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Multiplicative differential algebraic K -theory
and applications

Ulrich Bunke and Georg Tamme

We construct a version of Beilinson’s regulator as a map of sheaves of commuta-
tive ring spectra and use it to define a multiplicative variant of differential alge-
braic K -theory. We use this theory to give an interpretation of Bloch’s construc-
tion of K3-classes and the relation with dilogarithms. Furthermore, we provide
a relation to Arakelov theory via the arithmetic degree of metrized line bundles,
and we give a proof of the formality of the algebraic K -theory of number rings.
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1. Introduction

Let X be an arithmetic scheme, i.e., a regular separated scheme of finite type over
the integers. Its algebraic K -theory K∗(X) is an object of fundamental interest
in arithmetic. The algebraic K -theory of X is connected with the absolute Hodge
cohomology H∗AH(X,R( • )) via a Chern character map

Ki (X)→ H 2p−i
AH (X,R(p)), p, i ≥ 0,

called the Beilinson regulator. An important but extremely difficult problem is to
construct K -theory classes and to compute their images under the regulator map.

The papers [Bunke and Gepner 2013; Bunke and Tamme 2015] initiated a new
approach to this problem. The idea is to represent algebraic K -theory classes of X
by bundles on M × X for smooth manifolds M . In greater detail this goes as

MSC2010: primary 19F27; secondary 33B30.
Keywords: regulator, differential algebraic K-theory, Deligne cohomology, Steinberg relation,

dilogarithm.
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228 ULRICH BUNKE AND GEORG TAMME

follows. The K -groups of X are the homotopy groups of the algebraic K -theory
spectrum K(X). This spectrum defines a cohomology theory K(X)∗ on topological
spaces so that, e.g., K(X)0(Sn)∼= K0(X)⊕Kn(X). The cohomology theory K(X)∗

admits a differential refinement denoted by K̂∗(M × X). This differential algebraic
K -theory is a functor of two variables, a smooth manifold M and a scheme X as
above. A class x̂ ∈ K̂∗(M× X) combines the information of a class x ∈K(X)∗(M)
and a differential form on the manifold M × X (C) representing the image of x
under Beilinson’s regulator with secondary data. Thus, if we know a differential
refinement x̂ of x then, philosophically, it is easy to calculate the Beilinson regula-
tor of x .

The tool to construct differential algebraic K -theory classes is the cycle map.
It produces such classes from bundles on M × X equipped with additional geo-
metric data. Here a bundle on M × X is a vector bundle on the ringed space
(M × X, pr−1

X OX ). The geometric extra structure is a hermitian metric and a con-
nection on the associated complex vector bundle on M × X (C). The differential
form representing the Beilinson regulator of the corresponding K -theory class is
obtained using standard Chern–Weil theory.

The aim of the present paper is to develop a multiplicative version of differential
algebraic K -theory and to illustrate it in some applications. The cup product allows
us to construct new classes from given ones, but more interestingly, we will employ
the secondary information captured by the differential algebraic K -theory in an
essential way.

In order to achieve this goal we need a version of Beilinson’s regulator on the
level of ring spectra. Here our result is not completely satisfactory, as we have to
replace absolute Hodge cohomology by the weaker analytic Deligne cohomology,
which coincides with the former only for proper schemes. We construct a sheaf
of ring spectra K on the site consisting of products of a smooth manifold and an
arithmetic scheme such that π∗(K(M× X))∼=K(X)−∗(M). To this end we apply a
suitable group completion machine to the category of vector bundles on the ringed
space (M × X, pr−1

X OX ). We furthermore construct a sheaf of differential graded
algebras IDR which computes analytic Deligne cohomology and use characteristic
forms on vector bundles on the manifolds M× X (C) to construct a map of sheaves
of ring spectra (H denotes the Eilenberg–MacLane functor)

rBeil
:K→ H(IDR)

which on homotopy groups agrees with the Beilinson regulator. This is the main
new contribution of the paper.

Once the multiplicative Beilinson regulator is established, we introduce the mul-
tiplicative differential algebraic K -theory and a multiplicative version of the cycle
map in Section 3.
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The remainder of the present paper is devoted to applications and illustrating
how classical constructions from arithmetic fit into the framework of differential
algebraic K -theory.

In Section 4 we use multiplicative differential algebraic K -theory in order to
construct a secondary invariant from the Steinberg relation. As an application
we give a conceptual explanation of Bloch’s construction of elements in K3 of a
number ring from cycles in the Bloch complex, whose images under the regulator
map can be described explicitly in terms of the dilogarithm function.

In Arakelov theory one studies metrized line bundles on number rings and their
arithmetic degree. We explain in Section 5 how this can be understood entirely in
the framework of differential algebraic K -theory.

Finally, in Section 6 we show that the real homotopy type of the algebraic K -
theory spectrum K(Spec(R)) of rings of integers R in number fields is modeled
by the commutative algebra K∗(R) in a way which is natural in R. The precise for-
mulation of this result is Theorem 6.3 and uses the notion of formality introduced
in Definition 6.2.

2. Multiplicative theory

In this section we define algebraic K -theory as a sheaf K of commutative ring spec-
tra on a site of products of a smooth manifold and a regular scheme (see Section 2A
below). We furthermore define a sheaf of differential graded algebras IDR which
calculates the analytic Deligne cohomology (Section 2B).

The main result is the construction of a version of Beilinson’s regulator with
values in analytic Deligne cohomology as a map between sheaves of ring spectra

rBeil
:K→ H(IDR),

where H(IDR) is the Eilenberg–MacLane spectrum associated to the sheaf IDR
(Theorem 2.31) using multiplicative characteristic forms (Section 2C).

Throughout the paper we use the language of (∞, 1)-categories as developed
by Lurie [2009] and simply called ∞-categories in the following. We view an
ordinary category as an∞-category by taking its nerve.

2A. The sites. We let Mf denote the category of smooth manifolds with the open
covering topology. Here a smooth manifold is a smooth manifold with corners
locally modeled on [0,∞)n ⊂ Rn , n ∈ N. The category Mf contains manifolds
with boundary and is closed under products. Mf in particular contains the interval
I =11

= [0, 1] and the standard simplices 1p for all p ∈ N. We let RegZ denote
the category of regular separated schemes of finite type over Spec(Z) with the
topology of Zariski open coverings. Manifolds and schemes are combined in the
product Mf×RegZ of these sites.
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Let C be a presentable∞-category [Lurie 2009, Chapter 5]. We can consider
the∞-category of functors Fun((Mf×RegZ)

op,C). Objects in this∞-category
will also be referred to as presheaves.

Definition 2.1. An object F ∈ Fun((Mf×RegZ)
op,C) satisfies descent if F sends

disjoint unions to products and for every covering U of an object M×X ∈Mf×RegZ

the natural map

F(M×X)→ lim1op F(U•)

is an equivalence, where U• ∈ (Mf×RegZ)
1op

denotes the Čech nerve of U.

We write Fundesc((Mf×RegZ)
op,C) for the full subcategory of objects satisfy-

ing descent. These objects will be called sheaves. The inclusion as a full subcate-
gory admits a left adjoint L called sheafification [Lurie 2009, Lemma 6.2.2.7]. We
express this by the diagram

L : Fun((Mf×RegZ)
op,C)� Fundesc((Mf×RegZ)

op,C).

We will also need the notion of homotopy invariance (in the manifold direc-
tion), which should not be confused with A1-homotopy invariance in the algebraic
direction. Let I := [0, 1] be the unit interval.

Definition 2.2. An object F ∈ Fun((Mf×RegZ)
op,C) is homotopy invariant (in

the manifold direction) if the natural map

pr∗ : F(M × X)→ F(I ×M × X)

is an equivalence for every object M × X ∈Mf×RegZ.

We write FunI ((Mf×RegZ)
op,C) for the full subcategory of homotopy invari-

ant objects. We again have an adjunction

Hpre
: Fun((Mf×RegZ)

op,C)� FunI ((Mf×RegZ)
op,C),

and Hpre is called the homotopification. We denote by Fundesc,I ((Mf×RegZ)
op,C)

the full subcategory of presheaves satisfying both homotopy invariance and descent.
Then we have a commutative diagram in∞-categories

Fundesc,I ((Mf×RegZ)
op,C)

��

// Fundesc((Mf×RegZ)
op,C)

��
FunI ((Mf×RegZ)

op,C) // Fun((Mf×RegZ)
op,C)
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where all morphisms are inclusions of full subcategories. Taking adjoints, we get
a commutative diagram of localizations,

Fundesc,I ((Mf×RegZ)
op,C) Fundesc((Mf×RegZ)

op,C)
H
oo

FunI ((Mf×RegZ)
op,C)

L I

OO

Fun((Mf×RegZ)
op,C)

L

OO

Hpre
oo

(2.3)

In order to see that the horizontal adjunctions exists one can use identifications of
the form

Fun((Mf×RegZ)
op,C)' Fun(Mfop,Fun(Regop

Z ,C))

and refer to [Bunke et al. 2013, §2]. Then diagram (2.3) shows that sheafification
commutes with homotopification in the sense that L I ◦Hpre

' H ◦ L . Here L I

and H are the sheafification and the homotopification functors on the respective
subcategories. It is not clear that H is the restriction of Hpre. Again, we refer to
[Bunke et al. 2013, §2] for more details.

Note that any functor 8 : C→ C′ between presentable∞-categories induces a
functor 8∗ : Fun((Mf×RegZ)

op,C)→ Fun((Mf×RegZ)
op,C′) which preserves

homotopy invariant objects. In contrast, 8∗ preserves sheaves in general only if
8 commutes with limits. We will usually write 8 for 8∗ in order simplify the
notation.

Later, we will need the following explicit description of the homotopification.
We first define a functor

s : Fun((Mf×RegZ)
op,C)→ Fun((Mf×RegZ)

op,Fun(1op,C))

as the adjoint of

(Mf×RegZ)
op
×1op

→ (Mf×RegZ)
op, (M × X ×[p]) 7→1p

×M × X,

where 1p
∈Mf denotes the p-dimensional standard simplex. We further set

s̄ := colim1op ◦s : Fun((Mf×RegZ)
op,C)→ Fun((Mf×RegZ)

op,C). (2.4)

Lemma 2.5. (1) There is a natural map id→ s̄.

(2) If X ∈ Fun((Mf×RegZ)
op,C) is homotopy invariant, then the natural map

X→ s̄(X) is an equivalence.

(3) If f is a morphism in Fun((Mf×RegZ)
op,C) such that s̄( f ) is an equiva-

lence, then Hpre( f ) is an equivalence.

(4) The map id→ s̄ is equivalent to the unit of the homotopification id→Hpre

on Fun((Mf×RegZ)
op,C).
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Proof. The last statement implies the first three, which are exercises. Details can
be found in [Bunke 2013, Problem 4.29]. For (4) we refer to [Bunke et al. 2013,
Lemma 7.5]. �

2B. The multiplicative Deligne complex. We consider the site of smooth complex
varieties SmC with the Zariski topology and the product Mf×SmC. We denote
by Ch the 1-category of complexes of abelian groups considered as∞-category
and by Ch[W−1

] its localization with quasi-isomorphisms inverted. We have the
sheaf of complexes A ∈ Fundesc((Mf×SmC)

op,Ch) of complex-valued smooth
differential forms. It contains the subsheaf of complexes of real-valued forms AR.
Obviously, A ∼= AR⊗R C. The sheaf of complexes A furthermore has a decreasing
Hodge filtration F such that elements in Fp A(M × X) are locally of the form∑

I,J,K ,|J |≥p

ωI,J,K dx I
∧ dz J

∧ dz̄K ,

where the z j are local holomorphic coordinates on X and the xi are local coor-
dinates on M (in contrast to [Bunke and Tamme 2015, §4.2], we forget the log-
condition and the weight filtration). Since, degree-wise, these sheaves of com-
plexes consist of modules over the sheaf of smooth functions, they satisfy descent,
i.e., they are sheaves when considered as objects in Fun((Mf×SmC)

op,Ch[W−1
])

(see [Bunke et al. 2013, Lemma 7.12] for an argument). By the Poincaré lemma
they are also homotopy invariant.

We let B : RegZ → SmC be the functor mapping a scheme X to the smooth
complex variety X ×Z C. Then (id×B)∗A ∈ Fundesc((Mf×RegZ)

op,Ch) has a
Gal(C/R)-action which preserves the Hodge filtration. The sheaf of complexes
DR(p) ∈ Fundesc((Mf×RegZ)

op,Ch) is defined by

DR(p) := [(id×B)∗DRC(p)]Gal(C/R),

where

DRC(p) := Cone
(
(2π i)p AR⊕Fp A

α⊕β 7→α−β
−−−−−−→ A

)
[2p− 1].

Here ( · )Gal(C/R) denotes the object-wise fixed points under the group Gal(C/R).
Note that all sheaves that appear above have in fact values in complexes of real
vector spaces. Furthermore, taking invariants under the finite group Gal(C/R) is
an exact functor on real vector spaces with Gal(C/R)-action. Therefore, taking
Gal(C/R)-invariants preserves the descent and homotopy invariance conditions.
Consequently, we can consider DR(p) ∈ Fundesc,I ((Mf×RegZ)

op,Ch [W−1
]).

Remark 2.6. For a smooth complex variety X , the complex DRC(p)(X) calcu-
lates the analytic Deligne cohomology H∗D,an(X,R(p)) up to a shift of degrees
by 2p. If, in the definition of the cone, one replaces the complexes of smooth
forms AR, A by their log-versions AR,log, Alog (consisting of forms which extend
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to some compactification of X with logarithmic poles along the boundary of X ;
see [Bunke and Tamme 2015, §4.2]) one obtains the so-called Beilinson–Deligne
or weak absolute Hodge cohomology H∗BD(X,R(p)). There is a natural map
H∗BD(X,R(p))→ H∗D,an(X,R(p)) which, in general, is neither injective nor sur-
jective. It is an isomorphism if X is also proper over C. If one moreover in-
troduces the weight filtration Ŵ and replaces AR,log, Alog by the subcomplexes
Ŵ2p AR,log, Ŵ2p Alog, one obtains the absolute Hodge cohomology H∗AH(X,R(p))
introduced by Beilinson [1986]. This is the cohomology theory used in [Bunke
and Tamme 2015]. It follows from Deligne’s theory of weights that the natural
map H∗AH(X,R(p))→ H∗BD(X,R(p)) is an isomorphism in degrees ∗ ≤ p, and in
degrees ∗ ≤ 2p if X is proper.

In the following, we define a sheaf IDR(p) ∈ Fundesc((Mf×RegZ)
op,Ch)

which is object-wise quasi-isomorphic to DR(p), and which is better behaved with
respect to the multiplicative structures. We define the morphism

I :Mf→Mf, M 7→ [0, 1]×M.

It induces a corresponding morphism I× idSmC
:Mf×SmC→Mf×SmC. For a

presheaf F on Mf×SmC we define IF := (I× idSmC
)∗F.

Definition 2.7. We define

IDRC(p)⊆ IA[2p]

to be the subsheaf with values in Ch determined by the conditions that ω lies in
IDRC(p)(M × X) if and only if

(1) ω|{0}×M×X ∈ (2π i)p AR(M × X)[2p],

(2) ω|{1}×M×X ∈ Fp A(M × X)[2p].

We set IDRC :=
∏

p≥0 IDRC(p) and define

IDR := [(id×B)∗ IDRC]
Gal(C/R).

An algebraic analog of this complex was used by Burgos and Wang [1998].

Proposition 2.8. There is an object-wise quasi-isomorphism

q : IDR(p)→ DR(p). (2.9)

Proof. We define a morphism of sheaves of complexes

qC : IDRC(p)→ DRC(p) (2.10)

as follows. A form ω ∈ IDRC(p)(M) gives rise to forms
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(1) ωR := ω|{0}×M×X ∈ (2π i)p AR(M × X)[2p],

(2) ωF := ω|{1}×M×X ∈ Fp A(M × X)[2p],

(3) ω̃ :=
∫
[0,1]×M×X/M×X ω ∈ A(M × X)[2p− 1].

We define
qC(ω) := (ωR⊕ωF,−ω̃) ∈ DRC(M × X).

We have

dqC(ω)= d(ωR⊕ωF,−ω̃)= (dωR⊕ dωF, dω̃+ωR−ωF)

and

qC(dω)=
(

dωR⊕ dωF,−

∫
[0,1]×M/M

dω
)

=

(
dωR⊕ dωF, d

∫
[0,1]×M/M

ω+ωR−ωF

)
= (dωR⊕ dωF, dω̃+ωR−ωF),

a calculation using Stokes’ theorem. Hence qC is a map of complexes.

Lemma 2.11. For every p≥ 0 the map qC : IDRC(p)→DRC(p) is an object-wise
quasi-isomorphism.

Proof. We abbreviate

S := A/(2π i)p AR[2p], T := A/Fp AR[2p].

Then we have an exact sequence

0→ IDR(p)→ IA[2p] → S⊕ T → 0, (2.12)

where the first map is the inclusion and the second is given by the evaluation at the
endpoints of the interval. We further have a natural exact sequence

0→DR(p)→ Cone(A⊕A→ A)[2p−1]→ Cone(S⊕T→ 0)[−1]→ 0. (2.13)

We define a map of exact sequences (2.12)→ (2.13) using the map qC in the first
entry, the same formula as for qC in the second, and the obvious identity map at
the last entry. Since the interval [0, 1] is contractible it follows from the relative
Poincaré lemma that the middle map is a quasi-isomorphism. Since the last map
is an isomorphism, it follows from the five lemma that qC is a quasi-isomorphism,
too. �

We observe that (id×B)∗qC commutes with the Gal(C/R)-action and therefore
induces an equivalence q : IDR(p)→ DR(p), too. This finishes the proof of the
proposition. �
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It follows from Lemma 2.11 and the sheaf and homotopy invariance properties
of DR that we can consider

IDR ∈ Fundesc,I ((Mf×RegZ)
op,Ch[W−1

]).

We now observe that the filtration F as well as the real subspaces are compatible
with the multiplication

∧ : A⊗ A→ A.

We therefore get products

∧ : IDR(p)× IDR(q)→ IDR(p+ q).

Taking the product over all p, we get as final result:

Corollary 2.14. The product

IDR :=
∏
p≥0

IDR(p)

has the structure of a sheaf of bigraded graded commutative d-algebras.

We denote the symmetric monoidal∞-categories of chain complexes and chain
complexes with quasi-isomorphisms inverted, with the tensor product, by Ch⊗ and
Ch[W−1

]
⊗, respectively. The notation for commutative algebra objects is CAlg.

Commutative differential graded algebras are objects of CAlg(Ch⊗). They can be
considered as objects in CAlg(Ch[W−1

]
⊗). Since the forgetful functor

CAlg(Ch[W−1
]
⊗)→ Ch[W−1

]
⊗

is a right adjoint, limits in commutative algebras are computed on underlying ob-
jects. Consequently, IDR can naturally be considered as an object

IDR ∈ Fundesc,I ((Mf×RegZ)
op,CAlg(Ch[W−1

]
⊗)). (2.15)

2C. Geometries and characteristic forms. We first consider M× X ∈Mf×SmC.
We view M × X as a locally ringed space with structure sheaf OM×X := pr−1

X OX

given by the inverse image of the sheaf OX under the projection to X . A sheaf of
finitely generated locally free OM×X -modules will be called a bundle on M × X . If
V is a bundle on M×X we have an associated complex vector bundle on M×X (C)
which we abusively denote by the same symbol. It naturally carries a flat partial
connection ∇ I in the M-direction and a holomorphic structure ∂̄ in the X -direction,
which is constant with respect to ∇ I , i.e., [∇ I , ∂̄] = 0.

Definition 2.16 [Bunke and Tamme 2015, Definition 4.12]. A geometry on the
bundle V is given by a pair (hV ,∇ II ) consisting of a hermitian metric hV on
V and a partial connection ∇ II in the X -direction that extends the holomorphic
structure ∂̄ .
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We form the connection ∇ := ∇ I
+ ∇

II and let ∇u be its unitarization with
respect to hV . In [Bunke and Tamme 2015], we use these connections in order
to define a characteristic form in DR(M × X). In the present paper we adjust
the notion of a geometry such that we obtain a lift of the characteristic form to
IDR(M × X); see Lemma 2.22.

Let pr : I ×M × X→ M × X denote the projection.

Definition 2.17. An extended geometry g on V is a triple g = ((hV ,∇ II ), ∇̃)

consisting of a geometry on V and a connection ∇̃ on pr∗ V such that

(1) ∇̃|{0}×M×X =∇
u ,

(2) ∇̃|{1}×M×X =∇.

We now consider the arithmetic situation M × X ∈Mf×RegZ. We keep calling
a sheaf of finitely generated locally free OM×X -modules a bundle. For the notion
of Gal(C/R)-invariance in the following definition we refer to [Bunke and Tamme
2015, Definition 4.31].

Definition 2.18. An extended geometry g on a bundle V on M × X ∈Mf×RegZ

is a Gal(C/R)-invariant extended geometry g on the bundle (id×B)∗(V ).

Geometries and extended geometries exist and can be glued with partitions of
unity on M . Compared with [Bunke and Tamme 2015] the situation is simplified
since we drop the condition of being good. Examples are given by the canonical
extensions:

Definition 2.19. Given a geometry (hV ,∇ II ) on the bundle V , we define the asso-
ciated canonical extended geometry

can(hV ,∇ II ) := ((hV ,∇ II ), ∇̃)

by taking for ∇̃ the linear path from ∇u to ∇.

For any M × X ∈ Mf×RegZ we denote the groupoid of bundles with ex-
tended geometry on M × X and isomorphisms respecting the extended geometry
by i Vectexge(M × X).

For a closed symmetric monoidal presentable ∞-category C⊗ we denote by
Rig(C⊗) the∞-category of semiring objects in C (see [Gepner et al. 2013, Defini-
tion 7.1]). The typical example of a semiring in Set× is the semiring of integers N.
We let Cat[W−1

]
× be the∞-category of categories with categorical equivalences

inverted, equipped with its cartesian symmetric monoidal structure. A semiring in
Cat[W−1

]
× will be called a Rig-category. Then a typical Rig-category is the cate-

gory of vector spaces over some field with the operations ⊕ and ⊗. This follows
from the recognition principle [Gepner et al. 2013, Theorem 8.8]. This principle
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implies that, using direct sum and tensor product of bundles with geometry, we can
consider i Vectexge as a sheaf of Rig-categories

i Vectexge
∈ Fundesc((Mf×RegZ)

op,Rig(Cat[W−1
]
×)).

We furthermore interpret π0(i Vectexge) and Z0(IDR) as presheaves of semirings

π0(i Vectexge), Z0(IDR) ∈ Fun((Mf×RegZ)
op,Rig(Set×)).

We let R∇ denote the curvature of a connection ∇. Furthermore, by

ch2p(∇) := [Tr exp(−R∇)]2p = (−1)p Tr(R∇)p

we denote the component of the unnormalized Chern character form in degree 2p.

Definition 2.20. We define the transformation of presheaves of semirings

ω̃ : π0(i Vectexge)→ Z0(IDR)
by

ω̃(V, g) :=
∏
p≥0

ch2p(∇̃).

A priori, ∏
p≥0

ch2p(∇̃) ∈
∏
p≥0

IA(M × B(X)),

but the conditions for ∇̃ at the endpoints of the interval immediately imply that this
product of forms belongs to the subcomplex IDR(X ×M) from Definition 2.7.

In [Bunke and Tamme 2015], for a bundle V with a geometry g we defined a
characteristic form

ω((V, (hV ,∇ II ))) :=
∏

p

(ch2p(∇
u)⊕ ch2p(∇), c̃h2p−1(∇

u,∇)), (2.21)

where the last form denotes the transgression [Bunke and Tamme 2015, (66)]. This
is compatible with our new construction in the sense of the lemma below. We
let i Vectgeom denote the symmetric monoidal stack of bundles with geometries
on Mf×RegZ and geometry-preserving isomorphisms.1 Then the formula (2.21)
gives a map ω : π0(i Vectgeom)→ Z0(DR). The construction of the canonical
extended geometry in Definition 2.19 induces a map

can : π0(i Vectgeom)→ π0(i Vectexge),

which is additive, but not multiplicative.

1Note that in [Bunke and Tamme 2015] this symbol has a different meaning.
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Lemma 2.22. The diagram

π0(i Vectexge)
ω̃ // Z0(IDR)

q
��

π0(i Vectgeom)

can

OO

ω // Z0(DR)

(2.23)

commutes.

Proof. This follows from the definition of q in (2.9), the construction of the trans-
gression c̃h2p−1(∇

u,∇), and the definition of ω in (2.21). �

2D. The multiplicative K-theory sheaf and the regulator. In this section, we de-
fine algebraic K -theory as a sheaf of commutative ring spectra on Mf×RegZ. To
do so, we use the multiplicative version of group completion studied in [Gepner
et al. 2013] (see in particular their Proposition 8.2). We denote by Sp∧ and Sp≥0,∧

the symmetric monoidal∞-categories of spectra and connective spectra, respec-
tively, with the smash product. The category Sp is the stable∞-category generated
by the sphere spectrum whose homotopy category is the stable homotopy category.
For the purpose of the present paper we do not have to fix a particular model for Sp.
We will use the identification of∞-categories

CommGroup(sSet[W−1
]
×)' Sp≥0,∧

which identifies a connective spectrum with its∞-loop space. This equivalence
refines to an equivalence of∞-categories

Ring(sSet[W−1
]
×)' CAlg(Sp≥0,∧). (2.24)

Definition 2.25. We define the K -theory functor

K : Rig(Cat[W−1
]
×)→ CAlg(Sp∧)

as the composition

Rig(Cat[W−1
]
×)

N
−→ Rig(sSet[W−1

]
×) (nerve)

→ Ring(sSet[W−1
]
×) (ring completion)

'
−→ CAlg(Sp≥0,∧) (using (2.24))

→ CAlg(Sp∧) (forget connectivity).

We consider the sheaf

i Vect ∈ Fundesc,I ((Mf×RegZ)
op,Rig(Cat[W−1

]
×))

which associates to each object M × X the Rig-category of bundles over M × X
and isomorphisms.
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Definition 2.26. We define the sheaf of K -theory spectra by

K := L(K (i Vect)) ∈ Fundesc,I ((Mf×RegZ)
op,CAlg(Sp∧)).

Remark 2.27. For X ∈ RegZ, the homotopy groups of the spectrum

K(X) :=K(∗× X)

are the usual K -groups of X as defined by Quillen. This follows from the known
facts that, for affine X , Quillen’s K -theory coincides with K -theory defined by
group completion and that, on RegZ, Quillen’s K -theory satisfies Zariski-descent
(see [Bunke and Tamme 2015, §3.3] for more details).

In general, the spectrum K(X) represents a generalized cohomology theory and,
for a manifold M , we have

π∗(K(M × X))∼=K(X)−∗(M)

(see [Bunke and Tamme 2015, §4.5]).

Note that the homotopy invariance of i Vect implies the homotopy invariance
of K (i Vect). In contrast, i Vectexge is not homotopy invariant. But, applying the
presheaf homotopification s̄'Hpre from (2.4), we get the following result:

Lemma 2.28. The natural “forget the geometry” map

s̄ N(i Vectexge)→ s̄ N(i Vect)' N(i Vect)

is an equivalence in Fun((Mf×RegZ)
op,Rig(sSet[W−1

]
×)).

Proof. Since the colimit over 1op appearing in the definition (2.4) of s̄ is sifted it
commutes with the forgetful functor Rig(sSet[W−1

]
×)→ sSet[W−1

]. This follows
from a two-fold application of [Lurie 2014, Corollary 3.2.3.2] to

Rig(sSet[W−1
]
×)' CAlg(CAlg(sSet[W−1

]
×)⊗).

Since an equivalence in Rig(sSet[W−1
]
×) is detected in sSet[W−1

] it suffices to
show that the induced map in Fun((Mf×RegZ)

op, sSet[W−1
]) is an equivalence.

We claim that for M × X ∈Mf×RegZ the map of simplicial sets

s N(i Vectexge)(M × X)•,q → s N(i Vect)(M × X)•,q

is a trivial Kan fibration. The result then follows by applying the colimit as in (2.4).
A p-simplex x :1p

→ N(i Vect)(M × X)•,q is given by a string of bundles and
isomorphisms

V0
∼=
−→ V1

∼=
−→· · ·

∼=
−→ Vq

on 1p
× M × X . A lifting of x |∂1p is determined by an extended geometry on

V0|∂1p×M×X . Using the fact that extended geometries exist and can be glued using
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partitions of unity, we see that such a lifting can always be extended to a p-simplex
of sN(i Vectexge)(M × X)•,q lifting x . This implies the claim. �

We now turn to the construction of the multiplicative version of Beilinson’s
regulator. We interpret a set as a discrete category. In this way we get a morphism

ι : Rig(Set×)→ Rig(Cat[W−1
]
×).

We have a commutative diagram (see [Bunke and Tamme 2015, Remark 2.13])

Ring(Set×)

��

ι //

S0

��

Rig(Cat[W−1
]
×)

K
��

CAlg(Ch[W−1
]
⊗)

H // CAlg(Sp∧)

where S0 interprets a commutative ring as a commutative monoid in chain com-
plexes concentrated in degree zero, H is the Eilenberg–MacLane equivalence, and
in the upper horizontal line we do not write the restriction of ι from semirings to
rings explicitly. We write r(ω̃) for the composition

K (i Vectexge)→ K (ι(π0(i Vectexge)))
K (ι(ω̃))
−−−−→ K (ι(Z0(IDR)))

' H(S0(Z0(IDR)))→ H(IDR)

in Fun((Mf×RegZ)
op,CAlg(Sp∧)).

