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Algebraic Kasparov K-theory, II

Grigory Garkusha

A kind of motivic stable homotopy theory of algebras is developed. Explicit
fibrant replacements for the S1-spectrum and (S1,G)-bispectrum of an algebra
are constructed. As an application, unstable, Morita stable and stable universal
bivariant theories are recovered. These are shown to be embedded by means of
contravariant equivalences as full triangulated subcategories of compact genera-
tors of some compactly generated triangulated categories. Another application
is the introduction and study of the symmetric monoidal compactly generated
triangulated category of K -motives. It is established that the triangulated cate-
gory kk of Cortiñas and Thom (J. Reine Angew. Math. 610 (2007), 71–123) can
be identified with the K-motives of algebras. It is proved that the triangulated
category of K-motives is a localisation of the triangulated category of (S1,G)-
bispectra. Also, explicit fibrant (S1,G)-bispectra representing stable algebraic
Kasparov K-theory and algebraic homotopy K-theory are constructed.

1. Introduction

Throughout the paper k is a fixed commutative ring with unit and Algk is the cate-
gory of nonunital k-algebras and nonunital k-homomorphisms. Also, F is a fixed
field and Sm /F is the category of smooth algebraic varieties over F . If C is a
category and A, B are objects of C , we shall often write C (A, B) to denote the
Hom-set HomC (A, B).

A1-homotopy theory is the homotopy theory of motivic spaces, i.e., presheaves
of simplicial sets defined on Sm /F (see [Morel and Voevodsky 1999; Voevodsky
1998]). Each object X ∈ Sm /F is regarded as the motivic space HomSm /F (−, X).
The affine line A1 plays the role of the interval.

k[t]-homotopy theory is the homotopy theory of simplicial functors defined on
nonunital algebras, where each algebra A is regarded contravariantly as the space
r A = HomAlgk

(A,−) so that we can study algebras from a homotopy theoretic
viewpoint (see [Garkusha 2007; 2014]). The role of the interval is played by
the space r(k[t]) represented by the polynomial algebra k[t]. This theory bor-
rows methods and approaches from A1-homotopy theory. Another source of ideas
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and techniques for k[t]-homotopy theory originates in Kasparov K-theory of C∗-
algebras.

In [Garkusha 2007] a kind of unstable motivic homotopy theory of algebras was
developed. In order to develop stable motivic homotopy theory of algebras and —
most importantly — to make the explicit computations of fibrant replacements for
suspension spectra 6∞r A, A ∈ Algk , presented in this paper, one first needs to
introduce and study “unstable, Morita stable and stable Kasparov K-theory spectra”
K(A, B), Kmor(A, B) and Kst(A, B) respectively, where A, B are algebras. We
refer the reader to [Garkusha 2014] for properties of the spectra. The aim of this
paper is to develop stable motivic homotopy theory of algebras.

Throughout we work with a certain small subcategory < of Algk and the category
U•< of certain pointed simplicial functors on <. U•< comes equipped with a
motivic model structure. We write Sp(<) to denote the stable model category of
S1-spectra associated with the model category U•<. K(A,−), Kmor(A,−) and
Kst(A,−) are examples of fibrant �-spectra in Sp(<) (see [Garkusha 2014]).

One of the main results of the paper says that K(A,−) is a fibrant replacement
for the suspension spectrum 6∞r A ∈ Sp(<) of an algebra A ∈ <. Namely, there
is a natural weak equivalence of spectra

6∞r A −→ K(A,−)

in Sp(<) (see Theorem 4.2).
This is an analog of a similar result by the author and Panin [Garkusha and Panin

2014a] computing a fibrant replacement of the suspension P1-spectrum 6∞
P1 X+

of a smooth algebraic variety X . The main reason that computation of a fibrant
replacement for 6∞

P1 X+ is possible is the existence of framed correspondences
of [Voevodsky 2001] on homotopy groups of (motivically fibrant) P1-spectra. In
turn, the main reason why the computation of a fibrant replacement for 6∞r A is
possible is that algebras have universal extensions.

Let SHS1(<) denote the homotopy category of Sp(<). SHS1(<) plays the same
role as the stable homotopy category of motivic S1-spectra SHS1(F) over a field
F . It is a compactly generated triangulated category with compact generators
{6∞r A[n]}A∈<,n∈Z. One of the important consequences of the above computation
is that we are able to give an explicit description of the Hom-groups

SHS1(<)(6∞r B[n], 6∞r A).

Precisely, there is an isomorphism of abelian groups (see Corollary 4.3)

SHS1(<)(6∞r B[n], 6∞r A)∼= Kn(A, B), A, B ∈ <, n ∈ Z.
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It is important to note that the groups Kn(A, B) have an explicit description in
terms of nonunital algebra homomorphisms (see [Garkusha 2014, Section 7] for
details).

We also show in Theorem 4.4 that the full subcategory S of SHS1(<) spanned
by the compact generators {6∞r A[n]}A∈<,n∈Z is triangulated and there is a con-
travariant equivalence of triangulated categories

D(<,F)
∼
−→S

with <→ D(<,F) the universal unstable excisive homotopy invariant homology
theory in the sense of [Garkusha 2013] with respect to the class of k-split surjective
algebra homomorphisms F. This equivalence is an extension of the contravariant
functor A ∈ < 7→ 6∞r A ∈ SHS1(<) to D(<,F). Thus D(<,F) is recovered
from SHS1(<). It also follows that the small triangulated category D(<,F)op lives
inside the “big” ambient triangulated category SHS1(<). This is reminiscent of
Voevodsky’s theorem [2000] saying that there is a full embedding of the small
triangulated category DMe f f

gm (F) of effective geometrical motives into the “big”
triangulated category DMe f f (F) of motivic complexes of Nisnevich sheaves with
transfers.

Next, we introduce matrices into the game. Namely, if we localise SHS1(<)

with respect to the family of compact objects

{cone(6∞r(Mn A)→6∞r A)}n>0,

we shall get a compactly generated triangulated category SHmor
S1 (<) with compact

generators {6∞r A[n]}A∈<,n∈Z. It is in fact the homotopy category of a model
category Spmor(<), which is the same category as Sp(<) but with a new model
structure. We construct in a similar way a compactly generated triangulated cate-
gory SH∞S1(<), obtained from SHS1(<) by localisation with respect to the family
of compact objects

{cone(6∞r(M∞A)→6∞r A)},

where M∞A = ∪n Mn A. It is also the homotopy category of a model category
Sp∞(<), which is the same category as Sp(<) but with a new model structure.

We prove in Theorems 5.1 and 6.1 that for any algebra A ∈ < there are natural
weak equivalences of spectra

6∞r A −→ Kmor(A,−) and 6∞r A −→ Kst(A,−)

in Spmor(<) and Sp∞(<), respectively. Also, for all A, B ∈ < and n ∈ Z there are
isomorphisms of abelian groups

SHmor
S1 (<)(6

∞r B[n], 6∞r A)∼= Kmor
n (A, B)
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and

SH∞S1(<)(6
∞r B[n], 6∞r A)∼= Kst

n (A, B),

respectively. Furthermore, the full subcategories Smor and S∞ of SHmor
S1 (<) and

SH∞S1(<) spanned by the compact generators {6∞r A[n]}A∈<,n∈Z are triangulated
and there are contravariant equivalences of triangulated categories

Dmor(<,F)
∼
−→Smor and Dst(<,F)

∼
−→S∞.

Here <→ Dmor(<,F) (respectively <→ Dst(<,F)) is the universal Morita stable
(respectively stable) excisive homotopy invariant homology theory in the sense
of [Garkusha 2013]. Thus Dmor(<,F) and Dst(<,F) are recovered from SHmor

S1 (<)

and SHst
S1(<), respectively. It also follows that the small triangulated categories

Dmor(<,F)
op, Dst(<,F)

op live inside the ambient triangulated categories SHmor
S1 (<)

and SHst
S1(<).

We next introduce a symmetric monoidal compactly generated triangulated cat-
egory of K-motives DK (<) together with a canonical contravariant functor

MK : <→ DK (<).

The category DK (<) is an analog of the triangulated category of K-motives for
algebraic varieties introduced in [Garkusha and Panin 2012; 2014b].

For any algebra A ∈ < its K-motive is, by definition, the object MK (A) of
DK (<). We have that

MK (A)⊗MK (B)∼= MK (A⊗ B)

for all A, B ∈ < (see Proposition 7.1).
We prove in Theorem 7.2 that for any two algebras A, B ∈ < and any integer n

there is a natural isomorphism

DK (<)(MK (B)[n],MK (A))∼= Kst
n (A, B).

Moreover, if T is the full subcategory of DK (<) spanned by K-motives of algebras
{MK (A)}A∈< then T is triangulated and there is an equivalence of triangulated
categories

Dst(<,F)→ T op

sending an algebra A ∈ < to its K-motive MK (A) (see Theorem 7.2). It is also
proved in Corollary 7.3 that for any algebra A ∈ < and any integer n one has a
natural isomorphism

DK (<)(MK (A)[n],MK (k))∼= KHn(A),
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where the right hand side is the n-th homotopy K-theory group in the sense of
Weibel [1989]. This result is reminiscent of a similar result for K-motives of alge-
braic varieties in the sense of [Garkusha and Panin 2012; 2014b] identifying the
K-motive of the point with algebraic K-theory.

Cortiñas and Thom [2007] constructed a universal excisive homotopy invariant
and M∞-invariant homology theory on all k-algebras

j : Algk→ kk.

The triangulated category kk is an analog of Cuntz’s triangulated category kklca

whose objects are the locally convex algebras [Cuntz 1997; 2005; Cuntz and Thom
2006].

We show in Theorem 7.4 that, if we denote by kk(<) the full subcategory of
kk spanned by the objects from < and assume that the cone ring 0k in the sense
of [Karoubi and Villamayor 1969] is in <, then there is a natural triangulated
equivalence

kk(<)
∼
−→ T op

sending A ∈ kk(<) to its K-motive MK (A). Thus we can identify kk(<) with the
K-motives of algebras. It also follows that the small triangulated category kk(<)op

lives inside the ambient triangulated category DK (<).
One of the equivalent approaches to stable motivic homotopy theory in the sense

of Morel and Voevodsky [1999] is the theory of (S1,Gm)-bispectra. The role
of Gm in our context is played by the representable functor G := r(σ ), where
σ = (t − 1)k[t±1

]. We develop the motivic theory of (S1,G)-bispectra. As usual
they form a model category which we denote by SpG(<). The homotopy category
SHS1,G(<) of SpG(<) plays the same role as the stable motivic homotopy cat-
egory SH(F) over a field F . We construct an explicit fibrant (S1,G)-bispectrum
2∞

G
KG(A,−), obtained from fibrant S1-spectra K(σ n A,−), n> 0, by stabilisation

in the σ -direction.
The main computational result for bispectra, stated in Theorem 8.1, says that

2∞
G

KG(A,−) is a fibrant replacement of the suspension bispectrum associated
with an algebra A. Namely, there is a natural weak equivalence of bispectra in
SpG(<)

6∞G 6
∞r A→2∞G KG(A,−),

where 6∞
G
6∞r A is the suspension bispectrum of r A.

