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On the Deligne–Beilinson cohomology sheaves

Luca Barbieri-Viale

We prove that the Deligne–Beilinson cohomology sheaves Hq+1(Z(q)D) are
torsion-free as a consequence of the Bloch–Kato conjectures as proven by Rost
and Voevodsky. This implies that H 0(X,Hq+1(Z(q)D))= 0 if X is unirational.
For a surface X with pg = 0 we show that the Albanese kernel, identified with
H 0(X,H3(Z(2)D)), can be characterized using the integral part of the sheaves
associated to the Hodge filtration.

Introduction

For a compact algebraic manifold X over C, the Deligne cohomology H∗(X,Z( · )D)

is defined by taking the hypercohomology of the truncated de Rham complex aug-
mented over Z. The extension of such a cohomology theory to arbitrary algebraic
complex varieties is usually called Deligne–Beilinson cohomology (for example,
see [Gillet 1984; Esnault and Viehweg 1988] for definitions, properties and de-
tails). Since Deligne–Beilinson cohomology yields a Poincaré duality theory with
supports, the associated Zariski sheaves H∗(Z( · )D) have groups of global sections
which are birational invariants of smooth complete varieties (see [Barbieri-Viale
1994; 1997]). The motivation for this paper is to start an investigation of these
invariants.

We can show that the Deligne–Beilinson cohomology sheaves Hq+1(Z(q)D) are
torsion-free (see Theorem 2.5) as a consequence of the Bloch–Kato isomorphisms,
proven by Rost and Voevodsky (for example, see [Haesemeyer and Weibel 2014;
Voevodsky 2011; Weibel 2008]). In particular, H3(Z(2)D) is torsion-free thanks to
the Merkurjev–Suslin theorem [1983] on K2. Thus, the corresponding invariants
vanish for unirational varieties (see Corollary 2.8). Note that also the singular co-
homology sheaves Hq(Z) are torsion-free. Indeed, a conditional proof (depending
on the validity of the Bloch–Kato conjectures) of these properties has been known
for a long time (see Remark 2.13).

Furthermore, if only H 2(X,OX )= 0, we can show that the group of global sec-
tions of H3(Z(2)D) is exactly the kernel of the cycle map CH 2(X)→H 4(X,Z(2)D)
in Deligne cohomology, which contains the kernel of the Abel–Jacobi map (see
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4 LUCA BARBIERI-VIALE

Proposition 3.3 and Remark 3.6). This fact generalizes the result of H. Esnault
[1990a, Theorem 2.5] for 0-cycles in the case of codimension-2 cycles to X of
arbitrary dimension, and it is obtained by a different proof. Concerning the dis-
crete part F2,2

Z of the Deligne–Beilinson cohomology sheaf H2(Z(2)D), we can
describe, for any X proper and smooth, the torsion of H 1(X,F2,2

Z ) in terms of
“transcendental cycles” and H 3(X,Z)tors, and we can see that it has no nonzero
global sections (see Proposition 3.3). For surfaces with pg = 0, we are able to
compute the group of global sections of H3(Z(2)D)— Bloch’s conjecture is that
H 0(X,H3(Z(2)D)) = 0 — by means of some short exact sequences (described
in Proposition 4.3) involving the discrete part F2,2

Z and the Hodge filtration. In
order to do that, we argue first with arithmetic resolutions of the Zariski sheaves
associated with the presheaves of mixed Hodge structures defined by singular coho-
mology: the Hodge and weight filtrations do have corresponding coniveau spectral
sequences, the E2 terms of which are given by the cohomology groups of the
Zariski sheaves associated to such filtrations (see Proposition 1.2, Theorem 1.6
and compare with the local Hodge theory of [Barbieri-Viale 2002, §3]).

