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Daniel Kasprowski

We prove that for a finitely generated linear group over a field of positive char-
acteristic the family of quotients by finite subgroups has finite asymptotic di-
mension. We use this to show that the K-theoretic assembly map for the family
of finite subgroups is split injective for every finitely generated linear group G
over a commutative ring with unit under the assumption that G admits a finite-
dimensional model for the classifying space for the family of finite subgroups.
Furthermore, we prove that this is the case if and only if an upper bound on the
rank of the solvable subgroups of G exists.

1. Introduction

For every group G and every ring A there is a functor KA : Or G→Spectra from
the orbit category of G to the category of spectra sending G/H to (a spectrum
weakly equivalent to) the K-theory spectrum K(A[H ]) for every subgroup H ≤ G.
For any such functor F : Or G → Spectra, a G-homology theory F can be con-
structed via

F(X) :=MapG(_, X+)∧Or G F;

see [Davis and Lück 1998]. We will write H G
n (X; F) := πnF(X) for its homotopy

groups. The assembly map for the family of finite subgroups is the map

H G
n (EG;KA)→ H G

n (pt;KA)∼= Kn(A[G])

induced by the map EG → pt. Here EG denotes the classifying space for the
family of finite subgroups; see [Lück 2000]. The assembly map is a helpful tool
for relating the K-theory of the group ring A[G] to the K-theory of the group rings
over the finite subgroups H ≤ G. It can more generally be defined for any additive
G-category instead of A; see [Bartels and Reich 2007]. Note that additive cate-
gories will always be small and that K-theory will always mean the nonconnective
K-theory constructed by Pedersen and Weibel [1985].
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Theorem 1.1. Let R be a commutative ring with unit and let G≤GLn(R) be finitely
generated. If G admits a finite-dimensional model for the classifying space EG,
then the assembly map

H G
n (EG;KA)→ Kn(A[G])

is split injective for every additive G-category A.
If A is an additive G-category with involution such that, for every virtually nilpo-

tent subgroup A≤G, there exists i0 ∈N such that for i ≥ i0 we have K−i (A[A])= 0,
then the L-theoretic assembly map

H G
n (EG; L〈−∞〉A )→ L〈−∞〉n (A[G])

is split injective.

Theorem 1.1 implies the (generalized integral) Novikov conjecture for these
groups by [Kasprowski 2015b, Section 6], since virtually nilpotent groups satisfy
the Farrell–Jones conjecture by [Wegner 2015]. The (rational) Novikov conjecture
for these groups is already known, by Guentner, Higson and Weinberger [Guent-
ner et al. 2005], where it is shown that the Baum–Connes assembly map is split
injective for linear groups.

We will use inheritance properties to reduce the proof of the theorem to the
case where the ring R has trivial nilradical and show that in this case the family
{F\G}F∈Fin has finite decomposition complexity, where Fin denotes the family
of finite subgroups of G. Then the theorem follows from the main theorem of
[Kasprowski 2014]. For convenience, the necessary results of [Kasprowski 2014]
are recalled in the Appendix.

By a result of Alperin and Shalen [1982], a finitely generated subgroup G
of GLn(F), where F is a field of characteristic zero, has finite virtual cohomolog-
ical dimension if and only if there is a bound on the Hirsch rank of the unipotent
subgroups of G. This in particular implies that it has a finite-dimensional model for
the classifying space EG. In positive characteristic, a finitely generated subgroup
G ≤ GLn(F) always admits a finite-dimensional model for EG, by [Degrijse and
Petrosyan 2015, Corollary 5]. In Section 5 we prove the following generalization:

Proposition 1.2. Let R be a commutative ring with unit and let G ≤ GLn(R) be
finitely generated. Then G admits a finite-dimensional model for EG if and only if
there exists N ∈N such that l(A)≤ N for every solvable subgroup A ≤ G, where
l(A) denotes the Hirsch rank of A.

Let G be a solvable group and 1 = G0 E G1 E · · ·Gn−1 E Gn = G a normal
series with abelian factors. The Hirsch rank (or Hirsch length) l(G) of G is

l(G)=
n∑

i=1

dimQ Q⊗Z (Ai/Ai−1).



ON THE K-THEORY OF LINEAR GROUPS 443

2. Finite decomposition complexity

Let X be a metric space. A decomposition X =
⋃

i∈I Ui is called r-disjoint, if
d(Ui ,U j ) > r for all i 6= j ∈ I . We then denote the decomposition by

X =
r-disj.⋃

Ui .

A metric family is a set of metric spaces. A metric family {X i }i∈I has finite asymp-
totic dimension uniformly if there exists an n ∈ N such that for every r > 0 and
i ∈ I there exist decompositions

X i =

n⋃
k=0

U k
i and U k

i =

r-disj.⋃
j∈Ji,k

U k
i, j

such that supi, j,k U k
i, j <∞.

