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Hierarchies for relatively hyperbolic virtually special groups

EDUARD EINSTEIN

Wise’s quasiconvex hierarchy theorem classifying hyperbolic virtually compact special groups in terms
of quasiconvex hierarchies played an essential role in Agol’s proof of the virtual Haken conjecture.
Answering a question of Wise, we construct a new virtual quasiconvex hierarchy for relatively hyperbolic
virtually compact special groups. We use this hierarchy to prove a generalization of Wise’s malnor-
mal special quotient theorem for relatively hyperbolic virtually compact special groups with arbitrary
peripheral subgroups.

20F65, 20F67

1 Introduction

1.1 Background, history and motivation

One of the main goals of cube complex theory is to use the geometry and combinatorial structure of
cube complexes to better understand groups. The study of cubical groups has played an important role in
recent developments in the theory of hyperbolic 3-manifold groups, particularly in Agol’s proof of the
virtual Haken conjecture [1].

Virtually special cube complexes, developed by Wise and his collaborators, are central to the theory of
cubical groups. A group is called compact virtually special if it is the fundamental group of a compact
virtually special cube complex whose hyperplanes satisfy certain combinatorial conditions. Virtually
special cube complexes have desirable separability properties that allow certain immersions to be promoted

to embeddings using Scott’s criterion [27].

A construction in [24] due to Sageev provides a method for constructing a group action on a CAT(0)
cube complex using “codimension-1 subgroups”; however, in general, this action may not be proper,
cocompact, or have a virtually special quotient. For hyperbolic groups, the situation is much clearer:
Bergeron and Wise [5] proved that hyperbolic groups with an ample supply of quasiconvex codimension-1
subgroups have a proper and cocompact action on a CAT(0) cube complex. The key to Agol’s proof of the
virtual Haken conjecture is that any geometric action of a hyperbolic group on a CAT(0) cube complex
has virtually special quotient [1, Theorem 1.1]. In the case of closed 3-manifolds, the ample supply of
codimension-1 subgroups comes from immersed surfaces constructed by Kahn and Markovic in [20].
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Two key ingredients in Agol’s theorem are Wise’s quasiconvex hierarchy theorem and malnormal special
quotient theorem (MSQT). Wise’s quasiconvex hierarchy theorem [30, Theorem 13.3] characterizes the
virtually special hyperbolic groups in terms of virtual quasiconvex hierarchies.

Definition 1.1 [30, Definition 11.5] Let QV#H be the smallest class of hyperbolic groups closed under
the following operations.

(1) {1} € QVH.

(2) If G =Ax*c B and A, B € QVH and C is finitely generated and quasi-isometrically embedded
in G then G € QVH.

(3) If G =Axc, A€ QVH and C is finitely generated and quasi-isometrically embedded in G, then
G € QVH.

4) If H<Gwith |G: H| <ooand H € QVH, then G € QVH.

In other words, groups in QVH are hyperbolic groups that can be built from the trivial group by taking
finite index subgroups or taking amalgamations and HNN extensions over quasiconvex subgroups.

Theorem 1.2 ([30, Theorem 13.3], Wise’s quasiconvex hierarchy theorem) Let G be a hyperbolic
group. Then G € QV*H if and only if G is virtually compact special.

As Wise notes in [30, Section 12], the MSQT is an essential ingredient in the proof of the quasiconvex
hierarchy theorem.

Theorem 1.3 (Wise’s malnormal special quotient theorem [30, Theorem 12.2]) Let G be a hyperbolic
and virtually special group with G hyperbolic relative to a collection of subgroups { Py, ..., Py }. Then
there exist finite index subgroups P; < P; such that if G = G(Ni, ..., Ny,) is any peripherally finite
Dehn filling with N; < P;, then G is hyperbolic and virtually special.

The MSQT together with virtually special amalgamation criteria from [13; 19] are used to prove
Theorem 1.2.

For relatively hyperbolic groups, much less is known. Wise’s methods from [30] extend to more general
situations than hyperbolic groups. In particular, many of the methods for hyperbolic groups extend to
finite volume hyperbolic 3-manifolds. Hsu and Wise [19] also proved a special combination result for
relatively hyperbolic groups albeit with much more restrictive hypotheses.

The main goal of this paper is to prove relatively hyperbolic analogs of important ingredients in the proof
of Theorem 1.2. The first result answers a question posed by Wise:
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Theorem 1 Let (G, P) be a relatively hyperbolic group pair and let G be a virtually compact special
group. Then there exists a finite index subgroup Go < G and an induced relatively hyperbolic group pair
(Go, Py) so that Gg has a quasiconvex, malnormal and fully Py-elliptic hierarchy terminating in groups
isomorphic to elements of Py.

Proving that the hierarchy is not only quasiconvex and malnormal but also fully Py-elliptic is a way
of ensuring that the hierarchy is compatible with the relatively hyperbolic structure on G and allows
for the use of relatively hyperbolic Dehn filling arguments. See Sections 3.2 and 3.3 for definitions of
quasiconvex, malnormal and fully Py-elliptic hierarchies.

Theorem 1 will be used to prove a relatively hyperbolic generalization of the MSQT using relatively
hyperbolic Dehn filling techniques similar to those used in [3]:

Theorem 2 Let (G, P) be a relatively hyperbolic group pair with P = { Py, ..., Py }. If G is virtually
compact special, then there exist subgroups {P; <t P;} where P; is finite index in P; such that if
G = G(N1i, ..., Np) is any peripherally finite filling with N; < P;, then G is hyperbolic and virtually
special.

Peripherally finite fillings are defined formally in Definition 8.2. While Wise proved a generalized
relatively hyperbolic version of the MSQT in [30, Theorem 15.6] for relatively hyperbolic groups with
virtually abelian peripherals, Theorem 2 holds for arbitrary peripheral subgroups.

1.2 Outline

Section 2 contains a brief overview of the geometry of relatively hyperbolic groups. Section 3 covers
preliminaries about graphs of groups and quasiconvex hierarchies.

Section 4 is devoted to proving a relative fellow traveling result for a CAT(0) space with a geometric
action by a relatively hyperbolic group, a generalized version of quasigeodesic stability in hyperbolic
spaces. The main result is Theorem 4.7. Similar results were proved by Hruska [14] and Hruska—Kleiner
in [17] for CAT(0) spaces with isolated flats, and this result was previously known to experts in the
field. However, it was difficult to find an exact formulation of Theorem 4.7 in the literature, so a proof is
produced here.

Section 5 contains a combination lemma for certain subspaces of CAT(0) spaces with a geometric action by
a relatively hyperbolic group. The main result, Theorem 5.6 shows that subspaces of such a CAT(0) space
that are unions of convex cores for peripheral coset orbits and convex subspaces that obey a separation
property are quasiconvex. The proof technique is inspired partly by the proof of the combination lemma
in [19].

Section 6 reviews the properties of special cube complexes. In particular, Section 6.3 will introduce
separability and explain how to pass to a finite cover so that each hyperplane’s elevations to the universal
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cover obey a separation property. Section 6.4 recalls a result of Sageev and Wise [26] used to represent
peripheral subgroups of a relatively hyperbolic compact special group G as immersed complexes in an
NPC cube complex X with 11 X = G.

Section 7 follows the outline of [3, Section 5] and uses Wise’s double dot hierarchy construction to prove
Theorem 1. While the general strategy is the same, the hyperbolic geometry used in [3] to prove the
edge groups of the hierarchy are m-injective and quasi-isometrically embedded needs to be replaced by
relatively hyperbolic geometric results from the preceding sections.

Section 8 uses Theorem 1 along with a relatively hyperbolic Dehn filling argument similar to the one
used in a new proof of Wise’s MSQT from [3] to prove Theorem 2, a relatively hyperbolic analog of
Wise’s MSQT.

Acknowledgements
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The author also thanks Lucien Clavier, Yen Duong, Chris Hruska, Michael Hull and Daniel Wise for
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2 Relatively hyperbolic geometry

2.1 The geometry of CAT(0) spaces being acted on by relatively hyperbolic groups

In the situation where a relatively hyperbolic group acts properly and cocompactly on a CAT(0) space,
it is reasonable to hope to partially recover the geometric features of a hyperbolic space. There are many
equivalent definitions of a relatively hyperbolic group, see [16] for several examples; one definition,
originally due to Farb [10], is produced here:

Definition 2.1 [16, Definition 3.6] Let G be finitely generated relative to P with each P € P finitely
generated. The pair (G, P) is a relatively hyperbolic group pair if for some finite relative generating set S,
the coned-off Cayley graph f(G, P, S) is hyperbolic and (G, P, S) has Farb’s bounded coset penetration
property (see [10, Section 3.3]).

The elements of P and their conjugates are called peripheral subgroups and the cosets {gP :g € G, P € P}
are called peripheral cosets.
Definition 2.1 establishes useful notation to refer to a relatively hyperbolic group pair, but the technical

details will be less useful. Instead, most of the arguments involving relatively hyperbolic groups will be
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made using two key properties: that coarse intersections of peripheral cosets are uniformly bounded and
that triangles are relatively thin in a sense defined in Section 2.2.

The following fact is well known:

Proposition 2.2 Let (G, P) be a relatively hyperbolic group pair. Let S be a finite generating set
for G. For all R = 0, there exists Mg = 0 such if gP, g’ P’ is a pair of distinct peripheral cosets, then
diam Ng(gP) NNgr(g'P’) < Mg in the word metric on T'(G, S).

The uniform bounds on coarse intersections of peripheral cosets transfers nicely to the case where a
relatively hyperbolic group acts properly and cocompactly on a geodesic space by isometries:

Corollary 2.3 Let G be a finitely generated group acting properly and cocompactly by isometries on a
geodesic metric space X, and let x € X be a base point. If (G, P) is a relatively hyperbolic group pair,
then for all R = 0, there exists Mg x x = 0 such that if P, P’ € P, g, g’ € G with gP # g'P’, then
diam Nr(gPx) NNR(g'P'x) < MR x .

2.2 Relatively thin triangles

Comparison tripods help compare geodesic triangles in X with tripods:

Definition 2.4 Leta,b,c € X and let Aabc be a geodesic triangle. There exists a map h: Aabc —
T(a,b,c) where T'(a, b, c) is a unique tripod (up to isometry) with center point x such that /4 is isometric
on each side of the triangle and the three legs of the tripod are [i(a), x], [k(), x] and [h(c), x]. The
tripod T'(a, b, c) is called a comparison tripod for Aabc. The map h is the comparison map.

A geodesic metric space X is hyperbolic if there exists a § > 0 so that for every geodesic triangle in X,
the preimage of every point in the comparison map has diameter less than 8.
Definition 2.5 Let X be a geodesic metric space, and let ' € X be a subset of X.

Let Aabc be a geodesic triangle in X and let § > 0. Let T (a, b, ¢) be the comparison tripod, and let
h: Aabc — T(a, b, c) be the comparison map. If, for all p € T(a, b, ¢),

(1) diamh~(p) <§or
@) h~1(p) S N5(F),
then Aabc is §-thin relative to F.
Definition 2.6 Let X be a geodesic metric space, § > 0 and let B be a collection of subspaces. The

space X has the §-relatively thin triangle property relative to B if each geodesic triangle A is §-thin
relative to some F € B.
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Figure 1: An example of a triangle which is §-thin relative to some F with its comparison tripod.
Points in the blue part of the tripod have preimages in the triangle which lie in the blue shaded
region. All other points have preimages in the triangle with diameter § like the point p whose
preimages x, y have d(x, y) < §. The fat part (see Definition 2.10) of each side is the subsegment
that intersects the blue shaded region.

See Figure 1 for an illustration of Definition 2.6.

The space X may contain triangles that are 6-thin. By definition, these triangles are §-thin relative to every
element of /3. In the applications, X will usually be a CAT(0) space with a geometric action by a relatively
hyperbolic group G where the elements of 5 are convex subspaces of X that lie in uniformly bounded
neighborhoods of peripheral coset orbits. If (G, P) is a relatively hyperbolic group pair, a CAT(0) space
with a geometric action by G has the relatively thin triangle property relative to B={gPx |ge G, P € P}:

Proposition 2.7 ([26, Theorem 4.1, Proposition 4.2], see also [8, Section 8.1.3]) Let (G,P) be a
relatively hyperbolic group pair and let G act properly and cocompactly on a CAT(0) space X by
isometries. Let x € X be a base point and set

B={gPx|geG, PeP}
Then for some § > 0, X has the §-relatively thin triangle property relative to B.
When X has the relatively thin triangle property relative to B, R = 0 and B’ = {Ng(F) : F € B}, then X
still has the relatively thin triangle property relative to 3.
The notion of fellow traveling will be useful for describing behavior of geodesics that issue from the

same point. Definitions of fellow traveling may vary, so the one that will be used is recorded here:

Definition 2.8 Leto:[ay,a2] — X and B:[b1, b2] — X be geodesics, and let k = 0. The geodesics « and
B k-fellow travel for distance D if d(a(a1 +1),B(b1+1t)) <k forall0<t < D.If x :=a(ay) = p(b1)
and « and B k-fellow travel for distance D, then « and B k-fellow travel distance D from x.
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We also introduce tails of a geodesic to help us make geometric arguments:

Definition 2.9 Let y be a geodesic in X, let p be an endpoint of y, and let k = 0. The k-tail of y at p is
the geodesic subsegment of 7' consisting of all x € y so that d(x, p) <k.

Definition 2.10 Let X be a CAT(0) geodesic metric space with triangles that are §-thin relative to .
Let A C X with vertices a, b, ¢ with comparison map h: Aabc — T(a, b, c). Let L, be the closure of
the leg of the tripod 7' (a, b, ¢) that contains /(a). Let Thin, := {x € h~1(L,) : diam A~ (h(x)) < §}.
The corner segments of A at a are the two closures of the parts of Thin, in each side and the corner
length is the length of a corner segment at a.

The fat part of the side ab C A in A is ab \ (Thin, U Thiny).

The corner segments at a are subsegments of the sides issuing from a that §-fellow travel. Each of these
segments have the same length, which is defined to be the corner length. If A is §-thin relative to Ba € B,
the fat part of each side of A is the maximal subsegment that does not lie in any of the corner segments
and hence lies in Ns(Ba). Note that the fat part of a side may be empty. Since X is CAT(0), each corner
segment or fat part of a side is connected.

A (A, €)-quasigeodesic in X is a (A, €)-quasi-isometric embedding of a (possibly unbounded) interval in
the real line in X, see [7, Definition 1.8.22] for details.

Quasigeodesic triangles in the Cayley graph of a relatively hyperbolic group also satisfy a thinness
condition which is used to obtain Proposition 2.7:

Theorem 2.11 ([26, Theorem 4.1], originally due to [8]) Let (G, P) be a relatively hyperbolic group
pair with Cayley graph I'. For all A = 1, € > 0 there exists a § > 0 such that if A is a (A, €)-quasigeodesic
triangle in " with sides cg, c¢1, ¢, either

(1) there exists a point p that lies within % of each side or

(2) there is a peripheral coset gP so that each side c; of A has a subpath ¢] where ¢, € N3(gP) and
the terminal endpoint of ¢] and the initial point of ¢! 41 (indices mod 3) are within distance § of
each other.

Lemma 2.12 is simple but is instrumental for working with relatively thin triangles.

Lemma 2.12 Let X be a CAT(0) space. Let Aabc be a geodesic triangle in X that is §-thin relative
to F. Letab, bc, ac denote the sides of Aabc. If the length of the fat part of ac in Aabc is bounded
above by kg = 0, then the length of the fat part of bc and the length of the fat part of ab ditfer by at
most kg + 36.
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Figure 2: Applying the triangle inequality four times gives a bound on the difference between the
length of [pap, ppa] and the length of [ppe, pep] in terms of |[pac, peall. 3.

The proof involves four applications of the triangle inequality. See Figure 2 for a schematic. With
Lemma 2.12, a bound on the fat part of one side of a relatively thin triangle helps control the lengths of
the fat parts of the other two sides. This technique will be used repeatedly, particularly in Section 5.

Relatively hyperbolic groups interact nicely with passing to finite index subgroups:
Proposition 2.13 [3, Notation 2.9] Let G be a group and let P be a finite collection of subgroups of G.

Let H <1 G be a finite index normal subgroup. For each P € P, let §o(P) = {gPg ' N H | g € G} and
let £(P) be a set of representatives of H -conjugacy classes in Eg(P). Let P' = | |pep E(P).

The pair (G, P) is relatively hyperbolic if and only if (H,P’) is relatively hyperbolic.
There is also a generalized version of quasiconvexity for relatively hyperbolic groups.

Definition 2.14 [16, Definition 6.10] Let (G, P) be a relatively hyperbolic group pair. Let H < G.
Let S be any finite set such that S U P generates G. Suppose there exists « (.S, dg) such that for any
f(G, P, S)-geodesic y with endpoints in H, y NG lies in N (H ) with respect to ds. Then H is relatively
quasiconvex in (G, P).

There are other equivalent definitions which are discussed in [16]. The definition is also independent of
the choice of finite relative generating set (see [16, Theorem 7.10]). Relative quasiconvexity will only be
needed for the peripheral subgroups:

Proposition 2.15 Let (G, P) be a relatively hyperbolic group pair. Then every element of P is relatively
quasiconvex in G.

Proof In f(G, P, S) every P € P has diameter 1. O
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3 Graphs of groups and hierarchies

3.1 Graphs of groups

A graph of groups (together with an isomorphism from the fundamental group) is a way of decomposing
a group along a finite number of splittings and HNN extensions. Further decomposing the vertex groups
as graphs of groups, decomposing the resulting vertex groups as a graph of groups again and continuing
this process a finite number of times yields a kind of “multilevel graph of groups” called a hierarchy
which will be defined in Definition 3.6.

Definition 3.1 A graph of groups (I, y) consists of the following data:
(1) a connected finite graph I' = T'(V, E) where V is the vertex set of I" and E is the oriented edge
set of I' with an involution e — e that switches the orientation of each edge,
(2) an assignment map x:V U E — Grp that assigns a group to each vertex and edge,
(3) foralle € E, y(e) = yx(e),

(4) attachment homomorphisms V. : y(e) — x(t(e)) where ¢ (e) is the terminal vertex of the edge e.

I' is a faithful graph of groups if the attachment homomorphisms 1, are injective.

A graph of spaces is constructed like a graph of groups, except that the assignment map y assigns a (path
connected) topological space instead of a group to each edge and vertex. The attachment homomorphisms
are replaced by continuous attachment maps, and a faithful graph of spaces has my-injective attachment
maps. A graph of spaces realization of a space X for a graph of spaces (I', y) is a triple (I, y, g) where ¢ is
a homotopy equivalence from X to the mapping cylinders of the attachment maps glued along vertex spaces.

Some authors, for example Wise and Serre, take faithfulness to be a part of the definition of a graph of
groups. Not requiring faithfulness makes it easier to define graphs of groups in terms of graphs of spaces.
For the applications in Section 7, graphs of groups will be constructed first without showing that they are
faithful, but these graphs of groups will turn out to be faithful.

