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We associate to a full flag F in an n-dimensional variety X over a field k, a “sym-
bol map” µF : K (FX )→ 6n K (k). Here, FX is the field of rational functions
on X , and K ( · ) is the K-theory spectrum. We prove a “reciprocity law” for
these symbols: given a partial flag, the sum of all symbols of full flags refining
it is 0. Examining this result on the level of K-groups, we derive the following
known reciprocity laws: the degree of a principal divisor is zero, the Weil reci-
procity law, the residue theorem, the Contou-Carrère reciprocity law (when X is
a smooth complete curve), as well as the Parshin reciprocity law and the higher
residue reciprocity law (when X is higher-dimensional).
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1. Introduction

1A. Overview. Several statements in number theory and algebraic geometry are
“reciprocity laws”. Let us consider, as an example, the Weil reciprocity law. Let
X be a complete smooth curve over an algebraically closed field k, and let us fix
f, g ∈ F×X , two nonzero rational functions on X . Given a point p ∈ X , one defines
the tame symbol:

( f, g)p := (−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p).

Here, vp is the valuation at p (that is, the order of the zero). The Weil reciprocity
law states that ( f, g)p= 1 for all but finitely many p∈ X , and that

∏
p∈X ( f, g)p= 1.
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More generally, one can describe the pattern as follows. There is a global object,
exhausted by local pieces. One then associates an invariant to each local piece, as
well as to the global object itself. The desired claim is then twofold.

(i) Global is trivial: the global invariant is trivial.

(ii) Local to global: the product of the local invariants equals the global invariant
(usually this is an infinite product, and one should figure out how to make
sense of it).

In the above example, the global object is the curve X , which is exhausted by
the local pieces — the points of the curve. The invariant associated to a local piece
is the tame symbol, while the global invariant is quite implicit.

Let us recall that the Weil reciprocity law admits a higher-dimensional analog,
known as the Parshin reciprocity law [Parshin 1976; Soprounov 2002, Appen-
dix A]; see page 34.

In this paper we define symbol maps and prove a reciprocity law using the
machinery of algebraic K-theory. We then see how various reciprocity laws, such
as the Parshin reciprocity law (generalizing the Weil reciprocity law), the higher
residue reciprocity law (generalizing the residue theorem), and the Contou-Carrère
reciprocity law, all follow from this one reciprocity law.

Let us describe our setup in more detail. Fix an n-dimensional irreducible variety
X over a field k.1 By a full flag F in X we mean a chain of closed irreducible
subvarieties X = X0

⊃ X1
⊃ · · · ⊃ Xn , where the codimension of X i in X is i .

Given a full flag F , we shall define a morphism of spectra

µF : K (FX )→6n K (k)

(we call it a symbol map). Here FX denotes the field of rational functions on X ,
K ( · ) denotes the K-theory spectrum, and 6n denotes n-fold suspension. By a
partial flag G in X , we mean a full flag with an element in some single codimension
d omitted, for 0< d ≤ n. Then, given a partial flag G, we may consider the set fl(G)
of full flags which refine it. The main result of this paper, Theorem 2.1, then states:

Theorem. Let X be an n-dimensional irreducible variety over a field k. Let

G : X0
⊃ · · · ⊃ Xd−1

⊃ Xd+1
⊃ · · · ⊃ Xn

be a partial flag in X , with element in codimension 0< d ≤ n omitted. In the case
d = n, assume additionally that the curve Xn−1 is proper over k. Then∑

F∈fl(G)

µF = 0.

1These assumptions on X and k are made here merely to simplify matters, and will be relaxed
below.
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Remark. The sum figuring in the theorem is infinite; however, in Appendix A we
will make sense of it (inspired by [Clausen 2012]).

In fact, it is more “correct” to additionally define a symbol map

µG : K (FX )→6n K (k)

associated to a partial flag G. The theorem then divides into two parts: that µG
equals zero, and that the sum of all the morphisms µF for F ∈ fl(G) equals µG .

Notice how this setup instantiates the general pattern above. A fixed partial flag
is the global object, exhausted by the local pieces which are the full flags refining
the given partial flag. The symbol map is the associated invariant.

In order to derive the concrete reciprocity laws promised above from this abstract
one, one considers its effect on K-groups.

Let us note that, in principle, the symbol map between spectra appears to contain
more information than its “shadows” on K-groups. However, in this paper we have
only recovered known reciprocity laws from it.

Let us also record here that relevant and independent work has been done in
[Braunling et al. 2014a; 2014b; Osipov and Zhu 2014].

There are several further directions to consider. For example, one may consider
the “curve” Spec(Z). Could our setup be altered so as to accommodate the Hilbert
reciprocity law? For that to succeed, at least three phenomena should be addressed:
the prime at infinity, ramification at the prime 2, and the sphere spectrum, which un-
derlies all primes. A relevant treatment of the case of Spec(Z) is in [Clausen 2012].

