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Hierarchies for relatively hyperbolic virtually special groups

EDUARD EINSTEIN

Wise’s quasiconvex hierarchy theorem classifying hyperbolic virtually compact special groups in terms
of quasiconvex hierarchies played an essential role in Agol’s proof of the virtual Haken conjecture.
Answering a question of Wise, we construct a new virtual quasiconvex hierarchy for relatively hyperbolic
virtually compact special groups. We use this hierarchy to prove a generalization of Wise’s malnor-
mal special quotient theorem for relatively hyperbolic virtually compact special groups with arbitrary
peripheral subgroups.

20F65, 20F67

1 Introduction

1.1 Background, history and motivation

One of the main goals of cube complex theory is to use the geometry and combinatorial structure of
cube complexes to better understand groups. The study of cubical groups has played an important role in
recent developments in the theory of hyperbolic 3-manifold groups, particularly in Agol’s proof of the
virtual Haken conjecture [1].

Virtually special cube complexes, developed by Wise and his collaborators, are central to the theory of
cubical groups. A group is called compact virtually special if it is the fundamental group of a compact
virtually special cube complex whose hyperplanes satisfy certain combinatorial conditions. Virtually
special cube complexes have desirable separability properties that allow certain immersions to be promoted
to embeddings using Scott’s criterion [27].

A construction in [24] due to Sageev provides a method for constructing a group action on a CAT.0/
cube complex using “codimension-1 subgroups”; however, in general, this action may not be proper,
cocompact, or have a virtually special quotient. For hyperbolic groups, the situation is much clearer:
Bergeron and Wise [5] proved that hyperbolic groups with an ample supply of quasiconvex codimension-1
subgroups have a proper and cocompact action on a CAT.0/ cube complex. The key to Agol’s proof of the
virtual Haken conjecture is that any geometric action of a hyperbolic group on a CAT.0/ cube complex
has virtually special quotient [1, Theorem 1.1]. In the case of closed 3-manifolds, the ample supply of
codimension-1 subgroups comes from immersed surfaces constructed by Kahn and Markovic in [20].
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Two key ingredients in Agol’s theorem are Wise’s quasiconvex hierarchy theorem and malnormal special
quotient theorem (MSQT). Wise’s quasiconvex hierarchy theorem [30, Theorem 13.3] characterizes the
virtually special hyperbolic groups in terms of virtual quasiconvex hierarchies.

Definition 1.1 [30, Definition 11.5] Let QVH be the smallest class of hyperbolic groups closed under
the following operations.

(1) f1g 2QVH.

(2) If G D A�C B and A;B 2QVH and C is finitely generated and quasi-isometrically embedded
in G then G 2QVH.

(3) If G D A�C , A 2QVH and C is finitely generated and quasi-isometrically embedded in G, then
G 2QVH.

(4) If H 6G with jG WH j<1 and H 2QVH, then G 2QVH.

In other words, groups in QVH are hyperbolic groups that can be built from the trivial group by taking
finite index subgroups or taking amalgamations and HNN extensions over quasiconvex subgroups.

Theorem 1.2 ([30, Theorem 13.3], Wise’s quasiconvex hierarchy theorem) Let G be a hyperbolic
group. Then G 2QVH if and only if G is virtually compact special.

As Wise notes in [30, Section 12], the MSQT is an essential ingredient in the proof of the quasiconvex
hierarchy theorem.

Theorem 1.3 (Wise’s malnormal special quotient theorem [30, Theorem 12.2]) Let G be a hyperbolic
and virtually special group with G hyperbolic relative to a collection of subgroups fP1; : : : ; Pmg. Then
there exist finite index subgroups PPi 6 Pi such that if G D G.N1; : : : ; Nm/ is any peripherally finite
Dehn filling with Ni 6 PPi , then G is hyperbolic and virtually special.

The MSQT together with virtually special amalgamation criteria from [13; 19] are used to prove
Theorem 1.2.

For relatively hyperbolic groups, much less is known. Wise’s methods from [30] extend to more general
situations than hyperbolic groups. In particular, many of the methods for hyperbolic groups extend to
finite volume hyperbolic 3-manifolds. Hsu and Wise [19] also proved a special combination result for
relatively hyperbolic groups albeit with much more restrictive hypotheses.

The main goal of this paper is to prove relatively hyperbolic analogs of important ingredients in the proof
of Theorem 1.2. The first result answers a question posed by Wise:
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Theorem 1 Let .G;P/ be a relatively hyperbolic group pair and let G be a virtually compact special
group. Then there exists a finite index subgroup G0 6G and an induced relatively hyperbolic group pair
.G0;P0/ so that G0 has a quasiconvex, malnormal and fully P0-elliptic hierarchy terminating in groups
isomorphic to elements of P0.

Proving that the hierarchy is not only quasiconvex and malnormal but also fully P0-elliptic is a way
of ensuring that the hierarchy is compatible with the relatively hyperbolic structure on G and allows
for the use of relatively hyperbolic Dehn filling arguments. See Sections 3.2 and 3.3 for definitions of
quasiconvex, malnormal and fully P0-elliptic hierarchies.

Theorem 1 will be used to prove a relatively hyperbolic generalization of the MSQT using relatively
hyperbolic Dehn filling techniques similar to those used in [3]:

Theorem 2 Let .G;P/ be a relatively hyperbolic group pair with P D fP1; : : : ; Pmg. If G is virtually
compact special, then there exist subgroups f PPi C Pig where PPi is finite index in Pi such that if
G D G.N1; : : : ; Nm/ is any peripherally finite filling with Ni C PPi , then G is hyperbolic and virtually
special.

Peripherally finite fillings are defined formally in Definition 8.2. While Wise proved a generalized
relatively hyperbolic version of the MSQT in [30, Theorem 15.6] for relatively hyperbolic groups with
virtually abelian peripherals, Theorem 2 holds for arbitrary peripheral subgroups.

1.2 Outline

Section 2 contains a brief overview of the geometry of relatively hyperbolic groups. Section 3 covers
preliminaries about graphs of groups and quasiconvex hierarchies.

Section 4 is devoted to proving a relative fellow traveling result for a CAT.0/ space with a geometric
action by a relatively hyperbolic group, a generalized version of quasigeodesic stability in hyperbolic
spaces. The main result is Theorem 4.7. Similar results were proved by Hruska [14] and Hruska–Kleiner
in [17] for CAT.0/ spaces with isolated flats, and this result was previously known to experts in the
field. However, it was difficult to find an exact formulation of Theorem 4.7 in the literature, so a proof is
produced here.

Section 5 contains a combination lemma for certain subspaces of CAT.0/ spaces with a geometric action by
a relatively hyperbolic group. The main result, Theorem 5.6 shows that subspaces of such a CAT.0/ space
that are unions of convex cores for peripheral coset orbits and convex subspaces that obey a separation
property are quasiconvex. The proof technique is inspired partly by the proof of the combination lemma
in [19].

Section 6 reviews the properties of special cube complexes. In particular, Section 6.3 will introduce
separability and explain how to pass to a finite cover so that each hyperplane’s elevations to the universal
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cover obey a separation property. Section 6.4 recalls a result of Sageev and Wise [26] used to represent
peripheral subgroups of a relatively hyperbolic compact special group G as immersed complexes in an
NPC cube complex X with �1X DG.

Section 7 follows the outline of [3, Section 5] and uses Wise’s double dot hierarchy construction to prove
Theorem 1. While the general strategy is the same, the hyperbolic geometry used in [3] to prove the
edge groups of the hierarchy are �1-injective and quasi-isometrically embedded needs to be replaced by
relatively hyperbolic geometric results from the preceding sections.

Section 8 uses Theorem 1 along with a relatively hyperbolic Dehn filling argument similar to the one
used in a new proof of Wise’s MSQT from [3] to prove Theorem 2, a relatively hyperbolic analog of
Wise’s MSQT.

Acknowledgements
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suggestions. Specifically, the author would like to thank Groves for explaining the proof of Proposition 7.29.
The author also thanks Lucien Clavier, Yen Duong, Chris Hruska, Michael Hull and Daniel Wise for
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2 Relatively hyperbolic geometry

2.1 The geometry of CAT.0/ spaces being acted on by relatively hyperbolic groups

In the situation where a relatively hyperbolic group acts properly and cocompactly on a CAT.0/ space,
it is reasonable to hope to partially recover the geometric features of a hyperbolic space. There are many
equivalent definitions of a relatively hyperbolic group, see [16] for several examples; one definition,
originally due to Farb [10], is produced here:

Definition 2.1 [16, Definition 3.6] Let G be finitely generated relative to P with each P 2 P finitely
generated. The pair .G;P/ is a relatively hyperbolic group pair if for some finite relative generating set S ,
the coned-off Cayley graph b�.G;P; S/ is hyperbolic and .G;P; S/ has Farb’s bounded coset penetration
property (see [10, Section 3.3]).

The elements of P and their conjugates are called peripheral subgroups and the cosets fgP Wg2G; P 2Pg
are called peripheral cosets.

Definition 2.1 establishes useful notation to refer to a relatively hyperbolic group pair, but the technical
details will be less useful. Instead, most of the arguments involving relatively hyperbolic groups will be
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made using two key properties: that coarse intersections of peripheral cosets are uniformly bounded and
that triangles are relatively thin in a sense defined in Section 2.2.

The following fact is well known:

Proposition 2.2 Let .G;P/ be a relatively hyperbolic group pair. Let S be a finite generating set
for G. For all R > 0, there exists MR > 0 such if gP , g0P 0 is a pair of distinct peripheral cosets , then
diamNR.gP /\NR.g0P 0/6MR in the word metric on �.G; S/.

The uniform bounds on coarse intersections of peripheral cosets transfers nicely to the case where a
relatively hyperbolic group acts properly and cocompactly on a geodesic space by isometries:

Corollary 2.3 Let G be a finitely generated group acting properly and cocompactly by isometries on a
geodesic metric space X , and let x 2 X be a base point. If .G;P/ is a relatively hyperbolic group pair ,
then for all R > 0, there exists MR;X;x > 0 such that if P;P 0 2 P , g; g0 2 G with gP ¤ g0P 0, then
diamNR.gPx/\NR.g0P 0x/6MR;X;x .

2.2 Relatively thin triangles

Comparison tripods help compare geodesic triangles in X with tripods:

Definition 2.4 Let a; b; c 2 X and let 4abc be a geodesic triangle. There exists a map h W 4abc!
T .a; b; c/ where T .a; b; c/ is a unique tripod (up to isometry) with center point x such that h is isometric
on each side of the triangle and the three legs of the tripod are Œh.a/; x�, Œh.b/; x� and Œh.c/; x�. The
tripod T .a; b; c/ is called a comparison tripod for 4abc. The map h is the comparison map.

A geodesic metric space X is hyperbolic if there exists a ı > 0 so that for every geodesic triangle in X ,
the preimage of every point in the comparison map has diameter less than ı.

Definition 2.5 Let X be a geodesic metric space, and let F �X be a subset of X .

Let 4abc be a geodesic triangle in X and let ı > 0. Let T .a; b; c/ be the comparison tripod, and let
h W 4abc! T .a; b; c/ be the comparison map. If, for all p 2 T .a; b; c/,

(1) diam h�1.p/ < ı or

(2) h�1.p/�Nı.F /,

then 4abc is ı-thin relative to F .

Definition 2.6 Let X be a geodesic metric space, ı > 0 and let B be a collection of subspaces. The
space X has the ı-relatively thin triangle property relative to B if each geodesic triangle � is ı-thin
relative to some F 2 B.
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Figure 1: An example of a triangle which is ı-thin relative to some F with its comparison tripod.
Points in the blue part of the tripod have preimages in the triangle which lie in the blue shaded
region. All other points have preimages in the triangle with diameter ı like the point p whose
preimages x; y have d.x; y/ < ı. The fat part (see Definition 2.10) of each side is the subsegment
that intersects the blue shaded region.

See Figure 1 for an illustration of Definition 2.6.

The space X may contain triangles that are ı-thin. By definition, these triangles are ı-thin relative to every
element of B. In the applications, X will usually be a CAT.0/ space with a geometric action by a relatively
hyperbolic group G where the elements of B are convex subspaces of X that lie in uniformly bounded
neighborhoods of peripheral coset orbits. If .G;P/ is a relatively hyperbolic group pair, a CAT.0/ space
with a geometric action byG has the relatively thin triangle property relative to BDfgPx jg2G; P 2Pg:

Proposition 2.7 ([26, Theorem 4.1, Proposition 4.2], see also [8, Section 8.1.3]) Let .G;P/ be a
relatively hyperbolic group pair and let G act properly and cocompactly on a CAT.0/ space X by
isometries. Let x 2X be a base point and set

B D fgPx j g 2G; P 2 Pg:

Then for some ı > 0, X has the ı-relatively thin triangle property relative to B.

When X has the relatively thin triangle property relative to B, R > 0 and B0 D fNR.F / W F 2 Bg, then X
still has the relatively thin triangle property relative to B0.

The notion of fellow traveling will be useful for describing behavior of geodesics that issue from the
same point. Definitions of fellow traveling may vary, so the one that will be used is recorded here:

Definition 2.8 Let ˛ W Œa1; a2�!X and ˇ W Œb1; b2�!X be geodesics, and let k> 0. The geodesics ˛ and
ˇ k-fellow travel for distance D if d.˛.a1C t /; ˇ.b1C t //6 k for all 06 t 6D. If x WD ˛.a1/D ˇ.b1/
and ˛ and ˇ k-fellow travel for distance D, then ˛ and ˇ k-fellow travel distance D from x.
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We also introduce tails of a geodesic to help us make geometric arguments:

Definition 2.9 Let 
 be a geodesic in �X , let p be an endpoint of 
 , and let k > 0. The k-tail of 
 at p is
the geodesic subsegment of T consisting of all x 2 
 so that d.x; p/6 k.

Definition 2.10 Let X be a CAT.0/ geodesic metric space with triangles that are ı-thin relative to B.
Let 4�X with vertices a, b, c with comparison map h W 4abc! T .a; b; c/. Let La be the closure of
the leg of the tripod T .a; b; c/ that contains h.a/. Let Thina WD fx 2 h�1.La/ W diam h�1.h.x// < ıg.
The corner segments of 4 at a are the two closures of the parts of Thina in each side and the corner
length is the length of a corner segment at a.

The fat part of the side ab �4 in 4 is ab n .Thina [Thinb/.

The corner segments at a are subsegments of the sides issuing from a that ı-fellow travel. Each of these
segments have the same length, which is defined to be the corner length. If4 is ı-thin relative to B4 2 B,
the fat part of each side of 4 is the maximal subsegment that does not lie in any of the corner segments
and hence lies in Nı.B4/. Note that the fat part of a side may be empty. Since X is CAT.0/, each corner
segment or fat part of a side is connected.

A .�; �/-quasigeodesic in X is a .�; �/-quasi-isometric embedding of a (possibly unbounded) interval in
the real line in X , see [7, Definition I.8.22] for details.

Quasigeodesic triangles in the Cayley graph of a relatively hyperbolic group also satisfy a thinness
condition which is used to obtain Proposition 2.7:

Theorem 2.11 ([26, Theorem 4.1], originally due to [8]) Let .G;P/ be a relatively hyperbolic group
pair with Cayley graph � . For all �> 1; � > 0 there exists a ı > 0 such that if4 is a .�; �/-quasigeodesic
triangle in � with sides c0, c1, c2, either

(1) there exists a point p that lies within ı
2

of each side or

(2) there is a peripheral coset gP so that each side ci of4 has a subpath c0i where c0i �Nı.gP / and
the terminal endpoint of c0i and the initial point of c0iC1 (indices mod 3) are within distance ı of
each other.

Lemma 2.12 is simple but is instrumental for working with relatively thin triangles.

Lemma 2.12 Let �X be a CAT.0/ space. Let �abc be a geodesic triangle in �X that is ı-thin relative
to F . Let ab, bc, ac denote the sides of �abc. If the length of the fat part of ac in �abc is bounded
above by kfat > 0, then the length of the fat part of bc and the length of the fat part of ab differ by at
most kfatC 3ı.
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Figure 2: Applying the triangle inequality four times gives a bound on the difference between the
length of Œpab; pba� and the length of Œpbc ; pcb� in terms of jŒpac ; pca�j; ı.

The proof involves four applications of the triangle inequality. See Figure 2 for a schematic. With
Lemma 2.12, a bound on the fat part of one side of a relatively thin triangle helps control the lengths of
the fat parts of the other two sides. This technique will be used repeatedly, particularly in Section 5.

Relatively hyperbolic groups interact nicely with passing to finite index subgroups:

Proposition 2.13 [3, Notation 2.9] Let G be a group and let P be a finite collection of subgroups of G.
Let H CG be a finite index normal subgroup. For each P 2 P , let E0.P /D fgPg�1\H j g 2Gg and
let E.P / be a set of representatives of H -conjugacy classes in E0.P /. Let P 0 D

F
P2P E.P /.

The pair .G;P/ is relatively hyperbolic if and only if .H;P 0/ is relatively hyperbolic.

There is also a generalized version of quasiconvexity for relatively hyperbolic groups.

Definition 2.14 [16, Definition 6.10] Let .G;P/ be a relatively hyperbolic group pair. Let H 6 G.
Let S be any finite set such that S [P generates G. Suppose there exists �.S; dS / such that for anyb�.G;P; S/-geodesic 
 with endpoints inH , 
\G lies in N�.H/ with respect to dS . ThenH is relatively
quasiconvex in .G;P/.

There are other equivalent definitions which are discussed in [16]. The definition is also independent of
the choice of finite relative generating set (see [16, Theorem 7.10]). Relative quasiconvexity will only be
needed for the peripheral subgroups:

Proposition 2.15 Let .G;P/ be a relatively hyperbolic group pair. Then every element of P is relatively
quasiconvex in G.

Proof In b�.G;P; S/ every P 2 P has diameter 1.
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3 Graphs of groups and hierarchies

3.1 Graphs of groups

A graph of groups (together with an isomorphism from the fundamental group) is a way of decomposing
a group along a finite number of splittings and HNN extensions. Further decomposing the vertex groups
as graphs of groups, decomposing the resulting vertex groups as a graph of groups again and continuing
this process a finite number of times yields a kind of “multilevel graph of groups” called a hierarchy
which will be defined in Definition 3.6.

Definition 3.1 A graph of groups .�; �/ consists of the following data:

(1) a connected finite graph � D �.V;E/ where V is the vertex set of � and E is the oriented edge
set of � with an involution e 7! Ne that switches the orientation of each edge,

(2) an assignment map � W V tE!Grp that assigns a group to each vertex and edge,

(3) for all e 2E, �.e/D �. Ne/,

(4) attachment homomorphisms  e W �.e/! �.t.e// where t .e/ is the terminal vertex of the edge e.

� is a faithful graph of groups if the attachment homomorphisms  e are injective.

A graph of spaces is constructed like a graph of groups, except that the assignment map � assigns a (path
connected) topological space instead of a group to each edge and vertex. The attachment homomorphisms
are replaced by continuous attachment maps, and a faithful graph of spaces has �1-injective attachment
maps. A graph of spaces realization of a spaceX for a graph of spaces .�; �/ is a triple .�; �; q/where q is
a homotopy equivalence fromX to the mapping cylinders of the attachment maps glued along vertex spaces.

Some authors, for example Wise and Serre, take faithfulness to be a part of the definition of a graph of
groups. Not requiring faithfulness makes it easier to define graphs of groups in terms of graphs of spaces.
For the applications in Section 7, graphs of groups will be constructed first without showing that they are
faithful, but these graphs of groups will turn out to be faithful.

If .�; �/ is a graph of groups, and T is a maximal tree in � , then �1.�; T / will denote the fundamental
group of the graph of groups � with respect to the tree T . See [28] for further details about graphs of
groups.

A graph of groups structure is the group-theoretic analog of a graph of spaces realization:

Definition 3.2 Let G be a group, let .�; �/ be a graph of groups where T is a maximal tree and let
� WG! �1.�; T / be an isomorphism. The triple .�; �; T / is a graph of groups structure on G.

