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We construct a version of Beilinson’s regulator as a map of sheaves of commuta-
tive ring spectra and use it to define a multiplicative variant of differential alge-
braic K -theory. We use this theory to give an interpretation of Bloch’s construc-
tion of K3-classes and the relation with dilogarithms. Furthermore, we provide
a relation to Arakelov theory via the arithmetic degree of metrized line bundles,
and we give a proof of the formality of the algebraic K -theory of number rings.
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1. Introduction

Let X be an arithmetic scheme, i.e., a regular separated scheme of finite type over
the integers. Its algebraic K -theory K∗(X) is an object of fundamental interest
in arithmetic. The algebraic K -theory of X is connected with the absolute Hodge
cohomology H∗AH(X,R( • )) via a Chern character map

Ki (X)→ H 2p−i
AH (X,R(p)), p, i ≥ 0,

called the Beilinson regulator. An important but extremely difficult problem is to
construct K -theory classes and to compute their images under the regulator map.

The papers [Bunke and Gepner 2013; Bunke and Tamme 2015] initiated a new
approach to this problem. The idea is to represent algebraic K -theory classes of X
by bundles on M × X for smooth manifolds M . In greater detail this goes as
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follows. The K -groups of X are the homotopy groups of the algebraic K -theory
spectrum K(X). This spectrum defines a cohomology theory K(X)∗ on topological
spaces so that, e.g., K(X)0(Sn)∼= K0(X)⊕Kn(X). The cohomology theory K(X)∗

admits a differential refinement denoted by K̂∗(M × X). This differential algebraic
K -theory is a functor of two variables, a smooth manifold M and a scheme X as
above. A class x̂ ∈ K̂∗(M× X) combines the information of a class x ∈K(X)∗(M)
and a differential form on the manifold M × X (C) representing the image of x
under Beilinson’s regulator with secondary data. Thus, if we know a differential
refinement x̂ of x then, philosophically, it is easy to calculate the Beilinson regula-
tor of x .

The tool to construct differential algebraic K -theory classes is the cycle map.
It produces such classes from bundles on M × X equipped with additional geo-
metric data. Here a bundle on M × X is a vector bundle on the ringed space
(M × X, pr−1

X OX ). The geometric extra structure is a hermitian metric and a con-
nection on the associated complex vector bundle on M × X (C). The differential
form representing the Beilinson regulator of the corresponding K -theory class is
obtained using standard Chern–Weil theory.

The aim of the present paper is to develop a multiplicative version of differential
algebraic K -theory and to illustrate it in some applications. The cup product allows
us to construct new classes from given ones, but more interestingly, we will employ
the secondary information captured by the differential algebraic K -theory in an
essential way.

In order to achieve this goal we need a version of Beilinson’s regulator on the
level of ring spectra. Here our result is not completely satisfactory, as we have to
replace absolute Hodge cohomology by the weaker analytic Deligne cohomology,
which coincides with the former only for proper schemes. We construct a sheaf
of ring spectra K on the site consisting of products of a smooth manifold and an
arithmetic scheme such that π∗(K(M× X))∼=K(X)−∗(M). To this end we apply a
suitable group completion machine to the category of vector bundles on the ringed
space (M × X, pr−1

X OX ). We furthermore construct a sheaf of differential graded
algebras IDR which computes analytic Deligne cohomology and use characteristic
forms on vector bundles on the manifolds M× X (C) to construct a map of sheaves
of ring spectra (H denotes the Eilenberg–MacLane functor)

rBeil
:K→ H(IDR)

which on homotopy groups agrees with the Beilinson regulator. This is the main
new contribution of the paper.

Once the multiplicative Beilinson regulator is established, we introduce the mul-
tiplicative differential algebraic K -theory and a multiplicative version of the cycle
map in Section 3.
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The remainder of the present paper is devoted to applications and illustrating
how classical constructions from arithmetic fit into the framework of differential
algebraic K -theory.

In Section 4 we use multiplicative differential algebraic K -theory in order to
construct a secondary invariant from the Steinberg relation. As an application
we give a conceptual explanation of Bloch’s construction of elements in K3 of a
number ring from cycles in the Bloch complex, whose images under the regulator
map can be described explicitly in terms of the dilogarithm function.

In Arakelov theory one studies metrized line bundles on number rings and their
arithmetic degree. We explain in Section 5 how this can be understood entirely in
the framework of differential algebraic K -theory.

Finally, in Section 6 we show that the real homotopy type of the algebraic K -
theory spectrum K(Spec(R)) of rings of integers R in number fields is modeled
by the commutative algebra K∗(R) in a way which is natural in R. The precise for-
mulation of this result is Theorem 6.3 and uses the notion of formality introduced
in Definition 6.2.

2. Multiplicative theory

In this section we define algebraic K -theory as a sheaf K of commutative ring spec-
tra on a site of products of a smooth manifold and a regular scheme (see Section 2A
below). We furthermore define a sheaf of differential graded algebras IDR which
calculates the analytic Deligne cohomology (Section 2B).

The main result is the construction of a version of Beilinson’s regulator with
values in analytic Deligne cohomology as a map between sheaves of ring spectra

rBeil
:K→ H(IDR),

where H(IDR) is the Eilenberg–MacLane spectrum associated to the sheaf IDR
(Theorem 2.31) using multiplicative characteristic forms (Section 2C).

Throughout the paper we use the language of (∞, 1)-categories as developed
by Lurie [2009] and simply called ∞-categories in the following. We view an
ordinary category as an∞-category by taking its nerve.

2A. The sites. We let Mf denote the category of smooth manifolds with the open
covering topology. Here a smooth manifold is a smooth manifold with corners
locally modeled on [0,∞)n ⊂ Rn , n ∈ N. The category Mf contains manifolds
with boundary and is closed under products. Mf in particular contains the interval
I =11

= [0, 1] and the standard simplices 1p for all p ∈ N. We let RegZ denote
the category of regular separated schemes of finite type over Spec(Z) with the
topology of Zariski open coverings. Manifolds and schemes are combined in the
product Mf×RegZ of these sites.
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Let C be a presentable∞-category [Lurie 2009, Chapter 5]. We can consider
the∞-category of functors Fun((Mf×RegZ)

op,C). Objects in this∞-category
will also be referred to as presheaves.

Definition 2.1. An object F ∈ Fun((Mf×RegZ)
op,C) satisfies descent if F sends

disjoint unions to products and for every covering U of an object M×X ∈Mf×RegZ

the natural map

F(M×X)→ lim1op F(U•)

is an equivalence, where U• ∈ (Mf×RegZ)
1op

denotes the Čech nerve of U.

We write Fundesc((Mf×RegZ)
op,C) for the full subcategory of objects satisfy-

ing descent. These objects will be called sheaves. The inclusion as a full subcate-
gory admits a left adjoint L called sheafification [Lurie 2009, Lemma 6.2.2.7]. We
express this by the diagram

L : Fun((Mf×RegZ)
op,C)� Fundesc((Mf×RegZ)

op,C).

We will also need the notion of homotopy invariance (in the manifold direc-
tion), which should not be confused with A1-homotopy invariance in the algebraic
direction. Let I := [0, 1] be the unit interval.

Definition 2.2. An object F ∈ Fun((Mf×RegZ)
op,C) is homotopy invariant (in

the manifold direction) if the natural map

pr∗ : F(M × X)→ F(I ×M × X)

is an equivalence for every object M × X ∈Mf×RegZ.

We write FunI ((Mf×RegZ)
op,C) for the full subcategory of homotopy invari-

ant objects. We again have an adjunction

Hpre
: Fun((Mf×RegZ)

op,C)� FunI ((Mf×RegZ)
op,C),

and Hpre is called the homotopification. We denote by Fundesc,I ((Mf×RegZ)
op,C)

the full subcategory of presheaves satisfying both homotopy invariance and descent.
Then we have a commutative diagram in∞-categories

Fundesc,I ((Mf×RegZ)
op,C)

��

// Fundesc((Mf×RegZ)
op,C)

��
FunI ((Mf×RegZ)

op,C) // Fun((Mf×RegZ)
op,C)
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where all morphisms are inclusions of full subcategories. Taking adjoints, we get
a commutative diagram of localizations,

Fundesc,I ((Mf×RegZ)
op,C) Fundesc((Mf×RegZ)

op,C)
H
oo

FunI ((Mf×RegZ)
op,C)

L I

OO

Fun((Mf×RegZ)
op,C)

L

OO

Hpre
oo

(2.3)

In order to see that the horizontal adjunctions exists one can use identifications of
the form

Fun((Mf×RegZ)
op,C)' Fun(Mfop,Fun(Regop

Z ,C))

and refer to [Bunke et al. 2013, §2]. Then diagram (2.3) shows that sheafification
commutes with homotopification in the sense that L I ◦Hpre

' H ◦ L . Here L I

and H are the sheafification and the homotopification functors on the respective
subcategories. It is not clear that H is the restriction of Hpre. Again, we refer to
[Bunke et al. 2013, §2] for more details.

