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We introduce the notion of the joint spectral flow, which is a generalization of
the spectral flow, by using Segal’s model of the connective K -theory spectrum.
We apply it for some localization results of indices motivated by Witten’s de-
formation of Dirac operators, and rephrase some analytic techniques in terms
of topology.
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1. Introduction

We give a topological viewpoint for the index and localization phenomena for
elliptic operators on certain fiber bundles, using the notion of the joint spectral
flow, which is a generalization of the spectral flow introduced by Atiyah, Patodi
and Singer [Atiyah et al. 1976]. The spectral flow has various generalizations: for
example, the higher spectral flow given by Dai and Zhang [1998] and the noncom-
mutative spectral flow by Leichtnam and Piazza [2003] and Wahl [2007]. However,
what we introduce here is a completely different new generalization.

The spectral flow for a one-parameter family of self-adjoint operators is an
integer counting the number of eigenvalues with multiplicity crossing over zero.
In geometric situations, it is related to the index of some Fredholm operators, as
shown in [Atiyah et al. 1976] as follows. For a one-parameter family of self-adjoint
elliptic differential operators Dt of first order (t ∈ S1) on 0(Y, E), where Y is a
closed manifold and E is a hermitian vector bundle on Y , the first-order differential
operator d/dt+Dt on 0(Y × S1, π∗E) is also elliptic, and its index coincides with
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the spectral flow. The proof is given essentially by the index theorem for families
over the closed 1-dimensional manifold S1.

The joint spectral flow deals with an n-parameter family of n-tuples of mutually
commuting self-adjoint operators and their joint spectra. We deal with continu-
ous or smooth families of commuting Fredholm n-tuples, which are defined in
Definition 2.3, and the “Dirac operators” associated with them. In the special case
n= 1, the joint spectral flow coincides with the usual spectral flow. We also relate it
with the index of some elliptic operators, as in the case of the ordinal spectral flow.

Theorem 3.19. Let B be a closed n-dimensional Spinc manifold, Z→ M→ B a
smooth fiber bundle over B such that the total space M is also a Spinc-manifold,
E a smooth complex vector bundle over M , and V an n-dimensional Spinc vector
bundle over B. For a bundle map {Dv(x)} from V \ {0} to the bundle of fiberwise
pseudodifferential operators 91

f (M, E) satisfying Condition 3.18, we have

ind(π∗ /DB + D(x))= jsf
(
{D(x)}

)
.

The proof also works in a similar way to the original one. The crucial the-
orem introduced by Segal [1977] is that the space of n-tuples of mutually com-
muting compact self-adjoint operators is a model for the spectrum of connective
K -theory.

The joint spectral flow and its index formula imply some localization results.
E. Witten [1982] reinterpreted and reproved some localization formulas for the
indices of Dirac operators from the viewpoint of supersymmetry. He deformed
Dirac operators by adding potential terms coming from Morse functions or Killing
vectors. Recently, Fujita, Furuta and Yoshida [2010] used an infinite-dimensional
analogue to localize the Riemann–Roch numbers of certain completely integrable
systems and their prequantum data on their Bohr–Sommerfeld fibers. Here a fiber
of a Lagrangian fiber bundle is Bohr–Sommerfeld if the restriction of the prequan-
tum line bundle to it is trivially flat (flat with trivial monodromy). In this case the
indices of Dirac operators on fiber bundles localize on some special fibers instead
of points. Here we relate them with our joint spectral flow and give a topological
viewpoint for this analytic way of localization. A strong point of our method is
that we give a precise way to compute the multiplicity at each point on which the
index localizes. As a consequence, we reprove and generalize theorems of Witten
and Fujita, Furuta and Yoshida.

Corollary 4.3 [Andersen 1997; Fujita et al. 2010]. Let (M, ω) be a symplectic
manifold of dimension 2n, Tn

→M→ B a Lagrangian fiber bundle, and (L ,∇L , h)
its prequantum data. Then its Riemann–Roch number RR(M, L) coincides with the
number of Bohr–Sommerfeld fibers.



THE JOINT SPECTRAL FLOW AND LOCALIZATION OF INDICES 45

Finally we consider an operator-theoretic problem.
Unfortunately, there are not many examples of geometrically important opera-

tors (for example Dirac operators) represented as Dirac operators associated with
commuting Fredholm n-tuples coming from differential operators. Compared with
the case where their principal symbols “decompose” as the sum of commuting
n-tuples, which is the easiest case because this occurs when when their tangent
bundles decompose, the case where the Dirac operators themselves decompose
is much more difficult because it requires some integrability of decompositions
of tangent bundles. However, the bounded operators /D(1+ /D2

)−1/2 associated
with the Dirac operators /D and zeroth-order pseudodifferential operators are much
easier to deal with than first-order differential operators. We glue two commut-
ing n-tuples of pseudodifferential operators by using topological methods to show
that the indices for families are complete obstructions to decomposing families of
Dirac operators. Here the theories of extensions of C∗-algebras and of Cuntz’s
quasihomomorphisms play an important role.

Theorem 5.3. Let Z → M → B be a fiber bundle. We assume that there are
vector bundles V1, . . . , Vl on B and E1, . . . , El on M such that the vertical tangent
bundle TV M is isomorphic to π∗V1 ⊗ E1 ⊕ · · · ⊕ π

∗Vl ⊗ El . Then its fiberwise
Dirac operator /DE

f is n-decomposable (in the sense of Definition 5.2) if and only
if the index for a family ind( /DE

f ) is in the image of K n(B, B(n−1))→ K n(B), or
equivalently the image of k̃n(B)→ K n(B).

This paper is organized as follows. In Section 2, we relate Segal’s description
of the connective K -theory with the theory of Fredholm operators. In Section 3,
we introduce the notion of the joint spectral flow and prove its index formula. In
Section 4, we apply the theory and reprove or generalize some classical facts. In
Section 5 we deal with the problem of decomposing Dirac operators and give an
index-theoretic complete obstruction.

Conventions. We use the following notation throughout this paper:
First, any topological space is assumed to be locally compact and Hausdorff

unless otherwise noted (there are exceptions, which are mentioned individually).
Second, we use some topological terms as follows. For a based space (X, ∗),

we denote by 6X the suspension X × S1/(X × ∗S1 ∪ ∗X × S1) and by �X the
reduced loop space Map((S1, ∗), (X, ∗)). On the other hand, for an unbased space
X we denote by 6X and I X the direct sums X× (0, 1) and X×[0, 1], respectively.
Similarly, for a C∗-algebra A we denote by6A and I A its suspensions A⊗C0(0, 1)
and A⊗C[0, 1]. In particular, we denote by just 6 (resp. I ) the topological space
(0, 1) or the C∗-algebra C0(0, 1) (resp. [0, 1] or C[0, 1]).
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2. Fredholm picture of the connective K -theory

In this section, we first summarize the notion of connective K -theory and its re-
lation to operator algebras according to [Segal 1977] and [Dădărlat and Némethi
1990]. Then we connect it with a model of the K -theory spectrum that is related to
the space of Fredholm operators. Finally we generalize the theory for the twisted
case. This is fundamental to describing the joint spectral flow.

Let {H i
}i∈Z be a generalized cohomology theory. We say {hi }i∈Z is the connec-

tive cohomology theory associated to {Hi } if it is a generalized cohomology theory
satisfying the following properties:

(1) There is a canonical natural transformation hi
→ H i that induces an isomor-

phism hi (pt)→ H i (pt) for i ≤ 0.

(2) We have hi (pt)= 0 for i > 0.

Then (reduced) connective K -theory is the connective cohomology theory that is
associated to (reduced) K -theory.

Segal [1977] gave an explicit realization of connective K -theory spectra by using
operator-algebraic methods.

For a pair of compact Hausdorff spaces (X, A), we denote by F(X, A) the con-
figuration space with labels in finite-dimensional subspaces of a fixed (separable
infinite-dimensional) Hilbert space. More precisely, an element of F(X, A) is a
pair (S, {Vx}x∈S), where S is a countable subset of X \ A whose cluster points are
all in A and each Vx is a nonzero finite-dimensional subspace of a Hilbert space H
such that Vx and Vy are orthogonal if x 6= y. It is a non-locally compact topological
space with canonical topology satisfying the following:

(1) When two sequences {xi }, {yi } converge to the same point z and Vz is the limit
of {Vi,xi ⊕ Vi,yi }, the limit of ({xi , yi }, {Vi,xi , Vi,yi }) is ({z}, {Vz}).

(2) When all cluster points of a sequence {xi } are in A, the limit of ({xi }, {Vi,xi })

is (∅,∅).

Then the following holds for this topological space:

Proposition 2.1. Let (X, A) be a pair of compact Hausdorff spaces. We assume
that X is connected, A is path-connected, and A is a neighborhood deformation
retract in X. Then the space F(X, A) is homotopy-equivalent to its subspace
Ffin(X, A) := {(S, {Vx}x∈S) ∈ F(X, A) | #S <∞} and a sequence Ffin(A, ∗)→
Ffin(X, ∗)→ Ffin(X, A) is a quasifibration. Here morphisms are induced by contin-
uous maps (A, ∗)→ (X, ∗)→ (X, A). Hence the map F(X, A)→�F(SX, S A)
induces a homotopy equivalence.

Proof. See [Segal 1977, Proposition 1.3; Dădărlat and Némethi 1990, Section 3.1].
�
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This means that {F(Sn, ∗)}n=1,2,... is an�-spectrum, and hence homotopy classes
of continuous maps to it realize some cohomology theory.

Now we introduce two other non-locally compact spaces. First, let Fn(H) be
the space of (n+ 1)-tuples {Ti }i=0,...,n of self-adjoint bounded operators on H that
satisfy the following:

(1) The operator T 2
:=
∑

T 2
i is equal to the identity.

(2) The operator Ti commutes with T j for any i and j .

(3) The operators Ti (i = 1, 2, . . . , n) and T0− 1 are compact.

Then there is a canonical one-to-one correspondence between Fn(H) and F(Sn,∗).
If we have an element (S, {Vx}) of F(Sn, ∗), then we obtain an (n + 1)-tuple
(T0, . . . , Tn) by setting Ti :=

∑
x∈S xi PVx , where PV is the orthogonal projection

onto V and xi the i-th coordinate of x in Sn
⊂ Rn+1. Conversely, if we have

an element (T0, . . . , Tn) in Fn(H), then we obtain data of joint spectra and the
eigenspaces because the Ti are simultaneously diagonalizable. Actually, this cor-
respondence is homeomorphic.

On the other hand, if we have an element (T0, . . . , Tn) ∈ Fn(H), then there is
a canonical inclusion from the spectrum of the abelian C∗-algebra C∗(T0, . . . , Tn)

into the unit sphere of Rn+1 according to condition (1). It gives a ∗-homomorphism
C(Sn)→ B(H) sending xi to Ti . Now, by virtue of condition (3), the image of
its restriction to C0(Sn

\ {∗}) (where ∗ = (1, 0, . . . , 0)) is in the compact operator
algebra K = K(H). Conversely, if we have a ∗-homomorphism ϕ : C0(R

n)→

K, then we obtain an element (ϕ(x0 − 1)+ 1, ϕ(x1), . . . , ϕ(xn)) in Fn(H). This
gives a canonical one-to-one correspondence between Fn(H) and Hom(C0(R

n),K).
This correspondence is also a homeomorphism when we equip Hom(C0(R

n),K)

with the strong topology. Moreover, a continuous family of ∗-homomorphisms
{ϕx}x∈X parametrized by a finite CW-complex X is regarded as a ∗-homomorphism
C0(R

n)→ C(X)⊗K ∼= C(X,K).

Proposition 2.2 [Segal 1977; Dădărlat and Némethi 1990]. Let X be a finite CW-
complex and n ∈ Z>0. The three sets

(1) [X, F(Sn, ∗)],

(2) [X, Fn(H)],

(3) [C0(R
n),C(X)⊗K]

are canonically mutually isomorphic and form the n-th reduced connective K -
group k̃n(X). Here the first two are the sets of homotopy classes of continuous
maps and the third is that of homotopy classes of ∗-homomorphisms.
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Proof. We have already seen that these three sets are canonically isomorphic and
{F(Sn, ∗)}n=1,2,... is an �-spectrum. The desired canonical natural transform is a
canonical map 8 from [C0(R

n),C(X)⊗K] to KK (C0(R
n),C(X)⊗K)∼= K n(X)

that sends a homotopy class [ϕ] to [H⊗C(X), ϕ, 0]. Hence we only have to com-
pute πi (F(Sn, ∗)). First for a general C∗-algebra A, the map [C0(R), A]→ K1(A)
is an isomorphism because a ∗-homomorphism from C0(R) to A is determined by
a unitary operator. Hence [X, F(S1, ∗)] is isomorphic to K 1(X). In the case i ≥ n
we have

πi (F(Sn, ∗))∼= πi−n+1(F(S1, ∗))∼= K 1(Ri−n+1),

that is, Z when i − n is even and 0 when i − n is odd. In the case i < n we have
πi (F(Sn, ∗))∼= π0(F(Sn−i , ∗))∼= 0 because F(Sn−i , ∗) is connected. �

Next we relate this picture to a realization of K -theory that uses the space of
Fredholm operators.

