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Exterior power operations on higher K -groups
via binary complexes

Tom Harris, Bernhard Köck and Lenny Taelman

We use Grayson’s binary multicomplex presentation of algebraic K -theory to
give a new construction of exterior power operations on the higher K -groups of
a (quasicompact) scheme. We show that these operations satisfy the axioms of
a λ-ring, including the product and composition laws. To prove the latter we
show that the Grothendieck group of the exact category of integral polynomial
functors is the universal λ-ring on one generator.

Introduction

Exterior powers of vector bundles over a scheme X endow its Grothendieck group
K0(X) with a family of operations λr

: K0(X)→ K0(X), r = 0, 1, . . . . These
λ-operations allow us to define Adams operations and the γ -filtration on K0(X)
and are, more generally, at the heart of Grothendieck’s Riemann–Roch theory (see
[Fulton and Lang 1985]). This fundamental structure has been extended to the
higher K -groups Kn(X), n ≥ 0, using a variety of sophisticated approaches and
in various degrees of generality, by [Kratzer 1980; Hiller 1981; Grayson 1989;
Nenashev 1991; Levine 1997], and has been most profoundly studied and applied
in Soulé’s seminal paper [1985]. Common to all these constructions is that they
use homotopy theory.

In this paper we give a purely algebraic construction of the λ-operations on
the higher K -groups of any quasicompact scheme X . Our construction is explicit
in the following sense: in a surprising paper, Grayson [2012] has given explicit
generators and relations for Kn(X), and our construction describes explicit (albeit
intricate) images of these generators under the λ-operations. Within the purely
algebraic context of this paper, we prove moreover that our λ-operations satisfy
the usual axioms, including the product and composition laws. In a forthcoming
paper we address the problem of matching up our λ-operations with Hiller’s.

To describe our results in more precise terms, we recall the definition of a λ-ring.
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Definition. A pre-λ-ring is a commutative unital ring K with maps λr
: K → K ,

r ≥ 1, satisfying λ1(x)= x and the following axiom for all x , y ∈ K :

(1) λr (x + y)= λr (x)+
∑r−1

i=1 λ
r−i (x)λi (y)+ λr (y).

A λ-ring K is a pre-λ-ring satisfying the further axioms

(2) λr (xy)= Pr (λ
1(x), . . . , λr (x), λ1(y), . . . , λr (y)),

(3) λr (λs(x))= Pr,s(λ
1(x), . . . , λrs(x)),

where Pr and Pr,s , r , s > 0, are certain universal integral polynomials (defined
in such a way that the axioms (2) and (3) hold in every pre-λ-ring whose additive
group is generated by elements l with λr (l)= 0 for all r > 1 and in which products
of elements of this type are again of this type; for details see [Fulton and Lang
1985]).

Probably the most prominent example of a λ-ring is K0(X) (see [loc. cit.]). The
object of this paper is to make K∗(X)=

⊕
n≥0 Kn(X) into a λ-ring.

For each n ≥ 0, Grayson [2012] associates to an exact category P the exact
category (Bq

b )
nP of so-called n-dimensional bounded acyclic binary complexes,

and proves that Kn(P) is isomorphic to a relatively simple-to-describe quotient
of the Grothendieck group K0((B

q
b )

nP) (see Section 1 for a detailed review of
Grayson’s construction). Using the Dold–Puppe construction [1961], we induc-
tively construct functors

3r
n : (B

q
b )

nP(X)→ (Bq
b )

nP(X)

for all r , n > 0 from the usual exterior power functors 3r
: P(X)→ P(X), r ≥ 0,

on the category P(X) of vector bundles on X .
The following theorems are the main results of this paper.

Theorem 6.2. The functors 3r
n induce well-defined homomorphisms

λr
: Kn(X)→ Kn(X)

for r , n > 0.

The tensor product induces the multiplication in the Grothendieck ring K0(X)
and also an action of K0(X) on the higher K -groups Kn(X). In particular, K∗(X)=⊕

n≥0 Kn(X) carries the structure of a unital commutative ring in which the product
of any two elements in

⊕
n≥1 Kn(X) is defined to be zero. Note that, if n > 0,

axiom (1) for x , y ∈ Kn(X) then follows from λr
: Kn(X) → Kn(X) being a

homomorphism (Theorem 6.2). Furthermore, the formula in axiom (1) can be
used to extend our operations λr

: Kn(X)→ Kn(X), n ≥ 0, to a pre-λ-ring structure
on K∗(X).

Theorems 7.1 and 8.18. The pre-λ-ring K∗(X) is a λ-ring.
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The first half of the paper is devoted to the construction of the exterior power
functors 3r

n . Let CbP(X) denote the category of bounded complexes in P(X). We
use the Dold–Kan correspondence (reviewed along with the other necessary homo-
logical preliminaries in Section 2) to obtain a chain-homotopy invariant functor
3r

1 : CbP(X)→ CbP(X) for each r > 0; if X is affine, then the bounded acyclic
complexes in P(X) are precisely the contractible ones, so we obtain an endofunctor
on the category of bounded acyclic chain complexes in P(X). By generalising and
iterating this procedure over complexes of complexes, we get the desired functors
3r

n : (B
q
b )

nP(X)→ (Bq
b )

nP(X). This material is the subject of Subsections 3 and 4.
In the rather long Section 5 we construct a “simplicial tensor product” ⊗1,n on

(Bq
b )

nP(X). In defining exterior powers on K0(X) we obtain from a short exact
sequence of vector bundles 0→ V ′→ V → V ′′→ 0 a filtration of 3r (V ) whose
successive quotients are 3r−i (V ′)⊗3i (V ′′). We use our simplicial tensor product
of binary multicomplexes to obtain similar statements for short exact sequences in
(Bq

b )
nP(X); our tensor product ⊗1,n is to ⊗ as the exterior powers 3r

n are to 3r .
The main result of the section (Proposition 5.11) is that the product induced by
⊗1,n on Kn(X) vanishes.

In Section 6 we pass our exterior powers from the affine case to general (quasi-
compact) schemes and show they induce well-defined maps λr

: Kn(X)→ Kn(X).
As the product on Kn(X) that is compatible with these operations is the zero prod-
uct (by Proposition 5.11), it follows that the λr are group homomorphisms.

In Section 7 we show that the resulting pre-λ-ring K∗(X) satisfies the λ-ring
axiom (2) concerning products.

The final λ-ring axiom (3) is proved in Section 8. While the usual geomet-
ric splitting principle suffices to prove axiom (2) for K∗(X) (see Section 7) and
both axioms (2) and (3) for K0(X), there seems to be no way of extending that
approach to prove axiom (3) for K∗(X). We will rather proceed as follows. As
K0(X) is a λ-ring, there exist short exact sequences in P(X) that prove the relation
λr (λs(x))= Pr,s(λ

1(x), . . . , λrs(x)) in K0(X)when x is the class of a vector bundle
V on X . We will see (in Subsection 8D) that if in fact these short exact sequences
exist functorially in V , then we can inductively prove the existence of short exact
sequences in (Bq

b )
nP(X) that prove the relation above when x is the class of an

object in (Bq
b )

nP(X); in other words, we have then proved axiom (3) for K∗(X).
We are therefore reduced to showing the existence of such short exact sequences

of functors in V . This problem may be seen as a weak variant of the famous
plethysm problem (see Remark 8.22). The crucial insight now is that it becomes
attackable when we also require these functors to be polynomial (see Definition 8.1).
On the one hand, this requirement guarantees the existence of appropriate base
change functors and hence reduces the problem to X = Spec(Z) (see Subsections
8A and 8D). On the other hand, it makes the computation of the corresponding
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Grothendieck group of functors feasible; this is the content of the following theo-
rem, which we highlight as it may be of independent interest.

It is well known that there exists a unique λ-ring structure on the ring Z[s1, s2, . . . ]

of integral polynomials in infinite variables such that λr (s1)= sr for all r . Further-
more, let Pol<∞(Z) denote the category of polynomial functors over Z of bounded
degree (whose Grothendieck group is easily seen to be a pre-λ-ring).

Theorem 8.5. The ring homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is an isomorphism of pre-λ-rings.

This obviously implies that the right-hand side is a λ-ring as well and hence that
the short exact sequences of functors postulated above indeed exist. After interpret-
ing polynomial functors as modules over certain Schur algebras in Subsection 8B
following Krause [2013, Section 8.2], in Subsection 8C we will prove the theorem
by following Serre’s computation [1968] of the Grothendieck group of representa-
tions of the group scheme GLn,Z. A crucial ingredient here is Green’s computation
[1980] of the Grothendieck group of polynomial functors over a field.

The fundamental idea of proving λ-ring axioms for Grothendieck groups of
complexes via the corresponding axioms for a Grothendieck group of appropri-
ate functors is also sketched in an exchange of letters between Deligne [1967a;
1967b] and Grothendieck [1967].† Both their correspondence and the introduction
of [Serre 1968] already allude to a role of Serre’s result for λ-operations.

In a forthcoming paper we will complement the somewhat intricate construc-
tions of this paper with simpler formulae that (help to) compute our λ-operations
in certain cases. For instance, we will give formulae for our λ-operations when
applied to K1-groups of rings or to external products Km(X)×Kn(X)→ Km+n(X).

1. Binary multicomplexes and algebraic K -theory

In this section we review the description of algebraic K -groups in terms of binary
complexes given in [Grayson 2012]. We also prove a simple lemma about shifted
binary complexes to justify a slight modification of Grayson’s description. The
lemma is also useful for computations.

Recall that an exact category in the sense of [Quillen 1973] is an additive cat-
egory with a distinguished class of “short exact sequences” that behave like the
short exact sequences of an abelian category. A small exact category N may also
be thought of as a full subcategory of an ambient abelian category A such that N

†The authors became aware of these unpublished letters only after the present article was posted
on arXiv (see Acknowledgements on page 448). After acceptance, at the publisher’s request, Deligne
kindly supplied scans and his permission to make them public.
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is closed under extensions in A.1 The category of chain complexes in an exact
category is again an exact category, with short exact sequences defined to be those
sequences of chain maps that are short exact in each degree. In this paper we
consider only complexes that are concentrated in nonnegative degrees, those with
an underlying Z≥0-graded object. We denote this category of chain complexes
in N by CN . A chain complex is bounded if it has only finitely many nonzero
objects. The exact subcategory of CN of bounded chain complexes is denoted
by CbN . An acyclic complex in an exact category is a chain complex N• in N
whose differentials di : Ni → Ni−1 factor as Ni → Zi → Ni−1 (with Zi in N ),
such that each 0→ Zi+1→ Ni → Zi → 0 is a short exact sequence in N .2 The
full subcategories of acyclic complexes in CN and CbN are also exact, and are
denoted by CqN and Cq

bN .
Since each of these categories of complexes is also an exact category, we can iter-

ate their construction to define n-dimensional multicomplexes in N . A 1-dimensional
multicomplex in N is simply a chain complex, an object of CN . An n+1-dimen-
sional multicomplex in N is a chain complex in the exact category CnN of n-
dimensional multicomplexes in N . We define categories of bounded and/or acyclic
multicomplexes, (Cb)

nN , (Cq)nN and (Cq
b)

nN , analogously. With these notions
in place, we can define binary complexes and multicomplexes.

Definition 1.1. (1) A binary complex in an exact category N is a triple (N•, d, d̃)
consisting of a Z≥0-graded collection of objects of N together with two dif-
ferentials d and d ′ such that (N•, d) and (N•, d̃) are chain complexes in N . A
binary complex can be regarded as pair of objects of CN that have the same
underlying graded object. A morphism of binary complexes is a degree 0
map between these underlying objects that commutes with both differentials.
The category of binary complexes in N is denoted by BN . This is an exact
category in the same way that CN is.

(2) A bounded acyclic binary complex in N is a binary complex such that the
chain complexes (N•, d) and (N•, d̃) are bounded and acyclic. The category
of bounded acyclic binary complexes in N is denoted by Bq

bN . It is an exact
subcategory of BN .

(3) An n-dimensional binary multicomplex is an object of the exact category
BnN = B · · · BN (defined in the same way as CnN ). An n-dimensional
bounded acyclic binary multicomplex is an object of (Bq

b )
nN .

1This is the Gabriel–Quillen embedding theorem [Thomason and Trobaugh 1990, Theorem A.7.1
and Proposition A.7.16].

2This is not in general the same thing as being a long exact sequence in the ambient abelian
category A. However in this paper we work only with idempotent complete exact categories, in which
case the two notions coincide. See [Grayson 2012; Thomason and Trobaugh 1990, Section A.9.2].
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Remark 1.2. A (bounded acyclic) binary multicomplex N• of dimension n is equiv-
alent to the following data: a (bounded) Zn

≥0-graded collection of objects of N
equipped with two (acyclic) differentials, denoted by d i and d̃ i , in each direction
1≤ i ≤ n, subject to the commutativity requirements

(1) d i d j
= d j d i ,

(2) d i d̃ j
= d̃ j d i ,

(3) d̃ i d j
= d j d̃ i ,

(4) d̃ i d̃ j
= d̃ j d̃ i ,

whenever i 6= j .
Another way to look at these commutativity restraints is that the various subsets

of the differentials form (nonbinary) multicomplexes: for each i = 1, . . . , n, choose
d i or d̃ i , and consider the object that has the same underlying Zn-graded object
as N•, but now has one acyclic differential in each direction i , given by d i or d̃ i ,
depending on our choice. For each of the 2n choices of differentials, the resulting
object is a bounded acyclic multicomplex, i.e., an object of (Cq

b)
nN ; conversely,

given a pair of differentials d i and d̃ i in each direction, if the 2n choices all form
objects of (Cq

b)
nN , then the whole assembly is an object of (Bq

b )
nN .

