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Let G be an affine group scheme over a noetherian commutative ring R. We
show that every G-equivariant vector bundle on an affine toric scheme over R
with G-action is equivariantly extended from Spec(R) for several cases of R
and G.

We show that, given two affine schemes with group scheme actions, an equiv-
alence of the equivariant derived categories implies isomorphism of the equivari-
ant K-theories as well as equivariant K ′-theories.

1. Introduction

The goal of this paper is to answer some well-known questions related to group
scheme actions on affine schemes over a fixed affine base scheme. Our particular
interest is to explore when are the equivariant vector bundles on such schemes
equivariantly trivial and when does an equivalence of their derived categories im-
ply homotopy equivalence of the equivariant K-theory. Both questions have been
extensively studied and are now satisfactorily answered in the nonequivariant case
(see [Lindel 1981; Rickard 1989; Dugger and Shipley 2004]).

1A. Equivariant Bass–Quillen question. The starting point for the first question
is the following classical problem from [Bass 1973, Problem IX]:

Conjecture 1.1 (Bass–Quillen). Let R be a regular commutative noetherian ring
of finite Krull dimension. Then every finitely generated projective module over the
polynomial ring R[x1, . . . , xn] is extended from R.

The most complete answer to this conjecture was given by Lindel [1981], who
showed (based on the earlier solutions by Quillen and Suslin when R is a field)
that the above conjecture has an affirmative solution when R is essentially of finite
type over a field. For regular rings which are not of this type, some cases have been
solved (see [Rao 1988], for example), but the complete answer is still unknown.
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In this paper, we are interested in the equivariant version of this conjecture, which
can be loosely phrased as follows.

Let R be a noetherian regular ring and let G be a flat affine group scheme over
R. Let A = R[x1, . . . , xn] be a polynomial R-algebra with a linear G-action and
let P be a finitely generated G-equivariant projective A-module. The equivariant
version of the above conjecture asks:

Question 1.2. Is P an equivariant extension of a G-equivariant projective module
over R?

The equivariant Bass–Quillen question was studied, for example, in [Knop 1991;
Kraft and Schwarz 1992; 1995; Masuda et al. 1996] when R = C is the field
of complex numbers. This question is known to be very closely related to the
linearization problem for reductive group action on affine spaces.

The first breakthrough was achieved by Knop [1991], who found counterexamples
to this question when G is a nonabelian reductive group over C. In fact, he showed
that every connected reductive nonabelian group over C admits a linear action on
a polynomial ring for which the equivariant Bass–Quillen conjecture fails. Later,
such counterexamples were found by Masuda and Petrie [1995] when G is a finite
nonabelian group. Thus the only hope to prove this conjecture is when G is
diagonalizable. It was subsequently shown by Masuda, Moser-Jauslin and Petrie
[Masuda et al. 1996] that the equivariant Bass–Quillen conjecture indeed has a
positive solution when R = C and G is diagonalizable. This was independently
shown also by Kraft and Schwarz [1995].

It is not yet known if the equivariant Bass–Quillen conjecture has a positive
solution over any field other than C. One of the two goals of this paper is to solve
the general case of the equivariant Bass–Quillen question for diagonalizable group
schemes over an arbitrary ring or field. Our approach to solving this problem in
fact allows us to prove the stronger assertion that such a phenomenon holds over all
affine toric schemes over an affine base. This approach was motivated by a similar
result of Masuda [1998] over the field of complex numbers.

Let R be a commutative noetherian ring. Recall from [SGA 3 II 1970, Exposé VIII]
that an affine group scheme G over R is called diagonalizable if there is a finitely
generated abelian group P such that G = Spec(R[P]), where R[P] is the group
algebra of P over R.

Let L be a lattice and let σ ⊆ LQ be a strongly convex, polyhedral, rational cone.
Let 1 denote the set of all faces of σ . Let A = R[σ ∩ L] be the monoid algebra
over R. Let ψ : L→ P be a homomorphism which makes Spec(A) a scheme with
G-action. Let AG denote the subring of G-invariant elements in A. Let us assume
that every finitely generated projective module over R[Q] is extended from R if Q
is torsion-free (see Theorem 5.2).
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Our main result can now be stated as follows (see Theorem 7.8). The underlying
terms and notations can be found in the body of this text.

Theorem 1.3. Let R and A be as above. Assume that all finitely generated projec-
tive modules over Aτ and (Aτ )G are extended from R for every τ ∈ 1. Then ev-
ery finitely generated G-equivariant projective A-module is equivariantly extended
from R.

For examples of rings satisfying the hypothesis of the theorem, see Sections 5,
6 and 7.

Let us now assume that R is either a PID, or a regular local ring of dimension
at most 2, or a regular local ring containing a field. As a consequence of the
above theorem, we obtain the following solution to the equivariant Bass–Quillen
question:

Theorem 1.4. Let R be as above and let G be a diagonalizable group scheme
over R acting linearly on a polynomial algebra R[x1, . . . , xn, y1, . . . , yr ]. Then
the following hold:

(1) If A = R[x1, . . . , xn], then every finitely generated equivariant projective A-
module is equivariantly extended from R.

(2) If R is a PID and A = R[x1, . . . , xn, y±1
1 , . . . , y±1

r ], then every finitely gener-
ated equivariant projective A-module is equivariantly extended from R.

This theorem is generalized to the case of nonlocal regular rings in Theorem 8.4.
We note here that, previously, it was not even known whether every G-equivariant
bundle on a polynomial ring over R is “stably” extended from R.

The above results were motivated in part by the following important classifica-
tion problem for equivariant vector bundles over smooth affine schemes. One of
the most notable (among many) recent applications of the nonequivariant Bass–
Quillen conjecture is Morel’s classification [2012, Theorem 8.1] of vector bundles
over smooth affine schemes. He showed, using Lindel’s theorem [1981], that all
isomorphism classes of rank-n vector bundles on a smooth affine scheme X over
a field k are in bijection with the set of A1-homotopy classes of maps from X
to the classifying space of GLn,k . It is important to note here that, even though
Morel’s final result is over a field, its proof crucially depends on Lindel’s theorem
for geometric regular local rings.

The equivariant version of the Morel–Voevodsky A1-homotopy category was
constructed in [Heller et al. 2015]. One can make sense of the equivariant classi-
fying space in this category, analogous to the one in the topological setting [May
1996]. The equivariant analogue (Theorem 1.4) of Lindel’s theorem now completes
one very important step in solving the classification problem for equivariant vector
bundles. It remains to see how one can use Theorem 1.4 to complete the proof
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of the equivariant version of Morel’s classification theorem. This will be taken up
elsewhere.

1B. Equivariant derived category and K-theory. We now turn to the second ques-
tion. To motivate this, recall that it is a classical question in algebraic K-theory to
determine if it is possible that two schemes with equivalent derived categories of
quasicoherent sheaves (or vector bundles) have (homotopy) equivalent algebraic K-
theories. This question gained prominence when Thomason and Trobaugh [1990]
showed that the equivalence of K-theories is true if the given equivalence of derived
categories is induced by a morphism between the underlying schemes. There has
been no improvement of this result for the general case of schemes to date.

However, Dugger and Shipley [2004] (see also [Rickard 1989]) showed a re-
markable improvement over the result of Thomason and Trobaugh for affine schemes.
They showed more generally that any two (possibly noncommutative) noetherian
rings with equivalent derived categories (which may not be induced by a map of
rings!) have equivalent K-theories.

Parallel to the equivariant analogue of the Bass–Quillen question, one can now
ask if it is true that two affine schemes with group scheme actions have equivalent
equivariant K-theories if their equivariant derived categories are equivalent. No
case of this problem has been known yet.

In this paper, we show that the general results of Dugger and Shipley [2004]
apply in the equivariant setup too, which allows us to solve the above question.
More precisely, we combine Dugger and Shipley’s results and Proposition 4.6 to
prove the following theorem.

Let R be a commutative noetherian ring and let G be an affine group scheme
over R. Assume that either G is diagonalizable or R contains a field of characteris-
tic zero and G is a split reductive group scheme over R. Given a finitely generated
R-algebra A with G-action, let us denote this datum by (R,G, A). Let DG(A)
and DG(proj/A) denote the derived categories of G-equivariant A-modules and G-
equivariant (finitely generated) projective A-modules, respectively. Let K G(A) and
K ′G(A) denote the K-theory spectra of G-equivariant (finitely generated) projective
A-modules and G-equivariant A-modules, respectively.

Theorem 1.5. Let (R1,G1, A1) and (R2,G2, A2) be two data of the above type.
Then DG1(A1) and DG2(A2) are equivalent as triangulated categories if and only
if DG1(proj/A1) and DG2(proj/A2) are equivalent as triangulated categories.

In either case, there are homotopy equivalences of spectra K G1(A1)' K G2(A2)

and K ′G1
(A1)' K ′G2

(A2).

In other words, this theorem says that the equivariant K-theory as well as the
K ′-theory of affine schemes with group action can be completely determined by
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the equivariant derived category, which is much simpler to study than the full equi-
variant geometry of the scheme.

Brief outline of the proofs. We end this section with an outline of our methods.
Our proof of Theorem 1.3 is based on the techniques used in [Kraft and Schwarz
1995] to solve the equivariant Bass–Quillen question over C. As in [loc. cit.],
we show that all equivariant vector bundles actually descend to bundles on the
quotient scheme for the group action. This allows us then to use the solution to the
nonequivariant Bass–Quillen question to conclude the final proof.

In order to do this, one runs into several technical ring-theoretic issues and
one has to find algebraic replacements for the geometric techniques available only
over C. Another problem is that the approach of [Masuda et al. 1996] to solve
Question 1.2 for R = C crucially uses the result of [Bass and Haboush 1985] that
every equivariant vector bundle over C[x1, . . . , xn] is stably extended from C. But
we do not know this over other rings.

Our effort is to resolve these issues by a careful analysis of group scheme actions
on affine schemes. Instead of working with schemes, we translate the problem into
studying comodules over some Hopf algebras. Sections 2 and 3 are meant to do
this. In Section 4, we prove some crucial properties of equivariant vector bundles
on affine schemes, which play a very important role in proving Theorem 1.5. These
sections generalize several results of [Bass and Haboush 1985] to more general
rings.

In Section 5, we prove some properties of equivariant projective modules over
monoid algebras, which are the main object of study. In Section 6, we show how
to descend an equivariant vector bundle to the quotient scheme and then we use the
solution to the Bass–Quillen conjecture in the nonequivariant case to complete the
proof of Theorem 1.3 in Section 7. Theorem 1.4 and its generalization are proven
in Section 8.

We prove Theorem 1.5 in Section 9 by combining the results of Section 4, [Dug-
ger and Shipley 2004] and a generalization of a theorem of Rickard [1989]. This
generalization is shown in the Appendix.

2. Recollection of group scheme action and invariants

In this section, we recall some aspects of group schemes and their actions over a
given affine scheme from [SGA 3 I 1970, Exposé III; SGA 3 II 1970, Exposé VIII].
We prove some elementary results about these actions which are of relevance to
the proofs of our main results. In this text, a ring will always mean a commutative
noetherian ring with unit.

Let S = Spec(R) be a noetherian affine scheme and let SchS denote the category
of schemes which are separated and of finite type over S. Let AlgR denote the
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category of finite-type R-algebras. We shall assume throughout this text that S is
connected. If R and S are clear in a context, the fiber product X ×S Y and tensor
product A⊗R B will be simply written as X × Y and A⊗ B, respectively. For
an R-module M and an R-algebra A, the base extension M ⊗R A will be denoted
by MA.

2A. Group schemes and Hopf algebras. Recall that a group scheme G over S
(equivalently, over R) is an object of SchS which is equipped with morphisms
µG : G × G → G (multiplication), η : S → G (unit) and τ : G → G (inverse)
that satisfy the known associativity, unit and symmetry axioms. These axioms are
equivalent to saying that the presheaf X 7→ hG(X) := HomSchS (X,G) on SchS is
a group-valued (contravariant) functor.

If G is an affine group scheme over S, one can represent it algebraically in terms
of Hopf algebras over R. As this Hopf algebra representation will be a crucial part
of our proofs, we recall it briefly.

Let us assume that G is an affine group scheme with coordinate ring R[G]. Then
the multiplication, unit section and inverse maps above are equivalent to having the
morphisms1 : R[G]→ R[G]⊗R[G], ε : R[G]→ R and σ : R[G]→ R[G] in AlgR
such that µG = Spec(1), η = Spec(ε) and τ = Spec(σ ). The associativity, unit
and symmetry axioms are equivalent to the commutative diagrams

R[G] 1
//

1 &&

R[G]⊗ R[G]
1⊗Id

// (R[G]⊗ R[G])⊗ R[G]

R[G]⊗ R[G]
Id⊗1

// R[G]⊗ (R[G]⊗ R[G])

can. iso.

OO

(2.1)

R[G] R[G]⊗ R[G]
Id⊗ε
oo

ε⊗Id
// R[G] R[G]⊗ R[G] σ ·Id // R[G]

R[G]
Id

ff

1

OO

Id

88

R[G]

1

OO

ε
// R

OO

(2.2)

In other words, (R[G],1, ε, σ ) is a Hopf algebra over R and it is well known
that the transformation (G, µG, η, τ ) 7→ (R[G],1, ε, σ ) gives an equivalence be-
tween the categories of affine group schemes over S and finite-type Hopf algebras
over R (see [Waterhouse 1979, Chapter 1]).

