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The asymptotic behaviors of the colored Jones polynomials

of the figure-eight knot, and an affine representation

HITOSHI MURAKAMI

We study the asymptotic behavior of the N -dimensional colored Jones polynomial of the figure-eight
knot evaluated at exp(k + 2pm~/—1/N), where k := arccosh(%) and p is a positive integer. We can
prove that it grows exponentially with growth rate determined by the Chern—Simons invariant of an affine
representation from the fundamental group of the knot complement to the Lie group SL(2; C).

57K14; 57K10

1 Introduction

For a knot K in the three-dimensional sphere S3 and a positive integer N, let Jy(K;gq) be the N-
dimensional colored Jones polynomial associated with the N -dimensional irreducible representation of
the Lie algebra s[(2; C), where we normalize it as Jy (U;q) = 1 for the unknot U, and when N = 2 it
satisfies the following skein relation:

q2(0Cq) —a7 (00 9) = (@ 2=V () ().

If we replace ¢ with 2% v=1/N , we obtain a complex number Jy (K; e27 V=1/N ), which is known as the
Kashaev invariant; see Kashaev [14], and J Murakami and the author [25]. The volume conjecture (see
Kashaev [15], and ] Murakami and the author [25]) states that the series {Jy (K; 2" V=1/N )IN=1,23,...
grows exponentially with growth rate proportional to the simplicial volume Vol(K) of S3\ K. Here the
simplicial volume is also known as the Gromov norm; see Gromov [7]. It coincides with the hyperbolic
volume divided by the volume v3 of the ideal regular hyperbolic tetrahedron if the knot is hyperbolic, that
is, its complement S3 \ K possesses a complete hyperbolic structure with finite volume. If the knot is not
hyperbolic, then the simplicial volume is the sum of the hyperbolic volumes of the hyperbolic pieces of
S3 \ K after the Jaco—Shalen—Johannson decomposition; see Jaco and Shalen [12] and Johannson [13].

Conjecture 1.1 (volume conjecture) For any knot K in S3, we have

i log|Jn (K;e2*V=YN)| v3 Vol(K)
1m = .
N—o0 N 2

The volume conjecture has been generalized in various ways. It can be complexified as follows; see
J Murakami, Okamoto, Takata, Yokota, and the author [26]. Let 5# C S3 be a hyperbolic knot, and

V() := V=1 Vol(#) — 272 CSSO3) (L)
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3524 Hitoshi Murakami

be the complex volume of S3 \ .#, where CsS0() () (mod 72) is the Chern—Simons invariant of the
Levi-Civita connection of S3 \ # associated with the complete hyperbolic structure.

Conjecture 1.2 (complexification of the volume conjecture) For any hyperbolic knot . in S3, we

have
o log I (7 e2TV=UNY ey ()
m =

N—oo N _27“/—1'

The volume conjecture and its complexification can be refined as follows (see Gukov [8], and also Gukov
and H Murakami [9], Dimofte, Gukov, Lenells, and Zagier [5], and Ohtsuki [30]):

Conjecture 1.3 (refined volume conjecture) Let # C S3 be a hyperbolic knot. Then we have the
asymptotic equivalence

1/2
JN(<%”;62”“/?1/N) ~ (@) N3/26Xp( cv(H) N),
N—oo \ 24/—1 2m+/—1
where F(N) o G(N) means limy o0 F(N)/G(N) =1, and T (5#) is the adjoint (cohomological)
—00

Reidemeister torsion twisted by the holonomy representation pg: 1(S>\ ) — SL(2; C).

The refined volume conjecture has been proved for the figure-eight knot (see Andersen and Hansen [1])
and hyperbolic knots with at most seven crossings; see Ohtsuki [30; 31] and Ohtsuki and Yokota [32].

We can also generalize the refined volume conjecture by replacing 277 v/—1 in e27® V=I/N with a complex
number.

Let py: m1(S3\ #) — SL(2; C) be an irreducible representation, which is a small deformation of the
holonomy representation pg. Then it defines an incomplete hyperbolic structure of 3\ .. Up to
conjugation, we can assume that p,, sends the meridian and preferred longitude of J# to

/2 eV()/2 *
0 e—u/z and 0 e—v(u)/2 ’

respectively. Then we can define the cohomological adjoint Reidemeister torsion Ty, (5¢) (see Porti [34])
and the Chern—Simons invariant CS,, ;) (0u); see Kirk and Klassen [17].

The following conjecture was proposed by the author [23]; see also Gukov and Murakami [9] and Dimofte

and Gukov [4].

Conjecture 1.4 (generalized volume conjecture) For a hyperbolic knot ¢, there exists a neighborhood
U € C of 0 such that if u € U \ m+/—1Q, then we have the asymptotic equivalence

1/2
JN(%;e(““”ﬁ)/N) ~ _—V_”Tu(%)l/Z(L) exp(S“(—‘%ﬂ)N),
N—>oo 2sinh(u/2) u+2m+/—1 U+ 2m/—1

where Sy, () := CSy, y(u)(ou) +um~/—1+ %uv(u).
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The generalized volume has been proved just for the figure-eight knot; see Yokota and the author [28].
The asymptotic equivalence in Conjecture 1.4 was also proved in the case where 0 <u < k := arccosh(%)
by the author [23].

In the previous paper [24], the author proved the following theorem generalizing the result in [23]:

Theorem 1.5 Let & be the figure-eight knot. For a real number u with 0 <u < k and a positive integer p,
we have

I8 ANT2/(ut2pr/—T)y N w2 N 12 Su(&) N
~ Jp(&ie )— Ty (&) exp| —————=N).
N—o0 2s1nh( ) u+2pn«/—1 u+2pnv—1

Note that in the case of the figure-eight knot, we have

. 2
Tu(6) = \/(2 coshu+1)(2coshu—3)’

Su(&) = Liz(e ™ °™) —Liz (e 7 ™)) 4 u(p(u) + 272 v/~-1),

where we put

¢(u) :=log(coshu — 1 — 1 /(2coshu + 1)(2coshu — 3)),
and Liz(z) := — foz log(1 —x)/x dx is the dilogarithm function.

So it is impossible to extend Theorem 1.5 to the case where u = x because Ty(&) is not defined.
Topologically/geometrically speaking, the corresponding hyperbolic structure of the figure-eight knot
complement collapses at u = «.

On the other hand, for the figure-eight knot, we have the following theorems:

Theorem 1.6 (the author [21]) If ¢ € C satisfies the inequality |cosh{ — 1| < % and |Im¢| < %n, then

1

lim Jy(&:eb8/Ny= ———,
pm In(E:eT) = 1

where A(K;t) is the Alexander polynomial of a knot K.

Theorem 1.7 (Hikami and the author [11]) If { = «, then the colored Jones polynomial Jy (&;e*/V)
grows polynomially. More precisely,

1 2/3
NS0 32/3 \ k '

where I"(x) is the gamma function.

Here we will extend Theorem 1.5 to the case u = «.
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Theorem 1.8 Let & be the figure-eight knot, and & := k +2pw~/—1 with k := arccosh(%) and p a
positive integer. Then we have the asymptotic equivalence

I(3)em™v=1e (N3 15.(8)
.LEINY . an2N/geNt\3)c 7 [V K
JN(&Ee )N oon(éa,e ) 3176 (E) exp( : N),

where S, (&) := 2k ~/—1, and we put £1/3 := |§|1/3e“°ta“(21’”/’€)*ﬁ1/3.

As a corollary, we obtain a similar result for Jy (&’ eé//N) with &' := —k + 2pm~/—1.

Corollary 1.9 We have

: e T(3)e™=16 (NN g (#)

where we put S_ (&) := —2xkmw/—1.

See Section 6 for a topological interpretation of S, (&) for |u| < «. It is defined to be

1
CSy,v(u)(ou) +um~v—1+ Zuv(u)’
where

Csu,v(u) (Pu)

is the Chern—Simons invariant of a nonabelian representation p,: 71 (53 \ &) — SL(2; C).

Remark 1.10 Since the highest-degree term of the Laurent polynomial J,(&’; q) is g? (=1 we have

Jp(é’;e“”zN/s) ~  e*P(P=DTN/E g6 we also have
N—o0

T(L)e™v=1/6 /N \?/3 4p>n2
Iy Ny o~ 37 (D N).
NEET) X T 38 e) P\

because 2k m+/—1/E +4p(p — )2 /& = 4p?n? /€ + 2w +/—1. A similar result holds for £’

There are two difficulties in proving Theorem 1.8.

The first one is that when we apply the saddle point method to the integral that approximates Jy (&; eEIN),
the saddle point is of order two, that is, it looks like the saddle point of Re z3; see Figure 1.

To approximate the colored Jones polynomial by an integral as above, we use a quantum dilogarithm
function, which converges to a function described by the dilogarithm function. However, the second
difficulty is that our saddle point is on the boundary of the region of convergence. So we need to extend
the domain of definition of the quantum dilogarithm slightly by using a functional identity.

The paper is organized as follows. In Section 2, we define the quantum dilogarithm and extend it as we
require. In Section 3, we express the colored Jones polynomial as a sum of the terms described by the
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Figure 1: Contour plots of the functions Re z* (left) and Re z? (right) around their saddle points.
The saddle point O of Re 23 is of order two, and that of Re z2 is of order one.

quantum dilogarithm. To approximate the sum by an integral, we use the Poisson summation formula in
Section 4. Then in Section 5 we use the saddle point method to obtain the asymptotic formula, proving
Theorem 1.8. Appendices A and B are devoted to proofs of the Poisson summation formula and the saddle
point method, respectively. In Appendix C, we give some computer calculations about the asymptotic
behavior of Jy (.7; e(FF+27 v=D/N ) for the stevedore knot ., where k := log 2. Since we know that
etX (e respectively) are zeros of the Alexander polynomial of the figure-eight knot (the stevedore
knot, respectively), we try to generalize Theorem 1.8 to another knot in vain.

Acknowledgments The author is supported by JSPS KAKENHI grants JP20K03601, JP22H01117, and
JP20K03931.

2 Quantum dilogarithm
In this section, we fix a complex number y with Re y > 0 and Im y < 0. We will introduce a quantum
dilogarithm [6]. See also [1; 15; 30].

We put

1 e(22—1)x
@1 Tn(2):=y /@ X snh(x) sinh(yx/N)

for an integer N > |y |/, where R := (—o0, —1]U{w € C | [w| =1, Imw > 0} U[1, co) with orientation
from —oo to co. Note that R avoids the poles of the integrand. We can prove that the integral above
converges if —Rey/(2N) <Rez <1+4+Rey/(2N).

Lemma 2.1 The integral in the right side of (2-1) converges if —Rey/(2N) <Rez <1+ Rey/(2N).

Algebraic € Geometric Topology, Volume 25 (2025)
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Proof First note that

sinh(as) ~ 2e* and sinh(as) ~
S—>00 §—>—00

_le_as

’

for a complex number a with Rea > 0. So we have
e(ZZ—l)x
x sinh(x) sinh(yx/N) x—o0
e(22—1)x
x sinh(x) sinh(yx/N) x—>—occ

~exp((22 =2 - y/N)x).

—2 exp((2 + 7/ N)).

since Rey > 0.

Therefore if —Rey/(2N) <Rez <1+ Rey/(2N), the integral converges. |

Thus Ty (z) is a holomorphic function in the region {z € C | —Rey/(2N) <Rez <1+ Rey/(2N)}.

We will study properties of T (z), first introducing three related functions:

Definition 2.2 For a complex number z with 0 < Rez < 1, we put

(2z—1)x 2z—1)x /_ (2z—1)x
Lo(2) :2/ ¢ dx, L1(2):= —l/ £ dx, Lo(2) =7 5 I/IR ¢ dx

& sinh(x) 2 Jg x sinh(x) x2sinh(x)

In a similar way to the proof of Lemma 2.1, we can prove that the three integrals above converge if
0 <Rez < 1. The functions above can be expressed in terms of well-known functions.

Lemma 2.3 [27, Lemma 2.5] We have the following formulas:

—2mA/—1
2 L) =1 e
log(1 —eznﬁz) if Imz >0,
(2-3) £1(2) = T
=12z —=1)+log(l1—e *™vY~1%) if Imz <0,
(2-4) Lr(z) = {Liz@z”ﬁﬂ if Tmz > 0,
2 7(2(222 -2z 4+ %) —Liz(e_zj“/jlz) if Imz <0.

Here the branch cuts of log and Lij are (—oo, 0] and [1, 00), respectively.

The proof is similar to that of [27, Lemma 2.5], and so we omit it.

The function Lo (z) can be extended to the whole complex plane C except for integers. The functions
L£1(z) and £5(z) can be extended to holomorphic functions on C \ ((—oo, 0] U [1, 00)) as follows.

Definition 2.4 For a complex number z in C \ ((—o0, 0] U [1, o0)), we put

log(1 —e?7™V~12) if Imz >0,
(2-5) Li(z) = .

=12z —=1)+log(l—e *"™¥~%) if Imz <0,

Liy(e27V~12) if Imz >0,
(2'6) ’CZ(Z) = 2 2 1 . 2 le .

T (22 —2z—|—§)—L12(e V=) if Imz < 0.

Algebraic € Geometric Topology, Volume 25 (2025)
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Lemma 2.5 When Imz < 0, the functions £1(z) and L,(z) can also be written as
L1(z) = log(1 —eznﬁz) +2|Rez|nv—1, Li(z)= Liz(ezﬂﬁz) —272%|Rez|(|Rez] —2z+1),
where | x | is the greatest integer that does not exceed x.
Proof For £;(z), we have
log(l _ e—2ndj12) — log[(l _eZHJTIZ)e—Zanlz+an1]
= log(1 —eznﬁz) —2av—lz4+nv—1+42|Rez|n~v—1.

The last equality follows because

e if0<Rez—|Rez] < %, then —m < arg(1 —ez”ﬁz) <0,

o if% <Rez—|Rez] <1, then 0 <arg(l —ez”ﬁz) <,

and so the imaginary part of the rightmost side is between —m and . Thus we obtain £1(z) =
log(1 — ez’“ﬁz) +2|Rez|mw+/—1 from (2-3).

For £5(z), from the well known formula
2-7) Lip(w™") =~ Liz(w) — g7 — 3 (log(~w))?,
we have
Liz(e_z”ﬁz) =— Liz(ez’“ﬂz) - %nz - %(271«/—_12 — @2 |Rez| +m)V—1)?
=— Liz(ez’“ﬁz) +72(2z2 -2z + %) +272|Rez|? —4n?|Rez]z + 272 |Rez],
and the result follows. |

Corollary 2.6 IfImz <0, then we have L1(z + 1) — L1(z) =2n+/—1 and Ly (z + 1) — L2(2) = 4n2z.

Lemma 2.7 The derivatives of L;(z) fori = 1,2 are given as follows:

(2-9) 9 12(2) = —2m/ =1L (2).
d 27/—1
(2'9) E»CI(Z) = —,C()(Z) = l_e—Z—n\/jlz

Proof The first equality follows from the well-known equality (d/dw) Lix(w) = —log(1 —w)/w. The
second one also follows easily. |

Now we will show three identities expressing the difference Tx (z +a) — Ty (2) in terms of L.

Lemma 2.8 If |Rez| <Rey/(2N), then

(2-10) Tn(z) =Ty (z +1) =£1(%Z+%).

Remark 2.9 Since —Rey/(2N)<Rez <Rey/(2N)and 1—-Rey/(2N) <Re(z+1) <1+Rey/(2N),
both z and z + 1 are in the domain of Ty.

Algebraic € Geometric Topology, Volume 25 (2025)



3530 Hitoshi Murakami

We will check that Nz/y + % isin C \ ((—o0,0] U [1, 00)), the domain of L.

If not, then (N/y)z + % =g fors <0ors > 1. Putting s’ := 5 — %, we have z = (y/N)s’ with |s'| > 1,
which implies |Re z| > Re y/(2N), a contradiction.

