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Splitting the relative assembly map,
Nil-terms and involutions

Wolfgang Lück and Wolfgang Steimle

We show that the relative Farrell–Jones assembly map from the family of finite
subgroups to the family of virtually cyclic subgroups for algebraic K-theory is
split injective in the setting where the coefficients are additive categories with
group action. This generalizes a result of Bartels for rings as coefficients. We
give an explicit description of the relative term. This enables us to show that it
vanishes rationally if we take coefficients in a regular ring. Moreover, it is, con-
sidered as a Z[Z/2]-module by the involution coming from taking dual modules,
an extended module and in particular all its Tate cohomology groups vanish,
provided that the infinite virtually cyclic subgroups of type I of G are orientable.
The latter condition is for instance satisfied for torsionfree hyperbolic groups.

Introduction

0A. Motivation. The K-theoretic Farrell–Jones conjecture [1993, 1.6 on page 257
and 1.7 on page 262] for a group G and a ring R predicts that the assembly map

asmbn : H G
n (EG; KR)→ H G

n (G/G; KR)= Kn(RG)

is an isomorphism for all n ∈Z. Here EG = EVC(G) is the classifying space for the
family VC of virtually cyclic subgroups and H G

n (−; K G
R ) is the G-homology theory

associated to a specific covariant functor K G
R from the orbit category Or(G) to

the category Spectra of spectra. It satisfies H G
n (G/H ; K G

R )= πn(K G(G/H))=
Kn(RH) for any subgroup H ⊆ G and n ∈ Z. The assembly map is induced by
the projection EG→ G/G. More information about the Farrell–Jones conjecture
and the classifying spaces for families can be found for instance in the survey
articles [Lück 2005; Lück and Reich 2005].

Let EG = EF in(G) be the classifying space for the family F in of finite sub-
groups, sometimes also called the classifying space for proper G-actions. The G-
map EG→ EG, which is unique up to G-homotopy, induces a so-called relative

MSC2010: 18F25, 19A31, 19B28, 19D35.
Keywords: splitting relative K -theoretic assembly maps, rational vanishing and Tate cohomology

of the relative Nil-term.
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340 WOLFGANG LÜCK AND WOLFGANG STEIMLE

assembly map

asmbn : H G
n (EG; KR)→ H G

n (EG; KR).

The main result of a paper by Bartels [2003, Theorem 1.3] says that asmbn is split
injective for all n ∈ Z.

In this paper we improve on this result in two different directions: First, we
generalize from the context of rings R to the context of additive categories A with
G-action. This improvement allows us to consider twisted group rings and involu-
tions twisted by an orientation homomorphism G→ {±1}; moreover one obtains
better inheritance properties and gets fibered versions for free.

Secondly, we give an explicit description of the relative term in terms of so-
called NK-spectra. This becomes relevant for instance in the study of the involution
on the cokernel of the relative assembly map induced by an involution of A. In
more detail, we prove:

0B. Splitting the relative assembly map. Our main splitting result is:

Theorem 0.1 (splitting the K-theoretic assembly map from F in to VC). Let G be
a group and let A be an additive G-category. Let n be any integer.

Then the relative K-theoretic assembly map

asmbn : H G
n (EG; K G

A )→ H G
n (EG; K G

A )

is split injective. In particular we obtain a natural splitting

H G
n (EG; K G

A )
∼=
−→ H G

n (EG; K G
A )⊕ H G

n (EG→ EG; K G
A ).

Moreover, there exists an Or(G)-spectrum NK G
A and a natural isomorphism

H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EG; K G
A ).

Here EVC I (G) denotes the classifying space for the family of virtually cyclic
subgroups of type I; see Section 1. The proof will appear in Section 7. The point
is that, instead of considering K G

R for a ring R, we can treat the more general
setup K G

A for an additive G-category A, as explained in [Bartels and Lück 2010;
Bartels and Reich 2007]. (One recovers the case of a ring R if one considers for
A the category R-FGF of finitely generated free R-modules with the trivial G-
action. Notice that we tacitly always apply idempotent completion to the additive
categories before taking K-theory.) Whereas in [Bartels 2003, Theorem 1.3] just
a splitting is constructed, we construct explicit Or(G)-spectra NK G

A and identify
the relative terms. This is crucial for the following results.
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0C. Involutions and vanishing of Tate cohomology. We will prove in Section 8C:

Theorem 0.2 (the relative term is induced). Let G be a group and let A be an
additive G-category with involution. Suppose that the virtually cyclic subgroups of
type I of G are orientable (see Definition 8.5).

Then the Z/2-module Hn(EG→ EG; K G
A ) is isomorphic to Z[Z/2] ⊗Z A for

some Z-module A.

In [Farrell et al. 2016] we consider the conclusion of Theorem 0.2 that the
Tate cohomology groups Ĥ i (Z/2, Hn(EG → EG; K G

A )) vanish for all i , n ∈ Z

if the virtually cyclic subgroups of type I of G are orientable. In general the Tate
spectrum of the involution on the Whitehead spectrum plays a role in the study
of automorphisms of manifolds (see [Weiss and Williams 2000, Section 4], for
example).

0D. Rational vanishing of the relative term.

Theorem 0.3. Let G be a group and let R be a regular ring.
Then the relative assembly map

asmbn : H G
n (EG; K G

R )→ H G
n (EG; K G

R )

is rationally bijective for all n ∈ Z.

If R = Z and n ≤−1, then, by [Farrell and Jones 1995], the relative assembly
map H G

n (EG; K G
Z )

∼=
−→ H G

n (EG; K G
Z ) is an isomorphism.

In Section 10, we briefly discuss further computations of the relative term
H G

n (EG→ EVC I (G); NK G
A)
∼= H G

n (EG→ EG; K G
A ).

0E. A fibered case. In Section 11 we discuss a fibered situation which will be
relevant for [Farrell et al. 2016] and can be handled by our general treatment for
additive G-categories.

1. Virtually cyclic groups

A virtually cyclic group V is called of type I if it admits an epimorphism to the
infinite cyclic group, and of type II if it admits an epimorphism onto the infinite
dihedral group. The statements appearing in the next lemma are well-known; we
insert a proof for the reader’s convenience.

Lemma 1.1. Let V be an infinite virtually cyclic group.

(i) V is either of type I or of type II.

(ii) The following assertions are equivalent:
(a) V is of type I;
(b) H1(V ) is infinite;
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(c) H1(V )/ tors(V ) is infinite cyclic;
(d) the center of V is infinite.

(iii) There exists a unique maximal normal finite subgroup KV ⊆ V , i.e., KV is
a finite normal subgroup and every normal finite subgroup of V is contained
in KV .

(iv) Let QV := V/KV . Then we obtain a canonical exact sequence

1→ KV
iV
−→ V

pV
−→ QV → 1.

Moreover, QV is infinite cyclic if and only if V is of type I, and QV is isomor-
phic to the infinite dihedral group if and only if V is of type II.

(v) Let f : V → Q be any epimorphism onto the infinite cyclic group or onto the
infinite dihedral group. Then the kernel of f agrees with KV .

(vi) Let φ : V →W be a homomorphism of infinite virtually cyclic groups with infi-
nite image. Then φ maps KV to KW and we obtain the canonical commutative
diagram with exact rows

1 // KV
iV
//

φK

��

V
pV
//

φ

��

QV //

φQ

��

1

1 // KW
iW
// W

pW
// QW // 1

with injective φQ .

Proof. (ii) If V is of type I, then we obtain epimorphisms

V → H1(V )→ H1(V )/ tors(H1(V ))→ Z.

The kernel of V → Z is finite, since for an exact sequence 1→ Z
i
→ V q

→ H → 1
with finite H the composite of V → Z with i is injective and hence the restriction
of q to the kernel of V → Z is injective. This implies that H1(V ) is infinite and
H1(V )/ tors(H1(V )) is infinite cyclic. If H1(V )/ tors(H1(V )) is infinite cyclic or
if H1(V ) is infinite, then H1(V ) surjects onto Z and hence so does V . This shows
(a)⇐⇒ (b)⇐⇒ (c).

Consider the exact sequence 1→ cent(V )→ V → V/ cent(V )→ 1, where
cent(V ) is the center of V . Suppose that cent(V ) is infinite. Then V/ cent(V ) is fi-
nite and the Lyndon–Serre spectral sequence yields an isomorphism cent(V )⊗ZQ→

H1(V ;Q). Hence H1(V ) is infinite. This shows (d)=⇒ (b).
Suppose that V is of type I. Choose an exact sequence 1→ K → V → Z→ 1

with finite K . Let v ∈ V be an element which is mapped to a generator of Z. Then
conjugation with v induces an automorphism of K . Since K is finite, we can find
a natural number k such that conjugation with vk induces the identity on K . One
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easily checks that vk belongs to the center of V and v has infinite order. This shows
(a)=⇒ (d) and finishes the proof of assertion (ii).

(iii) If K1 and K2 are two finite normal subgroups of V , then

K1 · K2 := {v ∈ V | v = k1k2 for some k1 ∈ K1 and k2 ∈ K2}

is a finite normal subgroup of V . Hence we are left to show that V has only finitely
many different finite normal subgroups.

To see this, choose an exact sequence 1→ Z
i
→ V f

→ H → 1 for some finite
group H . The map f induces a map from the finite normal subgroups of V to
the normal subgroups of H ; we will show that it is an injection. Let t ∈ V be the
image under i of some generator of Z and consider two finite normal subgroups
K1 and K2 of V with f (K1) = f (K2). Consider k1 ∈ K1. We can find k2 ∈ K2

and n ∈ Z with k2 = k1 · tn . Then tn belongs to the finite normal subgroup K1 · K2.
This implies n = 0 and hence k1 = k2. This shows K1 ⊆ K2. By symmetry we get
K1 = K2. Since H contains only finitely many subgroups, we conclude that there
are only finitely many different finite normal subgroups in V . Now assertion (iii)
follows.

(i) and (iv) Let V be an infinite virtually cyclic group. Then QV is an infinite
virtually cyclic subgroup which does not contain a nontrivial finite normal sub-
group. There exists an exact sequence 1→ Z

i
→ QV

f
→ H → 1 for some finite

group H . There exists a subgroup of index at most two H ′ ⊆ H such that the
conjugation action of H on Z restricted to H ′ is trivial. Put Q′V = f −1(H ′). Then
the center of Q′V contains i(Z) and hence is infinite. By assertion (ii) we can find
an exact sequence 1→ K → Q′V

f
→Z→ 1 with finite K . The group Q′V contains

a unique maximal normal finite subgroup K ′ by assertion (iii). This implies that
K ′ ⊆ Q′V is characteristic. Since Q′V is a normal subgroup of QV , K ′ ⊆ QV is a
normal subgroup and therefore K ′ is trivial. Hence Q′V contains no nontrivial finite
normal subgroup. This implies that Q′V is infinite cyclic. Since Q′V is a normal
subgroup of index 2 in QV and QV contains no nontrivial finite normal subgroup,
QV is infinite cyclic or D∞.

In particular we see that every infinite virtual cyclic group is of type I or of type II.
It remains to show that an infinite virtually cyclic group V which is of type II cannot
be of type I. If 1→ K→V→ D∞→1 is an extension with finite K , then we obtain
from the Lyndon–Serre spectral sequence an exact sequence H1(K )⊗ZQ Z→

H1(V )→ H1(D∞). Hence H1(V ) is finite, since both H1(D∞) and H1(K ) are
finite. We conclude from assertion (ii) that V is not of type I. This finishes the
proof of assertions (i) and (iv).

(v) Since V is virtually cyclic, the kernel of f is finite. Since Q does not contain a
nontrivial finite normal subgroup, every normal finite subgroup of V is contained
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in the kernel of f . Hence ker( f ) is the unique maximal finite normal subgroup
of V .

(vi) Since KW is finite and the image of φ is by assumption infinite, the composite
pW ◦ φ : V → QW has infinite image. Since QW is isomorphic to Z or D∞, the
same is true for the image of pW ◦ φ : V → QW . By assertion (v) the kernel of
pW ◦ φ : V → QW is KV . Hence φ(KV ) ⊆ KW and φ induces maps φK and φQ

making the diagram appearing in assertion (vi) commutative. Since the image of
pW ◦φ : V → QW is infinite, φQ(QV ) is infinite. This implies that φQ is injective
since both QV and QW are isomorphic to D∞ or Z. This finishes the proof of
Lemma 1.1. �

2. Some categories attached to homogeneous spaces

Let G be a group and let S be a G-set, for instance a homogeneous space G/H .
Let GG(S) be the associated transport groupoid. Objects are the elements in S.
The set of morphisms from s1 to s2 consists of those elements g ∈ G for which
gs1 = s2. Composition is given by the group multiplication in G. Obviously GG(S)
is a connected groupoid if G acts transitively on S. A G-map f : S→ T induces a
functor GG( f ) :GG(S)→GG(T ) by sending an object s ∈ S to f (s) and a morphism
g : s1→ s2 to the morphism g : f (s1)→ f (s2). We mention that for two objects
s1 and s2 in GG(S) the induced map morGG(S)(s1, s2)→morGG(T )( f (s1), f (s2)) is
injective.

A functor F : C0→ C1 of categories is called an equivalence if there exists a func-
tor F ′ : C1→ C0 with the property that F ′ ◦ F is naturally equivalent to the identity
functor idC0 and F ◦F ′ is naturally equivalent to the identity functor idC1 . A functor
F is a natural equivalence if and only if it is essentially surjective (i.e., it induces
a bijection on the isomorphism classes of objects) and it is full and faithful, (i.e.,
for any two objects c, d in C0 the induced map morC0(c, d)→morC1(F(c), F(d))
is bijective).

Given a monoid M , let M̂ be the category with precisely one object and M as the
monoid of endomorphisms of this object. For any subgroup H of G, the inclusion

e(G/H) : Ĥ → GG(G/H), g 7→ (eH g
→ eH)

(where e ∈ G is the unit element), is an equivalence of categories, whose inverse
sends g : g1 H → g2 H to g−1

2 gg1 ∈ G.
Now fix an infinite virtually cyclic subgroup V ⊆ G of type I. Then QV is an

infinite cyclic group. Let gen(QV ) be the set of generators. Given a generator
σ ∈ gen(QV ), define QV [σ ] to be the submonoid of QV consisting of elements of
the form σ n for n∈Z, n≥0. Let V [σ ]⊆V be the submonoid given by p−1

V (QV [σ ]).
Let GG(G/V )[σ ] be the subcategory of GG(G/V ) whose objects are the objects in
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GG(G/V ) and whose morphisms g : g1V → g2V satisfy g−1
2 gg1 ∈ V [σ ]. Notice

that GG(G/V )[σ ] is not a groupoid anymore, but any two objects are isomorphic.
Let GG(G/V )K be the subcategory of GG(G/V ) whose objects are the objects in
GG(G/V ) and whose morphisms g : g1V → g2V satisfy g−1

2 gg1 ∈ KV . Obviously
GG(G/V )K is a connected groupoid and a subcategory of GG(G/V )[σ ].

We obtain the commutative diagram of categories

GG(G/V )[σ ]
j (G/V )[σ ]

// GG(G/V )

V̂ [σ ]
ĵV [σ ]

//

e(G/V )[σ ]

'

OO

V̂

e(G/V )'

OO

(2.1)

whose horizontal arrows are induced by the obvious inclusions and whose left
vertical arrow is the restriction of e(G/V ) (and is also an equivalence of categories).
The functor e(G/V ) also restricts to an equivalence of categories

e(G/V )K : K̂V
'
−→GG(G/V )K . (2.2)

Remark. The relation between the categories K̂V , V̂ [σ ] and V̂ and the categories
GG(G/V )K , GG(G/V )[σ ] and GG(G/V ) is analogous to the relation between the
fundamental group of a path connected space and its fundamental groupoid.

Let σ ∈ V be any element which is mapped under the projection pV : V → QV

to the fixed generator σ . Right multiplication with σ induces a G-map Rσ :
G/KV → G/KV , gKV 7→ gσKV . One easily checks that Rσ depends only on σ
and is independent of the choice of σ . Let prV : G/KV → G/V be the projection.
We obtain the following commutative diagram:

GG(G/KV )
Rσ

//

GG(prV ) &&

GG(G/KV )

GG(prV )xx

GG(G/V )

(2.3)

3. Homotopy colimits of Z-linear and additive categories

Homotopy colimits of additive categories have been defined for instance in [Bartels
and Lück 2010, Section 5]. Here we review their definition and describe some
properties, first in the setting of Z-linear categories.

Recall that a Z-linear category is a category where all Hom-sets are provided
with the structure of abelian groups and composition is bilinear. Denote by Z-Cat
the category whose objects are Z-linear categories and whose morphisms are ad-
ditive functors between them. Given a collection of Z-linear categories (Ai )i∈I ,
their coproduct

∐
i∈I Ci in Z-Cat exists and has the following explicit description:
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Objects are pairs (i, X) where i ∈ I and X ∈Ai . The abelian group of morphisms
(i, X)→ ( j, Y ) is nonzero only if i = j , in which case it is morAi (X, Y ).

Let C be a small category. Given a contravariant functor F : C→ Z-Cat, its
homotopy colimit (see [Thomason 1979], for instance)∫

C
F (3.1)

is the Z-linear category obtained from the coproduct
∐

c∈C F(c) by adjoining mor-
phisms

T f : (d, f ∗X)→ (c, X)

for each (c, X) ∈
∐

c∈C F(c) and each morphism f : d→ c in C. (Here we write
f ∗X for F( f )(X).) They are subject to the relations that Tid = id and that all
possible diagrams

(e, g∗ f ∗X)
Tg
//

T f ◦g &&

(d, f ∗X)

T f

��

(d, f ∗X)
T f
//

f ∗u
��

(c, X)

u
��

(c, X) (d, f ∗Y )
T f

// (c, Y )

are to be commutative.
Hence, a morphism in

∫
C F from (x, A) to (y, B) can be uniquely written as a

sum ∑
f ∈morC(x,y)

T f ◦φ f , (3.2)

where φ f : A→ f ∗B is a morphism in F(x) and all but finitely many of the mor-
phisms φ f are zero. The composition of two such morphisms can be determined
by the distributivity law and the rule

(T f ◦φ) ◦ (Tg ◦ψ)= T f ◦g ◦ (g∗φ ◦ψ),

which just follows from the fact that both upper squares are commutative.
Using this description, it follows that the homotopy colimit has the following

universal property for additive functors
∫
C F→ A into some other Z-linear cate-

gory A: Suppose that we are given additive functors jc : F(c)→A for each c ∈ C
and morphisms S f : jd( f ∗X)→ jc(X) for each X ∈ F(c) and each f : d→ c in C.
If Sid = id and all possible diagrams

jc(g∗ f ∗X)
Sg
//

S f ◦g &&

jd( f ∗X)

S f

��

jd( f ∗X)
S f
//

jd ( f ∗u)
��

jc(X)

jc(u)
��

jc(X) jd( f ∗Y )
S f
// jc(Y )
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are commutative, then this data specifies an additive functor
∫
C F→A by sending

T f to S f .
The homotopy colimit is functorial in F . Namely, if S : F0→ F1 is a natural

transformation of contravariant functors C→ Z-Cat, then it induces an additive
functor ∫

C
S :
∫
C

F0→

∫
C

F1 (3.3)

of Z-linear categories. It is defined using the universal property by sending F0(c)
to F1(c) ⊂

∫
C F1 via S and “sending T f to T f ”. In more detail, the image of

T f : (c, f ∗(X))→ (d, X) in
∫
C F0 is given by T f : (c, f ∗(S(X)))→ (d, S(X))

in
∫
C F1. Obviously we have, for S1 : F0→ F1 and S2 : F1→ F2,(∫

C
S2

)
◦

(∫
C

S1

)
=

∫
C
(S2 ◦ S1), (3.4)∫

C
idF = id∫

C F . (3.5)

The construction is also functorial in C. Namely, let W : C1→ C2 be a covariant
functor. Then we obtain a covariant functor

W∗ :
∫
C1

F ◦W →
∫
C2

F (3.6)

of additive categories that is the identity on each F(W (c)) and “sends T f to TW ( f )”,
again interpreted appropriately. For covariant functors W1 : C1→ C2, W2 : C2→ C3

and a contravariant functor F : C3→Add-Cat, we have

(W2)∗ ◦ (W1)∗ = (W2 ◦W1)∗, (3.7)

(idC)∗ = id∫
C F . (3.8)

These two constructions are compatible. Namely, given a natural transformation
S : F1→ F2 of contravariant functors C2→ Z-Cat and a covariant functor W :
C1→ C2, we get (∫

C2

S
)
◦W∗ =W∗ ◦

(∫
C1

(S ◦W )

)
. (3.9)

Lemma 3.10.

(i) Let W : D→ C be an equivalence of categories. Let F : C → Z-Cat be a
contravariant functor. Then

W∗ :
∫
D

F ◦W →
∫
C

F

is an equivalence of categories.



348 WOLFGANG LÜCK AND WOLFGANG STEIMLE

(ii) Let C be a category and let S : F1→ F2 be a transformation of contravariant
functors C → Z-Cat such that, for every object c in C, the functor S(c) :
F0(c)→ F1(c) is an equivalence of categories. Then∫

C
S :
∫
C

F1→

∫
C

F2

is an equivalence of categories.

The proof is an easy exercise. Note the general fact that, if F : C → D is an
additive functor between Z-linear categories such that F is an equivalence between
the underlying categories, then it follows automatically that there exists an additive
inverse equivalence F ′ and two additive natural equivalences F ′ ◦ F ' idC and
F ◦ F ′ ' idD.

Notation 3.11. If W : C1→ C is the inclusion of a subcategory, then the same is
true for W∗. If no confusion is possible, we just write∫

C1

F :=
∫
C1

F ◦W ⊂
∫
C

F.

Denote by Add-Cat the category whose objects are additive categories and
whose morphisms are given by additive functors between them. Notice that

∫
C F

is not necessarily an additive category even if all the F(c) are — the direct sum
(c, X)⊕ (d, Y ) need not exist. However, any isomorphism f : c→ d in C induces
an isomorphism T f : (c, f ∗Y )→ (d, Y ), so that

(c, X)⊕ (d, Y )∼= (c, X)⊕ (c, f ∗Y )∼= (c, X ⊕ f ∗Y ).

Hence, if in the index category all objects are isomorphic and all the F(c) are
additive, then

∫
C F is an additive category. Since for additive categories A, B we

have
morZ-Cat(A, B)=morAdd-Cat(A, B)

(in both cases the morphisms are just additive functors), the universal property for
additive functors

∫
C F→A into Z-linear categories extends to a universal property

for additive functors into additive categories.
In the general case of an arbitrary indexing category, the homotopy colimit in

the setting of additive categories still exists. It is obtained by freely adjoining direct
sums to the homotopy colimit for Z-linear categories; the universal properties then
hold in the setting of “additive categories with choice of direct sum”. We will
not discuss this in detail here since, in all the cases we will consider, the indexing
category has the property that any two objects are isomorphic.

Notation 3.12. If the indexing category C has a single object and F : C→ Z-Cat
is a contravariant functor, then we will write X instead of ( ∗ , X) for a typical
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element of the homotopy colimit. The structural morphisms in
∫
C F thus take the

simple form

T f : f ∗X→ X

for f a morphism (from the single object to itself) in C.

4. The twisted Bass–Heller–Swan theorem for additive categories

Given an additive category A, we denote by K (A) the nonconnective K-theory
spectrum associated to it (after idempotent completion); see [Lück and Steimle
2014; Pedersen and Weibel 1989]. Thus we obtain a covariant functor

K :Add-Cat→ Spectra. (4.1)

Let B be an additive Z-category, i.e., an additive category with a right action
of the infinite cyclic group. Fix a generator σ of the infinite cyclic group Z. Let
8 : B→ B be the automorphism of additive categories given by multiplication
with σ . Of course, one can recover the Z-action from 8. Since Ẑ has precisely
one object, we can and will identify the set of objects of

∫
Ẑ
B and B in the sequel.

Let iB : B→
∫

Ẑ
B be the inclusion into the homotopy colimit.

The structural morphisms Tσ :8(B)→ B of
∫

Ẑ
B assemble to a natural isomor-

phism iB ◦8→ iB in the following diagram:

B 8
//

iB
  

B

iB
~~∫

Ẑ
B

If we apply the nonconnective K-theory spectrum to it, we obtain a diagram of
spectra which commutes up to preferred homotopy:

K (B)
K (8)

//

K (iB)
$$

K (B)

K (iB)
zz

K
(∫

Ẑ
B
)

It induces a map of spectra

aB : TK (8)→ K
(∫

Ẑ

B
)
,

where TK (8) is the mapping torus of the map of spectra K (8) : K (B)→ K (B),
which is defined as the pushout
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K (B)∧ {0, 1}+ = K (B)∨ K (B)
K (8)∨idK (B)

//

��

K (B)

��

K (B)∧ [0, 1]+ // TK (8)

Let Z[σ ] be the submonoid {σ n
| n ∈Z, n≥ 0} generated by σ . Let j[σ ] :Z[σ ]→Z

be the inclusion. Let iB[σ ] : B→
∫

Ẑ]σ ]
B be the inclusion induced by iB. Define a

functor of additive categories

evB[σ ] :

∫
Ẑ[σ ]

B→ B

extending the identity on B by sending a morphism Tσ n to 0 for n > 0. (Of course,
σ 0
= id must go to the identity.) We obtain the following diagram of spectra:

K (B)

id

77

K (iB[σ ])
// K
(∫

Ẑ[σ ]
B
) K (evB[σ ])

// K (B)

Define NK (B, σ ) as the homotopy fiber of the map K (evB[σ ]) : K
(∫

Ẑ[σ ]
B
)
→K (B).

Let bB[σ ] denote the composite

bB[σ ] : NK (B, σ )→ K
(∫

Ẑ[σ ]

B
)
→ K

(∫
Ẑ

B
)

of the canonical map with the inclusion. Let gen(Z) be the set of generators of the
infinite cyclic group Z. Put

NK (B) :=
∨

σ∈gen(Z)

NK (B, σ )

and define

bB :=
∨

σ∈gen(Z)

bB[σ ] :
∨

σ∈gen(Z)

NK (B, σ )→ K
(∫

Ẑ

B
)
.

The proof of the following result can be found in [Lück and Steimle 2016].
The case where the Z-action on B is trivial and one considers only K-groups in
dimensions n ≤ 1 has already been treated by [Ranicki 1992, Chapters 10 and 11].
If R is a ring with an automorphism and one takes B to be the category R-FGF

of finitely generated free R-modules with the induced Z-action, Theorem 4.2 boils
down for higher algebraic K-theory to the twisted Bass–Heller–Swan decomposi-
tion of [Grayson 1988, Theorems 2.1 and 2.3].
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Theorem 4.2 (twisted Bass–Heller–Swan decomposition for additive categories).
The map of spectra

aB ∨ bB : TK (8) ∨ NK (B) '−→ K
(∫

Ẑ

B
)

is a weak equivalence of spectra.

5. Some additive categories associated to an additive G-category

Let G be a group. Let A be an additive G-category, i.e., an additive category with
a right G-operation by isomorphisms of additive categories. We can consider A as
a contravariant functor Ĝ→ Add-Cat. Fix a homogeneous G-space G/H . Let
prG/H : GG(G/H)→ GG(G/G)= Ĝ be the projection induced by the canonical G-
map G/H→G/G. Then we obtain a covariant functor GG(G/H)→Add-Cat by
sending G/H to A◦prG . Let

∫
GG(G/H)A◦prG/H be the additive category given by

the homotopy colimit (defined in (3.1)) of this functor. A G-map f :G/H→G/K
induces a functor GG( f ) : GG(G/H)→ GG(G/K ) which is compatible with the
projections to Ĝ. Hence it induces a functor of additive categories — see (3.6) —

GG( f )∗ :
∫
GG(G/H)

A ◦ prG/H →

∫
GG(G/K )

A ◦ prG/K .

Thus we obtain a covariant functor

Or(G)→Add-Cat, G/H 7→
∫
GG(G/H)

A ◦ prG/H . (5.1)

Remark 5.2. Applying Lemma 3.10(i) to the equivalence of categories e(G/H) :
Ĥ→ GG(G/H), we see that the functor (5.1), at G/H , takes the value

∫
Ĥ A, where

A carries the restricted H -action. The more complicated description is however
needed for the functoriality.

Notation 5.3. For the sake of brevity, we will just write A for any composite
A ◦ prG/H if no confusion is possible. In this notation, (5.1) takes the form

G/H 7→
∫
GG(G/H)

A.

Let V ⊆ G be an infinite virtually cyclic subgroup of type I. In the sequel we
abbreviate K = KV and Q = QV . Let prK : GG(G/V )K → K̂ be the functor which
sends a morphism g : g1V → g2V to g−1

2 gg1 ∈ K .
Fixing a generator σ of the infinite cyclic group Q, the inclusions GG(G/V )K ⊂

GG(G/V )[σ ] ⊂ GG(G/V ) induce inclusions∫
GG(G/V )K

A⊂
∫
GG(G/V )[σ ]

A⊂
∫
GG(G/V )

A. (5.4)
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Actually, the category into the middle retracts onto the smaller one. To see this,
define a retraction

ev(G/V )[σ ]K :
∫
GG(G/V )[σ ]

A→
∫
GG(G/V )K

A (5.5)

as follows: It is the identity on every copy of the additive category A inside the
homotopy colimit. Let Tg : (g1V, g∗A)→ (g2V, A) be a structural morphism in
the homotopy colimit, where g : g1V → g2V in GG(G/V )[σ ] is a morphism in
GG(G/V )[σ ] (that is, g is an element of G satisfying g−1

2 gg1 ∈ V [σ ]). If

g−1
2 gg1 ∈ K ⊂ V [σ ],

then g is by definition a morphism in GG(G/V )K ⊂ GG(G/V )[σ ] and we may let

ev(G/V )[σ ]K (Tg)= Tg.

Otherwise we send the morphism Tg to 0. This is well-defined, since for two
elements h1, h2 ∈ V [σ ] we have h1h2 ∈ K if and only if both h1 ∈ K and h2 ∈ K
hold.

Similarly the inclusion
∫

K̂ A⊂
∫

V̂ [σ ]A is split by a retraction

evV [σ ] :

∫
V̂ [σ ]

A→
∫

K̂
A

defined as follows: On the copy of A inside
∫

V̂ [σ ]A, the functor is defined to be
the identity. A structural morphism Tg : g∗A→ A is sent to itself if g ∈ K , and
to zero otherwise. One easily checks that the following diagram commutes (where
the unlabelled arrows are inclusions) and has equivalences of additive categories
as vertical maps:

∫
GG(G/V )K

A //

id

))∫
GG(G/V )[σ ]A

ev(G/V )[σ ]
//
∫
GG(G/V )K

A

∫
K̂ A //

'

(e(G/V )K )∗

OO

id

66

∫
V̂ [σ ]A

evV [σ ]
//

'

e(G/V )[σ ]∗

OO

∫
K̂ A

'

(e(G/V )K )∗

OO

(5.6)

We obtain from (2.1) and Lemma 3.10(i) the following commutative diagram of
additive categories with equivalences of additive categories as vertical maps:
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GG(G/V )[σ ]A //

∫
GG(G/V )A

∫
V̂ [σ ]A //

e(G/V )[σ ]∗

'

OO

∫
V̂ A

e(G/V )∗'

OO

(5.7)

(where again the unlabelled arrows are the inclusions).
Now we abbreviate B =

∫
K̂ A. Next we define a right Q-action on B which will

depend on a choice of an element σ ∈ V such that pV : V → Q sends σ to σ . Such
an element induces a section of the projection G→ Q by which any action of G
induces an action of Q. In short, the action of Q on B is given by the action of G
onto A ⊂ B, and by the conjugation action of Q on the indexing category K̂ . In
more detail, the action of σ ∈ Q is specified by the automorphism

8 :

∫
K̂
A→

∫
K̂
A

defined as follows: A morphism ϕ : A→ B in A is sent to σ ∗ϕ : σ ∗A→ σ ∗B, and
a structural morphism Tg : g∗A→ A is sent to the morphism

Tσ−1gσ : σ
∗g∗A = (σ−1gσ)∗σ ∗A→ σ ∗A.

With this notation we obtain an additive functor

9 :

∫
Q̂
B→

∫
V̂
A

defined to extend the inclusion B =
∫

K̂ A→
∫

V̂ A and such that a structural mor-
phism Tσ :8(A)→ A is sent to Tσ :8(A)= σ ∗A→ A.

In more detail, a morphism in
∫

Q̂ B can be uniquely written as a finite sum∑
n∈Z

Tσ n ◦

(∑
k∈K

Tk ◦φk,n

)
=

∑
n,k

Tσ n ·k ◦φk,n.

Since any element in V is uniquely a product σ n
· k with k ∈ K , the functor 9 is

fully faithful. As it is the identity on objects, 9 is an isomorphism of categories.
It also restricts to an isomorphism of categories

9[σ ] :

∫
Q̂[σ ]

B→
∫

V̂ [σ ]
A.

Define a functor
evB[σ ] :

∫
Q̂[σ ]

B→ B

as follows. It is the identity functor on B, and a nonidentity structural morphism
Tq : q∗B → B is sent to 0. One easily checks using (5.6) and (5.7) that the fol-
lowing diagram of additive categories commutes (with unlabelled arrows given by
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inclusions) and that all vertical arrows are equivalences of additive categories:∫
GG(G/V )K

A
∫
GG(G/V )[σ ]A

ev(G/V )[σ ]K
oo //

∫
GG(G/V )A

∫
K̂ A

(e(G/V )K )∗

'

OO

∫
V̂ [σ ]A //

evV [σ ]
oo

e(G/V )[σ ]∗

'

OO

∫
V̂ A

e(G/V )∗

'
OO

B

id

∼=

OO

∫
Q̂[σ ] B //

evB[σ ]
oo

9[σ ]

∼=

OO

∫
Q̂ B

9

∼=

OO

(5.8)

Recall from Section 2 that qV : G/K → G/V is the projection and that Rσ is
the automorphism of

∫
GG(G/K )A induced by right multiplication with σ .

We have the following (not necessarily commutative) diagram of additive cate-
gories, all of whose vertical arrows are equivalences of additive categories, and the
unlabelled arrows are the inclusions:∫

GG(G/K )A

GG(prV )∗ ((

Rσ
//
∫
GG(G/K )A

GG(prV )∗vv∫
GG(G/V )A

∫
K̂ A

((

(e(G/V )K )∗
'

OO

8
//
∫

K̂ A

vv

(e(G/V )K )∗'
OO

∫
V̂ A

e(G/V )∗

'

OO

B

iB
((

8
//

∼=

id

OO

B

iB
vv

∼ = id

OO

∫
Q̂ B

9

'

OO

(5.9)

The lowest triangle commutes up to a preferred natural isomorphism T : iB◦8
∼=
−→iB,

which is part of the structural data of the homotopy colimit. We equip the middle
triangle with the natural isomorphism 9 ◦ T . Explicitly it is just given by the
structural morphisms Tσ : σ ∗A→ A.

The three squares ranging from the middle to the lower level commute and the
two natural equivalences above are compatible with these squares. The top triangle
commutes. The back upper square commutes up to a preferred natural isomorphism
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S : (e(G/V )K )∗ ◦8
∼=
−→ Rσ ◦ (e(G/V )K )∗. It assigns to an object A ∈ A, which

is the same as an object in
∫

K̂ A, the structural isomorphism

S(A) := Tσ : (eK , σ ∗A)→ (σK , A).

The other two squares joining the upper to the middle level commute. From the
explicit description of the natural isomorphisms it becomes apparent that the pre-
ferred natural isomorphism for the middle triangle defined above and the preferred
natural isomorphism for the upper back square are compatible, in the sense that
e(G/V )[σ ]∗ ◦9 ◦ T = GG(prV )∗ ◦ S.

6. Some K-theory-spectra over the orbit category

In this section we introduce various K-theory spectra. For a detailed introduction
to spaces, spectra and modules over a category and some constructions of K-theory
spectra, we refer to [Davis and Lück 1998].

Given an additive G-category A, we obtain a covariant Or(G)-spectrum

K G
A :Or(G)→ Spectra, G/H 7→ K

(∫
GG(G/H)

A ◦ prG/H

)
, (6.1)

by the composite of the two functors (4.1) and (5.1). It is naturally equivalent to
the covariant Or(G)-spectrum, which is written in the same way and constructed
in [Bartels and Reich 2007, Definition 3.1].

We again adopt Notation 5.3, abbreviating an expression such as A ◦ prG/H just
by A. Given a virtually cyclic subgroup V ⊆ G, we obtain the following map of
spectra induced by the functors j (G/V )[σ ]∗ of (5.4) and ev(G/V )[σ ] of (5.5):

K
(∫

GG(G/V )K

A
)

K (ev(G/V )[σ ])
←−−−−−−−− K

(∫
GG(G/V )[σ ]

A
)

K ( j (G/V )[σ ]∗)
−−−−−−−−−→K

(∫
GG(G/V )

A
)
.

Notation 6.2. Let NK (G/V ;A, σ ) be the spectrum given by the homotopy fiber
of K

(
ev(G/V )[σ ]∗

)
: K
(∫

GG(G/V )[σ ]A
)
→ K

(∫
GG(G/V )K

A
)
.

Let l : NK (G/V ;A, σ )→ K
(∫

GG(G/V )[σ ]A
)

be the canonical map of spectra.
Define the map of spectra

j(G/V ;A, σ ) : NK (G/V ;A, σ )→ K
(∫

GG(G/V )
A
)

to be the composite K ( j (G/V )[σ ]∗) ◦ l .

Consider a G-map f :G/V→G/W , where V and W are virtually cyclic groups
of type I. It induces a functor GG( f ) : GG(G/V )→ GG(G/W ).