In analogy with [Bunke and Tamme 2015, Definition 4.36] we adopt the follow-
ing definition:

Definition 2.29. We define the multiplicative version of the naive Beilinson regu-
lator

rBeil
:K→ H(IDR)

as a morphism in Fundesc((Mf×RegZ)
op,CAlg(Sp∧)) to be the sheafification of

the composition

K (i Vect)
'
−→ s̄ K (i Vect)

'
←−−−−−−
Lemma 2.28

s̄ K (i Vectexge)
s̄(r(ω̃))
−−−−→ s̄ H(IDR) '←−H(IDR)

in Fun((Mf×RegZ)
op,CAlg(Sp∧)).

Here we use the fact that H(IDR) is a sheaf (see (2.15)).

Remark 2.30. Since in the present paper we don’t require geometries to be good
in the sense of [Bunke and Tamme 2015, Definition 4.17] the characteristic forms
don’t necessarily satisfy a logarithmic growth condition at infinity. Therefore, we
end up in analytic Deligne cohomology instead of absolute Hodge cohomology.
The proof of Lemma 2.28 does not work for good geometries. In [Bunke and
Tamme 2015] we found a way to avoid this problem using the Čechification of
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the de Rham complexes. At the moment we do not see how to refine this to a
multiplicative version.

For X ∈ RegZ Beilinson’s regulator [1986] is a homomorphism from the K -
theory of X to absolute Hodge cohomology (see Remark 2.6)

K∗(X)→
∏

p

H 2p−∗
AH (X,R(p)).

It is known to be multiplicative. We call its composition with the natural map∏
p

H 2p−∗
AH (X,R(p))→ H−∗(IDR(∗× X))

the analytic version of Beilinson’s regulator.

Theorem 2.31. The naive Beilinson regulator

rBeil
:K→ H(IDR)

is a morphism of sheaves of ring spectra which, on the homotopy groups of its
evaluation on ∗× X , induces the analytic version of Beilinson’s regulator.

Proof. The first assertion is true by construction. It is also immediate from the
constructions and Lemma 2.22 that the map of sheaves of spectra underlying rBeil

coincides with the one obtained in [Bunke and Tamme 2015, Definition 4.36] (after
forgetting the logarithmic growth condition and using the equivalence DR∼= IDR).
For the latter, the coincidence with Beilinson’s regulator was proven in [Bunke and
Tamme 2015, §4.7]. �

3. Multiplicative differential algebraic K -theory

3A. Basic definitions. The main goal of this section is the definition of a multi-
plicative version of differential algebraic K -theory for objects in Mf×RegZ and
the verification of its basic properties.

For a complex C ∈Ch and an integer k we let σ≥kC denote the naive truncation
given by · · · → 0→ Ck

→ Ck+1
→ · · · . There is a natural inclusion morphism

σ≥kC→ C .

Definition 3.1. For every integer k ∈Z, we define the sheaf of differential algebraic
K -theory spectra

K̂(k)
∈ Fundesc((Mf×RegZ)

op,Sp∧)
by the pullback

K̂(k) R //

I
��

H(σ≥k IDR)

��
K rBeil

// H(IDR)
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We define the differential algebraic K -theory for objects in Mf×RegZ as a presheaf
of abelian groups

K̂k
:= π−k(K̂(k)) ∈ Fun((Mf×RegZ)

op,Ab).

Remark 3.2. The integer k ∈ Z determines that the homotopy group π−d(K̂k) for
d ∈ Z captures interesting differential geometric information exactly if d = k.

In the following, we refine
∨

k∈ZK̂(k) to a sheaf of commutative ring spectra (see
[Bunke 2013, §4.6] for details). Using the symmetric monoidal functors

Set ι
−→ sSet[W−1

]
6∞+
−−→ Sp,

the abelian group Z ∈ CommMon(Set) gives rise to the commutative ring spec-
trum 6∞

+
ι(Z) ∈ CAlg(Sp∧). For any commutative ring spectrum E we write

E[z, z−1
] := E ∧ 6∞

+
ι(Z). We consider IDR[z, z−1

] := IDR⊗ZZ[z, z−1
] as a

sheaf of commutative differential graded algebras and define the subalgebra

σ≥• IDR :=
⊕
k∈Z

zkσ≥k IDR⊆ IDR[z, z−1
].

We have a natural equivalence H(IDR[z, z−1
])' H(IDR)[z, z−1

].

Definition 3.3. We define differential algebraic K -theory as a sheaf of commuta-
tive ring spectra

K̂(•)
∈ Fundesc((Mf×RegZ)

op,CAlg(Sp∧))

by the pullback

K̂(•) R //

I
��

H(σ≥• IDR)

��
K[z, z−1

]
rBeil
[z,z−1

] // H(IDR)[z, z−1
].

If we forget the ring spectrum structure, then we get a natural equivalence K̂(•)
'∨

k∈ZK̂(k). In particular, we get a presheaf of graded commutative rings⊕
k∈Z

K̂k
∈ Fun((Mf×RegZ)

op,GrRings).

The maps R and I induce ring homomorphisms

R :
⊕
k∈Z

K̂k
→

⊕
k∈Z

Z k(IDR), I :
⊕
k∈Z

K̂k
→

⊕
k∈Z

Kk .
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The map R is called the curvature. For any k ∈ Z we have exact sequences

Kk−1 rBeil

−−→ H k−1(IDR) a
−→ K̂k (I,R)

−−−→Kk
×H k(IDR) Z k(IDR)→ 0

and

Kk−1 rBeil

−−→ IDRk−1 / im(d)
a
−→ K̂k I

−→Kk
→ 0 (3.4)

(see [Bunke and Tamme 2015, Proposition 5.4]). Moreover, we have the relation
R ◦ a = d .

3B. Cycle maps. We have the forgetful map

π0(i Vectexge)→ π0(i Vect)

between the presheaves of semirings of isomorphism classes of bundles with and
without extended geometries.

Proposition 3.5. There are canonical cycle maps cycl and ĉycl fitting into the
following diagram of presheaves of semirings on Mf×RegZ:

π0(i Vectexge)

ω̃

((
ĉycl //

��

K̂0

I
��

R // Z0(IDR)

π0(i Vect)
cycl // K0

Proof. The construction is identical to that of [Bunke and Tamme 2015, Defini-
tions 5.8, 5.9]. �

3C. S1-integration. We consider M × X ∈Mf×RegZ. Let

E ∈ Fundesc,I ((Mf×RegZ)
op,Sp)

be a homotopy invariant sheaf of spectra. Then we have natural isomorphisms

E∗(S1
×M × X)∼= E∗(M × X)⊕E∗−1(M × X).

The induced map E∗(S1
× M × X)→ E∗−1(M × X) is called the desuspension

map. This applies in particular to the K -theory sheaf K and the analytic Deligne
cohomology H(IDR).

On the other hand, on the level of differential forms we have the usual fiber
integration along S1, a map of complexes∫

S1
: IDR(S1

×M × X)→ IDR(M × X)[−1].
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It induces integration maps
∫

S1 :σ
≥k IDR(S1

×M×X)→σ≥k−1 IDR(M×X)[−1]
for any k ∈ Z.

Proposition 3.6. There exists a natural map∫
S1
: K̂∗(S1

×M × X)→ K̂∗−1(M × X)

of
⊕

k∈Z K̂k(M × X)-modules which is compatible with the desuspension on K∗

via the map I and with the integration
∫

S1 on Z∗(IDR) via the curvature R.

Proof. We define the endofunctor S1 of Fundesc(Mfop,C) for any presentable∞-
category C by (S1 F)(M× X) := F(S1

×M× X). If C is symmetric monoidal and
F ∈ Fundesc(Mfop,CAlg(C)), then the projection pr : S1

→∗ turns S1 F into an
object of Mod(F).

We extend the endofunctor S1 to Fundesc((Mf×RegZ)
op,C) using the identifi-

cation

Fundesc((Mf×RegZ)
op,C)' Fundesc(Mfop,Fundesc(Regop

Z ,C)).

The evaluation at the manifold M = ∗ provides an equivalence of∞-categories

ev∗ : Fundesc,I (Mfop,C) '−→C, (3.7)

and we have an equivalence of functors Fundesc,I (Mfop,C)→ C

ev∗ ◦S1(−)' (ev∗(−))S1
, (3.8)

where (−)S1
is the cotensor structure. Let pr : S1

→∗ and i : ∗→ S1 be the pro-
jection to a point and the inclusion of a base point. These maps induce a retraction

id(−)
pr∗
→ (−)S1 i∗

→ id(−).

If C is stable, then we can naturally split off id(−) as a summand of (−)S1
and

identify the complement with �(−). The desuspension map is by definition the
projection

des : (−)S1
→�(−). (3.9)

Under the equivalence (3.7) in the case C = Fundesc(RegZ,Sp) it induces the
desuspension map in cohomology mentioned above.

The integration of forms gives morphisms of sheaves with values in Ch∫
S1
: S1 IDR→ IDR[−1],

∫
S1
: S1σ≥k IDR→ σ≥k−1 IDR[−1]
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which, when assembled for the various k ∈ Z, after application of the Eilenberg–
MacLane functor H , yield the commutative diagram

H(S1σ≥• IDR)
H(
∫

S1 ) //

��

�H(σ≥•−1 IDR)

��
H(S1 IDR[z, z−1

])
H(
∫

S1 ) //// �H(IDR[z, z−1
])

(3.10)

in Mod(K̂(•)), where K̂(•) acts via the curvature map. From the naturality of the
desuspension we get the commutative diagram

S1K[z, z−1
]

des //

rBeil

��

�K[z, z−1
]

�rBeil

��
S1 H(IDR[z, z−1

])
des // �H(IDR[z, z−1

])

(3.11)

in Mod(K̂(•)), where here K̂(•) acts via I .

Lemma 3.12. We have a natural equivalence of morphisms

des' H
(∫

S1

)
: S1 H(IDR[z, z−1

])→�H(IDR[z, z−1
])

in Mod(K̂(•)).

Before proving this lemma we finish the argument for Proposition 3.6. Together
with (3.11), Lemma 3.12 provides the lower square of the following diagram in
Mod(K̂(•)):

H(S1σ≥• IDR)
H(
∫

S1 ) //

��

�H(σ≥•−1 IDR)

��
H(S1 IDR[z, z−1

])
H(
∫

S1 ) //// �H(IDR[z, z−1
])

S1K[z, z−1
]

rBeil

OO

des // �K[z, z−1
]

�rBeil

OO

The upper square is (3.10). In view of the definition of K̂(•) as a pullback, this
diagram induces a map ∫

S1
: S1K̂(•)

→� K̂(•)

in Mod(K̂(•)). It induces the asserted integration map in cohomology. �
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Proof of Lemma 3.12. We have a natural equivalence in Mod(IDR[z, z−1
])

IDR[z, z−1
][−1]⊕ IDR[z, z−1

] −→∼ S1 IDR[z, z−1
],

given on M×X by ω⊕η 7→ dt∧pr∗ ω+pr∗ η, where t is the coordinate on S1 and
pr : S1

×M×X→M×X is the projection. An explicit inverse is given by
(∫

S1, i∗
)
,

where i :M×X→ S1
×M×X is induced by the inclusion of a point in S1. In view of

the definition of the desuspension in (3.9) and the equivalence (3.8), we can identify
the desuspension for IDR[z, z−1

] naturally with the map
∫

S1 : S1 IDR[z, z−1
] →

IDR[z, z−1
][−1]. Now the result follows by applying H . �

4. A secondary Steinberg relation

4A. Units. Let R be a ring such that X = Spec(R) ∈ RegZ. We have a natural
homomorphism

c : R×→K−1(X), (4.1)

where we write K−1(X) instead of K−1(∗× X). Concretely, c is given as follows:
For λ ∈ R× we let V(λ) be the bundle on S1

× X which restricts to the trivial
bundle OX at any point t ∈ S1 and has holonomy λ along S1. Then

cycl(V(λ))= c(λ)⊕ 1 ∈K0(S1
× X)∼=K−1(X)⊕K0(X). (4.2)

Since the kernel of the map I : K̂−1(X)→ K−1(X) is a divisible abelian group,
there exists a lift ĉ : R×→ K̂−1(X) of c. In the following, we will fix a specific
choice of this lift.

We first construct a geometry (h(λ),∇(λ)) on V(λ). Abusing notation, we also
denote the complex line bundle on S1

× X (C) associated with V(λ) by the same
symbol and view λ as a nowhere-vanishing function on X (C). Let t be a parameter
on S1 and log(λ) a local choice of a logarithm of λ on X (C). Then φ = λt is a
local section of V(λ) which depends on the choice of logarithm. The metric and
the connection are determined by their value on the local sections φ. We set

h(λ)(φ)= 1, (4.3)

∇
(λ)(φ)= log(λ)φ dt.

These are well defined. Moreover, ∇(λ) has holonomy λ along S1 and [∇, ∂̄] = 0.
We equip V(λ) with the canonical extended geometry, denoted by g(λ).

Definition 4.4. We define ĉ : R×→ K̂−1(X) to be the composition

ĉ : R×
λ 7→ĉycl(V(λ),g(λ))
−−−−−−−−−−−→ K̂0(S1

× X)
∫

S1
−→ K̂−1(X).
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Lemma 4.5. The curvature R(ĉ(λ)) ∈ Z−1(IDR(X)) is given by

R(ĉ(λ))= R(ĉ(λ))(1)

= id arg(λ)+ d log(|λ|u) ∈ Z−1(IDR(1)(X))⊂ A1(I × X (C)),

where u is the coordinate on the interval I . The induced map

ĉ : R×→ K̂−1(X)/a(H−2(IDR(X)))

is a homomorphism.

Proof. For the adjoint connection of ∇(λ) we get

∇
(λ),∗φ =− log(λ̄)φ dt.

Hence the connection of the canonical extended geometry is given by

∇̃
(λ)φ =

( 1
2(1− u)(log(λ)− log(λ̄))+ u log(λ)

)
φ dt.

Together with (4.3) this implies that for two units λ,µ ∈ R× we have

(V(λµ), g(λµ))∼= (V(λ), g(λ))⊗ (V(µ), g(µ)).

By the multiplicativity of the geometric cycle map we get

ĉycl(V(λµ), g(λµ))= ĉycl(V(λ), g(λ))∪ ĉycl(V(µ), g(µ)).

For the curvature we get

R∇̃
(λ)

=−idt ∧ d arg(λ)− dt ∧ d log(|λ|u).

Hence

R(ĉycl(V(λ), g(λ)))= 1⊕ (idt ∧ d arg(λ)+ dt ∧ d log(|λ|u))

∈ Z0(IDR(0)(S1
× X))⊕ Z0(IDR(1)(S1

× X)).

Integration over S1 kills the first summand and gives the statement about the cur-
vature.

From the formula for the curvature and the fact that c = I ◦ ĉ (see (4.1)) is a
homomorphism, we get

R(ĉ(λµ))= R(ĉ(λ))+ R(ĉ(µ)), I (ĉ(λµ))= I (ĉ(λ))+ I (ĉ(µ)),

hence ĉ(λµ)− ĉ(λ)− ĉ(µ) ∈ a(H−2(IDR(X))). �
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4B. The Steinberg relation and the Bloch–Wigner function. In this subsection
we explain how differential algebraic K -theory can be used to give a simple proof
of a result of Bloch [2000] concerning the existence of classes in K3 of a number
ring whose regulator can be described in terms of the Bloch–Wigner dilogarithm
function. The key ingredient is a secondary version of the Steinberg relation.

We begin by collecting some notation necessary to state the result. Recall the
definition of the polylogarithm functions

Lik(z) :=
∑
n≥1

zn

nk

for k ≥ 1 and |z|< 1. They extend meromorphically to a covering of C \ {1}.

Definition 4.6. The Bloch–Wigner function is the real-valued function on C given by

DBW(λ) := log |λ| arg(1− λ)+ Im Li2(λ)

(see [Zagier 2007, Chapter I, §3]).

Let R be a ring.

Definition 4.7. We write R◦ := {λ∈ R× | 1−λ∈ R×}. The third Bloch group B3(R)
is defined as the kernel

B3(R) := ker
(
Z[R◦]

λ 7→λ∧(1−λ)
−−−−−−−→ R× ∧ R×

)
.

Now let R be the ring of integers in a number field and X := Spec(R). The
target of the regulator rBeil on K−3(X) is H−3(IDR(X)). Since X (C) is zero-
dimensional we have

H−3(IDR(X))∼= H−3(IDR(2)(X))
∼=
q

H−3(DR(2)(X))

∼= [2π iRX (C)
]
Gal(C/R). (4.8)

Theorem 4.9 (Bloch). For any x =
∑

λ∈R◦ nλ[λ] ∈B3(R), there exists an element
bl(x) ∈K−3(X) such that, under the identification (4.8),

rBeil(bl(x))=−
∑
λ

nλ
(
i DBW(σ (λ))

)
σ∈X (C).

Example 4.10. Assume that n ∈ N, n ≥ 2 and λ ∈ R∗ satisfies

λn+1
− λ+ 1= 0.
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Then 1
1−λ ∈ R◦ and we consider the element x := n[λ]+

[ 1
1−λ

]
∈ Z[R◦]. We claim

that x ∈B3(R). Indeed,

n(λ∧ (1− λ))+ 1
1−λ

∧

(
1− 1

1−λ

)
= n(λ∧ (1− λ))+ 1

1−λ
∧

λ

λ−1

= λn
∧ (1− λ)+ (1− λ)∧ λ−1

λ

=
λ−1
λ
∧ (1− λ)+ (1− λ)∧ λ−1

λ

= 0.

We get an element bl(x) ∈K3(R) such that

rBeil(2)(bl(x))= (n+ 1)
(
−i DBW(σ (λ))

)
σ∈Spec(R)(C),

where we use that DBW
( 1

1−λ

)
= DBW(λ). If σ(λ) is not real, then DBW(σ (λ)) is

not zero.

Proof of Theorem 4.9. Since X (C) is zero-dimensional we have H−2(IDR(X))= 0.
Hence, by Lemma 4.5, the map ĉ : R× → K̂−1(X) is a homomorphism. Since⊕

k∈Z K̂k(X) is graded commutative, we get an induced map R×∧ R×→ K̂−2(X),
λ∧µ 7→ ĉ(λ)∪ ĉ(µ).

If λ ∈ R◦, then the Steinberg relation implies that

I (ĉ(λ)∪ ĉ(1− λ))= c(λ)∪ c(1− λ)= 0 in K−2(X).

Consider the following commutative diagram with exact rows:

0 // B3(R) //

bl
��

Z[R◦]
λ 7→λ∧(1−λ) //

D
��

R× ∧ R×

��
0 // K−3(X)/ ker(rBeil)

rBeil
// IDR−3(X)/ im(d) a // K̂−2(X) I // K−2(X)

(4.11)

The dotted arrow D exists by the Steinberg relation and since Z[R◦] is a free abelian
group. The dotted arrow bl is the induced map on kernels.

We will now pin down a specific choice for D which will then imply the theorem.
To do this, we consider the universal situation. Let

X := P1
Z \ {0, 1,∞} ∼= Spec(Z[λ, λ−1, (1− λ)−1

]).

We consider ĉ(λ)∪ ĉ(1−λ)∈ K̂−2(X). Again, by the Steinberg relation there exists
D(λ) ∈ IDR−3(X)/ im(d) such that a(D(λ)) = ĉ(λ)∪ ĉ(1− λ). Since R ◦ a = d,
we must have

d(D(λ))= R(ĉ(λ))∪ R(ĉ(1− λ)) ∈ IDR−2(X). (4.12)
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Because we want to specialize to number rings later on, we are only interested in
the component D(λ)(2) ∈ IDR(2)−3(X) (see (4.8)) This is determined by (4.12)
up to elements in H−3(IDR(2)(X)). Since F2 A(I × X(C)) = 0 we have quasi-
isomorphisms

IDR(2)(X)'
q

DR(2)(X)

∼=
(
Cone

(
(2π i)2 AR(X(C))→ A(X(C))

)
[3]
)Gal(C/R)

∼=
(
(2π i)AR(X(C))[3]

)Gal(C/R)
, (4.13)

where the last isomorphism is induced by taking i times the imaginary part on the
second component of the cone. In particular,

H−3(IDR(2)(X))= H 0(X(C), (2π i)R)Gal(C/R)
= 0.

We now compute the right-hand side of (4.12). From Lemma 4.5 we get

i Im
(
R(ĉ(λ))∪ R(ĉ(1− λ))

)
= id arg(λ)∧ d log(|1− λ|u)+ id log(|λ|u)∧ d arg(1− λ).

Hence, under the quasi-isomorphisms (4.13), R(ĉ(λ))∪ R(ĉ(1− λ)) is mapped to

i log(|1− λ|)d arg(λ)− i log(|λ|)d arg(1− λ) ∈
(
(2π i)A1

R(X(C))
)Gal(C/R)

.

On the other hand, using (d/dz) Li2(z)= (1/z) Li1(z)=−(1/z) log(1− z) we get

d DBW(λ)= arg(1− λ)d log(|λ|)+ log(|λ|)d arg(1− λ)− Im log(1− λ)d log(λ)

= log(|λ|)d arg(1− λ)− log(|1− λ|)d arg(λ).

It follows that, under the quasi-isomorphisms (4.13),

D(λ)(2)=−i DBW(λ).

We now return to the number ring R. Note that in diagram (4.11) we may
identify

IDR−3(X)/ im(d)= H−3(IDR(2)(X))

∼=
(
(2π i)A0

R(X (C))
)Gal(C/R)

= [2π iRX (C)
]
Gal(C/R).

Any λ ∈ R◦ corresponds to a unique morphism λ : X → X, which on C-valued
points is given by X (C)→ X(C) = C× \ {1}, σ 7→ σ(λ). We construct D(λ) ∈

[2π iRX (C)
]
Gal(C/R) by pulling back along λ from the universal case on X. Explic-

itly, we get
D(λ)=

(
−i DBW(σ (λ))

)
σ∈X (C).

This implies the formula for bl stated in the theorem. �
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5. A height invariant for number rings

Let R be the ring of integers in a number field. We recall the following definition
from Arakelov geometry:

Definition 5.1. A metrized line bundle (L, hL) on Spec(R) is an invertible sheaf
L on Spec(R) with a Gal(C/R)-invariant metric hL on its complexification. We let
P̂ic(Spec(R)) denote the multiplicative group of isomorphism classes of metrized
line bundles under the tensor product and call it the arithmetic Picard group of R.

We may identify L with its R-module of global sections. A metric hL is then
given by a collection of metrics hL

σ on L⊗R,σ C for all σ ∈ Spec(R)(C) which is
invariant under the Gal(C/R)-action.

An important invariant is the arithmetic degree

d̂eg : P̂ic(Spec(R))→ R,

defined as follows (see [Lang 1988, IV, §3]): Let (L, hL) be a metrized line bundle.
Then

d̂eg((L, hL)) :=
1

[K :Q]

(
log(#(L/R · s))− 1

2

∑
σ∈Spec(R)(C)

log(hσ (s))
)
, (5.2)

where s ∈ L \ {0} is any nonzero section.
The main aim of this section is to explain how the arithmetic Picard group and

the arithmetic degree can be naturally understood in the framework of differential
algebraic K -theory (see Theorem 5.8).

5A. Scaling the metric. Let M be a smooth manifold and X ∈RegZ. We consider
a geometric bundle (V, g), g := (hV ,∇ II ), on M×X and let f ∈C∞(M×X (C)) be
a Gal(C/R)-invariant positive smooth function. Then we can consider the rescaled
metric f hV and geometry g f := ( f hV ,∇ II ). In the following we work with the
canonical extensions can(g) (see Definition 2.19) of the geometries. We are inter-
ested in the difference

ĉycl(V, can(g f ))− ĉycl(V, can(g)) ∈ K̂(X)0(M).

Note that this difference is equal to a(α) for some α ∈ IDR−1(M × X)/ im(d),
where α is well-defined up to the image of rBeil. We want to calculate α. To this
end we use the homotopy formula [Bunke and Tamme 2015, Lemma 5.11]. We
consider the bundle V̂ := pr∗ V , where pr : [0, 1] × M × X → M × X is the
projection. It is equipped with the geometry ĝ := (ĥ, pr∗ ∇ II ), ĥ := (1− x + x f )h,
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where x ∈ [0, 1] is the coordinate. By the homotopy formula we can take

α =

∫
[0,1]×[0,1]×M×X/[0,1]×M×X

R(ĉycl(V̂ , can(ĝ)))

=

∫
[0,1]×[0,1]×M×X/[0,1]×M×X

ω̃(can(ĝ)).

For us, the most important case is the following (see [Bunke and Tamme 2015,
Lemma 5.13]):

Lemma 5.3. If dim(M)= 0 and dim(X (C))= 0, we can take

α = α(1)=− 1
2rk(V ) log( f )du.

Proof. We have ω̃(ĝ)(p)= 0 for all p except p = 0, 1. In fact we have

ω̃(ĝ)(0)≡ rk(V ),

hence α(0)= 0. In order to calculate ω̃(ĝ)(1), we first observe that

∇̃ = d +
1− u

2
( f − 1)dx

1+ ( f − 1)x
.

We get

ω̃(ĥ)(1)=
rk(V )

2
( f − 1)

1+ ( f − 1)x
du ∧ dx,

and therefore
α = α(1)=− 1

2rk(V ) log( f )du. �

5B. The absolute height for number rings. We consider a ring of integers R in
a number field K . Note that Spec(R) is regular, separated and of finite type over
Spec(Z). We define the multiplicative subgroup

K0(Spec(R))(1) := {x ∈K0(Spec(R)) | 1− x is nilpotent}

of the group of units in the ring K0(Spec(R)). It is known that

K0(Spec(R))∼= Z⊕ Cl(R),

where Cl(R) denotes the finite class group. Therefore

K0(Spec(R))(1) ∼= {1+ x | x ∈ Cl(R)} ∼= Cl(R)

is finite. We furthermore define

K̂0(Spec(R))(1) := I−1(K0(Spec(R))(1))⊆ K̂0(Spec(R)).
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If x ∈ K̂0(Spec(R))(1), then necessarily R(x) = R(1). Hence we have an exact
sequence

0→ H−1(IDR(Spec(R)))/ im(rBeil)

1+a
−−→ K̂0(Spec(R))(1)→K0(Spec(R))(1)→ 0. (5.4)

We now define an absolute height function

h : K̂0(Spec(R))(1)→ R

for number rings R. We will relate h with the arithmetic degree of metrized line
bundles in the next subsection.

Note that

H−1(IDR(Spec(R)))∼= H−1(IDR(1)(Spec(R)))∼= [RSpec(R)(C)
]
Gal(C/R).

Explicitly, a class [α] ∈ H−1(IDR(1)(Spec(R))) which is represented by

α ∈ IDR(1)−1(Spec(R))⊆ A1([0, 1]× Spec(R)(C))

corresponds to the function

Spec(R)(C)→ R, σ 7→ Re
(∫
[0,1]σ

∗α
)
. (5.5)

We define a linear map

s : [RSpec(R)(C)
]
Gal(C/R)

→ R, s( f ) :=
1

[K :Q]

∑
σ∈Spec(R)(C)

f (σ ).

Then s ◦ rBeil(1)= 0. In this way we get a homomorphism

h : H−1(IDR(Spec(R)))/ im(rBeil)→ R, h([ f ]) := s( f ). (5.6)

In view of (5.4) and since K0(Spec(R))(1) is finite, the homomorphism (5.6) has a
unique extension to K̂0(Spec(R))(1). Explicitly, if x ∈ K̂0(Spec(R))(1), then there
exists N ∈ N such that x N

= 1+ a( f ) for some f ∈ H−1(IDR(Spec(R))) and
h(x) is given by

h(x)=
1
N

h(1+ a( f )).

5C. The degree of metrized line bundles. We let R be the ring of integers in a
number field K . We consider the trivial bundle V := OSpec(R) with the canonical
geometry g0. Then

ĉycl(V, can(g0))= 1.
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Let f : Spec(R)(C)→ R+ be Gal(C/R)-invariant and form the geometry with
rescaled metric g0, f as in Section 5A. Then

ĉycl(V, can(g0, f )) ∈ K̂0(Spec(R))(1).

Lemma 5.7. We have

h(ĉycl(V, can(g0, f )))=−
1

2[K :Q]

∑
σ∈Spec(R)(C)

log( f (σ )).

Proof. Use (5.5) and Lemma 5.3. �

If (L,hL)∈ P̂ic(Spec(R)), then we have a canonical extended geometry can(hL)

on L and can form

ĉ(L, hL) := ĉycl(L, can(hL)) ∈ K̂0(Spec(R))(1).

Theorem 5.8. The map ĉ : P̂ic(Spec(R))→ K̂0(Spec(R))(1) is an isomorphism.
Furthermore, for any metrized line bundle (L, hL) we have

d̂eg(L, hL)= h(ĉ(L, hL)).

Proof. Since all connections involved are trivial, we have

can(hL
⊗ hL′)= can(hL)⊗ can(hL′).

