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The right angled Artin group functor as a categorical embedding

CHRIS GROSSACK

It has long been known that the combinatorial properties of a graph � are closely related to the group
theoretic properties of its right angled Artin group (raag). It’s natural to ask if the graph homomorphisms
are similarly related to the group homomorphisms between two raags. Our main result shows that there is
a purely algebraic way to characterize the raags amongst groups, and the graph homomorphisms amongst
the group homomorphisms. As a corollary we present a new algorithm for recovering � from its raag.

05C25, 18F20, 20F65

1 Introduction

For us, a graph � with underlying vertex set V is a symmetric, reflexive relation on V . A graph
homomorphism from a graph .V; �/ to .W; �/ is a function ' W V ! W such that .v1; v2/ 2 � D)

.'v1; 'v2/ 2�. These assemble into a category, which we call Gph.

Given a graph � with vertex set V , we can form a group A� , the right angled Artin group (raag) associated
to � , defined as

A� , hv 2 V j Œv1; v2�D 1 whenever .v1; v2/ 2 �i:

For example, if Kn is a complete graph on n vertices then AKn Š Zn. If �n is a discrete graph on n

vertices then A�nŠ Fn is a free group on n generators. If� is the graph with four vertices a, b, c, and d

and four edges .a; b/, .b; c/, .c; d/, and .d; a/, then A�Š ha; ci� hb; di Š F2�F2. In this sense, raags
allow us to interpolate between free and free abelian groups.

Raags are of particular interest to geometric group theorists because of their connections to the fundamental
groups of closed hyperbolic 3-manifolds [39] and to the mapping class groups of hyperbolic surfaces [26].
Moreover, raags were instrumental in the resolution of the virtual Haken conjecture [3] due to their close
connection with the CAT(0) geometry of cube complexes. See [8] for an overview.

Importantly, the combinatorial structure of � is closely related to the algebraic structure of A� , with
useful information flow in both directions. For instance, the cohomology of A� is the exterior face
algebra of � [37], A� factors as a direct product if and only if � factors as a join of two graphs [38],
and we can compute the Bieri–Neumann–Strebel invariant †1.A�/ from just information in � [30]. This
correspondence can be pushed remarkably far, and recently it was shown that expander graphs (which
are really sequences of graphs) can be recognized from the cohomology of their raags [18]! For more
information about the close connection between the combinatorics of � and the algebra of A� , see [18; 28].
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3036 Chris Grossack

With this context, it is natural to ask whether the combinatorics of graph homomorphisms are also closely
connected to the algebra of group homomorphisms between raags. For a particular example, one might
ask if there is a purely algebraic way to recognize when a group homomorphism between raags is A' for
some homomorphism ' of their underlying graphs.

Our main result shows that the answer is yes in a very strong sense. We prove that the raag functor
A is an equivalence between the category of graphs Gph and the category of groups equipped with a
coalgebra structure (a kind of descent data) that we will describe shortly. As corollaries, we obtain a
new way of recognizing the raags amongst the groups, and the graph homomorphisms amongst the group
homomorphisms. This moreover gives a new algorithm for recovering the underlying graph of a raag
from nothing but its isomorphism type.

Crucial for the proof of this theorem is the fact that A W Gph! Grp has a right adjoint, the commutation
graph functor C W Grp! Gph, which sends a group G to the graph whose vertices are elements of G and
where .g1;g2/ 2 C G() Œg1;g2�D 1. This is surely well known to experts1 but is not often mentioned
in the literature. This is likely because of the common convention that graphs have no self loops, whereas
the adjunction requires us to work with graphs with a self loop at each vertex. Of course, this does not
appreciably change the combinatorics, and we feel it is a small price to pay for the categorical clarity this
adjunction provides.

Unsurprisingly, the commutation graph and related constructions have already been of interest to combi-
natorialists for many years [4; 6; 12; 16; 21], and the complement of the commutation graph was even
the subject of a (now proven) conjecture of Erdős [34].