Guentner, Tessera and Yu [Guentner et al. 2013] introduced the following gen-
eralization of finite asymptotic dimension:

Definition 2.1. Let r > 0. A metric family X ={Xα}α∈A r-decomposes over a class
of metric families D if for every α ∈ A there exists a decomposition Xα =U r

α ∪ V r
α

and r-disjoint decompositions

U r
α =

r-disj.⋃
i∈I (r,α)

U r
α,i and V r

α =

r-disj.⋃
j∈J (r,α)

V r
α, j

such that the families {U r
α,i }α∈A, i∈I (r,α) and {V r

α, j }α∈A, j∈J (r,α) lie in D. A metric
family X decomposes over D if it r-decomposes over D for all r > 0.

Let B denote the class of bounded families, i.e., X ∈B if there exists R > 0
such that diam X < R for all X ∈X . We set D0 =B. For a successor ordinal γ +1
we define Dγ+1 to be the class of all metric families which decompose over Dγ .
For a limit ordinal λ we define

Dλ =

⋃
γ<λ

Dγ .

A metric family X has finite decomposition complexity (FDC) if X ∈Dγ for some
ordinal γ .

A metric space X has FDC if the family {X} consisting only of X has FDC.
A group G has FDC if it has FDC with any (and thus every) proper left-invariant
metric.

A subfamily Z of a metric family Y is a metric family Z such that for each
Z ∈ Z there exists Y ∈ Z with Y ⊆ X .

A map F : X → Y between metric families X and Y is a set of maps from
elements of X to elements of Y such that every X ∈ X is the domain of at least
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one f ∈ F . The inverse image F−1(Z) of a subfamily Z of Y is the metric family
{ f −1(Z) | Z ∈Z, f ∈ F}. A map F : X → Y is called uniformly expansive if there
exists a nondecreasing function ρ : [0,∞)→[0,∞) such that for every f : X→ Y
in F and every x , y ∈ X we have

d( f (x), f (y))≤ ρ(d(x, y)).

We will use the following three results about FDC:

Theorem 2.2 [Guentner et al. 2013, Fibering theorem 3.1.4]. Let X and Y be
metric families and let F : X → Y be uniformly expansive. Assume Y has FDC
and that for every bounded subfamily Z of Y the inverse image F−1(Z) has FDC.
Then X also has FDC.

Theorem 2.3 [Guentner et al. 2013, Theorem 4.1]. A metric space X with finite
asymptotic dimension has FDC.

While the above theorem is stated only for metric spaces it also holds for metric
families which have finite asymptotic dimension uniformly.

Theorem 2.4 [Guentner et al. 2013, Theorem 3.1.7]. Let X be a metric space,
expressed as a union of finitely many subspaces X =

⋃n
i=0 X i . If the metric family

{X i }i=0,...,n has FDC, so does X.

This theorem again holds for metric families instead of metric spaces, i.e., a
metric family

{⋃n
i=0 X i j

}
j∈J has FDC if and only if the family {X i j } j∈J, i=0,...,n

has FDC. We will also need the following two results about finite asymptotic
dimension:

Lemma 2.5. Let P : X → Y be a family of maps such that for some k > 0 each
p ∈ P is k-Lipschitz. Suppose that Y has finite asymptotic dimension uniformly
and that for each R > 0 the family{

p−1(BR(y)) | X ∈ X , Y ∈ Y, y ∈ Y, (p : X→ Y ) ∈ P
}

has finite asymptotic dimension uniformly. Then X has finite asymptotic dimension
uniformly.

Lemma 2.6. Let X = {Uα ∪ Vα}α∈A be a metric family. Then

asdimX =max
{
asdim{Uα}α, asdim{Vα}α∈A

}
.

These results are [Roe 2003, Lemma 9.16 and Proposition 9.13], respectively,
for metric families instead of metric spaces. The proofs are the same.

In the next section it will be more convenient to work with pseudometrics instead
of metrics, i.e., allowing d(x, y) = 0 for x 6= y. Finite asymptotic dimension
and FDC are defined in the same way for pseudometrics. If d is a pseudometric
on X , then we can define a metric d ′ on X by setting d ′(x, y) :=max{1, d(x, y)}
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for x 6= y. The metric d ′ is proper (resp. left-invariant) if and only if d is. It has
finite asymptotic dimension (resp. FDC) if and only if d does. Therefore, to show
that a group has finite asymptotic dimension or FDC, it suffices to show this for G
equipped with a left-invariant proper pseudometric.

Notation 2.7. We write FinG for the set of finite subgroups of a group G. For a
subgroup H of G, by {F\G}F∈FinH we will mean the family of quotients of G by
all finite subgroups of H . When H is the group of which we take the quotients,
we will drop the subscript on Fin, that is, {F\G}F∈Fin = {F\G}F∈FinG .