1B. Relation to n-Tate vector spaces. There is a strong relation between our ma-
chinery and the theory of n-Tate vector spaces. In fact, n-Tate vector spaces could
be seen as the actual “geometric” objects that the target of our symbol map µF
classifies, so that, in a sense, our approach “decategorifies” the actual picture.

The technical result underlying such a connection is the following. Let C be an
exact category, and Tate(C) the exact category of “pro-ind” objects in C, introduced
by Beilinson [1987].

Theorem [Saito 2015]. K (Tate(C))≈6K (C).

Thus, we can say that the Tate construction acts as a delooping, when one passes
to K-theory spectra.

In this paper we associate to a full flag F in an n-dimensional variety X a symbol
map

µF : K (FX )→6n K (k).

Taking the above theorem into account, one might interpret it as a map

µF : K (FX )→ K (Taten(k)),
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where Taten(k) is the n-fold application of the Tate( · ) construction to the exact
category Vect(k) of finite-dimensional vector spaces over k. At this point, one
might wonder whether this map comes from a functor

Vect(FX )→ Taten(k).

Indeed, such a functor can be constructed, and is essentially the adelic construction
of [Beilinson 1980].

We will address and develop the above interesting ideas elsewhere.
Once again, we point out that relevant work has been done in [Braunling et al.

2014a; 2014b].

1C. Organization. This paper is organized as follows. Section 2 contains the
formulation of the abstract reciprocity law (Section 2A) and the formulations of
concrete reciprocity laws (Section 2B) which are obtained from the abstract reci-
procity law by considering its effect on specific K-groups. Section 3 contains the
construction of the abstract symbol map (Section 3A) and the proof of the abstract
reciprocity law (Section 3B). Section 4 deals with the calculation of the symbol
map on specific K-groups.

In Appendix A, we describe how to make sense of an infinite sum of morphisms
of spectra. In Appendix B, we state some lemmas about K-theory which are used
in calculations.

1D. Notation. We use [Thomason and Trobaugh 1990] as a reference for K-theory
of schemes. Given a Noetherian scheme X , K (X) denotes the K-theory spectrum
of X . Given a closed subset Z ⊂ X , K (X on Z) denotes the K-theory spectrum
of X with support in Z . By abuse of notation, given a commutative ring A and an
ideal I ⊂ A, we also write K (A) = K (X) and K (A on I ) = K (X on Z), where
X = Spec(A) and Z ⊂ X is the closed subset associated to the ideal I .

We use the following notation for the scheme X in this paper:
• n = dim(X) denotes the Krull dimension of X .

• |X | denotes the underlying topological space of X . The usual partial order
on |X | (that of “containment in the closure of”) is denoted by ≤, and |X |i

denotes the subset of |X | consisting of points of codimension i .

• γ denotes the generic point of |X | (X will be assumed to be irreducible) —
i.e., the only point in |X |0 — and F = FX = OX,γ denotes the local ring at
that point.

• For p ∈ |X |, we write X p := Spec(OX,p). There is a canonical map X p→ X .
As usual, we write k(p) for the residue field of OX,p.

• If X is affine and p is a prime ideal in O(X), then pp ∈ |X | denotes the
corresponding point.
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2. Statements

2A. The abstract reciprocity law. Let X → B be a morphism of schemes. We
make the following assumptions:

(1) B is Noetherian, 0-dimensional (i.e., a finite disjoint union of Zariski spectra
of local Artinian rings).

(2) X is Noetherian, of finite Krull dimension and irreducible.

(3) X→ B is flat.

(4) For every p∈|X |n (recall n=dim(X)), the composition Spec(k(p))→ X→ B
is a finite morphism.

We give two examples of morphisms that satisfy the above assumptions:

(1) B = Spec(k), where k is a field, and X→ B is an irreducible scheme of finite
type over B.

(2) B = Spec(k), where k is a field, and X = Spec(A), where (A,m) is a Noe-
therian local integral k-algebra, such that A/m is finite over k. X→ B is the
corresponding structure map.

A convenient technical notion will be that of a collection C , by which we mean
a family C = (C i )0≤i≤n , where C i

⊂ |X |i . We only consider collections which
satisfy C0

= {γ }.
Given such a C , in Section 3A we construct a map of spectra (“symbol map”)

µC : K (F)→6n K (B).

We only consider and use collections attached to full and partial flags (to be now
defined), for which we will state a reciprocity law. First, let

F : xn < xn−1 < · · ·< x0 = γ

be a full flag of points in |X | (thus, codim(xi )= i). We define a collection C(F),
by setting C(F)i = {xi }. Second, let

G : xn < xn−1 < · · ·< xd+1 < xd−1 < · · ·< x0 = γ

be a partial flag, with the level d omitted, 0< d ≤ n. Here, we require codim(xi )= i .
We define a collection C(G) by setting C(G)i = {xi } for i 6= d , and

C(G)d = {p ∈ |X |d | xd+1 < p < xd−1}.

