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Warped product metrics on hyperbolic and complex hyperbolic manifolds

BARRY MINEMYER

We study warped-product metrics on manifolds of the form X nY , where X denotes either Hn or CHn,
and Y is a totally geodesic submanifold with arbitrary codimension. The main results that we prove
are curvature formulas for these metrics on X nY expressed in spherical coordinates about Y . We also
discuss past and potential future applications of these formulas.

53C20, 53C35; 53C56, 57R25

1 Introduction

1.1 Main results

Let Hn denote real hyperbolic space with real dimension n, and let CHn denote complex hyperbolic
space with complex dimension n. In this paper, X will denote either Hn or CHn, and Y will denote a
totally geodesic submanifold of X . So if X DHn then Y DHk , and if X DCHn then Y is either Hk or
CHk for some 0� k � n� 1. Let M be a Riemannian manifold, and N a totally geodesic submanifold
of M . We say that the pair .M;N / is modeled on .X; Y / if X is the universal cover of M and, within
this cover, Y corresponds to the universal cover of N .

The purpose of this paper is to develop curvature formulas for warped-product metrics on X nY when the
pair .X; Y / is one of .Hn;Hk/, .CHn;Hn/, or .CHn;CHk/. These cases are detailed in Sections 2, 3,
and 4, respectively. In each case we write the metric on X in spherical coordinates about Y (Theorems 2.1,
3.1, and 4.1), we consider the corresponding warped product metric where we allow for variable coefficients
in the metric tensor ((2-2), (3-3), and (4-2)), and we compute formulas for the components of the .4; 0/
curvature tensor with respect to these coefficient functions (Theorems 2.2, 3.4, and 4.3). These last three
theorems should be considered the main results of this paper.

1.2 Applications for these curvature formulas

Specific cases for these formulas are already known and have been used in various applications in the
literature. Some examples are as follows. The case when X DHn and Y DHn�2 was used by Gromov
and Thurston in [7] (discussed further below) and by Belegradek in [1]. When X DHn and Y DH0 is
a point, this leads to the basis for the Farrell and Jones warping deformation used in [5]. This process
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2906 Barry Minemyer

is described by Ontaneda in [13] and used by the same author in [14]. The case when X D CHn and
Y D CH0 is a point was used by Farrell and Jones in [6], and the same X but with Y D CHn�1 was
considered by Belegradek in [2]. Finally, the cases when .X; Y / are either .CH2;H2/ or .CHn;CHn�2/

were used by the author in [9] and [10].

While the author believes that the curvature formulas in Theorems 2.2, 3.4, and 4.3 will have many
future uses, the primary motivation for the development of these curvature formulas was for the following
application.

In [7] Gromov and Thurston famously construct pinched negatively curved manifolds which do not
admit hyperbolic metrics. In this construction they consider pairs .M;N / modeled on .Hn;Hn�2/ which
satisfy a few special topological and geometric conditions. The pinched negatively curved manifold X
which does not admit a hyperbolic metric is then the d -fold cyclic branched cover of M about N (where
d 2N can take all but possibly finitely many values). The difficulty in all of this is showing that X exists,
constructing a pinched negatively curved metric on X , and proving that X does not admit a hyperbolic
metric.

It is an open question as to whether or not this construction can be extended to the locally symmetric pairs
.CHn;CHn�1/ and .CH2;H2/. In a forthcoming paper [11] the author shows that the d -fold cyclic
ramified cover of M about N for the case .CHn;CHn�1/ does admit an almost negatively 1

4
-pinched

Riemannian metric. The fact that such a pair .M;N / can be realized so that the ramified cover is a
smooth manifold for some integer d > 2 is a result of Stover and Toledo in [15]. The constructions of
this Riemannian metric uses the curvature formulas proved in Theorems 2.2 and 4.3 below.

One last remark about these curvature formulas. In [1], [2], and [9] it is proved that the manifold M nN ,
where .M;N / is modeled on one of .Hn;Hn�2/, .CHn;CHn�2/, or .CH2;H2/, admits a complete,
finite volume, negatively curved Riemannian metric. The curvature formulas developed in this paper are
extensions of the curvature formulas computed and used in these three articles.

1.3 Obstructions to M nN admitting a complete, finite volume Riemannian metric of
negative sectional curvature

Consider the finite volume manifold M nN . The three cases where N has real codimension two in M
are modeled on one of .Hn;Hn�2/, .CHn;CHn�1/, or .CH2;H2/. In all of these cases, the manifold
M nN admits a complete, finite volume Riemannian metric whose sectional curvature is bounded above
by a negative constant [1; 2; 9].

When the real codimension of N is greater than two, the manifold M nN should not admit a complete,
finite volume, negatively curved metric because it generally will not be aspherical. This fact should be
realized in the curvature equations in Theorems 2.2, 3.4, and 4.3. More specifically, there should be one
or more equations which obstructs such a metric, but these curvature equations should vanish when N
has codimension two.
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Warped product metrics on hyperbolic and complex hyperbolic manifolds 2907

In all cases except one “exceptional case” the obstruction is a sectional curvature equation of the form

(1-1) 1

v2
�

�
v0

v

�2
where v WR!R is a positive, increasing real-valued function. In order to alter the metric on M nN to
be complete, one needs to define a warping function for v that will make each component of N into the
boundary of a cusp of the manifold. One easily checks that (1-1) is nonpositive if and only if 1� .v0/2.
But for the Riemannian metric to have any chance of having finite volume one needs limr!�1 v0.r/D 0.

The one exceptional case is when .M;N / is modeled on .CHn;CHn�2/. Here, all curvature equations
of the form (1-1) vanish, and so this obstruction is more subtle. It should be noted that the vanishing of
(1-1) is what leads to the metric developed in [10], which shows that a finite volume manifold of the form
M nN where .M;N / is modeled on .CHn;CHn�2/ admits a complete, finite volume metric which is
negatively curved when restricted to a (nonintegrable) real codimension one distribution. The calculation
in [10] is very complicated, whereas the work required to show that one cannot vary the curvature formulas
in this setting to obtain global negative curvature (and finite volume) is pretty straightforward. A quick
argument for this is given in Section 4.6.

1.4 Layout of this paper

In Section 2 we study manifolds of the form Hn nHk , in Section 3 we consider CHn nHn, and in
Section 4 we analyze CHn nCHk . The calculations in Sections 3 and 4 become very complicated. So in
Section 3 we restrict our attention to CH3 nH3 and in Section 4 we restrict to CH5 nCH2 to make these
calculations simpler to follow. In each case, these are the smallest choices for n and k which capture
all of the different formulas for the curvature tensor, up to the symmetries of the curvature tensor (and
with respect to the frames chosen in each section). That is, from these cases one knows all of curvature
formulas for general CHn nHn and CHn nCHk . Also, notice that we only consider CHn nHn in
Section 3 instead of the more general CHn nHk . The reason for this is due to simplicity: in general
there are several ways that Hk can sit inside of CHn which requires a case-by-case analysis. But in all
situations this copy of Hk is contained in a copy of Hn, and then one can apply our formulas here to
CHn nHn. Section 5 is a short section on some known formulas that are referenced throughout the paper,
and Section 6 is devoted to computing values for Lie brackets from Section 3.

We end this section with the following three remarks which deal with notational differences between this
paper and [1; 2; 9].

Remark 1.1 In this paper we scale the complex hyperbolic metric to have sectional curvatures in the
interval Œ�4;�1�, whereas in the previous three references the curvatures were scaled to

�
�1;�1

4

�
. To

adjust the formulas in [1; 2; 9], one simply multiplies the warping functions h, v, and hr by 1
2

. With
this adjustment (and the following remark), one sees that the formulas in these references agree with the
codimension two versions of the formulas in Theorems 2.2, 3.4, and 4.3.
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Remark 1.2 Another major notational difference between this paper and [1; 2] is the formula used for
the curvature tensor. Let g be a Riemannian metric with Levi-Civita connection r, and let W , X , Y , and
Z be vector fields. In this paper we follow [4] and use the notation

(1-2) R.X; Y /Z DrYrXZ �rXrYZCrŒX;Y �Z

for the curvature tensor R of g. The negative of this formula is used in [1; 2]. So, in particular, the
.4; 0/-curvature tensor hR.X; Y /Z;W ig in this paper is equivalent to hR.X; Y /W;Zig in [1; 2].

Remark 1.3 We will be considering many different metrics throughout this paper. For a sectional
curvature tensor R we will frequently use the notation Rg to emphasize that this tensor is with respect to
the metric g. We use a superscript as subscripts will frequently be used for components of the curvature
tensor. At times, we do just use R if the metric is to be understood from context.

2 Curvature formulas for warped product metrics on Hn n Hk

2.1 Expressing the metric in Hn in spherical coordinates about Hk

Let us first note that in Sections 2.1, 3.1, and 4.1 we closely follow the notation and terminology used
in [2].

Let hn denote the hyperbolic metric on Hn. Since Hk is a complete totally geodesic submanifold of the
negatively curved manifold Hn, there exists an orthogonal projection map � WHn!Hk . This map � is
a fiber bundle whose fibers are totally geodesic .n�k/-planes.