Since this category of bounded acyclic binary complexes in N is itself an exact
category, we can form its Grothendieck group K0(B

q
bN ). The main theorem of

[Grayson 2012] is a surprising connection between this group and the n-th higher
K -group of N . We call an n-dimensional binary multicomplex diagonal if the pair
of differentials in some direction are equal, i.e, if d i

= d̃ i for some 1 ≤ i ≤ n.
Grayson’s theorem, which we shall hereafter use as our definition of the K -groups,
says that Kn(N ) is isomorphic to the quotient of the Grothendieck group of Bq

bN
by the subgroup generated by the classes of the diagonal bounded acyclic binary
multicomplexes. More formally:

Theorem/Definition 1.3 [Grayson 2012, Corollary 7.4]. For N an exact category
and n ≥ 0, the abelian group Kn(N ) is presented as follows. There is one generator
for each bounded acyclic binary multicomplex of dimension n, and there are two
families of relations:

(1) [N ′] + [N ′′] = [N ] if there is a short exact sequence

0→ N ′→ N → N ′′→ 0
in (Bq

b )
nN , and

(2) [D] = 0 if D is a diagonal bounded acyclic binary multicomplex.

We remark that our statement of Theorem/Definition 1.3 is subtly different
than the one originally given by Grayson. Our bounded acyclic binary multicom-
plexes are first-quadrant multicomplexes, those that are supported in Zn

≥0, whereas



EXTERIOR POWER OPERATIONS ON HIGHER K -GROUPS VIA BINARY COMPLEXES 415

Grayson’s do not have to satisfy this condition. The absolute lower bound for
complexes is a technical constraint that we need in order to use the Dold–Kan
correspondence. Our additional condition is harmless, as the following proposition
shows. For this, let K Gr

n (N ) temporarily denote the n-th K -group of N as defined
in [Grayson 2012].

Proposition 1.4. For every exact category N and every n ≥ 0, the canonical homo-
morphism Kn(N )→ K Gr

n (N ) is bijective.

Proof. For ease of presentation we shall prove this for n = 1 only: there is no
additional difficulty for n > 1. Let Bq

∞N denote the category of bounded acyclic
binary complexes in N that may be supported anywhere on Z. For i ≥ 0, let Bq

≥−iN
denote the full subcategory of Bq

∞N consisting of complexes that are supported
on [−i,∞]. We then have

⋃
i Bq
≥−iN = Bq

∞N and hence limi K0(B
q
≥−iN ) =

K0(B
q
∞N ). Let Ti denote the subgroup of K0(B

q
≥−iN ) generated by diagonal com-

plexes and let T denote the similarly defined subgroup of K0(B
q
∞N ). The resulting

injective homomorphism limi Ti → T is also surjective because all complexes are
assumed to be bounded. We therefore obtain an isomorphism

lim
i
(K0(B

q
≥−iN )/Ti )∼= lim

i
K0(B

q
≥−iN )/ lim

i
Ti ∼= K0(B

q
∞N )/T = K Gr

1 (N ).

The following lemma (after generalising it from Bq
≥0N to Bq

≥−iN ) shows that, for
every i ≥ 0, “shifting” induces a two-sided inverse to the negative of the canoni-
cal homomorphism K0(B

q
≥−iN )/Ti → K0(B

q
≥−i−1N )/Ti+1. Hence the canonical

map
K1(N )= K0(B

q
≥0N )/T0→ lim

i
(K0(B

q
≥−iN )/Ti )∼= K Gr

1 (N )

is an isomorphism, as was to be shown. �

Definition 1.5. Let N• be an acyclic binary complex with differentials d and d̃.
The k-th shift of N , denoted by N [k], is the acyclic binary complex that has the
same collection of objects as N but “shifted” k places, i.e., (N [k])i = Ni−k , and
differentials given by (−1)kd and (−1)k d̃ .

Lemma 1.6. For any bounded acyclic binary complex N• and k ∈ Z≥0, we have
[N [k]] = (−1)k[N ] in K1N .

Proof. It is enough to show that [N [1]] = −[N ]. There is a short exact sequence

0→ N•→ cone(N•)→ N•[1] → 0,

where cone(N•) denotes the mapping cone of the identity map N•
1
−→N• (cone(N•)

is a binary complex in the obvious way). So it suffices to show that cone(N•)
vanishes in K1N . Let Nn be the left-most nonzero object of N•, and let trun(N•) be
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the (not necessarily acyclic) binary complex formed by truncating N• to forget Nn;
that is, trun(N•) has a 0 in place of Nn . Then there is a short exact sequence

0→ cone(trun(N•))→ cone(N•)→1(Nn
1
−→ Nn)→ 0,

where 1(Nn
1
−→ Nn) is the diagonal binary complex

0 //
// Nn

1
//

1
// Nn

//
// 0,

which is supported in degrees n + 1 and n. Mapping cones of identities are
always acyclic, so cone(trun(N•)) is acyclic even when trun(N•) is not. Since
1(Nn

1
−→ Nn) is diagonal its class vanishes in K1N , so the above short exact

sequence yields the relation [cone(N•)] = [cone(trun(N•))]. We iterate this proce-
dure by repeatedly truncating trun(N•) to show that [cone(N•)] is zero. �

The same proof gives the analogous result for binary multicomplexes: for N
in (Bq

b )
nN , the class of N shifted one place in any of the n possible directions in

Kn(N ) is −[N ]. From this the actions of more general shifts (in multiple direc-
tions) follow immediately.

2. Preliminaries from homological algebra

In this section we recall some preliminaries from the homological algebra of exact
categories. We say what it means for an exact category to be idempotent complete
or split, and show that the notions of acyclicity and contractibility of complexes
coincide in exact categories that have both of these properties. We then review
simplicial objects and the Dold–Kan correspondence. Finally we discuss functors
of finite degree, a weakening of the concept of additive functors. These three topics
may seem rather disjoint here, but we bring them together in the next section to
produce functors between categories of chain complexes that preserve boundedness
and acyclicity, paving the way for a functor on binary multicomplexes that induces
a map on K -theory.

Definition 2.1. An exact category N is idempotent complete if every idempotent
endomorphism in N has a kernel in N .

This does not hold, for example, for the category of free modules over a ring
when there exists a nonfree projective module. All of the exact categories we
use in this paper are idempotent complete. This is an assumption on the “base
level” exact categories we introduce, but will need to be proven for categories of
multicomplexes (Lemma 3.4). Idempotent complete exact categories come with an
embedding into an abelian category N ↪→A that supports long exact sequences: a
chain complex is acyclic in N if and only if it is exact when considered as a chain
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complex of A (see [Grayson 2012, §1]). Homological algebra is therefore quite
straightforward in idempotent complete exact categories.

Contractible complexes in idempotent complete exact categories are always
acyclic; indeed this is an equivalent characterisation of idempotent completeness
[Bühler 2010, Proposition 10.9]. Acyclic complexes in exact categories (even idem-
potent complete ones) are not usually contractible. There is a useful criterion for
contractibility, however. Recall that a chain complex (C•, d) is called split if there
exist maps sn : Cn−1→ Cn such that dnsndn = dn .

Lemma 2.2. A chain complex in an idempotent complete exact category is con-
tractible if and only if it is acyclic and split.

Proof. It follows the definition of a chain homotopy that contractible complexes
in idempotent complete exact categories are also split. Conversely, an elementary
argument shows that if a complex in an exact category is acyclic and split, then the
collection of splitting maps {sn} describes a homotopy from its identity map to its
zero map. �

If an acyclic complex is split, each of the constituent short exact sequences
that it factors into is split: that is, isomorphic to a canonical direct sum sequence
(the converse is obviously true as well). Recall that an exact category is called split
exact if all of its declared short exact sequences are split. In such an exact category,
all acyclic complexes are split. Hence the notions of contractibility and acyclicity
coincide for complexes in a split exact category that is also idempotent complete.
An example of such an exact category is the category P(R) of (finitely generated)
projective modules over a ring R. That acyclic complexes are contractible in this
category is key to the results of this paper.

We now turn to the Dold–Kan correspondence. To give its statement we need
the language of simplicial objects. Recall that 1 denotes the simplex category: the
category whose objects are the finite nonempty ordered sets [n] = {0< 1< · · ·< n}
and whose morphisms are the order-preserving maps. A simplicial object in a
category C is a contravariant functor from 1 to C, and the natural transformations
between such functors make C1op

into a category. Equivalently, a simplicial object
C in C can be specified to be a collection of objects Cn , n ∈ N, of C together with
face maps δi : Cn→ Cn−1 and degeneracy maps σ j : Cn→ Cn+1, i , j = 0, . . . , n,
satisfying various combinatorial identities. A morphism between simplicial objects
C and D is a collection of morphisms Cn→ Dn that commutes with the faces and
degeneracies. A homotopy h : f ' g between simplicial maps f , g : C → D
is a simplicial morphism h : C ×11

→ D (where 11 denotes the simplicial set
corresponding to the ordered set {0 < 1}, as usual) such that h|C×{0} = f and
h|D×{1} = g; it can also be described as collection of morphisms hi : Cn→ Dn+1,
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i = 0, . . . , n, which satisfy further combinatorial identities determined by compo-
sitions relating f , g, the hi , and the faces and degeneracies of C and D. See, for
example, Chapter 8 of [Weibel 1994] for full definitions of simplicial objects and
homotopies.

If F : C → D is a covariant functor, then postcomposition with F induces a
functor between categories of simplicial objects C1op

→ D1op
. Abusing notation,

we shall also call this functor F . Importantly, if h : f ' g is a simplicial homotopy
between f , g :C→ D, then F(h) : F( f )' F(g) is a simplicial homotopy between
F( f ), F(g) : F(C)→ F(D). The analogous statement for chain homotopies be-
tween chain maps is not true if F is not additive. The Dold–Kan correspondence
shows that chain complexes and simplicial objects are equivalent in a nonobvious
way, and allows us to induce homotopy-preserving functors between categories of
chain complexes, even when the original functors are not additive.

Definition 2.3. Let P be an additive category. Given a chain complex C. ∈ CP ,
we define a simplicial object 0(C•) ∈ P1

op
as follows:

(1) Objects: Given p ≤ n, let η range over all surjections [n]� [p] in 1, and let
C p〈η〉 denote a copy of C p that is labelled by η. For each n, set

0(C)n :=
⊕
p≤n

⊕
η

C p〈η〉.

(2) Maps: If α : [m] → [n] is a morphism in 1, we describe 0(α) by describing
each 0(α, η), the restriction of 0(α) to the summand C p〈η〉 of 0(C)n . Let

[m] η′
−� [q] ε

↪−→[p]

be the unique epi-monic factorisation of ηα. Then

0(α, η) :=


1 : C p〈η〉 → C p〈η

′
〉 if q = p,

dp : C p〈η〉 → C p−1〈η
′
〉 if q = p− 1 and ε = εp,

0 otherwise.

This construction extends to a functor3 0 : CP→ P1op
.

Theorem (Dold–Kan correspondence). If P is idempotent complete, then the func-
tor 0 : CP→ P1op

is an equivalence of categories. Furthermore, 0 is exact and
preserves homotopies.

Proof. Chapter 8 of [Weibel 1994] proves this when P is an abelian category. The
general case is [Lurie 2014, §1.2.3]. �

The inverse functor to 0 is most simply described for an abelian category.

3Other authors (e.g., Weibel [1994]) use K in place of 0; we avoid this notation for obvious
reasons.
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Definition 2.4. Let A be a simplicial object in an abelian category A.

(1) The associated chain complex C(A) has objects C(A)n = An and differential

dn =

n∑
i=0

(−1)iδi : C(A)n→ C(A)n−1.

(2) The subcomplex

D(A)n =
n∑

i=0

Im(σi : An−1→ An)

is called the degenerate subcomplex of C(A).

(3) The normalised Moore complex N (A) has objects

Nn(A)= An/D(A)n
with the induced differential d̄n .

The associated chain complex splits globally as C(A)= N (A)⊕ D(A).

The normalised Moore complex defines a functor N :A1op
→ CA. It is exact

and preserves homotopies, and is inverse to 0 (up to natural isomorphism). Now if
P is an idempotent complete exact category, then there is an embedding P ⊆A into
an abelian category such that P is closed under taking direct summands in A. If
P is an object of P1op

⊆A1op
, then the associated chain complex C(P) is a chain

complex A with objects in P . But N (P) is a direct summand of C(P), which
has objects in P , so N (P) has objects in P . Therefore N restricts to a functor
P1op
→ CP . Furthermore the functor N is exact and preserves homotopies. See

[Lurie 2014] for further details.
We conclude our preliminaries by discussing functors of finite degree.

Definition 2.5. Let F : C → D be any functor between additive categories that
satisfies F(0)= 0. Then there is a functorial decomposition

F(X ⊕ Y )= F(X)⊕ cr2(F)(X, Y )⊕ F(Y ),

where cr2(F) : C × C → D is the second cross-effect functor (see [Eilenberg
and Mac Lane 1954]), which is defined to be the kernel of the natural projection
F(X⊕Y )→ F(X)⊕F(Y ). The functor F is said to have degree≤ 1 if it is additive
(i.e., if cr2(F) vanishes), and we say that F has degree ≤ d if cr2(F)(X, Y ) is of
degree ≤ d − 1 in each argument. If F is of degree ≤ d, then F is of degree ≤ d ′

for all d ′ ≥ d. We say that F has degree d if it has degree ≤ d but does not have
degree ≤ d − 1.

Example 2.6. For R a nonzero commutative ring, the exterior power 3r
: P(R)→

P(R) has degree r for each r > 0. This follows from the canonical decomposition

3r (X ⊕ Y )∼=3r (X)⊕
( r−1⊕

i=1

3r−i (X)⊗3i (Y )
)
⊕3r (Y ).
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If F : P → Q is an additive functor between exact categories, and if P• is a
bounded complex, then NF0(P•) is certainly bounded again. This also holds true
for functors of finite degree, as the following lemma shows:

Lemma 2.7 [Satkurunath and Köck 2010, Corollary 4.6]. Let P• be a chain com-
plex in CP of length `, and let F : P→Q be a functor of degree d between exact
categories. Then NF0(P•) has length less than or equal to d`. �

3. Operations on acyclic complexes

In this rather abstract section we describe how to use the Dold–Kan correspondence
to extend a functor F : P → P on an idempotent complete exact category to a
functor on each category of multicomplexes Fn : CnP→ CnP , n ≥ 1. We show
that if P is split exact, then the extended functors Fn send acyclic multicomplexes
to acyclic multicomplexes. We also show that if F is of finite degree, then each Fn

preserves bounded multicomplexes and is also of finite degree.