If (T, y) is a graph of groups, and 7 is a maximal tree in I", then 71 (I, T') will denote the fundamental
group of the graph of groups T" with respect to the tree T. See [28] for further details about graphs of

groups.

A graph of groups structure is the group-theoretic analog of a graph of spaces realization:

Definition 3.2 Let G be a group, let (T, y) be a graph of groups where T is a maximal tree and let
¢: G — 71 ([, T) be an isomorphism. The triple (I, ¢, T') is a graph of groups structure on G.

The structure (I', ¢, T') is degenerate if T is a single vertex labeled with G and ¢ is the identity.
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Figure 3: A graph of spaces realization of a genus-2 surface where X ; is a punctured torus,
together with the corresponding graph of groups obtained by applying the m; functor.

While a graph of groups structure determines a splitting of G, the choice of isomorphism and maximal
tree affects the precise splitting. In many cases, it suffices to give a splitting of G up to conjugacy which
will be the case in the examples below. When the splitting is given up to conjugacy, the choice of maximal
tree also becomes unnecessary.

Example 3.3 Figure 3 shows a graph of spaces decomposition of a genus-2 surface and a graph of
groups splitting of the fundamental group induced by the graph of spaces decomposition.

Example 3.4 If X, is a closed surface of genus g, then a pants decomposition of X induces a splitting
of w1 X, as a graph of groups where the vertex groups are isomorphic to a free group of rank 2 and the
edge groups are infinite cyclic groups.

Graph of groups structures interact naturally with finite index normal subgroups. The following is
[3, Proposition 3.18] but is originally due to Bass [4].

Proposition 3.5 Suppose G has a graph of groups structure (I', ¢, T), H <1 G and H is finite index in G.
Then H has an induced graph of groups structure (f‘, 5, T') so that:

(1) Every vertex group of (F, T') has the form (K8 N H) < K& and is finite index in K& for some
vertex group K of (I', T') and some g € G.

(2) Every edge group of (T', T') has the form (K& N H) <1 K¢ and is finite index in K& for some edge
group K of (I', T') and some g € G.
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3.2 Hierarchies
Hierarchies of groups are inductively defined multilevel graphs of groups:

Definition 3.6 A hierarchy of groups of length 0 is a single vertex labeled by a group.

A hierarchy of groups of length n is a graph of groups (I',, y») together with hierarchies of length n — 1
on each vertex of I',.

If H is a length-n hierarchy of groups, the n™ level of H is the graph of groups I',. For 1 <k < n, the
(n—k)™ level of # is the disjoint union of the (n—k)™ levels of the hierarchies on the vertices of T'.

The terminal groups are the groups labeling the vertices at level 0.

It will be useful to think of graphs of groups as length-1 hierarchies. Realizing a group as a hierarchy is
similar to finding a graph of groups structure for that group:

Definition 3.7 Let G be a group, H be a hierarchy of length n. Let (I',, y») be the level-n graph of
groups. When n = 0, a hierarchy for G is a single vertex labeled by G. If n = 1, a hierarchy for G is H
together with a graph of groups structure (I',, ¢, T') for G so that for every vertex v of I';,, the hierarchy
on length n — 1 on v is a hierarchy for the vertex group y,(v). Let P be a collection of subgroups of G.
The hierarchy structure terminates in P if every terminal group of H is conjugate to ¢ (P) for some P € P.

It will often be convenient to forget the choice of maximal tree and only give a hierarchy structure for a
group up to conjugacy. In general, hierarchies will be allowed to contain degenerate splittings, but in
order to obtain nontrivial results, it will be necessary to ensure that at least one of the splittings in the
hierarchy is nondegenerate.

Wise’s hierarchies in [30] permit only one-edge splittings rather than allowing a graph of groups splitting
for each vertex group in the hierarchy. The hierarchies in Definition 3.7 can be converted to hierarchies with
one-edge splittings for each vertex group at the expense of increasing the length of the hierarchy. Wise’s
hierarchies also terminate in the trivial group while Definition 3.7 allows arbitrary terminal groups. In prac-
tice, the goal in Section 7 will be to (virtually) find a hierarchy for a relatively hyperbolic group (G, P)
that terminates in groups isomorphic to those in the induced peripheral structure. Section 8 will explore
what happens to the hierarchy after quotienting out finite index subgroups of the peripheral subgroups.

A hierarchy of spaces and a hierarchy realization for a space X can be defined analogously by replacing
groups in Definition 3.6 with topological spaces and replacing graph of groups structures by realizations
in Definition 3.7.

Malnormality is an important group property which will play a role in Section 8 and is useful for
amalgamating virtually special groups to make new virtually special groups (see [19]).

Definition 3.8 Let G be a group and let H < G. The subgroup H is malnormal in G if forall g€ G\ H,
g 'Hg N H = {1}. Similarly, H is almost malnormal in G if forall g e G\ H, |g"'Hg N H| < o0.
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Malnormality also extends to collections of subgroups. Let P be a collection of subgroups of G. The
collection P is (almost) malnormal in G if for all g € G and P, P’ € P either g~ Pg N P’ is trivial
(finite) or P = P’ and g € P.

For example, if (G, P) is arelatively hyperbolic group pair and G is finitely generated, then the collection P
is almost malnormal in G by Proposition 2.2.

Definition 3.1 (graphs of groups) and Definition 3.6 (hierarchies) are very flexible, but in practice, some
further restrictions will be needed to ensure that graphs of groups and hierarchies produce useful splittings:

Definition 3.9 Let (I, y) be a faithful graph of groups and let (I', ¢) be a graph of groups structure
(up to conjugacy) for a group G.
(1) T is quasiconvex if every edge attachment map is a quasi-isometric embedding into 77 (T").
(2) T is (almost) malnormal if for every e € E, the image of the attachment homomorphism ¥, in
1(T") is (almost) malnormal in 71 (T").

Let ‘H be a hierarchy for G.
(1) H is faithful if every graph of groups at every level of H is faithful.

(2) H is quasiconvex if every edge group of every graph of groups at every level of H quasi-isometrically

embeds in G.

(3) H is (almost) malnormal if every edge group of every graph of groups at every level of H is
(almost) malnormal in G.

It may be possible to give a reasonable weaker definition of quasiconvex (or malnormal) hierarchy by only
requiring an edge group G, of a graph of groups H in ‘H to be quasi-isometrically embedded (malnormal)
in each adjacent vertex group, but the stronger definition given here will be needed in Section 8.

Here are some examples to help illustrate the definition of a hierarchy:
Example 3.10 A splitting of the fundamental group of a hyperbolic surface group can be realized along
quasiconvex infinite cyclic subgroups by using a pants decomposition. The splitting can be achieved

either as a sequence of 1-edge splittings to create a hierarchy or can be achieved a single multiedge graph
of groups splitting.

There are iterated hierarchy splittings that cannot be realized by a single graph of groups splitting:

Example 3.11 Figure 4 shows a length-2 hierarchy for the fundamental group of a genus-2 surface, 3.
Cuts are made along the both the blue and green simple closed curves which intersect, so the iterated
splitting of the fundamental group cannot be accomplished by a graph of groups (length-1 hierarchy).

Other notable examples of hierarchies are the Haken hierarchy for Haken 3-manifolds, see [22, Section 9.4],
and the Magnus—Moldvanskii hierarchy for one-relator groups, see [30, Chapter 19].

Algebraic € Geometric Topology, Volume 25 (2025)



Hierarchies for relatively hyperbolic virtually special groups 4449

F, F

Figure 4: A hierarchy for 71 (2;), the fundamental group of a genus-2 surface X,, where the iterated
splitting of 7r1(X7) cannot be realized by a graph of groups. The first splitting is over the infinite
cyclic subgroup of 7 (2,) corresponding to one of the blue copies of S!. The resulting vertex spaces
are punctured tori whose fundamental groups are rank-2 free groups. Cutting along the green arc in
each punctured torus makes an annulus. Then the fundamental group of a punctured torus splits as
an HNN extension of the fundamental group of an annulus (Z) over the trivial group (corresponding
to the green arcs in each annulus which are glued together to make a punctured torus).

Proposition 3.5 extends to hierarchies by induction on the length of the hierarchy.
Corollary 3.12 Suppose G has a hierarchy H and H is a finite index normal subgroup of G. Then H has
an induced hierarchy H' such that the length of H is the length of H' and:

(1) Every vertex group at level i of the hierarchy H' is of the form K& N H which is finite index and
normal in K& for some vertex group K of H at level i and some g € G.

(2) Every edge group at level i of the hierarchy H' is of the form K& N H which is finite index and
normal in K¢ for some edge group K of H at level i and some g € G.

Lemma 3.13 follows from Corollary 3.12:

Lemma 3.13 IfH is a quasiconvex hierarchy for G and Gy is a finite index normal subgroup of G, then
the induced hierarchy on Ho on Gy is quasiconvex.

The definition of a quasiconvex hierarchy for a group G only requires that the edge groups are quasi-
isometrically embedded in G; when a graph of groups (I, ¢, T') structure for G is quasiconvex, the vertex
groups are quasi-isometrically embedded as well.
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Lemma 3.14 Let (I, T) be a graph of groups structure for G. If the edge groups of I' are quasi-
isometrically embedded in G, then the vertex groups of I" are quasi-isometrically embedded in G.

Here is a rough sketch of the proof of Lemma 3.14. A Cayley graph A(G, S) of G coarsely looks
like a “tree of spaces” whose underlying (infinite) graph is the covering tree of (I', ') where the edge
spaces are Cayley graphs of edge groups and the vertex spaces are Cayley graphs of vertex groups.
If Ay := A(Gy, Sy) is one of the vertex spaces, the coarse tree structure ensures that if a A(G, S)-
geodesic shortcut y between two points in A, exits A, through an edge space A., it must return
through A.. If y enters and exits A, at points pe,, pél seeesDems pém, let y; be the image (in A(G, S)) of
a A-geodesic between p,; and péi. There exist A = 1 and € > 0 so that every y; is (A, €)-quasigeodesic
in A(G, S). We can build a new path p from y by replacing the subsegment of y from p,; to p;i with y;.
Then p lies entirely in the image of A, and hence p is at least as long as the A,-distance between its
endpoints. Now the length of p is at most A|y| + €, or equivalently, |y| = %| po| — €. Thus y cannot be
much shorter than the shortest path in A, between the endpoints of y.

3.3 Fully P-elliptic hierarchies

Given a relatively hyperbolic group pair (G, P) and a hierarchy H for G, the goal in Section 8 will be to
strategically find a quotient of G that has a hierarchy induced by # and inherits a relatively hyperbolic
structure from (G, P) that is also compatible with the induced hierarchy structure. Theorem 1.2 can then
be used to show the resulting quotient is virtually special. To ensure that this happens, some additional
restrictions must be imposed on the interactions between the edge and vertex groups of the hierarchy and
the peripheral subgroups of G.

Definition 3.15 Let H be a hierarchy for a group G and let P be a collection of subgroups of G. Let V
be the vertex groups of H. For each H € V, let m1(I'y, ¢ g, Th) be the graph of groups structure for H
induced by the hierarchy H. The hierarchy # is P-elliptic if whenever there exists a g € G such that P& :=
gPg~! C H €V, then there exists an 1 € H such that hP&h~! is contained in some vertex group of I'z;.

A P-elliptic hierarchy is fully P elliptic if whenever E is an edge group in H, then for all g € G, either
P& N E is finite or P& < E.

When H is a fully P-elliptic hierarchy for G and Gy is a finite index normal subgroup of G, the induced
hierarchy from Corollary 3.12 for H is also fully P-elliptic in the induced peripheral structure provided
by Proposition 2.13:

Proposition 3.16 Suppose that Gy is finite index normal in G and let (G, Po) be the peripheral structure
induced on G by Proposition 2.13. If G has a fully P-elliptic hierarchy, then the induced hierarchy H¢
of Gy is fully Py-elliptic.

Proposition 3.16 follows immediately from the explicit characterizations of the edge and vertex groups of
the induced hierarchies in Corollary 3.12 and from the explicit description of the induced peripheral structure.
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4 The relative fellow traveling property

4.1 CAT(0) relatively hyperbolic pairs

The main result of the section is Theorem 4.7. In [14], Hruska proved that piecewise Euclidean 2-
complexes satisfy a relative form of quasigeodesic stability called the relative fellow traveling property.
In [17, Proposition 4.1.6], Hruska and Kleiner showed that CAT(0) spaces with isolated flats have the
relative fellow traveling property relative to the isolated flats. Earlier, Epstein proved a version of relative
fellow traveling for truncated hyperbolic spaces associated to finite volume cusped hyperbolic manifolds
[9, Theorem 11.3.1]. Theorem 4.7 is a version of relative fellow traveling for CAT(0) spaces with a proper
cocompact action by a relatively hyperbolic group. Theorem 4.7 is presumed to be known to experts
based on the works of [8; 14; 15; 17] and others, but the exact formulation used here proved difficult to
find in the literature. Therefore, a proof is provided here.

Definition 4.1 Let X be a CAT(0) space, let § = 0, let f: R*® — R>? be a function and let B be a
collection of subsets of X. The pair (X, B) is a (8§, f)-CAT(0) relatively hyperbolic pair if

(1) every geodesic triangle in X is §-thin relative to some F € B,

(2) forall r =0 and Fy, F> € B with Fy # F,, diam N, (Fy) NNy (F2) < f(r).
We say that a (8, f)-CAT(0) relatively hyperbolic pair has the L-quasiconvexity property if there exists

L = 0 so that each F € B is L-quasiconvex in the sense that any X -geodesic with endpoints in F' lies
in Nz (F). The subspaces B are called peripheral spaces.

An immediate consequence of CAT(0) geometry is the following useful fact that we will use repeatedly:

Observation4.2 If Y is an L-quasiconvex subspace of a CAT(0) space X, then for any R =0, N (7) is
also L-quasiconvex. In other words, if x, y € Mg (?), then any geodesic between x, y lies in Ng+ L(?).

Definition 4.3 Let ()7 ,Bo) bea (8, fo)-CAT(0) relatively hyperbolic pair, and let R > 0. An R-thickening
of Bp is a collection, B, of subspaces of X so that there exists a bijection By € By <> B € B where
By C B, and B € Ngr(By).

Proposition 4.4 Let ()7 ,Bo) be a (8, fo)-CAT(0) relatively hyperbolic pair, and let B be an R-thickening
of By. Let f(r) = fo(r + R). Then (X, B) is a (8, f)-CAT(0) relatively hyperbolic pair.

Proof Let Fy, F» € B with F| # F. Then there exist Fi o, F2,0 € Bop so that F; € Nr(F1,0) and
F> S NRr(F2,0). Then

A geodesic triangle A in X is g-relatively thin relative to some Fy in By. Since Fy is contained in
some F € Belement, A is §-relatively thin relative to F'. O
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Definition 4.5 (similar to [17, Definition 4.1.4]) Let ()7 ,B) be a (8, f)-CAT(0) relatively hyperbolic
pair. The pair ()7 , B) has the relative fellow traveling property if for all A = 1 and € = 0, there exist
U,V = 0 depending on A, € such that for any (4, €)-quasigeodesics o: [0, t5] — X and y: [0, sy] — X
with the same endpoints, there exist partitions

OZS()S.S'lS"'SSZn—i-l:Sy and 0=t <1 <H<---Zthyt1=1s

such that

(1) foralli,d(y(s;),o(t;) <U,
(2) if i is even, then duaus(y([si. si+11). 0 ([ti, ti+1])) S U or
(3) ifiisodd, y([si,si+1]),0([ti, ti+1]) S Ny (F;) for some F; € B.

For a fixed (A4, €), we say that (4, €)-quasigeodesics (U, V)-fellow travel relative to B.

All the CAT(0) relatively hyperbolic pairs we consider in later sections are of the form considered in the
next proposition:

Proposition 4.6 Let (G, P) be a relatively hyperbolic group pair so that G acts geometrically on a
CAT(0) cube complex X. Letxe X bea basepoint. Let Bp = {gPx :g € G, P € P}, and let B be
any R-thickening of Bp. There exist 8, L(R) =0 and f: R>® — R>? so that (X, B) is a (8, f)-CAT(0)
relatively hyperbolic pair that has the L(R)-quasiconvexity property.

Proof By [26, Theorem 1.1], for each P € P, the convex hull of Px lies in a bounded neighborhood
of Px. Since P is finite, there is an L = 0 so that the convex hull of gP x lies in N7 (gP x). Thus any
geodesic between points in gP x lies in N7 (gP x). By Observation 4.2, any R-thickening will have the
(L+ R)-quasiconvexity property because the R-neighborhood of each B € B is L-quasiconvex. Let Bgp
be the convex hull of gPx € Bp. Since P is finite, there is an R (independent of g, P) so that each
Bgp € NR(gPx). Hence B = {Bgp : g € G, P € P} is an R-thickening of Bp. By Proposition 4.4,
it suffices to show that there exist § > 0 and fp: R®% — R>? 50 that ()7, Bp) is a (8, fp)-CAT(0)
relatively hyperbolic pair. Proposition 2.7 implies Definition 4.1(1) holds. Corollary 2.3 ensures that
Definition 4.1(2) holds. O

Theorem 4.7 Let (G, P) be a relatively hyperbolic group pair where G acts geometncal]y on a CAT(0)
space X with basepoint x € X.IfBis any R-thickening of {gPx | g € G, P € P} then (X B) has the
relative fellow traveling property.

The remainder of this section is devoted to the proof of Theorem 4.7. The proof of Theorem 4.7 is
completely self-contained, so a reader who is not interested in the technical details may wish to skip to
the next section. We now set the following standing hypotheses for the remainder of Section 4:

Algebraic € Geometric Topology, Volume 25 (2025)



Hierarchies for relatively hyperbolic virtually special groups 4453

Hypotheses 4.8 Let (G, P) be a relatively hyperbolic group pair where G acts geometrically on a
CAT(0) cube complex X.Fix a basepoint x and let B be an R-thickening of {gPx | g € G, P € P}. Fix
§=0,L>=0and f:R>® — R>° g0 that (X, B) is a (8, f)-CAT(0) relatively hyperbolic pair with the
L-quasiconvexity property.

4.2 Some geometric features of (f , B) under Hypotheses 4.8.

In this section, we establish some geometric facts about the (8, f)-CAT(0) relatively hyperbolic pair (55 , B).

Definition 4.9 Let (f ,B) be a (8§, f)-CAT(0) relatively hyperbolic pair. Let y C X and let i =0. The
u-saturation of y (with respect to ) is

Sat, (y) = J{B e B:yNN,(B) # @}.

In the following, y will usually be a quasigeodesic.
The following is a consequence of [8, Lemma 8.10] and the Milnor-Svarc lemma:

Proposition 4.10 Under Hypotheses 4.8, for every A = 1 and € = 0, there exists uy ¢ so that if y, o are
(A, €)-quasigeodesics with the same endpoints, then

oSN U( U Ny ().