2A1. R-G-modules. Let G be an affine group scheme over R. An R-G-module is
an R-module M equipped with a natural transformation hG(Spec(A))→GL(M)(A)
of group functors, where the functor GL(M) associates the group AutA(A⊗R M)
to an R-algebra A.

Equivalently, an R-G-module is an R-module M which is also a comodule over
the Hopf algebra R[G], in the sense that there is an R-linear map ρ :M→ R[G]⊗R M
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such that the following diagrams commute:

M
ρ

//

ρ

��

R[G]⊗M

1⊗IdM
��

M
ρ
//

IdM
��

R[G]⊗M

ε⊗IdM
��

R[G]⊗M
IdR[G]⊗ρ

// R[G]⊗ R[G]⊗M M '
// R⊗M

(2.3)

The reader can check that the comodule structure on M associated to a natural
transformation of functors hG→ GL(M) is given by the map ρ : M→ R[G]⊗M
with ρ(m)= hG(R[G])(IdR[G])(1⊗m). We shall denote an R-G-module M in the
sequel in terms of an R[G]-comodule by (M, ρ).

A morphism f : (M, ρ)→ (M ′, ρ ′) between R-G-modules is an R-linear map
f :M→M ′ such that ρ ′◦ f = (IdR[G]⊗ f )◦ρ. We say that M is an R-G-submodule
of M ′ if f is injective. The set of all R-G-module homomorphisms from M to M ′

will be denoted by HomRG(M,M ′).
We shall say that an R-G-module M is finitely generated (resp. projective) if

it is finitely generated (resp. projective) as an R-module. The categories of R-G-
modules will be denoted by (R-G)-Mod. The category of finitely generated projec-
tive R-G-modules will be denoted by (R-G)-proj. The category of not necessarily
finitely generated projective R-G-modules will be denoted by (R-G)-Proj.

If G is an affine group scheme which is flat over R, then it is easy to check
that (R-G)-Mod is an abelian category and (R-G)-proj is an exact category. The
flatness is essential here because in its absence the kernel of an R-G-module map
f : M → M ′ may not acquire a G-action as R[G] ⊗R Ker( f ) may fail to be a
submodule of R[G]⊗R M .

2A2. Submodule of invariants. Let G be an affine group scheme over R and let
(M, ρ) be an R-G-module. An element m ∈ M is said to be G-invariant under the
action of G if ρ(m)= 1⊗m. The R-submodule of G-invariant elements of M will
be denoted by MG .

Given an element λ∈ R[G], we say that m ∈ M is semi-invariant of weight λ un-
der the G-action if ρ(m)= λ⊗m. The following is a straightforward consequence
of the definitions and R-linearity of ρ.

The group scheme G is called linearly reductive if Inv : (R-G)-Mod→ R-Mod
sending M to MG is an exact functor.

Lemma 2.4. Given an R-G-module (M, ρ) and character λ ∈ R[G], the set

Mλ := {m ∈ M | ρ(m)= λ⊗m}

is an R-G-submodule of M. In particular, MG is an R-G-submodule of M. Every
R-submodule of Mλ is an R-G-submodule of Mλ.
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Example 2.5. Let k be an algebraically closed field and let G be a linear algebraic
group over k. In this case, a (finite) k-G-module is the same as a finite-dimensional
representation V of G. We can now check that the above notion of G-invariants is
same as the classical definition of V G, given by V G

={v∈V | g ·v=v for all g∈G}.
Choose a k-basis {v1, . . . , vn} for V and suppose that

ρ(vi )=

n∑
j=1

ai j ⊗ v j . (2.6)

One can use (2.3) to see that V becomes a G-representation via the homo-
morphism ρ ′ : G→ GL(V ) given by ρ ′(g)= (ai j (g)). Recall here that an element
of k[G] is the same as a morphism G→ A1

k . If we write an element of V in terms
of a row vector x = (x1, . . . , xn)=

∑n
i=1 xivi , then it follows easily from (2.6) that

ρ(x)= 1⊗ x if and only if (ai j (g))x = x for g ∈ G. But this is the same as saying
that ρ ′(g)(x)= x for all g ∈ G.

2A3. Group scheme action. Let G be a group scheme over S = Spec(R) and let
X ∈ SchS . Recall that a G-action on X is a morphism µX : G ×S X → X which
satisfies the usual associative and unital identities for an action.

If G is an affine group scheme over S and X = Spec(A) is an affine S-scheme,
then a G-action on X as above is equivalent to a map φ : A → R[G] ⊗R A in
AlgR such that φ defines an R[G]-comodule structure on A. In this case, one has
µX = Spec(φ). We shall denote this G-action on X by the pair (A, φ) and call A an
R-G-algebra. Note that this notion of R-G-algebra makes sense for any (possibly
noncommutative) R-algebra R→ A such that the image of R is contained in the
center of A. We shall use this R-G-algebra structure on the endomorphism rings
(see Lemma 3.8).

We also recall, in the language of Hopf algebras, the G-action on an R-G-algebra
A is free if the map8 : A⊗R A→ R[G]⊗R A given by8(a1⊗a2)=φ(a1)(1⊗a2)

is surjective.

3. Equivariant quasicoherent sheaves on affine schemes

Recall from [Thomason 1987, §1.2] that if X ∈SchS has a G-actionµX :G×S X→ X
then a G-equivariant quasicoherent sheaf on X is a quasicoherent sheaf F on X
together with an isomorphism of sheaves of OG×S X -modules on G×S X

θ : p∗(F) '−→µ∗X (F), (3.1)

where p : G ×S X → X is the projection map. This isomorphism satisfies the
cocycle condition on G×S G×S X

(1×µX )
∗(θ) ◦ p∗23(θ)= (µG × 1)∗(θ), (3.2)
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where p23 : G×S G×S X→ G×S X is the projection to the last two factors.
A morphism of G-equivariant sheaves f : (F1, θ1)→ (F2, θ2) is a map of sheaves

f : F1→ F2 such that µ∗X ( f ) ◦ θ1 = θ2 ◦ p∗( f ).

3A. A-G-modules. Let us now assume that G is an affine group scheme over S =
Spec(R) which acts on an affine S-scheme X = Spec(A) with A ∈ AlgR . Let
φ : A→ R[G]⊗R A be the action map such that µX = Spec(φ).

Definition 3.3. An A-module M is an A-G-module if (M, ρ) is an R-G-module
such that

ρ(a.m)= φ(a).ρ(m) for all a ∈ A and m ∈ M. (3.4)

An A-G-module homomorphism is an A-module homomorphism which is also
an R-G-module homomorphism. Given a pair of A-G-modules, the set of A-G-
module homomorphisms will be denoted by HomAG( _ , _ ).

We shall denote the category of A-G-modules by (A-G)-Mod. An A-G-module
M will be called projective, if it is projective as an A-module. We shall denote the
category of finitely generated projective A-G-modules by (A-G)-proj. The category
of (not necessarily finitely generated) projective A-G-modules will be denoted by
(A-G)-Proj. Notice that, given a morphism of R-G algebras f : (A, φA)→ (B, φB),
there is a pull-back map f ∗ : (A-G)-Mod→ (B-G)-Mod which preserves projective
modules. It is easy to check that, given an R-G-module M and an A-G-module N ,
the extension of scalars gives an isomorphism

HomRG(M, N ) '−→HomAG(MA, N ). (3.5)

Proposition 3.6. There is an equivalence between the category of G-equivariant
quasicoherent OX -modules and the category of A-G-modules.

Proof. Let M be an A-module which defines a G-equivariant quasicoherent sheaf
on X and let θ : R[G] ⊗R M '

−→ R[G] ⊗R M be an isomorphism of R[G]⊗R A-
modules as in (3.1) satisfying (3.2).

We define an A-G-module structure on M by setting ρ : M→ R[G] ⊗R M to
be the map ρ(m)= θ(1⊗m). The map ρ is clearly R-linear and one checks that

ρ(a ·m)= θ(1⊗ a ·m)= θ(a · (1⊗m))= φ(a) · θ(1⊗m)= φ(a) · ρ(m).

Since the map φ : A→ R[G] ⊗R A is just the inclusion map a 7→ 1⊗ a when
restricted to R, one checks easily from (3.2) that

(1×µX )
∗(θ) ◦ p∗23(θ)(1⊗ 1⊗m)= (1×µS)

∗(θ) ◦ p∗23(θ)(1⊗ 1⊗m)

= (IdR[G]⊗ ρ) ◦ ρ(m)

and it is also immediate that (µG × 1)∗(θ)(1⊗ 1⊗ m) = (1⊗ IdR[G]) ◦ ρ(m).
This is the first square of (2.3). The second square of (2.3) is obtained at once by



244 AMALENDU KRISHNA AND CHARANYA RAVI

applying the map (η× η× 1)∗ to (3.2), where η : S→ G is the unit map. We have
thus shown that M is an A-G-module.

Conversely, suppose that M is an A-G-module. We define θ : R[G] ⊗R M→
R[G]⊗R M by setting θ(x ⊗m)= x · ρ(m). In other words, we have

θ = (α⊗ IdM) ◦ (IdR[G]⊗ ρ), (3.7)

where α : R[G]⊗R R[G] → R[G] is the multiplication of the ring R[G].
Since ρ is R-linear, we see that θ is R[G]-linear. To show that θ is (R[G]⊗R A)-

linear, it is thus enough to show that it is A-linear. This is standard and can
be checked as follows: For any a ∈ A, x ∈ R[G] and m ∈ M , we get, inside
R[G]⊗R M = R[G]⊗R A⊗A M ,

θ(a · (x ⊗m))= θ(x ⊗ a⊗m)

= θ(x ⊗ 1⊗ a ·m)

= (x ⊗ 1) · ρ(a ·m)

= (x ⊗ 1) · (φ(a) · ρ(m))

= (x ⊗ 1) ·φ(a) · ρ(m).

The fourth equality above follows from (3.4). On the other hand, we have

a · θ(x ⊗m)= φ(a) · θ(x ⊗ 1⊗m)

= φ(a) · (x ⊗ 1) · θ(1⊗m)

= φ(a) · (x ⊗ 1) · ρ(m).

The two sets of identities above show that θ is (R[G]⊗R A)-linear. To show that
θ is an isomorphism, we define θ−1

: R[G]⊗R M→ R[G]⊗R M by

θ−1
= (α⊗ IdM) ◦ (IdR[G]⊗ σ ⊗ IdM) ◦ (IdR[G]⊗ ρ),

where σ : R[G] → R[G] is the inverse map of its Hopf algebra structure.
It is easy to check using (2.2) and (2.3) that θ ◦ θ−1

= θ−1
◦ θ = IdR[G]⊗R M . The

cocycle condition (3.2) is a formal consequence of the left square in (2.3). It is also
straightforward to check that the two constructions given above yield the desired
equivalence between the categories of G-equivariant quasicoherent sheaves on X
and A-G-modules on A. We leave these verifications as an exercise. �

Lemma 3.8. Assume that G is flat over R and let (A, φ) be an R-G-algebra. Let
(L , ρL), (M, ρM) and (N , ρN ) be A-G-modules and let p : (M, ρM)→ (N , ρN ) be
an A-G-linear map. Assume that (L , ρL) is finitely generated. Then HomA(L , N )
has a natural A-G-module structure and HomA(L , L) has a natural A-G-algebra
structure such that the following hold:

(1) The induced map HomA(L ,M) p◦_
−−→HomA(L , N ) is A-G-linear.
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(2) HomAG(L , N )= HomA(L , N )G .

(3) If (M, ρM) and (N , ρN ) are finitely generated, then

HomA(N , L) _◦p
−−→HomA(M, L)

is A-G-linear.

Proof. To define an A-G-module structure on HomA(L , N ), we need to define
an R-linear map ψL N : HomA(L , N )→ R[G] ⊗R HomA(L , N ) satisfying (2.3)
and (3.4).

Since R[G] is flat over R and L is a finitely generated A-module, it is well
known (see [Eisenbud 1995, Proposition 2.10], for example) that there is a canon-
ical isomorphism of (R[G]⊗R A)-modules:

β : R[G]⊗R HomA(L , N )→ HomR[G]⊗R A(R[G]⊗R L , R[G]⊗R N ).

Using β, we can define ψL N ( f ) for any f ∈HomA(L , N ) to be the composition

R[G]⊗R L
θ−1

L
−→ R[G]⊗R L Id⊗ f

−−→ R[G]⊗R N θN
−→ R[G]⊗R N , (3.9)

where θL and θN are as in (3.7). One checks using (3.2), (3.4) and (3.7) that ψL N

defines an A-G-module structure on HomA(L , N ). To show that HomA(L , L) has
an A-G-algebra structure, we need to show that ψL L( f ◦ g) = ψL L( f ) ◦ψL L(g).
But this is immediate from (3.9).

