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Surgery sequences and self-similarity of the Mandelbrot set

DANNY CALEGARI

We introduce an analog in the context of rational maps of the idea of hyperbolic Dehn surgery from the
theory of Kleinian groups. A surgery sequence is a sequence of postcritically finite maps limiting (in a
precise manner) to a postcritically finite map with at least one strictly preperiodic critical orbit. As an
application of this idea we give a new and elementary proof of Tan Lei’s theorem on the asymptotic
self-similarity of Julia sets and the Mandelbrot set at Misiurewicz points.
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1 Introduction

Sullivan’s dictionary is a framework that seeks to unify two subjects at the heart of one-dimensional
holomorphic dynamics: Kleinian groups and the iteration of rational maps. Sullivan introduced the idea
of this dictionary in [4], and supplied a number of key entries. It is the purpose of this paper to propose a
new entry for this dictionary — between hyperbolic Dehn surgery for cusped hyperbolic 3-manifolds and
surgery sequences of rational maps — and to use this analogy to give a new, elementary proof of Tan Lei’s
famous theorem on the asymptotic self-similarity of Julia sets and the Mandelbrot set at Misiurewicz points.

Sullivan’s original dictionary contains twenty-four entries; the last entry is a correspondence between
cocompact Kleinian groups and postcritically finite rational maps. One might reasonably broaden this
correspondence from the class of cocompact Kleinian groups to the finite-covolume groups. The idea of
this dictionary entry is that in either case, topological data (an irreducible compact 3-manifold with torus
boundary components; an equivalence class of postcritically finite branched self-covering maps of the
2-sphere) may be ‘geometrized’ by a rigid holomorphic dynamical system, unless a purely topological
obstruction exists.
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2808 Danny Calegari

One reason to include finite-covolume Kleinian groups in the picture is that these groups arise as limits
of the cocompact ones. A rank-2 parabolic subgroup H of a Kleinian group G corresponds to a toral
cusp in the 3-manifold quotient M . Dehn filling a cusp of M with a long slope gives rise to a new
3-manifold M 0, which is the quotient of H3 by a new Kleinian group G0, which has a rank-1 loxodromic
subgroup H 0 ‘in place’ of the rank-2 parabolic subgroup H of G. For suitable choice of filling slope,
the geometry and topology of M 0 (resp. the dynamics of G0 on the Riemann sphere) will approximate
arbitrarily closely the geometry and topology of M away from the cusp (resp. the dynamics of G away
from the fixed points of the conjugates of H ).

Now let’s move to the other side of the dictionary. What is the analog of Dehn filling in the world of rational
maps? For a postcritically finite rational map f there is no really good analog of the quotient 3-manifold M

on the Kleinian group side, and any sort of approximation must take place in the dynamics on the Riemann
sphere. We propose the following informal analogy; for a precise definition see Definition 2.1. We start
with the data of a postcritically finite map f with at least one critical point c whose forward orbit contains
a repelling cycle O disjoint from c. The cycle O is the analog of the ‘cusp’ which is to be deformed. We
must also make a choice of an infinite backward orbit T of c (called the ‘tail’) accumulating only on O . A
surgery sequence is then a sequence of postcritically finite maps fn so that fn!f as maps, and so that the
postcritical set of fn converges (in the Hausdorff topology) to the union of the postcritical set of f with T .

Different choices of tail T accumulating on O give rise to different surgery sequences for a fixed f ; we may
describe the structure of the set of all such surgery sequences, and this lets us recover the (asymptotic) geom-
etry of the Julia set J.f / of f near the orbit O , and in the special case that f has degree 2 and corresponds
to a Misiurewicz point in the Mandelbrot set, the (asymptotic) geometry of the Mandelbrot set near f .

2 Surgery sequences

2.1 Definition

Let f be a rational map. We denote the critical set of f (ie the set of critical points of f ) by C.f /. For
each c 2 C.f / let P .c/ WD

S
n>0 f

n.c/ denote the forward orbit of c, and let P .f / WD
S

c2C.f / P .c/

denote the postcritical set. The map f is postcritically finite (pcf) if P .f / is finite.

Let f be a pcf map with c 2 C.f / and let O � P .c/ � C.f / be a periodic orbit with multiplier
� WD

Q
x2O f

0.x/. Let’s suppose O is a repelling orbit, ie j�j> 1.