The structure .�; �; T / is degenerate if � is a single vertex labeled with G and � is the identity.
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†1;1 †1;1

S1

ha; bi hc; d i

Z

Figure 3: A graph of spaces realization of a genus-2 surface where †1;1 is a punctured torus,
together with the corresponding graph of groups obtained by applying the �1 functor.

While a graph of groups structure determines a splitting of G, the choice of isomorphism and maximal
tree affects the precise splitting. In many cases, it suffices to give a splitting of G up to conjugacy which
will be the case in the examples below. When the splitting is given up to conjugacy, the choice of maximal
tree also becomes unnecessary.

Example 3.3 Figure 3 shows a graph of spaces decomposition of a genus-2 surface and a graph of
groups splitting of the fundamental group induced by the graph of spaces decomposition.

Example 3.4 If †g is a closed surface of genus g, then a pants decomposition of †g induces a splitting
of �1†g as a graph of groups where the vertex groups are isomorphic to a free group of rank 2 and the
edge groups are infinite cyclic groups.

Graph of groups structures interact naturally with finite index normal subgroups. The following is
[3, Proposition 3.18] but is originally due to Bass [4].

Proposition 3.5 Suppose G has a graph of groups structure .�; �; T /,H CG andH is finite index in G.
Then H has an induced graph of groups structure .e�;e�; T 0/ so that :

(1) Every vertex group of .e�; T 0/ has the form .Kg \H/C Kg and is finite index in Kg for some
vertex group K of .�; T / and some g 2G.

(2) Every edge group of .e�; T 0/ has the form .Kg \H/CKg and is finite index in Kg for some edge
group K of .�; T / and some g 2G.
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3.2 Hierarchies

Hierarchies of groups are inductively defined multilevel graphs of groups:

Definition 3.6 A hierarchy of groups of length 0 is a single vertex labeled by a group.

A hierarchy of groups of length n is a graph of groups .�n; �n/ together with hierarchies of length n� 1
on each vertex of �n.

If H is a length-n hierarchy of groups, the nth level of H is the graph of groups �n. For 16 k 6 n, the
.n�k/th level of H is the disjoint union of the .n�k/th levels of the hierarchies on the vertices of �n.

The terminal groups are the groups labeling the vertices at level 0.

It will be useful to think of graphs of groups as length-1 hierarchies. Realizing a group as a hierarchy is
similar to finding a graph of groups structure for that group:

Definition 3.7 Let G be a group, H be a hierarchy of length n. Let .�n; �n/ be the level-n graph of
groups. When nD 0, a hierarchy for G is a single vertex labeled by G. If n> 1, a hierarchy for G is H
together with a graph of groups structure .�n; �; T / for G so that for every vertex v of �n, the hierarchy
on length n� 1 on v is a hierarchy for the vertex group �n.v/. Let P be a collection of subgroups of G.
The hierarchy structure terminates in P if every terminal group of H is conjugate to �.P/ for some P 2P .

It will often be convenient to forget the choice of maximal tree and only give a hierarchy structure for a
group up to conjugacy. In general, hierarchies will be allowed to contain degenerate splittings, but in
order to obtain nontrivial results, it will be necessary to ensure that at least one of the splittings in the
hierarchy is nondegenerate.

Wise’s hierarchies in [30] permit only one-edge splittings rather than allowing a graph of groups splitting
for each vertex group in the hierarchy. The hierarchies in Definition 3.7 can be converted to hierarchies with
one-edge splittings for each vertex group at the expense of increasing the length of the hierarchy. Wise’s
hierarchies also terminate in the trivial group while Definition 3.7 allows arbitrary terminal groups. In prac-
tice, the goal in Section 7 will be to (virtually) find a hierarchy for a relatively hyperbolic group .G;P/
that terminates in groups isomorphic to those in the induced peripheral structure. Section 8 will explore
what happens to the hierarchy after quotienting out finite index subgroups of the peripheral subgroups.

A hierarchy of spaces and a hierarchy realization for a space X can be defined analogously by replacing
groups in Definition 3.6 with topological spaces and replacing graph of groups structures by realizations
in Definition 3.7.

Malnormality is an important group property which will play a role in Section 8 and is useful for
amalgamating virtually special groups to make new virtually special groups (see [19]).

Definition 3.8 Let G be a group and let H 6G. The subgroup H is malnormal inG if for all g 2G nH ,
g�1Hg\H D f1g. Similarly, H is almost malnormal in G if for all g 2G nH , jg�1Hg\H j<1.

Algebraic & Geometric Topology, Volume 25 (2025)
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Malnormality also extends to collections of subgroups. Let P be a collection of subgroups of G. The
collection P is (almost) malnormal in G if for all g 2 G and P;P 0 2 P either g�1Pg \P 0 is trivial
(finite) or P D P 0 and g 2 P .

For example, if .G;P/ is a relatively hyperbolic group pair andG is finitely generated, then the collection P
is almost malnormal in G by Proposition 2.2.

Definition 3.1 (graphs of groups) and Definition 3.6 (hierarchies) are very flexible, but in practice, some
further restrictions will be needed to ensure that graphs of groups and hierarchies produce useful splittings:

Definition 3.9 Let .�; �/ be a faithful graph of groups and let .�; �/ be a graph of groups structure
(up to conjugacy) for a group G.

(1) � is quasiconvex if every edge attachment map is a quasi-isometric embedding into �1.�/.

(2) � is (almost) malnormal if for every e 2 E, the image of the attachment homomorphism  e in
�1.�/ is (almost) malnormal in �1.�/.

Let H be a hierarchy for G.

(1) H is faithful if every graph of groups at every level of H is faithful.

(2) H is quasiconvex if every edge group of every graph of groups at every level of H quasi-isometrically
embeds in G.

(3) H is (almost) malnormal if every edge group of every graph of groups at every level of H is
(almost) malnormal in G.

It may be possible to give a reasonable weaker definition of quasiconvex (or malnormal) hierarchy by only
requiring an edge group Ge of a graph of groups H in H to be quasi-isometrically embedded (malnormal)
in each adjacent vertex group, but the stronger definition given here will be needed in Section 8.

Here are some examples to help illustrate the definition of a hierarchy:

Example 3.10 A splitting of the fundamental group of a hyperbolic surface group can be realized along
quasiconvex infinite cyclic subgroups by using a pants decomposition. The splitting can be achieved
either as a sequence of 1-edge splittings to create a hierarchy or can be achieved a single multiedge graph
of groups splitting.

There are iterated hierarchy splittings that cannot be realized by a single graph of groups splitting:

Example 3.11 Figure 4 shows a length-2 hierarchy for the fundamental group of a genus-2 surface, †2.
Cuts are made along the both the blue and green simple closed curves which intersect, so the iterated
splitting of the fundamental group cannot be accomplished by a graph of groups (length-1 hierarchy).

Other notable examples of hierarchies are the Haken hierarchy for Haken 3-manifolds, see [22, Section 9.4],
and the Magnus–Moldvanskii hierarchy for one-relator groups, see [30, Chapter 19].

Algebraic & Geometric Topology, Volume 25 (2025)



Hierarchies for relatively hyperbolic virtually special groups 4449

F2 F2

Z

Z

h1i

Z

h1i

Figure 4: A hierarchy for �1.†2/, the fundamental group of a genus-2 surface†2, where the iterated
splitting of �1.†2/ cannot be realized by a graph of groups. The first splitting is over the infinite
cyclic subgroup of �1.†2/ corresponding to one of the blue copies of S1. The resulting vertex spaces
are punctured tori whose fundamental groups are rank-2 free groups. Cutting along the green arc in
each punctured torus makes an annulus. Then the fundamental group of a punctured torus splits as
an HNN extension of the fundamental group of an annulus (Z) over the trivial group (corresponding
to the green arcs in each annulus which are glued together to make a punctured torus).

Proposition 3.5 extends to hierarchies by induction on the length of the hierarchy.

Corollary 3.12 Suppose G has a hierarchy H and H is a finite index normal subgroup of G. Then H has
an induced hierarchy H0 such that the length of H is the length of H0 and :

(1) Every vertex group at level i of the hierarchy H0 is of the form Kg \H which is finite index and
normal in Kg for some vertex group K of H at level i and some g 2G.

(2) Every edge group at level i of the hierarchy H0 is of the form Kg \H which is finite index and
normal in Kg for some edge group K of H at level i and some g 2G.

Lemma 3.13 follows from Corollary 3.12:

Lemma 3.13 If H is a quasiconvex hierarchy for G and G0 is a finite index normal subgroup of G, then
the induced hierarchy on H0 on G0 is quasiconvex.

The definition of a quasiconvex hierarchy for a group G only requires that the edge groups are quasi-
isometrically embedded in G; when a graph of groups .�; �; T / structure for G is quasiconvex, the vertex
groups are quasi-isometrically embedded as well.
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Lemma 3.14 Let .�; T / be a graph of groups structure for G. If the edge groups of � are quasi-
isometrically embedded in G, then the vertex groups of � are quasi-isometrically embedded in G.

Here is a rough sketch of the proof of Lemma 3.14. A Cayley graph ƒ.G; S/ of G coarsely looks
like a “tree of spaces” whose underlying (infinite) graph is the covering tree of .�; T / where the edge
spaces are Cayley graphs of edge groups and the vertex spaces are Cayley graphs of vertex groups.
If ƒv WD ƒ.Gv; Sv/ is one of the vertex spaces, the coarse tree structure ensures that if a ƒ.G; S/-
geodesic shortcut 
 between two points in ƒv exits ƒv through an edge space ƒe, it must return
throughƒe . If 
 enters and exitsƒv at points pe1 ; p

0
e1
; : : : ; pem ; p

0
em

, let 
i be the image (inƒ.G; S/) of
a ƒe-geodesic between pei and p0ei . There exist �> 1 and � > 0 so that every 
i is .�; �/-quasigeodesic
in ƒ.G; S/. We can build a new path � from 
 by replacing the subsegment of 
 from pei to p0ei with 
i .
Then � lies entirely in the image of ƒv and hence � is at least as long as the ƒv-distance between its
endpoints. Now the length of � is at most �j
 j C �, or equivalently, j
 j > 1

�
j�j � �. Thus 
 cannot be

much shorter than the shortest path in ƒv between the endpoints of 
 .

3.3 Fully P-elliptic hierarchies

Given a relatively hyperbolic group pair .G;P/ and a hierarchy H for G, the goal in Section 8 will be to
strategically find a quotient of G that has a hierarchy induced by H and inherits a relatively hyperbolic
structure from .G;P/ that is also compatible with the induced hierarchy structure. Theorem 1.2 can then
be used to show the resulting quotient is virtually special. To ensure that this happens, some additional
restrictions must be imposed on the interactions between the edge and vertex groups of the hierarchy and
the peripheral subgroups of G.

Definition 3.15 Let H be a hierarchy for a group G and let P be a collection of subgroups of G. Let V
be the vertex groups of H. For each H 2 V , let �1.�H ; �H ; TH / be the graph of groups structure for H
induced by the hierarchy H. The hierarchy H is P-elliptic if whenever there exists a g2G such that P g WD
gPg�1 �H 2 V , then there exists an h 2H such that hP gh�1 is contained in some vertex group of �H .

A P-elliptic hierarchy is fully P elliptic if whenever E is an edge group in H, then for all g 2G, either
P g \E is finite or P g 6E.

When H is a fully P-elliptic hierarchy for G and G0 is a finite index normal subgroup of G, the induced
hierarchy from Corollary 3.12 for H is also fully P-elliptic in the induced peripheral structure provided
by Proposition 2.13:

Proposition 3.16 Suppose thatG0 is finite index normal in G and let .G0;P0/ be the peripheral structure
induced on G0 by Proposition 2.13. If G has a fully P-elliptic hierarchy , then the induced hierarchy H0
of G0 is fully P0-elliptic.

Proposition 3.16 follows immediately from the explicit characterizations of the edge and vertex groups of
the induced hierarchies in Corollary 3.12 and from the explicit description of the induced peripheral structure.
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4 The relative fellow traveling property

4.1 CAT.0/ relatively hyperbolic pairs

The main result of the section is Theorem 4.7. In [14], Hruska proved that piecewise Euclidean 2-
complexes satisfy a relative form of quasigeodesic stability called the relative fellow traveling property.
In [17, Proposition 4.1.6], Hruska and Kleiner showed that CAT.0/ spaces with isolated flats have the
relative fellow traveling property relative to the isolated flats. Earlier, Epstein proved a version of relative
fellow traveling for truncated hyperbolic spaces associated to finite volume cusped hyperbolic manifolds
[9, Theorem 11.3.1]. Theorem 4.7 is a version of relative fellow traveling for CAT.0/ spaces with a proper
cocompact action by a relatively hyperbolic group. Theorem 4.7 is presumed to be known to experts
based on the works of [8; 14; 15; 17] and others, but the exact formulation used here proved difficult to
find in the literature. Therefore, a proof is provided here.

Definition 4.1 Let �X be a CAT.0/ space, let ı > 0, let f W R>0! R>0 be a function and let B be a
collection of subsets of �X . The pair .�X;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair if

(1) every geodesic triangle in �X is ı-thin relative to some F 2 B,

(2) for all r > 0 and F1; F2 2 B with F1 ¤ F2, diamNr.F1/\Nr.F2/6 f .r/.

We say that a .ı; f /-CAT.0/ relatively hyperbolic pair has the L-quasiconvexity property if there exists
L > 0 so that each F 2 B is L-quasiconvex in the sense that any �X-geodesic with endpoints in F lies
in NL.F /. The subspaces B are called peripheral spaces.

An immediate consequence of CAT(0) geometry is the following useful fact that we will use repeatedly:

Observation 4.2 If eY is an L-quasiconvex subspace of a CAT.0/ space �X , then for any R> 0, NR.eY / is
also L-quasiconvex. In other words, if x; y 2NR.eY /, then any geodesic between x, y lies in NRCL.eY /.
Definition 4.3 Let .�X;B0/ be a .ı; f0/-CAT.0/ relatively hyperbolic pair, and letR>0. AnR-thickening
of B0 is a collection, B, of subspaces of �X so that there exists a bijection B0 2 B0 $ B 2 B where
B0 � B , and B �NR.B0/.

Proposition 4.4 Let .�X;B0/ be a .ı; f0/-CAT.0/ relatively hyperbolic pair , and let B be anR-thickening
of B0. Let f .r/D f0.r CR/. Then .�X;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair.

Proof Let F1; F2 2 B with F1 ¤ F2. Then there exist F1;0; F2;0 2 B0 so that F1 � NR.F1;0/ and
F2 �NR.F2;0/. Then

diamNr.F1/\Nr.F2/6 f .r/:

A geodesic triangle 4 in �X is ı-relatively thin relative to some F0 in B0. Since F0 is contained in
some F 2 B element, 4 is ı-relatively thin relative to F .
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Definition 4.5 (similar to [17, Definition 4.1.4]) Let .�X;B/ be a .ı; f /-CAT.0/ relatively hyperbolic
pair. The pair .�X;B/ has the relative fellow traveling property if for all � > 1 and � > 0, there exist
U; V > 0 depending on �; � such that for any .�; �/-quasigeodesics � W Œ0; t� �! �X and 
 W Œ0; s
 �! �X
with the same endpoints, there exist partitions

0D s0 6 s1 6 � � �6 s2nC1 D s
 and 0D t0 6 t1 6 t2 6 � � �6 t2nC1 D t�

such that

(1) for all i , d.
.si /; �.ti //6 U ,

(2) if i is even, then dHaus
�

.Œsi ; siC1�/; �.Œti ; tiC1�/

�
6 U or

(3) if i is odd, 
.Œsi ; siC1�/; �.Œti ; tiC1�/�NV .Fi / for some Fi 2 B.

For a fixed .�; �/, we say that .�; �/-quasigeodesics .U; V /-fellow travel relative to B.

All the CAT.0/ relatively hyperbolic pairs we consider in later sections are of the form considered in the
next proposition:

Proposition 4.6 Let .G;P/ be a relatively hyperbolic group pair so that G acts geometrically on a
CAT.0/ cube complex �X . Let x 2 �X be a basepoint. Let BP D fgPx W g 2 G; P 2 Pg, and let B be
any R-thickening of BP . There exist ı; L.R/> 0 and f WR>0!R>0 so that .�X;B/ is a .ı; f /-CAT.0/
relatively hyperbolic pair that has the L.R/-quasiconvexity property.

Proof By [26, Theorem 1.1], for each P 2 P , the convex hull of Px lies in a bounded neighborhood
of Px. Since P is finite, there is an L > 0 so that the convex hull of gPx lies in NL.gPx/. Thus any
geodesic between points in gPx lies in NL.gPx/. By Observation 4.2, any R-thickening will have the
.LCR/-quasiconvexity property because the R-neighborhood of each B 2 B is L-quasiconvex. Let BgP
be the convex hull of gPx 2 BP . Since P is finite, there is an R (independent of g, P ) so that each
BgP � NR.gPx/. Hence B D fBgP W g 2 G; P 2 Pg is an R-thickening of BP . By Proposition 4.4,
it suffices to show that there exist ı > 0 and fP W R>0 ! R>0 so that .�X;BP/ is a .ı; fP/-CAT.0/
relatively hyperbolic pair. Proposition 2.7 implies Definition 4.1(1) holds. Corollary 2.3 ensures that
Definition 4.1(2) holds.

Theorem 4.7 Let .G;P/ be a relatively hyperbolic group pair where G acts geometrically on a CAT.0/
space �X with basepoint x 2 �X . If B is any R-thickening of fgPx j g 2 G; P 2 Pg then .�X;B/ has the
relative fellow traveling property.

The remainder of this section is devoted to the proof of Theorem 4.7. The proof of Theorem 4.7 is
completely self-contained, so a reader who is not interested in the technical details may wish to skip to
the next section. We now set the following standing hypotheses for the remainder of Section 4:
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Hypotheses 4.8 Let .G;P/ be a relatively hyperbolic group pair where G acts geometrically on a
CAT.0/ cube complex �X . Fix a basepoint x and let B be an R-thickening of fgPx j g 2G; P 2 Pg. Fix
ı > 0, L> 0 and f WR>0!R>0 so that .�X;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair with the
L-quasiconvexity property.

4.2 Some geometric features of .eX;B/ under Hypotheses 4.8.

In this section, we establish some geometric facts about the .ı; f /-CAT.0/ relatively hyperbolic pair .�X;B/.
Definition 4.9 Let .�X;B/ be a .ı; f /-CAT.0/ relatively hyperbolic pair. Let 
 � �X and let �> 0. The
�-saturation of 
 (with respect to B) is

Sat�.
/D
S
fB 2 B W 
 \N�.B/¤¿g:

In the following, 
 will usually be a quasigeodesic.

The following is a consequence of [8, Lemma 8.10] and the Milnor–S̆varc lemma:

Proposition 4.10 Under Hypotheses 4.8, for every �> 1 and � > 0, there exists u�;� so that if 
 , � are
.�; �/-quasigeodesics with the same endpoints , then

� �Nu�;� .
/[
� S
F 2Satu�;� .
/

Nu�;� .F /
�
:

Definition 4.11 Let �X be a geodesic metric space and let B be a collection of subspaces of �X . Let B 2B,
�> 1 and � > 0. Let 4 be a .�; �/-quasigeodesic triangle. Let 
1, 
2, 
3 be the sides of 4. We say that
4 is coarsely �-thin relative to F 2 B if

(1) there exists a point p 2 �X so that d.p; 
1/; d.p; 
2/; d.p; 
3/ <
�
2

or

(2) there exist subpaths ci � 
i so that ci �N�.F / and the distance between the terminal point of ci
and the initial point of ciC1 (where indices are taken mod 3) is less than � .

Theorem 2.11 and the Milnor–S̆varc lemma imply:

Proposition 4.12 With Hypotheses 4.8, for all � > 1 and � > 0, there exist ı�;� so that if 4 is a
.�; �/-quasigeodesic triangle , then there is an F4 2 B so that4 is coarsely ı�;�-thin relative to F4.

To simplify the proof of relative fellow traveling, we can make the following reduction:

Proposition 4.13 Assume Hypotheses 4.8. To show that .�X;B/ has the relative fellow traveling property ,
it suffices to prove Definition 4.5 holds in the special case that 
 is geodesic.