The map HomA(L ,M) p◦_
−−→HomA(L , N ) is known to be A-linear. Thus we

only need to show that it is R-G-linear in order to prove (1). Using (3.9), this is
equivalent to showing that, for any f ∈ HomA(L ,M), the identity

(IdR[G]⊗ p) ◦ θM ◦ (IdR[G]⊗ f ) ◦ θ−1
L = θN ◦ (IdR[G]⊗ (p ◦ f )) ◦ θ−1

L (3.10)

holds in HomR[G]⊗R A(R[G]⊗R L , R[G]⊗R N ). In order to prove this identity, it
suffices to show that (IdR[G]⊗ p) ◦ θM = θN ◦ (IdR[G]⊗ p). But this is equivalent
to saying that p is R-G-linear (see the definition of morphism of G-equivariant
sheaves below (3.2)). This proves (1), and the proof of (3) is similar.

To prove (2), recall that f ∈ HomA(L , N )G if and only if

ψL N ( f )= θN ◦ (Id⊗ f ) ◦ θ−1
L = Id⊗ f

(see Section 2A2), or equivalently if θN ◦ (Id⊗ f )= (Id⊗ f )◦ θL . We are thus left
with showing that θN ◦(Id⊗ f )= (Id⊗ f )◦θL if and only if ρN ◦ f = (Id⊗ f )◦ρL .
But the “if” part follows directly from (3.7) and the “only if” part follows by
evaluating θL on 1⊗ L ↪→ R[G]⊗R L . �
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3B. Diagonalizable group schemes. Recall from [SGA 3 II 1970, Exposé VIII]
that an affine group scheme G over R is called diagonalizable if there is a finitely
generated abelian group P such that G = Spec(R[P]), where R[P] is the group
algebra of P over R. Recall that there is a group homomorphism (the exponential
map) e : P→ (R[P])× and the R-algebra R[P] carries the following Hopf algebra
structure: 1(ea)= ea⊗ea , σ(ea)= e−a and ε(ea)= 1 for a ∈ P , where we write ea

for e(a). As R[P] is a free R-module with basis P , we see that G is a commutative
group scheme which is flat over R. It is smooth over R if and only if the order of
the finite part of P is prime to all residue characteristics of R.

Taking P = Z, we get the group scheme Gm = Spec(R[Z]) = Spec(R[t±1
]).

For an affine group scheme G over R, its group of characters is the set X (G) :=
Hom(G,Gm), whose elements are the morphisms f : G → Gm in the category
of affine group schemes over R. Every element of P defines a unique homomor-
phism of abelian groups Z→ P and defines a unique morphism of group schemes
Spec(R[P])→Gm . One checks that this defines an isomorphism P '

−→ X (G) and
yields an antiequivalence of categories from finitely generated abelian groups to
diagonalizable group schemes over R. In particular, the category DiagR of diago-
nalizable group schemes over R is abelian. We shall use the following known facts
about the diagonalizable group schemes and quasicoherent sheaves for the action
of such group schemes.

Proposition 3.11 [SGA 3 II 1970, Exposé VIII, §3]. Let φ : G→ G ′ be a morphism
of diagonalizable group schemes. Then there are diagonalizable group schemes
H , G/H and G ′/G together with exact sequences in DiagR

0→ H → G φ
→G/H → 0 and 0→ G/H → G ′→ G ′/G→ 0.

Proposition 3.12 [SGA 3 I 1970, Exposé I, Proposition 4.7.3]. Let G=Spec(R[P])
be a diagonalizable group scheme. Then the category of R-G-modules is equivalent
to the category of P-graded R-modules. The equivalence is given by associating
to every R-G-module (M, ρ) the P-graded R-module M =

⊕
a∈P Ma , where

Ma := {m ∈ M | ρ(m) = ea ⊗ m} is the subspace of M containing elements
of weight ea (see Section 2A2). To every P-graded R-module M =

⊕
a∈P Ma ,

we associate the R-G-module (M, ρ), where ρ(m) := (ea ⊗ m) for all m ∈ Ma

and a ∈ P.

Corollary 3.13. Let G = Spec(R[P]) be a diagonalizable group scheme and let

0→ M1→ M2→ M3→ 0

be an exact sequence of R-G-modules. Then the following hold:

(1) For each a ∈ P , there is an exact sequence 0→ (M1)a→ (M2)a→ (M3)a→ 0
of R-G-modules.
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(2) 0→ MG
1 → MG

2 → MG
3 → 0 is an exact sequence of R-G-modules.

(3) The sequence 0→ M1→ M2→ M3→ 0 splits as a sequence of R-G-modules
if and only if it splits as a sequence of R-modules.

Proof. Assertions (1) and (2) follow directly from Lemma 2.4 and Proposition 3.12.
The “only if” part of (3) is immediate and, to prove the “if” part, it is enough,
using (1) and Proposition 3.12, to give a splitting of the R-G-linear map ta :
(M2)a→ (M3)a for a ∈ P .

Let s : M3→ M2 be an R-linear splitting of t : M2→ M3. For a ∈ P , consider
the composite map ua : (M3)a

ia
−→ M3

s
→ M2

pa
−→ (M2)a , where ia and pa are

the inclusion and the projection maps, respectively. As t =
⊕

a∈P ta and hence
ta ◦ pa = pa ◦ t , one checks at once that ta ◦ ua is the identity on (M3)a . Moreover,
for each m ∈ (M3)a , one has

(IdR[G]⊗ ua) ◦ ρ3(m)= ea ⊗ ua(m)= ρ2 ◦ ua(m)

and this shows that ua : (M3)a→ (M2)a is an R-G-linear splitting of ta . �

Given any v ∈ P , we shall denote the free R-G-module of rank one with constant
weight ev by Rv (see Section 2A2).

Lemma 3.14. Let G = Spec(R[P]) be a diagonalizable group scheme and let
(A, φ) be an R-G-algebra. Given two free R-G-modules (V, ρV ) and (W, ρW ) of
rank one and respective constant weights ev and ew, the A-G-module structure on
HomA(VA,WA) is given by

HomA(VA,WA)' (Rw−v)⊗R A.

In particular, HomAG(VA,WA)' Av−w and EndAG((V, ρV ))' AG .

Proof. This follows directly from Lemma 3.8 by unraveling the A-G-module struc-
ture defined on HomA(VA,WA). �

Lemma 3.15. Let
0→ P1

φ1
−→ P2

φ2
−→ P3→ 0

be an exact sequence of finitely generated abelian groups and set Gi = Spec(R[Pi ]).
Let φ∗i : R[Pi ] → R[Pi+1] denote the corresponding map of group algebras. Let
(A, θ) be an R-G1-algebra.

(1) (A, (φ∗1 ⊗ IdA) ◦ θ) is an R-G2-algebra.

(2) If (E, ρ)∈ (A-G2)-Mod, then Eb := {λ∈ E | (φ∗2⊗ IdE)◦ρ(λ)= eb⊗λ} ⊆ E
is an A-G2-submodule for each b ∈ P3.

(3) If E ∈ (A-G2)-proj, then so does Eb.
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Proof. The item (1) is clear. For (2), we can write E =
⊕

a∈P2
Ea , where each

Ea is an R-G2-submodule. In particular, each Eb is an R-G2-submodule. To see
that it is an A-G2-submodule, it suffices to know that Eb is an A-submodule of E .
Setting A=

⊕
c∈P1

Ac, it suffices to check that xλ ∈ Eb for x ∈ Ac and λ ∈ Eb. But
this is a straightforward verification using the fact that (φ∗2 ◦ φ

∗

1)(ec) = 1 and we
skip it. The item (3) is clear as each Eb is a direct factor of E as an A-module. �

Corollary 3.16. With the assumptions of Lemma 3.15, assume furthermore that the
action of G1 on A is free and that every finitely generated projective module over
AG1 is extended from R. Given any finitely generated projective A-G2-module E ,
we have E ' FA for some R-G2-module F.

Proof. We can use Lemma 3.15 to assume that E = Eb for some b ∈ P3. For any
a ∈ φ−1

2 (b), it is easy to check that the evaluation map

HomAG3(Ra ⊗R A, E)⊗A (Ra ⊗R A)→ E (3.17)

is an isomorphism of A-G3-modules. Lemma 3.15, however, says that E ′ :=
HomAG3(Ra ⊗R A, E)= (HomA(Ra ⊗R A, E))G3 is an A-G2-module. It follows
that (3.17) is an A-G2-linear isomorphism.

As E ′ has trivial G3-action, it can be viewed as a projective A-G1-module. It
follows from our assumption and [Vistoli 2005, Theorem 4.46] that this is the pull-
back of a finitely generated projective module over AG1 . Since every such module
over AG1 is extended from R, we conclude that E ′ ' F ′⊗R A as an A-G2-module
for some finitely generated projective R-module F ′. Taking F = F ′ ⊗R Ra , we
get E ' FA. �

4. Structure of ringoid modules on (A-G)-Mod

Let R be a commutative noetherian ring and let G be a flat affine group scheme
over R. Let (A, φ) be an R-G-algebra. We have observed in Section 2A1 that
the flatness of G ensures that (A-G)-Mod is an abelian category. In this section,
we show that A-G-modules have the structure of modules over a ringoid (defined
below) for various cases of G. We shall say that an A-G-module is A-G-projective
if it is a projective object of the abelian category (A-G)-Mod.

Lemma 4.1 (resolution property). Let G = Spec(R[P]) be a diagonalizable group
scheme over R. Then every finitely generated A-G-module is a quotient of a finitely
generated, free A-G-module in the category (A-G)-Mod.

Proof. Let M be a finitely generated A-G-module. As an R-G-module, we can
write M =

⊕
a∈P Ma , where each Ma is an R-module and has constant weight “ea”.

We can find a finite set of elements S = {m1
a1
, . . . ,mk1

a1
, . . . ,m1

am
, . . . ,mkm

am } ⊂ M
which generates M as an A-module, with a1, . . . , am ∈ P , ki ∈ N and m j

ai ∈ Mai .
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Consider the free R-G-module F =
⊕m

i=1 Rki
ai , where Rai denotes the free rank-1

R-G-module with constant weight eai . Then we have an R-G-module map F→ M
such that the set S lies in its image. Therefore, (3.5) yields a unique A-G-module
surjection FA � M , where FA is a free A-G-module of finite rank. �

Remark 4.2. A similar argument shows that every A-G-module (not necessarily
finitely generated) has an A-G-linear epimorphism from a direct sum of (possibly
infinite) rank-1 free A-G-modules.

Lemma 4.3. Let G be as above. Then a finitely generated A-G-module is A-G-
projective if and only if it is projective as an A-module. In particular, the category
(A-G)-Mod has enough projectives.

Proof. Suppose L is a finitely generated projective A-G-module. Let M φ
→ N be a

surjective A-G-module homomorphism. Then HomA(L ,M) φ◦_
−−→HomA(L , N ) is

an A-G-linear map by Lemma 3.8 and is surjective as L is a projective A-module.
By Corollary 3.13(2), the map HomA(L ,M)G φ◦_

−−→HomA(L , N )G is also surjec-
tive and, therefore, HomAG(L ,M) φ◦_

−−→HomAG(L , N ) is surjective by Lemma 3.8.
Hence, L is A-G-projective.

Conversely, suppose L is A-G-projective. By Lemma 4.1, there exists a finitely
generated free A-G-module F and an A-G-module surjection F � L . Since L is
A-G-projective, there is a splitting and hence it is a direct summand of F . Since
F is a projective A-module, L is A-projective as well. The existence of enough
projectives in (A-G)-Mod now follows from this, Lemma 4.1 and Remark 4.2 since
any direct sum of A-G-projectives is also A-G-projective. �

Let us now consider more general situations. Recall from [SGA 3 III 1970, Ex-
posé XIX] that an affine group scheme G over R is called reductive if it is smooth
over R and, for every point x ∈ S = Spec(R), the geometric fiber G×S Spec(k(x))
is a reductive linear algebraic group over Spec(k(x)). We say that G is split re-
ductive if it is a connected and reductive group scheme over R and it admits a
maximal torus T ' Gr

m,R such that the pair (G, T ) corresponds to a (reduced) root
system (A,R, A∨,R∨) defined over Z (see [SGA 3 III 1970, Exposé XXII]). It is
known that all Chevalley groups, such as GLn , SLn , PGLn , Sp2n and SOn , are split
reductive group schemes over R.

Using similar techniques, we can now extend Lemmas 4.1 and 4.3 to the class
of split reductive group schemes over R, as follows:

Lemma 4.4. Let R be a unique factorization domain containing a field of charac-
teristic zero. Let G be a connected reductive group scheme over R which contains
a split maximal torus Gr

m,R . Let (A, φ) be an R-G-algebra. Then:

(1) Every finitely generated A-G-module is a quotient of a finitely generated, free
A-G-module in the category (A-G)-Mod.
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(2) A finitely generated A-G-module is A-G-projective if and only if it is projec-
tive as an A-module.

Proof. Let k ↪→ R be a field of characteristic zero. Since R is a UFD and G contains
a split maximal torus, it is known in this case (see [SGA 3 III 1970, Exposé XXII,
Proposition 2.2], for example) that G is in fact a split reductive group scheme
over R. In particular, it is defined over the ring Z and hence over k. Let G0 be a
k-form for G. In other words, G0 is a connected reductive group over k such that
k[G0]⊗k R ' R[G].