With the commutation graph functor C defined, we can state our main result:

Theorem The right angled Artin group functor A W Gph! Grp is comonadic.

That is , A is an equivalence of categories between Gph and the category GrpAC of groups equipped with
an AC-coalgebra structure , and group homomorphisms that are moreover AC-cohomomorphisms.

The group AC G is the group freely generated by symbols Œg� for each g 2 G, with relations saying
Œg�Œh�D Œh�Œg� in AC G if and only if ghDhg in G. Write �G WAC G!G for the homomorphism sending
each Œg� to g. Additionally, write ı WAC G!AC.AC G/ for the homomorphism sending each Œg� to ŒŒg��.

Now merely unwinding the category theoretic definitions gives the following corollary:

Corollary (main corollary) An abstract group G is isomorphic to a raag if and only if it admits a group
homomorphism g WG!AC G such that the following two diagrams commute:

G AC G G AC G

G AC G AC.AC G/

g

�G

1G

g

g

ı

ACg

1It’s implicit in the “universal property of raags” given in [27], for instance, and is stated as such in [38].
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Moreover , a group homomorphism f WG!H between raags is A' for some graph homomorphism ' if
and only if it respects these structure maps in the sense that

G H

AC G ACH

g h

f

ACf
commutes.

Remark In particular, there is a purely algebraic way to recognize the raags amongst the groups and the
image of the graph homomorphisms amongst the group homomorphisms between raags.

This additionally gives us a new way to recover � from the abstract isomorphism class of A� , and shows
it is decidable (even efficient!) to check whether any particular group homomorphism between raags
came from a graph homomorphism.

Our proof uses some category theory that might not be familiar to all readers, so in Section 3 we will
briefly review the machinery of comonadic descent, which is the main technical tool for the proof (which
is the subject of Section 4). First, though, in Section 2 we give an example to show that category theory is
not needed in order to apply our results. This section might also be of interest to those learning category
theory looking for toy examples of comonadic descent, since it is usually applied in more complicated
situations than this.2 Lastly, in Section 5 we discuss the algorithmic consequences of the main result.

Throughout this paper, we make the notational convention that graph theoretic concepts are written with
Greek letters and group theoretic concepts with roman letters. The coalgebraic structure maps are written
in Fraktur font.

2 An simple example

It’s important to note that applying this result requires no knowledge of the deep category theory used
in its proof. Let’s begin with a simple example of how the result can be used to detect whether a group
homomorphism came from a graph homomorphism or not. This is meant only to illustrate the technique,
rather than to solve a novel problem. In Section 5 we give a more interesting example.

Let � D fvg and �D fwg be two one-vertex graphs. Then A� D hvi and A�D hwi, and we want to
detect when a homomorphism between these groups came from a homomorphism of their underlying
graphs.

Recall that C G, the commutation graph of G, has a vertex Œg� for each g 2G, with an edge relating Œg�
and Œh� exactly when g and h commute in G. So C hvi is a complete graph on Z-many vertices labeled
by Œvn�.

2Indeed, this is how the author came upon this result.
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3038 Chris Grossack

Then the group AC G is freely generated by the symbols Œg�, for g 2 G, subject to relations saying
Œg�Œh�D Œh�Œg� in AC G if and only if ghDhg in G. So AC hvi is the free abelian group with generators Œvn�.

It’s not hard to see that the map v W hvi !AC hvi given by v 7! Œv1� satisfies the axioms from the main
corollary. The existence of such a v tells us that hvi must be a raag, which it is.3

Let’s first look at a map that does come from a graph homomorphism, for instance f W hvi ! hwi given
by f v D w.

The corollary says to consult the square

hvi hwi

hŒvn� j Œvn�Œvm�D Œvm�Œvn�i hŒwn� j Œwn�Œwm�D Œwm�Œwn�i

v 7!w

Œvn� 7!Œwn�

v 7!Œv1� w 7!Œw1�

and since this is quickly seen to commute, we learn that f is of the form A' for some graph homomorphism
(as indeed it is).

