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On the cycle map of a finite group

Masaki Kameko

Let p be an odd prime number. We show that there exists a finite group of order
p p+3 for which the mod p cycle map from the mod p Chow ring of its classifying
space to its ordinary mod p cohomology is not injective.

1. Introduction

The Chow group CHi X of a smooth algebraic variety X is the group of finite Z-
linear combinations of closed subvarieties of X of codimension i modulo rational
equivalence and

⊕
i≥0 CHi X , called the Chow ring of X , is a ring under intersec-

tion product. It is an important object of study in algebraic geometry. For a smooth
complex algebraic variety, the cycle map is a homomorphism from the Chow ring
to the ordinary integral cohomology of the underlying topological space. Thus,
the cycle map relates algebraic geometry to algebraic topology. Totaro [1999]
considered the Chow ring of the classifying space BG of an algebraic group G.
In his recently published book, for each prime number p Totaro [2014] gave an
example of a finite group K of order p2p+1 such that the mod p cycle map

cl : CH2 BK/p→ H 4(BK )

is not injective, where H∗(−) is the ordinary mod p cohomology and the finite
group K is regarded as a complex algebraic group. Totaro wrote “ . . . but there are
probably smaller examples” in his book.

In this paper, we find a smaller example, possibly the smallest one. To be precise,
we construct a finite group H of order p p+3 to prove the following result:

Theorem 1.1. For each prime number p, there exists a finite group H of order
p p+3 such that the mod p cycle map cl : CH2 B H/p→ H 4(B H) is not injective,
where the finite group H is regarded as a complex algebraic group.

For a complex algebraic group G, the following results were obtained by Totaro
[1999, Corollary 3.5] using Merkurjev’s theorem:

(1) CH2 BG is generated by Chern classes.

(2) CH2 BG→ H 4(BG;Z) is injective.
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Thus, we may use the ordinary integral cohomology and Chern classes to study
the Chow group CH2 BG. A problem concerning the Chow group CH2 BG in
algebraic geometry could be viewed as a problem on the Chern subgroup of the
ordinary integral cohomology H 4(BG;Z), that is, the subgroup of H 4(BG;Z)
generated by Chern classes of complex representations of G, in classical algebraic
topology. In what follows, we consider CH2 BG as the Chern subgroup of the
integral cohomology H 4(BG;Z) and the mod p cycle map CH2 BG/p→ H 4(BG)
as the homomorphism induced by the mod p reduction ρ : H 4(BG;Z)→ H 4(BG).
Since we consider the ordinary integral and mod p cohomology only, the group G
could be a topological group and it need not be a complex algebraic group.

Throughout the rest of this paper, we assume that p is an odd prime number
unless otherwise stated explicitly. Let p1+2

+ be the extraspecial p-group of order p3

with exponent p. We consider it as a subgroup of the special unitary group SU(p).
We will define a subgroup H2 of SU(p) in Section 2. The group H in Theorem 1.1
is given in terms of p1+2

+ and H2, that is,

H = p1+2
+
× H2/〈1(ξ)〉,

where 〈1(ξ)〉 is a cyclic group in the center of SU(p)× SU(p). We define the
group G as

G = SU(p)×SU(p)/〈1(ξ)〉.

We will give the detail of G, H and H2 in Section 2. What we prove in this paper
is the following theorem:

Theorem 1.2. Let p be an odd prime number. Let K be a subgroup of

G = SU(p)×SU(p)/〈1(ξ)〉

containing
H = p1+2

+
× H2/〈1(ξ)〉.

Then the mod p cycle map cl : CH2 BK/p→ H 4(BK ) is not injective.

The order of the group p1+2
+ × H2/〈1(ξ)〉 is p p+3 and it is the group H in

Theorem 1.1. Applying Theorem 1.2 to

K = p1+2
+
× ((Z/p2)p−1 oZ/p)/〈1(ξ)〉,

we obtain the example in [Totaro 2014, Section 15]. Thus our result not only gives a
smaller group whose mod p cycle map is not injective but it extends Totaro’s result.
For p = 2, Theorem 1.1 was proved by Totaro [2014, Theorem 15.13]. For p = 2,
the finite group H is the extraspecial 2-group 21+4

+ of order 25. It is not difficult to
see that we cannot replace H2 by the extraspecial p-group p1+2

+ in Theorem 1.2.
See Remark 6.3. This observation leads us to the following conjecture:
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Conjecture 1.3. Let p be a prime number. For a finite p-group K of order less
than p p+3, the mod p cycle map cl : CH2 BK/p→ H 4(BK ) is injective.

This paper is organized as follows: In Section 2, we define groups that we use
in this paper, including G and H above. In Section 3, we recall the cohomology
of the classifying space of the projective unitary group PU(p) up to degree 5. In
Section 3, we prove that the mod p cycle map CH2 BG/p→ H 4(BG) is not in-
jective and describe its kernel. In Section 4, we collect some properties of the
mod p cohomology of Bπ̃(H2), where π̃ is the restriction of the projection from
SU(p) to PU(p). We use the mod p cohomology of Bπ̃(H2) in Section 5, where
we study the mod p cycle map CH2 B H/p→ H 4(B H) to complete the proof of
Theorem 1.2.

Throughout the rest of this paper, by abuse of notation, we denote the map
between classifying spaces induced by a group homomorphism f : G → G ′ by
f : BG→ BG ′.

2. Subgroups and quotient groups

In this section, we define subgroups of the unitary group U (p) and of the product
SU(p)× SU(p) of special unitary groups SU(p). We also define their quotient
groups. For a finite subset {x1, . . . , xr } of a group, we denote by 〈x1, . . . , xr 〉 the
subgroup generated by {x1, . . . , xr }. As we already mentioned, we assume that p
is an odd prime number.

We start with subgroups of the special unitary group SU(p). Let ξ = exp(2π i/p),
ω = exp(2π i/p2) and δi j = 1 if i ≡ j mod p, δi j = 0 if i 6≡ j mod p. We consider
the following matrices in SU(p):

ξ = (ξδi j )= diag(ξ, . . . , ξ),

α = (ξ i−1δi j )= diag(1, ξ, . . . , ξ p−1),

β = (δi, j−1),

σ1 = diag(ωξ p−1, ω, . . . , ω).

Moreover, let σk be the diagonal matrix whose (i, i)-entry is ωξ p−1 for i = k and
ω for i 6= k. Let us consider the following subgroups of SU(p):

p1+2
+
= 〈α, β, ξ 〉,

H2 = 〈β, σ1, . . . , σp〉.

The group p1+2
+ is the extraspecial p-group of order p3 with exponent p. Since

σ
p

1 = · · · = σ
p
p = ξ and

σ2σ
2
3 · · · σ

p−1
p = ξ (p−1)/2α−1,



50 MASAKI KAMEKO

the group H2 contains p1+2
+ as a subgroup. An element in the subgroup of H2

generated by σ1, . . . , σp could be described as

ω j diag(ξ i1, . . . , ξ i p),

where 0 ≤ j ≤ p − 1, 0 ≤ i1 ≤ p − 1, . . . , 0 ≤ i p ≤ p − 1 and i1 + · · · + i p is
divisible by p. So, the order of this subgroup is p p. Since β acts on the subgroup
of diagonal matrices as a cyclic permutation, the order of H2 is p p+1.

We write A2 for the quotient group p1+2
+ /〈ξ〉. The group A2 is an elementary

abelian p-group of rank 2. We denote by π̃ the obvious projection SU(p)→ PU(p)
and projections induced by this projection, e.g, π̃ : p1+2

+ → π̃(p1+2
+ ) = A2. We

denote the obvious inclusions among p1+2
+ , H2 and SU(p) and among A2, π̃(H2)

and PU(p) by ι.
Let us consider the following maps:

1 : SU(p)→ SU(p)×SU(p), m 7→
(

m 0
0 m

)
.

01 : SU(p)→ SU(p)×SU(p), m 7→
(

m 0
0 I

)
.

02 : SU(p)→ SU(p)×SU(p), m 7→
(

I 0
0 m

)
.

Using these maps and matrices in SU(p) above, we consider the following groups:

G = SU(p)×SU(p)/〈1(ξ)〉,

H =
〈
1(α),1(β),1(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
/〈1(ξ)〉,

A3 =
〈
1(α),1(β),1(ξ), 02(ξ)

〉
/〈1(ξ)〉,

A′3 =
〈
01(α), 02(β),1(ξ), 02(ξ)

〉
/〈1(ξ)〉.