3. Linear groups over fields of positive characteristic

In this section K will always denote a field of positive characteristic. Every finitely
generated subgroup G of GLn(K ) has finite asymptotic dimension, by [Guentner
et al. 2012, Theorem 3.1]. Here we want to show that the family {F\G}F∈Fin has
finite asymptotic dimension uniformly. We begin by recalling the argument from
[Guentner et al. 2012].

A length function on a group G is a function l : G → [0,∞) such that, for
all g, h ∈ G,

(1) l(e)= 0,

(2) l(g)= l(g−1), and

(3) l(gh)≤ l(g)+ l(h).

We do not require that l be proper, nor that l(g)= 0 if and only if g = e. By setting
d(g, h) := l(g−1h) we obtain a pseudometric.

A discrete norm on a field K is a map γ : K → [0,∞) satisfying that for all
x, y ∈ K we have

(1) γ (x)= 0 if and only if x = 0,

(2) γ (xy)= γ (x)γ (y),

(3) γ (x + y)≤max{γ (x), γ (y)},

and that the range of γ on K \ {0} is a discrete subgroup of the multiplicative
group (0,∞).

Following [Guentner et al. 2005], we obtain for every discrete norm γ on K a
length function lγ on GLn(K ) by

lγ (g)= log max
i, j
{γ (gi j ), γ (gi j )},

where gi j and gi j are the matrix coefficients of g and g−1, respectively. By [Guent-
ner et al. 2013, Propostion 5.2.4] the group GLn(K ) equipped with the pseudo-
metric d(g, h)= lγ (g−1h) has finite asymptotic dimension for every discrete norm γ .
Let us review the proof.
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The subset O := {x ∈ K | γ (x)≤ 1} is a subring of K called the ring of integers
and m := {x ∈ K | γ (x) < 1} is a principal ideal in O. Let π be a fixed generator
of m and let D denote the subgroup of diagonal matrices with powers of π on the
diagonal. Let U denote the unipotent upper triangular matrices. By [Guentner et al.
2013, Lemma 5.2.5] the group U has asymptotic dimension zero. We have D ∼= Zn

and the restriction of lγ to D is given by

lγ (a) :=max
i
|ki | log γ (π−1),

where a is the diagonal matrix with entries π ki on the diagonal. The group D
therefore is quasi-isometric to Zn with the standard metric and has asymptotic
dimension n. The group T := DU is again a subgroup of GLn(K ) and U ≤ T is
normal. Considering the extension 1→U→ T → D→ 1, we see that T has finite
asymptotic dimension.

Let H be the subgroup of those g ∈ GLn(F) for which the entries of g and g−1

are in O. Then GLn(K )= TH by [Guentner et al. 2005, Lemma 5]. For h ∈ H let
hi j and hi j denote the matrix coefficients of h and h−1, respectively. By definition,
γ (hi j ), γ (hi j )≤ 1 and thus

0≤ lγ (h)= log max
i j
{γ (hi j ), γ (hi j )} ≤ 0.

This implies that the inclusion T → GLn(K ) is isometric and metrically onto, i.e.,
for every g ∈ GLn(K ) there exists a t ∈ T with d(g, t) = 0. Hence, GLn(K ) has
finite asymptotic dimension with respect to the pseudometric d .

Lemma 3.1. For every discrete norm the family {F\GLn(K )}F , where F ranges
over all finite subgroups of U , has finite asymptotic dimension uniformly with
respect to the associated pseudometric.

Proof. Let F be a finite subgroup of U . Then we can consider the map

F\T ρF
−→ D.

We want to apply Lemma 2.5 to the family {ρF : F\T ρ
→ D}F∈FinU , For this we

have to show that for every R > 0 the family {ρ−1
F (BR(d))}d∈D, F∈FinU has finite

asymptotic dimension uniformly. The preimage ρ−1
F (d) = {Fud | u ∈ U } of a

point d ∈ D is isometric to (F)d\U , by mapping Fud to d−1 Fdd−1ud, where
(F)d := {d−1 f d | f ∈ F}. Therefore, the preimage of BR(d) for any R > 0 is a
finite union of spaces isometric to spaces of the form (F)d

′

\U with d ′ ∈ D. The
number of spaces appearing in this union only depends on R and not on d (or F).
Thus, by Lemma 2.6,

asdim{ρ−1
F (BR(d))}d∈D, F∈FinU = asdim{F\U }F∈Fin.
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Since the inclusion F\T → F\GLn(K ) is isometric and metrically onto, to
prove the lemma it remains to show that the family {F\U }F∈Fin has asymptotic
dimension zero uniformly.

