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Pullbacks of metric bundles and Cannon–Thurston maps

SWATHI KRISHNA

PRANAB SARDAR

Metric (graph) bundles were defined by Mj and Sardar (Geom. Funct. Anal. 22 (2012) 1636–1707). In
this paper, we introduce the notion of morphisms and pullbacks of metric (graph) bundles. Given a
metric (graph) bundle X over B where X and all the fibers are uniformly (Gromov) hyperbolic and
nonelementary, and a Lipschitz quasiisometric embedding i WA! B, we show that the pullback i�X is
hyperbolic and the map i� W i�X !X admits a continuous boundary extension, ie the Cannon–Thurston
(CT) map @i� W@.i�X /!@X . As an application of our theorem, we show that given a short exact sequence
of nonelementary hyperbolic groups 1!N !G

�
�!Q! 1 and a finitely generated quasiisometrically

embedded subgroup Q1 <Q, G1 WD �
�1.Q1/ is hyperbolic and the inclusion G1!G admits the CT

map @G1! @G. We then derive several interesting properties of the CT map.

20F65

1. Introduction 2667

2. Hyperbolic metric spaces 2670

3. Metric bundles 2695

4. Geometry of metric bundles 2713

5. Cannon–Thurston maps for pullback bundles 2721

6. Applications, examples and related results 2737

Appendix. Flaring in a metric bundle and its canonical metric graph bundle 2751

References 2754

1 Introduction

Given a hyperbolic group G and a hyperbolic subgroup H a natural question to ask is if the inclusion
H !G always extends continuously to @H ! @G (see [3, Q 1.19]). This question was posed by Mahan
Mitra (Mj) motivated by the seminal article of Cannon and Thurston [7]. In [7] the authors found the
first instance of this phenomenon where H is not quasiisometrically embedded in G. It follows from
their work that if G D �1.M / where M is a closed hyperbolic 3-manifold fibering over a circle and
H D �1.S/ with S (an orientable closed surface of genus at least 2) being the fiber, then the boundary
extension @H ! @G exists. More generally, one may ask for a pair of (Gromov) hyperbolic metric spaces
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2668 Swathi Krishna and Pranab Sardar

Y �X if there is a continuous extension of the inclusion Y !X to @Y ! @X . Such an extension is by
definition unique (see Definition 2.47) when it exists and is popularly known as the Cannon–Thurston
map or “CT map” for short in geometric group theory. The above question of Mahan Mitra (Mj) has
motivated numerous works. The reader is referred to [22] for a detailed history of the problem. Although
the general question for groups has been answered in the negative recently by Baker and Riley [2], there
are many interesting questions to be answered in this context. In this paper, we pick up the following:

Question Suppose 1! N ! G
�
!Q! 1 is a short exact sequence of hyperbolic groups. Suppose

Q1 <Q is quasiisometrically embedded and G1 D �
�1.Q1/. Then does the inclusion G1 <G admit the

CT map?

It follows by the results of Mj and Sardar [24] that G1 is hyperbolic (see [24, Remark 4.4]), and so the
question makes sense. In this paper, we answer the above question affirmatively. However, we reformulate
this question in terms of metric (graph) bundles as defined in [24] (see Section 3) and obtain the following
more general result. One is referred to Lemma 2.41 and the discussion following it for the definition of
barycenter map. Coarsely surjective maps are introduced in Definition 2.1(3).

Theorem 5.2 Suppose � WX ! B is a metric (graph ) bundle such that

(1) X is hyperbolic and

(2) all the fibers are uniformly hyperbolic and nonelementary, ie there are ı � 0 and R� 0 such that
any fiber F is ı-hyperbolic and the barycenter map @3

s F ! F is R-coarsely surjective.

Suppose i W A! B is a Lipschitz , quasiisometric embedding and �Y W Y ! A is the pullback bundle
under i (see Definition 3.18). Then i� W Y !X admits the CT map.

There are two main sources of examples of metric graph bundles mentioned in this paper where the above
theorem can be applied. The first one is that of short exact sequences of groups.

Theorem 6.1 Suppose 1!N !G
�
!Q! 1 is a short exact sequence of hyperbolic groups. Suppose

Q1 < Q is quasiisometrically embedded and G1 D �
�1.Q1/. Then G1 is a hyperbolic group and the

inclusion G1 <G admits the CT map.

We note that special cases of Theorems 5.2 and 6.1, namely when A is a point and Q1D .1/, respectively,
were already known. See [20, Theorem 4.3; 24, Theorem 5.3]. Another context where Theorem 5.2
applies is that of complexes of hyperbolic groups. We refer to Section 3.3.2 for relevant definitions.

Suppose Y is a finite simplicial complex and G.Y/ is a developable complex of nonelementary hyperbolic
groups over Y . Suppose that for all face � of Y , G� is a nonelementary hyperbolic group and for any two
faces � � � the corresponding homomorphism G� !G� is an isomorphism onto a finite index subgroup
of G� . Suppose that the fundamental group of the complex of groups, G say, is hyperbolic. Suppose we
have a good subcomplex Y1 � Y ie one for which the following two conditions are satisfied.
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(1) The natural homomorphism �1.G;Y1/! �1.G;Y/ is injective.

Let G1 D �1.G;Y1/. Suppose G1 and G are both endowed with word metrics with respect to some finite
generating sets. Let yG and yG1 be the coned off spaces à la Farb [10], obtained by coning off all the face
groups in G and G1 respectively.

(2) Then the induced map yG1!
yG of the coned off spaces is a quasiisometric embedding. With these

hypotheses we have:

Theorem 6.2 The group G1 is hyperbolic and the inclusion G1!G admits the CT map.

Particularly interesting cases to which the above theorem applies are obtained in [18; 12]. There graphs of
groups are considered where all the vertex and edge groups are either surface groups [18] or free groups
of rank � 3 [12], respectively.

Next, we explore properties of the Cannon–Thurston map @Y ! @X proved in Theorem 5.2. Suppose F is
a fiber of the bundle Y over A. Then there is a CT map for the inclusions iF;X WF!X and iF;Y WF! Y,
and the map i� W Y !X . Since @iF;X D @i� ı @iF;Y , if ˛; ˇ 2 @F are identified under @iF;X then under
@i� the points @iF;Y .˛/ and @iF;Y .ˇ/ are identified too. It turns out that a sort of “converse” of this is
also true.

Theorem 6.25 Suppose we have the hypotheses of Theorem 5.2 and also that the fibers of the bundle are
proper metric spaces. Suppose 
 is a (quasi )geodesic line in Y such that 
 .1/ and 
 .�1/ are identified
by the CT map @i� W @Y ! @X . Then �Y .
 / is bounded. In particular , given any fiber F of the metric
bundle , 
 is at a finite Hausdorff distance from a quasigeodesic line of F.

On the other hand as an immediate application of Theorem 6.25 (in fact, see Theorem 6.26 and
Proposition 6.6) we get the following:

Theorem Suppose we have the hypotheses of Theorem 5.2 and also that the fibers of the bundle are
proper metric spaces. Let F be the fiber over a point b 2 A. Then the CT map @iF;X W @F ! @X is
surjective if and only if the CT maps @iF;Y� W @F ! @Y� are surjective for all � 2 @B, where Y� is the
pullback of a (quasi )geodesic ray in B asymptotic to � .

In particular , @iF;Y W @F ! @Y is surjective if @iF;X W @F ! @X is surjective.

Following Mitra [19] we define the Cannon–Thurston lamination @.2/
X
.F / to be˚

.z1; z2/ 2 @F � @F W z1 ¤ z2; @iF;X .z1/D @iF;X .z2/
	

and following Bowditch [5, Section 2.3] we define for any point � 2 @B a subset of this lamination
denoted by @.2/

�;X
.F / or simply @.2/

�
.F / when X is understood, where .z1; z2/ 2 @

.2/

�;X
.F / if and only if

@iF;X .z1/D @iF;X .z2/D z
 .1/, where z
 is a quasiisometric lift in X of a (quasi)geodesic ray 
 in B

converging to �. If .z1; z2/ 2 @
.2/

�;X
.F / and ˛ is a (quasi)geodesic line in F connecting z1; z2, then ˛ is

referred to be a leaf of the lamination @.2/
�;X
.F /. Leaves are assumed to be uniform quasigeodesics in the

following theorem using Proposition 2.37.
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Theorem (properties of @.2/
X
.F /; see Lemmas 6.17–6.24) (1) @

.2/
X
.F /D

`
�2@B @

.2/

�;X
.F /.

(2) @
.2/
X
.F / and @.2/

�;X
.F / are all closed subsets of @.2/F , where @.2/F Df.z1; z2/2 @F �@F W z1¤ z2g.

(3) The leaves of @.2/
�1;X

.F /; @
.2/

�2;X
.F / are coarsely transverse to each other for all �1 ¤ �2 2 @B: given

�1 ¤ �2 2 @B and D > 0 there exists R > 0 such that if 
i is leaf of @.2/
�i ;X

.F /, i D 1; 2 then

1\ND.
2/ has diameter less than R.

(4) If �n! � in @B and ˛n is a leaf of @.2/
�n;X

.F / for all n 2N which converge to a geodesic line ˛ then
˛ is a leaf of @.2/

�;X
.F /.

(5) @
.2/

�;X
.F /D @

.2/

�;Y
.F / for all � 2 @A if we have the hypothesis of Theorem 5.2.

Finally, we also prove the following interesting property of the CT lamination.

Theorem 6.30 Suppose X is a metric (graph ) bundle over B satisfying the hypotheses of Theorem 5.2
such that X is a proper metric space. Let F D Fb , where b 2 B. Suppose @F is not homeomorphic to a
dendrite and also the CT map @F ! @X is surjective.

Then for all � 2 @B we have @.2/
�;X
.F /¤∅.

This applies in particular to the examples of short exact sequence of hyperbolic groups and the complexes
of hyperbolic groups mentioned in Theorems 6.1 and 6.2 above.

Outline of the paper In Section 2 we recall basic hyperbolic geometry, Cannon–Thurston maps, etc.
In Section 3 we recall the basics of metric (graph) bundles and we introduce morphisms of bundles,
pullbacks. Here we prove the existence of pullbacks under suitable assumptions. In Section 4 we mainly
recall the machinery of [24] and we prove a few elementary results. Section 5 is devoted to the proof of the
main theorem. In Section 6 we derive applications of the main result and we mention some related results.

Acknowledgements The authors gratefully acknowledge all the helpful comments, inputs, and sug-
gestions received from Mahan Mj and Michael Kapovich. We are very thankful to the referee also for
suggesting many changes that helped to improve the exposition of the paper and for pointing out a
number of gaps and inaccuracies in an earlier version of the paper. Sardar was partially supported by
DST INSPIRE grant DST/INSPIRE/04/2014/002236 and DST MATRICS grant MTR/2017/000485 of
the government of India. Finally, we thank Sushil Bhunia for a careful reading of an earlier draft of the
paper and for making numerous helpful suggestions.

2 Hyperbolic metric spaces

In this section, we remark on the notation and convention to be followed in the rest of the paper and
we put together basic definitions and results about hyperbolic metric spaces. We begin with some basic
notions from large scale geometry. Most of these are quite standard, eg see [13; 14]. We have used [24]
where all the basic notions can be quickly found in one place.

Algebraic & Geometric Topology, Volume 25 (2025)
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Notation, convention and some metric space notions One is referred to [6, Chapters I.1, I.3] for the
definitions and basic facts about geodesic metric spaces, metric graphs and length spaces.

(0) For any set A, IdA will denote the identity map A!A. If A� B then we denote by iA;B WA! B

the inclusion map of A into B.

(1) If x 2 X and A � X then d.x;A/ will denote inffd.x;y/ Wy 2 Ag and will be referred to as the
distance of x from A. For D � 0 and A � X, ND.A/ WD fx 2 X W d.x; a/ � D for some a 2 Ag will
be called the D-neighborhood of A in X. For A;B � X we shall denote by d.A;B/ the quantity
inffd.x;B/ Wx 2Ag and by Hd.A;B/ the quantity inffD > 0 WA�ND.B/; B �ND.A/g and will refer
to it as the Hausdorff distance of A;B.

(2) If X is a length space we consider only subspaces Y �X such that the induced length metric on Y

takes values in Œ0;1/, or equivalently for any pair of points in Y there is a rectifiable path in X joining
them which is contained in Y. We shall refer to such subsets as rectifiably path connected. If 
 is a
rectifiable path in X then l.
 / will denote the length of 
 .

(3) All graphs are connected for us. If X is a metric graph then V.X / will denote the set of vertices of X.
Generally, we shall write x 2X to mean x 2 V.X /. In metric graphs (see [6, Chapter I.1]) all the edges
are assumed to have length 1. In a graph X the paths are assumed to be a sequence of vertices. In other
words, these are maps I \Z!X , where I is a closed interval in R with end points in Z[f˙1g. We
shall informally write this as ˛ W I !X and sometimes refer to it as a dotted path for emphasis. Length
of such a path ˛ W I ! X is defined to be l.˛/D

P
d.˛.i/; ˛.i C 1//, where the sum is taken over all

i 2 Z such that i; i C 1 2 I . If ˛ W Œ0; n�! X and ˇ W Œ0;m�! X are two paths with ˛.n/D ˇ.0/, then
their concatenation ˛ � ˇ will be the path Œ0;mC n�! X defined by ˛ � ˇ.i/D ˛.i/ if i 2 Œ0; n� and
˛ �ˇ.j /D ˇ.j � n/ if j 2 Œn;mC n�.

(4) If X is a geodesic metric space and x;y 2X then we shall use Œx;y�X or simply Œx;y� to denote a
geodesic segment joining x to y. This applies in particular to metric graphs. For x;y; z 2 X we shall
denote by �xyz some geodesic triangle with vertices x;y; z.

(5) If X is any metric space then for all A�X , diam.A/ will denote the diameter of A.

2.1 Basic notions from large scale geometry

Suppose X , Y are any two metric spaces and k � 1, � � 0, �0 � 0.

Definition 2.1 [24, Definition 1.1.1] (1) A map � W X ! Y is said to be metrically proper if there
is an increasing function f W Œ0;1/! Œ0;1/ with limt!1 f .t/D1 such that for any x;y 2 X and
R 2 Œ0;1/, dY .�.x/; �.y// � R implies dX .x;y/ � f .R/. In this case we say that � is proper as
measured by f .

(2) A subset A of a metric space X is said to be r -dense in X for some r � 0 if Nr .A/DX.

Algebraic & Geometric Topology, Volume 25 (2025)
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(3) Suppose A is a set. A map � WA! Y is said to be �-coarsely surjective if �.A/ is �-dense in Y. We
will say that it is coarsely surjective if it is �-coarsely surjective for some � � 0.

(4) A map � W X ! Y is said to be coarsely .�; �0/-Lipschitz if for every x1;x2 2 X , we have
d.�.x1/; �.x2// � �d.x1;x2/C �

0. A coarsely .�; �/-Lipschitz map will be simply called a coarsely
�-Lipschitz map. A map � is coarsely Lipschitz if it is coarsely �-Lipschitz for some � � 0.

(5) (i) A map � WX ! Y is said to be a .k; �/-quasiisometric embedding if for every x1;x2 2X , one
has

��C d.x1;x2/=k � d.�.x1/; �.x2//� �C kd.x1;x2/:

A map � W X ! Y will simply be referred to as a quasiisometric embedding if it is a .k; �/-
quasiisometric embedding for some k � 1, � � 0. A .k; k/-quasiisometric embedding will be
referred to as a k-quasiisometric embedding.

(ii) A map � WX ! Y is a .k; �/-quasiisometry (resp. k-quasiisometry) if it is a .k; �/-quasiisometric
embedding (resp. k-quasiisometric embedding) and moreover, it is D-coarsely surjective for
some D � 0.

(iii) A .k; �/-quasigeodesic (resp. a k-quasigeodesic) in a metric space X is a .k; �/-quasiisometric
embedding (resp. a k-quasiisometric embedding) 
 W I !X , where I �R is an interval.

We recall that a .1; 0/-quasigeodesic is called a geodesic.

If I D Œ0;1/, then 
 will be called a quasigeodesic ray. If I D R, then we call it a quasigeodesic
line. One similarly defines a geodesic ray and a geodesic line. We refer to the constant(s) k (and �) as
quasigeodesic constant(s).

Quasigeodesics in a metric graph X will be maps I \Z!X , informally written as I !X where I is a
closed interval in R.

(6) Suppose �; �0 WX ! Y are two maps and � � 0.

(i) We define d.�; �0/ to be the quantity supfdY .�.x/; �
0.x// Wx 2 X g provided the supremum

exists in R; otherwise we write d.�; �0/D1.

(ii) A map  W Y ! X is called an �-coarse left (right) inverse of � if d. ı �; IdX / � � (resp.
d.� ı ; IdY /� �).

If  is both an �-coarse left and right inverse then it is simply called an �-coarse inverse of �.

(7) Suppose S is any set. A map f W S ! X satisfying some properties P1; : : : ;Pk will be called
coarsely unique if for any other map g W S !X with properties P1; : : : ;Pk there is a constant D such
that d.f;g/�D.
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The definition (7) above is taken from [24]. See the definition following Lemma 2.9 there. In places
where this definition will be used the properties may not be explicitly stated but they will be clear from
the context. If S is finite then we talk about a finite subset of X to be coarsely unique, eg see the remark
following Lemma 2.56.

Remark on terminology (1) All the above definitions are about certain properties of maps and in each
case some parameters are involved.

(i) When the parameters are not important or they are clear from the context then we say that the map
has the particular property without explicit mention of the parameters, eg “� WX ! Y is metrically
proper” if � is metrically proper as measured by some function.

(ii) When we have a set of pairs of metric spaces and a map between each pair possessing the same
property with the same parameters then we say that the set of maps “uniformly” have the property,
eg uniformly metrically proper, uniformly coarsely Lipschitz, uniform qi embeddings, uniform
approximate nearest point projection etc.

(2) We often refer to a quasiisometric embedding as “qi embedding” and a quasiisometry as “qi”.

The following gives a characterization of quasiisometry to be used in the discussion on metric bundles.

Lemma 2.2 [24, Lemma 1.1] (1) For every K1;K2�1 and D�0 there are K2:2DK2:2.K1;K2;D/,
such that the following holds:
A K1-coarsely Lipschitz map with a K2-coarsely Lipschitz, D-coarse inverse is a K2:2-quasiisometry.

(2) Given K� 1, �� 0 and R� 0 there are constants C2:2DC2:2.K; �;R/ and D2:2DD2:2.K; �;R/

such that the following holds:
Suppose X;Y are any two metric spaces and f W X ! Y is a .K; �/-quasiisometry which is
R-coarsely surjective. Then there is a .K2:2;C2:2/-quasiisometric D2:2-coarse inverse of f.

The following lemmas follow from simple calculations and hence we omit their proofs.

Lemma 2.3 (1) Suppose we have a sequence of maps X
f
! Y

g
! Z where f;g are coarsely L1-

Lipschitz and L2-Lipschitz, respectively. Then g ıf is coarsely .L1L2;L1L2CL2/-Lipschitz.

(2) Suppose f WX ! Y is a .K1; �1/-qi embedding and g W Y !Z is a .K2; �2/-qi embedding. Then
g ıf WX !Z is a .K1K2;K2�1C�2/-qi embedding.

Moreover , if f is D1-coarsely surjective and g is D2-coarsely surjective then gıf is .K2D1C�2CD2/-
coarsely surjective.

In particular , the composition of finitely many quasiisometries is a quasiisometry.
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Lemma 2.4 Suppose X 0 is any connected graph and r > 0. Suppose X is another graph obtained
from X 0 by introducing some new edges to X 0 where e D Œv; w� is an edge in X but not in X 0 implies
dX 0.v; w/� r . Then the inclusion map X 0!X is a quasiisometry.

The following lemma appears in [17, Section 1.5] in a somewhat different form. We include a proof for
the sake of completeness.

Lemma 2.5 Let X be any metric space , x;y 2 X , 
 be a (dotted ) k-quasigeodesic joining x;y and
˛ W I ! X is a (dotted ) coarsely L-Lipschitz path joining x;y. Suppose moreover , ˛ is a proper
embedding as measured by a function f W Œ0;1/! Œ0;1/ and that Hd.˛; 
 /�D for some D � 0. Then
˛ is (dotted ) K2:5 DK2:5.k; f;D;L/-quasigeodesic in X .

Proof Suppose 
 is defined on an interval J . Let a; b 2 I . Then we have

d.˛.a/; ˛.b//�Lja� bjCL �! .1/

since ˛ is coarsely L-Lipschitz. Now let a0; b02J be such that d.˛.a/; 
 .a0/�D and d.˛.b/; 
 .b0//�D.
Let R D d.˛.a/; ˛.b//. Then by triangle inequality d.
 .a0/; 
 .b0// � 2D C R. Since 
 is a k-
quasigeodesic we have �kCja0�b0j=k � d.
 .a0/; 
 .b0//� 2DCR. Hence, ja0�b0j � k.2DCR/Ck2.
Without loss of generality suppose a0 � b0. Consider the sequence of points a0

0
D a0; a0

1
; : : : ; a0nD b0 in J

such that a0
iC1
D 1Ca0i for 0� i � n�2 and a0n�a0

n�1
� 1. We note that n� 1Ck.2DCR/Ck2. Let

ai 2 I be such that d.
 .a0i/; ˛.ai//�D, 0� i � n, where a0 D a, an D b. Once again by the triangle
inequality we have

d.˛.ai/; ˛.aiC1//� 2DC d.
 .a0i/; 
 .a
0
iC1//� 2DC 2k

for 0� i � n�1 since 
 is a k-quasigeodesic. This implies jai�aiC1j � f .2DC2k/ since ˛ is a proper
embedding as measured by f. Hence,

ja� bj �

n�1X
iD0

jai � aiC1j � nf .2DC k/� .1C k.2DCR/C k2/f .2DC 2k/:

Thus we have

�
1C 2kDC k2

k
C

1

kf .2DC 2k/
ja� bj �RD d.˛.a/; ˛.b// �! .2/:

Hence, by (1) and (2) we can take

K2:5 D 1C 2DC kC kf .2DC 2k/CL:

The following lemma is implicit in the proof of [24, Proposition 2.10]. The proof of this lemma being
immediate we omit it.
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Lemma 2.6 Suppose X is a length space and Y is any metric space. Let f WX!Y be any map. Then f is
coarsely C -Lipschitz for some C �0 if for all x1;x22X , dX .x1;x2/�1 implies dY .f .x1/; f .x2//�C .

Remark We spend quite some time restating some results proved in [24] in the generality of length
spaces since the main result in our paper is about length spaces. For instance (1) the existence of pullback
of metric bundles to be defined below is unclear within the category of geodesic metric spaces; and (2)
we observe that for the definition of Cannon–Thurston maps the assumption of (Gromov) hyperbolic
geodesic metric spaces is rather restrictive and unnecessary.

In a length metric space geodesics may not exist joining a pair of points. However, we still have the
following.

Lemma 2.7 Suppose X is a length space.

(1) Given any � > 0, any pair of points of X can be joined by a continuous , rectifiable , arc length
parametrized path which is a .1; �/-quasigeodesic.

(2) Any pair of points of X can be joined by a dotted 1-quasigeodesic.

Metric graph approximation to a length space Given any length space X , we define a metric graph Y

as follows. We take the vertex set V .Y /DX . We join x;y 2X by an edge (of length 1) if and only if
dX .x;y/ � 1. We let  X W X ! V.Y / � Y be the identity map. Let �X W Y ! X be defined to be the
inverse of  X on V.Y / and for any point y in the interior of an edge e of Y we define �X .y/ to be one
of the end points of the edge e. The following hold.

Lemma 2.8 [17, Lemma 1.32] (1) Y is a (connected ) metric graph.

(2) The maps  X and �X jV.Y / are coarsely 1-surjective , .1; 1/-quasiisometries.

(3) The map �X is a .1; 3/-quasiisometry and it is a 1-coarse inverse of  X .

Remark We shall refer to the space Y constructed in the proof of the above lemma as the (canonical)
metric graph approximation to X. We also preserve the notation  X and �X to be used in this context only.

Definition 2.9 (Gromov inner product) Let X be any metric space and let p;x;y 2X . Then the Gromov
inner product of x;y with respect to p is defined to be the number 1

2
.d.p;x/C d.p;y/� d.x;y//. It is

denoted by .x:y/p.

Lemma 2.10 Suppose X is a length space and x1;x2;x3 2X . Let 
ij , i < j , 1� i; j � 3 denote .1; 1/-
quasigeodesics joining the respective pairs of points xi ;xj . Suppose there are points w1 2 
23, w2 2 
13

and w3 2 
12 such that d.w1; wi/�R for some R� 0, i D 2; 3. Then j.x2:x3/x1
�d.x1; w1/j � 3C2R.
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Proof By triangle inequality we have jd.x2; w1/ � d.x2; w2/j � R, jd.x3; w1/ � d.x3; w2/j � R,
jd.x1; w1/� d.x1; wi/j �R, i D 2; 3. Since the 
ij ’s are .1; 1/-quasigeodesics it is easy to see that

d.x1; w3/C d.w3;x2/� d.x1;x2/C 3; d.x1; w2/C d.w2;x3/� d.x1;x3/C 3;

d.x2; w1/C d.w1;x3/� d.x2;x3/C 3:

It then follows by a simple calculation that

2d.x1; w1/� 6� 4R� d.x1;x2/C d.x1;x3/� d.x2;x3/� 2d.x1; w1/C 3C 4R:

Hence, we have j.x2:x3/x1
� d.x1; w1/j � 3C 2R.

Definition 2.11 (1) Suppose X is a length space and Y1;Y2;Z are nonempty subsets of X. We say
that Z coarsely disconnects Y1;Y2 in X if (i) Yi nZ ¤∅, i D 1; 2 and (ii) for all K � 1 there is
R � 0 such that the following holds: for any yi 2 Yi , i D 1; 2 and any K-quasigeodesic 
 in X

joining y1;y2 we have 
 \NR.Z/¤∅.

(2) Suppose Y;Z �X , Y1;Y2� Y. We say that Z coarsely bisects Y into Y1;Y2 in X if Y D Y1[Y2

and Z coarsely disconnects Y1;Y2 in X .

(3) Suppose fXig is a collection of length spaces and there are nonempty sets Yi ;Zi�Xi , Y Ci ;Y
�
i �Yi

such that Yi D Y Ci [Y �i , Y Ci nZi ¤∅, and Y �i nZi ¤∅ for all i . We say that Zi’s uniformly
coarsely bisect Yi’s into Y Ci ’s, and Y �i ’s if for all K � 1 there is RDR.K/� 0 with the following
property: for any i , and for any xCi 2 Y Ci , x�i 2 Y �i and any K-quasigeodesic 
i �Xi joining x˙i
we have NR.Zi/\ 
i ¤∅.

We note that the first part of the above definition implies Y1\Y2 �NR.1/.Z/. Moreover one would like
to impose the condition that Yi nZ are of infinite diameter. Keeping the application we have in mind we
do not assume that.

Definition 2.12 (approximate nearest point projection) (1) Suppose X is any metric space, A�X ,
and x 2X . Given � � 0 and y 2A we say that y is an �-approximate nearest point projection of
x on A if for all z 2A we have d.x;y/� d.x; z/C �.

(2) Suppose X is any metric space, A�X and � � 0. An �-approximate nearest point projection map
f WX !A is a map such that f .a/D a for all a 2A and f .x/ is an �-approximate nearest point
projection of x on A for all x 2X nA.

For � D 0 an �-approximate nearest point projection is simply referred to as a nearest point projection.
A nearest point projection map from X onto a subset A will be denoted by PA;X W X ! A or simply
PA WX !A when there is no possibility of confusion.

We note that given a metric space X and A � X a nearest point projection map X ! A may not be
defined in general but an �-approximate nearest point projection map X !A exists by axiom of choice
for all � > 0.
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Lemma 2.13 Suppose X is a metric space and A � X. Suppose y 2 A is an �-approximate nearest
point projection of x 2 X . Suppose ˛ W I ! X is a .1; 1/-quasigeodesic joining x;y. Then y is an
.�C3/-approximate nearest point of x0 on A for all x0 2 ˛.

Proof Suppose z 2 A is any point. Then we know that d.x;y/ � d.x; z/C �. Since ˛ is a .1; 1/-
quasigeodesic it is easy to see that d.x;x0/C d.x0;y/ � d.x;y/C 3. Hence, d.x;x0/C d.x0;y/ �

d.x; z/C3C� which in turn implies that d.x0;y/� d.x; z/�d.x;x0/C3C�� d.x0; z/C�C3. Hence,
y is an .�C3/-approximate nearest point projection of x0 on A.

Corollary 2.14 Suppose X is any metric space and x;y; z 2X . Suppose ˛, ˇ are .1; 1/-quasigeodesics
joining x;y and y; z, respectively. If y is an �-approximate nearest point projection of x on ˇ then ˛ �ˇ
is .3; 3C�/-quasigeodesic.

Proof Let x0 2 ˛ and y0 2 ˇ. Let ˇ0 denote the segment of ˇ from y to y0. Then y is an �-approximate
nearest point projection of x on ˇ0 too. Hence, by the previous lemma y is an .�C3/-approximate nearest
point projection of x0 on ˇ0. Without loss of generality, suppose ˛.a/D x0, ˛.aCm/D y, ˇ.0/D y, and
ˇ.n/D y0. Now, d.x0;y/� d.x0;y0/C�C3. Hence d.y;y0/� d.x0;y0/Cd.x0;y/� 2d.x0;y0/C�C3.
Since ˛; ˇ are both .1; 1/-quasigeodesics it follows that m � 1 � d.x0;y/ � d.x0;y0/C � C 3 and
n� 1 � d.y;y0/ � 2d.x0;y0/C �C 3. Adding these we get mC n� 2 � 3d.x0;y0/C 2�C 6. On the
other hand, d.x0;y0/� d.x0;y/C d.y;y0/�mC nC 2. Putting everything together we get

1
3
.mC n/� 1

3
.2�C 8/� d.x0;y0/� .mC n/C 2

from which the corollary follows immediately.

2.2 Rips hyperbolicity vs Gromov hyperbolicity

This subsection gives a quick introduction to some basic notions and results about hyperbolic metric
spaces. One is referred to [1; 13; 14] for more details. The following definition of hyperbolic metric
spaces is due to E Rips and hence we refer to this as the Rips hyperbolicity.

Definition 2.15 (1) Suppose�x1x2x3 is a geodesic triangle in a metric space X and ı�0, K�0. We
say that the triangle�x1x2x3 is ı-slim if any side of the triangle is contained in the ı-neighborhood
of the union of the remaining two sides.

(2) Let ı � 0 and X be a geodesic metric space. We say that X is ı-hyperbolic (in the sense of Rips)
if all geodesic triangles in X are ı-slim.

A geodesic metric space is said to be (Rips) hyperbolic if it is ı-hyperbolic in the sense of Rips for some
ı � 0.

However, in this paper we need to deal with length spaces a lot which a priori need not be geodesic. The
following definition is more relevant in that case.
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Definition 2.16 (Gromov hyperbolicity) Suppose X is any metric space, not necessarily geodesic and
ı � 0.

(1) Let p 2X . We say that the Gromov inner product on X with respect to p, ie the map X �X !R

defined by .x;y/ 7! .x:y/p, is ı-hyperbolic if

.x:y/p �minf.x:z/p; .y:z/pg� ı

for all x;y; z 2X.

(2) The metric space X is called ı-hyperbolic in the sense of Gromov if the Gromov inner product on
X is ı-hyperbolic with respect to any point of X .

A metric space is called (Gromov) hyperbolic if it is ı-hyperbolic in the sense of Gromov for some ı � 0.

However, it is a standard fact that for geodesic metric spaces the two concepts are equivalent. See [14,
Section 6.3C], or [6, Proposition 1.22, Chapter III.H] for instance. In this subsection we observe an
analog of Rips hyperbolicity in Gromov hyperbolic length spaces using the next two lemmas.

The following lemma is a crucial property of Rips hyperbolic metric spaces.

Lemma 2.17 (stability of quasigeodesics in a Rips hyperbolic space [13]) For all ı � 0 and k � 1,
� � 0 there is a constant D2:17 DD2:17.ı; k; �/ such that the following holds:

Suppose Y is a geodesic metric space ı-hyperbolic in the sense of Rips. Then the Hausdorff distance
between a geodesic and a .k; �/-quasigeodesic joining the same pair of end points is less than or equal
to D2:17.

One is referred to [25, Theorems 3.18, 3.20] for a proof of the following lemma.

Lemma 2.18 Suppose X is a metric space which is ı-hyperbolic in the sense of Gromov. If f WX ! Y

is a R-coarsely surjective , .1;C /-quasiisometry then Y is D DD2:18.ı;R;C /-hyperbolic in the sense
of Gromov.

Using metric graph approximations to length spaces (Lemma 2.8) and the fact that for geodesic metric
spaces Gromov hyperbolicity implies Rips hyperbolicity we obtain the following three corollaries.

Corollary 2.19 (stability of quasigeodesics in a Gromov hyperbolic space) Given ı � 0, k � 1, � � 0

there is D DD2:19.ı; k; �/ such that the following holds:

Suppose X is metric space which is ı-hyperbolic in the sense of Gromov. Then given .k; �/-quasigeodesics

i , i D 1; 2 with the same end points we have Hd.
1; 
2/�D.
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Corollary 2.20 (analog of Rips hyperbolicity for length spaces) Suppose X is a length space. If X is
ı-hyperbolic in the sense of Gromov then for all K � 1, � � 0 all .K; �/-quasigeodesic triangles in X are
D2:20 DD2:20.ı;K; �/-slim.

Conversely if all .K; �/-quasigeodesic triangles in X are R-slim for some R� 0 and for some sufficiently
large K; � then X is �2:20 D �2:20.R;K; �/-hyperbolic in the sense of Gromov.