Since O is repelling, there is a neighborhood U of O and a unique branch g of f �1 with g W U ! U

so that for every point x 2 U the sequence gn.x/ accumulates on O . A tail T for c, O is an infinite
sequence c�n for n 2 ZC for which

(1) f .c�1/D c;

(2) f .c�n/D c1�n for n> 1; and

(3) for n sufficiently large, c�n 2 U and g.c�n/D c�1�n.

Algebraic & Geometric Topology, Volume 25 (2025)
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Definition 2.1 Let f be pcf. Let c be critical for f and let O � P .c/�C.f / be a repelling periodic
orbit for f . A surgery sequence for c, O is a sequence of pcf maps fn for which there is a tail T for c, O

such that

(1) the fn converge to f as rational maps;

(2) the cardinality of P .fn/ is ACjOjn for some integer A; and

(3) the sets P .fn/ converge in the Hausdorff topology to T [P .f /.

The idea of a surgery sequence is to approximate the ‘orbit’ T [ c [P .c/ of f by some finite periodic
critical orbit of fn.

We shall consider two surgery sequences fn, gn to be isomorphic either

(1) if they are conjugate by a (convergent) family of Möbius transformations �n — ie fn D �ngn�
�1
n

with �n! id; or

(2) if there is an integer m with fn D gnCm for all n (where defined).

In practice the first kind of ambiguity is eliminated by normalizing our surgery sequences somehow, either
by fixing a small number of specific critical points and their images, or by fixing some of the coefficients
of the rational maps fn.

2.2 An example

We consider the simplest nontrivial example, a surgery sequence for the pcf map f W z! z2� 2. Since f
is a polynomial, the critical point1 is completely invariant. The only other critical point is 0, whose
orbit is 0!�2! 2 thereafter left fixed by f . Let O consist solely of the point p D 2; the multiplier �
equals 4 so this is indeed a repelling fixed point; and as tail T we choose the sequence c�1 D

p
2

and c�n D
p

c1�nC 2, where by convention, we take the ‘square root’ symbol to denote the unique
nonnegative real square root of a nonnegative real number. Viète’s formula [6] implies that

lim
n!1

.c�n�p/ ��n
D lim

n!1
.c�n� 2/ � 4n

D�
1
4
�2
��2:4675011

See Figure 1.

Figure 1: The forward orbit P .0/ for the map f W z! z2� 2 is in black, and the tail T is in blue
(gray) (only three elements of T are shown in the figure).
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We normalize the associated surgery sequence in the form fn W z! z2C vn where each vn is real and
vn! v WD �2 from above, and so that the critical point 0 is periodic for fn with period nC 2 consisting
of real numbers satisfying

�2< vn D fn.0/ < 0D f nC2
n .0/ < f nC1

n .0/ < � � �< f 2
n .0/ < 2

For instance, f1 has critical orbit

0! v1! v2
1 C v1! v4

1 C 2v3
1 C v

2
1 C v1 D 0

so that v1��1:7549. Likewise we can compute v2��1:9408, v3��1:9854 and so on. The first three val-
ues for .vn�v/��

n are approximately 0:9805, 0:9472, 0:9328; other approximate values are tabulated here:

vn .vn� v/ ��
n

�1:754877666 0:980489335

�1:940799806 0:947203095

�1:985424253 0:932847805

�1:996376137 0:927708745

�1:999095682 0:926021297

�1:999774048 0:925496551

We shall see in Section 3 that this sequence converges, and in fact

lim
n!1

.vn� v/ ��
n
D lim

n!1
.vn� .�2// � 4n

D
3

32
�2
� 0:9252754

where 3
32
�2 D�

3
8
� �

1
4
�2. We have already seen the factor of �1

4
�2; the factor of �3

8
will be explained

in Section 3.

3 Surgery sequences for Misiurewicz points

In this section we completely analyze surgery sequences in the quadratic family: polynomials of the form
z! z2C v with v 2C. We use the following standard terminology: the Mandelbrot set M is the set of
parameters v for which the critical point 0 of z! z2C v is not in the attracting basin of infinity (some
authors call this the ‘filled Mandelbrot set’). For a quadratic polynomial z! z2C v the critical point1
is periodic, so in order for it to give rise to a surgery sequence the other critical point 0 must be strictly
preperiodic. Such a parameter v is called a Misiurewicz point.

Let f W z ! z2 C v be Misiurewicz, and let O � P .0/ � 0 be the periodic orbit with period m and
multiplier �. In the sequel we use the following well-known facts about Misiurewicz points:

Proposition 3.1 Let v be a Misiurewicz point.