Atiyah and Singer [1969] gave a realization of the K -theory spectrum. Let C`n

be the complex Clifford algebra associated to Cn and its canonical inner product,
e1, . . . , en its canonical self-adjoint generators with relations ei e j + e j ei = 2δi j

and H a Hilbert space with a Z/2-grading and a Z/2-graded C`n-action c. Then
the (non-locally compact) space of odd bounded self-adjoint Fredholm operators
T that commute with the C`n-action, and such that c(e1) · · · c(en)T |H0 is neither
positive- nor negative-definite modulo compact operators if n is odd, represents the
K−n-functor.

Similarly, we represent the K n-functor for n > 0 as a space of Fredholm opera-
tors. For an ungraded separable infinite-dimensional Hilbert space H, let HC`n be
the Z/2-graded Hilbert C`n-module H ⊗̂C`n . Now, for n > 0, let FC`n (H) be the
(non-locally compact) space of odd bounded self-adjoint operators in B(HC`n ) that
is Fredholm, that is, invertible modulo K(HC`n ). Moreover, if n is odd, we addition-
ally assume that c(e1) · · · c(en)T |H⊗C`0

n
is neither positive- nor negative-definite.

Then it represents the K n-functor. It can be understood from the viewpoint of Kas-
parov’s [1980b] KK -theory (or bivariant K -theory). As is well-known, the KK -
theory has various formulations, and the original one of Kasparov is deeply related
to the theory of Fredholm operators and their indices (see also [Blackadar 1998]).
For separable Z/2-graded C∗-algebras A and B, a cycle in KK (A, B) is of the form
[E, ϕ, F], where E is a countably generated Z/2-graded Hilbert B-module, ϕ a
∗-homomorphism from A to B(E) and F an odd self-adjoint “Fredholm” operator
on E relative to A. More precisely, F is an operator in B(E) such that [ϕ(a), F],
ϕ(a)(F2

−1) and ϕ(a)(F−F∗) are in K(E) for any a ∈ A. A continuous family (in
the norm topology) of C`n-equivariant odd Fredholm operators F(x) (x ∈ X ) gives
a cycle [HC`n ⊗̂C(X), 1, F] in KK (C,C(X) ⊗̂C`n) by regarding F as an element
in B(HC`n ⊗C(X)) by pointwise multiplication. Because this KK -cycle depends
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only on its homotopy class, this correspondence gives a map from [X,FC`n (H)] to
KK (C,C0(X) ⊗̂C`n). We can see that it is actually an isomorphism by using the
equivalence relations called the operator homotopy [Kasparov 1980b]. Here we
do not have to care about additions of degenerate cycles by virtue of the Kasparov
stabilization theorem [Kasparov 1980a].

Now we have shown that there is some operator-theoretic description of the
connective K -theory, but it is not consistent to the Fredholm picture of KK -theory
and our construction of the K -theory spectrum. Next we see that these two are
canonically related.

Both of the two groups KK (C0(R
n),C(X)) and KK (C,C(X) ⊗̂C`n) are iso-

morphic to K n(X). The canonical isomorphism

KK (C0(R
n),C(X))→ KK (C,C(X) ⊗̂C`n)

is given by taking the Kasparov product [1980b] with the canonical generator of
KK (C,C0(R

n)⊗C`n) from the left. This canonical generator also has many identi-
fications, and here we use the one in [Kasparov 1980b]. It is based on the Fredholm
picture and is of the form [C0(R

n) ⊗̂C`n, 1,C], where C :=
∑

ci xi (1+ |x |2)−1/2.
Here ci := c(ei ) is left multiplication of ei on C`n , which is a C`n-module by right
multiplication.

Now we apply it for cycles that come from ϕ ∈ Hom(C0(R
n),C(X)⊗K). We

then have

[C0(R
n) ⊗̂C`n, 1,C]⊗C0(Rn) [H ⊗̂C(X), ϕ, 0]

=
[
C0(R

n)⊗ϕ (H⊗C(X)) ⊗̂C`n, 1,C ⊗ϕ id
]

=

[
E(ϕ) ⊗̂C`n, 1,

∑
ci Ti

]
.

Here we denote by E(ϕ) the Hilbert C(X)-module {ϕx(C0(Rn))H}x∈X (more pre-
cisely, the submodule of C(X)⊗H that consists of H-valued functions on X whose
evaluations at x are in ϕx(C0(Rn))H). A ∗-homomorphism ϕ : C0(R

n)→ B(E(ϕ))
uniquely extends to ϕ̃ : Cb(R

n) → B(E(ϕ)) because ϕ is nondegenerate onto
B(E(ϕ)) (see Section 5 of [Lance 1995]). We set Ti := ϕ̃(xi (1+ |x |2)−1/2).

This can be regarded as the Fredholm picture of connective K -theory. However,
unfortunately it is not useful for our purpose because E(ϕ) may not be locally
trivial and hence not a bundle of Hilbert spaces in general. Nonetheless, cycles
arising in geometric contexts, which are our main interest, have a better description,
as follows:

Definition 2.3. • An n-tuple of bounded self-adjoint operators (T1, . . . , Tn) on H
is called a bounded commuting Fredholm n-tuple if it satisfies the following:
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(1) The operator T 2
:=
∑

T 2
i is in 1+K(H).

(2) The operator Ti commutes with T j for any i and j .

We denote by Fn(H) the set of bounded commuting Fredholm n-tuples equipped
with the norm topology.

• An n-tuple of unbounded self-adjoint operators (D1, . . . , Dn) on H is an un-
bounded commuting Fredholm n-tuple if it satisfies the following:

(1) The operator D2
:=
∑

D2
i is densely defined, Fredholm, and has compact

resolvents.

(2) The operator Di commutes with D j for any i and j on dom(D2)2.

We denote the set of unbounded commuting Fredholm n-tuples by Fn(H). It is
equipped with the strongest topology such that the map

(D1, . . . , Dn) 7→ (D1(1+ D2)−1/2, . . . , Dn(1+ D2)−1/2)

is continuous. This definition is an analogue of the Riesz topology on the space of
self-adjoint operators.

• For a bounded (resp. unbounded) commuting Fredholm n-tuple (T1, . . . , Tn)

(resp. (D1, . . . , Dn)), we say that an odd self-adjoint operator T := c1T1+· · ·+cnTn

on H ⊗̂C`n (resp. D := c1 D1+ · · · + cn Dn with the domain dom(D2)1/2) is the
Dirac operator associated with (T1, . . . , Tn). For simplicity of notation, hereafter
we use the same letter T (resp. D) for commuting Fredholm n-tuples and the Dirac
operators associated with them.

The continuous map (Dn, ∂Dn)→ (Sn, ∗) that collapses the boundary, more
precisely of the form

(T1, . . . , Tn) 7→
(
2T 2
− 1, 2(1− T 2)1/2T1, . . . , 2(1− T 2)1/2Tn

)
,

which is the unique continuous extension of the composition map of the canon-
ical isomorphism between Dn and Rn and the stereographic projection, induces
a continuous map ι : Fn(H)→ Fn(H) by functional calculus and definition of
the topology on Fn(H). On the other hand, for (T1, . . . , Tn) ∈ Fn(H), the Dirac
operator T is in FC`n (H). This correspondence gives a map from [X,Fn(H)] to
[X,FC`n (H)] ∼= KK (C,C(X)⊗C`n); the interpretation, in a geometric context,
is taking the index bundle with C`n-module structure for the continuous family of
Dirac operators associated with (T1, . . . , Tn). Hence we denote it by ind.
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Theorem 2.4. The following diagram commutes:

[X,Fn(H)]

ι

��

ind
// KK (C,C(X) ⊗̂C`n)

[X, Fn(H)]
8
// KK (C0(R

n),C(X)).

∼

OO

Proof. Let {T (x)}x∈X :={(T1(x), . . . ,Tn(x))}x∈X be a continuous family of bounded
commuting Fredholm n-tuples and ϕT its image under ι. Then 8 ◦ ι[{T (x)}] is of
the form [E(ϕT ) ⊗̂ C`n, 1, T ]. Now we give a homotopy connecting [ind T ] =[
(H⊗C(X)) ⊗̂C`n, 1, T (x)

]
and [E(ϕT ) ⊗̂C`n, 1, T (x)] directly. It is given by

the Kasparov C-I C(X)-bimodule[
E(ϕT )⊕ev0 (HC(X)⊗ I ), 1, T

]
,

where E(ϕT )⊕ev0 (HC(X)⊗ I ) :=
{
(x, f ) ∈ E(ϕT )⊕ (HC(X)⊗ I ) | f (0)= x

}
. �

Remark 2.5. For a general locally compact CW-complex we have an analogue of
K -theory with compact support. The K -group with compact support K n

cpt(X) is
defined as the kernel of the canonical morphism K n(X+)→ K n(x0), where X+

is the one-point compactification of X and {x0} = X+ \ X . It coincides with the
K -group of the nonunital C∗-algebra C0(X) by definition. Similarly, we write
kn

cpt(X) for the kernel of kn(X+)→ kn(x0). When X+ has a relatively compact
deformation retract of {x0}, k̃n

cpt(X) is isomorphic to the set of compactly supported
homotopy classes of maps from X to F(Sn, ∗) with compact support, Fn(H), or
Hom(C0(R

n,K)). Hence it is also isomorphic to Hom(C0(R
n),C0(X)⊗K). In

terms of our Fredholm picture, a continuous family of Fredholm n-tuples on X
which is bounded below by some κ > 0 (i.e., D(x)2 ≥ κ) outside some compact
subset K ⊂ X determines a kn-cycle on X . For simplicity we write just k̃(X)
instead of k̃cpt(X) in this paper.

Remark 2.6. The above formulation is compatible with the product of cohomol-
ogy theories. We define the product of continuous families of bounded commuting
Fredholm n-tuples T (x) = (T1(x), . . . , Tn(x)) in Map(X,Fn(H)) and m-tuples
S(x)= (S1(x), . . . , Sm(x)) in Map(X,Fm(H′)) by

T (x)× S(x)= (T1(x), . . . , Tn(x))× (S1(x), . . . , Sm(x))

:=
(
T1(x)⊗ 1, . . . , Tn(x)⊗ 1, 1⊗ S1(x), . . . , 1⊗ Sm(x)

)
∈Map(X,Fn+m(H⊗H′)).

Then the homotopy class of T (x)× S(x) depends only on the homotopy classes
of T (x) and S(x). Consequently [{T (x)}] ∪ [{S(x)}] := [{T (x)× S(x)}] gives a
well-defined product [X,Fn(H)]×[X,Fm(H)]→[X,Fn+m(H)] that is compatible
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with the product of connective K -groups, which is induced from the canonical map
(Sn, ∗)× (Sm, ∗)→ (Sn, ∗)∧ (Sm, ∗)∼= (Sn+m, ∗). By a similar argument we can
define the product for unbounded commuting Fredholm n-tuples.

The twisted case. Next, we generalize the above theory to twisted connective K -
theory. In the above argument, we have used the action of the Clifford algebra C`n

as the coefficients to construct a Dirac operator associated with a family of com-
muting Fredholm n-tuples. Now we regard it as the Clifford algebra bundle C`(Cn)

associated with the trivial bundle. We generalize the notion of commuting Fred-
holm n-tuples and apply the general Clifford algebra bundles C`(VC) associated
with Spinc vector bundles V for the coefficients of the Dirac operators associated
with them.

We consider the canonical actions of GL(n;R) on the spaces F(Sn, ∗), Fn(H)
and Hom(C0(R

n),C(X)⊗K). For example, on Fn+m(H) the action is of the form

g · (T0, T1, . . . , Tn) :=
(∑

g1 j T j , . . . ,
∑

gnj T j

)
.

Let V be a real vector bundle over X . We denote a fiber bundle

GL(V )×GL(n;R) F(Sn, ∗) (resp. GL(V )×GL(n;R) Fn(H))

by FV (resp. FV (H)). Similarly, GL(n,R) acts on the space of bounded (resp.
unbounded) commuting Fredholm n-tuples Fn(H) (resp. Fn(H)), and we denote
by FV (H) (resp. FV (H)) the corresponding fiber bundle.

Definition 2.7. A V -twisted family of bounded (resp. unbounded) commuting
Fredholm n-tuples is a continuous section T = T (x) in 0(X,FV (H)) (resp. in
0(X,FV (H))).

In the similar way as in the above argument, the space of continuous sections
0C`(V )=0(X,C`(V )) is a C∗-algebra and a continuous section T ∈0(X,FV (H))
defines a Kasparov C-0C`(V )-bimodule[

H ⊗̂C`(V ), 1, c(e1)Te1(x)+ · · ·+ c(en)Ten (x)
]
,

which is independent of the choice of an orthonormal basis {e1, . . . , en} ∈ Vx .
Therefore we obtain a map π0(0(X,F))→ KK (C, 0C`(V )).

Proposition 2.8. Let X be a finite CW-complex and V a real vector bundle. The
three sets

(1) 0(X, FV ),

(2) 0(X, FV (H)),

(3) HomC(X)(C0(V ),C(X)⊗K)
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are canonically mutually homeomorphic, and their connected components form the
twisted reduced connective K -group associated with the principal bundle

GL(V )×GL(n,R) Gmod
k ,

which we denote by k̃V (X) (see Section 3 of [Atiyah and Segal 2004]). Here
HomC(X)(C0(V ×Rk),C(X)⊗K) is the set of C(X)-homomorphisms, that is, ∗-
homomorphisms that are compatible with their C(X)-module structures.

