasigeodesic of X joining x, x;. Since Q is a K-qi section, by stability of quasigeodesics
itis D, 17(8, K, K)-quasiconvex in X. Hence by Lemma 2.25 the concatenation of this quasigeodesic
with a geodesic in X joining y to x; is a K, »5(8, K,K, 0)-quasigeodesic where K= D, 1708, K, K).
Let k' = maX{IZ ,As.13}. Since [x, y]p is a A5.13-quasigeodesic, by stability of quasigeodesics we have
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x1 € Nap/([x, y]p), where D’ = D, 17(8,k’,k’). Suppose z € [x, y]p be such that d(x;,z) < 2D’.
Then dp(m(x1), 7(z)) = dp(w(xy),b) <2D’. Hence, d(x,x1) < K+2D'K. Thus x isa (K+2D'K)-
approximate nearest point projection of y on Q. |

Remark The proof of the first part of the above lemma uses the hypothesis for K < K3 only whereas
the proof of the second part follows directly from the statement of the first part and is independent of the
hypotheses of the lemma.

The following lemma is actually a trivial consequence of flaring (Lemma 4.13) and it is going to be used
in the next two lemmas following it.

Lemma 5.14 Given R >0, K, K’ > 1 and R’ > Mk, there is a constant Rs 14(R, R, K, K') and
Ds.14(R, R, K, K’) such that the following holds.

Suppose u € B and P4(u) = b, where P4: B — A is a nearest point projection map. Suppose x, y € Fj,
and let yx,yy be two K-qi sections over [u,b]. Let Q;,Q, be two K'-qi sections over A in Y and
U =Ugr(Q1.Q2). Ifdy(yx(u),yy(u)) < R and U # @, then dp(x,y) < Rs.14(R, R'. K, K') and
dq(b,U) < Ds14(R,R', K, K').

Proof Suppose U # @ and d,,(yx (1), yy(y)) < R. Let b’ € Upz,.,(Q1, Q2) be any point and let [, b']
denote a geodesic in A joining b,b’. Then the concatenation [u, b] * [b,b'] is a K5 »5(89, ko, k, 0)-
quasigeodesic in B by Lemma 2.25 since 4 is k-qi embedded and ko-quasiconvex. Concatenation of
Yx, ¥y with the gi sections over [b, b] contained in Q;, Q, respectively defines max{K, K'}-qi sections
over [u, b]x [b, b’] passing through x, y, respectively. Let k' = K5 »5(80, ko, k. 0) and k” = max{K, K'}.
Then by Lemma 2.3 these qi sections are (k'k”, k" k’+k"")-quasigeodesics in X. Since X is §-hyperbolic
and d (yx(u), yy(u)) < R and d(Q; N Fpr, Q2 N Fpr) < R’, by Corollary 2.21 x is contained in the D" :=
(R+R'+2D5 50(8,k’k" , k'k" +k"))-neighborhood of the qi section over [u, b]x[b, b] passing through .
Applying Lemma 4.13 to the restriction bundles over [u, b] and [b, b’] we have dp(x, y) < R, where
R’ = R4.13(D’, K). Hence, we can take Rs.14(R, R, K, K') = R’|. Finally by Lemma 4.11 d4(b, U) <
D4.11(K', R/ Mk-). This completes the proof by taking Ds 14(R, R, K, K') = D4 11 (K", R}/ Mk").

O

We recall that the paths ¢(y, y’) were constructed from c(y, y’) by replacing parts of ¢(y, y’) by some
fiber geodesic segments. The main aim of the following three lemmas is to proving that these fiber
geodesic segments are uniform quasigeodesics in Y. Depending on how the corresponding subladders of
X intersect Y we have three scenarios and hence we divided the proof into three lemmas.

Lemma 5.15 Given K > Ky and R > Mg, there are constants K515 = Ks515(K, R), €5.15 =
€5.15(K, R) and D5 15 = D5 15(K, R) such that the following holds.

Suppose Q, Q" are two K-qi sections in X and dj(Q,Q') < Rin X. Let U = Ug(Q, Q). Suppose
dp(Q@NY, Q' NY)> RinY. Then the following hold:
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(1) The projection of U on A is of diameter at most Ds ;5.

(2) For any b € P4(U), F, N1L(Q, Q) is a K5 15-quasigeodesic in Y; moreover, Fp N Q is an
€5.15-approximate nearest point projection of any point of Q' on Q and vice versa.

Proof (1) We know that A is kg-quasiconvex in B. By Lemma 4.11 U is K4 11(K)-quasiconvex in B.
Let A" = max{kq, K4.11(K)}. Suppose P4: B — A is a nearest point projection map and a,a’ € P4(U)
with dg(a,a’) > D, ,5(5,1',0). Then there are u,u’ € U such that dg(a,u) < R, ,5(5,A’,0) and
dg(a’',u’") < Ry 55(8,1',0). Let D = R »5(8,A’,0). We know d,(QN F,, Q' N F,) < R. Hence by the
bounded flaring condition we have d,(Q N F,, Q' N F;) < g (D) R. Similarly

dy(QNFy, Q' NFy) < ug(D)R.

Let Ry = ux(D)R. Thus, a,a’ € Ug,(QNY, Q' NY). Since R; > Mg, by Lemma 4.11 we
have diam(Ug,(QNY,Q' ' NY)) < D411(K, Ry). This proves (1). In fact, we can take Ds 5 =

(2) We derive this from Lemma 5.13 as follows. Let u € U be such that P4(u#) = b and let x, y €
Fp NIL(Q, Q). Suppose Q;, Q) are two K'-qi sections in Y passing through x, y, respectively and
U’ =Upm,, (Q1. Q). Suppose U’ # @. Consider the restriction Z of the bundle X on [u, b] C B. In this
bundle QN Z, Q' N Z are K-qi sections. By Proposition 4.6(3) there are (1+2Ko)Cs.¢(K)-qi sections
over ub contained in the ladder L.(Q N Z, Q' N Z) passing through x, y. Call them yy, ), respectively.
We note that d(yx(u), yy(u)) < R. Now applying Lemma 5.14 we know that dp(b, U’) is uniformly
small. This verifies the hypothesis of Lemma 5.13. Thus Q N F}, is a uniform approximate nearest point
projection of @' N Fj on Q. Since d;,(QNY, Q' NY) > R > Mg the qi sections QNY,Q NY are
uniformly cobounded by Lemma 5.3. This shows that Q N F} is a uniform approximate nearest point
projection of any point of Q" on Q. That Q' N F}, is a uniform approximate nearest point projection of
any point of Q on Q' is similar and hence we skip it. |

Lemma 5.16 Given D > 0, K > Ko and R > My there are constants K5 16 = K5.1¢(D, K, R)
€516 = 65.16(D, K, R) and D5.16 = D5.16(D, K, R) such that the fOHOWng holds.

Suppose Q, Q' are two K-qi sectionsin X and dj,(Q, Q') < Rin X. LetU = Ug(Q, Q'). Suppose U # &
and diam(U') < D. Then the following hold:

(1) diam(P4(U)) = Ds 1.
(2) Foranyb € P4(U), Fp NIL(Q, Q) is a Ks.16-quasigeodesic in Y.

(3) Fp N Q is an €5.1¢-approximate nearest point projection of any point of Q' on Q and vice versa.

Proof (1) Since B is §g-hyperbolic and 4 is ky-quasiconvex in B any nearest point projection map
P4: B — Aiscoarsely L := L, 55(080, ko, 0)-Lipschitz. Hence, diam(P4(U)) < L + DL.
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(2),(3) We can derive these from Lemma 5.13 and the hypotheses of Lemma 5.13 can be verified
using Lemma 5.14. The proof is an exact copy of the proof of Lemma 5.15(2),(3). Hence we omit
it. The only part that requires explanation is why @ NY, Q' NY are uniformly cobounded in Y. If
dp(Q@NY,9' NY) > R then we are done by Lemma 5.3. Suppose this is not the case. Then by the
hypothesis diam(Ug(QNY,Q NY)) < k(k + D) since A is k-qi embedded in B. Then we are done by
the first part of Lemma 5.12. O

Lemma 5.17 Given K > Ky and R > M there is a constant Ds 17 = Ds.17(K, R) such that the
following holds.

Suppose Q, Q" are two K-qi sections in X and dj,(QNY, Q' NY) < R. Let U = Ur(Q, Q). Then for
anyb € P4(U), dp(QN Fp, an Fp) < Ds 7.

Proof Suppose u € U and P4(u) =b. If u € A then b = u and dp(Q N Fp, Q' N Fp) < R. Suppose
ugA. Wenotethat UNY =U(QNY, Q' NY)#D. LetveU(QNY,Q NY). Then by Lemma 2.25
[u,b] *[b,v] is a K 25(80, ko, 1, 0)-quasigeodesic in B. Since U is K4 11(K)-quasiconvex in B. Let
k' = K5 5(80, ko, 1,0). Hence, by Lemma 2.17, b € Np(U), where D = D5 17(80, k", k') + K4.11(K).
Finally by the bounded flaring dp (Q N Fp, Q' N Fp) < Rmax{l, ug (D)}. Hence we can take D5 17 =
Rmax{l, ug(D)}. |

Finally, we are ready to finish the proof of Step 3.

