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The asymptotic behaviors of the colored Jones polynomials
of the figure-eight knot, and an affine representation

HITOSHI MURAKAMI

We study the asymptotic behavior of the N -dimensional colored Jones polynomial of the figure-eight
knot evaluated at exp.� C 2p�

p
�1=N/, where � WD arccosh

�
3
2

�
and p is a positive integer. We can

prove that it grows exponentially with growth rate determined by the Chern–Simons invariant of an affine
representation from the fundamental group of the knot complement to the Lie group SL.2IC/.

57K14; 57K10

1 Introduction

For a knot K in the three-dimensional sphere S3 and a positive integer N , let JN .KI q/ be the N -
dimensional colored Jones polynomial associated with the N -dimensional irreducible representation of
the Lie algebra sl.2IC/, where we normalize it as JN .U I q/D 1 for the unknot U , and when N D 2 it
satisfies the following skein relation:

qJ2
�
I q
�
� q�1J2

�
I q
�
D .q1=2� q�1=2/J2

�
I q
�
:

If we replace q with e2�
p
�1=N , we obtain a complex number JN .KI e2�

p
�1=N /, which is known as the

Kashaev invariant; see Kashaev [14], and J Murakami and the author [25]. The volume conjecture (see
Kashaev [15], and J Murakami and the author [25]) states that the series fJN .KI e2�

p
�1=N /gND1;2;3;:::

grows exponentially with growth rate proportional to the simplicial volume Vol.K/ of S3 nK. Here the
simplicial volume is also known as the Gromov norm; see Gromov [7]. It coincides with the hyperbolic
volume divided by the volume v3 of the ideal regular hyperbolic tetrahedron if the knot is hyperbolic, that
is, its complement S3 nK possesses a complete hyperbolic structure with finite volume. If the knot is not
hyperbolic, then the simplicial volume is the sum of the hyperbolic volumes of the hyperbolic pieces of
S3 nK after the Jaco–Shalen–Johannson decomposition; see Jaco and Shalen [12] and Johannson [13].

Conjecture 1.1 (volume conjecture) For any knot K in S3, we have

lim
N!1

logjJN .KI e2�
p
�1=N /j

N
D
v3 Vol.K/

2�
:

The volume conjecture has been generalized in various ways. It can be complexified as follows; see
J Murakami, Okamoto, Takata, Yokota, and the author [26]. Let H � S3 be a hyperbolic knot, and

cv.H / WD
p
�1Vol.H /� 2�2 CSSO.3/.H /
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3524 Hitoshi Murakami

be the complex volume of S3 nH , where CSSO.3/.H / .mod �2/ is the Chern–Simons invariant of the
Levi-Civita connection of S3 nH associated with the complete hyperbolic structure.

Conjecture 1.2 (complexification of the volume conjecture) For any hyperbolic knot H in S3, we
have

lim
N!1

logJN .H I e2�
p
�1=N /

N
D

cv.H /

2�
p
�1
:

The volume conjecture and its complexification can be refined as follows (see Gukov [8], and also Gukov
and H Murakami [9], Dimofte, Gukov, Lenells, and Zagier [5], and Ohtsuki [30]):

Conjecture 1.3 (refined volume conjecture) Let H � S3 be a hyperbolic knot. Then we have the
asymptotic equivalence

JN .H I e
2�
p
�1=N / �

N!1

�
T .H /

2
p
�1

�1=2
N 3=2 exp

�
cv.H /

2�
p
�1
N

�
;

where F.N/ �
N!1

G.N/ means limN!1 F.N/=G.N/D 1, and T .H / is the adjoint (cohomological )

Reidemeister torsion twisted by the holonomy representation �0 W �1.S3 nH /! SL.2IC/.

The refined volume conjecture has been proved for the figure-eight knot (see Andersen and Hansen [1])
and hyperbolic knots with at most seven crossings; see Ohtsuki [30; 31] and Ohtsuki and Yokota [32].

We can also generalize the refined volume conjecture by replacing 2�
p
�1 in e2�

p
�1=N with a complex

number.

Let �u W �1.S3 nH /! SL.2IC/ be an irreducible representation, which is a small deformation of the
holonomy representation �0. Then it defines an incomplete hyperbolic structure of S3 nH . Up to
conjugation, we can assume that �u sends the meridian and preferred longitude of H to�

eu=2 �

0 e�u=2

�
and

�
ev.u/=2 �

0 e�v.u/=2

�
;

respectively. Then we can define the cohomological adjoint Reidemeister torsion Tu.H / (see Porti [34])
and the Chern–Simons invariant CSu;v.u/.�u/; see Kirk and Klassen [17].

The following conjecture was proposed by the author [23]; see also Gukov and Murakami [9] and Dimofte
and Gukov [4].

Conjecture 1.4 (generalized volume conjecture) For a hyperbolic knot H , there exists a neighborhood
U 2C of 0 such that if u 2 U n�

p
�1Q, then we have the asymptotic equivalence

JN .H I e
.uC2�

p
�1/=N / �

N!1

p
��

2 sinh.u=2/
Tu.H /1=2

�
N

uC 2�
p
�1

�1=2
exp

�
Su.H /

uC 2�
p
�1
N

�
;

where Su.H / WD CSu;v.u/.�u/Cu�
p
�1C 1

4
uv.u/.

Algebraic & Geometric Topology, Volume 25 (2025)



The asymptotic behaviors of the colored Jones polynomials 3525

The generalized volume has been proved just for the figure-eight knot; see Yokota and the author [28].
The asymptotic equivalence in Conjecture 1.4 was also proved in the case where 0 < u< � WD arccosh

�
3
2

�
by the author [23].

In the previous paper [24], the author proved the following theorem generalizing the result in [23]:

Theorem 1.5 Let E be the figure-eight knot. For a real number u with 0<u< � and a positive integer p,
we have

JN .E I e
.uC2p�

p
�1/=N /

�
N!1

Jp.E I e
4N�2=.uC2p�

p
�1//

p
��

2 sinh
�
1
2
u
�Tu.E /1=2� N

uC 2p�
p
�1

�1=2
exp

�
Su.E /

uC 2p�
p
�1
N

�
:

Note that in the case of the figure-eight knot, we have

Tu.E /D
2p

.2 coshuC1/.2 coshu�3/
;

Su.E /D Li2.e�u�'.u//�Li2.e�uC'.u//Cu.'.u/C 2�
p
�1/;

where we put
'.u/ WD log

�
coshu� 1

2
�
1
2

p
.2 coshuC 1/.2 coshu� 3/

�
;

and Li2.z/ WD �
R z
0 log.1� x/=x dx is the dilogarithm function.

So it is impossible to extend Theorem 1.5 to the case where u D � because Tu.E / is not defined.
Topologically/geometrically speaking, the corresponding hyperbolic structure of the figure-eight knot
complement collapses at uD �.

On the other hand, for the figure-eight knot, we have the following theorems:

Theorem 1.6 (the author [21]) If � 2C satisfies the inequality jcosh � � 1j< 1
2

and jIm �j< 1
3
� , then

lim
N!1

JN .E I e
�=N /D

1

�.E I e� /
;

where �.KI t / is the Alexander polynomial of a knot K.

Theorem 1.7 (Hikami and the author [11]) If � D �, then the colored Jones polynomial JN .E I e�=N /
grows polynomially. More precisely,

JN .E I e
�=N / �

N!1

�
�
1
3

�
32=3

�
N

�

�2=3
;

where �.x/ is the gamma function.

Here we will extend Theorem 1.5 to the case uD �.

Algebraic & Geometric Topology, Volume 25 (2025)
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Theorem 1.8 Let E be the figure-eight knot , and � WD �C 2p�
p
�1 with � WD arccosh

�
3
2

�
and p a

positive integer. Then we have the asymptotic equivalence

JN .E I e
�=N / �

N!1
Jp.E I e

4�2N=�/
�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
exp

�
S�.E /

�
N

�
;

where S�.E / WD 2��
p
�1, and we put �1=3 WD j�j1=3earctan.2p�=�/

p
�1=3.

As a corollary, we obtain a similar result for JN .E I e�
0=N / with � 0 WD ��C 2p�

p
�1.

Corollary 1.9 We have

JN .E I e
�0=N / �

N!1
Jp.E I e

4�2N=�0/
�
�
1
3

�
e�
p
�1=6

31=6

�
N

� 0

�2=3
exp

�
S��.E /

� 0
N

�
;

where we put S��.E / WD �2��
p
�1.

See Section 6 for a topological interpretation of Su.E / for juj � �. It is defined to be

CSu;v.u/.�u/Cu�
p
�1C

1

4
uv.u/;

where
CSu;v.u/.�u/

is the Chern–Simons invariant of a nonabelian representation �u W �1.S3 n E /! SL.2IC/.

Remark 1.10 Since the highest-degree term of the Laurent polynomial Jp.E I q/ is qp.p�1/, we have
Jp.E I e

4�2N=�/ �
N!1

e4p.p�1/�
2N=� . So we also have

JN .E I e
�=N / �

N!1

�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
exp

�
4p2�2

�
N

�
;

because 2��
p
�1=�C 4p.p� 1/�2=� D 4p2�2=�C 2�

p
�1. A similar result holds for � 0.

There are two difficulties in proving Theorem 1.8.

The first one is that when we apply the saddle point method to the integral that approximates JN .E I e�=N /,
the saddle point is of order two, that is, it looks like the saddle point of Re z3; see Figure 1.

To approximate the colored Jones polynomial by an integral as above, we use a quantum dilogarithm
function, which converges to a function described by the dilogarithm function. However, the second
difficulty is that our saddle point is on the boundary of the region of convergence. So we need to extend
the domain of definition of the quantum dilogarithm slightly by using a functional identity.

The paper is organized as follows. In Section 2, we define the quantum dilogarithm and extend it as we
require. In Section 3, we express the colored Jones polynomial as a sum of the terms described by the

Algebraic & Geometric Topology, Volume 25 (2025)
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Figure 1: Contour plots of the functions Re z3 (left) and Re z2 (right) around their saddle points.
The saddle point O of Re z3 is of order two, and that of Re z2 is of order one.

quantum dilogarithm. To approximate the sum by an integral, we use the Poisson summation formula in
Section 4. Then in Section 5 we use the saddle point method to obtain the asymptotic formula, proving
Theorem 1.8. Appendices A and B are devoted to proofs of the Poisson summation formula and the saddle
point method, respectively. In Appendix C, we give some computer calculations about the asymptotic
behavior of JN .S I e.˙Q�C2�

p
�1/=N / for the stevedore knot S , where Q� WD log 2. Since we know that

e˙� (e˙Q� , respectively) are zeros of the Alexander polynomial of the figure-eight knot (the stevedore
knot, respectively), we try to generalize Theorem 1.8 to another knot in vain.

Acknowledgments The author is supported by JSPS KAKENHI grants JP20K03601, JP22H01117, and
JP20K03931.

2 Quantum dilogarithm

In this section, we fix a complex number 
 with Re 
 > 0 and Im 
 < 0. We will introduce a quantum
dilogarithm [6]. See also [1; 15; 30].

We put

(2-1) TN .z/ WD
1

4

Z
_
R

e.2z�1/x

x sinh.x/ sinh.
x=N/
dx

for an integer N > j
 j=� , where
_
R WD .�1;�1�[fw 2C j jwj D 1; Imw� 0g[ Œ1;1/ with orientation

from �1 to1. Note that
_
R avoids the poles of the integrand. We can prove that the integral above

converges if �Re 
=.2N / < Re z < 1CRe 
=.2N /.

Lemma 2.1 The integral in the right side of (2-1) converges if �Re 
=.2N / < Re z < 1CRe 
=.2N /.

Algebraic & Geometric Topology, Volume 25 (2025)
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Proof First note that

sinh.as/ �
s!1

1
2
eas and sinh.as/ �

s!�1
�
1
2
e�as;

for a complex number a with Re a > 0. So we have

e.2z�1/x

x sinh.x/ sinh.
x=N/
�

x!1

4

x
exp..2z� 2� 
=N/x/;

e.2z�1/x

x sinh.x/ sinh.
x=N/
�

x!�1
�
4

x
exp..2zC 
=N/x/;

since Re 
 > 0.

Therefore if �Re 
=.2N / < Re z < 1CRe 
=.2N /, the integral converges.

Thus TN .z/ is a holomorphic function in the region fz 2C j �Re 
=.2N / < Re z < 1CRe 
=.2N /g.

We will study properties of TN .z/, first introducing three related functions:

Definition 2.2 For a complex number z with 0 < Re z < 1, we put

L0.z/ WD
Z
_
R

e.2z�1/x

sinh.x/
dx; L1.z/ WD �

1

2

Z
_
R

e.2z�1/x

x sinh.x/
dx; L2.z/ WD

�
p
�1

2

Z
_
R

e.2z�1/x

x2 sinh.x/
dx:

In a similar way to the proof of Lemma 2.1, we can prove that the three integrals above converge if
0 < Re z < 1. The functions above can be expressed in terms of well-known functions.

Lemma 2.3 [27, Lemma 2.5] We have the following formulas:

L0.z/D
�2�
p
�1

1� e�2�
p
�1z

;(2-2)

L1.z/D
�

log.1� e2�
p
�1z/ if Im z � 0;

�
p
�1.2z� 1/C log.1� e�2�

p
�1z/ if Im z < 0;

(2-3)

L2.z/D
�

Li2.e2�
p
�1z/ if Im z � 0;

�2
�
2z2� 2zC 1

3

�
�Li2.e�2�

p
�1z/ if Im z < 0:

(2-4)

Here the branch cuts of log and Li2 are .�1; 0� and Œ1;1/, respectively.

The proof is similar to that of [27, Lemma 2.5], and so we omit it.

The function L0.z/ can be extended to the whole complex plane C except for integers. The functions
L1.z/ and L2.z/ can be extended to holomorphic functions on C n ..�1; 0�[ Œ1;1// as follows.

Definition 2.4 For a complex number z in C n ..�1; 0�[ Œ1;1//, we put

L1.z/D
�

log.1� e2�
p
�1z/ if Im z � 0;

�
p
�1.2z� 1/C log.1� e�2�

p
�1z/ if Im z < 0;

(2-5)

L2.z/D
�

Li2.e2�
p
�1z/ if Im z � 0;

�2
�
2z2� 2zC 1

3

�
�Li2.e�2�

p
�1z/ if Im z < 0:

(2-6)

Algebraic & Geometric Topology, Volume 25 (2025)
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Lemma 2.5 When Im z < 0, the functions L1.z/ and L2.z/ can also be written as

L1.z/D log.1� e2�
p
�1z/C2bRe zc�

p
�1; L2.z/D Li2.e2�

p
�1z/�2�2bRe zc.bRe zc�2zC1/;

where bxc is the greatest integer that does not exceed x.

Proof For L1.z/, we have

log.1� e�2�
p
�1z/D logŒ.1� e2�

p
�1z/e�2�

p
�1zC�

p
�1�

D log.1� e2�
p
�1z/� 2�

p
�1zC�

p
�1C 2bRe zc�

p
�1:

The last equality follows because

� if 0 < Re z�bRe zc< 1
2

, then �� < arg.1� e2�
p
�1z/ < 0,

� if 1
2
� Re z�bRe zc< 1, then 0� arg.1� e2�

p
�1z/ < � ,

and so the imaginary part of the rightmost side is between �� and � . Thus we obtain L1.z/ D
log.1� e2�

p
�1z/C 2bRe zc�

p
�1 from (2-3).

For L2.z/, from the well known formula

(2-7) Li2.w�1/D�Li2.w/� 1
6
�2� 1

2
.log.�w//2;

we have

Li2.e�2�
p
�1z/D�Li2.e2�

p
�1z/� 1

6
�2� 1

2
.2�
p
�1z� .2�bRe zcC�/

p
�1/2

D�Li2.e2�
p
�1z/C�2

�
2z2� 2zC 1

3

�
C 2�2bRe zc2� 4�2bRe zczC 2�2bRe zc;

and the result follows.

Corollary 2.6 If Im z < 0, then we have L1.zC 1/�L1.z/D 2�
p
�1 and L2.zC 1/�L2.z/D 4�2z.

Lemma 2.7 The derivatives of Li .z/ for i D 1; 2 are given as follows:

d

dz
L2.z/D�2�

p
�1L1.z/;(2-8)

d

dz
L1.z/D�L0.z/D

2�
p
�1

1� e�2�
p
�1z

:(2-9)

Proof The first equality follows from the well-known equality .d=dw/Li2.w/D� log.1�w/=w. The
second one also follows easily.

Now we will show three identities expressing the difference TN .zC a/�TN .z/ in terms of L1.

Lemma 2.8 If jRe zj< Re 
=.2N /, then

(2-10) TN .z/�TN .zC 1/D L1
�
N



zC

1

2

�
:

Remark 2.9 Since �Re 
=.2N /<Re z <Re 
=.2N / and 1�Re 
=.2N /<Re.zC1/<1CRe 
=.2N /,
both z and zC 1 are in the domain of TN .
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We will check that Nz=
 C 1
2

is in C n ..�1; 0�[ Œ1;1//, the domain of L1.

If not, then .N=
/zC 1
2
D s for s � 0 or s � 1. Putting s0 WD s� 1

2
, we have z D .
=N /s0 with js0j � 1

2
,

which implies jRe zj � Re 
=.2N /, a contradiction.

Proof By definition, we have

TN .z/�TN .zC 1/D
1

4

Z
_
R

e.2z�1/x�e.2zC1/x

x sinh x sinh.
x=N/
dx D�

1

2

Z
_
R

e2zx

x sinh.
x=N/
dx:

Then setting y WD 
x=N , this equals

�
1

2

Z
_
R0

e2Nzy=


y sinhy
dy D�

1

2

Z
_
R

e2Nzy=


y sinhy
dy D L1

�
N



zC

1

2

�
;

where
_
R0 is obtained from

_
R by multiplying by 
=N . The last equality follows since there are no poles

of 1=.y sinhy/, that is, integer multiples of �
p
�1 between

_
R and

_
R0.

