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Surgery sequences and self-similarity of the Mandelbrot set

DANNY CALEGARI

We introduce an analog in the context of rational maps of the idea of hyperbolic Dehn surgery from the
theory of Kleinian groups. A surgery sequence is a sequence of postcritically finite maps limiting (in a
precise manner) to a postcritically finite map with at least one strictly preperiodic critical orbit. As an
application of this idea we give a new and elementary proof of Tan Lei’s theorem on the asymptotic
self-similarity of Julia sets and the Mandelbrot set at Misiurewicz points.
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1 Introduction

Sullivan’s dictionary is a framework that seeks to unify two subjects at the heart of one-dimensional
holomorphic dynamics: Kleinian groups and the iteration of rational maps. Sullivan introduced the idea
of this dictionary in [4], and supplied a number of key entries. It is the purpose of this paper to propose a
new entry for this dictionary — between hyperbolic Dehn surgery for cusped hyperbolic 3-manifolds and
surgery sequences of rational maps — and to use this analogy to give a new, elementary proof of Tan Lei’s
famous theorem on the asymptotic self-similarity of Julia sets and the Mandelbrot set at Misiurewicz points.

Sullivan’s original dictionary contains twenty-four entries; the last entry is a correspondence between
cocompact Kleinian groups and postcritically finite rational maps. One might reasonably broaden this
correspondence from the class of cocompact Kleinian groups to the finite-covolume groups. The idea of
this dictionary entry is that in either case, topological data (an irreducible compact 3-manifold with torus
boundary components; an equivalence class of postcritically finite branched self-covering maps of the
2-sphere) may be ‘geometrized’ by a rigid holomorphic dynamical system, unless a purely topological
obstruction exists.
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2808 Danny Calegari

One reason to include finite-covolume Kleinian groups in the picture is that these groups arise as limits
of the cocompact ones. A rank-2 parabolic subgroup H of a Kleinian group G corresponds to a foral
cusp in the 3-manifold quotient M. Dehn filling a cusp of M with a long slope gives rise to a new
3-manifold M’, which is the quotient of H? by a new Kleinian group G’, which has a rank-1 loxodromic
subgroup H’ ‘in place’ of the rank-2 parabolic subgroup H of G. For suitable choice of filling slope,
the geometry and topology of M’ (resp. the dynamics of G’ on the Riemann sphere) will approximate
arbitrarily closely the geometry and topology of M away from the cusp (resp. the dynamics of G away
from the fixed points of the conjugates of H).

Now let’s move to the other side of the dictionary. What is the analog of Dehn filling in the world of rational
maps? For a postcritically finite rational map f there is no really good analog of the quotient 3-manifold M
on the Kleinian group side, and any sort of approximation must take place in the dynamics on the Riemann
sphere. We propose the following informal analogy; for a precise definition see Definition 2.1. We start
with the data of a postcritically finite map f with at least one critical point ¢ whose forward orbit contains
a repelling cycle O disjoint from c¢. The cycle O is the analog of the ‘cusp’ which is to be deformed. We
must also make a choice of an infinite backward orbit 7" of ¢ (called the ‘tail’) accumulating only on O. A
surgery sequence is then a sequence of postcritically finite maps f; so that f,, — f as maps, and so that the
postcritical set of f;, converges (in the Hausdorff topology) to the union of the postcritical set of f with T'.

Different choices of tail 7 accumulating on O give rise to different surgery sequences for a fixed /'; we may
describe the structure of the set of all such surgery sequences, and this lets us recover the (asymptotic) geom-
etry of the Julia set J( /) of f near the orbit O, and in the special case that /" has degree 2 and corresponds
to a Misiurewicz point in the Mandelbrot set, the (asymptotic) geometry of the Mandelbrot set near f.

2 Surgery sequences

2.1 Definition

Let f be a rational map. We denote the critical set of f (ie the set of critical points of f') by C(f). For
each ¢ € C(f) let P(c) := o /" (c) denote the forward orbit of ¢, and let P(f) := U ec(r) P(c)
denote the postcritical set. The map [ is postcritically finite (pcf) if P(f) is finite.

Let f be a pcf map with ¢ € C(f) and let O C P(c) — C(f) be a periodic orbit with multiplier
=]l co f'(x). Let’s suppose O is a repelling orbit, ie |p| > 1.

