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Longitudes in SL2 representations of link groups
and Milnor–Witt K2-groups of fields

Takefumi Nosaka

We describe an arithmetic K2-valued invariant for longitudes of a link L ⊂ R3,
obtained from an SL2 representation of the link group. Furthermore, we show
a nontriviality on the elements, and compute the elements for some links. As
an application, we develop a method for computing longitudes in S̃L

top
2 (R) rep-

resentations for link groups, where S̃L
top
2 (R) is the universal covering group

of SL2(R).

1. Introduction

Algebraic K-groups provide a uniform language for the study of many mathemat-
ical phenomena. When it comes to knot theory in topology, the Chern–Simons
invariant (i.e., complex volume) and the twisted Alexander polynomial have been
extensively studied as important invariants of 3-manifolds, and appear as elements
in the K1- and K3-groups as follows:1

K-group link invariant

K1 [Bass 1968] twisted Alexander polynomial
K2 [Milnor 1971] unknown
K3 [Quillen 1973] Chern–Simons invariant

In contrast, there are few such studies on the second K-group in low-dimensional
topology. Although the paper [Cooper et al. 1994, §4] in topology introduced the
A-polynomial and a Steinberg symbol “{m, l} ∈ K M

2 (F)”, the symbol was defined
only for “the tautological representation” (However, this {m, l} has a relation to the
study of incompressible surfaces in Culler–Shalen theory; see [Cooper et al. 1994,
Introduction].) Moreover, we should emphasize that fields F in most papers on the
Culler–Shalen theory are assumed to be (over) the complex field C, which is local
from the viewpoint of number theory. Nevertheless, the Milnor–Witt K2-group

MSC2010: primary 19C20, 19C30, 57M27, 57Q45; secondary 19C40, 57M10, 57M50.
Keywords: knot, Milnor K-group, Witt ring, parabolic representations, quandle.

1For the reader interested in the link invariants with relation to the K1- and K3-groups, see [Mil-
nor 1966; Friedl and Kim 2008; Zickert 2009] and references therein.
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K MW
2 (F) is defined, from any field F , to be the kernel of the universal central

extension E (which exists because SL2(F) is perfect),

K MW
2 (F) := Ker

(
E : S̃L2(F)−→ SL2(F)

)
;

this K MW
2 (F) has been extensively studied in relation to, e.g., metaplectic groups,

stability problems and A1-homotopy theory (see [Matsumoto 1969; Morel 2012;
Hutchinson and Tao 2008; Suslin 1987]). Actually, K MW

2 (F) contains some ob-
structions, as in the class number formula, the Beilinson conjecture and so on (see
[Weibel 2013]).

In this paper, we propose a natural construction of an element in K MW
2 (F) from

any parabolic2 representation f : π1(R
3
\ L)→ SL2(F), where F is any infinite

field and L is an arbitrary link in R3. The construction is done in a simple way,
wherein the longitudes of L play a key role: First, we show (Proposition 3.1) that
f can be algebraically lifted to f̃ : π1(R

3
\ L)→ S̃L2(F); it follows from the

parabolicity that, for each (preferred) longitude li ∈ π1(R
3
\ L), f (li ) lies in the

unipotent subgroup UF of SL2(F) up to conjugacy. Therefore, the lifted f̃ (li ) lies
in the preimage E−1(UF ), which will be shown to be isomorphic to the product
F × K̃ MW

2 (F) as abelian groups (Lemma 2.4). Here K̃ MW
2 (F) is a Z/2-extension

of K MW
2 (F); see (2.3). Further, we will show that the value f̃ (li ) is independent

of the choice of the lift f̃ , and call it the K2 invariant of f (Definition 3.3). Here
is a summary:

f̃ (li ) ∈ F × K̃ MW
2 (F)∼= E−1(UF )

� � / S̃L2(F)

E
��

li ∈ π1(R
3
\ L)

*

44

f
//

f̃

22

SL2(F)

In addition, using a homotopical result in [Nosaka 2015], we will show that any
(algebraic) 2-cycle in K̃ MW

2 (F) can be represented as the K2 invariant of some
parabolic representation of some link (Theorem 3.4). Consequently, this theorem
ensures that many links give nontrivial examples of the K2 invariants. Further-
more, the K2 invariants are partially computable for some links, by the help of
arithmetic studies on the K2-groups. Here, the Matsumoto–Moore 2-cocycle [Mat-
sumoto 1969; Moore 1968] is useful, to formulate f̃ (li ) explicitly in K MW

2 (F) (see
Section 2), and K MW

2 (F) in some cases is computable (see Section 4); Thus, we

2Notation in topology: Here, a link L is a C∞-embedding of solid tori into the 3-space R3.
Namely, L :

⊔
(D2
× S1) ↪→ R3. By #L we mean the number of tori, and π1(R

3
\ L) is called the

link group of L . Furthermore, with a choice x0 ∈ S1, a meridian is one component in the image of⊔
(∂D2

×{x0}) and a longitude is that of
⊔
({x0}×S1). A homomorphism f :π1(R

3
\L)→ SL2(F)

is parabolic if every meridian m in π1(R
3
\ L) satisfies Tr f (m)=±2.
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will explicitly determine the K2 invariants of some small knots (see Section 5),
although geometric and arithmetic features appearing in the K2 invariants have
many unknown aspects (see the A-polynomial [Cooper et al. 1994]).

Furthermore, in Section 6B, we will give two applications from the K2 stud-
ies to low-dimensional topology. The first is with respect to the unlifted object
f (li ) = E( f̃ (li )) ∈ SL2(F), which is commonly called a cusp shape in hyper-
bolic geometry (see [Maclachlan and Reid 2003; Zickert 2009]). While the cusp
shape seems, by definition, to be a noncommutative object arising from the link
groups π1(R

3
\ L), we explicitly introduce an additive sum formula for f (li ),

as in the abelian group K MW
2 (F); see Theorem 6.1. The second is an applica-

tion to the method of Boyer, Gordon and Watson [Boyer et al. 2013] for find-
ing new 3-dimensional manifolds, Mr (K ), obtained by r-surgery on a knot K
such that π1(Mr (K )) is “left-orderable”. This result (Theorem 6.7) gives evi-
dence supporting to a conjecture in [Boyer et al. 2013] that relates L-spaces to
left-orderability. The key here is Proposition 6.3, which closely relates the real
K MW

2 (R) to S̃Ltop
2 (R), where S̃Ltop

2 (R) is the universal cover group of the Lie group
SL2(R). See Section 6B for the details.

This paper is organized as follows: We first review the K2-groups in Section 2,
and define the K2 invariants in Section 3. After explaining computation on K2 in
Section 4, we quantitatively compute some K2 invariants in Section 5. Furthermore,
we describe the two applications in Section 6. Finally, Section 7 discusses parabolic
representations by means of quandle theory, and proves the theorems.

Notational conventions. Throughout this paper, F is a commutative field of infinite
order, and Char(F) is the characteristic (possibly Char(F)= 0, 2).

