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The right angled Artin group functor as a categorical embedding

CHRIS GROSSACK

It has long been known that the combinatorial properties of a graph I' are closely related to the group
theoretic properties of its right angled Artin group (raag). It’s natural to ask if the graph homomorphisms
are similarly related to the group homomorphisms between two raags. Our main result shows that there is
a purely algebraic way to characterize the raags amongst groups, and the graph homomorphisms amongst
the group homomorphisms. As a corollary we present a new algorithm for recovering I" from its raag.

05C25, 18F20, 20F65

1 Introduction

For us, a graph T" with underlying vertex set V' is a symmetric, reflexive relation on V. A graph
homomorphism from a graph (V,T") to (W, A) is a function ¢: V — W such that (v;,v;) € [ =
(pv1, @vy) € A. These assemble into a category, which we call Gph.

Given a graph I" with vertex set V', we can form a group AT, the right angled Artin group (raag) associated

to I', defined as
AT 2 (veV|[vy,vy] =1 whenever (vy,vp) € T).

For example, if K, is a complete graph on n vertices then A K, = Z". If A, is a discrete graph on n
vertices then AA, =, is a free group on n generators. If (1 is the graph with four vertices «, b, ¢, and d
and four edges (a, b), (b, c), (c,d), and (d, a), then AL = (a, c) x (b, d) = F, xF,. In this sense, raags
allow us to interpolate between free and free abelian groups.

Raags are of particular interest to geometric group theorists because of their connections to the fundamental
groups of closed hyperbolic 3-manifolds [39] and to the mapping class groups of hyperbolic surfaces [26].
Moreover, raags were instrumental in the resolution of the virtual Haken conjecture [3] due to their close
connection with the CAT(0) geometry of cube complexes. See [8] for an overview.

Importantly, the combinatorial structure of IT" is closely related to the algebraic structure of AT, with
useful information flow in both directions. For instance, the cohomology of AT is the exterior face
algebra of T [37], AT factors as a direct product if and only if I" factors as a join of two graphs [38],
and we can compute the Bieri-Neumann—Strebel invariant ! (AT") from just information in I" [30]. This
correspondence can be pushed remarkably far, and recently it was shown that expander graphs (which
are really sequences of graphs) can be recognized from the cohomology of their raags [18]! For more
information about the close connection between the combinatorics of I" and the algebra of AT, see [18; 28].
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3036 Chris Grossack

With this context, it is natural to ask whether the combinatorics of graph homomorphisms are also closely
connected to the algebra of group homomorphisms between raags. For a particular example, one might
ask if there is a purely algebraic way to recognize when a group homomorphism between raags is Ag for
some homomorphism ¢ of their underlying graphs.

Our main result shows that the answer is yes in a very strong sense. We prove that the raag functor
A is an equivalence between the category of graphs Gph and the category of groups equipped with a
coalgebra structure (a kind of descent data) that we will describe shortly. As corollaries, we obtain a
new way of recognizing the raags amongst the groups, and the graph homomorphisms amongst the group
homomorphisms. This moreover gives a new algorithm for recovering the underlying graph of a raag
from nothing but its isomorphism type.

Crucial for the proof of this theorem is the fact that A: Gph — Grp has a right adjoint, the commutation
graph functor C: Grp — Gph, which sends a group G to the graph whose vertices are elements of G and
where (g1, g2) € CG <= [g1, g>] = 1. This is surely well known to experts! but is not often mentioned
in the literature. This is likely because of the common convention that graphs have no self loops, whereas
the adjunction requires us to work with graphs with a self loop at each vertex. Of course, this does not
appreciably change the combinatorics, and we feel it is a small price to pay for the categorical clarity this
adjunction provides.

Unsurprisingly, the commutation graph and related constructions have already been of interest to combi-
natorialists for many years [4; 6; 12; 16; 21], and the complement of the commutation graph was even
the subject of a (now proven) conjecture of Erd6s [34].

With the commutation graph functor C defined, we can state our main result:

Theorem The right angled Artin group functor A: Gph — Grp is comonadic.
That is, A is an equivalence of categories between Gph and the category Grp4¢ of groups equipped with

an AC-coalgebra structure, and group homomorphisms that are moreover AC-cohomomorphisms.

