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Rational mixed Tate motivic graphs

Susama Agarwala and Owen Patashnick

We study the combinatorics of a subcomplex of the Bloch–Kriz cycle complex
that was used to construct the category of mixed Tate motives. The algebraic
cycles we consider properly contain the subalgebra of cycles that correspond to
multiple logarithms (as defined by Gangl, Goncharov and Levin). We associate
an algebra of graphs to our subalgebra of algebraic cycles. We give a purely
combinatorial criterion for admissibility. We show that sums of bivalent graphs
correspond to coboundary elements of the algebraic cycle complex. Finally, we
compute the Hodge realization for an infinite family of algebraic cycles repre-
sented by sums of graphs that are not describable in the combinatorial language
of Gangl et al.

1. Introduction

Let MT denote the category of mixed Tate motives and denote its associated Galois
group by GT . This Galois group has been defined in the literature in at least two
distinct contexts, first by [Bloch 1991; Bloch and Kriz 1994] but also by [Levine
1993] in what turned out to be Voevodsky’s formalism (see [Deligne and Goncharov
2005], for example). Note that Spitzweck [2001; n.d.] and Levine [2005] have
shown that the two definitions are equivalent.

We will take the Bloch–Kriz construction as our definition of MT and GT .
Although a significant amount of work has gone into understanding GT , there is

still much that is unknown about Tate motives, even over a number field k. In partic-
ular, the connection between GT and the unipotent completions π1(P1

k−n points)unip

of π1(P1
k − n points) is still of current interest.

For N ≥ 1, let kN be the cyclotomic field over Q generated by an N -th root of
unity, and OkN its ring of integers. Let MT,N denote the full Tannakian subcategory
of MT generated by the motivic fundamental group of P1

kN
− {0,∞, µN }, with

associated motivic Galois group GT,N and algebra of periods PT,N . Here µN

denotes the set of the N -th roots of unity, though geometrically it could just be a
set of N distinct points of C∗. A question, probably going back to Grothendieck, is
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how much of the motivic fundamental group GT is measured by GT,N , in particu-
lar GT,1. This subcategory, and its integral analogues, were studied by Deligne and
Goncharov [2005]. They showed that, over a number field, PT,N (OkN ) is generated
as a Q vector space by values of multiple polylogarithms. There is a natural categor-
ical inclusion MT,N ↪→MT , which induces surjections φN :GT (OkN )�GT,N (OkN )

(equivalently an injection PT,N ↪→ PT ). Brown [2012], in the case N = 1, and
Deligne [2010], in the cases N ∈ {2, 3, 4, 6, 8}, showed that φ was an isomorphism.
Conversely, and more interestingly, Goncharov [2001a] showed that for most N , φ
has a nontrivial kernel. Little is known about this kernel. Even less is known about
this kernel if the ground field is a cyclotomic extension of a general number field
(as opposed to a cyclotomic extension of Q). In particular, all known constructions
of elements of MT lie in the subcategory MT,N .

What is sorely needed is an approach to construct more general elements of MT ,
especially ones that do not come from the motivic fundamental groups of Gm−µN .
This paper is motivated in part by the desire to find a suitable framework to study
this kernel. We do not claim to have found such a framework here, but are hopeful
that we have taken a first step in the right direction.

The Bloch–Kriz definition of MT relies heavily on the theory of algebraic cy-
cles. While general enough to capture all mixed Tate motives, traditional methods
of representing algebraic cycles (such as in terms of formal linear combinations of
systems of polynomial equations) are notoriously difficult to work with, so progress
in capitalizing on this description of the category to illuminate outstanding conjec-
tures in the field has been slow. Gangl, Goncharov and Levin [Gangl et al. 2009]
suggest a simpler way to understand a subcategory of MT by relating specific alge-
braic cycles to rooted, decorated, binary trees. This approach necessarily restricts
focus to motives generated by the motivic fundamental groups of Gm −µN . Any
attempt to study the kernel of φ defined above requires a more general framework.

Soudères [2016a; 2016b] extends the family of algebraic cycles studied by Gangl
et al. to include those over a more general base scheme, in particular giving a rigor-
ous construction of unital values of the multiple polylogarithms, i.e., multiple zeta
values, as periods (and not just nonunital values of the multiple logarithms). The
combinatorial properties of these algebraic cycles, however, are as yet unexplored.

Let A be the differential graded algebra (DGA) of cycles introduced by Bloch
and Kriz [1994]. In this paper we generalize the Gangl–Goncharov–Levin con-
struction as follows: We define a subalgebra of cycles, A×1L ⊂ A, that properly
contains the subalgebra associated to multiple logarithms studied in [Gangl et al.
2009], and reinterprets A×1L in terms of graphs. By considering graphs, as opposed
to trees, and by loosening the valence restriction on the vertices, we enrich the
tools available to study algebraic cycles. Therefore, we are able to consider a
larger subcomplex of cycles. We hope this will lead to a better understanding of
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the complexity and richness underlying the Bloch–Kriz cycle complex, even in the
restricted subclass we consider. In particular, in Section 4, we describe several
examples of classes of algebraic cycles that define motives. Most of these cycles
cannot be described by the trees presented in [Gangl et al. 2009]. In Section 5, we
compute the Hodge realization of an infinite family of such classes. Furthermore, in
Section 3, we present a purely graphical interpretation of admissibility for the fam-
ily of algebraic cycles we consider. We also give valency requirements for which
classes of algebraic cycles will always be coboundaries in H 0(B(G1L)). There is a
lot of interesting combinatorial structure in the types of underlying graphs — and
their linear combinations — that give rise to allowable classes of motives. We have
barely begun to explore this structure and feel strongly that it deserves further study.

The plan for the paper is as follows. In Section 2, we review mixed Tate
motives à la [Bloch and Kriz 1994] and introduce the subalgebra, A×1L , of P1

k-linear
parametrizable cycles of the algebra A of admissible cycles. This subalgebra is the
focus of our attention. We then define a subcomplex B(A×1L) of the bar construction
on admissible cycles, B(A). The category of comodules over H 0(B(A×1L)) is the
(sub)category of motives we wish to study.

Section 3 introduces an algebra of graphs, G1L , that corresponds to the alge-
bra A×1L . Theorem 3.63 shows that the two algebras are isomorphic as DGAs. Since
A×1L is a subalgebra of A, this implies that there is an injection from the algebra of
graphs developed in this paper to the full Bloch Kriz cycle complex. In the process,
we show, in Theorem 3.59, that the conditions for an arbitrary irreducible P1

k-linear
cycle to be admissible, that is, a generator of A×1L , can be defined and computed
completely from the graphical properties of the corresponding graph in G1L .

In Section 4, we give examples of classes in and results about H 0(B(G1L)). In
addition we show, in Corollary 4.14, that in any completely decomposable (sum
of) graphs either each summand has a valence-two vertex, or none do. We further
show, in Theorem 4.16, that if a completely decomposable (sum of) graphs has
valence-two vertices, it is a coboundary in B(G1L).

In Section 5, following the algorithm as outlined in [Bloch and Kriz 1994; Gangl
et al. 2009] and especially [Kimura 2013], we compute the Hodge realization of
a projective system of classes whose defining cycles are not describable by trees.
(All previously known explicit computations of the Bloch–Kriz Hodge realization
have been of cycles that can be described by trees.)

2. A subcomplex of algebraic cycles

In this section, we define a particular subcomplex of the Bloch–Kriz cycle complex
that we develop in this paper. We begin with a review of the general mixed Tate
motive construction via algebraic cycles. Then we proceed to describe parametrized
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cycles, and finally define the subcomplex of P1L -cycles that we use in the remain-
der of this paper.

2A. A review of mixed Tate motives. We work with the category of mixed Tate
motives over a field k, M(T ), as constructed by [Bloch 1991; Bloch and Kriz
1994]. When k is a number field, this construction does not depend on any conjec-
tures. In [Bloch and Kriz 1994], two conjectures are stated: that grr Kn(F)⊗Q∼=

CHr (Spec(F), n)⊗Q, and that a certain algebra is quasiisomorphic to its Sullivan
1-model. The first conjecture was subsequently proved more generally for all va-
rieties X independently by Bloch [1994; 1986], Levine [1994] and Spivakowsky
(unpublished). The second conjecture, which is a strengthening of the Beilinson–
Soulé conjecture for fields, is known for number fields by the work of Borel and
Yang [1994] on the rank conjecture. (The Beilinson–Soulé conjecture was already
known to be true for number fields by the work of Borel [1974]).

In the rest of this section we review some details of their construction, following
[Bloch and Kriz 1994] closely.

We assume the reader is familiar with the concepts of algebraic cycles, higher
Chow groups, minimal models, 1-minimal models and the bar construction for a
commutative differential graded algebra (DGA) A. For the reader who wishes to
refresh her memory: The concept of a generalized minimal model is due originally
to Quillen (see [Quillen 1970], for example). In the form used here (extensions
by free one-dimensional models) it is due originally to Sullivan [1977, discussion
starting p. 316]. A good reference for the applications of minimal models we have
in mind is the treatment in [Kriz and May 1995, Part IV]. The bar construction is
due originally to Eilenberg and Mac Lane. Good references for the use of the bar
construction in this paper are [Chen 1976; Bloch and Kriz 1994, Section 2].

In order to define the category of mixed Tate motives, M(T ), it suffices to define
its motivic Galois group GT [Bloch and Kriz 1994]. Equivalently, one may work
with its dual Hopf algebra, HT . This is defined from the DGA, A, of admissible
algebraic cycles.

Below, following [loc. cit.], we define how to derive a Hopf algebra from a com-
mutative graded DGA, A, which is cohomologically connected. That is, H 0(A)=Q

and H−n(A) = 0 for n > 0. Our DGA, A, is not a Hopf algebra in general,
as the differential does not decompose. The strategy, therefore, is to “linearize”
A, i.e., form the minimal model H(A) of A, which, by construction, is a Hopf
algebra which is quasiisomorphic to A. The minimal model can be constructed
quite explicitly via the bar construction. We start with a few definitions.