Note that any functor 8 : C→ C′ between presentable∞-categories induces a
functor 8∗ : Fun((Mf×RegZ)

op,C)→ Fun((Mf×RegZ)
op,C′) which preserves

homotopy invariant objects. In contrast, 8∗ preserves sheaves in general only if
8 commutes with limits. We will usually write 8 for 8∗ in order simplify the
notation.

Later, we will need the following explicit description of the homotopification.
We first define a functor

s : Fun((Mf×RegZ)
op,C)→ Fun((Mf×RegZ)

op,Fun(1op,C))

as the adjoint of

(Mf×RegZ)
op
×1op

→ (Mf×RegZ)
op, (M × X ×[p]) 7→1p

×M × X,

where 1p
∈Mf denotes the p-dimensional standard simplex. We further set

s̄ := colim1op ◦s : Fun((Mf×RegZ)
op,C)→ Fun((Mf×RegZ)

op,C). (2.4)

Lemma 2.5. (1) There is a natural map id→ s̄.

(2) If X ∈ Fun((Mf×RegZ)
op,C) is homotopy invariant, then the natural map

X→ s̄(X) is an equivalence.

(3) If f is a morphism in Fun((Mf×RegZ)
op,C) such that s̄( f ) is an equiva-

lence, then Hpre( f ) is an equivalence.

(4) The map id→ s̄ is equivalent to the unit of the homotopification id→Hpre

on Fun((Mf×RegZ)
op,C).
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Proof. The last statement implies the first three, which are exercises. Details can
be found in [Bunke 2013, Problem 4.29]. For (4) we refer to [Bunke et al. 2013,
Lemma 7.5]. �

2B. The multiplicative Deligne complex. We consider the site of smooth complex
varieties SmC with the Zariski topology and the product Mf×SmC. We denote
by Ch the 1-category of complexes of abelian groups considered as∞-category
and by Ch[W−1

] its localization with quasi-isomorphisms inverted. We have the
sheaf of complexes A ∈ Fundesc((Mf×SmC)

op,Ch) of complex-valued smooth
differential forms. It contains the subsheaf of complexes of real-valued forms AR.
Obviously, A ∼= AR⊗R C. The sheaf of complexes A furthermore has a decreasing
Hodge filtration F such that elements in Fp A(M × X) are locally of the form∑

I,J,K ,|J |≥p

ωI,J,K dx I
∧ dz J

∧ dz̄K ,

where the z j are local holomorphic coordinates on X and the xi are local coor-
dinates on M (in contrast to [Bunke and Tamme 2015, §4.2], we forget the log-
condition and the weight filtration). Since, degree-wise, these sheaves of com-
plexes consist of modules over the sheaf of smooth functions, they satisfy descent,
i.e., they are sheaves when considered as objects in Fun((Mf×SmC)

op,Ch[W−1
])

(see [Bunke et al. 2013, Lemma 7.12] for an argument). By the Poincaré lemma
they are also homotopy invariant.

We let B : RegZ → SmC be the functor mapping a scheme X to the smooth
complex variety X ×Z C. Then (id×B)∗A ∈ Fundesc((Mf×RegZ)

op,Ch) has a
Gal(C/R)-action which preserves the Hodge filtration. The sheaf of complexes
DR(p) ∈ Fundesc((Mf×RegZ)

op,Ch) is defined by

DR(p) := [(id×B)∗DRC(p)]Gal(C/R),

where

DRC(p) := Cone
(
(2π i)p AR⊕Fp A

α⊕β 7→α−β
−−−−−−→ A

)
[2p− 1].

Here ( · )Gal(C/R) denotes the object-wise fixed points under the group Gal(C/R).
Note that all sheaves that appear above have in fact values in complexes of real
vector spaces. Furthermore, taking invariants under the finite group Gal(C/R) is
an exact functor on real vector spaces with Gal(C/R)-action. Therefore, taking
Gal(C/R)-invariants preserves the descent and homotopy invariance conditions.
Consequently, we can consider DR(p) ∈ Fundesc,I ((Mf×RegZ)

op,Ch [W−1
]).

Remark 2.6. For a smooth complex variety X , the complex DRC(p)(X) calcu-
lates the analytic Deligne cohomology H∗D,an(X,R(p)) up to a shift of degrees
by 2p. If, in the definition of the cone, one replaces the complexes of smooth
forms AR, A by their log-versions AR,log, Alog (consisting of forms which extend
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to some compactification of X with logarithmic poles along the boundary of X ;
see [Bunke and Tamme 2015, §4.2]) one obtains the so-called Beilinson–Deligne
or weak absolute Hodge cohomology H∗BD(X,R(p)). There is a natural map
H∗BD(X,R(p))→ H∗D,an(X,R(p)) which, in general, is neither injective nor sur-
jective. It is an isomorphism if X is also proper over C. If one moreover in-
troduces the weight filtration Ŵ and replaces AR,log, Alog by the subcomplexes
Ŵ2p AR,log, Ŵ2p Alog, one obtains the absolute Hodge cohomology H∗AH(X,R(p))
introduced by Beilinson [1986]. This is the cohomology theory used in [Bunke
and Tamme 2015]. It follows from Deligne’s theory of weights that the natural
map H∗AH(X,R(p))→ H∗BD(X,R(p)) is an isomorphism in degrees ∗ ≤ p, and in
degrees ∗ ≤ 2p if X is proper.

In the following, we define a sheaf IDR(p) ∈ Fundesc((Mf×RegZ)
op,Ch)

which is object-wise quasi-isomorphic to DR(p), and which is better behaved with
respect to the multiplicative structures. We define the morphism

I :Mf→Mf, M 7→ [0, 1]×M.

It induces a corresponding morphism I× idSmC
:Mf×SmC→Mf×SmC. For a

presheaf F on Mf×SmC we define IF := (I× idSmC
)∗F.

Definition 2.7. We define

IDRC(p)⊆ IA[2p]

to be the subsheaf with values in Ch determined by the conditions that ω lies in
IDRC(p)(M × X) if and only if

(1) ω|{0}×M×X ∈ (2π i)p AR(M × X)[2p],

(2) ω|{1}×M×X ∈ Fp A(M × X)[2p].

We set IDRC :=
∏

p≥0 IDRC(p) and define

IDR := [(id×B)∗ IDRC]
Gal(C/R).

An algebraic analog of this complex was used by Burgos and Wang [1998].

Proposition 2.8. There is an object-wise quasi-isomorphism

q : IDR(p)→ DR(p). (2.9)

Proof. We define a morphism of sheaves of complexes

qC : IDRC(p)→ DRC(p) (2.10)

as follows. A form ω ∈ IDRC(p)(M) gives rise to forms
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(1) ωR := ω|{0}×M×X ∈ (2π i)p AR(M × X)[2p],

(2) ωF := ω|{1}×M×X ∈ Fp A(M × X)[2p],

(3) ω̃ :=
∫
[0,1]×M×X/M×X ω ∈ A(M × X)[2p− 1].

We define
qC(ω) := (ωR⊕ωF,−ω̃) ∈ DRC(M × X).

We have

dqC(ω)= d(ωR⊕ωF,−ω̃)= (dωR⊕ dωF, dω̃+ωR−ωF)

and

qC(dω)=
(

dωR⊕ dωF,−

∫
[0,1]×M/M

dω
)

=

(
dωR⊕ dωF, d

∫
[0,1]×M/M

ω+ωR−ωF

)
= (dωR⊕ dωF, dω̃+ωR−ωF),

a calculation using Stokes’ theorem. Hence qC is a map of complexes.

Lemma 2.11. For every p≥ 0 the map qC : IDRC(p)→DRC(p) is an object-wise
quasi-isomorphism.