Since α and β are in H2, the subgroup〈
1(α),1(β),1(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
contains

01(α)=1(α)02(α
−1), 01(β)=1(β)02(β

−1), 01(ξ)=1(ξ)02(ξ
−1).

Therefore, it is equal to the subgroup

p1+2
+
× H2 =

〈
01(α), 01(β), 01(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
.

Hence, we have
H = p1+2

+
× H2/〈1(ξ)〉.
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We denote the obvious inclusion of H by f : H → G. It is also clear that
A3 and A′3 are elementary abelian p-subgroups of rank 3. We use the elemen-
tary abelian p-subgroup A′3 only in the proof of Proposition 6.4. In the above
groups, 01(ξ) = 02(ξ). We denote by π the obvious projections induced by π :
G→ PU(p)×PU(p). It is clear that

π(H)= H/〈02(ξ)〉 = A2× π̃(H2)

and
PU(p)×PU(p)= SU(p)×SU(p)/〈1(ξ), 02(ξ)〉.

Moreover, we have the following commutative diagram:

A3
g

//

ϕ

��

H

π

��

A′3

ϕ′

��

g′
oo

A2
g
// A2× π̃(H2) A2

g′
oo

where the upper g and g′ are the obvious inclusions, A2 = 〈π̃(α), π̃(β)〉,

ϕ(1(α))= π̃(α), ϕ(1(β))= π̃(β),

ϕ′(01(α))= π̃(α), ϕ′(02(β))= π̃(β),

g(π̃(α))= (π̃(α), π̃(α)), g(π̃(β))= (π̃(β), π̃(β)),

g′(π̃(α))= (π̃(α), 1), g′(π̃(β))= (1, π̃(β)).

We end this section by considering another subgroup H ′2 of the unitary group
U (p) and its quotient group π̃(H ′2), which is a subgroup of PU(p). We use H ′2
and π̃(H ′2) only in the proof of Proposition 5.2. Let T p be the set of all diagonal
matrices in U (p), which is a maximal torus of U (p). We define H ′2 = T p oZ/p
as the subgroup generated by T p and β. It is clear that π̃(H2) is a subgroup of
π̃ ′(H ′2)⊂ PU(p), where we denote by π̃ ′ the obvious projection U (p)→ PU(p).

3. The cohomology of B PU( p)

In this section, we recall the integral and mod p cohomology of B PU(p). Through-
out the rest of this paper, we denote the integral cohomology of a space X by
H∗(X;Z) and its mod p cohomology by H∗(X). Also, we denote the mod p
reduction by

ρ : H∗(X;Z)→ H∗(X).

We also define generators u2∈H 2(B PU(p)) and z1∈H 1(B〈ξ〉)with d2(z1)= x1 y1,
d2(z1) = u2 and ι∗(u2) = x1 y1, where x1, y1 ∈ H 1(B A2) are generators corre-
sponding to α and β in π1(B A2) = 〈π̃(α), π̃(β)〉, and the d2 are differentials in
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the Leray–Serre spectral sequence associated with the vertical fibrations π̃ in

Bp1+2
+

ι
//

π̃

��

B SU(p)

π̃

��

B A2
ι
// B PU(p)

(3.1)

where vertical maps are induced by the obvious projections and horizontal maps
are induced by the obvious inclusions.

First, we set up notations related to the spectral sequence. Let

π : X→ B

be a fibration. Since the base space B is usually clear from the context, we write
E s,t

r (X) for the Leray–Serre spectral sequence associated with the above fibration
converging to the mod p cohomology H∗(X). If it is clear from the context, we
write E s,t

r for the Leray–Serre spectral sequence. We denote by

H s+t(X)= F0 H s+t(X)⊇ F1 H s+t(X)⊇ · · · ⊇ F s+t+1 H s+t(X)= {0}

the filtration on H s+t(X) associated with the spectral sequence. Unless otherwise
stated explicitly, by abuse of notation, we denote the cohomology class and the
element it represents in the spectral sequence by the same symbol. Usually, it is
clear from the context whether we mean the cohomology class or the element in the
spectral sequence. Let R be an algebra or a graded algebra. Let {x1, . . . , xr } be a
finite set. We denote by R{x1, . . . , xr } the free R-module spanned by {x1, . . . , xr }.
For a graded module M , we say M is a free R-module up to degree m if the
R-module homomorphism

f : (R{x1, . . . , xr })
i
→ M i

is an isomorphism for i ≤ m for some finite subset {x1, . . . , xr } of M . We say
a spectral sequence collapses at the Er -level up to degree m if E s,t

r = E s,t
∞

for
s+ t ≤ m.

Next, we recall the integral and mod p cohomology of B PU(p). The mod 3
cohomology of B PU(3) was computed by Kono, Mimura and Shimada [Kono
et al. 1975]. The integral and mod p cohomology of B PU(p) was computed by
Vistoli [2007]. The mod p cohomology was computed by Kameko and Yagita
[2008] independently. The computation up to degree 5 was also done by Antieau
and Williams [2014]. Although the direct computation is not difficult, we prove
the following proposition by direct computation because it is slightly different from
the one in [Antieau and Williams 2014].
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Proposition 3.2. Up to degree 5, the integral cohomology of B PU(p) is given by

H i (B PU(p);Z)= {0} for i = 1, 2, 5,

H i (B PU(p);Z)= Z/p for i = 3,

H i (B PU(p);Z)= Z for i = 0, 4.

Up to degree 5, the mod p cohomology of B PU(p) is given by

H i (B PU(p))= {0} for i = 1, 5,

H i (B PU(p))= Z/p for i = 0, 2, 3, 4.

Proof. Consider the Leray–Serre spectral sequence associated with

BU (p)→ B PU(p)→ K (Z, 3)

converging to H∗(B PU(p);Z). The integral cohomology of BU (p) is a polyno-
mial algebra generated by Chern classes, that is, H∗(BU (p);Z)= Z[c1, . . . , cp],
where deg ci = 2i . The integral cohomology H i (K (Z, 3);Z) of the Eilenberg–
Mac Lane space K (Z, 3) is Z for i = 0, 3 and {0} for i = 1, 2, 4, 5. We fix a
generator u3 of H 3(K (Z, 3);Z). Up to degree 5, the only nontrivial E2-terms are

E0,0
2 = E0,2

2 = Z, E0,4
2 = Z⊕Z and E3,0

2 = E3,2
2 = Z.

Hence, up to degree 5, the only nontrivial differential is d3 : E
0,t
3 → E3,t−2

3 , which
is given by

d3(c1)= α1u3, d3(c2)= α2c1u3,

where α1, α2 ∈Z. Since B PU(p) is simply connected and π2(B PU(p))=Z/p, by
the Hurewicz theorem we have H1(B PU(p);Z)= {0} and H2(B PU(p);Z)=Z/p.
By the universal coefficient theorem, we have H 2(B PU(p);Z) = {0} and that
H 3(B PU(p);Z) has Z/p as a direct summand. Therefore, α1 must be ±p and
E3,0

3 = Z/p. The cohomology suspension σ : H 4(BU (p))→ H 3(U (p)) maps
ρ(c2) to a nontrivial primitive element in H 3(U (p)), but there exists no primi-
tive element in H 3(PU(p)) by the computation due to Baum and Browder [1965].
Hence, in the Leray–Serre spectral sequence E s,t

r (B SU(p)), the element ρ(c2) in
E0,4

2 (B SU(p)) must support a nontrivial differential. Therefore, α2 is not divisible
by p and, up to degree 5, the nontrivial E3-terms are

E0,0
3 = E0,4

3 = Z, E3,0
3 = Z/p.

As for E s,t
r (B PU(p)), we have

E0,0
2 (B PU(p))= E0,2

2 (B PU(p))= Z/p, E0,4
2 (B PU(p))= Z/p⊕Z/p,

E3,0
2 (B PU(p))= E3,2

2 (B PU(p))= Z/p,
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and
d3(ρ(c1))= 0, d3(ρ(c2))= ρ(α2c1u3) 6= 0.