Definition 2.1. (1) Consider the commutative DGA, A =
⊕

i Ai . Here, we refer
to the grading on A by degree: deg(a) = i ⇔ a ∈ Ai . The tensor algebra,
T (A)=

⊕
n A⊗n , is a commutative algebra under the shuffle product, X.
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(2) Let D(A) be the ideal in T (A) of degenerate tensor products, defined by

{a1⊗ · · ·⊗ an | ai ∈ A, a j ∈ k for some j}.

(3) The bar construction on A is defined as

B(A)= T (A)/D(A).

It is a bigraded algebra, with grading given by tensor degree and algebraic
degree. The total degree of a monomial a1⊗ · · ·⊗ an ∈ B(A) is defined by a
shift in the degree of the tensor components in A. That is,

tot deg(a1⊗ · · ·⊗ an)=

n∑
i=1

(deg(ai )− 1).

Hence, the total degree of an element of the bar construction is the difference
between the algebraic degree and the tensor degree. Write the bar construction
as B(A)=

⊕
i, j B(A)ij , where

B(A)ij =
⊕

∑i
1( jk−1)= j

A j1 ⊗ · · ·⊗ A ji

has total degree j .

Since A is a DGA, it is endowed with a differential structure ∂ : A→ A and a
product structure µ : A⊗ A→ A. These both extend to define differential structures
on the bar construction B(A), called the algebraic and multiplicative differentials,
respectively. Thus (B(A), ∂ +µ) is the following bicomplex:

...
...

...

· · ·
µ
// B(A)30

µ
//

d

OO

B(A)21
µ
//

∂

OO

B(A)12
ε
//

∂

OO

0

· · ·
µ
// B(A)3

−1
µ
//

∂

OO

B(A)20
µ
//

∂

OO

B(A)11
ε
//

∂

OO

0

· · ·
µ
// B(A)3

−2
µ
//

∂

OO

B(A)2
−1

µ
//

∂

OO

B(A)10
ε
//

∂

OO

Q

· · ·
µ
// B(A)3

−3
µ
//

∂

OO

B(A)2
−2

µ
//

∂

OO

B(A)1
−1

ε
//

∂

OO

0

...

∂

OO

...

∂

OO

...

∂

OO

(2.2)

Further details and calculations involving the bar complex can be found in Section 4.
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When A is connected, cohomologically connected and generated in degree one
(a K (π, 1) in the sense of Sullivan), then its minimal model is isomorphic to
H(A) := H 0(B(A)), where the cohomology is taken under the total derivative ∂+µ.
Note that B(A) is a Hopf algebra, with a product structure given by the signed
shuffle product and a coproduct structure given by deconcatenation, which satisfy
all the axioms for a Hopf algebra. Note that while the product introduces a degree-
dependent sign fact, the coproduct has no such sign. This induces a well-defined
product, coproduct, and Hopf algebra structure on H(A).

Bloch and Kriz study a bar construction of a DGA of admissible cycles, A =⊕
i Ai , defined below. The Hopf algebra HT dual to the motivic Galois group GT

is exactly the Hopf algebra defined above for the algebra of admissible cycles.

Definition 2.3. (1) Denote P1
k \ {1} by �. Then we may write �n

= (P1
k \ {1})

n .
The boundary of this space is defined when one of the coordinates is set to 0
or∞.

(2) For I, J ⊂ {1, . . . , n} two disjoint subsets, write FI,J to indicate the codimen-
sion-|I ∪ J | face of �n with the coordinates in I set to 0 and the coordinates
in J set to∞. Write F∅,∅ =�n to indicate the entire space.

(3) As usual, let Zp(�n) be the free abelian group generated by algebraic cycles
of codimension p in �n . These are the elements of weight p.

(4) Write Zp(Spec k, n) ⊂ Zp(�n) for the free abelian subgroup generated by
admissible algebraic cycles. A cycle Z ∈ Zp(Spec k, n) is one that intersects
each face FI,J of �n in codimension p, or not at all.

(5) Let Alt be the alternating projection with respect to the action of the group
Sn o(Z/2Z)n on Zp(Spec k, n). Here the symmetric group Sn acts by permu-
tation of coordinates, and the i-th copy of (Z/2Z)n acts by taking a coordinate
to its multiplicative inverse.

(6) Write
An

i = Alt(Zn(Spec k, 2n− i)⊗Q),

where i is the degree of the algebraic cycle and n the codimension. This is
a bigraded algebra, by weight and degree. The weight-graded pieces, An

:=⊕
i An

i =
⊕

i Alt(Zn(Spec k, 2n− i)⊗Q), define a complex by the differen-
tial operator defined in (2.6). Each degree-graded piece is Ai :=

⊕
n An

i =⊕
n Alt(Zn(Spec k, 2n− i)⊗Q).

Remark 2.4. The main result of Section 3C is to identify which cycles are elements
in A. In order to determine which algebraic cycles are admissible, we must consider
the space of all algebraic cycles, including those that are not admissible. Therefore,
when we write Zp(�n), we mean the entire space of algebraic cycles. We denote
admissible cycles by the notation Zp(Spec k, n).
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We now define the DGA structure of A. Consider two admissible cycles,

Zi ∈ Zn(Spec k, 2n− i) and Z j ∈ Zm(Spec k, 2m− j).

Write (Zi , Z j ) ∈Zn+m(Spec k, 2(n+m)− (i+ j)) to indicate the admissible cycle
defined by Zi on the first 2n− i coordinates and Z j on the last 2m− j coordinates.
The product on the associated elements in A is given by

µ(Alt Zi ⊗Alt Z j )= Alt(Zi ,Z j )= (−1)i j Alt(Z j ,Zi ),

where we drop the ⊗Q notation for simplicity. The last inequality comes from the
properties of Alt, and defines a graded commutative structure on A.

Definition 2.5. An element Z ∈A is decomposable if it can be expressed as the
product of two nontrivial cycles.

Next, we define the differential structure on A. Consider Z ∈ A. Let ∂ j,0Z

indicate the intersection of Z with the face F j,∅. Similarly, let ∂ j,∞Z indicate the
intersection of Z with the face F∅, j . These two operators define the differential ∂
on A:

∂Z=

2n−i∑
j=1

(−1) j−1(∂ j,0− ∂ j,∞)Z. (2.6)

Remark 2.7. It is difficult to identify elements of A, that is, to classify the cycles
that satisfy the condition of admissibility. One of the achievements of this paper
is to give a clear, simple condition for identifying admissible cycles for a large
subclass of cycles, called P1

k-linear cycles. In particular, see Theorem 3.59.

For an element ε ∈
⊕

n B(A)ni to define a class in H i (B(A)), each graded com-
ponent must have decomposable algebraic boundary. This comes from the fact that
(∂ +µ)(ε)= 0. In order to define what it means for a cycle to have decomposable
boundary, let πm be the projection of ε onto the m-th tensor component. That is,
πm(ε) ∈ B(A)mi . Then, for each m, ∂(πmε) is a decomposable element.

Definition 2.8. Consider an element ε ∈ B(A).

(1) The projection, πi (ε) ∈ B(A)ni , is decomposable if it has a decomposable al-
gebraic boundary. That is, if there exists an ε′ ∈ B(A)n+1

i+1 such that ∂(πi (ε))=

−µ(ε′). That is, the coboundary of the projection πi (ε) is in the image of the
product map µ.

(2) An element ε ∈ B(A) is completely decomposable if πi (ε) is decomposable
for all i , with

∂πi (ε)=−µπi+1(ε).
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Definition 2.9. We say that the element ε ∈
⊕

n B(A)ni is minimally decomposable
if it is completely decomposable, and cannot be written as a sum of two nontrivial
completely decomposable elements. That is, one cannot write ε = ε1+ ε2, where
each εi 6= 0 and is completely decomposable.

Remark 2.10. Notice that if ε is minimally decomposable, it is determined (up to
shuffle products) by πn0(ε), where n0 is the smallest integer for which πn(ε) 6= 0.
Therefore, by abuse of notation, we say that πn0(ε) defines a class in H i (B(A)).
In all examples in this paper, n0 = 1.

Next we give an example of an admissible cycle that defines a class in H 0(B(A)).

Example 2.11. Consider the cycle ZT (a)= Alt(t, 1− t, 1− a/t) ∈A2
1. This is a

parametric representation of the algebraic cycle determined by the system of equa-
tions {x + y = 1, xz = x + a}. This is the Torato cycle [1992] with codimension 2
in �3. It is a degree-one element in A, ZT (a) ∈A2

1,
We check that ZT (a) has a completely decomposable boundary. Therefore, it

defines a class in H 0(B(A)). To see this, compute ∂ZT (a). The intersections
∂∞,i ZT (a) give the empty cycles for i ∈ {1, 2, 3}. This is because setting one of
the coordinates of ZT (a) to∞ sets a different coordinate to 1. The same holds for
∂0,1 ZT (a) and ∂0,2 ZT (a). Therefore,

∂ZT (a)= ∂0,3 ZT (a)= Alt(a, 1− a)= µ[Alt(a) |Alt(1− a)].

The last equality comes from the product structure on A. Since (a) and (1− a)
are constant cycles, ∂[Alt(a) | Alt(1− a)] = 0 by the Leibnitz rule. Therefore,
ZT (a) ⊕ −[Alt(a) | Alt(1 − a)] ∈ ker(∂ + µ). Since ZT (a) has total degree 0
in B(A), it defines a class in H 0(B(A)).

The Hodge realization functor associates the period Li2(a) to the cycle ZT (a)
[Bloch and Kriz 1994]. To do this, consider the A module, T, defined by maps
from n-simplices, 1n , to �n . There is an element ζ(a) in the circular bar construc-
tion B(T,A) such that ζ(a)+ 1⊗ ZT (a) defines a class in H 0(B(T,A)). The
summands of ζ(a) that are supported completely on 12 define the integrand of the
associated period.