Thus ĉ is a group homomorphism.
There is a natural map [RSpec(R)(C)

]
Gal(C/R)

→ P̂ic(Spec(R)) which sends the
tuple λ= (λσ ) to the trivial line bundle R with the metric h(λ) given by h(λ)σ (1)=
exp(−2λσ ). Recall that

H−1(IDR(Spec(R)))∼= [RSpec(R)(C)
]
Gal(C/R).

We claim that we have a commutative diagram with exact rows

0 // H−1(IDR(Spec(R)))/im(rBeil) // P̂ic(Spec(R))

ĉ
��

// Pic(Spec(R))

∼=
��

// 0

0 // H−1(IDR(Spec(R)))/im(rBeil) // K̂0(Spec(R))(1) // K0(Spec(R))(1) // 0

Indeed, the right vertical map is given by the topological cycle map, and it is
known to be an isomorphism. The exactness of the upper row is straightforward,
the lower row is (5.4). Finally, the commutativity of the left-hand square follows
from Lemma 5.3.

In particular, ĉ is an isomorphism.
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For the second assertion, it suffices by the construction of h to check that for
λ= (λσ ) ∈ [R

Spec(R)(C)
]
Gal(C/R) we have

d̂eg(R, h(λ))=
1

[K :Q]

∑
σ∈Spec(R)(C)

λσ .

But this is clear from the definition of h(λ) and (5.2) with s = 1. �

6. Formality of the algebraic K -theory of number rings

Let MR be the Moore spectrum of R. For any spectrum E , we use the notation
ER := E ∧MR for its realification.

Let E ∈ CAlg(Sp∧) be a commutative ring spectrum. Then we can form the
differential graded commutative algebra π∗(ER) ∈ CAlg(Ch⊗) with trivial differ-
entials. There is a unique equivalence class of maps

r : E→ H(π∗(ER))

of spectra which induces the canonical realification map in homotopy.

Definition 6.1. The commutative ring spectrum E is called formal over R if r can
be refined to a morphism of commutative ring spectra.

If π∗(ER) is a free commutative R-algebra, then E is formal over R (see [Bunke
2013] for an argument). This applies, e.g., to complex bordism MU or connective
complex K -theory ku. From the formality of ku one can deduce the formality
over R of periodic complex K -theory KU.

More generally, let E ∈ Fun(S,CAlg(Sp∧)) be a diagram of commutative ring
spectra. It gives rise to a diagram π∗(ER) ∈ Fun(S,CAlg(Ch⊗)) of chain com-
plexes with trivial differential.

Definition 6.2. We say that E is formal over R if there exists an equivalence ER'

H(π∗(ER)) of diagrams of commutative ring spectra which induces the identity
on homotopy.

We let S⊆ RegZ be the full subcategory whose objects are spectra of rings of
integers in number fields.

Theorem 6.3. The restriction of the sheaf of algebraic K -theory spectra K to S is
formal over R.

Proof. We first show that the restriction of H(IDR) to S is formal over R. To
this end we describe, for every ring of integers R in a number field K , canonical
representatives of the cohomology of IDR(Spec(R)). We have

IDR(Spec(R))(p)∼=
(
{ω∈ A(I )[2p] |ω|{0}∈ (2π i)pR,ω|{1}=0}Spec(R)(C))Gal(C/R)
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for p ≥ 1, and

IDR(Spec(R))(0)∼=
(
{ω ∈ A(I ) | ω|{0} ∈ R}Spec(R)(C))Gal(C/R)

.

We have

H∗
(
{ω ∈ A(I )[2p] | ω|{0} ∈ (2π i)pR, ω|{1} = 0}

)
∼=

{
i p+1R, ∗ = −2p+ 1,
0, else,

and

H∗
(
{ω ∈ A(I ) | ω|{0} ∈ R}

)
∼=

{
R, ∗ = 0,
0, else.

Explicit representatives of generators are given by i p+1dt (with t the coordinate
of I ) in the first case and 1 in the second. For real embeddings σ ∈ Spec(R)(C)
and odd p ∈ N, and for complex embeddings σ ∈ Spec(R)(C) and all p ∈ N>0,
we define the following elements in IDR(Spec(R))(p): for real σ ,

x(σ )1−2p :=

(
Spec(R)(C) 3 σ ′ 7→

{
i p+1dt, σ ′ = σ,

0, else,

)
∈ IDR(Spec(R))(p),

and for complex σ ,

x(σ )1−2p :=(
Spec(R)(C) 3 σ ′ 7→


i p+1dt, σ ′ = σ,

(−1)p+1i p+1dt, σ ′ = σ̄ ,

0, else,

)
∈ IDR(Spec(R))(p).

We let M ′(R) ⊆ IDR(Spec(R)) be the R-submodule generated by the elements
x(σ )1−2p for σ and p as above.

It is easy to see that the inclusion

H∗(IDR(Spec(R)))∼= R⊕M ′(R)⊂ IDR(Spec(R))

is a quasi-isomorphism of commutative differential graded algebras which is natu-
ral in R. We therefore get a morphism of diagrams of ring spectra

rBeil
:K|S→ H(IDR)|S ' H(H∗(IDR)|S).

By Theorem 2.31 the induced map

π∗(K|S)⊗R→ H−∗(IDR|S) (6.4)

coincides with Beilinson’s regulator, which itself coincides up to a factor of 2 with
Borel’s regulator map [Burgos Gil 2002, Theorem 10.9]. By Borel’s results [1974],
(6.4) is injective, and the image is the kernel of the map

p : R⊕M ′(R)→ R, b 7→
∑

σ∈Spec(R)(C)

n(σ )−1(b),
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where the n(σ )−1(b) are the coefficients of b in front of the generators x(σ )−1. We
define the subspace M(R) := ker(p)∩ M ′(R). Then we can define a canonical
splitting

M ′(R)→ M(R), b 7→ b−
p(b)
[K :Q]

∑
σ∈Spec(R)(C)

x(σ )−1.

It induces a canonical ring homomorphism R⊕M ′(R)→ R⊕M(R) which is left-
inverse to the inclusion R⊕M(R)↪→R⊕M ′(R) and therefore a map of diagrams
of ring spectra s : H(R⊕M ′)→ H(R⊕M) such that the composition

KR|S
rBeil
∧MR

−−−−−→ H(R⊕M ′)
s
→ H(R⊕M)' H(π∗(K|S))

is an equivalence of diagrams of commutative ring spectra. �

Observe that the structure of the homotopy groups of K(Spec(R))R implies
that all Massey products are trivial. This can be considered as an A∞-version of
formality. The additional information given by Theorem 6.3 is that K(Spec(R))
is formal in the commutative sense and in a way which is natural in the ring R.
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The Balmer spectrum of a tame stack

Jack Hall

Let X be a quasicompact algebraic stack with quasifinite and separated diagonal.
We classify the thick ⊗-ideals of Dqc(X)c. If X is tame, then we also compute
the Balmer spectrum of the ⊗-triangulated category of perfect complexes on X .
In addition, if X admits a coarse space Xcs, then we prove that the Balmer spectra
of X and Xcs are naturally isomorphic.

1. Introduction

Let X be a quasicompact and quasiseparated scheme. Let Perf(X) be the⊗-triangu-
lated category of perfect complexes on X . A celebrated result of Thomason [1997,
Theorem 3.15], extending the work of Hopkins [1987, Section 4] and Neeman
[1992a, Theorem 1.5], is a classification of the thick ⊗-ideals of Perf(X) in terms
of the Thomason subsets of |X |, which are those subsets Y ⊆ |X | expressible as a
union ∪αYα such that |X | \ Yα is quasicompact and open.

If X is a quasicompact and quasiseparated algebraic space, Deligne–Mumford
stack, or algebraic stack, then it is also natural to consider the ⊗-triangulated cate-
gory Perf(X) of perfect complexes on X (see [Hall and Rydh 2014, Section 4] for
precise definitions).

In general, Thomason’s classification of thick ⊗-ideals of Perf(X) fails for alge-
braic stacks (Example 3.2). If one instead works with the⊗-ideal Dqc (X)c⊆Perf(X)
of compact perfect complexes, then the first main result of this article is that the
classification goes through without change.

Theorem 1.1 (classification of thick ⊗-ideals). If X is a quasicompact algebraic
stack with quasifinite and separated diagonal, then there is a bijective and inclu-
sion preserving correspondence between the thick ⊗-ideals of Dqc (X)c and the
Thomason subsets of |X |.

Some special cases of Theorem 1.1 are the following:

• If k is a field and G is a finite group, then Db(Proj kG) has no nontrivial
⊗-ideals.
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Keywords: derived categories, algebraic stacks.
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• If Y is a quasiprojective scheme over a field k with a proper action of an affine
group scheme G, then the thick ⊗-ideals of D(QCohG(Y ))c are in bijective
correspondence with the G-invariant Thomason subsets of X .

The first special case is easy to prove directly and is well-known (for example,
[Benson et al. 2011, Proposition 2.1]). In some sense, this makes our results or-
thogonal to those of [Benson et al. 2011]. The second special case was only known
in characteristic 0 when Y was normal or quasi-affine [Krishna 2009, Theorem 7.8]
or in characteristic p when G is finite of order prime to p and X is smooth [Dubey
and Mallick 2012, Theorem 1.2].

We prove Theorem 1.1 using tensor nilpotence with parameters (Theorem 2.3),
which extends [Thomason 1997, Theorem 3.8] and [Hopkins 1987, Theorem 10ii]
(compare [Neeman 1992a, 1.1]) to quasicompact algebraic stacks with quasifinite
and separated diagonal. As should be expected, stacks of the form [Y/G], where
Y is an affine variety over a field k and G is a finite group with order divisible by
the characteristic of k, are the most troublesome. This is dealt with in Lemma 2.6,
which relies on some results developed in Appendix A.

If T is a ⊗-triangulated category, then Balmer [2005] has functorially con-
structed from T a locally ringed space SpBal(T), the Balmer spectrum. A fun-
damental result of Balmer [2005, Theorem 5.5], which was extended by Buan,
Krause and Solberg [Buan et al. 2007, Theorem 9.5] to the non-noetherian setting,
is that if X is a quasicompact and quasiseparated scheme, then there is a naturally
induced isomorphism

X→ SpBal(Perf(X)).

An algebraic stack is tame if its stabilizer groups at geometric points are finite
linearly reductive group schemes [Abramovich et al. 2008, Definition 2.2]. Every
scheme and algebraic space is tame. Moreover, in characteristic zero, a stack is
Deligne–Mumford if and only if is tame. In characteristic p > 0, there are nontame
Deligne–Mumford stacks (e.g., BFp(Z/pZ)) and tame stacks that are not Deligne–
Mumford (e.g., BFpµp). Nagata’s theorem [Hall and Rydh 2015, Theorem 1.2] pro-
vides a classification of finite linearly reductive group schemes over fields, which
allows one to determine whether a given algebraic stack is tame. Our definition
of tame stack is substantially weaker than that what appears in [Abramovich et al.
2008, Definition. 3.1] (see Appendix A).

Tame stacks are precisely those stacks with quasifinite diagonal such that the
compact objects of Dqc (X) coincide with the perfect complexes. In particular, for
tame stacks Dqc (X)c contains a monoidal unit and so becomes a ⊗-triangulated
category. Using Theorem 1.1, we extend the result of [Buan et al. 2007] to tame
stacks.
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Theorem 1.2. Let X be a quasicompact algebraic stack with quasifinite and sepa-
rated diagonal. If X is tame, then there is a natural isomorphism of locally ringed
spaces:

(|X |,OXZar)→ SpBal(Perf(X)),

where OXZar is the Zariski sheaf U 7→ 0(U,OX ).

Theorem 1.2 implies that the Balmer spectrum cannot be used to reconstruct
locally separated algebraic spaces [Knutson 1971, Example 2]. Balmer [2013] has
recently initiated the study of unramified monoids in ⊗-triangulated categories and
Neeman [2015] has classified them in the case of a separated noetherian scheme.
It is hoped that a refinement of the Balmer spectrum can be constructed from un-
ramified monoids, which would — at least — permit the reconstruction of algebraic
spaces.

If X is an algebraic stack with finite inertia (e.g., a separated Deligne–Mumford
stack), then X admits a coarse space π : X → Xcs [Keel and Mori 1997; Rydh
2013], which is the universal map from X to an algebraic space. If X has finite
inertia, then X has separated diagonal. Thus we can also establish the following.

Theorem 1.3. Let X be a quasicompact, quasiseparated algebraic stack with finite
inertia and coarse space π : X→ Xcs. If X is tame, then

SpBal(Lπ
∗) : SpBal(Perf(X))→ SpBal(Perf(Xcs))

is an isomorphism of ringed spaces.

Krishna [2009, Theorem 7.10] proved Theorem 1.3 when X is of the form
[W/G], where W is quasiprojective and normal or quasi-affine, and G is a linear
algebraic group in characteristic 0 acting properly on W . Dubey and Mallick [2012,
Theorem 1.2] proved a similar result in positive characteristic, but required W to
be smooth and G a finite group with order not divisible by the characteristic of the
ground field. In particular, Theorem 1.3 is stronger than all existing results and
Theorems 1.1 and 1.2 are new.

Assumptions and conventions. A priori, we make no separation assumptions on
our algebraic stacks. However, all stacks used in this article will be, at the least, qua-
sicompact and quasiseparated. Usually, they will also have separated diagonal. If
X is an algebraic stack, then let |X | denote its associated Zariski topological space
[Laumon and Moret-Bailly 2000, Section 5]. For derived categories of algebraic
stacks, we use the conventions and notations of [Hall and Rydh 2014, Section 1].
In particular, if X is an algebraic stack, then Mod(X) is the abelian category of OX -
modules on the lisse-étale site of X and Dqc (X) denotes the unbounded derived
category of OX -modules with quasicoherent cohomology sheaves. If f : X→ Y is
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a morphism of algebraic stacks, then there is always an adjoint pair of unbounded
derived functors

Dqc (X)
R( fqc)∗

// Dqc (Y ).
L f ∗qc

oo

If f is quasicompact, quasiseparated and representable, then R( fqc)∗ agrees with
R f∗, the unbounded derived functor of f∗ : Mod(X)→ Mod(Y ) [Hall and Rydh
2014, Lemma 2.5(3) and Theorem 2.6(2)]. If f is smooth, then L f ∗qc agrees with
the unique extension of the exact functor f ∗ :Mod(Y )→Mod(X) to the unbounded
derived category.

2. Tensor nilpotence with parameters

Definition 2.1. Let X be an algebraic stack and let ξ : M → N be a morphism
in Dqc (X). Let Z ⊆ |X | be a subset. We say that ξ vanishes at the points of Z if
for every algebraically closed field k and morphism z : Spec k→ X that factors
through Z , then Lz∗qcξ is the zero map in Dqc (Spec k).

This definition is connected to a more familiar notion for schemes.

Lemma 2.2. Let X be a scheme and let ξ : M→ N be a morphism in Dqc (X). If
Z ⊆ |X | is a subset, then ξ vanishes at the points of Z if and only if ξ ⊗L

OX
κ(z) is

the zero map in D(κ(z)) for every z ∈ Z , where κ(z) denotes the residue field of z.

Proof. We immediately reduce to the situation where X = Spec κ and κ is a field.
It now suffices to prove that if κ ⊆ k is a field extension, where k is algebraically
closed, then ξ ⊗ k is the zero map in D(k) if and only if ξ is the zero map in D(κ).
This is obvious. �

If K ∈ Dqc (X), then the cohomological support of K is defined to be the subset

supph(K )=
⋃

n∈Z

supp(Hn(K ))⊆ |X |.

For the basic properties of cohomological support, see [Hall and Rydh 2014, Lemma
4.8], which extends [Thomason 1997, Lemma 3.3] to algebraic stacks. The main
result of this section is the following theorem.

Theorem 2.3 (tensor nilpotence with parameters). Let X be a quasicompact alge-
braic stack with quasifinite and separated diagonal. Let ψ : E→ F be a morphism
in Dqc (X), where E ∈ Dqc (X)c. Let K ∈ Perf(X). If ψ vanishes at the points
of supph(K ), then there exists a positive integer n such that K ⊗L

OX
(ψ⊗n) = 0 in

Dqc (X).

The following example demonstrates that Theorem 2.3 cannot be weakened to
the situation where E ∈ Perf(X).
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Example 2.4. Let X = BF2(Z/2Z), which is a quasicompact, nontame Deligne–
Mumford stack with finite diagonal. Consider the adjunction morphism

η : OX → x∗OF2,

where x : Spec F2 → X is the usual cover. Since coker(η) ∼= OX , the cone of η
induces a natural map ψ : OX → OX [1]. For all positive integers n, ψ⊗n

= ψ .
Clearly, ψ vanishes at the points of |X | (because x∗η is split). If ψ = ψ⊗n

= 0 for
some n, it is easily determined that this implies that OX ∈ Dqc (X)c, which is false.

Proof of Theorem 2.3. Let E be the category of representable, quasifinite, flat
and separated morphisms of finite presentation over X . Let D ⊆ E be the full
subcategory whose objects are those (U

p
−→ X) such that there exists an integer

n > 0 with p∗(K ⊗L
OX
(ψ⊗n))= 0. It suffices to prove that D=E. By the induction

principle (Theorem B.1), it is sufficient to verify the following three conditions:

(I1) If (U →W ) ∈ E is an open immersion and W ∈ D, then U ∈ D.

(I2) If (V → W ) ∈ E is finite and surjective, where V is an affine scheme, then
W ∈ D.

(I3) If (U
j
−→ W ), (W ′

f
−→ W ) ∈ E, where j is an open immersion and f is étale

and an isomorphism over W \U , then W ∈ D whenever U , W ′ ∈ D.

Now condition (I1) is trivial and condition (I3) is Lemma 2.5. For condition (I2),
by Lemma 2.6, it remains to prove that every affine scheme belongs to D. By
Lemma 2.2 and [Thomason 1997, Lemma 3.14] (or [Neeman 1992a, Lemma 1.2]),
the result follows. �

Lemma 2.5. Consider a 2-cartesian diagram of algebraic stacks

U ′ �
� j ′

//

fU
��

W ′

f
��

U �
� j

// W

where W is quasicompact and quasiseparated, j is a quasicompact open immer-
sion and f is representable, étale, finitely presented and an isomorphism over
W \U. Let ψ : E→ F be a morphism in Dqc (W ) and let K ∈ Dqc (W ). For each
integer n > 0, let φn = K ⊗L

OW
(ψ⊗n). If f ∗φn = 0 and j∗φn = 0, then φ2n = 0.

Proof. To simplify notation, we let En = K ⊗L
OW

E⊗n and Fn = K ⊗L
OW

F⊗n .
We will argue similarly to [Thomason 1997, Theorem 3.6], but using the Mayer–
Vietoris triangle for étale neighbourhoods of stacks developed in [Hall and Rydh
2014, Lemma 5.7(1)] instead of [Thomason 1997, Lemma 3.5]. Let k = f ◦ j ′. By
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[Hall and Rydh 2014, Lemma 5.7(1)], there is a distinguished triangle in Dqc (W ):

Fn // R j∗ j∗Fn ⊕R f∗ f ∗Fn // Rk∗k∗Fn
d
// Fn[1].

By applying the homological functor HomOW (En,−) to the distinguished triangle
above, we find that there exists a morphism t : En → Rk∗k∗Fn[−1] such that
δ(t)= φn , where δ is the boundary map induced by d . But there is a commutative
diagram

(Rk∗k∗Fn[−1])⊗L
OW

E⊗n

Id⊗ψ⊗n

��

δ⊗ψ⊗n

))

En ⊗
L
OW

E⊗n

t⊗Id
55

t⊗ψ⊗n

))

φ2n
// Fn ⊗

L
OW

F⊗n

(Rk∗k∗Fn[−1])⊗L
OW

F⊗n

δ⊗Id

55

so it remains to prove that the vertical map above is zero. To see this, the projection
formula [Hall and Rydh 2014, Corollary 4.12] implies that we have a commutative
diagram

(Rk∗k∗Fn[−1])⊗L
OW

E⊗n ∼
//

Id⊗ψ⊗n

��

Rk∗k∗(K ⊗L
OW

F⊗n
⊗

L
OW

E⊗n
[−1])

Rk∗k∗(F⊗n
⊗φn[−1])

��

(Rk∗k∗Fn[−1])⊗L
OW

F⊗n ∼
// Rk∗k∗(K ⊗L

OW
F⊗n
⊗

L
OW

F⊗n
[−1])

Since k∗φn = 0, the result follows. �

The following lemma is similar to a special case of [Elagin 2011, Theorem 7.3
and Corollary 9.6]. Also, see [Krishna 2009, proof of Proposition 7.6; Dubey and
Mallick 2012, Lemma 3.8].

Lemma 2.6. Let W be an algebraic stack and let v : V → W be a finite and
faithfully flat morphism of finite presentation, where V is an affine scheme. Let
ψ : E→ F be a morphism in Dqc (W ), where E ∈ Dqc (W )c. Let K ∈ Perf(W ). If
v∗(K ⊗L

OW
ψ)= 0 in Dqc (V ), then K ⊗L

OW
ψ = 0 in Dqc (W ).

Proof. By [Hall and Rydh 2014, Corollary 4.15], R(vqc)∗ admits a right adjoint v×

and there is a functorial isomorphism v×(OW )⊗
L
OV

Lv∗qc(M) ' v
×(M) for every

M ∈Dqc (W ). In particular, if v∗(K⊗L
OW
ψ)= 0 in Dqc (V ), then v×(K⊗L

OW
ψ)= 0

in Dqc (V ). By adjunction, it follows that the induced composition

R(vqc)∗v
×(K ⊗L

OW
E)→ K ⊗L

OW
E→ K ⊗L

OW
F
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vanishes in Dqc (W ). Thus it suffices to prove that

R(vqc)∗v
×(K ⊗L

OW
E)→ K ⊗L

OW
E

admits a section. Since E ∈Dqc (W )c and K ∈Perf(W ), it follows that K⊗L
OW

E lies
in Dqc (W )c. Hence, we need only prove that if M ∈ Dqc (W )c, the trace morphism
TrM :R(vqc)∗v

×(M)→M admits a section. By Lemma A.1, M is quasi-isomorphic
to a direct summand of R(vqc)∗P , where P ∈ Perf(V ). Thus we are reduced to
proving that TrR(vqc)∗P admits a section. This is trivial and the result follows. �

3. The classification of thick ⊗-ideals

If T is a ⊗-triangulated category and S ⊆ T is a subset, then define 〈S〉⊗ ⊆ T to
be the smallest thick ⊗-ideal of T containing S.

To prove Theorem 1.1, we require this analogue of [Thomason 1997, Lemma 3.14]:

Lemma 3.1. Let X be a quasicompact algebraic stack with quasifinite and sepa-
rated diagonal. If P , Q ∈ Dqc (X)c and supph(P)⊆ supph(Q), then 〈P〉⊗ ⊆ 〈Q〉⊗.

Proof. Argue exactly as in [Thomason 1997, Lemma 3.14] (cf. [Neeman 1992a,
Lemma 1.2]), but using Theorem 2.3 instead of Thomason’s Theorem 3.8. �

The following example shows Lemma 3.1 cannot be extended to P , Q ∈Perf(X)
when X is nontame. It also shows that Thomason’s classification (Theorem 1.1)
does not hold for Perf(X) in this case too.

Example 3.2. Let x : Spec F2 → X be as in Example 2.4. Let P = OX and let
Q = x∗OSpec F2 . Then P, Q ∈ Perf(X) and supph(P) = supph(Q). Note that
Q ∈ Dqc (X)c and P /∈ Dqc (X)c. Since Dqc (X)c is a thick ⊗-ideal of Perf(X),
it follows that 〈Q〉⊗ ⊆ Dqc (X)c. But if 〈P〉⊗ = 〈Q〉⊗, then P ∈ Dqc (X)c. But
P /∈ Dqc (X)c; thus we have a contradiction.

Following Thomason [1997, Theorem 3.15] (or Neeman [1992a, Theorem 1.5]),
given Lemma 3.1, we can prove Theorem 1.1.

Proof of Theorem 1.1. If Y ⊆ |X | is a Thomason subset, then define

IY = {P ∈ Dqc (X)c : supph(P)⊆ Y }.

Clearly, IY is a thick ⊗-ideal of Dqc (X)c. If T is a thick ⊗-ideal of Dqc (X)c, then
define

ϕ(T)=
⋃

Q∈T

supph(Q).

By [Hall and Rydh 2014, Lemma 4.8(3)], ϕ(T) is a Thomason subset of |X |. It
suffices to prove that Iϕ(T) = T and ϕ(IY )= Y .
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Obviously, T⊆ Iϕ(T). For the reverse inclusion, if P ∈ Iϕ(T), then

supph(P)⊆
⋃

Q∈T

supph(Q).

Since supph(P) and supph(Q) are constructible for every Q ∈ T, it follows that
there is a finite subset J ⊆ T such that

supph(P)⊆
⋃

Q∈J
supph(Q)= supph(⊕Q∈J Q).

By Lemma 3.1, 〈P〉⊗ ⊆ 〈⊕Q∈J Q〉⊗ ⊆ T. Thus P ∈ T and Iϕ(T) = T.
Obviously, Y ⊇ ϕ(IY ). Since Y is Thomason, it is expressible as a union ∪αYα

such that |X | \Yα is quasicompact and open. By [Hall and Rydh 2014, Theorem A],
for every α there is a compact complex Qα with support Yα . It follows that if y ∈ Y ,
then y ∈ supph(Qα)⊆ Y for some α. In other words, y ∈ ϕ(IY ), so Y = ϕ(IY ). �

4. The Balmer spectrum of a tame stack

We will prove Theorem 1.2 using [Buan et al. 2007, Proposition 6.1].

Proof of Theorem 1.2. Let s : (|X |, supph)→
(
|SpBal(Perf(X))|, σX

)
be the uniquely

induced morphism of support data, where σX denotes the universal support da-
tum. Since X is tame, it has finite cohomological dimension [Hall and Rydh 2015,
Theorem 2.1(2)]; hence, Dqc (X)c = Perf(X) [Hall and Rydh 2014, Remark 4.6].
By Theorem 1.1, (|X |, supph) is classifying and by [Laumon and Moret-Bailly
2000, Corollaries 5.6.1 and 5.7.2] we know that |X | is spectral. By [Buan et al.
2007, Proposition 6.1], s is a homeomorphism. By definition, OSpBal(Perf(X)) is the
sheafification of the presheaf

( j :U ⊆ X) 7→ EndPerf(X)/ ker( j∗)∩Perf(X)( j∗OX ).

Since |X | has a basis consisting of quasicompact open subsets, it is sufficient to
identify EndPerf(X)/ ker( j∗)∩Perf(X)( j∗OX ) when j is a quasicompact open immersion.
By [Hall and Rydh 2014, Lemma 6.7(2)], ker( j∗) is the localising envelope of a set
of objects with compact image in Dqc (X). By Thomason’s localisation theorem
(e.g., [Hall and Rydh 2014, Theorem 3.10] or [Neeman 1992b, Theorem 2.1]),
Perf(U ) is the thick closure of Perf(X)/ ker( j∗)∩Perf(X). Since there are natural
isomorphisms

EndPerf(X)/ ker( j∗)∩Perf(X)( j∗OX )∼= EndPerf(U )(OU )∼= EndOU (OU )= 0(U,OX ),

the result follows. �

Proof of Theorem 1.3. Since X has finite inertia, it has separated diagonal. By
[Rydh 2013, Theorem 6.12], π is a separated universal homeomorphism, so Xcs is a
quasicompact and quasiseparated algebraic space. By [Rydh 2013, Theorem 6.12],
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the natural map (|X |,OXZar)→ (|Xcs|,O(Xcs)Zar) is an isomorphism of locally ringed
spaces. By Theorem 1.2, the result follows. �

Appendix A: Tame stacks and coarse spaces

We establish here some basic results about R(πqc)∗, where π : X → Xcs is the
coarse space of a quasiseparated algebraic stack X with finite inertia. Our first
result, however, is a useful lemma that characterises the compact objects on a
certain class of algebraic stacks, which includes BG for all finite groups G. This is
likely known, though we are unaware of a reference for this result in the generality
required.

Lemma A.1. Let W be an algebraic stack and let v : V → W be a finite and
faithfully flat morphism of finite presentation, where V is an affine scheme. If
M ∈ Dqc (W )c, then M is quasi-isomorphic to a direct summand of R(vqc)∗P for
some P ∈ Perf(V ).

Proof. If P ∈ Perf(V ), then R(vqc)∗P ∈ Dqc (W )c [Hall and Rydh 2014, Corol-
lary 4.15 and Example 3.8]. Thus, let T⊆Dqc (W )c be the subcategory with objects
those N ∈ Dqc (W )c that are quasi-isomorphic to direct summands of R(vqc)∗P for
some P ∈ Perf(V ). Clearly, T is closed under shifts and direct summands. We
now prove that T is triangulated. Thus let f : N ′→ N be a morphism in T and
complete it to a distinguished triangle

N ′
f
// N c

// N ′′ ∂
// N ′[1].

