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A1-homotopy invariance of
algebraic K -theory with coefficients

and du Val singularities

Gonçalo Tabuada

C. Weibel, and Thomason and Trobaugh, proved (under some assumptions) that
algebraic K-theory with coefficients is A1-homotopy invariant. We generalize
this result from schemes to the broad setting of dg categories. Along the way, we
extend the Bass–Quillen fundamental theorem as well as Stienstra’s foundational
work on module structures over the big Witt ring to the setting of dg categories.
Among other cases, the above A1-homotopy invariance result can now be ap-
plied to sheaves of (not necessarily commutative) dg algebras over stacks. As an
application, we compute the algebraic K-theory with coefficients of dg cluster
categories using solely the kernel and cokernel of the Coxeter matrix. This leads
to a complete computation of the algebraic K-theory with coefficients of the
du Val singularities parametrized by the simply laced Dynkin diagrams. As a
byproduct, we obtain vanishing and divisibility properties of algebraic K-theory
(without coefficients).

1. Introduction and statement of results

Let k be a base commutative ring, X a quasicompact, quasiseparated k-scheme,
and lν a prime power. As proved by Weibel [1982, page 391; 1981, Theorem 5.2]
and by Thomason and Trobaugh [1990, Theorems 9.5–9.6], we have the following
result:

Theorem 1.1. (i) When 1/ l ∈ k, the projection morphism X [t] → X gives rise
to an homotopy equivalence of spectra K(X;Z/ lν)→ K(X [t];Z/ lν).

(ii) When l is nilpotent in k, the projection morphism X [t] → X gives rise to an
homotopy equivalence of spectra K(X)⊗Z[1/ l] → K(X [t])⊗Z[1/ l].

The author was supported by the National Science Foundation CAREER Award #1350472 and by
the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
through the project grant UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
MSC2010: 14A22, 14H20, 19E08, 30F50, 13F35.
Keywords: A1-homotopy, algebraic K -theory, Witt vectors, sheaf of dg algebras, dg orbit category,

cluster category, du Val singularities, noncommutative algebraic geometry.
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2 GONÇALO TABUADA

The proof of Theorem 1.1 is quite involved! The affine case, established by
Weibel, makes use of a convergent right half-plane spectral sequence, of a univer-
sal coefficient sequence, of the Bass–Quillen fundamental theorem (see [Grayson
1976, page 236]), and more importantly of Stienstra’s foundational work [1982,
§8] on module structures over the big Witt ring. The extension to quasicompact,
quasiseparated schemes, later established by Thomason and Trobaugh [1990, §9.1],
is based on a powerful method known as “reduction to the affine case”.

The first goal of this article is to generalize Theorem 1.1 from schemes to the
broad setting of dg categories. Consult Sections 2–3 for applications and compu-
tations.

Statement of results. A differential graded (dg) category A, over the base commu-
tative ring k, is a category enriched over complexes of k-modules; see Section 4.
Every (dg) k-algebra A gives naturally rise to a dg category with a single object.
Another source of examples is provided by schemes, since the category of perfect
complexes perf(X) of every quasicompact, quasiseparated k-scheme X admits a
canonical dg enhancement perfdg(X); see [Keller 2006, §4.4]. Given a dg cate-
gory A, let us write A[t] for the tensor product A⊗ k[t]. Our first main result is
the following:

Theorem 1.2. (i) When 1/ l ∈ k, the canonical dg functor A→ A[t] gives rise
to an homotopy equivalence of spectra K(A;Z/ lν)→ K(A[t];Z/ lν).

(ii) When l is nilpotent in k, the canonical dg functor A→ A[t] gives rise to an
homotopy equivalence of spectra K(A)⊗Z[1/ l] → K(A[t])⊗Z[1/ l].

For the proof of Theorem 1.2, we adapt the Bass–Quillen fundamental theorem,
as well as Stienstra’s foundational work on module structures over the big Witt
ring, to the broad setting of dg categories; see Theorems 8.4 and 9.1, respectively.
These results are of independent interest. Except in Theorem 9.1, we work more
generally with a localizing invariant; see Definition 5.1.

2. Applications and computations

The second goal of this article is to explain how Theorem 1.2 leads naturally to
several applications and computations.

Sheaves of dg algebras. Let X be a quasicompact, quasiseparated k-scheme and S
a sheaf of (not necessarily commutative) dg OX -algebras. In addition to perfdg(X),
we can consider the dg category perfdg(S) of perfect complexes of S-modules;
see [Tabuada and Van den Bergh 2015, §6]. By applying Theorem 1.2 to the dg
category A= perfdg(S), we obtain the following generalization of Theorem 1.1:

Theorem 2.1. (i) When 1/ l ∈ k, the projection morphism S[t] → S gives rise to
an homotopy equivalence of spectra K(S;Z/ lν)→ K(S[t];Z/ lν).
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(ii) When l is nilpotent in k, the projection morphism S[t] → S gives rise to an
homotopy equivalence of spectra K(S)⊗Z[1/ l] → K(S[t])⊗Z[1/ l].

Remark 2.2 (orbifolds and stacks). Given an orbifold, or more generally a stack X ,
we can also consider the associated dg category perfdg(X ) of perfect complexes.
Therefore, Theorem 2.1 holds more generally for every sheaf S of dg OX -algebras.

DG orbit categories. Given a dg category A and a dg functor F : A→ A which
induces an equivalence of categories H0(F) :H0(A) ∼−→H0(A), recall from [Keller
2005, §5.1] the construction of the associated dg orbit category A/FZ. Thanks to
Theorem 1.2, all the results established in [Tabuada 2015a] can now be applied
to algebraic K-theory with coefficients. For example, Theorem 1.5 of [Tabuada
2015a] gives rise to the result:

Theorem 2.3. When 1/ l ∈ k, we have a distinguished triangle of spectra:

K(A;Z/ lν)
K(F;Z/ lν)−Id
−−−−−−−−→ K(A;Z/ lν)−→ K(A/FZ

;Z/ lν)−→6K(A;Z/ lν).

When l is nilpotent in k, the same holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

Remark 2.4 (fundamental isomorphism). When F is the identity dg functor, the
dg orbit category A/FZ reduces to A[t, 1/t] and the above distinguished triangle
splits. Thus, we obtain a fundamental isomorphism between K(A[t, 1/t];Z/ lν)
and the direct sum K(A;Z/ lν)⊕6K(A;Z/ lν). When l is nilpotent in k, the same
holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

DG cluster categories. Let k be an algebraically closed field, Q a finite quiver
without oriented cycles, k Q the path k-algebra of Q, Db(k Q) the bounded derived
category of finitely generated right k Q-modules, and Db

dg(k Q) the canonical dg
enhancement of Db(k Q). Consider the dg functors

τ−16m
: Db

dg(k Q)−→ Db
dg(k Q), m ≥ 0,

where τ is the Auslander–Reiten translation. Following Keller [2005, §7.2], the dg
(m)-cluster category C(m)Q of Q is defined as the dg orbit category

Db
dg(k Q)/(τ−16m)Z.

In the same vein, the (m)-cluster category of Q is defined as H0(C(m)Q ). These
(dg) categories play, nowadays, a key role in the representation theory of finite-
dimensional algebras; see Reiten’s ICM address [2010]. As proved by Keller and
Reiten [2008, §2], the (m)-cluster categories (with m ≥ 1) can be conceptually char-
acterized as those (m+1)-Calabi–Yau triangulated categories containing a cluster-
tilting object whose endomorphism algebra has a quiver without oriented cycles.

As explained in [Tabuada 2015a, Corollary 2.11], in the particular case of dg
cluster categories, Theorem 2.3 reduces to the following one:
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Theorem 2.5. When l 6= char(k), we have a distinguished triangle of spectra
v⊕

r=1

K(k;Z/ lν)
(−1)m8Q−Id
−−−−−−−→

v⊕
r=1

K(k;Z/ lν)→K(C(m)Q ;Z/ lν)→
v⊕

r=1

6K(k;Z/ lν),

where v stands for the number of vertices of Q and8Q for the Coxeter matrix of Q.
When l = char(k), the same holds with K(−;Z/ lν) replaced by K(−)⊗Z[1/ l].

As proved by Suslin [1984, Corollary 3.13], we have Ki (k;Z/ lν)' Z/ lν when
i ≥ 0 is even and Ki (k;Z/ lν) = 0 otherwise. Consequently, making use of the
long exact sequence of algebraic K-theory groups with coefficients associated to
the above distinguished triangle of spectra, we obtain the following result:

Corollary 2.6. Consider the (matrix) homomorphism

(−1)m8Q − Id :
v⊕

r=1

Z/ lν −→
v⊕

r=1

Z/ lν . (2.7)

When l 6= char(k), we have the following computation:

Ki (C(m)Q ;Z/ lν)'


cokernel (2.7) if i ≥ 0 even,
kernel (2.7) if i ≥ 0 odd,
0 if i < 0.

Corollary 2.6 provides a complete computation of the algebraic K-theory with
coefficients of all dg orbit categories! Roughly speaking, all the information is
encoded in the Coxeter matrix of the quiver. Note also that the kernel and co-
kernel of (2.7) have the same finite order. In particular, one is trivial if and only
if the other one is trivial. Thanks to Corollary 2.6, this implies that the groups
Ki (C(m)Q ;Z/ lν), i ≥ 0, are either all trivial or all nontrivial.

3. Du Val singularities

The third goal of this article is to explain how Corollary 2.6 provides us a complete
computation of the algebraic K-theory with coefficients of the du Val singularities.

Let k be an algebraically closed field of characteristic zero. Recall that the
du Val singularities1 [1934a; 1934b; 1934c] are the isolated singularities of the
singular affine hypersurfaces R := k[x, y, z]/( f ) parametrized by the simply laced
Dynkin diagrams:

type An , n ≥ 1 Dn , n ≥ 4 E6 E7 E8

f xn+1
+ yz xn−1

+ xy2
+ z2 x4

+ y3
+ z2 x3 y+ y3

+ z2 x5
+ y3
+ z2

1Also known as rational double points or ADE singularities.
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Let MCM(R) denote the stable category of maximal Cohen–Macaulay R-modules.
Thanks to the work of Buchweitz [1986] and Orlov [2004; 2009], this category is
also known as the category of singularities Dsing(R) or equivalently as the category
of matrix factorizations MF(k[x, y, z], f ). Roughly speaking, MCM(R) encodes
the crucial information concerning the isolated singularity of the singular affine
hypersurface R.

Let Q be a Dynkin quiver, i.e., a quiver whose underlying graph is a Dynkin
diagram of type A, D, or E . As explained by Keller [2005, §7.3], MCM(R) is
equivalent to the category of finitely generated projective modules over the pre-
projective algebra 3(Q) and to the (0)-cluster category of Q. We conclude that
the algebraic K-theory of the du Val singularities is given by the algebraic K-theory
of the dg (0)-cluster categories C(0)An

, C(0)Dn
, C(0)E6

, C(0)E7
and C(0)E8

. In these cases, the
homomorphisms (2.7) correspond to the following matrices (see [Auslander et al.
1995, pages 289–290]):

An : 1 // 2 // · · · // n− 1 // n


−2 1 0 · · · 0
−1 −1

. . .
. . .

...

−1 0
. . .

. . . 0
...

...
. . .

. . . 1
−1 0 · · · 0 −1


n×n

Dn :

1
$$
3 // 4 // · · · // n

2
::



−2 0 1 0 · · · · · · 0
0 −2 1 0

. . .
. . .

...

−1 −1 0 1
. . .

. . .
...

−1 −1 1 −1
. . .

. . .
...

...
...

... 0
. . .

. . . 0
...

...
...

...
. . .

. . . 1
−1 −1 1 0 · · · 0 1


n×n

E6 :
3
��

1 // 2 // 4 // 5 // 6



−2 1 0 0 0 0
−1 −1 0 1 0 0

0 0 −2 1 0 0
−2 0 −1 0 1 0
−1 0 −1 1 −1 1
−1 0 −1 1 0 −1



E7 :
3
��

1 // 2 // 4 // 5 // 6 // 7



−2 1 0 0 0 0 0
−1 −1 0 1 0 0 0

0 0 −2 1 0 0 0
−2 0 −1 0 1 0 0
−1 0 −1 1 −1 1 0
−1 0 −1 1 0 −1 1
−1 0 −1 1 0 0 −1


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E8 :
3
��

1 // 2 // 4 // 5 // 6 // 7 // 8



−2 1 0 0 0 0 0 0
−1 −1 0 1 0 0 0 0

0 0 −2 1 0 0 0 0
−1 0 −1 0 1 0 0 0
−1 0 −1 1 −1 1 0 0
−1 0 −1 1 0 −1 1 0
−1 0 −1 1 0 0 −1 1
−1 0 −1 1 0 0 0 −1


Thanks to Corollary 2.6, the computation of the algebraic K-theory with coeffi-
cients of the du Val singularities reduces then to the computation of the (co)kernels
of the above explicit matrix homomorphisms! We now compute the type An and
leave the remaining cases to the reader.

Theorem 3.1. Let k be an algebraically closed field of characteristic zero and
n ≥ 1 a positive integer. Under these assumptions and notations, we have

Ki (C(0)An
;Z/ lν)'

{
Z/ gcd(n+ 1, lν) if i ≥ 0,
0 if i < 0.

Consequently, the group Ki (C(0)An
;Z/ lν) is nontrivial if and only if l | (n+1) and i≥0.

Intuitively, Theorem 3.1 shows that the algebraic K-theory with Z/ lν-coefficients
of the isolated singularity of the affine hypersurface k[x, y, z]/(xn+1

+ yz) mea-
sures the l-divisibility of the integer n+ 1. To the best of the author’s knowledge,
these computations are new in the literature. They lead to the following vanishing
and divisibility properties of algebraic K-theory (without coefficients):

Corollary 3.2. (i) For every i ≥ 0, at least one of the algebraic K-theory groups
Ki (C(0)An

) and Ki−1(C(0)An
) is nontrivial.

(ii) For every l - (n+1) the algebraic K-theory groups Ki (C(0)An
), i ∈Z, are uniquely

l-divisible, i.e., they are Z[1/ l]-modules.

Roughly speaking, Corollary 3.2 shows that at least half of the groups Ki (C(0)An
)

are nontrivial and moreover that they are “large” from the divisibility viewpoint.

Proof. Consider the following universal coefficient sequences (see Section 5):

0→ Ki (C(0)An
)⊗Z Z/ l→ Ki (C(0)An

;Z/ l)→ {l-torsion in Ki−1(C(0)An
)} → 0.

Let l be a prime factor of n+ 1. Thanks to Theorem 3.1, the algebraic K-theory
groups Ki (C(0)An

;Z/ l), i ≥ 0, are nontrivial. Therefore, (i) follows from the above
short exact sequences. Let l be a prime number which does not divide n + 1.
Thanks to Theorem 3.1, the algebraic K-theory groups Ki (C(0)An

;Z/ l), i ∈ Z, are
trivial. Therefore, (ii) follows also from the above short exact sequences. �
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A cyclic quotient singularity. Let the cyclic group Z/3 act on the power series
ring k[[x, y, z]] by multiplication with a primitive third root of unit. As proved
by Keller and Reiten [2008, §2], the stable category of maximal Cohen–Macaulay
modules MCM(R) over the fixed point ring R := k[[x, y, z]]Z/3 is equivalent to the
(1)-cluster category of the generalized Kronecker quiver Q : 1 −→−→−→ 2. In this case
the above homomorphism (2.7) is given by the matrix

[
−9
−3

3
0

]
.

Proposition 3.3. We have the following computation:

Ki (C(1)Q ;Z/ lν)'
{

Z/3×Z/3 if i ≥ 0 and l = 3,
0 otherwise.

To the best of the author’s knowledge, the above computation is new in the
literature. Similarly to Corollary 3.2, for every i ≥ 0 at least one of the algebraic
K-theory groups Ki (C(1)Q ) and Ki−1(C(1)Q ) is nontrivial, and, for every prime number
l 6= 3, the groups Ki (C(1)Q ), i ∈ Z, are uniquely l-divisible.

Remark 3.4. After the circulation of this manuscript, Christian Haesemeyer kindly
informed the author that some related computations concerning the G-theory of a
local ring of finite Cohen–Macaulay type have been performed by Viraj Navkal
[2013].

4. Preliminaries

Throughout the article, k will be a base commutative ring. Unless stated differently,
all tensor products will be taken over k.

Dg categories. Let C(k) be the category of cochain complexes of k-modules. A
differential graded (dg) category A is a C(k)-enriched category and a dg functor
F :A→ B is a C(k)-enriched functor; consult Keller’s ICM survey [2006]. In what
follows, dgcat(k) stands for the category of (small) dg categories and dg functors.

Let A be a dg category. The category H0(A) has the same objects as A and
H0(A)(x, y) := H 0A(x, y). The dg category Aop has the same objects as A
and Aop(x, y) := A(y, x). A right A-module is a dg functor M : Aop

→ Cdg(k)
with values in the dg category Cdg(k) of cochain complexes of k-modules. Let
us write C(A) for the category of right A-modules. As explained in [Keller 2006,
§§3.1–3.2], the category C(A) carries a projective Quillen model structure in which
the weak equivalences and fibrations are defined objectwise. The derived category
D(A) of A is the associated homotopy category or, equivalently, the localization
of C(A) with respect to the (objectwise) quasi-isomorphisms. The full triangulated
subcategory of compact objects will be denoted by Dc(A).

A dg functor F : A→ B is called a Morita equivalence if it induces an equiv-
alence of (triangulated) categories D(A) ∼−→D(B); see [Keller 2006, §4.6]. As
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proved in [Tabuada 2005, Theorem 5.3], dgcat(k) admits a Quillen model struc-
ture whose weak equivalences are the Morita equivalences. Let Hmo(k) be the
associated homotopy category.

The tensor product A⊗B of dg categories is defined as follows: the set of objects
is the cartesian product and (A ⊗ B)((x, w), (y, z)) := A(x, y) ⊗ B(w, z). As
explained in [Keller 2006, §2.3 and §4.3], this construction gives rise to symmetric
monoidal categories (dgcat(k),−⊗−, k) and (Hmo(k),−⊗L

−, k).
An A-B-bimodule is a dg functor B :A⊗L Bop

→ Cdg(k) or, equivalently, a right
(Aop
⊗

L B)-module. A standard example is the A-B-bimodule

F B :A⊗L Bop
→ Cdg(k), (x, w) 7→ B(w, F(x)), (4.1)

associated to a dg functor F : A→ B. Finally, let us denote by rep(A,B) the
full triangulated subcategory of D(Aop

⊗
L B) consisting of those A-B-bimodules B

such that B(x,−) ∈ Dc(B) for every object x ∈A.

Exact categories. Let E be an exact category in the sense of [Quillen 1973, §2].
The following examples will be used in the sequel:

Example 4.2. Let A be a k-algebra. Recall from [Quillen 1973, §2] that the cat-
egory P(A) of finitely generated projective right A-modules carries a canonical
exact structure.

(i) Let End(A) be the category of endomorphisms in P(A). The objects are the
pairs (M, f ), with M ∈ P(A) and f an endomorphism of M . The morphisms
(M, f )→ (M ′, f ′) are the A-linear maps h : M → M ′ such that h f = f ′h.
Note that End(A) inherits naturally from P(A) an exact structure making the
forgetful functor End(A)→ P(A), (M, f ) 7→ M , exact.

(ii) Let Nil(A) be the category of nilpotent endomorphisms in P(A). By construc-
tion, Nil(A) is a full exact subcategory of End(A).

Following [Keller 2006, §4.4], the bounded derived dg category Db
dg(E) of E is

defined as Drinfeld’s dg quotient Cb
dg(E)/Acb

dg(E) of the dg category of bounded
cochain complexes over E by the full dg subcategory of acyclic complexes.

Notation 4.3. Let E be an exact category. In order to simplify the exposition, let
us write Edg instead of Db

dg(E). By construction, we have H0(Edg)' Db(E). Note
that when E = P(A) we have a Morita equivalence between P(A)dg and A.

Every exact functor E → E ′ gives rise to a dg functor Edg → E ′dg. In the
same vein, every multiexact functor E × · · · × E ′→ E ′′ gives rise to a dg functor
Edg⊗

L
· · · ⊗

L E ′dg→ E ′′dg.
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Algebraic K-theory with coefficients. Let Spt be the homotopy category of spectra
and S the sphere spectrum. Given a small dg category A, its nonconnective alge-
braic K-theory spectrum K(A) is defined by applying Schlichting’s construction
[2006, §12.1] to the Frobenius pair associated to the category of those cofibrant
right A-modules which become compact in the derived category D(A). Let us
denote by K : dgcat(k)→ Spt the associated functor. Given a prime power lν , the
algebraic K-theory with Z/ lν-coefficients is defined as2

K(−;Z/ lν) : dgcat(k)→ Spt, A 7→ K(A)∧L S/ lν, (4.4)

where S/ lν stands for the mod lν Moore spectrum of S. In the same vein, we have
the functor K(−)⊗Z[1/ l] : dgcat(k)→ Spt defined by the homotopy colimit

K(A)⊗Z[1/ l] := hocolim
(
K(A) ·l→K(A) ·l→· · ·

)
.

When A = perfdg(X), with X a quasicompact, quasiseparated k-scheme, K(A)
agrees with K(X); see [Keller 2006, §5.2; Schlichting 2006, §8]. Consequently,
K(A;Z/ lν) agrees with K(X;Z/ lν) and K(A)⊗Z[1/ l] agrees with K(X)⊗Z[1/ l].

Bass’s construction. Let H : dgcat(k)→ Ab be a functor with values in the cat-
egory of abelian groups. Following [Bass 1968, §XII], consider the sequence of
functors N p H : dgcat(k)→ Ab, p ≥ 0, defined by N 0 H(A) := H(A) and

N p H(A) := kernel
(
N p−1 H(A[t])

id⊗(t=0)
−−−−−→ N p−1 H(A)

)
, p ≥ 1. (4.5)

Note that the canonical dg functor A→A[t] gives rise to a splitting N p−1 H(A[t])'
N p H(A)⊕ N p−1 H(A). Let Ch≥0(Z) be the category of nonnegatively graded
chain complexes of abelian groups. Following Bass, we also have the functor

N •H : dgcat(k)→ Ch≥0(Z), A 7→ N •H(A),

where the chain complex N •H(A) is defined by N 0 H(A) := H(A) and, for p ≥ 1,

N p H(A) :=
p⋂

i=1

kernel
(
H(A[t1, . . . , tp])

id⊗(ti=0)
−−−−−−→ H(A[t1, . . . , t̂i , . . . , tp])

)
,

N p H(A)−→ N p−1 H(A), ti 7→
{

1−
∑p

i=2 ti if i = 1,
ti−1 if i 6= 1.

Note that the above two definitions of N p H(A) are isomorphic. In what follows
we will simply write NH(A) instead of N 1 H(A).

2Given any two prime numbers p and q , we have S/pq ' S/p⊕S/q in Spt. Therefore, without
loss of generality, we can (and will) work solely with one prime power lν .
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5. Proof of Theorem 1.2

We will work often with the following general notion:

Definition 5.1. A functor E : dgcat(k)→ Spt is called a localizing invariant if it
inverts Morita equivalences and sends short exact sequences of dg categories (see
[Keller 2006, §4.6]) to distinguished triangles of spectra

0→A→ B→ C→ 0 7→ E(A)→ E(B)→ E(C) ∂→6E(A).

Thanks to the work of Blumberg and Mandell [2012], Keller [1998; 1999],
Schlichting [2006], Thomason and Trobaugh [1990], and others, examples include
not only nonconnective algebraic K-theory (with coefficients) but also Hochschild
homology, cyclic homology, negative cyclic homology, periodic cyclic homology,
topological Hochschild homology, topological cyclic homology, etc. Given an in-
teger q ∈ Z, the abelian group HomSpt(6

qS, E(A)) will be denoted by Eq(A).
The proof of Theorem 1.2 is divided into four steps:

(I) Spectral sequence.

(II) Universal coefficient sequence.

(III) Fundamental theorem.

(IV) Module structure over the big Witt ring.

In order to simplify the exposition, we develop each one of these steps in a differ-
ent section. Making use of Steps I–IV, we then conclude the proof of Theorem 1.2
in Section 10.

6. Step I: spectral sequence

Let E be a localizing invariant and 1n := k[t0, . . . , tn]/
(∑n

i=0 ti − 1
)
, n ≥ 0, the

simplicial k-algebra with faces and degeneracies given by the formulas

dr (ti ) :=


ti if i < r,
0 if i = r,
ti−1 if i > r,

and sr (ti ) :=


ti if i < r,
ti + ti+1 if i = r,
ti+1 if i > r.

Out of this data, we can construct the A1-homotopization of E :

Eh
: dgcat(k)→ Spt, A 7→ hocolimn E(A⊗1n).

Note that Eh comes equipped with a natural 2-morphism E⇒ Eh . As explained
in [Tabuada 2015b, Proposition 5.2], Eh remains a localizing invariant and the
canonical dg functor A→A[t] gives rise to an homotopy equivalence of spectra
Eh(A)→ Eh(A[t]).
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Given an integer q ∈ Z, consider the functor Eq : dgcat(k)→ Ab and the asso-
ciated nonnegatively graded chain complex of abelian groups

0←− Eq(A)
d0−d1
←−−− Eq(A[t])←− · · ·

(−1)r
∑

r dr
←−−−−−−− Eq(A⊗1n)←− · · · . (6.1)

Under the isomorphisms

1n
∼
−→ k[t1, . . . , tn], ti 7→

{
1−

∑n
i=1 ti if i = 0,

ti if i 6= 0,

the (Moore) normalization of (6.1) identifies with N •Eq(A). Consequently, fol-
lowing [Quillen 1966], we obtain a standard convergent right half-plane spectral
sequence E1

pq = N p Eq(A) ⇒ Eh
p+q(A). In the particular case of algebraic K-

theory with coefficients, we have the convergent spectral sequence

E1
pq = N pKq(A;Z/ lν)⇒ Kh

p+q(A;Z/ lν). (6.2)

Similarly, since πq(K(A)⊗Z[1/ l])' Kq(A)Z[1/ l], we have the spectral sequence

E1
pq = N pKq(A)Z[1/ l]⇒ Kh

p+q(A)Z[1/ l]. (6.3)

Remark 6.4. The preceding constructions and spectral sequences have their roots
in the work of Anderson [1973], in the definition of homotopy K-theory (see
[Weibel 1989]), and in the work of Suslin and Voevodsky [1996].

7. Step II: universal coefficient sequence

Let E be a localizing invariant. Similarly to (4.4), consider the functor

E(−;Z/ lν) : dgcat(k)→ Spt, A 7→ E(A)∧L S/ lν .

For every dg category A we have a distinguished triangle of spectra

E(A) ·l
ν

−→ E(A)−→ E(A;Z/ lν) ∂
−→6E(A). (7.1)

Consequently, the associated long exact sequence (obtained by applying the functor
HomSpt(S,−) to (7.1)) breaks up into short exact sequences

0→ Eq(A)⊗Z Z/ lν→ Eq(A;Z/ lν)→ {lν-torsion in Eq−1(A)} → 0.

Note that since the above distinguished triangle of spectra (7.1) is functorial on A,
we have moreover the short exact sequences

0→ N p Eq(A)⊗Z Z/ lν→ N p Eq(A;Z/ lν)→ {lν-torsion in N p Eq−1(A)} → 0.

Remark 7.2. The preceding universal coefficient sequences are well known. In
the case where E = K, they were established by Thomason [1985, Appendix A].
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8. Step III: fundamental theorem

Recall that we have the exact functors:

Nil(k)⊂ End(k)→ P(k), (M, f ) 7→ M, (8.1)

P(k)→ Nil(k)⊂ End(k), M 7→ (M, 0). (8.2)

Let E be a localizing invariant and Nil(k)dg, P(k)dg the dg categories introduced at
Notation 4.3. Given a dg category A and an integer q, consider the abelian group

Nil Eq(A) := kernel
(
Eq(A⊗L Nil(k)dg)

id⊗(8.1)
−−−−−→ Eq(A⊗L P(k)dg)' Eq(A)

)
.

Note that since (8.1) ◦ (8.2)= id, the morphism

E(A)' E(A⊗L P(k)dg)
id⊗(8.2)
−−−−−→ E(A⊗L Nil(k)dg) (8.3)

gives rise to a splitting Eq(A⊗L Nil(k)dg)' Nil Eq(A)⊕ Eq(A).

Theorem 8.4 (fundamental theorem). Given a localizing invariant E , we have
N Eq+1(A)' Nil Eq(A).

The remainder of this section is devoted to the proof of Theorem 8.4. Let P1 be
the projective line over the base commutative ring k, with i : Spec(k[t]) ↪→ P1 and
j : Spec(k[1/t]) ↪→ P1 the classical Zariski open cover.

Proposition 8.5. We have a short exact sequence of dg categories

0−→ Nil(k)dg −→ perfdg(P
1)

L j∗
−→ perfdg(Spec(k[1/t]))−→ 0. (8.6)

Proof. Consider the commutative diagram

0 // perfdg(P
1)Z

��

// perfdg(P
1)

Li∗
��

L j∗
// perfdg(Spec(k[1/t]))

��

// 0

0 // perfdg(Spec(k[t]))Z ′ // perfdg(Spec(k[t])) // perfdg(Spec(k[t, 1/t])) // 0

where Z (resp. Z ′) stands for the complement of Spec(k[1/t]) in P1 (resp. of
Spec(k[t, 1/t]) in Spec(k[t])) and perfdg(P

1)Z (resp. perfdg(Spec(k[t]))Z ′) stands
for the dg category of those perfect complexes of OP1-modules (resp. OSpec(k[t])-
modules) which are supported on Z (resp. on Z ′). As proved by Thomason and
Trobaugh [1990, Theorems 2.6.3 and 7.4], both rows are short exact sequences of
dg categories and the left-hand side vertical dg functor is a Morita equivalence. It re-
mains then only to show that perfdg(Spec(k[t]))Z ′ is Morita equivalent to Nil(k)dg.

Let us write H1,t(k[t]) for the exact category of finitely presented k[t]-modules
of projective dimension ≤ 1 that are annihilated by some power tn of t . Following
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[Schlichting 2011, §§3.1.8–3.1.11], we have a short exact sequence of dg categories

0−→ H1,t(k[t])dg −→ perfdg(Spec(k[t]))−→ perfdg(Spec(k[t, 1/t]))−→ 0.

Making use of Keller’s characterization [2006, Theorem 4.11(i)] of short exact
sequences of dg categories, we conclude that perfdg(Spec(k[t]))Z ′ is Morita equiv-
alent to H1,t(k[t])dg. As proved by Grayson and Quillen [Grayson 1976, page 236],
we have an equivalence of exact categories Nil(k)→ H1,t(k[t]), (M, f ) 7→ M f ,
where M f stands for the k[t]-module M on which t acts as f . Consequently,
we obtain an induced equivalence of dg categories H1,t(k[t])dg ' Nil(k)dg. This
concludes the proof of Proposition 8.5. �

As proved by Drinfeld [2004, Proposition 1.6.3], the functor

A⊗L
− : Hmo(k)→ Hmo(k)

is well defined and preserves short exact sequences of dg categories. Consequently,
(8.6) gives rise to the short exact sequence of dg categories

0−→A⊗L Nil(k)dg −→A⊗L P1 id⊗L j∗
−−−−→A[1/t] −→ 0, (8.7)

where A⊗L P1 stands for A⊗L perfdg(P
1). By applying the functor E to (8.7), we

obtain a distinguished triangle of spectra

E(A⊗L Nil(k)dg)→ E(A⊗L P1)→ E(A[1/t]) ∂
→6E(A⊗L Nil(k)dg). (8.8)

Now, recall from [Orlov 1992, §2] that we have two fully faithful dg functors

ι−1 : perfdg(pt)→ perfdg(P
1), M 7→ Lp∗(M)⊗L OP1(−1),

ι0 : perfdg(pt)→ perfdg(P
1), M 7→ Lp∗(M),

where p : P1
→ Spec(k) stands for the projection morphism. The dg functor

ι−1 induces a Morita equivalence between perfdg(pt) and Drinfeld’s dg quotient
perfdg(P

1)/ι0 perfdg(pt). Following [Tabuada 2008, §13], we obtain a split short
exact sequence of dg categories (see also [Orlov 1992, Theorem 2.6])

0 // perfdg(pt)
ι0

// perfdg(P
1)

s
//

r
oo perfdg(pt)

ι−1
oo // 0, (8.9)

where r is the right adjoint of ι0, r ◦ ι0= id, ι−1 is right adjoint of s, and ι−1◦s = id.
By first applying the functor A⊗L

− to (8.9), and then the functor E to the resulting
split short exact sequence of dg categories, we obtain the isomorphism

[E(id⊗ι0), E(id⊗ι−1)] : E(A)⊕ E(A) ∼−→ E(A⊗L P1). (8.10)

The proof of the following general lemma is clear:
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Lemma 8.11. If ( f, g) : A⊕ A ∼
−→ B is an isomorphism in an additive category,

then ( f, f − g) : A⊕ A ∼
−→ B is also an isomorphism.

By applying Lemma 8.11 to (8.10), we obtain the isomorphism

[E(id⊗ι0), E(id⊗ι0)− E(id⊗ι−1)] : E(A)⊕ E(A) ∼−→ E(A⊗L P1). (8.12)

Proposition 8.13. The composition

E(A)
(8.3)
−−→ E(A⊗L Nil(k)dg)−→ E(A⊗L P1)

agrees with E(id⊗ι0)− E(id⊗ι−1).

Proof. As proved in [Tabuada 2005, Corollary 5.10], there is a bijection between
HomHmo(k)(A,B) and the set of isomorphism classes of the category rep(A,B).
Under this bijection, the composition law of Hmo(k) corresponds to the bifunctor

rep(A,B)× rep(B, C)→ rep(A, C), (B,B′) 7→ B⊗L
B B′. (8.14)

Since the A-B-bimodules (4.1) belong to rep(A,B), we have the ⊗-functor

dgcat(k)→ Hmo(k), A 7→A, F 7→ F B. (8.15)

The additivization Hmo0(k) of Hmo(k) is the additive category with the same ob-
jects and abelian groups of morphisms given by HomHmo0(k)(A,B) := K0 rep(A,B),
where K0 rep(A,B) stands for the Grothendieck group of the triangulated category
rep(A,B). The composition law is induced by the above bitriangulated functor
(8.14) and the symmetric monoidal structure by bilinearity from Hmo(k). Note
that we also have the symmetric monoidal functor

Hmo(k)→ Hmo0(k), A 7→A, B 7→ [B]. (8.16)

Let us denote by U : dgcat(k)→ Hmo0(k) the composition of (8.15) with (8.16).
Now, consider the composition of dg functors

ι : perfdg(pt)' P(k)dg
(8.2)
−−→ Nil(k)dg −→ perfdg(P

1).

Thanks to Proposition 8.17, below, and to the fact that U is a ⊗-functor, it suffices
now to show that U (ι) agrees with U (ι0)−U (ι−1). As explained in [Grayson 1976,
page 237], we have a short exact sequence 0→ OP1(−1)→ OP1 → ι(pt)→ 0.
Consequently, we obtain a short exact of dg functors

0→ ι−1→ ι0→ ι→ 0, ι−1, ι0, ι : perfdg(pt)→ perfdg(P
1).

By the construction of the additive category Hmo0(k), we conclude that [ ιB] =
[ ι0B] − [ ι1B], i.e., that U (ι)=U (ι0)−U (ι−1). This achieves the proof. �
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Proposition 8.17. Given a localizing invariant E : dgcat(k)→ Spt, there is an
(unique) additive functor E : Hmo0(k)→ Spt such that E ◦U ' E.

Proof. Recall from [Tabuada 2005] that a functor E : dgcat(k)→ D, with values in
an additive category, is called an additive invariant if it inverts Morita equivalences
and sends split short exact sequences of dg categories to direct sums. As proved
in [Tabuada 2005, Theorems 5.3 and 6.3], the functor U : dgcat(k)→ Hmo0(k)
is the universal additive invariant, i.e., given any additive category D there is an
equivalence of categories

U∗ : Funadditive(Hmo0(k),D) ∼−→ Funadd(dgcat(k),D),

where the left-hand side denotes the category of additive functors and the right-
hand side the category of additive invariants. The proof follows now from the fact
that every localizing invariant is in particular an additive invariant. �

The distinguished triangle (8.8) gives rise to the long exact sequence

· · ·→Eq+1(A⊗L P1)→Eq+1(A[1/t])→Eq(A⊗L Nil(k)dg)→Eq(A⊗L P1)→· · ·

Note that the two compositions

perfdg(pt)
ι0
//

ι−1
// perfdg(P

1)
L j∗
// perfdg(Spec(k[1/t])) (8.18)

agree with the inverse image dg functor induced by Spec(k[1/t])→ pt. Making
use of the isomorphism (8.12), we conclude that the above long exact sequence
breaks up into shorter exact sequences

0→ Eq+1(A)→ Eq+1(A[1/t])→ Eq(A⊗L Nil(k)dg)→ Eq(A)→ 0. (8.19)

Moreover, making use of Proposition 8.13, we observe that the last morphism in
(8.19) corresponds to the projection Nil Eq(A)⊕ Eq(A)→ Eq(A). Consequently,
(8.19) can be further reduced to a short exact sequence

0−→ Eq+1(A)−→ Eq+1(A[1/t])−→ Nil Eq(A)−→ 0.

From this short exact sequence we obtain, finally, the sought-for isomorphism

N Eq+1(A)' cokernel
(
Eq+1(A)→ Eq+1(A[1/t])

)
' Nil Eq(A).

This concludes the proof of Theorem 8.4.

9. Step IV: module structure over the big Witt ring

Recall from [Bloch 1977, page 192] the construction of the big Witt ring W (R) of
a commutative ring R. As an additive group, W (R) is equal to (1+ t R[[t]],×). The
multiplication ∗ is uniquely determined by naturality, formal factorization of the
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elements of W (R) as h(t)=
∏

n≥1(1−antn), and the equality (1−at)∗h(t)=h(at).
The zero element is 1+ 0t + · · · and the unit element is (1− t).

Theorem 9.1. Given a dg category A, the abelian groups Nil Kq(A), q ∈ Z, carry
a W (k)-module structure.

The remainder of this section is devoted to the proof of Theorem 9.1. Recall
from [Grayson 1976] that for every positive integer n ≥ 1 we have a Frobenius
functor

Fn : End(k)→ End(k), (M, f ) 7→ (M, f n),

as well as a Verschiebung functor

Vn : End(k)→ End(k), (M, f ) 7→

M⊕n,


0 · · · · · · 0 f
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0


n×n

 .

Both these functors are exact and preserve the full subcategory of nilpotent endo-
morphisms Nil(k). Moreover, the following diagrams are commutative:

End(k)

(8.1)
��

Fn
// End(k)

(8.1)
��

End(k)

(8.1)
��

Vn
// End(k)

(8.1)
��

P(k) P(k) P(k)
M 7→M⊕n

// P(k)

(9.2)

Following [Grayson 1976], let End0(k) be the kernel of K0 End(k) (8.1)
−−→ K0P(k).