So, we have the desired result. �

With the following proposition, we choose generators

z1 ∈ H 1(B〈ξ〉), u2 ∈ H 2(B PU(p))

such that
d2(z1)= u2, d2(z1)= x1 y1

in the spectral sequences associated with vertical fiber bundles in (3.1).

Proposition 3.3. We may choose u2 ∈ H 2(B PU(p)) such that the induced homo-
morphism ι∗ : H 2(B PU(p))→ H 2(B A2) maps u2 to x1 y1.

Proof. From the commutative diagram (3.1), there exists the induced homomor-
phism between the Leray–Serre spectral sequences

ι∗ : E s,t
r (B SU(p))→ E s,t

r (Bp1+2
+
).

Since the group extension
Z/p→ p1+2

+
→ A2

corresponds to x1 y1 in H 2(B A2), the differential d2 : E
0,1
2 (Bp1+2

+ )→ E2,0
2 (Bp1+2

+ )

is given by
d2(z1)= x1 y1

for some z1 ∈ H 1(B〈ξ〉)= Z/p [z2]⊗3(z1). Hence,

d2 : E
0,1
2 (B SU(p))→ E2,0

2 (B SU(p))

is nontrivial and we may define u2 by d2(z1). Hence, we have the desired result. �

We end this section by computing H 4(BG;Z) for G = SU(p)×SU(p)/〈1(ξ)〉.
The following computation was done in the proof of [Totaro 2014, Theorem 15.4].

Proposition 3.4. Consider a homomorphism

ψ : H 4(BG;Z)→ H 4(B PU(p);Z)⊕ H 4(B SU(p);Z)

sending x to (1∗(x), 0∗2 (x)). It is an isomorphism.

Proof. Let p1 : PU(p)× PU(p)→ PU(p) be the projection onto the first factor.
Then, the fiber of p1 ◦π is SU(p). Consider the spectral sequence associated with

B SU(p) 02
−−→ BG p1◦π

−−→ B PU(p).
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The E2-term is H s(B PU(p); H t(B SU(p);Z)). By Proposition 3.2, E s,t
2 = {0}

unless s = 0, 3, 4 and t = 0, 4 up to degree 5. In particular, E s,t
2 = {0} for s+ t = 5.

The nonzero E2-terms of total degree 4 are given by

E4,0
2 = Z, E0,4

2 = Z.

The nonzero E2-term of total degree 3 is given by

E3,0
2 = Z/p.

So, for dimensional reasons, we have E s,t
∞
= E s,t

2 for s + t = 4. Hence, we have
H 4(BG;Z)= Z⊕Z and a short exact sequence

0→ H 4(B PU(p);Z)(p1◦π)
∗

−−→ H 4(BG;Z)
0∗2
−−→ H 4(B SU(p);Z)→ 0.

Since the composition p1 ◦ π ◦1 is the identity map, this short exact sequence
splits and the homomorphism ψ is an isomorphism. �

4. The mod p cycle map for G

Let G = SU(p)× SU(p)/〈1(ξ)〉, as in Section 2. In this section, we define a
virtual complex representation λ′′ of G. Using the Chern class c2(λ

′′), we prove
Theorem 1.2 for K =G. To be precise, we show that c2(λ

′′) is nonzero in CH2 BG/p
and the mod p reduction maps c2(λ

′′) to 0 in H 4(BG). Theorem 1.2 for K = G
was obtained by Totaro [2014] and by the author in [Kameko 2015] independently.
From now on, we denote the Bockstein operation of degree 1 by Q0 and the Milnor
operation of degree 2p− 1 by Q1. These are cohomology operations on the mod p
cohomology.

Let λ1 : SU(p)→U (p) be the tautological representation, so that λ1(g)(v)= gv
for v ∈ Cp. Let

λ∗1⊗ λ1 : SU(p)×SU(p)→U (p2)

be the complex representation defined by

(λ∗1⊗ λ1)(g1, g2)(v
∗

1 ⊗ v2)= (v
∗

1 g−1
1 )⊗ (g2v2),

where Cp2
= (Cp)∗⊗Cp and (Cp)∗ = Hom(Cp,C). The complex representation

λ∗1⊗ λ1 induces a complex representation λ : G→ U (p2). We define a complex
representation λ′ by λ ◦1 ◦ p1 ◦π . Using the complex representations λ and λ′, we
define a virtual complex representation λ′′ by λ′′=λ−λ′. An element in the complex
representation ring of G corresponds to an element in the topological K-theory
K 0(BG)= [BG,Z×BU ]. By abuse of notation, we denote by λ′′ : BG→Z×BU
a map in the homotopy class corresponding to λ′′. It is clear that

1∗(λ′′)= 0 and 0∗2 (λ
′′)= pλ1
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in the complex representation ring of G.
We denote by x4 the cohomology class in H 4(BG;Z) such that

(1) 0∗2 (x4)= c2(λ1),

(2) 1∗(x4)= 0.

Then c2(λ
′′)= px4. Hence, ρ(c2(λ

′′))= 0 in H 4(BG). It is clear from the definition
that c2(λ

′′) 6= 0 in H 4(BG;Z). Thus, if we show that the Chern class c2(λ
′′) is not

divisible by p in CH2 BG, then c2(λ
′′) represents a nonzero element in CH2 BG/p

and the mod p cycle map is not injective for BG. We prove it by contradiction:
Suppose that the Chern class c2(λ

′′) is divisible by p, that is, we suppose that
there exists a virtual complex representation µ : BG→ Z× BU of G such that
x4 ∈ Imµ∗ ⊂ H 4(BG;Z). Then Q1ρ(x4) must be zero since H odd(Z× BU )= {0}.
We prove the nonexistence of the above virtual complex representation by showing
that Q1ρ(x4) 6= 0. To show that Q1ρ(x4) 6= 0, we show that Q1( f ◦g)∗(ρ(x4)) 6= 0
in H∗(B A3), where f , g and A3 are as defined in Section 2. The following
Proposition 4.1 completes the proof of Theorem 1.2 for K = G.

We proved ( f ◦ g)∗(ρ(x4))= Q0(x1 y1z1) in [Kameko 2015]. Because we use
a similar but slightly different argument in the proof of Theorem 1.2 for K = H ,
we prove the following weaker form in this paper:

Proposition 4.1. We have Q1( f ◦ g)∗(ρ(x4)) 6= 0 in H 2p+3(B A3).

To prove Proposition 4.1, we compute the Leray–Serre spectral sequences and
the homomorphism ( f ◦ g)∗ induced by the following commutative diagram:

B A3

ϕ

��

f ◦g
// BG

π

��

B SU(p)

π̃

��

02
oo

B A2
f ◦g
// B PU(p)× B PU(p) B PU(p)

02
oo

We denote by x1 and y1 the generators of the mod p cohomology of B A3 corre-
sponding to the generators 1(α) and 1(β) of A3, so that we have ϕ∗(x1) = x1

and ϕ∗(y1) = y1. Let z1 be the element in H 1(B〈02(ξ)〉) such that 0∗2 (z1) =

−z1 ∈ E0,1
2 (B SU(p)). The element z1 in E0,1

2 (B SU(p)) and u2 ∈ E2,0
2 (B SU(p))

are defined in Section 3, so that d2(z1) = u2 in E2,0
2 (B SU(p)). We define the

generator u3 of H 3(B PU(p)) by u3 = Q0u2. Let us consider the E2-term of the
spectral sequence E s,t

r (BG). The E2-term is as follows:

E∗,∗2 = H∗(B PU(p))⊗ H∗(B PU(p))⊗Z/p [z2]⊗3(z1).

Since f ◦ g =1 ◦ ι, we have ( f ◦ g)∗(1⊗ u)= ( f ◦ g)∗(u⊗ 1)= ι∗(u). Moreover,
we have 0∗2 (1⊗ u)= u and 0∗2 (u⊗ 1)= 0 for deg u > 0.

Let ai = ui ⊗ 1− 1⊗ ui , bi = ui ⊗ 1. Then, up to degree 6, the E2-term is
a free Z/p [a2, z2] ⊗3(z1)-module with basis {1, b2, a3, b3, b2

2, a3b3, b3
2}. Since
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( f ◦ g)∗d2(z1)= 0 and 0∗2 (d2(z1))=−u2, the first nontrivial differential is given
by

d2(z1)= a2.

So, up to degree 5, the E3-term is a free Z/p [z2]-module with basis {1,b2,a3,b3,b2
2}.