This example hints at another shortcoming of the current state of technology
surrounding algebraic cycles. We are interested in defining elements of B(A) that
define classes of H 0(B(A)). In particular, we are interested in cycles with bound-
aries that can be written as products of other cycles, as is the case for the Torato
cycle in Example 2.11. In Section 4B1, we provide several examples of such sums
of cycles in weight 4. However, we have not yet addressed this issue of how to
find such sums in general. We hope that the graphical point of view presented here
will shed light on the problem of identifying cycles with completely decomposable
boundaries. We leave this for future work.
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2B. A subalgebra of A. Unfortunately, the standard parametric notation for cycles
as represented in [Bloch and Kriz 1994; Gangl et al. 2007; 2009; Totaro 1992]
is rather misleading. For example, consider the usual form for the Totaro cycle,
ZT (a)= Alt(t, 1− t, 1− a/t) ∈A2

1, defined in Example 2.11, and in the literature
[Totaro 1992; Gangl et al. 2009]. It is technically defined on �3

k = (P
1
k −{1})

3, but
is written as if it is defined on A3

k = (P
1
k − {∞})

3. In actuality, the Totaro cycle
(for a ∈ k∗) is an algebraic cycle defined by the system of equations{

x + y = 1, xz = x − a : (x, y, z) ∈ (P1
k −{1})

3}
together with a parametrization map P1

k→ (P1
k −{1})

3. However, when manipu-
lated in practice, the cycle is understood

• to come equipped with a parametrization map, and

• to be defined at the hyperplanes with one coordinate equal to ∞, and not
defined at the hyperplanes with one coordinate equal to 1.

This is unnecessarily obtuse. It can be described as the intersection of the image
of

P1
k→ (P1

k)
3, (T :U ) 7→

( T
U
,

U−T
U

,
T−aU

T

)
,

with the complement of the hyperplanes of (P1
k)

3 defined by setting some coordi-
nate equal to 1.

In light of this example, we work with parametrized cycles.

Definition 2.12. A parametrized cycle is a pair, (Z , φ), consisting of an algebraic
cycle Z ∈Zp(�n) and a parametrization φ :Pn−p

k → (P1
k)

n satisfying the following:
φ induces a map on the group of algebraic cycles,

φ∗ : Z
0(P

n−p
k )→ Zp((P1

k)
n).

Then, given the inclusion i :�n ↪→ (P1
k)

n , we have

Z = i∗φ∗(P
n−p
k ),

where P
n−p
k is the generator of Z0(P

n−p
k ).

For Z ∈ Zp(�n), write the parametrizing map φ = (φ1, . . . , φn), where each
φi corresponds to the image in a coordinate of �n . There are, of course, multiple
possible parametrizations of any cycle Z ∈ Zp(�n). Here we are interested in the
algebraic cycles themselves, not the particular parametrizations. If the same cycle
Z can be represented by two different parametrizations, (Z , φ) and (Z , φ′), we say
that φ and φ′ are equivalent parametrizations. We are interested in cycles that can
be endowed with a P1

k-linear parametrization.
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Definition 2.13. A cycle Z ∈ Zp(�n) is P1
k-linear if it can be parametrized by a φ

such that each component can be written as

φ j ∈

{(
1−

t1
a j t2

)ζ
,

(
1−

t2
a j t1

)ζ
,

(
t1

a j t2

)ζ}
,

with a j ∈ k× and ζ ∈ {±1}. In particular, writing the j-th P1
k in the image of φ as

[U j : V j ], we define φ j =U j/V j , using the standard affine representation. Such a
φ is called a P1

k-linear parametrization, and can be written as a map on P1
k via the

following commutative diagram:

P1
k

//

φ j

��

P
n−p
k

φ

��

P1
k
� �

i j

// (P1
k)

n

The top arrow is given by a map

(t1 : t2) 7→ (0 : · · · : 0 : t1 : 0 : · · · : 0 : t2 : 0 : · · · : 0),

and the bottom arrow is given by inclusion into the j-th coordinate.

Definition 2.14. Denote the free abelian groups of P1
k-linear cycles by Zn

1L(�
m).

Write Z1L
n(Spec k,m) for the free abelian group of P1

k-linear admissible cycles.

The goal of this section is to define a sub-DGA of A, the algebra of admissible
cycles, that is generated by Z1L

n(Spec k, 2n− i). Call it

A1L =
⊕

i

A1L ,i =
⊕
n,i

Alt Z1L
n(Spec k, 2n− i)⊗Q.

The graded commutative structure on A1L comes from the product structure
on A, along with the fact that the product of two parametrizable cycles is still
parametrizable. It remains to check that the differential structure on A is well-
defined on A1L . The differential on A comes from intersecting each coordinate
of an element Alt Z ∈An

i with the appropriate 0 and∞ face of �2n−i
k . Consider

Z ∈ Z1L
n(Spec k, 2n− i). Let φ be a parametrization on Z . Then the intersection

of Z with a particular face corresponds to the pullback of φ by the appropriate face
map. Therefore, the differential of Z is also a P1

k-linear parametrizable cycle.
If Alt Z ∈A1L is a decomposable cycle of codimension i , write

Alt Z = Alt(Z1, . . . , Zr )

as above. The Leibnitz rule and properties of Alt show that ∂ Alt(Z1, . . . , Zr ) is
also parametrizable.
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The algebra A1L contains all the Totaro cycles. Moreover, it contain a large class
of cycles which correspond to the multiple logarithms [Gangl et al. 2009]. There-
fore, conjecturally, it contains all the cycles necessary to define the full category of
mixed Tate motives. There has been some effort to understand subalgebras of A1L

in terms of polylogarithms and multiple logarithms [Gangl et al. 2009; Soudères
2016a]. Here we study a subalgebra A×1L ⊂ A1L that specifically excludes the
Totaro cycles, but still contains the multiple logarithms.

Definition 2.15. Let A×1L be the algebra of P1
k-linear cycles, where

φi ∈

{(
1−

t1
ai t2

)ζ
,

(
1−

t2
ai t1

)ζ}
,

with ai ∈ k× and ζ ∈ {±1}.

The combinatorics of the cycles in A×1L are studied in Section 3. The graphs
introduced in Section 3 correspond to the subalgebra A×1L , which excludes cycles
with coordinates of the form ai ti/t j .

3. Motivic graphs

The first graphical description of some of the algebraic cycles that arise in the
category M(T ) of mixed Tate motives was given by [Gangl et al. 2007; 2009] in
their description of R-deco trees. These provide a description of a particular proper
sub-DGA of A×1L .

In particular, they represent a subalgebra of cycles by labeled oriented trees. For
example,

1

•u
•v

cba

��

��

����
��

7→

[
1− 1

u
, 1− u

a
, 1− u

v
, 1− v

b
, 1− v

c

]
.

Note that this assignment depends on several choices, such as a choice of root
vertex as well as a choice of affine patch.

In this section we give a more general graphical depiction that encapsulates all
A×1L cycles using decorated, oriented, non-simply connected graphs.

For example, the tree and cycle above come from the labeled oriented graph

•u •v

•z

//1

��a
ZZ1 �� c

�� b
7→

[
1− z

u
, 1− u

az
, 1− u

v
, 1− v

bz
, 1− v

cz

]
,
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by taking the affine patch at z = 1. Graphically this amounts to removing the vertex
labeled z and changing the labels from the edges of the graph to the leaves and root
of the tree.

Our approach produces far more algebraic cycles that are not seen via the ap-
proach given in [Gangl et al. 2007; 2009]. In particular, we can study cycles
represented by graphs that cannot be represented by a tree in any affine patch.
For example, the graph

• •

• •

oo
a0

��a1 OO 1 ��1 OO a4

oo1

a3

in this paper corresponds to the algebraic cycle

Alt
[
1− z

x
, 1− x

a1z
, 1− w

z
, 1− z

a2w
, 1− y

w
, 1− w

a3 y
, 1− y

a0x

]
.

Yet there is no affine patch one can take (i.e., a vertex one can remove) that will
result in a tree of the form studied in [Gangl et al. 2009].

The aim of Section 3 is to construct an algebra of graphs, G1L =
⊕
•,? G1L

•

? that
is isomorphic to the algebra of admissible cycles A×1L as DGAs. The definition of
this algebra is given at the end of Section 3D. Most of Sections 3A–3D are devoted
to building up G1L step by step. We begin with a general set of oriented graphs
with labeled and ordered edges, G(k×). This corresponds to the set of generators of
the free abelian group Z•1L(�

2•−?). We define a monoid structure on the set so that
G(k×) generates an algebra, Q[G]. Then we consider the alternating representation
on the graphs, by imposing an equivalence relation on them by the ordering of their
edges. This gives an algebra homomorphism from Q[G]•?/∼ord to the algebra of
cycles Alt Z?1L(�

2•−?).
However, we wish for a DGA homomorphism to the algebra of admissible,

P1
k-linear cycles, A×1L ⊂ Z?(Spec k, 2 • −?). To do this, we define a subset of

Gad(k×)⊂G(k×), which we show corresponds to admissible graphs in Theorem 3.59.
We write Q[Gad] to indicate the algebra generated by Gad(k×). In order to estab-
lish a DGA isomorphism between A×1L and Q[Gad], we must define a differential
operator on graphs. To do this, we need two further equivalence relations among
graphs, which we call ∼v and ∼ori. In Section 3C, we show that Q[G]/(∼ord,∼v)

is a DGA of graphs.
In Section 3D, we show one of the main findings of this paper, that admissibility

of P1
k-linear cycles can be encoded purely by labeled oriented graphs. In particu-

lar, there is no further algebraic input necessary. Imposing the third equivalence
relation gives the desired isomorphism

G1L =Q[Gad]/(∼ord,∼v,∼ori)'A×1L .
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3A. An interesting algebra of graphs. In this section, we introduce a general set
of biconnected graphs with oriented, labeled, and ordered edges. We impose a
product structure on it. This defines an algebra of graphs that corresponds to the
algebra of general (not necessarily admissible) algebraic cycles.