Note that since (8.1) ◦ (8.2) = id, the homomorphism K0P(k) (8.2)
−−→ K0 End(k)

gives rise to a splitting K0 End(k)' End0(k)⊕ K0P(k). Note also that the image
in End0(k) of an endomorphism (M, f ) is given by [(M, f )] − [(M, 0)]. Under
these notations, we have induced Frobenius and Verschiebung homomorphisms
Fn , Vn : End0(k)→ End0(k). Consider also the biexact functor

End(k)×Nil(k)→ Nil(k), ((M, f ), (M ′, f ′)) 7→ (M ⊗M ′, f ⊗ f ′), (9.3)

and the associated commutative diagram

End(k)×Nil(k)

(8.1)×(8.1)
��

(9.3)
// Nil(k)

(8.1)
��

P(k)×P(k)
(M,M ′) 7→M⊗M ′

// P(k)

(9.4)
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Given a dg category A, (9.2) and (9.4) give rise to the commutative diagrams

A⊗L Nil(k)dg

��

id⊗Fn
// A⊗L Nil(k)dg

��

A⊗L Nil(k)dg

��

id⊗Vn
// A⊗L Nil(k)dg

��

A⊗L P(k)dg A⊗L P(k)dg A⊗L P(k)dg // A⊗L P(k)dg

End(k)dg⊗
L A⊗L Nil(k)dg

��

// A⊗L Nil(k)dg

��

P(k)dg⊗
L A⊗L P(k)dg // A⊗L P(k)dg

(9.5)

In what follows, we will still denote by Fn , Vn :Nil Kq(A)→Nil Kq(A) the induced
Frobenius and Verschiebung homomorphisms. Thanks to the work of Waldhausen
[1985, page 342], a pairing of dg categories gives rise to a pairing on algebraic
K-theory groups; see [Tabuada 2013, §4.2]. Therefore, since End0(k) is the kernel
of the homomorphism K0(End(k)dg)

(8.1)
−−→ K0(P(k)dg), we obtain from (9.5) the

bilinear pairings

− ·− : End0(k)×Nil Kq(A)→ Nil Kq(A), q ∈ Z. (9.6)

Remark 9.7 (End0(k)-module structure). The tensor product of k-modules gives
rise naturally to a symmetric monoidal structure on the exact categories P(k) and
End(k), making the forgetful functor (8.1) symmetric monoidal. Therefore, the
abelian group End0(k) comes equipped with an induced ring structure. Moreover,
by construction, the bilinear pairings (9.6) endow the abelian groups Nil Kq(A),
q ∈ Z, with an End0(k)-module structure.

Proposition 9.8. We have Vn(α · Fn(β)) = Vn(α) · β for every α ∈ End0(k) and
β ∈ Nil Kq(A).

Proof. Let S be the multiplicatively closed subset of Z[x, y][s] generated by s
and sn

− xn y. In what follows, we denote by End(Z[x, y]; S) the full exact sub-
category of End(Z[x, y]) consisting of those endomorphisms (N , g) for which
there exists a polynomial p(s) ∈ S, depending on (N , g), such that p(g) = 0.
The endomorphisms

ε1 :=

Z[x, y]⊕n,


0 · · · · · · 0 xn y
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n

 , (9.9)
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ε2 :=

Z[x, y]⊕n,


0 · · · · · · 0 xy
x
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 x 0


n×n

 , (9.10)

belong to End(Z[x, y]; S) since they satisfy the equation sn
− xn y = 0. Following

[1982, §§5–6], consider the multiexact functor

θ(−,−,−) : End(Z[x, y]; S)×End(k)×Nil(k)−→ Nil(k)

which sends the triple ((N , g), (M, f ), (M ′, f ′)) to the nilpotent endomorphism
(N⊗Z[x,y]M⊗M ′, g⊗id⊗ id), where the left Z[x, y]-module structure on M⊗M ′

is given by x 7→ f ′ and y 7→ f . Note that the following diagram commutes:

End(Z[x, y]; S)×End(k)×Nil(k)

(8.1)×(8.1)×(8.1)
��

θ(−,−,−)
// Nil(k)

(8.1)
��

P(Z[x, y])×P(k)×P(k)
(N ,M,M ′) 7→N⊗Z[x,y]M⊗M ′

// P(k)

(9.11)

Given a dg category A, (9.11) leads to the commutative square

End(Z[x, y]; S)dg⊗
L End(k)dg⊗

L A⊗L Nil(k)dg //

��

A⊗L Nil(k)dg

��

P(Z[x, y])dg⊗
L P(k)dg⊗

L A⊗L P(k)dg // A⊗L P(k)dg

(9.12)

In the same way that the diagram (9.5) gives rise to the bilinear pairings (9.6), the
diagram (9.12) gives rise to the multilinear homomorphisms

End0(Z[x, y]; S)×End0(k)×Nil Kq(A)→ Nil Kq(A), q ∈ Z. (9.13)

Thanks to Lemma 9.16, below, the evaluation of the homomorphism (9.13) at the
class [ε1] − [(Z[x, y]⊕n, 0)] ∈ End0(Z[x, y]; S) reduces to the bilinear pairing

End0(k)×Nil Kn(A)−→ Nil Kn(A), (α, β) 7→ Vn(α · Fn(β)). (9.14)

Similarly, the evaluation of (9.13) at [ε2] − [(Z[x, y]⊕n, 0)] reduces to the pairing

End0(k)×Nil Kq(A)→ Nil Kq(A), (α, β) 7→ Vn(α) ·β. (9.15)

Now, recall from [Almkvist 1974] (see also [Grayson 1978]) that the characteristic
polynomial gives rise to an injective ring homomorphism

End0(Z[x, y]; S)→W (Z[x, y]), [(N , g)] − [(N , 0)] 7→ det(id−gt).
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Since the matrices (9.9)–(9.10) have the same characteristic polynomial, namely
1+(xn y)tn , we conclude that [ε1]−[(Z[x, y]⊕n, 0)] = [ε2]−[(Z[x, y]⊕n, 0)]. This
implies that the above pairings (9.14)–(9.15) agree and consequently that Vn(α ·

Fn(β))= Vn(α) ·β for every α ∈ End0(k) and β ∈ Nil Kq(A). �

Lemma 9.16. We have the commutative diagrams

End(k)×Nil(k)

id×Fn
��

θ(ε1,−,−)
// Nil(k) End(k)×Nil(k)

Vn×id
��

θ(ε2,−,−)
// Nil(k)

End(k)×Nil(k)
(9.3)

// Nil(k)

Vn

OO

End(k)×Nil(k)
(9.3)

// Nil(k)

Proof. Let (M, f ) ∈ End(k) and (M ′, f ′) ∈ Nil(k). By definition of ε1 and ε2, we
observe that θ(ε1, (M, f ), (M ′, f ′)) is naturally isomorphic to the endomorphism(M ⊗M ′)⊕n,


0 · · · · · · 0 f ⊗ f ′n

1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n


and that θ(ε2, (M, f ), (M ′, f ′)) is naturally isomorphic to the endomorphismM⊕n

⊗M ′,


0 · · · · · · 0 f
1
. . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0


n×n

⊗ f ′

 .

This achieves the proof. �

Given an integer m ≥ 0, let Nil(k)m be the full exact subcategory of Nil(k)
consisting of those nilpotent endomorphisms (M, f ) with f m

= 0. By construction,
we have an exhaustive increasing filtration Nil(k)m ⊂ Nil(k)m+1

⊂ · · · ⊂ Nil(k).
Given a dg category A and an integer q ∈ Z, let us denote by Nil Kq(A)m the

image of the induced homomorphism

kernel
(
Kq(A⊗L Nil(k)mdg)

id⊗(8.1)
−−−−−→ Kq(A⊗P(k)dg)

)
−→ Nil Kq(A).

Note that Nil Kq(A) =
⋃

m Nil Kq(A)m and that the Frobenius homomorphism
Fn : Nil Kq(A)→ Nil Kq(A) vanishes on Nil Kq(A)m whenever n ≥ m.

Given elements a ∈ k and β ∈ Nil Kq(A), consider the definition

(1− atn)�β := Vn
(
[(k, a)] − [(k, 0)]

)
·β, (9.17)
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where (k, a) stands for the endomorphism of k given by multiplication by a. Thanks
to Proposition 9.8, (9.17) agrees with Vn

(
([(k, a)] − [(k, 0)]) · Fn(β)

)
. Conse-

quently, whenever β ∈ Nil Kn(A)m with n ≥ m, we have (1− atn)�β = 0. Since
Nil Kq(A)=

⋃
m Nil Kq(A)m , we obtain the bilinear pairings — the sum is finite! —

W (k)×Nil Kq(A)→ Nil Kq(A),(∏
n≥1

(1− antn), β

)
7→

∑
n≥1

((1− antn)�β).
(9.18)

Now, recall from [Almkvist 1974] that the injective ring homomorphism

End0(k)→W (k),
(
[(M, f )] − [(M, 0)]

)
7→ det(id− f t),

sends Vn
(
[(k, a)] − [(k, 0)]

)
to 1 − atn . Since every element of W (k) can be

written uniquely as
∏

n≥1(1− antn), we conclude that (9.18) extends (9.6). More-
over, thanks to Remark 9.7, the bilinear pairings (9.18) endow the abelian groups
Nil Kq(A), q ∈ Z, with a W (k)-module structure. This concludes the proof of
Theorem 9.1.

10. Conclusion of the proof of Theorem 1.2

(i) As explained by Weibel [1981, Proposition 1.2], we have a ring homomorphism
Z[1/ l]→W (Z[1/ l]), λ 7→ (1−t)λ. Consequently, using the functoriality of W (−)

and the assumption 1/ l ∈ k, we observe that W (k) is a Z[1/ l]-module. By com-
bining Theorem 9.1 with Theorem 8.4 (with E = K), we conclude that the groups
NKq(A), q ∈ Z, carry a Z[1/ l]-module structure. The recursive formula (4.5)
(with H =Kq ) implies that the groups N pKq(A), p ≥ 1, are also Z[1/ l]-modules.
Therefore, making use of the short exact sequences (see Step II)

0→ N pKq(A)⊗Z Z/ lν→ N pKq(A;Z/ lν)→ {lν-torsion in N pKq−1(A)} → 0,

we conclude that the groups N pKq(A;Z/ lν) are trivial. The convergent right half-
plane spectral sequence (6.2) then implies that the edge morphisms

Kq(A;Z/ lν)→ Kh
q (A;Z/ lν)

are isomorphisms. The proof follows now from the fact that the canonical dg
functor A→A[t] gives rise to a homotopy equivalence of spectra

Kh(A;Z/ lν)→ Kh(A[t];Z/ lν);

see Step I.

(ii) We start with the following (arithmetic) result:

Lemma 10.1. When l is nilpotent in k, the abelian groups Nil Kq(A) are l-groups.
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Proof. Recall that the unit of W (k) is 1− t . Let m ≥ 0 be a fixed integer. As
explained by Weibel [1981, §1.5], whenever l is nilpotent in k there exists an
integer r � 0 (which depends on m) such that (1− t)l

r
∈ 1+ tmk[[t]]. This implies

that the formal factorization of (1− t)l
r

only contains factors (1−antn) with n ≥m.
As in Step IV, we observe that every element β of Nil Kq(A)m is lr -torsion. Finally,
since Nil Kq(A)'

⋃
m Nil Kq(A)m , we conclude that Nil Kq(A) is a l-group. �

By combining Lemma 10.1 with Theorem 8.4 (with E = K), we conclude that
the abelian groups NKq(A), q ∈ Z, are l-groups. The recursive formula (4.5) (with
H =K) implies that the abelian groups N pKq(A), p ≥ 1, are also l-groups. There-
fore, N pKq(A)Z[1/ l] = 0. Making use of the convergent right half-plane spectral
sequence (6.3), we see that the edge morphisms Kq(A)Z[1/ l]→ Kh

q (A)Z[1/ l] are
isomorphisms. The proof follows now from the fact that the dg functor A→A[t]
gives rise to an homotopy equivalence of spectra

Kh(A)⊗Z[1/ l] → Kh(A[t])⊗Z[1/ l];

see Step I.

11. Proof of Theorem 3.1

Thanks to Corollary 2.6, it suffices to compute the kernel and the cokernel of the
(matrix) homomorphism (2.7) in the case where m = 0 and Q = An . The kernel is
the solution of the system of linear equations with Z/ lν-coefficients

−2x1+ x2 = 0
−x1− x2+ x3 = 0

...
−x1− x j−1+ x j = 0

...
−x1− xn1 + xn = 0

−x1− xn = 0


⇐⇒



x2 = 2x1

x3 = 3x1
...

x j = j x1
...

xn = nx1

xn =−x1


⇐⇒



(n+ 1)x1 = 0
x2 = 2x1
...

x j = j x1
...

xn = nx1


.

From the above resolution of the system, we observe that the kernel is isomorphic
to the (n+1)-torsion in Z/ lν or equivalently to the cyclic group Z/ gcd(n+ 1, lν).
Let us now compute the cokernel. Consider the (matrix) homomorphism

−2 1 0 · · · 0
−1 −1

. . .
. . .

...

−1 0
. . .

. . . 0
...

...
. . .

. . . 1
−1 0 · · · 0 −1

 :
n⊕

r=1

Z→

n⊕
r=1

Z. (11.1)
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Note that the cokernel of (11.1) is isomorphic to Z/(n+ 1). A canonical generator
is given by the image of the vector (0, . . . , 0,−1) ∈

⊕n
r=1 Z. Using the fact that

the functor −⊗Z Z/ lν is right exact, we conclude that the cokernel of (2.7) is
isomorphic to Z/(n+ 1)⊗Z Z/ lν ' Z/ gcd(n+ 1, lν). This concludes the proof.

Remark 11.2. Thanks to [Tabuada 2015a, Corollary 2.11], the Grothendieck group
of C(0)An

identifies with the cokernel of (11.1). We observe that K0(C(0)An
)' Z/(n+1).

12. Proof of Proposition 3.3

Similarly to the proof of Theorem 3.1, it suffices to compute the kernel and co-
kernel of the (matrix) homomorphism (2.7) in the case where m = 1 and Q is the
generalized Kronecker quiver 1 −→−→−→ 2. The kernel is given by the solution of the
system of linear equations with Z/ lν-coefficients{

−9x1+ 3x2 = 0,
−3x1 = 0.

(12.1)

Clearly, the solution of (12.1) is (3-torsion in Z/ lν)× (3-torsion in Z/ lν) or, equiv-
alently, the cyclic group Z/ gcd(3, lν)×Z/ gcd(3, lν). Note that the latter group is
isomorphic to Z/3×Z/3 when l = 3 and is zero otherwise. Let us now compute
the cokernel. Consider the (matrix) homomorphism[

−9 3
−3 0

]
: Z⊕Z→ Z⊕Z. (12.2)

The cokernel of (12.2) is isomorphic to Z/3×Z/3. Canonical generators are given
by the image of the vectors (1, 0) and (−3, 1). Since the functor −⊗Z Z/ lν is right
exact, we conclude that the cokernel of (2.7) is isomorphic to

(Z/3×Z/3)⊗ZZ/ lν 'Z/3⊗ZZ/ lν×Z/3⊗ZZ/ lν 'Z/ gcd(3, lν)×Z/ gcd(3, lν).

Once again, the right-hand side abelian group is isomorphic to Z/3×Z/3 when l=3
and is zero otherwise. This concludes the proof.

Remark 12.3. As in Remark 11.2, the Grothendieck group of C(1)Q is identified
with the cokernel of (12.2). We observe that K0(C(1)Q )' Z/3×Z/3.
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Reciprocity laws and K-theory

Evgeny Musicantov and Alexander Yom Din

We associate to a full flag F in an n-dimensional variety X over a field k, a “sym-
bol map” µF : K (FX )→ 6n K (k). Here, FX is the field of rational functions
on X , and K ( · ) is the K-theory spectrum. We prove a “reciprocity law” for
these symbols: given a partial flag, the sum of all symbols of full flags refining
it is 0. Examining this result on the level of K-groups, we derive the following
known reciprocity laws: the degree of a principal divisor is zero, the Weil reci-
procity law, the residue theorem, the Contou-Carrère reciprocity law (when X is
a smooth complete curve), as well as the Parshin reciprocity law and the higher
residue reciprocity law (when X is higher-dimensional).
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1. Introduction

1A. Overview. Several statements in number theory and algebraic geometry are
“reciprocity laws”. Let us consider, as an example, the Weil reciprocity law. Let
X be a complete smooth curve over an algebraically closed field k, and let us fix
f, g ∈ F×X , two nonzero rational functions on X . Given a point p ∈ X , one defines
the tame symbol:

( f, g)p := (−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p).

Here, vp is the valuation at p (that is, the order of the zero). The Weil reciprocity
law states that ( f, g)p= 1 for all but finitely many p∈ X , and that

∏
p∈X ( f, g)p= 1.
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More generally, one can describe the pattern as follows. There is a global object,
exhausted by local pieces. One then associates an invariant to each local piece, as
well as to the global object itself. The desired claim is then twofold.

(i) Global is trivial: the global invariant is trivial.

(ii) Local to global: the product of the local invariants equals the global invariant
(usually this is an infinite product, and one should figure out how to make
sense of it).

In the above example, the global object is the curve X , which is exhausted by
the local pieces — the points of the curve. The invariant associated to a local piece
is the tame symbol, while the global invariant is quite implicit.

Let us recall that the Weil reciprocity law admits a higher-dimensional analog,
known as the Parshin reciprocity law [Parshin 1976; Soprounov 2002, Appen-
dix A]; see page 34.

In this paper we define symbol maps and prove a reciprocity law using the
machinery of algebraic K-theory. We then see how various reciprocity laws, such
as the Parshin reciprocity law (generalizing the Weil reciprocity law), the higher
residue reciprocity law (generalizing the residue theorem), and the Contou-Carrère
reciprocity law, all follow from this one reciprocity law.

Let us describe our setup in more detail. Fix an n-dimensional irreducible variety
X over a field k.1 By a full flag F in X we mean a chain of closed irreducible
subvarieties X = X0

⊃ X1
⊃ · · · ⊃ Xn , where the codimension of X i in X is i .

Given a full flag F , we shall define a morphism of spectra

µF : K (FX )→6n K (k)

(we call it a symbol map). Here FX denotes the field of rational functions on X ,
K ( · ) denotes the K-theory spectrum, and 6n denotes n-fold suspension. By a
partial flag G in X , we mean a full flag with an element in some single codimension
d omitted, for 0< d ≤ n. Then, given a partial flag G, we may consider the set fl(G)
of full flags which refine it. The main result of this paper, Theorem 2.1, then states:

Theorem. Let X be an n-dimensional irreducible variety over a field k. Let

G : X0
⊃ · · · ⊃ Xd−1

⊃ Xd+1
⊃ · · · ⊃ Xn

be a partial flag in X , with element in codimension 0< d ≤ n omitted. In the case
d = n, assume additionally that the curve Xn−1 is proper over k. Then∑

F∈fl(G)

µF = 0.

1These assumptions on X and k are made here merely to simplify matters, and will be relaxed
below.
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Remark. The sum figuring in the theorem is infinite; however, in Appendix A we
will make sense of it (inspired by [Clausen 2012]).

In fact, it is more “correct” to additionally define a symbol map

µG : K (FX )→6n K (k)

associated to a partial flag G. The theorem then divides into two parts: that µG
equals zero, and that the sum of all the morphisms µF for F ∈ fl(G) equals µG .

Notice how this setup instantiates the general pattern above. A fixed partial flag
is the global object, exhausted by the local pieces which are the full flags refining
the given partial flag. The symbol map is the associated invariant.

In order to derive the concrete reciprocity laws promised above from this abstract
one, one considers its effect on K-groups.

Let us note that, in principle, the symbol map between spectra appears to contain
more information than its “shadows” on K-groups. However, in this paper we have
only recovered known reciprocity laws from it.

Let us also record here that relevant and independent work has been done in
[Braunling et al. 2014a; 2014b; Osipov and Zhu 2014].

There are several further directions to consider. For example, one may consider
the “curve” Spec(Z). Could our setup be altered so as to accommodate the Hilbert
reciprocity law? For that to succeed, at least three phenomena should be addressed:
the prime at infinity, ramification at the prime 2, and the sphere spectrum, which un-
derlies all primes. A relevant treatment of the case of Spec(Z) is in [Clausen 2012].

1B. Relation to n-Tate vector spaces. There is a strong relation between our ma-
chinery and the theory of n-Tate vector spaces. In fact, n-Tate vector spaces could
be seen as the actual “geometric” objects that the target of our symbol map µF
classifies, so that, in a sense, our approach “decategorifies” the actual picture.

The technical result underlying such a connection is the following. Let C be an
exact category, and Tate(C) the exact category of “pro-ind” objects in C, introduced
by Beilinson [1987].

Theorem [Saito 2015]. K (Tate(C))≈6K (C).

Thus, we can say that the Tate construction acts as a delooping, when one passes
to K-theory spectra.

In this paper we associate to a full flag F in an n-dimensional variety X a symbol
map

µF : K (FX )→6n K (k).

Taking the above theorem into account, one might interpret it as a map

µF : K (FX )→ K (Taten(k)),
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where Taten(k) is the n-fold application of the Tate( · ) construction to the exact
category Vect(k) of finite-dimensional vector spaces over k. At this point, one
might wonder whether this map comes from a functor

Vect(FX )→ Taten(k).

Indeed, such a functor can be constructed, and is essentially the adelic construction
of [Beilinson 1980].

We will address and develop the above interesting ideas elsewhere.
Once again, we point out that relevant work has been done in [Braunling et al.

2014a; 2014b].

1C. Organization. This paper is organized as follows. Section 2 contains the
formulation of the abstract reciprocity law (Section 2A) and the formulations of
concrete reciprocity laws (Section 2B) which are obtained from the abstract reci-
procity law by considering its effect on specific K-groups. Section 3 contains the
construction of the abstract symbol map (Section 3A) and the proof of the abstract
reciprocity law (Section 3B). Section 4 deals with the calculation of the symbol
map on specific K-groups.

In Appendix A, we describe how to make sense of an infinite sum of morphisms
of spectra. In Appendix B, we state some lemmas about K-theory which are used
in calculations.

1D. Notation. We use [Thomason and Trobaugh 1990] as a reference for K-theory
of schemes. Given a Noetherian scheme X , K (X) denotes the K-theory spectrum
of X . Given a closed subset Z ⊂ X , K (X on Z) denotes the K-theory spectrum
of X with support in Z . By abuse of notation, given a commutative ring A and an
ideal I ⊂ A, we also write K (A) = K (X) and K (A on I ) = K (X on Z), where
X = Spec(A) and Z ⊂ X is the closed subset associated to the ideal I .

We use the following notation for the scheme X in this paper:
• n = dim(X) denotes the Krull dimension of X .

• |X | denotes the underlying topological space of X . The usual partial order
on |X | (that of “containment in the closure of”) is denoted by ≤, and |X |i

denotes the subset of |X | consisting of points of codimension i .

• γ denotes the generic point of |X | (X will be assumed to be irreducible) —
i.e., the only point in |X |0 — and F = FX = OX,γ denotes the local ring at
that point.

• For p ∈ |X |, we write X p := Spec(OX,p). There is a canonical map X p→ X .
As usual, we write k(p) for the residue field of OX,p.

• If X is affine and p is a prime ideal in O(X), then pp ∈ |X | denotes the
corresponding point.
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2. Statements

2A. The abstract reciprocity law. Let X → B be a morphism of schemes. We
make the following assumptions:

(1) B is Noetherian, 0-dimensional (i.e., a finite disjoint union of Zariski spectra
of local Artinian rings).

(2) X is Noetherian, of finite Krull dimension and irreducible.

(3) X→ B is flat.

(4) For every p∈|X |n (recall n=dim(X)), the composition Spec(k(p))→ X→ B
is a finite morphism.

We give two examples of morphisms that satisfy the above assumptions:

(1) B = Spec(k), where k is a field, and X→ B is an irreducible scheme of finite
type over B.

(2) B = Spec(k), where k is a field, and X = Spec(A), where (A,m) is a Noe-
therian local integral k-algebra, such that A/m is finite over k. X→ B is the
corresponding structure map.

A convenient technical notion will be that of a collection C , by which we mean
a family C = (C i )0≤i≤n , where C i

⊂ |X |i . We only consider collections which
satisfy C0

= {γ }.
Given such a C , in Section 3A we construct a map of spectra (“symbol map”)

µC : K (F)→6n K (B).

We only consider and use collections attached to full and partial flags (to be now
defined), for which we will state a reciprocity law. First, let

F : xn < xn−1 < · · ·< x0 = γ

be a full flag of points in |X | (thus, codim(xi )= i). We define a collection C(F),
by setting C(F)i = {xi }. Second, let

G : xn < xn−1 < · · ·< xd+1 < xd−1 < · · ·< x0 = γ

be a partial flag, with the level d omitted, 0< d ≤ n. Here, we require codim(xi )= i .
We define a collection C(G) by setting C(G)i = {xi } for i 6= d , and

C(G)d = {p ∈ |X |d | xd+1 < p < xd−1}.

Note that we have the obvious notion of a full flag refining a partial one (meaning
C(F) ⊂ C(G)), which we denote by F > G. We sometimes write µF instead
of µC(F).
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We prove the following “reciprocity” laws (for the meaning of the infinite sum
in this statement, consult Appendix A).

Theorem 2.1. Let G be a partial flag with level d omitted, where 0< d ≤ n.

(1) Global is trivial:
µC(G) = 0,

where in the case d = n we should assume that xn−1 is proper over B.

(2) Local to global:
µC(G) =

∑
F>G

µC(F).

2B. Concrete reciprocity laws. In the following, we give examples of concrete
reciprocity laws, which one obtains by considering the effect of the abstract reci-
procity law on various homotopy groups of the involved spectra.

The case dim(X) = 1. Let k be a field, B = Spec(k), and X → B a regular,
connected, proper curve over B. We obtain, for every closed point p ∈ |X |1, a
map µp : K (F)→ 6K (B). Here µp = µC(F), where F : p < γ . Applying the
functor πi , one has maps µi

p : Ki (F)→ Ki−1(k).

The degree law. We have the map µ1
p : F

× ∼= K1(F)→ K0(k)∼= Z.

Claim 2.2. The integer µ1
p( f ) is equal to the valuation vp( f ) of f at the point p,

multiplied by [k(p) : k].

Applying the abstract reciprocity law, we recover the theorem about sum of
degrees [Serre 1988, §II.3, Proposition 1]:

Corollary 2.3. For f ∈ F×,∑
p∈|X |1

[k(p) : k] · vp( f )= 0.

The Weil reciprocity law. Precomposing the map µ2
p : K2(F)→ K1(k) with the

product in K-theory K1(F)∧ K1(F)→ K2(F), we get a bilinear antisymmetric
form µ2

p : F
×
∧ F×→ k× (we also call it µ2

p, by abuse of notation).

Claim 2.4. µ2
p( f ∧ g)= Nk(p)/k

(
(−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p)
)
.

Applying the abstract reciprocity law, we recover the Weil reciprocity law [Serre
1988, §III.4]:

Corollary 2.5. For f, g ∈ F×,∏
p∈|X |1

Nk(p)/k

(
(−1)vp( f )·vp(g) f vp(g)

gvp( f ) (p)
)
= 1.
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The residue law. Suppose that k is algebraically closed. Set kε := k[ε1, ε2]/(ε
2
1 , ε

2
2),

Bε = Spec(kε), and Xε = kε ⊗k X . Then the local ring at the generic point of Xε
is just Fε = kε ⊗k F . By applying our construction to the morphism Xε→ Bε we
get a map K (Fε)→ 6K (kε) for every closed point p ∈ |Xε |1 = |X |1. Applying
the functor π2 and using the product in K-theory as before, one gets a pairing
rp : F×ε ∧ F×ε → k×ε .

Claim 2.6. For Resp the usual residue [Serre 1988, §II.7],

rp((1− ε1 f )∧ (1− ε2g))= 1− ε1ε2 Resp( f · dg).

Applying the abstract reciprocity law, we recover the residue theorem [Serre
1988, §II.7, Proposition 6]:

Corollary 2.7. For f, g ∈ F , ∑
p∈|X |1

Resp( f · dg)= 0.

Remark 2.8. In fact, one can drop the assumption that k is algebraically closed.
Then, one has

rp((1− ε1 f )∧ (1− ε2g))= 1− ε1ε2 Trk(p)/k Resp( f · dg),

where Resp( f · dg) can be defined as follows: Choose an isomorphism ÔX,p'k ′[[z]],
where k ′ := k(p) is the residue field at p. Interpret f · dg as an element of
�1(k ′((z))/k ′)= k ′((z)) dz. Finally, define Resp( f ·dg) as the coefficient of z−1 dz
in f · dg. Note that in the case when k is algebraically closed, one recovers the
usual definition.

The Contou-Carrère reciprocity law. More generally, let k be a local Artinian ring.
Set B = Spec(k) and X = Spec(k[[t]]). Applying the functor π2 to the symbol
map K (k((t)))→ 6K (k), one gets a pairing k((t))×∧ k((t))×→ k×. Although
we do not spell out the details in this paper, one can check that it is the Contou-
Carrère symbol [Contou-Carrère 1994]. Then the abstract reciprocity law implies
the Contou-Carrère reciprocity law.

Let us note that [Osipov and Zhu 2014] also deals with the connection between
K-theory and explicit formulas for Contou-Carrère symbols.

The case dim(X) > 1. Let k be a field, B = Spec(k), and X→ B an irreducible
scheme of finite type over B (recall n = dim(X)). For every full flag F one has
a map µF : K (F) → 6n K (B). Applying the functor πi , one then gets maps
µi
F : Ki (F)→ Ki−n(k).
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The Parshin reciprocity law. Let us assume that the flag F = xn < xn−1 < · · ·<

x0 = γ is regular in the following sense: considering X i
:= xi as an integral closed

subscheme of X , we demand OX i−1, xi to be regular (here, 1≤ i ≤ n).
Precomposing the map µn+1

F : Kn+1(F)→ K1(k) with the product in K-theory∧n+1 K1(F)→ Kn+1(F), one has a multilinear antisymmetric form

µn+1
F :

∧n+1 F×→ k×

(we also denote it µn+1
F , by abuse of notation).

In order to write an explicit formula for the Parshin symbol, we introduce the
following; see [Soprounov 2002, Appendix A]. For every 1 ≤ i ≤ n, let us fix a
uniformizer zi in Oi :=OX i−1, xi . We attach, to any f ∈ F×, a sequence of integers
a1, . . . , an as follows. Note that the residue field of Oi−1 can be identified with the
fraction field of Oi . We write f = za1

1 u1, where u1 is a unit in O1. Considering the
residue class of u1 as an element of the fraction field of O2, we proceed to write
u1 = za2

2 u2, where u2 is a unit in O2. We continue in this way to construct the
sequence a1, . . . , an . Note that, generally speaking, this sequence depends on the
choice of uniformizers z1, . . . , zn .

Let f1, . . . , fn+1 ∈ F×. Write ai1, . . . , ain for the sequence of integers assigned
to fi as above. Construct the (n + 1)× n matrix A = (ai j ). Set Ai to be the
determinant of the n× n matrix that we get from A by omitting the i-th row. Set
Ak

i j to be the determinant of the (n− 1)× (n− 1) matrix that we get from A by
deleting the i-th and j-th rows and the k-th column. Set B =

∑
k
∑

i< j aika jk Ak
i j .

Claim 2.9. µn+1
F ( f1, . . . , fn+1)= Nk(xn)/k

(
(−1)B

( ∏
1≤i≤n+1

f (−1)i+1 Ai
i

)
(xn)

)
.

By applying the abstract reciprocity law, we recover the Parshin reciprocity law;
see [Soprounov 2002, Appendix A].

The Parshin higher residue reciprocity law. Considering

kε := k[ε1, . . . , εn+1]/(ε
2
1 , . . . , ε

2
n+1)

and Xε, Bε , etc., as for the residue law on page 33, and considering the map µn+1
:

Kn+1(Fε)→ K1(kε), one can derive, in principle, the higher residue reciprocity
law [Soprounov 2002, Appendix A], although we do not spell out the details in
this paper.

3. Construction of µC and proof of the abstract reciprocity law

3A. Construction of µC . We recall the codimension filtration in K-theory [Thoma-
son and Trobaugh 1990, (10.3.6)]. Write Sd K (X) for the homotopy colimit of the
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spectra K (X on Z), where Z runs over closed subsets of X of codimension ≥ d.
Also, write

Qd K (X) :=
∨

p∈|X |d

K (X p on p).

Then we have the homotopy fiber sequence

Sd+1K (X)−→ Sd K (X)
pd
−→ Qd K (X)

∂d
−→6Sd+1K (X).

Let us define 9d to be the composition

9d
: Qd K (X)

∂d
−→6Sd+1K (X)

pd+1
−−→6Qd+1K (X).

Also, given a collection C = (C i )0≤i≤n (for C i
⊂ |X i

|), we define a map

selCd : Qd K (X)→ Qd K (X),

given by projecting on summands corresponding to p ∈ Cd .
We now define a map

I : Qn K (X)→ K (B).

In order to do this, we first need to define maps K (X p on p)→ K (B), which we
do by pushing forward along X p→ B. To justify the existence of the pushforward,
let us fix convenient models for the K-spectra. As a model for K (X p on p) we take
strictly perfect complexes on X p which are acyclic outside of the closed point p
[Thomason and Trobaugh 1990, Lemma 3.8], and as a model for K (B) we take
perfect complexes on B [Thomason and Trobaugh 1990, Definition 3.1]. Pushing
forward along X p→ B can be done termwise, since this morphism is affine. Thus,
the result of pushing forward to B a strictly perfect complex on X p, supported on p,
is a strictly bounded complex, whose terms are flat (since X p→ B is assumed flat),
and whose cohomologies are coherent (since k(p)→ B is assumed finite). Thus, by
criterion [Thomason and Trobaugh 1990, Proposition 2.2.12], the result is perfect.

Finally, we define µC as follows:23

µC = I ◦ selCn ◦9n−1
◦ · · · ◦91

◦ selC1 ◦90.

3B. Proof of the reciprocity law. Let us show part (1) of Theorem 2.1.
First, consider the case d 6= n. Notice that the formula for µC(G) contains

selC(G)d+1 ◦9d
◦ selC(G)d ◦9

d−1.

2We assume that C0
= {γ }.

3In this formula, as we compose, the target becomes more and more suspended; we do not write
the obvious suspensions, by abuse of notation.
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Since C(G)d contains all the points p such that xd+1< p < xd−1, one has

selC(G)d+1 ◦9d
◦ selC(G)d = selC(G)d+1 ◦9d .

Thus, in fact,

selC(G)d+1 ◦9d
◦ selC(G)d ◦9

d−1
= selC(G)d+1 ◦9d

◦9d−1,

which is zero since 9d
◦9d−1

= 0 (as it contains a composition of two consequent
arrows in a long exact sequence).

Next, consider the case d = n. Write Y = xn−1. We will deal first with the case
X = Y , to simplify matters.

Note that µC(G) equals the composition on the top horizontal line of the follow-
ing commutative diagram:

Q0K (X)
∂0
// 6S1K (X)

p1
//

i
��

6Q1K (X) I
// 6K (B)

6S0K (X)
Ĩ

33

Here, i is the natural arrow, and Ĩ is the arrow induced by pushforward. The crucial
assumption here is that X is proper. Thus pushing forward preserves coherence,
which in turn enables us to construct the map Ĩ on K-spectra. Now, noticing that
i ◦ ∂0 = 0 (as a composition of two consequent arrows in a long exact sequence)
finishes the proof.

In general (not assuming X = Y ), we want to do the same as in the case X = Y ,
but working with (X on Y ) versions. To proceed, one considers the commutative
diagram

Qn−1K (X)

((

selC(G)n−1
// Qn−1K (X)

∂0
// 6Qn K (X) I

// 6K (B)

Qn−1K (X on Y )

OO

∂Y
n−1
// 6Qn K (X on Y )

OO

I Y
77

and shows I Y
◦ ∂Y

n−1 = 0 as before.
Let us now show part (2) of Theorem 2.1. We note that the map selC(G)d is the

sum of the maps selC(F)d (where F > G). Thus, the statement follows using Claims
A.4 and A.5.

4. Calculation of local symbols

In this section, we calculate some symbol maps for local schemes. Using Lemma 4.7,
these calculations imply the claims of Section 2B.
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Let us fix the following notation and assumptions for this section. Let k be a
field, and let B = Spec(k). Also, let A be a regular Noetherian local k-algebra, and
set X = Spec(A). Denote by m the maximal ideal of A, and k ′ = A/m. We assume
that k ′ is finite over k. We denote by F the fraction field of A.

4A. The case dim(X) = 1. In this subsection, we additionally assume that A is
of Krull dimension 1. Let v : F×→ Z be the valuation, and let [ · ] : A→ k ′ be the
quotient map. Finally, choose a uniformizer z ∈ A (i.e., v(z)= 1).

Consider the unique full flag F : pm < p0 in X . We have the corresponding
symbol map

µ= µF : K (F)→6K (k).

We write µi for the induced map Ki (F)→ Ki−1(k).

The degree.

Claim 4.1. The morphism F× ∼= K1(F)
µ1

−→ K0(k)∼= Z is equal to [k ′ : k] · v.

Proof. Since the composition K1(A)→ K1(F)→ K0(A on m) is zero (as part of
a long exact sequence), it is enough to prove that

F× ∼= K1(F)→ K0(A on m)→ K0(k)∼= Z

maps z to [k ′ : k]. By Lemma B.3, the image of z under the above map is equal to
the alternating sum of dimensions (over k) of cohomologies of the complex

A
z
// A

−1 0
which is [k ′ : k]. �

The tame symbol.

Claim 4.2. The morphism

F×∧ F× ∼= K1(F)∧ K1(F)−→ K2(F)
µ2

−→ K1(k)∼= k×

is given by

f ∧ g 7→ Nk′/k

(
(−1)v( f )·v(g)

[
f v(g)

gv( f )

])
.

Proof. We call the above morphism F×∧ F×→ k×, by abuse of notation, µ2. By
bilinearity and antisymmetry of µ2, it is enough to verify:

(i) µ2( f ∧ g)= 0 for f, g ∈ A×.

(ii) µ2( f ∧ z)= Nk′/k([ f ]) for f ∈ A×.

(iii) µ2(z ∧ z)= Nk′/k(−1).
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The first item follows since the following composition is zero (being a part of
the localization long exact sequence):

K2(A)→ K2(F)→ K1(A on k ′).

For the second item, consider the commutative diagram

K1(A)∧ K1(F)

��

// K1(A)∧ K0(A on k ′)

��

K1(F)∧ K1(F) // K2(F) // K1(A on k ′) // K1(k)

We have the element f ∧ z in the upper-left group K1(A)∧ K1(F), and we should
walk it through down, and then all the way right. Using commutativity of the
diagram, we can chase the upper path instead, and using Lemma B.4, the result is
represented by the automorphism of the following complex:

A

f
��

z
// A

f
��

A
z
// A

−1 0

Taking the alternating determinant of cohomology, we see that the above automor-
phism represents the element Nk′/k([ f ]) ∈ k× ∼= K1(k).