In particular, a3b2 = 0 in E5,0
3 . Since ( f ◦ g)∗(d3(z2))= 0 and 0∗2 (d3(z2))=−u3,

the second nontrivial differential is given by

d3(z2)= a3.

Up to degree 4, the E4-term is a free Z/p-module with basis {1, b2, b3, b2
2, b2z2}

and the spectral sequence collapses at the E4-level. Thus, the E∞-terms of total
degree 4 are as follows:

E0,4
∞
= {0}, E1,3

∞
= {0}, E2,2

∞
= Z/p {b2z2}, E3,1

∞
= {0}, E4,0

∞
= Z/p {b2

2}.

The element b2 is a permanent cocycle. By abuse of notation, we denote by b2 the
cohomology class in F2 H 2(BG) representing b2. Since H 2(B SU(p))= {0}, we
have

0∗2 (π
∗(b2))= 0.

Moreover, π∗
(
H 4(B PU(p)× B PU(p))

)
= Z/p {b2

2}. Hence, we have

0∗2
(
π∗
(
H 4(B PU(p)× B PU(p))

))
= {0}.

On the other hand, 0∗2 ρ(x4)= ρ(c2(λ1)) 6= 0 in H 4(B SU(p)). Therefore, ρ(x4)

is not in the image of

π∗ : H 4(B PU(p)× B PU(p))→ H 4(BG).

Hence, we have the following result:

Proposition 4.2. The cohomology class ρ(x4) represents αb2z2 in E2,2
∞

for some
α 6= 0 in Z/p.

Now, we complete the proof of Proposition 4.1 using Proposition 4.2.

Proof of Proposition 4.1. Since ( f ◦ g)∗(b2)= x1 y1, we have

( f ◦ g)∗(b2z2)= x1 y1z2

in the spectral sequence, where z2 = Q0z1 in H 2(B〈02(ξ)〉). Let x2 = Q0x1 and
y2 = Q0 y1. Then H∗(B A3)= Z/p [x2, y2, z2] ⊗3(x1, y1, z1) and ϕ∗(H∗(B A2))

is the subalgebra generated by x1, y1, x2, y2. Therefore, we have

( f ◦ g)∗(ρ(x4))= αx1 y1z2+ u′z1+ u′′
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for some u′, u′′ ∈ ϕ∗(H∗(B A2)). Let M be the ϕ∗(H∗(B A2))-module generated
by

1, z1, z1z2, zi
2 and z1zi

2 (i ≥ 2),
so that

H∗(B A3)/M = ϕ∗(H∗(B A2)){z2}.

Since Q1z1 = z p
2 , Q1z2 = 0 and Q1 is a derivation, M is closed under the action

of the Milnor operation Q1. We have

( f ◦ g)∗(ρ(x4))≡ αx p
2 y1z2−αx1 y p

2 z2 6≡ 0 mod M.

This completes the proof of Proposition 4.1. �

5. The mod p cohomology of Bπ̃(H2)

In this section, we collect some facts on the mod p cohomology of Bπ̃(H2) as
Propositions 5.1 and 5.2. We use these facts in the proof of Proposition 6.1.

We begin by defining generators of H 1(Bπ̃(H2)). Since the commutator sub-
group [π̃(H2), π̃(H2)] is generated by π̃(diag(ξa1, . . . , ξap)) for 0 ≤ ai ≤ p− 1,
1≤ i ≤ p, with a1+ · · ·+ ap ≡ 0 mod p,

π̃(H2)/[π̃(H2), π̃(H2)] = Z/p⊕Z/p.

This elementary abelian p-group is generated by π̃(σ1) and π̃(β). We denote by
v1 and w1 the generators of H 1

(
B〈π̃(σ1)〉

)
and H 1

(
B〈π̃(β)〉

)
corresponding to

π̃(σ1) and π̃(β), respectively. By abuse of notation, we denote the corresponding
generators in H 1(Bπ̃(H2)) by the same symbol, so that, for the inclusions

ιβ : 〈π̃(β)〉 → π̃(H2), ισ : 〈π̃(σ1)〉 → π̃(H2),

we have ι∗β(w1) = w1, ι∗β(v1) = 0, ι∗σ (w1) = 0 and ι∗σ (v1) = v1. Indeed, we have
H∗
(
B〈π̃(σ1)〉

)
=Z/p [v2]⊗3(v1) and H∗(B〈π̃(β)〉)=Z/p [w2]⊗3(w1), where

v2 = Q0v1 and w2 = Q0w1. We denote the inclusion of π̃(H2) to PU(p) by

ι : π̃(H2)→ PU(p)

and we recall that we defined the generator u2 of H 2(B PU(p)) in Proposition 3.3.

Proposition 5.1. In H∗(Bπ̃(H2)), we have ι∗(u2)v1 6= 0 and ι∗(u2
2) 6= 0.

Proof. We consider the Leray–Serre spectral sequences associated with the vertical
fibrations in the following commutative diagram:

B〈σ1〉
ισ

//

π̃

��

B H2

π̃

��

ι
// B SU(p)

π

��

B〈π̃(σ1)〉
ισ
// Bπ̃(H2)

ι
// B PU(p)
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Let z1 ∈ E0,1
2 (B SU(p)) and u2 ∈ E2,0

2 (B SU(p)) be elements defined in Section 3.
By abuse of notation, we denote elements ι∗(z1) in E0,1

2 (B H2) and ι∗σ (ι
∗(z1)) in

E0,1
2 (B〈σ1〉) by z1. Since 〈σ1〉 = Z/p2,

d2(z1)= αv2

for some α 6= 0 in Z/p in the Leray–Serre spectral sequence E2,0
2 (B〈σ1〉). Since

u2 = d2(z1) in the Leray–Serre spectral sequence E2,0
2 (B SU(p)), we have

ι∗σ (ι
∗(u2))= d2(z1)= αv2

in H∗
(
B〈π̃(σ1)〉

)
= Z/p [v2]⊗3(v1). Hence, we have ι∗σ (ι

∗(u2)v1)= αv1v2 6= 0
and ι∗σ (ι

∗(u2
2))= α

2v2
2 6= 0. Therefore, we obtain the desired result: ι∗(u2)v1 6= 0

and ι∗(u2
2) 6= 0 in H∗(Bπ̃(H2)). �

Proposition 5.2. In H∗(Bπ̃(H2)), we have ι∗(u2)w1 = 0.

To prove Proposition 5.2, at the end of Section 2 we defined the subgroup H ′2 =
T p oZ/p of the unitary group U (p) generated by diagonal matrices and β. The
quotient group π̃ ′(H ′2) contains π̃(H2) as a subgroup and they are subgroups of
the projective unitary group PU(p). We denote by

ι′′ : π̃(H2)→ π̃ ′(H ′2), ι′ : π̃ ′(H ′2)→ PU(p)

the inclusions, so that ι = ι′ ◦ ι′′. We use the following lemma in the proof of
Proposition 5.2:

Lemma 5.3. In H∗(Bπ̃ ′(H ′2)), there exists an element t2 ∈ H 2(Bπ̃ ′(H ′2)) such that
H 1(Bπ̃ ′(H ′2)) = Z/p {w1} and H 2(Bπ̃ ′(H ′2)) = Z/p {t2, w2}, where w2 = Q0w1,
(ι′′◦ισ )

∗(t2)=v2 and (ι′′◦ιβ)∗(t2)=0. Moreover, we have t2w1=0 in H∗(Bπ̃ ′(H ′2)).

Now, we prove Proposition 5.2 assuming Lemma 5.3.

Proof of Proposition 5.2. We consider the Leray–Serre spectral sequences associ-
ated with the vertical fibrations in the commutative diagram

B〈β, ξ〉
ιβ

//

π̃

��

B H2

π̃

��

ι
// B SU(p)

π̃

��

B〈π̃(β)〉
ιβ
// Bπ̃(H2)

ι
// B PU(p)

Suppose that ι′∗(u2) = α1t2 + α2w2, where α1, α2 ∈ Z/p. Then, by Lemma 5.3,
we have

ι′
∗
(u2)w1 = α1t2w1+α2w1w2 = α2w1w2.