2. Review: the Milnor–Witt K2-group

Before stating the results, we should briefly review the Matsumoto–Moore theorem
[Matsumoto 1969; Moore 1968], which provides a presentation of the second group
homology H gr

2 (SL2(F)).
Define K MW

2 (F) to be the abelian group3 generated by the symbols [a, b] with
a, b ∈ F subject to the relations

(i) [a, bc] + [b, c] = [ab, c] + [a, b] and [a, 1] = [1, b] = 0,

(ii) [a, b] = [b−1, a] and [a, b] = [a,−ab] for a, b, c ∈ F×,

(iii) [d, e] = [d, (1− d)e],

(iv) [d, 0] = [d, 0] = 0 for d, e ∈ F .

3The original presentation did not contain the generators [0, d], [d, 0] or the relation (iv). In order
to simplify our statements we employ this presentation, although we can easily see that it coincides
with the original presentation through the relation (iv).
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Noting that the group SL2(F) is perfect, i.e., SL2(F)ab = 0, we now describe the
theorem:

Theorem 2.1 [Moore 1968; Matsumoto 1969, Corollaire 5.12]. Let F be an infi-
nite field. There is an isomorphism H gr

2 (SL2(F))∼= K MW
2 (F). Moreover, the uni-

versal group 2-cocycle is represented as a map θuni : SL2(F)×SL2(F)→ K MW
2 (F)

defined by

θuni(g, g′) := [χ(gg′),−χ(g)−1χ(g′)] − [χ(g), χ(g′)] ∈ K MW
2 (F). (2.2)

(Here, for g =
(
α β
γ δ

)
∈ SL2(F), we define χ(g) := γ if γ 6= 0 and χ(g) := δ ∈ F×

if γ = 0.) In particular, the set K MW
2 (F) × SL2(F) with the group operation

(α, g) · (β, h) = (α+ β + θuni(g, h), gh) is isomorphic to the universal extension
S̃L2(F).

Here we note two facts: First, the inclusion SL2(F) into the symplectic group
Sp2n(F) induces an isomorphism H gr

2 (SL2(F))∼= H gr
2 (Sp2n(F)) for any n ∈N (see

[Hutchinson and Tao 2008; Suslin 1987]). Next, for any finite field Fq with q > 10,
the H gr

2 (SL2(Fq)) vanishes. Therefore, in this paper, we restrict ourselves to SL2

and infinite fields.
To end the section, we will introduce some terminology and Lemma 2.4. We

first observe the preimage of {± idF2} via the extension E : S̃L2(F)→ SL2(F). Let
K̃ MW

2 (F) denote the preimage. Since θuni(a, b)= θuni(b, a) for any a, b ∈ {± idF2}

by the definitions, K̃ MW
2 (F) is abelian. To summarize, if Char(F) 6= 2, we have

0→ K MW
2 (F)→ K̃ MW

2 (F)→ Z/2→ 0 (exact). (2.3)

If Char(F) = 2, we have K̃ MW
2 (F) = K MW

2 (F). Furthermore, consider the pre-
image of the unipotent subgroup UF , where UF is of the form

{(
±1 a

0 ±1

)
| a ∈ F

}
as

usual. Notice the group isomorphism UF ∼= Z/2× F or ∼= F and that the restriction
of θuni on this summand F is zero. Hence, we can readily see the following:

Lemma 2.4. The preimage E−1(UF ) is isomorphic to K̃ MW
2 (F)× F as an abelian

group.

3. Definition: K2 invariants

In this section, as a topological part, we introduce the K2 invariant with respect to
SL2-parabolic representations of link groups (Definition 3.3), and state a theorem.
The knot-theoretic notation that we will use is mentioned in the introduction (see
the textbook [Lickorish 1997] for more details).

The key in the construction is the following proposition:

Proposition 3.1. Let F be an infinite field, and L ⊂ R3 be a link. Every parabolic
representation f : π1(R

3
\ L)→ SL2(F) admits the lift f̃ : π1(R

3
\ L)→ S̃L2(F)
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such that any meridian m ∈ π1(R
3
\ L) satisfies

f̃ (m)= (0, f (m)) ∈ K MW
2 (F)×SL2(F)= S̃L2(F).

Remark 3.2. The proof appears in Section 7B, not as standard discussions on
second homology. Actually, for example, if #L > 1, then R3

\ L and S3
\ L are

not always K (π, 1)-spaces and H2(R
3
\ L;Z) 6= 0. To summarize, the lifting is

guaranteed from special properties of K MW
2 and parabolicity.

Next, we will see that the lifted longitude lies in the preimage E−1(UF ) ∼=

K̃ MW
2 (F)× F in Lemma 2.4. For this, choose a meridian–longitude pair (m j , l j )

with respect to each link-component of L , where 1 ≤ j ≤ #L . Notice that the
centralizer of the unipotent subgroup UF is UF itself in SL2(F). Therefore, since f
is parabolic and each m j commutes with l j , the image f (l j ) ∈ SL2(F) is contained
in UF . Hence, the lifted object f̃ (l j ) lies in the product K̃ MW

2 (F)× F ⊂ S̃L2(F)
as required. Furthermore, this f̃ (l j ) up to conjugacy of SL2(F) is independent of
the choice of the lifting f̃ , because K̃ MW

2 (F) is the center in S̃L2(F).

Definition 3.3. Let f be a parabolic representation π1(R
3
\ L)→ SL2(F). For a

link-component j of L , fix a meridian–longitude pair (m j , l j ). We define the K2

invariant of f to be the value of f̃ (l j ) after projecting it onto K̃ MW
2 (F).

In Section 5, we will compute concretely the K2 invariants of some links.
Speaking of invariants, we shall observe the nontriviality of the invariant (we

prove this theorem from a homotopical viewpoint in Section 7D).

Theorem 3.4. Let F be an infinite field. For any element (α, β) ∈ K̃ MW
2 (F)× F ,

there are a link L and a parabolic representation f : π1(R
3
\ L)→ SL2(F) such

that the sum f̃ (l1)+ · · ·+ f̃ (l#L) is equal to (α, β) ∈ K̃ MW
2 (F)× F.

In summary, this theorem implies that any (algebraic) cycle in K MW
2 (F) may

be represented as some parabolic representation of a link via longitudes, and it
ensures many links which have the nontriviality of the K2 invariants.

Incidentally, from the viewpoint of A1-homotopy theory, we note a homotopical
interpretation of the invariant f̃ (l) for perfect fields F . The following isomor-
phisms of A1-fundamental groups are known (see [Morel 2012, §7]):

πA1

1 (SL2(F))∼= πA1

1 (A2
\ {0})∼= K MW

2 (F).

Moreover, via the A1-Galois correspondence, the extension E : S̃L2(F)→ SL2(F)
is the universal covering constructed from a simplicial scheme. Accordingly, the
value f̃ (li ) ∈ K MW

2 (F) can be interpreted as a lift of the covering. We refer the
reader to [Morel 2012] for more properties of Milnor–Witt K-theory.
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4. Some computations of the Milnor–Witt K2-group

In preparation for computing the K2 invariants, this section analyses K MW
2 (F)

quantitatively. The key here is a result of Suslin [1987]. To explain this, we will
review the two groups K M

2 (F) and I 2(F).
First, let us review the Matsumoto theorem on the Milnor K2-group K M

2 (F).
It says that this K M

2 (F) is the quotient group generated by (Steinberg) symbols
{x, y} with x, y ∈ F× subject to the relations

{a, bc} = {a, b}+ {a, c}, {ab, c} = {a, c}+ {b, c} for all a, b, c ∈ F×,

{a, 1− a} = 0 for all a ∈ F× \ {1}.

