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C. Weibel, and Thomason and Trobaugh, proved (under some assumptions) that
algebraic K-theory with coefficients is A1-homotopy invariant. We generalize
this result from schemes to the broad setting of dg categories. Along the way, we
extend the Bass–Quillen fundamental theorem as well as Stienstra’s foundational
work on module structures over the big Witt ring to the setting of dg categories.
Among other cases, the above A1-homotopy invariance result can now be ap-
plied to sheaves of (not necessarily commutative) dg algebras over stacks. As an
application, we compute the algebraic K-theory with coefficients of dg cluster
categories using solely the kernel and cokernel of the Coxeter matrix. This leads
to a complete computation of the algebraic K-theory with coefficients of the
du Val singularities parametrized by the simply laced Dynkin diagrams. As a
byproduct, we obtain vanishing and divisibility properties of algebraic K-theory
(without coefficients).

1. Introduction and statement of results

Let k be a base commutative ring, X a quasicompact, quasiseparated k-scheme,
and lν a prime power. As proved by Weibel [1982, page 391; 1981, Theorem 5.2]
and by Thomason and Trobaugh [1990, Theorems 9.5–9.6], we have the following
result:

Theorem 1.1. (i) When 1/ l ∈ k, the projection morphism X [t] → X gives rise
to an homotopy equivalence of spectra K(X;Z/ lν)→ K(X [t];Z/ lν).

(ii) When l is nilpotent in k, the projection morphism X [t] → X gives rise to an
homotopy equivalence of spectra K(X)⊗Z[1/ l] → K(X [t])⊗Z[1/ l].
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The proof of Theorem 1.1 is quite involved! The affine case, established by
Weibel, makes use of a convergent right half-plane spectral sequence, of a univer-
sal coefficient sequence, of the Bass–Quillen fundamental theorem (see [Grayson
1976, page 236]), and more importantly of Stienstra’s foundational work [1982,
§8] on module structures over the big Witt ring. The extension to quasicompact,
quasiseparated schemes, later established by Thomason and Trobaugh [1990, §9.1],
is based on a powerful method known as “reduction to the affine case”.

The first goal of this article is to generalize Theorem 1.1 from schemes to the
broad setting of dg categories. Consult Sections 2–3 for applications and compu-
tations.

Statement of results. A differential graded (dg) category A, over the base commu-
tative ring k, is a category enriched over complexes of k-modules; see Section 4.
Every (dg) k-algebra A gives naturally rise to a dg category with a single object.
Another source of examples is provided by schemes, since the category of perfect
complexes perf(X) of every quasicompact, quasiseparated k-scheme X admits a
canonical dg enhancement perfdg(X); see [Keller 2006, §4.4]. Given a dg cate-
gory A, let us write A[t] for the tensor product A⊗ k[t]. Our first main result is
the following:

Theorem 1.2. (i) When 1/ l ∈ k, the canonical dg functor A→ A[t] gives rise
to an homotopy equivalence of spectra K(A;Z/ lν)→ K(A[t];Z/ lν).

(ii) When l is nilpotent in k, the canonical dg functor A→ A[t] gives rise to an
homotopy equivalence of spectra K(A)⊗Z[1/ l] → K(A[t])⊗Z[1/ l].

For the proof of Theorem 1.2, we adapt the Bass–Quillen fundamental theorem,
as well as Stienstra’s foundational work on module structures over the big Witt
ring, to the broad setting of dg categories; see Theorems 8.4 and 9.1, respectively.
These results are of independent interest. Except in Theorem 9.1, we work more
generally with a localizing invariant; see Definition 5.1.

2. Applications and computations

The second goal of this article is to explain how Theorem 1.2 leads naturally to
several applications and computations.

Sheaves of dg algebras. Let X be a quasicompact, quasiseparated k-scheme and S
a sheaf of (not necessarily commutative) dg OX -algebras. In addition to perfdg(X),
we can consider the dg category perfdg(S) of perfect complexes of S-modules;
see [Tabuada and Van den Bergh 2015, §6]. By applying Theorem 1.2 to the dg
category A= perfdg(S), we obtain the following generalization of Theorem 1.1:

Theorem 2.1. (i) When 1/ l ∈ k, the projection morphism S[t] → S gives rise to
an homotopy equivalence of spectra K(S;Z/ lν)→ K(S[t];Z/ lν).



A1-HOMOTOPY INVARIANCE OF ALGEBRAIC K -THEORY WITH COEFFICIENTS 3

(ii) When l is nilpotent in k, the projection morphism S[t] → S gives rise to an
homotopy equivalence of spectra K(S)⊗Z[1/ l] → K(S[t])⊗Z[1/ l].

Remark 2.2 (orbifolds and stacks). Given an orbifold, or more generally a stack X ,
we can also consider the associated dg category perfdg(X ) of perfect complexes.
Therefore, Theorem 2.1 holds more generally for every sheaf S of dg OX -algebras.

DG orbit categories. Given a dg category A and a dg functor F : A→ A which
induces an equivalence of categories H0(F) :H0(A) ∼−→H0(A), recall from [Keller
2005, §5.1] the construction of the associated dg orbit category A/FZ. Thanks to
Theorem 1.2, all the results established in [Tabuada 2015a] can now be applied
to algebraic K-theory with coefficients. For example, Theorem 1.5 of [Tabuada
2015a] gives rise to the result:

Theorem 2.3. When 1/ l ∈ k, we have a distinguished triangle of spectra:

K(A;Z/ lν)
K(F;Z/ lν)−Id
−−−−−−−−→ K(A;Z/ lν)−→ K(A/FZ

;Z/ lν)−→6K(A;Z/ lν).

When l is nilpotent in k, the same holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

Remark 2.4 (fundamental isomorphism). When F is the identity dg functor, the
dg orbit category A/FZ reduces to A[t, 1/t] and the above distinguished triangle
splits. Thus, we obtain a fundamental isomorphism between K(A[t, 1/t];Z/ lν)
and the direct sum K(A;Z/ lν)⊕6K(A;Z/ lν). When l is nilpotent in k, the same
holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

DG cluster categories. Let k be an algebraically closed field, Q a finite quiver
without oriented cycles, k Q the path k-algebra of Q, Db(k Q) the bounded derived
category of finitely generated right k Q-modules, and Db

dg(k Q) the canonical dg
enhancement of Db(k Q). Consider the dg functors

τ−16m
: Db

dg(k Q)−→ Db
dg(k Q), m ≥ 0,

where τ is the Auslander–Reiten translation. Following Keller [2005, §7.2], the dg
(m)-cluster category C(m)Q of Q is defined as the dg orbit category

Db
dg(k Q)/(τ−16m)Z.

In the same vein, the (m)-cluster category of Q is defined as H0(C(m)Q ). These
(dg) categories play, nowadays, a key role in the representation theory of finite-
dimensional algebras; see Reiten’s ICM address [2010]. As proved by Keller and
Reiten [2008, §2], the (m)-cluster categories (with m ≥ 1) can be conceptually char-
acterized as those (m+1)-Calabi–Yau triangulated categories containing a cluster-
tilting object whose endomorphism algebra has a quiver without oriented cycles.

As explained in [Tabuada 2015a, Corollary 2.11], in the particular case of dg
cluster categories, Theorem 2.3 reduces to the following one:
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Theorem 2.5. When l 6= char(k), we have a distinguished triangle of spectra
v⊕

r=1

K(k;Z/ lν)
(−1)m8Q−Id
−−−−−−−→

v⊕
r=1

K(k;Z/ lν)→K(C(m)Q ;Z/ lν)→
v⊕

r=1

6K(k;Z/ lν),

where v stands for the number of vertices of Q and8Q for the Coxeter matrix of Q.
When l = char(k), the same holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

As proved by Suslin [1984, Corollary 3.13], we have Ki (k;Z/ lν)' Z/ lν when
i ≥ 0 is even and Ki (k;Z/ lν) = 0 otherwise. Consequently, making use of the
long exact sequence of algebraic K-theory groups with coefficients associated to
the above distinguished triangle of spectra, we obtain the following result:

Corollary 2.6. Consider the (matrix) homomorphism

(−1)m8Q − Id :
v⊕

r=1

Z/ lν −→
v⊕

r=1

Z/ lν . (2.7)

When l 6= char(k), we have the following computation:

Ki (C(m)Q ;Z/ lν)'


cokernel (2.7) if i ≥ 0 even,
kernel (2.7) if i ≥ 0 odd,
0 if i < 0.

