

AG
T

*Algebraic & Geometric
Topology*

Volume 25 (2025)

Hierarchies for relatively hyperbolic virtually special groups

EDUARD EINSTEIN

Hierarchies for relatively hyperbolic virtually special groups

EDUARD EINSTEIN

Wise’s quasiconvex hierarchy theorem classifying hyperbolic virtually compact special groups in terms of quasiconvex hierarchies played an essential role in Agol’s proof of the virtual Haken conjecture. Answering a question of Wise, we construct a new virtual quasiconvex hierarchy for relatively hyperbolic virtually compact special groups. We use this hierarchy to prove a generalization of Wise’s malnormal special quotient theorem for relatively hyperbolic virtually compact special groups with arbitrary peripheral subgroups.

20F65, 20F67

1 Introduction

1.1 Background, history and motivation

One of the main goals of cube complex theory is to use the geometry and combinatorial structure of cube complexes to better understand groups. The study of cubical groups has played an important role in recent developments in the theory of hyperbolic 3-manifold groups, particularly in Agol’s proof of the virtual Haken conjecture [1].

Virtually special cube complexes, developed by Wise and his collaborators, are central to the theory of cubical groups. A group is called *compact virtually special* if it is the fundamental group of a compact virtually special cube complex whose hyperplanes satisfy certain combinatorial conditions. Virtually special cube complexes have desirable separability properties that allow certain immersions to be promoted to embeddings using Scott’s criterion [27].

A construction in [24] due to Sageev provides a method for constructing a group action on a CAT(0) cube complex using “codimension-1 subgroups”; however, in general, this action may not be proper, cocompact, or have a virtually special quotient. For hyperbolic groups, the situation is much clearer: Bergeron and Wise [5] proved that hyperbolic groups with an ample supply of quasiconvex codimension-1 subgroups have a proper and cocompact action on a CAT(0) cube complex. The key to Agol’s proof of the virtual Haken conjecture is that any geometric action of a hyperbolic group on a CAT(0) cube complex has virtually special quotient [1, Theorem 1.1]. In the case of closed 3-manifolds, the ample supply of codimension-1 subgroups comes from immersed surfaces constructed by Kahn and Markovic in [20].

Two key ingredients in Agol's theorem are Wise's quasiconvex hierarchy theorem and malnormal special quotient theorem (MSQT). Wise's quasiconvex hierarchy theorem [30, Theorem 13.3] characterizes the virtually special hyperbolic groups in terms of virtual quasiconvex hierarchies.

Definition 1.1 [30, Definition 11.5] Let \mathcal{QVH} be the smallest class of hyperbolic groups closed under the following operations.

- (1) $\{1\} \in \mathcal{QVH}$.
- (2) If $G = A *_C B$ and $A, B \in \mathcal{QVH}$ and C is finitely generated and quasi-isometrically embedded in G then $G \in \mathcal{QVH}$.
- (3) If $G = A *_C$, $A \in \mathcal{QVH}$ and C is finitely generated and quasi-isometrically embedded in G , then $G \in \mathcal{QVH}$.
- (4) If $H \leqslant G$ with $|G : H| < \infty$ and $H \in \mathcal{QVH}$, then $G \in \mathcal{QVH}$.

In other words, groups in \mathcal{QVH} are hyperbolic groups that can be built from the trivial group by taking finite index subgroups or taking amalgamations and HNN extensions over quasiconvex subgroups.

Theorem 1.2 ([30, Theorem 13.3], Wise's quasiconvex hierarchy theorem) *Let G be a hyperbolic group. Then $G \in \mathcal{QVH}$ if and only if G is virtually compact special.*

As Wise notes in [30, Section 12], the MSQT is an essential ingredient in the proof of the quasiconvex hierarchy theorem.

Theorem 1.3 (Wise's malnormal special quotient theorem [30, Theorem 12.2]) *Let G be a hyperbolic and virtually special group with G hyperbolic relative to a collection of subgroups $\{P_1, \dots, P_m\}$. Then there exist finite index subgroups $\dot{P}_i \leqslant P_i$ such that if $\bar{G} = G(N_1, \dots, N_m)$ is any peripherally finite Dehn filling with $N_i \leqslant \dot{P}_i$, then \bar{G} is hyperbolic and virtually special.*

The MSQT together with virtually special amalgamation criteria from [13; 19] are used to prove **Theorem 1.2**.

For relatively hyperbolic groups, much less is known. Wise's methods from [30] extend to more general situations than hyperbolic groups. In particular, many of the methods for hyperbolic groups extend to finite volume hyperbolic 3-manifolds. Hsu and Wise [19] also proved a special combination result for relatively hyperbolic groups albeit with much more restrictive hypotheses.

The main goal of this paper is to prove relatively hyperbolic analogs of important ingredients in the proof of **Theorem 1.2**. The first result answers a question posed by Wise:

Theorem 1 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let G be a virtually compact special group. Then there exists a finite index subgroup $G_0 \leqslant G$ and an induced relatively hyperbolic group pair (G_0, \mathcal{P}_0) so that G_0 has a quasiconvex, malnormal and fully \mathcal{P}_0 -elliptic hierarchy terminating in groups isomorphic to elements of \mathcal{P}_0 .*

Proving that the hierarchy is not only quasiconvex and *malnormal* but also *fully \mathcal{P}_0 -elliptic* is a way of ensuring that the hierarchy is compatible with the relatively hyperbolic structure on G and allows for the use of relatively hyperbolic Dehn filling arguments. See Sections 3.2 and 3.3 for definitions of quasiconvex, malnormal and fully \mathcal{P}_0 -elliptic hierarchies.

Theorem 1 will be used to prove a relatively hyperbolic generalization of the MSQT using relatively hyperbolic Dehn filling techniques similar to those used in [3]:

Theorem 2 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair with $\mathcal{P} = \{P_1, \dots, P_m\}$. If G is virtually compact special, then there exist subgroups $\{\dot{P}_i \triangleleft P_i\}$ where \dot{P}_i is finite index in P_i such that if $\bar{G} = G(N_1, \dots, N_m)$ is any peripherally finite filling with $N_i \triangleleft \dot{P}_i$, then \bar{G} is hyperbolic and virtually special.*

Peripherally finite fillings are defined formally in Definition 8.2. While Wise proved a generalized relatively hyperbolic version of the MSQT in [30, Theorem 15.6] for relatively hyperbolic groups with virtually abelian peripherals, Theorem 2 holds for arbitrary peripheral subgroups.

1.2 Outline

Section 2 contains a brief overview of the geometry of relatively hyperbolic groups. Section 3 covers preliminaries about graphs of groups and quasiconvex hierarchies.

Section 4 is devoted to proving a relative fellow traveling result for a CAT(0) space with a geometric action by a relatively hyperbolic group, a generalized version of quasigeodesic stability in hyperbolic spaces. The main result is Theorem 4.7. Similar results were proved by Hruska [14] and Hruska–Kleiner in [17] for CAT(0) spaces with isolated flats, and this result was previously known to experts in the field. However, it was difficult to find an exact formulation of Theorem 4.7 in the literature, so a proof is produced here.

Section 5 contains a combination lemma for certain subspaces of CAT(0) spaces with a geometric action by a relatively hyperbolic group. The main result, Theorem 5.6 shows that subspaces of such a CAT(0) space that are unions of convex cores for peripheral coset orbits and convex subspaces that obey a separation property are quasiconvex. The proof technique is inspired partly by the proof of the combination lemma in [19].

Section 6 reviews the properties of special cube complexes. In particular, Section 6.3 will introduce separability and explain how to pass to a finite cover so that each hyperplane’s elevations to the universal

cover obey a separation property. [Section 6.4](#) recalls a result of Sageev and Wise [\[26\]](#) used to represent peripheral subgroups of a relatively hyperbolic compact special group G as immersed complexes in an NPC cube complex X with $\pi_1 X = G$.

[Section 7](#) follows the outline of [\[3, Section 5\]](#) and uses Wise's double dot hierarchy construction to prove [Theorem 1](#). While the general strategy is the same, the hyperbolic geometry used in [\[3\]](#) to prove the edge groups of the hierarchy are π_1 -injective and quasi-isometrically embedded needs to be replaced by relatively hyperbolic geometric results from the preceding sections.

[Section 8](#) uses [Theorem 1](#) along with a relatively hyperbolic Dehn filling argument similar to the one used in a new proof of Wise's MSQT from [\[3\]](#) to prove [Theorem 2](#), a relatively hyperbolic analog of Wise's MSQT.

Acknowledgements

The author would like to thank Jason Manning and Daniel Groves for their invaluable guidance and suggestions. Specifically, the author would like to thank Groves for explaining the proof of [Proposition 7.29](#). The author also thanks Lucien Clavier, Yen Duong, Chris Hruska, Michael Hull and Daniel Wise for useful conversations that helped shape this work. Finally, the author thanks the anonymous referee for careful readings and suggestions that greatly helped improve the structure of this paper.

2 Relatively hyperbolic geometry

2.1 The geometry of CAT(0) spaces being acted on by relatively hyperbolic groups

In the situation where a relatively hyperbolic group acts properly and cocompactly on a CAT(0) space, it is reasonable to hope to partially recover the geometric features of a hyperbolic space. There are many equivalent definitions of a relatively hyperbolic group, see [\[16\]](#) for several examples; one definition, originally due to Farb [\[10\]](#), is produced here:

Definition 2.1 [\[16, Definition 3.6\]](#) Let G be finitely generated relative to \mathcal{P} with each $P \in \mathcal{P}$ finitely generated. The pair (G, \mathcal{P}) is a *relatively hyperbolic group pair* if for some finite relative generating set S , the coned-off Cayley graph $\widehat{\Gamma}(G, \mathcal{P}, S)$ is hyperbolic and (G, \mathcal{P}, S) has Farb's bounded coset penetration property (see [\[10, Section 3.3\]](#)).

The elements of \mathcal{P} and their conjugates are called *peripheral subgroups* and the cosets $\{gP : g \in G, P \in \mathcal{P}\}$ are called *peripheral cosets*.

[Definition 2.1](#) establishes useful notation to refer to a relatively hyperbolic group pair, but the technical details will be less useful. Instead, most of the arguments involving relatively hyperbolic groups will be

made using two key properties: that coarse intersections of peripheral cosets are uniformly bounded and that triangles are *relatively thin* in a sense defined in [Section 2.2](#).

The following fact is well known:

Proposition 2.2 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair. Let S be a finite generating set for G . For all $R \geq 0$, there exists $M_R \geq 0$ such if $gP, g'P'$ is a pair of distinct peripheral cosets, then $\text{diam } \mathcal{N}_R(gP) \cap \mathcal{N}_R(g'P') \leq M_R$ in the word metric on $\Gamma(G, S)$.*

The uniform bounds on coarse intersections of peripheral cosets transfers nicely to the case where a relatively hyperbolic group acts properly and cocompactly on a geodesic space by isometries:

Corollary 2.3 *Let G be a finitely generated group acting properly and cocompactly by isometries on a geodesic metric space X , and let $x \in X$ be a base point. If (G, \mathcal{P}) is a relatively hyperbolic group pair, then for all $R \geq 0$, there exists $M_{R,X,x} \geq 0$ such that if $P, P' \in \mathcal{P}$, $g, g' \in G$ with $gP \neq g'P'$, then $\text{diam } \mathcal{N}_R(gPx) \cap \mathcal{N}_R(g'P'x) \leq M_{R,X,x}$.*

2.2 Relatively thin triangles

Comparison tripods help compare geodesic triangles in X with tripods:

Definition 2.4 Let $a, b, c \in X$ and let Δabc be a geodesic triangle. There exists a map $h: \Delta abc \rightarrow T(a, b, c)$ where $T(a, b, c)$ is a unique tripod (up to isometry) with center point x such that h is isometric on each side of the triangle and the three legs of the tripod are $[h(a), x]$, $[h(b), x]$ and $[h(c), x]$. The tripod $T(a, b, c)$ is called a *comparison tripod* for Δabc . The map h is the *comparison map*.

A geodesic metric space X is *hyperbolic* if there exists a $\delta > 0$ so that for every geodesic triangle in X , the preimage of every point in the comparison map has diameter less than δ .

Definition 2.5 Let X be a geodesic metric space, and let $F \subseteq X$ be a subset of X .

Let Δabc be a geodesic triangle in X and let $\delta > 0$. Let $T(a, b, c)$ be the comparison tripod, and let $h: \Delta abc \rightarrow T(a, b, c)$ be the comparison map. If, for all $p \in T(a, b, c)$,

- (1) $\text{diam } h^{-1}(p) < \delta$ or
- (2) $h^{-1}(p) \subseteq \mathcal{N}_\delta(F)$,

then Δabc is δ -thin relative to F .

Definition 2.6 Let X be a geodesic metric space, $\delta \geq 0$ and let \mathcal{B} be a collection of subspaces. The space X has the δ -relatively thin triangle property relative to \mathcal{B} if each geodesic triangle Δ is δ -thin relative to some $F \in \mathcal{B}$.

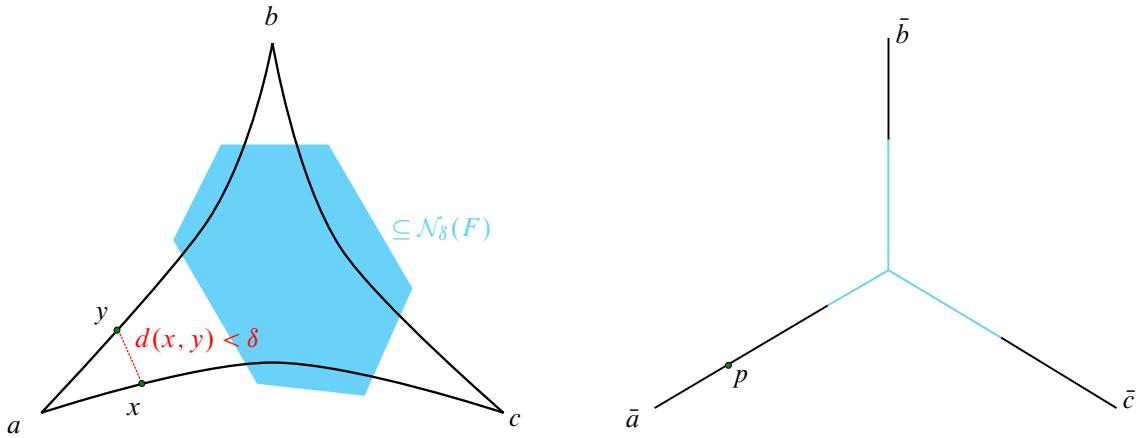


Figure 1: An example of a triangle which is δ -thin relative to some F with its comparison tripod. Points in the blue part of the tripod have preimages in the triangle which lie in the blue shaded region. All other points have preimages in the triangle with diameter δ like the point p whose preimages x, y have $d(x, y) < \delta$. The fat part (see [Definition 2.10](#)) of each side is the subsegment that intersects the blue shaded region.

See [Figure 1](#) for an illustration of [Definition 2.6](#).

The space X may contain triangles that are δ -thin. By definition, these triangles are δ -thin relative to every element of \mathcal{B} . In the applications, X will usually be a CAT(0) space with a geometric action by a relatively hyperbolic group G where the elements of \mathcal{B} are convex subspaces of X that lie in uniformly bounded neighborhoods of peripheral coset orbits. If (G, \mathcal{P}) is a relatively hyperbolic group pair, a CAT(0) space with a geometric action by G has the relatively thin triangle property relative to $\mathcal{B} = \{gPx \mid g \in G, P \in \mathcal{P}\}$:

Proposition 2.7 ([26, Theorem 4.1, Proposition 4.2], see also [8, Section 8.1.3]) *Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let G act properly and cocompactly on a CAT(0) space X by isometries. Let $x \in X$ be a base point and set*

$$\mathcal{B} = \{gPx \mid g \in G, P \in \mathcal{P}\}.$$

Then for some $\delta > 0$, X has the δ -relatively thin triangle property relative to \mathcal{B} .

When X has the relatively thin triangle property relative to \mathcal{B} , $R \geq 0$ and $\mathcal{B}' = \{\mathcal{N}_R(F) : F \in \mathcal{B}\}$, then X still has the relatively thin triangle property relative to \mathcal{B}' .

The notion of fellow traveling will be useful for describing behavior of geodesics that issue from the same point. Definitions of fellow traveling may vary, so the one that will be used is recorded here:

Definition 2.8 Let $\alpha : [a_1, a_2] \rightarrow X$ and $\beta : [b_1, b_2] \rightarrow X$ be geodesics, and let $k \geq 0$. The geodesics α and β k -fellow travel for distance D if $d(\alpha(a_1 + t), \beta(b_1 + t)) \leq k$ for all $0 \leq t \leq D$. If $x := \alpha(a_1) = \beta(b_1)$ and α and β k -fellow travel for distance D , then α and β k -fellow travel distance D from x .

We also introduce tails of a geodesic to help us make geometric arguments:

Definition 2.9 Let γ be a geodesic in \widetilde{X} , let p be an endpoint of γ , and let $k \geq 0$. The k -tail of γ at p is the geodesic subsegment of T consisting of all $x \in \gamma$ so that $d(x, p) \leq k$.

Definition 2.10 Let X be a CAT(0) geodesic metric space with triangles that are δ -thin relative to \mathcal{B} . Let $\Delta \subseteq X$ with vertices a, b, c with comparison map $h: \Delta abc \rightarrow T(a, b, c)$. Let L_a be the closure of the leg of the tripod $T(a, b, c)$ that contains $h(a)$. Let $\mathbf{Thin}_a := \{x \in h^{-1}(L_a) : \text{diam } h^{-1}(h(x)) < \delta\}$. The *corner segments* of Δ at a are the two closures of the parts of \mathbf{Thin}_a in each side and the *corner length* is the length of a corner segment at a .

The *fat part* of the side $ab \subseteq \Delta$ in Δ is $ab \setminus (\mathbf{Thin}_a \cup \mathbf{Thin}_b)$.

The corner segments at a are subsegments of the sides issuing from a that δ -fellow travel. Each of these segments have the same length, which is defined to be the corner length. If Δ is δ -thin relative to $B_\Delta \in \mathcal{B}$, the fat part of each side of Δ is the maximal subsegment that does not lie in any of the corner segments and hence lies in $\mathcal{N}_\delta(B_\Delta)$. Note that the fat part of a side may be empty. Since X is CAT(0), each corner segment or fat part of a side is connected.

A (λ, ϵ) -quasigeodesic in X is a (λ, ϵ) -quasi-isometric embedding of a (possibly unbounded) interval in the real line in X , see [7, Definition I.8.22] for details.

Quasigeodesic triangles in the Cayley graph of a relatively hyperbolic group also satisfy a thinness condition which is used to obtain [Proposition 2.7](#):

Theorem 2.11 ([26, Theorem 4.1], originally due to [8]) *Let (G, \mathcal{P}) be a relatively hyperbolic group pair with Cayley graph Γ . For all $\lambda \geq 1, \epsilon > 0$ there exists a $\delta > 0$ such that if Δ is a (λ, ϵ) -quasigeodesic triangle in Γ with sides c_0, c_1, c_2 , either*

- (1) *there exists a point p that lies within $\frac{\delta}{2}$ of each side or*
- (2) *there is a peripheral coset gP so that each side c_i of Δ has a subpath c'_i where $c'_i \subseteq \mathcal{N}_\delta(gP)$ and the terminal endpoint of c'_i and the initial point of c'_{i+1} (indices mod 3) are within distance δ of each other.*

[Lemma 2.12](#) is simple but is instrumental for working with relatively thin triangles.

Lemma 2.12 *Let \widetilde{X} be a CAT(0) space. Let Δabc be a geodesic triangle in \widetilde{X} that is δ -thin relative to F . Let ab, bc, ac denote the sides of Δabc . If the length of the fat part of ac in Δabc is bounded above by $k_{\text{fat}} \geq 0$, then the length of the fat part of bc and the length of the fat part of ab differ by at most $k_{\text{fat}} + 3\delta$.*

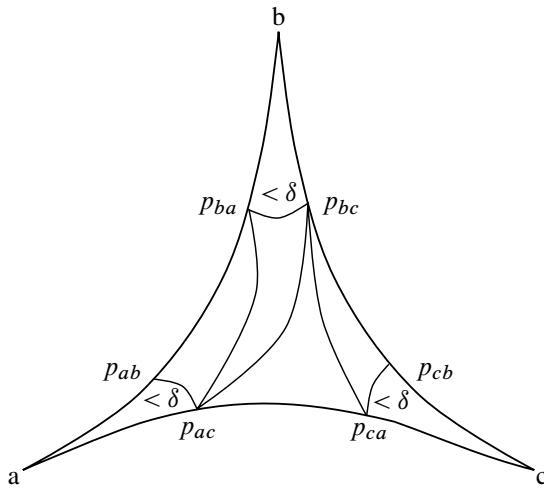


Figure 2: Applying the triangle inequality four times gives a bound on the difference between the length of $[p_{ab}, p_{ba}]$ and the length of $[p_{bc}, p_{cb}]$ in terms of $||[p_{ac}, p_{ca}]||, \delta$.

The proof involves four applications of the triangle inequality. See Figure 2 for a schematic. With Lemma 2.12, a bound on the fat part of one side of a relatively thin triangle helps control the lengths of the fat parts of the other two sides. This technique will be used repeatedly, particularly in Section 5.

Relatively hyperbolic groups interact nicely with passing to finite index subgroups:

Proposition 2.13 [3, Notation 2.9] *Let G be a group and let \mathcal{P} be a finite collection of subgroups of G . Let $H \triangleleft G$ be a finite index normal subgroup. For each $P \in \mathcal{P}$, let $\mathcal{E}_0(P) = \{gPg^{-1} \cap H \mid g \in G\}$ and let $\mathcal{E}(P)$ be a set of representatives of H -conjugacy classes in $\mathcal{E}_0(P)$. Let $\mathcal{P}' = \bigsqcup_{P \in \mathcal{P}} \mathcal{E}(P)$.*

The pair (G, \mathcal{P}) is relatively hyperbolic if and only if (H, \mathcal{P}') is relatively hyperbolic.

There is also a generalized version of quasiconvexity for relatively hyperbolic groups.

Definition 2.14 [16, Definition 6.10] *Let (G, \mathcal{P}) be a relatively hyperbolic group pair. Let $H \leqslant G$. Let S be any finite set such that $S \cup \mathcal{P}$ generates G . Suppose there exists $\kappa(S, d_S)$ such that for any $\widehat{\Gamma}(G, \mathcal{P}, S)$ -geodesic γ with endpoints in H , $\gamma \cap G$ lies in $\mathcal{N}_\kappa(H)$ with respect to d_S . Then H is *relatively quasiconvex in (G, \mathcal{P})* .*

There are other equivalent definitions which are discussed in [16]. The definition is also independent of the choice of finite relative generating set (see [16, Theorem 7.10]). Relative quasiconvexity will only be needed for the peripheral subgroups:

Proposition 2.15 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair. Then every element of \mathcal{P} is relatively quasiconvex in G .*

Proof In $\widehat{\Gamma}(G, \mathcal{P}, S)$ every $P \in \mathcal{P}$ has diameter 1. □

3 Graphs of groups and hierarchies

3.1 Graphs of groups

A graph of groups (together with an isomorphism from the fundamental group) is a way of decomposing a group along a finite number of splittings and HNN extensions. Further decomposing the vertex groups as graphs of groups, decomposing the resulting vertex groups as a graph of groups again and continuing this process a finite number of times yields a kind of “multilevel graph of groups” called a *hierarchy* which will be defined in [Definition 3.6](#).

Definition 3.1 A *graph of groups* (Γ, χ) consists of the following data:

- (1) a connected finite graph $\Gamma = \Gamma(V, E)$ where V is the vertex set of Γ and E is the oriented edge set of Γ with an involution $e \mapsto \bar{e}$ that switches the orientation of each edge,
- (2) an *assignment map* $\chi: V \sqcup E \rightarrow \mathbf{Grp}$ that assigns a group to each vertex and edge,
- (3) for all $e \in E$, $\chi(e) = \chi(\bar{e})$,
- (4) *attachment homomorphisms* $\psi_e: \chi(e) \rightarrow \chi(t(e))$ where $t(e)$ is the terminal vertex of the edge e .

Γ is a *faithful* graph of groups if the attachment homomorphisms ψ_e are injective.

A *graph of spaces* is constructed like a graph of groups, except that the assignment map χ assigns a (path connected) topological space instead of a group to each edge and vertex. The attachment homomorphisms are replaced by continuous *attachment maps*, and a *faithful graph of spaces* has π_1 -injective attachment maps. A *graph of spaces realization of a space X* for a graph of spaces (Γ, χ) is a triple (Γ, χ, q) where q is a homotopy equivalence from X to the mapping cylinders of the attachment maps glued along vertex spaces.

Some authors, for example Wise and Serre, take faithfulness to be a part of the definition of a graph of groups. Not requiring faithfulness makes it easier to define graphs of groups in terms of graphs of spaces. For the applications in [Section 7](#), graphs of groups will be constructed first without showing that they are faithful, but these graphs of groups will turn out to be faithful.

If (Γ, χ) is a graph of groups, and T is a maximal tree in Γ , then $\pi_1(\Gamma, T)$ will denote the *fundamental group of the graph of groups Γ with respect to the tree T* . See [\[28\]](#) for further details about graphs of groups.

A *graph of groups structure* is the group-theoretic analog of a graph of spaces realization:

Definition 3.2 Let G be a group, let (Γ, χ) be a graph of groups where T is a maximal tree and let $\phi: G \rightarrow \pi_1(\Gamma, T)$ be an isomorphism. The triple (Γ, ϕ, T) is a *graph of groups structure on G* .

The structure (Γ, ϕ, T) is *degenerate* if Γ is a single vertex labeled with G and ϕ is the identity.

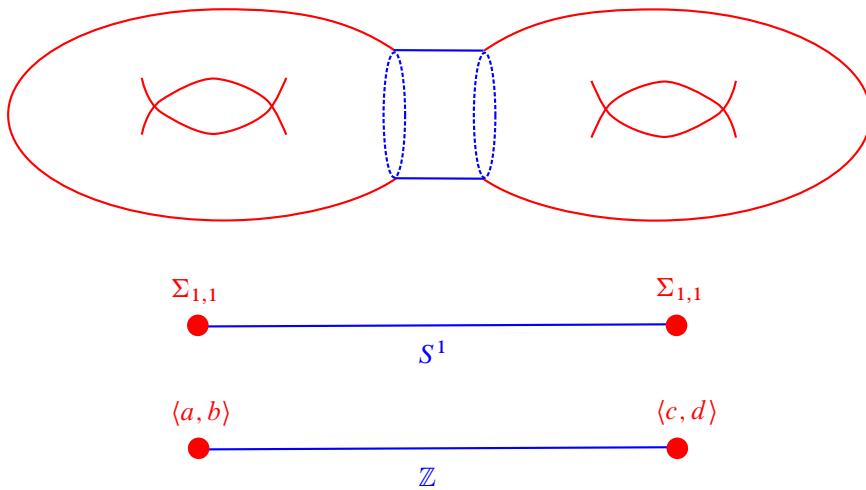


Figure 3: A graph of spaces realization of a genus-2 surface where $\Sigma_{1,1}$ is a punctured torus, together with the corresponding graph of groups obtained by applying the π_1 functor.

While a graph of groups structure determines a splitting of G , the choice of isomorphism and maximal tree affects the precise splitting. In many cases, it suffices to give a splitting of G up to conjugacy which will be the case in the examples below. When the splitting is given up to conjugacy, the choice of maximal tree also becomes unnecessary.

Example 3.3 Figure 3 shows a graph of spaces decomposition of a genus-2 surface and a graph of groups splitting of the fundamental group induced by the graph of spaces decomposition.

Example 3.4 If Σ_g is a closed surface of genus g , then a pants decomposition of Σ_g induces a splitting of $\pi_1 \Sigma_g$ as a graph of groups where the vertex groups are isomorphic to a free group of rank 2 and the edge groups are infinite cyclic groups.

Graph of groups structures interact naturally with finite index normal subgroups. The following is [3, Proposition 3.18] but is originally due to Bass [4].

Proposition 3.5 Suppose G has a graph of groups structure (Γ, ϕ, T) , $H \triangleleft G$ and H is finite index in G . Then H has an induced graph of groups structure $(\widetilde{\Gamma}, \widetilde{\phi}, T')$ so that:

- (1) Every vertex group of $(\widetilde{\Gamma}, T')$ has the form $(K^g \cap H) \triangleleft K^g$ and is finite index in K^g for some vertex group K of (Γ, T) and some $g \in G$.
- (2) Every edge group of $(\widetilde{\Gamma}, T')$ has the form $(K^g \cap H) \triangleleft K^g$ and is finite index in K^g for some edge group K of (Γ, T) and some $g \in G$.

3.2 Hierarchies

Hierarchies of groups are inductively defined multilevel graphs of groups:

Definition 3.6 A *hierarchy of groups of length 0* is a single vertex labeled by a group.

A *hierarchy of groups of length n* is a graph of groups (Γ_n, χ_n) together with hierarchies of length $n - 1$ on each vertex of Γ_n .

If \mathcal{H} is a length- n hierarchy of groups, the n^{th} level of \mathcal{H} is the graph of groups Γ_n . For $1 \leq k \leq n$, the $(n-k)^{\text{th}}$ level of \mathcal{H} is the disjoint union of the $(n-k)^{\text{th}}$ levels of the hierarchies on the vertices of Γ_n .