(1) v is in the Mandelbrot set M.

(2) The multiplier � satisfies j�j> 1.

(3) The Julia set J.f / is a dendrite.

Algebraic & Geometric Topology, Volume 25 (2025)
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For a proof see Douady–Hubbard [1].

Let E� denote the elliptic curve C�=h�i. We warn the reader that throughout this section we set up our
notation slightly differently than in Section 2.1. Choose p D f k.0/ 2O for some least k > 0 and let U

be a connected open neighborhood of p 2O on which g W U ! U is an attracting local branch of f �m.
Any tail T for f intersects U in a sequence of points which by abuse of notation we denote by c�j for
which g.c�j / D c�j�1, and thus c�n ! p (this indexing and the definition of g and U differs from
Section 2.1 when m¤ 1 but agrees when mD 1).

A holomorphic map may be linearized (ie holomorphically conjugated to a linear map) near an attracting
fixed point; see eg [3]. Thus g is holomorphically conjugate near p to the map z ! z=� near 0.
In particular, limn!1 �

n.c�n�p/ exists. We denote by x.T / the image of this limit in E�. Another
way to say this is to use the holomorphic conjugacy to identify E� with the quotient .U �p/=hgi and
then the g-orbit fc�ng becomes identified with x.T / 2E�.

Let X �E� denote the closure of the set of points x.T / that arise in this way.

Proposition 3.2 (X is Julia) With notation as above , the set X is equal to .J.f /\ .U �p//=hgi under
the identification of .U �p/=hgi with E�.

Proof The Julia set J.f / is f -invariant and therefore also g-invariant (where defined). Let Y � E�

denote the image of .J.f /\ .U �p//=hgi under the identification of .U �p/=hgi with E�. Since J.f /

is g-invariant and closed, it follows that Y is closed. Since O is a repelling periodic orbit for f contained
in P .0/, it follows that 02J.f / and therefore also T �J.f / for every T . Thus x.T /2Y , so that X �Y .
Conversely, the complete backward orbit of every element of J.f / is dense in J.f /, so that every point
of J.f / may be approximated by some element of some tail. Thus Y �X so X D Y .

Let us now construct the surgery sequence associated to a tail T and a Misiurewicz point v. Repelling
periodic orbits are structurally stable, so that for all w 2C sufficiently close to v there is a unique repelling
point p.w/ of period m for fw W z! z2Cw close to p; furthermore, p.w/ depends holomorphically
on w with p.v/ D p. For jw � vj sufficiently small, there is a unique local branch gw of f �m

w with
gw W U ! U fixing p.w/.

In a similar manner we may define c�j .w/ to be the preimage of 0 under a suitable power of fw close
to c�j , so that each c�j .w/ depends holomorphically on w, and gw.c�j .w//D c�1�j .w/ and therefore
c�n.w/! p.w/.

On the other hand, we may define qw WD f
k
w .0/, so that pv D qv D p. Define � WD d=dwjwDv.qw�pw/.

Lemma 3.3 With notation as above , � ¤ 0.

Proof This is the only nonelementary point in the paper; it follows from Thurston’s theorem [2] on the
uniqueness of pcf maps of a given topological type. Let us see how.

Algebraic & Geometric Topology, Volume 25 (2025)
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Thurston’s theorem [2] gives necessary and sufficient conditions (not relevant here) that a critically finite
branched map from S2 to S2 is equivalent to a rational map, and furthermore that such a rational map
is unique (up to holomorphic conjugacy) provided the map has ‘hyperbolic orbifold’. This condition is
rather technical to state completely, but we remark that it is satisfied automatically when jP .f /j> 4 and
thus in our context there are only finitely many exceptional cases where it does not hold where � ¤ 0

may be checked (numerically) by hand.

Since qw and pw both depend holomorphically on w, we may write qw D pw C h.w � v/ for some
holomorphic function h with h.0/ D 0. The first observation is that h is not identically zero. For, if
it were, the fw would all be topologically equivalent pcf maps, and therefore (by Thurston’s theorem)
holomorphically conjugate. But distinct elements of the quadratic family are never holomorphically
conjugate; the first claim follows.