Let R > 0 be given and let S denote the partition of U into r-connected compo-
nents, i.e., two elements u, u′ ∈U lie inside the same S ∈S if and only if there exists
a sequence u0, . . . , un with u= u0, u′= un and d(ui−1, ui )≤ R for all i = 1, . . . , n.
Since U has asymptotic dimension zero we have that r := supS∈S diam S <∞.
Since the left action of F on U is isometric, if f u=u′ for some f ∈ F and u, u′ ∈U ,
then f maps the r-connected component of u bijectively onto the r-connected
component of u′. This implies that every r-connected component of F\U is a
quotient of an r-connected component of U and in particular has diameter at most r .
Therefore, the family {F\U }F∈Fin has asymptotic dimension zero uniformly, as
claimed. �

Proposition 3.2. Let G ≤GLn(K ) be a finitely generated subgroup. Then for every
discrete norm γ the family {F\G}F∈Fin has finite asymptotic dimension uniformly
with respect to the associated pseudometric.

Proof. By the main theorem of [Alperin 1987] there exists a normal subgroup
G ′ ≤ G with index [G : G ′] =: N <∞ such that every finite subgroup of G ′ is
unipotent. Therefore, every finite subgroup F ≤ G ′ is conjugate in GLn(K ) to a
finite subgroup F ′ ≤ U . Let g = th with t ∈ T , h ∈ H be such that g−1 F ′g = F .
Since U is normal in T , we have that t−1 F ′t ≤ U and we can assume g ∈ H
and in particular lγ (g) = 0. This implies that conjugation by g is an isometry
and induces an isometry between F ′\GLn(K ) and F\GLn(K ). By Lemma 3.1
the family {F ′\GLn(K )}F ′∈FinU has finite asymptotic dimension uniformly and,
by the above isometry, the family {F\GLn(K )}F∈FinG′

therefore also has finite
asymptotic dimension uniformly. This also holds for the subfamily {F\G}F∈FinG′

.
Since [G : G ′] = N , every finite subgroup F̃ of G has a normal subgroup F of
index at most N lying in G ′. The quotient group F\F̃ acts isometrically on F\G.
Thus, projecting the covers that give finite asymptotic dimension for {F\G}F∈FinG′

down to the quotient {F̃\G}F̃∈Fin shows that this family still has finite asymptotic
dimension uniformly. �

Theorem 3.3. Let G ≤ GLn(K ) be a finitely generated subgroup. There exists
a proper, left-invariant metric on G such that the family {F\G}F∈Fin has finite
asymptotic dimension uniformly.

Proof. The subring of K generated by the matrix entries of a finite generating set
for G is a finitely generated domain A with G ≤GLn(A) and we may replace K by
the (finitely generated) fraction field of A; thus, we can assume that K is a finitely
generated field of positive characteristic. By [Guentner et al. 2012, Proposition 3.4],
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for every finitely generated subring A of K there exists a finite set NA of discrete
norms such that for every k ∈ N the set

BA(k)= {a ∈ A | γ (a)≤ ek for all γ ∈ NA}

is finite. Let A again be the subring generated by the matrix entries of a finite
generating set for G and NA = {γ1, . . . , γq} be the finite set of discrete norms, as
above. Consider the length function l := lγ1 + · · · + lγq . The pseudometric on G
defined by d(g, g′) := l(g−1g′) now is proper and left-invariant, and the diagonal
embedding

(G, d)→ (GLn(K ), dγ1)× · · ·× (GLn(K ), dγq )

is isometric when the product is given the sum metric. It suffices to show that the
family {

F\((G, dγ1)× · · ·× (G, dγq ))
}

F∈FinG

has finite asymptotic dimension uniformly. Now let F ≤ G be finite and consider
the projection

F\(G× · · ·×G) p
→ F\G× · · ·× F\G

using the same metrics as above. The image has finite asymptotic dimension uni-
formly in F by Proposition 3.2, and using Lemma 2.5 it suffices to show that the
preimage of BR(Fg1)×· · ·×BR(Fgn) under p has finite asymptotic dimension uni-
formly. The preimage is a finite union of metric spaces of the form F\(Fg′1× Fg′n)
and the number of the spaces appearing in the union only depends on R, not on
F or g1, . . . , gn . By the main theorem of [Alperin 1987] there exists a normal
subgroup G ′EGLn(A) with index [GLn(A) : G ′] =: N <∞ such that every finite
subgroup of G ′ is unipotent. In particular, we have a normal unipotent subgroup
F ′ := G ′ ∩ F of F of index at most N . The space Fg′1 × · · · × Fg′n is a union
of at most N subspaces isometric to F ′g′1 × · · · × F ′g′n , and as in the proof of
Proposition 3.2 there exists an isometry of these to F1 × · · · × Fn with Fi ≤ U .
By Lemma 2.6 this shows that Fg′1 × · · · × Fg′n has asymptotic dimension zero
uniformly in F . As in the proof of Lemma 3.1, we see that F\(Fg′1× · · ·× Fg′n)
also has asymptotic dimension zero. This completes the proof of Theorem 3.3. �

Remark 3.4. Note that the family {F\G}F∈Fin has finite asymptotic dimension
uniformly for some proper, left-invariant (pseudo)metric on G if and only if it has
finite asymptotic dimension for every proper, left-invariant metric on G.