The group ACG is the group freely generated by symbols [g] for each g € G, with relations saying
[g]lh] =[h][g] in ACG if and only if gh = hg in G. Write g : ACG — G for the homomorphism sending
each [g] to g. Additionally, write §: ACG — AC(ACG) for the homomorphism sending each [g] to [[g]].

Now merely unwinding the category theoretic definitions gives the following corollary:

Corollary (main corollary) An abstract group G is isomorphic to a raag it and only if it admits a group
homomorphism g: G — AC G such that the following two diagrams commute:

G Y ACG G —2 s ACG

N (l;c o J4cs

ACG —— AC(ACG)

1¢’s implicit in the “universal property of raags” given in [27], for instance, and is stated as such in [38].
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Moreover, a group homomorphism f: G — H between raags is A¢ for some graph homomorphism ¢ if
and only if it respects these structure maps in the sense that

G —7' L H

s b
ACG ——— ACH

ACS
commutes.

Remark In particular, there is a purely algebraic way to recognize the raags amongst the groups and the
image of the graph homomorphisms amongst the group homomorphisms between raags.

This additionally gives us a new way to recover I" from the abstract isomorphism class of AI", and shows
it is decidable (even efficient!) to check whether any particular group homomorphism between raags
came from a graph homomorphism.

Our proof uses some category theory that might not be familiar to all readers, so in Section 3 we will
briefly review the machinery of comonadic descent, which is the main technical tool for the proof (which
is the subject of Section 4). First, though, in Section 2 we give an example to show that category theory is
not needed in order to apply our results. This section might also be of interest to those learning category
theory looking for toy examples of comonadic descent, since it is usually applied in more complicated
situations than this.? Lastly, in Section 5 we discuss the algorithmic consequences of the main result.

Throughout this paper, we make the notational convention that graph theoretic concepts are written with
Greek letters and group theoretic concepts with roman letters. The coalgebraic structure maps are written
in Fraktur font.

2 An simple example

It’s important to note that applying this result requires no knowledge of the deep category theory used
in its proof. Let’s begin with a simple example of how the result can be used to detect whether a group
homomorphism came from a graph homomorphism or not. This is meant only to illustrate the technique,
rather than to solve a novel problem. In Section 5 we give a more interesting example.

Let I' = {v} and A = {w} be two one-vertex graphs. Then AT = (v) and AA = (w), and we want to
detect when a homomorphism between these groups came from a homomorphism of their underlying
graphs.

Recall that C G, the commutation graph of G, has a vertex [g] for each g € G, with an edge relating [g]
and [h] exactly when g and & commute in G. So C (v) is a complete graph on Z-many vertices labeled
by [v"].

2Indeed, this is how the author came upon this result.
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Then the group ACG is freely generated by the symbols [g], for g € G, subject to relations saying
[g]lh]=[h][g]in AC G if and only if gh =hg in G. So AC (v) is the free abelian group with generators [v"].

It’s not hard to see that the map v: (v) — AC (v) given by v > [v!] satisfies the axioms from the main
corollary. The existence of such a v tells us that (v) must be a raag, which it is.?

Let’s first look at a map that does come from a graph homomorphism, for instance f: (v) — (w) given
by fv=w.
The corollary says to consult the square

(v) e > (w)

v>[v!] w—[w!]

i i

("] | "™ = 7)) 222 ] | [ fw™] = [ww"])

and since this is quickly seen to commute, we learn that f is of the form A¢ for some graph homomorphism

(as indeed it is).

Next, let’s look at a map which doesn’t come from a graph homomorphism, like f: (v) — (w) given by
fv=w?.

Now our square is

{v) — r {(w)

v—>[v!] w—[wl!]

i 1

(" v"][v™] = [v™][v"]) ([w"] | [w"Jw™] = [w™]w"])

which does not commute (even though it seems to at first glance). Indeed, if we chase the image of v

[vn]'_)[wZn]

around the top right of the square, then we see
v w? - [w!]?.
If instead we chase around the lower left of the square, we get
v o] [w?].