For r > 0 let E.r/ denote the r-neighborhood of Hk . Then E.r/ is a real hypersurface in Hn, and
consequently we can decompose hn as

hn D .hn/r C dr
2

where .hn/r is the induced Riemannian metric on E.r/. Let �r WE.r/!Hk denote the restriction of �
to E.r/. Note that �r is an Sn�k�1-bundle whose fiber over any point q 2Hk is the .n�k�1/-sphere of
radius r in the totally geodesic .n�k/-plane ��1.q/. The tangent bundle splits as an orthogonal sum
V.r/˚H.r/ where V.r/ is tangent to the sphere ��1r .q/ and H.r/ is the orthogonal complement to V.r/.

It is well known (see [1] or [7] when kD n�2 and [13] for general k) that for an appropriate identification
of E.r/ŠHk �Sn�k�1 the metric .hn/r can be written as

.hn/r D cosh2.r/hkC sinh2.r/�n�k�1;

where hk denotes the hyperbolic metric on Hk and �n�k�1 denotes the round metric on the unit sphere
Sn�k�1. Note that .hn/r restricted to H.r/ is cosh2.r/hk and .hn/r restricted to V.r/ is sinh2.r/�n�k�1.
We summarize this in the following theorem.

Algebraic & Geometric Topology, Volume 25 (2025)



Warped product metrics on hyperbolic and complex hyperbolic manifolds 2909

Theorem 2.1 The hyperbolic manifold Hn nHk can be written as E� .0;1/ where E ŠHk �Sn�k�1

equipped with the metric

(2-1) hn D cosh2.r/hkC sinh2.r/�n�k�1C dr
2:

2.2 The warped product metric and curvature formulas

For some positive, increasing real-valued functions h; v W .0;1/!R, we define

(2-2) �r WD h
2.r/hkC v

2.r/�n�k�1 and � WD �r C dr
2:

Of course, �D hn when hD cosh.r/ and v D sinh.r/.

Fix p 2 E.r/ for some r and let q D �.p/ 2 Hk . Let f {X igkiD1 be an orthonormal frame of Hk with
respect to hk near q which satisfies Œ {X i ; {Xj �q D 0 for all 1 � i; j � k. These vector fields can be
extended to a collection of orthogonal vector fields fXigkiD1 in a neighborhood of p via the inclusion
Hk!E�.0;1/. Analogously, define an orthonormal frame f {Xj gn�1jDkC1

of Sn�k�1 near (the projection

of) p which satisfies Œ {X i ; {Xj �p D 0 for all kC 1 � i; j � n� 1, and extend this frame to vector fields
fXj g

n�1
jDkC1

in a neighborhood of p via the inclusion Sn�k�1!E � .0;1/. Lastly, let Xn D @
@r

.

The orthogonal collection of vector fields fXigniD1 satisfies the following:

(1) hXi ; Xi i� D h2 for 1� i � k.

(2) hXi ; Xi i� D v2 for kC 1� i � n� 1.

(3) hXn; Xni� D 1.

(4) ŒXi ; Xj �p D 0 for all i; j .

It should be noted that property (4) is special to the real hyperbolic case and will not be true in Sections 3
and 4 below.

Now define the corresponding orthonormal frame near p by Yi D 1
h
Xi for 1 � i � k, Yj D 1

v
Xj for

kC1� j � n�1, and Yn DXn. This frame satisfies the property that ŒYi ; Yj �p D 0 for 1� i; j � n�1.
We can then apply formulas (5-4) through (5-7) to write the .4; 0/ curvature tensor R� in terms of R�r

as follows, where 1� a; b � k and kC 1� c; d � n� 1:

K�.Ya; Yb/DK
�r .Ya; Yb/�

�
h0

h

�2
; K�.Yc ; Yd /DK

�r .Yc ; Yd /�
�
v0

v

�2
;

K�.Ya; Yc/DK
�r .Ya; Yc/�

h0v0

hv
; K�.Ya; Yn/D�

h00

h
; K�.Yc ; Yn/D�

v00

v
:

In the above equations, we use the notation

K.X; Y /D hR.X; Y /X; Y i
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to denote the sectional curvature of the 2-plane spanned by X and Y . The above equations are the only
terms that appear (up to the symmetries of the curvature tensor). So, in particular, all mixed terms of R�

are identically zero.

Now, the .4; 0/ curvature tensor R�r is simple to calculate. Since both h.r/Hk and v.r/Sn�k�1 have
constant curvature, and h.r/Hk �v.r/Sn�k�1 is metrically a product, we have that for 1� a; b;� k and
kC 1� c; d � n� 1,

K�r .Ya; Yb/D�
1

h2
; K�r .Yc ; Yd /D

1

v2
; K�r .Ya; Yc/D 0:

Putting this all together yields the following.

Theorem 2.2 Up to the symmetries of the curvature tensor , the only nonzero terms of the .4; 0/ curvature
tensor R� are

K�.Ya; Yb/D�
1

h2
�

�
h0

h

�2
; K�.Yc ; Yd /D

1

v2
�

�
v0

v

�2
;

K�.Ya; Yc/D�
h0v0

hv
; K�.Ya; Yn/D�

h00

h
; K�.Yc ; Yn/D�

v00

v
;

where 1� a; b � k and kC 1� c; d � n� 1.

One easily checks that plugging in the values v.r/ D sinh.r/ and h.r/ D cosh.r/ gives all sectional
curvatures of �1.

3 Curvature formulas for warped product metrics on CHn n Hn

As mentioned in the introduction, for simplicity we are going to restrict ourselves to the case when nD 3.
This is exactly the smallest dimension which captures every nonzero component of the curvature tensor,
and so nothing is lost with this restriction (see Remark 3.5).

3.1 Expressing the metric in CH3 in spherical coordinates about H3

Let c3 denote the complex hyperbolic metric on CH3 normalized to have constant holomorphic sectional
curvature�4. Since H3 is a complete totally geodesic submanifold of the negatively curved manifold CH3,
there exists an orthogonal projection map � WCH3!H3. This map � is a fiber bundle whose fibers are
totally real totally geodesic 3-planes, and therefore have constant sectional curvature �1.

For r > 0 let E.r/ denote the r-neighborhood of H3. Then E.r/ is a real hypersurface in CH3, and
consequently we can decompose c3 as

c3 D .c3/r C dr
2;

where .c3/r is the induced Riemannian metric on E.r/. Let �r WE.r/!H3 denote the restriction of �
to E.r/. Note that �r is an S2-bundle whose fiber over any point q 2H3 is the 2-sphere of radius r in the

Algebraic & Geometric Topology, Volume 25 (2025)



Warped product metrics on hyperbolic and complex hyperbolic manifolds 2911

totally real totally geodesic 3-plane ��1.q/. The tangent bundle splits as an orthogonal sum V.r/˚H.r/
where V.r/ is tangent to the 2-sphere ��1r .q/ and H.r/ is the orthogonal complement to V.r/.

The orthogonal projection � induces a unique geodesic flow on CH3 as follows. Let p 2CH3 and let
q D �.p/. Then there exists a unique unit-speed geodesic from p to q and, moreover, this geodesic is
contained in ��1.q/ since this is a totally geodesic copy of H3. We define the geodesic flow

� W Œ0;1/�CH3
!CH3

by just moving along this geodesic for the given amount of time (and �.t; p/D q for all t � d.p; q/).

For r; s > 0 there exists a diffeomorphism �sr WE.s/!E.r/ induced by this geodesic flow. Fix p 2E.r/
arbitrary, let q D �.p/ 2H3, and let 
 be the unit speed geodesic such that 
.0/D q and 
.r/D p. In
what follows, all computations are considered in the tangent space TpE.r/.

Note that V.r/ is tangent to both E.r/ and the totally real totally geodesic 3-plane ��1.q/. Then since
��1.q/ is preserved by the geodesic flow, we have that d�sr takes V.s/ to V.r/. Since exp�1p .��1.q//

is a totally real 3-plane, there exists a suitable identification ��1.q/Š S2 � .0;1/ where the metric c3
restricted to ��1.q/ can be written as

sinh2.r/�2C dr2:

Here, �2 is the round metric on the unit 2-sphere.

Let

(3-1) {X4 D
@

@�
; {X5 D

1

sin �
@

@ 

be an orthonormal frame on a neighborhood of (the projection of) p in S2, where � and  denote the
standard spherical coordinates on S2. Extend these to orthogonal vector fields fX4; X5g on ��1.q/ via
the inclusion S2! ��1.q/. Note that both X4 and X5 are invariant under d�sr . Let X6 D @

@r
.

Let J denote the complex structure on CH3. It is well known that Jp preserves complex subspaces in
TpCH3 and maps real subspaces into their orthogonal complement. Since .X4; X5; X6/ spans a real
3-plane in TpCH3, its orthogonal complement Hp.r/ is spanned by .JX4; JX5; JX6/. In what follows
we define vector fields X1, X2, and X3 which are just scaled copies of JX4, JX5, and JX6, respectively.

3.1.1 The vector fields X1 and X2 First note that .JX4; X6/ spans a real 2-plane in TpCH3 (since
its J -image is contained in its orthogonal complement). So P D expp.span.JX4; X6// is a totally real
totally geodesic 2-plane in CH3 which intersects H3 orthogonally. Since this intersection is orthogonal,
P is preserved by the geodesic flow �. Therefore, span.JX4/ is preserved by d�.