It also induces a bijection

gen( f ) : gen(QV )→ gen(QW ) (6.3)
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as follows. Fix an element g ∈ G such that f (eV )= gW . Then g−1V g ⊆W . The
injective group homomorphism c(g) : V →W , v 7→ g−1vg, induces an injective
group homomorphism Qc(g) : QV → QW by Lemma 1.1(vi). For σ ∈ gen(QV )

let gen( f )(σ ) ∈ gen(QW ) be uniquely determined by the property that Qc(g)(σ )=

gen( f )(σ )n for some n≥ 1. One easily checks that this is independent of the choice
of g ∈ G with f (eV ) = gW since, for w ∈ W , the conjugation homomorphism
c(w) :W →W induces the identity on QW . Using Lemma 1.1(vi) it follows that
GG( f ) : GG(G/V )→ GG(G/W ) induces functors

GG( f )[σ ] : GG(G/V )[σ ] → GG(G/W )[gen( f )(σ )],

GG( f )K : GG(G/V )K → GG(G/W )K .

Hence we obtain a commutative diagram of maps of spectra

K
(∫

GG(G/V )K
A
) K ((GG( f )K )∗)

// K
(∫

GG(G/W )K
A
)

K
(∫

GG(G/V )[σ ]A
)K (ev(G/V )[σ ])

OO

K (GG( f )[σ ]∗)
//

K ( j (G/V )[σ ]∗)
��

K
(∫

GG(G/W )[gen( f )(σ )]A
)K(ev(G/W )[gen( f )(σ )])

OO

K( j (G/W )[gen( f )(σ )]∗)
��

K
(∫

GG(G/V )A
) K (GG( f )∗)

// K
(∫

GG(G/W )
A
)

Thus we obtain a map of spectra

NK ( f ;A, σ ) : NK (G/V ;A, σ )→ NK (G/W ;A, gen( f )(σ ))

such that the following diagram of spectra commutes:

NK (G/V ;A, σ )
NK ( f ;A,σ )

//

j(G/V ;A,σ )
��

NK (G/W ;A, gen( f )(σ ))

j(G/W ;A,gen( f )(σ ))
��

K
(∫

GG(G/V )A
)

K (GG( f )∗)
// K
(∫

GG(G/W )
A
)

Let VC I be the family of subgroups of G which consists of all finite groups and
all virtually cyclic subgroups of type I. Let OrVC I (G) be the full subcategory of
the orbit category Or(G) consisting of objects G/V for which V belongs to VC I .
Define a functor

NK G
A :OrVC I (G)→ Spectra

as follows: It sends G/H for a finite subgroup H to the trivial spectrum and G/V
for a virtually cyclic subgroup V of type I to

∨
σ∈gen(QV ) NK (G/V ;A, σ ). Con-

sider a map f : G/V → G/W . If V or W is finite, it is sent to the trivial map.
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Suppose that both V and W are infinite virtually cyclic subgroups of type I. Then
it is sent to the wedge of the two maps

NK ( f ;A, σ1) : NK (G/V ;A, σ1)→ NK (G/W ;A, gen( f )(σ1)),

NK ( f ;A, σ2) : NK (G/V ;A, σ2)→ NK (G/W ;A, gen( f )(σ2)),

for gen(QV )= {σ1, σ2}.
The restriction of the covariant Or(G)-spectrum K G

A : Or(G)→ Spectra to
OrVC I (G) will be denoted by the same symbol

K G
A :OrVC I (G)→ Spectra.

The wedge of the maps j(G/V ;A, σ1) and j(G/V ;A, σ2) for V a virtually cyclic
subgroup of G of type I yields a map of spectra NK G

A(G/V )→ K G
A (G/V ). Thus

we obtain a transformation of functors from OrVC I (G) to Spectra,

bG
A : NK G

A→ K G
A . (6.4)

7. Splitting the relative assembly map and identifying the relative term

Let X be a G-space. It defines a contravariant Or(G)-space OG(X), i.e., a contra-
variant functor from Or(G) to the category of spaces, by sending G/H to the
H -fixed point set mapG(G/H, X) = X H. Let OG(X)+ be the pointed Or(G)-
space, where OG(X)+(G/H) is obtained from OG(X)(G/H) by adding an extra
base point. If f : X→ Y is a G-map, we obtain a natural transformation OG( f )+ :
OG(X)+→ OG(Y )+.

Let E be a covariant Or(G)-spectrum, i.e., a covariant functor from Or(G) to
the category of spectra. Fix a G-space Z . Define the covariant Or(G)-spectrum

EZ :Or(G)→ Spectra

as follows. It sends an object G/H to the spectrum OG(G/H × Z)+ ∧Or(G) E,
where ∧Or(G) is the wedge product of a pointed space and a spectrum over a cate-
gory (see [Davis and Lück 1998, Section 1], where ∧Or(G) is denoted by ⊗Or(G)).
The obvious identification of OG(G/H)+(?)∧Or(G) E(?) with E(G/H) and the
projection G/H × Z→ G/H yields a natural transformation of covariant functors
Or(G)→ Spectra,

a : EZ → E. (7.1)

Lemma 7.2. Given a G-space X , there exists an isomorphism of spectra

uG(X) : OG(X × Z)+ ∧Or(G) E ∼=
−→ OG(X)+ ∧Or(G) EZ ,

which is natural in X and Z.
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Proof. The smash product ∧Or(G) is associative, i.e., there is a natural isomorphism
of spectra(
OG(X)+(?1 )∧Or(G) OG(?2× Z)+(?1 )

)
∧Or(G) E(?2 )

∼=
−→ OG(X)+(?1 )∧Or(G)

(
OG(?2× Z)+(?1 )∧Or(G) E(?2 )

)
.

There is a natural isomorphism of covariant Or(G)-spaces

OG(X × Z)+
∼=
−→ OG(X)+(?)∧Or(G) OG(?× Z)+

which, evaluated at G/H , sends α :G/H→ X×Z to (pr1◦α)∧(idG/H×(pr2 ◦α))

if pri is the projection onto the i-th factor of X × Z . The inverse evaluated at G/H
sends (β1 :G/K→ X)∧(β2 :G/H→G/K×Z) to (β1×idZ )◦β2. The composite
of these two isomorphisms yield the desired isomorphism uG(X). �

If F is a family of subgroups of the group G, e.g., VC I or the family F in of
finite subgroups, then we denote by EF (G) the classifying space of F . (For a
survey on these spaces we refer for instance to [Lück 2005].) Let EG denote the
classifying space for proper G-actions, or in other words, a model for EF in(G). If
we restrict a covariant Or(G) spectrum E to OrVC I (G), we will denote it by the
same symbol E and analogously for OG(X).

Lemma 7.3. Let F be a family of subgroups. Let X be a G-CW-complex whose
isotropy groups belong to F . Let E be a covariant Or(G)-spectrum. Then there is
a natural homeomorphism of spectra

OG(X)+ ∧OrF (G) E ∼=
−→ OG(X)+ ∧Or(G) E.

Proof. Let I : OrF (G)→ Or(G) be the inclusion. The claim follows from the
adjunction of the induction I∗ and restriction I ∗— see [Davis and Lück 1998,
Lemma 1.9] — and the fact that for the Or(G)-space OG(X) the canonical map
I∗ I ∗OG(X)→ OG(X) is a homeomorphism of Or(G)-spaces. �

In the sequel we will abbreviate EEG by E.

Lemma 7.4. Let E be a covariant Or(G)-spectrum. Let f : EG→ EVC I (G) be
a G-map. (It is unique up to G-homotopy.) Then there is an up-to-homotopy com-
mutative diagram of spectra whose upper horizontal map is a weak equivalence

OG(EVC I (G))∧OrVC I (G) E

id∧OrVC I (G)
a

))

'
// OG(EG)∧OrVC I (G) E

OG( f )∧OrVC I (G)
iduu

OG(EVC I (G))∧OrVC I (G) E
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Proof. From Lemma 7.2 we obtain a commutative diagram with an isomorphism
as horizontal map

OG(EVC I (G))∧OrVC I (G) E

id∧OrVC I (G)
a

''

∼=
// OG(EVC I (G)× EG)∧OrVC I (G) E

OG(pr1)∧OrVC I (G)
idww

OG(EVC I (G))∧OrVC I (G) E

where pr1 : EVC I (G)× EG→ EVC I (G) is the obvious projection. The projection
pr2 : EVC I (G)× EG→ EG is a G-homotopy equivalence and its composite with
f : EG→ EVC I (G) is G-homotopic to pr1. Hence the following diagram of spectra
commutes up to G-homotopy and has a weak equivalence as horizontal map:

OG(EVC I (G)× EG)∧OrVC I (G) E
OG(pr2)∧OrVC I (G)

id

'
//

OG(pr1)∧OrVC I (G)
id ))

OG(EG)∧OrVC I (G) E

OG( f )∧OrVC I (G)
iduu

OG(EVC I (G))∧OrVC I (G) E

Putting these two diagrams together finishes the proof of Lemma 7.4 �

If E is the functor K G
A defined in (6.1) and Z = EG, we will write K G

A for
E = EEG .

Lemma 7.5. Let H be a finite group or an infinite virtually cyclic group of type I.
Then the map of spectra (see (6.4) and (7.1))

a(G/H)∨ b(G/H) : K G
A(G/H)∨ NK G

A(G/H)→ K G
A (G/H)

is a weak equivalence.

Proof. Given an infinite cyclic subgroup V ⊆ G of type I, we next construct an
up-to-homotopy commutative diagram (on the next page) of spectra whose vertical
arrows are all weak homotopy equivalences for K = KV and Q = QV . Let iV :

V → G be the inclusion and pV : V → QV := V/KV be the projection.
We first explain the vertical arrows, starting at the top. The first one is the identity

by definition. The second one comes from the G-homeomorphism G/V × EG ∼=
−→

(iV )∗(iV )
∗EG = G ×V EG sending (gV, x) to (g, g−1x). The third one comes

from the adjunction of the induction (iV )∗ and restriction i∗V ; see [Davis and Lück
1998, Lemma 1.9]. The fourth one comes from the fact that p∗V E Q and i∗V EG are
both models for EV and hence are V-homotopy equivalent. The fifth one comes
from the adjunction of the restriction p∗V with the coinduction (pV )!; see [Davis
and Lück 1998, Lemma 1.9]. The sixth one comes from the fact that E Q is a
free Q-CW-complex and Lemma 7.3 applied to the family consisting of one sub-
group, namely the trivial subgroup. The seventh one comes from the identification
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(pV )!(iV )
∗K G

A (QV /1)= (iV )
∗K G

A (V/K )= K G
A (G/K ). The last one comes from

the obvious homeomorphism if we use for E QV the standard model with R as the
underlying QV=Z-space. The arrow a′(G/V ) is induced by the upper triangle
in (5.9), which commutes (strictly). One easily checks that the diagram commutes:

K G
A(G/V )

id(1)
��

a(G/V )

��

OG(G/V × EG)+ ∧Or(G) K G
A

∼=

(2)
��

OG((iV )∗(iV )
∗EG)+ ∧Or(G) K G

A

∼=

(3)
��

OV ((iV )
∗EG)+ ∧Or(V ) (iV )

∗K G
A

'

(4)
��

OV ((pV )
∗E QV )+ ∧Or(V ) (iV )

∗K G
A

∼=

(5)
��

K G
A(G/V )

O QV (E QV )+ ∧Or(QV ) (pV )!(iV )
∗K G

A

∼=

(6)
��

(E QV )+ ∧QV (pV )!(iV )
∗K G

A (QV /1)

∼=

(7)
��

(E QV )+ ∧QV K G
A (G/K )

∼=

(8)
��

TK (Rσ ):K G
A(G/K )→K G

A(G/K )

a′(G/V )

OO

Here is a short explanation of the diagram above. The map a(G/V ) is basi-
cally given by the projection G/V × EG → G/V . Following the equivalences
(1) through (5), this corresponds to projecting E QV to a point. On the domain of
the equivalence (8), this corresponds to projecting E QV to a point and taking the
inclusion-induced map K G

A (G/K )→ K G
A (G/V ) on the other factor. But this is

precisely the definition of the map a′(G/V ).
From the diagram (5.9) (including the preferred equivalences and the fact that a

natural isomorphism of functors induces a preferred homotopy after applying the
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K-theory spectrum) we obtain the following diagram of spectra, which commutes
up to homotopy and has weak homotopy equivalences as vertical arrows:

TK (Rσ ):K G
A(G/K )→K G

A(G/K )
a′(G/V )

// K G
A(G/V )

T
K (8):K

(∫
K̂ A
)
→K

(∫
K̂ A
)'

OO

a′′(G/V )
// K
(∫

V̂ A
)'

OO

TK (φ):K (B)→K (B)

id
OO

aB
// K
(∫

Q̂ B
)∼ =

OO

We obtain from the diagram (5.8) the following commutative diagram of spectra
with weak homotopy equivalences as vertical arrows:

NK G
A(G/V )

b(G/V )
// K G

A (G/V )

NK (B)
bB

//

'

OO

K (
∫

Q̂V
B)

'
OO

We conclude from the three diagrams of spectra above that

a(G/V )∨ b(G/V ) : K G
A(G/V )∨ NK G

A(G/V )→ K G
A (G/V )

is a weak homotopy of spectra if and only if

aB ∨ bB : TK (φ):K (B)→K (B) ∨ NK (B)→ K
(∫

Q̂V

B
)

is a weak homotopy equivalence. Since this is just the assertion of Theorem 4.2,
the claim of Lemma 7.5 follows in the case where H is an infinite virtually cyclic
group of type I.

It remains to consider the case where H is finite. Then NK G
A(G/V ) is, by

definition, the trivial spectrum. Hence it remains to show for a finite subgroup
H of G that a(G/H) : K G

A(G/H)→ K G
A (G/H) is a weak homotopy equivalence.

This follows from the fact that the projection G/H×EG→G/H is a G-homotopy
equivalence for finite H . �

Recall that any covariant Or(G)-spectrum E determines a G-homology theory
H G
∗
(−; E) satisfying H G

n (G/H ; E)= πn(E(G/H)), namely (see [Davis and Lück
1998]) put

H G
∗
(X; E) := π∗(OG(X)∧Or(G) E). (7.6)
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In the sequel we often follow the convention in the literature to abbreviate
EG := EVC(G) for the family VC of virtually cyclic subgroups. Recall that for
two families of subgroups F1 and F2 with F1 ⊆ F2 there is, up to G-homotopy,
one G-map f : EF1(G)→ EF2(G). We will define Hn(EF1(G)→ EF2(G); K G

R ) :=

Hn(cyl( f ), EF1(G); K G
R ), where (cyl( f ), EF1(G)) is the G-pair coming from the

mapping cylinder of f .
Notice that NK G

A is defined only over OrV CycI (G). It can be extended to a
spectrum over Or(G) by applying the coinduction functor — see [Davis and Lück
1998, Definition 1.8] — associated to the inclusion OrVC I (G)→Or(G), so that the
G-homology theory H G

n (−; NK G
A) makes sense for all pairs of G-CW-complexes

(X, A). Moreover, H G
n (X; NK G

A) can be identified with πn(OG(X)∧OrVC I (G)NK G
A)

for all G-CW-complexes X .
The remainder of this section is devoted to the proof of Theorem 0.1. Its proof

will need the following result, taken from [Davis et al. 2011, Remark 1.6]:

Theorem 7.7 (passage from VC I to VC in K-theory). The relative assembly map

H G
n (EVC I (G); K G

A )
∼=
−→ H G

n (EG; K G
A )

is bijective for all n ∈ Z.

Hence, in the proof of Theorem 0.1 we only have to deal with the passage from
F in to VC I .

Proof of Theorem 0.1. From Lemma 7.5 and [Davis and Lück 1998, Lemma 4.6],
we obtain a weak equivalence of spectra

id∧OrVC I (G) (a∨ b) : OG(EVC I (G))∧OrVC I (G) (K
G
A ∨ NK G

A)

→ OG(EVC I (G))∧OrVC I (G) K G
A .

Hence we obtain a weak equivalence of spectra

(id∧OrVC I (G) a)∨ (id∧OrVC I (G) b) :(
OG(EVC I (G))∧OrVC I (G) K G

A
)
∨
(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

→ OG(EVC I (G))∧OrVC I (G) K G
A .

If we combine this with Lemma 7.4 we obtain a weak equivalence of spectra

( f ∧OrVC I (G) id)∨ (id∧OrVC I (G) b) :

(OG(EG)∧OrVC I (G) K G
A )∨ (O

G(EVC I (G))∧OrVC I (G) NK G
A)

→ OG(EVC I (G))∧OrVC I (G) K G
A .
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Using Lemma 7.3 this yields a natural weak equivalence of spectra

( f ∧Or(G) id)∨ b′ : (OG(EG)∧Or(G) K G
A )∨

(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

→ OG(EVC I (G))∧Or(G) K G
A ,

where b′ comes from id∧OrVC I (G) b. If we take homotopy groups, we obtain for
every n ∈ Z an isomorphism

H G
n ( f ; K G

A )⊕πn(b′) : H G
n (EG; K G

A )⊕πn
(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

∼=
−→ Hn(EVC I (G); K G

A ).

We have already explained above that H G
n (EVC I (G); NK G

A) can be identified with
πn
(
OG(EVC I (G)) ∧OrVC I (G) NK G

A
)
. Since, by construction, NK G

A(G/H) is the
trivial spectrum for finite H and all isotropy groups of EG are finite, we conclude
H G

n (EG; NK G
A)= 0 for all n ∈ Z from Lemma 7.3. We derive from the long exact

sequence of f : E(G)→ EVC I (G) that the canonical map

H G
n (EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EVC I (G); NK G
A)

is bijective for all n ∈ Z. Hence we obtain for all n ∈ Z a natural isomorphism

H G
n ( f ; K G

A )⊕ bn : H G
n (EG; K G

A )⊕ H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ Hn(EVC I (G); K G

A ).

From the long exact homology sequence associated to f : EG → EVC I (G), we
conclude that the map

H G
n ( f ; K G

A ) : H
G
n (EG; K G

A )→ H G
n (EVC I (G); K G

A )

is split injective, there is a natural splitting

H G
n (EVC I (G); K G

A )
∼=
−→ H G

n (EG; K G
A )⊕ Hn(EG→ EVC I (G); K G

A ),

and there exists a natural isomorphism, which is induced by the natural transfor-
mation b : NK G

A→ K G
A of spectra over OrVC I (G),

H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EVC I (G); K G
A ).

Now Theorem 0.1 follows from Theorem 7.7. �

8. Involutions and vanishing of Tate cohomology

8A. Involutions on K-theory spectra. Let A= (A, I ) be an additive G-category
with involution, i.e., an additive G-category A together with a contravariant functor
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I :A→A satisfying I ◦ I = idA and I ◦Rg= Rg◦ I for all g ∈G. Examples coming
from twisted group rings, or more generally crossed product rings equipped with
involutions twisted by orientation homomorphisms, are discussed in [Bartels and
Lück 2010, Section 8].

In the sequel for a category C we denote its opposite category by Cop. It has
the same objects as C. A morphism in Cop from x to y is a morphism y→ x in C.
Obviously we can and will identify (Cop)op

= C.
Next we define a covariant functor

I (G/H) :
∫
GG(G/H)

A→
(∫

GG(G/H)
A
)op

. (8.1)

It is defined to extend the involution∐
x∈GG(G/H)

I :
∐

x∈GG(G/H)

A→
( ∐

x∈GG(G/H)

A
)op

and to send a structural morphism Tg : (g1 H, A · g)→ (g2 H, A) to the morphism
Tg−1 : (g2 H, I (A))→ (g1 H, I (A) · g). One easily checks I (G/H)◦ I (G/H)= id.

Notice that there is a canonical identification K (Bop)= K (B) for every additive
category B. Hence I (G/H) induces a map of spectra

i(G/H)= K (I (G/H)) : K
(∫

GG(G/H)
A
)
→ K

(∫
GG(G/H)

A
)

such that i(G/H) ◦ i(G/H) = id. Let Z/2-Spectra be the category of spectra
with a (strict) Z/2-operation. Thus the functor K G

R becomes a functor

K G
R :Or(G)→ Z/2-Spectra. (8.2)

Consider an infinite virtually cyclic subgroup V ⊆ G and a fixed generator
σ ∈ QV . The functor I (G/V ) of (8.1) induces functors

I (G/H)[σ ] :
∫
GG(G/H)[σ ]

A→
(∫

GG(G/H)[σ−1]

A
)op

,

I (G/H)K :

∫
GG(G/H)K

A→
(∫

GG(G/H)K

A
)op

.

Since ev(G/V )[σ−1
]∗ ◦ I (G/V )[σ ] = I (G/V )K ◦ ev(G/V )[σ ] and

j (G/V )[σ−1
]∗ ◦ I (G/V )[σ ] = I (G/V ) ◦ j (G/V )[σ ]∗,
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we obtain a commutative diagram of spectra

K
(∫

GG(G/V )K
A
) K (I (G/V )K )

// K
(∫

GG(G/V )K
A
)

K
(∫

GG(G/V )[σ ]A
)K (ev(G/V )[σ ]∗)

OO

K ( j (G/V )[σ ]∗)
��

K (I (G/V ))[σ ]
// K
(∫

GG(G/V )[σ−1]
A
)K (ev(G/V )[σ−1

]∗)

OO

K ( j (G/V )[σ−1
]∗)

��

K
(∫

GG(G/V )A
) K (I (G/V ))

// K
(∫

GG(G/V )A
)

Since I (G/H)[σ−1
]◦ I (G/H)[σ ] = id and I (G/H)K ◦ I (G/H)K = id, we obtain

a Z/2-operation on NK G
A and hence a functor

NK G
A :Or(G)→ Z/2-Spectra, (8.3)

and we conclude:

Lemma 8.4. The transformation b : NK G
A→ K G

A of OrVC I (G)-spectra is compat-
ible with the Z/2-actions.

8B. Orientable virtually cyclic subgroups of type I.
Definition 8.5 (orientable virtually cyclic subgroups of type I). Given a group G,
we say that the infinite virtually cyclic subgroups of type I of G are orientable if
there is, for every virtually cyclic subgroup V of type I, a choice σV of a generator
of the infinite cyclic group QV with the following property: whenever V and V ′

are infinite virtually cyclic subgroups of type I, and f : V → V ′ is an inclusion or
a conjugation by some element of G, then the map Q f : QV → QW sends σV to
a positive multiple of σW . Such a choice of elements {σV | V ∈ VC I } is called an
orientation.

Lemma 8.6. Suppose that the virtually cyclic subgroups of type I of G are ori-
entable. Then all infinite virtually cyclic subgroups of G are of type I, and the
fundamental group ZoZ of the Klein bottle is not a subgroup of G.

Proof. Suppose that G contains an infinite virtually cyclic subgroup V of type II.
Then QV is the infinite dihedral group. Its commutator [QV , QV ] is infinite cyclic.
Let W be the preimage of the commutator [QV , QV ] under the canonical projection
pV : V → QV . There exists an element y ∈ QV such that conjugation by y induces
−id on [QV , QV ]. Obviously W is an infinite virtually cyclic group of type I, and
the restriction of pV to W is the canonical map pW :W→QW =[QV , QV ]. Choose
an element x ∈ V with pV (x) = y. Conjugation by x induces an automorphism
of W which induces −id on QW . Hence the virtually cyclic subgroups of type I of
G are not orientable.

The statement about the Klein bottle is obvious. �



366 WOLFGANG LÜCK AND WOLFGANG STEIMLE

For the notions of a CAT(0)-group and of a hyperbolic group we refer for
instance to [Bridson and Haefliger 1999; Ghys and de la Harpe 1990; Gromov
1987]. The fundamental group of a closed Riemannian manifold is hyperbolic if
the sectional curvature is strictly negative, and is a CAT(0)-group if the sectional
curvature is nonpositive.

Lemma 8.7. Let G be a hyperbolic group. Then the infinite virtually cyclic sub-
groups of type I of G are orientable if and only if all infinite virtually cyclic sub-
groups of G are of type I.

Proof. The “only if” statement follows from Lemma 8.6. To prove the “if” state-
ment, assume that all infinite virtually cyclic subgroups of G are of type I.

By [Lück and Weiermann 2012, Example 3.6], every hyperbolic group satis-
fies the condition (NMF in⊆VC I ), i.e., every infinite virtually cyclic subgroup V
is contained in a unique maximal one Vmax and the normalizer of Vmax satisfies
NVmax = Vmax. Let M be a complete system of representatives of the conjugacy
classes of maximal infinite virtually cyclic subgroups. Since by assumption V ∈M
is of type I, we can fix a generator σV ∈ QV for each V ∈M.

Consider any infinite virtually cyclic subgroup W of G type I. Choose g ∈ G
and V ∈M such that gWg−1

⊆ V . Then conjugation with g induces an injection
Qc(g) : QW→ QV by Lemma 1.1(vi). We equip W with the generator σW ∈ QW for
which there exists an integer n ≥ 1 with Qc(g)(σW )= (σV )

n . This is independent
of the choice of g and V : for every g ∈ G and V ∈M with |gV g−1

∩ V | = ∞,
the condition (NMF in⊆VC I ) implies that g belongs to V and conjugation with an
element g ∈ V induces the identity on QV . �

Lemma 8.8. Let G be a CAT(0)-group. Then the infinite virtually cyclic subgroups
of type I of G are orientable if and only if all infinite virtually cyclic subgroups of G
are of type I and the fundamental group ZoZ of the Klein bottle is not a subgroup
of G.

Proof. Because of Lemma 8.6 it suffices to construct for a CAT(0)-group an orien-
tation for its infinite virtually cyclic subgroups of type I, provided that all infinite
virtually cyclic subgroups of G are of type I and the fundamental group ZoZ of
the Klein bottle is not a subgroup of G.

Consider on the set of infinite virtually cyclic subgroups of type I of G the
relation ∼, where we put V1 ∼ V2 if and only if there exists an element g ∈ G
with |gV1g−1

∩ V2| = ∞. This is an equivalence relation since, for any infinite
virtually cyclic group V and elements v1, v2 ∈ V of infinite order, we can find
integers n1, n2 with vn1

1 = v
n2
2 , n1 6= 0 and n2 6= 0. Choose a complete system of

representatives S for the classes under ∼. For each element V ∈ S we choose an
orientation σV ∈ QV .
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Given any infinite virtually cyclic subgroup W⊆G of type I we define a preferred
generator σW ∈ QW as follows: Choose g ∈ G and V ∈ S with |gWg−1

∩ V | =∞.
Let i1 :gWg−1

∩V→W be the injection sending v to g−1vg and i2 :gWg−1
∩V→V

be the inclusion. By Lemma 1.1(vi) we obtain injections of infinite cyclic groups
Qi1 : QgWg−1∩V → QW and Qi2 : QgWg−1∩V → QV . Equip QW with the gen-
erator σW for which there exist integers n1, n2 ≥ 1 and σ ∈ QgWg−1∩V with
Qi1(σ )= (σW )

n1 and Qi2(σ )= (σV )
n2 .

We have to show that this is well-defined. Obviously it is independent of the
choice of σ , n1 and n2. It remains to show that the choice of g does not matter. For
this purpose we have to consider the special case W = V and have to show that the
new generator σW agrees with the given one σV . We conclude from [Lück 2009,
Lemma 4.2] and the argument about the validity of condition (C) appearing in the
proof of [Lück 2009, Theorem 1.1(ii)] that there exists an infinite cyclic subgroup
C ⊆ gV g−1

∩V such that g belongs to the normalizer NGC . It suffices to show that
conjugation with g induces the identity on C . Let H ⊆G be the subgroup generated
by g and C . We obtain a short exact sequence 1→ C→ H pr

→ H/C→ 1, where
H/C is the cyclic subgroup generated by pr(g). Suppose that H/C is finite. Then
H is an infinite virtually cyclic subgroup of G which must, by assumption, be of
type I. Since the center of H must be infinite by Lemma 1.1(ii) and hence the
intersection of the center of H with C is infinite cyclic, the conjugation action of
g on C must be trivial. Suppose that H/C is infinite. Then H is the fundamental
group of the Klein bottle if the conjugation action of g on C is nontrivial. Since
the fundamental group of the Klein bottle is not a subgroup of G by assumption,
the conjugation action of g on C is trivial also in this case. �

8C. Proof of Theorem 0.2. Let OrVC I \F in(G) be the full subcategory of the orbit
category Or(G) consisting of those objects G/V for which V is an infinite virtually
cyclic subgroup of type I. We obtain a functor

gen(Q?) :OrVC I \F in(G)→ Z/2-Sets

sending G/V to gen(QV ), and a G-map f : G/V → G/W to gen( f ) as defined
in (6.3). The Z/2-action on gen(QV ) is given by taking the inverse of a generator.
The condition that the virtually cyclic subgroups of type I of G are orientable (see
Definition 8.5) is equivalent to the condition that the functor gen(Q?) is isomorphic
to the constant functor sending G/V to Z/2. A choice of an orientation corresponds
to a choice of such an isomorphism.

Proof of Theorem 0.2. Because of Theorem 0.1 and Lemma 8.4 it suffices to show
that the Z[Z/2]-module H G

n (EG→ EVC I (G); NK G
A) is isomorphic to Z[Z/2]⊗Z A

for some Z-module A.
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Fix an orientation {σV | V ∈ VC I } in the sense of Definition 8.5. We have the
OrVC I (G)-spectrum

NK G ′
R :OrVC I (G)→ Spectra,

which sends G/V to the trivial spectrum if V is finite and to NK (G/V ;A, σV )

if V is infinite virtually cyclic of type I. This is well-defined by the orientabil-
ity assumption. Now there is an obvious natural isomorphism of functors from
OrVC I (G) to the category of Z/2-spectra

NK G ′
A ∧ (Z/2)+

∼=
−→ NK G

A,

which is a weak equivalence of OrVC I (G)-spectra. It induces a Z[Z/2]-isomorphism

H G
n (EG→ EVC I (G); NK G ′

A )⊗Z Z[Z/2] ∼=−→ H G
n (EG→ EVC I (G); NK G

A).

This finishes the proof of Theorem 0.2. �

9. Rational vanishing of the relative term

This section is devoted to the proof of Theorem 0.3.
Consider the following diagram of groups, where the vertical maps are inclu-

sions of subgroups of finite index and the horizontal arrows are automorphisms:

H
φ
//

i
��

H

i
��

K
ψ
// K

We obtain a commutative diagram

Kn(RHφ[t])
i[t]∗
//

(evH )∗

��

Kn(RKψ [t])
i[t]∗
//

(evK )∗

��

Kn(RHφ[t])

(evH )∗

��

Kn(RH)
i∗

// Kn(RK) i∗
// Kn(RH)

(9.1)

as follows: i∗ and i∗ are the maps induced by induction and restriction with the
ring homomorphism Ri : RH → RK; i[t]∗ and i[t]∗ are the maps induced by
induction and restriction with the ring homomorphism Ri[t] : RHφ[t] → RKψ [t];
evH : RHφ[t] → RH and evK : RKψ [t] → RK are the ring homomorphisms given
by putting t = 0.

The left square is obviously well-defined and commutative. The right square is
well-defined since the restriction of RK to RH by Ri is a finitely generated free
RH -module and the restriction of RKψ [t] to RHφ[t] by Ri[t] is a finitely generated
free RHφ-module by the following argument.
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Put l := [K : H ]. Choose a subset {k1, k2, . . . , kl} of K such that K/H can be
written as {k1 H, k2 H, . . . , kl H}. The map

α :

l⊕
i=1

RH ∼=
−→ i∗RK, (x1, x2, . . . , xl) 7→

l∑
i=1

xi · ki ,

is an homomorphism of RH -modules and the map

β :

l⊕
i=1

RHφ[t]
∼=
−→ i[t]∗RKψ [t], (y1, y2, . . . , yl) 7→

l∑
i=1

yi · ki ,

is a homomorphism of RHφ[t]-modules. Obviously α is bijective. The map β is bi-
jective since for any integer m we get K/H={ψm(k1)H, ψm(k2)H, . . . , ψm(ki )H}.

To show that the right square commutes we have to define for every finitely
generated projective RKψ [t]-module P a natural RH -isomorphism

T (P) : (evH )∗i[t]∗P ∼=
−→ i∗(evK )∗P.

First we define T (P). By the adjunction of induction and restriction it suffices
to construct a natural map T ′(P) : i∗(evH )∗i[t]∗P → (evK )∗P . Since i ◦ evH =

evK ◦ i[t] we have to construct a natural map T ′′(P) : i[t]∗i[t]∗P → P , since
then we define T ′(P) to be (evK )∗(T ′′(P)). Now define T ′′(P) to be the adjoint
of the identity id : i[t]∗P → i[t]∗P . Explicitly T (P) sends an element h ⊗ x in
(evH )∗i[t]∗P= RH⊗evH i[t]∗P to the element i(h)⊗x in i∗(evK )∗P=RK⊗evK P .

Obviously T (P) is natural in P and compatible with direct sums. Hence, in
order to show that T (P) is bijective for all finitely generated projective RKψ [t]-
modules P , it suffices to do that for P = RKψ [t]. Now the claim follows since the
following diagram of RH -modules commutes:

RH ⊗evH i[t]∗RKψ [t]
T (RKψ [t])

// i∗(RK⊗evK RKψ [t])

∼=

��

RH ⊗evH

(⊕l
i=1 RHφ[t]

)id⊗evH β

∼=

OO

i∗RK

⊕l
i=1 RH ⊗evH RHφ[t]

∼=

OO

∼=
//
⊕l

i=1 RH

α

OO

where the isomorphisms α and β have been defined above and all other arrows
marked with ∼= are the obvious isomorphisms. Recall that NKn(RH, Rφ) is by
definition the kernel of (evH )∗ : Kn(RHφ[t])→ Kn(RH) and the analogous state-
ment holds for NKn(RK, Rψ).
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The diagram (9.1) induces homomorphisms

i∗ : NKn(RH, Rφ)→ NKn(RK, Rψ),

i∗ : NKn(RK, Rψ)→ NKn(RH, Rφ).

Since both composites

Kn(RHφ[t])
i[t]∗◦i[t]∗
−−−−−→ Kn(RHφ[t]) and Kn(RH)

i∗◦i∗
−−→ Kn(RH)

are multiplication with l, we conclude:

Lemma 9.2. The composite i∗ ◦ i∗ : NKn(RH, Rφ)→ NKn(RH, Rφ) is multipli-
cation with l for all n ∈ Z.

Lemma 9.3. Let φ : K → K be an inner automorphism of the group K . Then there
is, for all n ∈ Z, an isomorphism

NKn(RK, Rφ) ∼=−→NKn(RK).

Proof. Let k be an element such that φ is given by conjugation with k. We obtain
a ring isomorphism

η : RK Rφ[t]
∼=
−→RK[t],

∑
i

λi t i
7→ λi ki t i .

Let evRK,φ : RKφ[t] → RK and evRK : RK[t] → RK be the ring homomorphisms
given by putting t = 0. Then we obtain a commutative diagram with isomorphisms
as vertical arrows

Kn(RK Rφ[t]) η

∼=
//

evRK,φ

��

Kn(RK[t])

evRK

��

Kn(RK)
∼=

id
// Kn(RK)

It induces the desired isomorphism NKn(RK, Rφ) ∼=−→NKn(RK). �

Remark. As the referee has pointed out, this results holds more generally (with
identical proof) for the twisted Bass group NF(S, φ) of any functor F from rings
to abelian groups and any inner ring automorphism φ : S→ S.

Theorem 9.4. Let R be a regular ring. Let K be a finite group of order r and let
φ : K ∼=

−→ K be an automorphism of order s. Then NKn(RK, Rφ)[1/rs] = 0 for
all n ∈ Z. In particular, NKn(RK, Rφ)⊗Z Q= 0 for all n ∈ Z.

Proof. Let t be a generator of the cyclic group Z/s of order s. Consider the
semidirect product K oφ Z/s. Let i : K → K oφ Z/s be the canonical inclusion.
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Let ψ be the inner automorphism of K oφ Z/s given by conjugation with t . Then
[K oφ Z/s : K ] = s and the following diagram commutes:

K
φ

//

i
��

K

i
��

K oφ Z/s
ψ
// K oφ Z/s

Lemmas 9.2 and 9.3 yield maps i∗ : NKn(RK, φ) → NKn(R[K oφ Z/s]) and
i∗ : NKn(R[K oφ Z/s])→ NKn(RK, φ) such that i∗ ◦ i∗ = s · id. This implies
that NKn(RK, φ)[1/s] is a direct summand in NKn(R[K oφ Z/s])[1/s]. Since R
is regular by assumption and hence NKn(R) vanishes for all n ∈ Z, we conclude
from [Hambleton and Lück 2012, Theorem A] that

NKn(R[K oφ Z/s])[1/rs] = 0.

(For R = Z and some related rings, this has already been proved by Weibel [1981,
(6.5), p. 490].) This implies NKn(RK, φ)[1/rs] = 0. �

Theorem 9.4 has already been proved for R = Z in [Grunewald 2008, Theo-
rem 5.11].

Now we are ready to give the proof of Theorem 0.3.

Proof of Theorem 0.3. Because of Theorem 0.1 it suffices to prove, for all n ∈ Z,

H G
n (EG→ EVC I (G); NK G

R )⊗Z Q
∼=
−→{0}.

There is a spectral sequence converging to H G
p+q(EG→ EVC I (G); NK G

R ) whose
E2-term is the Bredon homology

E2
p,q = H

ZOrVC I (G)
p (EG→ EVC I (G);πq(NK G

R ))

with coefficients in the covariant functor from OrVC I (G) to the category of Z-
modules coming from composing NK G

R :OrVC I (G)→ Spectra with the functor
taking the q-homotopy group; see [Davis and Lück 1998, Theorems 4.7 and 7.4].
Since Q is flat over Z, it suffices to show, for all V ∈ VC I ,

πq(NK G
R (G/V ))⊗Z Q= 0.

If V is finite, NK G
R (G/V ) is by construction the trivial spectrum and the claim is

obviously true. If V is a virtually cyclic group of type I, then we conclude from
the diagram (5.6) that

πn(NK G
R (G/V ))∼= NKn(RKV , Rφ)⊕NKn(RKV , Rφ−1).

Now the claim follows from Theorem 9.4. �
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10. On the computation of the relative term

In this section we give some further information about the computation of the
relative term H G

n (EG→ EG; K G
R )
∼= H G

n (EG→ EVC(G); NK G
R ).