Let us handle the third item on our list. Denote the multiplication in K-theory
by { · , · } : K1(F)∧ K1(F)→ K2(F). Recall the Steinberg relation

{x, 1− x} = 0

for x, 1− x ∈ F×∼= K1(F). We then calculate

{z, z}={z, (1−z−1)−1
}{z, 1−z}{z,−1}={z−1, 1−z−1

}{z, 1−z}{z,−1}={z,−1}

(this calculation appears in [Snaith 1980, Theorem 2.6]). Hence, by (ii) above,
µ2(z ∧ z)= µ2(−1∧ z)= Nk′/k(−1). �

The residue. Consider a base change of our setup from k to kε := k[ε1, ε2]/(ε
2
1 , ε

2
2).

Thus, we have Aε := kε ⊗k A, and similarly Fε , Xε , Bε , etc. Hence, the basic
morphism of schemes from which we build the symbol map is now Xε→ Bε .

Claim 4.3. The morphism

F×ε ∧ F×ε ∼= K1(Fε)∧ K1(Fε)−→ K2(Fε)
µ2
ε
−→ K1(kε)∼= k×ε



RECIPROCITY LAWS AND K -THEORY 39

sends (1−ε1 f )∧(1−ε2g) to 1−ε1ε2 R( f, g) ( for f, g∈ F). Here, R( f, g) is defined
as follows: Choose an isomorphism Â ' k ′[[z]]. Interpret f · dg as an element∑

i ai zi dz ∈�1
(
k ′((z))/k ′

)
= k ′((z)) dz. Finally, define R( f, g)= Trk′/k(a−1).

Proof. In this proof let us denote by µ2 the morphism F×ε ∧ F×ε → k×ε in the claim.

(a) We wish to reduce the computation to the case when A= k[[z]] and k is infinite.
This is done by exploiting functoriality in a few steps; First, using Lemma 4.8, we
may assume that A is complete. Hence, by Cohen’s structure theorem, A ' k ′[[z]].
Second, since A is now a k ′-algebra, R( f, g) for A as a k-algebra is the trace Trk′/k

of R( f, g) for A as a k ′-algebra. Hence, we may assume that k = k ′. Finally, let
l/k be a field extension. Consider the diagram

Spec(l((z))) //

��

Spec(l[[z]])

��

Spec(l)oo

��

Spec(k((z))) // Spec(k[[z]]) Spec(k)oo

Note that the squares in the above diagram are pullback squares. Hence, the fol-
lowing diagram commutes:

k((x))×ε ∧ k((x))×ε
µ2
//

��

k×ε_�

��

l((x))×ε ∧ l((x))×ε
µ2
// l×ε

Thus, we can replace the k-algebra A = k[[z]] by the l-algebra l[[z]], where l/k is
any field extension. Hence, we may assume that k is infinite.

(b) Next, we show that µ2(1− ε1 f, 1− ε2g) is of the form 1− ε1ε2 R( f, g), where
R( f, g)∈ k. In other words, the “constant term” is 1, and there are no “linear terms”.
Towards this end, we perform “base change”, sending ε2 7→ 0. The operation µ2

commutes with such a base change. We depict it as follows:

µ2(1− ε1 f, 1− ε2g)
_

��

a+ bε1+ cε2+ dε1ε2_

��

µ2(1− ε1 f, 1) a+ bε1

Here, the vertical assignment is base change, from kε to kε/(ε2). Note that the
lower-left element is 1 (by bimultiplicativity of µ2), so that we get a = 1 and b= 0.
Similarly, one gets c = 0.

(c) We notice that R( f, g) is bilinear. The biadditivity follows immediately from
the bimultiplicativity of µ2 and (b). Next, let us show that R(α f, g) = αR( f, g)
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for every α ∈ k (the homogeneity in the second variable is shown analogously). In
case α = 0, it is clear. Otherwise, we get the equality by performing “base change”,
sending ε1 7→ α−1ε1.

(d) We now show the following properties, from which the statement follows by
decomposing elements of F into Laurent expansions:

(1) R(zn, zm)= 0 for n,m ∈ Z, provided n+m 6= 0.

(2) R(z−n, zn)= n for n ∈ Z.

(3) R(z−n, f )= 0 for n ∈ Z≥0, provided that v( f )� n.

Consider the automorphism z 7→ αz, where α ∈ k×. We notice that it does not
alter the symbol µ2, since it commutes with passing to the quotient A 7→ A/m.
Thus, we have R(zn, zm) = R((αz)n, (αz)m). By bilinearity (see (c) above), we
get R(zn, zm) = αn+m R(zn, zm). Choosing α so that αn+m

6= 1, we conclude
R(zn, zm)= 0. Such a choice of α is possible since k is infinite and n+m 6= 0.

To show the second item, note that

µ2(1− ε1z−n, 1− ε2zn)=
µ2(zn

− ε1, 1− ε2zn)

µ2(zn, 1− ε2zn)
,

and hence it is enough to calculate µ2(zn
− αε1, 1 − ε2zn) (where α ∈ k). By

Lemmas B.3 and B.4, we should calculate the determinant of multiplication by
1− ε2zn on the cohomology of

Aε
zn
−αε1
// Aε

−1 0

The only nonzero cohomology is the 0-th one. It is a free kε-module (with basis
1, z, . . . , zn−1). Multiplication by 1−ε2zn is just multiplication by 1−αε1ε2. Thus,
the determinant equals (1−αε1ε2)

n
= 1−nαε1ε2, and consequently R(z−n, zn)= n.

The third item is verified similarly to the second one (when v( f ) � n, the
operator whose determinant we should consider is just the identity).

(e) By breaking f and g into sums of monomials in z and a reminder of large
enough valuation, the proposition follows from (b), (c), and (d) . �

Remark 4.4. One could also obtain the residue symbol differently, by considering
kε := k[ε]/(ε3). Then µ2(1− ε f, 1− εg)= 1− ε2 Res( f dg).

4B. The case dim(X) > 1. In this subsection, we drop the assumption that A is
1-dimensional. We denote the Krull dimension of A by n.
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The Parshin symbol. Fix a full flag

F : xn < · · ·< x0

in X , corresponding to a chain of prime ideals

0= p0 ( · · ·( pn =m.

Consider X i
:= xi as an integral closed subscheme of X . We obtain a symbol

µ= µF : K (F)→6n K (k).

As with the Parshin reciprocity law (see page 34), we consider the resulting map
µn+1
F :

∧n+1 F×→ k×. There, we essentially wrote a formula for this map (which
we now want to verify) under the assumption that our flag is regular. In order to
compute this map “recursively”, we will use Quillen’s dévissage (Lemma B.5) —
application of which will be possible due to regularity of F .

Claim 4.5. The symbol µF : K (FX )→6n K (k) equals the composition

K (FX ) // 6K (Xx1 on x1) 6K (FX1) //
∼

oo 62K (X1
x2

on x2)

K (FX2) //

∼

OO

· · · // 6n K (FXn ) // 6n K (k)

where the arrows ∼
←− stand for Quillen’s dévissage.

In view of this claim, µn+1
F equals the composition∧n+1 F×X −→ Kn+1(FX )

∂0
−→ Kn(FX1)

∂1
−→ · · ·

∂n−1
−−→ K1(FXn )→ K1(k),

where ∂i is the composition of the boundary map and the inverse of the dévissage.
The following lemma will allow us, in principle, to calculate µn+1

F ( f1, . . . , fn+1)

for any f1, . . . , fn+1 ∈ F×.

Lemma 4.6. Let R be a 1-dimensional regular local Noetherian ring with maximal
ideal n, residue field `, and fraction field L. Let z ∈ R be a uniformizer. Consider
the composition of the boundary map with the dévissage map

K (L)−→6K (R on n) ∼←−6K (`).

We use it to construct a map

νm
:
∧m L×→ Km(L)→ Km−1(`).

The following hold:

(i) νm( f1, . . . , fm)= 0 for f1, . . . , fm ∈ R×.

(ii) νm( f1, . . . , fm−2, z, z)= νm( f1, . . . , fm−2,−1, z) for f1, . . . , fm−2 ∈ R×.
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(iii) νm( f1, . . . , fm−1, z)= [ f1]∧ · · ·∧ [ fm−1] for f1, . . . , fm−1 ∈ R× (recall that
[ f ] denotes the residue in `× of f ∈ R×, considered as an element of K1(`)

in the case at hand).

Proof. The first item is clear, since νm( f1, . . . , fm) is the value of the composition
Km(R)→ Km(L)→ Km−1(R on n) on f1∧· · ·∧ fm ∈ Km(R), and the composition
is zero as part of a long exact sequence.

The second item follows from the Steinberg relation (as in the proof of Claim 4.2).
The third item follows from the commutativity of the following diagram:

Km−1(R)∧ K1(L) //

��

Km−1(R)∧ K0(R on n)

��

Km−1(R)∧ K0(`)
∼
oo

��

Km−1(`)∧ K0(`)

��

Km(L) // Km−1(R on n) Km−1(`)
∼

oo

Here the left square commutes since the boundary morphism is a morphism of
K (A)-modules, while the right square commutes as Quillen’s dévissage morphism
is a morphism of K (A)-modules.

Note that the element νm( f1, . . . , fm−1, z) is the result of going right on the
lower line, applied to f1 ∧ · · · ∧ fm−1 ∧ z. However, this element comes from an
element at the upper-left corner, which we can chase through the right on the upper
line, and then to the lower-left corner through the right line. �

4C. Auxiliary lemmas. We state two lemmas which are used above, and whose
proofs are straightforward.

Lemma 4.7. Let X→ B be as in Section 2A. Let

F : xn < xn−1 < · · ·< x0 = γ

be a full flag of points in |X |. Writing p := xn , we consider also the setting X p→ B
and the obvious flag Fp on X p induced by F . We have two symbol maps:

µF : K (F)→6n K (k) and µFp : K (F)→6n K (k)

(note that the function field of X p is identified with F). Then these two symbol
maps are equal.

Lemma 4.8. Let A be a 1-dimensional regular local Noetherian k-algebra whose
residue field is finite over k, and let Â be its completion. We write, as usual,
X = Spec(A) and B = Spec(k), and also X̂ = Spec( Â). Also, denote by F and F̂
the fraction fields of A and Â, respectively. Associated to the unique full flags in
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X and X̂ we have the symbols K (F)→ 6K (k) and K (F̂)→ 6K (k). Then the
diagram

K (F) //

$$

K (F̂)

zz

6K (k)

commutes.

Appendix A: Infinite sums of maps of spectra

In this paper, we consider spectra as a triangulated category Sp. We recall that a
spectrum is called compact if maps from it commute with small direct sums. An
example of a compact spectrum is 6kS, a suspension of the sphere spectrum. The
following definitions are inspired by [Clausen 2012, Appendix A].

Definition A.1. Let fi :S→T (i ∈ I ) be a family of maps of spectra, and f :S→T
an additional map. We say that f is the sum of the fi (written f =

∑
i∈I fi ) if for

every compact spectrum C, and every element e ∈ HomSp(C,S), almost all (i.e.,
all but finitely many) of the maps fi ◦ e are equal to zero, and the sum of all these
fi ◦ e is equal to f ◦ e.

We note that we do not claim uniqueness of the sum (in whatever sense). In
reality, this notion of “summability and summation on compact probes” is derived
from a more holistic notion:

Definition A.2. Let fi :S→T (i ∈ I ) be a family of maps of spectra, and f :S→T
an additional map. An evidence for f being the sum of the fi is a map

g : S→
∨
i∈I

T

such that when we compose g with the projection to the i-th summand we get fi ,
while when we compose g with the fold map, we get f .

The following is evident:

Claim A.3. Existence of an evidence for f being the sum of the fi implies that f
is the sum of the fi .

Let us also note the following two auxiliary claims (whose proofs are straight-
forward):

Claim A.4. Let h : U → S and g : T → V . If f is the sum of the fi (we have
evidence for f being the sum of the fi ) , then g ◦ f ◦ h is the sum of the g ◦ fi ◦ h
(we have evidence for g ◦ f ◦ h being the sum of the g ◦ fi ◦ h).
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Claim A.5. Let Si (i ∈ I ) be a collection of spectra, and write S =
∨

i∈I Si . Then
we have evidence for id being the sum of pri (i ∈ I ), where id is the identity
morphism of S, while pri is the morphism of projection on the i-th summand. In
particular, id=

∑
i∈I pri .

Appendix B: K-theory calculation lemmas

We state some lemmas which are of use when calculating the concrete symbols. In
what follows, X is a Noetherian scheme, U ⊂ X an open subscheme, and Z the
closed complement.

We denote by SPerf(X) the category of (strictly) bounded complexes of OX -
modules, whose terms are locally free of finite rank. By SPerf(X on Z) we denote
the full subcategory of SPerf(X) consisting of complexes whose cohomologies are
supported on Z .

Fact B.1. There is a natural map from (the geometric realization of ) the core
groupoid of SPerf(X) to K (X). In particular, every object in SPerf(X) defines
a point in K (X). In addition, the automorphism group of any object of SPerf(X)
maps into K1(X). Since O(X)× maps into the automorphism group of the object
OX ∈ SPerf(X), one then has a map O(X)×→ K1(X). Thus, given an object or
an automorphism in SPerf(X), one can view it as an element of an appropriate
K-group Ki (X). We will abuse this without further notice.

Claim B.2. Let X be local (i.e., the spectrum of a local ring). Then the above map
O(X)×→ K1(X) is an isomorphism.

Lemma B.3. Let f ∈ O(X) be such that f |U is invertible. Then the image of
f |U ∈ O(U )× under the map K1(U )→ K0(X on Z) which is obtained from the
localization sequence

K (X on Z)→ K (X)→ K (U )

(see [Thomason and Trobaugh 1990, Theorem 7.4]) is given by the complex

OX
f
// OX

−1 0

Lemma B.4. Let f ∈ O(X)×, and C ∈ SPerf(X on Z). Then the image of f ∧C
under the product map K1(X)∧ K0(X on Z)→ K1(X on Z) is given by the auto-
morphism

C ⊗OX
1⊗ f
−−→ C ⊗OX .

Lemma B.5 (Quillen’s dévissage). Suppose that X and Z are regular. Then the
morphism K (Z)→ K (X on Z) (induced by pushforward) is an equivalence of
spectra.
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On the cycle map of a finite group

Masaki Kameko

Let p be an odd prime number. We show that there exists a finite group of order
p p+3 for which the mod p cycle map from the mod p Chow ring of its classifying
space to its ordinary mod p cohomology is not injective.

1. Introduction

The Chow group CHi X of a smooth algebraic variety X is the group of finite Z-
linear combinations of closed subvarieties of X of codimension i modulo rational
equivalence and

⊕
i≥0 CHi X , called the Chow ring of X , is a ring under intersec-

tion product. It is an important object of study in algebraic geometry. For a smooth
complex algebraic variety, the cycle map is a homomorphism from the Chow ring
to the ordinary integral cohomology of the underlying topological space. Thus,
the cycle map relates algebraic geometry to algebraic topology. Totaro [1999]
considered the Chow ring of the classifying space BG of an algebraic group G.
In his recently published book, for each prime number p Totaro [2014] gave an
example of a finite group K of order p2p+1 such that the mod p cycle map

cl : CH2 BK/p→ H 4(BK )

is not injective, where H∗(−) is the ordinary mod p cohomology and the finite
group K is regarded as a complex algebraic group. Totaro wrote “ . . . but there are
probably smaller examples” in his book.

In this paper, we find a smaller example, possibly the smallest one. To be precise,
we construct a finite group H of order p p+3 to prove the following result:

Theorem 1.1. For each prime number p, there exists a finite group H of order
p p+3 such that the mod p cycle map cl : CH2 B H/p→ H 4(B H) is not injective,
where the finite group H is regarded as a complex algebraic group.

For a complex algebraic group G, the following results were obtained by Totaro
[1999, Corollary 3.5] using Merkurjev’s theorem:

(1) CH2 BG is generated by Chern classes.

(2) CH2 BG→ H 4(BG;Z) is injective.

MSC2010: primary 14C15; secondary 55R40, 55R35.
Keywords: Chow ring, cycle map, classifying space, finite group.
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Thus, we may use the ordinary integral cohomology and Chern classes to study
the Chow group CH2 BG. A problem concerning the Chow group CH2 BG in
algebraic geometry could be viewed as a problem on the Chern subgroup of the
ordinary integral cohomology H 4(BG;Z), that is, the subgroup of H 4(BG;Z)
generated by Chern classes of complex representations of G, in classical algebraic
topology. In what follows, we consider CH2 BG as the Chern subgroup of the
integral cohomology H 4(BG;Z) and the mod p cycle map CH2 BG/p→ H 4(BG)
as the homomorphism induced by the mod p reduction ρ : H 4(BG;Z)→ H 4(BG).
Since we consider the ordinary integral and mod p cohomology only, the group G
could be a topological group and it need not be a complex algebraic group.

Throughout the rest of this paper, we assume that p is an odd prime number
unless otherwise stated explicitly. Let p1+2

+ be the extraspecial p-group of order p3

with exponent p. We consider it as a subgroup of the special unitary group SU(p).
We will define a subgroup H2 of SU(p) in Section 2. The group H in Theorem 1.1
is given in terms of p1+2

+ and H2, that is,

H = p1+2
+
× H2/〈1(ξ)〉,

where 〈1(ξ)〉 is a cyclic group in the center of SU(p)× SU(p). We define the
group G as

G = SU(p)×SU(p)/〈1(ξ)〉.

We will give the detail of G, H and H2 in Section 2. What we prove in this paper
is the following theorem:

Theorem 1.2. Let p be an odd prime number. Let K be a subgroup of

G = SU(p)×SU(p)/〈1(ξ)〉

containing
H = p1+2

+
× H2/〈1(ξ)〉.

Then the mod p cycle map cl : CH2 BK/p→ H 4(BK ) is not injective.

The order of the group p1+2
+ × H2/〈1(ξ)〉 is p p+3 and it is the group H in

Theorem 1.1. Applying Theorem 1.2 to

K = p1+2
+
× ((Z/p2)p−1 oZ/p)/〈1(ξ)〉,

we obtain the example in [Totaro 2014, Section 15]. Thus our result not only gives a
smaller group whose mod p cycle map is not injective but it extends Totaro’s result.
For p = 2, Theorem 1.1 was proved by Totaro [2014, Theorem 15.13]. For p = 2,
the finite group H is the extraspecial 2-group 21+4

+ of order 25. It is not difficult to
see that we cannot replace H2 by the extraspecial p-group p1+2

+ in Theorem 1.2.
See Remark 6.3. This observation leads us to the following conjecture:
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Conjecture 1.3. Let p be a prime number. For a finite p-group K of order less
than p p+3, the mod p cycle map cl : CH2 BK/p→ H 4(BK ) is injective.

This paper is organized as follows: In Section 2, we define groups that we use
in this paper, including G and H above. In Section 3, we recall the cohomology
of the classifying space of the projective unitary group PU(p) up to degree 5. In
Section 3, we prove that the mod p cycle map CH2 BG/p→ H 4(BG) is not in-
jective and describe its kernel. In Section 4, we collect some properties of the
mod p cohomology of Bπ̃(H2), where π̃ is the restriction of the projection from
SU(p) to PU(p). We use the mod p cohomology of Bπ̃(H2) in Section 5, where
we study the mod p cycle map CH2 B H/p→ H 4(B H) to complete the proof of
Theorem 1.2.

Throughout the rest of this paper, by abuse of notation, we denote the map
between classifying spaces induced by a group homomorphism f : G → G ′ by
f : BG→ BG ′.

2. Subgroups and quotient groups

In this section, we define subgroups of the unitary group U (p) and of the product
SU(p)× SU(p) of special unitary groups SU(p). We also define their quotient
groups. For a finite subset {x1, . . . , xr } of a group, we denote by 〈x1, . . . , xr 〉 the
subgroup generated by {x1, . . . , xr }. As we already mentioned, we assume that p
is an odd prime number.

We start with subgroups of the special unitary group SU(p). Let ξ = exp(2π i/p),
ω = exp(2π i/p2) and δi j = 1 if i ≡ j mod p, δi j = 0 if i 6≡ j mod p. We consider
the following matrices in SU(p):

ξ = (ξδi j )= diag(ξ, . . . , ξ),

α = (ξ i−1δi j )= diag(1, ξ, . . . , ξ p−1),

β = (δi, j−1),

σ1 = diag(ωξ p−1, ω, . . . , ω).

Moreover, let σk be the diagonal matrix whose (i, i)-entry is ωξ p−1 for i = k and
ω for i 6= k. Let us consider the following subgroups of SU(p):

p1+2
+
= 〈α, β, ξ 〉,

H2 = 〈β, σ1, . . . , σp〉.

The group p1+2
+ is the extraspecial p-group of order p3 with exponent p. Since

σ
p

1 = · · · = σ
p
p = ξ and

σ2σ
2
3 · · · σ

p−1
p = ξ (p−1)/2α−1,
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the group H2 contains p1+2
+ as a subgroup. An element in the subgroup of H2

generated by σ1, . . . , σp could be described as

ω j diag(ξ i1, . . . , ξ i p),

where 0 ≤ j ≤ p − 1, 0 ≤ i1 ≤ p − 1, . . . , 0 ≤ i p ≤ p − 1 and i1 + · · · + i p is
divisible by p. So, the order of this subgroup is p p. Since β acts on the subgroup
of diagonal matrices as a cyclic permutation, the order of H2 is p p+1.

We write A2 for the quotient group p1+2
+ /〈ξ〉. The group A2 is an elementary

abelian p-group of rank 2. We denote by π̃ the obvious projection SU(p)→ PU(p)
and projections induced by this projection, e.g, π̃ : p1+2

+ → π̃(p1+2
+ ) = A2. We

denote the obvious inclusions among p1+2
+ , H2 and SU(p) and among A2, π̃(H2)

and PU(p) by ι.
Let us consider the following maps:

1 : SU(p)→ SU(p)×SU(p), m 7→
(

m 0
0 m

)
.

01 : SU(p)→ SU(p)×SU(p), m 7→
(

m 0
0 I

)
.

02 : SU(p)→ SU(p)×SU(p), m 7→
(

I 0
0 m

)
.

Using these maps and matrices in SU(p) above, we consider the following groups:

G = SU(p)×SU(p)/〈1(ξ)〉,

H =
〈
1(α),1(β),1(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
/〈1(ξ)〉,

A3 =
〈
1(α),1(β),1(ξ), 02(ξ)

〉
/〈1(ξ)〉,

A′3 =
〈
01(α), 02(β),1(ξ), 02(ξ)

〉
/〈1(ξ)〉.

Since α and β are in H2, the subgroup〈
1(α),1(β),1(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
contains

01(α)=1(α)02(α
−1), 01(β)=1(β)02(β

−1), 01(ξ)=1(ξ)02(ξ
−1).

Therefore, it is equal to the subgroup

p1+2
+
× H2 =

〈
01(α), 01(β), 01(ξ), 02(β), 02(σ1), . . . , 02(σp)

〉
.

Hence, we have
H = p1+2

+
× H2/〈1(ξ)〉.
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We denote the obvious inclusion of H by f : H → G. It is also clear that
A3 and A′3 are elementary abelian p-subgroups of rank 3. We use the elemen-
tary abelian p-subgroup A′3 only in the proof of Proposition 6.4. In the above
groups, 01(ξ) = 02(ξ). We denote by π the obvious projections induced by π :
G→ PU(p)×PU(p). It is clear that

π(H)= H/〈02(ξ)〉 = A2× π̃(H2)

and
PU(p)×PU(p)= SU(p)×SU(p)/〈1(ξ), 02(ξ)〉.

Moreover, we have the following commutative diagram:

A3
g

//

ϕ

��

H

π

��

A′3

ϕ′

��

g′
oo

A2
g
// A2× π̃(H2) A2

g′
oo

where the upper g and g′ are the obvious inclusions, A2 = 〈π̃(α), π̃(β)〉,

ϕ(1(α))= π̃(α), ϕ(1(β))= π̃(β),

ϕ′(01(α))= π̃(α), ϕ′(02(β))= π̃(β),

g(π̃(α))= (π̃(α), π̃(α)), g(π̃(β))= (π̃(β), π̃(β)),

g′(π̃(α))= (π̃(α), 1), g′(π̃(β))= (1, π̃(β)).

We end this section by considering another subgroup H ′2 of the unitary group
U (p) and its quotient group π̃(H ′2), which is a subgroup of PU(p). We use H ′2
and π̃(H ′2) only in the proof of Proposition 5.2. Let T p be the set of all diagonal
matrices in U (p), which is a maximal torus of U (p). We define H ′2 = T p oZ/p
as the subgroup generated by T p and β. It is clear that π̃(H2) is a subgroup of
π̃ ′(H ′2)⊂ PU(p), where we denote by π̃ ′ the obvious projection U (p)→ PU(p).

3. The cohomology of B PU( p)

In this section, we recall the integral and mod p cohomology of B PU(p). Through-
out the rest of this paper, we denote the integral cohomology of a space X by
H∗(X;Z) and its mod p cohomology by H∗(X). Also, we denote the mod p
reduction by

ρ : H∗(X;Z)→ H∗(X).

We also define generators u2∈H 2(B PU(p)) and z1∈H 1(B〈ξ〉)with d2(z1)= x1 y1,
d2(z1) = u2 and ι∗(u2) = x1 y1, where x1, y1 ∈ H 1(B A2) are generators corre-
sponding to α and β in π1(B A2) = 〈π̃(α), π̃(β)〉, and the d2 are differentials in
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the Leray–Serre spectral sequence associated with the vertical fibrations π̃ in

Bp1+2
+

ι
//

π̃

��

B SU(p)

π̃

��

B A2
ι
// B PU(p)

(3.1)

where vertical maps are induced by the obvious projections and horizontal maps
are induced by the obvious inclusions.

First, we set up notations related to the spectral sequence. Let

π : X→ B

be a fibration. Since the base space B is usually clear from the context, we write
E s,t

r (X) for the Leray–Serre spectral sequence associated with the above fibration
converging to the mod p cohomology H∗(X). If it is clear from the context, we
write E s,t

r for the Leray–Serre spectral sequence. We denote by

H s+t(X)= F0 H s+t(X)⊇ F1 H s+t(X)⊇ · · · ⊇ F s+t+1 H s+t(X)= {0}

the filtration on H s+t(X) associated with the spectral sequence. Unless otherwise
stated explicitly, by abuse of notation, we denote the cohomology class and the
element it represents in the spectral sequence by the same symbol. Usually, it is
clear from the context whether we mean the cohomology class or the element in the
spectral sequence. Let R be an algebra or a graded algebra. Let {x1, . . . , xr } be a
finite set. We denote by R{x1, . . . , xr } the free R-module spanned by {x1, . . . , xr }.
For a graded module M , we say M is a free R-module up to degree m if the
R-module homomorphism

f : (R{x1, . . . , xr })
i
→ M i

is an isomorphism for i ≤ m for some finite subset {x1, . . . , xr } of M . We say
a spectral sequence collapses at the Er -level up to degree m if E s,t

r = E s,t
∞

for
s+ t ≤ m.

Next, we recall the integral and mod p cohomology of B PU(p). The mod 3
cohomology of B PU(3) was computed by Kono, Mimura and Shimada [Kono
et al. 1975]. The integral and mod p cohomology of B PU(p) was computed by
Vistoli [2007]. The mod p cohomology was computed by Kameko and Yagita
[2008] independently. The computation up to degree 5 was also done by Antieau
and Williams [2014]. Although the direct computation is not difficult, we prove
the following proposition by direct computation because it is slightly different from
the one in [Antieau and Williams 2014].
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Proposition 3.2. Up to degree 5, the integral cohomology of B PU(p) is given by

H i (B PU(p);Z)= {0} for i = 1, 2, 5,

H i (B PU(p);Z)= Z/p for i = 3,

H i (B PU(p);Z)= Z for i = 0, 4.

Up to degree 5, the mod p cohomology of B PU(p) is given by

H i (B PU(p))= {0} for i = 1, 5,

H i (B PU(p))= Z/p for i = 0, 2, 3, 4.

Proof. Consider the Leray–Serre spectral sequence associated with

BU (p)→ B PU(p)→ K (Z, 3)

converging to H∗(B PU(p);Z). The integral cohomology of BU (p) is a polyno-
mial algebra generated by Chern classes, that is, H∗(BU (p);Z)= Z[c1, . . . , cp],
where deg ci = 2i . The integral cohomology H i (K (Z, 3);Z) of the Eilenberg–
Mac Lane space K (Z, 3) is Z for i = 0, 3 and {0} for i = 1, 2, 4, 5. We fix a
generator u3 of H 3(K (Z, 3);Z). Up to degree 5, the only nontrivial E2-terms are

E0,0
2 = E0,2

2 = Z, E0,4
2 = Z⊕Z and E3,0

2 = E3,2
2 = Z.

Hence, up to degree 5, the only nontrivial differential is d3 : E
0,t
3 → E3,t−2

3 , which
is given by

d3(c1)= α1u3, d3(c2)= α2c1u3,

where α1, α2 ∈Z. Since B PU(p) is simply connected and π2(B PU(p))=Z/p, by
the Hurewicz theorem we have H1(B PU(p);Z)= {0} and H2(B PU(p);Z)=Z/p.
By the universal coefficient theorem, we have H 2(B PU(p);Z) = {0} and that
H 3(B PU(p);Z) has Z/p as a direct summand. Therefore, α1 must be ±p and
E3,0

3 = Z/p. The cohomology suspension σ : H 4(BU (p))→ H 3(U (p)) maps
ρ(c2) to a nontrivial primitive element in H 3(U (p)), but there exists no primi-
tive element in H 3(PU(p)) by the computation due to Baum and Browder [1965].
Hence, in the Leray–Serre spectral sequence E s,t

r (B SU(p)), the element ρ(c2) in
E0,4

2 (B SU(p)) must support a nontrivial differential. Therefore, α2 is not divisible
by p and, up to degree 5, the nontrivial E3-terms are

E0,0
3 = E0,4

3 = Z, E3,0
3 = Z/p.

As for E s,t
r (B PU(p)), we have

E0,0
2 (B PU(p))= E0,2

2 (B PU(p))= Z/p, E0,4
2 (B PU(p))= Z/p⊕Z/p,

E3,0
2 (B PU(p))= E3,2

2 (B PU(p))= Z/p,
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and
d3(ρ(c1))= 0, d3(ρ(c2))= ρ(α2c1u3) 6= 0.

So, we have the desired result. �

With the following proposition, we choose generators

z1 ∈ H 1(B〈ξ〉), u2 ∈ H 2(B PU(p))

such that
d2(z1)= u2, d2(z1)= x1 y1

in the spectral sequences associated with vertical fiber bundles in (3.1).

Proposition 3.3. We may choose u2 ∈ H 2(B PU(p)) such that the induced homo-
morphism ι∗ : H 2(B PU(p))→ H 2(B A2) maps u2 to x1 y1.

Proof. From the commutative diagram (3.1), there exists the induced homomor-
phism between the Leray–Serre spectral sequences

ι∗ : E s,t
r (B SU(p))→ E s,t

r (Bp1+2
+
).

Since the group extension
Z/p→ p1+2

+
→ A2

corresponds to x1 y1 in H 2(B A2), the differential d2 : E
0,1
2 (Bp1+2

+ )→ E2,0
2 (Bp1+2

+ )

is given by
d2(z1)= x1 y1

for some z1 ∈ H 1(B〈ξ〉)= Z/p [z2]⊗3(z1). Hence,

d2 : E
0,1
2 (B SU(p))→ E2,0

2 (B SU(p))

is nontrivial and we may define u2 by d2(z1). Hence, we have the desired result. �

We end this section by computing H 4(BG;Z) for G = SU(p)×SU(p)/〈1(ξ)〉.
The following computation was done in the proof of [Totaro 2014, Theorem 15.4].

Proposition 3.4. Consider a homomorphism

ψ : H 4(BG;Z)→ H 4(B PU(p);Z)⊕ H 4(B SU(p);Z)

sending x to (1∗(x), 0∗2 (x)). It is an isomorphism.

Proof. Let p1 : PU(p)× PU(p)→ PU(p) be the projection onto the first factor.
Then, the fiber of p1 ◦π is SU(p). Consider the spectral sequence associated with

B SU(p) 02
−−→ BG p1◦π

−−→ B PU(p).
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The E2-term is H s(B PU(p); H t(B SU(p);Z)). By Proposition 3.2, E s,t
2 = {0}

unless s = 0, 3, 4 and t = 0, 4 up to degree 5. In particular, E s,t
2 = {0} for s+ t = 5.

The nonzero E2-terms of total degree 4 are given by

E4,0
2 = Z, E0,4

2 = Z.

The nonzero E2-term of total degree 3 is given by

E3,0
2 = Z/p.

So, for dimensional reasons, we have E s,t
∞
= E s,t

2 for s + t = 4. Hence, we have
H 4(BG;Z)= Z⊕Z and a short exact sequence

0→ H 4(B PU(p);Z)(p1◦π)
∗

−−→ H 4(BG;Z)
0∗2
−−→ H 4(B SU(p);Z)→ 0.

Since the composition p1 ◦ π ◦1 is the identity map, this short exact sequence
splits and the homomorphism ψ is an isomorphism. �

4. The mod p cycle map for G

Let G = SU(p)× SU(p)/〈1(ξ)〉, as in Section 2. In this section, we define a
virtual complex representation λ′′ of G. Using the Chern class c2(λ

′′), we prove
Theorem 1.2 for K =G. To be precise, we show that c2(λ

′′) is nonzero in CH2 BG/p
and the mod p reduction maps c2(λ

′′) to 0 in H 4(BG). Theorem 1.2 for K = G
was obtained by Totaro [2014] and by the author in [Kameko 2015] independently.
From now on, we denote the Bockstein operation of degree 1 by Q0 and the Milnor
operation of degree 2p− 1 by Q1. These are cohomology operations on the mod p
cohomology.

Let λ1 : SU(p)→U (p) be the tautological representation, so that λ1(g)(v)= gv
for v ∈ Cp. Let

λ∗1⊗ λ1 : SU(p)×SU(p)→U (p2)

be the complex representation defined by

(λ∗1⊗ λ1)(g1, g2)(v
∗

1 ⊗ v2)= (v
∗

1 g−1
1 )⊗ (g2v2),

where Cp2
= (Cp)∗⊗Cp and (Cp)∗ = Hom(Cp,C). The complex representation

λ∗1⊗ λ1 induces a complex representation λ : G→ U (p2). We define a complex
representation λ′ by λ ◦1 ◦ p1 ◦π . Using the complex representations λ and λ′, we
define a virtual complex representation λ′′ by λ′′=λ−λ′. An element in the complex
representation ring of G corresponds to an element in the topological K-theory
K 0(BG)= [BG,Z×BU ]. By abuse of notation, we denote by λ′′ : BG→Z×BU
a map in the homotopy class corresponding to λ′′. It is clear that

1∗(λ′′)= 0 and 0∗2 (λ
′′)= pλ1
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in the complex representation ring of G.
We denote by x4 the cohomology class in H 4(BG;Z) such that

(1) 0∗2 (x4)= c2(λ1),

(2) 1∗(x4)= 0.

Then c2(λ
′′)= px4. Hence, ρ(c2(λ

′′))= 0 in H 4(BG). It is clear from the definition
that c2(λ

′′) 6= 0 in H 4(BG;Z). Thus, if we show that the Chern class c2(λ
′′) is not

divisible by p in CH2 BG, then c2(λ
′′) represents a nonzero element in CH2 BG/p

and the mod p cycle map is not injective for BG. We prove it by contradiction:
Suppose that the Chern class c2(λ

′′) is divisible by p, that is, we suppose that
there exists a virtual complex representation µ : BG→ Z× BU of G such that
x4 ∈ Imµ∗ ⊂ H 4(BG;Z). Then Q1ρ(x4) must be zero since H odd(Z× BU )= {0}.
We prove the nonexistence of the above virtual complex representation by showing
that Q1ρ(x4) 6= 0. To show that Q1ρ(x4) 6= 0, we show that Q1( f ◦g)∗(ρ(x4)) 6= 0
in H∗(B A3), where f , g and A3 are as defined in Section 2. The following
Proposition 4.1 completes the proof of Theorem 1.2 for K = G.

We proved ( f ◦ g)∗(ρ(x4))= Q0(x1 y1z1) in [Kameko 2015]. Because we use
a similar but slightly different argument in the proof of Theorem 1.2 for K = H ,
we prove the following weaker form in this paper:

Proposition 4.1. We have Q1( f ◦ g)∗(ρ(x4)) 6= 0 in H 2p+3(B A3).

To prove Proposition 4.1, we compute the Leray–Serre spectral sequences and
the homomorphism ( f ◦ g)∗ induced by the following commutative diagram:

B A3

ϕ

��

f ◦g
// BG

π

��

B SU(p)

π̃

��

02
oo

B A2
f ◦g
// B PU(p)× B PU(p) B PU(p)

02
oo

We denote by x1 and y1 the generators of the mod p cohomology of B A3 corre-
sponding to the generators 1(α) and 1(β) of A3, so that we have ϕ∗(x1) = x1

and ϕ∗(y1) = y1. Let z1 be the element in H 1(B〈02(ξ)〉) such that 0∗2 (z1) =

−z1 ∈ E0,1
2 (B SU(p)). The element z1 in E0,1

2 (B SU(p)) and u2 ∈ E2,0
2 (B SU(p))

are defined in Section 3, so that d2(z1) = u2 in E2,0
2 (B SU(p)). We define the

generator u3 of H 3(B PU(p)) by u3 = Q0u2. Let us consider the E2-term of the
spectral sequence E s,t

r (BG). The E2-term is as follows:

E∗,∗2 = H∗(B PU(p))⊗ H∗(B PU(p))⊗Z/p [z2]⊗3(z1).

Since f ◦ g =1 ◦ ι, we have ( f ◦ g)∗(1⊗ u)= ( f ◦ g)∗(u⊗ 1)= ι∗(u). Moreover,
we have 0∗2 (1⊗ u)= u and 0∗2 (u⊗ 1)= 0 for deg u > 0.

Let ai = ui ⊗ 1− 1⊗ ui , bi = ui ⊗ 1. Then, up to degree 6, the E2-term is
a free Z/p [a2, z2] ⊗3(z1)-module with basis {1, b2, a3, b3, b2

2, a3b3, b3
2}. Since
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( f ◦ g)∗d2(z1)= 0 and 0∗2 (d2(z1))=−u2, the first nontrivial differential is given
by

d2(z1)= a2.

So, up to degree 5, the E3-term is a free Z/p [z2]-module with basis {1,b2,a3,b3,b2
2}.

In particular, a3b2 = 0 in E5,0
3 . Since ( f ◦ g)∗(d3(z2))= 0 and 0∗2 (d3(z2))=−u3,

the second nontrivial differential is given by

d3(z2)= a3.

Up to degree 4, the E4-term is a free Z/p-module with basis {1, b2, b3, b2
2, b2z2}

and the spectral sequence collapses at the E4-level. Thus, the E∞-terms of total
degree 4 are as follows:

E0,4
∞
= {0}, E1,3

∞
= {0}, E2,2

∞
= Z/p {b2z2}, E3,1

∞
= {0}, E4,0

∞
= Z/p {b2

2}.

The element b2 is a permanent cocycle. By abuse of notation, we denote by b2 the
cohomology class in F2 H 2(BG) representing b2. Since H 2(B SU(p))= {0}, we
have

0∗2 (π
∗(b2))= 0.

