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Chow groups of some generically twisted flag varieties

Nikita A. Karpenko

We classify the split simple affine algebraic groups G of types A and C over
a field with the property that the Chow group of the quotient variety E/P is
torsion-free, where P ⊂ G is a special parabolic subgroup (e.g., a Borel sub-
group) and E is a generic G-torsor (over a field extension of the base field).
Examples of G include the adjoint groups of type A. Examples of E/P include
the Severi–Brauer varieties of generic central simple algebras.

1. Introduction

Let G be a split semisimple affine algebraic group over a field k and let P be
a parabolic subgroup of G. The quotient G/P is a smooth projective algebraic
k-variety sometimes called a flag variety of G. The variety G/P is (absolutely)
cellular (in the sense of [Elman et al. 2008, §66]). In particular, its Chow group
CH(G/P) is torsion-free.

Given a G-torsor E over k, the quotient variety E/P is a twisted flag variety,
a twisted form of G/P . The Chow group CH(E/P) may have a large torsion
subgroup and is far from being understood. The situation is still the same when
we restrict our attention to the case of a special parabolic subgroup P . Recall that
P is special if any P-torsor over any field extension of k is trivial. (For instance,
any Borel subgroup of G is special parabolic.) For any special parabolic P , ev-
ery G-torsor E over k splits over the function field k(E/P) (see [Karpenko and
Merkurjev 2006, Lemma 6.5]), showing that E/P is a generically cellular variety,
i.e., becomes cellular over its own function field.

Let, now, E be a generic G-torsor. By this we mean a G-torsor over a certain
field extension F/k, obtained by the following construction (see Remark 2.3): We
fix an imbedding of G into the general linear group GLN for some N . This makes
GLN a G-torsor over the quotient variety S := GLN/G. We define F to be the
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function field k(S) and we define the generic G-torsor E to be the G-torsor over F
given by the generic fiber of GLN → S.

For any other G-torsor E ′ over any field extension k ′/k, there exists a k ′-point
of S such that E ′ is isomorphic to the fiber of GLN → S over the point. Moreover,
for infinite k ′, the set of such k ′-points is dense in S [Serre 2003, §5.3]. This
suggests that E , being the generic fiber of GLN → S, is the most complicated G-
torsor and that the variety E/P , which we call a generically twisted flag variety,
is the most complicated twisted flag variety (for given G and P). Nevertheless,
the Chow group CH(E/P) for a generic E turns out to be more accessible than in
general.

In this paper, we classify the split simple affine algebraic groups G of types A
and C over a field with the property that the Chow group CH(E/P) of E/P is
torsion-free — see Theorems 3.1 and 4.1. Examples of G include adjoint groups
of type A (Theorem 3.7). Examples of E/P include the Severi–Brauer varieties
of generic central simple algebras.

An application to computation of the topological (also called geometrical) filtra-
tion on the Grothendieck ring of twisted flag varieties is provided as well as some
other applications — see Corollaries 3.9, 3.10 and 3.14.

For G of type Bn , an analogue of Theorems 3.1 and 4.1 is known. Note that
G is isomorphic to Spin2n+1 (the simply connected case) or to O+2n+1 (the adjoint
case). Since Bn = Cn for n = 1, 2, let us assume that n ≥ 3. By [Petrov 2007] (see
also [Smirnov and Vishik 2014]), CH(E/P) is torsion-free for G = O+2n+1. And it
is easy to see that CH2(E/P) contains an element of order 2 for G = Spin2n+1.

For the type Dn (with n ≥ 4), CH(E/P) is torsion-free if G = O+2n (see [Petrov
2007] or [Smirnov and Vishik 2014]) and CH2(E/P) has an element of order 2
for G = Spin2n . However, the analysis of the remaining projective orthogonal and
semispinor groups has not been completed so far.

For G of type G2 and any nonsplit G-torsor E over a field, CH2(E/P) has an
element of order 2; see [Yagita 2016], for example, which also has computations
concerning Chow groups of some other twisted flag varieties.

2. Generic torsors

For G as in the introduction and P a parabolic subgroup of G, we consider a gener-
ically twisted flag variety E/P , where E is the generic G-torsor over F obtained
from an imbedding G ↪→ GLN for some N . Here F is the function field k(S) of
the k-variety S := GLN /G.

We consider the pull-back homomorphism of P-equivariant Chow groups (see
[Edidin and Graham 1998])

CHP Spec F→ CHP E
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with respect to the (P-equivariant) structure morphism E → Spec F of the F-
variety E (where P acts on Spec F trivially). Note that the P-equivariant Chow
group CHP E coincides with the ordinary Chow group of E/P . The following
statement is proved but not formulated in [Karpenko and Merkurjev 2006]:

Lemma 2.1. The homomorphism CHP Spec F→ CH(E/P) is surjective.