Formally, K M
2 (F) can be also presented as the multiplicative group

F×⊗Z F×/
〈
a⊗ (1− a) | a ∈ F× \ {1}

〉
.

Furthermore, as is known, the correspondence [a, b] 7→ {a, b} defines an epimor-
phism µ : K MW

2 (F)→ K M
2 (F). Hence, any element of the form {x,−1} ∈ K M

2 (F)
is annihilated by 2. Actually, 2{x,−1} = {x, 1} comes from [x, 1] = 0 ∈ K MW

2 (F).
Next, let WG(F) be the Witt–Grothendieck ring of F , that is, the Grothendieck

ring of isometric classes of all quadratic forms of finite dimension (see, e.g., [Lam
2005, Chapter II] for the definition). For a ∈ F×, let us denote by the symbol 〈a〉
the quadratic form ax2 on F . Furthermore, let I (F)⊂WG(F) denote the augmen-
tation ideal, i.e., I (F) := Ker(WG(F)→ Z). Note (see [Suslin 1987, §6]) that the
homomorphism

ν : K MW
2 (F)→ I 2(F), [a, b] 7→ (〈1〉− 〈a〉)(〈1〉− 〈b〉),

induces the homomorphism ξ : K M
2 (F)→ I 2(F)/I 3(F), called the Milnor map.

Suslin [1987] showed that the above homomorphisms provide a pullback dia-
gram

K MW
2 (F)

µ //

ν

��

K M
2 (F)

Milnor map ξ
��

I 2(F)
projection // I 2/I 3(F)

(4.1)

See [Hutchinson and Tao 2008] for another proof. We should make some remarks
on this diagram. It is known (see [Lam 2005, §V.6; Weibel 2013, Theorem 7.9])
that the Milnor map induces an isomorphism K M

2 (F)/2∼= I 2/I 3(F). In particular,
the quotient I 2/I 3(F) is an elementary abelian 2-group. Hence, for any prime
l 6= 2, the pullback localized at l means a direct product. Furthermore, it is known
(see [Kramer and Tent 2010] and references therein) that the composite 2-cocycle
ν ◦ θuni : SL2(F)2→ K MW

2 (F)→ I 2(F) coincides with “a Maslov 2-cocycle”.
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Next, we mention the Merkujev–Suslin theorem, which deals with torsion parts
of the Milnor groups of F ; see, e.g., [Weibel 2013]. It says that if F contains a
primitive m-th root of unity then “the Galois symbol” gives isomorphisms

K M
2 (F)/m ∼= H 2

ét(Spec(F);µ⊗2
m )∼= mBr(F).

Here, the last term mBr(F) is the set of elements in the Brauer group Br(F) that are
of order m. The original proof of the theorem can be outlined as a reduction to a
discussion of the algebraic closure in F of some algebraic subfields. Furthermore,
we should remark that the K2-group of the algebraic closure Q is known to be
zero, i.e., K M

2 (Q)
∼= 0. In particular, the map K M

2 (F)→ K M
2 (C) induced from

any complex embedding F→ C of a number field is zero.4 In summary, to study
the torsion K M

2 (F)/m, it is natural to assume that F is a number field, i.e., a finite
extension field of Q.

Accordingly, we will restrict ourselves to discussing number fields F . Let r1 be
the number of real embeddings of F and let Spm(OF ) be the set of finite primes
in the algebraic integer OF . We first write the localization sequence of the Milnor
groups (see [Weibel 2013, §III.6]):

0→ K M
2 (OF )

i∗
−→ K M

2 (F)
∂
−→

⊕
p∈Spm(OF )

k(p)×→ 0 (exact). (4.2)

Here, the symbol i denotes the inclusion OF ↪→ F and ∂ is the sum of tame symbols
associated with all primes p∈Spm(OF ). Note further that the tame kernel K M

2 (OF )

is known to be of finite order. Hence, any element of K M
2 (F) is of finite order.

On the other hand, for the study of the squared ideal I 2(F) in (4.1), consider
the sum of all completions ϒ : F → Rr1 ⊕

(⊕
p∈Spm(OF )

Qp

)
. The induced map

on I 2(•) is known to be injective because of the Hasse–Minkowski principle [Lam
2005, §VI.3]. Furthermore, concerning the quotient I 2/I 3(•), the sum ϒ yields
an exact sequence

0→ I 2/I 3(F) ϒ∗
−→ (I 2/I 3(R))r1 ⊕

⊕
p∈Spm(OF )

I 2(Qp)−→ Z/2→ 0 (4.3)

which is known as uniqueness of the Hilbert reciprocity. Here, we should note
(see [Lam 2005, §VI.2]) that each I 2(Qp) is annihilated by 2, that I 3(Qp) = 0,
and that I 2(R) ∼= 4Z. Hence, I 2(F) turns out to be a sum of Zr1 and some 2-
elementary abelian groups. In particular, the pullback (4.1) above immediately
leads to a lemma:

Lemma 4.4. The kernel of the map µ : K MW
2 (F)→ K M

2 (F) is isomorphic to Zr1 .
As a special case, if r1 = 0, then the isomorphism K MW

2 (F)∼= K M
2 (F) holds.

4In contrast to K1 and K3, the maps Ki (F)→ Ki (C)
r2 induced by the complex embeddings are

injective for i = 1, 3 (see [Zickert 2009] for details).
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Incidentally, the sequence (4.3) implies that the group K MW
2 (F) includes the

main information about the metaplectic group defined to be a double cover of SL2(F).

Example 4.5 (F =Q). Finally, let us compute K MW
2 (Q) as an application of the

above results. Note from a result of Tate (see [Weibel 2013, §III.6.3] or [Milnor
1971]) that the sequence (4.2) splits and there is an isomorphism K M

2 (Z)
∼= Z/2.

Since r1=1, a careful observation of the pullback diagram (4.1) leads to K MW
2 (Q)∼=

Z⊕
⊕

p Z/(p− 1), where p ranges over all odd primes.

5. Computation of the K2 invariants; hyperbolic links

We will compute the K2 invariants of some links. This section assumes that the
characteristics of fields are zero, for simplicity.

5A. Example: the figure-eight knot. Consider the figure-eight knot K41 of Figure 1.
By the Wirtinger presentation of π1(R

3
\ K41), the group is formally generated by

the arcs αi . Precisely, by definition,

π1(R
3
\ K41)

∼=
〈
mα1,mα2,mα3,mα4 |mα3 =m−1

α2
mα1mα2 =m−1

α1
mα4mα1,

mα2 =m−1
α4
mα1mα4 =m−1

α3
mα4mα3

〉
.

Then, we can easily see that the following assignment yields an SL2 representation
f : π1(R

3
\ K41)→ SL2(F) if and only if x2

± x + 1= 0:

f (mα1) :=

(
1 0
−1 1

)
, f (mα3) :=

(
x (x − 1)2

−1 2− x

)
,

f (mα2) :=

(
1 x2

0 1

)
, f (mα4) :=

(
1− x + x2 (x − 1)2

−x2 1+ x − x2

)
.