Let M be a finitely generated A-G-module. Since G0 is reductive and char(k)=0,
we see that it is linearly reductive (see Section 2A2). Since R[G] = k[G0] ⊗k R,
we see that the R-G-module structure on M given by (M, ρ) is same thing as the k-
G0-module structure (M, ρ) (see Section 2A1). With this k-G0-module structure,
we can write M as a (possibly infinite) direct sum of irreducible k-G0-modules.
Let S = {m1, . . . ,ms} be a generating set of M as an A-module. Then we can find
finitely many irreducible k-G0-submodules of M whose direct sum contains S.
Letting F denote this direct sum, we get a k-G0-linear map F→ M whose image
contains S. This map uniquely defines an R-G-linear map FR → M . Extending
this further to A using (3.5), we get a unique A-G-linear map FA→ M , which is
clearly surjective. This proves (1).

Suppose L is a finitely generated projective A-G-module. Let M φ
→ N be a

surjective A-G-module homomorphism. Then HomA(L ,M) φ◦_
−−→HomA(L , N )

is an A-G-linear map by Lemma 3.8 and is surjective as L is a projective A-module.
Using the linear reductivity of G0 and arguing as in the proof of Lemma 4.3, we
see that the map HomA(L ,M)G0 φ◦_

−−→HomA(L , N )G0 is surjective. As argued
in the proof of (1) above, it is easy to see from the identification of (M, ρR)

with (M, ρk) and Section 2A2 that EG
= EG0 for any R-G-module E . We con-

clude that the map HomA(L ,M)G φ◦_
−−→HomA(L , N )G is surjective. Therefore,

HomAG(L ,M) φ◦_
−−→HomAG(L , N ) is surjective. Hence L is A-G-projective. The

converse follows exactly as in the diagonalizable group case using (1). �

We recall a few definitions in category theory:

Definition 4.5. Let A be a cocomplete abelian category. We say that a set of objects
{Pα}α is a set of strong generators for A if for every object X in A we have X = 0
whenever HomA(Pα, X)= 0 for all α.

An object P is called small if
⊕

λ HomA(P, Xλ) → HomA(P,
⊕

λ Xλ) is a
bijection for every set of objects {Xλ}λ.

Recall that a ringoid R is a small category which is enriched over the category
Ab of abelian groups. This means that the hom-sets in R are abelian groups and
the compositions of morphisms are bilinear maps of abelian groups. A ringoid with
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only one object can be easily seen to be equivalent to a (possibly noncommutative)
ring R.

A (right) R-module is a contravariant functor M : (R)op
→ Ab. It is known that

the category R-Mod of (right) R-modules is a complete and cocomplete abelian
category, where the limits and colimits are defined objectwise. An R-module is
called free of rank one if it is of the form B 7→ HomR(B, A) for some A ∈ R.
Such modules are denoted by HA. We say that an R-module is finitely generated
if it is a quotient of a finite coproduct of rank-one free R-modules. It is known that
R-Mod is a Grothendieck category which has a set of small and projective strong
generators. This set is given by the collection {HA | A ∈ Obj(R)}. We refer to
[Mitchell 1972] for more details about ringoids.

A combination of the previous few results gives us the following conclusion:

Proposition 4.6. Given a commutative noetherian ring R, an affine group scheme
G over R and an R-G-algebra (A, φ), the following hold:

(1) If G = Spec(R[P]) is a diagonalizable group scheme, then the category
(A-G)-Mod has a set of small and projective strong generators.

(2) If R is a UFD containing a field of characteristic zero and G is a split re-
ductive group scheme, then the category (A-G)-Mod has a set of small and
projective strong generators.

In either case, the category (A-G)-Mod is equivalent to the category R-mod
for some ringoid R and this equivalence preserves finitely generated projective
objects.

Proof. If G = Spec(R[P]) is diagonalizable, we set S = {A ⊗R Ra | a ∈ P},
and if G is split reductive, we set S = {A ⊗k Va}a , where {Va}a is the set of
isomorphism classes of all irreducible k-G0-modules. The proposition now follows
from Lemmas 4.1, 4.3 and 4.4 and Remark 4.2. It is shown as part of the proofs
of these lemmas that S is a set of strong generators for (A-G)-Mod.

The last part follows from (1) and (2) and [Freyd 1964, Exercise 5.3H], which
says that the functor

Hom(S, _) : (A-G)-Mod→ End(S)-Mod

is an equivalence of categories, where End(S) is the full subcategory of (A-G)-Mod
consisting of objects in S. To show that this equivalence preserves finitely gener-
ated projective objects, we only need to show that it preserves finitely generated
objects, since any equivalence of abelian categories preserves projective objects.
Suppose now that M is a finitely generated A-G-module in case (1).

It was shown in the proof of Lemma 4.1 that there is a finite set {a1, . . . , am}⊆ P
and a surjective A-G-linear map

⊕m
i=1(A⊗R Rai )� M . But this precisely means



252 AMALENDU KRISHNA AND CHARANYA RAVI

that
⊕m

i=1 Hai (A⊗R Ra)� Hom(S,M)(A⊗R Ra) for all a ∈ P and this means
Hom(S,M) is a finitely generated object of End(S)-Mod. The case (2) follows
similarly. �

Remark 4.7. If G is a finite constant group scheme over R whose order is invert-
ible in R, then one can show using the same argument as above that the category
(A-G)-Mod has a single small and projective generator given by A⊗R R[G]. In
particular, a variant of Freyd’s theorem implies that (A-G)-Mod is equivalent to
the category of right S-modules, where S is the endomorphism ring of A⊗R R[G].

5. Group action on monoid algebras

In this section, we prove some properties of projective modules over the ring of
invariants when a diagonalizable group acts on a monoid algebra. We fix a com-
mutative noetherian ring R and a diagonalizable group scheme G = Spec(R[P])
over R.

Let Q be a monoid, i.e., a commutative semigroup with unit. Let G(Q) be the
Grothendieck group associated to Q.

Definition 5.1. We say that Q is

• cancellative if ax = ay implies x = y in Q;

• seminormal if x ∈ G(Q) and x2, x3
∈ Q implies x ∈ Q;

• normal if x ∈ G(Q) and xn
∈ Q for any n > 0 implies x ∈ Q;

• torsion-free if xn
= yn for some n > 0 implies x = y;

• having no nontrivial unit if x, y ∈ Q and xy = 1 imply that x is the unit of Q.

Given a monoid Q, we can form the monoid algebra R[Q]. As an R-module,
R[Q] is free with a basis consisting of the symbols {ea | a ∈ Q}, and the multiplica-
tion on R[Q] is defined by the R-bilinear extension of ea · eb = eab. The elements
ea are called the monomials of R[Q]. For example, polynomial ring R[x1, . . . , xn]

is a monoid algebra defined by the monoid Zn
+

, and the monomials of R[Zn
+
] are

exactly the monomials of the polynomial ring.

5A. Projective modules over monoid algebras. For R as above, consider the fol-
lowing conditions.

(†) Every (not necessarily finitely generated) projective R-module is free and
every finitely generated projective R[Q]-module is extended from R if Q is
a torsion-free abelian group.

(††) Every (not necessarily finitely generated) projective R-module is free and
every (finitely generated) projective module over R[Q × Zn

] is extended
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from R if Q is a torsion-free, seminormal and cancellative monoid which
has no nontrivial unit and n ≥ 0 is an integer.

Theorem 5.2. Let R be a commutative noetherian ring that is any of the following:

(1) A principal ideal domain.

(2) A regular local ring of dimension ≤ 2.

(3) A regular local ring containing a field.

Then R satisfies (†) and (††).

Proof. The first part of (†) holds more generally for any commutative noether-
ian ring R which is either local or a principal ideal domain. This follows from
[Kaplansky 1958, Theorem 2; Bass 1973].

That the principal ideal domains satisfy (†) and (††) follows from [Bruns and
Gubeladze 2009, Theorem 8.4]. These conditions for (2) follow from [Swan 1992,
Theorem 1.2, Corollary 3.5]. To show (†) and (††) for (3), we first reduce to
the case when R is essentially of finite type over a field, using the methods of
[Swan 1998, Theorem 2.1] and Neron–Popescu desingularization. In the special
case when R is essentially of finite type over a field, (3) follows from [Swan 1992,
Theorem 1.2, Corollary 3.5]. �

5B. Projective modules over the ring of invariants. Let Q be a monoid and let
u : Q → P be a homomorphism of monoids. Consider the graph homomor-
phism γu : Q → P × Q given by γu(a) = (u(a), a). This defines a unique
morphism φ : R[Q] → R[P × Q] ' R[P]⊗R R[Q] of monoid R-algebras, given
by φ( fa) = gγu(a) = eu(a)⊗ fa , where e : P→ (R[P])×, f : Q→ (R[Q])× and
g : P × Q→ (R[P × Q])× are the exponential maps (see Section 3B). Notice that
these exponential maps are injective. Setting A = R[Q], we thus get a canonical
map of R-algebras

φ : A→ R[P]⊗R A. (5.3)

One checks at once that this makes (A, φ) into an R-G-algebra.

Proposition 5.4. Let Q′ = Ker(u) be the submonoid of Q. Assume that Q satis-
fies any of the properties listed in Definition 5.1. Then Q′ also satisfies the same
property. In each case, there is an isomorphism of R-algebras R[Q′] '−→ AG .

Proof. Since we work with (commutative) monoids, we shall write their elements
additively. It is immediate from the definition that the properties of being cancella-
tive, torsion-free and having no nontrivial units are shared by all submonoids of Q.
The only issue is to show that Q′ is seminormal (resp. normal) if Q is so.

So let us assume that Q is seminormal and let x ∈G(Q′) be such that 2x, 3x ∈ Q′.
Since G(Q′)⊆ G(Q), we see that x ∈ Q. Setting y = u(x), we get 2y = u(2x)=
0= u(3x)= 3y. Since P = G(P), we get y = 3y− 2y = 0 and this means x ∈ Q′.
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Suppose now that Q is normal and x ∈G(Q′) is such that nx ∈ Q′ for some n> 0.
As G(Q′)⊆ G(Q) and Q is normal, we get x ∈ Q. The commutative diagram

Q′ //

��

Q

��

u

!!

G(Q′) // G(Q)
G(u)

// P

now shows that u(x)= G(u)(x)= 0 and hence x ∈ Q′.
It is clear from the definition that R[Q′] ⊆ AG and so we only need to show the

reverse inclusion to prove the second part of the proposition. Let p=
∑

a ra fa ∈ AG

with 0 6= ra ∈ R. This means that φ(p)= 1⊗ p = e0⊗ p. Equivalently, we get∑
a

ra(eu(a)⊗ fa)=
∑

a

ra(e0⊗ fa) ⇐⇒
∑

a

ra(eu(a)−e0)⊗ fa = 0

⇐⇒ ra(eu(a)−e0)= 0 for all a

⇐⇒ eu(a) = e0 for all a

⇐⇒ u(a)= 0 for all a

⇐⇒ a ∈ Q′ for all a.

The second equivalence follows from the fact that R[P]⊗R R[Q] is a free R[P]-
module with basis { fa | a ∈ Q} and the third follows from the fact that R[P] is a
free R-module with basis {eb | b ∈ P} and ra 6= 0. The last statement implies that
each summand of p belongs to R[Q′] and so does p. This proves the proposition.

�

Corollary 5.5. Assume that R satisfies (††). Let Q be a monoid which is can-
cellative, torsion-free, seminormal and has no nontrivial unit. Let A = R[Q] be
the monoid algebra having the R-G-algebra structure given by (5.3). Then finitely
generated projective modules over A and AG are free.

Corollary 5.6. Let R be a principal ideal domain and let Q be a monoid which is
cancellative, torsion-free and seminormal (possibly having nontrivial units). Let
A = R[Q] be the monoid algebra having the R-G-algebra structure given by (5.3).
Then finitely generated projective modules over A and AG are free.

Proof. This follows from Proposition 5.4 and the main result of [Gubeladze 1988].
�

We end this section with the following description of finitely generated free
R-G-modules when R satisfies (†) and its consequence:

Lemma 5.7. Assume that R satisfies (†). Then every finitely generated free R-G-
module is a direct sum of free R-G-modules of rank one. Every free R-G-module
of rank one has constant weight of the form ea for some a ∈ P.
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Proof. Let M be a finitely generated free R-G-module. By Proposition 3.12, we
can write M =

⊕
a∈P Ma . Lemma 2.4 says that this is a direct sum decomposition

as R-G-modules. Moreover, each Ma is a direct factor of the free R-module M
and hence is projective and thus free as R satisfies (†).

Therefore, it is enough to show that, if M is a free R-G-module of constant
weight ea , then every R-submodule of M is an R-G-submodule. But this follows
directly from Lemma 2.4. The decomposition M =

⊕
a∈P Ma also shows that a

free rank-one R-G=module must have a constant weight of the form ea with a ∈ P .
�

Corollary 5.8. Assume that R satisfies (†). Under the assumptions of Corollary 3.16
suppose that F, F ′ ∈ (R-G2)-proj are isomorphic as R-G3-modules. Then FA ' F ′A
as A-G2-modules.

