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Endomorphisms of Artin groups of type D
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LuUIs PARIS

We determine a classification of the endomorphisms of the Artin group A[D,] of type D, forn > 6. In
particular we determine its automorphism group and its outer automorphism group. We also determine
a classification of the homomorphisms from A[D,] to the Artin group A[A,—1] of type A,—; and a
classification of the homomorphisms from A[A,—1] to A[D,] for n > 6. We show that any endomorphism
of the quotient A[D,]/Z (A[D4]) lifts to an endomorphism of A[D,] for n > 4. We deduce a classification
of the endomorphisms of A[D,]/Z(A[D,]), we determine the automorphism and outer automorphism
groups of A[D,]/Z(A[D,]), and we show that A[D,]/Z(A[D,]) is co-Hopfian for n > 6. The results
are algebraic in nature but the proofs are based on topological arguments (curves on surfaces and mapping
class groups).

20F36; 57K20

1 Introduction

Let S be a finite set. A Coxeter matrix over S is a square matrix M = (my )5, res indexed by the elements
of S, with coefficients in N U {oo}, such that my s =1 forall s € S and ms; =m; s >2foralls,t € S
with s # ¢. Such a matrix is usually represented by a labeled graph I', called a Coxeter graph, defined as
follows. The set of vertices of I' is S. Two vertices s,¢ € § are connected by an edge if m,; > 3, and
this edge is labeled with my ; if mg; > 4.

If a and b are two letters and m is an integer > 2, then we denote by I1(a, b, m) the word aba --- of
length m. In other words I1(a, b, m) = (ab)™/? if m is even and I(a, b, m) = (ab)™ /24 if m is
odd. Let I" be a Coxeter graph and let M = (mg ), res be its Coxeter matrix. With I' we associate a
group A[I'], called the Artin group of T', defined by the following presentation:

AT = (S | (s, t,mg;s) = II(t,s,mg;) for s, t € S, s #t, mg; # 00).
The Coxeter group of T', denoted by W[I'], is the quotient of A[T"] by the relations s> = 1 for s € S.

Despite the popularity of Artin groups, little is known on their automorphisms and even less on their
endomorphisms. The most emblematic cases are the braid groups and the right-angled Artin groups.
Recall that the braid group on n + 1 strands is the Artin group A[A,] where A, is the Coxeter graph
depicted in Figure 1, and an Artin group A[I'] is called a right-angled Artin group if my ; € {2, oo} for all
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Figure 1: The Coxeter graph A,,.

s,t € § with s # ¢. The automorphism group of A[A4,] was determined by Dyer and Grossman [26] and
the set of its endomorphisms by Castel [12] for n > 5, by Chen, Kordek and Margalit [17] for n > 3 and by
Orevkov [35] for n > 2 (see also Bell and Margalit [2] and Kordek and Margalit [31]). On the other hand
there are many articles studying automorphism groups of right-angled Artin groups (see Charney and
Vogtmann [15; 16], Day [23; 24], Laurence [33] and Bregman, Charney and Vogtmann [8] for example),
but almost nothing is known on endomorphisms of these groups.

Apart from these two families little is known on automorphisms of Artin groups. The automorphism
groups of two-generator Artin groups were determined by Gilbert, Howie, Metaftsis and Raptis [29],
the automorphism groups of the Artin groups of type B, A, and C, were determined by Charney
and Crisp [14], the automorphisms groups of some 2-dimensional Artin groups were determined by
Crisp [20] and by An and Cho [1], the automorphism groups of large-type free-of-infinity Artin groups
were determined by Vaskou [43], and the automorphism group of A[D4] was determined by Soroko [41].
On the other hand, as far as we know the set of endomorphisms of an Artin group is not determined for
any Artin group except for those of type A4,.

Recall that an Artin group A[I'] is of spherical type if W[I'] is finite. The study of spherical-type Artin
groups began in the early 1970s with works by Brieskorn [9; 10], Brieskorn and Saito [11] and Deligne [25],
which marked in a way the beginning of the theory of Artin groups. This family, and that of right-angled
Artin groups, are the two most-studied and best-understood families of Artin groups and, obviously, any
question on Artin groups first arises for Artin groups of spherical type and for right-angled Artin groups.
Here we are interested in Artin groups of spherical type, and more particularly in those of type D,,.

An Artin group A[I'] is called irreducible if T is connected. If 'y, ..., I'; are the connected components of
I, then A[T']= A[["1]x---xA[[;] and W[T']= W|[I'1]x---x W|[I]. In particular A[T"] is of spherical type
if and only if A[I;] is of spherical type for all i € {1,...,[}. So to classify Artin groups of spherical type
it suffices to classify those which are irreducible. Finite irreducible Coxeter groups, and hence irreducible
Artin groups of spherical type, were classified by Coxeter [18; 19]. There are four infinite families,
Ay, (n>1), By (n>2), D, (n>4)and I5(m) (m > 5), and six “sporadic” groups, E¢, E7, Es, F4, H3
and H4. As mentioned above, the automorphism group of A[I'] for " of type A, (n > 1), B, (n > 2)
and I»(m) (m > 5) is known. The next step is therefore to understand the automorphism group of A[D,]
for n > 5 (the case I' = D4 is known by Soroko [41]). The Coxeter graph D, is illustrated in Figure 2.

n-1

<

n

~ ¢
N

Figure 2: The Coxeter graph D,,.
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Here we determine a complete and precise classification of the endomorphisms of A[D,] for n > 6 (see
Theorem 2.3). In particular we determine the automorphism group and the outer automorphism group
of A[D,] for n > 6 (see Corollary 2.6). We also determine a complete and precise classification of the
homomorphisms from A[D,] to A[A,—1] (see Theorem 2.1) and a complete and precise classification
of the homomorphisms from A[A,—1] to A[Dy] (see Theorem 2.2). Note that all these results were
announced but not proved in Castel [13]; actually the proofs turn out to be much more difficult than the
first author thought when he announced them. Note also that our techniques cannot be used to treat the
cases n = 4 and n = 5. In particular we do not know how to determine Aut(A[Ds]).

From our main result we deduce a classification of the endomorphisms of the group A[D,]/Z(A[Dx])
for n > 6, where Z(A[D,]) denotes the center of A[D,] (see Theorem 2.8). Then we determine the
automorphism group and the outer automorphism group of A[D,]/Z(A[Dy]) (see Corollary 2.10), and we
show that A[D,]/Z(A[Dy]) is co-Hopfian (see Corollary 2.11). These results follow from Theorem 2.3
and Proposition 2.7, which states that any endomorphism of A[D;]/Z(A[D]) lifts to an endomorphism
of A[D,]. Such results were previously known for braid groups, that is, Artin groups of type A4, (see
Bell and Margalit [2]). Note that the application of our main result to the study of A[D,]/Z(A[D,]) was
not present in an earlier version of the paper. It was suggested to us by the referee, for which we extend
our warm thanks.

A geometric representation of an Artin group is a homomorphism from the group to a mapping class
group (see Section 3 for more details). In order to achieve our goals we make a study of a particular
geometric representation of A[ D] previously introduced by Perron and Vannier [40] with one boundary
component replaced by a puncture. This geometric representation will be the key tool for many of our
proofs. Overall, although the results of the paper are algebraic in nature, the proofs are mostly based on
topological arguments (on curves on surfaces and mapping class groups).

The paper is organized as follows. In Section 2 we give the main definitions and precise statements of
the main results. Section 3 is dedicated to the study of some geometric representations of Artin groups
of type A, and type Dy. In Section 4 we determine the homomorphisms from A[D,] to A[A—1], in
Section 5 we determine the homomorphisms from A[A4,—1] to A[D,], and in Section 6 we determine the
endomorphisms of A[D,]. In Section 7 we determine the endomorphisms of A[D;]/Z(A[Dy]).

Acknowledgments The authors would like to thank Bruno Cisneros de la Cruz and Juan Gonzélez-
Meneses for helpful comments and conversations. They also want to thank the referee for many helpful
remarks. Paris is partially supported by the French project “AlMaRe” (ANR-19-CE40-0001-01) of
the ANR.

2 Definitions and statements

For n > 4 we denote by s1, ..., s,—1 the standard generators of A[A;,—1] numbered as in Figure 1 and by
t1,..., 1, the standard generators of A[D,] numbered as in Figure 2.
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Let I" be a Coxeter graph. For X C S we denote by Ax = Ax[I'] the subgroup of A = A[I'] generated
by X, by Wy = Wx[I'] the subgroup of W = W|I'] generated by X, and by I'y the full subgraph of I"
spanned by X. We know from van der Lek [34] that Ax is the Artin group of I'y and from Bourbaki [7]
that Wy is the Coxeter group of ['y. A subgroup of the form Ay is called a standard parabolic subgroup
of A and a subgroup of the form Wy is called a standard parabolic subgroup of W .

For w € W we denote by lg(w) the word length of w with respect to S. A reduced expression for w
is an expression w = s157 ---s5; of minimal length, that is, such that /[ = Ig(w). Let w: A — W be
the natural epimorphism which sends s to s for all s € S. This epimorphism has a natural set-section
7: W — A defined as follows. Let w € W and let w = 5155 - - - 57 be a reduced expression for w. Then
T(w) = 51852 --- 5] € A. We know from Tits [42] that the definition of 7(w) does not depend on the choice
of its reduced expression.

Assume I is of spherical type. Then W has a unique element of maximal length, denoted by wg, which
satisfies wg =1and wsSws = S. The Garside element of A is defined to be A = A[['] = t(wg). We
know that ASA™! = § and, if T is connected, then the center Z(A) of A is an infinite cyclic group
generated by either A or A? (see Brieskorn and Saito [11]). For X C S we denote by wy the element of
maximal length in Wx and by Ay = Ax[I'] = t(wy) the Garside element of Ax.

If T = A,_y, then
A= (sp—1--51)(Sp—1--52) **+ (Sn—15n—2)Sn—1,

AsiN ! =5, ;forall 1 <i <n—1and Z(A) is generated by A%. If I' = D,,, then

A= (t1 - thoatp—titntn—2--11)(t2 - - th—atp—1tntn—2--12) -+ (ln—2tn—1tntn—2)(tn—1tn).

If n is even, then At; A=! =¢; forall 1 <i <n and Z(A) is generated by A. If n is odd, then At; A~ =1
forall 1 <i <n—2, Aty 1A' =1t,, At,A™' = 1,1 and Z(A) is generated by A?.
If G is a group and g € G, then we denote by adg: G — G, h — ghg™1!, the conjugation map by g. We

say that two homomorphisms ¢1, ¢2: G — H are conjugate if there exists & € H such that ¢, = adjy o ;.

A homomorphism ¢: G — H is called abelian if its image is an abelian subgroup of H. A homomorphism
¢:G — H is called cyclic if its image is a cyclic subgroup of H. If G = A[A,—1], then ¢: A[Ay—1] = H
is abelian if and only if it is cyclic, if and only if there exists 2 € H such that ¢(s;) =h forall 1 <i <n—1.
Similarly, if G = A[D,], then ¢: A[D,] — H is abelian if and only if it is cyclic, if and only if there
exists € H such that ¢(¢;) = h forall 1 <i <n.

Two automorphisms ¢, y € Aut(A[D,]) play a central role in our study. These are defined by
C(tiy=1t; for 1 <i<n-2, {(th—1) = tn, §(tn) = th—1, x(@t) =171 for 1<i=<n.

Both are of order 2 and commute, and hence they generate a subgroup of Aut(A[D,]) isomorphic to
7]27 xZ/27Z. If n is odd, then ¢ is the conjugation map by A = A[Dy]. On the other hand, if n is even,
then ¢ is not an inner automorphism (see Paris [36]). The automorphism y is never inner.
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Two other homomorphisms play an important role in our study. The first, 7: A[D,] — A[An—1], is
defined by
w(ti)=s; for1<i<n-—2, w(th—1) = 7(ty) = Sp—1.