Moreover, according to Proposition 7.3, it can be seen that every parabolic rep-
resentation turns out to be this f , up to conjugacy. Thus, it is sensible to consider
the quadratic field Q(

√
−3)=Q[x]/(x2

± x + 1).
Thus, we set F =Q(

√
−3), and compute the K2 invariant of f . Note that the

preferred longitude l forms

l=m−1
α1
mα2mα3m

−1
α1
m−1
α4
mα3mα2m

−1
α4
=mα2m

−1
α1
mα3m

−1
α4
∈ π1(R

3
\ K41).

α4

α1

α2

α3

Figure 1. The figure-eight knot K41 with four arcs.
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Here, K MW
2 (F)= K M

2 (F) by Lemma 4.4 with r1 = 0. Hence, from the definitions
of K MW

2 and the 2-cocycle θuni, we can compute the K2 invariant as

PK2 ◦ f̃ (l)= θuni
((

f̃ (mα2), f̃ (m−1
α1
)
)
+
(

f̃ (mα2m
−1
α1
), f̃ (mα3)

)
+
(

f̃ (mα2m
−1
α1
mα3), f̃ (m−1

α4
)
))

= ({1,−1}− {1, 1})+ ({x2, 1}− {1,−1})+ ({2+ 4x2,−1}− {x2, x2
})

= {2+ 4x2,−1}− {x2,−1}

= {(2+ 4x2)x2,−1} = {−2− x2,−1} ∈ K M
2 (Q(

√
−3)).

Further, let us analyse this {−2 − x2,−1} in K M
2 (Q(

√
−3)). Since the tame

kernel K M
2 (OQ(

√
−3)) is known to be zero (Tate), the sequence (4.2) means that

the sum ∂ is an isomorphism. Furthermore, for any prime p ∈ Spm(OF ), the
tame symbol ∂p(−2− x2,−1) equals (−1)vp(−2−x2)

∈ k(p) by definition. Since
(2+ x2)(x2

− 1)=−3 and 2+ x2 and x2
− 1 are prime elements over 3, we can

conclude the following:

Proposition 5.1. Let F = Q(
√
−3). Then ∂(x2−1) ⊕ ∂(2+x2)({−2 − x2,−1}) =

(−1,−1) ∈ (F×3 )
2, and for any other prime p we have ∂p({−2− x2,−1})= 1.

In summary, the K2 invariant f̃ (l) in K M
2 (Q(

√
−3)) turns out to be nontrivial

by means of the tame symbols, whereas the representation f factors through the
algebraic integer OQ(

√
−3).

5B. Other links. Next, let us discuss other links. Here, notice from Lemma 4.4
that it is relatively easy to compute the kernel (which is isomorphic to Zr1) of
µ : K MW

2 (F)→ K M
2 (F). Thus, this subsection is specialized to some parabolic

representations and gives in Table 1 a list of these values µ( f̃ (l)) without perform-
ing detailed computations (see [Maclachlan and Reid 2003, Appendix 13.3] for the
defining polynomials).

In each case, by F/Q we mean the minimal field extension that splits the defin-
ing polynomial. Furthermore, we can see that the class numbers of the splitting
fields vanish; we can easily study prime ideals in OF and compute the associated
valuations ∂p. For example, the tame symbols at the primes (x2

+ 1) and (x2
+ 2)

distinguish the K2-values of the 61-knot from one of the 77-knot, whereas the defin-
ing polynomials are equal. In doing so, we can find further examples of nontrivial
K2 invariants of other links; however, it remains a problem for the future to clarify
the topological and arithmetic features reflected in the K2 invariants.

Finally, let us briefly comment on the K2 invariants of hyperbolic small links
with #L > 1. As seen in [Baker 2001], we find many holonomies contained in
SL2(F) with some quadratic fields F ; we can easily compute the longitudes of
such holonomies, since the finite primes of F and the tame kernel OF have been
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knot defining polynomial r1 µ( f̃ (l)) ∈ K M
2 (F)

31 x2
−1 1 {3,−1}

51 x4
+3x2

+1 2 {x2
+2,−1}+

{ 1
10 (9−8x2),−21+10x2

}
52 1−2x2

+ x4
− x6 1 {2(1+ x4)(5+3x4),−1}

61 1+ x2
+3x4

+2x6
+ x8 0 {x2

+2,−1}

77 1+ x2
+3x4

+2x6
+ x8 0

{2(2+6x2
+4x4

+x6)

3+2x2+3x4+x6
, 1+2x2

+ x4
}

+

{
−1+4x2

+7x4
+4x6,

−2+8x2
+4x4

+4x6

−2−x2−x4

}
+{−3−2x2

−3x4
− x6, 2x2

+2x4
+ x6
}

Table 1. Values of µ( f̃ (l)) for some defining polynomials of knots.

well studied (see [Keune 1989; Weibel 2013], for example). However, we remark
that, concerning the Whitehead and the Borromean links as the simplest examples,
these f̃ (li ) are trivial, unfortunately.

6. Two applications

This paper aims to applications of K2-groups to low-dimensional topology. This
section furthermore gives two applications, although these results are a bit tangen-
tial. In this section, although we roughly review some notions in knot theory, we
refer the reader to [Lickorish 1997, §1 and §11] or [Maclachlan and Reid 2003]
for detailed definitions.

6A. On the cusp shape. While we discuss the K2invariant in Sections 3–5, we
will focus on another summand F in F × K̃ MW

2 (F). The value f̃ (li ) restricted on
this F is called the cusp shape as an important concept in hyperbolic geometry;
see, e.g., [Maclachlan and Reid 2003]. We give a sum formula of the cusp shape.

To state Theorem 6.1, we introduce some terminology. Fix a parabolic rep-
resentation f : π1(R

3
\ L) → SL2(F), and a link diagram D of L . Roughly

speaking, as seen in Figure 2, D is the image p(L) ⊂ R2 with over–under in-
formation, where p is a “generic” projection p : R3

→ R2. Then, we can consider
the over-arcs α1, α2, . . . , αN j along the orientation of the longitude l j as illustrated
in Figure 2. Let βi be the arc which divides αi−1 and αi , and εi ∈ {±1} be the
sign of the crossing between αi and βi , according to Figure 4 (see Section 7A).
We denote a loop circling around an arc α by mα . As is known from the Wirtinger
presentation, every mα is conjugate to some meridian in π1(R

3
\ L). Hence, by

parabolicity of f , it can seen, as in (7.1), that any arc α uniquely, up to sign,
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α1 α2 α3

l j

β1 β2 βN j
· · ·

Figure 2. The longitude l j and arcs αi and βi in the diagram D.

admits (cα, dα) ∈ F × F \ {(0, 0)} such that

f (mα)=
(

1+ cαd d2
α

−c2
α 1− cαdα

)
.

Furthermore, we define a map S : (F × F \ {(0, 0)})2→ F by setting

S((a, b), (c, d)) :=


−1+ c2/(a2

−abc2
+a2cd) if a(bc2

−a−acd) 6= 0,
−1+ (−c2

+c3d)/a2, if a 6= 0, bc2
−a−acd = 0,

−1+ (−1−cd)/b2c2, if a = 0, c 6= 0,
−1+ d2/b2, if a = c = 0.

We now analyse the sum
∑N j

i=1 εi ·S
(
(cαi , dαi ), (cβi , dβi )

)
∈ F , as follows:

Theorem 6.1. The sum coincides with the cusp shape PF ◦ f̃ (l j ) in F , where PF

is the projection K̃ MW
2 (F)× F→ F.

