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Real cohomology and the powers of
the fundamental ideal in the Witt ring

Jeremy A. Jacobson

Let A be a local ring in which 2 is invertible. It is known that the localization of
the cohomology ring H∗ét(A,Z/2) with respect to the class (−1) ∈ H 1

ét(A,Z/2) is
isomorphic to the ring C(sper A,Z/2) of continuous Z/2-valued functions on the
real spectrum of A. Let I n(A) denote the powers of the fundamental ideal in the
Witt ring of symmetric bilinear forms over A. The starting point of this article
is the “integral” version: the localization of the graded ring

⊕
n≥0 I n(A) with

respect to the class 〈〈−1〉〉 := 〈1, 1〉 ∈ I (A) is isomorphic to the ring C(sper A,Z)

of continuous Z-valued functions on the real spectrum of A.
This has interesting applications to schemes. For instance, for any algebraic

variety X over the field of real numbers R and any integer n strictly greater than
the Krull dimension of X , we obtain a bijection between the Zariski cohomology
groups H∗Zar(X, In) with coefficients in the sheaf In associated to the n-th power
of the fundamental ideal in the Witt ring W (X) and the singular cohomology
groups H∗sing(X (R),Z).

1. Introduction

Let X be an algebraic variety over the field of real numbers and let d denote
the Krull dimension of X . Let Hn denote the Zariski sheaf associated to the
presheaf U 7→ H n

ét(U,Z/2), where H n
ét(U,Z/2) denotes the étale cohomology

of U with Z/2Z-coefficients. Under the hypotheses that X is smooth, integral,
and quasiprojective, a classic theorem of Jean-Louis Colliot-Thélène and Raman
Parimala [1990, Theorem 2.3.1] states that the sections of Hn are in bijection with

The author wishes to thank Raman Parimala and Suresh Venapally for their support and encourage-
ment. He would like to thank Claus Scheiderer for helpful answers to several questions and Marco
Schlichting for comments on an earlier draft, both of which led to improvements over an earlier
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an anonymous reviewer of an earlier draft for helpful comments. The author would like to thank the
Emory University Department of Mathematics and Computer Science for a travel grant supporting
conference travel.
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358 JEREMY A. JACOBSON

H 0
sing(X (R),Z/2) when n ≥ d + 1; it follows from this that there is a bijection of

cohomology groups

H∗Zar(X,H
n)' H∗sing(X (R),Z/2) (1.1)

when n ≥ d + 1, where X (R) denotes the real points of X equipped with the
Euclidean topology (defined in Remark 4.4) and H∗sing(X (R),Z/2) denotes the
singular cohomology groups of the real points with Z/2Z-coefficients.

Let W (X) denote the Witt ring of symmetric bilinear forms over X and I n(X)
the powers of the fundamental ideal; see [Knebusch 1977]. Let In denote the
Zariski sheaf associated to the presheaf U 7→ I n(U ). Let In denote the sheaf
associated to the presheaf U 7→ In(U )/In+1(U ). The short exact sequence of
sheaves

0→ In+1
→ In

→ In→ 0

induces a long exact sequence in Zariski cohomology

· · · → H m
Zar(X, I

n+1)→ H m
Zar(X, I

n)

→ H m
Zar(X, In)

∂
→ H m+1

Zar (X, I
n+1)→ · · · . (1.2)

The introduction to [Fasel 2013] made the following assertions:

• the Zariski cohomology groups H∗Zar(X, I
n) are the analogue of the singular

cohomology groups H∗sing(X (R),Z), while H∗Zar(X, In) are the analogue of
H∗sing(X (R),Z/2);

• the map H∗Zar(X, I
n+1)→ H∗Zar(X, I

n) corresponds to the homomorphism

H∗sing(X (R),Z)
2
→ H∗sing(X (R),Z)

induced by the multiplication by 2 on the coefficients;

• the connecting homomorphism H∗Zar(X, In)
∂
→ H∗Zar(X, I

n+1) is analogous to
the Bockstein homomorphism

H∗sing(X (R),Z/2)
β
→ H∗+1

sing (X (R),Z).

Under the additional hypothesis that X is affine, smooth, and has trivial canonical
sheaf, Fasel [2011, Proposition 5.1] proved that H d

Zar(X, I
n)' H d

sing(X (R),Z) for
all n ≥ d.

We prove these assertions as a consequence of our more general results on
real cohomology and the powers of the fundamental ideal. Precisely, we show
in Corollary 8.11 that when n ≥ d + 1, the global signature induces an isomor-
phism H m

Zar(X, I
n) 'sign H m

sing(X (R),Z) for all m ≥ 0, which in turn induces an
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isomorphism of long exact sequences from (1.2) to

· · · → H m
sing(X (R),Z)

2
→ H m

sing(X (R),Z)

→ H m
sing(X (R),Z/2)

β
→ H m+1

sing (X (R),Z)→ · · · .

Real cohomology is a cohomology theory for schemes that globalizes singular
cohomology to any scheme X in the sense that when X is a real variety, the real
cohomology groups H m(Xr ,Z) may be identified with the singular cohomology
groups H m

sing(X (R),Z). For details, see Remark 4.4. The foundations and funda-
mental results on real cohomology are due to Claus Scheiderer [1994]. There
is a close relationship between real and étale cohomology: the étale cohomol-
ogy of X with 2-primary coefficients stabilizes in high degrees against the real
cohomology of X with 2-primary coefficients [Scheiderer 1994, Corollary 7.19,
Proposition 19.8]. Scheiderer also obtained a generalization to schemes of the
bijection (1.1). To introduce it, first recall that for any scheme X , multiplication by
cup product with (−1)∈ H 1(Xét,Z/2) induces a morphism of sheaves Hn

→Hn+1.
Consequently, one may consider the colimit lim

−−→
Hn over the system

H0 (−1)
−−→H1 (−1)

−−→H2 (−1)
−−→ · · · .

The signature modulo 2 induces an isomorphism of sheaves lim
−−→

Hn
→ supp∗ Z/2

which induces an isomorphism of cohomology groups

H m
Zar(X, lim

−−→
Hn)' H m(Xr ,Z/2) (1.3)

for all m ≥ 0, where H m(Xr ,Z/2) denotes the real cohomology of X with coeffi-
cients in the constant sheaf Z/2 [Scheiderer 1994, Corollary 19.5.1].

Note that one cannot obtain integral coefficient versions of the isomorphisms
(1.1) and (1.3) by simply replacing everywhere Z/2 with Z, because when n > d
the étale cohomology groups H n

ét(U,Z) are always torsion for any open subscheme
U of X [Scheiderer 1994, Corollary 7.23.3].

Here, we obtain integral versions by demonstrating in Theorem 8.6 that for any
scheme X with 2 invertible in its global sections, the signature induces an isomor-
phism of sheaves lim

−−→
In
→ supp∗ Z which induces an isomorphism of cohomology

groups

H m
Zar(X, lim

−−→
In)

sign
' H m(Xr ,Z)

for all m ≥ 0, where lim
−−→

In denotes the Zariski sheaf on X obtained by taking the
colimit of the system of sheaves

W
〈〈−1〉〉
−−−→ I

〈〈−1〉〉
−−−→ I2 〈〈−1〉〉

−−−→ · · ·
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and In 〈〈−1〉〉
−−−→ In+1 denotes the map induced by tensor product with the Pfister form

〈〈−1〉〉 := 〈1, 1〉.
These global results follow from the local case, that is, the statement on the

localization of the graded ring I ∗(A) from the abstract. Another way of stating
this is to say that

sign : lim
−−→

I n(A)→ C(sper A,Z) (1.4)

is bijective for any local ring A with 2 invertible. Injectivity of (1.4) is well-known
and follows from the local ring version of Pfister’s local-global principal (for in-
stance [Knebusch 1977, Chapter II, §5], or directly in terms of the signature used
in this article [Mahé 1982, Théorème 2.1 and Corollaire]). The statement that (1.4)
is surjective is stronger than Mahé’s theorem, which states that the cokernel of
sign :W (A)→ C(sper A,Z) is 2-primary torsion for any commutative ring with 2
invertible. We believe that surjectivity of (1.4) when A is local is known as well,
but we don’t know of a reference in the literature. We give a proof of bijectivity
of (1.4) in Proposition 7.2 in a much different way using cohomological methods.
For instance, in Theorem 5.3 we prove the Gersten conjecture for the Witt groups
with 2 inverted of any regular excellent local ring. From this we deduce injectivity
of (1.4) for any local ring with 2 invertible using “Hoobler’s trick”. Similarly, in
Proposition 6.3 we prove a purity result for lim

−−→
I n(A) in “geometric” cases and

deduce surjectivity in general from this.

2. Total signature

Throughout this section, let F be a field of characteristic different from 2, though
the hypothesis on the characteristic is not necessary for the definitions.

Definition 2.1. An ordering on F is a subset P ⊂ F satisfying

(1) P + P ⊂ P , PP ⊂ P;

(2) P ∩ (−P)= 0;

(3) P ∪−P = F .

If b− a ∈ P , then we write a ≤P b. If a ∈ P and a 6= 0, then a >P 0. It follows
from the axioms that if F is nontrivial, then 1>P 0. Also, for any a 6= 0 we write
sgnP(a) = 1 if a ∈ P and sgnP(a) = −1 if a ∈ −P . From the axioms one has
that sgnP(ab)= sgnP(a) sgnP(b) for any a, b ∈ F×; consequently, assigning any
a ∈ F× to sgnP(a) determines a homomorphism sgnP : F

×
→{±1} of groups. The

pair (F, P) is called an ordered field [Knebusch and Scheiderer 1989, Kapitel I,
Definition 1 and Bemerkungen].

Definition 2.2. The real spectrum of F , denoted sper F , is the topological space
formed by equipping the set of all orderings on F with the topology generated by
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the subbasis consisting of subsets H(a)⊂ sper F , a ∈ F , where H(a) denotes the
set of all orderings P satisfying a >P 0.

Definition 2.3. Let P be an ordering on F . Any nondegenerate quadratic form φ

over F splits as an orthogonal sum φ ' φ+ ⊥ φ−, where the form φ+ is positive
definite with respect to the ordering (for all 0 6= v, q(v) > 0 with respect to P) and
the form φ− is negative definite with respect to the ordering (i.e., −φ− is positive
definite). The numbers n+ := dimφ+ and n− := dimφ− do not change under an
isometry of φ [Knebusch and Scheiderer 1989, Kapitel I, §2, Satz 2]. The integer
signP([φ]) := n+ − n− is called the signature of [φ] with respect to P . As the
signature of the hyperbolic form is trivial, assigning to an isometry class [φ] its
signature signP([φ]) defines a map

signP :W (F)→ Z

which is a homomorphism of rings [loc. cit.]. Let C(sper F,Z) denote the set of
continuous integer-valued functions on the real spectrum of F . The total signature
is the ring homomorphism

sign :W (F)→ C(sper F,Z)

which assigns to an isometry class [φ] the continuous function P 7→ signP([φ])

[Knebusch and Scheiderer 1989, Kapitel III, §8, Satz 1]. If F has no ordering, then
sign is trivial.

The following lemma is obtained directly from the definition of the signature
and the fact that the signature is a ring homomorphism.

Lemma 2.4. Let P be an ordering on F.

(1) If φ is a diagonalizable form, φ ' 〈a1〉 ⊥ · · · ⊥ 〈an〉 for some a1, . . . , an ∈ F×,
then

signP([φ]) :=

n∑
i=1

sgnP(ai ).

(2) Let a ∈ F×. The Pfister form 〈〈a〉〉 := 〈1,−a〉 has total signature

sign(〈〈a〉〉)= 21{a<0}.

(3) Let a1, a2, . . . , an ∈ F×. The n-fold Pfister form

〈〈a1, . . . , an〉〉 := 〈〈a1〉〉⊗ · · ·⊗ 〈〈an〉〉

has total signature

sign(〈〈a1, . . . , an〉〉)= 2n1{a1<0,...,an<0}.
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Definition 2.5. As hyperbolic forms have even rank, assigning a quadratic form to
its rank modulo 2 determines a ring homomorphism W (F)→ Z/2Z. The kernel
is denoted I (F) and is called the fundamental ideal of F . The powers of the
fundamental ideal I j (F) are additively generated by Pfister forms 〈〈a1, . . . , a j 〉〉,
so it follows from Lemma 2.4 that the signature induces a group homomorphism

sign : I j (F)→ C(sper F, 2 j Z)

and the diagram

I j (F)
sign

//

〈〈−1〉〉
��

C(sper F, 2 j Z)

2
��

I j+1(F)
sign
// C(sper F, 2 j+1Z)

commutes. So after identifying

lim
−−→

(
C(sper F,Z)

2
→ C(sper F, 2Z)

2
→ C(sper F, 22Z)

2
→ · · ·

)
' C(sper F,Z),

one obtains the map

lim
−−→

(
W (F)

〈〈−1〉〉
−−−→ I (F)

〈〈−1〉〉
−−−→ I 2(F)

〈〈−1〉〉
−−−→ · · ·

) sign
−−→ C(sper F,Z), (2.6)

where lim
−−→

denotes the colimit of the directed system of groups.

The following result first appeared in a paper of J. Arason and M. Knebusch.
Injectivity follows from A. Pfister’s local-global principal [Pfister 1966, Satz 22],
and surjectivity follows immediately from the “normality theorem” of R. Elman
and T.Y. Lam [1972, 3.2].

Proposition 2.7 [Arason and Knebusch 1978, Satz 2a]. The morphism (2.6) is a
bijection.

3. Residues

Throughout this section A denotes a discrete valuation ring with fraction field K
and residue field k = A/m of characteristic different from 2. Let π be a uniformiz-
ing parameter for A. The following lemma restates well-known facts on the second
residue for Witt groups; see [Milnor and Husemoller 1973, Chapter IV (1.2)–(1.3)].

Lemma 3.1. (1) Every rank one quadratic form over K is isometric to some 〈c〉,
where c = bπn , b is a unit in A, and either n = 0 or n = 1.

(2) The second residue ∂π :W (K )→W (k) has the description

∂π (〈c〉)=
{
〈b〉 if n = 1,
0 if n = 0,

on rank one forms 〈c〉 as in (1).
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(3) The second residue respects the powers of the fundamental ideal, that is, for
any integer n ≥ 1, it induces a homomorphism of groups

∂π : I n(K )→ I n−1(k),

where I 0(k) :=W (k).

Definition 3.2. Let P be an ordering on the fraction field K . One says that A is
convex in K (with respect to P) when for all x, y, z ∈ K ,

{x ≤P z ≤P y and x, y ∈ A} ⇒ z ∈ A;

see [Knebusch and Scheiderer 1989, Kapitel II, §1, Definition 1 and §2, Satz 3;
Bochnak et al. 1998, Definition 10.1.3(ii), Proposition 10.1.4]. If A is convex
in K , then the subset P := σ(P ∩ A)⊂ k, where σ : A→ k is the surjection onto
the residue field, defines an ordering on k called the induced ordering [Knebusch
and Scheiderer 1989, Kapitel II, §2, Bemerkungen]. For any ordering ξ ∈ sper k,
let Yξ ⊂ sper K denote the subset consisting of orderings such that A is convex in
K and ξ = P is the induced ordering. The assignment

P 7→ sgnP(π)

defines a bijection from Yξ to the set {±1} [Knebusch and Scheiderer 1989, Kapi-
tel II, §7, Theorem (Baer–Krull)], cf. [Bochnak et al. 1998, Theorem 10.1.10 and
its proof]. That is to say, there are exactly two orderings in Yξ , say η+ and η−,
where sgnη+(π)= 1 and sgnη−(π)=−1. The group homomorphism

βπ : C(sper K ,Z)→ C(sper A/m,Z)

is defined by assigning s ∈ C(sper K ,Z) to the map ξ 7→ βπ (s)(ξ), where

βπ (s)(ξ) := s(η+)− s(η−).

If sper A/m =∅, then it is defined to be zero.

Lemma 3.3. Let π be a uniformizing parameter for A. The morphism βπ of
Definition 3.2 has the following description on elements sign(〈c〉), where c = bπn ,
b is a unit in A, and either n = 0 or n = 1:

βπ (sign(〈c〉))=
{

2 sign(〈b〉) if n is 1,
0 if n is 0.

Proof. Let c = bπn , where b is a unit in A, and either n = 0 or n = 1. For any
ξ ∈ sper A/m,
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βπ (sign(〈c〉))(ξ)

= signη+(〈c〉)− signη−(〈c〉)

= sgnη+(c)− sgnη−(c)

=

{
sgnξ (c̄)− sgnξ (c̄) if n = 0 (both orderings induce ξ ),
sgnη+(bπ)− sgnη−(bπ) if n = 1,

=


0 if n = 0,
sgnη+(b) sgnη+(π)
− sgnη−(b) sgnη−(π)

if n = 1,

=

{
0 if n = 0,
sgnη+(b)+ sgnη−(b) if n = 1 (by definition of η+ and η−),

=

{
0 if n = 0,
sgnξ (b)+ sgnξ (b) if n = 1 (both orderings induce ξ ),

=

{
0 if n = 0,
2 sgnξ (b) if n = 1.

The above equalities prove the lemma. �

The next lemma follows from Lemmas 3.1 and 3.3.

Lemma 3.4. The diagram of abelian groups below is commutative:

lim
−−→

I n(K )
∂π
//

sign
��

lim
−−→n≥−1 I n(k)

2 sign
��

C(sper K ,Z)
βπ
// C(sper k,Z)

where lim
−−→n≥−1 I n(k) denotes the colimit over

W (k)
〈〈−1〉〉
−−−→W (k)

〈〈−1〉〉
−−−→ I (k)

〈〈−1〉〉
−−−→ I 2(k)

〈〈−1〉〉
−−−→ · · · .

4. Real cohomology

C. Scheiderer [1994] developed a theory of real cohomology for schemes. It “glob-
alizes” to schemes the singular cohomology of the real points of a real variety in
the same way that étale cohomology globalizes the singular cohomology of the
complex points of a complex variety. Following [Scheiderer 1994], we recall the
definition and some needed properties.

Definition 4.1. The real spectrum of a ring A is a topological space denoted
by sper A. As a set it consists of all pairs ξ = ( p, P) with p ∈ spec A and P
an ordering of the residue field k( p). For any point ξ ∈ sper A, let k(ξ) denote
the real closure of the ordered field k( p) with respect to P . For a ∈ A, write
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a(ξ) > 0 to indicate that the image of a in k(ξ) is positive. The sets of the form
D(a) := {ξ ∈ sper A : a(ξ) > 0} for a ∈ A are a subbasis for the topology on sper A.
The real spectrum of a scheme X is the topological space Xr formed by glueing the
real spectra of its open affine subschemes. This does not depend on the open cover
of X that was chosen. Furthermore, any map of schemes f : Y → X induces a
continuous map of real spectra fr : Yr → Xr . The assignment ( p, P) 7→ p defines
a continuous map of topological spaces sper A→ spec A, and similarly one has a
continuous map supp : Xr → X called the support map.

Definition 4.2. Let X be a scheme. First we recall the definition of the real site
of X , which we also denote by Xr . It is the category O(Xr ) of open subsets of Xr

equipped with the “usual” coverings, i.e., a family of open subspaces {Uλ→U }
is a covering of U ∈ O(Xr ) if U =

⋃
Uλ.1 The category of sheaves of abelian

groups on Xr is denoted Ab(Xr ) and the category of abelian groups by Ab. For
any F ∈ Ab(Xr ), the real cohomology groups of X with coefficients in F are the
right derived functors of the global sections functor 0 : Ab(Xr )→ Ab. They are
denoted by

H p(Xr ,F) := R p0F,

where R p0 is the p-th derived functor of 0. When X = spec A is affine, we may
write H p(sper A,F) instead of H p(Xr ,F). For any abelian group M , we also
denote by M the sheaf on Xr associated to the presheaf U 7→ M for U any open
set in Xr . Such a sheaf is called a constant sheaf. Moreover, when the group
M is equipped with the discrete topology we may write C(sper A,M) instead of
H 0(sper A,M). If i : S→ Xr is a closed subspace, then for any abelian sheaf F
on Xr , define

H 0
S (Xr , F) := ker(F(Xr )→ F(Xr \ S)).

The functor F 7→ H 0
S (Xr , F) is left exact and its right derived functors

Hq
S (Xr , F) := Rq H 0

S (Xr , F)

are called the relative cohomology of F with support in S [Scheiderer 1995, No-
tations] see [SGA 43 1973, Exposé V, 6.3] or [SGA 2 2005, Exposé I, §2, Defini-

1The real étale site, denoted Xrét, is obtained by equipping the category of étale X -schemes
with coverings given by the real surjective families, that is, { fλ :Uλ→U } is a covering if the real
spectrum Ur equals the union of the images ( fλ)r ((Uλ)r ). For any sheaf F on Xr ,{

X
′ f
−→ X

}
7→ H0(X

′

r , f ∗r F)

defines a sheaf on Xrét denoted F[. This determines a functor from the category X̃r of sheaves
on Xr to the category X̃rét of sheaves on Xrét, which is an equivalence of categories compatible with
morphisms Y → X of schemes [Scheiderer 1994, Theorem 1.3, Theorem 1.14, and Remark 1.16].
We follow [Scheiderer 1995, Notation] in defining real cohomology and cohomology with supports
as sheaf cohomology on the topological space Xr .
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tion 2.1]. Additionally, i !F is defined to be the sheaf

S ∩U 7→ ker(F(U )→ F(U \ (S ∩U )))

on S (U open in Xr ) and one has that

H 0
S (Xr , F)= H 0(Xr , i∗i !F)

using the exact sequence

0→ i∗i !F→ F→ j∗ j∗F→ i∗R1i !F→ 0; (4.3)

see [SGA 43 1973, Exposé V, Proposition 6.5] or [SGA 2 2005, Exposé I, Corol-
laire 2.11], noting that R1i∗i !F ' i∗R1i !F since i∗ is exact [Scheiderer 1994,
Corollary 3.11.1].

Remark 4.4. Let X be an algebraic variety over R, by which we mean an R-
scheme that is separated and of finite type. We explain in this remark how to equip
X (R) with a topology and identify its singular cohomology with the real cohomol-
ogy of Xr . For any affine scheme U = spec R[T1, T2, . . . , Tn]/I , we consider the
R-points U (R) as a topological space by equipping U (R)⊂ Rn with the subspace
topology, where Rn has the Euclidean topology. The Euclidean topology on the
set of R-points X (R) is the topological space formed by glueing the U (R) of the
open affine subschemes U taken from an open cover of X. This does not depend on
the open cover of X that was chosen. The inclusion map i : X (R)→ Xr , sending
an R-point x to the pair (x,R≥0), is continuous and i−1 induces a bijection from
connected components of Xr to connected components of X (R) and from con-
nected components of any basic open D(a1, a2, . . . , an) in Xr to connected com-
ponents of i−1(D(a1, a2, . . . , an)) [Coste and Roy 1982, Corollaire 3.7 ]. Hence,
the functor i∗ determines an equivalence from the category of constant sheaves of
abelian groups on X (R) to the category of constant sheaves of abelian groups on
Xr . Consequently, for any abelian group M , the sheaf cohomology H∗(X (R),M)
coincides with the real cohomology groups H∗(Xr , i∗M) and H∗(Xr ,M). Also,
singular cohomology H∗sing(X (R),M) is canonically isomorphic to sheaf coho-
mology H∗(X (R),M); see [Scheiderer 1994, Remark 13.6]. In particular, the
real cohomology groups H∗(Xr ,Z) are finitely generated groups, isomorphic to
H∗sing(X (R),Z).

Definition 4.5. Let Ab(XZar) denote the category of sheaves of abelian groups on
the Zariski site XZar. Since the support map is a continuous map of topological
spaces, it induces the direct image functor

supp∗ : Ab(Xr )→ Ab(XZar),

and this functor is faithful and exact [Scheiderer 1994, Theorem 19.2].
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Lemma 4.6. Let X be a scheme. For any sheaf F ∈ Ab(Xr ),

H p(Xr ,F)' H p
Zar(X, supp∗ F).

Proof. Using the Grothendieck spectral sequence for the composition of the func-
tors supp∗ and the global sections functor 0, we obtain a spectral sequence with
Ep,q

2 = H p
Zar(X, Rq supp∗ F) that abuts to H p+q(Xr ,F). For q > 0, the sheaves

Rq supp∗ F vanish [Scheiderer 1994, Theorem 19.2]. Therefore the edge maps
in this spectral sequence determine isomorphisms H p(Xr ,F)

'
−→H p

Zar(X, supp∗ F)
for p ≥ 0. �

Next we recall the work of C. Scheiderer [1995], in which he constructs a
“Bloch–Ogus” style complex that computes real cohomology. The codimension
of support filtration on X determines a spectral sequence abutting to real coho-
mology. Scheiderer shows that for regular excellent schemes the E1-page is zero
except for the complex E∗,01 , and hence obtains the result below. Recall that a
locally noetherian scheme is called excellent if X can be covered by open affine
subschemes spec Aα , where the Aα are excellent rings [EGA IV2 1965, 7.8.5]. For
a point x ∈ X of a scheme, we denote sper k(x) by xr .

Proposition 4.7 [Scheiderer 1995, Theorem 2.1]. Let X be a noetherian regular
excellent scheme. Let W be an open constructible subset of Xr , and let F be a
locally constant sheaf on W . Then there is a complex of abelian groups⊕

x∈X (0)

H 0
x (W,F)→

⊕
x∈X (1)

H 1
x (W,F)→

⊕
x∈X (2)

H 2
x (W,F)→ · · · (4.8)

natural in W and F , whose q-th cohomology group is canonically isomorphic to
Hq(W,F), q ≥ 0. Here Hq

x (W,F) := Hq
xr∩W (sperOX,x ∩W,F) are the relative

cohomology groups of sperOX,x with support in xr ∩W (Definition 4.2) and X (i)

denotes, for i ≥ 0, the set of codimension i points (dimOX,x = i) of X. This
complex is contravariantly functorial for flat morphisms of schemes.