Slimness of triangles immediately implies slimness of polygons:

Corollary 2.21 (slimness of polygons) Suppose that X is a length space. If X is ı-hyperbolic in the
sense of Gromov then for all K � 1, � � 0 all .K; �/-quasigeodesic n-gons in X are .n�2/D2:20 D

.n�2/D2:20.ı;K; �/-slim.

Convention 2.22 For the rest of the paper a ı-hyperbolic (or simply hyperbolic) space will refer either
to (1) a ı-hyperbolic (resp. hyperbolic) space in the sense of Rips if it is a geodesic metric space or
(2) a ı-hyperbolic (resp. hyperbolic) space in the sense of Gromov if it is not a geodesic metric space.
However, in this case the space will be assumed to be a length space. The constant ı will be referred to
as the hyperbolicity constant for the space involved.

2.3 Quasiconvex subspaces of hyperbolic spaces

Definition 2.23 Let X be a hyperbolic geodesic metric space and let A�X . For K � 0, we say that A

is K-quasiconvex in X if any geodesic with end points in A is contained in NK .A/.

If X is a Gromov hyperbolic length space and A�X then we will say that A is K-quasiconvex if any
.1; 1/-quasigeodesic joining a pair of points of A is contained in NK .A/.

A subset A�X is said to be quasiconvex if it is K-quasiconvex for some K � 0.

The following lemma relates quasiconvexity with qi embedding. It is straightforward and is proved in the
context of geodesic metric spaces in [17, Chapter 1, Section 1.11]. Hence we skip the proof.

Lemma 2.24 (1) Given ı � 0 and k � 0 there are constants D DD.ı; k/ and K DK.ı; k/ such that
the following holds:
Suppose X is a ı-hyperbolic metric space and A � X is k-quasiconvex. Then ND.A/ is path
connected and with respect to the induced path metric on ND.A/ from X the inclusion map
ND.A/!X is a K-qi embedding.

(2) Suppose X is a hyperbolic metric space and Y is a quasiconvex subset. Suppose Y is path connected
and with respect to the induced path metric on Y from X the inclusion map Y !X is metrically
proper. Then the inclusion map is a qi embedding.
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In this subsection, in a Gromov hyperbolic setting, we prove a number of results about quasiconvex sets
analogous to those in [24, Section 1.2] which were proved in a Rips hyperbolic setting. The importance
of the following lemma for this paper can be hardly exaggerated.

Lemma 2.25 (projection on a quasiconvex set) Let X be a ı-hyperbolic metric space , U � X a
K-quasiconvex set and � � 0. Suppose y 2 U is an �-approximate nearest point projection of a point
x 2 X on U. Let z 2 U. Suppose ˛ is a (dotted ) k-quasigeodesic joining x to y and ˇ is a (dotted )
k-quasigeodesic joining y to z. Then ˛ �ˇ is a (dotted ) K2:25 DK2:25.ı;K; k; �/-quasigeodesic in X.

In particular , if 
 is k-quasigeodesic joining x; z then y is contained in the D2:25.ı;K; k; �/-neighborhood
of 
 .

Proof Without loss of generality we shall assume that X is a ı-hyperbolic length space. Suppose ˇ1

is a .1; 1/-quasigeodesic in X joining y; z. Since U is K-quasiconvex it is clear that y is an .�CK/-
approximate nearest point projection of x on ˇ1. Hence, if ˛1 is a .1; 1/-quasigeodesic joining x;y

then ˛1 � ˇ1 is a .3; 3C�CK/-quasigeodesic in X by Corollary 2.14. By stability of quasigeodesics
Hd.˛; ˛1/�D2:19.ı; k; �/, and Hd.ˇ; ˇ1/�D2:19.ı; k; �/. Hence, Hd.˛�ˇ; ˛1�ˇ1/�D2:19.ı; k; �/.
By Lemma 2.5 it is enough to show now that 
 D ˛�ˇ is uniformly properly embedded. Let 
1D ˛1�ˇ1

and R D D2:19.ı; k; �/. Suppose ˛ W Œ0; l � ! X with ˛.0/ D x, ˛.l/ D y and ˇ W Œ0;m� ! X with
ˇ.0/D y, ˇ.m/D z. Let s � t 2 Œ0; l Cm� and d.
 .s/; 
 .t//�D for some D � 0. We need to find a
constant D1 such that t � s �D1, where D1 depends on ı; k;K and D only. However, if s; t 2 Œ0; l � or
s; t 2 Œl; l Cm� then we have �kC .t � s/=k �D since both ˛; ˇ are k-quasigeodesics. Hence, in that
case t � s � k2C kD.

Suppose s 2 Œ0; l/ and t 2 .l;m�. In this case 
 .s/ D ˛.s/, 
 .t/ D ˇ.t � l/. Let x0 2 ˛1, y0 2 ˇ1

be such that d.x0; 
 .s// � R and d.y0; 
 .t// � R. Then d.x0;y0/ � 2RCD. Suppose 
1.s
0/ D x0,


1.t
0/D y0, 
1.u/D y, where s0 � u� t 0. Since 
1 is a .3; 3C�CK/-quasigeodesic we have js0� t 0j �

3.3C �CK/C 3d.x0;y0/ � 3.3C �CK/C 3.2RCD/. It follows that js0 � uj and ju� t 0j are both
at most 3.3C �CK/C 3.2RCD/D 9C 3�C 3KC 6RC 3D. Hence, d.x0;y/; d.y;y0/ are both at
most 3.9C 3�C 3K C 6RC 3D/C 3C �CK D 30C 10�C 10K C 18RC 9D D D0, say. Hence,
d.
 .s/;y/, d.y; 
 .t// are both at most RCD0. Since ˛; ˇ are k-quasigeodesics it follows that l � s

and t � l are both at most k2C k.RCD0/. Hence, t � s � 2.k2C k.RCD0//. Hence, we can take
D1 D 2k2C 2kRC 2kD0. This completes the proof of the existence of K2:25.

Clearly one can set D2:25.ı;K; k; �/DD2:19.ı;K2:25.ı;K; k; k/;K2:25.ı;K; k; k//.

Corollary 2.26 Suppose X is a ı-hyperbolic metric space and ˛ is a k-quasigeodesic in X with an end
point y. Suppose x 2 X and y is an �-approximate nearest point projection of x on ˛. Suppose ˇ is a
k-quasigeodesic joining x to y. Then ˇ �˛ is a K2:26.ı; k; �/-quasigeodesic.
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Proof We briefly indicate the proof. One first notes by stability of quasigeodesics that images of uniform
quasigeodesics are uniformly quasiconvex. Then one applies the preceding lemma.

The following corollary easily follows from Lemmas 2.25 and 2.13. For instance, the proof is similar to
that of [24, Lemma 1.32].

Corollary 2.27 (projection on nested quasiconvex sets) Suppose X is a ı-hyperbolic metric space and
V � U are two K-quasiconvex subsets of X. Suppose x 2 X and x1 2 U, x2 2 V are �-approximate
nearest point projection of x on U and V, respectively. Suppose x3 is an �-approximate nearest point
projection of x1 on V. Then d.x2;x3/�D2:27.ı;K; �/.

In particular , for any two �-approximate nearest point projections x1;x2 of x on U we have

d.x1;x2/�D2:27.ı;K; �/:

Corollary 2.28 Given ı � 0;K � 0; � � 0 there are constants LDL2:28.ı;K; �/, D DD2:28.ı;K; �/

and RDR2:28.ı;K; �/ such that the following hold :

(1) Suppose X is a ı-hyperbolic metric space and U is a K-quasiconvex subset of X . Then for all � � 0

any �-approximate nearest point projection map P WX ! U is coarsely L-Lipschitz.

(2) Suppose V is another K-quasiconvex subset of X and v1; v2 2 V and ui D P .vi/, i D 1; 2. If
d.u1;u2/�D then u1;u2 2NR.V /.

In particular , if the diameter of P .V / is at least D then d.U;V /�R.

Proof (1) Suppose x;y 2 X with d.x;y/ � 1. Then P .x/ is an .�C1/-approximate nearest point
projection of y on U. Hence, by Corollary 2.27 we have d.P .x/;P .y// �D2:27.ı;K; �C 1/ and we
may take L2:28.ı;K; �/DD2:27.ı;K; �C 1/ by Lemma 2.6.

(2) Consider the quadrilateral formed by .1; 1/-quasigeodesics joining the pairs .u1;u2/; .u2; v2/; .v2; v1/

and .v1;u1/. This is 2D2:20.ı; 1; 1/-slim by Corollary 2.21. Let ı0 D 2D2:20.ı; 1; 1/. Suppose no
point of the side v1v2 is contained in a ı0-neighborhood of the side u1u2. Then there are two points
say x1;x2 2 v1v2 such that xi 2 Nı0.uivi/, i D 1; 2 and d.x1;x2/ � 2. Hence there are points
yi 2 uivi , i D 1; 2 such that d.y1;y2/ � 2 C 2ı0. However, ui is an .�C3/-approximate nearest
point projection of yi on U by Lemma 2.13. Hence, by the first part of Corollary 2.28 we have
d.u1;u2/�L2:28.ı;K; �C 3/C .2C 2ı0/L2:28.ı;K; �C 3/. Hence, if the diameter of P .V / is bigger
than D DL2:28.ı;K; �C 3/C .2C 2ı0/L2:28.ı;K; �C 3/ then there is a point x 2 v1v2 and y 2 u1u2

such that d.x;y/ � ı0. Since U is K-quasiconvex we have thus x 2NKCı0.U /. Thus we may choose
RDKC ı0.

The second part of the above corollary is implied in Lemma 1.35 of [24] too. The next lemma roughly
says that the nearest point projection of a quasigeodesic on a quasiconvex set is close to a quasigeodesic.
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Lemma 2.29 Given K� 0, R� 0, ı� 0 there is a constant DDD2:29.R;K; ı/ such that the following
holds:

Suppose X is a ı-hyperbolic metric space and A is a K-quasiconvex subset of X. Suppose x;y 2X and
Nx; Ny 2 A, respectively, are their 1-approximate nearest point projections on A. Let Œx;y�; Œ Nx; Ny� denote
1-quasigeodesics in X joining x;y and Nx; Ny, respectively. Suppose z 2 Œx;y� and Nz is a 1-approximate
nearest point projection of z on A and d.z; Nz/�R. Then d.z; Œ Nx; Ny�/�D.

Proof By Corollary 2.21, quadrilaterals in X formed by 1-quasigeodesics are 2D2:20.ı; 1; 1/-slim.
Hence, there is z0 2 Œx; Nx�[ Œ Nx; Ny�[ Œy; Ny� such that d.z; z0/ � 2D2:20.ı; 1; 1/. If z0 2 Œ Nx; Ny� then we
are done. Suppose not. Without loss of generality let us assume that z0 2 Œx; Nx�. Then d.z0;A/ �

d.z; z0/Cd.z;A/� 2D2:20.ı; 1; 1/CR. Since Nx is a 1-approximate nearest point projection of x on A,
Nx is a 4-approximate nearest point projection of z0 on A by Lemma 2.13. Hence, by Corollary 2.28,
d. Nx; Nz/�L2:28.ı;K; 4/d.z

0; z/�L2:28.ı;K; 4/.2D2:20.ı; 1; 1/CR/. But d.z; Nz/�R. Hence,

d.z; Nx/�RCL2:28.ı;K; 4/.2D2:20.ı; 1; 1/CR/:

Thus we can take D2:29.R;K; ı/Dmax
˚
2D2:20.ı; 1; 1/; RCL2:28.ı;K; 4/.2D2:20.ı; 1; 1/CR/

	
:

The following lemma asserts that quasiconvexity and nearest point projections are preserved under qi
embeddings.

Lemma 2.30 Suppose X is a ı-hyperbolic metric graph and Y �X is a connected subgraph such that
the inclusion .Y; dY /! .X; dX / is a k-qi embedding. Suppose A� Y is K-quasiconvex in Y. Then the
following hold :

(1) A is K2:30.ı; k;K/-quasiconvex in X.

(2) For any x 2 Y if x1;x2 2A are the nearest point projections of x on A in Y and X , respectively ,
then dY .x1;x2/�D2:30.ı; k;K/.

Proof (1) Suppose x;y 2A and let ˛; ˇ be geodesics joining x;y in Y and X , respectively. Since Y

is k-qi embedded, ˛ is a .k; k/-quasigeodesic in X by Lemma 2.3. Hence, by stability of quasigeodesics
Hd.˛; ˇ/ �D2:17.ı; k; k/. However, A being K-quasiconvex in Y, ˛ �NK .A/ in Y and hence in X

as well. Thus ˇ �NKCD2:17.ı;k;k/.A/ in X . Hence, we can take K2:30.ı; k;K/DKCD2:17.ı; k; k/.

(2) Suppose K1 D K2:30.ı; k;K/. Then x2 2 ND.Œx;x1�X / in X , where D D D2:25.ı;K1; 1; 1/.
We have Hd.Œx;x1�Y ; Œx;x1�X / � D2:17.ı; k; k/ by stability of quasigeodesics. Thus there is a point
x0

2
2 Œx;x1�Y such that dX .x2;x

0
2
/ � D CD2:17.ı; k; k/ D D1, say. Then dY .x2;x

0
2
/ � k.D1 C k/

since Y is k-qi embedded in X . Since x1 is a nearest point projection of x on A in Y, it is also a
nearest point projection of x0

2
on A in Y. Hence, dY .x

0
2
;x1/ � dY .x

0
2
;x2/ � k.D1 C k/. Hence,

dY .x1;x2/� 2k.D1C k/ by triangle inequality. Thus we can take D2:30.ı; k;K/D 2k.D1C k/.
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Definition 2.31 Suppose X is a ı-hyperbolic metric space and A;B are two quasiconvex subsets.
Let R > 0. We say that A;B are mutually R-cobounded, or simply R-cobounded, if the set of all
1-approximate nearest point projections of the points of A on B has a diameter at most R and vice versa.

When the constant R is understood or is not important we just say that A;B are cobounded.

The following corollary is an immediate consequence of Corollary 2.28(2).

Corollary 2.32 [24, Lemma 1.35] Given ı � 0; k � 0 there are constants D D D2:32.ı; k/ and
RDR2:32.ı; k/ such that the following holds:

Suppose X is a ı-hyperbolic metric space and A;B �X are two k-quasiconvex subsets. If d.A;B/�D

then A;B are mutually R-cobounded.

The following proposition and its proof are motivated by an analogous result due to Hamenstädt [16,
Lemma 3.5]. See also [24, Corollary 1.52]. Before we state the proposition let us explain the set-up.

(P0) Suppose X is a ı-hyperbolic metric graph and Y �X is a K-quasiconvex subgraph, for some ı � 0,
K � 0. Suppose I is an interval in R with end points in Z[f1;�1g and … W Y ! I is a map such that
I \Z�….Y /. Let Yi WD…

�1.i/ for all i 2 I \Z and Yij D…
�1.Œi; j �/ for all i; j 2 I \Z with i < j

such that the following hold:

(P1) All the sets Yi and Yij , i; j 2 I , i < j are K-quasiconvex in X.

(P2) Yi uniformly coarsely bisects Y into Y �i WD…
�1..�1; i �\ I/ and Y Ci WD…

�1.Œi;1/\ I/ for
all i 2 I . Let R� 0 be such that any geodesic in Y joining Y Ci and Y �i passes through NR.Yi/ for all
i 2 I \Z.

(P3) d.YiiC1;YjjC1/ > 2KC 1 for all i; j 2 I if j C 1 2 I and i C 1< j .

(P4) There is D � 0 such that the sets Yi and Yj are D-cobounded in X for all i; j 2 I \Z with i < j

unless j D i C 1 and i; j are the end points of I .

The proposition below is about a description of uniform quasigeodesics in X joining points of Y.

Proposition 2.33 Given ı � 0, K � 0, D � 0, �� 1, � � 1 and R� 0 there are

�0 D �2:33.ı;K;D; �; �;R/� 1 and �2:33 D �2:33.ı;K;D; �;R/� 0

such that the following holds.

Suppose we have the aforementioned hypotheses (P0)–(P4). Suppose m; n 2 I \Z and y 2 Ym, y0 2 Yn.
Suppose yi 2 Y, m � i � n are defined as follows: ym D y, yiC1 is an �-approximate nearest point
projection of yi on YiC1 for m� i � n�1. Suppose ˛i � YiiC1 is a �-quasigeodesic in X joining yi and
yiC1, m� i � n� 1 and ˇ is a �-quasigeodesic joining yn and y0.

Then the concatenation of the all the ˛i’s and ˇ is a �0-quasigeodesic in X joining y;y0. Moreover , each
yi is an �2:33-approximate nearest point projection of y on Yi for mC 2� i � n.

Algebraic & Geometric Topology, Volume 25 (2025)



2684 Swathi Krishna and Pranab Sardar

Proof The proof is broken into the following three claims. In course of the proof we shall denote the
concatenation of the ˛i’s and ˇ by ˛.

Claim 1 Suppose x 2 Y �i for some i . Let Nx be an �-approximate nearest point projection of x on Yi .
Then Nx is an �0-approximate nearest point projection of x on Y Ci where �0 depends only on � and the
parameters ı;D;K and R.

Proof Suppose x0 is a 1-approximate nearest point projection of x on Y Ci . Since Y Ci is K-quasiconvex,
Œx;x0� � Œx0; Nx� is a K2:25.ı;K; 1; 1/-quasigeodesic by Lemma 2.25. Let k1 DK2:25.ı;K; 1; 1/. Then
by stability of quasigeodesics there is a point z 2 Œx; Nx� such that d.x0; z/ � D2:17.ı; k1/ D D1, say.
We claim that z is uniformly close to Yi . Since Y �i is K-quasiconvex there is a point w 2 Y �i such
that d.z; w/ � K. It follows that d.w;x0/ � D1 CK. By (P2), there is a point z1 2 Œw;x

0� such
that d.z1;Yi/ � R. Since d.z1; w/ � d.w;x0/ � D1CK and d.w; z/ �K, it follows by the triangle
inequality that d.z;Yi/� 2KCD1CR. Now, by Lemma 2.13 Nx is an .�C3/-approximate nearest point
projection of z on Yi . Hence, d.x0; Nx/ � d.x0; z/C d.z; Nx/ � D1C �C 3C d.z;Yi/. It follows that
�0 D 3C �C 2KC 2D1CR works. G

Note We shall use D1 again in the proof of Claim 3 to denote the same constant as in the proof of Claim 1
above.

Claim 2 Next we claim that for all mC 2� i � n� 1 there is uniformly bounded set Ai � Yi such that
�-nearest point projection of any point of Y �j , j < i on Yi is contained in Ai .

Proof Consider any Yi , mC 2� i � n� 1. Let Bi � Yi be the set of all 1-approximate nearest point
projections of points of Yi�1 on Yi in X . Then the diameter of Bi is at most D by (P4). Suppose x 2 Y �j ,
j < i . Let x1;x2 be �-approximate nearest point projections of x on Yi�1 and Yi , respectively. Let x3 be
an �-nearest point projection of x1 on Yi . Now, by Step 1 x1 is an �0-approximate nearest point projection
of x on Y C

i�1
and x2, x3 are �0-approximate nearest point projection of x and x1, respectively, on Y Ci .

Therefore, by the first part of Corollary 2.27 we have d.x2;x3/�D2:27.ı;K; �
0/. However, if x0

1
2 Bi

is a 1-approximate nearest point projection of x1 on Yi then by the second part of Corollary 2.27 we have
d.x3;Bi/� d.x3;x

0
1
/�D2:27.ı;K; �/ since � � 1. Hence, d.x2;Bi/� 2D2:27.ı;K; �/. Therefore, we

can take Ai DN2D2:27.ı;K ;�/.Bi/\Yi . G

Let r D supmC2�i�n�1fdiam.Ai/g. We note that r �DC 2D2:27.ı;K; �/.

Claim 3 Finally we claim that (1) ˛ is contained in a uniformly small neighborhood of a geodesic joining
y;y0 and (2) ˛ is uniformly properly embedded in X .

We note that the proposition follows from Claim 3 using Lemma 2.5.

Proof of Claim 3 Suppose x;x0 2 ˛, ….x/ < ….x0/. Choose smallest k; l such that x 2 ˛ \ YkkC1,
x0 2 ˛\Yl lC1, where m� k � l � n. Let 
 be a geodesic in X joining x;x0.
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(1) It is enough to show that the segment of ˛ joining x to x0 is contained in a uniformly small
neighborhood of 
 . Hence, without loss of generality k < l . Due to Corollary 2.21 it is enough to prove
that the points yi , kC 1� i � l � 1 are contained in a uniformly small neighborhood of 
 in order to
show that the segment of ˛ joining x to x0 is contained in a uniformly small neighborhood of 
 . (We
note that the path ˛n�1 �ˇ is a D2:25.ı;K; �; �/-quasigeodesic joining yn�1 and y0.) For this first we
note that x is on ˛k . Let 
k be a geodesic joining yk ;ykC1. Then by stability of quasigeodesics there
is a point x1 2 
k such that d.x1;x/ � D2:19.ı; �; �/. Since ykC1 is an �-approximate nearest point
projection of yk on YkC1, by Lemma 2.13 ykC1 is an .�C3/-approximate nearest point projection of x1

on YkC1. Hence, ykC1 is an .�C3CD2:19.ı; �; �//-approximate nearest point projection of x1 on YkC1.
Let �1 D �C 3CD2:19.ı; �; �/. By Step 1 ykC1 is an �0

1
-nearest point projection of x on Y C

kC1
, where

�0
1
D 3C �1 C 2D1 CC2K CR. Now the concatenation of a geodesic joining ykC1 to x0 with the

segment of ˛ from x to ykC1 is a uniform quasigeodesic by Lemma 2.25. Thus by Corollary 2.19 ykC1

is uniformly close to 
 . On the other hand by Step 2 yi is an .�Cr/-approximate nearest point projection
of x on Yi and hence an .�Cr/0-approximate nearest point projection on Y Ci for all kC 2 � i � l � 1.
Hence, again by Lemma 2.25 and Corollary 2.19 yi is within a uniformly small neighborhood of 
 . This
proves (1).

(2) Suppose LD supfd.yi ; 
 / W kC1� i � l�1g. Suppose x;x0 2 ˛ as above with d.x;x0/�N. Once
again, without loss of generality k < l . We claim that l � kCN. To see this consider two adjacent vertices
vi ; viC1 on 
 . If vi 2 NK .YssC1/ and viC1 2 NK .Yt tC1/ with s < t then by (P3) we have t D sC 1.
The claim follows from this. Suppose ˛.sk/D x, ˛.si/D yi for kC 1� i � l � 1 and ˛.sl/D x0. We
note that d.˛.si/; ˛.siC1//�N C 2L for k � i � l � 1. Since l � k �N and since the segments of ˛
joining ˛.si/; ˛.siC1/, k � i � l � 1 are uniform quasigeodesics, we are done. G

For the second part of the proposition we have already noticed that yi is an .�Cr/-approximate nearest
point projection of any point Y �j , in particular of y, on Yi for all j < i , mC 2� i � n� 1. On the other
hand, yn�1 is an .�C r/0 D .�C r C 3C 2D1C 2KCR/-approximate nearest point projection of y

on Y C
n�1

. Hence, by Corollary 2.27 if y0n is a 1-approximate point projection of y on Yn � Y C
n�1

then
d.y0n;yn/�D2:27.ı;K; .�C r/0/. Thus yn is an .1CD2:27.ı;K; .�C r/0//-approximate nearest point
projection of y on Yn.

Lemma 2.34 Given ı � 0, k � 1, � � 0, there is a constant D DD2:34.ı; k; �/ such that the following
is true:

Suppose X is a ı-hyperbolic metric space. Suppose x1;x2;p 2X and ˛ is a .k; �/-quasigeodesic in X

joining x1;x2. Then j.x1:x2/p � d.p; ˛/j �D.

Proof Without loss of generality, we shall assume that X is a length space ı-hyperbolic in the sense
of Gromov. Let w 2 ˛ be a 1-approximate nearest point projection of p on ˛. Let ˇ1; ˇ2 be .1; 1/-
quasigeodesics joining the pairs of points .x1;p/; .x2;p/, respectively. Let 
 be a .1; 1/-quasigeodesic

Algebraic & Geometric Topology, Volume 25 (2025)



2686 Swathi Krishna and Pranab Sardar

joining p; w and let ˛0 be a .1; 1/-quasigeodesic joining x1;x2. Let C D D2:19.ı; k; � C 1/. Now,
by Corollary 2.19 Hd.˛; ˛0/ � C and ˛ is C -quasiconvex. Let ˛1 be the portion of ˛ from x1 to w
and let ˛2 be the portion of ˛ from w to x2. Then ˛1 � 
 , ˛2 � 
 are K D K2:25.ı;C; k C �; k C �/-
quasigeodesics. Hence by Corollary 2.19 Hd.ˇi ; ˛i � 
 / � D2:19.ı;K;K/. Let wi 2 ˇi be such that
d.w;wi/ � D2:19.ı;K;K/. Since Hd.˛; ˛0/ � C , there is a point w0 2 ˛0 such that d.w;w0/ � C .
Hence, d.w0; wi/�CCD2:19.ı;K;K/DR, say. Now by Lemma 2.10 j.x1:x2/p�d.p; w0/j � 3C2R.
It follows that j.x1:x2/p � d.p; w/j � 3C 2RCC . Since w is a 1-approximate nearest point projection
of p on ˛ we have for all z 2 ˛, d.p; w/ � d.p; z/ C 1. Thus jd.p; ˛/ � d.p; w/j � 1. Hence,
j.x1:x2/p � d.p; ˛/j � 4C 2RCC .

2.4 Boundaries of hyperbolic spaces and CT maps

Given a hyperbolic metric space, there are the following three standard ways to define a boundary. Some
of the results in this subsection are mentioned without proof. One may refer to [1; 6] and for details.

Definition 2.35 (1) Geodesic boundary Suppose X is a (geodesic) hyperbolic metric space. Let G
denote the set of all geodesic rays in X . The geodesic boundary @X of X is defined to be G=�,
where � is the equivalence relation on G defined by setting ˛ � ˇ if and only if Hd.˛; ˇ/ <1.

(2) Quasigeodesic boundary Suppose X is a hyperbolic metric space in the sense of Gromov. Let Q
be the set of all quasigeodesic rays in X . Then the quasigeodesic boundary @qX is defined to be
Q=�, where � is defined as above.

(3) Gromov boundary or sequential boundary Suppose X is a hyperbolic metric space in the sense
of Gromov and p2X. Let S be the set of all sequences fxng in X such that limi;j!1.xi :xj /pD1.
All such sequences are said to converge to infinity. On S we define an equivalence relation where
fxng � fyng if and only if limi;j!1.xi :yj /p D1 for some (any) base point p 2X. The Gromov
boundary or the sequential boundary @sX of X , as a set, is defined to be S=�.

Notation and convention (1) The equivalence class of a geodesic ray or a quasigeodesic ray ˛ in @X
or @qX is denoted by ˛.1/. It is customary to fix a base point and require that all the rays start from
there to define @X and @qX but it is not essential.

(2) If ˛ is a (quasi)geodesic ray with ˛.0/ D x, ˛.1/ D � then we say that ˛ joins x to �. We use
Œx; �/ to denote any (quasi)geodesic ray joining x to � when the parametrization of the (quasi)geodesic
ray is not important or is understood.

(3) If ˛ is a quasigeodesic line with ˛.1/D �1, ˛.�1/D �2 2 @qX then we say that ˛ joins �1; �2.
We denote by .�1; �2/ any quasigeodesic line joining �1; �2 when the parameters of the quasigeodesic are
understood.
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(4) If � D Œfxng� 2 @sX then we write xn ! � or � D limn!1 xn and say that the sequence fxng

converges to � .

(5) We shall denote by yX the set X [ @sX .

The following lemma and proposition summarizes all the basic properties of the boundary of hyperbolic
spaces that we will need in this paper.

Lemma 2.36 [9, Theorem 11.108] Let X , Y be hyperbolic metric spaces.

(1) Given a qi embedding � WX ! Y we have an injective map @� W @sX ! @sY.

(2) (i) If X
�
! Y

 
!Z are qi embeddings then @. ı�/D @ ı @�.

(ii) @.IdX / is the identity map on @sX .
(iii) A qi induces a bijective boundary map.

The following proposition relates the three definitions of boundaries.

Proposition 2.37 (1) For any metric space X the inclusion G!Q induces an injective map @X!@qX .

(2) Given a quasigeodesic ray ˛, limn!1 ˛.n/ is well defined and ˛ � ˇ implies limn!1 ˛.n/ D

limn!1 ˇ.n/. This induces an injective map @qX ! @sX .

(3) If X is a proper geodesic hyperbolic metric space then the map @X ! @qX is a bijection.

(4) The map @qX ! @sX is a bijection for all Gromov hyperbolic length spaces.

In fact , given ı � 0 there is a constant k2:37 D k2:37.ı/ such that given any ı-hyperbolic length space X ,
any pair of points x;y 2 yX can be joined by a k2:37-quasigeodesic.

Proof Properties (1), (2), (3) are standard. See [6, Chapter III.H], for instance. Property (4) is proved for
geodesic metric spaces in Section 2 of [24]. See Lemma 2.4 there. The same result for a general length
space then is a simple consequence of the existence of a metric graph approximation of a length space
and the preceding lemma.

Lemma 2.38 (ideal triangles are slim) Suppose X is a ı-hyperbolic metric space in the sense of Rips
or Gromov. Suppose x;y; z 2 yX and we have three k-quasigeodesics joining each pair of points from
fx;y; zg. Then the triangle is RDR2:38.ı; k/-slim.

In particular , if 
1; 
2 are two k-quasigeodesic rays with 
1.0/ D 
2.0/ and 
1.1/ D 
2.1/ then
Hd.
1; 
2/�R.

The proof of the above lemma is pretty standard and hence we omit it. However, slimness of ideal
triangles immediately implies slimness of ideal polygons:
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Corollary 2.39 (ideal polygons are slim) Suppose X is a ı-hyperbolic metric space in the sense of
Rips or Gromov. Suppose x1;x2; : : : ;xn 2

yX are n points and we have n k-quasigeodesics joining pairs
of points .x1;x2/; .x2;x3/; : : : ; .xn�1;xn/ and .xn;x1/. Then this n-gon is RDR2:39.ı; k; n/-slim , ie
every side is contained in R-neighborhood of the union of the remaining n� 1 sides.

The following lemma gives a geometric interpretation for sequential boundary in terms of quasigeodesics.

Lemma 2.40 Let x 2 X be any point. Suppose fxng is any sequence of points in X and ˇm;n is a
k-quasigeodesic joining xm to xn for all m; n 2 N. Suppose ˛n is a k-quasigeodesic joining x to xn.
Then:

(1) fxng 2 S if and only if limm;n!1 d.x; ˇm;n/D1 if and only if there is a constant D such that
for all M > 0 there is N > 0 with Hd

�
˛m\B.xIM /; ˛n\B.xIM /

�
�D for all m; n�N.

(2) Suppose moreover � 2 @sX and 
n is a k-quasigeodesic in X joining xn to � for all n 2N and ˛ is
a k-quasigeodesic joining x to �.

Then xn! � if and only if d.x; 
n/!1 if and only if there is constant D > 0 such that for all M > 0

there is N > 0 with Hd
�
˛\B.xIM /; ˛n\B.xIM /

�
�D for all n�N .

We skip the proof of this lemma. In fact, the first statement of the lemma is an easy consequence of
Lemma 2.34 and stability of quasigeodesics. The second statement is a simple consequence of Lemma 2.34,
stability of quasigeodesics and Lemma 2.38.

The following lemma is proved in Section 2 of [24] (see Lemmas 2.7 and 2.9 there) for hyperbolic
geodesic metric spaces. The same statements are true for length spaces too. To prove it for length spaces
one just takes a metric graph approximation. Since the proof is straightforward we omit it.

Lemma 2.41 (barycenters of ideal triangles) Given ı � 0 there is r0 � 0 such that for any ı-hyperbolic
length space X , any three distinct points x;y; z 2 yX and any three k2:37.ı/-quasigeodesics joining x;y; z

in pairs there is a point x0 2X such that Nr0
.x0/ intersects all the three quasigeodesics.

We refer to a point with this property to be a barycenter of the ideal triangle �xyz. There is a constant
L0 such that if x0;x1 are two barycenters of �xyz then d.x0;x1/�L0.

Thus we have a coarsely well-defined map @3
s X !X . We shall refer to this map as the barycenter map.

It is a standard fact that for a nonelementary hyperbolic group G if X is a Cayley graph of G then the
barycenter map @3

s X !X is coarsely surjective and vice versa. If X is a hyperbolic metric space such
that the barycenter map for X is coarsely surjective then X will be called a nonelementary hyperbolic
space. In Sections 4 and 5 we deal with spaces with this property.

The following lemma is clear. For instance, we can apply the proof of [24, Lemma 2.9].

Lemma 2.42 Barycenter maps being coarsely surjective is a qi invariant property among hyperbolic
length spaces.
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2.4.1 Topology on @sX and Cannon–Thurston maps

Definition 2.43 (1) If f�ng is a sequence of points in @sX , we say that f�ng converges to � 2 @sX if the
following holds: Suppose �nD Œfxn

k
gk � and �D Œfxkg�. Then limn!1.lim infi;j!1.xi :x

n
j /p/D1.

(2) A subset A� @sX is said to be closed if for any sequence f�ng in A, �n! � implies � 2A.

The definition of convergence that we have stated here is equivalent to the one stated in [1]. Moreover,
that the convergence mentioned above is well-defined follows from [1] and hence we skip it. The next
two lemmas give a geometric meaning of the convergence.

Lemma 2.44 Given k � 1 and ı � 0, there are constants D D D2:44.k; ı/, L D L2:44.k; ı/ and
r D r2:44.k; ı/ with the following properties:

Suppose ˛; ˇ are two k-quasigeodesic rays starting from a point x 2X such that ˛.1/¤ ˇ.1/ and 
 is
a k-quasigeodesic line joining ˛.1/ and ˇ.1/. Then the following hold :

(1) There exists N 2N such that j.˛.m/:ˇ.n//x � d.x; 
 /j �D for all m; n�N .
In particular , j lim infm;n!1.˛.m/:ˇ.n//x � d.x; 
 /j �D.