Lemma 2.10 If 0 < Re z < 1, then

(2-11) TN

�
z�




2N

�
�TN

�
zC




2N

�
D L1.z/:

Proof From the definition, we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D
1

4

Z
_
R

e.2z�
=N�1/x�e.2zC
=N�1/x

x sinh x sinh.
x=N/
dx

D�
1

2

Z
_
R

e.2z�1/x

x sinh x
dx D L1.z/:

The third one is a little tricky.

Lemma 2.11 If jRe zj< Re 
=N < 1, then

(2-12) TN

�
zC1�




2N

�
�TN

�
zC




2N

�
D

8<:
L1.z/�L1..N=
/z/ if Re z � 0 and z ¤ 0;
L1.zC 1/�L1..N=
/zC 1/ if Re z < 0;
log..
=N // if z D 0:

Remark 2.12 If jRe zj< Re 
=N < 1, then 1� 3Re 
=.2N / < Re.zC 1� 
=.2N // < 1CRe 
=.2N /
and �Re 
=.2N / < Re.zC 
=.2N // < 3Re 
=.2N /, and so both zC 1� 
=.2N / and zC 
=.2N / are
in the domain of TN .

We will check that the arguments in the right-hand side are in C n ..�1; 0�[ Œ1;1//, the domain of L1.

� Suppose 0� Re z and z ¤ 0. Since Re z < Re 
=N , z is in the domain of L1 if N is sufficiently large.
Suppose for a contradiction that .N=
/z is not in the domain of L1. Then .N=
/z 2 .�1; 0�[ Œ1;1/
and so .N=
/z D s for s � 1 or s � 0. If s � 0, then Re z D s Re 
=N � 0 and so z D s D 0, which is a
contradiction. If s � 1, then Re z � s Re 
=N � Re 
=N , which is also a contradiction.
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� Suppose Re z < 0. Then zC 1 is in the domain of L1 because 1�Re 
=N < Re.zC 1/ < 1. Suppose
for a contradiction that Nz=
 C 1 is not in the domain of L1. Then .N=
/zC 1D s for s � 0 or s � 1.
Thus Re z D Re..s� 1/
=N / and so we have Re z � �Re 
=N , which is impossible.

Thus the arguments in the right-hand side are in the domain of L1.

Proof We first assume that Re z > 0. Then from Lemmas 2.10 and 2.8 we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D L1.z/; TN

�
zC 1�




2N

�
�TN

�
z�




2N

�
D�L1

�
N



z

�
;

and the equality follows. Note that �Re 
=.2N / < Re.z� 
=.2N // < Re 
=.2N / and so we can apply
Lemma 2.8 to the second equality. Similarly, if Re z < 0, we have

TN

�
zC1�




2N

�
�TN

�
zC1C




2N

�
DL1.zC1/; TN

�
zC1C




2N

�
�TN

�
zC




2N

�
D�L1

�
N



zC1

�
;

and the equality also holds.

When Re z D 0, put z WD y
p
�1 for y 2R n f0g and consider the limit

lim
"!0

�
TN

�
y
p
�1C 1�




2N
C "

�
�TN

�
y
p
�1C




2N
C "

��
:

Since TN is a holomorphic function in �Re 
=.2N / < Re z < 1CRe 
=.2N /, the limit above coincides
with the left-hand side of (2-10). From the result above, considering the limit from the right, we have

TN

�
y
p
�1C 1�




2N

�
�TN

�
y
p
�1C




2N

�
D lim
"&0

�
TN

�
y
p
�1C 1�




2N
C "

�
�TN

�
y
p
�1C




2N
C "

��
D lim
"&0

�
L1.y

p
�1C "/�L1

�
N



.y
p
�1C "/

��
D L1.y

p
�1/�L1

�
N



.y
p
�1/

�
if y ¤ 0, because we extend L1.z/ to C n ..�1; 0�[ Œ1;1//. Let us confirm that the limit from the left
gives the same answer. We have

lim
"%0

�
L1.y

p
�1C "C 1/�L1

�
N



.y
p
�1C "/C 1

��
D L1.y

p
�1C 1/�L1

�
N



y
p
�1C 1

�
;

which coincides with L1.y
p
�1/�L1..N=
/.y

p
�1// if y ¤ 0 from Lemma 2.5, noting that

Im..N=
/y
p
�1/DNy Re 
=j
 j2

has the same sign as y.

Now, we consider the case where z D 0. Since Im 
 < 0, we have Im.N=
/" > 0 for " > 0. Thus

(2-13) lim
"&0

�
L1."/�L1

�
N



"
��
D lim
"&0

.log.1� e2�
p
�1"/� log.1� e2N"�

p
�1=
 //:
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Figure 2: The region (2-14) is between the two thick dotted lines minus the two red lines `C0 and `�1 .

Since we have that lim"&0 arg.1� e2�
p
�1"/ D �1

2
� , and �� < arg.1� e2N"�

p
�1=
 / < 0 because

Im.1� e2N"�
p
�1=
 / < 0, (2-13) turns out to be

lim
"&0

log 1�e2�
p
�1"

1�e2N"�
p
�1=


D log
�



N

�
by l’Hôpital’s rule,

Just for safety, we will check the other limit, lim"%0.L1."C1/�L1..N=
/"C1//. Since Im.N"=
C1/<0
when " < 0, from Lemma 2.5

lim
"%0

�
L1."C 1/�L1

�
N



"C 1

��
D lim
"%0

�
log.1� e2�

p
�1"/� log.1� e2N"�

p
�1=
 /� 2�

p
�1
j

Re
�
N



"
�
C 1

k�
D lim
"%0

log 1�e2�
p
�1"

1�e2N"�
p
�1=


D log
�



N

�
;

where the second equality follows since lim"%0 arg.1� e2�
p
�1"/D 1

2
� , 0 < arg.1� e2N"�

p
�1=
 / < �

because Im.1� e2N"�
p
�1=
 / > 0, and lim"%0bRe.N"=
/C 1c D 0.

We use Lemma 2.8 to extend the function TN to the region

(2-14) fz 2C j �1 < Re z < 2g n .`C0 [ `
�
1 /;

where

`C0 WD
n
z 2C

ˇ̌
zD s
 with � 1

Re 

< s ��

1

2N

o
; `�1 WD

n
z 2C

ˇ̌
zD 1C s
 with 1

2N
� s <

1

Re 


o
:

See Figure 2. Note that TN is already defined for z with �
=.2N / < Re z < 1C 
=.2N /.

If �1 < Re z � �Re 
=.2N /, then we use (2-10) to define

(2-15) TN .z/ WD TN .zC 1/CL1
�
N



zC

1

2

�
;
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Figure 3: The region (2-17) is between the two thick dotted lines minus the two red lines `C0 and `�0 .

noting that zC 1 is in the domain of TN . For the argument of L1, see Remark 2.13 below. Similarly, if
1CRe 
=.2N /� Re z < 2, we define

(2-16) TN .z/ WD TN .z� 1/�L1
�
N



.z� 1/C

1

2

�
;

noting that z� 1 is in the domain of TN . For the argument of L1, see Remark 2.13 below.

Remark 2.13 Recall that L1.z/ is defined except for z 2 .�1; 0�[ Œ1;1/. Therefore Nz=
 C 1
2

and
N.z� 1/=
 C 1

2
are in the domain of L1 unless

� �1 < Re z � �Re 
=.2N / and .N=
/zC 1
2
D s for s 2 .�1; 0�[ Œ1;1/, or

� 1CRe 
=.2N /� Re z < 2 and .N=
/.z� 1/C 1
2
D t for t 2 .�1; 0/[ .1;1/.

This is equivalent to

� �1 < Re z � �Re 
=.2N / and z D s0
 with js0j � 1=.2N /, or

� 1CRe 
=.2N /� Re z < 2 and z D 1C t 0
 with jt 0j � 1=.2N /.

Since Re 
 > 0, the condition above turns out to be z 2 `C0 or z 2 `�1 .

We will also use TN .z/ to denote the function extended by using (2-15) and (2-16). Then we have:

Lemma 2.14 The function TN .z/ extended as above also satisfies (2-10) for any z in the region

(2-17) fz 2C j �1 < Re z < 1g n .`C0 [ `
�
0 /

with `�0 WD fz 2C j z D s
 with 1=.2N /� s < 1=Re 
g; see Figure 3.

Remark 2.15 As in Remark 2.13, Nz=
 C 1
2

is in the domain of L1 unless z 2 `C0 [ `
�
0 .

Proof If �Re 
=.2N / < Re z < Re 
=.2N /, then (2-10) is proved in Lemma 2.8. If �1 < Re z �
�Re 
=.2N / and Re 
=.2N /� Re z < 1, then we define TN by (2-15) and (2-16), respectively, so that
(2-10) holds.

Lemma 2.16 The function TN .z/ defined as above is holomorphic in the region (2-14).
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Proof From (2-1), TN .z/ is holomorphic in fz 2C j �Re 
=.2N /<Re z < 1CRe 
=.2N /g. Therefore
from the definition using (2-15) and (2-16), TN .z/ is holomorphic in the disjoint strips�

z 2C j �1 < Re z < �
Re 

2N

�
t

�
z 2C j 1C

Re 

2N

< Re z < 2
�
:

So we need to confirm that TN .z/ is holomorphic for z with Re z D�Re 
=.2N / or 1CRe 
=.2N /.

Let B be an open disk centered at z (where Re zD�Re 
=.2N /) with radius less than Re 
=.2N /. Then
for w 2 B with Rew � �Re 
=.2N /, we have

TN .w/D TN .wC 1/CL1
�
N



wC

1

2

�
from (2-15). On the other hand, for w 2 B with Rew > �Re 
=.2N /, TN .w/ is defined by using
(2-1). However, from Lemma 2.8, this coincides with TN .wC 1/CL1

�
.N=
/wC 1

2

�
. Therefore TN is

holomorphic in this case.

Similarly, we can prove the holomorphicity of TN for the other case.

Let � be the region defined as

(2-18) � WD

�
z 2C

ˇ̌̌
�1C

Re 

2N

< Re z < 2�
Re 

2N

�
n .�C0 [�

C
1 /;

where we put

�C0 WD

�
z 2C

ˇ̌̌
�1C

Re 

2N

< Re z � 0; Im z � 0; and Im
�
z




�
� 0

�
;

��1 WD

�
z 2C

ˇ̌̌
1� Re z < 2�

Re 

2N

; Im z � 0; and Im
�
z�1




�
� 0

�
:

See Figure 4. Note that � is contained in the region (2-14) because

`C0 \

�
z 2C

ˇ̌̌
�1C

Re 

2N

< Re z < 2�
Re 

2N

�
and

`�1 \

�
z 2C

ˇ̌̌
�1C

Re 

2N

< Re z < 2�
Re 

2N

�
;

are on the upper side of �C0 and the lower side of ��1 , respectively.

Lemma 2.17 The function TN .z/ extended by using (2-10) satisfies (2-11) for z 2�.

Remark 2.18 The left-hand side of (2-11) is defined for z such that z ˙ 
=.2N / is in the region
(2-14), that is, z ˙ 
=.2N / … `C0 [ `

�
1 . This is equivalent to saying that z is not on the two rays

fs
 2C j s � 0g[f1Cs
 2C j s � 0g. Note that the ray fs
 2C j s � 0g includes the upper edge of �C0 ,
and that the ray f1C s
 2 C j s � 0g includes the lower edge of ��1 . The right-hand side of (2-11) is
defined unless z 2 .�1; 0�[ Œ1;1/.
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Figure 4: The yellow region is �. The green triangles are �C0 and ��1 .

Proof We need to prove (2-11) for z with �1CRe 
=.2N / < Re z � 0 or 1� Re z < 2�Re 
=.2N /.

If �Re 
=.2N / < Re z < 0, from (2-12), we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D TN

�
z�




2N

�
�TN

�
zC 1�




2N

�
CL1.zC 1/�L1

�
N



zC 1

�
D L1

�
N




�
z�




2N

�
C
1

2

�
CL1.zC 1/�L1

�
N



zC 1

�
D L1

�
N



z

�
CL1.zC 1/�L1

�
N



zC 1

�
;

where we use Lemma 2.14 for z�
=.2N / at the second equality. If Im z�0, then Im.z=
/>0 from (2-18).
So L1.zC 1/D L1.z/ and L1.Nz=
 C 1/D L1.Nz=
/ from (2-5), which implies (2-11). If Im z < 0,
then we have Im.Nz=
 C 1/D .N=j
 j2/.Re 
 Im z� Im 
 Re z/ < 0. So L1.zC 1/D L1.z/C 2�

p
�1

and L1.Nz=
 C 1/D L1.Nz=
/C 2�
p
�1 from Corollary 2.6, proving (2-11).

If Re z D 0, then noting that 0 is not included in �, similarly we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D TN

�
z�




2N

�
�TN

�
zC 1�




2N

�
CL1.z/�L1

�
N



z

�
D L1

�
N




�
z�




2N

�
C
1

2

�
CL1.z/�L1

�
N



z

�
D L1.z/:

If Re zD�Re 
=.2N /, then Re.zC
=.2N //D0 and�1<Re.z�
=.2N //D�Re 
=N <�Re 
=.2N /.
Therefore from (2-15) we have

(2-19) TN

�
z�




2N

�
�TN

�
zC




2N

�
D TN

�
z�




2N
C1

�
�TN

�
zC




2N

�
CL1

�
N




�
z�




2N

�
C
1

2

�
D TN

�
z�




2N
C1

�
�TN

�
zC




2N

�
CL1

�
N



z

�
D L1.zC1/�L1

�
N



zC1

�
CL1

�
N



z

�
;
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where the last equality follows from Lemma 2.11 since Re z < 0. If Im z � 0, then Im.z=
/ > 0, and so
(2-19) turns out to be L1.z/. If Im z < 0, then Im.z=
/ < 0. Therefore (2-19) equals

log.1� e2�
p
�1z/� 2�

p
�1D L1.z/

from Lemma 2.5 and Corollary 2.6.

We consider the case where�1CRe 
=.2N /<Re z <�Re 
=.2N /. Note that�1<Re.z˙
=.2N //<0.
Therefore from (2-15) we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D TN

�
z�




2N
C 1

�
�TN

�
zC




2N
C 1

�
CL1

�
N




�
z�




2N

�
C
1

2

�
�L1

�
N




�
zC




2N

�
C
1

2

�
D L1.zC 1/CL1

�
N



z
�
�L1

�
N



zC 1

�
;

where we use (2-11) because 0 < Re.zC 1/ < 1. By the same reason as above, this equals L1.z/.

If 1� Re z < 1CRe 
=.2N /, then from (2-16), we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
D TN

�
z�




2N

�
�TN

�
zC




2N
�1

�
CL1

�
N




�
zC




2N
�1

�
C
1

2

�
D L1.z�1/�L1

�
N



.z�1/

�
CL1

�
N



.z�1/C1

�
;

where we use (2-12) for z � 1 at the second identity, noting 1 …�. If Im z � 0, then Im..z � 1/=
/D
.1=j
 j2/.Im 
.1�Re z/CRe 
 Im z/�0, so the last line equals L1.z/. If Im z <0, then Im..z�1/=
/<0
from the definition of ��1 , and so we have L1.z � 1/ D L1.z/� 2�

p
�1 and L1.N.z � 1/=
 C 1/ D

L1.N.z� 1/=
/C 2�
p
�1 from Corollary 2.6, which implies (2-11).

Lastly, we consider the case where 1CRe 
=.2N /�Re z<2�Re 
=.2N /. Since 1�Re.z˙
=.2N //<2,
from (2-16), we have

(2-20) TN

�
z�




2N

�
�TN

�
zC




2N

�
DTN

�
z�




2N
�1

�
�TN

�
zC




2N
�1

�
�L1

�
N




�
z�




2N
�1

�
C
1

2

�
CL1

�
N




�
zC




2N
�1

�
C
1

2

�
DL1.z�1/�L1

�
N



.z�1/

�
CL1

�
N



.z�1/C1

�
;

using (2-11) at the last equality. If Im z�0, then Im..z�1/=
/D .1=j
 j2/.Im 
.1�Re z/CRe 
 Im z/>0

since Re z>1. So (2-20) equals log.1�e2�
p
�1z/DL1.z/. If Im z<0, then Im..z�1/=
/<0. Therefore

(2-20) becomes
log.1� e2�

p
�1z/C 2�

p
�1D L1.z/

from Lemma 2.5.

Algebraic & Geometric Topology, Volume 25 (2025)



The asymptotic behaviors of the colored Jones polynomials 3537

O
Re

Im

1-n-1+n

2-n

-ni
Im g

Re g i

n

Im g

Re g -     i

D1,n
-

D0,n
+

Figure 5: The yellow region is ��� . The green trapezoids are �C0;� and ��1;� .

Remark 2.19 Even if z 2 Int�C0 [ Int��1 , where Int means the interior, both sides of (2-11) are defined
from Remark 2.18. However, if z 2 Int�C0 , then from the proof above,

TN

�
z�




2N

�
�TN

�
zC




2N

�
D L1.zC 1/CL1

�
N



z

�
�L1

�
N



zC 1

�
D L1.z/� 2�

p
�1;

where the second equality follows from Corollary 2.6 since Im z > 0 and Im.N=
/ < 0. Similarly, if
z 2 Int��1 , we have

TN

�
z�




2N

�
�TN

�
zC




2N

�
DL1.z�1/�L1

�
N



.z�1/

�
CL1

�
N



.z�1/C1

�
DL1.z/�2�

p
�1;

since Im z < 0 and Im..N=
/.z� 1// > 0.

For a real number 0 < � < 1
2

and a positive real number M , we put

(2-21) ��� WD fz 2C j �1C � � Re z � 2� �; jIm zj �M g n .�C0;� [�
�
1;�/;

where we put

�C0;� WD
n
z 2C

ˇ̌
�1C � � Re z < �; Im z > ��; and Im

�
z��




�
< 0

o
;

��1;� WD
n
z 2C

ˇ̌
1� � < Re z � 2� �; Im z < �; and Im

�
z�1C�




�
> 0

o
:

Note that ��� �� if N > Re 
=.2�/. Note also that �C0;� \�
�
1;� D¿ since � < 1

2
; see Figure 5.

We can prove that TN .z/ uniformly converges to N=.2�
p
�1
/L2.z/ in ��� . To do that, we prepare

several lemmas.