The proof of Proposition 4.13 is essentially identical to the reduction step in [14, proof of Theorem 13.1].
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Proposition 4.10 suggests it might be possible for a quasigeodesic to remain far from a geodesic with
the same endpoints by passing from one peripheral space to another. However, Lemma 4.14 shows that
such a quasigeodesic must always come close to the geodesic with the same endpoints when transitioning
from one peripheral space to another:

Lemma 4.14 Given � > 0, � > 1 and � > 0, there exists D\.�; �; �/ > � so that if � is a .�; �/-
quasigeodesic , 
 is a geodesic with the same endpoints as � , and �.t/ 2 N�.F1/\N�.F2/ for some
distinct F1; F2 2 Sat�.
/, then �.t/ 2ND\.�;�;�/.
/.

Proof There exist p1; p2 2 
 so that pi 2N�.Fi /. Let �1; �2 be geodesics so that �i joins �.t/ to pi .
By Observation 4.2 and the L-quasiconvexity of Fi , �i � N�CL.Fi /. Let 4 be the geodesic triangle
with sides �1; �2 and the subpath of 
 joining p1 to p2. Then 4 is ı-thin relative to some F 2 B.

Recall corner segments and fat parts of relatively thin triangles from Definition 2.10. Let � 01 and � 02 be the
corner segments of4 at �.t/. Observe that � 01�N�CL.F1/\N�CLCı.F2/, so j� 01jD j�

0
2j6f .�CLCı/.

Up to exchanging the indices of F1, F2, we may assume that F ¤ F1.

The fat part of �1 in 4 lies in Nı.F /\N�CL.F1/, so it has length at most f .�CLC ı/. The fat part
of �1 also intersects Nı.
/. Therefore, d.�.t/; 
/6 2f .�CLC ı/C ı.

If necessary, we may enlarge D\.�; �; �/ to ensure D\.�; �; �/> �.

4.3 Relative fellow traveling

Hypotheses 4.15 For the following subsection, we adopt the following baseline hypotheses in addition
to Hypotheses 4.8:

(1) Fix �> 1 and � > 0.

(2) Let � W Œ0; t� �! �X be a .�; �/-quasigeodesic triangle and let 
 W Œ0; s
 �! �X be a geodesic that has
the same endpoints as � .

(3) Enlarge ı from Hypotheses 4.8 so that all .�; �/-quasigeodesic triangles are coarsely ı-relatively
thin relative to some F 2 B (recall Definition 4.11 and Proposition 4.12) and all geodesic triangles are
ı-relatively thin relative to some F 2 B.

(4) Let uD u�;� as in Proposition 4.10.

(5) We abuse notation slightly and use D\ D D\.u C � C 1; �; �/ (see Lemma 4.14). Note that
D\ > uC �C 1> u.

(6) Let �0 D �C 2D\.

(7) Choose D� ı�;�0 C �
0 where ı�;�0 is a constant such that all .�; �0/-quasigeodesic triangles are

coarsely ı�;�0-thin relative to some F 2 B (recall Proposition 4.12).

(8) Let `> f .D/.
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We first obtain a stability result for .�; �/-quasigeodesics with endpoints in Nq.F / for some F 2 B:

Proposition 4.16 Let q > 0. There exists K.q/> 0 so that if ˛ W Œa1; a2�! �X is a .�; �/-quasigeodesic
with ˛.a1/; ˛.a2/ 2Nq.F / for some F 2 B, then ˛.Œa1; a2�/�NK.q/.F /.

Proof Let ˇ W Œb1; b2�! �X be a geodesic with ˇ.b1/D ˛.a1/ and ˇ.b2/D ˛.a2/. Since Nq.F / is L-
quasiconvex by Observation 4.2, ˇ�NLCq.F /. Let yD ˛.x/ for some a1 6 x6 a2. Let ˛l D ˛.Œa1; x�/
and let ˛r D ˛.Œx; a2�/. The sides ˛l , ˛r , ˇ define a .�; �/-quasigeodesic triangle that is coarsely thin
relative to some F 0 2 B.

If there exist p, ˛.al/, ˛.ar/, and ˇ.xb/ 2 ˇ so that d.p; ˛.al//; d.p; ˛.ar//; d.p; ˇ.xb// 6 ı
2

, then
jx� al j6 jal � ar j6 �.ıC �/. Then

d.ˇ.b/; y/6 d.˛.al/; y/C d.˛.al/; ˇ.xb//6 �.jx� al j/C �C ı 6 �2ıC��C �C ı:

If F D F 0, then there exist al 6 x 6 ar so that ˛.al/; ˛.ar/ 2Nı.F / and d.˛.al/; ˛.ar//6 ı. Hence
jal � xj6 jal � ar j6 �.ıC �/. Then d.˛.al/; y/6 �2ıC�2�C �, so y 2NıC�2ıC�2�C�.F /.

Finally, if F ¤ F 0, then there exist al , ar , bl , br with al 6 x 6 ar so that d.˛.al/; ˇ.bl// 6 ı,
.˛.ar/; ˇ.br//6 ı and ˇ.Œbl ; br �/�NqCL.F /\Nı.F 0/. Therefore

d.˛.al/; ˛.ar//6 d.ˇ.bl/; ˇ.br//C 2ı 6 f .qCLC ı/C 2ı:

Following computations similar to those in the previous cases,

jal � xj6 jal � ar j6 �.f .qCLC ı/C 2ı/C �;

d.˛.al/; y/6 �2.f .qCLC ı/C 2ı/C�2�C �;

d.ˇ.bl/; y/6 �2.f .qCLC ı/C 2ı/C�2�C �C ı:

Therefore, y 2NqCLC�2.f .qCLCı/C2ı/C�2�C�Cı.F /. Taking K.q/ to be the maximum of the constants
generated in the three cases yields an appropriate constant.

Here is a brief overview of our strategy for the rest of this section:

(1) We will partition Œ0; t� � into subintervals so that on each subinterval either � is near an element of B
or � does not stay close to any element of B for long (Proposition 4.17).

(2) In Lemma 4.18, we alter our partition of Œ0; t� � by widening the intervals where � remains near some
element of F so that � is near 
 at the endpoints of these intervals. In exchange, we need to calculate
looser upper bounds (Proposition 4.19) on how close � is to an element of B on these intervals.

(3) On what remains of the subintervals where � is not near an element of B, we prove that � lies within
bounded Hausdorff distance of a part of 
 (Proposition 4.21).
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(4) We use this information to find subintervals of Œ0; s
 � that cover Œ0; s
 � where 
 is either close to
an element of B or within bounded Hausdorff distance of � . However, these subintervals may overlap.
In Propositions 4.22 and 4.24, we show that overlapping can be controlled.

(5) In Propositions 4.25 and 4.26, we rearrange the interval endpoints and delete some subintervals of
Œ0; t� � and Œ0; s
 � to eliminate any overlap and use the bounds found in Propositions 4.22, 4.24 and 4.25
to ultimately construct a partition that witnesses relative fellow traveling.

In the following, we will use superscripts to help track the stages of partitioning and repartitioning Œ0; t� �
and covering Œ0; s
 � by subintervals.

Proposition 4.17 There exists a partition 0D t00 6 t01 6 t02 6 � � �6 t02nC1D t� and F0; F1; : : : ; Fn�1 2 B
with the following properties:

(1) diamft 2 Œt02i ; t
0
2iC1� W �.t/ 2ND.F /g6 ` for all F 2 B.

(2) �.t02iC1/; �.t
0
2iC2/ 2NDC�.Fi /.

(3) For all F 2 B, there do not exist t�F < t
0
2iC1 6 t02iC2 < t

C

F so that �.t�F /; �.t
C

F / 2NuC�.F /.

(4) Fj ¤ Fk for j ¤ k.

It turns out the choice of ` is somewhat arbitrary, but it does affect how much the partition produced by
Proposition 4.17 will need to be altered to give partitions of Œ0; t� � and Œ0; s
 � that witness relative fellow
traveling.

Proof Let m 2N so that .m� 1/`6 t� <m`. We proceed by induction on m.

If jt� j< `, then setting t00 D 0 and t01 D t� suffices.

Assume that Proposition 4.17 holds for quasigeodesics parameterized over intervals of length less than
.m � 1/`. Find 0 6 t� 6 tC 6 t� so that jtC � t�j realize supF 2Bfja � bj W �.a/; �.b/ 2 ND.F /g.
If jtC� t�j< `, then t00 D 0 and t01 D t� suffices.

Otherwise, by the inductive hypothesis, we obtain partitions

0D t00 6 t01 6 � � �6 t02jC1 D t� and tC D t
0
2jC2 6 t02jC3 6 � � �6 t02nC1 D t�

so that diamt2Œt0
2i
;t0
2iC1

�f�.t/ 2ND.F /g6 ` for all F 2 B, jt2iC2� t2iC1j> ` and �.t02iC1/; �.t
0
2iC2/ 2

NDC�.Fi / for some Fi 2 B. Combining these partitions into a partition of Œ0; t� � immediately satisfies
the first two requirements. We obtain item (3) because D > �0 >D\ > uC � (recall Hypotheses 4.15),
the inductive hypothesis and jtC� t�j is determined by a supremum. However, we need to check that
if k1 6 j and k2 > j (with k1 ¤ k2), then Fk1 ¤ Fk2 . If Fk1 D Fk2 , then there exist tl < t� < tC < tr
so that �.tl/; �.tr/ 2ND.Fk1/ with jtl � tr j> jt�� tCj> `, contradicting hypothesis (3).

In Proposition 4.17, it is not guaranteed that the �.t0j / are near 
 . To remedy this, we widen the intervals
Œt02iC1; t

0
2iC2� as necessary while shrinking Œt02i ; t

0
2iC1�:
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Lemma 4.18 For 06 j 6 2nC 1, there exist t1j so that :

(1) For all 06 i 6 n, diamft 2 Œt12i ; t
1
2iC1� W �.t/ 2ND.F /g6 ` for all F 2 B.

(2) 0D t10 6 t11 6 � � �6 t12n 6 t12nC1 D t� .

(3) t02i 6 t12i 6 t12iC1 6 t02iC1.

(4) Either t12i D t
1
2iC1 or d.�.t12i /; 
/; d.�.t

1
2iC1/; 
/6D\.

(5) jt12iC1� t
0
2iC1j; jt

1
2iC2� t

0
2iC2j6 `.

Proof For each i , we perform the following procedure to set t12i . Consider piD�.t02i /. By Proposition 4.10,
either pi 2Nu.
/ or pi 2Nu.F / for some F 2 Satu.
/ (where u is as defined in Hypotheses 4.15). In
the first case, we set t12i D t

0
2i noting that u6D\.

Suppose we are in the second case: let tCext D supft 2 Œt02i ; t
0
2iC1� W �.t/ 2Nu.F /g. Then jtCext� t

0
2i j6 `

by Proposition 4.17. One of the following holds:

� tCext D t
0
2iC1 and �.tCext/ 2NuC�.F / because tCext is a supremum.

� �.tCext/ 2NuC�C1.
/.

� �.tCext/ 2NuC�C1.F 0/ for some F 0 2 F with F 0 ¤ F .

Indeed, if tCext ¤ t
0
2iC1, then Proposition 4.10 and the fact that tCext is a supremum ensure either the second

or third possibility must hold. In the case that tCext D t
0
2iC1, set t12iC1 D t

1
2i D t

0
2iC1. Otherwise, set

t12i D t
C
ext. In this case, either �.t12i / lies in ND\.
/ directly or Lemma 4.14 with �D uC �C 1 (recall

Hypotheses 4.15(5)) implies that �.t12i / 2ND\.
/.

Proceeding similarly, if �.t02iC1/ 2 NuC�C1.
/, we set t12iC1 D t
0
2iC1. Otherwise, �.t12iC1/ 2 Nu.G/

for some G 2 Satu.
/. We then set t12iC1 D infft 2 Œt12i ; t
1
2iC1� W 
.t/ 2 Nu.G/g where G 2 Satu.
/.

As in the preceding argument, jt12iC1 � t
0
2iC1j 6 ` and one of the following holds: t12iC1 D t12i so

that �.t12iC1/ 2 ND\.
/, �.t12iC1/ immediately lies in ND\.
/ or there exists G0 2 Satu.
/ so that
�.t12iC1/ 2 NuC�C1.G0/\NuC�.G/ � ND\.
/. In the third case, the final containment follows from
Lemma 4.14 and Hypotheses 4.15(5).

Since Œt12i ; t
1
2iC1�� Œt

0
2i ; t

0
2iC1�, we automatically retain the property that

diamft 2 Œt12i ; t
1
2iC1� W �.t/ 2ND.F /g6 `

for all F 2 B.

We now show that �.Œt12iC1; t
1
2iC2�/ remains boundedly close to Fi .

Proposition 4.19 There exists Ddepth > 0 so that for all 06 i 6 n, �.Œt12iC1; t
1
2iC2�/�NDdepth.Fi /, and

if t12i D t
1
2iC1, d.�.t12i /; 
/6 f .Ddepth/CD\.
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Proof Since �.t02iC1/ 2 NDC�.Fi / and jt02iC1 � t
1
2iC1j 6 `, �.t12iC1/ 2 NDC�C�`C�.Fi /. Similarly,

�.t12iC2/ 2NDC�C�`C�.Fi /. Set Ddepth DK.DC�`C 2�/ where K.DC�`C 2�/ is determined (as a
function of �; �; `) as in Proposition 4.16.

Now suppose t12i D t
1
2iC1. By Proposition 4.10, if t12i …Nu.
/, there exists F 2B so that �.t12i /2Nu.F /.

Suppose first that F ¤ Fi . Let tF D supft 2 Œ0; t� � W �.Œt12i ; t �/ � Nu.F /g. By Lemma 4.18(3),
t12i 6 t02iC16 t02iC26 t12iC2. Then Proposition 4.17(3) implies tF 6 t12iC2. Moreover, F ¤Fi implies that
d.�.t12iC1/; �.tF //6f .Ddepth/. Since tF is a supremum, there exists a t > tF with d.�.t/; �.tF //6�C1
so that �.t/ 2 Nu.
/ or �.t/ 2 Nu.F 0/ for some F 0 ¤ F . Hence by Lemma 4.14, d.�.tF /; 
/ 6D\.
Therefore, d.�.t12i /; 
/6 f .Ddepth/CD\.

For the case F ¤ Fi�1 set tF D infft 2 Œ0; t� � W �.Œt; t12i �/ � Nu.F /g and then proceed using a similar
argument to the case F ¤ Fi .

We apply the bounds from Lemma 4.18 and Proposition 4.19 to obtain the following.

Corollary 4.20 Let Dendpoints D f .Ddepth/CD\ > 0. Then d.�.t1j /; 
/6Dendpoints.

We now find s1i in Œ0; s
 � so that 
.s1i / is close to �.t1i /. Let 06 s1j 6 s
 be such that d.
.s1j /; �.t
1
j // is

at most Dendpoints if t1j D t
1
j˙1 or D\ otherwise. If t12i D t

1
2iC1, ensure that s12i D s

1
2iC1. We may further

assume that s10 D t
1
0 D 0, t12nC1 D t� and s12nC1 D s
 .

Proposition 4.21 There exists Dhausdorff so that dhaus.�.Œs
1
2i ; s

1
2iC1�/; 
.Œt

1
2i ; s

1
2iC1�//6Dhausdorff for all

06 i 6 n.

Proof If t12iC1 D t
1
2i , then Dhausdorff DDendpoints suffices. Otherwise, Lemma 4.18 implies

d.�.t12i /; 
.s
1
2i //; d.�.t

1
2iC1/; 
.s

1
2iC1//6D\:

Recall from Hypotheses 4.15 that �0D �C2D\. Construct �i , a .�; �0/-quasigeodesic from �.Œt12i ; t
1
2iC1�/

by adding geodesics of length at most D\ connecting �.t12i / and �.t12iC1/ to 
.s12i / and 
.s12iC1/,
respectively.

Let y 2 �i . Partition �i into �l and �r so that �l is from 
.s12i / to y and �r is from y to �.s12iC1/. The
triangle bounded by 
.Œs12i ; s

1
2iC1�/, �l and �r is ı�;�0-coarsely thin relative to some F 2 B.

There are two possibilities:

Case (there exist points pl 2 �l , pr 2 �r and p
 in 
 so that d.pl ; pr/; d.pr ; p
 /; d.pl ; p
 /6 ı�;�0)
Since �i is quasigeodesic, d.y; pl/ 6 �.�.ı�;�0 C �

0//C �0 (a similar computation was carried out in
more detail in the proof of Proposition 4.16). Then d.y; 
/6 d.y; p
 /6 ı�;�0 C�.�.ı�;�0 C �

0//C �0.
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Case (there exist pl ; pl;
 2 �l , pr 2 �r and F 2 B so that the interval of �l between pl and pl;
 lies in
Nı�;�0 .F /, d.pl ; 
.Œs

1
2i ; s

1
2iC1�//6 ı�;�0 and d.pr ; pl/6 ı�;�0) Recall that

diamft 2 Œt12i ; t
1
2iC1� W �.t/ 2ND.F /g6 `

so d.pl ; pl;
 /6�`C3�0 where the additional 2�0 is accounting for the length of the segment linking 
.s12i /
to �.t12i / and the segment linking 
.s12iC1/ to �.t12iC1/. We have that d.y; pl/6 �.�.ı�;�0 C �

0//C �0

following the computation from the previous case. Hence

d.y; 
/6 ı�;�0 C `C �
0
C�.�.ı�;�0 C �

0//C �0:

From the two previous cases, we determine that d.y; 
/ is bounded as a function of �; �0.

Now consider x 2 
 . We will bound d.x; �/. Similar to the previous case, divide 
 jŒs1
2i
;s1
2iC1

� into two
segments 
l from 
.s12i / to x and 
r from x to 
.s12iC1/ and consider the quasigeodesic triangle with
sides 
l ; 
r ; �i that is ı�;�0-coarsely thin relative to some F 2 B. There are two possibilities:

Case (there exist xl ; xr ; x� so that xl 2 
l , xr 2 
r , x� 2 �i with d.xl ; �/; d.xr ; xl/ 6 ı�;�0) Then
d.xl ; x/6 d.xl ; xr/6 ı�;�0 because 
 is geodesic. Hence we have

d.x; �i /6 d.x; x� /6 d.x; xl/C d.xl ; x� /6 2ı�;�0 :

Thus d.x; �/6 2ı�;�0 CD\.

Case (there exist xl ; xr ; x� and F 2 B so that xl 2 
l , xr 2 
r , p�l ; p�r 2 �i so that p�l ; p�r 2
Nı�;�0 .F / and d.xl ; p�l /; d.xr ; p�r /6 ı�;�0) Since d.p�l ; �/; d.p�r ; �/6 �0, there exist tl ; tr so that
p�l D �.tl/; p�r D �.tr/ 2Nı�;�0C�0.F /. Then by Proposition 4.17 and Lemma 4.18 and the fact that
D� ı�;�0 C �

0, we have jtl � tr j6 `. It follows that d.�.tl/; �.tr//6 �`C �0. Hence

d.x; �.tl//6 d.xl ; xr/C d.xl ; p�l /C d.p�l ; �.tl//6 d.xl ; xr/C ı�;�0 C �
0

6 d.�.tl/; �.tr//C 2�
0
C 3ı�;�0 6 �`C 3�0C 3ı�;�0 :

Taking the largest constant from the four cases above yields an acceptable value for Dhausdorff.

Unfortunately, it is possible that j < k and s1j > s
1
k

, but this behavior can be controlled:

Proposition 4.22 There exists Doutorder so that if j < k and s1j > s
1
k

, then jtj � tkj6Doutorder.

Proof It suffices to consider the case where k is the largest index such that j < k and s1j > s
1
k

.

By construction, d.�.t1j /; 
.s
1
j //6Dendpoints. Since k is largest, s1j 2 Œs

1
k
; s1
kC1

� where s1
k

6 s1
kC1

. Since
s10 D 0 and s12n D s
 , there exists h� < j so that s1

k
lies in Œs1

h�
; s1
h�C1

� where s1
h�

6 s1
h�C1

.