Lemma 5.18 For0 <i <n—1 we have the following.

(1) yi+1 is a uniform approximate nearest point projection of y; on £;41NY.

(2) y; is a uniform quasigeodesic in Y.

Proof The proof is broken into three cases depending on the type of L;.

Casel (i <n-—2andl;isoftype (1)) By Lemma 4.11 Ug,(Z;, ;1) has uniformly small diameter.
Hence by Lemma 5.16(2), [X; N Fbi+1’ Yit1 N Fbi+1]bi+1
part (3) of the same lemma X; 1 N Fp, | is a uniform approximate nearest point projection of ; N Fp, |

is a uniform quasigeodesic in Y. By the
on %;+1NY and X; N Fp, | is a uniform approximate nearest point projection of ;41 N Fp, , on
3;NY in Y. Hence the second part of the lemma follows, in this case, by Lemma 2.25.

Case2 (i <n—2andL; is of type (II)) Suppose L; is a ladder of type (II). In this case, it is enough,
by Proposition 2.33, to show the following two statements (2") and (2”):

/ —/ . . . . . . —. / . .
(2") y; is a uniform approximate nearest point projection of y; on %; NY in Y and the concatenation
of @; and the fiber geodesic [X; N Fyr, X% N Fylp is a uniform quasigeodesic in Y.
1 1 1
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We know that d;(X;, X;) < R;. Depending on the nature of d;(X; N'Y, X} NY) the proof of (2') is
broken into the following two cases.

Case (2')(i) Suppose dj(X; NY, X;NY) < R;. In this case dp (Zi N Fy, N Fp) is uniformly small
by Lemma 5.17. By Lemma 5.12 if 5] is a nearest point projection of 7 (y;) on Ug,(X£; N Y, X;NY)
then F| v N ¥/ is a uniform approximate nearest point projection of y; on X; NY in Y. Thus it is enough
to show that dp (b, b}) uniformly bounded to prove that y; is a uniform approximate nearest point
projection of y; on X;NY in Y. Then since X; NY is K| -qi section in ¥ and dbl{(Ei N Fbl{, zin be') is
uniformly small it will follow that the concatenation of &; and the fiber geodesic [X; N F, by INF bf]bf
is a uniform quasigeodesic in Y.

That dg(b}, b}) uniformly bounded is proved as follows. Let U = Ug,(%;, X)) and V =U N A4 =
Ug,(2;NY,X;NY). Since B is §p-hyperbolic, 4 is k-qi embedded in B and V is A,-quasiconvex in
A, Vis K5 30(80, k, Ap)-quasiconvex in B. Let k' = max{\,, ko, K4.11(K32), K2.30(80,k,A2)}. Then
A, U,V are all k’-quasiconvex in B. By the definitions of y;’s we know that 7(y;) is the nearest point
projection of 7(y;) on U. Let 51/ be a nearest point projection of 7(y;) on V. Also b; = 7 (y;) is the
nearest point projection of 7(y;) on A. On the other hand, b; = 7(j;) is a nearest point projection of
7(y;) on A and b} is the nearest point projection of b; on V. Therefore, dp(b; l;l/) <2D>57(80,k’,0)
by Corollary 2.27.

Now, by Lemma 5.17 db[{(Ei N Fyr, N Fb;) < Ds.17(K>, Ry). Hence, by Lemma 4.11 d4(b;, V) <
D4 11(K2, Ds.17(K2, R1)/Ry) = Di, say. Let v € V be such that d4(b},v) < Dy. Then dp(b;,v) <
kD1 + k. Hence,

Hd([7(y}), bi], [7(¥}), v]B) <80 +k +kDjy.

However, the concatenation [ (y;), Bl’] B* [51’, v]gisa K, 15(80,k’, 1,0)-quasigeodesic. Hence, there is a
point w € [7(y}), v]p such that dB(w,lslf) < D5.17(80. K2.25(80. k. 1,0), K5 »5(80. k", 1,0)) = D5, say.
Thus there is a point w’ € [7(y}), b;] such that dp(w’, 5;) <Dy+68y+k+kDy = Dj3,say. But b is a
nearest point projection of 7 (y;) on A and [5; €V C A. Thus dp(w’, b]) < D3. Thus dB(E;., b}) <2Ds.
Hence, dp (b}, b)) < dg (b}, b}) + dp(b},b}) < 2D »7(30, k', 0) +2Ds.

Case (2)(ii) Suppose dj(Z; NY, E;. NY) > R;. In this case Lemmas 5.15 and 2.25 do the job.

(2")  yit1 is a uniform approximate nearest point projection of y; on X1 NY in'Y and the concatena-
tion of,é and the fiber geodesic [X} N Fpp  Zig1 N Fp
yitoyiyrinY.

; +1]bi 41 Is a uniform quasigeodesic joining

In this case d(2;NY,X; 41 NY) < 1 hence we are done as in Case (2')(i).

Case3 (i =n—1) The proof of this case is also analogous to that of the proof of Case (2')(i) since
dh(zn—l’ z:n) < Ro. O

Remark The conclusion of Lemma 5.16 is subsumed by Lemmas 5.15 and 5.17. But we still keep
Lemma 5.16 for the sake of ease of explanation.
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Thus by Lemmas 5.11 and 5.18, we have proved the following.

Proposition 5.19 Letx, y €Y andlet X and X’ be two K-qi sections in X through x and y, respectively.
Let¢(x, y) be a uniform quasigeodesic in X joining x and y which is contained inIL (X, X’) as constructed
in Step 1(c). Then the corresponding modified path ¢(x, y), as constructed in Step 2, is a uniform
quasigeodesic in Y.

Step 4 (verification of the hypothesis of Lemma 2.49)

Lemma 5.20 (proper embedding of the pullback Y) The pullback Y is metrically properly embedded
in X. In fact, the distortion function for Y is the composition of a linear function with 7, the common
distortion function for all the fibers of the bundle X.

Proof As was done in the proof of the main theorem, we shall assume that g is the inclusion map and
Y = n71(A4) and p is the restriction of 7. Let x, y € Y such that dy (x, y) < M. Let 7(x) = b; and
7w (y)=by. Then, dg(by,by) < M and hence d4(by,by) <k-+kM. Let[by, b;]4 be a geodesic joining b;
and b, in A. This is a quasigeodesic in B. By Lemma 3.8, there exists an isometric section y over [b1, b2]4,
through x in Y. Clearly, y is a qi lift in X, say k’-qi lift. We have, Ix (y) <k'(kM + k) + k' =: D(M).
The concatenation of y and the fiber geodesic [y N Fp,, y] Fp, is a path, denoted by «, joining x and y
in X. So,

dx(y 0V Fpy, p) <dx(y 0 Fpy, x) +dx (x.p) <Ix(y) +dx(x,y) = D(M) + M.
Now, since Fp, is uniformly properly embedded as measured by 7, we have,
dp, (v 0 Fp,, y) =n(D(M) + M).
Now, « lies in Y and /y (y) < kM + k. Then,
dy(x,y) =ly(@) <ly(y) +dy(y N Fp,.y) kM +k +dp, (¥ 0 Fp,. p).

Therefore, dy (x,y) <kM +k +n(D(M) + M). Setting no(M) :=kM +k +n(D(M) + M), we
have the following: for all x, y € Y, d(x, y) < M implies dy (x, y) < no(M). |

We recall that we fixed a vertex by € A to define the paths c(y, »’) in the last step. Let yo € Fp,. However,
the following lemma completes the proof of Theorem 5.2.

Lemma 5.21 Given D > 0, there is D1 > 0 such that the following holds:

Ifdx (yo,c(.y")) < D thendy (yo.¢(y,y)) < Dy.

Proof Let x € ¢(y, ') be such that dy (yo, x) < D. This implies that dg(m(x),bg) < D. We recall
that the path ¢(y, y’) is a concatenation of yj, j =0, 1,...,n. Suppose x € y;, 0 <i < n. We claim
that there is a point of ¥; uniformly close to yo. Now, y; is either a lift of geodesic segments of B in a

Algebraic € Geometric Topology, Volume 25 (2025)



Pullbacks of metric bundles and Cannon—Thurston maps 2735

K>-qi section X; or possibly X} or it is the concatenation of such a lift and a fiber geodesic of length at
most R. Let Q denote the corresponding qi section and suppose ¢(y, y') N Q joins the points z € Q to
w € Q. If i =n then y; is a qi lift of [7(2), 7 (w)]p in Q joining z, w. Otherwise there is a fiber geodesic
o Cc(y, ") N Frqp) connecting Q to the next gi section Q’, say. Then both the points z and Q' N o are
one of the y;’s or yj/.’s. Let 2/ = Q@ No and b’ = w(z’). Let b be the nearest point projection of (x)
on A. It follows that dg (7 (x),b) < D.

Suppose x € o. By the definition of ¢(y, y’) we have Q' N Fj, € ¢(y,y’). However, dg (b, by) <
dg(b, w(x))+dp(bg, w(x)) <2D. Since A is k-qi embedded in B we have d4(b, bg) <k +2Dk. Hence,
dy (Q'NFp,, @ NFp) < Ky+(k+2Dk).K,. On the other hand in this case 7 (x) =b" and dp/ (z’, x) < R;.
Hence, dx (z', yo) < Ry + D. Thus dx (yo, Q' N Fpy) < dx (yo,x) +dx(x,2') +dx (s, Q' N Fpy) <
D+ Ry + K, + DK, since dg(b, by) <2D. Hence,

dy (yo. Q' N Fpy) < dp,(y0. Q' N Fpy) < n(D + Ry + K, + DK>).