Lück and Weiermann [2012] give a systematic analysis of how the space EVC I (G)
is obtained from EG. We say that G satisfies the condition (MF in⊆VC I ) if any
virtually cyclic subgroup of type I is contained in a unique maximal infinite cyclic
subgroup of type I. We say that G satisfies the condition (NMF in⊆VC I ) if it satisfies
(MF in⊆VC I ) and, for any maximal virtually cyclic subgroup V of type I, its normal-
izer NG V agrees with V . Every word hyperbolic group satisfies (NMF in⊆VC I ); see
[Lück and Weiermann 2012, Example 3.6].

Suppose that G satisfies (MF in⊆VC I ). Let M be a complete system of repre-
sentatives V of the conjugacy classes of maximal virtually cyclic subgroups of
type I. Then we conclude from [Lück and Weiermann 2012, Corollary 2.8] that
there exists a G-pushout of G-CW-complexes with inclusions as horizontal maps

∐
V∈M G×NG V E NG V∐

V∈M idG× fV

��

i
// EG

f
��∐

V∈M G×NG V EVC I (NG V ) // EVC I (G)

This yields for all n ∈ Z an isomorphism, using the induction structure in the sense
of [Lück 2002, Section 1],⊕

V∈M

H NG V
n (E NG V → EVC I (NG V ); K NG V

R )
∼=
−→ H G

n (EG→ EVC I (G); K G
R ).

Combining this with Theorem 0.1 yields the isomorphism⊕
V∈M

H NG V
n (E NG V → EVC I (NG V ); NK NG V

R )
∼=
−→ H G

n (EG→ EVC I (G); K G
R ).

Suppose now that G satisfies (NMF in⊆VC I ) and recall that NKG
R (V/H)= 0 for

finite H , by definition. Then the isomorphism above reduces to the isomorphism⊕
V∈M

πn(NK V
R (V/V )) ∼=−→ H G

n (EG→ EVC I (G); K G
R ),

and πn(NK V
R (V/V )) is the Nil-term NKn(RKV , Rφ)⊕NKn(RKV ; Rφ−1) appear-

ing in the twisted version of the Bass–Heller–Swan decomposition of RV (see
[Grayson 1988, Theorems 2.1 and 2.3]) if we write V ∼= KV oφ Z.
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11. Fibered version

We illustrate in this section, by an example which will be crucial in [Farrell et al.
2016], that we do get information from our setting also in a fibered situation.

Let p : X → B be a map of path connected spaces. We will assume that it is
π1-surjective, i.e., induces an epimorphism on fundamental groups. Suppose that
B admits a universal covering q : B̃→ B.

Choose base points x0 ∈ X , b0 ∈ B and b̃0 ∈ B̃ satisfying p(x0)= b0 = q(b̃0).
We will abbreviate 0 = π1(X, x0) and G = π1(B, b0). Recall that we have a free
right proper G-action on B̃ and q induces a homeomorphism B̃/G ∼=

−→ B. For
a subgroup H ⊆ G denote by q(G/H) : B̃ ×G G/H = B̃/H → B the obvious
covering induced by q . The pullback construction yields a commutative square of
spaces

X (G/H)
q̄(G/H)

//

p̄(G/H)
��

X

p
��

B̃×G G/H
q(G/H)

// B

where q̄(G/H) is again a covering. This yields covariant functors from the orbit
category of G to the category of topological spaces,

B :Or(G)→ Spaces, G/H 7→ B̃×G G/H,

X :Or(G)→ Spaces, G/H 7→ X (G/H).

The assumption that p is π1-surjective ensures that X (G/H) is path connected for
all H ⊆ G.

By composition with the fundamental groupoid functor we obtain a functor

5(X) :Or(G)→Groupoids, G/H 7→5(X (G/H)).

Let R-FGF be the additive category whose set of objects is {Rn
| n = 0, 1, 2, . . . }

and whose morphisms are R-linear maps. In the sequel it will always be equipped
with the trivial G- or 0-action or considered as constant functor G→ Add-Cat.
Consider the functor

ξ :Groupoids→ Spectra, G 7→ K
(∫

G
R-FGF

)
.

The composite of the last two functors yields a functor

K (p) := ξ ◦5(X) :Or(G)→ Spectra.

Associated to this functor there is — see [Davis and Lück 1998] — a G-homology
theory H G

∗
(−; K (p)) := πn(OG(−) ∧Or(G) K (p)). We will be interested in the



374 WOLFGANG LÜCK AND WOLFGANG STEIMLE

associated assembly map induced by the projection EG→ G/G,

H G
n (EG; K (p))→ H G

n (G/G; K (p))∼= Kn(R0). (11.1)

The goal of this section is to identify this assembly map with the assembly map

H G
n (EG; KA)→ H G

n (G/G; KA)= Kn(R0)

for a suitable additive category with G-action A. Thus the results of this paper
apply also in the fibered setup.

Consider the functor

G0 :Or(G)→Groupoids, G/H 7→ G0(G/H),

where we consider G/H as a 0-set by restriction along the group homomorphism
0→ G induced by p.

Lemma 11.2. There is a natural equivalence

T : G0→5(X)

of covariant functors Or(G)→Groupoids.

Proof. Given an object G/H in Or(G), we have to specify an equivalence of
groupoids T (G/H) : G0(G/H)→5(X (G/H)). For an object in G0(G/H) which
is given by an element wH ∈ G/H , define T (wH) to be the point in X (G/H)
which is determined by (b̃0, wH) ∈ B̃ ×G G/H and x0 ∈ X . This makes sense
since q(G/H)((b̃0, wH))= b0 = q(x0).

Let γ : w0 H → w1 H be a morphism in G0(G/H). Choose a loop u X in X at
x0 ∈ X which represents γ . Let u B be the loop p ◦ u X in B at b0 ∈ B. There is
precisely one path u B̃ in B̃ which starts at b̃0 and satisfies q ◦u B̃ = u B . Let [u B] ∈G
be the class of u B , or, equivalently, the image of γ under π1(p, x0) : 0→ G. By
definition of the right G-action on B̃ we have b̃0 · [u B] = u B(1). Define a path
u B̃/H in B̃×G G/H from (b̃0, w0 H) to (b̃0, w1 H) by t 7→ (u B(t), w0 H). This is
indeed a path ending at (b̃0, w1 H) since (b̃0 · [u B], w0 H) = (b̃0, [u B] ·w0 H) =
(b̃0, w1 H) holds in B̃×G G/H . Obviously the composite of u B̃/H with q(G/H) :
B̃ ×G G/H → B is u B . Hence u B̃/H and u X determine a path in X (G/H) from
T (w0 H)→ T (w1 H) and hence a morphism T (w0 H)→ T (w1 H) in5(X (G/H)).
One easily checks that the homotopy class (relative to the endpoints) of u depends
only on γ . Thus we obtain the desired functor T (G/H) :G0(G/H)→5(X (G/H)).
One easily checks that they fit together, so that we obtain a natural transformation
T : G0→5(X).

At a homogeneous space G/H , the value of G0 is a groupoid equivalent to the
group π1(p, x0)

−1(H), while the value of 5(X) is a groupoid equivalent to the
fundamental group of X (G/H). Up to this equivalence, the functor T , at G/H ,
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is the standard identification of these two groupoids. Hence T is a natural equiva-
lence. �

We obtain a covariant functor

K (p)′ :Or(G)→ Spectra, G/H 7→ K
(∫

G0(G/H)
R-FGF

)
.

Lemma 11.2 implies that the following diagram commutes, where the vertical ar-
row is the isomorphism induced by T :

H G
n (EG; K (p))

H G
n (pr;K (p))

++

H G
n (G/G; K (p))= Kn(R0)

H G
n (EG; K (p)′)

H G
n (pr;K (p)′)

33

∼=

T∗

OO

Now the functor K (p)′ is, up to natural equivalence, of the form K G
A for some

additive G-category, namely for A= indq:0→G R-FGF; see [Bartels and Lück 2010,
(11.5) and Lemma 11.6]. We conclude:

Lemma 11.3. The assembly map (11.1) is an isomorphism for all n ∈ Z if the
K-theoretic Farrell–Jones conjecture for additive categories holds for G.
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Birational motives
I: Pure birational motives

Bruno Kahn and Ramdorai Sujatha

We define a category of pure birational motives over a field, depending on the
choice of an adequate equivalence relation on algebraic cycles. It is obtained by
“killing” the Lefschetz motive in the corresponding category of effective motives.
For rational equivalence, it encompasses Bloch’s decomposition of the diagonal.
We study the induced Chow–Künneth decompositions in this category, and estab-
lish relationships with Rost’s cycle modules and the Albanese functor for smooth
projective varieties.
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Introduction

In the preprint [Kahn and Sujatha 2002], we toyed with birational ideas in three
areas of algebraic geometry: plain varieties, pure motives in the sense of Grothen-
dieck, and triangulated motives in the sense of Voevodsky. These three themes are
finally treated separately in revised versions. The first one is the object of [Kahn
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and Sujatha 2015a]; the second one is the object of the present paper; the third one
is the object of [Kahn and Sujatha 2015b].

We work over a field F . Recall that we introduced in [Kahn and Sujatha 2015a]
two “birational” categories. The first, place(F), has for objects the function fields
over F and for morphisms the F-places. The second one is the Gabriel–Zisman
localisation of the category Sm(F) of smooth F-varieties obtained by inverting bi-
rational morphisms [Gabriel and Zisman 1967, Chapter 1]; we denote this category
by S−1

b Sm(F).
We may also invert stable birational morphisms: those which are dominant and

induce a purely transcendental extension of function fields, and invert the corre-
sponding morphisms in place(F). We denote the sets of such morphisms by Sr .

In order to simplify the exposition, let us assume that F is of characteristic 0.
Then the main results of [Kahn and Sujatha 2015a] and its predecessor [Kahn and
Sujatha 2007] can be summarised in a diagram

place(F)op
� S−1

b Smproj(F) ∼� S−1
b Sm(F)

S−1
r place(F)op

g
� S−1

r Smproj(F)

∼

g
∼� S−1

r Sm(F)
∼

g

where Smproj(F) is the full subcategory of smooth projective varieties and the
symbols ∼ denote equivalences of categories; see [Kahn and Sujatha 2007, Propo-
sition 8.5] and [Kahn and Sujatha 2015a, Theorems 1.7.2 and 4.2.4].

Moreover, if X is smooth and Y is smooth proper, then Hom(X, Y )=Y (F(X))/R
in S−1

b Sm(F), where R is R-equivalence [ibid., Theorem 6.6.3].
In this paper, we consider the effect of inverting birational morphisms in cat-

egories of effective pure motives. For simplicity, let us still assume char F = 0,
and consider only the category of effective Chow motives Choweff(F), defined
by using algebraic cycles modulo rational equivalence. The graph functor then
induces a commutative square (compare (5.1.1))

S−1
b Smproj(F) � S−1

b Choweff(F)

S−1
r Smproj(F)

∼

g
� S−1

r Choweff(F)
g

One can expect that the right vertical functor is an equivalence of categories,
and indeed this is not difficult to prove (Corollary 2.2.5(b)). But we have two other
descriptions of this category of “birational motives”:

• The functor Choweff(F)→ S−1
b Choweff(F) is full, and its kernel is the ideal

Lrat of morphisms which factor through some object of the form M⊗L, where
L is the Lefschetz motive [ibid].
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• If X, Y are smooth projective varieties, then Lrat(h(X), h(Y )) coincides with
the group of Chow correspondences represented by algebraic cycles on X ×Y
whose irreducible components are not dominant over X (Theorem 2.4.2).

As a consequence, the group of morphisms from h(X) to h(Y ) in S−1
b Choweff(F)

is isomorphic to CH0(YF(X)). Given the similar description of Hom sets in

S−1
b Smproj(F)

recalled above, this places the classical map

Y (F(X))/R→ CH0(YF(X))

in a categorical context.
Note that, by [Kahn and Sujatha 2015a, Theorem 8.5.1(b)], if X ' Spec F in

S−1
b Sm then X must be rationally connected; on the other hand, there are surfaces

of general type with trivial birational motive, see Remarks 3.1.5(1) and (3). So the
birational motive of a smooth projective variety detects much less geometry than
its class in S−1

b Sm, but on the other hand it is much more computable.
This paper is organised as follows. In Section 1 we review pure motives. In

Section 2 we study pure birational motives, in greater generality than outlined in
this introduction. In particular, many results are valid for other adequate equiva-
lence relations than rational equivalence, see Section 2.3; moreover, most results
extend to characteristic p if p is invertible in the ring of coefficients, by using the
de Jong–Gabber alteration theorem [Illusie and Temkin 2014]; see Theorem 2.4.2.

Section 3 consists of examples. We study varieties whose birational motive
is trivial, in the line of the remarks above. We also study the Chow–Künneth
decomposition in the category of birational motives, special attention being devoted
to the case of complete intersections.

Let Chowo(F) denote the pseudoabelian envelope of S−1
b Choweff(F). In Sec-

tion 4, we examine two questions: the existence of a right adjoint to the projection
functor Choweff(F)→ Chowo(F) (and similarly for more general adequate equiv-
alences), and whether pseudoabelian completion is really necessary. It turns out
that the answer to the first question is negative (Theorems 4.3.2 and 4.3.3; this
is related to the nontriviality of the Griffiths group for some 3-folds) and the an-
swer to the second question is positive with rational coefficients under a nilpotence
conjecture (Conjecture 3.3.1). We can get an unconditional positive answer to the
second question if we restrict to a suitable type of motives (Proposition 4.4.1 and
Example 4.4.2).

In Section 5, we define a functor S−1
r field(F)op

→ S−1
r Choweff(F,Q) in char-

acteristic p, using de Jong’s theorem again. Here field(F) denotes the subcategory
of place(F) with the same objects but morphisms restricted to field extensions
(Proposition 5.1.4).
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We end this paper by relating the previous constructions to more classical objects.
In Section 6 we relate birational motives to cycle cohomology [Rost 1996], expand-
ing a bit on previous results by Rost and Merkurjev [2001; 2008]. In Section 7,
we define a tensor additive category AbS(F) of locally abelian schemes, whose
objects are those F-group schemes that are extensions of a lattice (i.e., locally
isomorphic for the étale topology to a free finitely generated abelian group) by an
abelian variety. We then show in Section 8 that the classical construction of the
Albanese variety of a smooth projective variety extends to a tensor functor

Alb : Chowo(F)→ AbS(F),

which becomes full and essentially surjective after tensoring morphisms with Q

(Proposition 8.2.1). So, one could say that AbS(F) is the representable part of
Chowo(F). We also show that, after tensoring with Q, Alb has a right adjoint
which identifies AbS(F)⊗Q with the thick subcategory of Chowo(F)⊗Q gener-
ated by motives of varieties of dimension ≤ 1.

Some results of the preliminary version [Kahn and Sujatha 2002] of this work
were used in other papers, namely [Kahn et al. 2007; Kahn 2009], and we occasion-
ally refer to these papers to ease the exposition. Here is a correspondence guide
between the results from [Kahn and Sujatha 2002] used in these papers and those
in the present version:

• In [Kahn 2009], Lemma 7.2 uses [Kahn and Sujatha 2002, Lemmas 5.3 and 5.4],
which correspond to Proposition 2.3.5 and Theorem 2.4.2 of the present paper.
The reader will verify that the proofs of Proposition 2.3.5 and Theorem 2.4.2
are the same as those of [Kahn and Sujatha 2002, Lemmas 5.3 and 5.4], mu-
tatis mutandis, and do not use any result from [Kahn 2009].

• In [Kahn et al. 2007], Lemma 7.5.3 uses the same references; the same com-
ment as above applies. Moreover, Proposition 9.5 of [Kahn and Sujatha 2002]
is used on pp. 174–175 of [Kahn et al. 2007]; this result is now Theorem 8.2.4.
Again, its proof is identical to the one in the preliminary version and does not
use results from [Kahn et al. 2007].

The idea of considering birational Chow correspondences, which yield here a
category in which Hom([X ], [Y ]) = CH0(YF(X)) for two smooth projective vari-
eties X, Y , goes back to S. Bloch’s method of “decomposition of the diagonal” in
[Bloch 2010, Appendix to Lecture 1] (see also [Bloch and Srinivas 1983]). He
attributes the idea of considering the generic point of a smooth projective variety
X as a 0-cycle over its function field to Colliot-Thélène; here, this corresponds
to the identity endomorphism of ho(X) ∈ Chowo(F). We realised the connection
with Bloch’s ideas after reading H. Esnault’s article [2003], and this led to another
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proof of her theorem by the present birational techniques in [Kahn 2009]. M. Rost
has considered this category independently [Merkurjev 2001]; this was pointed out
to us by N. Karpenko.

1. Review of pure motives

In this section, we recall the definition of categories of pure motives in a way which
is suited to our needs. A slight variance to the usual exposition is the notion of
adequate pair, which is a little more precise than the notion of adequate equivalence
relation (it explicitly takes the coefficients into account).

We adopt the covariant convention, for future comparison with Voevodsky’s
triangulated categories of motives: here, the functor which sends a smooth projec-
tive variety to its motive is covariant. For a dictionary between the covariant and
contravariant conventions, the reader may refer to [Kahn et al. 2007, Lemma 7.1.2].

1.1. Adequate pairs. We give ourselves

• a commutative ring of coefficients A;

• an adequate equivalence relation ∼ on algebraic cycles with coefficients in A
[Samuel 1960].

We refer to (A,∼) as an adequate pair. Classical examples for ∼ are rat
(rational equivalence), alg (algebraic equivalence), num (numerical equivalence),
∼H (homological equivalence relative to a fixed Weil cohomology theory H ). A
less classical example is Voevodsky’s smash-nilpotence tnil [1995]; see [André
and Kahn 2002, Example 7.4.3] (a cycle α is smash-nilpotent if α⊗n

∼rat 0 for
some n > 0). We then have a notion of domination (A,∼)≥ (A,∼′) if ∼ is finer
than ∼′ (i.e., the groups of cycles modulo ∼ surjects onto the one for ∼′). It is
well known that (A, rat)≥ (A,∼) for any ∼ (see [Fulton 1984, Example 1.7.5]),
and that (A,∼)≥ (A, numA) if A is a field.

Since the issue of coefficients is sometimes confusing, the following remarks
may be helpful. Given a pair (A,∼) and a commutative A-algebra B, we get a
new pair B⊗A (A,∼) by tensoring algebraic cycles with B: for example, (A,∼)=
A⊗Z (Z,∼) for ∼= rat, alg or tnil by definition. On the other hand, given a pair
(B,∼) and a ring homomorphism A→ B we get a “restriction of scalars” pair
(A,∼|A) by considering cycles with coefficients in A which become ∼ 0 after
tensoring with B: for example, if H is a Weil cohomology theory with coefficients
in K , this applies to any ring homomorphism A→ K . Obviously

B⊗A (A,∼|A)≥ (B,∼),

but this need not be an equality in general.
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In the case of numerical equivalence (a cycle with coefficients in A is numeri-
cally equivalent to 0 if the degree of its intersection with any cycle of complemen-
tary dimension in good position is 0), we have B⊗A (A, numA)≥ (B, numB), with
equality if B is flat over A.

Given a pair (A,∼), to any smooth projective F-variety X and integer n ≥ 0 we
may associate its group of cycles of codimension n with coefficients in A modulo∼,
which will be denoted by Zn

∼
(X, A). If X has pure dimension d, we also denote

this group by Z∼d−n(X, A).

1.2. Smooth projective varieties, connected and nonconnected. In [Kahn and Su-
jatha 2015a] we were only considering (connected) varieties over F . Classically,
pure motives are defined using not necessarily connected smooth projective vari-
eties. One could base the treatment on connected smooth varieties, but this would
introduce problems with the tensor product, since a product of connected varieties
need not be connected in general (e.g., if neither of them is geometrically con-
nected). Thus we prefer to use here:

Definition 1.2.1. We write Smq(F) for the category of smooth separated schemes
of finite type over F . For % ∈ {prop, qp, proj}, we write Sm%

q
(F) for the full sub-

category of Smq(F) consisting of proper, quasiprojective or projective varieties.

Unlike their counterparts considered in [Kahn and Sujatha 2015a], these cate-
gories enjoy finite products and coproducts.

The following lemma is clear.

Lemma 1.2.2. The categories considered in Definition 1.2.1 are the “finite coprod-
uct envelopes” of those considered in [Kahn and Sujatha 2015a], in the sense of
[Kahn and Sujatha 2007, Proposition 6.1].

1.3. Review of correspondences. We associate to two smooth projective varieties
X, Y the group Zdim Y

∼
(X×Y, A) of correspondences from X to Y relative to (A,∼).

The composition of correspondences is defined as follows:1 if X, Y, Z are smooth
projective and (α, β) ∈ Zdim Y

∼
(X × Y, A)×Zdim Z

∼
(Y × Z , A), then

β ◦α = (pX Z )∗(p∗XYα · p
∗

Y Zβ),

where pXY , pY Z and pX Z denote the partial projections from X × Y × Z onto
two-fold factors.

We then get an A-linear tensor (i.e., symmetric monoidal) category Cor∼(F, A).
The graph map defines a covariant functor

Smproj
q
(F)→ Cor∼(F, A), X 7→ [X ], (1.3.1)

1We follow here the convention of Voevodsky [2000]. It is also the one used by Fulton [1984,
Section 16]. See [Kahn et al. 2007, Lemma 7.1.2].
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so that [X qY ] = [X ]⊕ [Y ], and [X ×Y ] = [X ]⊗ [Y ] for the tensor structure. The
unit object is 1= [Spec F].

If f : X → Y is a morphism of smooth varieties, let 0f denote its graph and
[0f ] denote the class of 0f in Zdim Y

∼
(X × Y ). We write f∗ for the correspondence

[0f ] : [X ]→ [Y ] (the image of f under the functor (1.3.1)). Note that if f : X→ Y
and g : Y → Z are two morphisms of smooth projective varieties, then the cycles
0f ×Z and X×0g on X×Y×Z intersect properly, so that g∗◦ f∗ is well defined as
a cycle and not just as an equivalence class of cycles; the equation g∗◦ f∗= (g◦ f )∗
is an equality of cycles. (This is a very special case of the composition of finite
correspondences; see [Mazza et al. 2006, Lemma 1.7].)

1.4. The correspondence attached to a rational map. We first define rational maps
between not necessarily connected smooth varieties X, Y in the obvious way: it is
a morphism from a suitable dense open subset of X to Y . Like morphisms, rational
maps split as disjoint unions of “connected” rational maps. A rational map f is
dominant if all its connected components are dominant and if the image of f meets
all connected components of Y .

Let f : X 99K Y be a rational map between two smooth projective varieties X, Y .
To f we associated in [Kahn and Sujatha 2015a, Section 6.3] a morphism in the
category S−1

b Sm. In the case of Chow motives, we can do better: define the corre-
spondence f∗ : [X ] → [Y ] in Cor∼(F, A) as the closure of the graph of f inside
X × Y . The formula g∗ ◦ f∗ = (g ◦ f )∗ need not be valid in general, even if g ◦ f
is defined (but see Proposition 2.3.8 below). Yet we have:

Lemma 1.4.1. Let X
f
99K Y

g
−→ Z be a diagram of smooth projective varieties,

where f is a rational map and g is a morphism. Then we have an equality of
cycles

g∗ ◦ f∗ = (g ◦ f )∗
in Zdim Z (X × Z).

Proof. Let U be an open subset of X on which f , hence also g ◦ f , is defined. As
explained in Section 1.3, we have an equality of reduced closed subschemes

0g◦ f = pU Z (0f × Z ∩ X ×0g).

Since Y is proper, pU Z (0f ×Z∩X×0g) is dense in pX Z (0 f ×Z∩X×0g)= g∗◦ f∗,
hence the conclusion. �

1.5. Effective pure motives. We now define as usual the category of effective
pure motives Moteff

∼
(F, A) relative to (A,∼) as the pseudoabelian envelope of

Cor∼(F, A). We denote the composition of (1.3.1) with the pseudoabelianisation
functor by h∼. If ∼= rat, we usually abbreviate h∼ to h.

In Moteff
∼
(F, A) we have
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• h∼(Spec F)= 1 (the unit object for the tensor structure);

• h∼(P1)= 1⊕ L, where L is the Lefschetz motive.

If n ≥ 0, we write M(n) for the motive M ⊗ L⊗n (beware that the “standard”
notation is M(−n)!)

We then have the formula, for two smooth projective X, Y and integers p, q ≥ 0,

Moteff
∼
(F, A)(h∼(X)(p), h∼(Y )(q))= Zdim Y+q−p

∼
(X × Y ). (1.5.1)

In particular, the endofunctor −⊗ L of Moteff
∼
(F, A) is fully faithful.

If f : X → Y is a morphism, then the correspondence [t0f ] ∈ Zdim Y (Y × X)
obtained by the “switch” defines a morphism f ∗ : h∼(Y )(dim X)→ h∼(X)(dim Y ),
i.e., from h∼(Y ) to h∼(X)(dim Y − dim X) or from h∼(Y )(dim X − dim Y ) to
h∼(X) according to the sign of dim X − dim Y . In particular, if f has relative
dimension 0 then f ∗ maps h∼(Y ) to h∼(X). We similarly define f ∗ for a rational
map f .

We recall the well-known lemma:

Lemma 1.5.2. Suppose that f is generically finite of degree d. Then f∗ ◦ f ∗= d1Y .

Proof. It suffices to prove this for the action on cycles, and then the lemma follows
by Manin’s identity principle [Scholl 1994, Section 2]. Let α ∈ Z∗

∼
(Y, A). By the

projection formula,
f∗ f ∗(α)= α · f∗(1).

But f∗(1) ∈ Z0
∼
(Y, A) may be computed after restriction to any open subset U

of X , and for U small enough it is clear that f∗(1)= d. �

1.6. Pure motives. The category Mot∼(F, A) is now obtained from Moteff
∼
(F, A)

by inverting the endofunctor −⊗ L, i.e., adjoining a ⊗-quasi-inverse T of L (the
Tate motive) to Moteff

∼
(F, A). The resulting category is rigid and the functor

Moteff
∼
(F, A)→Mot∼(F, A) is fully faithful; we refer to [Scholl 1994] for details.

We still write h∼(X) for the image of h∼(X) in Mot∼(F, A).

1.7. Pure motives and purely inseparable extensions. This subsection will be
needed for the proof of Remarks 2.3.10 below. It shows that extending scalars along
a purely inseparable extension is harmless as long as the exponential characteristic
is inverted.

Lemma 1.7.1. Let f : X→ Y be a finite, flat and radicial morphism [Grothendieck
and Dieudonné 1971, Définition 3.7.2] between smooth projective F-varieties. Let
(A,∼) be an adequate pair, with p invertible in A (where p is the exponential
characteristic of F).

(a) f∗ : Z∼∗ (X, A)→ Z∼
∗
(Y, A) is an isomorphism.

(b) f∗ : h(X)→ h(Y ) is an isomorphism in Cor∼(F, A).
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Proof. Let pn be the generic degree of f . We have f∗ f ∗ = f ∗ f∗ = pn (on the
level of algebraic cycles), hence (a). Part (b) follows by Manin’s identity principle
(Yoneda lemma). �

Proposition 1.7.2. Let K/F be a purely inseparable extension. Then, for any
adequate pair (A,∼) as in Lemma 1.7.1, the extension of scalars functors

Cor∼(F, A)→ Cor∼(K , A),

Moteff
∼
(F, A)→Moteff

∼
(K , A),

Mot∼(F, A)→Mot∼(K , A),

are equivalences of categories.

Proof. It suffices to show this for the first functor. Let X, Y be two smooth pro-
jective F-varieties. Then, for any finite subextension L/F of K/F , the morphism
(X ×F Y )L → X ×F Y is finite, flat and radicial; by Lemma 1.7.1(a) and a limit
argument, this implies that the functor is fully faithful. For its essential surjectivity,
we steal an idea from [Lang 1959, Chapter VIII, Section 1, proof of Theorem 2].
Let X be a smooth projective K -variety. Then X is defined over a finite subexten-
sion L/F of K/F . Let pn

= [L : F], and let 8L be the absolute Frobenius of L .
The relative Frobenius morphism (an L-morphism)

X→ (8n
L)
∗X

is finite, flat2 and radicial; by Lemma 1.7.1(b), h(X)→ h((8n
L)
∗X) is an isomor-

phism in Cor∼(L , A), hence also in Cor∼(K , A). Since 8n
L : Spec L → Spec L

factors through Spec F , (8n
L)
∗X is defined over F , proving that the functor is

essentially surjective. �

1.8. Image motives. In the study of projective homogeneous varieties, several peo-
ple (starting with Vishik) have been led to introduce the following:

Definition 1.8.1. Let X be a smooth projective variety. We write

Z̄∗
∼
(X, A)= Im(Z∗

∼
(X, A)→ Z∗

∼
(X Fs , A)),

where Fs is a separable closure of F .

Using correspondences based on these groups, we define Mot∼(F, A), etc. This
is mainly interesting when A = Z or Z/p: for A =Q the extension of scalars map
is injective (by a transfer argument).

2To see this, one may use the fact that X is locally isomorphic to An for the étale topology.
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2. Pure birational motives

2.1. First approach: localisation. The first idea to define a notion of pure bira-
tional motives is to localise Moteff

∼
(F, A) with respect to stable birational mor-

phisms as in [Kahn and Sujatha 2015a], hence getting a functor

S−1
r Smproj

q
(F)→ S−1

r Moteff
∼
(F, A).

This idea turns out to be the good one in all important cases, but to see this we
first need some preliminary work. We start by reviewing the sets of morphisms
used in [Kahn and Sujatha 2015a, Section 1.7]:

• Sb: birational morphisms;

• Sh : projections of the form X × (P1)n→ X ;

• Sr : stably birational morphisms, where s ∈ Sr if and only if s is dominant and
gives a purely transcendental function field extension;

to which we adjoin

• Swb : compositions of blow-ups with smooth centres;

• Swr = Swb ∪ Sh .

These morphisms, defined for connected varieties in [Kahn and Sujatha 2015a],
extend trivially to the categories of Definition 1.2.1 as explained in [Kahn and
Sujatha 2007, Corollary 6.3]. More precisely, if S is a set of morphisms of Sm(F),
we define Sq ⊂ Smq(F) as the set of those morphisms which are dominant and
whose connected components are all in S. For simplicity, we shall write S rather
than Sq in the sequel.

By Lemma 1.2.2 and [Kahn and Sujatha 2007, Theorem 6.4], the localisation
results of [Kahn and Sujatha 2007; 2015a] extend to the category Smq(F) and,
moreover, the functors

S−1 Sm(F)→ S−1 Smq(F)

identify the right-hand side with the “finite coproduct envelope” of the left-hand
side. Similarly for their analogues with decorations Sm%.

We shall view the above morphisms as correspondences via the graph functor.
We introduce two more sets which are convenient here:

Definition 2.1.1. We write S̃b and S̃r for the sets of dominant rational maps which
induce, respectively, an isomorphism of function fields and a purely transcendental
extension. We let these rational maps act on pure motives via their graphs, as in
Section 1.4.
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Thus we have a diagram of inclusions of morphisms on Moteff
∼
(F, A):

Swb ⊂ Swb ∪ Sh = Swr

∩ ∩ ∩

Sb ⊂ Sb ∪ Sh ⊂ Sr

∩ ∩ ∩

S̃b ⊂ S̃b ∪ Sh ⊂ S̃r

(2.1.2)

Let us immediately notice:

Proposition 2.1.3. Let S be one of the systems of morphisms in (2.1.2). Then
the category S−1 Moteff

∼
(F, A) is an A-linear category provided with a tensor

structure, compatible with the corresponding structures of Moteff
∼
(F, A) via the

localisation functor.

Proof. This follows from Theorem A.3.4, Proposition A.1.2 and the fact that ele-
ments of S are stable under disjoint unions and products. �

2.2. Second approach: the Lefschetz ideal.

Definition 2.2.1. We denote by L∼ the ideal of Moteff
∼
(F, A) consisting of those

morphisms which factor through some object of the form P(1); this is the Lefschetz
ideal. It is a monoidal ideal (i.e., it is closed with respect to composition and tensor
products on the left and on the right).

Remark 2.2.2. In any additive category A there is a notion of product of two ideals
I,J :

I ◦J = 〈 f ◦ g | f ∈ I, g ∈ J 〉.

If B is an additive subcategory of A and J ={ f | f factors through some A∈B},
then J is idempotent because it is generated by idempotent morphisms, namely the
identity maps of the objects of B. In A=Moteff

∼
(F, A), this applies to L∼.

On the other hand, in a tensor additive category A there is also the tensor product
of two ideals I,J : for A, B ∈A,

(I⊗J )(A, B)= 〈A(E ⊗ F, B) ◦ (I(C, E)⊗J (D, F)) ◦A(A,C ⊗ D)〉,

where C, D, E, F run through all objects of A. Coming back to A=Moteff
∼
(F, A),

we have L∼⊗L∼ =Moteff
∼
(F, A)(2) 6= L∼ ◦L∼ = L∼. This is in sharp contrast

with the case where A is rigid [André and Kahn 2002, Lemme 6.15].

Proposition 2.2.3. (a) The localisation functor

Moteff
∼
(F, A)→ (Swb )

−1 Moteff
∼
(F, A)

factors through Moteff
∼
(F, A)/L∼.



390 BRUNO KAHN AND RAMDORAI SUJATHA

(b) The functors

Moteff
∼
(F, A)/L∼→ (Swb )

−1 Moteff
∼
(F, A)→ (Swr )

−1 Moteff
∼
(F, A)

are both isomorphisms of categories.

(c) The functor
Moteff

∼
(F, A)/L∼→ S−1

b Moteff
∼
(F, A)

is full.

(d) For any s ∈ S̃r , s∗ becomes invertible in S̃−1
b Moteff

∼
(F, A).

Proof. (a) By Proposition 2.1.3, it is sufficient to show that L 7→ 0 in

(Swb )
−1 Moteff

∼
(F, A).

Here as in the proof of (b) we shall use the following formula of Manin [1968,
Section 9, Corollary, p. 463]: if p : X̃→ X is a blow-up with smooth centre Z ⊂ X
of codimension n, then

heff
∼
(X̃)' heff

∼
(X)⊕

n−1⊕
i=1

heff
∼
(Z)⊗ L⊗i, (2.2.4)

where projecting the right-hand side onto heff
∼
(X) we get p∗.

In (2.2.4), take X =P2 and for X̃ the blow-up of X at (say) Z ={(1 : 0 : 0)}. Since
p is invertible in (Swb )

−1 Moteff
∼
(F, A), we get L= 0 in this category as requested.

(b) It suffices to show that morphisms of Swr become invertible in Moteff
∼
(F, A)/L∼,

which immediately follows from (2.2.4) and the easier projective line formula.

(c) It suffices to show that members of Sb have right inverses in Moteff
∼
(F, A); this

follows from Lemma 1.5.2.

(d) Let g : X 99K Y be an element of S̃r . Then X is birational to Y × (P1)n for
some n ≥ 0, and if f : X 99K Y × (P1)n is the corresponding birational map, its
composition with the first projection π is g. By Lemma 1.4.1, it suffices to show
that π∗ is invertible in S̃−1

b Moteff
∼
(F, A), which follows from (b). �

Corollary 2.2.5. Let M =Moteff
∼
(F, A).

(a) Diagram (2.1.2) induces a commutative diagram of categories and functors

M/L∼ ∼� (Swb )
−1 M ∼� (Swb ∪ Sh)

−1 M ∼� (Swr )
−1 M

S−1
b M

fullg
∼� (Sb ∪ Sh)

−1 M

full
g

� S−1
r M
g

S̃−1
b M
g

∼� (S̃b ∪ Sh)
−1 M

g
∼ � S̃−1

r M
g

(2.2.6)
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where the functors with a sign ∼ are isomorphisms of categories and the indi-
cated functors are full.

(b) If char F = 0, all functors are isomorphisms of categories.

Proof. (a) follows from Proposition 2.2.3; (b) follows from Hironaka’s resolution
of singularities (see [Kahn and Sujatha 2015a, Lemma 1.7.1]). �

Remark 2.2.7. Tracking isomorphisms in diagram (2.2.6), one sees that without
assuming resolution of singularities we get a priori 4 different categories of “pure
birational motives”. If p : X̃→ X is a birational morphism, then at least h∼(X) is
a direct summand of h∼(X̃) by Lemma 1.5.2. However it is not clear how to prove
that the other summand is divisible by L without using resolution. We shall get by
for special pairs (A,∼) in Theorem 2.4.2 below, using the alteration theorem of
de Jong and Gabber.

We now introduce:

Definition 2.2.8. The category of pure birational motives is

Motb
∼
(F, A)=

(
Moteff

∼
(F, A)/L∼

)\
.

We also set
Choweff(F, A)=Moteff

rat(F, A),

Chowb(F, A)=Motb
rat(F, A).

When A = Z, we abbreviate this notation to Choweff(F) and Chowb(F).

We note:

Proposition 2.2.9. Taking pseudoabelian envelopes, the first functor in Corollary
2.2.5(a) induces an isomorphism of categories

Motb
∼
(F, A)−→∼

(
(Swb )

−1 Cor∼(F, A)
)\
.

In particular, the functor (Swb )
−1 Cor∼(F, A)→ (Swb )

−1 Moteff
∼
(F, A) is fully faith-

ful and the functor Cor∼(F, A)→ S−1
b Cor∼(F, A) is full.

Proof. All follows from Lemma A.4.1, except for the last statement, which follows
from Proposition 2.2.3(c). �

In Section 4, we shall examine to what extent it is really necessary to adjoin
idempotents in Definition 2.2.8.

2.3. Third approach: extendible pairs. To go further, we need to restrict the ade-
quate equivalence relation we are using:

Definition 2.3.1. An adequate pair (A,∼) is extendible if

• ∼ is defined on cycles over arbitrary quasiprojective F-varieties;
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• it is preserved by inverse image under flat morphisms and direct image under
proper morphisms;

• if X is smooth projective, Z is a closed subset of X and U = X − Z , then the
sequence

Z∼n (Z , A)→ Z∼n (X, A)→ Z∼n (U, A)→ 0 (2.3.2)

is exact.

Note that in (2.3.2), surjectivity always holds because this is already true on the
level of cycles. So the issue is exactness at Z∼n (X, A).