Since O is repelling, there is a neighborhood U of O and a unique branch g of f~! with g: U — U
so that for every point x € U the sequence g”(x) accumulates on O. A tail T for ¢, O is an infinite
sequence c_, for n € Z* for which

(D) fle—) =c;
(2) f(c—n) =c1—y forn >1; and
(3) for n sufficiently large, c—, € U and g(c—;) = c—1—p-
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Definition 2.1 Let f be pcf. Let ¢ be critical for f and let O C P(c) — C(f) be a repelling periodic
orbit for f. A surgery sequence for ¢, O is a sequence of pcf maps f;, for which there is a tail 7" for ¢, O
such that

(1) the f, converge to f as rational maps;
(2) the cardinality of P( f) is A + |O|n for some integer 4; and
(3) the sets P( f,) converge in the Hausdorff topology to TU P(f).

The idea of a surgery sequence is to approximate the ‘orbit’ 7"U c U P(c) of f by some finite periodic
critical orbit of f;,.

We shall consider two surgery sequences f5, g5 to be isomorphic either

(1) if they are conjugate by a (convergent) family of Mébius transformations ¢, —ie fy = ¢ngnd;, |
with ¢, — id; or

(2) if there is an integer m with f;, = g+, for all n (where defined).

In practice the first kind of ambiguity is eliminated by normalizing our surgery sequences somehow, either
by fixing a small number of specific critical points and their images, or by fixing some of the coefficients
of the rational maps f.

2.2 An example

We consider the simplest nontrivial example, a surgery sequence for the pcf map f: z — z2 —2. Since f
is a polynomial, the critical point co is completely invariant. The only other critical point is 0, whose
orbit is 0 — —2 — 2 thereafter left fixed by f. Let O consist solely of the point p = 2; the multiplier
equals 4 so this is indeed a repelling fixed point; and as tail 7" we choose the sequence c_; = /2
and c_, = /ci_p + 2, where by convention, we take the ‘square root’ symbol to denote the unique
nonnegative real square root of a nonnegative real number. Viete’s formula [6] implies that

1 — .yt = 1 — 4" = —l 2 ~ —
nlggo(c_n P nlggo(c_n 2)-4 17 2.4675011

See Figure 1.

Figure 1: The forward orbit P(0) for the map f: z — z2 — 2 is in black, and the tail T is in blue
(gray) (only three elements of 7" are shown in the figure).
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We normalize the associated surgery sequence in the form f;: z — z2 + v, where each v, is real and
v, — v := —2 from above, and so that the critical point 0 is periodic for f; with period # + 2 consisting
of real numbers satisfying

—2<vp= fu(0) <0 = f;"2(0) < f;7F1(0) <+ < £;7(0) <2
For instance, f] has critical orbit
0— v —>vf+v1 —>v;‘+2vf+vf+v1 =0

so that vy ~—1.7549. Likewise we can compute v, ~—1.9408, vz ~—1.9854 and so on. The first three val-
ues for (v, —v)-u" are approximately 0.9805, 0.9472, 0.9328; other approximate values are tabulated here:
Un (v —v) -
—1.754877666 | 0.980489335
—1.940799806 | 0.947203095
—1.985424253 | 0.932847805
—1.996376137 | 0.927708745

—1.999095682 | 0.926021297
—1.999774048 | 0.925496551

We shall see in Section 3 that this sequence converges, and in fact
. n_ 1 s qn — 3 2
nll)ngo(vn —v)-u" = nli)ngo(v,, (—2))-4 55T~ 0.9252754
where %ﬂz = —% . —%nz. We have already seen the factor of —%nz; the factor of —% will be explained
in Section 3.

3 Surgery sequences for Misiurewicz points

In this section we completely analyze surgery sequences in the quadratic family: polynomials of the form
z — z2 4+ v with v € C. We use the following standard terminology: the Mandelbrot set M is the set of
parameters v for which the critical point 0 of z — z2 + v is not in the attracting basin of infinity (some
authors call this the “filled Mandelbrot set’). For a quadratic polynomial z — z2 4 v the critical point co
is periodic, so in order for it to give rise to a surgery sequence the other critical point 0 must be strictly
preperiodic. Such a parameter v is called a Misiurewicz point.