Corollary 2.6 provides a complete computation of the algebraic K-theory with
coefficients of all dg orbit categories! Roughly speaking, all the information is
encoded in the Coxeter matrix of the quiver. Note also that the kernel and co-
kernel of (2.7) have the same finite order. In particular, one is trivial if and only
if the other one is trivial. Thanks to Corollary 2.6, this implies that the groups
Ki (C(m)Q ;Z/ lν), i ≥ 0, are either all trivial or all nontrivial.

3. Du Val singularities

The third goal of this article is to explain how Corollary 2.6 provides us a complete
computation of the algebraic K-theory with coefficients of the du Val singularities.

Let k be an algebraically closed field of characteristic zero. Recall that the
du Val singularities1 [1934a; 1934b; 1934c] are the isolated singularities of the
singular affine hypersurfaces R := k[x, y, z]/( f ) parametrized by the simply laced
Dynkin diagrams:

type An , n ≥ 1 Dn , n ≥ 4 E6 E7 E8

f xn+1
+ yz xn−1

+ xy2
+ z2 x4

+ y3
+ z2 x3 y+ y3

+ z2 x5
+ y3
+ z2

1Also known as rational double points or ADE singularities.
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Let MCM(R) denote the stable category of maximal Cohen–Macaulay R-modules.
Thanks to the work of Buchweitz [1986] and Orlov [2004; 2009], this category is
also known as the category of singularities Dsing(R) or equivalently as the category
of matrix factorizations MF(k[x, y, z], f ). Roughly speaking, MCM(R) encodes
the crucial information concerning the isolated singularity of the singular affine
hypersurface R.

Let Q be a Dynkin quiver, i.e., a quiver whose underlying graph is a Dynkin
diagram of type A, D, or E . As explained by Keller [2005, §7.3], MCM(R) is
equivalent to the category of finitely generated projective modules over the pre-
projective algebra 3(Q) and to the (0)-cluster category of Q. We conclude that
the algebraic K-theory of the du Val singularities is given by the algebraic K-theory
of the dg (0)-cluster categories C(0)An

, C(0)Dn
, C(0)E6

, C(0)E7
and C(0)E8

. In these cases, the
homomorphisms (2.7) correspond to the following matrices (see [Auslander et al.
1995, pages 289–290]):

An : 1 // 2 // · · · // n− 1 // n


−2 1 0 · · · 0
−1 −1

. . .
. . .

...

−1 0
. . .

. . . 0
...

...
. . .

. . . 1
−1 0 · · · 0 −1


n×n

Dn :

1
$$
3 // 4 // · · · // n

2
::



−2 0 1 0 · · · · · · 0
0 −2 1 0

. . .
. . .

...

−1 −1 0 1
. . .

. . .
...

−1 −1 1 −1
. . .

. . .
...

...
...

... 0
. . .

. . . 0
...

...
...

...
. . .

. . . 1
−1 −1 1 0 · · · 0 1


n×n

E6 :
3
��

1 // 2 // 4 // 5 // 6



−2 1 0 0 0 0
−1 −1 0 1 0 0

0 0 −2 1 0 0
−2 0 −1 0 1 0
−1 0 −1 1 −1 1
−1 0 −1 1 0 −1



E7 :
3
��

1 // 2 // 4 // 5 // 6 // 7



−2 1 0 0 0 0 0
−1 −1 0 1 0 0 0

0 0 −2 1 0 0 0
−2 0 −1 0 1 0 0
−1 0 −1 1 −1 1 0
−1 0 −1 1 0 −1 1
−1 0 −1 1 0 0 −1
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E8 :
3
��

1 // 2 // 4 // 5 // 6 // 7 // 8



−2 1 0 0 0 0 0 0
−1 −1 0 1 0 0 0 0

0 0 −2 1 0 0 0 0
−1 0 −1 0 1 0 0 0
−1 0 −1 1 −1 1 0 0
−1 0 −1 1 0 −1 1 0
−1 0 −1 1 0 0 −1 1
−1 0 −1 1 0 0 0 −1


Thanks to Corollary 2.6, the computation of the algebraic K-theory with coeffi-
cients of the du Val singularities reduces then to the computation of the (co)kernels
of the above explicit matrix homomorphisms! We now compute the type An and
leave the remaining cases to the reader.

Theorem 3.1. Let k be an algebraically closed field of characteristic zero and
n ≥ 1 a positive integer. Under these assumptions and notations, we have

Ki (C(0)An
;Z/ lν)'

{
Z/ gcd(n+ 1, lν) if i ≥ 0,
0 if i < 0.

Consequently, the group Ki (C(0)An
;Z/ lν) is nontrivial if and only if l | (n+1) and i≥0.

Intuitively, Theorem 3.1 shows that the algebraic K-theory with Z/ lν-coefficients
of the isolated singularity of the affine hypersurface k[x, y, z]/(xn+1

+ yz) mea-
sures the l-divisibility of the integer n+ 1. To the best of the author’s knowledge,
these computations are new in the literature. They lead to the following vanishing
and divisibility properties of algebraic K-theory (without coefficients):

Corollary 3.2. (i) For every i ≥ 0, at least one of the algebraic K-theory groups
Ki (C(0)An

) and Ki−1(C(0)An
) is nontrivial.

(ii) For every l - (n+1) the algebraic K-theory groups Ki (C(0)An
), i ∈Z, are uniquely

l-divisible, i.e., they are Z[1/ l]-modules.

Roughly speaking, Corollary 3.2 shows that at least half of the groups Ki (C(0)An
)

are nontrivial and moreover that they are “large” from the divisibility viewpoint.

Proof. Consider the following universal coefficient sequences (see Section 5):

0→ Ki (C(0)An
)⊗Z Z/ l→ Ki (C(0)An

;Z/ l)→ {l-torsion in Ki−1(C(0)An
)} → 0.

Let l be a prime factor of n+ 1. Thanks to Theorem 3.1, the algebraic K-theory
groups Ki (C(0)An

;Z/ l), i ≥ 0, are nontrivial. Therefore, (i) follows from the above
short exact sequences. Let l be a prime number which does not divide n + 1.
Thanks to Theorem 3.1, the algebraic K-theory groups Ki (C(0)An

;Z/ l), i ∈ Z, are
trivial. Therefore, (ii) follows also from the above short exact sequences. �
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A cyclic quotient singularity. Let the cyclic group Z/3 act on the power series
ring k[[x, y, z]] by multiplication with a primitive third root of unit. As proved
by Keller and Reiten [2008, §2], the stable category of maximal Cohen–Macaulay
modules MCM(R) over the fixed point ring R := k[[x, y, z]]Z/3 is equivalent to the
(1)-cluster category of the generalized Kronecker quiver Q : 1 −→−→−→ 2. In this case
the above homomorphism (2.7) is given by the matrix

[
−9
−3

3
0

]
.

Proposition 3.3. We have the following computation:

Ki (C(1)Q ;Z/ lν)'
{

Z/3×Z/3 if i ≥ 0 and l = 3,
0 otherwise.

To the best of the author’s knowledge, the above computation is new in the
literature. Similarly to Corollary 3.2, for every i ≥ 0 at least one of the algebraic
K-theory groups Ki (C(1)Q ) and Ki−1(C(1)Q ) is nontrivial, and, for every prime number
l 6= 3, the groups Ki (C(1)Q ), i ∈ Z, are uniquely l-divisible.

Remark 3.4. After the circulation of this manuscript, Christian Haesemeyer kindly
informed the author that some related computations concerning the G-theory of a
local ring of finite Cohen–Macaulay type have been performed by Viraj Navkal
[2013].

4. Preliminaries

Throughout the article, k will be a base commutative ring. Unless stated differently,
all tensor products will be taken over k.

Dg categories. Let C(k) be the category of cochain complexes of k-modules. A
differential graded (dg) category A is a C(k)-enriched category and a dg functor
F :A→ B is a C(k)-enriched functor; consult Keller’s ICM survey [2006]. In what
follows, dgcat(k) stands for the category of (small) dg categories and dg functors.

Let A be a dg category. The category H0(A) has the same objects as A and
H0(A)(x, y) := H 0A(x, y). The dg category Aop has the same objects as A
and Aop(x, y) := A(y, x). A right A-module is a dg functor M : Aop

→ Cdg(k)
with values in the dg category Cdg(k) of cochain complexes of k-modules. Let
us write C(A) for the category of right A-modules. As explained in [Keller 2006,
§§3.1–3.2], the category C(A) carries a projective Quillen model structure in which
the weak equivalences and fibrations are defined objectwise. The derived category
D(A) of A is the associated homotopy category or, equivalently, the localization
of C(A) with respect to the (objectwise) quasi-isomorphisms. The full triangulated
subcategory of compact objects will be denoted by Dc(A).