Hence, we have (ι ◦ ιβ)∗(u2)w1 = α2w1w2. On the other hand, since the group
extension

〈ξ〉 → 〈β, ξ〉 → 〈π̃(β)〉
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is trivial, d2 : H 1(B〈ξ〉)→ H 2
(
B〈π̃(β)〉

)
in E s,t

2 (B〈β, ξ〉) is zero and

(ι ◦ ιβ)
∗(u2)= d2((ι ◦ ιβ)

∗(z1))= 0

in H∗
(
B〈π̃(β)〉

)
= E2,0

2 (B〈β, ξ〉). Therefore, we have α2 = 0 and w1ι
′ ∗(u2)= 0

in H∗(Bπ̃ ′(H ′2)). Therefore, we have

ι∗(u2)w1 = ι
′′ ∗(ι′

∗
(u2)w1)= 0

in H∗(Bπ̃(H2)). �

We end this section by proving Lemma 5.3.

Proof of Lemma 5.3. We need to study the mod p cohomology only up to degree 3.
We define t2 by ι′ ∗(u2), where u2 is the generator of H 2(B PU(p)).

We consider the Leray–Serre spectral sequence associated with the following
commutative diagram:

BT p

��

π̃ ′
// BT p−1

��

B H ′2

��

π̃ ′
// Bπ̃ ′(H ′2)

��

B〈β〉 π̃
// B〈π̃(β)〉

We choose a generator t (i)2 ∈ H 2(BT p) corresponding to the i-th diagonal entry
of T p, so that H 2(BT p) = Z/p {t (1)2 , . . . , t (p)2 }. The matrix β acts on T p as the
cyclic permutation of diagonal entries, so that it acts on H 2(BT p) as the cyclic
permutation on t (1)2 , . . . , t (p)2 . The induced homomorphism π̃ ′ ∗ : H 2(BT p−1)→

H 2(BT p) is injective and we may take a basis {u(1)2 , . . . , u(p−1)
2 } for H 2(BT p−1)

such that π̃ ′ ∗(u(i)2 ) = t (i)2 − t (i+1)
2 for i = 1, . . . , p − 1. Hence, 〈β〉 acts on

H 2(BT p−1) by
gu(i)2 = u(i+1)

2

for i = 1, . . . , p− 2 and

gu(p−1)
2 =−(u(1)2 + · · ·+ u(p−1)

2 )

for some generator g of 〈β〉. We consider the Leray–Serre spectral sequence con-
verging to the mod p cohomology of Bπ̃ ′(H ′2). The E1-term is additively given as
follows:

E1 = Z/p [u(1)2 , . . . , u(p−1)
2 ]{wi

2, w1w
i
2 | i ≥ 0}.

The first nontrivial differential is given by

d1(uwi
2)= ((1− g)u)w1w

i
2, d1(uw1w

i
2)= ((1− g)p−1u)wi+1

2 ,
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where u ∈ Z/p [u(1)2 , . . . , u(p−1)
2 ] = E0,∗

1 . The kernel of

(1− g) : Z/p {u(1)2 , . . . , u(p−1)
2 } → Z/p {u(1)2 , . . . , u(p−1)

2 }

is spanned by a single element,

u(1)2 + 2u(2)2 + · · ·+ (p− 1)u(p−1)
2 ,

and the image of (1− g) is spanned by the p− 2 elements

u(1)2 − u(2)2 , . . . , u(p−2)
2 − u(p−1)

2 .

We denote the generator of the kernel of (1− g) by ũ, that is,

ũ = u(1)2 + 2u(2)2 + · · ·+ (p− 1)u(p−1)
2 .

It is easy to see that

ũ ≡ (1+ · · ·+ (p− 1))u(p−1)
2 ≡

1
2 p(p− 1)u(p−1)

2 ≡ 0

modulo the image of (1− g). By direct calculation, we have (1− g)p−1(u(1)2 )= 0
and Ker(1− g)p−1

= Z/p {u(1)2 , . . . , u(p−1)
2 }. Hence, we have

E0,2
2 = Ker(1− g)= Z/p {ũ},

E1,2
2 =

(
Ker(1− g)p−1/ Im(1− g)

)
{w1} = Z/p {u(1)2 w1},

respectively. Moreover, we have E∗,odd
r = {0} and E∗,0r = Z/p [w2] ⊗3(w1) for

∗ ≥ 0 and r ≥ 1. Since the elements in E∗,0r are permanent cocycles, the spectral
sequence collapses at the E2-level up to degree 3. Choose a cohomology class t ′2
in H 2(Bπ̃ ′(H ′2)) representing the generator ũ of E0,2

∞
= Z/p. Then, H 2(Bπ̃ ′(H ′2))

is generated by t ′2 and w2. Suppose that

ι′
∗
(u2)= α1w2+α2t ′2,

where α1, α2 ∈ Z/p. Since (ι′ ◦ ι′′ ◦ ισ )∗(u2)= v2 and (ι′′ ◦ ισ )∗(w2)= 0,

(ι′′ ◦ ισ )
∗(α2t ′2)= v2

and so α2 6= 0. Hence, t2 and w2 generate H 2(Bπ̃ ′(H ′2)).
Next, we prove that t2w1 = 0. The E∞-terms of total degree 3 are given by

E0,3
∞
= {0}, E1,2

∞
= Z/p {u(1)2 w1}, E2,1

∞
= {0} and E3,0

∞
= Z/p {w1w2}.

Therefore, we have

F2 H 3(Bπ̃ ′(H ′2))= F3 H 3(Bπ̃ ′(H ′2))= Z/p {w1w2}.
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Since α2t ′2w1 represents α2ũw1 and ũ ∈ Ker(1− g) is congruent to zero modulo
the image of (1− g), we have ũw1 = 0 in E1,2

∞
. So, we have

t2w1 ∈ F3 H 3(Bπ̃ ′(H ′2))= Z/p {w1w2}.

Therefore, t2w1 = α3w1w2 for some α3 ∈ Z/p. We proved that (ι′′ ◦ ιβ)∗(t2) =
(ι′◦ι′′◦ιβ)

∗(u2)=0 in the proof of Proposition 5.2. Thus, we have (ι′′◦ιβ)∗(t2w1)=0.
On the other hand, we have (ι′′ ◦ ιβ)∗(w1w2)=w1w2 6= 0 in H∗

(
B〈π̃(β)〉

)
. Hence,

we obtain α3 = 0. �

6. The mod p cycle map for H

In this section, we prove Theorem 1.2. Let G be SU(p) × SU(p)/〈1(ξ)〉 and
let H = p1+2

+ × H2/1(ξ), as in Section 3. Let K be a subgroup of G con-
taining H , that is, H ⊂ K ⊂ G. We proved in Section 4 that the mod p cycle
map CH2 BG/p → H 4(BG) is not injective. To be more precise, we defined
the virtual complex representation λ′′ : BG→ Z× BU such that the Chern class
c2(λ

′′) ∈ CH2 BG is nontrivial in CH2 BG/p, that is, c2(λ
′′) is not divisible by p,

and the mod p cycle map maps c2(λ
′′) to ρ(c2(λ

′′))= 0. We denote the inclusions
by f ′ : K → G, f ′′ : H → K and f : H → G, so that f = f ′ ◦ f ′′ : H → G. It
is clear that ρ(c2(λ

′′
◦ f ′)) is zero in H 4(BK ). So, in order to prove Theorem 1.2,

we need to show that c2(λ
′′
◦ f ′) remains nonzero in CH2 BK ⊂ H 4(BK ;Z) and

that c2(λ
′′
◦ f ′) remains not divisible by p in CH2 BK . These follow immediately

from:

(1) c2(λ
′′
◦ f )= f ′′ ∗(c2(λ

′′
◦ f ′)) is not zero in CH2 B H ⊂ H 4(B H ;Z).

(2) c2(λ
′′
◦ f )= f ′′ ∗(c2(λ

′′
◦ f ′)) is not divisible by p in CH2 B H .