Proof. By Lemma 5.7 and Proposition 3.12, it is enough to prove that, if F and
F ′ are one-dimensional free R-G2-modules of constant weights ea and ea′ , where
a, a′ ∈ P2 with φ2(a)= φ2(a′), then FA ' F ′A as A-G2-modules.

As G3 acts trivially on A and φ2(a) = φ2(a′), we have HomAG3(FA, F ′A) =
HomA(FA, F ′A). By Lemma 3.15, HomAG3(FA, F ′A) = HomA(FA, F ′A) as A-G2-
modules and HomA(FA, F ′A)' Ra′−a⊗A as an A-G2-module by Lemma 3.14. The
argument of Corollary 3.16 shows that HomAG3(FA, F ′A)' A as an A-G2-module.
Therefore, Ra′−a ⊗ A ' A and hence Ra ⊗ A ' Ra′ ⊗ A as A-G2-modules. �

6. Toric schemes and their quotients

Let R be a commutative noetherian ring and let G = Spec(R[P]) be a diagonaliz-
able group scheme over R. In this section, we recall the notion of affine G-toric
schemes and study their quotients for the G-action.

6A. Toric schemes. Let L be a lattice (a free abelian group of finite rank). A
subset of LQ of the form l−1(Q+), where l : LQ→Q is a nonzero linear functional
and Q+ = {r ∈ Q | r ≥ 0}, is called a half-space of LQ. A cone of LQ is an
intersection of a finite number of half-spaces. A cone is always assumed to be
convex, polyhedral and rational (“rational” means that it is generated by vectors
in the lattice). The dimension of a cone σ is defined to be the dimension of the
smallest subspace of LQ containing σ . We say that σ is strongly convex in LQ

if it spans LQ. By replacing LQ by its subspace σ + (−1)σ , there is no loss of
generality in assuming that σ is a strongly convex cone in LQ.

The intersection σ ∩ L is clearly a cancellative, torsion-free monoid. Moreover,
Lσ = σ ∩ L is known to be finitely generated and normal (see [Danilov 1978,
Lemma 1.3; Bruns and Gubeladze 2009, Corollary 2.24]). It follows from [Bruns
and Gubeladze 2009, Theorem 4.40] that the monoidal R-algebra A = R[Lσ ] is
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a normal integral domain if R is so. The scheme Xσ = Spec(R[Lσ ]) is called an
affine toric scheme over R. The inclusion ισ : Lσ ↪→ L defines a Hopf algebra map
φσ : A→ R[L]⊗R A (the graph of ισ ), which is equivalent to giving an action of the
“big torus” Tσ = Spec(R[L]) on Xσ . The inclusion R[Lσ ] ↪→ R[L] embeds Tσ as
a Tσ -invariant affine open subset of Xσ , where Tσ acts on itself by multiplication.

A face of σ is its subset of the form σ ∩ l−1(0), where l : LQ→ Q is a linear
functional that is positive on σ . A face of a cone is again a cone, so for each face τ
of σ , we have a toric scheme Xτ which has an action of Tσ given by the inclusion
Lτ ↪→ L and this action factors through the action of the big torus Tτ =Spec(R[M])
of Xτ (where M is the smallest sublattice of L such that MQ is a subspace contain-
ing τ ) on Xτ . Let χ be the characteristic function of the face τ , i.e., the function
which is 1 on τ and 0 outside τ . The assignment em 7→ χ(m)em (for m ∈ Lσ )
extends to a surjective homomorphism of R-algebras iτ : R[Lσ ]� R[Lτ ], which
defines a closed embedding of Xτ in Xσ . The natural inclusion Lτ ↪→ Lσ defines
a retraction morphism πτ : R[Lτ ] → R[Lσ ]. Both iτ and πτ are R-Tσ -algebra
morphisms such that the composition iτ ◦πτ is the identity.

If τ ′ ⊆ σ is another face different from τ and η is their intersection, then we get
a commutative diagram

R[Lτ ]
πτ
//

ιη

��

R[Lσ ]

ιτ ′

��

ιτ
// R[Lτ ]

ιη

��

R[Lη] πη
// R[Lτ ′] ιη

// R[Lη]

(6.1)

in which the composite horizontal maps are the identity.
Let J denote the ideal of R[Lσ ] generated by all the monomials em with m

strictly inside σ . Then J is a Tσ -invariant ideal of R[Lσ ] such that Xσ \ Y = Tσ ,
where Y = Spec(R[Lσ ]/J ) (see [Danilov 1978, Section 2.6.1], for example).

Lemma 6.2. Let 11 denote the set of codimension 1 faces of Xσ . Then the ideal J
is the ideal defining the closed subscheme

⋃
τ∈11 Xτ of Xσ , i.e., Y =

⋃
τ∈11 Xτ .

Proof. The ideal I(Xτ ) that defines Xτ is generated by all monomials em with
m ∈ (σ \ τ)∩ L . Since I

(⋃
τ∈11 Xτ

)
=
⋂
τ∈11 I(Xτ ), the lemma follows. �

Lemma 6.3. For any m ∈ L , there is a sufficiently large integer N such that
f/em ∈ R[Lσ ] for any f ∈ J N .

Proof. It is enough to prove the lemma when f =
∏N

k=1 emk with mk strictly
inside σ . Let v1, . . . , vp be generators of Lσ and let l1, . . . , lq be linear functionals
defining σ . Set s =mini, j {li (v j ) > 0}. Since mk lies strictly inside σ , li (mk) > 0
for any i . Since mk is a linear combination of the v j with nonnegative integer
coefficients, we get li (mk)≥ s for any i . Therefore, li

(∑N
k=1 mk−m

)
≥ Ns−li (m)

for any i . Since s is positive, we must have li
(∑N

k=1 mk −m
)
≥ 0 for any i if N is



EQUIVARIANT VECTOR BUNDLES AND K-THEORY ON AFFINE SCHEMES 257

sufficiently large. That is,
∑N

k=1 mk−m ∈ Lσ independent of the choice of the mk .
�

6B. G-toric schemes and their quotients. Let σ be a strongly convex, rational,
polyhedral cone in LQ, where L is a lattice of finite rank. Let A = R[Lσ ] and
X = Xσ = Spec(A). Let G = Spec(R[P]) be a diagonalizable group scheme
over R.

Definition 6.4. An affine G-toric scheme is an affine toric scheme Xσ as above
with a G-action such that the action of G on Xσ factors through the action of Tσ .

Since Spec(R) is connected, a G-toric scheme structure on Xσ is equivalent
to having a map of monoids ψ : L → P such that the R-G-algebra structure on
A = R[Lσ ] is defined by the composite action map

φP : A→ R[L]⊗R A ψ⊗Id
−−→ R[P]⊗R A. (6.5)

Examples 6.6. We shall say that G acts linearly on a polynomial algebra A =
R[t1, . . . , tn] if there is a free R-G-module (V, ρ) of rank n such that A=SymR(V ).
In this case, we also say that G acts linearly on Spec(A)= An

R .
Assume that R satisfies (†). Let A = R[x1, . . . , xn, y1, . . . , yr ] be a polynomial

R-algebra with a linear G-action, with n, r ≥ 0. Using Lemma 5.7, we can assume
that the G-action on A is given by φ(xi )= eλi⊗xi for 1≤ i ≤n and φ(y j )= eγ j⊗y j

for 1≤ j ≤ r .

(1) Let A = R[x1, . . . , xn]. Consider the cone σ = Qn
+

of LQ, where L is the
lattice Zn . Then A = R[σ ∩ L] and Spec(A) is an affine G-toric scheme via
the morphism ψ : Zn

+
→ P given by ψ(αi ) = λi , where {α1, . . . , αn} is the

standard basis of Zn
+

.

(2) Let A = R[x1, . . . , xn, y±1
1 , . . . , y±1

r ]. Then it can be seen, as in (1) above,
that Spec(A) is an affine G-toric scheme by considering the lattice L = Zn+r

and the cone σ =Qn
+
⊕Qr in LQ.

Lemma 6.7. Let θ : L → P be a homomorphism from L to a finitely generated
abelian group and let M = Ker(θ). Then R[σ ∩ M] is a finitely generated R-
algebra.

Proof. By replacing P by the image of θ , we can assume that θ is an epimorphism.
This yields an exact sequence

0→ MQ
iM
−→ LQ→ PQ→ 0. (6.8)

We write σ =
⋂r

i=1 σi , where σi = l−1
i (Q+) is a half-space. By taking repeated

intersections of M with these σi and using induction, we easily reduce to the
case when r = 1. We set τ = σ ∩ MQ. Then τ = l−1(Q+) ∩ MQ = m−1(Q+),
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where m = l ◦ iM . In particular, τ is a cone in MQ. Furthermore, as M ↪→ L , it is a
free abelian group and hence a lattice in MQ. It follows from Gordon’s lemma (see
[Fulton 1993, Proposition 1.2.1], for instance) that τ ∩ M is a finitely generated
monoid. Therefore, σ ∩M = σ ∩MQ ∩M = τ ∩M is a finitely generated monoid.
Since any generating set of σ ∩M generates R[σ ∩M] as an R-algebra, the lemma
follows. �

Combining Lemma 6.7 and Proposition 5.4, we get:

Corollary 6.9. Let AG denote the ring of G-invariants of A with respect to φP .
Then AG is a finitely generated R-algebra.

Lemma 6.10. Let B be any flat AG-algebra. Then B = (A⊗AG B)G .

Proof. Set B ′ = A⊗AG B. To prove this lemma, we need to recall how G acts
on B ′. The map φP : A→ R[P]⊗R A induces a B ′-algebra map

B ′ = A⊗AG B
φP⊗1B
−−−−→ (R[P]⊗R A)⊗AG B.

This can also be written as φP,B : B ′→ R[P]⊗R B ′ with φP,B = φP ⊗ 1B , which
gives a G-action on Spec(B ′).

Let γP : A→ R[P] ⊗R A be the ring homomorphism γP(a) = 1⊗ a, which
gives the projection map G× X→ X . Set γP,B = γP ⊗ 1B : B ′→ R[P]⊗R B ′. It
is clear that

γP,B(a⊗ b)= γP(a)⊗ b = 1⊗ a⊗ b = 1⊗ (a⊗ b).

Since B ′ is generated by elements of the form a⊗ b with a ∈ A and b ∈ B, we see
that γP,B(α)= 1⊗α for all α ∈ B ′.

Since A = R[Lσ ] is flat (in fact free) over R (see Lemma 6.7), the map γP :

A→ R[P]⊗R A is injective. Furthermore, there is an exact sequence (by definition
of AG)

0→ AG
→ A

φP−γP
−−−−→ R[P]⊗R A. (6.11)

As B is flat over AG , the tensor product with B over AG yields an exact sequence

0→ B→ B ′
(φP⊗1B)−(γP⊗1B)
−−−−−−−−−−−→ R[P]⊗R B ′. (6.12)

Since φP ⊗ 1B = φP,B and γP ⊗ 1B = γP,B , we get an exact sequence

0→ B→ B ′
φP,B−γP,B
−−−−−−→ R[P]⊗R B ′. (6.13)

But this is equivalent to saying that B = (B ′)G. �

Lemma 6.14. Let I , I ′ ⊆ A be inclusions of A-G-modules such that I + I ′ = A.
Then the sequence

0→ I G
→ AG

→ (A/I )G→ 0
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is exact and I G
+ I ′G = AG . In particular, the map Spec((A/I )G) ↪→ Spec(AG)

is a closed immersion and Spec((A/I )G)∩Spec((A/I ′)G)=∅ in Spec(AG).

Proof. The assumption I+ I ′= A is equivalent to saying that the map I⊕ I ′→ A is
surjective. The lemma is now an immediate consequence of Corollary 3.13(2). �

Combining the above lemmas, we obtain the following. We refer to [Mumford
et al. 1994, §0.1] for the terms used in this result.

Proposition 6.15. Let X = Xσ be a G-toric scheme over R as above. Then a
categorical quotient in SchS , p : X→ X ′, for G-action (in the sense of [Mumford
et al. 1994, Definition 0.5]) exists. Moreover, the following hold:

(1) If Z ⊆ X is a G-invariant closed subscheme, then p(Z) is a closed subscheme
of Y .

(2) If Z1, Z2 ⊆ X are G-invariant closed subschemes with Z1 ∩ Z2 = ∅, then
p(Z1)∩ p(Z2)=∅.

(3) The map p : X→ X ′ is a uniform categorical quotient in SchS .

(4) The quotient map p is submersive.

Proof. We take X ′ = Spec(AG). It follows from Lemma 6.7 that X ′ is an affine
scheme of finite type over R. The fact that p : X → X ′, given by the inclusion
AG ↪→ A, is a categorical quotient follows at once from the exact sequence (6.11).
The universality of p with respect to G-invariant maps p′ : Y ′→ X ′ of affine G-
schemes with trivial G-action on Y ′ also follows immediately from (6.11). The
properties (1) and (2) are direct consequences of Lemma 6.14. To prove (3), let
Y ′ → X ′ be a flat morphism between finite type R-schemes. To show that p′ :
Y ′ ×X ′ X → Y ′ is a categorical quotient, we can use the descent argument of
[Mumford et al. 1994, §0.2, Remark 8] to reduce to the case when Y ′ is affine. In
this case, the desired property follows at once from Lemma 6.10. Item (4) follows
from (1)–(3) and [Mumford et al. 1994, §0.2, Remark 6]. �

Corollary 6.16. Let X = Spec(A) be a G-toric scheme as above and let p :
X → X ′ be the quotient map. Let Y ( X be a closed subscheme defined by a
G-invariant ideal J . Let h ∈ AG be a nonunit such that h ≡ 1 (mod J ) and set
V ′ = Spec(AG

[h−1
]). Then we can find an open subscheme U ′ of X ′ such that

X ′ =U ′ ∪ V ′ and p−1(U ′)∩ Y =∅.