Theorem 2.9. Let X be a finite CW-complex. Then the following diagram com-
mutes:

π0
(
0(X,FV (H))

)
ι

��

ind
// KK (C, 0C`(V ))

π0
(
0(X, FV (H))

) 8
// RKK (X;C0(V ),C(X)).

∼

OO

Here RKK (X;C0(V ),C(X)) is the representable KK -group [Kasparov 1988].

In the same way as in K -theory, the Thom isomorphism holds for twisted con-
nective K -theory.

Proposition 2.10. The following isomorphism holds:

kW (X)∼= kπ
∗V⊕π∗W (V )

Proof. Let F be a closed subspace of X and denote by VF the restriction V |F of a
vector bundle V . Then there is a morphism

HomC(F)(C0(WF ),C(F)⊗K)→ HomC0(VF )(C0(π
∗(V ⊕W )VF ),C0(VF )⊗K),

ϕ 7→ idV ⊗ϕ,

which is an isomorphism if V is trivial on F , and functorial with respect to inclu-
sions. The Mayer–Vietoris exact sequence implies the global isomorphism. �

In particular, combining with the Thom isomorphism of connective K -theory,
we obtain that the twist associated with V is trivial if V has a Spinc structure.

3. The joint spectral flow

Now we give the precise definition of the joint spectral flow by using the notions
introduced in Section 2. Next, we prove an index theorem generalizing the spectral
flow index theorem of Atiyah, Patodi and Singer [Atiyah et al. 1976]. Finally we
generalize it to the case in which the coefficients ci are globally twisted by a Spinc

vector bundle.
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3A. Definitions and an index theorem. In the previous section we have seen that
F(Sn, ∗) represents connective K -theory. Now we introduce another configuration
space P(X, A) with labels in positive integers on X relative to A. More precisely,
an element of P(X, A) is a pair (S, {nx}x∈S), where S is a countable subset of X \A
whose cluster points are all in A and each nx is a positive integer. The topology is
defined in the same way as that of F(X, A). Then P(Sn, ∗) is canonically homo-
topy equivalent to the infinite symmetric product of (Sn, ∗), which is a model of the
Eilenberg–MacLane space K (Z, n) by virtue of the Dold–Thom theorem [1958].
There is a canonical continuous map j from F(Sn, ∗) to P(Sn, ∗) “forgetting” data
about vector spaces except their dimensions, which is given more precisely by

(S, {Vx}x∈S) 7−→ (S, {dim Vx}x∈S).

In the viewpoint of commuting Fredholm n-tuples, this map forgets their eigenspaces
and keeps only their joint spectra with multiplicity. It induces a group homomor-
phism

j∗ : k̃n(X)−→ H n(X;Z).

Now we introduce the notion of the joint spectral flow:

Definition 3.1. Let X be an oriented closed manifold of dimension n. For a contin-
uous family {T (x)} = {(T0(x), . . . , Tn(x))}x∈X of elements in Fn(H) parametrized
by X , we say that 〈 j∗[{T (x)}], [X ]〉 ∈ Z is its joint spectral flow, which we denote
by jsf({T (x)}). For a continuous family of bounded or unbounded commuting Fred-
holm n-tuple {T1, . . . , Tn}, we say jsf(ι{T (x)}) is its joint spectral flow, denoted
simply by jsf({T (x)}).

Example 3.2 (the case n = 1). According to Section 7 of [Atiyah et al. 1976], the
spectral flow is defined as the canonical group isomorphism sf : π1(F1(H))→ Z

as follows. For a continuous map T : S1
→ F1(H) such that the essential spectrum

of each Tt is {−1, 1}, there is a family of continuous functions ji : [0, 1]→ [−1, 1]
such that −1= j = 0≤ j1 ≤ · · · ≤ jm = 1 and σ(T (t))= { j0(t), . . . , jm(t)} for any
t ∈ [0, 1]. Then we obtain the integer l such that jk(1)= jk+l(0) for any k. This l
is called the spectral flow. Now let {T (t)} be a continuous family of bounded self-
adjoint Fredholm operators such that σ(T (t))= {0, (t+1)/2, 1} and the eigenspace
E(t+1)/2 is of dimension 1. Then by definition its spectral flow sf({T (t)}) is equal
to 1. On the other hand, we obtain j∗({T (t)})= 1 ∈ H 1(S1

;Z) since the canonical
inclusion S1

→Sym∞(S1, ∗) gives a generator 1∈ H 1(S1
;Z)∼=[S1,Sym∞(S1, ∗)]

(see [Dold and Thom 1958] or Proposition 5.2.23 of [Aguilar et al. 2002]). This
means that the joint spectral flow coincides with the ordinary spectral flow in the
case X = S1.

Proposition 3.3. The homomorphism j∗ is a natural transform of multiplicative
cohomology theories.
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Proof. According to Section 3 of [Dădărlat and Némethi 1990],

S : Hom(C0(R
n),K)→ Hom(C0(R

n+1),C0(R)⊗K),

ϕ 7→ idR⊗ϕ

or equivalently

S : F(Sn, ∗)→�F(Sn
× I, Sn

×{0, 1} ∪ {∗}× I ),

(S, {Vx}x∈S) 7→ {t 7→ ((x, t), {Vx}x∈S)}

gives the structure map F(Sn, ∗) → �F(Sn+1, ∗). By the same argument we
obtain that

S : P(Sn, ∗)→�P(Sn
× I, Sn

×{0, 1} ∪ {∗}× I ),

(S, {nx}x∈S) 7→ {t 7→ ((x, t), {nx}x∈S)}

gives the structure map P(Sn, ∗)→�P(Sn+1, ∗). Now, by definition the following
diagram commutes:

F(Sn, ∗)
S
//

j
��

�F(Sn+1, ∗)

j
��

P(Sn, ∗)
S
// �P(Sn+1, ∗).

The multiplicativity of j∗ follows immediately since the multiplicative structure on
{F(Sn, ∗)}n=0,1,2,... and P(Sn, ∗)n=0,1,2,... are induced from the map

(Sn, ∗)× (Sm, ∗)→ (Sn+m, ∗)

coming from the wedge product. �

To prove a generalization of the spectral flow index theorem, we note the relation
between the joint spectral flow and the Chern character. The Chern character is a
natural transform from the K -functor to the rational cohomology functor. Here
there is a generalization of the Chern character for a general cohomology theory,
which was introduced by Dold [1962] and is called the Chern–Dold character.

Now we identify k∗(X) with k̃∗+1(SX) to extend j∗ to a natural transform be-
tween unreduced cohomology theories k∗(X)→ H∗(X;Z). It is compatible with
the original j∗ according to Proposition 3.3.

Proposition 3.4. The n-th Chern–Dold character chn : kn(X)⊗Q→ H n(X;Q)
coincides with j∗ rationally.
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Proof. The diagram

kn(X)⊗Q
ch
//

j∗
��

H n(X; k∗(pt)⊗Q)

1⊗ j∗
��

H n(X;Q) ∼

ch=id
// H n(X; H∗(pt)⊗Q)

commutes by Proposition 3.3 and naturality of the Chern–Dold character. In fact,
Dold [1962] proved that there is a one-to-one correspondence between natural
transforms of multiplicative cohomology theories h→ h′ and graded ring homo-
morphisms h(pt)→ h′(pt) if h′(pt) is a graded vector space over Q. The Chern–
Dold character is induced from the ring homomorphism h∗(pt)→ Q⊗Z h∗(pt).
Naturality follows from uniqueness.

Now k∗(pt)∼=Z[β] (β is of degree−2), H∗(pt)∼=Z and the ring homomorphism
j∗ from Z[β] to Z is given by 1 7→ 1 and β 7→ 0. Hence (1⊗ j∗) ◦ ch coincides
with the n-th Chern–Dold character chn . This implies that j∗ = chn . �

Let X be a closed Spinc manifold, /SC(X) the associated C`n-module bundle
of Spinc(X) by the left multiplication on C`n as a right C`n-module and /DX

the C`n-Dirac operator on /SC(X). Now /SC(X) is equipped with the canonical
Z/2-grading and /DX is an odd operator. Then it gives an element of Kn(X) ∼=
KK (C(X) ⊗̂C`n,C)

[ /DX ] :=
[
L2(X, /SC(X)),m, /DX (1+ /D

2
X )
−1/2],

which is the fundamental class of K -theory. Here m :C(X)⊗̂C`n→B
(
L2( /SC(X))

)
is given by Clifford multiplication.

Lemma 3.5. Let {T (x)}x∈X be a continuous family of commuting Fredholm n-
tuples. Then

〈[ind T ], [ /DX ]〉n = jsf{T (x)}.

Here 〈 · , · 〉n is the canonical pairing between K n(X) and Kn(X).

Proof. First, we prove the lemma in the case of even n. In this case we have a unique
irreducible representation 1n of C`n and the Dirac operator /DX on /SC(X) :=
Spinc(X)×C`n 1n . Now 1n is equipped with a canonical Z/2-grading and /D is
an odd operator. It defines a KK -cycle

[ /DX ] :=
[
L2(X, /SC(X)),m, /DX (1+ /D2

X )
−1/2]

∈ KK (C(X),C).

We denote by [[ind T ]] a KK -cycle [H⊗1n, 1, T ] ∈ KK (C,C(X)). Since C`n ∼=

1n ⊗1
∗
n as C`n-C`n-bimodules, we have the equalities [ /DX ] = [ /DX ]⊗1n and
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[ind T ] = [[ind T ]]⊗̂1n (in particular ch[ind T ] = ch[[ind T ]]). Here 1∗ is a Hilbert
C`n-module by the inner product 〈x, y〉 := x∗y.

The pairing 〈 · , · 〉n is given by the Kasparov product

KK (C,C(X)⊗C`n)⊗ KK (C(X)⊗C`n,C)→ Z.

Therefore

〈[ind T ], [ /D]〉n = [ind T ]⊗C(X)⊗C`n [
/DX ]

= ([[ind T ]]⊗C(X) [ /DX ])⊗ (1
∗
⊗C`n 1)= [[ind T ]]⊗C(X) [ /DX ].

Now we use the Chern character for K -homology that is compatible with pairing.
The Chern character of the Spinc Dirac operator /DX is given by the Todd class
associated with the Spinc structure of T X . Hence

〈[{T (x)}], [ /DX ]〉 = 〈ch([[ind T ]]), ch([ /DX ])〉

= 〈ch([ind T ]),Td(X)∩ [X ]〉

= 〈chn([ind T ]), [X ]〉 = jsf{T (x)}.

Here the third equality holds because ch([ind T ]) is in
⊕

k≥0 H n+2k(X;Q) ∼=
H n(X;Q) and the zeroth Todd class Td0(X) is equal to 1. The last equality holds
by Proposition 3.4.

Finally, we prove the lemma in the case of odd n. We can reduce the problem
to the case n = 1 because, for a family of self-adjoint operators S(t) parametrized
by S1 whose spectral flow is 1 (hence [ind S] = 1 ∈ K 1(S1)∼= Z), we have

〈[ind T ], [ /D]〉n =
〈
[ind T ] ∪ [ind S], [ /DX ]⊗ [ /DS1]

〉
n+1

= jsf({T (x)}× {S(t)})= jsf{T (x)}.

Here we use the fact that the joint spectral flow of the product family {T (x)}×{S(t)}
coincides with the product jsf({T (x)}) · jsf({S(t)}). �

Now we give an index theorem that is a generalization of the spectral flow index
theorem in [Atiyah et al. 1976].

Let B be a closed n-dimensional Spinc manifold, Z→ M→ B a smooth fiber
bundle over B and E a smooth complex vector bundle over M . We fix a decomposi-
tion T M = TV M⊕TH M of the tangent bundle, where TV M := {v ∈ T M |π∗v= 0}
is the vertical tangent bundle. For a hermitian vector bundle E , we denote by
π∗ /SE

C(B) the C`n-module bundle π∗ /SC(B)⊗ E on M . Now we define the pull-
back of the C`n-Dirac operator /DB on B twisted by E as

π∗ /DB : 0(M, π∗ /S
E
C(B))

∇
−−→ 0(M, π∗ /SE

C(B)⊗ T ∗M)
pT∗H M
−−−−→ 0(M, π∗ /SE

C(B)⊗ T ∗H M)
h
−−→ 0(M, π∗ /SE

C(B)).
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Here, h is the left Clifford action of C`(T B) ∼= C`(TH M) on π∗ /SE
C(B). This

operator is expressed using an orthogonal basis {e1, . . . , en} of Tπ(x)B ∼= T ∗π(x)B
as

π∗ /DB =
∑

h(π∗ei )∇
π∗ /SE

C (B)
π∗ei

.

Now it satisfies

π∗ /DB(π
∗ϕ)= π∗( /DBϕ).

Let {D1, . . . , Dn} be an n-tuple of fiberwise first-order pseudodifferential op-
erators on E , that is, a smooth family {D1(x), . . . , Dn(x)} of pseudodifferential
operators on 0(Zx , E |Zx ). Moreover, we assume two conditions:

Condition 3.6. (1) The operators Di and D j commute for any i and j .