Next, let’s look at a map which doesn’t come from a graph homomorphism, like f W hvi ! hwi given by
f v D w2.

Now our square is

hvi hwi

hŒvn� j Œvn�Œvm�D Œvm�Œvn�i hŒwn� j Œwn�Œwm�D Œwm�Œwn�i

v 7!w2

Œvn�7!Œw2n�

v 7!Œv1� w 7!Œw1�

which does not commute (even though it seems to at first glance). Indeed, if we chase the image of v
around the top right of the square, then we see

v 7! w2
7! Œw1�2:

If instead we chase around the lower left of the square, we get

v 7! Œv1� 7! Œw2�:

Since Œw1�2 ¤ Œw2� in this group (recall AC hwi is freely generated by the symbols Œwn�), we have
successfully detected that f did not come from a graph homomorphism!

Importantly, this same approach works even if we merely know the coalgebra structures on G and H .
Thus we don’t need to know their underlying graphs to detect the graph homomorphisms!4

3More generally, if we know � , then the map A�!AC.A�/ sending each generator 
 to Œ
 � will always satisfy the axioms.
4Though we will see later that the coalgebra structure actually lets us recover the underlying graphs as well.
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As a last aside, let’s mention what the structure map g WG!AC G does. Elements of AC G are formal
words in the elements of G. Then, intuitively, g.g/D Œ
1�Œ
2� � � � Œ
k � decomposes g as a formal product
of the vertices making up g. This means that we can recover the vertices of � as those g such that
g.g/D Œg� is a word of length 1, as we prove in Section 5

3 A brief review of comonadic descent

Recall that an adjunction .L W C! D/ a .R W D! C/ is a pair of (covariant) functors equipped with a
natural isomorphism

HomD.LC;D/Š HomC.C;RD/:

Of particular interest for us is the adjunction A a C specifying the universal property of raags.

Recall moreover that a comonad W WD!D is a functor equipped with natural transformations � WW )1D

and ı WW )W W such that the following diagrams of natural transformations commute:

W W W W

W W W W W W W W W
1W �� ��1W

ı
1W 1W

ı

ı

ı�1W

1W �ı

Dually, a monad is a functor M W C ! C equipped with natural transformations � W 1C ) M and
� WMM )M satisfying diagrams opposite those above. A precise definition can be found in Chapter 4

of [10].

Every adjunction L aR gives rise to a monad RL and a comonad LR. In particular, the raag adjunction
gives us a comonad AC W Grp! Grp, which is our primary object of study.

Monads and comonads find application in settings as varied as algebraic geometry and number theory
[23; 10; 11], universal algebra [10; 2; 9; 5; 24], probability theory [20; 15; 29], and computer science [33;
35; 19; 36]. Relevant for us is the theory of (co)monadic descent, which comes from gluing conditions in
algebraic geometry, and is reviewed in this context in Section 4:7 of [10].

Given a comonad W , a W -coalgebra is an object G 2 D equipped with an arrow g WG!W G such that
the diagrams in Figure 1 commute. A W -cohomomorphism between coalgebras .G; g/ and .H; h/ is an
arrow f WG!H in D compatible with g and h, in the sense that Figure 2 commutes. When W is clear

G W G G W G

G W G W W G

g

�G
1G

g

g

ı

W g

Figure 1: The defining diagrams for a coalgebra.
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G H

W G WH

g h

f

Wf

Figure 2: The defining diagram for a cohomomorphism.

from context, we simply call these coalgebras and cohomomorphisms, and they assemble into a category
DW which admits a faithful functor U W DW ! D that simply forgets the structure map g.

Abstract nonsense shows that for any adjunction LaR, the essential image of L lands inside the category
of coalgebras DLR . That is, every object LX 2 D is an LR-coalgebra, where the structure map is given
by L�X WLX !LRLX , and every L' is an LR-cohomomorphism.