A dg functor F : A→ B is called a Morita equivalence if it induces an equiv-
alence of (triangulated) categories D(A) ∼−→D(B); see [Keller 2006, §4.6]. As
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proved in [Tabuada 2005, Theorem 5.3], dgcat(k) admits a Quillen model struc-
ture whose weak equivalences are the Morita equivalences. Let Hmo(k) be the
associated homotopy category.

The tensor product A⊗B of dg categories is defined as follows: the set of objects
is the cartesian product and (A ⊗ B)((x, w), (y, z)) := A(x, y) ⊗ B(w, z). As
explained in [Keller 2006, §2.3 and §4.3], this construction gives rise to symmetric
monoidal categories (dgcat(k),−⊗−, k) and (Hmo(k),−⊗L

−, k).
An A-B-bimodule is a dg functor B :A⊗L Bop

→ Cdg(k) or, equivalently, a right
(Aop
⊗

L B)-module. A standard example is the A-B-bimodule

F B :A⊗L Bop
→ Cdg(k), (x, w) 7→ B(w, F(x)), (4.1)

associated to a dg functor F : A→ B. Finally, let us denote by rep(A,B) the
full triangulated subcategory of D(Aop

⊗
L B) consisting of those A-B-bimodules B

such that B(x,−) ∈ Dc(B) for every object x ∈A.

Exact categories. Let E be an exact category in the sense of [Quillen 1973, §2].
The following examples will be used in the sequel:

Example 4.2. Let A be a k-algebra. Recall from [Quillen 1973, §2] that the cat-
egory P(A) of finitely generated projective right A-modules carries a canonical
exact structure.

(i) Let End(A) be the category of endomorphisms in P(A). The objects are the
pairs (M, f ), with M ∈ P(A) and f an endomorphism of M . The morphisms
(M, f )→ (M ′, f ′) are the A-linear maps h : M → M ′ such that h f = f ′h.
Note that End(A) inherits naturally from P(A) an exact structure making the
forgetful functor End(A)→ P(A), (M, f ) 7→ M , exact.

(ii) Let Nil(A) be the category of nilpotent endomorphisms in P(A). By construc-
tion, Nil(A) is a full exact subcategory of End(A).

Following [Keller 2006, §4.4], the bounded derived dg category Db
dg(E) of E is

defined as Drinfeld’s dg quotient Cb
dg(E)/Acb

dg(E) of the dg category of bounded
cochain complexes over E by the full dg subcategory of acyclic complexes.

Notation 4.3. Let E be an exact category. In order to simplify the exposition, let
us write Edg instead of Db

dg(E). By construction, we have H0(Edg)' Db(E). Note
that when E = P(A) we have a Morita equivalence between P(A)dg and A.

Every exact functor E → E ′ gives rise to a dg functor Edg → E ′dg. In the
same vein, every multiexact functor E × · · · × E ′→ E ′′ gives rise to a dg functor
Edg⊗

L
· · · ⊗

L E ′dg→ E ′′dg.
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Algebraic K-theory with coefficients. Let Spt be the homotopy category of spectra
and S the sphere spectrum. Given a small dg category A, its nonconnective alge-
braic K-theory spectrum K(A) is defined by applying Schlichting’s construction
[2006, §12.1] to the Frobenius pair associated to the category of those cofibrant
right A-modules which become compact in the derived category D(A). Let us
denote by K : dgcat(k)→ Spt the associated functor. Given a prime power lν , the
algebraic K-theory with Z/ lν-coefficients is defined as2

K(−;Z/ lν) : dgcat(k)→ Spt, A 7→ K(A)∧L S/ lν, (4.4)

where S/ lν stands for the mod lν Moore spectrum of S. In the same vein, we have
the functor K(−)⊗Z[1/ l] : dgcat(k)→ Spt defined by the homotopy colimit

K(A)⊗Z[1/ l] := hocolim
(
K(A) ·l→K(A) ·l→· · ·

)
.

When A = perfdg(X), with X a quasicompact, quasiseparated k-scheme, K(A)
agrees with K(X); see [Keller 2006, §5.2; Schlichting 2006, §8]. Consequently,
K(A;Z/ lν) agrees with K(X;Z/ lν) and K(A)⊗Z[1/ l] agrees with K(X)⊗Z[1/ l].

Bass’s construction. Let H : dgcat(k)→ Ab be a functor with values in the cat-
egory of abelian groups. Following [Bass 1968, §XII], consider the sequence of
functors N p H : dgcat(k)→ Ab, p ≥ 0, defined by N 0 H(A) := H(A) and

N p H(A) := kernel
(
N p−1 H(A[t])

id⊗(t=0)
−−−−−→ N p−1 H(A)

)
, p ≥ 1. (4.5)

Note that the canonical dg functor A→A[t] gives rise to a splitting N p−1 H(A[t])'
N p H(A)⊕ N p−1 H(A). Let Ch≥0(Z) be the category of nonnegatively graded
chain complexes of abelian groups. Following Bass, we also have the functor

N •H : dgcat(k)→ Ch≥0(Z), A 7→ N •H(A),

where the chain complex N •H(A) is defined by N 0 H(A) := H(A) and, for p ≥ 1,

N p H(A) :=
p⋂

i=1

kernel
(
H(A[t1, . . . , tp])

id⊗(ti=0)
−−−−−−→ H(A[t1, . . . , t̂i , . . . , tp])

)
,

N p H(A)−→ N p−1 H(A), ti 7→
{

1−
∑p

i=2 ti if i = 1,
ti−1 if i 6= 1.

Note that the above two definitions of N p H(A) are isomorphic. In what follows
we will simply write NH(A) instead of N 1 H(A).

2Given any two prime numbers p and q , we have S/pq ' S/p⊕S/q in Spt. Therefore, without
loss of generality, we can (and will) work solely with one prime power lν .
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5. Proof of Theorem 1.2

We will work often with the following general notion:

Definition 5.1. A functor E : dgcat(k)→ Spt is called a localizing invariant if it
inverts Morita equivalences and sends short exact sequences of dg categories (see
[Keller 2006, §4.6]) to distinguished triangles of spectra

0→A→ B→ C→ 0 7→ E(A)→ E(B)→ E(C) ∂→6E(A).

Thanks to the work of Blumberg and Mandell [2012], Keller [1998; 1999],
Schlichting [2006], Thomason and Trobaugh [1990], and others, examples include
not only nonconnective algebraic K-theory (with coefficients) but also Hochschild
homology, cyclic homology, negative cyclic homology, periodic cyclic homology,
topological Hochschild homology, topological cyclic homology, etc. Given an in-
teger q ∈ Z, the abelian group HomSpt(6

qS, E(A)) will be denoted by Eq(A).
The proof of Theorem 1.2 is divided into four steps:

(I) Spectral sequence.

(II) Universal coefficient sequence.

(III) Fundamental theorem.

(IV) Module structure over the big Witt ring.

In order to simplify the exposition, we develop each one of these steps in a differ-
ent section. Making use of Steps I–IV, we then conclude the proof of Theorem 1.2
in Section 10.

6. Step I: spectral sequence

Let E be a localizing invariant and 1n := k[t0, . . . , tn]/
(∑n

i=0 ti − 1
)
, n ≥ 0, the

simplicial k-algebra with faces and degeneracies given by the formulas

dr (ti ) :=


ti if i < r,
0 if i = r,
ti−1 if i > r,

and sr (ti ) :=


ti if i < r,
ti + ti+1 if i = r,
ti+1 if i > r.

Out of this data, we can construct the A1-homotopization of E :

Eh
: dgcat(k)→ Spt, A 7→ hocolimn E(A⊗1n).

Note that Eh comes equipped with a natural 2-morphism E⇒ Eh . As explained
in [Tabuada 2015b, Proposition 5.2], Eh remains a localizing invariant and the
canonical dg functor A→A[t] gives rise to an homotopy equivalence of spectra
Eh(A)→ Eh(A[t]).
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Given an integer q ∈ Z, consider the functor Eq : dgcat(k)→ Ab and the asso-
ciated nonnegatively graded chain complex of abelian groups

0←− Eq(A)
d0−d1
←−−− Eq(A[t])←− · · ·

(−1)r
∑

r dr
←−−−−−−− Eq(A⊗1n)←− · · · . (6.1)

Under the isomorphisms

1n
∼
−→ k[t1, . . . , tn], ti 7→

{
1−

∑n
i=1 ti if i = 0,

ti if i 6= 0,

the (Moore) normalization of (6.1) identifies with N •Eq(A). Consequently, fol-
lowing [Quillen 1966], we obtain a standard convergent right half-plane spectral
sequence E1

pq = N p Eq(A) ⇒ Eh
p+q(A). In the particular case of algebraic K-

theory with coefficients, we have the convergent spectral sequence

E1
pq = N pKq(A;Z/ lν)⇒ Kh

p+q(A;Z/ lν). (6.2)

Similarly, since πq(K(A)⊗Z[1/ l])' Kq(A)Z[1/ l], we have the spectral sequence

E1
pq = N pKq(A)Z[1/ l]⇒ Kh

p+q(A)Z[1/ l]. (6.3)

Remark 6.4. The preceding constructions and spectral sequences have their roots
in the work of Anderson [1973], in the definition of homotopy K-theory (see
[Weibel 1989]), and in the work of Suslin and Voevodsky [1996].