Thus
dy (yo, @ N Fp) <dy(yo, Q' N Fpy) +dy(Q' N Fp, Q' N Fy)

<dy(yo, Q' N Fp,) + Kz + Kod4(b, by)
<n(D+ Ry + Ky + DKy)+ K, + (k+2Dk)K>.
Hence, in this case dy (o, c(y, V")) < (1 +k +2Dk)K, +n(D + Ry + K, + DK)).

Otherwise suppose x is contained in the lift of [7(z), w(w)]p in Q. We note that 7 (x) € [7(z), 7 (w)]p
and dp(mw(x), A) < D. Now A4 is kg-quasiconvex in B. Hence, by Lemma 2.29 we have

dB(]T(X), [772)’ 7TU))]B) E D2.29(Da kO’ 8)

where 7(z), 7(w) are nearest point projections of 7(z), 7(w), respectively, on A. Since A is k-qi
embedded in B by stability of quasigeodesics Hd ([ (z), w(w)]p, [7(z), m(w)]4) < D>.17(8, k, k). Hence,
dp(m(x),[7(z), m(w)]4) < D2.29(D, ko,8) + D>.17(8, k. k). Let a be the lift of [ (z), 7 (w)],4 in Q.
Then o C ¢(y, y). On the other hand,

dx (x,0) < Ky + Kadp(r(x). [1(2). 1 (w)]4) < K3 + K2(D2.29(D. ko.8) + D3.17(8. k. k)) = Dy,
say. Hence, dy (v, ®) < dx (»9, x) + dx(x,a) < D+ D;. This implies that dy (yo, &) is also bounded
by a function of D and the other parameters of the metric graph bundles X and Y, by Lemma 5.20. O

5.2 An example

For the convenience of the reader, we briefly illustrate a special case of our main theorem where
B =R, A = (—o0,0]. This discussion will also be used in the proof of the last proposition of the next

section. We shall assume by = 0 here.

As in the proof of Lemma 5.21, suppose Q, Q' are two gi sections among the various X;, Z} ’s and let
w' e @', z,w e Qbe points of c(y, y’), where m(w') = 7 (w), drw)(w,w’) < Ry and the concatenation
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............... Q

.............. o

Fﬂ(w’)

Fn(w’) FO Fn(z)

Fo Fn'(z) F:rr(w’)

Figure 7: Top: Case 2. Middle: Case 3. Bottom: Case 4. The dashed lines denote the portion of
c(y,y"), the thick lines denote the portion of ¢(y, y’) and dotted lines are portions of the qi
sections Q, Q'.

of the lift say «, of [7(z), 7 (w)] in Q and the vertical geodesic segment, say o, in Fy () is a part of

¢(y,»"). The following are the possibilities:

Casel Ifw’,zeY Nc(y, ) then o xo C Y and it is the corresponding part of ¢(y, y').

Case2 (z€Y, w' €Y) Inthis case, the modified segment is formed as the concatenation of subsegment
of & joining z to Q N Fyy and the fiber geodesic [Q N Fy, Q' N Fylo. See Figure 7, top.

Case3 (w' €Y, z¢Y) In this case the modified segment is the concatenation of the segment of «

from QN Fy to w and the fiber geodesic segment o. See Figure 7, middle.

Cased4 (z,w’ €Y) In this case the modified segment is the fiber geodesic [Q N Fy, Q' N Fylo. See
Figure 7, bottom.
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6 Applications, examples and related results

As the first application of our main theorem, we have the following. Given a short exact sequence of
finitely generated groups there is a natural way to associate a metric graph bundle to it as mentioned in
Example 1.8 of [24]. See also the example of Section 3.3.1. Having said that, Theorem 5.2 gives the
following as an immediate consequence.

Theorem 6.1 Suppose 1 - N — G %> Q — 1 is a short exact sequence of hyperbolic groups where
N is nonelementary hyperbolic. Suppose Q; is a finitely generated, qi embedded subgroup of Q and
Gi =~ 1(Q1). Then the Gy is hyperbolic and the inclusion G; — G admits the CT map.

The next application is in the context of complexes of hyperbolic groups. Suppose ) is a finite, connected
simplicial complex and G()) is a developable complex of nonelementary hyperbolic groups with qi
condition defined over ) (see Section 3.3.2) such that the fundamental group G of the complex of groups
is hyperbolic. Suppose we have a good subcomplex Yy C Y and G is the image of 71 (G, ;) in G under
the natural homomorphism 7{(G, Y1) — 71(G,Y). Then we have the following pullback diagram as
obtained in Proposition 3.29 satisfying the properties of Theorem 5.2:

X

/
X
J]‘l’l {7‘[
. B

B, —!

Thus we have:
Theorem 6.2 The group G is hyperbolic and the inclusion G; — G admits the CT map.

Remark The rest of the paper is devoted to properties of the boundary of metric (graph) bundles and
Cannon—Thurston maps. We recall that gi sections, ladders etc for a metric bundle are defined as transport
of the same from the canonical metric graph bundle associated to it. All the results in the rest of the section
are meant for metric bundles as well as metric graph bundles. However, using the dictionary provided by
Proposition 4.1 it is enough to prove the results only for metric graph bundles. Therefore, we shall state

and prove results only for metric graph bundles in what follows starting with the convention below.
Convention 6.3 (1) For the rest of the paper we shall assume that 7 : X' — B is a §-hyperbolic n-metric
graph bundle over B satisfying the hypotheses (H1), (H2), (H3’) and (H4) of Section 5.

(2) By Proposition 2.37 any point of dB can be joined to any point of BU dB and any point of X can be
joined to X' UdX by a uniform quasigeodesic ray or line. We shall assume that these are ko-quasigeodesics.

(3) We shall assume that any geodesic in B has a c¢-qi lift in X using the path lifting lemma for metric
graph bundles.

(4) We recall that through any point of X there is a K(-qi section over B.
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6.1 Some properties of 0.X

Lemma 6.4 Suppose a, B:[0,00) — B are two k-quasigeodesic rays for some k > 1 with a(co) =
B(c0) = €. Suppose B is a K-qi lift of B for some K > 1. Then there is a K'-qi lift & of a such that

a(o0) = B(o0), where K’ depends on k, K, dg(a(0), 8(0)) and the various parameters of the metric
graph bundle.

Proof Suppose «, B:[0, 00) — B are two k-quasigeodesic rays for some k > 1 with a(o0) = B(o0) =£.
This means Hd(a, B) < 0o. Let R = Hd(a, B). Then for all s € [0, 00) there is t = ¢(s) € [0, 00) such
that dp(a(s), B(2)) < R. Let ¢rs: Fg(r) — Fu(s) be fiber identification maps such that dy (x, ¢s5(x)) <
3¢+ 3cR for all x € Fg(), t €[0,00), where ¢ = 1 for metric graph bundles. (See Lemma 3.10.) Let E
be a K-qi lift of 8. Now, for all s € [0, 00) we define &(s) = ¢y (,g(l)). It is easy to verify that & thus
defined is a uniform qi lift of «. Also clearly & C N3c43cR (E) It follows that @(oc0) = ,g (c0) ad

Corollary 6.5 Let& € 0B and let o be a quasigeodesic ray in B joining b to . Let
BEX :={y(c0):y is aqi lift of a}.
Then 8§X is independent of «; it is determined by &.

Due to the above corollary, we shall use the notation 3¢ X for all & € 0B without further explanation. The
following proposition is motivated by a similar result proved by Bowditch [5, Proposition 2.3.2].

Proposition 6.6 Letb € B be an arbitrary point and F = Fj,. Then we have

X = A(F)U ( 11 aéx).

£€dB

Proof We first fix a point x € F. Let y be a quasigeodesic ray in X starting from x. Let b, = w(y(n)).
Let o, be a (1, 1)-quasigeodesic in B joining b to b,. Let &, be a Ky-qi lift of @, joining y(n) to
dn(b) = x, € F. There are two possibilities.

Suppose {x,} has an unbounded subsequence say {x, }. Then d(x,,,x) — co. We note that the d&y,’s
are uniform quasigeodesics in X whose distance from x is going to infinity by Lemma 4.13. Hence, by
Lemma 2.34 x,, — y(00) and thus y(c0) € A(F).

Otherwise, suppose {x,} is a bounded sequence.

Claim In this case 7 o y is a quasigeodesic ray.
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Proof of Claim We note that by stability of quasigeodesics (Corollary 2.19) and slimness of triangles
(Corollary 2.20) Hd (0. ¥ |[0,,)) is uniformly small for all . This implies that Hd (an. (1 0 y)|[0,4]) is
uniformly small for all #; in particular dg(by,, @) is uniformly small for all n > m. Next we note that
dp(b, by) — oo for otherwise d(y (n), x) will be bounded. Then it follows that lim; ;00 (b .bn)p = 0.
Let £ = lim,— o by and let o be a xy-quasigeodesic ray in B joining b to £. Now, to show that w oy is a
quasigeodesic it is enough to show by Lemma 2.5 that & o  is (1) uniformly close to o and (2) properly
embedded.