Case (k is even) Then d.
.s1j /; �.t
1
j //6Dendpoints and there exists tC 2 Œt1k ; t

1
kC1

� such that

d.
.s1j /; �.tC//6Dhausdorff:

Hence d.�.t1j /; �.tC//6DhausdorffCDendpoints. We then obtain

jt1k � t
1
j j6 jt

1
j � tCj6 �.DhausdorffCDendpoints/C �:
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Case (h� is even) Then d.
.s1
k
/; �.t1

k
//6Dendpoints and there exists t� 2 Œt1h� ; t

1
h�C1

� so that

d.�.t�/; 
.s
1
k//6Dhausdorff:

Similar to the previous case, we conclude

jt1h� � t
1
h�C1

j6 jt1k � t
1
j j6 �.DhausdorffCDendpoints/C �:

Case (h� and k are both odd) Set h� D 2i�C 1 and k D 2iCC 1. Observe that 
.Œs1
h�
; s1
h�C1

�/ �

NDendpointsCDdepth.Fi�/ and similarly 
.Œs1
k
; s1
kC1

�/�NDendpointsCDdepth.FiC/.

We have s1
h�

6 s1
k
< s1j 6 s1

kC1
. If s1

h�
6 s1

k
6 s1j 6 s1

h�C1
; s1
kC1

, then


.Œs1k; s
1
j �/�NDendpointsCDdepth.Fi�/\NDendpointsCDdepth.FiC/:

Therefore,

d.
.s1k/; 
.s
1
j //6 f .DendpointsCDdepth/ and d.�.t1j /; �.t

1
k //6 2DendpointsCf .DendpointsCDdepth/:

Then
jt1j � t

1
k j6 �.2DendpointsCf .DendpointsCDdepth//C �:

Otherwise s1
h�

6 s1
k

6 s1
h�C1

6 s1j 6 s1
kC1

so that


.Œs1k; s
1
h�C1

�/�NDendpointsCDdepth.Fi�/\NDendpointsCDdepth.FiC/:

We see d.�.t1
k
/; �.t1

h�C1
//6 2DendpointsCf .DendpointsCDdepth/. Recalling h� < j , then

jt1j � t
1
k j6 jt

1
h�C1

� t1k j6 �.2DendpointsCf .DendpointsCDdepth//C �:

Taking Doutorder to be the maximum of the bounds found in each of the three cases therefore suffices.

Definition 4.23 An augmented partition of Œ0; t� � is a partition

06 t1 6 t2 6 � � �6 tm D t�

together with choices 0 D s0; s1; s2; : : : ; sm D s
 where si 2 Œ0; s
 �. We denote such an augmented
partition by

(1) .t0; s0/6 .t1; s1/6 � � �6 .tm�1; sm�1/6 .tm; sm/:

We call tj 6 tjC1 6 � � �6 tk a maximal crossover subinterval of the augmented partition (1) if sh < sj for
all h6 j and k is the largest index so that sk < sj .

In Propositions 4.24 and 4.25, we explain how to take an augmented partition like .t10 ; s
1
0/ 6 � � � 6

.t12nC1; s
1
2nC1/ and obtain an augmented partition with similar properties that has one fewer maximal

crossover interval from an augmented partition. Then, in Proposition 4.26, we work on .t10 ; s
1
0/6 � � �6

.t12nC1; s
1
2nC1/ from left to right using Proposition 4.25 to obtain a new augmented partition with similar

properties but no maximal crossover intervals.
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Proposition 4.24 Let t1j 6 t1jC1 6 � � �6 t1
k

be a maximal crossover subinterval of an augmented partition

.t0; s0/6 .t1; s1/6 � � �6 .tij�1; sij�1/6 .t1j ; s
1
j /6 .t1jC1; s

1
jC1/6 � � �6 .t1k ; s

1
k/6 � � �6 .t12nC1; s

1
2nC1/

of Œ0; t� �. Then

� d.�.t1
k
/; 
.s1j //6 �DoutorderC �CDendpoints,

� d.�.t1j /; 
.s
1
k
/6 �DoutorderC �CDendpoints, and

� dhaus.�.Œt
1
j ; t

1
k
�/; 
.Œs1

k
; s1j �//6 �DoutorderC �C 3Dendpoints.

Proof Recall d.�.t1j /;
.s
1
j //;d.�.t

1
jC1/;
.s

1
jC1//; : : : ;d.�.t

1
k
/;
.s1

k
//6Dendpoints. By Proposition 4.22,

jt1j � t
1
k
j6Doutorder. Then d.�.t1j /; �.t

1
k
//6 �DoutorderC �. We can conclude then that d.
.s1j /; 
.s

1
k
//6

�DoutorderC �C 2Dendpoints. Therefore, for all s1
k

6 s 6 s1j ,

d.
.s/; �.t1k //6 d.
.s1j /; 
.s
1
k//C d.
.s

1
k/; �.t

1
k //6 �DoutorderC �C 2DendpointsCDendpoints:

Similarly for all t1j 6 t 6 t1
k

, jt � t1
k
j6Doutorder so

d.�.t/; �.t1k //6 �DoutorderC �:

Therefore,
d.�.t/; 
.s1k//6 �DoutorderC �CDendpoints:

A similar argument will also show that d.�.t1
k
/; 
.s1j //6 �DoutorderC �CDendpoints.

Proposition 4.25 Let t1j 6 t1jC1 6 � � �6 t1
k

be a maximal crossover subinterval of an augmented partition

(2) .t0; s0/6 .t1; s1/6 .t2; s2/6 � � �6 .tij�1; sij�1/

6 .t1j ; s
1
j /6 .t1jC1; s

1
jC1/6 � � �6 .t1k ; s

k
1 /6 � � �6 .t12nC1; s

1
2nC1/

of Œ0; t1� � so that t0; t1; t2; : : : ; tij�1 are not contained in any maximal crossover subintervals of (2). There
is a new augmented partition

(3) 0D .t0; s0/6 � � �6 .tij�1; sij�1/6 .t1j ; s
1
k/6 .t1k ; s

1
j /6 .t1kC1; s

1
kC1/6 � � �6 .t12nC1; s

1
2nC1/

that has the properties

� t0; t1; : : : ; tij�1; t
1
j ; t

1
k

are not contained in any maximal crossover subinterval of (3),

� d.�.t1
k
/; 
.s1j //; d.�.t

1
j /; 
.s

1
k
//6 �DoutorderC �CDendpoints, and

� dhaus.�.Œt
1
j ; t

1
k
�/; 
.Œs1

k
; s1j �// < �DoutorderC �C 3Dendpoints.

Proof Since t0; t1; t2; : : : ; tij�1 are not contained in any maximal crossover subinterval, s0 6 s1 6 s2 6
� � � 6 sij�1 6 sk and sk 6 sj by hypothesis. Moreover, for all k0 > k, we have s1

k0
> s1j > s1

k
because

t1j 6 � � �6 t1
k

is a maximal crossover subinterval. Therefore, t1j and t1
k

cannot be contained in a maximal
crossover subinterval of the augmented partition (3).

From Proposition 4.24, we immediately obtain d.�.t1
k
/; 
.s1j //6 �DoutorderC �CDendpoints and

dhaus.�.Œt
1
j ; t

1
k �/; 
.Œs

1
k; s

1
j �//6 �DoutorderC �C 3Dendpoints:
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Proposition 4.26 There exist partitions

0D t20 6 t21 6 t22 6 t23 6 � � �6 t2n0 D t� and 0D s20 6 s21 6 s22 6 s23 6 � � �6 s2n0 D s


so that for 06 j 6 n0:

(1) d.�.t2j /; 
.s
2
j //6 �DoutorderC �CDendpoints.

(2) For each j , one of the following holds:

� dhaus.�.Œt
2
j ; t

2
jC1�/; 
.Œs

2
j ; s

2
jC1�//6 �DoutorderC �C 3Dendpoints.

� �.Œt2j ; t
2
jC1�/; 
.Œs

2
j ; s

2
jC1�/�NK.DdepthCDendpoints/.F

2
j / for some F 2j 2 B.

(3) If j ¤ j 0, then F 2j ¤ F
2
j 0 .

Proof sketch We can obtain the desired partition by starting with the partition from Lemma 4.18
and then working left to right using Proposition 4.25 to eliminate any maximal crossover subintervals.
Immediately, s10 D 0, so t10 is not contained in any maximal crossover subintervals. The bound on
d.�.t2j /; 
.s

2
j // is implied by Proposition 4.25. One of the following holds:

� t2j D t
1
2i , t

2
jC1 D t

1
2iC1, s2j D s

1
2i and s2jC1 D s

1
2iC1 for some i .

� t2j D t
1
2iC1, t2jC1 D t

1
2iC2, s2j D s

1
2iC1 and s2jC1 D s

1
2iC2 for some i .

� Proposition 4.25 implies that dhaus.�.Œt
2
j ; t

2
jC1�/; 
.Œs

2
j ; s

2
jC1�//6 �DoutorderC �C 3Dendpoints.

In the first case, Proposition 4.21 implies that dhaus.�.Œt
2
j ; t

2
jC1�/; 
.Œs

2
j ; s

2
jC1�// is bounded appropriately.

In the second case, Proposition 4.19 implies that �.Œt2j ; t
2
jC1�/�NDdepth.Fi /, so set F 2j D Fi . Since the

endpoints of 
.Œs2j ; s
2
jC1�/ are withinDendpoints of the endpoints of �.Œt2j ; t

2
jC1�/ and 
 is geodesic, we have


.Œs2j ; s
2
jC1�/�NK.DdepthCDendpoints/.F

2
j /

Since the Fi are distinct, if j ¤ j 0, then F 2j ¤ F
2
j 0 .

In the partition from Proposition 4.26, we call an interval Œt2j ; t
2
jC1� a Hausdorff interval if

dhaus.�.Œt
2
j ; t

2
jC1�/; 
.Œs

2
j ; s

2
jC1�//6 �DoutorderC �C 3Dendpoints:

Otherwise, if �.Œt2j ; t
2
jC1�/; 
.Œs

2
j ; s

2
jC1�/ � NK.DdepthCDendpoints/.F

2
j /, we call Œt2j ; t

2
jC1� a peripheral

interval.

Theorem 4.7 Let .G;P/ be a relatively hyperbolic group pair where G acts geometrically on a CAT.0/
space �X with basepoint x 2 �X . If B is any R-thickening of fgPx j g 2 G; P 2 Pg then .�X;B/ has the
relative fellow traveling property.

Proof By Proposition 4.6, .�X;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair and there exists L.R/ so
that Hypotheses 4.8 hold.
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Given .�; �/-quasigeodesics 
; � with the same endpoints, we can reduce to the case where 
 is geo-
desic by Proposition 4.13. Proposition 4.26 nearly provides the partition for relative fellow traveling
except that the intervals Œt2j ; t

2
jC1� as constructed in Proposition 4.26 do not alternate between Hausdorff

intervals and peripheral intervals. This can be easily remedied by turning any two adjacent Hausdorff
intervals into a single Hausdorff interval. In other words, if Œt2j ; t

2
jC1� and Œt2jC1; t

2
jC2� are both Haus-

dorff intervals, we remove these two intervals from the partition and replace them with the single
interval Œt2j ; t

2
jC2�. Likewise, replace Œs2j ; s

2
jC1� and Œs2jC1; s

2
jC2� with Œs2j ; s

2
jC2�. It is easy to check that

dhaus.�.Œt
2
j ; t

2
jC2�/; 
.Œs

2
j ; s

2
jC2�//6 �DoutorderC �C3Dendpoints in this case. Repeat this process until no

adjacent Hausdorff intervals remain.

5 A relatively hyperbolic combination lemma

The construction of hierarchies in Section 7 is quite similar to the hierarchy constructed in [3]. The goal
of this section is to prove a combination theorem for the relatively hyperbolic setting that will be used to
show the edge groups of the hierarchy are undistorted.

5.1 The attractive property in CAT.0/ relatively hyperbolic pairs

The first goal is to improve a CAT.0/ relatively hyperbolic pair so that geodesics that stay near a peripheral
space intersect the peripheral space.

Definition 5.1 Let �X be a geodesic metric space, let Z be a subspace of �X and let Katt WR>0!R>0 be
a function. The subspace Z is Katt-attractive if for all R > ı whenever 
 is a geodesic with endpoints in
NR.Z/ and j
 j>Katt.R/, then 
 \Z ¤¿.

We now fix hypotheses for the remainder of the Section 5.1.

Hypotheses 5.2 Suppose that .�X;B0/ is a .ı; f 0/-CAT.0/ relatively hyperbolic pair where every F 0 2 B0

is convex. Let B D fN2ı.F 0/ W F 0 2 B0g so that for some f W R>0! R>0, .�X;B/ is a .ı; f /-CAT.0/
relatively hyperbolic pair by Proposition 4.4. Fix M D f .6ı/.

Proposition 5.3 Under Hypotheses 5.2, every B 2 B is .3MC6RC21ı/-attractive.

The following result will be used to prove Proposition 5.3:

Proposition 5.4 Assume Hypotheses 5.2, let 
 be a geodesic and let F 2B0. If 
 has endpoints in NR.F /,
then diam 
 \N2ı.F / > j
 j � .3M C 6RC 9ı/.
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Figure 5: The quadrilateral constructed in the proof of Proposition 5.3.

Proof There is a quadrilateral whose sides are 
 , two geodesics �1, �2 of length at most R connecting
the endpoints of 
 to points in F and a geodesic ˛ connecting the endpoints of �1, �2 that are in F .
By convexity, ˛ � F . Let � be a diagonal so that there are two triangles, 41, 42, so that 41 has sides ˛,
�, �1 as a side and 42 has sides 
 , �, �2. Designate vertices p, q, r , s so that ˛ D Œp; q�, �2 D Œq; r�,

 D Œr; s�, �1 D Œp; s�, and �D Œq; s� as shown in Figure 5.

Case 1 (41 is ı-thin relative to some F 0 ¤ F ) Since F 0 ¤ F and ˛ � F , the length of the fat part of
˛ in 41 is at most M .

Let �1 be the corner segment of � in 41 at s. Then j�1j6R. Let �2 be the fat part of � in 41. The fat
part of �1 in 41 has length at most R, so by Lemma 2.12, j�2j 6 M CRC 3ı. Let �3 be the corner
segment of � in 41 at q. By construction, �3 �Nı.F /.

Let 
1 be the corner segment of 
 at s in 42, let 
2 be the fat part of 
 in 42 and let 
3 be the corner
segment of 
 in 42 at r . Observe that 
1\Nı.�3/�N2ı.F / and

diam 
1\Nı.�3/> j
1j � j�1j � j�2j> j
1j � .M C 2RC 3ı/:

If 42 is ı-thin relative to F , then 
2 � Nı.F /. If 42 is ı-thin relative to some other element of B0,
the fat part of � in 42 has length at most j�1j C j�2j CM 6 2M C 2RC 3ı because �3 �Nı.F /. By
Lemma 2.12,

j
2j6 2M C 2RC 3ıCRC 3ı

because j�2j6R. Finally, j
3j6R.

In summary, at most M C2RC3ı of 
1 lies outside of N2ı.F /, at most 2M C3RC6ı of 
2 lies outside
of N2ı.F /, and at most R of 
3 lies outside of N2ı.F /, so

diam 
 \N2ı.F /> j
 j � .3M C 6RC 9ı/:
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Case 2 (41 is ı-thin relative to F ) Let �1, �2, �3 and 
1, 
2, 
3 be as in the previous case. Here,
j�1j 6 R, �2 � Nı.F / since 41 is ı-thin relative to F and �3 � Nı.˛/ � Nı.F /. Since 
1 ı-fellow
travels a subsegment of � at s, diam 
1\Nı.�2[�3/> j
1j�R because j�1j6R. Since �2[�3�Nı.F /,
diam 
1 \N2ı.F / > j
1j �R. If 42 is ı-thin relative to some F 00 ¤ F , the fat part of � in 42 has
length at most RCM because its intersection with �2[�3 �Nı.F / has length at most M and j�1j6R.
Therefore by Lemma 2.12, j
2j<M C 2RC 3ı. On the other hand, if 42 is ı-thin relative to F , then

2 �Nı.F / so in both cases, all but a less than M C 2RC 3ı subsegment of 
2 lies in N2ı.F /.

In summary, diam 
1 \N2ı.F / > j
1j �R, diam 
2 \N2ı.F / > j
2j � .M C 2RC 3ı/ and j
3j 6 R.
Therefore, by the convexity of N2ı.F /,

j
 \N2ı.F /j> j
 j � .M C 4RC 3ı/:

Proof of Proposition 5.3 Let 
 be a geodesic with endpoints in NR.F /. Then by convexity, 
 �
NRC2ı.F 0/ for some F 0 2 B0 where F DN2ı.F 0/. By Proposition 5.4, if j
 j> 3M C 6.RC 2ı/C 9ı,
then 
 \N2ı.F 0/¤¿. Noting that F DN2ı.F 0/ completes the proof.

5.2 A combination lemma for CAT.0/ relatively hyperbolic pairs

Maintain the following baseline hypotheses for Section 5.2:

Hypotheses 5.5 Let .�X;B/ be a .ı; f /-CAT.0/ relatively hyperbolic pair and let M D f .6ı/ as before.
Suppose that every B 2 B is closed, convex and .3MC6RC2f .R/C21ı/-attractive.

In Section 7, we will use Proposition 5.3 to obtain attractiveness for a .ı; f /-CAT.0/ relatively hyperbolic
pair, and then thicken the peripheral spaces to make a new .ı; f /-CAT.0/ relatively hyperbolic pair. We
will then prove that the new peripheral spaces are .3MC6RC2f .R/C21ı/-attractive. For this reason,
Hypotheses 5.5 are slightly weaker than what would follow from Hypotheses 5.2 and the conclusions of
Proposition 5.3.

Theorem 5.6 Assume Hypotheses 5.5. Let 
 D b1a2b2a3b3 : : : anbn be a broken geodesic. Let 
i be
the geodesic connecting the endpoints of the subpath b1a2b2a3b3 : : : aibi of 
 . Suppose that :

(1) For each 16 i 6 n, there exists some Fi 2 B so that bi � Fi .

(2) If Fi D Fj , then i D j .

(3) For 16 i 6 n� 1, jbi j> 37M C 250ı.

(4) For all 26 i 6 n, diam ai \N3ı.Fi /6 5M C 39ı and diam ai \N3ı.Fi�1/6 5M C 39ı.

(5) For all 26 i 6 n, diam ai \N6ı.Fi /6 5M C 57ı and diam ai \N6ı.Fi�1/6 5M C 57ı.

Then 
n has a length at least jbnj�.24MC165ı/-tail at the endpoint it shares with bn (recall Definition 2.9)
that lies in N2ı.Fn/ and for all 26 i 6 n, j
i j> j
i�1jC janjC jbnj � 68M � 628ı.
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Figure 6: One possible configuration of41i and42i in the proof of Theorem 5.6. Corner segments
of triangles at the same point are connected by dotted lines.

Proof In the case nD 1, the proof is straightforward. The proof of Theorem 5.6 is by induction on n.

Notation 5.7 We now establish notation that will be used throughout the proof of Theorem 5.6.

(1) For each 2 6 i 6 n, let !i be the geodesic connecting the endpoints of the broken geodesic
b1a2b2 : : : bi�1ai .

(2) For each 26 i 6 n, let 41i be the triangle with sides 
i�1, !i and ai .

(3) For each 26 i 6 n, let 42i be the triangle with sides !i , bi and 
i .

(4) Label vertices so that ai D Œpi ; qi � and bi D Œqi ; piC1�.

(5) Let ci be the corner segment of !i in 42i at qi .

See Figure 6 for a visual representation.

We make the additional inductive assumption that for 1 6 i < n, 
i has a jbi j � .24M C 165ı/-tail at
piC1 in N2ı.Fi /.

Proposition 5.8 If i > 2 and we assume the inductive hypotheses for the proof of Theorem 5.6, then
there is a point xi 2 
i so that d.xi ; Fi�1/ 6 4ı. Further , jci j 6 12M C 81ı (recall Notation 5.7(5)).
When42i is ı-thin relative to Fi , then the length of the fat part of !i in42i is at most 12M C 81ı.

Proof Since 16 i�1<n, 
i�1 has a length at least 13MC85ı-tail at pi in N2ı.Fi�1/ by our inductive
assumption.

