
ATG

Algebraic & Geometric
Topology

msp

Volume 25 (2025)

Endomorphisms of Artin groups of type D

FABRICE CASTEL

LUIS PARIS



msp
Algebraic & Geometric Topology 25:7 (2025) 3975–4008

DOI: 10.2140/agt.2025.25.3975
Published: 29 October 2025

Endomorphisms of Artin groups of type D
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We determine a classification of the endomorphisms of the Artin group AŒDn� of type Dn for n� 6. In
particular we determine its automorphism group and its outer automorphism group. We also determine
a classification of the homomorphisms from AŒDn� to the Artin group AŒAn�1� of type An�1 and a
classification of the homomorphisms from AŒAn�1� to AŒDn� for n� 6. We show that any endomorphism
of the quotient AŒDn�=Z.AŒDn�/ lifts to an endomorphism of AŒDn� for n� 4. We deduce a classification
of the endomorphisms of AŒDn�=Z.AŒDn�/, we determine the automorphism and outer automorphism
groups of AŒDn�=Z.AŒDn�/, and we show that AŒDn�=Z.AŒDn�/ is co-Hopfian for n � 6. The results
are algebraic in nature but the proofs are based on topological arguments (curves on surfaces and mapping
class groups).

20F36; 57K20

1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrixM D .ms;t /s;t2S indexed by the elements
of S , with coefficients in N [f1g, such that ms;s D 1 for all s 2 S and ms;t Dmt;s � 2 for all s; t 2 S
with s ¤ t . Such a matrix is usually represented by a labeled graph � , called a Coxeter graph, defined as
follows. The set of vertices of � is S . Two vertices s; t 2 S are connected by an edge if ms;t � 3, and
this edge is labeled with ms;t if ms;t � 4.

If a and b are two letters and m is an integer � 2, then we denote by ….a; b;m/ the word aba � � � of
length m. In other words ….a; b;m/ D .ab/m=2 if m is even and ….a; b;m/ D .ab/.m�1/=2a if m is
odd. Let � be a Coxeter graph and let M D .ms;t /s;t2S be its Coxeter matrix. With � we associate a
group AŒ��, called the Artin group of � , defined by the following presentation:

AŒ��D hS j….s; t;ms;t /D….t; s;ms;t / for s; t 2 S; s ¤ t; ms;t ¤1i:

The Coxeter group of � , denoted by W Œ��, is the quotient of AŒ�� by the relations s2 D 1 for s 2 S .

Despite the popularity of Artin groups, little is known on their automorphisms and even less on their
endomorphisms. The most emblematic cases are the braid groups and the right-angled Artin groups.
Recall that the braid group on nC 1 strands is the Artin group AŒAn� where An is the Coxeter graph
depicted in Figure 1, and an Artin group AŒ�� is called a right-angled Artin group if ms;t 2 f2;1g for all
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1 2 n-1 n

Figure 1: The Coxeter graph An.

s; t 2 S with s ¤ t . The automorphism group of AŒAn� was determined by Dyer and Grossman [26] and
the set of its endomorphisms by Castel [12] for n� 5, by Chen, Kordek and Margalit [17] for n� 3 and by
Orevkov [35] for n� 2 (see also Bell and Margalit [2] and Kordek and Margalit [31]). On the other hand
there are many articles studying automorphism groups of right-angled Artin groups (see Charney and
Vogtmann [15; 16], Day [23; 24], Laurence [33] and Bregman, Charney and Vogtmann [8] for example),
but almost nothing is known on endomorphisms of these groups.

Apart from these two families little is known on automorphisms of Artin groups. The automorphism
groups of two-generator Artin groups were determined by Gilbert, Howie, Metaftsis and Raptis [29],
the automorphism groups of the Artin groups of type Bn, zAn and zCn were determined by Charney
and Crisp [14], the automorphisms groups of some 2-dimensional Artin groups were determined by
Crisp [20] and by An and Cho [1], the automorphism groups of large-type free-of-infinity Artin groups
were determined by Vaskou [43], and the automorphism group of AŒD4� was determined by Soroko [41].
On the other hand, as far as we know the set of endomorphisms of an Artin group is not determined for
any Artin group except for those of type An.

Recall that an Artin group AŒ�� is of spherical type if W Œ�� is finite. The study of spherical-type Artin
groups began in the early 1970s with works by Brieskorn [9; 10], Brieskorn and Saito [11] and Deligne [25],
which marked in a way the beginning of the theory of Artin groups. This family, and that of right-angled
Artin groups, are the two most-studied and best-understood families of Artin groups and, obviously, any
question on Artin groups first arises for Artin groups of spherical type and for right-angled Artin groups.
Here we are interested in Artin groups of spherical type, and more particularly in those of type Dn.

An Artin groupAŒ�� is called irreducible if � is connected. If �1; : : : ; �l are the connected components of
� , thenAŒ��DAŒ�1��� � ��AŒ�l � andW Œ��DW Œ�1��� � ��W Œ�l �. In particularAŒ�� is of spherical type
if and only if AŒ�i � is of spherical type for all i 2 f1; : : : ; lg. So to classify Artin groups of spherical type
it suffices to classify those which are irreducible. Finite irreducible Coxeter groups, and hence irreducible
Artin groups of spherical type, were classified by Coxeter [18; 19]. There are four infinite families,
An (n� 1), Bn (n� 2), Dn (n� 4) and I2.m/ (m� 5), and six “sporadic” groups, E6, E7, E8, F4, H3
and H4. As mentioned above, the automorphism group of AŒ�� for � of type An (n � 1), Bn (n � 2)
and I2.m/ (m� 5) is known. The next step is therefore to understand the automorphism group of AŒDn�
for n� 5 (the case � DD4 is known by Soroko [41]). The Coxeter graph Dn is illustrated in Figure 2.

1 2 n-2

n-1

n

Figure 2: The Coxeter graph Dn.
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Here we determine a complete and precise classification of the endomorphisms of AŒDn� for n� 6 (see
Theorem 2.3). In particular we determine the automorphism group and the outer automorphism group
of AŒDn� for n� 6 (see Corollary 2.6). We also determine a complete and precise classification of the
homomorphisms from AŒDn� to AŒAn�1� (see Theorem 2.1) and a complete and precise classification
of the homomorphisms from AŒAn�1� to AŒDn� (see Theorem 2.2). Note that all these results were
announced but not proved in Castel [13]; actually the proofs turn out to be much more difficult than the
first author thought when he announced them. Note also that our techniques cannot be used to treat the
cases nD 4 and nD 5. In particular we do not know how to determine Aut.AŒD5�/.

From our main result we deduce a classification of the endomorphisms of the group AŒDn�=Z.AŒDn�/
for n � 6, where Z.AŒDn�/ denotes the center of AŒDn� (see Theorem 2.8). Then we determine the
automorphism group and the outer automorphism group ofAŒDn�=Z.AŒDn�/ (see Corollary 2.10), and we
show that AŒDn�=Z.AŒDn�/ is co-Hopfian (see Corollary 2.11). These results follow from Theorem 2.3
and Proposition 2.7, which states that any endomorphism of AŒDn�=Z.AŒDn�/ lifts to an endomorphism
of AŒDn�. Such results were previously known for braid groups, that is, Artin groups of type An (see
Bell and Margalit [2]). Note that the application of our main result to the study of AŒDn�=Z.AŒDn�/ was
not present in an earlier version of the paper. It was suggested to us by the referee, for which we extend
our warm thanks.

A geometric representation of an Artin group is a homomorphism from the group to a mapping class
group (see Section 3 for more details). In order to achieve our goals we make a study of a particular
geometric representation of AŒDn� previously introduced by Perron and Vannier [40] with one boundary
component replaced by a puncture. This geometric representation will be the key tool for many of our
proofs. Overall, although the results of the paper are algebraic in nature, the proofs are mostly based on
topological arguments (on curves on surfaces and mapping class groups).

The paper is organized as follows. In Section 2 we give the main definitions and precise statements of
the main results. Section 3 is dedicated to the study of some geometric representations of Artin groups
of type An and type Dn. In Section 4 we determine the homomorphisms from AŒDn� to AŒAn�1�, in
Section 5 we determine the homomorphisms from AŒAn�1� to AŒDn�, and in Section 6 we determine the
endomorphisms of AŒDn�. In Section 7 we determine the endomorphisms of AŒDn�=Z.AŒDn�/.

Acknowledgments The authors would like to thank Bruno Cisneros de la Cruz and Juan González-
Meneses for helpful comments and conversations. They also want to thank the referee for many helpful
remarks. Paris is partially supported by the French project “AlMaRe” (ANR-19-CE40-0001-01) of
the ANR.

2 Definitions and statements

For n� 4 we denote by s1; : : : ; sn�1 the standard generators of AŒAn�1� numbered as in Figure 1 and by
t1; : : : ; tn the standard generators of AŒDn� numbered as in Figure 2.
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Let � be a Coxeter graph. For X � S we denote by AX D AX Œ�� the subgroup of AD AŒ�� generated
by X , by WX DWX Œ�� the subgroup of W DW Œ�� generated by X , and by �X the full subgraph of �
spanned by X . We know from van der Lek [34] that AX is the Artin group of �X and from Bourbaki [7]
that WX is the Coxeter group of �X . A subgroup of the form AX is called a standard parabolic subgroup
of A and a subgroup of the form WX is called a standard parabolic subgroup of W .

For w 2 W we denote by lg.w/ the word length of w with respect to S . A reduced expression for w
is an expression w D s1s2 � � � sl of minimal length, that is, such that l D lg.w/. Let ! W A! W be
the natural epimorphism which sends s to s for all s 2 S . This epimorphism has a natural set-section
� WW ! A defined as follows. Let w 2W and let w D s1s2 � � � sl be a reduced expression for w. Then
�.w/D s1s2 � � � sl 2A. We know from Tits [42] that the definition of �.w/ does not depend on the choice
of its reduced expression.

Assume � is of spherical type. Then W has a unique element of maximal length, denoted by wS , which
satisfies w2S D 1 and wSSwS D S . The Garside element of A is defined to be �D�Œ��D �.wS /. We
know that �S��1 D S and, if � is connected, then the center Z.A/ of A is an infinite cyclic group
generated by either � or �2 (see Brieskorn and Saito [11]). For X � S we denote by wX the element of
maximal length in WX and by �X D�X Œ��D �.wX / the Garside element of AX .

If � D An�1, then
�D .sn�1 � � � s1/.sn�1 � � � s2/ � � � .sn�1sn�2/sn�1;

�si�
�1 D sn�i for all 1� i � n� 1 and Z.A/ is generated by �2. If � DDn, then

�D .t1 � � � tn�2tn�1tntn�2 � � � t1/.t2 � � � tn�2tn�1tntn�2 � � � t2/ � � � .tn�2tn�1tntn�2/.tn�1tn/:

If n is even, then�ti��1D ti for all 1� i � n and Z.A/ is generated by�. If n is odd, then�ti��1D ti
for all 1� i � n� 2, �tn�1��1 D tn, �tn��1 D tn�1 and Z.A/ is generated by �2.

If G is a group and g 2G, then we denote by adg WG!G, h 7! ghg�1, the conjugation map by g. We
say that two homomorphisms '1; '2 WG!H are conjugate if there exists h 2H such that '2D adh ı'1.

A homomorphism ' WG!H is called abelian if its image is an abelian subgroup ofH . A homomorphism
' WG!H is called cyclic if its image is a cyclic subgroup ofH . If GDAŒAn�1�, then ' WAŒAn�1�!H

is abelian if and only if it is cyclic, if and only if there exists h2H such that '.si /Dh for all 1� i �n�1.
Similarly, if G D AŒDn�, then ' W AŒDn�!H is abelian if and only if it is cyclic, if and only if there
exists h 2H such that '.ti /D h for all 1� i � n.

Two automorphisms �; � 2 Aut.AŒDn�/ play a central role in our study. These are defined by

�.ti /D ti for 1� i � n� 2; �.tn�1/D tn; �.tn/D tn�1; �.ti /D t
�1
i for 1� i � n:

Both are of order 2 and commute, and hence they generate a subgroup of Aut.AŒDn�/ isomorphic to
Z=2Z�Z=2Z. If n is odd, then � is the conjugation map by �D�ŒDn�. On the other hand, if n is even,
then � is not an inner automorphism (see Paris [36]). The automorphism � is never inner.
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Two other homomorphisms play an important role in our study. The first, � W AŒDn�! AŒAn�1�, is
defined by

�.ti /D si for 1� i � n� 2; �.tn�1/D �.tn/D sn�1:

The second, � W AŒAn�1�! AŒDn�, is defined by

�.si /D ti for 1� i � n� 1:

Observe that � ı �D idAŒAn�1�, and hence � is surjective, � is injective and AŒDn�' Ker.�/ÌAŒAn�1�.
We refer to Crisp and Paris [21] for a detailed study on this decomposition of AŒDn� as a semidirect
product.