The following lemma is based on the proof of [Scheiderer 1995, Proposition 2.6],
where M = Z/2Z.

Lemma 4.9. Let X be a noetherian regular excellent scheme which is integral with
function field K . Let x ∈ X (1) and let π denote a choice of uniformizing parameter
for OX,x . Fix an integer n ≥ 0 and let M denote the constant sheaf Z. Denote by
∂ the map

H 0(sper K ,M)→ H 1
xr
(sperOX,x ,M)

induced by first differential of the complex (4.8) from Proposition 4.7. Then there
is an isomorphism ιπ : H 1

xr
(sperOX,x ,M)→ H 0(xr ,M) for which ιπ ◦ ∂ = βπ ,

where βπ is the map of Definition 3.2.
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Proof. Let X
′

= sperOX,x and Z
′

= xr . Let i : Z
′

→ X
′

denote the inclusion, and
let j : sper K → X

′

denote the inclusion of the complement to Z
′

. For any abelian
sheaf M on X

′

the sequence

M→ j∗ j∗M→ i∗R1i !(M)→ 0

is exact (Definition 4.2, (4.3)). By [Scheiderer 1995, Lemma 1.3], for any locally
constant sheaf M on X

′

the sequence

M→ j∗ j∗M
β
→ i∗i∗M→ 0

is exact, where β is defined on stalks as (βs)ζ = s(η+)− s(η−) ∈ M . Hence we
get an isomorphism ιπ of cokernels and a commutative diagram

j∗ j∗M(X
′

)
∂
//

β

''

i∗R1i !M(X
′

)

ιπ
��

i∗i∗M(X
′

)

(4.10)

Tracking down all the definitions, one finds that (4.10) is equal to the diagram

H 0(X
′

− Z
′

,M) ∂
//

βπ

''

H 1
Z ′
(X
′

,M)

ιπ

��

H 0(Z
′

,M)

where the vertical map is the isomorphism ιπ , the diagonal map is the map βπ of
Definition 3.2, and sper K equals X

′

− Z
′

. This finishes the proof of the lemma. �

Lemma 4.11. Let A be a regular excellent local ring with fraction field K . Let
X = spec A, and for any x ∈ X (1), let πx be a choice of uniformizing parameter
for OX,x . Then the sequence

0−→ C(sper A,Z)−→ C(sper K ,Z)
⊕βπ
−−→

⊕
x∈X (1)

C(sper k(x),Z)

is exact, where βπ is the map of Definition 3.2.

Proof. To prove the lemma, choose isomorphisms ιπ for each x ∈ X (1) as in
Lemma 4.9, and then use Proposition 4.7. �

5. On the Gersten conjecture with 2 inverted

Definition 5.1. Let A be a regular local ring with 2 invertible and let X = spec A.
Let d denote the Krull dimension of A and K the fraction field of A. We work
with the Gersten complex for the Witt groups of X as found for instance in [Balmer
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et al. 2002, Definition 3.1], which we denote by C•(A,W ). Recall that for any
integer p ≥ 0, after choosing local parameters for OX,x for each x ∈ X (p) one may
write down isomorphisms ιp : C p(A,W )

'
→
⊕

x∈X (p) W (k(x)). Then C•(A,W ) is
isomorphic to the complex

C•(A,W, ι) :=W (K )
∂ι
−→

⊕
x∈X (1)

W (k(x))
∂ι
−→ · · ·

∂ι
−→

⊕
x∈X (d)

W (k(x)),

where the differentials are ∂ι := ιp+1 ◦ ∂ ◦ ι
−1
p and ∂ is the differential leaving

C p(A,W ). The differentials ∂ι may differ for different choices of isomorphisms ιp
but the resulting complexes will all be isomorphic. For all x ∈ X (1) we may choose
parameters π ∈ OX,x so that ∂ι : W (K )→ W (k(x)) equals the second residue
∂π of Lemma 3.1; see [Balmer and Walter 2002, Lemma 8.4], cf. [Gille 2007,
Proposition 6.5]. It was proved by J. Arason that the second residue ∂π respects
the filtration by powers of the fundamental ideal, that is, ∂π (I n(K ))⊂ I n−1(k(x))
[Arason 1975] and similarly one may show that all the differentials ∂ι respect this
filtration; for instance, this was shown by S. Gille [2007, Corollary 7.3] for coherent
Witt groups, which gives the same complex since A is regular [Balmer et al. 2002,
Section 3]. So one may obtain a subcomplex

C•(A, I n, ι) :=
⊕

x∈X (0)

I n(k(x))
∂ι
−→

⊕
x∈X (1)

I n−1(k(x))
∂ι
−→ · · ·

∂ι
−→

⊕
x∈X (d)

I n−d(k(x)),

where we set I m(k(x))=W (k(x)) when m ≤ 0. Define

C•(A,W/I n) := C•(A,W )/C•(A, I n, ι)

to be the quotient complex. The exact sequence of complexes

0 // C•(A, I n, ι) //

2
��

C•(A,W ) //

2
��

C•(A,W/I n) //

2
��

0

0 // C•(A, I n+1, ι) // C•(A,W ) // C•(A,W/I n+1) // 0

determines an exact sequence of colimits

0→ C•(A, lim
−−→

I n)→ C•(A, lim
−−→

W )→ C•(A, lim
−−→

W/I n)→ 0, (5.2)

where we define

C•(A, lim
−−→

I n) := lim
−−→

C•(A, I n, ι),

C•(A, lim
−−→

W/I n) := lim
−−→

C•(A,W/I n),

C•
(

A,W
[ 1

2

])
:= lim
−−→

(
C•(A,W )

2
→ C•(A,W )

2
→ C•(A,W )

2
→ · · ·

)
.
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Theorem 5.3. If A is a regular excellent local ring with 2 invertible, then the
Gersten complex C•

(
A,W

[1
2

])
is exact and H 0

(
C•
(

A,W
[ 1

2

]))
=W (A)

[1
2

]
.

Proof. We proceed by induction on the Krull dimension of A. The Gersten complex
without inverting 2 is exact already in low dimensions for any regular local ring
[Balmer et al. 2002, Lemma 3.2]. Fix A and assume that the statement of the
proposition is known for regular excellent local rings of Krull dimension less than
that of A. It is sufficient to show that the cohomology of C•

(
A,W

[ 1
2

])
vanishes

in degrees 2 and higher: one may use the Balmer–Walter spectral sequence with
2 inverted for Witt groups to show that this implies H∗

(
C•
(

A,W
[ 1

2

]))
= 0 in

positive degree and H 0
(
C•
(

A,W
[1

2

]))
=W (A)

[ 1
2

]
; see, e.g., [Balmer et al. 2002,

Lemma 3.2]. For any regular parameter f ∈ A, there is a short exact sequence of
complexes

0→ C•(A,W )→ C•(A f ,W )→ C•(A/ f,W )[−1] → 0;

see, for instance, [Balmer et al. 2002, Lemma 3.3 and proof of Theorem 4.4].
Taking colimits it remains exact. As dim A/ f is strictly less than dim A and A/ f
is again regular and excellent we have that C•

(
A/ f,W

[ 1
2

])
[−1] is exact.

Hence it remains to see that C•(A f ,W ) is exact in degrees 2 and higher. Note
that for any p ∈ spec A f , dim(A f ) p is strictly less than dim A and (A f ) p is
again regular and excellent, hence the cohomology of C•

(
A f ,W

[ 1
2

])
agrees with

H∗Zar(spec A f , lim
−−→

W), where lim
−−→

W denotes the colimit over the sheaves

W
〈〈−1〉〉
−−−→W

〈〈−1〉〉
−−−→W

〈〈−1〉〉
−−−→ · · · .

For any point p in spec Ap, using the induction hypothesis we have that the top
row in the commutative diagram

0 // lim
−−→

W ((A f ) p) //

��

lim
−−→

W (K )
⊕∂π

//

sign
��

⊕
x∈Y (1) lim

−−→
W (k(x))

2 sign
��

0 // C
(
sper(A f ) p,Z

[ 1
2

])
// C
(
sper K ,Z

[ 1
2

])⊕βπ
//
⊕

x∈Y (1) C
(
sper k(x),Z

[ 1
2

])
is exact, and using Lemma 4.11 we have that the bottom row is exact, where
Y := spec(A f ) p. Proposition 2.7 implies the middle vertical map is a bijection
and the rightmost vertical map is an injection, from which it follows that the left-
most vertical map is bijective. Thus we get an isomorphism lim

−−→
W '
→ supp∗ Z

[1
2

]
of sheaves on A f as it is an isomorphism on stalks, where we use Lemma 4.6
to identify the sheaf supp∗ Z

[ 1
2

]
as the sheaf U 7→ C

(
Ur ,Z

[ 1
2

])
. Then the real

cohomology groups H∗
(
sper A f ,Z

[1
2

])
are isomorphic to H∗Zar(spec A f , lim

−−→
W),

so it remains to prove their vanishing in degree 2 and higher. This is true since the
real cohomology of local rings vanish in positive degree (in fact, semilocal too)
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[Scheiderer 1994, Proposition 19.2.1] and the real cohomology of sper A f sits in
a long exact sequence with that of sper A/ f and sper A whenever A is regular
excellent [Scheiderer 1995, Corollary (1.10)]. This finishes the proof. �

Since the diagram
lim
−−→

I n(A) //

��

W (A)
[ 1

2

]
��

lim
−−→

I n(K ) // W (K )
[ 1

2

]
is commutative and the horizontal maps in the diagram are injective, we have the
following corollary to Theorem 5.3.

Corollary 5.4. Let A be a regular excellent local ring with 2 invertible. The map

lim
−−→

I n(A)→ lim
−−→

I n(K )
is injective.

We will also need the following result later.

Lemma 5.5. Let A be a regular excellent local ring with 2 invertible. The coho-
mology groups H m(C•(A, lim

−−→
I n)) vanish when m ≥ 2.

Proof. Consider the long exact sequence in cohomology

· · ·→H m(C•(A, lim
−−→

I n))→H m(C•(A, lim
−−→

W ))→H m(C•(A, lim
−−→

W/I n))→· · ·

associated to the short exact sequence of complexes (5.2). The cohomology groups
H m(C•(A, lim

−−→
W )) vanish when m > 0 by Theorem 5.3. Then H m(C•(A, lim

−−→
I n))

is isomorphic to H m−1(C•(A, lim
−−→

W/I n)) for all m ≥ 2. The cohomology groups
H m(C•(A, lim

−−→
W/I n)) are 2-primary torsion since the complex C•(A, lim

−−→
W/I n)

is, while the groups H m(C•(A, lim
−−→

I n)) have no 2-primary torsion since multipli-
cation by 2

C•(A, lim
−−→

I n)
2
→ C•(A, lim

−−→
I n)

is an isomorphism of complexes. Thus both groups vanish proving, the lemma. �

6. Purity of the limit in the local “geometric” case

For any prime p, we use Z〈p〉 to denote the localization of Z at the prime ideal
〈p〉 ∈ spec Z. In this section we prove purity of lim

−−→
I n(A) in the case that A is

essentially smooth over either Q or Z〈p〉 (Proposition 6.3). When A is a local ring
of mixed characteristic (0, p) with p 6= 2 (that is to say, the characteristic of the
fraction field K is 0 and the characteristic of the residue field is p) we say that A
is essentially smooth over Z〈p〉 if A = R p is the localization at a prime p ∈ spec R
of a smooth and finite type Z〈p〉-algebra R = Z〈p〉[T1, T2, . . . , Tn]/I .
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Lemma 6.1. If A is essentially smooth over Z〈p〉 for some prime p 6= 2 or over Q,
then the sequence

I n(A)/I n+1(A)−→ I n(K )/I n+1(K )
⊕∂π
−−→

⊕
x∈X (1)

I n−1(k(x))/I n(k(x))

is exact, where X = spec A and K is the fraction field of A.

Proof. Let K M
n (A)/2 denote the “naive” Milnor K-theory defined exactly as for a

field. Kummer theory gives a “symbol map” K M
n (A)/2→ H n

ét(A,Z/2), and in the
commutative diagram

K M
n (A)/2 //

��

K M
n (K )/2 //

��

⊕
x∈X (1) K M

n−1(k(x))/2

��

0 // H n
ét(A,Z/2) // H n

ét(K ,Z/2) //
⊕

x∈X (1) H n−1
ét (k(x),Z/2)

where X = spec A and K is the fraction field of A, the lower row is exact as a
consequence of Gillet’s Gersten conjecture for étale cohomology in the Z〈p〉 case,2

and Bloch–Ogus in the Q case. Furthermore, the Galois symbol

K M
n (A)/2→ H n

ét(A,Z/2)

is surjective when A is essentially smooth over Q [Kerz 2009; 2010] and when
A is essentially smooth over a discrete valuation ring3; see [Kahn 2002, p. 114,
surjectivity of the Galois symbol]. Applying the Milnor conjecture as proved by
V. Voevodsky, we have that the vertical maps in the middle and on the right are
bijections. It follows that the upper row is exact in the middle. Since 〈〈a, 1−a〉〉= 0
in W (A) for a ∈ A× such that 1− a ∈ A×, there is a well-defined homomorphism
K M

n (A)/2→ I n(A)/I n+1(A). Hence, in the commutative diagram

K M
n (A)/2 //

��

K M
n (K )/2 //

��

⊕
x∈X (1) K M

n−1(k(x))/2

��

I n(A)/I n+1(A) // I n(K )/I n+1(K ) //
⊕

x∈X (1) I n−1(k(x))/I n(k(x))

2Manuscript notes titled “Bloch–Ogus for the étale cohomology of certain arithmetic schemes”
distributed at the 1997 Seattle algebraic K-theory conference. Also, this follows from Thomas
Geisser’s proof of the Gersten conjecture for motivic cohomology [Geisser 2004]. This is explicitly
stated in the sentence after Geisser’s Theorem 1.2, because Rnε∗µ2 is the Zariski sheaf associated
to the presheaf U 7→ Hn

ét(U, µ2), and the affirmation of the Milnor conjecture allows one to identify
the Gersten complex for motivic cohomology with the Gersten complex for étale cohomology.

3In a correspondence with the author, B. Kahn explained that the passage from surjectivity in the
essentially smooth over a field case to this case is easy and goes back to Lichtenbaum, if you grant
Gillet’s Gersten conjecture for étale cohomology.
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after using again the Milnor conjecture, by which the vertical maps in the middle
and on the right are bijections, we have that the lower row is exact in the middle. �

Lemma 6.2. Let A be essentially smooth over Z〈p〉 (p 6= 2) or Q.

(1) There exists an integer N such that C•(A, I s, ι)
2
→ C•(A, I s+1, ι) is an iso-

morphism of complexes for all s ≥ N.

(2) The groups H m(C•(A,W )) are 2N -torsion for all m ≥ 2.

(3) There exists an integer B ≥ 0 such that 2B H 0(C•(A,W ))⊂ i∗(W (A)), where
i∗ :W (A)→W (K ) denotes the map induced by i : spec K → spec A.

(4) 2B+N H 0(C•(A,W ))⊂ i∗(I N (A)).

Proof. To prove (1), note that the cohomological 2-dimension of k(x)[
√
−1] is

finite and, for all points x , bounded strictly less than some integer n. Using
the Arason–Pfister Hauptsatz and the Milnor conjecture for fields it follows that
I n(k(x)[

√
−1]) vanishes for all x , and from this it follows that, for all x , we have

an isomorphism I s(k(x))
2
→ I s+1(k(x)) for all s ≥ n [Elman et al. 2008, Corollary

35.27]. Hence C•(A, I s, ι)
2
→ C•(A, I s+1, ι) is an isomorphism of complexes for

all s ≥ N , where N := n+ dim X . Then C•(A, lim
−−→

I n) and C•(A, I N , ι) are iso-
morphic complexes, so the cohomology group H m(C•(A, I N , ι)) vanishes when
m ≥ 2 by Lemma 5.5. It follows that the groups H m(C•(A,W )) are 2N -torsion
when m ≥ 2 since H m(C•(A,W ))

2N
→ H m(C•(A,W )) factors

H m(C•(A,W ))

2N

))

2N
// H m(C•(A,W ))

H m(C•(A, I N , ι))

55

proving (2).
Now to prove (3), let q ∈ H 0(C•(A,W )). From the Balmer–Walter spectral se-

quence for Witt groups [Balmer and Walter 2002] we have that W (A) surjects onto
E0,0
∞

, which consists of the elements in H 0(C•(A,W ))mapped to zero under all the
differentials in the spectral sequence leaving H 0(C•(A,W )). So it suffices to show
that some 2-power of q maps to zero under all of these finitely many nontrivial dif-
ferentials. The first nontrivial differential is d : H 0(C•(A,W ))→ H 5(C•(A,W )).
Since 2N H 5(C•(A,W ))= 0, we have that d(2N q)= 0. Repeating this argument for
each nontrivial differential d : H 0(C•(A,W ))→ H 4∗+1(C•(A,W )) we eventually
find some 2-power 2B, which does not depend on q , such that 2Bq is in the kernel of
all differentials, hence is in E0,0

∞
. Finally, to prove (4), let q ∈ 2B+N H 0(C•(A,W )).

Write it as q = 2B+N qunr for some qunr ∈ H 0(C•(A,W )). By (3), we have that
2Bqunr = i∗(Q) for some Q ∈ W (A). So i∗(2N Q) = q and 2N Q ∈ I N (A). This
proves 2B+N H 0(C•(A,W ))⊂ i∗(I N (A)), finishing the proof of the lemma. �
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Proposition 6.3. Let A be essentially smooth over either Z〈p〉 (p 6= 2) or Q. The
sequence

lim
−−→

I n(A)−→ lim
−−→

I n(K )
⊕∂π
−−→

⊕
x∈X (1)

lim
−−→n≥−1 I n(k(x))

is exact, where lim
−−→n≥−1 I n(k(x)) denotes the colimit over

W (k(x))
〈〈−1〉〉
−−−→W (k(x))

〈〈−1〉〉
−−−→ I (k(x))

〈〈−1〉〉
−−−→ I 2(k(x))

〈〈−1〉〉
−−−→ · · · .

Proof. Let q be in the kernel of the residue, hence q ∈ H 0(C•(A, I N , ι)) for
some N ≥ 0. We may assume that N is the integer N from Lemma 6.2(1) by
either multiplying by 2 or dividing by 2 as needed. Using Lemma 6.1 we find
QN ∈ I N (A)/I N+1(A), which we may then lift to obtain QN ∈ I N (A) satis-
fying q − i∗(QN ) ∈ H 0(C•(A, I N+1, ι)). By repeating this argument we find
that q − i∗(QN + QN+1 + · · · + Q B+2N−1) ∈ H 0(C•(A, I B+2N , ι)), where B
is the integer from Lemma 6.2(3). Since we are in the “stable” range we have
that H 0(C•(A, I B+2N , ι)) = 2B+N H 0(C•(A, I N , ι)) ⊂ 2B+N H 0(C•(A,W )) ⊂

i∗(I N (A)), where we used Lemma 6.2(4) to obtain the rightmost inclusion. Hence
we have Q

′

N ∈ I N (A) such that

q = i∗(QN + QN+1+ · · ·+ Q B+2N−1+ Q
′

N ),

where QN + QN+1+ · · ·+ Q B+2N−1+ Q
′

N ∈ I N (A). This finishes the proof. �

7. On the signature: local case

In this section we use “Hoobler’s trick”, which is a method due to R. Hoobler
[2006] for passing from the smooth geometric case to the geometric case for many
questions involving cohomological invariants satisfying “rigidity” in the sense of
the following lemma.

Lemma 7.1. If B is a local ring and (B, I ) a henselian pair such that 2 is invertible
in both B and B/I , then for all integers n ≥ 0, the homomorphisms of groups

I n(B)→ I n(B/I ),

I n(B)/I n+1(B)→ I n(B/I )/I n+1(B/I )

induced by the surjection B→ B/I are bijections.

Proof. Let B be a local ring and (B, I ) a henselian pair such that 2 is invertible in
both B and B/I . Considering the diagram

0 // I n+1(B) //

��

I n(B) //

��

I n(B)/I n+1(B)

��

// 0

0 // I n+1(B/I ) // I n(B/I ) // I n(B/I )/I n+1(B/I ) // 0



REAL COHOMOLOGY AND THE POWERS OF THE FUNDAMENTAL IDEAL 375

we see, by the two out of three lemma, that it suffices to prove I n(B)→ I n(B/I )
is a bijection for all n ≥ 0. To prove injectivity for all n ≥ 0, note that as I n(B) is
contained in W (B), it suffices to prove that W (B)→W (B/I ) is injective.

We now claim that the assignment b+ I 7→ b determines a well-defined map
(B/I )×/(B/I )×2

→ B×/B×2. This claim follows from rigidity for étale coho-
mology due to Strano [1984] and Gabber [1994] (independently), but one may also
prove it directly from the definition of Henselian pair4: let b1, b2 ∈ B× be such that
b1+ I = b2+ I ; the polynomial T 2

−b1/b2 has image T 2
−1 in B/I [T ]; as (B, I )

is a henselian pair, from the factorization T 2
− 1= (T − 1)(T + 1) in B/I [T ] we

obtain a factorization T 2
−b1/b2= (T −a)(T +a) in B[T ], for some a ∈ B; hence

b1 = a2b2 for some a ∈ B×, that is, b1 = b2 in B×/(B×)2. The claim follows.
Next recall that for any semilocal ring A, the Witt group W (A) is a quotient of

the group ring Z[A×/A×2
] modulo the set of relations R additively generated by

[1] + [−1] and all elements
h∑

i=1

[ai ] −

h∑
i=1

[bi ]

satisfying
⊥

h
i=1〈ai 〉 ' ⊥

h
i=1〈bi 〉

with h = 4 [Knebusch 1977, Chapter 2, §4, Theorem 2]. Hence, the rows are exact
in the commutative diagram

0 // R // Z[B×/B×2
] // W (B) // 0

0 // R

OO

// Z[(B/I )×/(B/I )×2
] //

OO

W (B/I ) // 0

Thus we obtain a well-defined map of cokernels W (B/I )→W (B) such that the
composition W (B)→ W (B/I )→ W (B) is the identity. This proves the desired
injectivity. The composition W (B/I )→W (B)→W (B/I ) is the identity, hence
W (B)→W (B/I ) is surjective. To prove surjectivity of I n(B)→ I n(B/I ) for all
n≥ 0, recall that I n(B/I ) is additively generated by Pfister forms 〈〈b1, b2, . . . , bn〉〉,
where b1, b2, . . . , bn are units in B/I [Baeza 1978, Chapter V, Section 1, Remark
1.3]. For any Pfister form 〈〈b1, b2, . . . , bn〉〉 we may lift the bi to units bi of B to
obtain an element 〈〈b1, b2, . . . , bn〉〉 ∈ I n(B) mapping to it, proving surjectivity of
I n(B)→ I n(B/I ) and finishing the proof of the lemma. �

Proposition 7.2. If A is a local ring with 2 ∈ A×, then the signature map

lim
−−→

I n(A)→ C(sper A,Z)

is a bijection.

4The author learned this from a recent preprint of Stefan Gille [2015].
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Proof. As both groups respect filtered colimits, it suffices to consider the case
where A is a localization of a finite type Z-algebra: any local ring may be written
as a union of its finitely generated subrings Aα; pulling back the maximal ideal of
A over Aα→ A yields a prime ideal pα ∈ spec Aα; localizing the Aα with respect
to these primes yields a directed system of local rings A pα , and taking the direct
limit yields A.

From now on we assume A= R p, where p∈ spec R and R=Z[T1, T2, . . . , Tn]/I
for some ideal I . We obtain a henselian pair (B, I ) for A as follows: let s denote
the quotient map Z[T1, T2, . . . , Tn] → R, and let B0 := Z[T1, T2, . . . , Tn]s−1( p)
and similarly I0 := Is−1( p); also let B denote the henselization of B0 along I0

and I := I0 B. Recall that the henselization along I0 is obtained by taking the
colimit over the directed category consisting of those étale B0-algebras C having
the property that B0/I0→ C/I0C is an isomorphism. The map B0→ B induces
on quotients A= B0/I0→ B/I an isomorphism of local rings. In the commutative
diagram

lim
−−→

I n(B)

sign
��

// lim
−−→

I n(A)

sign
��

C(sper B,Z) // C(sper A,Z)

the horizontal maps induced by the surjection B→ B/I ' A are isomorphisms
for the powers of the fundamental ideal (Lemma 7.1) and for real cohomology.5

Therefore it suffices to prove bijectivity for B.
We claim that the local ring B is a filtered colimit of local rings which are essen-

tially smooth over either Z〈p〉 (p 6= 2) or over Q. To prove the claim, first note that
the pullback of s−1( p) ∈ spec Z[T1, T2, . . . , Tn] over Z→ Z[T1, T2, . . . , Tn] yields
a prime 〈p〉 ∈ spec Z, and localizing with respect to this prime induces Z〈p〉 ↪→ B0.
When 〈p〉 = 0 it follows that B0 contains Q, otherwise B0 contains Z〈p〉, p 6= 2.
The morphisms Z〈p〉→ B0 and B0→ B are both flat with geometrically regular
fibers, hence the composition Z〈p〉→ B has these properties. Then it follows from
Popescu’s theorem that B is a filtered colimit of either smooth Z〈p〉-algebras or
Q-algebras Aα. Pulling back the maximal ideal over Aα→ B and localizing, one
obtains the statement of the claim. Thus, we may assume that B is essentially
smooth over Q or Z〈p〉. Then we may apply Lemma 4.11 to get exactness of the
lower row in the commutative diagram

5The following proof was communicated to the author by C. Scheiderer: every point in sper B
specializes to a point in sper B/I by the henselian property; since any real spectrum is a “normal”
spectral space, meaning that every point of Xr specializes to a unique closed point, the restriction
map in sheaf cohomology H∗(Xr ,F)→ H∗((Xr )max,F) is an isomorphism for every sheaf F on
any scheme X ; thus restriction gives isomorphisms

H∗(sper(B),F)→ H∗(sper(B)max,F)
'
← H∗(sper(B/I ),F).
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0 // lim
−−→

I n(B) //

��

lim
−−→

I n(K )
⊕∂π

//

sign
��

⊕
x∈Y (1) lim

−−→n≥−1 I n(k(x))

2 sign
��

0 // C(sper B,Z) // C(sper K ,Z)
⊕βπ

//
⊕

x∈Y (1) C(sper k(x),Z)

where Y = spec B. We have exactness of the upper row by Proposition 6.3 and
Corollary 5.4. Using the bijection of Proposition 2.7 we get that the middle vertical
map in the diagram above is bijective and the rightmost vertical map is injective.
The square on the right commutes by Lemma 3.4. Hence lim

−−→
I n(B)→C(sper B,Z)

is bijective, finishing the proof of the theorem. �

The following corollary is well-known, as mentioned in the introduction.