Examples 2.3.3. (a) Rational equivalence (with any coefficients) is extendible.

(b) Algebraic equivalence (with any coefficients) is extendible; see [Fulton 1984,
Example 10.3.4].

(c) The status of homological equivalence is very interesting:

(1) Under the standard conjecture that homological and numerical equivalences
agree, homological equivalence with respect to a “classical” Weil cohomology
theory is extendible if char F = 0 [Corti and Hanamura 2000, Proposition 6.7].
The proof involves resolution of singularities and the weight spectral sequences
for Borel–Moore Hodge homology, their degeneration at E2 and the semisimplic-
ity of numerical motives [Jannsen 1992]. Presumably the same arguments work in
characteristic p by using de Jong’s alteration theorem [1996] instead of Hironaka’s
resolution of singularities; we thank Yves André for pointing this out. See [Voisin
2013, Proposition 1.6] for a more precise statement and a different proof.

(2) It seems that the Corti–Hanamura argument implies unconditionally that André’s
motivated cycles [1996] verify the axioms of an extendible pair.

(3) For Betti cohomology with integral coefficients or l-adic cohomology with Zl

coefficients, homological equivalence is not extendible. (Counterexample: F = C,
n = 1, Z a general surface of degree ≥ 4 in P3; this example goes back to Kollár
[1992, p. 134].) This is closely related to the failure of the Hodge or Tate conjecture
integrally for Z (see [Soulé and Voisin 2005, Section 2]).

(4) Hodge cycles with coefficients in Q verify the axioms of an extendible pair:
similarly to (1), the proof involves resolving the singularities of Z in (2.3.2) and
using the semisimplicity of polarisable pure Hodge structures. See also [Jannsen
1994]. We are indebted to Claire Voisin for explaining these last two points.

(5) Taking Tate cycles for l-adic cohomology, the same argument works if we as-
sume the semisimplicity of Galois action on the cohomology of smooth projective
varieties.
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Lemma 2.3.4. If (A,∼) verifies the first two conditions of Definition 2.3.1, then
(A, rat)≥ (A,∼) (also over arbitrary quasiprojective varieties).

Proof. Again, this follows from [Fulton 1984, Example 1.7.5]. �

Proposition 2.3.5. Let (A,∼) be an extendible pair. For two smooth projective
varieties X, Y , let I∼(X, Y ) be the subgroup of Zdim Y

∼
(X × Y, A) consisting of

those classes vanishing in Zdim Y
∼

(U × Y, A) for some open subset U of X. Then
I∼ is a monoidal ideal in Cor∼(F, A).

Proof. Note that by Lemma 2.3.4 and the third condition of Definition 2.3.1, the
map Irat(X, Y )→ I∼(X, Y ) is surjective for any X, Y ; this reduces us to the case
∼= rat. We further reduce immediately to A = Z.

Let X, Y, Z be three smooth projective varieties. If U is an open subset of X , it
is clear that the usual formula defines a composition of correspondences

CHdim Y (U × Y )×CHdim Z (Y × Z)→ CHdim Z (U × Z)

and that this composition commutes with restriction to smaller and smaller open
subsets. Passing to the limit on U , we get a composition

CHdim Y (YF(X))×CHdim Z (Y × Z)→ CHdim Z (Z F(X))

or
CH0(YF(X))×CHdim Z (Y × Z)→ CH0(Z F(X)).

Here we used the fact that (codimensional) Chow groups commute with filtering
inverse limits of schemes; see [Bloch 2010].

We now need to prove that this pairing factors through

CH0(YF(X))×CHdim Z (V × Z)

for any open subset V of Y . One checks that it is induced by the standard action of
correspondences in CHdim Z (YF(X)×F(X) Z F(X)) on groups of 0-cycles. Hence it is
sufficient to show that the standard action of correspondences factors as indicated,
and up to changing the base field we may replace F(X) by F .

We now show that the pairing

CH0(Y )×CHdim Z (Y × Z)→ CH0(Z)

factors as indicated. The proof is a variant of Fulton’s proof [1984, Example 16.1.11]
of the Colliot-Thélène–Coray theorem [1979] that CH0 is a birational invariant of
smooth projective varieties. Let M be a proper closed subset of Y and let i :M→ Y
be the corresponding closed immersion. We have to prove that for any α ∈ CH0(Y )
and β ∈ CHdim Y (M × Z),

(i × 1Z )∗(β)(α) := (p2)∗((i × 1Z )∗β · p∗1α)= 0,
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where p1 and p2 are respectively the first and second projections on Y × Z .
We shall actually prove that (i × 1Z )∗β · p∗1α = 0. For this, we may assume that

α is represented by a closed point y ∈ Y and β by some integral variety W ⊆M× Z .
Then (i×1Z )∗β ·p∗1α has support in (i×1Z )(W )∩({y}×Z)⊂ (M×Z)∩({y}×Z). If
y /∈ M , this subset is empty and we are done. Otherwise, up to rational equivalence,
we may replace y by a 0-cycle disjoint from M (see [Roberts 1972]), and we are
back to the previous case.

This shows that I∼ is an ideal of Cor∼(F, A). The fact that it is a monoidal
ideal is essentially obvious. �

Definition 2.3.6. For an extendible pair (A,∼), we abbreviate Cor∼(F, A)/I∼
(resp. (Moteff

∼
(F, A)/I∼)\) into Coro

∼
(F, A) (resp. Moto

∼
(F, A)). (Here o stands

for “open”.) We write ho
∼
(X) for the image of h∼(X) in Moto

∼
(F, A). We also set

Chowo(F, A)=Moto
rat(F, A) and Chowo(F)= Chowo(F,Z).

For future reference, let us record here the value of the Hom groups in the most
important case, that of rational equivalence (see also Remark 2.3.10(2) below):

Lemma 2.3.7. We have

Coro
rat(F, A)([X ], [Y ])= CH0(YF(X))⊗ A.

Proposition 2.3.8. In Coro
∼
(F, A):

(a) (g ◦ f )∗ = g∗ ◦ f∗ for any composable rational maps X
f
99K Y

g
99K Z.

(b) [Fulton 1984, Example 16.1.11] f ∗ f∗ = 1X and f∗ f ∗ = 1Y for any birational
map f : X 99K Y .

(c) Morphisms of S̃r (see Definition 2.1.1) are invertible.

Proof. (a) Let F be the fundamental set of f , G be the fundamental set of g,
U = X − F , V = Y −G. By assumption, f (U )∩ V 6=∅, hence W = f −1(V ) is
a nonempty open subset of U , on which g ◦ f is a morphism.

Let us abuse notation and still write f for the morphism fU , etc. Then, by
definition,

g∗ ◦ f∗ = (pX Z )∗((0 f × Z)∩ (X ×0g))

(note that the two intersected cycles are in good position). This cycle clearly con-
tains (g ◦ f )∗ = 0g◦ f as a closed subset. One sees immediately that the restriction
of g∗ ◦ f∗ and (g ◦ f )∗ to W × Z are equal.

(b) This is proven in the same way (or is a special case of (a)).

(c) Let g : X 99K Y be an element of S̃r . Then X is birational to Y × (P1)n for
some n ≥ 0, and if f : X 99K Y × (P1)n is a birational map, its composition with
the first projection π is g. By (a) and (b), it suffices to show that π∗ is invertible in
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Cor∼(F, A)/I∼. For this we may reduce to n = 1 and even to Y = Spec F since
I∼ is a monoidal ideal. Let s : Spec F→ P1 be the∞ section; it suffices to show
that (s ◦π)∗ = 1P1 . But the cycle (s ◦π)∗−1P1 on P1

×P1 is linearly equivalent to
∞×P1 (this is the idempotent defining the Lefschetz motive), and the latter cycle
vanishes when restricted to A1

×P1. �

We shall also need the following lemma in the proof of Proposition 5.1.4(c).

Lemma 2.3.9. Let L/K be an extension of function fields over F , with K = F(X)
and L = F(Y ) for X, Y two smooth projective F-varieties. Let ϕ : Y 99K X be the
rational map corresponding to the inclusion K ↪→ L. Let Z be another smooth
projective F-variety. Then the map

Chowo(F, A)(ho(X), ho(Z))→ Chowo(F, A)(ho(Y ), ho(Z))

given by composition with ϕ∗ : ho(Y )→ ho(X) (see Section 1.4) coincides via
Lemma 2.3.7 with the base-change map CH0(Z K )⊗ A→ CH0(ZL)⊗ A.

Proof. Let V ⊆ Y and U ⊆ X be open subsets such that ϕ is defined on V and
ϕ(V ) ⊆ U . Up to shrinking U , we may assume that ϕ is flat [Grothendieck and
Dieudonné 1966, Théorème 11.1.1]. As in the proof of Proposition 2.3.5, the
composition of correspondences induces a pairing

CHdim X (V ×U )×CHdim Z (U × Z)→ CHdim Z (V × Z),

and the action of ϕ∗ ∈ CHdim X (V ×U ) on α ∈ CHdim Z (U × Z) is given by the flat
pull-back of cycles. Therefore, ϕ∗ induces in the limit the flat pull-back of 0-cycles
from CH0(Z K ) to CH0(ZL). �

Remarks 2.3.10. (1) Propositions 2.3.5 and 2.3.8(a) were independently observed
by Markus Rost in the case∼=rat [Merkurjev 2001, Proposition 3.1 and Lemma 3.3].
We are indebted to Karpenko for pointing this out and for referring us to Merkur-
jev’s preprint.

(2) In Coro
∼
(F, A), morphisms are by definition given by the formula

Coro
∼
(F, A)([X ], [Y ])= lim

−−→
U⊆X

Zdim Y
∼

(U × Y, A).

The latter group maps onto Z∼0 (YF(X), A). If ∼ = rat, this map is an isomor-
phism (see Lemma 2.3.7). For other equivalence relations, this is far from being
the case: for example, if ∼= alg, F is algebraically closed, X, Y are two curves
and, say, A = Z, then

Z1
alg(X × Y,Z)= NS(X × Y )= NS(X)⊕NS(Y )⊕Hom(JX , JY )

= Z⊕Z⊕Hom(JX , JY ),
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where NS is the Néron–Severi group, and JX and JY are the Jacobians of X and Y .
On the other hand,

Zalg
0 (YF(X),Z)= NS(YF(X))= Z.

When we remove a point from X , we kill the factor NS(X) = Z. But any
two points of X are algebraically equivalent, so removing further points does not
modify the group any further. Hence

lim
−−→

U⊆X
Zdim Y

alg (U × Y,Z)= Z⊕Hom(JX , JY ).

We thank Colliot-Thélène for helping clarify this matter.

2.4. The main theorem. We now extend the ideal I∼ from

Cor∼(F, A) to Moteff
∼
(F, A)

in the usual way (see [André and Kahn 2002, Lemme 1.3.10]), without changing
notation. By Propositions 2.2.3(a) and 2.3.8, we get a composite functor

Motb
∼
(F, A)→ (S̃−1

r Moteff
∼
(F, A))\→Moto

∼
(F, A) (2.4.1)

for any extendible pair (A,∼). Since both categories are (idempotent completions
of) full images of Moteff

∼
(F, A), this functor is automatically full. We are going to

show that it is an equivalence of categories in some important cases.

Theorem 2.4.2. Let (A,∼) be an extendible pair. Suppose that the exponential
characteristic p of F is invertible in A. Then the functor (2.4.1) is an isomorphism
of categories.

Proof. 3 We have to show that I∼(M, N )⊆L∼(M, N ) for any M, N ∈Moteff
∼
(F, A).

Proposition 1.7.2 reduces us to the case where F is perfect. Clearly we may assume
M = h∼(X), N = h∼(Y ) for two smooth projective varieties X, Y .

Let f ∈ I∼(h∼(X), h∼(Y )). By the third condition in Definition 2.3.1, the cycle
class f ∈ Z∼dim X (X × Y, A) is of the form (i × 1Y )∗g for some closed immersion
i : Z→ X , where g ∈Z∼dim X (Z×Y, A). Let g̃ be a cycle representing g. Write g̃=∑

k ak gk , with ak ∈ A and gk irreducible. Then (i×1Y )∗(gk) ∈ I∼(h∼(X), h∼(Y )).
This reduces us to the case where g is represented by an irreducible cycle g̃.

Choose Z minimal among the closed subsets of X such that g̃ is supported on
Z × Y . In particular, Z is irreducible.

Consider Z with its reduced structure. Let l be a prime number different from p;
by Gabber’s refinement of de Jong’s theorem [Illusie and Temkin 2014, Théorème
X.2.1], we may choose a proper, generically finite morphism πl : Z̃l → Z where

3We thank N. Fakhruddin for his help, which removes the recourse to Chow’s moving lemma in
[Kahn and Sujatha 2002].
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Z̃l is smooth projective (irreducible) and πl is an alteration of generic degree dl

prime to l. (Recall that an alteration is a proper, generically finite morphism.)
By the minimality of Z , the support of g̃ has nonempty intersection g̃1 with V×Y ,

where V = Z − (Zsing ∪ T ) with Zsing the singular locus of Z and T the closed
subset over which πl is not finite. Let πV : π

−1
l (V )→ V be the map induced by πl ;

note that πV is flat since V and π−1
l (V ) are smooth. We then have an equality of

cycles
dl g̃1 = (πV × 1Y )∗(πV × 1Y )

∗g̃1.

Let γl be the closure of (πV × 1Y )
∗g̃1 in Z̃l .4 We get an equality of cycles (the

support of (πV × 1Y )∗(πV × 1Y )
∗g̃1 is dense in that of (πl × 1Y )∗γl):

dl g̃ = (πl × 1Y )∗γl .

Let d = gcdl(dl), which is a power of p; then d = gcd(dl1, . . . , dlr ) for some
finite set of primes {l1, . . . , lr }. For simplicity, write Zli = Zi , πli = πi and γli = γi .

Let hi = d−1
[γi ] ∈ Z∼dim X (Z̃i × Y, A). Choose a1, . . . , ar ∈ Z such that d =∑

i ai di , so that
f =

∑
i

ai ((i ◦πi )× 1Y )∗hi .

Then the correspondence f ∈Moteff
∼
(F)(h∼(X), h∼(Y )) factors as

h∼(X)
(i◦π)∗
−−−→ h∼

(∐
Z̃i

)
(dim X − dim Z)

(hi )
−→ h∼(Y )

(see (1.5.1)), which concludes the proof. �

Corollary 2.4.3. Under the assumptions of Theorem 2.4.2, all the categories of
diagram (2.2.6) are isomorphic to Moteff

∼
(F, A)/I∼.

Proof. By Proposition 2.2.3(b) and (d) we already know that the categories

Moteff
∼
(F, A)/L∼, (Swb )

−1 Moteff
∼
(F, A) and (Swr )

−1 Moteff
∼
(F, A)

are isomorphic and that

(S̃b)
−1 Moteff

∼
(F, A) and (S̃r )

−1 Moteff
∼
(F, A)

are isomorphic. We also know that the functor

Moteff
∼
(F, A)/L∼→ (Sb)

−1 Moteff
∼
(F, A)

is full (Proposition 2.2.3(c)); by Theorem 2.4.2, this implies that it is an isomor-
phism. To conclude the proof, it is sufficient to show that any morphism of S̃r ,
hence of Sr , has a right inverse in Moteff

∼
(F, A)/L∼ (see (2.2.6)). Since S̃r is

4More correctly, the cycle associated to the schematic closure of (πV × 1Y )
−1(g̃1) in Z̃l : take

the topological closure of each component of (πV × 1Y )
∗ g̃1 and keep the same multiplicities.
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generated by S̃b and projections of the form X × P1
→ X (see the proof of

Proposition 2.2.3(d)) and since this is obvious for these projections, we are left to
prove it for elements f : X 99KY of S̃b. But we have f∗ f ∗=1X in Moteff

∼
(F, A)/I∼

by Proposition 2.3.8(b), hence in Moteff
∼
(F, A)/L∼ by Theorem 2.4.2. �

2.5. Birational image motives. Based on the categories of Section 1.8, we define
categories Motb

∼
(F, A). If ∼ is extendible and p is invertible in A, the analogue

of Theorem 2.4.2 holds, with the same proof.

2.6. Recapitulation, comments and notation. In Definition 2.2.8, we associated
to any admissible pair (A,∼) a category of birational motives Motb

∼
(F, A). If

(A,∼) is extendible (Definition 2.3.1), we introduced in Definition 2.3.6 another
category Moto

∼
(F, A) plus a full functor Motb

∼
(F, A)→Moto

∼
(F, A). We showed

in Theorem 2.4.2 that this functor is an isomorphism of categories when the ex-
ponential characteristic p is invertible in A; in particular, this is true for any A
in characteristic 0. This gives a great flexibility in computing Hom groups, as
in some cases one can use their “algebraic” description in terms of killing the
Lefschetz motive, and in other cases their “geometric” description as Chow groups
of 0-cycles if ∼ is rational equivalence.

In the sequel, we commit the abuse of notation which consists of writing Moto
∼

for Motb
∼

even when we don’t know if the pair (A,∼) is extendible (notably, when
∼ is numerical equivalence). We do this because we feel that keeping the distinc-
tion would create more confusion than this choice.

3. Examples

We give some examples and computations of birational motives.

3.1. Varieties with trivial birational motive. These were initially studied by Bloch
and Srinivas [1983] over a universal domain. The reader should compare the
following to [Kahn and Sujatha 2015a, Theorem 8.5.1]; see also [Totaro 2014,
Theorem 2.1].

Proposition 3.1.1. Let A be a connected commutative ring, and let X be a smooth
projective F-variety. Then the following conditions are equivalent:

(i) For any smooth projective F-variety Y , CH0(X F(Y ))⊗A−→∼ A (by the degree
map).

(ii) CH0(X F(X))⊗ A −→∼ A.

(iii) The class of the generic point ηX in CH0(X F(X))⊗ A belongs to

Im(CH0(X)⊗ A→ CH0(X F(X))⊗ A).

(iv) ho(X)= 1 in Chowo(F, A).
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(v) (For A = Z:) M0(F)−→∼ A0(X,M0) for any cycle module M.

If p is invertible in A, they are also equivalent to:

(vi) For any extension K/F, CH0(X K )⊗ A −→∼ A.

If F is a universal domain and A ⊇Q, they are also equivalent to:

(vii) CH0(X)⊗ A −→∼ A.

(viii) CH0(X)−→∼ Z.

(Parts of this proposition are standard; see, e.g., [Auel et al. 2013, Lemma 1.3].)

Proof. (i)⇒ (ii)⇒ (iii) is obvious. By Lemma 2.3.7, the map of (iii) can be trans-
lated into

Chowo(F, A)(1, ho(X))→ Chowo(F, A)(ho(X), ho(X))

via the projection ho(X)→ ho(Spec k)= 1. Since ηX represents the identity endo-
morphism of ho(X), (iii) means that the latter factors through 1. Since End(1)= A,
the resulting idempotent endomorphism of 1 must be 0 or 1; so ho(X) = 0 or 1,
but the first case is impossible as it would imply that ηX = 0, while deg(ηX )= 1.
So (iii)⇒ (iv). Using Lemma 2.3.7 again, we get (iv)⇒ (i).

(vi)⇒ (i) is obvious; to prove the converse, we reduce to F perfect by using
Proposition 1.7.2, and then to K/F finitely generated by a limit argument. Then
K is the function field of some smooth F-variety. We argue as in the proof of
Theorem 2.4.2: using [Illusie and Temkin 2014, Théorème X.2.1], we can find
finite extensions L i/K such that L i = F(Yi ) for Yi smooth projective, such that
the gcd of the [L i : K ] is a power of p. Then (CH0(X K )⊗ A)deg=0 is a direct
summand of

⊕
i (CH0(X L i )⊗ A)deg=0 = 0 by a transfer argument, hence (vi).

(iv)⇒ (v)⇒ (iii): see Section 6.
It remains to prove (iii)⇐ (vii)⇒ (viii) when F is a universal domain, since

(viii)⇒ (vii) is obvious. The implication (vii)⇒ (iii) is the classical Bloch–Srinivas
argument [1983, Proposition 1]: X is defined over a subfield F ′ ⊂ F finitely gen-
erated over the prime field; for clarity, write X ′ for this F ′-model. Now F ′(X ′)
embeds into F over F ′. Since

Ker
(
CH0(X ′F ′(X ′))→ CH0(X ′F )= CH0(X)

)
is torsion by a transfer argument, (vii) implies that CH0(X ′F ′(X ′))⊗ A −→∼ A. Thus
ηX ′ is A-rationally equivalent to a closed point of X ′, hence (iii). If (vii) is true,
then Alb(X)(F)⊗ A = 0, where Alb(X) is the Albanese variety of X ; this implies
Alb(X) = 0. But Roı̌tman’s theorem [1980b] then implies that CH0(X)tors = 0,
whence (viii). �

Corollary 3.1.2. Conditions (i)–(v) of Proposition 3.1.1 are stable under products
of varieties; so are (vi), (vii) and (viii) under the stated conditions on A and F.
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Proof. Indeed, this is obviously the case for condition (iv). �

Remarks 3.1.3. (1) Condition (v) of Proposition 3.1.1 can be extended to any A
if we consider cycle modules with coefficients in A.

(2) Except for (iv), Corollary 3.1.2 can also be proven without reference to bira-
tional motives when A ⊇Q, using that the product map

(CH0(X)⊗ A)⊗ (CH0(Y )⊗ A)→ CH0(X × Y )⊗ A

is then surjective for any smooth projective X, Y : reduce to F algebraically closed
by a transfer argument, when this even holds integrally.

We now give some examples. In part (3) of the following proposition, the Betti
numbers bi (X)= dim H i (X) refer to a “classical” Weil cohomology H : Betti or
de Rham in characteristic 0, crystalline in characteristic > 0, l-adic in character-
istic 6= l. It is known that bi (X) does not depend on the choice of such a Weil
cohomology.

Proposition 3.1.4. (1) If X is retract rational, then ho(X)= 1 in Chowo(F,Z).

(2) If X is rationally chain connected, then ho(X)= 1 in Chowo(F,Q).

(3) If ho(X)= 1 in Chowo(F,Q), then b1(X)= 0 and b2(X)= ρ(X) (the Picard
number).

(4) If dim X = 2, the converse of (3) is true if and only if X verifies Bloch’s
conjecture on 0-cycles.

Proof. (1) This follows from [Kahn and Sujatha 2015a, Proposition 8.6.2] and the
functor (5.1.1) below. (One could also give a direct proof.)

(2) Let F(X) be an algebraic closure of F(X); then X (F(X))/R = ∗. Since the
group of 0-cycles on X F(X) is generated by X (F(X)), this in turn implies that
CH0(X F(X))−→

∼ Z, which implies by a transfer argument that

CH0(X F(X))⊗Q−→∼ Q.

(3) Since the hypothesis and conclusion do not change by extension of F , we
may assume that F is a universal domain. We use Theorem 2.4.2: in Choweff

=

Choweff(F,Q) we get a decomposition

h(X)= 1⊕M ⊗ L

for some M ∈ Choweff. Applying the cycle class map, we get a commutative
diagram

CH1(X)⊗ K == CH0(M)⊗ K

H 2(X)

cl1Xg
======= H 0(M)

cl0Mg
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Here K is the field of coefficients of H and, as usual, CHi (M) :=Choweff(M, Li )

(giving back the rational Chow groups of smooth projective varieties) and cl is the
cycle class map; for simplicity, we neglect Tate twists on cohomology. But cl0M
is an isomorphism, as one sees by writing M as a direct summand of h(Y ) for
some smooth projective Y ; therefore cl1X is an isomorphism as well. Since this
map factors through the Néron–Severi group NS(X)⊗ K , this implies Pic0(X)= 0
(hence b1(X)= 0), and b2(X)= ρ(X) as requested.

(4) The conditions in the conclusion of (3) imply Alb(X)= 0 and (under Bloch’s
conjecture) T (X K )= 0 for any extension K/F , where T is the Albanese kernel;
the conclusion now follows from condition (i) of Proposition 3.1.1. �

Remarks 3.1.5. (1) As noted in [Kahn 2009, Example 7.3], an Enriques surface
verifies the conditions of Proposition 3.1.1 (for 2 invertible in A); this can be recov-
ered from Proposition 3.1.4(4) in a rather silly way. On the other hand, Inose and
Mizukami’s [1979] and Voisin’s [1992] proofs of the Bloch conjecture for some
quotients of hypersurfaces by finite groups give examples of surfaces of general
type having trivial birational motive (with Q-coefficients), which shows once again
how motivic information is in some sense orthogonal to geometric information
related to the Kodaira dimension. For a more refined example, see remark (3)
below.

(2) Applying the reasoning in the proof of Proposition 3.1.4(3) to CH2 and CH1,
one recovers some of the representability results of [Bloch and Srinivas 1983] in
a different way. (The situation considered by Bloch and Srinivas is more general,
and in the present terms amounts to the following: assume that, in Chowo(F,Q),
ho(X) is isomorphic to a direct summand of ho(Y ) for some smooth projective
variety Y of dimension n ≤ 3.)

(3) Let X be a smooth projective variety such that ho(X) = 1 in Chowo(F,Q).
For simplicity, assume that X has a rational point x . By condition (iii) of Propo-
sition 3.1.1, there is an integer N > 0 such that N (ηX − x) = 0 in CH0(X F(X)).
Then in Chowo(F,Z), we have

ho(X)= 1⊕M with N1M = 0.

Indeed, x defines an idempotent endomorphism of ho(X) which splits off the
summand 1, and ηX − x is the complementary idempotent. It follows that

NCH0(X K )0 = 0

for any extension K/F and (for instance) that

N Coker(Mn(K )→ A0(X K ,Mn))= N Ker(A0(X K ,Mn)→ Mn(K ))= 0
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for any cycle module M and any K ⊇ F (see Section 6): compare [Auel et al. 2013,
Theorem 1.4].

If N is minimal, then N > 1 is an obstruction to having

ho(X)= 1 in Chowo(F,Z);

this obstruction has been studied recently in [Auel et al. 2013; Voisin 2014; 2015].
Using the cycle module Mn(K )= H n(K ,Q/Z(n− 1)) for n = 1, one finds that N
is divisible by the exponent e of H 1

ét(X F ,Q/Z). One can show that N = e if F is
algebraically closed and X is a surface [Kahn 2016]; for e = 1, this was proven by
Voisin [2014, Proposition 2.2] and by Auel, Colliot-Thélène and Parimala [Auel
et al. 2013, Corollary 1.10]. For example, N = 2 for an Enriques surface and
N = 1 for Barlow’s surface [1985a; 1985b] (of general type), showing that its
motive is 1 in Chowo(F,Z). (See the recent survey paper [Bauer et al. 2011] for
more examples of surfaces of general type with pg = 0.)

3.2. Quadrics. Suppose char F 6= 2 and let X be a smooth projective quadric
over F . By a theorem of Swan [1989] and Karpenko [1990], the degree map

deg : CH0(X)→ Z

is injective, with image Z if X has a rational point and 2Z otherwise. This implies:

Proposition 3.2.1. Let X, Y be two smooth projective over F. Suppose that Y is a
quadric. Then, in Chowo(F), we have

Hom(ho(X), ho(Y ))=
{

Z if YF(X) is isotropic,
2Z otherwise,

where we have used the degree map deg : CH0(YF(X))→ Z. Similarly, in

Chowo
(F,Z/2)

(see Section 2.5), we have

Hom(ho(X), ho(Y ))=
{

Z/2 if YF(X) is isotropic,
0 otherwise.

Remark 3.2.2. Much work has been done recently on torsion in CH0 of projective
homogeneous varieties: we may quote [Chernousov et al. 2005; Krashen 2010;
Petrov et al. 2008; Chernousov and Merkurjev 2006]. There are many examples of
projective homogeneous varieties other than quadrics for which CH0(Y ) is torsion-
free; by [Chernousov and Merkurjev 2006, Corollary 4.3], this is always the case
if Y is isotropic. This allows one to extend the second part of Proposition 3.2.1
to arbitrary projective homogeneous Y (with suitable coefficients). On the other
hand, there are examples of anisotropic Y such that CH0(Y )tors 6= 0 [Krashen 2010,
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Proposition 1.1; Chernousov and Merkurjev 2006, Section 18], so the first part of
Proposition 3.2.1 does not extend in full generality.

3.3. The nilpotence conjecture.

Conjecture 3.3.1. For any two adequate pairs (A,∼), (A,∼′) with A ⊇ Q and
∼≥∼

′, and any M ∈Mot∼(F, A), Ker(End(M)→ End(M∼′)) is nilpotent. (We
say that the kernel of Mot∼(F, A)→Mot∼′(F, A) is locally nilpotent.)

Since rat is the finest, and num is the coarsest, adequate equivalence relation, this
conjecture is clearly equivalent to the same statement for ∼= rat and ∼′ = num,
but it may be convenient to consider it for selected adequate equivalence relations.
For example:

Proposition 3.3.2. (a) Conjecture 3.3.1 is true for M ∈Moteff
∼
(F, A) (and any

∼
′
≤∼) provided M is finite-dimensional in the sense of Kimura and O’Sullivan

[Kimura 2005, Definition 3.7]. In particular, it is true if M is of abelian type,
i.e., M is a direct summand of h∼(AK ) for A an abelian F-variety and K an
étale F-algebra.

(b) If∼= hom, ∼′ = num, the condition of (a) is equivalent to the sign conjecture:
If H is the Weil cohomology theory defining hom, the projector of
End H(M) projecting H(M)= H+(M)⊕ H−(M) onto its summand
H+(M) is algebraic.

In particular, it is true if M satisfies the standard conjecture C (algebraicity
of the Künneth projectors).

(c) Conjecture 3.3.1 is true in the following cases:
(i) ∼= rat, ∼′ = tnil.

(ii) ∼= rat, ∼′ = alg.

Proof. (a) This is a theorem of Kimura and O’Sullivan; see [Kimura 2005, Proposi-
tion 7.5; André and Kahn 2002, Proposition 9.1.14]. The second assertion follows
from Kimura’s results; see [Kahn et al. 2007, Example 7.6.3(4)].

(b) See [André and Kahn 2002, Theorem 9.2.1(c)].

(c) (i) follows from the Voevodsky–Kimura lemma that smash-nilpotent correspon-
dences are nilpotent; see [Voevodsky 1995, Lemma 2.7; Kimura 2005, Propo-
sition 2.16; André and Kahn 2002, Lemma 7.4.2(ii)]. (ii) follows from (i) and
Voevodsky’s theorem [1995, Corollary 3.2] that alg≥ tnil. �

Let us recall some conjectures which imply Conjecture 3.3.1:

Proposition 3.3.3. (a) Conjecture 3.3.1 is implied by Voevodsky’s conjecture [1995,
Conjecture 4.2] that smash-nilpotence equivalence equals numerical equiva-
lence.
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(b) It is also implied by the sign conjecture plus the Bloch–Beı̆linson–Murre con-
jecture [Jannsen 1994; Murre 1993].

Proof. (a) This follows from Proposition 3.3.2(c)(i).

(b) Recall that the Bloch–Beı̆linson conjecture is equivalent to Murre’s conjecture
[1993] by [Jannsen 1994, Theorem 5.2]. Now the formulation of the former con-
jecture [Jannsen 1994, Conjecture 2.1] implies the existence of an increasing chain
of equivalence relations (∼ν)1≤ν≤∞ such that

• ∼1 = hom;

• if α, β are composable Chow correspondences such that α ∼µ 0 and β ∼ν 0,
then β ◦α ∼µ+ν 0;

• for any smooth projective variety X , there is ν= ν(X) such that A∼ν (X×X)=
Arat(X × X).

There properties, together with the sign conjecture, imply Conjecture 3.3.1 by
Proposition 3.3.2(b). �

Remark 3.3.4. In fact, one has more precise but slightly weaker implications: the
Bloch–Beı̆linson–Murre conjecture + “hom = num” conjecture =⇒ Voevodsky’s
conjecture=⇒ the Kimura–O’Sullivan conjecture [any Chow motive is finite-dimen-
sional] =⇒ Conjecture 3.3.1; see the synoptic table at the end of Chapter 12 in
[André 2004].

For the first implication, see [André 2004, Théorème 11.5.3.1]. For the second
one, see [André 2004, Théorème 12.1.6.6]. The third one is in Proposition 3.3.2(a).

Definition 3.3.5. Let M ∈Mot∼(F, A). For n ∈Z, we write ν(M)≥ n if M⊗L⊗−n

is effective.5

Proposition 3.3.6. Suppose A⊇Q and the nilpotence conjecture holds for ∼≥∼′.
Then:

(a) The functor Mot∼(F, A)→Mot∼′(F, A) is conservative, and for

M ∈Mot∼(F, A)

any set of orthogonal idempotents in the endomorphism ring of M∼′ lifts.

(b) If M ∈Mot∼(F, A) and M∼′ is effective, then M is effective.

(c) If M ∈Mot∼(F, A) and ν(M∼′)≥ n, then ν(M)≥ n.

(d) [André 2004, Section 13.2.1] The map K0(Mot∼(F, A))→ K0(Mot∼′(F, A))
is an isomorphism (here, the K0-groups are those of additive categories).

5By convention, we say here that a motive N ∈Mot∼(F, A) is effective if it is isomorphic to a
motive of Moteff

∼ (F, A).
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Proof. (a) This is classical (see [Jannsen 1994, Lemma 5.4] for the second state-
ment).

(b) By definition, M∼′ effective means that M∼′ is isomorphic to a direct summand
of h∼′(X) for some smooth projective X . By (a), one may lift the corresponding
idempotent e∼′ to an idempotent endomorphism e of h∼(X), and the isomorphism
M∼′ ' (h∼′(X), e∼′) to an isomorphism M ' (h∼(X), e).

(c) This follows from (b) applied to M ⊗ L⊗−n .

(d) This follows from (a), since then the functor Mot∼(F, A)→Mot∼′(F, A) is
conservative and essentially surjective. �

The importance of Conjecture 3.3.1 will appear again in the next subsection and
in Section 4 (see Remark 4.3.4 and Proposition 4.4.1).

3.4. The Chow–Künneth decomposition. Here we take (A,∼) = (Q, rat). Re-
call that Murre [1993] strengthened the standard conjecture C (algebraicity of the
Künneth projectors) to the existence of a Chow–Künneth decomposition

h(X)'
2d⊕

i=0

hi (X)

in Chow(F,Q). (This is part of the Bloch–Beı̆linson–Murre conjecture appear-
ing in Proposition 3.3.3(b)). By Proposition 3.3.6(a), the nilpotence conjecture
together with the standard conjecture C imply the existence of Chow–Künneth
decompositions.

Here are some cases where the existence of a Chow–Künneth decomposition is
known independently of any conjecture:

(1) Varieties of dimension ≤ 2 [Murre 1990] (see also [Scholl 1994]). In fact,
Murre constructs for any X a partial decomposition

h(X)' h0(X)⊕ h1(X)⊕ h[2,2d−2](X)⊕ h2d−1(X)⊕ h2d(X).

(2) Abelian varieties [Shermenev 1974].

(3) Complete intersections in PN (see the next subsection).

(4) If X and Y have a Chow–Künneth decomposition, then so does X × Y .

Suppose that the nilpotence conjecture holds for h(X) ∈ Chow(F,Q) and that
homological and numerical equivalences coincide on X×X . The latter then implies
the standard conjecture C for X [Kleiman 1994], hence the existence of a Chow–
Künneth decomposition by the remark above. In [Kahn et al. 2007, Theorem
14.7.3(iii)], it is proven:
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Proposition 3.4.1. Under these hypotheses, there exists a further decomposition
for each i ∈ [0, 2d]:

hi (X)'
⊕

hi, j (X)( j),

such that hi, j (X) = 0 for j /∈ [0, [i/2]] and, for each j , ν(hhom
i, j (X)) = 0 (see

Definition 3.3.5). Moreover, one has isomorphisms

h2d−i,d−i+ j (X)−→∼ hi, j (X) (3.4.2)

for i ≤ d. In particular, ν(hi (X)) > 0 for i > d.

Let us justify the last assertion; the isomorphisms (3.4.2) imply that, when i > d ,
hi, j (X)= 0 for j < i − d .

Since Choweff(F,Q)→ Chow(F,Q) is fully faithful, all the above (refined)
Chow–Künneth decompositions hold for the effective Chow motives

h(X) ∈ Choweff(F,Q).

We deduce:

Corollary 3.4.3. Under the nilpotence conjecture and the conjecture that homo-
logical and numerical equivalences coincide, for any smooth projective variety X
the image of its Chow–Künneth decomposition in Chowo(F,Q) is of the form

ho(X)'
d⊕

i=0

ho
i (X).

Moreover, with the notation of Proposition 3.4.1, one has

ho
i (X)' ho

i,0(X) for i ≤ d.

Examples where this conclusion is true unconditionally follow faithfully the
examples where the Chow–Künneth decomposition is unconditionally known:

Proposition 3.4.4. The conclusion of Corollary 3.4.3 holds in the following cases:

(1) Varieties of dimension ≤ 2.

(2) Abelian varieties.

(3) Complete intersections in PN .

(4) If X and Y have a Chow–Künneth decomposition and verify this conclusion,
then so does X × Y .

Proof. In cases (1) and (2), the conclusion holds because one has “Lefschetz
isomorphisms” h2d−i (X)−→∼ hi (X)(d − i) for i > d. For curves, it is trivial, for
surfaces they are constructed in [Murre 1990] (see [Scholl 1994, Theorem 4.4(ii)];
the isomorphism is constructed for i = 0, 1 and any X ), and for abelian varieties
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they are constructed in [Shermenev 1974]. For (3), see the next subsection. Finally,
(4) is clear. �

In the case of a surface, Kahn et al. [2007] construct a refined Chow–Künneth
decomposition

h(X)= h0(X)⊕ h1(X)⊕NSX (1)⊕ t2(X)⊕ h3(X)⊕ h4(X),

where NSX is the Artin motive corresponding to the Galois representation defined
by NS(X)⊗Q, and t2(X) is the transcendental part of h(X). (In the notation of
Proposition 3.4.1, h2,0(X) = t2(X) and h2,1(X) = NSX .) This translates on the
birational motive of X as

ho(X)= ho
0(X)⊕ ho

1(X)⊕ to
2 (X).