Note that we have the obvious notion of a full flag refining a partial one (meaning
C(F) ⊂ C(G)), which we denote by F > G. We sometimes write µF instead
of µC(F).
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We prove the following “reciprocity” laws (for the meaning of the infinite sum
in this statement, consult Appendix A).

Theorem 2.1. Let G be a partial flag with level d omitted, where 0< d ≤ n.

(1) Global is trivial:
µC(G) = 0,

where in the case d = n we should assume that xn−1 is proper over B.

(2) Local to global:
µC(G) =

∑
F>G

µC(F).

2B. Concrete reciprocity laws. In the following, we give examples of concrete
reciprocity laws, which one obtains by considering the effect of the abstract reci-
procity law on various homotopy groups of the involved spectra.

The case dim(X) = 1. Let k be a field, B = Spec(k), and X → B a regular,
connected, proper curve over B. We obtain, for every closed point p ∈ |X |1, a
map µp : K (F)→ 6K (B). Here µp = µC(F), where F : p < γ . Applying the
functor πi , one has maps µi

p : Ki (F)→ Ki−1(k).

The degree law. We have the map µ1
p : F

× ∼= K1(F)→ K0(k)∼= Z.

Claim 2.2. The integer µ1
p( f ) is equal to the valuation vp( f ) of f at the point p,

multiplied by [k(p) : k].

Applying the abstract reciprocity law, we recover the theorem about sum of
degrees [Serre 1988, §II.3, Proposition 1]:

Corollary 2.3. For f ∈ F×,∑
p∈|X |1

[k(p) : k] · vp( f )= 0.

The Weil reciprocity law. Precomposing the map µ2
p : K2(F)→ K1(k) with the

product in K-theory K1(F)∧ K1(F)→ K2(F), we get a bilinear antisymmetric
form µ2

p : F
×
∧ F×→ k× (we also call it µ2

p, by abuse of notation).

Claim 2.4. µ2
p( f ∧ g)= Nk(p)/k

(
(−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p)
)
.

Applying the abstract reciprocity law, we recover the Weil reciprocity law [Serre
1988, §III.4]:

Corollary 2.5. For f, g ∈ F×,∏
p∈|X |1

Nk(p)/k

(
(−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p)
)
= 1.
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The residue law. Suppose that k is algebraically closed. Set kε := k[ε1, ε2]/(ε
2
1 , ε

2
2),

Bε = Spec(kε), and Xε = kε ⊗k X . Then the local ring at the generic point of Xε
is just Fε = kε ⊗k F . By applying our construction to the morphism Xε→ Bε we
get a map K (Fε)→ 6K (kε) for every closed point p ∈ |Xε |1 = |X |1. Applying
the functor π2 and using the product in K-theory as before, one gets a pairing
rp : F×ε ∧ F×ε → k×ε .

Claim 2.6. For Resp the usual residue [Serre 1988, §II.7],

rp((1− ε1 f )∧ (1− ε2g))= 1− ε1ε2 Resp( f · dg).

Applying the abstract reciprocity law, we recover the residue theorem [Serre
1988, §II.7, Proposition 6]:

Corollary 2.7. For f, g ∈ F , ∑
p∈|X |1

Resp( f · dg)= 0.

Remark 2.8. In fact, one can drop the assumption that k is algebraically closed.
Then, one has

rp((1− ε1 f )∧ (1− ε2g))= 1− ε1ε2 Trk(p)/k Resp( f · dg),

where Resp( f · dg) can be defined as follows: Choose an isomorphism ÔX,p'k ′[[z]],
where k ′ := k(p) is the residue field at p. Interpret f · dg as an element of
�1(k ′((z))/k ′)= k ′((z)) dz. Finally, define Resp( f ·dg) as the coefficient of z−1 dz
in f · dg. Note that in the case when k is algebraically closed, one recovers the
usual definition.

The Contou-Carrère reciprocity law. More generally, let k be a local Artinian ring.
Set B = Spec(k) and X = Spec(k[[t]]). Applying the functor π2 to the symbol
map K (k((t)))→ 6K (k), one gets a pairing k((t))×∧ k((t))×→ k×. Although
we do not spell out the details in this paper, one can check that it is the Contou-
Carrère symbol [Contou-Carrère 1994]. Then the abstract reciprocity law implies
the Contou-Carrère reciprocity law.

Let us note that [Osipov and Zhu 2014] also deals with the connection between
K-theory and explicit formulas for Contou-Carrère symbols.