The set P \H3 is a (real) geodesic. Let ˛.s/ denote this geodesic parameterized with respect to arc
length so that ˛.0/D q. Then define .X1/p D .d�/�1p ˛0.0/. There exists a positive real-valued function
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a.r; s/ such that the metric c3 restricted to P is of the form dr2 C a2.r; s/ds2. But since R acts by
isometries on P via translation along ˛, the function a.r; s/ is independent of s. Then since the curvature
of a real 2-plane is �1, we have that a.r/D cosh.r/.

We analogously define X2 by replacing X4 with X5 in the above description. All conclusions follow in
an identical manner. Thus, we can write the metric c3 restricted to expp.X1; X2; X6/ as

cosh2.r/.dX21 C dX
2
2 /C dr

2:

3.1.2 The vector field X3 This is also mostly analogous to the definition of X1. But this time
note that .JX6; X6/ spans a complex line in TpCH3 (since it is preserved by its J -image). So
Q D expp.span.JX6; X6// is a complex geodesic in CH3 which intersects H3 orthogonally. Since
this intersection is orthogonal, Q is preserved by the geodesic flow �. Therefore, span.JX6/ is preserved
by d�.

The set Q\H3 is a (real) geodesic. Let ˇ.t/ denote this geodesic parameterized with respect to arc
length so that ˇ.0/D q. Then define .X3/p D .d�/�1ˇ0.0/. There exists a positive real-valued function
b.r; t/ such that the metric c3 restricted to Q is of the form dr2 C b2.r; t/dt2. But since R acts by
isometries on Q via translation along ˇ, the function b.r; t/ is independent of t . Then since the curvature
of a complex geodesic is �4, we have that b.r/D cosh.2r/.

3.1.3 Conclusion

Theorem 3.1 The complex hyperbolic manifold CH3 n H3 can be written as E � .0;1/ where
E ŠH3 �S2 equipped with the metric

(3-2) c3 D cosh2.r/.dX21 C dX
2
2 /C cosh2.2r/dX23 C sinh2.r/.dX24 C dX

2
5 /C dr

2:

In (3-2), dX1 through dX5 denote the covector fields dual to the vector fields X1 through X5, respectively.
Lastly, notice that dX21 C dX

2
2 is the hyperbolic metric with constant sectional curvature �1, and

dX24 C dX
2
5 is the spherical metric with constant sectional curvature 1.

3.2 The warped product metric and curvature formulas in CH3 n H3

For some positive, increasing real-valued functions h; hr ; v W .0;1/!R define

(3-3)
�r WD h

2.r/.dX21 C dX
2
2 /C h

2
r .r/dX

2
3 C v

2.r/.dX24 C dX
2
5 /;

� WD �r C dr
2:

Of course, �D c3 when hD cosh.r/, hr D cosh.2r/, and v D sinh.r/.

Define an orthonormal basis fYig6iD1 with respect to � by

(3-4) Y1 D
1

h
X1; Y2 D

1

h
X2; Y3 D

1

hr
X3; Y4 D

1

v
X4; Y5 D

1

v
X5; Y6 DX6:
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Our goal is to compute formulas for the components of the .4; 0/ curvature tensor R� in terms of the
warping functions h, hr , and v (this is the content of Theorem 3.4). As a first step, we need to compute
the components of the .4; 0/ curvature tensor Rc3 of the complex hyperbolic metric with respect to the
orthonormal basis given above. We can do this with the help of formula (5-1). To use this formula note
that, by construction, we have that J Y4 D Y1, J Y5 D Y2, and J Y6 D Y3 (again, when the metric is c3,
that is, when hD cosh.r/, hr D cosh.2r/, and v D sinh.r/). Lastly, we use the notation

R
c3
ijkl
WD hRc3.Yi ; Yj /Yk; Ylic3 :

Then, up to the symmetries of the curvature tensor, the nonzero components of the .4; 0/ curvature tensor
Rc3 are

�4DR
c3
1414 DR

c3
2525 DR

c3
3636;(3-5)

�1DR
c3
1212 DR

c3
1313 DR

c3
1515 DR

c3
1616 DR

c3
2323 DR

c3
2424

DR
c3
2626 DR

c3
3434 DR

c3
3535 DR

c3
4545 DR

c3
4646 DR

c3
5656;

(3-6)

�2DR
c3
1425 DR

c3
1436 DR

c3
2536;(3-7)

�1DR
c3
1245 DR

c3
1346 DR

c3
2356 DR

c3
1524 DR

c3
1634 DR

c3
2635:(3-8)

3.3 Lie brackets

We now need to compute the values of the Lie brackets of the orthogonal basis fXig6iD1. A first observation
is that, by construction, each of these vector fields is invariant under the flow of @

@r
. This implies that

ŒXi ; X6�D 0 for all 1� i � 6. From this we can deduce that

ŒY1; Y6�D
h0

h
Y1; ŒY2; Y6�D

h0

h
Y2; ŒY3; Y6�D

h0r
hr
Y3; ŒY4; Y6�D

v0

v
Y4; ŒY5; Y6�D

v0

v
Y5:

Next, we know that each Lie bracket is tangent to the level surfaces of r . Thus, for all 1� i; j � 6, the
Lie bracket ŒXi ; Xj � has no X6 term. For all 1� i; j; k � 5 define structure constants ckij by

(3-9) ŒXi ; Xj �D

5X
kD1

ckijXk :

Two quick observations about the structure constants. The first is that ckij D�c
k
ji due to the antisymmetry

of the Lie bracket. The second observation is about the values of c445 and c545. Recall the definitions for
{X4 and {X5 from (3-1). Then

(3-10) Œ {X4; {X5�D

�
@

@�
;

1

sin.�/
@

@ 

�
D
�cos.�/
sin2.�/

@

@ 
D�cot.�/ {X5:

We therefore conclude that c445 D 0 and c545 D�cot.�/.

The following theorem gives almost a full description of the values of the Lie brackets. Some quantities
are only defined up to sign, but this is sufficient to compute the curvature formulas in Theorem 3.4. The
interested reader can find the proof of Theorem 3.2 in Section 6.
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Theorem 3.2 The values for the Lie brackets in (3-9) are

ŒX1; X2�D˙X1; ŒX1; X3�D�cot.�/X2CX4;

ŒX1; X4�DX3�X5; ŒX1; X5�D�cot.�/X2˙X4;

ŒX2; X3�D˙cot.�/X1CX5; ŒX2; X4�D 0;

ŒX2; X5�D cot.�/X1CX3; ŒX3; X4�D�X1˙ cot.�/X5;

ŒX3; X5�D�X2� cot.�/X4; ŒX4; X5�D�cot.�/X5:

In the above equations , all of the ˙ and � signs are related. For example , if it is the case that
ŒX1; X2�DX1, then ŒX1; X4�DX3�X5 and so on.

3.4 The Levi-Civita connection and formulas for the .4; 0/ curvature tensor R�

In this subsection we first compute the Levi-Civita connection r associated to the metric � with respect
to the frame .Yi /6iD1. The difficult part in all of this is computing the Lie brackets in Theorem 3.2. From
there it is now a simple calculation using formula (5-3) to prove the following theorem.

Theorem 3.3 The Levi-Civita connection r compatible with � is determined by the following 36
equations:

rY1Y1 D�
1

h
Y2�

h0

h
Y6; rY1Y2 D˙

1

h
Y1;

rY1Y3 D
1

2

�
h

hrv
�
hr

hv
C

v

hhr

�
Y4; rY1Y4 D�

1

2

�
h

hrv
�
hr

hv
C

v

hhr

�
Y3�

1

h
Y5;

rY1Y5 D˙
1

h
Y4; rY1Y6 D

h0

h
Y1;

rY2Y1 D 0; rY2Y2 D�
h0

h
Y6;

rY2Y3 D
1

2

�
h

hrv
�
hr

hv
C

v

hhr

�
Y5; rY2Y4 D 0;

rY2Y5 D�
1

2

�
h

hrv
�
hr

hv
C

v

hhr

�
Y3; rY2Y6 D

h0

h
Y2;

rY3Y1 D˙
1

hr
cot.�/Y2C

1

2

�
h

hrv
�
hr

vh
�

v

hhr

�
Y4; rY3Y2 D�

1

hr
cot.�/Y1C

1

2

�
h

hrv
�
hr

hv
�

v

hhr

�
Y5;

rY3Y3 D�
h0r
hr
Y6; rY3Y4 D�

1

2

�
h

hrv
�
hr

hv
�

v

hhr

�
Y1˙

1

hr
cot.�/Y5;

rY3Y5 D�
1

2

�
h

hrv
�
hr

hv
�

v

hhr

�
Y2�

1

hr
cot.�/Y4; rY3Y6 D

h0r
hr
Y3;

rY4Y1 D�
1

2

�
h

hrv
C
hr

hv
C

v

hhr

�
Y3; rY4Y2 D 0;

rY4Y3 D
1

2

�
h

hrv
C
hr

hv
C

v

hhr

�
Y1; rY4Y4 D�

v0

v
Y6;

rY4Y5 D 0; rY4Y6 D
v0

v
Y4;
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rY5Y1 D
1

v
cot.�/Y2; rY5Y2 D�

1

v
cot.�/Y1�

1

2

�
h

hrv
C
hr

hv
C

v

hhr

�
Y3;

rY5Y3 D
1

2

�
h

hrv
C
hr

hv
C

v

hhr

�
Y2; rY5Y4 D

1

v
cot.�/Y5;

rY5Y5 D�
1

v
cot.�/Y4�

v0

v
Y6; rY5Y6 D

v0

v
Y5;

rY6Y1 DrY6Y2 DrY6Y3 DrY6Y4 DrY6Y5 DrY6Y6 D 0:

By combining Theorem 3.3 with (1-2), and remembering that Y6 DX6 D @
@r

and X4 D @
@�

, we compute
the following formulas for the .4; 0/ curvature tensor R�. As in equations (3-5) through (3-8) we use the
notation

R
�

ijkl
WD hR�.Yi ; Yj /Yk; Yli�:

Theorem 3.4 In terms of the basis given in (3-4), the only independent nonzero components of the .4; 0/
curvature tensor R� are the following:

R
�
1212 D�

�
h0

h

�2
�
1

h2
;

R
�
4545 D�

�
v0

v

�2
C
1

v2
;

R
�
1515 DR

�
2424 D�

h0v0

hv
;

R
�
1414 DR

�
2525 D�

v0h0

vh
�

�
�v2

4h2h2r
�

h2

4v2h2r
C

3h2r
4v2h2

�
1

2v2
C

1

2h2
�

1

2h2r

�
;

R
�
3434 DR

�
3535 D�

v0h0r
vhr
�

�
�v2

4h2h2r
C

3h2

4v2h2r
�

h2r
4v2h2

�
1

2v2
�

1

2h2
C

1

2h2r

�
;

R
�
1313 DR

�
2323 D�

h0h0r
hhr
�

�
3v2

4h2h2r
�

h2

4v2h2r
�

h2r
4v2h2

C
1

2v2
C

1

2h2
C

1

2h2r

�
;

R
�
1616 DR

�
2626 D�

h00

h
;

R
�
3636 D�

h00r
hr
;

R
�
4646 DR

�
5656 D�

v00

v
;

R
�
1436 DR

�
2536 D

1

2hr

��
h

v

�0
�

�
v

h

�0
�

�
h2r
vh

�0�
;

R
�
1634 DR

�
2635 D

1

2h

�
�

�
hr

v

�0
C

�
v

hr

�
0 C

�
h2

vhr

�0�
;

R
�
1346 DR

�
2356 D

�1

2v

��
h

hr

�0
C

�
hr

h

�0
C

�
v2

hhr

�0�
;
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R
�
1425 D

1

2v2
�

1

2h2
�

h2r
2h2v2

;

R
�
1245 D�

1

4

�
h2

h2rv
2
C

h2r
h2v2

C
v2

h2h2r
C
2

h2
C
2

h2r
�
2

v2

�
;

R
�
1524 D�

1

4

�
�h2

h2rv
2
C

h2r
h2v2

�
v2

h2h2r
�
2

h2r

�
:

It is a tedious exercise in hyperbolic trigonometric identities to check that, when hDcosh.r/, hrDcosh.2r/,
and vD sinh.r/, the above formulas reduce to the constants in (3-5) through (3-8). Also, note that the first
nine equations above give the sectional curvatures of the coordinate planes, while the last six equations
are formulas for the nonzero mixed terms.

Remark 3.5 Let us explain how the above curvature formulas contain all of the formulas that arise in
the case of CHn nHn for generic n. In general, one can write the complex hyperbolic metric cn as

cn D cosh2.r/hn�1C cosh2.2r/dX2n C sinh2.r/�n�1C dr2

and the corresponding warped-product metric as

�n D h
2.r/hn�1C h

2
r .r/dX

2
n C v

2.r/�n�1C dr
2

where �n�1 is the round metric on Sn�1 and the vector field Xn is defined in the same manner as X3. As
above, we choose an orthonormal basis fXig2n�1iDnC1 for the Sn�1 factor. We use these vectors to define Xi
for all 1� i � n� 1 in the same manner as above which defines an orthogonal basis for the orthogonal
complement to Xn in the Hn factor. We then define an orthonormal basis fYig2niD1 exactly as in (3-4).

Curvature formulas for the nonzero components of R�n corresponding to the base Hn are of the form
R
�n
ij ij for 1 � i; j � n and are encoded in the formulas for R�1212 and R�1313. Note that there are no

mixed terms here since Hn does not contain any holomorphic pairs, that is, a pair of unit vectors .A;B/
which satisfy that JAD˙B . All curvature formulas for the Sn�1 factor, which are of the form R

�n
k`k`

for
nC 1� k; `� 2n� 1, are contained in the term R

�
4545. Again there are no mixed terms here since there

are no holomorphic pairs of vectors. The curvature formulas R�1414 and R�3434 above give formulas for
R�n
ikik

where 1� i � n and nC 1� k � 2n� 1. The terms R�1425, R�1245, and R�1524 give formulas for
all mixed terms of the metric h2.r/hn�1C h2r .r/dX

2
n C v

2.r/�n�1. Finally, all of the formulas above
containing a “6” give the rest of the curvature formulas for �n.

4 Curvature formulas for warped product metrics on CHn n CHk

As mentioned in the introduction, for simplicity we are going to restrict ourselves to the case when nD 5
and k D 2. These are the smallest choices for n and k which capture every formula for the curvature
tensor in the general case, so nothing is lost with this restriction (see Remark 4.4).
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4.1 Expressing the metric in CH5 in spherical coordinates about CH2

Let c5 denote the complex hyperbolic metric on CH5 normalized to have constant holomorphic sectional
curvature �4. Since CH2 is a complete totally geodesic submanifold of the negatively curved manifold
CH5, there exists an orthogonal projection map � WCH5!CH2. This map � is a fiber bundle whose
fibers are totally geodesic 6-planes isometric to CH3.

For r > 0 let E.r/ denote the r-neighborhood of CH2. Then E.r/ is a real hypersurface in CH5, and
consequently we can decompose c5 as

c5 D .c5/r C dr
2;

where .c5/r is the induced Riemannian metric on E.r/. Let �r W E.r/! CH2 denote the restriction
of � to E.r/. Note that �r is an S5-bundle whose fiber over any point q 2CH2 is (topologically) the
5-sphere of radius r in the totally geodesic 6-plane ��1.q/. The tangent bundle splits as an orthogonal
sum V.r/˚H.r/ where V.r/ is tangent to the 5-sphere ��1r .q/ and H.r/ is the orthogonal complement
to V.r/. Note that this copy of S5 does not have constant sectional curvature equal to 1, but rather it is an
example of a Berger sphere. This will be discussed further below.

One can use the orthogonal projection � to define a geodesic flow on CH5 towards the copy of CH2

in a completely analogous manner as to what was done in Section 3.1. For r; s > 0 there exists a
diffeomorphism �sr W E.s/! E.r/ induced by this geodesic flow along the totally geodesic 6-planes
orthogonal to CH2. Fix p 2E.r/ arbitrary, let q D �.p/ 2CH2, and let 
 be the unit speed geodesic
such that 
.0/D q and 
.r/D p. In what follows, all computations are considered in the tangent space
TpE.r/.

Note that V.r/ is tangent to both E.r/ and the totally geodesic 6-plane ��1.q/. Then since ��1.q/ is
preserved by the geodesic flow, we have that d�sr takes V.s/ to V.r/. Consider the complex geodesic
P D expp

�
span

�
@
@r
; J @

@r

��
. P intersects E.r/ orthogonally, and P \ E.r/ is isometric to a circle

of radius r . Thus, since a complex geodesic has curvature �4, there exists a suitable identification
P Š S1 � .0;1/ where the metric c5 restricted to P can be written as

1
4

sinh2.2r/d�2C dr2;

where d�2 denotes the round metric on the unit circle S1. Note that the presence of the “1=4” is to make
the metric complete when extended to the core CH2.

Notice that @
@�

is a vector field on the five sphere S5 mentioned above. More generally, thinking of S5 as
the unit sphere in C3 with respect to the usual Hermitian metric, there is an obvious free action of the
circle S1 on S5. The unit tangent vector field with respect to this action corresponds to the vector field
@
@�

above. This action fibers S5 over the complex projective plane CP2, and the Riemannian submersion
metric on this fiber bundle is an example of a Berger sphere (see [6, page 59] for more details). Let ˛.t/
be a unit-speed geodesic in S5 orthogonal to J @

@r
such that ˛.0/ D p. Then expp.˛

0.0/; @r/ forms a
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totally real totally geodesic 2-plane in CH5. Thus the curvature of this 2-plane is �1. Since the direction
of ˛ orthogonal to J @

@r
was arbitrary, we can write the Riemannian metric .c5/r restricted to V.r/ as

sinh2.r/p2C 1
4

sinh2.2r/d�2

where p2 denotes the complex projective metric on CP2.

Now let ˇ.t/ be any unit speed geodesic in CH2 such that ˇ.0/D q. Then QD expq.span.ˇ0.0/; 
 0.0///
is a totally real totally geodesic submanifold of CH5, and thus K.ˇ0; 
 0/D�1. Therefore, the metric
c5 restricted to Q can be written as cosh2.r/dt2C dr2. But since 
 was arbitrary, we can write the
metric on the 5-dimensional submanifold determined by CH2 and @

@r
as cosh2 c2Cdr2. This leads to

the following.