The second, ¢: A[A,—1] — A[Dy], is defined by
tisi)=t for1<i<n-—1.

Observe that 7w ot = id4p4,_,1, and hence 7 is surjective, ¢ is injective and A[Dy] >~ Ker () x A[A;—1].
We refer to Crisp and Paris [21] for a detailed study on this decomposition of A[D,] as a semidirect
product.

Let n > 4. For p € Z we define a homomorphism o : A[D,] — A[A,—1] by
op(ti) =si AP for 1<i<n-2, op(th—1) = ap(ty) = Sp_1 A2P,
where A = A[A,—1] is the Garside element of A[A,_1]. Note that g = 7.
SetY ={t1,...,tn—1}. For p,q € Z we define a homomorphism f, 4: A[A,—1] = A[D,] by
Bpa(si) =t; NP A9 for 1 <i<n—1,

where A = A[D,] is the Garside element of A[D,], Ay = Ay[Dy], k =2 if n is odd, and k = 1 if n is
even. Note that Bg o = t. Note also that, by Paris [36, Theorem 1.1], the centralizer of Y in A[D,] is the
free abelian group of rank 2 generated by AZY and A“.

For p € Z we define the homomorphism y,: A[D,] — A[D,] by
Yp(ti) =t; AP for 1 <i <n,

where A = A[D,] is the Garside element of A[D,], x =2 if n is odd, and x = 1 if n is even. Note that
Yo = id.

Concerning A[A,—1], we define an automorphism y: A[A,—1] = A[An—1] by
)E(si)=sl~_l for 1 <i<n-—1,
and for p € Z we define an endomorphism y,: A[A,—1] — A[A,—1] by
Vp(si) = ;AP for 1<i<n-—1,

where A is the Garside element of A[A,_1].
The main results of this paper are the following.
Theorem 2.1 Letn > 5. Let ¢: A[D,] — A[An—1] be a homomorphism. Then up to conjugation we
have one of the following two possibilities:

(1) ¢ iscyclic.

(2) There exist € (x) and p € Z such that ¢ = oy 0.
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Theorem 2.2 Letn > 6. Let ¢: A[A,—1] = A[Dy] be a homomorphism. Then up to conjugation we
have one of the following two possibilities:

(1) ¢ iscyclic.

(2) There exist Y € ({, x) and p,q € Z such that ¢ = o Bp 4.

Theorem 2.3 Letn > 6. Let ¢: A[Dy] — A[Dy] be a homomorphism. Then up to conjugation we have
one of the following three possibilities:

(1) ¢ iscyclic.

(2) Thereexist Y € ({, x) and p,q € Z such that ¢ =y o Bp 40m.

(3) There exist Y € (¢, x) and p € Z such that ¢ = o yp.

From Theorem 2.3 we deduce a classification of the injective endomorphisms and of the automorphisms
of A[Dy] as follows.

Corollary 2.4 Letn > 6. Let ¢: A[D,] — A[D;] be an endomorphism. Then ¢ is injective if and only
if there exist € (¢, x) and p € Z such that ¢ is conjugate to V¥ o yp.

Proof Let ¢: A[D,] — A[Dy] be an endomorphism. By Theorem 2.3 we have one of the following
three possibilities, up to conjugation:

(1) ¢ iscyclic.

(2) There exist y € (¢, x) and p,q € Z such that ¢ = o B, 40 7.

(3) There exist ¥ € (¢, x) and p € Z such that ¢ = Y o .
If ¢ is cyclic, then ¢(t,—1) = ¢(t,), and hence ¢ is not injective. If there exist Y € (¢, y) and p,q € Z

such that ¢ = v o B, 4 o7, then, again, ¢(f,—1) = ¢(,), and hence ¢ is not injective. So, if ¢ is injective,
then there exist ¥ € ({, x) and p € Z such that ¢ is conjugate to ¥ o y,.

It remains to show that, if Y € ({, x) and p € Z, then ¥ o y, is injective. Since the elements of
(¢, x) are automorphisms, it suffices to show that y, is injective. We denote by z: A[D,] — Z the
homomorphism which sends #; to 1 for all 1 <i < n. It is easily seen that y,(u) = uA“P? @) for all
u € A[Dy]. Let u € Ker(yp). Then 1 = yp(u) = uNPZM) and hence u = A? where ¢ = —kpz(u). We
have z(A) = n(n — 1), and hence z(u) = gn(n — 1), thus

1= ’)/p(u) = AQAKPqn(n—l) — A‘I(l-l-lcpn(n—l)).
Since 1 4 kpn(n — 1) # 0, this equality implies that ¢ = 0, and hence u = 1. So y,, is injective. 5

Corollary 2.5 Letn > 6. Let ¢: A[Dy] — A[Dy] be an endomorphism. Then ¢ is an automorphism if
and only if it is conjugate to an element of (¢, x).
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Proof Clearly, if ¢ is conjugate to an element of ((, y), then ¢ is an automorphism. Conversely, suppose
that ¢ is an automorphism. We know from Corollary 2.4 that there exist ¥ € (¢, y) and p € Z such that ¢
is conjugate to ¥ o y,. Thus, up to conjugation and up to composing on the left by ¥ ~1, we can assume
that ¢ = y,. It remains to show that p = 0.

Again let z: A[D,] — Z be the homomorphism which sends #; to 1 for all 1 <i < n. Recall that
yp(u) = uNPZW) for all u € A[D,]. For u € A[D,], we have

(zoyp)u)=(A+nn—-1kp)z(u) € (1 +n(n—1)kp)Z.
Since y,, is an automorphism, z o y,, is surjective, and hence Z =Im(z o yp) C (1 +n(n —1)kp)Z. It
follows that (1 +n(n — 1)xp) € {£1}, and hence p = 0. |

By combining Corollary 2.5 with Crisp and Paris [21, Theorem 4.9] we immediately obtain the following.

Corollary 2.6 Letn > 6.
(1) If n is even, then
Aut(A[Dy]) = Inn(A[Dn]) % (. x) = (A[Dn]/ Z(A[Dn])) ¥ (Z/2Z X Z/2Z),
and Out(A[Dy]) ~ Z /27 x 7./ 27, where Z(A[Dy]) denotes the center of A[Dy].
(2) If n is odd, then
Aut(A[Dy]) = Inn(A[Dy]) x (x) = (A[Dn]/ Z(A[Dn])) ¥ (Z/2Z),
and Out(A[Dy]) ~ Z/27.
We denote by Z(A[Dy]) the center of A[D,], we set Az[D,] = A[Dy]/Z(A[Dy]) and we denote by
&: A[D,] — Az[D;] the canonical projection. For each 1 <i <n, we settz,; = &£(#;). Note that an
endomorphism ¢: A[D,] — A[Dy] induces an endomorphism ¢z: Az[D,] — Az[D,] if and only if
©(Z(A[Dy))) C Z(A[Dy]). We say that an endomorphism ¥ : Az[D,] — Az[Dy] lifts if there exists an

endomorphism ¢: A[Dy] — A[Dpy] such that ¢z = . Then we call ¢ a lift of ¥. In Section 7 we prove
the following.

Proposition 2.7 Let n > 4. Then every endomorphism of Az[D,] lifts.
From this proposition combined with Theorem 2.3 we will deduce the following.

Theorem 2.8 Letn > 6. Let ¢9z: Az[Dyn] — Az[Dn] be an endomorphism. Then we have one of the
following two possibilities, up to conjugation:

(1) ¢z iscyclic.

(2) ¢z €8z xz)-
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In addition to Theorem 2.8 we have the following.

Proposition 2.9 Let n > 4. There are only finitely many conjugacy classes of cyclic endomorphisms

Proof Let ¢z: Az[D,] — Az[Dy] be a cyclic endomorphism. There exists gz € Az[Dy] such that

¢z (tz;) =gz forall 1 <i <n. We denote by A the Garside element of A[D,], and we setk =2 if n

is odd and k = 1 if n is even. We have 1 = (g7 0 £)(A¥) = gé"(”_l), and hence gz is of finite order.

By Bestvina [3, Theorem 4.5] there are finitely many conjugacy classes of finite subgroups in Az[D;].
Since {(gz) is a finite subgroup of Az[D;], it follows that there are finitely many choices for gz, up to
conjugation. |

In Lemma 7.1 we will show that if n is even then ({z, yz) NInn(Az[Dy]) = {id}, and if n is odd then
(xz) NInn(Az[D,]) = {id}. Furthermore, it is well known and can be easily proved (arguing as in the
proof of Cumplido and Paris [22, Proposition 3.1(4)], for example) that the center of A[I']/Z(A[I']) is
trivial for any A[I"] of spherical type. These two remarks combined with Theorem 2.8 imply the following.

Corollary 2.10 Letn > 6.
(1) If n is even, then
Aut(Az([Dn]) =Inn(Az[Dn]) ¥ (§z, xz) = Az[Dn] % (Z/2Z x Z/2Z) =~ Aut(A[Dy]),
and Out(Az[Dy]) ~ Z /27 x Z./27 ~ Out(A[Dy]).
(2) If n is odd, then
Aut(Az([Dn]) =Inn(Az[Dn]) ¥ (xz) ~ Az[Dn] X (Z/2Z) =~ Aut(A[Dp]),
and Out(Az[Dy]) ~ 7. /27 ~ Out(A[Dy)).

A group G is said to be co-Hopfian if every injective endomorphism of G is an isomorphism. Another
direct consequence of Theorem 2.8 is the following.

Corollary 2.11 Let n > 6. Then Az[D;] is co-Hopfian.

In addition to the case D, for n > 6 shown in Corollary 2.11, the Coxeter graphs I" for which we know
that A[T']/Z(A[T]) is co-Hopfian are the Coxeter graphs A,, B,, A, and C, for n > 2 (see Bell and
Margalit [2]). Note that, for A, and C,, the center Z (A[I']) is trivial, and hence the above remark means
that the Artin group itself is co-Hopfian.

3 Geometric representations

Let X be an oriented compact surface possibly with boundary, and let P be a finite set of punctures in
the interior of X. We denote by Homeo™ (X, P) the group of homeomorphisms of X that preserve the
orientation, that are the identity on a neighborhood of the boundary of 3 and that setwise leave invariant P.
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The mapping class group of the pair (X, P), denoted by M (X, P), is the group of isotopy classes of
elements of Homeo™ (X, P). If P = @, then we write M(Z, @) = M(X), and if P = {x} is a singleton,
then we write M(X,P) = M(X, x). We only give definitions and results on mapping class groups that
we need for our proofs and we refer to Farb and Margalit [28] for a complete account on the subject.

Recall that a geometric representation of an Artin group A is a homomorphism from A to a mapping class
group. Their study is the main ingredient of our proofs. Important tools for constructing and understanding
them are Dehn twists and essential reduction systems. So, we start by recalling their definitions and their
main properties.

A circle of (£, P) is the (nonoriented) image of an embedding a: S < X\ (X U P). It is called
generic if it does not bound any disk containing O or 1 puncture and if it is not parallel to any boundary
component. The isotopy class of a circle a is denoted by [a]. We denote by C(X, P) the set of isotopy
classes of generic circles of (X,P). The intersection number of two classes [a], [b] € C(Z,P) is
i([a], [p]) = min{|a’ ND'| | a’ € [a] and b’ € [b]}. The set C(X, P) is endowed with a simplicial complex
structure, where a finite set A is a simplex if i ([a], [b]) = O for all [a], [b] € A. This complex is called the
curve complex of (3, P).

By a Dehn twist we mean a right Dehn twist and the (right) Dehn twist along a circle a of (X, P) will
be denoted by T,. The following is an important tool for constructing and understanding geometric
representations of Artin groups. Its proof can be found in Farb and Margalit [28, Section 3.5].