(2) Suppose RD d.x; 
 / then Hd.˛\B.xIR� r/; ˇ\B.xIR� r//�L.

Proof (1) Since ˛.1/¤ ˇ.1/ by Lemma 2.38 there is N 2N such that for all m; n �N , ˛.m/ 2
NR2:38

.
 / and ˇ.n/ 2NR2:38
.
 /. Let xm;yn 2 
 be such that

d.xm; ˛.m//�R2:38 and d.yn; ˇ.n//�R2:38:

Then by joining xm; ˛.m/ and yn; ˇ.n/ and applying Corollary 2.21 we see that Hausdorff distance
between any .1; 1/-quasigeodesic joining ˛.m/; ˇ.n/, say cm;n and the portion of 
 between xm;yn is at
most R2:38C2D2:20.ı; k; k/. It is clear that for large enough N, d.x; 
 / is the same as the distance of x

and the segment of 
 between xm;yn if m; n�N. Thus for such m; n we have jd.x; cm;n/�d.x; 
 /j �

R2:38 C 2D2:20.ı; k; k/. But by Lemma 2.34, j.˛.m/:ˇ.n//x � d.x; cm;nj � D2:34.ı; k; k/. Hence,
j.˛.m/:ˇ.n//x � d.x; 
 /j �R2:38C 2D2:20.ı; k; k/CD2:34.ı; k; k/ for all large m; n.

(2) To see this we take a 1-approximate nearest point projection, say z, of x on 
 . Let xz denote a
1-quasigeodesic joining x; z. Then by Corollary 2.26 concatenation of xz and the portions of 
 joining z

to 
 .˙1/ respectively are both K2:26.ı; k; k/-quasigeodesics. Call them ˛0 and ˇ0, respectively. Note
that ˛.1/ D ˛0.1/ and ˇ.1/ D ˇ0.1/. Let K D maxfk;K2:26.ı; k; �/g. Then by the last part of
Lemma 2.38 it follows that z 2 Nr .˛/\Nr .ˇ/ where r D R2:38.ı;K/. Suppose x0 2 ˛, y0 2 ˇ are
such that d.z;x0/� r and d.y0; z/� r . By Corollary 2.20 the Hausdorff distance between xz and the
portions of ˛ from x to x0 and the portion of ˇ from x to y0 are each at most D2:20.ı; k; k/C r . Thus
these segments of ˛ and ˇ are at a Hausdorff distance at most LD 2D2:20.ı; k; k/C 2r from each other.
This completes the proof.
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Lemma 2.45 Let x 2X be any point. Suppose f�ng is any sequence of points in @sX . Suppose ˇm;n is a
k-quasigeodesic line joining �m to �n for all m; n 2N and ˛n is a k-quasigeodesic ray joining x to �n for
all n 2N. Then:

(1) limm;n!1 d.x; ˇm;n/D1 if and only if there is a constant D DD.k; ı/ such that for all M > 0

there is N > 0 with Hd
�
˛m \B.xIM /; ˛n \B.xIM /

�
� D for all m; n � N and in this case

f�ng converges to some point of @sX.

(2) Suppose moreover � 2 @sX , 
n is a k-quasigeodesic ray in X joining �n to � for all n, and ˛ is a
k-quasigeodesic ray joining x to � . Then �n! � if and only if d.x; 
n/!1 if and only if there is
constant D0 DD0.k; ı/ such that for all M > 0 there is N > 0 with

Hd
�
˛\B.xIM /; ˛n\B.xIM /

�
�D

for all n�N . In this case limm;n!1 d.x; ˇm;n/D1.

Proof (1) The “if and only if” part is an immediate consequence of Lemma 2.44. We prove the last
part. Let ni be an increasing sequence in N such that for all m; n� ni we have

Hd.˛m\B.xI i/; ˛n\B.xI i//�D:

Let yi be a point of ˛ni
\B.xI i/ such that d.x;yi/C 1 � supfd.x;y/ Wx 2 ˛ni

\B.xI i/g. We claim
that yi converges to a point of @sX . Clearly d.x;yi/!1. Given i � j 2N we have d.yi ; ˛n/�D and
d.yj ; ˛n/�D for all n� nj . By slimness of polygons we see that any .1; 1/-quasigeodesic joining yi ;yj

is uniformly close to ˛n. It follows that limi;j!1.yi :yj /x D1. Let � D Œfyng�. It is clear that �n! � .

(2) Both if and only if statements are immediate from Lemma 2.44. The last part follows from slimness
of ideal triangle since d.x; 
n/!1.

Corollary 2.46 Suppose fxng is a sequence of points in yX such that fxng �X or fxng � @sX . Suppose
xn! � 2 @sX and 
n is a k-quasigeodesic joining xn to � for each n. Let yn 2 
n such that d.x;yn/!1.
Then limn!1 yn D � .

Definition 2.47 (Cannon–Thurston map [21]) If f W Y !X is any map of hyperbolic metric spaces
then we say that the Cannon–Thurston or the CT map exists for f or that f admits the CT map if f
gives rise to a continuous map @f W @Ys! @Xs in the following sense:

Given any � 2 @sY and any sequence of points fyng in Y converging to � , the sequence ff .yn/g converges
to a definite point of @sX independent of the fyng and the resulting map @f W @sY ! @sX is continuous.

Generally, one assumes that the map f is a proper embedding but for the sake of the definition it is
unnecessary. We note that the CT map is unique when it exists. The following lemma gives a sufficient
condition for the existence of CT maps.
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Lemma 2.48 (Mitra’s criterion [21, Lemma 2.1]) Suppose X , Y are geodesic hyperbolic metric spaces
and f W Y !X is a metrically proper map. Then f admits the CT map if the following holds:

(�) Let y0 2Y. There exists a function � WR�0!R�0, with the property that �.n/!1 as n!1 such
that for all geodesic segments Œy1;y2�Y in Y lying outside the n-ball around y0 2 Y, any geodesic
segment Œf .y1/; f .y2/�X in X joining the pair of points f .y1/; f .y2/ lies outside the �.n/-ball
around f .y0/ 2X .

Remark (1) The main set of examples where Lemma 2.48 applies comes from taking Y to be a
rectifiably path connected subspace of a hyperbolic space X with induced length metric and the map f
is assumed to be the inclusion map. One also considers the orbit map G!X where G is a hyperbolic
group acting properly by isometries on a hyperbolic metric space X . In these examples, the map f is
coarsely Lipschitz as well as metrically proper. The proof of the lemma by Mitra also assumes that X ,
Y are proper geodesic metric spaces and Mitra considered the geodesic boundaries. However, these
conditions are not necessary as the following lemma and examples show.

(2) The proof of Lemma 2.48 by Mitra only checks that the map is a well-defined extension of f rather
than it is continuous. However, with very little effort the condition (�) can be shown to be sufficient for
the well-definedness as well as the continuity of the CT map.

(3) One can easily check that the condition (�) is also necessary provided X;Y are proper hyperbolic
spaces and f is coarsely Lipschitz and metrically proper.

The following lemma is the main tool for the proof of our theorem of Cannon–Thurston map. We shall
refer to this as Mitra’s lemma.

Lemma 2.49 Suppose X;Y are length spaces hyperbolic in the sense of Gromov , and f W Y !X is any
map. Let p 2 Y.

(��) Suppose for all N > 0 there is M DM.N / > 0 such that N !1 implies M !1 with the fol-
lowing property: for any y1;y2 2 Y, any .1; 1/-quasigeodesic ˛ in Y joining y1;y2 and any .1; 1/-
quasigeodesic ˇ in X joining f .y1/; f .y2/, B.p;N /\˛ D∅ implies B.f .p/;M /\ˇ D∅.

Then the CT map exists for f W Y !X .

Proof Suppose fyng is any sequence in Y. Suppose ˛i;j is a .1; 1/-quasigeodesic in Y joining
yi ;yj and suppose 
i;j is a .1; 1/-quasigeodesic in X joining f .yi/; f .yj /. Then by Lemma 2.34
limi;j!1.yi :yj /p D1 if and only if limi;j!1 d.p; ˛i;j /D1 and limi;j!1.f .yi/:f .yj //f .p/ D1

if and only if limi;j!1 dX .f .p/; 
i;j / D1. On the other hand, by (��), limi;j!1 d.p; ˛i;j / D1

implies limi;j!1 dX .f .p/; 
i;j /D1. Thus fyng converges to a point of @sY implies ff .yn/g converges
to a point of @sX . The same argument shows that if fyng and fzng are two sequences in Y representing
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the same point of @sY then ff .yn/g and ff .zn/g also represent the same point of @sX . Thus we have a
well-defined map @f W @sY ! @sX .

Now we prove the continuity of the map. We need to show that if �n! � in @sY then @f .�n/! @f .�/.
Suppose �n is represented by the class of fyn

k
gk and � is the equivalence class of fykg. Then

lim
n!1

.lim inf
i;j!1

.yn
i :yj /p/D1:

By Lemma 2.34 then we have
lim

n!1
.lim inf
i;j!1

d.p; ˛n
i;j /D1

for any .1; �/-quasigeodesic ˛n
i;j in Y joining yn

i and yj . By (�) then we have

lim
n!1

.lim inf
i;j!1

d.f .p/; 
 n
i;j /D1;

where 
 n
i;j is any .1; �/-quasigeodesic in X joining f .yn

i /; f .yj /. This in turn implies by Lemma 2.34
that

lim
n!1

�
lim inf
i;j!1

.f .yn
i /:f .yj //f .p/

�
D1:

Therefore, @f .�n/! @f .�/ as was required.

Examples and remarks (1) Suppose f WR�0!R�0 is the function f .x/D ex � 1. Then f is not
coarsely Lipschitz but f admits the CT map.

(2) One can easily cook up an example along the line of the above example where metric properness
is also violated but the CT map exists as we see in the example below. We will see another interesting
example in Corollary 6.10.

(3) The condition (�) in the above lemma is also not necessary in general for the existence of the CT
map. Here is an example in which both metric properness and (�) fail to hold but nevertheless the CT
map exists. Suppose X is a tree built in two steps. First we have a star, ie a tree with one central vertex
on which end points of finite intervals are glued where the lengths of the intervals are unbounded. Then
two distinct rays are glued to each vertex of the star other than the central vertex. Suppose Y is obtained
by collapsing the central star in X to a point and f is the quotient map. Then clearly the CT map exists
but (�) is violated.

The following lemma is very standard and hence we skip mentioning its proof.

Lemma 2.50 (functoriality of CT maps) (1) Suppose X;Y;Z are hyperbolic metric spaces and
f WX ! Y and g W Y !Z admit the CT maps. Then so does g ıf and @.g ıf /D @g ı @f.

(2) If i WX !X is the identity map then it admits the CT map @i which is the identity map on @sX .

(3) If two maps f; h WX ! Y are at a finite distance admitting the CT maps then they induce the same
CT map.
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(4) Suppose f W X ! Y is a qi embedding of hyperbolic length spaces. Then f admits the CT map
@f W @sX ! @sY which is a homeomorphism onto the image.

If f is a quasiisometry then @f is a homeomorphism. In particular , the action by left multiplication of a
hyperbolic group G on itself induces an action of G on @G by homeomorphisms.

2.4.2 Limit sets

Definition 2.51 Suppose X is a hyperbolic metric space and A�X . Then the limit set of A in X is the
set ƒX .A/D flimn!1 an 2 @sX W fang is a sequence in Ag.

When X is understood then the limit set of A�X will be denoted simply by ƒ.A/. In this subsection,
we collect some basic results on limit sets that we need in Section 6 of the paper. In each case, we briefly
indicate the proofs for the sake of completeness. The following is straightforward.

Lemma 2.52 Suppose X is a hyperbolic metric space and A;B � X with Hd.A;B/ < 1. Then
ƒ.A/Dƒ.B/.

Lemma 2.53 Suppose X is a hyperbolic metric space and Y �X . Suppose Z � Y coarsely bisects Y

in X into Y1;Y2 where Z � Y1\Y2. Then ƒ.Y1/\ƒ.Y2/Dƒ.Z/.

Proof This is a straightforward consequence of Lemma 2.34.

Lemma 2.54 Suppose X is a ı-hyperbolic metric space and A�X is �-quasiconvex. Suppose � 2ƒ.A/
and 
 is a K-quasigeodesic ray converging to � . Then there are N 2N and D DD2:54.ı; �;K/ > 0 such
that 
 .n/ 2ND.A/ for all n�N .

Proof Rather than explicitly computing the constants we indicate how to obtain them. Suppose fxng

is a sequence in A such that xn ! �. Let y1 2 
 be a 1-approximate nearest point projection of x1

on 
 . Let ˛1 denote a .1; 1/-quasigeodesic joining x1;y1. Then the concatenation, say 
1, of ˛1 and the
segment of 
 from y1 to � is a uniform quasigeodesic by Corollary 2.26. For all m> 1, let ym denote a
1-approximate nearest point projection of xm on 
1. Then ym is contained in 
1 for all large m. However,
once again by Corollary 2.26 the concatenation of the portion of 
1 between x1;ym and a 1-quasigeodesic
joining xm;ym is a uniform quasigeodesic. Now it follows by stability of quasigeodesics that the segment
of 
1 between y1;ym is contained in a uniformly small neighborhood of A since A is quasiconvex.

Lemma 2.55 Suppose X;Y are hyperbolic metric spaces , and f W Y !X is any metrically proper map.
Suppose that the CT map exists for f . Then we have ƒ.f .Y //D @f .@Y / in each of the following cases:

(1) Y is a proper metric space.

(2) f is a qi embedding.
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Proof (1) It is clear that @f .@Y / �ƒ.f .Y //. Suppose yn is any sequence such that f .yn/! � for
some � 2 @sX . Since f is proper fyng is an unbounded sequence. Since Y is a proper length space
it is a geodesic metric space by Hopf–Rinow theorem (see [6], Proposition 3.7, Chapter I.3). Now it
is a standard fact that any unbounded sequence in a proper geodesic metric space has a subsequence
converging to a point of the Gromov boundary of the space. Since Y is proper, we have a subsequence
fynk
g of fyng such that ynk

! � for some �2 @sY. It is clear that @f .�/D � . Hence ƒ.f .Y //� @f .@Y /.

(2) Let y 2 Y and x D f .y/. Suppose fyng is a sequence of points in Y such that

lim
m;n!1

.f .ym/:f .yn//x D1 and �D Œff .ym/g�:

Then by Lemma 2.34 for any 1-quasigeodesic ˇm;n in X joining f .ym/; f .yn/ for all m; n 2N, we have
limm;n!1 dX .x; ˇm;n/D1. Since f is a qi embedding if ˛m;n is a 1-quasigeodesic in Y joining ym;yn

for all m; n 2N then f .˛m;n/ are uniform quasigeodesics in X . Hence, by stability of quasigeodesics in
X we have Hd.f .˛m;n/; ˇm;n/ <D for some constant D � 0. Thus limm;n!1 dX .x; f .˛m;n//D1.
Since f is a qi embedding and x D f .y/ it follows that limm;n!1 dY .y; ˛m;n/ D 1. Therefore,
limm;n!1.ym:yn/y D1 again by Lemma 2.34. Hence, if � D Œfyng� then @f .�/D �.

Lemma 2.56 (projection of boundary points on quasiconvex sets) Given ı � 0 and k � 0 there is a
constant RDR2:56.ı; k/ such that the following holds:

Suppose X is a ı-hyperbolic metric space , A�X is k-quasiconvex and � 2 @X nƒ.A/. Then there is a
point x 2A with the following property: Suppose fxng is any sequence where xn! �. Then there is an
N > 0 such that for all n�N we have PA.xn/ 2A\B.x;R/.

Proof Suppose fxng; fyng are two sequences in X such that xn ! � and yn ! �. Let ˛m;n be a
1-quasigeodesic in X joining xm;yn for all m; n 2N. Let PA WX !A be a 1-approximate nearest point
projection on A.

Claim There is a constant R0 > 0 depending only on ı and k and there is N > 0 such that

diam.PA.˛m;n//�R0 for all m; n�N .

We first note that limm;n!1 d.A; ˛m;n/ D1. In fact, if this is not the case then there is r > 0 such
that for all N > 0 there are mN ; nN � N with d.A; ˛mN ;nN

/ � r . In that case let aN 2 A be such
that d.aN ; ˛mN ;nN

/� r . It is then clear that aN ! � by Lemma 2.40(1), contradicting the hypothesis
that � 62 ƒ.A/. By stability of quasigeodesics, any 1-quasigeodesic is uniformly quasiconvex in X

and A is given to be k-quasiconvex. Hence, by Corollary 2.32 there are constants D0;R0 such that
d.A; ˛m;n/ >D0 implies that diam.PA.˛m;n//�R0. Since, limm;n!1 d.A; ˛m;n/D1 there is N > 0

such that d.A; ˛m;n/ >D0 for all m; n�N. This proves the existence of N and R0.

Algebraic & Geometric Topology, Volume 25 (2025)



Pullbacks of metric bundles and Cannon–Thurston maps 2695

Now, by specializing the claim to the case fxng D fyng we have N0 > 0 such that if ˇm;n is a 1-
quasigeodesic joining xm;xn then diam.PA.ˇm;n// � R0 for all m; n � N0. Let x D PA.xN0

/. Now,
given any sequence fx0ng in X with x0n! � by the claim there is M > 0 such that for all m; n �M ,
d.PA.xm/;PA.x

0
n//�R0. Hence, if N DmaxfN0;M g then

d.x;PA.x
0
n//� d.x;PA.xN //C d.PA.xN /;PA.x

0
n//� 2R0:

Thus we can take RD 2R0.

Since the point x 2A in the above lemma is coarsely unique we shall call any such point to be the nearest
point projection of � on A and we shall denote it by PA.�/.

3 Metric bundles

In this section, we recall necessary definitions and some elementary properties of the primary objects
of study in this paper namely, metric bundles and metric graph bundles from [24]. We make a minor
modification (see Definition 3.2) to the definition of a metric bundle but use the same definition of metric
graph bundles as in [24].

3.1 Basic definitions and properties

Definition 3.1 (metric bundles [24, Definition 1.2]) Suppose .X; d/ and .B; dB/ are geodesic metric
spaces; let c � 1 and let � W Œ0;1/! Œ0;1/ be a function. We say that X is an .�; c/-metric bundle over
B if there is a surjective 1-Lipschitz map � WX ! B such that the following conditions hold:

(1) For each point z 2 B, Fz WD �
�1.z/ is a geodesic metric space with respect to the path metric dz

induced from X. The inclusion maps i W .Fz; dz/!X are uniformly metrically proper as measured
by �.

(2) Suppose z1; z2 2B, dB.z1; z2/� 1 and let 
 be a geodesic in B joining them. Then for any point
z 2 
 and x 2 Fz there is a path z
 W Œ0; 1�! ��1.
 /�X of length at most c such that z
 .0/ 2 Fz1

,
z
 .1/ 2 Fz2

and x 2 z
 .

If X is a metric bundle over B in the above sense then we shall refer to it as a geodesic metric bundle in
this paper. However, the above definition seems a little restrictive. Therefore, we propose the following.

Definition 3.2 (length metric bundles) Suppose .X; d/ and .B; dB/ are length spaces, c � 1 and we
have a function � W Œ0;1/! Œ0;1/. We say that X is an .�; c/-length metric bundle over B if there is a
surjective 1-Lipschitz map � WX ! B such that the following conditions hold:

(1) For each point z 2 B, Fz WD �
�1.z/ is a length space with respect to the path metric dz induced

from X . The inclusion maps i W .Fz; dz/!X are uniformly metrically proper as measured by �.
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(2) Suppose z1; z2 2 B, and let 
 be a path of length at most 1 in B joining them. Then for any point
z 2 
 and x 2 Fz there is a path z
 W Œ0; 1�! ��1.
 /�X of length at most c such that z
 .0/ 2 Fz1

,
z
 .1/ 2 Fz2

and x 2 z
 .

Given length spaces X and B we will say that X is a length metric bundle over B if X is an .�; c/-length
metric bundle over B in the above sense for some function � WRC!RC and some constant c � 1.

Convention 3.3 From now on whenever we speak of a metric bundle we mean a length metric bundle.

Definition 3.4 (metric graph bundles [24, Definition 1.5]) Suppose X and B are metric graphs. Let
� W Œ0;1/! Œ0;1/ be a function. We say that X is an �-metric graph bundle over B if there exists a
surjective simplicial map � WX ! B such that:

(1) For each b 2V.B/, Fb WD�
�1.b/ is a connected subgraph of X and the inclusion maps i WFb!X

are uniformly metrically proper as measured by � for the path metrics db induced on Fb .

(2) Suppose b1; b2 2 V.B/ are adjacent vertices. Then each vertex x1 of Fb1
is connected by an edge

with a vertex in Fb2
.

Remark Since the map � is simplicial it follows that it is 1-Lipschitz.

For a metric (graph) bundle the spaces .Fz; dz/, z 2 B will be referred to as fibers and the dz-distance
between two points in Fz will be referred to as their fiber distance. A geodesic in Fz will be called a fiber
geodesic. The spaces X and B will be referred to as the total space and the base space of the bundle
respectively. By a statement of the form “X is a metric bundle (resp. metric graph bundle)” we will mean
that it is the total space of a metric bundle (resp. metric graph bundle).

Most of the results proved for geodesic metric bundles in [24] have their analogs for length metric bundles.
We explicitly prove this phenomenon or provide sufficient arguments for all the results needed for our
purpose.

Convention 3.5 Very often in a lemma, proposition, corollary, or theorem we shall omit explicit mention
of some of the parameters on which a constant may depend if the parameters are understood.

Definition 3.6 Suppose � WX ! B is a metric (graph) bundle.

(1) Suppose A�B and k � 1. A k-qi section over A is a k-qi embedding s WA!X (resp. s W V.A/!X )
such that � ı s D IdA (resp. � ı s D IdV.A/), where A has the restricted metric from B and IdA (resp.
IdV.A/) denotes the identity map on A!A (resp. V.A/! V.A/).

(2) Given any metric space (resp. graph) Z and any qi embedding f WZ!B (resp. f W V.Z/! V.B/) a
k-qi lift of f is a k-qi embedding Qf WZ!X (resp. Qf W V.Z/! V.X /) such that � ı Qf D f.
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Convention 3.7 (1) Most of the time we shall refer to the image of a qi section (or a qi lift) to be the qi
section (resp. the qi lift).

(2) Suppose 
 W I ! B is a (quasi)geodesic and z
 is a qi lift of 
 . Let b D 
 .t/ for some t 2 I . Then
we will denote z
 .t/ by z
 .b/ also.

(3) In the context of a metric graph bundle .X;B; �/, when we talk about a point in X , B or a fiber, we
mean that the point is a vertex in the corresponding space.

The following lemma is immediate from the definition of a metric (graph) bundle. Hence we briefly
indicate its proof.

Lemma 3.8 (path lifting lemma) Suppose � WX ! B is an .�; c/-metric bundle or an �-metric graph
bundle.

(1) Suppose b1; b2 2 B. Suppose 
 W Œ0;L�! B is a continuous , rectifiable , arc length parametrized
path (resp. an edge path ) in B joining b1 to b2. Given any x 2 Fb1

there is a path z
 in ��1.
 /

such that l.z
 /� .LC 1/c (resp. l.z
 /DL) joining x to some point of Fb2
.

In particular , when X is a metric graph bundle over B, any geodesic 
 of B can be lifted to a
geodesic starting from any given point of ��1.
 /.

(2) For any k � 1 and � � 0, any dotted .k; �/-quasigeodesic ˇ W Œm; n�! B has a lift ž starting from
any point of Fˇ.m/ such that the following hold , where we assume c D 1 for metric graph bundles.
For all i; j 2 Œm; n� we have

��C
1

k
ji � j j � dX . ž.i/; ž.j //� c � .kC �C 1/ji � j j:

In particular it is a c � .kC�C1/-qi lift of ˇ. Also we have

l. ž/� ck.kC �C 1/.�C dB.b1; b2//:

Proof (1) We fix a sequence of points 0D t0; t1; : : : ; tn D L in Œ0;L� such that l.
 jŒti ;tiC1�/D 1 for
0� i < n� 1 and l.
 jŒtn�1;tn�/� 1 for the metric bundle case. For the metric graph bundle 
 .ti/ are the
consecutive vertices on 
 , 0� i �LD n. Now given any x DW x0 2 Ft0

we can inductively construct a
sequence of points xi 2 Fti

, 0 � i � n and a sequence of paths ˛i of length at most c (resp. an edge)
joining xi to xiC1 for 0� i � n� 1. Concatenation of these paths gives a candidate for z
 .

The second statement for metric graph bundles follow because � WX ! B is a 1-Lipschitz map.

(2) We construct a lift ž of ˇ starting from any point x 2 Fˇ.m/ inductively as follows. We know that
dB.ˇ.i/; ˇ.i C 1// � kC �. Let ˇi be a path in B joining ˇ.i/ to ˇ.i C 1/ which is of length at most
kC �C 1 for m � i � n� 1. We can then find a sequence of paths of length at most .kC �C 1/ � c in
��1.ˇi/ (where c D 1 for metric graph bundle) m� i � n� 1 using the first part of the lemma such that
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ˇm starts at x and ˇiC1 starts at the end point of ˇi for mC 1� i � n� 1. Let xi be the starting point
of ˇi for m � i � n� 1 and let xn be the end point of ˇn�1. Then we define ž by setting ž.i/ D xi ,
m� i � n.

Clearly dX . ž.i/; ž.j //� c � .kC �C 1/ji � j j. Also,

dB.� ı ž.i/; � ı ž.j //D dB.ˇ.i/; ˇ.j //� dX . ž.i/; ž.j //

since � is 1-Lipschitz. Since ˇ is a dotted .k; �/ quasigeodesic, we have ��C 1
k
ji �j j � dB.ˇ.i/; ˇ.j //.

This proves that
��C

1

k
ji � j j � dX . ž.i/; ž.j //� c � .kC �C 1/ji � j j:

For the last part of (2) we see that

l. ž/D

n�1X
iDm

dX . ž.i/; ž.i C 1//�

n�1X
iDm

c � .kC �C 1/D .n�m/c � .kC �C 1/:

On the other hand since ˇ is a .k; �/-quasigeodesic we have ��C 1
k
.n�m/� dB.b1; b2/. The conclusion

immediately follows from these two inequalities.

The following corollary follows from the proof of Proposition 2.10 of [24]. We include it for the sake of
completeness.

Corollary 3.9 Given any metric (graph ) bundle � W X ! B and b1; b2 2 B we can define a map
� W Fb1

! Fb2
such that dX .x; �.x// � 3c C 3cdB.b1; b2/ (resp. d.x; �.x// D dB.b1; b2/) for all

x 2 Fb1
.

Proof The statement about the metric graph bundle is trivially true by Lemma 3.8(1). For the metric
bundle case, fix a dotted 1-quasigeodesic 
 joining b1 to b2. Then for all x 2 Fb1

fix for once and all a
dotted lift z
 as constructed in the proof of Lemma 3.8 which starts from x and set �.x/D z
 .b2/. The
statement then follows from Lemma 3.8(2).

Remark For all b1; b2 2 B any map f W Fb1
! Fb2

such that dX .x; f .x//�D for some constant D

independent of x will be referred to as a fiber identification map.

The proof of the first part of the following lemma is immediate from Corollary 3.9 whereas the next two
parts essentially follow from the proof of Proposition 2.10 of [24]. Hence we skip the proofs.

Lemma 3.10 Suppose � W X ! B is an .�; c/-metric bundle or an �-metric graph bundle and R � 0.
Suppose b1; b2 2 B. The we have the following.

(1) Hd.Fb1
;Fb2

/� 3cC 3cdB.b1; b2/ (resp. Hd.Fb1
;Fb2

/D dB.b1; b2/).
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(2) Suppose �b1b2
W Fb1

! Fb2
is a map such that for all x 2 Fb1

, d.x; �b1b2
.x//�R for all x 2 Fb1

.
Then �b1b2

is a K3:10 DK3:10.R/-quasiisometry which is D3:10-surjective.

(3) If  b1b2
W Fb1

! Fb2
is any other map such that d.x;  b1b2

.x// � R0 for all x 2 Fb1
then

d.�b1b2
;  b1b2

/� �.RCR0/.
In particular , the maps �b1b2

are coarsely unique (see Definition 2.1(7)).

In this lemma, we deliberately suppress the dependence of K3:10 on the parameter(s) of the bundle.

Corollary 3.11 Suppose � W X ! B is a metric (graph ) bundle and b1; b2 2 B (resp. b1; b2 2 V.B/)
such that dB.b1; b2/�R. Suppose �b1b2

W Fb1
! Fb2

is a fiber identification map as constructed in the
proof of Corollary 3.9. Then �b1b2

is a K3:11 DK3:11.R/-quasiisometry.

Proof By Corollary 3.9 dX .x; �b1b2
.x// � 3c C 3cdB.b1; b2/ � 3c C 3cR for all x 2 Fb1

(resp.
dX .x; �b1b2

.x// D dB.b1; b2/ � R for all x 2 V.B/). Hence by Lemma 3.10(2) �b1b2
is K3:11 D

K3:10.3cC3cR/-qi for the metric bundle and K3:11 DK3:10.R/-qi for the metric graph bundle case.

The following corollary is proved as a simple consequence of Lemma 3.10 and Corollary 3.9. (See
Corollaries 1.14 and 1.16 of [24].) Therefore, we skip the proof of it.

Corollary 3.12 (bounded flaring condition) For all k 2R, k � 1 there is a function �k WN!N such
that the following holds:

Suppose � W X ! B is an .�; c/-metric bundle or an �-metric graph bundle. Let 
 � B be a dotted
.1; 1/-quasigeodesic (resp. a geodesic) joining b1; b2 2 B, and let z
1, z
2 be two k-qi lifts of 
 in X .
Suppose z
i.b1/D xi 2 Fb1

and z
i.b2/D yi 2 Fb2
, i D 1; 2.

Then

db2
.y1;y2/� �k.N /maxfdb1

.x1;x2/; 1g:

if dB.b1; b2/�N .

In the rest of the paper, we will summarize the conclusion of Corollary 3.12 by saying that a metric
(graph) bundle satisfies the bounded flaring condition.

Remark (metric bundles in the literature) Metric (graph) bundles appear in several places in other
people’s work. In [5, Section 2.1] Bowditch defines stacks of (hyperbolic) spaces which can easily be shown
to be quasiisometric to metric graph bundles over an interval in R. Conversely, a metric (graph) bundle
whose base is an interval in R is clearly a stack of spaces as per [5, Section 2.1]. In [26] Whyte defines
coarse bundles which are also quasiisometric to metric graph bundles but with additional restrictions.
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3.2 Some natural constructions of metric bundles

In this section, we discuss a few general constructions that produce metric (graph) bundles.

Definition 3.13 (1) Metric bundle morphisms Suppose .Xi ;Bi ; �i/, i D 1; 2 are metric bundles.
A morphism from .X1;B1; �1/ to .X2;B2; �2/ (or simply from X1 to X2 when there is no possibility
of confusion) consists of a pair of coarsely L-Lipschitz maps f WX1!X2 and g W B1! B2 for some
L� 0 such that �2 ıf D g ı�1, ie this diagram is commutative:

X1 X2

B1 B2

f

�1 �2

g

(2) Metric graph bundle morphisms Suppose .Xi ;Bi ; �i/, i D 1; 2 are metric graph bundles. A
morphism from .X1;B1; �1/ to .X2;B2; �2/ (or simply from X1 to X2 when there is no possibility of
confusion) consists of a pair of coarsely L-Lipschitz maps f W V.X1/! V.X2/ and g W V.B1/! V.B2/

for some L� 0 such that �2 ıf D g ı�1.

(3) Isomorphisms A morphism .f;g/ from a metric (graph) bundle .X1;B1; �1/ to a metric (graph)
bundle .X2;B2; �2/ is called an isomorphism if there is a morphism .f 0;g0/ from .X2;B2; �2/ to
.X1;B1; �1/ such that f 0 is a coarse inverse of f and g0 is a coarse inverse of g.

We note that for any morphism .f;g/ from a metric (graph) bundle .X1;B1; �1/ to a metric (graph) bundle
.X2;B2; �2/we havef .��1

1
.b//���1

2
.g.b// for all b2B1. We will denote byfb W�

�1
1
.b/!��1

2
.g.b//

the restriction of f to ��1
1
.b/ for all b 2 B1. We shall refer to these maps as the fiber maps of the

morphisms. We also note that in the case of metric graph bundles coarse Lipschitzness is equivalent to
Lipschitzness.

Lemma 3.14 Given k � 1;K � 1 and L � 0 there are constants L3:14;K3:14 such that the following
holds.

Suppose .f;g/ is a morphism of metric (graph ) bundles as in the definition above. Then the following
hold :

(1) For all b 2 B1 the map fb W �
�1
1
.b/! ��1

2
.g.b// is coarsely L3:14-Lipschitz with respect to the

induced length metric on the fibers.

(2) Suppose 
 W I ! B1 is a dotted .1; 1/-quasigeodesic (or simply a geodesic in the case of a metric
graph bundle) and suppose z
 is a k-qi lift of 
 . If g is a K-qi embedding then f ı z
 is a
K3:14 DK3:14.k;K;L/-qi lift of g ı 
 .

Algebraic & Geometric Topology, Volume 25 (2025)



Pullbacks of metric bundles and Cannon–Thurston maps 2701

Proof We shall check the lemma only for the metric bundle case because for metric graph bundles the
proofs are similar and in fact easier.

Suppose �i WXi! Bi , i D 1; 2 are .�i ; ci/-metric bundles.