Theorem 4.1 The complex hyperbolic manifold CH5 n CH2 can be written as E � .0;1/ where
E ŠCH2 �S5 equipped with the metric

(4-1) c5 D cosh2.r/c2C sinh2.r/p2C 1
4

sinh2.2r/d�2C dr2:

4.2 The warped product metric, orthonormal basis, and curvature formulas in CH5nCH2

For some positive, increasing real-valued functions h; v; vr W .0;1/!R define the Riemannian metrics

(4-2)


r;� D h
2.r/c2C v

2.r/p2;


r WD 
r;� C
1

4
v2r .r/d�

2;


 WD 
r C dr
2:

Of course, 
 D c5 when hD cosh.r/, v D sinh.r/, and vr D sinh.2r/.

For the remainder of this section, fix p D .q1; Nq; r/ 2 CH2 � S5 � .0;1/ Š CH5 nCH2, and write
Nq 2 S5 as .q2; �/ where q2 2CP2 and � 2 S1. Let . {X1; {X2; {X3; {X4/ be an orthonormal collection of
vector fields near q1 2CH2 which satisfies:

(1) Œ {X i ; {Xj �q1 D 0 for all 1� i; j � 4.

(2) J {X2jq1 D
{X1jq1 and J {X4jq1 D {X3jq1 .

Define an analogous collection of vector fields . {X5; {X6; {X7; {X8/ about q22CP2 so that J {X6jq2D {X5jq2 ,
J {X8jq2 D

{X7jq2 , and Œ {X i ; {Xj �q2 D 0 for all 5 � i; j � 8. Extend both collections to vector fields
.X1; : : : ; X8/ near p. Lastly, let X9 D @

@�
and X10 D @

@r
.

Define an orthonormal basis fYig8iD1 with respect to 
 by

(4-3)
Y1 D

1

h
X1; Y2 D

1

h
X2; Y3 D

1

h
X3; Y4 D

1

h
X4; Y5 D

1

v
X5;

Y6 D
1

v
X6; Y7 D

1

v
X7; Y8 D

1

v
X8; Y9 D

1
1
2
vr
X9; Y10 DX10:
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Our goal is to compute formulas for the components of the .4; 0/ curvature tensor R
 in terms of the
warping functions h, v, and vr . As a first step, we need to compute the components of the .4; 0/ curvature
tensor Rc5 of the complex hyperbolic metric with respect to the orthonormal basis given above. Just as in
Section 3 we can do this with the help of formula (5-1). To use this formula note that, by construction,
we have that J Y2 D Y1, J Y4 D Y3, J Y6 D Y5, J Y8 D Y7, and J Y10 D Y9 at the point p (and again,
when the metric is c5, so when hD cosh.r/, vD sinh.r/, and vr D sinh.2r/). Lastly, we use the notation

R
c5
ijkl
WD hRc5.Yi ; Yj /Yk; Ylic5 :

Then, up to the symmetries of the curvature tensor, the nonzero components of the .4; 0/ curvature tensor
Rc5 are

�4DR
c5
1212 DR

c5
3434 DR

c5
5656 DR

c5
7878 DR

c5
9;10;9;10;(4-4)

�1DR
c5
ij ij where fi; j g … ff1; 2g; f3; 4g; f5; 6g; f7; 8g; f9; 10gg;(4-5)

�2DR
c5
ijkl

where .i; j /¤ .k; l/ 2 f.1; 2/; .3; 4/; .5; 6/; .7; 8/; .9; 10/g;(4-6)

�1DR
c5
ikjl

where .i; j /¤ .k; l/ 2 f.1; 2/; .3; 4/; .5; 6/; .7; 8/; .9; 10/g;(4-7)

1DR
c5
iljk

where .i; j /¤ .k; l/ 2 f.1; 2/; .3; 4/; .5; 6/; .7; 8/; .9; 10/g;(4-8)

Let us quickly note that, since CP2 is dual to CH2, we have the following curvature formulas for Rp2 :

4DR
p2
5656 DR

p2
7878;

1DR
p2
5757 DR

p2
5858 DR

p2
6767 DR

p2
6868;

2DR
p2
5678 D 2R

p2
5768 D�2R

p2
5867:

In the above formulas, Rp2
ijkl
WD hRp2.Yi ; Yj /Yk; Ylip2 and with the abuse of notation of Yi denoting the

restriction of Yi to CP2.

4.3 Lie brackets and curvature formulas for 
r;�

The vector fields fXig10iD1 form an orthogonal frame near p which satisfies the following properties (at p):

(1) ŒXi ; Xj � is tangent to the level surfaces of r for 1� i; j � 9.

(2) ŒXi ; Xj � is tangent to CH2 � expp.J
@
@r
/ for 1� i; j � 4.

(3) ŒXi ; Xj � is tangent to S5 for 5� i; j � 8.

(4) ŒXi ; X10�D 0 since Xi is invariant under the flow of @
@r

for 1� i � 9.

(5) ŒXi ; X9�D 0 since Xi is invariant under the flow of @
@�

for 1� i � 8.

(6) ŒXi ; Xj � D 0 for i 2 f1; 2; 3; 4g and j 2 f5; 6; 7; 8g since these vector fields were defined via
inclusion.

By the above points, and since Œ {X i ; {Xj �p D 0 for all 1� i; j � 8, there exist structure constants cij such
that ŒXi ; Xj �p D cijX9. Note that cij D�cj i . The following lemma provides the values for the structure
constants.
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Lemma 4.2 The values for the structure constants are c12 D c34 D c56 D c78 D 2, and all other
(independent) structure constants are equal to zero.

A quick note is that by “independent” structure constants we just mean that, obviously,

c21 D c43 D c65 D c87 D�2¤ 0:

Proof All of the structure constants can be found by combining formula (5-7) with the curvature formulas
(4-6) through (4-8). To see that c12 D 2, we combine (4-6) with (5-7) to obtain

4D 2R
c5
10;9;1;2 D 0C 0ChŒY1; Y2�; Y9ic5

�
ln
� 1
4

sinh2.2r/

cosh2.r/

��0
D
c12 sinh.2r/

cosh2.r/

�
cosh.r/
sinh.r/

�
D 2c12:

An analogous argument shows that c34 D c56 D c78 D 2. To see that

c13 D c14 D c23 D c24 D c57 D c58 D c67 D c68 D 0

we use the same equations as above, but note that the left hand side is now 0 instead of 4.

Lastly, to see that c15 D 0, note that

0DR
c5
10;1;5;9 D 0ChŒY5; Y1�; Y9ic5

�
ln
� 1
2

sinh.2r/
sinh.r/

��0
C 0

D
�
1
2
c15 sinh.2r/

sinh.r/ cosh.r/
.ln 2 cosh.r//0 D�c15 tanh.r/:

The argument that the remaining structure constants are 0 is identical to the argument above.

We now, for some fixed r and � , compute the components of the .4; 0/ curvature tensor R�r;� with
respect to the orthonormal frame fYig8iD1. Since ŒXi ; Xj �D 0 for i 2 f1; 2; 3; 4g and j 2 f5; 6; 7; 8g, the
metric 
r;� is a product metric. Then since the .4; 0/ curvature tensor scales like the metric, up to the
symmetries of the curvature tensor the only nonzero components of R
r;� are

R

r;�
1212 DR


r;�
3434 D�

4

h2
; R


r;�
1313 DR


r;�
1414 DR


r;�
2323 DR


r;�
2424 D�

1

h2
;

R

r;�
5656 DR


r;�
7878 D

4

v2
; R


r;�
5757 DR


r;�
5858 DR


r;�
6767 DR


r;�
6868 D

1

v2
;

R

r;�
1234 D 2R


r;�
1324 D�2R


r;�
1423 D�

2

h2
; R


r;�
5678 D 2R


r;�
5768 D�2R


r;�
5867 D

2

v2
:

In particular, note that mixed terms of the form R

r;�
1256 are 0.

4.4 Curvature formulas for 
r

Formulas (5-4) through (5-7) allow us to compute the .4; 0/ curvature tensor R
 in terms of R
r . We use
a very different approach from Section 3 to compute the nonzero components of R
r . The background
for our current computations can be found in Section 5.5, all of which comes from [3, pages 235–242].
The metric 
r is a Riemannian submersion metric with (horizontal) base 
r;� and (vertical) fiber 1

4
v2r d�

2.

Algebraic & Geometric Topology, Volume 25 (2025)



Warped product metrics on hyperbolic and complex hyperbolic manifolds 2921

So our approach is to compute the A and T tensors of 
r , and to then use Theorem 5.5 to compute the
components of R
r . The computations in this subsection are very similar to [2, Section 6].

First, the T -tensor is identically zero by Remark 5.2 and since the vertical S1-fibers are totally geodesic.
The argument for why this fiber is totally geodesic is identical to that in [2, Section 6].

We now compute the A tensor associated with 
r . By Theorem 5.4 we have that

AX1X2 D
1
2

VŒX1; X2�DX9:

Analogously, AX3X4 D AX5X6 D AX7X8 DX9 and AXiXj D 0 if fi; j g … ff1; 2g; f3; 4g; f5; 6g; f7; 8gg.
Also, by (5-9) we have AX9Xi D 0 for 1� i � 8.