FESatu)he(y)

Definition 4.11 Let X be a geodesic metric space and let B be a collection of subspaces of X.Let BeB,
A=1ande>0. Let A be a (A, €)-quasigeodesic triangle. Let y1, y2, y3 be the sides of A. We say that
A is coarsely &-thin relative to F € B if

(1) there exists a point p € X so that d(p,y1),d(p,v2),d(p,y3) < % or

(2) there exist subpaths ¢; C y; so that ¢; C NE(F ) and the distance between the terminal point of ¢;
and the initial point of ¢;4+; (where indices are taken mod 3) is less than £.

Theorem 2.11 and the Milnor-Svarc lemma imply:

Proposition 4.12 With Hypotheses 4.8, for all A = 1 and € = 0, there exist §, ( so that if A is a
(A, €)-quasigeodesic triangle, then there is an Fa € B so that A is coarsely 8y, ¢-thin relative to Fa.

To simplify the proof of relative fellow traveling, we can make the following reduction:

Proposition 4.13 Assume Hypotheses 4.8. To show that ()7 , B) has the relative fellow traveling property,
it suffices to prove Definition 4.5 holds in the special case that y is geodesic.

The proof of Proposition 4.13 is essentially identical to the reduction step in [14, proof of Theorem 13.1].
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Proposition 4.10 suggests it might be possible for a quasigeodesic to remain far from a geodesic with
the same endpoints by passing from one peripheral space to another. However, Lemma 4.14 shows that
such a quasigeodesic must always come close to the geodesic with the same endpoints when transitioning
from one peripheral space to another:

Lemma 4.14 Given u = 0, A = 1 and € > 0, there exists Dn(u,A,€) =  so that if o is a (A, €)-
quasigeodesic, y is a geodesic with the same endpoints as o, and o (t) € N}, (F1) N N (F>) for some
distinct Fy, F> € Saty, (y), theno(t) € Np(u,1,e)(¥)-

Proof There exist pi, ps € y so that p; € N (F;). Let 11, 72 be geodesics so that 7; joins o(¢) to p;.
By Observation 4.2 and the L-quasiconvexity of F;, 7; € N, 41 (F;). Let A be the geodesic triangle
with sides 71, 72 and the subpath of y joining p; to p>. Then A is §-thin relative to some F € B.

Recall corner segments and fat parts of relatively thin triangles from Definition 2.10. Let t; and 7/ be the
corner segments of A at o (¢). Observe that 7] SN, 4 1. (F1) N4 1.4+5(F2), so 11| =|75| < f(u+L+9).

Up to exchanging the indices of Fi, F>, we may assume that F' # F7.

The fat part of 77 in A lies in Ng(F) NNy (F1), so it has length at most f(u + L + §). The fat part
of 71 also intersects Ng(y). Therefore, d(o(t),y) <2f(u+ L +8) + 6.

If necessary, we may enlarge Dn(u, A, €) to ensure Dn(u, A,€) = . |
4.3 Relative fellow traveling

Hypotheses 4.15 For the following subsection, we adopt the following baseline hypotheses in addition
to Hypotheses 4.8:

(1) FixA>=1lande=>=0.

(2) Leto:[0,t5] — Xbea(A, €)-quasigeodesic triangle and let y: [0, 5, ] — X bea geodesic that has
the same endpoints as o.

(3) Enlarge § from Hypotheses 4.8 so that all (A, €)-quasigeodesic triangles are coarsely §-relatively
thin relative to some F € B (recall Definition 4.11 and Proposition 4.12) and all geodesic triangles are
d-relatively thin relative to some F € B.

(4) Letu = uj ¢ as in Proposition 4.10.

(5) We abuse notation slightly and use Dy = Dn(u 4+ € + 1,1, ¢€) (see Lemma 4.14). Note that
Dhzu+e+1=>u.

(6) Lete' =€e+2Dn.

(7) Choose D > 8, ¢ + € where §) . is a constant such that all (A, €’)-quasigeodesic triangles are
coarsely &, -thin relative to some F € B (recall Proposition 4.12).

8) Letl=> f(D).
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We first obtain a stability result for (A, €)-quasigeodesics with endpoints in N (F) for some F € B:

Proposition 4.16 Letq = 0. There exists K(q) = 0 so thatif«: [ay,az] — Xisa(d,e) -quasigeodesic
witha(ay), a(az) € Ng(F) for some F € B, then a([a1, az]) € Nk ) (F).

Proof Let §8:[b1,bs2] — X bea geodesic with B(b1) = a(ay1) and B(bz) = a(az). Since Ny (F) is L-
quasiconvex by Observation 4.2, B C Ny 1 4(F). Let y = a(x) for some a1 < x <aj. Leta; = a([ay, x])
and let o = a([x, az]). The sides «;, «;, B define a (4, €)-quasigeodesic triangle that is coarsely thin
relative to some F’ € B.

If there exist p, a(a;), a(a,), and (xp) € B so that d(p. (a;)). d(p.a(ar)).d(p. B(xp)) < 5. then
|x —a;| < la;j —ar| < A6 +¢€). Then

d(B(b), y) < d(alar), y) +d(@(ar), B(xp)) < A(|x —ar]) + € +8 < A% + de + € +3.

If F = F’, then there exist a; < x < a, so that a(a;), a(a,;) € N3(F) and d(«(a;), a(ar)) < 5. Hence
laj — x| < |a; —ar| < A8 +€). Then d(a(ay), y) A28+ A% +€,50 y € Ny j25452¢e(F).

Finally, if F # F’, then there exist a;, a,, by, b, with a; < x < a, so that d(a(a;), B(b;)) <6,
(ae(ar), B(br)) <6 and B([by, br]) © Ng+1(F) N Ns(F'). Therefore

d(a(ar), a(ar)) < d(B(by), B(br)) +28 < f(g+ L +5) +25.

Following computations similar to those in the previous cases,

la; — x| <laj —ar| SAF(g+ L +8)+28) +e,
d(a(a)).y) SA(f(g+L+8)+28)+ A% +e,
d(B(y).y) A2 (f(g+ L +8)+28) + A% +e+36.

Therefore, y € Ny 1422(f(g+L+8)+28)+A2e+e+5 (F). Taking K(g) to be the maximum of the constants
generated in the three cases yields an appropriate constant. a
Here is a brief overview of our strategy for the rest of this section:

(1) We will partition [0, #5] into subintervals so that on each subinterval either ¢ is near an element of B
or o does not stay close to any element of B for long (Proposition 4.17).

(2) In Lemma 4.18, we alter our partition of [0, z5] by widening the intervals where o remains near some
element of F so that o is near y at the endpoints of these intervals. In exchange, we need to calculate
looser upper bounds (Proposition 4.19) on how close o is to an element of B on these intervals.

(3) On what remains of the subintervals where o is not near an element of 3, we prove that ¢ lies within
bounded Hausdorff distance of a part of y (Proposition 4.21).
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(4) We use this information to find subintervals of [0, s, ] that cover [0, s,,] where y is either close to
an element of B or within bounded Hausdorff distance of . However, these subintervals may overlap.
In Propositions 4.22 and 4.24, we show that overlapping can be controlled.

(5) In Propositions 4.25 and 4.26, we rearrange the interval endpoints and delete some subintervals of
[0, 5] and [0, s,] to eliminate any overlap and use the bounds found in Propositions 4.22, 4.24 and 4.25
to ultimately construct a partition that witnesses relative fellow traveling.

In the following, we will use superscripts to help track the stages of partitioning and repartitioning [0, #5]
and covering [0, s, ] by subintervals.

Proposition 4.17 There exists a partition 0 =10 <10 <19 <---<t), | =ts and Fo, Fy,..., Fy_1 €B
with the following properties:

(1) diam{r € [15;.19; ,11:0(t) e Np(F)} < { forall F € B.

(2) U(I%H)» U(tg,‘.g_z) € Np+e(Fi).

(3) Forall F € B, there do not exist t ; < t20i+1 < tgi—i-Z < t;f so thato (1), G(I;f) € Nu+e(F).

4) Fj # Fy for j #k.

It turns out the choice of £ is somewhat arbitrary, but it does affect how much the partition produced by
Proposition 4.17 will need to be altered to give partitions of [0, 75] and [0, s,,] that witness relative fellow
traveling.

Proof Letm € N so that (im — 1){ <ty < mf. We proceed by induction on m.

If |t5| < £, then setting tg =0 and t? = t, suffices.

Assume that Proposition 4.17 holds for quasigeodesics parameterized over intervals of length less than
(m—1)¢. Find 0 < 1— < t4 < tg so that |ty — 1| realize suppegila —b| : 0(a),0(b) € Np(F)}.
If |t —t—| < £, then t(()) =0 and l? = t4 suffices.

Otherwise, by the inductive hypothesis, we obtain partitions
_ 0,0 0 _ _ .0 0 0 _
0—t0st1§"'$12j+1—t_ and t+—t2j+2§t2j+3§"'$t2n+l—tg

so that diamte[tgi’tgﬂrl]{a(t) eNp(F)}<{forall FeB,|tzits—tri+1| = ¢ and 0(t§i+1)’ O'(Zgi+2) €
Npe(F;) for some F; € B. Combining these partitions into a partition of [0, 7] immediately satisfies
the first two requirements. We obtain item (3) because D = €’ = D > u + € (recall Hypotheses 4.15),
the inductive hypothesis and |4+ — 7| is determined by a supremum. However, we need to check that
if ky < j and ky = j (with k1 # k2), then Fy| # Fy,. If Fy, = Fy,, then there exist f; <t1_ <14 <t,
so that o/(7), 0 (t;) € Np(F,) with |ty —t,| > [t- —t4| = £, contradicting hypothesis (3). |

In Proposition 4.17, it is not guaranteed that the o(t](-’) are near y. To remedy this, we widen the intervals
[zgl. L1 tgl. 4] as necessary while shrinking [zgl., zgi Nk
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Lemma 4.18 For0 < j < 2n + 1, there exist tjl so that:

(1) Forall0<i <n,diam{t €[ty;.15;,,,]:0(t) e Np(F)} <L forall F €B.

1,1 1 1
(2) 0=ty <t] S-Sy, Sty =Lo.

0 1 1 0
() 13y Sty Sty;qq Slyigg-

4 Eithertzll. = t21i+1 ord(o(tzll.), y),d(o(tzli+1), y) < Dn.

—9 L.

1 0 1
) Ntgi 41 =il i =i 40l <
Proof For each i, we perform the following procedure to set tzll. . Consider p; =o(tgl. ). By Proposition 4.10,
either p; € Ny (y) or p; € Ny (F) for some F € Sat, (y) (where u is as defined in Hypotheses 4.15). In
the first case, we set tzll. = tgi noting that u < Dn.

Suppose we are in the second case: let t;{t = sup{t € [tgi,tzoiﬂ] co(t) e Ny (F)}. Then |t;§t — t§i| </
by Proposition 4.17. One of the following holds:

J t;‘(‘t = tgi+1 and a(t;ft) € Nyu1e(F) because 2t is a supremum.

ext
* U(Iej);t) € NMutet1(y).

o 0(tF) € Nyter1(F’) for some F’ € F with F' # F.

Indeed, if 7.}, # tgl. 11 then Proposition 4.10 and the fact that t;}, is a supremum ensure either the second

or third possibility must hold. In the case that £, = tgl- 41 set tzli = tzli = tgl. 41~ Otherwise, set

tzll. = z;ft. In this case, either G(l‘zll-) lies in Np, (y) directly or Lemma 4.14 with ;1 = u + € + 1 (recall

Hypotheses 4.15(5)) implies that o(tzll.) € Np,(y).

Proceeding similarly, if a(tgl.H) € Nu+tet+1(y), we set 1211.Jrl = tgi+1' Otherwise, 0(121i+1) e Nu(G)
for some G € Sat, (y). We then set [211'-4-1 = inf{r € [tzll.,tzliH] :y(t) € Ny(G)} where G € Saty, ().
As in the preceding argument, |t21i 1 tgl. 41l < £ and one of the following holds: tzll- 1= tzll. SO
that 0(t21i+1) € Np,(»), 0(t21i+1) immediately lies in Np,(y) or there exists G’ € Sat,(y) so that
U(tle_l) € Nu+e+1(G") N Ny+e(G) € Np (y). In the third case, the final containment follows from

Lemma 4.14 and Hypotheses 4.15(5).
Since [tzll. , tzll. 11l [zgl., zgl. 41, we automatically retain the property that

diam{z € [t5;,15;41]: 0(t) € Np(F)} < ¢
for all F € B. O

We now show that 0([t21i 41 tzll. 4»]) remains boundedly close to F;.

Proposition 4.19 There exists Dgepn = 0 so that for all 0 < i <n, a([tzll. 410 tzli +2]) S NDy (Fi). and
if1}; = 13;41- d(0(13).7) < f(Daep) + D
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Proof Since G(IZI_H) € Np+e(Fj) and |t21+1 t21i+1| <, G(IZIH_I) € Nptetrote(Fi). Similarly,
U(ZZH_Z) € Nptetrt+e(Fi). Set Dgepn = K(D + AL + 2¢) where K(D + AL 4 2¢) is determined (as a
function of A, €, £) as in Proposition 4.16.

Now suppose 1211. By Proposition 4.10, 1ft1 ¢ Nu(y), there exists F € B so that a(t ) ENu(F).

21+1

Suppose first that F # F;. Let tp = sup{t € [0,15] : o([¢ zll,t]) C Ny (F)}. By Lemma 4.18(3),
t2z < t21 1 < t21 1 < t2 1o+ Then Proposition 4.17(3) implies tp < t2 4+ Moreover, F # F; implies that
d(o (t2i+1), 0(tF)) < f(Ddepm). Since {f is a supremum, there existsat > g withd (o (1), 0(tF)) <e+1
so that o (¢) € Ny (y) or o(t) € Ny (F’) for some F’ # F. Hence by Lemma 4.14, d(o(tr),y) < Dn.
Therefore, d(o(tzll.), Y) < f(Dgepn) + Dn.

For the case F # Fj_y set tp = inf{t € [0, 5] : 0([t.1;;]) € Ny(F)} and then proceed using a similar
argument to the case F # Fj. O

We apply the bounds from Lemma 4.18 and Proposition 4.19 to obtain the following.
Corollary 4.20 Let Dendpoints = f (Ddeptn) + Dn = 0. Then d (o (& jl), ¥) < Dendpoints-

We now find sl-1 in [0, s,/] so that y(sl.l) is close to o(tl.l). Let0 < s} < sy be such that d(y(sl) O(ll)) is

at most Dendpoints 1f tjl = tjl 1, or Dn otherwise. If tzli ensure that 521 We may further

_ 1
=l =341

1,1 _ 1 _ 1 _
assume that s, =1, =0, lyps1 =lo and Sope1 = Sy-

Proposition 4.21 There exists Dhausdorfr SO that dhaus(a([séi,séi Jrl]), y([tzll- , s;i Jrl])) < Dhausdorts for all

0<i<n.

Proof If ¢}

241 = tzll., then Dhaysdorft = Dendpoints Suffices. Otherwise, Lemma 4.18 implies

d(o(t3;), y(53:)). d(0 (13 41). (83, 11)) < Dn.

Recall from Hypotheses 4.15 that €’ = € +2Dp. Construct o7, a (A, €’)-quasigeodesic from cr([tzli, 1211. )
by adding geodesics of length at most D connecting O(l‘zll-) and o(tzll. 4+1) o y(s%l.) and y(s%i 1)
respectively.

Let y € o;. Partition o; into 0; and o, so that o; is from y(s%i) to y and o, is from y to a(s;i 4+1)- The
triangle bounded by )/([sél. , séi +1]), 07 and oy is 8, /-coarsely thin relative to some F € B.

There are two possibilities:

Case (there exist points p; € o7, pr € 0, and py in y so that d(p;, pr).d(pr. py),d(p1, py) <8x.¢)
Since o; is quasigeodesic, d(y, p;) < A(A(8; ¢ + €)) + € (a similar computation was carried out in
more detail in the proof of Proposition 4.16). Then d(y,y) < d(y, py) <y +AA (G, +€)) + €.
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Case (there exist p;, p;,,, € 07, pr € 0y and F € B so that the interval of o between p; and p; ,, lies in
Ns, ,(F), d(pr, V([S%i,séiﬂ])) <8y and d(pr, p1) <8; ) Recall that

diam{t € [ty; ., ty; 1] :0(t) € Np(F)} < ¢

sod(py, p1,y) < AL+ 3¢’ where the additional 2¢’ is accounting for the length of the segment linking y(s% ;)
to o(tzli) and the segment linking y(s%iﬂ) to U(IZIH_I). We have that d(y, p;) S A(A(8y ¢ +€')) + €
following the computation from the previous case. Hence

d(y.y) S8 +l+e + A A0 +€)) +€.
From the two previous cases, we determine that d(y, y) is bounded as a function of A, €'.

Now consider x € y. We will bound d(x, o). Similar to the previous case, divide y|[s 15 into two
i’ I

segments y; from y(s%i) to x and y, from x to y(s;i 1) and consider the quasigeodesic triangle with

sides y;, yr,0; that is §, (/-coarsely thin relative to some F € B. There are two possibilities:

Case (there exist x;, Xr, Xo so that x; € y;, X, € yr, X5 € 0; With d(x;,0),d(x;,x;) <63 ,) Then
d(x;,x) <d(x;,xr) <8, ¢ because y is geodesic. Hence we have

d(x,0;) <d(x,xq) <d(x,x7) +d(x;,x5) <28) ¢
Thus d(x,0) <28, ¢ + Dn.

Case (there exist x;, Xy, Xy and F € B so that x; € y;, X € Vr, Po;, Po, € 0; so that pg,, ps, €
Ns, o (F) and d(x;, po;), d(xXr, po,) <8x.e) Since d(po,.0).d(ps,.0) < €', there exist 17, ¢, so that
Do, =0(11), po, =0(ty) € N(gk.e/Jre/(F). Then by Proposition 4.17 and Lemma 4.18 and the fact that
D > §; ¢ + €', we have |17 —t,| < £. It follows that d(o (;), o (t;)) < AL + €. Hence

d(x,0(1)) <d(x1, %) +d(x1, po,) +d(pe;, 0 (1)) < d(x1, %) + 83 ¢ + €
<d(o(t1).o(tr)) +2€" +38) & <A+ 3€" +35; ¢
Taking the largest constant from the four cases above yields an acceptable value for Dhaysdort- O
Unfortunately, it is possible that j < k and s ]1 > s]i, but this behavior can be controlled:

Proposition 4.22 There exists Dguiorder SO that if j < k and s} > s, then |tj — tx| < Doutorder-

Proof It suffices to consider the case where k is the largest index such that j < k and s} > s]i.