Notation. Throughout this note X is a complex algebraic variety. Let H∗(X, A)
and H∗(X, A) be the singular cohomology and Borel–Moore homology of the as-
sociated analytic space Xan with coefficients in A, respectively, where A could
be Z,Z/n,C or C∗. Let H∗(X) and H∗(X) be the corresponding mixed Hodge
structures, respectively (see [Deligne 1971]). Denote by Wi H∗(X) and W−i H∗(X)
the Q-vector spaces given by the weight filtration, and by F i H∗(X) and F−i H∗(X)
the complex vector spaces given by the Hodge filtration, respectively. For the
ring Z of integers, we will denote by Z(r) the Tate twist in Hodge theory and
by H∗(X,Z(r)D) the Deligne–Beilinson cohomology groups (see [Esnault and
Viehweg 1988; Gillet 1984]). The Tate twist induces the twist A⊗ Z(r) in the
coefficients. which we shall denote by A(r) for short. Denote by H∗(A(r)) and
H∗(Z(r)D) the Zariski sheaves on a given X associated to singular cohomology
and Deligne–Beilinson cohomology, respectively.

1. Arithmetic resolutions in mixed Hodge theory

Let Z ↪→ X be a closed subscheme of the complex algebraic variety X . According
to [Deligne 1974, (8.2.2) and (8.3.8)], the singular cohomology groups H∗Z (X,Z)

carry a mixed Hodge structure fitting into long exact sequences

· · · → H j
Z (X)→ H j

T (X)→ H j
T−Z (X − Z)→ H j+1

Z (X)→ · · · (1.1)

for any pair Z ⊂ T of closed subschemes of X . As has been remarked in [Jannsen
1990], the assignment

Z ⊆ X  (H∗Z (X), H∗(Z))
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yields a Poincaré duality theory with supports (see [Bloch and Ogus 1974]), and
furthermore this theory is appropriate for algebraic cycles (in the sense of [Barbieri-
Viale 1997]) with values in the abelian tensor category of mixed Hodge structures.
In particular, sheafifying the presheaves of vector spaces

U  F i H j (U ) and U  Wi H j (U )

on a fixed variety X , we obtain Zariski sheaves F iH j and WiH j , respectively,
filtering the sheaves H j (C). We then have:

Proposition 1.2. Let X be smooth. The “arithmetic resolution”

0→Hq(C)→
∐

x∈X0
(ix)∗Hq(x)→

∐
x∈X1

(ix)∗Hq−1(x)→ · · · →
∐

x∈Xq
(ix)∗C→ 0

is a bifiltered quasi-isomorphism

(Hq(C),F,W)−→∼
( ∐

x∈X�
(ix)∗Hq−�(x),

∐
x∈X�

(ix)∗F,
∐

x∈X�
(ix)∗W

)
yielding flasque resolutions

0→ gri
F grWj Hq(C)→

∐
x∈X0

(ix)∗ gri
F grW

j Hq(x)→ · · ·
→

∐
x∈Xq

(ix)∗ gri−q
F grW

j−2q H 0(x)→ 0.

Proof. By [Deligne 1971, Théorèmes 1.2.10 and 2.3.5] the functors Fn , Wn and grn
F

(for any n ∈Z) from the category of mixed Hodge structures to that of vector spaces
are exact; grW

n is exact as a functor from mixed Hodge structures to pure Q-Hodge
structures. So the claimed results are obtained via the “locally homologically ef-
faceable” property (see [Bloch and Ogus 1974, Claim, p. 191]) by construction
of the arithmetic resolution (given by [Bloch and Ogus 1974, Theorem 4.2]). For
example, by applying F i to the long exact sequences (1.1), taking direct limits over
pairs Z ⊂ T filtered by codimension and sheafifying, we obtain a flasque resolution

0→ F iHq
→

∐
x∈X0

(ix)∗F i Hq(x)→
∐

x∈X1
(ix)∗F i−1 Hq−1(x)→ · · ·

of length q , where

F∗H∗(x) := lim
−−→

U⊂{x}

F∗H∗(U ).

By this method we obtain as well a resolution of W j ,

0→W jHq
→

∐
x∈X0

(ix)∗W j Hq(x)→
∐

x∈X1
(ix)∗W j−2 Hq−1(x)→ · · · .
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These resolutions give us the claimed bifiltered quasi-isomorphism. (Note: for X
of dimension d , the fundamental class ηX belongs to W−2d H2d(X)∩ F−d H2d(X),
so that “local purity” yields the shift by two for the weight filtration and the shift
by one for the Hodge filtration). In the same way we obtain resolutions of gri

F ,
grWj and gri

F grWj . �

We may consider the twisted Poincaré duality theory (Fn H∗, F−m H∗) where
the integers n and m play the role of twisting and indeed we have

Fd−n H 2d−k
Z (X)∼= F−n Hk(Z)

for X smooth of dimension d . Via the arithmetic resolution of F iHq , we then have
the following:

Corollary 1.3. Let us assume that X is smooth, and let i be a fixed integer. We
then have a “coniveau spectral sequence”

E p,q
2 = H p(X,F iHq)=⇒ F i H p+q(X), (1.4)

where H p(X,F iHq)= 0 if q < i or q < p.