Proof. Our assumption says that V ′ ( X ′ is a proper open subset of X ′ and
Y ⊂ V = p−1(V ′) is a G-invariant closed subset. Setting Y ′ = p(Y ), it follows
from Proposition 6.15 that Y ′ ( X ′ is a closed subset contained in V ′. In particular,
Y1 = p−1(Y ′) is a G-invariant closed subscheme of X such that Y ⊆ Y1 ( V ( X .
The open subset U ′ = X ′ \ Y ′ now satisfies our requirements. �
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7. Equivariant vector bundles on G-toric schemes

In this section, we prove our main result about equivariant vector bundles on affine
G-toric schemes.

7A. The setup. We shall prove Theorem 7.8 under the following setup. Let R be
a commutative noetherian ring and let S = Spec(R). Let G = Spec(R[P]) be a
diagonalizable group scheme over R. Let L be a lattice of finite rank and let σ be a
strongly convex, polyhedral, rational cone in LQ. Let 1 denote the set of all faces
of σ .

Let A = R[Lσ ] be such that X = Spec(A) is a G-toric scheme via a homo-
morphism ψ : L → P (see (6.5)). Set Y =

⋃
τ∈11 Xτ . Let X ′ = Spec(AG) and

let p : X → X ′ denote the uniform categorical quotient in SchS defined by the
inclusion AG ↪→ A.

7B. Reduction to faithful action. We set Q =ψ(L) and H = Spec(R[Q]). Then
H is a diagonalizable closed subgroup of Tσ which acts faithfully on X and G
acts on X via the quotient G � H (see Proposition 3.11). The following lemma
reduces the proof of the main theorem of this section to the case of faithful action
of G on X .

We shall say that a finitely generated projective A-G-module M over an R-G-
algebra A is trivial if it can be equivariantly extended from R, that is, there is a
finitely generated projective R-G-module F such that M ' FA.

Lemma 7.1. If every finitely generated projective A-H-module is trivial, then so
is every finitely generated projective A-G-module.

Proof. Given any E ∈ (A-G)-proj, we can write E =
⊕

b∈P/Q Eb with Eb =⊕
{a |b=a mod Q} Ea . Lemma 3.15 says that each Eb ∈ (A-G)-proj. It suffices to

show that each Eb is trivial.
Now, Eb is trivial if and only if Eb⊗R R−a is trivial for any a with b= a mod Q.

But Eb⊗R R−a is a projective A-H -module and so we can find an A-H -module
isomorphism φ : Eb ⊗R R−a

'
−→ FA for some F ∈ (R-H)-proj. This is then an

A-G-module isomorphism as well. �

7C. Trivialization in a neighborhood of Y. Note that, if X = Spec(A) is an affine
G-toric scheme and τ is any face of the cone σ , then Xτ is a G-invariant closed
subscheme of X . Moreover, the map πτ : R[Lτ ] → A = R[Lσ ] defined before is
G-equivariant (because it is Tσ -equivariant).

Lemma 7.2. Let τ1, . . . , τk denote the codimension-1 faces of σ and let I j denote
the ideal of A defining the closed subscheme Xτ j associated to the face τ j . Let E be
an A-G-module and F be an R-G-module such that E/I j ' FA/I j for all 1≤ j ≤ k.
Then E/J ' FA/J , where J denotes the ideal defining Y =

⋃k
i=1 Xτi .
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Proof. Let Jr be the ideal defining the G-invariant closed subscheme Yr =
⋃r

i=1 Xτi

for 1 ≤ r ≤ k. We prove by induction on r that E/Jr ' FA/Jr . Assume that
φ : E/Jr ' FA/Jr and η : E/Ir+1 ' FA/Ir+1 are given isomorphisms. This gives
us a G-equivariant automorphism η ◦φ−1 of FA/(Jr+Ir+1). Under the G-equivariant
retraction 5r+1 : Xσ → Xτr+1 = Spec(A/Ir+1) (where 5i = Spec(πi )), we have
5r+1(Yr )⊂ Yr ∩ Xτr+1 (see (6.1)).

Therefore φ′ = (5r+1|Yr )
∗(η ◦φ−1) defines an A/(Jr )-G-linear automorphism

of FA/Jr . Replacing φ by the isomorphism φ′◦φ, we can arrange that φ and η agree
modulo (Jr + Ir+1). So they define a unique isomorphism E/Jr+1→ FA/Jr+1 . To
see this, use the exact sequence

0→ E/Jr+1→ E/Jr × E/Ir+1→ E/(Jr + Ir+1)→ 0. �

Lemma 7.3. Let P ∈ Mm(AG) be a rank-m matrix with entries in AG such that
P is invertible modulo I j for all 1 ≤ j ≤ k, where I j and J are as in Lemma 7.2.
Then, for any positive integer N , there is P̃N ∈ GLm(AG) such that (P P̃N )i j ∈ J N

for all i 6= j .

Proof. For 1≤ i ≤ k, we consider the commutative diagram of retractions

(A/Ii )
G //

πG
τi
��

A/Ii

πτi

��

AG // A

(7.4)

Since P mod I1 is invertible, P1 := πτ1(P mod I1) ∈ GLm(AG) and hence
P P−1

1 ≡ Idm (mod I1). We now let P2 denote the image of P P−1
1 mod I2 under

the G-equivariant retraction πτ2 . This yields P2 ≡ Idm (mod I1) (see (6.1)) and so
P P−1

1 P−1
2 ≡ Idm (mod I1 ∩ I2). Repeating this procedure and using Lemma 6.2,

we can find P̃1 ∈GLm(AG) such that P P̃1≡ Idm (mod J ), which proves the lemma
for N = 1.

Assume now that there exists P̃N ∈GLm(AG) such that (P P̃N )i j ≡ 0 (mod J N )

for i 6= j and (P P̃N )i i ≡ 1 (mod J ). By elementary column operations

Ci 7→ Ci − (P P̃N ) j i C j for i > j = 1, . . . ,m− 1
and

Ci 7→ Ci − (P P̃N ) j i C j for i < j = 2, . . . ,m

on P P̃N , we get a matrix whose off-diagonal elements are 0 (mod J N+1) and diag-
onal elements are 1 (mod J ). These operations correspond to right multiplication
by some P ′ ∈ GLm(AG). Taking P̃N+1 = P̃N P ′ completes the induction step. �

Lemma 7.5. Assume that R satisfies (†) and let I be a G-invariant ideal of A. Let
F and E be finitely generated free R-G- and A-G-modules, respectively. Given
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any (A/I )-G-module isomorphism φ : E/I '
−→ FA/I , there exists h ∈ AG such that

h ≡ 1 modulo I and φ extends to an Ah-G-module isomorphism φh : Eh
'
−→ FAh .

Proof. Let φ′ denote the inverse of φ. Since E and FA are projective A-G-modules,
φ and φ′ extend to A-G-module homomorphisms T : E→ FA and T ′ : FA→ E
by Lemma 4.3. As R satisfies (†), F is a direct sum of rank-1 free R-G-modules
by Lemma 5.7. Since E and FA are isomorphic modulo I , they have the same
rank, say m. Fix an R-basis {v1, . . . , vm} of F consisting of elements of constant
weights ew1, . . . , ewm (wi ∈ P) and fix any A-basis of E .

With respect to the chosen bases, T and T ′ define matrices in Mm(A) which
are invertible modulo I . Moreover, as T T ′ = (ai j ) defines an A-G-module endo-
morphism of FA, it can be easily checked using Lemma 3.14 that ai j ∈ Awi−w j and,
using the Leibniz formula for the determinant, one checks that det(T T ′) ∈ AG . We
take h = det(T T ′) to finish the proof. �

7D. Descent to the quotient scheme. The following unique “descent to the quo-
tient” property of the G-equivariant maps will be crucial for proving our main
results on equivariant vector bundles:

Lemma 7.6. Assume that R satisfies (†). Let q :W →W ′ be a uniform categorical
quotient in SchS for a G-action on W , where w : W → S and w′ : W ′→ S are
structure maps. Assume that q is an affine morphism. Let F be a finitely generated
projective R-module. Given any G-equivariant endomorphism f of w∗(F), there
exists a unique endomorphism f̃ of w′∗(F) such that f = q∗( f̃ ). In particular,
f̃ is an automorphism if f is so.

Proof. The second part follows from the uniqueness assertion in the first part, so we
only have to prove the existence of a unique f̃ . Since W ′ is noetherian, we can write
W ′ =

⋃r
i=1 U ′i , where each U ′i is affine open. We prove the lemma by induction

on r . If r = 1, then W ′ is affine and hence so is W . We can write W = Spec(B)
and W ′ = Spec(BG) for some finite-type R-G-algebra B (see Proposition 6.15).
As F is a free R-G-module of constant weight e0, it follows from Lemma 3.14 that
f ∈ Mn(BG) with n = rank(F). In particular, it defines a unique endomorphism
f̃ of w′∗(F) such that f = q∗( f̃ ).

We now assume r ≥ 2 and set U ′ =
⋃r

i=2 U ′i . Then q : U1 := q−1(U ′1)→ U ′1
and q : U := q−1(U ′)→ U ′ are uniform categorical quotients. As U ′1 is affine,
there exists a unique f̃U ′1 : FU ′1 → FU ′1 such that q∗( f̃U ′1)= f |U1 . By the induction
hypothesis, there exists a unique f̃U ′ : FU ′ → FU ′ such that q∗( f̃U ′) = f |U . As
V ′ := U ′1 ∩U ′ has a cover by r − 1 affine opens, the induction hypothesis and
uniqueness imply that f̃U ′1 |V = f̃U ′ |V . The reader can check that f̃U ′1 and f̃U ′ glue
together to define the desired unique endomorphism f̃ : w′∗(F)→ w′∗(F). �
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7E. The main theorem. We now use the above reduction steps to prove our main
result of this section. We first consider the case of faithful action.

Lemma 7.7. Suppose ψ : L � P. Assume that R satisfies (†) and that every finitely
generated projective AG-module is extended from R. Let E ∈ (A-G)-proj and
F ∈ (R-G)-proj. Suppose there exist G-equivariant isomorphisms η : E |U '

−→FA|U

and φ : E |V '
−→FA|V , where U = X \Y is the big torus of X and V =Spec(A[h−1

])

for some h ∈ AG such that h ≡ 1 (mod J ), where J is the defining ideal of the
inclusion Y ↪→ X. Then E ' FA as A-G-modules.

Proof. If h is a unit in AG, we have V = X and we are done. So assume that h is
not a unit in AG. Let p : X→ X ′ denote the quotient map as in Proposition 6.15.
Set V ′ = Spec(AG

[h−1
]) so that V = p−1(V ′) and let U ′ ⊆ X ′ be as obtained in

Corollary 6.16 so that U1 := p−1(U ′)⊆U . Set W ′ =U ′ ∩ V ′ and W = p−1(W ′).
Then η : E |U1 → FA|U1 is a G-equivariant isomorphism. Let 8= φ ◦ η−1 denote
the G-equivariant automorphism of FA|W .

By Lemma 5.7, we can write F =
⊕m

i=1 F̃λi , where λi ∈ P are not necessarily
distinct and F̃λi are free R-G-modules of rank 1 and constant weight eλi . Since
L � P , there exist monomials in R[L] of any given weight. Suppose di ∈ R[L] is
a monomial having weight eλi . Let D be the diagonal matrix with diagonal entries
d1, . . . , dm . Then D ∈ HomR[L]G(FR[L], F ′R[L]) is an isomorphism of R[L]-G-
modules, where F ′ is a free R-G-module of rank m and constant weight e0. Thus
8̃ := D8D−1 is a G-equivariant automorphism of F ′A|W .

Since p :W→W ′ is a uniform categorical quotient which is an affine morphism,
we can apply Lemma 7.6 to find a unique automorphism f of F ′AG |W ′ such that
8̃= p∗( f ). As X ′ =U ′ ∪ V ′, such an automorphism defines a locally free sheaf
on X ′ by gluing of sheaves [Hartshorne 1977, Exercise II.1.22]. Since every such
locally free sheaf on X ′ is free by assumption, we have [loc. cit.] f = f2 ◦ f1

for some automorphisms f1 and f2 of F ′AG |U ′ and F ′AG |V ′ , respectively. Then 8̃=
p∗( f )= p∗( f2)◦ p∗( f1) and hence we get8= (D−1 p∗( f2)D)(D−1 p∗( f1)D). As
p∗( f2) defines a matrix P1 in GLm(AG

[h−1
]), by an appropriate choice of basis

we can find s ≥ 0 such that P := hs P1 ∈ Mm(AG).
By Lemma 7.3, we can find P̃N ∈ GLm(AG) such that (P P̃N )i j ∈ J N for i 6= j .