Corollary 7.3. Let A be a local ring with 2 ∈ A×. Then the signature induces an
isomorphism

W (A)
[ 1

2

]
→ C(sper A,Z)

[1
2

]
.

Proof. From the preceding theorem, any f ∈ C(sper A,Z) has 2n f = sign(Q)
for some Q ∈ I n(A) ⊂ W (A), proving surjectivity, and for any Q

′

∈ W (A), if
sign(Q

′

)= 0 then 2n Q
′

= 0 for some n, proving injectivity. �

Remark 7.4. Let A =
⊕

n≥0 An be a Z+-graded ring and let s ∈ A1 be a ho-
mogeneous element of degree 1. Recall that the homogeneous localization A(s)
is the subring of degree zero elements in the localization of A with respect to
{1, s, s2, . . . }, and that A(s) ' A/(s − 1)A as rings. Furthermore, A(s) may be
obtained by taking the direct limit of the sequence A0

s
→ A1

s
→ A2

s
→ · · · .

Corollary 7.5. Let A be a local ring with 2 invertible.

(1) Let I ∗(A)〈〈−1〉〉 be the homogeneous localization of the graded ring
⊕

n≥0 I n(A)
with respect to the element 〈〈−1〉〉 = 〈1, 1〉 ∈ I (A). The signature defines an
isomorphism of rings

I ∗(A)〈〈−1〉〉 ' C(sper A,Z).

(2) Let I ∗(A)〈〈−1〉〉 be the homogeneous localization of the graded ring
⊕

n≥0 I n(A)

with respect to 〈〈−1〉〉 = 〈1, 1〉 ∈ I 1(A), where I n(A) := I n(A)/I n+1(A). The
signature defines an isomorphism of rings

I ∗(A)〈〈−1〉〉 ' C(sper A,Z/2).

Proof. Recall (Remark 7.4) that one may identify lim
−−→

I n(A) with I ∗(A)〈〈−1〉〉: using
the direct sum construction of the direct limit lim

−−→
I n(A), the relations one finds

are the same as the relations defining the localization I ∗(A)〈〈−1〉〉; explicitly, the
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isomorphism ϕ : lim
−−→

I n(A)→ I ∗(A)〈〈−1〉〉 is given by ϕn : I n(A)→ I ∗(A)〈〈−1〉〉

defined by
q 7→

q
〈〈−1〉〉n

,

and consequently we obtain using the preceding proposition that the assignment

q
〈〈−1〉〉n

7→
sign(q)

2n ,

for q ∈ I n(A), defines an isomorphism from I ∗(A)〈〈−1〉〉 to C(sper A,Z). To prove
(2), we obtain the desired isomorphism as an isomorphism of cokernels in the
commutative diagram

0 // lim
−−→n≥1 I n(A) //

��

lim
−−→

I n(A) //

��

lim
−−→

I n(A) //

��

0

0 // C(sper A, 2Z) // C(sper A,Z) // C(sper A,Z/2) // 0

where lim
−−→n≥1→ C(sper A, 2Z) is an isomorphism since in the commutative dia-

gram
lim
−−→n≥1 I n(A) // C(sper A, 2Z)

lim
−−→

I n(A) //

〈〈−1〉〉
OO

C(sper A,Z)

2

OO

the vertical maps and the lower horizontal map are isomorphisms. �

Corollary 7.6. Let A be a local ring with 2 invertible. Let H∗ét(A,Z/2)(−1) denote
the homogeneous localization of the cohomology ring

⊕
n≥0 H n

ét(A,Z/2Z) with
respect to (−1) ∈ H 1

ét(A,Z/2Z). Then the n-th cohomological invariant

ēn : I n→ H n
ét(A,Z/2),

which assigns the class of a Pfister form 〈〈a1, . . . , an〉〉 to the cup product (a1)∪

· · · ∪ (an), determines a well-defined homomorphism

ē∗ : I ∗(A)〈〈−1〉〉 ' H∗ét(A,Z/2)(−1)

which is an isomorphism of rings.

Proof. For any local ring A essentially smooth over Z〈p〉 or Q, the diagram

I n(A) //

��

I n(K ) //

��

⊕
x∈X (1) I n−1(k(x))/2

��

0 // H n
ét(A,Z/2) // H n

ét(K ) //
⊕

x∈X (1) H n−1
ét (k(x))
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commutes and the lower row is exact as the Gersten conjecture is known for étale
cohomology in this case.

As the diagram commutes it follows that I n(A)/I n+1(A) maps into H n(A,Z/2).
Let ēn denote this map. As the lower row is exact, it has the description asserted on
Pfister forms. Using rigidity and the fact that both groups respect filtered colimits
as in the proof of Theorem 8.6, we obtain the map ēn for any local ring, and after
localizing, we obtain the map in the commutative diagram

I ∗(A)〈〈−1〉〉

'

''

ē∗
// H∗ét(A,Z/2)(−1)

'

��

C(sper A,Z/2)

where we use the fact that for any semilocal ring A with 2 invertible, the signature
modulo 2 defines an isomorphism

H∗ét(A,Z/2)(−1)
'
→ C(sper A,Z/2) (7.7)

of rings. This is due to J. Burési and L. Mahé in the semilocal case [Burési 1995;
Mahé 1995] and C. Scheiderer in general [Scheiderer 1994, Corollaries 7.10.3 and
7.19]. From the isomorphisms in the diagram, the desired isomorphism follows. �

8. Globalization

In this section X always denotes a scheme. Let W (X) denote the Witt ring of
symmetric bilinear forms over X ; see [Knebusch 1977].

Definition 8.1. Recall that the global signature is the ring homomorphism

sign :W (X)→ H 0(Xr ,Z)

that assigns an isometry class [φ] of a symmetric bilinear form φ over X to the
function on Xr defined by

sign([φ])(x, P) := signP([i
∗

xφ]),

where ix : x→ X is any point and P is any ordering on k(x); see [Mahé 1982].

Definition 8.2. There exists a well-defined ring homomorphism on the Witt ring
W (X) → H 0

ét(X,Z/2Z), called the rank, which assigns an isometry class of a
symmetric bilinear form [E, φ] over X to the rank of its underlying vector bundle
E modulo 2; see [Knebusch 1977, Chapter 1, §7]. The kernel of the rank map is
called the fundamental ideal and is denoted by I (X).
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It follows from the definitions that the diagram

W (X)

rank mod 2
��

sign
// H 0(Xr ,Z)

��

H 0
ét(X,Z/2Z)

h0
// H 0(Xr ,Z/2Z)

(8.3)

commutes, where h0 denotes the signature modulo 2 defined as follows: given
α ∈ H 0

ét(X,Z/2Z), if ξ : x→ X is the inclusion of a “real” point (that is, for some
(x, P) ∈ Xr ), then h0(α) evaluated at ξ is ξ∗α ∈ H 0(xét,Z/2Z) = Z/2Z; write
α(ξ) for this element of Z/2Z, so h0(α) is the locally constant map Xr → Z/2Z,
ξ 7→ α(ξ); see [Scheiderer 1994, (7.19.1)].

Definition 8.4. As there is an exact sequence

0→ H 0(Xr , 2Z)→ H 0(Xr ,Z)→ H 0(Xr ,Z/2Z)

one finds using commutativity of (8.3) that the restriction of the signature to I (X)
defines the homomorphism of groups

I (X)→ H 0(Xr , 2Z).

For n≥ 0, let I n(X) denote the powers of the fundamental ideal and I 0(X)=W (X).
Since the global signature is a ring homomorphism that maps elements of I (X) into
H 0(Xr , 2Z), it follows that for any n ≥ 0 it induces a homomorphism

I n(X)→ H 0(Xr , 2nZ)

of groups. Moreover, multiplication by 2 = 〈〈−1〉〉 ∈ I (X) induces a homomor-
phism I n(X) 〈〈−1〉〉

−−−→ I n+1(X) such that the diagram

I j (X)
sign

//

〈〈−1〉〉
��

H 0(Xr , 2 j Z)

2
��

I j+1(X)
sign

// H 0(Xr , 2 j+1Z)

commutes. Hence, we obtain a homomorphism

lim
−−→

I n(X)→ H 0(Xr ,Z),

where lim
−−→

I n(X) denotes the direct limit of the sequence of groups

W (X)
〈〈−1〉〉
−−−→ I (X)

〈〈−1〉〉
−−−→ I 2(X)

〈〈−1〉〉
−−−→ · · · .

Definition 8.5. It follows from Lemma 4.6 that supp∗ Z is the Zariski sheaf U 7→
H 0(Ur ,Z) on X . Recall that In denotes the Zariski sheaf on X associated to the



REAL COHOMOLOGY AND THE POWERS OF THE FUNDAMENTAL IDEAL 381

presheaf U 7→ I n(U ). For any integer n ≥ 0, the restriction of the global signature
to the powers of the fundamental ideal of Definition 8.4 induces a homomorphism

In
→ supp∗ 2nZ

of Zariski sheaves on X . Similarly, I n(X) 〈〈−1〉〉
−−−→ I n+1(X) induces a homomor-

phism In 〈〈−1〉〉
−−−→ In+1 of sheaves for any n ≥ 0, and a homomorphism of sheaves

lim
−−→

I n
→ supp∗ Z,

where lim
−−→

I n denotes the direct limit of the sequence of sheaves

W
〈〈−1〉〉
−−−→ I

〈〈−1〉〉
−−−→ I2 〈〈−1〉〉

−−−→ · · · .

Similarly, the signature induces a morphism of sheaves

W
[ 1

2

]
→ supp∗ Z

[1
2

]
,

where W
[ 1

2

]
is the sheaf associated to the presheaf U 7→W (U )

[ 1
2

]
and supp∗ Z

[1
2

]
is the sheaf U 7→ H 0

(
Ur ,Z

[1
2

])
.

Theorem 8.6. Let X be a scheme with 2 invertible in its global sections.

(1) The signature morphism of sheaves

lim
−−→

In
→ supp∗ Z (8.7)

of Definition 8.5 is an isomorphism.

(2) The signature morphism of sheaves

W
[1

2

]
→ supp∗ Z

[ 1
2

]
(8.8)

of Definition 8.5 is an isomorphism.

(3) The signature induces an isomorphism of short exact sequence of sheaves
on X ,

0 // lim
−−→

In //

��

W
[1

2

]
//

��

lim
−−→

W/In //

��

0

0 // supp∗ Z // supp∗ Z
[ 1

2

]
// supp∗

(
Z
[ 1

2

]
/Z
)

// 0

where W/In denotes the sheaf associated to the presheaf U 7→W(U )/In(U ).
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(4) The signature induces an isomorphism of short exact sequence of sheaves
on X ,

0 // lim
−−→

In 〈〈−1〉〉
//

��

lim
−−→

In //

��

lim
−−→

In //

��

0

0 // supp∗ Z
2
// supp∗ Z // supp∗ Z/2 // 0

where In denotes the sheaf associated to the presheaf U 7→ In(U )/In+1(U ).

Proof. Statements (1) and (2) follow immediately from the local case, Proposition 7.2
and Corollary 7.3 respectively, as it is sufficient to prove that they induce an iso-
morphism on stalks. As supp∗ is exact, statements (3) and (4) may be obtained by
applying supp∗ to the analogous short exact sequences of groups and then using
the two out of three lemma to conclude. For (4), one should also note that

lim
−−→

In 〈〈−1〉〉
−−−→ lim

−−→n≥1 I
n

is an isomorphism to obtain exactness of the top row of the diagram in (4). �

The next corollary is an immediate consequence of the previous theorem and
Lemma 4.6.

Corollary 8.9. Let X be a scheme with 2 invertible.

(1) For any m ≥ 0, the morphism (8.7) induces an isomorphism of cohomology
groups

H m
Zar(X, lim

−−→
In)→ H m(Xr ,Z).

(2) For any m ≥ 0, the morphism (8.8) induces an isomorphism of cohomology
groups

H m
Zar
(
X,W

[1
2

])
→ H m(Xr ,Z

[ 1
2

])
.

Corollary 8.10. Let X be a scheme with 2 invertible which is quasiseparated and
quasicompact. Then there is an isomorphism of cohomology groups for all m ≥ 0,⊕

m≥0

H m
Zar(X, lim

−−→
In)' lim

−−→
H n

ét(X,Z/2).

Proof. Under the hypotheses stated C. Scheiderer [1994, Corollary 7.19] has proved
that there is an isomorphism

lim
−−→

H n
ét(X,Z/2)

'
→

⊕
m≥0

H m(Xr ,Z/2),

and from Theorem 8.6 one has an isomorphism H m
Zar(X, In)

'
→ H m(Xr ,Z/2) for

all m ≥ 0. Thus one obtains the isomorphism stated. �
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Corollary 8.11. If X is a real variety (by which we mean a scheme which is sepa-
rated and of finite type over R) and the Krull dimension of X is d, then whenever
n ≥ d + 1, the signature induces an isomorphism in cohomology

H m
Zar(X, I

n)
sign
' H m

sing(X (R),Z)

for all integers m ≥ 0 and an isomorphism of long exact sequences as stated in the
introduction.

Proof. It suffices to see that the morphism of sheaves In 〈〈−1〉〉
−−−→ In+1 is an isomor-

phism for n ≥ d + 1, for then multiplication by 2d+1 defines an isomorphism of
sheaves Id+1

' lim
−−→

In and hence we obtain the statement of the corollary using
Theorem 8.6 in view of Remark 4.4. When n ≥ d + 1, for any U open in X we
have an isomorphism of kernels in the diagram of residues

0 // In(U ) //

2
��

I n(K ) //

2
��

⊕
x∈X (1) I n−1(k(x))

2
��

0 // In+1(U ) // I n+1(K ) //
⊕

x∈X (1) I n(k(x))

since the two rightmost vertical maps are isomorphisms for n ≥ d+1, which proves
the desired isomorphism. �
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Colocalising subcategories of modules
over finite group schemes
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The Hom closed colocalising subcategories of the stable module category of a fi-
nite group scheme are classified. This complements the classification of the tensor
closed localising subcategories in our previous work. Both classifications involve
π-points in the sense of Friedlander and Pevtsova. We identify for each π-point
an endofinite module which both generates the corresponding minimal localising
subcategory and cogenerates the corresponding minimal colocalising subcategory.

1. Introduction

Let G be a finite group scheme over a field k of positive characteristic. There
is a notion of π-cosupport [Benson et al. 2017] for any G-module M , based on
the notion of π-points of G introduced by Friedlander and Pevtsova [2005]. The
π-cosupport of M , denoted by π -cosuppG(M), is a subset of Proj H∗(G, k). The
main result in this work is a classification of the colocalising subcategories of
StMod G, the stable module category of possibly infinite-dimensional G-modules,
in terms of π -cosupport.

Theorem 1.1. Let G be a finite group scheme over a field k. Then the assignment

C 7→
⋃
M∈C

π -cosuppG(M)

induces a bijection between the colocalising subcategories of StMod G that are
closed under tensor product with simple G-modules and the subsets of Proj H∗(G,k).

This is proved after Corollary 4.9. Recall that a colocalising subcategory C is a
full triangulated subcategory that is closed under set-indexed products. Such a C is
closed under tensor product with simple G-modules if and only if it is Hom closed:
if M is in C, so is Homk(L ,M) for any G-module L . Theorem 1.1 complements
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the classification of the tensor closed localising subcategories of StMod G from
[Benson et al. 2016]. Combining them gives a remarkable bijection:

Corollary 1.2. The map sending a localising subcategory C of StMod G to C⊥

induces a bijection{
tensor closed localising

subcategories of StMod G

}
−→∼

{
Hom closed colocalising

subcategories of StMod G

}
.

The inverse map sends a colocalising subcategory C to ⊥C. �

Predecessors of these results are the analogues for the derived category of a
commutative noetherian ring by Neeman [2011], and the stable module category
of a finite group [Benson et al. 2012]. Any finite group gives rise to a finite group
scheme, and we obtain an entirely new proof in that case.

Products of modules tend to be more complicated than coproducts. This is re-
flected by the fact that the classification of colocalising subcategories formally
implies the classification of localising subcategories in terms of π-supports of G-
modules; see [Benson et al. 2012, Theorem 9.7]. So Theorem 1.1 implies the
classification result in our work presented in [Benson et al. 2016]. However, the
arguments in the present work rely heavily on the tools developed in [loc. cit.],
which, in turn, depend on the fundamental results and geometric techniques for
the representation theory and cohomology of finite group schemes from [Suslin
2006; Suslin et al. 1997].

An essential ingredient in the proof of Theorem 1.1 is a family of G-modules,
one arising from each π -point of G. We call them point modules and write 1G(α),
where α : K [t]/(t p)→ KG is the corresponding π-point. They appear already in
[Benson et al. 2016, Section 9] and play the role of residue fields in commutative
algebra. Indeed, while they are not usually finite-dimensional, they are always
endofinite in the sense of Crawley-Boevey [1991], as we prove in Proposition 3.8. It
follows from results in [Benson et al. 2016] that the π -support of 1G(α) is equal to
the prime ideal p corresponding to α, and that the localising subcategory generated
by 1G(α) is Γp StMod G, the full subcategory of p-local and p-torsion objects.

In Theorem 4.4, we prove that1G(α) also cogeneratesΛp StMod G, the full sub-
category of p-local and p-complete G-modules, in the sense of [Benson et al. 2012].
This result is an important step in the proof of Theorem 1.1, because the subcat-
egories Λp StMod G, as p varies over Proj H∗(G, k), cogenerate StMod G. From
this it follows that every Hom closed colocalising subcategories of StMod G is co-
generated by point modules, which again highlights the special role played by them.

There is a parallel between point modules and standard objects in highest weight
categories studied by Cline, Parshall and Scott [Cline et al. 1988]. This is explained
towards the end of this article. The notation 1G(α) reflects this connection.
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2. Recollections

In this section we recall basic notions and results we will need about modules
over finite group schemes. Our standard references are [Jantzen 2003; Waterhouse
1979]. For the later parts, and for the notation, we follow [Benson et al. 2016].

Let G be a finite group scheme over a field k. Thus G is an affine group scheme
such that its coordinate algebra k[G] is finite-dimensional as a k-vector space. The
k-linear dual of k[G] is a cocommutative Hopf algebra, called the group algebra
of G, and denoted by kG. We identify G-modules with modules over the group
algebra kG. The category of all (left) G-modules is denoted by Mod G.

The stable module category StMod G is obtained from Mod G by identifying two
morphisms between G-modules when they factor through a projective G-module.
The tensor product of G-modules passes to StMod G and we obtain a compactly
generated tensor triangulated category with suspension �−1, the inverse of the
syzygy functor. We use the notation HomG(M, N ) for the Hom-sets in StMod G.
For details, readers might consult [Carlson 1996, §5; Happel 1988, Chapter 1].

In the context of finite groups there is a duality theorem due to Tate [Cartan and
Eilenberg 1956, Chapter XII, Theorem 6.4] that is helpful in computing morphisms
in the stable category. In the proof of Lemma 4.1 we need an extension of this to
finite group schemes, which is recalled below.

Duality. Given a k-vector space V , we set V∨ :=Homk(V, k) to be the dual vector
space. If V is a G-module, then V∨ can also be endowed with a structure of a G-
module using the Hopf algebra structure of kG.

Let Gop denote the opposite group scheme that is given by the group algebra
(kG)op. Given a Gop-module M , we write DM := Homk(M, k) for the dual vector
space considered as a G-module. Let

τ = D ◦Tr : stmod G −→∼ stmod G

be the composition of the duality functor D and the transpose

Tr : stmod G→ stmod Gop
;

see [Skowroński and Yamagata 2011, Section III.4] for the definition. For any G-
module M and finite-dimensional G-module N , there is a natural isomorphism of
vector spaces

HomG(N ,M)∨ ∼= HomG(M, �−1τN ). (2.1)

This isomorphism can be deduced from a formula of Auslander and Reiten [Auslan-
der 1978, Proposition I.3.4] — see also [Krause 2003, Corollary, p. 269] — which
yields the first isomorphism below:

HomG(N ,M)∨ ∼= Ext1G(M, τN )∼= HomG(M, �−1τN ).
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When kG is symmetric (in particular, whenever G is a finite group), we have
τN ∼= �2 N . This follows from [Skowroński and Yamagata 2011, Section IV.8]
and reduces (2.1) to Tate duality.

Extending the base field. Let G be a finite group scheme over a field k. If K
is a field extension of k, we write K [G] for K ⊗k k[G], which is a commutative
Hopf algebra over K . This defines a finite group scheme over K , denoted by G K .
We have a natural isomorphism KGK ∼= K ⊗k kG and we simplify notation by
writing KG. The restriction functor

resK
k :Mod G K →Mod G

admits a left adjoint that sends a G-module M to

MK := K ⊗k M,

and a right adjoint sending M to

M K
:= Homk(K ,M).

The next result tracks how these functors interact with taking tensors and modules
of homomorphisms. We give proofs for lack of an adequate reference.

Lemma 2.2. Let K be a field extension of k. For a G K -module M and a G-
module N , there are natural isomorphisms of G-modules

resK
k (M ⊗K NK )∼= (resK

k M)⊗k N ,

resK
k HomK (M, N K )∼= Homk(resK

k M, N ).

Proof. The first isomorphism is clear since the k-linear isomorphism

M ⊗K (K ⊗k N )∼= (M ⊗K K )⊗k N ∼= M ⊗k N

is compatible with the diagonal G-actions.
The second isomorphism follows from the first one, because the functor

resK
k HomK (M, (−)K ) is right adjoint to resK

k (M ⊗K (−)K ),

while the functor

Homk(resK
k M,−) is right adjoint to (resK

k M)⊗k −. �

Subgroup schemes. For each subgroup scheme H of G restriction is a functor

resG
H :Mod G→Mod H.

This has a right adjoint, called induction,

indG
H :Mod H →Mod G,
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as described in [Jantzen 2003, Section I.3.3], and a left adjoint, called coinduction,

coindG
H :Mod H →Mod G,

as described in [Jantzen 2003, Section I.8.14].

Lemma 2.3. Let H be a subgroup scheme of G. For any H-module M and G-
module N there are natural isomorphisms

coindG
H (M ⊗k resG

H N )∼= (coindG
H M)⊗k N ,

indG
H Homk(M, resG

H N )∼= Homk(coindG
H M, N ).

In particular, for M = k these give isomorphisms

coindG
H resG

H N ∼= (coindG
H k)⊗k N ,

indG
H resG

H N ∼= Homk(coindG
H k, N ).

Proof. Recalling that coindG
H = kG ⊗k H −, the first isomorphism follows from

associativity of tensor products:

coindG
H (M ⊗k resG

H N )∼= kG⊗k H (M ⊗k resG
H N )

∼= (kG⊗k H M)⊗k N
∼= (coindG

H M)⊗k N .

The second isomorphism follows from the first one, because the functor

indG
H Homk(M,−) resG

H is right adjoint to coindG
H (M ⊗k −) resG

H ,

while the functor

Homk(coindG
H M,−) is right adjoint to (coindG

H M)⊗k −. �

Cohomology and π -points. Let k be a field of positive characteristic p and G
a finite group scheme over k. We write H∗(G, k) for the cohomology algebra
of G and Proj H∗(G, k) for the set of its homogeneous prime ideals not containing
H>1(G, k), the elements of positive degree.

A π-point of G, defined over a field extension K of k, is a morphism of K -
algebras

α : K [t]/(t p)→ KG

that factors through the group algebra of a unipotent abelian subgroup scheme
of G K , and such that KG is flat when viewed as a left (equivalently, as a right)
module over K [t]/(t p) via α. Given such an α, restriction yields a functor

α∗ :ModKG→Mod K [t]/(t p).
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We write H∗(α) for the composition of homomorphisms of k-algebras

H∗(G, k)= Ext∗G(k, k) K⊗k−
−−−→Ext∗G K

(K , K ) α∗
−→Ext∗K [t]/(t p)(K , K ).

The radical of the ideal Ker H∗(α) is a prime ideal in H∗(G, k), and the assignment
α 7→
√

Ker H∗(α) yields a bijection between the equivalence classes of π-points
and Proj H∗(G, k); see [Friedlander and Pevtsova 2007, Theorem 3.6]. Recall that
π -points α : K [t]/(t p)→KG and β : L[t]/(t p)→ LG are equivalent if for every G-
module M the module α∗(MK ) is projective if and only if β∗(ML) is projective. In
the sequel, we identify a prime in Proj H∗(G, k) and the corresponding equivalence
class of π -points.

Given a point in Proj H∗(G, k), there is some flexibility in choosing a π-point
representing it. This will be important in the sequel.

Remark 2.4. We call a group scheme E quasielementary if there is an isomorphism
E∼= Ga(r)× E , where Ga(r) is the r-th Frobenius kernel of the additive group Ga

and E is an elementary abelian p-group.
By Proposition 4.2 of [Friedlander and Pevtsova 2005], given a π-point α :

K [t]/(t p) → KG, there exists an equivalent π-point β : K [t]/(t p) → KG that
factors through a quasielementary subgroup scheme of G K .