We work over a number field k.

Definition 3.1. Let G(k×) be the set of graphs with biconnected connected compo-
nents, with oriented and ordered edges, each labeled by an element of k××Z/2Z.

In practice, we say that the edges of G are labeled by a nonzero number and
a sign.

For a graph G ∈ G(k×), let V (G) be the set of vertices of G, and E(G) be the
unordered set of edges of the graph. However, we are working with graphs with
ordered edges. Therefore we must consider the ordered set of edges.

Definition 3.2. Let ω(G) be the ordered set of edges of G, where ω(e) expresses
the ordinality of the edge e ∈ E(G) in ω(G). Write sgnω(e) to indicate the sign
associated the edge e.

The loop number, or first Betti number, of a graph G ∈ G(k×) is

h1(G)= |E(G)| − |V (G)| + h0(G), (3.3)

where h0(G) counts the number of connected components of the graph. The vector
space H 1(G) is spanned by graphical cycles of the unoriented graph underlying G.

Remark 3.4. There are multiple conventions regarding the definition of cycles in
graphs in the literature. We take L ⊂ E(G), together with an orientation (possibly
different from the orientation on the individual edges in E(L)) is a graphical cycle
of the graph G if it defines a path in G that starts and ends at the same vertex.
Specifically, the path in G defined by the edges of L does not need to respect the
orientation of the edges in L . A graphical loop is a graphical cycle that does not
intersect itself until the final vertex.

We will concern ourselves only with graphical loops of G ∈ G(k×).

Example 3.5. Consider the disconnected graph G given by

G = • •

•

•

•

''
b,2,−

gg
a,1,+

��c,3,+ OO

e,7,+
77

d,5,−

//
g,8,−

oo
h,6,−

//

f,4,+

These are in G(k×), assuming a, . . . , g are all in k×. The second labels indicate
the ordering of the edges; the final label give the signs.
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We impose a product structure on the set G(k×). For G,G ′ ∈G(k×), let GtG ′ be
the disjoint union of the graphs, without an overall ordering imposed on the union
of the edges. The product of two graphs G ·G ′ is the graph G tG ′, with the edges
of G appearing before the edges of G ′. In particular, this is a noncommutative
product,

G ·G ′ 6= G ′ ·G,

as the ordering of the edge set, E(G tG ′), in the two cases is not the same.

Example 3.6. In this example, we concern ourselves primarily with the ordering
of the edges in the product. Therefore, we write label the edges with elements of
k× and the ordering, and neglect to indicate the sign. One may assume, without
loss of generality, that the signs are all positive in the graphs below.

Consider the graphs

G1 =

•

•

•

''

b,2

gg
a,1

��
c,3

OOe,5

77
d,4

and G2 = • •

//
g,1

oo
h,2

//
f,3

First, notice that the graph in Example 3.5 cannot be written as the product of
G1 and G2, since the edges of one connected component do not precede the edges
of the other, as written.

The product in one order is

G1 ·G2 =

•

•

• • •

''
b,2

gg a,1

��
c,3

OOe,5

77
d,4

//
g,6

oo
h,7

//
f,8

while the product in the other order is

G2 ·G1 = • •

•

•

•

''
b,5

gg a,4

��
c,6

OOe,8

77
d,7

//
g,1

oo
h,2

//
f,3

It is the ordering on the two graphs that distinguishes the two products. Every-
thing else about the labeled oriented graphs G ·G ′ and G ′ ·G is the same.

This noncommutative product gives (G(k×), · ) a free monoidal structure. The
unit in the monoid is given by the empty graph, which has no loops and no edges,
and therefore no labels.

Definition 3.7. Let Q[G] be the free algebra generated by the monoid (G(k×), · ).
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Just as with the cycles, we are not interested in the order of the coordinates,
but their image under Alt. Therefore, we are also only interested in an alternating
projection on the edges of the graphs. There is a Sn o (Z/2Z)n action on the
edges of a graph G ∈ G(k×). This action permutes the order of the edges in the
graph, and changes the assigned signs. An element g ∈ Sn o (Z/2Z)n is of the
form g = (σ, Esgn), where σ ∈S|E(G)| and Esgn ∈ (Z/2Z)n is an ordered set of signs.
Write Esgn j for the j-th entry of the ordered set. Furthermore, write

sgn(g)= sgn(σ )
∏

j

Esgn j ,

where sgn(σ ) indicates the sign of the permutation σ ∈S|E(G)|.
The action of Sn o (Z/2Z)n on the algebra of graphs is as follows: gG = 0 if
|E(G)| 6= n, and otherwise gG is given by{

ω(gG) := σ(ω(G)),
Esgni (gG)= Esgni Esgni (G).

That is, if |E(G)| = n, the ordering and signs of the edges in gG for g = (σ, Esgn)
are determined by σ and Esgn, respectively.

The action of Sn o (Z/2Z)n defines an equivalence relation on Q[G].

Lemma 3.8. Letting n vary, any two monomials G and G ′ ∈Q[G] are equivalent
if and only if there is an element g ∈Sn o (Z/2Z)n relating the two:

G ∼ord sgn(g)gG.

The proof comes from the identity, inverse and composition laws of the group
S|E(G)|o (Z/2Z)n , and we omit it.

In Lemma 3.14, we show that Q[G]/∼ord is generated as an algebra by connected
graphs. In other words, under the equivalence ∼ord, any disconnected element of
Q[G] is no longer primitive.

First we give an example.

Example 3.9. To illustrate the equivalence relations from Lemma 3.8, consider the
graph G in Example 3.5 as a monomial in Q[G]:

G = • •

•

•

•

''
b,2,−

gg
a,1,+

��c,3,+ OO

e,7,+
77

d,5,−

//
g,8,−

oo
h,6,−

//

f,4,+

with the edges ordered as indicated by the subscripts, as usual. This graph is a
primitive element of Q[G].
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However, in the ring quotiented by the equivalence relation, Q[G]/∼ord, we see
that G ∼ord G1 ·G2, where G1 and G2 are the graphs defined in Example 3.6:

G ∼ord G1 ·G2 =

•

•

• • •

''

b,2,+

gg
a,1,+

��c,3,+ OO

e,5,+
77
d,4,+

//
g,6,+

oo
h,7,+

//
f,8,+

which is not primitive. Notice that both signs and orderings have been changed in
this example.

As an algebra, Q[G] is bigraded by first Betti number, or weight, and degree of
the graphs. That is, if G ∈Q[G]?

•
, then h1(G)= •, while ?= h1(G)−V (G)+h0(G).

From the formula for the first Betti number of a graphs in (3.3), if G ∈Q[G]?
•
,

|E(G)| = 2 •− ? . (3.10)

As the equivalence relation ∼ord does not affect the underlying topology of the
graph, Q[G]/∼ord is also bigraded by weight and degree of the graphs.

Remark 3.11. The unit of this algebra is in Q[G]00. It is represented by the empty
graph.

Example 3.12. For instance, consider the graph in Examples 3.5 and 3.9:

G = • •

•

•

•

''
b,2,−

gg
a,1,+

��c,3,+ OO

e,7,+
77

d,5,−

//
g,8,−

oo
h,6,−

//

f,4,+

This graph has five loops, five vertices and two connected components. There-
fore, it is in Q[G]25/∼ord.

Definition 3.13. Let G0(k×)⊂ G(k×) be the subset of biconnected graphs with or-
dered, labeled, oriented edges. That is, there are no disconnected graphs in G0(k×).

Lemma 3.14. The algebra Q[G]/∼ord is generated by the set G0(k×)/∼ord as a
skew symmetric bigraded algebra.

Proof. For any disconnected graph G ∈Q[G]in , there is an element g = (σ, id) in
S2n−i o (Z/2Z)n that rearranges the order of the edges of each connected compo-
nent consecutively. Since sgn(g)= sgn(σ ), by Lemma 3.8 we obtain

G ∼ord sgn(g)(gG)= sgn(g)G1 ·G2 · · ·Gm,

with each Gi ∈ G0(k×).
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The product preserves the bigrading, as the zeroth and first Betti numbers as
well as the sizes of the edge and vertex sets are additive under disjoint union. For
G ∈Q[G]in/∼ord and G ′ ∈Q[G]i

′

n′/∼ord, we have

G ·G ′ ∈Q[G]i+i ′
n+n′/∼ord.

To see that this is skew symmetric, as above, write

G ·G ′ ∼ord (−1)|E(G)||E(G
′)|G ′ ·G = (−1)i i

′

G ′ ·G.

The last equality comes from the fact that |E(G)| = 2n− i and |E(G ′)| = 2n′− i ′.
�

Since
Q[G]/∼ord =Q[G0]/∼ord,

for the rest of this paper we consider only elements of G0(k×).

3B. A brief interlude on algebraic cycles. In this section we introduce the rela-
tionship between the graphs defined above and algebraic cycles generating Z

p
1L(�

n).
As of yet, we make no claims on admissibility of cycles.

Definition 3.15. Define QZ1L to be the group ring generated by the free abelian
group of P1

k-linear cycles

QZ1L =
⊕
p,i

Alt(Zp
1L(�

2p−i )⊗Q).

This is a skew symmetric algebra. Write QZ1L
i
p = Alt(Zn

1L(�
2p−i )⊗Q).

There is a homomorphism, Z , from Q[G]?
•
/∼ord to QZ1L . Note that A×1L ⊂QZ1L .

In Section 3E, we show that Z is a DGA homomorphism onto A×1L that becomes
an isomorphism of DGAs when Q[G]?

•
is subjected to more equivalence relations.

That is the isomorphism we seek. In this section, we only show that elements of
Q[G] correspond to parametrizations of P1

k-linear algebraic cycles on �|E(G)|k .