The *terminal groups* are the groups labeling the vertices at level 0.

It will be useful to think of graphs of groups as length-1 hierarchies. Realizing a group as a hierarchy is similar to finding a graph of groups structure for that group:

Definition 3.7 Let G be a group, \mathcal{H} be a hierarchy of length n . Let (Γ_n, χ_n) be the level- n graph of groups. When $n = 0$, a *hierarchy for G* is a single vertex labeled by G . If $n \geq 1$, a *hierarchy for G* is \mathcal{H} together with a graph of groups structure (Γ_n, ϕ, T) for G so that for every vertex v of Γ_n , the hierarchy on length $n - 1$ on v is a hierarchy for the vertex group $\chi_n(v)$. Let \mathcal{P} be a collection of subgroups of G . The hierarchy structure *terminates in \mathcal{P}* if every terminal group of \mathcal{H} is conjugate to $\phi(\mathcal{P})$ for some $P \in \mathcal{P}$.

It will often be convenient to forget the choice of maximal tree and only give a hierarchy structure for a group up to conjugacy. In general, hierarchies will be allowed to contain degenerate splittings, but in order to obtain nontrivial results, it will be necessary to ensure that at least one of the splittings in the hierarchy is nondegenerate.

Wise's hierarchies in [30] permit only one-edge splittings rather than allowing a graph of groups splitting for each vertex group in the hierarchy. The hierarchies in Definition 3.7 can be converted to hierarchies with one-edge splittings for each vertex group at the expense of increasing the length of the hierarchy. Wise's hierarchies also terminate in the trivial group while Definition 3.7 allows arbitrary terminal groups. In practice, the goal in Section 7 will be to (virtually) find a hierarchy for a relatively hyperbolic group (G, \mathcal{P}) that terminates in groups isomorphic to those in the induced peripheral structure. Section 8 will explore what happens to the hierarchy after quotienting out finite index subgroups of the peripheral subgroups.

A *hierarchy of spaces* and a *hierarchy realization for a space X* can be defined analogously by replacing groups in Definition 3.6 with topological spaces and replacing graph of groups structures by realizations in Definition 3.7.

Malnormality is an important group property which will play a role in Section 8 and is useful for amalgamating virtually special groups to make new virtually special groups (see [19]).

Definition 3.8 Let G be a group and let $H \leq G$. The subgroup H is *malnormal in G* if for all $g \in G \setminus H$, $g^{-1}Hg \cap H = \{1\}$. Similarly, H is *almost malnormal in G* if for all $g \in G \setminus H$, $|g^{-1}Hg \cap H| < \infty$.

Malnormality also extends to collections of subgroups. Let \mathcal{P} be a collection of subgroups of G . The collection \mathcal{P} is (almost) malnormal in G if for all $g \in G$ and $P, P' \in \mathcal{P}$ either $g^{-1}Pg \cap P'$ is trivial (finite) or $P = P'$ and $g \in P$.

For example, if (G, \mathcal{P}) is a relatively hyperbolic group pair and G is finitely generated, then the collection \mathcal{P} is almost malnormal in G by [Proposition 2.2](#).

Definition 3.1 (graphs of groups) and [Definition 3.6](#) (hierarchies) are very flexible, but in practice, some further restrictions will be needed to ensure that graphs of groups and hierarchies produce useful splittings:

Definition 3.9 Let (Γ, χ) be a faithful graph of groups and let (Γ, ϕ) be a graph of groups structure (up to conjugacy) for a group G .

- (1) Γ is *quasiconvex* if every edge attachment map is a quasi-isometric embedding into $\pi_1(\Gamma)$.
- (2) Γ is *(almost) malnormal* if for every $e \in E$, the image of the attachment homomorphism ψ_e in $\pi_1(\Gamma)$ is (almost) malnormal in $\pi_1(\Gamma)$.

Let \mathcal{H} be a hierarchy for G .

- (1) \mathcal{H} is *faithful* if every graph of groups at every level of \mathcal{H} is faithful.
- (2) \mathcal{H} is *quasiconvex* if every edge group of every graph of groups at every level of \mathcal{H} quasi-isometrically embeds in G .
- (3) \mathcal{H} is *(almost) malnormal* if every edge group of every graph of groups at every level of \mathcal{H} is (almost) malnormal in G .

It may be possible to give a reasonable weaker definition of quasiconvex (or malnormal) hierarchy by only requiring an edge group G_e of a graph of groups H in \mathcal{H} to be quasi-isometrically embedded (malnormal) in each adjacent vertex group, but the stronger definition given here will be needed in [Section 8](#).

Here are some examples to help illustrate the definition of a hierarchy:

Example 3.10 A splitting of the fundamental group of a hyperbolic surface group can be realized along quasiconvex infinite cyclic subgroups by using a pants decomposition. The splitting can be achieved either as a sequence of 1-edge splittings to create a hierarchy or can be achieved a single multiedge graph of groups splitting.

There are iterated hierarchy splittings that cannot be realized by a single graph of groups splitting:

Example 3.11 [Figure 4](#) shows a length-2 hierarchy for the fundamental group of a genus-2 surface, Σ_2 . Cuts are made along the both the blue and green simple closed curves which intersect, so the iterated splitting of the fundamental group cannot be accomplished by a graph of groups (length-1 hierarchy).

Other notable examples of hierarchies are the Haken hierarchy for Haken 3-manifolds, see [\[22, Section 9.4\]](#), and the Magnus–Moldvanskii hierarchy for one-relator groups, see [\[30, Chapter 19\]](#).

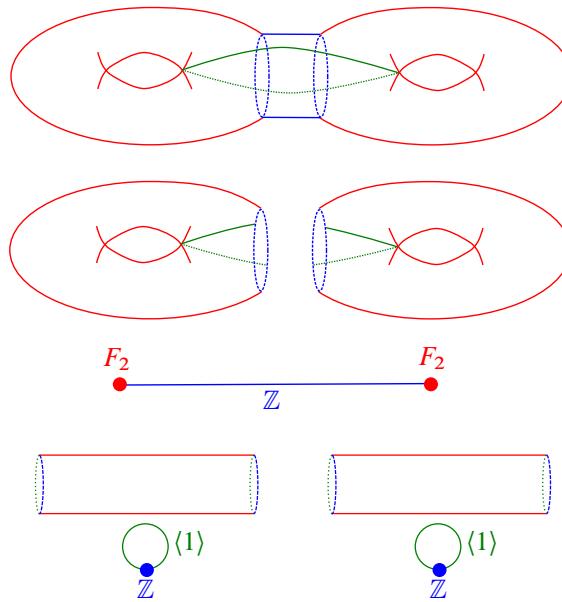


Figure 4: A hierarchy for $\pi_1(\Sigma_2)$, the fundamental group of a genus-2 surface Σ_2 , where the iterated splitting of $\pi_1(\Sigma_2)$ cannot be realized by a graph of groups. The first splitting is over the infinite cyclic subgroup of $\pi_1(\Sigma_2)$ corresponding to one of the blue copies of S^1 . The resulting vertex spaces are punctured tori whose fundamental groups are rank-2 free groups. Cutting along the green arc in each punctured torus makes an annulus. Then the fundamental group of a punctured torus splits as an HNN extension of the fundamental group of an annulus (\mathbb{Z}) over the trivial group (corresponding to the green arcs in each annulus which are glued together to make a punctured torus).

Proposition 3.5 extends to hierarchies by induction on the length of the hierarchy.

Corollary 3.12 Suppose G has a hierarchy \mathcal{H} and H is a finite index normal subgroup of G . Then \mathcal{H} has an induced hierarchy \mathcal{H}' such that the length of \mathcal{H} is the length of \mathcal{H}' and:

- (1) Every vertex group at level i of the hierarchy \mathcal{H}' is of the form $K^g \cap H$ which is finite index and normal in K^g for some vertex group K of \mathcal{H} at level i and some $g \in G$.
- (2) Every edge group at level i of the hierarchy \mathcal{H}' is of the form $K^g \cap H$ which is finite index and normal in K^g for some edge group K of \mathcal{H} at level i and some $g \in G$.

Lemma 3.13 follows from Corollary 3.12:

Lemma 3.13 If \mathcal{H} is a quasiconvex hierarchy for G and G_0 is a finite index normal subgroup of G , then the induced hierarchy on \mathcal{H}_0 on G_0 is quasiconvex.

The definition of a quasiconvex hierarchy for a group G only requires that the edge groups are quasi-isometrically embedded in G ; when a graph of groups (Γ, ϕ, T) structure for G is quasiconvex, the vertex groups are quasi-isometrically embedded as well.

Lemma 3.14 *Let (Γ, T) be a graph of groups structure for G . If the edge groups of Γ are quasi-isometrically embedded in G , then the vertex groups of Γ are quasi-isometrically embedded in G .*

Here is a rough sketch of the proof of [Lemma 3.14](#). A Cayley graph $\Lambda(G, S)$ of G coarsely looks like a “tree of spaces” whose underlying (infinite) graph is the covering tree of (Γ, T) where the edge spaces are Cayley graphs of edge groups and the vertex spaces are Cayley graphs of vertex groups. If $\Lambda_v := \Lambda(G_v, S_v)$ is one of the vertex spaces, the coarse tree structure ensures that if a $\Lambda(G, S)$ -geodesic shortcut γ between two points in Λ_v exits Λ_v through an edge space Λ_e , it must return through Λ_e . If γ enters and exits Λ_v at points $p_{e_1}, p'_{e_1}, \dots, p_{e_m}, p'_{e_m}$, let γ_i be the image (in $\Lambda(G, S)$) of a Λ_e -geodesic between p_{e_i} and p'_{e_i} . There exist $\lambda \geq 1$ and $\epsilon > 0$ so that every γ_i is (λ, ϵ) -quasigeodesic in $\Lambda(G, S)$. We can build a new path ρ from γ by replacing the subsegment of γ from p_{e_i} to p'_{e_i} with γ_i . Then ρ lies entirely in the image of Λ_v and hence ρ is at least as long as the Λ_v -distance between its endpoints. Now the length of ρ is at most $\lambda|\gamma| + \epsilon$, or equivalently, $|\gamma| \geq \frac{1}{\lambda}|\rho| - \epsilon$. Thus γ cannot be much shorter than the shortest path in Λ_v between the endpoints of γ .

3.3 Fully \mathcal{P} -elliptic hierarchies

Given a relatively hyperbolic group pair (G, \mathcal{P}) and a hierarchy \mathcal{H} for G , the goal in [Section 8](#) will be to strategically find a quotient of G that has a hierarchy induced by \mathcal{H} and inherits a relatively hyperbolic structure from (G, \mathcal{P}) that is also compatible with the induced hierarchy structure. [Theorem 1.2](#) can then be used to show the resulting quotient is virtually special. To ensure that this happens, some additional restrictions must be imposed on the interactions between the edge and vertex groups of the hierarchy and the peripheral subgroups of G .

Definition 3.15 Let \mathcal{H} be a hierarchy for a group G and let \mathcal{P} be a collection of subgroups of G . Let \mathcal{V} be the vertex groups of \mathcal{H} . For each $H \in \mathcal{V}$, let $\pi_1(\Gamma_H, \phi_H, T_H)$ be the graph of groups structure for H induced by the hierarchy \mathcal{H} . The hierarchy \mathcal{H} is \mathcal{P} -elliptic if whenever there exists a $g \in G$ such that $P^g := gPg^{-1} \subseteq H \in \mathcal{V}$, then there exists an $h \in H$ such that hP^gh^{-1} is contained in some vertex group of Γ_H .

A \mathcal{P} -elliptic hierarchy is *fully \mathcal{P} elliptic* if whenever E is an edge group in \mathcal{H} , then for all $g \in G$, either $P^g \cap E$ is finite or $P^g \leqslant E$.

When \mathcal{H} is a fully \mathcal{P} -elliptic hierarchy for G and G_0 is a finite index normal subgroup of G , the induced hierarchy from [Corollary 3.12](#) for H is also fully \mathcal{P} -elliptic in the induced peripheral structure provided by [Proposition 2.13](#):

Proposition 3.16 *Suppose that G_0 is finite index normal in G and let (G_0, \mathcal{P}_0) be the peripheral structure induced on G_0 by [Proposition 2.13](#). If G has a fully \mathcal{P} -elliptic hierarchy, then the induced hierarchy \mathcal{H}_0 of G_0 is fully \mathcal{P}_0 -elliptic.*

[Proposition 3.16](#) follows immediately from the explicit characterizations of the edge and vertex groups of the induced hierarchies in [Corollary 3.12](#) and from the explicit description of the induced peripheral structure.

4 The relative fellow traveling property

4.1 CAT(0) relatively hyperbolic pairs

The main result of the section is [Theorem 4.7](#). In [14], Hruska proved that piecewise Euclidean 2-complexes satisfy a relative form of quasigeodesic stability called the *relative fellow traveling property*. In [17, Proposition 4.1.6], Hruska and Kleiner showed that CAT(0) spaces with isolated flats have the relative fellow traveling property relative to the isolated flats. Earlier, Epstein proved a version of relative fellow traveling for truncated hyperbolic spaces associated to finite volume cusped hyperbolic manifolds [9, Theorem 11.3.1]. [Theorem 4.7](#) is a version of relative fellow traveling for CAT(0) spaces with a proper cocompact action by a relatively hyperbolic group. [Theorem 4.7](#) is presumed to be known to experts based on the works of [8; 14; 15; 17] and others, but the exact formulation used here proved difficult to find in the literature. Therefore, a proof is provided here.

Definition 4.1 Let \tilde{X} be a CAT(0) space, let $\delta \geq 0$, let $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ be a function and let \mathcal{B} be a collection of subsets of \tilde{X} . The pair (\tilde{X}, \mathcal{B}) is a (δ, f) -CAT(0) *relatively hyperbolic pair* if

- (1) every geodesic triangle in \tilde{X} is δ -thin relative to some $F \in \mathcal{B}$,
- (2) for all $r \geq 0$ and $F_1, F_2 \in \mathcal{B}$ with $F_1 \neq F_2$, $\text{diam } \mathcal{N}_r(F_1) \cap \mathcal{N}_r(F_2) \leq f(r)$.

We say that a (δ, f) -CAT(0) relatively hyperbolic pair has the *L-quasiconvexity property* if there exists $L \geq 0$ so that each $F \in \mathcal{B}$ is *L-quasiconvex* in the sense that any \tilde{X} -geodesic with endpoints in F lies in $\mathcal{N}_L(F)$. The subspaces \mathcal{B} are called *peripheral spaces*.

An immediate consequence of CAT(0) geometry is the following useful fact that we will use repeatedly:

Observation 4.2 If \tilde{Y} is an *L-quasiconvex* subspace of a CAT(0) space \tilde{X} , then for any $R \geq 0$, $\mathcal{N}_R(\tilde{Y})$ is also *L-quasiconvex*. In other words, if $x, y \in \mathcal{N}_R(\tilde{Y})$, then any geodesic between x, y lies in $\mathcal{N}_{R+L}(\tilde{Y})$.

Definition 4.3 Let $(\tilde{X}, \mathcal{B}_0)$ be a (δ, f_0) -CAT(0) relatively hyperbolic pair, and let $R \geq 0$. An *R-thickening* of \mathcal{B}_0 is a collection, \mathcal{B} , of subspaces of \tilde{X} so that there exists a bijection $B_0 \in \mathcal{B}_0 \leftrightarrow B \in \mathcal{B}$ where $B_0 \subseteq B$, and $B \subseteq \mathcal{N}_R(B_0)$.

Proposition 4.4 Let $(\tilde{X}, \mathcal{B}_0)$ be a (δ, f_0) -CAT(0) relatively hyperbolic pair, and let \mathcal{B} be an *R-thickening* of \mathcal{B}_0 . Let $f(r) = f_0(r + R)$. Then (\tilde{X}, \mathcal{B}) is a (δ, f) -CAT(0) relatively hyperbolic pair.

Proof Let $F_1, F_2 \in \mathcal{B}$ with $F_1 \neq F_2$. Then there exist $F_{1,0}, F_{2,0} \in \mathcal{B}_0$ so that $F_1 \subseteq \mathcal{N}_R(F_{1,0})$ and $F_2 \subseteq \mathcal{N}_R(F_{2,0})$. Then

$$\text{diam } \mathcal{N}_r(F_1) \cap \mathcal{N}_r(F_2) \leq f(r).$$

A geodesic triangle Δ in \tilde{X} is δ -relatively thin relative to some F_0 in \mathcal{B}_0 . Since F_0 is contained in some $F \in \mathcal{B}$ element, Δ is δ -relatively thin relative to F . \square

Definition 4.5 (similar to [17, Definition 4.1.4]) Let $(\widetilde{X}, \mathcal{B})$ be a (δ, f) -CAT(0) relatively hyperbolic pair. The pair $(\widetilde{X}, \mathcal{B})$ has the *relative fellow traveling property* if for all $\lambda \geq 1$ and $\epsilon \geq 0$, there exist $U, V \geq 0$ depending on λ, ϵ such that for any (λ, ϵ) -quasigeodesics $\sigma: [0, t_\sigma] \rightarrow \widetilde{X}$ and $\gamma: [0, s_\gamma] \rightarrow \widetilde{X}$ with the same endpoints, there exist partitions

$$0 = s_0 \leq s_1 \leq \cdots \leq s_{2n+1} = s_\gamma \quad \text{and} \quad 0 = t_0 \leq t_1 \leq t_2 \leq \cdots \leq t_{2n+1} = t_\sigma$$

such that

- (1) for all i , $d(\gamma(s_i), \sigma(t_i)) \leq U$,
- (2) if i is even, then $d_{\text{Haus}}(\gamma([s_i, s_{i+1}]), \sigma([t_i, t_{i+1}])) \leq U$ or
- (3) if i is odd, $\gamma([s_i, s_{i+1}]), \sigma([t_i, t_{i+1}]) \subseteq \mathcal{N}_V(F_i)$ for some $F_i \in \mathcal{B}$.

For a fixed (λ, ϵ) , we say that (λ, ϵ) -quasigeodesics (U, V) -fellow travel relative to \mathcal{B} .

All the CAT(0) relatively hyperbolic pairs we consider in later sections are of the form considered in the next proposition:

Proposition 4.6 Let (G, \mathcal{P}) be a relatively hyperbolic group pair so that G acts geometrically on a CAT(0) cube complex \widetilde{X} . Let $x \in \widetilde{X}$ be a basepoint. Let $\mathcal{B}_\mathcal{P} = \{gPx : g \in G, P \in \mathcal{P}\}$, and let \mathcal{B} be any R -thickening of $\mathcal{B}_\mathcal{P}$. There exist $\delta, L(R) \geq 0$ and $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ so that $(\widetilde{X}, \mathcal{B})$ is a (δ, f) -CAT(0) relatively hyperbolic pair that has the $L(R)$ -quasiconvexity property.

Proof By [26, Theorem 1.1], for each $P \in \mathcal{P}$, the convex hull of Px lies in a bounded neighborhood of Px . Since \mathcal{P} is finite, there is an $L \geq 0$ so that the convex hull of gPx lies in $\mathcal{N}_L(gPx)$. Thus any geodesic between points in gPx lies in $\mathcal{N}_L(gPx)$. By [Observation 4.2](#), any R -thickening will have the $(L+R)$ -quasiconvexity property because the R -neighborhood of each $B \in \mathcal{B}$ is L -quasiconvex. Let B_{gP} be the convex hull of $gPx \in \mathcal{B}_\mathcal{P}$. Since \mathcal{P} is finite, there is an R (independent of g, P) so that each $B_{gP} \subseteq \mathcal{N}_R(gPx)$. Hence $\mathcal{B} = \{B_{gP} : g \in G, P \in \mathcal{P}\}$ is an R -thickening of $\mathcal{B}_\mathcal{P}$. By [Proposition 4.4](#), it suffices to show that there exist $\delta \geq 0$ and $f_\mathcal{P}: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ so that $(\widetilde{X}, \mathcal{B}_\mathcal{P})$ is a $(\delta, f_\mathcal{P})$ -CAT(0) relatively hyperbolic pair. [Proposition 2.7](#) implies [Definition 4.1\(1\)](#) holds. [Corollary 2.3](#) ensures that [Definition 4.1\(2\)](#) holds. \square

Theorem 4.7 Let (G, \mathcal{P}) be a relatively hyperbolic group pair where G acts geometrically on a CAT(0) space \widetilde{X} with basepoint $x \in \widetilde{X}$. If \mathcal{B} is any R -thickening of $\{gPx \mid g \in G, P \in \mathcal{P}\}$ then $(\widetilde{X}, \mathcal{B})$ has the relative fellow traveling property.

The remainder of this section is devoted to the proof of [Theorem 4.7](#). The proof of [Theorem 4.7](#) is completely self-contained, so a reader who is not interested in the technical details may wish to skip to the next section. We now set the following standing hypotheses for the remainder of [Section 4](#):

Hypotheses 4.8 Let (G, \mathcal{P}) be a relatively hyperbolic group pair where G acts geometrically on a CAT(0) cube complex \widetilde{X} . Fix a basepoint x and let \mathcal{B} be an R -thickening of $\{gPx \mid g \in G, P \in \mathcal{P}\}$. Fix $\delta \geq 0$, $L \geq 0$ and $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ so that $(\widetilde{X}, \mathcal{B})$ is a (δ, f) -CAT(0) relatively hyperbolic pair with the L -quasiconvexity property.

4.2 Some geometric features of $(\widetilde{X}, \mathcal{B})$ under Hypotheses 4.8.

In this section, we establish some geometric facts about the (δ, f) -CAT(0) relatively hyperbolic pair $(\widetilde{X}, \mathcal{B})$.

Definition 4.9 Let $(\widetilde{X}, \mathcal{B})$ be a (δ, f) -CAT(0) relatively hyperbolic pair. Let $\gamma \subseteq \widetilde{X}$ and let $\mu \geq 0$. The μ -saturation of γ (with respect to \mathcal{B}) is

$$\text{Sat}_\mu(\gamma) = \bigcup \{B \in \mathcal{B} : \gamma \cap \mathcal{N}_\mu(B) \neq \emptyset\}.$$

In the following, γ will usually be a quasigeodesic.

The following is a consequence of [8, Lemma 8.10] and the Milnor–Švarc lemma:

Proposition 4.10 Under Hypotheses 4.8, for every $\lambda \geq 1$ and $\epsilon \geq 0$, there exists $u_{\lambda, \epsilon}$ so that if γ, σ are (λ, ϵ) -quasigeodesics with the same endpoints, then

$$\sigma \subseteq \mathcal{N}_{u_{\lambda, \epsilon}}(\gamma) \cup \left(\bigcup_{F \in \text{Sat}_{u_{\lambda, \epsilon}}(\gamma)} \mathcal{N}_{u_{\lambda, \epsilon}}(F) \right).$$

Definition 4.11 Let \widetilde{X} be a geodesic metric space and let \mathcal{B} be a collection of subspaces of \widetilde{X} . Let $B \in \mathcal{B}$, $\lambda \geq 1$ and $\epsilon > 0$. Let Δ be a (λ, ϵ) -quasigeodesic triangle. Let $\gamma_1, \gamma_2, \gamma_3$ be the sides of Δ . We say that Δ is *coarsely ξ -thin relative to $F \in \mathcal{B}$* if

- (1) there exists a point $p \in \widetilde{X}$ so that $d(p, \gamma_1), d(p, \gamma_2), d(p, \gamma_3) < \frac{\xi}{2}$ or
- (2) there exist subpaths $c_i \subseteq \gamma_i$ so that $c_i \subseteq \mathcal{N}_\xi(F)$ and the distance between the terminal point of c_i and the initial point of c_{i+1} (where indices are taken mod 3) is less than ξ .

Theorem 2.11 and the Milnor–Švarc lemma imply:

Proposition 4.12 With Hypotheses 4.8, for all $\lambda \geq 1$ and $\epsilon \geq 0$, there exist $\delta_{\lambda, \epsilon}$ so that if Δ is a (λ, ϵ) -quasigeodesic triangle, then there is an $F_\Delta \in \mathcal{B}$ so that Δ is coarsely $\delta_{\lambda, \epsilon}$ -thin relative to F_Δ .

To simplify the proof of relative fellow traveling, we can make the following reduction:

Proposition 4.13 Assume Hypotheses 4.8. To show that $(\widetilde{X}, \mathcal{B})$ has the relative fellow traveling property, it suffices to prove Definition 4.5 holds in the special case that γ is geodesic.

The proof of Proposition 4.13 is essentially identical to the reduction step in [14, proof of Theorem 13.1].

Proposition 4.10 suggests it might be possible for a quasigeodesic to remain far from a geodesic with the same endpoints by passing from one peripheral space to another. However, **Lemma 4.14** shows that such a quasigeodesic must always come close to the geodesic with the same endpoints when transitioning from one peripheral space to another:

Lemma 4.14 *Given $\mu \geq 0$, $\lambda \geq 1$ and $\epsilon > 0$, there exists $D_{\cap}(\mu, \lambda, \epsilon) \geq \mu$ so that if σ is a (λ, ϵ) -quasigeodesic, γ is a geodesic with the same endpoints as σ , and $\sigma(t) \in \mathcal{N}_{\mu}(F_1) \cap \mathcal{N}_{\mu}(F_2)$ for some distinct $F_1, F_2 \in \text{Sat}_{\mu}(\gamma)$, then $\sigma(t) \in \mathcal{N}_{D_{\cap}(\mu, \lambda, \epsilon)}(\gamma)$.*

Proof There exist $p_1, p_2 \in \gamma$ so that $p_i \in \mathcal{N}_{\mu}(F_i)$. Let τ_1, τ_2 be geodesics so that τ_i joins $\sigma(t)$ to p_i . By **Observation 4.2** and the L -quasiconvexity of F_i , $\tau_i \subseteq \mathcal{N}_{\mu+L}(F_i)$. Let Δ be the geodesic triangle with sides τ_1, τ_2 and the subpath of γ joining p_1 to p_2 . Then Δ is δ -thin relative to some $F \in \mathcal{B}$.

Recall corner segments and fat parts of relatively thin triangles from **Definition 2.10**. Let τ'_1 and τ'_2 be the corner segments of Δ at $\sigma(t)$. Observe that $\tau'_1 \subseteq \mathcal{N}_{\mu+L}(F_1) \cap \mathcal{N}_{\mu+L+\delta}(F_2)$, so $|\tau'_1| = |\tau'_2| \leq f(\mu+L+\delta)$.

Up to exchanging the indices of F_1, F_2 , we may assume that $F \neq F_1$.

The fat part of τ_1 in Δ lies in $\mathcal{N}_{\delta}(F) \cap \mathcal{N}_{\mu+L}(F_1)$, so it has length at most $f(\mu+L+\delta)$. The fat part of τ_1 also intersects $\mathcal{N}_{\delta}(\gamma)$. Therefore, $d(\sigma(t), \gamma) \leq 2f(\mu+L+\delta) + \delta$.

If necessary, we may enlarge $D_{\cap}(\mu, \lambda, \epsilon)$ to ensure $D_{\cap}(\mu, \lambda, \epsilon) \geq \mu$. □

4.3 Relative fellow traveling

Hypotheses 4.15 For the following subsection, we adopt the following baseline hypotheses in addition to **Hypotheses 4.8**:

- (1) Fix $\lambda \geq 1$ and $\epsilon \geq 0$.
- (2) Let $\sigma: [0, t_{\sigma}] \rightarrow \widetilde{X}$ be a (λ, ϵ) -quasigeodesic triangle and let $\gamma: [0, s_{\gamma}] \rightarrow \widetilde{X}$ be a geodesic that has the same endpoints as σ .
- (3) Enlarge δ from **Hypotheses 4.8** so that all (λ, ϵ) -quasigeodesic triangles are coarsely δ -relatively thin relative to some $F \in \mathcal{B}$ (recall **Definition 4.11** and **Proposition 4.12**) and all geodesic triangles are δ -relatively thin relative to some $F \in \mathcal{B}$.
- (4) Let $u = u_{\lambda, \epsilon}$ as in **Proposition 4.10**.
- (5) We abuse notation slightly and use $D_{\cap} = D_{\cap}(u + \epsilon + 1, \lambda, \epsilon)$ (see **Lemma 4.14**). Note that $D_{\cap} \geq u + \epsilon + 1 \geq u$.
- (6) Let $\epsilon' = \epsilon + 2D_{\cap}$.
- (7) Choose $D \gg \delta_{\lambda, \epsilon'} + \epsilon'$ where $\delta_{\lambda, \epsilon'}$ is a constant such that all (λ, ϵ') -quasigeodesic triangles are coarsely $\delta_{\lambda, \epsilon'}$ -thin relative to some $F \in \mathcal{B}$ (recall **Proposition 4.12**).
- (8) Let $\ell \geq f(D)$.