We now prove that N ′′ ∈ T. By assumption, there are P , P ′ ∈ Perf(V ) and C ,
C ′ ∈ Dqc (W )c and quasi-isomorphisms N ⊕C ' R(vqc)∗P , N ′⊕C ′ ' R(vqc)∗P ′.
It follows that there is a distinguished triangle

N ′⊕C ′
f⊕0
// N ⊕C

c⊕idC⊕0
// N ′′⊕C ⊕C ′[1]

∂⊕pC ′[1]
// N ′⊕C ′[1],

where pC ′[1] : C ⊕C ′[1] → C ′[1] is the natural projection. In particular, we are
reduced to the situation where N ′ = R(vqc)∗P ′ and N = R(vqc)∗P . In this case,
the morphism f : N ′→ N by duality induces a morphism f̃ : P ′→ v×R(vqc)∗P .
It follows that the composition R(vqc)∗P ′

f
−→ R(vqc)∗P→ R(vqc)∗v

×R(vqc)∗P is
the map R(vqc)∗ f̃ . Now form a distinguished triangle

P ′
f̃
// v×R(vqc)∗P k

// K δ
// P ′[1].

Since the morphism R(vqc)∗P → R(vqc)∗v
×R(vqc)∗P admits a retraction, there

exist a Q ∈Dqc (W )c and a quasi-isomorphism R(vqc)∗v
×R(vqc)∗P'R(vqc)∗P⊕Q.
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There is an induced morphism of distinguished triangles

R(vqc)∗P ′
R(vqc)∗ f̃

// R(vqc)∗v
×R(vqc)∗P

R(vqc)∗k
//

∼

��

R(vqc)∗K

��

R(vqc)∗δ
// R(vqc)∗P ′[1]

��

R(vqc)∗P ′
f⊕ 0

// R(vqc)∗P ⊕ Q
c⊕idQ

// N ′′⊕ Q
∂+0

// R(vqc)∗P ′[1].

It follows that R(vqc)∗K ' N ′′ ⊕ Q and so N ′′ ∈ T. By [Hall and Rydh 2014,
Example 6.5 and Proposition 6.6], Dqc (W ) is compactly generated by v∗OV . But
Thomason’s Theorem [Neeman 1992b, Theorem 2.1] implies that Dqc (W )c is the
smallest thick subcategory containing v∗OV . The result follows. �

Let F : S→ T be a triangulated functor between triangulated categories. As-
sume that S and T admit t-structures. We say that F is left (resp. right) t-exact if
F(S≥0) ⊆ T≥0 (resp. F(S≤0) ⊆ T≤0)). We say that F is t-exact if it is both left
and right t-exact. The following result was suggested to us by David Rydh.

Theorem A.2. If X be a quasiseparated algebraic stack with finite inertia and
coarse space π : X→ Xcs, then the restriction of R(πqc)∗ to Dqc (X)c is t-exact.

Proof. By [Hall and Rydh 2014, Lemma 1.2(4)], this may be checked étale-locally
on Xcs. Thus, we may assume that Xcs is an affine scheme. Since π is a universal
homeomorphism, it follows that X is quasicompact. Also, since X has finite inertia,
it has quasifinite and separated diagonal. By Theorem B.5, there exist morphisms
of algebraic stacks V

v
−→W

p
−→ X such that V is an affine scheme, v is finite, faith-

fully flat and finitely represented and p is a representable, separated and finitely
presented Nisnevich covering. By [Rydh 2013, Proposition 6.5], we may further
assume that p is fixed-point reflecting. We now apply [Rydh 2013, Theorem 6.10]
to conclude that the diagram

W
p
//

ω

��

X

π

��

Wcs
pcs
// Xcs

is cartesian and pcs is representable, separated, étale and of finite presentation.
Thus, it suffices to prove the result on W .

Clearly R(πqc)∗ is left t-exact, so it remains to address the right t-exactness.
Take M ∈ Dqc (W )c ∩D≤0

qc (W ). By Lemma A.1, we may assume that there exists a
map i : M→ R(vqc)∗P , where P ∈ Perf(V ), that admits a retraction r . It follows
that the composition M

i
−→ R(vqc)∗P→ τ>0R(vqc)∗P is the zero map. Therefore

the induced map R(ωqc)∗M → R(ωqc)∗τ
>0R(vqc)∗P is the zero map. But v and
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ω ◦ v are affine, so there is a natural quasi-isomorphism τ>0R(ωqc)∗R(vqc)∗P '
R(ωqc)∗τ

>0R(vqc)∗P . The resulting map

τ>0R(ωqc)∗M→ τ>0R(ωqc)∗R(vqc)∗P

is 0 and also coincides with τ>0R(ωqc)∗(i), which admits a retraction τ>0R(ωqc)∗(r).
In particular, τ>0R(ωqc)∗M ' 0 and the result follows. �

Abramovich et al. [2008] work with a more restrictive definition of tame, render-
ing the following corollary a tautology. Indeed, they assume that X has finite inertia
and is locally of finite presentation over a base scheme S and that π : X→ Xcs is
such that π∗ is exact on quasicoherent sheaves. In our case, we make none of these
assumptions, rendering it nontrivial.

Corollary A.3. Let X be a quasiseparated algebraic stack with finite inertia and
coarse space π : X→ Xcs. The following are equivalent:

(1) X is tame;

(2) π∗ : QCoh(X)→ QCoh(Xcs) is exact;

(3) Rπ∗ : D
+
qc (X)→ D+qc (Xcs) is t-exact;

(4) R(πqc)∗ : Dqc (X)→ Dqc (Xcs) is t-exact.

Proof. We begin with some preliminary reductions. The morphism π is a separated
universal homeomorphism [Rydh 2013, Theorem 6.12], so Xcs is a quasiseparated
algebraic space and π is quasicompact and quasiseparated. Thus by Lemma 1.2(2)
of [Hall and Rydh 2014] we get the implication (3)⇒ (4), and by Theorem 2.6(2)
of the same reference we have that (4)⇒ (3). Clearly, item (1) may be verified after
passing to an affine étale presentation of Xcs, and similarly for items (2) and (3)
[Hall and Rydh 2014, Lemma 1.2(4) and Lemma 2.2(6)]. We may consequently
assume that Xcs is an affine scheme. Since π has finite diagonal, it has affine
diagonal, so we have (2)⇔(3) [Hall et al. 2014, Proposition 2.1]. By [Hall and
Rydh 2015, Theorem C, (1)⇒ (3)], we now obtain that (2)⇒ (1). It remains to
address (1)⇒ (2).

Arguing exactly as in the proof of Theorem A.2, we may further assume that X
admits a finite, faithfully flat and finitely presented cover v : V → X , where V is
an affine scheme. Since X is tame, OX ∈ Dqc (X)c. By Theorem A.2, it follows that
the induced morphism OX → v∗OV admits a retraction. If M ∈ QCoh(X), then it
follows immediately that the natural map M→ v∗v

∗M admits a retraction. Thus,
if f : M→ N is a surjection in QCoh(X), then f is a retraction of the surjection
v∗v
∗ f . Since π ◦v is affine, π∗v∗v∗ f is surjective. In particular, π∗ f is a retraction

of a surjection, thus is surjective. The result follows. �
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Appendix B: The induction principle

The induction principle [Stacks 2015, Tag 08GL] for algebraic spaces is closely
related to the étale dévissage results of [Rydh 2011a]. When working with derived
categories, where locality results are often quite subtle, it is often advantageous
to have the strongest possible criteria at your disposal. In this appendix, we will
prove the following induction principle for stacks with quasifinite and separated
diagonal.

Before stating this result, we require some notation. Fix an algebraic stack S.
If P1, . . . , Pr is a list of properties of morphisms of algebraic stacks over S, let
StackP1,...,Pr/S denote the full 2-subcategory of the category of algebraic stacks
over S whose objects are those (x : X→ S) such that x has properties P1, . . . , Pr .
The following abbreviations will be used: ét (étale), qff (quasifinite flat), sep (sep-
arated), fp (finitely presented) and rep (representable).

For example, Stackrep,sep,qff,fp /S consists of those algebraic stacks x : X → S
such that x is representable, separated, quasifinite flat, and finitely presented. In a
similar way, Stackrep,sep,ét,fp/S consists of those algebraic stacks over S, x : X→ S,
such that x is representable, separated, étale, and finitely presented. Note that
while every morphism (X ′→ X) in Stackrep,sep,ét,fp /S is representable, separated,
étale, and finitely presented; in Stackrep,sep,qff,fp /S they can only be assumed to be
representable, separated, quasifinite, and finitely presented (i.e., there are nonflat
morphisms between objects).

Theorem B.1 (induction principle). Let S be a quasicompact algebraic stack with
quasicompact and separated diagonal. If S has quasifinite diagonal, let

E= Stackrep,sep,qff,fp /S;

or if S is Deligne–Mumford, let

E= Stackrep,sep,ét,fp /S.

Let D⊆ E be a full subcategory satisfying the following properties:

(I1) if (X ′→ X) ∈ E is an open immersion and X ∈ D, then X ′ ∈ D;

(I2) if (X ′→ X) ∈ E is finite, flat, and surjective, where X ′ is an affine scheme,
then X ∈ D;

(I3) if (U
j
−→ X), (X ′

f
−→ X) ∈ E, where j is an open immersion and f is étale and

an isomorphism over X \U , then X ∈ D whenever U , X ′ ∈ D.

Then D= E. In particular, S ∈ D.

Proof. Combine Lemma B.3 with Theorem B.5. �

http://stacks.math.columbia.edu/tag/08GL
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We wish to point out that Theorem B.1 relies on the existence of coarse spaces
for stacks with finite inertia (i.e., the Keel–Mori theorem [Keel and Mori 1997;
Rydh 2013]).

Nisnevich coverings. It will be useful to consider some variants and refinements
of [Krishna and Østvær 2012, Sections 7–8].

If p :W → X is a representable morphism of algebraic stacks, then a splitting
sequence for p is a sequence of quasicompact open immersions

∅= X0 ⊆ X1 ⊆ · · · ⊆ Xr = X,

such that p restricted to X i \ X i−1, when given the induced reduced structure,
admits a section for each i = 1, . . . , r . In this situation, we say that p has a
splitting sequence of length r . An étale and representable morphism of algebraic
stacks p :W → X is a Nisnevich covering if it admits a splitting sequence.

Example B.2. Let X be a quasicompact and quasiseparated scheme. Then there
exists an affine scheme W and a Nisnevich covering p : W → X . Indeed, taking
W = qn

i=1Ui , where the {Ui } form a finite affine open covering of X gives the
claim.

The following lemma is proved by a straightforward induction on the length of
the splitting sequence.

Lemma B.3 (Nisnevich dévissage). Let S be a quasicompact and quasiseparated
algebraic stack. Let E be Stackrep,ét,fp /S or Stackrep,sep,ét,fp /S . Let D⊆ E be a full
2-subcategory with the following properties:

(N1) if (X ′→ X) ∈ E is an open immersion and X ∈ D, then X ′ ∈ D;

(N2) if (U
j
−→ X), (X ′

f
−→ X) ∈ E, where j is an open immersion and f is an

isomorphism over X \U , then X ∈ D whenever U , X ′ ∈ D.

If p :W → X is a Nisnevich covering in E and W ∈ D, then X ∈ D.

The following lemma will also be useful.

Lemma B.4. Let p :W → X be a Nisnevich covering of algebraic stacks.

(1) If f : X ′→X is a morphism of algebraic stacks, then the pull back p′ :W ′→ X ′

of p along f is a Nisnevich covering.

(2) Let w :W ′→W be a Nisnevich covering of finite presentation. If p is of finite
presentation and X is quasicompact and quasiseparated, then p ◦w :W ′→X
is a Nisnevich covering.
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Presentations. The following theorem refines [Rydh 2011a, Theorem 7.2] and will
be crucial for the proof of Theorem B.1.

Theorem B.5. Let X be a quasicompact algebraic stack with quasifinite and sep-
arated diagonal. Then there exist morphisms of algebraic stacks

V
v
−→W

p
−→ X

such that

• V is an affine scheme;

• v is finite, flat, surjective and of finite presentation;

• p is a separated Nisnevich covering of finite presentation.

In addition, if S is a Deligne–Mumford stack, it can be arranged that v is also
étale.

Proof. The proof is similar to [Rydh 2013, Proposition 6.11; 2011a, Theorem 7.3].
By [Rydh 2011a, Theorem 7.1], there is an affine scheme U and a representable,

separated, quasifinite, flat, and surjective morphism u : U → X of finite presen-
tation. Let W = Hilbopen

U/X → X be the subfunctor of the relative Hilbert scheme
parametrising open and closed immersions to U over X . It follows that p :W → X
is étale, representable and separated [Rydh 2011b, Corollary 6.2].

We now prove that p is a Nisnevich covering. To see this, we note that there
exists a sequence of quasicompact open immersions

∅= X0 ⊆ X1 ⊆ · · · ⊆ Xr = X,

such that the restriction of u to Zi = (X i \ X i−1)red for i = 1, . . . , r is finite, flat
and finitely presented. By definition of p : W → X , it follows immediately that
p |Zi admits a section corresponding to u |Zi and so p is a separated Nisnevich
covering.

Let v : V → W be the universal family, which is finite, flat, surjective and of
finite presentation. Also, V →U is representable, étale and separated [Rydh 2011b,
Corollary 6.2]. Suitably shrinking W , we obtain a separated Nisnevich covering
p :W → X of finite presentation fitting into a 2-commutative diagram

V
q
//

v

��

U

u
��

W
p
// X

(B.1)

and q is étale, separated and surjective. By Zariski’s Main Theorem [Laumon and
Moret-Bailly 2000, Theorem A.2], q is quasi-affine. By [Rydh 2013, Theorem 5.3],
W has a coarse space π :W→Wcs such that Wcs is a quasi-affine scheme and π ◦v
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is affine. By Example B.2 and Lemma B.4, we may further reduce to the situation
where Wcs is an affine scheme. Since π ◦ v is affine, the result follows. �
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Algebraic Kasparov K-theory, II

Grigory Garkusha

A kind of motivic stable homotopy theory of algebras is developed. Explicit
fibrant replacements for the S1-spectrum and (S1,G)-bispectrum of an algebra
are constructed. As an application, unstable, Morita stable and stable universal
bivariant theories are recovered. These are shown to be embedded by means of
contravariant equivalences as full triangulated subcategories of compact genera-
tors of some compactly generated triangulated categories. Another application
is the introduction and study of the symmetric monoidal compactly generated
triangulated category of K -motives. It is established that the triangulated cate-
gory kk of Cortiñas and Thom (J. Reine Angew. Math. 610 (2007), 71–123) can
be identified with the K-motives of algebras. It is proved that the triangulated
category of K-motives is a localisation of the triangulated category of (S1,G)-
bispectra. Also, explicit fibrant (S1,G)-bispectra representing stable algebraic
Kasparov K-theory and algebraic homotopy K-theory are constructed.

1. Introduction

Throughout the paper k is a fixed commutative ring with unit and Algk is the cate-
gory of nonunital k-algebras and nonunital k-homomorphisms. Also, F is a fixed
field and Sm /F is the category of smooth algebraic varieties over F . If C is a
category and A, B are objects of C , we shall often write C (A, B) to denote the
Hom-set HomC (A, B).

A1-homotopy theory is the homotopy theory of motivic spaces, i.e., presheaves
of simplicial sets defined on Sm /F (see [Morel and Voevodsky 1999; Voevodsky
1998]). Each object X ∈ Sm /F is regarded as the motivic space HomSm /F (−, X).
The affine line A1 plays the role of the interval.

k[t]-homotopy theory is the homotopy theory of simplicial functors defined on
nonunital algebras, where each algebra A is regarded contravariantly as the space
r A = HomAlgk

(A,−) so that we can study algebras from a homotopy theoretic
viewpoint (see [Garkusha 2007; 2014]). The role of the interval is played by
the space r(k[t]) represented by the polynomial algebra k[t]. This theory bor-
rows methods and approaches from A1-homotopy theory. Another source of ideas

MSC2010: primary 19D25, 19D50, 19K35; secondary 55P99.
Keywords: bivariant algebraic K-theory, homotopy theory of algebras, triangulated categories.
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and techniques for k[t]-homotopy theory originates in Kasparov K-theory of C∗-
algebras.

In [Garkusha 2007] a kind of unstable motivic homotopy theory of algebras was
developed. In order to develop stable motivic homotopy theory of algebras and —
most importantly — to make the explicit computations of fibrant replacements for
suspension spectra 6∞r A, A ∈ Algk , presented in this paper, one first needs to
introduce and study “unstable, Morita stable and stable Kasparov K-theory spectra”
K(A, B), Kmor(A, B) and Kst(A, B) respectively, where A, B are algebras. We
refer the reader to [Garkusha 2014] for properties of the spectra. The aim of this
paper is to develop stable motivic homotopy theory of algebras.

Throughout we work with a certain small subcategory < of Algk and the category
U•< of certain pointed simplicial functors on <. U•< comes equipped with a
motivic model structure. We write Sp(<) to denote the stable model category of
S1-spectra associated with the model category U•<. K(A,−), Kmor(A,−) and
Kst(A,−) are examples of fibrant �-spectra in Sp(<) (see [Garkusha 2014]).

One of the main results of the paper says that K(A,−) is a fibrant replacement
for the suspension spectrum 6∞r A ∈ Sp(<) of an algebra A ∈ <. Namely, there
is a natural weak equivalence of spectra

6∞r A −→ K(A,−)

in Sp(<) (see Theorem 4.2).
This is an analog of a similar result by the author and Panin [Garkusha and Panin

2014a] computing a fibrant replacement of the suspension P1-spectrum 6∞
P1 X+

of a smooth algebraic variety X . The main reason that computation of a fibrant
replacement for 6∞

P1 X+ is possible is the existence of framed correspondences
of [Voevodsky 2001] on homotopy groups of (motivically fibrant) P1-spectra. In
turn, the main reason why the computation of a fibrant replacement for 6∞r A is
possible is that algebras have universal extensions.

Let SHS1(<) denote the homotopy category of Sp(<). SHS1(<) plays the same
role as the stable homotopy category of motivic S1-spectra SHS1(F) over a field
F . It is a compactly generated triangulated category with compact generators
{6∞r A[n]}A∈<,n∈Z. One of the important consequences of the above computation
is that we are able to give an explicit description of the Hom-groups

SHS1(<)(6∞r B[n], 6∞r A).

Precisely, there is an isomorphism of abelian groups (see Corollary 4.3)

SHS1(<)(6∞r B[n], 6∞r A)∼= Kn(A, B), A, B ∈ <, n ∈ Z.
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It is important to note that the groups Kn(A, B) have an explicit description in
terms of nonunital algebra homomorphisms (see [Garkusha 2014, Section 7] for
details).

We also show in Theorem 4.4 that the full subcategory S of SHS1(<) spanned
by the compact generators {6∞r A[n]}A∈<,n∈Z is triangulated and there is a con-
travariant equivalence of triangulated categories

D(<,F)
∼
−→S

with <→ D(<,F) the universal unstable excisive homotopy invariant homology
theory in the sense of [Garkusha 2013] with respect to the class of k-split surjective
algebra homomorphisms F. This equivalence is an extension of the contravariant
functor A ∈ < 7→ 6∞r A ∈ SHS1(<) to D(<,F). Thus D(<,F) is recovered
from SHS1(<). It also follows that the small triangulated category D(<,F)op lives
inside the “big” ambient triangulated category SHS1(<). This is reminiscent of
Voevodsky’s theorem [2000] saying that there is a full embedding of the small
triangulated category DMe f f

gm (F) of effective geometrical motives into the “big”
triangulated category DMe f f (F) of motivic complexes of Nisnevich sheaves with
transfers.

Next, we introduce matrices into the game. Namely, if we localise SHS1(<)

with respect to the family of compact objects

{cone(6∞r(Mn A)→6∞r A)}n>0,

we shall get a compactly generated triangulated category SHmor
S1 (<) with compact

generators {6∞r A[n]}A∈<,n∈Z. It is in fact the homotopy category of a model
category Spmor(<), which is the same category as Sp(<) but with a new model
structure. We construct in a similar way a compactly generated triangulated cate-
gory SH∞S1(<), obtained from SHS1(<) by localisation with respect to the family
of compact objects

{cone(6∞r(M∞A)→6∞r A)},

where M∞A = ∪n Mn A. It is also the homotopy category of a model category
Sp∞(<), which is the same category as Sp(<) but with a new model structure.

We prove in Theorems 5.1 and 6.1 that for any algebra A ∈ < there are natural
weak equivalences of spectra

6∞r A −→ Kmor(A,−) and 6∞r A −→ Kst(A,−)

in Spmor(<) and Sp∞(<), respectively. Also, for all A, B ∈ < and n ∈ Z there are
isomorphisms of abelian groups

SHmor
S1 (<)(6

∞r B[n], 6∞r A)∼= Kmor
n (A, B)
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and

SH∞S1(<)(6
∞r B[n], 6∞r A)∼= Kst

n (A, B),

respectively. Furthermore, the full subcategories Smor and S∞ of SHmor
S1 (<) and

SH∞S1(<) spanned by the compact generators {6∞r A[n]}A∈<,n∈Z are triangulated
and there are contravariant equivalences of triangulated categories

Dmor(<,F)
∼
−→Smor and Dst(<,F)

∼
−→S∞.

Here <→ Dmor(<,F) (respectively <→ Dst(<,F)) is the universal Morita stable
(respectively stable) excisive homotopy invariant homology theory in the sense
of [Garkusha 2013]. Thus Dmor(<,F) and Dst(<,F) are recovered from SHmor

S1 (<)

and SHst
S1(<), respectively. It also follows that the small triangulated categories

Dmor(<,F)
op, Dst(<,F)

op live inside the ambient triangulated categories SHmor
S1 (<)

and SHst
S1(<).

We next introduce a symmetric monoidal compactly generated triangulated cat-
egory of K-motives DK (<) together with a canonical contravariant functor

MK : <→ DK (<).

The category DK (<) is an analog of the triangulated category of K-motives for
algebraic varieties introduced in [Garkusha and Panin 2012; 2014b].

For any algebra A ∈ < its K-motive is, by definition, the object MK (A) of
DK (<). We have that

MK (A)⊗MK (B)∼= MK (A⊗ B)

for all A, B ∈ < (see Proposition 7.1).
We prove in Theorem 7.2 that for any two algebras A, B ∈ < and any integer n

there is a natural isomorphism

DK (<)(MK (B)[n],MK (A))∼= Kst
n (A, B).

Moreover, if T is the full subcategory of DK (<) spanned by K-motives of algebras
{MK (A)}A∈< then T is triangulated and there is an equivalence of triangulated
categories

Dst(<,F)→ T op

sending an algebra A ∈ < to its K-motive MK (A) (see Theorem 7.2). It is also
proved in Corollary 7.3 that for any algebra A ∈ < and any integer n one has a
natural isomorphism

DK (<)(MK (A)[n],MK (k))∼= KHn(A),
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where the right hand side is the n-th homotopy K-theory group in the sense of
Weibel [1989]. This result is reminiscent of a similar result for K-motives of alge-
braic varieties in the sense of [Garkusha and Panin 2012; 2014b] identifying the
K-motive of the point with algebraic K-theory.

Cortiñas and Thom [2007] constructed a universal excisive homotopy invariant
and M∞-invariant homology theory on all k-algebras

j : Algk→ kk.

The triangulated category kk is an analog of Cuntz’s triangulated category kklca

whose objects are the locally convex algebras [Cuntz 1997; 2005; Cuntz and Thom
2006].

We show in Theorem 7.4 that, if we denote by kk(<) the full subcategory of
kk spanned by the objects from < and assume that the cone ring 0k in the sense
of [Karoubi and Villamayor 1969] is in <, then there is a natural triangulated
equivalence

kk(<)
∼
−→ T op

sending A ∈ kk(<) to its K-motive MK (A). Thus we can identify kk(<) with the
K-motives of algebras. It also follows that the small triangulated category kk(<)op

lives inside the ambient triangulated category DK (<).
One of the equivalent approaches to stable motivic homotopy theory in the sense

of Morel and Voevodsky [1999] is the theory of (S1,Gm)-bispectra. The role
of Gm in our context is played by the representable functor G := r(σ ), where
σ = (t − 1)k[t±1

]. We develop the motivic theory of (S1,G)-bispectra. As usual
they form a model category which we denote by SpG(<). The homotopy category
SHS1,G(<) of SpG(<) plays the same role as the stable motivic homotopy cat-
egory SH(F) over a field F . We construct an explicit fibrant (S1,G)-bispectrum
2∞

G
KG(A,−), obtained from fibrant S1-spectra K(σ n A,−), n> 0, by stabilisation

in the σ -direction.
The main computational result for bispectra, stated in Theorem 8.1, says that

2∞
G

KG(A,−) is a fibrant replacement of the suspension bispectrum associated
with an algebra A. Namely, there is a natural weak equivalence of bispectra in
SpG(<)

6∞G 6
∞r A→2∞G KG(A,−),

where 6∞
G
6∞r A is the suspension bispectrum of r A.

Let k be the field of complex numbers C and let K σ (A,−) be the (0,0)-space
of the bispectrum 2∞

G
KG(A,−). We raise a question whether there is a category

< of commutative C-algebras such that the fibrant simplicial set K σ (C,C) has the
homotopy type of �∞6∞S0. The question is justified by a recent result of Levine
[2014] saying that over an algebraically closed field F of characteristic zero the
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homotopy groups of weight zero of the motivic sphere spectrum evaluated at F are
isomorphic to the stable homotopy groups of the classical sphere spectrum. The
role of the motivic sphere spectrum in our context is played by the bispectrum
6∞

G
6∞rC.

We finish the paper by proving that the triangulated category DK (<) of K-
motives is fully faithfully embedded into the homotopy category of (S1,G)-bispectra.
We also construct an explicit fibrant (S1,G)-bispectrum KGst(A,−) consisting of
fibrant S1-spectra Kst(σ n A,−), n> 0. For this we prove the “cancellation theorem”
for the spectra Kst(σ n A,−) (see Theorem 9.5). It is reminiscent of the cancellation
theorem proved by Voevodsky [2010a] for motivic cohomology. The same theorem
was proved for K-theory of algebraic varieties in [Garkusha and Panin 2015].

We show in Theorem 9.7 that KGst(A,−) is (2, 1)-periodic and represents sta-
ble algebraic Kasparov K-theory (cf. [Voevodsky 1998, Theorems 6.8 and 6.9]).
Precisely, for any algebras A, B ∈ < and any integers p, q there is an isomorphism

πp,q(KGst(A, B))∼= Kst
p−2q(A, B).

As a consequence, one has that for any algebra B ∈ < and any integers p, q there
is an isomorphism

πp,q(KGst(k, B))∼= KHp−2q(B).

Thus the bispectrum KGst(k, B) yields an explicit model for homotopy K-theory.
We should stress that the term “motivic” is used in the paper only for the reason

that the k[t]-homotopy theory of algebras shares many properties with Morel and
Voevodsky’s motivic homotopy theory of smooth schemes [1999] (see remarks
on page 288 as well). If there is a likelihood of confusion with other motivic
theories of commutative or noncommutative objects, the reader can just omit the
term “motivic” everywhere.

In general, we shall not be very explicit about set-theoretical foundations, and
we shall tacitly assume we are working in some fixed universe U of sets. Members
of U are then called small sets, whereas a collection of members of U which does
not itself belong to U will be referred to as a large set or a proper class. If there is
no likelihood of confusion, we replace ⊗k by ⊗.

2. Preliminaries

In this section we collect basic facts about admissible categories of algebras and
triangulated categories associated with them. We mostly follow [Garkusha 2007;
2013].

2.1. Algebraic homotopy. Following [Gersten 1971b] a category < of k-algebras
without unit is admissible if it is a full subcategory of Algk and
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(1) if R is in < and I is a (two-sided) ideal of R then I and R/I are in <;

(2) if R is in <, then so is R[x], the polynomial algebra, in one variable;

(3) given a cartesian square

D
ρ
//

σ
��

A

f
��

B
g
// C

in Algk with A, B,C in <, then D is in <.

One may abbreviate (1)–(3) by saying that < is closed under operations of taking
ideals, homomorphic images, polynomial extensions in a finite number of variables,
and fibre products. For instance, the category of commutative k-algebras CAlgk is
admissible.

Observe that every k-module M can be regarded as a nonunital k-algebra with
trivial multiplication: m1 ·m2 = 0 for all m1,m2 ∈ M . Then Mod k is an admissible
category of commutative k-algebras.

If R is an algebra then the polynomial algebra R[x] admits two homomorphisms
onto R

R[x]
∂0

x
//

∂1
x

// R ,

where
∂ i

x |R = 1R, ∂ i
x(x)= i, i = 0, 1.

Of course, ∂1
x (x)= 1 has to be understood in the sense that 6rnxn

7→6rn .

Definition. Two homomorphisms f0, f1 : S→ R are elementary homotopic, writ-
ten f0 ∼ f1, if there exists a homomorphism

f : S→ R[x]

such that ∂0
x f = f0 and ∂1

x f = f1. A map f : S→ R is called an elementary homo-
topy equivalence if there is a map g : R→ S such that f g and g f are elementary
homotopic to idR and idS respectively.

For example, let A be a Zn>0-graded algebra, then the inclusion A0→ A is an
elementary homotopy equivalence. The homotopy inverse is given by the projec-
tion A→ A0. Indeed, the map A→ A[x] sending a homogeneous element an ∈ An

to anxn is a homotopy between the composite A→ A0→ A and the identity idA.
The relation “elementary homotopic” is reflexive and symmetric [Gersten 1971b,

p. 62]. One may take the transitive closure of this relation to get an equivalence
relation (denoted by the symbol “'”). Following notation of [Gersten 1971a], the
set of equivalence classes of morphisms R→ S is written [R, S].
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Lemma 2.1 [Gersten 1971a]. Given morphisms in Algk

R
f
// S

g
))

g′
55 T

h
// U

such that g ' g′, then g f ' g′ f and hg ' hg′.