Proof. The variety GLN is a GLN -equivariant open subvariety of the affine space
End k N. It is enough to prove that the composition

CHP Spec k→ CHP Spec F→ CH(E/P)= CHP E

with the change of field homomorphism CHP Spec k→ CHP Spec F is surjective.
The homomorphism CHP Spec k→ CHP E decomposes as

CHP Spec k→ CHP End k N
→ CHP GLN → CHP E .

The first homomorphism here is the pull-back with respect to the structure mor-
phism of the k-variety End k N ; it is an isomorphism by homotopy invariance of
equivariant Chow groups. The second and the third homomorphisms are pull-backs
with respect to the open imbedding GLN ↪→ End k N and the localization morphism
E → GLN ; they are surjective by the localization property of equivariant Chow
groups. �

Example 2.2. For the quotient G :=SLn /µm of the special linear group SLn by the
central subgroup µm of the m-th roots of unity, where m ≥ 1 is a divisor of n ≥ 2,
any G-torsor over k gives rise to a central simple k-algebra A of degree n and
exponent m. We refer to an algebra A corresponding to a generic G-torsor as a
generic central simple algebra of degree n and exponent m. In the decomposition
n = n1n2 with n1 ≥ 1 having the same prime divisors as m and with n2 relatively
prime to m, the factor n1 is the index of A. Let P be a parabolic subgroup in G
with conjugacy class corresponding to the subset of the Dynkin diagram of G
obtained by removing the first vertex. The variety E/P is the Severi–Brauer variety
X of A. It is shown in [Karpenko and Merkurjev 2006, §8.1] that the graded
ring CHP Spec F is generated by some homogeneous elements with at most one
element in every codimension. Therefore, by Lemma 2.1, the Chow ring CH X
is generated by some homogeneous elements with at most one element in every
codimension.

In the particular case of G := PGLn = SLn /µn , we refer to A as a generic
central simple algebra of degree n. The index and exponent of such A are equal
to n as well.

Remark 2.3. The construction of a generic G-torsor we use in this paper is a
particular case of the construction of [Serre 2003, Example 5.4], which nowadays
is more common. For two generic G-torsors E and E ′ over fields F/k and F ′/k
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produced by this more general construction, there is a canonical construction of
a field L/k, containing both F/k and F ′/k, and of an isomorphism EL ' E ′L
such that the extensions L/F and L/F ′ are purely transcendental. Since Chow
groups do not change under purely transcendental base field extensions, we get a
canonical isomorphism CH(E/P)'CH(E ′/P) for any P . Thanks to A. Merkurjev
for pointing this out.

The relationship between CH(E/P) and CH(E/P ′) for different special para-
bolic subgroups P, P ′ ⊂ G is explained in the proof of Lemma 3.6.

Example 2.4. For any split semisimple G, a generic G-torsor E , and a Borel sub-
group B⊂G, the topological filtration on the Grothendieck ring K (E/B) coincides
with the gamma filtration. Indeed, by [Edidin and Graham 1998, Proposition 6], the
graded ring CHB Spec F is identified with the symmetric algebra S(T̂ ) of the char-
acter group T̂ of a maximal split torus T ⊂ B. It follows that the ring CHB Spec F
is generated by elements of codimension 1. By Lemma 2.1, this implies that the
ring CH(E/B) is generated by elements of codimension 1. Therefore the ring
CH(E/B) is generated by Chern classes. In particular, the associated graded ring
of the topological filtration on K (E/B) is generated by Chern classes, which pre-
cisely means that the topological filtration coincides with the gamma filtration; see
[Karpenko 1998, Remark 2.17].

The above considerations also show that the ring CH(E/B) is finitely generated.
In particular, its torsion subgroup Tors CH(E/B) is finite.

3. Type An−1

Let n ≥ 2. Any split simple affine algebraic group G of type An−1 over any field k
is isomorphic to the quotient SLn /µm , where m ≥ 1 is a divisor of n. Here is the
main result of this section:

Theorem 3.1. For G := SLn /µm (with n and m as above) over any field k, let
P ⊂ G be a special parabolic subgroup and let E be a generic G-torsor over a
field extension F/k. The group CH(E/P) is torsion-free if and only if the g.c.d.
(m, n/m) is bounded by 2. Moreover, for every odd prime divisor p of (m, n/m),
as well as p = 2 if 4 divides (m, n/m), the group CH2(E/P) contains an element
of order p.

We will prove Theorem 3.1 after some preparation. The most significant cases
of torsion-free CH(E/P) are the cases G = PGLn = SLn /µn and G = SL2r /µ2r−1

(for any r ≥ 1). Since SLn is special, the case G = SLn is trivial. We start with a
result covering the case G = PGLn:

Proposition 3.2. Let F be a field and A a central simple F-algebra. Assume that
the Chow ring CH X of the Severi–Brauer variety X of A is generated (as a ring)
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by some homogeneous elements with at most one element in every codimension.
Then the group CH X is p-torsion-free for every prime number p such that the
p-primary parts of the exponent and the index of A coincide.