Let k be the field of complex numbers C and let K σ (A,−) be the (0,0)-space
of the bispectrum 2∞

G
KG(A,−). We raise a question whether there is a category

< of commutative C-algebras such that the fibrant simplicial set K σ (C,C) has the
homotopy type of �∞6∞S0. The question is justified by a recent result of Levine
[2014] saying that over an algebraically closed field F of characteristic zero the
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homotopy groups of weight zero of the motivic sphere spectrum evaluated at F are
isomorphic to the stable homotopy groups of the classical sphere spectrum. The
role of the motivic sphere spectrum in our context is played by the bispectrum
6∞

G
6∞rC.

We finish the paper by proving that the triangulated category DK (<) of K-
motives is fully faithfully embedded into the homotopy category of (S1,G)-bispectra.
We also construct an explicit fibrant (S1,G)-bispectrum KGst(A,−) consisting of
fibrant S1-spectra Kst(σ n A,−), n> 0. For this we prove the “cancellation theorem”
for the spectra Kst(σ n A,−) (see Theorem 9.5). It is reminiscent of the cancellation
theorem proved by Voevodsky [2010a] for motivic cohomology. The same theorem
was proved for K-theory of algebraic varieties in [Garkusha and Panin 2015].

We show in Theorem 9.7 that KGst(A,−) is (2, 1)-periodic and represents sta-
ble algebraic Kasparov K-theory (cf. [Voevodsky 1998, Theorems 6.8 and 6.9]).
Precisely, for any algebras A, B ∈ < and any integers p, q there is an isomorphism

πp,q(KGst(A, B))∼= Kst
p−2q(A, B).

As a consequence, one has that for any algebra B ∈ < and any integers p, q there
is an isomorphism

πp,q(KGst(k, B))∼= KHp−2q(B).

Thus the bispectrum KGst(k, B) yields an explicit model for homotopy K-theory.
We should stress that the term “motivic” is used in the paper only for the reason

that the k[t]-homotopy theory of algebras shares many properties with Morel and
Voevodsky’s motivic homotopy theory of smooth schemes [1999] (see remarks
on page 288 as well). If there is a likelihood of confusion with other motivic
theories of commutative or noncommutative objects, the reader can just omit the
term “motivic” everywhere.

In general, we shall not be very explicit about set-theoretical foundations, and
we shall tacitly assume we are working in some fixed universe U of sets. Members
of U are then called small sets, whereas a collection of members of U which does
not itself belong to U will be referred to as a large set or a proper class. If there is
no likelihood of confusion, we replace ⊗k by ⊗.

2. Preliminaries

In this section we collect basic facts about admissible categories of algebras and
triangulated categories associated with them. We mostly follow [Garkusha 2007;
2013].

2.1. Algebraic homotopy. Following [Gersten 1971b] a category < of k-algebras
without unit is admissible if it is a full subcategory of Algk and
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(1) if R is in < and I is a (two-sided) ideal of R then I and R/I are in <;

(2) if R is in <, then so is R[x], the polynomial algebra, in one variable;

(3) given a cartesian square

D
ρ
//

σ
��

A

f
��

B
g
// C

in Algk with A, B,C in <, then D is in <.

One may abbreviate (1)–(3) by saying that < is closed under operations of taking
ideals, homomorphic images, polynomial extensions in a finite number of variables,
and fibre products. For instance, the category of commutative k-algebras CAlgk is
admissible.

Observe that every k-module M can be regarded as a nonunital k-algebra with
trivial multiplication: m1 ·m2 = 0 for all m1,m2 ∈ M . Then Mod k is an admissible
category of commutative k-algebras.

If R is an algebra then the polynomial algebra R[x] admits two homomorphisms
onto R

R[x]
∂0

x
//

∂1
x

// R ,

where
∂ i

x |R = 1R, ∂ i
x(x)= i, i = 0, 1.

Of course, ∂1
x (x)= 1 has to be understood in the sense that 6rnxn

7→6rn .

Definition. Two homomorphisms f0, f1 : S→ R are elementary homotopic, writ-
ten f0 ∼ f1, if there exists a homomorphism

f : S→ R[x]

such that ∂0
x f = f0 and ∂1

x f = f1. A map f : S→ R is called an elementary homo-
topy equivalence if there is a map g : R→ S such that f g and g f are elementary
homotopic to idR and idS respectively.

For example, let A be a Zn>0-graded algebra, then the inclusion A0→ A is an
elementary homotopy equivalence. The homotopy inverse is given by the projec-
tion A→ A0. Indeed, the map A→ A[x] sending a homogeneous element an ∈ An

to anxn is a homotopy between the composite A→ A0→ A and the identity idA.
The relation “elementary homotopic” is reflexive and symmetric [Gersten 1971b,

p. 62]. One may take the transitive closure of this relation to get an equivalence
relation (denoted by the symbol “'”). Following notation of [Gersten 1971a], the
set of equivalence classes of morphisms R→ S is written [R, S].
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Lemma 2.1 [Gersten 1971a]. Given morphisms in Algk

R
f
// S

g
))

g′
55 T

h
// U

such that g ' g′, then g f ' g′ f and hg ' hg′.

Thus homotopy behaves well with respect to composition and we have category
Hotalg, the homotopy category of k-algebras, whose objects are k-algebras and
such that Hotalg(R, S)= [R, S]. The homotopy category of an admissible category
of algebras < will be denoted by H (<). Call a homomorphism s : A→ B an I -
weak equivalence if its image in H (<) is an isomorphism. Observe that I -weak
equivalences are those homomorphisms which have homotopy inverses.

A diagram

A
f
→ B

g
→ C

in Algk is a short exact sequence if f is injective, g is surjective, and the image of
f is equal to the kernel of g.

Definition. An algebra R is contractible if 0 ∼ 1; that is, if there is a homomor-
phism f : R→ R[x] such that ∂0

x f = 0 and ∂1
x f = 1R .

For example, every square zero algebra A ∈ Algk is contractible by means of
the homotopy A→ A[x], a ∈ A 7→ ax ∈ A[x]. In other words, every k-module,
regarded as a k-algebra with trivial multiplication, is contractible.

Following [Karoubi and Villamayor 1969] we define ER, the path algebra on
R, as the kernel of ∂0

x : R[x] → R, so

ER→ R[x]
∂0

x
→ R

is a short exact sequence in Algk . Also ∂1
x : R[x] → R induces a surjection

∂1
x : ER → R and we define the loop algebra �R of R to be its kernel, so we

have a short exact sequence in Algk

�R→ ER
∂1

x
→ R.

We call it the loop extension of R. Clearly, �R is the intersection of the kernels of
∂0

x and ∂1
x . By [Gersten 1971b, Lemma 3.3] ER is contractible for any algebra R.

2.2. Categories of fibrant objects.

Definition. Let A be a category with finite products and a final object e. Assume
that A has two distinguished classes of maps, called weak equivalences and fibra-
tions. A map is called a trivial fibration if it is both a weak equivalence and a
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fibration. We define a path space for an object B to be an object B I together with
maps

B
s
−→ B I (d0,d1)

−−−→ B× B,

where s is a weak equivalence, (d0, d1) is a fibration, and the composite is the
diagonal map.

Following [Brown 1973], we call A a category of fibrant objects or a Brown
category if the following axioms are satisfied.

(A) Let f and g be maps such that g f is defined. If two of f , g, g f are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.

(C) Given a diagram

A
u
−→ C

v
←− B,

with v a fibration (respectively a trivial fibration), the pullback A×C B exists
and the map A×C B→ A is a fibration (respectively a trivial fibration).

(D) For any object B in A there exists at least one path space B I (not necessarily
functorial in B).

(E) For any object B the map B→ e is a fibration.

2.3. The triangulated category D(<,F). In what follows we denote by F the
class of k-split surjective algebra homomorphisms. We shall also refer to F as
fibrations.

Let W be a class of weak equivalences in an admissible category of algebras <
containing homomorphisms A→ A[t], A ∈ <, such that the triple (<,F,W) is a
Brown category.

Definition. The left derived category D−(<,F,W) of < with respect to (F,W)

is the category obtained from < by inverting the weak equivalences.

By [Garkusha 2013] the family of weak equivalences in the category H < admits
a calculus of right fractions. The left derived category D−(<,F,W) (possibly
“large”) is obtained from H < by inverting the weak equivalences. The left derived
category D−(<,F,W) is left triangulated (see [Garkusha 2007; 2013] for details)
with � a loop functor on it.

There is a general method of stabilising � (see Heller [Heller 1968]) and produc-
ing a triangulated (possibly “large”) category D(<,F,W) from the left triangulated
structure on D−(<,F,W).

An object of D(<,F,W) is a pair (A,m) with A ∈ D−(<,F,W) and m ∈ Z. If
m, n ∈Z then we consider the directed set Im,n ={k ∈Z |m, n6 k}. The morphisms
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between (A,m) and (B, n) ∈ D(<,F,W) are defined by

D(<,F,W)[(A,m), (B, n)] := colimk∈Im,n D−(<,F,W)(�k−m(A),�k−n(B)).

Morphisms of D(<,F,W) are composed in the obvious fashion. We define the
loop automorphism on D(<,F,W) by �(A,m) := (A,m− 1). There is a natural
functor S : D−(<,F,W)→ D(<,F,W) defined by A 7−→ (A, 0).

D(<,F,W) is an additive category [Garkusha 2007; 2013]. We define a trian-
gulation T r(<,F,W) of the pair (D(<,F,W),�) as follows. A sequence

�(A, l)→ (C, n)→ (B,m)→ (A, l)

belongs to T r(<,F,W) if there is an even integer k and a left triangle of rep-
resentatives �(�k−l(A))→ �k−n(C)→ �k−m(B)→ �k−l(A) in D−(<,F,W).
Then the functor S takes left triangles in D−(<,F,W) to triangles in D(<,F,W).
By [Garkusha 2007; 2013] T r(<,F,W) is a triangulation of D(<,F,W) in the
classical sense of [Verdier 1996].