(1) Let b 2 B1 and x;y 2 ��1
1
.b/ be such that db.x;y/ � 1. Since f is coarsely L-Lipschitz,

dX2
.f .x/; f .y// � LC LdX1

.x;y/ � LC Ldb.x;y/ � 2L. Now, the fibers of �2 are uniformly
properly embedded as measured by �2. Hence, dg.b/.f .x/; f .y//� �2.2L/. Therefore, by Lemma 2.6
the fiber map fb W �

�1
1
.b/! ��1

2
.g.b// is �2.2L/-coarsely Lipschitz. Hence, L3:14 D �2.2L/ will do.

(2) Let 
2D gı
 and z
2D f ı z
 . Then clearly, �2ı z
2D 
2 whence z
2 is a lift of 
2. By Lemma 2.3(1)
z
2 D f ı z
 is coarsely .kL; kLCL/-Lipschitz. Hence, for all s; t 2 I we have

dX2
.z
2.s/; z
2.t//� kLjs� t jC .kLCL/:

On the other hand, for s; t 2 I we have

dX2
.z
2.s/; z
2.t//� dB2

.�2 ı z
2.s/; �2 ı z
2.t//D dB2
.
2.s/; 
2.t//:

However, by Lemma 2.3(2) 
2 D g ı 
 is a .K; 2K/-qi embedding. Hence, we have

dX2
.z
2.s/; z
2.t//� dB2

.
2.s/; 
2.t//� �2KC
1

K
js� t j:

Therefore, it follows that z
2 is a K3:14 Dmaxf2K; kLCLg-qi lift of 
2.

The following theorem characterizes isomorphisms of metric (graph) bundles.

Theorem 3.15 If .f;g/ is an isomorphism of metric (graph ) bundles as in the above definition then the
maps f;g are quasiisometries and all the fiber maps are uniform quasiisometries.

Conversely, if the map g is a qi and the fiber maps are uniform qi then .f;g/ is an isomorphism.

Proof We shall prove the theorem in the case of a metric bundle only. The proof in the case of a metric
graph bundle is very similar and hence we skip it.

If .f;g/ is an isomorphism then f;g are qi by Lemma 2.2(1). We need to show that the fiber maps are
quasiisometries.

Suppose .f 0;g0/ is a coarse inverse of .f;g/ such that

dX2
.f ıf 0.x2/;x2/�R and dX1

.f 0 ıf .x1/;x1/�R

for all x1 2X1 and x2 2X2. It follows that for all b1 2B1; b2 2B2 we have dB1
.b1;g

0 ıg.b1//�R and
dB2

.b2;g ıg0.b2//�R since the maps �1; �2 are 1-Lipschitz. Suppose f 0;g0 are coarsely L0-Lipschitz.
Let L1 D �2.2L/ and L2 D �1.2L0/. Then for all u 2 B1, fu W �

�1
1
.u/ ! ��1

2
.g.u// is coarsely

L1-Lipschitz and for all v 2 B2, f 0v W �
�1
2
.v/! ��1

1
.g0.v// is coarsely L2-Lipschitz by Lemma 3.14(1).
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Let b 2 B1. To show that fb W �
�1
1
.b/ ! ��1

2
.g.b// is a uniform quasiisometry, it is enough by

Lemma 2.2(1) to find a uniformly coarsely Lipschitz map ��1
2
.g.b//! ��1

1
.b/ which is uniform coarse

inverse of fb . We already know that f 0
g.b/

is L2-coarsely Lipschitz. Let b1 D g0 ı g.b/. We also
noted that dB1

.b; b1/ � R. Hence, it follows by Corollaries 3.9 and 3.11 that we have a K3:10.R/-qi
�b1b W �

�1
1
.b1/ ! ��1

1
.b/ such that dX1

.x; �b1b.x// � 3c1 C 3c1R for all x 2 ��1
1
.b1/. Let h D

�b1b ıf
0

g.b/
. We claim that h is a uniformly coarsely Lipschitz, uniform coarse inverse of fb . Since f 0

g.b/

is L2-coarsely Lipschitz and clearly �b1b is K3:10.R/-coarsely Lipschitz, it follows by Lemma 2.3(1)
that h is .L2K3:10.R/CK3:10.R//-coarsely Lipschitz.

Moreover, for all x 2 ��1
1
.b/ we have

dX1
.x; h ıfb.x//� dX1

.x; f 0g.b/ ıfb.x//C dX1
.f 0g.b/ ıfb.x/; h ıfb.x//�RC 3c1C 3c1R:

Hence, db.x; h ıfb.x//� �1.RC 3c1C 3c1R/. Let y 2 ��1
2
.g.b//. Then

dX2
.y; fb ıh.y//D dX2

.y; f ı�b1b ıf
0.y//� dX2

.y; f ıf 0.y//CdX2
.f ıf 0.y/; f ı�b1b ıf

0.y//

�RCL.3c1C3c1R/CL;

since dX1
.f 0.y/; �b1b ıf

0.y//� 3c1C3c1R. Hence, dg.b/.y; fb ıh.y//� �2.RCL.3c1C3c1R/CL/.
Hence by Lemma 2.2(1), fb is a uniform qi.

Conversely, suppose all the fiber maps of the morphism .f;g/ are .�; �/-qi which are R-coarsely surjective
and g is a .�1; �1/-qi which is R1-surjective. Let g0 be a coarsely .K;C /-quasiisometric, D-coarse
inverse of g where K D K2:2.�1; �1;R1/, C D C2:2.�1; �1;R1/ and D D D2:2.�1; �1;R1/. For all
u 2 B1, let Nfu be a D1-coarse inverse of fu W Fu! Fg.u/. We will define a map f 0 WX2!X1 such that
.f 0;g0/ is morphism from X2 to X1 and f 0 is a coarse inverse of f as follows.

For all u 2 B2 we define f 0u W Fu! Fg0.u/ as the composition Nfg0.u/ ı �ug.g0.u// where �ug.g0.u// is a
fiber identification map as constructed in the proof of Corollary 3.9. Collectively this defines f 0. Now we
shall check that f 0 satisfies the desired properties.

(i) We first check that .f 0;g0/ is a morphism. It is clear from the definition that �1 ıf
0D g0 ı�2. Hence

we will be done by showing that f 0 is coarsely Lipschitz. By Lemma 2.6 it is enough to show that for all
u2; v2 2B2 and x 2Fu2

;y 2Fv2
with dX2

.x;y/� 1, dX1
.f 0.x/; f 0.y// is uniformly small. We note that

dB2
.u2; v2/� 1. Let u1Dg0.u2/ and v1Dg0.v2/. Then dB1

.u1; v1/�KCC , dB2
.u2;g.u1//�D and

dB2
.v2;g.v1//�D. This means dX2

.x; �u2g.u1/.x//� 3Dc2C3c2 and dX2
.y; �v2g.v1//� 3Dc2C3c2

by Lemma 3.8 and Corollary 3.9. Hence,

dX2
.�u2g.u1/.x/; �v2g.v1/.y//� 1C 6c2C 6Dc2:

Let x2 D �u2g.u1/.x/, y2 D �v2g.v1/.y/, x1 D f
0.x2/ D Nfg.u1/.x2/ and y1 D f

0.y2/ D Nfg.v1/.y2/.
Therefore, dX2

.x2;y2/� 1C 6c2C 6Dc2 DR2, say and we want to show that dX1
.x1;y1/ is uniformly

small. Let x0
2
Df .x1/Dfu1

.x1/, y0
2
Df .y1/Dfv1

.y1/. Then dX2
.x2;x

0
2
/�D1 and dX2

.y2;y
0
2
/�D1.
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Hence, dX2
.x0

2
;y0

2
/ � R2 C 2D1. Since dB1

.u1; v1/ � K C C there is a point y0
1
2 Fu1

such that
dX1

.x1;y
0
1
/� .KCC /c1C c1. Hence, dX2

.x0
2
; f .y0

1
//� ..KCC /c1C c1/:LCL. Hence,

dX2
.f .y01/;y

0
2/� dX2

.f .y01/;x
0
2/C dX2

.x02;y
0
2/� ..KCC /c1C c1/:LCLC 2D1CR2:

This implies that dv2
.f .y0

1
/; f .y1//� �2...KCC /c1C c1/:LCLC2D1CR2/DD2, say. Since fv1

is a .�; �/-qi we have ��C 1
�

dv1
.y1;y

0
1
/�D2. Hence, dv1

.y1;y
0
1
/� .�CD2/�. Thus,

dX1
.x1;y1/� dX1

.x1;y
0
1/C dX1

.y01;y1/� .KCC /c1C c1C .�CD2/�:

(ii) We already know that g0 is a coarse inverse of g. Hence we will be done by checking that f 0 is a
coarse inverse of f. We will check only that d.f 0ıf; IdX1

/<1 leaving the proof of d.f ıf 0; IdX2
/<1

for the reader. Suppose b 2 B1 and x 2 ��1
1
.b/. Then

f 0.f .x//D Nfg0ıg.b/ ı�g.b/gıg0.g.b// ıfb.x/:

We want to show that dX1
.x; f 0.f .x/// is uniformly small. Let hD fg0ıg.b/ ı

Nfg0ıg.b/. Then

dX2

�
f .x/; f

�
f 0.f .x//

��
D dX2

.fb.x/; h ı�g.b/gıg0.g.b// ıfb.x//

� dX2

�
fb.x/; �g.b/gıg0.g.b//.fb.x//

�
C dX2

�
�g.b/gıg0.g.b//.fb.x//; h ı�g.b/gıg0.g.b// ıfb.x/

�
:

Now since, d.g ıg0; IdB2
/�D,

dX2

�
fb.x/; �g.b/gıg0.g.b//.fb.x//

�
� 3Dc2C 3c2:

Since d.h; IdFg.g0.g.b///
/ � D1 we have dX2

�
�g.b/gıg0.g.b//.fb.x//; h ı �g.b/gıg0.g.b// ı fb.x/

�
� D1.

Thus dX2

�
f .x/; f

�
f 0.f .x//

��
� 3Dc2 C 3c2 CD1. Hence, it is enough to show that f is a proper

embedding. Here is how this is proved. Suppose b; b0 2 B, x 2 ��1
1
.b/ and x0 2 ��1

1
.b0/. Suppose

dX2
.f .x/; f .x0//�N for some N �0. This implies dB2

.g.b/;g.b0//DdB2
.�2ıf .x/; �2ıf .x

0//�N .
Since g is a .�1; �1/-qi we have ��1CdB1

.b; b0/=�1�N , ie dB1
.b; b0/� .N C�1/�1DN1, say. Hence

by Corollary 3.9 there is a point x00 2 ��1
1
.b0/ such that dX1

.x;x00/� 3N1c1C 3c1. Since f is coarsely
L-Lipschitz we have dX2

.f .x/; f .x00//�L.3N1c1C 3c1/CL. It follows that

d.f .x0/; f .x00//� d.f .x0/; f .x//C d.f .x/; f .x00//�N CL.3N1c1C 3c1/CLDN2;

say. Hence, dg.b0/.f .x
0/; f .x00//� �2.N2/. Since fb0 is a .�; �/-qi we have dX1

.x0;x00/� db0.x
0;x00/�

�.�C �2.N2//. Hence, dX1
.x;x0/� dX1

.x;x00/C dX1
.x0;x00/� 3N1c1C 3c1C�.�C �2.N2//.

Definition 3.16 (subbundle) Suppose .Xi ;B; �i/, i D 1; 2 are metric (graph) bundles with the same
base space B. We say that .X1;B; �1/ is subbundle of .X2;B; �2/ or simply X1 is a subbundle of X2 if
there is a metric (graph) bundle morphism .f;g/ from .X1;B; �1/ to .X2;B; �2/ such that all the fiber
maps fb , b 2 B are uniform qi embeddings and g is the identity map on B (resp. on V.B/).
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X1 X

B1 B

Y

f

�1

g

�
�2

f Y

f 0

Figure 1

The most important example of a subbundle that concerns us is that of ladders which we discuss in a later
section. The following gives another way to construct a metric (graph) bundle. We omit the proof since it
is immediate.

Lemma 3.17 (restriction bundle) Suppose � W X ! B is a metric (graph ) bundle and A � B is a
connected subset such that any pair of points in A can be joined by a path of finite length in A (resp. A

is a connected subgraph ). Then the restriction of � to Y D ��1.A/ gives a metric (graph ) bundle with
the same parameters as that of � WX ! B where A and Y are given the induced length metrics from B

and X , respectively.

Moreover , if f WY !X and g WA!B are the inclusion maps then .f;g/ W .Y;A/! .X;B/ is a morphism
of metric (graph ) bundles.

Definition 3.18 (1) Pullback of a metric bundle Given a metric bundle .X;B; �/ and a coarsely
Lipschitz map g W B1 ! B a pullback of .X;B; �/ under g is a metric bundle .X1;B1; �1/ together
with a morphism .f WX1!X; g W B1! B/ such that the following universal property holds: Suppose
�2 W Y ! B1 is another metric bundle and .f Y; g/ is a morphism from Y to X . Then there is a coarsely
unique morphism .f 0; IdB1

/ from Y to X1 making the diagram of Figure 1 commutative.

(2) Pullback of a metric graph bundle In the case of a metric graph bundle, the diagram is replaced
by one where we have the vertex sets instead of the whole spaces.

The following lemma follows by a standard argument.

Lemma 3.19 Suppose we have a metric bundle .X;B; �/ and a coarsely Lipschitz map g W B1! B for
which there are two pullbacks ie metric bundles .Xi ;B1; �i/ together with morphisms

.fi WXi!X; g W B1! B/; i D 1; 2

satisfying the universal property of Definition 3.18. Then there is a coarsely unique metric (graph ) bundle
isomorphism from X1 to X2.
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X1 X

B1

Y

f

�1
�2

f Y

f 0

Figure 2

With the above lemma in mind, in the context of Definition 3.18, we say that f WX1!X is the pullback
of X under g WB1!B or simply X1 is the pullback of X under g when all the other maps are understood.

Lemma 3.20 Suppose we are given L� 0 and functions �1; �2 W Œ0;1/! Œ0;1/ and the commutative
diagram of maps between metric spaces shown in Figure 2 satisfies these three properties:

(1) All the maps (except possibly f 0) are coarsely L-Lipschitz.

(2) If dB1
.b; b0/�N then Hd.��1

1
.b/; ��1

1
.b0//� �1.N / for all b; b0 2 B1 and N 2 Œ0;1/.

(3) The restrictions of f on the fibers of �1 are uniformly properly embedded as measured by �2.

Then there is a function � W Œ0;1/! Œ0;1/ such that dY .y;y
0/�R implies dX1

.f 0.y/; f 0.y0//� �.R/

for all y0;y 2 Y and R 2 Œ0;1/. In particular , if Y is a length space or the vertex set of a connected
metric graph with restricted metric then f 0 is coarsely �.1/-Lipschitz.

Moreover , f 0 is coarsely unique , ie there is a constant D > 0 such that if f 00 W Y ! X1 is another map
making the above diagram commutative then d.f 0; f 00/�D.

Proof Suppose y;y0 2 Y with dY .y;y
0/�R. Let xD f 0.y/;x0D f 0.y0/. Then dB1

.�1.x/; �1.x
0//D

dB1
.�2.y/; �2.y

0//�LRCL. Let b D �2.y/; b
0 D �2.y

0/. Then

Hd.��1
1 .b/; ��1

1 .b0//� �1.LRCL/DR1;

say. Let x0
1
2 ��1

1
.b0/ be such that dX1

.x;x0
1
/ � R1. Then dX .f .x/; f .x

0
1
// � LR1 C L. On the

other hand dX .f .x/; f .x
0// D dX .f

Y .y/; f Y .y0// � LR C L. By triangle inequality, we have
dX .f .x

0/; f .x0
1
// � LR C L C LR1 C L D 2L C RL C R1L. Hence, by the hypothesis (3) of

the lemma dX1
.x0;x0

1
/� �2.2LCRLCR1L/. Thus

dX1
.x;x0/� dX1

.x;x01/C dX1
.x0;x01/�R1C�2.2LCRLCR1L/:

Hence, we may choose �.t/D �1.Lt CL/C�2.2LC tLCL�1.Lt CL//.

If Y is a length space or the vertex set of a connected metric graph, it follows by Lemma 2.6 that f 0 is
coarsely �.1/-Lipschitz.
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Lastly, suppose f 00 W Y ! X1 is another map making the diagram commutative. In particular we have
f Y D f ı f 0 D f ı f 00. Hence for all y 2 Y we have f .f 0.y// D f .f 00.y//. Since �1.f

0.y// D

�1.f
00.y// D �2.y/ by the hypothesis (3) of the lemma it follows that dX1

.f 0.y/; f 00.y// � �2.0/.
Hence d.f 0; f 00/� �2.0/.

Remark We note that the condition (2) of the lemma above holds when �1 WX1!B1 is a metric (graph)
bundle.

Proposition 3.21 (pullbacks of metric bundles) Suppose .X;B; �/ is a metric bundle and g W B1! B

is a Lipschitz map. Then there is a pullback.

More precisely the following hold : Suppose X1 is the set theoretic pullback with the induced length
metric from X �B1 and let �1 WX1!B1 be the projection on the second coordinate and let f WX1!X

be the projection on the first coordinate. Then:

(1) �1 WX1!B1 is metric bundle and f is a coarsely Lipschitz map so that .f;g/ is a morphism from
X1 to X .

(2) f WX1!X is the metric bundle pullback of X under g.

(3) All the fiber maps fb W �
�1
1
.b/! ��1.g.b//, b 2 B1 are isometries with respect to induced length

metrics from X1 and X , respectively.

Proof By definition X1 D f.x; t/ 2X �B1 Wg.t/D �.x/g. We put on it the induced length metric from
X �B1. Let �1 WX1!B1 be the restriction of the projection map X �B1!B1 to X1. We first show that
X1 is a length space. Suppose g is L-Lipschitz. Let .x; s/; .y; t/ 2X1. Let ˛ be a rectifiable path joining
s; t in B1. Then g ı˛ is a rectifiable path in B of length at most l.˛/L. By Lemma 3.8 and Corollary 3.9
this path can be lifted to a rectifiable path in X starting from x and ending at some point say z in Ft such
that the length of the path is at most 3cC 3cLl.˛/. By construction this lift is contained in X1. Finally
we can join .y; t/; .z; t/ by a rectifiable path in Ft . This show that .x; s/ and .y; t/ can be joined in X1

by a rectifiable path. This proves that X1 is a length space. Now, since ��1
1
.t/D ��1.g.t// is uniformly

properly embedded in X for all t 2 B1 and X is properly embedded in X �B1, ��1
1
.t/ is uniformly

properly embedded in X1 for all t 2 B1. The same argument also shows that any path in B1 of length
at most 1 can be lifted to a path of length at most 3cC 3cL verifying the condition (2) of metric bundles.

Hence .X1;B1; �1/ is a metric bundle. Let f W X1 ! X be the restriction of the projection map
X �B1!X to X1. Clearly f WX1!X is a morphism of metric bundles. Finally, we check the universal
property. If there is a metric bundle �2 W Y ! B1 and a morphism .f Y; g/ from Y to X then there is
a map f 0 W Y ! X1 making the diagram 1 commutative since we are working with the set theoretic
pullback. That f 0 is a coarsely unique, coarsely Lipschitz map now follows from Lemma 3.20. In fact,
condition (2) of that lemma follows from Lemma 3.10(1) since �1 WX1! B1 is a metric bundle and (3)
follows because fibers of metric bundles are uniformly properly embedded and in this case the restriction
of f , ��1

1
.b/! ��1.g.b//�X is an isometry with respect to the induced path metric on ��1

1
.b/ and

��1.g.b// for all b 2 B1.

Algebraic & Geometric Topology, Volume 25 (2025)



Pullbacks of metric bundles and Cannon–Thurston maps 2707

X1 X

B1 B

X2

f

�1

g

�
�2

f2

h

Figure 3

Corollary 3.22 Suppose .X;B; �/ is a metric bundle and g W B1 ! B is a Lipschitz map. Suppose
�2 W X2! B1 is an arbitrary metric bundle and .f2 W X2! X;g/ is a morphism of metric bundles. If
X2 is the pullback of X under g and f2 WX2!X is the pullback map then for all b 2 B1 the fiber map
.f2/b W �

�1
2
.b/! ��1.g.b// is a uniform quasiisometry with respect to the induced length metrics on

the fibers of �2 and � , respectively.

Proof Suppose X1 is the pullback of X under g as constructed in the proof of Proposition 3.21. Then
the fiber maps fb W �

�1
1
.b/! ��1.g.b// are isometries with respect to the induced metrics on the fibers

of �1 and � , respectively. On the other hand by Lemma 3.19 there is a coarsely unique metric bundle
isomorphism .h; Id/ from X2 to X1 making the diagram of Figure 3 commutative.

Now, by Theorem 3.15 the fiber maps hb W �
�1
2
.b/! ��1

1
.b/ are uniform quasiisometries with respect to

the induced length metrics on the fibers of �2 and �1, respectively. Since .f2/b D fb ı hb for all b 2 B1

are done by Lemma 2.3(2).

Example Suppose .X;B; �/ is a metric bundle and B1 �B which is path connected and such that with
respect to the path metric induced from B, B1 is a length space. Let X1 D �

�1.B1/ be endowed with
the induced path metric from X . Let �1 W X1! B1 be the restriction of � to X1. Let g W B1! B and
f WX1!X be the inclusion maps. It is clear that .X1;B1; �1/ is a metric bundle and also that X1 is the
pullback of g.

Remark The notion of morphisms of metric bundles was implicit in the work of Whyte [26]. Along the
line of [26], one can define a more general notion of metric bundles by relaxing the hypothesis of length
spaces. In that category of spaces, pullbacks should exist under any coarsely Lipschitz maps. However,
we do not delve into it here.

Proposition 3.23 (pullbacks for metric graph bundles) Suppose .X;B; �/ is an �-metric graph bundle ,
B1 is a metric graph and g W V.B1/! V.B/ is a coarsely L-Lipschitz map for some constant L� 1. Then
there is a pullback �1 WX1! B1 of g such that all the fiber maps fb W �

�1
1
.b/! ��1.g.b//, b 2 V.B1/

are isometries with respect to induced length metrics from X1 and X , respectively.
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V.X1/ V.X /

V.B1/ V.B/

V.Y /
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�1
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�
�2

f Y

f 0

Figure 4

Proof The proof is a little long. Hence we break this into steps for the sake of clarity.

Step 1 (construction of X1 and �1 W X1 ! B1 and f W V.X1/! V.X /) We first construct a metric
graph X1, a candidate for the total space of the bundle. The vertex set of X1 is the disjoint union of the
vertex sets of ��1.g.b//, b 2 V.B1/. There are two types of edges. First of all for all b 2 V.B1/, we
take all the edges appearing in ��1.g.b//. In other words, the full subgraph ��1.g.b// is contained
in X1. Let us denote that by Fb . For all adjacent vertices s; t 2 B1 we introduce some other edges with
one end point in Fs and the other in Ft . We note that Fs;Ft � X1 are identical copies of Fg.s/ and
Fg.t/, respectively. Let fs W Fs! Fg.s/ denote this identification. Let e be an edge joining s; t and let
˛ be a geodesic in B joining g.s/;g.t/. Now for each x 2 Fs we lift the path ˛ starting from fs.x/

isometrically by Lemma 3.8(1) to say z̨. For each such lift we join x by an edge to y 2 V .Ft / if and
only if ft .y/D z̨.g.t//. This completes the construction of X1. We note that dB.g.s/;g.t//� 2L and
hence l.z̨/� 2L too. Now we define f W V.X1/! V.X / by setting f .x/D f�1.x/.x/ for all x 2 V.X1/.
It is clear that this map is 2L-Lipschitz.

Step 2 (�1 WX1! B1 is a metric graph bundle and .f;g/ is a morphism) We need to verify that the
fibers are uniformly properly embedded in X1 so that X1 is a metric graph bundle. Suppose x;y 2Fs and
dX1

.x;y/�D. Let ˛ be a (dotted) geodesic in X1 joining x;y. Then f ı˛ is a (dotted) path of length
at most 2LD. Thus dX .f .x/; f .y//� 2LD. Since X is an �-metric graph bundle dg.s/.f .x/; f .y//�

�.2LD/. Since f is an isometry when restricted to Fs we have ds.x;y/ � �.2LD/. This proves that
X1 is a metric graph bundle over B1.

On the other hand, f is 2L-Lipschitz by step 1 and g is coarsely L-Lipschitz by hypothesis. It is also
clear that � ıf D g ı�1 by the definition of f. Thus .f;g/ is a morphism of metric graph bundles from
X1 to X .

Step 3 (X1 is a pullback) Now we check that X1 is a pullback of X under g. Suppose �2 W Y ! B1 is
a metric graph bundle and .f Y;g/ is a morphism of metric graph bundles from Y to X where f Y is
coarsely L1-Lipschitz We need to find a coarsely unique, coarsely Lipschitz map f 0 W V.Y /! V.X1/

such that .f 0; Id/ is a morphism from Y to X1 and the whole diagram of Figure 4 is commutative, where
Id W V.B1/! V.B1/ is the identity map.
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The map f 0 For all s 2 V.B1/ we define f 0 on V.��1
2
.s// as the composition f �1

s ıf Y
s . Collectively

these maps define f 0. It is clear that f 0 makes the whole diagram above commutative.

The rest of the argument follows from Lemma 3.20. In fact, condition (2) of that lemma follows from
Lemma 3.10(1) since �1 WX1!B1 is a metric graph bundle and (3) follows because fibers of metric graph
bundles are uniformly properly embedded and in this case the restriction of f, ��1

1
.b/!��1.g.b//�X

is an isometry with respect to the induced path metric on ��1
1
.b/ and ��1.g.b// for all b 2 V.B1/.

The corollary below follows immediately from the proof of the above proposition.

Corollary 3.24 Suppose � W X ! B is a metric graph bundle. Suppose A is a connected subgraph
of B. Let g W A! B denote the inclusion map. Let XA D �

�1.A/, �A be the restriction of � and let
f WXA!X denote the inclusion map. Then XA is the pullback of X under g.

The proof of the following corollary is similar to that of Corollary 3.22 and hence we omit the proof.

Corollary 3.25 Suppose .X;B; �/ is a metric graph bundle and g WV.B1/!V.B/ is a coarsely Lipschitz
map. Suppose �2 WX2!B1 is an arbitrary metric graph bundle and .f2 WV.X2/!V.X /;g/ is a morphism
of metric graph bundles. If X2 is the pullback of X under g and f2 W V.X2/! V.X / is the pullback map
then for all b 2 V.B1/ the fiber map .f2/b W V.��1

2
.b//! V.��1.g.b/// is a uniform quasiisometry with

respect to the induced length metrics on the fibers of �2 and � , respectively.

3.3 Some examples

In this section we discuss in detail two main sources of examples for metric graph bundles to which the
main theorem of this paper will be applied.

3.3.1 Short exact sequence of groups Given a short exact sequence of finitely generated groups

1!N !G
�
!Q! 1

we have a naturally associated metric graph bundle. This is the main motivating example of metric graph
bundles. We recall the definition from [24, Example 1.8] with a minor modification.

Suppose H < Q is a finitely generated subgroup. Let G1 D ��1.H /. We fix a generating set SN

of N, a generating set S � SN of G such that S contains a generating set S1 of G1, SN � S1

and N \ S D SN . Let SQ D �.S/ n f1g and SH D �.S1/ n f1g. Then we have a metric graph
bundle � W �.G;S/ ! �.Q;SQ/. Clearly �.H;SH / is a subgraph of �.Q;SQ/ and �.G1;S1/ D

��1.�.H;SH //. Hence, by Corollary 3.24 it follows that �.G1;S1/ is the pullback of �.G;S/ under
the inclusion �.H;SH / ,! �.Q;SQ/.
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3.3.2 Complexes of groups For this example, we refer to [15]. Suppose Y is a finite simplicial complex
and G .Y/ is a developable complex of groups defined over Y . (See [15, Definition 2.2].) For any
face � of Y , let K� be a K.G� ; 1/-space. Then by [15, Theorem 3.4.1] there is a complex of spaces
p W X ! Y (compare with good complexes of spaces due to Corson [8]) which is a cellular aspherical
realization (see [15, Definition 3.3.4]) of the complex of groups G .Y/ such that inverse image under p

of the barycenter of each face � is K� . It follows from the construction of X that there is a continuous
section s of p W X ! Y over the 1-skeleton Y.1/ of Y . We fix a maximal tree of s.Y.1// and a base vertex
v0 2 Y.0/ in it. Let G D �1.X ; s.v0//. Thus for any v 2 Y.0/ we have a natural injective homomorphism
�1.Xv; s.v//!G. We identify the image of the same with Gv. Next following Corson [8] we take the
universal cover �X W zX ! X . We put a CW complex structure on zX in the standard way so that �X is a
cellular map. Then for all y 2 Y , we collapse each connected component of .p ı�X /

�1.y/ to a point.
Suppose B is the quotient complex thus obtained and let q W zX ! B be the quotient map. Then we note
that there is a cellular map �X W B! Y making the following diagram commutative:

zX B

X Y

q

�X �X

p

Now for our purpose, we shall also assume that all the face groups G� are finitely generated, the 0-skeleton
of each K� is a point x� , the 1-skeleton is a wedge of finitely many circles and the developable complex
of groups satisfies the qi condition as defined below.

Definition 3.26 Suppose we have a developable complex of groups .G;Y/.

(1) We say that it satisfies the qi condition if for any faces � � � of Y the corresponding homomorphism
G� !G� is an isomorphism onto a finite index subgroup of G� .

(2) If all the face groups of G� satisfies a group theoretic property P then we shall say that .G;Y/ is a
developable complex of groups with property P .

For instance, we shall work in Section 6 with the developable complexes of nonelementary hyperbolic
groups.

However, we now aim to associate to the complex of groups a metric graph bundle as follows. Let
X 0 D .p ı �X /

�1.Y.1//.1/ and B D ��1
X .Y.1//.1/, where we denote by Z.1/ the 1-skeleton of any

CW complex Z. Now we construct a metric graph bundle � W X ! B as follows. For all v 2 B.0/

let Fv WD q�1.v/.1/. Suppose v;w 2 B.0/ are connected by an edge e. We look at the subcomplex
zX Œv;w�D q�1.Œv; w�/. Let v0D�X .v/, w0D�X .w/ and e0D�X .e/. Then zX Œv;w����1

X .p�1.Œv0; w0�/.
However, we recall from Haefliger [15] how p�1.Œv0; w0�/� X is built from the spaces the Kv0

;Kw0
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and Ke0
. There are injective homomorphisms Ge0

! Gv0
and Ge0

! Gw0
. We choose cellular maps

f0 WKe0
!Kv0

, and f1 WKe0
!Kw0

such that the induced maps in the fundamental groups are those group
homomorphisms. Then one glues Ke0

� Œ0; 1� to Kv0

F
Kw0

by gluing Ke0
� f0g to Kv0

and Ke0
� f1g

to Kw0
using the maps f0; f1, respectively. Let m0 be the midpoint of xe0

� Œ0; 1�� p�1.Œv0; w0�/ and
let m 2 e be the midpoint of e. Then through any a 2 q�1.m/.0/ we lift xe0

� Œ0; 1�. The lift is a 1-cell
joining av 2 q�1.v/.0/ to aw 2 q�1.w/.0/. Let us denote the map a 7! av by fe;v and the map a 7! aw

by fe;w.

Lemma 3.27 (1) The map fe;v W q
�1.m/.0/! q�1.v/.0/ is uniformly coarsely surjective with respect

to the graph metric on q�1.m/.0/, q�1.v/.0/ coming from q�1.m/.1/, q�1.v/.1/, respectively.

(2) A similar statement holds for fe;w.

Proof We will only prove (1) as the proof of (2) is similar. The group Gv < G is isomorphic to Gv0

and q�1.v/ is a universal cover of Kv0
since the complex of groups is developable. The groups Gv acts

properly discontinuously with quotient Kv0
. Since the action is cellular the action of Gv on q�1.v/.1/ is

simply transitive. Similarly the action of Gm is simply transitive on q�1.m/.1/. We note that Gm <Gv

and the map fe;v is equivariant. It is also clear that ŒGv WGm�D ŒGv0
WGe0

�. Finally we note that q�1.v/.1/

is naturally isometric to a Cayley graph of Gv when q�1.v/.1/ is given graph metric where each edge has
length 1. The lemma is immediate from this.

Let R> 0 be such that fe;v is coarsely R-surjective for all 0-cell v and 1-cell e of B where e is incident
on v. Then we construct a graph X from X 0 by introducing new edges as follows. Given v;w 2 B.0/

connected by an edge e we join all x 2 q�1.v/ to y 2 q�1.w/ by an edge if there is a 2 q�1.me/
.0/ such

that d.x; fe;v.a//�R and d.y; fe;w.a//�R, where the distances are taken in the respective 1-skeletons
of q�1.v/ and q�1.w/.

Proposition 3.28 Suppose we identify G as the group of deck transformation on the covering map
�X W zX ! X . Then we have the following:

(1) G acts on X and on B through simplicial maps. The map q is G-equivariant.

(2) The G-action is proper and cofinite on X but it is only cofinite on B. Also B=G is isomorphic
to Y.1/.

(3) For all v 2 Y.0/ and Qv 2 ��1
X .v/, GQv is a conjugate of Gv in G.

(4) The action of GQv on XQv D q�1. Qv/ is proper and cocompact. In fact the action on V .XQv/ is transitive
and on E.XQv/ is cofinite. In particular if the Gv is hyperbolic for all v 2 Y.0/ then for all v 2 Y.0/

and Qv 2 ��1
X .v/, XQv is uniformly hyperbolic.

(5) � WX ! B is a metric graph bundle.

Proof The group G acts through deck transformations of the covering map �X W zX !X . Hence it follows
that G permutes the connected components of .p ı�X /

�1.y/ for all y 2 Y . The action is also simplicial.