If h.z/ is not identically zero then we can write h.z/D ˛zk CO.zkC1/ for some ˛ ¤ 0. If k > 1 then
there is a real � > 0 so that if S is the circle jzj D �, the image of S under h has winding number k

around 0. Choose n sufficiently large so that for all w 2 S C v, the difference jc�n.w/�p.w/j is small
compared to the minimum of jhj on S . Then as w� v winds around S the difference qw � c�n.w/ also
winds k times around 0, and therefore there are k distinct values of w near v for which qw D c�n.w/.
But then for each of these w the map fw is pcf (indeed 0 is periodic) and furthermore these maps are all
topologically equivalent, violating Thurston’s theorem.

It follows that k D 1, so that h0.0/ WD � is nonzero, as claimed.

The winding number argument of Lemma 3.3 actually shows for all sufficiently large n that there is a unique
vn near v with qvn

D c�n.vn/. Evidently the fvn
are the surgery sequence associated to the given tail T .

Proposition 3.4 With notation as above , limn!1.vn � v/�
n exists , and its image in E� is equal

to ��1x.T /.

Proof Fix some small positive � > 0 and fix some large j so that c�j .w/ is contained in U for
jw� vj< �. If � is small enough, then for each w with jw� vj< � the multiplier �.w/ of f m

w at p.w/

satisfies j�.w/j > 1 and there are a family of maps �w W U ! C (depending holomorphically on w)
with �w.p.w//D 0 and �w.c�j .w//D 1 conjugating gw WU !U to the map z! �.w/�1z on �w.U /.
We may suppose for concreteness that the disk of radius 2 about 0 is contained in all �w.U / for jw�vj<�.

For z WDw�v with jzj< � let f .z/D �w.q.w//. Then f .0/D 0 and � WD f 0.0/D ��0v.p/ and we may
write f .z/D z�=.1Czb1Cz2b2C� � � / and h.z/ WD�.w/�1D��1.1Cza1Cz2a2C� � � / for power series
uniformly convergent on jzj<�. With this notation, vnDvCzn where zn is the solution to f .zn/Dh.zn/

n.

An elementary estimate (Lemma 3.5) shows that limn!1 zn�
n D ��1. But ��1 D ��1.�0v.p//

�1 and if
we choose j large enough so that jc�j�pj is small, then .�0v.p//

�1 is approximately equal to .c�j�p/�1.
The claim follows, modulo the proof of Lemma 3.5.

We now prove the desired estimate, completing the proof of Proposition 3.4.

Algebraic & Geometric Topology, Volume 25 (2025)
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Lemma 3.5 Let �; � 2 C with 0 < j��1j < 1 and � ¤ 0. Let h.z/ WD ��1.1C za1C z2a2C � � �/ and
f .z/ WD z�=.1C zb1C z2b2C � � �/ be holomorphic in some open neighborhood of 0. Then for n� 1

there is a unique zn 2C with jznj � 1 such that f .zn/D h.zn/
n, and furthermore limn!1 zn�

n D ��1.

Proof By definition zn is the solution to

z�D ��n.1C za1C z2a2C � � � /
n.1C zb1C z2b2C � � � / WD �

�n
�
1C

P
j>0

�j ;nzj
�

for suitable coefficients �j ;n depending on n. Since f .z/ and h.z/ are holomorphic in an open neigh-
borhood of 0, there are positive real constants ˛ and ˇ so that jak j < ˛

k and jbk j < ˇ
k for all k, and

therefore we may estimate j�j ;nj �
.nC1Cj/!

n!j!
�j where � Dmax.˛; ˇ/.

Set �1 WD ��n��1 and recursively define

�kC1 WD �
�n��1

�
1C

P
j>0

�j ;n�
j

k

�
Then it follows by induction for n sufficiently large that there are constants C1 > 0 and 0 < C2 < 1

independent of n and k so that
j�kC1� �k j< C1�

n.kC1/C2

(in fact we can take C2 to be any fixed positive number < 1 at the cost of adjusting C1). In particular, for
each fixed n, the �k converge at a geometric rate to zn, and by inspection as n!1we have zn�

n!��1.

Example 3.6 Let’s return to the example we worked out in Section 2.2. The fixed points of the quadratic
map fw W z! z2Cw are the roots of z2�zCw, which are 1

2

�
1˙
p

1� 4w
�
. Thus for our family where

vD�2 and jw�vj is small, the root p.w/ is equal to 1
2

�
1C
p

1� 4w
�

and p0.�2/D�1
3

. On the other
hand, q.w/D w2Cw, so that q0.�2/D�3. Thus � WD q0.�2/�p0.�2/D�3C 1

3
D�

8
3

.