Thus homotopy behaves well with respect to composition and we have category
Hotalg, the homotopy category of k-algebras, whose objects are k-algebras and
such that Hotalg(R, S)= [R, S]. The homotopy category of an admissible category
of algebras < will be denoted by H (<). Call a homomorphism s : A→ B an I -
weak equivalence if its image in H (<) is an isomorphism. Observe that I -weak
equivalences are those homomorphisms which have homotopy inverses.

A diagram

A
f
→ B

g
→ C

in Algk is a short exact sequence if f is injective, g is surjective, and the image of
f is equal to the kernel of g.

Definition. An algebra R is contractible if 0 ∼ 1; that is, if there is a homomor-
phism f : R→ R[x] such that ∂0

x f = 0 and ∂1
x f = 1R .

For example, every square zero algebra A ∈ Algk is contractible by means of
the homotopy A→ A[x], a ∈ A 7→ ax ∈ A[x]. In other words, every k-module,
regarded as a k-algebra with trivial multiplication, is contractible.

Following [Karoubi and Villamayor 1969] we define ER, the path algebra on
R, as the kernel of ∂0

x : R[x] → R, so

ER→ R[x]
∂0

x
→ R

is a short exact sequence in Algk . Also ∂1
x : R[x] → R induces a surjection

∂1
x : ER → R and we define the loop algebra �R of R to be its kernel, so we

have a short exact sequence in Algk

�R→ ER
∂1

x
→ R.

We call it the loop extension of R. Clearly, �R is the intersection of the kernels of
∂0

x and ∂1
x . By [Gersten 1971b, Lemma 3.3] ER is contractible for any algebra R.

2.2. Categories of fibrant objects.

Definition. Let A be a category with finite products and a final object e. Assume
that A has two distinguished classes of maps, called weak equivalences and fibra-
tions. A map is called a trivial fibration if it is both a weak equivalence and a
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fibration. We define a path space for an object B to be an object B I together with
maps

B
s
−→ B I (d0,d1)

−−−→ B× B,

where s is a weak equivalence, (d0, d1) is a fibration, and the composite is the
diagonal map.

Following [Brown 1973], we call A a category of fibrant objects or a Brown
category if the following axioms are satisfied.

(A) Let f and g be maps such that g f is defined. If two of f , g, g f are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.

(C) Given a diagram

A
u
−→ C

v
←− B,

with v a fibration (respectively a trivial fibration), the pullback A×C B exists
and the map A×C B→ A is a fibration (respectively a trivial fibration).

(D) For any object B in A there exists at least one path space B I (not necessarily
functorial in B).

(E) For any object B the map B→ e is a fibration.

2.3. The triangulated category D(<,F). In what follows we denote by F the
class of k-split surjective algebra homomorphisms. We shall also refer to F as
fibrations.

Let W be a class of weak equivalences in an admissible category of algebras <
containing homomorphisms A→ A[t], A ∈ <, such that the triple (<,F,W) is a
Brown category.

Definition. The left derived category D−(<,F,W) of < with respect to (F,W)

is the category obtained from < by inverting the weak equivalences.

By [Garkusha 2013] the family of weak equivalences in the category H < admits
a calculus of right fractions. The left derived category D−(<,F,W) (possibly
“large”) is obtained from H < by inverting the weak equivalences. The left derived
category D−(<,F,W) is left triangulated (see [Garkusha 2007; 2013] for details)
with � a loop functor on it.

There is a general method of stabilising � (see Heller [Heller 1968]) and produc-
ing a triangulated (possibly “large”) category D(<,F,W) from the left triangulated
structure on D−(<,F,W).

An object of D(<,F,W) is a pair (A,m) with A ∈ D−(<,F,W) and m ∈ Z. If
m, n ∈Z then we consider the directed set Im,n ={k ∈Z |m, n6 k}. The morphisms
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between (A,m) and (B, n) ∈ D(<,F,W) are defined by

D(<,F,W)[(A,m), (B, n)] := colimk∈Im,n D−(<,F,W)(�k−m(A),�k−n(B)).

Morphisms of D(<,F,W) are composed in the obvious fashion. We define the
loop automorphism on D(<,F,W) by �(A,m) := (A,m− 1). There is a natural
functor S : D−(<,F,W)→ D(<,F,W) defined by A 7−→ (A, 0).

D(<,F,W) is an additive category [Garkusha 2007; 2013]. We define a trian-
gulation T r(<,F,W) of the pair (D(<,F,W),�) as follows. A sequence

�(A, l)→ (C, n)→ (B,m)→ (A, l)

belongs to T r(<,F,W) if there is an even integer k and a left triangle of rep-
resentatives �(�k−l(A))→ �k−n(C)→ �k−m(B)→ �k−l(A) in D−(<,F,W).
Then the functor S takes left triangles in D−(<,F,W) to triangles in D(<,F,W).
By [Garkusha 2007; 2013] T r(<,F,W) is a triangulation of D(<,F,W) in the
classical sense of [Verdier 1996].

By an F-extension or just extension in < we mean a short exact sequence of
algebras

(E) : A→ B
α
→ C

such that α ∈ F. Let E be the class of all F-extensions in <.

Definition. Following [Cortiñas and Thom 2007] a (F-)excisive homology theory
on < with values in a triangulated category (T , �) consists of a functor X : <→T ,
together with a collection {∂E : E ∈ E } of maps ∂ X

E = ∂E ∈T (�X (C), X (A)). The
maps ∂E are to satisfy the following requirements.

(1) For all E ∈ E as above,

�X (C)
∂E
// X (A)

X ( f )
// X (B)

X (g)
// X (C)

is a distinguished triangle in T .

(2) If

(E) : A
f
//

α

��

B
g
//

β

��

C

γ

��

(E ′) : A′
f ′
// B ′

g′
// C ′
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is a map of extensions, then the following diagram commutes

�X (C)

�X (γ )
��

∂E
// X (A)

X (α)
��

�X (C ′)
∂E ′

// X (A)

We say that the functor X : <→T is homotopy invariant if it maps homotopic
homomorphisms to equal maps, or equivalently, if for every A ∈Algk , X maps
the inclusion A ⊂ A[t] to an isomorphism.

Denote by W4 the class of homomorphisms f such that X ( f ) is an isomor-
phism for any excisive, homotopy invariant homology theory X : <→T . We shall
refer to the maps from W4 as stable weak equivalences. The triple (<,F,W4) is
a Brown category. In what follows we shall write D−(<,F) and D(<,F) to denote
D−(<,F,W4) and D(<,F,W4) respectively, dropping W4 from the notation.

By [Garkusha 2013] the canonical functor

<→ D(<,F)

is the universal excisive, homotopy invariant homology theory on <.

3. Homotopy theory of algebras

Let < be a small admissible category of algebras. We shall work with various
model category structures for the category of simplicial functors on <. We mostly
adhere to [Garkusha 2007; 2014].

3.1. The categories of pointed simplicial functors U•<. Throughout this paper
we work with a model category U•<. To define it, we first enrich < over pointed
simplicial sets S•. Given an algebra A ∈ <, denote by r A the representable functor
Hom<(A,−). Let <• have the same objects as < and have pointed simplicial sets
of morphisms being the r A(B)=Hom<(A, B) pointed at zero. Denote by U•< the
category of S•-enriched functors from <• to S•. One easily checks that U•< can
be regarded as the category of covariant pointed simplicial functors X : <→ S•

such that X (0)= ∗.
By [Dundas et al. 2003, Theorem 4.2] we define the projective model structure

on U•<. This is a proper, simplicial, cellular model category with weak equiva-
lences and fibrations being defined object-wise, and cofibrations being those maps
having the left lifting property with respect to trivial fibrations.

The class of projective cofibrations for U•< is generated by the set

IU•< = {r A∧ (∂1n
⊂1n)+}

n>0,
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indexed by A ∈<. Likewise, the class of acyclic projective cofibrations is generated
by

JU•< = {r A∧ (3k
n ⊂1

n)+}
n>0
06k6n.

Given X ,Y ∈U•< the pointed function complex Map
•
(X ,Y ) is defined as

Map
•
(X ,Y )n = HomU•<(X ∧1

n
+
,Y ), n > 0.

By [Dundas et al. 2003, Lemma 2.1] there is a natural isomorphism of pointed
simplicial sets

Map
•
(r A,X )∼=X (A)

for all A ∈ < and X ∈U•<.
Recall that the model category U< of functors from < to unpointed simplicial

sets S is defined in a similar fashion (see [Garkusha 2007]). Since we mostly work
with spectra in this paper, the category of spectra associated with U•< is technically
more convenient than the category of spectra associated with U<.

3.2. The model categories U•<I, U•<J, U•<I,J . Let

I = {i = i A : r(A[t])→ r(A) | A ∈ <},

where each i A is induced by the natural homomorphism i : A→ A[t]. Recall that a
functor F : <→ S•/Spectra is homotopy invariant if F(A)→ F(A[t]) is a weak
equivalence for all A ∈ <. Consider the projective model structure on U•<. We
shall refer to the I -local equivalences as (projective) I -weak equivalences. Denote
by U•<I the model category obtained from U•< by Bousfield localisation with
respect to the family I . Notice that any objectwise fibrant homotopy invariant
functor F ∈U•< is an I -local object, hence fibrant in U•<I .

Let us introduce the class of excisive functors on <. They look like flasque
presheaves on a site defined by a cd-structure in the sense of [Voevodsky 2010b,
Section 3].

Definition. A simplicial functor X ∈ U•< is called excisive with respect to F if
for any cartesian square in <

D //

��

A

��

B
f
// C
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with f a fibration (we call such squares distinguished), the square of simplicial
sets

X (D) //

��

X (A)

��

X (B) // X (C)

is a homotopy pullback square. It immediately follows from the definition that
every excisive object takes F-extensions in < to homotopy fibre sequences of sim-
plicial sets.

Let α denote a distinguished square in < as shown:

D //

��

A

��

B // C

Let us apply the simplicial mapping cylinder construction cyl to α and form the
pushouts:

rC //

��

cyl(rC→ r A)

��

// r A

��

r B // cyl(rC→ r A)trC r B // r D

Note that rC → cyl(rC → r A) is a projective cofibration between (projective)
cofibrant objects of U•<. Thus s(α)= cyl(rC→ r A)trC r B is (projective) cofi-
brant [Hovey 1999, 1.1.11]. For the same reasons, applying the simplicial mapping
cylinder to s(α)→ r D and setting t (α) = cyl(s(α)→ r D) we get a projective
cofibration

cyl(α) : s(α) // t (α).

Let J cyl(α)
U•< consists of all pushout product maps

s(α)∧1n
+
ts(α)∧∂1n

+
t (α)∧ ∂1n

+
// t (α)∧1n

+
,

and let J = JU•<∪ J cyl(α)
U•< . Denote by U•<J the model category obtained from U•<

by Bousfield localisation with respect to the family J . It is directly verified that
X ∈U•< is J -local if and only if it has the right lifting property with respect to
J . Also, X is J -local if and only if it is objectwise fibrant and excisive [Garkusha
2007, Lemma 4.3].

Finally, let us introduce the model category U•<I,J . It is, by definition, the
Bousfield localisation of U•< with respect to I ∪ J . The weak equivalences (trivial
cofibrations) of U•<I,J will be referred to as (projective) (I, J )-weak equivalences
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((projective) (I, J )-trivial cofibrations). By [Garkusha 2007, Lemma 4.5] a functor
X ∈U•< is (I, J )-local if and only if it is objectwise fibrant, homotopy invariant
and excisive.

Remark. The model category U•<I,J can also be regarded as a kind of unstable
motivic model category associated with <. Indeed, the construction of U•<I,J is
similar to Morel–Voevodsky’s unstable motivic theory for smooth schemes Sm /F
over a field F [Morel and Voevodsky 1999]. If we replace I by

I ′ = {X ×A1 pr
−→ X | X ∈ Sm /F},

and the family of distinguished squares by the family of elementary Nisnevich
squares and get the corresponding family J ′ associated to it, then one of the
equivalent models for Morel–Voevodsky’s unstable motivic theory is obtained by
Bousfield localisation of simplicial presheaves with respect to I ′ ∪ J ′.

For this reason, U•<I,J can also be called the category of (pointed) motivic
spaces, where each algebra A is identified with the pointed motivic space r A. One
can also refer to (I, J )-weak equivalences as motivic weak equivalences.

3.3. Monoidal structure on U•<. In this section we mostly follow [Østvær 2010,
Section 2.1]. Suppose < is tensor closed, that is k ∈ < and A ⊗ B ∈ < for all
A, B ∈ <. We introduce the monoidal product X ⊗Y of X and Y in U•< by the
formulas

X ⊗Y (A)= colim
A1⊗A2→A

X (A1)∧Y (A2).

The colimit is indexed on the category with objects α : A1⊗ A2→ A and maps
the pairs of maps (ϕ, ψ) : (A1, A2) → (A′1, A′2) such that α′(ψ ⊗ ϕ) = α. By
functoriality of colimits it follows that X ⊗Y is in U•<.

The tensor product can also be defined by the formula

X ⊗Y (A)=
∫ A1,A2∈<

(X (A1)∧Y (A2))∧Hom<(A1⊗ A2, A).

This formula is obtained from a theorem of Day [1970], which also asserts that the
triple (U•<,⊗, r(k)) forms a closed symmetric monoidal category.

The internal Hom functor, right adjoint to X ⊗−, is given by

Hom(X ,Y )(A)=
∫

B∈<
Map

•
(X (B),Y (A⊗ B)),

where Map
•

stands for the function complex in S•.
So there exist natural isomorphisms

Hom(X ⊗Y ,Z )∼= Hom(X ,Hom(Y ,Z ))
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and
Hom(r(k),Z )∼=Z .

Concerning smash products of representable functors, one has a natural isomor-
phism

r A⊗ r B ∼= r(A⊗ B), A, B ∈ <.

Note as well that, for pointed simplicial sets K and L , one has K ⊗ L = K ∧ L .
We recall a pointed simplicial set tensor and cotensor structure on U•<. If X

and Y are in U•< and K is a pointed simplicial set, the tensor X ⊗ K is given by

X ⊗ K (A)=X (A)∧ K

and the cotensor Y K is given in terms of the ordinary function complex:

Y K (A)=Map
•
(K ,Y (A)).

The function complex Map
•
(X ,Y ) of X and Y is defined by setting

Map
•
(X ,Y )n = HomU•<(X ⊗1

n
+
,Y ).

By the Yoneda lemma there exists a natural isomorphism of pointed simplicial sets

Map
•
(r A,Y )∼= Y (A).

Using these definitions U•< is enriched in pointed simplicial sets S•. Moreover,
there are natural isomorphisms of pointed simplicial sets

Map
•
(X ⊗ K ,Y )∼=Map

•
(K ,Map

•
(X ,Y ))∼=Map

•
(X ,Y K ).

It is also useful to note that

Hom(X ,Y )(A)=Map
•
(X ,Y (A⊗−)) and Hom(r B,Y )= Y (−⊗ B).

It can be shown similarly to [Østvær 2010, Lemma 3.10; Propositions 3.43 and
3.89] that the model categories U•<, U•<I , U•<J , U•<I,J are monoidal.

4. Unstable algebraic Kasparov K-theory

Let U be an arbitrary category and let < be an admissible category of k-algebras.
Suppose that there are functors F : < → U and T̃ : U →< such that T̃ is left
adjoint to F . We denote T̃FA, for A ∈ <, by TA and the counit map T̃FA→ A by
ηA. If X ∈ Ob U then the unit map X→ FT̃ X is denoted by iX . We note that the
composition

FA
iFA
−→ FT̃FA

FηA
−−→ FA

equals 1FA for every A ∈ <, and hence FηA splits in U . We call an admissible
category of k-algebras T-closed if TA ∈ < for all A ∈ <.
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Lemma 4.1. Suppose U is either a full subcategory of the category of sets or a
full subcategory of the category of k-modules. Suppose as well that F : < → U

is the forgetful functor. Then for every A ∈ < the algebra TA is contractible, i.e.,
there is a contraction τ : TA→ TA[x] such that ∂0

x τ = 0, ∂1
x τ = 1. Moreover, the

contraction is functorial in A.

Proof. Consider a map u : FTA → FTA[x] sending an element b ∈ FTA to
bx ∈ FTA[x]. By assumption, u is a morphisms of U . The desired contraction τ
is uniquely determined by the map u ◦ iFA : FA→ FTA[x]. By using elementary
properties of adjoint functors, one can show that ∂0

x τ = 0 and ∂1
x τ = 1. �

Throughout this paper, whenever we deal with a T-closed admissible category
of k-algebras < we assume to be fixed an underlying category U , which is a full
subcategory of Mod k.

Examples. (1) Let < = Algk . Given an algebra A, consider the algebraic tensor
algebra

TA = A⊕ A⊗ A⊕ A⊗
3
⊕ · · · ,

with the usual product given by concatenation of tensors. In Cuntz’s treatment
of bivariant K-theory [Cuntz 1997; 2005; Cuntz and Thom 2006], tensor algebras
play a prominent role.

There is a canonical k-linear map A→ TA mapping A into the first direct sum-
mand. Every k-linear map s : A→ B into an algebra B induces a homomorphism
γs : TA→ B defined by

γs(x1⊗ · · ·⊗ xn)= s(x1)s(x2) · · · s(xn).

Plainly < is T-closed.

(2) If <= CAlgk , then

T (A)= Sym(A)=
⊕
n>1

Sn A,

the symmetric algebra of A, and < is T-closed. Here

Sn A = A⊗n/〈a1⊗ · · ·⊗ an − aσ(1)⊗ · · ·⊗ aσ(n)〉 for σ ∈6n.

We have a natural extension of algebras

0−→ JA
ιA
−→ TA

ηA
−→ A −→ 0.

Here JA is defined as Ker ηA. Clearly, JA is functorial in A.
Given a small T-closed admissible category of k-algebras <, we denote by Sp(<)

the category of S1-spectra in the sense of [Hovey 2001] associated with the model
category U•<I,J . Recall that a spectrum consists of sequences E = (En)n>0 of
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pointed simplicial functors in U•< equipped with structure maps σ E
n :6En→ En+1,

where 6 =−∧ S1 is the suspension functor. A map f : E →F of spectra consists
of compatible maps fn : En→Fn in the sense that the diagrams

6En

6 fn
��

σE
n
// En+1

fn+1
��

6Fn
σF

n
// Fn+1

commute for all n > 0. The category Sp(<) is endowed with the stable model
structure (see [Hovey 2001] for details).

Given an algebra A ∈ <, we denote by 6∞r A the suspension spectrum associ-
ated with the functor r A pointed at zero. By definition, (6∞r A)n = r A∧ Sn with
obvious structure maps.

In order to define one of the main spectra of the paper R(A) associated to an
algebra A ∈ <, we have to recall some definitions from [Garkusha 2014].

For any B ∈ < we define a simplicial algebra

B1 : [n] 7→ B1
n
:= B[t0, . . . , tn]/

〈
1−

∑
i

ti
〉
(∼= B[t1, . . . , tn]).

Given a map of posets α : [m] → [n], the map α∗ : B1
n
→ B1

m
is defined by

α∗(t j )=
∑

α(i)= j ti . We have that B1 ∼= B⊗ k1 and B1 is pointed at zero.
For any pointed simplicial set X ∈ S•, we denote by B1(X) the simplicial alge-

bra Map
•
(X, B1). The simplicial algebra associated to any unpointed simplicial

set and any simplicial algebra is defined in a similar way. By B1(X) we shall mean
the pointed simplicial ind-algebra

B1(X)→ B1(sd1 X)→ B1(sd2 X)→ · · · .

In particular, one defines the “path space” simplicial ind-algebra PB1. We shall
also write B1(�n) to denote B1(Sn), where Sn

= S1
∧ · · · ∧ S1 is the simplicial

n-sphere. For any A ∈ < we denote by HomAlgind
k
(A,B1(�n)) the colimit of the

sequence in S•

HomAlgk
(A,B1(Sn))→HomAlgk

(A,B1(sd1 Sn))→HomAlgk
(A,B1(sd2 Sn))→· · · .

The natural simplicial map d1 : PB1(�n)→ B1(�n) has a natural k-linear
splitting described below. Let t ∈ Pk1(11

×
n
· · · ×11)0 stand for the composite

map

sdm(11
×

n+1
· · · ×11)

pr
−→ sdm 11

→11 t
→ k1,
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where pr is the projection onto the (n + 1)-th direct factor 11 and t = t0 ∈ k1
1
.

The element t can be regarded as a 1-simplex of the unital ind-algebra

k1(11
×

n
· · · ×11)

such that ∂0(t) = 0 and ∂1(t) = 1. Let ı : B1(�n)→ (B1(�n))1
1

be the natural
inclusion. Multiplication with t determines a k-linear map

(B1(�n))1
1 t·
−→ PB1(�n).

Now the desired k-linear splitting B1(�n)
υ
−→ PB1(�n) of simplicial ind-modules

is defined as
υ := t · ı.

If we consider B1(�n) as a (Z>0×1)-diagram in <, then there is a commutative
diagram of extensions for (Z>0×1)-diagrams

JB1(�n)

ξυ
��

// T B1(�n) //

��

B1(�n)

B1(�n+1) // PB1(�n)
d1
// B1(�n)

where the map ξυ is uniquely determined by the k-linear splitting υ. For every
element f ∈ HomAlgind

k
(J n A,B1(�n)) one sets:

ς( f ) := ξυ ◦ J ( f ) ∈ HomAlgind
k
(J n+1 A,B1(�n+1)).

The spectrum R(A) is defined at every B ∈ < as the sequence of spaces pointed
at zero

HomAlgind
k
(A,B1),HomAlgind

k
(JA,B1),HomAlgind

k
(J 2 A,B1), . . . .

By [Garkusha 2014, Section 2] each R(A)n(B) is a fibrant simplicial set and

�kR(A)0(B)= HomAlgind
k
(A,B1(�k)).

Each structure map σn :R(A)n ∧ S1
→R(A)n+1 is defined at B as adjoint to the

map ς : HomAlgind
k
(J n A,B1)→ HomAlgind

k
(J n+1 A,B1(�)).

For every A ∈ < there is a natural map in Sp(<)

i :6∞r A→R(A)

functorial in A.

Definition [Garkusha 2014]. (1) Given two k-algebras A, B ∈ <, the unstable
algebraic Kasparov K-theory space K (A, B) is the fibrant space

colimn HomAlgind
k
(J n A,B1(�n)),
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where the colimit maps are given by ξυ-s and JA is as defined on page 290. Its
homotopy groups will be denoted by Kn(A, B), n > 0. The simplicial functor
K (A,−) is fibrant in U•(<)I,J by [Garkusha 2014, Section 4]. Also, there is a
natural isomorphism of simplicial sets

K (A, B)∼=�K (JA, B).

In particular, K (A, B) is an infinite loop space with K (A, B) which simplicially
isomorphic to �nK (J n A, B) (see [Garkusha 2014, Theorem 5.1]).

(2) The unstable algebraic Kasparov KK-theory spectrum of (A, B) consists of the
sequence of spaces

K (A, B),K (JA, B),K (J 2 A, B), . . . ,

together with the natural isomorphisms K (J n A, B)∼=�K (J n+1 A, B). It forms
an �-spectrum which we also denote by K(A, B). Its homotopy groups will be
denoted by Kn(A, B), n ∈ Z. Observe that Kn(A, B) ∼=Kn(A, B) for any n > 0
and Kn(A, B)∼=K0(J−n A, B) for any n < 0.

There is a natural map of spectra

j :R(A)→ K(A,−).

By [Garkusha 2014, Section 6] this is a stable equivalence and K(A,−) is a fibrant
object of Sp(<). In fact, for any algebra B ∈ < the map

j :R(A)(B)→ K(A, B)

is a stable equivalence of ordinary spectra.
The following theorem is crucial in our analysis. It states that K(A,−) is a

fibrant replacement of 6∞r A in Sp(<).

Theorem 4.2. Given A ∈ < the map i : 6∞r A→ R(A) is a level (I, J )-weak
equivalence, and therefore the composite map

6∞r A
i
→R(A)

j
→ K(A,−)

is a stable equivalence in Sp(<), functorial in A.

Proof. Recall that for any functor F from rings to simplicial sets, Sing(F) is defined
at each ring R as the diagonal of the bisimplicial set F(R[1]). The map

i0 : (6
∞r A)0→R(A)0

equals r A→ Ex∞ ◦Sing(r A), which is an I -weak equivalence by [Garkusha 2007,
Corollary 3.8]. Let us show that

i1 : r A∧ S1
→R(A)1 = Ex∞ ◦Sing(r(JA))
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is an (I, J )-weak equivalence. It is fully determined by the element ρA : JA→�A,
which is a zero simplex of �(Ex∞ ◦Sing(r(JA))(A)), coming from the adjunction
isomorphism

Map
•
(r A∧ S1,Ex∞ ◦Sing(r(JA)))∼=�(Ex∞ ◦Sing(r(JA))(A)).

Let (I, 0) denote 1[1] pointed at 0. Consider a commutative diagram of cofibrant
objects in U•<

r A

η∗A
��

//
ν
// r A∧ (I, 0)

��

// // r A∧ S1

r(TA) // // X
α

// // r A∧ S1

where the left square is pushout, the left map is induced by the canonical homo-
morphism ηA : TA→ A and ν is induced by the natural inclusion d0

:1[0]→1[1].
Lemma 4.1 implies r(TA) is weakly equivalent to zero in U•<I . It follows that α
is an I -weak equivalence.

By the universal property of pullback diagrams there is a unique morphism
σ :X → r(JA) whose restriction to r(TA) equals ι∗A, where ιA = Ker ηA, which
makes the diagram

r A∧ (I, 0) //

��

X

σ

��

r A

??

//

1
��

r(TA)

??

��

pt // r(JA)

r A
η∗A

//

??

r(TA)

??

commutative. Since the upper and the lower squares are homotopy pushouts in
U•<I,J and r A∧ (I, 0) is weakly equivalent to zero, it follows from [Hirschhorn
2003, Proposition 13.5.10] that σ is an (I, J )-weak equivalence. Therefore the
composite map, we shall denote it by ρ,

X
σ
→ r(JA)→R(A)1

is an (I, J )-weak equivalence, where the right map is the natural I -weak equiva-
lence.

Let R(A)1[x] ∈U•< be a simplicial functor defined as

R(A)1[x](B)= HomAlgind
k
(JA,B1[x])= Ex∞ ◦HomAlgk

(JA, B[x]1), B ∈ <.

There is a natural map s : R(A)1 → R(A)1[x], induced by the monomorphism
B→ B[x] at each B. It follows from [Garkusha 2007, Proposition 3.2] that this
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map is a weak equivalence in U•<. The evaluation homomorphisms

∂0
x , ∂

1
x : B[x] → B

induce a map (∂0
x , ∂

1
x ) :R(A)1[x] →R(A)1×R(A)1, whose composition with s

is the diagonal map R(A)1→ R(A)1 ×R(A)1. We see that R(A)1[x] is a path
object for the projectively fibrant object R(A)1.

If we constructed a homotopy H : X → R(A)1[x] such that ∂0
x H = i1α and

∂1
x H = ρ it would follow that i1α, being homotopic to the (I, J )-weak equivalence
ρ, is an (I, J )-weak equivalence. Since also α is an (I, J )-weak equivalence, then
so would be i1.

The desired map H is uniquely determined by maps h1 : r(TA)→ R(A)1[x]
and h2 : r A∧ (I, 0)→R(A)1[x] such that h1η

∗

A = h2ν is defined as follows. The
map h1 is uniquely determined by the homomorphism JA→ TA[x] which is the
composition of ιA and the contraction homomorphism τ : TA→ TA[x], functorial
in A, that exists by Lemma 4.1. The map h2 is uniquely determined by the one-
simplex JA→ A[11

][x] of Ex∞ ◦HomAlgk
(JA, A[x]1) which is the composition

of
ρA : JA→�A = (t2

− t)A[t] ⊂ A[11
]

and the homomorphism ω : A[11
] → A[11

][x] sending the variable t to

1− (1− t)(1− x).

Thus we have shown that

i1 : r A∧ S1
→R(A)1

is an (I, J )-weak equivalence. It follows that the composite map

r A∧ S1 i0∧S1

−−−→R(A)0 ∧ S1 σ0
−→R(A)1,

which is equal to i1, is an (I, J )-weak equivalence. Hence σ0 is an (I, J )-weak
equivalence, because i0 ∧ S1 is an I -weak equivalence. More generally, one gets
that every structure map

R(A)n ∧ S1 σn
−→R(A)n+1

is an (I, J )-weak equivalence.
By induction, assume that in : r A∧ Sn

→R(A)n is an (I, J )-weak equivalence.
Then in∧S1 is an (I, J )-weak equivalence, and hence so is in+1= σn ◦(in∧S1). �

Denote by SHS1(<) the stable homotopy category of Sp(<). Since the endofunc-
tor −∧ S1 is an equivalence on SHS1(<) by [Hovey 2001], it follows from [Hovey
1999, Chapter 7] that SHS1(<) is a triangulated category. Moreover, it is compactly
generated with compact generators {(6∞r A)[n]}A∈<,n∈Z.
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Corollary 4.3. {6∞r A[n]}A∈<,n∈Z is a family of compact generators for SHS1(<).
Moreover, there is a natural isomorphism

SHS1(<)(6∞r B[n], 6∞r A)∼= Kn(A, B)

for all A, B ∈ < and n ∈ Z.