Remark 1.5. Concerning the Zariski sheaves gri
F Hq and Hq/F i , we indeed ob-

tain corresponding coniveau spectral sequences as above.

Because of the maps of “Poincaré duality theories” F i H∗(−)→ H∗(−,C), we
also have maps of coniveau spectral sequences; on the E2-terms the map

H p(X,F iHq)→ H p(X,Hq(C))

is given by taking Zariski cohomology of F iHq ↪→ Hq(C). For example, if
i < p, we clearly have (by comparing the arithmetic resolutions) H p(X,F iHp)∼=

H p(X,Hp(C)), and

H p(X,Hp(C))∼= NS p(X)⊗C

by [Bloch and Ogus 1974, Remark 7.6], where NS p(X) is the group of cycles of
codimension p modulo algebraic equivalence. For i = p we still have:

Theorem 1.6. Let X be smooth. Then

H p(X,F pHp)∼= NS p(X)⊗C.

Proof. By Proposition 1.2, we have

H p(X,F pHp)∼= coker
( ∐

x∈X p−1
F1 H 1(x)→

∐
x∈X p

C

)
,



ON THE DELIGNE–BEILINSON COHOMOLOGY SHEAVES 7

whence the canonical map H p(X,F pHp)→ NS p(X)⊗C is surjective. To show
the injectivity, via the arithmetic resolution we see that

H 2p−1
Z p−1 (X,C)∼= Ker

( ∐
x∈X p−1

H 1(x)→
∐

x∈X p
C

)
,

where H∗Z i denotes the direct limit of the cohomology groups with support on
closed subsets of codimension ≥ i ; indeed, this formula is obtained by taking the
direct limit of (1.1) over pairs Z ⊂ T of codimension ≥ p and ≥ p−1, respectively,
since H 2p−1

Z p = 0 and
H 2p

Z p (X,C)=
∐

x∈X p
C.

Furthermore,

F p H 2p−1
Z p−1
∼= Ker

( ∐
x∈X p−1

F1 H 1(x)→
∐

x∈X p
C

)
and

H 2p−1
Z p−1 /F p ∼=

∐
x∈X p−1

gr0
F H 1(x)

since the arithmetic resolution of Hp/F p has length p− 1. Thus, we have

Im
( ∐

x∈X p−1
F1 H 1(x)→

∐
x∈X p

C

)
= Im

( ∐
x∈X p−1

H 1(x)→
∐

x∈X p
C

)
. �

Remark 1.7. By considering the sheaf Hq(C) (which equals F0Hq ) on X filtered
by the subsheaves F iHq we have, as usual, (see [Deligne 1971, (1.4.5)]) a spectral
sequence

F Er,s
1 = H r+s(X, grs

F Hq)=⇒ H r+s(X,Hq(C))

with induced “aboutissement” filtration

F i H p(X,Hq) := Im
(
H p(X,F iHq)→ H p(X,Hq(C))

)
.

The interested reader can check that this spectral sequence degenerates. This re-
proves Theorem 1.6, and also yields that the filtration F i H p(X,Hp) is the Néron–
Severi group NS p(X)⊗C if i ≤ p and vanishes otherwise.

Remark 1.8. As an immediate consequence of this Theorem 1.6, via the coniveau
spectral sequence (1.4), we see the well-known fact that the image of the cycle
map c`p

: NS p(X)⊗C→ H 2p(X,C) is contained in F p H 2p(X).