The proof will appear in Section 7D; the point here is that the sum formula is
independent of the order of the crossings, while the longitudes seem to be non-
commutative. Moreover, it is interesting and applicable to computations that we
need not describe the longitude li in the formula, with li complicated, as in (6.5).

6B. Another application: the real K2(R) and left-orderable 3-manifold groups.
This section focuses on the real case F = R and compares the K2-group K MW

2 (R)

with S̃Ltop
2 (R), where S̃Ltop

2 (R) is the topological universal cover of SL2(R) asso-
ciated with π1(SL2(R)) ∼= Z. As an application, we give a formula to compute
longitudes lifted to S̃Ltop

2 (R). We hope that this computation will be useful for
studying the left-orderability of 3-manifold groups (see [Boyer et al. 2013], for
example). In fact, we give new 3-manifold groups which are left-orderable.

We now explain Proposition 6.3, which strictly describes S̃Ltop
2 (R). Consider the

map Sign :R2
→Z defined by Sign(a, b)= 1 if a< 0 and b< 0, and Sign(a, b)= 0

otherwise. Recalling the 2-cocycle θuni in (2.2), we equip Z× SL2(R) with the
group operation

(n, g) · (m, h) := (n+m+Sign ◦ θuni(g, h), gh). (6.2)
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Proposition 6.3. This group structure on Z×SL2(R) is isomorphic to the universal
cover S̃Ltop

2 (R) (forgetting the topology, of course).

Here, we should emphasize that this result is simpler than the known formula
for the group operation on S̃Ltop

2 (R), because it was formulated using logarithms
(see [Bargmann 1947] for details).

Proof. First, let us compute K MW
2 (R). Since I (F) for any algebraically closed F

is known to be zero, we obtain K MW
2 (F)∼= K M

2 (F) from the pullback diagram (4.1).
Moreover, it is known (see [Weibel 2013, Theorem III.6.4 and Application III.6.8.3])
that K M

2 (F) is of uncountable cardinality and is a uniquely divisible group, i.e., a
Q-vector space, and that an isomorphism K M

2 (R)
∼= Z/2⊕ K M

2 (C)
+ is obtained

as a corollary of Hilbert’s Theorem 90. Here the first summand Z/2 is widely
known to be generated by the (Steinberg) symbol {−1,−1} and the second one
is the invariant subspace by complex conjugation. Recalling from Section 4 that
I 2(R)∼= 4Z is generated by (〈1〉− 〈−a2

〉)2 with a ∈ R, the pullback diagram (4.1)
implies that

K MW
2 (R)∼= Z⊕ K M

2 (C)
+. (6.4)

Here, notice that the induced homomorphism Sign∗ : K
MW
2 (R)→ Z from Sign :

R2
→ Z coincides, by construction, with the projection in the decomposition (6.4).
Finally, we complete the proof. Since the cover S̃Ltop

2 (R) is a central extension
of SL2(R) with fiber Z, the universal extension S̃L2(R) surjects onto S̃Ltop

2 (R).
By noticing the isomorphism (6.4) and that every quotient of a divisible group is
divisible, the central kernel is K M

2 (C)
+. Hence, the surjection to the group (6.2)

induces the desired isomorphism. �

Thanks to Proposition 6.3, given an f̃ : π1(R
3
\ K )→ S̃Ltop

2 (R) we can com-
pute the value PZ( f̃ (l)) of the longitude l. This section will give an application
(Proposition 6.6 and Theorem 6.7). Throughout this subsection, we will denote by
PZ the set-theoretic projection Z×SL2(R)→ Z.

First, let us comment on some known results. Note that the connection between
the summand Z in (6.4) and the Euler classes of U (1)-bundles over surfaces is well-
understood (see [Wood 1971]). For example, the Milnor–Wood inequality gives an
estimate of the value PZ( f̃ (l)) ∈ Z bounded by the Seifert genus g(K ) of a knot K .
Precisely, since the longitude forms a product of g(K ) elements in the commutator
subgroup π1(R

3
\ K )′, we have |PZ( f̃ (l))| ≤ g(K )− 1

4 ; see [Wood 1971, (5.5)].
As a corollary, for any knot K of Seifert genus one, the value PZ( f̃ (l)) is zero
(this result was crucial in [Boyer et al. 2013; Hakamata and Teragaito 2014; Tran
2015]). However, no value PZ( f̃ (l)) with respect to knots K of Seifert genus > 1
has been computed so far.
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α3

α2 α1

α4α5

α6

Figure 3. The diagram D of the knot 62.

As the nontorus knot of Seifert genus > 1 and of the minimal crossing number,
we will focus on the 62-knot K . The diagram D with arcs α1, . . . , α6 is illustrated
in Figure 3.

Inspired by a method in [Hakamata and Teragaito 2014; Tran 2015], we will
find elliptic homomorphisms f : π1(R

3
\ K )→ SL2(R) such that

f (mα1)=

( √
t
√

t
0
√

t−1

)
, f (mα2)=

( √
t 0

−s
√

t−1 √t−1

)
for some s, t ∈ R.

Moreover, we set T = t + t−1. Then, from the Wirtinger presentation, we can
easily see that s and t must satisfy the equation R62(s, T )= 0, where R62(s, T ) is
the polynomial

1+ 3s+ s2
+ 2s3

+ 3s4
+ s5
− (3+ 2s+ 4s2

+ 9s3
+ 4s4)T

+ (1+ 2s+ 9s2
+ 6s3)T 2

− (3s+ 4s2)T 3
+ sT 4.

Owing to this quartic equation with respect to T = t + t−1, this t can be for-
mulated as an algebraic function of s. Here, suppose a (unique) positive solution
s0 = 1.48288 . . . for which the discriminant 1(s) of R62(s, t) with respect to t is
zero. Then, following the quartic formula for T , if 0< s < s0 (resp. s0 < s < 200),
there are two (resp. four) real solutions t ∈R>0 of the equation R62(s, t+ t−1)= 0.5

Choose the two solutions which are smallest and denote them by tmin and tsec. We
denote by fs,t the resulting homomorphism π1(R

3
\ K )→ SL2(R), and denote by

f̃s,t : π1(R
3
\ K )→ SLtop

2 (R) the lift of fs,t .
We will compute the resulting value PZ( f̃s,t(l)), where we will use a longitude l

of the form

l=mα1m
−1
α4
mα3m

−1
α5
(m−1

α1
mα6mα1)(m

−1
α1
m−1
α2
mα1) ∈ π1(R

3
\ K62). (6.5)

Hence, according to (6.2), we can formulate the value PZ( f̃s,t(l)) as a function of s.
By definition, the function is upper semicontinuous with respect to s. Furthermore,
it is possible to list all the (finitely many) noncontinuous points of PZ( f̃s,t(l)) for a
given interval in R. Here, we focus on the interval [0, 200]. Then, with the help of

5Incidentally, if 3000< s, we have eight real solutions t ∈ R>0 of the equation R62(s, T )= 0.
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a computer, we can investigate noncontinuous points in the interval (here we use
the above quartic formula), and hence get the following conclusion:

Proposition 6.6. For s > 0, let tmin and tsec be the above solutions of R62(s, t)= 0.
Then the value PZ( f̃s,tmin(l)) is 0 if 0<s<200, while PZ( f̃s,tsec(l)) is 1 if s0<s<200.