In our special case, � W �! CA� is the map sending each v 2 � to v1 2 CA� . Then the above says that
the functor A W Gph! Grp factors through the category of coalgebras GrpAC as follows:

Gph A
�! GrpAC

U
�! Grp; � 7! .A�;A�/ 7!A�

We will show that A is actually an equivalence of categories Gph' GrpAC . This tells us that a group is
of the form A� if and only if it’s a coalgebra, and a group homomorphism is of the form A' if and only
if it’s a cohomomorphism!

The main tool for proving this equivalence is Beck’s famed (co)monadicity theorem,5 which says

Theorem (Beck, 1968) To show that a left adjoint .L W C ! D/ a .R W D ! C/ witnesses L as an
equivalence of categories6 C ' DLR, it suffices to show

(1) L reflects isomorphisms (that is , whenever L' WL� ŠL� is an isomorphism in D, then ' must
have already been an isomorphism in C),

(2) C has , and L preserves , equalizers of coreflexive pairs.7

This gives us our outline for proving the main theorem:

Theorem (main theorem) The right angled Artin group functor A WGph!Grp restricts to an equivalence
of categories A WGph'GrpAC between the category of graphs and the full subcategory of groups equipped
with an AC-coalgebra structure.

5The original manuscript due to Beck was unpublished, but widely distributed. A scan is available at [7], but this is also proven
as Theorem 4.4.4 in [10]. Both of these prove the statement for monads, which is then dualized to give the comonadicity theorem
we use.
6Such an adjunction L aR is called comonadic.
7We will recall the definition of both equalizers and coreflexive pairs in Section 4.
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Proof By Beck’s comonadicity theorem, it suffices to check the two conditions above.

Condition .1/ is a classical result due to Droms [17], so it remains to check .2/. It’s well known that Gph
is complete,8 and thus has all equalizers.

In the next section we’ll recall the definition of a coreflexive pair, and show that A really does preserve
their equalizers. This will complete the proof.

4 The raag functor preserves equalizers of coreflective pairs

A coreflexive pair is a pair of arrows with a common retract. That is, a diagram

� �

˛

ˇ

�

where
�˛ D 1� D �ˇ:

An equalizer of a pair of arrows ˛; ˇ WX � Y is an arrow � WE!X such that every arrow ' WZ!X

with ˛' D ˇ' factors uniquely through �. In Gph, this is (the inclusion of the) induced subgraph of X on
the vertices x with ˛xD ˇx. In Grp, this is the (inclusion of the) subgroup of X of all x’s with ˛xD ˇx.

Now, we want to show that if ‚ is the equalizer of ˛ and ˇ, as computed in Gph, then A‚ should still be
the equalizer of A˛ and Aˇ, as computed in Grp. For ease of notation, we will confuse ˛ and ˇ with A˛

and Aˇ, since .A˛/.vn1

1
v

n2

2
� � � v

nk

k
/D .˛v1/

n1.˛v2/
n2 � � � .˛vk/

nk .

Note that ‚ is the full subgraph of � on the vertices where ˛vD ˇv. So then A‚D hv j ˛vD ˇvi �A� .
If instead we compute the equalizer of A˛ and Aˇ in Grp, we get G D fg j ˛g D ˇgg �A� .

So showing that A‚DG amounts to showing that, provided ˛ and ˇ admit a common retract �, each g

with ˛g D ˇg is a word in those vertices v with ˛v D ˇv.

Theorem 1 The right angled Artin group functor A preserves equalizers of coreflexive pairs.

Proof Since � is a graph homomorphism, we see that v and w are �-related if and only if ˛v and ˛w
(equivalently ˇv and ˇw, equivalently ˛v and ˇw) are �-related. Thus v and w commute in A� if and
only if their images under ˛ and ˇ commute in A�.