: 1 1 : : 1 1 1 1 1 :
Bly constructllon, d (a(tj ), y(s ; )) < Dendpoints- Slnccle k is largelst, S j1 € [sk, Sk +1] Vlvhere Slk SE/ARE Since
so =0 and s5,, = sy, there exists h— < j so that s liesin [s, s, ] wheres, <s, . .

Case (k is even) Then d (y(s}), U(tjl)) < Dendpoints and there exists 74 € [t,i, t,g +1] such that
d(V(S}L U(t+)) < Dhausdorff~
Hence d(o (tjl), 0(t4)) < Dhausdortt + Dendpoinis- We then obtain
|t]§ - [j1| < |tj1 - t+| < A(Dhausdorff + Dendpoints) + €.
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Case (h_iseven) Thend(y(s;),o(t})) < Denapoins and there exists t— € [r} 1] 1) so that

d(U (t ) V(Sk)) Dhausdorft-

Similar to the previous case, we conclude
1 _ .1 <1t <D D )
|th_ th_+1| = |tk tj | < ( hausdorff + endpomts) +e€.

Case (h_ and k are both odd) Set h— =2i_ + 1 and k = 2i4 + 1. Observe that y([s}l_,s,ll_ﬂ]) C
NDendpnints+Ddepth(E—) and Slmlla‘rly y([sli’ S]i+1]) g NDendpoints+Ddepth (Fl-‘r)

1 <l 1 <sl<sl<
Wehavesh_\sk<s.\sk+1 Ifsh sk\s Sh 1

J then

1
S+
y ([Sk ’ s/ ]) g NDendpoinls+Ddeplh (Fi—) m NDel]dpoinls+Ddeplh (F[+ ) °

Therefore,
d()/(s]i)» V(Sjl)) < f(Dendpoints + Ddepth) and d(O’(ljl), O—(t]i)) < 2l)endpoints + f(Dendpoints + Ddepth)-

Then
|tj1 - l‘]i| < A(2Dendpoints + f(Dendpoints + Ddepth)) +e€.

Otherwise Sp_ SSp S8y S8, S8, 50 that

')/([S]l, S]11_+1]) g NDendpoints+Ddepth(Fi—) n NDendpoinls+Ddepth(E+)'
We see d(o— (t]g)’ U(té_+1)) < 2Dendpoints + f(Dendpoints + Ddepth)- Recal]ing h- < ja then
Iljl - t]i| < |Z]/}7+1 - t]il < /\(2Dendpoints + f(Dendpoints + Ddepth)) + €.

Taking Dgytorder to be the maximum of the bounds found in each of the three cases therefore suffices. O

Definition 4.23 An augmented partition of [0, t5] is a partition
Osn<nm<--<tp=ts
together with choices 0 = sg, s1,52,...,5m = 5y Where s; € [0,s,]. We denote such an augmented
partition by
(1 (t0.50) < (t1,51) <+ < (tm—1,Sm—1) < (tm, Sm).

We call t; <tj41 < -+ <1t amaximal crossover subinterval of the augmented partition (1) if 55, < s; for
all & < j and k is the largest index so that s; < s;.

In Propositions 4.24 and 4.25, we explain how to take an augmented partition like (t(},s(l)) <. <
(tyn+1+S3p+1) and obtain an augmented partition with similar properties that has one fewer maximal
crossover interval from an augmented partition. Then, in Proposition 4.26, we work on (té , sé) <<
(t21n 1 s%n 1) from left to right using Proposition 4.25 to obtain a new augmented partition with similar
properties but no maximal crossover intervals.
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Proposition 4.24 Let t.l < t.l S0 < t,i be a maximal crossover subinterval of an augmented partition
(t0,80) < (t1,51) <+ < (tz,—l Sl,—l) =~ (t ) 1) =~ (]-4-17 }4—1) SR ([Ii’sli) SRS (t21n+1’sén+1)
of [0, ts]. Then

¢ d((f(f;i)a V(S]l)) < ADoytorder + € + Dendpoints’

° d(a(tjl), V(S]i) < ADoutorder + € + D endpoints» and

® dhaus(a([t ! ’ tl])v y([sl ’ Sl])) < ADoutorder +e+ 3Dendp0ints~

k k*"j

Proof Recall d(a(tjl), y(s})), d(a(tj.1+1), y(s}_H)), el d(a(tli), y(sll)) < Dendpoints- By Proposition 4.22,
t! =t} < Doutorder- Thend (o (t}), o(t})) < ADoutorder + €. We can conclude then that d(y(s1), y(s))) <
J k J k Jj k
ADgutorder + € + 2 Dendpoints- Therefore, for all s,l <s< s},

d()/(S), O—(Zli)) < d(y(sjl)’ )/(Sli)) + d(y(s]i)’ O—(t]i)) < Al)outorder +e+ 2Dendpoints + Dendpoims~

Similarly for all 1} <7 <1, |t —1}| < Doutorder 50

d(o (1), U(tli)) < ADoutorder + €.

Therefore,
1
d(o(1), V(Sk)) < ADoutorder + € + Dendpoints-
A similar argument will also show that d (o (t]i), )/(s})) < ADoutorder + € + Dendpoints- O
Proposition 4.25 Let tl <t jl FIPIESEEEES t,i be a maximal crossover subinterval of an augmented partition
(2)  (to.s0) < (t1.51) < (f2,52) <+ +- < (tij—1.8i;—1)
1 .1 1k 1 1

<(t,s) < (t} i1 ]-‘rl) S (e, s7) S < (g1 S2n41)

of [0, t;] so that tg, 11,12, ...,1;;—1 are not contained in any maximal crossover subintervals of (2). There

is a new augmented partition
() 0=(to.50) <+ < (ti;—1.8i,—1) < (1] .50) < (04.5]) < (B 41554 < < (g1 52041
that has the properties

* 10,11, ti—1, tj , zk are not contained in any maximal crossover subinterval of (3),

o d(a(t}), y(s])),d(0(t}), y(s;)) < ADoutorder + € + Dendpoints, and

o dnaus(@ ([t} 12]), y(Isg-5}1)) < ADoutorder + € + 3 Dendpoins-

Proof Since #g,11,12, .. ., ti;—1 are not contained in any maximal crossover subinterval, so < §1 < 52 <

1

- < 5i;,—1 < S and s < s; by hypothesis. Moreover, for all &’ > k, we have sk, =) s,i because

t jl <. < tk 18 a maximal crossover subinterval. Therefore, t] and tk cannot be contalned in a maximal
crossover subinterval of the augmented partition (3).

From Proposition 4.24, we immediately obtain d (o (t,i), y(s })) < ADoutorder + € + Dendpoints and
dhaus(a([tjl , t]i]), V([S]i, SJI])) < ADoutorder + € + 3Dendp0ints- o

Algebraic € Geometric Topology, Volume 25 (2025)



4462 Eduard Einstein

Proposition 4.26 There exist partitions

NN
<}

0=td <t} <t3<t3<---<t’ =t; and 0=s5<s}<s

sothat for0 < j <n':
(D d((f(l‘jz), )/(sz)) < ADoutorder + € + Dendpoints-
(2) For each j, one of the following holds:

o dpas(o ([t ]_H])» y([s7, ]_H])) < ADoutorder 1 € + 3 Dendpoints-
¢ G([ J ’ j+1])’ V([S 2 s]2+1]) g NK(Ddeplh+Dendp()ints)(sz) for some sz € B'

(3) Ifj # j', then F? # FJ.

Proof sketch We can obtain the desired partition by starting with the partition from Lemma 4.18
and then working left to right using Proposition 4.25 to eliminate any maximal crossover subintervals.
Immediately, sé =0, so t(} is not contained in any maximal crossover subintervals. The bound on
d(o (t-z), )/(sz)) is implied by Proposition 4.25. One of the following holds:

2_ 1 2 1 2 1 .
. t =15 t/+1 t21+1,s = s2l and Sj+1 =511 for some i.

2 _ 2 2= 1 .
* I —Z2i+1’6+1 [2i+2’ F =554, and s ]+l = 8,4, for some i.

e Proposition 4.25 implies that dpay (o ([t? s Jrl]), y([s%, 52 +1])) < ADgutorder + € + 3 Dendpoints-

In the first case, Proposition 4.21 implies that djays (o ([t? J A Jrl]) y([s? 57.5; Jrl])) is bounded appropriately.
In the second case, Proposition 4.19 implies that o ([£?, +1]) C NDypy, (Fi), s0 set F j2 = F;. Since the
endpoints of y ([s2, +1]) are within Depdpoints of the endpomts of o([tjz, tjz 1)) and y is geodesic, we have

)/([52, SJZ—Fl]) g NK(Ddepth+Dendpoints) (sz)

Since the F; are distinct, if j # j’, then F j2 # sz, O

In the partition from Proposition 4.26, we call an interval [¢ [ | a Hausdorff interval if

/+1
dhaus(a([ o j+1]) V([S/ ) SJ—I—I])) < ADoutorder + € + 3 Dendpoints-

OtherWlse lf U([J ’ j+1]) y([ J ’ ]+1]) g NK(Ddeplh+Dendpuints)(sz)’ we Call [tjz’tJ2+1] a peripheral
interval.

Theorem 4.7 Let (G, P) be a relatively hyperbolic group pair where G acts geometrically on a CAT(0)
space X with basepoint x € X.IfBis any R-thickening of {gPx | g € G, P € P} then ()7, B) has the
relative fellow traveling property.

Proof By Proposition 4.6, (Y ,B)is a (8, /)-CAT(0) relatively hyperbolic pair and there exists L(R) so
that Hypotheses 4.8 hold.
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Given (A, €)-quasigeodesics y, o with the same endpoints, we can reduce to the case where y is geo-
desic by Proposition 4.13. Proposition 4.26 nearly provides the partition for relative fellow traveling
except that the intervals [¢2, ¢ jz 1] as constructed in Proposition 4.26 do not alternate between Hausdorff
intervals and peripheral intervals. This can be easily remedied by turning any two adjacent Hausdorff

intervals into a single Hausdorff interval. In other words, if [t? s +1] and [t? F Jr2] are both Haus-

J+r
dorff 1ntervals we remove these two intervals from the partition and replace them with the single

]’ J+2 i j+1] and[]_H, j+2] with [S ’ j+2
dhaus(cr([ NE +2]) y([s2, +2])) < ADoytorder + € + 3 Dendpoints in this case. Repeat this process until no

adjacent Hausdorff intervals remain. |

interval [t? ]. Likewise, replace [s2 ]. Tt is easy to check that

5 A relatively hyperbolic combination lemma

The construction of hierarchies in Section 7 is quite similar to the hierarchy constructed in [3]. The goal
of this section is to prove a combination theorem for the relatively hyperbolic setting that will be used to
show the edge groups of the hierarchy are undistorted.

5.1 The attractive property in CAT(0) relatively hyperbolic pairs

The first goal is to improve a CAT(0) relatively hyperbolic pair so that geodesics that stay near a peripheral
space intersect the peripheral space.

Definition 5.1 Let X be a geodesic metric space, let Z be a subspace of X and let Ky : R>% — R>0 be
a function. The subspace Z is Kyy-attractive if for all R = § whenever y is a geodesic with endpoints in
NR(Z) and |y| = Ky (R), then y N Z # @.

We now fix hypotheses for the remainder of the Section 5.1.

Hypotheses 5.2 Suppose that (X, B') is a (8, f7)-CAT(0) relatively hyperbolic pair where every F’ € B
is convex. Let B = {N,5(F') : F’ € B'} so that for some f:R>® — R> (X, B)isa (8, f)-CAT(0)
relatively hyperbolic pair by Proposition 4.4. Fix M = f(66).

Proposition 5.3 Under Hypotheses 5.2, every B € B is (3M +6R+2145)-attractive.
The following result will be used to prove Proposition 5.3:

Proposition 5.4 Assume Hypotheses 5.2, let y be a geodesic and let F € B'. If y has endpoints in N (F),
then diamy N NLs(F) > |y| — (BM + 6R + 96).
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Ay
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p o q

Figure 5: The quadrilateral constructed in the proof of Proposition 5.3.

Proof There is a quadrilateral whose sides are y, two geodesics o1, 02 of length at most R connecting
the endpoints of y to points in F and a geodesic « connecting the endpoints of o1, 03 that are in F.
By convexity, @ € F. Let p be a diagonal so that there are two triangles, A1, Ay, so that A has sides «,
p, o1 as a side and A has sides y, p, 0. Designate vertices p, ¢, r, s so that @ = [p, q], 02 = [¢, ],
y =[r,s], 01 =[p,s], and p = [q, 5] as shown in Figure 5.

Case 1 (Aj is §-thin relative to some F’ # F) Since F' # F and « C F, the length of the fat part of
o in Aq is at most M.

Let p; be the corner segment of p in A at s. Then |p1| < R. Let p, be the fat part of p in A;. The fat
part of o1 in Aj has length at most R, so by Lemma 2.12, |p2| < M + R + 35. Let p3 be the corner
segment of p in Ay at ¢. By construction, p3 € N3 (F).

Let y; be the corner segment of y at s in Ay, let Y, be the fat part of y in A, and let y3 be the corner
segment of y in Aj at r. Observe that y; N N3 (p3) € Nos(F) and

diam y; N Ns(p3) = [v1l—lp1l—lp2l = |y1] = (M + 2R + 35).

If A, is §-thin relative to F, then y, € Ng(F). If A, is §-thin relative to some other element of B,
the fat part of p in A, has length at most |p1| + |p2| + M < 2M + 2R + 3§ because p3 C Ns(F). By
Lemma 2.12,

lya| <2M +2R 438 + R+ 38

because |02| < R. Finally, |y3| < R.

In summary, at most M + 2R + 36 of y; lies outside of N5 (F), at most 2M + 3R + 66 of y; lies outside
of Nps(F), and at most R of y3 lies outside of N55(F), so

diamy N Nps(F) = |y| — (3M + 6R + 99).
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Case 2 (A is §-thin relative to F) Let p1, p2, p3 and yi1, y2, y3 be as in the previous case. Here,
lo1] < R, p2 € Ns(F) since Ay is §-thin relative to F and p3 € Ng(a) € Ng(F). Since y; §-fellow
travels a subsegment of p at s, diam y1 NNg (02U p3) = |y1]|— R because |p1| < R. Since py U p3z SN (F),
diamy; N NL5(F) = |y1| — R. If A, is §-thin relative to some F” # F, the fat part of p in A, has
length at most R + M because its intersection with po U p3 € N5 (F) has length at most M and |p1| < R.
Therefore by Lemma 2.12, |y2| < M + 2R + 3§. On the other hand, if A, is §-thin relative to F, then
y2 € N3 (F) so in both cases, all but a less than M + 2R + 35 subsegment of y, lies in Ng(F).

In summary, diam y1 N N55(F) = |y1| — R, diam y» N N5 (F) = |y2| — (M + 2R 4+ 36) and |y3| < R.
Therefore, by the convexity of N,5(F),

ly "N Nos(F)| = |y| — (M + 4R + 36). |

Proof of Proposition 5.3 Let y be a geodesic with endpoints in Ng(F). Then by convexity, y C
NRy2s(F’) for some F’ € B where F = N,5(F'). By Proposition 5.4, if |y| > 3M + 6(R + 28) + 96,
then y N Nos(F') # @. Noting that F = N,5(F’) completes the proof. O

5.2 A combination lemma for CAT(0) relatively hyperbolic pairs

Maintain the following baseline hypotheses for Section 5.2:

Hypotheses 5.5 Let (Y ,B) be a (§, f)-CAT(0) relatively hyperbolic pair and let M = f(68) as before.
Suppose that every B € B is closed, convex and (3M +6R+2 f(R)+216)-attractive.

In Section 7, we will use Proposition 5.3 to obtain attractiveness for a (8, f)-CAT(0) relatively hyperbolic
pair, and then thicken the peripheral spaces to make a new (8, f)-CAT(0) relatively hyperbolic pair. We
will then prove that the new peripheral spaces are (3M +6R+2 f(R)+214)-attractive. For this reason,
Hypotheses 5.5 are slightly weaker than what would follow from Hypotheses 5.2 and the conclusions of
Proposition 5.3.

Theorem 5.6 Assume Hypotheses 5.5. Let y = biazbzasbs . .. ayb, be a broken geodesic. Let y; be
the geodesic connecting the endpoints of the subpath byasbyasbs . ..a;b; of y. Suppose that:

(1) Foreach1 <i <n, there exists some F; € B so thatb; C F;.

(2) IfF; = Fj, theni = j.

(3) Forl<i<n-—1,]|b;j| =37M + 2506.

(4) Forall2 <i <n,diama; N N3s(F;) <5M + 398 and diama; N N3g(Fi—1) <5M + 396.

(5) Forall2 <i <n,diama; N Ngg(F;) <5M + 576 and diama; N Ngg(Fi—1) < 5M + 576.
Then y, has a length at least |b, | — (24 M +1656)-tail at the endpoint it shares with b, (recall Definition 2.9)
that lies in N»g(Fy,) and for all2 <i < n, |yi| = |yi—1| + |lan| + |bn| — 68 M — 6285.
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Figure 6: One possible configuration of A ll and Al-z in the proof of Theorem 5.6. Corner segments
of triangles at the same point are connected by dotted lines.

Proof In the case n = 1, the proof is straightforward. The proof of Theorem 5.6 is by induction on 7.

Notation 5.7 We now establish notation that will be used throughout the proof of Theorem 5.6.

)

2)
3)
“4)
&)

For each 2 <i < n, let w; be the geodesic connecting the endpoints of the broken geodesic
b1a2b2 e bi_lai.

Foreach2 <i <n, let Al.l be the triangle with sides y;_1, w; and a;.
Foreach2 <i <n, let Al-z be the triangle with sides w;, b; and y;.
Label vertices so that a; = [p;, ¢;] and b; = [q;, pi+1].

Let ¢; be the corner segment of w; in Al.z at q;.

See Figure 6 for a visual representation.

We make the additional inductive assumption that for 1 <i < n, y; has a |b;| — (24M + 1656)-tail at
Pi+1in Napg(Fp).

Proposition 5.8 Ifi > 2 and we assume the inductive hypotheses for the proof of Theorem 5.6, then
there is a point x; € y; so that d(x;, F;i—_1) < 468. Further, |c;| < 12M + 818 (recall Notation 5.7(5)).
When Al.z is 8-thin relative to F;, then the length of the fat part of w; in AL.Z is at most 12M + 816.

Proof Since 1 <i—1<n, y;—1 has alength at least 13M + 855-tail at p; in NV,5(F;—1) by our inductive

assumption.

Case (A 11 is thin relative to F # F;—1) The corner segments of A 11 at p; have length at most 5M + 39§
to avoid violating Theorem 5.6(4) because a more than 5M + 39§-tail of y;_1 at p; lies in Nog(Fi—1).
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Since A 11 is thin relative to F' # F;_1, the length of the fat part of y;_; in A 11 is at most M. Therefore,
there is a point y € y;_; and a point y’ € w; so that d(y, p;) < 6M + 395 and d(y, y’) < § so that y, y’
are endpoints of the corner segments of A 11 at ¢1 and further, there exists a subsegment o (see Figure 6)
of the corner segment [¢1, y’'] € w; with endpoint y’ so that |o| > 2M and o C N35(Fi—1).