Remark 3.3. According to Example 2.2, Proposition 3.2 applies to any generic
central simple algebra A of any given degree (without restriction on its exponent),
implying that the Chow ring of the Severi–Brauer variety of A is torsion-free.

Remark 3.4. In the case where exp A= ind A, Proposition 3.2 provides a complete
description of the ring CH X . Indeed, for any n ≥ 1 and any central simple F-
algebra A of degree n, the kernel of the change of field homomorphism

CH X→ CH X L = CH Pn−1
= Z[H ]/(H n),

given by any splitting field L/F of the algebra, where H corresponds to the hyper-
plane class in CH Pn−1, is the torsion subgroup of CH X . Moreover, by [Karpenko
1995b, Theorem 1], if exp A= ind A=: d , then for any 0≤ j ≤ n− 1= dim X the
image of CH j X in CH j Pn−1

= Z is generated by d/( j, d).

Proof of Proposition 3.2. Let n be the degree of A. Let xi ∈CHi X , i=0, 1, . . . , n−1,
be elements generating the ring CH X .

We fix an arbitrary prime number p such that the p-primary parts of the exponent
and the index of A coincide. For the remainder of the proof, we switch to the Chow
groups CH⊗Z(p) with coefficients in Z(p) — the localization of Z at the prime ideal
(p) generated by p. To prove Proposition 3.2 it suffices to show that the group
CH X ⊗Z(p) is torsion-free.

Let pr be the p-primary part of ind A. By Lemma 3.5, we only need to check
that CH j X ⊗Z(p) is torsion-free for j < pr .

Let L/F be a finite Galois field extension splitting A. Let Lr be the intermediate
field corresponding to a p-Sylow subgroup of Gal(L/F), so that [Lr : F] is prime
to p and [L : Lr ] is a p-power. Let L0 be a minimal subfield of L containing Lr

and splitting A. We have [L0 : Lr ] = pr . By [Hall 1959, Theorem 4.2.1], there is
a chain of subfields

Lr ⊂ Lr−1 ⊂ · · · ⊂ L0

with [L i−1 : L i ]= p for every i=r, . . . , 1. Note that ind AL i = pi for i=0, 1, . . . , r .
We claim that, for any j = 1, . . . , pr

− 1, the norm map

N j
i : CH j X L i ⊗Z(p)→ CH j X ⊗Z(p)

is surjective, where i = vp( j) and vp is the p-adic valuation. Since ind AL i = pi

divides j , we have CH j X L i = Z (by [Karpenko 1995a, Corollary 1.3.2]). More pre-
cisely, CH j X L = CH j Pn−1

= Z, where 1 ∈ Z corresponds to the class in CH j Pn−1
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of a linear subspace in Pn−1 of codimension j , and the change of field homomor-
phism CH j X L i → CH j X L is an isomorphism. Therefore the claim implies that
CH j X ⊗Z(p) is torsion-free.

We prove the claim by induction on j . Given an arbitrary positive j ≤ pr
−1, we

assume that the claim holds in positive codimensions < j . We first check that every
element of CH j X ⊗Z(p) that is a polynomial in x1, . . . , x j−1 (without x j ) is in the
image of the norm map N j

i . It suffices to consider the case where the polynomial
is a monomial. Since the degree j of the monomial is not divisible by pi+1, the
monomial contains a factor xk for some k ∈ {1, . . . , j − 1} not divisible by pi+1.
Since vp(k) ≤ i , it follows by the induction hypothesis that xk is in the image
of N k

i . Therefore, by the projection formula [Elman et al. 2008, Proposition 56.8],
the monomial is in the image of N j

i .
To finish the proof of the claim (and therefore the proof of Proposition 3.2), it

suffices to check that x j is also in the image of N j
i . For this we decompose the

element N j
i (1) ∈ CH j X ⊗Z(p), where 1 is the generator of CH j X L i ⊗Z(p) = Z(p),

into a linear combination of the degree-j monomials in x1, x2, . . . , x j and check
that the coefficient λ ∈ Z(p) at the monomial x j is invertible.

Let us observe that vp(N
j

i (1)L)= vp([L i : F])= r − i . On the other hand, if λ
is not invertible, then (λx j )L is divisible by pr−i+1 because xL is divisible by pr−i

for any element x ∈ CH j X ; see Remark 3.4.1 Also ML is divisible by pr−i+1 for
any monomial M ∈ CH j X in x1, . . . , x j−1 because M contains xk with some k not
divisible by pi+1: xkL is then divisible by pr−i ; at the same time, M necessarily
contains another factor xl with some l = 1, . . . , j − 1 (l = k is also possible). Our
assumption that j < pr ensures that l is not divisible by pr so that xl L is divisible
by p. �

Here is the lemma used in the proof of Proposition 3.2:

Lemma 3.5. Let A be a central simple algebra over a field F of degree n ≥ 1.
Let p be a prime number and pr the p-primary part of ind A. Let X be the Severi–
Brauer variety of A. For any integer 0≤ j ≤ dim X = n−1, the group CH j X⊗Z(p)

is isomorphic to the group CH j ′X ⊗Z(p), where 0≤ j ′ ≤ pr
− 1 is the remainder

after division of j by pr .