Let f: z — z2 4 v be Misiurewicz, and let O C P(0) — 0 be the periodic orbit with period m and
multiplier x. In the sequel we use the following well-known facts about Misiurewicz points:
Proposition 3.1 Let v be a Misiurewicz point.

(1) v is in the Mandelbrot set M.
(2) The multiplier . satisfies || > 1.
(3) The Julia set J(f') is a dendrite.
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For a proof see Douady—Hubbard [1].

Let E,, denote the elliptic curve C* /(). We warn the reader that throughout this section we set up our
notation slightly differently than in Section 2.1. Choose p = f*(0) € O for some least k > 0 and let U
be a connected open neighborhood of p € O on which g: U — U is an attracting local branch of =,
Any tail 7" for f intersects U in a sequence of points which by abuse of notation we denote by c_; for
which g(c—;) = ¢_j_1, and thus c_, — p (this indexing and the definition of g and U differs from
Section 2.1 when m # 1 but agrees when m = 1).

A holomorphic map may be linearized (ie holomorphically conjugated to a linear map) near an attracting
fixed point; see eg [3]. Thus g is holomorphically conjugate near p to the map z — z/u near 0.
In particular, limy, oo " (c—n — p) exists. We denote by x(7") the image of this limit in £,. Another
way to say this is to use the holomorphic conjugacy to identify £, with the quotient (U — p)/(g) and
then the g-orbit {c_,} becomes identified with x(T") € E,.

Let X C E, denote the closure of the set of points x(7') that arise in this way.

Proposition 3.2 (X is Julia) With notation as above, the set X is equal to (J(f)N (U — p))/{g) under
the identification of (U — p)/(g) with E ;.

Proof The Julia set J(f') is f-invariant and therefore also g-invariant (where defined). Let Y C E,
denote the image of (J( /) N (U — p))/(g) under the identification of (U — p)/(g) with E. Since J(f)
is g-invariant and closed, it follows that Y is closed. Since O is a repelling periodic orbit for f* contained
in P(0), it follows that 0 € J( /) and therefore also T'C J(f') forevery T. Thus x(T) € Y,sothat X C Y.
Conversely, the complete backward orbit of every element of J( /) is dense in J( /), so that every point
of J(f) may be approximated by some element of some tail. Thus Y C X so X =Y. m|

Let us now construct the surgery sequence associated to a tail 7" and a Misiurewicz point v. Repelling
periodic orbits are structurally stable, so that for all w € C sufficiently close to v there is a unique repelling
point p(w) of period m for fy:z — z% + w close to p; furthermore, p(w) depends holomorphically
on w with p(v) = p. For |w — v| sufficiently small, there is a unique local branch g,, of f,;”"* with
gw: U — U fixing p(w).

In a similar manner we may define c_j(w) to be the preimage of 0 under a suitable power of f, close
to c—;, so that each c—j (w) depends holomorphically on w, and gy (c—j(w)) = c_;_;(w) and therefore

c—n(w) > p(w).
On the other hand, we may define gy, := fu]f (0), so that p, = ¢y = p. Define v :=d/dw|y=y(quw — Pw)-

Lemma 3.3 With notation as above, v # 0.

Proof This is the only nonelementary point in the paper; it follows from Thurston’s theorem [2] on the
uniqueness of pcf maps of a given topological type. Let us see how.

Algebraic € Geometric Topology, Volume 25 (2025)
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Thurston’s theorem [2] gives necessary and sufficient conditions (not relevant here) that a critically finite
branched map from S2 to S? is equivalent to a rational map, and furthermore that such a rational map
is unique (up to holomorphic conjugacy) provided the map has ‘hyperbolic orbifold’. This condition is
rather technical to state completely, but we remark that it is satisfied automatically when | P( f)| > 4 and
thus in our context there are only finitely many exceptional cases where it does not hold where v # 0
may be checked (numerically) by hand.

Since ¢y and py, both depend holomorphically on w, we may write ¢y = py + h(w — v) for some
holomorphic function /# with #(0) = 0. The first observation is that / is not identically zero. For, if
it were, the f,, would all be topologically equivalent pcf maps, and therefore (by Thurston’s theorem)
holomorphically conjugate. But distinct elements of the quadratic family are never holomorphically
conjugate; the first claim follows.