4. Linear groups over commutative rings with unit

Lemma 4.1. Let H1 and H2 be groups such that {F\Hi }F∈Fin has FDC for i = 1, 2.
Then {F\(H1× H2)}F∈Fin has FDC.
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Proof. Let proper, left-invariant metrics di on Hi be given and consider H1× H2

with the metric d1+ d2. Let pi : H1× H2→ Hi denote the projection. Consider
the uniformly expansive map

{F\(H1× H2)}F∈Fin→
{
(p1(F)× p2(F))\(H1× H2)

}
F∈Fin .

Then the range has FDC by assumption and by the fibering theorem [Guentner et al.
2013, Theorem 3.1.4] it suffices to show that the family{

F\(p1(F)× p2(F))(BR(h1)× BR(h2))
}

hi∈Hi , F∈FinH1×H2

has FDC for every R>0. Every space in this family is a union of |BR(h1)×BR(h2)|

many spaces of the form F\(p1(F)×p2(F))(h, h′). The number |BR(h1)×BR(h2)|

only depends on R, not on h1 and h2, and every space F\(p1(F)× p2(F))(h, h′)
is isometric to (F)(h,h

′)
\(p1(F)× p2(F))(h,h

′), where (F)(h,h
′) is (h, h′)−1 F(h, h′)

and similarly for (p1(F)× p2(F))(h,h
′). By Theorem 2.4 it suffices to show that the

family {F\F ′}F≤F ′ has FDC, where F ≤ F ′ ranges over all pairs of finite subgroups
of H1× H2. Let SR denote the family of finite subgroups of H1× H2 generated by
elements from BR(e) and let sR := supS∈SR

diam S. Let F ≤ H1×H2 be finite. Then
for every R > 0 the group F is the r-disjoint union of the cosets of 〈F ∩ BR(e)〉 and
each of these has diameter at most sR . We see that the family of finite subgroups
of H1× H2 has asymptotic dimension zero uniformly. This implies that the above
family {F\F ′}F≤F ′ also has asymptotic dimension zero uniformly, since every r-
connected component of F\F ′ is a quotient of an r-connected component of F ′

and thus has uniformly bounded diameter. �

Lemma 4.2 [Guentner et al. 2013, Lemma 5.2.3]. Let R be a finitely generated
commutative ring with unit and let n be the nilpotent radical of R,

n= {r ∈ R | rn
= 0 for some n}.

The quotient ring S = R/n contains a finite number of prime ideals p1, . . . , pk such
that the diagonal map

S→ S/p1⊕ · · ·⊕ S/pk

embeds S into a finite direct sum of domains.

Theorem 4.3. Let R be a commutative ring with unit and trivial nilradical and let
G be a finitely generated subgroup of GL(n, R). Then {F\G}F∈Fin has FDC.

Proof. Because G is finitely generated we can assume that R is finitely generated
as well. Since the nilradical of R is trivial, we have R = S in the notation of the
previous lemma and there is an embedding

GLn(S) ↪→GLn(S/p1)×·· ·×GLn(S/pk) ↪→GLn(Q(S/p1))×·· ·×GLn(Q(S/pk)),
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where Q(S/pi ) is the quotient field of S/pi . Let Gi be the image of the group
G in GLn(Q(S/pi )). If S/pi has positive characteristic, the family {F\Gi }F∈Fin

has FDC by Theorem 3.3. If S/pi has characteristic zero, then Gi is virtually
torsion-free by Selberg’s lemma and thus {F\Gi }F∈Fin has FDC by [Kasprowski
2015a, Theorem 4.10]. Now Lemma 4.1 implies that the family {F\G}F∈Fin also
has FDC. �

Proof of Theorem 1.1. This follows directly from Theorem 4.3 and [Kasprowski
2014, Theorems 3.2.2 and 3.3.1] if R has trivial nilradical. Note that these theorems
are stronger than the similar [Kasprowski 2015a, Theorems A and 9.1], where an
upper bound on the order of the finite subgroups is needed. For convenience we
show in the Appendix how the results from [Kasprowski 2015a] can be used to
prove the theorems from [Kasprowski 2014].