Proof. Let Ap be the p-primary part of the underlying division algebra of A (so
that ind Ap = pr ). Let X p be the Severi–Brauer variety of Ap.

Let L/F be a finite Galois field extension splitting the algebra A. Let K/F be
the subextension corresponding to a p-Sylow subgroup of Gal(L/F). Therefore
the degree of K/F is prime to p, the degree of L/K is a p-power, and the algebra
AK is isomorphic to a matrix algebra over ApK .

1This is the only place in the proof where we use the fact that the p-primary part of the exponent
of A coincides with the p-primary part of its index.
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Below we work in the category of Chow motives [Elman et al. 2008, §64], first
with integral coefficients, then with coefficients in Z(p). The integral Chow motive
M(X K ) of the K-variety X K is isomorphic to the direct sum of shifts of the Chow
motive of XpK with the shifting numbers of the summands being the multiples
of pr from 0 to n− pr [Karpenko 1995a, Corollary 1.3.2]:

M(X K )'
n/pr
−1⊕

i=0
M(XpK ){i pr

}.

We switch to the Chow motives with coefficients in Z(p). Let f be the above
isomorphism after the switch. We apply the norm NK/F to f and divide the result
by [K : F] ∈ Z×(p). This way we get a morphism g : M(X)→

⊕n/pr
−1

i=0 M(X){i pr
}

with the property that gL = fL . In particular, gL is an isomorphism. It follows
by [Elman et al. 2008, Corollary 92.7 with Remark 92.3], a consequence of the
nilpotence theorem for projective homogeneous varieties, that g is an isomorphism.
Thus CH j X ⊗Z(p) ' CH j ′X p⊗Z(p) ' CH j ′X ⊗Zp. �

Lemma 3.6. Let G be a split semisimple linear algebraic group over a field k and
let E be a G-torsor over k. If the Chow group CH(E/P) is torsion-free for at least
one special parabolic subgroup P of G, then it is torsion-free for every special
parabolic subgroup. The same holds with CH2(E/P) in place of CH(E/P).

Proof. Let P and P ′ be special parabolic subgroups of G with torsion-free CH(E/P).
Since E splits over F(E/P) (see [Karpenko and Merkurjev 2006, Lemma 6.5]),
the Chow motive of the variety E/P × E/P ′ is a direct sum of shifts of the motive
of E/P [Petrov et al. 2008, Corollary 3.4]. Therefore CH(E/P× E/P ′) is torsion-
free. At the same time, the Chow motive of E/P × E/P ′ is a direct sum of shifts
of the motive of E/P ′, so that CH(E/P ′) is torsion-free as well.

The same chain of conclusions goes through for CH2(E/P) in place of CH(E/P),
because one shifting number is 0 and the remaining shifting numbers are positive
in both motivic decompositions mentioned. (Recall that, for any projective homo-
geneous variety, the groups CH0 and CH1 are torsion-free.) �

At this point we have already proved Theorem 3.1 for m = n, i.e., for G = PGLn:

Theorem 3.7. For any field k and any n ≥ 2, let G be the projective linear group
PGLn over k, let P be a special parabolic subgroup of G, and let E be a generic
G-torsor (over a field extension of k). Then the Chow group of the generically
twisted flag variety E/P is torsion-free. �

The Severi–Brauer variety X of a degree-n central simple algebra A is, by defi-
nition, a closed subvariety of the Grassmannian of n-dimensional subspaces in the
n2-dimensional vector space A. The tautological bundle on X has rank n and is
the restriction of the tautological bundle on the Grassmannian.
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Corollary 3.8. For any n, let X be the Severi–Brauer variety of a generic central
simple algebra of degree n. Then the Chow ring CH X is generated by the Chern
classes of the tautological vector bundle on X.

Proof. Let X be X over a splitting field of the algebra. As shown in [Karpenko and
Merkurjev 2006], the image of the change of field homomorphism CH X→ CH X
is generated by the Chern classes of the tautological vector bundle. Since CH X is
torsion-free, the change of field homomorphism CH X→ CH X is injective and it
follows that CH X itself is generated by the Chern classes of the tautological vector
bundle. �

Here are a couple of applications:

Corollary 3.9. Let X be the Severi–Brauer variety of a central simple algebra A
over a field k satisfying ind A = exp A. Then the torsion subgroup Tors CH X of
CH X splits off canonically as a direct summand of CH X.