The (i j)-th entry of D−1 P P̃N D is d−1
i d j (P P̃N )i j . Taking N sufficiently large, we

may assume that d−1
i d j (P P̃N )i j ∈ A by Lemma 6.3.

Setting θ1 = (D−1 P̃−1
N p∗( f1)D) and θ2 = (D−1h−s P P̃N D), we see that θ1

and θ2 define G-equivariant automorphisms of FA|U1 and FA|V , respectively, such
that θ2 ◦ θ1 =8= φ ◦ η

−1.
If we set η′ = θ1 ◦ η and φ′ = θ−1

2 ◦ φ, we see that η′ : E |U1 → FA|U1 and
φ′ : E |V → FA|V are G-equivariant isomorphisms such that η′|W = φ′|W . By
gluing therefore, we get a G-equivariant isomorphism E→ FA on X . �
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Theorem 7.8. Consider the setup of Section 7A. Assume that R satisfies (†) and
that finitely generated projective modules over Aτ and (Aτ )G are extended from R
for every τ ∈1. Then every finitely generated projective A-G-module is trivial.

Proof. We can assume that the map ψ : L→ P is surjective by Lemma 7.1. Let
E ∈ (A-G)-proj. Since R satisfies (†) and every finitely generated projective A-
module is extended from R, we see that E is a free A-module of finite rank. In
particular, Lemma 7.5 applies.

Let τ̃ denote the face of σ of smallest dimension. Then X τ̃ is a torus whose
dimension is that of the largest subspace of LQ contained in σ . Let M denote
the smallest sublattice of L such that τ̃ = MQ. Let φ : M ↪→ L→ P denote the
composite map. Consider the abelian groups Q1 := Im(φ) and Q2 := P/Q1. Fix
a finitely generated projective R-G-module F such that E |X τ̃ ' F ⊗R R[L τ̃ ]. This
exists by Corollary 3.16, applied to the sequence

0→ Q1→ P→ P/Q1→ 0.

We prove by induction on the dimension of the cone σ that E ' FR[Lσ ]. Assume
that E |Xτ ' FR[Lτ ] for all codimension-1 faces τ of σ . Let Y =

⋃
τ∈11 Xτ be as

before. We first apply Lemma 7.2 to get an isomorphism φ̃ : E/J ' FA/J . We
next apply Lemma 7.5 to find h ∈ AG such that φ̃ extends to an isomorphism φ on
V = Spec(Ah)⊇ Y .

Applying Corollaries 3.16 and 5.8 to the torus Tσ = Spec(R[L]), there exists
an R[L]-G-module isomorphism η : E |Tσ

'
−→ FR[L] = FA|Tσ (consider the exact

sequence 0→ P→ P→ 0→ 0 and note that the action of G on Tσ is free). We
now apply Lemma 7.7 to conclude that E ' FA. This completes the induction step
and proves the theorem. �

As an easy consequence of Corollary 5.6 and Theorem 7.8, we obtain:

Corollary 7.9. Consider the setup of Section 7A and assume that R is a principal
ideal domain. Then every finitely generated projective A-G-module is trivial.

8. Vector bundles over An
R × Gr

m,R

In this section, we apply Theorem 7.8 to prove triviality of G-equivariant projective
modules over polynomial and Laurent polynomial rings. When R satisfies (††), we
have the following answer to the equivariant Bass–Quillen question:

Theorem 8.1. Let R be a regular ring and let R[x1, . . . , xn, y1, . . . , yr ] be a poly-
nomial R-algebra with a linear G-action with n, r ≥ 0. Then the following hold:

(1) If R satisfies (††) and A = R[x1, . . . , xn], then every finitely generated projec-
tive A-G-module is trivial.
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(2) If R is a PID and A = R[x1, . . . , xn, y±1
1 , . . . , y±1

r ], then every finitely gener-
ated projective A-G-module is trivial.

Proof. As shown in Examples 6.6, Spec(A) is an affine toric G-scheme in both
cases. To prove (1), note that R satisfies the hypotheses of Theorem 7.8, by
Corollary 5.5. Therefore, (1) follows from Theorem 7.8. Similarly, (2) is a special
case of Corollary 7.9. �

8A. Vector bundles over An
R without condition (††). Let R be a noetherian ring

and let G = Spec(R[P]) be a diagonalizable group scheme over R. We now show
that if the localizations of R satisfy (††) then the equivariant vector bundles over An

R
can be extended from Spec(R). In order to show this, we shall need the following
equivariant version of Quillen’s patching lemma [1976, Lemma 1]. In this section,
we shall allow our R-G-algebras to be noncommutative (see Section 2A3).

Given a (possibly noncommutative) R-G-algebra A, a polynomial A-G-algebra
is an R-G-algebra A[t] which is a polynomial algebra over A with indetermi-
nate t such that the inclusion A ↪→ A[t] is a morphism of R-G-algebras and
t ∈ A[t] is semi-invariant (see Section 2A2). For a polynomial A-G-algebra A[t],
let (1+ t A[t])× denote the (possibly noncommutative) group of units φ(t) ∈ A[t]
such that φ(0)= 1.

Given an A[t]-G-module M (with A commutative), we shall say that M is ex-
tended from A if there is an A-G-module N and an A[t]-G-linear isomorphism
θ : N ⊗A A[t] '−→M . It is easy to check that this condition is equivalent to saying
that there is an A[t]-G-linear isomorphism θ : (M/t M)⊗A A[t] '−→M .

Lemma 8.2 (equivariant patching lemma). Let (A, φ) be an R-G-algebra and
let (A[t], φ̃) be a polynomial A-G-algebra as above. Let 0 6= f ∈ R and let
θ(t) ∈ (1+ t A f [t])× be a G-invariant polynomial. Then there exists k ≥ 0 such
that, for any a, b ∈ R with a − b ∈ f k R, we can find a G-invariant element
ψ(t) ∈ (1+ t A[t])× with ψ f (t)= θ(at)θ(bt)−1.

Proof. This is a straightforward generalization of [Quillen 1976, Lemma 1] with
the same proof almost verbatim. The only extra thing we need to check is that
if θ(t) ∈ (1+ t A f [t])× ∩ (A[t])G then ψ(t) (as constructed in [loc. cit.]) is also
G-invariant. But this can be checked directly, using the fact that t is semi-invariant.
We leave the details to the reader. �

Lemma 8.3. Let (A, φ) and (A[t], φ̃) be as in Lemma 8.2. Assume that A is
commutative. Let M be a finitely generated A[t]-G-module and let Q(M) =
{ f ∈ R | M f is an extended A f [t]-G-module}. Then Q(M)∪ {0} is an ideal of R.

Proof. We only need to check that if f0, f1 ∈ Q(M) then f0+ f1 ∈ Q(M). We can
assume that f0+ f1 is invertible in R. In particular, ( f0, f1)= R. Set

Ai = A fi , Mi = M fi for i = 0, 1, N = M/t M and E = HomA(N , N ).
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Given isomorphisms ui : N ⊗A Ai [t] '−→Mi , Quillen [1976, Theorem 1] con-
structs automorphisms ψi (t) ∈ HomAi [t](N ⊗A Ai [t], N ⊗A Ai [t]) = Ei [t] for
i = 0, 1 with the following properties:

u′i := ui ·ψi (t) : N ⊗A Ai [t] '−→Mi and (u′0) f1 = (u
′

1) f0 .

One should observe here that the isomorphism

Ei [t] '−→HomAi [t](N ⊗A Ai [t], N ⊗A Ai [t]), f ⊗ t i
7→ (n⊗ a 7→ f (n)⊗ at i ),

is R-G-linear (see Lemma 3.8).
To prove the lemma, we only need to show that each ψi (t) is G-equivariant. By

Lemma 3.8, this is equivalent to showing that ψi (t) ∈ (Ei [t])G for i = 0, 1. But
this follows at once (as the reader can check by hand) by observing that each ui

is G-invariant and subsequently applying Lemma 8.2 to E f0 and E f1 , which are
(possibly noncommutative) R-G-algebras by Lemma 3.8. �

The following result generalizes Theorem 8.1 to the case when the base ring R
does not necessarily satisfy (††), but whose local rings satisfy (††). For examples
of local rings satisfying (††), see Theorem 5.2.

Theorem 8.4. Let R be a noetherian integral domain such that its localizations at
all maximal ideals satisfy (††). Let G = Spec(R[P]) be a diagonalizable group
scheme over R. Let V =

⊕n
i=1 Rxi be a direct sum of one-dimensional free R-

G-modules and let A = R[x1, . . . , xn] = SymR(V ). Then every finitely generated
projective A-G-module is extended from R.

Proof. We prove the theorem by induction on n. There is nothing to prove when
n = 0 and the case n = 1 is an easy consequence of Theorem 8.1 and Lemma 8.3.
Suppose now that n ≥ 2 and every projective R[x1, . . . , xn−1]-G-module is ex-
tended from R.

Let M be a finitely generated projective A-G-module and set Ai = R[x1, . . . , xi ].
It follows from Theorem 8.1 that Mm is extended from (An−1)m for every maximal
ideal m of R. We now apply Lemma 8.3 to (An−1, φn−1) and (An−1[xn], φ̃n−1)=

(A, φ) to conclude that M is extended from An−1. It follows by induction that M
is extended from R. �

9. Derived equivalence and equivariant K-theory

In this section, we shall apply the results of Section 4 to show that the derived
equivalence of equivariant quasicoherent sheaves on affine schemes with group
action implies the equivalence of the equivariant K-theory of these schemes. When
the underlying group is trivial, this was shown by Dugger and Shipley [2004]. In
the equivariant setup too, we make essential use of some general results of Dugger
and Shipley, which we now recall.
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9A. Some results of Dugger and Shipley. Recall that an object X in a cocomplete
triangulated category T is called compact if the natural map lim

−−→α
HomT (X, Zα)→

HomT (X, lim
−−→α

Zα) is a bijection for every direct system {Zα} of objects in T .
If A is an abelian category, then an object of the category ChA of chain com-

plexes over A is called compact if its image in the derived category D(A) is com-
pact in the above sense.

The key steps in the proof of our main theorem of this section are Proposi-
tions 4.6 and A.1 and the following general results of [Dugger and Shipley 2004]:

Theorem 9.1 [Dugger and Shipley 2004, Theorem D]. Let A and B be cocomplete
abelian categories which have sets of small, projective, strong generators. Let
Kc(A) (resp. Kc(B)) denote the Waldhausen K-theory of the compact objects in
Ch(A) (resp. Ch(B)). Then:

(1) A and B are derived equivalent if and only if Ch(A) and Ch(B) are equivalent
as pointed model categories.

(2) If A and B are derived equivalent, then Kc(A)' Kc(B).

Theorem 9.2 [Dugger and Shipley 2004, Corollary 3.9]. Let M and N be pointed
model categories connected by a zigzag of Quillen equivalences. Let U be a com-
plete Waldhausen subcategory of M, and let V consist of all cofibrant objects in
N which are carried into U by the composite of the derived functors of the Quillen
equivalences. Then V is a complete Waldhausen subcategory of N , and there is an
induced zigzag of weak equivalences between K (U) and K (V).

Theorem 9.3 [Dugger and Shipley 2004, Theorems 4.2 and 7.5]. Let R and S be
two ringoids (see Section 4). Then the following conditions are equivalent:

(1) There is a zigzag of Quillen equivalences between Ch(Mod-R) and Ch(Mod-S).
(2) D(R)' D(S) are triangulated equivalent.

(3) The bounded derived categories of finitely generated projective R- and S-
modules are triangulated equivalent.

9B. Derived equivalence and K-theory under group action. Let R be a commu-
tative noetherian ring and let G be an affine group scheme over R. Let (A, φ) be
an R-G-algebra and let X = Spec(A) be the associated affine S-scheme with G-
action, where S=Spec(R). We shall denote this datum in this section by (R,G, A).
Let ChG(A) denote the abelian category of unbounded chain complexes of A-G-
modules and let DG(A) denote the associated derived category. One knows that
DG(A) is a cocomplete triangulated category.

We shall say that (R,G, A) has the resolution property if for every finitely gen-
erated A-G-module M there is a finitely generated projective A-G-module E and
a G-equivariant epimorphism E � M .



268 AMALENDU KRISHNA AND CHARANYA RAVI

Recall that a bounded chain complex of finitely generated, projective A-G-
modules is called a strict perfect complex. A (possibly unbounded) chain com-
plex of A-G-modules is called a perfect complex if it is isomorphic to a strict
perfect complex in DG(A). We shall denote the categories of strict perfect and
perfect complexes of A-G-modules by Sperf G(A) and Perf G(A), respectively. It
is known that Sperf G(A) and Perf G(A) are both complicial bi-Waldhausen cate-
gories in the sense of [Thomason and Trobaugh 1990] and there is a natural in-
clusion Sperf G(A) ↪→ Perf G(A) of complicial bi-Waldhausen categories. As this
inclusion induces an equivalence of the associated derived categories, it follows
from [Thomason and Trobaugh 1990, Theorem 1.9.8] that this induces a homo-
topy equivalence of the associated Waldhausen K-theory spectra. We shall denote
the common derived category by DG(Perf/A) and the common K-theory spectrum
by K G(A). It follows from [Thomason and Trobaugh 1990, Theorem 1.11.7] that
K G(A) is homotopy equivalent to the K-theory spectrum of the exact category of
finitely generated projective A-G-modules.