Proof By definition, we have

1 e(ZZ—l)x_e(Zz—}-l)x J 1 esz J
InG) —TyGE+1) = Z/;Q x sinh x sinh(yx/N) = _5/@ x sinh(yx/N) o

Then setting y := yx/N, this equals

2Nzy/y 2Nzy/y
2 Jg/ ysinhy 2 Jg ysinhy y 2
where R’ is obtained from R by multiplying by y/N. The last equality follows since there are no poles
of 1/(y sinh y), that is, integer multiples of 7 +/—1 between R and R’. O

Lemma 2.10 If 0 <Rez < 1, then

(2-11) TN(Z—%)—TN (2+%) = L1(2).

Proof From the definition, we have

T Y T 14 1 [ e@zv/IN- 1)x_e(22+y/N—1)xd
v Z_ﬁ o Z+ﬁ ‘_t/R x sinh x sinh(yx/N) *

1 e(22 1)x
5/ xsinhx dx =L£1(2). -
The third one is a little tricky.
Lemma 2.11 If |[Rez| <Rey/N <1, then
L1(z)—L1((N/y)z) it Rez>0andz #0,
(2-12) TN(Z-H—%)—TN(Z-%%) =01+ 1) —Li(N/y)z+1) if Rez <0,
log((y/N)) if z=0.

Remark 2.12 If |[Rez| <Rey/N < 1,then 1 —3Rey/(2N) <Re(z+1—y/(2N)) <1+Rey/(2N)
and —Rey/(2N) <Re(z+y/(2N)) <3Rey/(2N),and sobothz +1—y/(2N) and z + y/(2N) are
in the domain of Ty .

We will check that the arguments in the right-hand side are in C \ ((—o0, 0] U [1, 00)), the domain of L.

e Suppose 0 <Rez and z # 0. Since Rez < Re y/N, z is in the domain of £ if N is sufficiently large.
Suppose for a contradiction that (N/y)z is not in the domain of £;. Then (N/y)z € (—o0,0] U [1, c0)
and so (N/y)z=sfors>1ors <0.Ifs <0,thenRez =sRey/N <0 andsoz=s =0, whichis a
contradiction. If s > 1, then Rez > sRey/N > Re y/N, which is also a contradiction.

Algebraic € Geometric Topology, Volume 25 (2025)
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e Suppose Rez < 0. Then z + 1 is in the domain of £; because 1 —Rey/N <Re(z + 1) < 1. Suppose
for a contradiction that Nz/y + 1 is not in the domain of £;. Then (N/y)z+1=sfors <Oors > 1.
Thus Re z = Re((s — 1)y/N) and so we have Rez < —Re y/N, which is impossible.

Thus the arguments in the right-hand side are in the domain of £;.

Proof We first assume that Re z > 0. Then from Lemmas 2.10 and 2.8 we have

14 14 14 14 N
T - \-T L V=£4z), T 1—-—|-T — L )Y=—4( =2,
w(5y) -tz gy ) = mn(zei-gt) (a5 ) = (52

and the equality follows. Note that —Re y/(2N) <Re(z —y/(2N)) <Rey/(2N) and so we can apply
Lemma 2.8 to the second equality. Similarly, if Re z < 0, we have

T (z41= 2 )t (2142 Y = cae+1), T (2142 V=T (242 Y == (X2 41),
2N 2N 2N 2N v

and the equality also holds.
When Rez =0, put z := y+/—1 for y € R\ {0} and consider the limit

. y y
im (7w (vv=T+1--2 te)-Tn(yv=T+-L .
8%( N(y 5N +‘9) N(y toN +8))

Since T is a holomorphic function in —Re y/(2N) <Rez <1+ Re y/(2N), the limit above coincides
with the left-hand side of (2-10). From the result above, considering the limit from the right, we have

TN(y\/—_l-I-l—%) —TN(yx/—_1+ %)
Zgi\fﬁ)(TN(y«/—_l—i-l—%+8) —TN(y\/—_l-i—%-i—e))
:gg(zuyﬁﬂ)—cl(%w?lm)))
=£1(y«/—_1)—£1(%(y~/—_1))

if y # 0, because we extend £1(z) to C \ ((—o0, 0] U [1, 00)). Let us confirm that the limit from the left
gives the same answer. We have

lim (£1(v/=T +¢+ 1)—£1(ﬂ(y\/—1 +o)+1)) = L0V + 1)—£1(ﬂy\/—1 +1),

e /0 Y Y

which coincides with £1(yv/—1) — L1 ((N/y)(y~/—1)) if y # 0 from Lemma 2.5, noting that
Im((N/y)y~/=1) = NyRey/|y|?

has the same sign as y.

Now, we consider the case where z = 0. Since Im y < 0, we have Im(N/y)e > 0 for € > 0. Thus
(2-13) lim (cl (e) — L1 (ﬁg)) = Tim (log(1 — 2™V=18) _jog(1 — e2Nenv/=1/7yy,
eN\0 Y eN\0

Algebraic € Geometric Topology, Volume 25 (2025)
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2N |Imy -
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Figure 2: The region (2-14) is between the two thick dotted lines minus the two red lines 63 and 7.

Since we have that limg g arg(l — o2V -le) = —1n, and —7 < arg(1 — e2NemV/=1/7) < 0 because
Im(1 — eZN”ﬁ/V) < 0, (2-13) turns out to be

i og L€YY (Y
gl\rj(l) g | —e2Nem/—1/y o Og(ﬁ)

by I’Hopital’s rule,

Just for safety, we will check the other limit, lim, ~o(L1(e+1)—L1((N/y)e+1)). Since Im(Ne/y+1) <0
when ¢ < 0, from Lemma 2.5

b}i}%(cl(s F 1)L (%s +1))

= lim (log(1 — ¢2™71%) —log(1 — 2¥emV=17) 27/ LRe(ﬁs) +1])
/0 Y
. 1—@2”\/_718 y
= s 10 = ()

where the second equality follows since lim, =g arg(1 — eznﬁs) = %JT, 0 <arg(l— €2Nmﬁ/y) <7
because Im(1 — eZNE”ﬁ/V) > 0, and lim, ~o|Re(Ne/y) + 1] =0. d

We use Lemma 2.8 to extend the function 7 to the region
(2-14) {zeC|—1<Rez <2}\({f ULY),
where

+-= — 1 _L <_L} _-={ — 1 L< L}
Ly - {ZG(C|Z sy with Rey<s_ N 0] ZGC|Z 1+syw1th2N_s<Rey.

See Figure 2. Note that T is already defined for z with —y/(2N) <Rez <14+ y/(2N).

If -1 <Rez <—Rey/(2N), then we use (2-10) to define

(2-15) Tn(z) = Tn(z + 1)+ Li (%Z +3),

Algebraic € Geometric Topology, Volume 25 (2025)
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Im
£+ _Irn
0\%]\/7 Rey
O 2y i1 Re
—1i _Rey | %
T 2N |Imy _
2N\€0

Figure 3: The region (2-17) is between the two thick dotted lines minus the two red lines 63 and £ .

noting that z 4 1 is in the domain of 7. For the argument of £, see Remark 2.13 below. Similarly, if
1+Rey/(2N) <Rez <2, we define

(2-16) Tn(z) = TN(Z—l)—LI(%(z—1)+%),

noting that z — 1 is in the domain of 7. For the argument of £, see Remark 2.13 below.

Remark 2.13 Recall that £;(z) is defined except for z € (—o0, 0] U [1, 00). Therefore Nz/y + % and
Niz-1)/y+ % are in the domain of £ unless

e —1<Rez<—Rey/(2N)and (N/y)z + % =g for s € (—00,0] U [1, 00), or

e 1+Rey/(2N) <Rez <2and (N/y)(z—1)+% =t fort € (—o0,0) U (1, 00).
This is equivalent to

e —1<Rez<-—Rey/(2N) and z = s’y with |s'| > 1/(2N), or

e 1+Rey/(2N)<Rez<2andz=1+1t"y with |t/| > 1/(2N).

Since Re y > 0, the condition above turns out to be z € E(J)r orzel].
We will also use T (z) to denote the function extended by using (2-15) and (2-16). Then we have:

Lemma 2.14 The function Ty (z) extended as above also satisfies (2-10) for any z in the region
(2-17) {zeC|-1<Rez <1}\(§ ULy)

with £ :={z € C |z =sy with1/(2N) <s < 1/Rey}; see Figure 3.

Remark 2.15 As in Remark 2.13, Nz/y + % is in the domain of £; unless z € E(J{ Uly.

Proof If —Rey/(2N) <Rez < Rey/(2N), then (2-10) is proved in Lemma 2.8. If —1 < Rez <
—Rey/(2N) and Rey/(2N) <Rez < 1, then we define T by (2-15) and (2-16), respectively, so that
(2-10) holds. |

Lemma 2.16 The function Ty (z) defined as above is holomorphic in the region (2-14).
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Proof From (2-1), Tx(z) is holomorphicin {z € C | —Rey/(2N) <Rez <1+Rey/(2N)}. Therefore
from the definition using (2-15) and (2-16), T (z) is holomorphic in the disjoint strips

R R
ZE<C|—1<Rez<—ﬂ u Z€C|1+ﬂ<Rez<2.
2N 2N

So we need to confirm that T (z) is holomorphic for z with Rez = —Rey/(2N) or 1 +Rey/(2N).

Let B be an open disk centered at z (where Re z = —Re y/(2N)) with radius less than Re y/(2N ). Then
for w € B with Rew < —Rey/(2N), we have

Ty (w) = Ty (w + 1) +£1(%w + %)

from (2-15). On the other hand, for w € B with Rew > —Rey/(2N), Ty (w) is defined by using
(2-1). However, from Lemma 2.8, this coincides with Tn (w + 1) + £ ((N /Y)w + %) Therefore Ty is
holomorphic in this case.

Similarly, we can prove the holomorphicity of T for the other case. a

Let €2 be the region defined as

Rey Rey
(2-18) Q::{ze@)—1+W<Rez<2—W}\(A;;UAT),

where we put
R
A(J)r :={Z€(C‘—l+%<ReZ§O,ImzZO, and Im(%)fo ,

R _
A7 = ZG(C‘ISReZ<2—ﬂ,ImZ§0, and Im(g)zo .
2N 14

See Figure 4. Note that €2 is contained in the region (2-14) because

R R
K(J{ﬂ ZE(C|—1-|—ﬂ<ReZ<2—ﬂ
2N 2N
and R R
an ZGC‘—1+ﬂ<ReZ<2—ﬂ,
2N 2N

are on the upper side of A(}L and the lower side of A7, respectively.
Lemma 2.17 The function Ty (z) extended by using (2-10) satisfies (2-11) for z € Q.

Remark 2.18 The left-hand side of (2-11) is defined for z such that z £ y/(2N) is in the region
(2-14), that is, z £ y/(2N) ¢ f(';' U £7. This is equivalent to saying that z is not on the two rays
{sy €C|s<0}U{l+sy eC |s>0}. Note that the ray {sy € C | s <0} includes the upper edge of A7,
and that the ray {1 + sy € C | s > 0} includes the lower edge of A7 . The right-hand side of (2-11) is
defined unless z € (—o0, 0] U [1, 00).
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Figure 4: The yellow region is 2. The green triangles are ASL and A7.

Proof We need to prove (2-11) for z with —1 +Rey/(2N) <Rez <0or1 <Rez <2—Rey/(2N).
If —Rey/(2N) <Rez <0, from (2-12), we have

14 14 14 14 N
Tylz—2\|-T L )V =Tylz=-2)-T 1— -2,y =z+1
N(z 2N) N(Z+2N) N(z 2N) N(Z—I— 2N)+£1(z+) Cl(y2+)

(X Ve Dsoeen-o(X 41
= —|z—=— - z — —z
1 ) N > 1 1 y

N N
=£1(7Z) +£1(Z+1)—ﬁ1(72+1),

where we use Lemma 2.14 for z—y/(2N) at the second equality. If Im z > 0, then Im(z/y) > 0 from (2-18).
SoLi(z+1)=Ly(z) and L1(Nz/y + 1) = L1(Nz/y) from (2-5), which implies (2-11). If Imz < 0,
then we have In(Nz/y +1) = (N/|y|>)(ReyImz —Imy Rez) <0. So L1(z + 1) = £1(z) + 27 ~/—1
and L1 (Nz/y + 1) = £1(Nz/y) 4+ 27 +/—1 from Corollary 2.6, proving (2-11).

If Re z = 0, then noting that 0 is not included in €2, similarly we have

N
TN(Z—%)—TN(H%) - TN(Z—%)—TN(ZH—%) +£1(z)—£1(7z)
=£1(%(2—%) +%) +£1(Z)—£1(%Z) =L1(2).

IfRez=—Rey/(2N),thenRe(z+y/(2N))=0and —1 <Re(z—y/(2N))=—Rey/N <—Rey/(2N).
Therefore from (2-15) we have

N 1
219) Ty(z—2 )-Tu(z+ L ) ==Lt )T (20 2 Yo (S (2= 2 )2
2N 2N 2N 2N y \"Tan )2
=TyN Z—L—i-l TN Z+L +L4q EZ
2N 2N y
N N
=£1(Z+1)—£1(7Z+1)+£1(7Z),
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where the last equality follows from Lemma 2.11 since Re z < 0. If Im z > 0, then Im(z/y) > 0, and so
(2-19) turns out to be £L1(z). If Imz < 0, then Im(z/y) < 0. Therefore (2-19) equals

log(1 — ez’“ﬁz) —2nv—1=L1(2)
from Lemma 2.5 and Corollary 2.6.

We consider the case where —1+Re y/(2N) <Rez <—Rey/(2N). Note that —1 <Re(z+y/(2N)) <0.
Therefore from (2-15) we have

y y
Tw(z- L) -1 e
N(Z ZN) N(”zN)
Y Y N Y 1 N Y 1
—Ty(z-L+1)-T SIS VR (A (PO A DR N () (I A
N(Z 2N+) N(Z+2N+)+ l(y(z 2N)+2) 1(y(”2N)+2)
_ NN_, (N
—£1(z+1)+£1(yz) El(yz—i—l),

where we use (2-11) because 0 < Re(z + 1) < 1. By the same reason as above, this equals £;(z).

If 1 <Rez <1+ Rey/(2N), then from (2-16), we have

Y Y Y Y N Y 1
T ——|-T — | =T ——|-T “——1)4+L1|— ——1 —
v(e=aw ) oo g ) = (o) v (1) +a (S (e 1) +3)
=51(2—1)—51(5(2—1))+cl(ﬁ(z—1)+1),
Y 14
where we use (2-12) for z — 1 at the second identity, noting 1 ¢ Q. If Imz > 0, then Im((z —1)/y) =
(1/|y|>)(Imy(1—Re z)+Re y Im z) > 0, so the last line equals £1(z). If Im z <0, then Im((z—1)/y) <0

from the definition of A7, and so we have £1(z —1) = L1(z) —=2n+/—1l and L1 (N(z = 1)/y + 1) =
L1(N(z—=1)/y)+2n+/—1 from Corollary 2.6, which implies (2-11).

Lastly, we consider the case where 1+Re y/(2N) <Rez <2—Rey/(2N). Since 1 <Re(zty/(2N)) <2,
from (2-16), we have

4 14
(2-20) Ty (Z—ﬁ) TN (Z—i-ﬁ)

14 4 N 4 1
=Tyn|z—--—1)-T, 1)L = z===1)+=
vyt (g )a (S (a1 +3)
N

= L1(z—1)—L4 (%(z—l))m (%(z—lm),

using (2-11) at the last equality. If Im z > 0, then Im((z—1)/y) = (1/|y|?)(Im y(1-Re z)+Re y Imz) > 0
since Re z > 1. So (2-20) equals log(1 —ez’fﬁz) =L1(z). fImz <0, then Im((z—1)/y) <0. Therefore
(2-20) becomes

log(1 — e2™V=12y L 25/ 1 = £,(2)

from Lemma 2.5. O
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Im

Figure 5: The yellow region is 2. The green trapezoids are A(}L’ yand A7

Remark 2.19 Even if z € Int A(J)r Ulnt A7, where Int means the interior, both sides of (2-11) are defined
from Remark 2.18. However, if z € Int A(J{ , then from the proof above,

TN(Z—%)—TN(Z—F%) =£1(2+1)+£1(%2)—£1(%Z+1) =,C1(Z)—27T\/—_1,

where the second equality follows from Corollary 2.6 since Imz > 0 and Im(N/y) < 0. Similarly, if
z € Int AT, we have

TN(Z—%)—TN (2+%) =L‘1(z—1)—/j1(%(z—l)) +£1(%(z—1)+1) = L1(z) =271,

since Imz < 0 and Im((N/y)(z—1)) > 0.