For any X smooth and proper, we have F2 H 2(X)=H 0(X,F2H2)=H 0(X, �2
X )

and

H 0(X,H2/F2)∼=H 0(X,H2(C))/H 0(X, �2
X )
∼=

H 2(X,C)

H 0(X, �2
X )⊕NS(X)⊗C

, (1.9)
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where H 0(X,H2(C))∼= H 0(X,H2(Z))⊗C and

H 0(X,H2(Z))= Im
(
H 2(X,Z)→ H 2(X,OX )

)
is the lattice of “transcendental cycles”. The formula (1.9) can be obtained, for
example, by the exact sequence (given by the coniveau spectral sequence since
F2H1

= 0)

0→ H 1(X,H1(C))→ H 2(X)/F2
→ H 0(X,H2/F2)→ 0

since H 1(X,H1(C))= NS(X)⊗C.

2. Deligne–Beilinson cohomology sheaves

Let X be smooth over C. Let us consider the Zariski sheaf H∗(Z(r)D) associated to
the presheaf of Deligne–Beilinson cohomology groups U  H∗(U,Z(r)D) on X .
We have canonical long exact sequences of sheaves

· · · →Hq(Z(r))→Hq(C)/Fr
→Hq+1(Z(r)D)→Hq+1(Z(r))→ · · · , (2.1)

· · ·→Hq(Z(r)D)→Hq(Z(r))⊕FrHq
→Hq(C)→Hq+1(Z(r)D)→· · · , (2.2)

· · · → FrHq
→Hq(C∗(r))→Hq+1(Z(r)D)→ FrHq+1

→ · · · (2.3)

on X obtained by sheafifying the usual long exact sequences coming with Deligne–
Beilinson cohomology (see [Esnault and Viehweg 1988, Corollary 2.10]).

Define the “discrete part” Fr,q
Z (cf. [Esnault 1990a, §1]) of the Deligne–Beilinson

cohomology sheaves by

Fr,q
Z := Im

(
Hq(Z(r)D)→Hq(Z(r))

)
,

or, equivalently by (2.1), Fr,q
Z is the integral part of FrHq . Note that Fr,q

Z is given
by the inverse image of FrHq under the canonical map Hq(Z)→Hq(C).

We may define the “transcendental part” of the Deligne–Beilinson cohomology
sheaves to be

T r,q
D := Ker

(
Hq(Z(r)D)→Hq(Z(r))

)
.

We then have the short exact sequence

0→Hq(Z(r))/Fr,q
Z →Hq(C)/Fr

→ T r,q+1
D → 0 (2.4)

induced by (2.1). Note that if r = 0 then Hq(C)/F0
= 0 and (2.1) yields the iso-

morphism H∗(Z(0)D)∼=H∗(Z), so that (2.2) splits in trivial short exact sequences.

Theorem 2.5. Let X be smooth over C and assume q ≥ 0.

(i) The sheaf Hq(Z) is torsion-free.

(ii) The sheaf Hq+1(Z(q)D) is torsion-free.
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(iii) There is a canonical isomorphism Hq(Z(q)D)⊗Z/n ∼=Hq(Z/n)

Proof. (i) In order to show that Hq+1(Z) is torsion-free it suffices to see that
Hq(Z) → Hq(Z/n) is an epimorphism for any n ∈ Z; via the canonical map
O∗X → H1(Z) and cup product we obtain a map (O∗X )

⊗q
→ Hq(Z). The com-

position
(O∗X )

⊗q
→Hq(Z)→Hq(Z/n)

can be obtained as well as (cf. [Bloch and Srinivas 1983, p. 1240]) the composition

(O∗X )
⊗q sym
−−→ KM

q →Hq(Z/n),

where by definition of Milnor’s K -theory sheaf the symbol map sym is an epi-
morphism. Thus it is left to show that the Galois symbol KM

q → Hq(Z/n) is an
epimorphism (for the sake of exposition we are tacitly fixing an n-th root of unity,
yielding a noncanonical isomorphism Hq

ét(µ
⊗r
n )∼=Hq(Z/n)). The Galois symbol

map can be obtained by mapping the Gersten resolution for Milnor’s K -theory (for
example, see [Kerz 2009, Theorem 7.1]) to the Bloch–Ogus arithmetic resolution
of the sheaf Hq(Z/n). In fact, there is a commutative diagram

0 // KM
q

//

��

∐
η∈X0

(iη)∗K M
q (k(η)) //

��

∐
x∈X1

(ix)∗K M
q−1(k(x))