If the nilradical n of R is nontrivial, we have an exact sequence

1→ (1+Mn(n))∩G→ G→ H → 1,

where H denotes the image of G in GLn(R/n). Now the K-theoretic assembly
map for H is split injective and (1+Mn(n))∩G is nilpotent. Therefore, the pre-
image of every virtually cyclic subgroup of H is virtually solvable and satisfies the
Farrell–Jones conjecture, by [Wegner 2015]. By [Kasprowski 2015b, Proposition
4.1] this implies that the K-theoretic assembly map for G is split injective as well.
The L-theory version of the theorem follows in the same way from the results in
[Kasprowski 2015b, Section 6]. �

5. Dimension of the classifying space

In this section we want to prove Proposition 1.2. We will need the following re-
sult about classifying spaces. The proof is the same as the proof of [Lück 2000,
Theorem 3.1].

Theorem 5.1. Let 1→ K→G π
→Q→ 1 be an exact sequence of groups. Assume

that Q admits a finite-dimensional model for E Q and that there exists N ∈ N such
that for every finite subgroup F ∈ Q the preimage admits a model for Eπ−1(F) of
dimension at most N . Then there exists a finite-dimensional model for EG.

Proof of Proposition 1.2. For a group G let cdG be the shortest length of a projec-
tive resolution of Z as a Z[G]-module and let hdG be the shortest length of a flat
resolution of Z of Z as a Z[G]-module. Let gdG denote the minimal dimension of
a model for EG. For a countable group G by [Nucinkis 2004, Theorem 4.1] we
have

hdG ≤ cdG ≤ hdG+ 1.
Furthermore,

cdG ≤ gdG ≤max{cdG, 3},
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where the first inequality follows from taking the cellular chain complex of EG as
a resolution and the second inequality follows from [Lück 1989, Theorem 13.19].
By [Flores and Nucinkis 2007, Theorem 1], for a solvable group with finite Hirsch
length l(G) it holds that l(G)= hdG. Note that Flores and Nucinkis use Hillman’s
definition of the Hirsch rank for an elementary amenable group. It can be shown by
a simple transfinite induction that for solvable groups this agrees with the definition
given in the introduction. Furthermore, every solvable group with infinite Hirsch
length has a subgroup with arbitrary large Hirsch length. In particular, the existence
of a finite-dimensional model X for EG directly implies that the Hirsch rank of
the solvable subgroups of G is bounded by dim X . It remains to prove the other
direction.

Let R be a fixed commutative ring with unit and let G ≤ GLn(R) be finitely
generated with N ∈N an upper bound on the Hirsch rank of the solvable subgroups
of G. Since G is finitely generated, we can assume that R is also finitely generated
and let n, S and p1, . . . , pk be as in Lemma 4.2. Furthermore, let H denote the
image of G in GLn(S) and p :GLn(R)→GLn(S) the projection. Let A be a finitely
generated abelian subgroup of H . Then p−1(A) is solvable. This implies that the
rank of the finitely generated abelian subgroups of H is also bounded by N .

First let us show that H admits a finite-dimensional model for E H . By Lemma 4.2
H embeds into GLn(S/p1)× · · ·×GLn(S/pk) and, since H is finitely generated,
we can assume that all the domains S/pi are as well. Order them in such a way that
S/p1, . . . , S/pq are of positive characteristic and S/pq+1, . . . , S/pk are of charac-
teristic zero. Then GLn(S/pq+1) × · · · × GLn(S/pk) embeds into GLn(k−q)(C).
Let π denote the projection of H to GLn(S/p1) × · · · × GLn(S/pq) and let πi

denote the projection of H to GLn(S/pi ) for i = 1, . . . , q; then πi (H) admits a
finite-dimensional model Ei for Eπi (H), by [Degrijse and Petrosyan 2015, Corol-
lary 5], and thus E1 × · · · × Eq is a finite-dimensional model for Eπ(H). By
Theorem 5.1 it remains to show that for every finite subgroup F ∈ π(H) the
preimage π−1(F) admits a finite-dimensional model with dimension bounded uni-
formly in F . Let ρ denote the projection from H to GLn(k−q)(C). Then ρ(H) is
virtually torsion-free, by Selberg’s lemma [1960]. The group ρ(kerπ) is isomor-
phic to kerπ and thus N is a bound on the rank of its finitely generated abelian
subgroups. Furthermore, ρ(kerπ) has finite index in ρ(π−1(F)) for every finite
subgroup F ≤ π(H). Thus, the rank of the finitely generated abelian subgroups of
ρ(π−1(F)) is also bounded by N . By [Kasprowski 2015b, Proposition 3.1] this
implies that the rank of the finitely generated unipotent subgroups of ρ(π−1(F))
is bounded by 1

2 N (N + 1). This implies that ρ(π−1(F)) has finite virtual co-
homological dimension bounded uniformly in F ; see [Alperin and Shalen 1982,
Remark after Theorem 3.3]. The order of the finite subgroups in ρ(π−1(F)) is
bounded uniformly in F since they are all contained inside the virtually torsion-
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free group ρ(H). By Theorem 1.10 of [Lück 2000] this implies that there exist
finite-dimensional models for Eρ(π−1(F)) with dimension bounded uniformly
in F and, since ρ : π−1(F)→ ρ(π−1(F)) has finite kernel, they are also models
for Eπ−1(F). This completes the proof that H admits a finite-dimensional model
for E H .