Lemma 2.20 Let � and M be positive real numbers with 0 < � < 1
2

. Then

N

2�
p
�1


L2
�
z�




2N

�
�

N

2�
p
�1


L2
�
zC




2N

�
D L1.z/CO.N�2/

Algebraic & Geometric Topology, Volume 25 (2025)



3538 Hitoshi Murakami

as N !1 for z in the region

(2-22) fz 2C j �1C � � Re z � 2� �; jIm zj �M g n .��� [�
C
� /;

where

��� WD fz 2C j �1C � � Re z � �; jIm zj � �g; �C� WD fz 2C j 1� � � Re z � 2� �; jIm zj � �g:

This means that there exists a constant c > 0 that does not depend on z such thatˇ̌̌̌
N

2�
p
�1


L2
�
z�




2N

�
�

N

2�
p
�1


L2
�
zC




2N

�
�L1.z/

ˇ̌̌̌
<

c

N 2

for sufficiently large N .

Proof Note that if z is in the region (2-22), then z˙ 
=.2N / is also in the same region, assuming that
N is large enough. Note also that L1 and L2 are holomorphic there.

Since

L02.z/D�2�
p
�1L1.z/; L002.z/D

4�2

1�e�2�
p
�1z

and L.3/2 .z/D 2�3
p
�1 csc2.�z/

(csc x D 1=sin x is the cosecant of x, as you may know) from Lemma 2.7, we have

L2
�
z˙




2N

�
D L2.z/� 2�

p
�1L1.z/




2N
C

2�2

1� e�2�
p
�1z


2

4N 2

˙
�3
p
�1

3 sin2.�z/

3

8N 3
C

1X
jD4

2�3
p
�1

j Š

d j�3 csc2.�z/
dzj�3

�
˙



2N

�j
if N is large enough that z˙ 
=.2N / is contained in the region (2-22). So

(2-23)
N

2�
p
�1


L2
�
z�




2N

�
�

N

2�
p
�1


L2
�
zC




2N

�
D L1.z/�

1X
kD1

�2

.2kC 1/Š

d2k�2 csc2.�z/
dz2k�2

�



2N

�2k
:

From Lemma 2.21 below, we have

sin2k.�z/
d2k�2 csc2.�z/

dz2k�2
D 2�2k�2

k�1X
jD0

a2k�2;2j cos.2j�z/

with a2k�2;2j > 0 for j D 0; 1; : : : ; k�1 and
Pk�1
jD0 a2k�2;2j D

1
2
.2k�1/Š. Letting L be the maximum

of jcos.z/j in the closure of (2-22), we haveˇ̌̌̌
sin2k.�z/

�2

.2kC 1/Š

d2k�2 csc2.�z/
dz2k�2

�



2N

�2k ˇ̌̌̌
�

�2

.2kC 1/Š
2�2k�2Lk

.2k� 1/Š

2

�
j
 j

2N

�2k
D

L

2.2kC 1/

�
�j
 j

2N

�2k
:
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Let l be the minimum of jsin.�z/j in the closure of the region (2-22). Since the closure is compact and
does not contain the zeros of sin.�z/, we conclude that l > 0. So

N 2
ˇ̌̌ 1P
kD1

�2

.2kC 1/Š

d2k�2 csc2.�z/
dz2k�2

� 


2N

�2k ˇ̌̌
<
L�2j
 j2

8l2

1P
kD1

1

2kC 1

��j
 j
2lN

�2k�2
;

which converges if N > �j
 j=.2l/.

Therefore the right-hand side of (2-23) turns out to be L1.z/CO.N�2/, completing the proof.

Lemma 2.21 Let m be a positive integer. The mth derivative of csc2.�z/ can be expressed as

dm csc2.�z/
dzm

D 2.��/m cscmC2.�z/Pm.z/;

where Pm.z/ is of the form
Pm.z/D

P
0�j�m

j�m .mod 2/

am;j cos.j�z/

with

(i) am;j > 0 for 0� j �m and j �m .mod 2/,

(ii)
P
0�j�m;j�m .mod 2/ am;j D

1
2
.mC 1/Š, and

(iii) am;m D 1.

Proof First of all, recall that csc0.x/D� cos.x/ csc2.x/.

We proceed by induction on m.

For m D 1, since .d=dz/ csc2.�z/ D 2 csc.�z/.�� cos.�z/ csc2.�z// D �2� csc3.�z/ cos.�z/, we
have P1.z/D cos.�z/, which agrees with (i)–(iii).

Suppose that the lemma is true for m. We calculate the .mC1/st derivative by using the inductive
hypothesis for Pm.z/. We have

dmC1 csc2.�z/
dzmC1

D 2.��/m
d

dz
.cscmC2.�z/Pm.z//

D 2.��/m
�
.mC 2/ cscmC1.�z/.�� cos.�z/ csc2.�z//Pm.z/C cscmC2.�z/P 0m.z/

�
D 2.��/m cscmC3.�z/Œ�.mC 2/� cos.�z/Pm.z/C sin.�z/P 0m.z/�

D 2.��/m cscmC3.�z/

�

h
�.mC 2/� cos.�z/

P
0�j�m

j�m .mod 2/

am;j cos.j�z/� sin.�z/
P

0�j�m
j�m .mod 2/

j�am;j sin.j�z/
i

D 2.��/mC1 cscmC3.�z/

�

h
.mC 2/

P
0�j�m

j�m .mod 2/

am;j cos.�z/ cos.j�z/C
P

0�j�m
j�m .mod 2/

jam;j sin.�z/ sin.j�z/
i
:
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Now we will calculate the terms inside the square brackets. We write x WD �z. From the product–sum
identities, we have

sin.x/ sin.jx/D 1
2

cos..j � 1/x/� 1
2

cos..j C 1/x/;

cos.x/ cos.jx/D 1
2

cos..j � 1/x/C 1
2

cos..j C 1/x/:
So we have

(2-24) .mC 2/
P

0�j�m
j�m .mod 2/

am;j cos.x/ cos.jx/C
P

0�j�m
j�m .mod 2/

jam;j sin.x/ sin.jx/

D
1

2

P
0�j�m

j�m .mod 2/

.mC 2/am;j
�
cos..j � 1/x/C cos..j C 1/x/

�
C
1

2

P
0�j�m

j�m .mod 2/

jam;j
�
cos..j � 1/x/� cos..j C 1/x/

�
D
1

2

P
0�j�m

j�m .mod 2/

..mC j C 2/am;j cos..j � 1/x/C .m� j C 2/am;j cos..j C 1/x//

D
1

2

P
�1�k�m�1

k�mC1 .mod 2/

.mCkC3/am;kC1 cos.kx/C 1
2

P
1�k�mC1

k�mC1 .mod 2/

.m�kC3/am;k�1 cos.kx/

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1
2

P
0�k�m�1

k�mC1 .mod 2/

..mC kC 3/am;kC1C .m� kC 3/am;k�1/ cos.kx/

Cam;m cos..mC 1/x/ if m is odd;
1
2

P
0�k�m�1

k�mC1 .mod 2/

..mC kC 3/am;kC1C .m� kC 3/am;k�1/ cos.kx/

Cam;m cos..mC 1/x/C 1
2
.mC 2/am;0 cos.x/ if m is even:

Therefore we obtain the following recursive formula for am;k:

2amC1;k D

�
.mC kC 3/am;kC1C .m� kC 3/am;k�1 if k ¤ 1;
.mC kC 3/am;2C 2.m� kC 3/am;0 if k D 1:

Note that this also holds for k D 0 and k DmC 1 by putting am;�1 D am;mC2 D 0. Then, (i) follows
since m� kC 3� 3, (iii) follows since amC1;mC1 D 1, and (ii) follows since the sum of the coefficients
in the third expression of (2-24) equals

1

2

P
0�j�m

j�m .mod 2/

..mC j C 2/am;j C .m� j C 2/am;j /D .mC 2/
P

0�j�m
j�m .mod 2/

am;j :

For a real number � > 0, we define the region

‰� WD

n
z 2C

ˇ̌
Im z � 0; Im

�
z��




�
� 0

o
[

n
z 2C

ˇ̌
Im z � 0; Im

�
zC�




�
� 0

o
:

See Figure 6.
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1-n
-1+n

Im g

Re g i

Im g

Re g -     i

n
-n

O
Re

Im

Figure 6: The green region is‰� .

Lemma 2.22 There exist positive real numbers c and " such thatˇ̌̌̌
N

2�
p
�1


L2.z/�
N

2�
p
�1


L2.zC 1/�L1
�
N



zC

1

2

�ˇ̌̌̌
< ce�"N

for any z in the region Cn‰� if N is sufficiently large.

Remark 2.23 The left-hand side is defined unless Im z D 0 or z D s
 (jsj � 1=.2N /). Therefore if
z …‰� , then the left-hand side is defined.

Proof Note that Im z ¤ 0 if z …‰� .

First, suppose that Im z > 0.

Since L2.z/D L2.zC1/ from (2-4), we will prove that jL1
�
.N=
/zC 1

2

�
j< ce�"N for some c > 0 and

" > 0. Note that Im.z=
/ > Im.�=
/D�� Im 
=j
 j2 > 0 because z …‰� . So

L1
�
N



zC

1

2

�
D log.1C e2N�

p
�1z=
 /

from (2-3). Now since log.1C x/D
P1
kD1.�1/

k�1xk=k for jxj< 1, one has

jlog.1C ea/j �
1X
kD1

ek Rea

k
<

1X
kD1

ek Rea
D

eRea

1�eRea

if Re a < 0. Since Re.2N�
p
�1z=
/D�2N� Im.z=
/ < 2N�� Im 
=j
 j2 < 0, we have

jlog.1C e2N�
p
�1z=
 /j<

e2N�� Im
=j
 j2

1�e2N�� Im
=j
 j2
< ce�"N

where we put " WD �2�� Im 
=j
 j2 > 0 and c WD 1=.1� e�"/ > 0.

Next, suppose that Im z < 0.

From Corollary 2.6, we have

N

2�
p
�1


L2.z/�
N

2�
p
�1


L2.zC 1/D
2N�

p
�1z



:
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Since z …‰� , we have Im.z=
/ < � Im.�=
/D � Im 
=j
 j2 < 0. Thus from (2-3) we obtain

L1
�
N



zC

1

2

�
D log.1C e�2N�

p
�1z=
 /C

2N�
p
�1z



:

Since Re.�2N�
p
�1z=
/D 2N� Im.z=
/ < 2N�� Im 
=j
 j2, we finally haveˇ̌̌̌

N

2�
p
�1


L2.z/�
N

2�
p
�1


L2.zC 1/�L1
�
N



zC

1

2

�ˇ̌̌̌
D jlog.1C e�2N�

p
�1z=
 /j< ce�"N

as above, completing the proof.

The following lemma is similar to [24, Lemma 2.4] and the proof is omitted.

Lemma 2.24 Let � and M be positive real numbers. Then there exists a constant c > 0 such thatˇ̌̌̌
TN .z/�

N

2�
p
�1


L2.z/
ˇ̌̌̌
D
c

N

for z in the region fz 2 C j � � Re z � 1� �; jIm zj �M g if N is sufficiently large , where c does not
depend on z.

Now we can prove the following proposition:

Proposition 2.25 Suppose that � < 1
4

. We have

TN .z/D
N

2�
p
�1


L2.z/CO.N�1/

as N !1 in the region ��� .

Proof We need to prove the proposition for z with �1C � � Re z < � or 1� � < Re z � 2� �.

If z 2��� and �1C � � Re z < ��, we use (2-15). We haveˇ̌̌̌
TN .z/�

N

2�
p
�1


L2.z/
ˇ̌̌̌

D

ˇ̌̌̌
TN .zC 1/CL1

�
N



zC

1

2

�
�

N

2�
p
�1


L2.z/
ˇ̌̌̌

�

ˇ̌̌̌
TN .zC 1/�

N

2�
p
�1


L2.zC 1/
ˇ̌̌̌
C

ˇ̌̌̌
L1
�
N



zC

1

2

�
�

N

2�
p
�1


L2.z/C
N

2�
p
�1


L2.zC 1/
ˇ̌̌̌

DO.1=N/;

where we apply Lemmas 2.24 and 2.22, noting that we can apply Lemma 2.22 because z …‰� .

Algebraic & Geometric Topology, Volume 25 (2025)



The asymptotic behaviors of the colored Jones polynomials 3543

Similarly, if z 2��� and 1C � < Re z � 2� �, using (2-16), we haveˇ̌̌̌
TN .z/�

N

2�
p
�1


L2.z/
ˇ̌̌̌

D

ˇ̌̌̌
TN .z�1/�L1

�
N



.z�1/C

1

2

�
�

N

2�
p
�1


L2.z/
ˇ̌̌̌

�

ˇ̌̌̌
TN .z�1/�

N

2�
p
�1


L2.z�1/
ˇ̌̌̌
C

ˇ̌̌̌
�L1

�
N



.z�1/C

1

2

�
�

N

2�
p
�1


L2.z/C
N

2�
p
�1


L2.z�1/
ˇ̌̌̌

DO.1=N/;

noting that we can apply Lemma 2.22 because z� 1 …‰� .

If z 2��� and �� � Re z < �, we put m WD b2N�=Re 
cC 1. From Lemma 2.17 we have

TN .z/D TN

�
zC




N

�
CL1

�
zC




2N

�
D TN

�
zC

2


N

�
CL1

�
zC

3


2N

�
CL1

�
zC




2N

�
D � � � D TN

�
zC

m


N

�
C

mX
jD1

L1
�
zC

.2j � 1/


2N

�
:

Now since m � 2N�=Re 
 C 1 < mC 1, we have � < Re.z Cm
=N/ < 3� C Re 
=N < 1 � � if
N > Re 
=.1� 4�/, and so we can apply Lemma 2.24 to zCm
=N . We haveˇ̌̌̌
TN .z/�

N

2�
p
�1


L2.z/
ˇ̌̌̌

D

ˇ̌̌̌
TN

�
zC

m


N

�
�

N

2�
p
�1


L2.z/C
mX
jD1

L1
�
zC

.2j � 1/


2N

�ˇ̌̌̌

�

ˇ̌̌̌
TN

�
zC

m


N

�
�

N

2�
p
�1


L2
�
zC

m


N

�ˇ̌̌̌
C

ˇ̌̌̌
N

2�
p
�1


L2
�
zC

m


N

�
�

N

2�
p
�1


L2.z/C
mX
jD1

L1
�
zC

.2j � 1/


2N

�ˇ̌̌̌

D

ˇ̌̌̌
N

2�
p
�1


L2
�
zC

m


N

�
�

N

2�
p
�1


L2.z/C
mX
jD1

L1
�
zC

.2j � 1/


2N

�ˇ̌̌̌
CO.1=N/:

Since

L2
�
zC

m


N

�
�L2.z/D

mX
jD1

�
L2
�
zC

j 


N

�
�L2

�
zC

.j � 1/


N

��
;

we have

(2-25)
ˇ̌̌̌

N

2�
p
�1


L2
�
zC

m


N

�
�

N

2�
p
�1


L2.z/C
mX
jD1

L1
�
zC

.2j � 1/


2N

�ˇ̌̌̌

�

mX
jD1

ˇ̌̌̌
N

2�
p
�1


L2
�
zC

j 


N

�
�

N

2�
p
�1


L2
�
zC

.j � 1/


N

�
CL1

�
zC

.2j � 1/


2N

�ˇ̌̌̌
:
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We use Lemma 2.20 to conclude that each summand of the right-hand side of (2-25) is less than c=N 2

for c > 0. Note that c is independent of j . Since mD b2N�=Re 
cC 1, the right-hand side of (2-25) is
less than

mc

N 2
�

�
2N�

Re 

C 1

�
c

N 2
�
c0

N
if we put c0 WD .2c�=Re 
 C 1/.

If 1� � < Re z � 1C �, from Lemma 2.17 we have

TN .z/D TN

�
z�




N

�
�L1

�
z�




2N

�
D TN

�
z�

2


N

�
�L1

�
z�

3


2N

�
�L1

�
z�




2N

�
D � � � D TN

�
z�

m


N

�
�

mP
jD1

L1
�
z�

.2j � 1/


2N

�
;

where we put m WD b2N�=Re 
c C 1 as before. Since � < Re.z �m
=N/ < 1� � as before, we can
prove the proposition similarly.

3 The colored Jones polynomial

In this section, we show several results following [24].

First of all, we recall the following formula due to Habiro [10, page 36, (1)] and Le [18, 1.2.2 Example,
page 129] (see also [20, Theorem 5.1]):

(3-1) JN .E I q/D
N�1P
kD0

kQ
lD1

.q.N�l/=2� q�.N�l/=2/.q.NCl/=2� q�.NCl/=2/

D

N�1P
kD0

q�kN
kQ
lD1

.1� qN�l/.1� qNCl/:

For a positive integer p, we put � WD �C2p�
p
�1, where � WD arccosh

�
3
2

�
. We will study the asymptotic

behavior of

JN .E I e
�=N /D

N�1P
kD0

kQ
lD1

e�k�.1� e.N�l/�=N /.1� e.NCl/�=N /

as N !1.

We can express JN .E I e�=N / in terms of TN , putting 
 WD �=.2�
p
�1/, similarly to [24, Section 3, (3.2)].