For a real number 0 < v < % and a positive real number M, we put
(2-21) Q) :={zeC|-1+v<Rez<2—v |Imz| < M}\(Af, UAT,).

where we put

A(J)r,v = {z eC ! —14+v<Rez<v,Imz>—v, and Im(Z;v> <0>,

Al_,v = {z eC ! l—-v<Rez<2—v,Imz <v, and Im(Z_Jl/—H)) > O}.

Note that Q3 C Q if N > Rey/(2v). Note also that A(')tv NAT, =@ since v < %; see Figure 5.

We can prove that Ty (z) uniformly converges to N/(2w~/—1y)L2(z) in 3. To do that, we prepare
several lemmas.

Lemma 2.20 Let v and M be positive real numbers with 0 <v < % Then

N V) N ( V) -2
—  Lolz——— |- ——— L z+—— ) =L1(2)+ ON
N 2( ) REEvarnt (O BRI L
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as N — oo for z in the region
(2-22) {zeC|—-14+v<Rez<2—v, [Imz|<M}\ (O, uO}),
where
O, ={zeC|—-14+v=<Rez=<v,|Imz| <v}, I:I;r ={zeC|1—-v<Rez<2—v,|Imz| <v}.
This means that there exists a constant ¢ > 0 that does not depend on z such that

N 14 14
2n«/—_1y£2(2_ﬁ) an/_y (+ N)_EI(Z)

for sufficiently large N .

<C
N2

Proof Note that if z is in the region (2-22), then z £ y/(2N) is also in the same region, assuming that
N is large enough. Note also that £; and £, are holomorphic there.

Since
1(2) = —27 /=1 Moy = ATt 3 (2) = 273 v/ esc?
L5(z) = 2n~vV—-1L1(2), L5(z)= PR oy e and L;7(z) =2m lcsc“(mrz)

(cscx = 1/sin x is the cosecant of x, as you may know) from Lemma 2.7, we have

277.'2 )/2
,CZ(Z:EW) Ez(Z)ZFZHV ,C](Z) —Zﬂ\/jz 4N2

m3/— y 2\ 273/ =1d7 3 esc?(nz) LY J
3s1n2(nz) 8N3 = J! dzi—3 2N

if N is large enough that z & y/(2N) is contained in the region (2-22). So

N .c(z ’/) N L(z—i—y)
2r/—1y g 2N 2w /—1y g 2N

_r > 72 d*2csc(z) [y 2k
- 1(2)_;(21(“)! dz2k=2 2N )

(2-23)

From Lemma 2.21 below, we have

. d?=2 csc?(nz2) _ A .
sin?* (nz)w =272k 2 Z Apk—p2j COs(2jmz)
j=0
with azg_55; >0for j =0,1,...,k—1and Zf;(l) Ark—22; = %(2]{ —1)1. Letting L be the maximum

of |cos(z)| in the closure of (2-22), we have

72 d2k—20s02(7rz) y 2k
2N

: 2k
sin“* (7 z) ok )1 2k

k
5 72 pp2k-2p @k=DU([y| 2
2k +1)! 2 \2N

_ L (aly\*
22k + 1)\ 2N
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Let / be the minimum of |sin(7z)| in the closure of the region (2-22). Since the closure is compact and
does not contain the zeros of sin(;rz), we conclude that / > 0. So

N2 io: w2 d2k_2csc2(7rz)( Y )Zk‘ Lr?|y|? io: 1 (n|y|)2k—2
iz Qk+ 1) dz2k—2 2N 812 ;= 2k+1\2IN ’
which converges if N > x|y|/(2]).

Therefore the right-hand side of (2-23) turns out to be £1(z) + O(N ~2), completing the proof. |

Lemma 2.21 Let m be a positive integer. The m' derivative of csc?(rz) can be expressed as

m 2
M =2(—7)" esc™ T2 (7r2) P (2),

dzm
where P,,(z) is of the form
Pp(z) = > am,jcos(jmz)
0<j<m
j=m (mod 2)

with
(i) am,; >0for0<j <mand j =m (mod 2),
(i) Yo<j<m, j=m (moa2) dm.j = 3(m + 1!, and
(iil) amm =1.
Proof First of all, recall that csc’(x) = — cos(x) csc?(x).
We proceed by induction on m.
For m = 1, since (d/dz) csc?(wz) = 2csc(mz)(—m cos(mwz) esc?(nz)) = —2m csc3(z) cos(z), we
have P1(z) = cos(irz), which agrees with (i)—(iii).
Suppose that the lemma is true for m. We calculate the (m-+1)" derivative by using the inductive
hypothesis for Py, (z). We have
d™ 1 ese?(nz)
dzm+1
= 2=y <L (ese™ 2 (u2) P (2))
=2(—m)" ((m +2) esc™ T (7w 2) (=7 cos(z) esc? (w2)) P (2) + csc™ T2 ( z) P,, (z))
= 2(—1)" esc™ T3 (7w z) [~ (m + 2) 7w cos(7w2) P (z) + sin(wz) Pl (z)]
= 2(—m)™ csc™ T3 (z2)

. [—(m + 2)m cos(mz) > Am,j cos(jmz) —sin(wz) > Jmam,; sin(jzrz)]
0<j<m 0<j<m
Jj=m (mod 2) j=m (mod 2)

=2(—nm)" M esc™ T3 (n2)
. [(m +2) > am,j cos(mwz)cos(jmz) + > Jam,jsin(mwz) sin(jzrz)].

0<j<m 0<j<m
j=m (mod 2) Jj=m (mod 2)
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Now we will calculate the terms inside the square brackets. We write x := mz. From the product—sum
identities, we have
sin(x) sin(jx) = %cos((j —1x)— % cos((j + 1)x),
cos(x) cos(jx) = % cos((j — 1)x) + 3 cos((j + 1)x).
So we have

(2-24) (m+2) > am,jcos(x)cos(jx) + > Jam,j sin(x) sin(jx)

0<j<m 0<j=<m
j=m (mod 2) Jj=m (mod 2)
=Ly m+2)am, (cos((j = 1)x) +cos((j + D))
2 0<j<m
j=m (mod 2) !
t5 X Jamy(cos((j = 1)x) = cos((j + 1))
0<j=m
j=m (mod 2)
=S (D cos((G = DX) + (m = j +Dam,; cos(j + 1))
2 0<j<m
j=m (mod 2)

1
2

% 3 (m—+k+3)ay g+ cos(kx)+ > (m—k +3)ay x—1 cos(kx)

—1<k<m-—1 1<k<m+1
k=m+1 (mod 2) k=m+1 (mod 2)
% > (m+k+3)amp+1+ Mm—k+3)ap —1)cos(kx)
0<k<m-—1

k=m+1 (mod2) +am mcos((m + 1)x) if m is odd,

3 > ((m+k+3)amps1 + (m—k +3)am 1) cos(kx)
0<k<m—1
k=m+1 (mod 2)

+am,mcos((m + 1)x) + %(m +2)am,ocos(x) if mis even.
Therefore we obtain the following recursive formula for a,, x:
g _fm+k+3ampt1+(m—k+3amp—1 ifkF#1,

ML n 4k + 3)am.z + 20m —k + 3)am.o ifk=1.

Note that this also holds for k = 0 and k = m + 1 by putting a,;,—1 = am,m+2 = 0. Then, (i) follows
since m — k + 3 > 3, (iii) follows since a;;+1,m+1 = 1, and (ii) follows since the sum of the coefficients
in the third expression of (2-24) equals

1 . .
5 Y. ((m+j+2am;j+m—j+2am;)=m+2) >  am;-. O
0<j< 0<j<
j=m (mod2) o (md 2)

For a real number v > 0, we define the region

Z—V

D<= {Z eC !Imz >0, Im(T) 50} U {Z eC ‘Imz SO,Im(Z—H}) ZO}.

See Figure 6.
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Im

Figure 6: The green region is p<,,.

Lemma 2.22 There exist positive real numbers ¢ and ¢ such that

eN

Lo(z)— Lo(z+1)— L (%Z + l) <ce”

2

_N _N
2n =1y 2n =1y

for any z in the region C\ ><,, if N is sufficiently large.

Remark 2.23 The left-hand side is defined unless Imz = 0 or z = sy (|s| > 1/(2N)). Therefore if
z &<, then the left-hand side is defined.

Proof Note that Imz # 0 if z ¢p<,,.

First, suppose that Imz > 0.

Since £,(z) = L2(z + 1) from (2-4), we will prove that |£; ((N/y)z + %)| < ce™®N for some ¢ > 0 and
e > 0. Note that Im(z/y) > Im(v/y) = —vImy/|y|* > 0 because z ¢r=<,,. So

L1 (%Z + %) = log(1 + eZN”ﬁz/y)

from (2-3). Now since log(1 4+ x) = Zle(—l)k_lxk/k for |x| < 1, one has

X kRea Rea

o0
e kR e
|log(1+e“>|s’;1 - <;§1€ = Rea

if Rea < 0. Since Re(2Nwv/—1z/y) = —2Nx Im(z/y) <2NmvImy/|y|? <0, we have

2NmvImy/|y|?
e _
<ce N

2Nm«/—1z/y
llog(1 +e )| < | —e2Nmvimy/|y?

where we put £ := —27vImy/|y|> >0and ¢ :=1/(1 —e %) > 0.
Next, suppose that Imz < 0.

From Corollary 2.6, we have

La(z)— Lo(z+1) = M

_N _N
2w /=1y 2w /=1y
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Since z ¢p<,, we have Im(z/y) < —Im(v/y) = vImy/|y|?> < 0. Thus from (2-3) we obtain

L1 Ez—i—l zlog(1+e—2Nﬂ\/jlz/y)+2N7T\/—1Z.
y o2 v

Since Re(—2Nmw+/—1z/y) = 2N Im(z/y) < 2NmvImy/|y|?, we finally have

N N N 1 —2Nrn/—1z/ —&N
———Lr(z) ——F——L2(z+ 1)L (—z+—)‘=lo 1+e ") <ce
as above, completing the proof. O

The following lemma is similar to [24, Lemma 2.4] and the proof is omitted.

Lemma 2.24 Let v and M be positive real numbers. Then there exists a constant ¢ > 0 such that

Tn(z)— L2(2)

_N =<
2w/ —1y N

for z in the region {z € C |v <Rez <1—v, |Imz| < M} if N is sufficiently large, where ¢ does not
depend on z.

Now we can prove the following proposition:

Proposition 2.25 Suppose that v < %. We have

Tn(z) = Ly(z)+ O(NT)

_N_
2n—1y

as N — oo in the region Q3.

Proof We need to prove the proposition for z with —1 +v <Rez<vorl—v <Rez <2—v.

If z€ Q) and —1 +v <Rez < —v, we use (2-15). We have

Ty~ a0
1 N
‘TN(Z+1)+£1( Z+2) 27‘[\/—_1)/£2(Z)
N N 1 N
=< ‘TN(Z +1)— mﬁz(z + 1)' + (L1 (72 + z) 27t«/_)/£2( z)+ —«/—_1)/£2(Z +1)

= O(1/N),
where we apply Lemmas 2.24 and 2.22, noting that we can apply Lemma 2.22 because z ¢><,.
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Similarly, if z € Q} and 1 + v <Rez <2 —v, using (2-16), we have

‘TN(z)—%zzm
N | N
= ’TN(Z—I)—[:l (7(2—1)+§)—m£2(2)
< N . (N N N
<|Tw(z=1) 2m/__]ycz(z 1)‘+‘ El(y(z 1)+2) 2nﬁycz(z)+2nﬁycz(z 1)’

= O(1/N),
noting that we can apply Lemma 2.22 because z — 1 ¢p<,,.

If z€ Q) and —v <Rez < v, we put m := [2Nv/Re y] + 1. From Lemma 2.17 we have

TN(Z)=TN(Z+%)+£1(Z+%) =TN(Z+%)+E1(2+;—;)+E1(Z+%)
= —TN(Z+—) 261( ( Jzzvl))/)‘

Now since m < 2Nv/Rey +1 <m + 1, we have v < Re(z + my/N) < 3v +Rey/N <1 —v if
N > Rey/(1 —4v), and so we can apply Lemma 2.24 to z + my/N. We have

N
'TN(Z)_mﬁz(Z)
mny (2j =Dy
'TN(Z+T)_2 N L’z(z)—I—ZE ( T)'
14 N my
TN(Z+W)_271’«/—_)/£2(Z+W)‘
al 4 L @j=Dy
" 271«/—_V£2(Z+ N) 2ﬂ«/_y£2(z)+]§£1( 2N )‘
S L . L @i=ly
N zw_—ﬂ( * N) 2n¢—y£2( Hzﬁﬁl( N )‘+0(1/N).
Since - | |
52(24‘%)—52(2):Z(L’z(z—l—%)—ﬁz(z—i——(j ;Vl)y))’
=1
we have ’
N (™ ] L 2i=y
(2-25) zm/__lyzz( + N) - d_ Ez()+ZL‘( — )‘

| N jvN\ N (j =Dy 2j =Dy
S; 271\/—_11/ (+W) 27“/—_1)/[:2(2—'_ N )+£1(z+ 2N )‘
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We use Lemma 2.20 to conclude that each summand of the right-hand side of (2-25) is less than ¢/ N2
for ¢ > 0. Note that ¢ is independent of j. Since m = |[2Nv/Re y| + 1, the right-hand side of (2-25) is

less than N ’
c v c c

2T < —_ < =

N2 _(Rey +1)N2 - N

if we put ¢’ := (2cv/Rey + 1).

If ]l —v<Rez<1+v, from Lemma 2.17 we have
14 Y 2y 3y 14
T =T, ——) L ——)—T ( ——)—LZ ( —— )L ( ——)
NG N(Z N I(Z 2N A N e 2N) 1z 2N

== (=) - £ (- ),

where we put m := [2Nv/Rey| + 1 as before. Since v < Re(z —my/N) < 1 — v as before, we can

prove the proposition similarly. a

3 The colored Jones polynomial

In this section, we show several results following [24].

First of all, we recall the following formula due to Habiro [10, page 36, (1)] and Le [18, 1.2.2 Example,
page 129] (see also [20, Theorem 5.1]):

N-1 k
3-) v = T 11 aN2 =g OO0 gm0
=0/=1

N=U v F N—I N+
=2 4q [TA=¢g"H(1—=q™ ™).
k=0 I=1

For a positive integer p, we put £ :=k +2pmw+/—1, where k := arccosh(%). We will study the asymptotic
behavior of

N—-1 k
JN((ga, eS/N) = Zl 1_[ e_kg(l — e(N_l)s/N)(l _ e(N+l)§/N)
k=01=1
as N — oo.
We can express Jy (& e‘s’/N) in terms of Ty, putting y := &/(2w +~/—1), similarly to [24, Section 3, (3.2)].
We have

_ 26 Pl 2k +1

(32 In(&efN) = (1—eHNTE) Ty (ﬂp,m > exp(N v (*3 —ﬂ)))
m=0 mN/p<k<(m+1)N/p 14
since 2 sinh(3«) = 1, where we put
(3-3) Bpm i= e~ 4mPNT/E [T (1 = A= DNT2/E) (| _ Ap+iINT2/E)
j=1
2pmA/—1

(3-4) v @) = TN =2) = p+ D= LT (r(1+2) = p) =z — L .
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Lemma 3.1 The function fy is defined in the region

1 1 Im(SZ) 2
< —_—
2N 2pmw )4

—2L \(V§UV5 UV UTy).

zeC|—

1 1 Im(§z) 2pmk
_+2N Ipm <0,Re(¢z) <k,Imz <— 2|

Im(z) 2 1 2(1— p)rk
2p7‘[ <;—ﬁ,RC($Z)2K,ImZET s

G mfrec| Lo < )

zeC lf
p

= < _ <
2N o <0,Re(¢z) < —k,Imz < BE

| nG2) _2(p+ Dk
ape < 5N ReE)Z —emz = S §

<

S

[0
*el

See Figure 7, where we put

E::{zec|z=Z”E/__lz—l,zeR}={ze<c|Re(sz)=—x},
1_<:={zec|z=2”§§/__1z+1,ze1[z<}={zec|Re(gz)=x},

Ls:={zeC|Im(fz) = 2sm}.
Proof Recall that the function T is defined in 2; see (2-18).