The case dim(X) > 1. Let k be a field, B = Spec(k), and X→ B an irreducible
scheme of finite type over B (recall n = dim(X)). For every full flag F one has
a map µF : K (F) → 6n K (B). Applying the functor πi , one then gets maps
µi
F : Ki (F)→ Ki−n(k).
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The Parshin reciprocity law. Let us assume that the flag F = xn < xn−1 < · · ·<

x0 = γ is regular in the following sense: considering X i
:= xi as an integral closed

subscheme of X , we demand OX i−1, xi to be regular (here, 1≤ i ≤ n).
Precomposing the map µn+1

F : Kn+1(F)→ K1(k) with the product in K-theory∧n+1 K1(F)→ Kn+1(F), one has a multilinear antisymmetric form

µn+1
F :

∧n+1 F×→ k×

(we also denote it µn+1
F , by abuse of notation).

In order to write an explicit formula for the Parshin symbol, we introduce the
following; see [Soprounov 2002, Appendix A]. For every 1 ≤ i ≤ n, let us fix a
uniformizer zi in Oi :=OX i−1, xi . We attach, to any f ∈ F×, a sequence of integers
a1, . . . , an as follows. Note that the residue field of Oi−1 can be identified with the
fraction field of Oi . We write f = za1

1 u1, where u1 is a unit in O1. Considering the
residue class of u1 as an element of the fraction field of O2, we proceed to write
u1 = za2

2 u2, where u2 is a unit in O2. We continue in this way to construct the
sequence a1, . . . , an . Note that, generally speaking, this sequence depends on the
choice of uniformizers z1, . . . , zn .

Let f1, . . . , fn+1 ∈ F×. Write ai1, . . . , ain for the sequence of integers assigned
to fi as above. Construct the (n + 1)× n matrix A = (ai j ). Set Ai to be the
determinant of the n× n matrix that we get from A by omitting the i-th row. Set
Ak

i j to be the determinant of the (n− 1)× (n− 1) matrix that we get from A by
deleting the i-th and j-th rows and the k-th column. Set B =

∑
k
∑

i< j aika jk Ak
i j .

Claim 2.9. µn+1
F ( f1, . . . , fn+1)= Nk(xn)/k

(
(−1)B

( ∏
1≤i≤n+1

f (−1)i+1 Ai
i

)
(xn)

)
.

By applying the abstract reciprocity law, we recover the Parshin reciprocity law;
see [Soprounov 2002, Appendix A].

The Parshin higher residue reciprocity law. Considering

kε := k[ε1, . . . , εn+1]/(ε
2
1 , . . . , ε

2
n+1)

and Xε, Bε , etc., as for the residue law on page 33, and considering the map µn+1
:

Kn+1(Fε)→ K1(kε), one can derive, in principle, the higher residue reciprocity
law [Soprounov 2002, Appendix A], although we do not spell out the details in
this paper.

3. Construction of µC and proof of the abstract reciprocity law

3A. Construction of µC . We recall the codimension filtration in K-theory [Thoma-
son and Trobaugh 1990, (10.3.6)]. Write Sd K (X) for the homotopy colimit of the
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spectra K (X on Z), where Z runs over closed subsets of X of codimension ≥ d.
Also, write

Qd K (X) :=
∨

p∈|X |d

K (X p on p).

Then we have the homotopy fiber sequence

Sd+1K (X)−→ Sd K (X)
pd
−→ Qd K (X)

∂d
−→6Sd+1K (X).

Let us define 9d to be the composition

9d
: Qd K (X)

∂d
−→6Sd+1K (X)

pd+1
−−→6Qd+1K (X).

Also, given a collection C = (C i )0≤i≤n (for C i
⊂ |X i

|), we define a map

selCd : Qd K (X)→ Qd K (X),

given by projecting on summands corresponding to p ∈ Cd .
We now define a map

I : Qn K (X)→ K (B).

In order to do this, we first need to define maps K (X p on p)→ K (B), which we
do by pushing forward along X p→ B. To justify the existence of the pushforward,
let us fix convenient models for the K-spectra. As a model for K (X p on p) we take
strictly perfect complexes on X p which are acyclic outside of the closed point p
[Thomason and Trobaugh 1990, Lemma 3.8], and as a model for K (B) we take
perfect complexes on B [Thomason and Trobaugh 1990, Definition 3.1]. Pushing
forward along X p→ B can be done termwise, since this morphism is affine. Thus,
the result of pushing forward to B a strictly perfect complex on X p, supported on p,
is a strictly bounded complex, whose terms are flat (since X p→ B is assumed flat),
and whose cohomologies are coherent (since k(p)→ B is assumed finite). Thus, by
criterion [Thomason and Trobaugh 1990, Proposition 2.2.12], the result is perfect.

Finally, we define µC as follows:23

µC = I ◦ selCn ◦9n−1
◦ · · · ◦91

◦ selC1 ◦90.

3B. Proof of the reciprocity law. Let us show part (1) of Theorem 2.1.
First, consider the case d 6= n. Notice that the formula for µC(G) contains

selC(G)d+1 ◦9d
◦ selC(G)d ◦9

d−1.

2We assume that C0
= {γ }.