For every finite subgroup F ≤ H , its preimage A in G is virtually nilpotent and
thus elementary amenable, and the Hirsch rank of A is bounded by N . By the
inequalities from the beginning of the proof this implies that there is a model for
E A of dimension at most N + 2. Using Theorem 5.1 again we conclude that there
exists a finite-dimensional model for EG. �

Appendix

In this appendix we want to prove the following:

Theorem A.1 [Kasprowski 2014, Theorem 3.2.2]. Let G be a discrete group such
that {H\G}H∈Fin has FDC and let A be a small additive G-category. Assume
that there is a finite-dimensional G-CW model for the classifying space for proper
G-actions EG. Then the assembly map in algebraic K-theory

H G
∗
(EG;KA)→ K∗(A[G])

is a split injection.

The analogous result in L-theory [Kasprowski 2014, Theorem 3.3.1] follows in
the same way from the results of [Kasprowski 2015a]. We will use the notation
introduced in [Kasprowski 2015a]. Note that, in the appendix, metrics are allowed
to take on the value∞. We will need the following equivariant version of FDC.

Definition A.2. An equivariant metric family is a family {(Xα,Gα)}α∈A, where
Gα is a group and Xα is a metric Gα-space.

Definition A.3. An equivariant metric family X = {(Xα,Gα)}α∈A decomposes
over a class of equivariant metric families D if for every r > 0 and every α ∈ A
there exists a decomposition Xα = U r

α ∪ V r
α into Gα-invariant subspaces and r-

disjoint decompositions

U r
α =

r-disj.⋃
i∈I (r,α)

U r
α,i and V r

α =

r-disj.⋃
j∈J (r,α)

V r
α, j

such that Gα acts on I (r, α) and J (r, α) and, for every g ∈ Gα, we have gU r
α,i =

U r
α,gi and gV r

α, j = V r
α,g j . Furthermore, the families{( ∐

i∈I (r,α)

U r
α,i ,Gα

)}
α∈A

and
{( ∐

j∈J (r,α)

V r
α, j ,Gα

)}
α∈A

have to lie in D.
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Notice that the underlying sets of U r
α and

∐
i∈I (r,α) U r

α,i are canonically isomor-
phic and in this sense the Gα-action on

∐
i∈I (r,α) U r

α,i is the same as the action
on U r

α , only the metric has changed.

Definition A.4. An equivariant metric family X is called semibounded if there
exists R > 0 such that for all (X,G) ∈ X and x, y ∈ X we have d(x, y) < R or
d(x, y)=∞.

Let eB denote the class of semibounded equivariant families. We set eD0 = eB
and, given a successor ordinal γ + 1, we define eDγ+1 to be the class of all equi-
variant metric families which decompose over eDγ . For a limit ordinal λ we define

eDλ =

⋃
γ<λ

eDγ .

An equivariant metric family X has finite decomposition complexity (FDC) if X lies
in eDγ for some ordinal γ .

Note that the equivariant metric family
{
(Xα, {e})

}
α∈A has FDC if and only if

the metric family {Xα}α∈A has FDC.

A metric family {Xα}α∈A has uniformly bounded geometry if for every R > 0
there exists N ∈ N such that, for every α ∈ A and U ⊆ Xα with diam(U )≤ R, the
set U contains at most N elements.

The following is a generalization of Ramras, Tessera and Yu [Ramras et al. 2014,
Theorem 6.4]. The proof is analogous to the proof of theirs and can be found in
[Kasprowski 2014]. The additive G-category AG(X) is defined in [Kasprowski
2015a, Definition 5.1] and AG

G(X) denotes the fixed-point category. For a definition
of the bounded product see [Kasprowski 2015a, Definition 5.11].

Theorem A.5. Let X = {(Xα,Gα)}α∈A be an equivariant family with FDC, and
let the family {Xα}α∈A have bounded geometry uniformly. Then

colim
s

Kn

( bd∏
α∈A

AGα

Gα
(Ps Xα)

)
= 0

for all n ∈ Z, where the colimit is taken over the maps induced by the inclusion of
the respective Rips complexes Ps Xα.

Furthermore, recall the following:

Theorem A.6 [Kasprowski 2015a, Theorem 7.6]. Let G be a discrete group admit-
ting a finite-dimensional model for EG and let X be a simplicial G-CW complex
with a proper G-invariant metric. Assume that, for every G-set J with finite stabi-
lizers,

colim
K

Kn

( bd∏
j∈J

AG(G K )
)G

= 0,
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where the colimit is taken over all finite subcomplexes K ⊆ X. Then the assembly
map

H G
∗
(X;KA)→ K∗(A[G])

is a split injection.