Moreover, π∗
(
H 4(B PU(p)× B PU(p))

)
= Z/p {b2

2}. Hence, we have

0∗2
(
π∗
(
H 4(B PU(p)× B PU(p))

))
= {0}.

On the other hand, 0∗2 ρ(x4)= ρ(c2(λ1)) 6= 0 in H 4(B SU(p)). Therefore, ρ(x4)

is not in the image of

π∗ : H 4(B PU(p)× B PU(p))→ H 4(BG).

Hence, we have the following result:

Proposition 4.2. The cohomology class ρ(x4) represents αb2z2 in E2,2
∞

for some
α 6= 0 in Z/p.

Now, we complete the proof of Proposition 4.1 using Proposition 4.2.

Proof of Proposition 4.1. Since ( f ◦ g)∗(b2)= x1 y1, we have

( f ◦ g)∗(b2z2)= x1 y1z2

in the spectral sequence, where z2 = Q0z1 in H 2(B〈02(ξ)〉). Let x2 = Q0x1 and
y2 = Q0 y1. Then H∗(B A3)= Z/p [x2, y2, z2] ⊗3(x1, y1, z1) and ϕ∗(H∗(B A2))

is the subalgebra generated by x1, y1, x2, y2. Therefore, we have

( f ◦ g)∗(ρ(x4))= αx1 y1z2+ u′z1+ u′′
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for some u′, u′′ ∈ ϕ∗(H∗(B A2)). Let M be the ϕ∗(H∗(B A2))-module generated
by

1, z1, z1z2, zi
2 and z1zi

2 (i ≥ 2),
so that

H∗(B A3)/M = ϕ∗(H∗(B A2)){z2}.

Since Q1z1 = z p
2 , Q1z2 = 0 and Q1 is a derivation, M is closed under the action

of the Milnor operation Q1. We have

( f ◦ g)∗(ρ(x4))≡ αx p
2 y1z2−αx1 y p

2 z2 6≡ 0 mod M.

This completes the proof of Proposition 4.1. �

5. The mod p cohomology of Bπ̃(H2)

In this section, we collect some facts on the mod p cohomology of Bπ̃(H2) as
Propositions 5.1 and 5.2. We use these facts in the proof of Proposition 6.1.

We begin by defining generators of H 1(Bπ̃(H2)). Since the commutator sub-
group [π̃(H2), π̃(H2)] is generated by π̃(diag(ξa1, . . . , ξap)) for 0 ≤ ai ≤ p− 1,
1≤ i ≤ p, with a1+ · · ·+ ap ≡ 0 mod p,

π̃(H2)/[π̃(H2), π̃(H2)] = Z/p⊕Z/p.

This elementary abelian p-group is generated by π̃(σ1) and π̃(β). We denote by
v1 and w1 the generators of H 1

(
B〈π̃(σ1)〉

)
and H 1

(
B〈π̃(β)〉

)
corresponding to

π̃(σ1) and π̃(β), respectively. By abuse of notation, we denote the corresponding
generators in H 1(Bπ̃(H2)) by the same symbol, so that, for the inclusions

ιβ : 〈π̃(β)〉 → π̃(H2), ισ : 〈π̃(σ1)〉 → π̃(H2),

we have ι∗β(w1) = w1, ι∗β(v1) = 0, ι∗σ (w1) = 0 and ι∗σ (v1) = v1. Indeed, we have
H∗
(
B〈π̃(σ1)〉

)
=Z/p [v2]⊗3(v1) and H∗(B〈π̃(β)〉)=Z/p [w2]⊗3(w1), where

v2 = Q0v1 and w2 = Q0w1. We denote the inclusion of π̃(H2) to PU(p) by

ι : π̃(H2)→ PU(p)

and we recall that we defined the generator u2 of H 2(B PU(p)) in Proposition 3.3.

Proposition 5.1. In H∗(Bπ̃(H2)), we have ι∗(u2)v1 6= 0 and ι∗(u2
2) 6= 0.

Proof. We consider the Leray–Serre spectral sequences associated with the vertical
fibrations in the following commutative diagram:

B〈σ1〉
ισ

//

π̃

��

B H2

π̃

��

ι
// B SU(p)

π

��

B〈π̃(σ1)〉
ισ
// Bπ̃(H2)

ι
// B PU(p)
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Let z1 ∈ E0,1
2 (B SU(p)) and u2 ∈ E2,0

2 (B SU(p)) be elements defined in Section 3.
By abuse of notation, we denote elements ι∗(z1) in E0,1

2 (B H2) and ι∗σ (ι
∗(z1)) in

E0,1
2 (B〈σ1〉) by z1. Since 〈σ1〉 = Z/p2,

d2(z1)= αv2

for some α 6= 0 in Z/p in the Leray–Serre spectral sequence E2,0
2 (B〈σ1〉). Since

u2 = d2(z1) in the Leray–Serre spectral sequence E2,0
2 (B SU(p)), we have

ι∗σ (ι
∗(u2))= d2(z1)= αv2

in H∗
(
B〈π̃(σ1)〉

)
= Z/p [v2]⊗3(v1). Hence, we have ι∗σ (ι

∗(u2)v1)= αv1v2 6= 0
and ι∗σ (ι

∗(u2
2))= α

2v2
2 6= 0. Therefore, we obtain the desired result: ι∗(u2)v1 6= 0

and ι∗(u2
2) 6= 0 in H∗(Bπ̃(H2)). �

Proposition 5.2. In H∗(Bπ̃(H2)), we have ι∗(u2)w1 = 0.

To prove Proposition 5.2, at the end of Section 2 we defined the subgroup H ′2 =
T p oZ/p of the unitary group U (p) generated by diagonal matrices and β. The
quotient group π̃ ′(H ′2) contains π̃(H2) as a subgroup and they are subgroups of
the projective unitary group PU(p). We denote by

ι′′ : π̃(H2)→ π̃ ′(H ′2), ι′ : π̃ ′(H ′2)→ PU(p)

the inclusions, so that ι = ι′ ◦ ι′′. We use the following lemma in the proof of
Proposition 5.2:

Lemma 5.3. In H∗(Bπ̃ ′(H ′2)), there exists an element t2 ∈ H 2(Bπ̃ ′(H ′2)) such that
H 1(Bπ̃ ′(H ′2)) = Z/p {w1} and H 2(Bπ̃ ′(H ′2)) = Z/p {t2, w2}, where w2 = Q0w1,
(ι′′◦ισ )

∗(t2)=v2 and (ι′′◦ιβ)∗(t2)=0. Moreover, we have t2w1=0 in H∗(Bπ̃ ′(H ′2)).

Now, we prove Proposition 5.2 assuming Lemma 5.3.

Proof of Proposition 5.2. We consider the Leray–Serre spectral sequences associ-
ated with the vertical fibrations in the commutative diagram

B〈β, ξ〉
ιβ

//

π̃

��

B H2

π̃

��

ι
// B SU(p)

π̃

��

B〈π̃(β)〉
ιβ
// Bπ̃(H2)

ι
// B PU(p)

Suppose that ι′∗(u2) = α1t2 + α2w2, where α1, α2 ∈ Z/p. Then, by Lemma 5.3,
we have

ι′
∗
(u2)w1 = α1t2w1+α2w1w2 = α2w1w2.

Hence, we have (ι ◦ ιβ)∗(u2)w1 = α2w1w2. On the other hand, since the group
extension

〈ξ〉 → 〈β, ξ〉 → 〈π̃(β)〉
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is trivial, d2 : H 1(B〈ξ〉)→ H 2
(
B〈π̃(β)〉

)
in E s,t

2 (B〈β, ξ〉) is zero and

(ι ◦ ιβ)
∗(u2)= d2((ι ◦ ιβ)

∗(z1))= 0

in H∗
(
B〈π̃(β)〉

)
= E2,0

2 (B〈β, ξ〉). Therefore, we have α2 = 0 and w1ι
′ ∗(u2)= 0

in H∗(Bπ̃ ′(H ′2)). Therefore, we have

ι∗(u2)w1 = ι
′′ ∗(ι′

∗
(u2)w1)= 0

in H∗(Bπ̃(H2)). �

We end this section by proving Lemma 5.3.

Proof of Lemma 5.3. We need to study the mod p cohomology only up to degree 3.
We define t2 by ι′ ∗(u2), where u2 is the generator of H 2(B PU(p)).

We consider the Leray–Serre spectral sequence associated with the following
commutative diagram:

BT p

��

π̃ ′
// BT p−1

��

B H ′2

��

π̃ ′
// Bπ̃ ′(H ′2)

��

B〈β〉 π̃
// B〈π̃(β)〉

We choose a generator t (i)2 ∈ H 2(BT p) corresponding to the i-th diagonal entry
of T p, so that H 2(BT p) = Z/p {t (1)2 , . . . , t (p)2 }. The matrix β acts on T p as the
cyclic permutation of diagonal entries, so that it acts on H 2(BT p) as the cyclic
permutation on t (1)2 , . . . , t (p)2 . The induced homomorphism π̃ ′ ∗ : H 2(BT p−1)→

H 2(BT p) is injective and we may take a basis {u(1)2 , . . . , u(p−1)
2 } for H 2(BT p−1)

such that π̃ ′ ∗(u(i)2 ) = t (i)2 − t (i+1)
2 for i = 1, . . . , p − 1. Hence, 〈β〉 acts on

H 2(BT p−1) by
gu(i)2 = u(i+1)

2

for i = 1, . . . , p− 2 and

gu(p−1)
2 =−(u(1)2 + · · ·+ u(p−1)

2 )

for some generator g of 〈β〉. We consider the Leray–Serre spectral sequence con-
verging to the mod p cohomology of Bπ̃ ′(H ′2). The E1-term is additively given as
follows:

E1 = Z/p [u(1)2 , . . . , u(p−1)
2 ]{wi

2, w1w
i
2 | i ≥ 0}.

The first nontrivial differential is given by

d1(uwi
2)= ((1− g)u)w1w

i
2, d1(uw1w

i
2)= ((1− g)p−1u)wi+1

2 ,
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where u ∈ Z/p [u(1)2 , . . . , u(p−1)
2 ] = E0,∗

1 . The kernel of

(1− g) : Z/p {u(1)2 , . . . , u(p−1)
2 } → Z/p {u(1)2 , . . . , u(p−1)

2 }

is spanned by a single element,

u(1)2 + 2u(2)2 + · · ·+ (p− 1)u(p−1)
2 ,

and the image of (1− g) is spanned by the p− 2 elements

u(1)2 − u(2)2 , . . . , u(p−2)
2 − u(p−1)

2 .

We denote the generator of the kernel of (1− g) by ũ, that is,

ũ = u(1)2 + 2u(2)2 + · · ·+ (p− 1)u(p−1)
2 .

It is easy to see that

ũ ≡ (1+ · · ·+ (p− 1))u(p−1)
2 ≡

1
2 p(p− 1)u(p−1)

2 ≡ 0

modulo the image of (1− g). By direct calculation, we have (1− g)p−1(u(1)2 )= 0
and Ker(1− g)p−1

= Z/p {u(1)2 , . . . , u(p−1)
2 }. Hence, we have

E0,2
2 = Ker(1− g)= Z/p {ũ},

E1,2
2 =

(
Ker(1− g)p−1/ Im(1− g)

)
{w1} = Z/p {u(1)2 w1},

respectively. Moreover, we have E∗,odd
r = {0} and E∗,0r = Z/p [w2] ⊗3(w1) for

∗ ≥ 0 and r ≥ 1. Since the elements in E∗,0r are permanent cocycles, the spectral
sequence collapses at the E2-level up to degree 3. Choose a cohomology class t ′2
in H 2(Bπ̃ ′(H ′2)) representing the generator ũ of E0,2

∞
= Z/p. Then, H 2(Bπ̃ ′(H ′2))

is generated by t ′2 and w2. Suppose that

ι′
∗
(u2)= α1w2+α2t ′2,

where α1, α2 ∈ Z/p. Since (ι′ ◦ ι′′ ◦ ισ )∗(u2)= v2 and (ι′′ ◦ ισ )∗(w2)= 0,

(ι′′ ◦ ισ )
∗(α2t ′2)= v2

and so α2 6= 0. Hence, t2 and w2 generate H 2(Bπ̃ ′(H ′2)).
Next, we prove that t2w1 = 0. The E∞-terms of total degree 3 are given by

E0,3
∞
= {0}, E1,2

∞
= Z/p {u(1)2 w1}, E2,1

∞
= {0} and E3,0

∞
= Z/p {w1w2}.

Therefore, we have

F2 H 3(Bπ̃ ′(H ′2))= F3 H 3(Bπ̃ ′(H ′2))= Z/p {w1w2}.
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Since α2t ′2w1 represents α2ũw1 and ũ ∈ Ker(1− g) is congruent to zero modulo
the image of (1− g), we have ũw1 = 0 in E1,2

∞
. So, we have

t2w1 ∈ F3 H 3(Bπ̃ ′(H ′2))= Z/p {w1w2}.

Therefore, t2w1 = α3w1w2 for some α3 ∈ Z/p. We proved that (ι′′ ◦ ιβ)∗(t2) =
(ι′◦ι′′◦ιβ)

∗(u2)=0 in the proof of Proposition 5.2. Thus, we have (ι′′◦ιβ)∗(t2w1)=0.
On the other hand, we have (ι′′ ◦ ιβ)∗(w1w2)=w1w2 6= 0 in H∗

(
B〈π̃(β)〉

)
. Hence,

we obtain α3 = 0. �

6. The mod p cycle map for H

In this section, we prove Theorem 1.2. Let G be SU(p) × SU(p)/〈1(ξ)〉 and
let H = p1+2

+ × H2/1(ξ), as in Section 3. Let K be a subgroup of G con-
taining H , that is, H ⊂ K ⊂ G. We proved in Section 4 that the mod p cycle
map CH2 BG/p → H 4(BG) is not injective. To be more precise, we defined
the virtual complex representation λ′′ : BG→ Z× BU such that the Chern class
c2(λ

′′) ∈ CH2 BG is nontrivial in CH2 BG/p, that is, c2(λ
′′) is not divisible by p,

and the mod p cycle map maps c2(λ
′′) to ρ(c2(λ

′′))= 0. We denote the inclusions
by f ′ : K → G, f ′′ : H → K and f : H → G, so that f = f ′ ◦ f ′′ : H → G. It
is clear that ρ(c2(λ

′′
◦ f ′)) is zero in H 4(BK ). So, in order to prove Theorem 1.2,

we need to show that c2(λ
′′
◦ f ′) remains nonzero in CH2 BK ⊂ H 4(BK ;Z) and

that c2(λ
′′
◦ f ′) remains not divisible by p in CH2 BK . These follow immediately

from:

(1) c2(λ
′′
◦ f )= f ′′ ∗(c2(λ

′′
◦ f ′)) is not zero in CH2 B H ⊂ H 4(B H ;Z).

(2) c2(λ
′′
◦ f )= f ′′ ∗(c2(λ

′′
◦ f ′)) is not divisible by p in CH2 B H .

To prove (1) and (2), we consider the spectral sequences associated with the
vertical fibrations below and the induced homomorphism between them:

B H

π

��

f
// BG

π

��

B A2× Bπ̃(H2)
f
// B PU(p)× B PU(p)

Let g : B A2→ B A2× Bπ̃(H2) be the map defined in Section 2 by g(π̃(α))=
(π̃(α), π̃(α)) and g(π̃(β)) = (π̃(β), π̃(β)). Let v1 and w1 be the generators of
H 1(Bπ̃(H2)) defined in the previous section; let x1 and y1 be those of H 1(B A2), as
defined in Section 3. We denote by x1, y1, v1 and w1 the corresponding generators
of H 1(B A2×Bπ̃(H2)), so that g∗(x1)= x1, g∗(v1)= 0 and g∗(y1)= g∗(w1)= y1.
We denote by z1 a generator of H 1(B〈02(ξ)〉)= E0,1

2 as in Section 4. Let x2=Q0x1,
y2 = Q0 y1 and z2 = Q0z1, as usual, so that H∗(B A2)= Z/p [x2, y2]⊗3(x1, y1).
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Also, let u2 be the generator of H 2(B PU(p)) defined in Section 3, and let u3 =

Q0u2, as in Section 4. Let ι be the map induced by the inclusion of π̃(H2) into
PU(p). We need to compute the spectral sequence up to degree 4. Differentials d2

and d3 in the spectral sequence E s,t
r (B H) are given by

d2(z1)= x1 y1− ι
∗(u2),

d3(z2)= x2 y1− x1 y2− ι
∗(u3),

since
f ∗(u2⊗ 1− 1⊗ u2)= x1 y1− ι

∗(u2),

f ∗(u3⊗ 1− 1⊗ u3)= x2 y1− x1 y2− ι
∗(u3),

and the differentials d2 and d3 in the spectral sequence E s,t
r (BG) are given by

d2(z1)= u2⊗ 1− 1⊗ u2 and d3(z2)= u3⊗ 1− 1⊗ u3, as we saw in Section 4.

Proposition 6.1. The E∞-terms E s,t
∞

( for s = 0, 1, 2 and s + t = 3, 4) for the
spectral sequence E s,t

r (B H) are given as follows: E0,3
∞
= E1,2

∞
= E0,4

∞
= E1,3

∞
= {0},

E2,1
∞
= Z/p {w1x1z1, w1 y1z1},

E2,2
∞
= Z/p {x1 y1z2, w1x1z2, w1 y1z2}.

Proof. For the sake of notational simplicity, let

R = Z/p [x2, y2]⊗ H∗(Bπ̃(H2)),

so that
H∗(B A2)⊗ H∗(Bπ̃(H2))= R{1, x1, y1, x1 y1}.

The set {v1, w1} is a basis for H 1(Bπ̃(H2)). We consider a basis for H 2(Bπ̃(H2)).
By Proposition 5.1, we have ι∗(u2)

2
6= 0. We choose a basis {m(i), ι∗(u2)} for

H 2(Bπ̃(H2)), where 1 ≤ i < dim H 2(Bπ̃(H2)). Here, we do not exclude the
possibility that {m(i)

} could be the empty set. Then, the set {m(i), ι∗(u2), x2, y2} is
a basis for the subspace of R spanned by elements of degree 2 and {m(i), x2, y2} is
a basis for the subspace of R/(ι∗(u2)) spanned by elements of degree 2. The set

{v1, w1, x1, y1}

is a basis for E1,0
2 = H 1(B A2× Bπ̃(H2)) and

{m(i), ι∗(u2), x2, y2, v1x1, v1 y1, w1x1, w1 y1, x1 y1}

is a basis for E2,0
2 = H 2(B A2× Bπ̃(H2)).

First, we compute E3-terms E0,3
3 , E2,1

3 and E1,3
3 . Let us consider R-module

homomorphisms

pr(k)2 : E
∗,2k
2 = R{zk

2, x1zk
2, y1zk

2, x1 y1zk
2} → R{x1zk

2, y1zk
2, x1 y1zk

2}
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sending zk
2, x1zk

2, y1zk
2 and x1 y1zk

2 to 0, x1zk
2, y1zk

2 and x1 y1zk
2, respectively. Recall

that
d2(z1)= x1 y1− ι

∗(u2).

The E2-term E0,3
2 is spanned by z1z2. It is clear from d2(z2)= 0 that

d2(z1z2)= d2(z1)z2 = (x1 y1− ι
∗(u2))z2 6= 0.

Hence the homomorphism d2 : E
0,3
2 → E2,2

2 is injective and we have E0,3
3 = {0}.

The E2-term E2,1
2 is spanned by

m(i)z1, ι
∗(u2)z1, x2z1, y2z1, v1x1z1, v1 y1z1, w1x1z1, w1 y1z1, x1 y1z1

and
d2(α2z1)= α2d2(z1)= α2x1 y1−α2ι

∗(u2).

for any degree 2 element α2 in E2,0
2 = H 2(B A2× Bπ̃(H2)) since d2(α2) = 0. If

α2 is one of m(i), ι∗(u2), x2 or y2, then α2ι
∗(u2) ∈ R{1} and so pr(0)2 (α2ι

∗(u2))= 0,
by definition. Hence, for α2 = m(i), ι∗(u2), x2 and y2, we have

pr(0)2 (d2(α2z1))= α2x1 y1.

So, we have
pr(0)2 (d2(m(i)z1))= m(i)x1 y1,

pr(0)2 (d2(ι
∗(u2)z1))= ι

∗(u2)x1 y1,

pr(0)2 (d2(x2z1))= x2x1 y1,

pr(0)2 (d2(y2z1))= y2x1 y1.

If α2 is one of v1x1, v1 y1, w1x1, w1 y1 or x1 y1, then α2x1 y1 = 0. So, we have

d2(α2z1)=−α2ι
∗(u2)=−ι

∗(u2)α2.

By Proposition 5.2, ι∗(u2)w1 = 0 in H∗(Bπ̃(H2)). Using this, we have

d2(w1x1z1)=−ι
∗(u2)w1x1 = 0,

d2(w1 y1z1)=−ι
∗(u2)w1 y1 = 0.

Also, we have

pr(0)2 (d2(v1x1z1))= − ι∗(u2)v1x1,

pr(0)2 (d2(v1 y1z1))= − ι∗(u2)v1 y1,

pr(0)2 (d2(x1 y1z1))=−ι
∗(u2)x1 y1.

By Proposition 5.1, ι∗(u2)v1 6= 0. So, the kernel of pr(0)2 ◦ d2 is spanned by

x1 y1z1+ ι
∗(u2)z1, w1x1z1, w1 y1z1.
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On the other hand, we have

d2(x1 y1z1+ ι
∗(u2)z1)= x1 y1(x1 y1− ι

∗(u2))+ ι
∗(u2)(x1 y1− ι

∗(u2))=−ι
∗(u2)

2,

and, since ι∗(u2)
2
6= 0 by Proposition 5.1, x1 y1z1 + ι

∗(u2)z1 is not in the kernel
of d2. Hence, the kernel of d2 is spanned by w1x1z1 and w1 y1z1, and the image of
d2 : E0,2

2 → E2,1
2 is trivial since E0,2

2 is spanned by z2 and d2(z2) = 0. Thus, we
have E2,1

3 = Z/p {w1x1z1, w1 y1z1}.
As for the E2-term E1,3

2 , we have a basis

{x1z1z2, y1z1z2, v1z1z2, w1z1z2}

and
d2(α1z1z2)=−α1d2(z1)z2 =−α1x1 y1z2+α1ι

∗(u2)z2

for α1= x1, y1, v1, w1, since d2(α1)= d2(z2)= 0. For α1= x1, y1, since α1x1 y1= 0
we have

d2(α1z1z2)= α1ι
∗(u2)z2 = ι

∗(u2)α1z2.

For α1 = v1, w1, since α1ι
∗(u2)z2 ∈ R{z2}, we have pr(1)2 (α1ι

∗(u2)z2) = 0 by
definition. Hence, we have

pr(1)2 (d2(α1z1z2))=−α1x1 y1z2.

Thus, we obtain

pr(1)2 (d2(x1z1z2))= ι∗(u2)x1z2,

pr(1)2 (d2(y1z1z2))= ι∗(u2)y1z2,

pr(1)2 (d2(v1z1z2))=−v1x1 y1z2,

pr(1)2 (d2(w1z1z2))=−w1x1 y1z2.

Hence, it is clear that the composition

pr(1)2 ◦ d2 : E
1,3
2 → E3,2

2 → R{x1z2, y1z2, x1 y1z2}

is injective and so is d2 : E
1,3
2 → E3,2

2 . Therefore, we have E1,3
3 = {0}.

Next we compute the E4-terms E0,4
4 , E1,2

4 and E2,2
4 . In the E3-term, the relations

are given by x1 y1= ι
∗(u2), ι∗(u2)x1= 0 and ι∗(u2)y1= 0. In particular, ι∗(u2)

2
= 0.

For simplicity, we write R′ and R′′ for R/(ι∗(u2)) and R/(ι∗(u2)
2), respectively.

We have
E∗,2k

3 = R′{x1zk
2, y1zk

2}⊕ R′′{zk
2}

as a graded Z/p-module. Let N be the subspace of R′{x1} spanned by elements
of the form xx1, where x ranges over a basis for H∗(Bπ̃(H2))/(ι

∗(u2)) ⊂ R′.
Here, we emphasize that N is not an R-submodule and that x̃m(i)x1, x̃ x1, x̃v1x1
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and x̃w1x1 are linearly independent in R′{x1}/N , where x̃ ranges over positive-
degree monomials in x2 and y2. We consider a Z/p-module homomorphism

pr3 : E
∗,0
3 = R′{x1, y1}⊕ R′′{1} → R′{x1}/N ⊕ R′′{1},

sending r ′x1, r ′y1 and r ′′ to r ′x1, 0 and r ′′, respectively, where r ′ ∈ R′ and r ′′ ∈ R′′.
Recall that

d3(z2)= x2 y1− x1 y2− ι
∗(u3).

The E3-term E0,4
3 is spanned by z2

2 and, since y2x1z2 is nontrivial in R′{x1z2},

d3(z2
2)= 2d3(z2)z2 = 2x2 y1z2− 2x1 y2z2− 2ι∗(u3)z2

=−2y2x1z2+ 2x2 y1z2− 2ι∗(u3)z2

is nontrivial in E∗,23 = R′{x1z2, y1z2}⊕R′′{z2}. Hence, d3 : E
0,4
3 → E3,2

3 is injective
and E0,4

4 = {0}.
The E3-term E1,2

3 is spanned by

v1z2, w1z2, x1z2, y1z2,

since the subspace of R′′ spanned by degree 1 elements is equal to H 1(Bπ̃(H2))

and H 1(Bπ̃(H2)) is spanned by v1 andw1. For α1=v1,w1, x1, y1, since d3(α1)=0
we have

d3(α1z2)=−α1d3(z2)=−α1x2 y1+α1x1 y2+α1ι
∗(u3).

Hence, for α1 = v1, w1, since pr3(α1x2 y1)= 0 by definition, we have

pr3(d3(α1z2))= α1x1 y2+α1ι
∗(u3)= y2α1x1+α1ι

∗(u3).

For α1 = x1, y1, since x2
1 = y2

1 = 0, x1 y1 = ι
∗(u2) and y1x1 =−ι

∗(u2), we have

d3(x1z2)=−x1x2 y1+ x1ι
∗(u3)=−ι

∗(u3)x1− x2ι
∗(u2)

d3(y1z2)= y1x1 y2+ y1ι
∗(u3)=−ι

∗(u3)y1− y2ι
∗(u2).

Since ι∗(u3)x1 is in N , pr3(ι
∗(u3)x1)= 0. By definition, pr3(ι

∗(u3)y1)= 0. There-
fore, we have

pr3(d3(v1z2))= v1 y2x1 + v1ι
∗(u3),

pr3(d3(w1z2))= w1 y2x1+w1ι
∗(u3),

pr3(d3(x1z2))= − x2ι
∗(u2),

pr3(d3(y1z2))= − y2ι
∗(u2).

Since v1 y2x1 and w1 y2x1 are linearly independent in R′{x1}/N , and ι∗(u2)x2 and
ι∗(u2)y2 are linearly independent in Z/p {x2, y2}⊗H 2(Bπ̃(H2))⊂ R′′{1}, the four
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elements
d3(v1z2), d3(w1z2), d3(x1z2), d3(y1z2)

are linearly independent in E∗,03 = R′{x1, y1}⊕ R′′{1}. Hence, the homomorphism
d3 : E

1,2
3 → E4,0

3 is injective. Therefore, we have E1,2
4 = {0}.

The E3-term E2,2
3 is spanned by

m(i)z2, ι∗(u2)z2, x2z2, y2z2, v1x1z2, v1 y1z2, w1x1z2, w1 y1z2.

For α2 = m(i), ι∗(u2), x2, y2, v1x1, v1 y1, w1x1, w1 y1 ∈ E2,0
3 , since d3(α2) is in

E5,−2
3 = {0} we have

d3(α2z2)= α2d3(z2)= α2x2 y1−α2x1 y2−α2ι
∗(u3).

For α2 = m(i), ι∗(u2), x2, y2, since pr3(α2x2 y1)= 0 by definition, we have

pr3(d3(α2z2))=−α2 y2x1−α2ι
∗(u3).

Thus, we have

pr3(d3(m(i)z2))=−y2m(i)x1−m(i)ι∗(u3),

pr3(d3(x2z2))=−x2 y2x1− x2ι
∗(u3),

pr3(d3(y2z2))=−y2
2 x1− y2ι

∗(u3).

Moreover, since ι∗(u2)ι
∗(u3)= ι

∗(u2u3)= 0 in H∗(Bπ̃(H2)) by Proposition 3.2,
and since ι∗(u2)x1 = ι

∗(u2)y1 = 0 in R′{x1, y1}, we have

d3(ι
∗(u2)z2)= 0.

For α1= v1, w1, using the relations x2
1 = y2

1 = 0, x1 y1= ι
∗(u2) and y1x1=−ι

∗(u2)

in E3, we have

d3(α1x1z2)= α1x1x2 y1−α1x1x1 y2−α1x1ι
∗(u3)= α1ι

∗(u3)x1+ x2α1ι
∗(u2)

d3(α1 y1z2)= α1 y1x2 y1−α1 y1x1 y2−α1 y1ι
∗(u3)= α1ι

∗(u3)y1+ y2α1ι
∗(u2).

Since α1ι
∗(u3) ∈ H∗(Bπ̃(H2))/(ι

∗(u2)), we obtain α1ι
∗(u3)x1 ≡ 0 in R′{x1}/N ,

hence pr3(α1ι
∗(u3)x1) = 0. Moreover, pr3(α1ι

∗(u3)y1) = 0 by definition. So, we
have

pr3(d3(α1x1z2))= α1x2ι
∗(u2)= x2α1ι

∗(u2)

pr3(d3(α1 y1z2))= α1 y2ι
∗(u2)= y2α1ι

∗(u2).

By Proposition 5.2, w1ι
∗(u2)= 0. Hence, we have

d3(w1x1z2)= w1ι
∗(u3)x1

d3(w1 y1z2)= w1ι
∗(u3)y1.
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Furthermore, by Proposition 5.2, Q0(w1ι
∗(u2)) = Q0w1 · ι

∗(u2)−w1ι
∗(u3) = 0

in H∗(Bπ̃(H2)), hence w1ι
∗(u3)x1 = (Q0w1)ι

∗(u2)x1 = 0 in R′{x1, y1} ⊂ E∗,03 .
Thus, we obtain d3(w1x1z2) = 0. Similarly, we also have d3(w1 y1z2) = 0. Thus,
we have

pr3(d3(v1x1z2))= x2v1ι
∗(u2),

pr3(d3(v1 y1z2))= y2v1ι
∗(u2),

and
d3(w1x1z2)= 0,

d3(w1 y1z2)= 0.

Since y2m(i)x1, x2 y2x1 and y2
2 x1 are linearly independent in R′{x1}/N and, by

Proposition 5.1, x2v1ι
∗(u2) and y2v1ι

∗(u2) are linearly independent in

Z/p {x2, y2}⊗ H 3(Bπ̃(H2))⊂ R′′{1},

the kernel of pr3 ◦ d3 is spanned by ι∗(u2)z2, w1x1z2 and w1 y1z2, and, since these
are in the kernel of d3, the kernel of d3 is spanned by these elements. Moreover,
the image d3 : E

−1,4
3 → E2,2

3 is trivial. Therefore, we obtain

E2,2
4 = Z/p {ι∗(u2)z2, w1x1z2, w1 y1z2} = Z/p {x1 y1z2, w1x1z2, w1 y1z2},

where ι∗(u2)z2 = x1 y1z2.
Finally, we compute the E∞-terms E0,3

∞
, E1,2
∞

, E2,1
∞

and E0,4
∞

, E1,3
∞

, E2,2
∞

. Since
E0,3

3 = E1,2
4 = {0}, we have E0,3

∞
= E1,2

∞
= {0}. Similarly, since E0,4

4 = E1,3
3 = {0},

we have E0,4
∞
= E1,3

∞
= {0}. Since the Leray–Serre spectral sequence is the first

quadrant spectral sequence, for s ≤ r − 1 and t ≤ r − 2,

E s−r,t+r−1
r = E s+r,t−r+1

r = {0},
and the differentials

dr : E s−r,t+r−1
r → E s,t

r , dr : E s,t
r → E s+r,t−r+1

r

are trivial. Hence, we have E s,t
r = E s,t

∞
for s ≤ r − 1 and t ≤ r − 2. In particular,

E s,t
3 = E s,t

∞
for s ≤ 2 and t ≤ 1, and E s,t

4 = E s,t
∞

for s ≤ 3 and t ≤ 2. Hence, we
have E2,1

∞
= E2,1

3 and E2,2
∞
= E2,2

4 . �

In Section 4, we defined x4 ∈ H 4(BG;Z), so that c2(λ
′′)= px4 in H 4(BG;Z).

Therefore, to show that c2(λ
′′
◦ f ) 6= 0 in H 4(B H ;Z) it is equivalent to show that

p f ∗(x4) 6= 0 in H 4(B H ;Z). Hence, in order to prove (1), it suffices to show that
the mod p reduction ρ( f ∗(x4)) ∈ H 4(B H) of f ∗(x4) ∈ H 4(B H ;Z) is not in the
image of the Bockstein homomorphism. So, we prove the following proposition:

Proposition 6.2. The cohomology class f ∗(ρ(x4)) is not in the image of the Bock-
stein homomorphism

Q0 : H 3(B H)→ H 4(B H).
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Proof. Since E0,4
∞
= E1,3

∞
= {0}, we have F2 H 4(B H)= H 4(B H). Similarly, since

E0,3
∞
= E1,2

∞
= {0}, we have F2 H 3(B H)= H 3(B H). Hence, we have

Q0 H 3(B H)⊂ F2 H 4(B H)

and each cohomology class in Q0 H 3(B H) represents an element in

E2,2
∞
= F2 H 4(B H)/F3 H 4(B H).

Since E2,1
∞

is spanned by w1x1z1 and w1 y1z1, using the properties of the vertical
operation β℘0 constructed by Araki [1957, Corollary 4.1] in the spectral sequence
of a fibration, we have that if x is in Q0 H 3(B H) then x represents a linear combi-
nation of w1x1z2 and w1 y1z2 in E2,2

∞
.

On the other hand, by Proposition 4.2, ρ(x4) ∈ H 4(BG) represents αb2z2 in
E2,2
∞
(BG), where α 6= 0 is in Z/p. Using Proposition 3.3 and the definition of

b2 in Section 4, we have f ∗(b2)= x1 y1. Therefore, f ∗(ρ(x4)) represents αx1 y1z2

in E2,2
∞

. Hence, f ∗(ρ(x4)) is not in the image of the Bockstein homomorphism Q0.
�

Remark 6.3. If we replace H2 by the extraspecial p-group p1+2
+ , then (1) does

not hold. To be more precise, f ∗(ρ(x4)) is in the image of the Bockstein homo-
morphism Q0 : H 3(Bp1+4

+ ) → H 4(Bp1+4
+ ) and c2(λ

′′
◦ f ) = p f ∗(x4) = 0 in

H 4(Bp1+4
+ ;Z).

Finally, we prove (2) by proving the following proposition:

Proposition 6.4. There exists no virtual complex representation

µ : B H → Z× BU

such that c2(λ
′′
◦ f ) ∈ p · Imµ∗.

Proof. We prove this by contradiction. Suppose that there exists a virtual complex
representation

µ : B H → Z× BU

such that c2(λ
′′
◦ f ) ∈ p · Imµ∗. Then, p(µ∗(y4)− f ∗(x4)) = 0 for some y4 in

H 4(Z× BU ;Z). Since Q1 acts trivially on H∗(Z× BU ), we have

Q1ρ(µ
∗(y4))= 0.

In what follows, we show that

Q1ρ(µ
∗(y4)) 6= 0,

which proves the proposition.
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Since p(µ∗(y4)− f ∗(x4))= 0, ρ(µ∗(y4)− f ∗(x4)) is in the image of the Bock-
stein homomorphism, that is, as in the proof of Proposition 6.2, ρ(µ∗(y4)− f ∗(x4))

represents

α1w1x1z2+α2w1 y1z2

in E2,2
∞

for some α1, α2 ∈ Z/p. We already verified that f ∗(ρ(x4)) = ρ( f ∗(x4))

represents αx1 y1z2 ∈ E2,2
∞

, where α 6= 0, in the proof of Proposition 6.2. So,
ρ(µ∗(y4)) represents

αx1 y1z2+α1w1x1z2+α2w1 y1z2

in E2,2
∞

and α 6= 0.
We recall the structure of H2 defined in Section 2. Also, we recall the diagram

A3
g

//

ϕ

��

H

π

��

A′3

ϕ′

��

g′
oo

A2
g
// A2× π̃(H2) A2

g′
oo

where the upper g and g′ are the obvious inclusions, A2 = 〈π̃(α), π̃(β)〉,

g(π̃(α))= (π̃(α), π̃(α)), g(π̃(β))= (π̃(β), π̃(β)),

g′(π̃(α))= (π̃(α), 1), g′(π̃(β))= (1, π̃(β)).

In Section 5, we defined w1 ∈ H 1(Bπ̃(H2)), so that the induced homomorphism
H 1(Bπ̃(H2))→ H 1(B〈π̃(β)〉) maps w1 to the element corresponding to the gen-
erator π̃(β). So, we see that the induced homomorphisms g∗ and g′ ∗ satisfy

g∗(x1)= x1, g∗(y1)= y1, g∗(w1)= y1,

g′ ∗(x1)= x1, g′ ∗(y1)= 0, g′ ∗(w1)= y1.

Therefore, g∗(ρ(µ∗(y4))) ∈ H 4(B A3) represents

g∗(αx1 y1z2+α1w1x1z2+α2w1 y1z2)= αx1 y1z2+α1 y1x1z2 = (α−α1)x1 y1z2

in the spectral sequence for H∗(B A3) and g′ ∗(ρ(µ∗(y4))) ∈ H 4(B A′3) represents

g′ ∗(αx1 y1z2+α1w1x1z2+α2w1 y1z2)= α1 y1x1z2 =−α1x1 y1z2

in the spectral sequence for H∗(B A′3).
As in the proof of Proposition 4.1, let M be the ϕ∗(H∗(B A2))-submodule of

H∗(B A3) and M ′ the ϕ′ ∗(H∗(B A2))-submodule of H∗(B A′3) generated by

1, z1, z1z2, zi
2, z1zi

2 (i ≥ 2),
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where ϕ : B A3→ B A1 and ϕ′ : B A′3→ B A2 are the maps defined in Section 2, so
that

H∗(B A3)/M = ϕ∗(H∗(B A2)){z2} = Z/p [x2, y2]⊗3(x1, y1){z2},

H∗(B A′3)/M ′ = ϕ′∗(H∗(B A2)){z2} = Z/p [x2, y2]⊗3(x1, y1){z2},

respectively. Since Q1z1 = z p
2 , Q1z2 = 0, and Q1 is a derivation, M and M ′ are

closed under the action of Milnor operation Q1. We have

g∗(ρ(µ∗(y4)))≡ (α−α1)x1 y1z2 mod M,

g′ ∗(ρ(µ∗(y4)))≡−α1x1 y1z2 mod M ′.
and so

Q1g∗(ρ(µ∗(y4)))≡ (α−α1)(x
p
2 y1− x1 y p

2 )z2 mod M,

Q1g′ ∗(ρ(µ∗(y4)))≡−α1(x
p
2 y1− x1 y p

2 )z2 mod M ′.