Proof. By [Karpenko 1995a, Corollary 1.3.2], we may assume that A is a division
algebra. By specialization, all relations between the Chern classes of the tautolog-
ical vector bundle on the Severi–Brauer variety of a generic central simple algebra
of degree deg A hold for the Chern classes of the tautological vector bundle on
our X . It follows that the subring C ⊂ CH X generated by these Chern classes is
mapped under the quotient map CH X→ CH X/Tors CH X isomorphically onto
the quotient (see Remark 3.4), whence the statement. �

The following result has been proved in [Karpenko 1998] for division algebras
of p-primary index. Those assumptions can be dropped:

Corollary 3.10. Let X be the Severi–Brauer variety of a central simple algebra
A over a field k satisfying ind A = exp A. Then the topological filtration on the
Grothendieck ring K (X) coincides with the gamma filtration. Moreover, for any
finite product Y of any generalized Severi–Brauer varieties of any tensor powers
of A, the topological filtration on the Grothendieck ring K (Xk(Y )) coincides with
the gamma filtration.

Proof. Let X̃ be the Severi–Brauer variety of a generic central simple algebra Ã of
degree deg A over a field F . Note that exp Ã = ind Ã = deg Ã. By Corollary 3.8,
the ring CH X̃ is generated by Chern classes. Therefore, the topological filtration
on the Grothendieck ring K (X̃) coincides with the gamma filtration. Let T be
the generalized Severi–Brauer variety SBind A( Ã) (of right ideals in Ã of reduced
dimension ind A; the usual Severi–Brauer variety SB( Ã) is SB1( Ã) in this nota-
tion). By the index reduction formula [Merkurjev et al. 1996, (5.11)], the index
and the exponent of the central simple F(T )-algebra ÃF(T ) are equal to ind A.
Since the projection T × X̃ → X̃ is a Grassmann bundle, the topological filtra-
tion on the Grothendieck ring K (X̃ F(T )) coincides with the gamma filtration; see
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[Karpenko 1998]. Moreover, by [Karpenko 1995b], since ind ÃF(T ) = exp ÃF(T )

the topological filtration on K (X̃ F(T )) coincides with the filtration induced by the
topological filtration on the Grothendieck ring of X̃ considered over an algebraic
closure of F(T ).

Turning back to A and X over k, we have three embedded filtrations on K (X):
the gamma filtration, which is contained in the topological filtration, which in turn
is contained in the filtration induced by the topological filtration over an algebraic
closure of k. By [Quillen 1973], since for any i ≥ 1 the indexes of the i-th tensor
powers of the algebras A and ÃF(T ) coincide (see [Karpenko 1998, Example 3.9]),
the rings K (X) and K (X̃ F(T )) are identified. Under this identification, both gamma
filtrations and both filtrations induced from the respective algebraic closures are
identified as well. It follows that all three filtrations on K (X) coincide. In partic-
ular, the topological filtration on the Grothendieck ring K (X) coincides with the
gamma filtration.

From this point, the deduction of the statement on K (Xk(Y )) is standard; see
[Karpenko 1998]. �

The following statement will be of help in the proof of Proposition 3.12:

Corollary 3.11. Let A be an arbitrary central simple algebra over a field F and
let L be a maximal subfield of the underlying division algebra. Let p be a prime
integer. For i > 0, let ci ∈ CHi X ⊗Z(p) be the i-th Chern class of the tautological
vector bundle on the Severi–Brauer X variety of A, considered in the Chow group
with coefficients in Z(p). For any i > 0 coprime with p, the class ci is in the image
of the norm map NL/F .

Proof. We fix some i > 0 coprime with p and set n := deg A. The image of
1 ∈ Z= CHi X L under NL/F : CHi X L → CHi X equals hi

∗
(e), where e ∈ CH0 X is

the class of a closed point of degree ind A (the canonical generator of the torsion-
free group CH0 X ; see [Panin 1984] or [Chernousov and Merkurjev 2006]) and
h ∈ CH1(X × X) is the first Chern class of the canonical line bundle on X × X . (In
particular, NL/F (1) does not depends on the choice of L .) We need to show that
ci is a multiple of hi

∗
(e) (in the Chow group with coefficients in Z(p)).

By Theorem 3.7, ci is a multiple of hi
∗
(e) provided that A is replaced by a

generic central simple algebra of degree n (over a field extension of F). Indeed, for
generic A, the Chow group with integer coefficients is torsion-free (by Theorem 3.7)
and, by Remark 3.4, the image of CHi X⊗Z(p) in CHi X L⊗Z(p)=Z(p) is generated
by the image [L : F] = ind A of hi

∗
(e).

It follows by specialization that ci is a multiple of hi
∗
(e) for our initial A as

well. �

Here is the result serving the case of G = SLn /µn/2:
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Proposition 3.12. Let F be a field and let A be a central simple F-algebra such
that the 2-primary part of its exponent is equal to the half of the 2-primary part
of its index d (this implied that d is divisible by 4) and the index of the tensor
power A⊗(d/4) is divisible by 4. Assume that the Chow ring CH X of the Severi–
Brauer variety X of A is generated (as a ring) by some element of codimension 1
and the Chern classes of the tautological vector bundle. Then the group CH X is
2-torsion-free.