Definition 3.16. Each connected graph G ∈ G(k×), with loop number p and n
edges, defines a parametrization, φ : P

|V (G)|−1
k → (P1

k)
n , of an algebraic cycle

Z(G) ∈ Z
p
1L(�

n). The ω(e)-th coordinate of the cycle Z(G) is

φω(e) =

(
1−

xs(e)

aext (e)

)sgnω(e)
,

where xs(e) and xt (e) are variables assigned to the vertices at the source and target
of the edge e ∈ E(G), and ae is the label of edge e.

Recall from Definition 2.13, each φω(e) is the ratio of the projective coordinates
defining the ω(e)-th copy of P1

k in the image.
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Thus we have, for •= h1(G) and ?= h1(G)− |V (G)| + h0(G), a set map

Z : G0(k×)→
⊕
•,?

Z•1L(�
2?−•), G 7→ [φ1, . . . , φ|E(G)|], (3.17)

from graphs to parametrized Pk-linear cycles.
To make this map concrete, we explicitly derive the system of polynomials de-

fined by a graph G. First we introduce a function that relates edges of a graph to
the loops of G.

Definition 3.18. For e ∈ E(G), and L a loop of G, define

ε(e, L)=


1 if e ∈ E(L), oriented as L is,
0 if e 6∈ E(L),
−1 if e ∈ E(L), oriented opposite to L .

Given this notation, we are ready to define the system of polynomials defined
by a graph G ∈ G0(k×).

Theorem 3.19. For a graph G ∈ G0(k×)/∼ord, indicate the label of the edge
e ∈ E(G) as ae ∈ k×. Suppose h1(G)= p and |E(G)| = n. Let β = {L1, . . . , L p}

be a loop basis of H1(G). The algebraic cycle Z(G) is defined by the system of p
polynomial equations, each associated to an element of the loop basis, and induced
from the rational relations

1=
∏

e∈E(G)

(ae(1−φω(e)))ε(e,L i ). (3.20)

Proof. Given a loop basis β for H1(G), begin with a loop, call it L1. Subsequent
elements of the system of equations are similarly defined.

Consider an edge e ∈ E(L1). The ω(e)-th coordinate of the cycle Z(G) is
defined by the function φω(e)(x, y), where x and y are the variables associated to
the vertices at the endpoints of e ∈ E(G). Suppose that, in the orientation inherent
in L1 as an element of a loop basis, L1 flows from the vertex associated to x
directly to the vertex associated to y. This is not necessarily the orientation of the
edge connecting the vertices associated to x and y, but the second orientation on
the edges induced by the orientation of L1. Since we are working over Q[G]?

•
/∼ord,

we may choose G such that all the signs on the edges of G are all positive. Then
one can associate to the edge e ∈ E(G) the equation

x = y(ae(1−φω(e)))ε(e,L1). (3.21)

There is a unique edge e′ 6= e in L1 with an endpoint at the vertex associated to
the variable y. As above, associate to the edge e′ the equation

y = z(ae′(1−φω(e′)))ε(e
′,L1).
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Substituting this into (3.21) gives

x = z(ae(1−φω(e)))ε(e,L1)(ae′(1−φω(e′)))ε(e
′,L1).

Continuing along the entire loop in this manner gives

x = x
∏

e∈E(G)

(ae(1−φω(e)))ε(e,L1),

which simplifies to an expression of the form in (3.20):

1=
∏

e∈E(G)

(ae(1−φω(e)))ε(e,L1).

Since β is a loop basis, the function φω(e), associated to each edge of G is used
in the system of equations defined in (3.20), and the functions thus derived are
independent of each other. �

Notice that the specific form of this system of equations depends on the loop
basis for H1(G). However, a different loop basis will give an equivalent system of
polynomials.

Example 3.22. Recall the graph in Example 3.5:
•

•

•

''r2

gg r1

��r3 OOr5
77
r4

.

Define a basis

β =


•

•

��r1 OO r2,

•

•

•

''r2��r3
77
r4

,

•

•

•

gg r1

OOr5
77
r4

 ,
where all the loops in β are oriented counterclockwise.

A system of equations for this graph is given by the polynomials

1= r1r2(1−φ1)(1−φ2),

1=
r3r4

r2

(1−φ3)(1−φ4)

(1−φ2)
,

1=
r1r4

r5

(1−φ1)(1−φ4)

(1−φ5)
.

This brings us to an important invariant of the graphs in Q[G]?
•
/∼ord, the loop

coefficient:
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Definition 3.23. Given a loop L of G, the loop coefficient of L is defined by

χG(L)=
∏
E(G)

r ε(e,L)e . (3.24)

In this notation, we can restate the image of the map Z . For G ∈ Q[G]
p
n /∼ord

with β = {L1, . . . , L p} a basis of H 1(G), the cycle Z(G) is defined by the system
of polynomial equations{

1= χG(L i )
∏

e∈E(L i )

(1−φω(e))ε(e,L i )

}
L i∈β

. (3.25)

We can extend the set map Z thus defined to the algebra Q[G]?
•
/∼ord, where

Z(G) maps a graph to an algebraic cycle under the alternating projection.

Theorem 3.26. The set map Z in (3.17) induces a grading-preserving algebra
homomorphism

Z :Q[G]/∼ord→QZ1L , G 7→ Alt[φ1, . . . , φ|E(G)|].

Proof. The equivalence relation ∼ord equates different orderings of edges of graphs
as Alt combines different orderings of coordinates into a single generator of QZ1L .
Therefore, Z maps generators of Q[G]/∼ord to generators of QZ1L . Lemma 3.14
shows that the algebra structure of Q[G]/∼ord matches the algebra structure of QZ1L .

It remains to check that if G ∈ Q[G]ip/∼ord then Z(G) ∈ QZ1L
i
p. First notice

that by the parametrization given in Definition 3.16, Writing G = G1 · · ·Gm in
terms of its connected components, the cycle Z(G) is parametrized by the map

φ :

m∏
i=1

P
|V (Gi )|−1
k →�|E(G)|k .

Therefore, the cycle Z(G) has codimension

E(G)− V (G)+ h0(G)= h1(G)= p

in �|E(G)|k . By (3.10) this implies that Z(G) ∈ Z
p
1L(�

2p−i ). �

Finally, in conjunction with Theorem 3.19, this allows for a statement about
irreducible cycles.

Corollary 3.27. If G is a generator of Q[G]/∼ord, i.e., a disconnected graph, then
Z(G) is a reducible cycle.

Proof. Recall that a reducible cycle is one that arises from a reducible variety. �

3C. The DGA structure on graphs. In this section, we define a differential struc-
ture on the algebra of graphs. In order to do this, we need to define an additional
equivalence relation on G0(k×).

In particular, we consider graphs that differ only by a rescaling of the labels of
the edges attached to a particular vertex.
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Definition 3.28. Consider α ∈ k× and v ∈ V (G). The vertex rescaled graph vα(G)
is the labeled oriented graph G with labels changed as follows: for each edge e
of G, if an edge terminates (starts) at v, multiply (divide) its label by α to get
the label of the edge in vα(G); otherwise, keep the same label for e. The signs
associated to and the ordering of the edges of G by ω do not change.

Vertex rescaling a graph corresponds to rescaling all instances of a variable
in the parametrized Pk-linear cycle Z(G) by a constant multiple. This does not
affect the cycle at all. In other words, G and vα(G) correspond to two different
parametrizations of Z(G). We call this procedure label rescaling with respect to a
vertex, or label rescaling at v.

Example 3.29. For the graph G in Example 3.5, one can rescale the rightmost
vertex by α to obtain the graph

vα(G)=

•

•

•
v

''

αr2

ggr1/α

��r3 OOr5

77

αr4

where the ordering of the edges is given by the subscripts.

Remark 3.30. Vertex rescaling is an equivalence relation on the set G0(k×). We
write it as ∼v.

In the sequel, we consider the algebra of graphs up to this equivalence set. We
are interested in graphs only as a tool to understand their corresponding algebraic
cycles. We work with graphs up to this rescaling since two graphs that differ by
a vertex rescaling correspond, under the homomorphism Z defined in Section 3B,
to different parametrizations of the same cycle.

To see this, notice that vertex rescaling does not change the loop coefficient of
the graph.

Lemma 3.31. Loop coefficients are invariant under rescaling at vertices.

Proof. Let L be a loop in G, with G ∈ G0(k×). For v ∈ V (L), a vertex in L , v is
attached to exactly two edges e1 and e2 of L . We compare χG(L) and χvα(G)(L).

There are three cases to consider. If v is the terminal vertex of e1 and the source
vertex of e2, then the respective coefficients are r1 and r2 in G, and r1α and r2/α

in vα(G). Both numbers either appear in the numerator or the denominator of the
coefficient of L . Thus the contributions of α cancel in χvα(G)(L).

The other two cases are as follows. The vertex v is either the source or target
vertex of both e1 and e2. Then the coefficients are r1/α and r2/α (or r1α and r2α).
One label appears in the numerator of the loop, the other in the denominator, so
the contribution of α cancels χvα(G)(L).
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Therefore,
χG(L)= χvα(G)(L),

as desired. �

Therefore, given the form of the system of polynomials defined by each of these
graphs in (3.25), Z(G)= Z(vα(G)).

Theorem 3.32. The parametrized cycles Z(G) and Z(vα(G)) correspond to the
same cycle, under different parametrizations

Z(G)= Z(vα(G)) ∈ Zh1(G)
1L (�|E(G)|).

Proof. Since, by Lemma 3.31, loop coefficients are invariant under vertex rescaling,
from the system of equations defined in (3.25), we see that the cycles defined are
the same. �

Therefore, the algebra homomorphism, Z , defined in Section 3B passes to an
algebra homomorphism under the quotient ∼v

Z :Q[G]?
•
/(∼ord,∼v)→ Alt(Z•1L(�

2•−?)⊗Q).

As we mentioned before, the algebra Alt Z•1L(�
2•−?) does not have a DGA struc-

ture. However, the algebra Q[G]/(∼ord,∼v) does. On individual graphs, this is
defined by a modified contraction of the edges. We devote the rest of this subsection
to developing this differential.