Let n� 4. For p 2 Z we define a homomorphism p̨ W AŒDn�! AŒAn�1� by

p̨.ti /D si�
2p for 1� i � n� 2; p̨.tn�1/D p̨.tn/D sn�1�

2p;

where �D�ŒAn�1� is the Garside element of AŒAn�1�. Note that ˛0 D � .

Set Y D ft1; : : : ; tn�1g. For p; q 2 Z we define a homomorphism p̌;q W AŒAn�1�! AŒDn� by

p̌;q.si /D ti�
2p
Y �

�q for 1� i � n� 1;

where �D�ŒDn� is the Garside element of AŒDn�, �Y D�Y ŒDn�, � D 2 if n is odd, and � D 1 if n is
even. Note that ˇ0;0 D �. Note also that, by Paris [36, Theorem 1.1], the centralizer of Y in AŒDn� is the
free abelian group of rank 2 generated by �2Y and �� .

For p 2 Z we define the homomorphism 
p W AŒDn�! AŒDn� by


p.ti /D ti�
�p for 1� i � n;

where �D�ŒDn� is the Garside element of AŒDn�, � D 2 if n is odd, and � D 1 if n is even. Note that

0 D id.

Concerning AŒAn�1�, we define an automorphism N� W AŒAn�1�! AŒAn�1� by

N�.si /D s
�1
i for 1� i � n� 1;

and for p 2 Z we define an endomorphism N
p W AŒAn�1�! AŒAn�1� by

N
p.si /D si�
2p for 1� i � n� 1;

where � is the Garside element of AŒAn�1�.

The main results of this paper are the following.

Theorem 2.1 Let n � 5. Let ' W AŒDn�! AŒAn�1� be a homomorphism. Then up to conjugation we
have one of the following two possibilities:

(1) ' is cyclic.

(2) There exist  2 h�i and p 2 Z such that ' D p̨ ı .

Algebraic & Geometric Topology, Volume 25 (2025)
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Theorem 2.2 Let n � 6. Let ' W AŒAn�1�! AŒDn� be a homomorphism. Then up to conjugation we
have one of the following two possibilities:

(1) ' is cyclic.

(2) There exist  2 h�; �i and p; q 2 Z such that ' D  ı p̌;q .

Theorem 2.3 Let n� 6. Let ' W AŒDn�! AŒDn� be a homomorphism. Then up to conjugation we have
one of the following three possibilities:

(1) ' is cyclic.

(2) There exist  2 h�; �i and p; q 2 Z such that ' D  ı p̌;q ı� .

(3) There exist  2 h�; �i and p 2 Z such that ' D  ı 
p.

From Theorem 2.3 we deduce a classification of the injective endomorphisms and of the automorphisms
of AŒDn� as follows.

Corollary 2.4 Let n� 6. Let ' W AŒDn�! AŒDn� be an endomorphism. Then ' is injective if and only
if there exist  2 h�; �i and p 2 Z such that ' is conjugate to  ı 
p.

Proof Let ' W AŒDn�! AŒDn� be an endomorphism. By Theorem 2.3 we have one of the following
three possibilities, up to conjugation:

(1) ' is cyclic.

(2) There exist  2 h�; �i and p; q 2 Z such that ' D  ı p̌;q ı� .

(3) There exist  2 h�; �i and p 2 Z such that ' D  ı 
p.

If ' is cyclic, then '.tn�1/D '.tn/, and hence ' is not injective. If there exist  2 h�; �i and p; q 2 Z

such that 'D ı p̌;q ı� , then, again, '.tn�1/D '.tn/, and hence ' is not injective. So, if ' is injective,
then there exist  2 h�; �i and p 2 Z such that ' is conjugate to  ı 
p.

It remains to show that, if  2 h�; �i and p 2 Z, then  ı 
p is injective. Since the elements of
h�; �i are automorphisms, it suffices to show that 
p is injective. We denote by z W AŒDn� ! Z the
homomorphism which sends ti to 1 for all 1 � i � n. It is easily seen that 
p.u/ D u��pz.u/ for all
u 2 AŒDn�. Let u 2 Ker.
p/. Then 1D 
p.u/D u��pz.u/, and hence uD�q where q D��pz.u/. We
have z.�/D n.n� 1/, and hence z.u/D qn.n� 1/, thus

1D 
p.u/D�
q��pqn.n�1/ D�q.1C�pn.n�1//:

Since 1C �pn.n� 1/¤ 0, this equality implies that q D 0, and hence uD 1. So 
p is injective.

Corollary 2.5 Let n� 6. Let ' W AŒDn�! AŒDn� be an endomorphism. Then ' is an automorphism if
and only if it is conjugate to an element of h�; �i.
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Proof Clearly, if ' is conjugate to an element of h�; �i, then ' is an automorphism. Conversely, suppose
that ' is an automorphism. We know from Corollary 2.4 that there exist  2 h�; �i and p 2Z such that '
is conjugate to  ı 
p . Thus, up to conjugation and up to composing on the left by  �1, we can assume
that ' D 
p. It remains to show that p D 0.

Again let z W AŒDn� ! Z be the homomorphism which sends ti to 1 for all 1 � i � n. Recall that

p.u/D u�

�pz.u/ for all u 2 AŒDn�. For u 2 AŒDn�, we have

.z ı 
p/.u/D .1Cn.n� 1/�p/z.u/ 2 .1Cn.n� 1/�p/Z:

Since 
p is an automorphism, z ı 
p is surjective, and hence ZD Im.z ı 
p/ � .1C n.n� 1/�p/Z. It
follows that .1Cn.n� 1/�p/ 2 f˙1g, and hence p D 0.

By combining Corollary 2.5 with Crisp and Paris [21, Theorem 4.9] we immediately obtain the following.

Corollary 2.6 Let n� 6.

(1) If n is even , then

Aut.AŒDn�/D Inn.AŒDn�/Ì h�; �i ' .AŒDn�=Z.AŒDn�//Ì .Z=2Z�Z=2Z/;

and Out.AŒDn�/' Z=2Z�Z=2Z, where Z.AŒDn�/ denotes the center of AŒDn�.

(2) If n is odd , then

Aut.AŒDn�/D Inn.AŒDn�/Ì h�i ' .AŒDn�=Z.AŒDn�//Ì .Z=2Z/;

and Out.AŒDn�/' Z=2Z.

We denote by Z.AŒDn�/ the center of AŒDn�, we set AZ ŒDn� D AŒDn�=Z.AŒDn�/ and we denote by
� W AŒDn�! AZ ŒDn� the canonical projection. For each 1 � i � n, we set tZ;i D �.ti /. Note that an
endomorphism ' W AŒDn�! AŒDn� induces an endomorphism 'Z W AZ ŒDn�! AZ ŒDn� if and only if
'.Z.AŒDn�//�Z.AŒDn�/. We say that an endomorphism  WAZ ŒDn�!AZ ŒDn� lifts if there exists an
endomorphism ' W AŒDn�! AŒDn� such that 'Z D  . Then we call ' a lift of  . In Section 7 we prove
the following.

Proposition 2.7 Let n� 4. Then every endomorphism of AZ ŒDn� lifts.

From this proposition combined with Theorem 2.3 we will deduce the following.

Theorem 2.8 Let n� 6. Let 'Z W AZ ŒDn�! AZ ŒDn� be an endomorphism. Then we have one of the
following two possibilities , up to conjugation:

(1) 'Z is cyclic.

(2) 'Z 2 h�Z ; �Zi.
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In addition to Theorem 2.8 we have the following.

Proposition 2.9 Let n � 4. There are only finitely many conjugacy classes of cyclic endomorphisms
of AZ ŒDn�.

Proof Let 'Z W AZ ŒDn�! AZ ŒDn� be a cyclic endomorphism. There exists gZ 2 AZ ŒDn� such that
'Z.tZ;i /D gZ for all 1� i � n. We denote by � the Garside element of AŒDn�, and we set � D 2 if n
is odd and � D 1 if n is even. We have 1D .'Z ı �/.��/D g

�n.n�1/
Z , and hence gZ is of finite order.

By Bestvina [3, Theorem 4.5] there are finitely many conjugacy classes of finite subgroups in AZ ŒDn�.
Since hgZi is a finite subgroup of AZ ŒDn�, it follows that there are finitely many choices for gZ , up to
conjugation.

In Lemma 7.1 we will show that if n is even then h�Z ; �Zi \ Inn.AZ ŒDn�/D fidg, and if n is odd then
h�Zi \ Inn.AZ ŒDn�/D fidg. Furthermore, it is well known and can be easily proved (arguing as in the
proof of Cumplido and Paris [22, Proposition 3.1(4)], for example) that the center of AŒ��=Z.AŒ��/ is
trivial for any AŒ�� of spherical type. These two remarks combined with Theorem 2.8 imply the following.

Corollary 2.10 Let n� 6.

(1) If n is even , then

Aut.AZ ŒDn�/D Inn.AZ ŒDn�/Ì h�Z ; �Zi ' AZ ŒDn�Ì .Z=2Z�Z=2Z/' Aut.AŒDn�/;

and Out.AZ ŒDn�/' Z=2Z�Z=2Z' Out.AŒDn�/.

(2) If n is odd , then

Aut.AZ ŒDn�/D Inn.AZ ŒDn�/Ì h�Zi ' AZ ŒDn�Ì .Z=2Z/' Aut.AŒDn�/;

and Out.AZ ŒDn�/' Z=2Z' Out.AŒDn�/.

A group G is said to be co-Hopfian if every injective endomorphism of G is an isomorphism. Another
direct consequence of Theorem 2.8 is the following.

Corollary 2.11 Let n� 6. Then AZ ŒDn� is co-Hopfian.

In addition to the case Dn for n� 6 shown in Corollary 2.11, the Coxeter graphs � for which we know
that AŒ��=Z.AŒ��/ is co-Hopfian are the Coxeter graphs An, Bn, zAn and zCn for n � 2 (see Bell and
Margalit [2]). Note that, for zAn and zCn, the center Z.AŒ��/ is trivial, and hence the above remark means
that the Artin group itself is co-Hopfian.

3 Geometric representations

Let † be an oriented compact surface possibly with boundary, and let P be a finite set of punctures in
the interior of †. We denote by HomeoC.†;P/ the group of homeomorphisms of † that preserve the
orientation, that are the identity on a neighborhood of the boundary of† and that setwise leave invariant P .
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The mapping class group of the pair .†;P/, denoted by M.†;P/, is the group of isotopy classes of
elements of HomeoC.†;P/. If P D¿, then we write M.†;¿/DM.†/, and if P D fxg is a singleton,
then we write M.†;P/DM.†; x/. We only give definitions and results on mapping class groups that
we need for our proofs and we refer to Farb and Margalit [28] for a complete account on the subject.

Recall that a geometric representation of an Artin group A is a homomorphism from A to a mapping class
group. Their study is the main ingredient of our proofs. Important tools for constructing and understanding
them are Dehn twists and essential reduction systems. So, we start by recalling their definitions and their
main properties.

A circle of .†;P/ is the (nonoriented) image of an embedding a W S1 ,! † n .@† [ P/. It is called
generic if it does not bound any disk containing 0 or 1 puncture and if it is not parallel to any boundary
component. The isotopy class of a circle a is denoted by Œa�. We denote by C.†;P/ the set of isotopy
classes of generic circles of .†;P/. The intersection number of two classes Œa�; Œb� 2 C.†;P/ is
i.Œa�; Œb�/Dminfja0\ b0j j a0 2 Œa� and b0 2 Œb�g. The set C.†;P/ is endowed with a simplicial complex
structure, where a finite set A is a simplex if i.Œa�; Œb�/D 0 for all Œa�; Œb� 2A. This complex is called the
curve complex of .†;P/.

By a Dehn twist we mean a right Dehn twist and the (right) Dehn twist along a circle a of .†;P/ will
be denoted by Ta. The following is an important tool for constructing and understanding geometric
representations of Artin groups. Its proof can be found in Farb and Margalit [28, Section 3.5].

Proposition 3.1 Let † be a compact oriented surface and let P be a finite collection of punctures in the
interior of †. Let a and b be two generic circles of .†;P/.

(1) We have TaTb D TbTa if and only if i.Œa�; Œb�/D 0.

(2) We have TaTbTa D TbTaTb if and only if i.Œa�; Œb�/D 1.