To prove (1) and (2), we consider the spectral sequences associated with the
vertical fibrations below and the induced homomorphism between them:

B H

π

��

f
// BG

π

��

B A2× Bπ̃(H2)
f
// B PU(p)× B PU(p)

Let g : B A2→ B A2× Bπ̃(H2) be the map defined in Section 2 by g(π̃(α))=
(π̃(α), π̃(α)) and g(π̃(β)) = (π̃(β), π̃(β)). Let v1 and w1 be the generators of
H 1(Bπ̃(H2)) defined in the previous section; let x1 and y1 be those of H 1(B A2), as
defined in Section 3. We denote by x1, y1, v1 and w1 the corresponding generators
of H 1(B A2×Bπ̃(H2)), so that g∗(x1)= x1, g∗(v1)= 0 and g∗(y1)= g∗(w1)= y1.
We denote by z1 a generator of H 1(B〈02(ξ)〉)= E0,1

2 as in Section 4. Let x2=Q0x1,
y2 = Q0 y1 and z2 = Q0z1, as usual, so that H∗(B A2)= Z/p [x2, y2]⊗3(x1, y1).
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Also, let u2 be the generator of H 2(B PU(p)) defined in Section 3, and let u3 =

Q0u2, as in Section 4. Let ι be the map induced by the inclusion of π̃(H2) into
PU(p). We need to compute the spectral sequence up to degree 4. Differentials d2

and d3 in the spectral sequence E s,t
r (B H) are given by

d2(z1)= x1 y1− ι
∗(u2),

d3(z2)= x2 y1− x1 y2− ι
∗(u3),

since
f ∗(u2⊗ 1− 1⊗ u2)= x1 y1− ι

∗(u2),

f ∗(u3⊗ 1− 1⊗ u3)= x2 y1− x1 y2− ι
∗(u3),

and the differentials d2 and d3 in the spectral sequence E s,t
r (BG) are given by

d2(z1)= u2⊗ 1− 1⊗ u2 and d3(z2)= u3⊗ 1− 1⊗ u3, as we saw in Section 4.

Proposition 6.1. The E∞-terms E s,t
∞

( for s = 0, 1, 2 and s + t = 3, 4) for the
spectral sequence E s,t

r (B H) are given as follows: E0,3
∞
= E1,2

∞
= E0,4

∞
= E1,3

∞
= {0},

E2,1
∞
= Z/p {w1x1z1, w1 y1z1},

E2,2
∞
= Z/p {x1 y1z2, w1x1z2, w1 y1z2}.

Proof. For the sake of notational simplicity, let

R = Z/p [x2, y2]⊗ H∗(Bπ̃(H2)),

so that
H∗(B A2)⊗ H∗(Bπ̃(H2))= R{1, x1, y1, x1 y1}.

The set {v1, w1} is a basis for H 1(Bπ̃(H2)). We consider a basis for H 2(Bπ̃(H2)).
By Proposition 5.1, we have ι∗(u2)

2
6= 0. We choose a basis {m(i), ι∗(u2)} for

H 2(Bπ̃(H2)), where 1 ≤ i < dim H 2(Bπ̃(H2)). Here, we do not exclude the
possibility that {m(i)

} could be the empty set. Then, the set {m(i), ι∗(u2), x2, y2} is
a basis for the subspace of R spanned by elements of degree 2 and {m(i), x2, y2} is
a basis for the subspace of R/(ι∗(u2)) spanned by elements of degree 2. The set

{v1, w1, x1, y1}

is a basis for E1,0
2 = H 1(B A2× Bπ̃(H2)) and

{m(i), ι∗(u2), x2, y2, v1x1, v1 y1, w1x1, w1 y1, x1 y1}

is a basis for E2,0
2 = H 2(B A2× Bπ̃(H2)).

First, we compute E3-terms E0,3
3 , E2,1

3 and E1,3
3 . Let us consider R-module

homomorphisms

pr(k)2 : E
∗,2k
2 = R{zk

2, x1zk
2, y1zk

2, x1 y1zk
2} → R{x1zk

2, y1zk
2, x1 y1zk

2}
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sending zk
2, x1zk

2, y1zk
2 and x1 y1zk

2 to 0, x1zk
2, y1zk

2 and x1 y1zk
2, respectively. Recall

that
d2(z1)= x1 y1− ι

∗(u2).

The E2-term E0,3
2 is spanned by z1z2. It is clear from d2(z2)= 0 that

d2(z1z2)= d2(z1)z2 = (x1 y1− ι
∗(u2))z2 6= 0.

Hence the homomorphism d2 : E
0,3
2 → E2,2

2 is injective and we have E0,3
3 = {0}.

The E2-term E2,1
2 is spanned by

m(i)z1, ι
∗(u2)z1, x2z1, y2z1, v1x1z1, v1 y1z1, w1x1z1, w1 y1z1, x1 y1z1

and
d2(α2z1)= α2d2(z1)= α2x1 y1−α2ι

∗(u2).

for any degree 2 element α2 in E2,0
2 = H 2(B A2× Bπ̃(H2)) since d2(α2) = 0. If

α2 is one of m(i), ι∗(u2), x2 or y2, then α2ι
∗(u2) ∈ R{1} and so pr(0)2 (α2ι

∗(u2))= 0,
by definition. Hence, for α2 = m(i), ι∗(u2), x2 and y2, we have

pr(0)2 (d2(α2z1))= α2x1 y1.

So, we have
pr(0)2 (d2(m(i)z1))= m(i)x1 y1,

pr(0)2 (d2(ι
∗(u2)z1))= ι

∗(u2)x1 y1,

pr(0)2 (d2(x2z1))= x2x1 y1,

pr(0)2 (d2(y2z1))= y2x1 y1.

If α2 is one of v1x1, v1 y1, w1x1, w1 y1 or x1 y1, then α2x1 y1 = 0. So, we have

d2(α2z1)=−α2ι
∗(u2)=−ι

∗(u2)α2.

By Proposition 5.2, ι∗(u2)w1 = 0 in H∗(Bπ̃(H2)). Using this, we have

d2(w1x1z1)=−ι
∗(u2)w1x1 = 0,

d2(w1 y1z1)=−ι
∗(u2)w1 y1 = 0.

Also, we have

pr(0)2 (d2(v1x1z1))= − ι∗(u2)v1x1,

pr(0)2 (d2(v1 y1z1))= − ι∗(u2)v1 y1,

pr(0)2 (d2(x1 y1z1))=−ι
∗(u2)x1 y1.

By Proposition 5.1, ι∗(u2)v1 6= 0. So, the kernel of pr(0)2 ◦ d2 is spanned by

x1 y1z1+ ι
∗(u2)z1, w1x1z1, w1 y1z1.
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On the other hand, we have

d2(x1 y1z1+ ι
∗(u2)z1)= x1 y1(x1 y1− ι

∗(u2))+ ι
∗(u2)(x1 y1− ι

∗(u2))=−ι
∗(u2)

2,

and, since ι∗(u2)
2
6= 0 by Proposition 5.1, x1 y1z1 + ι

∗(u2)z1 is not in the kernel
of d2. Hence, the kernel of d2 is spanned by w1x1z1 and w1 y1z1, and the image of
d2 : E0,2

2 → E2,1
2 is trivial since E0,2

2 is spanned by z2 and d2(z2) = 0. Thus, we
have E2,1

3 = Z/p {w1x1z1, w1 y1z1}.
As for the E2-term E1,3

2 , we have a basis

{x1z1z2, y1z1z2, v1z1z2, w1z1z2}

and
d2(α1z1z2)=−α1d2(z1)z2 =−α1x1 y1z2+α1ι

∗(u2)z2

for α1= x1, y1, v1, w1, since d2(α1)= d2(z2)= 0. For α1= x1, y1, since α1x1 y1= 0
we have

d2(α1z1z2)= α1ι
∗(u2)z2 = ι

∗(u2)α1z2.

For α1 = v1, w1, since α1ι
∗(u2)z2 ∈ R{z2}, we have pr(1)2 (α1ι

∗(u2)z2) = 0 by
definition. Hence, we have

pr(1)2 (d2(α1z1z2))=−α1x1 y1z2.

Thus, we obtain

pr(1)2 (d2(x1z1z2))= ι∗(u2)x1z2,

pr(1)2 (d2(y1z1z2))= ι∗(u2)y1z2,

pr(1)2 (d2(v1z1z2))=−v1x1 y1z2,

pr(1)2 (d2(w1z1z2))=−w1x1 y1z2.

Hence, it is clear that the composition

pr(1)2 ◦ d2 : E
1,3
2 → E3,2

2 → R{x1z2, y1z2, x1 y1z2}

is injective and so is d2 : E
1,3
2 → E3,2

2 . Therefore, we have E1,3
3 = {0}.