(2) The square sum
∑n

i=1 D2
i is fiberwise elliptic, that is, its principal symbol is

invertible on S(TV M).

Then, by taking a trivialization of the Hilbert bundle of fiberwise L2-sections
L2

f (M, E ⊗̂C`n) := {L2(Zx , Ex ⊗̂C`n)}x∈B ,

{D(x)} = {(D1(x), . . . , Dn(x))}

forms a continuous family of unbounded commuting Fredholm n-tuples parame-
trized by B.

Indeed, according to Kuiper’s theorem, any Hilbert space bundles are trivial and
[D(x)] is independent of the choice of a trivialization. The second assertion holds
because a trivialization of Hilbert bundle V gives a unitary U ∈ HomC(X)(C(X)⊗
H, 0(X,V)), and hence two trivializations U and U ′ give a norm-continuous unitary-
valued function U−1U ′, which is homotopic to the identity. Combining with
a connection on π∗ /SC(B), which is fiberwise flat, the Dirac operator D(x) =
c1 D1(x)+ · · · + cn Dn(x) associated with {D(x)} (here we denote by c the C`n-
action on /SC(B) and write ci := c(ei ) for an orthonormal basis {ei }) also defines
a first-order pseudodifferential operator on π∗ /SE

C(B).
Now we state our main theorem:

Theorem 3.7. Let B, M , E , and {D(x)} be as above. Then

ind0(π
∗ /DB + D(x))= jsf{D(x)}.

Here, for an odd self-adjoint operator D on H = H0
⊕H1, we denote by ind0 D

the Fredholm index of D0
:H0
→H1.

To prove this theorem, we use a lemma about an operator inequality. In this
section we denote D(x) and π∗ /DB simply by Df and Db.
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Lemma 3.8. For any α ≥ 0 there is a constant C > 0 such that, for any ξ ∈
0(M, π∗ /SE

C(B)),

〈[Db, Df ]ξ, ξ〉 ≥ −α‖Df ξ‖
2
−C‖ξ‖2. (3.9)

Proof. First, we observe that [Db, Df ] is a fiberwise first-order pseudodifferen-
tial operator as well. Let (V, x1

b , . . . , xn
b ) be a local coordinate of x ∈ B and

(U, x1
b , . . . , xn

b , x1
f , . . . , xm

f ) a local coordinate in π−1(V ) such that the tangent
vectors ∂x i

b
(p) are in (TH M)p for any p ∈ π−1(x). We get such a coordinate by

identifying a neighborhood of the zero section of TH M |π−1(x)
∼= Nπ−1(x) with a

tubular neighborhood of π−1(x). We assume that π∗ /SE
C(B) is trivial on U , and fix

a trivialization. Then, for any fiberwise pseudodifferential operator P supported
in U , the operator [∂x i

b
, P] is also fiberwise pseudodifferential. Indeed, when we

write down a fiberwise pseudodifferential operator P on a bounded open subset of
Rn+m

= Rn
xb
×Rm

x f
as

Pu(xb, x f )=

∫
(y f ,ξ f )∈Rm×Rm

ei〈x f−y f ,ξ f 〉a(xb, x f , y f , ξ f )u(xb, y f ) dy f dξ f ,

we have

[∂x i
b
, P]u(xb, x f )=

∫
∂x i

b

(
ei〈x f−y f ,ξ f 〉a(xb, x f , y f , ξ f )u(xb, y f )

)
dy f dξ f

−

∫
ei〈x f−y f ,ξ f 〉a(xb, x f , y f , ξ f )∂x i

b
u(xb, y f ) dy f dξ f

=

∫
ei〈x f−y f ,ξ f 〉(∂x i

b
(a(xb, x f , y f , ξ f ))u(xb, y f )) dy f dξ f .

Let D′b :=
∑

gi j h(∂x i
b
)∇∂x j

b
. Since the Riemannian metric gi j on TH M only de-

pends on the local coordinate of B (i.e., is a function on B), an operator [D′b, P] =[∑
gi j h(∂x i

b
)(∂x j

b
+ω(∂x j

b
)), P

]
is also fiberwise pseudodifferential.

For any ξ ∈ 0(U, π∗ /SE
C(B)|U ), the section [Db, P]ξ |π−1(x) depends only on

the restriction of ξ and its differentials in normal direction on π−1(x). Since the
Dirac operator Db coincides with D′b on U0 :=U ∩π−1(x) and [P, D′b] is fiberwise
pseudodifferential, [Db, P]ξ |π−1(x) = [D′b, P]ξ |π−1(x) does not depend on the dif-
ferentials of ξ . Now, the above argument is independent of the choice of x ∈ B. As
a consequence, [Db, P] is also fiberwise pseudodifferential. By using a partition
of unity, we can see that [Db, Df ] is also a fiberwise pseudodifferential operator.

As a consequence, we obtain that [Db, Df ](1+ D2
f )
−1/2 is a zeroth order pseu-

dodifferential operator. In particular, it is bounded. Now, for any λ > 0, we obtain
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the inequality

〈[Db, Df ]ξ, ξ〉 = 〈λ[Db, Df ]ξ, λ
−1ξ〉

≥ −
1
2λ

2
〈[Db, Df ]ξ, [Db, Df ]ξ〉−

1
2λ
−2
〈ξ, ξ〉

≥ −
1
2λ

2
‖[Db, Df ](1+ D2

f )
−1/2
‖

2
〈(1+ D2

f )ξ, ξ〉−
1
2λ
−2
〈ξ, ξ〉

= −
1
2λ

2
‖[Db, Df ](1+ D2

f )
−1/2
‖

2
〈Df ξ, Df ξ〉

−
1
2

(
λ2
‖[Db, Df ](1+ D2

f )
−1/2
‖

2
+ λ−2)

〈ξ, ξ〉,

as is introduced in Lemma 7.5 of [Kaad and Lesch 2012]. Now, by choosing
λ :=
√

2α‖[Db, Df ](1+D2
f )
−1/2
‖
−1 and C := α+λ−2/2, we show this C satisfies

the above condition. �

Now we use the Connes–Skandalis-type sufficiency condition to realize the
Kasparov product of unbounded Kasparov bimodules introduced by Kucerovsky
[1997].

Theorem 3.10. Suppose that (E1, ϕ1, D1), (E2, ϕ2, D2), and (E1 ⊗̂E2, ϕ1 ⊗̂1, D)
are unbounded Kasparov bimodules for (A, B), (B,C), and (A,C) such that the
following conditions hold:

(1) For all x in some dense subset of ϕ1(A)E1, the operator[(
D 0
0 D2

)
,

(
0 Tx

T ∗x 0

)]
is bounded on dom(D⊕ D2).

(2) The resolvent of D is compatible with D1 ⊗̂ 1.

(3) For all x in the domain, 〈D1x, Dx〉+ 〈Dx, D1x〉 ≥ κ〈x, x〉.

Here x ∈ E1 is homogeneous and Tx : E2→ E maps e 7→ x ⊗̂ e. Then

[E1 ⊗̂ E1, ϕ1 ⊗̂ 1, D] ∈ KK (A,C)

represents the Kasparov product of [E1, ϕ1, D1] ∈ KK (A,C) and [E2, ϕ2, D2] ∈

KK (B,C).

Here the resolvent of D is said to be compatible with D′ if there is a dense
submodule W ⊂ E1 ⊗̂ E2 such that D′(iµ+ D)−1(iµ′ + D′)−1 is defined on W
for any µ,µ′ ∈ R \ {0}. It holds, for example, in the case that dom D ⊂ dom D′.

Proof of Theorem 3.7. According to Lemma 3.5, the remaining part for the proof is
that the left-hand side coincides with the pairing 〈[ind D], [ /DB]〉n . Here this pairing
is given by the Kasparov product KK (C,C(B)⊗̂C`n)⊗KK (C(B)⊗̂C`n,C)→Z.
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It is computed as follows:

[L2(M, E ⊗̂C`n), 1, D]⊗C(B)⊗̂C`n
[L2(B, /SC(B)),m, /DB]

=
[
L2(M, (E ⊗̂C`n) ⊗̂C`n π

∗ /SC(B)), 1, /DB × D
]

= [L2(M, π∗ /SC(B)E), 1, /DB × D].

Now it remains to prove that Db + Df satisfies conditions (1), (2), and (3) of
Theorem 3.10.

For any σ ∈ C∞(M, E) and ξ ∈ C∞(B, /SC(B)), the Leibniz rule of π∗ /DB

implies that

(Db+ Df )Tσ ξ = (Db+ Df )(σ ·π
∗ξ)= (Db+ Df )x ·π∗ξ + σ · Dbπ

∗ξ

= T(Db+Df )σ ξ + σ ·π
∗( /DBξ).

Therefore (Db + Df )Tσ − Tσ /DB = T(Db+Df )σ is a bounded operator and hence
condition (1) holds. Condition (2) holds since dom(Db+ Df )⊂ dom Df . For any
ξ ∈ C∞(M, /SE

C(M)), which is dense in the domain,

〈Df ξ, (Db+ Df )ξ〉+ 〈(Db+ Df )ξ, Df ξ〉 = 〈[Db, Df ]ξ, ξ〉+ ‖Df ξ‖
2.

Condition (3) follows from this and Lemma 3.8. �

Remark 3.11. The calculus above is motivated by that of [Connes and Skandalis
1984], in which the authors dealt with principal symbols and zeroth order pseudo-
differential operators. Here we use the unbounded operators directly in order to
apply it for more general cases. For example, by the same argument we obtain a
similar formula

ind0(D+ A(x))= jsf({A(x)})

for a smooth family of mutually commuting self-adjoint complex coefficient ma-
trices A(x)= (A1(x), . . . , An(x)). Other examples are given in the next section.

3B. A Callias-type index theorem for open manifolds. Now we consider gener-
alizing our index theorem to the case of noncompact base spaces. The pairing
of homology and cohomology works in the noncompact case if the cohomology is
replaced with the one with compact support. We can deal with it in the context of an
infinite-dimensional analogue of Callias-type [1978] operators. Here we use fiber-
wise elliptic operators as the potential term in the original theory of Callias. First
we define the admissibility of a connective K -cocycle (see also [Bunke 1995]).

Definition 3.12. We call a continuous family of commuting Fredholm n-tuples
{D1, . . . , Dn} parametrized by a complete Riemannian manifold B admissible if
there is a constant κ > 0 such that:

(1) D(x)2 ≥ κ > 0 for x ∈ X \ K .
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(2) There are C1,C2 > 0 such that 〈([Db, Df ]+D2
f )ξ, ξ〉 ≥C1‖Df ξ‖

2
−C2‖ξ‖

2

and κC1 > C2.

Actually the second condition is not essential.

Lemma 3.13. For any continuous family {D1, . . . , Dn} of commuting Fredholm
n-tuples parametrized by a complete n-dimensional Riemannian manifold B that
satisfies condition (1) above, there is some t > 0 such that t D := (t D1, . . . , t Dn)

is admissible.

Proof. By a similar calculus to the one in Lemma 3.8 (we replace Df in the first
term with t Df but do not replace the one that arises in (1+ D2

f ) in the middle part)
we obtain that, for any λ > 0,

〈[Db, t Df ]ξ, ξ〉 = −
1
2λ

2 R〈Df ξ, Df ξ〉−
1
2(λ

2 R+ λ−2)〈ξ, ξ〉,

where we set R := ‖[Db, Df ](1+ D2
f )
−1/2
‖

2. Now, if we choose λ= R−1/2, then

〈([Db, t Df ] + (t Df )
2)ξ, ξ〉 ≥

t2

2
‖Df ξ‖

2
−

( t2

2
+ R

)
‖ξ‖2.

Now we can take a constant κ in condition (1) for t Df to be tκ . When we set
C1 = t2/2 and C2 = t2/2, for sufficiently large t > 0 the inequality (tκ)C1 ≥ C2

holds and hence the constants tκ , C1, and C2 satisfies condition (2). �

Now we introduce a geometric setting and an index theorem for the noncompact
case.

Let B be a complete n-dimensional manifold, Z→ M→ B a smooth fiber bun-
dle over B with fixed decomposition of the tangent bundle T M ∼= TV M⊕TH M , E
a smooth complex vector bundle over M and {D1, . . . , Dn} an n-tuple of fiberwise
first-order pseudodifferential operators on E that satisfies Condition 3.6. Moreover,
we assume that {D1, . . . , Dn} is admissible.

Theorem 3.14. In the above situation, the operator π∗ /DB+D(x) is Fredholm and

ind0(π
∗ /DB + D(x))= jsf{D(x)}.

Proof. The proof is essentially the same as for Theorem 3.7; the remaining part
is to show that /DB + D(x) is a Fredholm operator. We prove this by using an
estimate motivated by Theorem 3.7 of [Gromov and Lawson 1983]. Here we use
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the notation Db and Df again. Let Eλ (λ ∈ R) be the λ-eigenspace for the self-
adjoint operator Db+ Df . Now we fix an α > 0. Then, for any σ ∈

⊕
|λ|<α Eλ,

0≤ ‖Dbσ‖
2
≤ ‖(Db+ Df )σ‖

2
− (([Db, Df ] + D2

f )σ, σ )

≤ α‖σ‖2−C1‖Df σ‖
2
+C2‖σ‖

2

≤ (α+C2)‖σ‖
2
−C1‖Df σ‖

2
B\K

≤ (α− κC1+C2)‖σ‖
2
+ κC1‖σ‖

2
K .

By assumption we can retake α > 0 such that κC1 − C2 > α. Then there is a
constant C > 0 such that

C‖σ‖ ≤ ‖σ‖K .