Now, by (5-12) we see that

hAX1X9; X2i
r D�hAX1X2; X9i
r D�
1
4
v2r :

By this same equation we know that there are no other nonzero components of AX1X9. Therefore,

AX1X9 D�
1

4

v2r
h2
X2:

Analogously, we have that

AX2X9 D
1

4

v2r
h2
X1; AX3X9 D�

1

4

v2r
h2
X4; AX4X9 D

1

4

v2r
h2
X3;

AX5X9 D�
1

4

v2r
v2
X6; AX6X9 D

1

4

v2r
v2
X5; AX7X9 D�

1

4

v2r
v2
X8; AX8X9 D

1

4

v2r
v2
X7:

We are now ready to use Theorem 5.5 to compute the nonzero components of R
r . By (5-15) we have
that

hR
r .X1; X9/X1; X9i
r D hAX1X9; AX1X9i
r D
1

16

v4r
h2
;

and thus

(4-9) R

r
1919 D

4

h2v2r
hR
r .X1; X9/X1; X9i
r D

v2r
4h4

:

Identically, R
r2929 DR

r
3939 DR


r
4949 D

v2r
4h4

. Also, a completely analogous computation shows that

(4-10) R

r
5959 DR


r
6969 DR


r
7979 DR


r
8989 D

v2r
4v4

:

By (5-18) we have that

hR
r .X1; X2/X1; X2i
r D hR

r;� .X1; X2/X1; X2i
r;� � 3hAX1X2; AX1X2i
r

D hR
r;� .X1; X2/X1; X2i
r;� �
3
4
v2r ;

and thus

(4-11) R

r
1212 DR


r;�
1212�

3v2r
4h4
D�

4

h2
�
3v2r
4h4
DR


r
3434:
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An identical argument shows that

(4-12) R

r
5656 DR


r
7878 D

4

v2
�
3v2r
4v4

:

Since AXiXj D 0 if fi; j g … ff1; 2g; f3; 4g; f5; 6g; f7; 8gg, the above argument also provides

(4-13) R

r
ij ij DR


r;�
ij ij if fi; j g … ff1; 2g; f3; 4g; f5; 6g; f7; 8gg:

We now compute the mixed terms of R
r :

hR
r .X1; X2/X3; X4i
r D hR

r;� .X1; X2/X3; X4i
r;� � 2hAX1X2; AX3X4i
r

D hR
r;� .X1; X2/X3; X4i
r;� �
1
2
v2r ;

and therefore

(4-14) R

r
1234 DR


r;�
1234�

v2r
2h4
D�

2

h2
�
v2r
2h4
D 2R


r
1324 D�2R


r
1423:

Identically

(4-15) R

r
5678 DR


r;�
5678�

v2r
2v4
D

2

v2
�
v2r
2v4
D 2R


r
5768 D�2R


r
5867:

Now

hR
r .X1; X2/X5; X6i
r D hR

r;� .X1; X2/X5; X6i
r;� � 2hAX1X2; AX5X6i
r D�

1
2
v2r ;

and hence

(4-16) R

r
1256 D�

v2r
2h2v2

DR

r
1278 DR


r
3456 DR


r
3478:

Finally, the same argument yields

R

r
1526 DR


r
1728 DR


r
3546 DR


r
3748 D�

v2r
4h4v4

;(4-17)

R

r
1625 DR


r
1827 DR


r
3645 DR


r
3847 D

v2r
4h4v4

:(4-18)

The final thing that needs to be done is to show that all other mixed terms are 0. Any mixed term contains
0, 1, or 2 vertical vectors (since this is just Y9). A mixed term with two vertical vectors has the form
R

r
i9j9 with i ¤ j . By (5-15) and since the T -tensor is identically 0 we have that

hR.Xi ; X9/Xj ; X9i D hAXiX9; AXjX9i D hf .r/Xi ; g.r/Xj i D 0

for some functions f and g of r . If there is one vertical vector, then the mixed term is 0 by (5-17) (again
using the fact that the T -tensor is identically 0).

This just leaves the case of no vertical vectors. Recall that a pair of unit vectors .A;B/ is a holomorphic
pair if JAD˙B . If the collection fYi ; Yj ; Yk; Y`g contains two holomorphic pairs, then we have seen
above that this component of the curvature tensor is (potentially) nonzero. We need to show that it is 0 in
all other cases.
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The applicable formula for 0 vertical vectors is (5-18), which reduces to

(4-19) hR
r .X; Y /Z;Z0i D �2hAXY;AZZ
0
iC hAYZ;AXZ

0
i � hAXZ;AYZ

0
i:

But recall from above that AXiXj D 0 if fi; j g … ff1; 2g; f3; 4g; f5; 6g; f7; 8gg, that is, if .Yi ; Yj / is not a
holomorphic pair. Therefore, if the collection fYi ; Yj ; Yk; Y`g does not contain two holomorphic pairs,
then every term on the right-hand side of (4-19) is 0. Hence, all remaining mixed terms are identically 0.

4.5 Curvature formulas for 


Combining (4-9) through (4-18) with formulas (5-4) through (5-7) proves the following theorem.

Theorem 4.3 In terms of the basis given in (4-3), the only independent nonzero components of the
.4; 0/ curvature tensor R
 are given by the following formulas , where i 2 f1; 2; 3; 4g, k 2 f5; 6; 7; 8g,
.i; j / 2 f.1; 2/; .3; 4/g, and .k; l/ 2 f.5; 6/; .7; 8/g:

R


1212 DR



3434 D�

�
h0

h

�2
�
4

h2
�
3v2r
4h4

;

R


5656 DR



7878 D�

�
v0

v

�2
C
4

v2
�
3v2r
4v4

;

R


i9i9 D�

h0v0r
hvr
C
v2r
4h4

;

R



k9k9
D�

v0v0r
vvr
C
v2r
4v4

;

R



ikik
D�

h0v0

hv
;

R


1313 DR



1414 DR



2323 DR



2424 D�

�
h0

h

�2
�
1

h2
;

R


5757 DR



5858 DR



6767 DR



6868 D�

�
v0

v

�2
C
1

v2
;

R


i;10;i;10 D�

h00

h
;

R



k;10;k;10
D�

v00

v
;

R


9;10;9;10 D�

v00r
vr
;

R


1234 D 2R



1324 D�2R



1423 D�

2

h2
�
v2r
2h4

;

R


5678 D 2R



5768 D�2R



5867 D

2

v2
�
v2r
2v4

;

R



ijkl
D 2R




ikjl
D�2R




iljk
D�

v2r
2h2v2

;
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R


i;j;9;10 D 2R



i;9;j;10 D�2R



i;10;j;9 D�

vr

h2

�
ln
vr

h

�0
;

R



k;l;9;10
D 2R




k;9;l;10
D�2R




k;10;l;9
D�

vr

v2

�
ln
vr

v

�0
:

Unlike Section 3, this time is a much simpler exercise in hyperbolic trigonometric identities to check
that, when hD cosh.r/, v D sinh.r/, and vr D sinh.2r/, the above formulas reduce to the constants in
equations (4-4) through (4-8).

Remark 4.4 Here we explain how the above curvature formulas contain all of the formulas that arise
in the case for CHn nCHm for generic n and m with n > m.1 In general, one can write the complex
hyperbolic metric cn as

cn D cosh2.r/cmC sinh2.r/pn�m�1C 1
4

sinh2.2r/d�2C dr2

and the corresponding warped-product metric as


n D h
2.r/cmC v

2.r/pn�m�1C
1
4
v2r .r/d�

2
C dr2

where pn�m�1 is the complex projective metric on CPn�m�1 and @
@�

is defined in the same manner as
above. Choose an orthonormal basis fXig2miD1 for the CHm factor in such a way that Xi D JXiC1 for all
odd i with 1� i � 2m. Analogously choose an orthonormal basis fXj g2n�2jD2mC1 of the CPn�m�1 factor.
We then define an orthonormal basis fYig2niD1 exactly as in (4-3).

The nonzero components of the curvature tensor R
n for the base CHm are of the form R

n
ij ij for

1� i; j � 2m or mixed terms of the form R

n
i;iC1;j;jC1 for i and j odd (or permutations of these indices).

The curvature formulas from these components are encoded in the formulas for R
1212, R
1313; and R
1234
above. The analogous curvature formulas for the CPn�m�1 component are contained in the above
formulas for R
5656, R
5757, and R
5678. If 1 � i � 2m and 2mC 1 � k � 2n � 2, formulas for all
components of the form R


n
ikik

are given by the same indices above. The mixed terms between the CHm

and CPn�m�1 components are given by the R

ijkl

formula. Finally, all of the formulas above containing
either a “9” or a “10” give the formulas for all components of R
n that contain either Y2n�1 or Y2n.

4.6 The exceptional case CHn n CHn�2

Notice that, when k D n� 2, there are no sectional curvatures of 
 of the form

�

�
v0

v

�2
C

�
1

v

�2
:

That is because we can write CHn nCHn�2 ŠCHn�2 �S3 � .0;1/, and CP1 (the base of the Hopf
fibration) has constant holomorphic curvature 4. So the purpose of this subsection is to prove the following:

1We use CHm instead of CHk since k is also used as an index in Theorem 4.3.
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Lemma 4.5 There do not exist functions h, v, and vr that , when inserted into (4-2), yield a complete
finite volume Riemannian metric on CHn nCHn�2 with nonpositive sectional curvature , and which
interpolate to the values

h.r/D cosh.r/; v.r/D sinh.r/; vr.r/D sinh.2r/

near r D 0.