Since α 6= 0, at least one of α−α1 and −α1 is nonzero. Therefore, we have

Q1ρ(µ
∗(y4)) 6= 0.

This completes the proof. �

Acknowledgements

The author would like to thank the referee not only for pointing out several errors
and offering kind advice and helpful comments but also for his/her patience.

The author is partially supported by the Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (C) JP25400097.

References

[Antieau and Williams 2014] B. Antieau and B. Williams, “The topological period-index problem
over 6-complexes”, J. Topol. 7:3 (2014), 617–640. MR Zbl

[Araki 1957] S. Araki, “Steenrod reduced powers in the spectral sequences associated with a fiber-
ing, II”, Mem. Fac. Sci. Kyusyu Univ. Ser. A. Math. 11 (1957), 81–97. MR Zbl

[Baum and Browder 1965] P. F. Baum and W. Browder, “The cohomology of quotients of classical
groups”, Topology 3 (1965), 305–336. MR Zbl

[Kameko 2015] M. Kameko, “On the integral Tate conjecture over finite fields”, Math. Proc. Cam-
bridge Philos. Soc. 158:3 (2015), 531–546. MR

[Kameko and Yagita 2008] M. Kameko and N. Yagita, “The Brown–Peterson cohomology of the
classifying spaces of the projective unitary groups PU(p) and exceptional Lie groups”, Trans. Amer.
Math. Soc. 360:5 (2008), 2265–2284. MR Zbl

[Kono et al. 1975] A. Kono, M. Mimura, and N. Shimada, “Cohomology of classifying spaces of
certain associative H -spaces”, J. Math. Kyoto Univ. 15:3 (1975), 607–617. MR Zbl

[Totaro 1999] B. Totaro, “The Chow ring of a classifying space”, pp. 249–281 in Algebraic K -
theory (Seattle, WA, 1997), edited by W. Raskind and C. Weibel, Proc. Sympos. Pure Math. 67,
Amer. Math. Soc., Providence, RI, 1999. MR Zbl

http://dx.doi.org/10.1112/jtopol/jtt042
http://dx.doi.org/10.1112/jtopol/jtt042
http://msp.org/idx/mr/3252958
http://msp.org/idx/zbl/1299.14018
http://dx.doi.org/10.2206/kyushumfs.11.81
http://dx.doi.org/10.2206/kyushumfs.11.81
http://msp.org/idx/mr/0105681
http://msp.org/idx/zbl/0094.35604
http://dx.doi.org/10.1016/0040-9383(65)90001-7
http://dx.doi.org/10.1016/0040-9383(65)90001-7
http://msp.org/idx/mr/0189063
http://msp.org/idx/zbl/0152.22101
http://dx.doi.org/10.1017/S0305004115000134
http://msp.org/idx/mr/3335426
http://dx.doi.org/10.1090/S0002-9947-07-04425-X
http://dx.doi.org/10.1090/S0002-9947-07-04425-X
http://msp.org/idx/mr/2373313
http://msp.org/idx/zbl/1136.55002
http://msp.org/idx/mr/0388426
http://msp.org/idx/zbl/0327.55022
http://dx.doi.org/10.1090/pspum/067/1743244
http://msp.org/idx/mr/1743244
http://msp.org/idx/zbl/0967.14005


72 MASAKI KAMEKO

[Totaro 2014] B. Totaro, Group cohomology and algebraic cycles, Cambridge Tracts in Mathematics
204, Cambridge University Press, 2014. MR Zbl

[Vistoli 2007] A. Vistoli, “On the cohomology and the Chow ring of the classifying space of PGLp”,
J. Reine Angew. Math. 610 (2007), 181–227. MR Zbl

Received 5 Jun 2015. Revised 9 Jan 2016. Accepted 2 Feb 2016.

MASAKI KAMEKO: kameko@shibaura-it.ac.jp
Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Minuma-ku,
Fukasaku, Saitama-City 337-8570, Japan

msp

http://dx.doi.org/10.1017/CBO9781139059480
http://msp.org/idx/mr/3185743
http://msp.org/idx/zbl/06316876
http://dx.doi.org/10.1515/CRELLE.2007.071
http://msp.org/idx/mr/2359886
http://msp.org/idx/zbl/1145.14011
mailto:kameko@shibaura-it.ac.jp
http://msp.org


msp
ANNALS OF K-THEORY

Vol. 2, No. 1, 2017

dx.doi.org/10.2140/akt.2017.2.73

Chern classes and compatible power operations
in inertial K-theory

Dan Edidin, Tyler J. Jarvis and Takashi Kimura

Let X = [X/G] be a smooth Deligne–Mumford quotient stack. In a previ-
ous paper we constructed a class of exotic products called inertial products on
K (IX ), the Grothendieck group of vector bundles on the inertia stack IX . In
this paper we develop a theory of Chern classes and compatible power operations
for inertial products. When G is diagonalizable these give rise to an augmented
λ-ring structure on inertial K-theory.

One well-known inertial product is the virtual product. Our results show that
for toric Deligne–Mumford stacks there is a λ-ring structure on inertial K-theory.
As an example, we compute the λ-ring structure on the virtual K-theory of the
weighted projective lines P(1, 2) and P(1, 3). We prove that, after tensoring
with C, the augmentation completion of this λ-ring is isomorphic as a λ-ring
to the classical K-theory of the crepant resolutions of singularities of the coarse
moduli spaces of the cotangent bundles T∗P(1, 2) and T∗P(1, 3), respectively.
We interpret this as a manifestation of mirror symmetry in the spirit of the hyper-
Kähler resolution conjecture.

1. Introduction

The work of Chen and Ruan [2002], Fantechi and Göttsche [2003], and Abramovich,
Graber, and Vistoli [Abramovich et al. 2002; 2008] defined orbifold products
for the cohomology, Chow groups and K-theory of the inertia stack IX of a
smooth Deligne–Mumford stack X . Moreover, there is an orbifold Chern character
Ch : K (IX )→ A∗(IX )Q which respects these products [Jarvis et al. 2007]. In
[Edidin et al. 2016] we showed that the orbifold product and Chern character fit
into a more general formalism of inertial products, which are discussed below.

In this paper, we are motivated by mirror symmetry to find examples of elements
in orbifold and inertial algebraic K-theory that play a role analogous to classes
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of vector bundles in the ordinary algebraic K-theory. Each such element should
possess orbifold Euler classes analogous to the classically defined classes λ−1(E∗)
and cr (E) for vector bundles of rank r . This leads us to introduce the notions of
an orbifold λ-ring and associated Adams (or power) operations which are suitably
compatible with orbifold Chern classes, as we now explain.

Let K (X ) be the Grothendieck group of locally free sheaves on X with multi-
plication given by the ordinary tensor product. By definition, K (X ) is generated
by classes of vector bundles and each such class possesses an Euler class. In
the context of mirror symmetry we may be given a ring K which is conjectured
to be the ordinary K-theory of some unknown variety. From the ring structure
alone there is no way to solve the problem of identifying the elements of K which
correspond to Chern classes of vector bundles on this unknown variety. However,
a partial solution arises from observing that ordinary K-theory has the additional
structure of a λ-ring. Every λ-ring has an associated invariant — the semigroup
of λ-positive elements (Definition 6.11), which share many of the properties of
classes of vector bundles in ordinary K-theory. In particular, λ-positive elements
have Euler classes defined in terms of the λ-ring structure. In the case of ordinary
K-theory of a scheme or stack, classes of vector bundles are always λ-positive, but
there are other λ-positive classes as well.

Endowing the orbifold K-theory ring with the structure of a λ-ring with respect to
its orbifold product allows one to identify its semigroup of λ-positive elements. Fur-
thermore, defining suitably compatible orbifold Chern classes, should give these
λ-positive elements orbifold Euler classes in orbifold K-theory, orbifold Chow the-
ory, and orbifold cohomology theory. These λ-positive elements can be regarded
as building blocks of orbifold K-theory.

We prove the following results about smooth quotient stacks X = [X/G] where
G is a linear algebraic group acting with finite stabilizer on a smooth variety X .

Main results. (a) Suppose X is Gorenstein, then there is an orbifold Chern class
homomorphism ct : K (IX )→ A∗(IX )Q[[t]] (see Definition 5.1 and Theorem 5.18).

(b) Suppose X is strongly Gorenstein (see Definition 2.29); then there are Adams
ψ-operations and λ-operations defined on K (IX ) and K (IX )Q compatible with
the Chern class homomorphism (see Definitions 5.4 and 5.7 and Theorem 5.18).

(c) Suppose G is diagonalizable and X is strongly Gorenstein; then the Adams
and λ-operations make K (IX )Q := K (IX )⊗Q with its orbifold product into a
rationally augmented λ-ring (see Theorem 5.23).

(d) Suppose the orbifold X is strongly Gorenstein; then there is an inertial dual
operation F →F † on K (X ) which is an involution and a ring homomorphism
and which commutes with the orbifold Adams operations and the orbifold augmen-
tation (see Theorem 6.4).
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Our method of proof is based on developing properties of inertial pairs defined
in [Edidin et al. 2016]. An inertial pair (R,S ) consists of a vector bundle R on the
double inertia stack I 2X together with a class S ∈ K (X )Q, where R and S sat-
isfy certain compatibility conditions. The bundle R determines associative inertial
products on K (IX ) and A∗(IX ), and the class S determines a Chern character
homomorphism of inertial rings Ch : K (IX )→ A∗(IX )Q.

The basic example of an inertial pair (R,S ) is the orbifold obstruction bundle R

and the class S defined in [Jarvis et al. 2007]. This pair corresponds to the usual
orbifold product. However, this is far from being the only example. Each vector
bundle V on X determines two inertial pairs, (R+V,S +V ) and (R−V,S −V ).
For example, if we denote the tangent bundle of X by T, then the inertial pair
(R−T,S −T) produces the virtual orbifold product of [González et al. 2007].

We prove that the main results listed above hold for many inertial pairs. As a
corollary, we obtain the following:

Corollary. (a) The virtual orbifold product on K (IX ) admits a Chern series
homomorphism c̃t : K (IX )→ A∗(IX )Q[[t]] as well as compatible Adams
ψ-operations and λ-operations on K (IX )Q.

(b) If X = [X/G] with G diagonalizable, then the virtual orbifold λ-operations
make K (IX )Q with its orbifold product into a rationally augmented λ-ring
with a compatible inertial dual.

Whenever an inertial K-theory ring has a λ-ring structure compatible with its
inertial Chern classes and inertial Chern character, then its semigroup of λ-positive
elements will have an inertial Euler class in K, Chow, and cohomology theory
(see (6.23)), but where all products, rank, Chern classes, and the Chern character
are the inertial ones. Furthermore, in many cases, the semigroup of λ-positive
elements in inertial K-theory can be used to give a nice presentation of both the
inertial K-theory ring and inertial Chow ring.

A major motivation for the work in this paper is mirror symmetry. Beginning
with the work of Ruan, a series of conjectures have been made that relate the
orbifold quantum cohomology and Gromov–Witten theory of a Gorenstein orb-
ifold to the corresponding quantum cohomology and Gromov–Witten theory of a
crepant resolution of singularities of the orbifold [Coates and Ruan 2013]. When
the orbifold also has a holomorphic symplectic structure, these conjectures predict
that the orbifold cohomology ring should be isomorphic to the usual cohomology
of a crepant resolution. In the literature this conjecture is often referred to as
Ruan’s hyper-Kähler resolution conjecture (HKRC), because in many examples
the holomorphic symplectic structure is in fact hyper-Kähler.

In view of Ruan’s HKRC conjecture, it is natural to investigate whether there
is an orbifold λ-ring structure on orbifold K-theory that is isomorphic to the usual
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λ-ring structure on K (Z). One place to look is on the cotangent bundles of complex
manifolds and orbifolds. These naturally carry a holomorphic symplectic structure,
and in many cases these are hyper-Kähler. In [Edidin et al. 2016] we prove that,
if X = [X/G], then the virtual orbifold Chow ring of IX (as defined in [González
et al. 2007]) is isomorphic to the orbifold Chow ring of T ∗ IX . Since the inertial
pair defining the virtual orbifold product is strongly Gorenstein, we expect that
the λ-ring structure on K (IX ) should be related to the usual λ-ring structure
on K (Z).

When X is an orbifold, K (IX ) typically has larger rank as an abelian group
than the corresponding Chow group A∗(IX ), while K (Z) and A∗(Z) have the
same rank by the Riemann–Roch theorem for varieties. Thus, it is not reasonable
to expect an isomorphism of λ-rings between K (IX ) with the virtual product and
K (Z) with the tensor product.

But the Riemann–Roch theorem for Deligne–Mumford stacks implies that a
summand K̂ (IX )Q, corresponding to the completion at the classical augmenta-
tion ideal in K (IX )Q, is isomorphic as an abelian group to A∗(IX )Q. We prove
the remarkable result (Theorem 4.3) that, if (R,S ) is any inertial pair, then the
classical augmentation ideal in K (IX )Q and inertial augmentation ideal generate
the same topology on the abelian group K (IX ). It follows that the summand
K̂ (IX ) inherits any inertial λ-ring structure from K (IX ).

This allows us to formulate a λ-ring variant of the HKRC for orbifolds X =

[X/G] with G diagonalizable. Precisely, we expect there to be an isomorphism of
λ-rings (after tensoring with C) between K̂ (IX ) with its virtual orbifold product
and K (Z), where Z is a hyper-Kähler resolution of the cotangent bundle T∗X .

We conclude by proving this conjecture for the weighted projective line P(1, n)
for n = 2, 3. We also obtain an isomorphism (A∗(I P(1, n))C, ?virt) ∼= A∗(Z)C
of Chow rings commuting with the corresponding Chern characters. Furthermore,
we show that the semigroup of inertial λ-positive elements induces an exotic in-
tegral lattice structure on (K (I P(1, n))C, ?virt) and (A∗(I P(1, n))C, ?virt) which
corresponds to the ordinary integral lattice in K (Z)C and A∗(Z)C, respectively.

Finally, our analysis suggests the following interesting question:

Question 1.1. Is there a category associated to the crepant resolution Z whose
Grothendieck group (with C-coefficients) is isomorphic as a λ-ring to the virtual
orbifold K-theory (K (IX )C, ?virt) before completion at the augmentation ideal?

Remark 1.2. It has subsequently been shown [Kimura and Sweet 2013] that the
results (namely Propositions 7.59 and 7.64 and Theorem 7.69) in this paper for
the virtual K-theory of P(1, n) for n = 2, 3 generalize to all n. This verifies the
conjectured relationship between the virtual K-theory ring and the K-theory of the
crepant resolution Zn of T ∗P(1, n) for all n.
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Outline of the paper. We begin by briefly reviewing the results of [Edidin et al.
2010; 2016] on inertial pairs, inertial products, and inertial Chern characters.

We then briefly recall the classical λ-ring and ψ-ring structures in ordinary equi-
variant K-theory, including the Adams (power) operations, Bott classes, Grothen-
dieck’s γ -classes, and some relations among these and the Chern classes.

For Gorenstein inertial pairs we define a theory of Chern classes and, for strongly
Gorenstein inertial pairs, power (Adams) operations on inertial K-theory. Since
the inertial pair associated to the virtual product of [González et al. 2007] is al-
ways strongly Gorenstein, this produces Chern classes and power operations in
that theory.

We show that, for strongly Gorenstein inertial pairs, the inertial Chern classes
satisfy a relation like that for usual Chern classes, expressing the Chern classes in
terms of the orbifold ψ-operations and λ-operations. Finally we prove that, if G is
diagonalizable, the orbifold Adams operations are homomorphisms relative to the
inertial product. This shows that the virtual K-theory of a toric Deligne–Mumford
stack has ψ-ring and λ-ring structures. We also give an example to show that the
diagonalizability condition is necessary for obtaining a λ-ring structure.

We then develop the theory of λ-positive elements for a λ-ring and show that
λ-positive elements of degree d share many of the same properties as classes of
rank-d vector bundles; for example, they have a top Chern class in Chow theory
and an Euler class in K-theory. We also introduce the notion of an inertial dual,
which is needed to define the Euler class in inertial K-theory.

We conclude by working through some examples, including that of Bµ2 and the
virtual K-theory of the weighted projective lines P(1, 2) and P(1, 3).

The λ-positive elements, and especially the λ-line elements in the virtual theory,
allow us to give a simple presentation of the K-theory ring with the virtual product
and a simple description of the virtual first Chern classes. This allows us to prove
that the completion of this ring with respect to the augmentation ideal is isomorphic
as a λ-ring to the usual K-theory of the resolution of singularities of the cotangent
orbifolds T ∗P(1, 2) and T ∗P(1, 3), respectively.

2. Background material

To make this paper self-contained, we recall some background material from [Edidin
et al. 2010; 2016], but first we establish some notation and conventions.

Notation. We work entirely in the complex algebraic category. We will work
exclusively with a smooth Deligne–Mumford stack X with finite stabilizer, by
which we mean the inertia map IX → X is finite (see Definition 2.1 for the
formal definition and more detail). We will also assume that every stack X has
the resolution property. This means that every coherent sheaf is the quotient of
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a locally free sheaf. This assumption has two consequences. The first is that the
natural map K (X )→G(X ) is an isomorphism, where K (X ) is the Grothendieck
ring of vector bundles and G(X ) is the Grothendieck group of coherent sheaves.
The second consequence is that X is a quotient stack [Totaro 2004]. This means
that X = [X/G], where G is a linear algebraic group acting on an affine scheme X .

If X is a smooth Deligne–Mumford stack, we will explicitly choose a presenta-
tion X = [X/G]. This allows us to identify the Grothendieck ring K (X ) with the
equivariant Grothendieck ring KG(X), and the Chow ring A∗(X ) with the equivari-
ant Chow ring A∗G(X). We will use the notation K (X ) and KG(X) (respectively
A∗(X ) and A∗G(X)) interchangeably.

Definition 2.1. Let G be an algebraic group acting on a scheme X . We define the
inertia scheme

IG X := {(g, x) | gx = x} ⊆ G× X.

There is an induced action of G on IG X given by g · (m, x)= (gmg−1, gx). The
quotient stack IX = [IG X/G] is the inertia stack of the quotient X := [X/G].

More generally, we define the higher inertia spaces to be the k-fold fiber products

I k
G X = IG X ×X · · · ×X IG X.

The quotient stack I kX := [I k
G X/G] is the corresponding higher inertia stack.

The composition µ : G×G→ G induces a composition µ : I 2
G X→ IG X . This

composition makes IG X into an X -group with identity section X → IG X given
by x 7→ (1, x). Furthermore, for i = 1, 2, the projection map ei : I 2

G X → IG X is
called the i -th evaluation map, since it corresponds to the evaluation morphism in
Gromov–Witten theory.

Definition 2.2. Let 9 ⊂ G be a conjugacy class. We define

I (9)= {(g, x) | gx = x, g ∈9} ⊂ G× X.

More generally, let 8 ⊂ Gl be a diagonal conjugacy class. We define I l(8) =

{(m1, . . . ,ml, x) | (m1, . . . ,ml) ∈8 and mi x = x for all i = 1, . . . , l}.

By definition, I (9) and I l(8) are G-invariant subsets of IG X and I l
G(X), re-

spectively. Since G acts with finite stabilizer on X , the conjugacy class I (9) is
empty unless 9 consists of elements of finite order. Likewise, I l(8) is empty
unless every l-tuple (m1, . . . ,ml) ∈ 8 generates a finite group. Since conjugacy
classes of elements of finite order are closed, I (9) and I l(8) are closed.

Proposition 2.3 [Edidin et al. 2010, Propositions 2.11 and 2.17]. The conjugacy
class I (9) is empty for all but finitely many 9, and each I (9) is a union of con-
nected components of IG X. Likewise, I l(8) is empty for all but finitely many
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diagonal conjugacy classes 8⊂ Gl , and each I l(8) is a union of connected com-
ponents of I l

G(X).

Definition 2.4. In the special case that 9 = (1) is the class of the identity element
1 ∈ G, the locus I ((1))= {(1, x) | x ∈ X} ⊂ IG X , often written X1, is canonically
identified with X . It is an open and closed subset of IG X , but is not necessarily
connected. We often call X1 the untwisted sector of IG X and the other loci I (9)
for 9 6= (1) the twisted sectors.

Similarly, the groups A∗G(X
1) and KG(X1) are summands of A∗G(IG X) and

KG(IG X), respectively, and each is called the untwisted sector of A∗G(IG X) or
KG(IG X), respectively. The summands of A∗G(IG X) and KG(IG X) corresponding
to the twisted sectors of IG X are also called twisted sectors.

Definition 2.5. If E is a G equivariant vector bundle on X , the element λ−1(E∗)=∑
∞

i=0(−1)i [3i E∗] ∈ KG(X) is called the K-theoretic Euler class of E . (Note that
this sum is finite.)

Likewise, we define the Chow-theoretic Euler class of E to be the element
ctop(E) ∈ A∗G(X), corresponding to the sum of the top Chern classes of E on each
connected component of [X/G] (see [Edidin and Graham 1998] for the definition
and properties of equivariant Chern classes). These definitions can be extended
to any nonnegative element by multiplicativity. It will be convenient to use the
symbol eu(F ) to denote both of these Euler classes for a nonnegative element
F ∈ KG(X).

Rank and augmentation homomorphisms. If [X/G] is connected, then the rank
of a vector bundle defines an augmentation homomorphism ε : KG(X)→ Z. If
we denote by 1 the class of the trivial bundle on X , then the decomposition of an
element x = ε(x)1+ (x − ε(x)1) gives a decomposition of KG(X) into a sum of
KG(X)-modules KG(X)=Z+ I , where I = ker(ε) is the augmentation ideal. From
this point of view, we can equivalently define the augmentation as the projection
endomorphism KG(X)→ KG(X) given by x 7→ rk(x)1, where rk is the usual
notion of rank for classes in equivariant K-theory.

Since we frequently work with a group G acting on a space X where the quotient
stack [X/G] is not connected, some care is required in the definition of the rank
of a vector bundle. Note that, for any X , the group A0

G(X) satisfies A0
G(X)= Zl ,

where l is the number of connected components of the quotient stack X = [X/G].
Since X has finite type, l is finite.

Definition 2.6. Any α ∈ KG(X) uniquely determines an element αU of K (U ) on
each connected component U of [X/G]. If we fix an ordering of the components,
then we define the rank of α to be the l-tuple in Zl

= A0
G(X) whose component

in the factor corresponding to a connected component U is the usual rank of αU .
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This agrees with the degree-zero part of the Chern character:

rk(α) := Ch0(α) ∈ A0
G(X)= Zl .

In this paper, where we study exotic λ and ψ-ring structures on equivariant
K-theory of KG(IG X), we will need to define corresponding exotic augmentations.
To facilitate their definitions we introduce the more general notion of an augmented
ring.

Definition 2.7 (compare [Cartan and Eilenberg 1956, p. 143]). An augmentation
homomorphism of a ring R is an endomorphism ε of R that is a projection, i.e.,
ε ◦ ε = ε. The kernel of ε is called the augmentation ideal of R. The ring R is said
to be a ring with augmentation.

Remark 2.8. In the language of [loc. cit.], the image of ε is called the augmen-
tation module. Our definition is more restrictive than that of [loc. cit.], since it
requires that R split as R = ε(R)+ I , where ε(R) is the augmentation module and
I is the augmentation ideal.

Note that all rings have two trivial augmentations coming from the identity and
zero homomorphisms. However, in our applications, ε will preserve unity in R.

We illustrate the use of this terminology by defining an augmentation homomor-
phism on KG(Y ) when [Y/G] is not necessarily connected.

Definition 2.9. In equivariant K-theory we define the augmentation homomor-
phism ε : KG(Y )→ KG(Y ) to be the map which, for each connected component
[U/G] of [Y/G], sends each F in KG(Y ) supported on U to the rank of F times
the structure sheaf OU :

ε(F |U ) := Ch0(F |U )OU .

Thus, for equivariant K-theory, the image of ε is isomorphic as a ring to Z⊕l ,
where l is the number of connected components of [Y/G]. However, we will see
that this property need not hold for inertial K-theory.

Inertial products, Chern characters, and inertial pairs. We review here the re-
sults from [Edidin et al. 2016], defining a generalization of orbifold cohomology,
obstruction bundles, age grading, and stringy Chern character, by defining inertial
products on KG(IG X) and A∗G(IG X) using inertial pairs (R,S ), where R is a
G-equivariant vector bundle on I 2

G X and S ∈ KG(IG X)Q is a nonnegative class
satisfying certain compatibility properties.

For each such pair, there is also a rational grading on the total Chow group,
and a Chern character ring homomorphism. There are many inertial pairs, and
hence there are many associative inertial products on KG(IG X) and A∗G(IG X) with
rational gradings and Chern character ring homomorphisms. The orbifold products
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on K (IX ) and A∗(IX ) and the Chern character homomorphism of [Jarvis et al.
2007] are a special case, as is the virtual product of [González et al. 2007].

Definition 2.10. If R is a vector bundle on I 2
G X , we define products on A∗G(IG X)

(resp. KG(IG X)) via the formula

x ?R y := µ∗(e∗1x · e∗2 y · eu(R)) (2.11)

for x , y ∈ A∗G(IG X) (resp. KG(IG X)), where µ : I 2
G X→ IG X is the composition

map, and e1, e2 : I 2
G X→ IG X are the evaluation maps.

To define an inertial pair requires a little more notation from [Edidin et al. 2010],
which we recall here. Consider (m1,m2,m3) ∈ G3 such that m1m2m3 = 1, and
let 81,2,3 be the conjugacy class of (m1,m2,m3). Let 812,3 be the conjugacy
class of (m1m2,m3) and 81,23 the conjugacy class of (m1,m2m3). Let 8i, j be the
conjugacy class of the (mi ,m j ) with i < j . Finally, let 8i j be the conjugacy class
of mi m j , and let 8i be the conjugacy class of mi . There are composition maps
µ12,3 : I 3(81,2,3)→ I 2(812,3) and µ1,23 : I 3(81,2,3)→ I 2(81,23). The various
maps we have defined are related by the following Cartesian diagrams, where all
maps are local complete intersection morphisms:

I 3(81,2,3) I 2(81,2)

I 2(812,3) I (812)

µ12,3

e1,2

µ

e1

I 3(81,2,3) I 2(82,3)

I 2(81,23) I (823)

µ1,23

e2,3

µ

e1

(2.12)

Let E1,2 and E2,3 be the respective excess normal bundles of the two diagrams (2.12).

Definition 2.13. Given a nonnegative element S ∈ KG(IG X)Q and G-equivariant
vector bundle R on I 2

G X we say that (R,S ) is an inertial pair if the following
conditions hold:

(a) The identity
R = e∗1S + e∗2S −µ∗S + Tµ (2.14)

holds in KG(I 2
G X), where Tµ = T I 2

G X − µ∗(T IG X) is the relative tangent
bundle of µ.

(b) R|I 2(8) = 0 for every conjugacy class 8 ⊂ G × G such that e1(8) = 1 or
e2(8)= 1.

(c) i∗R =R, where i : I 2
G X→ I 2

G X is the isomorphism

i(m1,m2, x)= (m1m2m−1
1 ,m1, x).

(d) e∗1,2R +µ
∗

12,3R + E1,2 = e∗2,3R +µ
∗

1,23R + E2,3 for each triple m1,m2,m3

with m1m2m3 = 1.
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Proposition 2.15 [Edidin et al. 2010, §3]. If (R,S ) is an inertial pair, then the ?R

product is commutative and associative with identity 1X , where 1X is the identity
class in the untwisted sector A∗G(X

1) (respectively KG(X1)).

Proposition 2.16 [Edidin et al. 2016, Proposition 3.8]. If (R,S ) is an inertial
pair, then the map

C̃h : KG(IG X)Q→ A∗G(IG X)Q,

defined by C̃h(V )= Ch(V ) ·Td(−S ), is a ring homomorphism with respect to the
?R-inertial products on KG(IG X) and A∗G(IG X).

It is shown in [Edidin et al. 2016] that there are two inertial pairs for every
G-equivariant vector bundle on X . Most of our results in this paper apply to gen-
eral inertial pairs, but we have a special interest in the inertial pair associated to
the orbifold product of [Chen and Ruan 2004; Abramovich et al. 2002; Fantechi
and Göttsche 2003; Jarvis et al. 2007; Edidin et al. 2010] and in the inertial pair
associated to the virtual product of [González et al. 2007].

Definition 2.17. Let p : X→X be the quotient map, TX be the tangent bundle of
X , and T = p∗TX in KG(X). In [Edidin et al. 2010, Lemma 6.6] we proved that
T = TX − g, where g is the Lie algebra of G and TX is the tangent bundle on X .

Definition 2.18. The inertial pair associated to the orbifold product is given by the
element S = S (T) ∈ KG(IG X)Q, defined as follows. For any m ∈ G of finite
order r , the element S , when restricted to Xm

= {(x,m) | mx = x} ⊂ IG X , is

Sm :=

r−1∑
k=1

k
r

Tm,k, (2.19)

where Tm,k is the eigenbundle of T on which m acts as e2π ik/r . The first property
of inertial pairs (see Definition 2.13(a)) then gives an explicit formula for R:

R = e∗1S + e∗2S −µ∗S + Tµ.

Definition 2.20. The inertial pair associated to the virtual product is given by
S = N , where N is the quotient q∗TX/TIG X and q : IG X → X is the canonical
morphism, and

R = T|I 2
G X +TI 2

G X − e∗1TIG X − e∗2TIG X . (2.21)

Here T|I 2
G X is the pullback of the bundle T to I 2

G X via the natural map I 2
G X→ X

and TIG X (resp. TI 2
G X ) is the pullback to IG X (resp. I 2

G X ) of the tangent bundle to
IX = [IG X/G] (resp. the stack I 2X = [I 2

G X/G]).

Remark 2.22. By abuse of notation we will refer to the bundle N defined above
as the normal bundle to the morphism IG X→ I X .
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Remark 2.23. In [Edidin et al. 2016] we showed that the pairs for both the orbifold
product and the virtual orbifold product are indeed inertial pairs.

Definition 2.24. Given any nonnegative element S ∈ KG(IG X)Q, we define the
S-age on a component U of IG X corresponding to a connected component [U/G]
of [IG X/G] to be the rational rank of S on the component U :

ageS (U )= rk(S )U .

We define the S-degree of an element x ∈ A∗G(IG X) on such a component U of
IG X to be

degS x |U = deg x |U + ageS (U ),

where deg x is the degree with respect to the usual grading by codimension on
A∗G(IG X). Similarly, if F ∈ KG(IG X) is supported on U , then its S-degree is

degS F = ageS (U ) mod Z.

This yields a Q/Z-grading of the group KG(IG X).

Proposition 2.25 [Edidin et al. 2016, Proposition 3.11]. If (R,S ) is an iner-
tial pair, then the R-inertial products on A∗G(IG X) and KG(IG X) respect the
S-degrees. Furthermore, the inertial Chern character homomorphism

C̃h : KG(IG X)→ A∗G(IG X)

preserves the S-degree modulo Z.

Definition 2.26. Let A{q}G (IG X) be the subspace in A∗G(IG X) of elements with an
S-degree of q ∈Ql , where l is the number of connected components of IX .

Definition 2.27. Given a nonnegative S ∈ KG(IG X)Q, the homomorphism C̃h0
:

KG(IG X)→ A{0}G (IG X) is called the inertial rank for S or just the S-rank.
The inertial augmentation homomorphism ε̃ : KG(IG X)→ KG(IG X) is the

map which, for each connected component [U/G] of [(IG X)/G], sends each F

in KG(IG X) supported on U to

ε̃(F |U )= C̃h0
(F |U )OU .

Hence, if ? is an inertial product associated to an inertial pair (R,S ), then
(KG(IG X), ?, 1, ε̃) is a ring with augmentation.

Remark 2.28. Note that the restriction C̃h0
(F )|U of the inertial rank to a com-

ponent is equal to the classical rank if the S-age of that component is zero, and
C̃h0

(F )|U vanishes if the age is nonzero. Hence the product C̃h0
(F |U )OU makes

sense.
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Definition 2.29. An inertial pair (R,S ) is called Gorenstein if S has integral
rank and strongly Gorenstein if S is represented by a vector bundle.

The Deligne–Mumford stack X = [X/G] is strongly Gorenstein if the inertial
pair associated to the orbifold product (as in Definition 2.18) is strongly Gorenstein.

Note that the inertial pair for the virtual product is always strongly Gorenstein.

3. Review of λ-ring and ψ-ring structures in equivariant K-theory

In this section, we review the λ-ring and ψ-ring structures in equivariant K-theory
and describe the Bott cannibalistic classes θ j , as well as the Grothendieck γ -classes.
The main theorems about these classes are the Adams–Riemann–Roch theorem
(Theorem 3.34) and Theorem 3.25, which describes relations among the Chern
character, the ψ-classes, the Chern classes, and the γ -classes.

Recall that a λ-ring is a commutative ring R with unity 1 and a map λt : R→ R[[t]],
where

λt(a)=:
∑
i≥0

λi(a)t i , (3.1)

such that the following are satisfied for all x , y ∈ R and for all integers m, n ≥ 0:

λ0(x)= 1, λt(1)= 1+ t, λ1(x)= x, λt(x + y)= λt(x)λt(y),

λn(xy)= Pn(λ
1(x), . . . , λn(x), λ1(y), . . . , λn(y)), (3.2)

λm(λn(x))= Pm,n(λ
1(x), . . . , λmn(x)), (3.3)

where Pn , and Pm,n are certain universal polynomials, independent of x and y (see
[Fulton and Lang 1985, §I.1]).

Definition 3.4. If a λ-ring R is a K-algebra, where K is a field of characteristic 0,
then we call (R, · , 1, λ) a λ-algebra over K if, for all α in K and all a in R, we
have

λt(αa)= λt(a)α := exp(α log λt(a)). (3.5)

Note that log λt makes sense because any series for λt starts with 1.

Remark 3.6. The significance of the universal polynomials in the definition of a
λ-ring is that one can calculate λn(xy) and λm(λn(x)) in terms of λi(x) and λ j (y)
by applying a formal splitting principle.

For example, suppose we wish to express λt(x · y) in terms of λt(x) and λt(y).
First, replace x by the formal sum x 7→

∑
∞

i=1 xi , where we assume that λt(xi )=

1+ t xi for all i , and similarly replace y by the formal sum y 7→
∑
∞

i=1 yi in λt(x · y),
where we assume that λt(yi )= 1+ t yi for all i . The fact that λt(xi )= 1+ t xi and
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λt(y j )= 1+ t y j means that λt(xi y j )= 1+ t xi y j , and multiplicativity gives us

λt(x · y)=
∞∏

i, j=1

(1+ t xi y j ).

Therefore, λn(x · y) corresponds to the n-th elementary symmetric function en(xy)
in the variables {xi y j }

∞

i, j=1, but en(xy) can be uniquely expressed as a polynomial Pn

in the variables {e1(x), . . . , en(x), e1(y), . . . , en(y)}, where eq(x) denotes the q-th
elementary symmetric function in the variables {xi }

∞

i=1 and er (y) denotes the r -th
elementary symmetric function in the variables {yi }

∞

i=1. Replacing eq(x) by λq(x)
and er (y) by λr (y) in Pn for all q, r ∈ {1, . . . , n} yields the universal polynomial
Pn(λ

1(x), . . . , λn(x), λ1(y), . . . , λn(y)) appearing in the definition of a λ-ring.
A similar analysis holds for Pm,n .

A closely related structure is that of a ψ-ring.

Definition 3.7. A commutative ring R with unity 1 together with a collection of
ring homomorphisms ψn

: R → R for each n ≥ 1 is called a ψ-ring if, for all
x y ∈ R and all integers n ≥ 1, we have

ψ1(x)= x and ψm(ψn(x))= ψmn(x).

The map ψ i
: R→ R is called the i -th Adams operation (or power operation).

If the ψ-ring (R, · , 1, ψ) is a K-algebra, then (R, · , 1, ψ) is said to be a ψ-
algebra over K if, in addition, ψn is a K-linear map.

Theorem 3.8 (cf. [Knutson 1973, p. 49]). Let (R, · , 1, λ) be a commutative λ-ring
and let ψt : R→ R[[t]] be given by

ψt =−t
d log λ−t

dt
. (3.9)

Expanding ψt as ψt :=
∑

n≥1 ψ
ntn defines ψn

: R → R for all n ≥ 1, and the
resulting ring (R, · , 1, ψ) is a ψ-ring.

Conversely, if (R, · , 1, ψ) is a ψ-ring and λt : RQ→ RQ[[t]] is defined by

λt = exp
(∑

r≥1

(−1)r−1ψr tr

r

)
, (3.10)

then (RQ, · , 1, λ) is a λ-algebra over Q.

It follows from the definition of the ψ-operations in terms of λ-operations, (3.9),
and (3.3) that

λi
◦ψ j
= ψ j

◦ λi (3.11)

for all i ≥ 0 and j ≥ 1 as maps from R→ R.
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Remark 3.12. As in Remark 3.6, the k-th λ-operation λk corresponds to the k-
th elementary symmetric function. Equation (3.10) implies that the k-th power
operation, ψk , corresponds to the k-th power sum symmetric function, since this
equation is nothing more than the well-known relationship between the elementary
symmetric functions and the power sums.

Let G be an algebraic group acting on an algebraic space X . The Grothendieck
ring (KG(X), · , 1) of G-equivariant vector bundles on X is a unital commutative
ring, where · is the tensor product and 1 is the structure sheaf OX of X .

It is well known that (nonequivariant) K-theory with exterior powers is a λ-ring,
and the associated ψ-ring satisfies ψk(L )=L ⊗k for all line bundles L . A lengthy
but straightforward argument shows that an equivariant version of the splitting
principle holds. One can then use the splitting principle with the fact that exte-
rior powers (and the associated ψ-operations) respect G-equivariance to prove the
following proposition:

Proposition 3.13 (cf. [Köck 1998, Lemma 2.4]). For any G-equivariant vector
bundle V on X , define λk([V ]) to be the class [3k(V )] of the k-th exterior power.
This defines a λ-ring structure (KG(X), · , 1, λ) on KG(X). For any line bundle
L and any integer k ≥ 1, the corresponding homomorphisms ψ on (KG(X), · , 1)
satisfy

ψk(L )=L ⊗k . (3.14)

Remark 3.15. The λ-ring KG(X) has still more structure, since any element can be
represented as a difference of vector bundles. The collection E of classes of vector
bundles in KG(X) endows the λ-ring KG(X) with a positive structure [Fulton
and Lang 1985]. Roughly speaking, this means that E is a subset of the λ-ring
consisting of elements of nonnegative rank such that any element in the ring can
be written as a difference of elements in E, and, for any F of rank d in E, λt(F ) is
a degree-d polynomial in t and λd(F ) is invertible (i.e., λd(F ) is a line bundle).
Furthermore, E is closed under addition (but not subtraction) and multiplication,
E contains the nonnegative integers, and there are special rank-one elements in E,
namely the line bundles; various other properties also hold. A positive structure on
a λ-ring, if it exists, need not be uniquely determined by the λ-ring structure, nor
does a general λ-ring possess a positive structure.