Proof. We abbreviate

S := A/(2π i)p AR[2p], T := A/Fp AR[2p].

Then we have an exact sequence

0→ IDR(p)→ IA[2p] → S⊕ T → 0, (2.12)

where the first map is the inclusion and the second is given by the evaluation at the
endpoints of the interval. We further have a natural exact sequence

0→DR(p)→ Cone(A⊕A→ A)[2p−1]→ Cone(S⊕T→ 0)[−1]→ 0. (2.13)

We define a map of exact sequences (2.12)→ (2.13) using the map qC in the first
entry, the same formula as for qC in the second, and the obvious identity map at
the last entry. Since the interval [0, 1] is contractible it follows from the relative
Poincaré lemma that the middle map is a quasi-isomorphism. Since the last map
is an isomorphism, it follows from the five lemma that qC is a quasi-isomorphism,
too. �

We observe that (id×B)∗qC commutes with the Gal(C/R)-action and therefore
induces an equivalence q : IDR(p)→ DR(p), too. This finishes the proof of the
proposition. �



MULTIPLICATIVE DIFFERENTIAL ALGEBRAIC K -THEORY AND APPLICATIONS 235

It follows from Lemma 2.11 and the sheaf and homotopy invariance properties
of DR that we can consider

IDR ∈ Fundesc,I ((Mf×RegZ)
op,Ch[W−1

]).

We now observe that the filtration F as well as the real subspaces are compatible
with the multiplication

∧ : A⊗ A→ A.

We therefore get products

∧ : IDR(p)× IDR(q)→ IDR(p+ q).

Taking the product over all p, we get as final result:

Corollary 2.14. The product

IDR :=
∏
p≥0

IDR(p)

has the structure of a sheaf of bigraded graded commutative d-algebras.

We denote the symmetric monoidal∞-categories of chain complexes and chain
complexes with quasi-isomorphisms inverted, with the tensor product, by Ch⊗ and
Ch[W−1

]
⊗, respectively. The notation for commutative algebra objects is CAlg.

Commutative differential graded algebras are objects of CAlg(Ch⊗). They can be
considered as objects in CAlg(Ch[W−1

]
⊗). Since the forgetful functor

CAlg(Ch[W−1
]
⊗)→ Ch[W−1

]
⊗

is a right adjoint, limits in commutative algebras are computed on underlying ob-
jects. Consequently, IDR can naturally be considered as an object

IDR ∈ Fundesc,I ((Mf×RegZ)
op,CAlg(Ch[W−1

]
⊗)). (2.15)

2C. Geometries and characteristic forms. We first consider M× X ∈Mf×SmC.
We view M × X as a locally ringed space with structure sheaf OM×X := pr−1

X OX

given by the inverse image of the sheaf OX under the projection to X . A sheaf of
finitely generated locally free OM×X -modules will be called a bundle on M × X . If
V is a bundle on M×X we have an associated complex vector bundle on M×X (C)
which we abusively denote by the same symbol. It naturally carries a flat partial
connection ∇ I in the M-direction and a holomorphic structure ∂̄ in the X -direction,
which is constant with respect to ∇ I , i.e., [∇ I , ∂̄] = 0.

Definition 2.16 [Bunke and Tamme 2015, Definition 4.12]. A geometry on the
bundle V is given by a pair (hV ,∇ II ) consisting of a hermitian metric hV on
V and a partial connection ∇ II in the X -direction that extends the holomorphic
structure ∂̄ .
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We form the connection ∇ := ∇ I
+ ∇

II and let ∇u be its unitarization with
respect to hV . In [Bunke and Tamme 2015], we use these connections in order
to define a characteristic form in DR(M × X). In the present paper we adjust
the notion of a geometry such that we obtain a lift of the characteristic form to
IDR(M × X); see Lemma 2.22.

Let pr : I ×M × X→ M × X denote the projection.

Definition 2.17. An extended geometry g on V is a triple g = ((hV ,∇ II ), ∇̃)

consisting of a geometry on V and a connection ∇̃ on pr∗ V such that

(1) ∇̃|{0}×M×X =∇
u ,

(2) ∇̃|{1}×M×X =∇.

We now consider the arithmetic situation M × X ∈Mf×RegZ. We keep calling
a sheaf of finitely generated locally free OM×X -modules a bundle. For the notion
of Gal(C/R)-invariance in the following definition we refer to [Bunke and Tamme
2015, Definition 4.31].

Definition 2.18. An extended geometry g on a bundle V on M × X ∈Mf×RegZ

is a Gal(C/R)-invariant extended geometry g on the bundle (id×B)∗(V ).

Geometries and extended geometries exist and can be glued with partitions of
unity on M . Compared with [Bunke and Tamme 2015] the situation is simplified
since we drop the condition of being good. Examples are given by the canonical
extensions:

Definition 2.19. Given a geometry (hV ,∇ II ) on the bundle V , we define the asso-
ciated canonical extended geometry

can(hV ,∇ II ) := ((hV ,∇ II ), ∇̃)

by taking for ∇̃ the linear path from ∇u to ∇.

For any M × X ∈ Mf×RegZ we denote the groupoid of bundles with ex-
tended geometry on M × X and isomorphisms respecting the extended geometry
by i Vectexge(M × X).

For a closed symmetric monoidal presentable ∞-category C⊗ we denote by
Rig(C⊗) the∞-category of semiring objects in C (see [Gepner et al. 2013, Defini-
tion 7.1]). The typical example of a semiring in Set× is the semiring of integers N.
We let Cat[W−1

]
× be the∞-category of categories with categorical equivalences

inverted, equipped with its cartesian symmetric monoidal structure. A semiring in
Cat[W−1

]
× will be called a Rig-category. Then a typical Rig-category is the cate-

gory of vector spaces over some field with the operations ⊕ and ⊗. This follows
from the recognition principle [Gepner et al. 2013, Theorem 8.8]. This principle
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implies that, using direct sum and tensor product of bundles with geometry, we can
consider i Vectexge as a sheaf of Rig-categories

i Vectexge
∈ Fundesc((Mf×RegZ)

op,Rig(Cat[W−1
]
×)).

We furthermore interpret π0(i Vectexge) and Z0(IDR) as presheaves of semirings

π0(i Vectexge), Z0(IDR) ∈ Fun((Mf×RegZ)
op,Rig(Set×)).

We let R∇ denote the curvature of a connection ∇. Furthermore, by

ch2p(∇) := [Tr exp(−R∇)]2p = (−1)p Tr(R∇)p

we denote the component of the unnormalized Chern character form in degree 2p.

Definition 2.20. We define the transformation of presheaves of semirings

ω̃ : π0(i Vectexge)→ Z0(IDR)
by

ω̃(V, g) :=
∏
p≥0

ch2p(∇̃).

A priori, ∏
p≥0

ch2p(∇̃) ∈
∏
p≥0

IA(M × B(X)),

but the conditions for ∇̃ at the endpoints of the interval immediately imply that this
product of forms belongs to the subcomplex IDR(X ×M) from Definition 2.7.

In [Bunke and Tamme 2015], for a bundle V with a geometry g we defined a
characteristic form

ω((V, (hV ,∇ II ))) :=
∏

p

(ch2p(∇
u)⊕ ch2p(∇), c̃h2p−1(∇

u,∇)), (2.21)

where the last form denotes the transgression [Bunke and Tamme 2015, (66)]. This
is compatible with our new construction in the sense of the lemma below. We
let i Vectgeom denote the symmetric monoidal stack of bundles with geometries
on Mf×RegZ and geometry-preserving isomorphisms.1 Then the formula (2.21)
gives a map ω : π0(i Vectgeom)→ Z0(DR). The construction of the canonical
extended geometry in Definition 2.19 induces a map

can : π0(i Vectgeom)→ π0(i Vectexge),

which is additive, but not multiplicative.

1Note that in [Bunke and Tamme 2015] this symbol has a different meaning.
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Lemma 2.22. The diagram

π0(i Vectexge)
ω̃ // Z0(IDR)

q
��

π0(i Vectgeom)

can

OO

ω // Z0(DR)

(2.23)

commutes.