Since y = &/Q2n/—1) = (k + 2pn~/—1)/ (27 +/—1), we have Rey = p, Imy = —k/(27), and

Re(y(1+2))=p+ Imz(jz), Im(y(1 % 2)) = — <  Re€2).

27 2
Therefore
1+ L cRepl—2)—pr 1) <2- L — —1+L<Im(§z) <2__L
2N 2N 2N 2pm p 2N
p p
— —14+— <R 1 2——=—.
toN < e(y(l+z2)—p) < N

We can also see that the condition y(1 —z)—p+ 1€ A(T is equivalent to z € V;, that the condition
y(1—z)—p+1€ A7 is equivalent to z € V', that the condition y(1 +z)—p € ASL is equivalent to
z € ﬁ;r , and that the condition y(1 +z) — p € A is equivalent to z € 60_ . a

We would like to approximate fa (z) by using £,. From Proposition 2.25 and (3-4), the series of functions
{fn(z)} converges uniformly to

1, (E0-2) (et N\ 4pn?
F(z):= (ﬁ (27_[\/_ +1) 52(27[\/—_1 p)) Kz + £

Im(§z) _ 2 - 5 S
%_ 2o ;—%, IRe(EZ)|§2M7r—K} \ (Vg., UVo, UVE,UVg,),
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‘."\.:2(p+1)1<n %

L, L,

Figure 7: The function fy is defined in the yellow region ®¢. The green triangles are Y(')", Vo
VJ‘ ,and V.

where we put

I 2p —
YE)FV Z%ZGC‘—l V- m(sz)<K,RG(EZ)<K—|-27TV,IIDZ<—(I)—];)”K},
’ p p 2p p H
I 2(1—p—
Y0_v3=%ze(c‘l—l< m(éz)SE—K,RC($2)>K—2nv,Imz>—( pzv)mc}’
’ p p 2pm p p H
\V. 1 v _ Im(§z) % 2(p +v)mk
v =%Z€(C —— 4+ =< < —,Re(z) < —«k+2av,Imz < ————7,
o S g < RelE) —
v I 2 1—
V()_v::%ze(c‘l—i< m@Z)SE—K,Re(§2)>—K—2nv,Imz>—(p+ zv)mc}
’ p D 2pw p p H

Lemma 3.2 The series of functions { fy (z)} uniformly converges to F(z) in the region (3-5).

Proof In a way similar to the proof of Lemma 3.1, we have

1 v Im¢Ez) 2
—14+v<Re(y(l1—=2)—p+1)<2—v & ——+ —< <= ——=
(yd—-z2)—p+1) AT A Y

— —14+v<Re(y(l14+z)—p)<2—v,
Im(y(1+z))| <M <= k—2Mn <FRe(§z) <k +2Mm,
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and
y(—z)—p+1eAf, < zeVy,. y(l-2)—p+1eA], & zeV],,
y(+2)—peAf, < zeV{,. y(l+2)—peA], < z€V,,.
Then the lemma follows from Proposition 2.25. a

We can express F(z) in terms of Li, for certain cases.

Lemma 3.3 Ifz is in between K and K, or between L¢ and L1, then we have

(3-6) F(z) = E Lip(e €0+ £ L i (e 80-9) 4z — 2/
Moreover, if z is between L¢ and L1, we also have

4 2
(3-7) F(2) = g Linef(079) = £ Lin(ef+9) —cz 4 = ;

Proof Since Im(§(1+2z)/(2n+/—1)) = (—1/27)(k £Re(£2)), we see that Im(§(1+2) /(2w /—1)) <0
and Im(&(1 —z)/ (2w ~/—1)) < 0 if z is between K and K. Thus, in this case, we have (3-6) from (2-6).

Next, we consider the case where z is between Lg and L1, that is, where 0 < Im(§z) < 2.

We have Re(§(1 — 2)/2n~/—1)) — p + 1 = 1 —Im(£z)/(2x) and Re(§(1 + 2)/2n~/—1)) — p =
Im(£z)/(27), both of which are between 0 and 1. So, from Lemmas 2.3 and 2.5, we have (3-7).

Now we will show that (3-6) also holds in this case.
From (2-7), we have
Liz(eé(l—z)) — _Liz(e—é(l—z)) _ %”2 . %(Iog(—e_S(l_Z)))z
= —Lig(e¥07) — 1z — L(—£(1—2) + 2p - D7 V=1)?

since Im&(1 —z) =2pm —Im(&z), which is between 2(p — 1) and 2pm when 0 < Im(§z) < 27, that
is, when z is between L¢ and L. Similarly,

Li2(e§(l+z)) - _ Liz(e—f(l-‘rz)) _ %7_[2 _ %(log(_e—f(l-i-z)))z
= —Lig(e W) 122 1t 4+2)+2p+ Dav/-1)2
since Im&(1 + z) = 2pn 4+ Im(£z), which is between 2pw and 2(p + 1)7z. Thus, from (3-7), we obtain
(3-6), completing the proof. a

The derivatives of F(z) are given as follows from Lemma 2.7:

- 1
(3-8) F’(z)=£1(i( Ji)—p+1)+£1(i;j_if—p)—x,
" E(e™ SZ_eéz)
(3-9) Fl(e) = e

£2(4—3(ef% 4+ e7E7))
(3—etz —e—82)2

(3-10) F® @)=
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If z is between K and K, or between L and L, we have

(3-11) F'(z) =log(1 — e %) + log(1 — e %) 4 k = log(3 — €87 — ¢7%7)

from Lemma 3.3, where the second equality follows from the same reason as [24, (4.2)].

Put 0¢ :=2n+/—1/& = (21 /|£|?)(2pm + k+/—1). Since Re(£0¢) = 0 and Im(£0¢) = 27, we conclude
that og is on L; and between K and K. From (3-6), (3-11), (3-9), and (3-10) we have

2
(3-12) F(Uo)=4p;» Fl(00) =0, F(0) =0, F®(ap) =262,

4 The Poisson summation formula

In (3-2), we put ¢;m N (2) := fn(z —2ma~/—1/E) form =0,1,2,..., p—1 so that

p—1
@-1)  In(&ef/N)y = (1—e4PNT /6 Y (ﬂp,m > exp(Ngm, v (2];\;1)))

m=0 mN/p<k<(m+1)N/p

Note that the function ¢, y(z) is defined in the region

1 _Im(z) 1 b ooe St e

@m._{zeC)——+

from Lemma 3.1, where we put

-1 1 Im(éz) _m 2(m—p)mk
V+ ={ m=: —,Re(¢z) <x,Imz < ———¢,
v » TaN < pn = poRe€ BE
I 2(m — 1
Vin ={ mtl = m(§2)<m+2 1 ,Re(§z) >k, Imz > (m p;i— )mc}’
p 2pm p 2N’ &1
= -1, 1 Iméz) m 2(m+ p)mk
V.= m—-1, 1 _ <= R <« 1 <= -t
S +1 Im(éZ) _m+2 1 2(m+ p+ Drk
Vo=lzec |2 R > Imz >
' {z » Ipn > N e(fz) > —«k,Imz B

We would like to show that the sum
2k+1
> eo(vma(%)
mN/p<k<(m+1)N/p

is approximated by the integral

(m+1)/
N/m perm,N(Z) dz.
m/p

To do that, we use the following proposition, known as the Poisson summation formula:
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Proposition 4.1 Let a and b be real numbers with a < b, and {yn(z)}n=1,2,3,.. be a series of

PRy

holomorphic functions in a domain D C C containing the closed interval [a, b]. We assume that ¥y (z)
uniformly converges to a holomorphic function ¥ (z) in D. We also assume that Re y(a) < 0 and
Re v (b) < 0.

Putting R+ :={z€ D |Imz>0,Re¢¥(z)<2xImz}and R—:={z€ D |Imz<0,Rey(z) <—2m Imz},
we also assume that there are paths Cy connecting a and b such that C+ C Ry and that C+ is homotopic
to [a,b] in D with a and b fixed.

Then we have

b
% S eNUNG/N) / NVNVG) g2 1 0(e#N)
a<k/N<b a

for some ¢ > 0 independent of N .

A proof, which is essentially the same as that of [30, Proposition 4.2], is given in Appendix A.

From Lemma 3.2, the series of functions {¢, n (z)} uniformly converges to ®,,(z) := F(z—2mmn v/ —1/§)
in the region ®, , defined as
(4-2) O, ={zeC|2(m—14v)m <Im(§z) <2(m+2—v)x, [Re(§z)| <2Mm —k}
\ (Yo U V00 UV, U V),

where we put
Y,i;,v ={zeC|2(m—1+v)r <Im(£z) <2(m+v)m,Re(Ez) <k +2mv,Imz <2(v—p+m)nk/|E|?},
Vinw

={zeC|2(m+1-v)7 <Im(£z) <2(m~+2—v)7, Re(£2) > k—27v, Imz > 2(1— p+m—v)wk/|E]*},
ﬁ,'nhv :={zeC|2(m—1+v)7 <Im(£z) <2(m+v)7,Re(Ez) < —k +27v, Imz < 2(v+ p+m) 7K/ |E|?},
Vi,

:={zeC|2(m+1—v)w <Im(£z) <2(m~+2—v)7, Re(£2) > —k—27v, Imz > 2(p+m+1—v) 7k /|E]?},

and we always assume that N is sufficiently large. From (3-8)—(3-10), we have

N El+2) )
4-3) @m(z)_ﬁl(znﬂ+m 17-1—1)—i—£1(27“/__1 m p) K,
" _ zg—(e—Sz _eéz)
(4-4) @)=
204 &z —&z
@5) o) =T

(3 —efz —e~82)2
Since z —2mm+/—1/¢ is between Lo and L1 (K and K, respectively) if and only if z is between L,
and L+1 (K and K, respectively), from (3-11) we have

(4-6) @) (z) =log(3 — e*? —e~¢7)
when z is between K and K,or Ly, and Ly,+1.
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1m+v 1m+l—v

Vo

Lm—l +v Lm+v Lm+1 —v Lm+7—v

Figure 8: The yellow region is ©, . The blue point is 6,,. The green trapezoids are V|
Vi,.and V,

m,v>

Vi Ymwo

We also put 0y, := 09 + 2mm~/—1/E =2(m + )w/—1/E = 2(m + D) /|E]?)2p7 4+ k/—1) so that

4pm?
£

from (3-12). Since Re(£0,,) = 0 and Im(£0,,) = 2(m + 1), we see that 0, is between K and K and

on the line L,,+1; see Figure 8.

4-7) Dy (om) =

@, (0m) =0, @1 (om) =0, O (o) =282

Let /5 be the vertical line Rez = s/p for s € R.

For a small number y > 0, let E,,,, be the pentagonal region defined as

- 1 2 1
Em,y = Zec‘m X<Rez<m+ +X’_ (m+2)K7T<ImZ<(p+2m)K
P |1 2pcm
2x+DIE]?
I ——1 >2(m—
m(§z) + 2t e ™7 (m—x)m
when m < p — 1, and
—1- 2 2p—1
Ep—1,x:= ZeC‘u<Rez<p+X,— pK2N<ImZ<—( P 5 )«
p p €] 2p%7
+ 2
Im (5)4‘% Z>2(p—1—)()n}\<>v,
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P Py Ps P, P; Py Ps P,
\ ﬁ “‘\‘ “‘\‘ ﬁ “‘\‘
Loy re Tp-1y o .
i L " L
P L m+1/2 mtl p p L p—1/2 P P 3
0 VL3 0 :
m=y i m Ly Re p-1-x 1 Y Pty Re
12 J 1 12 J | 1Z
H L1 H Ly
P, P, Py P,

Figure 9: The region E,, , when m < p —1 (left) and the region E,_1 , (right), where the green
quadrilateral indicates ©,. Precisely speaking, the points Py and P should be a little more to the
right than indicated, and the points P, P3, and P4 should be a little more to the left than indicated.

where we put
oy:={zeC|Rez<1 —i—)(/P}ﬂY;—l,v-

Note that &, (m < p—1) is surrounded by Ir—y, Im+1+y, H, H, and J, where H and H are the
horizontal lines Im z = (p +m)«k /(2 p?n) and Im z = — Im 0,,, respectively, and J is the line connecting
(m—x)/pand Ly,4 1/, N H, which is given as

,_ 2y + DIEP? _
(4-8) J.—{ZE(C‘Im(";‘z)—l—mlmz—Z(m—)On .

See Figure 9, left. Figure 9, right, indicates E,_1,,, where ¢, is indicated by the green quadrilateral.
Note that it is a neighborhood of the point 1.

Lemma 4.2 If v > 0 is sufficiently small, then we can choose x > 0 so that B, y is included in ®y, ,
form=0,1,2,...,p—1.

Proof First, B, , is in the rectangle surrounded by Iy, Im+1+y, H, and H, with bottom left vertex

vy = (m—y)/p—Qm+ Drr/|E)V-1
and top right vertex
vai=(m+1+4x)/p+(p+m/2p*n)V~1.

The vertices v; and v, are on the lines Ly gy,)/(27) and V2 Lim(gv,)/(27)» TESPectively. Since

Im(§v1) (m + Dic?
%—(m—l—l—v):(l—)(—v)—%
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and 5
Im(§v2) (p+m)k
2—))——=(1—y—v)— —5—S—,
(m42-0) =T = (1) =
if
4 i 1 LS o QU ’
(4-9) v+)(<m1n{ —(m+ )(|§|> —(p-i-M)(m) } —(p+ )(21771) )
then E,,,, is between the lines Ly, —14y and L2y form =0,1,2,..., p—1.

So it remains to show that &, , excludes V,j,‘ v an e Vo o

and 'V,

e The real part of the bottom right corner of V v is (k(Qmv —k) +4(m+v) pr?)/|€|?, which is smaller
than (m — y)/p if

(4-10) 2p(k 4+ 2pm)v + |E2x < (p + m)k>.
So the trapezoid ﬁ,‘,';v is to the right of /5,y if (4-10) holds.
¢ The difference between the imaginary parts of the bottom line of ﬁnj’v and H is

2ptm+1—v)kxr  (p+mk k(@4p?(1—=v)r? —(p +m)?)
BE 2p?n 2p2n ’

which is positive if
4-11 1 Y
(4-11) V< —(p+m)(2P7).

So we conclude that 6,; . is outside of & y if (4-11) holds.