For example, if G = GLn , then the representation ring R(G) can be identified
as a subring of Weyl-group-invariant elements in the representation ring R(T ),
where T is a maximal torus and the λ-ring structure on R(T ) restricts to the usual
λ-ring structure on R(G). However, the natural set of positive elements in R(T ) is
generated by the characters of T , and this restricts to the set of positive symmetric
linear combinations of characters, which contains, but does not equal, the set of
irreducible representations of G.
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In Section 6 we will introduce a different but related notion, called a λ-positive
structure, which is a natural invariant of a λ-ring. This notion will play a central
role in our analysis of inertial K-theory.

The λ- and ψ-ring structures behave nicely with respect to the augmentation on
equivariant K-theory (Definition 2.9).

Proposition 3.16. For all F in KG(X) and integers n ≥ 1, we have

ε(ψn(F ))= ψn(ε(F ))= ε(F ) (3.17)
and

ε(λt(F ))= λt(ε(F ))= (1+ t)ε(F ). (3.18)

Proof. Assume that [X/G] is connected. Equation (3.18) holds if F is a rank-d,
G-equivariant vector bundle on X since λi(F ) has rank

(d
i

)
. Since KG(X) is gen-

erated under addition by isomorphism classes of vector bundles, the same equation
holds for all F in KG(X) by multiplicativity of λt .

If [X/G] is not connected, we have the ring isomorphism KG(X)=
⊕

α KG(Xα),
where the sum is over α such that [Xα/G] is a connected component of [X/G].
Equation (3.18) follows from multiplicativity of λt . Equation (3.17) follows from
(3.18) and (3.9). �

This motivates the following definition:

Definition 3.19. Let (R, · , 1, ε) be a ring with augmentation. Then (R, · , 1, ψ, ε)
is said to be an augmented ψ-ring if (R, · , 1, ψ) is a ψ-ring and, for all integers
n > 0, we have ε ◦ψn

= ψn
◦ ε = ε as endomorphisms of R. If R is an augmented

ψ-ring, we define ψ0
:= ε.

Remark 3.20. The definition ψ0
= ε is consistent with all the conditions in the

definition of a ψ-ring (Definition 3.7).

Definition 3.21. Let (R, · , 1, λ) be a λ-algebra (Definition 3.4) over Q (respec-
tively C). Let ε : R→ R be an augmentation which is also a Q-algebra (respectively
C-algebra) homomorphism. We say that (R, · , 1, λ, ε) is an augmented λ-algebra
over Q (respectively C) if ε(λt(F )) = λt(ε(F )) = (1+ t)ε(F ) for every F ∈ R.
Here the expression (1+ t)x for an element x of the Q-algebra R means

(1+ t)x :=
∞∑

n=0

( x
n

)
tn, where

( x
n

)
:=

∏n−1
i=0 (x − i)

n!
.

The previous proposition implies that ordinary equivariant K-theory is an aug-
mented ψ-ring. In fact, the equivariant Chow ring is also an augmented ψ-ring.

Definition 3.22. For all n ≥ 1, the map ψn
: A∗G(X)→ A∗G(X) defined by

ψn(v)= ndv (3.23)
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for all v in Ad
G(X) endows A∗G(X) with the structure of a ψ-ring and, therefore,

A∗G(X)Q with the structure of a λ-ring. The augmentation ε : A∗G(X)→ A0
G(X) is

the canonical projection.

Associated to any λ-ring there is another (pre-λ-ring) structure, usually denoted
by γ . These are the Grothendieck γ -classes γt : R→ R[[t]], given by the formula

γt :=

∞∑
i=0

γ i t i
:= λt/(1−t). (3.24)

Theorem 3.25 (see [Fulton and Lang 1985]). If Y is a connected algebraic space
with a proper action of a linear algebraic group G, and if , for each nonnegative
integer i , Chi is the degree-i part of the Chern character and ci is the i-th Chern
class, then the following equations hold for all integers n ≥ 1 and i ≥ 0 and all F

in KG(Y ):

Chi
◦ψn
= ni Chi , (3.26)

ct(F )= exp
(∑

n≥1

(−1)n−1(n− 1)!Chn(F )tn
)
, (3.27)

ci(F )= Chi(γ i(F − ε(F ))
)
. (3.28)

Remark 3.29. Equation (3.26) is precisely the statement that the Chern character
Ch : KG(X)Q→ A∗G(X)Q is a homomorphism of ψ-rings and therefore of λ-rings.

In order to define inertial Chern classes and the inertial λ-ring and ψ-ring struc-
tures, we will need the so-called Bott cannibalistic classes.

Definition 3.30. Let Y be an algebraic space with a proper action of a linear alge-
braic group G. Denote by K+G (Y ) the semigroup of classes of G-equivariant vector
bundles on Y .

For each j ≥ 1, the j-th Bott (cannibalistic) class θ j
: K+G (Y )→ KG(Y ) is the

multiplicative class, defined for any line bundle L by

θ j (L )=
1−L j

1−L
=

j−1∑
i=0

L i . (3.31)

By the splitting principle, we can extend the definition of θ j (F ) to all F in K+G (Y ).

Definition 3.32. Let aY denote the kernel of the augmentation ε : KG(Y )→ KG(Y ).
It is an ideal in the ring (KG(Y ), · ), where · denotes the usual tensor product, and
a defines a topology on KG(Y ). We denote the completion of KG(Y )Q with respect
to that topology by K̂G(Y )Q.

Remark 3.33. We will need to define Bott classes on elements of integral rank in
rational K-theory. This can be done in a straightforward manner, but the resulting
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class will live in the augmentation completion of rational K-theory. Stated pre-
cisely, if L is a line bundle, then we can expand the power sum for ψ j (L ) as
ψ j (L ) = j (1+ a1(L − 1)+ · · · + a j−1(L − 1) j−1) for some rational numbers
a1, . . . , a j−1. Since (L − 1) lies in the augmentation ideal, any fractional power
of the expression 1+ a1(L − 1)+ · · · + a j−1(L − 1) j−1 can be expanded using
the binomial formula as an element of K̂G(Y )Q. It follows that, if α =

∑
i qiLi

with
∑

i qi ∈ Z, then the binomial expansion of the expression

j
∑

i qi
∏

i

(1+ a1(Li − 1)+ · · ·+ a j−1(L − 1) j−1)qi

defines θ j (α) as an element of K̂G(Y )Q.

We will also need the following result:

Theorem 3.34 (the Adams–Riemann–Roch theorem for equivariant regular em-
beddings [Köck 1991; 1998]). Let ι : Y ↪→ X be a G-equivariant closed regular
embedding of smooth manifolds. The following commutes for all integers n ≥ 1:

KG(Y ) KG(Y )

KG(X) KG(X)

ι∗

θn(N∗ι )ψ
n

ι∗

ψn

(3.35)

where N ∗ι is the conormal bundle of the embedding ι.

4. Augmentation ideals and completions of inertial K-theory

We will use the Bott classes of S to define inertial λ- and ψ-ring structures as well
as inertial Chern classes. Since S is generally not integral, we will often need to
work in the augmentation completion K̂G(IG X)Q of KG(IG X)Q. However, it is
not a priori clear that the inertial product behaves well with respect to this comple-
tion, since the topology involved is constructed by taking classical powers of the
classical augmentation ideal instead of inertial powers of the inertial augmentation
ideal. The surprising result of this section is that, when G is diagonalizable, these
two completions are the same.

Definition 4.1. Given any inertial pair (R,S ), define aS to be the kernel of the
inertial augmentation ε̃ : KG(IG X)→ KG(IG X). It is an ideal with respect to the
inertial product ? := ?R . Define aIX to be the kernel of the classical augmentation
ε : KG(IG X)→ KG(IG X). It is an ideal of KG(IG X) with respect to the usual
tensor product instead of the inertial product.

Each of these two ideals induces a topology on KG(IG X), and we also consider
a third topology induced by the augmentation ideal aBG of R(G). By [Edidin and
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Graham 2000, Theorem 6.1(a)] the aBG-adic and aIX -adic topologies on KG(IG X)
are the same. In this section we will show that the aS -adic topology agrees with
the other two.

Lemma 4.2. If (R,S ) is an inertial pair, then (KG(IG X), ?R) is an R(G)-algebra.
Moreover, for any x ∈ R(G), if β9 ∈ KG(I (9)), we have xβ9 = x1 ?R β9 .

Proof. By definition of an inertial pair, if α1 ∈ KG(X) is supported in the untwisted
sector, then α1?Rβ9 = f ∗9α ·β, where f9 : I (9)→ X is the projection. The lemma
now follows from the projection formula for equivariant K-theory. �

Theorem 4.3. When G is diagonalizable the aBG-adic, aIG X -adic, and aS -adic
topologies on KG(IG X) are all equivalent. In particular, the aBG-adic, aIG X -adic,
and aS -adic completions of KG(IG X)Q are equal.

Proof. To prove that the topologies are equivalent we must show the following:

(1) For each positive integer n there is a positive integer r such that

a⊗r
BG KG(IG X)⊆ (aS )

?n.

(2) For each positive integer n there is a positive integer r such that

(aS )
?r
⊆ a⊗n

BG KG(IG X)Q.

Condition (1) follows from Lemma 4.2 and observing that aBG KG(IG X)⊂ aS .
In particular, we may take r = n.

Condition (2) is more difficult to check. Given a G-space Y , we denote by aY

the subgroup of KG(Y ) of elements of rank 0. This is an ideal with respect to the
tensor product.

For each connected component [U/G] of [IG X/G], the inertial augmentation
satisfies C̃h0(α)|U = 0 if ageS (U ) > 0 and C̃h0(α)|U = Ch0(α)|U if ageS (U )= 0
[Edidin et al. 2016, Theorem 2.3.9]. So aS has the following decomposition as an
abelian group:

aS =

⊕
U

ageS (U )=0

aU ⊕
⊕

U
ageS (U )>0

KG(U ).

Lemma 4.4. If m ∈ G with α ∈ KG(Xm) ∩ aS and β ∈ KG(Xm−1
) ∩ aS , then

α ? β ∈ aIX .

Proof. Since mm−1
= 1, we have α ? β ∈ KG(X1)⊂ KG(IG X), so we must show

α ? β ∈ aX . If ageS (X
m)= 0, then αm ∈ aXm , so the inertial product

µ∗(e∗1α · e
∗

2β · eu(R))

would automatically be in aX because the finite pushforward µ∗ preserves the clas-
sical augmentation ideal. Thus we may assume that ageS (X

m) and ageS (X
m−1
)
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are both nonzero and that α and β have nonzero rank as elements of KG(Xm)

and KG(Xm−1
), respectively. If the fixed locus Xm,m−1

has positive codimension,
then µ∗(KG(Xm,m−1

))⊂ KG(X1) is also in the classical augmentation ideal, since
it consists of classes supported on subspaces of positive codimension. On the other
hand, if Xm,m−1

= X , then Tµ|Xm,m−1 = 0. By definition of an inertial pair, S |X1 = 0,
so R|Xm,m−1 = (e∗1S + e∗2S )|Xm,m−1 is a nonzero vector bundle. It follows that
eu(R|Xm,m−1 ) ∈ aXm,m−1 , and once again α ? β ∈ aX . �

Since G is diagonalizable and acts with finite stabilizer on X , there is a finite
abelian subgroup H ⊂G such that X g

=∅ for all g /∈ H . Let s=
∑

h∈H (ord(h)−1).

Lemma 4.5. The (s+1)-fold inertial product (aS )
?(s+1) is contained in aIG X .

Proof. By the definition of s, any list m1, . . . ,ms+1 of nonidentity elements of H
contains at least one h with multiplicity at least ord(h). It follows that such a list
contains subsets m1, . . . ,mk and mk+1, . . . ,ml with m1 · · ·mk = (mk+1 · · ·ml)

−1.
Since the inertial product is commutative, we may write any product of the form

αm1 ? · · · ? αms+1 with αmi ∈ KG(Xmi ) as α̃m ? β̃m−1 ? γ̃m′ for some α̃m ∈ KG(Xm),
β̃m ∈ KG(Xm−1

), and γ̃m′ ∈ KG(Xm′). Lemma 4.4 now gives the result. �

To complete the proof of Theorem 4.3, observe first that we may use the equiv-
alence of the aBG-adic and the aI 2

X
-adic topologies in the ring (KG(I 2

G X),⊗) to
see that, for any n, there is an r such that a⊗r

I 2
G X
⊂ a⊗n

BG KG(I 2
G X). This implies that

µ∗(a
⊗r
I 2
G X
)⊂ a⊗n

BG KG(IG X). It follows that

a?(r(s+1))
S ⊂ a⊗n

BG KG(IG X). �

Since the three topologies are the same we will not distinguish between them
from now on, and will use the term augmentation completion to denote the com-
pletion with respect any one of these augmentation ideals. The completion of
KG(IG X)Q will be denoted by K̂G(IG X)Q. Note that this completion is a summand
in KG(IG X)Q [Edidin and Graham 2005, Proposition 3.6].

5. Inertial Chern classes and power operations

In this section we show that for each Gorenstein inertial pair (R,S ) and corre-
sponding Chern character C̃h, we can define inertial Chern classes. When (R,S )

is strongly Gorenstein, there are also ψ-operations, λ-operations, and γ -operations
on the corresponding inertial K-theory KG(IG X). These operations behave nicely
with respect to the inertial Chern character and satisfy many relations, including
an analog of Theorem 3.25. When G is diagonalizable these operations make the
inertial K-theory ring KG(IG X) into a ψ-ring and KG(IG X)⊗Q into a λ-ring.
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Inertial Adams ( power) operations and inertial Chern classes. We begin by defin-
ing inertial Chern classes. We then define inertial Adams operations associated to
a strongly Gorenstein pair (R,S ) and show that, for a diagonalizable group G,
the corresponding rings are ψ-rings with many other nice properties.

Definition 5.1. For any Gorenstein inertial pair (R,S ) the S-inertial Chern series
c̃t : KG(IG X)→ A∗G(IG X)Q[[t]] is defined, for all F in KG(IG X), by

c̃t(F )= ẽxp
(∑

n≥1

(−1)n−1(n− 1)! C̃hn
(F )tn

)
, (5.2)

where the power series ẽxp is defined with respect to the ?R product, and C̃hn
(F )

is the component of C̃h(F ) in A∗(IG X) with S-age equal to n. For all i ≥ 0, the
i-th S-inertial Chern class c̃ i(F ) of F is the coefficient of t i in c̃t(F ).

Remark 5.3. The definition of inertial Chern classes could be extended to the non-
Gorenstein case by introducing fractionally graded S-inertial Chern classes, but
the latter do not behave nicely with respect to the inertial ψ-structures.

Definition 5.4. Let (R,S ) be a strongly Gorenstein inertial pair. We define the
j-th inertial Adams (or power) operation ψ̃ j

: KG(IG X)→ KG(IG X) for each
integer j ≥ 1 by the formula

ψ̃ j (F ) := ψ j (F ) · θ j (S ∗) (5.5)

for all F in KG(IG X). (Here · is the ordinary tensor product on KG(IG X).)

We show in Theorem 5.23 that, in many cases, these inertial Adams operations
define a ψ-ring structure on (KG(IG X), ?R).

Remark 5.6. If (R,S ) is Gorenstein, then S has integral rank and θ j (S ∗) may
be defined as an element of the completion K̂G(IG X)Q (see Remark 3.33). Thus we
can still define inertial Adams operations as maps ψ̃ j

: KG(IG X)→ K̂G(IG X)Q.

Definition 5.7. Let (R,S ) be a strongly Gorenstein inertial pair. We define λ̃t :

KG(IG X)→ KG(IG X)Q[[t]] by (3.10) after replacing ψ , λ, and exp by their re-
spective inertial analogs ψ̃ , λ̃, and ẽxp:

λ̃t = ẽxp
(∑

r≥1

(−1)r−1ψ̃r tr

r

)
. (5.8)

Define λ̃i to be the coefficient of t i in λ̃t . We call λ̃i the i-th inertial λ operation.

We now prove a relation between inertial Chern classes, the inertial Chern char-
acter, and inertial Adams operations, but first we need two lemmas connecting the
classical Chern character, Adams operations, Bott classes, and Todd classes.
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Lemma 5.9. Let F ∈ KG(IG X) be the class of a G-equivariant vector bundle
on IG X. For all integers n ≥ 1, we have the equality, in A∗G(IG X),

Ch(θn(F ∗))Td(−F )= nCh0(F ) Td(−ψn(F )). (5.10)

More generally, if F ∈ KG(IG X)Q is such that F =
∑k

i=1 αiVi , where Vi is a vec-
tor bundle, αi ∈Q with αi > 0 for all i = 1, . . . , k, and Ch0(F ) ∈ Zl

⊂ A0
G(IG X)Q

(l is the number of connected components of [IG X/G]), then (5.10) still holds
in A∗G(IG X)Q, where θn(F ∗) is an element in the completion K̂G(IG X)Q.

Proof. Let L in KG(IG X) be a line bundle with ordinary first Chern class c :=c1(L ).
For all n ≥ 1 we have

Ch(θn(L ∗))Td(−L )= Ch
(

1− (L ∗)n

1−L ∗

)(
Td(L )

)−1

=

(
1− e−nc

1− e−c

)(
c

1− e−c

)−1

= n
(

nc
1− e−nc

)−1

= n Td(L n)−1,

and we conclude that Ch(θn(L ∗))Td(−L ) = n Td(−ψn(L )). Equation (5.10)
now follows from the splitting principle, the multiplicativity of θn and Td, and the
fact that Ch is a ring homomorphism.

The more general statement follows from the fact that Ch and Td factor through
K̂G(IG X)Q together with the fact that Ch0(θ j (F )− j ε(F ))= 0. �

This lemma yields the following useful theorem:

Theorem 5.11. Let (R,S ) be a strongly Gorenstein inertial pair. For any α ∈ N

and integer n ≥ 1, we have

C̃hα(ψ̃n(F ))= nα C̃hα(F ) (5.12)

in A{α}G (IG X)Q, where the grading is the S-age grading.

Proof. We have

C̃h(ψ̃n(F ))= Ch(ψn(F )θn(S ∗))Td(−S )

= Ch(ψn(F ))Ch(θn(S ∗))Td(−S )

= Ch(ψn(F ))Td(−ψn(S ))nage

=

∑
α∈N

nα C̃hα(F ),
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where the third equality follows from (5.10), and the final equality follows from
the definition of C̃hα, (3.26), and the fact that, for all j ≥ 0 and k ≥ 1,

Td j
◦ψk
= k j Td j , (5.13)

where Td=
∑

j≥0 Td j is such that Td j belongs to A j
G(IG X)Q. Equation (5.13) is

proved in the same fashion as (3.26). �

Remark 5.14. If (R,S ) is a Gorenstein inertial pair, then (5.12) also holds in
A{α}G (IG X)Q, where ψ̃n is interpreted as a map

ψ̃n
: KG(IG X)→ K̂G(IG X)Q

(see Remark 5.6). This follows as C̃h factors through the completion K̂G(IG X)Q.

Definition 5.15. Let (R,S ) be a strongly Gorenstein inertial pair. We define the
inertial operations γ̃t on inertial K-theory as in (3.24), that is,

γ̃t :=

∞∑
i=0

γ̃ i t i
:= λ̃t/(1−t). (5.16)

Remark 5.17. If (R,S ) is only Gorenstein, then we may still define γt as a map
KG(IG X)→ K̂G(IG X)Q[[t]].

Theorem 5.18. Let (R,S ) be a Gorenstein inertial pair. The S-inertial Chern
series c̃t : KG(IG X)→ A∗G(IG X)Q[[t]] satisfies the following properties:

Consistency with γ̃ : For all integers n ≥ 1 and all F in KG(IG X)Q, we have the
following equality in A∗G(IG X)Q:

c̃n(F )= C̃hn(
γ̃ n(F − ε̃(F ))

)
, (5.19)

where γ̃t is interpreted as a map KG(IG X)Q→ K̂G(IG X)Q[[t]].

Multiplicativity: For all V and W in KG(IG X)Q,

c̃t(V +W )= c̃t(V ) ?R c̃t(W ).

Zeroth Chern class: For all V in KG(IG X)Q, we have c̃0(V )= 1.

Untwisted sector: For all F ∈ KG(X1) ⊆ KG(IG X) (i.e., supported only on the
untwisted sector), the inertial Chern classes agree with the ordinary Chern classes,
i.e., c̃t(F )= ct(F ).

Classes of unity: All the inertial Chern classes of unity vanish, except for c̃0(1), so
we have c̃t(1)= 1.

Remark 5.20. The theorem shows that (5.19) yields an alternative, but equivalent,
definition of inertial Chern classes.
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Proof. Multiplicativity and c̃0(V ) = 1 follow immediately from the exponential
form of (5.2) and the fact that C̃h is a homomorphism.

On the untwisted sector, inertial products reduce to the ordinary products, and
the inertial Chern character reduces to the classical Chern character, and this shows
that (5.2) agrees with (3.27), which implies that the untwisted sector agrees with
ordinary Chern classes. The classes of unity condition will follow immediately
from (5.19).

The hard part of this proof is the consistency (5.19) of the inertial Chern classes
with γ̃ . To prove this, it will be useful to first introduce the ring homomorphism
C̃ht : KG(IG X) → A∗G(IG X)Q[[t]] via C̃ht(F ) :=

∑
n≥0 C̃hn

(F )tn. For the re-
mainder of the proof, all products are understood to be inertial products. We have
the equality, in A∗G(IG X)Q[[t]],

C̃ht(λ̃u(F ))= ẽxp
(∑

k≥1

(−1)k−1

k
C̃ht(ψ̃

k(F ))uk
)

= ẽxp
(∑

k≥1

(−1)k−1

k
C̃hkt(F )uk

)

= ẽxp
(∑

k≥1

(−1)k−1

k

∑
α≥0

C̃hα(F )(kt)αuk
)

= ẽxp
(∑
α≥0

C̃hα(F )tα
∑
k≥1

(−1)k−1kα−1uk
)
,

where the first equality follows from the definition of λ̃ and the fact that C̃ht is
a ring homomorphism, and the second equality follows from (5.12). From the
definition of γ̃t , it follows that

C̃ht(γ̃u(F − ε̃(F )))= ẽxp
(∑
α≥0

C̃hα(F − ε̃(F ))tα
∑
k≥1

(−1)k−1kα−1
( u

1−u

)k
)

= ẽxp
(∑
α≥0

∑
k≥1

(−1)k−1kα−1 C̃hα(F )tα
∑
n≥k

un
(n−1

k−1

))

= ẽxp
(∑
α≥0

C̃hα(F )tα
∑
n≥1

un
n∑

k=1

(−1)k−1kα−1
(n−1

k−1

))

= ẽxp
(∑
α≥0

C̃hα(F )tα
∑
n≥1

un(−1)n−1(n− 1)!S(α, n)
)
,

where

S(α, n)= 1
n!

n∑
j=0

(−1)n− j
(n

j

)
jα



96 DAN EDIDIN, TYLER J. JARVIS AND TAKASHI KIMURA

are the Stirling numbers of the second kind. Projecting out those terms which are
not powers of z := ut yields the equality∑

l≥0

C̃hl(
γ̃ l(F − ε̃(F ))

)
zl
= ẽxp

(∑
s≥0

zs C̃hs
(F )(−1)n−1(n− 1)!S(n, n)

)
.

The identity S(n, n)= 1 and (5.2) yield (5.19). �

Even when an inertial pair (R,S ) is not Gorenstein, there are natural subrings
of KG(IG X) and A∗G(IG X) where things behave well (as if (R,S ) were Goren-
stein).

Definition 5.21. Let (R,S ) be an inertial pair, and let l be the number of con-
nected components of IX = [IG X/G]. The subring of KG(IG X) consisting of
all elements of S-grading 0 ∈ (Q/Z)l is called the Gorenstein subring ǨG(IG X)
of KG(IG X), and the subring of A∗G(IG X) consisting of all elements of S-degree
in Zl
⊆Ql is called the Gorenstein subring ǍG(IG X) of A∗G(IG X).

Remark 5.22. The previous theorem holds for a general inertial pair of a G-space X
provided that KG(IG X) and A∗G(IG X) are replaced by their Gorenstein subrings
ǨG(IG X) and Ǎ∗G(IG X), respectively.

ψ-ring and λ-ring structures on inertial K-theory. The main result of this section
is the following:

Theorem 5.23. If G is a diagonalizable group and (R,S ) is a strongly Gorenstein
inertial pair on IG X , then (KG(IG X), ?R, 1, ε̃, ψ̃) is an augmented ψ-ring.

Moreover, for general ( possibly nondiagonalizable) G and any inertial pair
(R,S ), the augmentation completion of the Gorenstein subring ǨG(IG X)Q of
KG(IG X)Q is an augmented ψ-ring.

Remark 5.24. The hypothesis that G is diagonalizable is necessary, as is demon-
strated later in this section (see Example 5.37).

With a little work we get the following corollary:

Corollary 5.25. Let (R,S ) be a strongly Gorenstein inertial pair with G diago-
nalizable. Then (KG(IG X)Q, ?R, 1, λ̃) is an augmented λ-algebra over Q.

Moreover, for general ( possibly nondiagonalizable) G and any inertial pair
(R,S ), the augmentation completion of the Gorenstein subring ǨG(IG X)Q of
KG(IG X)Q is an augmented λ-algebra over Q.

Proof of Corollary 5.25. Combining Theorem 5.23 with Theorem 3.8, all that we
must prove is that

ε̃(λ̃t(F ))= λ̃t(ε̃(F ))= (1+ t)ε̃(F ). (5.26)
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Here we have omitted the ? from the notation, but all products are the inertial
product ?, and exponentiation is also with respect to the product ?.

For all F ∈ KG(IG X), we have

ε̃(λ̃t(F ))=
∑
i≥0

t i ε̃(λ̃i(F )),

but

ε̃(λ̃t(F ))= ε̃

(
ẽxp

(∑
n≥1

(−1)n−1

n
tnψ̃n(F )

))

= ẽxp
(∑

n≥1

(−1)n−1

n
tn ε̃(ψ̃n(F ))

)

= ẽxp
(∑

n≥1

(−1)n−1

n
tn ε̃(F )

)
= (1+ t)ε̃(F ),

where the third line follows from ε̃ ◦ ψ̃n
= ε̃ (by Theorem 5.23). Finally, we have

that λ̃t(ε̃(F ))= (1+ t)ε̃(F ), since ε̃ commutes with ψ̃ by Theorem 5.23. �

Proof of Theorem 5.23. It is straightforward from the definition that ψ̃n(F +G )=

ψ̃n(F )+ ψ̃n(G ), and also ψ̃1(F )=F , since θ1(G )= 1 for any G . We also have
ψ̃n(1)= 1, since 1 is supported only on KG(X1), and SX1 = 0 (because (R,S )

is an inertial pair). Now, to show for all F in KG(IG X) that

ψ̃n(ψ̃ l(F ))= ψ̃nl(F ),

we observe that

ψ̃n(ψ̃ l(F ))= ψ̃n(ψ l(F )θ l(S ∗))= ψnl(F )ψn(θ l(S ∗)θn(S ∗)).

Hence, we need to show that

ψn(θ l(S ∗))θn(S ∗)= θnl(S ∗).

This follows from the splitting principle in ordinary K-theory, the fact that the Bott
classes are multiplicative, and the fact that for any line bundle L we have

ψn(θ l(L ))θn(L )= ψn
(

1−L l

1−L

)
1−L n

1−L

=
1−L nl

1−L n

1−L n

1−L
= θnl(L ). (5.27)

It remains to show that ψ̃ preserves the inertial product defined by R, i.e.,

ψ̃n(F ?G )= ψ̃n(F ) ? ψ̃n(G ), (5.28)
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where ? is understood to refer to the ?R-product. It is at this point in the proof that
we need to use the hypothesis that G is diagonalizable.

Lemma 5.29. Let G be a diagonalizable group. For each (m1,m2) ∈ G ×G let
Xm1,m2 = {(m1,m2, x) |m1x =m2x = x} ⊂ I 2

G X. Then Xm1,m2 is open and closed
(but possibly empty) and the restriction of µ to Xm1,m2 is a regular embedding.

Proof. There is a decomposition of I 2
G X into closed and open components indexed

by conjugacy classes of pairs in G×G. However, since G is diagonalizable, each
conjugacy class consists of a single pair. If 9 = {(m1,m2)}, then I 2(9)= Xm1,m2

and the multiplication map restricts to the closed embedding µ : Xm1,m2 → Xm1m2 ,
where Xm1m2 = {(m1m2, x) | m1m2x = x} ⊂ IG X . Since X is smooth, the fixed
loci Xm1,m2 and Xm1m2 are also smooth, so the map is a regular embedding. �

Let us prove that ψ̃ is compatible with the inertial product. First,

ψ̃n(V ?W )= θn(S ∗) ·ψn(V ?W )

= θn(S ∗) ·ψn(µ∗(e∗1V · e∗2W · λ−1(R
∗))
)
. (5.30)

By our lemma I 2
G X decomposes as a disjoint sum

∐
Xm1,m2 with µ|Xm1,m2 a closed

regular embedding. Since an element α ∈ KG(I 2
G X) decomposes as a sum α =∑

(m1,m2)
αm1,m2 with αm1,m2 ∈ KG(Xm1,m2), we may invoke the equivariant Adams–

Riemann–Roch theorem for closed embeddings (Theorem 3.34) on each αm1,m2 to
conclude that ψnµ∗α = µ∗(θ

n(N ∗µ)ψ
nα), where N ∗µ is the conormal bundle of µ.

Writing N ∗µ =−T ∗µ (see Definition 2.13) we obtain the equalities

ψ̃n(V ?W )= θn(S ∗)·µ∗
(
θn(−T ∗µ )·ψ

n(e∗1V ·e∗2W ·λ−1(R)
∗)
)

= θn(S ∗)·µ∗
(
θn(−T ∗µ )·e

∗

1ψ
n(V )·e∗2ψ

n(W )·ψn(λ−1(R
∗))
)

= θn(S ∗)·µ∗
(
θn(−T ∗µ )·e

∗

1ψ
n(V )·e∗2ψ

n(W )·λ−1(ψ
n(R∗))

)
= θn(S ∗)·µ∗

(
θn(−T ∗µ )·e

∗

1ψ
n(V )·e∗2ψ

n(W )·λ−1(R
∗)·θn(R∗)

)
= θn(S ∗)·µ∗

(
e∗1ψ

n(V )·e∗2ψ
n(W )·λ−1(R

∗)·θn(R∗−T ∗µ )
)
, (5.31)

where the second equality follows from the fact that ψn respects the ordinary mul-
tiplication · , the third from the definition of the Euler class and the fact [Knutson
1973, p. 48] that, for all i and n,

ψn
◦ λi
= λi
◦ψn,

the fourth from the fact that for any nonnegative element F in KG(IG X) we have

θn(F )λ−1(F )= λ−1(ψ
n(F )),
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and the fifth from the multiplicativity of θn. Since ψ̃n(F ) = ψn(F )θn(S ∗), we
may express the last line of (5.31) as

θn(S ∗)µ∗
(
e∗1ψ̃

n(V ) ·e∗2ψ̃
n(W ) ·λ−1(R

∗) ·θn(R∗−T ∗µ−e∗1S ∗−e∗2S ∗)
)
. (5.32)

Applying the projection formula to (5.32) yields

ψ̃n(V ?W )= µ∗
(
e∗1ψ̃

n(V ) · e∗2ψ̃
n(W ) · λ−1(R

∗)

· θn(R∗− T ∗µ − e∗1S ∗− e∗2S ∗+µ∗S ∗)
)
.

Now because (R,S ) is an inertial pair, we have

R = e∗1S + e∗2S −µ∗S + Tµ,

so

ψ̃n(V ?W )= µ∗
(
e∗1ψ̃

n(V ) · e∗2ψ̃
n(W ) · λ−1(R

∗)
)
= ψ̃(V ) ? ψ̃(W ),

as claimed.
Finally, from the definition of ψ̃ and the fact that the ordinary augmentation

in ordinary equivariant K-theory is preserved by and commutes with the ordinary
ψ-operations, we have

ε̃(ψ̃n(V ))= ψ̃n(ε̃(V ))= ε̃(V ). (5.33)

When G is not diagonalizable, µ is a finite local complete intersection mor-
phism, but in general it does not restrict to a closed embedding on each compo-
nent of I 2

G X . In this case the equivariant Adams–Riemann–Roch theorem holds
[Köck 1998, Theorem 4.5] after completing KG(IG X)C and KG(I 2

G X)C at the
augmentation ideal. Restricting to the augmentation completion of the Gorenstein
subring ensures that the Bott class θ k(S ∗) takes values in that subring (which
has Q coefficients), whereas the Bott class in general would take values in the
augmentation completion of KG(IG X)⊗Q. The rest of the above argument goes
through verbatim. �

Remark 5.34. Suppose G is not abelian, but the fixed locus X g is empty if g
is not in the center of G. Then, since the conjugacy classes of central elements
are singletons, the argument of Lemma 5.29 shows that I 2

G X is a disjoint sum of
components such that the restriction of µ to each of them is a regular embedding.
Arguing as in the proof of Theorem 5.23 shows that in this case the inertial product
would also commute with the inertial Adams operations.

Remark 5.35. If G is finite then, for each conjugacy class 8⊂ G×G and 9 ⊂ G
such that µ(I 2(8))⊂ I (9), the pushforward map µ∗ : KG(I 2(8))→ KG(I(9))
can be identified as a combination of pushforward along a regular embedding with
an induction functor. Precisely, if (m1,m2) ∈8 is any element, then KG(I 2(8))
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can be identified with K Z1,2(X
m1,m2), where Z1,2 is the centralizer of m1 and m2

in G. Likewise, KG(I (9)) can be identified with K Z12(X
m1m2), where Z12 is

the centralizer of the element m1m2. Let i : Xm1,m2 ↪→ Xm1m2 be the inclu-
sion. Via these identifications the pushforward µ∗ is the composition of the push-
forward i∗ : K Z1,2(X

m1,m2)→ K Z1,2(X
m1m2) with the induction functor IndZ12

Z1,2
:

K Z12(X
m1m2) → K Z1,2(X

m1m2). In this case, determining whether the equality
ψ̃ j (α ? β) = ψ̃ j (α) ? ψ̃ j (β) holds in KG(IG X)Q boils down to the question of
whether the classical Adams operations ψ j commute with induction. This ques-
tion has been studied in Section 6 of [Köck 1998], where it is proved that Adams
operations commute with induction after completion at the augmentation ideal.

Remark 5.36. Let (R,S ) be a Gorenstein inertial pair on IG X . For each integer
k ≥ 1, let ψ̃k

: A∗G(IG X)→ A∗G(IG X) be defined by (3.23). If

ε̃ : A∗G(IG X)→ A{0}G (IG X)

is the canonical projection, then the inertial Chow theory (A∗G(IG X), ?, 1, ψ̃, ε̃) is
an augmented ψ-ring.

Moreover, if G is a diagonalizable group and (R,S ) is a strongly Gorenstein
inertial pair on IG X , then the summand K̂G(IG X)Q inherits an augmented ψ-ring
structure from KG(IG X)Q. In addition, (5.12) means that the inertial Chern char-
acter homomorphism C̃h : KG(IG X)Q → A∗G(IG X)Q preserves the augmented
ψ-ring structures and factors through an isomorphism K̂G(IG X)Q→ A∗G(IG X)Q
of augmented ψ-rings. In particular, if G acts freely on X , then the inertial Chern
character is an isomorphism of augmented ψ-rings.

Example 5.37. The hypothesis of Theorem 5.23 that G is diagonalizable is nec-
essary, as demonstrated by the following example: Let G = S3 be the symmetric
group S3 on three letters, and consider the classifying stack BS3 = [pt/S3]. The
inertia stack IBS3 is the disjoint union of three components, corresponding to the
conjugacy classes of (1), (12), and (123) in S3. The component corresponding
to class 9 is the stack [9/S3], which is isomorphic to the classifying stack B Z ,
where Z is the centralizer of any element of 9. So the components of the inertia
stack are isomorphic to BS3, Bµ2, and Bµ3.

The double inertia I 2BS3 is the disjoint union of eleven components: three
isomorphic to a point (B{e}), corresponding to the conjugacy classes of the pairs
((12), (13)), ((12), (123)), and ((123), (12)), respectively; three isomorphic to
Bµ2, corresponding to the conjugacy classes of the pairs ((1), (12)), ((12), (1)),
and ((12), (12)); four isomorphic to Bµ3, corresponding to the conjugacy classes
of ((1), (123)), ((123), (1)), ((123), (123)), and ((123), (132)); and the identity
component, isomorphic to BS3. Consider the inertial product with R= 0 and S = 0.
(This is just the usual orbifold product on BS3.)
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Let χ ∈ R(µ2)= K (Bµ2) be the defining character. Denote by χ |Bµ2 ∈ K (IBS3)

the class which is χ on the sector isomorphic to Bµ2 (corresponding to the con-
jugacy class of a transposition in S3) and 0 on all other sectors. Likewise, let
1|Bµ2 ∈ K (IBS3) be the class which is the trivial representation on the sector iso-
morphic to Bµ2 and 0 on all other sectors. We will compare ψ2(χ |Bµ2 ? 1|Bµ2)

and ψ2χ |Bµ2 ?ψ
2χ |Bµ2 and show that they are not equal in K (IBS3).

Since R = 0, the orbifold product is given by the formula

α ? β = µ∗(e∗1α · e
∗

2β).

To compute the product, we note that if α is supported on the sector corresponding
to the conjugacy class of (12) then e∗1α is supported on the components of I 2BS3

corresponding to the conjugacy classes of pairs

((12), (1)), ((12), (13)), ((12), (12)), ((12), (123)).

Similarly, e∗2α is supported on the components corresponding to the conjugacy
classes of the pairs

((1), (12)), ((12), (13)), ((12), (12)), ((123), (12)).

So if α and β are both supported on the sector corresponding to (12), then the
classical product e∗1α · e

∗

2α is supported on components of I 2BS3, corresponding to
the conjugacy classes of the pairs ((12), (13)) and ((12), (12)). The multiplication
map µ takes the component corresponding to the conjugacy class of ((12), (13))
to the twisted sector isomorphic to Bµ3 corresponding to the conjugacy class of
3-cycles. Likewise, µ maps the component corresponding to the conjugacy class
of ((12), (12)) to the untwisted sector BS3, which corresponds to the conjugacy
class of the identity.