Case (41i is thin relative to F ¤Fi�1) The corner segments of41i at pi have length at most 5MC39ı
to avoid violating Theorem 5.6(4) because a more than 5M C 39ı-tail of 
i�1 at pi lies in N2ı.Fi�1/.
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Since 41i is thin relative to F ¤ Fi�1, the length of the fat part of 
i�1 in 41i is at most M . Therefore,
there is a point y 2 
i�1 and a point y0 2 !i so that d.y; pi /6 6M C 39ı and d.y; y0/6 ı so that y; y0

are endpoints of the corner segments of 41i at q1 and further, there exists a subsegment � (see Figure 6)
of the corner segment Œq1; y0�� !i with endpoint y0 so that j� j> 2M and � �N3ı.Fi�1/.

The intersection of � with the corner segment of !i in42i at qi lies in N3ı.Fi�1/\N3ı.Fi / and therefore
has length at most M . The fat part of !i in 42i is either contained in Nı.Fi�1/ or intersects � in a
segment of length at most M . Therefore, either there is a point in 
i that is at most ı from the fat part of
!i in 42i and the fat part of !i in 42i is contained in Nı.Fi�1/ or � intersects the corner segment of 42i
at q1. In the first case, there is a point xi 2 
i that lies in N2ı.Fi�1/ and in the second case, there is a
point xi 2 
i so that d.xi ; �/ < ı, so xi 2N4ı.Fi�1/.

The next tasks are to bound jci j from above and to prove that when42i is ı-thin relative to Fi , the fat part
of !i in42i has length at mostM . Note that ci �N2ı.Fi /. The intersection of ci with the corner segment
of !i in 41i at qi has length at most 5M C 39ı because diam ai \N3ı.Fi /6 5M C 39ı. If F ¤ Fi , the
intersection of ci with the fat part of !i in 41i is a segment of length at most M . Since jci \ � j 6M

and j� j > 2M , jci j 6 7M C 39ı. Further, if 42i is ı-thin relative to Fi , then the fat part of !i in 42i
intersects � in a segment of length at most M , intersects the fat part of !i in 41i in a length at most M
segment and intersects the corner segment of !i in 41i at qi in a segment of length at most 5M C 39ı.
Hence the fat part of !i in 42i has length at most 7M C 39ı when 42i is thin relative to Fi .

If F D Fi , then the fat parts of ai and 
i�1 in 41i , which are contained in Nı.Fi /, have length at
most 5M C 39ı and M , respectively. Therefore, the length of the fat part of !i in 41i is at most
5M C 39ıCM C 3ı. Then jci j6 12M C 81ı by a computation similar to the one in the previous case.

When F D Fi , the fat part of !i in 42i intersects � in a segment of length at most M , intersects the fat
part of !i in 41i in a segment of length at most 6M C 42ı and intersects the corner segment of !i in 41i
at qi in a segment of length at most 5M C 39ı. Therefore, if 42i is thin relative to Fi , then the length of
the fat part of !i in 42i is at most 12M C 81ı.

Case (41i is thin relative to Fi�1) Recall ci is the corner segment of !i in42i at qi . The intersection of
ci with the corner segment of !i in41i at qi again lies in N2ı.Fi /\Nı.ai / and hence has length at most
5M C 39ı. The fat part of !i in 41i lies in Nı.Fi�1/. Hence, if the length of the fat part of !i in 41i
exceedsM , then its intersection with ci has length at mostM so jci j6 6MC39ı. Hence for the purposes
of bounding jci j from above, assume the fat part of !i in 41i has length at most M . The length of the fat
part of ai in 41i is at most 5M C 39ı. If the length of the fat part of !i in 41i is at most M , then by
Lemma 2.12, the length of the fat part of 
i�1 in41i is at most 6MC42ı. Now, if y 2 
i�1; y0 2 
i�1 are
the endpoints of the corner segments of41i at q1, then d.y; pi /6 5M C39ıC6M C42ıD 11M C81ı.
Therefore there is a tail at y0 of the corner segment of !i in 41i at q1 called � so that j� j > 2M and
� � N3ı.Fi�1/ because 
i�1 has a more than 13M C 84ı-tail in N2ı.Fi�1/. Therefore, ci intersects
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Œy0; q1� in a segment of length at most M because ci �N2ı.Fi /. Hence jci j 6 7M C 39ı because the
union of the two corner segments of !i in 41i and the fat part of !i in 41i is !i .

In all cases, jci j6 12M C 81ı.

If 42i is ı-thin relative to Fi , the fat part of !i in 42i has length at most 6M C 39ı because the corner
segment of !i in41i at qi lies in Nı.ai /, and both � and the fat part of41i lie in Nı.Fi�1/. In particular,
the fat part of !i in 42i may only intersect Œq1; y0� in � because otherwise its intersection with � has
length more than M and lies in N3ı.Fi�1/\Nı.Fi /.

The only remaining thing to prove is that there is a point xi 2 
i so that d.xi ; Fi�1/6 4ı. If42i is ı-thin
relative to Fi�1 and is not ı-thin relative to any other F 2 B, then there is a point on 
i in N2ı.Fi�1/.
Hence assume 42i is thin relative to some G 2 B with G ¤ Fi�1.

Let !1 � Nı.Fi�1/ be the fat part of !i in 41i and let !2 be the corner segment of !i in 42i at q1.
If there exists r 2 !1\!2, then d.r; 
i / < ı, so there exists an xi 2 
i such that 
i 2N2ı.Fi�1/.

Otherwise, !1 intersects ci in a segment of length at most M because ci lies in N2ı.Fi / and intersects
the fat part of !i in 42i in a segment of length at most M (the fat part of !i in 42i lies in Nı.G/).
Hence j!1j6 2M . Let !3 be the corner segment of !i in 41i at q1. Let z 2 !i be the point where !1

intersects !3. By Lemma 2.12, the fat part of 
i�1 in 41i has length at most 2M C 5M C 39ıC 3ı D
7M C 42ı because diam ai \ N2ı.Fi�1/ 6 5M C 39ı. The corner length of 41i at pi is at most
5M C 39ı because any subsegment of ai in N3ı.Fi / has length at most 5M C 39ı. Then at least a
13M C 84ı� .5M C 39ıC 7M C 42ı/ >M -tail of !3 at z, which will be called !0, lies in N3ı.Fi�1/
because it ı-fellow travels a subsegment of the tail of 
i�1 at pi contained in N2ı.Fi�1/. The union of
ci and the fat part of 42i lie in N2ı.Fi /, so they collectively cannot extend past !0 in the direction of q1
because otherwise !0contains a length more than M subsegment in N3ı.Fi /\N3ı.Fi�1/. Therefore, !2,
the corner segment of42i at q1, must intersect !0. Since !0 lies in N3ı.Fi�1/ and !2 is a corner segment
of 42i at q1, there is a point xi 2 
i so that x 2N4ı.Fi�1/.

Proposition 5.9 If bi � Nı.Fi /, then the geodesic 
i has a jbi j � .24M C 165ı/-tail at piC1 that is
contained in N2ı.Fi /.

Proof There are two cases:

Case 1 (42i is ı-thin relative to some F ¤ Fi ) The corner length of 42i at qi is at most 12M C81ı by
Proposition 5.8. The length of the fat part of bi in 42i is at most M because bi �Nı.F /. Therefore, the
corner length of 42i at piC1 is at least jbi j � .13M C 81ı/. Thus the corner segment of 
i at piC1 has
length at least jbi j � .13M C 81ı/ and lies in Nı.bi /�N2ı.Fi /.

Case 2 (42i is ı-thin relative to Fi ) The corner length of 42i at qi is at most 12M C 81ı. Let s be the
length of the fat part of bi in42i . Then the corner length of42i at piC1 is at least jbi j�s� .12M C81ı/.
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By Proposition 5.8, the length of the fat part of !i in 42i is at most 12M C 81ı. By Lemma 2.12,
the fat part of 
i in 42i has length at least s � .12M C 81ı C 3ı/. The corner segment of 
i at
piC1 in 42i and the fat part of 
i in 42i both lie in N2ı.Fi / and their combined length is at least
s� .12M C 84ı/Cjbi j � s� .12M C 81ı/D jbi j � .24M C 165ı/.

Lemma 5.10 Let � WD Œpi ; piC1�. Then diam �\N5ı.Fi�1/6 12M C 117ı.

Further , d.qi ; �/6 10M C 79ı.

Proof Let 4 be the geodesic triangle with sides ai , bi , �. If the corner segment of � in 4 at pi lies in
N5ı.Fi�1/, then the corner length of4 at pi is at most 5M C57ı because ai \N6ı.Fi�1/ has diameter
at most 5M C 57ı.

Suppose 4 is ı-thin relative to Fi�1. The fat part of bi in 4 then lies in Fi and therefore has length at
most M . The fat part of ai in 4 has length at most 5M C 57ı because ai \N6ı.Fi�1/ has diameter
at most 5M C 57ı. Hence by Lemma 2.12, the length of the fat part of � in 4 is at most 6M C 60ı.
On the other hand, if � is ı-thin relative to some F ¤ Fi�1, then the intersection of the fat part of � with
N5ı.Fi�1/ has length at most M . In all cases, the fat part of � in 4 intersects N5ı.Fi�1/ in a segment
of length at most 6M C 60ı.

Finally, the corner segment of � in 4 at piC1 lies in N2ı.Fi / and can hence intersect N5ı.Fi�1/ in a
segment of length at most M .

Since � is the union of its two corner segments and its fat part in 4, its intersection with N5ı.Fi�1/ has
diameter at most 12M C 117ı.

The corner length of 4 at qi is at most 5M C 39ı, because the corner segment of ai in 4 at qi lies
in ai \ N2ı.Fi /. If 4 is ı-thin relative to Fi , then the length of the fat part of ai in 4 is at most
5M C 39ı. Otherwise, if 4 is ı-thin relative to F ¤ Fi , then the length of the fat part bi in 4
is at most M . Since 4 is relatively ı-thin, in both cases, there exists a point on � that is at most
5M C 39ıC 5M C 39ıC ı D 10M C 79ı from qi .

Lemma 5.11 Let xi be a point on 
i so that xi 2N4ı.Fi�1/ and xi is the point closest to piC1 with this
property. Let �0 D Œpi ; xi � and let �00 D Œxi ; piC1�� 
i . Let40 be the triangle with sides �, �0, �00. Then
at least one of the following holds:

(1) The length of the fat part of � in40 is at most 12M C 117ı.

(2) The length of the fat part of �0 in40 is at most M 6 12M C 117ı.

Proof Suppose 40 is ı-thin relative to Fi�1. Then by Lemma 5.10, the fat part of � has length at most
12M C 117ı. On the other hand if 40 is ı-thin relative to some F ¤ Fi�1, then the fat part of �0 in 40

lies in N4ı.Fi�1/ by convexity, so the length of the fat part of �0 in 40 is at most M .
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Lemma 5.12 There exists yi 2 
i so that d.pi ; yi /6 24M C 235ı.

Proof The corner segment of � in40 at pi lies in N5ı.Fi�1/\�, so by Lemma 5.10, the corner length of
40 at pi is at most 12M C117ı. By Lemma 5.11, the length of fat part of � in40 or the length of the fat
part of �0 in40 is at most 12M C117ı, so there is a point yi in �00 � 
i so that d.pi ; yi /6 24M C235ı

because 40 is relatively ı-thin.

The next lemma follows immediately from the triangle inequality, but is convenient to have recorded:

Lemma 5.13 Let40 be a geodesic triangle in �X with sides abc and suppose that a and b meet at the
vertex p and d.p; c/6 J . Then jcj> jajC jbj � 2J .

Proposition 5.14 We have

j
nj> j
n�1jC janjC jbnj � 2.24M C 235ı/� 2.10M C 79ı/

D j
n�1jC janjC jbnj � 68M � 628ı:

Proof By Lemmas 5.12 and 5.13,

j
nj> j
n�1jC j�j � 2.24M C 235ı/:

Then by Lemmas 5.10 and 5.13,

j�j> janjC jbnj � 2.10M C 79ı/:

Putting the two preceding inequalities together yields the desired inequality.

Propositions 5.9 and 5.14 complete the inductive proof of Theorem 5.6.

Definition 5.15 Let A be a collection of subsets of a geodesic metric space and let K > 0. Suppose that
for all A1; A2 2A with A1 ¤ A2, d.A1; A2/>K. Then the collection A is K-separated.

The paths in Theorem 5.6 are of a special type to facilitate the inductive proof. Proposition 5.17 generalizes
Theorem 5.6 to apply to all geodesic paths coming from certain subspaces of �X with some additional
assumptions:

Hypotheses 5.16 Assume Hypotheses 5.5 and assume the following:

(1) Let ƒ WD 500M C 10000ı.

(2) Let A be a ƒ-separated collection of convex subspaces of �X .

(3) Let B0 � B.
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(4) Let T D
�F

A2AA
�
t
�F

B2B0 B
�
. Define an equivalence relation � on T by x � y if and only if

x D y or for some A 2A and B 2 B0, the images of x and y in �X agree and lie in the images of both A
and B .

Proposition 5.17 Under Hypotheses 5.16, if T=� is path connected , then the natural inclusion of
T=� ,! �X is a .2; 114MC1592ı/-quasi-isometric embedding (where the metric on T=� is the induced
path metric).

Proof Let 
 be the image in �X of a geodesic in T=� and let 
 0 be the �X -geodesic between its endpoints.

Up to reversing the direction of 
 , 
 can be written as a piecewise geodesic of one of the piecewise
geodesic forms

(1) b1a2b2 : : : anbn and jb1j; jbnj> 37M C 250ı,

(2) a1b1a2b2 : : : bnanC1 where ja1j; janC1j ¤ 0,

(3) a1b1 : : : anbn where ja1j ¤ 0 and jbnj> 37M C 250ı,

(4) a1b1 : : : anbn where ja1j ¤ 0 and jbnj6 37M C 250ı,

(5) b1a2b2 : : : anbn, where both of jb1j, jbnj are less than 37M C 250ı,

(6) b1a2b2 : : : anbn, where jb1j< 37M C 250ı and jbnj> 37M C 250ı,

where for each 1 6 i 6 n, ai � Ai 2A, for all 1 6 i 6 n, bi � Bi 2 B, and for 2 6 i 6 n� 1, jbi j >ƒ

because A is a ƒ-separated collection. Assume also that n is minimal and 
 is subdivided in a way that
maximizes the sum of the lengths of the bi .

If i ¤ j , then Bi ¤ Bj because otherwise the subsegment bi : : : bj of 
 could be replaced by a single
geodesic segment in Bi � T=� contradicting minimality of n. By the maximality of the lengths of the bi
and the .3MC6RC2f .R/C21ı/-attractiveness of every B 2 B,

diam ai \N3ı.Bi /; diam ai \N3ı.Bi�1/6 5M C 39ı;

diam ai \N6ı.Bi�1/; diam ai \N6ı.Bi /6 5M C 57ı

because otherwise the interiors of the ai intersect either Bi or Bi�1 so that bi or bi�1, respectively, could
be made longer by convexity.

For the following arguments, recall the earlier convention that the endpoints of the ai , bi are labeled so
that ai D Œpi ; qi � and bi D Œqi ; piC1�.

Case (1) (
 D b1a2b2 : : : anbn and jb1j; jbnj> 37M C 250ı) By Theorem 5.6,

j
 0j> jb1jC
� nP
iD2

jai jC jbi j
�
� .n� 1/ � .68M C 628ı/:
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Since jbi j> 136M C 1256ı, for 26 i 6 n� 1 then

j
 0j> jb1jC
� nP
iD2

jai jC jbi j
�
� .n� 1/.68M C 628ı/

> 1
2

� nP
iD2

jai j
�
Cjb1jC

� n�1P
iD2

.jbi j � .68M C 628ı//
�
Cjbnj � .68M C 628ı/

> 1
2

� nP
iD2

jai j
�
C 2.37M C 250ı/C

� n�1P
iD2

.jbi j � .68M C 628ı//
�
C .68M C 628ı/

> 1
2

� nP
iD2

jai j
�
C
1
2

� nP
iD1

jbi j
�
� 128ı

> 1
2
j
 j � 128ı;

and hence 
 is a .2; 128ı/-quasigeodesic in �X in this case.

Case (2) (
 D a1b1a2b2 : : : bnanC1 where ja1j; janC1j ¤ 0) Since A is a ƒ-separated collection, the
path 
0 D b1a2b2 : : : bn satisfies the hypotheses of Theorem 5.6. Let 
 00 be the geodesic connecting the
endpoints of 
0. Then j
 00j> j
0j�n.68M C628ı/ by Theorem 5.6. By Theorem 5.6, 
 00 has a length at
least 100M C 2000ı-tail in N2ı.Bn/ at pnC1 and a 100M C 2000ı-tail at q1 in N2ı.B1/.

Let 
1 be the geodesic Œp1; pnC1�. Let 41 be the geodesic triangle with sides a1; 
 00 and 
1. The corner
length of 41 at q1 is at most 5M C 57ı because diam a1 \N5ı.B1/ 6 5M C 57ı and 
 00 has a long
tail at q1 in N2ı.B1/. Either 41 is ı-thin relative to B ¤ B1 so that the length of the fat part of 
 00
in 41 has length at most M because a long tail of 
 00 at q1 is contained in N2ı.B1/, or 41 is ı-thin
relative to B1 in which case the length of the fat part of a1 in 41 has length at most 5M C 57ı. Hence
there is a point z1 on 
1 so that d.z1; q1/6 10M C 116ı because 41 is ı-relatively thin. Therefore by
Lemma 5.13, j
1j> j
 00jC ja1j � .20M C 232ı/.

Next we want to show that 
1 has a long tail at piC1 in N2ı.Bn/. If41 is ı-thin relative to B1, the corner
length at q1 is at most 5M C 57ı, and the fat part of 
 00 in 41 can have an at most length-M intersection
with the at least 100M C2000ı-tail of 
 00 at piC1 that lies in N2ı.Bn/. On the other hand, if41 is ı-thin
relative to B ¤ B1, then the corner length of 41 at q1 is still at most 5M C 57ı and the long tail of 
 00
at q1 that lies in N2ı.B1/ forces the length of the fat part of 
 00 in 41 to be at most M . In both cases,
all but 6M C 57ı of the 100M C 2000ı-tail of 
 00 at pnC1 that lies in N2ı.Bn/ must lie in the corner
segment of 
 00 at pnC1. Hence an at least 94M C 1000ı-tail of 
1 at pnC1 must lie in N3ı.Bn/.

Let 42 be the triangle with sides 
1, an, 
 0. By imitating the argument for 41, there is a point z2 2 
 0

so that d.z2; pnC1/6 10M C 116ı. Hence by Lemma 5.13,

j
 0j> j
1jC janj � .20M C 232ı/

so that
j
 0j> ja0jC j
 00jC janj � .40M C 464ı/
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and, by the computation from the previous case,

j
 0j> ja0jC 1
2
j
0j � 128ıCjanj � .40M C 464ı/> 1

2
j
 j � 128ı� .40M C 464ı/

so that 
 is a .2; 40M C 592ı/-quasigeodesic in �X .

Case (3) (
 D a1b1 : : : anbn, ja1j ¤ 0 and jbnj> 37M C 250ı) Since A is a ƒ-separated collection,
the path 
0 D b1a2b2 : : : bn satisfies the hypotheses of Theorem 5.6. Let 
 00 be the geodesic connecting
the endpoints of 
0. Then j
 00j> j
0j � .n� 1/.68M C 628ı/ by Theorem 5.6. By an argument similar
to the one in the previous case,

j
 0j> j
 00jC ja1j � .20M C 232ı/

and by arguments similar to the ones above,

j
 0j> 1
2
j
 j � .20M C 360ı/

so in this case, 
 is a .2; 20MC360ı/-quasigeodesic in �X .

Case (4) (
 D a1b1 : : : anbn where ja1j ¤ 0, jbnj 6 37M C 250ı) By a previous case, the path
a1b1 : : : an is a .2; 40MC592ı/-quasigeodesic in �X . Hence 
 is a .2; 77MC1000ı/-quasigeodesic
in �X .