A point p in Proj H∗(G, k) is closed if there is no point in Proj H∗(G, k) properly
containing it as a prime ideal. Then there exists a π-point α : K [t]/(t p)→ KG
such that K is finite-dimensional over k; see Theorem 4.2 of [Friedlander and
Pevtsova 2007]. In view of the preceding paragraph, one may choose an α that
factors through a quasielementary subgroup scheme of G K .

Local cohomology and completions. We recall from [Benson et al. 2008; 2012]
the definition of local cohomology and completion for G-modules.

The algebra H∗(G, k) acts on StMod G. This means that for G-modules M
and N there is a natural action of H∗(G, k) on

Hom∗G(M, N )=
⊕
i∈Z

HomG(�
i M, N )

via the homomorphism of k-algebras

−⊗k M : H∗(G, k)= Ext∗G(k, k)→ Hom∗G(M,M).

Fix p ∈ Proj H∗(G, k). There is a localisation functor StMod G → StMod G
sending M to Mp such that the natural morphism M→Mp induces an isomorphism

Hom∗G(−,M)p −→∼ Hom∗G(−,Mp)

when restricted to finite-dimensional G-modules. A G-module M is called p-local
if M −→∼ Mp, and we write (StMod G)p for the full subcategory of p-local G-
modules. The module M is p-torsion if Mq= 0 for all q∈Spec H∗(G, k) that do not
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contain p. There is a colocalisation functor ΓV(p) : StMod G→ StMod G such that
the natural morphism ΓV(p)(M)→ M is an isomorphism if and only M is p-torsion.
The functor ΓV(p) admits a right adjoint, denoted by ΛV(p) and called p-completion.
We say that M is p-complete if the natural map M→ΛV(p)M is an isomorphism.

The functor Γp : StMod G → StMod G sending M to ΓV(p)(Mp) gives local
cohomology at p. It has a right adjoint Λp

: StMod G→ StMod G that plays the
role of completion at p for modules over commutative rings.

Koszul objects and reduction to closed points. Given a cohomology class ζ in
H∗(G, k), let k//ζ be a mapping cone of the morphism k → �−dk in StMod G
defined by ζ . Note that k//ζ ∼=�−d−1Lζ , where Lζ is the Carlson module [1983]
defined by ζ . For a homogeneous ideal a in H∗(G, k), we pick a system of homo-
geneous generators ζ1, . . . , ζn , and define a Koszul object k//a to be

k//a := k//ζ1⊗k · · · ⊗k k//ζn.

Observe that the map k → �−dk defined by ζ becomes an isomorphism when
localised at any prime ideal p of H∗(G, k) not containing ζ . Given this, the next
result is [Benson et al. 2016, Theorem 8.8].

Theorem 2.5. Let p be a point in Proj H∗(G, k). There exists a field extension L/k
and an ideal q of H∗(GL , L) with radical

√
q a closed point in Proj H∗(GL , L)

lying over p such that there is an isomorphism

resL
k (L//q)∼= (k//p)p.

The construction of L//q involves a choice of generators for q, so the theorem
effectively states that there exist an ideal q and a choice of generators that produces
the Koszul object with required properties. For details, see [Benson et al. 2016,
Section 8].

Brown representability. Let C be a finite-dimensional G-module and I an injec-
tive H∗(G, k)-module. Recall that H∗(G, k) acts on Hom∗G(C,M) for any M in
StMod G, and consider the contravariant functor

HomH∗(G,k)(Hom∗G(C,−), I ) : StMod G→ Ab

This functor takes triangles to exact sequences and coproducts to products. Hence,
by the contravariant version of Brown representability (see [Brown 1965] or [Nee-
man 1996]), there exists a G-module TC(I ) such that

HomH∗(G,k)(Hom∗G(C,−), I )∼= HomG(−, TC(I )). (2.6)

We refer to [Benson et al. 2012; Benson and Krause 2002] for details about these
modules.
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Support and cosupport. The following definitions of π-support and π-cosupport
of a G-module M are from [Friedlander and Pevtsova 2007] and [Benson et al.
2017], respectively. We set

π -suppG(M) := {p ∈ Proj H∗(G, k) | α∗p(MK ) is not projective},

π -cosuppG(M) := {p ∈ Proj H∗(G, k) | α∗p(M
K ) is not projective}.

Here αp : K [t]/(t p)→KG denotes a π -point corresponding to p. Both π -supp and
π -cosupp are well-defined on the equivalence classes of π-points [Benson et al.
2017, Theorem 3.1].

The local cohomology functors Γp and their right adjoints Λp yield alternative
notions of support and cosupport for a G-module M ; see [Benson et al. 2008;
Benson et al. 2012]. We set

suppG(M) := {p ∈ Proj H∗(G, k) | ΓpM 6= 0},

cosuppG(M) := {p ∈ Proj H∗(G, k) |ΛpM 6= 0}.

It is an important fact that these notions agree with the ones defined via π-points.
This will be used freely throughout this work.

Theorem 2.7 [Benson et al. 2016, Theorems 6.1 and 9.3]. For every G-module M
there are equalities

π -suppG(M)= suppG(M) and π -cosuppG(M)= cosuppG(M).

For ease of reference we recall basic facts concerning support and cosupport.

Remark 2.8. Let M and N be G-modules.

(1) M is projective if and only if suppG(M)=∅ if and only if cosuppG(M)=∅.

(2) suppG(M) and cosuppG(M) have the same maximal elements with respect to
inclusion.

(3) suppG(M ⊗k N )= suppG(M)∩ suppG(N ).

(4) cosuppG Homk(M, N )= suppG(M)∩ cosuppG(N ).

(5) suppG(k)= Proj H∗(G, k)= cosuppG(k).

Keeping in mind Theorem 2.7, parts (1) and (2) are recombinations of [Benson
et al. 2016, Theorem 5.3 and Corollary 9.4]. Parts (3) and (4) are from [Benson et al.
2017, Theorem 4.4], while (5) is contained in [Benson et al. 2017, Lemma 4.5].

Remark 2.9. For an ideal a in H∗(G, k) we write V(a) for the closed subset of
those points in Proj H∗(G, k) corresponding to homogeneous prime ideals contain-
ing a.
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Let ζ1, . . . , ζn be a system of homogeneous generators of an ideal a⊂ H∗(G, k).
By a theorem of Carlson [1983], one has suppG(k//ζ )=V(ζ ) for any ζ ∈ H d(G, k).
The tensor product property, recalled in Remark 2.8, now implies that

suppG(k//a)= V(ζ1)∩ · · · ∩V(ζn)= V(a).

In particular, for L and q as in Theorem 2.5, one gets

suppGL
(L//q)= V(q)= {

√
q} ⊂ Proj H∗(GL , L),

since
√
q is a closed point in Proj H∗(GL , L).

3. Point modules

In this section we discuss a distinguished class of G-modules that correspond to a π -
point. Later on we will see that these modules serve as cogenerators of colocalising
subcategories.

Point modules. Fix a π -point α : k[t]/(t p)→ kG. The restriction functor

α∗ :Mod G→Mod k[t]/(t p)

admits a left adjoint and a right adjoint,

α∗ := kG⊗k[t]/(t p)− and α! := Homk[t]/(t p)(kG,−).

These functors are isomorphic, as the next result asserts.

Theorem 3.1. For any π -point α : k[t]/(t p)→ kG and k[t]/(t p)-module M , there
is a natural isomorphism of G-modules

α∗(M)∼= α!(M).

Proof. It is convenient to set R := k[t]/(t p). It is easy to verify that the R-module
Homk(R, k) is isomorphic to R. This will be used further below. We will also use
the fact that kG is a Frobenius algebra, that is to say that there is an isomorphism
of G-modules

kG ∼= Homk(kG, k).

See [Jantzen 2003, Lemma I.8.7; Skowroński and Yamagata 2011, Chapter VI,
Theorem 3.6]. This justifies the third step in the following chain of isomorphisms
of G-modules:

HomR(kG, R)∼= HomR(kG,Homk(R, k))∼= Homk(kG, k)∼= kG. (3.2)

The second is standard adjunction.
We are now ready to justify the stated result. Consider first the case when G

is abelian. Then kG and HomR(kG, R) also have Gop-actions. As G is abelian,
the isomorphism (3.2) is compatible with these structures. It follows that it is also
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compatible with the induced Rop-actions on kG and HomR(kG, R). This justifies
the second isomorphism below:

α!(M)= HomR(kG,M)∼= HomR(kG, R)⊗R M ∼= kG⊗R M = α∗(M).

The first isomorphism holds because kG is a finitely generated projective R-module.
The composition of the maps is the desired isomorphism.

Now let G be an arbitrary finite group scheme. By definition, the π-point α
factors as R β

−→ kU ↪→ kG, where U is an unipotent abelian subgroup scheme
of G. Note that β∗ = β! by what we have already verified, since U is abelian.
Observing that α∗ = coindG

Uβ∗ and α! = indG
U β!, it thus remains to show that

coindG
U
∼= indG

U . By [Jantzen 2003, Proposition I.8.17], there is an isomorphism

coindG
U (M)∼= indG

U (M ⊗k (δG)↓Uδ
−1
U ),

where δG and δU are certain characters of G and U , respectively. Since U is a
unipotent group scheme, it has no nontrivial characters; see [Waterhouse 1979,
Section 8.3], for example. This yields the last claim and therefore the proof is
complete. �

Definition 3.3. Let K be a field extension of k and α : K [t]/(t p)→ KG a π -point.
We call the G-module

1G(α) := resK
k α∗(K )∼= resK

k α!(K )

the point module corresponding to α.

As an example, we describe the point modules for the Klein four group, fol-
lowing the description of the π-points in [Friedlander and Pevtsova 2007, Exam-
ple 2.3]; see also [Benson et al. 2017, Example 3.6].

Example 3.4. Let V = Z/2×Z/2 and k a field of characteristic two. The group
algebra kV is isomorphic to k[x, y]/(x2, y2), where x + 1 and y+ 1 correspond
to the generators of V , and Proj H∗(V, k) ∼= P1

k . A kV -module M is given by a
k-vector space together with two k-linear endomorphisms xM and yM , representing
the action of x and y, respectively.

For each closed point p ∈ P1
k there is some finite field extension K of k such

that P1
K contains a rational point [a, b] over p (using homogeneous coordinates).

The π -point corresponding to p is represented by the map of K -algebras

K [t]/(t p)→ K [x, y]/(x2, y2), where t 7→ ax + by,

and the corresponding point module is given by 1= K ⊕ K together with

x1 =
[

0 0
b 0

]
and y1 =

[
0 0
a 0

]
.
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Now let K denote the field of rational functions in a variable s. The generic point
of P1

k then corresponds to the map of K -algebras

K [t]/(t p)→ K [x, y]/(x2, y2), where t 7→ x + sy,

and the corresponding point module is given by 1= K ⊕ K together with

x1 =
[

0 0
s 0

]
and y1 =

[
0 0
1 0

]
.

The next example illustrates that the G-module 1G(α) depends on α and not
only on the point in Proj H∗(G, k) that it represents.

Example 3.5. Let k be a field of characteristic p ≥ 3 and set G := Z/p× Z/p.
Thus, kG = k[x, y]/(x p, y p) and Proj H∗(G, k)= P1

k . The homomorphism

αλ : k[t]/(t p)→ kG, where t 7→ x − λy2,

defines a π -point for any λ∈ k, corresponding to the same point in P1
k , namely [1, 0].

On the other hand, the point modules

1G(αλ)∼= k[x, y]/(x − λy2, y p)

are pairwise nonisomorphic; for example, their annihilators differ. They are also
indecomposable, because they are cyclic and kG is a local ring.

The next example shows that point modules need not be indecomposable.

Example 3.6. Let k be a field of characteristic 3 and set G := 63×Z/3. The π-
point α : k[t]/(t3)→ kG given by the inclusion Z/3 ↪→ G as a direct factor yields
a point module 1G(α) that decomposes into two nonisomorphic indecomposable
G-modules, because it is isomorphic to k63.

Endofinite modules. Let G be a group scheme defined over k. A point module
defined over a field extension K is finite-dimensional, as a G-module, if and only
if K is finite-dimensional over k. Nonetheless, point modules always enjoy a strong
finiteness property because they arise as restrictions of finite-dimensional modules.

Let A be any ring. Following Crawley-Boevey [1991; 1992], we say that an A-
module M is endofinite if it has finite composition length when viewed as a module
over its endomorphism ring EndA(M). The following result, due to Crawley-
Boevey, collects some of the basic properties of endofinite modules. The proof
employs the fact that endofinite modules are 6-pure-injective.

Theorem 3.7. An indecomposable endofinite module has a local endomorphism
ring and any endofinite module can be written essentially uniquely as a direct
sum of indecomposable endofinite modules. Conversely, a direct sum of endofinite
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modules is endofinite if and only if there are only finitely many isomorphism classes
of indecomposables involved.

The class of endofinite modules is closed under finite direct sums, direct sum-
mands, and arbitrary products or direct sum of copies of one module.

Proof. See [Crawley-Boevey 1991, Section 1.1; 1992, Section 4]. �

For an A-module M , we write Add(M) for the full subcategory of A-modules
that are direct summands of direct sums of copies of M . Analogously, Prod(M)
denotes the subcategory of all direct summands of products of copies of M . For
an endofinite module M it follows from Theorem 3.7 that Add(M) and Prod(M)
coincide: they consist of all direct sums of indecomposable direct summands of M .
This observation explains the formal part of the following proposition:

Proposition 3.8. For any π-point α of G, the G-module 1G(α) is endofinite and
there is an equality

Add(1G(α))= Prod(1G(α)).

Proof. Let α : K [t]/(t p)→ KG be the given π-point. Then 1G(α) is a kG-K -
bimodule and there is a homomorphism of rings K → EndG(1G(α)). In partic-
ular, dimK (1G(α)) is an upper bound for the length of 1G(α) as a module over
EndG(1G(α)). Since one has inequalities

dimK (1G(α))= (1/p) dimK (KG)≤ dimK (KG) <∞,

it follows that 1G(α) is endofinite. The remaining assertion is by Theorem 3.7. �

Support and cosupport. Next we explain how point modules can be used to com-
pute support and cosupport; this is partly why we are interested in them.

Proposition 3.9. Let α be a π -point corresponding to p ∈ Proj H∗(G, k) and M a
G-module. The following statements are equivalent:

(1) p 6∈ cosuppG(M).

(2) Homk(1G(α),M) is projective.

(3) HomG(1G(α),M)= 0.

(4) Hom∗G(1G(α),M)= 0.

Proof. The equivalences (1)⇐⇒ (2)⇐⇒ (3) are [Benson et al. 2016, Lemma 9.2].

(1)⇐⇒ (4): With α the map K [t]/(t p)→ KG, adjunctions yield isomorphisms

Hom∗G(resK
k α∗(K ),M)∼= Hom∗G K

(α∗(K ),M K )∼= Hom∗K [t]/(t p)(K , α
∗(M K )).

Clearly, the right-hand term vanishes if and only if α∗(M K ) is projective. �

Here is the analogous statement for supports. As in the context of commutative
rings, one can use also tensor products with the point modules to detect support.
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Proposition 3.10. Let α be a π-point corresponding to p ∈ Proj H∗(G, k) and M
a G-module. The following statements are equivalent:

(1) p 6∈ suppG(M).

(2) 1G(α)⊗k M is projective.

(3) Homk(M,1G(α)) is projective.

(4) HomG(M,1G(α))= 0.

(5) Hom∗G(M,1G(α))= 0.

Proof. (1)⇐⇒ (2): Since suppG(1G(α))={p} by [Benson et al. 2016, Lemma 9.1],
Remark 2.8(3) yields the first equivalence below:

p /∈ suppG(M) ⇐⇒ suppG(1G(α)⊗k M)=∅ ⇐⇒ 1G(α)⊗k M is projective.

The second one holds because support detects projectivity, by Remark 2.8(1).

(1)⇐⇒ (4): With α the map K [t]/(t p)→ KG, adjunctions yield isomorphisms

HomG(M, resK
k α!(K ))∼= HomG K (MK , α!(K ))∼= HomK [t]/(t p)(α

∗(MK ), K ).

Clearly, the right-hand term vanishes if and only if α∗(MK ) is projective.

(1)⇐⇒ (5): This is analogous to (1)⇐⇒ (4).

(1)=⇒ (3): When p is not in suppG(M), it is not in suppG(C ⊗k M) for any
finite-dimensional G-module C , by Remark 2.8(3). Thus, the already-established
equivalence of conditions (1) and (4) yields that

HomG(C,Homk(M,1G(α)))∼= HomG(C ⊗k M,1G(α))= 0.

Therefore Homk(M,1G(α)) is projective.

(3)=⇒ (4): This is clear. �

In the next result, the claim about the support of 1G(α) is from [Benson et al.
2016, Lemma 9.1], and has been used in the proofs of the Propositions 3.9 and 3.10.

Corollary 3.11. Let α be a π-point of G. A π-point β of G is equivalent to α if
and only if Hom∗G(1G(β),1G(α)) 6= 0. In particular, there are equalities

suppG(1G(α))= {p} = cosuppG(1G(α)),

where p is the point in Proj H∗(G, k) corresponding to α.

Proof. If β corresponds to a point q in Proj H∗(G, k), then suppG(1G(β)) = {q}

by [loc. cit.], so Proposition 3.10 yields that Hom∗G(1G(β),1G(α)) is nonzero
precisely when q= p. Given this, it follows from Proposition 3.9 that the cosupport
of 1G(α) is {p}. �
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4. p-local and p-complete objects

The proof of Theorem 1.1 amounts to showing that for any homogeneous prime
ideal p of H∗(G, k) the p-local and p-complete objects in StMod G form a minimal
Hom closed colocalising subcategory. Here, a Hom closed colocalising subcate-
gory C ⊆ StMod G is minimal if C′ ⊆ C implies C′ = 0 or C′ = C for any Hom
closed colocalising subcategory C′ ⊆ StMod G.

p-local and p-complete objects. We recall from [Benson et al. 2008; 2012] the
definitions and basic facts about p-local and p-complete objects in StMod G.

Fix p ∈ Proj H∗(G, k). We write Γp StMod G for the full subcategory of G-
modules M such that Γp(M)∼= M and have, from Corollary 5.9 of [Benson et al.
2008],

Γp StMod G =
{

M ∈ StMod G | suppG(M)⊆ {p}
}
.

From [Benson et al. 2012, Corollaries 4.8 and 4.9], it follows that a G-module M
satisfies Λp(M)∼= M if and only if M is p-local and p-complete, and that

Λp StMod G =
{

M ∈ StMod G | cosuppG(M)⊆ {p}
}
.

Note that the adjoint pair (Γp,Λp) restricts by [Benson et al. 2012, Proposition 5.1]
to an equivalence

Γp StMod G −→∼ Λp StMod G.

Cogenerators for p-local and p-complete objects. Given a set T of G-modules,
let Coloc(T ) be the smallest colocalising subcategory of StMod G that contains T .
We say that T cogenerates a class C of G-modules if C ⊆ Coloc(T ). The class
C is Hom closed if, for every pair of G-modules M and N with N ∈ C, we have
Homk(M, N )∈ C. We write ColocHom(T ) for the smallest Hom closed colocalising
subcategory that contains T .

An object T is a perfect cogenerator of a colocalising subcategory C⊆ StMod G
if the following holds:

(1) If M is an object in C and HomG(M, T )= 0 then M = 0.

(2) If a countable family of morphisms Mi → Ni in C is such that, for all i ,

HomG(Ni , T )→ HomG(Mi , T )

is surjective, then so is the induced map

HomG

(∏
i

Ni , T
)
→ HomG

(∏
i

Mi , T
)
.

Any perfect cogenerator is a cogenerator; see [Benson et al. 2012, Section 5].
Recall from Remark 2.4 that any closed point of Proj H∗(G, k) is represented

by a π -point α : K [t]/t p
→ KG defined over a finite field extension K/k.
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Lemma 4.1. Let α : K [t]/(t p)→KG be a π -point representing p ∈ Proj H∗(G, k).
If K is finite-dimensional over k, then 1G(α) perfectly cogenerates Λp StMod G.

Proof. We check the conditions (1) and (2) for 1G(α).

(1) If M ∈ Λp StMod G is nonzero, then cosuppG(M) = {p} and hence p is in
suppG(M) by Remark 2.8(2). Thus, HomG(M,1G(α)) 6= 0 by Proposition 3.10.

(2) Since extension of scalars is left adjoint to restriction of scalars, we have

HomG(M,1G(α))∼= HomG K (MK , α∗(K )).

As α∗(K ) is finite-dimensional as a G K -module, using the duality isomorphism (2.1)
we may rewrite the right-hand term as

HomG K (τ
−1�(α∗(K )),MK )

∨.

So HomG(N ,1G(α))→ HomG(M,1G(α)) is surjective if and only if

HomG K (τ
−1�(α∗(K )),MK )→ HomG K (τ

−1�(α∗(K )), NK )

is injective. It remains to observe that M 7→ MK preserves products, as K is finite-
dimensional over k. �

Let I be an injective H∗(G, k)-module and C a finite-dimensional G-module.
In what follows, we use the representing objects TC(I ) and the Koszul objects k//p
defined in Section 1.

Lemma 4.2. Fix a point p in Proj H∗(G, k) and I an injective H∗(G, k)-module.

(1) For any finite-dimensional G-modules C and M , there is a natural isomorphism

Homk(M, TC(I ))∼= THomk(M,C)(I ).

(2) With I the injective envelope of H∗(G, k)/p, the modules Homk(k//p, TC(I )),
as C varies over the simple G-modules, perfectly cogenerate Λp StMod G.

Proof. Recall that (−)∨ denotes the functor Homk(−, k). For a G-module M , we
consider M∨ with the diagonal G-action, and we have

Homk(M,−)∼=−⊗k M∨

when M is finite-dimensional. Combining this with standard adjunctions and the
definition of TC(I ) gives the following isomorphisms, which justify (1):

HomG(−,Homk(M, TC(I )))∼= HomG(−⊗k M, TC(I ))
∼= HomH∗(G,k)(Hom∗G(C,−⊗k M), I )
∼= HomH∗(G,k)(Hom∗G(C ⊗k M∨,−), I )
∼= HomH∗(G,k)(Hom∗G(Homk(M,C),−), I )
∼= HomG(−, THomk(M,C)(I )).
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As to (2), given the isomorphism in (1) applied to M = k//p, one can deduce the
desired result by mimicking the proof of [Benson et al. 2012, Proposition 5.4]. �

For the next result we employ the reduction to closed points technique from
Section 1.

Proposition 4.3. Let p be a point in Proj H∗(G, k) and M a p-local G-module.
There exists a field extension L/k and an ideal q in H∗(GL , L) with radical a
closed point in Proj H∗(GL , L) lying over p such that resL

k HomL(L//q,M L) and
Homk(k//p,M) are isomorphic as G-modules.

Proof. By Theorem 2.5, we can find L and q such that there is an isomorphism
resL

k (L//q)∼= (k//p)p. Thus there are isomorphisms

resL
k HomL(L//q,M L)∼= Homk(resL

k (L//q),M)
∼= Homk((k//p)p,M)
∼= Homk(k//p,M).

The first one follows from Lemma 2.2 and the last one holds as M is p-local. �

In what follows, Thick(M) denotes the thick subcategory of StMod G generated
by a G-module M .

Theorem 4.4. Given p∈ Proj H∗(G, k), there exists a π -point α : K [t]/(t p)→KG
corresponding to p that factors through a quasielementary subgroup scheme of G K

and has the following properties:

(1) 1G(α) is a compact object in (StMod G)p.

(2) Coloc(1G(α))=Λ
p StMod G.

Proof. Let L and q be as in Proposition 4.3, and let m =
√
q. Since m is a

closed point in Proj H∗(GL , L), there exists a finite extension K of L and a π-
point α : K [t]/(t p)→ KG of GL corresponding to m, and factoring through a
quasielementary subgroup scheme of G K ; see Remark 2.4. It then follows directly
from the definitions that α corresponds to p, when viewed as a π -point of G.

(1) Set M := L//q. This is a finite-dimensional GL -module with support {m}; see
Remark 2.9. From the construction it is clear that the GL -module resK

L α∗(K ) is
also finite-dimensional and has support {m}. Thus the classification [Benson et al.
2016, Corollary 10.2] of tensor closed thick subcategories of stmod GL yields that
resK

L α∗(K ) is in Thick⊗(M). Any simple GL -module is a direct summand of SL ,
where S is the sum of representatives of isomorphism classes of simple G-modules,
so one gets

resK
L α∗(K ) ∈ Thick(M ⊗L SL).
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Applying resL
k and using Lemma 2.2, one then gets that

1G(α)= resL
k resK

L α∗(K ) ∈ Thick((resL
k M)⊗k S).

It remains to verify that (resL
k M)⊗k S is a compact object in (StMod G)p. To this

end, note that there are isomorphisms

(resL
k M)⊗k S ∼= (k//p)p⊗k S ∼= (k//p⊗k S)p,

where the first one is by Theorem 2.5 and the second is by [Benson et al. 2008,
Theorem 8.2], for example. It remains to note that k//p⊗k S is a finite-dimensional
G-module and hence compact in StMod G, so that its localisation at p is compact
in (StMod G)p.

(2) Let I denote the injective envelope of the H∗(G, k)-module H∗(G, k)/p. Since
suppGL

(L//q) = {m}, Remark 2.8(4) implies that for any finite-dimensional G-
module C the module HomL(L//q, TC(I )L) belongs to Λm StMod GL . Given the
choice of α, Lemma 4.1 thus implies that this module is cogenerated by 1GL (α).
So, by Proposition 4.3, the G-module resL

k 1GL (α), that is to say 1G(α), cogener-
ates Homk(k//p, TC(I )). It remains to apply Lemma 4.2(2). �

Minimality. Next we prove that Λp StMod G is a minimal Hom closed colocalis-
ing subcategory. This requires further preparation.

Lemma 4.5. Let K be a field extension of k and H a subgroup scheme of G K . Set
F = resK

k coindG K
H (K ). If M is a G-module then

resK
k indG K

H resG K
H (M K )= Homk(F,M).