Now we take a parametrix Q of the elliptic operator Db + Df and set S :=
1 − Q D. Take P to be the projection from L2(M, π∗ /SE

C(B)) to the subspace
L2(π−1(K ), π∗ /SE

C(B)|π−1(K )). Then PS is a compact operator and

‖PSσ‖ ≥ ‖Pσ‖−‖P DQσ‖ ≥ C‖σ‖−α‖P Q‖‖σ‖.

Taking α>0 sufficiently small, we see that PS is bounded below by C−α‖P Q‖>0.
This implies that

⊕
Eλ is finite-dimensional, since a compact operator on it is

bounded below by some positive number. �

Example 3.15 (the case B = R). Let {A(t)}t∈R be a continuous family of self-
adjoint matrices such that there is a λ > 0 and two self-adjoint invertible matrices
A+, A− such that At = A− for t ≤ −λ and At = A+ for λ ≤ t . Now, as is noted
in Remark 3.11, we have a finite-dimensional analogue of Theorem 3.14. In the
1-dimensional case it is of the form

ind
(

d
dt
+ cAt

)
= sf({At })

for sufficiently large c > 0. Now obviously its right-hand side is given by the
difference

#{negative eigenvalues of A−}− #{negative eigenvalues of A+}.

It is nonzero in general, whereas in the case that the parameter space is a circle
we have to deal with operators on an infinite-dimensional Hilbert space to obtain
examples of nontrivial indices.

Example 3.16. Let B be a complete Spinc manifold with compactification B,
Z1, . . . , Zn closed odd-dimensional Spinc manifolds and {g1

x , . . . , gn
x }x∈B a smooth

family of metrics on Z1, . . . , Zn such that the scalar curvature of the product man-
ifold Z := Z1 × · · · × Zn is uniformly strictly positive outside a compact subset
K ⊂ B. We denote by /Di,x the Dirac operator on Zi with respect to the metric
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gi
x . Then there is a constant λ > 0 such that (λ /D1,x , . . . , λ /Dn,x) is an admissible

family of commuting Fredholm n-tuples and the Fredholm index of the Spinc Dirac
operator on M := B× Z with respect to the product metric coincides with its joint
spectral flow. This gives a map

ind :
[
(B, ∂B), (R(Z1, . . . , Zn),R(Z1, . . . , Zn)≥λ)

]
→ Z,

where R(Z1, . . . , Zn) is the product of spaces of Riemannian metrics R(Z1)×

· · · ×R(Zn) and R(Z1, . . . , Zn)≥λ is the subspace of R(Z1, . . . , Zn) such that
the scalar curvature of the product metric (Z1, g1)× · · · × (Zn, gn) is larger than
λ > 0 (its homotopy type is independent of the choice of λ). In particular, when
we choose B to be Rn , the left-hand side is isomorphic to πn−1(R(Z1, . . . , Zn)≥λ)

because R(Z1, . . . , Zn) is contractible.

3C. Families twisted by a vector bundle. In this section we generalize the joint
spectral flow and its index theorem to the case of V -twisted families of commuting
Fredholm n-tuples introduced at the end of Section 2. It is essential in Section 4A.

Let V be a real vector bundle. Denote the fiber bundle GL(V )×GL(n,R) P(Sn, ∗)

by PV . The set of homotopy classes of continuous sections π00(X, PV ) forms the
twisted cohomology group H V (X;Z). Now, twists of the ordinary cohomology
theory are classified by H 1(X,Z/2), and in our case the corresponding cohomol-
ogy classes are determined by the orientation bundle of V . As in Definition 3.1,
the continuous map j : FV (H)→ PV induces the natural transform j∗ : kV

→ H V .

Definition 3.17. Let X be an oriented closed manifold of dimension n and V an n-
dimensional oriented vector bundle. For a V -twisted continuous family {T (x)}x∈X

of commuting Fredholm n-tuple, we say that the integer 〈 j∗[{T (x)}], [X ]〉 ∈ Z is
its joint spectral flow, denoted by jsf({T (x)}). Here we identify the two groups
H V (X;Z) and H n(X;Z) in the canonical way. For a V -twisted continuous family
of bounded or unbounded commuting Fredholm n-tuple {T (x)}, we say jsf(ι{T (x)})
is its joint spectral flow, denoted simply by jsf({T (x)}).

Now we introduce the corresponding geometric setting and prove a generaliza-
tion of the joint spectral flow index theorem (Theorem 3.7) for a family twisted by
a Spinc vector bundle.

Let B be a closed n-dimensional Spinc manifold, Z → M → B a smooth
fiber bundle over B such that the total space M is also a Spinc manifold, V an
n-dimensional Spinc vector bundle over B and E a smooth complex vector bundle
over M . We denote by 91

f (M, E) the fiber bundle over B whose fiber on x ∈ B is
the space of first-order pseudodifferential operators on 0(Zx , E |Zx ). We consider
a map of B-bundles {Dv(x)}(x,v)∈V \{0} : V \ {0} → 91

f (M, E) that satisfies the
following conditions:
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Condition 3.18. (1) The operators Dv(x) and Dw(x) commute for any v,w ∈
Vx \ {0}.

(2) The equality g · (Dv1(x), . . . , Dvn (x)) = (Dg·v1(x), . . . , Dg·vn (x)) holds for
any g ∈ GL(n;R) and basis (v1, . . . , vn) of Vx .

(3) The square sum
∑n

i=1 D2
vi

is fiberwise elliptic, that is, its principal symbol is
invertible on S(TV M), for an orthonormal basis {v1, . . . , vn}.

Then it forms a V -twisted continuous family of unbounded commuting Fred-
holm n-tuples {D(x)}.

Next, we replace the fundamental KK -class on B with the one that is compatible
with {D(x)}. Instead of /SC(M), we consider the spinor bundle /SC(B; V ) :=
/SC(T B⊕ V ) for an even-dimensional Spinc vector bundle T B⊕ V . It is equipped
with the action of C`(T B) ⊗̂C`(V ). Here we denote by c and h its restriction on
C`(V ) ⊗̂ 1 and 1 ⊗̂C`(T B) respectively. Now we define a pullback of the Dirac
operator π∗ /DV

B twisted by E in a similar way to the one in Section 3A.

Theorem 3.19. Let B, M and D(x) be as above. Then

ind(π∗ /DV
B + D(x))= jsf{D(x)}.

Proof. First we embed V into a trivial real vector bundle Rp linearly, and denote
its orthogonal complement by W .

We define the KK -classes

[DW ] :=

[
L2

f (W,C`(π
∗W )),m,DW :=

∑
h(ei )

∂

∂wi

]
∈ KK (00C`(π∗W ),C(B)),

[CW ] :=

[
00C`(π∗W ),m,CW :=

∑
c(ei )wi

]
∈ KK (C(B),00C`(π∗W )),

where {ei } is an orthonormal basis on Wx and wi = 〈w, ei 〉 the coordinate functions
with respect to {ei }. We mention that DW and CW are independent of the choice of
{ei }, and hence are well-defined. Then, the theory of harmonic oscillators (see, e.g.,
[Higson and Guentner 2004, Section 1.13]) shows that [DW ]⊗00C`(π∗W ) [CW ] =

[DW +CW ] = 1 ∈ KK (C(B),C(B)) because the kernel of the harmonic oscillator
is 1-dimensional and O(n)-invariant. Now

D×CW = (Dv1, . . . , Dvn , cw1, . . . , cwk )

is a smooth family of commuting Fredholm n-tuples twisted by V ⊕ W ∼= Rp.
Moreover it is admissible on W because (D×CW )

2
= D2

+‖w‖2. According to
Theorem 3.14,

ind(Db+ Df + DW +CW )= jsf({D⊗CW (x, w)})= jsf({D(x)}).
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On the other hand, by the associativity of the Kasparov product

ind(Db+Df +DW +CW )= [Df +CW ]⊗00(π∗W ) [DW +Db]

= ([Df ]⊗C(B) [CW ])⊗00(π∗W ) ([DW ]⊗C(B) [Df ])

= [Df ]⊗C(B) [Db] = ind(Db+Df ). �

Some examples of geometric situations in which this theorem is applied are
introduced in Section 4A.

4. Applications

In this section we introduce some applications of the joint spectral flow and its
index theorem.

4A. Witten deformation and localization. It is easy to obtain the joint spectral
flow of a continuous family of commuting Fredholm n-tuples when their joint
spectra intersect with zero transversally. In such cases we often reduce the prob-
lem of computing the index (which usually requires solving some linear partial
differential equations or integrating some characteristic classes) to that of counting
the number of points with multiplicity.

The most typical example is the classical Poincaré–Hopf theorem.

Corollary 4.1 (the Poincaré–Hopf theorem). Let M be a closed Spinc manifold
and X a vector field on M whose null points M X

:= {p ∈ M | X (p) = 0} are
isolated. Then

χ(M)=
∑

p∈M X

νp.

This proof is essentially the same as that of [Witten 1982]. Here we restrict M
to Spinc manifolds, but this is not an essential assumption.

Proof. By the Hodge–Kodaira decomposition, the Euler number χ(M) can be
computed as the index of the de Rham operator DdR :=d+d∗ :0

(∧even/odd T M
)
→

0
(∧odd/even T M

)
. Now C`(T M) acts on C`(T M) in two ways: c(v)ξ := v ·ξ and

h(v)ξ := γ (ξ) · v (for v ∈ T M and ξ ∈ C`(T M)), where γ is the grading operator
on C`(T M) ∼= C`(T M)0 ⊕ C`(T M)1. They induce the C`(T M) ⊗̂ C`(T M)-
action on C`(T M) because c(v) and h(v) anticommute. Because M is a Spinc

manifold, it is a unique irreducible C`(T M ⊕ T M)-module /SC(T M ⊕ T M). By
Leibniz’s rule,

DdR(γ (ξ) · X)=−γ (DdRξ) · X + (−1)∂γ (ξ)γ (ξ) · DdR(X)
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where we use the fact that DdR is an odd operator. This means that DdR and
h(X) anticommute modulo the bounded operator (−1)∂ξ+1h(DdR(X)). This shows
that DdR + th(X) is Fredholm for any t > 0, because (DdR + th(X))2 = D2

dR +

t2
‖X‖2 + t[DdR, h(X)] is a bounded perturbation of the Laplace operator D2

dR,
which is positive with compact resolvent. On the other hand, h(X)=

∑
〈ei , X〉h(ei )

is a commuting n-tuple of Fredholm operators twisted by T M (now we regard
〈ei , X〉 as Fredholm operators on the 1-dimensional vector space). As a conse-
quence of Theorem 3.19 (and Remark 3.11), we have

χ(M)= ind(DdR)= ind(DdR+ h(X))= jsf({〈ei , X〉})=
∑

p∈M X

νp.

The last equation follows from the definition of the joint spectral flow. �

Now we consider an infinite-dimensional analogue of this approach for localiza-
tion problems of indices.

Let B be an n-dimensional closed Spinc manifold, M1, . . . ,Mn→ B fiber bun-
dles such that each fiber Z1, . . . , Zn is an odd-dimensional closed manifold and
the TV Mi are equipped with Spinc structures, and E a complex vector bundle on
M := M1 ×B · · · ×B Mn . Now T B ⊕Rn is a 2n-dimensional vector bundle and
hence there is a unique C`(T B⊕Rn)-module bundle /SC(TV M⊕Rn). We denote by
/SC(TV Mi ) ∼= /S

0
C(TV Mi )⊕ /S

1
C(TV Mi ) the unique Z/2-graded C`(TV Mi )-module

bundle, which is isomorphic to /SC(TV Mi ⊕R). Then it decomposes into tensor
products as

/SC(TV M ⊕Rn)∼= /SC(TV M1⊕R) ⊗̂ · · · ⊗̂ /SC(TV Mn ⊕R)

∼= (/S0
C(TV M1) ⊗̂C`1) ⊗̂ · · · ⊗̂ (/S

0
C(TV Mn) ⊗̂C`1)

∼= (/S0
C(TV M1)⊗ · · ·⊗ /S

0
C(TV Mn)) ⊗̂C`n.

Hereafter we set /SC, f (M;Rn) := /SC(TV M⊕Rn) and /S0
C, f (M;R

n) := /S0
C(TV M1)⊗

· · ·⊗ /S0
C(TV Mn). The inclusions TV M ⊂ TV M ⊕Rn and Rn

⊂ TV M ⊕Rn induce
the actions of C`(T M) and C`n on /SC, f (M;Rn). Under the above identification,
a vector v = v1⊕ · · ·⊕ vn ∈ TV M acts as

(c(v1)⊗ 1⊗ · · ·⊗ 1)⊗ c1+ · · ·+ (1⊗ · · ·⊗ 1⊗ c(vn))⊗ cn

and C`n acts as 1⊗ h (here we denote the left and twisted right actions of C`n on
C`n by c and h). Hence the fiberwise Dirac operator /D f decomposes as

/D f = c1 /D1+ · · ·+ cn /Dn,
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where the /Di are Dirac operators for the Mi direction

/Di : 0(M, /SC(TV M ⊕Rn)
d
−−→ 0(M, /SC(TV M ⊕Rn)⊗ T ∗M))

pTV Mi
−−−−−→ 0(/SC(TV M ⊕Rn))

c
−−→ 0(M, /SC(TV M ⊕Rn)).