Proposition 3.1 Let ¥ be a compact oriented surface and let P be a finite collection of punctures in the
interior of X. Let a and b be two generic circles of (X, P).

(1) We have T, Ty, = Tp T, if and only if i ([a], [b]) = 0.
(2) Wehave T,TyT, = Tp T, T}, it and only if i ([a], [b]) = 1.

Let f € M(Z,P). A simplex A of C(X,P) is called a reduction system for f if f(A) = A. In that
case any element of A is called a reduction class for f. A reduction class [a] is an essential reduction
class if, for all [b] € C(XZ, P) such that i([a], [b]) # 0 and for all m € Z \ {0}, we have f™([b]) # [b].
In particular, if [a] is an essential reduction class and [b] is any reduction class, then i ([a], [b]) = 0. We

denote by S(f) the set of essential reduction classes for f. The following gathers some key results on
S(f) that will be useful later.

Theorem 3.2 (Birman, Lubotzky and McCarthy [6]) Let ¥ be a compact oriented surface and let P be
a finite set of punctures in the interior of X. Let f € M(XZ,P).

(1) If S(f) # @, then S(f) is a reduction system for f. In particular, it S(f) # &, then S(f) is a
simplex of C(X, P).

(2) Wehave S(f")=S(f) forall n € Z \ {0}.
(3) Wehave S(gfg™') = g(S(f)) forall g € M(Z,P).
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Figure 3: The geometric representation of A[A,_1] for n even (left) and n odd (right).

The following is well known and is a direct consequence of Birman, Lubotzky and McCarthy [6] (see
also Castel [12, Corollaire 3.45]). It will be often used in our proofs.

Proposition 3.3 Let X be an oriented compact surface of genus > 2 and let P be a finite set of punctures
in the interior of X. Let fo € Z(M(X,P)) be a central element of M(X,P), let A= {[ai]....,[ap]}
be a simplex of C(X,P) and let k1, ...k, be nonzero integers. Let g = Tfll Tfj Takp” fo. Then
S(g) = A

Let n > 4. If n is even, then X, denotes the surface of genus %(n —2) with two boundary components,
and if n is odd, then X, denotes the surface of genus %(n — 1) with one boundary component. Consider
the circles ay, ..., an—1 drawn in Figure 3. Then by Proposition 3.1 we have a geometric representation
pa: A[An—1] = M(X,) which sends s; to Ty; for all 1 <i <n — 1. The following is well known; it is a
direct consequence of Birman and Hilden [5], and its proof is explicitly given in Perron and Vannier [40].

Theorem 3.4 (Birman and Hilden [5]) Let n > 4. Then p4: A[An—1] = M(X,) is injective.

The following is proved in Castel [12] for n > 6 using the geometric representation p4 defined above. It
is proved in Chen, Kordek and Margalit [17] for n > 5 with a different method.

Theorem 3.5 (Castel [12], Chen, Kordek and Margalit [17] and Orevkov [35]) Let n > 5. Let
@: A[Ap—1] = A[A,—1] be a homomorphism. Then up to conjugation we have one of the following two
possibilities:

(1) ¢ iscyclic.

(2) There exist € (x) and p € Z such that ¢ =} o).

Let n > 6. Pick a puncture x in the interior of 3, and consider the circles dy, ..., d, drawn in Figure 4.
Then by Proposition 3.1 we have a geometric representation pp : A[D,] — M(Z,, x) which sends ¢; to
Ty, for all 1 <i < n. On the other hand, the embedding of Homeo™ (%, x) into Homeo™ (X,,) induces
a surjective homomorphism 6: M(XZ,, x) - M(Z,) whose kernel is naturally isomorphic to 71 (X, Xx)
(see Birman [4]). It is easily seen that

0(Ty) =Ty for 1<i<n—2,  O(Ty_,)=0(Tyg)="Ta,
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Figure 4: The geometric representation of A[D,] for n even (left) and n odd (right).

and hence we have the commutative diagram

1 —— Ker(r) — A[D;] — = A[Ap_1] —— 1

(3-1) lﬁ lﬂo lpA

I — Ker(f) —— M(Zp, x) —— M(Z,) —— 1
where we denote by p: Ker(;r) — Ker(8) the restriction of pp to Ker(sxr).

The proof of the following can be found in Perron and Vannier [40, Theorem 1] with few modifications.
As this result is central in our paper, for the sake of completeness we give a proof. Note that our proof
is a little shorter than that of Perron and Vannier [40] because it uses results from Crisp and Paris [21]
which were not known and it does not need to deal with some Dehn twist along a boundary component,
but our arguments are essentially the same.

Theorem 3.6 (Perron and Vannier [40]) Let n > 4.

(1) The homomorphism p: Ker(rr) — Ker(60) is an isomorphism.

(2) The geometric representation pp : A[D,] — M(Z,, x) is injective.

Proof Part (2) is a consequence of (1) because of the following. Suppose p is an isomorphism. Then,
since py4 is injective, pp is injective by the five lemma applied to (3-1).

Now, we prove (1). We know from Crisp and Paris [21, Proposition 2.3] that Ker(r) is a free group
of rank n — 1. We also know from Birman [4] that Ker(0) = 71(2,, x), which is also a free group of
rank n — 1. Recall that a group G is Hopfian if every surjective endomorphism G — G is an isomorphism.
It is well known that free groups of finite rank are Hopfian (see de la Harpe [30, Chapter III, Section 19]),
and hence in order to show that p is an isomorphism it suffices to show that p is surjective.

Set f—1 = Td_nl_l Ty, . Note that tn__lltn € Ker(rr) and f,—1 = ﬁ(tn__lltn). In particular f,—1 € Im(p) C
Ker(6) = m1(Z;, x). This element, seen as an element of 71 (X, x), is represented by the loop drawn
in Figure 5. For 2 <j <n —1 we define f,—; € m1(X,, x) C M(Z,, x) by induction on i by setting
Jn—i=Tga,_; fn—i+1 T_nl_i n__ll- +1- The element f,—;, viewed as an element of 71 (X, x), is represented
by the loop drawn in the left-hand side of Figure 6 if i =2 is even, and by the loop drawn in the right-hand
side of Figure 6 if i =2 + 1 is odd, where we compose paths from right to left. Observe that f1, ..., fn—1
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Figure 5: The loop fy—1 € 11 (X, x).

generate 71 (X;, x). So, in order to show that p is surjective, it suffices to show that f,—; € Im(p) for
alli € {1,...,n—1}. We argue by induction on i. We already know that f,_; = ,5(tn__11tn) € Im(p).
Suppose i > 2 and f,,—i+1 € Im(p). Let u € Ker(;) such that f,—;+1 = p(u). Since Ker(sr) is a normal
subgroup of A[D,], we have t,,_iutn__li € Ker(rr); hence tn_iutn__liu_l € Ker(sr), and therefore

-1 -1 - -1,-1 -
Jn—i = Tq,_; fn—i+1Td,,_,- n—i+1 = Pln—iut,_;u~ ") € Im(p). U
Our last preliminary on geometric representations is a result implicitly proved in Castel [13, Section 3.2],
and it is in this theorem that we need the assumption n > 6.

Theorem 3.7 (Castel [13]) Letn > 6. Let ¢: A[An—1] > M(Z,, x) be a noncyclic homomorphism.
Then there exist generic circles ¢y, . ..,cp—1 in X, \ {x}, e € {£1} and g € M(Z,, x) such that

@ |ciNcjl=1ifli—j|=1and |c;Ncj|=01if|i —j|>2,forall 1 <i,j <n-—1,
(b) g commutes with T, forall 1 <i <n-—1,

(©) @(si)=T;gforall 1 <i <n—1.

Proof Assume n is even. Let d; and d, be the two boundary components of X,. We denote by by n the
closed surface obtained from X, by gluing a disk D along d; and a disk D, along d,. Moreover, we
choose a point X1 in the interior of Dy and a point X5 in the interior of D>, and we set P= {x, X1, X2}.
Assume 7 is odd. Let d be the boundary component of ¥,. We denote by >, the closed surface obtained
from X, by gluing a disk D along d. Moreover, we choose a point X in the interior of D and we set
P = {x, %}. For each n we denote by PM(Z,,P) the subgroup of M(S,. P) formed by the isotopy
classes of elements in Homeo+(§n, 73) which pointwise fix P. The embedding of ¥, into f)n induces a
surjective homomorphism @ : M(Z,, x) — P/\/l(fln, 73). If n is even, then the kernel of @ is the free
abelian group of rank 2 generated by Ty, and Tj,, and if 7 is odd, then the kernel of z is the cyclic
group generated by T. In both cases Ker(z) is contained in the center of M(X,, x).

fn-Zj =

oo S oo

Figure 6: The loop f,—; € m1(Z,, x).
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Let ¢: A[Ap—1] = M(Z,, x) be a noncyclic homomorphism. Assume that @ o ¢ is cyclic. Then there
exists g € PM(in, P) such that (w o @)(s;) = & forall 1 <i <n—1. Let g € M(Z,, x) be such that
w(g) = g. Foreach 1 <i <n —1 there exists h; € Ker(w) C Z(M(Z,, x)) such that ¢(s;) = gh;. Let
1 <i <n-—2.Then

&hthit1 = @(sisit151) = @(si18i8i+1) = £ hih7y ).
Hence h; = h;+1. This shows that ¢(s;) = ghy forall 1 <i <n —1, and hence that ¢ is cyclic, which is

a contradiction. So @ o ¢ is not cyclic.

To differentiate Dehn twists in M(X,, x) from those in PM(EI,,, P), for a circle ¢ in S \ P we denote
by T, the Dehn twist in 77/\/1(3”,73) along c¢. By Castel [13, Theorem 1] there exist generic circles
CleeoosCne1in Sy \ P, e € {£1} and § € PM(Z,,P) such that

(1) leiNejl=1if|i—j|=1and |c;Ncj|=0if [i —j|>2,forall 1 <i,j <n-—1,

(2) g commutes with Tci foralll <i <n-—1,

3) (wo)(si) = T;g foralll <i<n-—1.
Clearly, we can choose each ¢; siting in the interior of X,. Let g € M(XZ,, x) be such that w(g) = g. It is
easily shown with Castel [13, Lemma 3.2.1] that g and 7,; commute for all 1 <i <n—1. Furthermore, for
each 1 <i <n—1, there exists h; € Ker(w) C Z(M(Zp, x)) such that p(s;) = T; gh;. Let 1 <i <n—2.
Then

TETE, Tr @ hihivt = @(sisivasi) = @(sivisisivr) = Tg, To 15 &hihiy,
= Tcs,- Tcs,-+1 Tcsi g3hihl'2+1 ’

and hence hj1 = h;. So there exists h € Ker(w) such that ¢(s;) = T; gh and gh commutes with T¢,
forall 1 <i <n-—1. O

4 Homomorphisms from A[D,] to A[A,_1]

Proof of Theorem 2.1 Letn > 5. Let ¢: A[D,] — A[An—1] be a homomorphism. By precomposing ¢
with ¢: A[A,,—1] = A[Dy], we obtain a homomorphism ¢ ot: A[A,—1] = A[D,] — A[A,—1], and hence,
by Theorem 3.5, one of the following two possibilities holds:

e @ouiscyclic.
e There exist ¥ € ()) and p € Z such that ¢ o is conjugate to ¥ o yp.

Suppose @ ot is cyclic. Then there exists u € A[A,—1] such that (pot)(s;) =¢(t;) =u forall 1 <i <n-—1.
Moreover,

¢(tn) = Qltn—2t)P(tn-2)0 (17 ' 115) = tn—2tn)e (1)t 1) = @(11) = u,
and hence ¢ is cyclic.
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Figure 7: Circles in the punctured disk.