Proposition 3.1. Let F : P→ P be a covariant functor on an idempotent complete
exact category, with F(0) = 0. Let F1 := NF0 : CP → CP denote the induced
functor. Then:

(1) F1(0)= 0.

(2) F1 sends contractible complexes to contractible complexes.

(3) If P is split exact, then F1 sends acyclic complexes to acyclic complexes.

(4) If F is of degree at most d, then F1 sends bounded complexes to bounded
complexes and F1 is again of degree at most d.

Proof. Part (1) is trivial.
For (2), the functors 0 : CP→ P1op

and N : P1op
→ CP preserve homotopies

and send 0 to 0, so they both send contractible objects to contractible objects. Fur-
thermore, F sends homotopies in P1op

to homotopies in P1op
— if h : f ∼ g is a

homotopy, then F(h) : F( f )∼ F(g) is a homotopy. Since F also has the property
that F(0) = 0, we see that if A ' 0 in P1op

, then F(A) ' F(0) = 0. Therefore
NF0(P•) is contractible in CP .

Following Lemma 2.2, the acyclic complexes in a split exact idempotent com-
plete exact category coincide with the contractible ones, so (3) follows from (2).

Finally we consider (4). The first part of this statement is Lemma 2.7. For the
second part we note that, since N and 0 are additive, it is enough to show that
F :A1op

→ B1op
is of degree ≤ d . This is proven by induction on d. �

Proposition 3.1(3) may not hold in an exact category that is not split exact, as
is shown in the following example:
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Example 3.2. Let F be the degree 2 endofunctor A 7→ A⊗2 on the abelian category
of abelian groups, and let C• be the short exact sequence

0→ Z
2
−→Z→ Z/2Z→ 0,

viewed as an acyclic complex concentrated in degrees 0, 1 and 2. Then NF0(C•)=
N diag(0(C•)⊗0(C•)) is homotopy equivalent to Tot(C•⊗C•) by the Eilenberg–
Zilber theorem [May 1967, §29].4 But the homology group H2(Tot(C•⊗C•)) is
Z/2Z, so NF0(C•) is not exact. Furthermore, the short exact sequence of functors

0→ N320→ NF0→ NSym20→ 0

shows that at least one of N320(C•) or NSym20(C•) is not exact either.

We now iterate the Dold–Kan correspondence to describe induced functors on
categories of acyclic multicomplexes.

Definition 3.3. Let F : P→ P be a covariant functor on an idempotent complete
exact category. We define functors

Fn : CnP→ CnP

for all n ≥ 0 recursively, as follows:

(1) F0 := F : P→ P .

(2) By regarding an object of Cn+1P as a chain complex in the exact category CnP ,
we define Fn+1 := NFn0.

To show that Fn sends acyclic multicomplexes to acyclic multicomplexes in a
nice exact category, we need to know that (Cq)nP satisfies the same hypotheses
as P . This is the content of the following technical lemma. The proof is not
enlightening for the rest of the paper, so we relegate it to the Appendix.

Lemma 3.4. Let P be an exact category. For all n > 0 we have the following:

(1) If P is idempotent complete, then CnP and (Cq)nP are also idempotent com-
plete.

(2) If P is split exact, then (Cq)nP is also split exact.

The analogous results for the categories Cn
bP and (Cq

b)
nP of bounded multicom-

plexes also hold.

Corollary 3.5. Let P be a split exact idempotent complete exact category, and
F : P→ P a covariant functor such that F(0)= 0. Then for n ≥ 0 the functors of
Definition 3.3 restrict to functors

Fn : (Cq)nP→ (Cq)nP.
4See also Definition 5.4 and Lemma 5.5 here.
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Furthermore, if F is of finite degree, then Fn sends bounded multicomplexes to
bounded multicomplexes. That is, each Fn restricts to a functor

Fn : (C
q
b)

nP→ (Cq
b)

nP.

Proof. We consider the unbounded case first. By Proposition 3.1(1), we easily
see that Fn(0) = 0 for all n. Assume that Fn restricts to a functor on the idem-
potent complete split exact category (Cq)nP . Regarding objects of (Cq)n+1P as
acyclic complexes in (Cq)nP , the functor Fn+1 = NFn0 restricts to a functor on
(Cq)n+1P = Cq((Cq)nP), by Proposition 3.1(3) and Lemma 3.4(2). The first part
of the result follows by induction.

For the second part, if F0 = F is of finite degree, then the same induction over n
shows that Fn is of finite degree for every n, by Proposition 3.1(4). In particular,
for each n ≥ 1, the functor Fn = (Fn−1)1 sends bounded complexes to bounded
complexes, that is, it restricts to a functor

Fn : C
q
b((C

q)n−1P)→ Cq
b((C

q)n−1P).

But we can say more: considering P• in (Cq
b)

nP as a chain complex, each of
its objects is in (Cq

b)
n−1P , i.e., they are bounded. We claim that the objects of

Fn(P•) = NFn−10(P•) are also bounded. The objects of 0(P•) are finite direct
sums of the objects of P•. Finite sums of bounded objects are bounded, so the
objects of 0(P•) are bounded. Therefore, by the inductive hypothesis, the objects
of Fn−10(P•) are also bounded. Finally, the objects of NFn−10(P•) are direct
summands of the objects of Fn−10(P•) (from Definition 2.4, after embedding into
an abelian category), so they are bounded as well. Therefore Fn sends bounded
chain complexes of bounded objects in (Cq

b)
nP to bounded chain complexes of

bounded objects in (Cq
b)

nP . This is exactly the statement that Fn restricts to a
functor

Fn : (C
q
b)

nP→ (Cq
b)

nP,
which was to be proved. �

Remark 3.6. Throughout this section we work with the inductive definition of
(Cq

b)
nP , that is (Cq

b)
nP := Cq

b((C
q
b)

n−1P) for n > 1. As explained in Remark 1.2,
one can instead think of objects in (Cq

b)
nP as Zn

≥0-graded objects of N (together
with certain differentials) without specifying the order of directions in which the
objects have been obtained in the inductive definition. The purpose of this remark is
to convince the reader that our construction of the functors Fn given in this section
(and hence our construction of exterior powers in the sequel) does not depend on
the order of directions either. Rather than including a complete proof, we sketch
the idea in the case n = 2. Let F0 = F be as before. The functor F2 is defined as

Nh F10h = Nh NvF00v0h,
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where the indices h and v indicated the horizontal and vertical directions respec-
tively. It is quite straightforward to see that the composition Nh Nv sends a bi-
simplicial object C to the double complex whose objects are obtained from the
corresponding objects of C by dividing out the images of all of the horizontal and
vertical degeneracy maps. This latter description of course does not depend on the
order of Nh and Nv . One can show that the same holds for 0h and 0v by a similar
argument, or just by recalling that 0h and 0v are adjoint to Nh and Nv , respectively.

We can now describe the exterior power functors that we will use to induce
operations on higher K -groups. The following example is the motivation for our
work so far.

Main Example 3.7. Let P(R) be the category of finitely generated projective mod-
ules over a commutative ring R. This category is both idempotent complete and
split exact. For each r > 0, the usual exterior power functor 3r

: P(R)→ P(R)
satisfies the hypotheses of Corollary 3.5 (3r has degree r). We therefore have
induced functors

3r
n : (C

q
b)

nP(R)→ (Cq
b)

nP(R)

for all n ≥ 0.

In general, the complex N3r0(P•) is difficult to write down explicitly. Satku-
runath and Köck [2010] give an algorithm that addresses this problem. We con-
clude this section by computing N3r0(P•) for a very simple choice of P•.

Example 3.8. Let ϕ : P→ Q be an isomorphism of invertible modules over some
commutative ring R, considered as an acyclic complex concentrated in degrees 0
and 1:

0 // P
ϕ
// Q // 0

2 1 0 –1

or P ϕ
−→ Q for short. Köck [2001, Lemma 2.2] gives an explicit calculation of

N3r0(P ϕ
−→ Q) in terms of higher cross-effect functors (in fact, he does this for

more general P, Q and ϕ). Specifically, in degree n we have

N3r0(P ϕ
−→ Q)n = crn(3

r )(P, . . . , P)⊕ crn+1(3
r )(Q, P, . . . , P).

We do not wish to expound on the theory of cross-effect functors here; the interested
reader can see [Eilenberg and Mac Lane 1954] or [Köck 2001, Section 1]. Instead
we merely quote the properties of crn(3

r ) that we need. Firstly, crn(3
r ) = 0 for

n > r , as 3r is of degree r ; secondly, crr (3
r )(P1, . . . , Pr )= P1⊗· · ·⊗ Pr ; thirdly,

if n < r and if P1, . . . , Pn are all invertible, then crn(3
r )(P1, . . . , Pn)= 0. From



424 TOM HARRIS, BERNHARD KÖCK AND LENNY TAELMAN

these we see that

N3r0(P ϕ
−→ Q)n =


P⊗r if n = r ,

Q⊗ P⊗(r−1) if n = r − 1,
0 otherwise.

We can also read off the differential P⊗r
→ Q⊗ P⊗(r−1) from [ibid., Lemma 2.2]:

it is crr (3
r )(ϕ, 1, . . . , 1) = ϕ ⊗ 1⊗ · · · ⊗ 1. So N3r0(P ϕ

−→ Q) is the acyclic
complex

0 // P ⊗ P⊗(r−1) ϕ⊗1
// Q⊗ P⊗(r−1) // 0

r + 1 r r − 1 r − 2

Of particular note is the special case in which P and Q are equal to R considered
as a module over itself, and ϕ is given by multiplication by some x ∈ R×. Then
N3r0(R x

−→R) is equal to the complex (R x
−→R), shifted so that it is concentrated

in degrees r and r − 1.

4. Operations on binary multicomplexes

The goal of this section is to extend the functors Fn between multicomplexes of the
previous section to functors of binary multicomplexes. Together with the results of
the previous section, this shows that if P• is a bounded acyclic binary multicomplex,
then so is 3r

n(P•).
Categories of binary complexes are not so well behaved as categories of com-

plexes. In particular, the category of bounded acyclic binary complexes in a split
exact category is not split exact.

Example 4.1. Let P be an object in a split exact category P . The following di-
agram is an admissible epimorphism in the category of bounded acyclic binary
complexes in P:

P
i1
//

i2

//

1
��

P ⊕ P
p1
//

p2
//

6
��

P

��

P
1
//

1
// P //

// 0

(where i1 and i2 are the inclusions into the first and second summands, p1 and
p2 are the corresponding projections and 6 = p1+ p2). But there is no splitting
P→ P ⊕ P that commutes with both the top and bottom differentials, so Bq

bP is
not split exact.

This difficulty means that we cannot define exterior powers of binary multicom-
plexes recursively in exactly the way we have for multicomplexes. This problem is
resolvable: we shall show that if P• is an object of (Cq

b)
nP(R), then the objects of
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3r
n(P•) are independent of the differentials of P•. Therefore it will make sense to

define the exterior power of a binary complex by applying the exterior powers we
developed above individually to the two differentials of the binary complex. The
resulting pair of complexes will have the same objects, so we consider them as a
binary complex.

Lemma 4.2. Let F : P → P be a covariant functor on an idempotent complete
exact category. If P• and Q• are chain complexes with the same underlying graded
object, then NF0(P•) and NF0(Q•) have the same underlying graded object.

Proof. Let B ∈ P1op
be a simplicial object. The objects of the complex N (B) are

given by

N (B)n := Bn

/( n∑
i=0

Im(σi : Bn−1→ Bn)

)
(after embedding P in a suitable abelian category), where the σi are the degenera-
cies of B. It is enough therefore to show that the objects and degeneracy maps
of F0(P•) do not depend upon the differential of P•. The objects of 0(P•) are
direct sums of the objects of P•, indexed by the surjections out of [n] in 1, and do
not depend on the differential. The degeneracy operator σi : 0(P•)n−1→ 0(P•)n
is the image of the degeneracy map ηi : [n] → [n − 1] in 1. For any surjection
η : [n− 1]� [p], the composition ηηi is also a surjection, so the monomorphism
in the epi-monic factorisation of ηηi is just the identity on [p]. Therefore, the
degeneracy operator σi acts on 0(P•)n−1 by sending the summand corresponding
to the surjection η by the identity to the summand of 0(P•)n corresponding to the
surjection ηiη. Thus σi does not depend on the differential of P•. Since the objects
and degeneracies of 0(P•) only depend on the underlying graded object of P•, the
same is true of F0(P•). Therefore the objects of NF0(P•) only depend on the
underlying graded object as well. �

Corollary 4.3. Let n ≥ 1, and let P• and Q• be objects of (Cq
b)

nP . If P• and Q•
have the same underlying Zn-graded object, then Fn(P•) and Fn(Q•) have the
same underlying Zn-graded object.

Proof. This is a straightforward induction on n. �

We are now ready at last to define exterior powers of acyclic binary multicom-
plexes. Let P• be an n-dimensional, bounded, acyclic binary multicomplex in P ,
i.e., an object of (Bq

b )
nP . We view the commutativity constraints on the differen-

tials of P• in the same way as described in Remark 1.2: as a collection of 2n objects
of (Cq

b)
nP .

Definition 4.4. For a functor F that satisfies the hypotheses of Corollary 3.5, we
define induced functors

Fn : (B
q
b )

nP→ (Bq
b )

nP
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by the following procedure: Let P• be an object of (Bq
b )

nP , viewed as a collection
of 2n (nonbinary) multicomplexes in the manner described above. Since these
multicomplexes all have the same underlying Zn-graded object, by Corollary 4.3
the same is true of the 2n multicomplexes obtained by applying Fn (the functor
defined on (Cq

b)
nP in Corollary 3.5) to the multicomplexes describing P•. We

define Fn(P•) to be the binary multicomplex described by the resulting collection
of multicomplexes.