¢ To obtain a condition ensuring that Y;v is below J, it is enough to find a condition ensuring that
the top right corner zg of the trapezoid is below J, since Ly, 4, is steeper than J. Since Imzg =
2(v— p +m)km/|€|? and zg is on L+, the condition is

Qyx+DIEP2(v—p+m)kr
2(m + 1k |€|2

2(m+v)m + <2(m— )
from (4-8). Therefore, if
(4-12) 2vy+Cm+3)v+2C2m—p+ Dy < p—m,

the trapezoid Y;v is out of Ep .

o The real part of the top left corner of V;,  is (k(k —27v) +4(m + 1 —v) p?)/|§|?, which is bigger
than (m + 14 y)/p if

(4-13) 2pr(k +2pm)v + |EPx < (p —m — D2
So the trapezoid V,,, |, is outside of &, y if (4-13) holds.
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From (4-10)—(4-13), we conclude that if m < p — 1 and

p—m (p—m—1Di>
2m+3" 2pm(k +2pm)

. (p+m)k ( 2
v =mm 2p7‘((K—|—2p7‘[) (p+m) 2p7r>’

then we can choose x > 0 so that B,y is included in ®;, ,

If m = p — 1, then the real part of the top left corner of V_; is 1 — 2mv(k + 2pm)/|€|%, which is
slightly to the left of 1 + y/p. Its imaginary part is 2 v(2pm — k)/|€|?, which is slightly above the real

axis. The bottom left corner of V_ is 1 —4pvm?/|£|?, which is slightly smaller than 1. Its imaginary

=-p—1v
part is — — 2vk/|€|%, which is below the real axis. So if we exclude V1 the rest is included in
©7_1.,; see Figure 9, right. |

We will show that the assumption of Proposition 4.1 holds for the function Y (2) := @m, N (2) —@m N (Om),
the domain D := E,, 4, and the numbers a :=m/p and b := (m + 1)/ p, with small y > 0. Note that the
series of functions {Y'n (2)} := {@m.N (2) —@m.N (0m)} uniformly converges to ¥ (z) := @, (2) — Py (01m)
in B, for sufficiently small y > 0.

From now we will study properties of ®,,(z) in the region E,, , as if y = 0, taking care of the case
where y > 0 if necessary.

Let Py, P1, ..., P7 be points defined as follows, which are already indicated in Figure 9:
Py := I, Nreal axis, Pq:= Lyi12NH, Pr:=Iny1NH, P3 := I, 41 Nreal axis,
Py:=Ini 1 NH, Ps:=Lmy1NH, Po:=Lpyy1pNH, Pr:=I,NH.
Their coordinates are given as follows:
m+%  Imoy, - 1 —
Py = ﬂ, P = 2 + mamg, P> ;:ﬂ—lmam -1,
p p 2pm p
m+1 +m)k m+ 1 +m)k -
pyo= "L py="" L ptm 1 psi= _(p+m) ,
p p 2p*n p 4p3n?
m+ 1 +m)k - m +m)k
Pe = 2_(p ) £, P7:=—+u\/—l.
p 4p3n? p  2pPm

Lemma 4.3 We have the following inequalities:

ReP6<ReP1 <RCP5.

Proof It is clear that Re Pg < Re Pq, and so we will show the other inequality.

Since Imo,, = 2(m + 1)k7/|€|? and k > 1, we have

1 2 (2m+1 1)x?
ReP5—ReP1=m+ _(p—|—3m)2K _( m+ +(m+ 3/{ )
p 4p>m 2p pl§|
1 _ptm mtl 1 dp=l 1 3
2p  4p3m2  4p3n2 T 2p  4p3n2 7 2p  4p2n2
proving the inequality Re P5s > Re P;. O
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We put

Wt :=1{z € Em.y | Re ®p(z) > Re Oyy(om)},

form=0,1,2,...

~ K
D~~——

Hitoshi Murakami

Figure 10: The left picture shows a contour plot of Re ®;(z) in E; ¢ forp = 3, where R are
indicated by yellow and green and W|™ is indicated by dark green. The right picture shows a
contour plot of Re ®;(z) in a neighborhood of o7, where W[~ is indicated by green.

W, =14z € Bm,x | Re ®;(2) <Re ®py(0m)}

, p — 1. Recall that in this case, Ry in Proposition 4.1 becomes

Ry :={z€8p,y|Imz>0,RePy(z) —Re D,,(0) <27 Imz},

R_:={z€&8p,y|Imz <0,Re Py (z) —Re ®,(0) < —27 Im z}.

In fact, we will show the following lemma, whose proof will be given later.

Lemma 4.4 The following hold form =0,1,..., p—2:

(i) The pointsm/p and (m + 1)/ p are in W, .

(ii) There is a path C4 in R4 connectingm/p and (m + 1)/ p.

(iii) There is a path C_ in R_ connectingm/p and (m + 1)/ p.

When m = p — 1, there exists § > 0 such that the following hold:

(i') The points1—1/p and 1—38 arein W,_,.

(ii") There is a path Cy in R4 connecting 1 —1/p and 1—38.

(iii"’) There is a path C— in R_ connecting 1 —1/p and 1—.

Note that since E,, , is simply connected, both C+ and C_ are homotopic to the segment [m/ p, (m+1)/ p]

([1—=1/p,1=6]if m = p—1) in E,,,, keeping the boundary points fixed.

See Figure 10.
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To prove the lemma above, we study the behavior of Re ®, in &, o more precisely.

We divide &, into six parts by the three lines Ly +1, L4172, and K, where we put
Ky :Re(§z) =0.

We can see that oy, is just the intersection of L,,+; and K.

We also introduce the four points

Py :=Int1N Ky, Pro:=1nNKsg,

with coordinates

m—+1 _\/—1 m—+1 m—+ 1)k m_\/—l m mk
P34::( )2é = +( 2) V-1, P701=€—2=—+ >—-v-—L
2p*m p 2p*w 2p2xr  p  2p2m
Note that P34 is between P3 and P4 (when p = 1, P34 coincides with P4), and that Py¢ is between P

and Py (when m = 0, P7¢ coincides with Pg).

As in the proof of Lemma 5.2 in [24], we can prove the following lemma:

Lemma 4.5 Writez = x + y«/—1 forz € By, with x, y € R. Then we have:

e (0Re d,,/0y)(2) > 0 if and only if
— Re(£z) > 0 and 2k <Im(£z) < (2k + 1)7 for some integer k, or
— Re(¢éz) <0and 2/ — 1) <Im(£z) < 2lm for some integer [.

e (dRe ®,,/0y)(z) <0 if and only if
— Re(¢z) <0 and 2kn <Im(£z) < (2k + 1)x for some integer k, or
— orRe(éz) > 0and (2] — 1) < Im(§z) < 2l for some integer /.

See Figure 11.

Proof From (4-6), we have
dRe ®,,(2)

ady -
The right-hand side is positive (negative, respectively) if and only if Im(3—2 cosh(£z)) is negative (positive,
respectively). Since Im(3 — 2cosh(£z)) = —2sinh(Re(£z2)) sin(Im(£z)), d Re &, (2)/dy is positive
(negative, respectively) if and only if Re(§z) > 0 and 2k < Im(§z) < (2k + 1)x for some integer k, or
Re(§z) <0and (2] — 1) <Im(£z) < 2l7 for some integer [ (Re(£z) <0 and 2k <Im(éz) < 2k +1)w
for some integer k, or Re(§z) > 0 and (2/ — 1)7 < Im(§éz) < 2/7 for some integer [, respectively). 0O

—arg(3 —2cosh(£2)).

Lemma 4.6 Let z be a point on the segment Po P34. If z # oy, is between o, and Pro, thenz € W,
Moreover, if z # oy, is between oy, and P3g4, then z € W,;l" .
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P, P P P,
L, Cne-| P
P |0
P P
Om i m+31 Re
P J "~A.‘\Lm+1/2 P
H [m+1
P Py

Figure 11: In the cyan (yellow, respectively) region, Re ®,,(z) is increasing (decreasing, respec-
tively) with respect to Im z.

Proof The segment P7g P34 C K, is parametrized as (2 +/—1/&)t for m + mx?/(4p?n?) <t <
m+ 14 (m + 1)x?/(4p?n?). From (4-6) we have

27 /—1 2 +/—1 4pm?
% Re Cbm( 7 : t) = Re( " : 10g(3 —2005h(2n«/—1t))) = % log(3—2cos2nt) >0,
and the equality holds only when ¢t = m + 1, that is, z = 03,. So we conclude that if z € P90, \ {om},
then Re ®,,(z) < Re ®,,(0y,), and that if z € oy, P34\ {0 }, then Re &, (2) > Re ®,, (04,), as required. O

We can prove a similar result for P3 Ps.

Lemma 4.7 Let z be a point on the segment P3Ps. If z # o, is between 0, and P3, thenz € W, .
Moreover, if z # oy, is between oy, and Ps, then z € an .

Proof A point on P3 Ps is parametrized as (m + 1)/ p — ((p + m)x/(4p37w?))&t for 0 <t < 1. From
(4-6) we have

d m+1  (p+mk ¢ (p+mk - (m+1)§  (p+m)
EReCIDm( > — 1pin2 gt) =—Re[4p37$10g(3—2005h( — |§|2t))]

p 4p3n2
- 2 1
= %log(3—2cosh((m+ )K—(Ztmlk|§|2t)) >0,
p T p p

where the equality holds when ¢ = 4(m + 1)p?n?/((p + m)|€|?), which shows that Re ®,,(z) <
Re &,,(0s) if z € P3oy \ {om} and that Re ®,,(z) > Re O,y (0y,) if z € 04 P5 \ {01}, completing
the proof. a

So far we have found two directions o, P79 and o, P3 that go down valleys, and two directions o, P34
—

and oy, P5 that go up hills. Since the function ®,,(z) is of the form ®,,(0y,) — %5223 + -+ from (4-7),

that is, o, is a saddle point of order two, there should be another pair of valley and hill.
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Lemma 4.8 Let G be the line segment in &, o that bisects the angle Z P340, Ps. If z € G \ {0y} is on
the same side of P34 and Ps, thenz € W,. If z € G \ {0} is on the opposite side of P34 and Ps, and
close enough to o, then z € W,,J{.

Proof Since the vector gy, P34 has the same direction as +/—1/& and the vector g, P5 has the same
direction as —1/£, the bisector is parametrized as 0, + (v/—1 — 1)t /& with ¢ € R. Note that if 7 > 0, it
goes to the top right, and that if ¢ < 0, it goes to the bottom left.

From (4-6), we have

%Re@ ( */—_51_1,) (\/_ 1log(3 ZCOSh((\/__l)Z)))

and so (d/dt)Re ®,, (om + (v/—1-— 1)/§)t) = 0 when ¢ = 0. Thus, it is sufficient to show that the
second derivative of Re ®,, (g, + (v/—1 — 1)t /&) is positive when ¢ < 0 and |z| is small, and that it is
negative when ¢ > 0 and 0y, + (V—1—1)t/§ € Ep 0.

From (4-4), we have

d2 /—1—1 (\/__1_1)2 E(e—(le—l)t_e(le—l)t)
—— Re @, +——t ) =Re
dr? ( 3 ) ( £2 3—e(ﬁ_1)’—e_(*ﬁ_1)’)
|5|2 Re((—4pm -2k~ —1A(2)) = |S|2( 4pmw ReA(t)+2k Im A(2)),
where we put
o~ (V1= _ ,(v=1-1)t
A) :=

3 e(*/jl_l)t — e_(“/jl_l)t ’
‘We have

2sinhf cost —2+/—1cosht sint
3—2cosht cost +2+/—1sinht sint
_ 2(sinhfcost — V=1 cosht sint)
~ (3—2cosh?cos?)? + 4sinh? ¢ sin ¢
2 sinh7(3 cost —2cosht) + 2+/—1sin#(2 cost — 3 cosh t)
(3—2cosht cost)? + 4sinh? ¢ sin? ¢

A(t) =

(3—2coshtcost —2+—1sinht sint)

Therefore if ¢ is negative and |¢| is small enough, then Re A(z) < 0 and Im A(¢) > 0, and so in this case

(dz/dtz) Re d>m(am + (v/—1— 1)/$)t) > 0.
Next, we consider the case where t > 0.

Since Re(oy, 4+ (v/—1— 1)t /&) = (1/|€)*)(4(m + 1) pr? + 2pm — k)t), a point in G that is between
om and I, 11 is parametrized as 0, + (v/—1 — 1)t/€ with 0 < ¢t < (m + 1)k?/(p(2pm —«)). Since
(m+ D%/ (pQRpr —k)) <k?/2pr —k) <k?/(2m — k), it is sufficient to prove

(d?/dt*)Re By (om + (V—1—1)/€)1) <0

for0 <t <k?/(2m —«).
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Since 3 cos(k?/(2m — k)) — 2cosh(k?/(2m — k)) = 0.924..., and the function 3cost — 2cosh? is
monotonically decreasing when ¢ > 0, we see that Re A(¢) > 0 for 0 < ¢t < k?/(27 — k). We can easily
see that Im A(¢) < 0 for ¢ > 0, and so we conclude that (d2/dt?)Re ®(0,, + ((v/—1—=1)/£)t) <0. O

Remark 4.9 The imaginary part of the intersection of G with I,,1 is (m + 1)x/(p(2pm —k)), which
is smaller than the imaginary part of H when p > 1. This is because

(p+mc  (m+Dx_ Cpr(p—1)—(p+mk)k

2p3m pQpr—k) 2p2a(2pm — k)
Qpr(p—D—-Q2p—-Dk _ (Cpr—D(p—1)—p)k
2p2n(2pm —k) N 2p2n(2pm —k) '

which is positive when p > 1, where we use the inequalities k < 1 and m < p — 1. So G intersects with
the segment P4 P34.

If p =1, G intersects with the segment P4 Ps.
Note that G does not intersect with L, 1/, in Epm 0. This is because the intersection between G and

L1218 (m + (2m + 1) +/—1) /&, whose imaginary part is less than —Im o,.

There are more line segments that are included in W,

Lemma 4.10 The line segments P¢ P1, Po P79, and Py Py arein W, .

Proof A point on the segment Pg P; is parametrized as

m+ 1 £
2 +i[ Where _w
P 2pw 2pcm

<t <Imoy,.
‘We have

n’l'i‘l & £ m+l 2t
iRfﬁq’m 2+it =Re ilog 3 —2cosh —25-1-&
dt p 2pm 2pm » 2pm

m+ 3k g%t
= Llog 3+ 2cosh ( 2) + 51 > 0.
2pw )4 2pw

From Lemma 4.11 below we know that Re ®,,(P;) < Re ®,,(0,,). It follows that P Py C W,,.

From Lemma 4.5, Re ®,,(z) is increasing with respect to Im z in the quadrilateral P79 Py P1 Q, where Q
is the crossing between Ky and L, /5. Since the upper segments P79 Q and OP; are in W, , so are

the lower segments P Py and Py P;. O
Lemma 4.11 The point Py isin W, .

Proof The following proof is similar to that of [24, Lemma 5.3].

Since Py is on L, /2, we have Im(§(Py —2mm+/—1/€)) = 7 and so Py —2mm~/—1/& is on Ly 5.
So from (3-6) we have

4m + 3)k?
ED(P1)—E Do (0m) = Liz(_e—lc—(4m+3)l</(217))_Liz(_e—K+(4m+3)K/(2P))_|_ (ng;)'c_mp /1.
p
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P, P Ps P,
G/ Fo
Gm
1, Py
Ks
P70 Q
Lm 1
P?n - 531 Re
P N
Lm+1/2
J H ]m+1
Pl P2

Figure 12: The blue (magenta, respectively) lines are included in W, (W,F, respectively).

Its real part is

(4m + 3)k?

Li, (_e—x—(4m+3)x/(2p)) _ Liz(—e_K+(4m+3)K/(2p)) +
2p
and its imaginary part is —k 7.

Therefore we have

€%

(4-14) T(Re @, (P1) —Re @py(0m))

= Re(EDn (P1) ~EDm (o) + 2" In(E By (1) — E By (om)

2
_ Lip(—e— = @m+3K/@p)) _ 14 (_pmk+Em+3)k/Cp)) | (4m +3)” 2pn
2 b

which is increasing with respect to m, fixing p. When m = p — 1, (4-14) equals
2
4-15) Liy(—e—<—p=106/@P)) _ | i (_p—k+(p=DK/Cp)) | (41’2‘—1)" _opn?.
4
Its derivative with respect to p is
K

1 2
22 10g(3+2005h(/((2 ZP))) 27~

which is less than log(3 4 2 cosh(2«)) — 272 = log(10) — 272 < 0. Since (4-15) equals —17.2195 . ..
when p = 1, we conclude that (4-14) is negative, proving the lemma. O

Remark 4.12 One can also show that the polygonal line P79 P7Pe isin W, .
The results in Lemmas 4.6-4.8 and 4.10 are summarized in Figure 12.