So, up to conjugating and replacing ¢ by ¢ o y if necessary, we can assume that there exists p € Z such
that ¢ ot = y,. This means that ¢(#;) = (9 01)(s;) = s; AP forall 1 <i <n—1, where A is the Garside
element of A[A,—_1]. Now we turn to showing that ¢ = .

Set Y = {s1,...,8,—3}. By Paris [37, Theorem 5.1] the centralizer of the group (s1,...,Sy—3,85,—1)
in A[An—1] is generated by A%, A3, and s,—1, where Ay = Ay[A,_1]. These three elements pairwise
commute and generate a copy of Z3. Set u = ¢(t,). Since u commutes with ¢(t;) = s; A% for all
ie{l,...,n—3,n—1}and A?is central in A[A,_1], u belongs to the centralizer of (s1,...,Sn—3,857—1),

and hence there exist k1, k2, k3 € Z such that u = s,]f'_l AZ;Q N2k

It is well known that A[A,—1] is naturally isomorphic to the mapping class group M(D, P), where D

denotes the disk and P = {x1,..., X, } is a set of n punctures in the interior of D. In this identification
55—1 corresponds to the Dehn twist along the circle ¢; depicted in Figure 7, AZY corresponds to the Dehn

twist along the circle ¢, depicted in the same figure and A? corresponds to the Dehn twist along a circle
parallel to dD. By Proposition 3.3 we have S(u?) C {c1, c2}, where ¢; € S(u?) if and only if k1 # 0 and
¢ € S(u?) if and only if k5 # 0. We know that (p(tlz) = S%A“p , and hence S ((p(tlz)) is formed by a single
circle containing two marked points in its interior. Since 112 and t,f are conjugate <p(t12) and (p(t,f) =u?
are conjugate, and hence, by Theorem 3.2, S(u?) is also formed by a single circle containing two marked
points in its interior. It follows that S(u?) = {c1}, and hence k1 # 0 and k = 0. It remains to show that
ki =1and k3 = p.

From the equality t, oty ty—2 = tyty—2aty it follows that sn_zs,]f'_lsn_z A4P+2ks — sf'_lsn_zs,]fl_l A2Pt+aks
and hence
A2k3—2p

(Sn—255" 1 5n—2) (KL spoasht )71 =
We know from Paris [38, Corollary 2.6] that A, , 5. 3[An—1] N (A) = {1}, and hence
(Sn—255" [5p—2) (sK1  sppskt )Tl = AZKs=2P — 1,
Let z: A[Ap—1] — Z be the homomorphism which sends s; to 1 forall 1 <i <n — 1. We have
0=z(1) = z((Sn—255"y Sn—2) (K" ysn2sy ) ™) = 1 — k1.

and hence k; = 1. Moreover, A2k3=2P — 1 and A is of infinite order; thus k3 = p. O
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5 Homomorphisms from A[A,_1] to A[D,]

The formula in the following lemma is a crucial point in various proofs, including those of Lemma 5.4
and Theorem 2.8.

Lemma 5.1 Letn > 1. Then

AlAn]? = (51 Sne152Sn—1 - S1)(52 -+ - Sn—152Sn—1 "+ 52) -+ (Sn—1525n—1)s52.

Proof We argue by induction on n. The case n = 1 is trivial, and hence we can assume that » > 2 and
that the induction hypothesis holds. Recall that

AlAy] = (s1---sn)A[An—1] = AlAn—1](sn - - - 51).

Moreover, it is easily checked that s; (s, ---51) = (55, -+ 51)8;+1 for all 1 <i <n — 1. By the induction
hypothesis,

AlAn—11* = (51 Sn—287_1Sn—2 - 51) *** (Sn—257_1Sn—2)Sh_.
Hence
A[An]? = (51 5n) A[An—1]> (s ---51)
= (s51-5n) (51~ Sn—285_1Sn—2 -+ 51) -~ (Sn—287_1 Sn—2)S5_1 ) (Sn -+~ 51)
= (51+-Sn)(Sn -+ 51)((52 -+ Sn—1528n—1++52) *+* (Sp—1525n—1)57)

= (51 "'Sn—1S,2,Sn—1 "'51)"'(Sn—1553n—1)55- o
Now, Lemmas 5.2-5.8 are preliminaries to the proof of Theorem 2.2.

Lemma 5.2 Letn > 6. Let ¢: A[Ap—1] — A[Dy] be a homomorphism. If wop: A[Ap—1] = A[An—1]
is cyclic, then ¢ is cyclic.

Proof Assume 7 og is cyclic. Then there exists u € A[A,—_1] such that (mop)(s;) =u forall 1 <i <n—1.
For3<i<n-—1wesetv; = ga(s,-sl_l). We have 7(v;) = uu~! =1, and hence v; € Ker(r). We have
(5357 1) (sasT ) (5357 1) = 53545357 > = 5535457 > = (5457 ) (s3s7 ) (sas7 ),

and hence v3v4v3 = v4V3v4. Since Ker(ir) is a free group (see Crisp and Paris [21, Proposition 2.3])
and two elements in a free group either freely generate a free group or commute, the existence of such
equality implies that v3vg = v4v3. It follows that v3v4v3 = v3v£; hence v3 = vy4, and therefore

9(s3)e(s1) ™ =3 =vg = @(s4)p(s1) 7"
So ¢(s3) = ¢(s4). We conclude by Castel [13, Lemma 3.1.1] that ¢ is cyclic. m|
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Let n > 6. If n is odd then X,, has one boundary component, which we denote by d, and we denote by
Ty the Dehn twist along 0. If n is even then X, has two boundary components, which we denote by d;
and 02, and we denote by Tj, and T}, the Dehn twists along d; and 0, respectively. It is known that the
center of M(X,), denoted by Z(M (X)), is the cyclic group generated by Ty if n is odd, and it is a free
abelian group of rank 2 generated by T3, and T}, if n is even (see Paris and Rolfsen [39, Theorem 5.6],
for example).

Lemma 53 Let n > 2. Let f € M(Z,) such that fT; = T2 f forall 1 <i <n—1. Then
[? € Z(M(Z)).

Proof Assume 7 is odd. The case where n is even can be proved in the same way. Let f € M(Z,)
such that 77 = T2 f forall 1 <i <n—1. Since fT; f~' =T, we have f([a;]) = [a;] (see Farb
and Margalit [28, Section 3.3]). The mapping class f may reverse the orientation of each a; up to
isotopy, but 2 preserves the orientation of all a; up to isotopy, and hence f2 can be represented by an
element of Homeo™ (X,,) which is the identity on a (closed) regular neighborhood ¥’ of U:’;ll a;. We
observe that X is a surface of genus %(n — 1) with one boundary component, d’, and that d U ¢’ bounds a
cylinder C. This implies that /2 € M(C) C M(Z,). Since M(C) = (T) = Z(M(Z,)), we conclude
that 2 € Z(M(Z)). m]

Lemma 5.4 letn>3. Wesetm=n—1ifnisoddand m =n—2if niseven. Let1 <k <m.
Let ¢ be a generic circle of £, \ {x} suchthat cNd; =@ for1 <i <k -2, |cNdr_1|=1ifk > 2,
¢ Ndy = @ and c is isotopic to dy, in X,,. Then there exists g € Ker(0) such that g([d;]) = [d;] for all
1 <i <k—1and g([c]) = [dk].

Proof We identify D3 with A3 in this proof to treat the cases k = 2 and k = 1. We first assume that k
is even. If ¢ is isotopic in X, \ {x} to d, then it suffices to take g = id. So we can assume that ¢ and
dy are not isotopic in X, \ {x}. Since ¢ and d}, are isotopic in X, by Epstein [27, Lemma 2.4] there
exists a cylinder C in ¥, whose boundary components are dj and c. Since ¢ and dj are not isotopic in
3 \ {x}, this cylinder must contain the puncture x.

Let ¥ be a regular neighborhood of (Uf;ll d;i) U C. The surface ¥’ contains the cylinder C with
boundaries ¢ and dj, having the puncture x in it, and dj_ intersects ¢ and dj once. Hence an arc of the
curve dj_ connects a point on ¢ with a point on dj within the cylinder C, and it may wind around the
cylinder in different ways (see Figure 8). However, by applying suitable Dehn twists about ¢ and dp,
one can unwind this arc to the simplest case, shown in Figure 9. Hence, up to homeomorphism of the
surface X,, we may assume that the circles dy, ..., dg, ¢ are arranged as in Figure 9.

By Proposition 3.1 there are homomorphisms ¥ : A[Dg41] = M(Z,, x) and ¥2: A[Ag] > M(Z,, x)
defined by
vi(ti) =Ty for 1<i <k, Vitet1) = Te,

1//2(Si)=Td[. for 1 <i<k-1, Ya(sg) = Te.
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c dy
2 fer [ % 9—
-6{’“'-/%-/ » X

c dy
L fe ;-9—"
-6{’” 2/ X 5
c dy

dy.
kl—"g
X

Figure 8: The intersection of C with dj_;.

We denote by A p i the Garside element of A[Dy ] and by A 4 the Garside element of A[Ag], and
we set g = wl(AD,k)wz(A:lzk). We have Ap it; ABlk =t foralll<i<k-—1, AD,ktkHA;)lk =1
and A%ci,ksiA:lz,k =s; forall 1 <i < k. Hence gTag,.g_1 = Tg) =Ty forall 1 <i <k —1 and
gT.g7 ' = Ty(c) = Tg, - It follows that g([d;]) = [d;] forall 1 <i <k —1 and g([c]) = [d] (see Farb
and Margalit [28, Fact 3.6]).

Since ¢ and dy are isotopic in X, the corresponding Dehn twists T¢ and Ty, are equal in M(XZy), and
hence for T; and T, , viewed on the surface %, \ {x}, we have 6(T;) = 0(T4, ). Moreover,

AD,k = ([1 ol 1kt +1t—1 - ..[1) . (tk—ltktk—}—ltk—l)(tktk_}_]),
2 2 2 2
Ay = (1 Sk—15kSk—1 7+ 51) *+* (Sk—15% Sk—1)Sc -

(see Lemma 5.1 for the second equality); hence 6(Y¥1(Ap x)) = 9(1//2(A%4,k))’ and therefore 0(g) = 1.
So g € Ker(0).

Now assume k is odd. If ¢ is isotopic in X, \ {x} to d, then we can take g = id. So we can assume that
¢ and dj, are not isotopic in X, \ {x}. Since ¢ and d} are isotopic in X, there exists a cylinder C in X,
whose boundary components are dj and c¢. Since ¢ and dj are not isotopic in X, \ {x}, this cylinder must
contain the puncture x. Let ¥’ be a closed regular neighborhood of (Uf:ll di) UC. Then X' is a surface
of genus %(k — 1) with two boundary components and the circles dy,...,d;_1, di, c are arranged as
shown in Figure 10. Since k <m and k is odd, %(k — 1) is strictly less than the genus of X,,; hence we
can choose a subsurface X" of X, of genus %(k + 1), with one boundary component, and containing X'
We can also choose a generic circle e in X"\ {x} such that [eNd{| =1, [eNc|=1ifk=1,eNd; =@
forall 2 <i <k and e N¢ = @ if k > 2 (see Figure 10). By Proposition 3.1 there are homomorphisms

Figure 9: The regular neighborhood of (Uf:ll di) U C when k is even.
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Figure 10: The regular neighborhood of ({J¥Z] d;) U C when k is odd

Y1: A[Dg42] = M(Zy,, x) and ¥2: A[Ag+1] = M(Z,, x) defined by
Yi(t) =Te, Vi(ti) =Tg,_, for2=<i<k+1, V1(te42) = Te,
Iﬂz(sl) =T, WZ(SI') = Tdi—l for 2 <i <k, lﬂz(sk_H) =T..