Case (5) (
 D b1 : : : anbn where jb1j; jbnj< 37M C 250ı) Applying the immediately preceding case
to a2b1 : : : anbn and the fact that jb1j6 37MC250ı implies that 
 is a .2; 114MC1250ı/-quasigeodesic
in �X .

Case (6) (
 D b1a2b2 : : : anbn, where jb1j < 37M C 250ı and jbnj > 37M C 250ı) By case (3),
a2b2 : : : anbn is a .2; 20MC360ı/-quasigeodesic. Thus 
 is a .2; 57MC510ı/-quasigeodesic because
jb1j< 37M C 250ı.

Now, assume T=� is path connected. Let T0 be the image of T=� in �X . Let x; y 2 T=�. Let �T ; �T0 ; �
be the geodesics connecting x and y in T=� , T0 and �X , respectively. Since T=� is path connected,
�T maps to a path in T0, j�T0 j6 j�T j. From the preceding, 1

2
j�T j � .114M C 1592ı/6 j�j. Combining

these inequalities,
1
2
j�T0 j � .114M C 1592ı/6 j�j6 j�T0 j;

making �T0 a .2; 114MC1592ı/-quasigeodesic.

Proposition 5.18 Under Hypotheses 5.16, any geodesic in T=� is not mapped to a loop in �X .

Proof Let 
 be a T=�-geodesic that maps to a loop in �X . If 
 � A 2A or 
 � B 2 B, then 
 cannot
map to a loop in A or a loop in B . Then 
 can be written as a piecewise geodesic of the form

b1a2b2 : : : anbn;

where bi � Bi 2 B and ai � Ai � A 2 A, jb1j; jbnj > 1
2
ƒ and jbi j > ƒ for all 1 6 i 6 n. Since

ƒ> 4.114M C 1592ı/, j
 j> 2.114M C 1592ı/. Since 
 maps to a .2; 114MC1592ı/-quasigeodesic
in �X , the distance between the endpoints of 
 must be positive, so 
 cannot map to a loop.
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6 The geometry of special cube complexes

6.1 Nonpositively curved cube complexes

A cube complex is a union of Euclidean cubes Œ0; 1�n of possibly varying dimensions glued isometrically
along faces. A nonpositively curved (NPC) cube complex is a cube complex such that the link of every
vertex is a flag simplicial complex. See [29] Section 2.1 for details.

In each cube Œ0; 1�n, fixing one coordinate at 1
2

makes a codimension-1 midcube. A hyperplane H is a
connected union of midcubes glued isometrically along faces so that the intersection of H with any cube
is either a codimension-1 midcube or empty. See Figure 7 for an example of an NPC cube complex and
the link of a vertex.

6.2 Special cube complexes and separability

A special cube complex is a type of NPC cube complex developed by Wise and others whose hyperplanes
are embedded, are 2-sided and avoid two other pathologies, see [29, Definition 4.2]. The important
properties of special cube complexes that will be used in the following are the embeddedness and 2-
sidedness of the hyperplanes and the fact that hyperplane subgroups of special cube complexes are
separable (see Proposition 6.3).

A group is special if it is the fundamental group of a special cube complex. By work of Haglund and
Wise [12], compact special groups embed into right angled Artin groups and are hence residually finite.
Recall that if G is a group and H is a subgroup, H is separable in G if it is the intersection of the finite
index subgroups containing H .

Passing to finite index subgroups is compatible with separability:

Figure 7: An example of an NPC cube complex (including a 3-cube) with its hyperplanes as well
as the link of the blue vertex shown in orange and enlarged on the right.
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Lemma 6.1 Let G be a group , let G0 be a finite index subgroup of G and let H 6 G. Then H is
separable in G if and only if H \G0 is separable in G0.

Theorem 6.2 (Scott’s criterion, [27]) Let X be a connected complex, G D �1X and H 6 G. Let
p WXH !X be the cover corresponding to H . The subgroup H is separable in G if and only if for every
compact subcomplex Y �XH , there exists an intermediate finite cover XH ! bX!X such that Y ,! bX .

Every finitely generated subgroup of a free group is separable. Likewise, special groups have an ample
supply of separable subgroups. For example, the hyperplane subgroups of a special cube complex are
separable:

Proposition 6.3 Let X be a virtually special compact and nonpositively curved cube complex. Let W be
a hyperplane of X . Then �1.W / is separable in �1.X/.

Proposition 6.3 follows from Haglund and Wise’s canonical completion and retraction (see [29, Construc-
tion 4.12] or [12, Corollary 6.7]).

6.3 Elevations and R-embeddings

This subsection builds up the technical tools and terminology used to obtain finite covers whose hyperplanes
elevate to sufficiently separated images in the universal cover.

The first step is to formalize the notion of an elevation:

Definition 6.4 Let W be a connected topological space and let � WW !Z be a continuous map. Let
p W bZ! Z be a covering map. There is a minimal covering yp W bW !W such that � ı yp lifts to a mapb� W bW ! bZ. The mapb� is an elevation of W to bZ.

Often, the map bW ! bZ will be implied and an elevation of � will instead refer to the image of some
elevation.

Elevations may not be unique: two elevations of the same map are distinct if they have different images.

When � W W ! Z is an inclusion map, then the distinct elevations of � are precisely the components
of p�1.W /.

Definition 6.5 Let X be a metric space, R > 0 and let Y � X be connected. Let p W XY ! X be the
covering space associated to �1.Y / so that the inclusion Y ,!X lifts canonically to XY . The subspace Y
is R-embedded in X if p is injective on NR.Y /�XY .

The following lemma is straightforward but will be important:
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Lemma 6.6 Let p W bX !X be a finite regular cover. If A is R-embedded in X , then each component of
p�1.A/ is R-embedded in bX .

The main application of hyperplane separability is to show that every compact virtually special cube
complex has a finite cover where every hyperplane is R-embedded.

Proposition 6.7 Let X be a compact nonpositively curved cube complex, and let V1; V2; : : : ; Vn be
hyperplanes of X so that �1Vi is separable in �1X . Given R> 0, then there exists a finite regular cover C
such that V1; : : : ; Vn � C are R-embedded in C .

If eW 1, eW 2 are distinct elevations of a hyperplane V of C to the universal cover �X , then d�X .fW1;fW2/>2R.

Proof For each hyperplane W of X , �1.W / is separable by Proposition 6.3. By Theorem 6.2, there
exists a finite covering yp W bX !X such that there is an embedding iW WNR.W / ,! bX .

Let zp W �X !X , pW W �XW !X and p W �X !XW be canonical covering maps so that zp D pW ıp. LeteW ! eW 1; eW ! eW 2 be distinct elevations of W to �X , and let �w1 2 eW 1 and �w2 2 eW 2.

Suppose toward a contradiction there exists a path 
 � �X with j
 j6 2R between eW 1 and eW 2. Let zx 2 

such that d.zx; eW 1/ < R and d.zx; eW 2/ < R.

There exists g 2 �1.X/ such that g � �w1 2 eW 2, and g … �1.W / because otherwise g � �w1 2 W1 \W2
in which case �w1 2 eW 2, but �w1 … eW 2. Now d.g � zx; eW 2/ 6 R. Since g … �1.W /, p.zx/ ¤ p.g � zx/.
By definition of an elevation, p.eW 2/ is contained in the image of an inclusion of W into XW . Also
p.zx/, p.g � zx/ lie in an R-neighborhood of the image of W in XW . However,

pW ıp.zx/D zp.zx/D zp.g � zx/D pW ıp.g � zx/

contradicting the fact that iW WNR.W / ,! bX is an embedding.

Suppose X has n hyperplanes. By passing to a finite cover if necessary, assume XW is regular. The
number of hyperplane orbits under deck transformations of XW is at most n, and every hyperplane in the
orbit of an elevation of W to XW is R-embedded. Therefore, performing this procedure at most n times,
will produce a finite cover C !X where every hyperplane is R-embedded.

Proposition 6.7 will be used later in Section 7 to make the elevations of a hyperplane a 2R-separated
family in the sense of Definition 5.15.

6.4 Convex cores

Specialness also plays a role in building a geometric representation of the peripheral structure. In the
hyperbolic case, Wise and others [11; 25] (see also [12, Proposition 7.2]) proved that quasiconvex
subgroups of virtually special groups have “convex cores” in the CAT.0/ universal cover. This fact and
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canonical completion and retraction can be used to show that hyperbolic special groups are QCERF or
quasiconvex extended residually finite [12, Theorem 1.3] meaning that if G is hyperbolic and special,
then every quasiconvex subgroup of G is separable.

A similar result exists in the relatively hyperbolic case. One might imagine that replacing the quasiconvex
subgroup H by a relatively quasiconvex subgroup might yield a generalization; however, some care is
required. In particular, a subgroup may stabilize a quasiconvex subset of a CAT(0) cube complex but may
fail to stabilize a convex proper subcomplex, see Example 6.9.

Definition 6.8 If �X is a CAT(0) cube complex and eY � �X , the cubical convex hull of eY is the smallest
convex subcomplex of �X containing eY .

Example 6.9 Take the standard action of Z2 D h.1; 0/; .0; 1/i on R2 by translation. The diagonal
D WD f.r; r/ W r 2 Rg is a subspace stabilized by L WD h.1; 1/i 6 Z2. The subgroup L is .2; 0/-quasi-
isometrically embedded in the given presentation of Z2, but the cubical convex hull of D is all of R2.

Full relatively quasiconvex subgroups eliminate these pathologies:

Definition 6.10 [26, Section 4] Let .G;P/ be a relatively hyperbolic group pair and letH be a relatively
quasiconvex subgroup of G. The subgroup H is a full relatively quasiconvex subgroup of G if for each
g 2G and P 2 P , either gPg�1\H is finite or gPg�1\H is finite index in gPg�1.

Theorem 6.11 [26, Theorem 1.1] Let X be a compact nonpositively curved cube complex with
G D �1.X/ hyperbolic relative to subgroups P1; : : : ; Pn. Let �X be the CAT.0/ universal cover of X .
If H is a full relatively quasiconvex subgroup of G, then for any compact U � �X , then there exists an
H -cocompact convex subcomplex eY � �X with U � eY .

By Proposition 2.15, if .G;P/ is a relatively hyperbolic group pair, the elements of P and their conjugates
are relatively quasiconvex. By Proposition 2.2, the elements of P and their conjugates are full relatively
quasiconvex. Therefore:

Lemma 6.12 Let X be a nonpositively curved cube complex with CAT.0/ universal cover �X and
G WD �1.X/. Let .G;P/ be a relatively hyperbolic pair. Let x 2 �X be a base point in the universal cover.
For each P 2 P , there exists a Z0.P; x/ such that Z0.P; x/ is a P -cocompact convex subcomplex of �X
containing x.

It follows immediately that there exists a Q > 0 such that the cubical convex hull of Px is contained
in NQ.Px/.
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7 A malnormal quasiconvex fully P-elliptic hierarchy

For the following section, let X be a compact nonpositively curved cube complex with CAT.0/ universal
cover �X and G D �1.X/ hyperbolic relative to subgroups P WD fP1; : : : ; Png. Fix a base point x 2 �X .
By Lemma 6.12, there is a convex subcomplex zZ0P;x that is a P -cocompact convex subcomplex of �X
containing Px.

Let B0 WD fg zZ0P;x W g 2G; P 2 Pg. By Proposition 4.6, there exists f0 WR>0!R>0 and ı > 2 so that
.�X;B0/ is a .ı�2; f0/-relatively hyperbolic pair.

Let zZP;x DN2ı. zZ0P;x/. Theorem 6.11 implies that the collection B0 D fg zZP;x W g 2 G; P 2 Pg is a
thickening of B0. Proposition 4.4 implies there exists f 0 W R>0! R>0 so that .�X;B0/ is a .ı�2; f 0/-
CAT.0/ relatively hyperbolic pair. We also define f W R>0 ! R>0 where f .r/ D f 0.r C 2/. The
function f will be useful later when we carry out the augmentation construction defined in Section 7.1.

To maintain consistency with previous notation, we will use the notationM D f .6ı/ throughout Section 7.
Proposition 5.3 implies:

Proposition 7.1 For every g 2G, g zZP;x is .3MC6RC21ı/-attractive in the sense of Definition 5.1.

7.1 Superconvexity, peripheral complexes and augmented complexes

Here we will prove that bi-infinite geodesics contained in a bounded neighborhood of zZP;x actually lie
in zZP;x .

Definition 7.2 Let X be a nonpositively curved cube complex and let � WZ!X be a local isometry.
The map � is superconvex if for any elevatione� W zZ ,! �X of Z to the universal cover �X of X and any
bi-infinite geodesic 
 in �X such 
 lies in a bounded neighborhood of (thee� image of) zZ in �X , then 
 is
contained (in thee� image of) zZ.

If the immersion � WZ!X is superconvex, then Z is said to be superconvex in X (with respect to �).

Since zZP;x is a P -cocompact convex subcomplex of �X , the quotient ZP;x WDP n zZP;x is a cube complex
and there is a natural local isometry �P;x WZP;x!X that carries ZP;x to the image of Gn zZP;x in X .

Proposition 7.3 �P;x is superconvex.

Proof Suppose 
 is a bi-infinite geodesic contained in NR. zZP;x/ and p 2 
 . There exist s1; s2 2 
 so
that p 2 Œs1; s2� and d.si ; p/ > 3M C6RC21ı. Hence by Proposition 7.1 there exist points t1; t2 so that
t1 2 Œs1; p� and t2 2 Œp; s2� so that t1; t2 2 zZP;x . Therefore by convexity p 2 zZP;x . Hence 
 � zZP;x .

The complexesZP;x are called peripheral complexes. There is a convenient way to upgrade the immersion
to an embedding:
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Definition 7.4 Let X be a nonpositively curved cube complex with CAT.0/ universal cover �X and
G WD �1.X/. Let .G;P/ be a relatively hyperbolic group pair. Let Z WD

F
P2P ZP;x , and let ˆ WZ!X

be the map so that ˆjZP;x D �P;x . The augmented cube complex for the pair .X;ˆ/ is the complex

C.X;ˆ/ WDX [
� F
P2P

ZP;x � Œ0; 1�
�
=.ZP;x � f1g/� �P;x.ZP;x/;

consisting of the mapping cylinders of the �P;x identified along X .

The hyperplanes ZP;x� 12 are called peripheral hyperplanes while the remaining hyperplanes of C.X;ˆ/
are nonperipheral. Note that the nonperipheral hyperplanes of C.X;ˆ/ are in one-to-one correspondence
with the hyperplanes of X . Since �1X Š �1.C.X;ˆ//, a (virtual) hierarchy for �1.C.X;ˆ// determines
a (virtual) hierarchy of �1X .

Proposition 7.5 Let C.X;ˆ/ be the augmented cube complex for the pair .X;Z/ as in Definition 7.4.
If X is virtually special and W is a nonperipheral hyperplane of C.X;ˆ/, then �1W is separable in
�1C.X;ˆ/Š �1X .

Sketch The natural homotopy equivalence between C.X;ˆ/ and X that induces �1C.X;ˆ/Š �1.X/
brings nonperipheral hyperplanes of C.X;ˆ/ to hyperplanes of X . Therefore, W is homotopy equivalent
to a hyperplane V of X and �1V Š �1W is separable in �1X (recall Proposition 6.3).

Technically, the definition of C.X;ˆ/ depends on the base point, but since the following results are given
up to conjugacy, there is no need to keep track of base points.

Proposition 7.6 Let C.X;ˆ/ be the augmented cube complex for .X;Z/ described in Definition 7.4.
Let eC be the universal cover of C.X;ˆ/. Let B be the collection of (images of ) elevations of (images of )
ZP;x � Œ0; 1� in C.X;ˆ/ to eC .

(1) Each B 2 B is closed and convex.

(2) .eC ;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair.

(3) Every B 2 B is .3MC6RC2f .R/C21ı/-attractive (recall Definition 5.1).

Proof The universal cover �X of X embeds as a closed convex subset of eC so that each B 2 B intersects�X in some zZP;x . Since B intersects �X in a closed convex subspace, B is closed and convex in eC .

Every geodesic triangle in eC is Hausdorff distance 1 from a geodesic triangle in �X . Since triangles
in �X are .ı�2/-thin relative to translates of zZP;x , triangles in eC are ı thin relative to B. For every
B1; B2 in B with B1¤B2, Nt .B1/\Nt .B2/ is distance at most 1 from the intersection of g1Nt . zZP1;x/
and g2Nt . zZP2;x/ in �X for some g1; g2 2G and P1; P2 2 P , so the fact that �X is a .ı�2; f 0/-CAT.0/
relatively hyperbolic pair implies that .eC ;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair.
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Figure 8: The figure-8 loop on the left whose two hyperplanes are the two edge midpoints and
the double dot cover of the figure-8 loop on the right.

Let 
 be a geodesic in eC with endpoints in NR.B/ for some B 2 B. Since �X is CAT.0/ and B is convex,

 � NR.B/. Then 
 is either contained in B 0 for some B 0 2 B in which case j
 j 6 f .R/ or 
 has a
subpath � whose endpoints in �X are at most f .R/ from the endpoints of 
 . Therefore j� j> j
 j�2f .R/.
There is some g 2G and P 2 P so that g zZP;x D B \ �X . If the length of � is at least 3M C 6RC 21ı,
then �\g zZP;x ¤¿ by Proposition 7.1. Therefore, if the length of 
 is at least 3MC6RC2f .R/C21ı,
¿¤ 
 \g zZP;x � 
 \B .

7.2 The double dot hierarchy

The construction of a hierarchy will use a finite cover called the double dot cover whose construction is
originally due to Wise [30, Construction 9.1]. This treatment of the double dot cover is similar to the one
in [3, Section 5].

Definition 7.7 [30, Construction 9.1] Let X be a cube complex, let W � X be a hyperplane of X .
Let 
 be a based loop and let Œ
� 2 �1X . Then Œ
� has a well-defined (mod 2) intersection number
with W . Let W be the set of embedded, 2-sided, nonseparating hyperplanes of X . For each W 2W let
iW W �1X ! Z=2Z be the algebraic intersection map and define

‰ W �1X !
M
W 2W

Z=2Z; ‰ D
M
W 2W

iW :

The double dot cover of X is the cover corresponding to the subgroup ker‰ 6 �1X .

The double dot cover of a cube complex is usually a high-degree cover. Therefore, constructing examples
can be quite difficult. Fortunately, the double dot cover of a rose with 2 petals is easy to construct:

Example 7.8 See Figure 8 for the double dot cover of the figure-8 loop.

An important feature of the double dot cover is that the cover is taken over nonseparating hyperplanes.
This serves two purposes: first, making sure that double dot cover is not trivial and second, making sure
that the double dot hierarchy constructed later has nontrivial splittings. There is a way to obtain a complex
where every hyperplane is nonseparating:
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Theorem 7.9 [6, Proposition 2.12] LetX be a compact special NPC cube complex. ThenX is homotopy
equivalent to a compact special NPC cube complex whose hyperplanes are all nonseparating.

Let X be a special cube complex with finitely many hyperplanes W WD fW1; : : : ; Wng where every
hyperplane is nonseparating and let RpX W RX!X be the double dot cover of X . The hyperplanes of RX are
elevations of hyperplanes ofX , and they divide RX in a natural way. Let x2 RXn

S
Rp�1X .W/ be a base vertex.

Each component of RXn
S
Rp�1X .W/ contains a lift of RpX .x/ because the hyperplanes ofX are nonseparating.

There is only one lift of RpX .x/ which lies in each component of RX n
S
Rp�1X .W/ because otherwise there

is path � between two points of Rp�1X .x/ that does not cross Rp�1X .W/. The path � must project to a loop
that represents a nonidentity element of �1.X/nker‰ but does not cross any W 2W which is impossible.

Since ker‰ is normal, �1X= ker‰ acts by deck transformations on RX . This action induces a free and tran-
sitive action on Rp�1X .x/. Since each component of RX n

S
Rp�1X .W/ contains exactly one element of Rp�1X .x/,

we can label each of the components of RX n
S
Rp�1X .W/ by an element of �1X= ker‰ Š

L
W 2W Z=2Z.