3.5. Motives of complete intersections. These computations will be used in Sec-
tion 4. Here we take A ⊇Q.

For convenience, we take the notation of [Deligne 1973]; so let X ⊂ Pr be a
smooth complete intersection of multidegree a = (a1, . . . , ad), and let

n = r − d = dim X.

Then the cohomology of X coincides with the cohomology of Pr except in middle
dimension [Deligne 1973], and in particular it is fully algebraic except in middle
dimension. This allows us to easily write down a Chow–Künneth decomposition
for h(X) in the sense of [Murre 1993] (see also [Esnault et al. 1997, Corollary 5.3]):

(1) (Murre) For each i 6= n/2, let ci
∈ Z i (X) be an algebraic cycle whose co-

homology class generates H 2i (X) (here H is some Weil cohomology). Then
the Chow–Künneth projector π2i is given by ci

× cn−i . We take π j = 0 for
j odd 6= n, and πn :=1X −

∑
j 6=n π j .

(2) Consider the inclusion i : X ↪→ Pr . This yields morphisms of motives

h(Pr )(−d)
i∗
−→ h(X)

i∗
−→ h(Pr ).

Given the decomposition h(Pr ) '
⊕r

j=0 L j , this yields for each j ∈ [0, n]
morphisms

L j
i∗j
−→ h(X)

i j
∗

−→ L j

with composition a =
∏

ai . Then (1/a)i∗j i j
∗ defines the 2i-th Chow–Künneth

projector of X (π2i in (1)), except if 2i=n. Let πprim
n :=1h(X)−

∑n
i=0(1/a)i

∗

j i j
∗

and let the image pn(X) of the projector πprim
n be the primitive part of hn(X).

Note that the Chow–Künneth projectors of (1) and (2) are actually equal. Let
us record here the corresponding (refined) Chow–Künneth decomposition:

h(X)' 1⊕ L⊕ · · ·⊕ Ln
⊕ pn(X). (3.5.1)
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Lemma 3.5.2. (a) Homological and numerical equivalences agree on all (ratio-
nal) Chow groups of X provided n is odd or (if char F = 0) the Hodge reali-
sation of pn(X) does not contain any direct summand isomorphic to Ln/2.

(b) Suppose (a) is satisfied. Then for any adequate pair (∼, A) with A ⊇Q and
any j ∈ [0, n], we have

Mot∼(F, A)(L j , pn(X))= Ker(A∼j (X, A)→ Anum
j (X, A)).

Proof. We have

A∼j (X, A)=Mot∼(F, A)(L j , h(X))

=

n⊕
i=0

Mot∼(F, A)(L j , Li )⊕Mot∼(F, A)(L j , pn(X))

=Mot∼(F, A)(L j , L j )⊕Mot∼(F, A)(L j , pn(X)).

For ∼ = hom, we have Mot∼(F, A)(L j , pn(X)) = 0 by weight reasons for
2 j 6= n and under the hypothesis of (a) for 2 j = n (note that the Hodge realisation
of pn(X) is semisimple, as a polarisable Hodge structure). Hence the same is true
for any ∼ finer than hom, in particular ∼ = num. This proves (a). Moreover,
Mot∼(F, A)(L j , L j )= A for any choice of ∼. Hence (b). �

Equation (3.5.1) shows that the birational motive of X reduces to 1⊕ p∼n (X)
o.

In fact, it is possible to be much more precise:

Proposition 3.5.3. Let a = (a1, . . . , ad) be the multidegree of X ⊂ Pr .

(a) If a1+ · · ·+ ad ≤ r , then ho
rat(X)= 1.

(b) If a1+· · ·+ ad > r , then ho
num(X) 6= 1 (equivalently, pnum

n (X)o 6= 0) provided
char F = 0 or X is generic.

Proof. (a) Under the hypothesis, we conclude from Roı̌tman’s theorem [1980a]
that CH0(X K )⊗Q=Q for any extension K/F .6 Assertion (a) then follows from
Proposition 3.1.1.

(b) It suffices to prove the statement for homological equivalence, since the kernel
of Mothom(F,Q)(h(X),h(X)) → Motnum(F,Q)(h(X),h(X)) is a nilpotent ideal
(see Propositions 3.3.2(b) and 3.3.6(a)).

If char F = 0, we may use Hodge cohomology and Deligne’s theorem [1973,
Théorème 2.5(ii), p. 54]. Namely, with the notation of [loc. cit.], the condition

6Of course we could also invoke Proposition 3.1.4(2) since X is Fano, hence rationally chain
connected, but this theorem of Campana [1992] and Kollár, Miyaoka and Mori [Kollár et al. 1992]
was proven much later than Roı̌tman’s work.
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phom
n (X)o = 0 implies h0,n

0 (a)= 0, which is equivalent by Deligne’s theorem to

0≤
[

n+ d −
∑

ai

sup(ai )

]
,

that is,
∑

ai ≤ n+ d = r .
If char F > 0 and X is generic, we may use Katz’s theorem [1973, p. 382,

Theorem 4.1]. �

Remarks 3.5.4. (1) Katz also has a result [1973, Theorem 4.2] concerning a
generic hyperplane section of a given complete intersection.

(2) It seems possible to remove the genericity assumption in positive characteristic
by lifting the coefficients of the equations defining X to characteristic 0. We have
not worked out the details.

4. On adjoints and idempotents

We now want to examine two related questions:

(1) Does the projection functor Moteff
∼
(F, A)→Moteff

∼
(F, A)/L∼ have a right

adjoint? This question was raised by Luca Barbieri-Viale and is closely related
to a conjecture of Voevodsky [1992, Conjecture 0.0.11].

(2) Is the category Moteff
∼
(F, A)/L∼ pseudoabelian, i.e., is it superfluous to take

the pseudoabelian envelope in Definition 2.2.8?

The answer to both questions is “yes” for ∼ = num and A ⊇ Q, as an easy
consequence of Jannsen’s semisimplicity theorem for numerical motives [1992].
In fact:

Proposition 4.0.1 [Kahn 2009, Proposition 7.7]. (a) The projection functor

π :Moteff
num→Moto

num

is essentially surjective.

(b) π has a section i which is also a left and right adjoint.

(c) The category Moteff
num is the coproduct of Moteff

num⊗L and i(Moto
num), i.e., any

object of Moteff
num can be uniquely written as a direct sum of objects of these

two subcategories.

In the sequel, we want to examine these questions for a general adequate pair;
see Theorems 4.3.2 and 4.3.3 for (1) and Proposition 4.4.1 for (2). This requires
some preparation.
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4.1. A lemma on base change. Let P :A→ B be a functor. Recall that one says
that “its” right adjoint is defined at B ∈ B if the functor

A 3 A 7→ B(P A, B)

is representable. We write P]B for a representing object (unique up to unique
isomorphism).

Let
A ϕ

� B

C

P
g

ψ
� D

Q
g

be a naturally commutative diagram of pseudoabelian additive categories, and let
A ∈A.

Suppose that “the” right adjoint P] of P is defined at P A ∈ C and that the right
adjoint Q] of Q is defined at ψP A ' QϕA. We then have two corresponding unit
maps (adjoint to the identities of P A and QϕA)

εP : A→ P]P A, εQ : ϕA→ Q]QϕA.

Lemma 4.1.1. Suppose that εQ is an isomorphism. Then ϕεP has a retraction. If
moreover ϕ is full and Ker(EndA(A)→ EndB(ϕA)) is a nil ideal, then εP has a
retraction.

Proof. Let ηP : P P]P A→ P A be the counit map of the adjunction at P A (adjoint
to the identity of P]P A), and let u :QϕA−→∼ ψP A and v :QϕP]P A−→∼ ψP P]P A
be the natural isomorphisms from Qϕ to ψP evaluated respectively at A and P]P A.
We then have a composition

QϕP]P A
v
−→ ψP P]P A

ψηP
−−→ ψP A,

which yields by adjunction a “base change morphism”

ϕP]P A
b
−→ Q]ψP A.

Inspection shows that the diagram

ϕA
ϕεP
� ϕP]P A

Q]QϕA

εQg
Q]u
� Q]ψP A

b
g

commutes. The first claim follows, and the second claim follows from the first. �
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4.2. Right adjoints. We come back to question (1), posed at the beginning of this
section. In [Kahn et al. 2007, Remark 14.8.7; Kahn 2009, Remark 7.8(3)], it was
announced that one can show the nonexistence of the right adjoint for∼= rat, using
the results of [Huber 2008, Appendix]. The proof turns out not to be exactly along
these lines, but is closely related; see Lemma 4.2.1 and Theorems 4.3.2 and 4.3.3.

Let us abbreviate the notation to Moteff
=Moteff

∼
(F, A), Moto

=Moto
∼
(F, A).

Let P :Moteff
→Moto denote the projection functor, and let P] denote its (a priori

partially defined) right adjoint. Let L⊥ be the full subcategory of Moteff consisting
of those M such that Hom(N (1),M) = 0 for all N ∈Moteff. Recall from [Kahn
et al. 2007, Proposition 7.8.1] that

• if P] is defined at M , then P]M ∈ L⊥;

• the full subcategory Mot] of Moto where P] is defined equals P(L⊥);
• P] and the restriction of P to L⊥ define quasi-inverse equivalences of cate-

gories between L⊥ and Mot].

The right adjoint P] is defined at birational motives of varieties of dimension ≤ 2
for any adequate pair (A,∼) such that A⊇Q by [Kahn et al. 2007, Corollary 7.8.6].
(The proof there is given for (A,∼)= (Q, rat), but the argument works in general.)
Recall that

P]ho(C)= 1⊕ h1(C), P]ho(S)= 1⊕ h1(S)⊕ t2(S)

with the notation at the end of Section 3.4, where C is a curve and S is a surface.
The following lemma gives a sufficient condition for the nonexistence of P]P M

for an effective motive M .

Lemma 4.2.1. Let (Q,∼) be an adequate pair, and let M ∈Moteff
∼
(F,Q). Assume

that

(i) Mnum ∈Moteff
num(F,Q) does not contain any direct summand divisible by L;

(ii) Ker(End(M)→ End(Mnum)) is a nilideal;

(iii) there exists r > 0 such that Hom(Lr ,M) 6= 0.

Then P]P M does not exist.

Proof. Suppose that P] is defined at P M . Consider the unit map

ε∼ : M→ P]P M. (4.2.2)

For ∼ = num, P]num Pnum Mnum exists by Proposition 4.0.1. Moreover, part (c)
of this proposition shows that, under condition (i) of the lemma, εnum is an isomor-
phism. By Lemma 4.1.1, the image of ε∼ modulo numerical equivalence then has
a retraction, and so does ε∼ itself under condition (ii). If this is the case, M ∈ L⊥,
and in particular, Hom(Lr ,M)= 0 for all r > 0, contradiction. �
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4.3. Counterexamples. To give examples where the conditions of Lemma 4.2.1
are satisfied, we appeal as in [Huber 2008] to the nontriviality of the Griffiths
group.

We start with an example which a priori only works for a specific adequate
equivalence, because the proof is simpler. Unlike in [Huber 2008], we don’t need
the full force of Clemens’ theorem [1983, Theorem 0.2], but merely the previous
results of Griffiths [1969].

Definition 4.3.1 (“Abel–Jacobi equivalence”). Let k =C. For X smooth projective,
Z j

AJ(X,Q) is the image of CH j (X)⊗Q in Deligne–Beı̆linson cohomology via the
(Deligne–Beı̆linson) cycle class map [Esnault and Viehweg 1988]. This defines an
adequate equivalence relation.

Theorem 4.3.2. Let F = C and ∼= AJ. Then:

(a) Condition (ii) of Lemma 4.2.1 is satisfied for any pure motive M. Let X be a
generic hypersurface of degree a in Pn+1.

(b) Condition (i) of Lemma 4.2.1 is satisfied for M = pn(X) (see (3.5.1)) provided
X is not a quadric, a cubic surface or an even-dimensional intersection of two
quadrics, and a ≥ n+ 1.

(c) If n= 2m−1 is odd and a ≥ 2+3/(m−1), then condition (iii) of Lemma 4.2.1
is satisfied for r = m− 1.

(d) P] is not defined at ho(X) in the following cases: n is odd and

(i) if n = 3 then a ≥ 5;
(ii) if n > 3 then a ≥ n+ 1.

Proof. We see that (a) holds because Ker(EndAJ(M)→ Endhom(M)) has square 0
[Esnault and Viehweg 1988, Proposition 7.10]7 and Ker(Endhom(M)→Endnum(M))
is nilpotent.

(b) By [Peters and Steenbrink 2003, Example 5 and Corollary 18], the Hodge
realisation Pn(X) of pn(X) is an absolutely simple pure Hodge structure; this,
together with Proposition 3.5.3(b), is amply sufficient to imply condition (i) of
Lemma 4.2.1.

(c) By [Griffiths 1969, Corollaries 13.2 and 14.2],

Ker(A∼m−1(X,Q)→ Anum
m−1(X,Q)) 6= 0.

But by Lemma 3.5.2, this group is Hom(Lm−1, pn(X)).

7A more functorial justification is: (1) Deligne–Beı̆linson cohomology can be computed as ab-
solute Hodge cohomology as in [Beilinson 1986]; (2) the category of polarisable Q-mixed Hodge
structures has Ext-dimension 1.
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(d) Note that, by the refined Chow–Künneth decomposition (3.5.1), P] is defined
at Ph(X) if and only if it is defined at Ppn(X). The conclusion now follows from
Lemma 4.2.1 and from collecting the results of (a), (b) and (c). �

To get a counterexample with rational equivalence, we appeal to a result of Nori
[1989]. We thank Srinivas for pointing out this reference.

Theorem 4.3.3. Let X be a generic abelian threefold over k = C. If ∼≥ alg, then
P] is not defined at ho

∼
(X).

Proof. The proof is similar to that of Theorem 4.3.2, except that the motive of an
abelian variety is more complicated than that of a hypersurface. We only sketch
the argument (details will appear elsewhere).

It is enough to show that P] is not defined at ho
3,0(X), where h3,0(X) is as

in Proposition 3.4.1 (here we use that the nilpotence conjecture is true for mo-
tives of abelian varieties, see Proposition 3.3.2(a)). We check the conditions of
Lemma 4.2.1 for M = h3,0(X). Item (i) is true by definition; and (ii) is true by
Proposition 3.3.2(a). For (iii), one can show that computing the decomposition

A∼1 (X)=Moteff
∼
(L, h(X))'

6⊕
i=0

[i/2]⊕
j=0

Moteff
∼
(L, hi, j (X)( j))

yields a surjection
Moteff

∼
(L, h3,0(X))� Griff1(X)

for ∼ ≥ alg, where Griff1(X) = Ker(Aalg
1 (X)→ Anum

1 (X)) is the Griffiths group
of X . By Nori’s theorem [1989], Griff1(X) 6= 0, and the proof is complete. �

Remark 4.3.4. It is easy to get examples of any dimension ≥ 4 by multiplying the
example of Theorem 4.3.3 with Pn .

4.4. Idempotents. We now address question (2) from the beginning of this section.

Proposition 4.4.1. Let (A,∼) be an adequate pair with A⊇Q, and let M be a full
subcategory of Moteff

∼
(F, A) closed under direct summands. If Conjecture 3.3.1

holds for the objects of M, then the category M/L∼ is pseudoabelian.

Proof. Let Mnum denote the pseudoabelian envelope of the image of M in

Moteff
num(F, A).

We have a commutative diagram of categories:

M P
�M/L∼

Mnum

π
g Pnum

�Mnum/Lnum

π̄
g
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Under the hypothesis, π is essentially surjective (one can lift idempotents).
Hence π is essentially surjective as well. Since P is essentially surjective and
π, Pnum are full, π is full, and its kernel is locally nilpotent as a quotient of the
kernel of π (fullness of P). Thus π is full, essentially surjective and conservative.

Since Moteff
num(F, A) is abelian semisimple, Mnum is also abelian semisimple,

hence so is Mnum/Lnum which is in particular pseudoabelian.
Let now M ∈M/L∼, and let p= p2

∈End(M). Write Mnum'M1⊕M2, where
M1 = Im pnum and M2 = Ker pnum. By essential surjectivity, we may lift M1 and
M2 to objects M̃1, M̃2 ∈M/L∼.

By fullness, we may lift the isomorphism M1⊕ M2 −→
∼ Mnum to a morphism

M̃1⊕ M̃2→ M in M/L∼, and this lift is an isomorphism by conservativity. This
concludes the proof. �

Example 4.4.2. Proposition 4.4.1 applies taking for M the category of motives of
abelian type (direct summands of the tensor product of an Artin motive and the
motive of an abelian variety), since such motives are finite-dimensional [Kimura
2005].

The situation when A does not contain Q, for example A = Z, is unclear.

5. Birational motives and birational categories

In this section, we relate the categories studied in [Kahn and Sujatha 2015a] with
the categories of pure birational motives introduced here.

5.1. From (2.4.1), we get a composite functor:

S−1
r Smproj(F)→ S−1

r Choweff(F)→ Chowo(F). (5.1.1)

The morphisms in the first category can be described by means of R-equivalence
classes [Kahn and Sujatha 2015a, Theorem 6.6.3, Corollary 6.6.4 and Remark 6.6.5];
by Lemma 2.3.7, those in the last category can be described by means of Chow
groups of 0-cycles. One checks easily that the action of the composite functor
on Hom sets is just the map which sends R-equivalence classes of rational points
to 0-cycles modulo rational equivalence. This puts this map within a functorial
setting.

Let us now recall further results from [Kahn and Sujatha 2015a]. Let place(F)
denote the category of finitely generated extensions of F , with F-places as mor-
phisms. In [Kahn and Sujatha 2015a, (4.3)], we constructed a functor

place∗(F)
op
→ S−1

b Smprop(F),

hence a functor
S−1

r place∗(F)
op
→ S−1

r Smprop(F),
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where place∗(F) denotes the full subcategory of place(F) defined by those K/F
which have a cofinal set of smooth proper models, and Sr ⊂ Ar(place(F)) denotes
the set of purely transcendental extensions. The same arguments as in [loc. cit.]
give an analogous functor

S−1
r place](F)

op
→ S−1

r Smproj(F), (5.1.2)

where place](F) has the same definition as place∗(F), replacing “smooth proper”
by “smooth projective”. Composing (5.1.2) with (5.1.1), we get a functor

S−1
r place](F)

op
→ Chowo(F). (5.1.3)

We can describe the image under this functor of a place λ : K  L in CH0(X L),
where X is a smooth projective model of K : it is just the class of the centre of λ.
Hence the image of (5.1.3) on morphisms consists of the classes of L-rational
points. This answers a question of Déglise.

In characteristic 0, place](F) = place(F) by resolution of singularities and
S−1

r Smproj(F) −→∼ S−1
r Sm(F) by [Kahn and Sujatha 2007, Proposition 8.5]. In

characteristic p, we would ideally like to get functors

S−1
r place(F)op

→ Chowo(F), S−1
r Sm(F)→ Chowo(F)

extending (5.1.1) and (5.1.3). Constructing the first functor looks technically dif-
ficult: we shall content ourselves with extending [Kahn 2009, Remark 7.4] to all
finitely generated fields K/F , by using an adjunction result from [Kahn 2015];
this will not be used in the rest of the paper. The second functor is constructed in
[Kahn and Sujatha 2015b, Corollary 2.4.2].

Proposition 5.1.4. Let p be the exponential characteristic of F.

(a) There is a unique functor (up to unique isomorphism)

ho
: S−1

r field(F)op
→ Chowo(F,Z[1/p])

such that, for any K ∈ field(F) and any Y ∈ Smproj(F), one has

Chowo(F,Z[1/p])(ho(K ), ho(Y ))' CH0(YK )⊗Z[1/p]. (5.1.5)

This functor transforms purely inseparable extensions into isomorphisms.

(b) If K ⊆ L , the map ho(L)→ ho(K ) has a section.

(c) We have ho(K )= ho(X) if K = F(X) for a smooth projective variety X. More-
over, if K = F(X), L = F(Y ) with X, Y smooth projective, and if f : K → L
corresponds to a rational map ϕ : Y 99K X , then ho( f ) is given by the graph
of ϕ.
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Proof. (a) Note that the isomorphism (5.1.5) determines ho(K ) up to unique iso-
morphism, by Yoneda’s lemma. By Lemma 2.3.7 applied over K , this isomorphism
may be rewritten as

Chowo(F,Z[1/p])(ho(K ), ho(Y ))' Chowo(K ,Z[1/p])(1K , ho(YK )),

where 1K = ho(Spec K ) is the unit object of Chowo(K ,Z[1/p]).
By [Kahn 2015, Theorem 6.5], the base-change functor

Chowo(F,Z[1/p])→ Chowo(K ,Z[1/p])

has a left adjoint lK/F . Therefore we may define ho(K )= lK/F (1K ).
Suppose F → K f

−→ L are successive finitely generated extensions. Since the
base-change of 1K is 1L , the identity map 1L → 1L gives by adjunction a map

lL/K 1L → 1K ,

hence a map

ho( f ) : ho(L)= rL/F (1L)→ rK/F (1K )= ho(K ).

We just used the transitivity of adjoints; using it a second time on a 3-layer exten-
sion shows that we have indeed defined a functor field(F)op

→Chowo(F,Z[1/p]).
Suppose that L = K (t). Then lL/K (1L) = ho(P1) = 1K , hence ho( f ) is an

isomorphism. This shows that our functor induces a functor

ho
: S−1

r field(F)op
→ Chowo(F,Z[1/p]),

as required.
Suppose now that K f

−→ L is a finite and purely inseparable extension of finitely
generated fields over F . If X is a smooth projective K -variety, then the map
CH0(X)⊗ Z[1/p] → CH0(X L)⊗ Z[1/p] is an isomorphism by Lemma 1.7.1;
this shows that lL/K (1L)= 1K , hence that ho( f ) is invertible.

(b) The proof is the same as in [Kahn 2009, Remark 7.4]: Write L as a finite purely
inseparable extension of a finite separable extension of a purely transcendental
extension of K . Then (a) reduces us to the case where L/K is finite and separable.
We may write L = Spec X , where X is a 0-dimensional smooth projective K -
variety, and lL/K (1L)= ho(X). The conclusion now follows from Lemma 1.5.2.

(c) If K = F(X) for X smooth projective, then Lemma 2.3.7 and Yoneda’s lemma
show that ho(K )' ho(X). For the claim on morphisms, we are reduced (again by
Yoneda’s lemma) to determining the map

Chowo(F,Z[1/p])(ho(K ), ho(Z))
ho( f )∗
−−−→ Chowo(F,Z[1/p])(ho(L), ho(Z))
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for a smooth projective F-variety Z . By definition of ho( f ), an adjunction com-
putation shows that this map may be rewritten as the map

CH0(Z K )⊗Z[1/p] = Chowo(K ,Z[1/p])(1K , ho(Z K ))

→ Chowo(L ,Z[1/p])(1L , ho(ZL))= CH0(ZL)⊗Z[1/p]

given by extension of scalars. The conclusion now follows from Lemma 2.3.9. �

6. Birational motives and cycle modules

Rost [1996] introduced the notion of cycle module and cycle cohomology; he
proved [1996, Corollary 12.10] that for any cycle module M , A0(X,M) is a bi-
rational invariant of smooth projective varieties X . In [Merkurjev 2001, Corol-
lary 3.5], he extended this to A0(X,M) by introducing the category Chowo(F)
of Definition 2.3.6 (independently from this paper). In the first subsection, we
essentially reproduce Section 3 of [Merkurjev 2001]; we don’t claim any original-
ity here, but hope this will be a service to the reader since this preprint remains
unpublished. In the second subsection, we connect these results with more recent
work of Merkurjev.

To lighten notation, we drop the reference to the base field F in the relevant
categories.

6.1. The functors A0 and A0. Let M = (Mn)n∈Z be a cycle module over F in
the sense of [Rost 1996]; recall that this is a functor from field to graded abelian
groups, provided with extra structure (transfers, residues, cup-products by units)
subject to certain axioms. To a smooth variety X ∈ Sm, one associates its cycle
cohomology with coefficients in M [Rost 1996, Section 5],

Ap(X,Mn)= H
(
· · ·

∂
−→

⊕
x∈X (p)

Mn−p(F(x))
∂
−→ · · ·

)
,

where the differentials ∂ are induced by the residue homomorphisms. We also have
the homological notation

Ap(X,Mn)= H
(
· · ·

∂
−→

⊕
x∈X(p)

Mn+p(F(x))
∂
−→ · · ·

)
,

so that Ap(X,Mn)= Ad−p(X,Md+n) if X is purely of dimension d .

Proposition 6.1.1. (a) Let X, Y be two smooth projective varieties and let

α ∈ CHdim X (X × Y )

be a Chow correspondence. Then α induces homomorphisms

α∗ : Ap(Y,Mn)→ Ap(X,Mn), α∗ : Ap(X,Mn)→ Ap(Y,Mn),
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which make Ap(−,Mn) (resp. Ap(−,Mn)) a contravariant (resp. covariant)
functor on Choweff.

(b) Suppose that α ∈ Irat(X, Y ), where Irat is as in Proposition 2.3.5. Then
α∗A0(Y,Mn)= 0 (resp. α∗A0(X,Mn)= 0).

Proof. (a) This follows easily from the functoriality of cycle cohomology [Rost
1996, Proposition 4.6, Sections 13 and 14]. Namely, we define α∗ as the composi-
tion

Ap(Y,Mn)
p∗Y
−→ Ap(X × Y,Mn)

∪α
−→ Ap+dim Y (X × Y,Mn+dim Y )

pX∗
−−→ Ap(X,Mn), (6.1.2)

where ∪α is cup-product with α as in [Rost 1996, Section 14], and α∗ similarly.
Checking the identities (β ◦α)∗ = α∗ ◦β∗ and (β ◦α)∗ = β∗ ◦α∗ is a routine matter,
using the compatibility of cup-product with pull-backs and the projection formula
[ibid].

(b) We may assume X irreducible; let Z ⊂ X be a proper closed subset such that
α is supported on Z × Y , and let U = X − Z . We consider the cases of α∗ and α∗
separately.

In the first case, we observe that (6.1.2) also makes sense for X smooth (not
necessarily projective) and that A0(X,Mn)→ A0(U,Mn) is injective (both groups
being subsets of Mn(F(X))). Therefore it suffices to see that (6.1.2) is 0 when X
is replaced by U , which is obvious since α|CHdim X (U×Y ) = 0.

In the second case, we generalise the argument in the proof of Proposition 2.3.5:
if x ∈ X(0), it suffices to show that the composition

Mn(F(x))
ix∗
−→ A0(X,Mn)= Adim X (X,Mn+dim X )

p∗Y
−→ Adim X (X × Y,Mn+dim X )

∪α
−→ Adim X+dim Y (X × Y,Mn+dim X+dim Y )

pY∗
−−→ Adim Y (Y,Mn+dim Y )= A0(Y,Mn)

is 0. If qY : x × Y → x is the first projection, we have

p∗Y ix∗ = (ix × 1Y )∗q∗Y

[Rost 1996, Proposition 4.1(3)]. For a ∈ Mn(F(x)), we now have

p∗Y ix∗a ∪α = (ix × 1Y )∗q∗Y a ∪α = (ix × 1Y )∗(q∗Y a ∪ (ix × 1Y )
∗α)

by the projection formula [Rost 1996, Section 14.5]. As in the proof of Proposi-
tion 2.3.5 we reduce to the case where x /∈ Z , and then (ix × 1Y )

∗α = 0. �

From Proposition 6.1.1(b), we immediately deduce:
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Corollary 6.1.3. (a) For any cycle module M and any n ∈ Z, the assignment

Smproj
3 X 7→ A0(X,Mn) (resp. A0(X,Mn))

extends to a contravariant (resp. a covariant) additive functor

A0(−,Mn) : Chowo
→ Ab (resp. A0(−,Mn)).

(b) Let X ∈ Smproj be such that ho(X)' 1 ∈ Chowo(F). Then the maps

Mn(F)→ A0(X,Mn), A0(X,Mn)→ Mn(F)

induced by the structural map πX : X → Spec F are isomorphisms for any
cycle module M and any n ∈ Z.

This proves the implication (iv)=⇒ (v) in Proposition 3.1.1.

6.2. Relationship with Merkurjev’s work. For A0(X,Mn), Corollary 6.1.3(b) is
part of a theorem of Merkurjev:

Proposition 6.2.1 [Merkurjev 2008, Theorem 2.11(3)=⇒ (1)]. If CH0(X E)−→
∼ Z

for any extension E/F , then Mn(F)−→∼ A0(X,Mn) for all cycle modules M and
all n ∈ Z.

Indeed, this condition is equivalent to ho(X) ' 1 in Chowo by (iv)⇐⇒ (i) in
Proposition 3.1.1.

Merkurjev proves the converse implication. For this, he defines a cycle module
K X such that

K X
n (E)= A0(X E , Kn)

for any extension E/F . Here, K is the cycle module given by Milnor K -theory.
He shows:

Theorem 6.2.2 [Merkurjev 2008, Theorem 2.10]. The functor

CM→ Ab, M 7→ A0(X,M0),

from the category of cycle modules to abelian groups is corepresented by K X .

See [Kahn 2011, Theorem 1.3] for a generalisation to nonproper X .
Let us give a proof of the converse to Proposition 6.2.1 via birational motives,

using only the existence of K X and thus completing the proof of Proposition 3.1.1.
Let us say that a cycle module M is connected if Mn = 0 for n < 0; we note that

A0(X,M0)= M0(F(X)) if M is connected. (6.2.3)

As K X is connected and K X
0 (E)= CH0(X E), the condition

K X
0 (F)−→∼ A0(X, K X

0 )
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translates as CH0(X) −→∼ CH0(X F(X)), which in turn implies condition (iii) in
Proposition 3.1.1.

We are now going to use Theorem 6.2.2 to clarify the relationship between
birational motives and cycle modules.

Theorem 6.2.4. Let Mod– Chowo be the category of additive contravariant func-
tors from Chowo to Ab. The functor

A0
: CM→Mod– Chowo

from Corollary 6.1.3(a) has a fully faithful left adjoint 3 7→ K3; the essential
image of this left adjoint is contained in the full subcategory of connected cycle
modules.

Proof. We first observe that X 7→ K X extends to a functor

Chowo
→ CM

thanks to Corollary 6.1.3(a) (case of A0). Let 3 ∈Mod– Chowo. We define

K3
= lim

−−→
y(X)→3

K X ,

where y : Chowo
→Mod– Chowo is the additive Yoneda functor, and the colimit

is taken on the comma category y ↓ 3 [Mac Lane 1998, Chapter II, Section 6].
Since K X is connected for any smooth projective X , K3 is connected. For a cycle
module M , the identity

CM(K3,M)'Mod– Chowo(3, A0(M))

follows from Theorem 6.2.2 and Yoneda’s lemma, thus proving the existence of
the left adjoint and the statement on its essential image.

It remains to show that 3 7→ K3 is fully faithful or, equivalently, that the unit
map

3→ A0(K3)

is an isomorphism for all 3. Let Y ∈ Smproj; we need to show that

3(ho(Y ))→ A0(Y, K3
0 )= K3

0 (F(Y ))

is an isomorphism, where we just used (6.2.3). We compute:

K3
0 (F(Y ))= lim

−−→
y(X)→3

K X
0 (F(Y ))= lim

−−→
y(X)→3

CH0(X F(Y ))

= lim
−−→

y(X)→3
Chowo(ho(Y ), ho(X))

= lim
−−→

y(X)→3
y(ho(X))(ho(Y ))=3(ho(Y )). �
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We describe the essential image of the functor K ? in [Kahn and Sujatha 2015b,
Theorem 5.1.2].

7. Locally abelian schemes

In this section, F is perfect. We drop it from the notation for relevant categories.

7.1. The Albanese scheme of a smooth projective variety.

Definition 7.1.1. (a) Let X be a smooth separated F-scheme (not necessarily of
finite type). For each connected component X i of X , let Ei be its field of constants,
that is, the algebraic closure of F in F(X i ). We define

π0(X)=
∐

i

Spec Ei .

There is a canonical F-morphism X → π0(X); π0(X) is called the scheme of
constants of X .

(b) If dim X = 0 (equivalently X −→∼ π0(X)), we write Z[X ] for the 0-dimensional
group scheme representing the étale sheaf f∗Z, where f : X → Spec F is the
structural morphism.

Definition 7.1.2. (a) For an F-group scheme G, we denote by G0 the kernel of
the canonical map G→ π0(G) of Definition 7.1.1; this is the neutral component
of G.

(b) An F-group scheme G is called a lattice if G0
= {1} and the geometric fibre

of π0(G)= G is a free finitely generated abelian group.

Definition 7.1.3 [Ramachandran 2001]. (a) Recall that a semiabelian variety is
an extension of an abelian variety by a torus. We denote by SAb the category of
semiabelian F-varieties, and by Ab the full subcategory of abelian varieties.

(b) We denote by SAbS the full subcategory of the category of commutative F-
group schemes consisting of those objects A such that

• π0(A) is a lattice;

• A0 is a semiabelian variety.

Objects of SAbS will be called locally semiabelian F-schemes.

(c) We denote by AbS the full subcategory of SAbS consisting of those A such
that A0 is an abelian variety. Its objects are called locally abelian F-schemes.

Note that SAbS is a Serre subcategory of the abelian category of commutative
F-group schemes locally of finite type (see [Demazure and Grothendieck 2011,
Exp. VI, Proposition 5.4.1 and Théorème 5.4.2]); in particular it is abelian, and
AbS is idempotent-closed in SAbS, hence pseudoabelian.
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For any smooth F-variety X , let AX/F = AX be the Albanese scheme of X
over F [Ramachandran 2001]: it is an object of SAbS and there is a canonical
morphism

ϕX : X→AX , (7.1.4)

which is universal for morphisms from X to objects of SAbS. There is an exact
sequence of group schemes

0→A0
X →AX → Z[π0(X)] → 0,

where A0
X is the Albanese variety of X (a semiabelian variety) and π0(X) has been

defined above.
The aim of this section is to endow SAbS and AbS with symmetric monoidal

structures, and to relate the latter one to birational motives (see Propositions 7.2.7
and 8.2.1).

Let us recall from [Ramachandran 2001] a description of AX . Let Z[X ] be the
“free” presheaf on F-schemes defined by Z[X ](Y ) = Z[X (Y )] and ZX/F = ZX

the associated sheaf on the big fppf site of Spec F . Then AX is the universal
representable quotient of ZX . In other words, there is a homomorphism

ZX →AX ,

where AX is considered as a representable sheaf, which is universal for homomor-
phisms from ZX to sheaves of abelian groups representable by a locally semiabelian
F-scheme.

Let us also denote by PX the universal torsor under A0
X constructed by Serre

[1958/1959]. There is a map X ϕ̃X
−→ PX , which is universal for maps from X to tor-

sors under semiabelian varieties. The torsor PX and the group scheme AX have the
same class in Ext1(Sch /F)ét

(π0(AX ),A0
X ) = H 1

ét(π0(X),A0
X ) (here we identify A0

X
with the corresponding representable étale sheaf over the big étale site of Spec F).
A beautiful concrete description of this correspondence is given in [Ramachandran
2001, Section 1.2]. The map ϕ̃X induces an isomorphism

AX −→
∼ APX .

We repeat some properties of AX as taken from [Ramachandran 2001, Proposi-
tion 1.6 and Corollary 1.12] and add one.

Proposition 7.1.5. (a) AX is covariant in X.

(b) Let K/F be an extension. Then the natural map

AX K /K →AX/F ⊗F K

stemming from the universal property is an isomorphism.
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(c) If X = Y q Z , then the natural map AY/F ⊕AZ/F→AX/F is an isomorphism.

(d) Let E/F be a finite extension. For any E-scheme S, let S(F) denote the (ordi-
nary) restriction of scalars of S, i.e., we view S as an F-scheme. Then there
is a natural isomorphism for X smooth

RE/FAX/E −→
∼ AX(F)/F ,

where RE/F denotes Weil’s restriction of scalars.

Proof. The only thing which is not in [Ramachandran 2001] is (d). We shall
construct the isomorphism by descent from (c), using (b).

Let f : Spec E → Spec F be the structural morphism. Recall that, for any
abelian sheaf G on (Sch /E)ét, the trace map defines an isomorphism [Milne 1980,
Chapter V, Lemma 1.12]

f∗G −→∼ f!G,

where f! (resp. f∗) is the left (resp. right) adjoint of the restriction functor f ∗. This
isomorphism is natural in G.

This being said, the additive version of Yoneda’s lemma immediately yields

f!ZX/E = ZX(F)/F ,

hence a composition of homomorphisms of sheaves

f∗ZX/E −→
∼ ZX(F)/F → Shv(AX(F)/F ), (7.1.6)

where, for clarity, Shv(AX(F)/F ) denotes the sheaf associated to the group scheme
AX(F)/F . We also have a chain of homomorphisms

f∗ZX/E → f∗ Shv(AX/E)−→
∼ Shv(RE/FAX/E), (7.1.7)

where the last isomorphism is formal. If we can prove that (7.1.6) factors through
(7.1.7) into an isomorphism, we are done by Yoneda.

In order to do this, we may assume via (b) that F is algebraically closed, hence
that f is completely split. Then the claim follows from (c). �

We record here similar properties for the torsor PX = PX/F (proofs are similar):

Proposition 7.1.8. (a) X 7→ PX is a functor.

(b) Let K/F be an extension. Then the natural map PX K /K → PX/F ⊗F K stem-
ming from the universal property is an isomorphism.

(c) If X = Y q Z , then there is an isomorphism PY/F × PZ/F −→
∼ PX/F which is

natural in (Y, Z).

(d) Let E/F be a finite extension. Then there is a natural isomorphism

PX(F)/F → RE/F PX/E . �
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(In (c), the map stems from the fact that coproducts correspond to scheme-
theoretic products in an appropriate category of torsors.)

7.2. The tensor category of locally semiabelian schemes. Recall the Yoneda full
embedding Shv : SAbS → Ab((Sch /F)ét), where the latter is the category of
sheaves of abelian groups over the big étale site of Spec F .

Lemma 7.2.1. (a) If a sheaf F ∈ Ab((Sch /F)ét) is an extension of a lattice L by
a semiabelian variety A, it is represented by an object of SAbS.