When K is a finite extension of k, the G-module F is finite-dimensional over k.

Proof. The desired result is a consequence of the isomorphisms

resK
k indG K

H resG K
H (M K )∼= resK

k HomK (coindG K
H (K ),M K )

∼= Homk(resK
k coindG K

H (K ),M).

The first one follows from Lemma 2.3 and the second from Lemma 2.2. The last
assertion follows from the fact that, in general, there are inequalities

dimK coindG K
H (K )=

dimK (KG)
dimK (KH)

≤ dimK (KG),

and hence the number on the left is finite. �

Lemma 4.6. Given a quasielementary group scheme E over K and a π-point
β : K [t]/(t p)→ K E, for any E-module M the E-module β!β∗(M) is in Thick(M).
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Proof. Note that neither β∗ nor β! involve the coproduct on E, so we may change
that and assume that KU is the group algebra of an elementary abelian p-group and
that β is the inclusion KH→ K E, where H is a cyclic subgroup E. Lemma 4.5
then yields that indE

H resE
H (M), that is to say β!β∗(M), equals Homk(F,M) for

some finite-dimensional E-module F . Since k is the only simple E-module, F is
in Thick(k), and hence Homk(F,M) is in Thick(Homk(k,M)). It remains to recall
that Homk(k,M)∼= M as E-modules. �

Combining the preceding results one obtains the following:

Proposition 4.7. Let α : K [t]/(t p)→ KG be a π -point of G that factors through a
quasielementary subgroup scheme of G K . Then resK

k α!α
∗(M K ) is in ColocHom(M)

for any G-module M.

Proof. By hypothesis, there exists a quasielementary subgroup scheme U of G K

such that α = γ ◦β, where β : K [t]/(t p)→ KU and γ : KU→ KG. Then

resK
k α!α

∗(M K )= resK
k γ!β!β

∗γ ∗(M K ).

Since β!β∗γ ∗(M K ) is in Thick(γ ∗(M K )) by Lemma 4.6, one has that

resK
k α!α

∗(M K ) ∈ Thick(resK
k γ!γ

∗(M K )).

Since resK
k γ!γ

∗(M K ) is in ColocHom(M) by Lemma 4.5, it follows that

resK
k α!α

∗(M K ) ∈ ColocHom(M). �

The next result complements Theorem 4.4.

Theorem 4.8. Let M be a G-module and p∈ cosuppG(M). If α : K [t]/(t p)→KG
is a π-point that factors through a quasielementary subgroup scheme of G K and
represents p, then 1G(α) is in ColocHom(M).

Proof. By hypothesis on p, the k[t]/(t p)-module α∗(M K ) is not projective, and
hence K is in Coloc(α∗(M K )). This implies that α!(K ) is in Coloc(α!α

∗(M K )),
and hence, by restriction of scalars, that

1G(α) ∈ Coloc(resK
k α!α

∗(M K )).

Finally, by Proposition 4.7, the module on the right is in ColocHom(M). �

Corollary 4.9. For p ∈ Proj H∗(G, k), the colocalising subcategory Λp StMod G
of StMod G contains no proper nonzero Hom closed colocalising subcategories.

Proof. Fix a π-point α as in Theorem 4.4, factoring through a quasielementary
subgroup scheme. Since p is in the π-cosupport of any nonzero module M in
Λp StMod G, Theorem 4.8 yields the inclusion below:

Λp StMod G = Coloc(1G(α))⊆ ColocHom(M).

The equality is from Theorem 4.4. This is the desired result. �
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Proof of Theorem 1.1. In the terminology of [Benson et al. 2012], Corollary 4.9
means that StMod G is costratified by the action of H∗(G, k). Given this, [Benson
et al. 2012, Corollary 9.2] yields the desired bijection between Hom closed co-
localising subcategories of StMod G and subsets of Proj H∗(G, k). �

Colocalising and localising subcategories. A key step in the proof of the classi-
fication theorem above is that, given a point p in Proj H∗(G, k), the point module
associated to a certain type of π-point representing p cogenerates Λp StMod G;
see Theorem 4.4. As a corollary of the classification result, it follows that any π-
point may be used, as long as we also allow tensor products with simple modules.

Corollary 4.10. For any point p in Proj H∗(G, k) and any π -point representing p,

Loc⊗(1G(α))= Γp StMod G and ColocHom(1G(α))=Λ
p StMod G.

Proof. Since suppG(1G(α))= {p}, the first equality is a direct consequence of the
bijection between tensor closed localising subcategories of StMod G and subsets of
Proj H∗(G, k) established in [Benson et al. 2016, Theorem 8.1]. In the same vein,
the second equality follows from Theorem 1.1, since cosuppG(1G(α))= {p}. �

Given a subcategory C of StMod G we set

suppG(C) :=
⋃
M∈C

suppG(M) and cosuppG(C) :=
⋃
M∈C

cosuppG(M).

For any subset U⊆ Proj H∗(G, k) set

cl(U) := {p ∈ Proj H∗(G, k) | p⊆ q for some q ∈U}.

This is the closure of U with respect to the Hochster dual of the Zariski topology
[Hochster 1969], and we call U generalisation closed if cl(U)=U.

Corollary 4.11. For a subcategory C⊆ StMod G the following are equivalent:

(1) C is a tensor closed localising subcategory and closed under all products.

(2) C is a Hom closed colocalising subcategory and closed under all coproducts.

In that case we have suppG(C)= cosuppG(C) and this set is generalisation closed.
Moreover, any generalisation closed subset of Proj H∗(G, k) arises in that way.

Proof. Benson et al. [2016] prove that, as a tensor triangulated category, StMod G
is stratified by H∗(G, k). It follows that the assignment C 7→ suppG(C) yields a
bijection between the tensor closed localising subcategories of StMod G that are
closed under all products and the generalisation closed subsets of Proj H∗(G, k).
This can be verified by mimicking the argument used to prove the implication
(a)⇐⇒ (c) of [Benson et al. 2011, Theorem 11.8]; see also [Benson et al. 2011,
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Theorem 6.3]. The desired assertion now follows from the bijection between local-
ising and colocalising subcategories (Corollary 1.2), noticing that for any tensor
ideal localising subcategory C we have

suppG(C)t cosuppG(C
⊥)= Proj H∗(G, k). �

For any generalisation closed subset U⊆ Proj H∗(G, k) we set

(StMod G)U := {M ∈ StMod G | suppG(M)⊆U}.

We collect some basic properties of this category.

Remark 4.12. There is an equality

(StMod G)U = {M ∈ StMod G | cosuppG(M)⊆U}

and this is compactly generated as a triangulated category. The first assertion is
justified by Remark 2.8(2), and compact generation follows from the fact that

(StMod G)U = ΓUc(StModG)
⊥,

where Uc
:= Proj H∗(G, k) \U. Indeed, the subset Uc is specialisation closed, so

ΓUc(StModG) is compactly generated (see [Benson et al. 2011, Proposition 2.7],
for example). Now the assertion is a formal consequence of [Neeman 1992, Theo-
rem 2.1; 2001, Theorem 9.1.16].

Given generalisation closed subsets V ⊆ U ⊆ Proj H∗(G, k), it follows from
Brown representability [Neeman 2001] that the inclusion

(StMod G)V→ (StMod G)U

admits a left adjoint and a right adjoint, because the functor preserves products and
coproducts.

Now fix a point p in Proj H∗(G, k) and consider the generalisation closure of p.
Then (StMod G)≤p equals the full subcategory of p-local G-modules and we obtain
the following pair of equivalent recollements:

(StMod G)<p (StMod G)≤p Γp(StMod G),

(StMod G)<p (StMod G)≤p Λp(StMod G)

Γp

Λp

incl

Λp

incl

Γp

Note that for a π -point α representing p we have, in (StMod G)≤p,

1G(α)
⊥
= (StMod G)<p = ⊥1G(α).

There is an analogy between point modules over finite group schemes and stan-
dard objects of highest weight categories. In fact, the analogy includes costandard
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objects, depending on whether one thinks of a point module as induced or coin-
duced from a trivial representation; see Theorem 3.1.

Remark 4.13. Let A be a highest weight category [Cline et al. 1988] with partially
ordered set of weights 3, which is assumed to be finite for simplicity. Thus A is
an abelian length category with simple objects {L(λ)}λ∈3. Now fix λ ∈ 3 and
consider the full subcategory A≤λ of objects in A that have composition factors
L(µ) with µ≤ λ. The standard object 1(λ) is a projective cover of L(λ) in A≤λ
and its endomorphism ring is a division ring, which we denote by Kλ. This situation
gives rise to the following recollement [Cline et al. 1988, Theorem 3.9]:

A<λ A≤λ mod KλHom(1(λ),−)

Note that 1(λ)⊥ = A<λ =
⊥
∇(λ), where ∇(λ) denotes the costandard object cor-

responding to λ, namely the injective envelope of L(λ) in A≤λ.
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Exterior power operations on higher K -groups
via binary complexes

Tom Harris, Bernhard Köck and Lenny Taelman

We use Grayson’s binary multicomplex presentation of algebraic K -theory to
give a new construction of exterior power operations on the higher K -groups of
a (quasicompact) scheme. We show that these operations satisfy the axioms of
a λ-ring, including the product and composition laws. To prove the latter we
show that the Grothendieck group of the exact category of integral polynomial
functors is the universal λ-ring on one generator.

Introduction

Exterior powers of vector bundles over a scheme X endow its Grothendieck group
K0(X) with a family of operations λr

: K0(X)→ K0(X), r = 0, 1, . . . . These
λ-operations allow us to define Adams operations and the γ -filtration on K0(X)
and are, more generally, at the heart of Grothendieck’s Riemann–Roch theory (see
[Fulton and Lang 1985]). This fundamental structure has been extended to the
higher K -groups Kn(X), n ≥ 0, using a variety of sophisticated approaches and
in various degrees of generality, by [Kratzer 1980; Hiller 1981; Grayson 1989;
Nenashev 1991; Levine 1997], and has been most profoundly studied and applied
in Soulé’s seminal paper [1985]. Common to all these constructions is that they
use homotopy theory.

In this paper we give a purely algebraic construction of the λ-operations on
the higher K -groups of any quasicompact scheme X . Our construction is explicit
in the following sense: in a surprising paper, Grayson [2012] has given explicit
generators and relations for Kn(X), and our construction describes explicit (albeit
intricate) images of these generators under the λ-operations. Within the purely
algebraic context of this paper, we prove moreover that our λ-operations satisfy
the usual axioms, including the product and composition laws. In a forthcoming
paper we address the problem of matching up our λ-operations with Hiller’s.

To describe our results in more precise terms, we recall the definition of a λ-ring.

MSC2010: primary 19D99; secondary 13D15, 14F99, 19E08, 20G05.
Keywords: exterior power operations, binary complexes, higher algebraic K -theory, lambda ring,

Dold–Kan correspondence, Dold–Puppe construction, simplicial tensor product, plethysm
problem, polynomial functor, Schur algebra.
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Definition. A pre-λ-ring is a commutative unital ring K with maps λr
: K → K ,

r ≥ 1, satisfying λ1(x)= x and the following axiom for all x , y ∈ K :

(1) λr (x + y)= λr (x)+
∑r−1

i=1 λ
r−i (x)λi (y)+ λr (y).

A λ-ring K is a pre-λ-ring satisfying the further axioms

(2) λr (xy)= Pr (λ
1(x), . . . , λr (x), λ1(y), . . . , λr (y)),

(3) λr (λs(x))= Pr,s(λ
1(x), . . . , λrs(x)),

where Pr and Pr,s , r , s > 0, are certain universal integral polynomials (defined
in such a way that the axioms (2) and (3) hold in every pre-λ-ring whose additive
group is generated by elements l with λr (l)= 0 for all r > 1 and in which products
of elements of this type are again of this type; for details see [Fulton and Lang
1985]).

Probably the most prominent example of a λ-ring is K0(X) (see [loc. cit.]). The
object of this paper is to make K∗(X)=

⊕
n≥0 Kn(X) into a λ-ring.

For each n ≥ 0, Grayson [2012] associates to an exact category P the exact
category (Bq

b )
nP of so-called n-dimensional bounded acyclic binary complexes,

and proves that Kn(P) is isomorphic to a relatively simple-to-describe quotient
of the Grothendieck group K0((B

q
b )

nP) (see Section 1 for a detailed review of
Grayson’s construction). Using the Dold–Puppe construction [1961], we induc-
tively construct functors

3r
n : (B

q
b )

nP(X)→ (Bq
b )

nP(X)

for all r , n > 0 from the usual exterior power functors 3r
: P(X)→ P(X), r ≥ 0,

on the category P(X) of vector bundles on X .
The following theorems are the main results of this paper.

Theorem 6.2. The functors 3r
n induce well-defined homomorphisms

λr
: Kn(X)→ Kn(X)

for r , n > 0.

The tensor product induces the multiplication in the Grothendieck ring K0(X)
and also an action of K0(X) on the higher K -groups Kn(X). In particular, K∗(X)=⊕

n≥0 Kn(X) carries the structure of a unital commutative ring in which the product
of any two elements in

⊕
n≥1 Kn(X) is defined to be zero. Note that, if n > 0,

axiom (1) for x , y ∈ Kn(X) then follows from λr
: Kn(X) → Kn(X) being a

homomorphism (Theorem 6.2). Furthermore, the formula in axiom (1) can be
used to extend our operations λr

: Kn(X)→ Kn(X), n ≥ 0, to a pre-λ-ring structure
on K∗(X).

Theorems 7.1 and 8.18. The pre-λ-ring K∗(X) is a λ-ring.
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The first half of the paper is devoted to the construction of the exterior power
functors 3r

n . Let CbP(X) denote the category of bounded complexes in P(X). We
use the Dold–Kan correspondence (reviewed along with the other necessary homo-
logical preliminaries in Section 2) to obtain a chain-homotopy invariant functor
3r

1 : CbP(X)→ CbP(X) for each r > 0; if X is affine, then the bounded acyclic
complexes in P(X) are precisely the contractible ones, so we obtain an endofunctor
on the category of bounded acyclic chain complexes in P(X). By generalising and
iterating this procedure over complexes of complexes, we get the desired functors
3r

n : (B
q
b )

nP(X)→ (Bq
b )

nP(X). This material is the subject of Subsections 3 and 4.
In the rather long Section 5 we construct a “simplicial tensor product” ⊗1,n on

(Bq
b )

nP(X). In defining exterior powers on K0(X) we obtain from a short exact
sequence of vector bundles 0→ V ′→ V → V ′′→ 0 a filtration of 3r (V ) whose
successive quotients are 3r−i (V ′)⊗3i (V ′′). We use our simplicial tensor product
of binary multicomplexes to obtain similar statements for short exact sequences in
(Bq

b )
nP(X); our tensor product ⊗1,n is to ⊗ as the exterior powers 3r

n are to 3r .
The main result of the section (Proposition 5.11) is that the product induced by
⊗1,n on Kn(X) vanishes.

In Section 6 we pass our exterior powers from the affine case to general (quasi-
compact) schemes and show they induce well-defined maps λr

: Kn(X)→ Kn(X).
As the product on Kn(X) that is compatible with these operations is the zero prod-
uct (by Proposition 5.11), it follows that the λr are group homomorphisms.

In Section 7 we show that the resulting pre-λ-ring K∗(X) satisfies the λ-ring
axiom (2) concerning products.

The final λ-ring axiom (3) is proved in Section 8. While the usual geomet-
ric splitting principle suffices to prove axiom (2) for K∗(X) (see Section 7) and
both axioms (2) and (3) for K0(X), there seems to be no way of extending that
approach to prove axiom (3) for K∗(X). We will rather proceed as follows. As
K0(X) is a λ-ring, there exist short exact sequences in P(X) that prove the relation
λr (λs(x))= Pr,s(λ

1(x), . . . , λrs(x)) in K0(X)when x is the class of a vector bundle
V on X . We will see (in Subsection 8D) that if in fact these short exact sequences
exist functorially in V , then we can inductively prove the existence of short exact
sequences in (Bq

b )
nP(X) that prove the relation above when x is the class of an

object in (Bq
b )

nP(X); in other words, we have then proved axiom (3) for K∗(X).
We are therefore reduced to showing the existence of such short exact sequences

of functors in V . This problem may be seen as a weak variant of the famous
plethysm problem (see Remark 8.22). The crucial insight now is that it becomes
attackable when we also require these functors to be polynomial (see Definition 8.1).
On the one hand, this requirement guarantees the existence of appropriate base
change functors and hence reduces the problem to X = Spec(Z) (see Subsections
8A and 8D). On the other hand, it makes the computation of the corresponding
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Grothendieck group of functors feasible; this is the content of the following theo-
rem, which we highlight as it may be of independent interest.

It is well known that there exists a unique λ-ring structure on the ring Z[s1, s2, . . . ]

of integral polynomials in infinite variables such that λr (s1)= sr for all r . Further-
more, let Pol<∞(Z) denote the category of polynomial functors over Z of bounded
degree (whose Grothendieck group is easily seen to be a pre-λ-ring).

Theorem 8.5. The ring homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is an isomorphism of pre-λ-rings.

This obviously implies that the right-hand side is a λ-ring as well and hence that
the short exact sequences of functors postulated above indeed exist. After interpret-
ing polynomial functors as modules over certain Schur algebras in Subsection 8B
following Krause [2013, Section 8.2], in Subsection 8C we will prove the theorem
by following Serre’s computation [1968] of the Grothendieck group of representa-
tions of the group scheme GLn,Z. A crucial ingredient here is Green’s computation
[1980] of the Grothendieck group of polynomial functors over a field.

The fundamental idea of proving λ-ring axioms for Grothendieck groups of
complexes via the corresponding axioms for a Grothendieck group of appropri-
ate functors is also sketched in an exchange of letters between Deligne [1967a;
1967b] and Grothendieck [1967].† Both their correspondence and the introduction
of [Serre 1968] already allude to a role of Serre’s result for λ-operations.

In a forthcoming paper we will complement the somewhat intricate construc-
tions of this paper with simpler formulae that (help to) compute our λ-operations
in certain cases. For instance, we will give formulae for our λ-operations when
applied to K1-groups of rings or to external products Km(X)×Kn(X)→ Km+n(X).

1. Binary multicomplexes and algebraic K -theory

In this section we review the description of algebraic K -groups in terms of binary
complexes given in [Grayson 2012]. We also prove a simple lemma about shifted
binary complexes to justify a slight modification of Grayson’s description. The
lemma is also useful for computations.

Recall that an exact category in the sense of [Quillen 1973] is an additive cat-
egory with a distinguished class of “short exact sequences” that behave like the
short exact sequences of an abelian category. A small exact category N may also
be thought of as a full subcategory of an ambient abelian category A such that N

†The authors became aware of these unpublished letters only after the present article was posted
on arXiv (see Acknowledgements on page 448). After acceptance, at the publisher’s request, Deligne
kindly supplied scans and his permission to make them public.
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is closed under extensions in A.1 The category of chain complexes in an exact
category is again an exact category, with short exact sequences defined to be those
sequences of chain maps that are short exact in each degree. In this paper we
consider only complexes that are concentrated in nonnegative degrees, those with
an underlying Z≥0-graded object. We denote this category of chain complexes
in N by CN . A chain complex is bounded if it has only finitely many nonzero
objects. The exact subcategory of CN of bounded chain complexes is denoted
by CbN . An acyclic complex in an exact category is a chain complex N• in N
whose differentials di : Ni → Ni−1 factor as Ni → Zi → Ni−1 (with Zi in N ),
such that each 0→ Zi+1→ Ni → Zi → 0 is a short exact sequence in N .2 The
full subcategories of acyclic complexes in CN and CbN are also exact, and are
denoted by CqN and Cq

bN .
Since each of these categories of complexes is also an exact category, we can iter-

ate their construction to define n-dimensional multicomplexes in N . A 1-dimensional
multicomplex in N is simply a chain complex, an object of CN . An n+1-dimen-
sional multicomplex in N is a chain complex in the exact category CnN of n-
dimensional multicomplexes in N . We define categories of bounded and/or acyclic
multicomplexes, (Cb)

nN , (Cq)nN and (Cq
b)

nN , analogously. With these notions
in place, we can define binary complexes and multicomplexes.

Definition 1.1. (1) A binary complex in an exact category N is a triple (N•, d, d̃)
consisting of a Z≥0-graded collection of objects of N together with two dif-
ferentials d and d ′ such that (N•, d) and (N•, d̃) are chain complexes in N . A
binary complex can be regarded as pair of objects of CN that have the same
underlying graded object. A morphism of binary complexes is a degree 0
map between these underlying objects that commutes with both differentials.
The category of binary complexes in N is denoted by BN . This is an exact
category in the same way that CN is.

(2) A bounded acyclic binary complex in N is a binary complex such that the
chain complexes (N•, d) and (N•, d̃) are bounded and acyclic. The category
of bounded acyclic binary complexes in N is denoted by Bq

bN . It is an exact
subcategory of BN .

(3) An n-dimensional binary multicomplex is an object of the exact category
BnN = B · · · BN (defined in the same way as CnN ). An n-dimensional
bounded acyclic binary multicomplex is an object of (Bq

b )
nN .

1This is the Gabriel–Quillen embedding theorem [Thomason and Trobaugh 1990, Theorem A.7.1
and Proposition A.7.16].

2This is not in general the same thing as being a long exact sequence in the ambient abelian
category A. However in this paper we work only with idempotent complete exact categories, in which
case the two notions coincide. See [Grayson 2012; Thomason and Trobaugh 1990, Section A.9.2].
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Remark 1.2. A (bounded acyclic) binary multicomplex N• of dimension n is equiv-
alent to the following data: a (bounded) Zn

≥0-graded collection of objects of N
equipped with two (acyclic) differentials, denoted by d i and d̃ i , in each direction
1≤ i ≤ n, subject to the commutativity requirements

(1) d i d j
= d j d i ,

(2) d i d̃ j
= d̃ j d i ,

(3) d̃ i d j
= d j d̃ i ,

(4) d̃ i d̃ j
= d̃ j d̃ i ,

whenever i 6= j .
Another way to look at these commutativity restraints is that the various subsets

of the differentials form (nonbinary) multicomplexes: for each i = 1, . . . , n, choose
d i or d̃ i , and consider the object that has the same underlying Zn-graded object
as N•, but now has one acyclic differential in each direction i , given by d i or d̃ i ,
depending on our choice. For each of the 2n choices of differentials, the resulting
object is a bounded acyclic multicomplex, i.e., an object of (Cq

b)
nN ; conversely,

given a pair of differentials d i and d̃ i in each direction, if the 2n choices all form
objects of (Cq

b)
nN , then the whole assembly is an object of (Bq

b )
nN .

Since this category of bounded acyclic binary complexes in N is itself an exact
category, we can form its Grothendieck group K0(B

q
bN ). The main theorem of

[Grayson 2012] is a surprising connection between this group and the n-th higher
K -group of N . We call an n-dimensional binary multicomplex diagonal if the pair
of differentials in some direction are equal, i.e, if d i

= d̃ i for some 1 ≤ i ≤ n.
Grayson’s theorem, which we shall hereafter use as our definition of the K -groups,
says that Kn(N ) is isomorphic to the quotient of the Grothendieck group of Bq

bN
by the subgroup generated by the classes of the diagonal bounded acyclic binary
multicomplexes. More formally:

Theorem/Definition 1.3 [Grayson 2012, Corollary 7.4]. For N an exact category
and n ≥ 0, the abelian group Kn(N ) is presented as follows. There is one generator
for each bounded acyclic binary multicomplex of dimension n, and there are two
families of relations:

(1) [N ′] + [N ′′] = [N ] if there is a short exact sequence

0→ N ′→ N → N ′′→ 0
in (Bq

b )
nN , and

(2) [D] = 0 if D is a diagonal bounded acyclic binary multicomplex.

We remark that our statement of Theorem/Definition 1.3 is subtly different
than the one originally given by Grayson. Our bounded acyclic binary multicom-
plexes are first-quadrant multicomplexes, those that are supported in Zn

≥0, whereas
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Grayson’s do not have to satisfy this condition. The absolute lower bound for
complexes is a technical constraint that we need in order to use the Dold–Kan
correspondence. Our additional condition is harmless, as the following proposition
shows. For this, let K Gr

n (N ) temporarily denote the n-th K -group of N as defined
in [Grayson 2012].

Proposition 1.4. For every exact category N and every n ≥ 0, the canonical homo-
morphism Kn(N )→ K Gr

n (N ) is bijective.

Proof. For ease of presentation we shall prove this for n = 1 only: there is no
additional difficulty for n > 1. Let Bq

∞N denote the category of bounded acyclic
binary complexes in N that may be supported anywhere on Z. For i ≥ 0, let Bq

≥−iN
denote the full subcategory of Bq

∞N consisting of complexes that are supported
on [−i,∞]. We then have

⋃
i Bq
≥−iN = Bq

∞N and hence limi K0(B
q
≥−iN ) =

K0(B
q
∞N ). Let Ti denote the subgroup of K0(B

q
≥−iN ) generated by diagonal com-

plexes and let T denote the similarly defined subgroup of K0(B
q
∞N ). The resulting

injective homomorphism limi Ti → T is also surjective because all complexes are
assumed to be bounded. We therefore obtain an isomorphism

lim
i
(K0(B

q
≥−iN )/Ti )∼= lim

i
K0(B

q
≥−iN )/ lim

i
Ti ∼= K0(B

q
∞N )/T = K Gr

1 (N ).

The following lemma (after generalising it from Bq
≥0N to Bq

≥−iN ) shows that, for
every i ≥ 0, “shifting” induces a two-sided inverse to the negative of the canoni-
cal homomorphism K0(B

q
≥−iN )/Ti → K0(B

q
≥−i−1N )/Ti+1. Hence the canonical

map
K1(N )= K0(B

q
≥0N )/T0→ lim

i
(K0(B

q
≥−iN )/Ti )∼= K Gr

1 (N )

is an isomorphism, as was to be shown. �

Definition 1.5. Let N• be an acyclic binary complex with differentials d and d̃.
The k-th shift of N , denoted by N [k], is the acyclic binary complex that has the
same collection of objects as N but “shifted” k places, i.e., (N [k])i = Ni−k , and
differentials given by (−1)kd and (−1)k d̃.