��

0 // Hq(Z/n) //
∐
η∈X0

(iη)∗Hq(η) //
∐

x∈X1
(ix)∗Hq−1(x)

where H∗(point) is the Galois cohomology of k(point) with Z/n-coefficients. Thus,
the Bloch–Kato isomorphism K M

∗
(k(point))/n −→∼ H∗(point) (see [Haesemeyer

and Weibel 2014, Theorem A]) and the exactness of the Gersten complex for Mil-
nor’s K -theory mod n (for example, see [Kerz 2009, Theorem 7.8]) yields the
desired projection KM

q → KM
q /n −→∼ Hq(Z/n).

(ii) & (iii) By considering the Bloch–Beilinson regulators

KM
q →Hq(Z(q)D)

(simply obtained by the fact that KM
1 =O∗X ∼=H1(Z(1)D) and using the cup product)

we have that the composition

KM
q →Hq(Z(q)D)→Hq(Z(q))→Hq(Z/n)

is the Galois symbol (see [Esnault 1990b, §0, p. 375]). Hence the composition

KM
q →Hq(Z(q)D)/n→Hq(Z/n)
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is an epimorphism. Therefore, by comparing with (2.7) below, the proof of the
theorem is finished. �

Lemma 2.6. We have a short exact sequence of sheaves

0→Hq(Z(r)D)/n→Hq(Z/n)→Hq+1(Z(r)D)n- tors→ 0 (2.7)

for all q, r ≥ 0 and n ∈ Z.

Proof. The sequence (2.7) is obtained from the long exact sequence (2.1) as follows.
Since the sheaf Hq(Z(r))∼=Hq(Z) for all r ≥ 0 is torsion-free, we have T r,q+1

D,n- tors =

Hq+1(Z(r)D)n- tors. Using (2.4), since the sheaf Hq(C)/Fr is uniquely divisible,
we have that

Hq+1(Z(r)D)n- tors = (Hq(Z(r))/Fr,q
Z )⊗Z/n.

Thus we get a short exact sequence

0→ Fr,q
Z /n→Hq(Z/n)→Hq+1(Z(r)D)n- tors→ 0

by tensoring with Z/n the canonical one induced by the subsheaf Fr,q
Z ↪→Hq(Z(r)).

Since T r,q
D is divisible, we are done. �

By a standard argument (see [Barbieri-Viale 1994, §2; 1997]) we have:

Corollary 2.8. Suppose that X is a smooth unirational complete variety. Then

H 0(X,Hq+1(Z(q)D))= H 0(X,Hq(Z))= 0.

Remark 2.9. In particular, from Theorem 2.5(i) we get the short exact sequence

0→Hq(Z)→Hq(C)→Hq(C∗)→ 0. (2.10)

Moreover, we have the following commutative diagram with exact rows and columns:

0 0 0

0 // Hq(Z(q))/Fq,q
Z

OO

// Hq(C)/Fq

OO

// T q,q+1
D

//

OO

0

0 // Hq(Z(q)) //

OO

Hq(C) //

OO

Hq(C∗(q)) //

OO

0

0 // Fq,q
Z

//

OO

Fq //

OO

Fq/Fq,q
Z

//

OO

0

0

OO

0

OO

0

OO

(2.11)
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where the middle row is given by (2.10) and the top one is just given by (2.4).
Finally, we have (see [Esnault 1990a, (1.3)α)]) the short exact sequence

0→Hq−1(C∗(q))→Hq(Z(q)D)→ Fq,q
Z → 0 (2.12)

given by (2.3) or (2.1), taking account of (2.10).

Remark 2.13. The argument in the proof of Theorem 2.5, assuming the validity of
Bloch–Kato conjecture, was given in the previous version of this paper, available
at arXiv:alg-geom/9412006v1. Indeed, O. Gabber announced (at the end of 1992)
the (universal) exactness of the Gersten complex of Milnor’s K -groups, and some
discussions with B. Kahn directed my attention to Gabber’s announcement. Actu-
ally, Theorem 2.5(i) was first considered in [Bloch and Srinivas 1983, p. 1240] for
q = 3, it was conjectured in [Barbieri-Viale 1994, §7] in general, and a proof also
appears in [Colliot-Thélène and Voisin 2012, Théorème 3.1].