Let ChG
b (A) denote the category of bounded chain complexes of finitely gener-

ated A-G-modules and let DG
b (A) denote its derived category. The Waldhausen

K-theory spectrum of ChG
b (A) will be denoted by K ′G(A). Let Chhb,−(A-G-proj)

be the category of chain complexes of finitely generated projective A-G-modules
which are bounded above and cohomologically bounded. Let Dhb,−(A-G-proj)
denote the associated derived category.

If (R,G, A) has the resolution property, then every complex of ChG
b (A) is quasi-

isomorphic to a complex of Chhb,−(A-G-proj) and vice versa. It follows from
[Thomason and Trobaugh 1990, Theorem 1.9.8] that they have homotopy equiva-
lent Waldhausen K-theory spectra:

K ′G(A)' K (Chhb,−(A-G-proj)). (9.4)

Lemma 9.5. Assume that (R,G, A) has the resolution property. Given any com-
plex K ∈ ChG(A), there exists a direct system of strict perfect complexes Fα , and a
quasi-isomorphism

lim
−−→
α

Fα ∼
−→ K .

Proof. The nonequivariant case of this result was proven in [Thomason and Trobaugh
1990, Proposition 2.3.2] and a similar proof applies here as well once we verify
that [ibid., Hypothesis 1.9.5.1] holds for A= (A-G)-Mod, D the category of (pos-
sibly infinite) direct sums of finitely generated projective A-G-modules and C the
category of cohomologically bounded above complexes in ChG(A). For this, it is
enough to show that if M→ N is a surjective map of A-G-modules then there is a
(possibly infinite) direct sum F of finitely generated projective A-G modules and an
A-G-linear map F→M such that the composite F→M→ N is surjective. But M
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is the direct limit of its finitely generated A-G-submodules, as shown in [Laumon
and Moret-Bailly 2000, Proposition 15.4] (see also [Thomason 1987, Lemma 2.1]
when G is faithfully flat over S). Therefore, it follows from the resolution property
that M is a quotient of a direct sum of finitely generated projective A-G-modules.

�

In order to lift the derived equivalence to an equivalence of Waldhausen cate-
gories, we need to use model structures on the category of chain complexes of
A-G-modules. We refer to [Hovey 1999] for model structures and various related
terms that we shall use here. Let A be a Grothendieck abelian category with enough
projective objects and let ChA denote the category of unbounded chain complexes
over A. Recall from [Hovey 2007, Proposition 7.4] that ChA has the projective
model structure, in which the weak equivalences are the quasi-isomorphisms, fi-
brations are termwise surjections and the cofibrations are the maps having the left
lifting property with respect to fibrations which are also weak equivalences.

Lemma 9.6. Let E be a bounded above complex of projective objects in a Gro-
thendieck abelian category A with enough projective objects. Then E is cofibrant
in the projective model structure on ChA.

Proof. This is proved in [Hovey 1999, Lemma 2.3.6] in the case when A is the
category of modules over a ring. The same proof goes through for any abelian
category for which the projective model structure exists. �

Given a datum (R,G, A) as above, let ChG
cc(A) denote the full subcategory of

ChG(A) consisting of chain complexes which are compact and cofibrant (in pro-
jective model structure). For the notion of Waldhausen subcategories of a model
category, see [Dugger and Shipley 2004, §3].

Proposition 9.7. Let (R,G, A) be as in Proposition 4.6. Then there is an inclu-
sion Sperf G(A) ↪→ ChG

cc(A) of Waldhausen subcategories of ChG(A) such that the
induced map on the K-theory spectra is a homotopy equivalence.

Proof. It follows from the results of Section 4 that Sperf G(A) is same as the
category of bounded chain complexes of finitely generated projective objects of
(A-G)-Mod. To check now that Sperf G(A) and ChG

cc(A) are Waldhausen sub-
categories of ChG(A), we only need to check that they are closed under taking
push-outs. But this is true for the first category because every cofibration in ChG(A)
is a termwise split injection with projective cokernels (see [Hovey 1999, Theo-
rem 2.3.11]) and this is true for the second category because of the well-known
fact that the cofibrations are closed under push-out and, if two vertices of a triangle
in a triangulated category are compact, then so is the third.

To show that Sperf G(A) is a subcategory of ChG
cc(A), we have to show that

every object of Sperf G(A) is cofibrant and compact. The first property follows
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from Lemmas 4.3, 4.4 and 9.6. To prove compactness, we can use Proposition 4.6
to replace (A-G)-Mod by R-Mod, where R is a ringoid. But, in this case, it is
shown in [Keller 1994, §4.2] that a bounded complex of finitely generated projec-
tive objects of R-Mod is compact.

To show that the inclusion Sperf G(A) ↪→ ChG
cc(A) induces a homotopy equiva-

lence of K-theory spectra, we can use [Blumberg and Mandell 2011, Theorem 1.3]
to reduce to showing that this inclusion induces an equivalence of the associated
derived subcategories of DG(A). To do this, all we need to show is that every
compact object of DG(A) is isomorphic to an object of Sperf G(A). We have just
shown above that every object of Sperf G(A) is compact. It follows now from
Lemma 9.5 and [Neeman 1996, Theorem 2.1] that every compact object of DG(A)
comes from Sperf G(A). Notice that we have shown in Lemmas 4.1 and 4.4 that
the hypothesis of Lemma 9.5 is satisfied in our case. The proof of the proposition
is now complete. �

For i = 1, 2, let Ri be a commutative noetherian ring, Gi an affine group scheme
over Ri and Ai an Ri -Gi -algebra such that one of the following holds:

(1) Gi is a diagonalizable group scheme over Ri .

(2) Ri is a UFD containing a field of characteristic zero and Gi is a split reductive
group scheme over Ri .

We are now ready to prove the main result of this section.

Theorem 9.8. Let (R1,G1, A1) and (R2,G2, A2) be as above. Then DG1(A1) and
DG2(A2) are equivalent as triangulated categories if and only if DG1(Perf/A1)

and DG2(Perf/A2) are equivalent as triangulated categories. In either case, the
following hold:

(1) There is a homotopy equivalence of spectra K G1(A1)' K G2(A2).

(2) There is a homotopy equivalence of spectra K ′G1
(A1)' K ′G2

(A2).

Proof. It follows from Lemmas 4.3 and 4.4 that the derived categories of perfect
complexes are the same as the bounded derived categories of finitely generated pro-
jective objects. The first assertion of the theorem is now an immediate consequence
of Proposition 4.6 and Theorem 9.3.

If DG1(A1) and DG2(A2) are equivalent as triangulated categories, it follows
from Theorem 9.1 and Propositions 4.6 and 9.7 that there is a homotopy equiva-
lence of spectra K G1(A1)' K G2(A2).

To prove (2), we first conclude from Proposition 4.6 and Theorem 9.3 that the
equivalence of the derived categories is induced by a zigzag of Quillen equivalences
between ChG1(A1) and ChG2(A2). It follows from Propositions 4.6 and A.1 that
this derived equivalence induces an equivalence between the triangulated subcat-
egories Dhb,−(A1-G1-proj) and Dhb,−(A2-G2-proj) of the corresponding derived
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categories. It follows that this zigzag of Quillen equivalences carries the Wald-
hausen subcategory Chhb,−(A1-G1-proj) of ChG1(A1) onto the Waldhausen subcat-
egory Chhb,−(A2-G2-proj) of ChG2(A2). Furthermore, it follows from Proposition
4.6 and Lemma 9.6 that the objects of Chhb,−(A1-G1-proj) and Chhb,−(A2-G2-proj)
are cofibrant objects for the projective model structure on the chain complexes. We
can therefore apply Theorem 9.2 and (9.4) to conclude that there is a homotopy
equivalence of spectra K ′G1

(A1) and K ′G2
(A2). This finishes the proof. �

Remark 9.9. If G is a finite constant group scheme whose order is invertible in
the base ring R, then one can check that the analogue of Theorem 9.8 is a direct
consequence of Remark 4.7 and the main results of [Dugger and Shipley 2004].

Appendix: Ringoid version of Rickard’s theorem

In the proof of Theorem 9.8, we used the following ringoid (see Section 4) version
of a theorem of Rickard [1989, Proposition 8.1] for rings. We shall say that a
ringoid R is (right) coherent if every submodule of a finitely generated (right) R-
module is finitely generated. We say that R is complete if every R-module is a
filtered direct limit of its finitely generated submodules. We shall assume in our
discussion that the ringoids are complete and right coherent. Given a ringoid R, we
have the following categories: Mod-R is the category of R-modules; mod-R is the
category of finitely generated R-modules; Free-R (resp. free-R) is the category of
free (resp. finitely generated free) R-modules; Proj-R (resp. proj-R) is the category
of projective (resp. finitely generated projective) R-modules. Let Ch(−) denote the
category of chain complexes and D(−) denote the derived category of unbounded
chain complexes. The superscripts −, b and hb denote the full subcategories of
bounded above, bounded and cohomologically bounded chain complexes, respec-
tively. D(Mod-R) is denoted by D(R).

Since every bounded above complex of finitely generated projective R-modules
has a resolution by a bounded above complex of finitely generated free modules,
we see that there are equivalences of subcategories D−(free-R)' D−(proj-R) and
Db(mod-R)' Dhb,−(proj-R). We shall say that two ringoids R and S are derived
equivalent if there is an equivalence D(R)' D(S) of triangulated categories. We
shall say that a set T of objects in Db(proj-R) is a set of tiltors if it generates D(R)
and HomD(R)(T, T ′[n])= 0 unless n = 0 for any T , T ′ ∈ T.

Proposition A.1. Let R and S be ringoids which are derived equivalent. Then
Dhb,−(proj-R) and Dhb,−(proj-S) are equivalent as triangulated categories.

Proof. Any equivalence of triangulated categories D(R) and D(S) induces an
equivalence of its compact objects and hence induces an equivalence between
Dhb(Mod-R) and Dhb(Mod-S), because an object X of D(R) is in Dhb(Mod-R) if
and only if, for every compact object A, one has HomD(R)(A, X [n])= 0 for all but
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finitely many n. Since Dhb,−(proj-R)= D−(proj-R)∩ Dhb(Mod-R), the proposi-
tion is about showing that the triangulated categories D−(proj-R) and D−(proj-S)
are equivalent.

This result was proven by Rickard [1989, Proposition 8.1] when R and S are
both rings. We only explain here how Rickard’s proof goes through even for
ringoids without further changes. The completeness assumption and our hypothe-
ses together imply that the triangulated categories D−(Proj-R) and D−(Proj-S) are
equivalent. It follows from [Dugger and Shipley 2004, Theorem 7.5] that this in-
duces an equivalence of the triangulated subcategories Db(proj-R) and Db(proj-S).
Let S denote the set of images of the objects of S (the representable objects of
S-Mod) under this equivalence and let T := End(S) denote the full subcategory of
Db(proj-R) consisting of objects in S. One easily checks that S is a set of tiltors
such that End(S)' S as ringoids (see [Dugger and Shipley 2004, Theorem 7.5]).

Rickard constructs (in the case of rings) a functor F :D−(Proj-T )→D−(Proj-R)
of triangulated categories which is an equivalence and shows that it induces an
equivalence between D−(proj-T ) and D−(proj-R). We recall his construction,
which works for ringoids as well. The functor HomD(R)(T ,−) from D−(Proj-R)
to T -Mod induces an equivalence between the direct sums of objects of T and
free objects of T -Mod. Moreover, the completeness assumption on S implies that
the inclusion Ch−(Free-T )→ Ch−(Proj-T ) induces an equivalence of their homo-
topy categories. One is thus reduced to constructing a functor from the category
D−(Free-T ) of bounded above chain complexes of direct sums of copies of objects
in S to D−(Proj-R) with the requisite properties.

An object X of D−(Free-T ) consists of a bigraded object X = (X∗∗, d, δ) of
projective R-modules such that each row is a chain complex of objects which are
direct sums of objects in S but the columns are not necessarily chain complexes.
The goal is then to modify the differentials of X∗∗ so that it becomes a double
complex and then one defines F(X) to be the total complex of X∗∗, which is an
object of D−(Proj-R).

In order to modify the differentials of X∗∗, Rickard uses his Lemma 2.3, whose
proof works in the ringoid case if we know that HomD(R)(T, T ′[n])=0 unless n=0
for any T, T ′ ∈ S. But this is true in our case as S is a set of tiltors. The rest of
[Rickard 1989, §2] shows how one can indeed modify X∗∗ to get a double complex
under this assumption. The point of the other sections is to show how this yields
an equivalence of triangulated categories, which only uses the requirement that S
is a set of tiltors and, in particular, it generates Db(proj−R) and hence D(R).

Finally, the functor F will take D−(proj-T ) to D−(proj-R) if F(Tot(X∗∗)) is a
bounded above complex of finitely generated projective R-modules whenever each
row of X∗∗ is a finite direct sum of objects in S. But this is obvious because each
object of S is a bounded complex of finitely generated projective R-modules. �
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