(1) Fix an arbitrary m € N and consider all n > m. Since lim,— o b, = a(00) = £, by Lemma 2.45(2)
for any x-quasigeodesic ray f, joining b, to & we have d(b, B,) — oo. Since the triangles with vertices
by, b, & are uniformly slim by Lemma 2.38 and dp (b, o,) are uniformly small it follows that by, is
uniformly close to «. This shows (1).

(2) Since 7 is Lipschitz and y is a quasigeodesic it follows that 7 oy is coarsely Lipschitz. Suppose
dp(bn,by) < D forsome D > 0and m,n € N, m <n. We claim that dy (y (m), y (n)) is uniformly small.
Note that this would then imply that » — m is uniformly small since y is quasigeodesic, and also that y
is a qi lift of 7 0 . We know that Hd (&, ¥ |[0,n)) < R for some constant R independent of 7. Hence,
dy (y(m),on) < R. Let ypm n € &y be such that dx (y (m), ym,n) < R. Since 7 is 1-Lipschitz we have
dx (b, ”(Ym,n)) < R. Then dB(”(ym,n)’ by) < dB(T[(ym,n)» bm) +dp(bm.by) < R+ D. Since & is
Ko-qi lift of o, and 7w 0 @(n) = by, it follows that dy (ym.n, @ (1)) = dx (Ym.n. ¥ (1)) < Ko(R+ D) + K.
Hence, dx (y(m).y(n)) = dx(y(m), ymn) + dx (ymn.y(n)) = R+ Ko(R + D) + Ko. Since y is
quasigeodesic it follows that (n —m) is uniformly small. This proves (2) and along with this the claim. <

It follows that y (c0) € 9 X..

It remains to check that for all &,& € B, 951X N 982X # & implies £ = &. Suppose y; is a
Ko-quasigeodesic ray in B joining b to &, i = 1,2. Suppose ¥; is a qi lift of y;, i = 1,2 such that
Y1(00) = ¥5(00), ie Hd (1, 72) < oo. Then Hd(y, y2) < oo because 7: X — B is 1-Lipschitz. Thus
&1 = &,. This finishes the proof. |

Corollary 6.7 Suppose F is a bounded metric space. Then 0X = ]_[5e 9B kX

For instance suppose X1, X, are two qi sections and L. = LL(X{, X5) then by Corollary 4.7 there is a
metric graph subbundle 7z : Z — B of X where the bundle map Z — X is a qi embedding onto a finite
neighborhood of L. It follows that Z is hyperbolic and fibers are uniformly quasiisometric to intervals.
Therefore, the conclusion of Corollary 6.7 applies to the metric bundle Z too. Hence, informally speaking
we have the following.

Corollary 6.8 For any ladder I = 1L(X, ¥;) we have

L= [] o°L.
£cdB
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Lemma 6.9 Suppose b € B and oy, : [0, 00) — B is a sequence of uniform quasigeodesic rays starting
from b. Suppose @, is a uniform qi lift of o, for all n such that the set {0, (0)} has finite diameter.
If &y (00) — z € 0X then limy o0 0ty (00) exists. If & = limy— oo @p(00) and a: [0,00) — B is a
Ko-quasigeodesic ray joining b to & then there is a uniform qi lift & of o such that &(co0) = z.

Proof Since &, (0c0) — & there is a constant D such that for all M > 0 there is N = N(M) > 0
with Hd (G |[0, M1, %nljo,pr]) < D for all m,n > N by Lemma 2.45(1). It follows that for all M > 0,
Hd(atml[0,m7- @nlfo,ar)) < D for all m,n > N. Hence, again by Lemma 2.45(1) o, (00) converges to a
point of £ € dB. Let « be a ko-quasigeodesic ray in B joining b to &. We claim z € 3¢ X. Given any
t €0, 00) by Lemma 2.45(2) there is N’ = N’(¢) € N such that d(«(¢), ay) < D’ for all n > N’ where
D’ depends only on k¢ and 8. Let Ny = max{N(¢), N'(¢)}. Let ¢’ be such that dy («(?), an, (")) < D’.
Define &(7) = ¢uv(@n, (t')) where u = ap, (t'), v =a(r) and ¢y, is a fiber identification map. It is now
easy to check that this defines a qi section over « and z = & (00). |

Corollary 6.10 If fibers of the metric (graph) bundle are of finite diameter then the map 0X =
USGaB 3¢ X — 9B defined by sending 3 X to & for all ¢ € 3B is continuous.

6.2 Cannon-Thurston lamination

Suppose bg € B is an arbitrary point and F = Fp, . Then we know that the inclusion i = ip x: F — X
admits the CT map di : dF — dX. For any set S we define

S@ ={(a,b)e SxS:a+b}.

Now, following Mitra [19] we define the following.

Definition 6.11 (1) Cannon-Thurston lamination Let 33 (F) = {(a, 8) € 9 F: 9i () = 3i (B)}.

(2) Suppose & € 0B. Let 0} (F) = {(a. B) € 0P F : 9i (o) = 0i (B) € 9 X }. We shall denote 95, (F)
simply by 822) (F) when X is understood.

In this subsection we are going to discuss the various properties of the CT lamination. First we need
some definitions. We recall that for all b, s € B we have the fiber identification map ¢p;: Fp — Fg which
is a uniform quasiisometry depending on dg(b, s). This induces a bijection d¢pp,: 0Fp — dFs. Suppose
z € 0Fp. Let zg = d¢pps(z) for all s € B.

Convention 6.12 For the rest of the subsection, by “quasigeodesic rays” or “lines”, we shall always
mean ko-quasigeodesic rays and lines in the fibers of a metric (graph) bundle unless otherwise specified.
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Definition 6.13 (1) Semi-infinite ladders Suppose X; is a qi section over B in X. For all s € B let
ys C Fs be a (uniform) quasigeodesic ray joining X1 N Fs to zg = d¢ps(z). The union of all the rays will
be denoted by LL.(X; 2).

This set is coarsely well-defined by Lemma 2.38. We shall refer to this as the semi-infinite ladder defined
by ¥ and z.

(2) Bi-infinite ladders Suppose b € B and z,z’' € 0F},, z # z’. Now for all s € B join zg = d¢ps(2) to

zi = d¢ps(z’) by a (uniform) quasigeodesic line in Fs. The union of all these lines will be denoted by
L(z;2).

As before, this set is coarsely well-defined by Lemma 2.38. We shall refer to this as the bi-infinite ladder
defined by z and z'.

We shall refer to either of these ladders as an “infinite girth ladder”.

Lemma 6.14 (properties of infinite girth ladders) Suppose L is an infinite girth ladder.

(1) Coarse retract There is a uniformly coarsely Lipschitz retraction i, : X — IL such that for all
b € B and x € Fy, ny (x) is a (uniform approximate) nearest point projection of x in Fp, onIL N Fp.
Consequently, infinite girth ladders are uniformly quasiconvex and their uniformly small neighbor-
hoods are qi embedded in X .

(2) QI sections in ladders Through any point of L, there exists a uniform qi section contained in L.

(3) QI sections coarsely bisect ladders Any qi section in IL. coarsely bisects it into two subladders.

Proof We shall briefly indicate the proofs comparing with the proof of the analogous results for finite
girth ladders. Property (3) follows exactly as Lemma 5.4. Property (2) is immediate from (1). In fact
given x € I one takes a K(-qi section X in X containing x and then 7, (X) is the required i section.
Therefore, we are left with proving (1). This is an exact analog of Proposition 4.6(1). The reader is
referred to [19, Theorem 4.6] for supporting arguments. O

Convention 6.15 All semi-infinite ladders IL(X; z) are formed by K(-qi section X. We shall assume
that through any point of an infinite girth ladder there is a K o-qi section contained in the ladder. Also, all
infinite girth ladders are assumed to be Ao-quasiconvex.

6.2.1 Properties of the CT lamination 8§?) (F) In this subsection, we prove many properties of the
CT lamination using coarse bisection of ladders by qi sections. These are motivated by analogous results
proved in [5; 19]. For the rest of the subsection, we will use the following set up. Let by € B and
F = Fp,. Suppose (z1,23) € 3 = ag?)(F) and L. =1L(z1;2;). Let y: R — F be a ky-quasigeodesic
line in F joining z; to z such that Im(y) =L N F. Letif x: F — X denote the inclusion map and
dip x:0F — 0X denote the CT map.
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Lemma 6.16 Suppose X is any qi section contained in L. Then dif x(z;) € A(X), i =1, 2.

Proof Let ¥ be a qi section contained in L. Then ¥ coarsely separates IL in X into L.; = L(X; z;)
and L, = IL(X;z2). We note that dif x(z;) = diF, x(z2) € A(L;) N A(IL,). Hence we are done by
Lemma 2.53. O

Lemma 6.17 Suppose (z1,z;) € 8§)(F) and . = IL(zy;z,). There is a unique & € 0B such that
(z1,22) € 8223( (F). J\foreover, for any Ko-quasigfodesic B:[0,00) — B joining by to & and any qi section
¥ contained in L, if B is the lift of B in X then B(oc0) = diF, x (z1) = diF, x (22).