Definition 3.33. Consider G ∈ G0(k×). For e ∈ E(G), define the graph G/e to
be that formed by contracting the edge e and identifying the vertices se and te as
a new vertex v. If the edge e ∈ E(G) has the same source and target vertex, then
G/e = 0. If contracting the edge e leads to a one connected graph, split the graph
into its biconnected components at the articulation vertex.

The above definition is not the standard definition of an edge contraction in
graphs. The standard definition has been modified to fit the algebraic properties
of the graphs we need, namely the splitting of graphs at the articulation vertex.
Furthermore, the ordering of G/e ∈Q[G] is induced from the ordering of G.

Definition 3.34. Let ω(G) be the ordering of the edges of the graph G. Then
ω̂e(G/e) is the ordering of the graph G/e which is the same as ω(G) with the
ω(e)-th element removed.

We are now ready to define a differential operator on G ∈Q[G]?
•
/(∼ord,∼v).

Theorem 3.35. Consider a monomial G ∈ Q[G]?
•
/(∼ord,∼v). For e ∈ E(G) an

edge, let re denote the label of this edge and let se denote the source vertex. There
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is a degree-1 differential operator

∂ :Q[G]?
•
/(∼ord,∼v)→Q[G]?+1

•
/(∼ord,∼v),

(ω,G) 7→
∑

e∈E(G)

(−1)ω(e)−1(ω̂e, ((se)re(G))/e).

By direct calculation, one sees that this operator satisfies the Leibnitz rule

∂(G ·G ′)= ∂(G) ·G ′+ (−1)?G · ∂(G ′). (3.36)

We prove this theorem in steps. Before starting the proof, we give an example
of the action of ∂ . Recall that the notation (se)re in Theorem 3.35 is the vertex
rescaling from Definition 3.28.

Example 3.37. For example, for the graph in Example 3.5, with ω ordered accord-
ing to the numbering of the labels,

∂

•

•

•

''r2

gg r1

��r3 OOr5
77
r4

=

•

•

•��r3 OO r5
OO r4r1

//
r1r2

−

•

•

•��r3 OO r5
OO
r4/r2

//
r1r2

+

•

•

•��r1 OO r2
OOr4r3

//
r3r5

−

•

•

OO
r1r4

��
r2/r4��r3 OO r5+

•

•

•��r1 OO r2
OOr4/r5

//
r3r5

First, we define a contraction operator on graphs with labeled edges.

Definition 3.38. For e ∈ E(G), we write the contraction of an edge as ∂e(G) =
(se)re(G)/e.

In this notation, the operator defined in Theorem 3.35 can be rewritten as

∂(G)=
∑

e∈E(G)

(−1)ω(e)−1∂e(G).

Notice that if re = 1 then ∂e(G)= (G/e). This further implies that the loop coeffi-
cient is invariant under contraction.

Lemma 3.39. Consider G ∈ Q[G]/(∼ord,∼v). Let L be a loop in G with more
than one edge, and e ∈ E(L). Then

χG(L)= χ∂eG(L/e).

Proof. It is sufficient to consider G connected. If s is the source vertex of e, and r
the label, the equivalent graph sr (G) is such that the label of e equals 1.
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In Lemma 3.43, we show that contraction is well-defined on Q[G]/(∼ord,∼v).
Therefore, ∂e(G)∼v ∂e(sr (G)). Since the label of e is 1, the contraction ∂e(sr (G))
equals sr (G)/e, and

χG(L)= χsr (G)(L)= χ∂esr (G)(L \ e)= χ∂eG(L \ e).

The first equality comes from Lemma 3.31. The second equality comes from the
form of ∂e(sr (G)). Finally, the third equality comes from the equivalence of the
two contractions (Lemma 3.43). �

Working under the equivalence relations ∼v gives an important representation
of graphs that simplifies the calculation of the derivatives.

Lemma 3.40. For any given G ∈ G0(k×), and any subtree T ⊂ G, there is a graph
GT such that the labels of the edges in T are 1 and G ∼v GT . In particular, any
monomial G ∈Q[G]/(∼ord,∼v) can be rescaled such that any spanning forest of
G is labeled by 1.

Proof. Without loss of generality, assume that the graph G ∈ G0(k×) is a connected
graph. Otherwise, the following arguments apply to each connected component
of G.

Let T be a spanning tree of G. Label the vertices {v1, . . . , v|V (G)|} ∈ V (G) such
that v1 has valence 1 in T . Let {r2, . . . , r|V (T )|} be the labels of the edges in E(T ),
where ri labels the edge connected to vi .

Rescale the graph G at the vertex v2 by r2 (resp. 1/r2) if v2 is a source (resp.
target) vertex of the edge labeled by r2. In the rescaled graph (v2)r2(G) (resp.
(v2)1/r2(G)) the edge connecting v1 and v2 is labeled by 1. By similar logic, there
is a series of rescaling coefficients, {α1, . . . , α|V (G)|−1}, where each αi is a rational
function of the r j such that edges of the spanning tree T in

(v|V (G)|−1)α|V (G)|−1(· · · ((v1)α1(G)) · · · )

are all labeled by 1. �

Example 3.41. Consider again the graph in Example 3.5. The loop coefficient of
the loop defined by the inner triangle of legs, oriented clockwise, is r2r5/r4. The
same graph can be relabeled to have a spanning tree labeled with ones as follows:

G =

•
t

•u

•z
''r2

gg r1

��r3 OOr5
77
r4

; z1/r4(G)=

•
t

•u

•z
''

r2/r4

ggr1r4

��r3 OOr5
77
1

;
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tr2/r4(z1/r4(G))=

•
t

•u

•z
'' 1
gg
r1r2

��r3r4/r2 OO r2r5/r4
77
1

Contrary to appearance, we have made no choice in our definition of the deriv-
ative ∂e. We could just as easily have written

∂e(G)= (−1)ω(e)−1(te)1/re(G)/e,

where te is the target vertex of the edge e. This is because the two graphs are
equivalent under vertex rescaling.

Lemma 3.42. For G ∈Q[G], let t and s be the target and source vertices, respec-
tively, of the edge e ∈ E(G). Then

t1/a(G)/e ∼v sa(G)/e.

Proof. We show that there is a vertex rescaling such that

t1/a(G)/e ∼ sa(G)/e.

By construction, e 6∈ E(G/e), and the vertices t, s ∈ V (G) are replaced by a single
vertex v ∈ V (G/e).

In the graph t1/a(G), the label of e is multiplied by 1/a, as are all the edges
terminating on t . All edges starting at t are multiplied by a. The edges attached to
s and not t are unaffected. Similarly, in the graph sa(G), the label of e is multiplied
by 1/a, as are all the edges starting at s. All edges terminating at s are multiplied
by a. The edges attached to t and not s are unaffected.

Therefore, contracting e and identifying s with t at the new vertex in the con-
tracted graph, we get a unique vertex v = V (G/e) \ V (G),

v1/a(sa(G)/e)= t1/a(G)/e.

Similarly, one may also write

sa(G)/e = va(t1/a(G)/e). �

Choosing a = re, the label of the edge e, shows that, in Q[G]/(∼ord,∼v), it does
not matter if ∂e is defined according to the source vertex of e or the target vertex.

Next we show that the operator ∂ is well-defined under vertex rescaling.

Lemma 3.43. The operator ∂ defined above is well-defined on Q[G]/(∼ord,∼v).

Proof. Since ∂ =
∑

e∈E(G)(−1)ω(e)−1∂e, for any g ∈S|E(G)|oZ/2Z|E(G)|

∂G = ∂gG

in the quotient space Q[G]/(∼ord,∼v) for all G ∈ G0(k×).
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It remains to check that, for G ∈ G0(k×),

∂(G)∼ ∂(vα(G)) (3.44)

for any v ∈ V (G). Before proceeding, we note that vertex rescaling is multiplicative.
That is, for v ∈ V (G),

vα(vβ(G))= vαβ(G). (3.45)

Fix v ∈ V (G). For any edge e not incident upon v,

∂e(vαG)= vα∂e(G)∼ ∂e(G).

Therefore, consider only the edges e ∈ E(G) that are incident upon v. They are
labeled by re. By Definition 3.38 and Lemma 3.42,

∂e(G)∼v

{
vre(G)/e, v a source of e,
v1/re(G)/e, v a target of e.

Recall, by the definition of ∂e, that if v is the source of e, the above equivalence is
an exact equality.

Similarly,

∂e(vα(G))∼v

{
vre/α(vα(G))/e, v a source of e,
v1/reα(vα(G))/e, v a target of e.

By the multiplicativity of vertex rescaling (3.45), we rewrite this

∂e(vα(G))∼v

{
vre(G)/e, v a source of e,
v1/re(G)/e, v a target of e,

∼v ∂e(G).

Therefore, ∂(G)∼v ∂(vα(G)) for any G ∈ G0(k×) and v ∈ V (G). �

Thus far, we have shown that the operator ∂ is well-defined on Q[G]/(∼ord,∼v).
Next we show that the operators ∂e commute.

Lemma 3.46. Contractions along different edges commute in Q[G]/(∼ord,∼v),
that is, ∂e ◦ ∂e′ = ∂e′ ◦ ∂e.

Proof. There are two cases to consider: when the edges e and e′ form a cycle in G,
and when they do not.

If e∪ e′ is a union of loops in G, then, by Definition 3.33, ∂eG = ∂e′G = 0. If
e∪ e′ is a loop in G, then e′ defines a loop in ∂eG, and e a loop in ∂e′G. Therefore,
∂e ◦ ∂e′G = ∂e′ ◦ ∂eG = 0.