It is worth noting that, by a computer program, if 2700< s < 2900, the value
PZ( f̃s,tmin(l)) is 1; hence Proposition 6.6 does not hold for any s > s0. However, we
emphasize that it is the first to discover infinitely many homomorphisms f̃s,t such
that the values PZ( f̃s,t(l)) are not zero, and that it seems to be hard to compute the
value PZ( f̃ (l)) for general knots K .

Finally, we give an application using the ideas of [Boyer et al. 2013; Hakamata
and Teragaito 2014]. It is known [Boyer et al. 2013] that, if an irreducible closed
3-manifold M admits a nontrivial homomorphism π1(M)→ S̃Ltop

2 (R), then M has
left-orderable fundamental group. Here, a group G is left-orderable if it has a total
order ≤ such that g, x, y ∈ G with x ≤ y implies gx ≤ gy. Based on their ideas,
we will show the following:

Theorem 6.7. Let r = p/q ∈ Q. Let Mr (K ) be the closed 3-manifold obtained
by r-Dehn surgery along the 62-knot K . If 0.1 < r < 7.99, then the fundamental
group π1(Mr (K )) is left-orderable.

Proof. We will construct a nontrivial homomorphism f : π1(R
3
\ K )→ S̃Ltop

2 (R)

which sends mp
α1 l

q to the identity. Here note that the 3-manifold Mr (K ) obtained
from the 2-bridge knot 62 is known to be irreducible. If we have such a map, the
van Kampen theorem admits the induced map π1(Mr (K ))→ S̃Ltop

2 (R) and, hence,
gives the desired left-orderability.

The construction of f is as follows: First notice that the commutator subgroup
of fs,t(mα1) forms {(

u (u− u−1)/(1− t−2)

0 u−1

) ∣∣∣ u ∈ R×
}

without t2
= 1. Hence, by the definition of l, we can see that fs,t(l) ∈ SL2(R) is of

the form (
g(s, t) ∗

0 g(s, t)−1

)
for some ∗ ∈ R, where g(s, t) is a polynomial in s of the form(
1− 2t + t2

− 2t4
+ t5
+ s(4t2

− 3t − t3
− 2t4

+ 3t5
− 2t6

+ t7)

+ s2(3t2
− 2t3

− t4
+ 2t5

− 2t6)+ s3(t5
− t3)

)
/t2.

Since the commutator subgroup is isomorphic to R×, the equality f (mα1)
p f (l)q =

idR2 ∈ SL2(R) holds if and only if t−p/2
= g(s, t)q . To solve this, we consider the
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function R : [0, 100]→[0,∞) defined by R(s) :=2 log(g(s, tmin))/ log(tmin). Here
we note the estimate R(10−4) < 10−1 and R(102) > 7.99, which are obtained from
a computer program. Since this R is continuous by construction, the image of R
includes the interval [0.1, 7.99]. To summarize, for 10−1 < r < 7.99 there are s
and tmin with 0< s < 100 which ensure a homomorphism fs,tmin that sends mp

α1 l
q

to the identity in SL2(R).
Moreover, we consider a lifted f̃s,tmin :π1(R

3
\K )→ S̃Ltop

2 (R). By Proposition 6.6,
we have PZ( f̃s,tmin(mα1))= PZ( f̃s,tmin(l))= 0. Hence this lift is one of the required
maps. �

It is well known (see [Boyer et al. 2013], for example) that the resulting 3-
manifold, Mr (K ), of r -surgery on any 2-bridge knot K is not an L-space, i.e., the
Heegaard Floer homology of Mr (K ) is not isomorphic to that of the lens space
L(p, q) for any (p, q) ∈ Z2. Theorem 6.7 is supporting evidence for a conjecture
in [Boyer et al. 2013], which predicts an equivalence between L-spaces and the
left-orderability. As seen in the proof above, we hope that our computation will be
applicable to other knots of genus > 1.

7. Proofs of the theorems

We will prove the theorems from Sections 2 and 6. For this, this section employs
an approach to obtaining parabolic representations by means of quandles. This
approach, using quandle, has some benefits: first, while SL2(F) is of dimension 3
over F , the approach can deal with parabolic representations from a certain 2-
dimensional object (A2

\ 0)/{±}; see Proposition 7.3 (in contrast to [Riley 1972]
in a group-theoretic approach). Furthermore, the results of [Carter et al. 2005;
Eisermann 2014; Nosaka 2015] in quandle theory gave some topological applica-
tions; here the point is that quandle theory sometimes ensures nontriviality of some
knot invariants and makes a reduction to knot diagrams without 3-dimensional
discussion of R3

\ L . Correspondingly, we will see that our setting of SL2(F)
satisfies conditions necessary to the results, and will give the proofs of Theorems
3.4 and 6.1.

7A. Parabolic representations in terms of quandles. Let us begin by reviewing
quandles. A quandle [Joyce 1982] is a set, X , with a binary operationC : X×X→ X
such that

(I) aC a = a for any a ∈ X ;

(II) the map ( •C a) : X→ X defined by x 7→ x C a is bijective for any a ∈ X ;

(III) (aC b)C c = (aC c)C (bC c) for any a, b, c ∈ X.

A map f : X→ Y between quandles is a (quandle) homomorphism if f (aCb)=
f (a)C f (b) for any a, b ∈ X . For example, any group G is a quandle with the
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γi γ j

γk

γ j γk

γi

Figure 4. Positive and negative crossings.

conjugacy operation x C y := y−1xy for any x, y ∈ G, and is called the conjugacy
quandle in G and denoted by Conj(G). Furthermore, given an infinite field F ,
consider the quotient set F2

\ {(0, 0)}/∼ subject to the relation (a, b)∼ (−a,−b),
and equip this set with the quandle operation

( a b )C ( c d )= ( a b )
(

1+ cd d2

−c2 1− cd

)
.

This quandle in the case F = C was introduced in [Inoue and Kabaya 2014, §5],
which refers to it as a parabolic quandle (over F) and denotes it by X F . Further-
more, consider the map

ι : X F → SL2(F),

(c, d) 7→
(

1+ cd d2

−c2 1− cd

)
=

(
d −b
−c a

)(
1 1
0 1

)(
a b
c d

)
.

(7.1)

We can easily see that this ι is injective and a quandle homomorphism, and the
image is the conjugacy class of

(
1 1
0 1

)
. Hence, the quandle X F is a subquandle

composed of parabolic elements of the conjugacy quandle in SL2(F) (furthermore,
it is a subquandle in PSL2(F)).

Next, we will review X -colorings. Let X be a quandle and D be an oriented
link diagram of a link L ⊂ S3. An X -coloring of D is a map C : {arcs of D} → X
such that C(γk)= C(γi )C C(γ j ) at each crossing of D as in Figure 4.