Let f 2M.†;P/. A simplex A of C.†;P/ is called a reduction system for f if f .A/ D A. In that
case any element of A is called a reduction class for f . A reduction class Œa� is an essential reduction
class if, for all Œb� 2 C.†;P/ such that i.Œa�; Œb�/¤ 0 and for all m 2 Z n f0g, we have f m.Œb�/¤ Œb�.
In particular, if Œa� is an essential reduction class and Œb� is any reduction class, then i.Œa�; Œb�/D 0. We
denote by S.f / the set of essential reduction classes for f . The following gathers some key results on
S.f / that will be useful later.

Theorem 3.2 (Birman, Lubotzky and McCarthy [6]) Let † be a compact oriented surface and let P be
a finite set of punctures in the interior of †. Let f 2M.†;P/.

(1) If S.f /¤¿, then S.f / is a reduction system for f . In particular , if S.f /¤¿, then S.f / is a
simplex of C.†;P/.

(2) We have S.f n/D S.f / for all n 2 Z n f0g.

(3) We have S.gfg�1/D g.S.f // for all g 2M.†;P/.
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a2 an-4 an-3 an-2 an-1a1 a1 an-4 an-3 an-2 an-1

Figure 3: The geometric representation of AŒAn�1� for n even (left) and n odd (right).

The following is well known and is a direct consequence of Birman, Lubotzky and McCarthy [6] (see
also Castel [12, Corollaire 3.45]). It will be often used in our proofs.

Proposition 3.3 Let † be an oriented compact surface of genus � 2 and let P be a finite set of punctures
in the interior of †. Let f0 2 Z.M.†;P// be a central element of M.†;P/, let AD fŒa1�; : : : ; Œap�g
be a simplex of C.†;P/ and let k1; : : : ; kp be nonzero integers. Let g D T

k1
a1
T
k2
a2
� � �T

kp

ap
f0. Then

S.g/DA.

Let n� 4. If n is even, then †n denotes the surface of genus 1
2
.n� 2/ with two boundary components,

and if n is odd, then †n denotes the surface of genus 1
2
.n� 1/ with one boundary component. Consider

the circles a1; : : : ; an�1 drawn in Figure 3. Then by Proposition 3.1 we have a geometric representation
�A WAŒAn�1�!M.†n/ which sends si to Tai

for all 1� i � n� 1. The following is well known; it is a
direct consequence of Birman and Hilden [5], and its proof is explicitly given in Perron and Vannier [40].

Theorem 3.4 (Birman and Hilden [5]) Let n� 4. Then �A W AŒAn�1�!M.†n/ is injective.

The following is proved in Castel [12] for n� 6 using the geometric representation �A defined above. It
is proved in Chen, Kordek and Margalit [17] for n� 5 with a different method.

Theorem 3.5 (Castel [12], Chen, Kordek and Margalit [17] and Orevkov [35]) Let n � 5. Let
' W AŒAn�1�! AŒAn�1� be a homomorphism. Then up to conjugation we have one of the following two
possibilities:

(1) ' is cyclic.

(2) There exist  2 h N�i and p 2 Z such that ' D  ı N
p.

Let n� 6. Pick a puncture x in the interior of †n and consider the circles d1; : : : ; dn drawn in Figure 4.
Then by Proposition 3.1 we have a geometric representation �D W AŒDn�!M.†n; x/ which sends ti to
Tdi

for all 1� i � n. On the other hand, the embedding of HomeoC.†n; x/ into HomeoC.†n/ induces
a surjective homomorphism � WM.†n; x/!M.†n/ whose kernel is naturally isomorphic to �1.†n; x/
(see Birman [4]). It is easily seen that

�.Tdi
/D Tai

for 1� i � n� 2; �.Tdn�1
/D �.Tdn

/D Tan�1
;
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d2 dn-4 dn-3

dn-2

d1 x

dn

dn-1 d1 dn-4 dn-3

dn-2

dn-1
x

dn

Figure 4: The geometric representation of AŒDn� for n even (left) and n odd (right).

and hence we have the commutative diagram

(3-1)

1 // Ker.�/ //

N�

��

AŒDn�
�
//

�D

��

AŒAn�1� //

�A

��

1

1 // Ker.�/ //M.†n; x/
�
//M.†n/ // 1

where we denote by N� W Ker.�/! Ker.�/ the restriction of �D to Ker.�/.

The proof of the following can be found in Perron and Vannier [40, Theorem 1] with few modifications.
As this result is central in our paper, for the sake of completeness we give a proof. Note that our proof
is a little shorter than that of Perron and Vannier [40] because it uses results from Crisp and Paris [21]
which were not known and it does not need to deal with some Dehn twist along a boundary component,
but our arguments are essentially the same.

Theorem 3.6 (Perron and Vannier [40]) Let n� 4.

(1) The homomorphism N� W Ker.�/! Ker.�/ is an isomorphism.

(2) The geometric representation �D W AŒDn�!M.†n; x/ is injective.

Proof Part (2) is a consequence of (1) because of the following. Suppose N� is an isomorphism. Then,
since �A is injective, �D is injective by the five lemma applied to (3-1).

Now, we prove (1). We know from Crisp and Paris [21, Proposition 2.3] that Ker.�/ is a free group
of rank n� 1. We also know from Birman [4] that Ker.�/D �1.†n; x/, which is also a free group of
rank n�1. Recall that a group G is Hopfian if every surjective endomorphism G!G is an isomorphism.
It is well known that free groups of finite rank are Hopfian (see de la Harpe [30, Chapter III, Section 19]),
and hence in order to show that N� is an isomorphism it suffices to show that N� is surjective.

Set fn�1 D T �1dn�1
Tdn

. Note that t�1n�1tn 2 Ker.�/ and fn�1 D N�.t�1n�1tn/. In particular fn�1 2 Im. N�/�
Ker.�/D �1.†n; x/. This element, seen as an element of �1.†n; x/, is represented by the loop drawn
in Figure 5. For 2 � i � n� 1 we define fn�i 2 �1.†n; x/ �M.†n; x/ by induction on i by setting
fn�i DTdn�i

fn�iC1T
�1
dn�i

f �1n�iC1. The element fn�i , viewed as an element of �1.†n; x/, is represented
by the loop drawn in the left-hand side of Figure 6 if iD2j is even, and by the loop drawn in the right-hand
side of Figure 6 if iD2jC1 is odd, where we compose paths from right to left. Observe that f1; : : : ; fn�1
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dn-1

dn

x fn-1
fn-1

Figure 5: The loop fn�1 2 �1.†n; x/.

generate �1.†n; x/. So, in order to show that N� is surjective, it suffices to show that fn�i 2 Im. N�/ for
all i 2 f1; : : : ; n� 1g. We argue by induction on i . We already know that fn�1 D N�.t�1n�1tn/ 2 Im. N�/.
Suppose i � 2 and fn�iC1 2 Im. N�/. Let u 2Ker.�/ such that fn�iC1 D N�.u/. Since Ker.�/ is a normal
subgroup of AŒDn�, we have tn�iut�1n�i 2 Ker.�/; hence tn�iut�1n�iu

�1 2 Ker.�/, and therefore

fn�i D Tdn�i
fn�iC1T

�1
dn�i

f �1n�iC1 D N�.tn�iut
�1
n�iu

�1/ 2 Im. N�/:

Our last preliminary on geometric representations is a result implicitly proved in Castel [13, Section 3.2],
and it is in this theorem that we need the assumption n� 6.

Theorem 3.7 (Castel [13]) Let n� 6. Let ' W AŒAn�1�!M.†n; x/ be a noncyclic homomorphism.
Then there exist generic circles c1; : : : ; cn�1 in †n n fxg, " 2 f˙1g and g 2M.†n; x/ such that

(a) jci \ cj j D 1 if ji � j j D 1 and jci \ cj j D 0 if ji � j j � 2, for all 1� i; j � n� 1,

(b) g commutes with Tci
for all 1� i � n� 1,

(c) '.si /D T
"
ci
g for all 1� i � n� 1.

Proof Assume n is even. Let @1 and @2 be the two boundary components of †n. We denote by y†n the
closed surface obtained from †n by gluing a disk D1 along @1 and a disk D2 along @2. Moreover, we
choose a point Ox1 in the interior of D1 and a point Ox2 in the interior of D2, and we set yP D fx; Ox1; Ox2g.
Assume n is odd. Let @ be the boundary component of †n. We denote by y†n the closed surface obtained
from †n by gluing a disk D along @. Moreover, we choose a point Ox in the interior of D and we set
yP D fx; Oxg. For each n we denote by PM.y†n; yP/ the subgroup of M.y†n; yP/ formed by the isotopy
classes of elements in HomeoC.y†n; yP/ which pointwise fix yP . The embedding of †n into y†n induces a
surjective homomorphism $ WM.†n; x/! PM.y†n; yP/. If n is even, then the kernel of $ is the free
abelian group of rank 2 generated by T@1

and T@2
, and if n is odd, then the kernel of $ is the cyclic

group generated by T@. In both cases Ker.$/ is contained in the center of M.†n; x/.

fn-2j
1j 1j

fn-2j-1

Figure 6: The loop fn�i 2 �1.†n; x/.
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Let ' W AŒAn�1�!M.†n; x/ be a noncyclic homomorphism. Assume that $ ı' is cyclic. Then there
exists Og 2 PM.y†n; yP/ such that .$ ı'/.si /D Og for all 1� i � n� 1. Let g 2M.†n; x/ be such that
$.g/D Og. For each 1� i � n�1 there exists hi 2Ker.$/�Z.M.†n; x// such that '.si /D ghi . Let
1� i � n� 2. Then

g3h2i hiC1 D '.sisiC1si /D '.siC1sisiC1/D g
3hih

2
iC1:

Hence hi D hiC1. This shows that '.si /D gh1 for all 1� i � n�1, and hence that ' is cyclic, which is
a contradiction. So $ ı' is not cyclic.

To differentiate Dehn twists in M.†n; x/ from those in PM.y†n; yP/, for a circle c in y†n n yP we denote
by yTc the Dehn twist in PM.y†n; yP/ along c. By Castel [13, Theorem 1] there exist generic circles
c1; : : : ; cn�1 in y†n n yP , " 2 f˙1g and Og 2 PM.y†n; yP/ such that

(1) jci \ cj j D 1 if ji � j j D 1 and jci \ cj j D 0 if ji � j j � 2, for all 1� i; j � n� 1,

(2) Og commutes with yTci
for all 1� i � n� 1,

(3) .$ ı'/.si /D yT
"
ci
Og for all 1� i � n� 1.

Clearly, we can choose each ci siting in the interior of†n. Let g 2M.†n; x/ be such that$.g/D Og. It is
easily shown with Castel [13, Lemma 3.2.1] that g and Tci

commute for all 1� i �n�1. Furthermore, for
each 1� i � n�1, there exists hi 2Ker.$/�Z.M.†n; x// such that '.si /D T "ci

ghi . Let 1� i � n�2.
Then

T "ci
T "ciC1

T "ci
g3h2i hiC1 D '.sisiC1si /D '.siC1sisiC1/D T

"
ciC1

T "ci
T "ciC1

g3hih
2
iC1

D T "ci
T "ciC1

T "ci
g3hih

2
iC1;

and hence hiC1 D hi . So there exists h 2 Ker.$/ such that '.si /D T "ci
gh and gh commutes with Tci

for all 1� i � n� 1.

4 Homomorphisms from AŒDn� to AŒAn�1�

Proof of Theorem 2.1 Let n� 5. Let ' W AŒDn�! AŒAn�1� be a homomorphism. By precomposing '
with � WAŒAn�1�!AŒDn�, we obtain a homomorphism ' ı � WAŒAn�1�!AŒDn�!AŒAn�1�, and hence,
by Theorem 3.5, one of the following two possibilities holds:

� ' ı � is cyclic.

� There exist  2 h N�i and p 2 Z such that ' ı � is conjugate to  ı N
p.

Suppose 'ı� is cyclic. Then there exists u2AŒAn�1� such that .'ı�/.si /D'.ti /Du for all 1� i �n�1.
Moreover,

'.tn/D '.tn�2tn/'.tn�2/'.t
�1
n t�1n�2/D '.tn�2tn/'.t1/'.t

�1
n t�1n�2/D '.t1/D u;

and hence ' is cyclic.
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1 n-2 n-1 n

C2

C1

Figure 7: Circles in the punctured disk.

So, up to conjugating and replacing ' by ' ı� if necessary, we can assume that there exists p 2 Z such
that ' ı �D N
p . This means that '.ti /D .' ı �/.si /D si�2p for all 1� i � n�1, where � is the Garside
element of AŒAn�1�. Now we turn to showing that ' D p̨.