If e ∪ e′ is not a cycle in G, there is a spanning tree T such that e, e′ ⊂ E(T ).
By Lemma 3.40, write G such that the edges of T are labeled by 1. In this case,
∂e ◦ ∂e′G = (G/e′)/e = G/{e′ ∪ e} = ∂e′ ◦ ∂eG. �

We are now ready to prove Theorem 3.35.
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Proof of Theorem 3.35. Lemma 3.43 shows that the operator

∂ :Q[G]/(∼ord,∼v)→Q[G]/(∼ord,∼v)

is well-defined.
To see that ∂ ◦ ∂ = 0, write

∂ ◦ ∂ =
∑

e∈E(G/e)

(−1)ω(e)−1∂e

( ∑
e′∈E(G)

(−1)ω(e
′)−1∂ ′e(G)

)
.

Assume without loss of generality that ω(e) < ω(e′). Then the term ∂e ◦ ∂e′

appears in ∂ ◦ ∂ with sign (−1)ω(e)(−1)ω(e
′), while ∂e′ ◦ ∂e appears with sign

(−1)ω(e)−1(−1)ω(e
′). By Lemma 3.46, ∂e ◦∂e′ = ∂e′ ◦∂e. Thus the two contributions

cancel.
To see that ∂ is a degree-one operator, note that if G/e is not 0, then

h1(G)= h1(G/e).
However,

|V (G/e)| = |V (G)| − 1+ (h0(G/e)− h0(G)).

Recall from (3.10) that if G ∈ G1L
•

i , the degree is given by

i = h1(G)− |V (G)| + h0(G).

Similarly, the degree of (ω̂e,G/e) is given by

h1(G/e)− |V (G/e)| + h0(G/e)

= h1(G)−
(
|V (G)| − 1+ (h0(G/e)− h0(G))

)
+ h0(G/e)

= h1(G)− |V (G)| + h0(G)+ 1= i + 1. �

So far, we have shown that Q[G]/(∼ord,∼v) is a bigraded DGA and that Z is a
homomorphism of algebras from Q[G]?

•
/(∼ord,∼v) to Alt Z•1L(�

2•−?). However,
we are ultimately interested in graphs G1L that correspond to A×1L under the algebra
homomorphism Z defined in Section 3B. In Section 3D, we define the algebra of
admissible graphs, and show that G1L is a DGA under the differential defined in
this section. In Section 3E, we show that G1L is isomorphic to A×1L as a DGA.

3D. Admissible graphs. So far, we have said nothing about admissible cycles. By
the arguments presented in Sections 3B and 3C, there is an algebra homomorphism

Z :Q[G]/(∼ord,∼v)→ Alt Z•1L(�
2•−?).

Theorem 3.32 shows that generators of Q[G]/(∼ord,∼v) map to generic P1
k-linear

cycles under Z , not necessarily to admissible ones. In this section, we define a
subalgebra of admissible graphs, which, in Section 3E, we show corresponds to
admissible cycles.
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There is a compact way of reading off loop coefficients for graphs if the graph
is parametrized as in Lemma 3.40, by setting each label of a spanning tree to 1.

Lemma 3.47. Consider a connected graph G ∈Q[G]/(∼ord,∼v). Each spanning
tree T of G defines a loop basis of H 1(G), the loop coefficients of which are the
labels of the edges E(G) \ E(T ).

Proof. Each spanning tree of a connected graph defines a set of loops in G as
follows: For a spanning tree T , each oriented edge e ∈ E(G) \ E(T ) defines a
graphical loop, Le, in conjunction with a subset of E(T ). The orientation of the
graphical loop is determined by the orientation of e. The rank of the loop space
of G is rk H 1(G)= |E(G)|− |V (G)|+1. Since |E(T )| = |V (G)|−1, we see that
rk H 1(G)= |E(G)\E(T )|. Furthermore,

⋃
e∈E(G)\E(T ) E(Le)= E(G). Therefore,

the set {Le}e∈E(G)\E(T ) defines a basis of H 1(G).
By choosing a parametrization where T is labeled by ones, the graphical loop

coefficient Le is exactly the label of e. �

We are now ready to define a class of graphs called admissible graphs. We show
in Section 3E that these correspond to admissible cycles under the homomorphism
Z defined in Section 3B.

Definition 3.48. A graph G ∈ G0(k×) is admissible if:

(1) The connected components of G are strongly connected.

(2) There is no graphical loop in G that has loop coefficient 1.

We recall the definition of a strongly connected graph in the first condition.

Definition 3.49. An oriented graph is strongly connected if, for any two vertices
v,w ∈ V (G), there is a path from v to w and one from w to v which respect the
orientation of the edges of G.

By Lemma 3.47, Definition 3.48 implies that, if a graph G ∈ G0(k×) can be
parametrized such that there exists a loop with all edged labeled by ones, then G
is not admissible.

Finally we add one more equivalence relation among graphs that is useful in
Section 3E.

Definition 3.50. For G ∈G, let G ∈G be the graph with the same underlying labled
unoriented graph structure, but with the orientations of every edge switched. De-
fine an equivalence relation ∼ori that relates graphs with all orientations switched:
G ∼ori G.

Example 3.51. G =

•

•

•

'' 1
gg
r1r2

��r3r4/r2 OO r2r5/r4
77
1

=⇒ G =

•

•

•

gg 1
''
r1r2

OO
r3r4/r2 ��r2r5/r4

ww

1
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Switching the orientation of all edges of a graph corresponds to a reparametriza-
tion of Z(G). If the ω(e)-th edge of G corresponds to the parametrization φω(e) =
1− ti/(aω(e)t j ), then the ω(e)-th edge of G corresponds to the parametrization
φ̄ω(e)=1−t j/(aω(e)ti ), which differs from φω(e) by the change of variables ti→1/ti .
We show that these two are both parametrizations of the same cycle in Section 3E,
Corollary 3.61.

Definition 3.52. There is a subalgebra

G1L ⊂Q[G]/(∼ord,∼v,∼ori)

generated over Q by admissible graphs.

G1L =Q[G | G ∈ G admissible]/(∼ord,∼v,∼ori).

Lemma 3.53. The differential operator ∂ restricts to a differential operator on G1L .

Proof. By the Leibnitz rule, it is sufficient to consider connected graphs. We show
that if G is an admissible graph, then so is ∂e(G) for any e ∈ E(G).

First, we check that if G is strongly connected, then G/e is as well. If v,w∈V (G)
are in the same connected component of G/e, then the paths between v and w are
either shortened by the contraction of the edge e, or unaffected. Therefore, the
connected components of G/e are strongly connected, as desired.

As taking the derivative along any edge does not affect the loop coefficient of
any loop in G, we have ∂e(G) ∈ G1L

•

?+1 for G ∈ G1L
•

?. �

Therefore, G1L is a sub-DGA of Q[G]/(∼ord,∼v,∼ori). We show that the homo-
morphism Z defined in Section 3B is well-defined on Q[G]/(∼ord,∼v,∼ori).

Theorem 3.54. Let G be as in Definition 3.50. The graphs G,G ∈Q[G]?
•

map to
the same algebraic cycle in Alt Z•1L(�

2•−?) under Z.

Proof. Recall from Theorem 3.19 and (3.25) that, given a basis β = {L1, . . . , L•}
of H 1(G), the cycle Z(G) is defined by the set of equations{

1= χG(L i )
∏

e∈E(L i )

(1−φω(e))ε(e,L i )

}
L i∈β

.

Note that the set β also defines a basis of H 1(G), and that χG(L i )= (χG(L i ))
−1

for each L i ∈ β, as the only difference between G and G is the orientation of the
edges. Similarly, the function ε(e, L i ) defined on G is the negative of the same
defined on G. Therefore, the cycle Z(G) is defined by the set of equations{

1= (χG(L i ))
−1

∏
e∈E(L i )

(1−φω(e))−ε(e,L i )

}
L i∈β

.

That is, Z(G) and Z(G) are defined by the same algebraic cycles. �
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Therefore, Z :Q[G]?
•
/(∼ord,∼v,∼ori)→ Alt Z•1L(�

2•−?) is a well-defined alge-
bra homomorphism. In the following section, we show that this sub-DGA is iso-
morphic to A×1L .

3E. From graphs to admissible cycles. We now return to the homomorphism de-
fined in Section 3B. In this section, we show that the map Z defined in (3.17),
restricts to an isomorphism of DGAs between G1L and (A×1L).

To compare the DGA of admissible cycles to the DGA of admissible graphs, we
show that the homomorphism Z , when restricted to G1L is compatible with both
the differential on (A×1L), defined in (2.6), and the differential on G1L

•

?, defined in
Theorem 3.35.

Recall from Definition 2.3 the faces FI,J of �n .

Lemma 3.55. For G ∈ G1L , the derivative is

Z(∂e(G))=
{

Z(G)∩ Fω(e),∅ if sgnω(e) =+,
Z(G)∩ F∅,ω(e) if sgnω(e) =− .

Proof. Consider G to be a connected graph. We consider two cases, when ∂e(G)
is connected, and when it is a disconnected graph.

The cycle Z(G) is equipped with a parametrization

φ : P
|V (G)|−1
k → (P1

k)
|E(G)|,

where the coordinate of Z(G) corresponding to the ω(e)-th edge is

φω(e) =
(

1− xaω(e)y
)sgnω(e)

.

Recall from Definition 2.12 that Z(G) is the cycle defined by intersecting the image
of φ with �|E(G)|. In other words, Z(G)= i∗φ∗, where i :�|E(G)| ↪→ (P1

k)
|E(G)|.

Let ιI,J : FI,J →�n be the injection into the appropriate face of codimension
|I ∪ J |. If sgnω(e) =+ (resp. sgnω(e) =−), the intersection Z(G)∩ Fω(e),∅ (resp.
Z(G)∩ F∅,ω(e)) is the further pullback ι∗ω(e),∅(i

∗φ∗) (resp. ι∗∅,ω(e)(i
∗φ∗)).

For the remainder of this proof, we assume that sgnω(e) = +. The calculation
for sgnω(e) =− is similar, and left to the reader.