7. Step II: universal coefficient sequence

Let E be a localizing invariant. Similarly to (4.4), consider the functor

E(−;Z/ lν) : dgcat(k)→ Spt, A 7→ E(A)∧L S/ lν .

For every dg category A we have a distinguished triangle of spectra

E(A) ·l
ν

−→ E(A)−→ E(A;Z/ lν) ∂
−→6E(A). (7.1)

Consequently, the associated long exact sequence (obtained by applying the functor
HomSpt(S,−) to (7.1)) breaks up into short exact sequences

0→ Eq(A)⊗Z Z/ lν→ Eq(A;Z/ lν)→ {lν-torsion in Eq−1(A)} → 0.

Note that since the above distinguished triangle of spectra (7.1) is functorial on A,
we have moreover the short exact sequences

0→ N p Eq(A)⊗Z Z/ lν→ N p Eq(A;Z/ lν)→ {lν-torsion in N p Eq−1(A)} → 0.

Remark 7.2. The preceding universal coefficient sequences are well known. In
the case where E = K, they were established by Thomason [1985, Appendix A].



12 GONÇALO TABUADA

8. Step III: fundamental theorem

Recall that we have the exact functors:

Nil(k)⊂ End(k)→ P(k), (M, f ) 7→ M, (8.1)

P(k)→ Nil(k)⊂ End(k), M 7→ (M, 0). (8.2)

Let E be a localizing invariant and Nil(k)dg, P(k)dg the dg categories introduced at
Notation 4.3. Given a dg category A and an integer q, consider the abelian group

Nil Eq(A) := kernel
(
Eq(A⊗L Nil(k)dg)

id⊗(8.1)
−−−−−→ Eq(A⊗L P(k)dg)' Eq(A)

)
.

Note that since (8.1) ◦ (8.2)= id, the morphism

E(A)' E(A⊗L P(k)dg)
id⊗(8.2)
−−−−−→ E(A⊗L Nil(k)dg) (8.3)

gives rise to a splitting Eq(A⊗L Nil(k)dg)' Nil Eq(A)⊕ Eq(A).

Theorem 8.4 (fundamental theorem). Given a localizing invariant E , we have
N Eq+1(A)' Nil Eq(A).

The remainder of this section is devoted to the proof of Theorem 8.4. Let P1 be
the projective line over the base commutative ring k, with i : Spec(k[t]) ↪→ P1 and
j : Spec(k[1/t]) ↪→ P1 the classical Zariski open cover.

Proposition 8.5. We have a short exact sequence of dg categories

0−→ Nil(k)dg −→ perfdg(P
1)

L j∗
−→ perfdg(Spec(k[1/t]))−→ 0. (8.6)

Proof. Consider the commutative diagram

0 // perfdg(P
1)Z

��

// perfdg(P
1)

Li∗
��

L j∗
// perfdg(Spec(k[1/t]))

��

// 0

0 // perfdg(Spec(k[t]))Z ′ // perfdg(Spec(k[t])) // perfdg(Spec(k[t, 1/t])) // 0

where Z (resp. Z ′) stands for the complement of Spec(k[1/t]) in P1 (resp. of
Spec(k[t, 1/t]) in Spec(k[t])) and perfdg(P

1)Z (resp. perfdg(Spec(k[t]))Z ′) stands
for the dg category of those perfect complexes of OP1-modules (resp. OSpec(k[t])-
modules) which are supported on Z (resp. on Z ′). As proved by Thomason and
Trobaugh [1990, Theorems 2.6.3 and 7.4], both rows are short exact sequences of
dg categories and the left-hand side vertical dg functor is a Morita equivalence. It re-
mains then only to show that perfdg(Spec(k[t]))Z ′ is Morita equivalent to Nil(k)dg.

Let us write H1,t(k[t]) for the exact category of finitely presented k[t]-modules
of projective dimension ≤ 1 that are annihilated by some power tn of t . Following
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[Schlichting 2011, §§3.1.8–3.1.11], we have a short exact sequence of dg categories

0−→ H1,t(k[t])dg −→ perfdg(Spec(k[t]))−→ perfdg(Spec(k[t, 1/t]))−→ 0.

Making use of Keller’s characterization [2006, Theorem 4.11(i)] of short exact
sequences of dg categories, we conclude that perfdg(Spec(k[t]))Z ′ is Morita equiv-
alent to H1,t(k[t])dg. As proved by Grayson and Quillen [Grayson 1976, page 236],
we have an equivalence of exact categories Nil(k)→ H1,t(k[t]), (M, f ) 7→ M f ,
where M f stands for the k[t]-module M on which t acts as f . Consequently,
we obtain an induced equivalence of dg categories H1,t(k[t])dg ' Nil(k)dg. This
concludes the proof of Proposition 8.5. �

As proved by Drinfeld [2004, Proposition 1.6.3], the functor

A⊗L
− : Hmo(k)→ Hmo(k)

is well defined and preserves short exact sequences of dg categories. Consequently,
(8.6) gives rise to the short exact sequence of dg categories

0−→A⊗L Nil(k)dg −→A⊗L P1 id⊗L j∗
−−−−→A[1/t] −→ 0, (8.7)

where A⊗L P1 stands for A⊗L perfdg(P
1). By applying the functor E to (8.7), we

obtain a distinguished triangle of spectra

E(A⊗L Nil(k)dg)→ E(A⊗L P1)→ E(A[1/t]) ∂
→6E(A⊗L Nil(k)dg). (8.8)

Now, recall from [Orlov 1992, §2] that we have two fully faithful dg functors

ι−1 : perfdg(pt)→ perfdg(P
1), M 7→ Lp∗(M)⊗L OP1(−1),

ι0 : perfdg(pt)→ perfdg(P
1), M 7→ Lp∗(M),

where p : P1
→ Spec(k) stands for the projection morphism. The dg functor

ι−1 induces a Morita equivalence between perfdg(pt) and Drinfeld’s dg quotient
perfdg(P

1)/ι0 perfdg(pt). Following [Tabuada 2008, §13], we obtain a split short
exact sequence of dg categories (see also [Orlov 1992, Theorem 2.6])

0 // perfdg(pt)
ι0

// perfdg(P
1)

s
//

r
oo perfdg(pt)

ι−1
oo // 0, (8.9)

where r is the right adjoint of ι0, r ◦ ι0= id, ι−1 is right adjoint of s, and ι−1◦s = id.
By first applying the functor A⊗L

− to (8.9), and then the functor E to the resulting
split short exact sequence of dg categories, we obtain the isomorphism

[E(id⊗ι0), E(id⊗ι−1)] : E(A)⊕ E(A) ∼−→ E(A⊗L P1). (8.10)

The proof of the following general lemma is clear:



14 GONÇALO TABUADA

Lemma 8.11. If ( f, g) : A⊕ A ∼
−→ B is an isomorphism in an additive category,

then ( f, f − g) : A⊕ A ∼
−→ B is also an isomorphism.

By applying Lemma 8.11 to (8.10), we obtain the isomorphism

[E(id⊗ι0), E(id⊗ι0)− E(id⊗ι−1)] : E(A)⊕ E(A) ∼−→ E(A⊗L P1). (8.12)

Proposition 8.13. The composition

E(A)
(8.3)
−−→ E(A⊗L Nil(k)dg)−→ E(A⊗L P1)

agrees with E(id⊗ι0)− E(id⊗ι−1).