We now return to our main example of interest: the exterior power functors.
Let R be a commutative ring. We have seen in Example 3.7 that the usual exterior
power operations 3r satisfy the hypotheses of Corollary 3.5, so the exterior powers

3r
n : (C

q
b)

nP(R)→ (Cq
b)

nP(R)

lift to exterior powers of binary multicomplexes

3r
n : (B

q
b )

nP(R)→ (Bq
b )

nP(R)
for all n ≥ 0 and r ≥ 1.

5. Simplicial tensor products

In this section we develop a tensor product for multicomplexes that is compatible
with the exterior powers we have defined in the previous sections. We show that
the class of this product vanishes in the appropriate K -group, which will eventually
be the key to showing that exterior power operations provide homomorphisms on
higher K -groups.

5A. Constructing simplicial tensor products. In this subsection, using the Dold–
Kan correspondence again, we construct the so-called simplicial tensor product of
multicomplexes and prove it preserves acyclicity and boundedness of complexes.

Although we are ultimately interested in the products induced from the usual
tensor products of modules (or sheaves), it is convenient in this section to work in
the rather more abstract setting of a generic idempotent complete exact category
with some form of well-behaved tensor product.

Definition 5.1. Let P be an idempotent complete exact category. We say that a
biadditive bifunctor ⊗ : P ×P→ P is a tensor product if P ⊗− and −⊗ P are
exact functors on P for each object P of P .

For the rest of this section, we fix such a category P with a tensor product ⊗.
The reader may wish to keep in mind the example P = P(R), with the usual tensor
product of R-modules.

Definition 5.2. Let P be an object of P , and let (Q•, dQ) and (R•, dR) be chain
complexes in P .
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(1) By P ⊗ Q• we mean the chain complex whose i-th object is P ⊗ Qi , with
differential 1⊗ dQ . The complex Q•⊗ P is defined analogously.

(2) By Tot(Q•⊗ R•) we mean the chain complex formed by taking the total com-
plex of the bicomplex whose (i, j)-th object is Qi ⊗ R j , and whose differen-
tials are dver

= dQ ⊗ (−1) j and dhor
= 1⊗ dR . This bicomplex’s i-th row is

Qi ⊗ R• and its j-th column is Q•⊗ R j .

It is clear that if Q• and R• are bounded complexes, then the products P ⊗ Q•
and Tot(Q•⊗ R•) are bounded as well. We’ll need a couple of properties of these
products.

Lemma 5.3. Let P• be a chain complex in P .

(1) The functor
P•⊗− : P→ CP, Q 7→ P•⊗ Q,

is exact.

(2) If Q• is an acyclic complex in P , then the complex Tot(P•⊗ Q•) is acyclic.

Proof. The first part is straightforward, as each Pi ⊗− is an exact functor. For
the second part, if Q• is acyclic, then, since acyclic complexes are spliced together
from short exact sequences, each of the complexes Pn ⊗ Q• is acyclic. Therefore
the rows of the bicomplex P•⊗ Q• are acyclic. Our complexes are nonnegative,
so the total complex of this bicomplex is exact in an ambient abelian category by
the acyclic assembly lemma [Weibel 1994, Lemma 2.7.3]. Since P is idempotent
complete, it supports long exact sequences, so Tot(P•⊗ Q•) is acyclic in P . �

To define the simplicial tensor product of complexes we need to go beyond regu-
lar simplicial objects. A bisimplicial object B in P is a functor B :1op

×1op
→P .

The diagonal of B is the simplicial object defined by precomposition with the usual
diagonal functor diag :1op

→1op
×1op,

diag(B) := B ◦ diag :1op
→1op

×1op
→ P.

If C and D are simplicial objects in P , then we define C⊗ D to be the bisimplicial
object given by (C⊗ D)([m], [n])= Cm⊗ Dn and (C⊗ D)(α, β)= C(α)⊗ D(β)
for α : [m] → [m′], β : [n] → [n′]. We can now push the tensor product around the
Dold–Kan correspondence.

Definition 5.4. The simplicial tensor product of chain complexes P• and Q• in P
is defined to be

P•⊗1 Q• := N
(
diag(0(P•)⊗0(Q•))

)
.

A word of warning here: although the tensor product is an additive functor in
each variable, the complex P•⊗1Q• is not equal to the product complex Tot(P•⊗Q•)
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discussed above. They are related by the Eilenberg–Zilber theorem, which we shall
use in the proof of the following lemma:

Lemma 5.5. Let P• and Q• be chain complexes in P , and suppose that at least one
of them is acyclic. Then P•⊗1 Q• is acyclic in P .

Proof. We suppose, without loss of generality, that Q• is acyclic. By the Eilenberg–
Zilber theorem [May 1967, Section 29], the simplicial tensor product P•⊗1 Q• =
N diag(0(P•)⊗0(Q•)) is homotopy equivalent to Tot(P•⊗ Q•), and is therefore
acyclic by Lemmas 5.3(2) and 2.2. �

The following is an analogue of Lemma 2.7 for the simplicial tensor product:

Lemma 5.6. If P• and Q• are both bounded chain complexes in P , of lengths k
and l, respectively, then P•⊗1 Q• is of length at most kl and so is bounded as well.

Proof. Examining the Dold–Kan functors applied to a tensor product, one sees that
the object (P•⊗1 Q•)n is equal to

N
(
diag(0(P•)⊗0(Q•))

)
n =

⊕
ϕ

Pi ⊗ Q j ,

where ϕ runs over all injections [n] ↪→ [i]× [ j] whose composition with the pro-
jections onto [i] and [ j] gives surjections [n]� [i] and [n]� [ j] (this is derived
in [Lawson 2012]). The complexes P• and Q• are of length k and l, so Pi = 0 and
Q j = 0 for all i > k and j > l. But for n > kl there is no injection [n] ↪→[i]× [ j],
with i ≤ k and j ≤ l, such that [n] � [i] and [n] � [ j] are order-preserving
surjections. So (P•⊗1 Q•)n = 0 for n > kl. �

We now verify that ⊗1 is a tensor product in the sense of Definition 5.1.

Proposition 5.7. The simplicial tensor product ⊗1 is a tensor product on the
idempotent complete exact category CP and restricts to a tensor product on the
full subcategory Cq

bP .

Proof. If P• and Q• are in Cq
bP , then so is P•⊗1,n Q•, by Lemmas 5.5 and 5.6. So

it remains to show that −⊗1− is biadditive, and that the functors P•⊗1− and
−⊗1 P• are exact when P• is in CP .

The functors N and 0 are both additive and exact, so we only need to inspect
diag(−⊗−). This is easily seen to be biadditive, as −⊗− is biadditive. Therefore
−⊗1− is biadditive as well.

Let B be a simplicial object in P . For a short exact sequence of simplicial
objects 0→ A′→ A→ A′′→ 0, the sequence

0→ diag(B⊗ A′)n→ diag(B⊗ A)n→ diag(B⊗ A′′)n→ 0

is equal to
0→ Bn ⊗ A′n→ Bn ⊗ An→ Bn ⊗ A′′n→ 0,
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which is short exact since each 0→ A′n→ An→ A′′n→ 0 is short exact and Bn⊗−

is exact. So the sequence

0→ diag(B⊗ A′)→ diag(B⊗ A)→ diag(B⊗ A′′)→ 0

is short exact in every degree for any simplicial object B in P . Therefore the functor
diag(0(P•)⊗−) : P1

op
→ P1op

is exact. The same is true for diag(−⊗0(P•)). It
follows that P•⊗1− and −⊗1 P• are exact functors. �

We are now ready to iteratively define simplicial tensor products on categories
of multicomplexes.

Definition 5.8. We define simplicial tensor products

⊗1,n : CnP ×CnP→ CnP
for all n ≥ 0 recursively:

(1) ⊗1,0 : P ×P→ P is the usual tensor product ⊗, and

(2) by regarding objects P• and Q• of Cn+1P as chain complexes in the idempo-
tent complete exact category CnP with the tensor product ⊗1,n , we define
P•⊗1,n+1 Q• := N

(
diag(0(P•)⊗1,n 0(Q•))

)
.

The following iteration of Proposition 5.7 is now straightforward. The case n= 0
is an assumption of this section, and we iterate using (Cq

b)
n+1P = Cq

b((C
q
b)

nP).
Corollary 5.9. For all n ≥ 0, the simplicial tensor product⊗1,n is a tensor product
in the sense of Definition 5.1 on CnP and on (Cq

b)
nP . �

In fact we can say a little more than this. The following lemma is crucial to the
proof of the main result of this section:

Lemma 5.10. Let P• be an object of Cb((C
q
b)

nP) and let Q• be an object of
(Cq

b)
n+1P . Then P•⊗1,n+1 Q• is an object of (Cq

b)
n+1P .

Proof. Noting that P• and Q• both have their objects in (Cq
b)

nP , and that Q•
is an acyclic complex of objects in that category, this follows immediately from
Lemmas 5.5 and 5.6 applied to the tensor product ⊗1,n on the category (Cq

b)
nP .

�

We can extend the simplicial tensor products to categories of binary complexes
in the same way that we did for exterior powers in Section 4. The simplicial
tensor product of a pair of binary complexes (P•, dP , d̃P) and (Q•, dQ, d̃Q) is
obtained by considering the pair of chain complexes (P•, dC)⊗1 (Q•, dQ) and
(P•, d̃P) ⊗1 (Q•, d̃Q) as a binary complex (it is straightforward to prove that
they have the same underlying graded object, in the same manner as Lemma 4.2).
The analogue of Corollary 4.3 then follows, and we define the simplicial tensor
product of binary multicomplexes just as we did for a functor of one variable in
Definition 4.4.
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5B. Vanishing of products. In this subsection we prove that the class of any sim-
plicial tensor product vanishes in the corresponding K -group. Our proof resembles
Grayson’s procedure [1992, p. 103] of verifying that the second Euler characteristic
of a doubly acyclic bicomplex vanishes.

Let n> 0, and let P• and Q• be n-dimensional bounded acyclic binary complexes
of objects of P . That is, P• and Q• are objects of (Bq

b )
nP . Then the simplicial tensor

product P• ⊗1,n Q• is in (Bq
b )

nP as well by Corollary 5.9. Since the objects of
(Bq

b )
nP are the generators of Kn(P), one would like to use⊗1,n to induce a product

Kn(P)× Kn(P)→ Kn(P). On first inspection this appears not to work, because
the product P•⊗1,n Q• is not diagonal if only one of P• or Q• is diagonal. This is
not a problem in the end though, since the whole product vanishes on Kn(P).

Proposition 5.11. Let n > 0. For any pair of n-dimensional bounded acyclic
multicomplexes P• and Q• in (Bq

b )
nP , the class [P•⊗1,n Q•] vanishes in Kn(P).

Proof. First we filter P• by degree. Regard P• as an acyclic binary complex of
objects of (Bq

b )
n−1P . For i ≥ 0, let P|[0,i] be the binary complex obtained by

“restricting” P• to be supported on [0, i]. That is, (P|[0,i]) j is equal to Pj if 0≤ j ≤ i ,
and (P|[0,i]) j = 0 otherwise. The differentials on P|[0,i] are inherited from P•.
We write Pj [0] for Pj considered as a binary complex concentrated in degree 0.
Then Pj [ j], which denotes Pj considered as a binary complex concentrated in
degree j , is the quotient of the inclusion P|[0, j−1] ↪→ P|[0, j] (if j ≥ 1). If P• is
supported on [0, n], so that Pj = 0 for j > n, we therefore have an n-stage filtration

P0[0] = P|[0,0] ↪→ P|[0,1] ↪→ · · · ↪→ P|[0,n−1] ↪→ P|[0,n] = P•

whose successive quotients determine short exact sequences

0→ P|[0, j−1]→ P|[0, j]→ Pj [ j] → 0.

We take the simplicial tensor product with Q• of this whole filtration, obtaining
sequences

0→ P|[0, j−1]⊗1,n Q•→ P|[0, j]⊗1,n Q•→ Pj [ j]⊗1,n Q•→ 0 (5.12)

for j = 1, . . . , n, which are short exact by Corollary 5.9.
By Lemma 5.10, all of the objects are in the right category, so each of the short

exact sequences of (5.12) yields an equation

[P|[0, j]⊗1,n Q•] = [P|[0, j−1]⊗1,n Q•] + [Pj [ j]⊗1,n Q•]

in Kn(P). Putting these together gives

[P•⊗1,n Q•] =
n∑

j=0

[Pj [ j]⊗1,n Q•].

To proceed we need to assume a small lemma, for which the second type of relation
in Kn(P) (diagonal binary multicomplexes vanish) is crucial.
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Lemma 5.13. The following equality holds in Kn(P):

[Pj [ j]⊗1,n Q•] = (−1) j
[Pj [0]⊗1,n Q•].

Continuing with the main proof, our equation now reads

[P•⊗1,n Q•] =
n∑

j=0

(−1) j
[Pj [0]⊗1,n Q•].

By inspection we see that 0(Pj [0]) is the constant simplicial object which has Pj

in each degree. The functor

diag
(
0(Pj [0])⊗1,n−1−

)
: ((Cb)

n−1A)1
op
→ ((Cb)

n−1A)1
op

is therefore isomorphic to the functor

Pj ⊗1,n−1− : ((Cb)
n−1A)1

op
→ ((Cb)

n−1A)1
op
,

since they both have the same effect of “tensoring everywhere by Pj ”. This functor
is additive, so we have an isomorphism of functors

N (Pj ⊗1,n−1 0(−))∼= Pj ⊗1,n−1−.

Hence,

Pj [0]⊗1,n Q• = N diag
(
0(Pj [0])⊗1,n−1 0(Q•)

)
∼= Pj ⊗1,n−1 Q•,

so we have

[P•⊗1,n Q•] =
n∑

j=0

(−1) j
[Pj ⊗1,n−1 Q•].