(b) Let A be a semiabelian variety and L a lattice. Then the étale sheaf B = A⊗L
is represented by a semiabelian variety.

Proof. (a) If L is constant, then the choice of a basis of L determines a section
of the projection F → Shv(L), hence an isomorphism F ' Shv(A) ⊕ Shv(L).
Then F is represented by

∐
l∈L A. In general, L becomes constant on some finite

extension E/F , hence FE is representable. By full faithfulness, the descent data of
FE are morphisms of schemes; then we may apply [Serre 1988, Corollary V.4.2(a)
or (b)].

(b) Same method as in (a). �

Example 7.2.2. If L = Z[Spec E], where E is an étale F-algebra, then A⊗ L =
RE/F AE .

We shall also need:

Lemma 7.2.3. Let F be a field, G1,G2,G3 be three semiabelian F-varieties, and
let ϕ : G1 ×G2→ G3 be an F-morphism. Assume that ϕ(g1, 0) = ϕ(0, g2) = 0
identically. Then ϕ = 0.

Proof. By [Kahn 2014, Lemma 3], ϕ is a homomorphism and the conclusion is
obvious. �

Let A,B ∈ SAbS. Viewing them as étale sheaves, we may consider their tensor
product A⊗shv B. This tensor product contains the subsheaf A0

⊗shv B0, which is
clearly not representable. We define

A⊗rep B =A⊗shv B/A0
⊗shv B0.

Proposition 7.2.4. (a) A⊗rep B is representable by an object of SAbS.

(b) For X, Y ∈ Sm, the natural map

ZX ⊗shv ZY = ZX×Y →AX×Y

factors into an isomorphism

AX ⊗rep AY −→
∼ AX×Y .
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(This corrects [Ramachandran 2001, Corollary 1.12(vi)].)

Proof. (a) We have a short exact sequence

0→A0
⊗π0(B)⊕B0

⊗π0(A)→A⊗rep B→ π0(A)⊗π0(B)→ 0.

By Lemma 7.2.1(b), the left-hand side is representable by a semiabelian variety,
and the right-hand side is clearly a lattice. We conclude by Lemma 7.2.1(a).

(b) It is enough to show that this holds over the algebraic closure of F . Using
Proposition 7.1.5(c) (and the similar statement for Z), we may assume that X and Y
are connected. We shall show more generally that, for any locally semiabelian
scheme B and any map X × Y → B, the induced sheaf-theoretic map

ZX ⊗shv ZY → B (7.2.5)

factors through AX ⊗rep AY . By (a), this will show that the latter has the universal
property of AX×Y .

For n ∈Z, we denote by Zn
X or An

X the inverse image of n under the augmentation
map ZX → Z or AX → Z stemming from the structural morphism X → Spec F .
It is a subsheaf of ZX or AX , and An

X is clearly representable (by a variety F-
isomorphic to the semiabelian variety A0

X ). We shall also identify varieties with
representable sheaves; this should create no confusion in view of Yoneda’s lemma.

We first show that (7.2.5) factors through AX ⊗shv AY . It suffices to show that
the composition

ZX × Y → ZX ⊗shv ZY → B

factors through AX × Y , and to conclude by symmetry. But X × Y is connected,
so its image in B falls in some connected component Bt of B, which is a torsor
under B0; applying the “Variation en fonction d’un paramètre” statement in [Serre
1958/1959, p. 10-05], we see that it extends to a morphism A1

X×Y→Bt . Including
Bt into B, we get a commutative diagram

A1
X × Y � B

Z1
X × Y

f

� ZX × Y

f

Let K = Ker(ZX →AX )= Ker(Z0
X →A0

X ). The above diagram shows that the
diagram

K×Z1
X × Y a

� Z1
X × Y

Z1
X × Y

c
g

b
� B

d
g



426 BRUNO KAHN AND RAMDORAI SUJATHA

commutes, where a is given by the action of K on Z1
X by left translation and c is

given by (k, z, y) 7→ (z, y). Since b is a homomorphism in the first variable, this
implies the desired factorisation.

We now show that the composition

A0
X ⊗shv A0

Y →AX ⊗shv AY → B

is 0. It is sufficient to show that the composition of this map with the inclusion
A0

X × A0
Y → A0

X ⊗ A0
Y is 0. But A0

X × A0
Y is connected, hence its image falls

in some connected component, in fact in B0. This map verifies the hypothesis of
Lemma 7.2.3, hence it is 0. �

As a variant, we have:

Proposition 7.2.6. We have an isomorphism

PX×Y −→
∼ Rπ0(X)/F (PY ×F π0(X))× Rπ0(Y )/F (PX ×F π0(Y )).

Since we are not going to use this, we leave the easy proof to the reader.
Proposition 7.2.4(a) endows SAbS with a symmetric monoidal structure com-

patible with its additive structure, hence also its full subcategory AbS. From now
on we concentrate on this latter category.

Proposition 7.2.7. The category AbS is symmetric monoidal ( for⊗rep) and pseudo-
abelian. Its Kelly radical R is monoidal and has square 0. After tensoring with Q,
AbS /R becomes isomorphic to the semisimple category product of the category of
abelian varieties up to isogenies and the category of GF -Q-lattices.

Recall that the Kelly radical [1964] R of an additive category A is defined by

R(A, B)= { f ∈A(A, B) | 1A− g f is invertible for all g ∈A(B, A)}

and that it is a (two-sided) ideal of A.

Proof. For the first claim, we just observe that kernels exist in the category of
commutative F-group schemes, and that a direct summand of an abelian variety
(resp. of a lattice) is an abelian variety (resp. a lattice). For the second claim,
consider the functor

T : AbS→ Ab×Lat, A 7→ (A0, π0(A)),

where Ab and Lat are respectively the category of abelian varieties and the category
of lattices over F (viewed, for example, as full subcategories of the category of
étale sheaves over Sm/F). This functor is obviously essentially surjective. After
tensoring with Q, it becomes full, because any extension

0→A0
→A→ π0(A)→ 0
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is rationally split. Now the collection of sets

I(A,B)= { f :A→ B | T ( f )= 0}

defines an ideal I of AbS. If f ∈ I(A,B), then f induces a map

f̄ : π0(A)→ B0,

and this gives a description of I. From this description, it follows immediately that
I2
= 0. In particular, I ⊆R.
If we tensor with Q, then Ab×Lat becomes semisimple; since AbS /I⊗Q is

semisimple and I⊗Q is nilpotent, it follows that I⊗Q=R⊗Q. In other words,
R/I is torsion.

Let f ∈ R(A,B). There exists n > 0 such that n f (A0) = 0. But f (A0) is an
abelian subvariety of B0, hence f (A0)= 0 and f ∈ I(A,B). So R= I.

If we endow the category Ab×Lat with the tensor structure

(A, L)⊗ (B,M)= (A⊗M ⊕ B⊗ L , L ⊗M),

then T becomes a monoidal functor, which shows that R = I is monoidal. This
completes the proof of Proposition 7.2.7. �

Remarks 7.2.8. (a) The morphisms in AbS are best represented in matrix form:

Hom(A,B)=
(

Hom(A0,B0) Hom(π0(A),B0)

0 Hom(π0(A), π0(B))

)
(note that Hom(A0, π0(B))= 0). This clarifies the arguments in the proof of
Proposition 7.2.7 somewhat.

(b) The Hom groups of Ab×Lat are finitely generated Z-modules. It follows
from the proof of Proposition 7.2.7 that, for A,B ∈ AbS, T (Hom(A,B)) has
finite index in Hom(T (A), T (B)). In particular, for any A ∈ AbS, End(A) is
an extension of an order in a semisimple Q-algebra by an ideal of square 0.

(c) The functor T has the explicit section

(A, L) 7→ A⊕ L .

This section is symmetric monoidal.

8. Chow birational motives and locally abelian schemes

8.1. The Albanese map. For any smooth projective variety X , there is a canonical
map

CH0(X)
AlbF

X
−−→AX (F). (8.1.1)
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Recall the construction of AlbX : The map ϕX of (7.1.4) defines for any extension
E/F a map X (E)→ AX (E), still denoted by ϕX . When E/F is finite, viewing
AX as an étale sheaf, we have a trace map TrE/F :AX (E)→AX (F). Then AlbX

maps the class of a closed point x ∈ X with residue field E to TrE/F ϕX (x).
The map AlbX is injective for dim X = 1 and surjective if F is algebraically

closed. For a curve, this map corresponds to the isomorphism PicX 'AX , where
PicX is the Picard scheme of X ; we then also have A0

X ' JX , where JX is the
Jacobian variety of X .

The functoriality of A shows that there is a chain of isomorphisms

8X,Y : Hom(AX ,AY )−→
∼ Mor(X,AY )−→

∼ AY (F(X)) (8.1.2)

(the latter by Weil’s theorem on extension of morphisms to abelian varieties [Milne
1986, Theorem 3.1]), hence a canonical map

CH0(YF(X))
AlbX,Y
−−−→ Hom(AX ,AY ), (8.1.3)

which generalises (8.1.1); more precisely, we have

8X,Y ◦AlbX,Y = AlbF(X)
Y . (8.1.4)

On the other hand, there is an exact sequence

0→AY (π0(X))= Hom(Z[π0(X)],AY )→ Hom(AX ,AY )

→ Hom(A0
X ,AY )→ Ext1(Z[π0(X)],AY )= H 1(π0(X),AY ),

and the map Hom(A0
X ,A

0
Y )→ Hom(A0

X ,AY ) is an isomorphism. From this and
(8.1.3) we get a zero sequence

0→ CH0(Y )→ CH0(YF(X))→ Hom(A0
X ,A

0
Y )→ 0. (8.1.5)

Lemma 8.1.6. Let Y, Z be two smooth projective varieties and β ∈ CH0(Z F(Y )).
Then the following diagram commutes:

CH0(Y )
β∗
� CH0(Z)

AY (F)

AlbF
Y
g AlbY,Z (β)∗

� AZ (F)

AlbF
Z
g

Proof. Without loss of generality, we may assume that β is given by an integral
subscheme W in Y × Z . Then the composite f = pY iW is a proper surjective gener-
ically finite morphism, where pY denotes the projection and iW is the inclusion of
W in Y × Z .

Let V be an affine dense open subset of Y such that f| f −1(V ) is finite. Any
element of CH0(Y ) may be represented by a zero-cycle with support in V (see
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[Roberts 1972]), so it is enough to check the commutativity of the diagram on zero-
cycles on Y of the form y, where y ∈ V(0). For such a y, we have β∗y= p∗( f −1(y)),
where p = pZ iW .

On the other hand, the composition AlbY,Z (β)∗ ◦ (AlbF
Y )|V may be described as

follows: Let d be the degree of f| f −1(V ), f −1(V )[d] the d-fold symmetric power
of f −1(V ) and f ∗ : V → f −1(V )[d] the map x 7→ f −1(x). Then

AlbY,Z (β)∗ ◦ (AlbF
Y )|V =6d ◦ (ϕZ )

[d]
◦ p[d]
∗
◦ f ∗,

where 6d :A[d]Z →AZ is the summation map. The commutativity of the diagram
is now clear. �

8.2. The Albanese functor.
Proposition 8.2.1. The assignment X 7→ AX defines, via (8.1.3), a symmetric
monoidal additive functor

Alb : Chowo
→ AbS,

which becomes full and essentially surjective after tensoring with Q.

Proof. Since AbS is pseudoabelian, it suffices to construct the functor on Coro.
Let α ∈ CH0(YF(X)) and β ∈ CH0(Z F(Y )). We want to show that

AlbX,Z (β ◦α)= AlbY,Z (β) ◦AlbX,Y (α).

But β induces a map

β∗ : CH0(YF(X))→ CH0(Z F(X)),

and we have the equality β∗α = β ◦α (see the proof of Proposition 2.3.5). Hence,
applying Lemma 8.1.6, in which we replace F by F(X), we get

AlbF(X)
Z (β ◦α)= AlbF(X)

Z (β∗α)= AlbY,Z (β)∗(AlbF(X)
Y (α)).

Applying now (8.1.4), we get

8X,Z ◦AlbX,Z (β ◦α)= AlbY,Z (β)∗(8X,Y ◦AlbX,Y (α)).

On the other hand, the diagram

AY (F(X))
AlbY,Z (β)∗

� AZ (F(X))

Hom(AX ,AY )

8X,Y ∼

f

AlbY,Z (β)∗
� Hom(AX ,AY )

8X,Z ∼

f

obviously commutes, which concludes the proof that Alb is a functor.
Compatibility with the monoidal structures follows from Proposition 7.2.4(b).

It remains to show the assertions on fullness and essential surjectivity.
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Fullness: For any Y , the map AlbF
Y ⊗Q is surjective. This follows from the case

where F is algebraically closed (in which case AlbF
Y itself is surjective) by a transfer

argument. Replacing the ground field F by F(X) for some other X , we get that
AlbX,Y ⊗Q is surjective. This shows that the restriction of Alb⊗Q to Coro

⊗Q

is full; but the pseudoabelianisation of a full functor is evidently full (a direct
summand of a surjective homomorphism of abelian groups is surjective).

Essential surjectivity: We first note that, after tensoring with Q, the extension

0→A0
→A→ π0(A)→ 0

becomes split for any A ∈ AbS. Indeed the extension class belongs to

Ext1F (π0(A),A0);

this group sits in an exact sequence (coming from an Ext spectral sequence)

0→ H 1(F,HomF (π0(A)|F ,A
0
|F̄ ))→ Ext1F (π0(A),A0)

→ H 0(F,Ext1F̄ (π0(A)|F ,A
0
|F
)
)
.

Since the restriction π0(A)|F is a constant sheaf of free finitely generated abelian
groups, the group Ext1

F
(π0(A)|F ,A

0
|F
) is 0, while the left group is torsion as a

Galois cohomology group. It is now sufficient to show separately that L and A are
in the essential image of Alb⊗Q, where L (resp. A) is a lattice (resp. an abelian
variety).

A lattice L corresponds to a continuous integral representation ρ of GF . But it
is well known that ρ ⊗Q is of the form θ ⊗Q, where θ is a direct summand of
a permutation representation of GF . If E is the corresponding étale algebra, we
therefore have an isomorphism of L with a direct summand of (Alb⊗Q)(E).

Given an abelian variety A, we simply note that

A = Alb(h̃(A)),

where h̃(A) is the reduced motive of A, that is, h(A)=1⊕ h̃(A), where the splitting
is given by the rational point 0 ∈ A(F). �

Remark 8.2.2. Let R be the Kelly radical of AbS (see Proposition 7.2.7). If F is a
finitely generated field, the groups R(A,B) are finitely generated by the Mordell–
Weil–Néron theorem. To see this, note that if L is a lattice and A an abelian variety,
then

Hom(L , A)−→∼ Hom(L
|F , A

|F )
GF

and that the right term may be rewritten as B(F), where B = L∗⊗ A (compare
Lemma 7.2.1). Hence the Hom groups in AbS are finitely generated as well. In
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this case, Proposition 8.2.1 implies that, for any M, N ∈ Chowo, the image of the
map AlbM,N has finite index in the group Hom(Alb(M),Alb(N )).

Lemma 8.2.3. Suppose that Y is a curve. Then the map (8.1.3) fits into an exact
sequence

0→ CH0(YF(X))
AlbX,Y
−−−→ Hom(AX ,AY )→ Br(F(X))→ Br(F(X × Y )),

where Br denotes the Brauer group. In particular, (8.1.3)⊗Q is an isomorphism.

Proof. First assume that X is a point; then (8.1.3) reduces to (8.1.1). Suppose first
that F is separably closed. Then (8.1.1) is bijective (see comments at the begin-
ning of this section). In the general case, let Fs be a separable closure of F , and
G = Gal(Fs/F). Since AY is a sheaf for the étale topology, we get a commutative
diagram

CH0(Ys)
G AlbFs

Y
∼� AY (Fs)

G

CH0(Y )

f

AlbF
Y
� AY (F)

o

f

where Ys = Y ×F Fs and the top horizontal and right vertical maps are bijective.
The lemma then follows from the classical exact sequence

0→ CH0(Y )→ CH0(Ys)
G
→ Br(F)→ Br(F(Y )).

The case where X is not necessarily a point now follows from this special case
and the construction of (8.1.3). �

Theorem 8.2.4. Let Chowo
≤1 denote the thick subcategory of Chowo generated

by motives of varieties of dimension ≤ 1, and let ι : Chowo
≤1 → Chowo be the

canonical inclusion. Then:

(a) After tensoring morphisms with Q, Alb ◦ι : Chowo
≤1 → AbS becomes an

equivalence of categories.

(b) Let j be a quasi-inverse. Then ι ◦ j is right adjoint to Alb.

Proof. (a) The full faithfulness follows from Lemma 8.2.3. For the essential
surjectivity, we may reduce as in the proof of Proposition 8.2.1 to proving that
lattices and abelian varieties are in the essential image. For lattices, this is proven
in Proposition 8.2.1. For an abelian variety A, use the fact that A is isogenous to a
quotient of the Jacobian of a curve, and Poincaré’s complete reducibility theorem.

(b) Let (M,A) ∈Chowo
≤1(F,Q)×AbS(F,Q). To produce a natural isomorphism

Chowo
≤1(F,Q)(M, ιj (A)) ' AbS(F)(Alb(M),A)⊗Q, it is sufficient by (a) to

handle the case M = ho(X),A = AY for some smooth projective curves X, Y .
Then the isomorphism follows from (8.1.2) and Lemma 8.2.3. �
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Remarks 8.2.5. (a) Of course the functor ι ◦ j is not a tensor functor (since its
image is not closed under tensor product).

(b) In particular, the inclusion functor ι has the left adjoint j ◦ Alb. This is a
birational version of Murre’s results [1990; 1993, Section 2.1] for effective Chow
motives; see also [Scholl 1994, Section 4]. Beware however that we have taken
the opposite to usual convention for the variance of Chow motives (our functor
X 7→ h(X) is covariant rather than contravariant), so the direction of arrows has to
be reversed with respect to Murre’s work.

Appendix: Complements on localisation of categories

A.1. Localisation of symmetric monoidal categories.

Lemma A.1.1. (a) Localisation commutes with products of categories for sets of
morphisms containing all identities.8

(b) Let T0, T1 : C⇒D be two functors and f : T0⇒ T1 a natural transformation.
Let S, S′ be collections of morphisms in C and D such that Ti (S) ⊆ S′, so
that T0 and T1 pass to localisation. Then f remains a natural transformation
between the localised functors.

Proof. (a) Let Si be a collection of morphisms in Ci for i = 1, 2, such that Si

contains the identities of all objects of Ci . Then S1× S2 is generated by S1 and S2

in the sense that the equality

(s1, s2)= (s1, 1) ◦ (1, s2)

holds in S1× S2 for any pair (s1, s2). The conclusion easily follows (see [Maltsi-
niotis 2005, Lemme 2.1.7]).

(b) This is true because f commuted with the members of S, hence it now com-
mutes with their inverses. �

Proposition A.1.2. Let C be a category with a product • : C × C → C, and let S
be a collection of morphisms in C containing all identities. Assume that S • S ⊆ S.
Then:

(a) There is a unique product S−1C × S−1C → S−1C such that the localisation
functor PS : C→ S−1C commutes with the two products.

(b) If • is monoidal (resp. braided, symmetric, unital), the induced product on
S−1C enjoys the same properties and PS is monoidal (resp. braided, symmet-
ric, unital).

Proof. Item (a) follows from Lemma A.1.1(a), and (b) from Lemma A.1.1(b). �

8We thank M. Bondarko for pointing out the importance of the identities.
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A.2. Semiadditive categories. This subsection is a reformulation of [Mac Lane
1998, Chapter VIII, Section 2]; see also [Mac Lane 1950, Section 18 and beginning
of Section 19].

Lemma A.2.1. (a) For a category A, the following conditions are equivalent:

(i) A has a 0 object (initial and final), binary products and coproducts, and for
any A, B ∈A, the map

Aq B→ A× B

given on A by (1A, 0) and on B by (0, 1B) is an isomorphism.

(ii) A has finite products, and for any A, B ∈ A, A(A, B) has a structure of a
commutative monoid, and composition is distributive with respect to these
monoid laws.

(iii) Same as (ii), replacing product by coproduct.

We then say that A is a semiadditive category and write A⊕ B for the product or
coproduct of two objects A, B.

(b) If A is a semiadditive category, the law (A, B) 7→ A⊕ B endows A with a
canonical unital symmetric monoidal structure.

Proof. (a) By duality, we only need to show (i)⇐⇒ (ii). (i)=⇒ (ii) follows from
[Mac Lane 1998, Chapter VIII, Section 2, Example 4(a)]; recall that for two mor-
phisms f, g : A→ B in A, Mac Lane defines their sum f + g as the composition

A
1A
//

f+g

��

A× A

f×g
$$

B× B

B Bq B
∇B
oo

∼

99

where 1A is the diagonal and ∇B is the codiagonal.
As for (ii)=⇒ (i), it is implicit in the proof of [Mac Lane 1998, Chapter VIII, Sec-

tion 2, Theorem 2]. Indeed, Mac Lane defines a biproduct of two objects A, B ∈A
as a diagram

A
p1

�
i1

C
p2

�
i2

B

satisfying p1i1=1A, p2i2=1B and i1 p1+i2 p2=1C . Let us say that such a diagram
is a biproduct* if the further identities p1i2 = 0 and p2i1 = 0 hold. Then, Mac Lane
proves that a biproduct* is a product and that a product is a biproduct*. Dually, a
biproduct* is the same as a coproduct, hence binary products and coproducts are
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canonically isomorphic, and one checks from his proof that the isomorphism is
given by the map of (i).

(Let us clarify that Mac Lane proves that a biproduct is a biproduct* if the
addition law on morphisms has the cancellation property; but we don’t use this
part of his proof.)

(b) This is obvious: already finite products or coproducts define a canonical sym-
metric monoidal structure. �

Define a semiadditive functor between two semiadditive categories A,B as a
functor F : A→ B which preserves addition of morphisms. Note that any semi-
additive functor preserves ⊕, by the characterisation of biproducts via equations
(see proof of Lemma A.2.1(a)).

A.3. Localisation of R-linear categories.

Theorem A.3.1. Let A be a semiadditive category and S a family of morphisms
of A, containing all identities and stable under ⊕. Then S−1A and the localisation
functor PS :A→ S−1A are semiadditive.

Proof. We use the characterisation (i) of semiadditive categories in Lemma A.2.1;
by [Maltsiniotis 2005, Lemme 1.3.6 and Proposition 2.1.8], PS preserves products
and coproducts, and transforms the isomorphisms Aq B −→∼ A× B into isomor-
phisms. �

To “catch” additive categories (as opposed to semiadditive categories), we could
do as in [Mac Lane 1950] and postulate the existence of an endomorphism −1A for
each object A. We prefer to do this more generally by dealing with R-linear cate-
gories, where R is an arbitrary ring (an R-linear category is simply a semiadditive
R-category).

More precisely, let A be an R-linear category. Then in particular:

• A is a semiadditive category.

• It enjoys an action of the multiplicative monoid underlying R, i.e., there is a
homomorphism of monoids R→ End(I dA), where End(I dA) is the monoid
of natural transformations of the identity functor of A.

• For λ ∈ R and A ∈ A, let λA denote the corresponding endomorphism of A.
Then we have identities

(λ+µ)A = λA+µA. (A.3.2)

Conversely, the following lemma is straightforward.

Lemma A.3.3. Let A be a semiadditive category provided with an action of R
verifying (A.3.2). Then A is an R-linear category.
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From this lemma, it follows:

Theorem A.3.4. Theorem A.3.1 extends to R-linear categories.

A.4. Localisation and pseudoabelian envelope.

Lemma A.4.1. Let A an additive category and S a family of morphisms in A,
stable under direct sums. Let A→ A\ denote the pseudoabelian envelope of A,
and let us denote by S\ the set of direct summands of members of S in A\. Then the
natural functors

(S−1A)\→ (S−1(A\))\→ ((S\)−1(A\))\

are equivalences of categories.

Proof. All categories are universal for additive functors T from A to a pseudo-
abelian category such that T (S) is invertible. �

A.5. Localisation and group completion.

Lemma A.5.1. Let A be a semiadditive category. There exists an additive category
A+ and a semiadditive functor ι :A→A+ with the following 2-universal property:
any semiadditive functor from A to an additive category factors through ι up to a
unique natural isomorphism.

A model of A+ may be given as follows: the objects of A+ are those of A; if
A, B ∈ A, then A+(A, B) is the group completion of the commutative monoid
A(A, B).

The category A+ is called the group completion of A.

The proof is straightforward and omitted.

Proposition A.5.2. Let A be a semiadditive category, and let S be a family of
morphisms in A, containing the identities and stable under direct sums. Keep
writing S for the image of S in the group completion A+. Then the functor

S−1ι : S−1A→ S−1(A+)

induces an equivalence of categories

ι̃ : (S−1A)+ −→∼ S−1(A+).

Here we use the structure of semiadditive category on S−1A given in Theorem A.3.1.

Proof. The existence of ι̃ follows from the universal property of group comple-
tion. A quasi-inverse to ι̃ is obtained by group-completing the functor A→ S−1A
(which is semiadditive by Theorem A.3.1), and then extending the resulting functor
to S−1(A+). �
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On the K-theory of linear groups

Daniel Kasprowski

We prove that for a finitely generated linear group over a field of positive char-
acteristic the family of quotients by finite subgroups has finite asymptotic di-
mension. We use this to show that the K-theoretic assembly map for the family
of finite subgroups is split injective for every finitely generated linear group G
over a commutative ring with unit under the assumption that G admits a finite-
dimensional model for the classifying space for the family of finite subgroups.
Furthermore, we prove that this is the case if and only if an upper bound on the
rank of the solvable subgroups of G exists.

1. Introduction

For every group G and every ring A there is a functor KA : Or G→Spectra from
the orbit category of G to the category of spectra sending G/H to (a spectrum
weakly equivalent to) the K-theory spectrum K(A[H ]) for every subgroup H ≤ G.
For any such functor F : Or G → Spectra, a G-homology theory F can be con-
structed via

F(X) :=MapG(_, X+)∧Or G F;

see [Davis and Lück 1998]. We will write H G
n (X; F) := πnF(X) for its homotopy

groups. The assembly map for the family of finite subgroups is the map

H G
n (EG;KA)→ H G

n (pt;KA)∼= Kn(A[G])

induced by the map EG → pt. Here EG denotes the classifying space for the
family of finite subgroups; see [Lück 2000]. The assembly map is a helpful tool
for relating the K-theory of the group ring A[G] to the K-theory of the group rings
over the finite subgroups H ≤ G. It can more generally be defined for any additive
G-category instead of A; see [Bartels and Reich 2007]. Note that additive cate-
gories will always be small and that K-theory will always mean the nonconnective
K-theory constructed by Pedersen and Weibel [1985].

MSC2010: 18F25, 19A31, 19B28, 19G24.
Keywords: K- and L-theory of group rings, injectivity of the assembly map, linear groups.
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Theorem 1.1. Let R be a commutative ring with unit and let G≤GLn(R) be finitely
generated. If G admits a finite-dimensional model for the classifying space EG,
then the assembly map

H G
n (EG;KA)→ Kn(A[G])

is split injective for every additive G-category A.
If A is an additive G-category with involution such that, for every virtually nilpo-

tent subgroup A≤G, there exists i0 ∈N such that for i ≥ i0 we have K−i (A[A])= 0,
then the L-theoretic assembly map

H G
n (EG; L〈−∞〉A )→ L〈−∞〉n (A[G])

is split injective.

Theorem 1.1 implies the (generalized integral) Novikov conjecture for these
groups by [Kasprowski 2015b, Section 6], since virtually nilpotent groups satisfy
the Farrell–Jones conjecture by [Wegner 2015]. The (rational) Novikov conjecture
for these groups is already known, by Guentner, Higson and Weinberger [Guent-
ner et al. 2005], where it is shown that the Baum–Connes assembly map is split
injective for linear groups.

We will use inheritance properties to reduce the proof of the theorem to the
case where the ring R has trivial nilradical and show that in this case the family
{F\G}F∈Fin has finite decomposition complexity, where Fin denotes the family
of finite subgroups of G. Then the theorem follows from the main theorem of
[Kasprowski 2014]. For convenience, the necessary results of [Kasprowski 2014]
are recalled in the Appendix.

By a result of Alperin and Shalen [1982], a finitely generated subgroup G
of GLn(F), where F is a field of characteristic zero, has finite virtual cohomolog-
ical dimension if and only if there is a bound on the Hirsch rank of the unipotent
subgroups of G. This in particular implies that it has a finite-dimensional model for
the classifying space EG. In positive characteristic, a finitely generated subgroup
G ≤ GLn(F) always admits a finite-dimensional model for EG, by [Degrijse and
Petrosyan 2015, Corollary 5]. In Section 5 we prove the following generalization:

Proposition 1.2. Let R be a commutative ring with unit and let G ≤ GLn(R) be
finitely generated. Then G admits a finite-dimensional model for EG if and only if
there exists N ∈N such that l(A)≤ N for every solvable subgroup A ≤ G, where
l(A) denotes the Hirsch rank of A.

Let G be a solvable group and 1 = G0 E G1 E · · ·Gn−1 E Gn = G a normal
series with abelian factors. The Hirsch rank (or Hirsch length) l(G) of G is

l(G)=
n∑

i=1

dimQ Q⊗Z (Ai/Ai−1).
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2. Finite decomposition complexity

Let X be a metric space. A decomposition X =
⋃

i∈I Ui is called r-disjoint, if
d(Ui ,U j ) > r for all i 6= j ∈ I . We then denote the decomposition by

X =
r-disj.⋃

Ui .

A metric family is a set of metric spaces. A metric family {X i }i∈I has finite asymp-
totic dimension uniformly if there exists an n ∈ N such that for every r > 0 and
i ∈ I there exist decompositions

X i =

n⋃
k=0

U k
i and U k

i =

r-disj.⋃
j∈Ji,k

U k
i, j

such that supi, j,k U k
i, j <∞.

Guentner, Tessera and Yu [Guentner et al. 2013] introduced the following gen-
eralization of finite asymptotic dimension:

Definition 2.1. Let r > 0. A metric family X ={Xα}α∈A r-decomposes over a class
of metric families D if for every α ∈ A there exists a decomposition Xα =U r

α ∪ V r
α

and r-disjoint decompositions

U r
α =

r-disj.⋃
i∈I (r,α)

U r
α,i and V r

α =

r-disj.⋃
j∈J (r,α)

V r
α, j

such that the families {U r
α,i }α∈A, i∈I (r,α) and {V r

α, j }α∈A, j∈J (r,α) lie in D. A metric
family X decomposes over D if it r-decomposes over D for all r > 0.

Let B denote the class of bounded families, i.e., X ∈B if there exists R > 0
such that diam X < R for all X ∈X . We set D0 =B. For a successor ordinal γ +1
we define Dγ+1 to be the class of all metric families which decompose over Dγ .
For a limit ordinal λ we define

Dλ =

⋃
γ<λ

Dγ .

A metric family X has finite decomposition complexity (FDC) if X ∈Dγ for some
ordinal γ .

A metric space X has FDC if the family {X} consisting only of X has FDC.
A group G has FDC if it has FDC with any (and thus every) proper left-invariant
metric.

A subfamily Z of a metric family Y is a metric family Z such that for each
Z ∈ Z there exists Y ∈ Z with Y ⊆ X .

A map F : X → Y between metric families X and Y is a set of maps from
elements of X to elements of Y such that every X ∈ X is the domain of at least
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one f ∈ F . The inverse image F−1(Z) of a subfamily Z of Y is the metric family
{ f −1(Z) | Z ∈Z, f ∈ F}. A map F : X → Y is called uniformly expansive if there
exists a nondecreasing function ρ : [0,∞)→[0,∞) such that for every f : X→ Y
in F and every x , y ∈ X we have

d( f (x), f (y))≤ ρ(d(x, y)).

We will use the following three results about FDC:

Theorem 2.2 [Guentner et al. 2013, Fibering theorem 3.1.4]. Let X and Y be
metric families and let F : X → Y be uniformly expansive. Assume Y has FDC
and that for every bounded subfamily Z of Y the inverse image F−1(Z) has FDC.
Then X also has FDC.

Theorem 2.3 [Guentner et al. 2013, Theorem 4.1]. A metric space X with finite
asymptotic dimension has FDC.

While the above theorem is stated only for metric spaces it also holds for metric
families which have finite asymptotic dimension uniformly.

Theorem 2.4 [Guentner et al. 2013, Theorem 3.1.7]. Let X be a metric space,
expressed as a union of finitely many subspaces X =

⋃n
i=0 X i . If the metric family

{X i }i=0,...,n has FDC, so does X.

This theorem again holds for metric families instead of metric spaces, i.e., a
metric family

{⋃n
i=0 X i j

}
j∈J has FDC if and only if the family {X i j } j∈J, i=0,...,n

has FDC. We will also need the following two results about finite asymptotic
dimension:

Lemma 2.5. Let P : X → Y be a family of maps such that for some k > 0 each
p ∈ P is k-Lipschitz. Suppose that Y has finite asymptotic dimension uniformly
and that for each R > 0 the family{

p−1(BR(y)) | X ∈ X , Y ∈ Y, y ∈ Y, (p : X→ Y ) ∈ P
}

has finite asymptotic dimension uniformly. Then X has finite asymptotic dimension
uniformly.

Lemma 2.6. Let X = {Uα ∪ Vα}α∈A be a metric family. Then

asdimX =max
{
asdim{Uα}α, asdim{Vα}α∈A

}
.

These results are [Roe 2003, Lemma 9.16 and Proposition 9.13], respectively,
for metric families instead of metric spaces. The proofs are the same.

In the next section it will be more convenient to work with pseudometrics instead
of metrics, i.e., allowing d(x, y) = 0 for x 6= y. Finite asymptotic dimension
and FDC are defined in the same way for pseudometrics. If d is a pseudometric
on X , then we can define a metric d ′ on X by setting d ′(x, y) :=max{1, d(x, y)}
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for x 6= y. The metric d ′ is proper (resp. left-invariant) if and only if d is. It has
finite asymptotic dimension (resp. FDC) if and only if d does. Therefore, to show
that a group has finite asymptotic dimension or FDC, it suffices to show this for G
equipped with a left-invariant proper pseudometric.

Notation 2.7. We write FinG for the set of finite subgroups of a group G. For a
subgroup H of G, by {F\G}F∈FinH we will mean the family of quotients of G by
all finite subgroups of H . When H is the group of which we take the quotients,
we will drop the subscript on Fin, that is, {F\G}F∈Fin = {F\G}F∈FinG .

3. Linear groups over fields of positive characteristic

In this section K will always denote a field of positive characteristic. Every finitely
generated subgroup G of GLn(K ) has finite asymptotic dimension, by [Guentner
et al. 2012, Theorem 3.1]. Here we want to show that the family {F\G}F∈Fin has
finite asymptotic dimension uniformly. We begin by recalling the argument from
[Guentner et al. 2012].

A length function on a group G is a function l : G → [0,∞) such that, for
all g, h ∈ G,

(1) l(e)= 0,

(2) l(g)= l(g−1), and

(3) l(gh)≤ l(g)+ l(h).

We do not require that l be proper, nor that l(g)= 0 if and only if g = e. By setting
d(g, h) := l(g−1h) we obtain a pseudometric.

A discrete norm on a field K is a map γ : K → [0,∞) satisfying that for all
x, y ∈ K we have

(1) γ (x)= 0 if and only if x = 0,

(2) γ (xy)= γ (x)γ (y),

(3) γ (x + y)≤max{γ (x), γ (y)},

and that the range of γ on K \ {0} is a discrete subgroup of the multiplicative
group (0,∞).

Following [Guentner et al. 2005], we obtain for every discrete norm γ on K a
length function lγ on GLn(K ) by

lγ (g)= log max
i, j
{γ (gi j ), γ (gi j )},

where gi j and gi j are the matrix coefficients of g and g−1, respectively. By [Guent-
ner et al. 2013, Propostion 5.2.4] the group GLn(K ) equipped with the pseudo-
metric d(g, h)= lγ (g−1h) has finite asymptotic dimension for every discrete norm γ .
Let us review the proof.
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The subset O := {x ∈ K | γ (x)≤ 1} is a subring of K called the ring of integers
and m := {x ∈ K | γ (x) < 1} is a principal ideal in O. Let π be a fixed generator
of m and let D denote the subgroup of diagonal matrices with powers of π on the
diagonal. Let U denote the unipotent upper triangular matrices. By [Guentner et al.
2013, Lemma 5.2.5] the group U has asymptotic dimension zero. We have D ∼= Zn

and the restriction of lγ to D is given by

lγ (a) :=max
i
|ki | log γ (π−1),

where a is the diagonal matrix with entries π ki on the diagonal. The group D
therefore is quasi-isometric to Zn with the standard metric and has asymptotic
dimension n. The group T := DU is again a subgroup of GLn(K ) and U ≤ T is
normal. Considering the extension 1→U→ T → D→ 1, we see that T has finite
asymptotic dimension.

Let H be the subgroup of those g ∈ GLn(F) for which the entries of g and g−1

are in O. Then GLn(K )= TH by [Guentner et al. 2005, Lemma 5]. For h ∈ H let
hi j and hi j denote the matrix coefficients of h and h−1, respectively. By definition,
γ (hi j ), γ (hi j )≤ 1 and thus

0≤ lγ (h)= log max
i j
{γ (hi j ), γ (hi j )} ≤ 0.

This implies that the inclusion T → GLn(K ) is isometric and metrically onto, i.e.,
for every g ∈ GLn(K ) there exists a t ∈ T with d(g, t) = 0. Hence, GLn(K ) has
finite asymptotic dimension with respect to the pseudometric d .

Lemma 3.1. For every discrete norm the family {F\GLn(K )}F , where F ranges
over all finite subgroups of U , has finite asymptotic dimension uniformly with
respect to the associated pseudometric.

Proof. Let F be a finite subgroup of U . Then we can consider the map

F\T ρF
−→ D.