If h(z) is not identically zero then we can write /(z) = az% + O(z%T1) for some « # 0. If k > 1 then
there is a real € > 0 so that if S is the circle |z| = €, the image of S under / has winding number &
around 0. Choose n sufficiently large so that for all w € S + v, the difference |c—,(w) — p(w)| is small
compared to the minimum of |/| on S. Then as w — v winds around S the difference ¢, — c—,(w) also
winds k times around 0, and therefore there are k distinct values of w near v for which ¢, = ¢, (w).
But then for each of these w the map fy, is pcf (indeed 0 is periodic) and furthermore these maps are all
topologically equivalent, violating Thurston’s theorem.

It follows that k£ = 1, so that /4’(0) := v is nonzero, as claimed. |

The winding number argument of Lemma 3.3 actually shows for all sufficiently large » that there is a unique
v, near v with gy, = c_,(v,). Evidently the f;, are the surgery sequence associated to the given tail 7.

Proposition 3.4 With notation as above, lim,_, o (v, — V)" exists, and its image in E,, is equal
tov~Ix(T).

Proof Fix some small positive € > 0 and fix some large j so that c_;(w) is contained in U for
|lw —v| < €. If € is small enough, then for each w with |w —v| < € the multiplier u(w) of f" at p(w)
satisfies |(w)| > 1 and there are a family of maps ¢y : U — C (depending holomorphically on w)
with ¢y (p(w)) = 0 and ¢y, (c—j(w)) = 1 conjugating gyy: U — U to the map z — p(w) ™!z on ¢y (U).
We may suppose for concreteness that the disk of radius 2 about 0 is contained in all ¢, (U) for [w —v| <e.
For z := w—v with |z] < e let f(z) = ¢y(g(w)). Then f(0) =0 and p:= f'(0) = v¢, (p) and we may
write f(z)=zp/(1+zb;+2z%by+---)and h(z):=pu(w)~ ' =~ (14za, +z%a,+- - -) for power series
uniformly convergent on |z| < €. With this notation, v, = v+ z, where z, is the solution to f(z,) = h(z,)".
An elementary estimate (Lemma 3.5) shows that lim, o0 Zy " = p~ L. But p~! = p~! (o1 ( )~ ! and if
we choose j large enough so that |c_j — p| is small, then (¢),(p))~! is approximately equal to (c—; —p) 1.
The claim follows, modulo the proof of Lemma 3.5. a

We now prove the desired estimate, completing the proof of Proposition 3.4.
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Lemma3.5 Letpu,peC withO<|u~™!|<1landp#0. Leth(z) := pu~'(1 4+ za; + z%a, +---) and
f(2):=zp/(1 + zby + z%by + - - ) be holomorphic in some open neighborhood of 0. Then forn > 1

there is a unique z, € C with |z,| < 1 such that f(z,) = h(z,)", and furthermore lim, o Zyt" = p~ L.

Proof By definition z, is the solution to
zp=u (1 +zay +z%ay +--)"(1 +zby + 22by +--+) 1= ,u_”<1 + > Kj’an>
j>0
for suitable coefficients k; , depending on n. Since f(z) and A(z) are holomorphic in an open neigh-
borhood of 0, there are positive real constants o and f so that |a| < o and |bg| < ¥ for all k, and
(n+1+))!
nlj!

therefore we may estimate |k ,| < o/ where 0 = max(c, B).

! and recursively define

Ger = p"p! (1 + 2 Kj,nE,i)
j>0

Set {y:==pu"p”

Then it follows by induction for n sufficiently large that there are constants C; > 0 and 0 < C, < 1
independent of n and k so that

Ck1 — G| < CurE+DC

(in fact we can take C, to be any fixed positive number < 1 at the cost of adjusting C1). In particular, for
each fixed n, the {; converge at a geometric rate to z,, and by inspection as 7 — oo we have z, 1 — p~ 1. O

Example 3.6 Let’s return to the example we worked out in Section 2.2. The fixed points of the quadratic
map fy:z — z2 4+ w are the roots of z2 —z 4 w, which are %(1 +/1—4w ) Thus for our family where
v =—2 and |w — v| is small, the root p(w) is equal to %(1 + M) and p'(=2) = —%. On the other
hand, ¢(w) = w? 4+ w, so that ¢’(—=2) = —3. Thus v :=¢'(=2) — p'(-2) = -3 + % = —%.