We first obtain a stability result for (λ, ϵ) -quasigeodesics with endpoints in $\mathcal{N}_q(F)$ for some $F \in \mathcal{B}$:

Proposition 4.16 *Let $q \geq 0$. There exists $K(q) \geq 0$ so that if $\alpha: [a_1, a_2] \rightarrow \widetilde{X}$ is a (λ, ϵ) -quasigeodesic with $\alpha(a_1), \alpha(a_2) \in \mathcal{N}_q(F)$ for some $F \in \mathcal{B}$, then $\alpha([a_1, a_2]) \subseteq \mathcal{N}_{K(q)}(F)$.*

Proof Let $\beta: [b_1, b_2] \rightarrow \widetilde{X}$ be a geodesic with $\beta(b_1) = \alpha(a_1)$ and $\beta(b_2) = \alpha(a_2)$. Since $\mathcal{N}_q(F)$ is L -quasiconvex by [Observation 4.2](#), $\beta \subseteq \mathcal{N}_{L+q}(F)$. Let $y = \alpha(x)$ for some $a_1 \leq x \leq a_2$. Let $\alpha_l = \alpha([a_1, x])$ and let $\alpha_r = \alpha([x, a_2])$. The sides $\alpha_l, \alpha_r, \beta$ define a (λ, ϵ) -quasigeodesic triangle that is coarsely thin relative to some $F' \in \mathcal{B}$.

If there exist $p, \alpha(a_l), \alpha(a_r)$, and $\beta(x_b) \in \beta$ so that $d(p, \alpha(a_l)), d(p, \alpha(a_r)), d(p, \beta(x_b)) \leq \frac{\delta}{2}$, then $|x - a_l| \leq |a_l - a_r| \leq \lambda(\delta + \epsilon)$. Then

$$d(\beta(b), y) \leq d(\alpha(a_l), y) + d(\alpha(a_l), \beta(x_b)) \leq \lambda(|x - a_l|) + \epsilon + \delta \leq \lambda^2\delta + \lambda\epsilon + \epsilon + \delta.$$

If $F = F'$, then there exist $a_l \leq x \leq a_r$ so that $\alpha(a_l), \alpha(a_r) \in \mathcal{N}_\delta(F)$ and $d(\alpha(a_l), \alpha(a_r)) \leq \delta$. Hence $|a_l - x| \leq |a_l - a_r| \leq \lambda(\delta + \epsilon)$. Then $d(\alpha(a_l), y) \leq \lambda^2\delta + \lambda^2\epsilon + \epsilon$, so $y \in \mathcal{N}_{\delta+\lambda^2\delta+\lambda^2\epsilon+\epsilon}(F)$.

Finally, if $F \neq F'$, then there exist a_l, a_r, b_l, b_r with $a_l \leq x \leq a_r$ so that $d(\alpha(a_l), \beta(b_l)) \leq \delta$, $(\alpha(a_r), \beta(b_r)) \leq \delta$ and $\beta([b_l, b_r]) \subseteq \mathcal{N}_{q+L}(F) \cap \mathcal{N}_\delta(F')$. Therefore

$$d(\alpha(a_l), \alpha(a_r)) \leq d(\beta(b_l), \beta(b_r)) + 2\delta \leq f(q + L + \delta) + 2\delta.$$

Following computations similar to those in the previous cases,

$$\begin{aligned} |a_l - x| &\leq |a_l - a_r| \leq \lambda(f(q + L + \delta) + 2\delta) + \epsilon, \\ d(\alpha(a_l), y) &\leq \lambda^2(f(q + L + \delta) + 2\delta) + \lambda^2\epsilon + \epsilon, \\ d(\beta(b_l), y) &\leq \lambda^2(f(q + L + \delta) + 2\delta) + \lambda^2\epsilon + \epsilon + \delta. \end{aligned}$$

Therefore, $y \in \mathcal{N}_{q+L+\lambda^2(f(q+L+\delta)+2\delta)+\lambda^2\epsilon+\epsilon+\delta}(F)$. Taking $K(q)$ to be the maximum of the constants generated in the three cases yields an appropriate constant. \square

Here is a brief overview of our strategy for the rest of this section:

- (1) We will partition $[0, t_\sigma]$ into subintervals so that on each subinterval either σ is near an element of \mathcal{B} or σ does not stay close to any element of \mathcal{B} for long ([Proposition 4.17](#)).
- (2) In [Lemma 4.18](#), we alter our partition of $[0, t_\sigma]$ by widening the intervals where σ remains near some element of F so that σ is near γ at the endpoints of these intervals. In exchange, we need to calculate looser upper bounds ([Proposition 4.19](#)) on how close σ is to an element of \mathcal{B} on these intervals.
- (3) On what remains of the subintervals where σ is not near an element of \mathcal{B} , we prove that σ lies within bounded Hausdorff distance of a part of γ ([Proposition 4.21](#)).

(4) We use this information to find subintervals of $[0, s_\gamma]$ that cover $[0, s_\gamma]$ where γ is either close to an element of \mathcal{B} or within bounded Hausdorff distance of σ . However, these subintervals may overlap. In Propositions 4.22 and 4.24, we show that overlapping can be controlled.

(5) In Propositions 4.25 and 4.26, we rearrange the interval endpoints and delete some subintervals of $[0, t_\sigma]$ and $[0, s_\gamma]$ to eliminate any overlap and use the bounds found in Propositions 4.22, 4.24 and 4.25 to ultimately construct a partition that witnesses relative fellow traveling.

In the following, we will use superscripts to help track the stages of partitioning and repartitioning $[0, t_\sigma]$ and covering $[0, s_\gamma]$ by subintervals.

Proposition 4.17 *There exists a partition $0 = t_0^0 \leq t_1^0 \leq t_2^0 \leq \cdots \leq t_{2n+1}^0 = t_\sigma$ and $F_0, F_1, \dots, F_{n-1} \in \mathcal{B}$ with the following properties:*

- (1) $\text{diam}\{t \in [t_{2i}^0, t_{2i+1}^0] : \sigma(t) \in \mathcal{N}_D(F)\} \leq \ell$ for all $F \in \mathcal{B}$.
- (2) $\sigma(t_{2i+1}^0), \sigma(t_{2i+2}^0) \in \mathcal{N}_{D+\epsilon}(F_i)$.
- (3) For all $F \in \mathcal{B}$, there do not exist $t_F^- < t_{2i+1}^0 \leq t_{2i+2}^0 < t_F^+$ so that $\sigma(t_F^-), \sigma(t_F^+) \in \mathcal{N}_{u+\epsilon}(F)$.
- (4) $F_j \neq F_k$ for $j \neq k$.

It turns out the choice of ℓ is somewhat arbitrary, but it does affect how much the partition produced by Proposition 4.17 will need to be altered to give partitions of $[0, t_\sigma]$ and $[0, s_\gamma]$ that witness relative fellow traveling.

Proof Let $m \in \mathbb{N}$ so that $(m-1)\ell \leq t_\sigma < m\ell$. We proceed by induction on m .

If $|t_\sigma| < \ell$, then setting $t_0^0 = 0$ and $t_1^0 = t_\sigma$ suffices.

Assume that Proposition 4.17 holds for quasigeodesics parameterized over intervals of length less than $(m-1)\ell$. Find $0 \leq t_- \leq t_+ \leq t_\sigma$ so that $|t_+ - t_-|$ realize $\sup_{F \in \mathcal{B}}\{|a - b| : \sigma(a), \sigma(b) \in \mathcal{N}_D(F)\}$. If $|t_+ - t_-| < \ell$, then $t_0^0 = 0$ and $t_1^0 = t_\sigma$ suffices.

Otherwise, by the inductive hypothesis, we obtain partitions

$$0 = t_0^0 \leq t_1^0 \leq \cdots \leq t_{2j+1}^0 = t_- \quad \text{and} \quad t_+ = t_{2j+2}^0 \leq t_{2j+3}^0 \leq \cdots \leq t_{2n+1}^0 = t_\sigma$$

so that $\text{diam}_{t \in [t_{2i}^0, t_{2i+1}^0]} \{\sigma(t) \in \mathcal{N}_D(F)\} \leq \ell$ for all $F \in \mathcal{B}$, $|t_{2i+2} - t_{2i+1}| \geq \ell$ and $\sigma(t_{2i+1}^0), \sigma(t_{2i+2}^0) \in \mathcal{N}_{D+\epsilon}(F_i)$ for some $F_i \in \mathcal{B}$. Combining these partitions into a partition of $[0, t_\sigma]$ immediately satisfies the first two requirements. We obtain item (3) because $D \geq \epsilon' \geq D \cap \geq u + \epsilon$ (recall Hypotheses 4.15), the inductive hypothesis and $|t_+ - t_-|$ is determined by a supremum. However, we need to check that if $k_1 \leq j$ and $k_2 \geq j$ (with $k_1 \neq k_2$), then $F_{k_1} \neq F_{k_2}$. If $F_{k_1} = F_{k_2}$, then there exist $t_l < t_- < t_+ < t_r$ so that $\sigma(t_l), \sigma(t_r) \in \mathcal{N}_D(F_{k_1})$ with $|t_l - t_r| > |t_- - t_+| \geq \ell$, contradicting hypothesis (3). \square

In Proposition 4.17, it is not guaranteed that the $\sigma(t_j^0)$ are near γ . To remedy this, we widen the intervals $[t_{2i+1}^0, t_{2i+2}^0]$ as necessary while shrinking $[t_{2i}^0, t_{2i+1}^0]$:

Lemma 4.18 For $0 \leq j \leq 2n + 1$, there exist t_j^1 so that:

- (1) For all $0 \leq i \leq n$, $\text{diam}\{t \in [t_{2i}^1, t_{2i+1}^1] : \sigma(t) \in \mathcal{N}_D(F)\} \leq \ell$ for all $F \in \mathcal{B}$.
- (2) $0 = t_0^1 \leq t_1^1 \leq \dots \leq t_{2n}^1 \leq t_{2n+1}^1 = t_\sigma$.
- (3) $t_{2i}^0 \leq t_{2i}^1 \leq t_{2i+1}^1 \leq t_{2i+1}^0$.
- (4) Either $t_{2i}^1 = t_{2i+1}^1$ or $d(\sigma(t_{2i}^1), \gamma), d(\sigma(t_{2i+1}^1), \gamma) \leq D_\cap$.
- (5) $|t_{2i+1}^1 - t_{2i+1}^0|, |t_{2i+2}^1 - t_{2i+2}^0| \leq \ell$.

Proof For each i , we perform the following procedure to set t_{2i}^1 . Consider $p_i = \sigma(t_{2i}^0)$. By [Proposition 4.10](#), either $p_i \in \mathcal{N}_u(\gamma)$ or $p_i \in \mathcal{N}_u(F)$ for some $F \in \text{Sat}_u(\gamma)$ (where u is as defined in [Hypotheses 4.15](#)). In the first case, we set $t_{2i}^1 = t_{2i}^0$ noting that $u \leq D_\cap$.

Suppose we are in the second case: let $t_{\text{ext}}^+ = \sup\{t \in [t_{2i}^0, t_{2i+1}^0] : \sigma(t) \in \mathcal{N}_u(F)\}$. Then $|t_{\text{ext}}^+ - t_{2i}^0| \leq \ell$ by [Proposition 4.17](#). One of the following holds:

- $t_{\text{ext}}^+ = t_{2i+1}^0$ and $\sigma(t_{\text{ext}}^+) \in \mathcal{N}_{u+\epsilon}(F)$ because t_{ext}^+ is a supremum.
- $\sigma(t_{\text{ext}}^+) \in \mathcal{N}_{u+\epsilon+1}(\gamma)$.
- $\sigma(t_{\text{ext}}^+) \in \mathcal{N}_{u+\epsilon+1}(F')$ for some $F' \in \mathcal{F}$ with $F' \neq F$.

Indeed, if $t_{\text{ext}}^+ \neq t_{2i+1}^0$, then [Proposition 4.10](#) and the fact that t_{ext}^+ is a supremum ensure either the second or third possibility must hold. In the case that $t_{\text{ext}}^+ = t_{2i+1}^0$, set $t_{2i+1}^1 = t_{2i}^1 = t_{2i+1}^0$. Otherwise, set $t_{2i}^1 = t_{\text{ext}}^+$. In this case, either $\sigma(t_{2i}^1)$ lies in $\mathcal{N}_{D_\cap}(\gamma)$ directly or [Lemma 4.14](#) with $\mu = u + \epsilon + 1$ (recall [Hypotheses 4.15\(5\)](#)) implies that $\sigma(t_{2i}^1) \in \mathcal{N}_{D_\cap}(\gamma)$.

Proceeding similarly, if $\sigma(t_{2i+1}^0) \in \mathcal{N}_{u+\epsilon+1}(\gamma)$, we set $t_{2i+1}^1 = t_{2i+1}^0$. Otherwise, $\sigma(t_{2i+1}^0) \in \mathcal{N}_u(G)$ for some $G \in \text{Sat}_u(\gamma)$. We then set $t_{2i+1}^1 = \inf\{t \in [t_{2i}^1, t_{2i+1}^0] : \gamma(t) \in \mathcal{N}_u(G)\}$ where $G \in \text{Sat}_u(\gamma)$. As in the preceding argument, $|t_{2i+1}^1 - t_{2i+1}^0| \leq \ell$ and one of the following holds: $t_{2i+1}^1 = t_{2i}^1$ so that $\sigma(t_{2i+1}^1) \in \mathcal{N}_{D_\cap}(\gamma)$, $\sigma(t_{2i+1}^1)$ immediately lies in $\mathcal{N}_{D_\cap}(\gamma)$ or there exists $G' \in \text{Sat}_u(\gamma)$ so that $\sigma(t_{2i+1}^1) \in \mathcal{N}_{u+\epsilon+1}(G') \cap \mathcal{N}_{u+\epsilon}(G) \subseteq \mathcal{N}_{D_\cap}(\gamma)$. In the third case, the final containment follows from [Lemma 4.14](#) and [Hypotheses 4.15\(5\)](#).

Since $[t_{2i}^1, t_{2i+1}^1] \subseteq [t_{2i}^0, t_{2i+1}^0]$, we automatically retain the property that

$$\text{diam}\{t \in [t_{2i}^1, t_{2i+1}^1] : \sigma(t) \in \mathcal{N}_D(F)\} \leq \ell$$

for all $F \in \mathcal{B}$. □

We now show that $\sigma([t_{2i+1}^1, t_{2i+2}^1])$ remains boundedly close to F_i .

Proposition 4.19 There exists $D_{\text{depth}} \geq 0$ so that for all $0 \leq i \leq n$, $\sigma([t_{2i+1}^1, t_{2i+2}^1]) \subseteq \mathcal{N}_{D_{\text{depth}}}(F_i)$, and if $t_{2i}^1 = t_{2i+1}^1$, $d(\sigma(t_{2i}^1), \gamma) \leq f(D_{\text{depth}}) + D_\cap$.

Proof Since $\sigma(t_{2i+1}^0) \in \mathcal{N}_{D+\epsilon}(F_i)$ and $|t_{2i+1}^0 - t_{2i+1}^1| \leq \ell$, $\sigma(t_{2i+1}^1) \in \mathcal{N}_{D+\epsilon+\lambda\ell+\epsilon}(F_i)$. Similarly, $\sigma(t_{2i+2}^1) \in \mathcal{N}_{D+\epsilon+\lambda\ell+\epsilon}(F_i)$. Set $D_{\text{depth}} = K(D + \lambda\ell + 2\epsilon)$ where $K(D + \lambda\ell + 2\epsilon)$ is determined (as a function of λ, ϵ, ℓ) as in [Proposition 4.16](#).

Now suppose $t_{2i}^1 = t_{2i+1}^1$. By [Proposition 4.10](#), if $t_{2i}^1 \notin \mathcal{N}_u(\gamma)$, there exists $F \in \mathcal{B}$ so that $\sigma(t_{2i}^1) \in \mathcal{N}_u(F)$.

Suppose first that $F \neq F_i$. Let $t_F = \sup\{t \in [0, t_\sigma] : \sigma([t_{2i}^1, t]) \subseteq \mathcal{N}_u(F)\}$. By [Lemma 4.18\(3\)](#), $t_{2i}^1 \leq t_{2i+1}^0 \leq t_{2i+2}^0 \leq t_{2i+2}^1$. Then [Proposition 4.17\(3\)](#) implies $t_F \leq t_{2i+2}^1$. Moreover, $F \neq F_i$ implies that $d(\sigma(t_{2i+1}^1), \sigma(t_F)) \leq f(D_{\text{depth}})$. Since t_F is a supremum, there exists a $t > t_F$ with $d(\sigma(t), \sigma(t_F)) \leq \epsilon + 1$ so that $\sigma(t) \in \mathcal{N}_u(\gamma)$ or $\sigma(t) \in \mathcal{N}_u(F')$ for some $F' \neq F$. Hence by [Lemma 4.14](#), $d(\sigma(t_F), \gamma) \leq D_{\cap}$. Therefore, $d(\sigma(t_{2i}^1), \gamma) \leq f(D_{\text{depth}}) + D_{\cap}$.

For the case $F \neq F_{i-1}$ set $t_F = \inf\{t \in [0, t_\sigma] : \sigma([t, t_{2i}^1]) \subseteq \mathcal{N}_u(F)\}$ and then proceed using a similar argument to the case $F \neq F_i$. \square

We apply the bounds from [Lemma 4.18](#) and [Proposition 4.19](#) to obtain the following.

Corollary 4.20 *Let $D_{\text{endpoints}} = f(D_{\text{depth}}) + D_{\cap} \geq 0$. Then $d(\sigma(t_j^1), \gamma) \leq D_{\text{endpoints}}$.*

We now find s_i^1 in $[0, s_\gamma]$ so that $\gamma(s_i^1)$ is close to $\sigma(t_i^1)$. Let $0 \leq s_j^1 \leq s_\gamma$ be such that $d(\gamma(s_j^1), \sigma(t_j^1))$ is at most $D_{\text{endpoints}}$ if $t_j^1 = t_{j\pm 1}^1$ or D_{\cap} otherwise. If $t_{2i}^1 = t_{2i+1}^1$, ensure that $s_{2i}^1 = s_{2i+1}^1$. We may further assume that $s_0^1 = t_0^1 = 0$, $t_{2n+1}^1 = t_\sigma$ and $s_{2n+1}^1 = s_\gamma$.

Proposition 4.21 *There exists $D_{\text{hausdorff}}$ so that $d_{\text{haus}}(\sigma([s_{2i}^1, s_{2i+1}^1]), \gamma([t_{2i}^1, s_{2i+1}^1])) \leq D_{\text{hausdorff}}$ for all $0 \leq i \leq n$.*

Proof If $t_{2i+1}^1 = t_{2i}^1$, then $D_{\text{hausdorff}} = D_{\text{endpoints}}$ suffices. Otherwise, [Lemma 4.18](#) implies

$$d(\sigma(t_{2i}^1), \gamma(s_{2i}^1)), d(\sigma(t_{2i+1}^1), \gamma(s_{2i+1}^1)) \leq D_{\cap}.$$

Recall from [Hypotheses 4.15](#) that $\epsilon' = \epsilon + 2D_{\cap}$. Construct σ_i , a (λ, ϵ') -quasigeodesic from $\sigma([t_{2i}^1, t_{2i+1}^1])$ by adding geodesics of length at most D_{\cap} connecting $\sigma(t_{2i}^1)$ and $\sigma(t_{2i+1}^1)$ to $\gamma(s_{2i}^1)$ and $\gamma(s_{2i+1}^1)$, respectively.

Let $y \in \sigma_i$. Partition σ_i into σ_l and σ_r so that σ_l is from $\gamma(s_{2i}^1)$ to y and σ_r is from y to $\sigma(s_{2i+1}^1)$. The triangle bounded by $\gamma([s_{2i}^1, s_{2i+1}^1]), \sigma_l$ and σ_r is $\delta_{\lambda, \epsilon'}$ -coarsely thin relative to some $F \in \mathcal{B}$.

There are two possibilities:

Case (there exist points $p_l \in \sigma_l$, $p_r \in \sigma_r$ and p_γ in γ so that $d(p_l, p_r), d(p_r, p_\gamma), d(p_l, p_\gamma) \leq \delta_{\lambda, \epsilon'}$) Since σ_i is quasigeodesic, $d(y, p_l) \leq \lambda(\delta_{\lambda, \epsilon'} + \epsilon') + \epsilon'$ (a similar computation was carried out in more detail in the proof of [Proposition 4.16](#)). Then $d(y, \gamma) \leq d(y, p_\gamma) \leq \delta_{\lambda, \epsilon'} + \lambda(\delta_{\lambda, \epsilon'} + \epsilon') + \epsilon'$.

Case (there exist $p_l, p_{l,\gamma} \in \sigma_l$, $p_r \in \sigma_r$ and $F \in \mathcal{B}$ so that the interval of σ_l between p_l and $p_{l,\gamma}$ lies in $\mathcal{N}_{\delta_{\lambda,\epsilon'}}(F)$, $d(p_l, \gamma([s_{2i}^1, s_{2i+1}^1])) \leq \delta_{\lambda,\epsilon'}$ and $d(p_r, p_l) \leq \delta_{\lambda,\epsilon'}$) Recall that

$$\text{diam}\{t \in [t_{2i}^1, t_{2i+1}^1] : \sigma(t) \in \mathcal{N}_D(F)\} \leq \ell$$

so $d(p_l, p_{l,\gamma}) \leq \lambda\ell + 3\epsilon'$ where the additional $2\epsilon'$ is accounting for the length of the segment linking $\gamma(s_{2i}^1)$ to $\sigma(t_{2i}^1)$ and the segment linking $\gamma(s_{2i+1}^1)$ to $\sigma(t_{2i+1}^1)$. We have that $d(y, p_l) \leq \lambda(\lambda(\delta_{\lambda,\epsilon'} + \epsilon') + \epsilon')$ following the computation from the previous case. Hence

$$d(y, \gamma) \leq \delta_{\lambda,\epsilon'} + \ell + \epsilon' + \lambda(\lambda(\delta_{\lambda,\epsilon'} + \epsilon') + \epsilon').$$

From the two previous cases, we determine that $d(y, \gamma)$ is bounded as a function of λ, ϵ' .

Now consider $x \in \gamma$. We will bound $d(x, \sigma)$. Similar to the previous case, divide $\gamma|_{[s_{2i}^1, s_{2i+1}^1]}$ into two segments γ_l from $\gamma(s_{2i}^1)$ to x and γ_r from x to $\gamma(s_{2i+1}^1)$ and consider the quasigeodesic triangle with sides $\gamma_l, \gamma_r, \sigma_i$ that is $\delta_{\lambda,\epsilon'}$ -coarsely thin relative to some $F \in \mathcal{B}$. There are two possibilities:

Case (there exist x_l, x_r, x_σ so that $x_l \in \gamma_l$, $x_r \in \gamma_r$, $x_\sigma \in \sigma_i$ with $d(x_l, \sigma), d(x_r, x_l) \leq \delta_{\lambda,\epsilon'}$) Then $d(x_l, x) \leq d(x_l, x_r) \leq \delta_{\lambda,\epsilon'}$ because γ is geodesic. Hence we have

$$d(x, \sigma_i) \leq d(x, x_\sigma) \leq d(x, x_l) + d(x_l, x_\sigma) \leq 2\delta_{\lambda,\epsilon'}.$$

Thus $d(x, \sigma) \leq 2\delta_{\lambda,\epsilon'} + D_\cap$.

Case (there exist x_l, x_r, x_σ and $F \in \mathcal{B}$ so that $x_l \in \gamma_l$, $x_r \in \gamma_r$, $p_{\sigma_l}, p_{\sigma_r} \in \sigma_i$ so that $p_{\sigma_l}, p_{\sigma_r} \in \mathcal{N}_{\delta_{\lambda,\epsilon'}}(F)$ and $d(x_l, p_{\sigma_l}), d(x_r, p_{\sigma_r}) \leq \delta_{\lambda,\epsilon'}$) Since $d(p_{\sigma_l}, \sigma), d(p_{\sigma_r}, \sigma) \leq \epsilon'$, there exist t_l, t_r so that $p_{\sigma_l} = \sigma(t_l)$, $p_{\sigma_r} = \sigma(t_r) \in \mathcal{N}_{\delta_{\lambda,\epsilon'} + \epsilon'}(F)$. Then by [Proposition 4.17](#) and [Lemma 4.18](#) and the fact that $D \gg \delta_{\lambda,\epsilon'} + \epsilon'$, we have $|t_l - t_r| \leq \ell$. It follows that $d(\sigma(t_l), \sigma(t_r)) \leq \lambda\ell + \epsilon'$. Hence

$$\begin{aligned} d(x, \sigma(t_l)) &\leq d(x_l, x_r) + d(x_l, p_{\sigma_l}) + d(p_{\sigma_l}, \sigma(t_l)) \leq d(x_l, x_r) + \delta_{\lambda,\epsilon'} + \epsilon' \\ &\leq d(\sigma(t_l), \sigma(t_r)) + 2\epsilon' + 3\delta_{\lambda,\epsilon'} \leq \lambda\ell + 3\epsilon' + 3\delta_{\lambda,\epsilon'}. \end{aligned}$$

Taking the largest constant from the four cases above yields an acceptable value for $D_{\text{hausdorff}}$. \square

Unfortunately, it is possible that $j < k$ and $s_j^1 > s_k^1$, but this behavior can be controlled:

Proposition 4.22 *There exists D_{outorder} so that if $j < k$ and $s_j^1 > s_k^1$, then $|t_j - t_k| \leq D_{\text{outorder}}$.*

Proof It suffices to consider the case where k is the largest index such that $j < k$ and $s_j^1 > s_k^1$.

By construction, $d(\sigma(t_j^1), \gamma(s_j^1)) \leq D_{\text{endpoints}}$. Since k is largest, $s_j^1 \in [s_k^1, s_{k+1}^1]$ where $s_k^1 \leq s_{k+1}^1$. Since $s_0^1 = 0$ and $s_{2n}^1 = s_\gamma$, there exists $h_- < j$ so that s_k^1 lies in $[s_{h_-}^1, s_{h_-+1}^1]$ where $s_{h_-}^1 \leq s_{h_-+1}^1$.

Case (k is even) Then $d(\gamma(s_j^1), \sigma(t_j^1)) \leq D_{\text{endpoints}}$ and there exists $t_+ \in [t_k^1, t_{k+1}^1]$ such that

$$d(\gamma(s_j^1), \sigma(t_+)) \leq D_{\text{hausdorff}}.$$

Hence $d(\sigma(t_j^1), \sigma(t_+)) \leq D_{\text{hausdorff}} + D_{\text{endpoints}}$. We then obtain

$$|t_k^1 - t_j^1| \leq |t_j^1 - t_+| \leq \lambda(D_{\text{hausdorff}} + D_{\text{endpoints}}) + \epsilon.$$

Case (h_- is even) Then $d(\gamma(s_k^1), \sigma(t_k^1)) \leq D_{\text{endpoints}}$ and there exists $t_- \in [t_{h_-}^1, t_{h_-+1}^1]$ so that

$$d(\sigma(t_-), \gamma(s_k^1)) \leq D_{\text{hausdorff}}.$$

Similar to the previous case, we conclude

$$|t_{h_-}^1 - t_{h_-+1}^1| \leq |t_k^1 - t_j^1| \leq \lambda(D_{\text{hausdorff}} + D_{\text{endpoints}}) + \epsilon.$$

Case (h_- and k are both odd) Set $h_- = 2i_- + 1$ and $k = 2i_+ + 1$. Observe that $\gamma([s_{h_-}^1, s_{h_-+1}^1]) \subseteq \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_-})$ and similarly $\gamma([s_k^1, s_{k+1}^1]) \subseteq \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_+})$.

We have $s_{h_-}^1 \leq s_k^1 < s_j^1 \leq s_{k+1}^1$. If $s_{h_-}^1 \leq s_k^1 \leq s_j^1 \leq s_{h_-+1}^1, s_{k+1}^1$, then

$$\gamma([s_k^1, s_j^1]) \subseteq \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_-}) \cap \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_+}).$$

Therefore,

$$d(\gamma(s_k^1), \gamma(s_j^1)) \leq f(D_{\text{endpoints}} + D_{\text{depth}}) \quad \text{and} \quad d(\sigma(t_j^1), \sigma(t_k^1)) \leq 2D_{\text{endpoints}} + f(D_{\text{endpoints}} + D_{\text{depth}}).$$

Then

$$|t_j^1 - t_k^1| \leq \lambda(2D_{\text{endpoints}} + f(D_{\text{endpoints}} + D_{\text{depth}})) + \epsilon.$$

Otherwise $s_{h_-}^1 \leq s_k^1 \leq s_{h_-+1}^1 \leq s_j^1 \leq s_{k+1}^1$ so that

$$\gamma([s_k^1, s_{h_-+1}^1]) \subseteq \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_-}) \cap \mathcal{N}_{D_{\text{endpoints}} + D_{\text{depth}}}(F_{i_+}).$$

We see $d(\sigma(t_k^1), \sigma(t_{h_-+1}^1)) \leq 2D_{\text{endpoints}} + f(D_{\text{endpoints}} + D_{\text{depth}})$. Recalling $h_- < j$, then

$$|t_j^1 - t_k^1| \leq |t_{h_-+1}^1 - t_k^1| \leq \lambda(2D_{\text{endpoints}} + f(D_{\text{endpoints}} + D_{\text{depth}})) + \epsilon.$$

Taking D_{outorder} to be the maximum of the bounds found in each of the three cases therefore suffices. \square

Definition 4.23 An *augmented partition* of $[0, t_\sigma]$ is a partition

$$0 \leq t_1 \leq t_2 \leq \cdots \leq t_m = t_\sigma$$

together with choices $0 = s_0, s_1, s_2, \dots, s_m = s_\gamma$ where $s_i \in [0, s_\gamma]$. We denote such an augmented partition by

$$(1) \quad (t_0, s_0) \leq (t_1, s_1) \leq \cdots \leq (t_{m-1}, s_{m-1}) \leq (t_m, s_m).$$

We call $t_j \leq t_{j+1} \leq \cdots \leq t_k$ a *maximal crossover subinterval* of the augmented partition (1) if $s_h < s_j$ for all $h \leq j$ and k is the largest index so that $s_k < s_j$.