We denote by A p x4 the Garside element of A[Dy ] and by A 4 x4 the Garside element of A[Ax 1],
and we set g = wl(AD,k_H)i/fz(Ajka). Then, as in the case where k is even, we have g([d;]) = [d;]
forall 1 <i <k —1, g([c]) = [di] and g € Ker(6). |

The following lemma is the extension of Lemma 5.4 to the case ¢ Ndy # &.

Lemmas5.5 Letn>3.Setm=n—1ifnisoddand m =n—2ifniseven. Let1 <k <m. Let ¢
be a generic circle of ¥, \ {x} suchthat cNd; =@ for1 <i <k—2,|cNdj_1|=1if k> 2, and ¢
is isotopic to dj, in ¥,. Then there exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <k —1 and
g([c]) = [dk].

Proof We argue by induction on i ([c], [d]), which is computed on the surface ¥, \ {x} and not on %,,.
The case i ([c], [di]) = 0 is proved in Lemma 5.4, and hence we can assume that i ([c], [di]) > 1 and that
the induction hypothesis holds. Note that now ¢ and dj cannot be isotopic in X, \ {x} since i ([c], [dr]) #O.
We can assume without loss of generality that i ([c], [dr]) = |c N dy|. Since ¢ and d}, are isotopic in X,
there exists a bigon D in X, cobounded by an arc of dj and an arc of ¢ as shown in Figure 11. We can
choose this bigon to be minimal in the sense that its interior intersects neither ¢ nor d. The bigon D
cannot intersect d; for 1 <i <k —2 and one can easily modify ¢ so that D does not intersect dj,_; either.
Since ¢ and dj are not isotopic in X, \ {x}, D necessarily contains the puncture x in its interior. We
choose a circle ¢’ parallel to ¢ except in the bigon D, where it follows the arc of dj which borders D as
illustrated in Figure 11. By construction ¢’ Nd; = @ for 1 <i <k —2, |¢’Ndy_1| =1if k > 2, and
¢’ is isotopic to dy in X,. Moreover i ([¢'], [dr]) < |c’ Ndk| < |c Ndy| = i([c], [dk]). By the induction
hypothesis there exists g; € Ker(6) such that g1 ([d;]) = [d;] forall 1 <i <k —1 and g([¢']) = [dk].

Figure 11: The bigon cobounded by ¢ and d.
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By Farb and Margalit [28, Lemma 2.9], we can choose G| € Homeo+(2n, x) which represents g such
that G1(d;) = d; forall 1 <i <k —1and Gy(c') = di. We set ¢” = Gy(c). Then ¢”" Nd; = @ for
1<i<k-=2,|c"Ndr_q|=1ifk >2, ¢ Nd} = @ and ¢” is isotopic to dj in X,. By Lemma 5.4 there
exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <k —1 and g2([c"]) = [di]. We set g = g2 0 g].
Then g € Ker(9), g([di]) = [d;i] forall 1 <i <k —1 and g([c]) = [dk]. ad

Lemma 5.6 Let n > 4 be even. Let ¢ be a generic circle of X, \ {x} such that ¢ Nd; = @ for all
1<i<n-3,|cNdy—2|=1, cNdy—1 = @ and c is isotopic to d,—1 in . Then we have one of the

following two possibilities:

(1) c isisotopic to dy—1 in Xy \ {x}.
(2) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <n—1 and g([c]) = [dyx].

Proof The surface X, is a surface of genus %(n —2) with two boundary components d; and d,. We
assume that the circles dy, ..., dn—1, d, are arranged as in Figure 12. Let 2 be the surface obtained by
cutting 3, along U:’;ll d;. Then Q has two connected components €21 and €25. Each of these components
is a cylinder that we represent by a square with a hole in the middle, as shown in Figure 13. Two opposite
sides of each square represent arcs of d,—_5, one side represents an arc of d,—1 and the last side represents
a union of arcs of dy, ..., d,—3. The boundary of the hole represents d; for €2; and d, for 2,. The
puncture x sits inside €25. The trace of the circle ¢ in 2 is a simple arc £, either in 1 or in Q5.

Suppose £ is in 1. Let ¢ be the intersection point of ¢ with d,,—». Then ¢ is represented in 1 by two
points ¢ and g2 on two opposite sides of €21, as shown in Figure 13, and £ is a simple arc connecting ¢
with ¢g». Up to isotopy pointwise fixing the boundary of €21, there exist exactly two simple arcs in €

d;tod,; d; tod,;
. L . dns 5 .
d; az asz a4
C
dns dns

Figure 13: The surface 2 with components €21 (left) and €2, (right).
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d;tod,;
dns s
as @‘— Qs
I
dni

Figure 14: The arc 5.

connecting ¢ to g, that are represented by the arcs £ and £, depicted in Figure 13. The arc £ cannot
be isotopic to £1, otherwise ¢ would not be isotopic to d,—1 in ;. So £ is isotopic to £ in 21, which
implies that c is isotopic to d,—1 in Xp \ {x}.

Now suppose £ is in ©25. Let g be the intersection point of ¢ with d,—»>. Then ¢ is represented in 2, by
two points g3 and g4 on two opposite sides of €25, as shown in Figure 13, and £ is a simple arc connecting
q3 with g4. Up to isotopy (in €2, and not in 2 \ {x}) pointwise fixing the boundary of €2, there exist
exactly two simple arcs in 2, connecting g3 to g4 that are represented by the arcs £3 and £4 depicted in
Figure 13. The arc £ cannot be isotopic to £3 in 2, otherwise ¢ would not be isotopic to d,—1 in X,.
So { is isotopic to €4 in Q5. Let {F;: Q2 — Q2}¢[0,1] be an isotopy such that Fo = id, F1(£) = {4
and F; is the identity on the boundary of Q2 for all ¢ € [0, 1]. The arc £4 divides €2, into two parts: the
lower one, which does not contain the hole bordered by d, and the puncture x, and the upper one, which
contains the hole bordered by d, and the puncture x, as shown in Figure 13.

Suppose Fp(x) is in the upper part. Let C be the domain of 2, bounded by €4, two arcs of d,,—» and
an arc of d,—1, as shown in Figure 13. Let C’ = FI_I(C). Then C’ is a domain of Q5 bounded by ¢,
two arcs of d,—» and an arc of d,—1, and C’ does not contain the puncture x. The existence of such a
domain implies that ¢ is isotopic to d,,—1 in Xy \ {x}.

Now suppose Fi(x) is in the lower part. We can assume without loss of generality that the trace of d; on
Q3 is the simple arc {5 drawn in Figure 14. We can choose an isotopy { F;: 22 — Q2};¢[0,1] such that
Fj=1id, F{({4) = {5, F/ is the identity on the boundary of 2, for all ¢ € [0, 1], and F{(Fi(x)) = x.
Let F: ¥n — X, be the homeomorphism which is F 1’ o F1 on Q5 and is the identity outside €25, and
let g € M(X,, x) be the mapping class represented by F. Then g € Ker(0), g([d;i]) = [d;] for all
1 <i<n-—1,and g([c]) = [dn]. |

Remark The element g at the end of the proof of Lemma 5.6 is not necessarily trivial. For example, £
can be as shown in Figure 15 up to isotopy and, in this case, g must be nontrivial. In fact, g can be any
element of the fundamental group 71 (€25, x), which is an infinite cyclic group, seen as a subgroup of
M(Zy, X).

The following lemma is the extension of Lemma 5.6 to the case ¢ N dy # .
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d; tod,;

dn—Z I dn—Z

s O . rQ4

dn—]

Figure 15: An arc £ nonisotopic to {s.

Lemma 5.7 Let n > 4 be even. Let ¢ be a generic circle of X, \ {x} such that ¢ Nd; = @ for all
1 <i<n-3,|cNdy—2| =1 and c is isotopic to d,—1 in X,,. Then there exists g € Ker(#) such that
g([di]) = [d;] forall 1 <i <n—2, and either g([c]) = [dn—1] or g([c]) = [da].

Proof In this proof the intersection number of two circles is computed on the surface X, \ {x} and
not on X,. We can assume that |c N d,—1| = i([c], [dn—1]) and |c N d,| = i([c], [dn]). We argue by
induction on |¢ Ndy—1| + |c N dy| = i([c], [dn=1]) + i([c], [dn]). The case |c N dy—1| = 0 follows
directly from Lemma 5.6, and the case |c¢ N dy,| = 0 is proved in the same way by replacing d,—1
with d,,. So we can assume that i ([c], [dn—1]) = |c Ndn—1]| = 1, i([c], [dn]) = |c Ndy| > 1 and that
the induction hypothesis holds. Note that now ¢ and d,—; cannot be isotopic in ¥, \ {x}. Since ¢
and d,— are isotopic in X, there exists a bigon D in X, cobounded by an arc of d,—; and an arc
of ¢ (see Figure 16). Since ¢ and dj,—; are not isotopic in X, \ {x}, this bigon necessarily contains
the puncture x. We can choose D to be minimal in the sense that its interior does not intersect ¢ and
dy—1. Moreover, up to exchanging the roles of d,—1 and dj, if necessary, we can also assume that d,,
does not intersect the interior of D. Clearly D does not intersect d; for any 1 <i <n —3 and, up
to replacing ¢ with an isotopic circle, we can assume that D does not intersect dj,—; either. Let ¢’
be a circle parallel to ¢ except in the bigon D, where it follows the arc of d,—1, which borders D as
illustrated in Figure 16. We have ¢'Nd; = @ forall 1 <i <n—3, |¢’Ndy—3| =1 and ¢’ is isotopic
to dp—1 in X,. We also have i ([¢'], [dn—1]) < i([c], [dn-1]) and i ([¢'], [dn]) < i([c], [dn]); hence by the
induction hypothesis there exists g1 € Ker(6) such that g;([d;]) = [d;] forall 1 <i <n —2, and either
g1([¢']) = [du-1] or g1([c']) = [dy]. Without loss of generality we can assume that g1([¢]) = [dn—1].
We choose G € Homeo™ (X, x) which represents g1 such that G{(d;) = d; forall 1 <i <n—2
and G(c') = dy—1. We set ¢’ = Gy(c). Then " Nd; = @ forall 1 <i <n-3, | Ndy—>| =1,
¢"Ndy—1 = @ and ¢” is isotopic to dy—1 in X,. By Lemma 5.6 there exists g € Ker(#) such that
g2([di]) =[di] forall 1 =i <n—2, and either g2([c"]) = [dn—1] or g2([c"]) = [dn]. We set g = g20g1.
Then g € Ker(0), g([d;]) = [d;] forall | <i <n —2, and either g([c]) = [dn—1] or g([c]) = [dx]. O

Lemma 5.8 Letn > 6. Let c1,...,cp—1 be generic circles in ¥, \ {x} such that
@ |ciNcjl=1if|i—j|=1and |c;Nc;j|=0if|i —j|>2,forall 1 <i,j <n-—1,

(b) c¢; isisotopictod; in X, forall 1 <i <n-—1.
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Figure 16: The bigon cobounded by ¢ and d,_1.

Then:

(1) If n is odd, then there exists g € Ker(0) such that g([c;]) = [d;] forall 1 <i <n—1.

(2) If n is even, then there exists g € Ker(6) such that g([c;]) = [d;] for all 1 <i <n — 2, and either
g(len—1]) = [dn—1] or g([cn—1]) = [dn].

Proof For 1 <k <n—2 we construct by induction on k an element g; € Ker(6) such that g ([c;]) = [d;]
forall 1 <i <k. Assume k = 1. Then, by Lemma 5.5 applied to k = 1, there exists g; € Ker(6) such that
g1([c1]) = [d1]. Suppose 2 <k <n —1 and gj_; is constructed. We choose G;_; € Homeo™ (%, x)
which represents gi_1 such that G_1(¢c;) =d; forall 1 <i <k —1, and we set c,’c = Gy_1(ck). Note
that, since gr_; € Ker(0), the circle c,/c is isotopic to ¢x in X,. Then, by Lemma 5.5, there exists
hj € Ker(0) such that h ([d;]) = [d;] forall 1 <i <k —1and hg([c;]) = [di]. We set gx = hi o gr_1.
Then g ([c;]) = [d;] for all 1 <i < k. Note that when 7 is odd we can extend the induction to k =n — 1
and conclude the proof here by setting g = g,—1. The case where n is even requires an extra argument.