By an F-extension or just extension in < we mean a short exact sequence of
algebras

(E) : A→ B
α
→ C

such that α ∈ F. Let E be the class of all F-extensions in <.

Definition. Following [Cortiñas and Thom 2007] a (F-)excisive homology theory
on < with values in a triangulated category (T , �) consists of a functor X : <→T ,
together with a collection {∂E : E ∈ E } of maps ∂ X

E = ∂E ∈T (�X (C), X (A)). The
maps ∂E are to satisfy the following requirements.

(1) For all E ∈ E as above,

�X (C)
∂E
// X (A)

X ( f )
// X (B)

X (g)
// X (C)

is a distinguished triangle in T .

(2) If

(E) : A
f
//

α

��

B
g
//

β

��

C

γ

��

(E ′) : A′
f ′
// B ′

g′
// C ′
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is a map of extensions, then the following diagram commutes

�X (C)

�X (γ )
��

∂E
// X (A)

X (α)
��

�X (C ′)
∂E ′

// X (A)

We say that the functor X : <→T is homotopy invariant if it maps homotopic
homomorphisms to equal maps, or equivalently, if for every A ∈Algk , X maps
the inclusion A ⊂ A[t] to an isomorphism.

Denote by W4 the class of homomorphisms f such that X ( f ) is an isomor-
phism for any excisive, homotopy invariant homology theory X : <→T . We shall
refer to the maps from W4 as stable weak equivalences. The triple (<,F,W4) is
a Brown category. In what follows we shall write D−(<,F) and D(<,F) to denote
D−(<,F,W4) and D(<,F,W4) respectively, dropping W4 from the notation.

By [Garkusha 2013] the canonical functor

<→ D(<,F)

is the universal excisive, homotopy invariant homology theory on <.

3. Homotopy theory of algebras

Let < be a small admissible category of algebras. We shall work with various
model category structures for the category of simplicial functors on <. We mostly
adhere to [Garkusha 2007; 2014].

3.1. The categories of pointed simplicial functors U•<. Throughout this paper
we work with a model category U•<. To define it, we first enrich < over pointed
simplicial sets S•. Given an algebra A ∈ <, denote by r A the representable functor
Hom<(A,−). Let <• have the same objects as < and have pointed simplicial sets
of morphisms being the r A(B)=Hom<(A, B) pointed at zero. Denote by U•< the
category of S•-enriched functors from <• to S•. One easily checks that U•< can
be regarded as the category of covariant pointed simplicial functors X : <→ S•

such that X (0)= ∗.
By [Dundas et al. 2003, Theorem 4.2] we define the projective model structure

on U•<. This is a proper, simplicial, cellular model category with weak equiva-
lences and fibrations being defined object-wise, and cofibrations being those maps
having the left lifting property with respect to trivial fibrations.

The class of projective cofibrations for U•< is generated by the set

IU•< = {r A∧ (∂1n
⊂1n)+}

n>0,
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indexed by A ∈<. Likewise, the class of acyclic projective cofibrations is generated
by

JU•< = {r A∧ (3k
n ⊂1

n)+}
n>0
06k6n.

Given X ,Y ∈U•< the pointed function complex Map
•
(X ,Y ) is defined as

Map
•
(X ,Y )n = HomU•<(X ∧1

n
+
,Y ), n > 0.

By [Dundas et al. 2003, Lemma 2.1] there is a natural isomorphism of pointed
simplicial sets

Map
•
(r A,X )∼=X (A)

for all A ∈ < and X ∈U•<.
Recall that the model category U< of functors from < to unpointed simplicial

sets S is defined in a similar fashion (see [Garkusha 2007]). Since we mostly work
with spectra in this paper, the category of spectra associated with U•< is technically
more convenient than the category of spectra associated with U<.

3.2. The model categories U•<I, U•<J, U•<I,J . Let

I = {i = i A : r(A[t])→ r(A) | A ∈ <},

where each i A is induced by the natural homomorphism i : A→ A[t]. Recall that a
functor F : <→ S•/Spectra is homotopy invariant if F(A)→ F(A[t]) is a weak
equivalence for all A ∈ <. Consider the projective model structure on U•<. We
shall refer to the I -local equivalences as (projective) I -weak equivalences. Denote
by U•<I the model category obtained from U•< by Bousfield localisation with
respect to the family I . Notice that any objectwise fibrant homotopy invariant
functor F ∈U•< is an I -local object, hence fibrant in U•<I .

Let us introduce the class of excisive functors on <. They look like flasque
presheaves on a site defined by a cd-structure in the sense of [Voevodsky 2010b,
Section 3].

Definition. A simplicial functor X ∈ U•< is called excisive with respect to F if
for any cartesian square in <

D //

��

A

��

B
f
// C
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with f a fibration (we call such squares distinguished), the square of simplicial
sets

X (D) //

��

X (A)

��

X (B) // X (C)

is a homotopy pullback square. It immediately follows from the definition that
every excisive object takes F-extensions in < to homotopy fibre sequences of sim-
plicial sets.

Let α denote a distinguished square in < as shown:

D //

��

A

��

B // C

Let us apply the simplicial mapping cylinder construction cyl to α and form the
pushouts:

rC //

��

cyl(rC→ r A)

��

// r A

��

r B // cyl(rC→ r A)trC r B // r D

Note that rC → cyl(rC → r A) is a projective cofibration between (projective)
cofibrant objects of U•<. Thus s(α)= cyl(rC→ r A)trC r B is (projective) cofi-
brant [Hovey 1999, 1.1.11]. For the same reasons, applying the simplicial mapping
cylinder to s(α)→ r D and setting t (α) = cyl(s(α)→ r D) we get a projective
cofibration

cyl(α) : s(α) // t (α).

Let J cyl(α)
U•< consists of all pushout product maps

s(α)∧1n
+
ts(α)∧∂1n

+
t (α)∧ ∂1n

+
// t (α)∧1n

+
,

and let J = JU•<∪ J cyl(α)
U•< . Denote by U•<J the model category obtained from U•<

by Bousfield localisation with respect to the family J . It is directly verified that
X ∈U•< is J -local if and only if it has the right lifting property with respect to
J . Also, X is J -local if and only if it is objectwise fibrant and excisive [Garkusha
2007, Lemma 4.3].

Finally, let us introduce the model category U•<I,J . It is, by definition, the
Bousfield localisation of U•< with respect to I ∪ J . The weak equivalences (trivial
cofibrations) of U•<I,J will be referred to as (projective) (I, J )-weak equivalences
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((projective) (I, J )-trivial cofibrations). By [Garkusha 2007, Lemma 4.5] a functor
X ∈U•< is (I, J )-local if and only if it is objectwise fibrant, homotopy invariant
and excisive.

Remark. The model category U•<I,J can also be regarded as a kind of unstable
motivic model category associated with <. Indeed, the construction of U•<I,J is
similar to Morel–Voevodsky’s unstable motivic theory for smooth schemes Sm /F
over a field F [Morel and Voevodsky 1999]. If we replace I by

I ′ = {X ×A1 pr
−→ X | X ∈ Sm /F},

and the family of distinguished squares by the family of elementary Nisnevich
squares and get the corresponding family J ′ associated to it, then one of the
equivalent models for Morel–Voevodsky’s unstable motivic theory is obtained by
Bousfield localisation of simplicial presheaves with respect to I ′ ∪ J ′.

For this reason, U•<I,J can also be called the category of (pointed) motivic
spaces, where each algebra A is identified with the pointed motivic space r A. One
can also refer to (I, J )-weak equivalences as motivic weak equivalences.

3.3. Monoidal structure on U•<. In this section we mostly follow [Østvær 2010,
Section 2.1]. Suppose < is tensor closed, that is k ∈ < and A ⊗ B ∈ < for all
A, B ∈ <. We introduce the monoidal product X ⊗Y of X and Y in U•< by the
formulas

X ⊗Y (A)= colim
A1⊗A2→A

X (A1)∧Y (A2).

The colimit is indexed on the category with objects α : A1⊗ A2→ A and maps
the pairs of maps (ϕ, ψ) : (A1, A2) → (A′1, A′2) such that α′(ψ ⊗ ϕ) = α. By
functoriality of colimits it follows that X ⊗Y is in U•<.

The tensor product can also be defined by the formula

X ⊗Y (A)=
∫ A1,A2∈<

(X (A1)∧Y (A2))∧Hom<(A1⊗ A2, A).

This formula is obtained from a theorem of Day [1970], which also asserts that the
triple (U•<,⊗, r(k)) forms a closed symmetric monoidal category.

The internal Hom functor, right adjoint to X ⊗−, is given by

Hom(X ,Y )(A)=
∫

B∈<
Map

•
(X (B),Y (A⊗ B)),

where Map
•

stands for the function complex in S•.
So there exist natural isomorphisms

Hom(X ⊗Y ,Z )∼= Hom(X ,Hom(Y ,Z ))
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and
Hom(r(k),Z )∼=Z .

Concerning smash products of representable functors, one has a natural isomor-
phism

r A⊗ r B ∼= r(A⊗ B), A, B ∈ <.

Note as well that, for pointed simplicial sets K and L , one has K ⊗ L = K ∧ L .
We recall a pointed simplicial set tensor and cotensor structure on U•<. If X

and Y are in U•< and K is a pointed simplicial set, the tensor X ⊗ K is given by

X ⊗ K (A)=X (A)∧ K

and the cotensor Y K is given in terms of the ordinary function complex:

Y K (A)=Map
•
(K ,Y (A)).

The function complex Map
•
(X ,Y ) of X and Y is defined by setting

Map
•
(X ,Y )n = HomU•<(X ⊗1

n
+
,Y ).

By the Yoneda lemma there exists a natural isomorphism of pointed simplicial sets

Map
•
(r A,Y )∼= Y (A).

Using these definitions U•< is enriched in pointed simplicial sets S•. Moreover,
there are natural isomorphisms of pointed simplicial sets

Map
•
(X ⊗ K ,Y )∼=Map

•
(K ,Map

•
(X ,Y ))∼=Map

•
(X ,Y K ).

It is also useful to note that

Hom(X ,Y )(A)=Map
•
(X ,Y (A⊗−)) and Hom(r B,Y )= Y (−⊗ B).

It can be shown similarly to [Østvær 2010, Lemma 3.10; Propositions 3.43 and
3.89] that the model categories U•<, U•<I , U•<J , U•<I,J are monoidal.