Proof. As proved in [Tabuada 2005, Corollary 5.10], there is a bijection between
HomHmo(k)(A,B) and the set of isomorphism classes of the category rep(A,B).
Under this bijection, the composition law of Hmo(k) corresponds to the bifunctor

rep(A,B)× rep(B, C)→ rep(A, C), (B,B′) 7→ B⊗L
B B′. (8.14)

Since the A-B-bimodules (4.1) belong to rep(A,B), we have the ⊗-functor

dgcat(k)→ Hmo(k), A 7→A, F 7→ F B. (8.15)

The additivization Hmo0(k) of Hmo(k) is the additive category with the same ob-
jects and abelian groups of morphisms given by HomHmo0(k)(A,B) := K0 rep(A,B),
where K0 rep(A,B) stands for the Grothendieck group of the triangulated category
rep(A,B). The composition law is induced by the above bitriangulated functor
(8.14) and the symmetric monoidal structure by bilinearity from Hmo(k). Note
that we also have the symmetric monoidal functor

Hmo(k)→ Hmo0(k), A 7→A, B 7→ [B]. (8.16)

Let us denote by U : dgcat(k)→ Hmo0(k) the composition of (8.15) with (8.16).
Now, consider the composition of dg functors

ι : perfdg(pt)' P(k)dg
(8.2)
−−→ Nil(k)dg −→ perfdg(P

1).

Thanks to Proposition 8.17, below, and to the fact that U is a ⊗-functor, it suffices
now to show that U (ι) agrees with U (ι0)−U (ι−1). As explained in [Grayson 1976,
page 237], we have a short exact sequence 0→ OP1(−1)→ OP1 → ι(pt)→ 0.
Consequently, we obtain a short exact of dg functors

0→ ι−1→ ι0→ ι→ 0, ι−1, ι0, ι : perfdg(pt)→ perfdg(P
1).

By the construction of the additive category Hmo0(k), we conclude that [ ιB] =
[ ι0B] − [ ι1B], i.e., that U (ι)=U (ι0)−U (ι−1). This achieves the proof. �
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Proposition 8.17. Given a localizing invariant E : dgcat(k)→ Spt, there is an
(unique) additive functor E : Hmo0(k)→ Spt such that E ◦U ' E.

Proof. Recall from [Tabuada 2005] that a functor E : dgcat(k)→ D, with values in
an additive category, is called an additive invariant if it inverts Morita equivalences
and sends split short exact sequences of dg categories to direct sums. As proved
in [Tabuada 2005, Theorems 5.3 and 6.3], the functor U : dgcat(k)→ Hmo0(k)
is the universal additive invariant, i.e., given any additive category D there is an
equivalence of categories

U∗ : Funadditive(Hmo0(k),D) ∼−→ Funadd(dgcat(k),D),

where the left-hand side denotes the category of additive functors and the right-
hand side the category of additive invariants. The proof follows now from the fact
that every localizing invariant is in particular an additive invariant. �

The distinguished triangle (8.8) gives rise to the long exact sequence

· · ·→Eq+1(A⊗L P1)→Eq+1(A[1/t])→Eq(A⊗L Nil(k)dg)→Eq(A⊗L P1)→· · ·

Note that the two compositions

perfdg(pt)
ι0
//

ι−1
// perfdg(P

1)
L j∗
// perfdg(Spec(k[1/t])) (8.18)

agree with the inverse image dg functor induced by Spec(k[1/t])→ pt. Making
use of the isomorphism (8.12), we conclude that the above long exact sequence
breaks up into shorter exact sequences

0→ Eq+1(A)→ Eq+1(A[1/t])→ Eq(A⊗L Nil(k)dg)→ Eq(A)→ 0. (8.19)

Moreover, making use of Proposition 8.13, we observe that the last morphism in
(8.19) corresponds to the projection Nil Eq(A)⊕ Eq(A)→ Eq(A). Consequently,
(8.19) can be further reduced to a short exact sequence

0−→ Eq+1(A)−→ Eq+1(A[1/t])−→ Nil Eq(A)−→ 0.

From this short exact sequence we obtain, finally, the sought-for isomorphism

N Eq+1(A)' cokernel
(
Eq+1(A)→ Eq+1(A[1/t])

)
' Nil Eq(A).

This concludes the proof of Theorem 8.4.

9. Step IV: module structure over the big Witt ring

Recall from [Bloch 1977, page 192] the construction of the big Witt ring W (R) of
a commutative ring R. As an additive group, W (R) is equal to (1+ t R[[t]],×). The
multiplication ∗ is uniquely determined by naturality, formal factorization of the
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elements of W (R) as h(t)=
∏

n≥1(1−antn), and the equality (1−at)∗h(t)=h(at).
The zero element is 1+ 0t + · · · and the unit element is (1− t).

Theorem 9.1. Given a dg category A, the abelian groups Nil Kq(A), q ∈ Z, carry
a W (k)-module structure.

The remainder of this section is devoted to the proof of Theorem 9.1. Recall
from [Grayson 1976] that for every positive integer n ≥ 1 we have a Frobenius
functor

Fn : End(k)→ End(k), (M, f ) 7→ (M, f n),

as well as a Verschiebung functor

Vn : End(k)→ End(k), (M, f ) 7→

M⊕n,


0 · · · · · · 0 f
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0


n×n

 .

Both these functors are exact and preserve the full subcategory of nilpotent endo-
morphisms Nil(k). Moreover, the following diagrams are commutative:

End(k)

(8.1)
��

Fn
// End(k)

(8.1)
��

End(k)

(8.1)
��

Vn
// End(k)

(8.1)
��

P(k) P(k) P(k)
M 7→M⊕n

// P(k)

(9.2)

Following [Grayson 1976], let End0(k) be the kernel of K0 End(k) (8.1)
−−→ K0P(k).

Note that since (8.1) ◦ (8.2) = id, the homomorphism K0P(k) (8.2)
−−→ K0 End(k)

gives rise to a splitting K0 End(k)' End0(k)⊕ K0P(k). Note also that the image
in End0(k) of an endomorphism (M, f ) is given by [(M, f )] − [(M, 0)]. Under
these notations, we have induced Frobenius and Verschiebung homomorphisms
Fn , Vn : End0(k)→ End0(k). Consider also the biexact functor

End(k)×Nil(k)→ Nil(k), ((M, f ), (M ′, f ′)) 7→ (M ⊗M ′, f ⊗ f ′), (9.3)

and the associated commutative diagram

End(k)×Nil(k)

(8.1)×(8.1)
��

(9.3)
// Nil(k)

(8.1)
��

P(k)×P(k)
(M,M ′) 7→M⊗M ′

// P(k)

(9.4)
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Given a dg category A, (9.2) and (9.4) give rise to the commutative diagrams

A⊗L Nil(k)dg

��

id⊗Fn
// A⊗L Nil(k)dg

��

A⊗L Nil(k)dg

��

id⊗Vn
// A⊗L Nil(k)dg

��

A⊗L P(k)dg A⊗L P(k)dg A⊗L P(k)dg // A⊗L P(k)dg

End(k)dg⊗
L A⊗L Nil(k)dg

��

// A⊗L Nil(k)dg

��

P(k)dg⊗
L A⊗L P(k)dg // A⊗L P(k)dg

(9.5)

In what follows, we will still denote by Fn , Vn :Nil Kq(A)→Nil Kq(A) the induced
Frobenius and Verschiebung homomorphisms. Thanks to the work of Waldhausen
[1985, page 342], a pairing of dg categories gives rise to a pairing on algebraic
K-theory groups; see [Tabuada 2013, §4.2]. Therefore, since End0(k) is the kernel
of the homomorphism K0(End(k)dg)

(8.1)
−−→ K0(P(k)dg), we obtain from (9.5) the

bilinear pairings

− ·− : End0(k)×Nil Kq(A)→ Nil Kq(A), q ∈ Z. (9.6)

Remark 9.7 (End0(k)-module structure). The tensor product of k-modules gives
rise naturally to a symmetric monoidal structure on the exact categories P(k) and
End(k), making the forgetful functor (8.1) symmetric monoidal. Therefore, the
abelian group End0(k) comes equipped with an induced ring structure. Moreover,
by construction, the bilinear pairings (9.6) endow the abelian groups Nil Kq(A),
q ∈ Z, with an End0(k)-module structure.

Proposition 9.8. We have Vn(α · Fn(β)) = Vn(α) · β for every α ∈ End0(k) and
β ∈ Nil Kq(A).