For example, when X is the conjugacy quandle of a group G, the coloring con-
dition coincides with the relations in the Wirtinger presentation of a link L . Hence,
we have a bijection

ColConj(G)(D)
1:1
←→ Homgr(π1(R

3
\ L),G). (7.2)

Next, let us focus on colorings with respect to the parabolic quandles X F over
fields F . Since X F is a conjugacy class of SL2(F) via (7.1), we can easily prove:

Proposition 7.3 (a special case of [Nosaka 2015, Corollary B.1]). Let D be a dia-
gram of a link L. Fix meridians m1, . . . ,m#L ∈ π1(R

3
\ L) in each link-component

which is compatible with the orientation of D. Then the restriction of (7.2) gives
a bijection from the set ColX F (D) to the following set, composed of parabolic
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representations from π1(R
3
\ L):{

f ∈ Hom(π1(R
3
\ L),SL2(F)) | f (mi )= ι(xi ) for some xi ∈ X F

}
.

In particular, if L is a hyperbolic link and F = C, the holonomy is regarded as a
nontrivial XC-coloring in ColXC

(D) (see Appendix 13.3 of [Maclachlan and Reid
2003] for the hyperbolic knots of crossing number < 9).

We remark that it is very often (but not always) the case that the quotient set of
ColX F (D) modulo conjugation in SL2(F) is of finite order. In a special case, we
will see that small knots satisfy finiteness (Proposition 7.4). Here, a knot K is said
to be small if there is no incompressible surface except for a boundary-parallel
torus in the knot exterior. For example, the 2-bridge knots and torus knots are
known to be small.

Proposition 7.4. Let F be a field embedded in the complex field C. If D is a dia-
gram of a small knot K , then the quotient set of ColX F (D) subject to the conjugacy
operation of SL2(F) is of finite order.

We will omit the proof, since it follows from standard arguments in Culler–
Shalen theory similar to those in [Culler and Shalen 1983] or [Cooper et al. 1994,
Proposition 2.4].

Example 7.5. It is known that every knot of crossing number < 9 is small. Further-
more, we can see that the quotient set is bijective to {x ∈ F×/{±1} | f (x) f (−x)=
0} for some polynomial f (x). Without proof, we list the defining polynomials of
some knots for the case Char(F)= 0 in Table 2.

7B. Proof of Proposition 3.1. From Proposition 7.3 and the definition of K MW
2 (F),

we will prove Proposition 3.1.

Proof of Proposition 3.1. By definition of parabolicity, f (m) for every meridian m

is contained in the image of ι (recall Proposition 7.3), where ι is the map in (7.1).

knot the defining polynomial f (x)

31 x − 1
41 x2

− x + 1
51 x2

+ x − 1
52 x3

− x2
+ 1

61 x4
+ x2
− x + 1

74 (x3
+ 2x − 1)(x4

− x3
+ 2x2

− 2x + 1)
77 (x4

+ x2
− x + 1)(x6

+ x5
+ 2x4

+ 2x3
+ 2x2

+ 2x + 1)

Table 2. The defining polynomials for some knots.
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Hence, from the Wirtinger presentation and Lemma 7.6 below, we can canonically
obtain a lift f̃ : π1(R

3
\ L)→ S̃L2(F), defined by setting

f̃ (m)= (0, f (m)) ∈ K MW
2 (F)×SL2(F). �

Lemma 7.6. Consider the composite θuni ◦ (ι × ι) : (X F )
2
→ K MW

2 (F) of the
universal 2-cocycle θuni. Then, for any (a, b), (c, d) ∈ X F , the composite satisfies
the equality

θuni ◦ (ι× ι)
(
(a, b), (c, d)

)
= θuni ◦ (ι× ι)

(
(c, d), (a, b)C (c, d)

)
.

We will prove Lemma 7.6 by a tedious computation. To this end, denote the
restriction θuni ◦ (ι× ι) by 2. Then a direct calculation shows an easy formula for
this 2: precisely, for any (a, b), (c, d) ∈ X F , the map 2 : (X F )

2
→ K MW

2 (F)
satisfies the equality

2
(
(a, b), (c, d)

)
=


[(ab− 1)c2

− (1+ cd)a2,−c2/a2
]

− [−a2,−c2
] if ac 6= 0,

0 if ac = 0.
(7.7)

Proof of Lemma 7.6. When ac = 0, we can easily obtain the desired equality in
Lemma 7.6 by a direct calculation, although we omit the details.

Thus, we will assume ac 6= 0, and compute 2
(
(a, b), (c, d)

)
in some detail.

Denote (a, b)C (c, d) by (H, I ) ∈ X F for short. Then a direct calculation can
show the identity

(1− cd)H 2
+ (1+ H I )c2

= (1− ab)c2
+ (1+ cd)a2. (7.8)

Let B be the right-hand side in (7.8). Noting that [−a2,−c2
] = [−a2,−c2/a2

] by
axiom (ii), the 2

(
(a, b), (c, d)

)
in (7.7) becomes [−B,−c2/a2

] − [−a2,−c2/a2
].

Further, this is equal to [B/a2,−c2/a2
] − 2[−1,−B] by Lemma 7.9(2) below.

Hence it is enough to show [B/c2,−H 2/c2
]= [B/a2,−c2/a2

] for the proof. For
this purpose, note [B/a2,−c2/a2

] = [B/c2,−c2/a2
] by Lemma 7.9(1). Therefore,

from the identity B = aH + c2 by definition and the axiom (iii), we deduce that

[B/c2,−c2/a2
] = [B/c2,−(B/c2

− 1)2(c2/a2)]

= [B/c2,−a2 H 2/(c2a2)] = [B/c2,−H 2/c2
].

In summary, we have the desired equality [B/c2,−H 2/c2
] = [B/a2,−c2/a2

]. �

Lemma 7.9. (1) [x, y] = [x−1, y−1
] = [−xy, y] for any x, y ∈ F×.

(2) [x,−z2
] + [−y2,−z2

] = [−xy2,−z2
] + 2[−1, x] for any x, y, z ∈ F×.

Proof. First, (1) is directly obtained from the axiom (ii) of K MW
2 (F).

Next we will prove (2). Following [Suslin 1987], we use the notation [a, b, c] :=
[a, b] + [a, c] − [a, bc]. Since [A,−z2

] = [−z−2, A], the goal is equivalent to the
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equality [−z−2, x,−y2
] = [x,−1,−1]. To show this, we set up two identities

proven in [Suslin 1987, Lemma 6.1] of the forms

[ab, x, c] = [a, bx, c] + [b, x, c] − [a, b, c], [d, e, f ] = [d−1, e, f ] (7.10)

for any x, a, b, c, d, e, f ∈ F×. By applying a =−z, b = z and c =−y2 to these
identities, we have

[−z−2, x,−y2
] = [−z2, x,−y2

] = [−z, zx,−y2
] + [z, x,−y2

] − [−z, z, x]

= [−z−1,−zx,−y2
] + [z, x,−y2

] − [−z−1, z, x]

= [−1, x,−y2
].

Lastly, since the equalities [x, b, c] = [x, c, b] = [b, c, x] are known [Suslin 1987,
Lemma 6.1], repeating the computation leads to [−z−2, x,−y2

] = [−1, x,−y2
] =

[−y2, x,−1] = [−1, x,−1] = [x,−1,−1], as desired. �

7C. Preliminaries. In the next subsection, we will prove Theorems 3.4 and 6.1,
which remain to be proved. For this purpose, this subsection reviews some results
[Carter et al. 2005; Eisermann 2014] of quandle theory, which explain a relation
between quandles and longitudes.