Denote by S the full subcategory of SHS1(<) whose objects are

{6∞r A[n]}A∈<,n∈Z.

The next statement gives another description of the triangulated category D(<,F).

Theorem 4.4. The category S is triangulated. Moreover, there is a contravariant
equivalence of triangulated categories

T : D(<,F)→S .

Proof. By [Garkusha 2013] the natural functor

j : <→ D(<,F)

is a universal excisive homotopy invariant homology theory. Consider the homol-
ogy theory

t : <→ SHS1(<)op

that takes an algebra A ∈ < to 6∞r A. It is homotopy invariant and excisive, hence
there is a unique triangulated functor

T : D(<,F)→ SHS1(<)op,

such that t = T ◦ j . If we apply T to the loop extension

�A→ E A→ A,

we get an isomorphism
T (�A)∼=6∞r A[1],

which is functorial in A.
It follows from Comparison Theorem B of [Garkusha 2014] and Corollary 4.3

that T is full and faithful. Every object of S is plainly equivalent to the image of
an object in D(<,F). �

Remark. Suppose I is an infinite index set and {Bi }i∈I is a family of algebras from
< such that the algebra B = ⊕I Bi is in <. Then 6∞r B is a compact object of
SHS1(<), but ⊕I6

∞r(Bi ) may not be compact. Furthermore, suppose B =⊕I Bi

is also a direct sum object of the Bi -s in the triangulated category D(<,F). Then
HomD(<,F)(B,⊕I Ci ) 6=⊕I HomD(<,F)(B,Ci ) in general, where {Ci }i∈I is a family
of algebras from < such that the algebra ⊕I Ci is in <.
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For instance, consider the triangulated category KK of [Kasparov 1980], with
which D(<,F) shares many properties. It follows from [Rosenberg and Schochet
1987, Theorem 1.12] that KK has countable coproducts given by A=⊕I Ai , where
I is a countable set. However, the functor KK (A,−) does not respect countable
coproducts by [Rosenberg and Schochet 1987, Remark 7.12].

Recall from [Garkusha 2014] that we can vary < in the following sense. If <′

is another T-closed admissible category of algebras containing <, then D(<,F) is
a full subcategory of D(<′,F).

5. Morita stable algebraic Kasparov K-theory

If A is an algebra and n > 0 is a positive integer, then there is a natural inclusion
ι : A→ Mn A of algebras, sending A to the upper left corner of Mn A. Throughout
this section < is a small T-closed admissible category of k-algebras with Mn A ∈ <
for every A ∈ < and n > 1.

Denote by U•<mor
I,J the model category obtained from U•<I,J by Bousfield local-

isation with respect to the family of maps of cofibrant objects

{r(Mn A)→ r A | A ∈ <, n > 0}.

Let Spmor(<) be the stable model category of S1-spectra associated with U•<mor
I,J .

Observe that it is also obtained from Sp(<) by Bousfield localisation with respect
to the family of maps of cofibrant objects in Sp(<)

{Fs(r(Mn A))→ Fs(r A) | A ∈ <, n > 0, s > 0}.

Here Fs : U•<mor
I,J → Spmor(<) is the canonical functor adjoint to the evaluation

functor Evs : Spmor(<)→U•<mor
I,J .

Definition [Garkusha 2014]. (1) The Morita stable algebraic Kasparov K-theory
space of two algebras A, B ∈ < is the space

K mor(A, B)= colim(K (A, B)→K (A,M2k⊗ B)→K (A,M3k⊗ B)→· · · ).

Its homotopy groups will be denoted by K mor
n (A, B), n > 0.

(2) A functor X : <→S/(Spectra) is Morita invariant if each morphism X (A)→
X (Mn A), A ∈ <, n > 0, is a weak equivalence.

(3) An excisive, homotopy invariant homology theory X : <→ T is Morita in-
variant if each morphism X (A)→ X (Mn A), A ∈<, n> 0, is an isomorphism.

(4) The Morita stable algebraic Kasparov K-theory spectrum of A, B ∈ < is the
�-spectrum

Kmor(A, B)= (K mor(A, B),K mor(JA, B),K mor(J 2 A, B), . . .).
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Denote by SHmor
S1 (<) the (stable) homotopy category of Spmor(<). It is a com-

pactly generated triangulated category with compact generators {6∞r A[n]}A∈<,n∈Z.
Let Smor be the full subcategory of SHmor

S1 (<)whose objects are {6∞r A[n]}A∈<,n∈Z.
Recall the definition of the triangulated category Dmor(<,F) from [Garkusha

2013]. Its objects are those of < and the set of morphisms between two algebras
A, B ∈ < is defined as the colimit of the sequence of abelian groups

D(<,F)(A, B)→ D(<,F)(A,M2 B)→ D(<,F)(A,M3 B)→ · · · .

There is a canonical functor <→ Dmor(<,F). It is a universal excisive, homotopy
invariant and Morita invariant homology theory on <.

Theorem 5.1. Given A ∈ < the composite map

6∞r A
i
→R(A)

j
→ K(A,−)→ Kmor(A,−) (5.1)

is a stable equivalence in Spmor(<), functorial in A. In particular, there is a natu-
ral isomorphism

SHmor
S1 (<)(6

∞r B[n], 6∞r A)∼= Kmor
n (A, B)

for all A, B ∈ < and n ∈ Z. Furthermore, the category Smor is triangulated and
there is a contravariant equivalence of triangulated categories

T : Dmor(<,F)→Smor.

Proof. Let S c and S c
mor be the categories of compact objects in SHS1(<) and

SHmor
S1 (<) respectively. Denote by R the full triangulated subcategory of S gener-

ated by objects

{cone(6∞r(Mn A)→6∞r A)[k] | A ∈ <, n > 0, k ∈ Z}.

Let Rc be the thick closure of R in SHS1(<). It follows from [Neeman 1996,
Theorem 2.1] that the natural functor

S c/Rc
→S c

mor

is full and faithful and S c
mor is the thick closure of S c/Rc.

We claim that the natural functor

S /R→S c/Rc (5.2)

is full and faithful. For this consider a map α : X→ Y in S c such that its cone Z
is in Rc and Y ∈ S . We can find Z ′ ∈ Rc such that Z ⊕ Z ′ is isomorphic to an
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object W ∈R. Construct a commutative diagram in S c

U //

s
��

Y // W //

p
��

6U

��

X α
// Y // Z // 6X

where p is the natural projection. We see that αs is such that its cone W belongs
to R. Standard facts for Gabriel–Zisman localisation theory imply (5.2) is a fully
faithful embedding. It also follows that

Smor =S /R.

We want to compute Hom sets in S /R. For this observe first that there is a
contravariant equivalence of triangulated categories

τ : D(<,F)/U→Smor,

where U is the smallest full triangulated subcategory of D(<,F) containing

{cone(A
ι
→ Mn A) | A ∈ <, n > 0}.

This follows from Theorem 4.4.
By construction, every excisive homotopy invariant Morita invariant homology

theory <→ T factors through D(<,F)/U. Since <→ Dmor(<,F) is a universal
excisive homotopy invariant Morita invariant homology theory [Garkusha 2013],
we see that there exists a triangle equivalence of triangulated categories

Dmor(<,F)' D(<,F)/U.

So there is a natural contravariant triangle equivalence of triangulated categories

T : Dmor(<,F)→Smor.

Using this and [Garkusha 2014, Theorem 9.8], there is a natural isomorphism

Smor(6
∞r B[n], 6∞r A)∼= Kmor

n (A, B)

for all A, B ∈ < and n ∈ Z. The fact that (5.1) is a stable equivalence in Spmor(<)

is now obvious. �

6. Stable algebraic Kasparov K-theory

If A is an algebra set M∞A = ∪n Mn A. There is a natural inclusion ι : A→ M∞A
of algebras, sending A to the upper left corner of M∞A. Throughout the section
< is a small T-closed admissible category of k-algebras with M∞(A) ∈ < for all
A ∈ <.
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Denote by U•<∞I,J the model category obtained from U•<I,J by Bousfield local-
isation with respect to the family of maps of cofibrant objects

{r(M∞A)→ r A | A ∈ <}.

Let Sp∞(<) be the stable model category of S1-spectra associated with U•<∞I,J .
Observe that it is also obtained from Sp(<) by Bousfield localisation with respect
to the family of maps of cofibrant objects in Sp(<)

{Fs(r(M∞A))→ Fs(r A) | A ∈ <, s > 0}.

Definition [Garkusha 2014]. (1) The stable algebraic Kasparov K-theory space
of two algebras A, B ∈ < is the space

K st(A, B)=

colim(K (A, B)→K (A,M∞k⊗ B)→K (A,M∞k⊗M∞k⊗ B)→ · · · ).

Its homotopy groups will be denoted by K st
n (A, B), n > 0.

(2) A functor X :<→S/(Spectra) is stable or M∞-invariant if X (A)→ X (M∞A)
is a weak equivalence for all A ∈ <.

(3) An excisive, homotopy invariant homology theory X : < → T is stable or
M∞-invariant if X (A)→ X (M∞A) is an isomorphism for all A ∈ <.

(4) The stable algebraic Kasparov K-theory spectrum for A, B ∈ < is the �-
spectrum

Kst(A, B)= (K st(A, B),K st(JA, B),K st(J 2 A, B), . . .).

Denote by SH∞S1(<) the (stable) homotopy category of Sp∞(<). It is a compactly
generated triangulated category with compact generators {6∞r A[n]}A∈<,n∈Z. Let
S∞ be the full subcategory of SH∞S1(<) whose objects are {6∞r A[n]}A∈<,n∈Z.

Recall from [Garkusha 2013] the definition of the triangulated category Dst(<,F).
Its objects are those of < and the set of morphisms between two algebras A, B ∈ <
is defined as the colimit of the sequence of abelian groups

D(<,F)(A, B)→ D(<,F)(A,M∞k⊗k B)

→ D(<,F)(A,M∞k⊗k M∞k⊗k B)→ · · · .

There is a canonical functor <→ Dst(<,F). It is the universal excisive, homotopy
invariant and stable homology theory on <.

The proof of the next result literally repeats that of Theorem 5.1 if we replace
the algebras Mn A with M∞A and the categories Smor and Dmor(<,F) with S∞
and Dst(<,F) respectively.
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Theorem 6.1. Given A ∈ <, the composite map

6∞r A
i
→R(A)

j
→ K(A,−)→ Kst(A,−)

is a stable equivalence in Sp∞(<), functorial in A. In particular, there is a natural
isomorphism

SH∞S1(<)(6
∞r B[n], 6∞r A)∼= Kst

n (A, B)

for all A, B ∈ < and n ∈ Z. Furthermore, the category S∞ is triangulated and
there is a contravariant equivalence of triangulated categories

T : Dst(<,F)→S∞.

Let 0A, for A ∈ Algk , be the algebra of N×N-matrices which satisfy the fol-
lowing two properties.

(i) The set {ai j | i, j ∈ N} is finite.

(ii) There exists a natural number N ∈ N such that each row and each column has
at most N nonzero entries.

M∞A ⊂ 0A is an ideal. We put

6A = 0A/M∞A.

We note that 0A, 6A are the cone and suspension rings of A considered by Karoubi
and Villamayor [1969, p. 269], where a different but equivalent definition is given.
By [Cortiñas and Thom 2007] there are natural ring isomorphisms

0A ∼= 0k⊗ A, 6A ∼=6k⊗ A.

We call the short exact sequence

M∞A� 0A�6A

the cone extension. By [Cortiñas and Thom 2007] 0A�6A is a split surjection
of k-modules.

Let τ be the k-algebra which is unital and free on two generators α and β satis-
fying the relation αβ = 1. By [Cortiñas and Thom 2007, Lemma 4.10.1] the kernel
of the natural map

τ → k[t±1
]

is isomorphic to M∞k. We set τ0 = τ ⊕k[t±1] σ .
Let A be a k-algebra. We get an extension

M∞A // τ A // A[t±1
],
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and an analogous extension

M∞A // τ0 A // σ A.

Definition. We say that an admissible category of k-algebras < is τ0-closed (re-
spectively 0-closed) if τ0 A ∈ < (respectively 0A ∈ <) for all A ∈ <.

Cuntz [1997; 2005; Cuntz and Thom 2006] constructed a triangulated category
kklca whose objects are the locally convex algebras. Later Cortiñas and Thom
[2007] constructed in a similar fashion a triangulated category kk whose objects
are all k-algebras Algk . If we suppose that < is also 0-closed, then one can define
a full triangulated subcategory kk(<) of kk whose objects are those of <.

It can be shown similar to [Garkusha 2007, Theorem 7.4] or [Garkusha 2013,
Corollary 9.4] that there is an equivalence of triangulated categories

Dst(<,F)
∼
−→ kk(<).

An important computational result of Cortiñas and Thom [2007] states that there
is an isomorphism of graded abelian groups⊕

n∈Z

kk(<)(k, �n A)∼=
⊕
n∈Z

KHn(A),

where the right hand side is the homotopy K-theory of A∈< in the sense of [Weibel
1989].

Summarising the above arguments together with Theorem 6.1 we obtain the
following:

Theorem 6.2. Suppose < is 0-closed. Then there is a contravariant equivalence
of triangulated categories

kk(<)→S∞.

Moreover, there is a natural isomorphism

SH∞S1(<)(6
∞r A[n], 6∞r(k))∼= KHn(A)

for any A ∈ < and any integer n.

7. K-motives of algebras

Throughout the section we assume that < is a small tensor closed and T-closed
admissible category of k-algebras with M∞(k) ∈ <. It follows that

M∞A :∼= A⊗M∞(k) ∈ <

for all A ∈ <.
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In this section we define and study the triangulated category of K-motives. It
shares many properties with the category of K-motives for algebraic varieties con-
structed in [Garkusha and Panin 2012; 2014b]

Since < is tensor closed, it follows that U•<∞I,J is a monoidal model category.
Let Sp6

∞
(<) be the monoidal category of symmetric spectra in the sense of [Hovey

2001] associated to U•<∞I,J .

Definition. The category of K-motives DK (<) is the stable homotopy category of
Sp6
∞
(<). The K-motive MK (A) of an algebra A ∈ < is the image of A in DK (<),

that is MK (A)=6∞r A. Thus one has a canonical contravariant functor

MK : <→ DK (<)

sending algebras to their K-motives.

The following proposition follows from standard facts for monoidal model cat-
egories.

Proposition 7.1. DK (<) is a symmetric monoidal compactly generated triangu-
lated category with compact generators {MK (A)}A∈<. For any two algebras A,B∈<
one has a natural isomorphism

MK (A)⊗MK (B)∼= MK (A⊗ B).

Furthermore, any extension of algebras in <

(E) : A→ B→ C

induces a triangle in DK (<)

MK (E) : MK (C)→ MK (B)→ MK (A)
+
−→ .

There is a pair of adjoint functors

V : Sp∞(<)� Sp6
∞
(<) :U,

where U is the right Quillen forgetful functor. These form a Quillen equivalence.
In particular, the induced functors

V : SH∞S1(<)� DK (<) :U

are equivalences of triangulated categories. It follows from Proposition 7.1 that
SH∞S1(<) is a symmetric monoidal category and

6∞r A⊗6∞r B ∼=6∞r(A⊗ B)

for all A, B ∈ <. Moreover,

V (6∞r A)∼= MK (A)
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for all A ∈ <.
Summarising the above arguments together with Theorem 6.1 we get the follow-

ing:

Theorem 7.2. For any two algebras A, B ∈ < and any integer n one has a natural
isomorphism of abelian groups

DK (<)(MK (B)[n],MK (A))∼= Kst
n (A, B).

The full subcategory T of DK (<) spanned by K-motives of algebras {MK(A)}A∈<
is triangulated and there is an equivalence of triangulated categories

Dst(<,F)→ T op

sending an algebra A ∈ < to its K-motive MK (A).

The next result is reminiscent of a similar result for K-motives of algebraic va-
rieties in the sense of [Garkusha and Panin 2012; 2014b] identifying the K-motive
of the point with algebraic K-theory.

Corollary 7.3. Suppose < is 0-closed. Then for any algebra A and any integer n
one has a natural isomorphism of abelian groups

DK (<)(MK (A)[n],MK (k))∼= KHn(A),

where the right hand side is the n-th homotopy K-theory group in the sense of
[Weibel 1989].

Proof. This follows from [Garkusha 2013, Theorem 10.6] and the preceding theo-
rem. �

We finish the section by showing that the category kk(<) of [Cortiñas and Thom
2007] can be identified with the K-motives of algebras.

Theorem 7.4. Suppose < is 0-closed. Then there is a natural equivalence of tri-
angulated categories

kk(<)
∼
−→ T op

sending an algebra A ∈ < to its K-motive MK (A).

Proof. This follows from Theorem 7.2 and the fact that Dst(<,F) and kk(<)
are triangle equivalent (see [Garkusha 2007, Theorem 7.4] or [Garkusha 2013,
Corollary 9.4]). �

The latter theorem shows in particular that kk(<) is embedded into the com-
pactly generated triangulated category of K-motives DK (<) and generates it.
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8. The G-stable theory

The stable motivic homotopy theory over a field is the homotopy theory of T -
spectra, where T = S1

∧Gm (see [Voevodsky 1998; Jardine 2000]). There are
various equivalent definitions of the theory, one of which is given in terms of
(S1,Gm)-bispectra. In our context the role of the motivic space Gm is played
by σ = (t − 1)k[t±1

]. Its simplicial functor r(σ ) is denoted by G. In this section
we define the stable category of (S1,G)-bispectra and construct an explicit fibrant
replacement of the (S1,G)-bispectrum 6∞

G
6∞r A of an algebra A. One can also

define a Quillen equivalent category of T -spectra, where T = S1
∧G, and compute

an explicit fibrant replacement for the T -spectrum of an algebra. However we
prefer to work with (S1,G)-bispectra rather than T -spectra in order to study K-
motives of algebras in terms of associated (S1,G)-bispectra (see the next section).

Throughout the section we assume that < is a small tensor closed and T-closed
admissible category of k-algebras. We have that σ A := A⊗ σ ∈ < for all A ∈ <.

Recall that U•<I,J is a monoidal model category. It follows from [Hovey 2001,
Section 6.3] that Sp(<) is a U•<I,J -model category. In particular

−⊗G : Sp(<)→ Sp(<)

is a left Quillen endofunctor.
By definition, a (S1,G)-bispectrum or bispectrum E is given by a sequence

(E0, E1, . . .), where each E j is a S1-spectrum of Sp(<), together with bonding
morphisms εn : En ∧G→ En+1. Maps are sequences of maps in Sp(<) respecting
the bonding morphisms. We denote the category of bispectra by SpG(<). It can be
regarded as the category of G-spectra on Sp(<) in the sense of [Hovey 2001].

SpG(<) is equipped with the stable U•<I,J -model structure in which weak equiv-
alences are defined by means of bigraded homotopy groups. The bispectrum object
E determines a sequence of maps of S1-spectra

E0
ε̃0
−→�G E1

�G(ε̃1)
−−−−→�2

G E2→ · · · ,

where �G is the functor Hom(G,−) and ε̃n-s are adjoint to the structure maps of
E . We define πp,qE in A-sections as the colimit

coliml
(
HomSHS1 (<)(S

p−q , �
q+l
G

J El(A))
→ HomSHS1 (<)(S

p−q , �
q+l+1
G

J El+1(A))→ · · ·
)

once E has been replaced up to levelwise equivalence by a levelwise fibrant object
JE so that the “loop” constructions make sense. We also call π∗,qE the homotopy
groups of weight q .
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By definition, a map of bispectra is a weak equivalence in SpG(<) if it induces
an isomorphism on bigraded homotopy groups. We denote the homotopy category
of SpG(<) by SHS1,G(<). It is a compactly generated triangulated category.

To define the main (S1,G)-bispectrum of this section, denoted by KG(A,−),
we should first establish some facts for algebra homomorphisms.

Suppose A,C ∈ <, then one has a commutative diagram

J (A⊗C) // //

γA,C

��

T (A⊗C)
ηA⊗C
// //

��

A⊗C

JA⊗C // // T (A)⊗C
ηA⊗C
// // A⊗C

in which γA,C is uniquely determined by the split monomorphism

i A⊗C : A⊗C→ T (A)⊗C.

One sets γ 0
A,C := 1A⊗C . We construct inductively

γ n
A,C : J n(A⊗C)→ J n(A)⊗C, n > 1.

Namely, γ n+1
A,C is the composite

J n+1(A⊗C)
J (γ n

A,C )

−−−−→ J (J n(A)⊗C)
γJn A,C
−−−→ J n+1(A)⊗C.

Given n > 0, we define a map

tn = t A,C
n :K (J n A,−)→K (J n(A⊗C),−⊗C)=Hom(rC,K (J n(A⊗C),−))

as follows. Let B ∈ < and (α : J n+m A→ B(�m)) ∈K (J n A, B). We set

tn(α) ∈K (J n(A⊗C), B⊗C)

to be the composite

J n+m(A⊗C)
γ n+m

A,C
−−−→ J n+m(A)⊗C

α⊗C
−−→ B1(�m)⊗C

τ
∼= (B⊗C)1(�m).

Here τ is a canonical isomorphism (see [Cortiñas and Thom 2007, Proposition 3.1.3])
and (B⊗C)1 stands for the simplicial ind-algebra

[m, `] 7→ HomS(sdm 1`, (B⊗C)1)= (B⊗C)sdm 1` ∼= ksdm 1`
⊗ (B⊗C).

One has to verify that tn is consistent with maps

HomAlgind
k
(J n+m A,B1(�m))

ς
−→ HomAlgind

k
(J n+m+1 A,B1(�m+1)).
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More precisely, we must show that the map

J n+m+1(A⊗C)
J (γ n+m

A,C )

−−−−→ J (J n+m A⊗C)
J (α⊗1)
−−−−→ J (B1(�m)⊗C)

Jτ
∼= J ((B⊗C)1(�m))

ξυ
−→ (B⊗C)1(�m+1)

is equal to the map

J n+m+1(A⊗C)
γ n+m+1

A,C
−−−−→ J n+m+1 A⊗C

Jα⊗1
−−−→ J (B1(�m))⊗C

ξυ⊗1
−−→ B1(�m+1)⊗C

τ
∼= (B⊗C)1(�m+1).

The desired property follows from commutativity of the diagram (we use [Garkusha
2014, Lemma 3.4] here)

J n+m+1(A⊗C)

J (γ n+m
A,C )

��

J (J n+m A⊗C)
γJn+m A,C

//

J (α⊗1)
��

J n+m+1 A⊗C // //

J (α)⊗1
��

T J n+m A⊗C // //

��

J n+m A⊗C

α⊗1
��

J (B1(�m)⊗C) // J (B1(�m))⊗C

ξυ⊗1
��

// // T (B1(�m))⊗C

��

// // B1(�m)⊗C

J (B1(�m)⊗C)

Jτ
��

// B1(�m+1)⊗C // //

τ

��

P(B1(�m))⊗C // //

τ

��

B1(�m)⊗C

τ

��

J ((B⊗C)1(�m))
ξυ

// (B⊗C)1(�m+1) // // P(B⊗C)1(�m) // // (B⊗C)1(�m)

We see that tn is well defined. We claim that the collection of maps (tn)n defines a
map of S1-spectra

t : K(A, B)→ K(A⊗C, B⊗C).

We have to check that for each n > 0 the diagram

K (J n A, B)
∼=

//

tn
��

�K (J n+1 A, B)

�tn+1
��

K (J n(A⊗C), B⊗C)
∼=
// �K (J n+1(A⊗C), B⊗C)

is commutative. But this directly follows from the definition of the horizontal maps
(see [Garkusha 2014, Theorem 5.1]) and arguments above made for the tn .
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If we replace C by σ we get that the array
...

...
...

K(σ 2 A, B) : K (σ 2 A, B) K (Jσ 2 A, B) K (J 2σ 2 A, B) · · ·

K(σ A, B) : K (σ A, B) K (Jσ A, B) K (J 2σ A, B) · · ·

K(A, B) : K (A, B) K (JA, B) K (J 2 A, B) · · ·

together with structure maps

K(σ n A,−)⊗G→ K(σ n+1 A,−)

defined as adjoint maps to

t : K(σ n A,−)→ Hom(G,K(σ n+1 A,−))

forms a (S1,G)-bispectrum, which we denote by KG(A,−).
There is a natural map of (S1,G)-bispectra

0 :6∞G 6
∞r A→ KG(A,−),

where 6∞
G
6∞r A is the (S1,G)-bispectrum represented by the array

...
...

6∞r A⊗G2
: r A⊗G2 (∼= r(σ 2 A)) (r A∧ S1)⊗G2 (∼= r(σ 2 A)∧ S1) · · ·

6∞r A⊗G : r A⊗G (∼= r(σ A)) (r A∧ S1)⊗G (∼= r(σ A)∧ S1) · · ·

6∞r A : r A r A∧ S1
· · ·

with obvious structure maps.
By Theorem 4.2 each map

0n :6
∞r A⊗Gn

→ KG(A,−)n = K(σ n A,−)

is a stable weak equivalence in Sp(<). By [Garkusha 2014] each K(σ n A,−) is a
fibrant object in Sp(<). For each n > 0 we set

2∞G KG(A,−)n
= colim(K(σ n A,−)

t0
−→ K(σ n+1 A,−⊗ σ)

�G(t1)
−−−→ K(σ n+2 A,−⊗ σ 2)→ · · · ).

By specialising a collection of results in [Hovey 2001, Section 4] to our setting we
have that 2∞

G
KG(A,−) is a fibrant bispectrum and the natural map

j : KG(A,−)→2∞G KG(A,−)

is a weak equivalence in SpG(<).
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We have thus shown that 2∞
G

KG(A,−) is an explicit fibrant replacement for the
bispectrum 6∞

G
6∞r A of the algebra A. Denote by K σ (A, B) the (0, 0)-space of

the bispectrum 2∞
G

KG(A, B). It is, by construction, the colimit

colimn K (σ n A, σ n B).

Its homotopy groups will be denoted by K σ
n (A, B), n > 0.

Theorem 8.1. Let A be an algebra in <; then the composite map

j ◦0 :6∞G 6
∞r A→2∞G KG(A,−)

is a fibrant replacement of 6∞
G
6∞r A. In particular,

SHS1,G(6
∞

G 6
∞r B, 6∞G 6

∞r A)=K σ
0 (A, B)

for all B ∈ <.

Remark. Let SH(F) be the motivic stable homotopy category over a field F .
The category SHS1,G(<) shares many properties with SH(F). The author and
Panin [Garkusha and Panin 2014a] have recently computed a fibrant replacement
of 6∞s,t X+, X ∈ Sm /F , by developing the machinery of framed motives. The ma-
chinery is based on the theory of framed correspondences developed by Voevodsky
[2001]. In turn, the computation of Theorem 8.1 is possible thanks to the existence
of universal extensions of algebras.

Let F be an algebraically closed field of characteristic zero with an embedding
F ↪→ C and let SH be the stable homotopy category of ordinary spectra. Let
c : SH→ SH(F) be the functor induced by sending a space to the constant presheaf
of spaces on Sm /F . Levine [2014] has recently shown that c is fully faithful, a
fact implied by his result that the Betti realisation functor in the sense of [Ayoub
2010]

ReB : SH(F)→ SH

gives an isomorphism

ReB∗ : πn,0SF (F)→ πn(S )

for all n ∈ Z. Here SF is the motivic sphere spectrum in SH(F) and S is the
classical sphere spectrum in SH. These results use recent developments for the
spectral sequence associated with the slice filtration of the motivic sphere SF .

All this justifies raising the following questions.

Questions. (1) Is there an admissible category of commutative algebras < over
the field of complex numbers C such that the natural functor

c : SH→ SHS1,G(<),
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induced by the functor S→U< sending a simplicial set to the constant simplicial
functor on <, is fully faithful?

(2) Let < be an admissible category of commutative C-algebras and let SC be
the bispectrum 6∞

G
6∞rC. Is it true that the homotopy groups of weight zero

πn,0SC(C) = K σ
n (C,C), n > 0, are isomorphic to the stable homotopy groups

πn(S ) of the classical sphere spectrum?

We should also mention that one can define (S1,G)-bispectra by starting at
the monoidal category of symmetric spectra Sp6(<) associated with the monoidal
category U•(<)I,J and then stabilising the left Quillen functor

−⊗G : Sp6(<)→ Sp6(<).

One produces a model category Sp6G(<) of (usual, nonsymmetric) G-spectra in
Sp6(<). Using Hovey’s notation [2001], one has, by definition,

Sp6G(<)= SpN(Sp6(<),−⊗G).

There is a Quillen equivalence

V : Sp(<)� Sp6(<) :U

as well as a Quillen equivalence

V : SpG(<)� Sp6G(<) :U,

where U is the forgetful functor (see [Hovey 2001, Section 5.7]).
If we denote by SH6

S1(<) and SH6
S1,G

(<) the homotopy categories of Sp6(<)
and Sp6G(<) respectively, then one has equivalences of categories

V : SHS1(<)� SH6
S1(<) :U and V : SHS1,G(<)� SH6

S1,G
(<) :U.

We refer the interested reader to [Hovey 2001; Jardine 2000] for further details.