Next we compute the E4-terms E0,4
4 , E1,2

4 and E2,2
4 . In the E3-term, the relations

are given by x1 y1= ι
∗(u2), ι∗(u2)x1= 0 and ι∗(u2)y1= 0. In particular, ι∗(u2)

2
= 0.

For simplicity, we write R′ and R′′ for R/(ι∗(u2)) and R/(ι∗(u2)
2), respectively.

We have
E∗,2k

3 = R′{x1zk
2, y1zk

2}⊕ R′′{zk
2}

as a graded Z/p-module. Let N be the subspace of R′{x1} spanned by elements
of the form xx1, where x ranges over a basis for H∗(Bπ̃(H2))/(ι

∗(u2)) ⊂ R′.
Here, we emphasize that N is not an R-submodule and that x̃m(i)x1, x̃ x1, x̃v1x1
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and x̃w1x1 are linearly independent in R′{x1}/N , where x̃ ranges over positive-
degree monomials in x2 and y2. We consider a Z/p-module homomorphism

pr3 : E
∗,0
3 = R′{x1, y1}⊕ R′′{1} → R′{x1}/N ⊕ R′′{1},

sending r ′x1, r ′y1 and r ′′ to r ′x1, 0 and r ′′, respectively, where r ′ ∈ R′ and r ′′ ∈ R′′.
Recall that

d3(z2)= x2 y1− x1 y2− ι
∗(u3).

The E3-term E0,4
3 is spanned by z2

2 and, since y2x1z2 is nontrivial in R′{x1z2},

d3(z2
2)= 2d3(z2)z2 = 2x2 y1z2− 2x1 y2z2− 2ι∗(u3)z2

=−2y2x1z2+ 2x2 y1z2− 2ι∗(u3)z2

is nontrivial in E∗,23 = R′{x1z2, y1z2}⊕R′′{z2}. Hence, d3 : E
0,4
3 → E3,2

3 is injective
and E0,4

4 = {0}.
The E3-term E1,2

3 is spanned by

v1z2, w1z2, x1z2, y1z2,

since the subspace of R′′ spanned by degree 1 elements is equal to H 1(Bπ̃(H2))

and H 1(Bπ̃(H2)) is spanned by v1 andw1. For α1=v1,w1, x1, y1, since d3(α1)=0
we have

d3(α1z2)=−α1d3(z2)=−α1x2 y1+α1x1 y2+α1ι
∗(u3).

Hence, for α1 = v1, w1, since pr3(α1x2 y1)= 0 by definition, we have

pr3(d3(α1z2))= α1x1 y2+α1ι
∗(u3)= y2α1x1+α1ι

∗(u3).

For α1 = x1, y1, since x2
1 = y2

1 = 0, x1 y1 = ι
∗(u2) and y1x1 =−ι

∗(u2), we have

d3(x1z2)=−x1x2 y1+ x1ι
∗(u3)=−ι

∗(u3)x1− x2ι
∗(u2)

d3(y1z2)= y1x1 y2+ y1ι
∗(u3)=−ι

∗(u3)y1− y2ι
∗(u2).

Since ι∗(u3)x1 is in N , pr3(ι
∗(u3)x1)= 0. By definition, pr3(ι

∗(u3)y1)= 0. There-
fore, we have

pr3(d3(v1z2))= v1 y2x1 + v1ι
∗(u3),

pr3(d3(w1z2))= w1 y2x1+w1ι
∗(u3),

pr3(d3(x1z2))= − x2ι
∗(u2),

pr3(d3(y1z2))= − y2ι
∗(u2).

Since v1 y2x1 and w1 y2x1 are linearly independent in R′{x1}/N , and ι∗(u2)x2 and
ι∗(u2)y2 are linearly independent in Z/p {x2, y2}⊗H 2(Bπ̃(H2))⊂ R′′{1}, the four
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elements
d3(v1z2), d3(w1z2), d3(x1z2), d3(y1z2)

are linearly independent in E∗,03 = R′{x1, y1}⊕ R′′{1}. Hence, the homomorphism
d3 : E

1,2
3 → E4,0

3 is injective. Therefore, we have E1,2
4 = {0}.

The E3-term E2,2
3 is spanned by

m(i)z2, ι∗(u2)z2, x2z2, y2z2, v1x1z2, v1 y1z2, w1x1z2, w1 y1z2.

For α2 = m(i), ι∗(u2), x2, y2, v1x1, v1 y1, w1x1, w1 y1 ∈ E2,0
3 , since d3(α2) is in

E5,−2
3 = {0} we have

d3(α2z2)= α2d3(z2)= α2x2 y1−α2x1 y2−α2ι
∗(u3).

For α2 = m(i), ι∗(u2), x2, y2, since pr3(α2x2 y1)= 0 by definition, we have

pr3(d3(α2z2))=−α2 y2x1−α2ι
∗(u3).

Thus, we have

pr3(d3(m(i)z2))=−y2m(i)x1−m(i)ι∗(u3),

pr3(d3(x2z2))=−x2 y2x1− x2ι
∗(u3),

pr3(d3(y2z2))=−y2
2 x1− y2ι

∗(u3).

Moreover, since ι∗(u2)ι
∗(u3)= ι

∗(u2u3)= 0 in H∗(Bπ̃(H2)) by Proposition 3.2,
and since ι∗(u2)x1 = ι

∗(u2)y1 = 0 in R′{x1, y1}, we have

d3(ι
∗(u2)z2)= 0.

For α1= v1, w1, using the relations x2
1 = y2

1 = 0, x1 y1= ι
∗(u2) and y1x1=−ι

∗(u2)

in E3, we have

d3(α1x1z2)= α1x1x2 y1−α1x1x1 y2−α1x1ι
∗(u3)= α1ι

∗(u3)x1+ x2α1ι
∗(u2)

d3(α1 y1z2)= α1 y1x2 y1−α1 y1x1 y2−α1 y1ι
∗(u3)= α1ι

∗(u3)y1+ y2α1ι
∗(u2).

Since α1ι
∗(u3) ∈ H∗(Bπ̃(H2))/(ι

∗(u2)), we obtain α1ι
∗(u3)x1 ≡ 0 in R′{x1}/N ,

hence pr3(α1ι
∗(u3)x1) = 0. Moreover, pr3(α1ι

∗(u3)y1) = 0 by definition. So, we
have

pr3(d3(α1x1z2))= α1x2ι
∗(u2)= x2α1ι

∗(u2)

pr3(d3(α1 y1z2))= α1 y2ι
∗(u2)= y2α1ι

∗(u2).

By Proposition 5.2, w1ι
∗(u2)= 0. Hence, we have

d3(w1x1z2)= w1ι
∗(u3)x1

d3(w1 y1z2)= w1ι
∗(u3)y1.
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Furthermore, by Proposition 5.2, Q0(w1ι
∗(u2)) = Q0w1 · ι

∗(u2)−w1ι
∗(u3) = 0

in H∗(Bπ̃(H2)), hence w1ι
∗(u3)x1 = (Q0w1)ι

∗(u2)x1 = 0 in R′{x1, y1} ⊂ E∗,03 .
Thus, we obtain d3(w1x1z2) = 0. Similarly, we also have d3(w1 y1z2) = 0. Thus,
we have

pr3(d3(v1x1z2))= x2v1ι
∗(u2),

pr3(d3(v1 y1z2))= y2v1ι
∗(u2),

and
d3(w1x1z2)= 0,

d3(w1 y1z2)= 0.