There is an exact sequence

0→ Pn→ Pn−1→ · · · → P1→ P0→ 0,

since P• is acyclic. The objects of Q• are in (Bq
b )

n−1P , so −⊗1,n−1 Q• is an exact
functor by Lemma 5.3(1), and so the following sequence is exact:

0→ Pn⊗1,n−1 Q•→ Pn−1⊗1,n−1 Q•→· · ·→ P1⊗1,n−1 Q•→ P0⊗1,n−1 Q•→0.

Exact sequences translate into alternating sums in the Grothendieck group, so this
exact sequence gives exactly the identity

n∑
j=0

(−1) j
[Pj ⊗1,n−1 Q•] = 0

in K0((B
q
b )

nP), thus the same relation holds in Kn(P). Therefore [P•⊗1,n Q•] = 0,
as required. �

It remains to prove Lemma 5.13.
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Proof of Lemma 5.13. Consider the following diagram as a short exact sequence
of binary complexes concentrated in degrees j and j − 1:

0 //
//

��

��

Pj
��

��

Pj
1
//

1
//

����

Pj

����

Pj
//
// 0

We will use this diagram to show that [Pj [ j]⊗1,n Q•]=−[Pj [ j−1]⊗1,n Q•]. The
argument can be iterated j−1 times to yield [Pj [ j]⊗1,n Q•]=(−1) j

[Pj [0]⊗1,n Q•]
in Kn(P), as required. For lack of a better notation, we will denote the middle row
of the diagram by (Pj=Pj ). Then the diagram represents a short exact sequence
of binary complexes

0→ Pj [ j − 1] → (Pj=Pj )→ Pj [ j] → 0,

which upon tensoring with Q• becomes the short exact sequence

0→ Pj [ j − 1]⊗1,n Q•→ (Pj=Pj )⊗1,n Q•→ Pj [ j]⊗1,n Q•→ 0

by Lemma 5.10. Since Q• is acyclic and has objects in (Bq
b )

n−1P , each of the
terms of this short exact sequence is an object of (Bq

b )
nP by Lemma 5.10, so we

have a relation

[(Pj=Pj )⊗1,n Q•] = [Pj [ j − 1]⊗1,n Q•] + [Pj [ j]⊗1,n Q•]

in K0((B
q
b )

nP), and hence in Kn(P). We claim that

[(Pj=Pj )⊗1,n Q•] = 0

in Kn(P), so that [Pj [ j] ⊗1,n Q•] = −[Pj [ j − 1] ⊗1,n Q•]. We can filter Q• in
the same manner that we have filtered P• in the main proof above:

Q0[0] = Q|[0,0] ↪→ Q|[0,1] ↪→ · · · ↪→ Q|[0,n−1] ↪→ Q|[0,n] = Q•,

giving short exact sequences

0→ Q|[0,i−1]→ Q|[0,i]→ Qi [i] → 0.

Upon tensoring with (Pj=Pj ), we have short exact sequences

0→ (Pj=Pj )⊗1,n Q|[0,i−1]→ (Pj=Pj )⊗1,n Q|[0,i]→ (Pj=Pj )⊗1,n Qi [i]→0

(by Lemma 5.10). Furthermore, since (Pj=Pj ) is an acyclic binary complex of
objects of (Bq

b )
n−1P , each of the terms of these short exact sequences is an object
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of (Bq
b )

nP , by Lemma 5.10. We therefore have the equation

[(Pj = Pj )⊗1,n Q•] =
∑

i

[(Pj=Pj )⊗1,n Qi [i]]

in K0((B
q
b )

nP), and hence in Kn(P). But (Pj=Pj ) is a diagonal binary complex,
as is each Qi [i] (trivially). The simplicial tensor product of a pair of diagonal com-
plexes is again diagonal, so each of the acyclic binary complexes (Pj=Pj )⊗1,n Qi [i]
is diagonal and hence vanishes in Kn(P). Therefore [(Pj=Pj )⊗1,n Q•] = 0, so
the desired relation holds. �

This finally completes the proof of Proposition 5.11. Having taken the trouble
to set up an alternative product of bounded acyclic binary multicomplexes, one
that is compatible with the exterior powers, we’ve now shown that (like the usual
tensor product) it is always zero! It was not all for naught though: at least we
know now that the induced operation ⊗1,n : Kn(P)× Kn(P)→ Kn(P) is well-
defined. Furthermore, the vanishing of this product proves that the exterior power
operations induce homomorphisms on Kn(R) (and, more generally, on the higher
K -groups of schemes). This is shown in the next section.

6. Exterior power operations on K -groups of schemes

The goal of this section is to extend the endofunctor 3r
n defined in Section 4

to bounded acyclic multicomplexes of locally free modules of finite rank on a
scheme X , and to prove that it induces a well-defined operation λr on the higher
K -group Kn(X). We will see that, for n > 0, this operation λr is not just a map
but in fact a homomorphism.

Let X be a quasicompact scheme, and let P(X) be the category of locally free
OX -modules of finite rank. Then P(X) is an exact category in the usual sense.
It is idempotent complete but not split exact in general. We write Kn(X) for the
K -group Kn(P(X)).

As in Section 3, we inductively define an endofunctor 3r
n on CnP(X) for r ≥ 1

and n ≥ 0 as follows: the functor 3r
0 is the usual r-th exterior power functor on

C0P(X) = P(X), and 3r
n is defined as N3r

n−10, with N and 0 as introduced in
Section 2.

Proposition 6.1. For all r , n > 0, the functor 3r
n restricts to an endofunctor on the

subcategory (Cq
b)

nP(X) of CnP(X).

Proof. Given any open affine subscheme U = Spec(R) of X , a straightforward
inductive argument shows that the following diagram commutes:
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CnP(X)
3r

n
//

��

CnP(X)

��

CnP(U )
3r

n
// CnP(U )

CnP(R)
3r

n
// CnP(R)

The vertical arrows are induced by the restriction functor P(X)→P(U ), P 7→ P|U ,
and the lower horizontal arrow is the functor 3r

n introduced in Section 3. A com-
plex in CnP(X) is acyclic, or bounded, if and only if its restriction to every open
affine subscheme has the respective property, so Proposition 6.1 follows from the
results of Section 3. �

As in Section 4, one easily deduces that, for any complex P• in CnP(X), the
objects in 3r

n(P•) do not depend on the differentials in P•. We can therefore extend
the endofunctor3r

n to an endofunctor of (Bq
b )

nP(X), which we denote by3r
n again.

The goal of the rest of this section is to prove the following theorem:

Theorem 6.2. Let n > 0 and r > 0. The endofunctor 3r
n of (Bq

b )
nP(X) induces a

well-defined homomorphism λr
: Kn(X)→ Kn(X).

Definition 6.3. The homomorphism λr in the previous theorem is called the r-th
exterior power operation on Kn(X).

Proof of Theorem 6.2. If P• is a diagonal multicomplex in (Bq
b )

nP(X), then the
multicomplex 3r

n(P•) is diagonal as well, by definition of 3r
n . It therefore suffices

to show that the association [P•] 7→ [3r
n(P•)] induces a well-defined homomor-

phism of groups
λr
: K0((B

q
b )

nP(X))→ Kn(X).

Thus we need to show that the equality

[3r
n(P•)] = [3

r
n(P
′

•
)] + [3r

n(P
′′

•
)]

holds in Kn(X) for every short exact sequence 0 → P ′
•
→ P• → P ′′

•
→ 0 in

(Bq
b )

nP(X). The classes [3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′
•
)] for i = 1, . . . , r − 1 vanish in

Kn(X) by Proposition 5.11 applied to the category P =P(X), where the simplicial
tensor product has been constructed inductively from the usual tensor product of
quasicoherent OX -modules. So the desired equality is equivalent in Kn(X) to the
more familiar-looking identity

[3r
n(P•)] = [3

r
n(P
′

•
)] +

r−1∑
i=1

[3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′

•
)] + [3r

n(P
′′

•
)].
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In order to prove this latter formula, we cannot just apply the usual formula for
the r -th exterior power of a direct sum because the given short exact sequence of
binary complexes, 0→ P ′

•
→ P• → P ′′

•
→ 0, does not split in general, even if

X is affine (see Example 4.1). Instead, by induction on n, we construct for every
sequence 0→ P ′

•
→ P•→ P ′′

•
→ 0 in (Bq

b )
nP(X) a natural induced filtration

3r
n(P
′

•
) ↪→3r−1

n (P ′
•
)∧n 3

1
n(P•) ↪→ · · · ↪→31

n(P
′

•
)∧n 3

r−1
n (P•) ↪→3r

n(P•)

of 3r
n(P•) by certain subobjects 3r−i

n (P ′
•
)∧n3

i
n(P•), i = 0, . . . , r , of 3r

n(P•), also
belonging to (Bq

b )
nP(X), together with short exact sequences

0→3r−i+1
n (P ′

•
)∧n 3

i−1
n (P•)→3r−i

n (P ′
•
)∧n 3

i
n(P•)

→3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′

•
)→ 0 (6.4)

for i = 1, . . . , n.
For n= 0 and i ∈ {0, . . . , r}, the object 3r−i

0 (P ′)∧03
i
0(P) is defined to be what

is usually meant by 3r−i (P ′)∧3i (P): the image of the canonical homomorphism
3r−i (P ′)⊗3i (P)→ 3r (P). It is well known that these objects come with the
required short exact sequences (6.4).

If n > 0 and if, for a moment, the sequence 0→ P ′
•
→ P•→ P ′′

•
→ 0 is given

in Cq
b(C

q
b)

n−1P(X) rather than in (Bq
b )

nP(X), we first note that applying the exact
functor 0 to the sequence, we get the short exact sequence

0→ 0(P ′
•
)→ 0(P•)→ 0(P ′′

•
)→ 0

of simplicial objects in (Cq
b)

n−1P(X). By the inductive hypothesis, the complexes
3r−i

n−1(0(P
′)m)∧n−13

i
n−1(0(P)m) for i = 0, . . . , n and m ≥ 0 are in (Bq

b )
n−1P(X)

and we have short exact sequences

0→3r−i+1
n−1 (0(P ′)m)∧n−13

i−1
n−1(0(P)m)→3r−i

n−1(0(P
′)m)∧n−13

i
n−1(0(P)m)

→3r−i
n−1(0(P

′)m)⊗1,n−13
i
n−1(0(P

′′)m)→ 0

for i = 1, . . . , r and m ≥ 0. These short exact sequences assemble to short exact
sequences of simplicial objects in (Bq

b )
n−1P(X). By applying the exact functor N ,

we finally obtain the required objects

3r−i
n (P ′)∧n 3

i
n(P) := N

(
3r−i

n−1(0(P
′))∧n−13

i
n−1(0(P))

)
for i = 0, . . . , r and the required short exact sequences (6.4). As the objects of the
multicomplex 3r−i

n (P ′)∧n 3
i
n(P) are independent of the differentials in the multi-

complexes P ′
•

and P•, this construction of ∧n passes to the category (Bq
b )

nP(X) as
in Section 4.

From Proposition 6.1 and Section 5 we know that the complex 3r
n(P•) and the

complexes 3r−i
n (P ′

•
)⊗1,n 3

i
n(P
′′
•
) for i = 0, . . . , r belong to (Bq

b )
nP(X). Now a
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straightforward downwards induction on i based on the short exact sequences (6.4)
shows that the complexes 3r−i

n (P ′
•
)∧n 3

i
n(P•) for i = 0, . . . , r are bounded and

acyclic, so they belong to (Bq
b )

nP(X), as was to be shown. �

7. The second λ-ring axiom

Given a scheme X , there is a “trivial” way to equip the graded abelian group
K∗(X) :=

⊕
n≥0 Kn(X) with a multiplication, and to extend the exterior power

operations defined in the previous section to K∗(X) so that they are compatible
with addition in K∗(X) in the usual sense. The main result of this section is that
they are also compatible with multiplication in the expected way — that is to say,
they satisfy the λ-ring axiom (2).

Let X be a quasicompact scheme. We recall that K0(X) together with the usual
exterior power operations λr

: K0(X)→ K0(X), r ≥ 0, is a λ-ring as defined in the
introduction (see Chapter V of [Fulton and Lang 1985]). Furthermore, Kn(X) is a
K0(X)-module via [P] · [Q•] := [P ⊗ Q•] for P in P(X) and Q• in (Bq

b )
nP(X);

see also Definition 5.2(1).
We define a multiplication on K∗(X) :=

⊕
n≥0 Kn(X) by

(a0, a1, a2, . . . )•(b0, b1, b2, . . . )= (a0b0, a0b1+ a1b0, a0b2+ a2b0, . . . );

in particular, the product of any two elements in
⊕

n≥1 Kn(X) is defined to be
zero. With this multiplication, K∗(X) is a commutative ring. Furthermore, we
define exterior power operations λr

: K∗(X)→ K∗(X), r ≥ 0, by the formula

λr ((a0, a1, a2, . . . ))=

(
λr (a0),

r−1∑
i=0

λi (a0)λ
r−i (a1),

r−1∑
i=0

λi (a0)λ
r−i (a2), . . .

)
.

By definition, we then have λ0(x)= 1 and λ1(x)= x for all x ∈ K∗(X). A straight-
forward calculation using Theorem 6.2 and the fact that K0(X) satisfies axiom (1)
of a λ-ring shows that K∗(X) also satisfies axiom (1). The next theorem addresses
axiom (2).

Theorem 7.1. The pre-λ-ring K∗(X) defined above satisfies axiom (2) of a λ-ring.

Proof. Axiom (2) holds for elements of the form x = (a0, 0, 0, . . . ) and y =
(b0, 0, 0, . . . ) in K∗(X) because it holds for K0(X). It also holds for elements of
the form x = (0, a1, a2, . . . ) and y= (0, b1, b2, . . . ) because λr (0)= 0 for all r ≥ 1
and because every monomial in the ring Z[X1, . . . , Xr , Y1, . . . , Yr ] whose coeffi-
cient in Pr (X1, . . . , Xr , Y1, . . . , Yr ) is nonzero is divisible by some product X i Y j .
Furthermore, it suffices to check axiom (2) for x and y belonging to a set of additive
generators of K∗(X) because K∗(X) satisfies axiom (1) and because axiom (2) is
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equivalent to the multiplicativity of the homomorphism

λt : K∗(X)→ 1+ t · K∗(X)[[t]], x 7→
∑
r≥0

λr (x)tr .