Proof. Let S be the multiplicatively closed subset of Z[x, y][s] generated by s
and sn

− xn y. In what follows, we denote by End(Z[x, y]; S) the full exact sub-
category of End(Z[x, y]) consisting of those endomorphisms (N , g) for which
there exists a polynomial p(s) ∈ S, depending on (N , g), such that p(g) = 0.
The endomorphisms

ε1 :=

Z[x, y]⊕n,


0 · · · · · · 0 xn y
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n

 , (9.9)
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ε2 :=

Z[x, y]⊕n,


0 · · · · · · 0 xy
x
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 x 0


n×n

 , (9.10)

belong to End(Z[x, y]; S) since they satisfy the equation sn
− xn y = 0. Following

[1982, §§5–6], consider the multiexact functor

θ(−,−,−) : End(Z[x, y]; S)×End(k)×Nil(k)−→ Nil(k)

which sends the triple ((N , g), (M, f ), (M ′, f ′)) to the nilpotent endomorphism
(N⊗Z[x,y]M⊗M ′, g⊗id⊗ id), where the left Z[x, y]-module structure on M⊗M ′

is given by x 7→ f ′ and y 7→ f . Note that the following diagram commutes:

End(Z[x, y]; S)×End(k)×Nil(k)

(8.1)×(8.1)×(8.1)
��

θ(−,−,−)
// Nil(k)

(8.1)
��

P(Z[x, y])×P(k)×P(k)
(N ,M,M ′) 7→N⊗Z[x,y]M⊗M ′

// P(k)

(9.11)

Given a dg category A, (9.11) leads to the commutative square

End(Z[x, y]; S)dg⊗
L End(k)dg⊗

L A⊗L Nil(k)dg //

��

A⊗L Nil(k)dg

��

P(Z[x, y])dg⊗
L P(k)dg⊗

L A⊗L P(k)dg // A⊗L P(k)dg

(9.12)

In the same way that the diagram (9.5) gives rise to the bilinear pairings (9.6), the
diagram (9.12) gives rise to the multilinear homomorphisms

End0(Z[x, y]; S)×End0(k)×Nil Kq(A)→ Nil Kq(A), q ∈ Z. (9.13)

Thanks to Lemma 9.16, below, the evaluation of the homomorphism (9.13) at the
class [ε1] − [(Z[x, y]⊕n, 0)] ∈ End0(Z[x, y]; S) reduces to the bilinear pairing

End0(k)×Nil Kn(A)−→ Nil Kn(A), (α, β) 7→ Vn(α · Fn(β)). (9.14)

Similarly, the evaluation of (9.13) at [ε2] − [(Z[x, y]⊕n, 0)] reduces to the pairing

End0(k)×Nil Kq(A)→ Nil Kq(A), (α, β) 7→ Vn(α) ·β. (9.15)

Now, recall from [Almkvist 1974] (see also [Grayson 1978]) that the characteristic
polynomial gives rise to an injective ring homomorphism

End0(Z[x, y]; S)→W (Z[x, y]), [(N , g)] − [(N , 0)] 7→ det(id−gt).
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Since the matrices (9.9)–(9.10) have the same characteristic polynomial, namely
1+(xn y)tn , we conclude that [ε1]−[(Z[x, y]⊕n, 0)] = [ε2]−[(Z[x, y]⊕n, 0)]. This
implies that the above pairings (9.14)–(9.15) agree and consequently that Vn(α ·

Fn(β))= Vn(α) ·β for every α ∈ End0(k) and β ∈ Nil Kq(A). �

Lemma 9.16. We have the commutative diagrams

End(k)×Nil(k)

id×Fn
��

θ(ε1,−,−)
// Nil(k) End(k)×Nil(k)

Vn×id
��

θ(ε2,−,−)
// Nil(k)

End(k)×Nil(k)
(9.3)

// Nil(k)

Vn

OO

End(k)×Nil(k)
(9.3)

// Nil(k)

Proof. Let (M, f ) ∈ End(k) and (M ′, f ′) ∈ Nil(k). By definition of ε1 and ε2, we
observe that θ(ε1, (M, f ), (M ′, f ′)) is naturally isomorphic to the endomorphism(M ⊗M ′)⊕n,


0 · · · · · · 0 f ⊗ f ′n

1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n


and that θ(ε2, (M, f ), (M ′, f ′)) is naturally isomorphic to the endomorphismM⊕n

⊗M ′,


0 · · · · · · 0 f
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n

⊗ f ′

 .

This achieves the proof. �

Given an integer m ≥ 0, let Nil(k)m be the full exact subcategory of Nil(k)
consisting of those nilpotent endomorphisms (M, f ) with f m

= 0. By construction,
we have an exhaustive increasing filtration Nil(k)m ⊂ Nil(k)m+1

⊂ · · · ⊂ Nil(k).
Given a dg category A and an integer q ∈ Z, let us denote by Nil Kq(A)m the

image of the induced homomorphism

kernel
(
Kq(A⊗L Nil(k)mdg)

id⊗(8.1)
−−−−−→ Kq(A⊗P(k)dg)

)
−→ Nil Kq(A).

Note that Nil Kq(A) =
⋃

m Nil Kq(A)m and that the Frobenius homomorphism
Fn : Nil Kq(A)→ Nil Kq(A) vanishes on Nil Kq(A)m whenever n ≥ m.

Given elements a ∈ k and β ∈ Nil Kq(A), consider the definition

(1− atn)�β := Vn
(
[(k, a)] − [(k, 0)]

)
·β, (9.17)
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where (k, a) stands for the endomorphism of k given by multiplication by a. Thanks
to Proposition 9.8, (9.17) agrees with Vn

(
([(k, a)] − [(k, 0)]) · Fn(β)

)
. Conse-

quently, whenever β ∈ Nil Kn(A)m with n ≥ m, we have (1− atn)�β = 0. Since
Nil Kq(A)=

⋃
m Nil Kq(A)m , we obtain the bilinear pairings — the sum is finite! —

W (k)×Nil Kq(A)→ Nil Kq(A),(∏
n≥1

(1− antn), β

)
7→

∑
n≥1

((1− antn)�β).
(9.18)

Now, recall from [Almkvist 1974] that the injective ring homomorphism

End0(k)→W (k),
(
[(M, f )] − [(M, 0)]

)
7→ det(id− f t),

sends Vn
(
[(k, a)] − [(k, 0)]

)
to 1 − atn . Since every element of W (k) can be

written uniquely as
∏

n≥1(1− antn), we conclude that (9.18) extends (9.6). More-
over, thanks to Remark 9.7, the bilinear pairings (9.18) endow the abelian groups
Nil Kq(A), q ∈ Z, with a W (k)-module structure. This concludes the proof of
Theorem 9.1.

10. Conclusion of the proof of Theorem 1.2

(i) As explained by Weibel [1981, Proposition 1.2], we have a ring homomorphism
Z[1/ l]→W (Z[1/ l]), λ 7→ (1−t)λ. Consequently, using the functoriality of W (−)

and the assumption 1/ l ∈ k, we observe that W (k) is a Z[1/ l]-module. By com-
bining Theorem 9.1 with Theorem 8.4 (with E = K), we conclude that the groups
NKq(A), q ∈ Z, carry a Z[1/ l]-module structure. The recursive formula (4.5)
(with H =Kq ) implies that the groups N pKq(A), p ≥ 1, are also Z[1/ l]-modules.
Therefore, making use of the short exact sequences (see Step II)

0→ N pKq(A)⊗Z Z/ lν→ N pKq(A;Z/ lν)→ {lν-torsion in N pKq−1(A)} → 0,

we conclude that the groups N pKq(A;Z/ lν) are trivial. The convergent right half-
plane spectral sequence (6.2) then implies that the edge morphisms

Kq(A;Z/ lν)→ Kh
q (A;Z/ lν)

are isomorphisms. The proof follows now from the fact that the canonical dg
functor A→A[t] gives rise to a homotopy equivalence of spectra

Kh(A;Z/ lν)→ Kh(A[t];Z/ lν);

see Step I.

(ii) We start with the following (arithmetic) result:

Lemma 10.1. When l is nilpotent in k, the abelian groups Nil Kq(A) are l-groups.
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Proof. Recall that the unit of W (k) is 1− t . Let m ≥ 0 be a fixed integer. As
explained by Weibel [1981, §1.5], whenever l is nilpotent in k there exists an
integer r � 0 (which depends on m) such that (1− t)l

r
∈ 1+ tmk[[t]]. This implies

that the formal factorization of (1− t)l
r

only contains factors (1−antn) with n ≥m.
As in Step IV, we observe that every element β of Nil Kq(A)m is lr -torsion. Finally,
since Nil Kq(A)'

⋃
m Nil Kq(A)m , we conclude that Nil Kq(A) is a l-group. �

By combining Lemma 10.1 with Theorem 8.4 (with E = K), we conclude that
the abelian groups NKq(A), q ∈ Z, are l-groups. The recursive formula (4.5) (with
H =K) implies that the abelian groups N pKq(A), p ≥ 1, are also l-groups. There-
fore, N pKq(A)Z[1/ l] = 0. Making use of the convergent right half-plane spectral
sequence (6.3), we see that the edge morphisms Kq(A)Z[1/ l]→ Kh

q (A)Z[1/ l] are
isomorphisms. The proof follows now from the fact that the dg functor A→A[t]
gives rise to an homotopy equivalence of spectra

Kh(A)⊗Z[1/ l] → Kh(A[t])⊗Z[1/ l];

see Step I.