Proof. This follows from the definition of q in (2.9), the construction of the trans-
gression c̃h2p−1(∇

u,∇), and the definition of ω in (2.21). �

2D. The multiplicative K-theory sheaf and the regulator. In this section, we de-
fine algebraic K -theory as a sheaf of commutative ring spectra on Mf×RegZ. To
do so, we use the multiplicative version of group completion studied in [Gepner
et al. 2013] (see in particular their Proposition 8.2). We denote by Sp∧ and Sp≥0,∧

the symmetric monoidal∞-categories of spectra and connective spectra, respec-
tively, with the smash product. The category Sp is the stable∞-category generated
by the sphere spectrum whose homotopy category is the stable homotopy category.
For the purpose of the present paper we do not have to fix a particular model for Sp.
We will use the identification of∞-categories

CommGroup(sSet[W−1
]
×)' Sp≥0,∧

which identifies a connective spectrum with its∞-loop space. This equivalence
refines to an equivalence of∞-categories

Ring(sSet[W−1
]
×)' CAlg(Sp≥0,∧). (2.24)

Definition 2.25. We define the K -theory functor

K : Rig(Cat[W−1
]
×)→ CAlg(Sp∧)

as the composition

Rig(Cat[W−1
]
×)

N
−→ Rig(sSet[W−1

]
×) (nerve)

→ Ring(sSet[W−1
]
×) (ring completion)

'
−→ CAlg(Sp≥0,∧) (using (2.24))

→ CAlg(Sp∧) (forget connectivity).

We consider the sheaf

i Vect ∈ Fundesc,I ((Mf×RegZ)
op,Rig(Cat[W−1

]
×))

which associates to each object M × X the Rig-category of bundles over M × X
and isomorphisms.
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Definition 2.26. We define the sheaf of K -theory spectra by

K := L(K (i Vect)) ∈ Fundesc,I ((Mf×RegZ)
op,CAlg(Sp∧)).

Remark 2.27. For X ∈ RegZ, the homotopy groups of the spectrum

K(X) :=K(∗× X)

are the usual K -groups of X as defined by Quillen. This follows from the known
facts that, for affine X , Quillen’s K -theory coincides with K -theory defined by
group completion and that, on RegZ, Quillen’s K -theory satisfies Zariski-descent
(see [Bunke and Tamme 2015, §3.3] for more details).

In general, the spectrum K(X) represents a generalized cohomology theory and,
for a manifold M , we have

π∗(K(M × X))∼=K(X)−∗(M)

(see [Bunke and Tamme 2015, §4.5]).

Note that the homotopy invariance of i Vect implies the homotopy invariance
of K (i Vect). In contrast, i Vectexge is not homotopy invariant. But, applying the
presheaf homotopification s̄'Hpre from (2.4), we get the following result:

Lemma 2.28. The natural “forget the geometry” map

s̄ N(i Vectexge)→ s̄ N(i Vect)' N(i Vect)

is an equivalence in Fun((Mf×RegZ)
op,Rig(sSet[W−1

]
×)).

Proof. Since the colimit over 1op appearing in the definition (2.4) of s̄ is sifted it
commutes with the forgetful functor Rig(sSet[W−1

]
×)→ sSet[W−1

]. This follows
from a two-fold application of [Lurie 2014, Corollary 3.2.3.2] to

Rig(sSet[W−1
]
×)' CAlg(CAlg(sSet[W−1

]
×)⊗).

Since an equivalence in Rig(sSet[W−1
]
×) is detected in sSet[W−1

] it suffices to
show that the induced map in Fun((Mf×RegZ)

op, sSet[W−1
]) is an equivalence.

We claim that for M × X ∈Mf×RegZ the map of simplicial sets

s N(i Vectexge)(M × X)•,q → s N(i Vect)(M × X)•,q

is a trivial Kan fibration. The result then follows by applying the colimit as in (2.4).
A p-simplex x :1p

→ N(i Vect)(M × X)•,q is given by a string of bundles and
isomorphisms

V0
∼=
−→ V1

∼=
−→· · ·

∼=
−→ Vq

on 1p
× M × X . A lifting of x |∂1p is determined by an extended geometry on

V0|∂1p×M×X . Using the fact that extended geometries exist and can be glued using
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partitions of unity, we see that such a lifting can always be extended to a p-simplex
of sN(i Vectexge)(M × X)•,q lifting x . This implies the claim. �

We now turn to the construction of the multiplicative version of Beilinson’s
regulator. We interpret a set as a discrete category. In this way we get a morphism

ι : Rig(Set×)→ Rig(Cat[W−1
]
×).

We have a commutative diagram (see [Bunke and Tamme 2015, Remark 2.13])

Ring(Set×)

��

ι //

S0

��

Rig(Cat[W−1
]
×)

K
��

CAlg(Ch[W−1
]
⊗)

H // CAlg(Sp∧)

where S0 interprets a commutative ring as a commutative monoid in chain com-
plexes concentrated in degree zero, H is the Eilenberg–MacLane equivalence, and
in the upper horizontal line we do not write the restriction of ι from semirings to
rings explicitly. We write r(ω̃) for the composition

K (i Vectexge)→ K (ι(π0(i Vectexge)))
K (ι(ω̃))
−−−−→ K (ι(Z0(IDR)))

' H(S0(Z0(IDR)))→ H(IDR)

in Fun((Mf×RegZ)
op,CAlg(Sp∧)).

In analogy with [Bunke and Tamme 2015, Definition 4.36] we adopt the follow-
ing definition:

Definition 2.29. We define the multiplicative version of the naive Beilinson regu-
lator

rBeil
:K→ H(IDR)

as a morphism in Fundesc((Mf×RegZ)
op,CAlg(Sp∧)) to be the sheafification of

the composition

K (i Vect)
'
−→ s̄ K (i Vect)

'
←−−−−−−
Lemma 2.28

s̄ K (i Vectexge)
s̄(r(ω̃))
−−−−→ s̄ H(IDR) '←−H(IDR)

in Fun((Mf×RegZ)
op,CAlg(Sp∧)).

Here we use the fact that H(IDR) is a sheaf (see (2.15)).

Remark 2.30. Since in the present paper we don’t require geometries to be good
in the sense of [Bunke and Tamme 2015, Definition 4.17] the characteristic forms
don’t necessarily satisfy a logarithmic growth condition at infinity. Therefore, we
end up in analytic Deligne cohomology instead of absolute Hodge cohomology.
The proof of Lemma 2.28 does not work for good geometries. In [Bunke and
Tamme 2015] we found a way to avoid this problem using the Čechification of
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the de Rham complexes. At the moment we do not see how to refine this to a
multiplicative version.

For X ∈ RegZ Beilinson’s regulator [1986] is a homomorphism from the K -
theory of X to absolute Hodge cohomology (see Remark 2.6)

K∗(X)→
∏

p

H 2p−∗
AH (X,R(p)).

It is known to be multiplicative. We call its composition with the natural map∏
p

H 2p−∗
AH (X,R(p))→ H−∗(IDR(∗× X))

the analytic version of Beilinson’s regulator.

Theorem 2.31. The naive Beilinson regulator

rBeil
:K→ H(IDR)

is a morphism of sheaves of ring spectra which, on the homotopy groups of its
evaluation on ∗× X , induces the analytic version of Beilinson’s regulator.

Proof. The first assertion is true by construction. It is also immediate from the
constructions and Lemma 2.22 that the map of sheaves of spectra underlying rBeil

coincides with the one obtained in [Bunke and Tamme 2015, Definition 4.36] (after
forgetting the logarithmic growth condition and using the equivalence DR∼= IDR).
For the latter, the coincidence with Beilinson’s regulator was proven in [Bunke and
Tamme 2015, §4.7]. �

3. Multiplicative differential algebraic K -theory

3A. Basic definitions. The main goal of this section is the definition of a multi-
plicative version of differential algebraic K -theory for objects in Mf×RegZ and
the verification of its basic properties.

For a complex C ∈Ch and an integer k we let σ≥kC denote the naive truncation
given by · · · → 0→ Ck

→ Ck+1
→ · · · . There is a natural inclusion morphism

σ≥kC→ C .

Definition 3.1. For every integer k ∈Z, we define the sheaf of differential algebraic
K -theory spectra

K̂(k)
∈ Fundesc((Mf×RegZ)

op,Sp∧)
by the pullback

K̂(k) R //

I
��

H(σ≥k IDR)

��
K rBeil

// H(IDR)
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We define the differential algebraic K -theory for objects in Mf×RegZ as a presheaf
of abelian groups

K̂k
:= π−k(K̂(k)) ∈ Fun((Mf×RegZ)

op,Ab).