In particular ag)(F) = ]_[:5633 3§2)(F)-

Proof Leto: B — X be a qi section with image X contained in IL. By Lemma 6.16 dif x (z1) € A(X).
But A(X) = do(dB) by Lemma 2.55. Hence, there is a ko-quasigeodesic ray B: [0, o0) — B such that
0o (B(00)) =0iF x(z1). Let& = B(00). If,gzaoﬂ then Eis aqiliftof Band diF x(z1) = E(oo) c¥X.
Thus (z1,z) € 823((F). This shows the existence of &. Thus we have ag?)(F) = USGBB 8;2)(F). Also
for £,& € 9B, £ # & we have 351X N 352X = @ by Proposition 6.6 which immediately implies
8;?1)‘,(F )N 8;%’)X(F ) = @. This shows that the point £ is independent of the chosen section ¥ in IL. The
last part of the lemma is immediate from these observations. |

We next aim to show that the sets ng((F ) are closed subsets of Bg?)(F ). Let 8:[0,00) — B be a
continuous, arc length parametrized x-quasigeodesic in B with 8(0) = by and S(oc0) = £ as in the proof
of Lemma 6.17. Let A = B(][0,00)). Let Y = 7 ~!(A) be the restriction of the bundle X over 4. Let
iy,x:Y — X,ify: F — Y be inclusion maps.

Lemma 6.18 If (21, 25) € 90y (F) then dip,y (z1) = diF,y (z2). ie (z1.22) € ) (F).

Proof Let ¥, be any qi section in IL. over B passing through y(n), n € Z. Then by Lemma 6.17, ¥,,NY
and X, NY are asymptotic for all m,n € Z in X. Since Y is properly embedded in X by Lemma 5.20
they are still asymptotic in Y. Clearly dy (y(0), X, NY) — oo as n — F00. Thus by Lemma 2.45(1)
lim,— 400 Y (n) = Bo (c0) in Y where [% is the lift of B in X. This completes the proof. |

Corollary 6.19 Let E be any qi lift of B in IL. Then ,g (00) = dif,x(z1). In particular any two qi lifts of
B in 1L are asymptotic.

Proof We know that E coarsely separates L NY into two semi-infinite ladders, L™ and L™ in Y. It
follows that A(LT) N A(L™) = A(B) = B(c0). It then follows that the limit of ¥ (n) in dL is B(c0). O

Corollary 6.20 (1) d(LNY)isapoint. 2) Ay(ILNY)isapoint. (3) Ax(IL.NY) is a point.
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Proof We know by Lemma 6.14(1) (see also Proposition 4.6(4)) that a small neighborhood, say L%, =
Nr(LNY),of LNY inY is qi embedded in Y and hence it is a hyperbolic metric space by its own
right. Also, this is a subbundle of ¥ by Corollary 4.7.

(1) The first part is an informal way of saying that d(IL},) is a point. However, this is immediate from
Proposition 6.6 and Corollary 6.19.

(2) By Lemma 2.55 Ay (L) is the image of the CT map for the inclusion I}, — Y since L is qi
embedded in Y. But dL’, is a point by the first part. Thus Ay (IL}) is a singleton. Finally, Ay (L},) =
Ay(L NY) by Lemma 2.52. Hence we are done.

(3) Lastly, it follows that . N Y is quasiconvex in X too since by Corollary 6.19 L. N Y is the union
of qi lifts of B contained in I N Y all of which converge to the same point of dX. Hence L/, is also
quasiconvex in X . Since Y is properly embedded in X by Lemma 5.20 and IL’Y is qi embedded in Y it
follows that I/, is properly embedded in X. Thus IL, is qi embedded in X by Lemma 2.24(2). As in (2)
we are done by Lemma 2.55. a

2 2 2
Corollary 6.21 0P (F) = 08} (F) = 003 (F).
In particular, each 8(2) v (F) is a closed subset of ADF.
Proof The first equality follows from Lemma 6.17 applied to the metric bundle Y over 4. We will now

prove the second one. Since dif, xy = diy,x 0 diF,y, clearly 8;22,(F ) C 8(2) v (F). The opposite inclusion
is an immediate consequence of Lemma 6.18.

Since di f,y is continuous it follows that Bgzg((F ) is a closed subset of 3 F. One has to use the standard

fact that the Gromov boundaries are Hausdorff spaces. |

The following three results are motivated by similar results proved in [19]. The proof ideas are very
similar. However, we get rid of the group actions that were there and in our setting properness is never
needed.

Definition 6.22 Suppose Z;, Z, are hyperbolic metric spaces. Suppose f: Z; — Z, is a metrically
proper map that admits the CT map. If y C Z; is a quasigeodesic line such that 3/ (y (c0)) = df (y (—0o0))
then we refer to y as a leaf of the CT lamination 8(22; (Z1).

We recall that in our context the quasigeodesic lines are assumed to be kg-quasigeodesic lines.

Lemma 6.23 Suppose &1 # & € dB. Given D > 0 there exists R = Rg.»3(D) > 0 such that the following
holds:

Suppose y; is a leafofag)X (F)andy, isa leafofag)X(F). Then y1 N Np(y,) has diameter less than R.
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Proof Leta be a ko-quasigeodesic line in B joining &, £,. Let b € a be a nearest point projection of bg
ona. Let ¢ be a geodesic in B joining by to bé. Let «; be the concatenation of ¢ with the portion of « joining
b6 to &, i = 1,2. We note that x¢-quasigeodesics in B are D, 17(8¢, ko, kKo )-quasiconvex by stability of
quasigeodesics. Let K = D5, 17(8¢, ko, ko). Hence, the «;’s are K, »5(8¢, K, kg, 1)-quasigeodesics by
Lemma 2.25(2). Let k = K> 35(8¢, K, ko, 1).

Next suppose X;, X, € y;, i = 1,2 are such that d(xy, x3) < D and dp(x],x) < D. Let X;, X} be two
qi sections in each IL; = LL(y;(00), yi(—00)) passing through x; and x/, respectively, i = 1,2. Let &;
and @ be lifts of o; in I; through x; and x| respectively for i = 1,2. We now look at the quasigeodesic
hexagon in X with vertices x;, x},&, i = 1,2, where the &;’s and &;’s form four sides and the other
two sides are formed by geodesics joining x; to x and x| to x’, respectively. We note that the infinite
sides of this polygon are all (kK o+k+Kg)- quas1geodesws Let k = kKo + k + K. Hence, such a
hexagon is R2_39(8,k, 6)-slim by Corollary 2.39. Let Ry = R2.39(5,k, 6). Let b, be a point on a;
such that dp(by, 1) = D + Ry + 1 = R, say and let y, = @>(b;). Then y; € Ng, (&@5). In particular,
Vo € NR(Z ). Hence, by Lemma 4.13 dp, (X2 N Fp,, E/ NFp,) < Ry, 13(K o, R). It follows by bounded
flaring that dp (x2, x5) < Wi (R4.13(Kg. R)). O

Lemma 6.24 If&, — & in 0B, (z,, wy) € B(Z)X(F) and (z,, wy) — (z,w) € 3P F. Then
(z,w) € a( ) (F).

Proof Since 0if x(zn) = diF,x(wy) for all n and diF x is continuous it follows that dif x(z) =
diF,x(w), whence (z, w) € 8§)F. Let [z, wy], [zn, 2], [wy, w] and [z, w] denote kg-quasigeodesic lines
in F joining these pairs of points. Let x € [z, w]N F and let & be a ko-quasigeodesic ray in B joining b to .

Claim There is a uniform qi lift & of « through x such that &(00) = dif x (z) = dip x (w).

Proof of Claim Since z;, — z and w, — w by Lemma 2.45(1), we have dp, (x,[zy, z]) — oo and
dp, (x,[wn, w]) — oo. Hence, by Corollary 2.39 there is N € N such that dp, (X, [zn, wy]) = R =
R3 39(80,k0.4) for all n > N. Now, let x, € [z,4,wy] such that dp,(x,x,) < R. Let oy be a «o-
quasigeodesic ray in B joining b to &,. Then by Corollary 6.19 we know that there is a uniform qi lift @,
of each oy, n > N such that &,(0) = x5 and &, (0c0) = diF,x (z,). Hence, by Lemmas 6.9 and 6.4 there
is a qi lift & starting from x such that &(o0) = diF x(z) = diF, x (w). N

However, this means that dif y (z) = dif, x(w) € 9 X . Therefore, (z, w) € 8(2) (F). |
6.2.2 Leaves of CT laminations for pullback bundles The following result is motivated by a similar

result proved in [17] for trees of hyperbolic spaces which in turn was suggested by Mahan Mj. We
gratefully acknowledge the same.

Suppose we have the hypotheses of Theorem 5.2. We identify Y as a subspace of X and A as a subspace
of B. Similarly, 0A is identified as a subset of dB. With that in mind, we have the following:
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Theorem 6.25 Suppose we have a metric graph bundle satistying the hypotheses of Theorem 5.2 such
that the fibers of the bundle are all proper metric spaces. Suppose y is a quasigeodesic line in Y such that
(y(00), y(—00)) € Bg?)(Y). Let F = F}, be any fiber of Y.