Proposition A.7 [Kasprowski 2014, Proposition 3.2.1]. Let G be a group such
that the metric family {H\G}H∈Fin has FDC. Then the equivariant metric family
{(G, H)}H∈Fin has FDC as well.

Proof. Let {(X i ,Gi )}i∈I be an equivariant metric family with Gi ≤ G a finite sub-
group and assume X i ⊆

∐
Ai

G is a Gi -invariant subspace, where Ai is a Gi -set. We
prove by induction on the decomposition complexity that the family {(X i ,Gi )}i∈I

lies in eDγ+1 if {Gi\X i }i∈I ∈Dγ . For the start of the induction let {Gi\X i }i∈I be
in D0 =B. Since Gi\X i is bounded, there is ai ∈ Ai with X i ⊆

∐
Gi ai

G. Then
there exist R > 0 and Yi ⊆ G =

∐
{ai }

G ⊆
∐

Ai
G with diam Yi < R for all i ∈ I

such that X i = Gi Yi ⊆
∐

Ai
G. Let G ′i ⊆ Gi be the stabilizer of ai . Then

X i ∼=
∐

[g]∈Gi/G ′i

gG ′i Yi with G ′i Yi ⊆ G.

Let r > 0 be given and define Sr := {H ∈ Fin | H = 〈S〉, S ⊆ B2R+r (e)}
and k := maxH∈S |H |. Let gi ∈ Yi be a fixed base point. Let Hi ≤ G ′i be the
subgroup generated by those g ∈ G ′i with d(Yi , gYi ) < r . For these g we have
d(e, g−1

i ggi ) < 2R + r . Therefore, g−1
i Hi gi ∈ Sr and |Hi | ≤ k. We have the

decomposition
X i =

⋃
[g]∈Gi/Hi

gHi Yi .

This decomposition is r-disjoint, since d(ghy, g′h′y′)<r with g, g′∈Gi , h, h′∈Hi

and y, y′ ∈ Yi implies that d(Yi , h−1g−1g′h′Yi ) < r and so, by definition, the
element h−1g−1g′h′ lies in Hi , which is equivalent to gHi = g′Hi .

By definition of Hi each h ∈ Hi can be written as h = g1 · · · gl with l ≤ |H | ≤ k
and g j such that d(Yi , g j Yi ) < r . For every y, y′ ∈ Yi , by left-invariance and the
triangle inequality we obtain

d(y, hy′)≤ d(y, g1 y′)+ d(g1 y′, g1g2 y′)+ · · ·+ d(g1 · · · gl−1 y′, hy′)

= d(y, g1 y′)+ d(y′, g2 y′)+ · · ·+ d(y′, gl y′) < lr.

Therefore diam gHi Yi = diam Hi Yi < kr . Thus, {(X i ,Gi )}i∈I is r-decomposable
over eD0 = eB for every r > 0 and lies in eD1.

If {Gi\X i }i∈I lies in Dγ+1, then it decomposes over Dγ and the preimages under
the projection X i → Gi\X i give a decomposition of {(X i ,Gi )} over eDγ+1 by the
induction hypothesis. Here Gi acts trivially on the index set of the decomposition.
The induction step for limit ordinals is trivial. �
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Proof of Theorem A.1. By [Kasprowski 2015a, Proposition 1.5], G admits a finite-
dimensional model X for EG with a left-invariant proper metric. By Theorem A.6
we have to show that

colim
K

Kn

( bd∏
j∈J

AG(G K )
)G

= 0,

where the colimit is taken over all finite subcomplexes K ⊆ X . Since the cat-
egory

(∏bd
j∈J AG(G K )

)G is equivalent to
∏bd

G j∈G\J A
G j
G (Ps G), where G j is the

stabilizer of j ∈ J , this is equivalent to showing that, for every family of finite
subgroups {Gi }i∈I over some index set I ,

colim
K

Kn

( bd∏
i∈I

AGi
G (G K )

)
= 0.

By [Kasprowski 2015a, Lemma 1.8 and Proposition 6.3], for every finite subcom-
plex K ⊆ X there exists K ′ ⊆ X finite and s > 0 with maps G K → Ps(G)→ G K ′

such that the composition is metrically homotopic to the identity. In particular,
the composition induces the identity in the K-theory of the associated controlled
categories. Thus it remains to show

colim
s

Kn

( bd∏
i∈I

AGi
G (Ps G)

)
= 0.

Since {(G, H)}H∈Fin has FDC by Proposition A.7 and the category AGi
G (Ps G) is

equivalent to AGi
Gi
(Ps G), this follows from Theorem A.5. �
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