11. Proof of Theorem 3.1

Thanks to Corollary 2.6, it suffices to compute the kernel and the cokernel of the
(matrix) homomorphism (2.7) in the case where m = 0 and Q = An . The kernel is
the solution of the system of linear equations with Z/ lν-coefficients

−2x1+ x2 = 0
−x1− x2+ x3 = 0

...
−x1− x j−1+ x j = 0

...
−x1− xn1 + xn = 0

−x1− xn = 0


⇐⇒



x2 = 2x1

x3 = 3x1
...

x j = j x1
...

xn = nx1

xn =−x1


⇐⇒



(n+ 1)x1 = 0
x2 = 2x1
...

x j = j x1
...

xn = nx1


.

From the above resolution of the system, we observe that the kernel is isomorphic
to the (n+1)-torsion in Z/ lν or equivalently to the cyclic group Z/ gcd(n+ 1, lν).
Let us now compute the cokernel. Consider the (matrix) homomorphism

−2 1 0 · · · 0
−1 −1

. . .
. . .

...

−1 0
. . .

. . . 0
...

...
. . .

. . . 1
−1 0 · · · 0 −1

 :
n⊕

r=1

Z→

n⊕
r=1

Z. (11.1)
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Note that the cokernel of (11.1) is isomorphic to Z/(n+ 1). A canonical generator
is given by the image of the vector (0, . . . , 0,−1) ∈

⊕n
r=1 Z. Using the fact that

the functor −⊗Z Z/ lν is right exact, we conclude that the cokernel of (2.7) is
isomorphic to Z/(n+ 1)⊗Z Z/ lν ' Z/ gcd(n+ 1, lν). This concludes the proof.

Remark 11.2. Thanks to [Tabuada 2015a, Corollary 2.11], the Grothendieck group
of C(0)An

identifies with the cokernel of (11.1). We observe that K0(C(0)An
)' Z/(n+1).

12. Proof of Proposition 3.3

Similarly to the proof of Theorem 3.1, it suffices to compute the kernel and co-
kernel of the (matrix) homomorphism (2.7) in the case where m = 1 and Q is the
generalized Kronecker quiver 1 −→−→−→ 2. The kernel is given by the solution of the
system of linear equations with Z/ lν-coefficients{

−9x1+ 3x2 = 0,
−3x1 = 0.

(12.1)

Clearly, the solution of (12.1) is (3-torsion in Z/ lν)× (3-torsion in Z/ lν) or, equiv-
alently, the cyclic group Z/ gcd(3, lν)×Z/ gcd(3, lν). Note that the latter group is
isomorphic to Z/3×Z/3 when l = 3 and is zero otherwise. Let us now compute
the cokernel. Consider the (matrix) homomorphism[

−9 3
−3 0

]
: Z⊕Z→ Z⊕Z. (12.2)

The cokernel of (12.2) is isomorphic to Z/3×Z/3. Canonical generators are given
by the image of the vectors (1, 0) and (−3, 1). Since the functor −⊗Z Z/ lν is right
exact, we conclude that the cokernel of (2.7) is isomorphic to

(Z/3×Z/3)⊗ZZ/ lν 'Z/3⊗ZZ/ lν×Z/3⊗ZZ/ lν 'Z/ gcd(3, lν)×Z/ gcd(3, lν).

Once again, the right-hand side abelian group is isomorphic to Z/3×Z/3 when l=3
and is zero otherwise. This concludes the proof.

Remark 12.3. As in Remark 11.2, the Grothendieck group of C(1)Q is identified
with the cokernel of (12.2). We observe that K0(C(1)Q )' Z/3×Z/3.
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model�h Landau–Ginzburga”, Tr. Mat. Inst. Steklova 246 (2004), 240–262. Translated as “Tri-
angulated categories of singularities and D-branes in Landau–Ginzburg models” in Proc. Steklov
Inst. Math. 246 (2004), 227–248. MR Zbl

[Orlov 2009] D. O. Orlov, “Derived categories of coherent sheaves and triangulated categories of
singularities”, pp. 503–531 in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, vol. II,
edited by Y. Tschinkel and Y. G. Zarhin, Progress in Mathematics 270, Birkhäuser, Boston, 2009.
MR Zbl

[Quillen 1966] D. G. Quillen, “Spectral sequences of a double semi-simplicial group”, Topology 5
(1966), 155–157. MR Zbl

[Quillen 1973] D. G. Quillen, “Higher algebraic K -theory. I”, pp. 85–147 in Algebraic K -theory,
I: Higher K -theories (Seattle, WA, 1972), edited by H. Bass, Lecture Notes in Mathematics 341,
Springer, Berlin, 1973. MR Zbl

[Reiten 2010] I. Reiten, “Cluster categories”, pp. 558–594 in Proceedings of the International Con-
gress of Mathematicians (Hyderabad, 2010), vol. I, edited by R. Bhatia et al., Hindustan, New Delhi,
2010. MR Zbl

[Schlichting 2006] M. Schlichting, “Negative K -theory of derived categories”, Math. Z. 253:1 (2006),
97–134. MR Zbl

[Schlichting 2011] M. Schlichting, “Higher algebraic K -theory”, pp. 167–241 in Topics in algebraic
and topological K -theory, edited by G. Cortiñas, Lecture Notes in Mathematics 2008, Springer,
Berlin, 2011. MR Zbl

[Stienstra 1982] J. Stienstra, “Operations in the higher K -theory of endomorphisms”, pp. 59–115
in Current trends in algebraic topology (London, ON, 1981), edited by R. M. Kane et al., CMS
Conference Proceedings 2, Part 1, American Mathematical Society, Providence, RI, 1982. MR
Zbl

[Suslin 1984] A. A. Suslin, “On the K -theory of local fields”, J. Pure Appl. Algebra 34:2-3 (1984),
301–318. MR Zbl

[Suslin and Voevodsky 1996] A. A. Suslin and V. Voevodsky, “Singular homology of abstract alge-
braic varieties”, Invent. Math. 123:1 (1996), 61–94. MR Zbl

[Tabuada 2005] G. Tabuada, “Invariants additifs de dg-catégories”, Int. Math. Res. Not. 2005:53
(2005), 3309–3339. MR Zbl

[Tabuada 2008] G. Tabuada, “Higher K -theory via universal invariants”, Duke Math. J. 145:1 (2008),
121–206. MR Zbl

[Tabuada 2013] G. Tabuada, “Products, multiplicative Chern characters, and finite coefficients via
noncommutative motives”, J. Pure Appl. Algebra 217:7 (2013), 1279–1293. MR Zbl

[Tabuada 2015a] G. Tabuada, “A1-homotopy invariants of dg orbit categories”, J. Algebra 434
(2015), 169–192. MR Zbl

[Tabuada 2015b] G. Tabuada, “A1-homotopy theory of noncommutative motives”, J. Noncommut.
Geom. 9:3 (2015), 851–875. MR

[Tabuada and Van den Bergh 2015] G. Tabuada and M. Van den Bergh, “Noncommutative motives
of Azumaya algebras”, J. Inst. Math. Jussieu 14:2 (2015), 379–403. MR Zbl

[Thomason 1985] R. W. Thomason, “Algebraic K -theory and étale cohomology”, Ann. Sci. École
Norm. Sup. (4) 18:3 (1985), 437–552. MR Zbl

[Thomason and Trobaugh 1990] R. W. Thomason and T. Trobaugh, “Higher algebraic K -theory of
schemes and of derived categories”, pp. 247–435 in The Grothendieck Festschrift, vol. III, edited
by P. Cartier et al., Progress in Mathematics 88, Birkhäuser, Boston, 1990. MR Zbl