Remark 3.13. In the case d := ind A=2 exp A and 4 | ind A⊗(d/4), Proposition 3.12
provides a complete description of the ring CH X . Indeed, for any n ≥ 1 and any
central simple F-algebra A of degree n, the kernel of the change of field homomor-
phism CH X→ CH Pn−1

= Z[H ]/(H n), given by any splitting field of the algebra,
is the torsion subgroup of CH X . Moreover, if exp A = 1

2 d , where d := ind A, and
4 | ind A⊗(d/4), then, for any 0 ≤ j ≤ n − 1 and any prime integer p, the p-adic
valuation of a generator of the image of CH j X in CH j Pn−1

= Z is determined
as follows: for odd p it is vp(d/( j, d)); for p = 2 it is v2(d/( j, d)) provided that
v2( j−1)<v2(d) and it is v2(d)−1 otherwise. This is a consequence of Remark 3.4
(for odd p) and of [Karpenko 1998, proof of Proposition 4.9] (for p = 2), since by
the proof of Lemma 3.5 we only need to consider the case where d is a p-power.

Proof of Proposition 3.12. We obtain a proof of Proposition 3.12, appropriately
modifying the proof of Proposition 3.2. Let n be the degree of A. For i ≥ 2, let
xi ∈ CHi X be the i-th Chern class of the tautological vector bundle on X . As a
ring, CH X is generated by some element x1 ∈ CH1 X and the elements xi ∈ CHi X ,
i = 1, . . . , dim X = n− 1.

For the remainder of the proof, we switch to the Chow groups with coeffi-
cients in Z(2) — the localization of Z in the prime ideal generated by 2. To prove
Proposition 3.12, it suffices to show that the group CH X ⊗Z(2) is torsion-free.

Let 2r be the 2-primary part of d = ind A. Recall that d is divisible by 4, that is to
say, r ≥ 2. By Lemma 3.5, we only need to check that CH j X ⊗Z(2) is torsion-free
for j < 2r .

Let L/F be a finite Galois field extension splitting A. Let Lr be the intermediate
field corresponding to a 2-Sylow subgroup of Gal(L/F), so that [Lr : F] is odd
and [L : Lr ] is a 2-power. Let L0 be a minimal subfield of L containing Lr and
splitting A. We have [L0 : Lr ] = 2r . By [Hall 1959, Theorem 4.2.1], there is a
chain of subfields

Lr ⊂ Lr−1 ⊂ · · · ⊂ L0

with [L i−1 : L i ]= 2 for every i = r, . . . , 1. Note that ind AL i = 2i for i = 0, 1, . . . , r .
We claim that, for any j = 2, . . . , 2r

− 1, the norm map

N j
i : CH j X L i ⊗Z(2)→ CH j X ⊗Z(2)



CHOW GROUPS OF SOME GENERICALLY TWISTED FLAG VARIETIES 351

is surjective, where i = v2( j) and v2 is the 2-adic valuation. In contrast with the
proof of Proposition 3.2, where the exponent of A was equal to the index of A,
not to half that, the norm map N 1

0 is not surjective; moreover, none of the maps
N 1

1 , . . . , N 1
r−1 is surjective. However, and this will be used in the proof below, the

image of the change of field homomorphism CH1 X ⊗ Z(2) → CH1 X Lr−1 ⊗ Z(2)

coincides with the image of the norm map

NL0/Lr−1 : CH1 X L0 ⊗Z(2)→ CH1 X Lr−1 ⊗Z(2).

This is so because the change of field homomorphism CH1 X → CH1 X L = Z is
injective and its image is generated by the integer exp A [Artin 1982, §2].

Since ind AL i = 2i divides j , we have CH j X L i =Z (by [Karpenko 1995a, Corol-
lary 1.3.2]). More precisely, CH j X L = CH j Pn−1

= Z, where 1 ∈ Z corresponds
to the class in CH j Pn−1 of a linear subspace in Pn−1 of codimension j , and the
change of field homomorphism CH j X L i → CH j X L is an isomorphism. Therefore
the claim implies that CH j X ⊗Z(2) is torsion-free.

We prove the claim by induction on j . Given an arbitrary j with 2≤ j ≤ 2r
− 1,

we assume that the claim holds in codimensions 2, . . . , j − 1. We first check that
every element of CH j X ⊗Z(2) that is a polynomial in x1, . . . , x j−1 (without x j )
is in the image of the norm map N j

i . It suffices to consider the case where the
polynomial is a monomial. Since the degree j of the monomial is not divisible
by 2i+1, the monomial contains the factor xk for some k ∈ {1, . . . , j − 1} not
divisible by 2i+1. If k 6= 1, then it follows by the induction hypothesis that xk is
in the image of N k

i ; therefore, by the projection formula, the monomial is in the
image of N j

i .
Now assume k=1. There is at least one more factor xl , for some l ∈{1, . . . , j−1}.