Identifying K (BG)= R(G), we see that K (IBS3)= R(S3)⊕ R(µ2)⊕ R(µ3),
while K (I 2BS3) = R(S3) ⊕ R({e})3 ⊕ R(µ2)

3
⊕ R(µ3)

4. Under this identifi-
cation the pullbacks e∗i : K (IBS3)→ K (I 2BS3) correspond to restriction func-
tors between the various representation rings. Likewise, the pushforward µ∗ :
K (I 2BS3)→ K (IBS3) corresponds to the induced representation functor. Hence,

χ |Bµ2 ? 1|Bµ2 = (IndS3
µ2
χ)|BS3 + (Indµ3

{e} Resµ2
{e} χ)|Bµ3 = (sgn+ V2)|BS3 + V3|Bµ3,

where the sign representation of S3 is denoted by sgn, the 2-dimensional irreducible
representation of S3 is denoted by V2, and the regular representation of µ3 is de-
noted by V3. The character of ψ2(sgn+ V2) has value 3 at the identity and at the
conjugacy class of a 2-cycle, and it has value 0 on 3-cycles. On the other hand,
ψ2(χ)= ψ2(1)= 1 in R(µ2), so

ψ2(χ |Bµ2) ?ψ
2(1|Bµ2)= 1|Bµ2 ? 1|Bµ2 = (1+ V2)|BS3 + V3|Bµ3 .
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The character of 1 + V2 has value 1 on 2-cycles, so ψ2(sgn + V2) 6= (1 + V2).
Therefore,

ψ2(χ |Bµ2 ? 1Bµ2) 6= ψ
2χ |Bµ2 ?ψ

21|Bµ2 .

6. λ-positive elements, the inertial dual, and inertial Euler classes

Every λ-ring contains the semigroup of λ-positive elements, which is an invariant
of the λ-ring structure. In the case of ordinary equivariant K-theory, every class
of a rank-d vector bundle is a λ-positive element, although the converse need not
be true. Nevertheless, λ-positive elements of degree d share many of the same
properties as classes of rank-d vector bundles; for example, they have a top Chern
class in Chow theory and an Euler class in K-theory. This is because the ordi-
nary Chern character and Chern classes are compatible with the λ-ring and ψ-ring
structures.

In this section, we will introduce the framework to investigate the λ-positive
elements of inertial K-theory for strongly Gorenstein inertial pairs. We will see
that the λ-positive elements of degree d in inertial K-theory satisfy the inertial
versions of these properties. We will also introduce a notion of duality for inertial
K-theory, which is necessary to define the inertial Euler class in inertial K-theory.

For the examples P(1, 2) and P(1, 3), we will see that the set of λ-positive ele-
ments yield integral structures on inertial K-theory and inertial Chow theory, which
will correspond, under a kind of mirror symmetry, to the usual integral structures
on ordinary K-theory and Chow theory of an associated crepant resolution of the
orbifold cotangent bundle.

Remark 6.1. All results in this section hold for possibly nondiagonalizable G, pro-
vided that KG(IG X) is replaced by the augmentation completion of its Gorenstein
subring ǨG(IG X).

We begin by defining the appropriate notion of duality for inertial K-theory.

Definition 6.2. Consider the inertial K-theory (KG(IG X), ?, 1, ε̃, ψ̃) of a strongly
Gorenstein pair (R,S ) associated to a proper action of a diagonalizable group G
on X . The inertial dual is the map D̃ : KG(IG X)→ KG(IG X) defined by

D̃(V ) := V †
:= V ∗ · ρ(S ∗),

where
ρ(F ) := (−1)ε(F ) det(F ∗) (6.3)

for all classes of locally free sheaves F in KG(IG X) and det(F )= λε(F )F is the
class of the usual determinant line bundle of F . Note that in this definition the
dual ∗, as well as both ε and det, are the usual, noninertial forms.
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Theorem 6.4. Consider the inertial K-theory (KG(IG X), ?, 1, ε̃, ψ̃) of a strongly
Gorenstein pair (R,S ) for a diagonalizable group G with a proper action on X.

(1) D̃2 is the identity map, i.e., F ††
=F for all F ∈ KG(IG X).

(2) For all l ≥ 1, the inertial dual satisfies

D̃ ◦ ε̃ = ε̃ ◦ D̃ = ε̃ and ψ̃ l
◦ D̃ = D̃ ◦ ψ̃ l . (6.5)

(3) The inertial dual is a homomorphism of unital rings.

Before we give the proof of the theorem, we need to recall one fact from [Ful-
ton and Lang 1985] about the ordinary dual in K-theory, and we need to prove a
Riemann–Roch-type result for the ordinary dual.

Lemma 6.6 [Fulton and Lang 1985, Lemma I.5.1]. Let F be any locally free sheaf
of rank d. Then for all i with 0≤ i ≤ d we have

λi(F )= λd−i (F ∗)λd(F ). (6.7)

Theorem 6.8 (Riemann–Roch for the ordinary dual). Using the hypotheses and
notation from Theorem 3.34, and the definition of ρ given in (6.3), for all F

in KG(Y ) we have
(ι∗(F ))

∗
= ι∗(ρ(N ∗ι ) ·F

∗). (6.9)

Proof. We first observe, using Lemma 6.6, that for any locally free sheaf F ∈ KG(Y )
we have

λ−1(F )
∗
= λ−1(F )ρ(F ). (6.10)

We also observe that ordinary dualization commutes with pullback and is a ring
homomorphism. Because of these properties, the ordinary dual is a so-called natu-
ral operation, and the desired result follows immediately from Köck’s “Riemann–
Roch theorem without denominators” [1991, Satz 5.1]. �

Proof of Theorem 6.4. Part (1) follows from the identity ρ(F ∗)= (ρ(F ))−1.
The first equation of (2) is follows from the definition of ε̃. The second equation

of (2) follows from the identity θn(S ) = θn(S ∗)(det(S ))ε(S )−1, which follows
from the splitting principle in ordinary K-theory.

The proof of (3) is identical to the proof that ψ̃n is a homomorphism for all n≥ 1,
but where the Bott class θn is replaced by the class ρ and Theorem 3.34 is replaced
by Theorem 6.8. �

Definition 6.11. Let (K , · , 1, λ) be a λ-ring. For any integer d ≥ 0, an element
V ∈ K is said to have λ-degree d if λt(V ) is a degree-d polynomial in t . The
element V is said to be a λ-positive element of degree d of K if it has λ-degree d
for d ≥ 1 and λd(V ) is a unit of K . A λ-positive element of degree 1 is said to
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be a λ-line element of K . Let Pd := Pd(K ) be the set of λ-positive elements of
degree d in K , and let P =

∑
d Pd ⊂ K be the semigroup of positive elements.

Remark 6.12. If the λ-ring (K , · , 1, λ) has an involutive homomorphism K → K
taking F to FO that commutes with λi for all i ≥ 0, then it may be useful in the
definition of a λ-positive element of degree 1 to assume, in addition, that V −1

=V O.
However, we will later see that this condition automatically holds for the vir-
tual K-theory of Bµ2 (Proposition 7.2), P(1, 2) (Proposition 7.45), and P(1, 3)
(Proposition 7.64).

Proposition 6.13. Let (K , · , 1, λ) be a λ-ring.

(1) Addition in K induces a map Pd1 ×Pd2 → Pd1+d2 for all integers d1, d2 ≥ 1.

(2) Multiplication in K induces a map Pd1×Pd2→Pd1d2 for all integers d1, d2≥1.
In particular, the set P1 of λ-line elements of K forms a group.

(3) If K is torsion-free, then an element L in K has λ-degree 1 if and only if

ψ l(L )=L l (6.14)
for all integers l ≥ 1.

(4) For all V in Pd ,

γt(V − d)=
d∑

i=0

t i(1− t)d−iλi(V ). (6.15)

(5) For all integers i ≥ 0 and d ≥ 1, we have λi
: Pd → P(d

i)
. Furthermore, if K

is an augmented λ-algebra over Q with augmentation ε and V belongs to Pd ,
then, in K ,

ε(V )= d, (6.16)
and thus

ε(λi(V ))=
(d

i

)
. (6.17)

Proof. Part (1) follows from the fact that the product of invertible elements is invert-
ible. Part (2) follows from properties of the universal polynomials Pn appearing
in (3.2) of the definition of a λ-ring. Part (3) follows immediately from (3.9) and
the fact that K is torsion-free.

Equation (6.15) holds since, for all V in Pd , we have

γt(V − d)=
λt/(1−t)(V )

(1− t)−d = (1− t)d
d∑

i=0

( t
1−t

)i
λi(V )=

d∑
i=0

t i(1− t)d−iλi(V ).

To prove (5), the properties of the universal polynomials Pm,n (see Remark 3.6)
imply that λi

: Pd→ P(d
i) for all i ≥ 0. Hence, if V has λ-degree d , where d , i ≥ 1,

then, since λdV is invertible, so is λ(
d
i)(λi(V ))=(λdV )(

d−1
i−1).
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To prove (6.16) let us first suppose that F := L belongs to P1. Applying ε
to (6.14) for l = 2, we obtain ε(ψ2(L ))= ε(L 2)= ε(L )2, but ε(ψ2(L ))= ε(L ).
Thus ε(L )2 = ε(L ) but, since L is invertible and ε is a homomorphism of unital
rings, ε(L ) is invertible. Therefore, ε(L )= 1. More generally, if F belongs to Pd

for some integer d ≥ 1, then (3.18) implies that
(
ε(F )

d

)
= 1 and

0=
(
ε(F )

d+1

)
=

(
ε(F )

d

)
ε(F )−d

d+1
=
ε(F )−d

d+1
.

Therefore, ε(F )= d.
Finally, (6.17) follows from equations (3.18) and (6.16). �

In ordinary equivariant K-theory (KG(X),⊗, 1, ε), it is often useful to assume
that [X/G] is connected. This is not an actual restriction, since KG(X) can be
expressed as the direct sum of λ-rings or ψ-rings of the form KG(U ), where [U/G]
is a connected component of [X/G]. The condition that [X/G] is connected is
equivalent to the condition that the image of the augmentation is Z times the unit
element 1, i.e., one may interpret the augmentation as a map ε : KG(X)→ Z.

For an inertial K-theory (KG(IG X), ?, 1, ε̃), an additional condition must be
imposed in order for the inertial augmentation to have image equal to Z.

Definition 6.18. Let X be an algebraic space with an action of G and let (R,S )

be an inertial pair. For each m ∈ G, the restriction of S to Xm is denoted by Sm .
We say that the action of G on X is reduced with respect to the inertial pair

(R,S ) if Sm = 0 implies m = 1.

The following proposition is immediate:

Proposition 6.19. Consider the inertial K-theory (KG(IG X), ?, 1, ε̃) (respectively
the rational inertial K-theory (KG(IG X)Q, ?, 1, ε̃)) for some inertial pair (R,S ).
The image of the inertial augmentation ε̃ is equal to Z (respectively Q) times the
unit element 1 of KG(IG X) if and only if [X/G] is connected and the action of G
on X is reduced with respect to (R,S ).

In ordinary equivariant K-theory any vector bundle of rank d has λ-degree d.
Thus, if [X/G] is connected then, by definition, (KG(X), · , 1, ε, λ) (respectively
(KG(X)Q, · , 1, ε, λ)) is generated as a group (respectively Q-vector space) by the
classes of vector bundles and hence by elements of P .

In inertial K-theory (KG(IG X)Q, ?, 1, ε̃, λ̃), the situation is more complicated.
Equation (6.17) implies that if V is in Pd then, for any connected component U
of IG X r X1 which has S-age equal to 0, the restriction V |U must have ordi-
nary rank equal to 0 on U . Therefore, the Q-linear span of Pd cannot be equal
to KG(IG X)Q. Furthermore, even if [X/G] is connected and the action of G on X
is reduced with respect to the inertial pair (R,S ), there is no a priori reason that
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(KG(IG X)K, · , 1, ε̃, λ̃) is generated as a K-vector space by its λ-positive elements
for any field K containing Q.

Corollary 6.20. The Gorenstein subring (KG(IG X)Q, ?, 1, λ̃) is a λ-subring of
the inertial K-theory which is preserved by the inertial dual.

Proof. The proof follows from Proposition 6.13(2) and (4) and the fact that the
inertial dual maps Pd to Pd for all d . �

One thing that makes the elements Pd in (KG(IG X)Q, · , 1, ε̃, λ̃) interesting is
that in many ways they behave as though they were rank-d vector bundles. In
particular, they have inertial Euler classes in both K-theory and Chow rings.

Proposition 6.21. Let (KG(IG X)Q, ?, 1, ε̃, λ̃) be the inertial K-theory of a strongly
Gorenstein pair (R,S ) associated to a diagonalizable group G with a proper
action on X.

(1) The inertial Chern class c̃1
: P1→ A{1}G (IG X)Q is a group homomorphism.

(2) For all V in Pd and L in P1,

C̃h(L )= ẽxp(c̃1(L )) (6.22)
and

c̃t(V )=

d∑
i=0

c̃ i(V )t i , (6.23)

so c̃ i(V )= 0 for all i > d.

Proof. Part (1) follows from the fact that C̃h(L1 ?L2)= C̃h(L1) ? C̃h(L2) for all
L1 and L2 in P1. Picking off terms in A{1}G (IG X)Q and using C̃h1

= c̃1 and (6.17)
yields the desired result.

Equation (6.22) follows from (5.2) and (6.23), which yields

1+ t c̃1(L )= ẽxp
(∑

n≥1

(−1)n−1(n− 1)!tn C̃hn
(L )

)
,

which implies that C̃hn
(L )= c̃1(L )n/n!, as desired. Equation (6.23) follows from

(5.19) and (6.15). �

The inertial dual allows us to introduce a generalization of the Euler class.

Definition 6.24. Let (KG(IG X)Q, ?, 1, ε̃, λ̃) be the inertial K-theory associated to
(R,S ). Let V belong to Pd . The inertial Euler class in KG(IG X)Q of V is

λ̃−1(V
†)=

d∑
i=0

(−1)i λ̃i(V †).

The inertial Euler class of V in A{d}G (IG X)Q is defined to be c̃d(F ).
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The inertial Euler classes are multiplicative by Proposition 6.13(1) and the mul-
tiplicativity of c̃t and λ̃t .

Finally, we observe that P1 is preserved by the action of certain groups. This
will be useful in our analysis of the virtual K-theory of P(1, n).

Definition 6.25. Let (K , · , 1, ψ, ε) be a torsion-free, augmented ψ-ring. A trans-
lation group of K is an additive subgroup J of K such that, for all n ≥ 1, j ∈ J ,
and x ∈ K , the following identities hold:

(1) ψn( j)= nj ,

(2) x · j = ε(x) j ,

(3) ε(x) j ∈ J .

Proposition 6.26. Let (K , · , 1, ψ, ε) be a torsion-free augmented ψ-ring. If J is a
translation subgroup of K , then ε(J )= 0, J 2

= 0, and J is an ideal of the ring K .
Furthermore, J acts freely on P1, where J ×P1→ P1 is ( j,L ) 7→ j +L .

Proof. For all j in J and integers n ≥ 1, ε(ψn( j)) = ε( j) by the definition
of an augmented ψ-ring. On the other hand, ε(ψn( j)) = ε(nj) = nε( j) for all
integers n ≥ 1 by condition (1) in the definition of a translation group. Therefore,
ε( j)= 0 since K is torsion-free. The fact that J 2

= 0 and J is an ideal of K follows
from conditions (2) and (3) in the definition of a translation group.

Consider L in P1 and j in J . We have

ψn(L + j)= ψn(L )+ψn( j)=L n
+ nj = (L + j)n,

where the second equality is by (6.14) and condition (1) in the definition of a
translation group, and the last is from the binomial theorem and the fact that J 2

= 0
since ε(L ) = 1. Hence, by (6.14), L + j has λ-degree 1. Also, notice that
(L −1

− j)(L + j)= 1, so L + j is invertible and thus an element of P1. �

7. Examples

In this section, we work out some examples of inertial ψ-rings and λ-rings.

The classifying stack of a finite abelian group. In this section we discuss the case
where X is a point with a trivial action by a finite group G and the trivial inertial
pair R = 0 and S = 0. Since G is zero-dimensional, its tangent bundle is 0, so the
orbifold and virtual inertial pairs (Definitions 2.18 and 2.20) are both trivial. We
begin with some general results and conclude with explicit computations for the
special case of the cyclic group G = µ2 of order 2.
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General results. Let X be a point with the trivial action of a finite abelian group G.
The inertia scheme is IG X = G, which also has a trivial G action. The orbifold K-
theory of BG := [X/G] is additively the Grothendieck group KG(IG X)= KG(G)
of G-equivariant vector bundles over G; however, the orbifold product on KG(G)
differs from the ordinary one, as we now describe.

The double inertia manifold is I 2
G X = G × G with the diagonal conjugation

action of G (again, trivial); the evaluation maps ei : G×G→ G are the projection
maps onto the i-th factor for i = 1, 2; and µ :G×G→G is the multiplication map.
Let F and G be G-equivariant vector bundles on G; then F ?G := µ∗(F �G ) is
the G-equivariant vector bundle over G whose fiber over the point m in G is

(F ?G )m =
⊕

m1m2=m

Fm1 ⊗Gm2, (7.1)

where the sum is over all pairs (m1,m2) ∈ G2 such that m1m2 = m.
The orbifold K-theory (KG(G), ?, 1) of BG can naturally be identified with

two better-known rings: first, the group ring R(G)[G] of G with coefficients in the
representation ring R(G) of G, and second, the representation ring Rep(D(G))
of the Drinfeld double D(G) of the group G (see [Kaufmann and Pham 2009,
Theorem 4.13]). The ring Rep(D(G)) has been studied in some detail in [Dijkgraaf
et al. 1990; Kaufmann and Pham 2009; Witherspoon 1996].

In this case the orbifold Chern classes are all trivial, i.e., c̃t(F )= 1 for all F .
This follows from two facts. First, S = 0, so C̃ht(F ) = Cht(F ) is the classical
Chern character. Second, Ai(BG)Q= 0 for i > 0 because BG is a zero-dimensional
Deligne–Mumford stack. Thus, Cht(F )= rk(F ) for every F ∈ KG(IG X).

Since S = 0 on IG X , the orbifold Adams operations in KG(G) agree with the
ordinary ones, i.e., ψ̃ i

:= ψ i for all i ≥ 1.

The classifying stack Bµ2. We now consider the special case where G = µ2 is
the cyclic group of order 2. For each m ∈ G and each irreducible representation
α ∈ Irrep(µ2) = {±1}, let V α

m denote the bundle on G which is 0 away from the
one-point set {m} ∈ IG X = µ2 and which is equal to α on {m}. In this case the free
abelian group Kµ2(µ2) decomposes as

K (IBµ2)= Kµ2(µ2)= Kµ2({1})⊕ Kµ2({−1})

and has a basis consisting of the four elements V 1
1 , V−1

1 , V 1
−1, and V−1

−1 .

Proposition 7.2. The orbifold λ-ring (K (IBµ2)Q, ?, 1, λ̃) satisfies the following:

λ̃t(V 1
1 )= 1+ t, (7.3)

λ̃t(V−1
1 )= 1+ tV−1

1 , (7.4)
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λ̃t(V 1
−1)= 1+ tV 1

−1+
t2

2(1+ t)
(1− V 1

−1), (7.5)

λ̃t(V−1
−1 )= 1+ V−1

−1 t +
t2

2(1− t2)
(1− tV−1

1 − V 1
−1+ tV−1

−1 ). (7.6)

There are four elements in P1, namely V±1
1 and

σ± :=
1
2(V

1
1 + V−1

1 ± (V
1
−1− V−1

−1 )),

with multiplication given by

σ± ? σ± = V 1
1 , V−1

1 ? σ± = σ∓, and σ+ ? σ− = V−1
1 .

Proof. Equations (7.3) and (7.4) hold since {V 1
1 , V−1

1 } generates a subring of
(Kµ2(µ2)Q, ?) isomorphic as a λ-ring to the ordinary representation ring K (Bµ2).

Let us introduce some notation. If f (t) is a formal power series in t , let

f±(t) := 1
2( f (t)± f (−t)).

In order to prove (7.5), we observe that ψ̃k
=ψk

=ψk+2 for all k ≥ 1. This can be
seen from (3.14) and the fact that any irreducible representation V of G is a line
element satisfying V 2

= 1.
Let λt := exp

(∑
∞

k=1((−1)k−1/k)tkψk
)
. Since

ψk(V 1
−1)= V 1

−1 for all k ≥ 1, (7.7)
we obtain

λ̃t(V 1
−1)= exp

( ∞∑
k=1

(−1)k−1

k
tk V 1
−1

)
= exp(V 1

−1 log(1+ t)).

Since we have
(V 1
−1)

k
=

{
V 1
−1 if k is odd,

V 1
1 = 1 if k is even,

we obtain

exp(V 1
−1 log(1+ t))= exp+(V

1
−1 log(1+ t))+ exp−(V

1
−1 log(1+ t))

= exp+(log(1+ t))+ V 1
−1 exp−(log(1+ t))

=
1+t+(1+t)−1

2
+ V 1
−1

1+t−(1+t)−1

2

=
1+t

2
(1+ V 1

−1)+
1

2(1+t)
(1− V 1

−1),

which agrees with (7.5).
The proof of (7.6) is similar. Since, for all k ≥ 1,

ψk(V−1
−1 )=

{
V−1
−1 if k is odd,

V 1
−1 if k is even,

(7.8)
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we obtain λ̃t(V−1
−1 )= exp(ψt(V 1

−1))= exp(V−1
−1 log−(1+ t)+V 1

−1 log+(1+ t)) and

λ̃t(V−1
−1 )= exp(V−1

−1 log−(1+ t)) exp(V 1
−1 log+(1+ t)). (7.9)

Since

exp(V−1
−1 log−(1+t))

= exp+(V
−1
−1 log−(1+t))+ exp−(V

−1
−1 log−(1+t))

= exp+(log−(1+t))+ V−1
−1 exp−(log−(1+t))

=
1
2

(
exp

( 1
2(log(1+t)− log(1−t))

)
+ exp

(
−

1
2(log(1+t)− log(1−t))

))
+

1
2 V−1
−1

(
exp

( 1
2(log(1+t)− log(1−t))

)
− exp

(
−

1
2(log(1+t)− log(1−t))

))
=

1
2

((1+t
1−t

)1
2
+

(1−t
1+t

)1
2
)
+

1
2

V−1
−1

((1+t
1−t

)1
2
−

(1−t
1+t

)1
2
)
,

we obtain

exp(V−1
−1 log−(1+ t))=

1+ tV−1
−1

(1− t2)
1
2

. (7.10)

Also, since

exp(V 1
−1 log+(1+t))

= exp+(V
1
−1 log+(1+t))+ exp−(V

1
−1 log+(1+t))

= exp+(log+(1+t))+ V 1
−1 exp−(log+(1+t))

=
1
2

(
exp

(1
2(log(1+t)+ log(1−t))

)
+ exp

(
−

1
2(log(1+t)+ log(1−t))

))
+

1
2 V 1
−1
(
exp

( 1
2(log(1+t)+ log(1−t))

)
− exp

(
−

1
2(log(1+t)+ log(1−t))

))
=

1
2((1− t2)

1
2 + (1− t2)−

1
2 )+ 1

2 V 1
−1((1− t2)

1
2 − (1− t2)−

1
2 ),

we obtain

exp(V 1
−1 log−(1+ t))=

2− t2
− V 1
−1t2

2(1− t2)
1
2

. (7.11)

Plugging equations (7.10) and (7.11) into (7.9) and then expanding using (7.1)
yields (7.6).

The fact that V±1
1 is in P1 is immediate, since the orbifold λ-ring structure

reduces to the ordinary λ-ring structure on the untwisted sector. The fact that σ± is
in P1 follows from (6.14) as follows: Since ψ̃k

=ψk
=ψk+2 for all k≥ 1, it suffices

to check that ψ2(σ±)= σ± ? σ± = V 1
1 . But this is immediate from equations (7.7)

and (7.8):

ψ2(σ±)=
1
2((V

1
1 )

2
+ (V−1

1 )2± (V 1
−1− V 1

−1))= V 1
1 . �
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The virtual K-theory and virtual Chow ring of P(1, n). Let X := C2 r {0} and
G :=C×, with the action C×× X→ X defined by taking (t, (a, b)) to (ta, tnb). In
this section, we first develop some general results about the virtual K-theory and
virtual Chow theory of the weighted projective line P(1, n) := [X/C×]. Recall
(see Definition 2.20) that the inertial pair associated to the virtual product is given
by S = N , where N is the normal bundle of the projection morphism IC×X→ X ,
and R is given by (2.21). We work out the full inertial K-theory and Chow theory
for the weighted projective spaces P(1, 2) and P(1, 3), and we compare our results
with the usual K-theory and Chow theory of the resolution of singularities of the
coarse moduli spaces of the cotangent bundles to these orbifolds.

General results on the K-theory of P(1, n) and its inertia. Since the action of C×

on Cr {0} has weights (1, n), the only elements of C× with nonempty fixed loci
are the n-th roots of unity. For m ∈ {0, . . . , n− 1}, let Xm denote the fixed locus
of the element e2π im/n in X .

With this notation, X0
= X , so [X0/C×] = P(1, n). For m > 0,

Xm
= {(0, b) | b 6= 0} = C×.

For each m > 0, the action of C× on Xm has weight n, so the quotient [Xm/C×] is
the classifying stack Bµn . The inertia variety is IC×X =

∐n−1
m=0 Xm , so the inertia

stack I P(1, n) decomposes as P(1, n)t
∐n−1

m=1 Bµn .
We now compute the classical equivariant Grothendieck and Chow rings of the

inertia variety, or equivalently the Grothendieck and Chow rings of the inertia stack.

Notation 7.12. Let χ be the defining character of C×. We can associate to χ a C×-
equivariant line bundle on X . It is the trivial bundle X ×C with C× action given
by β(a, b, v) = (βa, βnb, βv). For each m, denote by χm the class in KC×(Xm)

corresponding to the pullback of this C×-equivariant line bundle to Xm .
The character χ has a first Chern class c1(χ) ∈ A1

C×
(pt), and we denote by

cm the pullback of c1(χ) to A1
C×
(Xm) under the projection Xm

→ pt. With this
notation, c1(χm)= cm .

Proposition 7.13. We have the following isomorphisms for all m ∈ {1, . . . , n− 1}:

KC×(X0)= K (P(1, n))∼=
Z[χ0]

〈(χ0− 1)(χn
0 − 1)〉

, (7.14)

KC×(Xm)= K (Bµn)∼=
Z[χm]

〈χn
m − 1〉

, (7.15)

A∗C×(X
0)= A∗(P(1, n))∼=

Z[c0]

〈nc2
0〉
, (7.16)

A∗C×(X
m)= A∗(Bµn)∼=

Z[cm]

〈ncm〉
. (7.17)
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Proof. Since C2 is smooth, Thomason’s equivariant resolution theorem [1987a]
identifies the equivariant K-theory of vector bundles with the equivariant K-theory
of coherent sheaves. It follows that there is a four-term localization exact sequence
for equivariant K-theory [Thomason 1987b]

KC×({0})
i∗
−→ KC×(C

2)
j∗
−→ KC×(X0)−→ 0, (7.18)

where i : {0} ↪→ C2 is a closed embedding and j : X0
→ C2 is an open immersion.

Equation (7.18) implies that KC×(X0) is the quotient of KC×(C
2) by the image

of KC×({0}) under the pushforward induced by the inclusion i . Since C2 is a
representation of C×, the homotopy property of equivariant K-theory implies that
KC×(C

2)=Rep(C×)=Z[χ, χ−1
]. The projection formula implies that i∗KC×({0})

is an ideal in Z[χ, χ−1
], and KC×(X0) is the quotient of Z[χ, χ−1

] by this ideal. By
the self-intersection formula in equivariant K-theory [Köck 1998, Corollary 3.9],
i∗i∗KC×({0}) = eu(N{0})KC×({0}), where N{0} is the normal bundle to the origin
in C2. Since C× acts with weights (1, n), the class of the normal bundle is χ +χn

and eu(N{0})= (1−χ−1)(1−χ−n). Since the pullback i∗ : KC×(C
2)→ KC×({0})

is an isomorphism, i∗(KC×({0})) is the ideal generated by (1− χ−1)(1− χ−n).
Thus, KC×(X0) = Z[χ, χ−1

]/〈(1− χ−1)(1− χ−n)〉. Clearing denominators and
observing that the relation already implies that χ is a unit, we have the presentation
KC×(X0)= Z[χ ]/〈(χ − 1)(χn

− 1)〉. Since χ0 is our notation for the pullback of
χ to X0, we obtain the presentation Z[χ0]/〈(χ0− 1)(χn

0 − 1)〉.
For m > 0 observe that, if C× acts on C× = C r {0} by λ · v = λnv, then the

C×-equivariant normal bundle to {0} in C is χn . The same argument as above
implies that KC×(C

×)= Z[χ, χ−1
]/〈1−χ−n

〉. Clearing denominators and using
the notation χm for χ on Xm gives the desired presentation.

The proof in Chow theory is similar. We again use the five-term localization se-
quence for equivariant Chow groups [Edidin and Graham 1998] to see that A∗

C×
(Xm)

is a quotient of A∗
C×
(pt)= Z[c1(χ)]. We can again apply the self-intersection for-

mula. In Chow theory, eu(χ)= c1(χ), while eu(χ+χn)= c2(χ+χ
n)= n(c1(χ))

2,
which gives the relations in (7.17) and (7.16). �

Remark 7.19. As a consequence of the relations in Proposition 7.13, an additive
basis for K (I P(1, n)) is given by n2

+1 classes of the form χ k
m , where the subscript

refers to the sector while the superscript is an exponent. Including the untwisted
sector X0 there are n sectors, so 0≤ m ≤ n− 1. If m > 0, then the exponent k is
in [0, n− 1], while if m = 0 then the exponent k is in [0, n].

Similarly, the classes {ck
m}k∈N for 0 ≤ m ≤ n − 1 generate A∗

C×
(IC×(X)) =

A∗(I P(1, n)). Again, in the notation ck
m the subscript refers to the sector and the

superscript to the exponent. Note the relations in the presentation imply that only c0

and the fundamental classes c0
m = [X

m
] are nontorsion.
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Remark 7.20. If f : X → Y is any morphism of G-varieties, then the pullback
f ∗ : KG(Y )→ KG(X) is a homomorphism of λ-rings, since, for any G-equivariant
vector bundle, 3k( f ∗V )= f ∗(3k V ). Applying this observation to the pullbacks
KC×(C

2)→ KC×(X0) and KC×(C)→ KC×(Xm), this means that for all m ≥ 0 the
classical λ-ring structure on KC×(Xm) is induced from the usual λ-ring structure
on Z[χm, χ

−1
m ] defined by setting λt(χ

k
m)= 1+ tχ k

m .

Remark 7.21. For any m > 0 the map Xm
→ X is an embedding of codimension 1,

so the S-age of Xm is 1 and the age of X0 is 0. Hence the virtual degree of c0 is 1,
as is the virtual degree of the fundamental class c0

m = [X
m
] for m > 0.

The virtual Chern character homomorphism is very simple: in A∗(I P(1, n))Q,
ck

0 = 0 for k > 1 and, if m > 1, then cl
m = 0 for l 6= 0. Stated more precisely, the

map C̃h : K (I P(1, n))→ A∗(I P(1, n))Q satisfies

C̃h(χa
0 )= c0

0+ ac1
0 (7.22)

for all a ∈ Z and, for m ∈ {1, . . . , n− 1}, we have C̃h(χa
m)= c0

m .

We now compute the virtual product.

Theorem 7.23. The virtual product on K (I P(1, n)) satisfies

χa1
m1
? χa2

m2
=


χ

a1+a2
m1+m2

if m1 = 0 or m2 = 0,
χ

a1+a2
0 (1− 2χ−1

0 +χ
−2
0 ) if m1+m2 = n,

χ
a1+a2
m1+m2

(1−χ−1
m1+m2

) otherwise,

and the virtual product in A∗(I P(1, n)) satisfies

ca1
m1
? ca2

m2
=


ca1+a2

m1+m2
if m1 = 0 or m2 = 0,

ca1+a2+2
0 if m1+m2 = n,

ca1+a2+1
m1+m2

otherwise.

Here the sum m1+m2 is understood to be reduced modulo n and all products on
the right-hand side are the classical product in KC×(Xm1+m2) (or A∗

C×
(Xm1+m2)).

In particular, the classes χ−1
m are defined via (7.14) and (7.15).

Remark 7.24. Since c2
0 = 0 in A∗(I P(1, n))Q, and since for all m > 0 we have

cm = 0 in A∗(I P(1, n))Q, Theorem 7.23 implies that all products ca0
m1 ? ca1

m2
are

equal to 0 unless one of the classes is the identity c0
0. It follows that the rational vir-

tual Chow ring is isomorphic to the graded ring Q[t0, t1, . . . , tn−1]/〈t0, . . . , tn−1〉
2,

where t0 corresponds to c1
0 and tm corresponds to c0

m for all m ∈ {1, . . . , n− 1}.

Before proving Theorem 7.23, we first need some notation for KC×(I 2
C×

X) and
A∗

C×
(I 2

C×
X).

Notation 7.25. Given a pair (m1,m2) ∈ (Zn)
2 let Xm1,m2 = Xm1 ∩ Xm2 . We have

Xm1,m2 = {(0, b) | b 6= 0} ⊂ X unless m1 = m2 = 0, and X0,0
= X . The double



114 DAN EDIDIN, TYLER J. JARVIS AND TAKASHI KIMURA

inertia decomposes as I 2
C×

X =
∐
(m1,m2)∈(Zn)2

Xm1,m2 . For each pair (m1,m2), let
χm1,m2 ∈ KC×(Xm1,m2) be the class corresponding to the character χ ∈ Rep(C×).
With this notation, Proposition 7.13 implies that

KC×(Xm1,m2)=

{
Z[χm1,m2]/〈χ

n
m1,m2

− 1〉 if (m1,m2) 6= (0, 0),
Z[χ0,0]/〈(χ0,0− 1)(χn

0,0− 1)〉 if (m1,m2)= (0, 0).

Similarly, we let cm1,m2 be the class in A1
C×
(Xm1,m2) corresponding to c1(χ).

Proof of Theorem 7.23. We first use (2.14) with S = N and compute the re-
striction of R to Xm1,m2 . With our additive notation, the multiplication map µ :
I 2
C×

X→ IC×X maps Xm1,m2 → Xm1+m2 , so in KC×(Xm1,m2) we have

R|Xm1,m2 = (e∗1 Nm1 + e∗2 Nm2 −µ
∗Nm1+m2 + Tµ, )|Xm1,m2 , (7.26)

where Nm denotes the normal bundle to Xm in X .
First suppose that m1 = 0. Then Xm1,m2 = Xm2 = Xm1+m2 . It follows that

µ : Xm1,m2 → Xm1+m2 is the identity map, so (Tµ)|Xm1,m2 = 0. Also, Nm1 = 0 and
Nm1+m2 = Nm2 , so plugging into (7.26) gives R|Xm1,m2 = 0. In this case, χα1

m1
? χα2

m2

corresponds to the usual product χα1χα2 = χα1+α2 , but viewed as an element of
KC×(Xm1+m2). In our notation, this class is χα1+α2

m1+m2
.

Next suppose that m1 and m2 are nonzero, but m1 + m2 = n. In this case,
Xm1,m2 = Xm1 = Xm2 = {(0, b) | b 6= 0}, while Xm1+m2 = X0

= C2 r {0}. Since
C× acts with weights (1, n), the normal bundle to {(0, b) | b 6= 0} ⊂ C2 r {0}
is the bundle determined by the character χ , so in our notation Nm1 = χm1 and
Nm2 = χm2 , and Nm1+m2 = 0. The map µ : Xm1,m2 → Xm1+m2 is the inclusion
and (Tµ)|Xm1,m2 =−(Nµ|Xm1,m2 ) corresponds to the class −χ , which on Xm1,m2 we
denote by −χm1,m2 . Since

R|Xm1,m2 = e∗1χm1 |Xm1,m2 + e∗2χm2 |Xm1,m2 −χm1,m2

= χm1,m2 +χm1,m2 −χm1,m2 = χm1,m2,

it follows that

χα1
m1
? χα2

m2
= µ∗(χ

α1
m1,m2

·χα2
m1,m2

· eu(χm1,m2))= µ∗(χ
α1+α2
m1,m2

(1−χ−1
m1,m2

)).

Since the class χm1,m2 is pulled back from the character χ ∈Rep(C×), the projection
formula yields the further simplification χα1

m1
? χα2

m2
= χ

α1+α2
m1+m2

(1−χ−1
m1
)µ∗(1). To

compute µ∗(1) consider the diagram of inclusions

C C2

Xm1,m2 = Cr {0} C2 r {0} = Xm1+m2 .

j

µ
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Then µ∗(1) is the restriction to KC×(Xm1+m2) of the image of j∗(1). By the
self-intersection formula, j∗ j∗(1)= eu(N j )= (1−χ−1) under the identification of
KC×(C)=Rep(C×). Since j∗ is an isomorphism, we conclude that j∗(1)=(1−χ−1)

and then, restricting to KC×(Xm1+m2), we obtain µ∗(1)= (1−χ−1
m1+m2

). Hence

χα1
m1
? χα2

m2
= χ

α1+α2
m1+m2

(1−χ−1
m1+m2

)2.

If m1, m2 6= 0 and m1+m2 6= 0, then Xm1,m2 = Xm1 = Xm2 = Xm1+m2 , so e1, e2,
and µ are all identity maps. In this case,

R|Xm1,m2 = e∗1χm1 |Xm1,m2 + e∗2χm2 |Xm1,m2 −µ
∗χm1+m2 |Xm1,m2 = χm1,m2

and
χα1

m1
? χα2

m2
= χ

α1+α2
m1+m2

(1−χ−1
m1+m2

).

The proof in Chow theory is similar. If m1, m2 6= 0, then eu(R)= cm1,m2 is in
A1

C×
(Xm1,m2) and, if m1+m2 = n, then µ∗(1)= cm1+m2 , which gives the factors

of c2
m1+m2

and cm1+m2 appearing above. �

In order to calculate the virtual ψ-operations, for all m ∈ {1, . . . , n−1} we need
the l-th Bott class θ l(S ∗m) in KC×(Xm), which satisfies

θ l(S ∗m)= θ
l(χ−1

m )=

l−1∑
i=0

χ−i
m .

Applying (5.5) gives the virtual ψ-operations ψ̃k
: K (I P(1, n))→ K (I P(1, n)).

Definition 7.27. Let K be Q or C. For all m ∈ {1, . . . , n− 1}, let 1m =
∑n−1

i=0 χ
i
m

in KC×(Xm) (respectively KC×(Xm)K) and 10 =−χ
0
0 +χ

n
0 in KC×(X0) (respec-

tively KC×(X0)K). Let J (respectively JK) be the additive group (respectively
K-vector space) generated by {1i }

n
i=0. Let ψ̃0 be the inertial augmentation ε̃.

Lemma 7.28. Let
(
K (I P(1, n)), ?, 1, ε̃, ψ̃

)
be the virtual K-theory ring.