Since y2m(i)x1, x2 y2x1 and y2
2 x1 are linearly independent in R′{x1}/N and, by

Proposition 5.1, x2v1ι
∗(u2) and y2v1ι

∗(u2) are linearly independent in

Z/p {x2, y2}⊗ H 3(Bπ̃(H2))⊂ R′′{1},

the kernel of pr3 ◦ d3 is spanned by ι∗(u2)z2, w1x1z2 and w1 y1z2, and, since these
are in the kernel of d3, the kernel of d3 is spanned by these elements. Moreover,
the image d3 : E

−1,4
3 → E2,2

3 is trivial. Therefore, we obtain

E2,2
4 = Z/p {ι∗(u2)z2, w1x1z2, w1 y1z2} = Z/p {x1 y1z2, w1x1z2, w1 y1z2},

where ι∗(u2)z2 = x1 y1z2.
Finally, we compute the E∞-terms E0,3

∞
, E1,2
∞

, E2,1
∞

and E0,4
∞

, E1,3
∞

, E2,2
∞

. Since
E0,3

3 = E1,2
4 = {0}, we have E0,3

∞
= E1,2

∞
= {0}. Similarly, since E0,4

4 = E1,3
3 = {0},

we have E0,4
∞
= E1,3

∞
= {0}. Since the Leray–Serre spectral sequence is the first

quadrant spectral sequence, for s ≤ r − 1 and t ≤ r − 2,

E s−r,t+r−1
r = E s+r,t−r+1

r = {0},
and the differentials

dr : E s−r,t+r−1
r → E s,t

r , dr : E s,t
r → E s+r,t−r+1

r

are trivial. Hence, we have E s,t
r = E s,t

∞
for s ≤ r − 1 and t ≤ r − 2. In particular,

E s,t
3 = E s,t

∞
for s ≤ 2 and t ≤ 1, and E s,t

4 = E s,t
∞

for s ≤ 3 and t ≤ 2. Hence, we
have E2,1

∞
= E2,1

3 and E2,2
∞
= E2,2

4 . �

In Section 4, we defined x4 ∈ H 4(BG;Z), so that c2(λ
′′)= px4 in H 4(BG;Z).

Therefore, to show that c2(λ
′′
◦ f ) 6= 0 in H 4(B H ;Z) it is equivalent to show that

p f ∗(x4) 6= 0 in H 4(B H ;Z). Hence, in order to prove (1), it suffices to show that
the mod p reduction ρ( f ∗(x4)) ∈ H 4(B H) of f ∗(x4) ∈ H 4(B H ;Z) is not in the
image of the Bockstein homomorphism. So, we prove the following proposition:

Proposition 6.2. The cohomology class f ∗(ρ(x4)) is not in the image of the Bock-
stein homomorphism

Q0 : H 3(B H)→ H 4(B H).
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Proof. Since E0,4
∞
= E1,3

∞
= {0}, we have F2 H 4(B H)= H 4(B H). Similarly, since

E0,3
∞
= E1,2

∞
= {0}, we have F2 H 3(B H)= H 3(B H). Hence, we have

Q0 H 3(B H)⊂ F2 H 4(B H)

and each cohomology class in Q0 H 3(B H) represents an element in

E2,2
∞
= F2 H 4(B H)/F3 H 4(B H).

Since E2,1
∞

is spanned by w1x1z1 and w1 y1z1, using the properties of the vertical
operation β℘0 constructed by Araki [1957, Corollary 4.1] in the spectral sequence
of a fibration, we have that if x is in Q0 H 3(B H) then x represents a linear combi-
nation of w1x1z2 and w1 y1z2 in E2,2

∞
.

On the other hand, by Proposition 4.2, ρ(x4) ∈ H 4(BG) represents αb2z2 in
E2,2
∞
(BG), where α 6= 0 is in Z/p. Using Proposition 3.3 and the definition of

b2 in Section 4, we have f ∗(b2)= x1 y1. Therefore, f ∗(ρ(x4)) represents αx1 y1z2

in E2,2
∞

. Hence, f ∗(ρ(x4)) is not in the image of the Bockstein homomorphism Q0.
�

Remark 6.3. If we replace H2 by the extraspecial p-group p1+2
+ , then (1) does

not hold. To be more precise, f ∗(ρ(x4)) is in the image of the Bockstein homo-
morphism Q0 : H 3(Bp1+4

+ ) → H 4(Bp1+4
+ ) and c2(λ

′′
◦ f ) = p f ∗(x4) = 0 in

H 4(Bp1+4
+ ;Z).

Finally, we prove (2) by proving the following proposition:

Proposition 6.4. There exists no virtual complex representation

µ : B H → Z× BU

such that c2(λ
′′
◦ f ) ∈ p · Imµ∗.

Proof. We prove this by contradiction. Suppose that there exists a virtual complex
representation

µ : B H → Z× BU

such that c2(λ
′′
◦ f ) ∈ p · Imµ∗. Then, p(µ∗(y4)− f ∗(x4)) = 0 for some y4 in

H 4(Z× BU ;Z). Since Q1 acts trivially on H∗(Z× BU ), we have

Q1ρ(µ
∗(y4))= 0.

In what follows, we show that

Q1ρ(µ
∗(y4)) 6= 0,

which proves the proposition.
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Since p(µ∗(y4)− f ∗(x4))= 0, ρ(µ∗(y4)− f ∗(x4)) is in the image of the Bock-
stein homomorphism, that is, as in the proof of Proposition 6.2, ρ(µ∗(y4)− f ∗(x4))

represents

α1w1x1z2+α2w1 y1z2

in E2,2
∞

for some α1, α2 ∈ Z/p. We already verified that f ∗(ρ(x4)) = ρ( f ∗(x4))

represents αx1 y1z2 ∈ E2,2
∞

, where α 6= 0, in the proof of Proposition 6.2. So,
ρ(µ∗(y4)) represents

αx1 y1z2+α1w1x1z2+α2w1 y1z2

in E2,2
∞

and α 6= 0.
We recall the structure of H2 defined in Section 2. Also, we recall the diagram

A3
g

//

ϕ

��

H

π

��

A′3

ϕ′

��

g′
oo

A2
g
// A2× π̃(H2) A2

g′
oo

where the upper g and g′ are the obvious inclusions, A2 = 〈π̃(α), π̃(β)〉,

g(π̃(α))= (π̃(α), π̃(α)), g(π̃(β))= (π̃(β), π̃(β)),

g′(π̃(α))= (π̃(α), 1), g′(π̃(β))= (1, π̃(β)).

In Section 5, we defined w1 ∈ H 1(Bπ̃(H2)), so that the induced homomorphism
H 1(Bπ̃(H2))→ H 1(B〈π̃(β)〉) maps w1 to the element corresponding to the gen-
erator π̃(β). So, we see that the induced homomorphisms g∗ and g′ ∗ satisfy

g∗(x1)= x1, g∗(y1)= y1, g∗(w1)= y1,

g′ ∗(x1)= x1, g′ ∗(y1)= 0, g′ ∗(w1)= y1.

Therefore, g∗(ρ(µ∗(y4))) ∈ H 4(B A3) represents

g∗(αx1 y1z2+α1w1x1z2+α2w1 y1z2)= αx1 y1z2+α1 y1x1z2 = (α−α1)x1 y1z2

in the spectral sequence for H∗(B A3) and g′ ∗(ρ(µ∗(y4))) ∈ H 4(B A′3) represents

g′ ∗(αx1 y1z2+α1w1x1z2+α2w1 y1z2)= α1 y1x1z2 =−α1x1 y1z2

in the spectral sequence for H∗(B A′3).
As in the proof of Proposition 4.1, let M be the ϕ∗(H∗(B A2))-submodule of

H∗(B A3) and M ′ the ϕ′ ∗(H∗(B A2))-submodule of H∗(B A′3) generated by

1, z1, z1z2, zi
2, z1zi

2 (i ≥ 2),
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where ϕ : B A3→ B A1 and ϕ′ : B A′3→ B A2 are the maps defined in Section 2, so
that

H∗(B A3)/M = ϕ∗(H∗(B A2)){z2} = Z/p [x2, y2]⊗3(x1, y1){z2},

H∗(B A′3)/M ′ = ϕ′∗(H∗(B A2)){z2} = Z/p [x2, y2]⊗3(x1, y1){z2},

respectively. Since Q1z1 = z p
2 , Q1z2 = 0, and Q1 is a derivation, M and M ′ are

closed under the action of Milnor operation Q1. We have

g∗(ρ(µ∗(y4)))≡ (α−α1)x1 y1z2 mod M,

g′ ∗(ρ(µ∗(y4)))≡−α1x1 y1z2 mod M ′.
and so

Q1g∗(ρ(µ∗(y4)))≡ (α−α1)(x
p
2 y1− x1 y p

2 )z2 mod M,

Q1g′ ∗(ρ(µ∗(y4)))≡−α1(x
p
2 y1− x1 y p

2 )z2 mod M ′.

Since α 6= 0, at least one of α−α1 and −α1 is nonzero. Therefore, we have

Q1ρ(µ
∗(y4)) 6= 0.

This completes the proof. �
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