Similarly, the twisted spinor bundle /SE
C, f (M;R

n) := /SC(TV M ⊕Rn)⊗ E is iso-
morphic to /S0,E

C, f (M;R
n) ⊗̂C`n . Moreover if E is equipped with a connection ∇E

whose curvature RE satisfies RE(X, Y ) = 0 for any X ∈ TV Mi and Y ∈ TV M j

(i 6= j), then the Dirac operator twisted by E decomposes as /DE
= c1 /D

E
1 +

· · ·+cn /D
E
n , such that /Di commutes with /D j . Now ( /DE

1 , · · · , /D
E
n ) forms a smooth

family of unbounded commuting Fredholm n-tuples, and /DE
f is the smooth family

of the Dirac operators associated with it.
More generally, we obtain some examples of twisted commuting Fredholm n-

tuples. Let V be a real vector bundle whose structure group is a discrete subgroup
G of GL(n,R), B ′ = G(V ) the frame bundle of V , M ′1, . . . ,M ′n fiber bundles
over B ′ with a G-action on M ′ := M1×B ′ · · · ×B ′ M ′n that is compatible with the
projection M ′→ B ′ and E a G-equivariant vector bundle on M ′ whose connection
∇ is G-equivariant and satisfies the above assumption on the curvature. The G-
action on M ′ induces a unitary representation Ux of G on L2(Z ′x , /S

E
C(Z

′
x)), where

Z ′x := π
′−1
(x) (π ′ is the projection from M ′ to B). We assume that

Ux(g) /D
E
i Ux(g)∗ =

∑
gi j /D

E
j .

Then
(
g = (v1, . . . , vn), ( /D

E
1 (x, g), . . . , /DE

n (x, g))
)
∈ B ′×Fn(H) is G-invariant,

and hence the map x 7→ /DE
v (x) is well-defined and determines a V -twisted smooth

family of commuting Fredholm n-tuples.
There are two fundamental examples. The first is the SL(n,Z)-action on Tn

=

(S1)n or the product bundle Tn
× B. The second is the Sn-action on the bundle

M ′ ×B · · · ×B M ′. Then the fiberwise Dirac operator on the fiber bundle M :=
M ′/G→ B coincides with the Dirac operator associated with { /DE

v (x)}x∈B .

Theorem 4.2. Let B, M , V , E , and ∇ be as above. Then

ind0( /D
E
M)= jsf{ /DE

v (x)}.

This theorem is a direct consequence of Theorem 3.7 since the Dirac operator
/DE

M has the same principal symbol as π∗ /DB + /DE
f (x). As a special case, we can

show localization of the Riemann–Roch number for Lagrangian fiber bundles on
their Bohr–Sommerfeld fibers:

Corollary 4.3. Let (M, ω) be a symplectic manifold of dimension 2n, Tn
→ M→

B a Lagrangian fiber bundle, and (L ,∇L , h) its prequantum data, that is, (L , h)
is a hermitian line bundle over M with connection ∇L that is compatible with h
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whose curvature form RL coincides with −2π iω. Then the Riemann–Roch number
RR(M, L) := ind0 /D

λ1/2
⊗L

M (where λ is the determinant line bundle det T (1,0)M)
coincides with the number of fibers Tx such that ∇L

|Tx is flat with trivial mon-
odromy, which are called the Bohr–Sommerfeld fibers.

Proof. The structure of Lagrangian fiber bundles is studied in Section 2 of [Duis-
termaat 1980], and the following are known:

• Fact 1: There is a lattice bundle P ⊂ T B, which induces a flat metric on T B.

• Fact 2: If P is trivial, M is actually a principal Tn-bundle.

We denote the GL(n,Z)-frame bundle of T B by B ′ and the pullback of M by the
quotient B ′→ B by M ′. The manifold M ′ has a canonical symplectic structure and
M ′→ B ′ is also a Lagrangian fiber bundle. By Fact 2, M ′ is a principal Tn-bundle
on B ′. We identify the space of constant vector fields on a fiber M ′x with the Lie
algebra t= Lie(Tn).

The free GL(n,Z)-action on B ′ extends to an action on M ′ preserving its sym-
plectic form and affine structure on each fiber. Therefore it induces an action on
t as g · X i = gi j X j for some fixed basis X1, . . . , Xn of t. Indeed, by considering
the canonical trivialization of the tangent bundle T B ′ ∼= B ′×Rn that is compatible
with the isomorphism t∼= Tx B ′ given by a fixed almost-complex structure J , we
obtain an isomorphism t∼= Tx B ′ ∼= Rn that is independent of the choice of x ∈ B ′.
Under this identification, g· : Rn ∼= Tx B ′→ Tg·x B ′ ∼= Rn is represented by (gi j ) as
a matrix. Hence g also acts on t as (gi j ).

Next, we construct some flat connections. The isomorphism TV M ∼= TH M ∼=
π∗T B induced by J implies the isomorphism /SC, f (M;Rn)∼= /SC(M)∼=π∗ /SC(B).
Moreover, it induces a flat metric on T M that is trivially flat on each fiber Tn , and
so are associated bundles with T M , in particular λ1/2 and /Sλ

1/2

C (M). Since RL

is equal to 0 when it is restricted on each fiber, ∇L is also fiberwise flat and the
product connection ∇ =∇ /S

λ1/2
⊗L

C (M) is trivially flat if and only if ∇L is trivially flat.
Finally we see that B, M , V = T B, E = λ1/2

⊗ L and ∇λ
1/2
⊗L satisfy the as-

sumptions of Theorem 4.2. Then {∇v(x)} forms a family of commuting Fredholm
n-tuples twisted by T B and the index of the Dirac operator /Dλ1/2

⊗L
M coincides with

the joint spectral flow.
The kernel of 1 f := ∇

2
e1
+ · · ·+∇

2
en

is not zero if and only if ∇ is (and hence
∇

L is) trivially flat. This means that the joint spectra of {∇(x)} cross over zero
only on the Bohr–Sommerfeld fibers. The remaining part is that the multiplicity
of eigenvalues crossing zero on each Bohr–Sommerfeld fiber is equal to 1. This
follows from the fact in symplectic geometry that the tubular neighborhood of
a Lagrangian submanifold is isomorphic to its cotangent bundle as a symplectic
manifold, and that T ∗Tn is actually the product space (T ∗S1)n . More detail is
found in Section 6.4 of [Fujita et al. 2010]. �



70 YOSUKE KUBOTA

4B. Generalized Toeplitz index theorem. In this section we introduce a general-
ization of a classical theorem relating the index of Toeplitz operators with the
winding numbers.

Definition 4.4. Let Y be an n-dimensional closed manifold with n = 2m− 1. For
ϕ : Y →U (k) the generalized Toeplitz operator Tϕ is defined by

PmϕP : P L2(Y, /SC(Y ))⊕k
−→ P L2(Y, /SC(Y ))⊕k,

where P is the orthogonal projection onto span{ϕ | /Dϕ = λϕ for some λ≥ 0}.

Example 4.5 (Y = S1). When Y = S1
=R/2πZ (and hence when /SC(Y ) associated

with the canonical Spinc-structure on Y is a trivial bundle), we can identify its Dirac
operator as d/dt . Its spectrum coincides with Z, and the eigenspaces En are the
1-dimensional complex vector spaces C ·eint . Therefore P H = span{eint

| n ∈Z≥0},
and the corresponding generalized Toeplitz operators Tϕ are simply the ordinary
ones. Its index is obtained from the winding number by ind Tϕ =−windingϕ.

Now we generalize this index theorem for generalized Toeplitz operators in
a special case. Let 1n = 10

n ⊕ 1
1
n be a unique irreducible Z/2-graded C`n-

module and γ the grading operator on it. When we have a continuous map ϕ =
(ϕ0, . . . , ϕn) : Y→ Sn , we obtain an even unitary ϕ0+γ c1ϕ1+· · ·+γ cnϕn , where
ci (i = 1, . . . , n) are Clifford multiplications of an orthonormal basis e1, . . . , en .
For simplicity of notation, we use the same letter ϕ for its restriction to 10

n .

Theorem 4.6. Let Y and ϕ be as above. Then

ind Tϕ =− deg(ϕ : Y → Sn).

Proof. Baum and Douglas [1982] proved the cohomological formula for this index,
which is analogous to the Atiyah–Singer formula. As a consequence, we have that

ind Tϕ =−〈ch(ϕ)Td(X), [X ]〉.

Actually we can give a proof of Theorem 4.6 by using this and the description of
the Chern character in Lemma 3.5. �

4C. Localization of APS index for families and eta-form. We can also apply our
joint spectral flow index theorem for fiber bundles whose fibers are compact man-
ifolds with boundary. A main reference for this section is [Melrose and Piazza
1997].

Let B be a closed n-dimensional Spinc manifold and Z→M→ B a smooth fiber
bundle over B whose boundary also forms a fiber bundle ∂Z → ∂M→ B. Here
we also assume that M is Spinc. The Riemannian metric g on T M is introduced
by the direct sum decomposition g f ⊕ π

∗gB on TV M ⊕ TH M , where gB is a
Riemannian metric on T B ∼= TH M and g f is a smooth family of Riemannian
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metrics on the fibers Zx that are exact b-metrics near the boundaries ∂Zx . We
assume that /SC(TV M) has a C`(V )-action and the fiberwise Dirac operator /DE

f on
/SE

C(M) coincides with the Dirac operator c(v1)Dv1+· · ·+c(vn)Dvn associated with
a V -twisted n-tuple {Dv} of fiberwise first-order pseudodifferential operators that
satisfies Condition 3.18. We denote by H 1,0(M, E) the fiberwise Sobolev space,
that is, the completion of C∞(M, E) by the inner product 〈 · , · 〉L2 +〈∇

E
f · ,∇

E
f · 〉,

where ∇E
f := pTV M ◦∇

E . Then an element in H 1,0(M, E) is fiberwise continuous
and there is a bounded operator

∂ : H 1,0(M, E)→ L2(∂M, E |∂M), σ 7→ σ |∂M .

Now we fix a spectral section P ∈ C(B, {90(∂Zx , E |∂Zx )}x∈B). Here a spectral
section P is a projection such that there is a smooth function R : B → R and
the condition Df (x)σ = λσ implies P(x)σ = σ if λ > R(x) and P(x)σ = 0 if
λ <−R(x) for any x ∈ B. Then this P determines an elliptic boundary condition
at each fiber and

/D f : L2(M, E)→ L2(M, E),

dom /D f := {σ ∈ H (1,0)(M, E) | P(∂σ )= 0}

is a fiberwise Fredholm self-adjoint operator. Hence it forms a V -twisted contin-
uous family of unbounded commuting Fredholm n-tuples {Dv(x)} parametrized
by B.

Theorem 4.7. indP( /D)= jsf({D(x)}).

The same proof that we gave for Theorem 3.7 and 3.19 also works here. This is
because we deal with operators directly, instead of the topology of their principal
symbols. We only remark that in this situation Db and Df (1+ D2

f )
−1/2 commute

modulo bounded operators. Furthermore, we obtain an analogue of Theorem 3.14.
Now we introduce its application for a geometric problem.
Let B be an n-dimensional closed manifold, V → B a real vector bundle of

dimension n and Y → N → B a fiber bundle with dim Z = n− 1. We assume that
there is an oriented embedding of M into V as a fiber bundle. Then there is a fiber
bundle Z→ M→ B of manifolds whose boundary is isomorphic to Y → N → B
as fiber bundles. Now we define the eta-form [Bismut and Cheeger 1989] for N by

η̂P =

∫
∞

0
η̂P(t) dt,

η̂P(t)=
1
√
π

StrC`1

(
dB̃t

dt
e−B̃2

t

)
,

where B̃t is the deformed C`1-superconnection. This differential form is closed
and used for the Atiyah–Patodi–Singer index theorem for families.
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On the other hand, the canonical metric on V induces a smooth family of exact
b-metrics on TV M . Therefore, first-order differential operators ∂/∂vi on Vx (where
v1, . . . , vn is a basis of Vx ) form a V -twisted commuting Fredholm n-tuple.

Theorem 4.8. Let Z → M → B and V be as above. If there is an oriented em-
bedding of M into V as fiber bundles, its eta-form η̂P is in the image of H n(B;Z).
Moreover, in that case ∫

B
η̂P = indP( /DM)= jsf{D(x)}.

Proof. From Theorem 4.7 we have j∗{D(x)} = ch(indP( /D f )). Now the Atiyah–
Patodi–Singer index theorem for families [Melrose and Piazza 1997] says that
ch(indP( /D f )) = π!( Â(TV M)) + η̂P . In our case TV M is trivial and hence the
first term of the above equality vanishes. �

In particular, in the case Y = Sn−1, we get an obstruction for an oriented sphere
bundle to be isomorphic to the unit sphere bundle of a vector bundle. This is related
to the comparison of the homotopy types of Diff+(Sn−1) and SO(n), which is the
Smale conjecture.