Algebraic & Geometric Topology, Volume 25 (2025)



2712 Swathi Krishna and Pranab Sardar

Hence, (1) follows from this. For (2) we note that the action of G on X 0 is proper and cofinite. On
the other hand, the inclusion map X 0!X is a G-equivariant quasiisometry by Lemma 2.4. Hence the
G-action on X is proper and cofinite. Clearly, B=G is isomorphic to Y.1/ whence the G-action on B is
cofinite. Property (3) is a consequence of a basic covering space argument using the G-equivariance of
the map q. In (4) the properness follows from the properness of the action of G on X 0. Cocompactness
is due to the fact that X 0=G is finite. The second part also follows from the nature of K.Gv; 1/ used
to construct X , where v D �X . Qv/. The last part follows from the second by Milnor–Schwarz lemma.
What remains is to prove (5). For all Qv 2 V .B/, let XQv D �

�1. Qv/. Since B=G is finite and the map q

is G-equivariant the XQv’s are uniformly properly embedded in X 0 if and only if for all w 2 V .B=G/

there is one zw 2 ��1
X .w/ such that X zw is uniformly properly embedded in X 0. However, each inclusion

XQv!X 0 is GQv-equivariant, the GQv action on XQv is proper and cocompact and GQv is a finitely generated
subgroup of G. Since each finitely generated subgroup of a finitely generated group is uniformly properly
embedded it follows that XQv is properly embedded in X 0. Since X 0 is quasiisometric to X , it follows that
the XQv’s are properly embedded in X . This verifies property (1) of metric graph bundles. Property (2)
follows from Lemma 3.27 and the construction of the new edges.

Subcomplexes of groups In the above set-up we now assume further that we have a connected sub-
complex Y1 � Y . Let X1 D p�1.Y1/. We shall assume that the base point x0 2 X is contained in X1

and a maximal tree of s.Y.1/
1
/ is chosen so that it is contained in the chosen maximal tree of s.Y.1//.

Suppose the inclusion X1!X is �1-injective. Then the restriction G .Y1/ of G .Y/ to Y1 is a developable
complex of groups by [6, Corollary 2.15]. Let G1 D �1.X1;x0/. However, X1! Y1 is a complex of
spaces which is a cellular aspherical realization of the complex of groups G .Y1/. Hence, we can build a
metric graph bundle �1 WX1! B1 as described in Proposition 3.28.

In fact fixing a point Qx0 2 �
�1
X .x0/ we may identify G as the group of deck transformations on zX . Then

G1 stabilizes the connected component of ��1.X1/ containing Qx0. Since X1! X is �1-injective this
connected component, say zX 1, is a universal cover of X1. We set B1 D q. zX 1/\B and X1 D �

�1.B1/.
The following proposition records these in a nutshell.

Proposition 3.29 Suppose Y is a finite connected simplicial complex and G .Y/ is a developable complex
of groups with qi condition and with fundamental group G and suppose Y1 is a connected subcomplex
of Y . Suppose G1 is the fundamental group of G .Y1/. Suppose the inclusion G .Y1/!G .Y/ induces
injective homomorphism G1!G.

Then there is a metric graph bundle � W X ! B, a connected subgraph B1 � B such that the following
hold :

(1) G acts on X and on B through simplicial maps. The map � is G-equivariant. The action is
proper and cofinite on X but it is only cofinite on B. Also , there is a simplicial G-equivariant map
B! Y.1/ with trivial action on Y.1/ inducing an isomorphism of graphs B=G! Y.1/. The group
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Gb < G is a conjugate of G Nb in G, where Nb is the image of b under the map B! Y.1/. Also the
Gb-action on Fb is proper and cofinite for all b 2 V .B/.

(2) Let X1 D �
�1.B1/. Then G1 stabilizes X1 and the G1-action on X1 is proper and cofinite. Also

the restriction of the map B=G! Y.1/ to B1=G1 is an isomorphism of graphs B1=G1! Y.1/
1

.

Later on we shall work with rather special subcomplexes of groups as defined below.

Definition 3.30 Suppose Y is a finite connected simplicial complex and .G;Y/ is a developable complexes
of groups with qi condition over Y . We shall call a connected subcomplex Y1 � Y a good subcomplex if
the following hold:

(1) The induced natural homomorphism �1.G;Y1/! �1.G;Y/ is injective. Suppose the image is G1.

(2) If � WX ! B is a metric graph bundle obtained as in Proposition 3.28 from .G;Y/ and B1 � B is
as in Proposition 3.29. Then the inclusion B1 � B is a qi embedding.

We note that X is quasiisometric to G and X1 is quasiisometric to G1. Thus it follows that B is
quasiisometric to the “coned-off” space à la Farb [10] obtained from G by coning off the cosets of the
various face groups of .G;Y/. Similarly B1 is obtained by coning off various cosets of the face groups
of .G;Y1/. Thus condition (2) of the above definition is intrinsic and independent of the particular metric
graph bundle obtained from .G;Y/.

4 Geometry of metric bundles

In this section, we recall some results from [24] and also add a few of our own which are going to be
useful for the proof of our main theorem in the next section. Especially some of the results which were
stated for geodesic metric spaces in [24] but whose proofs require little adjustments to hold true for length
spaces are mentioned here.

4.1 Metric graph bundles arising from metric bundles

An analog of the following result is proved in [24, Lemmas 1.17–1.21]. We give an independent and
relatively simpler proof here. We also construct an approximating metric graph bundle morphism starting
with a given metric bundle morphism. However, one disadvantage of our construction is that the metric
graphs so obtained are never proper.

Proposition 4.1 Suppose � 0 WX 0!B0 is an .�; c/-metric bundle. Then there is a metric graph bundle
� WX ! B along with quasiisometries  B W B

0! B and  X WX
0!X such that

(1) � ı X D  B ı�
0 and

(2) for all b 2 B0 the map  X restricted to � 0�1.b/ is a .1; 1/-quasiisometry onto ��1. B.b//.

Moreover , the maps  X ;  B have coarse inverses �X , �B , respectively, making the diagram of Figure 5
commutative.
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X 0 X

B0 B

 X

�X

� 0 �
 B

�B

Figure 5

Proof (1) For the proof we use the construction of Lemma 2.8. We shall briefly recall the construction
of the spaces. We define V.B/D B0 and s; t 2 V.B/ are connected by an edge if and only if s ¤ t and
dB0.s; t/� 1. This defines the graph. We also have a natural map  B WB

0!B which is just the inclusion
map when B0 is identified with the vertex set of B. To define X , we take V.X /DX 0. Edges are of two
types.

Type 1 edges For all s 2 B0, x;y 2 � 0�1.s/ are connected by an edge if and only if ds.x;y/� 1.

Type 2 edges If s¤ t 2B0, x 2 � 0�1.s/ and y 2 � 0�1.t/ then x;y are connected by an edge if and only
if dB0.s; t/� 1 and dX 0.x;y/� c.

The map  X WX
0!X is defined as before to be the inclusion map. By Lemma 2.8  B is a qi. We also

note that � ı X D B ı�
0. We need to verify that  X is a qi. For that, it is enough to produce Lipschitz

coarse inverses �X , �B as claimed in the second part of the proposition and then apply Lemma 2.2 since
it is clear that  X is 1-Lipschitz. We first choose a coarse inverse �B of  B as follows. On V.B/ it is
simply the identity map. The interior of each edge is then sent to one of its end points. The map �X on
V.X / is also defined as the identity map. The interior of a type 1 edge is sent to one of its end points.
Then interior of each type 2 edge e D Œx;y� is sent to one of the end points x or y according as the edge
�.e/ is mapped by �B to �.x/ or �.y/, respectively. It follows that the diagram of Figure 5 commutes.
We just need to check that �X is coarsely Lipschitz, since �B; �X are inverses of  B;  X , respectively
on a 1-dense subset, they will be coarse inverse automatically. However, by Lemma 2.6 it is enough to
show that edges are mapped to small diameter sets. This is again clear. In fact, the image of an edge has
diameter at most c. This proves the first part of the proposition.

(2) This is immediate from the definition of  X and the construction in Lemma 2.8.

(3) Finally, we need to check that .X;B; �/ is a metric graph bundle. Let s 2 B and x;y 2 ��1.s/

such that dX .x;y/�M for some M > 0. Since �X is a quasiisometry, dX 0.x;y/�M 0, where M 0 > 0

depends on M and �X . Since � 0�1.�B.s// is properly embedded in X 0 as measured by �, we have
d�B.s/.x;y/ � �.M

0/. Now, using the above fact that � 0�1.�B.s// is .1; 1/-quasiisometric to ��1.s/,
we have ds.x;y/ � �.M

0/C 1. Hence, ��1.s/ is uniformly properly embedded in X. Next we check
the condition .2/ of Definition 3.4. Suppose s; t 2 V.B/ are adjacent vertices. Then, dB0.s; t/� 1. Let ˛
be a path in B0 joining s; t with lB0.˛/� 1. Then, for any x 2 � 0�1.s/, ˛ can be lifted to a path of length
at most c, joining x to some y 2 � 0�1.t/. Then there exists an edge joining x and y in X , which is a lift
of the edge joining s and t in B.
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Remark We shall refer to the metric graph bundle X obtained from X 0 as the canonical metric graph bun-
dle associated to the bundle X . Since we are working with length metric spaces some of the machinery of
[24] may not apply directly. Proposition 4.1 then comes to the rescue. We sometimes modify our definitions
suitably to make things work. Consequently, all the results proved for metric graph bundles have their close
analogs in metric bundles. We shall make this precise for instance in Proposition 4.3 and Definition 4.5.

Approximating a metric bundle morphism Suppose � 0 WX 0! B0 is a metric bundle and g WA0! B0

is a Lipschitz map. Suppose Y 0 is the pullback of the bundle under the map g as constructed in the proof
of Proposition 3.21, ie Y 0 is also the set theoretic pullback. Let g�� 0 W Y 0! A0 be the corresponding
bundle projection map and f W Y 0! X 0 be the pullback map. Suppose we use the recipe of the above
proposition to construct metric graph bundles �X WX!B, �Y WY !A with quasiisometries  A WA

0!A,
 B WB

0!B,  Y W Y
0! Y and  X WX

0!X such that �Y ı Y D  A ıg�� 0 and �X ı X D  B ı�
0.

Suppose �X ; �B; �Y ; �A are the coarse inverses (as constructed in the proposition above) of  X ,  B ,  Y ,
and  A, respectively. We then have a commutative diagram

Y Y 0 X 0 X

A A0 B0 B

 Y

�Y

f  X

�X

�Y g�� 0 � 0 �X

 Y

 A

�A

g  B

�B

Let Nf ; Ng denote the restrictions of  X ıf ı�Y and  B ıgı�A on the vertex sets of Y and A, respectively.

Proposition 4.2 (1) The pair of maps . Nf ; Ng/ gives a morphism of metric graph bundles from Y to X.
Moreover , if Y 0 is the pullback of X 0 under g and f is the pullback map then Y is the pullback of
X under Ng and Nf is the pullback map.

(2) If X 0;Y 0 are hyperbolic , then f admits the CT map if and only if Nf does also.

Proof (1) Since all the maps in consideration, ie  X ; f; �Y ;  B;g; �A are coarsely Lipschitz the maps
Nf ; Ng are also coarsely Lipschitz by Lemma 2.3(1). It also follows that �X ı

Nf D Ng ı�Y . Thus . Nf ; Ng/ is a
morphism.

Suppose Y 0 is a the pullback of X 0 under g. To show that Y is the pullback of X we need to verify
the universal property. Suppose �1 W Y1!A is any metric bundle and f1 W V.Y1/! V.X / is a coarsely
Lipschitz map such that the pair .f1; Ng/ is a morphism of metric graph bundles from Y1 to X . We note that
� 0 ı .�X ıf1/D g ı .�A ı�1/. Since Y 0 is a set theoretic pullback there is a unique map f2 W V.Y1/! Y 0

making the whole diagram of Figure 6 commutative.
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Y Y 0 X 0 X

A A0 B0 B

Y1

 Y

�Y

f  X

�X
�Y g�� 0 � 0 �X

 Y

 A

�A

g  B

�B

f1

�1

f2

Figure 6

Now, by Lemma 2.3(1) the maps �X ı f1 and �A ı �1 are coarsely Lipschitz. Hence, it follows by
Lemma 3.20 and the subsequent Remark on page 2706 that the map f2 is coarsely Lipschitz. Let
hD  Y ıf2. Then h is coarsely Lipschitz by Lemma 2.3(1) and we have Nf ı hD f1 and �Y ı hD �1.
Hence, .h; IdA/ is a morphism from Y1 to Y. Finally coarse uniqueness of h follows from Lemma 3.20.

(2) This is a simple application of Lemma 2.50.

4.2 Metric bundles with hyperbolic fibers

For the rest of this section we shall assume that all our metric (graph) bundles � W X ! B have the
following property:

(|) Each of the fibers Fb , b 2 B (resp. b 2 V.B/) is a ı0-hyperbolic metric space with respect to the
path metric db induced from X .

We will refer to this by saying that the metric (graph) bundle has uniformly hyperbolic fibers. Moreover,
the following property is crucial for the existence of (global) qi sections:

(||) There is N � 0 such that for all b 2B the barycenter map �b W @
3Fb!Fb is coarsely N-surjective.

(Recall that barycenter maps were defined right after Lemma 2.41.)

Proposition 4.3 (global qi sections for metric (graph) bundles [24, Propositions 2.10, 2.12]) For all
ı0; c � 0, N � 0 and � W Œ0;1/! Œ0;1/ there exists K0 DK0.c; �; ı

0;N / such that the following holds.

Suppose p WX 0! B0 is an .�; c/-metric bundle or an �-metric graph bundle satisfying (|) and (||). Then
there is a K0-qi section over B0 through each point of X 0 (where we assume c D 1 for the metric graph
bundle).

Convention 4.4 (1) With the notation of Proposition 4.1, we note that for any qi section † in X over B,
�X .†/D† since �X is the identity map when restricted to V.X /. We shall refer to it as a qi section of
the metric graph bundle transported to the metric bundle.

(2) Whenever we talk about a K-qi section in a metric bundle we shall mean that it is the transport of a
K-qi section contained in the associated canonical metric graph bundle.
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Definition 4.5 [24, Definition 2.13] Suppose †1 and †2 are two K-qi sections of the metric graph
bundle X. For each b 2 V.B/ we join the points †1\Fb , †2\Fb by a geodesic in Fb . We denote the
union of these geodesics by L.†1; †2/, and call it a K-ladder (formed by the sections †1 and †2).

For a metric bundle by a ladder, we will mean one transported from the canonical metric graph bundle
associated to it (by the canonical map �X as in Proposition 4.1.)

The following are the most crucial properties of a ladder summarized from [24].

Proposition 4.6 Given K � 0, ı� 0 there are C DC4:6.K/� 0, RDR4:6.K/� 0 and K4:6.ı;K/� 0

such that the following holds:

Suppose � WX ! B is an �-metric graph bundle satisfying (|). Suppose †1; †2 are two K-qi sections in
X and LD L.†1; †2/ is the ladder formed by them. Then the following hold :

(1) Ladders are coarse Lipschitz retracts There is a coarsely C -Lipschitz retraction �L W X ! L

defined as follows:

For all x 2X we define �L.x/ to be a nearest point projection of x in F�.x/ on L\F�.x/.

(2) Given a k-qi section 
 in X over a geodesic in B, �L.
 / is a .CC2kC /-qi section in X contained in
L over the same geodesic in B.

(3) QI sections in ladders If X also satisfies (||) then through any point of L there is .1C2K/C -qi
section contained in L.

(4) Quasiconvexity of ladders The R-neighborhood of L is (i) connected and (ii) uniformly qi
embedded in X .

In particular if X is ı-hyperbolic then L is K4:6.ı;K/-quasiconvex in X .

Proof (1) This is stated as Theorem 3.2 in [24].

(2), (3) These are immediate from (1) or one can refer to Lemma 3.1 of [24].

(4) This is proved in Lemma 3.6 in [24] assuming (||). However, we briefly indicate the argument here
without assuming (||).

(4)(i) Suppose b; b0 2 B, dB.b; b
0/ D 1. Let x 2 L\ Fb . Then there is a point x0 2 Fb0 such that

d.x;x0/ D 1. Hence, d.�L.x/; �L.x
0// D d.x; �L.x

0// � 2C . If we define R D 2C then clearly the
R-neighborhood of L is connected.

(4)(ii) We first claim that the NR.L/D Y say, is also properly embedded in X . Suppose x0;y0 2 Y with
dX .x

0;y0/ � N . Let x;y 2 L be such that d.x;x0/ � R and d.y;y0/ � R. Then d.x;y/ � 2RCN .
Hence, dB.�.x/; �.y//� 2RCN . Let ˛ be a geodesic in B joining �.x/; �.y/. Then by Lemma 3.8
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there is a geodesic lift z̨ of ˛ starting from x. It follows that for all adjacent vertices b1; b2 2 ˛ we have
d.�L.z̨/.b1/; �L.z̨/.b2//� 2C . Hence, the length of �L.z̨/ is at most 2C.2RCN /. Hence,

d
�
y; �L

�
z̨.�.y//

��
� d.x;y/Cd

�
x; �L

�
z̨.�.y//

��
� 2RCN C l.�L.z̨//� 2RCN C2C.2RCN /:

Hence, d�.y/
�
y; �L

�
z̨.�.y//

��
� �.2RCN C 4CRC 2CN /. Since �L.z̨/� Y,

dY .x;y/� d�.y/
�
y; �L

�
z̨.�.y//

��
C l.�L.z̨//� �.2RCN C 4CRC 2CN /C 4CRC 2CN:

Hence, dY .x
0;y0/� 4CRC 2CN C �.2RCN C 4CRC 2CN /.

Finally we prove the qi embedding. Let f .N /D �.2RCNC4CRC2CN /C4CRC2CN for all N 2N.
Given x;y 2L, dX .x;y/D n and a geodesic 
 W Œ0; n�!X joining them. By the proof of (4)(i) we have
dY .�L.
 .i//; �L.
 .iC1//�f .2C / for all 0� i �n�1, whence dL.x;y/�nf .2C /Df .2C /dX .x;y/.
Clearly dX .x;y/� dL.x;y/. This proves the qi embedded part.

It follows that for all x;y 2 L a geodesic joining x;y in Y is a .f .2C /; 0/-quasigeodesic in X. Since X

is ı-hyperbolic stability of quasigeodesics implies that L is uniformly quasiconvex. In fact, we can take
K4:6.ı;K/DRCD2:19.ı; f .2C /; 0/.

Remark Part (3) and (4) are clearly also true for metric bundles which satisfy the properties (|) and (||).

The following corollary is immediate.

Corollary 4.7 (ladders form subbundles) Suppose � WX ! B is an �-metric graph bundle satisfying
(|) and (||). Let C;R be as in the previous proposition. Suppose LDL.†1; †2/ is a K-ladder. Consider
the metric graph Z obtained from L by introducing some extra edges as follows: Suppose b; b0 2 B

are adjacent vertices then for all x 2 L \ Fb , x0 2 L \ Fb0 we join x;x0 by an edge if and only if
dX .x;x

0/� C C 2KC. Let �Z WZ! B be the simplicial map such that � D �Z on V.Z/ and the extra
edges are mapped isometrically to edges of B.

Then Z is a metric graph bundle and the natural map Z! X gives a subbundle of X which is also a
(uniform) qi onto NR.L/ and hence a (uniform) qi embedding in X .

In the next section of the paper, we will exclusively deal with bundles � WX ! B which are hyperbolic
satisfying (|) and (||) and we will need to understand geodesics in X. Since ladders are quasiconvex we
look for quasigeodesics contained in ladders. The lemma below is the last technical piece of information
needed for that purpose. However, we need the following definitions for stating the lemma.

Definition 4.8 Suppose X is a metric graph bundle over B and suppose †1; †2 are any two qi sections.

(1) Neck of ladders [24, Definition 2.16] Suppose R� 0. Then the set

UR.†1; †2/D fb 2 B W db.†1\Fb; †2\Fb/�Rg

is called the R-neck of the ladder L.†1; †2/.
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For a metric bundle the R-neck of a ladder will be defined to be the one transported from the canonical
metric graph bundle associated to it, ie the image under �B .

(2) Girth of ladders [24, Definition 2.15] The quantity minfdb.†1\Fb; †2\Fb/ W b 2Bg is called
the girth of the ladder L.†1; †2/ and it will be denoted by dh.†1; †2/.

Motivated by the hallway flaring condition of Bestvina and Feighn [4], flaring conditions for metric
(graph) bundles were defined in [24, Definition 1.12]. Below we slightly modify those definitions to suit
to our context and to add a little more clarity.

Definition 4.9 (flaring for metric graph bundles [24, Definition 1.12]) (1) Let k � 1 be a constant. We
say that a metric graph bundle � WX ! B satisfies a flaring condition for k-qi lifts if there exist constants
� > 1, and n;M 2N such that the following holds:

Suppose 
 W Œ�n; n�! B is any geodesic, and suppose z
1 and z
2 are any two k-qi lifts of 
 in X . If
d
.0/.z
1.0/; z
2.0//�M, then we have

�:d
.0/.z
1.0/; z
2.0//�max
˚
d
.n/.z
1.n/; z
2.n//; d
.�n/.z
1.�n/; z
2.�n//

	
:

(2) We say that the metric graph bundle � WX ! B satisfies a flaring condition if it satisfies a flaring
condition for k-qi lifts for all k � 1.

We note that the assertion that a metric graph bundle “satisfies a flaring condition” means that for any k� 1

there are three constants � > 1, and n;M 2N (depending on k) with the said property in Definition 4.9(1).
However, when we wish to emphasize the dependence of these three numbers on k, we say that the metric
bundle satisfies a .�k ;Mk ; nk/-flaring condition. This property is independent of the hypotheses about
metric graph bundles and the conditions (|) and (||) mentioned in the beginning of this subsection.

Definition 4.10 (flaring for metric bundles) We shall say that a metric bundle � W X ! B satisfies a
.�k ;Mk ; nk/-flaring condition if the canonical metric graph bundle associated to it satisfies a .�k ;Mk ; nk/-
flaring condition.

Remark (1) Since the base for a metric bundle need not be a geodesic metric space, it is not reasonable
to use [24, Definition 1.12] of flaring for metric bundles. However, one can formulate analogous flaring
of qi sections over uniform quasigeodesics in the base and then show that this is indeed equivalent to
Definition 4.10. Since this discussion is not directly related to the rest of the paper we move it to the end
of the paper and we include it as an appendix. See Lemmas A.5 and A.6.

(2) This definition of flaring for metric bundles is equivalent to [24, Definition 1.12] in the case of
geodesic metric bundles. In fact it follows from Lemmas A.5 and A.6 that a geodesic metric bundle
satisfies flaring as per [24, Definition 1.12] if and only if the canonical metric graph bundle associated to
it also satisfies flaring.

Algebraic & Geometric Topology, Volume 25 (2025)



2720 Swathi Krishna and Pranab Sardar

The following lemma will be crucial for the next section of the paper.

Lemma 4.11 (quasiconvexity of necks of ladders [24, Lemma 2.18]) Let X be an �-metric graph bundle
over B satisfying .�k;Mk;nk/-flaring condition for all k � 1. Then for all c1 � 1 and R> 1 there are
constants D4:11 DD4:11.c1;R/ and K4:11 DK4:11.c1/ such that the following holds:

Suppose †1; †2 are two c1-qi sections of B in X and let L�maxfMc1
; dh.†1; †2/g.

(1) Let 
 W Œt0; t1�! B be a geodesic , t0; t1 2 Z, such that
(a) d
.t0/.†1\F
.t0/; †2\F
.t0//DLR,
(b) 
 .t1/ 2 UL WD UL.†1; †2/ but for all t 2 Œt0; t1/\Z, 
 .t/ 62 UL.
Then the length of 
 is at most D4:11.c1;R/.

(2) For any b1; b2 2 UL and any geodesic Œb1; b2� joining them in B, we have Œb1; b2��NK4:11
.UL/.

In particular , if B is hyperbolic then UL is K4:11-quasiconvex in B.

(3) If dh.†1; †2/�Mc1
then the diameter of the set UL is at most D0

4:11
DD0

4:11
.c1;L/.

Part (2) of the above lemma is slightly different from that of [24, Lemma 2.18] but the proof there actually
showed this. However, ladders with short necks to which Lemma 4.11 applies are given a special name:

Definition 4.12 (small girth ladders) Given two K-qi sections†1; †2 in a metric graph bundle satisfying
a flaring condition the ladder L.†1; †2/ is called a small girth ladder if UL.†1; †2/¤∅, where LDMK .

Remark Suppose X 0!B0 is a metric bundle and X!B is the canonical metric graph bundle associated
to it. Suppose a flaring condition holds for X . This is the case for instance when X or equivalently X 0 is
hyperbolic. In such a case, a small girth ladder in X 0 for us will be, by definition, the transport of a small
girth ladder from X under �X (as in Proposition 4.1).

We end this section with two simple lemmas. We note that flaring condition is not needed for these to
hold.

Lemma 4.13 Given D � 0, K � 1 there is RDR4:13.D;K/ such that the following holds.

Suppose † is K-qi section in X and x 2X. Let b D �.x/. Then d.x; †/�D if db.x; †\Fb/�R.

Proof Suppose y2† a nearest point from x. Let ˛�† be the lift of a geodesic Œb; �.y/� joining b to �.y/
joining y to†\Fb . We note that dB.b; �.y//�d.x;y/. Hence, d.y; ˛.b//�Kd.x;y/CK. Therefore,
d.x; ˛.b// � d.x;y/C d.y; ˛.b// � .K C 1/d.x;y/CK. This implies d.x;y/ �

1

KC1
d.x; ˛.b//

since all distances are integers in this case. Now fibers of X are properly embedded as measured by �.
Thus if db.x; ˛.b//� �..KC 1/D/ then d.x;y/�D. Hence, we can take RD �.KDCD/.

The corollary below gives a relation between the girth of a ladder L.†1; †2/ and d.†1; †2/.

Corollary 4.14 Given D � 0;K � 1 there is an RDR4:14.D;K/ such that the following holds:

Suppose †1; †2 are two K-qi sections in X . Then d.†1; †2/�D if UR.†1; †2/D∅.
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The next lemma is a generalization of Lemma 4.13. Nevertheless we keep both of them since they are
used many times in the next section.

Lemma 4.15 Given K;D there is RDR4:15.K;D/ such that the following holds.

Suppose †1; †2 are two K-qi sections in X and LD L.†1; †2/. Suppose x 2 X and �.x/D b. Then
d.x;L/�D if db.x;L\Fb/�R.

Proof Suppose y 2L is a nearest point from x. Let ˛ be a geodesic lift of any geodesic Œb; �.y/� joining
b to �.y/ such that ˛ joins y to Fb . Now �L.˛/ is a 2C -qi lift of Œb; �.y/� where C D C4:6.K/. Thus
d.y; �L.˛/.b//� 2CdB.b; �.y/C 2C � 2Cd.x;y/C 2C . Hence,

d.x;L\Fb/� d.x;y/C d.y; �L.˛/.b//� .2C C 1/d.x;y/C 2C:

Therefore, d.x;y/�
1

2CC1
d.x;L\Fb/. Hence, we can take RD �..2C C 1/D/.

5 Cannon–Thurston maps for pullback bundles

In this section, we prove the main result of the paper. Here is the set-up. From now on we suppose that
� WX ! B is an .�; c/-metric bundle or an �-metric graph bundle satisfying the following hypotheses:

(H1) B is a ı0-hyperbolic metric space.

(H2) Each of the fibers Fb , b 2B is a ı0-hyperbolic metric space with respect to the path metric induced
from X.

(H3) The barycenter maps @3Fb ! Fb , b 2 B (resp. b 2 V.B/) are N0-coarsely surjective for some
constant N0.

(H4) The .�k ;Mk ; nk/-flaring condition is satisfied for all k � 1.

The following theorem is the main result of [24]:

Theorem 5.1 [24, Theorem 4.3 and Proposition 5.8] If � W X ! B is a geodesic metric bundle or a
metric graph bundle satisfying (H1)–(H3) then X is a hyperbolic metric space if and only if X satisfies a
flaring condition.

5.1 Proof of the main theorem

We are now ready to state and prove the main theorem of the paper.

Theorem 5.2 (main theorem) Suppose � WX ! B is a metric (graph ) bundle satisfying the hypotheses
(H1)–(H4). Suppose g W A! B is a Lipschitz k-qi embedding and suppose p W Y ! A is the pullback
bundle. Let f W Y !X be the pullback map.

Then Y is a hyperbolic metric space and the CT map exists for f W Y !X .
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Proof We first note that X is hyperbolic. This follows from Theorem 5.1 if X is a metric graph bundle
(or a geodesic metric bundle). If X is a (length) metric bundle, one may first pass to the canonical metric
graph bundle associated to it, and then verify the hypotheses of Theorem 5.1 for it. In fact, if any metric
bundle satisfies (H1), (H2), and (H3) then the canonical metric graph bundle associated to it also has these
properties with possibly different values of the respective parameters. Flaring condition (H4) follows
from Definition 4.10. It then follows that the metric graph bundle is hyperbolic. Consequently, X is
hyperbolic by Proposition 4.1. We shall assume that X is ı-hyperbolic. We begin with the following
reductions:

(1) It is enough to prove the theorem only for metric graph bundles.

Indeed this follows from Proposition 4.2(2). So for the rest of the proof we shall assume that � WX ! B

is a metric graph bundle satisfying (H1)–(H4).

Since we work with graphs from now, for the rest of the section by hyperbolicity we shall mean Rips
hyperbolicity.

(2) We may moreover assume that A is a connected subgraph, g WA! B is the inclusion map and Y is
the restriction bundle for that inclusion. In particular, f W Y !X is the inclusion map and Y D ��1.A/.

Since g WA! B is a k-qi embedding and B is ı0-hyperbolic, g.A/ is D2:19.ı0; k; k/-quasiconvex in B.
Let A0 be the D2:19.ı0; k; k/-neighborhood of g.A/ in B. Then clearly A0 is connected subgraph of B

and g W A! A0 is a quasiisometry with respect to the induced path metric on A0 from B. Clearly A0

is .1; 4D2:19.ı0; k; k//-qi embedded. Let � 0 WX 0 D ��1.A0/!A0 be the restriction of � on X 0. Then
� 0 WX 0!A0 is a metric graph bundle by Lemma 3.17. Also, we note that .f;g/ W Y !X 0 is a morphism
of metric graph bundles. By Corollary 3.25 the fiber maps of the morphism f W Y !X 0 are uniform quasi-
isometries and hence by Theorem 3.15 we see that f W Y !X 0 is an isomorphism of metric graph bundles.
Since (Rips) hyperbolicity of graphs is a qi invariant, we are reduced to proving hyperbolicity of X 0 and
also by Lemma 2.50(1) we are reduced to proving the existence of the CT map for the inclusion X 0!X .

Hyperbolicity of Y Y is hyperbolic by Remark 4.4 of [24]. In fact, by Theorem 5.1 it is enough to
check that flaring holds for the bundle Y !A. This is a consequence of flaring of the bundle � WX !B

and bounded flaring.

Remark (1) The sole purpose of (H3) is to have global uniform qi sections through every point of X

which is guaranteed by Proposition 4.3. For the rest of this section, we shall also assume:

(H30) Through any point of X there is a global K0-qi section.

(2) Clearly Y is an �-metric graph bundle over A satisfying (H2) and (H3). We shall assume that A is
ı0

0
-hyperbolic. We shall also assume the bundle Y satisfies a .�0

k
;M 0

k
; n0

k
/-flaring condition for all k � 1.
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Existence of CT map Outline of the proof : To prove the existence of the CT map we use Lemma 2.49.
The different steps used in the proof are as follows. (1) Given y;y0 2 Y first we define a uniform
quasigeodesic c.y;y0/ in X joining y;y0. This is extracted from [24]. (2) In the next step we modify
c.y;y0/ to obtain a path Nc.y;y0/ in Y. (3) We then check that these paths are uniform quasigeodesics
in Y. (4) Finally we verify the condition of Lemma 2.49 for the paths c.y;y0/ and Nc.y;y0/. Since X;Y

are hyperbolic metric spaces, stability of quasigeodesics and Lemma 2.49 finishes the proof. To maintain
modularity of the arguments we state intermediate observations as lemma, proposition etc.

Remark Although we assumed that y;y0 2 Y as is necessary for our proof, c.y;y0/ as defined below is
a uniform quasigeodesic for all y;y0 2X as it will follow from the proof.

However, we would like to note that description of uniform quasigeodesics in a metric graph bundle with
the above properties (H1)–(H4) is already contained in [24], eg see Propositions 3.4 and 3.14 of [24]. We
make it more explicit with the help of Proposition 2.33.

Step 1 (descriptions of the uniform quasigeodesic c.y;y0/) The description of the paths and the proof
that they are uniform quasigeodesics in X is broken up into three further substeps.

Step 1(a) (choosing a ladder containing y;y0) We begin by choosing any two K0-qi sections †;†0

in X containing y;y0, respectively. Let L.†;†0/ be the ladder formed by them. Throughout Step 1 we
shall work with these qi sections and ladder. The path c.y;y0/ that we shall construct in Step 1(c) will be
contained in this ladder.

Step 1(b) (decomposition of the ladder into small girth ladders) We next choose finitely many qi
sections in L.†;†0/ after [24, Proposition 3.14] in a way suitable for using Proposition 2.33. This
requires a little preparation. We start with the following.

Lemma 5.3 For all K � 1 there is D5:3.K/ such that the following holds in X.

Suppose †1; †2 are two K-qi sections and dh.†1; †2/�MK . Then †1; †2 are D5:3.K/-cobounded.