(1) For all m ∈ {0, . . . , n − 1} and Fm in KC×(Xm), we have the identity with
respect to the ordinary product

1m ·Fm = εm(Fm)1m . (7.29)

(2) For all j in J and F in the virtual K-theory ring K (I P(1, n)),

F ? j = ε̃(F ) j, J ? J = 0, and ε̃(J )= 0. (7.30)

(3) For all l ≥ 1 and j ∈ J , we have the identity

ψ̃ l( j)= l j. (7.31)

In particular, J is a translation group of the virtual K-theory K (I P(1, n)).
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Proof. Equation (7.29) follows from the identity (χn
0 −1)(χ1

0 −1)= 0 in KC×(X0),
and χn

m − 1= 0 in KC×(Xm) for all m 6= 0.
Equation (7.30) follows from Theorem 7.23 and (7.29). The fact that J ? J = 0

follows from (7.30) and the fact that ε̃(1m)= 0 for all m.
To prove (7.31), we first consider

ψ̃ l(10)= ψ
l(−1+χn

0 )=−1+χnl
0 =−1+ (1+ (χn

0 − 1))l

=−1+ (1+ l(χn
0 − 1))= l10,

where we have used the binomial series and the relation (χn
0 −1)(χ1

0 −1)= 0 in the
fourth equality. Let m 6= 0, ζn := e2π i/n , and x = χ1

m , and assume in the following
that all products are ordinary products. By definition,

ψ̃ l(1m)= ψ
l(1m) · θ

l(x−1)= ψ l
( n−1∑

i=0

x i
) l−1∑

j=0

(x− j )=

n−1∑
i=0

(x l)i
l−1∑
j=0

x− j .

To prove (7.31), consider the algebra isomorphism

KC×(Xm)Q =
Q[x]
〈xn − 1〉

ϒ
−→Q×Q[t]/(1+ t + · · ·+ tn−1)

defined by ϒ( f ) := ( f (1), f (ζn)). Then ϒ(ψ̃ l(1m))= (nl, 0)= lϒ(1m). �

Proposition 7.32. Let ϕ0 : K (I P(1, n))→ Z be the additive map that is supported
on KC×(X0) such that ϕ0(χ

s
0)= s for all s ∈ {0, . . . , n}.

For all k ≥ 0 and a ∈ {0, . . . , n − 1}, we have the identity in virtual K-theory(
K (I P(1, n)), ?, 1, ε̃, ψ̃

)
,

ψ̃nk+a
= ψ̃a

+ k10ϕ0+

n∑
m=1

k1mεm, (7.33)

where εm(F ) denotes the ordinary augmentation of Fm in KC×(Xm) of F .

Proof. For all k ≥ 1, let ψ̃k
m(F ) := ψ̃

k(Fm) for all F =
∑n

m=0 Fm , where Fm

belongs to KC×(Xm).
If a ∈ {0, . . . , n− 1}, k ≥ 0, s ∈ {0, . . . , n}, and x = χ1

0 , then

ψ̃nk+a
0 (x s)= (xn)ks xas

= (1+(xn
−1))ks xas

= (1+ks(xn
−1))xas

= x sa
+ks10,

where we have used the relation (xn
− 1)(x − 1)= 0 in KC×(X0) in the third and

fourth equalities. Therefore, for all n, k ≥ 0 and a ∈ {0, . . . , n− 1}, we have

ψ̃nk+a
0 = ψ̃a

0 + k10ϕ0. (7.34)
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If m ∈ {1, . . . , n−1}, then, adopting the convention that θ0(0)= 1 and θ0(χ s
m)= 0

for all s, we obtain

ψ̃nk+a
m (χ s

m)= ψ
nk+a
m (χ s

m)θ
nk+a(S ∗m)

= ψa
m(χ

s
m)(k1m + θ

a(S ∗m))= kψa
m(χ

s
m)1m +ψ

a
m(χ

s
m)θ

a(S ∗m)

= kεm(ψ
a
m(χ

s
m))1m + ψ̃

a
m(χ

s
m)= k1m + ψ̃

a
m(χ

s
m),

where we have used periodicity ofψ , the fact that Sm=χ
1
m for all m∈{1, . . . , n−1},

the relation (χ1
m)

n
− 1= 0 in KG(Xm) (with respect to the ordinary multiplication),

(7.29), and the fact that εmψ
a
m = εm . Consequently, we have

ψ̃nk+a
m = ψ̃a

m + k1mεm (7.35)

for all n, k ≥ 0, a ∈ {0, . . . , n− 1}, and m ∈ {1, . . . , n− 1}.
Equations (7.34) and (7.35) yield (7.33). �

Proposition 7.36. In the virtual K-theory
(
K (I P(1, n))Q, ?, 1, ε̃, ψ̃

)
, an invertible

element L is a λ-line element with respect to its inertial λ-ring structure if and only
if ε̃(L )= 1 and (6.14) holds for all l ∈ {1, . . . , n}.

Proof. First, (6.14) holds for l = 1 by definition of a ψ-ring. Suppose that L

in K (I P(1, n))Q satisfies (6.14) for all l ∈ {1, . . . , n}. We now prove that (6.14)
holds for all l. We do this by induction on k in the expression nk+ a, as follows:
Suppose for each a ∈ {1, . . . , n} there exists k ≥ 0 such that (6.14) holds for all
l ∈ {a, n+ a, . . . , nk+ a}. Equation (7.33) implies that

ψ̃n(k+1)+a(L )= ψ̃a(L )+ (k+ 1) j (L ), (7.37)

where j (L ) := ϕ0(L )10+
∑n

m=11mεm(L ) belongs to J . However,

L n(k+1)+a
=L nk+aL n

= (ψ̃a(L )+ k j (L ))(ψ̃0(L )+ j (L ))

= (ψ̃a(L )+ k j (L ))(1+ j (L ))

= ψ̃a(L )+ k j (L )+ ψ̃a(L ) j (L )+ k j (L )2

= ψ̃a(L )+ (k+ 1) j (L )

= ψ̃n(k+1)+a(L ),

where we have used the induction hypothesis and (7.37) in the second equality,
the definition ψ̃0

= ε̃ in the third equality, Lemma 7.28 in the fifth, the fact that
ε̃ ◦ ψ̃q

= ε̃ in the fifth, and (7.37) in the sixth. �

Remark 7.38. Proposition 7.36 reduces the problem of finding λ-line elements
of K (I P(1, n))Q to solving a finite number of equations for n2

+ 1 (the rank of
K (I P(1, n))) unknowns. Furthermore, since the action of the translation group J ,
which is of rank n, respects P1 by Proposition 6.26, it is enough to solve for only
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n2
− n+ 1 variables satisfying (6.14) for all l ∈ {0, . . . , n− 1}, as all other λ-line

elements will be their J-translates.

Corollary 7.39. Let P1 be the semigroup of λ-line elements of the virtual K-theory(
K (I P(1, n))Q, ?, 1, ε̃, λ̃

)
. Each JQ-orbit in P1 contains a unique representative

L such that L ?n
= 1.

Proof. Given F in P1, we have F ?n
= ψ̃n(F ) = 1 + j for some j in JQ by

Proposition 7.32. If L =F − j/n, then by (7.30) we have L ?n
= (F − j/n)?n =

F ?n
− j = 1+ j − j = 1. �

The virtual K-theory and virtual Chow ring of P(1, 2). We now study the virtual
K-theory and virtual Chow theory (with either Q or C coefficients) of the weighted
projective line P(1, 2) := [X/C×]. By [Edidin et al. 2016, Theorem 4.2.2] they are
isomorphic to the orbifold K-theory and orbifold Chow theory, respectively, of the
cotangent bundle T ∗P(1, 2).

Remark 7.40. For the remainder of this section, unless otherwise specified, all
products are the virtual products.

Let λ̃ : K (I P(1, 2))Q→ K (I P(1, 2))Q denote the induced virtual λ-ring struc-
ture. In order to describe the group of λ-line elements P1 of

(
K (I P(1, 2))Q, · , 1, λ̃

)
,

it will be useful to introduce the injective map f :Q2
→ K (I P(1, 2))Q defined by

f (α, β) := α10+β11, (7.41)

whose image is the translation group JQ of K (I P(1, 2))Q.
Consider the following injective maps from Q2 to K (I P(1, 2))Q:

ρ0(α, β) := χ
0
0 + f (α, β), (7.42)

ρ1(α, β) := χ
1
0 + f (α, β), (7.43)

ρ±(α, β) :=
1
2(χ

0
0 +χ

1
0 ±χ

0
1 )+ f (α, β). (7.44)

Proposition 7.45. In the virtual K-theory
(
K (I P(1, 2))Q, ?, 1, λ̃

)
, the group of

λ-line elements P1 is the disjoint union of the images of the four maps ρ0, ρ1,
and ρ±, and the restriction of the inertial dual P1→ P1 agrees with the operation
of taking the inverse. In particular, K (I P(1, 2))Q is spanned as a Q-vector space
by P1. The multiplication in P1 is given by the equations

ρ0(α, β)ρ0(α
′, β ′)= ρ0(α+α

′, β +β ′), (7.46)

ρ0(α, β)ρ1(α
′, β ′)= ρ1(α+α

′, β +β ′), (7.47)

ρ0(α, β)ρ±(α
′, β ′)= ρ±(α+α

′, β +β ′), (7.48)

ρ1(α, β)ρ1(α
′, β ′)= ρ0(α+α

′
+ 1, β +β ′), (7.49)

ρ1(α, β)ρ±(α
′, β ′)= ρ∓

(
α+α′+ 1

2 , β +β
′
±

1
2

)
, (7.50)
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ρ±(α, β)ρ±(α
′, β ′)= ρ0

(
α+α′+ 1

2 , β +β
′
±

1
2

)
, (7.51)

ρ+(α, β)ρ−(α
′, β ′)= ρ1(α+α

′, β +β ′). (7.52)

The inverses are given by the equations

ρ0(α, β)
−1
= ρ0(−α,−β), (7.53)

ρ1(α, β)
−1
= ρ1(−(1+α),−β), (7.54)

ρ±(α, β)
−1
= ρ±

(
−
(
α+ 1

2

)
,−β ∓ 1

2

)
. (7.55)

Proof. We first show that the set of line elements P1 in the virtual K-theory
K := K (I P(1, 2))Q is the union of the images of the maps ρ0, ρ1, and ρ±. Since
{χ0

0 , χ
1
0 , χ

1
1 ,10,11} is a Q-basis for K , it follows from Proposition 6.26 that every

element of P1 can be uniquely written as L+ f (α, β), where L is an element in P1

of the form L = c0
0χ

0
0 + c1

0χ
1
0 + c1

1χ
1
1 , for some c0

0, c1
0, c1

1, α, β ∈Q. We will now
find all such elements L in P1. By Proposition 7.36, L belongs to P1 if and only
if it is invertible with ε̃(L) = 1 and ψ̃2(L) = L2. Using the definition of ψ̃2, we
obtain

ψ̃2(L)= c0
0χ

0
0 + c1

0χ
2
0 + c1

1(χ
0
1 +χ

1
1 ),

and the virtual multiplication yields

L2
=(c0

0χ
0
0+c1

0χ
1
0+c1

1χ
1
1 )

2

=(c0
0)

2χ0
0+(c

1
0)

2χ2
0+(c

1
1)

2(χ1
1 )

2
+2c0

0c1
0χ

1
0+2c0

0c1
1χ

1
1+2c1

0c1
1χ

1
0χ

1
1

=(c0
0)

2χ0
0+(c

1
0)

2χ2
0+(c

1
1)

2(χ0
0−2χ1

0+χ
2
0 )+2c0

0c1
0χ

1
0+2c0

0c1
1χ

1
1+2c1

0c1
1χ

0
1

=((c0
0)

2
+(c1

1)
2)χ0

0+2(c0
0c1

0−(c
1
1)

2)χ1
0+((c

1
0)

2
+(c1

1)
2)χ2

0+2c1
0c1

1χ
0
1+2c0

0c1
1χ

1
1 ,

so ψ̃2(L)− L2
= 0 is equivalent to the simultaneous equations

0=c0
0(1−c0

0)−(c
1
1)

2
=−c0

0c1
0+(c

1
1)

2
=c1

0(1−c1
0)−(c

1
1)

2
=c1

1(1−2c1
0)=c1

1(1−2c0
0).

It follows that ψ̃2(L)= L2 if and only if L = 0, ρ0(0, 0), ρ1(0, 0), ρ±(0, 0). How-
ever, the virtual augmentation satisfies ε̃(0)= 0, while ε̃(ρ0(0, 0))= ε̃(ρ1(0, 0))=
ε̃(ρ±(0, 0)) = 1. Finally, ρ0(0, 0), ρ1(0, 0) are invertible, being classes of ordi-
nary line bundles on the untwisted sector P(1, 2), while a calculation shows that
ρ±(0, 0)−1

= ρ±
(
−

1
2 ,∓

1
2

)
.

Therefore, by Proposition 6.26, P1 is the union of images of the maps ρ0, ρ1,
and ρ±. It is easy to see that these images are disjoint. Furthermore, K is spanned
by P1, since {ρ0(0, 0), ρ0(1, 0), ρ1(0, 0), ρ±(0, 1)} is a Q-basis. Also, equations
(7.53)–(7.55) follow from (7.46)–(7.52).

We will now write out a detailed proof of (7.51) to give the reader a feel for the
calculation, noting that the proofs for (7.46)–(7.52) are similar. We first show that
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(7.51) holds when α = α′ = β = β ′ = 0, since

(ρ±(0, 0))2 =
( 1

2(χ
0
0 +χ

1
0 ±χ

0
1 )
)2

=
1
4

(
(χ0

0 )
2
+ (χ1

0 )
2
+ (χ0

1 )
2
+ 2χ0

0χ
1
0 ± 2χ0

0χ
0
1 ± 2χ1

0χ
0
1
)

=
1
4

(
χ0

0 +χ
2
0 + (χ

0
0 − 2χ−1

0 +χ
−2
0 )+ 2χ1

0 ± 2χ0
1 ± 2χ1

1
)

=
1
4

(
χ0

0 +χ
2
0 + (χ

0
0 +χ

2
0 − 2χ1

0 )+ 2χ1
0 ± 2χ0

1 ± 2χ1
1
)

=
1
2(χ

0
0 +χ

2
0 ± (χ

0
1 +χ

1
1 ))

= χ0
0 +

1
210±

1
211

= ρ0
( 1

2 ,±
1
2

)
,

where the third equality follows from Theorem 7.23 while the fourth is from the
relations

χ−1
0 = χ

0
0 +χ

1
0 −χ

2
0 and χ−2

0 = 2χ0
0 −χ

2
0 . (7.56)

Now, (7.51) follows for all α, β, α′, and β ′, since

ρ±(α, β)ρ±(α
′, β ′)

= (ρ±(0, 0)+ f (α, β))(ρ±(0, 0)+ f (α′, β ′))

= ρ±(0, 0)ρ±(0, 0)+ ( f (α, β)+ f (α′, β ′))ρ±(0, 0)+ f (α, β) f (α′, β ′)

= ρ±
( 1

2 ,±
1
2

)
+ f (α+α′, β +β ′)ρ±(0, 0)

= ρ±
( 1

2 ,±
1
2

)
+ f (α+α′, β +β ′)ε̃(ρ±(0, 0))

= ρ±
( 1

2 ,±
1
2

)
+ f (α+α′, β +β ′)= ρ±

(
α+α′+ 1

2 , β +β
′
±

1
2

)
.

Here, the third equality follows from the fact that J 2
= 0 in Lemma 7.28(2), from

(7.51) when α = β = α′ = β ′ = 0, and from the definition of f . The fourth equality
is from (7.30), the fifth is from Proposition 7.36, and the sixth is from the definition
of ρ±. This finishes the proof of (7.51).

Finally, we write details of the proof that ρ0(α, β)
†
= ρ−1

0 (α, β). The proof of
the analogous statements for ρ1(α, β), ρ±(α, β), and, hence, for all elements in P1

is similar. The definition of the inertial dual, together with the fact that S0 = 0
and S1 = χ

1
1 , yields the following identities for all a, b ∈ Z:

(χa
0 )

†
= χ−a

0 and (χb
1 )

†
=−χ−b−1

1 . (7.57)

It follows that

ρ0(α, β)
†
= (χ0

0 )
†
+α(10)

†
+β(11)

†

= (χ0
0 )

†
+α((χ2

0 )
†
− (χ0

0 )
†)+β((χ0

1 )
†
+ (χ1

1 )
†)

= χ0
0 +α(χ

−2
0 −χ

0
0 )−β(χ

−1
1 +χ

−2
1 )
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= χ0
0 +α((2χ

0
0 −χ

2
0 )−χ

0
0 )−β(χ

0
1 +χ

1
1 )

= χ0
0 −α10−β11

= ρ0(−α,−β)= ρ0(α, β)
−1,

where the third equality follows from (7.57), the fourth from (7.56), and the last
from (7.53). �

A direct calculation yields the following:

Proposition 7.58. The inertial first Chern class for virtual K-theory is a homomor-
phism of groups c̃1

: P1→ A{1}(I P(1, 2))Q, where

c̃1(ρ0(α, β))= 2αc1
0+ 2βc0

1,

c̃1(ρ1(α, β))= (2α+ 1)c1
0+ 2βc0

1,

c̃1(ρ±(α, β))=
(
2α+ 1

2

)
c1

0+
(
2β ± 1

2

)
c0

1.

The virtual K-theory ring has a simple form in terms of these λ-line elements.

Proposition 7.59. Let
(
K (I P(1, 2))Q, ?, 1 :=χ0

0

)
be the virtual K-theory ring. We

have two isomorphisms of Q-algebras (and ψ-rings)

8± :
Q[σ, τ ]

〈(τ−1)(τ 2−1), (σ−1)(σ 2−1), (σ−τ)(τ−1)〉
→ K (I P(1, 2))Q, (7.60)

where8±(σ ) :=ρ1(0, 0)=χ1
0 and8±(τ ) :=ρ±(0, 0)= 1

2(χ
0
0+χ

1
0±χ

0
1 ). Here, the

ψ-ring structure of the domain of8± is given byψ l(σ±1)=σ±l andψ l(τ±1)= τ±l

for all l ≥ 1. Similarly, we have two isomorphisms of graded Q-algebras

9± :
Q[µ, ν]

〈µ, ν〉2
→ A∗(I P(1, 2))Q, (7.61)

where µ, ν ∈ A{1}(I P(1, 2))Q with 9±(ν) := c̃1(ρ±(0, 0)) = 1
2(c

1
0 ± c0

1) and
9±(µ) := c̃1(ρ1(0, 0)) = c1

0. Under the identifications 8± and 9±, the iner-
tial Chern character C̃h : K (I P(1, 2))→ A∗(I P(1, 2))Q corresponds to the map
σ 7→ exp(µ)= 1+µ and τ 7→ exp(ν)= 1+ ν.

Proof. Since (χ1
0 )

2
=χ2

0 , χ0
0 = 1 and ρ±(0, 0)2= 1

2((χ
0
0+χ

2
0 )±(χ

0
1+χ

1
1 )), the set

{χ0
0 , χ

1
0 , χ

2
0 , ρ+(0, 0), ρ+(0, 0)2} is a basis for the Q-vector space K (I P(1, 2))Q.

Thus, K (I P(1, 2))Q is generated as a Q-algebra by χ1
0 and ρ+(0, 0). A calculation

shows that the following three polynomials are zero:

(χ1
0 − 1)((χ1

0 )
2
− 1)= (ρ+(0, 0)− 1)(ρ+(0, 0)2− 1)

= (χ1
0 − ρ+(0, 0))(ρ+(0, 0)− 1)= 0.

A dimension count shows that these are the only relations. Therefore, 8+ is an
isomorphism of Q-algebras. The previous analysis holds verbatim if ρ+(0, 0) is
replaced by ρ−(0, 0) everywhere.
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A similar analysis holds for the Chow theory. �

Remark 7.62. The presentation in the previous proposition yields an exotic inte-
gral structure in virtual K-theory and Chow theory, as we now explain.

Consider the subring K (I P(1, 2)) (not sub-Q-algebra) of K (I P(1, 2))Q gener-
ated by {ρ1(0, 0), ρ+(0, 0) }. Under the isomorphism 8+ in Proposition 7.59, the
ring K (I P(1, 2)) is isomorphic to

Z[σ, τ ]

〈(τ − 1)(τ 2− 1), (σ − 1)(σ 2− 1), (σ − τ)(τ − 1)〉

under the identification σ = ρ1(0, 0) and τ = ρ+(0, 0).
We will now show that the group P1 of λ-line elements of K (I P(1, 2)) is

equal to P1 ∩ K (I P(1, 2)). To see this, notice that, since 10 = σ 2
− 1 and

11 = 2τ 2
− σ 2
− 1,

f (α, β)= 2βτ 2
+ (α−β)σ 2

− (α+β).

Hence, ρs(α, β) belongs to K (I P(1, 2)) if and only if (α, β) belongs to

D :=
{(

p+ 1
2q, 1

2q
)
| p, q ∈ Z

}
for s = 0, 1, and ±, noting that ρ−(0, 0)= στ−1. Thus, by Proposition 7.59,

P1 ∩ K (I P(1, 2))= ρ0(D)∪ ρ1(D)∪ ρ+(D)∪ ρ−(D),

but (7.53)–(7.55) imply that P1 ∩ K (I P(1, 2)) is closed under inversion. It follows
that P1 = P1 ∩ K (I P(1, 2)).

We will now show that P1 is the subgroup generated by σ and τ . Notice that,
since σ 2

= ρ0(1, 0) and τ 2
= ρ0

( 1
2 ,

1
2

)
, the element σ 2kτ 2l

= ρ0
(
k+ 1

2 l, 1
2 l
)

belongs
to 〈σ, τ 〉 for all k, l ∈ Z, i.e., ρ0(D) ⊆ 〈σ, τ 〉. Similarly, ρ1(0, 0)ρ0(D) = ρ1(D),
ρ+(0, 0)ρ0(D)= ρ+(D), and ρ−(0, 0)ρ0(D)= ρ−(D) are all subsets of 〈σ, τ 〉. It
follows that 〈σ, τ 〉 = P1.

Consider the subring A∗(I P(1, 2)) := C̃h(K (I P(1, 2))) of the virtual Chow
ring of A∗(I P(1, 2))Q. From this we obtain (see Proposition 7.58)

A{0}(I P(1, 2))= Zc0
0 and A{1}(I P(1, 2))= {vc1

0+wc0
1 | (v,w) ∈ D}.

It follows that the first virtual Chern class c̃1
: P1→ A{1}(I P(1, 2)) is a group

isomorphism by Proposition 7.58, since, for all p, q in Z,

c̃1(σ pτ q)= pc̃1(σ )+ qc̃1(τ )=
(

p+ 1
2q
)
c1

0+
1
2qc0

1.

The virtual K-theory and virtual Chow ring of P(1, 3). We now study the virtual
K-theory and virtual Chow ring of P(1, 3). Unlike the case of P(1, 2), the formula
of [Edidin et al. 2016, Theorem 4.2.2] implies that the rational virtual K-theory
and rational virtual Chow rings of P(1, 3) differ from the orbifold K-theory and
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the orbifold Chow rings of the cotangent bundle T ∗P(1, 3), respectively. Indeed the
formula of [Edidin et al. 2016, Definition 4.0.11] shows that the class S +T ∗P(1, 3)
is not integral, so the inertial pair from the orbifold theory of T ∗P(1, 3) is Goren-
stein but not strongly Gorenstein. We will now describe the λ-positive elements
of the virtual K-theory of P(1, 3). Unlike the case of P(1, 2), we need to work
with coefficients in C, so that the set of λ-line elements generate the entire virtual
K-theory group.

Remark 7.63. For the remainder of this section, unless otherwise specified, all
products are the virtual products.

Proposition 7.64. Let
(
K (I P(1, 3))C, ?, 1 :=χ0

0 , ψ̃
)

be the virtual K-theory ring
with its virtual λ-ring structure. The set of its λ-line elements P1 spans the C-vector
space K (I P(1, 3))C. The restriction of the inertial dual P1→ P1 agrees with the
operation of taking the inverse. The space P1 consists of 27 orbits of the action of
the translation group JC, where each orbit has a unique representative1 in the set

{6i }
3
i=1 t

∐
i=1,2,3

j=1,2

Di, j t
∐

i=1,...,6
k=0,1,2

Ti,k

given by the following, where ζ3 = exp
( 2

3π i
)
, j ∈ {1, 2}, and k ∈ {0, 1, 2}:

61 = χ
0
0 , 62 = χ

1
0 , 63 = χ

2
0 ,

D1, j =
1
3χ

0
0 +

1
3χ

1
0 +

1
3χ

2
0 −

1
3ζ

j
3 χ

0
1 +

1
3χ

1
1 −

1
3ζ

2 j
3 χ0

2 +
1
3χ

1
2 ,

D2, j =
1
3χ

0
0 +

1
3χ

1
0 +

1
3χ

2
0 −

1
3χ

0
1 +

1
3ζ

j
3 χ

1
1 −

1
3χ

0
2 +

1
3ζ

2 j
3 χ1

2 ,

D3, j =
1
3χ

0
0 +

1
3χ

1
0 +

1
3χ

2
0 −

1
3ζ

2 j
3 χ0

1 +
1
3ζ

j
3 χ

1
1 −

1
3ζ

j
3 χ

0
2 +

1
3ζ

2 j
3 χ1

2 ,

T1,k =
1
3χ

0
0 +

2
3χ

2
0 +

1
3ζ

k
3 χ

0
1 +

1
3ζ

2k
3 χ

0
2 ,

T2,k =
2
3χ

0
0 +

1
3χ

2
0 −

1
3ζ

k
3 χ

0
1 −

1
3ζ

2k
3 χ

0
2 ,

T3,k =
2
3χ

0
0 +

1
3χ

1
0 +

1
3ζ

k
3 χ

1
1 +

1
3ζ

2k
3 χ

1
2 ,

T4,k =
1
3χ

0
0 +

2
3χ

1
0 −

1
3ζ

k
3 χ

1
1 −

1
3ζ

2k
3 χ

1
2 ,

T5,k =
1
3χ

1
0 +

2
3χ

2
0 +

1
3ζ

k
3 χ

0
1 +

1
3ζ

k
3 χ

1
1 +

1
3ζ

2k
3 χ

0
2 +

1
3ζ

2k
3 χ

1
2 ,

T6,k =
2
3χ

1
0 +

1
3χ

2
0 −

1
3ζ

k
3 χ

0
1 −

1
3ζ

k
3 χ

1
1 −

1
3ζ

2k
3 χ

0
2 −

1
3ζ

2k
3 χ

1
2 .

Proof. The λ-line elements in P1 are calculated by applying the algorithm in
Remark 7.38 and by showing that these λ-line elements are invertible. The fact

1This representative need not be the same as the one defined in Corollary 7.39.
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that the elements of P1 span K (P(1, 3))C is also a calculation. We omit the details
to all of these calculations, which are straightforward but lengthy. �

Proposition 7.65. Let K (I P(1, 3))C be the virtual K-theory with its virtual λ-ring
structure. We have an isomorphism 9 : C[σ±1, τ±1, τ±1

]/I → K (I P(1, 3))C of
C-algebras with 9(σ)= 62, 9(τ)= T1,1, and 9(τ)= T1,2, where the ideal I is
generated by the following ten relations:

R1 := σ
3
− 2σ 2

+ σ − τ 2
+ ττ + τ − τ 2

+ τ − 1,

R2 := (τ − 1)(τ 2
− σ), R2 := (τ − 1)(τ 2

− σ),

R3 := (τ − 1)(σ 2
− τ), R3 := (τ − 1)(σ 2

− τ),

R4 := σ
2
− στ − στ + τ 2τ − ττ + τ 2

− τ + 1,

R4 := σ
2
− στ − στ + τ 2

+ ττ 2
− ττ − τ + 1,

R5 := (τ − 1)(στ − 1), R5 := (τ − 1)(στ − 1),

R6 := −σ
2
+ σττ + σ − τ 2

+ ττ − τ 2.

It follows that (σ − 1)(σ 3
− 1) belongs to I , which is the relation on the untwisted

sector. Furthermore, every element K (I P(1, 3))C can be uniquely presented as a
polynomial {σ, τ, τ } of degree less than or equal to 2. In particular, we have

σ−1
=−σ 2

+ σ − τ 2
+ ττ + τ − τ 2

+ τ ,

τ−1
=−στ + σ + 1, and τ−1

=−στ + σ + 1.

Proof. K (I P(1, 3))C is a 10-dimensional C-vector space. A calculation shows that
the set of all monomials in {σ, τ, τ } of degree less than or equal to 2 is a basis of this
vector space. The ten relations correspond to the ten cubic monomials in {σ, τ, τ }.
The expression for the inverses can be verified by computation. We omit the details
of these straightforward but lengthy calculations. �

Remark 7.66. Restricting 9 to Z[σ±1, τ±1, τ±1
]/I yields an exotic integral struc-

ture on the virtual K-theory K (I P(1, 3))C. The inertial Chern character homo-
morphism C̃h : K (I P(1, 3))C→ A∗(I P(1, 3))C induces an exotic integral structure
on virtual Chow theory.

The resolution of singularities of T∗P(1, n) and the HKRC. We now connect the
virtual λ-ring to the usual λ-ring structure on a crepant resolution of singularities
of the coarse moduli space of the cotangent bundle stack T∗P(1, n).

Proposition 7.67. The cotangent bundle T∗P(1, n) of P(1, n) is the quotient stack
[(X ×A1)/C×], where C× acts with weights (1, n,−(n+ 1)).
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Proof. Since dim P(1, n) = 1 the cotangent bundle stack is a line bundle. Con-
sider the quotient map π : X0

→ P(1, n) = [X0/C×]. We begin by determining
π∗T∗P(1, n) as an C×-equivariant bundle L on X0. Once we do this, we can
identify T∗P(1, n) with the quotient stack [L/C×].

The restriction map PicC×(C
2)→ PicC×(X0) = Pic(P(1, n)) is surjective, so

any C×-equivariant line bundle on X0 is determined by a character ξ of C×, so
L = X0

×A1 and C× acts on L by λ(a, b, v)= (λa, λnb, ξ(λ)v).
To find the character ξ , note that, for any algebraic group G and any G-torsor

π : P→ X , there is an exact sequence of G-equivariant vector bundles on P

0→ P ×Lie(G)→ TP→ π∗TX→ 0,

where TP is the tangent bundle to P [Edidin and Graham 2005, Lemma A.1].
Applying this fact to the C×-torsor π : X0

→ P(1, n), we obtain an exact sequence
of vector bundles

X0
×C→ TX0

→ π∗TP(1, n).

The action of C× is as follows: Since C× is abelian, the Lie algebra is the triv-
ial representation, while TX0

= X0
× C2, where C× acts on the C2 factor with

weights (1, n). Taking the determinant of this sequence shows π∗TP(1, n) is
the C×-equivariant line bundle X0

×C, where C× acts on C with weight n + 1.
Hence, π∗T∗P(1, n) is the C×-equivariant bundle X0

×C, where C× acts on C

with weight −(n+ 1). �

By Proposition 7.67, the coarse moduli space of T∗P(1, n) is the geometric
quotient

(
(C2r{0})×C

)
/C×, where C× acts by λ(a, b, v)= (λa, λnb, λ−n−1v). By

the Cox construction [Cox et al. 2011, Section 5.1], this quotient is the toric surface
associated to the simplicial fan 6n with two maximal cones σn+1,n−1 and σn,n+1.
The cone σn+1,n−1 has rays ρn−1 generated by (−n, n + 1) and ρn+1 generated
by (0, 1). The cone σn,n+1 has rays ρn+1 and ρn spanned by (1, 0). The fan is as
follows:

ρn

ρn+1

ρ
n
−1

(−n, n+ 1)

σn+1,n−1

σn,n+1

The cone σn+1,n−1 has multiplicity n + 1 and, by the method of Hirzebruch–
Jung continued fractions [Cox et al. 2011, Section 10.2], the nonsingular toric
surface determined by the fan 6′n , where σn−1,n+1 is subdivided along the rays
ρ0, ρ1, . . . , ρn−2 with ρi generated by (−(i + 1), i + 2), is a toric resolution of
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singularities of X (6n):

ρn

ρn+1

ρ
n
−

1

ρ
n
−

2

ρ
0

(−n, n+ 1)
(−n+ 1, n)

(−1, 2)

· · ·

σn,n+1

By [Cox et al. 2011, Exercise 8.2.13], X (6n) is Gorenstein, so by [Cox et al. 2011,
Proposition 11.28] the resolution of singularities X (6′n)→ X (6n) is crepant.

By the Cox construction, we can realize the smooth toric variety X (6′n) as
the quotient of An+2 r Z(6′n) with coordinates (x0, . . . , xn+1) by the free action
of (C×)n with weights

(χ0, . . . , χn−1, χ0χ
2
1 · · ·χ

n
n−1, χ

−2
0 χ−3

1 · · ·χ
−(n+1)
n−1 ),

where χi is the character of (C×)n corresponding to the i-th standard basis vector
of Zn and

Z(6′n)= V
(
x2x3 · · · xn+1, x0x3 · · · xn+1, x0x1x4 · · · xn+1, . . . ,

x0 · · · xn−3xnxn+1, x0 · · · xn−1, x1x2 · · · xn
)
.

Proposition 7.68. The following isomorphisms hold, where ti = c1(χi ):

K (X (6′n))=
Z[χ0,χ

−1
0 , . . . ,χn−1,χ

−1
n−1]

〈eu(χ0), . . . ,eu(χn−1)〉2
and A∗(X (6′n))=

Z[t0, t1, . . . , tn−1]

〈t0, t1, . . . , tn−1〉2
.

Proof. The action of the torus is free, so K (X (6′n))= K(C×)n (C
n+2 r Z(6′n)) and

A∗(X (6′n))= A∗
(C×)n

(Cn+2rZ(6′n)). As in the proof of Proposition 7.13, the local-
ization exact sequence in equivariant K-theory implies that K(C×)n (C

n+2 r Z(6′n))
is a quotient of R((C×)n) = Z[χ0, χ

−1
0 , . . . , χn−1, χ

−1
n−1]. Because Z(6′n) is the

union of intersecting linear subspaces, we use an inductive argument to establish
the relations. The ideal

I =
〈
x2x3 · · · xn+1, x0x3 · · · xn+1, x0x1x4 · · · xn+1, . . . ,

x0 · · · xn−3xnxn+1, x0 · · · xn−1, x1x2 · · · xn
〉

has a primary decomposition as the intersection of the ideals of linear spaces 〈xi , x j 〉

for i ∈ {0, . . . , n− 1} and i + 2≤ j ≤ n+ 1. Thus Z(6′n) is the union of the linear
subspaces L i, j , where L i, j = Z(xi , x j ). Order the pairs (i, j) lexicographically and
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set Ui, j = C2 r
(⋃

(k,l)≤(i, j) Lk,l
)
, so that Cn+2 r Z(6′n)=Un−1,n+1. If j < n+ 1,

we have a localization sequence

K(C×)n

(
L i, j+1 \

( ⋃
( j,k)<(i, j+1)

L j,k

))
→ K(C×)n (Ui, j )→ K(C×)n (Ui, j+1)→ 0.

The same self-intersection argument used in the proof of Proposition 7.13 shows
that K(C×)n (Ui, j+1)= K(C×)n (Ui, j )/〈eu(Ni, j+1)〉, where Ni, j+1 is the normal bun-
dle to L i, j+1 in Cn+2. Similarly, K(C×)n (Ui+1,i+2)=K(C×)n (Ui,i+2)/〈eu(L i+1,i+2)〉.
Hence, by induction we have that

K(C×)n (Un−1,n+1)= Z[χ0, χ
−1
0 , . . . , χn−1, χ

−1
n−1]/〈{eu(Ni, j )}i, j 〉.

The K-theoretic Euler class of the bundle Ni, j can be read off from the weights of
the (C×)n action. We have

eu(Ni, j )=


(1−χ−1

i )(1−χ−1
j ) if j < n,

(1−χ−1
i )(1− (χ0χ

2
1 · · ·χ

n
n−1)

−1) if j = n,
(1−χ−1

i )(1−χ2
0χ

3
1 · · ·χ

n+1
n−1 ) if j = n+ 1.

We wish to show that the ideal b generated by these Euler classes is the same
as the ideal a= 〈eu(χ0), . . . , eu(χn−1)〉

2. If we set ei = eu(χi )= (1−χ−1
i ), then

a = 〈{ei e j }0≤i≤ j≤n−1〉. Note that the ideal 〈e1, . . . , en〉 is the ideal of Laurent
polynomials in χ0, . . . , χn that vanish at (1, 1, . . . , 1). If j < n, then eu(Ni, j ) =

ei e j ∈a. Also note that, since the expression (1−(χ0χ
2
1 · · ·χ

n
n−1)

−1) vanishes when
each χi is set to 1, it must be in the ideal generated by e1, . . . , en , so eu(Ni,n) =

(1−χ−1
i )(1− (χ0χ

2
1 · · ·χ

n
n−1)

−1) ∈ 〈e0, . . . , en〉
2
= a. Similarly, eu(Ni,n+1) ∈ a.

If i < n − 1 and j ≥ i + 1, then the generators ei e j are the Euler classes of
the bundles Ni, j . The remaining generators of a are of the form e2

i and ei ei+1.
Since the χi are units, the fact that ei e j is in b implies that, for all k > 0 and
|i − j | ≥ 2, all expressions of the form ei (1− χ−k

j ) and (1− χ−1
i )(χ k

j − 1) are
in b. We can then perform repeated eliminations with the expression for eu(Ni,n)

to show that ei (1− χ
−(i+1)
i χ

−(i+2)
i ) ∈ b for any i . A similar set of eliminations

using the expression for eu(Ni,n+1) shows that ei (1− χ
(i+2)
i χ

−(i+3)
i+1 ) ∈ b. Since

the χi are units, ei (1−χ−(i+1)
i χ−(i+2)

i+1 ) ∈ b. Hence

ei (−χ
−(i+2)(i+1)
i χ

−(i+2)2
i+1 +χ

−(i+1)(i+2)
i χ

(i+1)(i+3)
i+1 )

= χ
−(i+2)(i+1)
i χ

−(i+1)(i+3)
i+1 ei ei+1.

A similar calculation shows that e2
i ∈ b.

The calculation for Chow groups is analogous, where the Chow-theoretic Euler
class of the bundles Ni, j are
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eu(Ni, j )=


ti t j if j < n,
ti (t0+ 2t1+ · · ·+ ntn−1) if j = n,
ti (−2t0− 3t1− · · ·− (n+ 1)tn−1) if j = n+ 1. �

Theorem 7.69. Let X (6′n) be the crepant resolution of singularities of the moduli
space of T ∗P(1, n) indicated by the toric diagram above. Then for n = 2, 3 there
are isomorphisms of augmented λ-algebras over C.

K̂ (I P(1, n))C→ K (X (6′n))C,

where the augmentation completion K̂ (I P(1, n))C has the inertial λ-ring structure
described above.

Proof. We have calculated K (I P(1, 2))C and K (I P(1, 3))C, and in both cases we
obtain an Artin ring that is a quotient of a coordinate ring of a torus of rank 2
and 3, respectively. The inertial augmentation ideal corresponds to the identity in
the corresponding torus. Thus for n = 2, 3 the ring K̂ (I P(1, n))C is simply the
localization of K (I P(1, n))C at the corresponding maximal ideal. A calculation,
which we omit as it is straightforward but lengthy, shows that

K̂ (I P(1, 2))C = C[σ, σ−1, τ, τ−1
]/〈σ − 1, τ − 1〉2

K̂ (I P(1, 3))C = C[σ, σ−1, τ, τ−1, τ , τ−1
]/〈σ − 1, τ − 1, τ − 1〉2,

which are readily seen to be isomorphic as λ-rings to K (X (6′2))C and K (X (6′3))C,
respectively. �
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