4. Unstable algebraic Kasparov K-theory

Let U be an arbitrary category and let < be an admissible category of k-algebras.
Suppose that there are functors F : < → U and T̃ : U →< such that T̃ is left
adjoint to F . We denote T̃FA, for A ∈ <, by TA and the counit map T̃FA→ A by
ηA. If X ∈ Ob U then the unit map X→ FT̃ X is denoted by iX . We note that the
composition

FA
iFA
−→ FT̃FA

FηA
−−→ FA

equals 1FA for every A ∈ <, and hence FηA splits in U . We call an admissible
category of k-algebras T-closed if TA ∈ < for all A ∈ <.
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Lemma 4.1. Suppose U is either a full subcategory of the category of sets or a
full subcategory of the category of k-modules. Suppose as well that F : < → U

is the forgetful functor. Then for every A ∈ < the algebra TA is contractible, i.e.,
there is a contraction τ : TA→ TA[x] such that ∂0

x τ = 0, ∂1
x τ = 1. Moreover, the

contraction is functorial in A.

Proof. Consider a map u : FTA → FTA[x] sending an element b ∈ FTA to
bx ∈ FTA[x]. By assumption, u is a morphisms of U . The desired contraction τ
is uniquely determined by the map u ◦ iFA : FA→ FTA[x]. By using elementary
properties of adjoint functors, one can show that ∂0

x τ = 0 and ∂1
x τ = 1. �

Throughout this paper, whenever we deal with a T-closed admissible category
of k-algebras < we assume to be fixed an underlying category U , which is a full
subcategory of Mod k.

Examples. (1) Let < = Algk . Given an algebra A, consider the algebraic tensor
algebra

TA = A⊕ A⊗ A⊕ A⊗
3
⊕ · · · ,

with the usual product given by concatenation of tensors. In Cuntz’s treatment
of bivariant K-theory [Cuntz 1997; 2005; Cuntz and Thom 2006], tensor algebras
play a prominent role.

There is a canonical k-linear map A→ TA mapping A into the first direct sum-
mand. Every k-linear map s : A→ B into an algebra B induces a homomorphism
γs : TA→ B defined by

γs(x1⊗ · · ·⊗ xn)= s(x1)s(x2) · · · s(xn).

Plainly < is T-closed.

(2) If <= CAlgk , then

T (A)= Sym(A)=
⊕
n>1

Sn A,

the symmetric algebra of A, and < is T-closed. Here

Sn A = A⊗n/〈a1⊗ · · ·⊗ an − aσ(1)⊗ · · ·⊗ aσ(n)〉 for σ ∈6n.

We have a natural extension of algebras

0−→ JA
ιA
−→ TA

ηA
−→ A −→ 0.

Here JA is defined as Ker ηA. Clearly, JA is functorial in A.
Given a small T-closed admissible category of k-algebras <, we denote by Sp(<)

the category of S1-spectra in the sense of [Hovey 2001] associated with the model
category U•<I,J . Recall that a spectrum consists of sequences E = (En)n>0 of
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pointed simplicial functors in U•< equipped with structure maps σ E
n :6En→ En+1,

where 6 =−∧ S1 is the suspension functor. A map f : E →F of spectra consists
of compatible maps fn : En→Fn in the sense that the diagrams

6En

6 fn
��

σE
n
// En+1

fn+1
��

6Fn
σF

n
// Fn+1

commute for all n > 0. The category Sp(<) is endowed with the stable model
structure (see [Hovey 2001] for details).

Given an algebra A ∈ <, we denote by 6∞r A the suspension spectrum associ-
ated with the functor r A pointed at zero. By definition, (6∞r A)n = r A∧ Sn with
obvious structure maps.

In order to define one of the main spectra of the paper R(A) associated to an
algebra A ∈ <, we have to recall some definitions from [Garkusha 2014].

For any B ∈ < we define a simplicial algebra

B1 : [n] 7→ B1
n
:= B[t0, . . . , tn]/

〈
1−

∑
i

ti
〉
(∼= B[t1, . . . , tn]).

Given a map of posets α : [m] → [n], the map α∗ : B1
n
→ B1

m
is defined by

α∗(t j )=
∑

α(i)= j ti . We have that B1 ∼= B⊗ k1 and B1 is pointed at zero.
For any pointed simplicial set X ∈ S•, we denote by B1(X) the simplicial alge-

bra Map
•
(X, B1). The simplicial algebra associated to any unpointed simplicial

set and any simplicial algebra is defined in a similar way. By B1(X) we shall mean
the pointed simplicial ind-algebra

B1(X)→ B1(sd1 X)→ B1(sd2 X)→ · · · .

In particular, one defines the “path space” simplicial ind-algebra PB1. We shall
also write B1(�n) to denote B1(Sn), where Sn

= S1
∧ · · · ∧ S1 is the simplicial

n-sphere. For any A ∈ < we denote by HomAlgind
k
(A,B1(�n)) the colimit of the

sequence in S•

HomAlgk
(A,B1(Sn))→HomAlgk

(A,B1(sd1 Sn))→HomAlgk
(A,B1(sd2 Sn))→· · · .

The natural simplicial map d1 : PB1(�n)→ B1(�n) has a natural k-linear
splitting described below. Let t ∈ Pk1(11

×
n
· · · ×11)0 stand for the composite

map

sdm(11
×

n+1
· · · ×11)

pr
−→ sdm 11

→11 t
→ k1,
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where pr is the projection onto the (n + 1)-th direct factor 11 and t = t0 ∈ k1
1
.

The element t can be regarded as a 1-simplex of the unital ind-algebra

k1(11
×

n
· · · ×11)

such that ∂0(t) = 0 and ∂1(t) = 1. Let ı : B1(�n)→ (B1(�n))1
1

be the natural
inclusion. Multiplication with t determines a k-linear map

(B1(�n))1
1 t·
−→ PB1(�n).

Now the desired k-linear splitting B1(�n)
υ
−→ PB1(�n) of simplicial ind-modules

is defined as
υ := t · ı.

If we consider B1(�n) as a (Z>0×1)-diagram in <, then there is a commutative
diagram of extensions for (Z>0×1)-diagrams

JB1(�n)

ξυ
��

// T B1(�n) //

��

B1(�n)

B1(�n+1) // PB1(�n)
d1
// B1(�n)

where the map ξυ is uniquely determined by the k-linear splitting υ. For every
element f ∈ HomAlgind

k
(J n A,B1(�n)) one sets:

ς( f ) := ξυ ◦ J ( f ) ∈ HomAlgind
k
(J n+1 A,B1(�n+1)).

The spectrum R(A) is defined at every B ∈ < as the sequence of spaces pointed
at zero

HomAlgind
k
(A,B1),HomAlgind

k
(JA,B1),HomAlgind

k
(J 2 A,B1), . . . .

By [Garkusha 2014, Section 2] each R(A)n(B) is a fibrant simplicial set and

�kR(A)0(B)= HomAlgind
k
(A,B1(�k)).

Each structure map σn :R(A)n ∧ S1
→R(A)n+1 is defined at B as adjoint to the

map ς : HomAlgind
k
(J n A,B1)→ HomAlgind

k
(J n+1 A,B1(�)).

For every A ∈ < there is a natural map in Sp(<)

i :6∞r A→R(A)

functorial in A.

Definition [Garkusha 2014]. (1) Given two k-algebras A, B ∈ <, the unstable
algebraic Kasparov K-theory space K (A, B) is the fibrant space

colimn HomAlgind
k
(J n A,B1(�n)),
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where the colimit maps are given by ξυ-s and JA is as defined on page 290. Its
homotopy groups will be denoted by Kn(A, B), n > 0. The simplicial functor
K (A,−) is fibrant in U•(<)I,J by [Garkusha 2014, Section 4]. Also, there is a
natural isomorphism of simplicial sets

K (A, B)∼=�K (JA, B).

In particular, K (A, B) is an infinite loop space with K (A, B) which simplicially
isomorphic to �nK (J n A, B) (see [Garkusha 2014, Theorem 5.1]).

(2) The unstable algebraic Kasparov KK-theory spectrum of (A, B) consists of the
sequence of spaces

K (A, B),K (JA, B),K (J 2 A, B), . . . ,

together with the natural isomorphisms K (J n A, B)∼=�K (J n+1 A, B). It forms
an �-spectrum which we also denote by K(A, B). Its homotopy groups will be
denoted by Kn(A, B), n ∈ Z. Observe that Kn(A, B) ∼=Kn(A, B) for any n > 0
and Kn(A, B)∼=K0(J−n A, B) for any n < 0.

There is a natural map of spectra

j :R(A)→ K(A,−).

By [Garkusha 2014, Section 6] this is a stable equivalence and K(A,−) is a fibrant
object of Sp(<). In fact, for any algebra B ∈ < the map

j :R(A)(B)→ K(A, B)

is a stable equivalence of ordinary spectra.
The following theorem is crucial in our analysis. It states that K(A,−) is a

fibrant replacement of 6∞r A in Sp(<).

Theorem 4.2. Given A ∈ < the map i : 6∞r A→ R(A) is a level (I, J )-weak
equivalence, and therefore the composite map

6∞r A
i
→R(A)

j
→ K(A,−)

is a stable equivalence in Sp(<), functorial in A.

Proof. Recall that for any functor F from rings to simplicial sets, Sing(F) is defined
at each ring R as the diagonal of the bisimplicial set F(R[1]). The map

i0 : (6
∞r A)0→R(A)0

equals r A→ Ex∞ ◦Sing(r A), which is an I -weak equivalence by [Garkusha 2007,
Corollary 3.8]. Let us show that

i1 : r A∧ S1
→R(A)1 = Ex∞ ◦Sing(r(JA))
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is an (I, J )-weak equivalence. It is fully determined by the element ρA : JA→�A,
which is a zero simplex of �(Ex∞ ◦Sing(r(JA))(A)), coming from the adjunction
isomorphism

Map
•
(r A∧ S1,Ex∞ ◦Sing(r(JA)))∼=�(Ex∞ ◦Sing(r(JA))(A)).

Let (I, 0) denote 1[1] pointed at 0. Consider a commutative diagram of cofibrant
objects in U•<

r A

η∗A
��

//
ν
// r A∧ (I, 0)

��

// // r A∧ S1

r(TA) // // X
α

// // r A∧ S1

where the left square is pushout, the left map is induced by the canonical homo-
morphism ηA : TA→ A and ν is induced by the natural inclusion d0

:1[0]→1[1].
Lemma 4.1 implies r(TA) is weakly equivalent to zero in U•<I . It follows that α
is an I -weak equivalence.

By the universal property of pullback diagrams there is a unique morphism
σ :X → r(JA) whose restriction to r(TA) equals ι∗A, where ιA = Ker ηA, which
makes the diagram

r A∧ (I, 0) //

��

X

σ

��

r A

??