Since [w!]? # [w?] in this group (recall AC (w) is freely generated by the symbols [w”"]), we have
successfully detected that f did not come from a graph homomorphism!

Importantly, this same approach works even if we merely know the coalgebra structures on G' and H.
Thus we don’t need to know their underlying graphs to detect the graph homomorphisms!*

3More generally, if we know I, then the map AT — AC(AT") sending each generator y to [y] will always satisfy the axioms.

4Though we will see later that the coalgebra structure actually lets us recover the underlying graphs as well.
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As a last aside, let’s mention what the structure map g: G — ACG does. Elements of ACG are formal
words in the elements of G. Then, intuitively, g(g) = [y1][y2] - - [Vx] decomposes g as a formal product
of the vertices making up g. This means that we can recover the vertices of I' as those g such that
g(g) =[g] is a word of length 1, as we prove in Section 5

3 A brief review of comonadic descent

Recall that an adjunction (L:C — D) 4 (R: D — () is a pair of (covariant) functors equipped with a
natural isomorphism
Homp(LC, D) = Hom¢(C, RD).

Of particular interest for us is the adjunction 4 - C specifying the universal property of raags.

Recall moreover that a comonad W : D — D is a functor equipped with natural transformations e : W = 1p
and 6: W = W W such that the following diagrams of natural transformations commute:

174 W =0 ww
% ﬂ(s X 5ﬂ HIW"S
1y € ely -1y

Dually, a monad is a functor M : C — C equipped with natural transformations n: 1¢ = M and
w: MM = M satisfying diagrams opposite those above. A precise definition can be found in Chapter 4
of [10].

Every adjunction L - R gives rise to a monad RL and a comonad L R. In particular, the raag adjunction
gives us a comonad AC : Grp — Grp, which is our primary object of study.

Monads and comonads find application in settings as varied as algebraic geometry and number theory
[23; 10; 11], universal algebra [10; 2; 9; 5; 24], probability theory [20; 15; 29], and computer science [33;
35; 19; 36]. Relevant for us is the theory of (co)monadic descent, which comes from gluing conditions in
algebraic geometry, and is reviewed in this context in Section 4.7 of [10].

Given a comonad W, a W-coalgebra is an object G € D equipped with an arrow g: G — WG such that
the diagrams in Figure 1 commute. A W -cohomomorphism between coalgebras (G, g) and (H, b) is an
arrow f: G — H in D compatible with g and b, in the sense that Figure 2 commutes. When W is clear

G -1 WG G —X s WG

IG\J gc o e

waG — WWG

Figure 1: The defining diagrams for a coalgebra.
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¢ —L 5 H

o b
WG~ WH

Figure 2: The defining diagram for a cohomomorphism.

from context, we simply call these coalgebras and cohomomorphisms, and they assemble into a category
Dy which admits a faithful functor U : Dyr — D that simply forgets the structure map g.

Abstract nonsense shows that for any adjunction L - R, the essential image of L lands inside the category
of coalgebras Dy g. That is, every object LX € D is an L R-coalgebra, where the structure map is given
by Lny: LX — LRLX, and every Lg is an L R-cohomomorphism.

In our special case, n: I’ — CAT is the map sending each v € " to v! € CAT". Then the above says that
the functor A: Gph — Grp factors through the category of coalgebras Grp4¢ as follows:

Gph 4> Grpyc &> Grp, T+ (AT, An) > AT

We will show that A4 is actually an equivalence of categories Gph >~ Grp 4. This tells us that a group is
of the form AT if and only if it’s a coalgebra, and a group homomorphism is of the form A¢ if and only
if it’s a cohomomorphism!

The main tool for proving this equivalence is Beck’s famed (co)monadicity theorem,’> which says

Theorem (Beck, 1968) To show that a left adjoint (L: C — D) - (R: D — C) witnesses L as an
equivalence of categories6 C >~ Dy g, it suffices to show

(1) L reflects isomorphisms (that is, whenever Lo: L' =~ LA is an isomorphism in D, then ¢ must
have already been an isomorphism in C),

(2) C has, and L preserves, equalizers of coreflexive pairs.’