In Propositions 4.24 and 4.25, we explain how to take an augmented partition like $(t_0^1, s_0^1) \leq \cdots \leq (t_{2n+1}^1, s_{2n+1}^1)$ and obtain an augmented partition with similar properties that has one fewer maximal crossover interval from an augmented partition. Then, in Proposition 4.26, we work on $(t_0^1, s_0^1) \leq \cdots \leq (t_{2n+1}^1, s_{2n+1}^1)$ from left to right using Proposition 4.25 to obtain a new augmented partition with similar properties but no maximal crossover intervals.

Proposition 4.24 Let $t_j^1 \leq t_{j+1}^1 \leq \dots \leq t_k^1$ be a maximal crossover subinterval of an augmented partition $(t_0, s_0) \leq (t_1, s_1) \leq \dots \leq (t_{i_j-1}, s_{i_j-1}) \leq (t_j^1, s_j^1) \leq (t_{j+1}^1, s_{j+1}^1) \leq \dots \leq (t_k^1, s_k^1) \leq \dots \leq (t_{2n+1}^1, s_{2n+1}^1)$ of $[0, t_\sigma]$. Then

- $d(\sigma(t_k^1), \gamma(s_j^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}$,
- $d(\sigma(t_j^1), \gamma(s_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}$, and
- $d_{\text{haus}}(\sigma([t_j^1, t_k^1]), \gamma([s_k^1, s_j^1])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}$.

Proof Recall $d(\sigma(t_j^1), \gamma(s_j^1)), d(\sigma(t_{j+1}^1), \gamma(s_{j+1}^1)), \dots, d(\sigma(t_k^1), \gamma(s_k^1)) \leq D_{\text{endpoints}}$. By Proposition 4.22, $|t_j^1 - t_k^1| \leq D_{\text{outorder}}$. Then $d(\sigma(t_j^1), \sigma(t_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon$. We can conclude then that $d(\gamma(s_j^1), \gamma(s_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon + 2D_{\text{endpoints}}$. Therefore, for all $s_k^1 \leq s \leq s_j^1$,

$$d(\gamma(s), \sigma(t_k^1)) \leq d(\gamma(s_j^1), \gamma(s_k^1)) + d(\gamma(s_k^1), \sigma(t_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon + 2D_{\text{endpoints}} + D_{\text{endpoints}}.$$

Similarly for all $t_j^1 \leq t \leq t_k^1$, $|t - t_k^1| \leq D_{\text{outorder}}$ so

$$d(\sigma(t), \sigma(t_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon.$$

Therefore,

$$d(\sigma(t), \gamma(s_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}.$$

A similar argument will also show that $d(\sigma(t_k^1), \gamma(s_j^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}$. \square

Proposition 4.25 Let $t_j^1 \leq t_{j+1}^1 \leq \dots \leq t_k^1$ be a maximal crossover subinterval of an augmented partition

$$(2) \quad (t_0, s_0) \leq (t_1, s_1) \leq (t_2, s_2) \leq \dots \leq (t_{i_j-1}, s_{i_j-1})$$

$$\leq (t_j^1, s_j^1) \leq (t_{j+1}^1, s_{j+1}^1) \leq \dots \leq (t_k^1, s_k^1) \leq \dots \leq (t_{2n+1}^1, s_{2n+1}^1)$$

of $[0, t_\sigma^1]$ so that $t_0, t_1, t_2, \dots, t_{i_j-1}$ are not contained in any maximal crossover subintervals of (2). There is a new augmented partition

$$(3) \quad 0 = (t_0, s_0) \leq \dots \leq (t_{i_j-1}, s_{i_j-1}) \leq (t_j^1, s_k^1) \leq (t_k^1, s_j^1) \leq (t_{k+1}^1, s_{k+1}^1) \leq \dots \leq (t_{2n+1}^1, s_{2n+1}^1)$$

that has the properties

- $t_0, t_1, \dots, t_{i_j-1}, t_j^1, t_k^1$ are not contained in any maximal crossover subinterval of (3),
- $d(\sigma(t_k^1), \gamma(s_j^1)), d(\sigma(t_j^1), \gamma(s_k^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}$, and
- $d_{\text{haus}}(\sigma([t_j^1, t_k^1]), \gamma([s_k^1, s_j^1])) < \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}$.

Proof Since $t_0, t_1, t_2, \dots, t_{i_j-1}$ are not contained in any maximal crossover subinterval, $s_0 \leq s_1 \leq s_2 \leq \dots \leq s_{i_j-1} \leq s_k$ and $s_k \leq s_j$ by hypothesis. Moreover, for all $k' > k$, we have $s_{k'}^1 \geq s_j^1 \geq s_k^1$ because $t_j^1 \leq \dots \leq t_k^1$ is a maximal crossover subinterval. Therefore, t_j^1 and t_k^1 cannot be contained in a maximal crossover subinterval of the augmented partition (3).

From Proposition 4.24, we immediately obtain $d(\sigma(t_k^1), \gamma(s_j^1)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}$ and

$$d_{\text{haus}}(\sigma([t_j^1, t_k^1]), \gamma([s_k^1, s_j^1])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}. \quad \square$$

Proposition 4.26 *There exist partitions*

$$0 = t_0^2 \leq t_1^2 \leq t_2^2 \leq t_3^2 \leq \cdots \leq t_{n'}^2 = t_\sigma \quad \text{and} \quad 0 = s_0^2 \leq s_1^2 \leq s_2^2 \leq s_3^2 \leq \cdots \leq s_{n'}^2 = s_\gamma$$

so that for $0 \leq j \leq n'$:

$$(1) \quad d(\sigma(t_j^2), \gamma(s_j^2)) \leq \lambda D_{\text{outorder}} + \epsilon + D_{\text{endpoints}}.$$

(2) *For each j , one of the following holds:*

- $d_{\text{haus}}(\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}.$
- $\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2]) \subseteq \mathcal{N}_{K(D_{\text{depth}} + D_{\text{endpoints}})}(F_j^2)$ for some $F_j^2 \in \mathcal{B}$.

$$(3) \quad \text{If } j \neq j', \text{ then } F_j^2 \neq F_{j'}^2.$$

Proof sketch We can obtain the desired partition by starting with the partition from [Lemma 4.18](#) and then working left to right using [Proposition 4.25](#) to eliminate any maximal crossover subintervals. Immediately, $s_0^1 = 0$, so t_0^1 is not contained in any maximal crossover subintervals. The bound on $d(\sigma(t_j^2), \gamma(s_j^2))$ is implied by [Proposition 4.25](#). One of the following holds:

- $t_j^2 = t_{2i}^1, t_{j+1}^2 = t_{2i+1}^1, s_j^2 = s_{2i}^1$ and $s_{j+1}^2 = s_{2i+1}^1$ for some i .
- $t_j^2 = t_{2i+1}^1, t_{j+1}^2 = t_{2i+2}^1, s_j^2 = s_{2i+1}^1$ and $s_{j+1}^2 = s_{2i+2}^1$ for some i .
- [Proposition 4.25](#) implies that $d_{\text{haus}}(\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}.$

In the first case, [Proposition 4.21](#) implies that $d_{\text{haus}}(\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2]))$ is bounded appropriately. In the second case, [Proposition 4.19](#) implies that $\sigma([t_j^2, t_{j+1}^2]) \subseteq \mathcal{N}_{D_{\text{depth}}}(F_i)$, so set $F_j^2 = F_i$. Since the endpoints of $\gamma([s_j^2, s_{j+1}^2])$ are within $D_{\text{endpoints}}$ of the endpoints of $\sigma([t_j^2, t_{j+1}^2])$ and γ is geodesic, we have

$$\gamma([s_j^2, s_{j+1}^2]) \subseteq \mathcal{N}_{K(D_{\text{depth}} + D_{\text{endpoints}})}(F_j^2)$$

Since the F_i are distinct, if $j \neq j'$, then $F_j^2 \neq F_{j'}^2$. □

In the partition from [Proposition 4.26](#), we call an interval $[t_j^2, t_{j+1}^2]$ a *Hausdorff interval* if

$$d_{\text{haus}}(\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}.$$

Otherwise, if $\sigma([t_j^2, t_{j+1}^2]), \gamma([s_j^2, s_{j+1}^2]) \subseteq \mathcal{N}_{K(D_{\text{depth}} + D_{\text{endpoints}})}(F_j^2)$, we call $[t_j^2, t_{j+1}^2]$ a *peripheral interval*.

Theorem 4.7 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair where G acts geometrically on a CAT(0) space \widetilde{X} with basepoint $x \in \widetilde{X}$. If \mathcal{B} is any R -thickening of $\{gPx \mid g \in G, P \in \mathcal{P}\}$ then $(\widetilde{X}, \mathcal{B})$ has the relative fellow traveling property.*

Proof By [Proposition 4.6](#), $(\widetilde{X}, \mathcal{B})$ is a (δ, f) -CAT(0) relatively hyperbolic pair and there exists $L(R)$ so that [Hypotheses 4.8](#) hold.

Given (λ, ϵ) -quasigeodesics γ, σ with the same endpoints, we can reduce to the case where γ is geodesic by [Proposition 4.13](#). [Proposition 4.26](#) nearly provides the partition for relative fellow traveling except that the intervals $[t_j^2, t_{j+1}^2]$ as constructed in [Proposition 4.26](#) do not alternate between Hausdorff intervals and peripheral intervals. This can be easily remedied by turning any two adjacent Hausdorff intervals into a single Hausdorff interval. In other words, if $[t_j^2, t_{j+1}^2]$ and $[t_{j+1}^2, t_{j+2}^2]$ are both Hausdorff intervals, we remove these two intervals from the partition and replace them with the single interval $[t_j^2, t_{j+2}^2]$. Likewise, replace $[s_j^2, s_{j+1}^2]$ and $[s_{j+1}^2, s_{j+2}^2]$ with $[s_j^2, s_{j+2}^2]$. It is easy to check that $d_{\text{haus}}(\sigma([t_j^2, t_{j+2}^2]), \gamma([s_j^2, s_{j+2}^2])) \leq \lambda D_{\text{outorder}} + \epsilon + 3D_{\text{endpoints}}$ in this case. Repeat this process until no adjacent Hausdorff intervals remain. \square

5 A relatively hyperbolic combination lemma

The construction of hierarchies in [Section 7](#) is quite similar to the hierarchy constructed in [\[3\]](#). The goal of this section is to prove a combination theorem for the relatively hyperbolic setting that will be used to show the edge groups of the hierarchy are undistorted.

5.1 The attractive property in $\text{CAT}(0)$ relatively hyperbolic pairs

The first goal is to improve a $\text{CAT}(0)$ relatively hyperbolic pair so that geodesics that stay near a peripheral space intersect the peripheral space.

Definition 5.1 Let \widetilde{X} be a geodesic metric space, let Z be a subspace of \widetilde{X} and let $K_{\text{att}}: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ be a function. The subspace Z is K_{att} -attractive if for all $R \geq \delta$ whenever γ is a geodesic with endpoints in $\mathcal{N}_R(Z)$ and $|\gamma| \geq K_{\text{att}}(R)$, then $\gamma \cap Z \neq \emptyset$.

We now fix hypotheses for the remainder of the [Section 5.1](#).

Hypotheses 5.2 Suppose that $(\widetilde{X}, \mathcal{B}')$ is a (δ, f') - $\text{CAT}(0)$ relatively hyperbolic pair where every $F' \in \mathcal{B}'$ is convex. Let $\mathcal{B} = \{\mathcal{N}_{2\delta}(F') : F' \in \mathcal{B}'\}$ so that for some $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$, $(\widetilde{X}, \mathcal{B})$ is a (δ, f) - $\text{CAT}(0)$ relatively hyperbolic pair by [Proposition 4.4](#). Fix $M = f(6\delta)$.

Proposition 5.3 Under [Hypotheses 5.2](#), every $B \in \mathcal{B}$ is $(3M + 6R + 21\delta)$ -attractive.

The following result will be used to prove [Proposition 5.3](#):

Proposition 5.4 Assume [Hypotheses 5.2](#), let γ be a geodesic and let $F \in \mathcal{B}'$. If γ has endpoints in $\mathcal{N}_R(F)$, then $\text{diam } \gamma \cap \mathcal{N}_{2\delta}(F) > |\gamma| - (3M + 6R + 9\delta)$.

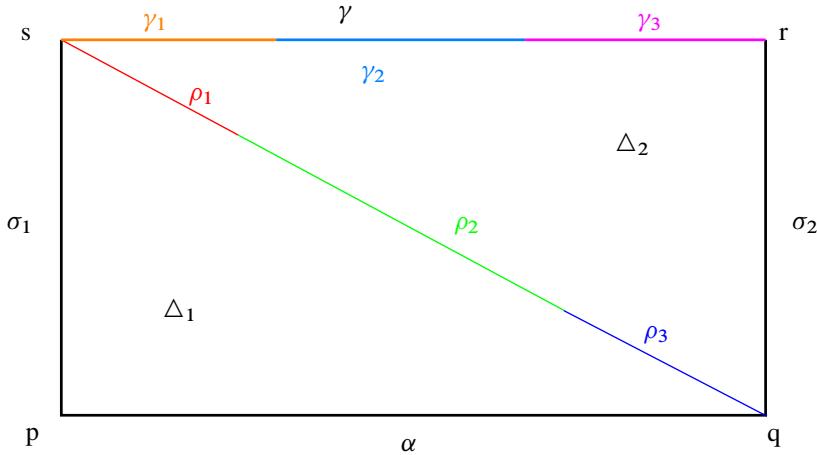


Figure 5: The quadrilateral constructed in the proof of [Proposition 5.3](#).

Proof There is a quadrilateral whose sides are γ , two geodesics σ_1, σ_2 of length at most R connecting the endpoints of γ to points in F and a geodesic α connecting the endpoints of σ_1, σ_2 that are in F . By convexity, $\alpha \subseteq F$. Let ρ be a diagonal so that there are two triangles, Δ_1, Δ_2 , so that Δ_1 has sides α, ρ, σ_1 as a side and Δ_2 has sides γ, ρ, σ_2 . Designate vertices p, q, r, s so that $\alpha = [p, q], \sigma_2 = [q, r], \gamma = [r, s], \sigma_1 = [p, s]$, and $\rho = [q, s]$ as shown in [Figure 5](#).

Case 1 (Δ_1 is δ -thin relative to some $F' \neq F$) Since $F' \neq F$ and $\alpha \subseteq F$, the length of the fat part of α in Δ_1 is at most M .

Let ρ_1 be the corner segment of ρ in Δ_1 at s . Then $|\rho_1| \leq R$. Let ρ_2 be the fat part of ρ in Δ_1 . The fat part of σ_1 in Δ_1 has length at most R , so by [Lemma 2.12](#), $|\rho_2| \leq M + R + 3\delta$. Let ρ_3 be the corner segment of ρ in Δ_1 at q . By construction, $\rho_3 \subseteq \mathcal{N}_\delta(F)$.

Let γ_1 be the corner segment of γ at s in Δ_2 , let γ_2 be the fat part of γ in Δ_2 and let γ_3 be the corner segment of γ in Δ_2 at r . Observe that $\gamma_1 \cap \mathcal{N}_\delta(\rho_3) \subseteq \mathcal{N}_{2\delta}(F)$ and

$$\text{diam } \gamma_1 \cap \mathcal{N}_\delta(\rho_3) \geq |\gamma_1| - |\rho_1| - |\rho_2| \geq |\gamma_1| - (M + 2R + 3\delta).$$

If Δ_2 is δ -thin relative to F , then $\gamma_2 \subseteq \mathcal{N}_\delta(F)$. If Δ_2 is δ -thin relative to some other element of \mathcal{B}' , the fat part of ρ in Δ_2 has length at most $|\rho_1| + |\rho_2| + M \leq 2M + 2R + 3\delta$ because $\rho_3 \subseteq \mathcal{N}_\delta(F)$. By [Lemma 2.12](#),

$$|\gamma_2| \leq 2M + 2R + 3\delta + R + 3\delta$$

because $|\sigma_2| \leq R$. Finally, $|\gamma_3| \leq R$.

In summary, at most $M + 2R + 3\delta$ of γ_1 lies outside of $\mathcal{N}_{2\delta}(F)$, at most $2M + 3R + 6\delta$ of γ_2 lies outside of $\mathcal{N}_{2\delta}(F)$, and at most R of γ_3 lies outside of $\mathcal{N}_{2\delta}(F)$, so

$$\text{diam } \gamma \cap \mathcal{N}_{2\delta}(F) \geq |\gamma| - (3M + 6R + 9\delta).$$

Case 2 (Δ_1 is δ -thin relative to F) Let ρ_1, ρ_2, ρ_3 and $\gamma_1, \gamma_2, \gamma_3$ be as in the previous case. Here, $|\rho_1| \leq R$, $\rho_2 \subseteq \mathcal{N}_\delta(F)$ since Δ_1 is δ -thin relative to F and $\rho_3 \subseteq \mathcal{N}_\delta(\alpha) \subseteq \mathcal{N}_\delta(F)$. Since γ_1 δ -fellow travels a subsegment of ρ at s , $\text{diam } \gamma_1 \cap \mathcal{N}_\delta(\rho_2 \cup \rho_3) \geq |\gamma_1| - R$ because $|\rho_1| \leq R$. Since $\rho_2 \cup \rho_3 \subseteq \mathcal{N}_\delta(F)$, $\text{diam } \gamma_1 \cap \mathcal{N}_{2\delta}(F) \geq |\gamma_1| - R$. If Δ_2 is δ -thin relative to some $F'' \neq F$, the fat part of ρ in Δ_2 has length at most $R + M$ because its intersection with $\rho_2 \cup \rho_3 \subseteq \mathcal{N}_\delta(F)$ has length at most M and $|\rho_1| \leq R$. Therefore by Lemma 2.12, $|\gamma_2| < M + 2R + 3\delta$. On the other hand, if Δ_2 is δ -thin relative to F , then $\gamma_2 \subseteq \mathcal{N}_\delta(F)$ so in both cases, all but a less than $M + 2R + 3\delta$ subsegment of γ_2 lies in $\mathcal{N}_{2\delta}(F)$.

In summary, $\text{diam } \gamma_1 \cap \mathcal{N}_{2\delta}(F) \geq |\gamma_1| - R$, $\text{diam } \gamma_2 \cap \mathcal{N}_{2\delta}(F) \geq |\gamma_2| - (M + 2R + 3\delta)$ and $|\gamma_3| \leq R$. Therefore, by the convexity of $\mathcal{N}_{2\delta}(F)$,

$$|\gamma \cap \mathcal{N}_{2\delta}(F)| \geq |\gamma| - (M + 4R + 3\delta). \quad \square$$

Proof of Proposition 5.3 Let γ be a geodesic with endpoints in $\mathcal{N}_R(F)$. Then by convexity, $\gamma \subseteq \mathcal{N}_{R+2\delta}(F')$ for some $F' \in \mathcal{B}'$ where $F = \mathcal{N}_{2\delta}(F')$. By Proposition 5.4, if $|\gamma| > 3M + 6(R + 2\delta) + 9\delta$, then $\gamma \cap \mathcal{N}_{2\delta}(F') \neq \emptyset$. Noting that $F = \mathcal{N}_{2\delta}(F')$ completes the proof. \square

5.2 A combination lemma for CAT(0) relatively hyperbolic pairs

Maintain the following baseline hypotheses for Section 5.2:

Hypotheses 5.5 Let $(\widetilde{X}, \mathcal{B})$ be a (δ, f) -CAT(0) relatively hyperbolic pair and let $M = f(6\delta)$ as before. Suppose that every $B \in \mathcal{B}$ is closed, convex and $(3M + 6R + 2f(R) + 21\delta)$ -attractive.

In Section 7, we will use Proposition 5.3 to obtain attractiveness for a (δ, f) -CAT(0) relatively hyperbolic pair, and then thicken the peripheral spaces to make a new (δ, f) -CAT(0) relatively hyperbolic pair. We will then prove that the new peripheral spaces are $(3M + 6R + 2f(R) + 21\delta)$ -attractive. For this reason, Hypotheses 5.5 are slightly weaker than what would follow from Hypotheses 5.2 and the conclusions of Proposition 5.3.

Theorem 5.6 Assume Hypotheses 5.5. Let $\gamma = b_1a_2b_2a_3b_3 \dots a_n b_n$ be a broken geodesic. Let γ_i be the geodesic connecting the endpoints of the subpath $b_1a_2b_2a_3b_3 \dots a_i b_i$ of γ . Suppose that:

- (1) For each $1 \leq i \leq n$, there exists some $F_i \in \mathcal{B}$ so that $b_i \subseteq F_i$.
- (2) If $F_i = F_j$, then $i = j$.
- (3) For $1 \leq i \leq n-1$, $|b_i| \geq 37M + 250\delta$.
- (4) For all $2 \leq i \leq n$, $\text{diam } a_i \cap \mathcal{N}_{3\delta}(F_i) \leq 5M + 39\delta$ and $\text{diam } a_i \cap \mathcal{N}_{3\delta}(F_{i-1}) \leq 5M + 39\delta$.
- (5) For all $2 \leq i \leq n$, $\text{diam } a_i \cap \mathcal{N}_{6\delta}(F_i) \leq 5M + 57\delta$ and $\text{diam } a_i \cap \mathcal{N}_{6\delta}(F_{i-1}) \leq 5M + 57\delta$.

Then γ_n has a length at least $|b_n| - (24M + 165\delta)$ -tail at the endpoint it shares with b_n (recall Definition 2.9) that lies in $\mathcal{N}_{2\delta}(F_n)$ and for all $2 \leq i \leq n$, $|\gamma_i| \geq |\gamma_{i-1}| + |a_n| + |b_n| - 68M - 628\delta$.

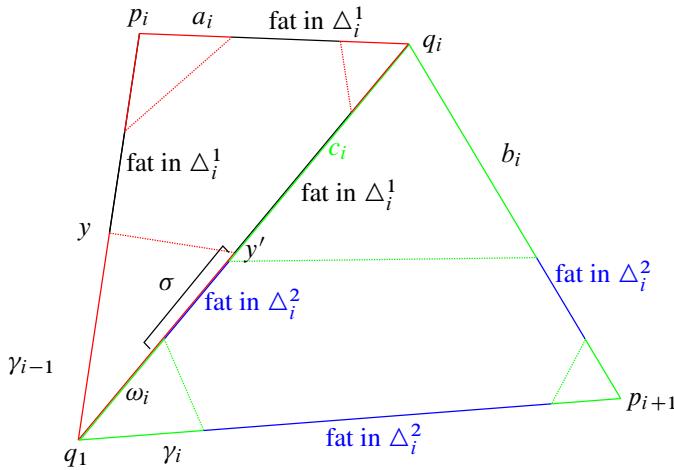


Figure 6: One possible configuration of \triangle_i^1 and \triangle_i^2 in the proof of [Theorem 5.6](#). Corner segments of triangles at the same point are connected by dotted lines.

Proof In the case $n = 1$, the proof is straightforward. The proof of Theorem 5.6 is by induction on n .

Notation 5.7 We now establish notation that will be used throughout the proof of [Theorem 5.6](#).

- (1) For each $2 \leq i \leq n$, let ω_i be the geodesic connecting the endpoints of the broken geodesic $b_1a_2b_2 \dots b_{i-1}a_i$.
- (2) For each $2 \leq i \leq n$, let Δ_i^1 be the triangle with sides γ_{i-1} , ω_i and a_i .
- (3) For each $2 \leq i \leq n$, let Δ_i^2 be the triangle with sides ω_i , b_i and γ_i .
- (4) Label vertices so that $a_i = [p_i, q_i]$ and $b_i = [q_i, p_{i+1}]$.
- (5) Let c_i be the corner segment of ω_i in Δ_i^2 at q_i .

See [Figure 6](#) for a visual representation.

We make the additional inductive assumption that for $1 \leq i < n$, γ_i has a $|b_i| - (24M + 1658)$ -tail at p_{i+1} in $\mathcal{N}_{2\delta}(F_i)$.

Proposition 5.8 If $i \geq 2$ and we assume the inductive hypotheses for the proof of Theorem 5.6, then there is a point $x_i \in \gamma_i$ so that $d(x_i, F_{i-1}) \leq 4\delta$. Further, $|c_i| \leq 12M + 81\delta$ (recall Notation 5.7(5)). When Δ_i^2 is δ -thin relative to F_i , then the length of the fat part of ω_i in Δ_i^2 is at most $12M + 81\delta$.

Proof Since $1 \leq i-1 < n$, γ_{i-1} has a length at least $13M + 85\delta$ -tail at p_i in $\mathcal{N}_{2\delta}(F_{i-1})$ by our inductive assumption.

Case (Δ_i^1 is thin relative to $F \neq F_{i-1}$) The corner segments of Δ_i^1 at p_i have length at most $5M + 39\delta$ to avoid violating [Theorem 5.6\(4\)](#) because a more than $5M + 39\delta$ -tail of γ_{i-1} at p_i lies in $\mathcal{N}_{2\delta}(F_{i-1})$.

Since Δ_i^1 is thin relative to $F \neq F_{i-1}$, the length of the fat part of γ_{i-1} in Δ_i^1 is at most M . Therefore, there is a point $y \in \gamma_{i-1}$ and a point $y' \in \omega_i$ so that $d(y, p_i) \leq 6M + 39\delta$ and $d(y, y') \leq \delta$ so that y, y' are endpoints of the corner segments of Δ_i^1 at q_1 and further, there exists a subsegment σ (see Figure 6) of the corner segment $[q_1, y'] \subseteq \omega_i$ with endpoint y' so that $|\sigma| > 2M$ and $\sigma \subseteq \mathcal{N}_{3\delta}(F_{i-1})$.

The intersection of σ with the corner segment of ω_i in Δ_i^2 at q_i lies in $\mathcal{N}_{3\delta}(F_{i-1}) \cap \mathcal{N}_{3\delta}(F_i)$ and therefore has length at most M . The fat part of ω_i in Δ_i^2 is either contained in $\mathcal{N}_\delta(F_{i-1})$ or intersects σ in a segment of length at most M . Therefore, either there is a point in γ_i that is at most δ from the fat part of ω_i in Δ_i^2 and the fat part of ω_i in Δ_i^2 is contained in $\mathcal{N}_\delta(F_{i-1})$ or σ intersects the corner segment of Δ_i^2 at q_1 . In the first case, there is a point $x_i \in \gamma_i$ that lies in $\mathcal{N}_{2\delta}(F_{i-1})$ and in the second case, there is a point $x_i \in \gamma_i$ so that $d(x_i, \sigma) < \delta$, so $x_i \in \mathcal{N}_{4\delta}(F_{i-1})$.

The next tasks are to bound $|c_i|$ from above and to prove that when Δ_i^2 is δ -thin relative to F_i , the fat part of ω_i in Δ_i^2 has length at most M . Note that $c_i \subseteq \mathcal{N}_{2\delta}(F_i)$. The intersection of c_i with the corner segment of ω_i in Δ_i^1 at q_i has length at most $5M + 39\delta$ because $\text{diam } a_i \cap \mathcal{N}_{3\delta}(F_i) \leq 5M + 39\delta$. If $F \neq F_i$, the intersection of c_i with the fat part of ω_i in Δ_i^1 is a segment of length at most M . Since $|c_i \cap \sigma| \leq M$ and $|\sigma| > 2M$, $|c_i| \leq 7M + 39\delta$. Further, if Δ_i^2 is δ -thin relative to F_i , then the fat part of ω_i in Δ_i^2 intersects σ in a segment of length at most M , intersects the fat part of ω_i in Δ_i^1 in a length at most M segment and intersects the corner segment of ω_i in Δ_i^1 at q_i in a segment of length at most $5M + 39\delta$. Hence the fat part of ω_i in Δ_i^2 has length at most $7M + 39\delta$ when Δ_i^2 is thin relative to F_i .

If $F = F_i$, then the fat parts of a_i and γ_{i-1} in Δ_i^1 , which are contained in $\mathcal{N}_\delta(F_i)$, have length at most $5M + 39\delta$ and M , respectively. Therefore, the length of the fat part of ω_i in Δ_i^1 is at most $5M + 39\delta + M + 3\delta$. Then $|c_i| \leq 12M + 81\delta$ by a computation similar to the one in the previous case.

When $F = F_i$, the fat part of ω_i in Δ_i^2 intersects σ in a segment of length at most M , intersects the fat part of ω_i in Δ_i^1 in a segment of length at most $6M + 42\delta$ and intersects the corner segment of ω_i in Δ_i^1 at q_i in a segment of length at most $5M + 39\delta$. Therefore, if Δ_i^2 is thin relative to F_i , then the length of the fat part of ω_i in Δ_i^2 is at most $12M + 81\delta$.