Proof Consider a finite volume manifold M nN where .M;N / is modeled on .CHn;CHn�2/. The
ambient complex hyperbolic metric on M nN will not be complete since we have removed a copy of N .
To make the metric complete at N we need to turn the normal S1-bundle over N into a cusp of M nN .
Geometrically, thinking of the cusp occurring as r approaches �1, this is equivalent to defining the
functions h, v, and vr over R instead of Œ0;1/. We then need these functions to agree with the values in
Lemma 4.5 for all values of r larger than the normal injectivity radius of N .

The functions h, v, and vr need to be positive for the metric to be Riemannian, and they need to be
nondecreasing for there to be any chance of nonpositive curvature. Since these functions are positive,
nondecreasing, and must eventually agree with the values in Lemma 4.5, we must have that all three of
the following limits are zero:

lim
r!�1

h0; v0; v0r D 0:

Lastly, even though we will not need this below, note that in order to have finite volume, at least one of h,
v, and vr must also approach 0 as r!�1.

Now, from the formula for the R5656 term in Theorem 4.3 we must have that

(4-20)
4� .v0/2

v2
�
3v2r
4v4
� 0 ()

16� 4.v0/2

3
�

�
vr

v

�2
:

In particular, since .v0/! 0 as r!�1, we see that a necessary requirement for nonpositive curvature
is that

(4-21) lim
r!�1

vr

v
> 1:

From the formula for the Rk9k9 term in Theorem 4.3 we must have that

(4-22) �
v0v0r
vvr
C
v2r
4v4
� 0 D)

3v2r
4v4
�
3v0v0r
vvr

:

Comparing (4-20) and (4-22), we see that

4� .v0/2

v2
�
3v0v0r
vvr

D) 4� .v0/2 � .3v0v0r/ �
v

vr

is also a necessary requirement for nonpositive curvature. But as r!�1, we know that 4� .v0/2! 4

and 3v0v0r ! 0. Thus, we must have that

(4-23) lim
r!�1

v

vr
D1 D) lim

r!�1

vr

v
D 0:

Equations (4-21) and (4-23) provide a contradiction, proving the lemma.
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5 Preliminaries

5.1 Formula for the curvature tensor of CHn in terms of the complex structure J

The components of the (4,0) curvature tensor of the complex hyperbolic metric g can be expressed in
terms of g and the complex structure J . The following formula can be found in [8] or in [2, Section 5]
(recall Remark 1.2 from the introduction). In this formula X , Y , Z, and W are arbitrary vector fields:

(5-1) hRg.X; Y /Z;W ig D hX;W ighY;Zig � hX;ZighY;W ig

ChX; JW ighY; JZig � hX; JZighY; JW ig C 2hX; J Y ighW; JZig :

5.2 Koszul’s formula for the Levi-Civita connection

Let X , Y , and Z denote vector fields on a Riemannian manifold .M; g/. The following is the well-known
“Koszul formula” for the values of the Levi-Civita connection r (which can be found in [4, page 55]):

(5-2) hrYX;Zig D 1
2

�
XhY;ZigCY hZ;Xig�ZhX;Y ig�hŒX;Z�;Y ig�hŒY;Z�;Xig�hŒX;Y �;Zig

�
:

In this paper we will usually be considering an orthonormal frame .Yi /. In this setting we know that
hYi ; Yj ig D ıij , where ıij denotes Kronecker’s delta. Therefore the first three terms on the right hand
side of formula (5-2) are all zero. Thus, in an orthonormal frame, formula (5-2) reduces to

(5-3) hrYX;Zig D�
1
2

�
hŒX;Z�; Y ig ChŒY;Z�; Xig ChŒX; Y �; Zig

�
:

5.3 General curvature formulas for warped product metrics

The curvature formulas below, which were worked out by Belegradek in [1] and stated in [2, Appendix B],
apply to metrics of the form g D gr C dr

2 on manifolds of the form E � I where I is an open interval
and E is a manifold. The formulas are true provided that for each point q 2E there exists a neighborhood
Uq in E of q and a local frame fXig defined on Uq such that, for any r 2 .0;1/, the collection fXig is
gr -orthogonal. So, as r varies, the g-lengths of vectors may change, but g-orthogonality does not. Such
a family of metrics .E; gr/ is called simultaneously diagonalizable. Let

hi .r/ WD
p
gr.Xi ; Xi /:

Then the local frame fYig defined by

Yi D
1

hi
Xi

is a gr -orthonormal frame on Uq for any value of r . We then have the following formulas for the (4,0)
curvature tensor Rg in terms of the (4,0) curvature tensor Rgr , the collection fhig, and the Lie brackets
ŒYi ; Yj �. Note that h � ; � i is used to denote the metric g and @r D @

@r
:
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hRg.Yi ;Yj /Yi ;Yj i D hR
gr .Yi ;Yj /Yi ;Yj i�

h0ih
0
j

hihj
;(5-4)

hRg.Yi ;Yj /Yk;Yli D hR
gr .Yi ;Yj /Yk;Yli if fi;j g ¤ fk;lg;(5-5)

hRg.Yi ;@r/Yi ;@ri D �
h00i
hi

and hRg.Yi ;@r/Yj ;@ri D 0 if i ¤ j;(5-6)

2hRg.@r;Yi /Yj ;Yki D hŒYi ;Yk�;Yj i

�
ln
hj

hk

�0
ChŒYj ;Yi �;Yki

�
ln
hk

hj

�0
ChŒYj ;Yk�;Yi i

�
ln

h2i
hjhk

�0
:(5-7)

5.4 The Nijenhuis tensor

In Sections 3 and 4 we explicitly dealt with CHn. Since the almost complex structure on CHn is
integrable, we have that the Nijenhuis tensor is identically equal to zero. Explicitly, for any vector fields
X and Y on CHn, we have that

(5-8) 0D ŒX; Y �CJ ŒJX; Y �CJ ŒX; J Y �� ŒJX; J Y �

where J denotes the complex structure on CHn.

5.5 The A and T tensors of a Riemannian submersion

All of this subsection comes from [3, pages 236–241], but where we make small changes in the notation
to fit the notation in this paper. The original source of most of this material is [12].

Let .M; g/ and .B; Lg/ be two Riemannian manifolds and � WM ! B a smooth submersion. Let p 2M
and q D �.p/. By Fp we denote the fiber ��1.q/. The vertical distribution at p, denoted by Vp, is the
tangent space to Fp within TpM . The horizontal distribution Hp is the orthogonal complement to Vp in
TpM . Note that, by construction, the vertical distribution is always integrable whereas the horizontal
distribution may or may not be integrable.

The vertical distribution is equal to the kernel of the map �� W TpM ! TqB and thus �� induces an
isomorphism from Hp to TqB . If this map is an isometry then we call � a Riemannian submersion. If B
is a submanifold of M and the Riemannian submersion � is the identity on B (which implies that Lg is
just g restricted to B), we call g a Riemannian submersion metric.

Let v 2 TpM . The vector Vv 2 TpM denotes the projection of v onto Vp and similar for Hv. Let D
denote the Levi-Civita connection of the Riemannian metric g on M .

For the remainder of this subsection, U , V , and W will always denote vertical vector fields in TpM while
X , Y , and Z will denote horizontal vector fields. With this notation, we are now prepared to define the T
and A tensors.

Definition 5.1 [3, Definition 9.17] The .2; 1/ tensor field T on M is defined by

TE1E2 DHDVE1.VE2/CVDVE1.HE2/

where E1 and E2 are vector fields on M .
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Remark 5.2 Notice that TUV gives the second fundamental form for the fiber. From this observation
one sees that, if the fiber is totally geodesic, then the T -tensor is identically zero.

Definition 5.3 [3, Definition 9.20] The .2; 1/ tensor field A on M is defined by

AE1E2 DHDHE1.VE2/CVDHE1.HE2/

where E1 and E2 are vector fields on M .

The following are properties of the A-tensor that follow from the definition and Theorem 5.4 below:

AUX D AUV D 0;(5-9)

AXU DHDXU and AXY D VDXY;(5-10)

AXY D�AYX;(5-11)

AX is alternating, so g.AXY;U /D�g.AXU; Y /:(5-12)

We will need the following theorem in Section 4.4, whose proof is in [3].

Theorem 5.4 [3, Proposition 9.24] For all horizontal vector fields X and Y ,

AXY D
1
2

VŒX; Y �:

Thus , the A-tensor measures the obstruction to integrability of the horizontal distribution.

The last theorem that we need from [3] contains formulas for the components of the sectional curvature
tensor R of g with respect to the A and T -tensors.