This gives us our outline for proving the main theorem:

Theorem (main theorem) The right angled Artin group functor A : Gph — Grp restricts to an equivalence
of categories A: Gph >~ Grp 4 between the category of graphs and the full subcategory of groups equipped
with an AC-coalgebra structure.

3The original manuscript due to Beck was unpublished, but widely distributed. A scan is available at [7], but this is also proven
as Theorem 4.4.4 in [10]. Both of these prove the statement for monads, which is then dualized to give the comonadicity theorem
we use.

6Such an adjunction L - R is called comonadic.

"We will recall the definition of both equalizers and coreflexive pairs in Section 4.
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Proof By Beck’s comonadicity theorem, it suffices to check the two conditions above.

Condition (1) is a classical result due to Droms [17], so it remains to check (2). It’s well known that Gph
is complete,® and thus has all equalizers.

In the next section we’ll recall the definition of a coreflexive pair, and show that A really does preserve
their equalizers. This will complete the proof. |

4 The raag functor preserves equalizers of coreflective pairs

A coreflexive pair is a pair of arrows with a common retract. That is, a diagram

o

—
Fe—p—A
B
where
pa = 1r = pB.

An equalizer of a pair of arrows «, f: X == Y is an arrow ¢: £ — X such that every arrow ¢: Z — X
with ap = B factors uniquely through ¢. In Gph, this is (the inclusion of the) induced subgraph of X on
the vertices x with ax = Bx. In Grp, this is the (inclusion of the) subgroup of X of all x’s with ax = Bx.

Now, we want to show that if ® is the equalizer of « and B, as computed in Gph, then A® should still be
the equalizer of Aa and A8, as computed in Grp. For ease of notation, we will confuse « and 8 with A«
and AB, since (Aa)(v]'vy> ---vZ") = (av)" (avy)"2 - - - (v ).

Note that ® is the full subgraph of I" on the vertices where «v = Bv. So then A® = (v |av = Bv) < AT.
If instead we compute the equalizer of Ax and AB in Grp, we get G = {g | ag = fg} < AT.

So showing that A® = G amounts to showing that, provided « and § admit a common retract p, each g
with ¢g = B¢ is a word in those vertices v with cv = Buv.

Theorem 1 The right angled Artin group functor A preserves equalizers of coreflexive pairs.

Proof Since p is a graph homomorphism, we see that v and w are I'-related if and only if «v and cw
(equivalently Sv and Bw, equivalently v and Bw) are A-related. Thus v and w commute in AT if and
only if their images under o and 8 commute in AA.

In Theorem 3.9 of her thesis [22], Green proves that elements of A" have a normal form as words in the
vertices of I".° Following the exposition of Koberda [27] and others, we call a word w € AT central if
the letters in w pairwise commute. This happens if and only if the letters in w form a clique in I". We say

80ne quick way to see this is to note that it’s topologically concrete in the sense of [1].

9In fact, she proves something slightly more general.
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that w is in central form if it is a product of central words w = wyw; - - - wg. If we stipulate that we are
“left greedy” in the sense that no letter in w; 41 commutes with each letter of w; (so that we first make w;
as long as possible, then make w, as long as possible, and so on), then the central form is unique up to
commuting the letters in each w;. See also Section 3.3 of [14] for a summary.

Now suppose that «g = Sg. Fix such a central form g = wow; ... w, and look at

(awo)(awy) ... (@wg) = (Bwo)(Bwi) ... (Bwg).

These representations of «g = g are both minimal length, as we could hit a shorter representation with
p in order to get a shorter representation for g. Then uniqueness of the central form says that each cw;
and Bw; are equal up to permuting the letters in each.

We restrict attention to each w; =y, 'y, 2 ... VI? Kk separately, say

(ayy ey ). (ayy*) = 811857 . 8% = (Byy ) (BYy?) - (Br*).
If we can show that actually ay; = By; for each i, then we’ll be done.

But o and B give injections from {y1, ..., yx} to {81, ..., 8¢}, which are in fact bijections since we’re
dealing with finite sets of the same cardinality.

Moreover, by assumption p provides an inverse for « and for 8!