3. Coniveau versus Hodge filtrations

Recall the existence of arithmetic resolutions of the sheaves H∗(Z( · )D), the coni-
veau spectral sequence

DE p,q
2 = H p(X,Hq(Z( · )D))=⇒ H p+q(X,Z( · )D), (3.1)

and the formula H p(X,Hp(Z(p)D))∼= CH p(X) (see [Gillet 1984]). By the spec-
tral sequence (3.1), we have a long exact sequence

0→H 1(X,H2(Z(2)D))→H 3(X,Z(2)D)
ρ
−→H 0(X,H3(Z(2)D))

δ
−→CH 2(X). (3.2)

The mapping δ is just a differential between DE2-terms of the coniveau spectral
sequence (3.1); we still have

Im δ = Ker
(
CH 2(X)

c`
−→ H 4(X,Z(2)D)

)
,

where c` is the cycle class map in Deligne–Beilinson cohomology.

Proposition 3.3. Let X be proper and smooth. Then

H 0(X,F2,2
Z )= 0,

the group H 1(X,F2,2
Z ) is infinitely divisible, and

H 1(X,F2,2
Z )tors ∼= H 0(X,H2(Q/Z(2))).

If H 2(X,OX )= 0, then

H 0(X,H3(Z(2)D))∼= Ker
(
CH 2(X)

c`
−→ H 4(X,Z(2)D)

)
,

i.e., ρ = 0 in (3.2), and H 1(X,F2,2
Z )∼= H 3(X,Z)tors.

arXiv:alg-geom/9412006v1
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Proof. By the canonical map of “Poincaré duality theories”

H ]−1(−,C∗( · ))→ H ](−,Z( · )D),

we obtain a map of coniveau spectral sequences and the commutative diagram

0 // H 1(X,H2(Z(2)D)) // H 3(X,Z(2)D)
ρ // H 0(X,H3(Z(2)D))

0 // NS(X)⊗C∗(2) //

ι

OO

H 2(X,C∗(2)) //

OO

H 0(X,H2(C∗(2))) //

OO

0

(3.4)

In fact, we have
H 1(X,H1(C∗(2)))∼= NS(X)⊗C∗(2),

and the exactness on the right of the bottom exact sequence is provided by the van-
ishing H 2(X,H1(C∗(2)))= 0. The left-most map ι is induced by the corresponding
map in the long exact sequence

· · ·
α
−→ H 0(X,F2,2

Z )→ H 1(X,H1(C∗(2)))

→ H 1(X,H2(Z(2)D))→ H 1(X,F2,2
Z )

β
−→ · · · (3.5)

obtained from the short exact sequence of sheaves (2.12) for q = 2.
It is then easy to see that H 0(X,F2,2

Z ) and H 1(X,F2,2
Z ) are, respectively, the

kernel and the cokernel of ι. In fact, β = 0 in (3.5) because H 2(X,H1(C∗(2)))= 0.
To see that α = 0 in (3.5), note that, by the coniveau spectral sequences,

H 0(X,H1(C∗(2)))∼= H 1(X,C∗(2)) and H 0(X,H2(Z(2)D))∼= H 2(X,Z(2)D)

since C∗(2)∼=H1(Z(2)D) is Zariski constant; now, since X is proper,

H 1(X,C∗(2))∼= H 2(X,Z(2)D),

that is,
F2 H 1

= 0 and F2 H 2 ↪→ H 2(X,C∗(2))

in the global version of (2.3), so that α = 0 in (3.5), as claimed. Furthermore, we
have

H 3(X,Z(2)D)∼= H 2(X,C∗(2))/F2 H 2, since F2 H 3 ↪→ H 3(X,C∗(2)).