Case (Δ_i^1 is thin relative to F_{i-1}) Recall c_i is the corner segment of ω_i in Δ_i^2 at q_i . The intersection of c_i with the corner segment of ω_i in Δ_i^1 at q_i again lies in $\mathcal{N}_{2\delta}(F_i) \cap \mathcal{N}_\delta(a_i)$ and hence has length at most $5M + 39\delta$. The fat part of ω_i in Δ_i^1 lies in $\mathcal{N}_\delta(F_{i-1})$. Hence, if the length of the fat part of ω_i in Δ_i^1 exceeds M , then its intersection with c_i has length at most M so $|c_i| \leq 6M + 39\delta$. Hence for the purposes of bounding $|c_i|$ from above, assume the fat part of ω_i in Δ_i^1 has length at most M . The length of the fat part of a_i in Δ_i^1 is at most $5M + 39\delta$. If the length of the fat part of ω_i in Δ_i^1 is at most M , then by Lemma 2.12, the length of the fat part of γ_{i-1} in Δ_i^1 is at most $6M + 42\delta$. Now, if $y \in \gamma_{i-1}$, $y' \in \gamma_{i-1}$ are the endpoints of the corner segments of Δ_i^1 at q_1 , then $d(y, p_i) \leq 5M + 39\delta + 6M + 42\delta = 11M + 81\delta$. Therefore there is a tail at y' of the corner segment of ω_i in Δ_i^1 at q_1 called σ so that $|\sigma| > 2M$ and $\sigma \subseteq \mathcal{N}_{3\delta}(F_{i-1})$ because γ_{i-1} has a more than $13M + 84\delta$ -tail in $\mathcal{N}_{2\delta}(F_{i-1})$. Therefore, c_i intersects

$[y', q_1]$ in a segment of length at most M because $c_i \subseteq \mathcal{N}_{2\delta}(F_i)$. Hence $|c_i| \leq 7M + 39\delta$ because the union of the two corner segments of ω_i in Δ_i^1 and the fat part of ω_i in Δ_i^1 is ω_i .

In all cases, $|c_i| \leq 12M + 81\delta$.

If Δ_i^2 is δ -thin relative to F_i , the fat part of ω_i in Δ_i^2 has length at most $6M + 39\delta$ because the corner segment of ω_i in Δ_i^1 at q_i lies in $\mathcal{N}_\delta(a_i)$, and both σ and the fat part of Δ_i^1 lie in $\mathcal{N}_\delta(F_{i-1})$. In particular, the fat part of ω_i in Δ_i^2 may only intersect $[q_1, y']$ in σ because otherwise its intersection with σ has length more than M and lies in $\mathcal{N}_{3\delta}(F_{i-1}) \cap \mathcal{N}_\delta(F_i)$.

The only remaining thing to prove is that there is a point $x_i \in \gamma_i$ so that $d(x_i, F_{i-1}) \leq 4\delta$. If Δ_i^2 is δ -thin relative to F_{i-1} and is not δ -thin relative to any other $F \in \mathcal{B}$, then there is a point on γ_i in $\mathcal{N}_{2\delta}(F_{i-1})$. Hence assume Δ_i^2 is thin relative to some $G \in \mathcal{B}$ with $G \neq F_{i-1}$.

Let $\omega^1 \subseteq \mathcal{N}_\delta(F_{i-1})$ be the fat part of ω_i in Δ_i^1 and let ω^2 be the corner segment of ω_i in Δ_i^2 at q_1 . If there exists $r \in \omega^1 \cap \omega^2$, then $d(r, \gamma_i) < \delta$, so there exists an $x_i \in \gamma_i$ such that $\gamma_i \in \mathcal{N}_{2\delta}(F_{i-1})$.

Otherwise, ω^1 intersects c_i in a segment of length at most M because c_i lies in $\mathcal{N}_{2\delta}(F_i)$ and intersects the fat part of ω_i in Δ_i^2 in a segment of length at most M (the fat part of ω_i in Δ_i^2 lies in $\mathcal{N}_\delta(G)$). Hence $|\omega^1| \leq 2M$. Let ω^3 be the corner segment of ω_i in Δ_i^1 at q_1 . Let $z \in \omega_i$ be the point where ω^1 intersects ω^3 . By [Lemma 2.12](#), the fat part of γ_{i-1} in Δ_i^1 has length at most $2M + 5M + 39\delta + 3\delta = 7M + 42\delta$ because $\text{diam } a_i \cap \mathcal{N}_{2\delta}(F_{i-1}) \leq 5M + 39\delta$. The corner length of Δ_i^1 at p_i is at most $5M + 39\delta$ because any subsegment of a_i in $\mathcal{N}_{3\delta}(F_i)$ has length at most $5M + 39\delta$. Then at least a $13M + 84\delta - (5M + 39\delta + 7M + 42\delta) > M$ -tail of ω^3 at z , which will be called ω' , lies in $\mathcal{N}_{3\delta}(F_{i-1})$ because it δ -fellow travels a subsegment of the tail of γ_{i-1} at p_i contained in $\mathcal{N}_{2\delta}(F_{i-1})$. The union of c_i and the fat part of Δ_i^2 lie in $\mathcal{N}_{2\delta}(F_i)$, so they collectively cannot extend past ω' in the direction of q_1 because otherwise ω' contains a length more than M subsegment in $\mathcal{N}_{3\delta}(F_i) \cap \mathcal{N}_{3\delta}(F_{i-1})$. Therefore, ω^2 , the corner segment of Δ_i^2 at q_1 , must intersect ω' . Since ω' lies in $\mathcal{N}_{3\delta}(F_{i-1})$ and ω^2 is a corner segment of Δ_i^2 at q_1 , there is a point $x_i \in \gamma_i$ so that $x \in \mathcal{N}_{4\delta}(F_{i-1})$. \square

Proposition 5.9 *If $b_i \subseteq \mathcal{N}_\delta(F_i)$, then the geodesic γ_i has a $|b_i| - (24M + 165\delta)$ -tail at p_{i+1} that is contained in $\mathcal{N}_{2\delta}(F_i)$.*

Proof There are two cases:

Case 1 (Δ_i^2 is δ -thin relative to some $F \neq F_i$) The corner length of Δ_i^2 at q_i is at most $12M + 81\delta$ by [Proposition 5.8](#). The length of the fat part of b_i in Δ_i^2 is at most M because $b_i \subseteq \mathcal{N}_\delta(F)$. Therefore, the corner length of Δ_i^2 at p_{i+1} is at least $|b_i| - (13M + 81\delta)$. Thus the corner segment of γ_i at p_{i+1} has length at least $|b_i| - (13M + 81\delta)$ and lies in $\mathcal{N}_\delta(b_i) \subseteq \mathcal{N}_{2\delta}(F_i)$.

Case 2 (Δ_i^2 is δ -thin relative to F_i) The corner length of Δ_i^2 at q_i is at most $12M + 81\delta$. Let s be the length of the fat part of b_i in Δ_i^2 . Then the corner length of Δ_i^2 at p_{i+1} is at least $|b_i| - s - (12M + 81\delta)$.

By [Proposition 5.8](#), the length of the fat part of ω_i in Δ_i^2 is at most $12M + 81\delta$. By [Lemma 2.12](#), the fat part of γ_i in Δ_i^2 has length at least $s - (12M + 81\delta + 3\delta)$. The corner segment of γ_i at p_{i+1} in Δ_i^2 and the fat part of γ_i in Δ_i^2 both lie in $\mathcal{N}_{2\delta}(F_i)$ and their combined length is at least $s - (12M + 84\delta) + |b_i| - s - (12M + 81\delta) = |b_i| - (24M + 165\delta)$. \square

Lemma 5.10 *Let $\eta := [p_i, p_{i+1}]$. Then $\text{diam } \eta \cap \mathcal{N}_{5\delta}(F_{i-1}) \leq 12M + 117\delta$.*

Further, $d(q_i, \eta) \leq 10M + 79\delta$.

Proof Let Δ be the geodesic triangle with sides a_i, b_i, η . If the corner segment of η in Δ at p_i lies in $\mathcal{N}_{5\delta}(F_{i-1})$, then the corner length of Δ at p_i is at most $5M + 57\delta$ because $a_i \cap \mathcal{N}_{6\delta}(F_{i-1})$ has diameter at most $5M + 57\delta$.

Suppose Δ is δ -thin relative to F_{i-1} . The fat part of b_i in Δ then lies in F_i and therefore has length at most M . The fat part of a_i in Δ has length at most $5M + 57\delta$ because $a_i \cap \mathcal{N}_{6\delta}(F_{i-1})$ has diameter at most $5M + 57\delta$. Hence by [Lemma 2.12](#), the length of the fat part of η in Δ is at most $6M + 60\delta$. On the other hand, if η is δ -thin relative to some $F \neq F_{i-1}$, then the intersection of the fat part of η with $\mathcal{N}_{5\delta}(F_{i-1})$ has length at most M . In all cases, the fat part of η in Δ intersects $\mathcal{N}_{5\delta}(F_{i-1})$ in a segment of length at most $6M + 60\delta$.

Finally, the corner segment of η in Δ at p_{i+1} lies in $\mathcal{N}_{2\delta}(F_i)$ and can hence intersect $\mathcal{N}_{5\delta}(F_{i-1})$ in a segment of length at most M .

Since η is the union of its two corner segments and its fat part in Δ , its intersection with $\mathcal{N}_{5\delta}(F_{i-1})$ has diameter at most $12M + 117\delta$.

The corner length of Δ at q_i is at most $5M + 39\delta$, because the corner segment of a_i in Δ at q_i lies in $a_i \cap \mathcal{N}_{2\delta}(F_i)$. If Δ is δ -thin relative to F_i , then the length of the fat part of a_i in Δ is at most $5M + 39\delta$. Otherwise, if Δ is δ -thin relative to $F \neq F_i$, then the length of the fat part b_i in Δ is at most M . Since Δ is relatively δ -thin, in both cases, there exists a point on η that is at most $5M + 39\delta + 5M + 39\delta + \delta = 10M + 79\delta$ from q_i . \square

Lemma 5.11 *Let x_i be a point on γ_i so that $x_i \in \mathcal{N}_{4\delta}(F_{i-1})$ and x_i is the point closest to p_{i+1} with this property. Let $\eta' = [p_i, x_i]$ and let $\eta'' = [x_i, p_{i+1}] \subseteq \gamma_i$. Let Δ' be the triangle with sides η, η', η'' . Then at least one of the following holds:*

- (1) *The length of the fat part of η in Δ' is at most $12M + 117\delta$.*
- (2) *The length of the fat part of η' in Δ' is at most $M \leq 12M + 117\delta$.*

Proof Suppose Δ' is δ -thin relative to F_{i-1} . Then by [Lemma 5.10](#), the fat part of η has length at most $12M + 117\delta$. On the other hand if Δ' is δ -thin relative to some $F \neq F_{i-1}$, then the fat part of η' in Δ' lies in $\mathcal{N}_{4\delta}(F_{i-1})$ by convexity, so the length of the fat part of η' in Δ' is at most M . \square

Lemma 5.12 *There exists $y_i \in \gamma_i$ so that $d(p_i, y_i) \leq 24M + 235\delta$.*

Proof The corner segment of η in Δ' at p_i lies in $\mathcal{N}_{5\delta}(F_{i-1}) \cap \eta$, so by Lemma 5.10, the corner length of Δ' at p_i is at most $12M + 117\delta$. By Lemma 5.11, the length of fat part of η in Δ' or the length of the fat part of η' in Δ' is at most $12M + 117\delta$, so there is a point y_i in $\eta'' \subseteq \gamma_i$ so that $d(p_i, y_i) \leq 24M + 235\delta$ because Δ' is relatively δ -thin. \square

The next lemma follows immediately from the triangle inequality, but is convenient to have recorded:

Lemma 5.13 *Let Δ_0 be a geodesic triangle in \tilde{X} with sides abc and suppose that a and b meet at the vertex p and $d(p, c) \leq J$. Then $|c| \geq |a| + |b| - 2J$.*

Proposition 5.14 *We have*

$$\begin{aligned} |\gamma_n| &\geq |\gamma_{n-1}| + |a_n| + |b_n| - 2(24M + 235\delta) - 2(10M + 79\delta) \\ &= |\gamma_{n-1}| + |a_n| + |b_n| - 68M - 628\delta. \end{aligned}$$

Proof By Lemmas 5.12 and 5.13,

$$|\gamma_n| \geq |\gamma_{n-1}| + |\eta| - 2(24M + 235\delta).$$

Then by Lemmas 5.10 and 5.13,

$$|\eta| \geq |a_n| + |b_n| - 2(10M + 79\delta).$$

Putting the two preceding inequalities together yields the desired inequality. \square

Propositions 5.9 and 5.14 complete the inductive proof of Theorem 5.6. \square

Definition 5.15 Let \mathcal{A} be a collection of subsets of a geodesic metric space and let $K \geq 0$. Suppose that for all $A_1, A_2 \in \mathcal{A}$ with $A_1 \neq A_2$, $d(A_1, A_2) \geq K$. Then the collection \mathcal{A} is K -separated.

The paths in Theorem 5.6 are of a special type to facilitate the inductive proof. Proposition 5.17 generalizes Theorem 5.6 to apply to all geodesic paths coming from certain subspaces of \tilde{X} with some additional assumptions:

Hypotheses 5.16 Assume Hypotheses 5.5 and assume the following:

- (1) Let $\Lambda := 500M + 10000\delta$.
- (2) Let \mathcal{A} be a Λ -separated collection of convex subspaces of \tilde{X} .
- (3) Let $\mathcal{B}_0 \subseteq \mathcal{B}$.

(4) Let $T = (\bigsqcup_{A \in \mathcal{A}} A) \sqcup (\bigsqcup_{B \in \mathcal{B}_0} B)$. Define an equivalence relation \sim on T by $x \sim y$ if and only if $x = y$ or for some $A \in \mathcal{A}$ and $B \in \mathcal{B}_0$, the images of x and y in \widetilde{X} agree and lie in the images of both A and B .

Proposition 5.17 *Under Hypotheses 5.16, if T/\sim is path connected, then the natural inclusion of $T/\sim \hookrightarrow \widetilde{X}$ is a $(2, 114M + 1592\delta)$ -quasi-isometric embedding (where the metric on T/\sim is the induced path metric).*

Proof Let γ be the image in \widetilde{X} of a geodesic in T/\sim and let γ' be the \widetilde{X} -geodesic between its endpoints.

Up to reversing the direction of γ , γ can be written as a piecewise geodesic of one of the piecewise geodesic forms

- (1) $b_1a_2b_2 \dots a_nb_n$ and $|b_1|, |b_n| \geq 37M + 250\delta$,
- (2) $a_1b_1a_2b_2 \dots b_na_{n+1}$ where $|a_1|, |a_{n+1}| \neq 0$,
- (3) $a_1b_1 \dots a_nb_n$ where $|a_1| \neq 0$ and $|b_n| \geq 37M + 250\delta$,
- (4) $a_1b_1 \dots a_nb_n$ where $|a_1| \neq 0$ and $|b_n| \leq 37M + 250\delta$,
- (5) $b_1a_2b_2 \dots a_nb_n$, where both of $|b_1|, |b_n|$ are less than $37M + 250\delta$,
- (6) $b_1a_2b_2 \dots a_nb_n$, where $|b_1| < 37M + 250\delta$ and $|b_n| \geq 37M + 250\delta$,

where for each $1 \leq i \leq n$, $a_i \subseteq A_i \in \mathcal{A}$, for all $1 \leq i \leq n$, $b_i \subseteq B_i \in \mathcal{B}$, and for $2 \leq i \leq n-1$, $|b_i| \geq \Lambda$ because \mathcal{A} is a Λ -separated collection. Assume also that n is minimal and γ is subdivided in a way that maximizes the sum of the lengths of the b_i .

If $i \neq j$, then $B_i \neq B_j$ because otherwise the subsegment $b_i \dots b_j$ of γ could be replaced by a single geodesic segment in $B_i \subseteq T/\sim$ contradicting minimality of n . By the maximality of the lengths of the b_i and the $(3M + 6R + 2f(R) + 21\delta)$ -attractiveness of every $B \in \mathcal{B}$,

$$\begin{aligned} \text{diam } a_i \cap \mathcal{N}_{3\delta}(B_i), \text{diam } a_i \cap \mathcal{N}_{3\delta}(B_{i-1}) &\leq 5M + 39\delta, \\ \text{diam } a_i \cap \mathcal{N}_{6\delta}(B_{i-1}), \text{diam } a_i \cap \mathcal{N}_{6\delta}(B_i) &\leq 5M + 57\delta \end{aligned}$$

because otherwise the interiors of the a_i intersect either B_i or B_{i-1} so that b_i or b_{i-1} , respectively, could be made longer by convexity.

For the following arguments, recall the earlier convention that the endpoints of the a_i, b_i are labeled so that $a_i = [p_i, q_i]$ and $b_i = [q_i, p_{i+1}]$.

Case (1) ($\gamma = b_1a_2b_2 \dots a_nb_n$ and $|b_1|, |b_n| \geq 37M + 250\delta$) By Theorem 5.6,

$$|\gamma'| \geq |b_1| + \left(\sum_{i=2}^n |a_i| + |b_i| \right) - (n-1) \cdot (68M + 628\delta).$$

Since $|b_i| \geq 136M + 1256\delta$, for $2 \leq i \leq n-1$ then

$$\begin{aligned}
|\gamma'| &\geq |b_1| + \left(\sum_{i=2}^n |a_i| + |b_i| \right) - (n-1)(68M + 628\delta) \\
&\geq \frac{1}{2} \left(\sum_{i=2}^n |a_i| \right) + |b_1| + \left(\sum_{i=2}^{n-1} (|b_i| - (68M + 628\delta)) \right) + |b_n| - (68M + 628\delta) \\
&\geq \frac{1}{2} \left(\sum_{i=2}^n |a_i| \right) + 2(37M + 250\delta) + \left(\sum_{i=2}^{n-1} (|b_i| - (68M + 628\delta)) \right) + (68M + 628\delta) \\
&\geq \frac{1}{2} \left(\sum_{i=2}^n |a_i| \right) + \frac{1}{2} \left(\sum_{i=1}^n |b_i| \right) - 128\delta \\
&\geq \frac{1}{2} |\gamma| - 128\delta,
\end{aligned}$$

and hence γ is a $(2, 128\delta)$ -quasigeodesic in \widetilde{X} in this case.

Case (2) ($\gamma = a_1 b_1 a_2 b_2 \dots b_n a_{n+1}$ where $|a_1|, |a_{n+1}| \neq 0$) Since \mathcal{A} is a Λ -separated collection, the path $\gamma_0 = b_1 a_2 b_2 \dots b_n$ satisfies the hypotheses of [Theorem 5.6](#). Let γ'_0 be the geodesic connecting the endpoints of γ_0 . Then $|\gamma'_0| \geq |\gamma_0| - n(68M + 628\delta)$ by [Theorem 5.6](#). By [Theorem 5.6](#), γ'_0 has a length at least $100M + 2000\delta$ -tail in $\mathcal{N}_{2\delta}(B_n)$ at p_{n+1} and a $100M + 2000\delta$ -tail at q_1 in $\mathcal{N}_{2\delta}(B_1)$.

Let γ_1 be the geodesic $[p_1, p_{n+1}]$. Let Δ_1 be the geodesic triangle with sides a_1, γ'_0 and γ_1 . The corner length of Δ_1 at q_1 is at most $5M + 578$ because $\text{diam } a_1 \cap \mathcal{N}_{5\delta}(B_1) \leq 5M + 578$ and γ'_0 has a long tail at q_1 in $\mathcal{N}_{2\delta}(B_1)$. Either Δ_1 is δ -thin relative to $B \neq B_1$ so that the length of the fat part of γ'_0 in Δ_1 has length at most M because a long tail of γ'_0 at q_1 is contained in $\mathcal{N}_{2\delta}(B_1)$, or Δ_1 is δ -thin relative to B_1 in which case the length of the fat part of a_1 in Δ_1 has length at most $5M + 578$. Hence there is a point z_1 on γ_1 so that $d(z_1, q_1) \leq 10M + 116\delta$ because Δ_1 is δ -relatively thin. Therefore by [Lemma 5.13](#), $|\gamma_1| \geq |\gamma'_0| + |a_1| - (20M + 232\delta)$.

Next we want to show that γ_1 has a long tail at p_{n+1} in $\mathcal{N}_{2\delta}(B_n)$. If Δ_1 is δ -thin relative to B_1 , the corner length at q_1 is at most $5M + 578$, and the fat part of γ'_0 in Δ_1 can have an at most length- M intersection with the at least $100M + 2000\delta$ -tail of γ'_0 at p_{n+1} that lies in $\mathcal{N}_{2\delta}(B_n)$. On the other hand, if Δ_1 is δ -thin relative to $B \neq B_1$, then the corner length of Δ_1 at q_1 is still at most $5M + 578$ and the long tail of γ'_0 at q_1 that lies in $\mathcal{N}_{2\delta}(B_1)$ forces the length of the fat part of γ'_0 in Δ_1 to be at most M . In both cases, all but $6M + 578$ of the $100M + 2000\delta$ -tail of γ'_0 at p_{n+1} that lies in $\mathcal{N}_{2\delta}(B_n)$ must lie in the corner segment of γ'_0 at p_{n+1} . Hence an at least $94M + 1000\delta$ -tail of γ_1 at p_{n+1} must lie in $\mathcal{N}_{3\delta}(B_n)$.

Let Δ_2 be the triangle with sides γ_1, a_n, γ' . By imitating the argument for Δ_1 , there is a point $z_2 \in \gamma'$ so that $d(z_2, p_{n+1}) \leq 10M + 116\delta$. Hence by [Lemma 5.13](#),

$$|\gamma'| \geq |\gamma_1| + |a_n| - (20M + 232\delta)$$

so that

$$|\gamma'| \geq |a_0| + |\gamma'_0| + |a_n| - (40M + 464\delta)$$

and, by the computation from the previous case,

$$|\gamma'| \geq |a_0| + \frac{1}{2}|\gamma_0| - 128\delta + |a_n| - (40M + 464\delta) \geq \frac{1}{2}|\gamma| - 128\delta - (40M + 464\delta)$$

so that γ is a $(2, 40M + 592\delta)$ -quasigeodesic in \widetilde{X} .

Case (3) ($\gamma = a_1b_1 \dots a_nb_n$, $|a_1| \neq 0$ and $|b_n| \geq 37M + 250\delta$) Since \mathcal{A} is a Λ -separated collection, the path $\gamma_0 = b_1a_2b_2 \dots b_n$ satisfies the hypotheses of [Theorem 5.6](#). Let γ'_0 be the geodesic connecting the endpoints of γ_0 . Then $|\gamma'_0| \geq |\gamma_0| - (n-1)(68M + 628\delta)$ by [Theorem 5.6](#). By an argument similar to the one in the previous case,

$$|\gamma'| \geq |\gamma'_0| + |a_1| - (20M + 232\delta)$$

and by arguments similar to the ones above,

$$|\gamma'| \geq \frac{1}{2}|\gamma| - (20M + 360\delta)$$

so in this case, γ is a $(2, 20M + 360\delta)$ -quasigeodesic in \widetilde{X} .

Case (4) ($\gamma = a_1b_1 \dots a_nb_n$ where $|a_1| \neq 0$, $|b_n| \leq 37M + 250\delta$) By a previous case, the path $a_1b_1 \dots a_n$ is a $(2, 40M + 592\delta)$ -quasigeodesic in \widetilde{X} . Hence γ is a $(2, 77M + 1000\delta)$ -quasigeodesic in \widetilde{X} .

Case (5) ($\gamma = b_1 \dots a_nb_n$ where $|b_1|, |b_n| < 37M + 250\delta$) Applying the immediately preceding case to $a_2b_1 \dots a_nb_n$ and the fact that $|b_1| \leq 37M + 250\delta$ implies that γ is a $(2, 114M + 1250\delta)$ -quasigeodesic in \widetilde{X} .

Case (6) ($\gamma = b_1a_2b_2 \dots a_nb_n$, where $|b_1| < 37M + 250\delta$ and $|b_n| \geq 37M + 250\delta$) By case (3), $a_2b_2 \dots a_nb_n$ is a $(2, 20M + 360\delta)$ -quasigeodesic. Thus γ is a $(2, 57M + 510\delta)$ -quasigeodesic because $|b_1| < 37M + 250\delta$.

Now, assume T/\sim is path connected. Let T_0 be the image of T/\sim in \widetilde{X} . Let $x, y \in T/\sim$. Let ρ_T, ρ_{T_0}, ρ be the geodesics connecting x and y in T/\sim , T_0 and \widetilde{X} , respectively. Since T/\sim is path connected, ρ_T maps to a path in T_0 , $|\rho_{T_0}| \leq |\rho_T|$. From the preceding, $\frac{1}{2}|\rho_T| - (114M + 1592\delta) \leq |\rho|$. Combining these inequalities,

$$\frac{1}{2}|\rho_{T_0}| - (114M + 1592\delta) \leq |\rho| \leq |\rho_{T_0}|,$$

making ρ_{T_0} a $(2, 114M + 1592\delta)$ -quasigeodesic. □

Proposition 5.18 *Under [Hypotheses 5.16](#), any geodesic in T/\sim is not mapped to a loop in \widetilde{X} .*

Proof Let γ be a T/\sim -geodesic that maps to a loop in \widetilde{X} . If $\gamma \subseteq A \in \mathcal{A}$ or $\gamma \subseteq B \in \mathcal{B}$, then γ cannot map to a loop in A or a loop in B . Then γ can be written as a piecewise geodesic of the form

$$b_1a_2b_2 \dots a_nb_n,$$

where $b_i \subseteq B_i \in \mathcal{B}$ and $a_i \subseteq A_i \subseteq A \in \mathcal{A}$, $|b_1|, |b_n| \geq \frac{1}{2}\Lambda$ and $|b_i| \geq \Lambda$ for all $1 \leq i \leq n$. Since $\Lambda > 4(114M + 1592\delta)$, $|\gamma| > 2(114M + 1592\delta)$. Since γ maps to a $(2, 114M + 1592\delta)$ -quasigeodesic in \widetilde{X} , the distance between the endpoints of γ must be positive, so γ cannot map to a loop. □

6 The geometry of special cube complexes

6.1 Nonpositively curved cube complexes

A *cube complex* is a union of Euclidean cubes $[0, 1]^n$ of possibly varying dimensions glued isometrically along faces. A *nonpositively curved (NPC)* cube complex is a cube complex such that the link of every vertex is a flag simplicial complex. See [29] Section 2.1 for details.

In each cube $[0, 1]^n$, fixing one coordinate at $\frac{1}{2}$ makes a *codimension-1 midcube*. A *hyperplane* H is a connected union of midcubes glued isometrically along faces so that the intersection of H with any cube is either a codimension-1 midcube or empty. See Figure 7 for an example of an NPC cube complex and the link of a vertex.

6.2 Special cube complexes and separability

A *special cube complex* is a type of NPC cube complex developed by Wise and others whose hyperplanes are embedded, are 2-sided and avoid two other pathologies, see [29, Definition 4.2]. The important properties of special cube complexes that will be used in the following are the embeddedness and 2-sidedness of the hyperplanes and the fact that hyperplane subgroups of special cube complexes are separable (see Proposition 6.3).

A group is *special* if it is the fundamental group of a special cube complex. By work of Haglund and Wise [12], compact special groups embed into right angled Artin groups and are hence residually finite. Recall that if G is a group and H is a subgroup, H is *separable* in G if it is the intersection of the finite index subgroups containing H .

Passing to finite index subgroups is compatible with separability:

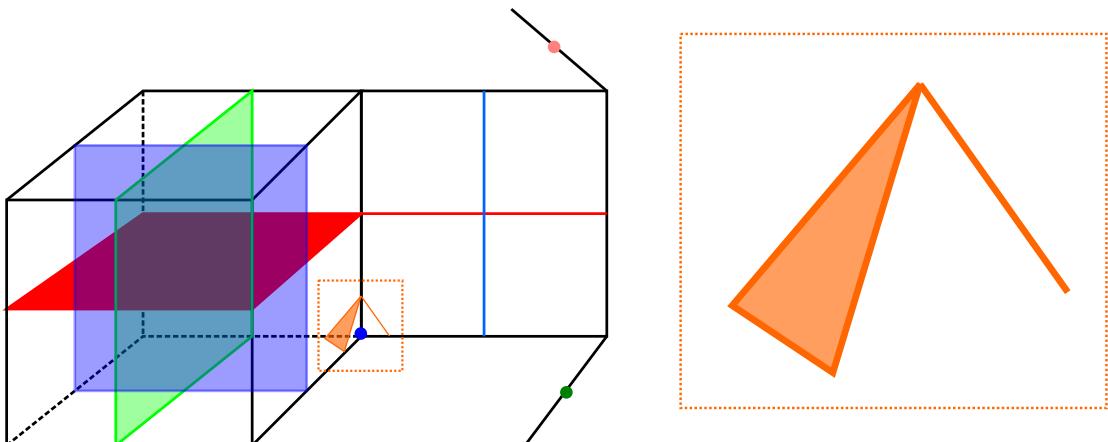


Figure 7: An example of an NPC cube complex (including a 3-cube) with its hyperplanes as well as the link of the blue vertex shown in orange and enlarged on the right.

Lemma 6.1 Let G be a group, let G_0 be a finite index subgroup of G and let $H \leq G$. Then H is separable in G if and only if $H \cap G_0$ is separable in G_0 .

Theorem 6.2 (Scott's criterion, [27]) Let X be a connected complex, $G = \pi_1 X$ and $H \leq G$. Let $p: X^H \rightarrow X$ be the cover corresponding to H . The subgroup H is separable in G if and only if for every compact subcomplex $Y \subseteq X^H$, there exists an intermediate finite cover $X^H \rightarrow \widehat{X} \rightarrow X$ such that $Y \hookrightarrow \widehat{X}$.