Set Y D fs1; : : : ; sn�3g. By Paris [37, Theorem 5.1] the centralizer of the group hs1; : : : ; sn�3; sn�1i
in AŒAn�1� is generated by �2, �2Y and sn�1, where �Y D�Y ŒAn�1�. These three elements pairwise
commute and generate a copy of Z3. Set u D '.tn/. Since u commutes with '.ti / D si�2p for all
i 2 f1; : : : ; n�3; n�1g and �2 is central in AŒAn�1�, u belongs to the centralizer of hs1; : : : ; sn�3; sn�1i,
and hence there exist k1; k2; k3 2 Z such that uD sk1

n�1�
2k2

Y �2k3 .

It is well known that AŒAn�1� is naturally isomorphic to the mapping class group M.D;P/, where D

denotes the disk and P D fx1; : : : ; xng is a set of n punctures in the interior of D. In this identification
s2n�1 corresponds to the Dehn twist along the circle c1 depicted in Figure 7, �2Y corresponds to the Dehn
twist along the circle c2 depicted in the same figure and �2 corresponds to the Dehn twist along a circle
parallel to @D. By Proposition 3.3 we have S.u2/� fc1; c2g, where c1 2 S.u2/ if and only if k1 ¤ 0 and
c2 2 S.u2/ if and only if k2¤ 0. We know that '.t21 /D s

2
1�

4p , and hence S.'.t21 // is formed by a single
circle containing two marked points in its interior. Since t21 and t2n are conjugate '.t21 / and '.t2n/D u

2

are conjugate, and hence, by Theorem 3.2, S.u2/ is also formed by a single circle containing two marked
points in its interior. It follows that S.u2/D fc1g, and hence k1 ¤ 0 and k2 D 0. It remains to show that
k1 D 1 and k3 D p.

From the equality tn�2tntn�2D tntn�2tn it follows that sn�2s
k1

n�1sn�2�
4pC2k3Ds

k1

n�1sn�2s
k1

n�1�
2pC4k3 ,

and hence
.sn�2s

k1

n�1sn�2/.s
k1

n�1sn�2s
k1

n�1/
�1
D�2k3�2p:

We know from Paris [38, Corollary 2.6] that Afsn�2;sn�1g
ŒAn�1�\ h�i D f1g, and hence

.sn�2s
k1

n�1sn�2/.s
k1

n�1sn�2s
k1

n�1/
�1
D�2k3�2p D 1:

Let z W AŒAn�1�! Z be the homomorphism which sends si to 1 for all 1� i � n� 1. We have

0D z.1/D z..sn�2s
k1

n�1sn�2/.s
k1

n�1sn�2s
k1

n�1/
�1/D 1� k1;

and hence k1 D 1. Moreover, �2k3�2p D 1 and � is of infinite order; thus k3 D p.
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5 Homomorphisms from AŒAn�1� to AŒDn�

The formula in the following lemma is a crucial point in various proofs, including those of Lemma 5.4
and Theorem 2.8.

Lemma 5.1 Let n� 1. Then

�ŒAn�
2
D .s1 � � � sn�1s

2
nsn�1 � � � s1/.s2 � � � sn�1s

2
nsn�1 � � � s2/ � � � .sn�1s

2
nsn�1/s

2
n:

Proof We argue by induction on n. The case nD 1 is trivial, and hence we can assume that n� 2 and
that the induction hypothesis holds. Recall that

�ŒAn�D .s1 � � � sn/�ŒAn�1�D�ŒAn�1�.sn � � � s1/:

Moreover, it is easily checked that si .sn � � � s1/D .sn � � � s1/siC1 for all 1� i � n� 1. By the induction
hypothesis,

�ŒAn�1�
2
D .s1 � � � sn�2s

2
n�1sn�2 � � � s1/ � � � .sn�2s

2
n�1sn�2/s

2
n�1:

Hence

�ŒAn�
2
D .s1 � � � sn/�ŒAn�1�

2.sn � � � s1/

D .s1 � � � sn/
�
.s1 � � � sn�2s

2
n�1sn�2 � � � s1/ � � � .sn�2s

2
n�1sn�2/s

2
n�1

�
.sn � � � s1/

D .s1 � � � sn/.sn � � � s1/
�
.s2 � � � sn�1s

2
nsn�1 � � � s2/ � � � .sn�1s

2
nsn�1/s

2
n

�
D .s1 � � � sn�1s

2
nsn�1 � � � s1/ � � � .sn�1s

2
nsn�1/s

2
n:

Now, Lemmas 5.2–5.8 are preliminaries to the proof of Theorem 2.2.

Lemma 5.2 Let n� 6. Let ' W AŒAn�1�! AŒDn� be a homomorphism. If � ı' W AŒAn�1�! AŒAn�1�

is cyclic , then ' is cyclic.

Proof Assume �ı' is cyclic. Then there exists u2AŒAn�1� such that .�ı'/.si /Du for all 1� i �n�1.
For 3� i � n� 1 we set vi D '.sis�11 /. We have �.vi /D uu�1 D 1, and hence vi 2 Ker.�/. We have

.s3s
�1
1 /.s4s

�1
1 /.s3s

�1
1 /D s3s4s3s

�3
1 D s4s3s4s

�3
1 D .s4s

�1
1 /.s3s

�1
1 /.s4s

�1
1 /;

and hence v3v4v3 D v4v3v4. Since Ker.�/ is a free group (see Crisp and Paris [21, Proposition 2.3])
and two elements in a free group either freely generate a free group or commute, the existence of such
equality implies that v3v4 D v4v3. It follows that v3v4v3 D v3v24 ; hence v3 D v4, and therefore

'.s3/'.s1/
�1
D v3 D v4 D '.s4/'.s1/

�1:

So '.s3/D '.s4/. We conclude by Castel [13, Lemma 3.1.1] that ' is cyclic.
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Let n� 6. If n is odd then †n has one boundary component, which we denote by @, and we denote by
T@ the Dehn twist along @. If n is even then †n has two boundary components, which we denote by @1
and @2, and we denote by T@1

and T@2
the Dehn twists along @1 and @2, respectively. It is known that the

center of M.†n/, denoted by Z.M.†n//, is the cyclic group generated by T@ if n is odd, and it is a free
abelian group of rank 2 generated by T@1

and T@2
if n is even (see Paris and Rolfsen [39, Theorem 5.6],

for example).

Lemma 5.3 Let n � 2. Let f 2 M.†n/ such that f T 2ai
D T 2ai

f for all 1 � i � n � 1. Then
f 2 2Z.M.†n//.

Proof Assume n is odd. The case where n is even can be proved in the same way. Let f 2M.†n/

such that f T 2ai
D T 2ai

f for all 1 � i � n� 1. Since f T 2ai
f �1 D T 2ai

we have f .Œai �/D Œai � (see Farb
and Margalit [28, Section 3.3]). The mapping class f may reverse the orientation of each ai up to
isotopy, but f 2 preserves the orientation of all ai up to isotopy, and hence f 2 can be represented by an
element of HomeoC.†n/ which is the identity on a (closed) regular neighborhood †0 of

Sn�1
iD1 ai . We

observe that †0 is a surface of genus 1
2
.n�1/ with one boundary component, @0, and that @[@0 bounds a

cylinder C . This implies that f 2 2M.C /�M.†n/. Since M.C /D hT@i DZ.M.†n//, we conclude
that f 2 2Z.M.†n//.

Lemma 5.4 Let n � 3. We set m D n� 1 if n is odd and m D n� 2 if n is even. Let 1 � k � m.
Let c be a generic circle of †n n fxg such that c \ di D ¿ for 1 � i � k � 2, jc \ dk�1j D 1 if k � 2,
c \ dk D¿ and c is isotopic to dk in †n. Then there exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all
1� i � k� 1 and g.Œc�/D Œdk�.

Proof We identify D3 with A3 in this proof to treat the cases k D 2 and k D 1. We first assume that k
is even. If c is isotopic in †n n fxg to dk , then it suffices to take g D id. So we can assume that c and
dk are not isotopic in †n n fxg. Since c and dk are isotopic in †n, by Epstein [27, Lemma 2.4] there
exists a cylinder C in †n whose boundary components are dk and c. Since c and dk are not isotopic in
†n n fxg, this cylinder must contain the puncture x.

Let †0 be a regular neighborhood of
�Sk�1

iD1 di
�
[ C . The surface †0 contains the cylinder C with

boundaries c and dk , having the puncture x in it, and dk�1 intersects c and dk once. Hence an arc of the
curve dk�1 connects a point on c with a point on dk within the cylinder C , and it may wind around the
cylinder in different ways (see Figure 8). However, by applying suitable Dehn twists about c and dk ,
one can unwind this arc to the simplest case, shown in Figure 9. Hence, up to homeomorphism of the
surface †n, we may assume that the circles d1; : : : ; dk; c are arranged as in Figure 9.

By Proposition 3.1 there are homomorphisms  1 W AŒDkC1�!M.†n; x/ and  2 W AŒAk�!M.†n; x/

defined by
 1.ti /D Tdi

for 1� i � k;  1.tkC1/D Tc ;

 2.si /D Tdi
for 1� i � k� 1;  2.sk/D Tc :
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x

dkc

dk-1

x

dkc

dk-1

x

dkc
dk-1

Figure 8: The intersection of C with dk�1.

We denote by �D;k the Garside element of AŒDkC1� and by �A;k the Garside element of AŒAk�, and
we set g D  1.�D;k/ 2.��2A;k/. We have �D;kti��1D;k D ti for all 1� i � k� 1, �D;ktkC1��1D;k D tk
and �2

A;k
si�
�2
A;k
D si for all 1 � i � k. Hence gTdi

g�1 D Tg.di / D Tdi
for all 1 � i � k � 1 and

gTcg
�1 D Tg.c/ D Tdk

. It follows that g.Œdi �/D Œdi � for all 1� i � k � 1 and g.Œc�/D Œdk� (see Farb
and Margalit [28, Fact 3.6]).

Since c and dk are isotopic in †n, the corresponding Dehn twists Tc and Tdk
are equal in M.†n/, and

hence for Tc and Tdk
, viewed on the surface †n n fxg, we have �.Tc/D �.Tdk

/. Moreover,

�D;k D .t1 � � � tk�1tktkC1tk�1 � � � t1/ � � � .tk�1tktkC1tk�1/.tktkC1/;

�2A;k D .s1 � � � sk�1s
2
ksk�1 � � � s1/ � � � .sk�1s

2
ksk�1/s

2
k;

(see Lemma 5.1 for the second equality); hence �. 1.�D;k//D �. 2.�2A;k//, and therefore �.g/D 1.
So g 2 Ker.�/.

Now assume k is odd. If c is isotopic in †n n fxg to dk , then we can take g D id. So we can assume that
c and dk are not isotopic in †n n fxg. Since c and dk are isotopic in †n, there exists a cylinder C in †n
whose boundary components are dk and c. Since c and dk are not isotopic in †n nfxg, this cylinder must
contain the puncture x. Let †0 be a closed regular neighborhood of

�Sk�1
iD1 di

�
[C . Then †0 is a surface

of genus 1
2
.k � 1/ with two boundary components and the circles d1; : : : ; dk�1; dk; c are arranged as

shown in Figure 10. Since k �m and k is odd, 1
2
.k� 1/ is strictly less than the genus of †n; hence we

can choose a subsurface †00 of †n of genus 1
2
.kC 1/, with one boundary component, and containing †0.

We can also choose a generic circle e in †00 n fxg such that je\d1j D 1, je\ cj D 1 if k D 1, e\di D¿
for all 2� i � k and e\ c D¿ if k � 2 (see Figure 10). By Proposition 3.1 there are homomorphisms

d1

dk-1

dk
x

c

Figure 9: The regular neighborhood of
�Sk�1

iD1 di
�
[C when k is even.
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d1

dk-1

dk
x

c

d2e

Figure 10: The regular neighborhood of
�Sk�1

iD1 di
�
[C when k is odd

 1 W AŒDkC2�!M.†n; x/ and  2 W AŒAkC1�!M.†n; x/ defined by

 1.t1/D Te;  1.ti /D Tdi�1
for 2� i � kC 1;  1.tkC2/D Tc ;

 2.s1/D Te;  2.si /D Tdi�1
for 2� i � k;  2.skC1/D Tc :

We denote by �D;kC1 the Garside element of AŒDkC2� and by �A;kC1 the Garside element of AŒAkC1�,
and we set g D  1.�D;kC1/ 2.��2A;kC1/. Then, as in the case where k is even, we have g.Œdi �/D Œdi �
for all 1� i � k� 1, g.Œc�/D Œdk� and g 2 Ker.�/.

The following lemma is the extension of Lemma 5.4 to the case c \ dk ¤¿.