We have

(3-2) JN .E I e
�=N /D .1� e�4pN�

2=�/
p�1P
mD0

�
p̌;m

P
mN=p<k�.mC1/N=p

exp
�
NfN

�
2kC1

2N
�
m




���
since 2 sinh

�
1
2
�
�
D 1, where we put

p̌;m WD e
�4mpN�2=�

mQ
jD1

.1� e4.p�j /N�
2=�/.1� e4.pCj /N�

2=�/;(3-3)

fN .z/ WD
1

N
TN .
.1� z/�pC 1/�

1

N
TN .
.1C z/�p/� �z�

2p�
p
�1



:(3-4)
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Lemma 3.1 The function fN is defined in the region

‚0 WD

�
z 2C

ˇ̌̌
�
1

p
C

1

2N
<

Im.�z/
2p�

<
2

p
�

1

2N

�
n .rC0 [r

�
0 [
xr
C
0 [
xr
�
0 /;

where we put

r
C
0 WD

�
z 2C

ˇ̌̌
�
1

p
C

1

2N
<

Im.�z/
2p�

� 0; Re.�z/� �; Im z � �
2p��

j�j2

�
;

r
�
0 WD

�
z 2C

ˇ̌̌
1

p
�

Im.�z/
2p�

<
2

p
�

1

2N
; Re.�z/� �; Im z �

2.1�p/��

j�j2

�
;

xr
C
0 WD

�
z 2C

ˇ̌̌
�
1

p
C

1

2N
<

Im.�z/
2p�

� 0; Re.�z/� ��; Im z �
2p��

j�j2

�
;

xr
�
0 WD

�
z 2C

ˇ̌̌
1

p
�

Im.�z/
2p�

<
2

p
�

1

2N
; Re.�z/� ��; Im z �

2.pC 1/��

j�j2

�
:

See Figure 7, where we put

K WD
n
z 2C j z D

2�
p
�1

�
t � 1; t 2R

o
D fz 2C j Re.�z/D��g;

K WD
n
z 2C j z D

2�
p
�1

�
t C 1; t 2R

o
D fz 2C j Re.�z/D �g;

Ls WD fz 2C j Im.�z/D 2s�g:

Proof Recall that the function TN is defined in �; see (2-18).

Since 
 D �=.2�
p
�1/D .�C 2p�

p
�1/=.2�

p
�1/, we have Re 
 D p, Im 
 D��=.2�/, and

Re.
.1˙ z//D p˙
Im.�z/
2�

; Im.
.1˙ z//D�
�

2�
�

Re.�z/
2�

:

Therefore

�1C
p

2N
< Re.
.1� z/�pC 1/ < 2�

p

2N
() �

1

p
C

1

2N
<

Im.�z/
2p�

<
2

p
�

1

2N

() �1C
p

2N
< Re.
.1C z/�p/ < 2�

p

2N
:

We can also see that the condition 
.1� z/�pC 1 2 �C0 is equivalent to z 2 r�0 , that the condition

.1� z/�pC 1 2��1 is equivalent to z 2 rC0 , that the condition 
.1C z/�p 2�C0 is equivalent to
z 2 xrC0 , and that the condition 
.1C z/�p 2��1 is equivalent to z 2 xr�0 .

We would like to approximate fN .z/ by using L2. From Proposition 2.25 and (3-4), the series of functions
ffN .z/g converges uniformly to

F.z/ WD
1

�

�
L2
�
�.1� z/

2�
p
�1
�pC 1

�
�L2

�
�.1C z/

2�
p
�1
�p

��
� �zC

4p�2

�
in the region

(3-5)
�
z 2C

ˇ̌̌
�
1

p
C
�

p
�

Im.�z/
2p�

�
2

p
�
�

p
; jRe.�z/j � 2M� � �

�
n .rC0;� [r

�
0;� [

xr
C
0;� [

xr
�
0;�/;
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O
Re

Im

1

-1

2p i
k

L0 L1

K

K

1
p

2
p

1
p-

L-1 L2

2(p+1)kp

|x|2 i
2pkp

|x|2 i

2pkp

|x|2- i

2(1-p)kp

|x|2 i

Ñ0
+

Ñ0
-

Ñ0
+

Ñ0
-

Figure 7: The function fN is defined in the yellow region ‚0. The green triangles are rC0 , r�0 ,
xr
C
0 , and xr�0 .

where we put

r
C
0;� WD

�
z 2C

ˇ̌̌
�
1

p
C
�

p
�

Im.�z/
2p�

<
�

p
; Re.�z/ < �C 2��; Im z < �

2.p� �/��

j�j2

�
;

r
�
0;� WD

�
z 2C

ˇ̌ 1
p
�
�

p
<

Im.�z/
2p�

�
2

p
�
�

p
; Re.�z/ > � � 2��; Im z >

2.1�p� �/��

j�j2

�
;

xr
C
0;� WD

�
z 2C

ˇ̌
�
1

p
C
�

p
�

Im.�z/
2p�

<
�

p
; Re.�z/ < ��C 2��; Im z <

2.pC �/��

j�j2

�
;

xr
�
0;� WD

�
z 2C

ˇ̌ 1
p
�
�

p
<

Im.�z/
2p�

�
2

p
�
�

p
; Re.�z/ > �� � 2��; Im z >

2.pC 1� �/��

j�j2

�
:

Lemma 3.2 The series of functions ffN .z/g uniformly converges to F.z/ in the region (3-5).

Proof In a way similar to the proof of Lemma 3.1, we have

�1C � < Re.
.1� z/�pC 1/ < 2� � () �
1

p
C
�

p
<

Im.�z/
2p�

<
2

p
�
�

p

() �1C � < Re.
.1C z/�p/ < 2� �;

jIm.
.1˙ z//j �M () � � 2M� ��Re.�z/� �C 2M�;
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and

.1� z/�pC 1 2�C0;� () z 2 r�0;� ; 
.1� z/�pC 1 2��1;� () z 2 rC0;� ;


.1C z/�p 2�C0;� () z 2 xrC0;� ; 
.1C z/�p 2��1;� () z 2 xr�0;� :

Then the lemma follows from Proposition 2.25.

We can express F.z/ in terms of Li2 for certain cases.

Lemma 3.3 If z is in between K and K, or between L0 and L1, then we have

(3-6) F.z/D
1

�
Li2.e��.1Cz//�

1

�
Li2.e��.1�z//C �z� 2�

p
�1:

Moreover , if z is between L0 and L1, we also have

(3-7) F.z/D
1

�
Li2.e�.1�z//�

1

�
Li2.e�.1Cz//� �zC

4p�2

�
:

Proof Since Im.�.1˙z/=.2�
p
�1//D .�1=2�/.�˙Re.�z//, we see that Im.�.1Cz/=.2�

p
�1//< 0

and Im.�.1� z/=.2�
p
�1// < 0 if z is between K and K. Thus, in this case, we have (3-6) from (2-6).

Next, we consider the case where z is between L0 and L1, that is, where 0 < Im.�z/ < 2� .

We have Re.�.1 � z/=.2�
p
�1// � p C 1 D 1 � Im.�z/=.2�/ and Re.�.1 C z/=.2�

p
�1// � p D

Im.�z/=.2�/, both of which are between 0 and 1. So, from Lemmas 2.3 and 2.5, we have (3-7).

Now we will show that (3-6) also holds in this case.

From (2-7), we have

Li2.e�.1�z//D�Li2.e��.1�z//� 1
6
�2� 1

2
.log.�e��.1�z///2

D�Li2.e��.1�z//� 1
6
�2� 1

2
.��.1� z/C .2p� 1/�

p
�1/2

since Im �.1� z/D 2p� � Im.�z/, which is between 2.p� 1/� and 2p� when 0 < Im.�z/ < 2� , that
is, when z is between L0 and L1. Similarly,

Li2.e�.1Cz//D�Li2.e��.1Cz//� 1
6
�2� 1

2
.log.�e��.1Cz///2

D�Li2.e��.1Cz//� 1
6
�2� 1

2
.��.1C z/C .2pC 1/�

p
�1/2

since Im �.1C z/D 2p� C Im.�z/, which is between 2p� and 2.pC 1/� . Thus, from (3-7), we obtain
(3-6), completing the proof.

The derivatives of F.z/ are given as follows from Lemma 2.7:

F 0.z/D L1
�
�.1� z/

2�
p
�1
�pC 1

�
CL1

�
�.1C z/

2�
p
�1
�p

�
� �;(3-8)

F 00.z/D
�.e��z � e�z/

3� e�z � e��z
;(3-9)

F .3/.z/D
�2.4� 3.e�zC e��z//

.3� e�z � e��z/2
:(3-10)
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If z is between K and K, or between L0 and L1, we have

(3-11) F 0.z/D log.1� e����z/C log.1� e��C�z/C � D log.3� e�z � e��z/

from Lemma 3.3, where the second equality follows from the same reason as [24, (4.2)].

Put �0 WD 2�
p
�1=� D .2�=j�j2/.2p� C �

p
�1/. Since Re.��0/D 0 and Im.��0/D 2� , we conclude

that �0 is on L1 and between K and K. From (3-6), (3-11), (3-9), and (3-10) we have

(3-12) F.�0/D
4p�2

�
; F 0.�0/D 0; F 00.�0/D 0; F .3/.�0/D�2�

2:

4 The Poisson summation formula

In (3-2), we put 'm;N .z/ WD fN .z� 2m�
p
�1=�/ for mD 0; 1; 2; : : : ; p� 1 so that

(4-1) JN .E I e
�=N /D .1� e�4pN�

2=�/

p�1X
mD0

�
p̌;m

X
mN=p<k�.mC1/N=p

exp
�
N'm;N

�
2kC1

2N

���
:

Note that the function 'm;N .z/ is defined in the region

‚m WD

�
z 2C

ˇ̌̌
�
1

p
C

1

2N
<

Im.�z/
2p�

<
2

p
�

1

2N

�
n .rCm [r

�
m[
xr
C
m [
xr
�
m/

from Lemma 3.1, where we put

r
C
m WD

�
z 2C

ˇ̌̌
m�1

p
C

1

2N
<

Im.�z/
2p�

�
m

p
; Re.�z/� �; Im z �

2.m�p/��

j�j2

�
;

r
�
m WD

�
z 2C

ˇ̌̌
mC1

p
�

Im.�z/
2p�

<
mC2

p
�

1

2N
; Re.�z/� �; Im z �

2.m�pC 1/��

j�j2

�
;

xr
C
m WD

�
z 2C

ˇ̌̌
m�1

p
C

1

2N
<

Im.�z/
2p�

�
m

p
; Re.�z/� ��; Im z �

2.mCp/��

j�j2

�
;

xr
�
m WD

�
z 2C

ˇ̌̌
mC1

p
�

Im.�z/
2p�

<
mC2

p
�

1

2N
; Re.�z/� ��; Im z �

2.mCpC 1/��

j�j2

�
:

We would like to show that the sum X
mN=p<k�.mC1/N=p

exp
�
N'm;N

�
2kC1

2N

��
is approximated by the integral

N

Z .mC1/=p

m=p

eN'm;N .z/ dz:

To do that, we use the following proposition, known as the Poisson summation formula:
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Proposition 4.1 Let a and b be real numbers with a < b, and f N .z/gND1;2;3;::: be a series of
holomorphic functions in a domain D �C containing the closed interval Œa; b�. We assume that  N .z/
uniformly converges to a holomorphic function  .z/ in D. We also assume that Re .a/ < 0 and
Re .b/ < 0.

PuttingRC WD fz 2D j Im z�0; Re .z/<2� Im zg and R� WD fz 2D j Im z�0; Re .z/<�2� Im zg,
we also assume that there are paths C˙ connecting a and b such that C˙ �R˙ and that C˙ is homotopic
to Œa; b� in D with a and b fixed.

Then we have
1

N

X
a�k=N�b

eN N .k=N/ D

Z b

a

eN N .z/ dzCO.e�"N /

for some " > 0 independent of N .

A proof, which is essentially the same as that of [30, Proposition 4.2], is given in Appendix A.

From Lemma 3.2, the series of functions f'm;N .z/g uniformly converges toˆm.z/ WDF.z�2m�
p
�1=�/

in the region ‚�m;� defined as

(4-2) ‚�m;� WD fz 2C j 2.m� 1C �/� � Im.�z/� 2.mC 2� �/�; jRe.�z/j � 2M� � �g

n .rCm;� [r
�
m;� [

xr
C
m;� [

xr
�
m;�/;

where we put

r
C
m;� WD fz 2C j 2.m�1C�/� � Im.�z/<2.mC�/�;Re.�z/<�C2��; Imz <2.��pCm/��=j�j2g;

r
�
m;�

WDfz2C j2.mC1��/� < Im.�z/�2.mC2��/�;Re.�z/���2��; Imz>2.1�pCm��/��=j�j2g;

xr
C
m;� WDfz2C j2.m�1C�/�� Im.�z/<2.mC�/�;Re.�z/<��C2��; Imz<2.�CpCm/��=j�j2g;

xr
�
m;�

WDfz2C j2.mC1��/� < Im.�z/�2.mC2��/�;Re.�z/>���2��; Imz>2.pCmC1��/��=j�j2g;

and we always assume that N is sufficiently large. From (3-8)–(3-10), we have

ˆ0m.z/D L1
�
�.1� z/

2�
p
�1
Cm�pC 1

�
CL1

�
�.1C z/

2�
p
�1
�m�p

�
� �;(4-3)

ˆ00m.z/D
�.e��z � e�z/

3� e�z � e��z
;(4-4)

ˆ.3/m .z/D
�2.4� 3.e�zC e��z//

.3� e�z � e��z/2
:(4-5)

Since z � 2m�
p
�1=� is between L0 and L1 (K and K, respectively) if and only if z is between Lm

and LmC1 (K and K, respectively), from (3-11) we have

(4-6) ˆ0m.z/D log.3� e�z � e��z/

when z is between K and K, or Lm and LmC1.
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Re

Lm+n Lm+1-n

K

K

m+1-n
p

Lm-1+n Lm+2-n

Im+n Im+1-n

m+2-n
p

m-1+n
p

m+n
p

sm

H

H

Ñm,n
+

Ñm,n
+

Ñm,n
-

Ñm,n
-

Figure 8: The yellow region is ‚�m;� . The blue point is �m. The green trapezoids are rCm;� , r�m;� ,
xrCm;� , and xr�m;� .

We also put �m WD �0C2m�
p
�1=� D 2.mC1/�

p
�1=� D .2.mC1/�=j�j2/.2p�C�

p
�1/ so that

(4-7) ˆm.�m/D
4p�2

�
; ˆ0m.�m/D 0; ˆ00m.�m/D 0; ˆ.3/m .�m/D�2�

2

from (3-12). Since Re.��m/D 0 and Im.��m/D 2.mC 1/� , we see that �m is between K and K and
on the line LmC1; see Figure 8.

Let Is be the vertical line Re z D s=p for s 2R.

For a small number � > 0, let „m;� be the pentagonal region defined as

„m;� WD

(
z 2C

ˇ̌̌̌
m��

p
< Re z <

mC 1C�

p
; �
2.mC 1/��

j�j2
< Im z <

.pCm/�

2p2�
;

Im.�z/C
.2�C 1/j�j2

2.mC 1/�
Im z > 2.m��/�

)
when m< p� 1, and

„p�1;� WD

(
z 2C

ˇ̌̌̌
p� 1��

p
< Re z <

pC�

p
; �
2p��

j�j2
< Im z <

.2p� 1/�

2p2�
;

Im.�z/C
.2�C 1/j�j2

2p�
Im z > 2.p� 1��/�

)
n˘� ;
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Rem-c
p

sm

m+1+c
p

J

Lm+1Lm+1/2

Im-c

Im+1-c

P4

P3

P2P1

P0

P5

H

H

P6P7

Rep-1-c
p

sp-1

p+c
p

J

LpLp-1/2

Ip-1-c

Ip-c

P4

P3

P2P1

P0

P5

H

H

P6P7

1

Figure 9: The region „m;� when m< p� 1 (left) and the region „p�1;� (right), where the green
quadrilateral indicates ˘� . Precisely speaking, the points P0 and P7 should be a little more to the
right than indicated, and the points P2, P3, and P4 should be a little more to the left than indicated.

where we put

˘� WD fz 2C j Re z < 1C�=pg\r�p�1;� :

Note that „m;� (m < p� 1) is surrounded by Im��, ImC1C�, H , H , and J , where H and H are the
horizontal lines Im zD .pCm/�=.2p2�/ and Im zD� Im �m, respectively, and J is the line connecting
.m��/=p and LmC1=2\H , which is given as

(4-8) J WD

�
z 2C

ˇ̌̌
Im.�z/C

.2�C 1/j�j2

2.mC 1/�
Im z D 2.m��/�

�
:

See Figure 9, left. Figure 9, right, indicates „p�1;�, where ˘� is indicated by the green quadrilateral.
Note that it is a neighborhood of the point 1.

Lemma 4.2 If � > 0 is sufficiently small , then we can choose � > 0 so that „m;� is included in ‚�m;�
for mD 0; 1; 2; : : : ; p� 1.

Proof First, „m;� is in the rectangle surrounded by Im��, ImC1C�, H , and H , with bottom left vertex

v1 WD .m��/=p� .2.mC 1/��=j�j
2/
p
�1

and top right vertex

v2 WD .mC 1C�/=pC ..pCm/�=2p
2�/
p
�1:

The vertices v1 and v2 are on the lines LIm.�v1/=.2�/ and v2 LIm.�v2/=.2�/, respectively. Since

Im.�v1/
2�

� .m� 1C �/D .1��� �/�
.mC 1/�2

j�j2
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and

.mC 2� �/�
Im.�v2/
2�

D .1��� �/�
.pCm/�2

4p2�2
;

if

(4-9) �C� <min
�
1� .mC 1/

�
�

j�j

�2
; 1� .pCm/

�
�

2p�

�2�
D 1� .pCm/

�
�

2p�

�2
;

then „m;� is between the lines Lm�1C� and LmC2�� for mD 0; 1; 2; : : : ; p� 1.

So it remains to show that „m;� excludes xrCm;� , xr�m;� , rCm;� , and r�m;� .

� The real part of the bottom right corner of xrCm;� is .�.2����/C4.mC�/p�2/=j�j2, which is smaller
than .m��/=p if

(4-10) 2p�.�C 2p�/�Cj�j2� < .pCm/�2:

So the trapezoid xrCm;� is to the right of Im�� if (4-10) holds.

� The difference between the imaginary parts of the bottom line of xr�m;� and H is

2.pCmC 1� �/��

j�j2
�
.pCm/�

2p2�
D
�.4p2.1� �/�2� .pCm/�2/

2p2�j�j2
;

which is positive if

(4-11) � < 1� .pCm/
�
�

2p�

�2
:

So we conclude that xr�m;� is outside of „m;� if (4-11) holds.