Every finitely generated subgroup of a free group is separable. Likewise, special groups have an ample supply of separable subgroups. For example, the hyperplane subgroups of a special cube complex are separable:

Proposition 6.3 Let X be a virtually special compact and nonpositively curved cube complex. Let W be a hyperplane of X . Then $\pi_1(W)$ is separable in $\pi_1(X)$.

Proposition 6.3 follows from Haglund and Wise's canonical completion and retraction (see [29, Construction 4.12] or [12, Corollary 6.7]).

6.3 Elevations and R -embeddings

This subsection builds up the technical tools and terminology used to obtain finite covers whose hyperplanes elevate to sufficiently separated images in the universal cover.

The first step is to formalize the notion of an elevation:

Definition 6.4 Let W be a connected topological space and let $\phi: W \rightarrow Z$ be a continuous map. Let $p: \widehat{Z} \rightarrow Z$ be a covering map. There is a minimal covering $\widehat{p}: \widehat{W} \rightarrow W$ such that $\phi \circ \widehat{p}$ lifts to a map $\widehat{\phi}: \widehat{W} \rightarrow \widehat{Z}$. The map $\widehat{\phi}$ is an *elevation* of W to \widehat{Z} .

Often, the map $\widehat{W} \rightarrow \widehat{Z}$ will be implied and an elevation of ϕ will instead refer to the image of some elevation.

Elevations may not be unique: two elevations of the same map are *distinct* if they have different images.

When $\phi: W \rightarrow Z$ is an inclusion map, then the distinct elevations of ϕ are precisely the components of $p^{-1}(W)$.

Definition 6.5 Let X be a metric space, $R \geq 0$ and let $Y \subseteq X$ be connected. Let $p: X^Y \rightarrow X$ be the covering space associated to $\pi_1(Y)$ so that the inclusion $Y \hookrightarrow X$ lifts canonically to X^Y . The subspace Y is *R*-embedded in X if p is injective on $\mathcal{N}_R(Y) \subseteq X^Y$.

The following lemma is straightforward but will be important:

Lemma 6.6 *Let $p: \widehat{X} \rightarrow X$ be a finite regular cover. If A is R -embedded in X , then each component of $p^{-1}(A)$ is R -embedded in \widehat{X} .*

The main application of hyperplane separability is to show that every compact virtually special cube complex has a finite cover where every hyperplane is R -embedded.

Proposition 6.7 *Let X be a compact nonpositively curved cube complex, and let V_1, V_2, \dots, V_n be hyperplanes of X so that $\pi_1 V_i$ is separable in $\pi_1 X$. Given $R \geq 0$, then there exists a finite regular cover C such that $V_1, \dots, V_n \subseteq C$ are R -embedded in C .*

If $\widetilde{W}_1, \widetilde{W}_2$ are distinct elevations of a hyperplane V of C to the universal cover \widetilde{X} , then $d_{\widetilde{X}}(\widetilde{W}_1, \widetilde{W}_2) \geq 2R$.

Proof For each hyperplane W of X , $\pi_1(W)$ is separable by [Proposition 6.3](#). By [Theorem 6.2](#), there exists a finite covering $\tilde{p}: \widehat{X} \rightarrow X$ such that there is an embedding $i_W: \mathcal{N}_R(W) \hookrightarrow \widehat{X}$.

Let $\tilde{p}: \widetilde{X} \rightarrow X$, $p^W: \widetilde{X}^W \rightarrow X$ and $p: \widetilde{X} \rightarrow X^W$ be canonical covering maps so that $\tilde{p} = p^W \circ p$. Let $\widetilde{W} \rightarrow \widetilde{W}_1, \widetilde{W} \rightarrow \widetilde{W}_2$ be distinct elevations of W to \widetilde{X} , and let $\widetilde{w}_1 \in \widetilde{W}_1$ and $\widetilde{w}_2 \in \widetilde{W}_2$.

Suppose toward a contradiction there exists a path $\gamma \subseteq \widetilde{X}$ with $|\gamma| \leq 2R$ between \widetilde{W}_1 and \widetilde{W}_2 . Let $\tilde{x} \in \gamma$ such that $d(\tilde{x}, \widetilde{W}_1) < R$ and $d(\tilde{x}, \widetilde{W}_2) < R$.

There exists $g \in \pi_1(X)$ such that $g \cdot \widetilde{w}_1 \in \widetilde{W}_2$, and $g \notin \pi_1(W)$ because otherwise $g \cdot \widetilde{w}_1 \in W_1 \cap W_2$ in which case $\widetilde{w}_1 \in \widetilde{W}_2$, but $\widetilde{w}_1 \notin \widetilde{W}_2$. Now $d(g \cdot \tilde{x}, \widetilde{W}_2) \leq R$. Since $g \notin \pi_1(W)$, $p(\tilde{x}) \neq p(g \cdot \tilde{x})$. By definition of an elevation, $p(\widetilde{W}_2)$ is contained in the image of an inclusion of W into X^W . Also $p(\tilde{x}), p(g \cdot \tilde{x})$ lie in an R -neighborhood of the image of W in X^W . However,

$$p^W \circ p(\tilde{x}) = \tilde{p}(\tilde{x}) = \tilde{p}(g \cdot \tilde{x}) = p^W \circ p(g \cdot \tilde{x})$$

contradicting the fact that $i_W: \mathcal{N}_R(W) \hookrightarrow \widehat{X}$ is an embedding.

Suppose X has n hyperplanes. By passing to a finite cover if necessary, assume X^W is regular. The number of hyperplane orbits under deck transformations of X^W is at most n , and every hyperplane in the orbit of an elevation of W to X^W is R -embedded. Therefore, performing this procedure at most n times, will produce a finite cover $C \rightarrow X$ where every hyperplane is R -embedded. \square

[Proposition 6.7](#) will be used later in [Section 7](#) to make the elevations of a hyperplane a $2R$ -separated family in the sense of [Definition 5.15](#).

6.4 Convex cores

Specialness also plays a role in building a geometric representation of the peripheral structure. In the hyperbolic case, Wise and others [11; 25] (see also [12, Proposition 7.2]) proved that quasiconvex subgroups of virtually special groups have “convex cores” in the CAT(0) universal cover. This fact and

canonical completion and retraction can be used to show that hyperbolic special groups are *QCERF* or *quasiconvex extended residually finite* [12, Theorem 1.3] meaning that if G is hyperbolic and special, then every quasiconvex subgroup of G is separable.

A similar result exists in the relatively hyperbolic case. One might imagine that replacing the quasiconvex subgroup H by a relatively quasiconvex subgroup might yield a generalization; however, some care is required. In particular, a subgroup may stabilize a quasiconvex subset of a CAT(0) cube complex but may fail to stabilize a convex proper subcomplex, see [Example 6.9](#).

Definition 6.8 If \widetilde{X} is a CAT(0) cube complex and $\widetilde{Y} \subseteq \widetilde{X}$, the *cubical convex hull* of \widetilde{Y} is the smallest convex subcomplex of \widetilde{X} containing \widetilde{Y} .

Example 6.9 Take the standard action of $\mathbb{Z}^2 = \langle (1, 0), (0, 1) \rangle$ on \mathbb{R}^2 by translation. The diagonal $D := \{(r, r) : r \in \mathbb{R}\}$ is a subspace stabilized by $L := \langle (1, 1) \rangle \leq \mathbb{Z}^2$. The subgroup L is $(2, 0)$ -quasi-isometrically embedded in the given presentation of \mathbb{Z}^2 , but the cubical convex hull of D is all of \mathbb{R}^2 .

Full relatively quasiconvex subgroups eliminate these pathologies:

Definition 6.10 [26, Section 4] Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let H be a relatively quasiconvex subgroup of G . The subgroup H is a *full relatively quasiconvex subgroup* of G if for each $g \in G$ and $P \in \mathcal{P}$, either $gPg^{-1} \cap H$ is finite or $gPg^{-1} \cap H$ is finite index in gPg^{-1} .

Theorem 6.11 [26, Theorem 1.1] Let X be a compact nonpositively curved cube complex with $G = \pi_1(X)$ hyperbolic relative to subgroups P_1, \dots, P_n . Let \widetilde{X} be the CAT(0) universal cover of X . If H is a full relatively quasiconvex subgroup of G , then for any compact $U \subseteq \widetilde{X}$, then there exists an H -cocompact convex subcomplex $\widetilde{Y} \subseteq \widetilde{X}$ with $U \subseteq \widetilde{Y}$.

By [Proposition 2.15](#), if (G, \mathcal{P}) is a relatively hyperbolic group pair, the elements of \mathcal{P} and their conjugates are relatively quasiconvex. By [Proposition 2.2](#), the elements of \mathcal{P} and their conjugates are full relatively quasiconvex. Therefore:

Lemma 6.12 Let X be a nonpositively curved cube complex with CAT(0) universal cover \widetilde{X} and $G := \pi_1(X)$. Let (G, \mathcal{P}) be a relatively hyperbolic pair. Let $x \in \widetilde{X}$ be a base point in the universal cover. For each $P \in \mathcal{P}$, there exists a $Z'(P, x)$ such that $Z'(P, x)$ is a P -cocompact convex subcomplex of \widetilde{X} containing x .

It follows immediately that there exists a $Q \geq 0$ such that the cubical convex hull of Px is contained in $\mathcal{N}_Q(Px)$.

7 A malnormal quasiconvex fully \mathcal{P} -elliptic hierarchy

For the following section, let X be a compact nonpositively curved cube complex with $\text{CAT}(0)$ universal cover \widetilde{X} and $G = \pi_1(X)$ hyperbolic relative to subgroups $\mathcal{P} := \{P_1, \dots, P_n\}$. Fix a base point $x \in \widetilde{X}$. By [Lemma 6.12](#), there is a convex subcomplex $\tilde{Z}'_{P,x}$ that is a P -cocompact convex subcomplex of \widetilde{X} containing P_x .

Let $\mathcal{B}_0 := \{g\tilde{Z}'_{P,x} : g \in G, P \in \mathcal{P}\}$. By [Proposition 4.6](#), there exists $f_0: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ and $\delta \geq 2$ so that $(\widetilde{X}, \mathcal{B}_0)$ is a $(\delta-2, f_0)$ -relatively hyperbolic pair.

Let $\tilde{Z}_{P,x} = \mathcal{N}_{2\delta}(\tilde{Z}'_{P,x})$. [Theorem 6.11](#) implies that the collection $\mathcal{B}' = \{g\tilde{Z}_{P,x} : g \in G, P \in \mathcal{P}\}$ is a thickening of \mathcal{B}_0 . [Proposition 4.4](#) implies there exists $f': \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ so that $(\widetilde{X}, \mathcal{B}')$ is a $(\delta-2, f')$ - $\text{CAT}(0)$ relatively hyperbolic pair. We also define $f: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ where $f(r) = f'(r+2)$. The function f will be useful later when we carry out the augmentation construction defined in [Section 7.1](#).

To maintain consistency with previous notation, we will use the notation $M = f(6\delta)$ throughout [Section 7](#). [Proposition 5.3](#) implies:

Proposition 7.1 *For every $g \in G$, $g\tilde{Z}_{P,x}$ is $(3M+6R+21\delta)$ -attractive in the sense of [Definition 5.1](#).*

7.1 Superconvexity, peripheral complexes and augmented complexes

Here we will prove that bi-infinite geodesics contained in a bounded neighborhood of $\tilde{Z}_{P,x}$ actually lie in $\tilde{Z}_{P,x}$.

Definition 7.2 Let X be a nonpositively curved cube complex and let $\phi: Z \rightarrow X$ be a local isometry. The map ϕ is *superconvex* if for any elevation $\tilde{\phi}: \tilde{Z} \hookrightarrow \widetilde{X}$ of Z to the universal cover \widetilde{X} of X and any bi-infinite geodesic γ in \widetilde{X} such γ lies in a bounded neighborhood of (the $\tilde{\phi}$ image of) \tilde{Z} in \widetilde{X} , then γ is contained (in the $\tilde{\phi}$ image of) \tilde{Z} .

If the immersion $\phi: Z \rightarrow X$ is superconvex, then Z is said to be superconvex in X (with respect to ϕ).

Since $\tilde{Z}_{P,x}$ is a P -cocompact convex subcomplex of \widetilde{X} , the quotient $\bar{Z}_{P,x} := P \setminus \tilde{Z}_{P,x}$ is a cube complex and there is a natural local isometry $\phi_{P,x}: \bar{Z}_{P,x} \rightarrow X$ that carries $\bar{Z}_{P,x}$ to the image of $G \setminus \tilde{Z}_{P,x}$ in X .

Proposition 7.3 $\phi_{P,x}$ is superconvex.

Proof Suppose γ is a bi-infinite geodesic contained in $\mathcal{N}_R(\tilde{Z}_{P,x})$ and $p \in \gamma$. There exist $s_1, s_2 \in \gamma$ so that $p \in [s_1, s_2]$ and $d(s_i, p) > 3M + 6R + 21\delta$. Hence by [Proposition 7.1](#) there exist points t_1, t_2 so that $t_1 \in [s_1, p]$ and $t_2 \in [p, s_2]$ so that $t_1, t_2 \in \tilde{Z}_{P,x}$. Therefore by convexity $p \in \tilde{Z}_{P,x}$. Hence $\gamma \subseteq \tilde{Z}_{P,x}$. \square

The complexes $\bar{Z}_{P,x}$ are called *peripheral complexes*. There is a convenient way to upgrade the immersion to an embedding:

Definition 7.4 Let X be a nonpositively curved cube complex with $\text{CAT}(0)$ universal cover \tilde{X} and $G := \pi_1(X)$. Let (G, \mathcal{P}) be a relatively hyperbolic group pair. Let $\mathcal{Z} := \bigsqcup_{P \in \mathcal{P}} \bar{Z}_{P,x}$, and let $\Phi: \mathcal{Z} \rightarrow X$ be the map so that $\Phi|_{\bar{Z}_{P,x}} = \phi_{P,x}$. The *augmented cube complex for the pair* (X, Φ) is the complex

$$C(X, \Phi) := X \cup \left(\bigsqcup_{P \in \mathcal{P}} \bar{Z}_{P,x} \times [0, 1] \right) / (\bar{Z}_{P,x} \times \{1\}) \sim \phi_{P,x}(\bar{Z}_{P,x}),$$

consisting of the mapping cylinders of the $\phi_{P,x}$ identified along X .

The hyperplanes $\bar{Z}_{P,x} \times \frac{1}{2}$ are called *peripheral hyperplanes* while the remaining hyperplanes of $C(X, \Phi)$ are *nonperipheral*. Note that the nonperipheral hyperplanes of $C(X, \Phi)$ are in one-to-one correspondence with the hyperplanes of X . Since $\pi_1 X \cong \pi_1(C(X, \Phi))$, a (virtual) hierarchy for $\pi_1(C(X, \Phi))$ determines a (virtual) hierarchy of $\pi_1 X$.

Proposition 7.5 Let $C(X, \Phi)$ be the augmented cube complex for the pair (X, \mathcal{Z}) as in [Definition 7.4](#). If X is virtually special and W is a nonperipheral hyperplane of $C(X, \Phi)$, then $\pi_1 W$ is separable in $\pi_1 C(X, \Phi) \cong \pi_1 X$.

Sketch The natural homotopy equivalence between $C(X, \Phi)$ and X that induces $\pi_1 C(X, \Phi) \cong \pi_1 X$ brings nonperipheral hyperplanes of $C(X, \Phi)$ to hyperplanes of X . Therefore, W is homotopy equivalent to a hyperplane V of X and $\pi_1 V \cong \pi_1 W$ is separable in $\pi_1 X$ (recall [Proposition 6.3](#)). \square

Technically, the definition of $C(X, \Phi)$ depends on the base point, but since the following results are given up to conjugacy, there is no need to keep track of base points.

Proposition 7.6 Let $C(X, \Phi)$ be the augmented cube complex for (X, \mathcal{Z}) described in [Definition 7.4](#). Let \tilde{C} be the universal cover of $C(X, \Phi)$. Let \mathcal{B} be the collection of (images of) elevations of (images of) $\bar{Z}_{P,x} \times [0, 1]$ in $C(X, \Phi)$ to \tilde{C} .

- (1) Each $B \in \mathcal{B}$ is closed and convex.
- (2) (\tilde{C}, \mathcal{B}) is a (δ, f) - $\text{CAT}(0)$ relatively hyperbolic pair.
- (3) Every $B \in \mathcal{B}$ is $(3M + 6R + 2f(R) + 21\delta)$ -attractive (recall [Definition 5.1](#)).

Proof The universal cover \tilde{X} of X embeds as a closed convex subset of \tilde{C} so that each $B \in \mathcal{B}$ intersects \tilde{X} in some $\tilde{Z}_{P,x}$. Since B intersects \tilde{X} in a closed convex subspace, B is closed and convex in \tilde{C} .

Every geodesic triangle in \tilde{C} is Hausdorff distance 1 from a geodesic triangle in \tilde{X} . Since triangles in \tilde{X} are $(\delta-2)$ -thin relative to translates of $\tilde{Z}_{P,x}$, triangles in \tilde{C} are δ thin relative to \mathcal{B} . For every B_1, B_2 in \mathcal{B} with $B_1 \neq B_2$, $\mathcal{N}_t(B_1) \cap \mathcal{N}_t(B_2)$ is distance at most 1 from the intersection of $g_1 \mathcal{N}_t(\tilde{Z}_{P_1,x})$ and $g_2 \mathcal{N}_t(\tilde{Z}_{P_2,x})$ in \tilde{X} for some $g_1, g_2 \in G$ and $P_1, P_2 \in \mathcal{P}$, so the fact that \tilde{X} is a $(\delta-2, f')$ - $\text{CAT}(0)$ relatively hyperbolic pair implies that (\tilde{C}, \mathcal{B}) is a (δ, f) - $\text{CAT}(0)$ relatively hyperbolic pair.

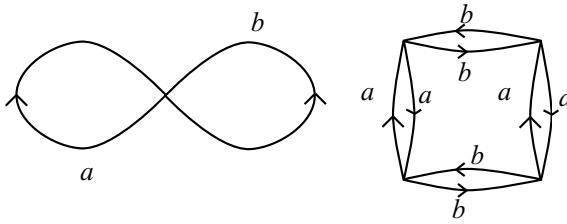


Figure 8: The figure-8 loop on the left whose two hyperplanes are the two edge midpoints and the double dot cover of the figure-8 loop on the right.

Let γ be a geodesic in \widetilde{C} with endpoints in $\mathcal{N}_R(B)$ for some $B \in \mathcal{B}$. Since \widetilde{X} is CAT(0) and B is convex, $\gamma \subseteq \mathcal{N}_R(B)$. Then γ is either contained in B' for some $B' \in \mathcal{B}$ in which case $|\gamma| \leq f(R)$ or γ has a subpath σ whose endpoints in \widetilde{X} are at most $f(R)$ from the endpoints of γ . Therefore $|\sigma| \geq |\gamma| - 2f(R)$. There is some $g \in G$ and $P \in \mathcal{P}$ so that $g\widetilde{Z}_{P,x} = B \cap \widetilde{X}$. If the length of σ is at least $3M + 6R + 21\delta$, then $\sigma \cap g\widetilde{Z}_{P,x} \neq \emptyset$ by [Proposition 7.1](#). Therefore, if the length of γ is at least $3M + 6R + 2f(R) + 21\delta$, $\emptyset \neq \gamma \cap g\widetilde{Z}_{P,x} \subseteq \gamma \cap B$. \square

7.2 The double dot hierarchy

The construction of a hierarchy will use a finite cover called the *double dot cover* whose construction is originally due to Wise [\[30, Construction 9.1\]](#). This treatment of the double dot cover is similar to the one in [\[3, Section 5\]](#).

Definition 7.7 [\[30, Construction 9.1\]](#) Let X be a cube complex, let $W \subseteq X$ be a hyperplane of X . Let γ be a based loop and let $[\gamma] \in \pi_1 X$. Then $[\gamma]$ has a well-defined (mod 2) intersection number with W . Let \mathcal{W} be the set of embedded, 2-sided, nonseparating hyperplanes of X . For each $W \in \mathcal{W}$ let $i_W : \pi_1 X \rightarrow \mathbb{Z}/2\mathbb{Z}$ be the algebraic intersection map and define

$$\Psi : \pi_1 X \rightarrow \bigoplus_{W \in \mathcal{W}} \mathbb{Z}/2\mathbb{Z}, \quad \Psi = \bigoplus_{W \in \mathcal{W}} i_W.$$

The *double dot cover* of X is the cover corresponding to the subgroup $\ker \Psi \leq \pi_1 X$.

The double dot cover of a cube complex is usually a high-degree cover. Therefore, constructing examples can be quite difficult. Fortunately, the double dot cover of a rose with 2 petals is easy to construct:

Example 7.8 See [Figure 8](#) for the double dot cover of the figure-8 loop.

An important feature of the double dot cover is that the cover is taken over nonseparating hyperplanes. This serves two purposes: first, making sure that double dot cover is not trivial and second, making sure that the double dot hierarchy constructed later has nontrivial splittings. There is a way to obtain a complex where every hyperplane is nonseparating:

Theorem 7.9 [6, Proposition 2.12] *Let X be a compact special NPC cube complex. Then X is homotopy equivalent to a compact special NPC cube complex whose hyperplanes are all nonseparating.*

Let X be a special cube complex with finitely many hyperplanes $\mathcal{W} := \{W_1, \dots, W_n\}$ where every hyperplane is nonseparating and let $\ddot{p}_X: \ddot{X} \rightarrow X$ be the double dot cover of X . The hyperplanes of \ddot{X} are elevations of hyperplanes of X , and they divide \ddot{X} in a natural way. Let $x \in \ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ be a base vertex.

Each component of $\ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ contains a lift of $\ddot{p}_X(x)$ because the hyperplanes of X are nonseparating. There is only one lift of $\ddot{p}_X(x)$ which lies in each component of $\ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ because otherwise there is path v between two points of $\ddot{p}_X^{-1}(x)$ that does not cross $\ddot{p}_X^{-1}(\mathcal{W})$. The path v must project to a loop that represents a nonidentity element of $\pi_1(X) \setminus \ker \Psi$ but does not cross any $W \in \mathcal{W}$ which is impossible.

Since $\ker \Psi$ is normal, $\pi_1 X / \ker \Psi$ acts by deck transformations on \ddot{X} . This action induces a free and transitive action on $\ddot{p}_X^{-1}(x)$. Since each component of $\ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ contains exactly one element of $\ddot{p}_X^{-1}(x)$, we can label each of the components of $\ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ by an element of $\pi_1 X / \ker \Psi \cong \bigoplus_{W \in \mathcal{W}} \mathbb{Z}/2\mathbb{Z}$.

With data specified below in [Hypotheses 7.10](#), we will use the labels for components of $\ddot{X} \setminus \bigcup \ddot{p}_X^{-1}(\mathcal{W})$ to construct a *double dot hierarchy* of spaces for the double dot cover \ddot{C} of C . When the data in [Hypotheses 7.10](#) satisfy certain criteria discussed in [Section 7.3](#), the double dot hierarchy gives rise to a quasiconvex and fully \mathcal{P} -elliptic hierarchy of groups for $\pi_1(\ddot{C})$ which is isomorphic to a finite index subgroup of $\pi_1 X$. Passing to a particular finite cover will produce an induced hierarchy that is also malnormal. The next several paragraphs outline the construction of the double dot hierarchy as it is presented in [\[3, Section 5\]](#).

We now establish some baseline hypotheses for the remainder of [Section 7.2](#).

Hypotheses 7.10 Let X be a compact special NPC cube complex so that:

- The hyperplanes of X are nonseparating.
- There exist a disjoint union $\mathcal{Z} := \bigsqcup_{i=1}^n \bar{Z}_i$ of NPC cube complexes together with a local isometric immersion $\Phi: \mathcal{Z} \rightarrow X$.
- Let C be the augmented cube complex $C(X, \Phi)$ and let $p: \ddot{C} \rightarrow C$ be its double dot cover.
- Let \mathcal{W} be the nonperipheral hyperplanes of C and choose an ordering of the elements of \mathcal{W} so that they are W_1, W_2, \dots, W_n .
- Additionally, C is a mapping cylinder for the map Φ , so we can view \mathcal{Z} as an embedded subspace of C . In the language of [Definition 7.4](#), \mathcal{Z} is the image of $\bigsqcup_{i=1}^n \bar{Z}_i \times \{0\}$ in C .
- Let $\ddot{\mathcal{Z}} = p^{-1}(\mathcal{Z})$ be the preimage of $\mathcal{Z} \subseteq C$ under the double dot covering map.
- Fix a base vertex.

Each component of $\ddot{C} \setminus p^{-1}(\bigcup \mathcal{W})$ is labeled (relative to the base vertex) by a vector $\hat{t} \in \bigoplus_{i=1}^n \mathbb{Z}/2\mathbb{Z}$. For each $1 \leq i \leq n$, let \mathcal{W}_i be the first i hyperplanes and let $M_i = \bigoplus_1^i \mathbb{Z}/2\mathbb{Z}$. Then the complementary components of $\bigcup \mathcal{W}_i$ are labeled by elements of M_i . For each $\hat{t} \in M_i$, let $K_{\hat{t}}$ be the closure of the part labeled by \hat{t} .

For each $\hat{t} \in M_i$, a \hat{t} -vertex space at level $n - i + 1$ is a component of $K_{\hat{t}} \cup \ddot{\mathcal{Z}}$ that intersects $K_{\hat{t}}$. In the construction of the double dot hierarchy, the \hat{t} -vertex spaces at level $n - i + 1$ specify all of the vertex spaces at each level, but the actual graph of spaces structure at each level must be described.

If A is the closure of a component of $p^{-1}(W_i) \setminus \bigcup_{j < i} p^{-1}(W_j)$, then A is called a *partly cut-up elevation of W_i* . The double dot hierarchy is constructed by cutting along an elevation of a hyperplane W_i to \ddot{C} and any elements of $\ddot{\mathcal{Z}}$ that intersect W_i , but the elevation of the hyperplane W_i may have already been cut by one of the other hyperplane elevations of W_j with $j < i$.

By construction, any two \hat{t} -vertex spaces at level $n - i + 1$ are either disjoint or intersect in a union of components of $\ddot{\mathcal{Z}}$ and disjoint partly cut-up elevations of W_i .

Now it is time to construct the graph of spaces structures at each level. Let $\hat{t} \in M_i$ and let V be the corresponding \hat{t} -vertex space at level $n - i + 1$. Consider the canonical projection $\pi: M_{i+1} \rightarrow M_i$. Let \hat{t}^+ and \hat{t}^- be the preimages of \hat{t} under π . Let V^+ and V^- be the collections of complementary components of $V \setminus p^{-1}(\bigcup \mathcal{W}_{i+1})$ labeled by \hat{t}^+ and \hat{t}^- , respectively. Then $V = V^+ \cup V^-$ and the components in V^+ , V^- will serve as the vertex spaces in the graph of spaces decomposition of V in this hierarchy.

The edge spaces are components of $V^+ \cap V^-$. The attaching maps are the inclusion maps of edge spaces into vertex spaces while the realization is provided by a homotopy equivalence collapsing the mapping cylinders of the edge spaces onto the images of the edge spaces.

Let $\hat{t} \in M_n$. Then the components of the \hat{t} -vertex spaces are the vertex spaces of level 1 of the hierarchy, so the terminal spaces of the hierarchy are precisely these spaces.

Definition 7.11 The hierarchy \mathcal{H} constructed in the preceding paragraphs with vertex spaces is called the *double dot hierarchy for the pair (X, \mathcal{Z})* .

The double dot hierarchy actually depends on an ordering on the hyperplanes, but the applications that follow only need an existence of a hierarchy given some local isometric immersion $\mathcal{Z} \rightarrow X$, so this complication will be henceforth ignored.

A version of the double dot hierarchy exists for general NPC cube complexes, see [3, Section 5.2]; however, the double dot hierarchy may fail to be faithful and even if it is faithful, the hierarchy may fail to be quasiconvex or malnormal. Also, the terminal spaces may not be useful. However, when hyperplanes are embedded, nonseparating and two-sided, the terminal spaces are easy to understand:

Lemma 7.12 [3, Lemma 5.5] Assume [Hypotheses 7.10](#). If Y is a terminal space of the double dot hierarchy for (X, \mathcal{Z}) , then Y has a graph of spaces structure (Γ, χ) such that

- (1) Γ is bipartite with vertex set $V(Y) = V(Y)^+ \sqcup V(Y)^-$,
- (2) if $v \in V(Y)^+$, $\chi(v)$ is contractible,
- (3) if $v \in V(Y)^-$, $\chi(v)$ is a component of $\ddot{\mathcal{Z}}$ and
- (4) every edge space is contractible.

Corollary 7.13 Under [Hypotheses 7.10](#), the fundamental group of a terminal space of the double dot hierarchy is a free product of the form $(\ast_{i=1}^p G_i) * F$ where F is a finitely generated free group and, for all $1 \leq i \leq p$, $G_i := \pi_1(Z_i)$ where Z_i is a component of \mathcal{Z} .