With data specified below in Hypotheses 7.10, we will use the labels for components of RX n
S
Rp�1X .W/

to construct a double dot hierarchy of spaces for the double dot cover RC of C . When the data in
Hypotheses 7.10 satisfy certain criteria discussed in Section 7.3, the double dot hierarchy gives rise to
a quasiconvex and fully P-elliptic hierarchy of groups for �1. RC/ which is isomorphic to a finite index
subgroup of �1X . Passing to a particular finite cover will produce an induced hierarchy that is also
malnormal. The next several paragraphs outline the construction of the double dot hierarchy as it is
presented in [3, Section 5].

We now establish some baseline hypotheses for the remainder of Section 7.2.

Hypotheses 7.10 Let X be a compact special NPC cube complex so that:

� The hyperplanes of X are nonseparating.

� There exist a disjoint union Z WD
Fn
iD1Zi of NPC cube complexes together with a local isometric

immersion ˆ W Z!X .

� Let C be the augmented cube complex C.X;ˆ/ and let p W RC ! C be its double dot cover.

� Let W be the nonperipheral hyperplanes of C and choose an ordering of the elements of W so that
they are W1; W2; : : : ; Wn.

� Additionally, C is a mapping cylinder for the map ˆ, so we can view Z as an embedded subspace
of C . In the language of Definition 7.4, Z is the image of

Fn
iD1Zi � f0g in C .

� Let RZ D p�1.Z/ be the preimage of Z � C under the double dot covering map.

� Fix a base vertex.
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Each component of RC np�1
�S

W
�

is labeled (relative to the base vertex) by a vector Ot 2
Ln
iD1Z=2Z.

For each 16 i 6 n, let Wi be the first i hyperplanes and let Mi D
Li
1Z=2Z. Then the complementary

components of
S

Wi are labeled by elements of Mi . For each Ot 2Mi , let KOt be the closure of the part
labeled by Ot .

For each Ot 2Mi , a Ot-vertex space at level n� i C 1 is a component of KOt [ RZ that intersects KOt . In the
construction of the double dot hierarchy, the Ot-vertex spaces at level n� i C 1 specify all of the vertex
spaces at each level, but the actual graph of spaces structure at each level must be described.

If A is the closure of a component of p�1.Wi /n
S
j<i p

�1.Wj /, then A is called a partly cut-up elevation
of Wi . The double dot hierarchy is constructed by cutting along an elevation of a hyperplane Wi to RC
and any elements of RZ that intersect Wi , but the elevation of the hyperplane Wi may have already been
cut by one of the other hyperplane elevations of Wj with j < i .

By construction, any two Ot-vertex spaces at level n� i C 1 are either disjoint or intersect in a union of
components of RZ and disjoint partly cut-up elevations of Wi .

Now it is time to construct the graph of spaces structures at each level. Let Ot 2Mi and let V be the
corresponding Ot -vertex space at level n� iC1. Consider the canonical projection � WMiC1!Mi . Let OtC

and Ot� be the preimages of Ot under � . Let V C and V � be the collections of complementary components
of V n p�1

�S
WiC1

�
labeled by OtC and Ot�, respectively. Then V D V C [ V � and the components

in V C, V � will serve as the vertex spaces in the graph of spaces decomposition of V in this hierarchy.

The edge spaces are components of V C\V �. The attaching maps are the inclusion maps of edge spaces
into vertex spaces while the realization is provided by a homotopy equivalence collapsing the mapping
cylinders of the edge spaces onto the images of the edge spaces.

Let Ot 2Mn. Then the components of the Ot -vertex spaces are the vertex spaces of level 1 of the hierarchy,
so the terminal spaces of the hierarchy are precisely these spaces.

Definition 7.11 The hierarchy H constructed in the preceding paragraphs with vertex spaces is called
the double dot hierarchy for the pair .X;Z/.

The double dot hierarchy actually depends on an ordering on the hyperplanes, but the applications that
follow only need an existence of a hierarchy given some local isometric immersion Z ! X , so this
complication will be henceforth ignored.

A version of the double dot hierarchy exists for general NPC cube complexes, see [3, Section 5.2];
however, the double dot hierarchy may fail to be faithful and even if it is faithful, the hierarchy may fail to
be quasiconvex or malnormal. Also, the terminal spaces may not be useful. However, when hyperplanes
are embedded, nonseparating and two-sided, the terminal spaces are easy to understand:
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Lemma 7.12 [3, Lemma 5.5] Assume Hypotheses 7.10. If Y is a terminal space of the double dot
hierarchy for .X;Z/, then Y has a graph of spaces structure .�; �/ such that

(1) � is bipartite with vertex set V.Y /D V.Y /C tV.Y /�,

(2) if v 2 V.Y /C, �.v/ is contractible ,

(3) if v 2 V.Y /�, �.v/ is a component of RZ and

(4) every edge space is contractible.

Corollary 7.13 Under Hypotheses 7.10, the fundamental group of a terminal space of the double dot
hierarchy is a free product of the form

�¨p
iD1Gi

�
�F where F is a finitely generated free group and , for

all 16 i 6 p, Gi WD �1.Zi / where Zi is a component of Z .

7.3 A fully P-elliptic malnormal quasiconvex hierarchy

Hypotheses 7.14 We set some basic hypotheses and notation for Section 7.3:

(1) Let X0 be an NPC compact special cube complex.

(2) Let X be an NPC compact special cube complex that is homotopy equivalent to X so that the
hyperplanes of X are all nonseparating (the existence of X follows from Theorem 7.9).

(3) Let �X be the universal cover of X with base point x 2 �X that does not lie in any hyperplane.

(4) Let G WD �1X Š �1X0 and suppose that .G;P/ is a relatively hyperbolic group pair.

(5) For each P 2P , let �P;x WZP!X be the superconvex local isometric immersions and let ZD
F
ZP

that arise as a consequence of Proposition 7.3. Let ˆ W Z!X be the map that restricts to �P;x on ZP .

(6) Let C1 D C.X;ˆ/ be the augmented cube complex for .X;ˆ/ (recall Definition 7.4), and let eC be
its universal cover.

(7) Viewing C1 as a mapping cylinder of ˆ, ˆ gives rise to a natural embedding Z ,! C1. We call the
components ZP � f0g of the image of ˆ peripheral spaces.

By strategically passing to finite covers and building the double dot hierarchy, we will produce a faithful,
quasiconvex and fully P-elliptic virtual hierarchy for �1X .

Lemma 7.15 (see [3, Lemma 5.18]) Let C 0 be a finite regular cover of C1.

(1) There exists a finite cover X 0 of X with G0 WD �1X 0 and a superconvex local isometric immersion
ˆ0 W Z 0 ! X 0 such that .G0;P 0/ is the induced relatively hyperbolic group pair (see Proposition 2.13)
and C 0 is the augmented cube complex of the pair .X 0;Z 0/. The components of Z 0 have fundamental
group isomorphic to elements of P 0 and for each component Z of Z 0, the image of �1Z is conjugate to
an element of P 0 in G0.

(2) Every nonperipheral hyperplane of C 0 is nonseparating.
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Notation 7.16 (1) Let B be the collection of elevations of ZP � Œ0; 1� (as determined by the map-
ping �P;x) to eC . Let eZ be the union of the elements of B in eC .

(2) Recall from Proposition 7.6 that there exist .ı; f / so that .eC ;B/ is a .ı; f /-CAT.0/ relatively
hyperbolic pair.

(3) Let M D f .6ı/, let �D 4 and � D 10000.M C ıC 1/.

(4) Proposition 7.6 also implies that every B 2 B is .3MC6RC2f .R/C21ı/-attractive.

(5) Set Lrftp so that every pair of .�; �/-quasigeodesics in eC .Lrftp; Lrftp/-fellow travel relative to B
(recall Definition 4.5 and Theorem 4.7).

(6) Let Rrftp D �
�
�.3f .Lrftp/C �C 2Lrftp/C �

�
C 2f .Lrftp/.

(7) Let R0 >maxf4;Rrftp; 500M C 10000ıg.

Observation 7.17 The constants established in items (2) and (4) of Notation 7.16 ensure that the
pair .eC ;B/ satisfies Hypotheses 5.5.

Using Propositions 6.7 and 7.5, let C2 be a finite regular cover of C1 such that every nonperipheral
hyperplane of C2 is R0-embedded and nonseparating. Then C2 is the augmented cube complex of a
pair .X2;Z 00/ whereX2 is a finite cover ofX by Lemma 7.15. Recall that �X naturally embeds in eC , which
is also the universal cover of C2. Let G2 D �1.C2/ and let .G2;P 00/ be the induced peripheral structure.

Let c W RC2 ! C2 be the double dot cover of C2. Let . RG2; RP 00/ be the induced peripheral structure
on RG2 WD �1 RC2. The next few statements will show that the double dot hierarchy on RC2 is faithful,
quasiconvex and fully RP 00-elliptic hierarchy for �1 RC2. Passing to a finite regular cover will later yield a
hierarchy which is also malnormal.

By Lemma 7.15, RC2 is an augmented cube complex with respect to a pair . RX2; RZ2/ where RZ2 consists of
components of c�1.Z 00/. Let E be an edge space of the double dot hierarchy on RC2. Then E is a union
of partly cut-up elevations of a hyperplane of C2 and elements of RZ2.

Recall that .eC ;B/ is a .ı; f /-CAT.0/ relatively hyperbolic pair. Let zE be an elevation of E to eC . There
exist AE and BE so that AE is a collection of elevations to eC of convex partly cut-up hyperplane
elevations of W and BE is a collection of elevations of the peripheral spaces (recall Hypotheses 7.14(7))
to eC so that zE is the union of the elements of AE and BE .

Each element BE 2 BE is an elevation of a peripheral space. While BE is not an element of B,
there is a unique B 0E 2 B containing BE . In particular, B 0E is the 1-neighborhood of BE in eC . Let
B0E DfB 2B WBE �B for some BE 2BE g be the collection of elevations of the ZP � Œ0; 1� to eC whose
intersection with �X is some BE 2 BE . See Figure 9. Let zE 0 be the image of

�F
AE

�
t
�F

B0E
�

in eC .

By Observation 7.17, the R0-embeddedness of the hyperplane W and the construction of zE 0 imply:
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eX : : :

B 0E

BE

Figure 9: A schematic diagram showing the relationship between BE , B 0E and their attachment
to �X . The closure of the shaded region is B 0E .

Proposition 7.18 The subspace zE 0 � eC is a subspace of the form specified by Hypotheses 5.16.

Proof Observation 7.17 ensures .�X;B/ satisfies Hypotheses 5.5.

Recall that C2 has hyperplanes that are R0-embedded (recall R0 from Notation 7.16(7)), and recall that
R0-embeddedness of hyperplanes is preserved by finite covers (Lemma 6.6). Therefore, for all distinct
pairs of A1; A2 2 AE , d.A1; A2/ > 2R0, and R0 is large enough to provide the separation between
elements of AE required by Hypotheses 5.16.

By construction, B0E � B, and zE 0 is glued together from elements of AE and B0E as required.

Proposition 7.19 Let E be an edge space of the double dot hierarchy on RC2. Then the map E! RC2 is
�1-injective.

Proof Suppose not toward a contradiction. Then there exists a loop 
 in E such that 
 is essential in E
but has trivial image in �1. RC2/. Since 
 is �1 trivial in �1. RC2/, 
 elevates to a loop z
 � zE in eC . Since
zE is homotopy equivalent to zE 0, there is a loop 
 0 in RC2 that is the image of a geodesic in zE 0. Since zE 0

is the image of
�F

AE
�
t
�F

B0E
�

in eC , z
 0 cannot be a loop by Proposition 5.18.

The next step is to prove that the double dot hierarchy on RC2 is quasiconvex:

Proposition 7.20 Recall �, � from Notation 7.16. If E is an edge space of the double dot hierarchy on
RC2 and zE is the universal cover of E, then any elevation zE ,! eC of E to eC is a .�; �/-quasi-isometric

embedding.
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Proof Let 
 be a geodesic in zE and let 
 0 be a geodesic with the same endpoints in fE 0. Let 
 00 be a
geodesic in eC with the same endpoints as 
 . Proposition 7.18 implies we can use Proposition 5.17, which
implies that 
 0 is a .2; 114MC1592ı/-quasigeodesic in eC . Let n be the smallest number so that 
 0 can
be written as a1b1 : : : bnanC1 where

(1) ai can be a point if i D 1 or i D nC 1,

(2) otherwise ai is geodesic in some Ai 2AE , and

(3) bi is geodesic in some B 0i 2 B
0
E .

The endpoints of each bi lie in zE because every Ai � zE and 
; 
 0 have the same endpoints. Thus each bi
can be replaced by a path of length jbi j C 2 that lies entirely in zE. It is therefore possible to produce
a path in zE between the endpoints of 
 whose length is at most j
 0j C 2n, so j
 j 6 j
 0j C 2n. Further,
jbi j>R0 > 4 for 1 < i < n because the Ai are R0-separated, so we have that j
 j> 4n�8 which implies

(4) 2n6 1
2
j
 jC 4:

Therefore
j
 00j> 1

2
j
 0j � .114M C 1592ı/

> 1
2
.j
 j � 2n/� .114M C 1592ı/

> 1
2

�
1
2
j
 j � 4

�
� .114M C 1592ı/

> 1
4
j
 j � .114M C 1592ıC 2/;

where the third line follows from the second by the estimate in (4). Hence 
 is a .4; 114MC1592ıC2/-
quasigeodesic in eC .

Propositions 7.19 and 7.20 together yield the following:

Corollary 7.21 The double dot hierarchy induced on �1 RC2 is faithful and quasiconvex.

The next step is to prove that the double dot hierarchy on RC2 is fully RP 00-elliptic. Definition 7.22 introduces
geometric terminology for the situation where a subgroup of a relatively hyperbolic group pair .G;P/
contains an element g conjugate into a peripheral subgroupP such that no positive power of g lies inE\P .

Definition 7.22 Let Y be a locally convex subspace of RC2. Let E � RC2. The subspace E has an
accidental Y -loop if there exists a homotopically essential loop, 
 , which is both freely homotopic to a
geodesic loop in Y and has no positive power homotopic in E to a geodesic loop in Y .

The next few statements will show that the edge spaces of the double dot hierarchy for RC2 have no
accidental RZ 00-loops. This will imply the hierarchy is fully RP 00-elliptic. Elevations of partly cut-up
hyperplanes do not have accidental RZ 00-loops:
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Lemma 7.23 [3, Lemma 5.15] Let .X;Z/ be a superconvex pair where each component of Z is
embedded and let C be the corresponding augmented cube complex. For n > 1, let fW1; : : : ; Wng
be a collection of embedded , 2-sided , nonseparating hyperplanes of C . Let Q be a component of
Wn n

S
i<nWi . Then Q has no accidental Z-loops.

Proposition 7.24 Let E be an edge space of the double dot hierarchy for RC2. Then E has no accidental
RZ 00-loops.

Proof Recall that E is a union of a partly cut-up hyperplane elevations and components of RZ 00 that
intersect these elevations. Let Q be one of the partly cut-up hyperplane elevations. By Lemma 7.23,
Q has no accidental RZ 00-loops.

Suppose there exists a RC2-essential loop 
 in E such that 
 is freely homotopic in RC2 into RZ 00. Then a
representative of the homotopy class of 
 lifts to a bi-infinite zE-geodesic y
 where zE is an elevation of E
to eC , and a representative of the homotopy class of 
 lifts to a bi-infinite eC -geodesic �� zZ, an elevation
of a component of RZ 00 and there exists R > 0 so that y
 �NR.�/.

Since y
 is a zE-geodesic, y
 is a .�; �/-quasigeodesic in eC by Proposition 7.20.

Let y
0 be a subsegment of y
 with jy
0j D j
 j (eg take y
0 to be the subsegment between two consecutive
lifts of a point of 
 to y
). If y
0 � zZ0 where zZ0 is an elevation of a component of RZ 00, then y
 � zZ0 and
y
 is geodesic in eC . Then zZ D zZ0 because diamNR. zZ/\NR. zZ0/ D1 in which case 
 was not an
accidental RZ 00-loop.

On the other hand, if y
0 � eQ where eQ is some elevation of Q to eC , then Q has an accidental RZ 00-loop,
contradicting the fact that there are no such accidental Z-loops.

Therefore, there exist subsegments of y
 of the form 
m D am;1bm;1am;2bm;2 : : : am;kmbm;km such thatS1
1 
m D y
 , j
mj !1 and km!1 as m!1, am;i lies in an elevation eQi of Q to eC , bm;i � zZm;i

where zZm;i is an elevation of a component of RZ 00 to eC , and if i ¤ j , bm;i � zZi and bm;j � zZj ¤ zZi
(otherwise, by convexity of Zi , 
m could be written as a concatenation of fewer geodesic segments).
Recall that Q is R0-embedded, so for all m; i , jbm;i j>R0.

By construction there is a unique B 2B so that zZ�B . Let �m be the eC -geodesic connecting the endpoints
of 
m. Since �m �NR.B/ and B is .3MC6RC2f .R/C9ı/-attractive, all but .3MC6RC2f .R/C9ı/-
tails of the endpoints of �m lie in B . Therefore, there exists a subsegment �Bm � �m \ B so that
j�Bm j> j�mj � 2.3M C 6RC 2f .R/C 9ı/.

Recall that all .�; �/-quasigeodesics with the same endpoints .Lrftp; Lrftp/-fellow travel relative to B.
There exists a unique Bm;i 2 B containing zZm;i , so bm;i � Bm;i . Then for B 2 B with B ¤ Bm;i ,
diam bm;i \NLrftp.B/6 f .Lrftp/. Since �m and 
m relatively fellow travel, either

� there exist points p�m;i and pCm;i on bm;i � 
m that are at most f .Lrftp/ from the endpoints of bm;i
and are distance Lrftp from �m or
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� there exist p�m;i ; p
C
m;i on 
m so that p�m;i ; p

C
m;i are distance at most Lrftp from points in �m that lie

in NLrftp.Bm;i / and the interval of 
m between p�m;i and pCm;i contains all of bm;i except for a length at
most 2.f .Lrftp// subsegment of bm;i .

Indeed, any subsegment bm;i that lies in NLrftp.B/ for anyB 2B withB¤Bm;i has length at most f .Lrftp/.
In either case since 
m is .�; �/-quasigeodesic, there exists a length 1

�

�
1
�

�
R0�2.f .Lrftp//

�
��
�
���2Lrftp

subsegment of �m that lies in NLrftp.Bm;i /. As m!1, j�mj !1 while

j�mj � j�
B
m j6 2.3M C 6RC 2f .R/C 9ı/;

which does not depend on m. Therefore, for m� 0, there are at least two i such that �Bm has a length

1

�

�
1

�

�
R0� 2.f .Lrftp//

�
� �

�
� �� 2Lrftp > 3f .Lrftp/

subsegment lying in NLrftp.Bm;i /\NLrftp.B/ (recall R0 was chosen in Notation 7.16). Since the Bm;i
are pairwise distinct, we obtain a contradiction. Therefore, 
 cannot be an accidental RZ00-loop.

Corollary 7.25 The double dot hierarchy on RC2 is fully RP 00-elliptic.

Faithfulness, quasiconvexity and full P-ellipticity are preserved by taking the induced hierarchy of a
finite regular cover of RC2. The final step is to show that there exists a finite cover of RC2 whose induced
hierarchy is also a malnormal hierarchy.

The following lemma is straightforward:

Lemma 7.26 Suppose H 6 G and G0 is a finite index subgroup of G and let H0 DH \G0. If H is
malnormal in G, then H0 is malnormal in H .

The following is a special case of [26, Corollary 6.4]:

Proposition 7.27 Let G be the fundamental group of a relatively hyperbolic special compact NPC cube
complex, and let H 6G be full relatively quasiconvex. Then H is separable in G.

Proposition 7.28 (Hruska–Wise [18, Theorem 9.3]) IfG is relatively hyperbolic andH 6G is relatively
quasiconvex and separable , then there exists a finite index subgroup K0 6G containing H such that for
every g 2K0 nH either gHg�1\H is finite or gHg�1\H is parabolic in K.

Proposition 7.29 If G is relatively hyperbolic and H 6G is full relatively quasiconvex, there is a finite
index subgroup K 6G containing H such that H is almost malnormal in G.