To this end, we begin by setting up some terminology. Consider the group
defined by generators ex labeled by x ∈ X modulo the relations ex · ey = ey · exCy

for x, y ∈ X . This group is called the associated group and denoted by As(X),
and has a right action on X defined by x · ey := x C y. Letting O(X) be the set
of the orbits, we consider the orbit decomposition of X , i.e., X =

⊔
λ∈O(X) Xλ. In

addition, fix a quotient group G of As(X) subject to a central subgroup. Denote
the quotient map As(X)→ G by pG .

Switching to topology, given an X -coloring C ∈ ColX (D) of a link L , let us
correspond each arc γ to pG(eC(γ )) ∈ G. Regarding the arcs as generators of
π1(R

3
\ L) by the Wirtinger presentation (see Figure 5), the correspondence defines

a group homomorphism 0C : π1(R
3
\ L)→ G.

Furthermore, with respect to link-components of L , we fix an arc γ j on D with
1≤ j ≤ #L . Let x j := C(γ j )∈ X j , and fix a preferred longitude l j obtained from D.
Noticing that each l j commutes with the meridian γ j , we have 0C(l j ) ∈ Stab(x j ).

C

δ

α

γ
β

0C

 
eδ

eα
eγ

eβ

Figure 5. The correspondence 0C .
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We will give a computation for the value 0C(l j ) as follows. Fix xλ ∈ Xλ for
any λ ∈ O(X), Since the action of G on Xλ is transitive, we can choose a section
sλ : Xλ → G such that xλ · sλ(y) = y for any y ∈ Xλ. Then we define a map
φ : X2

→ G by

φ(g, h)= sλ(g)pG(e−1
g eh)sλ(gC h)−1 for g ∈ Xλ, h ∈ X. (7.11)

By definition, we see that φ(g, h) lies in the stabilizer Stab(xλ) ⊂ G of xλ
if g ∈ Xλ.

With respect to the coloring C, similar to in Section 6A, we define a product of
the form

SC, j := φ(C(α1), C(β1))
ε1φ(C(α2), C(β2))

ε2 · · ·φ(C(αN j ), C(βN j ))
εN j ∈ Stab(x j ),

where the terminology of arcs αi and βi and of signs εi are as in Section 6A (see
also Figure 2). Although this construction depends on the choice of the xλ and the
sections sλ, the following is known:

Proposition 7.12 [Carter et al. 2005, Lemma 5.8]. The product SC, j equals

sλ(C(γ1))
−10C(l j )sλ(C(γ1))

in Stab(x j ). In particular, if Stab(x j ) is abelian, the equality SC, j = 0C(l j ) holds
in Stab(x j ).

The proof immediately follows from the definitions of φ and of the preferred
longitude li .

We next review a computation, shown by Eisermann [2014], of the second quan-
dle homology H Q

2 (X) (see [Carter et al. 2003] for the original definition).

Theorem 7.13 [Eisermann 2014, Theorem 9.9]. Let X be a quandle with |O(X)|=1.
Fix xλ ∈ X. Let Stab(xλ)⊂ As(X) denote the stabilizer of xλ. Then the abelianiza-
tion Stab(xλ)ab is isomorphic to Z⊕ H Q

2 (X).

In particular, the class [0C(l j )] in the abelianization is contained in Z⊕ H Q
2 (X)

by Theorem 7.13. Then, as a corollary of a homotopical study of the homol-
ogy H Q

2 (X), we can state a sufficient condition to ensure the nontriviality of the
classes in the Z⊕ H Q

2 (X) as follows:

Proposition 7.14 [Nosaka 2015, Remark 6.4]. Let X be a quandle such that the
orbit O(X) is single. If the group homology H gr

2 (As(X);Z) is zero, then any
element ϒ ∈ H Q

2 (X) admits some X-coloring C of a link such that the equality
ϒ = [0C(l1)] + · · · + [0C(l#L)] holds in Z⊕ H Q

2 (X).
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7D. Proofs of Theorems 3.4 and 6.1. First, we aim to prove Theorem 3.4. In-
spired by Theorem 7.13, we first determine the associated groups As(X F ) of the
parabolic quandles over F .

Theorem 7.15. Take the map ι : X F → SL2(F) given in (7.1). Then the map

X F → Z× K MW
2 (K )×SL2(F), x 7→ (1, 0, ι(x)).

gives rise to a group homomorphism As(X F )→ Z× S̃L2(F), which is an isomor-
phism.

Proof. We can first verify that the map ι in (7.1) yields a group epimorphism
As(X F )→ SL2(F), which is a central extension. It then follows from Lemma 7.6
that the above map yields a group homomorphism As(X F )→ Z× S̃L2(F). Since
H1(As(X F )) ∼= Z, the universality of central extensions implies that the homo-
morphism must be an isomorphism. �

Corollary 7.16. The second quandle homology H Q
2 (X F ;Z) is isomorphic to the

group F ⊕ K̃ MW
2 (F).

Proof. We will compute H Q
2 (X F ) using Theorem 7.13. Fix x0 = (0, 1) ∈ X F ,

and the universal extension E : S̃L2(F)→ SL2(F). Noticing that the SL2 standard
representation X F x As(X F ) is transitive, i.e., |O(X)| = 1, we will calculate
the abelianization of the stabilizer Stab(x0) ⊂ As(X F ). We easily check that
E(Stab(x0)) ⊂ SL2(F) is the subgroup UF . Hence, Stab(x0) ∼= Z× E−1(UF ) ∼=

Z× K̃ MW
2 (F)× F by Lemma 2.4. Since this is abelian, Theorem 7.13 readily

implies the conclusion Z⊕ H Q
2 (X F )∼= H gr

1 (Stab(x0))∼= Z× K̃ MW
2 (F)× F. �

Proof of Theorem 3.4. Theorem 7.15 says that the quandle X F satisfies the assump-
tion of Proposition 7.14. Moreover, Stab(x0)∼=Z× K̃ MW

2 (F)×F∼=Z⊕H Q
2 (X F ;Z)

is abelian by Corollary 7.16. As a consequence, Proposition 7.14 implies the con-
clusion. �

Next we will turn to proving Theorem 6.1.

Proof of Theorem 6.1. Let G be PSL2(F), and let pG be the composite of projec-
tions As(X F )→ S̃L2(F)→ SL2(F)

π
→PSL2(F). Let xλ be (0, 1) ∈ X F . Then we

easily see that the stabilizer Stab(xλ)⊂ G is an abelian group π(UF )∼= F .
Furthermore, we define a section sF : X F → PSL2(F) by setting sF (0, b) :=

diag(b−1, b) and sF (a, b) :=
( 0 −a−1

a b

)
if a 6= 0. Then, according to (7.11), we have

the resulting map φ : (X F )
2
→ π(UF ) ∼= F . By an elementary computation, the

map φ agrees with the map S. Hence, Proposition 7.12 immediately implies the
equality claimed in Theorem 6.1. �

Remark 7.17. Similar to the previous proof, by considering the case (X,G) =
(X F , S̃L2(F)), we can give a sum formula for the K2 invariant. However, as the
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author can not formulate a section X F → S̃L2(F) in a simple way, the resulting
formula is a little complicated and is far from applications. The desired formula
would be simple; So this paper omits describing formulae for the K2 invariants.
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