Lemma 1.6. For any bounded acyclic binary complex N• and k ∈ Z≥0, we have
[N [k]] = (−1)k[N ] in K1N .

Proof. It is enough to show that [N [1]] = −[N ]. There is a short exact sequence

0→ N•→ cone(N•)→ N•[1] → 0,

where cone(N•) denotes the mapping cone of the identity map N•
1
−→N• (cone(N•)

is a binary complex in the obvious way). So it suffices to show that cone(N•)
vanishes in K1N . Let Nn be the left-most nonzero object of N•, and let trun(N•) be
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the (not necessarily acyclic) binary complex formed by truncating N• to forget Nn;
that is, trun(N•) has a 0 in place of Nn . Then there is a short exact sequence

0→ cone(trun(N•))→ cone(N•)→1(Nn
1
−→ Nn)→ 0,

where 1(Nn
1
−→ Nn) is the diagonal binary complex

0 //
// Nn

1
//

1
// Nn

//
// 0,

which is supported in degrees n + 1 and n. Mapping cones of identities are
always acyclic, so cone(trun(N•)) is acyclic even when trun(N•) is not. Since
1(Nn

1
−→ Nn) is diagonal its class vanishes in K1N , so the above short exact

sequence yields the relation [cone(N•)] = [cone(trun(N•))]. We iterate this proce-
dure by repeatedly truncating trun(N•) to show that [cone(N•)] is zero. �

The same proof gives the analogous result for binary multicomplexes: for N
in (Bq

b )
nN , the class of N shifted one place in any of the n possible directions in

Kn(N ) is −[N ]. From this the actions of more general shifts (in multiple direc-
tions) follow immediately.

2. Preliminaries from homological algebra

In this section we recall some preliminaries from the homological algebra of exact
categories. We say what it means for an exact category to be idempotent complete
or split, and show that the notions of acyclicity and contractibility of complexes
coincide in exact categories that have both of these properties. We then review
simplicial objects and the Dold–Kan correspondence. Finally we discuss functors
of finite degree, a weakening of the concept of additive functors. These three topics
may seem rather disjoint here, but we bring them together in the next section to
produce functors between categories of chain complexes that preserve boundedness
and acyclicity, paving the way for a functor on binary multicomplexes that induces
a map on K -theory.

Definition 2.1. An exact category N is idempotent complete if every idempotent
endomorphism in N has a kernel in N .

This does not hold, for example, for the category of free modules over a ring
when there exists a nonfree projective module. All of the exact categories we
use in this paper are idempotent complete. This is an assumption on the “base
level” exact categories we introduce, but will need to be proven for categories of
multicomplexes (Lemma 3.4). Idempotent complete exact categories come with an
embedding into an abelian category N ↪→A that supports long exact sequences: a
chain complex is acyclic in N if and only if it is exact when considered as a chain
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complex of A (see [Grayson 2012, §1]). Homological algebra is therefore quite
straightforward in idempotent complete exact categories.

Contractible complexes in idempotent complete exact categories are always
acyclic; indeed this is an equivalent characterisation of idempotent completeness
[Bühler 2010, Proposition 10.9]. Acyclic complexes in exact categories (even idem-
potent complete ones) are not usually contractible. There is a useful criterion for
contractibility, however. Recall that a chain complex (C•, d) is called split if there
exist maps sn : Cn−1→ Cn such that dnsndn = dn .

Lemma 2.2. A chain complex in an idempotent complete exact category is con-
tractible if and only if it is acyclic and split.

Proof. It follows the definition of a chain homotopy that contractible complexes
in idempotent complete exact categories are also split. Conversely, an elementary
argument shows that if a complex in an exact category is acyclic and split, then the
collection of splitting maps {sn} describes a homotopy from its identity map to its
zero map. �

If an acyclic complex is split, each of the constituent short exact sequences
that it factors into is split: that is, isomorphic to a canonical direct sum sequence
(the converse is obviously true as well). Recall that an exact category is called split
exact if all of its declared short exact sequences are split. In such an exact category,
all acyclic complexes are split. Hence the notions of contractibility and acyclicity
coincide for complexes in a split exact category that is also idempotent complete.
An example of such an exact category is the category P(R) of (finitely generated)
projective modules over a ring R. That acyclic complexes are contractible in this
category is key to the results of this paper.

We now turn to the Dold–Kan correspondence. To give its statement we need
the language of simplicial objects. Recall that 1 denotes the simplex category: the
category whose objects are the finite nonempty ordered sets [n] = {0< 1< · · ·< n}
and whose morphisms are the order-preserving maps. A simplicial object in a
category C is a contravariant functor from 1 to C, and the natural transformations
between such functors make C1op

into a category. Equivalently, a simplicial object
C in C can be specified to be a collection of objects Cn , n ∈ N, of C together with
face maps δi : Cn→ Cn−1 and degeneracy maps σ j : Cn→ Cn+1, i , j = 0, . . . , n,
satisfying various combinatorial identities. A morphism between simplicial objects
C and D is a collection of morphisms Cn→ Dn that commutes with the faces and
degeneracies. A homotopy h : f ' g between simplicial maps f , g : C → D
is a simplicial morphism h : C ×11

→ D (where 11 denotes the simplicial set
corresponding to the ordered set {0 < 1}, as usual) such that h|C×{0} = f and
h|D×{1} = g; it can also be described as collection of morphisms hi : Cn→ Dn+1,
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i = 0, . . . , n, which satisfy further combinatorial identities determined by compo-
sitions relating f , g, the hi , and the faces and degeneracies of C and D. See, for
example, Chapter 8 of [Weibel 1994] for full definitions of simplicial objects and
homotopies.

If F : C → D is a covariant functor, then postcomposition with F induces a
functor between categories of simplicial objects C1op

→ D1op
. Abusing notation,

we shall also call this functor F . Importantly, if h : f ' g is a simplicial homotopy
between f , g :C→ D, then F(h) : F( f )' F(g) is a simplicial homotopy between
F( f ), F(g) : F(C)→ F(D). The analogous statement for chain homotopies be-
tween chain maps is not true if F is not additive. The Dold–Kan correspondence
shows that chain complexes and simplicial objects are equivalent in a nonobvious
way, and allows us to induce homotopy-preserving functors between categories of
chain complexes, even when the original functors are not additive.

Definition 2.3. Let P be an additive category. Given a chain complex C. ∈ CP ,
we define a simplicial object 0(C•) ∈ P1

op
as follows:

(1) Objects: Given p ≤ n, let η range over all surjections [n]� [p] in 1, and let
C p〈η〉 denote a copy of C p that is labelled by η. For each n, set

0(C)n :=
⊕
p≤n

⊕
η

C p〈η〉.

(2) Maps: If α : [m] → [n] is a morphism in 1, we describe 0(α) by describing
each 0(α, η), the restriction of 0(α) to the summand C p〈η〉 of 0(C)n . Let

[m] η′
−� [q] ε

↪−→[p]

be the unique epi-monic factorisation of ηα. Then

0(α, η) :=


1 : C p〈η〉 → C p〈η

′
〉 if q = p,

dp : C p〈η〉 → C p−1〈η
′
〉 if q = p− 1 and ε = εp,

0 otherwise.

This construction extends to a functor3 0 : CP→ P1op
.

Theorem (Dold–Kan correspondence). If P is idempotent complete, then the func-
tor 0 : CP→ P1op

is an equivalence of categories. Furthermore, 0 is exact and
preserves homotopies.

Proof. Chapter 8 of [Weibel 1994] proves this when P is an abelian category. The
general case is [Lurie 2014, §1.2.3]. �

The inverse functor to 0 is most simply described for an abelian category.

3Other authors (e.g., Weibel [1994]) use K in place of 0; we avoid this notation for obvious
reasons.
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Definition 2.4. Let A be a simplicial object in an abelian category A.

(1) The associated chain complex C(A) has objects C(A)n = An and differential

dn =

n∑
i=0

(−1)iδi : C(A)n→ C(A)n−1.

(2) The subcomplex

D(A)n =
n∑

i=0

Im(σi : An−1→ An)

is called the degenerate subcomplex of C(A).

(3) The normalised Moore complex N (A) has objects

Nn(A)= An/D(A)n
with the induced differential d̄n .

The associated chain complex splits globally as C(A)= N (A)⊕ D(A).

The normalised Moore complex defines a functor N :A1op
→ CA. It is exact

and preserves homotopies, and is inverse to 0 (up to natural isomorphism). Now if
P is an idempotent complete exact category, then there is an embedding P ⊆A into
an abelian category such that P is closed under taking direct summands in A. If
P is an object of P1op

⊆A1op
, then the associated chain complex C(P) is a chain

complex A with objects in P . But N (P) is a direct summand of C(P), which
has objects in P , so N (P) has objects in P . Therefore N restricts to a functor
P1op
→ CP . Furthermore the functor N is exact and preserves homotopies. See

[Lurie 2014] for further details.
We conclude our preliminaries by discussing functors of finite degree.

Definition 2.5. Let F : C → D be any functor between additive categories that
satisfies F(0)= 0. Then there is a functorial decomposition

F(X ⊕ Y )= F(X)⊕ cr2(F)(X, Y )⊕ F(Y ),

where cr2(F) : C × C → D is the second cross-effect functor (see [Eilenberg
and Mac Lane 1954]), which is defined to be the kernel of the natural projection
F(X⊕Y )→ F(X)⊕F(Y ). The functor F is said to have degree≤ 1 if it is additive
(i.e., if cr2(F) vanishes), and we say that F has degree ≤ d if cr2(F)(X, Y ) is of
degree ≤ d − 1 in each argument. If F is of degree ≤ d, then F is of degree ≤ d ′

for all d ′ ≥ d. We say that F has degree d if it has degree ≤ d but does not have
degree ≤ d − 1.

Example 2.6. For R a nonzero commutative ring, the exterior power 3r
: P(R)→

P(R) has degree r for each r > 0. This follows from the canonical decomposition

3r (X ⊕ Y )∼=3r (X)⊕
( r−1⊕

i=1

3r−i (X)⊗3i (Y )
)
⊕3r (Y ).
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If F : P → Q is an additive functor between exact categories, and if P• is a
bounded complex, then NF0(P•) is certainly bounded again. This also holds true
for functors of finite degree, as the following lemma shows:

Lemma 2.7 [Satkurunath and Köck 2010, Corollary 4.6]. Let P• be a chain com-
plex in CP of length `, and let F : P→Q be a functor of degree d between exact
categories. Then NF0(P•) has length less than or equal to d`. �

3. Operations on acyclic complexes

In this rather abstract section we describe how to use the Dold–Kan correspondence
to extend a functor F : P → P on an idempotent complete exact category to a
functor on each category of multicomplexes Fn : CnP→ CnP , n ≥ 1. We show
that if P is split exact, then the extended functors Fn send acyclic multicomplexes
to acyclic multicomplexes. We also show that if F is of finite degree, then each Fn

preserves bounded multicomplexes and is also of finite degree.

Proposition 3.1. Let F : P→ P be a covariant functor on an idempotent complete
exact category, with F(0) = 0. Let F1 := NF0 : CP → CP denote the induced
functor. Then:

(1) F1(0)= 0.

(2) F1 sends contractible complexes to contractible complexes.

(3) If P is split exact, then F1 sends acyclic complexes to acyclic complexes.

(4) If F is of degree at most d, then F1 sends bounded complexes to bounded
complexes and F1 is again of degree at most d.

Proof. Part (1) is trivial.
For (2), the functors 0 : CP→ P1op

and N : P1op
→ CP preserve homotopies

and send 0 to 0, so they both send contractible objects to contractible objects. Fur-
thermore, F sends homotopies in P1op

to homotopies in P1op
— if h : f ∼ g is a

homotopy, then F(h) : F( f )∼ F(g) is a homotopy. Since F also has the property
that F(0) = 0, we see that if A ' 0 in P1op

, then F(A) ' F(0) = 0. Therefore
NF0(P•) is contractible in CP .

Following Lemma 2.2, the acyclic complexes in a split exact idempotent com-
plete exact category coincide with the contractible ones, so (3) follows from (2).

Finally we consider (4). The first part of this statement is Lemma 2.7. For the
second part we note that, since N and 0 are additive, it is enough to show that
F :A1op

→ B1op
is of degree ≤ d . This is proven by induction on d . �

Proposition 3.1(3) may not hold in an exact category that is not split exact, as
is shown in the following example:
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Example 3.2. Let F be the degree 2 endofunctor A 7→ A⊗2 on the abelian category
of abelian groups, and let C• be the short exact sequence

0→ Z
2
−→Z→ Z/2Z→ 0,

viewed as an acyclic complex concentrated in degrees 0, 1 and 2. Then NF0(C•)=
N diag(0(C•)⊗0(C•)) is homotopy equivalent to Tot(C•⊗C•) by the Eilenberg–
Zilber theorem [May 1967, §29].4 But the homology group H2(Tot(C•⊗C•)) is
Z/2Z, so NF0(C•) is not exact. Furthermore, the short exact sequence of functors

0→ N320→ NF0→ NSym20→ 0

shows that at least one of N320(C•) or NSym20(C•) is not exact either.

We now iterate the Dold–Kan correspondence to describe induced functors on
categories of acyclic multicomplexes.

Definition 3.3. Let F : P→ P be a covariant functor on an idempotent complete
exact category. We define functors

Fn : CnP→ CnP

for all n ≥ 0 recursively, as follows:

(1) F0 := F : P→ P .

(2) By regarding an object of Cn+1P as a chain complex in the exact category CnP ,
we define Fn+1 := NFn0.

To show that Fn sends acyclic multicomplexes to acyclic multicomplexes in a
nice exact category, we need to know that (Cq)nP satisfies the same hypotheses
as P . This is the content of the following technical lemma. The proof is not
enlightening for the rest of the paper, so we relegate it to the Appendix.

Lemma 3.4. Let P be an exact category. For all n > 0 we have the following:

(1) If P is idempotent complete, then CnP and (Cq)nP are also idempotent com-
plete.

(2) If P is split exact, then (Cq)nP is also split exact.

The analogous results for the categories Cn
bP and (Cq

b)
nP of bounded multicom-

plexes also hold.

Corollary 3.5. Let P be a split exact idempotent complete exact category, and
F : P→ P a covariant functor such that F(0)= 0. Then for n ≥ 0 the functors of
Definition 3.3 restrict to functors

Fn : (Cq)nP→ (Cq)nP.
4See also Definition 5.4 and Lemma 5.5 here.



422 TOM HARRIS, BERNHARD KÖCK AND LENNY TAELMAN

Furthermore, if F is of finite degree, then Fn sends bounded multicomplexes to
bounded multicomplexes. That is, each Fn restricts to a functor

Fn : (C
q
b)

nP→ (Cq
b)

nP.

Proof. We consider the unbounded case first. By Proposition 3.1(1), we easily
see that Fn(0) = 0 for all n. Assume that Fn restricts to a functor on the idem-
potent complete split exact category (Cq)nP . Regarding objects of (Cq)n+1P as
acyclic complexes in (Cq)nP , the functor Fn+1 = NFn0 restricts to a functor on
(Cq)n+1P = Cq((Cq)nP), by Proposition 3.1(3) and Lemma 3.4(2). The first part
of the result follows by induction.

For the second part, if F0 = F is of finite degree, then the same induction over n
shows that Fn is of finite degree for every n, by Proposition 3.1(4). In particular,
for each n ≥ 1, the functor Fn = (Fn−1)1 sends bounded complexes to bounded
complexes, that is, it restricts to a functor

Fn : C
q
b((C

q)n−1P)→ Cq
b((C

q)n−1P).

But we can say more: considering P• in (Cq
b)

nP as a chain complex, each of
its objects is in (Cq

b)
n−1P , i.e., they are bounded. We claim that the objects of

Fn(P•) = NFn−10(P•) are also bounded. The objects of 0(P•) are finite direct
sums of the objects of P•. Finite sums of bounded objects are bounded, so the
objects of 0(P•) are bounded. Therefore, by the inductive hypothesis, the objects
of Fn−10(P•) are also bounded. Finally, the objects of NFn−10(P•) are direct
summands of the objects of Fn−10(P•) (from Definition 2.4, after embedding into
an abelian category), so they are bounded as well. Therefore Fn sends bounded
chain complexes of bounded objects in (Cq

b)
nP to bounded chain complexes of

bounded objects in (Cq
b)

nP . This is exactly the statement that Fn restricts to a
functor

Fn : (C
q
b)

nP→ (Cq
b)

nP,
which was to be proved. �

Remark 3.6. Throughout this section we work with the inductive definition of
(Cq

b)
nP , that is (Cq

b)
nP := Cq

b((C
q
b)

n−1P) for n > 1. As explained in Remark 1.2,
one can instead think of objects in (Cq

b)
nP as Zn

≥0-graded objects of N (together
with certain differentials) without specifying the order of directions in which the
objects have been obtained in the inductive definition. The purpose of this remark is
to convince the reader that our construction of the functors Fn given in this section
(and hence our construction of exterior powers in the sequel) does not depend on
the order of directions either. Rather than including a complete proof, we sketch
the idea in the case n = 2. Let F0 = F be as before. The functor F2 is defined as

Nh F10h = Nh NvF00v0h,
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where the indices h and v indicated the horizontal and vertical directions respec-
tively. It is quite straightforward to see that the composition Nh Nv sends a bi-
simplicial object C to the double complex whose objects are obtained from the
corresponding objects of C by dividing out the images of all of the horizontal and
vertical degeneracy maps. This latter description of course does not depend on the
order of Nh and Nv . One can show that the same holds for 0h and 0v by a similar
argument, or just by recalling that 0h and 0v are adjoint to Nh and Nv , respectively.

We can now describe the exterior power functors that we will use to induce
operations on higher K -groups. The following example is the motivation for our
work so far.

Main Example 3.7. Let P(R) be the category of finitely generated projective mod-
ules over a commutative ring R. This category is both idempotent complete and
split exact. For each r > 0, the usual exterior power functor 3r

: P(R)→ P(R)
satisfies the hypotheses of Corollary 3.5 (3r has degree r). We therefore have
induced functors

3r
n : (C

q
b)

nP(R)→ (Cq
b)

nP(R)

for all n ≥ 0.

In general, the complex N3r0(P•) is difficult to write down explicitly. Satku-
runath and Köck [2010] give an algorithm that addresses this problem. We con-
clude this section by computing N3r0(P•) for a very simple choice of P•.

Example 3.8. Let ϕ : P→ Q be an isomorphism of invertible modules over some
commutative ring R, considered as an acyclic complex concentrated in degrees 0
and 1:

0 // P
ϕ
// Q // 0

2 1 0 –1

or P ϕ
−→ Q for short. Köck [2001, Lemma 2.2] gives an explicit calculation of

N3r0(P ϕ
−→ Q) in terms of higher cross-effect functors (in fact, he does this for

more general P, Q and ϕ). Specifically, in degree n we have

N3r0(P ϕ
−→ Q)n = crn(3

r )(P, . . . , P)⊕ crn+1(3
r )(Q, P, . . . , P).

We do not wish to expound on the theory of cross-effect functors here; the interested
reader can see [Eilenberg and Mac Lane 1954] or [Köck 2001, Section 1]. Instead
we merely quote the properties of crn(3

r ) that we need. Firstly, crn(3
r ) = 0 for

n > r , as 3r is of degree r ; secondly, crr (3
r )(P1, . . . , Pr )= P1⊗· · ·⊗ Pr ; thirdly,

if n < r and if P1, . . . , Pn are all invertible, then crn(3
r )(P1, . . . , Pn)= 0. From
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these we see that

N3r0(P ϕ
−→ Q)n =


P⊗r if n = r ,

Q⊗ P⊗(r−1) if n = r − 1,
0 otherwise.

We can also read off the differential P⊗r
→ Q⊗ P⊗(r−1) from [ibid., Lemma 2.2]:

it is crr (3
r )(ϕ, 1, . . . , 1) = ϕ ⊗ 1⊗ · · · ⊗ 1. So N3r0(P ϕ

−→ Q) is the acyclic
complex

0 // P ⊗ P⊗(r−1) ϕ⊗1
// Q⊗ P⊗(r−1) // 0

r + 1 r r − 1 r − 2

Of particular note is the special case in which P and Q are equal to R considered
as a module over itself, and ϕ is given by multiplication by some x ∈ R×. Then
N3r0(R x

−→R) is equal to the complex (R x
−→R), shifted so that it is concentrated

in degrees r and r − 1.

4. Operations on binary multicomplexes

The goal of this section is to extend the functors Fn between multicomplexes of the
previous section to functors of binary multicomplexes. Together with the results of
the previous section, this shows that if P• is a bounded acyclic binary multicomplex,
then so is 3r

n(P•).
Categories of binary complexes are not so well behaved as categories of com-

plexes. In particular, the category of bounded acyclic binary complexes in a split
exact category is not split exact.

Example 4.1. Let P be an object in a split exact category P . The following di-
agram is an admissible epimorphism in the category of bounded acyclic binary
complexes in P:

P
i1
//

i2

//

1
��

P ⊕ P
p1
//

p2
//

6
��

P

��

P
1
//

1
// P //

// 0

(where i1 and i2 are the inclusions into the first and second summands, p1 and
p2 are the corresponding projections and 6 = p1+ p2). But there is no splitting
P→ P ⊕ P that commutes with both the top and bottom differentials, so Bq

bP is
not split exact.

This difficulty means that we cannot define exterior powers of binary multicom-
plexes recursively in exactly the way we have for multicomplexes. This problem is
resolvable: we shall show that if P• is an object of (Cq

b)
nP(R), then the objects of
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3r
n(P•) are independent of the differentials of P•. Therefore it will make sense to

define the exterior power of a binary complex by applying the exterior powers we
developed above individually to the two differentials of the binary complex. The
resulting pair of complexes will have the same objects, so we consider them as a
binary complex.

Lemma 4.2. Let F : P → P be a covariant functor on an idempotent complete
exact category. If P• and Q• are chain complexes with the same underlying graded
object, then NF0(P•) and NF0(Q•) have the same underlying graded object.

Proof. Let B ∈ P1op
be a simplicial object. The objects of the complex N (B) are

given by

N (B)n := Bn

/( n∑
i=0

Im(σi : Bn−1→ Bn)

)
(after embedding P in a suitable abelian category), where the σi are the degenera-
cies of B. It is enough therefore to show that the objects and degeneracy maps
of F0(P•) do not depend upon the differential of P•. The objects of 0(P•) are
direct sums of the objects of P•, indexed by the surjections out of [n] in 1, and do
not depend on the differential. The degeneracy operator σi : 0(P•)n−1→ 0(P•)n
is the image of the degeneracy map ηi : [n] → [n − 1] in 1. For any surjection
η : [n− 1]� [p], the composition ηηi is also a surjection, so the monomorphism
in the epi-monic factorisation of ηηi is just the identity on [p]. Therefore, the
degeneracy operator σi acts on 0(P•)n−1 by sending the summand corresponding
to the surjection η by the identity to the summand of 0(P•)n corresponding to the
surjection ηiη. Thus σi does not depend on the differential of P•. Since the objects
and degeneracies of 0(P•) only depend on the underlying graded object of P•, the
same is true of F0(P•). Therefore the objects of NF0(P•) only depend on the
underlying graded object as well. �

Corollary 4.3. Let n ≥ 1, and let P• and Q• be objects of (Cq
b)

nP . If P• and Q•
have the same underlying Zn-graded object, then Fn(P•) and Fn(Q•) have the
same underlying Zn-graded object.

Proof. This is a straightforward induction on n. �

We are now ready at last to define exterior powers of acyclic binary multicom-
plexes. Let P• be an n-dimensional, bounded, acyclic binary multicomplex in P ,
i.e., an object of (Bq

b )
nP . We view the commutativity constraints on the differen-

tials of P• in the same way as described in Remark 1.2: as a collection of 2n objects
of (Cq

b)
nP .

Definition 4.4. For a functor F that satisfies the hypotheses of Corollary 3.5, we
define induced functors

Fn : (B
q
b )

nP→ (Bq
b )

nP
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by the following procedure: Let P• be an object of (Bq
b )

nP , viewed as a collection
of 2n (nonbinary) multicomplexes in the manner described above. Since these
multicomplexes all have the same underlying Zn-graded object, by Corollary 4.3
the same is true of the 2n multicomplexes obtained by applying Fn (the functor
defined on (Cq

b)
nP in Corollary 3.5) to the multicomplexes describing P•. We

define Fn(P•) to be the binary multicomplex described by the resulting collection
of multicomplexes.

We now return to our main example of interest: the exterior power functors.
Let R be a commutative ring. We have seen in Example 3.7 that the usual exterior
power operations 3r satisfy the hypotheses of Corollary 3.5, so the exterior powers

3r
n : (C

q
b)

nP(R)→ (Cq
b)

nP(R)

lift to exterior powers of binary multicomplexes

3r
n : (B

q
b )

nP(R)→ (Bq
b )

nP(R)
for all n ≥ 0 and r ≥ 1.

5. Simplicial tensor products

In this section we develop a tensor product for multicomplexes that is compatible
with the exterior powers we have defined in the previous sections. We show that
the class of this product vanishes in the appropriate K -group, which will eventually
be the key to showing that exterior power operations provide homomorphisms on
higher K -groups.

5A. Constructing simplicial tensor products. In this subsection, using the Dold–
Kan correspondence again, we construct the so-called simplicial tensor product of
multicomplexes and prove it preserves acyclicity and boundedness of complexes.

Although we are ultimately interested in the products induced from the usual
tensor products of modules (or sheaves), it is convenient in this section to work in
the rather more abstract setting of a generic idempotent complete exact category
with some form of well-behaved tensor product.