Proof of Lemma 4.4 First, suppose that m < p — 1.

(i) Since m/p = Po and (m + 1)/ p = P3, it follows from Figure 12 that these points are in W, .

Algebraic € Geometric Topology, Volume 25 (2025)



3560 Hitoshi Murakami

(ii) Consider the polygonal line Cy := Py P790, P3. From Figure 12, it is in W, and in the upper half
plane {z € C | Imz > 0}. So it is contained in R.

(iii) From Figure 12, the line segment J is in W, and in the lower half plane {z € C | Imz < 0}. This
implies that J C R_.

We will show that the segments P; P, and P, P3 are also in R_.

We first show that P; P, C R_, that is, Re ®,, (z)—Re &,y (o) <27 Imz,if z € Py P,. From the proof
of Lemma 4.5, — < dRe ®,,,(z)/dy < 0if z = x + y~+/—1 is in the pentagonal region QP P> P30,.
We also know that if z € m , then Re ®,,(z) — Re ®,,(0,,) < 0. Since the difference between the
imaginary part of the point on Qo,, P3 and that of the point on P; P; is less than or equal to 2 Im oy, it
follows that for z € P; P», we have Re ®,, (z) —Re ®,, (o) < w(2Imoy,) = —2m Im z.

Next we show P, P3 C R_. Consider r(y) :=Re ®,,((m+1)/p+ y~/—1) —Re O, (04,) + 27 y. Since
(d/dy)r(y) = (0/3y)Re &y ((m+1)/p + y~/—1) + 27 > 0 and r(0) < 0 from the argument above,
we conclude that r(y) <0 if y > —Imoy,. Soif z € P, P3, thenz € R_.

Therefore, we can put C_ := Py P1 P, P3 C R_.

Next, we consider the case where m = p — 1. Here we can push Pj slightly to the left to avoid ¢,,.

Accordingly, we move the segments o,, P3 and P, P53 slightly. O

Therefore we can apply Proposition 4.1 to the series of functions Y¥n (2) = @m N (2) — @m.N (0m). We
conclude that

I —Nom n(om Nom n(k/N
(4-16) Ne ©m.N (Om) Z eNom.n(k/N)
m/p<k/N<(m+1)/p
(m+1)/p
:e—N(Pm,N(Um)/ eN(ﬂm,N(Z) dZ+O(€_8mN)
m/p
for e, >0ifm < p—1, and
I —Nep_1 n@m Nop—1.n&/N
@-17) e ¢p—1.N (Om) Z eNer—1.8(K/N)

(p—1)/p<k/N<1-§
1-6
= e_N‘pll—le(Up—l) / eN(/’p—l,N(Z) dz + O(e_ep—lN)
(p—1)/p
for 51 > 0.

5 The saddle point method of order two

We would like to know the asymptotic behavior of the integrals appearing in the right-hand sides of (4-16)
and (4-17) by using the saddle point method of order two.
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To describe it, let us consider a holomorphic function 7(z) in a domain D > O with n(0) = '(0) =
1" (0) = 0 and n®(0) # 0, where O is the origin of the complex plane. Write 73 (0) = 6re?Y=1 with
r>0and —7 <6 <. Then n(z) is of the form n(z) = re9ﬁ23g(z), where g(z) is holomorphic with
g(0) = 1. The origin is called a saddle point of Re n(z) of order two. We put V :={z € D |Ren(z) <0}.

There exists a small disk D C D centered at O, where we can define a cubic root g'/3(2) of g(z) such
that g'/3(0) = 1. Put G(z) := zg'/3(z) in D C D. We can choose D so that G gives a bijection from D
to £ = G(D) from the inverse function theorem because G'(0) = 1. Since re(’)‘ﬁG(z)3 =1(z), the
function G also gives a bijection from the region V' N D to the region U :={w e E | Re(reeﬁ w3) < 0}.

The region U splits into the three connected components (valleys) Uj, U, and Us. Therefore the region

V N D also splits into three valleys Vj := G~ 1(Uy), for k = 1,2, 3, of Re (z).

Remark 5.1 Since G'(0) = 1, and Uy contains the ray {w € E | w = se((Zk_l)”_e)ﬁ/z’, s>0}asa
bisector, V. also contains a segment {z € D |z = te(@hk=Da=0V=1/3 f5r ¢ = small}.

The following is the statement of the saddle point method of order two:

Proposition 5.2 Let 1(z) be a holomorphic function in a domain D > O with n(0) = n'(0) = n”(0) =
and n®(0) # 0. Write n®(0) = 6re®Y=1 with r > 0 and —7 < 0 <m.PutV:={zeD|Ren(z) <0}
and define Vj fork = 1,2,3 as above. Let C C D be a path froma to b with a,b € V.

We assume that there exist paths Py C V U{O} froma to O and Py C V U{O} from O to b such that
() (PeND)\{0} C Vg,
(i) (Pe41ND)\{O}C Vigy, and
(iii) the path Py U Py is homotopic to C in D keeping a and b fixed,
where D € O is a disk as above.

Let {hn (2)} be a series of holomorphic functions in D that uniformly converges to a holomorphic function
h(z) with h(0) # 0. We also assume that |hy (z)| is bounded irrelevant to z or N. Then

_hOra3)v=1 . e OVTIB( L OV~

1/3
3r1/3N1/3 )

(5-1) / hy(2)eN1?) gz
as N — oo, where w := eznﬁﬁ.

The proposition may be well known to experts, but we give a proof in Appendix B because the author is
not an expert and could not find appropriate references.
We will apply Proposition 5.2 to

e 1(z) =Dz +0om) — Pm(om),

e D:={zeClz+0om€Emy}
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Vin
Vin2
OOL\;)Q&3 Re
Vin3

Figure 13: The yellow regions indicates the valleys V.1, Vin,2, and V, 3.

* hn(z) :=exp[N(@m,N(z + 0m) — Pm(z + 0m))], and
o C:=[m/p—om,m+1)/p—op]form<p—1,andC :=[(p—1)/p,1 =6 form=p—1,
where § is a positive small number (see Lemma 4.4).
Note that 7(0) = 1/(0) = 7”(0) = 0, n®(0) = =262 £ 0, h(z) := limy—00 hx (z) = 1, and that V is
equal to the region {z € C | z + 0y € W, }.
Since n(z) = —%§223 + .-+, we can define a holomorphic function g(z) := —3n(z)/(£%z3) so that
2(0) = 1. Put G(z) := zg'/3(2) as above. Let D C D be a small disk centered at 0 such that the function
G(z) is a bijection. Then the region V' splits into three valleys V;;, 1, Vin.2, and Vj;, 3. From Remark 5.1,
the argument of the bisector of V, x is given by (2k — 1)%71 — %9 (mod 2x) for k = 1,2, 3, where
0 := arg(—2£2) = —m + 2arctan(2pm/k). So the valley Vink is approximated by the small sector
{zeC|z= te®™V 1 and |t —oag| < %n for t > 0 small},

where we put

(5-2) oy := —% arctan(2pm/k) + %n, = —% arctan(2pm/K) — %n, a3 = —% arctan(2pm/k).

. 1 1 1 1 5 1
Note that since 7 < arctan(2pm/k) < 57, We have FM <oy <57, =T <0y <—Z7W, and —37 <
1

a3 < —¢m; see Figure 13.

Remark 5.3 Denote by Pg the intersection between G and the boundary of &, 9, as in Figure 12. Note
— — ——
that Pg C I 41 if m < p—1and Pg C H if p =1 from Remark 4.9. The arguments of 6., PG, 0m P70,
——
and o,, P3 are

(5-3) By := —arctan(Rprw/Kk) + %n, B2 = —arctan(2pw /i) — %7‘[, B3 := —arctan(2pm /),

respectively, because the vector a,, P79 has the same direction as —+/—1/£, the vector o, P3 has the
same direction as 1/&, and G is their bisection.
Since %n <argpn/k) < %n, we can see

al—ﬂlz—%n+%arctan(2pn//c), ,Bz—oezzén—%arctan(szr/K), a3—ﬂ3:%arctan(2pn//c),
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(lzal Bl Re
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Figure 14: The yellow regions indicate the valleys.
and
(X2<,82<,B3<0[3<,31 <,
where o, for k = 1,2, 3 are given in (5-2). We also conclude that |oj, — Bi| < éjr, that is, 0y, Pg is in
the valley Vi 1, om Pso is in the valley V}, 2, and oy, P3 is in the valley Vy, 3; see Figure 14.
We need to show that the assumption of Proposition 5.2 holds, that is, we will show the following lemma:
Lemma 5.4 First suppose that m = 0,1,2,..., p —2. If a disk D C Em,y centered at oy, is small
enough, then the following hold:
(i) There exists a path p, C W, U {0} connecting m/ p and o, such that (p2 N D)\ {om} C Vin,2.
(ii) There exists a path p3 C W,,; U{os, } connecting 6, and (m~+1)/ p such that (p3 ND)\{om} C Vin,3.
Next, suppose that m = p—1. If a disk DcC Ep—1,y centered at 0,1 is small enough, then the following
hold:
(i") There exists a path p, C W,_1U{op—1} connecting 1 -1/ p and o1 such that (p> ﬂﬁ)\{op_l He
Vp_l’z.
(ii") There exists a path p3 C W) U{op—1} connecting 0,,—1 and 1 —§ such that (p3 N 5) \{op—1} C
Vp—1,3
Again, since E,, , is simply connected, the path p, U p3 is homotopic to the interval [m/p, (m + 1)/ p]
([1—=1/p,1—=246], respectively) if m < p—1 (m = p — 1, respectively).

Proof The proof is essentially the same for both cases m < p—1andm = p — 1.
(i) The path pp := Py P790y, is a required one form =0,1,2,..., p—1.
(ii) When m < p — 1, consider the path p3 := 0, P3, and when m = p — 1 push it a little more to the

left near the point 1. O
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If m < p—1, we apply Proposition 5.2 to

1(2) = Pm(z + om) = Pim(0m), hw (z) = exp[N(gm N (z + Om) = Pm (2 + om))].
C:=[m/p—om (m+1)/p—oml k=2.

Noting that &y (z) converges to 1 and n®(0) = —2¢2 = 2|$|269ﬁ with 0 = —m + 2 arctan(2p 7 /k)
from the argument above, we have

(m+1)/
/ " i eN((pm.N(Z)_(Dm(GmD dz
m/p

_ / oN@m N ZH0m)~Bm(om) g, — / Iy ()N 4z
(o C

1\ /7
F(§) —1 wzenﬁm—zarctan(zpn/x)ﬁﬁ(l_|_0(N—1/3))

Va(h1gR) PN
_ vl
- 31/6|§|2/3N1/3

e—(n+2 arctan(2pn’/lc))«/j1/3(1 + O(N—I/S))

as N — oo. Similarly, if m = p— 1, putting C :=[1—1/p — 0y, 1 — 05 — 8], we have

/1—8 F(z)v-1

Npp-1.N@)=Pp-1(0p-1)) g, — 3/ ¥ ~
e z =
_1/p 31/6|$|2/3N1/3

e—(n+2arctan(an/K))x/jl/3(1 + O(N—1/3))

as N — oo. Since ®,,(0y,) = 4pm? /€ from (3-12), we conclude

+1 /=
/(’" "7 Neww g, LG)V-I o2 ameanpn )N/ 4pENE (| 4 O(N-1/3))

m/p 31/6|§|2/3N1/3

if m<p—1,and
-8 1\ /
/1 eN(pp_l‘N(z) dz — F(g) —1 e—(n+2arctan(Zpﬂ/lc))le/384pn2N/§(1 + O(N—I/S))
T 31/6|g(2/3N1/3 )
1-1/p 3VOIE[#PN

Since ¢m N (0m) = fn (00) converges to F(og) = 4pm?/& as N — oo from (3-12), together with (4-16)
and (4-17), we finally have
r(d)ery

Newm.n(k/N) _
(5-4) > eNem.N =

m/p<k/N=<(m+1)/p

2/3
(%) e4p7'[2N/$(1 + O(N—1/3))
if m<p—1,and

r(})env-ir

Nep—1.n(k/N) _
(5-5) D M =

1-1/p<k/N<1-6§

(%)2/364]77[21\7/5(1 + O(N—1/3))

because Re(4pm2 /&) > 0, where we define £2/3 to be |§|2/3ezama“(2p”/")ﬁ/3.
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It remains to obtain the asymptotic behavior of 3 11/ ,<x/N<1 eNer—1.8k/N) jnstead of the sum for
1—1/p <k/N <1-4§. To do that, we need to estimate the sum > ;_s5_j/n <1 eNer—1.NK/N) We use
the following lemma, which corresponds to [24, Lemma 6.1].

Lemma 5.5 For any &, there exists §' > 0 such that

2k +1
Regp—1,n (%) <Re®,_1(0p-1)—¢

for sufficiently large N, if 1 —§ <k/N < 1.

Since a proof is similar to that of [24, Lemma 6.1], we omit it.
From Lemma 5.5, we conclude that
L2 e (50)
is of order O (eN®e®r—1(0p-1)=6)) if §' < §. Since ®p_1(0p—1) = 4pr2/—1/& from (4-7), we have
r)en T

N kN
31/6

1-1/p<k/N <1
from (5-5). Together with (4-1) and (5-4), we have

eV —1/6 / )
TR (¥) e N/E( Z ﬁpm)(lw(zv V)

Now from (3-3) and (3-1), the sum in the parentheses is just J, (& e4n N/ ). Therefore we finally have
I'(3)e m/~1/6 2/3 2k /—1
31/6 (?) xp £

where we replace eAPTN/E Gith 4PN ET2NTV =T — p2NKk7V/=1/8 o purpose; see Section 6. Note

1
6

2/3 ot 72N/& 1/3
(F) e ™M+ o)
(5-6) I (&;eE/N) = (1—e~4PN7 /)

IN(&:eEIN) = T (&: 47 NIE) N)(l + O(N~YV3y),

that we choose the argument of & 2/3 g5 % arctan(2p/k), which is between = and %JT.

Proof of Corollary 1.9 Since the figure-eight knot is amphicheiral, that is, it is equivalent to its
mirror image, we have In(E:g7Y) = In(&;q). Tt follows that Jy (&8 /Ny = Jy(&;e 8Ny =
In(&:;eE/NY = Ty (&;e8/N), where & is the complex conjugate. So we obtain

r()e —nv/~1/6

31/6 (?)2/3 eXp(_ZKné\/__lN)

, T(L)emv=1/6 N\2/3 S_«(&
— Jp(éaa e47r2N/E) (3)31/6 (?) GXP( é:/( )N),

where (§)1/3 := |E/|1/3e_ar°tan(2””/")ﬁ“e‘”ﬁ”’. The last equality follows since e~ 2T V=IN/E
eZKanlN/S’ — eZKanlN/E’+4Nan1 =e(—2Kan1—8pNn2)N/§’ :e(S_K(é”)—SpNn2)/’;" and the Chern—

In(&; e N ) (8 4 N/E)

Simons invariant is defined modulo an integer multiple of 72 (see Section 6). O
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6 The Chern-Simons invariant

In this section, we show a relation between Sy (FE) = 2kmw+/—1 appearing in Theorem 1.8 and the
Chern—Simons invariant. For the definition of the Chern—Simons invariant of a representation from the
fundamental group of a three-manifold with toric boundary to SL(2; C), we refer the readers to [17].

Let W be the three-manifold obtained from S> by removing the open tubular neighborhood of a knot
K C S3. We denote by X (W) the SL(2; C) character variety, that is, the set of characters of representations
from 71 (W) to SL(2; C). Let E(dW) be the quotient space (Hom(rr1(dW),C) x C*)/G, where C* :=
C\{0}and G :=(x, y,b|xy = yx, bxbx =byby =b? = 1) acts on Hom(sr1 (W), C) x C* as follows:

6-1)  x-(o, Biz):= (e + 5. Bizexp(—4n~/—1PB)), y-(a,B;2):= (o, B+ 3; zexp(dn vV ~1)),
b-(a,B) :=(—a,—B;2).