Then:

(1) y(£oo) € dip y (OF).

(2) Thereis apoint§é € 0B \ 0A determined by y(£00) such that if z4+ € OF with0f y (z+) = y (%)
then (z1.z-) € 3Ly (F).

(3) n(y) is bounded. Moreover, y is within a finite Hausdorff distance from a ky-quasigeodesic line o

of F so that di p,y (0/(4:00)) = y (£00). Also, (3(00),0(—00)) € 3} (F) for some £ € 0B \ IA.

(4) Ifb is a nearest point projection of £ on A. Then o (as defined in (3)) is a uniform quasigeodesic
lineinY.

Proof We have 0Y = Ay (F)U (U £coA ot Y) by Proposition 6.6. Also since F is a proper metric space,
by Lemma 2.55 Ay (F) = 0if,y (0F). Thus Y = dif y (0F)U (UgeaA ot Y). We shall use the following
observation a few times in the proof, which is immediate from the fact that 4 is qi embedded in B:

Suppose o is a quasigeodesic ray in A and & is a qi lift of « in Y. Then & is a quasigeodesic ray in Y as
well as in X. Also any pair of such rays are asymptotic in Y if and only if they are asymptotic in X since
Y is properly embedded in X.

(1) The proof of this assertion is by elimination of the possibilities coming from the decomposition
3ip,y (0F) U (Ugeyq Y of 3Y.

Suppose y(00) € 351Y and y(—o0) € 952Y for some £;, & € dA. However, this case is not possible due
to the above observation.

Suppose y(00) € 3 Y for some & € 4 and y(—o0) € diF,y(0F)\ UgeaA 9€Y or vice versa. We show
below that this case is also not possible.

Let o be a kg-quasigeodesic ray in A joining b to £ and let @ be a K-qi lift of o in ¥ such that
&(00) = y(00). Also let B be a ko-quasigeodesic ray in F such that dif y (8(c0)) = y(—00). Now, for
all n € N let £, be a Ky-qi section in X passing through B(n) and let L, = L(X2,, B(c0)). Then L,
is Ao-quasiconvex in X . Clearly y(co) = @(00) € Ax(LL,). Hence, by Lemma 2.54, & is asymptotic
to L. It follows by Proposition 4.6 and Lemma 4.15 that 7y, (&) is a uniform qi lift of & and it
is asymptotic to &. Since Y properly embedded in X by Lemma 5.20, it follows that these qi lifts
are asymptotic in Y too. In particular, np,, (&)(0c0) = y(00). Now, since dr(B(0), B(n)) — oo, by
Lemma 4.15 dy (B(0), 1, (&)) — oco. It follows from Lemma 2.45 that lim, .o B(n) = y(0c0) in 0Y.
This gives a contradiction since lim,—o (1) = y(—00) # y(0).
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Therefore, the only possibility is that

y(o0) € dip,y (0F)\ ] 0.
£edA
proving part (1) of the theorem.

Let z, z/ € F be such that dip y (z) = y(00) and dif y (z') = y(—00).

(2) Since dif, x =diy,x0diF,y by Lemma 2.50(1), we have (z, z') € Bg)(F) and hence (z,z') € 8;23‘,(F)
for some & € dB by Lemma 6.17. From Corollary 6.21 it follows that £ € dB \ dA. This proves part (2)

of the theorem.

(3) LetL =IL(z;z’) be the bi-infinite ladder in X formed by z, z’. Let 0 = LN F which is an arc length
parametrized ko-quasigeodesic line in F joining z, z’. Let o be a ko-quasigeodesic ray in B joining b

to £.

Let =, be a K¢-qi section in L passing through o (n), n € N. By Corollary 6.19 qi lifts of o contained in
these qi sections are asymptotic. Denote the qi section of @ contained in X, by &@,. We note that these
are k = (I?OKO—FI?O ~+k¢)-quasigeodesics by Lemma 2.3(2). Hence, by Lemma 2.38 given m,n € N we
have (i) € Nr(0—p,) (and &—p, (i) € Ng(®y)), where R = D5 35(8, k) as long as &y, (i) (resp. d—,; (i)
is not contained in the R-neighborhood of any 1-quasigeodesic joining o (—m), o (n). In particular for
such i we have &, (i) € Np(Z—), d—n(i) € Nr(X,). Hence, by Lemma 4.13 we have

do(iy(@n (i), @—m(i)) = Ri = Rq.13(R, Ko)

for all such i. Let Ry, = max{Rq, MI?O}. Thus foralln € N, U, = Ug,(2,, X—p) # 3. Let b, € Uy
be a nearest point projection of b on U, and let b;, be a nearest point projection of b, on A. Then it
follows from Lemma 5.18 that the concatenation of the segments of &,,, @—, over the portion of « joining
b, b,, and the fiber geodesic segment I N Fp, is a uniform quasigeodesic in Y joining o(£n). Call
it y,. Since lim,— o0 0 (1) # limy—o0 0 (—n) in Y there is a constant D > 0 such that dy (6(0),y,) < D
by Lemma 2.34. We claim that this means dp(b, b)) is bounded. In fact dy(c(0),d+,) — oo by
Lemma 4.13. Thus for all large n we have dy (0(0),IL. N Fp, ) < D, whence dp(b, b,) < D. It follows
from Proposition 4.6(3) that the Hausdorff distance of I. N F}; and the segment of o between o (n) and
o(—n)is at most (14+2K()Cs.6(Kg). Since o is a proper embedding in Y it follows by Lemma 2.5 that o
is a uniform quasigeodesic in Y depending on D. Let K > 1 be such that both o and y are K-quasigeodesics
in Y. Then, since Y is &’-hyperbolic, Hd(c,y) < R> 39(8’, K, 2). Thus diam(w(y)) < R, 39(8', K, 2).

We note here that diam(77(y)) as well as the quasigeodesic constant of o depends only on max{dp (b, b},)}.

(4) We shall use the notation of the proof of (3). Thus we know that there is D, > 0 such that for
all i > Dy we have dy;)(@n(i).@—,(i)) < Ry whence a(i) € Uy for all i > Dy. Also we know that
the sets U, are K4 11(Ko)-quasiconvex in B by Lemma 4.11. Let t, > max{D,,dg(b,b,)}. Then
a(ty) € Uy. Thus [b, byl * [bn.a(ty)]B is a K2.25(80, K4.11(Ko), ko, €)-quasigeodesic segment. Let
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K’ = max{kg, K».25(80, K4.11(Ko). ko, €)}. Hence, by stability of quasigeodesics (Lemma 2.17) we
get that b, € Ng/(a) where R' = D, 17(8¢, K', K'). We also note that dg(b, b,) — oo by the bounded
flaring condition (Corollary 3.12) since dj (¢, (0), @—,(0)) — oo. This implies that b, — &. Hence by
Lemma 2.56 there exists N > 0 such that d(b},, b) < R» 56(50, ko) for all n > N since B is §p-hyperbolic
and A4 is kg-quasiconvex. Hence, we are done by the note left at the end of the proof of (3). a

Surjectivity of the CT maps

Theorem 6.26 Suppose we have the hypotheses of Theorem 5.2 such that the fibers of the bundle are
proper metric spaces. Let F be the fiber over a point b € A. Suppose the CT map dif x: 0F — 0X is
surjective. Then the CT map di,y: 0F — 0Y is also surjective.

Conversely for any geodesic ray a: [0, 00) — B with a(0) = b, let Yo, = w~ (). If for all z € 0B and
for some (any) geodesic ray « joining b to z the CT map 0Fy, : 0F — 0Yy is surjective then the CT map
dF,x: 0F — 0X is also surjective.

Proof Let & € dY. We want to show that £ € Im(dif,y). Since dif x: 0F — 0X is surjective there
exists z € 0F such that dip x(z) = diy,x(§). If diF y(z) = & we are done. Suppose not. However,
dip,x = iy, xy odif,y. Hence, iy, x (0if,y (z)) = diy,x (§). Then by Theorem 6.25(3) we are done.

The converse part is a direct consequence of Corollary 6.5 and Proposition 6.6. O
Corollary 6.27 Suppose m: X — B is a metric (graph) bundle such that X, B are hyperbolic and the

fibers are all proper, uniformly quasiisometric to the hyperbolic plane H?. Then for all b € B, the CT
map dF, x: 0Fy — 0X is surjective.

Proof This is an immediate consequence of the second part of Theorem 6.26 and the following proposition
of Bowditch. O

Proposition 6.28 [5, Proposition 2.6.1] Suppose 7w: X — B is a metric (graph) bundle where B =
[0, 00), X is hyperbolic and the fibers are all uniformly quasiisometric to the hyperbolic plane H?. Then
forallb € B, the CT map 0F, x: 0F, — 0X is surjective.

We would like to remark that Bowditch stated the above proposition in the case that the fibers are all
isometric to the hyperbolic plane, but the same proof goes through for fibers uniformly quasiisometric to

the hyperbolic plane.
A special case of the following result was proved by E Field [11, Theorem B].

Theorem 6.29 Suppose | - N — G %> Q — 1 is a short exact sequence of infinite hyperbolic groups.
Suppose A C Q is gi embedded and Y = 1 (A). Then the CT map ON — Y is surjective.