Lemma 5.5 Let n � 3. Set mD n� 1 if n is odd and mD n� 2 if n is even. Let 1 � k � m. Let c
be a generic circle of †n n fxg such that c \ di D¿ for 1 � i � k � 2, jc \ dk�1j D 1 if k � 2, and c
is isotopic to dk in †n. Then there exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all 1 � i � k � 1 and
g.Œc�/D Œdk�.

Proof We argue by induction on i.Œc�; Œdk�/, which is computed on the surface †n n fxg and not on †n.
The case i.Œc�; Œdk�/D 0 is proved in Lemma 5.4, and hence we can assume that i.Œc�; Œdk�/� 1 and that
the induction hypothesis holds. Note that now c and dk cannot be isotopic in†nnfxg since i.Œc�; Œdk�/¤0.
We can assume without loss of generality that i.Œc�; Œdk�/D jc \ dkj. Since c and dk are isotopic in †n,
there exists a bigon D in †n cobounded by an arc of dk and an arc of c as shown in Figure 11. We can
choose this bigon to be minimal in the sense that its interior intersects neither c nor dk . The bigon D
cannot intersect di for 1� i � k�2 and one can easily modify c so that D does not intersect dk�1 either.
Since c and dk are not isotopic in †n n fxg, D necessarily contains the puncture x in its interior. We
choose a circle c0 parallel to c except in the bigon D, where it follows the arc of dk which borders D as
illustrated in Figure 11. By construction c0 \ di D ¿ for 1 � i � k � 2, jc0 \ dk�1j D 1 if k � 2, and
c0 is isotopic to dk in †n. Moreover i.Œc0�; Œdk�/� jc0\ dkj< jc \ dkj D i.Œc�; Œdk�/. By the induction
hypothesis there exists g1 2 Ker.�/ such that g1.Œdi �/D Œdi � for all 1 � i � k � 1 and g1.Œc0�/D Œdk�.

dk

x c

c'

Figure 11: The bigon cobounded by c and dk .
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∂1

∂2

d1
d2

dn-2

dn-1

dn

x

Figure 12: The circles d1; : : : ; dn.

By Farb and Margalit [28, Lemma 2.9], we can choose G1 2 HomeoC.†n; x/ which represents g1 such
that G1.di / D di for all 1 � i � k � 1 and G1.c0/ D dk . We set c00 D G1.c/. Then c00 \ di D ¿ for
1� i � k�2, jc00\dk�1j D 1 if k � 2, c00\dk D¿ and c00 is isotopic to dk in †n. By Lemma 5.4 there
exists g2 2Ker.�/ such that g2.Œdi �/D Œdi � for all 1� i � k�1 and g2.Œc00�/D Œdk�. We set gD g2 ıg1.
Then g 2 Ker.�/, g.Œdi �/D Œdi � for all 1� i � k� 1 and g.Œc�/D Œdk�.

Lemma 5.6 Let n � 4 be even. Let c be a generic circle of †n n fxg such that c \ di D ¿ for all
1� i � n� 3, jc \ dn�2j D 1, c \ dn�1 D¿ and c is isotopic to dn�1 in †n. Then we have one of the
following two possibilities:

(1) c is isotopic to dn�1 in †n n fxg.

(2) There exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all 1� i � n� 1 and g.Œc�/D Œdn�.

Proof The surface †n is a surface of genus 1
2
.n� 2/ with two boundary components @1 and @2. We

assume that the circles d1; : : : ; dn�1; dn are arranged as in Figure 12. Let � be the surface obtained by
cutting†n along

Sn�1
iD1 di . Then� has two connected components�1 and�2. Each of these components

is a cylinder that we represent by a square with a hole in the middle, as shown in Figure 13. Two opposite
sides of each square represent arcs of dn�2, one side represents an arc of dn�1 and the last side represents
a union of arcs of d1; : : : ; dn�3. The boundary of the hole represents @1 for �1 and @2 for �2. The
puncture x sits inside �2. The trace of the circle c in � is a simple arc `, either in �1 or in �2.

Suppose ` is in �1. Let q be the intersection point of c with dn�2. Then q is represented in �1 by two
points q1 and q2 on two opposite sides of �1, as shown in Figure 13, and ` is a simple arc connecting q1
with q2. Up to isotopy pointwise fixing the boundary of �1, there exist exactly two simple arcs in �1

q1 q2
∂1

d1 to dn-3

dn-1

dn-2 dn-2
l1

l2

q3 q4
∂2

d1 to dn-3

dn-1

dn-2 dn-2
l3

l4

x

C

Figure 13: The surface � with components �1 (left) and �2 (right).
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q3 q4
∂2

d1 to dn-3

dn-1

dn-2 dn-2

l5

x

Figure 14: The arc `5.

connecting q1 to q2 that are represented by the arcs `1 and `2 depicted in Figure 13. The arc ` cannot
be isotopic to `1, otherwise c would not be isotopic to dn�1 in †n. So ` is isotopic to `2 in �1, which
implies that c is isotopic to dn�1 in †n n fxg.

Now suppose ` is in �2. Let q be the intersection point of c with dn�2. Then q is represented in �2 by
two points q3 and q4 on two opposite sides of �2, as shown in Figure 13, and ` is a simple arc connecting
q3 with q4. Up to isotopy (in �2 and not in �2 n fxg) pointwise fixing the boundary of �2, there exist
exactly two simple arcs in �2 connecting q3 to q4 that are represented by the arcs `3 and `4 depicted in
Figure 13. The arc ` cannot be isotopic to `3 in �2, otherwise c would not be isotopic to dn�1 in †n.
So ` is isotopic to `4 in �2. Let fFt W �2! �2gt2Œ0;1� be an isotopy such that F0 D id, F1.`/ D `4
and Ft is the identity on the boundary of �2 for all t 2 Œ0; 1�. The arc `4 divides �2 into two parts: the
lower one, which does not contain the hole bordered by @2 and the puncture x, and the upper one, which
contains the hole bordered by @2 and the puncture x, as shown in Figure 13.

Suppose F1.x/ is in the upper part. Let C be the domain of �2 bounded by `4, two arcs of dn�2 and
an arc of dn�1, as shown in Figure 13. Let C 0 D F�11 .C /. Then C 0 is a domain of �2 bounded by `,
two arcs of dn�2 and an arc of dn�1, and C 0 does not contain the puncture x. The existence of such a
domain implies that c is isotopic to dn�1 in †n n fxg.

Now suppose F1.x/ is in the lower part. We can assume without loss of generality that the trace of dn on
�2 is the simple arc `5 drawn in Figure 14. We can choose an isotopy fF 0t W�2!�2gt2Œ0;1� such that
F 00 D id, F 01.`4/D `5, F 0t is the identity on the boundary of �2 for all t 2 Œ0; 1�, and F 01.F1.x//D x.
Let zF W †n! †n be the homeomorphism which is F 01 ıF1 on �2 and is the identity outside �2, and
let g 2M.†n; x/ be the mapping class represented by zF . Then g 2 Ker.�/, g.Œdi �/ D Œdi � for all
1� i � n� 1, and g.Œc�/D Œdn�.

Remark The element g at the end of the proof of Lemma 5.6 is not necessarily trivial. For example, `
can be as shown in Figure 15 up to isotopy and, in this case, g must be nontrivial. In fact, g can be any
element of the fundamental group �1.�2; x/, which is an infinite cyclic group, seen as a subgroup of
M.†n; x/.

The following lemma is the extension of Lemma 5.6 to the case c \ dk ¤¿.
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q3 q4

d1 to dn-3

dn-1

dn-2 dn-2l
x

Figure 15: An arc ` nonisotopic to `5.

Lemma 5.7 Let n � 4 be even. Let c be a generic circle of †n n fxg such that c \ di D ¿ for all
1 � i � n� 3, jc \ dn�2j D 1 and c is isotopic to dn�1 in †n. Then there exists g 2 Ker.�/ such that
g.Œdi �/D Œdi � for all 1� i � n� 2, and either g.Œc�/D Œdn�1� or g.Œc�/D Œdn�.

Proof In this proof the intersection number of two circles is computed on the surface †n n fxg and
not on †n. We can assume that jc \ dn�1j D i.Œc�; Œdn�1�/ and jc \ dnj D i.Œc�; Œdn�/. We argue by
induction on jc \ dn�1j C jc \ dnj D i.Œc�; Œdn�1�/C i.Œc�; Œdn�/. The case jc \ dn�1j D 0 follows
directly from Lemma 5.6, and the case jc \ dnj D 0 is proved in the same way by replacing dn�1
with dn. So we can assume that i.Œc�; Œdn�1�/ D jc \ dn�1j � 1, i.Œc�; Œdn�/ D jc \ dnj � 1 and that
the induction hypothesis holds. Note that now c and dn�1 cannot be isotopic in †n n fxg. Since c
and dn�1 are isotopic in †n, there exists a bigon D in †n cobounded by an arc of dn�1 and an arc
of c (see Figure 16). Since c and dn�1 are not isotopic in †n n fxg, this bigon necessarily contains
the puncture x. We can choose D to be minimal in the sense that its interior does not intersect c and
dn�1. Moreover, up to exchanging the roles of dn�1 and dn if necessary, we can also assume that dn
does not intersect the interior of D. Clearly D does not intersect di for any 1 � i � n � 3 and, up
to replacing c with an isotopic circle, we can assume that D does not intersect dn�2 either. Let c0

be a circle parallel to c except in the bigon D, where it follows the arc of dn�1, which borders D as
illustrated in Figure 16. We have c0 \ di D ¿ for all 1 � i � n� 3, jc0 \ dn�2j D 1 and c0 is isotopic
to dn�1 in †n. We also have i.Œc0�; Œdn�1�/ < i.Œc�; Œdn�1�/ and i.Œc0�; Œdn�/� i.Œc�; Œdn�/; hence by the
induction hypothesis there exists g1 2 Ker.�/ such that g1.Œdi �/D Œdi � for all 1� i � n� 2, and either
g1.Œc

0�/D Œdn�1� or g1.Œc0�/D Œdn�. Without loss of generality we can assume that g1.Œc0�/D Œdn�1�.
We choose G1 2 HomeoC.†n; x/ which represents g1 such that G1.di / D di for all 1 � i � n � 2
and G1.c0/ D dn�1. We set c00 D G1.c/. Then c00 \ di D ¿ for all 1 � i � n� 3, jc00 \ dn�2j D 1,
c00 \ dn�1 D ¿ and c00 is isotopic to dn�1 in †n. By Lemma 5.6 there exists g2 2 Ker.�/ such that
g2.Œdi �/D Œdi � for all 1� i � n�2, and either g2.Œc00�/D Œdn�1� or g2.Œc00�/D Œdn�. We set gD g2 ıg1.
Then g 2 Ker.�/, g.Œdi �/D Œdi � for all 1� i � n� 2, and either g.Œc�/D Œdn�1� or g.Œc�/D Œdn�.

Lemma 5.8 Let n� 6. Let c1; : : : ; cn�1 be generic circles in †n n fxg such that

(a) jci \ cj j D 1 if ji � j j D 1 and jci \ cj j D 0 if ji � j j � 2, for all 1� i; j � n� 1,

(b) ci is isotopic to di in †n for all 1� i � n� 1.
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dn-1

x c

c'

Figure 16: The bigon cobounded by c and dn�1.

Then:

(1) If n is odd , then there exists g 2 Ker.�/ such that g.Œci �/D Œdi � for all 1� i � n� 1.

(2) If n is even , then there exists g 2 Ker.�/ such that g.Œci �/D Œdi � for all 1� i � n� 2, and either
g.Œcn�1�/D Œdn�1� or g.Œcn�1�/D Œdn�.

Proof For 1� k� n�2 we construct by induction on k an element gk 2Ker.�/ such that gk.Œci �/D Œdi �
for all 1� i � k. Assume kD 1. Then, by Lemma 5.5 applied to kD 1, there exists g1 2Ker.�/ such that
g1.Œc1�/D Œd1�. Suppose 2 � k � n� 1 and gk�1 is constructed. We choose Gk�1 2 HomeoC.†n; x/
which represents gk�1 such that Gk�1.ci /D di for all 1� i � k� 1, and we set c0

k
DGk�1.ck/. Note

that, since gk�1 2 Ker.�/, the circle c0
k

is isotopic to ck in †n. Then, by Lemma 5.5, there exists
hk 2 Ker.�/ such that hk.Œdi �/D Œdi � for all 1� i � k� 1 and hk.Œc0k�/D Œdk�. We set gk D hk ıgk�1.
Then gk.Œci �/D Œdi � for all 1� i � k. Note that when n is odd we can extend the induction to k D n� 1
and conclude the proof here by setting g D gn�1. The case where n is even requires an extra argument.