Assume 7 is even. We choose G,,_» € Homeo™ (Z,,, x) which represents g,—» and such that G, —»(¢;) =d;
forall 1 <i <n—2, and we set c;l_l = Gp—2(cn—1). Again, since g,—» € Ker(0), the circle c;l_l is
isotopic to ¢,—1 in ¥,. By Lemma 5.7 there exists h,—1 € Ker(#) such that h,—1([d;]) = [d;] for all
1 <i <n-2,andeither h,—1([c;_,]) = [dn—1] or hy—1([c],_,]) = [dn]. We set g = hp_10gn—>. Then
g([ci]) = [di] forall 1 <i <n—2, and either g([cn—1]) = [dn—1] or g([cn—1]) = [dn]- m|

Proof of Theorem 2.2 Letn > 6 and let ¢: A[A,—1] — A[Dy] be a homomorphism. Composing ¢
with 77, we get a homomorphism 7 o ¢: A[A,—1] = A[Dy] = A[An—1]. We know by Theorem 3.5 that
we have one of the following possibilities:

e mog is cyclic.

e There exist € ()) and p € Z such that 7 o ¢ is conjugate to ¥ o pp.
By Lemma 5.2, if 7 o ¢ is cyclic, then ¢ is cyclic. So we can assume that there exist ¢ € () and p € Z
such that 7 o ¢ is conjugate to v o y,. Up to conjugating and composing ¢ on the left by y if necessary,

we can assume that 7w o ¢ = yp, thatis, (m o @)(s;) = s; AZAP , where A 4 denotes the Garside element of
A[An—l]-

SetU = pA(AzA). If 7 is odd, then U? = T}, where 9 is the boundary component of %, and if n is even,
then U = Tj, Tj,, where d1 and 0, are the two boundary components of %, (see Labruére and Paris
[32, Proposition 2.12]). In particular U? € Z(M(Z,)) in both cases.
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By Theorem 3.7 there exist generic circles c1,...,cy—1 in X, \ {x}, ¢ € {£1} and fp € M(Z,, x)
such that

@ |cinNcjl=1ifli—j|=1land|c;Ncj|=0if|i —j|>2,foralll1 <i,j <n-—1,
(b) fo commutes with T¢; forall 1 <i <n—1,
(©) (ppo@)(si) =T¢ foforalll <i <n-—1.

For 1 <i <n—1 we denote by b; the circle in %, obtained by composing ¢;: S — %, \ {x} with
the embedding X, \ {x} — X,. In addition we set go = 0(fp). Then (6 o pp 0o @)(s;) = Tbs,» go for all
1 <i <n—1. Note that, since § o pp = pg o (see (3-1)), we also have (6o pp op)(s;) = (paoyp)(si) =
04 (si Ailp ) =T, U? forall 1 <i <n—1, where the a; are the circles depicted in Figure 3.

Claim We havee =1, go = U? and b; is isotopic toa; in X, forall 1 <i <n—1.

Proof of the claim Note that go = 6( fo) commutes with T}, = 0(T,;) and U = py (AZA) commutes
with T, = pa(s;); hence szisg(z) = (Tlfi g0)? = (T, UP)? = Taz,- U?P. Since gg commutes with sziggg =
TZU?P and U% € Z(M(Z,)), g5 commutes with T2, forall 1 <i <n—1. By Lemma 5.3 it follows
that gg € Z(M(Z,)). By Proposition 3.3 applied to M(X,) we deduce that S(T;i U4P) = S(Tb‘t,sgg) =
{lai]} = {[bi]}, and hence [a;] = [b;] for all 1 <i < n — 1. Then T;l__“s = U_4Pg3; hence, by
Proposition 3.3, 4 —4¢ = 0, and therefore ¢ = 1. Finally, from the equality 7,, U? = T, go it follows
that go = U?. |

From the claim it follows that ¢; is isotopic to d; in X,. Hence, by Lemma 5.8, there exists g € Ker(6)
such that g([¢;]) = [d;] forall 1 <i <n—2, g([ch—1]) = [dn—1] if n is odd, and either g([cn—1]) = [dn—1]
or g([cn—1]) = [dn] if n is even. These equalities imply that g7, g~ = Ty, for 1 <i <n-2,
chn_lg_l = Ty,_, if n is odd, and either chn_Ig_1 =Ty, or chn_]g_l = Ty, if n is even. By
Theorem 3.6(1) there exists v € Ker(sr) such that pp(v) = g. So, up to composing ¢ on the left by ad,
first, and composing on the left by ¢ if necessary after, we can assume that (op o ¢)(s;) = Ty, fo for
all 1 <i <n—1, where fo commutes with T, forall 1 <i <n— 1. Since Ty, = pp(t1) € Im(pp),
we have fy € Im(pp), and hence there exists ug € A[D,] such that pp (1g) = fo. Since pp is injective
(see Theorem 3.6), we deduce that ¢(s;) = tjug forall 1 <i <n —1 and up commutes with ¢; for all
I<i<n—1.WesetY ={f1,...,th—1}, Ay = Ay[Dy], Ap = A[Dy,], k =2 if nis odd, and « = 1
if n is even. By Paris [36, Theorem 1.1] the centralizer of Y in A[D,] is generated by AZY and A%, and
hence there exist g, r € Z such that ug = AZYq A7 . We conclude that ¢ = B ;. |

6 Endomorphisms of A[D,]

The following lemma is a counterpart of Lemma 5.8 for the case of odd #, and it is a preliminary to the
proof of Theorem 2.3.
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Figure 17: The circles dy, ..., d,.

Lemma 6.1 Let n > 5 be odd. Let ¢ be a generic circle of ¥, \{x} such that cNd; =@ for1 <i <n-3,
lcNdy—2| =1, cNdy—1 = @ and c is isotopic to d,—1 in ¥,. Then we have one of the following three
possibilities:
(1) c is isotopic to dp—1 in Ty \ {x}.
(2) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <n—1 and g([c]) = [dy].
(3) There exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <n—2, g([dn-1]) = [dn] and
g([c]) = [dn-1].

Proof The surface 3, is of genus %(n — 1) with one boundary component, d. We assume that the circles
di,...,dn—1,d, are arranged as shown in Figure 17. The circles d,,—3 and d,—1 divide d,—» into two
arcs, e and e, where the arc e intersects d,, and the arc e, does not intersect d,, (see Figure 17). Let Q
be the surface obtained by cutting X, along U:l;ll d;. Then € is a cylinder represented by an octagon
with a hole in the middle (see Figure 18). Two opposite sides of this octagon represent arcs of d,—; and
two opposite sides represent arcs of dy, ..., d,—3, as shown in the figure. Two other sides represent arcs
of e and the last two sides represent arcs of e, arranged as shown in Figure 18. The boundary of the

hole represents 0.

The circle ¢ intersects d,—» in a point ¢, and ¢ is either on the arc ey or on the arc e. Suppose first that g
is on the arc e;. Then ¢ is represented on €2 by two points g1 and g, lying on two different sides of €2 that
represent e, and the trace of ¢ in €2 is a simple arc £ connecting g; to g». Up to isotopy (in 2 and not in
Q\ {x}) pointwise fixing the boundary of €2, there are exactly two simple arcs in £ connecting g1 to ¢»,
represented by the arcs £1 and £, depicted in Figure 18. The arc £ cannot be isotopic to £, otherwise ¢
would not be isotopic to d,—1 in X,. So £ is isotopic to £1 in Q. Let {F;: Q — Q};¢[o,1] be an isotopy
such that Fo = id, F1(£) = £, and F; is the identity on the boundary of 2 for all ¢ € [0, 1]. The arc £;

dn-l
Figure 18: The surface €2.
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divides €2 into two parts: the lower one, which does not contain the hole bounded by d and the puncture x,
and the upper one, which contains the hole bounded by d and the puncture x, as shown in Figure 18.

Suppose Fi(x) is in the upper part. Let C be the domain of 2 bounded by £, two arcs of e; and an arc
of dy—1, as shown in Figure 18. Let C’ = F1_1 (C). Then C’ is a domain of  bounded by ¢, two arcs of
e1 and an arc of d,_, which does not contain the puncture x. The existence of such a domain implies
that ¢ is isotopic to dn—1 in X, \ {x}.

Suppose Fi(x) is in the lower part. We can suppose that the trace of d,, on Q2 is the arc £3 depicted
in Figure 18. We can choose an isotopy {F;: Q — Q}¢[0,1] such that Fj = id, F{({1) = {3, F] is
the identity on the boundary of Q for all ¢ € [0,1], and F|(Fi(x)) = x. Let F: ¥, > %, be the
homeomorphism which is F| o F; on Q and is the identity outside Q, and let g € M(Xy,, x) be the
mapping class represented by F. Then g € Ker(0), g([d;]) = [d;] forall 1 <i <n—1, and g([c]) = [d}].

Suppose now that g is on the arc e;. Then ¢ is represented on €2 by two points g3 and g4 lying on two
different sides of €2 which represent e5, and the trace of ¢ in Q2 is a simple arc £ connecting g3 to g4. Up
to isotopy (in 2 and not in  \ {x}) pointwise fixing the boundary of €2, there are exactly two simple
arcs in € connecting g3 to g4 represented by the arcs £4 and {5 depicted in Figure 18. The arc £ cannot
be isotopic to £5, otherwise ¢ would not be isotopic to d,—1 in X,. So £ is isotopic to £4 in 2. Let
{F¢: Q — Q}¢0,1] be an isotopy such that Fo = id, F;(£) = {4 and Fy is the identity on the boundary
of Q for all ¢ € [0, 1]. The arc £4 divides €2 into two parts: the upper one, which does not contain the
hole bounded by d and the puncture x, and the lower one, which contains the hole bounded by d and the
puncture x, as shown in Figure 18.

Suppose Fj(x) is in the lower part. Let D be the domain of 2 bounded by £4, two arcs of e, and an arc
of dp—1 as shown in Figure 18. Let D' = F;1(D). Then D’ is a domain of Q bounded by ¢, two arcs
of e5 and an arc of d,,—; which does not contain the puncture x. The existence of such a domain implies
that ¢ is isotopic to dn—1 in X, \ {x}.

Suppose Fi(x) is in the upper part. Let ¢ be the circle drawn in Figure 19. We can assume that the trace
of ¢/ on Q is the arc £ drawn in Figure 18. We can choose an isotopy {F/: Q2 — Q};¢[0,1] such that
Fy =id, F{({4) =L, F/ is the identity on the boundary of € for all 7 € [0, 1], and F{(F;(x)) = x.
Let F: ¥, — X, be the homeomorphism which is F 1’ o F1 on 2 and is the identity outside €2, and
let g1 € M(Z,, x) be the mapping class represented by F. Then g; € Ker(9), g1([d;]) = [d;] for all
1<i<n-—1,and g1([c]) =[c'].

Figure 19: The circle ¢’ and the loop .
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Let g» € m1(Z,, x) = Ker() be the element represented by the loop u drawn in Figure 19. Let us
mention here that g5 is not the Dehn twist 7}, along i, but rather the image of the point-pushing map
applied to p, which is equal to T}, lezl for 1 and p, the two boundary curves of a small regular
neighborhood of y, as explained in Farb and Margalit [28, Section 4.2.2]. We have g»([d;]) = [d;] for all
1 <i <n-2, g2([dn-1]) = [dn] and g2([c']) = [dn—1]. Set g = g20g1. Then g € Ker(0), g([d;]) = [di]
forall 1 <i <n-2, g([dn—1]) = [dx] and g([c]) = [dn-1]. |

Proof of Theorem 2.3 Letn >6. Let¢: A[D,]— A[Dy] be an endomorphism. Consider the composition
homomorphism g ot: A[A,—1] = A[D,] = A[Dy]. We know from Theorem 2.2 that we have one of the
following two possibilities up to conjugation:

(1) @ouiscyclic.
(2) There exist ¥ € (¢, x) and p,q € Z such that p o =Y 0 B 4.