We are therefore reduced to showing that the equality

λr (xy)= Pr (λ
1(x), . . . , λr (x), λ1(y), . . . , λr (y)) (7.2)

holds in Kn(X) for elements y ∈ Kn(X) and x ∈ K0(X) of the form x = [E] for
some locally free OX -module E of finite rank.

We now invoke the projective bundle theorem [Quillen 1973, §8, Theorem 2.1].
We remark that its proof in [loc. cit.] only relies on the additivity and resolution
theorems, and not, for instance, on the dévissage theorem or localisation sequence.
The additivity and resolution theorems have been proved in [Harris 2015] within the
context of Grayson’s definition of higher K -groups, so the projective bundle theo-
rem also has a proof within that context, without resorting to topological methods.

It is well known that an iterated application of the projective bundle theorem
yields the following splitting principle: there exists a projective morphism f :Y→ X
such that f ∗[E] is the sum of invertible OY -modules in K0(Y ) and such that
f ∗ : K∗(X)→ K∗(Y ) is injective. It is straightforward to check that f ∗ : K∗(X)→
K∗(Y ) is a homomorphism of (pre-)λ-rings. Using the above argument about addi-
tive generators again, we are therefore reduced to showing the equality (7.2) only
when x is the class [L] of an invertible OX -module L. In that case, (7.2) becomes
the much simpler formula

λr ([L] · y)= [L⊗r
] · λr (y),

because λ2
[L] = · · · = λr

[L] = 0, and because Pr satisfies the identity

Pr (1, 0, . . . , 0, Y1, . . . , Yr )= Yr

and has X -degree r (where X i is defined to be of degree i for i = 1, . . . , r ). Using
the argument about additive generators again, it suffices to show that for any object
P• of (Bq

b )
nP(X), the object 3r

n(L⊗ P•) is isomorphic to L⊗r
⊗3r

n(P•). This is
well known if n = 0, and follows by induction on n from the following chain of
isomorphisms applied to each of the 2n multicomplexes associated with the binary
multicomplex P• (which we again denote by P•):

3r
n(L⊗ P•)= N3r

n−10(L⊗ P•)
∼= N (L⊗r

⊗3r
n−10(P•))

∼= L⊗r
⊗ N3r

n−10(P•)
∼= L⊗r

⊗3r
n(P•). �
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8. The final λ-ring axiom

The goal of this section is to prove that the pre-λ-ring K∗(X) (introduced and
proven to satisfy λ-ring axiom (2) in the previous section) also satisfies the final λ-
ring axiom (3) and is therefore a λ-ring. The main ingredients are the language of
polynomial functors, the identification of polynomial functors with modules over
the Schur algebra, and Serre’s method of computing the Grothendieck group of
representations of the group scheme GLn,Z.

8A. Polynomial functors. In this subsection we introduce the notion of polyno-
mial functors and state that the Grothendieck group of the category of polyno-
mial functors over Z is isomorphic to the universal λ-ring in one variable; see
Theorem 8.5 below. This theorem will allow us to prove the final λ-ring axiom
for K∗(X) in Subsection 8D. The proof of Theorem 8.5 occupies Subsections 8B
and 8C.

We recall P(S) denotes the category of OS-modules that are locally free of finite
rank on a scheme S. We define a category P(S) “enriched in schemes over S” as
follows. The objects are the same as the objects of P(S), and for every V,W ∈P(S)
we have an S-scheme

Hom(V,W ) := Spec
S

Sym•(Hom(V,W )∨).

This is the “physical vector bundle” corresponding to the locally free OS-module
Hom(V,W ) and we have

Hom(V,W )(T )= HomOT (VT ,WT )

for every S-scheme T . In fact, by Yoneda’s lemma, we may think of Hom(V,W ) as
the functor which associates HomOT (VT ,WT ) with every S-scheme T . The latter
viewpoint is used in a lot of literature about polynomial functors. Composition in
P(S) is given by the natural maps

Hom(U, V )×S Hom(V,W )→ Hom(U,W )

of schemes over S, and the identities are given by the obvious sections idV in
Hom(V, V )(S).

Definition 8.1. A polynomial functor over S is an enriched functor F :P(S)→P(S).
A morphism of polynomial functors is a natural transformation. We denote the
category of polynomial functors over S by Pol(S).

In other words, a polynomial functor consists of objects FV ∈ P(S), V ∈ P(S),
and of morphisms of S-schemes

F : Hom(V,W )→ Hom(FV, FW ) for V,W ∈ P(S),
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which satisfy the usual functor axioms. In less precise terms, F being a morphism
of S-schemes means that if, for instance, S = Spec(k) with k a field, the map
F : Hom(V,W )→ Hom(FV, FW ) is given by polynomials in coordinates of V
and W . Note that we do not ask F to be additive. Every polynomial functor F
induces an “ordinary” endofunctor of P(S), denoted by F again. A morphism
η : F→ G consists of a morphism of OS-modules

ηV : FV → GV

for every V ∈ P(S), satisfying the usual conditions for a natural transformation.

Example 8.2 (exterior powers). Functoriality of3d implies that for all V,W ∈P(S)
we have a map

Hom(V,W )→ Hom(3d V,3d W ).

This is a priori a map of sets, but its formation commutes with base change T → S,
and hence by Yoneda it defines a map of S-schemes

Hom(V,W )→ Hom(3d V,3d W ).

We obtain a polynomial functor 3d
: P(S)→ P(S).

The category Pol(S) is a 0(S,OS)-linear category. We declare a sequence

0→ F→ G→ H → 0

in Pol(S) to be exact if the sequence

0→ FV → GV → H V → 0

is exact for every V ; this way Pol(S) becomes an exact category [Touzé 2013,
Section 2.1.1]. It carries a tensor product

⊗ : Pol(S)×Pol(S)→ Pol(S)

as well as exterior power operators

3n
: Pol(S)→ Pol(S), F 7→3n F :=3n

◦ F.

These data turn K0(Pol(S)) into a pre-λ-ring. To prove this, one proceeds as in the
proof of Theorem 6.2. As there, the category Pol(S) is in general not split exact,
but for every short exact sequence as above, one can construct a natural filtration

0⊂3n F ⊂ F ∧ · · · ∧ F ∧G ⊂ · · · ⊂ F ∧G ∧ · · · ∧G ⊂3nG

of 3nG whose successive quotients are isomorphic to 3n−k F⊗3k H , k = 0, . . . , n.
Less evident is that for every morphism f : T → S there is a natural base

change functor f ∗ : Pol(S)→ Pol(T ). This can be constructed as follows. Let
F : P(S)→ P(S) be a polynomial functor. Given V ∈ P(T ) one chooses an open
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cover (Ui ) of T , vector bundles Vi ∈P(S) and isomorphisms αi : ( f ∗Vi )|Ui → V |Ui .
These define gluing data αi j := α

−1
i α j and one constructs the desired ( f ∗F)V by

gluing the bundles f ∗(FVi ) over the Ui j using the maps F(αi j ). Note that the
expression F(αi j ) makes sense as F is a polynomial functor. For an alternative
description of f ∗, see Remark 8.9.

Thus, every polynomial functor F ∈ Pol(S) induces a family of functors

FT : P(T )→ P(T ),

indexed by T → S, and that the FT commute with base change.
The functor f ∗ is exact, and commutes with the operations ⊗ and 3n , so that

f ∗ induces a morphism

f ∗ : K0(Pol(S))→ K0(Pol(T ))
of pre-λ-rings.

Definition 8.3. A polynomial functor F ∈ Pol(S) is said to be homogeneous of
degree d if, for every V ∈ P(S), the diagram

Gm,S Gm,S

Hom(V, V ) Hom(FV, FV )

x 7→ xd

F

commutes; here, the vertical morphisms are given by scalar multiplication. We
denote by Pold(S) the category of polynomial functors homogeneous of degree d ,
and by Pol<∞(S) the category of polynomial functors that are finite direct sums of
homogeneous polynomial functors.

Example 8.4. The polynomial functor 3d is homogeneous of degree d. The infi-
nite direct sum

⊕
d≥03

d is well-defined as it becomes finite when applied to any
V ; it is a polynomial functor, but not in Pol<∞(S).

Let Z[s1, s2, . . . ] denote the ring of symmetric functions, with si the i-th ele-
mentary symmetric function. This is a λ-ring, with λi (s1) = si , also called the
universal λ-ring in one variable; see [Yau 2010, §1.3]. It is also a graded ring with
deg sd = d .

Theorem 8.5. The ring homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is an isomorphism of pre-λ-rings.

The proof of this theorem will be given at the end of Subsection 8C.

Corollary 8.6. K0(Pol<∞(Z)) is a λ-ring. �
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8B. The Schur algebra. The object of this subsection is to relate polynomial func-
tors to the Schur algebra; see [Roby 1963, Chapters I & IV; Krause 2013, §2] for
details.

Throughout this subsection, R is a commutative ring. If M is a locally free
R-module and d a nonnegative integer, then the R-module of degree d divided
powers is the module of symmetric degree d tensors:

0d M = 0d
R M = (M⊗d)Sd .

If A is an associative and locally free R-algebra and M is moreover an A-module,
then 0d

R A is a sub-R-algebra of A⊗d and the obvious multiplication of 0d
R A on

0d
R M turns 0d

R M into a 0d
R A-module.

Let n be a positive integer. Consider the Schur algebra 0d Mat(n, R) of R
associated with n and d. It is free as an R-module. For every R-module V , the
module V n

= Hom(Rn, V ) is a right Mat(n, R)-module, hence 0d(V n) is a right
0d Mat(n, R)-module.

Lemma 8.7. If V is a projective R-module, then 0d(V n) is a projective right
0d Mat(n, R)-module.

Proof. If V is a direct summand of W , then 0d(V n) is a direct summand of 0d(W n),
so without loss of generality we may assume that V is a free R-module. Then
0d(V n) is a direct sum of 0d Mat(n, R)-modules of the form

0d1(Rn)⊗R · · · ⊗R 0
di (Rn)

with
∑

di = d . By [Akin and Buchsbaum 1988, Proposition 2.1] these are projec-
tive over the Schur algebra 0d Mat(n, R), and the lemma follows. �

We denote by M(R, n, d) the category of finitely generated left modules over
the Schur algebra 0dMat(n, R), and by Mp(R, n, d) the full subcategory consist-
ing of those modules whose underlying R-module is projective.

We have a “truncation” functor,

Pold(R)→Mp(R, n, d), F 7→ F(Rn),

where the structure of left 0d Mat(n, R)-module on F(Rn) is defined as follows.
We have a map

End(Rn)
F
−→End(F(Rn))

which is homogeneous of degree d. By the universal property of divided powers
(see [Roby 1963, Proposition IV.1; Ferrand 1998, Proposition 2.5.1]), this map is
induced by an R-module homomorphism

0d End(Rn)→ End(F(Rn)),

which is moreover multiplicative, hence giving F(Rn) the structure of a0d End(Rn)-
module.
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Theorem 8.8. If n ≥ d, the functor Pold(R)→Mp(R, n, d) is an equivalence of
categories.

Proof. See [Krause 2013], where the same result is shown for polynomial functors
taking values in arbitrary R-modules, and arbitrary 0d Mat(n, R)-modules. The
same argument works in our context; we only need to check that the inverse functor
maps Mp(R, n, d) to Pold(R) (that is, that the inverse functor preserves “finite type
and projective”).

The inverse functor is defined as follows. Let M be a 0d Mat(n, R)-module.
Then we define a functor

FM :Mod(R)→Mod(R), V 7→ 0d(V n)⊗0d Mat(n,R) M,

where the right 0d Mat(n, R)-module structure on 0d(V n) is inherited from the
structure of right Mat(n, R)-module on V n

= Hom(Rn, V ). Formation of FM

commutes with base change.
Now assume that both M and V are finitely generated and projective R-modules.

Then the module FM(V ) is also finitely generated. We claim that FM(V ) is also
projective. By Lemma 8.7 the module 0d(V n) is projective, hence a direct sum-
mand of a free 0d Mat(n, R)-module

⊕
I 0

d Mat(n, R), and hence FM(V ) is a
direct summand of a projective R-module

⊕
I M . �

Remark 8.9. Theorem 8.8 gives an alternative way for producing the base change
of a polynomial functor. If R → S is a map of commutative rings, and if M is
a 0d Mat(n, R)-module, then the base change M ⊗R S is a 0d Mat(n, S)-module,
since formation of 0d Mat(n,−) commutes with base change.

8C. The Grothendieck group of polynomial functors over Z. We fix n and d
satisfying n ≥ d. For brevity we write M(R) := M(R, n, d) and Mp(R) :=
Mp(R, n, d). Furthermore we write Z[s1, s2, . . . ]d for the weighted degree d part
of the polynomial ring Z[s1, s2, . . . ]. It is equal to Z[s1, . . . , sn]d .

In this subsection, following [Serre 1968], we compute the Grothendieck group
K0(Mp(Z)). Together with Theorem 8.8 this then implies Theorem 8.5.

If R is an integral domain, there is a natural homomorphism

K0(Mp(R))= K0(Pold(R))→ Z[s1, s2, . . . ]d (by Theorem 8.8)

that sends a polynomial functor F to the weights of the action of Gn
m on F(Rn).

Theorem 8.10. For every field K the map K0(M(K )) → Z[s1, s2, . . . ]d is an
isomorphism.