3In this formula, as we compose, the target becomes more and more suspended; we do not write
the obvious suspensions, by abuse of notation.
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Since C(G)d contains all the points p such that xd+1< p < xd−1, one has

selC(G)d+1 ◦9d
◦ selC(G)d = selC(G)d+1 ◦9d .

Thus, in fact,

selC(G)d+1 ◦9d
◦ selC(G)d ◦9

d−1
= selC(G)d+1 ◦9d

◦9d−1,

which is zero since 9d
◦9d−1

= 0 (as it contains a composition of two consequent
arrows in a long exact sequence).

Next, consider the case d = n. Write Y = xn−1. We will deal first with the case
X = Y , to simplify matters.

Note that µC(G) equals the composition on the top horizontal line of the follow-
ing commutative diagram:

Q0K (X)
∂0
// 6S1K (X)

p1
//

i
��

6Q1K (X) I
// 6K (B)

6S0K (X)
Ĩ

33

Here, i is the natural arrow, and Ĩ is the arrow induced by pushforward. The crucial
assumption here is that X is proper. Thus pushing forward preserves coherence,
which in turn enables us to construct the map Ĩ on K-spectra. Now, noticing that
i ◦ ∂0 = 0 (as a composition of two consequent arrows in a long exact sequence)
finishes the proof.

In general (not assuming X = Y ), we want to do the same as in the case X = Y ,
but working with (X on Y ) versions. To proceed, one considers the commutative
diagram

Qn−1K (X)

((

selC(G)n−1
// Qn−1K (X)

∂0
// 6Qn K (X) I

// 6K (B)

Qn−1K (X on Y )

OO

∂Y
n−1
// 6Qn K (X on Y )

OO

I Y
77

and shows I Y
◦ ∂Y

n−1 = 0 as before.
Let us now show part (2) of Theorem 2.1. We note that the map selC(G)d is the

sum of the maps selC(F)d (where F > G). Thus, the statement follows using Claims
A.4 and A.5.

4. Calculation of local symbols

In this section, we calculate some symbol maps for local schemes. Using Lemma 4.7,
these calculations imply the claims of Section 2B.
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Let us fix the following notation and assumptions for this section. Let k be a
field, and let B = Spec(k). Also, let A be a regular Noetherian local k-algebra, and
set X = Spec(A). Denote by m the maximal ideal of A, and k ′ = A/m. We assume
that k ′ is finite over k. We denote by F the fraction field of A.

4A. The case dim(X) = 1. In this subsection, we additionally assume that A is
of Krull dimension 1. Let v : F×→ Z be the valuation, and let [ · ] : A→ k ′ be the
quotient map. Finally, choose a uniformizer z ∈ A (i.e., v(z)= 1).

Consider the unique full flag F : pm < p0 in X . We have the corresponding
symbol map

µ= µF : K (F)→6K (k).

We write µi for the induced map Ki (F)→ Ki−1(k).

The degree.

Claim 4.1. The morphism F× ∼= K1(F)
µ1

−→ K0(k)∼= Z is equal to [k ′ : k] · v.

Proof. Since the composition K1(A)→ K1(F)→ K0(A on m) is zero (as part of
a long exact sequence), it is enough to prove that

F× ∼= K1(F)→ K0(A on m)→ K0(k)∼= Z

maps z to [k ′ : k]. By Lemma B.3, the image of z under the above map is equal to
the alternating sum of dimensions (over k) of cohomologies of the complex

A
z
// A

−1 0
which is [k ′ : k]. �

The tame symbol.

Claim 4.2. The morphism

F×∧ F× ∼= K1(F)∧ K1(F)−→ K2(F)
µ2

−→ K1(k)∼= k×

is given by

f ∧ g 7→ Nk′/k

(
(−1)v( f )·v(g)

[
f v(g)

gv( f )

])
.

Proof. We call the above morphism F×∧ F×→ k×, by abuse of notation, µ2. By
bilinearity and antisymmetry of µ2, it is enough to verify:

(i) µ2( f ∧ g)= 0 for f, g ∈ A×.

(ii) µ2( f ∧ z)= Nk′/k([ f ]) for f ∈ A×.

(iii) µ2(z ∧ z)= Nk′/k(−1).
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The first item follows since the following composition is zero (being a part of
the localization long exact sequence):

K2(A)→ K2(F)→ K1(A on k ′).

For the second item, consider the commutative diagram

K1(A)∧ K1(F)

��

// K1(A)∧ K0(A on k ′)

��

K1(F)∧ K1(F) // K2(F) // K1(A on k ′) // K1(k)

We have the element f ∧ z in the upper-left group K1(A)∧ K1(F), and we should
walk it through down, and then all the way right. Using commutativity of the
diagram, we can chase the upper path instead, and using Lemma B.4, the result is
represented by the automorphism of the following complex:

A

f
��

z
// A

f
��

A
z
// A

−1 0

Taking the alternating determinant of cohomology, we see that the above automor-
phism represents the element Nk′/k([ f ]) ∈ k× ∼= K1(k).