Assume n is even. We chooseGn�22HomeoC.†n; x/which represents gn�2 and such thatGn�2.ci /Ddi
for all 1 � i � n� 2, and we set c0n�1 D Gn�2.cn�1/. Again, since gn�2 2 Ker.�/, the circle c0n�1 is
isotopic to cn�1 in †n. By Lemma 5.7 there exists hn�1 2 Ker.�/ such that hn�1.Œdi �/ D Œdi � for all
1� i � n�2, and either hn�1.Œc0n�1�/D Œdn�1� or hn�1.Œc0n�1�/D Œdn�. We set gD hn�1 ıgn�2. Then
g.Œci �/D Œdi � for all 1� i � n� 2, and either g.Œcn�1�/D Œdn�1� or g.Œcn�1�/D Œdn�.

Proof of Theorem 2.2 Let n � 6 and let ' W AŒAn�1�! AŒDn� be a homomorphism. Composing '
with � , we get a homomorphism � ı' W AŒAn�1�! AŒDn�! AŒAn�1�. We know by Theorem 3.5 that
we have one of the following possibilities:

� � ı' is cyclic.

� There exist  2 h N�i and p 2 Z such that � ı' is conjugate to  ı N
p.

By Lemma 5.2, if � ı' is cyclic, then ' is cyclic. So we can assume that there exist  2 h N�i and p 2 Z

such that � ı' is conjugate to  ı N
p . Up to conjugating and composing ' on the left by � if necessary,
we can assume that � ı' D N
p, that is, .� ı'/.si /D si�

2p
A , where �A denotes the Garside element of

AŒAn�1�.

Set U D �A.�2A/. If n is odd, then U 2 D T@, where @ is the boundary component of †n, and if n is even,
then U D T@1

T@2
, where @1 and @2 are the two boundary components of †n (see Labruère and Paris

[32, Proposition 2.12]). In particular U 2 2Z.M.†n// in both cases.
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By Theorem 3.7 there exist generic circles c1; : : : ; cn�1 in †n n fxg, " 2 f˙1g and f0 2M.†n; x/

such that

(a) jci \ cj j D 1 if ji � j j D 1 and jci \ cj j D 0 if ji � j j � 2, for all 1� i; j � n� 1,

(b) f0 commutes with Tci
for all 1� i � n� 1,

(c) .�D ı'/.si /D T
"
ci
f0 for all 1� i � n� 1.

For 1 � i � n� 1 we denote by bi the circle in †n obtained by composing ci W S1 ! †n n fxg with
the embedding †n n fxg ,!†n. In addition we set g0 D �.f0/. Then .� ı �D ı '/.si /D T "bi

g0 for all
1� i � n�1. Note that, since � ı�D D �Aı� (see (3-1)), we also have .� ı�D ı'/.si /D .�Aı N
p/.si /D
�A.si�

2p
A /D Tai

U p for all 1� i � n� 1, where the ai are the circles depicted in Figure 3.

Claim We have "D 1, g0 D U p and bi is isotopic to ai in †n for all 1� i � n� 1.

Proof of the claim Note that g0 D �.f0/ commutes with Tbi
D �.Tci

/ and U D �A.�2A/ commutes
with Tai

D �A.si /; hence T 2"
bi
g20 D .T

"
bi
g0/

2D .Tai
U p/2D T 2ai

U 2p . Since g20 commutes with T 2"
bi
g20 D

T 2ai
U 2p and U 2 2Z.M.†n//, g20 commutes with T 2ai

for all 1 � i � n� 1. By Lemma 5.3 it follows
that g40 2Z.M.†n//. By Proposition 3.3 applied to M.†n/ we deduce that S.T 4ai

U 4p/D S.T 4"
bi
g40/D

fŒai �g D fŒbi �g, and hence Œai � D Œbi � for all 1 � i � n � 1. Then T 4�4"ai
D U�4pg40; hence, by

Proposition 3.3, 4� 4"D 0, and therefore "D 1. Finally, from the equality Tai
U p D Tai

g0 it follows
that g0 D U p.

From the claim it follows that ci is isotopic to di in †n. Hence, by Lemma 5.8, there exists g 2 Ker.�/
such that g.Œci �/D Œdi � for all 1� i �n�2, g.Œcn�1�/D Œdn�1� if n is odd, and either g.Œcn�1�/D Œdn�1�
or g.Œcn�1�/ D Œdn� if n is even. These equalities imply that gTci

g�1 D Tdi
for 1 � i � n � 2,

gTcn�1
g�1 D Tdn�1

if n is odd, and either gTcn�1
g�1 D Tdn�1

or gTcn�1
g�1 D Tdn

if n is even. By
Theorem 3.6(1) there exists v 2 Ker.�/ such that �D.v/D g. So, up to composing ' on the left by adv
first, and composing on the left by � if necessary after, we can assume that .�D ı '/.si / D Tdi

f0 for
all 1 � i � n� 1, where f0 commutes with Tdi

for all 1 � i � n� 1. Since Td1
D �D.t1/ 2 Im.�D/,

we have f0 2 Im.�D/, and hence there exists u0 2 AŒDn� such that �D.u0/D f0. Since �D is injective
(see Theorem 3.6), we deduce that '.si /D tiu0 for all 1 � i � n� 1 and u0 commutes with ti for all
1� i � n� 1. We set Y D ft1; : : : ; tn�1g, �Y D�Y ŒDn�, �D D�ŒDn�, � D 2 if n is odd, and � D 1
if n is even. By Paris [36, Theorem 1.1] the centralizer of Y in AŒDn� is generated by �2Y and ��D , and
hence there exist q; r 2 Z such that u0 D�

2q
Y �

�r
D . We conclude that ' D ˇq;r .

6 Endomorphisms of AŒDn�

The following lemma is a counterpart of Lemma 5.8 for the case of odd n, and it is a preliminary to the
proof of Theorem 2.3.
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∂

d1 dn-3
dn-4 dn-1e2

e1 dn

x

Figure 17: The circles d1; : : : ; dn.

Lemma 6.1 Let n� 5 be odd. Let c be a generic circle of †nnfxg such that c\di D¿ for 1� i �n�3,
jc \ dn�2j D 1, c \ dn�1 D¿ and c is isotopic to dn�1 in †n. Then we have one of the following three
possibilities:

(1) c is isotopic to dn�1 in †n n fxg.

(2) There exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all 1� i � n� 1 and g.Œc�/D Œdn�.

(3) There exists g 2 Ker.�/ such that g.Œdi �/ D Œdi � for all 1 � i � n � 2, g.Œdn�1�/ D Œdn� and
g.Œc�/D Œdn�1�.

Proof The surface †n is of genus 1
2
.n�1/ with one boundary component, @. We assume that the circles

d1; : : : ; dn�1; dn are arranged as shown in Figure 17. The circles dn�3 and dn�1 divide dn�2 into two
arcs, e1 and e2, where the arc e1 intersects dn and the arc e2 does not intersect dn (see Figure 17). Let �
be the surface obtained by cutting †n along

Sn�1
iD1 di . Then � is a cylinder represented by an octagon

with a hole in the middle (see Figure 18). Two opposite sides of this octagon represent arcs of dn�1 and
two opposite sides represent arcs of d1; : : : ; dn�3, as shown in the figure. Two other sides represent arcs
of e1 and the last two sides represent arcs of e2, arranged as shown in Figure 18. The boundary of the
hole represents @.

The circle c intersects dn�2 in a point q, and q is either on the arc e1 or on the arc e2. Suppose first that q
is on the arc e1. Then q is represented on � by two points q1 and q2 lying on two different sides of � that
represent e1, and the trace of c in � is a simple arc ` connecting q1 to q2. Up to isotopy (in � and not in
� n fxg) pointwise fixing the boundary of �, there are exactly two simple arcs in � connecting q1 to q2,
represented by the arcs `1 and `2 depicted in Figure 18. The arc ` cannot be isotopic to `2, otherwise c
would not be isotopic to dn�1 in †n. So ` is isotopic to `1 in �. Let fFt W�!�gt2Œ0;1� be an isotopy
such that F0 D id, F1.`/D `1 and Ft is the identity on the boundary of � for all t 2 Œ0; 1�. The arc `1

dn-1

d 1
 t

o 
d n

-3

d 1
 t

o 
d n

-3

e2 e2

e1
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x

∂
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∂
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3
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Figure 18: The surface �.
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divides � into two parts: the lower one, which does not contain the hole bounded by @ and the puncture x,
and the upper one, which contains the hole bounded by @ and the puncture x, as shown in Figure 18.

Suppose F1.x/ is in the upper part. Let C be the domain of � bounded by `1, two arcs of e1 and an arc
of dn�1, as shown in Figure 18. Let C 0D F�11 .C /. Then C 0 is a domain of � bounded by `, two arcs of
e1 and an arc of dn�1 which does not contain the puncture x. The existence of such a domain implies
that c is isotopic to dn�1 in †n n fxg.

Suppose F1.x/ is in the lower part. We can suppose that the trace of dn on � is the arc `3 depicted
in Figure 18. We can choose an isotopy fF 0t W �! �gt2Œ0;1� such that F 00 D id, F 01.`1/ D `3, F 0t is
the identity on the boundary of � for all t 2 Œ0; 1�, and F 01.F1.x// D x. Let zF W †n ! †n be the
homeomorphism which is F 01 ı F1 on � and is the identity outside �, and let g 2M.†n; x/ be the
mapping class represented by zF . Then g 2Ker.�/, g.Œdi �/D Œdi � for all 1� i � n�1, and g.Œc�/D Œdn�.

Suppose now that q is on the arc e2. Then q is represented on � by two points q3 and q4 lying on two
different sides of � which represent e2, and the trace of c in � is a simple arc ` connecting q3 to q4. Up
to isotopy (in � and not in � n fxg) pointwise fixing the boundary of �, there are exactly two simple
arcs in � connecting q3 to q4 represented by the arcs `4 and `5 depicted in Figure 18. The arc ` cannot
be isotopic to `5, otherwise c would not be isotopic to dn�1 in †n. So ` is isotopic to `4 in �. Let
fFt W�!�gt2Œ0;1� be an isotopy such that F0 D id, F1.`/D `4 and Ft is the identity on the boundary
of � for all t 2 Œ0; 1�. The arc `4 divides � into two parts: the upper one, which does not contain the
hole bounded by @ and the puncture x, and the lower one, which contains the hole bounded by @ and the
puncture x, as shown in Figure 18.

Suppose F1.x/ is in the lower part. Let D be the domain of � bounded by `4, two arcs of e2 and an arc
of dn�1 as shown in Figure 18. Let D0 D F�11 .D/. Then D0 is a domain of � bounded by `, two arcs
of e2 and an arc of dn�1 which does not contain the puncture x. The existence of such a domain implies
that c is isotopic to dn�1 in †n n fxg.

Suppose F1.x/ is in the upper part. Let c0 be the circle drawn in Figure 19. We can assume that the trace
of c0 on � is the arc `6 drawn in Figure 18. We can choose an isotopy fF 0t W �! �gt2Œ0;1� such that
F 00 D id, F 01.`4/ D `6, F 0t is the identity on the boundary of � for all t 2 Œ0; 1�, and F 01.F1.x// D x.
Let zF W †n ! †n be the homeomorphism which is F 01 ı F1 on � and is the identity outside �, and
let g1 2M.†n; x/ be the mapping class represented by zF . Then g1 2 Ker.�/, g1.Œdi �/ D Œdi � for all
1� i � n� 1, and g1.Œc�/D Œc0�.

c'

μ

Figure 19: The circle c0 and the loop �.
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Let g2 2 �1.†n; x/ D Ker.�/ be the element represented by the loop � drawn in Figure 19. Let us
mention here that g2 is not the Dehn twist T� along �, but rather the image of the point-pushing map
applied to �, which is equal to T�1

T �1�2
for �1 and �2 the two boundary curves of a small regular

neighborhood of �, as explained in Farb and Margalit [28, Section 4.2.2]. We have g2.Œdi �/D Œdi � for all
1� i � n�2, g2.Œdn�1�/D Œdn� and g2.Œc0�/D Œdn�1�. Set gD g2ıg1. Then g 2Ker.�/, g.Œdi �/D Œdi �
for all 1� i � n� 2, g.Œdn�1�/D Œdn� and g.Œc�/D Œdn�1�.

Proof of Theorem 2.3 Let n�6. Let ' WAŒDn�!AŒDn� be an endomorphism. Consider the composition
homomorphism ' ı � WAŒAn�1�!AŒDn�!AŒDn�. We know from Theorem 2.2 that we have one of the
following two possibilities up to conjugation:

(1) ' ı � is cyclic.

(2) There exist  2 h�; �i and p; q 2 Z such that ' ı �D  ı p̌;q .