Then o and § must be the same map on this set, and in particular each y; satisfies «y; = By;, as desired. O

5 Can we really compute these?

It is well known that the problem “is a finitely presented group G isomorphic to a raag” is undecidable.
Indeed, being isomorphic to a raag is a Markov property in the sense of Definition 3.1 in [31], so
Theorem 3.3 in the same paper guarantees this problem is undecidable.

Let’s work with the next best thing, then, and suppose we’re given a finite presentation of a group G and
a promise that G is a raag (though we are not given its underlying graph). How much can we learn about
the combinatorics of its underlying graph from just G?

First, we must find an AC-coalgebra structure on G —that is, a group homomorphism g: G - ACG
satisfying the conditions from Figure 1. Since ACG is a raag, it has solvable word problem, so we can
enumerate all homomorphisms G — ACG and check if they satisfy the axioms. We will eventually find
such a g since we were promised that G is abstractly isomorphic to a raag, so this algorithm terminates.

Once we know the coalgebra structures on G and H, we can already efficiently check whether a group
homomorphism f: G — H came from a graph homomorphism. Indeed, the existence of an AC-coalgebra
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structure on G and H is enough to guarantee that G and H are raags, even without having direct access
to the underlying graphs'® of G and H.

Theorem 2 Given a homomorphism f: G — H between finitely presented groups'' where (G, g) and
(H, ) are moreover AC-coalgebras, then there is an algorithm deciding whether f is A for ¢ a graph
homomorphism of the graphs presenting G and H.

Proof By the equivalence Gph ~ Grp4¢, this amounts to checking if f is a cohomomorphism — that is,

whether the square

¢ —'—m

gl lh

ACG —— ACH

ACf
commutes. Of course, we can check this on the (finitely many) generators of G, and the claim now
follows from the fact that ACH is a raag,'? and thus has solvable word problem [14]. |

Corollary 1 Given any finite presentation of G and a promise that G really is a raag, there is an algorithm
to recover a graph I' and an isomorphism G = AT.

Proof As discussed earlier in this section, given a finite presentation of G and a promise that G is a
raag, we can algorithmically find a coalgebra structure g: G — ACG.

Now, we know that the vertices of I' are in bijection with graph homomorphisms from the one-vertex
graph 1 to I'. By the equivalence Gph >~ Grp 4, this amounts to cohomomorphisms Z — G, which one
can explicitly calculate to be those elements g € G such that g(g) = [g].

Since we know that the number of vertices of I is equal to the rank of the abelianization G*, we can
keep checking elements of G to see if g(g) = [g]. This algorithm terminates because once we’ve found
rk(G®)-many such elements, we must have found all of them.

Finally, we see that the following conditions are equivalent:

(1) Two elements g; and g, represent adjacent elements in I'.

(2) g1 and g, commute in G.

(3) [g1] and [g2] commute in ACG.

(4) There is a cohomomorphism from A(e—e) to G sending the two vertices to g; and g,. O

10Though, as we show in Corollary 1, we can recover the underlying graph from the coalgebra structure, and obviously we can
find a coalgebra structure given the underlying graph (the unique homomorphism sending each generator y € AT to [y] € ACAT
works). So the data of the coalgebra structure is equivalent to the data of the underlying graph!

11 Recall that these presentations may have nothing to do with the underlying graphs.

12We have to be a bit careful, since CH is infinite, so that ACH is not finitely generated. However, the images of each generator
of G will land in a finite subgraph of CH, so we can do our computation inside the raag associated to that finite subgraph.
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Lastly, we give a more interesting example of this machinery in action:

Say we’re given the following group presentations'3 and we’re promised both G and H are raags:

3 .2

—1_—1 2 -1, — -1
G = (X1,X2,X3,X4 | X1X5 X] X4X3,X3X5X5 X5, X5X;

lxgxz)

X
H = (y1.y2 1314 15 | v v3 vayayd L vavyd v T vsyavays w3 vy v vavays )
Then the algorithm described at the start of this section will terminate and provide the AC-coalgebra

structures, given on generators by
gbrn) =[x1l, g =[] g(3) =[] 9(xa) = [xax7"x1],
b =Dl b2 =[] b)) =[ysl. bya) =[] blys) =[ysl.
where we write [ ] for the identity elements of ACG and ACH.
Now we consider two group homomorphisms, ¢, ¥ : G — H, one of which comes from a graph
homomorphism, and one doesn’t. These are given on generators by
p(x1) =y1. @(x2) =y2. @(x3) =y2ys.  @(x4) = y3)1.
v(x1) =y, v(x2)=y2, V(x3)=y2rs. ¥(xs4) =3
These homomorphisms are superficially very similar, so it’s not obvious which comes from a graph

homomorphism! Especially since we don’t know what the underlying graphs should be!