Every fw in a surgery family is pcf, and therefore w is in the filled Mandelbrot set. Let v be a Misiurewicz
point, and let M� v �C denote the result of translating the Mandelbrot set M so that v is moved to the
origin. For each n let �n.M� v/ be the subset of C obtained by multiplying M� v by �n.

Define bZ WD lim inf�n.M � v/ where the limit is taken in the Hausdorff topology. In other words,
a point p is in bZ if and only if for every infinite subsequence of dilations �ni .M� v/ there are points
pi 2 �

ni .Mv/ with pi ! p. Evidently bZ is invariant under multiplication by �, and therefore bZ � 0

covers a closed subset Z �E�.

Proposition 3.7 The translate ��1Z in E� contains X .

Proof This is a direct consequence of Propositions 3.4 and 3.2.

Conversely, we have the following:

Proposition 3.8 Let v be a Misiurewicz point , and suppose vni
2M is a sequence of points with vni

! v

so that .vni
� v/�ni converge to some limit z. Then the image of ��1z in E� is in X .
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Proof With notation as above, we let O be the periodic orbit of fv, choose f k.0/D p 2O , and let U

be an open neighborhood of p on which g WU !U is an attracting local branch of f �m. Let V D g.U /.
Since vni

! v we have f k
vni
.0/!p and therefore there is some least ki for which xi WD f

ki
vni
.0/2V �U

and f j
vni
.0/ 2 U for k � j < ki (in fact, .ki � k/=m� ni is a constant). After passing to a subsequence

if necessary, we may assume xi ! x 2 V �U . Since vni
2M it follows that the forward orbit of xi

under fvni
is uniformly bounded (independent of i) and therefore the forward orbit of x under f D fv

is uniformly bounded, so that x is in the filled Julia set of f . Since v is Misiurewicz, it follows that x

is in the Julia set of f and therefore that the image of x in E� is contained in X . As in our previous
calculations (ie Lemma 3.5), this image is equal to ��1z.

This concludes our proof of Tan Lei’s theorem:

Corollary 3.9 (Tan Lei [5, Theorem 5.1]) Let v 2M be a Misiurewicz point associated to a quadratic
polynomial f W z! z2C v with Julia set J.f / and let p 2 P .0/ be periodic for f with multiplier �. Let
� ¤ 0 be defined as above. Then the Hausdorff limits

lim
n!1

��1�n.M� v/ and lim
n!1

�n.J.f /�p/

are equal.

Remark 3.10 There is nothing important about the quadratic family so far as Propositions 3.2 or 3.4 are
concerned, except that our maps have been constrained to lie in a one (complex) dimensional family.

Let f be an arbitrary pcf map with a critical point c 2C.f / and repelling periodic orbit O �P .c/�C.f /.
Let V be a one-dimensional family of nonconjugate rational maps with f 2 V . For each critical point
c 2C.f / and each g 2V near f there is a critical point c.g/2C.g/ close to c; suppose for all g 2V that
P .c0/ is finite for all c0 2 C.g/� c.g/. Choose p 2O equal to f k.c/ for some least c. For g near f we
can define q.g/ WD gk.c.g// and p.g/ to be the repelling periodic point for g near p, and we may define
� WD d=dgjgDf q.g/�p.g/. Then providing �¤ 0 we may construct a surgery family fn 2 V associated
to any tail T for O , c exactly as above, and the analog of Proposition 3.4 holds for limn!1 �

n.fn� f /.
The condition � ¤ 0 holds providing the pcf maps obtained by deforming f are holomorphically rigid,
which according to Thurston’s theorem holds automatically if jP .f /j> 4. Presumably the exceptions
may be enumerated.

It is worth pointing out that � D 0 if V is a Lattès family; see eg [3], and indeed such a family evidently
does not contain a surgery sequence for any f 2 V .

4 Another example

The map z W ! z2C i has P .0/ WD fi; i �1;�ig and we can take O WD fi �1;�ig and p D�i 2O . The
multiplier is � WD 4.1C i/. The Julia set J and a blow-up near �i are illustrated in Figure 2, top row.
The Mandelbrot set M and a blow-up near i are illustrated in Figure 2, bottom row, for comparison.

Algebraic & Geometric Topology, Volume 25 (2025)
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Figure 2: Top row: the Julia set of z! z2Ci and a blow-up near�i . Bottom row: the Mandelbrot
set and a blow-up near i .
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