Proof We note that †1; †2 are K0 D D2:19.ı;K;K/-quasiconvex in X . Suppose P W X ! †1 is a
1-approximate nearest point projection map and the diameter of P .†2/ is bigger than DDD2:28.ı;K

0; 1/.
Then d.†1; †2/�RDR2:28.ı;K

0; 1/. If x 2†2 such that d.x; †1/�R and b D �.x/ then

db.x; †1\Fb/�R4:13.R;K
0/DR;

say. Hence, �.P .†2//�UR.†1; †2/. However, by Lemma 4.11 the diameter of UR.†1; †2/ is at most
D0

4:11
.K0;R/. It follows that the diameter of P .†2/ is at most KCKD0

4:11
.K0;R/. Hence we may

choose D5:3.K/DmaxfD2:28.ı;K
0; 1/; KCKD0

4:11
.K0;R/g.

Lemma 5.4 Suppose†1; †2 are two K-qi sections and†�L.†1; †2/ is K-qi section. Then† coarsely
uniformly bisects L.†1; †2/ into the subladders L.†1; †/ and L.†;†2/.
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Proof First of all any ladder formed by K-qi sections is K4:6.ı;K/-quasiconvex. Let K0 DK4:6.ı;K/.
Let k � 1, and xi 2†i , i D 1; 2 be any points. Let 
x1x2

W I!X be a k-quasigeodesic joining them where
I is an interval. Then there are points t1; t2 2 I with jt1�t2j� 1 such that 
x1x2

.t1/2NK 0.L.†1; †// and

x1x2

.t2/ 2NK 0.L.†;†2//. Let y1 2L.†1; †/ and y2 2L.†;†2/ be such that d.yi ; 
x1x2
.ti//�K0,

i D 1; 2. We note that d.
x1x2
.t1/; 
x1x2

.t2//� 2k. Hence, d.y1;y2/� 2K0C2k. Let bD�.y1/. Then
db.y1;L.†;†2/\Fb/ � R4:15.K; 2K0C 2k/. This implies db.y1; †\Fb/ � R4:15.K; 2K0C 2k/.
Thus d.
x1x2

.t1/; †/�K0CR4:15.K; 2K0C 2k/. This proves the lemma.

Lemma 5.5 If Q is a K-qi section in X then Q\Y is a K5:5.K/-qi section of A in Y.

Proof Suppose s W B!X is the K-qi embedding such that s.B/DQ. Let s also denote the restriction
on A. Since the bundle map Y !A is 1-Lipschitz we have dA.u; v/� dY .s.u/; s.v// for all u; v 2A.
Thus it is enough to show that s WA! Y is uniformly coarsely Lipschitz. Suppose u; v 2A are adjacent
vertices. Then dX .s.u/; s.v// � 2K. Now, there is a vertex x 2 Fv adjacent to s.u/ 2 Fu. Hence,
dX .s.v/;x/ � 1C 2K. Therefore, dv.s.v/;x/ � �.1C 2K/. Hence, dY .s.u/; s.v// � 1C �.1C 2K/.
It follows that for all u; v 2A we have dY .s.u/; s.v//� .1C �.1C 2K//dA.u; v/. Hence, we can take
K5:5.K/D 1C �.1C 2K/.

The following corollary is proved exactly as Lemma 5.3. Hence we omit the proof.

Corollary 5.6 For all K � 1 there is D5:6.K/� 0 such that the following holds.

Suppose †1; †2 are two K-qi sections in X and dh.†1; †2/�MK . Then †1\Y; †2\Y are D5:6.K/-
cobounded in Y.

Before describing the decomposition of ladders the following conclusions and notation on qi sections and
ladders will be useful to record.

Convention 5.7 (C0) We recall that A is k-qi embedded in B. We let k0 DD2:17.ı0; k; k/ so that A

is k0-quasiconvex in B. Finally we assume that Y is ı0 hyperbolic.

(C1) Let KiC1 D .1C 2K0/C4:6.Ki/ for all i 2 N where K0 is as in (H30). Therefore, through any
point of a Ki-ladder in X , there is a KiC1-qi section contained in the ladder. Let K0i DK5:5.Ki/.

(C2) We let �i Dmax
˚
D2:19.ı;Ki ;Ki/;K4:6.ı;Ki/;D2:19.ı

0;K0i ;K
0
i/;K4:6.ı

0;K0i/
	

so that any Ki-
qi section Q� X and any ladder L� X formed by two Ki-qi sections in X are �i-quasiconvex in X

and moreover Q\Y and L\Y are �i-quasiconvex in Y.

(C3) If †1; †2 are two Ki-qi sections in X and dh.†1; †2/�MKi
then they are Di-cobounded in X,

as are †1\Y , †2\Y in Y , where Di DmaxfD5:3.Ki/;D5:6.Ki/g.
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(C4) For each pair of Ki-qi sections †1; †2 in X that satisfies

dh.†1; †2/ > ri DmaxfR4:14.2�i C 1;Ki/;R4:14.2�i C 1;K0i/g

we have dX .†1; †2/ > 2�i C 1 and dY .†1\Y; †2\Y / > 2�i C 1.

The following proposition is extracted from Proposition 3.14 of [24]. The various parts of this proposition
are contained in the different steps of the proof of [24, Proposition 3.14].

Let us fix a point b0 2A once and for all. Suppose ˛ W Œ0; l �! Fb0
\L.†;†0/ is an isometry such that

˛.0/D†\Fb0
and †0\Fb0

D ˛.l/.

Proposition 5.8 (see [24, Corollary 3.13 and Proposition 3.14]) There is a constant L0 such that for
all L�L0 there is a partition 0D t0 < t1 < � � �< tn D l of Œ0; l � and K1-qi sections †i passing through
˛.ti/, 0� i � n inside L.†;†0/ such that the following hold :

(1) †0 D†, †n D†
0.

(2) For 0� i � n� 2, †iC1 � L.†i ; †
0/.

(3) For 0 � i � n � 2 either (I) dh.†i ; †iC1/ D L, or (II) dh.†i ; †iC1/ > L and there is a K2-
qi section †0i through ˛.tiC1 � 1/ inside L.†i ; †iC1/ such that dh.†i ; †

0
i/ < C C CL, where

C D C4:6.K1/.

(4) dh.†n�1; †n/�L.

However, we will need a slightly different decomposition of L.†;†0/ than what is described here. It is
derived as the following corollary to Proposition 5.8.

Convention 5.9 We shall fix LDL0CMK3
C r3 and denote it by R0 for the rest of the paper. Also

we shall define R1 D C CCR0, where C D C4:6.K1/. Thus we have the following.

Corollary 5.10 (decomposition of L.†;†0/) There is a partition 0D t0 < t1 < � � � < tn D l of Œ0; l �
and K1-qi sections †i passing through ˛.ti/, 0� i � n inside L.†;†0/ such that the following hold :

(1) †0 D†, †n D†
0.

(2) For 0� i � n� 2, †iC1 � L.†i ; †
0/.

(3) For 0� i � n� 2 either (I) dh.†i ; †iC1/DR0, or (II) dh.†i ; †iC1/ >R0 and there is a K2-qi
section †0i through ˛.tiC1� 1/ inside L.†i ; †iC1/ such that dh.†i ; †

0
i/ <R1.

In either case dX .†i ; †iC1/ > 2�1C 1 and †i ; †iC1 are D1-cobounded in X.

(4) dh.†n�1; †n/�R0.
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We note that the second part of (3) follows from (C1), (C2), (C3) above. However, a subladder L.†i ; †iC1/

of L.†;†0/will be referred to as a type (I) subladder or a type (II) subladder according as dh.†i ; †iC1/D

R0 or dh.†i ; †iC1/ >R0 respectively.

Remark (1) We note that by the choice of R0;R1 it follows that dY .†i \Y; †iC1 \Y / > 2�1C 1

and †i \Y; †iC1\Y are D1-cobounded in Y for 0� i � n� 2.

(2) We shall use †i to mean qi sections in L.†;†0/ exactly as in the corollary above for the rest of this
section.

(3) Finally we note that †n; †n�1 need not be cobounded in general and the same remark applies to
†n\Y , †n�1\Y.

Lemma 5.11 Let… WL.†;†0/! Œ0; n� be any map that sends †i to i 2 Œ0; n�\Z and sends any point of
L.†i ; †iC1/ n f†i [†iC1g to a point in .i; i C 1/. Then the hypotheses of Proposition 2.33 are verified
for both … and its restriction L.†;†0/\Y ! Œ0; n�.

Proof For both … and its restriction to L.†;†0/\Y, (P0) and (P1) follow from (C2), (P2) follows from
Lemma 5.4, and (P3) follows from (C4). For … (P4) follows from (C3) and for the restriction of … to
L.†;†0/\Y from (1) of the Remark.

Step 1(c) ( joining y;y0 inside L.†;†0/) We now inductively define a finite sequence of points yi 2†i ,
0� i � nC 1 with y0 D y, ynC1 D y0 such that each yi , 1� i � n, is a uniform approximate nearest
point projection of yi�1 on †i in X . We also define uniform quasigeodesics 
i in X joining yi ;yiC1.
The concatenation of these 
i’s then forms a uniform quasigeodesic in X joining y;y0 by Proposition 2.33
and Lemma 5.11.

We define 
n to be the lift of Œ�.yn/; �.ynC1/� in †0.

Suppose y0; : : : ;yi and 
0; : : : ; 
i�1 are already constructed, 0 � i � n� 2. We next explain how to
define yiC1 and 
i .

Case I Suppose Li D L.†i ; †iC1/ is of type (I) ie dh.†i ; †iC1/ D R0 or i D n � 1. Then,
UR0

.†i ; †iC1/ is nonempty. Let ui be a nearest point projection of �.yi/ on UR0
.†i ; †iC1/. We

define yiC1 D †iC1 \ Fui
. Let ˛i be the lift of Œ�.yi/;ui � in †i , and let �i be the subsegment of

Fui
\Li joining ˛i.ui/ and yiC1. We define 
i to be the concatenation of ˛i and �i . Then clearly 
i is a

.K1CR0/-quasigeodesic in X . That yiC1 is a uniform approximate nearest point projection of yi on
†iC1 follows from the following lemma.

Lemma 5.12 Given K � 1 and R�MK there are constants �5:12.K;R/ and �0
5:12

.K;R/ such that the
following holds.
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Suppose Q1;Q2 are two K-qi sections and dh.Q1;Q2/ � R. Let x 2 Q1 and let U D UR.Q1;Q2/.
Suppose b is a nearest point projection of �.x/ on U. Then Q2\Fb is �5:12.K;R/-approximate nearest
point projection of x on Q2.

If dh.Q1;Q2/�MK then for any b0 2U the point Q2\Fb0 is an �0
5:12

.K;R/-approximate nearest point
projection of any point of Q1 on Q2.

This lemma follows from Corollary 1.40 and Proposition 3.4 of [24] given that ladders are quasiconvex.
However, we give an independent proof using the hyperbolicity of X .

Proof Suppose Nx is a nearest point projection of x on Q2 and let x0DQ2\Fb . Let 
xx0 be the concate-
nation of the lift in Q1 of any geodesic in B joining �.x/ to b and any geodesic in Fb joining Q1\Fb

to Q2\Fb . Clearly it is a .KCR/-quasigeodesic in X . Also by Lemma 2.25 the concatenation of any
1-quasigeodesics joining x; Nx and Nx;x0 is a K2:25.ı;K; 1; 0/-quasigeodesic. Hence, by stability of quasi-
geodesics we have Nx 2ND.
i/ where D DD2:19.ı;K

0;K0/ and K0 DmaxfKCR;K2:25.ı;K; 1; 0/g.
This implies there is a point z 2 
xx0 such that d.z; Nx/ �D. If z 2 Fb \ 
xx0 then d. Nx;x0/ �DCR

and hence x0 is a .DCR/-approximate nearest point projection of x on Q2.

Suppose z 2 Q1 \ 
xx0 . Then d�.z/.z;Q2 \F�.z// � R4:13.D;K/. Hence, by Lemma 4.11 we have
dB.�.z/; b/�D4:11.K;R

0/, where R0 DR4:13.D;K/=R. Therefore,

d. Nx;x0/� d. Nx; z/C d.z;Q1\Fb/C d.Q1\Fb;x
0/�DC .KCKD4:11.K;R

0//CR:

Hence in this case x0 is a .DCKCKD4:11.K;R
0/CR/-approximate nearest point projection of x on Q2.

We may set �5:12.K;R/DDCKCKD4:11.K;R
0/CR.

For the last part, we note that the diameter of U is at most D0
4:11

.K;R/. Thus clearly �0
5:12

.K;R/D

�5:12.K;R/CKCKD0
4:11

.K;R/ works.

Case II Suppose Li D L.†i ; †iC1/ is of type (II), ie dh.†i ; †iC1/ >R0. In this case there exists a
K2-qi section †0i inside Li D L.†i ; †iC1/ passing through ˛.tiC1� 1/ such that dh.†i ; †

0
i/�R1. We

thus use Case (I) twice as follows. First we project yi on †0i . Suppose the projection is y0i . Then we
project y0i on †iC1 which we call yiC1 and so on. Here are the details involved.

Let vi be a nearest point projection of �.yi/ on UR1
.†i ; †

0
i/ and let wi be a nearest point projection vi on

UR1
.†0i ; †iC1/. Then yiC1 D†iC1\Fwi

. In this case we let ˛i denote the lift of Œ�.yi/; vi � in †i and
let ˇi denote the lift of Œvi ; wi � in †0i . Then 
i is the concatenation of the paths ˛i , Œ†i \Fvi

; †0i \Fvi
�vi

,
ˇi and Œ†0i \Fwi

; †iC1\Fwi
�wi

. That yiC1 is a uniform approximate nearest point projection of yi on
†iC1 and that 
i is a uniform quasigeodesic follow immediately from Lemma 5.12 and the last part of
Proposition 2.33.
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Remark We note that L.†;†0/\Y is a ladder in Y formed by the qi sections †\Y and †0\Y defined
over A. However, in this case the subladders L.†i ; †iC1/\Y may not be of type (I) or (II). Therefore,
we cannot directly use the above procedure to construct a uniform quasigeodesic in Y joining y;y0.

Step 2 (modification of the path c.y;y0/) In this step we shall construct a path Nc.y;y0/ in Y joining
y and y0 by modifying c.y;y0/. For 0 � i � n, let bi be a nearest point projection of �.yi/ on A and
let Nyi D Fbi

\†i . We define a path 
 i � Y joining the points Nyi ; NyiC1 for 0� i � n. Finally the path
Nc.y;y0/ is defined to be the concatenation of these paths. The path 
 n is the lift of Œ�.ynC1/; �. Nyn/�A in
†0\Y. The definition of 
 i , for 0� i � n� 1, depends on the type of the subladder Li D L.†i ; †iC1/

given by Corollary 5.10(3).

Case 2(I) Suppose Li is of type (I) or i D n�1. Let ˛i denote the lift of Œbi ; biC1�A in †i starting at Nyi .
The path 
 i is defined to be the concatenation of ˛i and the fiber geodesic FbiC1

\L.†i ; †iC1/.

Case 2(II) Suppose Li is of type (II). In this case, we apply Case 2(I) to each of the subladders
L.†i ; †

0
i/ and L.†0i ; †iC1/. Let y0i be as defined in Step 1(c). Let b0i 2A be a nearest point projection

�.y0i/ on A and Ny0i D �
�1.b0i/ \†

0
i . Next we connect Nyi ; Ny

0
i and Ny0i ; NyiC1 as in Case 2(I) inside the

ladders L.†i \ Y; †0i \ Y / and L.†0i \ Y; †iC1 \ Y / respectively. We shall denote by ˛i and ˇi the
lift of Œbi ; b

0
i �A in †i \ Y and Œb0i ; biC1�A in †0i \ Y respectively. The concatenation of the paths ˛i ,

Œ†i\Fb0
i
; †0i\Fb0

i
�b0

i
�L.†;†0/, ˇi and Œ†0i\FbiC1

; †iC1\FbiC1
�biC1

�L.†;†0/ is defined to be 
 i .

Step 3 (proving that Nc.y;y0/ is a uniform quasigeodesic in Y ) To show that Nc.y;y0/ is a quasigeodesic
it is enough, by Proposition 2.33, to show that the paths 
 i are all uniform quasigeodesics in Y and that
for 0� i � n�1, NyiC1 is an approximate nearest point projection of Nyi in †iC1\Y. The proof of this is
broken into three cases depending on the type of the ladder Li . We start with the following lemma as a
preparation for the proof.

The lemma below is true for any metric bundle that satisfies the hypotheses (H1)–(H4) and (H30), although
we are stating it for X only. For instance, it is true for Y too.

Lemma 5.13 Suppose b 2 B, x;y 2 Fb . Suppose for all K � K0 and R �MK there is a constant
D DD.K;R/ � 0 such that for all x0;y0 2 Œx;y�b and any two K-qi sections Q1 and Q2 in X passing
through x0;y0, respectively, either UR.Q1;Q2/ D ∅ or dB.b;UR.Q1;Q2// � D. Then the following
hold :

(1) Œx;y�b is a �5:13-quasigeodesic in X, where �5:13 depends on the function D (and the parameters
of the metric bundle).

(2) If Q and Q0 are two K-qi sections passing through x;y respectively then x is a uniform approximate
nearest point projection of y on Q and y is a uniform approximate nearest point projection of x

on Q0.
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Proof (1) Since the arc length parametrization of Œx;y�b is a uniform proper embedding, by Lemma 2.5
it is enough to show that Œx;y�b is uniformly close to a geodesic in X joining x;y.

Claim Suppose †x; †y are two K0-qi sections passing through x;y respectively. Given any z 2 Œx;y�b

and any K1-qi section†z passing through z contained in the ladder L.†x; †y/ the nearest point projection
of x on †z is uniformly close to z.

We note that once the claim is proved then applying Proposition 2.33 to the ladder L.†x; †y/ D

L.†x; †z/[L.†z; †y/ it follows that z is uniformly close to a geodesic joining x;y. From this (1)
follows immediately.

Proof of Claim First suppose UMK1
.†x; †z/¤∅. Then we can find a uniform approximate nearest

point projection of x on †z using Step 1(c), Case I and Lemma 5.12 above which is uniformly close to z

by hypothesis. G

Now suppose UMK1
.†x; †z/D∅. Let ˛zx W Œ0; l �!Fb be the unit speed parametrization of the geodesic

L.†x; †z/\Fb joining z to x. By Corollary 5.10 there is a K2-qi section †z0 contained in the ladder
L.†x; †z/ passing through z0D ˛zx.t/ for some t 2 Œ0; l � such that L.†z; †z0/ is a K2-ladder of type (I)
or (II). Let x0 be a nearest point projection of x on †z0 . By the last part of Proposition 2.33 applied to
L.†x; †z/, it is enough to find a uniform approximate nearest point projection of x0 on †z which is
also uniformly close to z. However, in this case †z; †z0 are D2-cobounded. Hence it is enough to find a
uniform approximate nearest point projection of z0 on †z which is uniformly close to z. The proof of
this is broken into two cases as follows.

(I) Suppose dh.†z; †z0/DR0. By the last part of Lemma 5.12 if v 2 UR0
.†z; †z0/ then Fv \†z is a

uniform approximate nearest point projection of any point of †z0 . Since dA.b; v/ is uniformly small by
hypothesis, d.z;Fv \†z/ is also uniformly small.

(II) Suppose dh.†z; †z0/ > R0. Then there is a K3-qi section †z00 in L.†z; †z0/ passing through
z00D ˛zx.t �1/ such that UR0

.†z; †z00/¤∅. Let v0 be a nearest point projection of b on UR0
.†z; †z00/.

Then by hypothesis d.b; v0/ is uniformly small whence d.z;Fv0 \†z/ is uniformly small. Also by
Lemma 5.12 the point †z \Fv0 is a uniform approximate nearest point projection of z00 on †z . It follows
that z is a uniform approximate nearest point projection of z00 on †z . Finally, since d.z0; z00/� 1, z is a
uniform approximate nearest point projection of z0.

(2) We shall prove only the first statement since the proof of the second would be an exact copy. Suppose
x1 2Q is a nearest point projection of y on Q. Consider the K-qi section over Œb; �.x1/� contained in Q.
This is a K-quasigeodesic of X joining x;x1. Since Q is a K-qi section, by stability of quasigeodesics
it is D2:17.ı;K;K/-quasiconvex in X . Hence by Lemma 2.25 the concatenation of this quasigeodesic
with a geodesic in X joining y to x1 is a K2:25.ı; zK;K; 0/-quasigeodesic where zK DD2:17.ı;K;K/.
Let k 0 Dmaxf zK; �5:13g. Since Œx;y�b is a �5:13-quasigeodesic, by stability of quasigeodesics we have
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x1 2 N2D0.Œx;y�b/, where D0 D D2:17.ı; k
0; k 0/. Suppose z 2 Œx;y�b be such that d.x1; z/ � 2D0.

Then dB.�.x1/; �.z//D dB.�.x1/; b/� 2D0. Hence, d.x;x1/�KC2D0K. Thus x is a .KC2D0K/-
approximate nearest point projection of y on Q.

Remark The proof of the first part of the above lemma uses the hypothesis for K �K3 only whereas
the proof of the second part follows directly from the statement of the first part and is independent of the
hypotheses of the lemma.

The following lemma is actually a trivial consequence of flaring (Lemma 4.13) and it is going to be used
in the next two lemmas following it.

Lemma 5.14 Given R � 0, K;K0 � 1 and R0 �MK 0 , there is a constant R5:14.R;R
0;K;K0/ and

D5:14.R;R
0;K;K0/ such that the following holds.

Suppose u 2 B and PA.u/D b, where PA W B!A is a nearest point projection map. Suppose x;y 2 Fb

and let 
x; 
y be two K-qi sections over Œu; b�. Let Q1;Q2 be two K0-qi sections over A in Y and
U D UR0.Q1;Q2/. If du.
x.u/; 
y.u// � R and U ¤ ∅, then db.x;y/ � R5:14.R;R

0;K;K0/ and
dA.b;U /�D5:14.R;R

0;K;K0/.

Proof Suppose U ¤∅ and du.
x.u/; 
y.y//�R. Let b0 2 UMK 0
.Q1;Q2/ be any point and let Œb; b0�

denote a geodesic in A joining b; b0. Then the concatenation Œu; b� � Œb; b0� is a K2:25.ı0; k0; k; 0/-
quasigeodesic in B by Lemma 2.25 since A is k-qi embedded and k0-quasiconvex. Concatenation of

x; 
y with the qi sections over Œb; b0� contained in Q1;Q2 respectively defines maxfK;K0g-qi sections
over Œu; b�� Œb; b0� passing through x;y, respectively. Let k 0DK2:25.ı0; k0; k; 0/ and k 00DmaxfK;K0g.
Then by Lemma 2.3 these qi sections are .k 0k 00; k 00k 0Ck 00/-quasigeodesics in X. Since X is ı-hyperbolic
and d.
x.u/; 
y.u//�R and d.Q1\Fb0 ;Q2\Fb0/�R0, by Corollary 2.21 x is contained in the D0 WD

.RCR0C2D2:20.ı; k
0k 00; k 0k 00Ck 00//-neighborhood of the qi section over Œu; b��Œb; b0� passing through y.

Applying Lemma 4.13 to the restriction bundles over Œu; b� and Œb; b0� we have db.x;y/ � R0
1
, where

R0
1
DR4:13.D

0;K/. Hence, we can take R5:14.R;R
0;K;K0/DR0

1
. Finally by Lemma 4.11 dA.b;U /�

D4:11.K
0;R0

1
=MK 0/. This completes the proof by taking D5:14.R;R

0;K;K0/DD4:11.K
0;R0

1
=MK 0/.

We recall that the paths Nc.y;y0/ were constructed from c.y;y0/ by replacing parts of c.y;y0/ by some
fiber geodesic segments. The main aim of the following three lemmas is to proving that these fiber
geodesic segments are uniform quasigeodesics in Y. Depending on how the corresponding subladders of
X intersect Y we have three scenarios and hence we divided the proof into three lemmas.

Lemma 5.15 Given K � K0 and R � MK , there are constants K5:15 D K5:15.K;R/, �5:15 D

�5:15.K;R/ and D5:15 DD5:15.K;R/ such that the following holds.

Suppose Q;Q0 are two K-qi sections in X and dh.Q;Q0/ � R in X. Let U D UR.Q;Q0/. Suppose
dh.Q\Y;Q0\Y /�R in Y. Then the following hold :
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(1) The projection of U on A is of diameter at most D5:15.

(2) For any b 2 PA.U /, Fb \ L.Q;Q0/ is a K5:15-quasigeodesic in Y ; moreover , Fb \ Q is an
�5:15-approximate nearest point projection of any point of Q0 on Q and vice versa.

Proof (1) We know that A is k0-quasiconvex in B. By Lemma 4.11 U is K4:11.K/-quasiconvex in B.
Let �0 Dmaxfk0;K4:11.K/g. Suppose PA WB!A is a nearest point projection map and a; a0 2 PA.U /

with dB.a; a
0/ � D2:28.ı; �

0; 0/. Then there are u;u0 2 U such that dB.a;u/ � R2:28.ı; �
0; 0/ and

dB.a
0;u0/�R2:28.ı; �

0; 0/. Let DDR2:28.ı; �
0; 0/. We know du.Q\Fu;Q0\Fu/�R. Hence by the

bounded flaring condition we have da.Q\Fa;Q0\Fa/� �K .D/R. Similarly

da0.Q\Fa0 ;Q0\Fa0/� �K .D/R:

Let R1 D �K .D/R. Thus, a; a0 2 UR1
.Q \ Y;Q0 \ Y /. Since R1 � MK , by Lemma 4.11 we

have diam.UR1
.Q \ Y;Q0 \ Y // � D4:11.K;R1/. This proves (1). In fact, we can take D5:15 D

maxfD2:28.ı; �
0; 0/;D4:11.K;R1/g.

(2) We derive this from Lemma 5.13 as follows. Let u 2 U be such that PA.u/ D b and let x;y 2

Fb \L.Q;Q0/. Suppose Q1;Q01 are two K0-qi sections in Y passing through x;y, respectively and
U 0DUMK 0

.Q1;Q01/. Suppose U 0¤∅. Consider the restriction Z of the bundle X on Œu; b��B. In this
bundle Q\Z;Q0\Z are K-qi sections. By Proposition 4.6(3) there are .1C2K0/C4:6.K/-qi sections
over ub contained in the ladder L.Q\Z;Q0\Z/ passing through x;y. Call them 
x; 
y , respectively.
We note that d.
x.u/; 
y.u// � R. Now applying Lemma 5.14 we know that dB.b;U

0/ is uniformly
small. This verifies the hypothesis of Lemma 5.13. Thus Q\Fb is a uniform approximate nearest point
projection of Q0 \Fb on Q. Since dh.Q\ Y;Q0 \ Y / � R �MK the qi sections Q\ Y;Q0 \ Y are
uniformly cobounded by Lemma 5.3. This shows that Q\Fb is a uniform approximate nearest point
projection of any point of Q0 on Q. That Q0\Fb is a uniform approximate nearest point projection of
any point of Q on Q0 is similar and hence we skip it.

Lemma 5.16 Given D � 0, K � K0 and R � MK there are constants K5:16 D K5:16.D;K;R/

�5:16 D �5:16.D;K;R/ and D5:16 DD5:16.D;K;R/ such that the following holds.

Suppose Q;Q0 are two K-qi sections in X and dh.Q;Q0/�R in X . Let U DUR.Q;Q0/. Suppose U ¤∅
and diam.U /�D. Then the following hold :

(1) diam.PA.U //�D5:16.

(2) For any b 2 PA.U /, Fb \L.Q;Q0/ is a K5:16-quasigeodesic in Y.

(3) Fb \Q is an �5:16-approximate nearest point projection of any point of Q0 on Q and vice versa.

Proof (1) Since B is ı0-hyperbolic and A is k0-quasiconvex in B any nearest point projection map
PA W B!A is coarsely L WDL2:28.ı0; k0; 0/-Lipschitz. Hence, diam.PA.U //�LCDL.
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(2), (3) We can derive these from Lemma 5.13 and the hypotheses of Lemma 5.13 can be verified
using Lemma 5.14. The proof is an exact copy of the proof of Lemma 5.15(2),(3). Hence we omit
it. The only part that requires explanation is why Q \ Y, Q0 \ Y are uniformly cobounded in Y. If
dh.Q\ Y;Q0 \ Y / > R then we are done by Lemma 5.3. Suppose this is not the case. Then by the
hypothesis diam.UR.Q\Y;Q0\Y //� k.kCD/ since A is k-qi embedded in B. Then we are done by
the first part of Lemma 5.12.

Lemma 5.17 Given K � K0 and R � MK there is a constant D5:17 D D5:17.K;R/ such that the
following holds.

Suppose Q;Q0 are two K-qi sections in X and dh.Q\Y;Q0 \Y / �R. Let U D UR.Q;Q0/. Then for
any b 2 PA.U /, db.Q\Fb;Q0\Fb/�D5:17.

Proof Suppose u 2 U and PA.u/D b. If u 2 A then b D u and db.Q\Fb;Q0 \Fb/ � R. Suppose
u 62A. We note that U \Y D U.Q\Y;Q0\Y /¤∅. Let v 2 U.Q\Y;Q0\Y /. Then by Lemma 2.25
Œu; b� � Œb; v� is a K2:25.ı0; k0; 1; 0/-quasigeodesic in B. Since U is K4:11.K/-quasiconvex in B. Let
k 0DK2:25.ı0; k0; 1; 0/. Hence, by Lemma 2.17, b 2ND.U /, where DDD2:17.ı0; k

0; k 0/CK4:11.K/.
Finally by the bounded flaring db.Q\Fb;Q0\Fb/�R maxf1; �K .D/g. Hence we can take D5:17 D

R maxf1; �K .D/g.

Finally, we are ready to finish the proof of Step 3.

Lemma 5.18 For 0� i � n� 1 we have the following.

(1) NyiC1 is a uniform approximate nearest point projection of Nyi on †iC1\Y.

(2) 
 i is a uniform quasigeodesic in Y.

Proof The proof is broken into three cases depending on the type of Li .

Case 1 (i � n� 2 and Li is of type (I)) By Lemma 4.11 UR0
.†i ; †iC1/ has uniformly small diameter.

Hence by Lemma 5.16(2), Œ†i \ FbiC1
; †iC1 \ FbiC1

�biC1
is a uniform quasigeodesic in Y. By the

part (3) of the same lemma †iC1\FbiC1
is a uniform approximate nearest point projection of †i\FbiC1

on †iC1 \ Y and †i \FbiC1
is a uniform approximate nearest point projection of †iC1 \FbiC1

on
†i \Y in Y. Hence the second part of the lemma follows, in this case, by Lemma 2.25.

Case 2 (i � n� 2 and Li is of type (II)) Suppose Li is a ladder of type (II). In this case, it is enough,
by Proposition 2.33, to show the following two statements .20/ and .200/:

(20) Ny0i is a uniform approximate nearest point projection of Nyi on †0i \Y in Y and the concatenation
of ˛i and the fiber geodesic Œ†i \Fb0

i
; †0i \Fb0

i
�b0

i
is a uniform quasigeodesic in Y.
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We know that dh.†i ; †
0
i/ � R1. Depending on the nature of dh.†i \ Y; †0i \ Y / the proof of .20/ is

broken into the following two cases.

Case (20)(i) Suppose dh.†i \Y; †0i \Y /�R1. In this case db0
i
.†i \Fb0

i
; †0i \Fb0

i
/ is uniformly small

by Lemma 5.17. By Lemma 5.12 if b00i is a nearest point projection of �. Nyi/ on UR1
.†i \Y; †0i \Y /

then Fb00
i
\†0i is a uniform approximate nearest point projection of Nyi on †0i \Y in Y. Thus it is enough

to show that dB.b
00
i ; b
0
i/ uniformly bounded to prove that Ny0i is a uniform approximate nearest point

projection of Nyi on †0i \Y in Y. Then since †i \Y is K0
1
-qi section in Y and db0

i
.†i \Fb0

i
; †0i \Fb0

i
/ is

uniformly small it will follow that the concatenation of ˛i and the fiber geodesic Œ†i \Fb0
i
; †0i \Fb0

i
�b0

i

is a uniform quasigeodesic in Y.

That dB.b
00
i ; b
0
i/ uniformly bounded is proved as follows. Let U D UR1

.†i ; †
0
i/ and V D U \A D

UR1
.†i \Y; †0i \Y /. Since B is ı0-hyperbolic, A is k-qi embedded in B and V is �2-quasiconvex in

A, V is K2:30.ı0; k; �2/-quasiconvex in B. Let k 0 Dmaxf�2; k0;K4:11.K2/;K2:30.ı0; k; �2/g. Then
A;U;V are all k 0-quasiconvex in B. By the definitions of yi’s we know that �.y0i/ is the nearest point
projection of �.yi/ on U. Let Nb0i be a nearest point projection of �.y0i/ on V. Also b0i D �. Ny

0
i/ is the

nearest point projection of �.y0i/ on A. On the other hand, bi D �. Nyi/ is a nearest point projection of
�.yi/ on A and b00i is the nearest point projection of bi on V. Therefore, dB.b

00
i ;
Nb0i/� 2D2:27.ı0; k

0; 0/

by Corollary 2.27.

Now, by Lemma 5.17 db0
i
.†i \Fb0

i
; †0i \Fb0

i
/�D5:17.K2;R1/. Hence, by Lemma 4.11 dA.b

0
i ;V /�

D4:11.K2;D5:17.K2;R1/=R1/DD1, say. Let v 2 V be such that dA.b
0
i ; v/ �D1. Then dB.b

0
i ; v/ �

kD1C k. Hence,
Hd.Œ�.y0i/; b

0
i �B; Œ�.y

0
i/; v�B/� ı0C kC kD1:

However, the concatenation Œ�.y0i/; Nb
0
i �B � Œ

Nb0i ; v�B is a K2:25.ı0; k
0; 1; 0/-quasigeodesic. Hence, there is a

point w 2 Œ�.y0i/; v�B such that dB.w; Nb
0
i/�D2:17

�
ı0;K2:25.ı0; k

0; 1; 0/;K2:25.ı0; k
0; 1; 0/

�
DD2, say.