//

1
��

r(TA)

??

��

pt // r(JA)

r A
η∗A

//

??

r(TA)

??

commutative. Since the upper and the lower squares are homotopy pushouts in
U•<I,J and r A∧ (I, 0) is weakly equivalent to zero, it follows from [Hirschhorn
2003, Proposition 13.5.10] that σ is an (I, J )-weak equivalence. Therefore the
composite map, we shall denote it by ρ,

X
σ
→ r(JA)→R(A)1

is an (I, J )-weak equivalence, where the right map is the natural I -weak equiva-
lence.

Let R(A)1[x] ∈U•< be a simplicial functor defined as

R(A)1[x](B)= HomAlgind
k
(JA,B1[x])= Ex∞ ◦HomAlgk

(JA, B[x]1), B ∈ <.

There is a natural map s : R(A)1 → R(A)1[x], induced by the monomorphism
B→ B[x] at each B. It follows from [Garkusha 2007, Proposition 3.2] that this
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map is a weak equivalence in U•<. The evaluation homomorphisms

∂0
x , ∂

1
x : B[x] → B

induce a map (∂0
x , ∂

1
x ) :R(A)1[x] →R(A)1×R(A)1, whose composition with s

is the diagonal map R(A)1→ R(A)1 ×R(A)1. We see that R(A)1[x] is a path
object for the projectively fibrant object R(A)1.

If we constructed a homotopy H : X → R(A)1[x] such that ∂0
x H = i1α and

∂1
x H = ρ it would follow that i1α, being homotopic to the (I, J )-weak equivalence
ρ, is an (I, J )-weak equivalence. Since also α is an (I, J )-weak equivalence, then
so would be i1.

The desired map H is uniquely determined by maps h1 : r(TA)→ R(A)1[x]
and h2 : r A∧ (I, 0)→R(A)1[x] such that h1η

∗

A = h2ν is defined as follows. The
map h1 is uniquely determined by the homomorphism JA→ TA[x] which is the
composition of ιA and the contraction homomorphism τ : TA→ TA[x], functorial
in A, that exists by Lemma 4.1. The map h2 is uniquely determined by the one-
simplex JA→ A[11

][x] of Ex∞ ◦HomAlgk
(JA, A[x]1) which is the composition

of
ρA : JA→�A = (t2

− t)A[t] ⊂ A[11
]

and the homomorphism ω : A[11
] → A[11

][x] sending the variable t to

1− (1− t)(1− x).

Thus we have shown that

i1 : r A∧ S1
→R(A)1

is an (I, J )-weak equivalence. It follows that the composite map

r A∧ S1 i0∧S1

−−−→R(A)0 ∧ S1 σ0
−→R(A)1,

which is equal to i1, is an (I, J )-weak equivalence. Hence σ0 is an (I, J )-weak
equivalence, because i0 ∧ S1 is an I -weak equivalence. More generally, one gets
that every structure map

R(A)n ∧ S1 σn
−→R(A)n+1

is an (I, J )-weak equivalence.
By induction, assume that in : r A∧ Sn

→R(A)n is an (I, J )-weak equivalence.
Then in∧S1 is an (I, J )-weak equivalence, and hence so is in+1= σn ◦(in∧S1). �

Denote by SHS1(<) the stable homotopy category of Sp(<). Since the endofunc-
tor −∧ S1 is an equivalence on SHS1(<) by [Hovey 2001], it follows from [Hovey
1999, Chapter 7] that SHS1(<) is a triangulated category. Moreover, it is compactly
generated with compact generators {(6∞r A)[n]}A∈<,n∈Z.
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Corollary 4.3. {6∞r A[n]}A∈<,n∈Z is a family of compact generators for SHS1(<).
Moreover, there is a natural isomorphism

SHS1(<)(6∞r B[n], 6∞r A)∼= Kn(A, B)

for all A, B ∈ < and n ∈ Z.

Denote by S the full subcategory of SHS1(<) whose objects are

{6∞r A[n]}A∈<,n∈Z.

The next statement gives another description of the triangulated category D(<,F).

Theorem 4.4. The category S is triangulated. Moreover, there is a contravariant
equivalence of triangulated categories

T : D(<,F)→S .

Proof. By [Garkusha 2013] the natural functor

j : <→ D(<,F)

is a universal excisive homotopy invariant homology theory. Consider the homol-
ogy theory

t : <→ SHS1(<)op

that takes an algebra A ∈ < to 6∞r A. It is homotopy invariant and excisive, hence
there is a unique triangulated functor

T : D(<,F)→ SHS1(<)op,

such that t = T ◦ j . If we apply T to the loop extension

�A→ E A→ A,

we get an isomorphism
T (�A)∼=6∞r A[1],

which is functorial in A.
It follows from Comparison Theorem B of [Garkusha 2014] and Corollary 4.3

that T is full and faithful. Every object of S is plainly equivalent to the image of
an object in D(<,F). �

Remark. Suppose I is an infinite index set and {Bi }i∈I is a family of algebras from
< such that the algebra B = ⊕I Bi is in <. Then 6∞r B is a compact object of
SHS1(<), but ⊕I6

∞r(Bi ) may not be compact. Furthermore, suppose B =⊕I Bi

is also a direct sum object of the Bi -s in the triangulated category D(<,F). Then
HomD(<,F)(B,⊕I Ci ) 6=⊕I HomD(<,F)(B,Ci ) in general, where {Ci }i∈I is a family
of algebras from < such that the algebra ⊕I Ci is in <.
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For instance, consider the triangulated category KK of [Kasparov 1980], with
which D(<,F) shares many properties. It follows from [Rosenberg and Schochet
1987, Theorem 1.12] that KK has countable coproducts given by A=⊕I Ai , where
I is a countable set. However, the functor KK (A,−) does not respect countable
coproducts by [Rosenberg and Schochet 1987, Remark 7.12].

Recall from [Garkusha 2014] that we can vary < in the following sense. If <′

is another T-closed admissible category of algebras containing <, then D(<,F) is
a full subcategory of D(<′,F).

5. Morita stable algebraic Kasparov K-theory

If A is an algebra and n > 0 is a positive integer, then there is a natural inclusion
ι : A→ Mn A of algebras, sending A to the upper left corner of Mn A. Throughout
this section < is a small T-closed admissible category of k-algebras with Mn A ∈ <
for every A ∈ < and n > 1.

Denote by U•<mor
I,J the model category obtained from U•<I,J by Bousfield local-

isation with respect to the family of maps of cofibrant objects

{r(Mn A)→ r A | A ∈ <, n > 0}.

Let Spmor(<) be the stable model category of S1-spectra associated with U•<mor
I,J .

Observe that it is also obtained from Sp(<) by Bousfield localisation with respect
to the family of maps of cofibrant objects in Sp(<)

{Fs(r(Mn A))→ Fs(r A) | A ∈ <, n > 0, s > 0}.

Here Fs : U•<mor
I,J → Spmor(<) is the canonical functor adjoint to the evaluation

functor Evs : Spmor(<)→U•<mor
I,J .

Definition [Garkusha 2014]. (1) The Morita stable algebraic Kasparov K-theory
space of two algebras A, B ∈ < is the space

K mor(A, B)= colim(K (A, B)→K (A,M2k⊗ B)→K (A,M3k⊗ B)→· · · ).

Its homotopy groups will be denoted by K mor
n (A, B), n > 0.

(2) A functor X : <→S/(Spectra) is Morita invariant if each morphism X (A)→
X (Mn A), A ∈ <, n > 0, is a weak equivalence.

(3) An excisive, homotopy invariant homology theory X : <→ T is Morita in-
variant if each morphism X (A)→ X (Mn A), A ∈<, n> 0, is an isomorphism.

(4) The Morita stable algebraic Kasparov K-theory spectrum of A, B ∈ < is the
�-spectrum

Kmor(A, B)= (K mor(A, B),K mor(JA, B),K mor(J 2 A, B), . . .).
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Denote by SHmor
S1 (<) the (stable) homotopy category of Spmor(<). It is a com-

pactly generated triangulated category with compact generators {6∞r A[n]}A∈<,n∈Z.
Let Smor be the full subcategory of SHmor

S1 (<)whose objects are {6∞r A[n]}A∈<,n∈Z.
Recall the definition of the triangulated category Dmor(<,F) from [Garkusha

2013]. Its objects are those of < and the set of morphisms between two algebras
A, B ∈ < is defined as the colimit of the sequence of abelian groups

D(<,F)(A, B)→ D(<,F)(A,M2 B)→ D(<,F)(A,M3 B)→ · · · .

There is a canonical functor <→ Dmor(<,F). It is a universal excisive, homotopy
invariant and Morita invariant homology theory on <.

Theorem 5.1. Given A ∈ < the composite map

6∞r A
i
→R(A)

j
→ K(A,−)→ Kmor(A,−) (5.1)

is a stable equivalence in Spmor(<), functorial in A. In particular, there is a natu-
ral isomorphism

SHmor
S1 (<)(6

∞r B[n], 6∞r A)∼= Kmor
n (A, B)

for all A, B ∈ < and n ∈ Z. Furthermore, the category Smor is triangulated and
there is a contravariant equivalence of triangulated categories

T : Dmor(<,F)→Smor.

Proof. Let S c and S c
mor be the categories of compact objects in SHS1(<) and

SHmor
S1 (<) respectively. Denote by R the full triangulated subcategory of S gener-

ated by objects

{cone(6∞r(Mn A)→6∞r A)[k] | A ∈ <, n > 0, k ∈ Z}.

Let Rc be the thick closure of R in SHS1(<). It follows from [Neeman 1996,
Theorem 2.1] that the natural functor

S c/Rc
→S c

mor

is full and faithful and S c
mor is the thick closure of S c/Rc.

We claim that the natural functor

S /R→S c/Rc (5.2)

is full and faithful. For this consider a map α : X→ Y in S c such that its cone Z
is in Rc and Y ∈ S . We can find Z ′ ∈ Rc such that Z ⊕ Z ′ is isomorphic to an
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object W ∈R. Construct a commutative diagram in S c

U //

s
��

Y // W //

p
��

6U

��

X α
// Y // Z // 6X

where p is the natural projection. We see that αs is such that its cone W belongs
to R. Standard facts for Gabriel–Zisman localisation theory imply (5.2) is a fully
faithful embedding. It also follows that

Smor =S /R.

We want to compute Hom sets in S /R. For this observe first that there is a
contravariant equivalence of triangulated categories

τ : D(<,F)/U→Smor,

where U is the smallest full triangulated subcategory of D(<,F) containing

{cone(A
ι
→ Mn A) | A ∈ <, n > 0}.