Remark 3.2. The integer k ∈ Z determines that the homotopy group π−d(K̂k) for
d ∈ Z captures interesting differential geometric information exactly if d = k.

In the following, we refine
∨

k∈ZK̂(k) to a sheaf of commutative ring spectra (see
[Bunke 2013, §4.6] for details). Using the symmetric monoidal functors

Set ι
−→ sSet[W−1

]
6∞+
−−→ Sp,

the abelian group Z ∈ CommMon(Set) gives rise to the commutative ring spec-
trum 6∞

+
ι(Z) ∈ CAlg(Sp∧). For any commutative ring spectrum E we write

E[z, z−1
] := E ∧ 6∞

+
ι(Z). We consider IDR[z, z−1

] := IDR⊗ZZ[z, z−1
] as a

sheaf of commutative differential graded algebras and define the subalgebra

σ≥• IDR :=
⊕
k∈Z

zkσ≥k IDR⊆ IDR[z, z−1
].

We have a natural equivalence H(IDR[z, z−1
])' H(IDR)[z, z−1

].

Definition 3.3. We define differential algebraic K -theory as a sheaf of commuta-
tive ring spectra

K̂(•)
∈ Fundesc((Mf×RegZ)

op,CAlg(Sp∧))

by the pullback

K̂(•) R //

I
��

H(σ≥• IDR)

��
K[z, z−1

]
rBeil
[z,z−1

] // H(IDR)[z, z−1
].

If we forget the ring spectrum structure, then we get a natural equivalence K̂(•)
'∨

k∈ZK̂(k). In particular, we get a presheaf of graded commutative rings⊕
k∈Z

K̂k
∈ Fun((Mf×RegZ)

op,GrRings).

The maps R and I induce ring homomorphisms

R :
⊕
k∈Z

K̂k
→

⊕
k∈Z

Z k(IDR), I :
⊕
k∈Z

K̂k
→

⊕
k∈Z

Kk .
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The map R is called the curvature. For any k ∈ Z we have exact sequences

Kk−1 rBeil

−−→ H k−1(IDR) a
−→ K̂k (I,R)

−−−→Kk
×H k(IDR) Z k(IDR)→ 0

and

Kk−1 rBeil

−−→ IDRk−1 / im(d)
a
−→ K̂k I

−→Kk
→ 0 (3.4)

(see [Bunke and Tamme 2015, Proposition 5.4]). Moreover, we have the relation
R ◦ a = d .

3B. Cycle maps. We have the forgetful map

π0(i Vectexge)→ π0(i Vect)

between the presheaves of semirings of isomorphism classes of bundles with and
without extended geometries.

Proposition 3.5. There are canonical cycle maps cycl and ĉycl fitting into the
following diagram of presheaves of semirings on Mf×RegZ:

π0(i Vectexge)

ω̃

((
ĉycl //

��

K̂0

I
��

R // Z0(IDR)

π0(i Vect)
cycl // K0

Proof. The construction is identical to that of [Bunke and Tamme 2015, Defini-
tions 5.8, 5.9]. �

3C. S1-integration. We consider M × X ∈Mf×RegZ. Let

E ∈ Fundesc,I ((Mf×RegZ)
op,Sp)

be a homotopy invariant sheaf of spectra. Then we have natural isomorphisms

E∗(S1
×M × X)∼= E∗(M × X)⊕E∗−1(M × X).

The induced map E∗(S1
× M × X)→ E∗−1(M × X) is called the desuspension

map. This applies in particular to the K -theory sheaf K and the analytic Deligne
cohomology H(IDR).

On the other hand, on the level of differential forms we have the usual fiber
integration along S1, a map of complexes∫

S1
: IDR(S1

×M × X)→ IDR(M × X)[−1].
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It induces integration maps
∫

S1 :σ
≥k IDR(S1

×M×X)→σ≥k−1 IDR(M×X)[−1]
for any k ∈ Z.

Proposition 3.6. There exists a natural map∫
S1
: K̂∗(S1

×M × X)→ K̂∗−1(M × X)

of
⊕

k∈Z K̂k(M × X)-modules which is compatible with the desuspension on K∗

via the map I and with the integration
∫

S1 on Z∗(IDR) via the curvature R.

Proof. We define the endofunctor S1 of Fundesc(Mfop,C) for any presentable∞-
category C by (S1 F)(M× X) := F(S1

×M× X). If C is symmetric monoidal and
F ∈ Fundesc(Mfop,CAlg(C)), then the projection pr : S1

→∗ turns S1 F into an
object of Mod(F).

We extend the endofunctor S1 to Fundesc((Mf×RegZ)
op,C) using the identifi-

cation

Fundesc((Mf×RegZ)
op,C)' Fundesc(Mfop,Fundesc(Regop

Z ,C)).

The evaluation at the manifold M = ∗ provides an equivalence of∞-categories

ev∗ : Fundesc,I (Mfop,C) '−→C, (3.7)

and we have an equivalence of functors Fundesc,I (Mfop,C)→ C

ev∗ ◦S1(−)' (ev∗(−))S1
, (3.8)

where (−)S1
is the cotensor structure. Let pr : S1

→∗ and i : ∗→ S1 be the pro-
jection to a point and the inclusion of a base point. These maps induce a retraction

id(−)
pr∗
→ (−)S1 i∗

→ id(−).

If C is stable, then we can naturally split off id(−) as a summand of (−)S1
and

identify the complement with �(−). The desuspension map is by definition the
projection

des : (−)S1
→�(−). (3.9)

Under the equivalence (3.7) in the case C = Fundesc(RegZ,Sp) it induces the
desuspension map in cohomology mentioned above.

The integration of forms gives morphisms of sheaves with values in Ch∫
S1
: S1 IDR→ IDR[−1],

∫
S1
: S1σ≥k IDR→ σ≥k−1 IDR[−1]
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which, when assembled for the various k ∈ Z, after application of the Eilenberg–
MacLane functor H , yield the commutative diagram

H(S1σ≥• IDR)
H(
∫

S1 ) //

��

�H(σ≥•−1 IDR)

��
H(S1 IDR[z, z−1

])
H(
∫

S1 ) // // �H(IDR[z, z−1
])

(3.10)

in Mod(K̂(•)), where K̂(•) acts via the curvature map. From the naturality of the
desuspension we get the commutative diagram

S1K[z, z−1
]

des //

rBeil

��

�K[z, z−1
]

�rBeil

��
S1 H(IDR[z, z−1

])
des // �H(IDR[z, z−1

])

(3.11)

in Mod(K̂(•)), where here K̂(•) acts via I .

Lemma 3.12. We have a natural equivalence of morphisms

des' H
(∫

S1

)
: S1 H(IDR[z, z−1

])→�H(IDR[z, z−1
])

in Mod(K̂(•)).

Before proving this lemma we finish the argument for Proposition 3.6. Together
with (3.11), Lemma 3.12 provides the lower square of the following diagram in
Mod(K̂(•)):

H(S1σ≥• IDR)
H(
∫

S1 ) //

��

�H(σ≥•−1 IDR)

��
H(S1 IDR[z, z−1

])
H(
∫

S1 ) // // �H(IDR[z, z−1
])

S1K[z, z−1
]

rBeil

OO

des // �K[z, z−1
]

�rBeil

OO

The upper square is (3.10). In view of the definition of K̂(•) as a pullback, this
diagram induces a map ∫

S1
: S1K̂(•)

→� K̂(•)

in Mod(K̂(•)). It induces the asserted integration map in cohomology. �
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Proof of Lemma 3.12. We have a natural equivalence in Mod(IDR[z, z−1
])

IDR[z, z−1
][−1]⊕ IDR[z, z−1

] −→∼ S1 IDR[z, z−1
],

given on M×X by ω⊕η 7→ dt∧pr∗ ω+pr∗ η, where t is the coordinate on S1 and
pr : S1

×M×X→M×X is the projection. An explicit inverse is given by
(∫

S1, i∗
)
,

where i :M×X→ S1
×M×X is induced by the inclusion of a point in S1. In view of

the definition of the desuspension in (3.9) and the equivalence (3.8), we can identify
the desuspension for IDR[z, z−1

] naturally with the map
∫

S1 : S1 IDR[z, z−1
] →

IDR[z, z−1
][−1]. Now the result follows by applying H . �

4. A secondary Steinberg relation

4A. Units. Let R be a ring such that X = Spec(R) ∈ RegZ. We have a natural
homomorphism

c : R×→K−1(X), (4.1)

where we write K−1(X) instead of K−1(∗× X). Concretely, c is given as follows:
For λ ∈ R× we let V(λ) be the bundle on S1

× X which restricts to the trivial
bundle OX at any point t ∈ S1 and has holonomy λ along S1. Then

cycl(V(λ))= c(λ)⊕ 1 ∈K0(S1
× X)∼=K−1(X)⊕K0(X). (4.2)

Since the kernel of the map I : K̂−1(X)→ K−1(X) is a divisible abelian group,
there exists a lift ĉ : R×→ K̂−1(X) of c. In the following, we will fix a specific
choice of this lift.