If l 6= 1, it follows by the induction hypothesis that xl is in the image of N l
r−1

(our assumption that j < 2r ensures that l is not divisible by 2r ), so that x1xl =

N l
r−1(x1Lr−1 y) for some y ∈ CHl X Lr−1 . Since x1Lr−1 is in the image of the norm

map NL0/Lr−1 , the product x1xl is in the image of N l+1
0 (and therefore in the image

of N l+1
i for any i).

It remains to consider the case l = 1. We show that x2
1 is in the image of N 2

0 . The
Chow group CH2 X coincides with the quotient K (X)(2)/K (X)(3) of the second
term of the topological filtration on the Grothendieck ring K (X) by the third term.
The second term of the topological filtration coincides with the second term of the
gamma filtration. The third topological term contains the third gamma term and
the quotient consists of torsion elements; see [Karpenko 1998, Proposition 2.14].
Since 4 | ind A⊗(d/4), the quotient of the second gamma term by the third gamma
term is torsion-free by [Karpenko 1998, Proposition 4.9 with Lemma 3.10] and the
proof of Lemma 3.5. It follows that the third gamma term coincides with the third
topological term. In particular, the quotient of the topological terms is torsion-free.
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Therefore the group CH2 X is torsion-free as well. So, by Remark 3.13, it is iden-
tified with 2r−1Z⊂ Z= CH2 X L0 . The image of the norm map N 2

0 is 2r Z(2), and
x2

1 = 22r−2. Since r ≥ 2, we have 2r − 2 ≥ r , showing that x2
1 is indeed in the

image of N 2
0 .

To finish the proof of the claim (and therefore the proof of Proposition 3.12),
it suffices to check that x j is also in the image of N j

i . For odd j , this holds by
Corollary 3.11 (we recall that x j is the j-th Chern class of the tautological vector
bundle). For even j , we decompose the element N j

i (1) ∈ CH j X into a linear com-
bination of the degree-j monomials in x1, x2, . . . , x j and check that the coefficient
λ ∈ Z(2) at the monomial x j is invertible.

Let us observe that v2(N
j

i (1)L)= v2([L i : F])= r− i . On the other hand, if λ is
not invertible, then (λx j )L is divisible by 2r−i+1 because xL is divisible by 2r−i

for any element x ∈ CH j X ; see Remark 3.13. Also ML is divisible by 2r−i+1 for
any monomial M ∈ CH j X in x1, . . . , x j−1, because M contains xk for some k not
divisible by 2i+1; xkL is then divisible by 2r−i (even if k = 1, because i ≥ 1 since
j is even); at the same time M necessarily contains another factor xl for some
l = 1, . . . , j − 1 (l = k is also possible). Our assumption that j < 2r ensures that
l is not divisible by 2r , so that xl L is divisible by 2. �

Proof of Theorem 3.1. Let A be the central simple F-algebra corresponding to
the generic G-torsor E . By Lemma 3.6, we may assume that E/P is the Severi–
Brauer variety X of A. By [Karpenko 2016, proof of Theorem 1.1], the ring CH X
is generated by CH1 X and the Chern classes of the tautological vector bundle.
This, in particular, implies that the topological filtration on K (X) coincides with
the gamma filtration.

We start by assuming that the condition (m, n/m) ≤ 2 fails. Then the integer
(m, n/m) is divisible by an odd prime number p or by 4. In the first case, let us
show that the group CH2(E/P) has an element of order p. The group CH2 X is
isomorphic to the quotient K (X)(2)/K (X)(3) of the topological filtration on the
Grothendieck group K (X). Let L/F be a finite extension of degree prime to p
such that the index of the L-algebra AL is a p-power. Note that ind AL = pvp(n)

and exp AL = pvp(m), so that exp AL < ind AL . The change of field homomorphism
K (X)⊗ Z(p)→ K (X L)⊗ Z(p) is an isomorphism of rings with filtrations. The
topological filtration on K (X L)⊗ Z(p) coincides with the gamma filtration. By
[Karpenko 1998, Proposition 4.7], the 2nd quotient of the gamma filtration on
K (X L) has an element of order p. So, we get an element of order p in CH2 X .

Let now assume that 4 divides (m, n/m) and prove that CH2(E/P) has an ele-
ment of order 2. We proceed as above and come to a 2-primary algebra AL with
exp AL <

1
2 ind AL . By [Karpenko 1998, Proposition 4.9], the 2nd quotient of the

gamma filtration on K (X L) has an element of order 2. So, we get an element of
order 2 in CH2 X .
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Finally, let us assume that (m, n/m)≤ 2. For an arbitrary prime number p we
claim that the p-torsion of CH X is trivial. If vp(m) = 0, then p does not divide
the index of A, so that the claim is obvious. Below we assume that vp(m) > 0, in
which case vp(m)= vp(n) or p = 2 and v2(m)= v2(n)− 1.