9. K-motives and (S1, G)-bispectra

We prove in this section that the triangulated category of K-motives is fully faith-
fully embedded into the stable homotopy category of (S1,G)-bispectra SHS1,G(<).
In particular, the triangulated category kk(<) of [Cortiñas and Thom 2007] is fully
faithfully embedded into SHS1,G(<) by means of a contravariant functor. As an
application we construct an explicit fibrant (S1,G)-bispectrum representing homo-
topy K-theory in the sense of [Weibel 1989].

Throughout this section we assume that < is a small tensor closed, T -, 0- and
τ0-closed admissible category of k-algebras. It follows that σ A, 6A,M∞A ∈ <
for all A ∈ <.
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Let Sp6
∞,G(<) denote the model category of (usual, nonsymmetric) G-spectra

in Sp6
∞
(<). Using Hovey’s notation [2001], Sp6

∞,G(<)= SpN(Sp6
∞
(<),−⊗G).

Proposition 9.1. The functor

−⊗G : Sp6
∞
(<)→ Sp6

∞
(<)

and the canonical functor

F0,G =6
∞

G : Sp6
∞
(<)→ Sp6

∞,G(<)

are left Quillen equivalences.

Proof. We first observe that −⊗ G is a left Quillen equivalence on Sp6
∞
(<) if

and only if so is −⊗6∞G. By [Cortiñas and Thom 2007, Section 4] there is an
extension

M∞k� τ0� σ.

It follows from [Cortiñas and Thom 2007, Lemma 7.3.2] that 6∞(r(τ0)) = 0 in
DK (<), and hence 6∞(r(τ0)) is weakly equivalent to zero in Sp6

∞
(<).

The extension above yields therefore a zigzag of weak equivalences between
cofibrant objects in Sp6

∞
(<) from6∞(r(M∞k)) to6∞G∧S1. Since6∞(r(M∞k))

is weakly equivalent to the monoidal unit 6∞(r(k)), we see that 6∞(r(k)) is
zigzag weakly equivalent to (6∞G)∧ S1 in the category of cofibrant objects in
Sp6
∞
(<).

Since 6∞(r(k)) is a monoidal unit in Sp6
∞
(<), then −⊗6∞(r(k)) is a left

Quillen equivalence on Sp6
∞
(<), and hence so is −⊗ ((6∞G)∧ S1)). But −∧ S1

is a left Quillen equivalence on Sp6
∞
(<). Therefore −⊗6∞G is a left Quillen

equivalence by [Hovey 1999, Corollary 1.3.15].
The fact that the canonical functor

F0,G : Sp6
∞
(<)→ Sp6

∞,G(<)

is a left Quillen equivalence now follows from [Hovey 2001, Section 5.1]. �

Denote the homotopy category of Sp6
∞,G(<) by SH6,∞

S1,G
(<).

Corollary 9.2. The canonical functor

F0,G =6
∞

G : DK (<)→ SH6,∞

S1,G
(<)

is an equivalence of triangulated categories.

Recall that Sp6
∞
(<) is the Bousfield localisation of Sp6(<) with respect to

{Fs(r(M∞A))→ Fs(r A) | A ∈ <, s > 0}.
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It follows that the induced triangulated functor is fully faithful

DK (<)→ SH6
S1(<).

In a similar fashion, Sp6
∞,G(<) can be obtained from Sp6G(<) by Bousfield lo-

calisation with respect to

{Fk,G(Fs(r(M∞A)))→ Fk,G(Fs(r A)) | A ∈ <, k, s > 0}.

We summarise all of this together with Proposition 9.1 as follows.

Theorem 9.3. There is an adjoint pair of triangulated functors

8 : SH6
S1,G

(<)� DK (<) :9

such that 9 is fully faithful. Moreover, T = Ker8 is the localising subcategory of
SH6

S1,G
(<) generated by the compact objects

{cone(Fk,G(Fs(r(M∞A)))→ Fk,G(Fs(r A))) | A ∈ <}

and DK (<) is triangle equivalent to SH6
S1,G

(<)/T .

Corollary 9.4. There is a contravariant fully faithful triangulated functor

kk(<)→ SHS1,G(<).

Proof. This follows from Theorems 7.4 and 9.3. �

Let Sp∞,G(<) denote the model category of G-spectra in Sp∞(<). Using Hovey’s
notation [2001], we have

Sp∞,G(<)= SpN(Sp∞(<),−⊗G).

As above, there is a Quillen equivalence

V : Sp∞,G(<)� Sp6
∞,G(<) :U,

where U is the forgetful functor. It induces an equivalence of triangulated cate-
gories

V : SH∞S1,G
(<)� SH6,∞

S1,G
(<) :U,

where the left hand side is the homotopy category of Sp∞,G(<).
Given A ∈ <, consider a (S1,G)-bispectrum KGst(A,−) which we define at

each B ∈ < as

colimn(KG(A, B)→ KG(A,M∞k⊗ B))→ KG(A,M2
∞

k⊗ B)→ · · · ).
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It can also be presented as the array

...
...

...

Kst (σ 2 A, B) : K st (σ 2 A, B) K st (Jσ 2 A, B) K st (J 2σ 2 A, B) · · ·

Kst (σ A, B) : K st (σ A, B) K st (Jσ A, B) K st (J 2σ A, B) · · ·

Kst (A, B) : K st (A, B) K st (JA, B) K st (J 2 A, B) · · ·

It follows from Theorem 6.1 that the canonical map of bispectra

6∞G 6
∞r A→ KGst(A,−)

is a level weak equivalence in Sp∞,G(<). In fact we can say more. We shall show
below that KGst(A,−) is a fibrant bispectrum and this arrow is a fibrant replace-
ment of 6∞

G
6∞r A in Sp∞,G(<). To this end we have to prove the cancellation

theorem for the S1-spectrum Kst(A,−). The cancellation theorem for K-theory of
algebraic varieties was proved in [Garkusha and Panin 2015]. It is also reminiscent
of the cancellation theorem for motivic cohomology proved by Voevodsky [2010a].

Theorem 9.5 (cancellation for K-theory). Each structure map of the bispectrum
KGst(A,−)

Kst(σ n A,−)→�GKst(σ n+1 A,−), n > 0,

is a weak equivalence of fibrant S1-spectra.

Proof. It follows from Proposition 9.1 that the functor

−⊗G : Sp∞(<)→ Sp∞(<)

is a left Quillen equivalence. It remains to apply Theorem 6.1. �

Corollary 9.6. For any A ∈ < the bispectrum KGst(A,−) is fibrant in Sp∞,G(<).
Moreover, the canonical map of bispectra

6∞G 6
∞r A→ KGst(A,−)

is a fibrant resolution for 6∞
G
6∞r A in Sp∞,G(<).

The following result says that the bispectrum KGst(A,−) is (2, 1)-periodic and
represents stable algebraic Kasparov K-theory (cf. [Voevodsky 1998, Theorems 6.8
and 6.9]).

Theorem 9.7. For any algebras A, B ∈ < and any integers p, q there is an iso-
morphism of abelian groups

πp,q(KGst(A, B))
∼= HomSHS1,G(<)

(6∞G 6
∞r B⊗ S p−q

⊗Gq ,KGst(A,−))∼= Kst
p−2q(A, B).
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In particular,

πp,q(KGst(A, B))∼= πp+2,q+1(KGst(A, B)).

Proof. By Corollary 9.6 the bispectrum KGst(A,−) is a fibrant replacement for
6∞

G
6∞r A in Sp∞,G(<). Therefore,

πp,q(KGst(A, B))∼= HomSH∞
S1,G

(<)(6
∞

G 6
∞r B⊗ S p−q

⊗Gq , 6∞G 6
∞r A).

Corollary 9.2 implies that the right hand side is isomorphic to

DK (<)(MK (B)⊗ S p−q
⊗Gq ,MK (A)).

On the other hand,

DK (<)(MK (B)⊗ S p−q
⊗Gq ,MK (A))

∼= DK (<)(MK (B)⊗ S p−2q
⊗ Sq
⊗Gq ,MK (A)).

The proof of Proposition 9.1 implies 6∞(S1
⊗G) is isomorphic to the monoidal

unit. Therefore,

DK (<)(MK (B)⊗S p−2q
⊗Sq
⊗Gq ,MK (A))∼= DK (<)(MK (B)[p−2q],MK (A)).

Our statement now follows from Theorem 7.2. �

The next statement says that the bispectrum KGst(k, B) gives a model for ho-
motopy K-theory in the sense of [Weibel 1989] (compare [Voevodsky 1998, Theo-
rem 6.9]).

Corollary 9.8. For any algebra B ∈ < and any integers p, q there is an isomor-
phism

πp,q(KGst(k, B))∼= KHp−2q(B).

Proof. This follows from the preceding theorem and [Garkusha 2014, 9.11]. �
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The local symbol complex of a reciprocity functor

Evangelia Gazaki

For a reciprocity functor M we consider the local symbol complex

(M⊗M Gm)(ηC)→
⊕
P∈C

M(k)→M(k),

where C is a smooth complete curve over an algebraically closed field k with
generic point ηC and ⊗M is the product of Mackey functors. We prove that if M
satisfies certain assumptions, then the homology of this complex is isomorphic
to the K-group of reciprocity functors T (M,CH0(C)

0)(Spec k).

1. Introduction

Let F be a perfect field. We consider the category EF of finitely generated field
extensions of F . F. Ivorra and K. Rülling [2015] created a theory of reciprocity
functors. A reciprocity functor is a presheaf with transfers in the category Reg≤1

of regular schemes of dimension at most one over some field k ∈ EF that satisfies
various properties.

Some examples of reciprocity functors include commutative algebraic groups,
homotopy invariant Nisnevich sheaves with transfers, Kähler differentials. More-
over, if M1, . . . ,Mr are reciprocity functors, Ivorra and Rülling construct a K-
group T (M1, . . . ,Mr ) which is itself a reciprocity functor.

One of the crucial properties of a reciprocity functor M is that it has local
symbols. Namely, if C is a smooth, complete and geometrically connected curve
over some field k ∈ EF with generic point η, then at each closed point P ∈ C there
is a local symbol assignment

(. ; .)P :M(η)×Gm(η)→M(k),

satisfying three characterizing properties, one of which is a reciprocity relation∑
P∈C(g; f )P = 0, for every g ∈M(η) and f ∈ Gm(η). We note here that if G is

a commutative algebraic group over an algebraically closed field k, then the local

MSC2010: 14C25.
Keywords: reciprocity functor, Milnor K -group, local symbol.

317

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2016.1-3
http://dx.doi.org/10.2140/akt.2016.1.317


318 EVANGELIA GAZAKI

symbol of G coincides with the local symbol constructed by Rosenlicht–Serre in
[Serre 1959]. The reciprocity relation induces a local symbol complex (C)(

M
M⊗

Gm

)
(η)

((. ;.)P )P∈C
−→

⊕
P∈C

M(k)
∑

P
−→M(k),

where by ⊗M we denote the product of Mackey functors (see Definition 3.2). The
main goal of this article is to give a description of the homology H(C) of the above
complex in terms of K-groups of reciprocity functors. Our computations work well
for curves C over an algebraically closed field k. In the last section we describe
some special cases where the method could be refined to include nonalgebraically
closed base fields. To obtain a concrete result, we need to impose two conditions on
the reciprocity functor T (M,CH 0(C)0) (see Assumptions 3.3, 3.10). In Section 3
we prove the following theorem.

Theorem 1.1. Let C be a smooth, complete curve over an algebraically closed
field k. Let M be a reciprocity functor such that the K-group of reciprocity func-
tors T (M,CH 0(C)0) satisfies the assumptions 3.3 and 3.10. Then the homol-
ogy of the local symbol complex (C) is canonically isomorphic to the K-group
T (M,CH 0(C)0)(Spec k).

Here CH 0(C)0 is a reciprocity functor that is identified with the Jacobian variety
J of C .

In Section 4 we give some examples of reciprocity functors that satisfy the two
assumptions. In particular, we prove the following theorem.

Theorem 1.2. Let F1, . . . ,Fr be homotopy invariant Nisnevich sheaves with trans-
fers, and consider the reciprocity functor M= T (F1, . . . ,Fr ). Let C be a smooth,
complete curve over an algebraically closed field k. Then there is an isomorphism

H(C)' T (F1, . . . ,Fr ,CH 0(C)0)(Spec k).

In particular, if G1, . . . ,Gr are semiabelian varieties over k, then we obtain an
isomorphism

H(C )' T (G1, . . . ,Gr ,CH 0(C)0)(Spec k)' K (k;G1, . . . ,Gr ,CH 0(C)0),

where
K (k;G1, . . . ,Gr ,CH 0(C)0)

is the Somekawa K-group attached to

G1, . . . ,Gr .

Another case where the assumptions of Theorem 1.1 are satisfied is when M=
T (M1, . . . ,Mr ) such that Mi = Ga for some i ∈ {1, . . . , r}. Using the main
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result of [Rülling and Yamazaki 2014] together with Theorem 5.4.7. of [Ivorra
and Rülling 2015], we obtain the following corollary.

Corollary 1.3. Let M1, . . . ,Mr be reciprocity functors. Let

M= T (Ga,M1, . . . ,Mr ).

Then for any smooth complete curve C over k, H(C)=0. In particular, if char k=0,
the complex

�n+1
k(C)

ResP
−→

⊕
P∈C

�n
k

∑
P
−→�n

k

is exact.

The idea for Theorem 1.1 stems from the special case when M= Gm . In this
case the local symbol

k(C)×⊗M k(C)×
(. ;.)P
−→ k×

at a closed point P ∈ C factors through the group T (Gm,Gm)(ηC). By a theorem
in [Ivorra and Rülling 2015] this group is isomorphic to the usual Milnor K-group
K M

2 (k(C)) and we recover the Milnor complex

K M
2 (k(C))→

⊕
P∈C

k×
∑

P
−→ k×.

This complex was studied by M. Somekawa [1990] and R. Akhtar [2000]. Using
different methods, they both prove that the homology of the above complex is
isomorphic to the Somekawa K-group K (k;Gm,CH 0(C)0). This group turns out
to be isomorphic to the group T (Gm,CH 0(C)0)(Spec k). (by [Ivorra and Rülling
2015, Theorem 5.1.8; Kahn and Yamazaki 2013, Theorem 11.14]). A similar result
was proved by T. Hiranouchi [2014] for his Somekawa-type additive K-groups. Our
method to prove Theorem 1.1 is similar to the method used by R. Akhtar and T.
Hiranouchi.

Notation 1.4. For a smooth connected variety X over k ∈ EF , we denote by k(X)
the function field of X . Let C be a smooth complete curve over k ∈ EF and P ∈C a
closed point. We write ordP for the normalized discrete valuation on k(C) defined
by the point P and for an integer n ≥ 1, we put

U (n)
C,P = { f ∈ k(C)× : ordP(1− f )≥ n}.

2. Review of definitions

Reciprocity functors. Let Reg≤1 be the category whose objects are regular F-
schemes of dimension at most one which are separated and of finite type over
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some k ∈ EF . Let Reg≤1 Cor be the category with the same objects as Reg≤1 and
with morphisms finite correspondences. A reciprocity functor M is a presheaf
of abelian groups on Reg≤1 Cor which satisfies various properties. Here we only
recall those properties that we will need later in the paper.

Notation 2.1. Let M be a reciprocity functor. For k ∈ EF we will write

M(k) :=M(Spec k).

Let E/k be a finite extension of fields in EF . The morphism Spec E→ Spec k
induces a pull-back map M(k)→M(E), which we call restriction and will denote
by resE/k . Moreover, there is a finite correspondence Spec k → Spec E which
induces a push-forward M(E)→M(k), which we will call the trace and denote
it by TrE/k .

Injectivity. Let C be a smooth, complete curve over k ∈ EF . Each open set U ⊂ C
induces a pull-back map M(C)→M(U ) that is required to be injective. Addi-
tionally, if ηC is the generic point of C , we have an isomorphism

lim
−→

M(U )
'
−→M(ηC),

where the limit extends over all open subsets U ⊂ C .

Specialization and trace maps. Let P ∈C be a closed point. For each open U ⊂C
with P ∈U , the closed immersion P ↪→U induces M(U )→M(P). We consider
the stalk MC,P = lim

−→
M(U ), where the limit extends over all open U ⊂ C with

P ∈U . The above morphisms induce a specialization map

sP :MC,P →M(P).

Moreover, for every closed point P ∈ C we obtain a Trace map, which we will
denote by

TrP/k :M(P)→M(k).

The modulus condition and local symbols. Let M be a reciprocity functor. Let
C be a smooth, projective and geometrically connected curve over k ∈ EF . The
definition of a reciprocity functor imposes the existence for each section

g ∈M(ηC)

of a modulus m corresponding to g. The modulus m is an effective divisor

m=
∑
P∈S

n P P

on C , where S is a closed subset of C , such that g ∈MC,P , for every P 6∈ S and
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for every function f ∈ k(C)× with f ∈
⋂

P∈S U (n P )
C,P , we have∑

P∈C\S

ordP( f )TrP/k(sP(g))= 0.

Notation 2.2. Let f ∈ k(C)× be such that f ∈
⋂

P∈S U (n P )
C,P . Then we will write

f ≡ 1 mod m.

The modulus condition on M is equivalent to the existence, for each closed
point P ∈ C , of a biadditive pairing called the local symbol at P

(. ; .)P :M(ηC)×Gm(ηC)→M(k),

which satisfies the following three characterizing properties:

(1) (g; f )P =0, for f ∈U (n P )
C,P , where m=

∑
P∈S n P P is a modulus corresponding

to g.

(2) (g; f )P = ordP( f )TrP/k(sP(g)), for all g ∈MC,P and f ∈ k(C)×.

(3)
∑

P∈C(g; f )P = 0, for every g ∈M(ηC) and f ∈ k(C)×.

The proof of existence and uniqueness of this local symbol is along the lines of
[Serre 1959, Proposition 1, Chapter III]. In this paper we will use the precise defi-
nition of (g; f )P , for g ∈M(ηC) and f ∈ k(C)×, so we review it here.

Case 1: If g∈MC,P , property (2) forces us to define (g; f )P=ordP( f )TrP/k(sP(g)).

Case 2: Let P ∈ S. Using the weak approximation theorem for valuations, we
consider an auxiliary function fP for f at P , i.e., a function fP ∈ k(C)× such that
fP ∈U (n P ′ )

C,P ′ at every P ′ ∈ S, P ′ 6= P and f/ fP ∈U (n P )
C,P . Then we define

(g; f )P =−
∑
Q 6∈S

ordQ( fP)TrQ/k(sQ(g)).

Using the local symbol, one can define for each closed point P ∈ C ,

Fil0P M(ηC) :=MC,P

and for r ≥ 1

FilrP M(ηC) :=
{
g ∈M(ηC) : (g; f )P = 0, for all f ∈U (r)

C,P

}
.

Then {FilrP}r≥0 form an increasing and exhaustive filtration of M(ηC).
The reciprocity functors M for which there exists an integer n ≥ 0 such that

M(ηC) = FilnP M(ηC), for every smooth complete and geometrically connected
curve C and every closed point P ∈ C , form a full subcategory of RF , which is
denoted by RFn . (see [Ivorra and Rülling 2015, Definition 1.5.7]).
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K-group of reciprocity functors. Let M1, . . . ,Mn be reciprocity functors. The
K-group of reciprocity functors T (M1, . . . ,Mn) is itself a reciprocity functor that
satisfies various properties [Ivorra and Rülling 2015, Theorem 4.2.4]. We will not
need the precise definition of T (M1, . . . ,Mn), but only the following properties.

(a) For k ∈ EF , the group T (M1, . . . ,Mn)(k) is a quotient of(
M1

M⊗
· · ·

M⊗
Mn

)
(k),

where by
⊗M we denote the product of Mackey functors (see Definition 3.2).

The group T (M1, . . . ,Mn)(k) is generated by elements of the form

Trk′/k(x1⊗ · · ·⊗ xn),

with xi ∈Mi (k ′), where k ′/k is any finite extension.

(b) Let C be a smooth, complete and geometrically connected curve over L ∈ Ek

and let P ∈ C be a closed point. Let gi ∈Mi (ηC). Then:

(i) If for some r ≥ 0 we have gi ∈ FilrP Mi (ηC) for i = 1, . . . , n, then

g1⊗ · · ·⊗ gn ∈ FilrP T (M1, . . . ,Mn)(ηC).

Moreover, if the element gi has modulus mi =
∑

P∈Si
ni

P P , for i =
1, . . . , n, then m=

∑
P∈∪Si

max1≤i≤n{ni
P}P is a modulus for g1⊗· · ·⊗gn .

(ii) If gi ∈ Fil0P Mi (ηC), for i = 1, . . . , n, then we have an equality

sP(g1⊗ · · ·⊗ gn)= sP(g1)⊗ · · ·⊗ sP(gn).

Examples. Some examples of reciprocity functors include constant reciprocity func-
tors, commutative algebraic groups, homotopy invariant Nisnevich sheaves with
transfers. For an explicit description of each of these examples we refer to [Ivorra
and Rülling 2015, Section 2]. The following example is of particular interest to us.

Let X be a smooth projective variety over k ∈ EF . Then there is a reciprocity
functor CH 0(X) such that for any scheme U ∈ Reg≤1 over k we have

CH 0(X)(U )= C H0(X ×k k(U )).

Since we assumed X is projective, the degree map C H0(X)→ Z induces a map
of reciprocity functors CH 0(X)→ Z whose kernel will be denoted by CH 0(X)0.
Both CH 0(X) and CH 0(X)0 are in RF0.

Remark 2.3. If X has a k-rational point, we have a decomposition of reciprocity
functors CH 0(X) ' CH 0(X)0 ⊕ Z, where Z is the constant reciprocity functor.
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Moreover, if M1, . . . ,Mr are reciprocity functors, then by [Ivorra and Rülling
2015, Corollary 4.2.5(2)] we have a decomposition

T (CH 0(X),M1, . . . ,Mr )' T (CH 0(X)0,M1, . . . ,Mr )⊕ T (Z,M1, . . . ,Mr ).

Relation to Milnor K-theory and Kähler differentials. If we consider the reci-
procity functor T (G×n

m ) := T (Gm, . . . ,Gm) attached to n copies of Gm , then for
every k ∈ EF the group T (G×n

m )(k) is isomorphic to the usual Milnor K-group
K M

n (k) [Ivorra and Rülling 2015, Theorem 5.3.3].
Moreover, if k is of characteristic zero, then the group T (Ga,G×n−1

m )(k), n ≥ 1,
is isomorphic to the group of Kähler differentials �n−1

k/Z [Ivorra and Rülling 2015,
Theorem 5.4.7].

3. The homology of the complex

Convention 3.1. From now on, unless otherwise mentioned, we will be working
over an algebraically closed base field k ∈ EF .

Let M be a reciprocity functor. Let C be a smooth complete curve over k with
generic point ηC . At each closed point P ∈ C we have a local symbol (. ; .)P . We
will denote by (. ; .)C the collection of all symbols {(. ; .)P}P∈C , namely

(. ; .)C :M(ηC)⊗Gm(ηC)→
⊕
P∈C

M(k).

We note here that a reciprocity functor M is also a Mackey functor. In what fol-
lows, we will need the definition of the product of Mackey functors M1, . . . ,Mr ,
evaluated at a finitely generated extension L of k. We review this definition here.

Definition 3.2. Let M1, . . . ,Mr be Mackey functors over k. Let L be a finitely
generated extension of k. Then,(

M1

M⊗
· · ·

M⊗
Mr

)
(L) :=

(⊕
L ′/L

M1(L ′)
⊗
· · ·

⊗
Mr (L ′)

)/
R,

where the sum is extended over all finite extensions L ′ of L and R is the subgroup
generated by the following family of elements: If L ⊂ K ⊂ E is a tower of finite
field extensions and we have elements xi ∈Mi (E) for some i ∈ {1, . . . , r} and
x j ∈M j (K ), for every j 6= i , then

x1⊗ · · ·⊗TrE/K (xi )⊗ · · ·⊗ xr − resE/K (x1)⊗ · · ·⊗ xi ⊗ · · ·⊗ resE/K (xr ) ∈ R.

The relation in R is known as the projection formula. Using the functoriality
properties of the local symbol at each closed point P ∈ C [Ivorra and Rülling 2015,
Proposition 1.5.5], we obtain a complex
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(
M

M⊗
Gm

)
(ηC)

(. ;.)C
−→

⊕
P∈C

M(k)
∑

P
−→M(k).

Namely, if C ′ is a smooth complete curve over k with function field k(C ′)⊃ k(C)
and we have a section g ∈M(ηC ′) and a function f ∈ k(C ′)×, then we define

(g; f )C =
( ∑
λ(P ′)=P

(g; f )P ′

)
P
∈

⊕
P∈C

M(k),

where λ : C ′→ C is the finite covering induced by the inclusion k(C)⊂ k(C ′).
We will denote this complex by (C) and its homology by H(C). We consider

the reciprocity functor CH 0(C). Notice that the existence of a k-rational point
P0 ∈C(k) yields a decomposition of reciprocity functors CH 0(C)'CH 0(C)0⊕Z.
We make the following assumption on the K-group T (M,CH 0(C)).

Assumption 3.3. Let M be a reciprocity functor. Let g∈M(ηC), h∈CH 0(C)(ηC)

and f ∈ k(C)×. Let P ∈ C be a closed point of C . Assume that the local symbol
(g⊗ h; f )P ∈ T (M,CH 0(C))(k) vanishes at every point P such that sP(h)= 0.

In the next section we will give examples where Assumption 3.3 is satisfied.

Proposition 3.4. Let M be a reciprocity functor over k satisfying Assumption 3.3.
Then there is a well defined map

8 :

(⊕
P∈C

M(k)
)/

Im((. ; .)C)→ T (M,CH 0(C))(k),

(aP)P∈C →
∑
P∈C

aP ⊗[P].

Proof. First, we immediately observe that if P ∈ C is any closed point of C , then
the map φP :M(k)→ T (M,CH 0(C))(k) given by a→ a⊗[P] is well defined.
In particular, the map

8=
∑

P

φP :
⊕
P∈C

M(k)→ T (M,CH 0(C))(k)

is well defined. Let D be a smooth complete curve over k with generic point
ηD and assume there is a finite covering λ : D → C . Let g ∈ M(ηD) and
f ∈ k(D)× be a function. For every closed point P ∈ C we consider the ele-
ment (aP)P ∈

⊕
P∈C M(k) such that aP = (g; f )P . We are going to show that

8
(∑

P∈C(g; f )P
)
= 0.

First, we treat the case D = C and λ = 1C . The element g ∈M(ηC) admits a
modulus m with support S. We consider the zero-cycle h = [ηC ] ∈ CH 0(C)(ηC).
Notice that for a closed point P ∈ C , the specialization map

sP : CH 0(C)(ηC)→ CH 0(C)(k)
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has the property sP(h)= [P]. We are going to show that

8((g; f )P)= (g⊗ h; f )P for every P ∈ C,

and the required property will follow from the reciprocity law of the local symbol.
We consider the following cases.

(1) Let P 6∈ S. Then,

8((g; f )P)= φP(ordP( f )sP(g))= ordP( f )sP(g)⊗[P]

= ordP( f )sP(g)⊗ sP(h)

= ordP( f )sP(g⊗ h)= (g⊗ h; f )P .

(2) Let P ∈ S and f ≡ 1 mod m at P . Since CH 0(C)∈ RF0, h does not contribute
to the modulus, and hence, by item (b)(ii) on page 322 we get

8((g; f )P)=8(0)= 0= (g⊗ h; f )P .

(3) Let now P ∈ S and f ∈ K× be any function. We consider an auxiliary function
fP for f at P . By the definition of the local symbol, we have

8((g; f )P)= φP

(
−

∑
Q 6∈S

ordQ( fP)sQ(g)
)
=−

∑
Q 6∈S

ordQ( fP)sQ(g)⊗[P]

= −

∑
Q 6∈S

ordQ( fP)sQ(g)⊗[Q] +
∑
Q 6∈S

ordQ( fP)sQ(g)⊗ ([Q] − [P]).

We observe that we have an equality

(g⊗ h; f )P =−
∑
Q 6∈S

ordQ( fP)sQ(g)⊗[Q].

Next, notice that the flat embedding k ↪→ k(C) induces a restriction map
resη/k : C H0(C)→ C H0(C × ηC). Let h0 = resη/k([P]). We clearly have∑

Q 6∈S

ordQ( fP)sQ(g)⊗ ([P] − [Q])= (g⊗ (h0− h); f )P .

Since we assumed that the Assumption 3.3 is satisfied, we get that this last
symbol vanishes. For, sP(h− h0)= 0.

The general case is treated in a similar way. Namely, if λ : D → C is a finite
covering of smooth complete curves over k and g ∈M(ηD), then the local symbol
at a closed point P ∈ C is defined to be (g; f )P =

∑
λ(Q)=P(g; f )Q . Considering

the zero cycle h = [ηD] ∈ CH 0(C)(ηD), we can show that

8P((g; f )P)= (g⊗ h; f )P . �

From now on we fix a k-rational point P0 of C .
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Corollary 3.5. The map 8 of Proposition 3.4 induces a map

8 : H(C)→ T (M,CH 0(C)0)(k),

(aP)P∈C →
∑
P∈C

a⊗ ([P] − [P0]),

which does not depend on the k-rational point P0.

Proof. If (aP)P∈C ∈ H(C), then∑
P

aP = 0 ∈M(k),

and hence ∑
P

aP ⊗[P0] = 0 ∈ T (M,CH 0(C))(k).