The intersection of ¢ with the corner segment of w; in Al.z at ¢; lies in N35(F;j—1) NN3s(F;) and therefore
has length at most M. The fat part of w; in Al.z is either contained in Ng(F;—1) or intersects ¢ in a
segment of length at most M. Therefore, either there is a point in y; that is at most § from the fat part of
w; in Al.z and the fat part of w; in Al.z is contained in Ng(F;_1) or ¢ intersects the corner segment of Al.z
at ¢1. In the first case, there is a point x; € y; that lies in NV,5(F;j—1) and in the second case, there is a
point x; € y; so that d(x;,0) <6, so x; € Nys(Fi—1).

The next tasks are to bound |c; | from above and to prove that when Al.z is 8-thin relative to F;, the fat part
of w; in Al.z has length at most M. Note that ¢; € N,5(F;). The intersection of ¢; with the corner segment
of w; in Al.l at ¢; has length at most 5M + 396 because diama; N N3s(F;) <5M +395. If F # F;, the
intersection of ¢; with the fat part of w; in Al.l is a segment of length at most M. Since |c; No| < M
and |o| > 2M, |c;| < TM + 396. Further, if Al.z is §-thin relative to F;, then the fat part of w; in Al-z
intersects o in a segment of length at most M, intersects the fat part of w; in A 11 in a length at most M
segment and intersects the corner segment of w; in Ail at ¢; in a segment of length at most 5M + 396.
Hence the fat part of w; in Al.z has length at most 7M + 395 when Al.z is thin relative to F;.

If F = F;, then the fat parts of a; and y;_; in Al.l, which are contained in Ng(F;), have length at
most 5M + 398 and M, respectively. Therefore, the length of the fat part of w; in Al-l is at most
5M +395 + M + 35. Then |c;| < 12M + 815 by a computation similar to the one in the previous case.

When F' = F;, the fat part of w; in Al.z intersects ¢ in a segment of length at most M, intersects the fat
part of w; in A 11 in a segment of length at most 6 M + 42§ and intersects the corner segment of w; in A ll
at ¢; in a segment of length at most 5M + 396. Therefore, if Al.z is thin relative to F;, then the length of
the fat part of w; in A? is at most 12M + 815.

Case (A 11 is thin relative to F;_1) Recall ¢; is the corner segment of w; in Aiz at ¢;. The intersection of
¢; with the corner segment of w; in A 11 at ¢; again lies in N55(F;) N Ns(a;) and hence has length at most
5M + 395. The fat part of w; in Al.l lies in Mg (F;—1). Hence, if the length of the fat part of w; in Al.l
exceeds M, then its intersection with ¢; has length at most M so |c;| < 6M + 395. Hence for the purposes
of bounding |c;| from above, assume the fat part of w; in Al.l has length at most M. The length of the fat
part of @; in Al.l is at most 5M + 396. If the length of the fat part of w; in Al.l is at most M, then by
Lemma 2.12, the length of the fat part of y;_1 in Al.l is at most 6M +425. Now, if y € y;—1, y’ € yj—1 are
the endpoints of the corner segments of Ail at gy, then d(y, p;) <5M +395 +6M + 425 = 11 M + 814.
Therefore there is a tail at y” of the corner segment of w; in Al.l at ¢, called o so that |o| > 2M and
0 C N35(Fj—1) because y;_1 has a more than 13M + 84§-tail in N,s5(F;—1). Therefore, ¢; intersects
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[V, q1] in a segment of length at most M because ¢; € N,s(F;). Hence |c;| < 7TM + 398 because the
union of the two corner segments of w; in Al.l and the fat part of w; in A ll s w;.

In all cases, |c;| < 12M + 813.

If Al.z is §-thin relative to F;, the fat part of w; in Al.z has length at most 6 + 395 because the corner
segment of w; in Al-l at ¢; lies in Ng(a;), and both o and the fat part of Al.l lie in Ng(F;—1). In particular,
the fat part of w; in Al.z may only intersect [¢1, y'] in o because otherwise its intersection with o has
length more than M and lies in N3s(Fj—1) N Ns(F;).

The only remaining thing to prove is that there is a point x; € y; so that d(x;, Fi—1) < 48. If A? is §-thin
relative to F;_; and is not §-thin relative to any other F' € B, then there is a point on y; in Nog(Fi—1).
Hence assume Al.z is thin relative to some G € B with G # F;_;.

Let w! C Ns(Fij—1) be the fat part of w; in Al.l and let w? be the corner segment of w; in Al.z at qi.
If there exists r € w! Nw?, then d(r, y;) < §, so there exists an x; € y; such that y; € Nas(Fi_1).

Otherwise, w! intersects ¢; in a segment of length at most M because ¢; lies in N,g(F;) and intersects
the fat part of w; in Al.z in a segment of length at most M (the fat part of w; in Al.z lies in N3(G)).
Hence |o!| <2M. Let @ be the corner segment of w; in A ll at g1. Let z € w; be the point where w!
intersects w>. By Lemma 2.12, the fat part of y;_; in Al.l has length at most 2M + 5M + 396 + 35 =
TM + 426 because diama; N Nog(Fi—1) < 5M + 395. The corner length of Al.l at p; is at most
5M + 395 because any subsegment of a; in N35(F;) has length at most 5M + 395. Then at least a
13M + 848 — (5M + 398 + 7TM + 428) > M -tail of w3 at z, which will be called w’, lies in NV35(Fi_1)
because it §-fellow travels a subsegment of the tail of y;_1 at p; contained in A,5(F;—1). The union of
¢; and the fat part of Al.z lie in Mg (F;), so they collectively cannot extend past @’ in the direction of ¢;
because otherwise w’contains a length more than M subsegment in N35(F;) NN3s(F;—1). Therefore, w?,
the corner segment of Aiz at g1, must intersect o’. Since o’ lies in A35(F;_1) and w? is a corner segment

of AI.Z at ¢1, there is a point x; € y; so that x € Nys(Fi—1). O

Proposition 5.9 If b; C Ns(F;), then the geodesic y; has a |b;| — (24M + 1656)-tail at p; 41 that is
contained in Nog (F;).

Proof There are two cases:

Case 1 (Ai2 is 6-thin relative to some F' # F;) The corner length of Al.z at g; is at most 12M + 8146 by
Proposition 5.8. The length of the fat part of b; in Al-z is at most M because b; € Ns(F). Therefore, the
corner length of Al.z at p;+1 is at least |b;| — (13M + 816). Thus the corner segment of y; at p; 4+ has
length at least |b;| — (13M + 816) and lies in N5 (b;) S Nos(F;).

Case 2 (Ai2 is 6-thin relative to F;) The corner length of Al.z at ¢; is at most 12M + 816. Let s be the
length of the fat part of b; in Al.z. Then the corner length of Al.z at p;+1 is at least |b;| —s — (12M + 816).

Algebraic € Geometric Topology, Volume 25 (2025)



Hierarchies for relatively hyperbolic virtually special groups 4469

By Proposition 5.8, the length of the fat part of w; in Al.z is at most 12M + 815. By Lemma 2.12,
the fat part of y; in Al.z has length at least s — (12M + 818 + 36). The corner segment of y; at
pi+1 in A? and the fat part of y; in A? both lie in Ns(Fj) and their combined length is at least
s—(12M + 848) + |bj| —s — (12M + 8168) = |b;| — (24M + 1656). |

Lemma 5.10 Letn:= [p;, pi+1]. Thendiamn N Nsg(F;j—1) < 12M + 1176.
Further, d(q;,n) < 10M + 796.

Proof Let A be the geodesic triangle with sides a;, b;, . If the corner segment of 1 in A at p; lies in
Nsg5(Fj—1), then the corner length of A at p; is at most 5M + 576 because a; N Ngg(F;j—1) has diameter
at most 5M + 576.

Suppose A is §-thin relative to F;_1. The fat part of b; in A then lies in F; and therefore has length at
most M. The fat part of ¢; in A has length at most 5M + 57§ because a; N Ngg(F;—1) has diameter
at most 5M + 575. Hence by Lemma 2.12, the length of the fat part of  in A is at most 6 M + 608.
On the other hand, if 1 is §-thin relative to some F # F;_1, then the intersection of the fat part of 1 with
Nsg(F;—1) has length at most M. In all cases, the fat part of 1 in A intersects Nsg(F;—1) in a segment
of length at most 6 M + 606.

Finally, the corner segment of 7 in A at p;4+; lies in N,5(F;) and can hence intersect NVss(F;j—1) in a
segment of length at most M.

Since 7 is the union of its two corner segments and its fat part in A, its intersection with Nsg(F;—1) has
diameter at most 12M + 1176.

The corner length of A at ¢; is at most 5M + 396, because the corner segment of a; in A at g; lies
in a; N Nos(F;). If A is §-thin relative to Fj, then the length of the fat part of @; in A is at most
5M + 395. Otherwise, if A is §-thin relative to F' # F;, then the length of the fat part b; in A
is at most M. Since A is relatively 6-thin, in both cases, there exists a point on 7 that is at most
5M 4396 +5M + 395 + 8 = 10M + 796 from ¢;. ad

Lemma 5.11 Let x; be a point on y; so that x; € Ng(F;—1) and x; is the point closest to p; 4+ with this
property. Let ' = [p;, x;] and let n”" = [x;, pi+1] C yi. Let A’ be the triangle with sides n, ', n”. Then
at least one of the following holds:

(1) The length of the fat part of n in A’ is at most 12M + 1176.
(2) The length of the fat part of n’ in A’ is at most M < 12M + 1176.

Proof Suppose A’ is §-thin relative to F;—;. Then by Lemma 5.10, the fat part of 1 has length at most
12M + 11765. On the other hand if A’ is §-thin relative to some F # F;_1, then the fat part of ’ in A’
lies in N5 (F;—1) by convexity, so the length of the fat part of ’ in A’ is at most M. O
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Lemma 5.12 There exists y; € y; so thatd(p;, y;) <24M + 2356.

Proof The corner segment of 7 in A’ at p; lies in Ns5(F;—1) N7, so by Lemma 5.10, the corner length of
A’ at p; is at most 12M + 1178. By Lemma 5.11, the length of fat part of 7 in A’ or the length of the fat
part of " in A’ is at most 12M + 1178, so there is a point y; in n” C y; so that d(p;, y;) <24M + 23545
because A’ is relatively §-thin. O

The next lemma follows immediately from the triangle inequality, but is convenient to have recorded:

Lemma 5.13 Let A¢ be a geodesic triangle in X with sides abc and suppose that a and b meet at the
vertex p and d(p,c) < J. Then |c| = |a| + |b| —2J.

Proposition 5.14 We have
1Vl = [Yn_1| + |an| + |bn| —2(24M + 2358) —2(10M + 795)
= |yn_1|+ |an| + |bn| — 68 M — 6286.
Proof By Lemmas 5.12 and 5.13,
1Vl = Va1 + 1] — 2(24M + 2356).
Then by Lemmas 5.10 and 5.13,
[n] = lan| + |bn| —2(10M + 796).

Putting the two preceding inequalities together yields the desired inequality. a
Propositions 5.9 and 5.14 complete the inductive proof of Theorem 5.6. |

Definition 5.15 Let .4 be a collection of subsets of a geodesic metric space and let K = 0. Suppose that
forall Ay, A, € A with Ay # Az, d(A1, A2) = K. Then the collection A is K-separated.

The paths in Theorem 5.6 are of a special type to facilitate the inductive proof. Proposition 5.17 generalizes
Theorem 5.6 to apply to all geodesic paths coming from certain subspaces of X with some additional
assumptions:

Hypotheses 5.16 Assume Hypotheses 5.5 and assume the following:

(1) Let A :=500M + 100006.

(2) Let A be a A-separated collection of convex subspaces of X.

(3) LetBy C B.
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4) LetT = (I_lAe.A A) U (UBeBo B). Define an equivalence relation ~ on 7" by x ~ y if and only if
x =y or for some A € A and B € By, the images of x and y in X agree and lie in the images of both A
and B.

Proposition 5.17 Under Hypotheses 5.16, it T/~ is path connected, then the natural inclusion of
T/~ — Xisa(2,114M+ 15926)-quasi-isometric embedding (where the metric on T/ ~ is the induced
path metric).

Proof Let y be the image in X ofa geodesic in T/ ~ and let y’ be the X- geodesic between its endpoints.

Up to reversing the direction of y, y can be written as a piecewise geodesic of one of the piecewise
geodesic forms

(1) byrazb;...anby, and |by|, |by| = 37TM + 2504,
(2) aibyazby...bya,1 where |aq|, |an+1| # 0,
(3) aibi...anb, where |aq| # 0 and |b,| = 37M + 2508,
4) aib:...anb, where |aq| # 0 and |b,| < 37M + 2508,
(5) brazbs...anby, where both of |b1], |by,| are less than 37M + 2506,
(6) brazb;...anby,, where |by| <37M + 2506 and |b,| = 37M + 2504,
where foreach 1 <i <n,aq; CA; e A, forall 1 <i<n,b; CB;jeB,andfor2<i<n—1,|bj|=A

because A is a A-separated collection. Assume also that » is minimal and y is subdivided in a way that
maximizes the sum of the lengths of the b;.

If i # j, then B; # B; because otherwise the subsegment b; ...b; of y could be replaced by a single
geodesic segment in B; € T/ ~ contradicting minimality of n. By the maximality of the lengths of the b;
and the (3M +6R+2 f(R)+2148)-attractiveness of every B € B,

diam a; N N3g5(B;),diama; N N3s(Bi—1) < 5M + 396,
diama; N Ngg(Bi—1),diama; N Ngg(B;) <5M + 576§

because otherwise the interiors of the a; intersect either B; or B;_1 so that b; or b;_1, respectively, could
be made longer by convexity.

For the following arguments, recall the earlier convention that the endpoints of the a;, b; are labeled so
that a; = [p;,q;] and b; = [qi, pi+1]-

Case (1) (y =biazby...anby, and |by|, |by| = 37M 4 2505) By Theorem 5.6,
, n
V1= b1l + (X lal + 1bil) = 0 = 1)- (68M +6285).
i=2
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Since |b;| = 136 M + 12566, for 2 <i <n —1 then

V2 b1l + (3 lail + [Bil) = (2 = 1)(68M +6285)
2

i=

n—1
(  lail) + 1o+ ( S (1bi] — (68M + 6285))) + |bn| — (68M + 6285)
i=2

NI»—‘

n

(z

)
%( 2 la i1) +2(37M +2508) + (nilqb,- | = (68M + 6285)) ) + (68M + 6285)
i=2 i=2
1)+

(l_1|b |)—1288

> §|y| — 1288,
and hence y is a (2, 1285)-quasigeodesic in X in this case.

Case (2) (y =aibiazby...byan+1 where |ay|, |an+1| # 0) Since A is a A-separated collection, the
path yo = byazb; ... b, satisfies the hypotheses of Theorem 5.6. Let y, be the geodesic connecting the
endpoints of yo. Then |y}| = |yo| —n(68M + 6288) by Theorem 5.6. By Theorem 5.6, ¥, has a length at
least 100M + 20006-tail in N,5(By) at p,+1 and a 100M + 200065-tail at g in Nog(B1).

Let y; be the geodesic [p1, pn+1]. Let Ay be the geodesic triangle with sides a1, y; and y;. The corner
length of A; at g1 is at most 5M + 5768 because diama; N Ns55(B1) < 5M + 575 and y(/, has a long
tail at g1 in N,5(B1). Either Ay is §-thin relative to B # By so that the length of the fat part of y
in Ay has length at most M because a long tail of y| at ¢; is contained in N,5(B1), or Ay is §-thin
relative to B; in which case the length of the fat part of @1 in A has length at most 5M + 575. Hence
there is a point z1 on y; so that d(z1,q1) < 10M + 1166 because A is §-relatively thin. Therefore by
Lemma 5.13, |y1] = |ygl + lai| — (20M + 2326).

Next we want to show that y; has a long tail at p; +1 in N2g(By). If A1 is §-thin relative to By, the corner
length at ¢ is at most 5M + 576, and the fat part of y; in Ay can have an at most length-M intersection
with the at least 1000 4 20005-tail of y, at p; 1 that lies in N55(By). On the other hand, if Ay is §-thin
relative to B # Bj, then the corner length of A at ¢ is still at most 5M + 57§ and the long tail of y(’)
at ¢y that lies in N55(By) forces the length of the fat part of y) in Ay to be at most M. In both cases,
all but 6M + 576 of the 100M + 20006-tail of y; at p,1 that lies in Np5(By) must lie in the corner
segment of y, at pp41. Hence an at least 94M + 10006-tail of y; at p,41 must lie in N35(By).

Let A, be the triangle with sides y1, a,, y’. By imitating the argument for A1, there is a point z5 € y’
so that d(z2, pn+1) < 10M 4 1165. Hence by Lemma 5.13,

V| = |y1] + lan| — (20M +2326)
so that
[V = lao] + [y§| + |an| — (40M + 4648)
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and, by the computation from the previous case,
Y| = laol + 2lyol — 1288 + |an| — (40M + 4648) = L|y| — 1288 — (40M + 4645)
so that y is a (2,40M + 592§)-quasigeodesic in X.
Case 3) (y =aib1...anby, |a1| # 0 and |b,| = 37M + 2508) Since A is a A-separated collection,
the path yo = biazb; ... b, satisfies the hypotheses of Theorem 5.6. Let y,) be the geodesic connecting

the endpoints of yo. Then |yg| = |yo| — (n — 1)(68M + 6285) by Theorem 5.6. By an argument similar
to the one in the previous case,

V'] = lvol + la1| — (20M +2325)

and by arguments similar to the ones above,
Y| = Lyl — (20M + 3606)

so in this case, y is a (2,20M +3608)-quasigeodesic in X.
Case 4) (y = a1by...anb, where |ai| # 0, |by| < 37M + 2505) By a previous case, the path
arbi...ay is a (2,40M +5926)-quasigeodesic in X. Hence y is a (2,77M 4+10008)-quasigeodesic
in X.
Case (5) (y =by...anby where |b1|, |bn| <37M +2508) Applying the immediately preceding case
to azby ...anby and the fact that |b1| < 37M +2508 implies that y is a (2, 114 M +12506)-quasigeodesic
in X.
Case (6) (y = biazxbs...anby,, where |by| < 37M + 2506 and |b,| = 37M + 2505) By case (3),

azby .. .ayby, is a (2,20M +3608)-quasigeodesic. Thus y is a (2, 57M +5108)-quasigeodesic because
|b1| < 37M + 2506.