Let us handle the third item on our list. Denote the multiplication in K-theory
by { · , · } : K1(F)∧ K1(F)→ K2(F). Recall the Steinberg relation

{x, 1− x} = 0

for x, 1− x ∈ F×∼= K1(F). We then calculate

{z, z}={z, (1−z−1)−1
}{z, 1−z}{z,−1}={z−1, 1−z−1

}{z, 1−z}{z,−1}={z,−1}

(this calculation appears in [Snaith 1980, Theorem 2.6]). Hence, by (ii) above,
µ2(z ∧ z)= µ2(−1∧ z)= Nk′/k(−1). �

The residue. Consider a base change of our setup from k to kε := k[ε1, ε2]/(ε
2
1 , ε

2
2).

Thus, we have Aε := kε ⊗k A, and similarly Fε , Xε , Bε , etc. Hence, the basic
morphism of schemes from which we build the symbol map is now Xε→ Bε .

Claim 4.3. The morphism

F×ε ∧ F×ε ∼= K1(Fε)∧ K1(Fε)−→ K2(Fε)
µ2
ε
−→ K1(kε)∼= k×ε
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sends (1−ε1 f )∧(1−ε2g) to 1−ε1ε2 R( f, g) ( for f, g∈ F). Here, R( f, g) is defined
as follows: Choose an isomorphism Â ' k ′[[z]]. Interpret f · dg as an element∑

i ai zi dz ∈�1
(
k ′((z))/k ′

)
= k ′((z)) dz. Finally, define R( f, g)= Trk′/k(a−1).

Proof. In this proof let us denote by µ2 the morphism F×ε ∧ F×ε → k×ε in the claim.

(a) We wish to reduce the computation to the case when A= k[[z]] and k is infinite.
This is done by exploiting functoriality in a few steps; First, using Lemma 4.8, we
may assume that A is complete. Hence, by Cohen’s structure theorem, A ' k ′[[z]].
Second, since A is now a k ′-algebra, R( f, g) for A as a k-algebra is the trace Trk′/k

of R( f, g) for A as a k ′-algebra. Hence, we may assume that k = k ′. Finally, let
l/k be a field extension. Consider the diagram

Spec(l((z))) //

��

Spec(l[[z]])

��

Spec(l)oo

��

Spec(k((z))) // Spec(k[[z]]) Spec(k)oo

Note that the squares in the above diagram are pullback squares. Hence, the fol-
lowing diagram commutes:

k((x))×ε ∧ k((x))×ε
µ2
//

��

k×ε_�

��

l((x))×ε ∧ l((x))×ε
µ2
// l×ε

Thus, we can replace the k-algebra A = k[[z]] by the l-algebra l[[z]], where l/k is
any field extension. Hence, we may assume that k is infinite.

(b) Next, we show that µ2(1− ε1 f, 1− ε2g) is of the form 1− ε1ε2 R( f, g), where
R( f, g)∈ k. In other words, the “constant term” is 1, and there are no “linear terms”.
Towards this end, we perform “base change”, sending ε2 7→ 0. The operation µ2

commutes with such a base change. We depict it as follows:

µ2(1− ε1 f, 1− ε2g)
_

��

a+ bε1+ cε2+ dε1ε2_

��

µ2(1− ε1 f, 1) a+ bε1

Here, the vertical assignment is base change, from kε to kε/(ε2). Note that the
lower-left element is 1 (by bimultiplicativity of µ2), so that we get a = 1 and b= 0.
Similarly, one gets c = 0.

(c) We notice that R( f, g) is bilinear. The biadditivity follows immediately from
the bimultiplicativity of µ2 and (b). Next, let us show that R(α f, g) = αR( f, g)
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for every α ∈ k (the homogeneity in the second variable is shown analogously). In
case α = 0, it is clear. Otherwise, we get the equality by performing “base change”,
sending ε1 7→ α−1ε1.

(d) We now show the following properties, from which the statement follows by
decomposing elements of F into Laurent expansions:

(1) R(zn, zm)= 0 for n,m ∈ Z, provided n+m 6= 0.

(2) R(z−n, zn)= n for n ∈ Z.

(3) R(z−n, f )= 0 for n ∈ Z≥0, provided that v( f )� n.

Consider the automorphism z 7→ αz, where α ∈ k×. We notice that it does not
alter the symbol µ2, since it commutes with passing to the quotient A 7→ A/m.
Thus, we have R(zn, zm) = R((αz)n, (αz)m). By bilinearity (see (c) above), we
get R(zn, zm) = αn+m R(zn, zm). Choosing α so that αn+m

6= 1, we conclude
R(zn, zm)= 0. Such a choice of α is possible since k is infinite and n+m 6= 0.