We conclude that H 0(X,F2,2
Z ) vanishes because F2 H 2

∩ NS(X)⊗C∗(2) = 0.
Moreover, H 0(X,H3(Z(2)D)) is torsion-free (by Theorem 2.5) so that Im ρ is
torsion-free and H 3(X,Z(2)D)⊗Q/Z = 0 indeed; therefore, tensoring the top
row of (3.4) with Q/Z, we get

H 1(X,H2(Z(2)D))⊗Q/Z= 0.
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Then the vanishing H 1(X,F2,2
Z )⊗Q/Z = 0 follows from the description of the

cokernel of ι. Further, by taking the torsion subgroups in the diagram (3.4), we
obtain the assertion about the torsion of H 1(X,F2,2

Z ). If H 2(X,OX ) = 0 then
NS(X)∼= H 2(X,Z). We then have (by the bottom row of the diagram (3.4) above)
that H 0(X,H2(C∗(2))) ∼= H 3(X,Z)tors, and its image in H 0(X,H3(Z(2)D)) is
equal to the image of ρ, whence the image of ρ is zero since it is torsion-free.
Since F2 H 2

= 0 by a final diagram chase, we obtain the last claim. �

Remark 3.6. H 0(X,H2(Q/Z)) is actually an extension of H 0(X,H2(Z))⊗Q/Z

by H 3(X,Z)tors because H 0(X,H3(Z)) is torsion-free. Recall the commutative
diagram (see [Barbieri-Viale 1994, 6.1; Esnault and Viehweg 1988, §7])

0 // A2(X) //

��

CH 2(X) //

c`
��

NS2(X) //

��

0

0 // J 2(X) // H 4(X,Z(2)D) // H 2,2
Z

// 0

(3.7)

where J 2(X) is the intermediate Jacobian, A2(X) ⊂ CH 2(X) is the subgroup of
cycles which are algebraically equivalent to zero, H 2,2

Z ⊂ H 4(X,Z(2)) are integral
Hodge cycles and the composition NS2(X)→ H 2,2

Z ⊂ H 4(X,Z(2)) is the classical
cycle class map in singular cohomology. Recall that we also have an exact sequence

H 0(X,H3(Z))→ NS2(X)→ H 4(X,Z(2)).

The vanishing H 0(X,H3(Z(2)D))= H 0(X,H3(Z))= 0, e.g., if X is unirational by
Corollary 2.8, would imply the finite generation of NS2(X) and the representability
of A2(X).

In order to detect elements in the mysterious group H 0(X,H3(Z(2)D)) of global
sections, we dispose of the image of H 0(X,H2/F2) (see (1.9)) which is the same
(see the diagram (2.11)) as the image of

H 0(X,H2(Z))⊗C/Q(2)= H 0(X,H2(C∗(2)))⊗Q.

Unfortunately these images cannot be the entire group, in general. Indeed, when-
ever the map

H 0(X,H2(C∗(2)))→ H 0(X,H3(Z(2)D))

is surjective then ρ is surjective in (3.2) (because of (3.4)), whence the cycle map
is injective, which is not the case in general (indeed, for any surface with pg 6= 0
the cycle map is not injective, by [Mumford 1968]).
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4. Surfaces with pg = 0

In the following we let X denote a complex algebraic surface which is smooth and
complete. Let A0(X) be the subgroup of CH 2(X) of cycles of degree zero. Let

φ : A0(X)→ J 2(X)

be induced by the canonical mapping to the Albanese variety. It is well known (see
[Gillet 1984, Theorem 2 and Corollary]) that c`|A0(X) = φ, where c` is the cycle
map in Deligne cohomology, i.e., in the diagram (3.7) we have that NS2(X) ∼=
H 4(X,Z(2)) and A2(X)∼= A0(X) under our assumptions. Actually, it is known that
(see [Barbieri-Viale and Srinivas 1995]) on such a surface X the sheaf H3(Z(2)D)
is flasque and

H 0(X,H3(Z(2)D))∼= lim
−−→

U⊂X

H 2(U,C)

F2 H 2(U )+ H 2(U,Z(2))
,

where the limit is taken over the nonempty Zariski open subsets of X . We then have

H 1(X,H3(Z(2)D))= 0. (4.1)

Moreover, the sheaf H4(Z(2)D) vanishes on a surface (as it is easy to see via the
exact sequence (2.1)). Thus, via the spectral sequence (3.1), the vanishing (4.1)
corresponds to the vanishing of the cokernel of the cycle map

CH 2(X)
c`
−→ H 4(X,Z(2)D),

which is equivalent (using the diagram (3.7)) to the well-known surjectivity of φ.
Finally, we have that H 2(X,H3(Z(2)D))∼= H 5(X,Z(2)D)= 0. In conclusion, the
only possibly nonzero terms in the spectral sequence (3.1) are: those giving the ex-
act sequence (3.2), H 0(X,H2(Z(2)D))∼= H 2(X,Z(2)D) and H 0(X,H1(Z(2)D))=
C∗. Since Kerφ = Ker c`= Im δ in (3.2), we obtain:

Lemma 4.2. The group H 0(X,H3(Z(2)D)) is uniquely divisible for any surface
X which is smooth and complete.