Definition 5.1. Let P be an idempotent complete exact category. We say that a
biadditive bifunctor ⊗ : P ×P→ P is a tensor product if P ⊗− and −⊗ P are
exact functors on P for each object P of P .

For the rest of this section, we fix such a category P with a tensor product ⊗.
The reader may wish to keep in mind the example P = P(R), with the usual tensor
product of R-modules.

Definition 5.2. Let P be an object of P , and let (Q•, dQ) and (R•, dR) be chain
complexes in P .
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(1) By P ⊗ Q• we mean the chain complex whose i-th object is P ⊗ Qi , with
differential 1⊗ dQ . The complex Q•⊗ P is defined analogously.

(2) By Tot(Q•⊗ R•) we mean the chain complex formed by taking the total com-
plex of the bicomplex whose (i, j)-th object is Qi ⊗ R j , and whose differen-
tials are dver

= dQ ⊗ (−1) j and dhor
= 1⊗ dR . This bicomplex’s i-th row is

Qi ⊗ R• and its j-th column is Q•⊗ R j .

It is clear that if Q• and R• are bounded complexes, then the products P ⊗ Q•
and Tot(Q•⊗ R•) are bounded as well. We’ll need a couple of properties of these
products.

Lemma 5.3. Let P• be a chain complex in P .

(1) The functor
P•⊗− : P→ CP, Q 7→ P•⊗ Q,

is exact.

(2) If Q• is an acyclic complex in P , then the complex Tot(P•⊗ Q•) is acyclic.

Proof. The first part is straightforward, as each Pi ⊗− is an exact functor. For
the second part, if Q• is acyclic, then, since acyclic complexes are spliced together
from short exact sequences, each of the complexes Pn ⊗ Q• is acyclic. Therefore
the rows of the bicomplex P•⊗ Q• are acyclic. Our complexes are nonnegative,
so the total complex of this bicomplex is exact in an ambient abelian category by
the acyclic assembly lemma [Weibel 1994, Lemma 2.7.3]. Since P is idempotent
complete, it supports long exact sequences, so Tot(P•⊗ Q•) is acyclic in P . �

To define the simplicial tensor product of complexes we need to go beyond regu-
lar simplicial objects. A bisimplicial object B in P is a functor B :1op

×1op
→P .

The diagonal of B is the simplicial object defined by precomposition with the usual
diagonal functor diag :1op

→1op
×1op,

diag(B) := B ◦ diag :1op
→1op

×1op
→ P.

If C and D are simplicial objects in P , then we define C⊗ D to be the bisimplicial
object given by (C⊗ D)([m], [n])= Cm⊗ Dn and (C⊗ D)(α, β)= C(α)⊗ D(β)
for α : [m] → [m′], β : [n] → [n′]. We can now push the tensor product around the
Dold–Kan correspondence.

Definition 5.4. The simplicial tensor product of chain complexes P• and Q• in P
is defined to be

P•⊗1 Q• := N
(
diag(0(P•)⊗0(Q•))

)
.

A word of warning here: although the tensor product is an additive functor in
each variable, the complex P•⊗1Q• is not equal to the product complex Tot(P•⊗Q•)
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discussed above. They are related by the Eilenberg–Zilber theorem, which we shall
use in the proof of the following lemma:

Lemma 5.5. Let P• and Q• be chain complexes in P , and suppose that at least one
of them is acyclic. Then P•⊗1 Q• is acyclic in P .

Proof. We suppose, without loss of generality, that Q• is acyclic. By the Eilenberg–
Zilber theorem [May 1967, Section 29], the simplicial tensor product P•⊗1 Q• =
N diag(0(P•)⊗0(Q•)) is homotopy equivalent to Tot(P•⊗ Q•), and is therefore
acyclic by Lemmas 5.3(2) and 2.2. �

The following is an analogue of Lemma 2.7 for the simplicial tensor product:

Lemma 5.6. If P• and Q• are both bounded chain complexes in P , of lengths k
and l, respectively, then P•⊗1 Q• is of length at most kl and so is bounded as well.

Proof. Examining the Dold–Kan functors applied to a tensor product, one sees that
the object (P•⊗1 Q•)n is equal to

N
(
diag(0(P•)⊗0(Q•))

)
n =

⊕
ϕ

Pi ⊗ Q j ,

where ϕ runs over all injections [n] ↪→ [i]× [ j] whose composition with the pro-
jections onto [i] and [ j] gives surjections [n]� [i] and [n]� [ j] (this is derived
in [Lawson 2012]). The complexes P• and Q• are of length k and l, so Pi = 0 and
Q j = 0 for all i > k and j > l. But for n > kl there is no injection [n] ↪→[i]× [ j],
with i ≤ k and j ≤ l, such that [n] � [i] and [n] � [ j] are order-preserving
surjections. So (P•⊗1 Q•)n = 0 for n > kl. �

We now verify that ⊗1 is a tensor product in the sense of Definition 5.1.

Proposition 5.7. The simplicial tensor product ⊗1 is a tensor product on the
idempotent complete exact category CP and restricts to a tensor product on the
full subcategory Cq

bP .

Proof. If P• and Q• are in Cq
bP , then so is P•⊗1,n Q•, by Lemmas 5.5 and 5.6. So

it remains to show that −⊗1− is biadditive, and that the functors P•⊗1− and
−⊗1 P• are exact when P• is in CP .

The functors N and 0 are both additive and exact, so we only need to inspect
diag(−⊗−). This is easily seen to be biadditive, as −⊗− is biadditive. Therefore
−⊗1− is biadditive as well.

Let B be a simplicial object in P . For a short exact sequence of simplicial
objects 0→ A′→ A→ A′′→ 0, the sequence

0→ diag(B⊗ A′)n→ diag(B⊗ A)n→ diag(B⊗ A′′)n→ 0

is equal to
0→ Bn ⊗ A′n→ Bn ⊗ An→ Bn ⊗ A′′n→ 0,
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which is short exact since each 0→ A′n→ An→ A′′n→ 0 is short exact and Bn⊗−

is exact. So the sequence

0→ diag(B⊗ A′)→ diag(B⊗ A)→ diag(B⊗ A′′)→ 0

is short exact in every degree for any simplicial object B in P . Therefore the functor
diag(0(P•)⊗−) : P1

op
→ P1op

is exact. The same is true for diag(−⊗0(P•)). It
follows that P•⊗1− and −⊗1 P• are exact functors. �

We are now ready to iteratively define simplicial tensor products on categories
of multicomplexes.

Definition 5.8. We define simplicial tensor products

⊗1,n : CnP ×CnP→ CnP
for all n ≥ 0 recursively:

(1) ⊗1,0 : P ×P→ P is the usual tensor product ⊗, and

(2) by regarding objects P• and Q• of Cn+1P as chain complexes in the idempo-
tent complete exact category CnP with the tensor product ⊗1,n , we define
P•⊗1,n+1 Q• := N

(
diag(0(P•)⊗1,n 0(Q•))

)
.

The following iteration of Proposition 5.7 is now straightforward. The case n= 0
is an assumption of this section, and we iterate using (Cq

b)
n+1P = Cq

b((C
q
b)

nP).
Corollary 5.9. For all n ≥ 0, the simplicial tensor product⊗1,n is a tensor product
in the sense of Definition 5.1 on CnP and on (Cq

b)
nP . �

In fact we can say a little more than this. The following lemma is crucial to the
proof of the main result of this section:

Lemma 5.10. Let P• be an object of Cb((C
q
b)

nP) and let Q• be an object of
(Cq

b)
n+1P . Then P•⊗1,n+1 Q• is an object of (Cq

b)
n+1P .

Proof. Noting that P• and Q• both have their objects in (Cq
b)

nP , and that Q•
is an acyclic complex of objects in that category, this follows immediately from
Lemmas 5.5 and 5.6 applied to the tensor product ⊗1,n on the category (Cq

b)
nP .

�

We can extend the simplicial tensor products to categories of binary complexes
in the same way that we did for exterior powers in Section 4. The simplicial
tensor product of a pair of binary complexes (P•, dP , d̃P) and (Q•, dQ, d̃Q) is
obtained by considering the pair of chain complexes (P•, dC)⊗1 (Q•, dQ) and
(P•, d̃P) ⊗1 (Q•, d̃Q) as a binary complex (it is straightforward to prove that
they have the same underlying graded object, in the same manner as Lemma 4.2).
The analogue of Corollary 4.3 then follows, and we define the simplicial tensor
product of binary multicomplexes just as we did for a functor of one variable in
Definition 4.4.
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5B. Vanishing of products. In this subsection we prove that the class of any sim-
plicial tensor product vanishes in the corresponding K -group. Our proof resembles
Grayson’s procedure [1992, p. 103] of verifying that the second Euler characteristic
of a doubly acyclic bicomplex vanishes.

Let n> 0, and let P• and Q• be n-dimensional bounded acyclic binary complexes
of objects of P . That is, P• and Q• are objects of (Bq

b )
nP . Then the simplicial tensor

product P• ⊗1,n Q• is in (Bq
b )

nP as well by Corollary 5.9. Since the objects of
(Bq

b )
nP are the generators of Kn(P), one would like to use⊗1,n to induce a product

Kn(P)× Kn(P)→ Kn(P). On first inspection this appears not to work, because
the product P•⊗1,n Q• is not diagonal if only one of P• or Q• is diagonal. This is
not a problem in the end though, since the whole product vanishes on Kn(P).

Proposition 5.11. Let n > 0. For any pair of n-dimensional bounded acyclic
multicomplexes P• and Q• in (Bq

b )
nP , the class [P•⊗1,n Q•] vanishes in Kn(P).

Proof. First we filter P• by degree. Regard P• as an acyclic binary complex of
objects of (Bq

b )
n−1P . For i ≥ 0, let P|[0,i] be the binary complex obtained by

“restricting” P• to be supported on [0, i]. That is, (P|[0,i]) j is equal to Pj if 0≤ j ≤ i ,
and (P|[0,i]) j = 0 otherwise. The differentials on P|[0,i] are inherited from P•.
We write Pj [0] for Pj considered as a binary complex concentrated in degree 0.
Then Pj [ j], which denotes Pj considered as a binary complex concentrated in
degree j , is the quotient of the inclusion P|[0, j−1] ↪→ P|[0, j] (if j ≥ 1). If P• is
supported on [0, n], so that Pj = 0 for j > n, we therefore have an n-stage filtration

P0[0] = P|[0,0] ↪→ P|[0,1] ↪→ · · · ↪→ P|[0,n−1] ↪→ P|[0,n] = P•

whose successive quotients determine short exact sequences

0→ P|[0, j−1]→ P|[0, j]→ Pj [ j] → 0.

We take the simplicial tensor product with Q• of this whole filtration, obtaining
sequences

0→ P|[0, j−1]⊗1,n Q•→ P|[0, j]⊗1,n Q•→ Pj [ j]⊗1,n Q•→ 0 (5.12)

for j = 1, . . . , n, which are short exact by Corollary 5.9.
By Lemma 5.10, all of the objects are in the right category, so each of the short

exact sequences of (5.12) yields an equation

[P|[0, j]⊗1,n Q•] = [P|[0, j−1]⊗1,n Q•] + [Pj [ j]⊗1,n Q•]

in Kn(P). Putting these together gives

[P•⊗1,n Q•] =
n∑

j=0

[Pj [ j]⊗1,n Q•].

To proceed we need to assume a small lemma, for which the second type of relation
in Kn(P) (diagonal binary multicomplexes vanish) is crucial.
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Lemma 5.13. The following equality holds in Kn(P):

[Pj [ j]⊗1,n Q•] = (−1) j
[Pj [0]⊗1,n Q•].

Continuing with the main proof, our equation now reads

[P•⊗1,n Q•] =
n∑

j=0

(−1) j
[Pj [0]⊗1,n Q•].

By inspection we see that 0(Pj [0]) is the constant simplicial object which has Pj

in each degree. The functor

diag
(
0(Pj [0])⊗1,n−1−

)
: ((Cb)

n−1A)1
op
→ ((Cb)

n−1A)1
op

is therefore isomorphic to the functor

Pj ⊗1,n−1− : ((Cb)
n−1A)1

op
→ ((Cb)

n−1A)1
op
,

since they both have the same effect of “tensoring everywhere by Pj ”. This functor
is additive, so we have an isomorphism of functors

N (Pj ⊗1,n−1 0(−))∼= Pj ⊗1,n−1−.

Hence,

Pj [0]⊗1,n Q• = N diag
(
0(Pj [0])⊗1,n−1 0(Q•)

)
∼= Pj ⊗1,n−1 Q•,

so we have

[P•⊗1,n Q•] =
n∑

j=0

(−1) j
[Pj ⊗1,n−1 Q•].

There is an exact sequence

0→ Pn→ Pn−1→ · · · → P1→ P0→ 0,

since P• is acyclic. The objects of Q• are in (Bq
b )

n−1P , so −⊗1,n−1 Q• is an exact
functor by Lemma 5.3(1), and so the following sequence is exact:

0→ Pn⊗1,n−1 Q•→ Pn−1⊗1,n−1 Q•→· · ·→ P1⊗1,n−1 Q•→ P0⊗1,n−1 Q•→0.

Exact sequences translate into alternating sums in the Grothendieck group, so this
exact sequence gives exactly the identity

n∑
j=0

(−1) j
[Pj ⊗1,n−1 Q•] = 0

in K0((B
q
b )

nP), thus the same relation holds in Kn(P). Therefore [P•⊗1,n Q•] = 0,
as required. �

It remains to prove Lemma 5.13.
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Proof of Lemma 5.13. Consider the following diagram as a short exact sequence
of binary complexes concentrated in degrees j and j − 1:

0 //
//

��

��

Pj
��

��

Pj
1
//

1
//

����

Pj

����

Pj
//
// 0

We will use this diagram to show that [Pj [ j]⊗1,n Q•]=−[Pj [ j−1]⊗1,n Q•]. The
argument can be iterated j−1 times to yield [Pj [ j]⊗1,n Q•]=(−1) j

[Pj [0]⊗1,n Q•]
in Kn(P), as required. For lack of a better notation, we will denote the middle row
of the diagram by (Pj=Pj ). Then the diagram represents a short exact sequence
of binary complexes

0→ Pj [ j − 1] → (Pj=Pj )→ Pj [ j] → 0,

which upon tensoring with Q• becomes the short exact sequence

0→ Pj [ j − 1]⊗1,n Q•→ (Pj=Pj )⊗1,n Q•→ Pj [ j]⊗1,n Q•→ 0

by Lemma 5.10. Since Q• is acyclic and has objects in (Bq
b )

n−1P , each of the
terms of this short exact sequence is an object of (Bq

b )
nP by Lemma 5.10, so we

have a relation

[(Pj=Pj )⊗1,n Q•] = [Pj [ j − 1]⊗1,n Q•] + [Pj [ j]⊗1,n Q•]

in K0((B
q
b )

nP), and hence in Kn(P). We claim that

[(Pj=Pj )⊗1,n Q•] = 0

in Kn(P), so that [Pj [ j] ⊗1,n Q•] = −[Pj [ j − 1] ⊗1,n Q•]. We can filter Q• in
the same manner that we have filtered P• in the main proof above:

Q0[0] = Q|[0,0] ↪→ Q|[0,1] ↪→ · · · ↪→ Q|[0,n−1] ↪→ Q|[0,n] = Q•,

giving short exact sequences

0→ Q|[0,i−1]→ Q|[0,i]→ Qi [i] → 0.

Upon tensoring with (Pj=Pj ), we have short exact sequences

0→ (Pj=Pj )⊗1,n Q|[0,i−1]→ (Pj=Pj )⊗1,n Q|[0,i]→ (Pj=Pj )⊗1,n Qi [i]→0

(by Lemma 5.10). Furthermore, since (Pj=Pj ) is an acyclic binary complex of
objects of (Bq

b )
n−1P , each of the terms of these short exact sequences is an object
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of (Bq
b )

nP , by Lemma 5.10. We therefore have the equation

[(Pj = Pj )⊗1,n Q•] =
∑

i

[(Pj=Pj )⊗1,n Qi [i]]

in K0((B
q
b )

nP), and hence in Kn(P). But (Pj=Pj ) is a diagonal binary complex,
as is each Qi [i] (trivially). The simplicial tensor product of a pair of diagonal com-
plexes is again diagonal, so each of the acyclic binary complexes (Pj=Pj )⊗1,n Qi [i]
is diagonal and hence vanishes in Kn(P). Therefore [(Pj=Pj )⊗1,n Q•] = 0, so
the desired relation holds. �

This finally completes the proof of Proposition 5.11. Having taken the trouble
to set up an alternative product of bounded acyclic binary multicomplexes, one
that is compatible with the exterior powers, we’ve now shown that (like the usual
tensor product) it is always zero! It was not all for naught though: at least we
know now that the induced operation ⊗1,n : Kn(P)× Kn(P)→ Kn(P) is well-
defined. Furthermore, the vanishing of this product proves that the exterior power
operations induce homomorphisms on Kn(R) (and, more generally, on the higher
K -groups of schemes). This is shown in the next section.

6. Exterior power operations on K -groups of schemes

The goal of this section is to extend the endofunctor 3r
n defined in Section 4

to bounded acyclic multicomplexes of locally free modules of finite rank on a
scheme X , and to prove that it induces a well-defined operation λr on the higher
K -group Kn(X). We will see that, for n > 0, this operation λr is not just a map
but in fact a homomorphism.

Let X be a quasicompact scheme, and let P(X) be the category of locally free
OX -modules of finite rank. Then P(X) is an exact category in the usual sense.
It is idempotent complete but not split exact in general. We write Kn(X) for the
K -group Kn(P(X)).

As in Section 3, we inductively define an endofunctor 3r
n on CnP(X) for r ≥ 1

and n ≥ 0 as follows: the functor 3r
0 is the usual r-th exterior power functor on

C0P(X) = P(X), and 3r
n is defined as N3r

n−10, with N and 0 as introduced in
Section 2.

Proposition 6.1. For all r , n > 0, the functor 3r
n restricts to an endofunctor on the

subcategory (Cq
b)

nP(X) of CnP(X).

Proof. Given any open affine subscheme U = Spec(R) of X , a straightforward
inductive argument shows that the following diagram commutes:
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CnP(X)
3r

n
//

��

CnP(X)

��

CnP(U )
3r

n
// CnP(U )

CnP(R)
3r

n
// CnP(R)

The vertical arrows are induced by the restriction functor P(X)→P(U ), P 7→ P|U ,
and the lower horizontal arrow is the functor 3r

n introduced in Section 3. A com-
plex in CnP(X) is acyclic, or bounded, if and only if its restriction to every open
affine subscheme has the respective property, so Proposition 6.1 follows from the
results of Section 3. �

As in Section 4, one easily deduces that, for any complex P• in CnP(X), the
objects in 3r

n(P•) do not depend on the differentials in P•. We can therefore extend
the endofunctor3r

n to an endofunctor of (Bq
b )

nP(X), which we denote by3r
n again.

The goal of the rest of this section is to prove the following theorem:

Theorem 6.2. Let n > 0 and r > 0. The endofunctor 3r
n of (Bq

b )
nP(X) induces a

well-defined homomorphism λr
: Kn(X)→ Kn(X).

Definition 6.3. The homomorphism λr in the previous theorem is called the r-th
exterior power operation on Kn(X).

Proof of Theorem 6.2. If P• is a diagonal multicomplex in (Bq
b )

nP(X), then the
multicomplex 3r

n(P•) is diagonal as well, by definition of 3r
n . It therefore suffices

to show that the association [P•] 7→ [3r
n(P•)] induces a well-defined homomor-

phism of groups
λr
: K0((B

q
b )

nP(X))→ Kn(X).

Thus we need to show that the equality

[3r
n(P•)] = [3

r
n(P
′

•
)] + [3r

n(P
′′

•
)]

holds in Kn(X) for every short exact sequence 0 → P ′
•
→ P• → P ′′

•
→ 0 in

(Bq
b )

nP(X). The classes [3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′
•
)] for i = 1, . . . , r − 1 vanish in

Kn(X) by Proposition 5.11 applied to the category P =P(X), where the simplicial
tensor product has been constructed inductively from the usual tensor product of
quasicoherent OX -modules. So the desired equality is equivalent in Kn(X) to the
more familiar-looking identity

[3r
n(P•)] = [3

r
n(P
′

•
)] +

r−1∑
i=1

[3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′

•
)] + [3r

n(P
′′

•
)].
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In order to prove this latter formula, we cannot just apply the usual formula for
the r -th exterior power of a direct sum because the given short exact sequence of
binary complexes, 0→ P ′

•
→ P• → P ′′

•
→ 0, does not split in general, even if

X is affine (see Example 4.1). Instead, by induction on n, we construct for every
sequence 0→ P ′

•
→ P•→ P ′′

•
→ 0 in (Bq

b )
nP(X) a natural induced filtration

3r
n(P
′

•
) ↪→3r−1

n (P ′
•
)∧n 3

1
n(P•) ↪→ · · · ↪→31

n(P
′

•
)∧n 3

r−1
n (P•) ↪→3r

n(P•)

of 3r
n(P•) by certain subobjects 3r−i

n (P ′
•
)∧n3

i
n(P•), i = 0, . . . , r , of 3r

n(P•), also
belonging to (Bq

b )
nP(X), together with short exact sequences

0→3r−i+1
n (P ′

•
)∧n 3

i−1
n (P•)→3r−i

n (P ′
•
)∧n 3

i
n(P•)

→3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′

•
)→ 0 (6.4)

for i = 1, . . . , n.
For n= 0 and i ∈ {0, . . . , r}, the object 3r−i

0 (P ′)∧03
i
0(P) is defined to be what

is usually meant by 3r−i (P ′)∧3i (P): the image of the canonical homomorphism
3r−i (P ′)⊗3i (P)→ 3r (P). It is well known that these objects come with the
required short exact sequences (6.4).

If n > 0 and if, for a moment, the sequence 0→ P ′
•
→ P•→ P ′′

•
→ 0 is given

in Cq
b(C

q
b)

n−1P(X) rather than in (Bq
b )

nP(X), we first note that applying the exact
functor 0 to the sequence, we get the short exact sequence

0→ 0(P ′
•
)→ 0(P•)→ 0(P ′′

•
)→ 0

of simplicial objects in (Cq
b)

n−1P(X). By the inductive hypothesis, the complexes
3r−i

n−1(0(P
′)m)∧n−13

i
n−1(0(P)m) for i = 0, . . . , n and m ≥ 0 are in (Bq

b )
n−1P(X)

and we have short exact sequences

0→3r−i+1
n−1 (0(P ′)m)∧n−13

i−1
n−1(0(P)m)→3r−i

n−1(0(P
′)m)∧n−13

i
n−1(0(P)m)

→3r−i
n−1(0(P

′)m)⊗1,n−13
i
n−1(0(P

′′)m)→ 0

for i = 1, . . . , r and m ≥ 0. These short exact sequences assemble to short exact
sequences of simplicial objects in (Bq

b )
n−1P(X). By applying the exact functor N ,

we finally obtain the required objects

3r−i
n (P ′)∧n 3

i
n(P) := N

(
3r−i

n−1(0(P
′))∧n−13

i
n−1(0(P))

)
for i = 0, . . . , r and the required short exact sequences (6.4). As the objects of the
multicomplex 3r−i

n (P ′)∧n 3
i
n(P) are independent of the differentials in the multi-

complexes P ′
•

and P•, this construction of ∧n passes to the category (Bq
b )

nP(X) as
in Section 4.

From Proposition 6.1 and Section 5 we know that the complex 3r
n(P•) and the

complexes 3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′
•
) for i = 0, . . . , r belong to (Bq

b )
nP(X). Now a
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straightforward downwards induction on i based on the short exact sequences (6.4)
shows that the complexes 3r−i

n (P ′
•
)∧n 3

i
n(P•) for i = 0, . . . , r are bounded and

acyclic, so they belong to (Bq
b )

nP(X), as was to be shown. �

7. The second λ-ring axiom

Given a scheme X , there is a “trivial” way to equip the graded abelian group
K∗(X) :=

⊕
n≥0 Kn(X) with a multiplication, and to extend the exterior power

operations defined in the previous section to K∗(X) so that they are compatible
with addition in K∗(X) in the usual sense. The main result of this section is that
they are also compatible with multiplication in the expected way — that is to say,
they satisfy the λ-ring axiom (2).

Let X be a quasicompact scheme. We recall that K0(X) together with the usual
exterior power operations λr

: K0(X)→ K0(X), r ≥ 0, is a λ-ring as defined in the
introduction (see Chapter V of [Fulton and Lang 1985]). Furthermore, Kn(X) is a
K0(X)-module via [P] · [Q•] := [P ⊗ Q•] for P in P(X) and Q• in (Bq

b )
nP(X);

see also Definition 5.2(1).
We define a multiplication on K∗(X) :=

⊕
n≥0 Kn(X) by

(a0, a1, a2, . . . )•(b0, b1, b2, . . . )= (a0b0, a0b1+ a1b0, a0b2+ a2b0, . . . );

in particular, the product of any two elements in
⊕

n≥1 Kn(X) is defined to be
zero. With this multiplication, K∗(X) is a commutative ring. Furthermore, we
define exterior power operations λr

: K∗(X)→ K∗(X), r ≥ 0, by the formula

λr ((a0, a1, a2, . . . ))=

(
λr (a0),

r−1∑
i=0

λi (a0)λ
r−i (a1),

r−1∑
i=0

λi (a0)λ
r−i (a2), . . .

)
.

By definition, we then have λ0(x)= 1 and λ1(x)= x for all x ∈ K∗(X). A straight-
forward calculation using Theorem 6.2 and the fact that K0(X) satisfies axiom (1)
of a λ-ring shows that K∗(X) also satisfies axiom (1). The next theorem addresses
axiom (2).

Theorem 7.1. The pre-λ-ring K∗(X) defined above satisfies axiom (2) of a λ-ring.