Every fy in a surgery family is pcf, and therefore w is in the filled Mandelbrot set. Let v be a Misiurewicz
point, and let M — v C C denote the result of translating the Mandelbrot set M so that v is moved to the
origin. For each n let 1" (MM — v) be the subset of C obtained by multiplying M — v by u”.

Define Z := liminf w* (M — v) where the limit is taken in the Hausdorff topology. In other words,
a point p is in Z if and only if for every infinite subsequence of dilations p" (M — v) there are points
pi € " (My) with p; — p. Evidently Z is invariant under multiplication by u, and therefore Z-0

covers a closed subset Z C E,.

Proposition 3.7 The translate v='Z in E,, contains X .

Proof This is a direct consequence of Propositions 3.4 and 3.2. |
Conversely, we have the following:

Proposition 3.8 Let v be a Misiurewicz point, and suppose v,; € M is a sequence of points with v,; — v
so that (v, —v)u'™ converge to some limit z. Then the image of vz in E,isin X.
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Proof With notation as above, we let O be the periodic orbit of fy, choose f%(0) = p € O, and let U
be an open neighborhood of p on which g: U — U is an attracting local branch of f~". Let V = g(U).
Since v,; — v we have fv]; (0) — p and therefore there is some least k; for which x; := fv]:li,- 0)eVv-U
and f;,j,;i (0) e U fork < jl < k;j (in fact, (k; — k)/m — n; is a constant). After passing to a subsequence
if necessary, we may assume x; — x € V' —U. Since vy, € M it follows that the forward orbit of x;
under fvn,- is uniformly bounded (independent of i) and therefore the forward orbit of x under f = f,
is uniformly bounded, so that x is in the filled Julia set of /. Since v is Misiurewicz, it follows that x
is in the Julia set of f* and therefore that the image of x in E is contained in X. As in our previous
calculations (ie Lemma 3.5), this image is equal to v~ 1 z. O

This concludes our proof of Tan Lei’s theorem:

Corollary 3.9 (Tan Lei [5, Theorem 5.1]) Let v € M be a Misiurewicz point associated to a quadratic
polynomial f:z — z? 4 v with Julia set J(f) and let p € P(0) be periodic for f with multiplier jt. Let
v # 0 be defined as above. Then the Hausdorff limits
lim v ' " M—=v) and lim p*(J(f)—p)
n—0o0 n—oo
are equal.

Remark 3.10 There is nothing important about the quadratic family so far as Propositions 3.2 or 3.4 are
concerned, except that our maps have been constrained to lie in a one (complex) dimensional family.

Let f be an arbitrary pcf map with a critical point ¢ € C( f) and repelling periodic orbit O C P(c)—C(f).
Let V be a one-dimensional family of nonconjugate rational maps with f € V. For each critical point
c e C(f)andeach g € V near f there is a critical point c(g) € C(g) close to c; suppose for all g € V that
P(¢’) is finite for all ¢/ € C(g) — ¢(g). Choose p € O equal to 1% (c) for some least ¢. For g near f we
can define ¢(g) := g¥(c(g)) and p(g) to be the repelling periodic point for g near p, and we may define
v:=d/dg|s— rq(g)— p(g). Then providing v # 0 we may construct a surgery family f, € V associated
to any tail 7' for O, ¢ exactly as above, and the analog of Proposition 3.4 holds for lim, o " (fn — f).
The condition v # 0 holds providing the pcf maps obtained by deforming f are holomorphically rigid,
which according to Thurston’s theorem holds automatically if | P( f)| > 4. Presumably the exceptions
may be enumerated.

It is worth pointing out that v = 0 if V' is a Lattes family; see eg [3], and indeed such a family evidently
does not contain a surgery sequence for any f € V.

4 Another example

The map z: — z% +i has P(0) :={i,i — 1, —i} and we can take O :={i —1,—i} and p = —i € O. The
multiplier is p := 4(1 +i). The Julia set J and a blow-up near —i are illustrated in Figure 2, top row.
The Mandelbrot set M and a blow-up near i are illustrated in Figure 2, bottom row, for comparison.
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e

Figure 2: Top row: the Julia set of z — z2 4/ and a blow-up near —i . Bottom row: the Mandelbrot
set and a blow-up near i.
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