http://mi.mathnet.ru/rus/tm/v246/p240
http://mi.mathnet.ru/rus/tm/v246/p240
http://arxiv.org/abs/math/0302304
http://arxiv.org/abs/math/0302304
http://msp.org/idx/mr/2006i:81173
http://msp.org/idx/zbl/1101.81093
http://dx.doi.org/10.1007/978-0-8176-4747-6_16
http://dx.doi.org/10.1007/978-0-8176-4747-6_16
http://msp.org/idx/mr/2011c:14050
http://msp.org/idx/zbl/1200.18007
http://dx.doi.org/10.1016/0040-9383(66)90016-4
http://msp.org/idx/mr/33 #3302
http://msp.org/idx/zbl/0148.43105
http://dx.doi.org/10.1007/BFb0067053
http://msp.org/idx/mr/49 #2895
http://msp.org/idx/zbl/0292.18004
http://www.mathunion.org/ICM/ICM2010.1/Main/icm2010.1.0558.0594.pdf
http://msp.org/idx/mr/2012g:16002
http://msp.org/idx/zbl/1264.16017
http://dx.doi.org/10.1007/s00209-005-0889-3
http://msp.org/idx/mr/2006i:19003
http://msp.org/idx/zbl/1090.19002
http://dx.doi.org/10.1007/978-3-642-15708-0_4
http://msp.org/idx/mr/2012a:19001
http://msp.org/idx/zbl/1216.19003
http://msp.org/idx/mr/84d:14012
http://msp.org/idx/zbl/0545.18004
http://dx.doi.org/10.1016/0022-4049(84)90043-4
http://msp.org/idx/mr/86d:18010
http://msp.org/idx/zbl/0548.12009
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002113406
http://www.digizeitschriften.de/index.php?id=resolveppn&PID=GDZPPN002113406
http://msp.org/idx/mr/97e:14030
http://msp.org/idx/zbl/0896.55002
http://dx.doi.org/10.1155/IMRN.2005.3309
http://msp.org/idx/mr/2006k:18018
http://msp.org/idx/zbl/1094.18006
http://dx.doi.org/10.1215/00127094-2008-049
http://msp.org/idx/mr/2009j:18014
http://msp.org/idx/zbl/1166.18007
http://dx.doi.org/10.1016/j.jpaa.2012.10.009
http://dx.doi.org/10.1016/j.jpaa.2012.10.009
http://msp.org/idx/mr/3019736
http://msp.org/idx/zbl/1272.19002
http://dx.doi.org/10.1016/j.jalgebra.2015.03.028
http://msp.org/idx/mr/3342391
http://msp.org/idx/zbl/06433232
http://dx.doi.org/10.4171/JNCG/210
http://msp.org/idx/mr/3420534
http://dx.doi.org/10.1017/S147474801400005X
http://dx.doi.org/10.1017/S147474801400005X
http://msp.org/idx/mr/3315059
http://msp.org/idx/zbl/06420271
http://www.numdam.org/item?id=ASENS_1985_4_18_3_437_0
http://msp.org/idx/mr/87k:14016
http://msp.org/idx/zbl/0596.14012
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://msp.org/idx/mr/92f:19001
http://msp.org/idx/zbl/0731.14001


A1-HOMOTOPY INVARIANCE OF ALGEBRAIC K -THEORY WITH COEFFICIENTS 25

[du Val 1934a] P. du Val, “On isolated singularities of surfaces which do not affect the conditions of
adjunction, I”, Proc. Camb. Philos. Soc. 30:4 (1934), 453–459. Zbl

[du Val 1934b] P. du Val, “On isolated singularities of surfaces which do not affect the conditions of
adjunction, II”, Proc. Camb. Philos. Soc. 30:4 (1934), 460–465. Zbl

[du Val 1934c] P. du Val, “On isolated singularities of surfaces which do not affect the conditions of
adjunction, III”, Proc. Camb. Philos. Soc. 30:4 (1934), 483–491. Zbl

[Waldhausen 1985] F. Waldhausen, “Algebraic K -theory of spaces”, pp. 318–419 in Algebraic and
geometric topology (New Brunswick, NJ, 1983), edited by A. Ranicki et al., Lecture Notes in
Mathematics 1126, Springer, Berlin, 1985. MR Zbl

[Weibel 1981] C. A. Weibel, “Mayer–Vietoris sequences and module structures on N K∗”, pp. 466–
493 in Algebraic K -theory (Evanston, IL, 1980), edited by E. M. Friedlander and M. R. Stein,
Lecture Notes in Mathematics 854, Springer, Berlin, 1981. MR Zbl

[Weibel 1982] C. A. Weibel, “Mayer–Vietoris sequences and mod p K -theory”, pp. 390–407 in
Algebraic K -theory, I (Oberwolfach, 1980), edited by R. K. Dennis, Lecture Notes in Mathematics
966, Springer, Berlin, 1982. MR Zbl

[Weibel 1989] C. A. Weibel, “Homotopy algebraic K -theory”, pp. 461–488 in Algebraic K -theory
and algebraic number theory (Honolulu, HI, 1987), edited by M. R. Stein and R. K. Dennis, Con-
temporary Mathematics 83, American Mathematical Society, Providence, RI, 1989. MR Zbl

Received 10 Mar 2015. Revised 20 Oct 2015. Accepted 4 Nov 2015.

GONÇALO TABUADA: tabuada@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, United States

and

Centro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa, Portugal

msp

http://dx.doi.org/10.1017/S030500410001269X
http://dx.doi.org/10.1017/S030500410001269X
http://msp.org/idx/zbl/0010.17602
http://dx.doi.org/10.1017/S0305004100012706
http://dx.doi.org/10.1017/S0305004100012706
http://msp.org/idx/zbl/0010.17603
http://dx.doi.org/10.1017/S030500410001272X
http://dx.doi.org/10.1017/S030500410001272X
http://msp.org/idx/zbl/0010.17701
http://dx.doi.org/10.1007/BFb0074449
http://msp.org/idx/mr/86m:18011
http://msp.org/idx/zbl/0579.18006
http://dx.doi.org/10.1007/BFb0089534
http://msp.org/idx/mr/82k:18010
http://msp.org/idx/zbl/0487.18012
http://dx.doi.org/10.1007/BFb0062185
http://msp.org/idx/mr/84f:18026
http://msp.org/idx/zbl/0499.18012
http://dx.doi.org/10.1090/conm/083/991991
http://msp.org/idx/mr/90d:18006
http://msp.org/idx/zbl/0669.18007
mailto:tabuada@math.mit.edu
http://msp.org




ANNALS OF K-THEORY
msp.org/akt

EDITORIAL BOARD

Paul Balmer University of California, Los Angeles, USA
balmer@math.ucla.edu

Spencer Bloch University of Chicago, USA
bloch@math.uchicago.edu

Alain Connes Collège de France; Institut des Hautes Études Scientifiques; Ohio State University
alain@connes.org

Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina
gcorti@dm.uba.ar

Eric Friedlander University of Southern California, USA
ericmf@usc.edu

Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France
max.karoubi@imj-prg.fr

Gennadi Kasparov Vanderbilt University, USA
gennadi.kasparov@vanderbilt.edu

Alexander Merkurjev University of California, Los Angeles, USA
merkurev@math.ucla.edu

Amnon Neeman amnon.Australian National University
neeman@anu.edu.au

Jonathan Rosenberg (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu

Marco Schlichting University of Warwick, UK
schlichting@warwick.ac.uk

Andrei Suslin Northwestern University, USA
suslin@math.northwestern.edu

Vladimir Voevodsky Institute for Advanced Studies, USA
vladimir@math.ias.edu

Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu

Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $420/year for the electronic version, and $470/year (+$25, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/akt/
mailto:balmer@math.ucla.edu
mailto:bloch@math.uchicago.edu
mailto:alain@connes.org
mailto:gcorti@dm.uba.ar
mailto:ericmf@usc.edu
mailto:max.karoubi@imj-prg.fr
mailto:gennadi.kasparov@vanderbilt.edu
mailto:merkurev@math.ucla.edu
mailto:neeman@anu.edu.au
mailto:jmr@math.umd.edu
mailto:schlichting@warwick.ac.uk
mailto:suslin@math.northwestern.edu
mailto:vladimir@math.ias.edu
mailto:weibel@math.rutgers.edu
mailto:guoliangyu@math.tamu.edu
mailto:production@msp.org
http://www.ktheoryfoundation.org
http://www.ktheoryfoundation.org
http://www.compositio.nl/
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


ANNALS OF K-THEORY
2017 vol. 2 no. 1

1A1-homotopy invariance of algebraic K -theory with coefficients and du Val singularities
Gonçalo Tabuada

27Reciprocity laws and K-theory
Evgeny Musicantov and Alexander Yom Din

47On the cycle map of a finite group
Masaki Kameko

73Chern classes and compatible power operations in inertial K-theory
Dan Edidin, Tyler J. Jarvis and Takashi Kimura

A
N
N
A
LS

O
F
K-TH

EO
RY

no.1
vol.2

2017


	1. Introduction and statement of results
	2. Applications and computations
	3. Du Val singularities
	4. Preliminaries
	Dg categories
	Exact categories
	Algebraic K-theory with coefficients
	Bass's construction

	5. Proof of Theorem 1.2
	6. Step I: spectral sequence
	7. Step II: universal coefficient sequence
	8. Step III: fundamental theorem
	9. Step IV: module structure over the big Witt ring
	10. Conclusion of the proof of Theorem 1.2
	11. Proof of Theorem 3.1
	12. Proof of Proposition 3.3
	Acknowledgments
	References
	
	