Theorem 5.5 [3, Theorem 9.28] Let � W .M; g/! .B; Lg/ be a Riemannian submersion. Let R be the
curvature tensor with respect to g, {R the curvature tensor with respect to Lg, and yR the curvature tensor of
g restricted to each vertical fiber. We then have

g.R.U;V /W;W 0/D g. yR.U;V /W;W 0/�g.TUW;TVW
0/Cg.TVW;TUW

0/;(5-13)

g.R.U;V /W;X/D g..DV T /UW;X/�g..DUT /VW;X/;(5-14)

g.R.X;U /Y;V /D g..DXT /UV;Y /�g.TUX;TV Y /Cg..DUA/XY;V /Cg.AXU;AY V /;(5-15)

g.R.U;V /X;Y /D g..DUA/XY;V /�g..DVA/XY;U /Cg.AXU;AY V /

�g.AXV;AYU/�g.TUX;TV Y /Cg.TVX;TUY /;

(5-16)

g.R.X;Y /Z;U /D g..DZA/XY;U /Cg.AXY;TUZ/�g.AYZ;TUX/�g.AZX;TUY /:(5-17)

g.R.X;Y /Z;Z0/D g. {R.X;Y /Z;Z0/�2g.AXY;AZZ
0/Cg.AYZ;AXZ

0/�g.AXZ;AYZ
0/:(5-18)

6 Computations for the Lie brackets for CH3 n H3

The whole purpose of this section is to prove Theorem 3.2.
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Proof of Theorem 3.2 There are 5� 10D 50 structure constants to compute from (3-9). From (3-10)
we know that c445 D 0 and c545 D�cot.�/, leaving 48 unknown structure constants.

We can combine formula (5-7) with equations (3-5) through (3-8) to compute many of the constants. As
a first example, note that

0D 2R
c3
6131 D 0C 2hŒY3; Y1�; Y1ic3

�
ln
h

hr

�0
D�

2c113
cosh.2r/

�
ln

cosh.r/
cosh.2r/

�0
;

and thus c113 D 0. We can analogously show

0D c114 D c
1
15 D c

2
23 D c

2
24 D c

2
25 D c

3
13 D c

3
23 D c

3
34 D c

3
35 D c

4
14 D c

4
24 D c

4
34 D c

5
15 D c

5
25 D c

5
35:

This narrows us down to 32 unknown constants.

Continuing with the same formula and equations, we have that

0D 2R
c3
6145 D 0C 0ChŒY4; Y5�; Y1ic3

�
ln

cosh2.r/
sinh2.r/

�0
D
c145h

v2

�
ln

cosh2.r/
sinh2.r/

�0
;

and therefore c145 D 0. Analogously, c245 D c
3
45 D c

3
12 D c

4
12 D c

5
12 D 0. This reduces us to 26 unknowns.

But we can also use the same curvature formulas here, but with the indices permuted, to derive some
simple equations relating some of the constants. For example,

0D 2R
c3
6415 D 0ChŒY1; Y4�; Y5ic3

�
ln

sinh.r/
cosh.r/

�0
ChŒY1; Y5�; Y4ic3

�
ln

sinh.r/
cosh.r/

�0
D
1

h
.c514C c

4
15/

�
ln

sinh.r/
cosh.r/

�0
;

and thus c514 D�c
4
15. Analogously, we have the identities

c524 D�c
4
25; c534 D�c

4
35; c213 D�c

1
23; c214 D�c

1
24; c215 D�c

1
25:

Combining formula (5-7) with the fact that 2Rc36413 D 2 gives that

(6-1)

2D hŒY4; Y3�; Y1ic3

�
ln
h

hr

�0
ChŒY1; Y4�; Y3ic3

�
ln
hr

h

�0
ChŒY1; Y3�; Y4ic3

�
ln
v2

hhr

�0
D�

c134h

hrv

�
ln
h

hr

�0
C
c314hr

hv

�
ln
hr

h

�0
C
c413v

hhr

�
ln
v2

hhr

�0
D

�
�c134 cosh.r/

cosh.2r/ sinh.r/
�

c314 cosh.2r/
cosh.r/ sinh.r/

�
.tanh.r/� 2 tanh.2r//

C
c413 sinh.r/

cosh.r/ cosh.2r/
.2 coth.r/� tanh.r/� 2 tanh.2r//:

It is an exercise in hyperbolic trigonometric identities (or one can consult [9, (5.9)]) to check that the
values

(6-2) c413 D 1; c314 D 1; c134 D�1
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satisfy (6-1). In theory, there could be other solutions for these structure constants. But any potential
solution must hold for all positive values of r . Plugging in the values r D 2, 3, and 4 yields the following
three equations (constants rounded to four decimal places):

2D 0:0393c134C 2:0707c
3
14� 0:0313c

4
13;

2D 0:005c134C 2:0099c
3
14� 0:0049c

4
13;

2D 0:0007c134C 2:0013c
3
14� 0:0007c

4
13:

One can check that these three equations are independent and so the solutions (6-2) are unique (note that
the values in (6-2) do not perfectly satisfy the above three equations due to roundoff error). In exactly the
same manner we can use Rc36253 with [9, (5.9)] to compute

c523 D 1; c325 D 1; c235 D�1:

This leaves 20 unknowns together with the 6 identities listed above. Now, using Rc36135, we have that

0D hŒY1; Y5�; Y3ic3

�
ln
hr

v

�0
ChŒY3; Y1�; Y5ic3

�
ln
v

hr

�0
ChŒY3; Y5�; Y1ic3

�
ln
h2

hrv

�0
D

�
c315 cosh.2r/

cosh.r/ sinh.r/
C

c513 sinh.r/
cosh.r/ cosh.2r/

��
2 tanh.2r/� coth.r/

�
C

c135 cosh.r/
cosh.2r/ sinh.r/

.2 tanh.r/� 2 tanh.2r/� coth.r//:

Just like for (6-1) above, one can obtain an independent system of equations by inserting different values
for r into the above equation. One can check that the only solution to this equation is c513D c

3
15D c

1
35D 0.

Analogously, we can use Rc36234 to show that c423 D c
3
24 D c

2
34 D 0. These equations reduce us to 14

unknowns.

This is as much information as we can gain from formula (5-7). So we next turn to the Nijenhuis
tensor (5-8). First applying this to .Y1; Y2/, we have

0D ŒY1; Y2��J ŒY4; Y2��J ŒY1; Y5�� ŒY4; Y5�

D
1

h
.c112Y1C c

2
12Y2/CJ

�
c124
v
Y1C

c524
h
Y5

�
�J

�
c215
v
Y2C

c415
h
Y4

�
C
1

v
cot.�/Y5

D
1

h
.c112� c

4
15/Y1C

1

h
.c212C c

5
24/Y2�

c124
v
Y4C

1

v
.c215C cot.�//Y5:

Therefore,

c124 D 0D�c
2
14; c215 D�cot.�/D�c125; c112 D c

4
15 D�c

5
14; c212 D�c

5
24:

We can also apply the Nijenhuis tensor to the pairs .Y1; Y3/ and .Y2; Y3/, but these are much less
productive. These applications only give us the pair of identities

c213 D�c
5
34; c123 D�c

4
35;

the former of which comes from the pair .Y1; Y3/, and the latter from the pair .Y2; Y3/.
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At this stage, we have reduced our 10 Lie brackets as follows:

ŒX1; X2�D c
1
12X1C c

2
12X2; ŒX1; X3�D c

2
13X2CX4;

ŒX1; X4�DX3� c
1
12X5; ŒX1; X5�D�cot.�/X2C c112X4;

ŒX2; X3�D�c
2
13X1CX5; ŒX2; X4�D�c

2
12X5;

ŒX2; X5�D cot.�/X1CX3C c212X4; ŒX3; X4�D�X1� c
2
13X5;

ŒX3; X5�D�X2C c
2
13X4; ŒX4; X5�D�cot.�/X5:

Notice that, using the known identities, we can reduce the system to three unknowns: c112, c212, and c213.
All that is left is to show that c112 D˙1, c212 D 0, and c213 D�cot.�/.

At this point we have exhausted all of our “easy” options. The only way to obtain new relationships
between the structure constants is to compute new components of Rc3 . To do this, one needs to first
use (5-2) with the values for the Lie brackets given above to compute the Levi-Civita connection r
compatible with c3. Of course, these formulas will contain the constants c112, c212, and c213. But when the
correct values for these constants are inserted, these formulas will reduce to those of Theorem 3.3. Then
once one has computed r, they can use those values to compute the components of Rc3 .

The first component that will be useful is Rc31212:

�1DR
c3
1212 D hrY2rY1Y1�rY1rY2Y1CrŒY1;Y2�Y1; Y2ic3

D

�
rY2

�
�c112

cosh.r/
Y2� tanh.r/Y6

�
�rY1

�
�c212

cosh.r/
Y2

�
C

c112
cosh.r/

rY1Y1C
c212

cosh.r/
rY2Y1; Y2

�
c3

D�
sinh2.r/
cosh2.r/

�
..c112/

2C .c212/
2/

cosh2.r/
D) .c112/

2
C .c212/

2
D 1:

The next component that we use is Rc31512. We will skip the details and just note that

0DR
c3
1512 D

c212
sinh.r/ cosh.r/

� cot.�/;

which implies that c212 D 0. Combining this with the first equation shows that c112 D ˙1. Finally, to
compute c213 we use Rc31412:

0DR
c3
1412 D

�c213
sinh.r/ cosh.r/

�
c112

sinh.r/ cosh.r/
� cot.�/:

Therefore,
c213 D�.˙1/ cot.�/D�cot.�/:
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