We want to apply Lemma 2.5 to the family {ρF : F\T ρ
→ D}F∈FinU , For this we

have to show that for every R > 0 the family {ρ−1
F (BR(d))}d∈D, F∈FinU has finite

asymptotic dimension uniformly. The preimage ρ−1
F (d) = {Fud | u ∈ U } of a

point d ∈ D is isometric to (F)d\U , by mapping Fud to d−1 Fdd−1ud, where
(F)d := {d−1 f d | f ∈ F}. Therefore, the preimage of BR(d) for any R > 0 is a
finite union of spaces isometric to spaces of the form (F)d

′

\U with d ′ ∈ D. The
number of spaces appearing in this union only depends on R and not on d (or F).
Thus, by Lemma 2.6,

asdim{ρ−1
F (BR(d))}d∈D, F∈FinU = asdim{F\U }F∈Fin.
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Since the inclusion F\T → F\GLn(K ) is isometric and metrically onto, to
prove the lemma it remains to show that the family {F\U }F∈Fin has asymptotic
dimension zero uniformly.

Let R > 0 be given and let S denote the partition of U into r-connected compo-
nents, i.e., two elements u, u′ ∈U lie inside the same S ∈S if and only if there exists
a sequence u0, . . . , un with u= u0, u′= un and d(ui−1, ui )≤ R for all i = 1, . . . , n.
Since U has asymptotic dimension zero we have that r := supS∈S diam S <∞.
Since the left action of F on U is isometric, if f u=u′ for some f ∈ F and u, u′ ∈U ,
then f maps the r-connected component of u bijectively onto the r-connected
component of u′. This implies that every r-connected component of F\U is a
quotient of an r-connected component of U and in particular has diameter at most r .
Therefore, the family {F\U }F∈Fin has asymptotic dimension zero uniformly, as
claimed. �

Proposition 3.2. Let G ≤GLn(K ) be a finitely generated subgroup. Then for every
discrete norm γ the family {F\G}F∈Fin has finite asymptotic dimension uniformly
with respect to the associated pseudometric.

Proof. By the main theorem of [Alperin 1987] there exists a normal subgroup
G ′ ≤ G with index [G : G ′] =: N <∞ such that every finite subgroup of G ′ is
unipotent. Therefore, every finite subgroup F ≤ G ′ is conjugate in GLn(K ) to a
finite subgroup F ′ ≤ U . Let g = th with t ∈ T , h ∈ H be such that g−1 F ′g = F .
Since U is normal in T , we have that t−1 F ′t ≤ U and we can assume g ∈ H
and in particular lγ (g) = 0. This implies that conjugation by g is an isometry
and induces an isometry between F ′\GLn(K ) and F\GLn(K ). By Lemma 3.1
the family {F ′\GLn(K )}F ′∈FinU has finite asymptotic dimension uniformly and,
by the above isometry, the family {F\GLn(K )}F∈FinG′

therefore also has finite
asymptotic dimension uniformly. This also holds for the subfamily {F\G}F∈FinG′

.
Since [G : G ′] = N , every finite subgroup F̃ of G has a normal subgroup F of
index at most N lying in G ′. The quotient group F\F̃ acts isometrically on F\G.
Thus, projecting the covers that give finite asymptotic dimension for {F\G}F∈FinG′

down to the quotient {F̃\G}F̃∈Fin shows that this family still has finite asymptotic
dimension uniformly. �

Theorem 3.3. Let G ≤ GLn(K ) be a finitely generated subgroup. There exists
a proper, left-invariant metric on G such that the family {F\G}F∈Fin has finite
asymptotic dimension uniformly.

Proof. The subring of K generated by the matrix entries of a finite generating set
for G is a finitely generated domain A with G ≤GLn(A) and we may replace K by
the (finitely generated) fraction field of A; thus, we can assume that K is a finitely
generated field of positive characteristic. By [Guentner et al. 2012, Proposition 3.4],
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for every finitely generated subring A of K there exists a finite set NA of discrete
norms such that for every k ∈ N the set

BA(k)= {a ∈ A | γ (a)≤ ek for all γ ∈ NA}

is finite. Let A again be the subring generated by the matrix entries of a finite
generating set for G and NA = {γ1, . . . , γq} be the finite set of discrete norms, as
above. Consider the length function l := lγ1 + · · · + lγq . The pseudometric on G
defined by d(g, g′) := l(g−1g′) now is proper and left-invariant, and the diagonal
embedding

(G, d)→ (GLn(K ), dγ1)× · · ·× (GLn(K ), dγq )

is isometric when the product is given the sum metric. It suffices to show that the
family {

F\((G, dγ1)× · · ·× (G, dγq ))
}

F∈FinG

has finite asymptotic dimension uniformly. Now let F ≤ G be finite and consider
the projection

F\(G× · · ·×G) p
→ F\G× · · ·× F\G

using the same metrics as above. The image has finite asymptotic dimension uni-
formly in F by Proposition 3.2, and using Lemma 2.5 it suffices to show that the
preimage of BR(Fg1)×· · ·×BR(Fgn) under p has finite asymptotic dimension uni-
formly. The preimage is a finite union of metric spaces of the form F\(Fg′1× Fg′n)
and the number of the spaces appearing in the union only depends on R, not on
F or g1, . . . , gn . By the main theorem of [Alperin 1987] there exists a normal
subgroup G ′EGLn(A) with index [GLn(A) : G ′] =: N <∞ such that every finite
subgroup of G ′ is unipotent. In particular, we have a normal unipotent subgroup
F ′ := G ′ ∩ F of F of index at most N . The space Fg′1 × · · · × Fg′n is a union
of at most N subspaces isometric to F ′g′1 × · · · × F ′g′n , and as in the proof of
Proposition 3.2 there exists an isometry of these to F1 × · · · × Fn with Fi ≤ U .
By Lemma 2.6 this shows that Fg′1 × · · · × Fg′n has asymptotic dimension zero
uniformly in F . As in the proof of Lemma 3.1, we see that F\(Fg′1× · · ·× Fg′n)
also has asymptotic dimension zero. This completes the proof of Theorem 3.3. �

Remark 3.4. Note that the family {F\G}F∈Fin has finite asymptotic dimension
uniformly for some proper, left-invariant (pseudo)metric on G if and only if it has
finite asymptotic dimension for every proper, left-invariant metric on G.

4. Linear groups over commutative rings with unit

Lemma 4.1. Let H1 and H2 be groups such that {F\Hi }F∈Fin has FDC for i = 1, 2.
Then {F\(H1× H2)}F∈Fin has FDC.
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Proof. Let proper, left-invariant metrics di on Hi be given and consider H1× H2

with the metric d1+ d2. Let pi : H1× H2→ Hi denote the projection. Consider
the uniformly expansive map

{F\(H1× H2)}F∈Fin→
{
(p1(F)× p2(F))\(H1× H2)

}
F∈Fin .

Then the range has FDC by assumption and by the fibering theorem [Guentner et al.
2013, Theorem 3.1.4] it suffices to show that the family{

F\(p1(F)× p2(F))(BR(h1)× BR(h2))
}

hi∈Hi , F∈FinH1×H2

has FDC for every R>0. Every space in this family is a union of |BR(h1)×BR(h2)|

many spaces of the form F\(p1(F)×p2(F))(h, h′). The number |BR(h1)×BR(h2)|

only depends on R, not on h1 and h2, and every space F\(p1(F)× p2(F))(h, h′)
is isometric to (F)(h,h

′)
\(p1(F)× p2(F))(h,h

′), where (F)(h,h
′) is (h, h′)−1 F(h, h′)

and similarly for (p1(F)× p2(F))(h,h
′). By Theorem 2.4 it suffices to show that the

family {F\F ′}F≤F ′ has FDC, where F ≤ F ′ ranges over all pairs of finite subgroups
of H1× H2. Let SR denote the family of finite subgroups of H1× H2 generated by
elements from BR(e) and let sR := supS∈SR

diam S. Let F ≤ H1×H2 be finite. Then
for every R > 0 the group F is the r-disjoint union of the cosets of 〈F ∩ BR(e)〉 and
each of these has diameter at most sR . We see that the family of finite subgroups
of H1× H2 has asymptotic dimension zero uniformly. This implies that the above
family {F\F ′}F≤F ′ also has asymptotic dimension zero uniformly, since every r-
connected component of F\F ′ is a quotient of an r-connected component of F ′

and thus has uniformly bounded diameter. �

Lemma 4.2 [Guentner et al. 2013, Lemma 5.2.3]. Let R be a finitely generated
commutative ring with unit and let n be the nilpotent radical of R,

n= {r ∈ R | rn
= 0 for some n}.

The quotient ring S = R/n contains a finite number of prime ideals p1, . . . , pk such
that the diagonal map

S→ S/p1⊕ · · ·⊕ S/pk

embeds S into a finite direct sum of domains.

Theorem 4.3. Let R be a commutative ring with unit and trivial nilradical and let
G be a finitely generated subgroup of GL(n, R). Then {F\G}F∈Fin has FDC.

Proof. Because G is finitely generated we can assume that R is finitely generated
as well. Since the nilradical of R is trivial, we have R = S in the notation of the
previous lemma and there is an embedding

GLn(S) ↪→GLn(S/p1)×·· ·×GLn(S/pk) ↪→GLn(Q(S/p1))×·· ·×GLn(Q(S/pk)),
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where Q(S/pi ) is the quotient field of S/pi . Let Gi be the image of the group
G in GLn(Q(S/pi )). If S/pi has positive characteristic, the family {F\Gi }F∈Fin

has FDC by Theorem 3.3. If S/pi has characteristic zero, then Gi is virtually
torsion-free by Selberg’s lemma and thus {F\Gi }F∈Fin has FDC by [Kasprowski
2015a, Theorem 4.10]. Now Lemma 4.1 implies that the family {F\G}F∈Fin also
has FDC. �

Proof of Theorem 1.1. This follows directly from Theorem 4.3 and [Kasprowski
2014, Theorems 3.2.2 and 3.3.1] if R has trivial nilradical. Note that these theorems
are stronger than the similar [Kasprowski 2015a, Theorems A and 9.1], where an
upper bound on the order of the finite subgroups is needed. For convenience we
show in the Appendix how the results from [Kasprowski 2015a] can be used to
prove the theorems from [Kasprowski 2014].

If the nilradical n of R is nontrivial, we have an exact sequence

1→ (1+Mn(n))∩G→ G→ H → 1,

where H denotes the image of G in GLn(R/n). Now the K-theoretic assembly
map for H is split injective and (1+Mn(n))∩G is nilpotent. Therefore, the pre-
image of every virtually cyclic subgroup of H is virtually solvable and satisfies the
Farrell–Jones conjecture, by [Wegner 2015]. By [Kasprowski 2015b, Proposition
4.1] this implies that the K-theoretic assembly map for G is split injective as well.
The L-theory version of the theorem follows in the same way from the results in
[Kasprowski 2015b, Section 6]. �

5. Dimension of the classifying space

In this section we want to prove Proposition 1.2. We will need the following re-
sult about classifying spaces. The proof is the same as the proof of [Lück 2000,
Theorem 3.1].

Theorem 5.1. Let 1→ K→G π
→Q→ 1 be an exact sequence of groups. Assume

that Q admits a finite-dimensional model for E Q and that there exists N ∈ N such
that for every finite subgroup F ∈ Q the preimage admits a model for Eπ−1(F) of
dimension at most N . Then there exists a finite-dimensional model for EG.

Proof of Proposition 1.2. For a group G let cdG be the shortest length of a projec-
tive resolution of Z as a Z[G]-module and let hdG be the shortest length of a flat
resolution of Z of Z as a Z[G]-module. Let gdG denote the minimal dimension of
a model for EG. For a countable group G by [Nucinkis 2004, Theorem 4.1] we
have

hdG ≤ cdG ≤ hdG+ 1.
Furthermore,

cdG ≤ gdG ≤max{cdG, 3},
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where the first inequality follows from taking the cellular chain complex of EG as
a resolution and the second inequality follows from [Lück 1989, Theorem 13.19].
By [Flores and Nucinkis 2007, Theorem 1], for a solvable group with finite Hirsch
length l(G) it holds that l(G)= hdG. Note that Flores and Nucinkis use Hillman’s
definition of the Hirsch rank for an elementary amenable group. It can be shown by
a simple transfinite induction that for solvable groups this agrees with the definition
given in the introduction. Furthermore, every solvable group with infinite Hirsch
length has a subgroup with arbitrary large Hirsch length. In particular, the existence
of a finite-dimensional model X for EG directly implies that the Hirsch rank of
the solvable subgroups of G is bounded by dim X . It remains to prove the other
direction.

Let R be a fixed commutative ring with unit and let G ≤ GLn(R) be finitely
generated with N ∈N an upper bound on the Hirsch rank of the solvable subgroups
of G. Since G is finitely generated, we can assume that R is also finitely generated
and let n, S and p1, . . . , pk be as in Lemma 4.2. Furthermore, let H denote the
image of G in GLn(S) and p :GLn(R)→GLn(S) the projection. Let A be a finitely
generated abelian subgroup of H . Then p−1(A) is solvable. This implies that the
rank of the finitely generated abelian subgroups of H is also bounded by N .

First let us show that H admits a finite-dimensional model for E H . By Lemma 4.2
H embeds into GLn(S/p1)× · · ·×GLn(S/pk) and, since H is finitely generated,
we can assume that all the domains S/pi are as well. Order them in such a way that
S/p1, . . . , S/pq are of positive characteristic and S/pq+1, . . . , S/pk are of charac-
teristic zero. Then GLn(S/pq+1) × · · · × GLn(S/pk) embeds into GLn(k−q)(C).
Let π denote the projection of H to GLn(S/p1) × · · · × GLn(S/pq) and let πi

denote the projection of H to GLn(S/pi ) for i = 1, . . . , q; then πi (H) admits a
finite-dimensional model Ei for Eπi (H), by [Degrijse and Petrosyan 2015, Corol-
lary 5], and thus E1 × · · · × Eq is a finite-dimensional model for Eπ(H). By
Theorem 5.1 it remains to show that for every finite subgroup F ∈ π(H) the
preimage π−1(F) admits a finite-dimensional model with dimension bounded uni-
formly in F . Let ρ denote the projection from H to GLn(k−q)(C). Then ρ(H) is
virtually torsion-free, by Selberg’s lemma [1960]. The group ρ(kerπ) is isomor-
phic to kerπ and thus N is a bound on the rank of its finitely generated abelian
subgroups. Furthermore, ρ(kerπ) has finite index in ρ(π−1(F)) for every finite
subgroup F ≤ π(H). Thus, the rank of the finitely generated abelian subgroups of
ρ(π−1(F)) is also bounded by N . By [Kasprowski 2015b, Proposition 3.1] this
implies that the rank of the finitely generated unipotent subgroups of ρ(π−1(F))
is bounded by 1

2 N (N + 1). This implies that ρ(π−1(F)) has finite virtual co-
homological dimension bounded uniformly in F ; see [Alperin and Shalen 1982,
Remark after Theorem 3.3]. The order of the finite subgroups in ρ(π−1(F)) is
bounded uniformly in F since they are all contained inside the virtually torsion-
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free group ρ(H). By Theorem 1.10 of [Lück 2000] this implies that there exist
finite-dimensional models for Eρ(π−1(F)) with dimension bounded uniformly
in F and, since ρ : π−1(F)→ ρ(π−1(F)) has finite kernel, they are also models
for Eπ−1(F). This completes the proof that H admits a finite-dimensional model
for E H .

For every finite subgroup F ≤ H , its preimage A in G is virtually nilpotent and
thus elementary amenable, and the Hirsch rank of A is bounded by N . By the
inequalities from the beginning of the proof this implies that there is a model for
E A of dimension at most N + 2. Using Theorem 5.1 again we conclude that there
exists a finite-dimensional model for EG. �

Appendix

In this appendix we want to prove the following:

Theorem A.1 [Kasprowski 2014, Theorem 3.2.2]. Let G be a discrete group such
that {H\G}H∈Fin has FDC and let A be a small additive G-category. Assume
that there is a finite-dimensional G-CW model for the classifying space for proper
G-actions EG. Then the assembly map in algebraic K-theory

H G
∗
(EG;KA)→ K∗(A[G])

is a split injection.

The analogous result in L-theory [Kasprowski 2014, Theorem 3.3.1] follows in
the same way from the results of [Kasprowski 2015a]. We will use the notation
introduced in [Kasprowski 2015a]. Note that, in the appendix, metrics are allowed
to take on the value∞. We will need the following equivariant version of FDC.

Definition A.2. An equivariant metric family is a family {(Xα,Gα)}α∈A, where
Gα is a group and Xα is a metric Gα-space.

Definition A.3. An equivariant metric family X = {(Xα,Gα)}α∈A decomposes
over a class of equivariant metric families D if for every r > 0 and every α ∈ A
there exists a decomposition Xα = U r

α ∪ V r
α into Gα-invariant subspaces and r-

disjoint decompositions

U r
α =

r-disj.⋃
i∈I (r,α)

U r
α,i and V r

α =

r-disj.⋃
j∈J (r,α)

V r
α, j

such that Gα acts on I (r, α) and J (r, α) and, for every g ∈ Gα, we have gU r
α,i =

U r
α,gi and gV r

α, j = V r
α,g j . Furthermore, the families{( ∐

i∈I (r,α)

U r
α,i ,Gα

)}
α∈A

and
{( ∐

j∈J (r,α)

V r
α, j ,Gα

)}
α∈A

have to lie in D.
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Notice that the underlying sets of U r
α and

∐
i∈I (r,α) U r

α,i are canonically isomor-
phic and in this sense the Gα-action on

∐
i∈I (r,α) U r

α,i is the same as the action
on U r

α , only the metric has changed.

Definition A.4. An equivariant metric family X is called semibounded if there
exists R > 0 such that for all (X,G) ∈ X and x, y ∈ X we have d(x, y) < R or
d(x, y)=∞.

Let eB denote the class of semibounded equivariant families. We set eD0 = eB
and, given a successor ordinal γ + 1, we define eDγ+1 to be the class of all equi-
variant metric families which decompose over eDγ . For a limit ordinal λ we define

eDλ =

⋃
γ<λ

eDγ .

An equivariant metric family X has finite decomposition complexity (FDC) if X lies
in eDγ for some ordinal γ .

Note that the equivariant metric family
{
(Xα, {e})

}
α∈A has FDC if and only if

the metric family {Xα}α∈A has FDC.

A metric family {Xα}α∈A has uniformly bounded geometry if for every R > 0
there exists N ∈ N such that, for every α ∈ A and U ⊆ Xα with diam(U )≤ R, the
set U contains at most N elements.

The following is a generalization of Ramras, Tessera and Yu [Ramras et al. 2014,
Theorem 6.4]. The proof is analogous to the proof of theirs and can be found in
[Kasprowski 2014]. The additive G-category AG(X) is defined in [Kasprowski
2015a, Definition 5.1] and AG

G(X) denotes the fixed-point category. For a definition
of the bounded product see [Kasprowski 2015a, Definition 5.11].

Theorem A.5. Let X = {(Xα,Gα)}α∈A be an equivariant family with FDC, and
let the family {Xα}α∈A have bounded geometry uniformly. Then

colim
s

Kn

( bd∏
α∈A

AGα

Gα
(Ps Xα)

)
= 0

for all n ∈ Z, where the colimit is taken over the maps induced by the inclusion of
the respective Rips complexes Ps Xα.

Furthermore, recall the following:

Theorem A.6 [Kasprowski 2015a, Theorem 7.6]. Let G be a discrete group admit-
ting a finite-dimensional model for EG and let X be a simplicial G-CW complex
with a proper G-invariant metric. Assume that, for every G-set J with finite stabi-
lizers,

colim
K

Kn

( bd∏
j∈J

AG(G K )
)G

= 0,
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where the colimit is taken over all finite subcomplexes K ⊆ X. Then the assembly
map

H G
∗
(X;KA)→ K∗(A[G])

is a split injection.

Proposition A.7 [Kasprowski 2014, Proposition 3.2.1]. Let G be a group such
that the metric family {H\G}H∈Fin has FDC. Then the equivariant metric family
{(G, H)}H∈Fin has FDC as well.

Proof. Let {(X i ,Gi )}i∈I be an equivariant metric family with Gi ≤ G a finite sub-
group and assume X i ⊆

∐
Ai

G is a Gi -invariant subspace, where Ai is a Gi -set. We
prove by induction on the decomposition complexity that the family {(X i ,Gi )}i∈I

lies in eDγ+1 if {Gi\X i }i∈I ∈Dγ . For the start of the induction let {Gi\X i }i∈I be
in D0 =B. Since Gi\X i is bounded, there is ai ∈ Ai with X i ⊆

∐
Gi ai

G. Then
there exist R > 0 and Yi ⊆ G =

∐
{ai }

G ⊆
∐

Ai
G with diam Yi < R for all i ∈ I

such that X i = Gi Yi ⊆
∐

Ai
G. Let G ′i ⊆ Gi be the stabilizer of ai . Then

X i ∼=
∐

[g]∈Gi/G ′i

gG ′i Yi with G ′i Yi ⊆ G.

Let r > 0 be given and define Sr := {H ∈ Fin | H = 〈S〉, S ⊆ B2R+r (e)}
and k := maxH∈S |H |. Let gi ∈ Yi be a fixed base point. Let Hi ≤ G ′i be the
subgroup generated by those g ∈ G ′i with d(Yi , gYi ) < r . For these g we have
d(e, g−1

i ggi ) < 2R + r . Therefore, g−1
i Hi gi ∈ Sr and |Hi | ≤ k. We have the

decomposition
X i =

⋃
[g]∈Gi/Hi

gHi Yi .

This decomposition is r-disjoint, since d(ghy, g′h′y′)<r with g, g′∈Gi , h, h′∈Hi

and y, y′ ∈ Yi implies that d(Yi , h−1g−1g′h′Yi ) < r and so, by definition, the
element h−1g−1g′h′ lies in Hi , which is equivalent to gHi = g′Hi .

By definition of Hi each h ∈ Hi can be written as h = g1 · · · gl with l ≤ |H | ≤ k
and g j such that d(Yi , g j Yi ) < r . For every y, y′ ∈ Yi , by left-invariance and the
triangle inequality we obtain

d(y, hy′)≤ d(y, g1 y′)+ d(g1 y′, g1g2 y′)+ · · ·+ d(g1 · · · gl−1 y′, hy′)

= d(y, g1 y′)+ d(y′, g2 y′)+ · · ·+ d(y′, gl y′) < lr.

Therefore diam gHi Yi = diam Hi Yi < kr . Thus, {(X i ,Gi )}i∈I is r-decomposable
over eD0 = eB for every r > 0 and lies in eD1.

If {Gi\X i }i∈I lies in Dγ+1, then it decomposes over Dγ and the preimages under
the projection X i → Gi\X i give a decomposition of {(X i ,Gi )} over eDγ+1 by the
induction hypothesis. Here Gi acts trivially on the index set of the decomposition.
The induction step for limit ordinals is trivial. �
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Proof of Theorem A.1. By [Kasprowski 2015a, Proposition 1.5], G admits a finite-
dimensional model X for EG with a left-invariant proper metric. By Theorem A.6
we have to show that

colim
K

Kn

( bd∏
j∈J

AG(G K )
)G

= 0,

where the colimit is taken over all finite subcomplexes K ⊆ X . Since the cat-
egory

(∏bd
j∈J AG(G K )

)G is equivalent to
∏bd

G j∈G\J A
G j
G (Ps G), where G j is the

stabilizer of j ∈ J , this is equivalent to showing that, for every family of finite
subgroups {Gi }i∈I over some index set I ,

colim
K

Kn

( bd∏
i∈I

AGi
G (G K )

)
= 0.

By [Kasprowski 2015a, Lemma 1.8 and Proposition 6.3], for every finite subcom-
plex K ⊆ X there exists K ′ ⊆ X finite and s > 0 with maps G K → Ps(G)→ G K ′

such that the composition is metrically homotopic to the identity. In particular,
the composition induces the identity in the K-theory of the associated controlled
categories. Thus it remains to show

colim
s

Kn

( bd∏
i∈I

AGi
G (Ps G)

)
= 0.

Since {(G, H)}H∈Fin has FDC by Proposition A.7 and the category AGi
G (Ps G) is

equivalent to AGi
Gi
(Ps G), this follows from Theorem A.5. �
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Standard norm varieties for Milnor symbols mod p

Dinh Huu Nguyen

We prove that the standard norm varieties for Milnor symbols mod p of length n
are birationally isomorphic to Pfister quadrics when p = 2, to Severi–Brauer
varieties when p > 2 and n = 2, and to varieties defined by reduced norms of
cyclic algebras when p > 2 and n = 3. In the case p = 2 and the case p > 2
and n = 2, the results imply that the standard norm varieties for two equal Milnor
symbols mod p are birationally isomorphic, and we conjecture this in general.

1. Introduction

The norm residue theorem relates the Milnor K-theory mod p of a field k with
the étale cohomology of k with coefficients in the twists of µp. More precisely,
it states that for each prime p 6= char(k) and each weight n ≥ 0 there exists an
isomorphism

K M
n (k)/p ∼= H n

ét(k, µ
n
p)

In 1996, V. Voevodsky [2003] proved the special case of p = 2, known as the
Milnor conjecture. He later [2011] proved the general case of the norm residue
theorem, also known as the Bloch–Kato conjecture. His proof used a splitting
variety with certain properties for a given Milnor symbol {a1, . . . , an} in K M

n (k)/p.
One construction for such splitting varieties was provided by M. Rost in [Haese-
meyer and Weibel 2009, Section 3]. Another construction for these varieties was
suggested by Voevodsky in [Suslin and Joukhovitski 2006, Section 2]. The entire
theorem has been written in book form by C. Haesemeyer and C. Weibel [2016].

In Section 2, we summarize Voevodsky’s construction. It uses symmetric powers
and produces what are called standard norm varieties.

In Section 3, we show in Theorem 3.7 that the standard norm varieties are
birationally isomorphic to Pfister quadrics defined by subforms of Pfister forms
when p = 2. Then we combine this result with the chain P-equivalence theorem

MSC2010: 14E99, 19E99.
Keywords: algebraic geometry, Milnor K-theory, Milnor symbols, norm varieties, standard norm

varieties, generic splitting varieties, p-generic splitting varieties, norm variety, standard norm
variety, generic splitting variety, p-generic splitting variety.
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by R. Elman and T. Y. Lam [1972, Main Theorem 3.2] and properties of qua-
dratic forms to prove that the standard norm varieties for two equal symbols are
birationally isomorphic in Corollary 3.13.

In Section 4, we use Galois descent to show in Theorem 4.1 that the standard
norm varieties are birationally isomorphic to Severi–Brauer varieties when p > 2
and n = 2 and get the similar Corollary 4.2.

In Section 5, we use Galois descent to show in Theorem 5.1 that the standard
norm varieties are birationally isomorphic to varieties defined by reduced norms
of cyclic algebras when p > 2 and n = 3. N. Karpenko and A. Merkurjev [2013]
use this result and induction to prove A-triviality for standard norm varieties.

Given the above two corollaries, we make the following conjecture:

Conjecture 1.1. The standard norm varieties for {a1, . . . , an} and {b1, . . . , bn}

are birationally isomorphic if {a1, . . . , an} = {b1, . . . , bn} in K M
n (k)/p for all p

and n.

2. Symmetric powers

A general reference for Milnor K-theory is [Milnor 1970]. Throughout this paper,
p is a prime and k is a base field of characteristic 0 containing the p-th roots of
unity. Associated to each nontrivial Milnor symbol {a1, . . . , an} in K M

n (k)/p are
the following notions:

Definition 2.1. A field extension L/k is called a splitting field for {a1, . . . , an} if
{a1, . . . , an} = 0 in K M

n (L)/p.

Definition 2.2. A smooth variety X is called a splitting variety for {a1, . . . , an} if
its function field k(X) is a splitting field for {a1, . . . , an}. In addition, it is called
a generic splitting variety for {a1, . . . , an} if any splitting field L for {a1, . . . , an}

has a point in X , i.e., if there exists a morphism Spec(L)→ X over k.

Such generic splitting varieties are known to exist for all n when p = 2 and only
for n ≤ 3 when p > 2. However, if L ′/L if a finite extension of degree prime to p
and L ′ splits {a1, . . . , an}, then L also splits {a1, . . . , an} (using transfer and norm
maps). Therefore we can relax our last definition.

Definition 2.3. A smooth variety X is called a p-generic splitting variety for
{a1, . . . , an} if it is a splitting variety for {a1, . . . , an} and, for any splitting field L
for {a1, . . . , an}, there exists an extension L ′/L of degree prime to p with a point
in X . In addition, it is called a norm variety for {a1, . . . , an} if it is projective and
geometrically irreducible of dimension pn−1

− 1.

Example 2.4. When n= 1, a norm variety for {a1} is Spec(L), where L = k( p
√

a1 ).
When n = 2, a norm variety for {a1, a2} is the Severi–Brauer variety SB(A) asso-
ciated to the cyclic algebra A = (a1, a2, ζp)k .
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We now describe a standard way to produce these norm varieties for all n, which
are called standard norm varieties.

Let X be a smooth, quasiprojective, geometrically irreducible variety. The sym-
metric group Sp acts on the product X p and induces the quotient variety S p(X).
This quotient variety is geometrically irreducible and normal. Note that Sp acts
freely on X p

\4 and U := (X p
\4)/Sp is an open subset in S p(X), where 4 is the

union of all diagonals in X p.
For every normal and irreducible scheme Y , the set of morphisms Hom(Y, S p(X))

can be identified with the set of all effective cycles Z ⊂ X × Y such that each
component of Z is finite surjective over Y , and that the degree of Z over Y is p. In
particular, the identity map S p(X) id

−→ S p(X) corresponds to the incidence cycle
Z ⊂ X × S p(X). In fact, Z is a closed subscheme: it is the image of the closed
embedding X × S p−1(X) ↪→ X × S p(X), (x, y) 7→ (x, x + y). Compose this with
projection onto the second factor and we get a map

p : X × S p−1(X)→ X × S p(X)→ S p(X).

It is finite surjective of degree p. Thus we get a diagram

X × S p−1(X) � p−1(U ) �
/Sp−1 X p

\4

S p(X)

p

?
� U

p|p−1(U )

?�

/S
p

We see that both maps from X p
\4 are Galois étale coverings, p|p−1(U ) is a

finite étale map of degree p, and U is smooth. Furthermore p∗ f (OX×S p−1(X)) is
a coherent OS p(X)-algebra and the sheaf A := p∗(OX×S p−1(X)|p−1(U )) is a locally
free OU -algebra of rank p. This latter sheaf corresponds to the vector bundle V :=
Spec(S•Aν) of rank p over U . Here Aν denotes the dual of A and S•Aν denotes
its symmetric algebra. There is a well-defined norm map A N

−→OU . Locally N is
a homogeneous polynomial of degree p, that is, N ∈ S p(Aν).

A norm variety X (a1, . . . , an) for {a1, . . . , an} is then constructed by induction.
For n = 2, we take X = X (a1, a2) in the preceding construction to be the Severi–
Brauer variety SB(A) associated to the cyclic algebra A = (a1, a2, ζp)k . Suppose
we have constructed a norm variety X (a1, . . . , an−1) for {a1, . . . , an−1}. Again let
that be X and let W ⊂ V be the hypersurface defined by the equation N − an = 0.
By construction, W has dimension pn−1

− 1. By [Suslin and Joukhovitski 2006,
Lemma 2.1] it is smooth over U (hence smooth) and geometrically irreducible. By
resolution of singularities we can embed W as an open subvariety of a new smooth,
projective, geometrically irreducible variety X ′ of the same dimension. Together
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[Suslin and Joukhovitski 2006, Lemma 2.3 and Proposition 2.4] and its subsequent
argument show this X ′ is a p-generic splitting variety for {a1, . . . , an}. Hence X ′

is the norm variety that we seek. Note that its construction depends solely on the
tuple (a1, . . . , an).

Remark 2.5. The inductive construction could in fact start with n = 1. We de-
scribe explicitly what happens at this stage. Take X = X (a1) = Spec(L), where
L = k( p

√
a1 ). If k̄ is the separable closure of k then X = X ×Spec(k) Spec(k̄) has p

points; call them 1, 2, . . . , p− 1, p. From there,

X p
= {points on the diagonals}

t {(n1, n2, . . . , n p) | 1≤ ni ≤ p and ni 6= n j for all i, j},

S p(X)= X p/Sp = {classes of points on the diagonals} t {(1, 2, . . . , p)},

X p
\4 = {(n1, n2, . . . , n p) | 1≤ ni ≤ p and ni 6= n j for all i, j},

(X p
\4)/Sp = {(1, 2, . . . , p)}.

The above square thus looks like this:

X × S p−1(X) � p−1(U )= {(n, (2, 3, . . . , p)) | 1≤ n ≤ p}

S p(X)

p
?
� U = {(1, 2, . . . , p)}

p|p−1(U )

?

Over k it looks like this:

X × S p−1(X) � p−1(U )∼= Spec(L)

S p(X)

p

?
� U ∼= Spec(k)

p|p−1(U )

?

We will use this in Theorems 3.7 and 4.1.

Remark 2.6. Since our problem only concerns birational isomorphism, we can
always replace our varieties with birationally isomorphic ones when it suits our
purpose but does not change our result. Or we can consider what happens with
the generic fiber. For example, in Theorem 3.7 we consider the residue field of the
generic fiber of the map p in our construction without mentioning V,W and X ′.

3. When p = 2, all n

When p = 2, we show that the standard norm varieties are birationally isomorphic
to Pfister quadrics associated to Pfister forms. This result together with the chain
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P-equivalence theorem and properties of quadratic forms will allow us to compare
the standard norm varieties for two equal symbols.

For a quadratic form ϕ, let Aϕ denote its symmetric matrix and Dk(ϕ) ⊆ k
denote the set of its values. Also, for an n-tuple (a1, . . . , an), let ϕn denote the
n-fold Pfister form 〈〈a1, . . . , an〉〉 =

∏n
i=1〈1,−ai 〉. Furthermore, we associate to ϕn

the subform ψn = 〈〈a1, . . . , an−1〉〉 ⊥ 〈−an〉 and denote the quadric defined by ψn

as Z(ψn), known as a Pfister quadric. Below are a few more definitions. A general
reference for quadratic forms is [Lam 2005].

Definition 3.1. Two quadratic forms ϕ and ϕ′ are said to be equivalent, written
ϕ ∼= ϕ′, if there exists a matrix C ∈ GL(k) such that Aϕ′ = C AϕC t .

Definition 3.2. Two Pfister forms ϕ=〈〈a1, . . . , an〉〉 and ϕ′=〈〈a′1, . . . , a′n〉〉 are said
to be simply P-equivalent if there exist two indices i and j such that 〈〈ai , a j 〉〉 ∼=

〈〈a′i , a′j 〉〉 and ak = a′k for k 6= i , j . More generally, they are said to be chain
P-equivalent, written ϕ u ϕ′, if there exists a sequence ϕ0, ϕ1, . . . , ϕm−1, ϕm of
Pfister forms such that ϕ = ϕ0, ϕ′ = ϕm and ϕi is simply P-equivalent to ϕi+1

for 0≤ i ≤ m− 1.

Clearly ϕu ϕ′ implies ϕ∼= ϕ′. The converse statement was proven by Elman and
Lam [1972] and is called the chain P-equivalence theorem. We recall the statement
here, for use in Proposition 3.10.

Theorem 3.3 (chain P-equivalence theorem). Let ϕ and ϕ′ be n-fold Pfister forms.
Then ϕ ∼= ϕ′ if and only if ϕ u ϕ′.

Definition 3.4. Two quadratic forms ϕ and ϕ′ are said to be birationally equivalent
if the quadrics they define are birationally isomorphic, i.e., if the function fields
k(Z(ϕ)) and k(Z(ϕ′)) are isomorphic.

We begin with a lemma about two equivalent Pfister forms and the matrix that
connects them.

Lemma 3.5. If ϕn−1 and ϕn = 〈1,−b〉ϕn−1 are Pfister forms with matrices Aϕn−1

and Aϕn , and c = ϕn(x1, . . . , x2n ), then ϕn ∼= 〈c〉ϕn via a matrix

Cn ∈ GL2n (k(x1, . . . , x2n ))

— that is, Cn Aϕn C t
n = cAϕn — which satisfies two properties:

(1) C−1
n = Cn/c, hence (C t

n)
−1
= C t

n/c as well.

(2) The first row and first column of Cn are (x1 · · · x2n ) and Aϕn (x1 · · · x2n )t .

Proof. We induce on n. For n = 1 and c = x2
1 − ax2

2 , we have ϕ1 ∼= cϕ1 via

C1 =

(
x1 x2

−ax2 −x1

)
,
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which satisfies (1) and (2).
Next, write

Aϕn =

(
Aϕn−1 0

0 −bAϕn−1

)
;

then c=ϕn(x1, . . . , x2n )= x Aϕn x t
=s−bt ∈Dk(ϕn), where s=ϕn−1(x1, . . . , x2n−1)

and t=ϕn−1(x2n−1+1, . . . , x2n ) are in Dk(ϕn−1). By induction, ϕn−1∼=〈s〉ϕn−1 via a
matrix C ∈ GL2n−1(k(x1, . . . , x2n−1)), that is, C Aϕn−1C t

= s Aϕn−1 , which satisfies:

(1) C−1
= C/s, hence (C t)−1

= C t/s.

(2) The first row and first column of C are (x1 · · · x2n−1) and Aϕn−1(x1 · · · x2n−1)t .

Similarly, ϕn−1 ∼= 〈t〉ϕn−1 via C ′ ∈ GL2n−1(F(x2n−1+1, . . . , x2n )) with the same
properties. From this, we have:

(i) ϕn ∼= 〈s〉ϕn−1 ⊥ 〈−b〉〈t〉ϕn−1 = 〈s,−bt〉ϕn−1 with(
C 0
0 C ′

)(
Aϕn−1 0

0 −bAϕn−1

)(
C t 0
0 C ′ t

)
=

(
s Aϕn−1 0

0 −bt Aϕn−1

)
.

(ii) 〈s,−bt〉ϕn−1 ∼= 〈c,−cbst〉ϕn−1 with(
I I

bt I s I

)(
s Aϕn−1 0

0 −bt Aϕn−1

)(
I bt I
I s I

)
=

(
cAϕn−1 0

0 −cbst Aϕn−1

)
.