We first construct a geometry (h(λ),∇(λ)) on V(λ). Abusing notation, we also
denote the complex line bundle on S1

× X (C) associated with V(λ) by the same
symbol and view λ as a nowhere-vanishing function on X (C). Let t be a parameter
on S1 and log(λ) a local choice of a logarithm of λ on X (C). Then φ = λt is a
local section of V(λ) which depends on the choice of logarithm. The metric and
the connection are determined by their value on the local sections φ. We set

h(λ)(φ)= 1, (4.3)

∇
(λ)(φ)= log(λ)φ dt.

These are well defined. Moreover, ∇(λ) has holonomy λ along S1 and [∇, ∂̄] = 0.
We equip V(λ) with the canonical extended geometry, denoted by g(λ).

Definition 4.4. We define ĉ : R×→ K̂−1(X) to be the composition

ĉ : R×
λ 7→ĉycl(V(λ),g(λ))
−−−−−−−−−−−→ K̂0(S1

× X)
∫

S1
−→ K̂−1(X).
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Lemma 4.5. The curvature R(ĉ(λ)) ∈ Z−1(IDR(X)) is given by

R(ĉ(λ))= R(ĉ(λ))(1)

= id arg(λ)+ d log(|λ|u) ∈ Z−1(IDR(1)(X))⊂ A1(I × X (C)),

where u is the coordinate on the interval I . The induced map

ĉ : R×→ K̂−1(X)/a(H−2(IDR(X)))

is a homomorphism.

Proof. For the adjoint connection of ∇(λ) we get

∇
(λ),∗φ =− log(λ̄)φ dt.

Hence the connection of the canonical extended geometry is given by

∇̃
(λ)φ =

( 1
2(1− u)(log(λ)− log(λ̄))+ u log(λ)

)
φ dt.

Together with (4.3) this implies that for two units λ,µ ∈ R× we have

(V(λµ), g(λµ))∼= (V(λ), g(λ))⊗ (V(µ), g(µ)).

By the multiplicativity of the geometric cycle map we get

ĉycl(V(λµ), g(λµ))= ĉycl(V(λ), g(λ))∪ ĉycl(V(µ), g(µ)).

For the curvature we get

R∇̃
(λ)

=−idt ∧ d arg(λ)− dt ∧ d log(|λ|u).

Hence

R(ĉycl(V(λ), g(λ)))= 1⊕ (idt ∧ d arg(λ)+ dt ∧ d log(|λ|u))

∈ Z0(IDR(0)(S1
× X))⊕ Z0(IDR(1)(S1

× X)).

Integration over S1 kills the first summand and gives the statement about the cur-
vature.

From the formula for the curvature and the fact that c = I ◦ ĉ (see (4.1)) is a
homomorphism, we get

R(ĉ(λµ))= R(ĉ(λ))+ R(ĉ(µ)), I (ĉ(λµ))= I (ĉ(λ))+ I (ĉ(µ)),

hence ĉ(λµ)− ĉ(λ)− ĉ(µ) ∈ a(H−2(IDR(X))). �
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4B. The Steinberg relation and the Bloch–Wigner function. In this subsection
we explain how differential algebraic K -theory can be used to give a simple proof
of a result of Bloch [2000] concerning the existence of classes in K3 of a number
ring whose regulator can be described in terms of the Bloch–Wigner dilogarithm
function. The key ingredient is a secondary version of the Steinberg relation.

We begin by collecting some notation necessary to state the result. Recall the
definition of the polylogarithm functions

Lik(z) :=
∑
n≥1

zn

nk

for k ≥ 1 and |z|< 1. They extend meromorphically to a covering of C \ {1}.

Definition 4.6. The Bloch–Wigner function is the real-valued function on C given by

DBW(λ) := log |λ| arg(1− λ)+ Im Li2(λ)

(see [Zagier 2007, Chapter I, §3]).

Let R be a ring.

Definition 4.7. We write R◦ := {λ∈ R× | 1−λ∈ R×}. The third Bloch group B3(R)
is defined as the kernel

B3(R) := ker
(
Z[R◦]

λ 7→λ∧(1−λ)
−−−−−−−→ R× ∧ R×

)
.

Now let R be the ring of integers in a number field and X := Spec(R). The
target of the regulator rBeil on K−3(X) is H−3(IDR(X)). Since X (C) is zero-
dimensional we have

H−3(IDR(X))∼= H−3(IDR(2)(X))
∼=
q

H−3(DR(2)(X))

∼= [2π iRX (C)
]
Gal(C/R). (4.8)

Theorem 4.9 (Bloch). For any x =
∑

λ∈R◦ nλ[λ] ∈B3(R), there exists an element
bl(x) ∈K−3(X) such that, under the identification (4.8),

rBeil(bl(x))=−
∑
λ

nλ
(
i DBW(σ (λ))

)
σ∈X (C).

Example 4.10. Assume that n ∈ N, n ≥ 2 and λ ∈ R∗ satisfies

λn+1
− λ+ 1= 0.
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Then 1
1−λ ∈ R◦ and we consider the element x := n[λ]+

[ 1
1−λ

]
∈ Z[R◦]. We claim

that x ∈B3(R). Indeed,

n(λ∧ (1− λ))+ 1
1−λ

∧

(
1− 1

1−λ

)
= n(λ∧ (1− λ))+ 1

1−λ
∧

λ

λ−1

= λn
∧ (1− λ)+ (1− λ)∧ λ−1

λ

=
λ−1
λ
∧ (1− λ)+ (1− λ)∧ λ−1

λ

= 0.

We get an element bl(x) ∈K3(R) such that

rBeil(2)(bl(x))= (n+ 1)
(
−i DBW(σ (λ))

)
σ∈Spec(R)(C),

where we use that DBW
( 1

1−λ

)
= DBW(λ). If σ(λ) is not real, then DBW(σ (λ)) is

not zero.

Proof of Theorem 4.9. Since X (C) is zero-dimensional we have H−2(IDR(X))= 0.
Hence, by Lemma 4.5, the map ĉ : R× → K̂−1(X) is a homomorphism. Since⊕

k∈Z K̂k(X) is graded commutative, we get an induced map R×∧ R×→ K̂−2(X),
λ∧µ 7→ ĉ(λ)∪ ĉ(µ).

If λ ∈ R◦, then the Steinberg relation implies that

I (ĉ(λ)∪ ĉ(1− λ))= c(λ)∪ c(1− λ)= 0 in K−2(X).

Consider the following commutative diagram with exact rows:

0 // B3(R) //

bl
��

Z[R◦]
λ 7→λ∧(1−λ) //

D
��

R× ∧ R×

��
0 // K−3(X)/ ker(rBeil)

rBeil
// IDR−3(X)/ im(d) a // K̂−2(X) I // K−2(X)

(4.11)

The dotted arrow D exists by the Steinberg relation and since Z[R◦] is a free abelian
group. The dotted arrow bl is the induced map on kernels.

We will now pin down a specific choice for D which will then imply the theorem.
To do this, we consider the universal situation. Let

X := P1
Z \ {0, 1,∞} ∼= Spec(Z[λ, λ−1, (1− λ)−1

]).