� To obtain a condition ensuring that rCm;� is below J , it is enough to find a condition ensuring that
the top right corner z0 of the trapezoid is below J , since LmC� is steeper than J . Since Im z0 D

2.� �pCm/��=j�j2 and z0 is on LmC� , the condition is

2.mC �/� C
.2�C 1/j�j2

2.mC 1/�

2.� �pCm/��

j�j2
< 2.m��/�

from (4-8). Therefore, if

(4-12) 2��C .2mC 3/�C 2.2m�pC 1/� < p�m;

the trapezoid rCm;� is out of „m;�.

� The real part of the top left corner of r�m;� is .�.� � 2��/C 4.mC 1� �/p�2/=j�j2, which is bigger
than .mC 1C�/=p if

(4-13) 2p�.�C 2p�/�Cj�j2� < .p�m� 1/�2:

So the trapezoid r�m;� is outside of „m;� if (4-13) holds.
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From (4-10)–(4-13), we conclude that if m< p� 1 and

� <min
�

.pCm/�

2p�.�C 2p�/
; 1� .pCm/

�
�

2p�

�2
;
p�m

2mC 3
;
.p�m� 1/�2

2p�.�C 2p�/

�
;

then we can choose � > 0 so that „m;� is included in ‚�m;� .

If m D p � 1, then the real part of the top left corner of r�p�1;� is 1� 2��.� C 2p�/=j�j2, which is
slightly to the left of 1C�=p. Its imaginary part is 2��.2p� � �/=j�j2, which is slightly above the real
axis. The bottom left corner of r�p�1;� is 1�4p��2=j�j2, which is slightly smaller than 1. Its imaginary
part is �� 2���=j�j2, which is below the real axis. So if we exclude r�p�1;� , the rest is included in
‚�p�1;� ; see Figure 9, right.

We will show that the assumption of Proposition 4.1 holds for the function N .z/ WD'm;N .z/�'m;N .�m/,
the domain D WD„m;�, and the numbers a WDm=p and b WD .mC1/=p, with small �> 0. Note that the
series of functions f N .z/g WD f'm;N .z/�'m;N .�m/g uniformly converges to  .z/ WDˆm.z/�ˆm.�m/
in „m;� for sufficiently small � > 0.

From now we will study properties of ˆm.z/ in the region „m;� as if � D 0, taking care of the case
where � > 0 if necessary.

Let P0; P1; : : : ; P7 be points defined as follows, which are already indicated in Figure 9:

P0 WD Im\ real axis; P1 WD LmC1=2\H; P2 WD ImC1\H; P3 WD ImC1\ real axis;

P4 WD ImC1\H; P5 WD LmC1\H; P6 WD LmC1=2\H; P7 WD Im\H:

Their coordinates are given as follows:

P0 WD
m

p
; P1 WD

mC 1
2

p
C

Im �m

2p�
N�; P2 WD

mC 1

p
� Im �m

p
�1;

P3 WD
mC 1

p
; P4 WD

mC 1

p
C
.pCm/�

2p2�

p
�1; P5 WD

mC 1

p
�
.pCm/�

4p3�2
N�;

P6 WD
mC 1

2

p
�
.pCm/�

4p3�2
N�; P7 WD

m

p
C
.pCm/�

2p2�

p
�1:

Lemma 4.3 We have the following inequalities:

ReP6 < ReP1 < ReP5:

Proof It is clear that ReP6 < ReP1, and so we will show the other inequality.

Since Im �m D 2.mC 1/��=j�j
2 and � > 1, we have

ReP5�ReP1 D
mC 1

p
�
.pCm/�2

4p3�2
�

�
2mC 1

2p
C
.mC 1/�2

pj�j2

�
>

1

2p
�
pCm

4p3�2
�
mC 1

4p3�2
�

1

2p
�
3p� 1

4p3�2
>

1

2p
�

3

4p2�2
> 0;

proving the inequality ReP5 > ReP1.
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Figure 10: The left picture shows a contour plot of Reˆ1.z/ in „1;0 forp D 3, where R˙ are
indicated by yellow and green and W �1 is indicated by dark green. The right picture shows a
contour plot of Reˆ1.z/ in a neighborhood of �1, where W �1 is indicated by green.

We put

W Cm WD fz 2„m;� j Reˆm.z/ > Reˆm.�m/g; W �m WD fz 2„m;� j Reˆm.z/ < Reˆm.�m/g

for mD 0; 1; 2; : : : ; p� 1. Recall that in this case, R˙ in Proposition 4.1 becomes

RC WD fz 2„m;� j Im z � 0; Reˆm.z/�Reˆm.�/ < 2� Im zg;

R� WD fz 2„m;� j Im z � 0; Reˆm.z/�Reˆm.�/ < �2� Im zg:

In fact, we will show the following lemma, whose proof will be given later.

Lemma 4.4 The following hold for mD 0; 1; : : : ; p� 2:

(i) The points m=p and .mC 1/=p are in W �m .

(ii) There is a path CC in RC connecting m=p and .mC 1/=p.

(iii) There is a path C� in R� connecting m=p and .mC 1/=p.

When mD p� 1, there exists ı > 0 such that the following hold :

(i0) The points 1� 1=p and 1� ı are in W �p�1.

(ii0) There is a path CC in RC connecting 1� 1=p and 1� ı.

(iii0) There is a path C� in R� connecting 1� 1=p and 1� ı.

Note that since„m;� is simply connected, bothCC andC� are homotopic to the segment Œm=p; .mC1/=p�
(Œ1� 1=p; 1� ı� if mD p� 1) in „m;� keeping the boundary points fixed.

See Figure 10.
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To prove the lemma above, we study the behavior of Reˆm in „m;0 more precisely.

We divide „m;0 into six parts by the three lines LmC1, LmC1=2, and K� , where we put

K� W Re.�z/D 0:

We can see that �m is just the intersection of LmC1 and K� .

We also introduce the four points

P34 WD ImC1\K� ; P70 WD Im\K� ;

with coordinates

P34 WD
.mC 1/ N�

p
�1

2p2�
D
mC 1

p
C
.mC 1/�

2p2�

p
�1; P70 WD

m N�
p
�1

2p2�
D
m

p
C

m�

2p2�

p
�1:

Note that P34 is between P3 and P4 (when p D 1, P34 coincides with P4), and that P70 is between P7
and P0 (when mD 0, P70 coincides with P0).

As in the proof of Lemma 5.2 in [24], we can prove the following lemma:

Lemma 4.5 Write z D xCy
p
�1 for z 2„m;� with x; y 2R. Then we have:

� .@Reˆm=@y/.z/ > 0 if and only if

– Re.�z/ > 0 and 2k� < Im.�z/ < .2kC 1/� for some integer k, or

– Re.�z/ < 0 and .2l � 1/� < Im.�z/ < 2l� for some integer l .

� .@Reˆm=@y/.z/ < 0 if and only if

– Re.�z/ < 0 and 2k� < Im.�z/ < .2kC 1/� for some integer k, or

– or Re.�z/ > 0 and .2l � 1/� < Im.�z/ < 2l� for some integer l .

See Figure 11.

Proof From (4-6), we have

@Reˆm.z/
@y

D� arg.3� 2 cosh.�z//:

The right-hand side is positive (negative, respectively) if and only if Im.3�2 cosh.�z// is negative (positive,
respectively). Since Im.3 � 2 cosh.�z// D �2 sinh.Re.�z// sin.Im.�z//, @Reˆm.z/=@y is positive
(negative, respectively) if and only if Re.�z/ > 0 and 2k� < Im.�z/ < .2kC 1/� for some integer k, or
Re.�z/< 0 and .2l�1/� < Im.�z/< 2l� for some integer l (Re.�z/< 0 and 2k� < Im.�z/< .2kC1/�
for some integer k, or Re.�z/ > 0 and .2l � 1/� < Im.�z/ < 2l� for some integer l , respectively).

Lemma 4.6 Let z be a point on the segment P70P34. If z ¤ �m is between �m and P70, then z 2W �m .
Moreover , if z ¤ �m is between �m and P34, then z 2W Cm .
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Rem
p

sm

m+1
p

J

Lm+1
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P5

H

H

P6P7

Ks
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P70 Q

Figure 11: In the cyan (yellow, respectively) region, Reˆm.z/ is increasing (decreasing, respec-
tively) with respect to Im z.

Proof The segment P70P34 � K� is parametrized as .2�
p
�1=�/t for mC m�2=.4p2�2/ � t �

mC 1C .mC 1/�2=.4p2�2/. From (4-6) we have

d

dt
Reˆm

�
2�
p
�1

�
t

�
D Re

�
2�
p
�1

�
log
�
3� 2 cosh.2�

p
�1t/

��
D
4p�2

j�j2
log.3� 2 cos 2�t/� 0;

and the equality holds only when t DmC 1, that is, z D �m. So we conclude that if z 2 P70�m n f�mg,
then Reˆm.z/<Reˆm.�m/, and that if z 2 �mP34nf�mg, then Reˆm.z/>Reˆm.�m/, as required.

We can prove a similar result for P3P5.

Lemma 4.7 Let z be a point on the segment P3P5. If z ¤ �m is between �m and P3, then z 2 W �m .
Moreover , if z ¤ �m is between �m and P5, then z 2W Cm .

Proof A point on P3P5 is parametrized as .mC 1/=p� ..pCm/�=.4p3�2// N�t for 0 � t � 1. From
(4-6) we have

d

dt
Reˆm

�
mC1

p
�
.pCm/�

4p3�2
N�t

�
D�Re

�
.pCm/�

4p3�2
N� log

�
3�2 cosh

�
.mC1/�

p
�
.pCm/�

4p3�2
j�j2t

���
D
�.pCm/�2

4p3�2
log
�
3�2 cosh

�
.mC1/�

p
�
.pCm/�

4p3�2
j�j2t

��
� 0;

where the equality holds when t D 4.m C 1/p2�2=..p C m/j�j2/, which shows that Reˆm.z/ <
Reˆm.�m/ if z 2 P3�m n f�mg and that Reˆm.z/ > Reˆm.�m/ if z 2 �mP5 n f�mg, completing
the proof.

So far we have found two directions
����!
�mP70 and

���!
�mP3 that go down valleys, and two directions

����!
�mP34

and
���!
�mP5 that go up hills. Since the function ˆm.z/ is of the form ˆm.�m/�

1
3
�2z3C � � � from (4-7),

that is, �m is a saddle point of order two, there should be another pair of valley and hill.
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Lemma 4.8 Let G be the line segment in „m;0 that bisects the angle †P34�mP5. If z 2G n f�mg is on
the same side of P34 and P5, then z 2W �m . If z 2G n f�mg is on the opposite side of P34 and P5, and
close enough to �m, then z 2W Cm .

Proof Since the vector
����!
�mP34 has the same direction as

p
�1=� and the vector

���!
�mP5 has the same

direction as �1=�, the bisector is parametrized as �mC .
p
�1� 1/t=� with t 2R. Note that if t > 0, it

goes to the top right, and that if t < 0, it goes to the bottom left.

From (4-6), we have

d

dt
Reˆm

�
�mC

p
�1�1

�
t
�
D Re

�p
�1�1

�
log.3� 2 cosh..

p
�1� 1/t//

�
;

and so .d=dt/Reˆm
�
�mC ..

p
�1� 1/=�/t

�
D 0 when t D 0. Thus, it is sufficient to show that the

second derivative of Reˆm.�mC .
p
�1� 1/t=�/ is positive when t < 0 and jt j is small, and that it is

negative when t > 0 and �mC .
p
�1� 1/t=� 2„m;0.

From (4-4), we have

d2

dt2
Reˆm

�
�mC

p
�1�1

�
t

�
D Re

�
.
p
�1�1/2

�2
�.e�.

p
�1�1/t�e.

p
�1�1/t /

3�e.
p
�1�1/t�e�.

p
�1�1/t

�
D

1

j�j2
Re..�4p��2�

p
�1/�.t//D

1

j�j2
.�4p� Re�.t/C2� Im�.t//;

where we put

�.t/ WD
e�.
p
�1�1/t � e.

p
�1�1/t

3� e.
p
�1�1/t � e�.

p
�1�1/t

:

We have

�.t/D
2 sinh t cos t � 2

p
�1 cosh t sin t

3� 2 cosh t cos t C 2
p
�1 sinh t sin t

D
2.sinh t cos t �

p
�1 cosh t sin t /

.3� 2 cosh t cos t /2C 4 sinh2 t sin2 t
.3� 2 cosh t cos t � 2

p
�1 sinh t sin t /

D
2 sinh t .3 cos t � 2 cosh t /C 2

p
�1 sin t .2 cos t � 3 cosh t /

.3� 2 cosh t cos t /2C 4 sinh2 t sin2 t
:

Therefore if t is negative and jt j is small enough, then Re�.t/ < 0 and Im�.t/ > 0, and so in this case
.d2=dt2/Reˆm

�
�mC ..

p
�1� 1/=�/t

�
> 0.

Next, we consider the case where t > 0.

Since Re.�mC .
p
�1� 1/t=�/D .1=j�j2/.4.mC 1/p�2C .2p� � �/t/, a point in G that is between

�m and ImC1 is parametrized as �m C .
p
�1� 1/t=� with 0 < t < .mC 1/�2=.p.2p� � �//. Since

.mC 1/�2=.p.2p� � �//� �2=.2p� � �/� �2=.2� � �/, it is sufficient to prove

.d2=dt2/Reˆm.�mC ..
p
�1� 1/=�/t/ < 0

for 0 < t < �2=.2� � �/.
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Since 3 cos.�2=.2� � �// � 2 cosh.�2=.2� � �// D 0:924 : : : , and the function 3 cos t � 2 cosh t is
monotonically decreasing when t > 0, we see that Re�.t/ > 0 for 0 < t < �2=.2� � �/. We can easily
see that Im�.t/ < 0 for t > 0, and so we conclude that .d2=dt2/Reˆ.�mC ..

p
�1� 1/=�/t/ < 0.

Remark 4.9 The imaginary part of the intersection of G with ImC1 is .mC 1/�=.p.2p� � �//, which
is smaller than the imaginary part of H when p > 1. This is because

.pCm/�

2p2�
�

.mC 1/�

p.2p� � �/
D
.2p�.p� 1/� .pCm/�/�

2p2�.2p� � �/

>
.2p�.p� 1/� .2p� 1//�

2p2�.2p� � �/
D
..2p� � 1/.p� 1/�p/�

2p2�.2p� � �/
;

which is positive when p > 1, where we use the inequalities � < 1 and m� p� 1. So G intersects with
the segment P4P34.

If p D 1, G intersects with the segment P4P5.

Note that G does not intersect with LmC1=2 in „m;0. This is because the intersection between G and
LmC1=2 is .� C .2mC 1/�

p
�1/=�, whose imaginary part is less than � Im �m.

There are more line segments that are included in W �m .

Lemma 4.10 The line segments P6P1, P0P70, and P0P1 are in W �m .

Proof A point on the segment P6P1 is parametrized as

mC 1
2

p
C

N�

2p�
t where �

.pCm/�

2p2�
� t � Im �m:

We have

d

dt
Reˆm

�
mC 1

2

p
C

N�

2p�
t

�
D Re

�
N�

2p�
log
�
3� 2 cosh

�
mC 1

2

p
�C
j�j2t

2p�

���
D

�

2p�
log
�
3C 2 cosh

��
mC 1

2

�
�

p
C
j�j2t

2p�

��
> 0:

From Lemma 4.11 below we know that Reˆm.P1/ < Reˆm.�m/. It follows that P6P1 �W �m .

From Lemma 4.5, Reˆm.z/ is increasing with respect to Im z in the quadrilateral P70P0P1Q, where Q
is the crossing between K� and LmC1=2. Since the upper segments P70Q and QP1 are in W �m , so are
the lower segments P70P0 and P0P1.

Lemma 4.11 The point P1 is in W �m .

Proof The following proof is similar to that of [24, Lemma 5.3].

Since P1 is on LmC1=2, we have Im.�.P1 � 2m�
p
�1=�//D � and so P1 � 2m�

p
�1=� is on L1=2.

So from (3-6) we have

�ˆm.P1/��ˆm.�m/DLi2.�e���.4mC3/�=.2p//�Li2.�e��C.4mC3/�=.2p//C
.4mC 3/�2

2p
���
p
�1:
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Figure 12: The blue (magenta, respectively) lines are included in W �m (W Cm , respectively).

Its real part is

Li2.�e���.4mC3/�=.2p//�Li2.�e��C.4mC3/�=.2p//C
.4mC 3/�2

2p

and its imaginary part is ��� .

Therefore we have

(4-14)
j�j2

�
.Reˆm.P1/�Reˆm.�m//

D Re.�ˆm.P1/� �ˆm.�m//C
2p�

�
Im.�ˆm.P1/� �ˆm.�m//

D Li2.�e���.4mC3/�=.2p//�Li2.�e��C.4mC3/�=.2p//C
.4mC 3/�2

2p
� 2p�2;

which is increasing with respect to m, fixing p. When mD p� 1, (4-14) equals

(4-15) Li2.�e���.4p�1/�=.2p//�Li2.�e��C.4p�1/�=.2p//C
.4p� 1/�2

2p
� 2p�2:

Its derivative with respect to p is
�

2p2
log
�
3C 2 cosh

�
�.2�

1

2p
/
��
� 2�2;

which is less than log.3C 2 cosh.2�//� 2�2 D log.10/� 2�2 < 0. Since (4-15) equals �17:2195 : : :
when p D 1, we conclude that (4-14) is negative, proving the lemma.

Remark 4.12 One can also show that the polygonal line P70P7P6 is in W �m .

The results in Lemmas 4.6–4.8 and 4.10 are summarized in Figure 12.

Proof of Lemma 4.4 First, suppose that m< p� 1.

(i) Since m=p D P0 and .mC 1/=p D P3, it follows from Figure 12 that these points are in W �m .
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(ii) Consider the polygonal line CC WD P0P70�mP3. From Figure 12, it is in W �m and in the upper half
plane fz 2C j Im z � 0g. So it is contained in RC.

(iii) From Figure 12, the line segment J is in W �m and in the lower half plane fz 2C j Im z � 0g. This
implies that J �R�.

We will show that the segments P1P2 and P2P3 are also in R�.