In Theorem 3.9 of her thesis [22], Green proves that elements of A� have a normal form as words in the
vertices of � .9 Following the exposition of Koberda [27] and others, we call a word w 2A� central if
the letters in w pairwise commute. This happens if and only if the letters in w form a clique in � . We say

8One quick way to see this is to note that it’s topologically concrete in the sense of [1].
9In fact, she proves something slightly more general.
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that w is in central form if it is a product of central words w D w1w2 � � �wk . If we stipulate that we are
“left greedy” in the sense that no letter in wiC1 commutes with each letter of wi (so that we first make w1

as long as possible, then make w2 as long as possible, and so on), then the central form is unique up to
commuting the letters in each wi . See also Section 3.3 of [14] for a summary.

Now suppose that ˛g D ˇg. Fix such a central form g D w0w1 : : : wk , and look at

.˛w0/.˛w1/ : : : .˛wk/D .ˇw0/.ˇw1/ : : : .ˇwk/:

These representations of ˛g D ˇg are both minimal length, as we could hit a shorter representation with
� in order to get a shorter representation for g. Then uniqueness of the central form says that each ˛wi

and ˇwi are equal up to permuting the letters in each.

We restrict attention to each wi D 

n1

1



n2

2
: : : 


nk

k
separately, say

.˛

n1

1
/.˛


n2

2
/ : : : .˛


nk

k
/D ı

n1

1
ı

n2

2
: : : ı

nk

k
D .ˇ


n1

1
/.ˇ


n2

2
/ : : : .ˇ


nk

k
/:

If we can show that actually ˛
i D ˇ
i for each i , then we’ll be done.

But ˛ and ˇ give injections from f
1; : : : ; 
kg to fı1; : : : ; ıkg, which are in fact bijections since we’re
dealing with finite sets of the same cardinality.

Moreover, by assumption � provides an inverse for ˛ and for ˇ!

Then ˛ and ˇ must be the same map on this set, and in particular each 
i satisfies ˛
i Dˇ
i , as desired.

5 Can we really compute these?

It is well known that the problem “is a finitely presented group G isomorphic to a raag” is undecidable.
Indeed, being isomorphic to a raag is a Markov property in the sense of Definition 3.1 in [31], so
Theorem 3.3 in the same paper guarantees this problem is undecidable.

Let’s work with the next best thing, then, and suppose we’re given a finite presentation of a group G and
a promise that G is a raag (though we are not given its underlying graph). How much can we learn about
the combinatorics of its underlying graph from just G?

First, we must find an AC-coalgebra structure on G — that is, a group homomorphism g W G! AC G

satisfying the conditions from Figure 1. Since AC G is a raag, it has solvable word problem, so we can
enumerate all homomorphisms G!AC G and check if they satisfy the axioms. We will eventually find
such a g since we were promised that G is abstractly isomorphic to a raag, so this algorithm terminates.

Once we know the coalgebra structures on G and H , we can already efficiently check whether a group
homomorphism f WG!H came from a graph homomorphism. Indeed, the existence of an AC-coalgebra
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structure on G and H is enough to guarantee that G and H are raags, even without having direct access
to the underlying graphs10 of G and H .

Theorem 2 Given a homomorphism f WG!H between finitely presented groups11 where .G; g/ and
.H; h/ are moreover AC-coalgebras , then there is an algorithm deciding whether f is A' for ' a graph
homomorphism of the graphs presenting G and H .

Proof By the equivalence Gph' GrpAC , this amounts to checking if f is a cohomomorphism — that is,
whether the square

G H

AC G ACH

f

g

ACf

h

commutes. Of course, we can check this on the (finitely many) generators of G, and the claim now
follows from the fact that ACH is a raag,12 and thus has solvable word problem [14].

Corollary 1 Given any finite presentation of G and a promise that G really is a raag , there is an algorithm
to recover a graph � and an isomorphism G ŠA� .

Proof As discussed earlier in this section, given a finite presentation of G and a promise that G is a
raag, we can algorithmically find a coalgebra structure g WG!AC G.