Now, assume T’/ ~ is path connected. Let Ty be the image of 7/~ in X. Let x, yeT/~.Let pr,p1y, P
be the geodesics connecting x and y in 7/ ~, Ty and X, respectively. Since 7'/~ is path connected,
pr maps to a path in Ty, |p1,| < |p7|. From the preceding, %|pT| — (114M + 15926) < |p|. Combining

these inequalities,
21o1| — (114M +15928) < |p| < |prp -

making p7, a (2, 114M 415926)-quasigeodesic. m|
Proposition 5.18 Under Hypotheses 5.16, any geodesic in T / ~ is not mapped to a loop in X.

Proof Let y be a T/~-geodesic that maps to a loop in X.If yCAeAAory C B e B, then y cannot
map to a loop in 4 or a loop in B. Then y can be written as a piecewise geodesic of the form
b1a2b2 ce Clnbn,

where b; € B e Band a; € A; C A € A, |b1], |bn| = LA and |bi| = A for all 1 <i < n. Since
A >4(114M + 159206), |y| > 2(114M + 15926). Since y maps to a (2, 114 M 41592§)-quasigeodesic
in X, the distance between the endpoints of y must be positive, so y cannot map to a loop. O
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6 The geometry of special cube complexes

6.1 Nonpositively curved cube complexes

A cube complex is a union of Euclidean cubes [0, 1] of possibly varying dimensions glued isometrically
along faces. A nonpositively curved (NPC) cube complex is a cube complex such that the link of every
vertex is a flag simplicial complex. See [29] Section 2.1 for details.

In each cube [0, 1]”, fixing one coordinate at % makes a codimension-1 midcube. A hyperplane H is a
connected union of midcubes glued isometrically along faces so that the intersection of H with any cube
is either a codimension-1 midcube or empty. See Figure 7 for an example of an NPC cube complex and
the link of a vertex.

6.2 Special cube complexes and separability

A special cube complex is a type of NPC cube complex developed by Wise and others whose hyperplanes
are embedded, are 2-sided and avoid two other pathologies, see [29, Definition 4.2]. The important
properties of special cube complexes that will be used in the following are the embeddedness and 2-
sidedness of the hyperplanes and the fact that hyperplane subgroups of special cube complexes are
separable (see Proposition 6.3).

A group is special if it is the fundamental group of a special cube complex. By work of Haglund and
Wise [12], compact special groups embed into right angled Artin groups and are hence residually finite.
Recall that if G is a group and H is a subgroup, H is separable in G if it is the intersection of the finite
index subgroups containing H .

Passing to finite index subgroups is compatible with separability:

Figure 7: An example of an NPC cube complex (including a 3-cube) with its hyperplanes as well
as the link of the blue vertex shown in orange and enlarged on the right.
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Lemma 6.1 Let G be a group, let Go be a finite index subgroup of G and let H < G. Then H is
separable in G if and only if H N G is separable in Gy.

Theorem 6.2 (Scott’s criterion, [27]) Let X be a connected complex, G = m1 X and H < G. Let
p: X — X be the cover corresponding to H. The subgroup H is separable in G if and only if for every
compact subcomplex Y C X H  there exists an intermediate finite cover X — X — X suchthatY < X.

Every finitely generated subgroup of a free group is separable. Likewise, special groups have an ample
supply of separable subgroups. For example, the hyperplane subgroups of a special cube complex are
separable:

Proposition 6.3 Let X be a virtually special compact and nonpositively curved cube complex. Let W be
a hyperplane of X. Then 71 (W) is separable in w1 (X).

Proposition 6.3 follows from Haglund and Wise’s canonical completion and retraction (see [29, Construc-
tion 4.12] or [12, Corollary 6.7]).

6.3 Elevations and R-embeddings

This subsection builds up the technical tools and terminology used to obtain finite covers whose hyperplanes
elevate to sufficiently separated images in the universal cover.

The first step is to formalize the notion of an elevation:
Definition 6.4 Let W be a connected topological space and let ¢p: W — Z be a continuous map. Let

p: Z—>Zbea covering map. There is a minimal covering p: W — W such that ¢ o p lifts to a map
$3 W — Z. The map EE is an elevation of W to Z.

Often, the map W — Z will be implied and an elevation of ¢ will instead refer to the image of some
elevation.

Elevations may not be unique: two elevations of the same map are distinct if they have different images.

When ¢: W — Z is an inclusion map, then the distinct elevations of ¢ are precisely the components
of p~L(W).

Definition 6.5 Let X be a metric space, R > 0 and let Y C X be connected. Let p: XY — X be the
covering space associated to 771 (Y) so that the inclusion ¥ < X lifts canonically to XY . The subspace Y
is R-embedded in X if p is injective on Ng(Y) € XY

The following lemma is straightforward but will be important:
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Lemma 6.6 Let p: X — X be a finite regular cover. If A is R-embedded in X, then each component of
p~1(A) is R-embedded in X.

The main application of hyperplane separability is to show that every compact virtually special cube
complex has a finite cover where every hyperplane is R-embedded.

Proposition 6.7 Let X be a compact nonpositively curved cube complex, and let V1, V,,...,V, be
hyperplanes of X so that 71 V; is separable in 71 X . Given R = 0, then there exists a finite regular cover C
such that V1, ..., V, C C are R-embedded in C.

If ﬁ/l, V~Vz are distinct elevations of a hyperplane V' of C to the universal cover X , thend )?(ﬁ/;’ VT/;) =>2R.

Proof For each hyperplane W of X, w1 (W) is separable by Proposition 6.3. By Theorem 6.2, there
exists a finite covering p: X — X such that there is an embedding iy : Nr(W) — X.

Let p: X > X, pW X" = X and p: X — X be canonical covermg maps so that p = pVop. Let
W - W1, /7N Wz be distinct elevations of W to X and let w; € W1 and W, € W2

Suppose toward a contradiction there exists a path y C X with |¥| < 2R between Wiand Wo. Let X € y
such that (%, W1) < R and d(X, W) < R.

There exists g € 7r1(X) such that g - W1 € W, and g ¢ 71(W) because otherwise g - 0 € Wi N Wa
in which case W, € W, but @} ¢ W,. Now d(g- %, W,) < R. Since g ¢ w1 (W), p(%) # p(g - ).
By definition of an elevation, p(Wz) is contained in the image of an inclusion of W into X" . Also
p(X), p(g-X) lie in an R-neighborhood of the image of W in X" . However,

Wop®) =p(E) =pg-3)=p" op(g-X)
contradicting the fact that iy : Ng(W) — X is an embedding.

Suppose X has n hyperplanes. By passing to a finite cover if necessary, assume X" is regular. The
number of hyperplane orbits under deck transformations of X" is at most 7, and every hyperplane in the
orbit of an elevation of W to X% is R-embedded. Therefore, performing this procedure at most 7 times,
will produce a finite cover C — X where every hyperplane is R-embedded. a

Proposition 6.7 will be used later in Section 7 to make the elevations of a hyperplane a 2 R-separated
family in the sense of Definition 5.15.

6.4 Convex cores

Specialness also plays a role in building a geometric representation of the peripheral structure. In the
hyperbolic case, Wise and others [11; 25] (see also [12, Proposition 7.2]) proved that quasiconvex
subgroups of virtually special groups have “convex cores” in the CAT(0) universal cover. This fact and
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canonical completion and retraction can be used to show that hyperbolic special groups are QCERF or
quasiconvex extended residually finite [12, Theorem 1.3] meaning that if G is hyperbolic and special,
then every quasiconvex subgroup of G is separable.

A similar result exists in the relatively hyperbolic case. One might imagine that replacing the quasiconvex
subgroup H by a relatively quasiconvex subgroup might yield a generalization; however, some care is
required. In particular, a subgroup may stabilize a quasiconvex subset of a CAT(0) cube complex but may
fail to stabilize a convex proper subcomplex, see Example 6.9.

Definition 6.8 If X is a CAT(0) cube complex and Y C X, the cubical convex hull of Y is the smallest
convex subcomplex of X containing Y.

Example 6.9 Take the standard action of Z? = ((1,0), (0, 1)) on R? by translation. The diagonal
D :={(r,r) : r € R} is a subspace stabilized by L := ((1,1)) < Z2. The subgroup L is (2,0)-quasi-
isometrically embedded in the given presentation of Z?2, but the cubical convex hull of D is all of R2.

Full relatively quasiconvex subgroups eliminate these pathologies:

Definition 6.10 [26, Section 4] Let (G, P) be a relatively hyperbolic group pair and let H be a relatively
quasiconvex subgroup of G. The subgroup H is a full relatively quasiconvex subgroup of G if for each

g€ G and P € P, either gPg~! N H is finite or gPg~' N H is finite index in gP g~ .

Theorem 6.11 [26, Theorem 1.1] Let X be a compact nonpositively curved cube complex with
G = m1(X) hyperbolic relative to subgroups Py, ..., P,. Let X be the CAT(0) universal cover of X .
If H is a full relatively quasiconvex subgroup of G, then for any compact U C X, then there exists an
H -cocompact convex subcomplex YCXwithUCY.

By Proposition 2.15, if (G, P) is a relatively hyperbolic group pair, the elements of P and their conjugates
are relatively quasiconvex. By Proposition 2.2, the elements of P and their conjugates are full relatively
quasiconvex. Therefore:

Lemma 6.12 Let X be a nonpositively curved cube complex with CAT(0) universal cover X and
G :=m1(X). Let (G, P) be a relatively hyperbolic pair. Let x € X be a base point in the universal cover.
For each P € P, there exists a Z' (P, x) such that Z' (P, x) is a P-cocompact convex subcomplex of X
containing Xx.

It follows immediately that there exists a O = 0 such that the cubical convex hull of Px is contained
in No (Px).
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7 A malnormal quasiconvex fully P-elliptic hierarchy

For the following section, let X be a compact nonpositively curved cube complex with CAT(0) universal
cover X and G = m; (X) hyperbolic relative to subgroups P := {Pq, ..., P,}. Fix a base point x € X.
By Lemma 6.12, there is a convex subcomplex Z . that is a P-cocompact convex subcomplex of X
containing P x. ,

Let By := {gZ}, . & € G, P eP}. By Proposition 4.6, there exists fo: R>% — R>% and § > 2 so that
(X, Bo) is a (§—2, fo)-relatively hyperbolic pair.

Let Zp . = Nas (Z},’x). Theorem 6.11 implies that the collection B’ = {gZp . :g € G, P € P} is a
thickening of By. Proposition 4.4 implies there exists f’: R>® — R>? so that (X, B) is a (§—2, f)-
CAT(0) relatively hyperbolic pair. We also define f: RZ® — R>® where f(r) = f'(r + 2). The
function f will be useful later when we carry out the augmentation construction defined in Section 7.1.

To maintain consistency with previous notation, we will use the notation M = f(68) throughout Section 7.
Proposition 5.3 implies:

Proposition 7.1 Forevery g € G, gZ P,x 1s (3M 46 R+216)-attractive in the sense of Definition 5.1.

7.1 Superconvexity, peripheral complexes and augmented complexes

Here we will prove that bi-infinite geodesics contained in a bounded neighborhood of 7 Px actually lie
in Z P,x-

Definition 7.2 Let X be a nonpositively curved cube complex and let ¢p: Z — X be a local isometry.
The map ¢ is superconvex if for any elevation ’5: Z <> X of Z to the universal cover X of X and any
bi-infinite geodesic y in X such y lies in a bounded neighborhood of (the 5 image of) ZinX , then y is
contained (in the a image of) Z.

If the immersion ¢p: Z — X is superconvex, then Z is said to be superconvex in X (with respect to ¢).

Since Z P,x 18 @ P-cocompact convex subcomplex of X, the quotient Z Px = P\Z P,x 1s a cube complex
and there is a natural local isometry ¢p  : Z p,x — X that carries 7z p,x to the image of G\Z pxin X.

Proposition 7.3 ¢p , is superconvex.

Proof Suppose y is a bi-infinite geodesic contained in N'g (Z p,x) and p € y. There exist 51,52 € y s0o
that p € [s1, s2] and d(s;, p) > 3M + 6 R 4+ 2168. Hence by Proposition 7.1 there exist points 1, f so that
t1 € [s1, pl and 1 € [p, s2] so that t1, 15 € Zp,x. Therefore by convexity p € Zp,x. Hence y C Zp,x. m|

The complexes Z P x are called peripheral complexes. There is a convenient way to upgrade the immersion
to an embedding:
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Definition 7.4 Let X be a nonpositively curved cube complex with CAT(0) universal cover X and
G :=m(X). Let (G, P) be a relatively hyperbolic group pair. Let Z:=| |pcp Zpx,andlet®: Z — X
be the map so that Q| Zp . = ®Px. The augmented cube complex for the pair (X, ®) is the complex

COH.®)i= X U( LI Zpax [0.11)/(Zpo x (1) ~ bpa(Zo),
€P

consisting of the mapping cylinders of the ¢p » identified along X.
1
2
are nonperipheral. Note that the nonperipheral hyperplanes of C(X, ®) are in one-to-one correspondence
with the hyperplanes of X. Since 71 X = 1 (C(X, ®)), a (virtual) hierarchy for 71 (C (X, ®)) determines
a (virtual) hierarchy of 71 X.

The hyperplanes Z P,x X 5 are called peripheral hyperplanes while the remaining hyperplanes of C(X, ®)

Proposition 7.5 Let C(X, ®) be the augmented cube complex for the pair (X, Z) as in Definition 7.4.
It X is virtually special and W is a nonperipheral hyperplane of C(X, ®), then w1y W is separable in
T CX,P) = m X.

Sketch The natural homotopy equivalence between C (X, ®) and X that induces 71 C (X, ®) = 71 (X)
brings nonperipheral hyperplanes of C(X, ®) to hyperplanes of X. Therefore, W is homotopy equivalent
to a hyperplane V of X and 71V = 71 W is separable in 11 X (recall Proposition 6.3). |

Technically, the definition of C (X, ®) depends on the base point, but since the following results are given
up to conjugacy, there is no need to keep track of base points.

Proposition 7.6 Let C(X, ®) be the augmented cube complex for (X, Z) described in Definition 7.4.
Let C be the universal cover of C (X, @). Let B be the collection of (images of) elevations of (images of)
Zpxx[0,1]in C(X,®) to C.

(1) Each B € B is closed and convex.
@) (5, B) is a (8, f)-CAT(0) relatively hyperbolic pair.
(3) Every B € Bis B3M +6R+2 f(R)+218)-attractive (recall Definition 5.1).

Proof The universal cover X of X embeds as a closed convex subset of C so that each B € B intersects
X in some Z P,x- Since B intersects X in a closed convex subspace, B is closed and convex in C.

Every geodesic triangle in C is Hausdorff distance 1 from a geodesic triangle in X. Since triangles
in X are (6—2)-thin relative to translates of Z P,x» triangles in C are § thin relative to B. For every
B1, B, in B with By # Ba, Ny (B1) N N¢(B>) is distance at most 1 from the intersection of glj\/,(Zp1 x)
and gzj\/}(sz,x) in X for some g1,82 € G and Py, P, € P, so the fact that Xisa (6—2, f7)-CAT(0)
relatively hyperbolic pair implies that (E, B) is a (8, f)-CAT(0) relatively hyperbolic pair.
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Figure 8: The figure-8 loop on the left whose two hyperplanes are the two edge midpoints and
the double dot cover of the figure-8 loop on the right.

Let y be a geodesic in C with endpoints in Ng(B) for some B € B. Since X is CAT(0) and B is convex,
y C NR(B). Then y is either contained in B’ for some B’ € B in which case |y| < f(R) or y has a
subpath o whose endpoints in X are at most f(R) from the endpoints of y. Therefore |o| = |y| —2f(R).
There is some g € G and P € P so that gZp,x = BNX. If the length of o is at least 3M 4 6R 4 2136,
then o N gZp,x # & by Proposition 7.1. Therefore, if the length of y is at least 3M +6R+2 f(R) + 216,
@#yNgZpxSyNB. O

7.2 The double dot hierarchy

The construction of a hierarchy will use a finite cover called the double dot cover whose construction is
originally due to Wise [30, Construction 9.1]. This treatment of the double dot cover is similar to the one
in [3, Section 5].

Definition 7.7 [30, Construction 9.1] Let X be a cube complex, let W C X be a hyperplane of X.
Let y be a based loop and let [y] € w1 X. Then [y] has a well-defined (mod 2) intersection number
with W. Let W be the set of embedded, 2-sided, nonseparating hyperplanes of X. For each W € W let
iw: w1 X — Z/27Z be the algebraic intersection map and define

vimX > @ z/2z. v=F iw.

Wew Wew
The double dot cover of X is the cover corresponding to the subgroup ker ¥ < 71 X.

The double dot cover of a cube complex is usually a high-degree cover. Therefore, constructing examples
can be quite difficult. Fortunately, the double dot cover of a rose with 2 petals is easy to construct:

Example 7.8 See Figure 8 for the double dot cover of the figure-8 loop.

An important feature of the double dot cover is that the cover is taken over nonseparating hyperplanes.
This serves two purposes: first, making sure that double dot cover is not trivial and second, making sure
that the double dot hierarchy constructed later has nontrivial splittings. There is a way to obtain a complex
where every hyperplane is nonseparating:
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Theorem 7.9 [6, Proposition 2.12] Let X be a compact special NPC cube complex. Then X is homotopy
equivalent to a compact special NPC cube complex whose hyperplanes are all nonseparating.

Let X be a special cube complex with finitely many hyperplanes W := {W, ..., W,} where every
hyperplane is nonseparating and let jix : X — X be the double dot cover of X . The hyperplanes of X are
elevations of hyperplanes of X, and they divide X in a natural way. Letx € X\ U jﬁ;,l (W) be a base vertex.

Each component of X \U by 1(W) contains a lift of jy (x) because the hyperplanes of X are nonseparating.
There is only one lift of jx (x) which lies in each component of X \  J p‘;l (W) because otherwise there
is path v between two points of jﬁ;l (x) that does not cross ﬁ;l (W). The path v must project to a loop
that represents a nonidentity element of 771 (X) \ ker ¥ but does not cross any W € W which is impossible.

Since ker W is normal, 771 X / ker W acts by deck transformations on X . This action induces a free and tran-
sitive action on ﬁ;l (x). Since each component of X \ U by 1 (W) contains exactly one element of 12% L(x),
we can label each of the components of X \ U iy L(W) by an element of 71 X/ ker ¥ = Dwenw Z/27.

With data specified below in Hypotheses 7.10, we will use the labels for components of X \ | ﬁ)}l W)
to construct a double dot hierarchy of spaces for the double dot cover C of C. When the data in
Hypotheses 7.10 satisfy certain criteria discussed in Section 7.3, the double dot hierarchy gives rise to
a quasiconvex and fully P-elliptic hierarchy of groups for (C) which is isomorphic to a finite index
subgroup of 71 X. Passing to a particular finite cover will produce an induced hierarchy that is also
malnormal. The next several paragraphs outline the construction of the double dot hierarchy as it is
presented in [3, Section 5].