Proof. See [Green 1980, Sections 2.2 and 3.5, especially Remark 3.5(ii)]. Green
assumes the field K to be infinite, but this assumption is only used in relating mod-
ules over 0d Mat(n, K ) to representations of the monoid Mat(n, K ), as opposed to
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representations of the monoid scheme Matn,K , which would also work over a finite
field K . See also [Jantzen 2003, Section II.A]. �

We will deduce from the cases K =Q and K = Fp in this theorem that the map

K0(Pold(Z))→ Z[s1, s2, . . . ]d

is an isomorphism. The proof is essentially identical to Serre’s proof [1968] that

K0(GLn,Z)→ K0(GLn,Q)

is an isomorphism.

Lemma 8.11 (projective resolutions). The canonical map

K0(Mp(Z))→ K0(M(Z))

is an isomorphism.

Proof. (Compare [Serre 1968, §§2.2–2.3].) Let M be a finitely generated module
over 0d Mat(n,Z). If M can be generated by m elements, we obtain a presentation

0→ P0→ P1→ M→ 0

with P1 = (0
d Mat(n,Z))m . Both P1 and P0 are torsion-free, hence projective

as Z-modules. The same argument as [Serre 1968, Proposition 4] shows that
[P0] − [P1] ∈ K0(Mp(Z)) is independent of the choice of presentation, and that
M 7→ [P0] − [P1] defines a two-sided inverse to the map of the proposition. �

Lemma 8.12 (localisation sequence). The obvious sequence⊕
` prime

K0(M(F`))→ K0(M(Z))→ K0(M(Q))→ 0

is exact.

Proof. The argument is identical to [Serre 1968, Théorème 1]. The main point
is to verify that every 0d Mat(n,Q)-module V of finite Q-dimension contains a
0d Mat(n,Z)-submodule 3 with Q ⊗Z 3 = V . To construct such 3, take an
arbitrary sub-Z-module 30 with Q⊗Z30 = V , and take 3 := 0d Mat(n,Z)30. �

Lemma 8.13 (decomposition maps). For every prime ` there is a unique homo-
morphism d` making the triangle

K0(Mp(Z)) K0(M(Q))

K0(M(F`))

d`

commute.

Proof. The argument is identical to [Serre 1968, Théorème 2]. �
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Lemma 8.14. The composition

K0(M(Q))
d`
−→ K0(M(F`))→ K0(M(Z))

is the zero map.

Proof. See [Serre 1968, Lemme 4]. Similarly to there, one uses that for every Z-
torsion-free 0d Mat(n,Z)-module3 the map3→ `3, x 7→ `x , is an isomorphism
of 0d Mat(n,Z)-modules. �

Proposition 8.15. For every prime `, the map d` is an isomorphism.

Proof. By Theorem 8.10 the functors

3d1 ⊗3d2 ⊗ · · ·⊗3dm

with
∑

di = d define a basis of K0(M(Q)) and of K0(M(F`)). Since the map d`
preserves this basis, it is an isomorphism. �

Corollary 8.16. The canonical map

K0(M(Z))→ K0(M(Q))

is an isomorphism.

Proof. By Proposition 8.15 and Lemma 8.14 the maps

K0(M(F`))→ K0(M(Z))

are the zero maps. But then the localisation sequence of Lemma 8.12 shows that
the map K0(M(Z))→ K0(M(Q)) is an isomorphism. �

Proof of Theorem 8.5. The degree d part of the homomorphism

Z[s1, s2, . . . ] → K0(Pol<∞(Z)), si 7→ [3
i
],

is obviously inverse to the composition of the isomorphisms

K0(Pold(Z))∼= K0(Mp(Z))∼= K0(M(Z))∼= K0(M(Q))∼= Z[s1, s2, . . . ]d

given by Theorem 8.8, Lemma 8.11, Corollary 8.16 and Theorem 8.10, respec-
tively, and is hence bijective and compatible with exterior power operations. �

Remark 8.17. The category Pold(R) is equivalent with the category of weight d
representations of the monoid Matn,R , which forms a full subcategory of the cate-
gory of representations of GLn,R . Rather than translating Serre’s argument from the
GLn to the Matn context, one could also deduce our result from Serre’s. However,
some care has to be taken because the right adjoint to the inclusion, mapping a
GLn,Z-representation V to the largest subrepresentation that extends to Matn,Z, is
not exact; see [Jantzen 2003, Section II.A].
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8D. Proof of the final λ-ring axiom. In this subsection, we derive from Corollary
8.6 that, for every quasicompact scheme X , the pre-λ-ring K∗(X) satisfies the final
λ-ring axiom. Together with Theorem 7.1, this implies that K∗(X) is a λ-ring and
finishes the proof of this paper’s main result.

Theorem 8.18. The ring K∗(X) equipped with the exterior power operations de-
fined in Section 7 satisfies axiom (3) of a λ-ring.

Proof. Let r , s ≥ 1 and n ≥ 0. For every x ∈ Kn(X) we want to show that the
identity

λr (λs(x))= Pr,s(λ
1(x), . . . , λrs(x)) (8.19)

holds in Kn(X). We recall that, if n ≥ 1, all products occurring on the right-hand
side of (8.19) are trivial (and hence that the right-hand side of (8.19) happens
to be just a multiple of λrs(x)). We will show the stronger statement that the
identity (8.19) in fact holds in K0((B

q
b )

nP(X)) for all x ∈ K0((B
q
b )

nP(X)). Now
the products occurring on the right-hand side of (8.19) are induced by the simplicial
tensor product introduced in Section 5; these products become trivial in Kn(X) by
Proposition 5.11. By a standard argument (see the proof of Theorem 7.1) we may
assume that x is the class of an object P• of (Bq

b )
nP(X). One easily checks, for

instance using the Gabriel–Quillen embedding theorem [Thomason and Trobaugh
1990, Theorem A.7.1 and Proposition A.7.16], that for every exact category P and
any skeletally small category I, the category of functors from I to P is again an
exact category in the obvious way. In particular, the category End((Bq

b )
nP(X))

of endo-functors of (Bq
b )

nP(X) is an exact category. Furthermore it carries a
tensor product and exterior power operations (given by F 7→ 3d

n ◦ F). Via the
homomorphism K0

(
End((Bq

b )
nP(X))

)
→ K0((B

q
b )

nP(X)) given by F 7→ F(P•),
the desired identity now follows from the even stronger identity

[3r
n ◦3

s
n] = Pr,s([3

1
n], . . . , [3

rs
n ]) (8.20)

in K0(End((Bq
b )

nP(X))), which we now prove. We remember that the identity (8.20)
(with the subscripts n omitted) holds in the Grothendieck group K0(Pol<∞(Z)) by
Corollary 8.6. Then it also holds in K0(Pol0<∞(Z)), where Pol0<∞(Z) denotes the
full subcategory of Pol<∞(Z) consisting of functors F satisfying F(0) = 0; this
follows from the fact that the canonical inclusion Pol0<∞(Z) ↪→ Pol<∞(Z) is split
by F 7→

(
V 7→ ker(F(V )→ F(0))

)
. The identity (8.20) therefore follows from

Corollary 8.6 once we have shown that we have a pre-λ-ring homomorphism

K0(Pol0<∞(Z))→ K0
(
End((Bq

b )
nP(X))

)
(8.21)

that sends the class of the identity functor to the class of the identity functor. By
base change (see Subsection 8A), every functor in Pol(Z) induces a functor in
Pol(U ) for every open subset U of X and this construction is compatible with
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restriction with respect to any inclusion of open subsets of X . The constructions
of Sections 3, 4 and 6 therefore inductively induce a functor

Pol0<∞(Z)→ End((Bq
b )

nP(X));

this functor is exact and compatible with tensor products and exterior power op-
erations, as one easily verifies by induction on n. Thus it induces the desired
homomorphism (8.21) and the proof of Theorem 8.18 is complete. �

Remark 8.22. We have seen in the previous proof that the λ-ring axiom (3) al-
ready holds in K0((B

q
b )

nP(X)), i.e., before dividing out the subgroup generated by
classes of diagonal multicomplexes. The same holds true for the λ-ring axiom (2).
This can be shown similarly by using Corollary 8.6 or by using the characteristic-
free Cauchy decomposition as constructed in [Akin et al. 1982]. Whereas Corollary
8.6 only proves the existence of short exact sequences, Akin, Buchsbaum and
Weyman [Akin et al. 1982] explicitly construct short exact sequences that prove
axiom (2) of a λ-ring. The problem of explicitly describing short exact sequences
of polynomial functors that prove axiom (3) seems however to be even harder
than the famous and related plethysm problem in representation theory. Such ex-
plicit short exact sequences for the plethysm 32

◦32 can be found in [Akin and
Buchsbaum 1985, page 175]. Although there also exist solutions of the classical
plethysm problem for 3r

◦32 and 32
◦3s , we are not aware of any corresponding

characteristic-free short exact sequences.

Appendix: Proof of Lemma 3.4

In this appendix we prove Lemma 3.4, which states that:

(1) If P is an idempotent complete exact category, then so are CnP and (Cq)nP .

(2) If P is a split exact category, then so is (Cq)nP .

Note that to prove each of these statements it is enough to prove the case n = 1.

Proof of Lemma 3.4(1). Let e : P•→ P• be an idempotent map of chain complexes.
Then each map en : Pn → Pn is an idempotent of P and so has a kernel ker(en)

which is an object of P . By the universal property of kernels, the chain map on P•
induces a map ker(en)→ ker(en−1) for each n, and these assemble to form a chain
complex of kernels. Thus every idempotent in CP has a kernel in CP , so CP is
idempotent complete. To show that CqP is idempotent complete as well, we must
show that this kernel chain complex is acyclic in P if P• is. To do this, it suffices
to consider the case when the complex is a short exact sequence; the general case
then follows because P supports long exact sequences.
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If P• = (0→ P2→ P1→ P0→ 0) and if e : P•→ P• is an idempotent chain
map, then P• is isomorphic to a sequence of the form

0→ ker(e2)⊕ im(e2)→ ker(e1)⊕ im(e1)→ ker(e0)⊕ im(e0)→ 0.

Furthermore, as the morphisms in this short exact sequence commute with the
idempotents

(
0 0
0 1

)
, they split as direct sums of induced morphisms. Hence the

sequence
0→ ker(e2)→ ker(e1)→ ker(e0)→ 0

is exact as well. �

Proof of Lemma 3.4(2). We wish to show that every admissible monomorphism
i : P•� Q• in CqP is split; that is, that there exists a chain map s : Q•→ P• such
that each snin : Pn→ Qn is the identity. Let us restrict to the case in which P• and
Q• are short exact sequences of P . Consider the diagram

P ′ //
jP
//

��

i ′
��

P
qP
// //

��

i
��

P ′′
��

i ′′
��

Q′ //
jQ
// Q

qQ
// // Q′′

and fix a splitting s ′′ for i ′′. We claim that there exist splittings s ′ and s of i ′ and i
such that the resulting s• : Q•→ P• is a chain map (and hence a splitting of i•). The
general case follows from this claim. Indeed, since acyclic complexes are spliced
together from short exact sequences, we construct a splitting for a monomorphism
of acyclic complexes i : P•� Q• by splitting each monomorphism of short exact
sequences separately. The part of the claim concerning a fixed splitting s ′′ allows
us to choose these splittings of short exact sequences in a compatible manner (be-
ginning in degree 0). So it is enough to prove the claim.

We choose compatible splittings h P and tP of jP and qP , respectively, i.e.,
jP h P+tPqP=1. We also choose a splitting s0 for i and now set s= jP h Ps0+tPs ′′qQ .
Then we compute

(1) si = jP h Ps0i + tPs ′′qQi = jP h P + tPs ′′i ′′qP = jP h P + tPqP = 1,

(2) qPs = qP jP h Ps0+ qP tPs ′′qQ = s ′′qQ ,

so s is a splitting for i , and s and s ′′ commute with qP , qQ . We therefore get an
induced map of kernels s ′ : Q′→ P ′ satisfying jPs ′ = s jQ . Moreover, jPs ′i ′ =
s jQi ′ = si jP = jP , and jP is monic, so s ′i ′ = 1. �

Acknowledgements

Harris and Köck thank Dan Grayson and Marco Schlichting for stimulating dis-
cussions and emails about exterior powers of binary complexes and for valuable



448 TOM HARRIS, BERNHARD KÖCK AND LENNY TAELMAN

comments and suggestions relating to earlier drafts. Taelman wishes to thank
Wilberd van der Kallen for helpful elucidations about polynomial functors and
integral representation theory. Köck moreover thanks Christophe Soulé for sending
a photocopy of the correspondence [Deligne 1967a; 1967b; Grothendieck 1967]
upon the posting of this paper on arXiv. Finally all three authors thank the referee
for carefully reading the paper and for many helpful suggestions.

References

[Akin and Buchsbaum 1985] K. Akin and D. A. Buchsbaum, “Characteristic-free representation
theory of the general linear group”, Adv. in Math. 58:2 (1985), 149–200. MR Zbl

[Akin and Buchsbaum 1988] K. Akin and D. A. Buchsbaum, “Characteristic-free representation
theory of the general linear group, II: Homological considerations”, Adv. in Math. 72:2 (1988),
171–210. MR Zbl

[Akin et al. 1982] K. Akin, D. A. Buchsbaum, and J. Weyman, “Schur functors and Schur com-
plexes”, Adv. in Math. 44:3 (1982), 207–278. MR Zbl

[Bühler 2010] T. Bühler, “Exact categories”, Expo. Math. 28:1 (2010), 1–69. MR Zbl
[Deligne 1967a] P. Deligne, letter to A. Grothendieck, 23 October 1967, available at http://msp.org/

extras/Deligne/DeligneToGrothendieck-23-Oct-1967.pdf.
[Deligne 1967b] P. Deligne, letter to O. Jussila, 1967, available at http://msp.org/extras/Deligne/

DeligneToOlliJussila-1967.pdf.
[Dold and Puppe 1961] A. Dold and D. Puppe, “Homologie nicht-additiver Funktoren: Anwendun-

gen”, Ann. Inst. Fourier Grenoble 11 (1961), 201–312. MR Zbl
[Eilenberg and Mac Lane 1954] S. Eilenberg and S. Mac Lane, “On the groups H(5, n), II: Methods

of computation”, Ann. of Math. (2) 60 (1954), 49–139. MR Zbl
[Ferrand 1998] D. Ferrand, “Un foncteur norme”, Bull. Soc. Math. France 126:1 (1998), 1–49. MR

Zbl
[Fulton and Lang 1985] W. Fulton and S. Lang, Riemann–Roch algebra, Grundlehren der Math.
Wissenschaften 277, Springer, 1985. MR Zbl

[Grayson 1989] D. R. Grayson, “Exterior power operations on higher K -theory”, K -Theory 3:3
(1989), 247–260. MR Zbl

[Grayson 1992] D. R. Grayson, “Adams operations on higher K -theory”, K -Theory 6:2 (1992), 97–
111. MR Zbl

[Grayson 2012] D. R. Grayson, “Algebraic K -theory via binary complexes”, J. Amer. Math. Soc.
25:4 (2012), 1149–1167. MR Zbl

[Green 1980] J. A. Green, Polynomial representations of GLn , Lecture Notes in Math. 830, Springer,
1980. MR Zbl

[Grothendieck 1967] A. Grothendieck, letter to P. Deligne, 30 October 1967, available at http://
msp.org/extras/Deligne/GrothendieckToDeligne-30-Oct-1967.pdf.