7.3 A fully \mathcal{P} -elliptic malnormal quasiconvex hierarchy

Hypotheses 7.14 We set some basic hypotheses and notation for [Section 7.3](#):

- (1) Let X_0 be an NPC compact special cube complex.
- (2) Let X be an NPC compact special cube complex that is homotopy equivalent to X_0 so that the hyperplanes of X are all nonseparating (the existence of X follows from [Theorem 7.9](#)).
- (3) Let \widetilde{X} be the universal cover of X with base point $x \in \widetilde{X}$ that does not lie in any hyperplane.
- (4) Let $G := \pi_1 X \cong \pi_1 X_0$ and suppose that (G, \mathcal{P}) is a relatively hyperbolic group pair.
- (5) For each $P \in \mathcal{P}$, let $\phi_{P,x}: Z_P \rightarrow X$ be the superconvex local isometric immersions and let $\mathcal{Z} = \bigsqcup Z_P$ that arise as a consequence of [Proposition 7.3](#). Let $\Phi: \mathcal{Z} \rightarrow X$ be the map that restricts to $\phi_{P,x}$ on Z_P .
- (6) Let $C_1 = C(X, \Phi)$ be the augmented cube complex for (X, Φ) (recall [Definition 7.4](#)), and let \widetilde{C} be its universal cover.
- (7) Viewing C_1 as a mapping cylinder of Φ , Φ gives rise to a natural embedding $\mathcal{Z} \hookrightarrow C_1$. We call the components $Z_P \times \{0\}$ of the image of Φ *peripheral spaces*.

By strategically passing to finite covers and building the double dot hierarchy, we will produce a faithful, quasiconvex and fully \mathcal{P} -elliptic virtual hierarchy for $\pi_1 X$.

Lemma 7.15 (see [3, Lemma 5.18]) Let C' be a finite regular cover of C_1 .

- (1) There exists a finite cover X' of X with $G' := \pi_1 X'$ and a superconvex local isometric immersion $\Phi': \mathcal{Z}' \rightarrow X'$ such that (G', \mathcal{P}') is the induced relatively hyperbolic group pair (see [Proposition 2.13](#)) and C' is the augmented cube complex of the pair (X', \mathcal{Z}') . The components of \mathcal{Z}' have fundamental group isomorphic to elements of \mathcal{P}' and for each component Z of \mathcal{Z}' , the image of $\pi_1 Z$ is conjugate to an element of \mathcal{P}' in G' .
- (2) Every nonperipheral hyperplane of C' is nonseparating.

Notation 7.16 (1) Let \mathcal{B} be the collection of elevations of $Z_P \times [0, 1]$ (as determined by the mapping $\phi_{P,x}$) to \widetilde{C} . Let $\widetilde{\mathcal{Z}}$ be the union of the elements of \mathcal{B} in \widetilde{C} .

- (2) Recall from [Proposition 7.6](#) that there exist (δ, f) so that $(\widetilde{C}, \mathcal{B})$ is a (δ, f) -CAT(0) relatively hyperbolic pair.
- (3) Let $M = f(6\delta)$, let $\lambda = 4$ and $\epsilon = 10000(M + \delta + 1)$.
- (4) [Proposition 7.6](#) also implies that every $B \in \mathcal{B}$ is $(3M + 6R + 2f(R) + 21\delta)$ -attractive.
- (5) Set L_{rfp} so that every pair of (λ, ϵ) -quasigeodesics in \widetilde{C} ($L_{\text{rfp}}, L_{\text{rfp}}$)-fellow travel relative to \mathcal{B} (recall [Definition 4.5](#) and [Theorem 4.7](#)).
- (6) Let $R_{\text{rfp}} = \lambda(\lambda(3f(L_{\text{rfp}}) + \epsilon + 2L_{\text{rfp}}) + \epsilon) + 2f(L_{\text{rfp}})$.
- (7) Let $R_0 > \max\{4, R_{\text{rfp}}, 500M + 100008\}$.

Observation 7.17 The constants established in items (2) and (4) of [Notation 7.16](#) ensure that the pair $(\widetilde{C}, \mathcal{B})$ satisfies [Hypotheses 5.5](#).

Using [Propositions 6.7](#) and [7.5](#), let C_2 be a finite regular cover of C_1 such that every nonperipheral hyperplane of C_2 is R_0 -embedded and nonseparating. Then C_2 is the augmented cube complex of a pair (X_2, \mathcal{Z}'') where X_2 is a finite cover of X by [Lemma 7.15](#). Recall that \widetilde{X} naturally embeds in \widetilde{C} , which is also the universal cover of C_2 . Let $G_2 = \pi_1(C_2)$ and let (G_2, \mathcal{P}'') be the induced peripheral structure.

Let $c: \ddot{C}_2 \rightarrow C_2$ be the double dot cover of C_2 . Let $(\ddot{G}_2, \ddot{\mathcal{P}}'')$ be the induced peripheral structure on $\ddot{G}_2 := \pi_1 \ddot{C}_2$. The next few statements will show that the double dot hierarchy on \ddot{C}_2 is faithful, quasiconvex and fully $\ddot{\mathcal{P}}''$ -elliptic hierarchy for $\pi_1 \ddot{C}_2$. Passing to a finite regular cover will later yield a hierarchy which is also malnormal.

By [Lemma 7.15](#), \ddot{C}_2 is an augmented cube complex with respect to a pair $(\ddot{X}_2, \ddot{\mathcal{Z}}_2)$ where $\ddot{\mathcal{Z}}_2$ consists of components of $c^{-1}(\mathcal{Z}'')$. Let E be an edge space of the double dot hierarchy on \ddot{C}_2 . Then E is a union of partly cut-up elevations of a hyperplane of C_2 and elements of $\ddot{\mathcal{Z}}_2$.

Recall that $(\widetilde{C}, \mathcal{B})$ is a (δ, f) -CAT(0) relatively hyperbolic pair. Let \widetilde{E} be an elevation of E to \widetilde{C} . There exist \mathcal{A}_E and \mathcal{B}_E so that \mathcal{A}_E is a collection of elevations to \widetilde{C} of convex partly cut-up hyperplane elevations of W and \mathcal{B}_E is a collection of elevations of the peripheral spaces (recall [Hypotheses 7.14\(7\)](#)) to \widetilde{C} so that \widetilde{E} is the union of the elements of \mathcal{A}_E and \mathcal{B}_E .

Each element $B_E \in \mathcal{B}_E$ is an elevation of a peripheral space. While B_E is not an element of \mathcal{B} , there is a unique $B'_E \in \mathcal{B}$ containing B_E . In particular, B'_E is the 1-neighborhood of B_E in \widetilde{C} . Let $\mathcal{B}'_E = \{B \in \mathcal{B}: B_E \subseteq B \text{ for some } B_E \in \mathcal{B}_E\}$ be the collection of elevations of the $Z_P \times [0, 1]$ to \widetilde{C} whose intersection with \widetilde{X} is some $B_E \in \mathcal{B}_E$. See [Figure 9](#). Let \widetilde{E}' be the image of $(\bigsqcup \mathcal{A}_E) \sqcup (\bigsqcup \mathcal{B}'_E)$ in \widetilde{C} .

By [Observation 7.17](#), the R_0 -embeddedness of the hyperplane W and the construction of \widetilde{E}' imply:

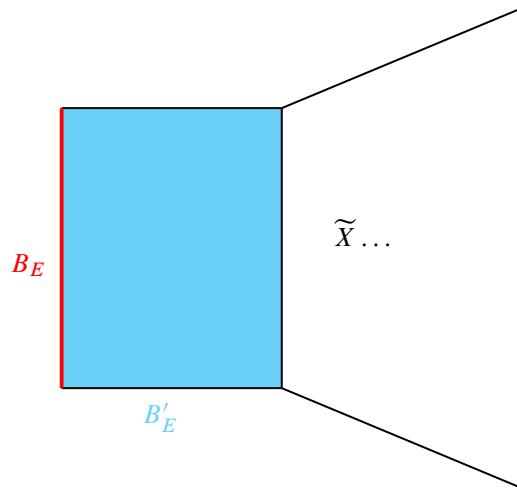


Figure 9: A schematic diagram showing the relationship between B_E , B'_E and their attachment to \tilde{X} . The closure of the shaded region is B'_E .

Proposition 7.18 *The subspace $\tilde{E}' \subseteq \tilde{C}$ is a subspace of the form specified by [Hypotheses 5.16](#).*

Proof [Observation 7.17](#) ensures (\tilde{X}, \mathcal{B}) satisfies [Hypotheses 5.5](#).

Recall that C_2 has hyperplanes that are R_0 -embedded (recall R_0 from [Notation 7.16\(7\)](#)), and recall that R_0 -embeddedness of hyperplanes is preserved by finite covers ([Lemma 6.6](#)). Therefore, for all distinct pairs of $A_1, A_2 \in \mathcal{A}_E$, $d(A_1, A_2) \geq 2R_0$, and R_0 is large enough to provide the separation between elements of \mathcal{A}_E required by [Hypotheses 5.16](#).

By construction, $\mathcal{B}'_E \subseteq \mathcal{B}$, and \tilde{E}' is glued together from elements of \mathcal{A}_E and \mathcal{B}'_E as required. □

Proposition 7.19 *Let E be an edge space of the double dot hierarchy on \ddot{C}_2 . Then the map $E \rightarrow \ddot{C}_2$ is π_1 -injective.*

Proof Suppose not toward a contradiction. Then there exists a loop γ in E such that γ is essential in E but has trivial image in $\pi_1(\ddot{C}_2)$. Since γ is π_1 trivial in $\pi_1(\ddot{C}_2)$, γ elevates to a loop $\tilde{\gamma} \subseteq \tilde{E}$ in \tilde{C} . Since \tilde{E} is homotopy equivalent to \tilde{E}' , there is a loop γ' in \ddot{C}_2 that is the image of a geodesic in \tilde{E}' . Since \tilde{E}' is the image of $(\bigsqcup \mathcal{A}_E) \sqcup (\bigsqcup \mathcal{B}'_E)$ in \tilde{C} , $\tilde{\gamma}'$ cannot be a loop by [Proposition 5.18](#). □

The next step is to prove that the double dot hierarchy on \ddot{C}_2 is quasiconvex:

Proposition 7.20 *Recall λ, ϵ from [Notation 7.16](#). If E is an edge space of the double dot hierarchy on \ddot{C}_2 and \tilde{E} is the universal cover of E , then any elevation $\tilde{E} \hookrightarrow \tilde{C}$ of E to \tilde{C} is a (λ, ϵ) -quasi-isometric embedding.*

Proof Let γ be a geodesic in \tilde{E} and let γ' be a geodesic with the same endpoints in \tilde{E}' . Let γ'' be a geodesic in \tilde{C} with the same endpoints as γ . [Proposition 7.18](#) implies we can use [Proposition 5.17](#), which implies that γ' is a $(2, 114M + 1592\delta)$ -quasigeodesic in \tilde{C} . Let n be the smallest number so that γ' can be written as $a_1b_1 \dots b_n a_{n+1}$ where

- (1) a_i can be a point if $i = 1$ or $i = n + 1$,
- (2) otherwise a_i is geodesic in some $A_i \in \mathcal{A}_E$, and
- (3) b_i is geodesic in some $B'_i \in \mathcal{B}'_E$.

The endpoints of each b_i lie in \tilde{E} because every $A_i \subseteq \tilde{E}$ and γ, γ' have the same endpoints. Thus each b_i can be replaced by a path of length $|b_i| + 2$ that lies entirely in \tilde{E} . It is therefore possible to produce a path in \tilde{E} between the endpoints of γ whose length is at most $|\gamma'| + 2n$, so $|\gamma| \leq |\gamma'| + 2n$. Further, $|b_i| \geq R_0 \geq 4$ for $1 < i < n$ because the A_i are R_0 -separated, so we have that $|\gamma| \geq 4n - 8$ which implies

$$(4) \quad 2n \leq \frac{1}{2}|\gamma| + 4.$$

Therefore

$$\begin{aligned} |\gamma''| &\geq \frac{1}{2}|\gamma'| - (114M + 1592\delta) \\ &\geq \frac{1}{2}(|\gamma| - 2n) - (114M + 1592\delta) \\ &\geq \frac{1}{2}\left(\frac{1}{2}|\gamma| - 4\right) - (114M + 1592\delta) \\ &\geq \frac{1}{4}|\gamma| - (114M + 1592\delta + 2), \end{aligned}$$

where the third line follows from the second by the estimate in (4). Hence γ is a $(4, 114M + 1592\delta + 2)$ -quasigeodesic in \tilde{C} . \square

[Propositions 7.19](#) and [7.20](#) together yield the following:

Corollary 7.21 *The double dot hierarchy induced on $\pi_1 \ddot{C}_2$ is faithful and quasiconvex.*

The next step is to prove that the double dot hierarchy on \ddot{C}_2 is fully $\ddot{\mathcal{P}}''$ -elliptic. [Definition 7.22](#) introduces geometric terminology for the situation where a subgroup of a relatively hyperbolic group pair (G, \mathcal{P}) contains an element g conjugate into a peripheral subgroup P such that no positive power of g lies in $E \cap P$.

Definition 7.22 Let Y be a locally convex subspace of \ddot{C}_2 . Let $E \subseteq \ddot{C}_2$. The subspace E has an *accidental Y -loop* if there exists a homotopically essential loop, γ , which is both freely homotopic to a geodesic loop in Y and has no positive power homotopic in E to a geodesic loop in Y .

The next few statements will show that the edge spaces of the double dot hierarchy for \ddot{C}_2 have no accidental \ddot{Z}'' -loops. This will imply the hierarchy is fully $\ddot{\mathcal{P}}''$ -elliptic. Elevations of partly cut-up hyperplanes do not have accidental \ddot{Z}'' -loops:

Lemma 7.23 [3, Lemma 5.15] Let (X, \mathcal{Z}) be a superconvex pair where each component of \mathcal{Z} is embedded and let C be the corresponding augmented cube complex. For $n \geq 1$, let $\{W_1, \dots, W_n\}$ be a collection of embedded, 2-sided, nonseparating hyperplanes of C . Let Q be a component of $W_n \setminus \bigcup_{i < n} W_i$. Then Q has no accidental \mathcal{Z} -loops.

Proposition 7.24 Let E be an edge space of the double dot hierarchy for \ddot{C}_2 . Then E has no accidental $\ddot{\mathcal{Z}}''$ -loops.

Proof Recall that E is a union of a partly cut-up hyperplane elevations and components of $\ddot{\mathcal{Z}}''$ that intersect these elevations. Let Q be one of the partly cut-up hyperplane elevations. By Lemma 7.23, Q has no accidental $\ddot{\mathcal{Z}}''$ -loops.

Suppose there exists a \ddot{C}_2 -essential loop γ in E such that γ is freely homotopic in \ddot{C}_2 into $\ddot{\mathcal{Z}}''$. Then a representative of the homotopy class of γ lifts to a bi-infinite \tilde{E} -geodesic $\hat{\gamma}$ where \tilde{E} is an elevation of E to \tilde{C} , and a representative of the homotopy class of γ lifts to a bi-infinite \tilde{C} -geodesic $\rho \subseteq \tilde{Z}$, an elevation of a component of $\ddot{\mathcal{Z}}''$ and there exists $R \geq 0$ so that $\hat{\gamma} \subseteq \mathcal{N}_R(\rho)$.

Since $\hat{\gamma}$ is a \tilde{E} -geodesic, $\hat{\gamma}$ is a (λ, ϵ) -quasigeodesic in \tilde{C} by Proposition 7.20.

Let $\hat{\gamma}_0$ be a subsegment of $\hat{\gamma}$ with $|\hat{\gamma}_0| = |\gamma|$ (eg take $\hat{\gamma}_0$ to be the subsegment between two consecutive lifts of a point of γ to $\hat{\gamma}$). If $\hat{\gamma}_0 \subseteq \tilde{Z}'$ where \tilde{Z}' is an elevation of a component of $\ddot{\mathcal{Z}}''$, then $\hat{\gamma} \subseteq \tilde{Z}'$ and $\hat{\gamma}$ is geodesic in \tilde{C} . Then $\tilde{Z} = \tilde{Z}'$ because $\text{diam } \mathcal{N}_R(\tilde{Z}) \cap \mathcal{N}_R(\tilde{Z}') = \infty$ in which case γ was not an accidental $\ddot{\mathcal{Z}}''$ -loop.

On the other hand, if $\hat{\gamma}_0 \subseteq \tilde{Q}$ where \tilde{Q} is some elevation of Q to \tilde{C} , then Q has an accidental $\ddot{\mathcal{Z}}''$ -loop, contradicting the fact that there are no such accidental \mathcal{Z} -loops.

Therefore, there exist subsegments of $\hat{\gamma}$ of the form $\gamma_m = a_{m,1}b_{m,1}a_{m,2}b_{m,2} \dots a_{m,k_m}b_{m,k_m}$ such that $\bigcup_1^\infty \gamma_m = \hat{\gamma}$, $|\gamma_m| \rightarrow \infty$ and $k_m \rightarrow \infty$ as $m \rightarrow \infty$, $a_{m,i}$ lies in an elevation \tilde{Q}_i of Q to \tilde{C} , $b_{m,i} \subseteq \tilde{Z}_{m,i}$ where $\tilde{Z}_{m,i}$ is an elevation of a component of $\ddot{\mathcal{Z}}''$ to \tilde{C} , and if $i \neq j$, $b_{m,i} \subseteq \tilde{Z}_i$ and $b_{m,j} \subseteq \tilde{Z}_j \neq \tilde{Z}_i$ (otherwise, by convexity of Z_i , γ_m could be written as a concatenation of fewer geodesic segments). Recall that Q is R_0 -embedded, so for all m, i , $|b_{m,i}| \geq R_0$.

By construction there is a unique $B \in \mathcal{B}$ so that $\tilde{Z} \subseteq B$. Let τ_m be the \tilde{C} -geodesic connecting the endpoints of γ_m . Since $\tau_m \subseteq \mathcal{N}_R(B)$ and B is $(3M + 6R + 2f(R) + 9\delta)$ -attractive, all but $(3M + 6R + 2f(R) + 9\delta)$ -tails of the endpoints of τ_m lie in B . Therefore, there exists a subsegment $\tau_m^B \subseteq \tau_m \cap B$ so that $|\tau_m^B| \geq |\tau_m| - 2(3M + 6R + 2f(R) + 9\delta)$.

Recall that all (λ, ϵ) -quasigeodesics with the same endpoints $(L_{\text{rfp}}, L_{\text{rfp}})$ -fellow travel relative to \mathcal{B} . There exists a unique $B_{m,i} \in \mathcal{B}$ containing $\tilde{Z}_{m,i}$, so $b_{m,i} \subseteq B_{m,i}$. Then for $B \in \mathcal{B}$ with $B \neq B_{m,i}$, $\text{diam } b_{m,i} \cap \mathcal{N}_{L_{\text{rfp}}}(B) \leq f(L_{\text{rfp}})$. Since τ_m and γ_m relatively fellow travel, either

- there exist points $p_{m,i}^-$ and $p_{m,i}^+$ on $b_{m,i} \subseteq \gamma_m$ that are at most $f(L_{\text{rfp}})$ from the endpoints of $b_{m,i}$ and are distance L_{rfp} from τ_m or

- there exist $p_{m,i}^-, p_{m,i}^+$ on γ_m so that $p_{m,i}^-, p_{m,i}^+$ are distance at most L_{rfp} from points in τ_m that lie in $\mathcal{N}_{L_{\text{rfp}}}(B_{m,i})$ and the interval of γ_m between $p_{m,i}^-$ and $p_{m,i}^+$ contains all of $b_{m,i}$ except for a length at most $2(f(L_{\text{rfp}}))$ subsegment of $b_{m,i}$.

Indeed, any subsegment $b_{m,i}$ that lies in $\mathcal{N}_{L_{\text{rfp}}}(B)$ for any $B \in \mathcal{B}$ with $B \neq B_{m,i}$ has length at most $f(L_{\text{rfp}})$. In either case since γ_m is (λ, ϵ) -quasigeodesic, there exists a length $\frac{1}{\lambda}(\frac{1}{\lambda}(R_0 - 2(f(L_{\text{rfp}}))) - \epsilon) - \epsilon - 2L_{\text{rfp}}$ subsegment of τ_m that lies in $\mathcal{N}_{L_{\text{rfp}}}(B_{m,i})$. As $m \rightarrow \infty$, $|\tau_m| \rightarrow \infty$ while

$$|\tau_m| - |\tau_m^B| \leq 2(3M + 6R + 2f(R) + 9\delta),$$

which does not depend on m . Therefore, for $m \gg 0$, there are at least two i such that τ_m^B has a length

$$\frac{1}{\lambda} \left(\frac{1}{\lambda} (R_0 - 2(f(L_{\text{rfp}}))) - \epsilon \right) - \epsilon - 2L_{\text{rfp}} > 3f(L_{\text{rfp}})$$

subsegment lying in $\mathcal{N}_{L_{\text{rfp}}}(B_{m,i}) \cap \mathcal{N}_{L_{\text{rfp}}}(B)$ (recall R_0 was chosen in [Notation 7.16](#)). Since the $B_{m,i}$ are pairwise distinct, we obtain a contradiction. Therefore, γ cannot be an accidental \ddot{Z}'' -loop. \square

Corollary 7.25 *The double dot hierarchy on \ddot{C}_2 is fully $\ddot{\mathcal{P}}''$ -elliptic.*

Faithfulness, quasiconvexity and full \mathcal{P} -ellipticity are preserved by taking the induced hierarchy of a finite regular cover of \ddot{C}_2 . The final step is to show that there exists a finite cover of \ddot{C}_2 whose induced hierarchy is also a malnormal hierarchy.

The following lemma is straightforward:

Lemma 7.26 *Suppose $H \leq G$ and G_0 is a finite index subgroup of G and let $H_0 = H \cap G_0$. If H is malnormal in G , then H_0 is malnormal in H .*

The following is a special case of [\[26, Corollary 6.4\]](#):

Proposition 7.27 *Let G be the fundamental group of a relatively hyperbolic special compact NPC cube complex, and let $H \leq G$ be full relatively quasiconvex. Then H is separable in G .*

Proposition 7.28 [\(Hruska–Wise \[18, Theorem 9.3\]\)](#) *If G is relatively hyperbolic and $H \leq G$ is relatively quasiconvex and separable, then there exists a finite index subgroup $K_0 \leq G$ containing H such that for every $g \in K_0 \setminus H$ either $gHg^{-1} \cap H$ is finite or $gHg^{-1} \cap H$ is parabolic in K .*

Proposition 7.29 *If G is relatively hyperbolic and $H \leq G$ is full relatively quasiconvex, there is a finite index subgroup $K \leq G$ containing H such that H is almost malnormal in G .*

Proof We first prove the following claim: If $H \leq G$ is full relatively quasiconvex, then there are only finitely many double cosets of the form HgH so that $H \cap H^g$ is infinite and parabolic.

Let \mathcal{D} be the induced peripheral structure on H . If $H \cap H^g$ is infinite parabolic, then fullness implies there are $Q_1, Q_2 \leq H$ that are maximal parabolic in H so that $H \cap H^g$ is finite index in $Q_1 \cap Q_2^g$. Then there exist $D_1, D_2 \in \mathcal{D}$ and $h_1, h_2 \in H$ so that $Q_1 = D_1^{h_1}$ and $Q_2 = D_2^{h_2}$. It is easy to verify that if $g_0 = h_1^{-1}gh_2$, then

- (1) $g_0 \in HgH$,
- (2) $HgH = Hg_0H$, and
- (3) $H \cap H^{g_0} \leq D_1 \cap D_2^{g_0}$.

In other words, given a double coset HgH so that $H \cap H^g$ is infinite parabolic, we may assume that g is chosen so that there are maximal parabolic $D_1, D_2 \leq H$ so that $H \cap H^g \leq D_1 \cap D_2^g$.

Since \mathcal{D} is finite, it suffices to show that for any $D_1, D_2 \in \mathcal{D}$ (D_1, D_2 need not be distinct) there are finitely many double cosets of the form HgH so that $H \cap H^g$ is infinite and $H \cap H^g \subseteq D_1 \cap D_2^g$.

Now suppose Hg_1H is another double coset so that $H \cap H^{g_1}$ is an infinite subgroup of $D_1 \cap D_2^g$. We see that $D_1^{g_1^{-1}}$ and $D_1^{g_1^{-1}}$ have infinite intersection with D_2 and are therefore finite index in D_2 by fullness, so $D_1^{g_1^{-1}} \cap D_1^{g_1^{-1}}$ is infinite and hence $D_1 \cap D_1^{g_1g_1^{-1}}$ is infinite. Let P be the maximal parabolic subgroup of G containing D_1 . The fullness of H implies that D_1 is finite index in P . Therefore, $P \cap P^{g_1g_1^{-1}}$ is infinite, so $g_1^{-1} \in P$. There are finitely many left cosets $t_1D_1, t_2D_1, \dots, t_\ell D_1$ of D_1 in P . Hence $g_1^{-1} = t_i d$ for some $d \in D_1 \leq H$ and $1 \leq i \leq \ell$ which means $g_1^{-1} = g^{-1}t_i d$, so $Hg_1^{-1}H = Hg^{-1}t_i H$. There are only finitely many choices for t_i , proving the claim.

Proposition 7.28 implies that if we first pass to a finite index $K_0 \leq G$ containing H , we can ensure that if $g \in K_0 \setminus H$ and $H \cap H^g$ is not finite, it is infinite parabolic. By the preceding, there is a finite collection of double cosets Hk_1H, \dots, Hk_mH so that $g \in Hk_iH$ for some $1 \leq i \leq m$. Note all $k_i \notin H$. The separability of H implies that we can choose a finite index $K \leq K_0$ containing H so that $k_1, \dots, k_m \notin K$. Then $Hk_iH \cap K = \emptyset$ because $H \leq K$. By the preceding, there exists no $k \in K$ such that $H \cap H^k$ is infinite parabolic, so $H \cap H^k$ is finite for all $k \in K$. \square

Corollary 7.30 is based on [3, Corollary 3.29]. **Corollary 7.30** follows immediately from the two preceding statements and the fact that when G is virtually special, G is linear and hence virtually torsion free.

Corollary 7.30 *If G is hyperbolic relative to \mathcal{P} and special, and $H \leq G$ is full relatively quasiconvex, then H is virtually malnormal.*

Theorem 7.31 *Let G be special, virtually torsion-free and let (G, \mathcal{P}) be a relatively hyperbolic group pair. Let \mathcal{H} be a fully \mathcal{P} -elliptic quasiconvex hierarchy for G . Then there exists a finite index normal subgroup $G_0 \leq G$ with induced fully \mathcal{P} -elliptic quasiconvex hierarchy \mathcal{H}_0 of G_0 which is malnormal and fully \mathcal{P} -elliptic.*

The proof here is nearly the same as in [3, Theorem 3.30].

Proof Because \mathcal{H} is fully \mathcal{P} -elliptic, the edge subgroups are full. Since there are finitely many edge groups, by [Corollary 7.30](#), there exists some G_0 such that for every edge group E of \mathcal{H} , $E \cap G_0$ is malnormal in G_0 . By passing to a deeper finite index subgroup, we may insist that G_0 is normal. Since G_0 is normal, conjugation by $g \in G$ is an automorphism of G_0 , so in particular, these edge groups $E \cap G_0$ are malnormal in G . \square

At last, it is time to prove [Theorem 1](#).

Theorem 1 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let G be a virtually compact special group. Then there exists a finite index subgroup $G_0 \leqslant G$ and an induced relatively hyperbolic group pair (G_0, \mathcal{P}_0) so that G_0 has a quasiconvex, malnormal and fully \mathcal{P}_0 -elliptic hierarchy terminating in groups isomorphic to elements of \mathcal{P}_0 .*

Proof of Theorem 1 Let X be an NPC compact special cube complex so that $\pi_1(X)$ is finite index in G .

First, pass to a finite index regular cover of X , X_1 that is special. By applying a homotopy equivalence, X_1 is homotopy equivalent to a cube complex where every hyperplane gives a nontrivial splitting of $\pi_1 X_1$ (see [\[3, Lemma 5.17\]](#)).

By [Corollary 7.21](#), there exists a special cube complex X'_1 homotopy equivalent to X_1 with a finite regular cover X_2 such that $G_2 := \pi_1 X_2$ with induced peripheral structure (G_2, \mathcal{P}_2) has a faithful, quasiconvex, fully \mathcal{P}_2 -elliptic hierarchy terminating in $\mathcal{P}_2 * F_k$ where F_k is a free group.

By [Theorem 7.31](#), there exists a finite regular cover X_0 with $G_0 := \pi_1 X_0$ and induced peripheral structure (G_0, \mathcal{P}_0) such that the induced hierarchy on G_0 is malnormal as well and terminates in free products of free groups and elements of \mathcal{P}_0 (recall [Corollary 7.13](#)). The hierarchy can then be continued to a malnormal, quasiconvex, fully \mathcal{P}_0 -elliptic one that terminates in \mathcal{P}_0 . \square

8 A relatively hyperbolic version of the malnormal special quotient theorem

Recall Wise's malnormal special quotient theorem (MSQT), see [Theorem 1.3](#) above or [\[30, Theorem 12.2\]](#) mentioned in the introduction. The purpose of this section is to apply [Theorem 1](#) to obtain a relatively hyperbolic version of Wise's MSQT using techniques from [\[3, Sections 6-9\]](#).