We consider ĉ(λ)∪ ĉ(1−λ)∈ K̂−2(X). Again, by the Steinberg relation there exists
D(λ) ∈ IDR−3(X)/ im(d) such that a(D(λ)) = ĉ(λ)∪ ĉ(1− λ). Since R ◦ a = d,
we must have

d(D(λ))= R(ĉ(λ))∪ R(ĉ(1− λ)) ∈ IDR−2(X). (4.12)
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Because we want to specialize to number rings later on, we are only interested in
the component D(λ)(2) ∈ IDR(2)−3(X) (see (4.8)) This is determined by (4.12)
up to elements in H−3(IDR(2)(X)). Since F2 A(I × X(C)) = 0 we have quasi-
isomorphisms

IDR(2)(X)'
q

DR(2)(X)

∼=
(
Cone

(
(2π i)2 AR(X(C))→ A(X(C))

)
[3]
)Gal(C/R)

∼=
(
(2π i)AR(X(C))[3]

)Gal(C/R)
, (4.13)

where the last isomorphism is induced by taking i times the imaginary part on the
second component of the cone. In particular,

H−3(IDR(2)(X))= H 0(X(C), (2π i)R)Gal(C/R)
= 0.

We now compute the right-hand side of (4.12). From Lemma 4.5 we get

i Im
(
R(ĉ(λ))∪ R(ĉ(1− λ))

)
= id arg(λ)∧ d log(|1− λ|u)+ id log(|λ|u)∧ d arg(1− λ).

Hence, under the quasi-isomorphisms (4.13), R(ĉ(λ))∪ R(ĉ(1− λ)) is mapped to

i log(|1− λ|)d arg(λ)− i log(|λ|)d arg(1− λ) ∈
(
(2π i)A1

R(X(C))
)Gal(C/R)

.

On the other hand, using (d/dz) Li2(z)= (1/z) Li1(z)=−(1/z) log(1− z) we get

d DBW(λ)= arg(1− λ)d log(|λ|)+ log(|λ|)d arg(1− λ)− Im log(1− λ)d log(λ)

= log(|λ|)d arg(1− λ)− log(|1− λ|)d arg(λ).

It follows that, under the quasi-isomorphisms (4.13),

D(λ)(2)=−i DBW(λ).

We now return to the number ring R. Note that in diagram (4.11) we may
identify

IDR−3(X)/ im(d)= H−3(IDR(2)(X))

∼=
(
(2π i)A0

R(X (C))
)Gal(C/R)

= [2π iRX (C)
]
Gal(C/R).

Any λ ∈ R◦ corresponds to a unique morphism λ : X → X, which on C-valued
points is given by X (C)→ X(C) = C× \ {1}, σ 7→ σ(λ). We construct D(λ) ∈

[2π iRX (C)
]
Gal(C/R) by pulling back along λ from the universal case on X. Explic-

itly, we get
D(λ)=

(
−i DBW(σ (λ))

)
σ∈X (C).

This implies the formula for bl stated in the theorem. �
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5. A height invariant for number rings

Let R be the ring of integers in a number field. We recall the following definition
from Arakelov geometry:

Definition 5.1. A metrized line bundle (L, hL) on Spec(R) is an invertible sheaf
L on Spec(R) with a Gal(C/R)-invariant metric hL on its complexification. We let
P̂ic(Spec(R)) denote the multiplicative group of isomorphism classes of metrized
line bundles under the tensor product and call it the arithmetic Picard group of R.

We may identify L with its R-module of global sections. A metric hL is then
given by a collection of metrics hL

σ on L⊗R,σ C for all σ ∈ Spec(R)(C) which is
invariant under the Gal(C/R)-action.

An important invariant is the arithmetic degree

d̂eg : P̂ic(Spec(R))→ R,

defined as follows (see [Lang 1988, IV, §3]): Let (L, hL) be a metrized line bundle.
Then

d̂eg((L, hL)) :=
1

[K :Q]

(
log(#(L/R · s))− 1

2

∑
σ∈Spec(R)(C)

log(hσ (s))
)
, (5.2)

where s ∈ L \ {0} is any nonzero section.
The main aim of this section is to explain how the arithmetic Picard group and

the arithmetic degree can be naturally understood in the framework of differential
algebraic K -theory (see Theorem 5.8).

5A. Scaling the metric. Let M be a smooth manifold and X ∈RegZ. We consider
a geometric bundle (V, g), g := (hV ,∇ II ), on M×X and let f ∈C∞(M×X (C)) be
a Gal(C/R)-invariant positive smooth function. Then we can consider the rescaled
metric f hV and geometry g f := ( f hV ,∇ II ). In the following we work with the
canonical extensions can(g) (see Definition 2.19) of the geometries. We are inter-
ested in the difference

ĉycl(V, can(g f ))− ĉycl(V, can(g)) ∈ K̂(X)0(M).

Note that this difference is equal to a(α) for some α ∈ IDR−1(M × X)/ im(d),
where α is well-defined up to the image of rBeil. We want to calculate α. To this
end we use the homotopy formula [Bunke and Tamme 2015, Lemma 5.11]. We
consider the bundle V̂ := pr∗ V , where pr : [0, 1] × M × X → M × X is the
projection. It is equipped with the geometry ĝ := (ĥ, pr∗ ∇ II ), ĥ := (1− x + x f )h,



252 ULRICH BUNKE AND GEORG TAMME

where x ∈ [0, 1] is the coordinate. By the homotopy formula we can take

α =

∫
[0,1]×[0,1]×M×X/[0,1]×M×X

R(ĉycl(V̂ , can(ĝ)))

=

∫
[0,1]×[0,1]×M×X/[0,1]×M×X

ω̃(can(ĝ)).

For us, the most important case is the following (see [Bunke and Tamme 2015,
Lemma 5.13]):

Lemma 5.3. If dim(M)= 0 and dim(X (C))= 0, we can take

α = α(1)=− 1
2rk(V ) log( f )du.

Proof. We have ω̃(ĝ)(p)= 0 for all p except p = 0, 1. In fact we have

ω̃(ĝ)(0)≡ rk(V ),

hence α(0)= 0. In order to calculate ω̃(ĝ)(1), we first observe that

∇̃ = d +
1− u

2
( f − 1)dx

1+ ( f − 1)x
.

We get

ω̃(ĥ)(1)=
rk(V )

2
( f − 1)

1+ ( f − 1)x
du ∧ dx,

and therefore
α = α(1)=− 1

2rk(V ) log( f )du. �

5B. The absolute height for number rings. We consider a ring of integers R in
a number field K . Note that Spec(R) is regular, separated and of finite type over
Spec(Z). We define the multiplicative subgroup

K0(Spec(R))(1) := {x ∈K0(Spec(R)) | 1− x is nilpotent}

of the group of units in the ring K0(Spec(R)). It is known that

K0(Spec(R))∼= Z⊕ Cl(R),

where Cl(R) denotes the finite class group. Therefore

K0(Spec(R))(1) ∼= {1+ x | x ∈ Cl(R)} ∼= Cl(R)

is finite. We furthermore define

K̂0(Spec(R))(1) := I−1(K0(Spec(R))(1))⊆ K̂0(Spec(R)).
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If x ∈ K̂0(Spec(R))(1), then necessarily R(x) = R(1). Hence we have an exact
sequence

0→ H−1(IDR(Spec(R)))/ im(rBeil)

1+a
−−→ K̂0(Spec(R))(1)→K0(Spec(R))(1)→ 0. (5.4)

We now define an absolute height function

h : K̂0(Spec(R))(1)→ R

for number rings R. We will relate h with the arithmetic degree of metrized line
bundles in the next subsection.

Note that

H−1(IDR(Spec(R)))∼= H−1(IDR(1)(Spec(R)))∼= [RSpec(R)(C)
]
Gal(C/R).

Explicitly, a class [α] ∈ H−1(IDR(1)(Spec(R))) which is represented by

α ∈ IDR(1)−1(Spec(R))⊆ A1([0, 1]× Spec(R)(C))

corresponds to the function

Spec(R)(C)→ R, σ 7→ Re
(∫
[0,1]σ

∗α
)
. (5.5)

We define a linear map

s : [RSpec(R)(C)
]
Gal(C/R)

→ R, s( f ) :=
1

[K :Q]

∑
σ∈Spec(R)(C)

f (σ ).