Now, we know that the vertices of � are in bijection with graph homomorphisms from the one-vertex
graph 1 to � . By the equivalence Gph' GrpAC , this amounts to cohomomorphisms Z!G, which one
can explicitly calculate to be those elements g 2G such that g.g/D Œg�.

Since we know that the number of vertices of � is equal to the rank of the abelianization Gab, we can
keep checking elements of G to see if g.g/D Œg�. This algorithm terminates because once we’ve found
rk.Gab/-many such elements, we must have found all of them.

Finally, we see that the following conditions are equivalent:

(1) Two elements g1 and g2 represent adjacent elements in � .

(2) g1 and g2 commute in G.

(3) Œg1� and Œg2� commute in AC G.

(4) There is a cohomomorphism from A.���/ to G sending the two vertices to g1 and g2.

10Though, as we show in Corollary 1, we can recover the underlying graph from the coalgebra structure, and obviously we can
find a coalgebra structure given the underlying graph (the unique homomorphism sending each generator 
 2A� to Œ
 � 2ACA�

works). So the data of the coalgebra structure is equivalent to the data of the underlying graph!
11Recall that these presentations may have nothing to do with the underlying graphs.
12We have to be a bit careful, since CH is infinite, so that ACH is not finitely generated. However, the images of each generator
of G will land in a finite subgraph of CH , so we can do our computation inside the raag associated to that finite subgraph.

Algebraic & Geometric Topology, Volume 25 (2025)



3044 Chris Grossack

Lastly, we give a more interesting example of this machinery in action:

Say we’re given the following group presentations13 and we’re promised both G and H are raags:

G D hx1;x2;x3;x4 j x1x�1
4 x�1

1 x4x3;x3x2
2x�1

3 x�3
2 ;x2

2x�1
3 x�1

2 x2
3x2i

H D hy1;y2;y3;y4;y5 j y
�1
4 y�1

2 y4y2y�1
4 ;y3y1y�1

4 y�1
3 y�1

1 ;y5y3y2y�1
5 y�1

3 ;y�1
2 y�1

4 y2y4y�1
2 i

Then the algorithm described at the start of this section will terminate and provide the AC-coalgebra
structures, given on generators by

g.x1/D Œx1�; g.x2/D Œ �; g.x3/D Œ �; g.x4/D Œx4x�1
1 �Œx1�;

h.y1/D Œy1�; h.y2/D Œ �; h.y3/D Œy3�; h.y4/D Œ �; h.y5/D Œy5�;

where we write Œ � for the identity elements of AC G and ACH .

Now we consider two group homomorphisms, '; W G ! H , one of which comes from a graph
homomorphism, and one doesn’t. These are given on generators by

'.x1/D y1; '.x2/D y2; '.x3/D y2y4; '.x4/D y3y1;

 .x1/D y1;  .x2/D y2;  .x3/D y2y4;  .x4/D y3:

These homomorphisms are superficially very similar, so it’s not obvious which comes from a graph
homomorphism! Especially since we don’t know what the underlying graphs should be!

But if we chase the generators around the squares

G H

AC G ACH

'

g h

AC'

and
G H

AC G ACH

 

g h

AC 

we find they both commute for x1, x2, and x3. The case of x4 is instructive. Indeed, for ', we want to
check if the following square commutes:

G H

AC G ACH

x4 7!y3y1

x4 7!Œx4x�1
1
�Œx1� y3y1 7!Œy3�Œy1�

Œx4x�1
1
�Œx1� 7!Œy3y1y�1

1
�Œy1�

Since Œy3y1y�1
1
�D Œy3�, this square does commute, and we learn that ' is of the form Af for some graph

homomorphism f on the underlying graphs of G and H (which we still don’t know!)