Suppose @ o is cyclic. Then there exists u € A[Dy] such that ¢(¢;) = (pot)(s;) =u forall 1 <i <n-—1.
We also have

(/)(tn) = (P(tn—zlntn—ztn_ltn_—lz) = (p(ln—ztn)‘p(ln—Z)(P(tn_ltn_—lz) = ‘p(ln—ztn)‘p(tl)‘p(tn_ltn—lz) = (P(Zl)
= 1,{’
and hence ¢ is cyclic.

So we can assume that there exist ¥ € (¢, x) and p, g € Z such that ¢ ot is conjugate to ¥ o B, 4. We set
Y={t1,....th—2,tn—1}, Ay = Ay[Dy], Ap = A[Dy], «k =2 if nis odd, and k = 1 if n is even. Up
to conjugating and composing ¢ on the left by ¢ if necessary, we can assume that there exist ¢ € {+1}
and p,q € Z such that ¢(t;) = (p ot)(s;) =7 2YpAK[§1 for all 1 <i <n — 1. The remainder of the proof
is divided into four cases depending on whether p is zero or not and whether n is even or odd.

Casel (nisevenand p#0) Then X, is a surface of genus %(n —2) with two boundary components, d1
and 02, and k = 1. We have pp (#;) = Ty, for 1 <i <n—1 and, by Labruere and Paris [32, Proposition 2.12],
PD (AZY) =T,Ty, and pp(Ap) =Ty, Ty,, where e is the circle drawn in Figure 20. Set f; = (pp o¢)(t;)
for all 1 <7 <n. Then, by the above,

fi=TLTPTSMT] forall 1<i<n—1.

In particular, S( f;) = {[di]. [e]} forall 1 <i <n—1. Since t, is conjugate in A[D,] to t1, f, is conjugate
to f1 in M(X,, x); hence f, is of the form f, =T}, Telf Talj te Taq2 , where d’ is a nonseparating circle

Figure 20: Circles in X, when n is even and p # 0.
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and e’ is a circle that separates X, into two components, one being a cylinder containing x and the other
being a surface of genus %(n —2) with two boundary components, d; and e’, which does not contain x.
Moreover, by Theorem 2.1, (7w 0 ¢)(t,—1) = (;r 0 ¢)(¢y), and hence

+ +
Ty TETSTITY = 0(fu—1) = 0(fu) = T3 TNTy T,

on X, that is, Tjﬂ_l Tep = T;/ Tel/’ as multitwists on X;,. Now we can invoke Farb and Margalit
[28, Lemma 3.14] to conclude that each curve of the set {d,—_1, e} is isotopic to a curve from the set
{d’,e'} in T,. To decide which curve of one set is isotopic to which curve in the other set we observe that
removing a puncture does not change the property of a curve being nonseparating, but can make a separating
curve peripheral. Since both d,,—1 and d’ are nonseparating, whereas e and ¢’ are both separating or
peripheral in ¥, we conclude that d,—; is isotopic to d’ in ¥, (and also that e is isotopic to e’ in ).

We have fi f, = fu f1, and hence by Theorem 3.2(3) we have f,(S(f1)) = S(f1). Thus [e] is a reduction
class for fy, and therefore i ([e], [¢]) = 0, because [¢’] is an essential reduction class for f,,. We can
choose representatives e and e’ such that e Ne’ = & either by eliminating bigons, or by choosing geodesic
representatives. Let C,C’ C X, be cylinders containing x and having boundaries d, U e and 95 U ¢/,
respectively. Then either C C C'ife CC’,or C' C C ife’ C C, withx e CNC’. Say C C C’. Being
a separating circle on X, e separates C’ into two subsurfaces, one containing d, and x, and the other
containing ¢’. Being a subsurface with two boundary components lying inside a cylinder, the latter must
be a cylinder itself. This cylinder establishes an isotopy between e and ¢’ in X,, \ {x}, and hence [e¢] = [¢'].

So we can assume that e = ¢’.

Choose representatives d,—; and d’ in minimal position in X, \ {x}. Denote by Cy and X’ the two
components into which the curve e separates ¥, with Cy being a cylinder containing x, and X’ being the
rest of the surface ¥, containing dy, ..., dy—1. Suppose dy,—1 Nd’ # @&. Then d,—; and d’ cobound a
bigon. Since d,—1 and d’ were chosen to be in minimal position in X, \ {x}, such a bigon must contain x.
This implies that d’ has nonempty intersection with the cylinder Cyp which e separates from the rest of
the surface ¥, and since e and d’ are disjoint, d’ lies entirely in Cy. This is not possible because any
generic circle in Cy is peripheral in ¥, and d’ is nonseparating in X,. So d,—1 Nd’ = @&. Then there
exists an embedded cylinder C in X, with boundary components d,,—; and d’. Since e is disjoint from
d’ and dy_1, e either lies entirely in C or is disjoint from C. The circle e cannot lie entirely in C because
e is peripheral in X, and, since both d,,—1 and d’ are nonseparating in X, any generic circle lying in C
must be nonseparating. So e is disjoint from C, and hence C lies in X’. Therefore d,,—; is isotopic to d’
in X, \ {x}. Thus we can also assume d’ = dj,—1.

In conclusion we have (pp 0@)(t,—1) = (pp o) (tn) = Tjn_l TepT£+q TE;Iz’ and hence ¢(ty,—1) = ¢(ty) =

tS

£ AYPAL . We conclude that g = Bpgom if e = land 9 = yof_p _gomif e =—1.

Case2 (nisoddand p #0) Then X, is a surface of genus %(n — 1) with one boundary component, 9,
and k = 2. We have pp(t;) = Ty, for 1 <i <n—1 and, by Labruere and Paris [32, Proposition 2.12],
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Figure 21: Circles in X, when n is odd and p # 0.

oD (A‘;) =T, and pp (AZD) = Ty, where e is the circle drawn in Figure 21. Set f; = (pp o ¢)(t;) for all
1 <i <n. Then, by the above,

fE=TFTPT;? forall 1<i<n-—1.

In particular, S(f;) = S(fiz) ={[d;],[e]} forall 1 <i <n—1. The element ¢, is conjugate to 1 in A[Dy];
hence ¢(t,) is conjugate to ¢(¢1) in A[Dy], and therefore there exists v € A[D,] such that p(t,) =
vo(t v~ = (vtfv_l)(vAzfv_l)Azg. The element pp (vt;v~') is conjugate to pp(t) = Ty, , and
hence pp (vtjv~—!) = T/, where d’ is a nonseparating circle. The element pp (UA‘;, v~1) is conjugate to
oD (A‘;) = T, and hence pp (v A‘; v~1) = T,/, where €’ is a circle that separates X, into two components,
one being a cylinder containing x and the other being a surface of genus %(n — 1) with one boundary
component which does not contain x. We also have f,> = Tj, TeI,’ T32q and S(fy) = S(£2) ={[d'], [¢]}.
By Theorem 2.1 (ro@)(¢,—1) = (w0 ¢)(t,), and hence H(fn2 ) = 0(£,?). This implies that d” is isotopic

Since f1fn = fu /1, by Theorem 3.2(3) we have f,2(S(f1)) = S(f1); hence [e] is a reduction class
for £,2, and therefore i ([e], [¢’]) = 0, because [¢’] is an essential reduction class for f,2. As in Case 1,
we can choose representatives e and ¢’ such that e Ne’ = @. Let C, C’ C X, be cylinders containing
x and having boundaries d U e and d U ¢/, respectively. Then either C C C’ if e C C’, or C' C C
ife/ C C,withx e CNC’'. Say C C C’. Being a separating circle on X,, e separates C’ into two
subsurfaces, one containing d and x, and the other containing ¢’. Being a subsurface with two boundary
components lying inside a cylinder, the latter must be a cylinder itself. This cylinder establishes an
isotopy between e and e’ in X, \ {x}, and hence [e] = [¢]. So we can assume that ¢ = ¢’, and hence
pp (VA v =Ty =T, = pp(A%). Since pp is injective, it follows that vA%, v™! = A},

Using the same argument as in Case 1, from the fact that d’ does not intersect ¢’ = e and that d’ is isotopic
to dy—1 in X, it follows that d’ is isotopic to d,—1 in X, \ {x}; hence we can also assume that d’ = dj,—1.
Then pp (vhv HY=Ty = T4, , = pp(tn—1), and hence, since pp is injective, vtiv~ ! =1t,_;. At this
stage of the proof we have that ¢(t,) = t,f_l(vAzypv_l)AZDq and (1)A2Yp1)_1)2 = vA‘;f’v_l = A‘;f’. It
remains to show that UA2Yp vl = A2Yp .

By Theorem 2.2 there exist ¥ € ({, y) and r, s € Z such that ¢ o { o is conjugate to ¥ o B, 5. The
automorphism ¢ is inner since 7 is odd, and hence we can assume that ¥ € (y). So there exist w €
A[Dy], p € {£1} and r, s € Z such that p(t;) = wtl.MAZYrAZDSw_1 forall 1 <i <n—2and ¢(t;) =
wey A ASwTl Set ¢ = pp(w). We have (pp o ¢)(t?) = T;I_STepT;q = (ngai_”“TerT{fsg_1 for

all 1 <i <n—2and (pp 0 p)(12) = T}*_ /T = gij_l T T?°g7". So g_l(S(ijTepTazq)) =
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S(T;iMTer Tazs), and hence g~ ({[d;].[e]}) C {[d;].[e]} forall 1 <i <n—1. This implies g~ ([d;]) = [d;].
and hence g commutes with T, ; therefore w commutes with 7; forall 1 <i <n —1. Since Ay is in the
subgroup of A[D,] generated by Y = {z1,...,t,—1} and AZD is central, it follows that ¢(#;) = tl.“ Aer AZDS
forall 1 <i <n—2and ¢(t,) = t’/;L_lAer AZDS. Consider the equality ¢(t1) = thszAqu = Z{LAZY’ AZDS.
Then #; * AZY(I’ ) = ZIgs—q). The right-hand side of this equality lies in the center of A[D,], the
left-hand side lies in Ay[D,] and, by Paris [38, Coro(llar})/ 2.6], the intersection of Ay[D;] with the
M _ AZY r—p

center of A[D,] is trivial; hence s = ¢ and tf . The element AZY(r_p ) lies in the center of

Ay[Dy,] and (1) is a proper parabolic subgroup of Ay[D]; hence, again by Paris [38, Corollary 2.6],
tle = AZY(r_p ) = 1, and therefore ¢ = u and r = p. Here we use that A[D,] is torsion-free, which
follows from Deligne [25], where it is proved that A[D,] has a finite-dimensional classifying space. So
o(ty) = t,f_lAzfAZg. We conclude that ¢ = B, gomife=1land g = yoB_p _4somife=—1.

Case 3 (n is even and p = 0) Then, again, X, is a surface of genus %(n — 2) with two boundary
components, d1 and d2, and k = 1. We have pp (#;) = Ty, for 1 <i <n—1 and, by Labruére and Paris

[32, Proposition 2.12], pp(Ap) = Ty, Ty,. Set f; = (pp o @)(t;) for all 1 <i < n. Then, by the above,
fi=Tg Ty Ty forall 1<i<n-—1.