Proof Since N is a normal subgroup of the hyperbolic group G it is a standard fact that A(N) = 9G.
Thus by Lemma 2.55 the CT map dN — G is surjective. Now we are done by Theorem 6.26. O
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Fibers of the CT maps

Theorem 6.30 Suppose X is a metric (graph) bundle over B satisfying the hypotheses of Theorem 5.2
such that X is a proper metric space. Let F = Fp, where b € B. Suppose 0F is not homeomorphic to a
dendrite and also the CT map 0F — dX is surjective.

Then for all £ € B we have 8;23( (F) # 2.

Proof Suppose « is an arc length parametrized «o-quasigeodesic ray in B joining b to £. Let Y = 77! ().
Since the CT map dF — 0.X is surjective, the map dif y: 0F — 9Y is also surjective by Theorem 6.26.
Now, 8(2) v (F) = 8(2) (F) by Corollary 6.21. Hence, it is enough to show that 8( y (F) # 2. However,
8(2) (F ) = g if and only if dif y is injective. It follows that 8(2) y(F) =9 1f and only if dify is
bljectlve Since X is proper, so are F and Y. Hence, F and 0Y are compact metrizable spaces. (See
[6, Chapter III.H, Propositions 3.7 and 3.21] for instance.) Hence, dir y is bijective implies dif,y is a
homeomorphism between dF and dY. Since dF is not a dendrite this is impossible due to the following
result of Bowditch. Hence, 8; )Y(F) # . O
Theorem 6.31 [5, Proposition 2.5.2] Suppose X is hyperbolic metric (graph) bundle over B = [0, c0)
satisfying the hypotheses (H1)-(H4) of Section 5. Suppose moreover that X is a proper metric space.
Then 0X is a dendrite.

We note that a special case of interest of Theorem 6.30 is when the fibers are uniformly quasiisometric to
the hyperbolic plane. For instance, we have the following.

Corollary 6.32 Suppose we have an exact sequence of infinite hyperbolic groups 1 - N —- G — Q0 — 1
where N is either the fundamental group of an orientable closed surface of genus g > 2 or a free group
F,, onn > 3 generators. Then for all £ € 0Q, 8( cN) # 2.

Remark We remark that much stronger results than the above corollary were already proved by Mj and
Rafi [23]. For instance, see Theorems 3.12, 5.7 and Proposition 5.8 there.

Another context is that of complexes of groups where Theorem 6.30 can be applied.

Corollary 6.33 Suppose G is the fundamental group of a finite developable complexes of nonelementary
hyperbolic groups (G, Y) with qi condition. Suppose X is the metric bundle over B obtained from this
data as constructed in Section 3.3.2. Suppose G is hyperbolic.

Then for all £ € dB and any vertex group Gy, v € V())) we have 8222; (Gy) # 2.
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Proof We need to check the hypotheses of Theorem 6.30. It is a standard fact that the boundary of
a hyperbolic group is not a dendrite. Since the fibers of the metric bundle under consideration are
quasiisometric to nonelementary hyperbolic groups dF is not a dendrite for any fiber F. We also note that
the metric bundle satisfies (H1)—(H4) of Section 5. Finally, G acts on X and B so thatthe map 7: X — B
is equivariant, the action of G on X is proper and cocompact and on B is cocompact. Thus any orbit
map G — X is a qi by Milnor-Schwarz lemma and therefore induces a homeomorphism dX — 0G.

Now, given any fiber F and g € G, gF is another fiber of the metric bundle. By Lemma 3.10(1)
Hd(F,gF) < oo. Hence, by Lemma 2.52 A(F) = A(gF) = gA(F). It is a standard fact that the
action of a nonelementary hyperbolic group on its boundary is minimal, ie the only invariant closed
subsets are the empty set and the whole set. Hence, it follows that A(F) = dX. By Lemma 2.55 we
have A(F) = dif x(0F). Thus the CT map difr y: 0F — 0X is surjective. Finally, clearly X is a
proper metric space. Hence, we have 8;2;( (F) # @ by Theorem 6.30. Finally since G, acts properly and
cocompactly on X, any orbit map G, — X, is a quasiisometry. Hence, this induces a homeomorphism
dGy — 0Xy. Therefore, taking F = X, we are done. O

Definition 6.34 Suppose Z is any hyperbolic metric space and S C Z. Then a point z € A(S) C 0Z
will be called a conical limit point of S if for some (any) quasigeodesic y converging to z in Z there is a
constant D > 0 such that Np(y) N S is a subset of infinite diameter in Z.

Proposition 6.35 Suppose we have the hypotheses of Theorem 5.2. Let diy,x: 0Y — 0X be the CT
map. If £ € 0X is a conical limit point of Y, then |8i;lX($)| =1.

Proof Suppose z # z/ € Y such that diy x (z) = diy,x(z') = &. Then by Theorem 6.25 there is
&g € 0B\ 04 and a qi lift of y of a quasigeodesic ray joining b to £ such that £ = y(c0). Since
Ep € B\ 04 and A is quasiconvex £p is not a limit point of A in dB. Thus it is clear that £ is not a
conical limit point of Y. This gives a contradiction and proves the proposition. O

6.3 QI embedding fibers in a product of bundles

The lemma below is the product of answering a question due to Misha Kapovich.

Lemma 6.36 Suppose w: X — R is a metric (graph) bundle satisfying the hypotheses of Section 5
and X* are the restrictions of it to [0, 00) and (—o0, 0], respectively. Then the diagonal embedding
f:Fy— Xt x X~ is aqi embedding where the latter is given the [, metric.

Proof Without loss of generality, we assume (X, d) is a metric graph bundle. Let di be the in-
duced length metric on X*, respectively. Then the I, metric dy on Y := X x X~ is given by
dy ((x1.x2), (1, y2))* = d(x1, y1)* + d—(x2, y2)* for all x1, y; € XT and x2, y, € X~. We note
that the inclusion maps Fy — X ¥ are 1-Lipschitz.
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Let x, y € Fy. Then,

dY(f(X), f(y))2 :dY((X, X), (y’ y))2 :d-i-(x’ y)2+d—(x’ y)2 Ed()(x’ J/)2+d0(x’ y)2 :2d0(x3 J’)2»
which implies that dy (f(x), f(»)) < ~/2do(x, y). A reverse inequality is obtained as follows.

Let X, X/ be a pair of K(-qi sections in X through x, y respectively. Let L = (X, ¥’) be the ladder
formed by them. Let A = IL N Fy. This is a geodesic in Fy joining x, y. Now, suppose ¢(x, y) is a
uniform quasigeodesic in X joining x, y constructed as in Section 5 by decomposing L. into subladders
using the qi sections X;’s and Z}. ’s. Let ¢4+ := ¢4 (x, ), c— := c_(x, y) be the modified paths joining
x,yin X, X, respectively. By our main theorem in Section 5, ¢4, ¢ are uniform quasigeodesics in
X, X, respectively. Suppose these are K-quasigeodesics. As in the discussion at the end of Section 5,
suppose Q, Q' are consecutive gi sections in the decomposition of L = L(X,X') and z,w € Q, w’' € Q'
with b’ = w(w) = w(w’) are such that L.(Q, @) N¢(y, y’) is made of the fiber geodesic [w, w']p, and the
lift of [7(z2), m(w)]p in Q. However, if b’ € [0, 00) then ANIL(Q, Q") C ¢— and similarly if " € (—o0, 0]
then ANIL(Q, Q') C ¢4. Thus A C ¢4 U c—. Therefore we have,

do(x,y) <14 () +1-(c-) S Kdy(x, )+ K+ Kd_(x,y) + K
= K(d4+(x,y) +d-(x,y)) +2K
=2Kdy((x,x),(y,y)) +2K =2Kdy(f(x), f(»)) +2K.

Thus, —1 + 5do(x, ) < dy (/(x), /() < V2do(x, ). Hence, [ is (2K, 1)-gi embedding. O
In the same way, we obtain the following.

Lemma 6.37 If v, is a cut point of B and removing it produces two quasiconvex subsets A, A, and
Y1, Y, are the restrictions of the bundle to Ay, A respectively then the diagonal map Fy, — Y; x Y, is a
gi embedding.

Corollary 6.38 If v is a cut point of B and removing it produces finitely many quasiconvex subsets A;,
1 <i < n and Y;’s are the restrictions of the bundle to A;’s, respectively, then the diagonal map
Fy, — I1;Y; is a qi embedding.

Remark In [19] Mitra defined an ending lamination for an exact sequence of groups. Given any point
& € 00 he defined a lamination A¢ and then showed that Ag = 8223( (F). However, for formulating and
proving these sorts of results one needs additional structure on the bundle, eg action of a group on the
bundle through morphisms which has uniformly bounded quotients when restricted to the fibers. Results

of this type are proved in [23, Section 3]; see also [5, Section 4.4].
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Appendix Flaring in a metric bundle and its canonical metric graph bundle

Suppose 7’: X’ — B’ is an (1, ¢)-metric bundle and 7: X — B is the canonical metric graph bundle
associated to it. We shall assume that B’ and B are both §-hyperbolic. However, there will be no
assumption about the fibers of the bundles. We shall freely use the notation from Section 4 of the paper.
The purpose of this appendix is to show that a metric bundle satisfies a sort of “generalized flaring
property” (see Property (1) below) if and only if the associated canonical metric graph bundle satisfies a
flaring condition.