We conclude that if (aP)P∈C ∈ H(C) then 8((aP)P∈C) ∈ T (M,CH 0(C)0)(k) and
clearly the map does not depend on the k-rational point P0. �

Definition 3.6. Let M1, . . . ,Mr be reciprocity functors over k. We consider the
geometric K-group attached to M1, . . . ,Mr ,

K geo(k;M1, . . . ,Mr )=

(
M1

M⊗
· · ·

M⊗
Mr

)
(k)/R,

where the subgroup R is generated by the following family of elements. Let D be
a smooth complete curve over k with generic point ηD. Let gi ∈Mi (ηD). Then
each gi admits a modulus mi . Let m= sup1≤i≤r mi and S be the support of m. Let
f ∈ k(D)× be a function such that f ≡ 1 mod m. Then∑

P 6∈S

ordP( f )sP(g1)⊗ · · ·⊗ sP(gr ) ∈ R.

Notation 3.7. The elements of the geometric K-group K geo(k;M1, . . . ,Mr ) will
be denoted as {x1⊗ · · ·⊗ xr }

geo.

Remark 3.8. In the notation of [Ivorra and Rülling 2015] the group

K geo(k;M1, . . . ,Mr )

is the same as the Lax Mackey functor LT (M1, . . . ,Mr ) evaluated at Spec k
[Ivorra and Rülling 2015, Definition 3.1.2]. In general the group T(M1, . . . ,Mr )(k)
is a quotient of K geo(k;M1, . . . ,Mr ). In the next section we give some examples
where these two groups coincide.
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Proposition 3.9. Let P0 be a fixed k-rational point of C. The map

9 : K geo(k;M,CH 0(C)0)−→ H(C),

{x ⊗ ([P] − [P0])}
geo
−→ (xP ′)P ′∈C ,

with

xP ′ =


x if P ′ = P,
−x if P ′ = P0,

0 otherwise,
for P 6= P0, is well defined and does not depend on the choice of the k-rational
point P0.

Proof. We start by defining the map 9P0 :M(k)⊗CH 0(C)0(k)→ H(C) as in the
statement of the proposition. To see that 9P0 is well defined, let f ∈ k(C)×. We
need to verify that 9P0(x ⊗ div( f ))= 0 for every x ∈M(k). Let π : C→ Spec k
be the structure map. Consider the pull back

g = π?(x) ∈M(C).

Then g ∈M(ηC) has modulus m= 0 and hence for a closed point P ∈ C we have
(g, f )P = ordP( f )sP(π

?(x))= ordP( f )x . Since

9P0(x ⊗ div( f ))= (ordP( f )x)P∈C ,

we conclude that 9P0(x ⊗ div( f )) ∈ Im(. , .)C .
Next, notice that 9P0 does not depend on the base point P0. For, if Q0 is another

base point, then

9Q0({x ⊗ ([P] − [P0])}
geo)

=9Q0({x ⊗ ([P] − [Q0])}
geo)−9Q0({x ⊗ ([P0] − [Q0])}

geo).

Here 9Q0({x ⊗ ([P] − [Q0])}
geo) gives the element x at the coordinate P and −x

at the coordinate Q0, while −9Q0({x ⊗ ([P0]− [Q0])}
geo) gives −x at coordinate

P0 and x at Q0. From now on we will denote this map by 9. In order to show that
9 factors through K geo(k;M,CH 0(C)0), we consider a smooth complete curve
D with generic point ηD. Let g1 ∈M(ηD) admitting a modulus m with support
SD and g2 ∈ CH 0(C)0(ηD) having modulus m2 = 0. Let moreover f ∈ k(D)× be
a function such that f ≡ 1 mod m. We need to show that

9

( ∑
R 6∈SD

ordR( f ){sR(g1)⊗ sR(g2)}
geo
)
= 0 ∈ H(C).

Since we assumed the existence of a k-rational point P0, the group CH 0(C)0(ηD)

is generated by elements of the form [h] −m[resk(D)/k(P0)], where h is a closed
point of C × k(D) having residue field of degree m over k(D). Using the linearity
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of the symbol on the last coordinate, we may reduce to the case when g2 is of the
above form. Notice that h = Spec k(E) ↪→ C × Spec k(D), where E is a smooth
complete curve over k, and hence h induces two coverings

E

µ

��

λ
// D

C

Let SE = λ
−1(SD). For a closed point R ∈ D, we obtain an equality:

sR([h])=
∑

λ(Q)=R

e(Q/R)[µ(Q)],

where e(Q/R) is the ramification index at the point Q ∈ E lying over R ∈ D. Since
m = [k(E) : k(D)] =

∑
λ(Q)=R e(Q/R), we get

9

(∑
R 6∈SD

ordR( f ){sR(g1)⊗ sR(g2)}
geo
)

=9

( ∑
R 6∈SD

ordR( f )
{

sR(g1)⊗

( ∑
λ(Q)=R

e(Q/R)[µ(Q)] −m[P0]

)}geo)

=9

( ∑
R 6∈SD

∑
λ(Q)=R

e(Q/R) ordR( f )
{
sR(g1)⊗ ([µ(Q)] − [P0])

}geo
)

=9

(∑
Q 6∈SE

ordQ(λ
?( f ))

{
sQ(λ

?(g1))⊗ ([µ(Q)] − [P0])
}geo

)
.

Here we have used the equality sR(g1) = sQ(λ
?(g1)), valid for a closed point

Q ∈ E lying over R ∈ D, and following from [Ivorra and Rülling 2015, Propo-
sition 1.3.7(S2)] and the assumption that the base field k is algebraically closed.

We conclude that

9

( ∑
Q 6∈SE

ordQ(λ
?( f ))

{
sQ(λ

?(g1))⊗ ([µ(Q)] − [P0])
}

Q/k

)

=


∑

µ(Q)=P
ordQ(λ

?( f ))sQ(λ
?(g1)) at P 6= P0,

−
∑

P 6=P0

∑
µ(Q)=P

ordQ(λ
?( f ))sQ(λ

?(g1)) at P0.

This last computation completes the argument, after we notice that the reciprocity
of the local symbol yields an equality

−

∑
P 6=P0

∑
µ(Q)=P

ordQ(λ
?( f ))sQ(λ

?(g1))= (λ
?(g1); λ

?( f ))P0 . �
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We make the following assumption on T (M,CH 0(C)0).

Assumption 3.10. Let M be a reciprocity functor. Assume that the K-group

T (M,CH 0(C)0)(k)

coincides with the geometric K-group K geo(k;M,CH 0(C)0).

Theorem 3.11. Let M be a reciprocity functor such that the group

T (M,CH 0(C)0)(k)

satisfies both Assumptions 3.3 and 3.10. Then we have an isomorphism

H(C)' T (M,CH 0(C)0)(k).

Proof. By Proposition 3.9 we obtain a homomorphism

9 : T (M,CH 0(C)0)(k)→ H(C).

It is almost a tautology to check that 9 is the inverse of 8. Namely,

89(x ⊗ ([P] − [P0]))=8((xP ′)P ′)=
∑

P ′
xP ′ ⊗[P ′] = x ⊗[P] − x ⊗[P0],

and

98((xP)P)=9

(∑
P∈C

xP ⊗ ([P] − [P0])

)
= (xP)P .

Notice that for the last equality, we used the fact that (xP)P∈C ∈ ker
(∑

P∈C

)
, and

hence at coordinate P0 we have xP0 =−
∑

P 6=P0
xP . �

4. Examples

In this section we give some examples of reciprocity functors M such that the
K-group of reciprocity functors T (M,CH 0(C)0) satisfies Assumptions 3.3 and
3.10.

Homotopy invariant Nisnevich sheaves with transfers. We consider the category
HINis of homotopy invariant Nisnevich sheaves with transfers over a perfect field F .
Let F1, . . . ,Fr ∈ HINis. Then each Fi induces a reciprocity functor F̂ i ∈ RF1 (see
[Ivorra and Rülling 2015, Example 2.3]). The associated K-group of reciprocity
functors T (F̂1, . . . , F̂r ) is also in RF1. We claim that T (T (F̂1, . . . , F̂r ),CH 0(C)0)
satisfies both assumptions of Theorem 3.11. The claim follows by the comparison
of the K-group T (T (F̂1, . . . , F̂r ),CH 0(C)0)(k) with the Somekawa type K-group
K (k;F1 . . . ,Fr ,CH 0(C)0) defined by B. Kahn and T. Yamazaki [2013, Defini-
tion 5.1].
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Remark 4.1. If M1, . . . ,Mr are reciprocity functors with r ≥ 3, then F. Ivorra
and K. Rülling in Corollary 4.2.5. of [Ivorra and Rülling 2015] prove that there is
a functorial map

T (M1, . . . ,Mr )→ T (T (M1, . . . ,Mr−1),Mr ),

which is surjective as a map of Nisnevich sheaves. It is not clear whether this map
is always an isomorphism which would imply that T is associative and we would
call it a product. In the case Fi ∈HINis, for every i ∈ {1, . . . , r}, associativity holds.
In fact, in this case there is an isomorphism of reciprocity functors

T (F̂1, . . . , F̂r )'

(
F1
⊗
HINis

· · ·

⊗
HINis

. . .Fr

)
,

where F1
⊗

HINis
· · ·
⊗

HINis
Fr is the product of homotopy invariant Nisnevich sheaves

with transfers. (see [Kahn and Yamazaki 2013, Section 2.10] for the definition of
the product and [Ivorra and Rülling 2015, Theorem 5.1.8] for the isomorphism).

Notation 4.2. By abuse of notation from now on we will write T (F1, . . . ,Fr ) for
the K-group of reciprocity functors associated to F̂1, . . . , F̂r .

Remark 4.3. Let NST be the category of Nisnevich sheaves with transfers. We
note here that there is a left adjoint to the inclusion functor NST→ HINis which
is denoted by hNis

0 (see [Kahn and Yamazaki 2013, Section 2]). If U is a smooth
curve over F , then there is a Nisnevich sheaf with transfers L(U ), where

L(U )(V )= Cor(V,U )

is the group of finite correspondences for V smooth over F , i.e., the free abelian
group on the set of closed integral subschemes of V × U which are finite and
surjective over some irreducible component of V . Then the corresponding homo-
topy invariant Nisnevich sheaf with transfers hNis

0 (U ) := hNis
0 (L(U )) is the sheaf

associated to the presheaf of relative Picard groups

V → Pic(U × V, D× V ),

where U is the smooth compactification of U , D = U \U and V runs through
smooth F-schemes. When U is projective we have an isomorphism

hNis
0 (U )' CH 0(U )

(see [Kahn and Yamazaki 2013, Lemma 11.2]). In particular, CH 0(C) is homotopy
invariant Nisnevich sheaf with transfers.

Let F ∈ HINis. If we are given a section g ∈ F(U ) for some open dense U ⊂ C ,
then g induces a map of Nisnevich sheaves with transfers ϕ : hNis

0 (U )→ F such
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that
ϕ(U ) : hNis

0 (U )(U )→ F(U ),

[1] → g,

where [1] ∈ hNis
0 (U )(U ) is the class of the diagonal. The existence of the map ϕ

follows by adjunction, since we have an obvious morphism L(U )→ F in NST.

Lemma 4.4. Let F1, . . . ,Fr ∈ HINis be homotopy invariant sheaves with transfers.
Then the K-group of reciprocity functors T (T (F1, . . . ,Fr ),CH 0(C)0) satisfies the
assumptions of Theorem 3.11.

Proof. By Remark 4.1 we get an isomorphism

T
(
T (F1, . . . ,Fr ),CH 0(C)0

)
(k)' T

(
F1, . . . ,Fr ,CH 0(C)0

)
(k).

Moreover, by Theorem 5.1.8. of [Ivorra and Rülling 2015] we get that the groups
K geo(k;F1, . . . ,Fr ,CH 0(C)0) and T(F1, . . . ,Fr ,CH0(C)0)(k) are equal and they
coincide with the Somekawa type K-group K (k;F1, . . . ,Fr ,CH 0(C)0). We con-
clude that Assumption 3.10 holds.

Regarding the Assumption 3.3, let gi ∈ Fi (ηC) and h ∈ CH 0(C)0(ηC) such that
sP(h) = 0 for some closed point P ∈ C . Let moreover f ∈ k(C)×. We need to
verify that (g1⊗· · ·⊗gr⊗h; f )P = 0. If gi ∈Fi,C,P , for every i ∈ {1, . . . , r}, then

(g1⊗ · · ·⊗ gr ⊗ h; f )P = ordP( f )sP(g1)⊗ · · ·⊗ sP(gr )⊗ sP(h)= 0.

Assume P is in the support of gi for some i ∈ {1, . . . , r}.
We first treat the case when Fi is curve-like (see [Kahn and Yamazaki 2013,

Definition 11.1]), for i = 1, . . . , r . For such Fi it suffices to consider elements
gi ∈ Fi (ηC) with disjoint supports [Kahn and Yamazaki 2013, Proposition 11.11].
In this case the claim follows by the explicit computation of the local symbol [Kahn
and Yamazaki 2013, Lemma 8.5, Proposition 11.6]. Namely, if P ∈ supp(gi ), then
the local symbol at P is given by the formula

(g1⊗ · · ·⊗ gr ⊗ h; f )P = sP(g1)⊗ . . . ∂P(gi , f )⊗ · · ·⊗ sP(gr )⊗ sP(h)= 0,

where ∂P(gi , f ) is the symbol at P defined in [Kahn and Yamazaki 2013, Sec-
tion 4.1].

Now assume that Fi is general, for i = 1, . . . , r . Since gi ∈ Fi (ηC) and

Fi (ηC)' lim
−→

Fi (U ),

there is an open dense subset Ui ⊂ C such that gi ∈ F(Ui ), for i = 1, . . . , r . By
Remark 4.3 we get that the sections gi induce morphisms in HINis, ϕi :hNis

0 (Ui )→F .
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In particular, we get a homomorphism

ϕ = ϕ1⊗ · · ·⊗ϕr ⊗ 1 : K
(
k; hNis

0 (U1), . . . , hNis
0 (Ur ),CH 0(C)0

)
→ K (k;F1, . . . ,Fr ,CH 0(C)0),

with the property

(g1⊗ · · ·⊗ gr ⊗ h; f )P = ϕ(([11]⊗ · · ·⊗ [1r ]⊗ h; f )P).

Notice that the latter element vanishes, because hNis
0 (Ui ) is curve-like, for i=1, . . . ,r

[Kahn and Yamazaki 2013, Lemma 11.2(c)] and hence

([11]⊗ · · ·⊗ [1r ]⊗ h; f )P = 0. �

Corollary 4.5. Let F1, . . . ,Fr ∈HINis. Let M= T (F1, . . . ,Fr ) and let (C) be the
local symbol complex associated to M corresponding to the curve C. Then there
is a canonical isomorphism

H(C )' T (F1, . . . ,Fr ,CH 0(C)0)(k).

In particular, if G1, . . . ,Gr are semiabelian varieties over k, then

H(C)' T (G1, . . . ,Gr ,CH 0(C)0)(k)' K (k;G1, . . . ,Gr ,CH 0(C)0),

where K (k;G1, . . . ,Gr ,CH 0(C)0) is the usual Somekawa K-group attached to
semiabelian varieties [Somekawa 1990, Definition 1.2].

The Ga-case. In this subsection we consider reciprocity functors

M1, . . . ,Mr , r ≥ 0,

and set M0 = Ga . We consider the K-group of reciprocity functors

T (Ga,M1, . . . ,Mr ).

Lemma 4.6. The K-group T (T (Ga,M1, . . . ,Mr ),CH 0(C)0) satisfies Assumption
3.3.

Proof. We have a functorial surjection

T (Ga,M1, . . . ,Mr ,CH 0(C)0)(k)� T (T (Ga,M1, . . . ,Mr ),CH 0(C)0)(k).

The first group vanishes by the main result of [Rülling and Yamazaki 2014, Theo-
rem 1.1]. Therefore, the second group vanishes as well. In particular, Assumption 3.3
is satisfied. �

Lemma 4.7. The K-group T (T (Ga,M1, . . . ,Mr ),CH 0(C)0) satisfies Assump-
tion 3.10.



THE LOCAL SYMBOL COMPLEX OF A RECIPROCITY FUNCTOR 333

Proof. To prove the lemma, it suffices to show that

K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0)

vanishes.

Claim. There is a well defined local symbol

T (Ga,M1, . . . ,Mr )(ηC)⊗CH 0(C)0(ηC)⊗ k(C)×

→ K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0),

satisfying the unique properties (1)–(3) of page 321.

To have a well defined local symbol following [Serre 1959], we need for every
closed point P ∈ C the natural map

h : T (Ga,M1, . . . ,Mr )(OC,P)⊗CH 0(C)0(OC,P)

→ T (Ga,M1, . . . ,Mr )(ηC)⊗CH 0(C)0(ηC)

to be injective. For, if g1 ∈ T (Ga,M1, . . . ,Mr )(ηC), g2 ∈CH 0(C)0(ηC), then we
say that g1⊗ g2 is regular, if g1⊗ g2 = h(g̃1⊗ g̃2), for some

g̃1⊗ g̃2 ∈ T (Ga,M1, . . . ,Mr )(OC,P)⊗CH 0(C)0(OC,P).

For such g1 ⊗ g2 we can define (g1 ⊗ g2; f )P = ordP( f )sP(g̃1)⊗ sP(g̃2). For
nonregular g1⊗ g2 we define the local symbol using an auxiliary function fP for
f at P as usual (see page 321). The symbol (. ; .)P is well defined, since there
is a unique lifting g̃1⊗ g̃2 and the unique properties (1)–(3) of page 321 are satis-
fied by the very definition of the group K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0).
Therefore to prove the claim, it suffices to show the injectivity of h.

Note that we have an equality

CH 0(C)0(OC,P) := CH 0(C × k(Spec(OC,P)))
0
= CH 0(C)0(ηC).

The map T (Ga,M1, . . . ,Mr )(OC,P)→ T (Ga,M1, . . . ,Mr )(ηC) is injective by
the injectivity condition of reciprocity functors. Next, T (Ga,M1, . . . ,Mr ) be-
comes a reciprocity functor of either Q or Fp-vector spaces, depending on whether
char F is 0 or p > 0. Setting κ =Q or Z/p depending on the case we have

T (Ga,M1, . . . ,Mr )(OC,P)⊗Z CH 0(C)0(OC,P)

= T (Ga,M1, . . . ,Mr )(OC,P)⊗κ (κ ⊗Z CH 0(C)0(OC,P)).

Since the κ-module κ ⊗Z CH 0(C)0(OC,P) is flat, the claim follows.
To prove the lemma, we imitate the proof given in [Rülling and Yamazaki 2014]

for the vanishing of T (Ga,M1, . . . ,Mr ,CH 0(C)0)(k). Let {(x0, . . . , xr ), ζ }
geo

be a generator of K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0). Since k is algebraically
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closed, we may assume ζ = [P0] − [P1], for some closed points P0, P1 ∈ C . Then
we can show that

{(x0, . . . , xr ), ζ }
geo
=

∑
P∈C

(
(x0g⊗resk(C)/k(x1) · · ·⊗resk(C)/k(xr ))⊗ηC ; f

)
P = 0,

where f ∈ k(C)× is a function such that ordP0( f ) = 1 and ordP1( f ) = −1 and
g ∈ k(C)× is obtained using the exact sequence

�1
k(C)/k −→

⊕
P∈C

�1
k(C)/k

�1
C,P

∑
ResP
−→ k −→ 0.

For more details on this local symbol computation see Section 3 in [Rülling and
Yamazaki 2014]. In particular, we refer to 3.2 and 3.4 there for the choice of the
functions f, g ∈ k(C)×. �

Corollary 4.8. Let M=T (Ga,M1, . . . ,Mr ), where M1, . . . ,Mr are reciprocity
functors. For any smooth complete curve C over k, we have H(C)= 0. In particu-
lar, if char F = 0, the complex

�n+1
k(C)

ResP
−→

⊕
P∈C

�n
k

∑
P
−→�n

k

is exact.

Proof. When char F = 0, Ivorra and Rülling [2015, Theorem 5.4.7] showed an
isomorphism of reciprocity functors θ :�n

' T (Ga,G×n). Moreover, the complex
(C) factors through �n+1

k(C). �

5. The nonalgebraically closed case

In order to prove Theorem 3.11, we made the assumption that the curve C is over
an algebraically closed field k. The reason this assumption was necessary is that
for a general reciprocity functor M the local symbol at a closed point P ∈ C does
not have a local description, but rather depends on the other closed points. Namely,
if P is in the support of the modulus m corresponding to a section g ∈M(ηC), then
we have an equality

(g; f )P =−
∑
Q 6∈S

ordQ( fP)TrQ/k(sQ(g)),

where fP is an auxiliary function for f at P . If for some reciprocity functor M
we have a local description (g; f )P = TrP/k(∂P(g; f ))), where ∂P(g; f ) ∈M(P),
for every P ∈ C , then we can obtain a complex (C)′(

M
M⊗

Gm

)
(ηC)

∂C
−→

⊕
P∈C

M(P)
∑

P TrP/k
−→ M(k).
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For such a reciprocity functor M, assuming the existence of a k-rational point
P0 ∈ C(k), we can have a generalization of Theorem 3.11 for the complex (C)′

by imposing the following two stronger conditions on M. Namely, we make the
following assumptions.

Assumption 5.1. Let M be a reciprocity functor for which we have a local de-
scription of the symbol (g; f )P = TrP/k(∂P(g; f )). Let λ : D → C be a finite
morphism. Assume that for every h ∈ CH 0(C)(ηD) and every closed point P ∈ C
we have an equality

(g⊗ h; f )P = TrP/k(∂P(g, f )⊗ sP(h)).

Assumption 5.2. We assume that for every finite extension L/k we have an equal-
ity

K geo(L;M,CH 0(C)0)' T (M,CH 0(C)0)(L).

Notation 5.3. If E/L is a finite extension and x ∈M(k), we will denote

xE = resE/L(x).

Theorem 5.4. Let M be a reciprocity functor that satisfies Assumptions 5.1 and
5.2. Then we have an isomorphism

8′ : H(C′)
'
−→ T (M,CH 0(C)0)(k),

(aP)P∈C →
∑
P∈C

TrP/k(aP ⊗ ([P] − P0,k(P))).

Proof. We start by considering the map

8′ :

(⊕
P∈C

M(P)
)/

Im ∂C → T (M,CH 0(C))(k),

(aP)P∈C →
∑
P∈C

TrP/k(aP ⊗[P]).

The map 8′ is well defined because of Assumption 5.1. Restricting to H(C′), we
obtain the map of the proposition. Moreover, we can consider the map

9 ′ : T (M,CH 0(C)0)(k)→ H(C′)

T rL/k(x ⊗ ([Q] − [L(Q) : L][P0,L ]))→ (xP ′)P ′∈C ,

with xP = TrL(Q)/k(P)(x), xP0 =−TrL(Q)/k(x) and xP ′ = 0 otherwise. Here L/k
is a finite extension, x ∈M(L), Q is a closed point of C × L having residue field
L(Q) that projects to P ∈ C under the map C × L→ C with P 6= P0. We denote
by k(P) the residue field of P . The map 9 ′ will be well defined (using the same
argument as in Proposition 3.9), as long as we check the following:
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(1) If k ⊂ L ⊂ E is a tower of finite extensions and we have elements x ∈M(L),
y ∈ CH 0(C)0(E), then 9 ′(TrL/k(x ⊗TrE/L(y)))=9 ′(TrE/k(xE ⊗ y)).

(2) 9 ′(TrL/k(TrE/L(x)⊗ y)) = 9 ′(TrE/k(x ⊗ yE)) for any x ∈M(E) and y ∈
CH 0(C)0(L).

For (1) we can reduce to the case when y = [Q] − [E(Q) : E]P0,E , for some
closed point Q of C × E with residue field E(Q). Let Q′ be the projection of
Q in C × L and P the projection of Q′ in C . Notice that we have an equality
TrE/L([Q])= [E(Q) : L(Q′)][Q′]. We compute

9 ′
(
TrE/k(xE ⊗ ([Q] − [E(Q) : E][P0,E ]))

)
=

{
TrE(Q)/k(P)(x) at P,
−TrE(Q)/k(x) at P0,

9 ′
(
TrL/k(x ⊗TrE/L([Q] − [E(Q) : E][P0,E ]))

)
=9 ′

(
TrL/k(x ⊗[E(Q) : L(Q′)]([Q′] − [L(Q′) : L][P0,L ]))

){
[E(Q) : L(Q′)]TrL(Q′)/k(P)(x) at P,
−[E(Q) : L(Q′)]TrL(Q′)/k(x) at P0.

The claim then follows in view of the equality

TrE(Q)/k(P)(x)= TrL(Q′)/k(P) TrE(Q)/L(Q′)(x)= [E(Q) : L(Q′)]TrL(Q′)/k(P)(x).

For (2) we can again reduce to the case when y = [Q]− [L(Q) : L][P0,L ] for some
closed point Q of C × L with residue field L(Q). Notice that we have an equality

[Q]E =
∑

Q′→Q

e(Q′/Q)[Q′],

where the sum extends over all closed points Q′ of C × E that project to Q. We
compute:

9 ′(TrL/k(TrE/L(x)⊗ y))

=

{
TrL(Q)/k(P)(TrE/L(x)L(Q)) at P,

−TrL(Q)/k(TrE/L(x)L(Q)) at P0,

=

{
TrL(Q)/k(P)(

∑
Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′))) at P,

−TrL(Q)/k(
∑

Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′))) at P0,

=

{∑
Q′→Q e(Q′/Q)TrE(Q′)/k(P)(xE(Q′)) at P,

−
∑

Q′→Q e(Q′/Q)TrE(Q′)/k(xE(Q′)) at P0.

The equality TrE/L(x)L(Q) =
∑

Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′)) follows from
Remark 1.3.3, Property (MF1) of [Ivorra and Rülling 2015] if we set

ϕ : Spec E→ Spec L and ψ : Spec L(Q)→ Spec L .
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On the other hand we have

9 ′(TrE/k(x ⊗ yE))=9
′

( ∑
Q′→Q

e(Q′/Q)
)

TrE/k(x ⊗ ([Q′] − [L(Q) : L][P0,E ]))

=

{∑
Q′→Q e(Q′/Q))TrE(Q′)/k(P)(xE(Q′)) at P,

−
∑

Q′→Q e(Q′/Q))TrE(Q′)/k(xE(Q′)) at P0.

Next we need to show that the maps8′, 9 ′ are each other’s inverses. It is immediate
that the composition 9 ′8′ is the identity map. For the other composition, we
consider an element x⊗ ([Q]−[L(Q) : L][P0,L ]) ∈ T (M,CH 0(C)0)(L). If L(Q)
is the residue field of Q, then Q induces an L(Q)-rational point Q̃ of C × L(Q).
Then we have an equality TrL(Q)/L([Q̃])= [Q]. By the projection formula we get
an equality

x ⊗ ([Q] − [L(Q) : L][P0,L ])= TrL(Q)/L(xL(Q)⊗ ([Q̃] − [P0,L(Q)])),

we are therefore reduced to the case L(Q)= L . Then we have

8′9 ′
(
TrL/k(x ⊗ ([Q] − [P0,L ]))

)
= TrP/k(TrL/P(x)⊗ ([P] − [P0,k(P)]))

= TrP/k TrL/P(x ⊗ resL/P([P] − [P0,k(P)]))

= TrL/k(x ⊗[Q] − [P0,L ]).

This completes the proof of the theorem. �

Remark 5.5. We note here that for the algebraically closed field case if instead of
the Assumption 3.3, we had made the stronger Assumption 5.1, the proof of the
Proposition 3.4 would have become simpler. The only reason we used Assump-
tion 3.3 is that in general the problem of computing the symbol (g; f )P locally is
rather hard and is known only in very few cases, namely for homotopy invariant
Nisnevich sheaves with transfers, as the next example indicates.

Example 5.6. Let k ∈ EF be any perfect field. Let F1, . . . ,Fr be homotopy invari-
ant Nisnevich sheaves with transfers. Then as mentioned in the previous section,
the main theorem of [Kahn and Yamazaki 2013] gives an isomorphism

T (F1, . . . ,Fr )(L)' K geo(L;F1, . . . ,Fr )' K (L;F1, . . . ,Fr ),

where K (L;F1, . . . ,Fr ) is the Somekawa type K-group [Kahn and Yamazaki
2013, Definition 5.1] and L/k is any finite extension. In particular, let C be a
smooth, complete and geometrically connected curve over k and P ∈ C be a closed
point. As in the proof of Lemma 4.4, we can reduce to the case when Fi is curve-
like, for i = 1, . . . , r . To describe the local symbol, it therefore suffices to consider
sections gi ∈ Fi (ηC) with disjoint supports. In this case, if P is in the support of
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gi for some i ∈ {1, . . . , r} and f ∈ k(C)× is a function, then we have the following
explicit local description of (g1⊗ · · ·⊗ gr ; f )P .

(g1⊗ · · ·⊗ gr ; f )P = TrP/k(sP(g1)⊗ · · ·⊗ ∂P(gi , f )⊗ · · ·⊗ sP(gr )).

Moreover, CH 0(C)0 is itself a homotopy invariant Nisnevich sheaf with trans-
fers. Namely, CH 0(C)0 ∈ RF0 and hence the above formula implies that the
Assumption 5.1 is satisfied.
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