This follows from Theorem 4.4.
By construction, every excisive homotopy invariant Morita invariant homology

theory <→ T factors through D(<,F)/U. Since <→ Dmor(<,F) is a universal
excisive homotopy invariant Morita invariant homology theory [Garkusha 2013],
we see that there exists a triangle equivalence of triangulated categories

Dmor(<,F)' D(<,F)/U.

So there is a natural contravariant triangle equivalence of triangulated categories

T : Dmor(<,F)→Smor.

Using this and [Garkusha 2014, Theorem 9.8], there is a natural isomorphism

Smor(6
∞r B[n], 6∞r A)∼= Kmor

n (A, B)

for all A, B ∈ < and n ∈ Z. The fact that (5.1) is a stable equivalence in Spmor(<)

is now obvious. �

6. Stable algebraic Kasparov K-theory

If A is an algebra set M∞A = ∪n Mn A. There is a natural inclusion ι : A→ M∞A
of algebras, sending A to the upper left corner of M∞A. Throughout the section
< is a small T-closed admissible category of k-algebras with M∞(A) ∈ < for all
A ∈ <.
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Denote by U•<∞I,J the model category obtained from U•<I,J by Bousfield local-
isation with respect to the family of maps of cofibrant objects

{r(M∞A)→ r A | A ∈ <}.

Let Sp∞(<) be the stable model category of S1-spectra associated with U•<∞I,J .
Observe that it is also obtained from Sp(<) by Bousfield localisation with respect
to the family of maps of cofibrant objects in Sp(<)

{Fs(r(M∞A))→ Fs(r A) | A ∈ <, s > 0}.

Definition [Garkusha 2014]. (1) The stable algebraic Kasparov K-theory space
of two algebras A, B ∈ < is the space

K st(A, B)=

colim(K (A, B)→K (A,M∞k⊗ B)→K (A,M∞k⊗M∞k⊗ B)→ · · · ).

Its homotopy groups will be denoted by K st
n (A, B), n > 0.

(2) A functor X :<→S/(Spectra) is stable or M∞-invariant if X (A)→ X (M∞A)
is a weak equivalence for all A ∈ <.

(3) An excisive, homotopy invariant homology theory X : < → T is stable or
M∞-invariant if X (A)→ X (M∞A) is an isomorphism for all A ∈ <.

(4) The stable algebraic Kasparov K-theory spectrum for A, B ∈ < is the �-
spectrum

Kst(A, B)= (K st(A, B),K st(JA, B),K st(J 2 A, B), . . .).

Denote by SH∞S1(<) the (stable) homotopy category of Sp∞(<). It is a compactly
generated triangulated category with compact generators {6∞r A[n]}A∈<,n∈Z. Let
S∞ be the full subcategory of SH∞S1(<) whose objects are {6∞r A[n]}A∈<,n∈Z.

Recall from [Garkusha 2013] the definition of the triangulated category Dst(<,F).
Its objects are those of < and the set of morphisms between two algebras A, B ∈ <
is defined as the colimit of the sequence of abelian groups

D(<,F)(A, B)→ D(<,F)(A,M∞k⊗k B)

→ D(<,F)(A,M∞k⊗k M∞k⊗k B)→ · · · .

There is a canonical functor <→ Dst(<,F). It is the universal excisive, homotopy
invariant and stable homology theory on <.

The proof of the next result literally repeats that of Theorem 5.1 if we replace
the algebras Mn A with M∞A and the categories Smor and Dmor(<,F) with S∞
and Dst(<,F) respectively.
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Theorem 6.1. Given A ∈ <, the composite map

6∞r A
i
→R(A)

j
→ K(A,−)→ Kst(A,−)

is a stable equivalence in Sp∞(<), functorial in A. In particular, there is a natural
isomorphism

SH∞S1(<)(6
∞r B[n], 6∞r A)∼= Kst

n (A, B)

for all A, B ∈ < and n ∈ Z. Furthermore, the category S∞ is triangulated and
there is a contravariant equivalence of triangulated categories

T : Dst(<,F)→S∞.

Let 0A, for A ∈ Algk , be the algebra of N×N-matrices which satisfy the fol-
lowing two properties.

(i) The set {ai j | i, j ∈ N} is finite.

(ii) There exists a natural number N ∈ N such that each row and each column has
at most N nonzero entries.

M∞A ⊂ 0A is an ideal. We put

6A = 0A/M∞A.

We note that 0A, 6A are the cone and suspension rings of A considered by Karoubi
and Villamayor [1969, p. 269], where a different but equivalent definition is given.
By [Cortiñas and Thom 2007] there are natural ring isomorphisms

0A ∼= 0k⊗ A, 6A ∼=6k⊗ A.

We call the short exact sequence

M∞A� 0A�6A

the cone extension. By [Cortiñas and Thom 2007] 0A�6A is a split surjection
of k-modules.

Let τ be the k-algebra which is unital and free on two generators α and β satis-
fying the relation αβ = 1. By [Cortiñas and Thom 2007, Lemma 4.10.1] the kernel
of the natural map

τ → k[t±1
]

is isomorphic to M∞k. We set τ0 = τ ⊕k[t±1] σ .
Let A be a k-algebra. We get an extension

M∞A // τ A // A[t±1
],
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and an analogous extension

M∞A // τ0 A // σ A.

Definition. We say that an admissible category of k-algebras < is τ0-closed (re-
spectively 0-closed) if τ0 A ∈ < (respectively 0A ∈ <) for all A ∈ <.

Cuntz [1997; 2005; Cuntz and Thom 2006] constructed a triangulated category
kklca whose objects are the locally convex algebras. Later Cortiñas and Thom
[2007] constructed in a similar fashion a triangulated category kk whose objects
are all k-algebras Algk . If we suppose that < is also 0-closed, then one can define
a full triangulated subcategory kk(<) of kk whose objects are those of <.

It can be shown similar to [Garkusha 2007, Theorem 7.4] or [Garkusha 2013,
Corollary 9.4] that there is an equivalence of triangulated categories

Dst(<,F)
∼
−→ kk(<).

An important computational result of Cortiñas and Thom [2007] states that there
is an isomorphism of graded abelian groups⊕

n∈Z

kk(<)(k, �n A)∼=
⊕
n∈Z

KHn(A),

where the right hand side is the homotopy K-theory of A∈< in the sense of [Weibel
1989].

Summarising the above arguments together with Theorem 6.1 we obtain the
following:

Theorem 6.2. Suppose < is 0-closed. Then there is a contravariant equivalence
of triangulated categories

kk(<)→S∞.

Moreover, there is a natural isomorphism

SH∞S1(<)(6
∞r A[n], 6∞r(k))∼= KHn(A)

for any A ∈ < and any integer n.

7. K-motives of algebras

Throughout the section we assume that < is a small tensor closed and T-closed
admissible category of k-algebras with M∞(k) ∈ <. It follows that

M∞A :∼= A⊗M∞(k) ∈ <

for all A ∈ <.
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In this section we define and study the triangulated category of K-motives. It
shares many properties with the category of K-motives for algebraic varieties con-
structed in [Garkusha and Panin 2012; 2014b]

Since < is tensor closed, it follows that U•<∞I,J is a monoidal model category.
Let Sp6

∞
(<) be the monoidal category of symmetric spectra in the sense of [Hovey

2001] associated to U•<∞I,J .

Definition. The category of K-motives DK (<) is the stable homotopy category of
Sp6
∞
(<). The K-motive MK (A) of an algebra A ∈ < is the image of A in DK (<),

that is MK (A)=6∞r A. Thus one has a canonical contravariant functor

MK : <→ DK (<)

sending algebras to their K-motives.

The following proposition follows from standard facts for monoidal model cat-
egories.

Proposition 7.1. DK (<) is a symmetric monoidal compactly generated triangu-
lated category with compact generators {MK (A)}A∈<. For any two algebras A,B∈<
one has a natural isomorphism

MK (A)⊗MK (B)∼= MK (A⊗ B).

Furthermore, any extension of algebras in <

(E) : A→ B→ C

induces a triangle in DK (<)

MK (E) : MK (C)→ MK (B)→ MK (A)
+
−→ .

There is a pair of adjoint functors

V : Sp∞(<)� Sp6
∞
(<) :U,

where U is the right Quillen forgetful functor. These form a Quillen equivalence.
In particular, the induced functors

V : SH∞S1(<)� DK (<) :U

are equivalences of triangulated categories. It follows from Proposition 7.1 that
SH∞S1(<) is a symmetric monoidal category and

6∞r A⊗6∞r B ∼=6∞r(A⊗ B)

for all A, B ∈ <. Moreover,

V (6∞r A)∼= MK (A)
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for all A ∈ <.
Summarising the above arguments together with Theorem 6.1 we get the follow-

ing:

Theorem 7.2. For any two algebras A, B ∈ < and any integer n one has a natural
isomorphism of abelian groups

DK (<)(MK (B)[n],MK (A))∼= Kst
n (A, B).

The full subcategory T of DK (<) spanned by K-motives of algebras {MK(A)}A∈<
is triangulated and there is an equivalence of triangulated categories

Dst(<,F)→ T op

sending an algebra A ∈ < to its K-motive MK (A).

The next result is reminiscent of a similar result for K-motives of algebraic va-
rieties in the sense of [Garkusha and Panin 2012; 2014b] identifying the K-motive
of the point with algebraic K-theory.

Corollary 7.3. Suppose < is 0-closed. Then for any algebra A and any integer n
one has a natural isomorphism of abelian groups

DK (<)(MK (A)[n],MK (k))∼= KHn(A),

where the right hand side is the n-th homotopy K-theory group in the sense of
[Weibel 1989].

Proof. This follows from [Garkusha 2013, Theorem 10.6] and the preceding theo-
rem. �

We finish the section by showing that the category kk(<) of [Cortiñas and Thom
2007] can be identified with the K-motives of algebras.

Theorem 7.4. Suppose < is 0-closed. Then there is a natural equivalence of tri-
angulated categories

kk(<)
∼
−→ T op

sending an algebra A ∈ < to its K-motive MK (A).