We now establish some baseline hypotheses for the remainder of Section 7.2.

Hypotheses 7.10 Let X be a compact special NPC cube complex so that:
¢ The hyperplanes of X are nonseparating.

e There exist a disjoint union Z :=|_|!_, Z; of NPC cube complexes together with a local isometric
immersion ®: Z — X.

e Let C be the augmented cube complex C(X, ®) and let p: C — C be its double dot cover.

e Let W be the nonperipheral hyperplanes of C and choose an ordering of the elements of W so that
they are Wi, Wa, ..., W,,.

¢ Additionally, C is a mapping cylinder for the map ®, so we can view Z as an embedded subspace
of C. In the language of Definition 7.4, Z is the image of | |!_, Z; x{0}in C.

o Let Z = p~1(2) be the preimage of Z C C under the double dot covering map.
¢ Fix a base vertex.
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Each component of ¢ \p~! ( U W) is labeled (relative to the base vertex) by a vector 7 € @D’ Z/27.
For each 1 <i < n, let W; be the first i hyperplanes and let M; = EBll Z./27.. Then the complementary
components of | JW; are labeled by elements of M;. For each feM;,let K; be the closure of the part
labeled by 7.

For each f € M;, a t-vertex space at level n —i + 1 is a component of K;U Z that intersects K;. In the
construction of the double dot hierarchy, the 7-vertex spaces at level n —i + 1 specify all of the vertex
spaces at each level, but the actual graph of spaces structure at each level must be described.

If A is the closure of a component of p~ ! (W;)\ i< p1 (W;), then A is called a partly cut-up elevation
of W;. The double dot hierarchy is constructed by cutting along an elevation of a hyperplane W; to C
and any elements of Z that intersect W;, but the elevation of the hyperplane W; may have already been
cut by one of the other hyperplane elevations of W; with j <i.

By construction, any two 7-vertex spaces at level n —i + 1 are either disjoint or intersect in a union of
components of Z and disjoint partly cut-up elevations of W;.

Now it is time to construct the graph of spaces structures at each level. Let 7 € M; and let V be the
corresponding 7-vertex space at level n —i + 1. Consider the canonical projection 7w : M; 1 — M;. Let{ T
and 7~ be the preimages of 7 under 7. Let V' and V'~ be the collections of complementary components
of V\ p~! ( U Wi+1) labeled by 7 and 7, respectively. Then V = V' U V™ and the components
in VT, V™ will serve as the vertex spaces in the graph of spaces decomposition of V' in this hierarchy.

The edge spaces are components of ¥V N V™. The attaching maps are the inclusion maps of edge spaces
into vertex spaces while the realization is provided by a homotopy equivalence collapsing the mapping
cylinders of the edge spaces onto the images of the edge spaces.

Let f € M,. Then the components of the -vertex spaces are the vertex spaces of level 1 of the hierarchy,
so the terminal spaces of the hierarchy are precisely these spaces.

Definition 7.11 The hierarchy H constructed in the preceding paragraphs with vertex spaces is called
the double dot hierarchy for the pair (X, Z).

The double dot hierarchy actually depends on an ordering on the hyperplanes, but the applications that
follow only need an existence of a hierarchy given some local isometric immersion Z — X, so this
complication will be henceforth ignored.

A version of the double dot hierarchy exists for general NPC cube complexes, see [3, Section 5.2];
however, the double dot hierarchy may fail to be faithful and even if it is faithful, the hierarchy may fail to
be quasiconvex or malnormal. Also, the terminal spaces may not be useful. However, when hyperplanes
are embedded, nonseparating and two-sided, the terminal spaces are easy to understand:
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Lemma 7.12 [3, Lemma 5.5] Assume Hypotheses 7.10. If Y is a terminal space of the double dot
hierarchy for (X, Z), then Y has a graph of spaces structure (I, ) such that

(1) T is bipartite with vertex set V(Y) = V(Y)T uV(Y)™,

(2) ifveV(Y)™T, x(v) is contractible,

(3) ifveV(Y)™, x(v) is a component of Z and

(4) every edge space is contractible.

Corollary 7.13 Under Hypotheses 7.10, the fundamental group of a terminal space of the double dot
hierarchy is a free product of the form (>l<p G-) * F where F is a finitely generated free group and, for

i=1Yi
alll1 <i < p, G :=m(Z;) where Z; is a component of Z.

7.3 A fully P-elliptic malnormal quasiconvex hierarchy

Hypotheses 7.14 We set some basic hypotheses and notation for Section 7.3:
(1) Let Xo be an NPC compact special cube complex.

(2) Let X be an NPC compact special cube complex that is homotopy equivalent to X so that the
hyperplanes of X are all nonseparating (the existence of X follows from Theorem 7.9).

(3) Let X be the universal cover of X with base point x € X that does not lie in any hyperplane.
(4) Let G :=m X = m1 X and suppose that (G, P) is a relatively hyperbolic group pair.

(5) Foreach P € P,let¢p x: Zp — X be the superconvex local isometric immersions and let Z=| | Zp
that arise as a consequence of Proposition 7.3. Let ®: Z — X be the map that restricts to ¢p_x on Zp.

(6) Let C; = C(X, ®) be the augmented cube complex for (X, ®) (recall Definition 7.4), and let C be
its universal cover.

(7) Viewing C; as a mapping cylinder of ®, ® gives rise to a natural embedding Z < C;. We call the

components Zp x {0} of the image of ® peripheral spaces.

By strategically passing to finite covers and building the double dot hierarchy, we will produce a faithful,
quasiconvex and fully P-elliptic virtual hierarchy for 71 X.

Lemma 7.15 (see [3, Lemma 5.18]) Let C’ be a finite regular cover of Cy.

(1) There exists a finite cover X' of X with G’ := w1 X' and a superconvex local isometric immersion
®': 2 — X' such that (G', P’) is the induced relatively hyperbolic group pair (see Proposition 2.13)
and C’ is the augmented cube complex of the pair (X', Z"). The components of Z' have fundamental
group isomorphic to elements of P’ and for each component Z of Z’, the image of 1 Z is conjugate to
an element of P' in G'.

(2) Every nonperipheral hyperplane of C’ is nonseparating.
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Notation 7.16 (1) Let B be the collection of elevations of Zp x [0, 1] (as determined by the map-
ping ¢p x) to C. Let Z be the union of the elements of B in C.

(2) Recall from Proposition 7.6 that there exist (8, ) so that (6, B) is a (8, f)-CAT(0) relatively
hyperbolic pair.

(3) Let M = f(66), let A = 4 and € = 10000(M + & + 1).
(4) Proposition 7.6 also implies that every B € B is (3M +6R+2 f(R)+215)-attractive.

(5) Set L so that every pair of (4, €)-quasigeodesics in Cc (Lfips Lyfip)-fellow travel relative to B
(recall Definition 4.5 and Theorem 4.7).

(6) Let ertp = A(A(:sjf(lfrftp) +e+ 2ertp) + 6) + Zf(ertp)-
(7) Let Ro > max{4, Ryp. S00M + 100006}.

Observation 7.17 The constants established in items (2) and (4) of Notation 7.16 ensure that the
pair (5, B) satisfies Hypotheses 5.5.

Using Propositions 6.7 and 7.5, let C; be a finite regular cover of C; such that every nonperipheral
hyperplane of C, is Rg-embedded and nonseparating. Then C, is the augmented cube complex of a
pair (X2, Z"") where X5 is a finite cover of X by Lemma 7.15. Recall that X naturally embeds in C, which
is also the universal cover of C,. Let G, = 71(C3) and let (G2, P”) be the induced peripheral structure.

Let ¢: C, — C, be the double dot cover of C». Let (G, P”) be the induced peripheral structure
on Gz = nléz. The next few statements will show that the double dot hierarchy on (fz 1s faithful,
quasiconvex and fully P”-elliptic hierarchy for 7 C. Passing to a finite regular cover will later yield a
hierarchy which is also malnormal.

By Lemma 7.15, C, is an augmented cube complex with respect to a pair (X2, Z5) where Z, consists of
components of ¢ ~1(Z”). Let E be an edge space of the double dot hierarchy on C,. Then E is a union
of partly cut-up elevations of a hyperplane of C, and elements of Z5.

Recall that (5, B) is a (6, f)-CAT(0) relatively hyperbolic pair. Let E be an elevation of E to C. There
exist Ar and Bg so that Ag is a collection of elevations to C of convex partly cut-up hyperplane
elevations of W and BE is a collection of elevations of the peripheral spaces (recall Hypotheses 7.14(7))
to C so that E is the union of the elements of A g and BEg.

Each element Bg € Bg is an elevation of a peripheral space. While Bg is not an element of 5,
there is a unique B, € B containing Bg. In particular, B, is the 1-neighborhood of Bg in C. Let
B;_; ={B e B: Bg C B for some Bg € Bg} be the collection of elevations of the Zp x [0, 1] to C whose
intersection with X is some Bg € Bg. See Figure 9. Let £/ be the image of (L1Ag)u([UBf) in C.

By Observation 7.17, the Rg-embeddedness of the hyperplane W and the construction of E’' imply:
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BEg

Figure 9: A schematic diagram showing the relationship between Bg, B, and their attachment
to X. The closure of the shaded region is B.

Proposition 7.18 The subspace E'cCisa subspace of the form specified by Hypotheses 5.16.

Proof Observation 7.17 ensures (Y , B) satisfies Hypotheses 5.5.

Recall that C; has hyperplanes that are Rop-embedded (recall Ry from Notation 7.16(7)), and recall that
Rop-embeddedness of hyperplanes is preserved by finite covers (Lemma 6.6). Therefore, for all distinct
pairs of Ay, Ay € Ag, d(A1, A2) = 2Ry, and Ry is large enough to provide the separation between
elements of Ag required by Hypotheses 5.16.

By construction, By C B, and E'is glued together from elements of Ag and BY; as required. |

Proposition 7.19 Let E be an edge space of the double dot hierarchy on C. Then the map E — C, is
71 -injective.

Proof Suppose not toward a contradiction. Then there exists a loop y in E such that y is essential in £
but has trivial image in 7 (C"’z). Since y is my trivial in g (62), y elevates to a loop ¥ C E in C. Since
E is homotopy equivalent to £/, there is a loop 3’ in Cs that is the image of a geodesic in E’. Since E’
is the image of (| | Ag)u ([ |B%) in C, 7 cannot be a loop by Proposition 5.18. O

The next step is to prove that the double dot hierarchy on G, is quasiconvex:

Proposition 7.20 Recall A, € from Notation 7.16. If E is an edge space of the double dot hierarchy on
C, and E is the universal cover of E, then any elevation E <> C ofEtoC isa (A, €)-quasi-isometric
embedding.
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Proof Let y be a geodesic in E and let ¥’ be a geodesic with the same endpoints in E. Let y" be a
geodesic in C with the same endpoints as y. Proposition 7.18 implies we can use Proposition 5.17, which
implies that y’ is a (2, 114M +15926)-quasigeodesic in C. Let n be the smallest number so that y’ can
be written as a1 by ...byan4+1 where

(1) a;jcanbeapointifi =1lori =n+41,

(2) otherwise a; is geodesic in some A; € Ag, and

(3) b; is geodesic in some B/ € BYy.
The endpoints of each b; lie in E because every A; C E and v,y have the same endpoints. Thus each b;
can be replaced by a path of length |b;| + 2 that lies entirely in E. It is therefore possible to produce

a path in E between the endpoints of y whose length is at most |y’| + 2n, so |y| < |y’| + 2n. Further,
|bi| = Rog = 4 for 1 <i < n because the A; are Ro-separated, so we have that |y| = 4n — 8 which implies

4) 2n < 3ly| +4.

Therefore
Y"1 = 1Y/ | — (114M + 15926)

= 2(|y| 2n) — (114M + 15926)
> 1(3ly|—4) — (114M + 15926)
> Hy|— (114M + 15928 + 2),
where the third line follows from the second by the estimate in (4). Hence y is a (4, 114M 415928 +2)-

quasigeodesic in C. |
Propositions 7.19 and 7.20 together yield the following:
Corollary 7.21 The double dot hierarchy induced on 7, C'z is faithtul and quasiconvex.

The next step is to prove that the double dot hierarchy on Cy is fully 7”-elliptic. Definition 7.22 introduces
geometric terminology for the situation where a subgroup of a relatively hyperbolic group pair (G, P)
contains an element g conjugate into a peripheral subgroup P such that no positive power of g liesin ENP.

Definition 7.22 Let Y be a locally convex subspace of C,. Let E C C,. The subspace E has an
accidental Y -loop if there exists a homotopically essential loop, y, which is both freely homotopic to a
geodesic loop in Y and has no positive power homotopic in £ to a geodesic loop in Y.

The next few statements will show that the edge spaces of the double dot hierarchy for C, have no
accidental Z”-loops. This will imply the hierarchy is fully P”-elliptic. Elevations of partly cut-up
hyperplanes do not have accidental Z”-loops:
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Lemma 7.23 [3, Lemma 5.15] Let (X, Z) be a superconvex pair where each component of Z is
embedded and let C be the corresponding augmented cube complex. Forn = 1, let {Wy,..., Wy}
be a collection of embedded, 2-sided, nonseparating hyperplanes of C. Let Q be a component of
Wi\ U; <, Wi. Then Q has no accidental Z-loops.

Proposition 7.24 Let E be an edge space of the double dot hierarchy for C». Then E has no accidental
Z"_loops.

Proof Recall that E is a union of a partly cut-up hyperplane elevations and components of Z” that
intersect these elevations. Let O be one of the partly cut-up hyperplane elevations. By Lemma 7.23,
Q has no accidental Z”-loops.

Suppose there exists a C»-essential loop y in E such that y is freely homotopic in C5 into Z”. Then a
representative of the homotopy class of y lifts to a bi-infinite E -geodesic y where E is an elevation of E
to C,and a representative of the homotopy class of y lifts to a bi-infinite G-geodesic pC Z, an elevation
of a component of Z” and there exists R = 0 so that € Ng(p).

Since y is a E -geodesic, 7 is a (A, €)-quasigeodesic in Cc by Proposition 7.20.

Let Yo be a subsegment of  with |yo| = |y| (eg take Jg to be the subsegment between two consecutive
lifts of a point of y to 7). If Py € Z’ where Z' is an elevation of a component of Z”, then 7 € Z’ and
7 is geodesic in C. Then Z = Z’ because diam Ng(Z) N Ngr(Z') = oo in which case y was not an
accidental Z”-loop.

On the other hand, if yy C a where @ is some elevation of Q to C, then O has an accidental Z”-loop,
contradicting the fact that there are no such accidental Z-loops.

Therefore, there exist subsegments of p of the form ¥y, = am,16m,10m,2bm 2 - . . am k,, bm k,, such that
Ucl’o Ym =7V, |Ym| = oo and k,,, — 00 as m — 00, an,; lies in an elevation @i of O to C, bm,i C Zm,,'
where Zm,,' is an elevation of a component of Z” to 5, andifi # j, by, C Z; and bm,j < Zj % Zi
(otherwise, by convexity of Z;, v, could be written as a concatenation of fewer geodesic segments).
Recall that Q is Ro-embedded, so for all m, i, |bp. ;| = Ro.

By construction there is a unique B € B so that Z C B. Let 1, be the a—geodesic connecting the endpoints
of ypm. Since 7, S Ngr(B) and B is BM +6R+2 f(R)+96)-attractive, all but BM +6R+2 f(R)+96)-
tails of the endpoints of 7, lie in B. Therefore, there exists a subsegment t,f,f C 1, N B so that
1TB| = |tm| —2(3M +6R +2f(R) + 95).

Recall that all (4, €)-quasigeodesics with the same endpoints (L, Lyfip)-fellow travel relative to B.
There exists a unique By, ; € B containing Zm,,', SO bm,i € Bp,i. Then for B € B with B # By, ;,

diam by, ; NN, (B) < f(Liip). Since 1, and yy, relatively fellow travel, either

rftp

e there exist points p, ; and p;nF ; On by i C Yy that are at most f'(Lyfyp) from the endpoints of by,
and are distance L.fg from ty, or

Algebraic € Geometric Topology, Volume 25 (2025)



4488 Eduard Einstein

* there exist p, ., p; ; on ym so that p_ ., p;; ; are distance at most L., from points in z,, that lie
in N7, (Bm,i) and the interval of y,, between p,, . and p;n'r ; contains all of by, ; except for a length at
most 2( f(Lsp)) subsegment of by, ;.

Indeed, any subsegment by ; that lies in N, (B) for any B € B with B # B, ; has length at most f'(Lfyp).

In either case since y, is (4, €)-quasigeodesic, there exists a length % (% (Ro =2(f (ertp))) —e) —€—2L.fp

rftp

subsegment of t,, that lies in Nz, (Bm,i). As m — 00, |t,| — oo while

rftp
|tm| — T8 <2(3M + 6R +2£(R) + 95).

which does not depend on m. Therefore, for m > 0, there are at least two i such that t,g has a length

%(%(Ro — 2(f(ertp))) - 6) —€— 2ertP > 3f(LrﬁP)

subsegment lying in N, (Bm,i) N NL

rft

p(B) (recall Rog was chosen in Notation 7.16). Since the By, ;
are pairwise distinct, we obtain a contradiction. Therefore, y cannot be an accidental Z”-loop. a

Corollary 7.25 The double dot hierarchy on C, is fully P -elliptic.

Faithfulness, quasiconvexity and full P-ellipticity are preserved by taking the induced hierarchy of a
finite regular cover of C,. The final step is to show that there exists a finite cover of C, whose induced
hierarchy is also a malnormal hierarchy.

The following lemma is straightforward:

Lemma 7.26 Suppose H < G and Gy is a finite index subgroup of G and let Hy = H N Gy. If H is
malnormal in G, then H is malnormal in H .

The following is a special case of [26, Corollary 6.4]:

Proposition 7.27 Let G be the fundamental group of a relatively hyperbolic special compact NPC cube
complex, and let H < G be full relatively quasiconvex. Then H is separable in G.

Proposition 7.28 (Hruska—Wise [18, Theorem 9.3]) If G is relatively hyperbolic and H < G is relatively
quasiconvex and separable, then there exists a finite index subgroup Ko < G containing H such that for
every g € Ko\ H either gHg™' N H is finite or gHg ™' N H is parabolic in K.

Proposition 7.29 If G is relatively hyperbolic and H < G is full relatively quasiconvex, there is a finite
index subgroup K < G containing H such that H is almost malnormal in G.

Proof We first prove the following claim: If H < G is full relatively quasiconvex, then there are only
finitely many double cosets of the form HgH so that H N H¥ is infinite and parabolic.
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Let D be the induced peripheral structure on H. If H N H¢ is infinite parabolic, then fullness implies
there are 01, Q> < H that are maximal parabolic in H so that H N H¢ is finite index in Q1 N Q§ .
Then there exist Dy, D, € D and hy,hy € H so that Q1 = Di” and Q) = Délz. It is easy to verify that
if go = hl_lghz, then

(1) goec HgH,
(2) HgH = HgoH, and
(3) HNHE < DyNDS.