13These presentations came from taking a “typical” presentation of the simplest nontrivial raags we could think of (G is the
raag on ��� and H is on �����), adding variables for the commutators, and then adding interesting relations forcing those
commutator variables to be trivial using the theorems in [32]. Then, in G, we used a and ab as generators rather than a and b to
show what happens when one of the vertices isn’t a generator in the given presentation. Lastly we obfuscated and shuffled the
variable names.
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Now if we consider  , we want to check the following square:

G H

AC G ACH

x4 7!y3

x4 7!Œx4x�1
1
�Œx1� y3 7!Œy3�

Œx4x�1
1
�Œx1� 7!Œy3y�1

1
�Œy1�

As in the example from Section 2, since Œy3y�1
1
�Œy1�¤ Œy3�, this square doesn’t commute, which tells us

that  was not induced from a graph homomorphism!

From here it’s a natural question to try and find the underlying graphs, and Corollary 1 tells us how!

We know that the abelianization of G has rank 2. This tells us that we’re looking for two elements
a; b 2G such that g.a/D Œa� and g.b/D Œb�. An exhaustive search quickly finds aD x1 and b D x4x�1

1

do the job. Now since a and b commute in G, they must be joined by an edge, so that

G DA.���/:

Similarly, the abelianization of H has rank 3, so we want three elements p; q; r 2H with h.p/D Œp�,
h.q/D Œq�, and h.r/D Œr �. Again, we find p D y1, q D y3, and r D y5 work, and we can check that p

and q commute, q and r commute, but p and r don’t commute, so that

H DA.�����/:

From here, we can see that ' is just the map extending '.a/D p and '.b/D q (which, as predicted, does
come from a graph homomorphism) while  is the map extending  .a/D p and  .b/D qp�1 (which,
as predicted does not come from a graph homomorphism).

6 Conclusion

It has been well known for some time now that the combinatorics of a graph � are reflected in the algebra
of its raag A� , but the question of how the combinatorics of graph homomorphisms relates to group
homomorphisms between raags remains fertile ground. Here we’ve shown that the connection remains
strong, by showing that the category of (reflexive) graphs embeds faithfully as an explicit subcategory of
the category of groups.

More speculatively, while this paper focused on the comonad AC W Grp! Grp, we suspect there is a
future role to be played by the monad CA W Gph! Gph. Indeed, Kim and Koberda conjecture in [25]
that embeddings A�!A� exist exactly when � embeds into a graph �e , which they call the extension
graph. This graph is closely related to the monad graph CA� (indeed, it’s the full subgraph of CA� on
the conjugates of generators), as we might expect since maps A� ! A� are in natural bijection with
maps �! CA�.

Algebraic & Geometric Topology, Volume 25 (2025)
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While the extension graph conjecture is now known to be false in general [13], it is true for many classes
of graphs. In some sense this is likely “because of” the close connection of the extension graph with the
monad graph. It would be interesting to see if category theoretic techniques can be brought to bear on a
new version of this conjecture, by finding a combinatorial condition which picks out those embeddings
�! CA� which transpose to an embedding of raags.
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[34] B H Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 21 (1976) 467–472 MR

[35] V de Paiva, Dialectica comonads, from “9th Conference on Algebra and Coalgebra in Computer Science”
(F Gadducci, A Silva, editors), Leibniz Int. Proc. Inform. 211, Schloss Dagstuhl, Wadern (2021) art. id. 3
MR

[36] J J M M Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3–80 MR

[37] L Sabalka, On rigidity and the isomorphism problem for tree braid groups, Groups Geom. Dyn. 3 (2009)
469–523 MR

[38] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34–60 MR

[39] H Servatius, C Droms, B Servatius, Surface subgroups of graph groups, Proc. Amer. Math. Soc. 106
(1989) 573–578 MR