(iii) Let D = (CC ′)−1
= C ′−1C−1

= C ′C/ts; then

〈c,−cbst〉ϕn−1 ∼= 〈c,−cb〉ϕn−1 = 〈c〉ϕn

with(
I 0
0 D

)(
cAϕn−1 0

0 −cbst Aϕn−1

)(
I 0
0 Dt

)
=

(
cAϕn−1 0

0 −cbst D Aϕn−1

)(
I 0
0 Dt

)
=

(
cAϕn−1 0

0 −cbst D Aϕn−1 Dt

)
=

(
cAϕn−1 0

0 −cbst Aϕn−1/st

)
=

(
cAϕn−1 0

0 −cbAϕn−1

)
.

(iv) Putting (i), (ii) and (iii) together, we get ϕn ∼= 〈s〉ϕn−1 ⊥ 〈−b〉〈t〉ϕn−1 =

〈s,−bt〉ϕn−1 ∼= 〈c,−cbst〉ϕn−1 ∼= 〈c,−cb〉ϕn−1 = 〈c〉ϕn via C ′n , where
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C ′n =
(

I 0
0 D

)(
I I

bt I s I

)(
C 0
0 C ′

)
=

(
I I

bt D s D

)(
C 0
0 C ′

)
=

(
C C ′

btC ′−1C−1C sC ′−1C−1C ′

)
=

(
C C ′

bC ′ C ′CC ′/t

)
.

Finally, let

Cn =

(
I 0
0 −I

)
C ′n =

(
C C ′

−bC ′ −C ′CC ′/t

)
;

then its inverse C−1
n equals Cn/c, its first row and first column are (x1 · · · x2n ) and

Aϕn (x1 · · · x2n )t , and

Cn Aϕn C t
n =

(
I 0
0 −I

)
C ′n Aϕn C

′t
n

(
I 0
0 −I

)
= cAϕn .

The last equality can be verified directly:

Cn Aϕn C t
n

=

(
C C ′

−bC ′ −C ′CC ′/t

)(
Aϕn−1 0

0 −bAϕn−1

)(
C t

−bC ′ t

C ′ t −C ′ t C t C ′ t/t

)

=

(
C Aϕn−1 −bC ′Aϕn−1

−bC ′Aϕn−1 (b/t)C ′CC ′Aϕn−1

)(
C t

−bC ′ t

C ′ t −C ′ t C t C ′ t/t

)

=

(
C Aϕn−1C t

−bC ′Aϕn−1C ′ t −bC Aϕn−1C ′ t+(b/t)C ′Aϕn−1C ′ t C t C ′ t

−bC ′Aϕn−1C t
+(b/t)C ′CC ′Aϕn−1C ′ t b2C ′Aϕn−1C ′ t−(b/t2)C ′CC ′Aϕn−1C ′ t C t C ′ t

)

=

(
s Aϕn−1−bt Aϕn−1 −bC Aϕn−1C ′ t+bAϕn−1C t C ′ t

−bC ′Aϕn−1C t
+bC ′C Aϕn−1 b2t Aϕn−1−bs Aϕn−1

)

=

(
cAϕn−1 −bC Aϕn−1C ′ t+(b/s)C Aϕn−1C t C t C ′ t

−bC ′Aϕn−1C t
+(b/s)C ′CC Aϕn−1C t

−bcAϕn−1

)

=

(
cAϕn−1 −bC Aϕn−1C ′ t+bC Aϕn−1C ′ t

−bC ′Aϕn−1C t
+bC ′Aϕn−1C t

−bcAϕn−1

)

=

(
cAϕn−1 0

0 −bcAϕn−1

)
= cAϕn .

This concludes the proof. �
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The next lemma is needed to show that the residue field in Theorem 3.7 stays
the same.

Lemma 3.6. The n× n matrix

M =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
. . .

...

anb1 anb2 · · · anbn


has characteristic polynomial charM(t)= tn−1(t − a1b1− a2b2− · · ·− anbn).

Proof. We consider what M does to the standard basis:

kn M
−→ kn,

(1, 0, . . . , 0) 7−→ b1(a1, . . . , an),

(0, 1, . . . , 0) 7−→ b2(a1, . . . , an),
...

(0, 0, . . . , 1) 7−→ bn(a1, . . . , an).

Thus M sends (a1, . . . , an) to α(a1, . . . , an), where α= a1b1+a2b2+· · ·+anbn .
Letting v1 = (a1, . . . , an), we choose a new basis {v1, . . . , vn} for kn such that
ker(M)= 〈v2, . . . , vn〉 and again look at what M does as a linear map:

kn M
−→ kn,

v1 7−→ (α, 0, . . . , 0),
v2 7−→ (0, . . . , 0),

...
vn 7−→ (0, . . . , 0).

Therefore M has canonical form
α 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0


and det(t I −M)= charM(t)= tn

−αtn−1
= tn−1(t−a1b1−a2b2−· · ·−anbn). �

We are now ready to turn the standard norm varieties into Pfister quadrics defined
by subforms of Pfister forms.

Theorem 3.7. The standard norm variety X (a1, . . . , an) for {a1, . . . , an} is bi-
rationally isomorphic to the Pfister quadric Z(ψn)⊂ P2n−1

k defined by the subform
ψn = 〈〈a1, . . . , an−1〉〉 ⊥ 〈−an〉 of the Pfister form ϕn = 〈〈a1, . . . , an〉〉.
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Proof. We induce on n. First we verify the case n = 2. As described in Remark 2.5,
we begin our symmetric power construction with X (a1) = Spec(L), where L =
k(
√

a1 ) and get

Spec(L)×Spec(L) � p−1(U )∼= Spec(L)

S2(Spec(L))

p

?
� U ∼= Spec(k)

p|p−1(U )

?

Hence X (a1, a2)= Z(NL/k−a2)= Z(x2
1−a1x2

2−a2), the hypersurface defined
by the equation NL/k − a2 = x2

1 − a1x2
2 − a2 = 0. Projectivization then gives

X (a1, a2)= Z(x2
1 − a1x2

2 − a2x2
3)= Z(ψ2)⊂ P2

k , as required.
By induction, X (a1, . . . , an+1)≈ Z(ψn+1). Write ψ =ψn+1 = ϕn ⊥ 〈−an+1〉 =

〈1〉 ⊥ ϕ′ ⊥ 〈−an+1〉 ∼= 〈1,−an+1〉 ⊥ ϕ
′, where ϕ′ is the pure subform of ϕ. By

construction, we get

(Xn+1× Xn+1) \4 −→ ((Xn+1× Xn+1) \4)/S2 −→ Gr(2,A2n
+1

k ).

Let U = 〈u, v〉 = 〈(1, 0, x2, . . . , x2n ), (0, 1, y2, . . . , y2n )〉 be the generic plane
in A2n

+1
k and moreover let {u, v} be a basis for U . Over this basis, the restriction

ψk(xi ,yi )|U has matrix form (
ψ(u) b(u, v)

b(u, v) ψ(v)

)
,

where
U ×U b

−→ k, (u′, v′) 7→ 1
2(ψ(u

′
+ v′)−ψ(u′)−ψ(v′)),

is the symmetric bilinear form associated to ψk(xi ,yi )|U .
The generic fiber is then the point (r, s) ∈U such that

ψ(r, s)= ψ(u, u)r2
+ 2b(u, v)rs+ψ(v, v)s2

= 0,

with residue field

q f
(

k(xi , yi )
[r

s

]
/
(
ψ(u, u)

(r
s

)2
+ 2b(u, v)r

s
+ψ(v, v)

))
= k(xi , y j )(

√
−θ ),

where

θ = ψ(u)ψ(v)− b(u, v)2

= (1+ϕ′(x2, . . . , x2n ))(−an+1+ϕ
′(y2, . . . , y2n ))− b(u, v)2

= (ϕ(1, x2, . . . , x2n ))(−an+1+ϕ
′(y2, . . . , y2n ))− b(u, v)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ(1, x2, . . . , x2n )ϕ(0, y2, . . . , y2n )− b(u, v)2.
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If we write ϕ = 〈1, c2, . . . , c2n 〉 then, by Lemma 3.5, there exists a matrix

Cn =


1 x2 · · · x2n

c2x2
. . .

...
. . .

c2n x2n
. . .


such that ϕ(1, x2, . . . , x2n )ϕ(0, y2, . . . , y2n )= ϕ((0, y2, . . . , y2n )Cn). So

θ = (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((0, y2, . . . , y2n )Cn)− b(u, v)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((0, y2, . . . , y2n )Aϕ(1, x2, . . . , x2n )t , z2, . . . , z2n )

− ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t , z2, . . . , z2n )

− ((y2, . . . , y2n )Aϕ′(x2, . . . , x2n )t)2

= (−an+1)ϕ(1, x2, . . . , x2n )+ϕ′(z2, . . . , z2n ).

Above, we let (z1, z2, . . . , z2n ) = (0, y2, . . . , y2n )Cn , so that (z2, . . . , z2n ) =

(y2, . . . , y2n )M , where M is Cn without its first row and first column. Since
C2

n = ϕ(1, x2, . . . , x2n )I , it follows that M2
= ϕ(1, x2, . . . , xn)I − (ci xi x j ) for

2≤ i, j ≤ 2n. By Lemma 3.6,

det(M2)= ϕ(1, x2, . . . , x2n )2
n
−2.

Thus det(M) = ϕ(1, x2, . . . , x2n )2
n−1
−1 and M ∈ GL2n−1(F(x2, . . . , x2n )). So the

residue field stays the same:

F(xi , y j )(
√
−θ )= F(xi , z j )(

√
−θ )

It has quadratic norm

N (m+ n
√
−θ )= m2

− an+1ϕ(1, x2, . . . , x2n )n2
+ϕ′(z2, . . . , z2n )n2

= ϕ(m, nz2, . . . , nz2n )− an+1ϕ(n, nx2, . . . , nx2n )

= 〈1,−an+1〉ϕ(m, nz2, . . . , nz2n , n, nx2, . . . , nx2n )

= ϕn+1(t1, . . . , t2n+1).

Therefore our projectivized X (a1, . . . , an+2)= Z(N−an+2t2
2n+1+1) is birationally

isomorphic to Z(ϕn+1 ⊥ 〈−an+2〉)= Z(ψn+2)⊂ P2n+1

k , as wanted. �

Next, we show that interchanging ai and a j or multiplying ai by any nonzero
norm Nk(√a j )/k(u) in the symbol {a1, . . . , an} does not change its standard norm
variety. For this, we need two more lemmas about Pfister neighbors; the first one
we will use toward our Corollary 3.13 and the second one we will use toward our
Example 3.14.
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Lemma 3.8. If ϕ = 〈〈a1, . . . , an〉〉 is an anisotropic Pfister form then the two forms
ϕ ⊥ 〈−bϕ〉 ⊥ 〈−c〉 and ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉 are birationally equivalent.

Proof. We connect the quadrics defined by these two forms by a sequence of
birationally isomorphic ones. Let (x, y, z) be the generic zero for the form ϕ ⊥

〈−bϕ〉 ⊥ 〈−c〉; then
ϕ(x)− bϕ(y)− cz2

= 0.

Since ϕ is Pfister and ϕ(y) ∈ Dk(y)(ϕ), it follows ϕ ∼= ϕ(y)ϕ over k(y). That
means there exists a matrix C ∈ GL(k(y)) such that ϕ(x) = ϕ(y)ϕ(Cx). Let
x ′ = Cx ; then k(x, y, z)= k(x ′, y, z) and

ϕ(y)ϕ(x ′)− bϕ(y)− cz2
= 0,

hence

ϕ(x ′)− b− c
z2

ϕ(y)
= 0.

Now let y′ = y/ϕ(y); then k(x, y, z)= k(x ′, y′, z) and

ϕ(x ′)− b− cz2ϕ(y′)= 0,

hence
ϕ(x ′)

z2 −
b
z2 − cϕ(y′)= 0.

Finally, let x ′′ = x ′/z and z′ = 1/z; then (x ′′, y′, z′) is a generic zero for
ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉, k(x, y, z)= k(x ′′, y′, z′) and

ϕ(x ′′)− cϕ(y′)− bz′2 = 0.

Therefore, the two forms ϕ ⊥ 〈−bϕ〉 ⊥ 〈−c〉 and ϕ ⊥ 〈−cϕ〉 ⊥ 〈−b〉 are bi-
rationally equivalent. �

Lemma 3.9. If ϕ = 〈〈a1, . . . , an〉〉 is an anisotropic Pfister form then the two forms
ϕ ⊥ 〈−b〉 and ϕ ⊥ 〈−bϕ(x0)〉 with ϕ(x0) 6= 0 are birationally equivalent. In
particular, ϕ ⊥ 〈−b〉 ≈ ϕ ⊥ 〈−bNk(

√
ai )/k(u)〉 for any nonzero norm Nk(

√
ai )/k(u).

Proof. We use the same approach as in Lemma 3.8. Let (x, y) be a generic zero
for the form ϕ ⊥ 〈−bϕ(x0)〉; then

ϕ(x)− bϕ(x0)y2
= 0,

hence
ϕ(x0)ϕ(x)− bϕ(x0)

2 y2
= 0.

Again ϕ ∼= ϕ(x0)ϕ over k, i.e., there exists a matrix C ∈ GL(k) such that
ϕ(Cx) = ϕ(x0)ϕ(x). Let x ′ = Cx and y′ = ϕ(x0)y; then (x ′, y′) is a generic
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zero for ϕ ⊥ 〈−b〉, k(x, y)= k(x ′, y′) and

ϕ(x ′)− by′2 = 0

Therefore, the two forms ϕ ⊥ 〈−b〉 and ϕ ⊥ 〈−bϕ(x0)〉 with ϕ(x0) 6= 0 are
birationally equivalent. The last statement follows when we choose x0 such that
ϕ(x0)= Nk(

√
ai )/k(u). �

Proposition 3.10. If two Pfister forms ϕ and ϕ′ are equivalent then their associated
subforms ψ and ψ ′ are birationally equivalent.

Proof. By the chain P-equivalence theorem, ϕ u ϕ′. So there exists a sequence of
Pfister forms ϕ0, ϕ1, . . . , ϕt , . . . , ϕm−1, ϕm such that ϕ= ϕ0, ϕ′= ϕm and ϕt is sim-
ply P-equivalent to ϕt+1 for 0≤ t ≤m−1. Write ϕt =〈〈a1, . . . , ai , . . . , a j , . . . , an〉〉

and ϕt+1 = 〈〈a1, . . . , a′i , . . . , a′j , . . . , an〉〉, where 〈〈ai , a j 〉〉 ∼= 〈〈a′i , a′j 〉〉. If i = j then
there is nothing to do. Otherwise, we consider each case separately:

(1) If j 6= n then

ψt = 〈〈a1, . . . , ai , . . . , a j , . . . , an−1〉〉 ⊥ 〈−an〉

∼= 〈〈a1, . . . , a′i , . . . , a′j , . . . , an−1〉〉 ⊥ 〈−an〉

= ψt+1.

(2) If j = n and i 6= n− 1 then, by Lemma 3.8,

ψt = 〈〈a1, . . . , ai , . . . , an−1〉〉 ⊥ 〈−a j 〉

≈ 〈〈a1, . . . , ai , . . . , a j 〉〉 ⊥ 〈−an−1〉

∼= 〈〈a1, . . . , a′i , . . . , a′j 〉〉 ⊥ 〈−an−1〉

≈ 〈〈a1, . . . , a′i , . . . , an−1〉〉 ⊥ 〈−a′j 〉

= ψt+1.

(3) If j = n and i = n− 1 then, again by Lemma 3.8,

ψt = 〈〈a1, . . . , an−2, ai 〉〉 ⊥ 〈−a j 〉

∼= 〈〈a1, . . . , ai , an−2〉〉 ⊥ 〈−a j 〉

≈ 〈〈a1, . . . , ai , a j 〉〉 ⊥ 〈−an−2〉

∼= 〈〈a1, . . . , a′i , a′j 〉〉 ⊥ 〈−an−2〉

≈ 〈〈a1, . . . , a′i , an−2〉〉 ⊥ 〈−a′j 〉
∼= 〈〈a1, . . . , an−2, a′i 〉〉 ⊥ 〈−a′j 〉

= ψt+1.

Hence ψt ≈ ψt+1 for all t , and ψ ≈ ψ ′. �
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Remark 3.11. Let ϕ be a Pfister form of dimension greater than or equal to 2,
c ∈ k×, and ϕ1 a nonzero subform of ϕ. In [Ahmad and Ohm 1995], H. Ahmad
called (ϕ, c, ϕ1) a Pfister triple, ϕ ⊥ 〈c〉 the base form, ϕ ⊥ cϕ1 the form defined by
the triple, ϕ ⊥ cϕ the associated Pfister form, and any form similar to such ϕ ⊥ cϕ1

a special Pfister neighbor. In this setting the forms in Lemma 3.8 and the forms
in Lemma 3.9 are pairwise special Pfister neighbors of the same dimensions and
have the same associated Pfister forms ϕ⊗〈〈b, c〉〉 and ϕ⊗〈〈b〉〉, respectively. The
lemmas then follow from his more general [Ahmad and Ohm 1995, Theorem 1.6].

Remark 3.12. One sees that Lemmas 3.8 and 3.9 hold for any strongly multiplica-
tive form ϕ as defined in [Lam 2005]. The work lies with anisotropic Pfister forms.
The remaining strongly multiplicative forms are isotropic, hence their function
fields are rational and both lemmas become trivial.

Proposition 3.10 enables us to compare the standard norm varieties for two equal
symbols.

Corollary 3.13. The standard norm varieties X (a1, . . . , an) and X (b1, . . . , bn)

for {a1, . . . , an} and {b1, . . . , bn} are birationally isomorphic if {a1, . . . , an} =

{b1, . . . , bn} in K M
n (k)/2.

Proof. By [Elman et al. 2008, Theorem 6.20], the two Pfister forms ϕ=〈〈a1, . . . , an〉〉

and ϕ′ = 〈〈b1, . . . , bn〉〉 are equivalent. Proposition 3.10 now implies their associ-
ated subforms ψ and ψ ′ are birationally equivalent. By Theorem 3.7, X (a1, . . . , an)

and X (b1, . . . , bn) are birationally isomorphic. �

Example 3.14. For any nonzero norm Nk(
√

ai )/k(u), we know

{a1, . . . , ai , . . . , a j , . . . , an} = {a1, . . . , ai , . . . , a j Nk(
√

ai )/k(u), . . . , an}

in K M
n (k)/2. By Corollary 3.13, their standard norm varieties are birationally

isomorphic. Or we can use Theorem 3.7 and Lemma 3.9, bypassing the chain
P-equivalence theorem to see this as well.

4. When p > 2 and n = 2

When p > 2 and n = 2 we show that the standard norm varieties are birationally
isomorphic to Severi–Brauer varieties.

Theorem 4.1. The standard norm variety X (a, b) for {a, b} is birationally iso-
morphic to the Severi–Brauer variety SB(A) associated to the cyclic algebra A =
(a, b, ζp)k .

Proof. Again, if we start the symmetric power construction with X (a)= Spec(L),
where L = k( p

√
a ), then X (a, b)= Z(NL/k−b) by Remark 2.5. We consider what

happens in a split case, where AL ∼= Mp(L) and SB(AL) ∼= P
p−1
L . Furthermore,
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if G = Gal(L/k) = 〈σ 〉 of order p then over L , the norm NL/k(x) splits in to a
product

∏p−1
i=0 σ

i (x) for every x ∈ L . Define

UL = {I ⊂ Mp(L)},

where

I =


 α0 0 · · · 0

...
...
. . .

...

αp−1 0 · · · 0

M

∣∣∣∣∣ αi 6= 0 for all i and M ∈ Mp(L)

 ;
then UL is an open subset in SB(AL) and we have a diagram

Z(NL/k − b)L
fL - UL

open- SB(AL)

Z(NL/k − b)

/G

? f - U

/G

? open- SB(A)

/G

?

where fL can be described as

Z(NL/k − b)L
fL
−→UL ,

(x, σ (x), . . . , σ p−1(x)) 7−→ (x : xσ(x) : . . . : xσ(x) · · · σ p−1(x)),

if we abuse notation and write points in SB(AL) in projective coordinates. We
verify that fL is G-equivariant:

fL(σ · (x, σ (x), . . . , σ p−2(x), σ p−1(x)))

= f (σ (x), σ 2(x), . . . , σ p−1(x), σ p(x))

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : σ(x)σ 2(x) · · · σ p(x))

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : b),

while

σ · fL(x, σ (x), . . . , σ p−1(x))

=


0 1 0 · · · 0

0 0 1
. . .

...
...
...
. . .

. . . 0
0 0 · · · 0 1
b 0 · · · 0 0




x

xσ(x)
...

xσ(x) · · · σ p−2(x)
xσ(x) · · · σ p−1(x)


= (xσ(x) : xσ(x)σ 2(x) : . . . : xσ(x) · · · σ p−1(x) : bx)

= (σ (x) : σ(x)σ 2(x) : . . . : σ(x) · · · σ p−1(x) : b).
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In function fields, we have an isomorphism of the same name fL from L(UL)=

L(t1/t0, . . . , tp/t0) to L(Z(NL/k − b)L)= L(x, σ (x), . . . , σ p−1(x)),

L
(

t1
t0
, . . . ,

tp

t0

)
fL
−→ L(x, σ (x), . . . , σ p−1(x)),

ti
t0
7→ xσ(x) · · · σ i−1(x),

where i = 1, . . . , p and tp/t0 = b with inverse

L(x, σ (x), . . . , σ p−1(x))
f −1
L
−→ L

(
t1
t0
, . . . ,

tp

t0

)
, σ i−1(x) 7→

ti
ti−1

.

We verify that fL respects the G-action:

fL

(
σ ·

ti
t0

)
= fL

(
ti+1

t1

)
= fL

((
ti+1

t0

)(
t1
t0

)−1 )
= xσ(x) · · · σ i (x)x−1

= σ(x) · · · σ i (x),
while

σ · fL

(
ti
t0

)
= σ · (xσ(x) · · · σ i−1(x))= σ(x) · · · σ i (x).

Therefore Z(NL/k − b)L is birationally isomorphic to UL . So Z(NL/k − b) is
birationally isomorphic to U , hence to SB(A). �

This theorem enables us to compare the standard norm varieties for two equal
symbols.

Corollary 4.2. The standard norm varieties X (a1, a2) and X (b1, b2) for {a1, a2}

and {b1, b2} are birationally isomorphic if {a1, a2} = {b1, b2} in K M
2 (k)/p.

Proof. By the norm residue homomorphism K M
2 (k)/p→ Brp(k), the classes of

(a1, a2, ζp)k and (b1, b2, ζp)k are equal in the subgroup Brp(k) of elements of expo-
nent p in the Brauer group Br(k). Since they have the same dimension, (a1, a2, ζp)k

and (b1, b2, ζp)k are isomorphic as algebras. Hence

SB((a1, a2, ζp)k)∼= SB((a1, a2, ζp)k).

It follows from the theorem that X (a1, a2)≈ X (b1, b2). �

5. When p > 2 and n = 3

When p > 2 and n = 3, we show that the standard norm varieties are birationally
isomorphic to varieties defined by reduced norms of cyclic algebras.
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Theorem 5.1. The standard norm variety X (a, b, c) for {a, b, c} is birationally
isomorphic to Z(NrdA/k −c), where A = (a, b, ζp)k .

Proof. We consider what happens in a split case. Let L = k( p
√

a ) and use SB(A)
as the standard norm variety X (a, b) for {a, b}. Once again, AL ∼= Mp(L) and
SB(AL) ∼= P

p−1
L . Our symmetric power construction looks like the front square

over k and the back square over L:

SB(AL)× S p−1(SB(AL)) � p−1(UL)

SB(A)×SBp−1(A) �
�

/G

p−1(U )

�

/G
S p(SB(AL))

pL

?
� UL

pL |

?
� πL VL

S p(SB(A))

p

?
�

�

/G

U

p|

?
� π�

/G

V

�
/G

Now let X L denote the variety of all étale subalgebras of degree p in EndL(L p).
If each subalgebra D ∈ X L is generated by a matrix λ, where λ= (λ1, . . . , λp) is
its diagonal form, then Sp acts trivially on X L by permuting the diagonal entries.
So we have an Sp-equivariant map

UL
fL
−→ X L , (u1, . . . , u p) 7→ D,

where D is the étale subalgebra whose eigenspaces are the lines u1, . . . , u p, with
inverse f −1

L : D 7→ (u1, . . . , u p). This map fits into the following commutative
diagram:

UL
fL - X L

U

/G

? f - X

/G

?
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and we get vector bundles over the last diagram,

UL �
πL VL

U �
π�

/G fL

V
�

X L

?
�

πX L VX L

f ∗L

?

X

f

?
� πX
�

/G

VX

f ∗

?�

For each (u1, . . . , u p) ∈ UL , the preimage p−1
L ((u1, . . . , u p)) consists of p

points y1, . . . , yp, where each yi is of the form (ui , (u1, . . . , ǔi , . . . , u p)). So
π−1

L ((u1, . . . , u p)) = {((u1, . . . , u p), x1, . . . , x p) | xi ∈ L(yi )}. Correspondingly,
π−1

X L
(D)= {(D, d) | d ∈ D}. Both are algebras of rank p over L . We can describe

the back face of the cube pointwise:

((u1, . . . , u p), x1, . . . , x p)
f ∗L-

D,


x1 0 · · · 0
0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 x p




(u1, . . . , u p)

πL

? fL - D

πX L

?

Note that if q(t)= a1t + · · · + apt p and d = q(λ) ∈ D with eigenvalues q(λi )

then f ∗
−1

L (D, d)= ((u1, . . . , u p), q(λ1), . . . , q(λp)).
Therefore, in VL and VX L we have two birationally isomorphic subvarieties

Z(N − c)L and Z(NrdAL/L −c), since

Z(N − c)L = {((u1, . . . , u p), x1, . . . , x p) | x1 · · · x p = c}
∼= {(D, d) | D ⊂ AL étale of rank p and d ∈ D with ND/L(d)= c}

= {(D, d) | D ⊂ AL étale of rank p and d ∈ D with NrdAL/L(d)= c}
∼= {d ∈ AL | 〈d〉 ⊂ AL étale of rank p and NrdAL/L(d)= c}

(via (D, d) 7→ d)
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= {d ∈ AL | NrdAL/L(d)= c}
∩ {d ∈ AL | its minimal polynomial md(t) is of degree p}

= {d ∈ AL | NrdAL/L(d)= c}
∩ {d ∈ AL | xi 6= x j for all of its eigenvalues xi , x j }

≈ {d ∈ AL | NrdAL/L(d)= c}

= Z(NrdAL/L −c).

Note that the intersection above is nonempty — it contains, for example, the
diagonal matrix (c/ζ (p−1)/2

p , ζp, . . . , ζ
p−1
p )— and the second set is open. Hence

our standard norm variety X (a, b, c) = Z(N − c) is birationally isomorphic to
Z(NrdA/k −c) over k. �

Knowing that X (a, b, c) is birationally isomorphic to Z(NrdA/k −c), where A=
(a, b, ζp)k , may allow us to compare X (a, b, c) and X (a′, b′, c′) when {a, b, c} =
{a′, b′, c′} in K M

3 (k)/p. If we know Z(NrdA/k −c)≈ Z(NrdA′/k −c′), where A′ =
(a′, b′, ζp)k , then we can draw the same corollary for p > 2 and n = 3 as we did
for p = 2 in Corollary 3.13 and for p > 2 and n = 2 in Corollary 4.2.

Acknowledgements

This paper was my thesis. I thank my advisor Alexander Merkurjev for his guid-
ance and my colleague Aaron Silberstein for his influence on submitting it for
publication.

References

[Ahmad and Ohm 1995] H. Ahmad and J. Ohm, “Function fields of Pfister neighbors”, J. Algebra
178:2 (1995), 653–664. MR 96k:11040 Zbl 0841.11015

[Elman and Lam 1972] R. Elman and T. Y. Lam, “Pfister forms and K -theory of fields”, J. Algebra
23 (1972), 181–213. MR 46 #1882 Zbl 0246.15029

[Elman et al. 2008] R. Elman, N. Karpenko, and A. S. Merkurjev, The algebraic and geometric the-
ory of quadratic forms, Colloquium Publications 56, American Mathematical Society, Providence,
RI, 2008. MR 2009d:11062 Zbl 1165.11042

[Haesemeyer and Weibel 2009] C. Haesemeyer and C. Weibel, “Norm varieties and the chain lemma
(after Markus Rost)”, pp. 95–130 in Algebraic topology (Oslo, 2007), edited by N. Baas et al., Abel
Symposia 4, Springer, Berlin, 2009. MR 2011f:19002 Zbl 1244.19003

[Haesemeyer and Weibel 2016] C. Haesemeyer and C. Weibel, “The norm residue theorem in mo-
tivic cohomology”, preprint, 2016, available at http://www.math.rutgers.edu/~weibel/BK.pdf.

[Karpenko and Merkurjev 2013] N. A. Karpenko and A. S. Merkurjev, “On standard norm varieties”,
Ann. Sci. Éc. Norm. Supér. (4) 46:1 (2013), 175–214. MR 3087392 Zbl 1275.14006

[Lam 2005] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics
67, American Mathematical Society, Providence, RI, 2005. MR 2005h:11075 Zbl 1068.11023

[Milnor 1970] J. Milnor, “Algebraic K -theory and quadratic forms”, Invent. Math. 9 (1970), 318–
344. MR 41 #5465 Zbl 0199.55501

http://dx.doi.org/10.1006/jabr.1995.1371
http://msp.org/idx/mr/96k:11040
http://msp.org/idx/zbl/0841.11015
http://dx.doi.org/10.1016/0021-8693(72)90054-3
http://msp.org/idx/mr/46:1882
http://msp.org/idx/zbl/0246.15029
https://books.google.com/books?id=NsYPMC3iBowC
https://books.google.com/books?id=NsYPMC3iBowC
http://msp.org/idx/mr/2009d:11062
http://msp.org/idx/zbl/1165.11042
http://dx.doi.org/10.1007/978-3-642-01200-6_6
http://dx.doi.org/10.1007/978-3-642-01200-6_6
http://msp.org/idx/mr/2011f:19002
http://msp.org/idx/zbl/1244.19003
http://www.math.rutgers.edu/~weibel/BK.pdf
http://www.math.rutgers.edu/~weibel/BK.pdf
http://smf4.emath.fr/en/Publications/AnnalesENS/4_46/html/ens_ann-sc_46_175-214.php
http://msp.org/idx/mr/3087392
http://msp.org/idx/zbl/1275.14006
http://dx.doi.org/10.1090/gsm/067
http://msp.org/idx/mr/2005h:11075
http://msp.org/idx/zbl/1068.11023
http://dx.doi.org/10.1007/BF01425486
http://msp.org/idx/mr/41:5465
http://msp.org/idx/zbl/0199.55501


STANDARD NORM VARIETIES FOR MILNOR SYMBOLS MOD p 475

[Suslin and Joukhovitski 2006] A. Suslin and S. Joukhovitski, “Norm varieties”, J. Pure Appl. Alge-
bra 206:1-2 (2006), 245–276. MR 2008a:14015 Zbl 1091.19002

[Voevodsky 2003] V. Voevodsky, “Motivic cohomology with Z/2-coefficients”, Publ. Math. Inst.
Hautes Études Sci. 98 (2003), 59–104. MR 2005b:14038b Zbl 1057.14028

[Voevodsky 2011] V. Voevodsky, “On motivic cohomology with Z/ l-coefficients”, Ann. of Math.
(2) 174:1 (2011), 401–438. MR 2012j:14030 Zbl 1236.14026

Received 26 Aug 2015. Revised 19 Oct 2015. Accepted 3 Nov 2015.

DINH HUU NGUYEN: dinhuun@gmail.com
Department of Mathematics, UCLA, Los Angeles, CA 90095, United States

msp

http://dx.doi.org/10.1016/j.jpaa.2005.12.012
http://msp.org/idx/mr/2008a:14015
http://msp.org/idx/zbl/1091.19002
http://www.numdam.org/item?id=PMIHES_2003__98__59_0
http://msp.org/idx/mr/2005b:14038b
http://msp.org/idx/zbl/1057.14028
http://dx.doi.org/10.4007/annals.2011.174.1.11
http://msp.org/idx/mr/2012j:14030
http://msp.org/idx/zbl/1236.14026
mailto:dinhuun@gmail.com
http://msp.org




Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the submission page.

Originality. Submission of a manuscript acknowledges that the manuscript is original and and is not,
in whole or in part, published or under consideration for publication elsewhere. It is understood also
that the manuscript will not be submitted elsewhere while under consideration for publication in this
journal.

Language. Articles in AKT are usually in English, but articles written in other languages are wel-
come.

Required items. A brief abstract of about 150 words or less must be included. It should be self-
contained and not make any reference to the bibliography. If the article is not in English, two
versions of the abstract must be included, one in the language of the article and one in English.
Also required are keywords and a Mathematics Subject Classification code for the article, and, for
each author, postal address, affiliation (if appropriate), and email address if available. A home-page
URL is optional.

Format. Authors are encouraged to use LATEX and the standard amsart class, but submissions in other
varieties of TEX, and exceptionally in other formats, are acceptable. Initial uploads should normally
be in PDF format; after the refereeing process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and page ranges.
All references in the bibliography should be cited in the text. The use of BIBTEX is preferred but
not required. Tags will be converted to the house format, however, for submission you may use the
format of your choice. Links will be provided to all literature with known web locations and authors
are encouraged to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit the
original source files in vector graphics format for all diagrams in your manuscript: vector EPS or
vector PDF files are the most useful.

Most drawing and graphing packages — Mathematica, Adobe Illustrator, Corel Draw, MATLAB,
etc. — allow the user to save files in one of these formats. Make sure that what you are saving is
vector graphics and not a bitmap. If you need help, please write to graphics@msp.org with as many
details as you can about how your graphics were generated.

Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice)
and upload on the link you been provided at acceptance time. Each figure should be captioned and
numbered so that it can float. Small figures occupying no more than three lines of vertical space
can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all
figures at the end, if their placement is specified in the text by means of comments such as “Place
Figure 1 here”. The same considerations apply to tables.

White Space. Forced line breaks or page breaks should not be inserted in the document. There is no
point in your trying to optimize line and page breaks in the original manuscript. The manuscript will
be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding author) at
a Web site in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within
the requested deadline may cause publication to be postponed.



ANNALS OF K-THEORY
2016 vol. 1 no. 4

339Splitting the relative assembly map, Nil-terms and involutions
Wolfgang Lück and Wolfgang Steimle

379Birational motives, I: pure birational motives
Bruno Kahn and Ramdorai Sujatha

441On the K -theory of linear groups
Daniel Kasprowski

457Standard norm varieties for Milnor symbols mod p
Dinh Huu Nguyen

A
N
N
A
LS

O
F
K-TH

EO
RY

no.4
vol.1

2016


	 vol. 1, no. 4, 2016
	Masthead and Copyright
	Wolfgang Lück and Wolfgang Steimle
	Introduction
	0A. Motivation
	0B. Splitting the relative assembly map
	0C. Involutions and vanishing of Tate cohomology
	0D. Rational vanishing of the relative term
	0E. A fibered case

	1. Virtually cyclic groups
	2. Some categories attached to homogeneous spaces
	3. Homotopy colimits of Z-linear and additive categories
	4. The twisted Bass–Heller–Swan theorem for additive categories
	5. Some additive categories associated to an additive G-category
	6. Some K-theory-spectra over the orbit category
	7. Splitting the relative assembly map and identifying the relative term
	8. Involutions and vanishing of Tate cohomology
	8A. Involutions on K-theory spectra
	8B. Orientable virtually cyclic subgroups of type I
	8C. Proof of Theorem 0.2

	9. Rational vanishing of the relative term
	10. On the computation of the relative term
	11. Fibered version
	12. Acknowledgement
	References

	Bruno Kahn and Ramdorai Sujatha
	Introduction
	1. Review of pure motives
	1.1. Adequate pairs
	1.2. Smooth projective varieties, connected and nonconnected
	1.3. Review of correspondences
	1.4. The correspondence attached to a rational map
	1.5. Effective pure motives
	1.6. Pure motives
	1.7. Pure motives and purely inseparable extensions
	1.8. Image motives

	2. Pure birational motives
	2.1. First approach: localisation
	2.2. Second approach: the Lefschetz ideal
	2.3. Third approach: extendible pairs
	2.4. The main theorem
	2.5. Birational image motives
	2.6. Recapitulation, comments and notation

	3. Examples
	3.1. Varieties with trivial birational motive
	3.2. Quadrics
	3.3. The nilpotence conjecture
	3.4. The Chow–Künneth decomposition
	3.5. Motives of complete intersections

	4. On adjoints and idempotents
	4.1. A lemma on base change
	4.2. Right adjoints
	4.3. Counterexamples
	4.4. Idempotents

	5. Birational motives and birational categories
	5.1. 

	6. Birational motives and cycle modules
	6.1. The functors A0 and A0
	6.2. Relationship with Merkurjev's work

	7. Locally abelian schemes
	7.1. The Albanese scheme of a smooth projective variety
	7.2. The tensor category of locally semiabelian schemes

	8. Chow birational motives and locally abelian schemes
	8.1. The Albanese map
	8.2. The Albanese functor

	Appendix: Complements on localisation of categories
	A.1. Localisation of symmetric monoidal categories
	A.2. Semiadditive categories
	A.3. Localisation of R-linear categories
	A.4. Localisation and pseudoabelian envelope
	A.5. Localisation and group completion

	Acknowledgements
	References

	Daniel Kasprowski
	1. Introduction
	2. Finite decomposition complexity
	3. Linear groups over fields of positive characteristic
	4. Linear groups over commutative rings with unit
	5. Dimension of the classifying space
	Appendix
	Acknowledgments
	References

	Dinh Huu Nguyen
	1. Introduction
	2. Symmetric powers
	3. When p = 2, all n
	4. When p > 2 and n = 2
	5. When p> 2 and n = 3
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