Proof. This follows from Theorem 7.2 and the fact that Dst(<,F) and kk(<)
are triangle equivalent (see [Garkusha 2007, Theorem 7.4] or [Garkusha 2013,
Corollary 9.4]). �

The latter theorem shows in particular that kk(<) is embedded into the com-
pactly generated triangulated category of K-motives DK (<) and generates it.
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8. The G-stable theory

The stable motivic homotopy theory over a field is the homotopy theory of T -
spectra, where T = S1

∧Gm (see [Voevodsky 1998; Jardine 2000]). There are
various equivalent definitions of the theory, one of which is given in terms of
(S1,Gm)-bispectra. In our context the role of the motivic space Gm is played
by σ = (t − 1)k[t±1

]. Its simplicial functor r(σ ) is denoted by G. In this section
we define the stable category of (S1,G)-bispectra and construct an explicit fibrant
replacement of the (S1,G)-bispectrum 6∞

G
6∞r A of an algebra A. One can also

define a Quillen equivalent category of T -spectra, where T = S1
∧G, and compute

an explicit fibrant replacement for the T -spectrum of an algebra. However we
prefer to work with (S1,G)-bispectra rather than T -spectra in order to study K-
motives of algebras in terms of associated (S1,G)-bispectra (see the next section).

Throughout the section we assume that < is a small tensor closed and T-closed
admissible category of k-algebras. We have that σ A := A⊗ σ ∈ < for all A ∈ <.

Recall that U•<I,J is a monoidal model category. It follows from [Hovey 2001,
Section 6.3] that Sp(<) is a U•<I,J -model category. In particular

−⊗G : Sp(<)→ Sp(<)

is a left Quillen endofunctor.
By definition, a (S1,G)-bispectrum or bispectrum E is given by a sequence

(E0, E1, . . .), where each E j is a S1-spectrum of Sp(<), together with bonding
morphisms εn : En ∧G→ En+1. Maps are sequences of maps in Sp(<) respecting
the bonding morphisms. We denote the category of bispectra by SpG(<). It can be
regarded as the category of G-spectra on Sp(<) in the sense of [Hovey 2001].

SpG(<) is equipped with the stable U•<I,J -model structure in which weak equiv-
alences are defined by means of bigraded homotopy groups. The bispectrum object
E determines a sequence of maps of S1-spectra

E0
ε̃0
−→�G E1

�G(ε̃1)
−−−−→�2

G E2→ · · · ,

where �G is the functor Hom(G,−) and ε̃n-s are adjoint to the structure maps of
E . We define πp,qE in A-sections as the colimit

coliml
(
HomSHS1 (<)(S

p−q , �
q+l
G

J El(A))
→ HomSHS1 (<)(S

p−q , �
q+l+1
G

J El+1(A))→ · · ·
)

once E has been replaced up to levelwise equivalence by a levelwise fibrant object
JE so that the “loop” constructions make sense. We also call π∗,qE the homotopy
groups of weight q .
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By definition, a map of bispectra is a weak equivalence in SpG(<) if it induces
an isomorphism on bigraded homotopy groups. We denote the homotopy category
of SpG(<) by SHS1,G(<). It is a compactly generated triangulated category.

To define the main (S1,G)-bispectrum of this section, denoted by KG(A,−),
we should first establish some facts for algebra homomorphisms.

Suppose A,C ∈ <, then one has a commutative diagram

J (A⊗C) // //

γA,C

��

T (A⊗C)
ηA⊗C
// //

��

A⊗C

JA⊗C // // T (A)⊗C
ηA⊗C
// // A⊗C

in which γA,C is uniquely determined by the split monomorphism

i A⊗C : A⊗C→ T (A)⊗C.

One sets γ 0
A,C := 1A⊗C . We construct inductively

γ n
A,C : J n(A⊗C)→ J n(A)⊗C, n > 1.

Namely, γ n+1
A,C is the composite

J n+1(A⊗C)
J (γ n

A,C )

−−−−→ J (J n(A)⊗C)
γJn A,C
−−−→ J n+1(A)⊗C.

Given n > 0, we define a map

tn = t A,C
n :K (J n A,−)→K (J n(A⊗C),−⊗C)=Hom(rC,K (J n(A⊗C),−))

as follows. Let B ∈ < and (α : J n+m A→ B(�m)) ∈K (J n A, B). We set

tn(α) ∈K (J n(A⊗C), B⊗C)

to be the composite

J n+m(A⊗C)
γ n+m

A,C
−−−→ J n+m(A)⊗C

α⊗C
−−→ B1(�m)⊗C

τ
∼= (B⊗C)1(�m).

Here τ is a canonical isomorphism (see [Cortiñas and Thom 2007, Proposition 3.1.3])
and (B⊗C)1 stands for the simplicial ind-algebra

[m, `] 7→ HomS(sdm 1`, (B⊗C)1)= (B⊗C)sdm 1` ∼= ksdm 1`
⊗ (B⊗C).

One has to verify that tn is consistent with maps

HomAlgind
k
(J n+m A,B1(�m))

ς
−→ HomAlgind

k
(J n+m+1 A,B1(�m+1)).
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More precisely, we must show that the map

J n+m+1(A⊗C)
J (γ n+m

A,C )

−−−−→ J (J n+m A⊗C)
J (α⊗1)
−−−−→ J (B1(�m)⊗C)

Jτ
∼= J ((B⊗C)1(�m))

ξυ
−→ (B⊗C)1(�m+1)

is equal to the map

J n+m+1(A⊗C)
γ n+m+1

A,C
−−−−→ J n+m+1 A⊗C

Jα⊗1
−−−→ J (B1(�m))⊗C

ξυ⊗1
−−→ B1(�m+1)⊗C

τ
∼= (B⊗C)1(�m+1).

The desired property follows from commutativity of the diagram (we use [Garkusha
2014, Lemma 3.4] here)

J n+m+1(A⊗C)

J (γ n+m
A,C )

��

J (J n+m A⊗C)
γJn+m A,C

//

J (α⊗1)
��

J n+m+1 A⊗C // //

J (α)⊗1
��

T J n+m A⊗C // //

��

J n+m A⊗C

α⊗1
��

J (B1(�m)⊗C) // J (B1(�m))⊗C

ξυ⊗1
��

// // T (B1(�m))⊗C

��

// // B1(�m)⊗C

J (B1(�m)⊗C)

Jτ
��

// B1(�m+1)⊗C // //

τ

��

P(B1(�m))⊗C // //

τ

��

B1(�m)⊗C

τ

��

J ((B⊗C)1(�m))
ξυ

// (B⊗C)1(�m+1) // // P(B⊗C)1(�m) // // (B⊗C)1(�m)

We see that tn is well defined. We claim that the collection of maps (tn)n defines a
map of S1-spectra

t : K(A, B)→ K(A⊗C, B⊗C).

We have to check that for each n > 0 the diagram

K (J n A, B)
∼=

//

tn
��

�K (J n+1 A, B)

�tn+1
��

K (J n(A⊗C), B⊗C)
∼=
// �K (J n+1(A⊗C), B⊗C)

is commutative. But this directly follows from the definition of the horizontal maps
(see [Garkusha 2014, Theorem 5.1]) and arguments above made for the tn .
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If we replace C by σ we get that the array
...

...
...

K(σ 2 A, B) : K (σ 2 A, B) K (Jσ 2 A, B) K (J 2σ 2 A, B) · · ·

K(σ A, B) : K (σ A, B) K (Jσ A, B) K (J 2σ A, B) · · ·

K(A, B) : K (A, B) K (JA, B) K (J 2 A, B) · · ·

together with structure maps

K(σ n A,−)⊗G→ K(σ n+1 A,−)

defined as adjoint maps to

t : K(σ n A,−)→ Hom(G,K(σ n+1 A,−))

forms a (S1,G)-bispectrum, which we denote by KG(A,−).
There is a natural map of (S1,G)-bispectra

0 :6∞G 6
∞r A→ KG(A,−),

where 6∞
G
6∞r A is the (S1,G)-bispectrum represented by the array

...
...

6∞r A⊗G2
: r A⊗G2 (∼= r(σ 2 A)) (r A∧ S1)⊗G2 (∼= r(σ 2 A)∧ S1) · · ·

6∞r A⊗G : r A⊗G (∼= r(σ A)) (r A∧ S1)⊗G (∼= r(σ A)∧ S1) · · ·

6∞r A : r A r A∧ S1
· · ·

with obvious structure maps.
By Theorem 4.2 each map

0n :6
∞r A⊗Gn

→ KG(A,−)n = K(σ n A,−)

is a stable weak equivalence in Sp(<). By [Garkusha 2014] each K(σ n A,−) is a
fibrant object in Sp(<). For each n > 0 we set

2∞G KG(A,−)n
= colim(K(σ n A,−)

t0
−→ K(σ n+1 A,−⊗ σ)

�G(t1)
−−−→ K(σ n+2 A,−⊗ σ 2)→ · · · ).

By specialising a collection of results in [Hovey 2001, Section 4] to our setting we
have that 2∞

G
KG(A,−) is a fibrant bispectrum and the natural map

j : KG(A,−)→2∞G KG(A,−)

is a weak equivalence in SpG(<).
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We have thus shown that 2∞
G

KG(A,−) is an explicit fibrant replacement for the
bispectrum 6∞

G
6∞r A of the algebra A. Denote by K σ (A, B) the (0, 0)-space of

the bispectrum 2∞
G

KG(A, B). It is, by construction, the colimit

colimn K (σ n A, σ n B).

Its homotopy groups will be denoted by K σ
n (A, B), n > 0.

Theorem 8.1. Let A be an algebra in <; then the composite map

j ◦0 :6∞G 6
∞r A→2∞G KG(A,−)

is a fibrant replacement of 6∞
G
6∞r A. In particular,

SHS1,G(6
∞

G 6
∞r B, 6∞G 6

∞r A)=K σ
0 (A, B)

for all B ∈ <.

Remark. Let SH(F) be the motivic stable homotopy category over a field F .
The category SHS1,G(<) shares many properties with SH(F). The author and
Panin [Garkusha and Panin 2014a] have recently computed a fibrant replacement
of 6∞s,t X+, X ∈ Sm /F , by developing the machinery of framed motives. The ma-
chinery is based on the theory of framed correspondences developed by Voevodsky
[2001]. In turn, the computation of Theorem 8.1 is possible thanks to the existence
of universal extensions of algebras.

Let F be an algebraically closed field of characteristic zero with an embedding
F ↪→ C and let SH be the stable homotopy category of ordinary spectra. Let
c : SH→ SH(F) be the functor induced by sending a space to the constant presheaf
of spaces on Sm /F . Levine [2014] has recently shown that c is fully faithful, a
fact implied by his result that the Betti realisation functor in the sense of [Ayoub
2010]

ReB : SH(F)→ SH

gives an isomorphism

ReB∗ : πn,0SF (F)→ πn(S )

for all n ∈ Z. Here SF is the motivic sphere spectrum in SH(F) and S is the
classical sphere spectrum in SH. These results use recent developments for the
spectral sequence associated with the slice filtration of the motivic sphere SF .