Thus there is a point w0 2 Œ�.y0i/; b
0
i � such that dB.w

0; Nb0i/�D2C ı0C kC kD1 DD3, say. But b0i is a
nearest point projection of �.y0i/ on A and Nb0i 2 V �A. Thus dB.w

0; b0i/�D3. Thus dB. Nb
0
i ; b
0
i/� 2D3.

Hence, dB.b
0
i ; b
00
i /� dB.b

00
i ;
Nb0i/C dB. Nb

0
i ; b
0
i/� 2D2:27.ı0; k

0; 0/C 2D3.

Case (20)(ii) Suppose dh.†i \Y; †0i \Y /�R1. In this case Lemmas 5.15 and 2.25 do the job.

(200) NyiC1 is a uniform approximate nearest point projection of Ny0i on †iC1\Y in Y and the concatena-
tion of ˇ and the fiber geodesic Œ†0i \FbiC1

; †iC1\FbiC1
�biC1

is a uniform quasigeodesic joining
Ny0i to NyiC1 in Y.

In this case dh.†
0
i \Y; †iC1\Y /� 1 hence we are done as in Case (20)(i).

Case 3 (i D n� 1) The proof of this case is also analogous to that of the proof of Case (20)(i) since
dh.†n�1; †n/�R0.

Remark The conclusion of Lemma 5.16 is subsumed by Lemmas 5.15 and 5.17. But we still keep
Lemma 5.16 for the sake of ease of explanation.
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Thus by Lemmas 5.11 and 5.18, we have proved the following.

Proposition 5.19 Let x;y 2Y and let† and†0 be two K0-qi sections in X through x and y, respectively.
Let c.x;y/ be a uniform quasigeodesic in X joining x and y which is contained in L.†;†0/ as constructed
in Step 1(c). Then the corresponding modified path Qc.x;y/, as constructed in Step 2, is a uniform
quasigeodesic in Y.

Step 4 (verification of the hypothesis of Lemma 2.49)

Lemma 5.20 (proper embedding of the pullback Y ) The pullback Y is metrically properly embedded
in X. In fact , the distortion function for Y is the composition of a linear function with �, the common
distortion function for all the fibers of the bundle X.

Proof As was done in the proof of the main theorem, we shall assume that g is the inclusion map and
Y D ��1.A/ and p is the restriction of � . Let x;y 2 Y such that dX .x;y/ �M. Let �.x/D b1 and
�.y/Db2. Then, dB.b1; b2/�M and hence dA.b1; b2/�kCkM. Let Œb1; b2�A be a geodesic joining b1

and b2 in A. This is a quasigeodesic in B. By Lemma 3.8, there exists an isometric section 
 over Œb1; b2�A,
through x in Y. Clearly, 
 is a qi lift in X , say k 0-qi lift. We have, lX .
 /� k 0.kM Ck/Ck 0 DWD.M /.
The concatenation of 
 and the fiber geodesic Œ
 \Fb2

;y�Fb2
is a path, denoted by ˛, joining x and y

in X. So,

dX .
 \Fb2
;y/� dX .
 \Fb2

;x/C dX .x;y/� lX .
 /C dX .x;y/�D.M /CM:

Now, since Fb2
is uniformly properly embedded as measured by �, we have,

db2
.
 \Fb2

;y/� �.D.M /CM /:

Now, ˛ lies in Y and lY .
 /� kM C k. Then,

dY .x;y/� lY .˛/� lY .
 /C dY .
 \Fb2
;y/� kM C kC db2

.z
 \Fb2
;y/:

Therefore, dY .x;y/ � kM C kC �.D.M /CM /. Setting �0.M / WD kM C kC �.D.M /CM /, we
have the following: for all x;y 2 Y, d.x;y/�M implies dY .x;y/� �0.M /.

We recall that we fixed a vertex b0 2A to define the paths c.y;y0/ in the last step. Let y0 2Fb0
. However,

the following lemma completes the proof of Theorem 5.2.

Lemma 5.21 Given D > 0, there is D1 > 0 such that the following holds:

If dX .y0; c.y;y
0//�D then dY .y0; Nc.y;y

0//�D1.

Proof Let x 2 c.y;y0/ be such that dX .y0;x/ � D. This implies that dB.�.x/; b0/ � D. We recall
that the path c.y;y0/ is a concatenation of 
j , j D 0; 1; : : : ; n. Suppose x 2 
i , 0 � i � n. We claim
that there is a point of 
 i uniformly close to y0. Now, 
i is either a lift of geodesic segments of B in a
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K2-qi section †i or possibly †0i or it is the concatenation of such a lift and a fiber geodesic of length at
most R1. Let Q denote the corresponding qi section and suppose c.y;y0/\Q joins the points z 2Q to
w 2Q. If i D n then 
i is a qi lift of Œ�.z/; �.w/�B in Q joining z; w. Otherwise there is a fiber geodesic
� � c.y;y0/\F�.w/ connecting Q to the next qi section Q0, say. Then both the points z and Q0\ � are
one of the yi’s or y0j ’s. Let z0 D Q0 \ � and b0 D �.z0/. Let b be the nearest point projection of �.x/
on A. It follows that dB.�.x/; b/�D.

Suppose x 2 � . By the definition of Nc.y;y0/ we have Q0 \ Fb 2 Nc.y;y
0/. However, dB.b; b0/ �

dB.b; �.x//CdB.b0; �.x//� 2D. Since A is k-qi embedded in B we have dA.b; b0/�kC2Dk. Hence,
dY .Q0\Fb0

;Q0\Fb/�K2C.kC2Dk/:K2. On the other hand in this case �.x/Db0 and db0.z
0;x/�R1.

Hence, dX .z
0;y0/ � R1CD. Thus dX .y0;Q0 \Fb0

/ � dX .y0;x/C dX .x; z
0/C dX .z

0;Q0 \Fb0
/ �

DCR1CK2CDK2 since dB.b; b0/� 2D. Hence,

dY .y0;Q0\Fb0
/� db0

.y0;Q0\Fb0
/� �.DCR1CK2CDK2/:

Thus
dY .y0;Q0\Fb/� dY .y0;Q0\Fb0

/C dY .Q0\Fb;Q0\Fb0
/

� dY .y0;Q0\Fb0
/CK2CK2dA.b; b0/

� �.DCR1CK2CDK2/CK2C .kC 2Dk/K2:

Hence, in this case dY .y0; Nc.y;y
0//� .1C kC 2Dk/K2C �.DCR1CK2CDK2/.

Otherwise suppose x is contained in the lift of Œ�.z/; �.w/�B in Q. We note that �.x/ 2 Œ�.z/; �.w/�B
and dB.�.x/;A/�D. Now A is k0-quasiconvex in B. Hence, by Lemma 2.29 we have

dB.�.x/; Œ�.z/; �.w/�B/�D2:29.D; k0; ı/:

where �.z/, �.w/ are nearest point projections of �.z/; �.w/, respectively, on A. Since A is k-qi
embedded in B by stability of quasigeodesics Hd.Œ�.z/; �.w/�B; Œ�.z/; �.w/�A/�D2:17.ı; k; k/. Hence,
dB.�.x/; Œ�.z/; �.w/�A/ � D2:29.D; k0; ı/CD2:17.ı; k; k/. Let ˛ be the lift of Œ�.z/; �.w/�A in Q.
Then ˛ � Nc.y;y/. On the other hand,

dX .x; ˛/�K2CK2dB.�.x/; Œ�.z/; �.w/�A/�K2CK2.D2:29.D; k0; ı/CD2:17.ı; k; k//DD1;

say. Hence, dX .y0; ˛/� dX .y0;x/C dX .x; ˛/�DCD1. This implies that dY .y0; ˛/ is also bounded
by a function of D and the other parameters of the metric graph bundles X and Y, by Lemma 5.20.

5.2 An example

For the convenience of the reader, we briefly illustrate a special case of our main theorem where
B DR;AD .�1; 0�. This discussion will also be used in the proof of the last proposition of the next
section. We shall assume b0 D 0 here.

As in the proof of Lemma 5.21, suppose Q;Q0 are two qi sections among the various †i ; †
0
j ’s and let

w0 2Q0, z; w 2Q be points of c.y;y0/, where �.w0/D�.w/, d�.w/.w;w
0/�R1 and the concatenation
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wz

w0

w

w0

F�.z/ F0 F�.w0/

Q

Q0

Nz
w D w

w0 D w0

z

F�.w0/ F0 F�.z/

Q

Q0

zNz

w0

w

w0

F0 F�.z/ F�.w0/

Q

Q0

Figure 7: Top: Case 2. Middle: Case 3. Bottom: Case 4. The dashed lines denote the portion of
c.y;y0/, the thick lines denote the portion of Nc.y;y0/ and dotted lines are portions of the qi
sections Q;Q0.

of the lift say ˛, of Œ�.z/; �.w/� in Q and the vertical geodesic segment, say � , in F�.w/ is a part of
c.y;y0/. The following are the possibilities:

Case 1 If w0; z 2 Y \ c.y;y0/ then ˛ � � � Y and it is the corresponding part of Nc.y;y0/.

Case 2 (z 2Y, w0 62Y ) In this case, the modified segment is formed as the concatenation of subsegment
of ˛ joining z to Q\F0 and the fiber geodesic ŒQ\F0;Q0\F0�0. See Figure 7, top.

Case 3 (w0 2 Y, z 62 Y ) In this case the modified segment is the concatenation of the segment of ˛
from Q\F0 to w and the fiber geodesic segment � . See Figure 7, middle.

Case 4 (z; w0 62 Y ) In this case the modified segment is the fiber geodesic ŒQ\F0;Q0 \F0�0. See
Figure 7, bottom.
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6 Applications, examples and related results

As the first application of our main theorem, we have the following. Given a short exact sequence of
finitely generated groups there is a natural way to associate a metric graph bundle to it as mentioned in
Example 1.8 of [24]. See also the example of Section 3.3.1. Having said that, Theorem 5.2 gives the
following as an immediate consequence.

Theorem 6.1 Suppose 1! N ! G
�
!Q! 1 is a short exact sequence of hyperbolic groups where

N is nonelementary hyperbolic. Suppose Q1 is a finitely generated , qi embedded subgroup of Q and
G1 D �

�1.Q1/. Then the G1 is hyperbolic and the inclusion G1!G admits the CT map.

The next application is in the context of complexes of hyperbolic groups. Suppose Y is a finite, connected
simplicial complex and G.Y/ is a developable complex of nonelementary hyperbolic groups with qi
condition defined over Y (see Section 3.3.2) such that the fundamental group G of the complex of groups
is hyperbolic. Suppose we have a good subcomplex Y1 � Y and G1 is the image of �1.G;Y1/ in G under
the natural homomorphism �1.G;Y1/! �1.G;Y/. Then we have the following pullback diagram as
obtained in Proposition 3.29 satisfying the properties of Theorem 5.2:

X1 X

B1 B

f

�1 �

i

Thus we have:

Theorem 6.2 The group G1 is hyperbolic and the inclusion G1!G admits the CT map.

Remark The rest of the paper is devoted to properties of the boundary of metric (graph) bundles and
Cannon–Thurston maps. We recall that qi sections, ladders etc for a metric bundle are defined as transport
of the same from the canonical metric graph bundle associated to it. All the results in the rest of the section
are meant for metric bundles as well as metric graph bundles. However, using the dictionary provided by
Proposition 4.1 it is enough to prove the results only for metric graph bundles. Therefore, we shall state
and prove results only for metric graph bundles in what follows starting with the convention below.

Convention 6.3 (1) For the rest of the paper we shall assume that � WX !B is a ı-hyperbolic �-metric
graph bundle over B satisfying the hypotheses (H1), (H2), (H30) and (H4) of Section 5.

(2) By Proposition 2.37 any point of @B can be joined to any point of B[@B and any point of @X can be
joined to X[@X by a uniform quasigeodesic ray or line. We shall assume that these are �0-quasigeodesics.

(3) We shall assume that any geodesic in B has a c-qi lift in X using the path lifting lemma for metric
graph bundles.

(4) We recall that through any point of X there is a K0-qi section over B.
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6.1 Some properties of @X

Lemma 6.4 Suppose ˛; ˇ W Œ0;1/! B are two k-quasigeodesic rays for some k � 1 with ˛.1/ D
ˇ.1/ D �. Suppose ž is a K-qi lift of ˇ for some K � 1. Then there is a K0-qi lift z̨ of ˛ such that
z̨.1/ D ž.1/, where K0 depends on k, K, dB.˛.0/; ˇ.0// and the various parameters of the metric
graph bundle.

Proof Suppose ˛; ˇ W Œ0;1/!B are two k-quasigeodesic rays for some k � 1 with ˛.1/D ˇ.1/D � .
This means Hd.˛; ˇ/ <1. Let RDHd.˛; ˇ/. Then for all s 2 Œ0;1/ there is t D t.s/ 2 Œ0;1/ such
that dB.˛.s/; ˇ.t//�R. Let �ts W Fˇ.t/! F˛.s/ be fiber identification maps such that dX .x; �ts.x//�

3cC 3cR for all x 2 Fˇ.t/, t 2 Œ0;1/, where c D 1 for metric graph bundles. (See Lemma 3.10.) Let ž

be a K-qi lift of ˇ. Now, for all s 2 Œ0;1/ we define z̨.s/D �ts. ž.t//. It is easy to verify that z̨ thus
defined is a uniform qi lift of ˛. Also clearly z̨ �N3cC3cR. ž/. It follows that z̨.1/D ž.1/

Corollary 6.5 Let � 2 @B and let ˛ be a quasigeodesic ray in B joining b to � . Let

@�˛X WD f
 .1/ W 
 is a qi lift of ˛g:

Then @�˛X is independent of ˛; it is determined by � .

Due to the above corollary, we shall use the notation @�X for all � 2 @B without further explanation. The
following proposition is motivated by a similar result proved by Bowditch [5, Proposition 2.3.2].

Proposition 6.6 Let b 2 B be an arbitrary point and F D Fb . Then we have

@X Dƒ.F /[

� a
�2@B

@�X

�
:

Proof We first fix a point x 2 F . Let 
 be a quasigeodesic ray in X starting from x. Let bn D �.
 .n//.
Let ˛n be a .1; 1/-quasigeodesic in B joining b to bn. Let z̨n be a K0-qi lift of ˛n joining 
 .n/ to
z̨n.b/D xn 2 F . There are two possibilities.

Suppose fxng has an unbounded subsequence say fxnk
g. Then d.xnk

;x/!1. We note that the z̨nk
’s

are uniform quasigeodesics in X whose distance from x is going to infinity by Lemma 4.13. Hence, by
Lemma 2.34 xnk

! 
 .1/ and thus 
 .1/ 2ƒ.F /.

Otherwise, suppose fxng is a bounded sequence.

Claim In this case � ı 
 is a quasigeodesic ray.
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Proof of Claim We note that by stability of quasigeodesics (Corollary 2.19) and slimness of triangles
(Corollary 2.20) Hd.z̨n; 
 jŒ0;n�/ is uniformly small for all n. This implies that Hd.˛n; .� ı 
 /jŒ0;n�/ is
uniformly small for all n; in particular dB.bm; ˛n/ is uniformly small for all n�m. Next we note that
dB.b; bn/!1 for otherwise d.
 .n/;x/ will be bounded. Then it follows that limm;n!1.bm:bn/b D1.
Let � D limn!1 bn and let ˛ be a �0-quasigeodesic ray in B joining b to � . Now, to show that � ı
 is a
quasigeodesic it is enough to show by Lemma 2.5 that � ı 
 is (1) uniformly close to ˛ and (2) properly
embedded.

(1) Fix an arbitrary m 2N and consider all n�m. Since limn!1 bn D ˛.1/D � , by Lemma 2.45(2)
for any �0-quasigeodesic ray ˇn joining bn to � we have d.b; ˇn/!1. Since the triangles with vertices
bn; b; � are uniformly slim by Lemma 2.38 and dB.bm; ˛n/ are uniformly small it follows that bm is
uniformly close to ˛. This shows (1).

(2) Since � is Lipschitz and 
 is a quasigeodesic it follows that � ı 
 is coarsely Lipschitz. Suppose
dB.bn; bm/�D for some D� 0 and m; n2N, m� n. We claim that dX .
 .m/; 
 .n// is uniformly small.
Note that this would then imply that n�m is uniformly small since 
 is quasigeodesic, and also that 

is a qi lift of � ı 
 . We know that Hd.z̨n; 
 jŒ0;n�/ �R for some constant R independent of n. Hence,
dX .
 .m/; z̨n/ �R. Let ym;n 2 z̨n be such that dX .
 .m/;ym;n/ �R. Since � is 1-Lipschitz we have
dX .bm; �.ym;n//�R. Then dB.�.ym;n/; bn/� dB.�.ym;n/; bm/C dB.bm; bn/�RCD. Since z̨n is
K0-qi lift of ˛n and � ı z̨.n/D bn it follows that dX .ym;n; z̨.n//D dX .ym;n; 
 .n//�K0.RCD/CK0.
Hence, dX .
 .m/; 
 .n// � dX .
 .m/;ym;n/C dX .ym;n; 
 .n// � RCK0.RCD/CK0. Since 
 is
quasigeodesic it follows that .n�m/ is uniformly small. This proves (2) and along with this the claim. G

It follows that 
 .1/ 2 @�X .

It remains to check that for all �1; �2 2 @B, @�1X \ @�2X ¤ ∅ implies �1 D �2. Suppose 
i is a
�0-quasigeodesic ray in B joining b to �i , i D 1; 2. Suppose z
i is a qi lift of 
i , i D 1; 2 such that
z
1.1/D z
2.1/, ie Hd.z
1; z
2/ <1. Then Hd.
1; 
2/ <1 because � WX ! B is 1-Lipschitz. Thus
�1 D �2. This finishes the proof.

Corollary 6.7 Suppose F is a bounded metric space. Then @X D
`
�2@B @

�X .

For instance suppose †1; †2 are two qi sections and LD L.†1; †2/ then by Corollary 4.7 there is a
metric graph subbundle �Z WZ!B of X where the bundle map Z!X is a qi embedding onto a finite
neighborhood of L. It follows that Z is hyperbolic and fibers are uniformly quasiisometric to intervals.
Therefore, the conclusion of Corollary 6.7 applies to the metric bundle Z too. Hence, informally speaking
we have the following.

Corollary 6.8 For any ladder LD L.†1; †2/ we have

@LD
a
�2@B

@�L:
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Lemma 6.9 Suppose b 2 B and ˛n W Œ0;1/! B is a sequence of uniform quasigeodesic rays starting
from b. Suppose z̨n is a uniform qi lift of ˛n for all n such that the set fz̨n.0/g has finite diameter.
If z̨n.1/ ! z 2 @X then limn!1 ˛n.1/ exists. If � D limn!1 ˛n.1/ and ˛ W Œ0;1/ ! B is a
�0-quasigeodesic ray joining b to � then there is a uniform qi lift z̨ of ˛ such that z̨.1/D z.

Proof Since z̨n.1/ ! � there is a constant D such that for all M > 0 there is N D N.M / > 0

with Hd.z̨mjŒ0;M �; z̨njŒ0;M �/ � D for all m; n � N by Lemma 2.45(1). It follows that for all M > 0,
Hd.˛mjŒ0;M �; ˛njŒ0;M �/�D for all m; n�N . Hence, again by Lemma 2.45(1) ˛n.1/ converges to a
point of � 2 @B. Let ˛ be a �0-quasigeodesic ray in B joining b to �. We claim z 2 @�X . Given any
t 2 Œ0;1/ by Lemma 2.45(2) there is N 0 DN 0.t/ 2N such that d.˛.t/; ˛n/�D0 for all n�N 0 where
D0 depends only on �0 and ı. Let N0 DmaxfN.t/;N 0.t/g. Let t 0 be such that dX .˛.t/; ˛N0

.t 0//�D0.
Define z̨.t/D �uv.z̨N0

.t 0// where uD ˛N0
.t 0/, v D ˛.t/ and �uv is a fiber identification map. It is now

easy to check that this defines a qi section over ˛ and z D z̨.1/.

Corollary 6.10 If fibers of the metric (graph ) bundle are of finite diameter then the map @X DS
�2@B @

�X ! @B defined by sending @�X to � for all � 2 @B is continuous.

6.2 Cannon–Thurston lamination

Suppose b0 2 B is an arbitrary point and F D Fb0
. Then we know that the inclusion i D iF;X W F ,!X

admits the CT map @i W @F ! @X . For any set S we define

S .2/ D f.a; b/ 2 S �S W a¤ bg:

Now, following Mitra [19] we define the following.

Definition 6.11 (1) Cannon–Thurston lamination Let @.2/
X
.F /Df.˛; ˇ/2 @.2/F W @i.˛/D @i.ˇ/g.

(2) Suppose � 2 @B. Let @.2/
�;X
.F /Df.˛; ˇ/2 @.2/F W @i.˛/D @i.ˇ/2 @�X g. We shall denote @.2/

�;X
.F /

simply by @.2/
�
.F / when X is understood.

In this subsection we are going to discuss the various properties of the CT lamination. First we need
some definitions. We recall that for all b; s 2B we have the fiber identification map �bs WFb!Fs which
is a uniform quasiisometry depending on dB.b; s/. This induces a bijection @�bs W @Fb! @Fs . Suppose
z 2 @Fb . Let zs D @�bs.z/ for all s 2 B.

Convention 6.12 For the rest of the subsection, by “quasigeodesic rays” or “lines”, we shall always
mean �0-quasigeodesic rays and lines in the fibers of a metric (graph) bundle unless otherwise specified.
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Definition 6.13 (1) Semi-infinite ladders Suppose †1 is a qi section over B in X . For all s 2 B let

s �Fs be a (uniform) quasigeodesic ray joining †1\Fs to zs D @�bs.z/. The union of all the rays will
be denoted by L.†1I z/.

This set is coarsely well-defined by Lemma 2.38. We shall refer to this as the semi-infinite ladder defined
by †1 and z.

(2) Bi-infinite ladders Suppose b 2B and z; z0 2 @Fb , z ¤ z0. Now for all s 2B join zs D @�bs.z/ to
z0s D @�bs.z

0/ by a (uniform) quasigeodesic line in Fs . The union of all these lines will be denoted by
L.zI z0/.

As before, this set is coarsely well-defined by Lemma 2.38. We shall refer to this as the bi-infinite ladder
defined by z and z0.

We shall refer to either of these ladders as an “infinite girth ladder”.

Lemma 6.14 (properties of infinite girth ladders) Suppose L is an infinite girth ladder.

(1) Coarse retract There is a uniformly coarsely Lipschitz retraction �L WX ! L such that for all
b 2B and x 2Fb , �L.x/ is a (uniform approximate) nearest point projection of x in Fb on L\Fb .
Consequently, infinite girth ladders are uniformly quasiconvex and their uniformly small neighbor-
hoods are qi embedded in X .

(2) QI sections in ladders Through any point of L, there exists a uniform qi section contained in L.

(3) QI sections coarsely bisect ladders Any qi section in L coarsely bisects it into two subladders.

Proof We shall briefly indicate the proofs comparing with the proof of the analogous results for finite
girth ladders. Property (3) follows exactly as Lemma 5.4. Property (2) is immediate from (1). In fact
given x 2 L one takes a K0-qi section † in X containing x and then �L.†/ is the required qi section.
Therefore, we are left with proving (1). This is an exact analog of Proposition 4.6(1). The reader is
referred to [19, Theorem 4.6] for supporting arguments.

Convention 6.15 All semi-infinite ladders L.†I z/ are formed by K0-qi section †. We shall assume
that through any point of an infinite girth ladder there is a K0-qi section contained in the ladder. Also, all
infinite girth ladders are assumed to be �0-quasiconvex.

6.2.1 Properties of the CT lamination @.2/

X
.F / In this subsection, we prove many properties of the

CT lamination using coarse bisection of ladders by qi sections. These are motivated by analogous results
proved in [5; 19]. For the rest of the subsection, we will use the following set up. Let b0 2 B and
F D Fb0

. Suppose .z1; z2/ 2 @
.2/ D @

.2/
X
.F / and LD L.z1I z2/. Let 
 WR! F be a �0-quasigeodesic

line in F joining z1 to z2 such that Im.
 /D L\F . Let iF;X W F ! X denote the inclusion map and
@iF;X W @F ! @X denote the CT map.
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Lemma 6.16 Suppose † is any qi section contained in L. Then @iF;X .zi/ 2ƒ.†/, i D 1; 2.

Proof Let † be a qi section contained in L. Then † coarsely separates L in X into L1 D L.†I z1/

and L2 D L.†I z2/. We note that @iF;X .z1/ D @iF;X .z2/ 2 ƒ.L1/\ƒ.L2/. Hence we are done by
Lemma 2.53.

Lemma 6.17 Suppose .z1; z2/ 2 @
.2/
X
.F / and L D L.z1I z2/. There is a unique � 2 @B such that

.z1; z2/2 @
.2/

�;X
.F /. Moreover , for any �0-quasigeodesic ˇ W Œ0;1/!B joining b0 to � and any qi section

† contained in L, if ž is the lift of ˇ in † then ž.1/D @iF;X .z1/D @iF;X .z2/.

In particular @.2/
X
.F /D

`
�2@B @

.2/

�
.F /.

Proof Let � WB!X be a qi section with image † contained in L. By Lemma 6.16 @iF;X .z1/ 2ƒ.†/.
But ƒ.†/D @�.@B/ by Lemma 2.55. Hence, there is a �0-quasigeodesic ray ˇ W Œ0;1/! B such that
@�.ˇ.1//D @iF;X .z1/. Let �Dˇ.1/. If žD� ıˇ then ž is a qi lift of ˇ and @iF;X .z1/D ž.1/2 @

�X .
Thus .z1; z2/ 2 @

.2/

�;X
.F /. This shows the existence of � . Thus we have @.2/

X
.F /D

S
�2@B @

.2/

�
.F /. Also

for �; � 0 2 @B, � ¤ � 0 we have @�1X \ @�2X D ∅ by Proposition 6.6 which immediately implies
@
.2/

�;X
.F /\ @

.2/

�0;X
.F /D∅. This shows that the point � is independent of the chosen section † in L. The

last part of the lemma is immediate from these observations.

We next aim to show that the sets @.2/
�;X
.F / are closed subsets of @.2/

X
.F /. Let ˇ W Œ0;1/ ! B be a

continuous, arc length parametrized �0-quasigeodesic in B with ˇ.0/D b0 and ˇ.1/D � as in the proof
of Lemma 6.17. Let AD ˇ.Œ0;1//. Let Y D ��1.A/ be the restriction of the bundle X over A. Let
iY;X W Y !X , iF;Y W F ! Y be inclusion maps.

Lemma 6.18 If .z1; z2/ 2 @
.2/

�;X
.F / then @iF;Y .z1/D @iF;Y .z2/, ie .z1; z2/ 2 @

.2/

�;Y
.F /.

Proof Let †n be any qi section in L over B passing through 
 .n/, n2Z. Then by Lemma 6.17, †m\Y

and †n\Y are asymptotic for all m; n 2 Z in X . Since Y is properly embedded in X by Lemma 5.20
they are still asymptotic in Y. Clearly dY .
 .0/; †n \ Y /!1 as n!˙1. Thus by Lemma 2.45(1)
limn!˙1 
 .n/D ž0.1/ in Y where ž0 is the lift of ˇ in †0. This completes the proof.

Corollary 6.19 Let ž be any qi lift of ˇ in L. Then ž.1/D @iF;X .z1/. In particular any two qi lifts of
ˇ in L are asymptotic.

Proof We know that ž coarsely separates L\ Y into two semi-infinite ladders, LC and L� in Y. It
follows that ƒ.LC/\ƒ.L�/Dƒ. ž/D ž.1/. It then follows that the limit of 
 .n/ in @L is ž.1/.

Corollary 6.20 (1) @.L\Y / is a point. (2) ƒY .L\Y / is a point. (3) ƒX .L\Y / is a point.
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Proof We know by Lemma 6.14(1) (see also Proposition 4.6(4)) that a small neighborhood, say L0
Y
D

NR.L\ Y /, of L\ Y in Y is qi embedded in Y and hence it is a hyperbolic metric space by its own
right. Also, this is a subbundle of Y by Corollary 4.7.

(1) The first part is an informal way of saying that @.L0
Y
/ is a point. However, this is immediate from

Proposition 6.6 and Corollary 6.19.

(2) By Lemma 2.55 ƒY .L
0
Y
/ is the image of the CT map for the inclusion L0

Y
! Y since L0

Y
is qi

embedded in Y. But @L0
Y

is a point by the first part. Thus ƒY .L
0
Y
/ is a singleton. Finally, ƒY .L

0
Y
/D

ƒY .L\Y / by Lemma 2.52. Hence we are done.

(3) Lastly, it follows that L\ Y is quasiconvex in X too since by Corollary 6.19 L\ Y is the union
of qi lifts of ˇ contained in L\ Y all of which converge to the same point of @X . Hence L0

Y
is also

quasiconvex in X . Since Y is properly embedded in X by Lemma 5.20 and L0
Y

is qi embedded in Y it
follows that L0

Y
is properly embedded in X . Thus L0

Y
is qi embedded in X by Lemma 2.24(2). As in (2)

we are done by Lemma 2.55.

Corollary 6.21 @
.2/
Y
.F /D @

.2/

�;Y
.F /D @

.2/

�;X
.F /.

In particular , each @.2/
�;X
.F / is a closed subset of @.2/F .

Proof The first equality follows from Lemma 6.17 applied to the metric bundle Y over A. We will now
prove the second one. Since @iF;X D @iY;X ı @iF;Y , clearly @.2/

�;Y
.F /� @

.2/

�;X
.F /. The opposite inclusion

is an immediate consequence of Lemma 6.18.

Since @iF;Y is continuous it follows that @.2/
�;X
.F / is a closed subset of @.2/F . One has to use the standard

fact that the Gromov boundaries are Hausdorff spaces.

The following three results are motivated by similar results proved in [19]. The proof ideas are very
similar. However, we get rid of the group actions that were there and in our setting properness is never
needed.

Definition 6.22 Suppose Z1;Z2 are hyperbolic metric spaces. Suppose f WZ1!Z2 is a metrically
proper map that admits the CT map. If 
 �Z1 is a quasigeodesic line such that @f .
 .1//D @f .
 .�1//
then we refer to 
 as a leaf of the CT lamination @.2/

Z2
.Z1/.

We recall that in our context the quasigeodesic lines are assumed to be �0-quasigeodesic lines.

Lemma 6.23 Suppose �1¤ �2 2 @B. Given D> 0 there exists RDR6:23.D/> 0 such that the following
holds:

Suppose 
1 is a leaf of @.2/
�1;X

.F / and 
2 is a leaf of @.2/
�2;X

.F /. Then 
1\ND.
2/ has diameter less than R.
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Proof Let ˛ be a �0-quasigeodesic line in B joining �1; �2. Let b0
0
2 ˛ be a nearest point projection of b0

on ˛. Let c be a geodesic in B joining b0 to b0
0
. Let ˛i be the concatenation of c with the portion of ˛ joining

b0
0

to �i , i D 1; 2. We note that �0-quasigeodesics in B are D2:17.ı0; �0; �0/-quasiconvex by stability of
quasigeodesics. Let K DD2:17.ı0; �0; �0/. Hence, the ˛i’s are K2:25.ı0;K; �0; 1/-quasigeodesics by
Lemma 2.25(2). Let k DK2:25.ı0;K; �0; 1/.

Next suppose xi ;x
0
i 2 
i , i D 1; 2 are such that dF .x1;x2/�D and dF .x

0
1
;x0

2
/�D. Let †i ; †

0
i be two

qi sections in each Li D L.
i.1/; 
i.�1// passing through xi and x0i , respectively, i D 1; 2. Let z̨i
and z̨0i be lifts of ˛i in Li through xi and x0i respectively for i D 1; 2. We now look at the quasigeodesic
hexagon in X with vertices xi ;x

0
i ; �i , i D 1; 2, where the z̨i’s and z̨0i’s form four sides and the other

two sides are formed by geodesics joining x1 to x2 and x0
1

to x0
2
, respectively. We note that the infinite

sides of this polygon are all .kK0CkCK0/-quasigeodesics. Let Qk D kK0C k CK0. Hence, such a
hexagon is R2:39.ı; Qk; 6/-slim by Corollary 2.39. Let R1 D R2:39.ı; Qk; 6/. Let b2 be a point on ˛2

such that dB.b2; ˛1/DDCR1C 1DR, say and let y2 D z̨2.b2/. Then y2 2NR1
.z̨0

2
/. In particular,

y2 2NR.†
0
2
/. Hence, by Lemma 4.13 db2

.†2\Fb2
; †0

2
\Fb2

/�R4:13.K0;R/. It follows by bounded
flaring that db0

.x2;x
0
2
/� � Qk.R4:13.K0;R//.

Lemma 6.24 If �n! � in @B, .zn; wn/ 2 @
.2/

�n;X
.F / and .zn; wn/! .z; w/ 2 @.2/F . Then

.z; w/ 2 @
.2/

�;X
.F /:

Proof Since @iF;X .zn/ D @iF;X .wn/ for all n and @iF;X is continuous it follows that @iF;X .z/ D

@iF;X .w/, whence .z; w/ 2 @.2/
X

F . Let Œzn; wn�; Œzn; z�; Œwn; w� and Œz; w� denote �0-quasigeodesic lines
in F joining these pairs of points. Let x 2 Œz; w�\F and let ˛ be a �0-quasigeodesic ray in B joining b to � .

Claim There is a uniform qi lift z̨ of ˛ through x such that z̨.1/D @iF;X .z/D @iF;X .w/.