5. Decomposing Dirac operators

Now the converse problem arises. When do geometric Dirac operators “decom-
pose” into Dirac operators associated with commuting Fredholm n-tuples? In this
section we deal with zeroth-order pseudodifferential operators to obtain a complete
obstruction from its index by using the theory of C∗-algebra extensions, which is
related to KK 1-theory and index theory in [Kasparov 1980b].

We start with some folklore. Let Tϕ be a Toeplitz operator associated with
ϕ ∈ C(S1)×. Then Tϕ is not a normal operator in general, and Re Tϕ can only
commute with Im Tϕ if ind Tϕ is equal to 0. In this situation, the index of the
operator Tϕ = Re Tϕ + i Im Tϕ gives a complete obstruction to the existence of
mutually commuting self-adjoint operators A and B such that (A − Re Tϕ) and
(B− Im Tϕ) are compact. Our purpose in this section is to give an analogue and a
generalization of this for the bounded operators associated with Dirac operators.

Before we consider the case of families, we deal with a single Dirac operator.
First of all, we assume that its principal symbol decomposes. This is interpreted as a
geometric condition as follows: Let M be a closed Spinc manifold and H1, . . . , Hn

mutually orthogonal odd-dimensional subbundles of T M whose direct sum spans
T M . As is argued in Section 4A, /SC(M;Rn) := /SC(T M ⊕Rn) decomposes as

/SC(M;Rn)∼= (/S0
C(H1)⊗ · · ·⊗ /S

0
C(Hn)) ⊗̂C`n.



THE JOINT SPECTRAL FLOW AND LOCALIZATION OF INDICES 73

Hereafter we set /S0
C(M;R

n) := /S0
C(H1)⊗ · · ·⊗ /S

0
C(Hn). Under this identification,

the principal symbol of the Dirac-type operator /DE on /SE
C(M;R

n) is interpreted as

σ( /DE
)=

k∑
i=1

(dim Hi∑
j=1

1⊗ · · ·⊗ c(ei, j )ξi, j ⊗ · · ·⊗ 1
)
⊗̂ ci ,

where each {ei, j } j=1,...,dim Hi is an orthonormal basis on Hi and the ξi, j := 〈ξ, ei, j 〉

are coordinate functions on each cotangent space. Then we can construct a com-
muting n-tuple on the symbol level. This also works for the Dirac operator /DE

twisted by a complex vector bundle E . We say the Dirac operator /DE is said to be n-
decomposable if there is a bounded commuting Fredholm n-tuple (T1, . . . , Tn) such
that each Ti is a zeroth-order pseudodifferential operator on 0(M, /SE,0

C (M;Rn))

whose principal symbol is of the form σ(Ti )=
∑

j 1⊗· · ·⊗c(ei, j )ξi, j ⊗· · ·⊗1. In
that case, the bounded operator /DE

(1+ ( /DE
)2)−1/2 associated with /DE coincides

modulo compact operators with the Dirac operator associated with the bounded
commuting Fredholm n-tuple T .

In fact, n-decomposability is a K -theoretic property and is determined by the
index:

Proposition 5.1. Let M , H1, . . . , Hn , and E be as above. Then the Dirac operator
/DE is n-decomposable if and only if ind( /DE

)= 0.

Proof. A decomposition of the principal symbol gives a ∗-homomorphism σ( /DE
) :

C(Sn−1)→ A := 0
(
S(T M),End(π∗/SE,0

C (M;Rn))
)

that maps the coordinate func-
tion xi (i = 1, . . . , n) of Rn , which contains Sn−1 as the unit sphere, to an element∑

j c(ei, j )ξi, j . It is well-defined because the square sum
∑

i

(∑
j c(ei, j )ξi, j

)2 is
equal to 1. Hence we can replace the problem of obtaining a decomposition of /DE

with that of obtaining a lift, as is shown in the following diagram by the dotted
arrow, of σ( /DE

):

C(Sn−1)

ϕ

��ww

0 // 9−1(/SE,0
C (M;Rn)) // 90(/SE,0

C (M;Rn)) //

��

A //

τ

��

0

0 // K(H) // B(H) // Q(H) // 0

where H := L2(M, /SE,0
C (M,Rn)) and90(/SE,0

C (M;Rn)) (resp.9−1(/SE,0
C (M;Rn)))

is the norm closure of the space of pseudodifferential operators of order 0 (resp.−1).
In terms of the extension theory, it means that the extension ϕ∗τ = τ ◦ϕ is trivial.
Now, as mentioned above, the theory of C∗-algebra extension is translated into
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KK 1-theory. In particular, a semisplit extension ϕ has a lift after stabilizing by the
trivial extension if and only if the KK 1-class [ϕ] is zero. Moreover, in our case
we do not have to care for the stabilization of ϕ because the Voiculescu theorem
[1976] ensures that ϕ absorbs any trivial extensions.

In the case of odd n, ind /DE is immediately 0 because KK 1(C(Sn−1),K) itself
is 0. On the other hand, ind /DE is also 0 because dim M is odd.

In the case of even n, we obtain an integer ϕ∗[τ ] ∈ KK 1(C(Sn−1),K) ∼= Z as
the Fredholm index of τ ◦ϕ(u) ∈ Q(H) by Theorem 18.10.2 of [Blackadar 1998].
Here u is the canonical generator of KK 1(C,C(Sn−1)) ∼= K1(C(Sn−1)), and its
additive inverse is represented by a family of unitary matrices u :=

∑
c1ci xi ∈

C(Sn−1,End(10
n)) (it is a consequence of Theorem 4.6). Now · τ ◦ϕ(u) coincides

with the principal symbol of the Dirac operator c1 · ( /D
E
)0 on 0(M, /SE,0

(M))
because /S0

C(M)∼= /S
0
C(M;R

n) ⊗̂10
n . �

We now turn to the case of families of Dirac operators, which is our main
interest.

Let Z→ M→ B be a fiber bundle and set n := dim B. We assume that there are
Spinc vector bundles V1, . . . , Vl on B and H1, . . . , Hl on M such that π∗Vi⊗Hi are
also Spinc and the vertical tangent bundle TV M is isomorphic to their direct sum
π∗V1⊗ H1⊕ · · ·⊕π

∗Vl ⊗ Hl . We denote the direct sum V1⊕ · · ·⊕ Vl by V and
assume that dim V = n. Moreover, we assume that each Hi is odd-dimensional
and decomposes as Hi ∼= H 0

i ⊕ R. Now, as is in Section 4A, the spinor bundle
/SC, f (M; V ) := /SC(TV M ⊕ V ) decomposes as

/SC, f (M; V )∼=
(
/SC(π

∗V1⊗ H 0
1 )⊗ · · ·⊗ /SC(π

∗Vn ⊗ H 0
n )
)
⊗̂C`(π∗V ).

Hereafter we set /SE,0
C, f (M; V ) := /SC(π

∗V1 ⊗ H 0
1 )⊗ · · · ⊗ /SC(π

∗Vn ⊗ H 0
n ). The

principal symbol of the fiberwise Dirac operator /DE
f on the twisted fiberwise spinor

bundle /SE
C, f (M; V ) := /SC, f (M; V )⊗ E also decomposes as a V -twisted contin-

uous family of commuting n-tuples. Indeed, for v = v1 ⊕ · · · ⊕ vl , the explicit
decomposition is given by the correspondence

σ( /DE
f )v =

∑(
c(v1⊗ e1, j )ξe1, j

)
+ · · ·+

∑(
c(v1⊗ el, j )ξel, j

)
.

This gives a ∗-homomorphism σ( /DE
f )v :C(S(V ))→C(B)⊗Q(H) that is compat-

ible with the inclusions C(B)⊂ C(S(V )) and C(B)⊗ 1⊂ C(B)⊗ Q(H). In par-
ticular, when V is trivial it reduces to the ∗-homomorphism σ( /DE

f )v : C(S
n−1)→

C(B)⊗ Q(H).

Definition 5.2. The fiberwise Dirac operator /DE
f is said to be n-decomposable if

there is a V -twisted bounded commuting Fredholm n-tuple {Tv(x)} such that each
Tv is a zeroth-order pseudodifferential operator on 0(/SE,0

C, f (M; V )) whose principal
symbol is σ(Tv)=

∑(
c(v1⊗ e1, j )ξe1, j

)
+ · · ·+

∑(
c(v1⊗ el, j )ξel, j

)
.
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In this case, /DE
f (1+ ( /D

E
f )

2)−1/2 coincides modulo compact operators with the
smooth family of Dirac operators associated with the V -twisted bounded commut-
ing Fredholm n-tuples {Tv(x)}. Hence the K -class [ind /DE

f ] is in the image of
the canonical natural transform from k̃n(B) to K n(B). Moreover, the index of the
Dirac operator /DE

M on M twisted by E , which coincides with that of π∗ /DB + /DE
f ,

can be obtained from the joint spectral flow jsf{Tv(x)}.

Theorem 5.3. Let Z→M→ B, V1, . . . , Vl , H1, . . . , Hl , and E be as above. Then
/DE

f is n-decomposable if and only if ind( /DE
f ) is in the image of K n(B, B(n−1))→

K n(B), or equivalently the image of k̃n(B)→ K n(B). In that case, the equality
ind /DE

M = jsf{ /DE
f } holds.

Here B(n−1) is the (n− 1)-skeleton of a cellular decomposition of B. The im-
age of K (B, B(n−1))→ K n(B), which is the Atiyah–Hirzebruch filtered K -group
Fn−1K n(B), is independent of the choice of decompositions and coincides with
the image of k̃n(B)→ K n(B) because of the functoriality of k̃∗→ K ∗ and the fact
that k̃n(B(n−1))= 0.

Remark 5.4. In the proof, except for the last part, the condition that B is an n-
dimensional closed manifold is not necessary. Actually it is sufficient to be a finite
CW-complex. Moreover, if B is an n-dimensional CW-complex, the last part also
holds.

The proof is divided into several steps. First, we show that /DE
f is locally n-

decomposable.

Lemma 5.5. Let M = B× Z and T Z ∼= H1⊕· · ·⊕Hn . If the index of the fiberwise
Dirac operator /DE

f on /SE
C(M;R

n) is zero, then /DE
f is n-decomposable.

Proof. As in Proposition 5.1, it suffices to find a lift of the extension σ( /DE
f )v :

C(Sk−1)→ C(B)⊗ C(S(T Z)) ⊂ C(B)⊗ Q(H). This exists when the metrics
on fibers are constant because σ( /DE

f )v is trivial and absorbable by Kasparov’s
[1980b] generalized Voiculescu theorem. In the general case, it exists because
σ( /DE

f )v|My = u y(σ ( /D
E
f )v|Mx )u

∗
y , where u y : π

∗/SE
C(Mx ;R

n)→ π∗/SE
C(My;R

n) is
the isometry induced from the polar part of the identity map id : T Mx → T My . �

Next we introduce a technique for gluing two decompositions. We can deal
with the problem cohomologically by using Cuntz’s [1983] notion of quasihomo-
morphisms. The “difference” of two lifts ϕ0, ϕ1 : C(S(V ))→ C(B)⊗B(H) of
σ( /DE

v ) gives an element of the representable KK -group [Kasparov 1988]

[ϕ0, ϕ1] :=

[
Ĥ ⊗̂C(B),

(
ϕ0 0
0 ϕ1

)
,

(
0 1
1 0

)]
∈RKK

(
B;C(S(V )),C(B)⊗K

)
.
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In particular, in the case that V is trivial, we can reduce the representable KK -
group RKK

(
B;C(S(V )),C(B)

)
by KK (C(Sn−1),C(B) ⊗ K). Then the split

exact sequence

0−→ C0(Sn−1
\ {∗})−→ C(Sn−1)

p
−−→ C−→ 0

gives an isomorphism

KK (C(Sn−1),C(F))∼= KK
(
C0(Sn−1

\ {∗}),C(F)
)
⊕ KK (C,C(F)).

When both of ϕ0 and ϕ1 are unital, [ϕ0, ϕ1] corresponds to [ϕ0, ϕ1]|C(Sn−1\{∗})⊕ 0
under the above identification because p∗[ϕ0, ϕ1] = [1, 1] = 0.

Lemma 5.6. Let F0, F1 be closed subsets of B such that B = (F0)
◦
∪ (F1)

◦ and
F := F0∩F1. We assume that M and E are trivial on F and σ( /DE

f ) has lifts ϕ0 and
ϕ1 on F0 and F1. Then the image of [ϕ0, ϕ1] ∈ KK (C0(Sn−1

\ {∗},K⊗C(F)) ∼=
K n−1(F) under the boundary map of the Mayer–Vietoris sequence coincides with
[ind /DE

f ] ∈ K n(B).