But if we chase the generators around the squares

G—° s H ¢ —¥ H
gl lh and gl lh
ACG — > ACH ACG —» ACH

we find they both commute for x;, x5, and x3. The case of x4 is instructive. Indeed, for ¢, we want to
check if the following square commutes:

G X4—>y3)1 s H
| |
xar>[xaxy xq] y3yi—=>[ysliril
l l
ACG s ACH

[xax7 x> ya v vy il

Since [y3 31 yl_l] = [»3], this square does commute, and we learn that ¢ is of the form A4 f for some graph
homomorphism f on the underlying graphs of G and H (which we still don’t know!)

3These presentations came from taking a “typical” presentation of the simplest nontrivial raags we could think of (G is the
raag on e—e and H is on e—e—e), adding variables for the commutators, and then adding interesting relations forcing those
commutator variables to be trivial using the theorems in [32]. Then, in G, we used a and ab as generators rather than ¢ and b to
show what happens when one of the vertices isn’t a generator in the given presentation. Lastly we obfuscated and shuffled the
variable names.
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Now if we consider i, we want to check the following square:

G X4=y3 sy H
| |
xar>[xaxy ] y3—>[y3l
1
ACG s ACH

[xax T Ui 1Ty i ]
As in the example from Section 2, since [y3 yl_l][ 1] # [y3], this square doesn’t commute, which tells us
that ¥ was not induced from a graph homomorphism!

From here it’s a natural question to try and find the underlying graphs, and Corollary 1 tells us how!

We know that the abelianization of G has rank 2. This tells us that we’re looking for two elements
a,b € G such that g(a) = [a] and g(b) = [b]. An exhaustive search quickly finds @ = x; and b = X4X1_1

do the job. Now since a and b commute in G, they must be joined by an edge, so that
G = A(e—oe).

Similarly, the abelianization of H has rank 3, so we want three elements p,g,r € H with h(p) =[p],
h(q) = [q], and bh(r) = [r]. Again, we find p = y;, ¢ = y3, and r = y5 work, and we can check that p
and ¢ commute, ¢ and ¥ commute, but p and r don’t commute, so that

H = A(e—0—o).

From here, we can see that ¢ is just the map extending ¢(a) = p and ¢(b) = g (which, as predicted, does
come from a graph homomorphism) while v is the map extending ¥ (a) = p and ¥ (b) = gp~' (which,
as predicted does not come from a graph homomorphism).

6 Conclusion

It has been well known for some time now that the combinatorics of a graph I" are reflected in the algebra
of its raag A", but the question of how the combinatorics of graph homomorphisms relates to group
homomorphisms between raags remains fertile ground. Here we’ve shown that the connection remains
strong, by showing that the category of (reflexive) graphs embeds faithfully as an explicit subcategory of
the category of groups.

More speculatively, while this paper focused on the comonad AC : Grp — Grp, we suspect there is a
future role to be played by the monad CA: Gph — Gph. Indeed, Kim and Koberda conjecture in [25]
that embeddings AT" — AA exist exactly when I" embeds into a graph A€, which they call the extension
graph. This graph is closely related to the monad graph CAA (indeed, it’s the full subgraph of CAA on
the conjugates of generators), as we might expect since maps AI' — AA are in natural bijection with
maps I' - CAA.
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While the extension graph conjecture is now known to be false in general [13], it is true for many classes
of graphs. In some sense this is likely “because of” the close connection of the extension graph with the
monad graph. It would be interesting to see if category theoretic techniques can be brought to bear on a
new version of this conjecture, by finding a combinatorial condition which picks out those embeddings
I' - CAA which transpose to an embedding of raags.
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