Here we fix a generator (1*, A*) € Hom(rr1(dW); C) = C?2 for a meridian  (the homotopy class of the

loop that goes around K) and a preferred longitude A (the homotopy class of the loop that goes along K

so that its linking number with K is zero). Then the projection p: E(dW) — X(dW) sending [, B; z] to
[, B] becomes a C*-bundle, where the square brackets mean the equivalence class.

The SL(2; C) Chern—Simons invariant of W defines a lift csy : X(W) — E(OW) of X(W) LN X(oW),
that is, p o cy = i * holds, where i * is induced by the inclusion map i : OW — W:

E(@W)

b

X(W) —= X@W)

For a representation p, we have csy ([p]) = [u/(4n~v/—1), v/ (4 /—1);exp((2/ (7w /1)) CSu,v(p))] if

"2 x V2
p(pu) = ( 0 e—u/Z) and  p(A) = ( 0 e—v/2) ’

up to conjugation, where [p] € X (W) means the equivalence class, and CS,, (p) is the SL(2; C) Chern—

Simons invariant of p associated with (u, v). Note that CS, ,(p) is defined modulo 72, and depends on

u/2 v/2'

the choice of branches of logarithms of e%/~ and e

Now, we calculate the SL(2; C) Chern—Simons invariant of the figure-eight knot. See also [29, Section 5.2]
for calculation about the figure-eight knot complement.

By using generators x and y as indicated in Figure 15, the fundamental group G := 71(S3 \ &) has

1

a presentation (x, y | wx = yw), where  := xy~!x~!y. We choose (the homotopy class of) x as the

meridian p, and (the homotopy class of) / depicted in Figure 15 as the preferred longitude A. The loop /

1<a7—1 -1 1

presents the element xw™ x~! € Gg, where & := yx~1y~lx is the word obtained from w by
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Y «\—

1

a)_ly =Xxw
Figure 15: The figure-eight knot & and generators of G ¢ := 1 (53 \ &).

reading backward. Due to [36] (see also [22, Section 3]), for a real number u with 0 < u < « we consider
the nonabelian representation p,, : Ge — SL(2; C) sending x and y to

eu/2 1 eu/2 0
0 e—u/2 and d e—u/z ’

respectively, where d is given as

d:= % —coshu + %\/(2 cosh(u) + 1)(2 cosh(u) — 3).

ev()/2 *
0 e—v(u)/Z ’

v(u) := 2log(cosh(2u) — cosh(u) — 1 — sinh(u) \/(2 cosh(u) + 1)(2 cosh(u) —3)) +2x V-1.
Here we add 27 +/—1 so that v(0) = 0.

The preferred longitude is sent to

where

It is well known [39] that when u = 0, the irreducible representation pg induces a complete hyperbolic
structure in S\ &, and when 0 < u < «, p, is irreducible and induces an incomplete hyperbolic structure.
When u = k, the representation p, becomes reducible (and nonabelian), and the hyperbolic structure
collapses. In fact, in this case, both x and y are sent to upper triangular matrices, and so every element of
G is sent to an upper triangular matrix, which means that p, is reducible. This kind of reducible and
nonabelian representation is called affine, and corresponds to the zeroes of the Alexander polynomial; see
[3; 16, Exercise 11.2; 35; 40, 2.4.3. Corollary].

Now, we calculate the SL(2; C) Chern-Simons invariant CS ,)(pox) associated with (k,v(k)) =
(k,2m+/—1); see [17] for details.

Since the Chern—Simons invariant of a representation is determined by its character, and p, shares the

same character (trace) with the abelian representation p2*®! sending 1 := x to the diagonal matrix

k20
0 e—IC/Z
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and A := [ to the identity matrix, it can be easily seen that csy (p*®) = [k /(4 +/—1),0; 1], where we

put W := S3\ N(&) with N(&) is the open tubular neighborhood of & in 3. Since we have

[ ]
dr/—1"" dr/—1"2

from (6-1), we conclude that CS 2 ﬁ(p,c) = %K?T —1. Note that here we change the pair («, 0) to
(k,2m~/—1).

As in [23], if we define

(6-2) Su(&) 1= CSy v (pu) + 7 ~/—Tu + Juv(u)
for 0 < u <k, then S¢ (&) = 2k ~/—1 when (u, v(u)) = (, 2w /—1).
Similarly, Cs—x,znﬁ(p—K) = —%KJT V—1,and S_,,(&) = =2k ~/—1.

Appendix A Proof of the Poisson summation formula

In this appendix, we give a proof of the Poisson summation formula following [30, Proposition 4.2].

Proof of Proposition 4.1 Let ¢ > 0 be small enough that
Re vy (a) < —e, Re v (b) < —e,
Rey(z) —2nImz < —¢ if z € C4, Rey(z)+2nImz < —¢ if ze C_.
Then for sufficiently large N, the following also hold:
(i) Reyw(a) < —e,

(i) Reyy(b) < —e,

(i) Reyny(z)—2nImz <—cifz € Cy,

(iv) Reyn(z)+2xImz < —¢cifze C_.

Moreover, there exists § > 0 such that Reyn () < —¢ift € [a,a+ 6] or ¢t € [b— 6, b] from (i) and (ii)
for such N.

Let 8: R — [0, 1] be a C°°-function such that

ﬂ(t):%(l) ifrela+8.b—36)

ift <aort>bh.

We also assume that B(¢) is in the Schwartz space S(R), that is, supxeR|xmf(”)(x)| < oo for any
nonnegative integers m and n. Put Wy (x) := B(x/N)eNVN&/N)

‘We have

(A-1)

T N (k/N)‘ < Y NRUNEN gy eN
a<k/N<a+$§ a<k/N<a+§8
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where the second inequality follows since Re Yy (k/N) < —e when a < k/N < a + §. Similarly we

have
(A-2) ‘ Y NUNEN| < sypmeN

b—8<k/N<b
‘We also have
(A-3) Y Wy < Y Blk/N)eNReVNEK/N) o snpmEN

k/N<a+$§ a<k/N<a+$§
and
(A-4) ) Y Wy k)| <sNeeN,
k/N>b—8

Since ¥y (k) = eNVYNK/IN) if g+ § <k/N <b -4, we have

(AS) | L unk)— ¥ N
keZ a<k/N<b
=| T e+ x o MEML] e wy)|
k/N<a+$§ a<k/N<a+$§ b—6<k/N<b
+‘ Y eNUNGK/N)
k/N>b—§
<48Ne™¢N

from (A-1)—(A-4).
Since Wy () is also in S(R), we can apply the Poisson summation formula (see eg [38, Theorem 3.1]):

(A-6) S Unk) =Y In(),

keZ l€Z

where @N is the Fourier transform of W, that is, ‘i’N () := f_oooo Uy (t)e—ZInﬁz dt.
Putting s :=¢/N,
~ (o,]
(A-7) Uy()=N / B(s)e NN ©=20xV=18) g
—00

From the properties of B(s), we have

/a L B(s)—1)eN N ) dsM /b :(ﬂ(s)—l)eN YN G g

< [P IO dsy [* (1-plsneN I g

<28e7EN

(A-8) ‘%@N(O)—/abeN‘/fN“) ds‘ <
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Therefore

(A-9) ‘l 3 erN(k/N)_/berN(s)ds‘
Nask/Nsb a

1 NunG/N)_ L G L s b NN ()
<|v X M EN LS Gy )|+ X S [N g
Nask/Nsb Nijez Nz /a

1 1 1 ~ b 1 R
=y X eNEIN_ L s wy )|+ En ) [N O ds| S 1)
a<k/N=<b kez a 5%

< LS 1@y ) +68e N,
N leZ

where the first inequality follows from (A-6), and the second from (A-5) and (A-8). Next we calculate
Wy (1) for I #0. Integrating the right-hand side of (A-7) by parts twice, we have

O __ 1 rxd Ny (s)y,—2lx/—IN’s
Iy == [ 55 Bwe Yo 2mVINS g
o0 2
- _41271er /_w%(ﬁ (5)e NV ) 2mVTINS g
Putting
Bn (s):=B"(s) + 2NB' (s)Yy (s) + NB(s)¥y (s) + N2B(s)(¥'(s))>,
By (s):= Ny (s) + N> (¥ (5))2,
we have
—41272N Uy (1)

— /bBN(S)eN(wN(s)—zznﬁs) ds
a
= /b_8 By (5)eNUNE)=2nV-18) g 4 /a+8 BN(S)eN(WN(S)_ZZ”ﬁS) ds
a+s a
b
B NN (s)—2Irx —1s)d
+ [ Bu(s)e V79 g

/b EN (S)eN(l/fN (S)-Zln«/js) ds — /a+8 EN (s)eN(IlfN (s)—ZIanls) "
a a

b EN(S)eN(wN(S)_zlﬂ\/:S) dS—|—/a+SBN(S)eN(WN(S)—2an?13) "
b—6 a

b
B NN (=21 V=19) g
+ [ Bu(s)e 5
where the second equality follows because By (s) = B ~(s) when s € [a + 8, b —68]. So we have
~ b
(A1) 422N (1) + [ By () NN OV g
a
/a+8 BN(S)eN(wN(s)—zlnﬁs) ds‘ " ‘/b BN(S)eN(wN(s)—zlnﬁs) ds‘
a b—46

+)/a+8B.N(S)eN(llfN(s)—ﬂnx/jls) ds’ n ‘/b EN(S)eN(wN(s)—2kanls) ds‘.
a b—§
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Since Re yy (s) < —eifa <s <a +§, we have

a+s a+s
(A-11) )/a BN(S)eN(WN(s)—zanjls) ds’ S/ 1By (s)]eN ReVN () g

a

<8¢V max |By(s)| < KaNZ2e N,
s€la,a+6]

where we put

Kq:= max [B"(s)|+ max |2/3 )Yy )]+ max, Iﬁ(S)llf ()] + max Iﬂ(S)(WN(S))ZI

s€la,a+6] s€la,a s€la,a s€la,a

B(s) 28’ (s)wN<s) BV ()
N? * N * N

v

+BE) Wy ()] =

max
s€la,a+6]

semax |Bw (S)I

Similarly, putting

Kp:= max [|B"(s)|+ semax 128"()¥y ()] + seax 1B(s)Yy ()] + s 1B(s) (W (5))%],

se[b—8,b]
K,:= max |1p ()] + max |(¢N(s))2| Kb: max WN(S)H‘ max |(WN( )2,
s€la,a+ s€la, se[b—8, selb—8 b
we have
b
(A-12) ‘ / By (s)e NN ©-2kn/=19) gl g, n2pmeN
+5 B
(A-13) /" By (5)e NN @2k V=Ts) 4| - R n2p=eN
a
b jad ~
(A-14) ‘/b 8BN(S)6N(WN(s)—zknﬁs) ds| < &, N2e—eN
Therefore
3 1 b KN
A-15 Ty _‘ B NN ()-2lx/=Ts) N
(A1) | N()|<412712N/a N(s)e S|+ a2

from (A-11)—(A-14), where we put K := K, + K, + Kz + Kp.

0 evaluate By (s)e - - s, we consider the paths C+ C R.. Note that By is define
To evaluate [ By (s)eNWN©)-20xV=15) g der the paths C4 C Ru. Note that By is defined
inD.

By replacing the path [a, b] with Cz., we have
(A-16) | /b By (s5)e NN ©)—2n7/=115) ds) - ) / By (2)e NN @=2my/=1lz) 4
a Ci
</ By (2)|e VRN @H20mimz) |4
= Je.,
< max|§N(z)|/ eNRe VN (@)+2lwm2) | 72
T zeC4 Cy

< KiNZ/ eNRe YN (2)+21mImz) \dz|
J— C:t b
where we put

+ Wy ()

Vi (2)
Ko = 17 / 2 > N
+ nggi Yy (2] + nggi (Y (2)7] = nggi N

~ 1
= By (2)|~—
i‘%’;' N5z
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If ] > 1, weuse C_. Since C_ C R_, we have Imz <0 and Re Y5 (2) + 27 Im z < —¢ from (iv). So
from (A-16), we have
< K_N?e7¢N,

b
(A-17) / EN(S)eN(wN(S)—Zanlls) ds
a

where K_ := K_(length of C_).

Similarly, if / < —1, putting K := K (length of C), we have

b ~ ~
(A-18) / By (5)eNOn @21 go| < R N2emeN
a

from (iii).
Therefore, from (A-15)-(A-18), we have

0o = o] =
~ K_N _ N KN _ N K+N _ N KN _ N
Z ‘IIN(I) < 2(412n2e ° + 4127.[26 ° ) + 2(4127.(28 ° + 412].[28 °
1€Z,1#0 I=1 =1

K. Ki K\. _
— I T _ N eN
(24 Tt 12) ¢

since Y 72 1/12 = ¢m2.
From (A-9), we finally have

b
‘% ) er(k/N)_/ SNUN ) g

K- K K
< (68—|———|——++—)e_€N,
a<k/N<b a

24 24 12

proving the proposition. |

Appendix B Proof of the saddle point method of order two

In this appendix, we give a proof of Proposition 5.2.

Letc:=re®v=1bea complex number with 7 > 0 and —7 < 0 <7, and put U := {z € C | Re(cz3) < 0}.
If we write z := serﬁ with s > 0 and 7 € R, then since cz3 = rs3e(9+3r)ﬁ, the region U has three
connected components Uy, for k = 1,2, 3:

(B-1) Up = {w eClw= serﬁ, s>0,|t+ %9—(2](— 1)%n| < %n}.

Note that Uy, for k =1, 2, 3 is obtained from Uj_; by the %n—rotation around the origin O, where Uy
means Us. The origin O is a saddle point of order two for the function Re(cz3), and the regions Uy are
called valleys.

First of all, we study the asymptotic behavior of the integral [ h N (z)eNez *dz as N — oo, where C
is a path starting at the origin and going into a valley, and 4 (z) is a holomorphic function depending
on N. The next lemma follows from the techniques described in [42, 11.4]:
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Uy -
U
Lo-@k-n) ik
a rotation O Cw s Re
@ a
C
O Re

Figure 16: The yellow regions are Uy and Uy, the red curves are C and C, and the green curve is C'.

Lemma B.1 Let D be an open bounded region in C containing O, hx(z) be a holomorphic function in
D depending on a positive integer N, and Uy be as above. We assume that hy (z) uniformly converges
to a holomorphic function h(z) with h(0) # 0 and that |hy (z)| is bounded irrelevant to z or N. We
also assume that Uy N D is connected and simply connected for each k. For a point a € U N D, let
C C (U N D)U{0} be a path trom O to a. Then we have
e((2k—1)ﬂ—0)ﬁ/3h(0)r(%)
3r1/3N1/3

as N — oo, where T'(x) := [;° t*"e™" dt is the gamma function.

(1+O0(N~1/3))

f hy(z)eNe? dz =
C

Proof Let Uy be the region obtained from U} by the %(9—(2k—1)n)—rotation around O, that is,
(B-2) Uy = {fweC |w=setﬁ,s>0, || <%n}.

The same rotation sends D to D, C to C C (ﬁk N E)U{O}, and a to @ := e@—Ck=DMV=1/3,4 ¢ ﬁkﬂﬁ;

see Figure 16.

Putting
w = @~ Ck—Dm)V-1/3,
and
iy () := hy (eCk=DT=OV=1/3,)
we have
(B-3) /hN(Z)ech3 dz=e((zk—1)n—9)ﬁ/3[~I;N(w)e_N,w3 Ju.
¢ ¢

Since Uy N D is connected, we can choose @’ > 0 in RN Uy, N D and connect  to @’ by a path C' C Uy N D.
Now the function /1 is defined in D, and we will extend &y |[7km Ang to a C* function h, (¢) for any
t > 0. Here we assume the following:

(i) hy(¢) is bounded.
(ii) hy (¢) converges uniformly to a C* function 2*(¢).