We first show that P1P2�R�, that is, Reˆm.z/�Reˆm.�m/ <�2� Im z, if z 2P1P2. From the proof
of Lemma 4.5, �� < @Reˆm.z/=@y < 0 if z D xC y

p
�1 is in the pentagonal region QP1P2P3�m.

We also know that if z 2Q�mP3, then Reˆm.z/�Reˆm.�m/� 0. Since the difference between the
imaginary part of the point on Q�mP3 and that of the point on P1P2 is less than or equal to 2 Im �m, it
follows that for z 2 P1P2, we have Reˆm.z/�Reˆm.�m/ < �.2 Im �m/D�2� Im z.

Next we show P2P3 �R�. Consider r.y/ WD Reˆm..mC1/=pCy
p
�1/�Reˆm.�m/C2�y. Since

.d=dy/r.y/ D .@=@y/Reˆm..mC 1/=pC y
p
�1/C 2� > 0 and r.0/ < 0 from the argument above,

we conclude that r.y/ < 0 if y � � Im �m. So if z 2 P2P3, then z 2R�.

Therefore, we can put C� WD P0P1P2P3 �R�.

Next, we consider the case where m D p � 1. Here we can push P3 slightly to the left to avoid ˘� .
Accordingly, we move the segments �mP3 and P2P3 slightly.

Therefore we can apply Proposition 4.1 to the series of functions  N .z/D 'm;N .z/�'m;N .�m/. We
conclude that

(4-16) 1

N
e�N'm;N .�m/

X
m=p�k=N�.mC1/=p

eN'm;N .k=N/

D e�N'm;N .�m/
Z .mC1/=p

m=p

eN'm;N .z/ dzCO.e�"mN /

for "m > 0 if m< p� 1, and

(4-17) 1

N
e�N'p�1;N .�m/

X
.p�1/=p�k=N�1�ı

eN'p�1;N .k=N/

D e�N'p�1;N .�p�1/
Z 1�ı

.p�1/=p

eN'p�1;N .z/ dzCO.e�"p�1N /

for "p�1 > 0.

5 The saddle point method of order two

We would like to know the asymptotic behavior of the integrals appearing in the right-hand sides of (4-16)
and (4-17) by using the saddle point method of order two.
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To describe it, let us consider a holomorphic function �.z/ in a domain D 3 O with �.0/ D �0.0/ D
�00.0/D 0 and �.3/.0/¤ 0, where O is the origin of the complex plane. Write �.3/.0/D 6re�

p
�1 with

r > 0 and �� < � � � . Then �.z/ is of the form �.z/D re�
p
�1z3g.z/, where g.z/ is holomorphic with

g.0/D 1. The origin is called a saddle point of Re �.z/ of order two. We put V WD fz 2D jRe �.z/ < 0g.

There exists a small disk yD �D centered at O , where we can define a cubic root g1=3.z/ of g.z/ such
that g1=3.0/D 1. Put G.z/ WD zg1=3.z/ in yD �D. We can choose yD so that G gives a bijection from yD
to E WDG. yD/ from the inverse function theorem because G0.0/D 1. Since re�

p
�1G.z/3 D �.z/, the

function G also gives a bijection from the region V \ yD to the region U WD fw 2E jRe.re�
p
�1w3/ < 0g.

The region U splits into the three connected components (valleys) U1, U2, and U3. Therefore the region
V \ yD also splits into three valleys Vk WDG�1.Uk/, for k D 1; 2; 3, of Re �.z/.

Remark 5.1 Since G0.0/D 1, and Uk contains the ray fw 2E j w D se..2k�1/���/
p
�1=3; s > 0g as a

bisector, Vk also contains a segment fz 2 yD j z D te..2k�1/���/
p
�1=3 for t > 0 smallg.

The following is the statement of the saddle point method of order two:

Proposition 5.2 Let �.z/ be a holomorphic function in a domain D 3O with �.0/D �0.0/D �00.0/D 0
and �.3/.0/¤ 0. Write �.3/.0/D 6re�

p
�1 with r > 0 and �� < � � � . Put V WD fz 2D jRe �.z/ < 0g

and define Vk for k D 1; 2; 3 as above. Let C �D be a path from a to b with a; b 2 V .

We assume that there exist paths Pk � V [fOg from a to O and PkC1 � V [fOg from O to b such that

(i) .Pk \ yD/ n fOg � Vk ,

(ii) .PkC1\ yD/ n fOg � VkC1, and

(iii) the path Pk [PkC1 is homotopic to C in D keeping a and b fixed ,

where yD 2O is a disk as above.

Let fhN .z/g be a series of holomorphic functions inD that uniformly converges to a holomorphic function
h.z/ with h.0/¤ 0. We also assume that jhN .z/j is bounded irrelevant to z or N . Then

(5-1)
Z
C

hN .z/e
N�.z/ dz D

h.0/�.1=3/
p
�1

p
3r1=3N 1=3

!ke��
p
�1=3.1CO.N�1=3//

as N !1, where ! WD e2�
p
�1=3.

The proposition may be well known to experts, but we give a proof in Appendix B because the author is
not an expert and could not find appropriate references.

We will apply Proposition 5.2 to

� �.z/ WDˆm.zC �m/�ˆm.�m/,

� D WD fz 2C j zC �m 2„m;�g,
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Figure 13: The yellow regions indicates the valleys Vm;1, Vm;2, and Vm;3.

� hN .z/ WD expŒN.'m;N .zC �m/�ˆm.zC �m//�, and

� C WD Œm=p � �m; .mC 1/=p � �m� for m < p � 1, and C WD Œ.p � 1/=p; 1� ı� for m D p � 1,
where ı is a positive small number (see Lemma 4.4).

Note that �.0/D �0.0/D �00.0/D 0, �.3/.0/D �2�2 ¤ 0, h.z/ WD limN!1 hN .z/D 1, and that V is
equal to the region fz 2C j zC �m 2W �m g.

Since �.z/ D �1
3
�2z3 C � � � , we can define a holomorphic function g.z/ WD �3�.z/=.�2z3/ so that

g.0/D 1. Put G.z/ WD zg1=3.z/ as above. Let yD �D be a small disk centered at 0 such that the function
G.z/ is a bijection. Then the region V splits into three valleys Vm;1, Vm;2, and Vm;3. From Remark 5.1,
the argument of the bisector of Vm;k is given by .2k � 1/1

3
� � 1

3
� .mod 2�/ for k D 1; 2; 3, where

� WD arg.�2�2/D�� C 2 arctan.2p�=�/. So the valley Vm;k is approximated by the small sector

fz 2C j z D te�
p
�1 and j� �˛kj< 1

6
� for t > 0 smallg;

where we put

(5-2) ˛1 WD �23 arctan.2p�=�/C 2
3
�; ˛2 WD �

2
3

arctan.2p�=�/� 2
3
�; ˛3 WD �

2
3

arctan.2p�=�/:

Note that since 1
4
� < arctan.2p�=�/ < 1

2
� , we have 1

3
� < ˛1 <

1
2
� , �� < ˛2 < �56� , and �1

3
� <

˛3 < �
1
6
� ; see Figure 13.

Remark 5.3 Denote by PG the intersection between G and the boundary of „m;0, as in Figure 12. Note
that PG � ImC1 if m<p�1 and PG �H if pD 1 from Remark 4.9. The arguments of

����!
�mPG ,

����!
�mP70,

and
���!
�mP3 are

(5-3) ˇ1 WD �arctan.2p�=�/C 3
4
�; ˇ2 WD �arctan.2p�=�/� 1

2
�; ˇ3 WD �arctan.2p�=�/;

respectively, because the vector
����!
�mP70 has the same direction as �

p
�1=�, the vector

���!
�mP3 has the

same direction as 1=� , and G is their bisection.

Since 1
4
� < arg.2p�=�/ < 1

2
� , we can see

˛1�ˇ1D�
1
12
�C 1

3
arctan.2p�=�/; ˇ2�˛2D

1
6
�� 1

3
arctan.2p�=�/; ˛3�ˇ3D

1
3

arctan.2p�=�/;
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Figure 14: The yellow regions indicate the valleys.

and
˛2 < ˇ2 < ˇ3 < ˛3 < ˇ1 < ˛1;

where ˛k for k D 1; 2; 3 are given in (5-2). We also conclude that j˛k �ˇkj< 1
6
� , that is, �mPG is in

the valley Vm;1, �mP50 is in the valley Vm;2, and �mP3 is in the valley Vm;3; see Figure 14.

We need to show that the assumption of Proposition 5.2 holds, that is, we will show the following lemma:

Lemma 5.4 First suppose that m D 0; 1; 2; : : : ; p � 2. If a disk zD � „m;� centered at �m is small
enough , then the following hold :

(i) There exists a path �2 �W �m [f�mg connecting m=p and �m such that .�2\ zD/ n f�mg � Vm;2.

(ii) There exists a path �3�W �m [f�mg connecting �m and .mC1/=p such that .�3\ zD/nf�mg�Vm;3.

Next , suppose that mDp�1. If a disk zD�„p�1;� centered at �p�1 is small enough , then the following
hold :

(i0) There exists a path �2�W �p�1[f�p�1g connecting 1�1=p and �p�1 such that .�2\ zD/nf�p�1g�
Vp�1;2.

(ii0) There exists a path �3 �W �
m[f�p�1g connecting �p�1 and 1� ı such that .�3\ yD/ n f�p�1g �

Vp�1;3,

Again, since „m;� is simply connected, the path �2[ �3 is homotopic to the interval Œm=p; .mC 1/=p�
(Œ1� 1=p; 1� ı�, respectively) if m< p� 1 (mD p� 1, respectively).

Proof The proof is essentially the same for both cases m< p� 1 and mD p� 1.

(i) The path �2 WD P0P70�m is a required one for mD 0; 1; 2; : : : ; p� 1.

(ii) When m< p� 1, consider the path �3 WD �mP3, and when mD p� 1 push it a little more to the
left near the point 1.
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If m< p� 1, we apply Proposition 5.2 to

�.z/Dˆm.zC �m/�ˆm.�m/; hN .z/D expŒN.'m;N .zC �m/�ˆm.zC �m//�;

C WD Œm=p� �m; .mC 1/=p� �m�; k D 2:

Noting that hN .z/ converges to 1 and �.3/.0/D�2�2 D 2j�j2e�
p
�1 with � D�� C 2 arctan.2p�=�/

from the argument above, we haveZ .mC1/=p

m=p

eN.'m;N .z/�ˆm.�m// dz

D

Z
C

eN.'m;N .zC�m/�ˆm.�m// dz D

Z
C

hN .z/e
N�.z/ dz

D
�
�
1
3

�p
�1

p
3
�
1
3
j�j2

�1=3
N 1=3

!2e�
p
�1=3�2 arctan.2p�=�/

p
�1=3.1CO.N�1=3//

D
�
�
1
3

�p
�1

31=6j�j2=3N 1=3
e�.�C2 arctan.2p�=�//

p
�1=3.1CO.N�1=3//

as N !1. Similarly, if mD p� 1, putting C WD Œ1� 1=p� �m; 1� �m� ı�, we haveZ 1�ı

1�1=p

eN.'p�1;N .z/�ˆp�1.�p�1// dz D
�
�
1
3

�p
�1

31=6j�j2=3N 1=3
e�.�C2 arctan.2p�=�//

p
�1=3.1CO.N�1=3//

as N !1. Since ˆm.�m/D 4p�2=� from (3-12), we concludeZ .mC1/=p

m=p

eN'm;N .z/ dz D
�
�
1
3

�p
�1

31=6j�j2=3N 1=3
e�.�C2 arctan.2p�=�//

p
�1=3e4p�

2N=�.1CO.N�1=3//

if m< p� 1, andZ 1�ı

1�1=p

eN'p�1;N .z/ dz D
�
�
1
3

�p
�1

31=6j�j2=3N 1=3
e�.�C2 arctan.2p�=�//

p
�1=3e4p�

2N=�.1CO.N�1=3//:

Since 'm;N .�m/D fN .�0/ converges to F.�0/D 4p�2=� as N !1 from (3-12), together with (4-16)
and (4-17), we finally have

(5-4)
X

m=p�k=N�.mC1/=p

eN'm;N .k=N/ D
�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
e4p�

2N=�.1CO.N�1=3//

if m< p� 1, and

(5-5)
X

1�1=p�k=N�1�ı

eN'p�1;N .k=N/ D
�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
e4p�

2N=�.1CO.N�1=3//

because Re.4p�2=�/ > 0, where we define �2=3 to be j�j2=3e2 arctan.2p�=�/
p
�1=3.
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It remains to obtain the asymptotic behavior of
P
1�1=p�k=N<1 e

N'p�1;N .k=N/ instead of the sum for
1� 1=p � k=N � 1� ı. To do that, we need to estimate the sum

P
1�ı<k=N<1 e

N'p�1;N .k=N/. We use
the following lemma, which corresponds to [24, Lemma 6.1].

Lemma 5.5 For any ", there exists ı0 > 0 such that

Re'p�1;N
�
2kC1

2N

�
< Re p̂�1.�p�1/� "

for sufficiently large N , if 1� ı0 < k=N < 1.

Since a proof is similar to that of [24, Lemma 6.1], we omit it.

From Lemma 5.5, we conclude that X
1�ı<k=N<1

exp
�
N'p�1;N

�
2kC1

2N

��
is of order O.eN.Reˆp�1.�p�1/�"// if ı0 < ı. Since p̂�1.�p�1/D 4p�

2
p
�1=� from (4-7), we haveX

1�1=p�k=N<1

eNˆp�1;N .k=N/ D
�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
e4p�

2N=�.1CO.N�1=3//

from (5-5). Together with (4-1) and (5-4), we have

(5-6) JN .E I e�=N /D .1�e�4pN�
2=�/

�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
e4p�

2N=�

� p�1X
mD0

p̌;m

�
.1CO.N�1=3//:

Now from (3-3) and (3-1), the sum in the parentheses is just Jp.E I e4�
2N=�/. Therefore we finally have

JN .E I e
�=N /D Jp.E I e

4�2N=�/
�
�
1
3

�
e�
p
�1=6

31=6

�
N

�

�2=3
exp

�
2��
p
�1

�
N

�
.1CO.N�1=3//;

where we replace e4p�
2N=� with e.4p�

2N/=�C2N�
p
�1 D e2N��

p
�1=� on purpose; see Section 6. Note

that we choose the argument of �2=3 as 2
3

arctan.2p�=�/, which is between 1
6
� and 1

3
� .

Proof of Corollary 1.9 Since the figure-eight knot is amphicheiral, that is, it is equivalent to its
mirror image, we have JN .E I q�1/ D JN .E I q/. It follows that JN .E I e�

0=N / D JN .E I e
��0=N / D

JN .E I e
N�=N /D JN .E I e�=N /, where N� is the complex conjugate. So we obtain

JN .E I e
�0=N / �

N!1
Jp.E I e4�

2N=�/
�
�
1
3

�
e��
p
�1=6

31=6

�
N
N�

�2=3
exp

�
�2��

p
�1

N�
N

�

D Jp.E I e
4�2N=�0/

�
�
1
3

�
e�
p
�1=6

31=6

�
N

� 0

�2=3
exp

�
S��.E /

� 0
N

�
;

where .� 0/1=3 WD j� 0j1=3e�arctan.2p�=�/
p
�1=3e��

p
�1=3. The last equality follows since e�2��

p
�1N= N� D

e2��
p
�1N=�0De2��

p
�1N=�0C4N�

p
�1De.�2��

p
�1�8pN�2/N=�0De.S��.E /�8pN�

2/=�0 and the Chern–
Simons invariant is defined modulo an integer multiple of �2 (see Section 6).
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6 The Chern–Simons invariant

In this section, we show a relation between S�.E/ D 2��
p
�1 appearing in Theorem 1.8 and the

Chern–Simons invariant. For the definition of the Chern–Simons invariant of a representation from the
fundamental group of a three-manifold with toric boundary to SL.2IC/, we refer the readers to [17].

Let W be the three-manifold obtained from S3 by removing the open tubular neighborhood of a knot
K�S3. We denote byX.W / the SL.2IC/ character variety, that is, the set of characters of representations
from �1.W / to SL.2IC/. Let E.@W / be the quotient space .Hom.�1.@W /;C/�C�/=G, where C� WD

Cnf0g andG WD hx; y; b jxyDyx; bxbxD bybyD b2D 1i acts on Hom.�1.@W /;C/�C� as follows:

(6-1) x � .˛; ˇI z/ WD
�
˛C 1

2
; ˇI z exp.�4�

p
�1ˇ/

�
; y � .˛; ˇI z/ WD

�
˛; ˇC 1

2
I z exp.4�

p
�1˛/

�
;

b � .˛; ˇ/ WD .�˛;�ˇI z/:

Here we fix a generator .��; ��/ 2 Hom.�1.@W /IC/ŠC2 for a meridian � (the homotopy class of the
loop that goes around K) and a preferred longitude � (the homotopy class of the loop that goes along K
so that its linking number with K is zero). Then the projection p WE.@W /!X.@W / sending Œ˛; ˇI z� to
Œ˛; ˇ� becomes a C�-bundle, where the square brackets mean the equivalence class.

The SL.2IC/ Chern–Simons invariant of W defines a lift csW WX.W /!E.@W / of X.W / i
�

�!X.@W /,
that is, p ı cW D i� holds, where i� is induced by the inclusion map i W @W !W :

E.@W /

X.W / X.@W /

p
csW

i�

For a representation �, we have csW .Œ��/D Œu=.4�
p
�1/; v=.4�

p
�1/I exp..2=.�

p
�1//CSu;v.�//� if

�.�/D

�
eu=2 �

0 e�u=2

�
and �.�/D

�
ev=2 �

0 e�v=2

�
;

up to conjugation, where Œ�� 2X.W / means the equivalence class, and CSu;v.�/ is the SL.2IC/ Chern–
Simons invariant of � associated with .u; v/. Note that CSu;v.�/ is defined modulo �2, and depends on
the choice of branches of logarithms of eu=2 and ev=2.

Now, we calculate the SL.2IC/ Chern–Simons invariant of the figure-eight knot. See also [29, Section 5.2]
for calculation about the figure-eight knot complement.