Proof We first prove the following claim: If H 6G is full relatively quasiconvex, then there are only
finitely many double cosets of the form HgH so that H \Hg is infinite and parabolic.

Algebraic & Geometric Topology, Volume 25 (2025)



Hierarchies for relatively hyperbolic virtually special groups 4489

Let D be the induced peripheral structure on H . If H \Hg is infinite parabolic, then fullness implies
there are Q1;Q2 6 H that are maximal parabolic in H so that H \Hg is finite index in Q1 \Q

g
2 .

Then there exist D1;D2 2 D and h1; h2 2H so that Q1 DD
h1
1 and Q2 DD

h2
2 . It is easy to verify that

if g0 D h�11 gh2, then

(1) g0 2HgH ,

(2) HgH DHg0H , and

(3) H \Hg0 6D1\D
g0
2 .

In other words, given a double coset HgH so that H \Hg is infinite parabolic, we may assume that g
is chosen so that there are maximal parabolic D1;D2 6H so that H \Hg 6D1\D

g
2 .

Since D is finite, it suffices to show that for any D1;D2 2 D (D1;D2 need not be distinct) there are
finitely many double cosets of the form HgH so that H \Hg is infinite and H \Hg �D1\D

g
2 .

Now supposeHg1H is another double coset so thatH \Hg1 is an infinite subgroup ofD1\D
g
2 . We see

that Dg
�1

1 and D
g�11
1 have infinite intersection with D2 and are therefore finite index in D2 by fullness,

so Dg
�1

1 \D
g�11
1 is infinite and hence D1\D

gg�11
1 is infinite. Let P be the maximal parabolic subgroup

of G containing D1. The fullness of H implies that D1 is finite index in P . Therefore, P \P gg
�1
1

is infinite, so gg�11 2 P . There are finitely many left cosets t1D1; t2D1; : : : ; t`D1 of D1 in P . Hence
gg�11 D tid for some d 2D1 6H and 16 i 6 ` which means g�11 D g

�1tid , so Hg�11 H DHg�1tiH .
There are only finitely many choices for ti , proving the claim.

Proposition 7.28 implies that if we first pass to a finite index K0 6G containing H , we can ensure that if
g 2K0 nH and H \Hg is not finite, it is infinite parabolic. By the preceding, there is a finite collection
of double cosets Hk1H; : : : ;HkmH so that g 2 HkiH for some 1 6 i 6 m. Note all ki … H . The
separability of H implies that we can choose a finite index K 6K0 containing H so that k1; : : : ; km …K.
Then HkiH \K D¿ because H 6K. By the preceding, there exists no k 2K such that H \Hk is
infinite parabolic, so H \Hk is finite for all k 2K.

Corollary 7.30 is based on [3, Corollary 3.29]. Corollary 7.30 follows immediately from the two preceding
statements and the fact that when G is virtually special, G is linear and hence virtually torsion free.

Corollary 7.30 If G is hyperbolic relative to P and special , and H 6G is full relatively quasiconvex ,
then H is virtually malnormal.

Theorem 7.31 Let G be special , virtually torsion-free and let .G;P/ be a relatively hyperbolic group
pair. Let H be a fully P-elliptic quasiconvex hierarchy for G. Then there exists a finite index normal
subgroup G0 6G with induced fully P-elliptic quasiconvex hierarchy H0 of G0 which is malnormal and
fully P-elliptic.

The proof here is nearly the same as in [3, Theorem 3.30].
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Proof Because H is fully P-elliptic, the edge subgroups are full. Since there are finitely many edge
groups, by Corollary 7.30, there exists some G0 such that for every edge group E of H, E \G0 is
malnormal in G0. By passing to a deeper finite index subgroup, we may insist that G0 is normal. Since
G0 is normal, conjugation by g 2G is an automorphism of G0, so in particular, these edge groups E\G0
are malnormal in G.

At last, it is time to prove Theorem 1.

Theorem 1 Let .G;P/ be a relatively hyperbolic group pair and let G be a virtually compact special
group. Then there exists a finite index subgroup G0 6G and an induced relatively hyperbolic group pair
.G0;P0/ so that G0 has a quasiconvex, malnormal and fully P0-elliptic hierarchy terminating in groups
isomorphic to elements of P0.

Proof of Theorem 1 Let X be an NPC compact special cube complex so that �1.X/ is finite index in G.

First, pass to a finite index regular cover of X , X1 that is special. By applying a homotopy equivalence,
X1 is homotopy equivalent to a cube complex where every hyperplane gives a nontrivial splitting of �1X1
(see [3, Lemma 5.17]).

By Corollary 7.21, there exists a special cube complex X 01 homotopy equivalent to X1 with a finite regular
cover X2 such that G2 WD �1X2 with induced peripheral structure .G2;P2/ has a faithful, quasiconvex,
fully P2-elliptic hierarchy terminating in P2 �Fk where Fk is a free group.

By Theorem 7.31, there exists a finite regular cover X0 with G0 WD�1X0 and induced peripheral structure
.G0;P0/ such that the induced hierarchy on G0 is malnormal as well and terminates in free products
of free groups and elements of P0 (recall Corollary 7.13). The hierarchy can then be continued to a
malnormal, quasiconvex, fully P0-elliptic one that terminates in P0.

8 A relatively hyperbolic version of the malnormal special quotient theorem

Recall Wise’s malnormal special quotient theorem (MSQT), see Theorem 1.3 above or [30, Theorem 12.2]
mentioned in the introduction. The purpose of this section is to apply Theorem 1 to obtain a relatively
hyperbolic version of Wise’s MSQT using techniques from [3, Sections 6-9].

Wise’s quasiconvex hierarchy theorem [30, Theorem 13.3] has the following useful consequence:

Corollary 8.1 Let G be a hyperbolic group with a quasiconvex hierarchy terminating in finite groups.
Then G is virtually special.

The technique for proving a relatively hyperbolic analog of Theorem 1.3 will be to start with the
hierarchy provided by Theorem 1 and strategically take quotients using group-theoretic Dehn fillings (see
Definition 8.2). These quotients can be constructed to be hyperbolic, and with some care, the hierarchy
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structure can be passed down to the quotient so that Corollary 8.1 can be used. In [3], the authors avoided
using Corollary 8.1 because their account aimed to give a new proof of auxiliary results used to prove
Corollary 8.1. Consequently, they needed to ensure that the hierarchy structure on the quotient is also a
malnormal hierarchy. By using Corollary 8.1, we only need a quasiconvex hierarchy for such a quotient.

8.1 Group-theoretic Dehn filling

For this section, let .G;P/ be a relatively hyperbolic group pair where P D fP1; : : : ; Pmg unless stated
otherwise. When M is a finite volume hyperbolic 3-manifold with torus cusps, a Dehn filling of M is a
gluing of solid tori Ti ŠD �S1 by a diffeomorphism to the boundary components. The result of the
gluing depends only on the isotopy class of the curve 
i � @M that each copy of @D � fpg � Ti is glued
to (see eg [22, Section 10.1]). In this situation �1M is hyperbolic relative to a collection of copies of Z2,
one for each boundary component of M .

The next definition is a group-theoretic analog of Dehn filling.

Definition 8.2 Let fNi C Pi W 16 i 6mg. Then there exists a group-theoretic Dehn filling of G with
filling map � defined by the quotient

� WG!G.N1; : : : ; Nm/ WDG=
˝˝S

Ni
˛˛
:

The subgroups Ni are called filling kernels.

A filling is called peripherally finite if each filling kernel Ni is finite index in Pi .

For a classical filling, if every Ti is filled by gluing along the curves 
i that are sufficiently long, Thurston’s
Dehn filling theorem says that the resulting manifold is hyperbolic. The group-theoretic analog of a
sufficiently long classical Dehn filling is a group-theoretic Dehn filling where the filling kernels avoid a
finite set of elements:

Definition 8.3 A statement P holds for all sufficiently long fillings if there exists a finite B �G n f1g
such that whenever B \Ni D¿ for all 16 i 6m, the filling G.N1; : : : Nm/ has P.

Osin showed that sufficiently long Dehn fillings of relatively hyperbolic groups are relatively hyperbolic,
have kernels which intersect each peripheral subgroup Pi precisely in Ni and can be manipulated so that
any finite set of elements are not killed by the filling map.

Theorem 8.4 [23, Theorem 1.1] Let F � G be any finite subset of G. Then for all sufficiently long
Dehn fillings ,

(1) ker.�jPi /DNi for i D 1; 2; : : : ; m,

(2) the pair .G.N1; : : : ; Nm/; f�.P1/; : : : ; �.Pm/g/ is a relatively hyperbolic group pair , and

(3) �jF is injective.

Algebraic & Geometric Topology, Volume 25 (2025)



4492 Eduard Einstein

The edge subgroups of the hierarchy from Theorem 1 will need to be full relatively quasiconvex subgroups
of G. The quasiconvexity of the hierarchy will ensure that these subgroups are relatively quasiconvex.

Theorem 8.5 [16, Theorem 1.5] Let H 6G be a quasi-isometrically embedded subgroup. Then H is
relatively quasiconvex in G.

Theorem 8.6 [16, Theorem 1.2] Let H 6G be relatively quasiconvex. Then there exists a relatively
hyperbolic structure .H;D/ where D is finite and every element of D is conjugate into an element of P .

Corollary 8.7 The collection D can be chosen so that

(1) every element of D is infinite , and

(2) whenever H \P g is infinite , for some g 2G, there exists h 2H so that .H \P g/h is an element
of D.

Proof For the first statement, simply remove all finite elements of D. The second statement follows
from [16, Theorem 9.1].

When a filling ofG interacts nicely with a subgroupH , it is possible to induce a filling on the subgroupH .

Definition 8.8 [21, Definition B.1] Let H 6 G. A filling G ! G.N1; : : : ; Nm/ is an H -filling if
whenever gPig�1\H is infinite for some Pi 2 P , then gNig�1 �H .

Definition 8.9 Suppose H 6 G is a relatively quasiconvex subgroup and let .H;D/ be the relatively
hyperbolic structure from Theorem 8.6 and Corollary 8.7. Let � WG!G.N1; : : : ; Nm/ be an H -filling.
Let Dj 2 D. Then there exists some Pi 2 P and g 2G with g�1Djg � Pi . Let Kj WD gNig�1. Since
� is an H -filling, Kj CDj , so the groups Kj determine a filling

�H WH !H.K1; : : : ; KN /

called the induced filling of H with respect to G.N1; : : : ; Nm/.

Since Ni is normal in Pi , the groups Kj (and hence the filling) do not depend on the choice of g 2G.
The following theorem appears as stated in [3] as Theorem 7.11 and collects results about induced Dehn
fillings from [2]:

Theorem 8.10 Let H 6G be a full relatively quasiconvex subgroup and let F �G be a finite subset.
For all sufficiently long H -fillings , � WG!G.N1; : : : ; Nm/ of G,

(1) �.H/ is a full relatively quasiconvex subgroup of G.N1; : : : ; Nm/,

(2) �.H/ is isomorphic to the induced filling in that if �H WH!H.K1; : : : ; Km/ is the induced filling
map , then ker�H D ker� \H , and

(3) �.F /\�.H/D �.F \H/.
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8.2 The filled hierarchy

Let H be a quasiconvex fully P-elliptic hierarchy. By Lemma 3.14, Theorem 8.5 and the full P-ellipticity
of the hierarchy, the edge and vertex groups of the hierarchy are full relatively quasiconvex. Let � WG!G

be a filling and let .G;P/ be the relatively hyperbolic structure induced on the filling by Theorem 8.4.
The goal of this subsection is to build an induced hierarchy H (which may not be faithful) for G based
on H where the vertex and edge groups of H are induced fillings of vertex and edge groups of H. The
hierarchy H will be called a filled hierarchy for .G;P/.

The filled hierarchy is built by starting at the top level and building the hierarchy inductively downward.

At the top level, let H have the degenerate graph of groups decomposition for G consisting of a single
vertex labeled G. Let n be the length of H. Suppose the filled hierarchy has been filled down to the
.n� i/th level and let A be a vertex group at level n� i so that A is the induced filling of a vertex group
A at level n� i of H. Let .�; �/ be the graph of groups structure for A provided by H. Recall that � is
the assignment map for the graph of groups structure.

If x is a vertex or edge of � , let Ax WD �.x/ be the corresponding vertex or edge group. Let x�.x/ WD Ax
where Ax is the induced filling �x W Ax! Ax . The problem is that the pair .�; x�/ still needs attachment
homomorphisms to be a graph of groups.

Let �e WAe!Av be an attachment homomorphism of an edge group Ae to a vertex group Av . Two details
need to be checked: first there need to be attachment maps x�e W Ae ! Av such that x�e ı�e D �v ı �e.
Let T be the maximal tree that determines �1.�; �; T /. There will also need to be an isomorphism
˛ W �1.�; x�; T /! A so that .�; x�; T / is a graph of groups structure for A where ˛ ı�� D �A ı˛.

Completing the square
Ae ����!

�e
Ae??y�e ??yx�e

Av ����!
�v

Av

with a map x�e W Ae! Av is straightforward because �e is surjective and ker�e � ker�v ı�e.

Constructing the desired isomorphism ˛ W �1.�; x�; T /!G amounts to completing the square

�1.�; �; T / ����!
��

�1.�; x�; T /??y˛ ??y
A ����!

�A
A

Lemma 8.11 There exists an isomorphism ˛ W �1.�; x�; T /!G that completes the diagram.
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The proof of Lemma 8.11 is essentially identical to [3, Lemma 8.1].

For the following, let .G;P/ be a relatively hyperbolic group pair and let H be a quasiconvex fully
P-elliptic hierarchy for G. The next lemma ties together some definitions:

Lemma 8.12 If A6G is an edge or vertex group of H, then A is a full relatively quasiconvex subgroup
of .G;P/ and every filling is an A-filling.

Proof That A is full relatively quasiconvex follows immediately from the definition of full P-ellipticity
and Theorem 8.5.

Whenever gPig�1\A is infinite, then gPig�1 � A, so if Ni C Pi , then gNig�1 C A.

Lemma 8.13 Let A be an edge or vertex group of H. Then for all sufficiently long fillings

� W .G;P/! .G;P/
the following hold :

(1) The subgroup A WD �.A/ is full relatively quasiconvex in .G; P /.

(2) If G is hyperbolic , then A is quasiconvex in G.

(3) The subgroup A is isomorphic to the induced filling of A.

Proof There are only finitely many edge and vertex groups, so the first and third statements follow from
Theorem 8.10.

If A is full relatively quasiconvex in .G; P /, then A is undistorted in G by [16, Theorem 10.5] and
by [7, Corollary III.� .3.6], A is quasiconvex in G whenever G is hyperbolic.

The third point also makes the filled hierarchy H faithful:

Corollary 8.14 For all sufficiently long fillings � W .G;P/! .G;P/, the filled hierarchy H for G is
faithful.

Proof Let �e WAe!Av be an attachment homomorphism mapping an edge groupAe to a vertex groupAv .
Since �.Ae/ and �.Av/ are isomorphic to the induced fillings, we can regard the induced filling maps as
maps �v W Av! Av and �e W Av! Ae. Let x�e W Ae! Av be the induced edge homomorphism.

We now need to check that given ge 2 Ae , �e ı�e.ge/D 1 implies that �e.ge/D 1. If �e ı�e.ge/D 1,
then �v ı �e.ge/D 1, so �e.ge/ 2 ker�v D ker� \Av � ker� . Faithfulness of the original hierarchy
now implies ge 2 ker� \Ae D ker�e, so �e.ge/D 1.

The preceding results combine to produce a quasiconvex hierarchy:
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Theorem 8.15 (see [3, Theorem 2.12]) Let .G;P/ be a relatively hyperbolic group pair and let H be a
quasiconvex fully P-elliptic hierarchy terminating in P . For all sufficiently long peripherally finite fillings
� W .G;P/! .G;P/ so that every P 2 P is hyperbolic , the group G is hyperbolic and has a quasiconvex
hierarchy terminating in P .

Proof Theorem 8.4 implies that all sufficiently long peripherally finite fillings are hyperbolic.

By Corollary 8.14, the quotient G has a faithful hierarchy H where the underlying graphs and every
vertex or edge group of H is the image of a vertex or edge group (respectively) of H under � .

By Lemma 8.13(2), every edge and vertex group of H is quasiconvex in G and is hence also quasi-
isometrically embedded in G, so the hierarchy H is quasiconvex.

By construction, the terminal groups are fillings of the terminal groups of H, so the terminal groups of H
are in P .

Theorem 8.15 works for a group with a quasiconvex hierarchy, but Theorem 1 only gives a hierarchy
for a finite index subgroup. When the filling kernels are chosen carefully, a filling of a finite index
subgroup G0 CG can be promoted to a filling of G.

Definition 8.16 Let .G;P/ be a relatively hyperbolic group pair and let G0CG be a finite index normal
subgroup with induced peripheral structure .G0;P 0/. Let fN 0j C P 0j j P

0
j 2 P

0
j g be a collection of filling

kernels. The collection fN 0j g is equivariantly chosen if

(1) whenever gP 0jg
�1 and hP 0

k
h�1 both lie in Pi , then gN 0jg

�1 D hN 0
k
h�1 and

(2) every such gN 0jg
�1 is normal in Pi .

An equivariant filling of .G0;P 0/ is a filling with equivariantly chosen filling kernels.

An equivariant filling of .G0;P 0/ will induce a nice filling of .G;P/:

Proposition 8.17 An equivariant filling .G0;P 0/! .G0;P 0/ determines a filling .G;P/! .G;P/ so
that G0 is finite index normal in G and .G0;P 0/ is the peripheral structure induced by .G;P/.

For the reader’s convenience, here is a restatement of Theorem 2.

Theorem 2 Let .G;P/ be a relatively hyperbolic group pair with P D fP1; : : : ; Pmg. If G is virtually
compact special, then there exist subgroups f PPi C Pig where PPi is finite index in Pi such that if
G D G.N1; : : : ; Nm/ is any peripherally finite filling with Ni C PPi , then G is hyperbolic and virtually
special.

Proof By Theorem 1, there exists a finite index G0 CG with induced peripheral structure .G0;P 0/ and
a quasiconvex, fully P 0-elliptic hierarchy terminating in P 0. Let P 0 D fP 01; : : : ; P

0
M g. Since G is virtually

special and hence residually finite, there exist arbitrarily long peripherally finite fillings of .G0;P 0/. In
particular, our fillings of .G0;P 0/ will be sufficiently long for Theorem 8.15 to hold.
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Let G0.K1; : : : ; KM / be such a peripherally finite filling. Now pass to subgroups of the filling kernels to
obtain an equivariant filling; choose K 0j so that, if Kgj 6 Pi ,

.K 0j /
g
D
T
fKh` j h 2G; #.Kh` \Pi /D1g; 16 j 6M:

We set PPi C Pi equal to .K 0j /
g for some (any) choice of g 2 G where K 0j so that .K 0j /

g 6 Pi . The
new filling G0 DG0.K 01; : : : ; K

0
M / is longer than G0.K1; : : : ; KM / and remains peripherally finite. By

Proposition 8.17, the filling G0.K 01; : : : ; K
0
M / determines a filling of G.

Consider any filling G.N1; : : : ; Nm/ so that, for each i ,

(1) Ni C Pi ,

(2) Ni 6 PPi , and

(3) Pi=Ni is virtually special and hyperbolic,

with an induced equivariant filling
G0!G0.N 01; : : : ; N

0
M /

so that N 0j 6K 0j and N 0j C P 0j for each j . Condition (2) ensures the filling is sufficiently long so that
Theorem 8.15 implies

(1) G0 is hyperbolic, and

(2) G0 has a quasiconvex hierarchy terminating in P 0 D fP 0j =N
0
j g.

Then G0 is a hyperbolic group with a quasiconvex hierarchy that terminates in finite groups (which are
hence hyperbolic and virtually special). So by Corollary 8.1 (see [30, Theorem 13.3]), G0.N 01; : : : ; N

0
M /

is virtually special. By Proposition 8.17, G0DG0.N 01; : : : ; N
0
M / is finite index normal in G.N1; : : : ; Nm/,

so the filling G.N1; : : : Nm/ is also virtually special.
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