University of California Riverside
Riverside, CA, United States

cgros007@ucr.edu

Received: 28 December 2023 Revised: 11 June 2024

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1090/conm/250/03848
http://msp.org/idx/mr/1732210
https://doi.org/10.1016/0890-5401(91)90052-4
http://msp.org/idx/mr/1115262
https://doi.org/10.1017/s1446788700019303
http://msp.org/idx/mr/419283
https://doi.org/10.4230/LIPIcs.CALCO.2021.3
http://msp.org/idx/mr/4390198
https://doi.org/10.1016/S0304-3975(00)00056-6
http://msp.org/idx/mr/1791953
https://doi.org/10.4171/GGD/67
http://msp.org/idx/mr/2516176
https://doi.org/10.1016/0021-8693(89)90319-0
http://msp.org/idx/mr/1023285
https://doi.org/10.2307/2047406
http://msp.org/idx/mr/952322
mailto:cgros007@ucr.edu
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Octav Cornea Université’ de Montreal
cornea@dms.umontreal.ca

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Kristen Hendricks Rutgers University
kristen.hendricks@rutgers.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US $760/year for the electronic version, and $1110/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:cornea@dms.umontreal.ca
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:mhedden@math.msu.edu
mailto:kristen.hendricks@rutgers.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 5 (pages 2527–3144) 2025

2527The homotopy type of the PL cobordism category, I

MAURICIO GÓMEZ LÓPEZ

2613The homotopy type of the PL cobordism category, II

MAURICIO GÓMEZ LÓPEZ

2667Pullbacks of metric bundles and Cannon–Thurston maps

SWATHI KRISHNA and PRANAB SARDAR

2757Product set growth in virtual subgroups of mapping class groups

ALICE KERR

2807Surgery sequences and self-similarity of the Mandelbrot set

DANNY CALEGARI

2817Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins

DAVID T GAY

2851Equivariant intrinsic formality

REKHA SANTHANAM and SOUMYADIP THANDAR

2883Generating the liftable mapping class groups of cyclic covers of spheres

PANKAJ KAPARI, KASHYAP RAJEEVSARATHY and APEKSHA SANGHI

2905Warped product metrics on hyperbolic and complex hyperbolic manifolds

BARRY MINEMYER

2933On the structure of the RO.G/-graded homotopy of H M for cyclic p-groups

IGOR SIKORA and GUOQI YAN

2981On the homotopy groups of the suspended quaternionic projective plane and applications

JUXIN YANG, JUNO MUKAI and JIE WU

3035The right angled Artin group functor as a categorical embedding

CHRIS GROSSACK

3049Equivariant cohomology of projective spaces

SAMIK BASU, PINKA DEY and APARAJITA KARMAKAR

3089Nonuniform lattices of large systole containing a fixed 3-manifold group

PAIGE HILLEN

3103Noncommutative divergence and the Turaev cobracket

TOYO TANIGUCHI

3133Building weight-free Følner sets for Yu’s property A in coarse geometry

GRAHAM A NIBLO, NICK WRIGHT and JIAWEN ZHANG

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2025

Vol.25,
Issue

5
(pages

2527–3144)

http://dx.doi.org/10.2140/agt.2025.25.2527
http://dx.doi.org/10.2140/agt.2025.25.2613
http://dx.doi.org/10.2140/agt.2025.25.2667
http://dx.doi.org/10.2140/agt.2025.25.2757
http://dx.doi.org/10.2140/agt.2025.25.2807
http://dx.doi.org/10.2140/agt.2025.25.2817
http://dx.doi.org/10.2140/agt.2025.25.2851
http://dx.doi.org/10.2140/agt.2025.25.2883
http://dx.doi.org/10.2140/agt.2025.25.2905
http://dx.doi.org/10.2140/agt.2025.25.2933
http://dx.doi.org/10.2140/agt.2025.25.2981
http://dx.doi.org/10.2140/agt.2025.25.3035
http://dx.doi.org/10.2140/agt.2025.25.3049
http://dx.doi.org/10.2140/agt.2025.25.3089
http://dx.doi.org/10.2140/agt.2025.25.3103
http://dx.doi.org/10.2140/agt.2025.25.3133

	1. Introduction
	2. An simple example
	3. A brief review of comonadic descent
	4. The raag functor preserves equalizers of coreflective pairs
	5. Can we really compute these?
	6. Conclusion
	Acknowledgements

	References
	
	