If vp(m)= vp(n), Proposition 3.2 does the job.
If p = 2 and v2(m) = v2(n)− 1, we are done by Proposition 3.12. Indeed, by

[Karpenko 1998, Lemma 3.10], there exists a central simple algebra A (over a field
extension of k) of degree n and exponent m, satisfying the condition 4 | ind A⊗(d/4)

of Proposition 3.12, where d := ind A. Therefore any generic algebra of degree n
and exponent m satisfies this condition. �

The following statement is an application proved similarly to Corollaries 3.9
and 3.10:

Corollary 3.14. Let X be the Severi–Brauer variety of a central simple k-algebra
A such that d := ind A = 2 exp A and 4 | ind A⊗(d/4). Then the torsion subgroup
Tors CH X splits off canonically as a direct summand of CH X. Furthermore, the
topological filtration on the Grothendieck ring K (X) coincides with the gamma
filtration. Moreover, for any finite product Y of any generalized Severi–Brauer
varieties of any tensor powers of A, the topological filtration on the Grothendieck
ring K (Xk(Y )) coincides with the gamma filtration. �

4. Type Cn

A split simple group G over k of type Cn (n ≥ 1) is isomorphic to Sp2n (the simply
connected case) or PGSp2n (the adjoint case). The group Sp2n is special. For this
reason, we only treat the adjoint case G = PGSp2n here.

The set of isomorphism classes of G-torsors over k is identified with the set
of isomorphism classes of central simple k-algebras of degree 2n endowed with a
symplectic involution. Let E be a G-torsor over k and let A be a corresponding
k-algebra. Since A possesses a k-linear involution, the exponent of A is 2 or A is
split. The index of A is a 2-power, a divisor of the 2-primary part of 2n. If E is
a generic G-torsor (over F ⊃ k), then exp A = 2 and ind A is the 2-primary part
of 2n.

Let P ⊂ G be a parabolic subgroup of type Cn−1. Then P is special and the
variety E/P can be viewed as the variety of isotropic right ideals in A of reduced
dimension 1. But every right ideal of reduced dimension 1 is isotropic with re-
spect to any symplectic involution on A, therefore E/P , which is a priori a closed
subvariety in the Severi–Brauer variety SB(A), coincides with SB(A).

If n is not divisible by 4, then ind A divides 4 and it follows that the group
CH X of X := SB(A) is torsion-free. In more detail, CH X is a direct sum of shifted
copies of CH X ′, where X ′ is the Severi–Brauer variety of a degree-4 central simple
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algebra A′ Brauer-equivalent to A. For i ≤ 2 the group CHi X ′ coincides with the
i-th quotient of the topological filtration on K (X ′), which is torsion-free (for i = 2,
see [Karpenko 1998, Proposition 4.9], for example). The group CH3 X ′ = CH0 X ′

is torsion-free by [Chernousov and Merkurjev 2006] (originally proved in [Panin
1984]).

For any n and generic E (over F ⊃ k), it follows by Corollary 3.10 and special-
ization that the topological filtration on K (X) coincides with the gamma filtration.
Indeed, over a suitable field extension k ′′/k, there exists a central division algebra
A′′ with 2n= deg A′′= ind A′′= exp A′′. Taking for Y in Corollary 3.10 the Severi–
Brauer variety of the tensor square of A′′ and setting k ′ := k ′′(Y ) and A′ := A′′k′ ,
we get that, for X ′ := SB(A′), the topological filtration on K (X ′) coincides with
the gamma filtration. By the index reduction formula for Severi–Brauer varieties
[Schofield and Van den Bergh 1992] (see also [Merkurjev et al. 1996, (5.11)]),
the index of the algebra A′ is the 2-primary part of 2n and its exponent is 2. In
particular, A′ admits a symplectic involution [Knus et al. 1998, Theorem 3.1(1)
and Corollary 2.8(2)]. The pair, consisting of the algebra with a fixed symplectic
involution on it, is given by a G-torsor E ′ over k ′. Using specialization, we identify
K (X) with K (X ′). Under this identification, the gamma filtration on K (X) is
identified with the gamma filtration on K (X ′), while each term of the topological
filtration on K (X) is identified with a subgroup of the corresponding term of the
topological filtration on K (X ′). Since each term of the topological filtration on
K (X) contains the corresponding term of the gamma filtration, both filtrations on
K (X) coincide.

By [Karpenko 1998, Proposition 4.9], if n is divisible by 4, the second quotient
of the gamma filtration contains an element of order 2. We have proven:

Theorem 4.1. For G := PGSp2n (n ≥ 1) over any field k, let P ⊂ G be a special
parabolic subgroup and let E be a generic G-torsor over a field extension F/k.
The group CH(E/P) is torsion-free if and only if n is not divisible by 4. Moreover,
if n is divisible by 4, the group CH2(E/P) contains an element of order 2. �
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