Proof. Note that A2(X) is always divisible (for example, see [Bloch and Ogus 1974,
Lemma 7.10]) and A0(X)tors ∼= J 2(X)tors by [Rojtman 1980], so Kerφ⊗Q/Z= 0.
Now (3.2) yields H 0(X,H3(Z(2)D))⊗Q/Z= 0 since Im δ = Kerφ and Ker δ =
Im ρ both vanish when tensored with Q/Z. Using Theorem 2.5 we are done. �

We know (see [Mumford 1968]) that A0(X)∼= J 2(X) implies that pg = 0. Con-
versely, Bloch’s conjecture is that if pg = 0 then A0(X) ∼= J 2(X). Therefore,
by Proposition 3.3, we obtain that pg = 0 if and only if H 0(X,H3(Z(2)D)) = 0,
assuming the validity of Bloch’s conjecture (see [Barbieri-Viale and Srinivas 1995;
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Rosenschon 1999; Esnault 1990a; Gillet 1984]). A first characterization of the
uniquely divisible group H 0(X,H3(Z(2)D)) is given by the following:

Proposition 4.3. Let X be a smooth complete surface with pg = 0. We then have
the following canonical short exact sequences

0→ H 0(X,H3(Z(2)D))→ H 1(X,F2/F2,2
Z )→ H 3(X,C∗(2))→ 0, (4.4)

0→ H 0(X,H3(Z(2)D))→ H 1(X,H2(Z(2))/F2,2
Z ))→ H 3/F2

→ 0, (4.5)

where

0→ F2 H 3
→ H 1(X,F2/F2,2

Z )→ A0(X)→ 0, (4.6)

0→ H 3(X,Z)/ tors→ H 1(X,H2(Z(2))/F2,2
Z )→ A0(X)→ 0 (4.7)

are also exact.

Proof. All these exact sequences are obtained by considering the exact diagram of
cohomology groups associated with the diagram of sheaves (2.11) (where T 2,3

D =

H3(Z(2)D) on a surface) taking account of Theorems 2.5 and 1.6, Proposition 3.3
and the coniveau spectral sequence (1.4). For example, the sequence (4.4) is ob-
tained by taking the long exact sequence of cohomology groups associated with the
right-most column of (2.11), the fact that H 1(X,H2(C∗(2)))∼= H 3(X,C∗(2)) on
a surface and the formula (4.1). For (4.5) one has to use the top row of (2.11), the
formulas (1.9) and (4.1), and the fact that H 3/F2 ∼= H 1(X,H2/F2). The left-most
column of (2.11) yields (4.7), since

H 2(X,F2,2
Z )∼= H 2(X,H2(Z(2)D))∼= CH 2(X)

by (2.12) (see [Esnault 1990a, Theorem 1.3]) and the map of sheaves H2(Z(2)D)→
H2(Z(2)) induces the degree map on H 2. For (4.6) one has to argue with the
commutative square in the left bottom corner of (2.11) and the isomorphism

H 2(X,F2)∼= H 2(X,H2(C))∼= C;

remember that H 1(X,F2,2
Z ) = H 3(X,Z)tors, whence it goes to zero in F2 H 3 ∼=

H 1(X,F2H2). �

Remark 4.8. Because of Proposition 4.3, Bloch’s conjecture is equivalent to show-
ing that the canonical injections of sheaves

F2/F2,2
Z ↪→H2(C∗(2)) and H2(Z(2))/F2,2

Z ↪→H2/F2

remain injections on H 1. It would be very nice to know of any reasonable descrip-
tion of the Zariski cohomology classes of these subsheaves.
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