By using generators x and y as indicated in Figure 15, the fundamental group GE WD �1.S
3 n E / has

a presentation hx; y j !x D y!i, where ! WD xy�1x�1y. We choose (the homotopy class of) x as the
meridian �, and (the homotopy class of) l depicted in Figure 15 as the preferred longitude �. The loop l
presents the element x!�1 �! �1x�1 2 GE , where  �! WD yx�1y�1x is the word obtained from ! by
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y

l

x

xyx�1

!�1y D x!�1

Figure 15: The figure-eight knot E and generators of GE WD �1.S
3 n E /.

reading backward. Due to [36] (see also [22, Section 3]), for a real number u with 0� u� � we consider
the nonabelian representation �u WGE ! SL.2IC/ sending x and y to�

eu=2 1

0 e�u=2

�
and

�
eu=2 0

d e�u=2

�
;

respectively, where d is given as

d WD 3
2
� coshuC 1

2

p
.2 cosh.u/C 1/.2 cosh.u/� 3/:

The preferred longitude is sent to �
ev.u/=2 �

0 e�v.u/=2

�
;

where

v.u/ WD 2 log.cosh.2u/� cosh.u/� 1� sinh.u/
p
.2 cosh.u/C 1/.2 cosh.u/� 3//C 2�

p
�1:

Here we add 2�
p
�1 so that v.0/D 0.

It is well known [39] that when uD 0, the irreducible representation �0 induces a complete hyperbolic
structure in S3 nE , and when 0 < u< �, �u is irreducible and induces an incomplete hyperbolic structure.
When u D �, the representation �� becomes reducible (and nonabelian), and the hyperbolic structure
collapses. In fact, in this case, both x and y are sent to upper triangular matrices, and so every element of
GE is sent to an upper triangular matrix, which means that �� is reducible. This kind of reducible and
nonabelian representation is called affine, and corresponds to the zeroes of the Alexander polynomial; see
[3; 16, Exercise 11.2; 35; 40, 2.4.3. Corollary].

Now, we calculate the SL.2IC/ Chern–Simons invariant CS�;v.�/.��/ associated with .�; v.�// D
.�; 2�

p
�1/; see [17] for details.

Since the Chern–Simons invariant of a representation is determined by its character, and �� shares the
same character (trace) with the abelian representation �abel

� sending � WD x to the diagonal matrix�
e�=2 0

0 e��=2

�
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and � WD l to the identity matrix, it can be easily seen that csW .�abel
� /D Œ�=.4�

p
�1/; 0I 1�, where we

put W WD S3 nN.E / with N.E / is the open tubular neighborhood of E in S3. Since we have�
�

4�
p
�1
; 0I 1

�
D

�
�

4�
p
�1
;
1

2
I e�

�
from (6-1), we conclude that CS�;2�

p
�1.��/D

1
2
��
p
�1. Note that here we change the pair .�; 0/ to

.�; 2�
p
�1/.

As in [23], if we define

(6-2) Su.E / WD CSu;v.u/.�u/C�
p
�1uC 1

4
uv.u/

for 0� u� �, then S�.E /D 2��
p
�1 when .u; v.u//D .�; 2�

p
�1/.

Similarly, CS
��;2�

p
�1.���/D�

1
2
��
p
�1, and S�u.E /D�2��

p
�1.

Appendix A Proof of the Poisson summation formula

In this appendix, we give a proof of the Poisson summation formula following [30, Proposition 4.2].

Proof of Proposition 4.1 Let " > 0 be small enough that

Re .a/ < �"; Re .b/ < �";

Re .z/� 2� Im z < �" if z 2 CC; Re .z/C 2� Im z < �" if z 2 C�:

Then for sufficiently large N , the following also hold:

(i) Re N .a/ < �",

(ii) Re N .b/ < �",

(iii) Re N .z/� 2� Im z < �" if z 2 CC,

(iv) Re N .z/C 2� Im z < �" if z 2 C�.

Moreover, there exists ı > 0 such that Re N .t/ < �" if t 2 Œa; aC ı� or t 2 Œb� ı; b� from (i) and (ii)
for such N .

Let ˇ WR! Œ0; 1� be a C1-function such that

ˇ.t/D

�
1 if t 2 ŒaC ı; b� ı�;
0 if t < a or t > b:

We also assume that ˇ.t/ is in the Schwartz space S.R/, that is, supx2Rjx
mf .n/.x/j < 1 for any

nonnegative integers m and n. Put ‰N .x/ WD ˇ.x=N/eN N .x=N/.

We have

(A-1)
ˇ̌̌̌ X
a�k=N<aCı

eN N .k=N/
ˇ̌̌̌
�

X
a�k=N<aCı

eN Re N .k=N/ < ıNe�"N ;
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where the second inequality follows since Re N .k=N / < �" when a � k=N � aC ı. Similarly we
have

(A-2)
ˇ̌̌ P
b�ı�k=N<b

eN N .k=N/
ˇ̌̌
< ıNe�"N :

We also have

(A-3)
ˇ̌̌ P
k=N<aCı

‰N .k/
ˇ̌̌
�

P
a�k=N<aCı

ˇ.k=N/eN Re N .k=N/ < ıNe�"N

and

(A-4)
ˇ̌̌ P
k=N>b�ı

‰N .k/
ˇ̌̌
< ıNe�"N :

Since ‰N .k/D eN N .k=N/ if aC ı � k=N � b� ı, we have

(A-5)
ˇ̌̌ P
k2Z

‰N .k/�
P

a�k=N�b

eN N .k=N/
ˇ̌̌

�

ˇ̌̌ P
k=N<aCı

‰N .k/
ˇ̌̌
C

ˇ̌̌ P
a�k=N<aCı

eN N .k=N/
ˇ̌̌
C

ˇ̌̌ P
b�ı<k=N�b

‰N .k/
ˇ̌̌

C

ˇ̌̌ P
k=N>b�ı

eN N .k=N/
ˇ̌̌

< 4ıNe�"N

from (A-1)–(A-4).

Since ‰N .t/ is also in S.R/, we can apply the Poisson summation formula (see eg [38, Theorem 3.1]):

(A-6)
P
k2Z

‰N .k/D
P
l2Z

y‰N .l/;

where y‰N is the Fourier transform of ‰N , that is, y‰N .l/ WD
R1
�1

‰N .t/e
�2l�

p
�1t dt .

Putting s WD t=N ,

(A-7) y‰N .l/DN
Z 1
�1

ˇ.s/eN. N .s/�2l�
p
�1s/ ds:

From the properties of ˇ.s/, we have

(A-8)
ˇ̌̌
1

N
y‰N .0/�

Z b

a
eN N .s/ ds

ˇ̌̌
�

ˇ̌̌Z aCı

a
.ˇ.s/�1/eN N .s/ ds

ˇ̌̌
C

ˇ̌̌Z b

b�ı
.ˇ.s/�1/eN N .s/ ds

ˇ̌̌
�

Z aCı

a
.1�ˇ.s//eN Re N .s/ dsC

Z b

b�ı
.1�ˇ.s//eN Re N .s/ ds

< 2ıe�"N :
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Therefore

(A-9)
ˇ̌̌
1

N

P
a�k=N�b

eN N .k=N/�
Z b

a
eN N .s/ds

ˇ̌̌
�

ˇ̌̌
1

N

P
a�k=N�b

eN N .k=N/�
1

N

P
l2Z

y‰N .l/
ˇ̌̌
C

ˇ̌̌
1

N

P
l2Z

y‰N .l/�
Z b

a
eN N .s/ds

ˇ̌̌
�

ˇ̌̌
1

N

P
a�k=N�b

eN N .k=N/�
1

N

P
k2Z

‰N .k/
ˇ̌̌
C

ˇ̌̌
1

N
y‰N .0/�

Z b

a
eN N .s/ds

ˇ̌̌
C
1

N

P
l2Z
l¤0

j y‰N .l/j

<
1

N

P
l2Z
l¤0

j y‰N .l/jC6ıe
�"N ;

where the first inequality follows from (A-6), and the second from (A-5) and (A-8). Next we calculate
y‰N .l/ for l ¤ 0. Integrating the right-hand side of (A-7) by parts twice, we have

y‰N .l/D
1

2l�
p
�1

Z 1
�1

d

ds
.ˇ.s/eN N .s//e�2l�

p
�1Ns ds

D�
1

4l2�2N

Z 1
�1

d2

ds2
.ˇ.s/eN N .s//e�2l�

p
�1Ns ds:

Putting
BN .s/ WD ˇ

00.s/C 2Nˇ0.s/ 0N .s/CNˇ.s/ 
00
N .s/CN

2ˇ.s/. 0.s//2;

zBN .s/ WDN 
00
N .s/CN

2. 0N .s//
2;

we have

�4l2�2N y‰N .l/

D

Z b

a
BN .s/e

N. N .s/�2l�
p
�1s/ ds

D

Z b�ı

aCı

zBN .s/e
N. N .s/�2l�

p
�1s/ dsC

Z aCı

a
BN .s/e

N. N .s/�2l�
p
�1s/ ds

C

Z b

b�ı
BN .s/e

N. N .s/�2l�
p
�1s/ ds

D

Z b

a

zBN .s/e
N. N .s/�2l�

p
�1s/ ds�

Z aCı

a

zBN .s/e
N. N .s/�2l�

p
�1s/ ds

�

Z b

b�ı

zBN .s/e
N. N .s/�2l�

p
�1s/ dsC

Z aCı

a
BN .s/e

N. N .s/�2l�
p
�1s/ ds

C

Z b

b�ı
BN .s/e

N. N .s/�2l�
p
�1s/ ds;

where the second equality follows because BN .s/D zBN .s/ when s 2 ŒaC ı; b� ı�. So we have

(A-10)
ˇ̌̌
4l2�2N y‰N .l/C

Z b

a

zBN .s/e
N. N .s/�2l�

p
�1s/ ds

ˇ̌̌
�

ˇ̌̌Z aCı

a
BN .s/e

N. N .s/�2l�
p
�1s/ ds

ˇ̌̌
C

ˇ̌̌Z b

b�ı
BN .s/e

N. N .s/�2l�
p
�1s/ ds

ˇ̌̌
C

ˇ̌̌Z aCı

a

zBN .s/e
N. N .s/�2l�

p
�1s/ ds

ˇ̌̌
C

ˇ̌̌Z b

b�ı

zBN .s/e
N. N .s/�2k�

p
�1s/ ds

ˇ̌̌
:
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Since Re N .s/ < �" if a � s � aC ı, we have

(A-11)
ˇ̌̌Z aCı

a
BN .s/e

N. N .s/�2l�
p
�1s/ ds

ˇ̌̌
�

Z aCı

a
jBN .s/je

N Re N .s/ ds

< ıe�"N max
s2Œa;aCı�

jBN .s/j �KaN
2e�"N ;

where we put

Ka WD max
s2Œa;aCı�

jˇ00.s/jC max
s2Œa;aCı�

j2ˇ0.s/ 0N .s/jC max
s2Œa;aCı�

jˇ.s/ 00N .x/jC max
s2Œa;aCı�

jˇ.s/. 0N .s//
2
j

� max
s2Œa;aCı�

ˇ̌̌̌
ˇ00.s/

N 2
C
2ˇ0.s/ 0N .s/

N
C
ˇ.s/ 00N .s/

N
Cˇ.s/. 0N .s//

2

ˇ̌̌̌
D max
s2Œa;aCı�

jBN .s/j
1

N 2
:

Similarly, putting

Kb WD max
s2Œb�ı;b�

jˇ00.s/jC max
s2Œb�ı;b�

j2ˇ0.s/ 0N .s/jC max
s2Œb�ı;b�

jˇ.s/ 00N .x/jC max
s2Œb�ı;b�

jˇ.s/. 0N .s//
2
j;

zKa WD max
s2Œa;aCı�

j 00N .s/jC max
s2Œa;aCı�

j. 0N .s//
2
j; zKb WD max

s2Œb�ı;b�
j 00N .s/jC max

s2Œb�ı;b�
j. 0N .s//

2
j;

we have ˇ̌̌Z b

b�ı
BN .s/e

N. N .s/�2k�
p
�1s/ ds

ˇ̌̌
<KbN

2e�"N ;(A-12) ˇ̌̌Z aCı

a

zBN .s/e
N. N .s/�2k�

p
�1s/ ds

ˇ̌̌
< zKaN

2e�"N ;(A-13) ˇ̌̌Z b

b�ı

zBN .s/e
N. N .s/�2k�

p
�1s/ ds

ˇ̌̌
< zKbN

2e�"N :(A-14)

Therefore

(A-15) j y‰N .l/j<
1

4l2�2N

ˇ̌̌Z b

a

zBN .s/e
N. N .s/�2l�

p
�1s/ ds

ˇ̌̌
C

KN

4l2�2
e�"N

from (A-11)–(A-14), where we put K WDKaCKbC zKaC zKb .

To evaluate
R b
a
zBN .s/e

N. N .s/�2l�
p
�1s/ ds, we consider the paths C˙ �R˙. Note that zBN is defined

in D.

By replacing the path Œa; b� with C˙, we have

(A-16)
ˇ̌̌Z b

a

zBN .s/e
N. N .s/�2�

p
�1ls/ ds

ˇ̌̌
D

ˇ̌̌Z
C˙

zBN .z/e
N. N .z/�2�

p
�1lz/ dz

ˇ̌̌
�

Z
C˙

j zBN .z/je
N.Re N .z/C2l� Im z/

jdzj

� max
z2C˙

j zBN .z/j
Z
C˙

eN.Re N .z/C2l� Im z/
jdzj

�K˙N
2
Z
C˙

eN.Re N .z/C2l� Im z/
jdzj;

where we put

K˙ WD max
z2C˙

j 00N .z/jC max
z2C˙

j. 0N .z//
2
j � max

z2C˙

ˇ̌̌̌
 00N .z/

N
C . 0N .z//

2

ˇ̌̌̌
D max
z2C˙

j zBN .z/j
1

N 2
:
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If l � 1, we use C�. Since C� � R�, we have Im z � 0 and Re N .z/C 2� Im z < �" from (iv). So
from (A-16), we have

(A-17)
ˇ̌̌̌Z b

a

zBN .s/e
N. N .s/�2�

p
�1ls/ ds

ˇ̌̌̌
< zK�N

2e�"N ;

where zK� WDK�(length of C�).

Similarly, if l � �1, putting zKC WDKC(length of CC), we have

(A-18)
ˇ̌̌̌Z b

a

zBN .s/e
N. N .s/�2�

p
�1ls/ ds

ˇ̌̌̌
< zKCN

2e�"N

from (iii).

Therefore, from (A-15)–(A-18), we haveˇ̌̌̌ X
l2Z;l¤0

y‰N .l/

ˇ̌̌̌
<

1X
lD1

�
zK�N

4l2�2
e�"N C

KN

4l2�2
e�"N

�
C

1X
lD1

�
zKCN

4l2�2
e�"N C

KN

4l2�2
e�"N

�

D

�
zK�

24
C
zKC

24
C
K

12

�
Ne�"N ;

since
P1
lD1 1=l

2 D
1
6
�2.

From (A-9), we finally haveˇ̌̌̌
1

N

X
a�k=N�b

eN .k=N/�

Z b

a

eN N .s/ ds

ˇ̌̌̌
<

�
6ıC

zK�

24
C
zKC

24
C
K

12

�
e�"N ;

proving the proposition.

Appendix B Proof of the saddle point method of order two

In this appendix, we give a proof of Proposition 5.2.

Let c WD re�
p
�1 be a complex number with r > 0 and �� < � � � , and put U WD fz 2C jRe.cz3/ < 0g.

If we write z WD se�
p
�1 with s > 0 and � 2R, then since cz3 D rs3e.�C3�/

p
�1, the region U has three

connected components Uk for k D 1; 2; 3:

(B-1) Uk WD
˚
w 2C j w D se�

p
�1; s > 0; j� C 1

3
� � .2k� 1/1

3
�j< 1

6
�
	
:

Note that Uk for k D 1; 2; 3 is obtained from Uk�1 by the 2
3
�-rotation around the origin O , where U0

means U3. The origin O is a saddle point of order two for the function Re.cz3/, and the regions Uk are
called valleys.

First of all, we study the asymptotic behavior of the integral
R
C hN .z/e

Ncz3 dz as N !1, where C
is a path starting at the origin and going into a valley, and hN .z/ is a holomorphic function depending
on N . The next lemma follows from the techniques described in [42, II.4]:
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O
Re

C

a

Uk

1
3
.��.2k�1/�/

rotation
����������!

O
Re

Uk
~

a’~

C
~ a~

C’
~

Figure 16: The yellow regions are Uk and zUk , the red curves are C and zC , and the green curve is zC 0.

Lemma B.1 Let D be an open bounded region in C containing O , hN .z/ be a holomorphic function in
D depending on a positive integer N , and Uk be as above. We assume that hN .z/ uniformly converges
to a holomorphic function h.z/ with h.0/ ¤ 0 and that jhN .z/j is bounded irrelevant to z or N . We
also assume that Uk \D is connected and simply connected for each k. For a point a 2 Uk \D, let
C � .Uk \D/[fOg be a path from O to a. Then we haveZ

C

hN .z/e
Ncz3 dz D

e..2k�1/���/
p
�1=3h.0/�

�
1
3

�
3r1=3N 1=3

.1CO.N�1=3//

as N !1, where �.x/ WD
R1
0 tx�1e�t dt is the gamma function.

Proof Let zUk be the region obtained from Uk by the 1
3
.��.2k�1/�/-rotation around O , that is,

(B-2) zUk WD
˚
w 2C j w D se�

p
�1; s > 0; j� j< 1

6
�
	
:

The same rotation sendsD to zD, C to zC � . zUk\ zD/[fOg, and a to Qa WD e.��.2k�1/�/
p
�1=3a2 zUk\ zD;

see Figure 16.

Putting
w WD e.��.2k�1/�/

p
�1=3z

and
QhN .w/ WD hN .e

..2k�1/���/
p
�1=3w/;

we have

(B-3)
Z
C

hN .z/e
Ncz3 dz D e..2k�1/���/

p
�1=3

Z
zC

QhN .w/e
�Nrw3 dw:

Since zUk\ zD is connected, we can choose Qa0>0 in R\ zUk\ zD and connect Qa to Qa0 by a path zC 0� zUk\ zD.
Now the function QhN is defined in zD, and we will extend QhN j zUk\ zD\R to a C1 function h�N .t/ for any
t � 0. Here we assume the following:

(i) h�N .t/ is bounded.