All this justifies raising the following questions.

Questions. (1) Is there an admissible category of commutative algebras < over
the field of complex numbers C such that the natural functor

c : SH→ SHS1,G(<),
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induced by the functor S→U< sending a simplicial set to the constant simplicial
functor on <, is fully faithful?

(2) Let < be an admissible category of commutative C-algebras and let SC be
the bispectrum 6∞

G
6∞rC. Is it true that the homotopy groups of weight zero

πn,0SC(C) = K σ
n (C,C), n > 0, are isomorphic to the stable homotopy groups

πn(S ) of the classical sphere spectrum?

We should also mention that one can define (S1,G)-bispectra by starting at
the monoidal category of symmetric spectra Sp6(<) associated with the monoidal
category U•(<)I,J and then stabilising the left Quillen functor

−⊗G : Sp6(<)→ Sp6(<).

One produces a model category Sp6G(<) of (usual, nonsymmetric) G-spectra in
Sp6(<). Using Hovey’s notation [2001], one has, by definition,

Sp6G(<)= SpN(Sp6(<),−⊗G).

There is a Quillen equivalence

V : Sp(<)� Sp6(<) :U

as well as a Quillen equivalence

V : SpG(<)� Sp6G(<) :U,

where U is the forgetful functor (see [Hovey 2001, Section 5.7]).
If we denote by SH6

S1(<) and SH6
S1,G

(<) the homotopy categories of Sp6(<)
and Sp6G(<) respectively, then one has equivalences of categories

V : SHS1(<)� SH6
S1(<) :U and V : SHS1,G(<)� SH6

S1,G
(<) :U.

We refer the interested reader to [Hovey 2001; Jardine 2000] for further details.

9. K-motives and (S1, G)-bispectra

We prove in this section that the triangulated category of K-motives is fully faith-
fully embedded into the stable homotopy category of (S1,G)-bispectra SHS1,G(<).
In particular, the triangulated category kk(<) of [Cortiñas and Thom 2007] is fully
faithfully embedded into SHS1,G(<) by means of a contravariant functor. As an
application we construct an explicit fibrant (S1,G)-bispectrum representing homo-
topy K-theory in the sense of [Weibel 1989].

Throughout this section we assume that < is a small tensor closed, T -, 0- and
τ0-closed admissible category of k-algebras. It follows that σ A, 6A,M∞A ∈ <
for all A ∈ <.
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Let Sp6
∞,G(<) denote the model category of (usual, nonsymmetric) G-spectra

in Sp6
∞
(<). Using Hovey’s notation [2001], Sp6

∞,G(<)= SpN(Sp6
∞
(<),−⊗G).

Proposition 9.1. The functor

−⊗G : Sp6
∞
(<)→ Sp6

∞
(<)

and the canonical functor

F0,G =6
∞

G : Sp6
∞
(<)→ Sp6

∞,G(<)

are left Quillen equivalences.

Proof. We first observe that −⊗ G is a left Quillen equivalence on Sp6
∞
(<) if

and only if so is −⊗6∞G. By [Cortiñas and Thom 2007, Section 4] there is an
extension

M∞k� τ0� σ.

It follows from [Cortiñas and Thom 2007, Lemma 7.3.2] that 6∞(r(τ0)) = 0 in
DK (<), and hence 6∞(r(τ0)) is weakly equivalent to zero in Sp6

∞
(<).

The extension above yields therefore a zigzag of weak equivalences between
cofibrant objects in Sp6

∞
(<) from6∞(r(M∞k)) to6∞G∧S1. Since6∞(r(M∞k))

is weakly equivalent to the monoidal unit 6∞(r(k)), we see that 6∞(r(k)) is
zigzag weakly equivalent to (6∞G)∧ S1 in the category of cofibrant objects in
Sp6
∞
(<).

Since 6∞(r(k)) is a monoidal unit in Sp6
∞
(<), then −⊗6∞(r(k)) is a left

Quillen equivalence on Sp6
∞
(<), and hence so is −⊗ ((6∞G)∧ S1)). But −∧ S1

is a left Quillen equivalence on Sp6
∞
(<). Therefore −⊗6∞G is a left Quillen

equivalence by [Hovey 1999, Corollary 1.3.15].
The fact that the canonical functor

F0,G : Sp6
∞
(<)→ Sp6

∞,G(<)

is a left Quillen equivalence now follows from [Hovey 2001, Section 5.1]. �

Denote the homotopy category of Sp6
∞,G(<) by SH6,∞

S1,G
(<).

Corollary 9.2. The canonical functor

F0,G =6
∞

G : DK (<)→ SH6,∞

S1,G
(<)

is an equivalence of triangulated categories.

Recall that Sp6
∞
(<) is the Bousfield localisation of Sp6(<) with respect to

{Fs(r(M∞A))→ Fs(r A) | A ∈ <, s > 0}.
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It follows that the induced triangulated functor is fully faithful

DK (<)→ SH6
S1(<).

In a similar fashion, Sp6
∞,G(<) can be obtained from Sp6G(<) by Bousfield lo-

calisation with respect to

{Fk,G(Fs(r(M∞A)))→ Fk,G(Fs(r A)) | A ∈ <, k, s > 0}.

We summarise all of this together with Proposition 9.1 as follows.

Theorem 9.3. There is an adjoint pair of triangulated functors

8 : SH6
S1,G

(<)� DK (<) :9

such that 9 is fully faithful. Moreover, T = Ker8 is the localising subcategory of
SH6

S1,G
(<) generated by the compact objects

{cone(Fk,G(Fs(r(M∞A)))→ Fk,G(Fs(r A))) | A ∈ <}

and DK (<) is triangle equivalent to SH6
S1,G

(<)/T .

Corollary 9.4. There is a contravariant fully faithful triangulated functor

kk(<)→ SHS1,G(<).

Proof. This follows from Theorems 7.4 and 9.3. �

Let Sp∞,G(<) denote the model category of G-spectra in Sp∞(<). Using Hovey’s
notation [2001], we have

Sp∞,G(<)= SpN(Sp∞(<),−⊗G).

As above, there is a Quillen equivalence

V : Sp∞,G(<)� Sp6
∞,G(<) :U,

where U is the forgetful functor. It induces an equivalence of triangulated cate-
gories

V : SH∞S1,G
(<)� SH6,∞

S1,G
(<) :U,

where the left hand side is the homotopy category of Sp∞,G(<).
Given A ∈ <, consider a (S1,G)-bispectrum KGst(A,−) which we define at

each B ∈ < as

colimn(KG(A, B)→ KG(A,M∞k⊗ B))→ KG(A,M2
∞

k⊗ B)→ · · · ).
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It can also be presented as the array

...
...

...

Kst (σ 2 A, B) : K st (σ 2 A, B) K st (Jσ 2 A, B) K st (J 2σ 2 A, B) · · ·

Kst (σ A, B) : K st (σ A, B) K st (Jσ A, B) K st (J 2σ A, B) · · ·

Kst (A, B) : K st (A, B) K st (JA, B) K st (J 2 A, B) · · ·

It follows from Theorem 6.1 that the canonical map of bispectra

6∞G 6
∞r A→ KGst(A,−)

is a level weak equivalence in Sp∞,G(<). In fact we can say more. We shall show
below that KGst(A,−) is a fibrant bispectrum and this arrow is a fibrant replace-
ment of 6∞

G
6∞r A in Sp∞,G(<). To this end we have to prove the cancellation

theorem for the S1-spectrum Kst(A,−). The cancellation theorem for K-theory of
algebraic varieties was proved in [Garkusha and Panin 2015]. It is also reminiscent
of the cancellation theorem for motivic cohomology proved by Voevodsky [2010a].

Theorem 9.5 (cancellation for K-theory). Each structure map of the bispectrum
KGst(A,−)

Kst(σ n A,−)→�GKst(σ n+1 A,−), n > 0,

is a weak equivalence of fibrant S1-spectra.

Proof. It follows from Proposition 9.1 that the functor

−⊗G : Sp∞(<)→ Sp∞(<)

is a left Quillen equivalence. It remains to apply Theorem 6.1. �

Corollary 9.6. For any A ∈ < the bispectrum KGst(A,−) is fibrant in Sp∞,G(<).
Moreover, the canonical map of bispectra

6∞G 6
∞r A→ KGst(A,−)

is a fibrant resolution for 6∞
G
6∞r A in Sp∞,G(<).

The following result says that the bispectrum KGst(A,−) is (2, 1)-periodic and
represents stable algebraic Kasparov K-theory (cf. [Voevodsky 1998, Theorems 6.8
and 6.9]).

Theorem 9.7. For any algebras A, B ∈ < and any integers p, q there is an iso-
morphism of abelian groups

πp,q(KGst(A, B))
∼= HomSHS1,G(<)

(6∞G 6
∞r B⊗ S p−q

⊗Gq ,KGst(A,−))∼= Kst
p−2q(A, B).
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In particular,

πp,q(KGst(A, B))∼= πp+2,q+1(KGst(A, B)).

Proof. By Corollary 9.6 the bispectrum KGst(A,−) is a fibrant replacement for
6∞

G
6∞r A in Sp∞,G(<). Therefore,

πp,q(KGst(A, B))∼= HomSH∞
S1,G

(<)(6
∞

G 6
∞r B⊗ S p−q

⊗Gq , 6∞G 6
∞r A).

Corollary 9.2 implies that the right hand side is isomorphic to

DK (<)(MK (B)⊗ S p−q
⊗Gq ,MK (A)).

On the other hand,

DK (<)(MK (B)⊗ S p−q
⊗Gq ,MK (A))

∼= DK (<)(MK (B)⊗ S p−2q
⊗ Sq
⊗Gq ,MK (A)).

The proof of Proposition 9.1 implies 6∞(S1
⊗G) is isomorphic to the monoidal

unit. Therefore,

DK (<)(MK (B)⊗S p−2q
⊗Sq
⊗Gq ,MK (A))∼= DK (<)(MK (B)[p−2q],MK (A)).

Our statement now follows from Theorem 7.2. �

The next statement says that the bispectrum KGst(k, B) gives a model for ho-
motopy K-theory in the sense of [Weibel 1989] (compare [Voevodsky 1998, Theo-
rem 6.9]).

Corollary 9.8. For any algebra B ∈ < and any integers p, q there is an isomor-
phism

πp,q(KGst(k, B))∼= KHp−2q(B).

Proof. This follows from the preceding theorem and [Garkusha 2014, 9.11]. �
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