Wise's quasiconvex hierarchy theorem [\[30, Theorem 13.3\]](#) has the following useful consequence:

Corollary 8.1 *Let G be a hyperbolic group with a quasiconvex hierarchy terminating in finite groups. Then G is virtually special.*

The technique for proving a relatively hyperbolic analog of [Theorem 1.3](#) will be to start with the hierarchy provided by [Theorem 1](#) and strategically take quotients using group-theoretic Dehn fillings (see [Definition 8.2](#)). These quotients can be constructed to be hyperbolic, and with some care, the hierarchy

structure can be passed down to the quotient so that [Corollary 8.1](#) can be used. In [3], the authors avoided using [Corollary 8.1](#) because their account aimed to give a new proof of auxiliary results used to prove [Corollary 8.1](#). Consequently, they needed to ensure that the hierarchy structure on the quotient is also a malnormal hierarchy. By using [Corollary 8.1](#), we only need a quasiconvex hierarchy for such a quotient.

8.1 Group-theoretic Dehn filling

For this section, let (G, \mathcal{P}) be a relatively hyperbolic group pair where $\mathcal{P} = \{P_1, \dots, P_m\}$ unless stated otherwise. When M is a finite volume hyperbolic 3-manifold with torus cusps, a *Dehn filling* of M is a gluing of solid tori $T_i \cong D \times S^1$ by a diffeomorphism to the boundary components. The result of the gluing depends only on the isotopy class of the curve $\gamma_i \subseteq \partial M$ that each copy of $\partial D \times \{p\} \subseteq T_i$ is glued to (see eg [22, Section 10.1]). In this situation $\pi_1 M$ is hyperbolic relative to a collection of copies of \mathbb{Z}^2 , one for each boundary component of M .

The next definition is a group-theoretic analog of Dehn filling.

Definition 8.2 Let $\{N_i \triangleleft P_i : 1 \leq i \leq m\}$. Then there exists a *group-theoretic Dehn filling* of G with *filling map* π defined by the quotient

$$\pi : G \rightarrow G(N_1, \dots, N_m) := G / \langle\langle \bigcup N_i \rangle\rangle.$$

The subgroups N_i are called *filling kernels*.

A filling is called *peripherally finite* if each filling kernel N_i is finite index in P_i .

For a classical filling, if every T_i is filled by gluing along the curves γ_i that are sufficiently long, Thurston's Dehn filling theorem says that the resulting manifold is hyperbolic. The group-theoretic analog of a sufficiently long classical Dehn filling is a group-theoretic Dehn filling where the filling kernels avoid a finite set of elements:

Definition 8.3 A statement \mathfrak{P} holds for all sufficiently long fillings if there exists a finite $B \subseteq G \setminus \{1\}$ such that whenever $B \cap N_i = \emptyset$ for all $1 \leq i \leq m$, the filling $G(N_1, \dots, N_m)$ has \mathfrak{P} .

Osin showed that sufficiently long Dehn fillings of relatively hyperbolic groups are relatively hyperbolic, have kernels which intersect each peripheral subgroup P_i precisely in N_i and can be manipulated so that any finite set of elements are not killed by the filling map.

Theorem 8.4 [23, Theorem 1.1] *Let $F \subseteq G$ be any finite subset of G . Then for all sufficiently long Dehn fillings,*

- (1) $\ker(\phi|_{P_i}) = N_i$ for $i = 1, 2, \dots, m$,
- (2) *the pair $(G(N_1, \dots, N_m), \{\phi(P_1), \dots, \phi(P_m)\})$ is a relatively hyperbolic group pair, and*
- (3) $\phi|_F$ *is injective.*

The edge subgroups of the hierarchy from [Theorem 1](#) will need to be full relatively quasiconvex subgroups of G . The quasiconvexity of the hierarchy will ensure that these subgroups are relatively quasiconvex.

Theorem 8.5 [\[16, Theorem 1.5\]](#) *Let $H \leq G$ be a quasi-isometrically embedded subgroup. Then H is relatively quasiconvex in G .*

Theorem 8.6 [\[16, Theorem 1.2\]](#) *Let $H \leq G$ be relatively quasiconvex. Then there exists a relatively hyperbolic structure (H, \mathcal{D}) where \mathcal{D} is finite and every element of \mathcal{D} is conjugate into an element of \mathcal{P} .*

Corollary 8.7 *The collection \mathcal{D} can be chosen so that*

- (1) *every element of \mathcal{D} is infinite, and*
- (2) *whenever $H \cap P^g$ is infinite, for some $g \in G$, there exists $h \in H$ so that $(H \cap P^g)^h$ is an element of \mathcal{D} .*

Proof For the first statement, simply remove all finite elements of \mathcal{D} . The second statement follows from [\[16, Theorem 9.1\]](#). \square

When a filling of G interacts nicely with a subgroup H , it is possible to induce a filling on the subgroup H .

Definition 8.8 [\[21, Definition B.1\]](#) *Let $H \leq G$. A filling $G \rightarrow G(N_1, \dots, N_m)$ is an H -filling if whenever $gP_i g^{-1} \cap H$ is infinite for some $P_i \in \mathcal{P}$, then $gN_i g^{-1} \subseteq H$.*

Definition 8.9 Suppose $H \leq G$ is a relatively quasiconvex subgroup and let (H, \mathcal{D}) be the relatively hyperbolic structure from [Theorem 8.6](#) and [Corollary 8.7](#). Let $\pi: G \rightarrow G(N_1, \dots, N_m)$ be an H -filling. Let $D_j \in \mathcal{D}$. Then there exists some $P_i \in \mathcal{P}$ and $g \in G$ with $g^{-1}D_j g \subseteq P_i$. Let $K_j := gN_i g^{-1}$. Since π is an H -filling, $K_j \lhd D_j$, so the groups K_j determine a filling

$$\pi_H: H \rightarrow H(K_1, \dots, K_N)$$

called the *induced filling of H* with respect to $G(N_1, \dots, N_m)$.

Since N_i is normal in P_i , the groups K_j (and hence the filling) do not depend on the choice of $g \in G$. The following theorem appears as stated in [\[3\]](#) as Theorem 7.11 and collects results about induced Dehn fillings from [\[2\]](#):

Theorem 8.10 *Let $H \leq G$ be a full relatively quasiconvex subgroup and let $F \subseteq G$ be a finite subset. For all sufficiently long H -fillings, $\phi: G \rightarrow G(N_1, \dots, N_m)$ of G ,*

- (1) *$\phi(H)$ is a full relatively quasiconvex subgroup of $G(N_1, \dots, N_m)$,*
- (2) *$\phi(H)$ is isomorphic to the induced filling in that if $\phi_H: H \rightarrow H(K_1, \dots, K_m)$ is the induced filling map, then $\ker \phi_H = \ker \phi \cap H$, and*
- (3) *$\phi(F) \cap \phi(H) = \phi(F \cap H)$.*

8.2 The filled hierarchy

Let \mathcal{H} be a quasiconvex fully \mathcal{P} -elliptic hierarchy. By [Lemma 3.14](#), [Theorem 8.5](#) and the full \mathcal{P} -ellipticity of the hierarchy, the edge and vertex groups of the hierarchy are full relatively quasiconvex. Let $\pi: G \rightarrow \bar{G}$ be a filling and let $(\bar{G}, \bar{\mathcal{P}})$ be the relatively hyperbolic structure induced on the filling by [Theorem 8.4](#). The goal of this subsection is to build an induced hierarchy $\bar{\mathcal{H}}$ (which may not be faithful) for \bar{G} based on \mathcal{H} where the vertex and edge groups of $\bar{\mathcal{H}}$ are induced fillings of vertex and edge groups of \mathcal{H} . The hierarchy $\bar{\mathcal{H}}$ will be called a *filled hierarchy* for $(\bar{G}, \bar{\mathcal{P}})$.

The filled hierarchy is built by starting at the top level and building the hierarchy inductively downward.

At the top level, let $\bar{\mathcal{H}}$ have the degenerate graph of groups decomposition for \bar{G} consisting of a single vertex labeled \bar{G} . Let n be the length of \mathcal{H} . Suppose the filled hierarchy has been filled down to the $(n-i)^{\text{th}}$ level and let \bar{A} be a vertex group at level $n-i$ so that \bar{A} is the induced filling of a vertex group A at level $n-i$ of \mathcal{H} . Let (Γ, χ) be the graph of groups structure for A provided by \mathcal{H} . Recall that χ is the assignment map for the graph of groups structure.

If x is a vertex or edge of Γ , let $A_x := \chi(x)$ be the corresponding vertex or edge group. Let $\bar{\chi}(x) := \bar{A}_x$ where \bar{A}_x is the induced filling $\pi_x: A_x \rightarrow \bar{A}_x$. The problem is that the pair $(\Gamma, \bar{\chi})$ still needs attachment homomorphisms to be a graph of groups.

Let $\phi_e: A_e \rightarrow A_v$ be an attachment homomorphism of an edge group A_e to a vertex group A_v . Two details need to be checked: first there need to be attachment maps $\bar{\phi}_e: \bar{A}_e \rightarrow \bar{A}_v$ such that $\bar{\phi}_e \circ \pi_e = \pi_v \circ \phi_e$. Let T be the maximal tree that determines $\pi_1(\Gamma, \chi, T)$. There will also need to be an isomorphism $\bar{\alpha}: \pi_1(\Gamma, \bar{\chi}, T) \rightarrow \bar{A}$ so that $(\Gamma, \bar{\chi}, T)$ is a graph of groups structure for \bar{A} where $\bar{\alpha} \circ \pi_\Gamma = \pi_A \circ \alpha$.

Completing the square

$$\begin{array}{ccc} A_e & \xrightarrow{\pi_e} & \bar{A}_e \\ \downarrow \phi_e & & \downarrow \bar{\phi}_e \\ A_v & \xrightarrow{\pi_v} & \bar{A}_v \end{array}$$

with a map $\bar{\phi}_e: \bar{A}_e \rightarrow \bar{A}_v$ is straightforward because π_e is surjective and $\ker \pi_e \subseteq \ker \pi_v \circ \phi_e$.

Constructing the desired isomorphism $\bar{\alpha}: \pi_1(\Gamma, \bar{\chi}, T) \rightarrow \bar{G}$ amounts to completing the square

$$\begin{array}{ccc} \pi_1(\Gamma, \chi, T) & \xrightarrow{\pi_\Gamma} & \pi_1(\Gamma, \bar{\chi}, T) \\ \downarrow \alpha & & \downarrow \\ A & \xrightarrow{\pi_A} & \bar{A} \end{array}$$

Lemma 8.11 *There exists an isomorphism $\bar{\alpha}: \pi_1(\Gamma, \bar{\chi}, T) \rightarrow \bar{G}$ that completes the diagram.*

The proof of [Lemma 8.11](#) is essentially identical to [\[3, Lemma 8.1\]](#).

For the following, let (G, \mathcal{P}) be a relatively hyperbolic group pair and let \mathcal{H} be a quasiconvex fully \mathcal{P} -elliptic hierarchy for G . The next lemma ties together some definitions:

Lemma 8.12 *If $A \leq G$ is an edge or vertex group of \mathcal{H} , then A is a full relatively quasiconvex subgroup of (G, \mathcal{P}) and every filling is an A -filling.*

Proof That A is full relatively quasiconvex follows immediately from the definition of full \mathcal{P} -ellipticity and [Theorem 8.5](#).

Whenever $gP_i g^{-1} \cap A$ is infinite, then $gP_i g^{-1} \subseteq A$, so if $N_i \triangleleft P_i$, then $gN_i g^{-1} \triangleleft A$. \square

Lemma 8.13 *Let A be an edge or vertex group of \mathcal{H} . Then for all sufficiently long fillings*

$$\pi : (G, \mathcal{P}) \rightarrow (\bar{G}, \bar{\mathcal{P}})$$

the following hold:

- (1) *The subgroup $\bar{A} := \phi(A)$ is full relatively quasiconvex in $(\bar{G}, \bar{\mathcal{P}})$.*
- (2) *If \bar{G} is hyperbolic, then \bar{A} is quasiconvex in \bar{G} .*
- (3) *The subgroup \bar{A} is isomorphic to the induced filling of A .*

Proof There are only finitely many edge and vertex groups, so the first and third statements follow from [Theorem 8.10](#).

If \bar{A} is full relatively quasiconvex in $(\bar{G}, \bar{\mathcal{P}})$, then \bar{A} is undistorted in \bar{G} by [\[16, Theorem 10.5\]](#) and by [\[7, Corollary III.Γ.3.6\]](#), \bar{A} is quasiconvex in \bar{G} whenever \bar{G} is hyperbolic. \square

The third point also makes the filled hierarchy $\bar{\mathcal{H}}$ faithful:

Corollary 8.14 *For all sufficiently long fillings $\pi : (G, \mathcal{P}) \rightarrow (\bar{G}, \bar{\mathcal{P}})$, the filled hierarchy $\bar{\mathcal{H}}$ for \bar{G} is faithful.*

Proof Let $\phi_e : A_e \rightarrow A_v$ be an attachment homomorphism mapping an edge group A_e to a vertex group A_v . Since $\pi(A_e)$ and $\pi(A_v)$ are isomorphic to the induced fillings, we can regard the induced filling maps as maps $\pi_v : A_v \rightarrow \bar{A}_v$ and $\pi_e : A_e \rightarrow \bar{A}_e$. Let $\bar{\phi}_e : \bar{A}_e \rightarrow \bar{A}_v$ be the induced edge homomorphism.

We now need to check that given $g_e \in A_e$, $\phi_e \circ \pi_e(g_e) = 1$ implies that $\pi_e(g_e) = 1$. If $\phi_e \circ \pi_e(g_e) = 1$, then $\pi_v \circ \phi_e(g_e) = 1$, so $\phi_e(g_e) \in \ker \pi_v = \ker \pi \cap A_v \subseteq \ker \pi$. Faithfulness of the original hierarchy now implies $g_e \in \ker \pi \cap A_e = \ker \pi_e$, so $\pi_e(g_e) = 1$. \square

The preceding results combine to produce a quasiconvex hierarchy:

Theorem 8.15 (see [3, Theorem 2.12]) *Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let \mathcal{H} be a quasiconvex fully \mathcal{P} -elliptic hierarchy terminating in \mathcal{P} . For all sufficiently long peripherally finite fillings $\pi: (G, \mathcal{P}) \rightarrow (\bar{G}, \bar{\mathcal{P}})$ so that every $\bar{P} \in \bar{\mathcal{P}}$ is hyperbolic, the group \bar{G} is hyperbolic and has a quasiconvex hierarchy terminating in $\bar{\mathcal{P}}$.*

Proof Theorem 8.4 implies that all sufficiently long peripherally finite fillings are hyperbolic.

By Corollary 8.14, the quotient \bar{G} has a faithful hierarchy $\bar{\mathcal{H}}$ where the underlying graphs and every vertex or edge group of $\bar{\mathcal{H}}$ is the image of a vertex or edge group (respectively) of \mathcal{H} under π .

By Lemma 8.13(2), every edge and vertex group of $\bar{\mathcal{H}}$ is quasiconvex in \bar{G} and is hence also quasi-isometrically embedded in \bar{G} , so the hierarchy $\bar{\mathcal{H}}$ is quasiconvex.

By construction, the terminal groups are fillings of the terminal groups of \mathcal{H} , so the terminal groups of $\bar{\mathcal{H}}$ are in $\bar{\mathcal{P}}$. \square

Theorem 8.15 works for a group with a quasiconvex hierarchy, but Theorem 1 only gives a hierarchy for a finite index subgroup. When the filling kernels are chosen carefully, a filling of a finite index subgroup $G' \triangleleft G$ can be promoted to a filling of G .

Definition 8.16 Let (G, \mathcal{P}) be a relatively hyperbolic group pair and let $G' \triangleleft G$ be a finite index normal subgroup with induced peripheral structure (G', \mathcal{P}') . Let $\{N'_j \triangleleft P'_j \mid P'_j \in \mathcal{P}'_j\}$ be a collection of filling kernels. The collection $\{N'_j\}$ is *equivariantly chosen* if

- (1) whenever gP'_jg^{-1} and hP'_kh^{-1} both lie in P_i , then $gN'_jg^{-1} = hN'_kh^{-1}$ and
- (2) every such gN'_jg^{-1} is normal in P_i .

An *equivariant filling* of (G', \mathcal{P}') is a filling with equivariantly chosen filling kernels.

An equivariant filling of (G', \mathcal{P}') will induce a nice filling of (G, \mathcal{P}) :

Proposition 8.17 *An equivariant filling $(G', \mathcal{P}') \rightarrow (\bar{G}', \bar{\mathcal{P}}')$ determines a filling $(G, \mathcal{P}) \rightarrow (\bar{G}, \bar{\mathcal{P}})$ so that \bar{G}' is finite index normal in \bar{G} and $(\bar{G}', \bar{\mathcal{P}}')$ is the peripheral structure induced by $(\bar{G}, \bar{\mathcal{P}})$.*

For the reader's convenience, here is a restatement of Theorem 2.

Theorem 2 *Let (G, \mathcal{P}) be a relatively hyperbolic group pair with $\mathcal{P} = \{P_1, \dots, P_m\}$. If G is virtually compact special, then there exist subgroups $\{\dot{P}_i \triangleleft P_i\}$ where \dot{P}_i is finite index in P_i such that if $\bar{G} = G(N_1, \dots, N_m)$ is any peripherally finite filling with $N_i \triangleleft \dot{P}_i$, then \bar{G} is hyperbolic and virtually special.*

Proof By Theorem 1, there exists a finite index $G' \triangleleft G$ with induced peripheral structure (G', \mathcal{P}') and a quasiconvex, fully \mathcal{P}' -elliptic hierarchy terminating in \mathcal{P}' . Let $\mathcal{P}' = \{P'_1, \dots, P'_M\}$. Since G is virtually special and hence residually finite, there exist arbitrarily long peripherally finite fillings of (G', \mathcal{P}') . In particular, our fillings of (G', \mathcal{P}') will be sufficiently long for Theorem 8.15 to hold.

Let $G'(K_1, \dots, K_M)$ be such a peripherally finite filling. Now pass to subgroups of the filling kernels to obtain an equivariant filling; choose K'_j so that, if $K_j^g \leq P_i$,

$$(K'_j)^g = \bigcap \{K_\ell^h \mid h \in G, \#(K_\ell^h \cap P_i) = \infty\}, \quad 1 \leq j \leq M.$$

We set $\dot{P}_i \triangleleft P_i$ equal to $(K'_j)^g$ for some (any) choice of $g \in G$ where K'_j so that $(K'_j)^g \leq P_i$. The new filling $\bar{G}' = G'(K'_1, \dots, K'_M)$ is longer than $G'(K_1, \dots, K_M)$ and remains peripherally finite. By [Proposition 8.17](#), the filling $G'(K'_1, \dots, K'_M)$ determines a filling of G .

Consider any filling $G(N_1, \dots, N_m)$ so that, for each i ,

- (1) $N_i \triangleleft P_i$,
- (2) $N_i \leq \dot{P}_i$, and
- (3) P_i/N_i is virtually special and hyperbolic,

with an induced equivariant filling

$$G' \rightarrow G'(N'_1, \dots, N'_M)$$

so that $N'_j \leq K'_j$ and $N'_j \triangleleft P'_j$ for each j . Condition (2) ensures the filling is sufficiently long so that [Theorem 8.15](#) implies

- (1) \bar{G}' is hyperbolic, and
- (2) \bar{G}' has a quasiconvex hierarchy terminating in $\bar{\mathcal{P}}' = \{P'_j/N'_j\}$.

Then \bar{G}' is a hyperbolic group with a quasiconvex hierarchy that terminates in finite groups (which are hence hyperbolic and virtually special). So by [Corollary 8.1](#) (see [30, Theorem 13.3]), $G'(N'_1, \dots, N'_M)$ is virtually special. By [Proposition 8.17](#), $\bar{G}' = G'(N'_1, \dots, N'_M)$ is finite index normal in $G(N_1, \dots, N_m)$, so the filling $G(N_1, \dots, N_m)$ is also virtually special. \square

References

- [1] **I Agol**, *The virtual Haken conjecture*, Doc. Math. 18 (2013) 1045–1087 [MR](#)
- [2] **I Agol, D Groves, J F Manning**, *Residual finiteness, QCERF and fillings of hyperbolic groups*, Geom. Topol. 13 (2009) 1043–1073 [MR](#)
- [3] **I Agol, D Groves, J F Manning**, *An alternate proof of Wise's malnormal special quotient theorem*, Forum Math. Pi 4 (2016) art. id. e1 [MR](#)
- [4] **H Bass**, *Covering theory for graphs of groups*, J. Pure Appl. Algebra 89 (1993) 3–47 [MR](#)
- [5] **N Bergeron, D T Wise**, *A boundary criterion for cubulation*, Amer. J. Math. 134 (2012) 843–859 [MR](#)
- [6] **C Bregman**, *Automorphisms and homology of non-positively curved cube complexes*, preprint (2016) [arXiv 1609.03602](#)
- [7] **M R Bridson, A Haefliger**, *Metric spaces of non-positive curvature*, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999) [MR](#)

- [8] **C Druțu, M Sapir**, *Tree-graded spaces and asymptotic cones of groups*, Topology 44 (2005) 959–1058 [MR](#)
- [9] **D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston**, *Word processing in groups*, Jones and Bartlett, Boston, MA (1992) [MR](#)
- [10] **B Farb**, *Relatively hyperbolic groups*, Geom. Funct. Anal. 8 (1998) 810–840 [MR](#)
- [11] **F Haglund**, *Finite index subgroups of graph products*, Geom. Dedicata 135 (2008) 167–209 [MR](#)
- [12] **F Haglund, D T Wise**, *Special cube complexes*, Geom. Funct. Anal. 17 (2008) 1551–1620 [MR](#)
- [13] **F Haglund, D T Wise**, *A combination theorem for special cube complexes*, Ann. of Math. 176 (2012) 1427–1482 [MR](#)
- [14] **G C Hruska**, *Nonpositively curved 2-complexes with isolated flats*, Geom. Topol. 8 (2004) 205–275 [MR](#)
- [15] **G C Hruska**, *Geometric invariants of spaces with isolated flats*, Topology 44 (2005) 441–458 [MR](#)
- [16] **G C Hruska**, *Relative hyperbolicity and relative quasiconvexity for countable groups*, Algebr. Geom. Topol. 10 (2010) 1807–1856 [MR](#)
- [17] **G C Hruska, B Kleiner**, *Hadamard spaces with isolated flats*, Geom. Topol. 9 (2005) 1501–1538 [MR](#)
- [18] **G C Hruska, D T Wise**, *Packing subgroups in relatively hyperbolic groups*, Geom. Topol. 13 (2009) 1945–1988 [MR](#)
- [19] **T Hsu, D T Wise**, *Cubulating malnormal amalgams*, Invent. Math. 199 (2015) 293–331 [MR](#)
- [20] **J Kahn, V Markovic**, *Immersing almost geodesic surfaces in a closed hyperbolic three manifold*, Ann. of Math. 175 (2012) 1127–1190 [MR](#)
- [21] **J F Manning, E Martínez-Pedroza**, *Separation of relatively quasiconvex subgroups*, Pacific J. Math. 244 (2010) 309–334 [MR](#)
- [22] **B Martelli**, *An introduction to geometric topology*, self published, Pisa, Italy (2016)
- [23] **D V Osin**, *Peripheral fillings of relatively hyperbolic groups*, Invent. Math. 167 (2007) 295–326 [MR](#)
- [24] **M Sageev**, *Ends of group pairs and non-positively curved cube complexes*, Proc. Lond. Math. Soc. 71 (1995) 585–617 [MR](#)
- [25] **M Sageev, D T Wise**, *Periodic flats in CAT(0) cube complexes*, Algebr. Geom. Topol. 11 (2011) 1793–1820 [MR](#)
- [26] **M Sageev, D T Wise**, *Cores for quasiconvex actions*, Proc. Amer. Math. Soc. 143 (2015) 2731–2741 [MR](#)
- [27] **P Scott**, *Subgroups of surface groups are almost geometric*, J. Lond. Math. Soc. 17 (1978) 555–565 [MR](#)
- [28] **J-P Serre**, *Trees*, Springer (1980) [MR](#)
- [29] **D T Wise**, *From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry*, CBMS Region. Conf. Ser. Math. 117, Amer. Math. Soc., Providence, RI (2012) [MR](#)
- [30] **D T Wise**, *The structure of groups with a quasiconvex hierarchy*, Ann. of Math. Stud. 209, Princeton Univ. Press (2021) [MR](#)

Department of Mathematics and Statistics, Swarthmore College
Swarthmore, PA, United States

eeinstein@swarthmore.edu

Received: 9 October 2019 Revised: 6 August 2024

ALGEBRAIC & GEOMETRIC TOPOLOGY

msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre etnyre@math.gatech.edu Georgia Institute of Technology	Kathryn Hess kathryn.hess@epfl.ch École Polytechnique Fédérale de Lausanne
--	--

BOARD OF EDITORS

Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Thomas Koberda	University of Virginia thomas.koberda@virginia.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Markus Land	LMU München markus.land@math.lmu.de
Tara E Brendle	University of Glasgow tara.brendle@glasgow.ac.uk	Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr
Indira Chatterji	CNRS & Univ. Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Norihiro Minami	Yamato University minami.norihiro@yamato-u.ac.jp
Octav Cornea	Université de Montréal cornea@dms.umontreal.ca	Andrés Navas	Universidad de Santiago de Chile andres.navas@usach.cl
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Jessica S Purcell	Monash University jessica.purcell@monash.edu
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Birgit Richter	Universität Hamburg birgit.richter@uni-hamburg.de
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
David Futer	Temple University dfuter@temple.edu	Vesna Stojanoska	Univ. of Illinois at Urbana-Champaign vesna@illinois.edu
John Greenlees	University of Warwick john.greenlees@warwick.ac.uk	Zoltán Szabó	Princeton University szabo@math.princeton.edu
Matthew Hedden	Michigan State University mheden@math.msu.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Kristen Hendricks	Rutgers University kristen.hendricks@rutgers.edu	Daniel T Wise	McGill University, Canada daniel.wise@mcgill.ca
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Lior Yanovski	Hebrew University of Jerusalem lior.yanovski@gmail.com
Daniel Isaksen	Wayne State University isaksen@math.wayne.edu		

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US \$760/year for the electronic version, and \$1110/year (+\$75, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is indexed by [Mathematical Reviews](#), [Zentralblatt MATH](#), [Current Mathematical Publications](#) and the [Science Citation Index](#).

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, 2000 Allston Way # 59, Berkeley, CA 94701-4004. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, 2000 Allston Way # 59, Berkeley, CA 94701-4004.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
 mathematical sciences publishers

nonprofit scientific publishing

<https://msp.org/>

© 2025 Mathematical Sciences Publishers

ALGEBRAIC & GEOMETRIC TOPOLOGY

Volume 25

Issue 8 (pages 4437–5174)

2025

Hierarchies for relatively hyperbolic virtually special groups	4437
EDUARD EINSTEIN	
Intersection norms on surfaces and Birkhoff sections for geodesic flows	4499
MARCOS COSSARINI and PIERRE DEHORNOY	
Thin knots and the cabling conjecture	4547
ROBERT DEYESO III	
Linear linkless embeddings: proof of a conjecture by Sachs	4585
LYNN STANFIELD	
Constructing rational homology 3-spheres that bound rational homology 4-balls	4599
LISA LOKTEVA	
Homological stability for the ribbon Higman–Thompson groups	4633
RACHEL SKIPPER and XIAOLEI WU	
A group-theoretic framework for low-dimensional topology, or: how not to study low-dimensional topology?	4667
SARAH BLACKWELL, ROBION KIRBY, MICHAEL KLUG, VINCENT LONGO and BENJAMIN RUPPIK	
Classification of genus-two surfaces in S^3	4719
FILIPPO BARONI	
Meromorphic projective structures: signed spaces, grafting and monodromy	4787
SPANDAN GHOSH and SUBHOJOY GUPTA	
A new twist on modular links from an old perspective	4827
KHANH LE	
Flat fully augmented links are determined by their complements	4839
CHRISTIAN MILICHAP and ROLLAND TRAPP	
BNSR-invariants of surface Houghton groups	4897
NOAH TORGERSON and JEREMY WEST	
Topological symmetry groups of the generalized Petersen graphs	4921
ANGELYNN ÁLVAREZ, ERICA FLAPAN, MARK HUNNELL, JOHN HUTCHENS, EMILLE LAWRENCE, PAUL LEWIS, CANDICE PRICE and RUTH VANDERPOOL	
Crushing surfaces of positive genus	4949
BENJAMIN A BURTON, THIAGO DE PAIVA, ALEXANDER HE and CONNIE ON YU HUI	
Annular links from Thompson's group T	5013
LOUISA LILES	
Realizing pairs of multicurves as cylinders on translation surfaces	5031
JULIET AYGUN, JANET BARKDOLL, AARON CALDERON, JENAVIE LORMAN and THEODORE SANDSTROM	
Involutive Khovanov homology and equivariant knots	5059
TAKETO SANO	
A diagrammatic computation of abelian link invariants	5113
DAVID CIMASONI, LIVIO FERRETTI and JESSICA LIU	
Equivariant double-slice genus, stabilization, and equivariant stabilization	5137
MALCOLM GABBARD	
Coarse and bi-Lipschitz embeddability of subspaces of the Gromov–Hausdorff space into Hilbert spaces	5153
NICOLÒ ZAVA	