In particular, S( f;) = {[d;]} for all 1 <i <n —1. Since ¢, is conjugate in A[D,] to t1, f, is of the form
Jn=T Taq1 Taq2 , where d’ is a nonseparating circle.

For 1 <i < n —3 we have f;t, = tyt;; hence Ty, T4 = T4/ Ty, and therefore, by Proposition 3.1,
i([d;],[d']) = 0. Similarly, i ([dn—1], [d']) = 0. Since t,—otntn—2 = tatn—2tn, wehave Ty, Tg Ty , =
Tq'Ta, ,Ta, and hence, by Proposition 3.1, i ([dn—2], [d']) = 1. So we can assume that d; Nd' = @ for
1<i<n-3,dy,—1Nd’' =@ and |d,—»Nd’| = 1. Moreover, by Theorem 2.1, (o) (ty—1) = (T o@)(tn);
hence 0( fu—1) = 0(f»), and therefore d’ is isotopic to d,—; in X,. By Lemma 5.6 it follows that we
have one of the following two possibilities:

(1) d’ s isotopic to dp—1 in T, \ {x}.

(2) There exists g € Ker(6) such that g([d;]) = [d;] forall 1 <i <n—1and g([d']) = [dn].
Suppose d' is isotopic to dp—1 in E, \ {x}. Then (pp 0 ¢)(ta) =T Taq1 Taqz, and hence, since pp is
injective, p(t,) = t,f_lAqD. We conclude that ¢ = Bogomife=1and ¢ = yoBo,_gomife=—1.
Suppose there exists g € Ker(0) such that g([d;]) = [d;] forall 1 <i <n—1 and g([d']) = [d,]. We have

— qa7rqd _ ,—1 q 74
(ppo@)(ti) = T;i T31 Taz =& Tji T81 Tazg
forall1 <i <n-—1 and
_ ard _ ,—1 q 74
(oD 0 @)(tn) = Tj/Tal T32 =8 Tjn T8| Tazg-
By Theorem 3.6 there exists v € Ker(sr) C A[Dy,] such that pp (v) = g. Since pp is injective, it follows that
o(ti) = v_lthqu forall 1<i <n.

We conclude that ¢ = ad,—1 0y, ife=1and ¢ =ad,-10 yoy—4if e =—1.
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Case 4 (n is odd and p = 0) Then, again, ¥, is a surface of genus %(n — 1) with one boundary
component, d, and k = 2. We have pp(t;) = Ty, for 1 <i < n —1 and, by Labruere and Paris
[32, Proposition 2.12], pp (AZD) =Tj. Set fi = (pp o )(¢;) for all 1 <i <n. Then, by the above,

fi=T5T§ forall 1<i<n-—1,
In particular, S(f;) = {[d;]} forall 1 <i <n —1. Since ¢, is conjugate in A[D,] to t1, f, is conjugate
to f1 in M(Zp, x), and hence f, is of the form f, =T}, Taq where d’ is a nonseparating circle.

For 1 <i < n —3 we have fjt, = tyt;, and hence Ty, Ty = Ty Ty, . Therefore, by Proposition 3.1,
i([d;],[d']) = 0. Similarly, i ([dn—1], [d']) = 0. Since t,—2tntn—2 = tatn—2tn, we have Ty, Ty Ty , =
T4T,, ,Tg, and hence, by Proposition 3.1, i ([dn—2], [d']) = 1. So we can assume that d; Nd" = & for
1<i<n-3,dy,—1Nd’' =@ and |d,—,Nd’| = 1. Moreover, by Theorem 2.1, (m o@)(t,—1) = (T o@)(t);
hence 0( fu—1) = 0(f»), and therefore d’ is isotopic to d,—; in X,. By Lemma 6.1 it follows that we
have one of the following three possibilities:

(1) d’isisotopic to dp—1 in Ty, \ {x}.

(2) There exists g € Ker(6) such that g([d;]) = [d;] forall 1 <i <n—1 and g([d']) = [dn].

(3) There exists g € Ker(6) such that g([d;]) = [d;] for all 1 <i <n —2, g([dy—1]) = [dx] and

g([d']) = [dn—1]-

If d’ is isotopic to dp—; in X, \ {x}, then we prove as in the case where n is even that ¢ = Bg 4 o 7 if
e=1and ¢ = yoBo,—4om if ¢ = —1. Similarly, if there exists g € Ker(0) such that g([d;]) = [d;] for
all 1 <i <n—1and g([d']) = [dyx], then we prove as in the case where n is even that ¢ = ad,—1 oy, if
e=1and ¢ =ad,—1 0 yoy—, if e = —1, where v is an element of Ker(x) C A[Dy].

Suppose there exists g € Ker() such that g([d;]) = [d;] forall 1 <i <n—2, g([dy—1]) = [dn] and
g([d']) = [dn—1]. We have

(bpo@)ti) =T5T] =g 'T; Tjg for 1<i<n-2,
(p o) tn—1) =TS TH=g7'T5 Tlg.  (ppop)tn) =TT =g 'T; Tig.
By Theorem 3.6 there exists v € Ker(sr) C A[Dy,] such that pp (v) = g. Since pp is injective, it follows that

o(t) = v_llfAZqu for 1 <i<n-2, o(th—1) = v_lt,fAzgv, o(ty) = v tf

2q
n—1Apv.

We conclude that ¢ = ad,—10foy,ife=1and ¢ =ad,—10foyoy_4ife=—1. O

7 Endomorphisms of A[D,]/Z(A[D,])

Proof of Proposition 2.7 Let A be the Garside element of A[D,]. We set k =2 if n is odd and x = 1 if
n is even. Recall that Z(A[D,]) is the cyclic group generated by A“. Let ¢z: Az[D,] — Az[Dy] be an
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endomorphism. For each 1 <i <n—2 we define u; € A[D,] by induction on i as follows. First choose any
uy € A[Dy] such that £ (u1) = @z (tz,1). Now assume that 2 <i <n —2 and that u; _ is defined. Choose
u; € A[Dyp] such that £(u}) = ¢z (tz,). Since 9z (tz,i-1tz,itz,i—1) = ¢z (tz,itz,i-11z,i), there exists
ki € Z such that u; _yuju; =u;.u,~_1u;.A"k". Then set u; =u;A"ki. Note that £ (u;) =£(u;) =z (tz,)
and

Ui UU—1 = ui_lu;ui_lAKk" = ugui_lugAz"ki = U Uj_1U;.
Define in the same way u,_1,u, € A[Dy] such that £(up—1) = ¢z(tzn-1), EWn) = 0z(tz ),

Up—2Up—1Up—2 = Up—1Up—2Up—1 AN Up_2UxUR—2 = UpUp—2Up.
Leti, j €{l,...,n}besuchthati # j and t;t; =t;t;. We have ¢z (tz,tz,;) =¢z(tz,jtz,i), and hence
there exists / € Z such that u;u; = u; uiA’d . Recall the homomorphism z: A[D,] — Z which sends ¢;
to 1 forall 1 <i <n. Since z(A) = n(n — 1), the previous equality implies that

z(ui)+z(uj) =z(wu;) +zu;) +kln(n—1).
Hence [ = 0, and therefore w;u; = u;u;.

By the above we have an endomorphism ¢: A[D,] — A[D,] which sends #; to u; for all 1 <i <n, and
this endomorphism is a lift of ¢z. |

Proof of Theorem 2.8 Letn > 6. Let pz: Az[D,] — Az[D;] be an endomorphism. We know from
Proposition 2.7 that ¢z admits a lift ¢: A[Dy,] — A[Dy]. By Theorem 2.3 we have one of the following
three possibilities up to conjugation:

(1) ¢ is cyclic.

(2) There exist Y € (£, x) and p,q € Z such that ¢ = 0, s om.

(3) There exist Y € (£, x) and p € Z such that ¢ = Y o y),.
Clearly, if ¢ is cyclic then ¢z is cyclic.
Now we show that the second case cannot occur. Suppose there exist ¢ € (¢, y) and p,q € Z such
that ¢ = Y o Bp g0 m. As ever, we set k = 2 if n is odd and k = 1 if n is even. Recall that the
center of A[D,] is generated by A, where A is the Garside element of A[D,]. We need to show
that (A*) ¢ Z(A[Dy]) = (A*), which leads to a contradiction. Since ¥ € Aut(A[Dy]), we have

Y (Z(A[Dyn])) = Z(A[Dy]), and hence we can assume that ¢ = B, som. Let Y ={t1,...,#,—1} and let
Ay = Ay|[D,] be the Garside element of Ay[D,]. Since

A= (11 th—2tn—1lntn—2 - 11) - (tn—2ln—1Intn—2) (In—11n).
A[An—l]2 = (51" Sn—ZS,%_lsn—Z ceeSp) e (Sn—253_1sn—2)s;%—1,
(see Lemma 5.1 for the second equality), we have 7(A) = A[A4,_1]?, and hence
2k (1 -1 20n(n—
(p(AK) — (ﬁp,q Oﬂ)(AK) — ,Bp,q(A[An—l]zk) — A;( +pn(n ))AK gn(n 1)‘
This element does not belong to Z(A[D,]) = (A*¥), because k(14 pn(n—1)) # 0 and (AZY) N({A) ={1}.
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Suppose we are in the third case. So there exist ¢ € (¢, x) and p € Z such that ¢ = v o y,. We have
Yo () = ACC+epn(n=1) ¢ (AKY,
and hence y,, induces an endomorphism yz ,: Az[Dy] — Az[Dy]. Moreover, forall 1 <i <n,
vz,pliz,i) =§( NP) = (1) = iz,

so yz,p = id. Clearly v is the lift of an element ¥z € ({z, xz), and hence oz =V zoyz , =¥z. O
Now, as promised in Section 2, we prove the following.

Lemma 7.1 Let n > 4. If n is even, then ({z, xyz) N Inn(Az[D,]) = {id}, and if n is odd, then
(xz) NInn(Az[Dy]) = {id}.

Proof We first show that, if ¢: A[D,] — A[Dy] is an automorphism such that ¢z € Inn(Az[Dy]), then
@ € Inn(A[Dy]). Let ¢ € Aut(A[Dy]) be such that ¢z € Inn(Az[Dy]). There exists gz € Az[Dy] such
that z(tz,;) = gztz,,-gzl for all 1 <i <n. Again, we denote by A the Garside element of A[D,],
and we set «k =2 if n is odd and k = 1 if n is even. Let g € A[D,] be such that £(g) = gz. For every
1 <i <n, there exists k; € Z such that ¢(t;) = gt;jg ' Aki Leti, j € {1,...,n} be such that {ti tj}is
an edge of Dy. From the equality #;¢;1; = t;t;1; it follows that

gtititig P ACCKITRD = o(154) = (1 tiy) = gttty gt AKITRD)

Hence 2k; 4+ k; = k; + 2k, and therefore k; = k;. Since D, is a connected graph, it follows that k; = k;
forall i, j € {1,...,n}. So there exists k € Z such that ¢(t;) = gt;g~ ' A“K for all 1 <i < n. Recall the
homomorphism z: A[D,] — Z which sends ¢; to 1 for all 1 <i <n. Since ¢ is an automorphism, we
have Im(z o ¢) = Im(z) = Z. Furthermore, since z(A) =n(n—1), we have (zo@)(t;) = 1 +xkn(n—1)
for all 1 <i < n, and hence Im(z o ¢) = (1 + xkkn(n — 1))Z. This implies that k = 0, and hence
¢ = adg € Inn(A[Dy)).

Arguing in a similar way we can see that lifts of {z and yz in Aut(A[Dy]) are unique. Since we know
that (¢, y) N Inn(A[Dy]) = {id} if n is even and {y) N Inn(A[D]) = {id} if n is odd, it follows that
(¢z, xz)NInn(Az[Dy]) = {id} if n is even and (xz) N Inn(Az[D,]) = {id} if n is odd. m|
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