In other words, given a double coset HgH so that H N H# is infinite parabolic, we may assume that g
is chosen so that there are maximal parabolic D1, Do < H sothat HN HE& < D1 N D§ .

Since D is finite, it suffices to show that for any D, D, € D (D1, D, need not be distinct) there are
finitely many double cosets of the form HgH so that H N H¥ is infinite and H N H& € Dy N DS.

Now suppose Hg1 H is another double coset so that H N H 8! is an infinite subgroup of D1 N D§ . We see
that D‘lg - and D‘ffl have infinite intersection with D5 and are therefore finite index in D5 by fullness,
SO D‘lg B N Df‘_] is infinite and hence D; N D‘lggl_ is infinite. Let P be the maximal parabolic subgroup
of G containing D1. The fullness of H implies that D is finite index in P. Therefore, P N P8&1 l
is infinite, so ggl_1 € P. There are finitely many left cosets 11 D1, Dy, ...,t; Dy of D1 in P. Hence
ggl_1 =t;d for some d € D1 < H and 1 <i <{ which means 81_1 =g 14d, s0 Hgl_lH =Hg 't;H.
There are only finitely many choices for #;, proving the claim.

Proposition 7.28 implies that if we first pass to a finite index Ko < G containing H, we can ensure that if

g€ Ko\ H and H N H¥ is not finite, it is infinite parabolic. By the preceding, there is a finite collection
of double cosets Hk1H, ..., Hk,, H so that g € Hk; H for some 1 <i <m. Note all k; ¢ H. The

separability of H implies that we can choose a finite index K < K¢ containing H so thatky,...,kn, ¢ K.
Then Hk; H N K = @ because H < K. By the preceding, there exists no k € K such that H N HF is
infinite parabolic, so H N H* is finite for all k € K. a

Corollary 7.30 is based on [3, Corollary 3.29]. Corollary 7.30 follows immediately from the two preceding
statements and the fact that when G is virtually special, G is linear and hence virtually torsion free.

Corollary 7.30 If G is hyperbolic relative to P and special, and H < G is full relatively quasiconvex,
then H is virtually malnormal.

Theorem 7.31 Let G be special, virtually torsion-free and let (G, P) be a relatively hyperbolic group
pair. Let H be a fully P-elliptic quasiconvex hierarchy for G. Then there exists a finite index normal
subgroup Go < G with induced fully P-elliptic quasiconvex hierarchy Hg of Go which is malnormal and
fully P-elliptic.

The proof here is nearly the same as in [3, Theorem 3.30].
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Proof Because # is fully P-elliptic, the edge subgroups are full. Since there are finitely many edge
groups, by Corollary 7.30, there exists some Gg such that for every edge group E of H, E N Gy is
malnormal in G¢. By passing to a deeper finite index subgroup, we may insist that G¢ is normal. Since
Gy is normal, conjugation by g € G is an automorphism of Gy, so in particular, these edge groups £ N Gy
are malnormal in G. a

At last, it is time to prove Theorem 1.

Theorem 1 Let (G, P) be a relatively hyperbolic group pair and let G be a virtually compact special
group. Then there exists a finite index subgroup Go < G and an induced relatively hyperbolic group pair
(Go, Po) so that Gy has a quasiconvex, malnormal and fully Py-elliptic hierarchy terminating in groups
isomorphic to elements of Py.

Proof of Theorem 1 Let X be an NPC compact special cube complex so that 771 (X) is finite index in G.

First, pass to a finite index regular cover of X, X; that is special. By applying a homotopy equivalence,
X is homotopy equivalent to a cube complex where every hyperplane gives a nontrivial splitting of 71 X
(see [3, Lemma 5.17]).

By Corollary 7.21, there exists a special cube complex X | homotopy equivalent to X; with a finite regular
cover X, such that G, := w1 X, with induced peripheral structure (G, P2) has a faithful, quasiconvex,
fully P,-elliptic hierarchy terminating in P, * Fj where Fy is a free group.

By Theorem 7.31, there exists a finite regular cover X with G¢ := 711 X¢ and induced peripheral structure
(Go, Pp) such that the induced hierarchy on Gy is malnormal as well and terminates in free products
of free groups and elements of Py (recall Corollary 7.13). The hierarchy can then be continued to a
malnormal, quasiconvex, fully Pp-elliptic one that terminates in Py. O

8 A relatively hyperbolic version of the malnormal special quotient theorem

Recall Wise’s malnormal special quotient theorem (MSQT), see Theorem 1.3 above or [30, Theorem 12.2]
mentioned in the introduction. The purpose of this section is to apply Theorem 1 to obtain a relatively
hyperbolic version of Wise’s MSQT using techniques from [3, Sections 6-9].

Wise’s quasiconvex hierarchy theorem [30, Theorem 13.3] has the following useful consequence:

Corollary 8.1 Let G be a hyperbolic group with a quasiconvex hierarchy terminating in finite groups.
Then G is virtually special.

The technique for proving a relatively hyperbolic analog of Theorem 1.3 will be to start with the
hierarchy provided by Theorem 1 and strategically take quotients using group-theoretic Dehn fillings (see
Definition 8.2). These quotients can be constructed to be hyperbolic, and with some care, the hierarchy
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structure can be passed down to the quotient so that Corollary 8.1 can be used. In [3], the authors avoided
using Corollary 8.1 because their account aimed to give a new proof of auxiliary results used to prove
Corollary 8.1. Consequently, they needed to ensure that the hierarchy structure on the quotient is also a
malnormal hierarchy. By using Corollary 8.1, we only need a quasiconvex hierarchy for such a quotient.

8.1 Group-theoretic Dehn filling

For this section, let (G, P) be a relatively hyperbolic group pair where P = { Py, ..., Py, } unless stated
otherwise. When M is a finite volume hyperbolic 3-manifold with torus cusps, a Dehn filling of M is a
gluing of solid tori 7; = D x S! by a diffeomorphism to the boundary components. The result of the
gluing depends only on the isotopy class of the curve y; € dM that each copy of dD x {p} C T; is glued
to (see eg [22, Section 10.1]). In this situation ;r1 M is hyperbolic relative to a collection of copies of 72,
one for each boundary component of M.

The next definition is a group-theoretic analog of Dehn filling.
Definition 8.2 Let {N; < P; : 1 <i < mj}. Then there exists a group-theoretic Dehn filling of G with
filling map m defined by the quotient
7:G—>G(Ny,...,Np):= G/((U Ni)).
The subgroups N; are called filling kernels.
A filling is called peripherally finite if each filling kernel N; is finite index in P;.
For a classical filling, if every 7; is filled by gluing along the curves y; that are sufficiently long, Thurston’s
Dehn filling theorem says that the resulting manifold is hyperbolic. The group-theoretic analog of a

sufficiently long classical Dehn filling is a group-theoretic Dehn filling where the filling kernels avoid a
finite set of elements:

Definition 8.3 A statement B3 holds for all sufficiently long fillings if there exists a finite B € G \ {1}
such that whenever B N N; = @ for all 1 <i < m, the filling G(Ny, ... Ny,) has .

Osin showed that sufficiently long Dehn fillings of relatively hyperbolic groups are relatively hyperbolic,
have kernels which intersect each peripheral subgroup P; precisely in N; and can be manipulated so that
any finite set of elements are not killed by the filling map.

Theorem 8.4 [23, Theorem 1.1] Let FF C G be any finite subset of G. Then for all sufficiently long
Dehn fillings,

(1) ker(¢|p,) =N; fori =1,2,...,m,

(2) the pair (G(N1,...,Nm),{¢(P1),...,0(Pn)}) is a relatively hyperbolic group pair, and

(3) ¢|F is injective.
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The edge subgroups of the hierarchy from Theorem 1 will need to be full relatively quasiconvex subgroups
of G. The quasiconvexity of the hierarchy will ensure that these subgroups are relatively quasiconvex.

Theorem 8.5 [16, Theorem 1.5] Let H < G be a quasi-isometrically embedded subgroup. Then H is
relatively quasiconvex in G.

Theorem 8.6 [16, Theorem 1.2] Let H < G be relatively quasiconvex. Then there exists a relatively
hyperbolic structure (H, D) where D is finite and every element of D is conjugate into an element of P.

Corollary 8.7 The collection D can be chosen so that

(1) every element of D is infinite, and

(2) whenever H N P# is infinite, for some g € G, there exists h € H so that (H N P#)" is an element
of D.

Proof For the first statement, simply remove all finite elements of D. The second statement follows
from [16, Theorem 9.1]. O

When a filling of G interacts nicely with a subgroup H, it is possible to induce a filling on the subgroup H.

Definition 8.8 [21, Definition B.1] Let H < G. A filling G — G(Ny,..., Np) is an H -filling if
whenever gP; g~ N H is infinite for some P; € P, then gN;g~ ! C H.

Definition 8.9 Suppose H < G is a relatively quasiconvex subgroup and let (H, D) be the relatively
hyperbolic structure from Theorem 8.6 and Corollary 8.7. Let 7: G — G(Ny, ..., Ny) be an H -filling.
Let D; € D. Then there exists some P; € P and g € G with g_leg CPi. LetK;:= gN;g~ L. Since
m is an H-filling, K; <1 D;, so the groups K; determine a filling

nHIH—>H(K1,...,KN)
called the induced filling of H with respect to G(Ny, ..., Ny).
Since N; is normal in P;, the groups K; (and hence the filling) do not depend on the choice of g € G.

The following theorem appears as stated in [3] as Theorem 7.11 and collects results about induced Dehn
fillings from [2]:

Theorem 8.10 Let H < G be a tull relatively quasiconvex subgroup and let F C G be a finite subset.
For all sufficiently long H -fillings, ¢: G — G(N1, ..., Ny) of G,

(1) ¢(H) is a full relatively quasiconvex subgroup of G(N1, ..., Np),

(2) ¢ (H) is isomorphic to the induced filling in that if pry : H — H (K1, ..., K;,) is the induced filling
map, then ker ¢y = ker ¢ N H, and

B) ¢(F)No(H)=¢(FNH).
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8.2 The filled hierarchy

Let H be a quasiconvex fully P-elliptic hierarchy. By Lemma 3.14, Theorem 8.5 and the full P-ellipticity
of the hierarchy, the edge and vertex groups of the hierarchy are full relatively quasiconvex. Let 7: G — G
be a filling and let (G, P) be the relatively hyperbolic structure induced on the filling by Theorem 8.4.
The goal of this subsection is to build an induced hierarchy A (which may not be faithful) for G based
on H where the vertex and edge groups of 7{ are induced fillings of vertex and edge groups of . The
hierarchy 7 will be called a filled hierarchy for (G, P).

The filled hierarchy is built by starting at the top level and building the hierarchy inductively downward.

At the top level, let 7 have the degenerate graph of groups decomposition for G consisting of a single
vertex labeled G. Let n be the length of 7. Suppose the filled hierarchy has been filled down to the
(n —i)™ level and let A be a vertex group at level n —i so that A is the induced filling of a vertex group
A atlevel n —i of H. Let (T, x) be the graph of groups structure for A provided by H. Recall that y is
the assignment map for the graph of groups structure.

If x is a vertex or edge of T, let A, := y(x) be the corresponding vertex or edge group. Let y(x) := Ay
where A is the induced filling 7 : Ay — A. The problem is that the pair (T, ¥) still needs attachment
homomorphisms to be a graph of groups.

Let ¢ : Ae — Ay be an attachment homomorphism of an edge group A, to a vertex group A,. Two details
need to be checked: first there need to be attachment maps ¢_)e : A, — A, such that q?e O Te = My O Qe.
Let T be the maximal tree that determines (I, y, T). There will also need to be an isomorphism
a:m (T, ¥, T) — A sothat (T, ¥, T) is a graph of groups structure for A where & o i = 74 o «.

Completing the square

Ae —— A,
e

2 |

Ay —— Ay
Ty

with a map ae: Ap — Ay is straightforward because 7, is surjective and ker m, C ker 7y, o @e.

Constructing the desired isomorphism @: 71 (T, ¥, T) — G amounts to completing the square

JTl(F,X,T) n—r) JTI(F, i, T)

J |

A

Lemma 8.11 There exists an isomorphism &: 1 (T, ¥, T) — G that completes the diagram.
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The proof of Lemma 8.11 is essentially identical to [3, Lemma 8.1].
For the following, let (G, P) be a relatively hyperbolic group pair and let # be a quasiconvex fully

‘P-elliptic hierarchy for G. The next lemma ties together some definitions:

Lemma 8.12 If A < G is an edge or vertex group of H, then A is a full relatively quasiconvex subgroup
of (G, P) and every filling is an A-filling.

Proof That A is full relatively quasiconvex follows immediately from the definition of full P-ellipticity
and Theorem 8.5.

Whenever gP; g~ ! N A is infinite, then gP;g~! C A, soif N; < P;, then gN; g~ ! <1 A. a

Lemma 8.13 Let A be an edge or vertex group of H. Then for all sufficiently long fillings
7:(G,P)— (G, P)
the following hold:
(1) The subgroup A := ¢(A) is full relatively quasiconvex in (G, P).
(2) IfG is hyperbolic, then A is quasiconvex in G.
(3) The subgroup A is isomorphic to the induced filling of A.

Proof There are only finitely many edge and vertex groups, so the first and third statements follow from
Theorem 8.10.

If A is full relatively quasiconvex in (G, P), then A is undistorted in G by [16, Theorem 10.5] and
by [7, Corollary IIL.T".3.6], A is quasiconvex in G whenever G is hyperbolic. a

The third point also makes the filled hierarchy # faithful:

Corollary 8.14 For all sufficiently long fillings : (G, P) — (G, P), the filled hierarchy # for G is
faithful.

Proof Let . : A, — Ay be an attachment homomorphism mapping an edge group A, to a vertex group A, .
Since 7 (A,) and 7 (Ay) are isomorphic to the induced fillings, we can regard the induced filling maps as
maps my: Ay — A, and mp: Ay — A,. Let ae: A, — A, be the induced edge homomorphism.

We now need to check that given g, € Ae, ¢ © T (ge) = 1 implies that 7w, (ge) = 1. If e 0 T (ge) = 1,
then 7y 0 e (ge) = 1, 50 ¢e(ge) € ker my, = kerm N A, C ker . Faithfulness of the original hierarchy
now implies g, € ker v N A, = Kker 7we, S0 e (ge) = 1. O

The preceding results combine to produce a quasiconvex hierarchy:
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Theorem 8.15 (see [3, Theorem 2.12]) Let (G, P) be a relatively hyperbolic group pair and let H be a
quasiconvex fully P-elliptic hierarchy terminating in P. For all sufficiently long peripherally finite fillings
7:(G,P) — (G, P) so that every P € P is hyperbolic, the group G is hyperbolic and has a quasiconvex
hierarchy terminating in P.

Proof Theorem 8.4 implies that all sufficiently long peripherally finite fillings are hyperbolic.

By Corollary 8.14, the quotient G has a faithful hierarchy 7 where the underlying graphs and every
vertex or edge group of 7 is the image of a vertex or edge group (respectively) of 7 under 7.

By Lemma 8.13(2), every edge and vertex group of 7{ is quasiconvex in G and is hence also quasi-
isometrically embedded in G, so the hierarchy % is quasiconvex.

By construction, the terminal groups are fillings of the terminal groups of A, so the terminal groups of H
are in P. O

Theorem 8.15 works for a group with a quasiconvex hierarchy, but Theorem 1 only gives a hierarchy
for a finite index subgroup. When the filling kernels are chosen carefully, a filling of a finite index
subgroup G’ <1 G can be promoted to a filling of G.

Definition 8.16 Let (G, P) be a relatively hyperbolic group pair and let G’ <t G be a finite index normal
subgroup with induced peripheral structure (G, P’). Let {N; <1 P; | P/ € P}} be a collection of filling
kernels. The collection {N ]f } is equivariantly chosen if

(1) whenever gPJfg_1 and 2P/ h~! both lie in P;, then gNJfg_1 =hN/h~! and

1

(2) every such gN g™ is normal in P;.

An equivariant filling of (G',P’) is a filling with equivariantly chosen filling kernels.
An equivariant filling of (G’, P’) will induce a nice filling of (G, P):

Proposition 8.17 An equivariant filling (G', P') — (G', P') determines a filling (G, P) — (G, P) so
that G’ is finite index normal in G and (G’, P') is the peripheral structure induced by (G, P).

For the reader’s convenience, here is a restatement of Theorem 2.

Theorem 2 Let (G, P) be a relatively hyperbolic group pair with P = { P, ..., Pp}. If G is virtually
compact special, then there exist subgroups {P; <1 P;} where P; is finite index in P; such that if
G = G(N1...., Ny,) is any peripherally finite filling with N; <1 P;, then G is hyperbolic and virtually
special.

Proof By Theorem 1, there exists a finite index G’ <t G with induced peripheral structure (G’, P’) and
a quasiconvex, fully P’-elliptic hierarchy terminating in P’. Let P’ = { Py, ..., P}, }. Since G is virtually
special and hence residually finite, there exist arbitrarily long peripherally finite fillings of (G’, P’). In
particular, our fillings of (G’, P’) will be sufficiently long for Theorem 8.15 to hold.
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Let G'(Kjy, ..., Kpr) be such a peripherally finite filling. Now pass to subgroups of the filling kernels to
obtain an equivariant filling; choose K J’ so that, if K J‘.g < P,

(K)D® =N{K! |he G #KENP) =00}, 1<j<M.

We set P; <1 P; equal to (KJ/-)g for some (any) choice of g € G where KJ/- so that (KJ/-)g < P;. The
new filling G’ = G'(K{,..., K},) is longer than G'(K. ..., Kpr) and remains peripherally finite. By
Proposition 8.17, the filling G'(K7...., K},) determines a filling of G.

Consider any filling G(Ny, ..., Ny,) so that, for each i,

(1) N <P,

(2) Ni <P, and

(3) P;/N; is virtually special and hyperbolic,
with an induced equivariant filling

G'— G'(N{,....,Ny)

so that N ]f <K ]’ and N] < Pj’ for each j. Condition (2) ensures the filling is sufficiently long so that
Theorem 8.15 implies

(1) G’ is hyperbolic, and

(2) G’ has a quasiconvex hierarchy terminating in P’ = {P;/N]}.
Then G’ is a hyperbolic group with a quasiconvex hierarchy that terminates in finite groups (which are
hence hyperbolic and virtually special). So by Corollary 8.1 (see [30, Theorem 13.3]), G'(Nj. ..., N;,)

is virtually special. By Proposition 8.17, G’ = G'(N!, ..., Nj,) is finite index normal in G(N7, ..., Np),
so the filling G(N1, ... Ny,) is also virtually special. |
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