Proof of Claim Since zn ! z and wn ! w by Lemma 2.45(1), we have db0
.x; Œzn; z�/ ! 1 and

db0
.x; Œwn; w�/ ! 1. Hence, by Corollary 2.39 there is N 2 N such that db0

.x; Œzn; wn�/ � R D

R2:39.ı0; �0; 4/ for all n � N . Now, let xn 2 Œzn; wn� such that db0
.x;xn/ � R. Let ˛n be a �0-

quasigeodesic ray in B joining b to �n. Then by Corollary 6.19 we know that there is a uniform qi lift z̨n
of each ˛n, n�N such that z̨n.0/D xn and z̨n.1/D @iF;X .zn/. Hence, by Lemmas 6.9 and 6.4 there
is a qi lift z̨ starting from x such that z̨.1/D @iF;X .z/D @iF;X .w/. G

However, this means that @iF;X .z/D @iF;X .w/ 2 @
�X . Therefore, .z; w/ 2 @.2/

�;X
.F /.

6.2.2 Leaves of CT laminations for pullback bundles The following result is motivated by a similar
result proved in [17] for trees of hyperbolic spaces which in turn was suggested by Mahan Mj. We
gratefully acknowledge the same.

Suppose we have the hypotheses of Theorem 5.2. We identify Y as a subspace of X and A as a subspace
of B. Similarly, @A is identified as a subset of @B. With that in mind, we have the following:
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Theorem 6.25 Suppose we have a metric graph bundle satisfying the hypotheses of Theorem 5.2 such
that the fibers of the bundle are all proper metric spaces. Suppose 
 is a quasigeodesic line in Y such that
.
 .1/; 
 .�1// 2 @

.2/
X
.Y /. Let F D Fb be any fiber of Y.

Then:

(1) 
 .˙1/ 2 @iF;Y .@F /.

(2) There is a point � 2 @B n @A determined by 
 .˙1/ such that if z˙ 2 @F with @F;Y .z˙/D 
 .˙/

then .zC; z�/ 2 @
.2/

�;X
.F /.

(3) �.
 / is bounded. Moreover , 
 is within a finite Hausdorff distance from a �0-quasigeodesic line �
of F so that @iF;Y .�.˙1//D 
 .˙1/. Also , .�.1/; �.�1// 2 @.2/

�;X
.F / for some � 2 @B n @A.

(4) If b is a nearest point projection of � on A. Then � (as defined in (3)) is a uniform quasigeodesic
line in Y.

Proof We have @Y DƒY .F /[
�S

�2@A @
�Y
�

by Proposition 6.6. Also since F is a proper metric space,
by Lemma 2.55ƒY .F /D @iF;Y .@F /. Thus @Y D @iF;Y .@F /[

�S
�2@A @

�Y
�
. We shall use the following

observation a few times in the proof, which is immediate from the fact that A is qi embedded in B:

Suppose ˛ is a quasigeodesic ray in A and z̨ is a qi lift of ˛ in Y. Then z̨ is a quasigeodesic ray in Y as
well as in X. Also any pair of such rays are asymptotic in Y if and only if they are asymptotic in X since
Y is properly embedded in X.

(1) The proof of this assertion is by elimination of the possibilities coming from the decomposition
@iF;Y .@F /[

�S
�2@A @

�Y
�

of @Y.

Suppose 
 .1/ 2 @�1Y and 
 .�1/ 2 @�2Y for some �1; �2 2 @A. However, this case is not possible due
to the above observation.

Suppose 
 .1/ 2 @�Y for some � 2 @A and 
 .�1/ 2 @iF;Y .@F / n
S
�2@A @

�Y or vice versa. We show
below that this case is also not possible.

Let ˛ be a �0-quasigeodesic ray in A joining b to � and let z̨ be a K0-qi lift of ˛ in Y such that
z̨.1/D 
 .1/. Also let ˇ be a �0-quasigeodesic ray in F such that @iF;Y .ˇ.1//D 
 .�1/. Now, for
all n 2 N let †n be a K0-qi section in X passing through ˇ.n/ and let Ln D L.†n; ˇ.1//. Then Ln

is �0-quasiconvex in X . Clearly 
 .1/ D z̨.1/ 2 ƒX .Ln/. Hence, by Lemma 2.54, z̨ is asymptotic
to Ln. It follows by Proposition 4.6 and Lemma 4.15 that �Ln

.z̨/ is a uniform qi lift of ˛ and it
is asymptotic to z̨. Since Y properly embedded in X by Lemma 5.20, it follows that these qi lifts
are asymptotic in Y too. In particular, �Ln

.z̨/.1/ D 
 .1/. Now, since dF .ˇ.0/; ˇ.n// ! 1, by
Lemma 4.15 dY .ˇ.0/; �Ln

.z̨//!1. It follows from Lemma 2.45 that limn!1 ˇ.n/D 
 .1/ in @Y.
This gives a contradiction since limn!1 ˇ.n/D 
 .�1/¤ 
 .1/.
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Therefore, the only possibility is that


 .˙1/ 2 @iF;Y .@F / n
[
�2@A

@�Y;

proving part (1) of the theorem.

Let z; z0 2 @F be such that @iF;Y .z/D 
 .1/ and @iF;Y .z
0/D 
 .�1/.

(2) Since @iF;X D@iY;X ı@iF;Y by Lemma 2.50(1), we have .z; z0/2@.2/
X
.F / and hence .z; z0/2@.2/

�;X
.F /

for some � 2 @B by Lemma 6.17. From Corollary 6.21 it follows that � 2 @B n @A. This proves part (2)
of the theorem.

(3) Let LDL.zI z0/ be the bi-infinite ladder in X formed by z; z0. Let � DL\F which is an arc length
parametrized �0-quasigeodesic line in F joining z; z0. Let ˛ be a �0-quasigeodesic ray in B joining b

to �.

Let †n be a K0-qi section in L passing through �.n/, n 2N. By Corollary 6.19 qi lifts of ˛ contained in
these qi sections are asymptotic. Denote the qi section of ˛ contained in †n by z̨n. We note that these
are k D .K0�0CK0C�0/-quasigeodesics by Lemma 2.3(2). Hence, by Lemma 2.38 given m; n 2N we
have z̨n.i/ 2NR.z̨�m/ (and z̨�m.i/ 2NR.z̨n/), where RDD2:38.ı; k/ as long as z̨n.i/ (resp. z̨�m.i/)
is not contained in the R-neighborhood of any 1-quasigeodesic joining �.�m/; �.n/. In particular for
such i we have z̨n.i/ 2NR.†�m/, z̨�m.i/ 2NR.†n/. Hence, by Lemma 4.13 we have

d˛.i/.z̨n.i/; z̨�m.i//�R1 DR4:13.R;K0/

for all such i . Let R2 DmaxfR1;MK 0
g. Thus for all n 2N, Un D UR2

.†n; †�n/¤∅. Let bn 2 Un

be a nearest point projection of b on Un and let b0n be a nearest point projection of bn on A. Then it
follows from Lemma 5.18 that the concatenation of the segments of z̨n; z̨�n over the portion of ˛ joining
b; b0n and the fiber geodesic segment L \ Fb0n

is a uniform quasigeodesic in Y joining �.˙n/. Call
it 
 0n. Since limn!1 �.n/¤ limn!1 �.�n/ in Y there is a constant D � 0 such that dY .�.0/; 


0
n/�D

by Lemma 2.34. We claim that this means dB.b; b
0
n/ is bounded. In fact dY .�.0/; z̨˙n/ ! 1 by

Lemma 4.13. Thus for all large n we have dY .�.0/;L\Fb0n
/�D, whence dB.b; b

0
n/�D. It follows

from Proposition 4.6(3) that the Hausdorff distance of L\Fb0n
and the segment of � between �.n/ and

�.�n/ is at most .1C2K0/C4:6.K0/. Since � is a proper embedding in Y it follows by Lemma 2.5 that �
is a uniform quasigeodesic in Y depending on D. Let K�1 be such that both � and 
 are K-quasigeodesics
in Y. Then, since Y is ı0-hyperbolic, Hd.�; 
 /�R2:39.ı

0;K; 2/. Thus diam.�.
 //�R2:39.ı
0;K; 2/.

We note here that diam.�.
 // as well as the quasigeodesic constant of � depends only on maxfdB.b; b
0
n/g.

(4) We shall use the notation of the proof of (3). Thus we know that there is Dn � 0 such that for
all i � Dn we have d˛.i/.z̨n.i/; z̨�n.i// � R1 whence ˛.i/ 2 Un for all i � Dn. Also we know that
the sets Un are K4:11.K0/-quasiconvex in B by Lemma 4.11. Let tn � maxfDn; dB.b; bn/g. Then
˛.tn/ 2 Un. Thus Œb; bn�B � Œbn:˛.tn/�B is a K2:25.ı0;K4:11.K0/; �0; �/-quasigeodesic segment. Let
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K0 D maxf�0;K2:25.ı0;K4:11.K0/; �0; �/g. Hence, by stability of quasigeodesics (Lemma 2.17) we
get that bn 2NR0.˛/ where R0 DD2:17.ı0;K

0;K0/. We also note that dB.b; bn/!1 by the bounded
flaring condition (Corollary 3.12) since db.z̨n.0/; z̨�n.0//!1. This implies that bn! �. Hence by
Lemma 2.56 there exists N > 0 such that d.b0n; b/�R2:56.ı0; k0/ for all n�N since B is ı0-hyperbolic
and A is k0-quasiconvex. Hence, we are done by the note left at the end of the proof of (3).

Surjectivity of the CT maps

Theorem 6.26 Suppose we have the hypotheses of Theorem 5.2 such that the fibers of the bundle are
proper metric spaces. Let F be the fiber over a point b 2 A. Suppose the CT map @iF;X W @F ! @X is
surjective. Then the CT map @iF;Y W @F ! @Y is also surjective.

Conversely for any geodesic ray ˛ W Œ0;1/! B with ˛.0/D b, let Y˛ D �
�1.˛/. If for all z 2 @B and

for some (any) geodesic ray ˛ joining b to z the CT map @F;Y˛ W @F ! @Y˛ is surjective then the CT map
@F;X W @F ! @X is also surjective.

Proof Let � 2 @Y. We want to show that � 2 Im.@iF;Y /. Since @iF;X W @F ! @X is surjective there
exists z 2 @F such that @iF;X .z/ D @iY;X .�/. If @iF;Y .z/ D � we are done. Suppose not. However,
@iF;X D @iY;X ı @iF;Y . Hence, @iY;X .@iF;Y .z//D @iY;X .�/. Then by Theorem 6.25(3) we are done.

The converse part is a direct consequence of Corollary 6.5 and Proposition 6.6.

Corollary 6.27 Suppose � W X ! B is a metric (graph ) bundle such that X;B are hyperbolic and the
fibers are all proper , uniformly quasiisometric to the hyperbolic plane H2. Then for all b 2 B, the CT
map @Fb;X W @Fb! @X is surjective.

Proof This is an immediate consequence of the second part of Theorem 6.26 and the following proposition
of Bowditch.

Proposition 6.28 [5, Proposition 2.6.1] Suppose � W X ! B is a metric (graph ) bundle where B D

Œ0;1/, X is hyperbolic and the fibers are all uniformly quasiisometric to the hyperbolic plane H2. Then
for all b 2 B, the CT map @Fb;X W @Fb! @X is surjective.

We would like to remark that Bowditch stated the above proposition in the case that the fibers are all
isometric to the hyperbolic plane, but the same proof goes through for fibers uniformly quasiisometric to
the hyperbolic plane.

A special case of the following result was proved by E Field [11, Theorem B].

Theorem 6.29 Suppose 1!N !G
�
!Q! 1 is a short exact sequence of infinite hyperbolic groups.

Suppose A�Q is qi embedded and Y D ��1.A/. Then the CT map @N ! @Y is surjective.

Proof Since N is a normal subgroup of the hyperbolic group G it is a standard fact that ƒ.N /D @G.
Thus by Lemma 2.55 the CT map @N ! @G is surjective. Now we are done by Theorem 6.26.
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Fibers of the CT maps

Theorem 6.30 Suppose X is a metric (graph ) bundle over B satisfying the hypotheses of Theorem 5.2
such that X is a proper metric space. Let F D Fb , where b 2 B. Suppose @F is not homeomorphic to a
dendrite and also the CT map @F ! @X is surjective.

Then for all � 2 @B we have @.2/
�;X
.F /¤∅.

Proof Suppose ˛ is an arc length parametrized �0-quasigeodesic ray in B joining b to � . Let Y D��1.˛/.
Since the CT map @F ! @X is surjective, the map @iF;Y W @F ! @Y is also surjective by Theorem 6.26.
Now, @.2/

�;X
.F /D @

.2/

�;Y
.F / by Corollary 6.21. Hence, it is enough to show that @.2/

�;Y
.F /¤∅. However,

@
.2/

�;Y
.F / D ∅ if and only if @iF;Y is injective. It follows that @.2/

�;Y
.F / D ∅ if and only if @iF;Y is

bijective. Since X is proper, so are F and Y. Hence, @F and @Y are compact metrizable spaces. (See
[6, Chapter III.H, Propositions 3.7 and 3.21] for instance.) Hence, @iF;Y is bijective implies @iF;Y is a
homeomorphism between @F and @Y. Since @F is not a dendrite this is impossible due to the following
result of Bowditch. Hence, @.2/

�;Y
.F /¤∅.

Theorem 6.31 [5, Proposition 2.5.2] Suppose X is hyperbolic metric (graph ) bundle over B D Œ0;1/

satisfying the hypotheses (H1)–(H4) of Section 5. Suppose moreover that X is a proper metric space.
Then @X is a dendrite.

We note that a special case of interest of Theorem 6.30 is when the fibers are uniformly quasiisometric to
the hyperbolic plane. For instance, we have the following.

Corollary 6.32 Suppose we have an exact sequence of infinite hyperbolic groups 1!N !G!Q! 1

where N is either the fundamental group of an orientable closed surface of genus g � 2 or a free group
Fn on n� 3 generators. Then for all � 2 @Q, @.2/

�;G
.N /¤∅.

Remark We remark that much stronger results than the above corollary were already proved by Mj and
Rafi [23]. For instance, see Theorems 3.12, 5.7 and Proposition 5.8 there.

Another context is that of complexes of groups where Theorem 6.30 can be applied.

Corollary 6.33 Suppose G is the fundamental group of a finite developable complexes of nonelementary
hyperbolic groups .G;Y/ with qi condition. Suppose X is the metric bundle over B obtained from this
data as constructed in Section 3.3.2. Suppose G is hyperbolic.

Then for all � 2 @B and any vertex group Gv, v 2 V .Y/ we have @.2/
�;G
.Gv/¤∅.
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Proof We need to check the hypotheses of Theorem 6.30. It is a standard fact that the boundary of
a hyperbolic group is not a dendrite. Since the fibers of the metric bundle under consideration are
quasiisometric to nonelementary hyperbolic groups @F is not a dendrite for any fiber F . We also note that
the metric bundle satisfies (H1)–(H4) of Section 5. Finally, G acts on X and B so that the map � WX !B

is equivariant, the action of G on X is proper and cocompact and on B is cocompact. Thus any orbit
map G!X is a qi by Milnor–Schwarz lemma and therefore induces a homeomorphism @X ! @G.

Now, given any fiber F and g 2 G, gF is another fiber of the metric bundle. By Lemma 3.10(1)
Hd.F;gF / < 1. Hence, by Lemma 2.52 ƒ.F / D ƒ.gF / D gƒ.F /. It is a standard fact that the
action of a nonelementary hyperbolic group on its boundary is minimal, ie the only invariant closed
subsets are the empty set and the whole set. Hence, it follows that ƒ.F / D @X . By Lemma 2.55 we
have ƒ.F / D @iF;X .@F /. Thus the CT map @iF;X W @F ! @X is surjective. Finally, clearly X is a
proper metric space. Hence, we have @.2/

�;X
.F /¤∅ by Theorem 6.30. Finally since Gv acts properly and

cocompactly on Xv , any orbit map Gv!Xv is a quasiisometry. Hence, this induces a homeomorphism
@Gv! @Xv. Therefore, taking F DXv we are done.

Definition 6.34 Suppose Z is any hyperbolic metric space and S �Z. Then a point z 2ƒ.S/� @Z

will be called a conical limit point of S if for some (any) quasigeodesic 
 converging to z in Z there is a
constant D > 0 such that ND.
 /\S is a subset of infinite diameter in Z.

Proposition 6.35 Suppose we have the hypotheses of Theorem 5.2. Let @iY;X W @Y ! @X be the CT
map. If � 2 @X is a conical limit point of Y, then j@i�1

Y;X
.�/j D 1.

Proof Suppose z ¤ z0 2 @Y such that @iY;X .z/ D @iY;X .z
0/ D �. Then by Theorem 6.25 there is

�B 2 @B n @A and a qi lift of 
 of a quasigeodesic ray joining b to �B such that � D 
 .1/. Since
�B 2 @B n @A and A is quasiconvex �B is not a limit point of A in @B. Thus it is clear that � is not a
conical limit point of Y. This gives a contradiction and proves the proposition.

6.3 QI embedding fibers in a product of bundles

The lemma below is the product of answering a question due to Misha Kapovich.

Lemma 6.36 Suppose � W X ! R is a metric (graph ) bundle satisfying the hypotheses of Section 5
and X˙ are the restrictions of it to Œ0;1/ and .�1; 0�, respectively. Then the diagonal embedding
f W F0!XC �X� is a qi embedding where the latter is given the l2 metric.

Proof Without loss of generality, we assume .X; d/ is a metric graph bundle. Let d˙ be the in-
duced length metric on X˙, respectively. Then the l2 metric dY on Y WD XC � X� is given by
dY ..x1;x2/; .y1;y2//

2 D dC.x1;y1/
2C d�.x2;y2/

2 for all x1;y1 2 XC and x2;y2 2 X�. We note
that the inclusion maps F0!X˙ are 1-Lipschitz.
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Let x;y 2 F0. Then,

dY .f .x/; f .y//
2
DdY ..x;x/; .y;y//

2
DdC.x;y/

2
Cd�.x;y/

2
�d0.x;y/

2
Cd0.x;y/

2
D2d0.x;y/

2;

which implies that dY .f .x/; f .y//�
p

2d0.x;y/. A reverse inequality is obtained as follows.

Let †;†0 be a pair of K0-qi sections in X through x;y respectively. Let LD L.†;†0/ be the ladder
formed by them. Let � D L\ F0. This is a geodesic in F0 joining x;y. Now, suppose c.x;y/ is a
uniform quasigeodesic in X joining x;y constructed as in Section 5 by decomposing L into subladders
using the qi sections †i’s and †0j ’s. Let NcC WD NcC.x;y/; Nc� WD Nc�.x;y/ be the modified paths joining
x;y in XC;X�, respectively. By our main theorem in Section 5, NcC; Nc� are uniform quasigeodesics in
XC;X�, respectively. Suppose these are K-quasigeodesics. As in the discussion at the end of Section 5,
suppose Q;Q0 are consecutive qi sections in the decomposition of LD L.†;†0/ and z; w 2Q; w0 2Q0

with b0D �.w/D �.w0/ are such that L.Q;Q0/\ c.y;y0/ is made of the fiber geodesic Œw;w0�b0 and the
lift of Œ�.z/; �.w/�B in Q. However, if b0 2 Œ0;1/ then �\L.Q;Q0/� Nc� and similarly if b0 2 .�1; 0�

then �\L.Q;Q0/� NcC. Thus �� NcC[ Nc�. Therefore we have,

d0.x;y/� lC. QcC/C l�. Qc�/�KdC.x;y/CKCKd�.x;y/CK

DK.dC.x;y/C d�.x;y//C 2K

D 2KdY ..x;x/; .y;y//C 2K D 2KdY .f .x/; f .y//C 2K:

Thus, �1C
1

2K
d0.x;y/� dY .f .x/; f .y//�

p
2d0.x;y/. Hence, f is .2K; 1/-qi embedding.

In the same way, we obtain the following.

Lemma 6.37 If v0 is a cut point of B and removing it produces two quasiconvex subsets A1;A2 and
Y1;Y2 are the restrictions of the bundle to A1;A2 respectively then the diagonal map Fv0

! Y1 �Y2 is a
qi embedding.

Corollary 6.38 If v0 is a cut point of B and removing it produces finitely many quasiconvex subsets Ai ,
1 � i � n and Yi’s are the restrictions of the bundle to Ai’s , respectively, then the diagonal map
Fv0
!…iYi is a qi embedding.

Remark In [19] Mitra defined an ending lamination for an exact sequence of groups. Given any point
� 2 @Q he defined a lamination ƒ� and then showed that ƒ� D @

.2/

�;X
.F /. However, for formulating and

proving these sorts of results one needs additional structure on the bundle, eg action of a group on the
bundle through morphisms which has uniformly bounded quotients when restricted to the fibers. Results
of this type are proved in [23, Section 3]; see also [5, Section 4.4].
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Appendix Flaring in a metric bundle and its canonical metric graph bundle

Suppose � 0 W X 0! B0 is an .�; c/-metric bundle and � W X ! B is the canonical metric graph bundle
associated to it. We shall assume that B0 and B are both ı-hyperbolic. However, there will be no
assumption about the fibers of the bundles. We shall freely use the notation from Section 4 of the paper.
The purpose of this appendix is to show that a metric bundle satisfies a sort of “generalized flaring
property” (see Property .|/ below) if and only if the associated canonical metric graph bundle satisfies a
flaring condition.

Note If b0; b1; : : : ; bn are consecutive vertices on a geodesic in B then ˛0 W i 7! bi is a dotted .1; 3/-
quasigeodesic of B0 by Lemma 2.8. Thus there is a constant D0 such that if ˇ0 is any .1; 1/-quasigeodesic
in B0 joining b0; bn then Hd.˛0; ˇ0/�D0. We will preserve D0 to denote this constant for the rest of
this section.

Suppose b 2 V .B/ and p 2 B0 are such that dB0.p; b/ � D0. Then for any x 2 ��1.b/ we can lift a
.1; 1/-quasigeodesic of B0 joining b to p to X 0 which starts from x and ends at x0, say. This way we
get a “fiber identification map” V .��1.b//! � 0�1.p/. If we denote this map by fbp then we have the
following lemma. Since the proof is evident we skip it.

Lemma A.1 We have

�C0C
1

C0
db.x;y/� d 0p.fbp.x/; fbp.y//� C0CC0db.x;y/

for all x;y 2 ��1.b/ and for some uniform constant C0 where db is the fiber distance in ��1.b/ for the
metric graph bundle X and d 0p is the fiber distance in � 0�1.p/ for the metric bundle X 0.

Suppose ˛ is a geodesic in B and z̨ is a C -qi lift of ˛ in X . Let ˛0 be a .1; 1/-quasigeodesic in B0

joining the end points of ˛. Let � W ˛! ˛0 be any map such that dB0.b; �.b// �D0 for all b 2 ˛. Let
Qp D fbp.z̨.b// 2 �

0�1.p/ for all b 2 ˛, where p D �.b/. Now it is easy to find a uniform qi lift z̨0 of ˛0

such that z̨0.�.b//D Qp, where p D �.b/ for all b 2 ˛. We record this as a lemma.

Lemma A.2 There is a constant C 0 depending on C and a C 0-qi lift z̨0 of ˛0 such that z̨0.�.b// D Qp,
where p D �.b/ for all b 2 ˛.

The following lemma roughly says that if two qi leaves start flaring in one direction then they keep on
flaring in the same direction. The proof follows immediately from the definition of flaring. One may also
look up the proof of [24, Lemma 2.17(1)].

Lemma A.3 (persistence of flaring in graph bundles) Suppose the metric graph bundle satisfies the
.�k ;Mk ; nk/-flaring condition for all k � 1. Suppose ˛ W Œ�m; n�! B is a geodesic where m � nk ,
n� nk and z̨1 and z̨2 are two k-qi lifts of ˛ in X with d˛.0/.z̨1.0/; z̨2.0//�Mk . Suppose

d˛.snk/.z̨1.snk/; z̨2.snk//� �kd˛.0/.z̨1.0/; z̨2.0//;
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where s is either 1 or �1. Let t be the largest integer smaller than n=nk or m=nk according as s D 1

or �1. Then for all integers 1� l � t we have

d˛.lsnk/.z̨1.lsnk/; z̨2.lsnk//� �
l
kd˛.0/.z̨1.0/; z̨2.0//:

The same idea of proof gives the next lemma also. We will need a definition.

Property .|/ We shall say that the metric bundle X 0 has Property .|/ if for any k � 1, there exist �k > 1

and nk ;Mk 2N such that the following holds:

Suppose ˛0 W Œ�nk ; nk � ! B0 is a 1-quasigeodesic and z̨0
1

and z̨0
2

are two k-qi lifts of ˛0 in X 0. If
d
.0/.z
1.0/; z
2.0//�Mk then we have

�k � d˛0.0/.z̨
0
1.0/; z̨

0
2.0//�max

˚
d˛0.nk/.z̨

0
1.nk/; z̨

0
2.nk//; d˛0.�nk/.z̨

0
1.�nk/; z̨

0
2.�nk//

	
:

Note that one could define the flaring condition for a length metric bundle using Property .|/.

Lemma A.4 (persistence of flaring in metric bundles) Suppose the metric bundle satisfies .|/. Let
k � 1. Suppose ˛0 W Œ�m; n�! B is a geodesic where m� nk , n� nk and z̨0

1
and z̨0

2
are two k-qi lifts of

˛0 in X with d˛0.0/.z̨
0
1
.0/; z̨0

2
.0//�Mk . Suppose

d˛0.snk/.z̨
0
1.snk/; z̨

0
2.snk//� �kd˛0.0/.z̨

0
1.0/; z̨

0
2.0//;

where s is either 1 or �1. Let t be the largest integer smaller than or equal to n=nk or m=nk according as
s D 1 or �1. Then for all integer l � t we have

d˛0.lsnk/.z̨
0
1.lsnk/; z̨

0
2.lsnk//� �

l
kd˛0.0/.z̨

0
1.0/; z̨

0
2.0//:

Following is one of the main results of this appendix.

Lemma A.5 Suppose the metric bundle X 0 has Property .|/. Then the canonical metric graph bundle
� WX ! B associated to X 0 satisfies a . O�k ; yMk ; O�k/-flaring condition.

In particular if a geodesic metric bundle satisfies a flaring condition (see [24, Definition 1.12]) then its
canonical metric graph bundle satisfies the flaring condition.

Proof Suppose ˛ W Œ�n; n�! B is a geodesic and z̨; zz̨ are two k-qi lifts of ˛ in X , where n 2 N and
k � 1. Let ˛0 be a .1; 1/-quasigeodesic in B0 joining ˛.n/ and ˛.�n/. Then there are k 0-qi lifts z̨0; zz̨0

of ˛0, respectively, as in Lemma A.2. We shall choose a parametrization ˛0 W Œ�m0; n0�! B0 so that
˛0.n0/D ˛.n/, ˛0.�m0/D ˛.�n/ and dB0.˛.0/; ˛

0.0//�D0. Note that

d 0˛0.0/.z̨
0.0/; zz̨0.0//� �C0C

1

C0
d˛.0/.z̨.0/; zz̨.0//
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by Lemma A.1. Hence, if we assume d˛.0/.z̨.0/; zz̨.0//�C0.C0CMk0/ then d 0
˛0.0/

.z̨0.0/; zz̨0.0//�Mk0 .
Clearly, if we choose n large enough then we have nk0 < minfm0; n0g. (In the course of the proof
we will be more precise.) Without loss of generality we shall assume �k � d

0
˛0.0/

.z̨0.0/; zz̨0.0// �

d 0
˛0.nk0 /

.z̨0.nk0/; zz̨
0.nk0//. Let l be the greatest integer less than or equal to n0=nk0 . Then by Lemma A.4

(1) �l
k � d

0
˛0.0/.z̨

0.0/; zz̨0.0//� d 0˛0.lnk0 /
.z̨0.lnk0/; zz̨

0.lnk0//:

Note that dB0.˛
0.lnk0/; ˛

0.n0// � 2nk0 . Let b0 D ˛0.lnk0/ and b00 D ˛0.n0/. Then by Corollary 3.11
the fiber identification map �b0b00 referred to in that corollary is a K3:11.2nk0/-quasiisometry. Let
K DK3:11.2nk0/. Note that

(2) dX 0.z̨
0.lnk0/; z̨

0.n0//� k 0C 2nk0k
0

since z̨0 is a k 0-qi section and dB0.˛
0.lnk0/; ˛

0.n0//� 2nk0 . Also, by Corollary 3.9 we have

(3) dX 0
�
z̨
0.lnk0/; �b0b00.z̨

0.lnk0//
�
� 3cC 6cnk0 :

Using the inequalities (2) and (3) we have

dX 0
�
z̨
0.n0/; �b0b00.z̨

0.lnk0//
�
� 3cC 6cnk0 C k 0C 2nk0k

0:

Since X 0 is an .�; c/-metric bundle we have

d 0˛0.n0/
�
z̨
0.n0/; �b0b00.z̨

0.lnk0//
�
� �.3cC 6cnk0 C k 0C 2nk0k

0/:

In the same way we have

d 0˛0.n0/
�
zz̨
0.n0/; �b0b00.zz̨

0.lnk0//
�
� �.3cC 6cnk0 C k 0C 2nk0k

0/:

Now using the fact that �b0b00 is a K-quasiisometry and letting R1 D 2�.3cC 6cnk0 C k 0C 2nk0k
0/, we

have by triangle inequality

(4) d 0˛0.lnk0 /
.z̨0.lnk0/; zz̨

0.lnk0//� .K
2
C 2R1K/CKd 0˛0.n0/.z̨

0.n0/; zz̨0.n0//:

However, by Lemma 2.8 and Proposition 4.1(2) we have

(5) d 0˛0.n0/.z̨
0.n0/; zz̨0.n0//� 3C d˛.n/.z̨.n/; zz̨.n//:

Then it follows from the inequalities (1), (4) and (5) that

(6) �l
k � d

0
˛0.0/.z̨

0.0/; zz̨0.0//�RKCKd˛.n/.z̨.n/; zz̨.n//;

where RD 3CKC 2R1. Finally since d 0
˛0.0/

.z̨0.0/; zz̨0.0//��C0C
1

C0

d˛.0/.z̨.0/; zz̨.0// using (6) we
have

(7) �l
k0

�
�C0C

1

C0
d˛.0/.z̨.0/; zz̨.0//

�
�RKCKd˛.n/.z̨.n/; zz̨.n//:

Recall that we assumed d˛.0/.z̨.0/; zz̨.0//� C0.C0CMk0/. Hence,

(8) �C0C
1

C0
d˛.0/.z̨.0/; zz̨.0//�

�
1

C0
�

1

C0CMk0

�
d˛.0/.z̨.0/; zz̨.0//:
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Let
�D

1

K

�
1

C0
�

1

C0CMk0

�
:

Then we have, using (7) and (8),

(9) �l
k0 �� � d˛.0/.z̨.0/;

zz̨.0//�RC d˛.n/.z̨.n/; zz̨.n//:

It is clear that
�RC �l

k0 �� � d˛.0/.z̨.0/;
zz̨.0//� 1

2
��l

k0d˛.0/.z̨.0/;
zz̨.0//

if d˛.0/.z̨.0/; zz̨.0//� 2R=.��l
k0
/. In particular, since �l

k0
> 1, we have

(10) 1
2
��l

k0d˛.0/.z̨.0/;
zz̨.0//� d˛.n/.z̨.n/; zz̨.n//

using (9) if d˛.0/.z̨.0/; zz̨.0//� 2R=�. Thus it is enough to choose

yMk Dmax
n

2R

�
;C0.C0CMk0/

o
; O�k D 2

and to show that if n is sufficiently large then l is so large that 1
2
��l

k0
� 2 which will give a choice for Onk .

This is easy to verify and hence left to the reader.

The converse of Lemma A.5 is also true and has an exactly similar proof. However, in this case one uses
Lemma A.3 instead of Lemma A.2. We state it without proof to avoid repetition.

Lemma A.6 Suppose the metric graph bundle � WX ! B satisfies a .�k ;Mk ; nk/-flaring condition for
all k � 1. Then the metric bundle � 0 WX 0! B0 satisfies Property .|/ for three functions �0

k
;M 0

k
; n0

k
of k.

References
[1] J M Alonso, T Brady, D Cooper, V Ferlini, M Lustig, M Mihalik, M Shapiro, H Short, Notes on word

hyperbolic groups, from “Group theory from a geometrical viewpoint” (É Ghys, A Haefliger, A Verjovsky,
editors), World Sci., River Edge, NJ (1991) 3–63 MR

[2] O Baker, T R Riley, Cannon–Thurston maps do not always exist, Forum Math. Sigma 1 (2013) art. id. e3
MR

[3] M Bestvina, Questions in geometric group theory, electronic reference (2004) Available at https://
www.math.utah.edu/~bestvina/eprints/questions-updated

[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35
(1992) 85–101 MR

[5] B H Bowditch, Stacks of hyperbolic spaces and ends of 3-manifolds, from “Geometry and topology down
under”, Contemp. Math. 597, Amer. Math. Soc., Providence, RI (2013) 65–138 MR

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer
(1999) MR

[7] J W Cannon, W P Thurston, Group invariant Peano curves, preprint (1985) Reprinted in Geom. Topol.
11 (2007) 1315–1355

Algebraic & Geometric Topology, Volume 25 (2025)

http://msp.org/idx/mr/1170363
https://doi.org/10.1017/fms.2013.4
http://msp.org/idx/mr/3143716
https://www.math.utah.edu/~bestvina/eprints/questions-updated
https://www.math.utah.edu/~bestvina/eprints/questions-updated
http://projecteuclid.org/euclid.jdg/1214447806
http://msp.org/idx/mr/1152226
https://doi.org/10.1090/conm/597/11769
http://msp.org/idx/mr/3186670
https://doi.org/10.1007/978-3-662-12494-9
http://msp.org/idx/mr/1744486
https://doi.org/10.2140/gt.2007.11.1315
https://doi.org/10.2140/gt.2007.11.1315


Pullbacks of metric bundles and Cannon–Thurston maps 2755

[8] J M Corson, Complexes of groups, Proc. Lond. Math. Soc. 65 (1992) 199–224 MR
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