(ii) h�N .t/ converges uniformly to a C1 function h�.t/.

(iii) h�N .t/D
QhN .t/ and h�.t/D Qh.t/ WD h.e..2k�1/���/

p
�1=3t / for t 2 zUk \ zD\R.
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Then since zUk \ zD is simply connected, by Cauchy’s theorem we have

(B-4)
Z
zC

QhN .w/e
�Nrw3 dw D I1� I2� I3;

where we put

I1 WD

Z 1
0

h�N .w/e
�Nrw3 dw; I2 WD

Z 1
Qa0
h�N .w/e

�Nrw3 dw; I3 WD

Z
zC 0

QhN .w/e
�Nrw3 dw:

We use Watson’s lemma [41] to evaluate I1. Putting t WD w3, we have

I1 D

Z 1
0

h�N .t
1=3/

1

3t2=3
e�Nrt dt:

Since h�N .s/ uniformly converges to an analytic function h�.s/ in zD\R, we conclude that

h�N .s/D h
�.s/C

gN .s/

N

with jgN .s/j< c, where c is a constant independent of s. Since h�.0/D h.0/, h�N .s/ is of the form

h�N .s/D h.0/C
gN .s/

N
C

1X
jD1

bj s
j

near 0, where bj WD .1=j Š/.d j =dsj /h.0/. So we have

h�N .t
1=3/

1

3t2=3
D

1
3
h.0/t�2=3C

gN .t
1=3/

3t2=3N
C

1X
jD1

1
3
bj t

.j�2/=3:

Since jgN .s/j< c,ˇ̌̌̌Z 1
0

gN .t
1=3/

3t2=3N
e�Nrt dt

ˇ̌̌̌
<

c

3N

Z 1
0

t�2=3e�Nrt dt D
c�
�
1
3

�
3r1=3N 4=3

:

Therefore from Watson’s lemma [41, page 133] (see also [42, page 20]), we have

(B-5) I1 D
h.0/�

�
1
3

�
3.rN /1=3

C

1X
jD1

1
3
bj�

�
1
3
.j C 1/

�
.rN /�.jC1/=3CO.N�4=3/D

h.0/�
�
1
3

�
3.rN /1=3

CO.N�2=3/

as N !1.

As for I2, since jh�N .w/j<M if w 2R for some M > 0, we have

(B-6) jI2j �

Z 1
Qa0
jh�N .w/je

�rN Qa02w dw D
Me�Qa

03rN

Qa02rN
<M1e

�"1N

if N > 1, where we put M1 WDM=.r Qa
02/ and "1 WD r Qa03 > 0.

As for I3, we note that if w 2 zC 0 � zUk , then Rew3 > "2 for some "2 > 0, since jarg.w3/j < 1
2
� from

(B-2). So

(B-7) jI3j< max
w2 zC 0
j QhN .w/j

Z
zC 0
e�Nr"2 dw �M2e

�r"2N ;
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where we put M2 WDmax
w2 zC 0

j QhN .w/j(length of zC 0).

From (B-4), (B-6), and (B-7), we haveˇ̌̌̌Z
zC

QhN .z/e
�Nrw3 dw� I1

ˇ̌̌̌
� jI2jC jI3j DO.e

�"3N /;

with "3 WDminf"1; r"2g. Therefore from (B-3) and (B-5) we finally haveZ
C

hN .z/e
Ncz3 dz D

e..2k�1/���/
p
�1=3h.0/�

�
1
3

�
3r1=3N 1=3

.1CO.N�1=3//:

Corollary B.2 Let c WD re�
p
�1, D, hN .z/, h.z/, and Uk be as in Lemma B.1. Let C �D be a path

from ak 2 Uk \D to akC1 2 UkC1\D, where U4 means U1. We also assume that there exist paths Ck
from ak to O and CkC1 from O to akC1 with the following properties:

(i) Ck n fOg � Uk \D.

(ii) CkC1 n fOg � UkC1\D.

(iii) The path Ck [CkC1 is homotopic to C in D keeping ak and akC1 fixed.

Then Z
C

hN .z/e
Ncz3 dz D

h.0/�
�
1
3

�
p
3r1=3N 1=3

p
�1!ke��

p
�1=3.1CO.N�1=3//;

where we put ! WD e2�
p
�1=3.

Proof By Cauchy’s theorem,
R
C hN .z/e

Ncz3 dz D
R
Ck[CkC1

hN .z/e
Ncz3 dz. Then from Lemma B.1

we haveZ
Ck[CkC1

hN .z/e
Ncz3 dz D

e��
p
�1=3h.0/�

�
1
3

�
3r1=3N 1=3

.e.2kC1/�
p
�1=3
� e.2k�1/�

p
�1=3/.1CO.N�1=3//

D
e��
p
�1=3h.0/�

�
1
3

�
p
3r1=3N 1=3

p
�1!k.1CO.N�1=3//;

completing the proof.

Proof of Proposition 5.2 We use Cauchy’s theorem to study the integral
R
Pk[PkC1

hN .z/e
N�.z/ dz.

Since any point on Pk or PkC1 outside yD satisfies the inequality Re �.z/ < �" for some " > 0, the
integrals along Pk and PkC1 outside yD are of order O.e�"N /. So it is enough to show that the integralR
P hN .z/e

N�.z/ dz equals the right-hand side of (5-1), where we put P WD .�Pk [PkC1/\ yD.

Define the function G so that �.z/ D re�
p
�1G.z/3 and G is a bijection from yD to E WD G. yD/, as

described at the beginning of Section 5. Let yP be the image of P by G, and ak and akC1 be the endpoints
of yP with ak 2 Vk and akC1 2 VkC1. Putting w WDG.z/ and c WD re�

p
�1, we haveZ

P

hN .z/e
N�.z/ dz D

Z
yP


N .w/e
Ncw3 dw;
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since �.z/D re�
p
�1G.z/3, where 
N .w/ WDhN .G�1.w//.dG�1.w/=dw/. Since .d=dz/G.0/D 1 and


N .w/ converges to 
.w/ WD h.G�1.w//.dG�1.w/=dw/, we have 
.0/D h.0/. So from Corollary B.2,
we conclude Z

yP

hN .z/e
N�.z/ dz D

h.0/�
�
1
3

�
p
3r1=3N 1=3

p
�1!ke��

p
�1=3.1CO.N�1=3//;

completing the proof.

Appendix C Some computer calculations on the stevedore knot

Theorem 1.8 says that the colored Jones polynomial of the figure-eight knot E evaluated at .2�
p
�1C�/=N

grows exponentially with growth rate determined by the Chern–Simons invariant of an affine representation
associated with the pair .�; 2�

p
�1/, where e� D 1

2
.3C

p
5/ is a zero of the Alexander polynomial

�.E I t /D�t C 3� t�1. Corollary 1.9 says that the same is true for ��.

In this appendix, we use the computer programs Mathematica and PARI/GP [33] to study the asymptotic
behavior of JN .S I e.2�

p
�1˙Q�/=N / for the stevedore knot S with Q� WD log 2, expecting a similar

asymptotic behavior as E . Note that e˙Q� D 2˙1 annihilates the Alexander polynomial �.S I t / WD
�2t C 5� 2t�1 of S .

The stevedore knot S is the mirror image of the 61 knot in Rolfsen’s book [37] (see also the knot atlas [2])
as depicted in Figure 17. Note that in KnotInfo [19] it is denoted by 61.

Due to [20, Theorem 5.1], we obtain

JN .S I q/D

N�1X
kD0

q�k.NCkC1/
kY
aD1

..1� qNCa/.1� qN�a//

kX
lD0

ql.kC1/
Qk
bDlC1.1� q

b/Qk�l
cD1.1� q

c/
:

Put J˙N WD JN .S I e
.2�
p
�1˙Q�/=N /. By using PARI/GP [33], we calculate .2�

p
�1˙ Q�/ log.J˙NC1=J

˙
N /

for N D 2; 3; 4; : : : ; 200, and plot them by using Mathematica in Figures 18 and 19. The plots indicate
that JCN grows like exp

�
.SC=.2�

p
�1C Q�//N

�
(polynomial in N ) with

(C-1) SC WD �6:485C 5:697
p
�1;

y

l

x

x!�1
!�1y! D !x!�1

xyx�1

!�1y

Figure 17: The stevedore knot.
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50 100 150 200

-6.60

-6.58

-6.56

-6.54

-6.52

50 100 150 200

5.65

5.70

5.75

Figure 18: Plots of the real (left) and imaginary (right) parts of .2�
p
�1C Q�/ log.JCNC1=J

C

N /

with N D 2; 3; 4; : : : ; 200.

and that J�N grows like exp
�
.S�=.2�

p
�1� Q�//N

�
(polynomial in N ) with

(C-2) S� WD �0:06880C 8:747
p
�1:

Here we use Mathematica again to find the constants S˙ such that S˙C c˙;1N�1C c˙;2N�2 best fits
the data. Note that the constants S˙ are defined modulo integral multiples of 2�

p
�1.2�

p
�1˙ Q�/, and

that they may also be defined modulo integral multiples of �2 because of the definition of the SL.2IC/
Chern–Simons invariant (see Section 6).

From Theorem 1.8, we expect that S˙ D ˙2 Q��
p
�1. However, since ˙2 Q��

p
�1 D ˙4:355

p
�1,

neither SC nor S� fits with ˙2 Q��
p
�1 even modulo 2�

p
�1.˙2 Q�C 2�

p
�1/ or �2.

Now let us seek for other interpretations of S˙.

Let x and y be elements in the fundamental group GS WD �1.S
3 nS / as indicated in Figure 17. Then

the group GS has the presentation

GS D hx; y j !
2x D y!2i;

where we put ! WD xy�1x�1y as in the case of the figure-eight knot. The preferred longitude l is given
as x3!�2 �!

�2
x�3, where �! WD yx�1y�1x, as before.

50 100 150 200

-0.05

-0.04

-0.03

-0.02

-0.01

50 100 150 200

8.65

8.70

8.75

8.80

8.85

8.90

8.95

Figure 19: Plots of the real (left) and imaginary (right) parts of .2�
p
�1� Q�/ log.J�NC1=J

�
N /

with N D 2; 3; 4; : : : ; 200.
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Let � WGS ! SL.2IC/ be a nonabelian representation. Due to R Riley, it is of the form

�.x/D

�
m1=2 1

0 m�1=2

�
; �.y/D

�
m1=2 0

d m�1=2

�
up to conjugation, for some m¤ 0 and d .

From the relation !2x D y!2, d and m should satisfy the following equation, known as Riley’s equation:

d4C .2.mCm�1/� 5/d3C ..m2Cm�2/� 6.mCm�1/C 13/d2

�.m2Cm�2� 7.mCm�1/C 14/d � .2.mCm�1/� 5/D 0:

We call the left-hand side of this equation the Riley polynomial.

If .m; d/ D .1; 0:1049C 1:552
p
�1/, then � is the holonomy representation of GS and defines the

complete hyperbolic structure of S3nS . If .m; d/D .2; 0/ or
�
1
2
; 0
�
, then � gives an affine representation.

Let us consider irreducible representations corresponding to 1�m� 2.

The Riley polynomial is a quartic equation with respect to d , and there are four solutions, d1.m/, d2.m/,
d3.m/, and d4.m/. To describe them we introduce the following functions. Let D.m/ be the discriminant
of the Riley polynomial with respect to d , that is,

D.m/ WD 5.m6Cm�6/� 32.m5Cm�5/C 56.m4Cm�4/� 118.m3Cm�3/C 124.m2Cm�2/

C32.mCm�1/C 123:

We also put

A.m/ WD 4B.m/C.m/�1=3C 4C.m/1=3C 3.2.mCm�1/� 5/2� 8.m2Cm�2� 6.mCm�1/C 13/;

where

B.m/ WDm4Cm�4� 6.m3Cm�3/C 5.m2Cm�2/C 3.mCm�1/C 9;

C.m/ WD 3
2

p
3
p
�D.m/Cm6Cm�6�9.m5Cm�5/C21.m4Cm�4/� 9

2
.m3Cm�3/C6.m2Cm�2/

�27.mCm�1/� 31
2
:

We also put

J˙.m/ WD ˙3
p
3.2.mCm�1/C 1/A.m/�1=2� 2B.m/C.m/�1=3� 2C.m/1=3

�8.m2Cm�2� 6.mCm�1/C 13/C 3.2.mCm�1/� 5/2:

Now define the following four functions for 1�m� 2:

d1.m/ WD
�1
12
.6.mCm�1/� 15C

p
3
p
A.m/C

p
6
p
J�.m//;

d2.m/ WD
�1
12
.6.mCm�1/� 15C

p
3
p
A.m/�

p
6
p
J�.m//;

d3.m/ WD
�1
12
.6.mCm�1/� 15�

p
3
p
A.m/C

p
6
p
JC.m//;

d4.m/ WD
�1
12
.6.mCm�1/� 15�

p
3
p
A.m/�

p
6
p
JC.m//:
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d2.m/

d4.m/

d3.m/

d1.m/

Figure 20: The cyan, red, blue, and green curves indicate d1.m/, d2.m/, d3.m/, and d4.m/,
respectively. The arrows indicate the directions of increase with respect to m.

Note that

� A.m/, B.m/, D.m/, JC.m/, and J�.m/ are in R,

� A.m/ > 0, B.m/ > 0, and J�.m/ < 0 for 1�m� 2,

� D.m/ > 0 for 1�m<m0, D.m0/D 0, and D.m/ < 0 for m0 <m� 2, where m0 D 1:950 is the
unique solution to the equation D.m/D 0 between 1 and 2,

� JC.m/ < 0 for 1�m<m0, JC.m0/D 0, and JC.m/ > 0 for m0 <m� 2,

� ImC.m/D 0 and ReC.m/ > 0 for m0 �m� 2, and ImC.m/ > 0 for 1�m<m0,

which are checked by Mathematica (the author does not have proofs).

We plot, by using Mathematica, the complex-valued functions di .m/ (where i D 1; 2; 3; 4) for 1�m� 2
on the complex plane as in Figure 20. The following facts are also suggested by Mathematica (see
Figure 20):

� d2.m/D d1.m/ and d4.m/D d3.m/ for 1�m� 2.

� d2.1/D 0:1049C 1:552
p
�1 and d2.2/D�0:1595C 1:525

p
�1.

� d3.m/ 2R and d4.m/ 2R for m0 �m� 2.

� d3.m0/D d4.m0/D 0:1770, d3.2/D 0, and d4.2/D 0:3189.

� d3.1/D 0:3951� 0:5068
p
�1.

Therefore, for each i , di .m/ gives an irreducible representation �m WGS ! SL.2IC/ except for d3.2/,
and if m¤m0 they are mutually distinct.
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Figure 21: The left picture shows the plots of the real parts of .2�
p
�1Cu/ log.J201.u/=J200.u//

(red) and Su.S / (green) for 0� u� log 2, and the right picture shows the plots of the imaginary
parts of .uC 2�

p
�1/ log.J201.u/=J200.u// (red) and Su.S / (green) for 0� u� log 2, where

we put JN .u/ WD JN .S I e.uC2�
p
�1/=N / and we use PARI/GP and Mathematica.

If we write �di .m/ for the irreducible representation corresponding to di .m/, then we have the following:

� �di .1/ is a parabolic representation for i D 1; 2; 3; 4.

� �d3.2/ is an affine representation since d3.2/D 0.

� �d2.1/ is the holonomy representation, and �d1.1/ gives the holonomy representation for the mirror
image of S , because

�d2.1/.l/D

�
�1� 1:827� 2:565

p
�1

0� 1

�
; �d1.1/.l/D

�
�1� 1:827C 2:565

p
�1

0� 1

�
:

Let �.m/ be the .1; 1/-entry of �d2.m/.l/, and put v.u/ WD 2 log�.eu=2/, where we choose the logarithm
branch so that v.0/D 0. Then the SL.2IC/ Chern–Simons invariant of �d2.eu=2/ associated with .u; v.u//
is given as

CSu;v.u/.�d2.eu=2//D cv.S3 nS /C
1

2

Z u

0

v.s/ ds�
1

4
uv.u/;

where cv.S3 nS /D�6:791C 3:164
p
�1 is the complex volume, which is defined to be

p
�1Vol.S3 nS /� 2�2 CSSO.3/.S3 nS / .mod �2/;

with CSSO.3/ the SO.3/ Chern–Simons invariant of the Levi-Civita connection. Here the complex volume
and SO.3/ Chern–Simons invariant are taken from KnotInfo, where Vol.S3 nS /D 3:163963229 and
CSSO.3/.S3nS /D 0:155977017. Observe that �0:155977017�2C�2D 6:79074. Note that cv.S3nS /

coincides with the SL.2IC/ Chern–Simons invariant CS.0;0/.�2.1//; see [29, Chapter 5].

Putting

(C-3) Su.S / WD CSu;v.u/.�d2.eu=2//Cu�
p
�1C 1

4
uv.u/;

the graphs depicted in Figure 21 indicate that

JN .S I e
.uC2�

p
�1/=N / �

N!1
(polynomial in N ) exp

�
Su.S /

uC 2�
p
�1
N

�
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for 0 � u � Q� D log 2. When uD Q�, Mathematica calculates SQ�.S /D�6:569C 5:653
p
�1, which is

close to SC appearing in (C-1).

Note that the case u D Q� does not correspond to an affine representation. This also suggests that for
0<u� Q� the representation d2.eu=2/ induces an incomplete hyperbolic structure of S3nS , but the author
does not know whether it is correct or not. The author does not know either any topological/geometric
interpretation about the asymptotic behavior of JN .S I e.uC2�

p
�1/=N / for u < 0.

Compare this with Theorem 1.8 and Corollary 1.9, where S˙�.E /D˙2��
p
�1 are the Chern–Simons

invariants of affine representations, which correspond to the fact that when u D ˙� the hyperbolic
structure collapses.
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