Proof. From the diagram

0 // C0(D
n
\ {0}) //

ι

��

C0(Dn \ {0}) //

��

C(Sn−1) // 0

0 // C0(D
n) // C0(Dn) // C(Sn−1) // 0

0 // C0(D
n) // C0(Dn \ {∗}) //

OO

C0(Sn−1
\ {∗}) //

OO

0

we obtain a diagram of KK -groups

KK 1(C0(D
n
\ {0}),C(F))

∂1

∼
// KK 0(C(Sn−1),C(F))

KK 1(C(Dn),C(F))

ι∗

OO

∂2

// KK 0(C(Sn−1),C(F))

��

KK 1(C(Dn),C(F))
∂3

∼
// KK 0(C0(Sn−1

\ {∗}),C(F))

Here, for a C∗-algebra A, the group KK 1(A,C(F)) is canonically isomorphic
to KK (A, 6C(F))∼= KK (A,C0(6F)). One can see that the inverse (∂1)

−1 of the
boundary map coincide with the product with [id6] ∈ KK (6,6).

As a consequence we obtain that

ι∗∂−1
3 [ϕ0, ϕ1] = ∂

−1
1 [ϕ0, ϕ1] = [ϕ0⊗ id6, ϕ1⊗ id6].
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Next, we consider the isomorphism between

KK (C0(D
n),C0(6F)) and KK (C,C0(6F) ⊗̂C`n).

As is in Section 2, this correspondence is given by taking a product with the canon-
ical generator

[CDn ] :=

[
C0(D

n) ⊗̂C`n, 1,CRn :=

∑
xi · ci

]
of KK (C,C0(D

n)⊗̂C`n). Restricting to C0(D
n
\{0})⊗̂C`n , the operator CDn also

defines an element [CDn\{0}] in KK (C,C(Dn
\ {0}) ⊗̂C`n). When we regard the

topological space Dn
\ {0} as 6Sn−1, the operator CDn is of the form tCSn−1 , where

CSn−1 :=
∑

ci · xi ∈ C(Sn−1) ⊗̂C`n and t is the identity function on (0, 1). Now
the diagram

KK (C0(D
n),C0(6F))

ι∗

��

[CDn ]

**

KK (C,C0(6F) ⊗̂C`n)

KK (C0(D
n
\ {0}),C0(6F))

[CDn\{0}]
44

commutes. As a consequence, we can compute [CDn ]⊗C0(Dn) ∂
−1
3 [ϕ0, ϕ1] by using

Proposition 18.10.1 of [Blackadar 1998] as follows:

[CDn ]⊗C0(Dn) ∂
−1
3 [ϕ0, ϕ1]

= [CDn\{0}]⊗C0(Dn\{0}) ι
∗∂−1

3 [ϕ0, ϕ1]

= [tCSn−1]⊗C0(6Sn−1) [ϕ0⊗ id6, ϕ1⊗ id6]

=

[
ĤC0(6F) ⊗̂C`n, 1,

(
ϕ0(tCSn−1) 0

0 ϕ1(tCSn−1)

)
+

(
1−ϕ0(tCSn−1)2 0

0 1−ϕ1(tCSn−1)2

)(
0 1
1 0

)]

=

[
ĤC0(6F) ⊗̂C`n, 1,

(
ϕ0(tCSn−1) 1−ϕ0(tCSn−1)2

1−ϕ1(tCSn−1)2 ϕ1(tCSn−1)

)]
= [ĤC0(6F) ⊗̂C`n, 1, T ].
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Here

T = {Tt }t∈[0,1] :=



(
ϕ0((1− 2t)CSn−1) 1− (1− 2t)2

1− (1− 2t)2 ϕ0((1− 2t)CSn−1)

)
0≤ t ≤ 1/2,

(
ϕ0((2t − 1)CSn−1) 1− (2t − 1)2

1− (2t − 1)2 ϕ1((2t − 1)CSn−1)

)
1/2≤ t ≤ 1.

Now we claim that this KK -class coincides with that coming from the cycle[
HC0(6F) ⊗̂C`n, 1, tϕ0(CSn−1)+ (1− t)ϕ1(CSn−1)

]
.

Indeed, because Tt − T1−t is compact for any t ∈ [0, 1/2], the homotopy of contin-
uous families of Fredholm operators

Ts,t :=


Tt 0≤ t ≤ s/2,
t − s/2
1− s

Ts/2+
1− t − s/2

1− s
T1−s/2 s/2≤ t ≤ 1− s/2,

Tt 1− s/2≤ t ≤ 1

connects T0 = T with

T1 =

(
ϕ0(CSn−1) 0

0 tϕ0(CSn−1)+ (1− t)ϕ1(CSn−1)

)
.

Finally we obtain that [ϕ0, ϕ1] coincides with [tϕ0(CSn−1)+ (1− t)ϕ1(CSn−1)]

in KK (C0(Sn−1
\ {∗}),C(F))∼= K n(6F). Next we map it by the boundary map

δMV of the Mayer–Vietoris exact sequence.
We denote by I (F0, F1; F) the space F0t I FtF1. The image of δMV is induced

from the map I (F0, F1; F)→ (I (F0, F1; F), F0 ∪ F1) and excision. Therefore
δMV [tϕ0(CSn−1)+ (1− t)ϕ1(CSn−1)] is of the form

ϕ0(CSn−1)x x ∈ F0,
tϕ0(CSn−1)x + (1− t)ϕ1(CSn−1)x (x, t) ∈ I F ,
ϕ1(CSn−1)x x ∈ F1.

It is a lift of the pullback of the principal symbol σ( /DE
v ) by the canonical projection

I (F0, F1; F)→ B, which introduces the homotopy equivalence. As a consequence
the above operator coincides with /DE

f (1+ ( /D
E
f )

2)−1/2 modulo compact operators
and hence defines the same KK -class. �

Lemma 5.7. If [ind /DE
f ] = 0 ∈ K n(B), then /DE

f is n-decomposable.

Proof. Let U1, . . . ,Um be a local trivialization of the fiber bundle M → B and
the vector bundles V1, . . . , Vl → B such that M is also trivial on Fi := Ui . By
assumption and Lemma 5.5, /DE

f is n-decomposable on each Fi .



THE JOINT SPECTRAL FLOW AND LOCALIZATION OF INDICES 79

We start with the case that B = F0 ∪ F1, and set F := F0 ∩ F1. First, we fix
a trivial and absorbable extension π : C(Sn−1)→ Q(Hπ ) of K by C(Sn−1) and
denote by πA an extension C(Sn−1)→ Q(Hπ )→ Q(Hπ )⊗ A of C(Sn−1) by
A⊗K for a unital C∗-algebra A.

Now we choose lifts ϕ0 and ϕ1 of σ( /DE
v ) on F0 and F1. By Kasparov’s gen-

eralized Voiculescu theorem, the ϕi are approximately equivalent to ϕi ⊕ πC(Fi ).
More precisely, there are continuous families of unitaries ui : L2

f (/S
E
C(M; V ))→

L2
f (/S

E
C(M; V ))⊕Hπ⊗C(B) such that ui (ϕi⊕πC(Fi ))u

∗

i ≡ ϕi modulo compact op-
erators. According to Lemma 5.6, δMV ([ϕ0, ϕ1])= [Df ] = 0. Hence, by exactness
of the Mayer–Vietoris sequence, we have quasihomomorphisms [αi , βi ] (i = 0, 1)
such that [α0, β0]|F − [α1, β1]|F = [ϕ0, ϕ1]|. Now there are unitaries vi such that
vi (πC(Fi )⊕αi ⊕α

⊥

i )v
∗

i ≡ πC(Fi ) modulo compact operators. We set

ψi := ui
(
ϕ⊕ vi (πC(Fi )⊕βi ⊕α

⊥

i )v
∗

i
)
u∗i .

Then the [ϕi , ψi ] are quasihomomorphisms and [ϕi , ψi ] = [αi , βi ] for i = 0, 1 in
KK (C(Sn−1),C(Fi )).

Now [ϕ0, ψ0]|F−[ϕ1, ψ1]|F =[ϕ0, ϕ1], which implies [ψ0, ψ1]|F = 0. As a con-
sequence, there is a homotopy of quasihomomorphisms [9 t

0, 9
t
1] (t ∈ [0, 1]) from

C(Sn−1) to C(F)⊗B(H) connecting [ψ0|F , ψ1|F ]| and [θ, θ] for some θ . Here
we use the fact that the extensions ψi |F contain πC(F) and hence are absorbable.
Finally we get a homotopy

9̃t :=

{
92t

0 0≤ t ≤ 1/2,
92−2t

1 1/2≤ t ≤ 1

of ∗-homomorphisms from C(Sn−1) to C(F)⊗B(H) connecting ψ0 and ψ1.
Now we denote by D the fiber product of C∗-algebras

D //

��

C(F)⊗ (B(H)⊕B(H))

id⊗(p⊕p)
��

C(I F)⊗ Q(H)
ev0⊕ ev1

// C(F)⊗ (Q(H)⊕ Q(H))

and by τ the extension

0−→ C0(SF)⊗K −→ C(I F)⊗B(H)−→ D −→ 0.

Then σ( /DE
f )v and (ψ0⊕ψ1) determine a ∗-homomorphism σ :C(Sn−1)→ D. Be-

cause the C∗-algebra C(Sn−1) is nuclear, the Choi–Effros theorem [1976] implies
that the pullback σ ∗τ is an invertible extension and hence defines an element [σ ∗τ ]
in KK 1(C(Sn−1),C0(SF)⊗K). By the construction of 8̃, σ ∗τ is homotopic to
the trivial extension π ◦ 9̃, which implies that [σ ∗τ ] = 0. Consequently, σ itself
has a lift C(Sn−1)→ I C(F)⊗B(H).
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Finally, we obtain a lift ϕ of σ( /DE
f )v on I (F0, F1; F). Its pullback by a con-

tinuous section B→ I (F0, F1; F) given by a partition of unity is a desired lift of
σ( /DE

f )v.
In general case we apply induction on the number of covers. We assume that

there is a trivialization B = F1 ∪ · · · ∪ Fn ∪ Fn+1 and set G0 := F1 ∪ · · · ∪ Fn and
G1 := Fn+1. By the inductive assumption, we obtain lifts ϕ0 and ϕ1 on G0 and
G1. First we may assume that V is trivial by restricting ϕ0 to the closure of an
open neighborhood of G := G0 ∩G1 ⊂ G0. Now each ϕi contains πC(Gi ) by its
construction. Moreover, because M and V are trivial on I G by assumption, we
can take a lift of σ containing πC(I G). Now, the precise assertion obtained from
the above argument is that if (1) M and V are trivial on G, (2) there are lifts ϕi on
C(Gi ) (i = 0, 1), and (3) each ϕi is absorbable (and hence contains πC(Gi )), then
there is a lift ϕ on G containing πC(B). Hence the induction process works. �

Finally we prove our main theorem. Here we mention that in the above argument
we restrict the case that the lifts can be taken to be invertible operators.

Proof of Theorem 5.3. We assume that [ind /DE
f ] is in the image of K n(B, B(n−1)).

Let U ⊂ V be an inclusion of small open balls in B, F0 := U c and F1 := V .
Then [ind /DE

f |F0] and [ind /DE
f |F1] are 0 by assumption, and hence, according to

Lemma 5.7, /DE
f is n-decomposable on F0 and F1. Now, because F := F0 ∩ F1

is homotopic to Sn−1, the group KK (C0(Sn−1
\ {∗}),C(F)) is isomorphic to

k̃n−1(F) = [C0(R
n−1),C(F)]. This implies that there is a ∗-homomorphism ψ :

C0(Sn−1
\ {∗})→ C(F)⊗K such that [ϕ0, ϕ1] = 8[ψ]. Since ϕ1 is absorbable,

there is a unitary u from HC(F) to HC(F)⊕HC(F) such that u(ϕ1⊕ ev∗ ·1)u∗ ≡ ϕ1

modulo compact operators. Moreover, by an argument similar to Lemma 5.7, we
obtain a lift of σ( /DE

f ) on I F that coincides with ϕ0 on F ×{0} and u(ϕ1⊕ ψ̃)u∗

on F ×{1}, where ψ̃ is a unital extension of ψ .
The remaining part is to construct a homotopy connecting ϕ⊕ev∗ ·1 with ϕ⊕ ψ̃ .

This is not realized as a family of ∗-homomorphisms on C(Sn−1) but a continu-
ous family of bounded commuting Fredholm n-tuples. Let ι∗ be the canonical
∗-homomorphism C(Dn \ {∗})→ C0(Sn−1

\ {∗}). Then we can take a homotopy
connecting ψ ◦ ι∗ and 0 since Dn is contractible.

Finally, in the same way as in the proof of Lemma 5.7, we obtain a ∗-homo-
morphism T that makes the following diagram commute:

C(D(V )) T
//

��

C(B)⊗B(H)

��

C(S(V ))
σ( /DE

f )v
// C(B)⊗ Q(H)

Now {T (x)}v := T (x, v) gives a decomposition of /DE
f . �
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As a concluding remark, we introduce a corollary of Theorem 5.3:

Corollary 5.8. If /DE
f is n-decomposable, then /DE⊗π∗F

f is also n-decomposable
for a complex vector bundle F on B. Moreover, in this case

ind0( /D
E⊗π∗F
M )= jsf{ /DE⊗π∗F

f } = dim F · jsf{ /DE
f } = dim F · ind0( /D

E
M).

Proof. This follows from the fact that the connective K -group gives a multiplicative
filtration in the K -group. �
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