Proof. Axiom (2) holds for elements of the form x = (a0, 0, 0, . . . ) and y =
(b0, 0, 0, . . . ) in K∗(X) because it holds for K0(X). It also holds for elements of
the form x = (0, a1, a2, . . . ) and y= (0, b1, b2, . . . ) because λr (0)= 0 for all r ≥ 1
and because every monomial in the ring Z[X1, . . . , Xr , Y1, . . . , Yr ] whose coeffi-
cient in Pr (X1, . . . , Xr , Y1, . . . , Yr ) is nonzero is divisible by some product X i Y j .
Furthermore, it suffices to check axiom (2) for x and y belonging to a set of additive
generators of K∗(X) because K∗(X) satisfies axiom (1) and because axiom (2) is
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equivalent to the multiplicativity of the homomorphism

λt : K∗(X)→ 1+ t · K∗(X)[[t]], x 7→
∑
r≥0

λr (x)tr .

We are therefore reduced to showing that the equality

λr (xy)= Pr (λ
1(x), . . . , λr (x), λ1(y), . . . , λr (y)) (7.2)

holds in Kn(X) for elements y ∈ Kn(X) and x ∈ K0(X) of the form x = [E] for
some locally free OX -module E of finite rank.

We now invoke the projective bundle theorem [Quillen 1973, §8, Theorem 2.1].
We remark that its proof in [loc. cit.] only relies on the additivity and resolution
theorems, and not, for instance, on the dévissage theorem or localisation sequence.
The additivity and resolution theorems have been proved in [Harris 2015] within the
context of Grayson’s definition of higher K -groups, so the projective bundle theo-
rem also has a proof within that context, without resorting to topological methods.

It is well known that an iterated application of the projective bundle theorem
yields the following splitting principle: there exists a projective morphism f :Y→ X
such that f ∗[E] is the sum of invertible OY -modules in K0(Y ) and such that
f ∗ : K∗(X)→ K∗(Y ) is injective. It is straightforward to check that f ∗ : K∗(X)→
K∗(Y ) is a homomorphism of (pre-)λ-rings. Using the above argument about addi-
tive generators again, we are therefore reduced to showing the equality (7.2) only
when x is the class [L] of an invertible OX -module L. In that case, (7.2) becomes
the much simpler formula

λr ([L] · y)= [L⊗r
] · λr (y),

because λ2
[L] = · · · = λr

[L] = 0, and because Pr satisfies the identity

Pr (1, 0, . . . , 0, Y1, . . . , Yr )= Yr

and has X -degree r (where X i is defined to be of degree i for i = 1, . . . , r ). Using
the argument about additive generators again, it suffices to show that for any object
P• of (Bq

b )
nP(X), the object 3r

n(L⊗ P•) is isomorphic to L⊗r
⊗3r

n(P•). This is
well known if n = 0, and follows by induction on n from the following chain of
isomorphisms applied to each of the 2n multicomplexes associated with the binary
multicomplex P• (which we again denote by P•):

3r
n(L⊗ P•)= N3r

n−10(L⊗ P•)
∼= N (L⊗r

⊗3r
n−10(P•))

∼= L⊗r
⊗ N3r

n−10(P•)
∼= L⊗r

⊗3r
n(P•). �
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8. The final λ-ring axiom

The goal of this section is to prove that the pre-λ-ring K∗(X) (introduced and
proven to satisfy λ-ring axiom (2) in the previous section) also satisfies the final λ-
ring axiom (3) and is therefore a λ-ring. The main ingredients are the language of
polynomial functors, the identification of polynomial functors with modules over
the Schur algebra, and Serre’s method of computing the Grothendieck group of
representations of the group scheme GLn,Z.

8A. Polynomial functors. In this subsection we introduce the notion of polyno-
mial functors and state that the Grothendieck group of the category of polyno-
mial functors over Z is isomorphic to the universal λ-ring in one variable; see
Theorem 8.5 below. This theorem will allow us to prove the final λ-ring axiom
for K∗(X) in Subsection 8D. The proof of Theorem 8.5 occupies Subsections 8B
and 8C.

We recall P(S) denotes the category of OS-modules that are locally free of finite
rank on a scheme S. We define a category P(S) “enriched in schemes over S” as
follows. The objects are the same as the objects of P(S), and for every V,W ∈P(S)
we have an S-scheme

Hom(V,W ) := Spec
S

Sym•(Hom(V,W )∨).

This is the “physical vector bundle” corresponding to the locally free OS-module
Hom(V,W ) and we have

Hom(V,W )(T )= HomOT (VT ,WT )

for every S-scheme T . In fact, by Yoneda’s lemma, we may think of Hom(V,W ) as
the functor which associates HomOT (VT ,WT ) with every S-scheme T . The latter
viewpoint is used in a lot of literature about polynomial functors. Composition in
P(S) is given by the natural maps

Hom(U, V )×S Hom(V,W )→ Hom(U,W )

of schemes over S, and the identities are given by the obvious sections idV in
Hom(V, V )(S).

Definition 8.1. A polynomial functor over S is an enriched functor F :P(S)→P(S).
A morphism of polynomial functors is a natural transformation. We denote the
category of polynomial functors over S by Pol(S).

In other words, a polynomial functor consists of objects FV ∈ P(S), V ∈ P(S),
and of morphisms of S-schemes

F : Hom(V,W )→ Hom(FV, FW ) for V,W ∈ P(S),
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which satisfy the usual functor axioms. In less precise terms, F being a morphism
of S-schemes means that if, for instance, S = Spec(k) with k a field, the map
F : Hom(V,W )→ Hom(FV, FW ) is given by polynomials in coordinates of V
and W . Note that we do not ask F to be additive. Every polynomial functor F
induces an “ordinary” endofunctor of P(S), denoted by F again. A morphism
η : F→ G consists of a morphism of OS-modules

ηV : FV → GV

for every V ∈ P(S), satisfying the usual conditions for a natural transformation.

Example 8.2 (exterior powers). Functoriality of3d implies that for all V,W ∈P(S)
we have a map

Hom(V,W )→ Hom(3d V,3d W ).

This is a priori a map of sets, but its formation commutes with base change T → S,
and hence by Yoneda it defines a map of S-schemes

Hom(V,W )→ Hom(3d V,3d W ).

We obtain a polynomial functor 3d
: P(S)→ P(S).

The category Pol(S) is a 0(S,OS)-linear category. We declare a sequence

0→ F→ G→ H → 0

in Pol(S) to be exact if the sequence

0→ FV → GV → H V → 0

is exact for every V ; this way Pol(S) becomes an exact category [Touzé 2013,
Section 2.1.1]. It carries a tensor product

⊗ : Pol(S)×Pol(S)→ Pol(S)

as well as exterior power operators

3n
: Pol(S)→ Pol(S), F 7→3n F :=3n

◦ F.

These data turn K0(Pol(S)) into a pre-λ-ring. To prove this, one proceeds as in the
proof of Theorem 6.2. As there, the category Pol(S) is in general not split exact,
but for every short exact sequence as above, one can construct a natural filtration

0⊂3n F ⊂ F ∧ · · · ∧ F ∧G ⊂ · · · ⊂ F ∧G ∧ · · · ∧G ⊂3nG

of 3nG whose successive quotients are isomorphic to 3n−k F⊗3k H , k = 0, . . . , n.
Less evident is that for every morphism f : T → S there is a natural base

change functor f ∗ : Pol(S)→ Pol(T ). This can be constructed as follows. Let
F : P(S)→ P(S) be a polynomial functor. Given V ∈ P(T ) one chooses an open
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cover (Ui ) of T , vector bundles Vi ∈P(S) and isomorphisms αi : ( f ∗Vi )|Ui → V |Ui .
These define gluing data αi j := α

−1
i α j and one constructs the desired ( f ∗F)V by

gluing the bundles f ∗(FVi ) over the Ui j using the maps F(αi j ). Note that the
expression F(αi j ) makes sense as F is a polynomial functor. For an alternative
description of f ∗, see Remark 8.9.

Thus, every polynomial functor F ∈ Pol(S) induces a family of functors

FT : P(T )→ P(T ),

indexed by T → S, and that the FT commute with base change.
The functor f ∗ is exact, and commutes with the operations ⊗ and 3n , so that

f ∗ induces a morphism

f ∗ : K0(Pol(S))→ K0(Pol(T ))
of pre-λ-rings.

Definition 8.3. A polynomial functor F ∈ Pol(S) is said to be homogeneous of
degree d if, for every V ∈ P(S), the diagram

Gm,S Gm,S

Hom(V, V ) Hom(FV, FV )

x 7→ xd

F

commutes; here, the vertical morphisms are given by scalar multiplication. We
denote by Pold(S) the category of polynomial functors homogeneous of degree d,
and by Pol<∞(S) the category of polynomial functors that are finite direct sums of
homogeneous polynomial functors.

Example 8.4. The polynomial functor 3d is homogeneous of degree d. The infi-
nite direct sum

⊕
d≥03

d is well-defined as it becomes finite when applied to any
V ; it is a polynomial functor, but not in Pol<∞(S).

Let Z[s1, s2, . . . ] denote the ring of symmetric functions, with si the i-th ele-
mentary symmetric function. This is a λ-ring, with λi (s1) = si , also called the
universal λ-ring in one variable; see [Yau 2010, §1.3]. It is also a graded ring with
deg sd = d .

Theorem 8.5. The ring homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is an isomorphism of pre-λ-rings.

The proof of this theorem will be given at the end of Subsection 8C.

Corollary 8.6. K0(Pol<∞(Z)) is a λ-ring. �
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8B. The Schur algebra. The object of this subsection is to relate polynomial func-
tors to the Schur algebra; see [Roby 1963, Chapters I & IV; Krause 2013, §2] for
details.

Throughout this subsection, R is a commutative ring. If M is a locally free
R-module and d a nonnegative integer, then the R-module of degree d divided
powers is the module of symmetric degree d tensors:

0d M = 0d
R M = (M⊗d)Sd .

If A is an associative and locally free R-algebra and M is moreover an A-module,
then 0d

R A is a sub-R-algebra of A⊗d and the obvious multiplication of 0d
R A on

0d
R M turns 0d

R M into a 0d
R A-module.

Let n be a positive integer. Consider the Schur algebra 0d Mat(n, R) of R
associated with n and d. It is free as an R-module. For every R-module V , the
module V n

= Hom(Rn, V ) is a right Mat(n, R)-module, hence 0d(V n) is a right
0d Mat(n, R)-module.

Lemma 8.7. If V is a projective R-module, then 0d(V n) is a projective right
0d Mat(n, R)-module.

Proof. If V is a direct summand of W , then 0d(V n) is a direct summand of 0d(W n),
so without loss of generality we may assume that V is a free R-module. Then
0d(V n) is a direct sum of 0d Mat(n, R)-modules of the form

0d1(Rn)⊗R · · · ⊗R 0
di (Rn)

with
∑

di = d . By [Akin and Buchsbaum 1988, Proposition 2.1] these are projec-
tive over the Schur algebra 0d Mat(n, R), and the lemma follows. �

We denote by M(R, n, d) the category of finitely generated left modules over
the Schur algebra 0dMat(n, R), and by Mp(R, n, d) the full subcategory consist-
ing of those modules whose underlying R-module is projective.

We have a “truncation” functor,

Pold(R)→Mp(R, n, d), F 7→ F(Rn),

where the structure of left 0d Mat(n, R)-module on F(Rn) is defined as follows.
We have a map

End(Rn)
F
−→End(F(Rn))

which is homogeneous of degree d. By the universal property of divided powers
(see [Roby 1963, Proposition IV.1; Ferrand 1998, Proposition 2.5.1]), this map is
induced by an R-module homomorphism

0d End(Rn)→ End(F(Rn)),

which is moreover multiplicative, hence giving F(Rn) the structure of a0d End(Rn)-
module.
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Theorem 8.8. If n ≥ d, the functor Pold(R)→Mp(R, n, d) is an equivalence of
categories.

Proof. See [Krause 2013], where the same result is shown for polynomial functors
taking values in arbitrary R-modules, and arbitrary 0d Mat(n, R)-modules. The
same argument works in our context; we only need to check that the inverse functor
maps Mp(R, n, d) to Pold(R) (that is, that the inverse functor preserves “finite type
and projective”).

The inverse functor is defined as follows. Let M be a 0d Mat(n, R)-module.
Then we define a functor

FM :Mod(R)→Mod(R), V 7→ 0d(V n)⊗0d Mat(n,R) M,

where the right 0d Mat(n, R)-module structure on 0d(V n) is inherited from the
structure of right Mat(n, R)-module on V n

= Hom(Rn, V ). Formation of FM

commutes with base change.
Now assume that both M and V are finitely generated and projective R-modules.

Then the module FM(V ) is also finitely generated. We claim that FM(V ) is also
projective. By Lemma 8.7 the module 0d(V n) is projective, hence a direct sum-
mand of a free 0d Mat(n, R)-module

⊕
I 0

d Mat(n, R), and hence FM(V ) is a
direct summand of a projective R-module

⊕
I M . �

Remark 8.9. Theorem 8.8 gives an alternative way for producing the base change
of a polynomial functor. If R → S is a map of commutative rings, and if M is
a 0d Mat(n, R)-module, then the base change M ⊗R S is a 0d Mat(n, S)-module,
since formation of 0d Mat(n,−) commutes with base change.

8C. The Grothendieck group of polynomial functors over Z. We fix n and d
satisfying n ≥ d. For brevity we write M(R) := M(R, n, d) and Mp(R) :=
Mp(R, n, d). Furthermore we write Z[s1, s2, . . . ]d for the weighted degree d part
of the polynomial ring Z[s1, s2, . . . ]. It is equal to Z[s1, . . . , sn]d .

In this subsection, following [Serre 1968], we compute the Grothendieck group
K0(Mp(Z)). Together with Theorem 8.8 this then implies Theorem 8.5.

If R is an integral domain, there is a natural homomorphism

K0(Mp(R))= K0(Pold(R))→ Z[s1, s2, . . . ]d (by Theorem 8.8)

that sends a polynomial functor F to the weights of the action of Gn
m on F(Rn).

Theorem 8.10. For every field K the map K0(M(K )) → Z[s1, s2, . . . ]d is an
isomorphism.

Proof. See [Green 1980, Sections 2.2 and 3.5, especially Remark 3.5(ii)]. Green
assumes the field K to be infinite, but this assumption is only used in relating mod-
ules over 0d Mat(n, K ) to representations of the monoid Mat(n, K ), as opposed to
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representations of the monoid scheme Matn,K , which would also work over a finite
field K . See also [Jantzen 2003, Section II.A]. �

We will deduce from the cases K =Q and K = Fp in this theorem that the map

K0(Pold(Z))→ Z[s1, s2, . . . ]d

is an isomorphism. The proof is essentially identical to Serre’s proof [1968] that

K0(GLn,Z)→ K0(GLn,Q)

is an isomorphism.

Lemma 8.11 (projective resolutions). The canonical map

K0(Mp(Z))→ K0(M(Z))

is an isomorphism.

Proof. (Compare [Serre 1968, §§2.2–2.3].) Let M be a finitely generated module
over 0d Mat(n,Z). If M can be generated by m elements, we obtain a presentation

0→ P0→ P1→ M→ 0

with P1 = (0
d Mat(n,Z))m . Both P1 and P0 are torsion-free, hence projective

as Z-modules. The same argument as [Serre 1968, Proposition 4] shows that
[P0] − [P1] ∈ K0(Mp(Z)) is independent of the choice of presentation, and that
M 7→ [P0] − [P1] defines a two-sided inverse to the map of the proposition. �

Lemma 8.12 (localisation sequence). The obvious sequence⊕
` prime

K0(M(F`))→ K0(M(Z))→ K0(M(Q))→ 0

is exact.

Proof. The argument is identical to [Serre 1968, Théorème 1]. The main point
is to verify that every 0d Mat(n,Q)-module V of finite Q-dimension contains a
0d Mat(n,Z)-submodule 3 with Q ⊗Z 3 = V . To construct such 3, take an
arbitrary sub-Z-module 30 with Q⊗Z30 = V , and take 3 := 0d Mat(n,Z)30. �

Lemma 8.13 (decomposition maps). For every prime ` there is a unique homo-
morphism d` making the triangle

K0(Mp(Z)) K0(M(Q))

K0(M(F`))

d`

commute.

Proof. The argument is identical to [Serre 1968, Théorème 2]. �



444 TOM HARRIS, BERNHARD KÖCK AND LENNY TAELMAN

Lemma 8.14. The composition

K0(M(Q))
d`
−→ K0(M(F`))→ K0(M(Z))

is the zero map.

Proof. See [Serre 1968, Lemme 4]. Similarly to there, one uses that for every Z-
torsion-free 0d Mat(n,Z)-module3 the map3→ `3, x 7→ `x , is an isomorphism
of 0d Mat(n,Z)-modules. �

Proposition 8.15. For every prime `, the map d` is an isomorphism.

Proof. By Theorem 8.10 the functors

3d1 ⊗3d2 ⊗ · · ·⊗3dm

with
∑

di = d define a basis of K0(M(Q)) and of K0(M(F`)). Since the map d`
preserves this basis, it is an isomorphism. �

Corollary 8.16. The canonical map

K0(M(Z))→ K0(M(Q))

is an isomorphism.

Proof. By Proposition 8.15 and Lemma 8.14 the maps

K0(M(F`))→ K0(M(Z))

are the zero maps. But then the localisation sequence of Lemma 8.12 shows that
the map K0(M(Z))→ K0(M(Q)) is an isomorphism. �

Proof of Theorem 8.5. The degree d part of the homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is obviously inverse to the composition of the isomorphisms

K0(Pold(Z))∼= K0(Mp(Z))∼= K0(M(Z))∼= K0(M(Q))∼= Z[s1, s2, . . . ]d

given by Theorem 8.8, Lemma 8.11, Corollary 8.16 and Theorem 8.10, respec-
tively, and is hence bijective and compatible with exterior power operations. �

Remark 8.17. The category Pold(R) is equivalent with the category of weight d
representations of the monoid Matn,R , which forms a full subcategory of the cate-
gory of representations of GLn,R . Rather than translating Serre’s argument from the
GLn to the Matn context, one could also deduce our result from Serre’s. However,
some care has to be taken because the right adjoint to the inclusion, mapping a
GLn,Z-representation V to the largest subrepresentation that extends to Matn,Z, is
not exact; see [Jantzen 2003, Section II.A].
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8D. Proof of the final λ-ring axiom. In this subsection, we derive from Corollary
8.6 that, for every quasicompact scheme X , the pre-λ-ring K∗(X) satisfies the final
λ-ring axiom. Together with Theorem 7.1, this implies that K∗(X) is a λ-ring and
finishes the proof of this paper’s main result.

Theorem 8.18. The ring K∗(X) equipped with the exterior power operations de-
fined in Section 7 satisfies axiom (3) of a λ-ring.

Proof. Let r , s ≥ 1 and n ≥ 0. For every x ∈ Kn(X) we want to show that the
identity

λr (λs(x))= Pr,s(λ
1(x), . . . , λrs(x)) (8.19)

holds in Kn(X). We recall that, if n ≥ 1, all products occurring on the right-hand
side of (8.19) are trivial (and hence that the right-hand side of (8.19) happens
to be just a multiple of λrs(x)). We will show the stronger statement that the
identity (8.19) in fact holds in K0((B

q
b )

nP(X)) for all x ∈ K0((B
q
b )

nP(X)). Now
the products occurring on the right-hand side of (8.19) are induced by the simplicial
tensor product introduced in Section 5; these products become trivial in Kn(X) by
Proposition 5.11. By a standard argument (see the proof of Theorem 7.1) we may
assume that x is the class of an object P• of (Bq

b )
nP(X). One easily checks, for

instance using the Gabriel–Quillen embedding theorem [Thomason and Trobaugh
1990, Theorem A.7.1 and Proposition A.7.16], that for every exact category P and
any skeletally small category I, the category of functors from I to P is again an
exact category in the obvious way. In particular, the category End((Bq

b )
nP(X))

of endo-functors of (Bq
b )

nP(X) is an exact category. Furthermore it carries a
tensor product and exterior power operations (given by F 7→ 3d

n ◦ F). Via the
homomorphism K0

(
End((Bq

b )
nP(X))

)
→ K0((B

q
b )

nP(X)) given by F 7→ F(P•),
the desired identity now follows from the even stronger identity

[3r
n ◦3

s
n] = Pr,s([3

1
n], . . . , [3

rs
n ]) (8.20)

in K0(End((Bq
b )

nP(X))), which we now prove. We remember that the identity (8.20)
(with the subscripts n omitted) holds in the Grothendieck group K0(Pol<∞(Z)) by
Corollary 8.6. Then it also holds in K0(Pol0<∞(Z)), where Pol0<∞(Z) denotes the
full subcategory of Pol<∞(Z) consisting of functors F satisfying F(0) = 0; this
follows from the fact that the canonical inclusion Pol0<∞(Z) ↪→ Pol<∞(Z) is split
by F 7→

(
V 7→ ker(F(V )→ F(0))

)
. The identity (8.20) therefore follows from

Corollary 8.6 once we have shown that we have a pre-λ-ring homomorphism

K0(Pol0<∞(Z))→ K0
(
End((Bq

b )
nP(X))

)
(8.21)

that sends the class of the identity functor to the class of the identity functor. By
base change (see Subsection 8A), every functor in Pol(Z) induces a functor in
Pol(U ) for every open subset U of X and this construction is compatible with
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restriction with respect to any inclusion of open subsets of X . The constructions
of Sections 3, 4 and 6 therefore inductively induce a functor

Pol0<∞(Z)→ End((Bq
b )

nP(X));

this functor is exact and compatible with tensor products and exterior power op-
erations, as one easily verifies by induction on n. Thus it induces the desired
homomorphism (8.21) and the proof of Theorem 8.18 is complete. �

Remark 8.22. We have seen in the previous proof that the λ-ring axiom (3) al-
ready holds in K0((B

q
b )

nP(X)), i.e., before dividing out the subgroup generated by
classes of diagonal multicomplexes. The same holds true for the λ-ring axiom (2).
This can be shown similarly by using Corollary 8.6 or by using the characteristic-
free Cauchy decomposition as constructed in [Akin et al. 1982]. Whereas Corollary
8.6 only proves the existence of short exact sequences, Akin, Buchsbaum and
Weyman [Akin et al. 1982] explicitly construct short exact sequences that prove
axiom (2) of a λ-ring. The problem of explicitly describing short exact sequences
of polynomial functors that prove axiom (3) seems however to be even harder
than the famous and related plethysm problem in representation theory. Such ex-
plicit short exact sequences for the plethysm 32

◦32 can be found in [Akin and
Buchsbaum 1985, page 175]. Although there also exist solutions of the classical
plethysm problem for 3r

◦32 and 32
◦3s , we are not aware of any corresponding

characteristic-free short exact sequences.

Appendix: Proof of Lemma 3.4

In this appendix we prove Lemma 3.4, which states that:

(1) If P is an idempotent complete exact category, then so are CnP and (Cq)nP .

(2) If P is a split exact category, then so is (Cq)nP .

Note that to prove each of these statements it is enough to prove the case n = 1.

Proof of Lemma 3.4(1). Let e : P•→ P• be an idempotent map of chain complexes.
Then each map en : Pn → Pn is an idempotent of P and so has a kernel ker(en)

which is an object of P . By the universal property of kernels, the chain map on P•
induces a map ker(en)→ ker(en−1) for each n, and these assemble to form a chain
complex of kernels. Thus every idempotent in CP has a kernel in CP , so CP is
idempotent complete. To show that CqP is idempotent complete as well, we must
show that this kernel chain complex is acyclic in P if P• is. To do this, it suffices
to consider the case when the complex is a short exact sequence; the general case
then follows because P supports long exact sequences.
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If P• = (0→ P2→ P1→ P0→ 0) and if e : P•→ P• is an idempotent chain
map, then P• is isomorphic to a sequence of the form

0→ ker(e2)⊕ im(e2)→ ker(e1)⊕ im(e1)→ ker(e0)⊕ im(e0)→ 0.

Furthermore, as the morphisms in this short exact sequence commute with the
idempotents

(
0 0
0 1

)
, they split as direct sums of induced morphisms. Hence the

sequence
0→ ker(e2)→ ker(e1)→ ker(e0)→ 0

is exact as well. �

Proof of Lemma 3.4(2). We wish to show that every admissible monomorphism
i : P•� Q• in CqP is split; that is, that there exists a chain map s : Q•→ P• such
that each snin : Pn→ Qn is the identity. Let us restrict to the case in which P• and
Q• are short exact sequences of P . Consider the diagram

P ′ //
jP
//

��

i ′
��

P
qP
// //

��

i
��

P ′′
��

i ′′
��

Q′ //
jQ
// Q

qQ
// // Q′′

and fix a splitting s ′′ for i ′′. We claim that there exist splittings s ′ and s of i ′ and i
such that the resulting s• : Q•→ P• is a chain map (and hence a splitting of i•). The
general case follows from this claim. Indeed, since acyclic complexes are spliced
together from short exact sequences, we construct a splitting for a monomorphism
of acyclic complexes i : P•� Q• by splitting each monomorphism of short exact
sequences separately. The part of the claim concerning a fixed splitting s ′′ allows
us to choose these splittings of short exact sequences in a compatible manner (be-
ginning in degree 0). So it is enough to prove the claim.

We choose compatible splittings h P and tP of jP and qP , respectively, i.e.,
jP h P+tPqP=1. We also choose a splitting s0 for i and now set s= jP h Ps0+tPs ′′qQ .
Then we compute

(1) si = jP h Ps0i + tPs ′′qQi = jP h P + tPs ′′i ′′qP = jP h P + tPqP = 1,

(2) qPs = qP jP h Ps0+ qP tPs ′′qQ = s ′′qQ ,

so s is a splitting for i , and s and s ′′ commute with qP , qQ . We therefore get an
induced map of kernels s ′ : Q′→ P ′ satisfying jPs ′ = s jQ . Moreover, jPs ′i ′ =
s jQi ′ = si jP = jP , and jP is monic, so s ′i ′ = 1. �
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