(i) 7% (t) = hy (1) and B* (1) = h(t) := h(e(Ck=Dm=OV=1/31) for ¢ Tr N D NR.
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Then since ﬁk NDis simply connected, by Cauchy’s theorem we have
(B—4) /5]’;N(u))e_Nrw3 dwzll—lz—]_v,,
where we put

00 00 B
I :=/ hj‘\,(w)e_Nrw3 dw, 12:=/ hj‘\,(w)e_Nrw3 dw, I3:= /~ h]\r(w)e_Nrw3 dw.
0 a’ C’

3

We use Watson’s lemma [41] to evaluate /;. Putting ¢ := w~>, we have

* 1/3y 1 Nrt
_ * —Nr
I _/0 hy (t )—3t2/3e dt.

Since /1y (s) uniformly converges to an analytic function 2*(s) in D NR, we conclude that

gn(s)
N

with |gn (s)| < ¢, where ¢ is a constant independent of s. Since 2*(0) = h(0), h’y (s) is of the form

hy(s) =h*(s) + =——

1%, (s) = h(0) + gfjv(s) +3 bysd
j=1

near 0, where b; := (1/j1(d’ /ds?)h(0). So we have

hy (t

= 3h0) > + en (') - i 1p; 10273
3 323N 3 '
j=1

Since |gn ()| < ¢,

1
gN(tl/ ) —Nrt dt| < ¢ oot—2/3e—Nrt dt = CF(§)
0 323N ¢ 3N Jo 3r1/3N4/3°

Therefore from Watson’s lemma [41, page 133] (see also [42, page 20]), we have

1
Z 3bj r J —|—1))(rN) (J+1)/3_|_O(N 4/3) (O)F(E) —|—O(N_2/3)

®-5 1 3(rN)1/3

3( N)1/3
as N — oo.

As for I3, since |y (w)| < M if w € R for some M > 0, we have
Me—@°rN
a’rN

if N > 1, where we put My := M/(ra’?) and &1 :=ra’> > 0.

o0 =~/
(B-6) ] < f [y (w)e™ N gy = < Mye=iN
a/

As for I3, we note that if w € C’ C Uk, then Re w3 > ¢, for some ¢, > 0, since |arg(w?)| < %7‘( from
(B-2). So

(B-7) |I3] < max iy ()| [ eV dw < M™%V,
weC’ Cc’
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where we put M, := max |ﬁN (w)|(length of ).

weC’

From (B-4), (B-6), and (B-7), we have
‘/~ };N(Z)e_Nrw3 dw—11| <|L|+|I3] = O(e—83N)’
C

with e3 := min{eq, re,}. Therefore from (B-3) and (B-5) we finally have
o (@k—1)7— 0)f/3h( 0T ( )
3r1/3N1/3

/ iy (2)eNe dz = (1+O0(N~'73)). 0
C

Corollary B.2 Let ¢ := reeﬁ, D, hn(z), h(z), and Uy, be as in Lemma B.1. Let C C D be a path
fromay € Uy N D to ag41 € Ug41 N D, where Uy means Uy. We also assume that there exist paths Cy,
from ay, to O and Cy from O to ay 1 with the following properties:

(1) Ce\{O}CU,NnD.
(i) Cg4+1\{0} CUg+1ND.
(iii) The path Cy U Cy 41 is homotopic to C in D keeping aj and aj . fixed.

Then

/hN(Z)eNCZ3d2=M‘/_lwke_eﬁ/?’(l+O(N_l/3))

where we put w = 27V ~1/3,

Proof By Cauchy’s theorem, fC hN(z)ech3 dz = kaUCk+1 hN(z)eNCZ3 dz. Then from Lemma B.1
we have

—604/—1/3 1
[ hN(Z)echs dz = € h(O)F(S)(6(2k+l)ﬂv—1/3_e(2k—1)7r«/—1/3)(1 + O(N—1/3))
CrUCk41 3;’1/3N1/3

—Ov=1BR0)r (%)

€ 3 k -1/3

-1 1+ O(N
NENRE v—=lo®(1+ 0( ),

completing the proof. a

Proof of Proposition 5.2 We use Cauchy s theorem to study the integral || PrUPs1 hy(z)eN1() gz
Since any point on Py or Pj 4 outside D satisfies the inequality Re n(z) < —e for some ¢ > 0, the
integrals along Py and P outside D are of order 0(e™#N). So it is enough to show that the integral
[p hy (2)eN"3) gz equals the right-hand side of (5-1), where we put P := (— Py U Pry1)N D.

Define the function G so that n(z) = reeﬁG(2)3 and G is a bijection from Dt E:= G(ﬁ), as
described at the beginning of Section 5. Let P be the image of P by G, and ay and aj 41 be the endpoints
of P with ayp € Vi and ag 41 € V1. Putting w := G(z) and ¢ := reeﬁ, we have

/ hy(2)eN1?) dz = /A )/N(w)eNcw3 dw,
P P
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since 7(2) = re®Y=1G(z)3, where yn (w) := hn (G~ (w))(d G~ (w)/dw). Since (d /dz)G(0) = 1 and
yn (w) converges to y(w) := h(G~1(w))(dG~(w)/dw), we have y(0) = h(0). So from Corollary B.2,
we conclude
h(O)T(3) gy _
Nn(z) _ 3 1ok 0/—1/3 1 1/3
/ﬁ hy(z)e dz —ﬁr1/3N1/3 vV—lw"e (1+O(N ),
completing the proof. |

Appendix C Some computer calculations on the stevedore knot

Theorem 1.8 says that the colored Jones polynomial of the figure-eight knot & evaluated at (277 v/—14«)/ N
grows exponentially with growth rate determined by the Chern—Simons invariant of an affine representation
associated with the pair («, 2w +/—1), where ¥ = %(3 + +/5) is a zero of the Alexander polynomial
A(&;t) = —t +3—1t~1. Corollary 1.9 says that the same is true for —«.

In this appendix, we use the computer programs Mathematica and PARI/GP [33] to study the asymptotic

behavior of Jy (7; 7 V-1ER)/N ) for the stevedore knot . with k := log2, expecting a similar

asymptotic behavior as &. Note that etk = o+l

—2t+5=2t"1of 7.

annihilates the Alexander polynomial A(;¢) :=

The stevedore knot .7 is the mirror image of the 6; knot in Rolfsen’s book [37] (see also the knot atlas [2])
as depicted in Figure 17. Note that in KnotInfo [19] it is denoted by 6;.

Due to [20, Theorem 5.1], we obtain
- d £ [Thois1(1—¢%)
JN(y’Q) — Z q_k(N+k+1) 1_[ ((1 _qN-i-a)(l _qN—a)) qu(k-i—l) ;_—li—ll .
k=0 a=1 1=0 c=1( —q°)
Put Jﬁ = JN (S e(z”ﬁi’?)/N). By using PARI/GP [33], we calculate (2 +/—1 k) log(JﬁJrl/Jﬁ)

for N =2,3,4,...,200, and plot them by using Mathematica in Figures 18 and 19. The plots indicate
that J ¥ grows like exp((S+/ (2 +/—1 + &)) N )(polynomial in N) with

(C-1) St :=—6.485+4+5.697v—1,

/

™

y <«|— > X
AN
}yx_1
(s
w Yy Syo!
1

o ! Yo =wxw
Figure 17: The stevedore knot.
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Figure 18: Plots of the real (left) and imaginary (right) parts of (27 +/—1 + k) log(J ]I," /J ; )
with N =2,3,4,...,200.

and that J 5, grows like exp((S— /(27 ~/—1 —k)) N )(polynomial in N) with
(C-2) S_ :=—0.06880 + 8.747+/—1.

Here we use Mathematica again to find the constants S4 such that S+ +c4+ 1 N -4 c+ 2N 2 best fits
the data. Note that the constants S are defined modulo integral multiples of 27 v/—1(27 +/—1 £ %), and
that they may also be defined modulo integral multiples of 772 because of the definition of the SL(2; C)
Chern—Simons invariant (see Section 6).

From Theorem 1.8, we expect that S+ = +2kw+/—1. However, since £2km+/—1 = +4.355+/—1,
neither S4 nor S_ fits with +2&7+/—1 even modulo 27 v/—1(£2k + 27 +/—1) or 2.

Now let us seek for other interpretations of Si.

Let x and y be elements in the fundamental group G := 71(S>\ .#) as indicated in Figure 17. Then
the group G &~ has the presentation

Gy ={(x,y|o’x = yo?),

1x~1y as in the case of the figure-eight knot. The preferred longitude / is given

1

where we put w := xy~

«—2
3728

— — <— — —
as x3w x73, where w := yx~1y~lx, as before.

L L L L
50 100 150 200

8.85F
-o0zp 880f
N / 875F

L L L L
50 100 150 200

Figure 19: Plots of the real (left) and imaginary (right) parts of (27 +/—1—k)log(Jy,,/J/y)
with N =2,3,4,...,200.
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Let p: G» — SL(2; C) be a nonabelian representation. Due to R Riley, it is of the form

m1/2 1 m1/2 0
p(x) = ( 0 m_1/2) . P = ( d m—l/Z)

up to conjugation, for some m # 0 and d.

2

From the relation w?x = yw?, d and m should satisfy the following equation, known as Riley’s equation:

Y m+mY =5)d + (m? +m™ ) —6(m +mY) +13)d?
—m*4+m2=Tm+m Y +14)d —2m+m ) —5) =
We call the left-hand side of this equation the Riley polynomial.

If m,d) = (1,0.1049 + 1.552+/—1), then p is the holonomy representation of G and defines the
complete hyperbolic structure of S3\.7. If (m,d) = (2, 0) or (%, 0), then p gives an affine representation.

Let us consider irreducible representations corresponding to 1 <m < 2.

The Riley polynomial is a quartic equation with respect to d, and there are four solutions, dj (m), d»(m),
d3(m), and d4(m). To describe them we introduce the following functions. Let D(m) be the discriminant
of the Riley polynomial with respect to d, that is,

D(m) 1= 5(m® +m~®) —32(m° + m™>) + 56(m* + m™*) — 118(m> + m™3) + 124(m? + m™2)
+32(m +m~ 1) 4+ 123.
We also put
A(m) :=4B(m)C(m)" P +4C(m)'? +3Qm +m™ ) =52 —8m*+m2—6(m +m™1) +13),
where
B(m) :=m* +m™* —6(m> + m_3) +5m%+m2)+3(m+m1) 49,
C(m):= \/_ —D(m)+m®+m~ 9(m5+m_5)—|—21(m4+m_4)—%(m3+m_3)+6(m2—|—m_2)
—27(m+m~ 1) — %
We also put
Ji(m) = £3V3Q2m+m™ ) + 1) Am)"V2 =2Bm)C(m)~'/? = 2C(m)'/3
—8m*+m™2—6(m+m )y +13) +3Q2m +m~1)—5)2
Now define the following four functions for 1 <m < 2:
dy(m) 1= T3(6(m + m~Y) =154 /3 A(m) + vV6/J_(m)).
da(m) := T2 (6(m +m™) = 15+ /3 /A(m) — V6 /T_(m)).
d3(m) := T3(6(m +m™") = 15— v/3/A(m) + V6/ T (m)),
da(m) := T3 (6(m +m™") = 15— v/3/A(m) = V6/T1.(m)).
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__n_(. dy(m)

d4(m)

0.5+

dy(m)

Figure 20: The cyan, red, blue, and green curves indicate dy(m), d»(m), d3(m), and ds(m),
respectively. The arrows indicate the directions of increase with respect to m1.

Note that
e A(m), B(m), D(m), J4+(m), and J_(m) are in R,
e A(m) >0, B(m)>0,and J_(m) <Ofor1 <m <2,

e D(m)>0forl <m<mg, D(img) =0, and D(m) <0 for my <m < 2, where mo = 1.950 is the
unique solution to the equation D(m) = 0 between 1 and 2,

e Ji(m)<Oforl<m<mg, J4:(mg) =0, and Jy(m) >0 formog <m <2,

e ImC(m)=0and Re C(m) > 0 for mg <m <2, and Im C(m) > 0 for 1 <m < my,
which are checked by Mathematica (the author does not have proofs).

We plot, by using Mathematica, the complex-valued functions d; (m) (where i =1,2,3,4)for 1 <m <2
on the complex plane as in Figure 20. The following facts are also suggested by Mathematica (see
Figure 20):
e dy(m)=d;(m) and dgy(m) = d3z(m) for 1 <m <2.
d(1) =0.1049 + 1.552+/—1 and d»(2) = —0.1595 4+ 1.525v/—1.
d3(m) € R and d4q(m) € R formg <m <2.
d3(l’l10) = d4(l’l”l()) =0.1770, d3(2) =0, and d4(2) = 0.3189.
d3(1) =0.3951 —0.5068 v/ —1.

Therefore, for each i, d; (m) gives an irreducible representation p,, : G~ — SL(2; C) except for d3(2),
and if m # mg they are mutually distinct.
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L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 21: The left picture shows the plots of the real parts of (277 ~/—1+1) log(J201 (1) / J200 (1))
(red) and Sy, () (green) for 0 < u < log 2, and the right picture shows the plots of the imaginary
parts of (1 + 27 v/—1) log(J201 (1) / J200 (1)) (red) and S, (.%) (green) for 0 < u < log 2, where
we put Jy (u) := Jy(7; e(”+2”ﬁ)/N) and we use PARI/GP and Mathematica.

If we write pg, () for the irreducible representation corresponding to d;(m), then we have the following:
* pg,;(1) 1s a parabolic representation for i = 1,2, 3, 4.
* pd,(2) is an affine representation since d3(2) = 0.

* pd,(1) is the holonomy representation, and pg, (1) gives the holonomy representation for the mirror
image of ., because

—1—-1.827—-2.565+/—1 —1—1.827+2.565+/—1
/Odz(l)(l)z 0—1 ) ,Odl(l)(l)= 0—1 :

Let A(m) be the (1, 1)-entry of pg, (m)(/), and put v(u) := 2log A(e*/?), where we choose the logarithm
branch so that v(0) = 0. Then the SL(2; C) Chern—Simons invariant of p, ,u/2y associated with (u, v(u))
is given as

1" 1
CSu,vu) (Pa, (eur2)) = cv(S3\.9) + 3 /0 v(s)ds— Zuv(u),
where cv(S3\.7) = —6.791 4 3.164+/—1 is the complex volume, which is defined to be
V=1Vol(§3\.7) =272 €S9 (53 \ ) (mod 7?),

with CSS0®) the SO(3) Chern—Simons invariant of the Levi-Civita connection. Here the complex volume
and SO(3) Chern—Simons invariant are taken from KnotInfo, where Vol(S3 \ .) = 3.163963229 and
CSSOB)(§3\ ) =0.155977017. Observe that —0.15597701772 4+ 72 = 6.79074. Note that cv(S3\.7)
coincides with the SL(2; C) Chern—Simons invariant CS g g)(p2(1)); see [29, Chapter 5].

Putting
(C-3) Su(-7) 1= CSy v(u)(Pay (en/2y) +um~v/'—1 + Juv(u),
the graphs depicted in Figure 21 indicate that
- - Su(S)
J f’;e“”hﬁ)ﬂv ~ olynomial in N)ex (M—N)
N ) 7 (poly ) exp ot e

Algebraic € Geometric Topology, Volume 25 (2025)



The asymptotic behaviors of the colored Jones polynomials 3581

for 0 <u <k =log2. When u = k, Mathematica calculates S () = —6.569 + 5.653+/—1, which is
close to S+ appearing in (C-1).

Note that the case u = k does not correspond to an affine representation. This also suggests that for
0 < u < & the representation d» (¢*/2) induces an incomplete hyperbolic structure of S3\ .7, but the author
does not know whether it is correct or not. The author does not know either any topological/geometric
interpretation about the asymptotic behavior of Jy (.7; e #+27 v=D/N ) foru < 0.

Compare this with Theorem 1.8 and Corollary 1.9, where S, (&) = £2x 7w +/—1 are the Chern—Simons
invariants of affine representations, which correspond to the fact that when u = =+« the hyperbolic
structure collapses.
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