To show the second item, note that

µ2(1− ε1z−n, 1− ε2zn)=
µ2(zn

− ε1, 1− ε2zn)

µ2(zn, 1− ε2zn)
,

and hence it is enough to calculate µ2(zn
− αε1, 1 − ε2zn) (where α ∈ k). By

Lemmas B.3 and B.4, we should calculate the determinant of multiplication by
1− ε2zn on the cohomology of

Aε
zn
−αε1
// Aε

−1 0

The only nonzero cohomology is the 0-th one. It is a free kε-module (with basis
1, z, . . . , zn−1). Multiplication by 1−ε2zn is just multiplication by 1−αε1ε2. Thus,
the determinant equals (1−αε1ε2)

n
= 1−nαε1ε2, and consequently R(z−n, zn)= n.

The third item is verified similarly to the second one (when v( f ) � n, the
operator whose determinant we should consider is just the identity).

(e) By breaking f and g into sums of monomials in z and a reminder of large
enough valuation, the proposition follows from (b), (c), and (d) . �

Remark 4.4. One could also obtain the residue symbol differently, by considering
kε := k[ε]/(ε3). Then µ2(1− ε f, 1− εg)= 1− ε2 Res( f dg).

4B. The case dim(X) > 1. In this subsection, we drop the assumption that A is
1-dimensional. We denote the Krull dimension of A by n.
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The Parshin symbol. Fix a full flag

F : xn < · · ·< x0

in X , corresponding to a chain of prime ideals

0= p0 ( · · ·( pn =m.

Consider X i
:= xi as an integral closed subscheme of X . We obtain a symbol

µ= µF : K (F)→6n K (k).

As with the Parshin reciprocity law (see page 34), we consider the resulting map
µn+1
F :

∧n+1 F×→ k×. There, we essentially wrote a formula for this map (which
we now want to verify) under the assumption that our flag is regular. In order to
compute this map “recursively”, we will use Quillen’s dévissage (Lemma B.5) —
application of which will be possible due to regularity of F .

Claim 4.5. The symbol µF : K (FX )→6n K (k) equals the composition

K (FX ) // 6K (Xx1 on x1) 6K (FX1) //
∼

oo 62K (X1
x2

on x2)

K (FX2) //

∼

OO

· · · // 6n K (FXn ) // 6n K (k)

where the arrows ∼
←− stand for Quillen’s dévissage.

In view of this claim, µn+1
F equals the composition∧n+1 F×X −→ Kn+1(FX )

∂0
−→ Kn(FX1)

∂1
−→ · · ·

∂n−1
−−→ K1(FXn )→ K1(k),

where ∂i is the composition of the boundary map and the inverse of the dévissage.
The following lemma will allow us, in principle, to calculate µn+1

F ( f1, . . . , fn+1)

for any f1, . . . , fn+1 ∈ F×.

Lemma 4.6. Let R be a 1-dimensional regular local Noetherian ring with maximal
ideal n, residue field `, and fraction field L. Let z ∈ R be a uniformizer. Consider
the composition of the boundary map with the dévissage map

K (L)−→6K (R on n) ∼←−6K (`).

We use it to construct a map

νm
:
∧m L×→ Km(L)→ Km−1(`).

The following hold:

(i) νm( f1, . . . , fm)= 0 for f1, . . . , fm ∈ R×.

(ii) νm( f1, . . . , fm−2, z, z)= νm( f1, . . . , fm−2,−1, z) for f1, . . . , fm−2 ∈ R×.
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(iii) νm( f1, . . . , fm−1, z)= [ f1]∧ · · ·∧ [ fm−1] for f1, . . . , fm−1 ∈ R× (recall that
[ f ] denotes the residue in `× of f ∈ R×, considered as an element of K1(`)

in the case at hand).

Proof. The first item is clear, since νm( f1, . . . , fm) is the value of the composition
Km(R)→ Km(L)→ Km−1(R on n) on f1∧· · ·∧ fm ∈ Km(R), and the composition
is zero as part of a long exact sequence.

The second item follows from the Steinberg relation (as in the proof of Claim 4.2).
The third item follows from the commutativity of the following diagram:

Km−1(R)∧ K1(L) //

��

Km−1(R)∧ K0(R on n)

��

Km−1(R)∧ K0(`)
∼
oo

��

Km−1(`)∧ K0(`)

��

Km(L) // Km−1(R on n) Km−1(`)
∼

oo

Here the left square commutes since the boundary morphism is a morphism of
K (A)-modules, while the right square commutes as Quillen’s dévissage morphism
is a morphism of K (A)-modules.

Note that the element νm( f1, . . . , fm−1, z) is the result of going right on the
lower line, applied to f1 ∧ · · · ∧ fm−1 ∧ z. However, this element comes from an
element at the upper-left corner, which we can chase through the right on the upper
line, and then to the lower-left corner through the right line. �

4C. Auxiliary lemmas. We state two lemmas which are used above, and whose
proofs are straightforward.