Suppose ' ı � is cyclic. Then there exists u 2AŒDn� such that '.ti /D .' ı �/.si /D u for all 1� i � n�1.
We also have

'.tn/D '.tn�2tntn�2t
�1
n t�1n�2/D '.tn�2tn/'.tn�2/'.t

�1
n t�1n�2/D '.tn�2tn/'.t1/'.t

�1
n t�1n�2/D '.t1/

D u;

and hence ' is cyclic.

So we can assume that there exist  2 h�; �i and p; q 2Z such that ' ı � is conjugate to  ı p̌;q . We set
Y D ft1; : : : ; tn�2; tn�1g, �Y D�Y ŒDn�, �D D�ŒDn�, � D 2 if n is odd, and � D 1 if n is even. Up
to conjugating and composing ' on the left by � if necessary, we can assume that there exist " 2 f˙1g
and p; q 2 Z such that '.ti /D .' ı �/.si /D t"i �

2p
Y �

�q
D for all 1� i � n� 1. The remainder of the proof

is divided into four cases depending on whether p is zero or not and whether n is even or odd.

Case 1 (n is even and p¤ 0) Then†n is a surface of genus 1
2
.n�2/ with two boundary components, @1

and @2, and �D1. We have �D.ti /DTdi
for 1� i �n�1 and, by Labruère and Paris [32, Proposition 2.12],

�D.�
2
Y /D TeT@1

and �D.�D/D T@1
T@2

, where e is the circle drawn in Figure 20. Set fi D .�D ı'/.ti /
for all 1� i � n. Then, by the above,

fi D T
"
di
T pe T

pCq

@1
T
q

@2
for all 1� i � n� 1:

In particular, S.fi /DfŒdi �; Œe�g for all 1� i � n�1. Since tn is conjugate in AŒDn� to t1, fn is conjugate
to f1 in M.†n; x/; hence fn is of the form fn D T

"
d 0
T
p
e0 T

pCq

@1
T
q

@2
, where d 0 is a nonseparating circle

∂1

∂2
e

x

d1
d2

dn-2

dn-1

Figure 20: Circles in †n when n is even and p ¤ 0.
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and e0 is a circle that separates †n into two components, one being a cylinder containing x and the other
being a surface of genus 1

2
.n� 2/ with two boundary components, @1 and e0, which does not contain x.

Moreover, by Theorem 2.1, .� ı'/.tn�1/D .� ı'/.tn/, and hence

T "dn�1
T pe T

pCq

@1
T
q

@2
D �.fn�1/D �.fn/D T

"
d 0T

p
e0 T

pCq

@1
T
q

@2

on †n, that is, T "
dn�1

T
p
e D T "

d 0
T
p
e0 as multitwists on †n. Now we can invoke Farb and Margalit

[28, Lemma 3.14] to conclude that each curve of the set fdn�1; eg is isotopic to a curve from the set
fd 0; e0g in †n. To decide which curve of one set is isotopic to which curve in the other set we observe that
removing a puncture does not change the property of a curve being nonseparating, but can make a separating
curve peripheral. Since both dn�1 and d 0 are nonseparating, whereas e and e0 are both separating or
peripheral in †n, we conclude that dn�1 is isotopic to d 0 in †n (and also that e is isotopic to e0 in †n).

We have f1fnD fnf1, and hence by Theorem 3.2(3) we have fn.S.f1//DS.f1/. Thus Œe� is a reduction
class for fn, and therefore i.Œe�; Œe0�/ D 0, because Œe0� is an essential reduction class for fn. We can
choose representatives e and e0 such that e\e0D¿ either by eliminating bigons, or by choosing geodesic
representatives. Let C;C 0 � †n be cylinders containing x and having boundaries @2 [ e and @2 [ e0,
respectively. Then either C � C 0 if e � C 0, or C 0 � C if e0 � C , with x 2 C \C 0. Say C � C 0. Being
a separating circle on †n, e separates C 0 into two subsurfaces, one containing @2 and x, and the other
containing e0. Being a subsurface with two boundary components lying inside a cylinder, the latter must
be a cylinder itself. This cylinder establishes an isotopy between e and e0 in †n nfxg, and hence Œe�D Œe0�.
So we can assume that e D e0.

Choose representatives dn�1 and d 0 in minimal position in †n n fxg. Denote by C0 and †0 the two
components into which the curve e separates †n, with C0 being a cylinder containing x, and †0 being the
rest of the surface †n, containing d1; : : : ; dn�1. Suppose dn�1\ d 0 ¤¿. Then dn�1 and d 0 cobound a
bigon. Since dn�1 and d 0 were chosen to be in minimal position in †n nfxg, such a bigon must contain x.
This implies that d 0 has nonempty intersection with the cylinder C0 which e separates from the rest of
the surface †n, and since e and d 0 are disjoint, d 0 lies entirely in C0. This is not possible because any
generic circle in C0 is peripheral in †n and d 0 is nonseparating in †n. So dn�1\ d 0 D¿. Then there
exists an embedded cylinder C in †n with boundary components dn�1 and d 0. Since e is disjoint from
d 0 and dn�1, e either lies entirely in C or is disjoint from C . The circle e cannot lie entirely in C because
e is peripheral in †n and, since both dn�1 and d 0 are nonseparating in †n, any generic circle lying in C
must be nonseparating. So e is disjoint from C , and hence C lies in †0. Therefore dn�1 is isotopic to d 0

in †n n fxg. Thus we can also assume d 0 D dn�1.

In conclusion we have .�D ı'/.tn�1/D .�D ı'/.tn/DT "dn�1
T
p
e T

pCq

@1
T
q

@2
, and hence '.tn�1/D'.tn/D

t"n�1�
2p
Y �

q
D . We conclude that ' D p̌;q ı� if "D 1 and ' D � ıˇ�p;�q ı� if "D�1.

Case 2 (n is odd and p ¤ 0) Then †n is a surface of genus 1
2
.n� 1/ with one boundary component, @,

and � D 2. We have �D.ti /D Tdi
for 1� i � n� 1 and, by Labruère and Paris [32, Proposition 2.12],
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x
e

d1

dn-2
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∂

Figure 21: Circles in †n when n is odd and p ¤ 0.

�D.�
4
Y /D Te and �D.�2D/D T@, where e is the circle drawn in Figure 21. Set fi D .�D ı'/.ti / for all

1� i � n. Then, by the above,

f 2i D T
2"
di
T pe T

2q

@
for all 1� i � n� 1:

In particular, S.fi /DS.f 2i /DfŒdi �; Œe�g for all 1� i � n�1. The element tn is conjugate to t1 in AŒDn�;
hence '.tn/ is conjugate to '.t1/ in AŒDn�, and therefore there exists v 2 AŒDn� such that '.tn/ D
v'.t1/v

�1 D .vt"1v
�1/.v�

2p
Y v
�1/�

2q
D . The element �D.vt1v�1/ is conjugate to �D.t1/ D Td1

, and
hence �D.vt1v�1/D Td 0 , where d 0 is a nonseparating circle. The element �D.v�4Y v

�1/ is conjugate to
�D.�

4
Y /DTe , and hence �D.v�4Y v

�1/DTe0 , where e0 is a circle that separates†n into two components,
one being a cylinder containing x and the other being a surface of genus 1

2
.n� 1/ with one boundary

component which does not contain x. We also have f 2n D T
2
d 0
T
p
e0 T

2q

@
and S.fn/D S.f 2n /D fŒd 0�; Œe0�g.

By Theorem 2.1 .� ı'/.tn�1/D .� ı'/.tn/, and hence �.f 2n�1/D �.f
2
n /. This implies that d 0 is isotopic

to dn�1 in †n.

Since f1fn D fnf1, by Theorem 3.2(3) we have f 2n .S.f1// D S.f1/; hence Œe� is a reduction class
for f 2n , and therefore i.Œe�; Œe0�/D 0, because Œe0� is an essential reduction class for f 2n . As in Case 1,
we can choose representatives e and e0 such that e \ e0 D ¿. Let C;C 0 � †n be cylinders containing
x and having boundaries @ [ e and @ [ e0, respectively. Then either C � C 0 if e � C 0, or C 0 � C
if e0 � C , with x 2 C \ C 0. Say C � C 0. Being a separating circle on †n, e separates C 0 into two
subsurfaces, one containing @ and x, and the other containing e0. Being a subsurface with two boundary
components lying inside a cylinder, the latter must be a cylinder itself. This cylinder establishes an
isotopy between e and e0 in †n n fxg, and hence Œe�D Œe0�. So we can assume that e D e0, and hence
�D.v�

4
Y v
�1/D Te0 D Te D �D.�

4
Y /. Since �D is injective, it follows that v�4Y v

�1 D�4Y .

Using the same argument as in Case 1, from the fact that d 0 does not intersect e0D e and that d 0 is isotopic
to dn�1 in†n, it follows that d 0 is isotopic to dn�1 in†nnfxg; hence we can also assume that d 0D dn�1.
Then �D.vt1v�1/D Td 0 D Tdn�1

D �D.tn�1/, and hence, since �D is injective, vt1v�1 D tn�1. At this
stage of the proof we have that '.tn/ D t"n�1.v�

2p
Y v
�1/�

2q
D and .v�2pY v

�1/2 D v�
4p
Y v
�1 D �

4p
Y . It

remains to show that v�2pY v
�1 D�

2p
Y .

By Theorem 2.2 there exist  2 h�; �i and r; s 2 Z such that ' ı � ı � is conjugate to  ı ˇr;s . The
automorphism � is inner since n is odd, and hence we can assume that  2 h�i. So there exist w 2
AŒDn�, � 2 f˙1g and r; s 2 Z such that '.ti / D wt

�
i �

2r
Y �

2s
Dw
�1 for all 1 � i � n� 2 and '.tn/ D

wt
�
n�1�

2r
Y �

2s
Dw
�1. Set g D �D.w/. We have .�D ı '/.t2i / D T 2"

di
T
p
e T

2q

@
D gT

2�

di
T re T

2s
@
g�1 for

all 1 � i � n� 2 and .�D ı '/.t2n/ D T
2"
dn�1

T
p
e T

2q

@
D gT

2�

dn�1
T re T

2s
@
g�1. So g�1.S.T 2"

di
T
p
e T

2q

@
// D
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S.T 2�
di
T re T

2s
@
/, and hence g�1.fŒdi �; Œe�g/�fŒdi �; Œe�g for all 1� i �n�1. This implies g�1.Œdi �/D Œdi �,

and hence g commutes with Tdi
; therefore w commutes with ti for all 1� i � n� 1. Since �Y is in the

subgroup of AŒDn� generated by Y D ft1; : : : ; tn�1g and �2D is central, it follows that '.ti /D t
�
i �

2r
Y �

2s
D

for all 1 � i � n� 2 and '.tn/D t
�
n�1�

2r
Y �

2s
D . Consider the equality '.t1/D t"1�

2p
Y �

2q
D D t

�
1 �

2r
Y �

2s
D .

Then t"��1 �
2.p�r/
Y D �

2.s�q/
D . The right-hand side of this equality lies in the center of AŒDn�, the

left-hand side lies in AY ŒDn� and, by Paris [38, Corollary 2.6], the intersection of AY ŒDn� with the
center of AŒDn� is trivial; hence s D q and t"��1 D�

2.r�p/
Y . The element �2.r�p/Y lies in the center of

AY ŒDn� and ht1i is a proper parabolic subgroup of AY ŒDn�; hence, again by Paris [38, Corollary 2.6],
t
"��
1 D �

2.r�p/
Y D 1, and therefore " D � and r D p. Here we use that AŒDn� is torsion-free, which

follows from Deligne [25], where it is proved that AŒDn� has a finite-dimensional classifying space. So
'.tn/D t

"
n�1�

2p
Y �

2q
D . We conclude that ' D p̌;q ı� if "D 1 and ' D � ıˇ�p;�q ı� if "D�1.

Case 3 (n is even and p D 0) Then, again, †n is a surface of genus 1
2
.n� 2/ with two boundary

components, @1 and @2, and � D 1. We have �D.ti /D Tdi
for 1� i � n� 1 and, by Labruère and Paris

[32, Proposition 2.12], �D.�D/D T@1
T@2

. Set fi D .�D ı'/.ti / for all 1� i � n. Then, by the above,

fi D T
"
di
T
q

@1
T
q

@2
for all 1� i � n� 1:

In particular, S.fi /D fŒdi �g for all 1� i � n� 1. Since tn is conjugate in AŒDn� to t1, fn is of the form
fn D T

"
d 0
T
q

@1
T
q

@2
, where d 0 is a nonseparating circle.