Then s ◦ rBeil(1)= 0. In this way we get a homomorphism

h : H−1(IDR(Spec(R)))/ im(rBeil)→ R, h([ f ]) := s( f ). (5.6)

In view of (5.4) and since K0(Spec(R))(1) is finite, the homomorphism (5.6) has a
unique extension to K̂0(Spec(R))(1). Explicitly, if x ∈ K̂0(Spec(R))(1), then there
exists N ∈ N such that x N

= 1+ a( f ) for some f ∈ H−1(IDR(Spec(R))) and
h(x) is given by

h(x)=
1
N

h(1+ a( f )).

5C. The degree of metrized line bundles. We let R be the ring of integers in a
number field K . We consider the trivial bundle V := OSpec(R) with the canonical
geometry g0. Then

ĉycl(V, can(g0))= 1.
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Let f : Spec(R)(C)→ R+ be Gal(C/R)-invariant and form the geometry with
rescaled metric g0, f as in Section 5A. Then

ĉycl(V, can(g0, f )) ∈ K̂0(Spec(R))(1).

Lemma 5.7. We have

h(ĉycl(V, can(g0, f )))=−
1

2[K :Q]

∑
σ∈Spec(R)(C)

log( f (σ )).

Proof. Use (5.5) and Lemma 5.3. �

If (L,hL)∈ P̂ic(Spec(R)), then we have a canonical extended geometry can(hL)

on L and can form

ĉ(L, hL) := ĉycl(L, can(hL)) ∈ K̂0(Spec(R))(1).

Theorem 5.8. The map ĉ : P̂ic(Spec(R))→ K̂0(Spec(R))(1) is an isomorphism.
Furthermore, for any metrized line bundle (L, hL) we have

d̂eg(L, hL)= h(ĉ(L, hL)).

Proof. Since all connections involved are trivial, we have

can(hL
⊗ hL′)= can(hL)⊗ can(hL′).

Thus ĉ is a group homomorphism.
There is a natural map [RSpec(R)(C)

]
Gal(C/R)

→ P̂ic(Spec(R)) which sends the
tuple λ= (λσ ) to the trivial line bundle R with the metric h(λ) given by h(λ)σ (1)=
exp(−2λσ ). Recall that

H−1(IDR(Spec(R)))∼= [RSpec(R)(C)
]
Gal(C/R).

We claim that we have a commutative diagram with exact rows

0 // H−1(IDR(Spec(R)))/im(rBeil) // P̂ic(Spec(R))

ĉ
��

// Pic(Spec(R))

∼=
��

// 0

0 // H−1(IDR(Spec(R)))/im(rBeil) // K̂0(Spec(R))(1) // K0(Spec(R))(1) // 0

Indeed, the right vertical map is given by the topological cycle map, and it is
known to be an isomorphism. The exactness of the upper row is straightforward,
the lower row is (5.4). Finally, the commutativity of the left-hand square follows
from Lemma 5.3.

In particular, ĉ is an isomorphism.
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For the second assertion, it suffices by the construction of h to check that for
λ= (λσ ) ∈ [R

Spec(R)(C)
]
Gal(C/R) we have

d̂eg(R, h(λ))=
1

[K :Q]

∑
σ∈Spec(R)(C)

λσ .

But this is clear from the definition of h(λ) and (5.2) with s = 1. �

6. Formality of the algebraic K -theory of number rings

Let MR be the Moore spectrum of R. For any spectrum E , we use the notation
ER := E ∧MR for its realification.

Let E ∈ CAlg(Sp∧) be a commutative ring spectrum. Then we can form the
differential graded commutative algebra π∗(ER) ∈ CAlg(Ch⊗) with trivial differ-
entials. There is a unique equivalence class of maps

r : E→ H(π∗(ER))

of spectra which induces the canonical realification map in homotopy.

Definition 6.1. The commutative ring spectrum E is called formal over R if r can
be refined to a morphism of commutative ring spectra.

If π∗(ER) is a free commutative R-algebra, then E is formal over R (see [Bunke
2013] for an argument). This applies, e.g., to complex bordism MU or connective
complex K -theory ku. From the formality of ku one can deduce the formality
over R of periodic complex K -theory KU.

More generally, let E ∈ Fun(S,CAlg(Sp∧)) be a diagram of commutative ring
spectra. It gives rise to a diagram π∗(ER) ∈ Fun(S,CAlg(Ch⊗)) of chain com-
plexes with trivial differential.

Definition 6.2. We say that E is formal over R if there exists an equivalence ER'

H(π∗(ER)) of diagrams of commutative ring spectra which induces the identity
on homotopy.

We let S⊆ RegZ be the full subcategory whose objects are spectra of rings of
integers in number fields.

Theorem 6.3. The restriction of the sheaf of algebraic K -theory spectra K to S is
formal over R.

Proof. We first show that the restriction of H(IDR) to S is formal over R. To
this end we describe, for every ring of integers R in a number field K , canonical
representatives of the cohomology of IDR(Spec(R)). We have

IDR(Spec(R))(p)∼=
(
{ω∈ A(I )[2p] |ω|{0}∈ (2π i)pR,ω|{1}=0}Spec(R)(C))Gal(C/R)
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for p ≥ 1, and

IDR(Spec(R))(0)∼=
(
{ω ∈ A(I ) | ω|{0} ∈ R}Spec(R)(C))Gal(C/R)

.

We have

H∗
(
{ω ∈ A(I )[2p] | ω|{0} ∈ (2π i)pR, ω|{1} = 0}

)
∼=

{
i p+1R, ∗ = −2p+ 1,
0, else,

and

H∗
(
{ω ∈ A(I ) | ω|{0} ∈ R}

)
∼=

{
R, ∗ = 0,
0, else.

Explicit representatives of generators are given by i p+1dt (with t the coordinate
of I ) in the first case and 1 in the second. For real embeddings σ ∈ Spec(R)(C)
and odd p ∈ N, and for complex embeddings σ ∈ Spec(R)(C) and all p ∈ N>0,
we define the following elements in IDR(Spec(R))(p): for real σ ,

x(σ )1−2p :=

(
Spec(R)(C) 3 σ ′ 7→

{
i p+1dt, σ ′ = σ,

0, else,

)
∈ IDR(Spec(R))(p),

and for complex σ ,

x(σ )1−2p :=(
Spec(R)(C) 3 σ ′ 7→


i p+1dt, σ ′ = σ,

(−1)p+1i p+1dt, σ ′ = σ̄ ,

0, else,

)
∈ IDR(Spec(R))(p).

We let M ′(R) ⊆ IDR(Spec(R)) be the R-submodule generated by the elements
x(σ )1−2p for σ and p as above.

It is easy to see that the inclusion

H∗(IDR(Spec(R)))∼= R⊕M ′(R)⊂ IDR(Spec(R))

is a quasi-isomorphism of commutative differential graded algebras which is natu-
ral in R. We therefore get a morphism of diagrams of ring spectra

rBeil
:K|S→ H(IDR)|S ' H(H∗(IDR)|S).

By Theorem 2.31 the induced map

π∗(K|S)⊗R→ H−∗(IDR|S) (6.4)

coincides with Beilinson’s regulator, which itself coincides up to a factor of 2 with
Borel’s regulator map [Burgos Gil 2002, Theorem 10.9]. By Borel’s results [1974],
(6.4) is injective, and the image is the kernel of the map

p : R⊕M ′(R)→ R, b 7→
∑

σ∈Spec(R)(C)

n(σ )−1(b),
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where the n(σ )−1(b) are the coefficients of b in front of the generators x(σ )−1. We
define the subspace M(R) := ker(p)∩ M ′(R). Then we can define a canonical
splitting

M ′(R)→ M(R), b 7→ b−
p(b)
[K :Q]

∑
σ∈Spec(R)(C)

x(σ )−1.

It induces a canonical ring homomorphism R⊕M ′(R)→ R⊕M(R) which is left-
inverse to the inclusion R⊕M(R)↪→R⊕M ′(R) and therefore a map of diagrams
of ring spectra s : H(R⊕M ′)→ H(R⊕M) such that the composition

KR|S
rBeil
∧MR

−−−−−→ H(R⊕M ′)
s
→ H(R⊕M)' H(π∗(K|S))

is an equivalence of diagrams of commutative ring spectra. �

Observe that the structure of the homotopy groups of K(Spec(R))R implies
that all Massey products are trivial. This can be considered as an A∞-version of
formality. The additional information given by Theorem 6.3 is that K(Spec(R))
is formal in the commutative sense and in a way which is natural in the ring R.
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