[Harris 2015] T. Harris, “Algebraic proofs of some fundamental theorems in algebraic K -theory”,
Homology Homotopy Appl. 17:1 (2015), 267–280. MR Zbl

[Hiller 1981] H. L. Hiller, “λ-rings and algebraic K -theory”, J. Pure Appl. Algebra 20:3 (1981),
241–266. MR Zbl

[Jantzen 2003] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys
and Monographs 107, Amer. Math. Soc., Providence, RI, 2003. MR Zbl

http://dx.doi.org/10.1016/0001-8708(85)90115-X
http://dx.doi.org/10.1016/0001-8708(85)90115-X
http://msp.org/idx/mr/814749
http://msp.org/idx/zbl/0607.20021
http://dx.doi.org/10.1016/0001-8708(88)90027-8
http://dx.doi.org/10.1016/0001-8708(88)90027-8
http://msp.org/idx/mr/972760
http://msp.org/idx/zbl/0681.20028
http://dx.doi.org/10.1016/0001-8708(82)90039-1
http://dx.doi.org/10.1016/0001-8708(82)90039-1
http://msp.org/idx/mr/658729
http://msp.org/idx/zbl/0497.15020
http://dx.doi.org/10.1016/j.exmath.2009.04.004
http://msp.org/idx/mr/2606234
http://msp.org/idx/zbl/1192.18007
http://msp.org/extras/Deligne/DeligneToGrothendieck-23-Oct-1967.pdf
http://msp.org/extras/Deligne/DeligneToOlliJussila-1967.pdf
http://dx.doi.org/10.5802/aif.114
http://dx.doi.org/10.5802/aif.114
http://msp.org/idx/mr/0150183
http://msp.org/idx/zbl/0098.36005
http://dx.doi.org/10.2307/1969702
http://dx.doi.org/10.2307/1969702
http://msp.org/idx/mr/0065162
http://msp.org/idx/zbl/0057.15302
http://www.numdam.org/item?id=BSMF_1998__126_1_1_0
http://msp.org/idx/mr/1651380
http://msp.org/idx/zbl/1017.13005
http://dx.doi.org/10.1007/978-1-4757-1858-4
http://msp.org/idx/mr/801033
http://msp.org/idx/zbl/0579.14011
http://dx.doi.org/10.1007/BF00533371
http://msp.org/idx/mr/1040401
http://msp.org/idx/zbl/0701.18007
http://dx.doi.org/10.1007/BF01771009
http://msp.org/idx/mr/1187703
http://msp.org/idx/zbl/0776.19001
http://dx.doi.org/10.1090/S0894-0347-2012-00743-7
http://msp.org/idx/mr/2947948
http://msp.org/idx/zbl/1276.19003
http://dx.doi.org/10.1007/BFb0092296
http://msp.org/idx/mr/606556
http://msp.org/idx/zbl/0451.20037
http://msp.org/extras/Deligne/GrothendieckToDeligne-30-Oct-1967.pdf
http://dx.doi.org/10.4310/HHA.2015.v17.n1.a13
http://msp.org/idx/mr/3344445
http://msp.org/idx/zbl/06465446
http://dx.doi.org/10.1016/0022-4049(81)90062-1
http://msp.org/idx/mr/604319
http://msp.org/idx/zbl/0471.18007
http://msp.org/idx/mr/2015057
http://msp.org/idx/zbl/1034.20041


EXTERIOR POWER OPERATIONS ON HIGHER K -GROUPS VIA BINARY COMPLEXES 449

[Köck 2001] B. Köck, “Computing the homology of Koszul complexes”, Trans. Amer. Math. Soc.
353:8 (2001), 3115–3147. MR Zbl

[Kratzer 1980] C. Kratzer, “λ-structure en K -théorie algébrique”, Comment. Math. Helv. 55:2 (1980),
233–254. MR Zbl

[Krause 2013] H. Krause, “Koszul, Ringel and Serre duality for strict polynomial functors”, Compos.
Math. 149:6 (2013), 996–1018. MR Zbl

[Lawson 2012] T. Lawson, “Explicit description of the ‘simplicial tensor product’ of chain com-
plexes”, MathOverflow answer, 2012, available at http://mathoverflow.net/q/94640.

[Levine 1997] M. Levine, “Lambda-operations, K -theory and motivic cohomology”, pp. 131–184
in Algebraic K -theory (Toronto, ON, 1996), edited by V. P. Snaith, Fields Inst. Commun. 16, Amer.
Math. Soc., Providence, RI, 1997. MR Zbl

[Lurie 2014] J. Lurie, “Higher algebra”, preprint, 2014, available at http://math.harvard.edu/~lurie/.
[May 1967] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies
11, Van Nostrand, Princeton, NJ, 1967. MR Zbl

[Nenashev 1991] A. Nenashev, “Simplicial definition of λ-operations in higher K -theory”, pp. 9–20
in Algebraic K -theory, edited by A. A. Suslin, Adv. Soviet Math. 4, Amer. Math. Soc., Providence,
RI, 1991. MR Zbl

[Quillen 1973] D. Quillen, “Higher algebraic K -theory, I”, pp. 85–147 in Algebraic K -theory, I:
Higher K -theories (Seattle, 1972), Lecture Notes in Math. 341, Springer, 1973. MR Zbl

[Roby 1963] N. Roby, “Lois polynomes et lois formelles en théorie des modules”, Ann. Sci. École
Norm. Sup. (3) 80 (1963), 213–348. MR Zbl

[Satkurunath and Köck 2010] R. Satkurunath and B. Köck, “An algorithmic approach to Dold-Puppe
complexes”, Homology Homotopy Appl. 12:1 (2010), 301–326. MR Zbl

[Serre 1968] J.-P. Serre, “Groupes de Grothendieck des schémas en groupes réductifs déployés”,
Inst. Hautes Études Sci. Publ. Math. 34 (1968), 37–52. MR Zbl

[Soulé 1985] C. Soulé, “Opérations en K -théorie algébrique”, Canad. J. Math. 37:3 (1985), 488–
550. MR Zbl

[Thomason and Trobaugh 1990] R. W. Thomason and T. Trobaugh, “Higher algebraic K -theory of
schemes and of derived categories”, pp. 247–435 in The Grothendieck Festschrift, III, edited by P.
Cartier et al., Progr. Math. 88, Birkhäuser, Boston, 1990. MR Zbl

[Touzé 2013] A. Touzé, “Ringel duality and derivatives of non-additive functors”, J. Pure Appl.
Algebra 217:9 (2013), 1642–1673. MR Zbl

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Ad-
vanced Mathematics 38, Cambridge Univ. Press, 1994. MR Zbl

[Yau 2010] D. Yau, Lambda-rings, World Sci., Hackensack, NJ, 2010. MR Zbl

Received 20 Jul 2016. Revised 5 Sep 2016. Accepted 16 Oct 2016.

TOM HARRIS: tharris@cambridge.org
University Printing House, Shaftesbury Avenue, Cambridge, CB2 8BS, United Kingdom

BERNHARD KÖCK: b.koeck@soton.ac.uk
Mathematical Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ,
United Kingdom

LENNY TAELMAN: l.d.j.taelman@uva.nl
Korteweg-de Vries Instituut, Universiteit van Amsterdam, P.O. Box 94248, 1090 GE Amsterdam,
Netherlands

msp

http://dx.doi.org/10.1090/S0002-9947-01-02723-4
http://msp.org/idx/mr/1828601
http://msp.org/idx/zbl/0980.13009
http://dx.doi.org/10.1007/BF02566684
http://msp.org/idx/mr/576604
http://msp.org/idx/zbl/0444.18008
http://dx.doi.org/10.1112/S0010437X12000814
http://msp.org/idx/mr/3077659
http://msp.org/idx/zbl/1293.20046
http://mathoverflow.net/q/94640
http://mathoverflow.net/q/94640
http://msp.org/idx/mr/1466974
http://msp.org/idx/zbl/0883.19001
http://math.harvard.edu/~lurie/
http://msp.org/idx/mr/0222892
http://msp.org/idx/zbl/0769.55001
http://msp.org/idx/mr/1124623
http://msp.org/idx/zbl/0735.19004
http://msp.org/idx/mr/0338129
http://msp.org/idx/zbl/0292.18004
http://www.numdam.org/item?id=ASENS_1963_3_80_3_213_0
http://msp.org/idx/mr/0161887
http://msp.org/idx/zbl/0117.02302
http://dx.doi.org/10.4310/HHA.2010.v12.n1.a15
http://dx.doi.org/10.4310/HHA.2010.v12.n1.a15
http://msp.org/idx/mr/2638875
http://msp.org/idx/zbl/1195.13018
http://www.numdam.org/item?id=PMIHES_1968__34__37_0
http://msp.org/idx/mr/0231831
http://msp.org/idx/zbl/0195.50802
http://dx.doi.org/10.4153/CJM-1985-029-x
http://msp.org/idx/mr/787114
http://msp.org/idx/zbl/0575.14015
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://msp.org/idx/mr/1106918
http://msp.org/idx/zbl/0731.14001
http://dx.doi.org/10.1016/j.jpaa.2012.12.007
http://msp.org/idx/mr/3042627
http://msp.org/idx/zbl/1284.18034
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
http://dx.doi.org/10.1142/7664
http://msp.org/idx/mr/2649360
http://msp.org/idx/zbl/1198.13003
mailto:tharris@cambridge.org
mailto:b.koeck@soton.ac.uk
mailto:l.d.j.taelman@uva.nl
http://msp.org


ANNALS OF K-THEORY
msp.org/akt

EDITORIAL BOARD

Paul Balmer University of California, Los Angeles, USA
balmer@math.ucla.edu

Spencer Bloch University of Chicago, USA
bloch@math.uchicago.edu

Alain Connes Collège de France; Institut des Hautes Études Scientifiques; Ohio State University
alain@connes.org

Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina
gcorti@dm.uba.ar

Eric Friedlander University of Southern California, USA
ericmf@usc.edu

Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France
max.karoubi@imj-prg.fr

Gennadi Kasparov Vanderbilt University, USA
gennadi.kasparov@vanderbilt.edu

Alexander Merkurjev University of California, Los Angeles, USA
merkurev@math.ucla.edu

Amnon Neeman amnon.Australian National University
neeman@anu.edu.au

Jonathan Rosenberg (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu

Marco Schlichting University of Warwick, UK
schlichting@warwick.ac.uk

Andrei Suslin Northwestern University, USA
suslin@math.northwestern.edu

Vladimir Voevodsky Institute for Advanced Studies, USA
vladimir@math.ias.edu

Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu

Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2017 is US $420/year for the electronic version, and $470/year (+$25, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

http://msp.org/akt/
mailto:balmer@math.ucla.edu
mailto:bloch@math.uchicago.edu
mailto:alain@connes.org
mailto:gcorti@dm.uba.ar
mailto:ericmf@usc.edu
mailto:max.karoubi@imj-prg.fr
mailto:gennadi.kasparov@vanderbilt.edu
mailto:merkurev@math.ucla.edu
mailto:neeman@anu.edu.au
mailto:jmr@math.umd.edu
mailto:schlichting@warwick.ac.uk
mailto:suslin@math.northwestern.edu
mailto:vladimir@math.ias.edu
mailto:weibel@math.rutgers.edu
mailto:guoliangyu@math.tamu.edu
mailto:production@msp.org
http://www.ktheoryfoundation.org
http://www.ktheoryfoundation.org
http://www.compositio.nl/
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


ANNALS OF K-THEORY
2017 vol. 2 no. 3

357Real cohomology and the powers of the fundamental ideal in the Witt ring
Jeremy A. Jacobson

387Colocalising subcategories of modules over finite group schemes
Dave Benson, Srikanth B. Iyengar, Henning Krause and Julia Pevtsova

409Exterior power operations on higher K -groups via binary complexes
Tom Harris, Bernhard Köck and Lenny Taelman

A
N
N
A
LS

O
F
K-TH

EO
RY

no.3
vol.2

2017

http://dx.doi.org/10.2140/akt.2017.2.357
http://dx.doi.org/10.2140/akt.2017.2.387
http://dx.doi.org/10.2140/akt.2017.2.409

	Introduction
	1. Binary multicomplexes and algebraic K-theory
	2. Preliminaries from homological algebra
	3. Operations on acyclic complexes
	4. Operations on binary multicomplexes
	5. Simplicial tensor products
	5A. Constructing simplicial tensor products
	5B. Vanishing of products

	6. Exterior power operations on K-groups of schemes
	7. The second lambda-ring axiom
	8. The final lambda-ring axiom
	8A. Polynomial functors
	8B. The Schur algebra
	8C. The Grothendieck group of polynomial functors over Z 
	8D. Proof of the final lambda-ring axiom

	Appendix: Proof of Lemma 3.4
	Acknowledgements
	References
	
	