Note If bg, by, ..., b, are consecutive vertices on a geodesic in B then «’: i — b; is a dotted (1, 3)-
quasigeodesic of B’ by Lemma 2.8. Thus there is a constant Dy such that if 8’ is any (1, 1)-quasigeodesic
in B’ joining bg, b, then Hd(a', ') < Do. We will preserve Dy to denote this constant for the rest of
this section.

Suppose b € V(B) and p € B’ are such that dg/(p,b) < Dy. Then for any x € 7~ (b) we can lift a
(1, 1)-quasigeodesic of B’ joining b to p to X’ which starts from x and ends at x’, say. This way we
get a “fiber identification map” V(=1 (b)) — 7'~ (p). If we denote this map by f}, p then we have the
following lemma. Since the proof is evident we skip it.

Lemma A.1 We have
1 .
—Co + C—Odb(xa )= d;(fbp(x)’ Top(3) = Co + Codp(x, y)

for all x, y € w~1(b) and for some uniform constant Coy where d}, is the fiber distance in =~ (b) for the
metric graph bundle X and d), is the fiber distance in 7’ ~1(p) for the metric bundle X'.

Suppose « is a geodesic in B and @ is a C-qi lift of o in X. Let a’ be a (1, 1)-quasigeodesic in B’
joining the end points of «. Let 0: @ — ' be any map such that dg/(b, o (b)) < D for all b € «. Let
D= fop@(b)) € 7'~1(p) for all b € a, where p = o(b). Now it is easy to find a uniform qi lift &' of o’
such that &' (o (b)) = p, where p = o (b) for all b € «. We record this as a lemma.

Lemma A.2 There is a constant C' depending on C and a C’-qi lift & of o’ such that @' (o (b)) = p,
where p = o (b) forall b € «.

The following lemma roughly says that if two qi leaves start flaring in one direction then they keep on
flaring in the same direction. The proof follows immediately from the definition of flaring. One may also
look up the proof of [24, Lemma 2.17(1)].

Lemma A.3 (persistence of flaring in graph bundles) Suppose the metric graph bundle satisfies the
(Vg, My, ny)-fAaring condition for all k > 1. Suppose «: [—m,n] — B is a geodesic where m > ny,
n > ny and @y and a are two k-qi lifts of a in X' with d,(9)(0(1(0), @2(0)) = My.. Suppose

Ao(sng) (@1 (sng), A2 (sng)) = vidy(0)(@1(0), @2(0)),
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where s is either 1 or —1. Let t be the largest integer smaller than n/nj or m/ny, according as s = 1
or —1. Then for all integers 1 <[/ <t we have

do(tsmo) @1 (Isn). @a(Isnp)) = vida(o) @1 (0). @2(0)).
The same idea of proof gives the next lemma also. We will need a definition.
Property () We shall say that the metric bundle X’ has Property (%) if for any & > 1, there exist vg > 1

and ny, My € N such that the following holds:

Suppose a': [-ng,ng] — B’ is a 1-quasigeodesic and & and &), are two k-qi lifts of & in X”. If
dy0)(¥#1(0),¥2(0)) = M} then we have

Vi - oy (0) (@1 (0), @5(0)) < max{dy:(n, (@] (nk), @5 (k). dgr(—ny) @ (—ng), &5 (—ng))}.
Note that one could define the flaring condition for a length metric bundle using Property ().

Lemma A.4 (persistence of flaring in metric bundles) Suppose the metric bundle satisfies (). Let
k > 1. Suppose a': [-m,n] — B is a geodesic where m > njy, n > nj and &} and &, are two k-qi lifts of
o in X with do(g) (@] (0), @5 (0)) > My. Suppose

Ao (snp) (@ (sng), @5 (sng)) = viedyr(0) (@1 (0), @5 (0)),

where s is either 1 or —1. Let t be the largest integer smaller than or equal to n/nj or m/ny, according as
s =1 or —1. Then for all integer ! <t we have

Aoy (15ny0) @) (Lsng), @ (Isng)) = vy (0) @} (0), &(0)).
Following is one of the main results of this appendix.

Lemma A.5 Suppose the metric bundle X' has Property (). Then the canonical metric graph bundle
7: X — B associated to X' satisfies a (D, Mk, by ) -flaring condition.

In particular if a geodesic metric bundle satisfies a flaring condition (see [24, Definition 1.12]) then its
canonical metric graph bundle satisfies the flaring condition.

Proof Suppose o: [—n,n] — B is a geodesic and &, & are two k-qi lifts of  in X, where n € N and
k> 1. Leta’ be a (1, 1)-quasigeodesic in B’ joining a(n) and a(—n). Then there are k’-qi lifts &', &’
of o, respectively, as in Lemma A.2. We shall choose a parametrization «’: [-m’,n'] — B’ so that
o' (n')y =a(n), a'(—m’) = a(—n) and dg/ (2 (0), @’ (0)) < Dy. Note that

a0y @ (0.7 (0) 2 ~Co + Z-da(0)@(0). 5(0))
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by Lemma A.1. Hence, if we assume d ) (@(0), &(0)) > Co(Co + My) then d&/(o) (@(0),a'(0)) > My
Clearly, if we choose n large enough then we have ny, < min{m’,n’}. (In the course of the proof
we will be more precise.) Without loss of generality we shall assume vy - d, 0) @ (0),a'(0)) <
d&,(nk/)(&’(nk/), &' (ny:)). Let [ be the greatest integer less than or equal to 7’ /ny,. Then by Lemma A .4

(1) Vi -l 0y @ (0).&(0)) < Yy ) @ g, & (Inge)).

Note that dp/(a'(Ing/), o' (n')) < 2ng:. Let b’ = &’(Inyg/) and b” = o’(n’). Then by Corollary 3.11
the fiber identification map ¢p/p~ referred to in that corollary is a K3 11(2ny/)-quasiisometry. Let
K = K35 11(2ng/). Note that

) dy (@ (Ing),d' (n')) < k' + 2np k'
since &’ is a k’-qi section and dp/(a'(Iny/), o’ (n')) < 2nys. Also, by Corollary 3.9 we have
3) dy: (&' (Ingr). dprpr (@ (Ingr))) < 3¢ + 6cnyer.
Using the inequalities (2) and (3) we have
dx (&' ('), pprpr (@ (Ing))) < 3¢ + 6¢cngr + k' + 2np k.

Since X" is an (7, ¢)-metric bundle we have

Aoy () (@' (1), pprpr @ (Ingr))) < n3c + 6cng: + k' + 2npk’).
In the same way we have

d(;,(n,) (5’(11/), ¢b/b~(5’(lnk/))) <nQBc+6cny + k' + 2np k).

Now using the fact that ¢/~ is a K-quasiisometry and letting Ry = 2n(3¢ + 6¢cnyr + k' + 2ni k'), we
have by triangle inequality

4) d&'(lnk/)(&/(l”k’)’ & (Ing)) < (K* + 2R K) + Kd&,(n,)(&'/(n/),a/(n’)).
However, by Lemma 2.8 and Proposition 4.1(2) we have

5) Loy @ (1), & (1)) < 3+ diy @(0). F ().

Then it follows from the inequalities (1), (4) and (5) that

(©6) Vh -y @ (0).8'(0)) < RK + Kdo(uy(@(n). &(n)).

where R = 3 + K + 2R;. Finally since dé/(o) @ (0),a&'(0)) > —Co + CLda(O) (@(0), &(0)) using (6) we
0
have

1 ~ = ~ ~
(M) v (—Co t o da(o)@(0). 30))) < RK + Kdoguy @(n).&(n).
Recall that we assumed dy (o) (@(0), @(0)) > Co(Co + My). Hence,
1 ~ = 1 1 ~ ~
®) ~Cot o da(o@0). 50) = (G~ g ) daco) @0). 5 O).
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k:%(c%_co%zwk/)'

Then we have, using (7) and (8),

(€))

v A dy0)(@(0),5(0)) < R + dyny (@(n), &(n)).

It is clear that

—R+ vk, k- dy0)(@(0), &(0)) = 1AvL,dy(0)(@(0),5(0))

if dy(0)(@(0), a(0)) > 2R/ ()\v,l(,). In particular, since v,l(, > 1, we have

(10)

320 dao)@(0), &(0)) < dy(y @(n), &(n))

using (9) if dg o) (@(0), @(0)) > 2R /A. Thus it is enough to choose

Mk = max{%, Co(Cy +Mk/)}, ):k =2

and to show that if n is sufficiently large then / is so large that %Av,’c/ > 2 which will give a choice for 71.

This is easy to verify and hence left to the reader. |

The converse of Lemma A.5 is also true and has an exactly similar proof. However, in this case one uses

Lemma A.3 instead of Lemma A.2. We state it without proof to avoid repetition.

Lemma A.6 Suppose the metric graph bundle 7w : X — B satisfies a (v, My, ny)-flaring condition for
all k > 1. Then the metric bundle r': X' — B’ satisfies Property () for three functions v, , M, ,n of k.
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