Lemma 4.7. Let X→ B be as in Section 2A. Let

F : xn < xn−1 < · · ·< x0 = γ

be a full flag of points in |X |. Writing p := xn , we consider also the setting X p→ B
and the obvious flag Fp on X p induced by F . We have two symbol maps:

µF : K (F)→6n K (k) and µFp : K (F)→6n K (k)

(note that the function field of X p is identified with F). Then these two symbol
maps are equal.

Lemma 4.8. Let A be a 1-dimensional regular local Noetherian k-algebra whose
residue field is finite over k, and let Â be its completion. We write, as usual,
X = Spec(A) and B = Spec(k), and also X̂ = Spec( Â). Also, denote by F and F̂
the fraction fields of A and Â, respectively. Associated to the unique full flags in
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X and X̂ we have the symbols K (F)→ 6K (k) and K (F̂)→ 6K (k). Then the
diagram

K (F) //

$$

K (F̂)

zz

6K (k)

commutes.

Appendix A: Infinite sums of maps of spectra

In this paper, we consider spectra as a triangulated category Sp. We recall that a
spectrum is called compact if maps from it commute with small direct sums. An
example of a compact spectrum is 6kS, a suspension of the sphere spectrum. The
following definitions are inspired by [Clausen 2012, Appendix A].

Definition A.1. Let fi :S→T (i ∈ I ) be a family of maps of spectra, and f :S→T
an additional map. We say that f is the sum of the fi (written f =

∑
i∈I fi ) if for

every compact spectrum C, and every element e ∈ HomSp(C,S), almost all (i.e.,
all but finitely many) of the maps fi ◦ e are equal to zero, and the sum of all these
fi ◦ e is equal to f ◦ e.

We note that we do not claim uniqueness of the sum (in whatever sense). In
reality, this notion of “summability and summation on compact probes” is derived
from a more holistic notion:

Definition A.2. Let fi :S→T (i ∈ I ) be a family of maps of spectra, and f :S→T
an additional map. An evidence for f being the sum of the fi is a map

g : S→
∨
i∈I

T

such that when we compose g with the projection to the i-th summand we get fi ,
while when we compose g with the fold map, we get f .

The following is evident:

Claim A.3. Existence of an evidence for f being the sum of the fi implies that f
is the sum of the fi .

Let us also note the following two auxiliary claims (whose proofs are straight-
forward):

Claim A.4. Let h : U → S and g : T → V . If f is the sum of the fi (we have
evidence for f being the sum of the fi ) , then g ◦ f ◦ h is the sum of the g ◦ fi ◦ h
(we have evidence for g ◦ f ◦ h being the sum of the g ◦ fi ◦ h).
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Claim A.5. Let Si (i ∈ I ) be a collection of spectra, and write S =
∨

i∈I Si . Then
we have evidence for id being the sum of pri (i ∈ I ), where id is the identity
morphism of S, while pri is the morphism of projection on the i-th summand. In
particular, id=

∑
i∈I pri .

Appendix B: K-theory calculation lemmas

We state some lemmas which are of use when calculating the concrete symbols. In
what follows, X is a Noetherian scheme, U ⊂ X an open subscheme, and Z the
closed complement.

We denote by SPerf(X) the category of (strictly) bounded complexes of OX -
modules, whose terms are locally free of finite rank. By SPerf(X on Z) we denote
the full subcategory of SPerf(X) consisting of complexes whose cohomologies are
supported on Z .

Fact B.1. There is a natural map from (the geometric realization of ) the core
groupoid of SPerf(X) to K (X). In particular, every object in SPerf(X) defines
a point in K (X). In addition, the automorphism group of any object of SPerf(X)
maps into K1(X). Since O(X)× maps into the automorphism group of the object
OX ∈ SPerf(X), one then has a map O(X)×→ K1(X). Thus, given an object or
an automorphism in SPerf(X), one can view it as an element of an appropriate
K-group Ki (X). We will abuse this without further notice.

Claim B.2. Let X be local (i.e., the spectrum of a local ring). Then the above map
O(X)×→ K1(X) is an isomorphism.

Lemma B.3. Let f ∈ O(X) be such that f |U is invertible. Then the image of
f |U ∈ O(U )× under the map K1(U )→ K0(X on Z) which is obtained from the
localization sequence

K (X on Z)→ K (X)→ K (U )

(see [Thomason and Trobaugh 1990, Theorem 7.4]) is given by the complex

OX
f
// OX

−1 0

Lemma B.4. Let f ∈ O(X)×, and C ∈ SPerf(X on Z). Then the image of f ∧C
under the product map K1(X)∧ K0(X on Z)→ K1(X on Z) is given by the auto-
morphism

C ⊗OX
1⊗ f
−−→ C ⊗OX .

Lemma B.5 (Quillen’s dévissage). Suppose that X and Z are regular. Then the
morphism K (Z)→ K (X on Z) (induced by pushforward) is an equivalence of
spectra.
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