For 1 � i � n � 3 we have ti tn D tnti ; hence Tdi
Td 0 D Td 0Tdi

, and therefore, by Proposition 3.1,
i.Œdi �; Œd

0�/D 0. Similarly, i.Œdn�1�; Œd 0�/D 0. Since tn�2tntn�2D tntn�2tn, we have Tdn�2
Td 0Tdn�2

D

Td 0Tdn�2
Td 0 , and hence, by Proposition 3.1, i.Œdn�2�; Œd 0�/D 1. So we can assume that di \d 0 D¿ for

1� i �n�3, dn�1\d 0D¿ and jdn�2\d 0jD 1. Moreover, by Theorem 2.1, .� ı'/.tn�1/D .� ı'/.tn/;
hence �.fn�1/D �.fn/, and therefore d 0 is isotopic to dn�1 in †n. By Lemma 5.6 it follows that we
have one of the following two possibilities:

(1) d 0 is isotopic to dn�1 in †n n fxg.

(2) There exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all 1� i � n� 1 and g.Œd 0�/D Œdn�.

Suppose d 0 is isotopic to dn�1 in †n n fxg. Then .�D ı'/.tn/D T "dn�1
T
q

@1
T
q

@2
, and hence, since �D is

injective, '.tn/D t"n�1�
q
D . We conclude that ' D ˇ0;q ı� if "D 1 and ' D � ıˇ0;�q ı� if "D�1.

Suppose there exists g 2Ker.�/ such that g.Œdi �/D Œdi � for all 1� i � n�1 and g.Œd 0�/D Œdn�. We have

.�D ı'/.ti /D T
"
di
T
q

@1
T
q

@2
D g�1T "di

T
q

@1
T
q

@2
g

for all 1� i � n� 1 and
.�D ı'/.tn/D T

"
d 0T

q

@1
T
q

@2
D g�1T "dn

T
q

@1
T
q

@2
g:

By Theorem 3.6 there exists v2Ker.�/�AŒDn� such that �D.v/Dg. Since �D is injective, it follows that

'.ti /D v
�1t"i �

q
Dv for all 1� i � n:

We conclude that ' D adv�1 ı 
q if "D 1 and ' D adv�1 ı� ı 
�q if "D�1.
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Case 4 (n is odd and p D 0) Then, again, †n is a surface of genus 1
2
.n � 1/ with one boundary

component, @, and � D 2. We have �D.ti / D Tdi
for 1 � i � n � 1 and, by Labruère and Paris

[32, Proposition 2.12], �D.�2D/D T@. Set fi D .�D ı'/.ti / for all 1� i � n. Then, by the above,

fi D T
"
di
T
q

@
for all 1� i � n� 1:

In particular, S.fi /D fŒdi �g for all 1� i � n� 1. Since tn is conjugate in AŒDn� to t1, fn is conjugate
to f1 in M.†n; x/, and hence fn is of the form fn D T

"
d 0
T
q

@
where d 0 is a nonseparating circle.

For 1 � i � n � 3 we have ti tn D tnti , and hence Tdi
Td 0 D Td 0Tdi

. Therefore, by Proposition 3.1,
i.Œdi �; Œd

0�/D 0. Similarly, i.Œdn�1�; Œd 0�/D 0. Since tn�2tntn�2D tntn�2tn, we have Tdn�2
Td 0Tdn�2

D

Td 0Tdn�2
Td 0 , and hence, by Proposition 3.1, i.Œdn�2�; Œd 0�/D 1. So we can assume that di \d 0 D¿ for

1� i �n�3, dn�1\d 0D¿ and jdn�2\d 0jD 1. Moreover, by Theorem 2.1, .� ı'/.tn�1/D .� ı'/.tn/;
hence �.fn�1/D �.fn/, and therefore d 0 is isotopic to dn�1 in †n. By Lemma 6.1 it follows that we
have one of the following three possibilities:

(1) d 0 is isotopic to dn�1 in †n n fxg.

(2) There exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for all 1� i � n� 1 and g.Œd 0�/D Œdn�.

(3) There exists g 2 Ker.�/ such that g.Œdi �/ D Œdi � for all 1 � i � n � 2, g.Œdn�1�/ D Œdn� and
g.Œd 0�/D Œdn�1�.

If d 0 is isotopic to dn�1 in †n n fxg, then we prove as in the case where n is even that ' D ˇ0;q ı� if
"D 1 and ' D � ıˇ0;�q ı� if "D�1. Similarly, if there exists g 2 Ker.�/ such that g.Œdi �/D Œdi � for
all 1� i � n� 1 and g.Œd 0�/D Œdn�, then we prove as in the case where n is even that ' D adv�1 ı 
q if
"D 1 and ' D adv�1 ı� ı 
�q if "D�1, where v is an element of Ker.�/� AŒDn�.

Suppose there exists g 2 Ker.�/ such that g.Œdi �/ D Œdi � for all 1 � i � n� 2, g.Œdn�1�/ D Œdn� and
g.Œd 0�/D Œdn�1�. We have

.�D ı'/.ti /D T
"
di
T
q

@
D g�1T "di

T
q

@
g for 1� i � n� 2;

.�D ı'/.tn�1/D T
"
dn�1

T
q

@
D g�1T "dn

T
q

@
g; .�D ı'/.tn/D T

"
d 0T

q

@
D g�1T "dn�1

T
q

@
g:

By Theorem 3.6 there exists v2Ker.�/�AŒDn� such that �D.v/Dg. Since �D is injective, it follows that

'.ti /D v
�1t"i �

2q
Dv for 1� i � n� 2; '.tn�1/D v

�1t"n�
2q
Dv; '.tn/D v

�1t"n�1�
2q
Dv:

We conclude that ' D adv�1 ı � ı 
q if "D 1 and ' D adv�1 ı � ı� ı 
�q if "D�1.

7 Endomorphisms of AŒDn�=Z.AŒDn�/

Proof of Proposition 2.7 Let � be the Garside element of AŒDn�. We set � D 2 if n is odd and � D 1 if
n is even. Recall that Z.AŒDn�/ is the cyclic group generated by �� . Let 'Z WAZ ŒDn�!AZ ŒDn� be an
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endomorphism. For each 1� i �n�2 we define ui 2AŒDn� by induction on i as follows. First choose any
u1 2AŒDn� such that �.u1/D 'Z.tZ;1/. Now assume that 2� i � n�2 and that ui�1 is defined. Choose
u0i 2 AŒDn� such that �.u0i /D 'Z.tZ;i /. Since 'Z.tZ;i�1tZ;i tZ;i�1/D 'Z.tZ;i tZ;i�1tZ;i /, there exists
ki 2Z such that ui�1u0iui�1Du

0
iui�1u

0
i�
�ki . Then set uiDu0i�

�ki . Note that �.ui /D �.u0i /D'Z.tZ;i /
and

ui�1uiui�1 D ui�1u
0
iui�1�

�ki D u0iui�1u
0
i�
2�ki D uiui�1ui :

Define in the same way un�1; un 2 AŒDn� such that �.un�1/ D 'Z.tZ;n�1/, �.un/ D 'Z.tZ;n/,
un�2un�1un�2 D un�1un�2un�1 and un�2unun�2 D unun�2un.

Let i; j 2 f1; : : : ; ng be such that i ¤ j and ti tj D tj ti . We have 'Z.tZ;i tZ;j /D 'Z.tZ;j tZ;i /, and hence
there exists l 2 Z such that uiuj D ujui��l . Recall the homomorphism z W AŒDn�! Z which sends ti
to 1 for all 1� i � n. Since z.�/D n.n� 1/, the previous equality implies that

z.ui /C z.uj /D z.uj /C z.ui /C �ln.n� 1/:

Hence l D 0, and therefore uiuj D ujui .

By the above we have an endomorphism ' W AŒDn�! AŒDn� which sends ti to ui for all 1� i � n, and
this endomorphism is a lift of 'Z .

Proof of Theorem 2.8 Let n� 6. Let 'Z W AZ ŒDn�! AZ ŒDn� be an endomorphism. We know from
Proposition 2.7 that 'Z admits a lift ' W AŒDn�! AŒDn�. By Theorem 2.3 we have one of the following
three possibilities up to conjugation:

(1) ' is cyclic.

(2) There exist  2 h�; �i and p; q 2 Z such that ' D  ı p̌;q ı� .

(3) There exist  2 h�; �i and p 2 Z such that ' D  ı 
p.

Clearly, if ' is cyclic then 'Z is cyclic.

Now we show that the second case cannot occur. Suppose there exist  2 h�; �i and p; q 2 Z such
that ' D  ı p̌;q ı � . As ever, we set � D 2 if n is odd and � D 1 if n is even. Recall that the
center of AŒDn� is generated by �� , where � is the Garside element of AŒDn�. We need to show
that '.��/ … Z.AŒDn�/ D h��i, which leads to a contradiction. Since  2 Aut.AŒDn�/, we have
 .Z.AŒDn�//DZ.AŒDn�/, and hence we can assume that ' D p̌;q ı� . Let Y D ft1; : : : ; tn�1g and let
�Y D�Y ŒDn� be the Garside element of AY ŒDn�. Since

�D .t1 � � � tn�2tn�1tntn�2 � � � t1/ � � � .tn�2tn�1tntn�2/.tn�1tn/;

�ŒAn�1�
2
D .s1 � � � sn�2s

2
n�1sn�2 � � � s1/ � � � .sn�2s

2
n�1sn�2/s

2
n�1;

(see Lemma 5.1 for the second equality), we have �.�/D�ŒAn�1�2, and hence

'.��/D . p̌;q ı�/.�
�/D p̌;q.�ŒAn�1�

2�/D�
2�.1Cpn.n�1//
Y ��

2qn.n�1/:

This element does not belong toZ.AŒDn�/Dh��i, because �.1Cpn.n�1//¤ 0 and h�2Y i\h�
�iD f1g.
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Suppose we are in the third case. So there exist  2 h�; �i and p 2 Z such that ' D  ı 
p. We have


p.�
�/D��.1C�pn.n�1// 2 h��i;

and hence 
p induces an endomorphism 
Z;p W AZ ŒDn�! AZ ŒDn�. Moreover, for all 1� i � n,


Z;p.tZ;i /D �.ti�
�p/D �.ti /D tZ;i ;

so 
Z;p D id. Clearly  is the lift of an element  Z 2 h�Z ; �Zi, and hence 'Z D  Z ı 
Z;p D  Z .

Now, as promised in Section 2, we prove the following.

Lemma 7.1 Let n � 4. If n is even , then h�Z ; �Zi \ Inn.AZ ŒDn�/ D fidg, and if n is odd , then
h�Zi \ Inn.AZ ŒDn�/D fidg.

Proof We first show that, if ' W AŒDn�! AŒDn� is an automorphism such that 'Z 2 Inn.AZ ŒDn�/, then
' 2 Inn.AŒDn�/. Let ' 2 Aut.AŒDn�/ be such that 'Z 2 Inn.AZ ŒDn�/. There exists gZ 2 AZ ŒDn� such
that 'Z.tZ;i / D gZtZ;ig�1Z for all 1 � i � n. Again, we denote by � the Garside element of AŒDn�,
and we set � D 2 if n is odd and � D 1 if n is even. Let g 2 AŒDn� be such that �.g/D gZ . For every
1� i � n, there exists ki 2 Z such that '.ti /D gtig�1��ki . Let i; j 2 f1; : : : ; ng be such that fti ; tj g is
an edge of Dn. From the equality ti tj ti D tj ti tj it follows that

gti tj tig
�1��.2kiCkj / D '.ti tj ti /D '.tj ti tj /D gtj ti tjg

�1��.kiC2kj /:

Hence 2kiCkj D kiC2kj , and therefore ki D kj . Since Dn is a connected graph, it follows that ki D kj
for all i; j 2 f1; : : : ; ng. So there exists k 2 Z such that '.ti /D gtig�1��k for all 1� i � n. Recall the
homomorphism z W AŒDn�! Z which sends ti to 1 for all 1 � i � n. Since ' is an automorphism, we
have Im.z ı'/D Im.z/DZ. Furthermore, since z.�/D n.n�1/, we have .z ı'/.ti /D 1C�kn.n�1/
for all 1 � i � n, and hence Im.z ı '/ D .1C �kn.n � 1//Z. This implies that k D 0, and hence
' D adg 2 Inn.AŒDn�/.

Arguing in a similar way we can see that lifts of �Z and �Z in Aut.AŒDn�/ are unique. Since we know
that h�; �i \ Inn.AŒDn�/ D fidg if n is even and h�i \ Inn.AŒDn�/ D fidg if n is odd, it follows that
h�Z ; �Zi \ Inn.AZ ŒDn�/D fidg if n is even and h�Zi \ Inn.AZ ŒDn�/D fidg if n is odd.
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