The intersection Z(G)∩ Fω(e),∅ imposes the restriction x = ae y. Therefore, it
can be parametrized by

φ∂e : P
|V (G)|−2
k → (P1

k)
|E(G)|−1, (3.56)

formed by removing the ω(e)-th coordinate of φ and replacing each instance of x
with ae y. If ∂e(G) is connected, this is exactly the parametrization defined by the
contracted graph. Therefore, the lemma holds when ∂eG is connected.
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If ∂e(G) =
∏k

i=1 Gi is disconnected, then the parametrization defined by this
disconnected graph,

φ′ :

k∏
i=1

P
|V (Gi )|−1
k → (P1

k)
|E(G)|−1,

is different from the parametrization, φ∂e , defined by the contraction ∂e in (3.56).
However, consider the affine space A|V (G)|−2

k defined by setting x = ae y = 1
in P

|V (G)|−1
k . Then there is a product of corresponding affine spaces,

∏k
i=1 A|V (Gi )|−1

k ,
associated to the disconnected parametrization, each formed by setting the variable
of the new vertex defined by the contraction to 1. The two parametrizations φ∂e

and φ′ agree on these affine spaces. On the hyperplanes at infinity, at least one of
the parametrizing variables is 0. Since G is strongly connected, none of the coordi-
nates correspond to purely sink vertices in either G or ∂e(G). Therefore, setting a
parametrization variable to 0 corresponds to setting a coordinate of the image of φ′

or φ∂e to 1. However, �|E(G)|−1 omits precisely the points of P
|E(G)|−1
k where one

of the coordinates is set to 1. Therefore, the parametrized cycles Z(∂eG)= (i∗φ′
∗
)

and ∂e Z(G)= i∗φ∂e ∗ agree on the pullback to P
|E(G)|−1
k , as desired. �

This is the key step to understanding the relationship between the differential
on graphs and the differential on cycles.

Theorem 3.57. If G ∈ G1L , then

∂Z(G)= Z(∂(G)).

Proof. Recall from (2.6) that

∂Z(G)=
∑

e∈E(G)

(−1)ω(e)−1(∂ω(e),∅− ∂∅,ω(e))Z(G).

From Lemma 3.55,

∂Z(G)=
∑

sgn(e)=+

(−1)ω(e)−1(Z(∂eG)− ∂∅,ω(e)Z(G))

+

∑
sgn(e)=−

(−1)ω(e)−1(Z(∂eG)− ∂ω(e),∅Z(G)).

The theorem follows from the fact that ∂∅,ω(e)Z(G) is empty if sgn(e) = + and
∂ω(e),∅Z(G)=∅ if sgn(e)=−.

As above, we only do the calculation for sgn(e) = +, as the calculation for
sgn(e)=− is similar. By definition,

∂∅,ω(e)Z(G)= Z(G)∩ F∅,ω(e).

That is, the coordinate φω(e) = 1− x/(ae y) = ∞. This implies that x/y = ∞.
Since G is strongly connected, there is another edge e′ such that te = se′ . Then
φω(e′) = 1− y/(ae′x)= 1. Therefore, ∂∅,ω(e′)Z(G)=∅. �
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For any two edges e, e′ ∈ E(G), with G ∈ G1L , the derivatives ∂e and ∂e′ com-
mute, by Lemma 3.46. Therefore, we can talk about contracting a subgraph of
another graph, without noting the order in which the edges are contracted.

Definition 3.58. Let G ′ ⊂ G, with E(G ′)= {e1, . . . , en}. We write

∂G ′(G)= ∂en ( · · · (∂e1(G)) · · · ),

where ei ∈ E(G ′).

Notice that if the contracted graph G ′ is not a subtree of G, then ∂G ′(G)= 0.
We use this shorthand to show that the graphs in G1L

•

? correspond exactly to
admissible cycles in (A×1L)

•

?. Recall that an algebraic cycle in Z•(Spec k, ?) is
admissible if it intersects all faces of �2•−? in codimension • or not at all.

Theorem 3.59. For G ∈ Q[G]/(∼ord,∼v,∼ori), the cycle Z(G) is admissible if
and only if G ∈ G1L .

Proof. It is sufficient to look at connected graphs.
Consider a G ∈ Q[G]/(∼ord,∼v,∼ori) such that there exists a loop, L with

loop coefficient 1 in G. Specifically, chose a graph G 6∈ G1L
•

?. By Lemma 3.40,
we can label the edges of any spanning tree of L by ones. Since rescaling does
not change the loop coefficient by Lemma 3.31, all edges of L can be labeled by
ones. Let T ⊂ L be a subgraph of the loop L consisting of all but two of the
edges of L . Suppose E(L \ T )= {e1, e2}. Let I = {e ∈ E(T ) | sgne =+} and J =
{e∈ E(T ) | sgne=−}. The graph ∂T (G), formed by taking the derivative of G along
the edges in T , corresponds to intersecting Z(G) with the face FI,J . The ω(e1)-th
and ω(e2)-th coordinate of Z(∂T (G)) are of the form sgn(ei )(1− x/y)sgn(ei ) for
i ∈ {1, 2}. This cycle is not admissible.

To see this, notice that the intersection of Z(∂T (G)) with the face Fω(e1),∅ (if
sgn(e1) = +) or F∅,ω(e1) (if sgn(e1) = −) also sets the ω(e2)-th coordinate to 0,
giving it the wrong codimension.

Conversely, suppose G ∈ G1L
•

?. Specifically, G is strongly connected. Let G ′

be a (not necessarily connected) subgraph of G. Let I = {e ∈ E(G ′) | sgne =+}

and J = {e ∈ E(G ′) | sgne = −}. Consider DG ′(G). By Lemma 3.53, DG ′(G) is
also in G1L

•

?. If G ′ is not a forest, then DG ′(G)= 0. Therefore, we only consider
the case when G ′ is a forest (possibly consisting of a single tree). By Lemma 3.55
DG ′(G) amounts to intersecting Z(G) with the face FI,J . Since G ′ is a forest,
h1(G ′)= 0, and h1(G)= h1(DG ′(G)). Therefore Z(G)∩ FI,J has codimension ?
in F , making it admissible.

Finally, if G is not strongly connected, then there exists two vertices v1 and v2

such that there is not an orientation-respecting path in G from v1 to v2. Let G1 be
the largest subgraph of G defined by the vertices that can be reached by orientation-
respecting paths from v1. Let G2 be the largest subgraph of G defined by the
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vertices that can reach v2 by orientation-preserving paths in G. By construction,
G1 and G2 are disjoint subgraphs:

G =

•
v1

G1

•
v2

G2oo

oo

cc
}}
~~

||

•

•

•

•
T

In particular, the subgraph G1 has i edges flowing into its vertices from the
rest of the graph, G \ G1. Let T be a subtree of G1 connecting all the sink ver-
tices of these incoming edges. The derivative ∂T (G) has at least two connected
components. Write

∂T (G)=±G ′∂T (G1),

with G ′ the (possibly disconnected) subgraph of ∂T (G) that contains G2 as a
subgraph. The graph G ′ has a sink vertex in the connected component contain-
ing (G2). Therefore, the cycle Z(G ′) has at least two coordinates of the form
φi = (1− x/(ay))sgni and φ j = (1− z/(by))sgn j . Setting the coordinate φi = 0(∞)
sets the coordinate φ j = 0(∞), by the arguments above. Since the derivative ∂T (G)
has the wrong codimension intersecting the face Fi,∅(∅,i), the cycle Z(G) is not
admissible. �

It follows from Theorems 3.26, 3.32, 3.54 and 3.59, that the homomorphism Z
is surjective:

Corollary 3.60. The homomorphism

Z : G1L
•

?→ (A×1L)
•

?

is a surjection of DGAs.

Proof. By Theorems 3.26, 3.32, 3.54 and 3.59, we see that Z is a homomorphism
of DGAs with image contained in (A×1L)

•

?. We check surjection of this map. By
definition, if Z ∈ (A×1L)

•

?, there is a parametrization φ : P•−?k → (P1
k)

2•−?, with
φi = 1− xi/(ai yi ). Assuming that Z is reducible, Corollary 3.27 states that this
defines a connected graph G with 2 •−? edges and •− ?+ 1 vertices. Since Z is
admissible, by Theorem 3.59, G ∈ G1L . �

It remains to show that Z is an isomorphism.
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Corollary 3.61. Any cycle in (A×1L) remains invariant under inverting all the
parametrizing variables, or scaling some of them by a constant multiple.

Proof. This follows from Theorem 3.19.
Let Z ∈ (A×1L) be the cycle parametrized by the variables {v1, . . . , vn} such that

each coordinate is of the form φ
sgni
i with

φi = 1−
vis

aivit

,

and vis , vit ∈ {v1, . . . , vn}. Let Z′ ∈ (A×1L) be the cycle with coordinates

φi = 1−
bisvis

ai bitvit

for bi j ∈ k×, and Ẑ ∈ (A×1L) be the cycle with coordinates

φi = 1−
vit

aivis

.

The claim of this corollary is that

Z′ = Z= Ẑ. (3.62)

Algebra and writing the cycles out in the form of (3.20) shows that these equal-
ities hold. �

In terms of graphs, the first equality in (3.62) corresponds to rescaling at vertices
to pass from G to v1b1( · · · (vn bn (G)) · · · ). The second equality corresponds to
changing the orientations of all the edges in the graph.

We are now ready to show that the two algebras G1L
•

? and (A×1L)
•

? are isomorphic.

Theorem 3.63. The map Z : G1L
•

?→ (A×1L)
•

? defined in (3.17) is an isomorphism
of DGAs.

Proof. Theorem 3.57 shows that Z is a homomorphism of DGAs. Corollary 3.60
shows that this map is surjective.

Rescaling a vertex on a graph G, that is passing from G to vα(G), corresponds
to rescaling the corresponding parametrizing variable in Z(G). Similarly, inverting
the orientations of all the edges, passing from G to G, corresponds to inverting all
the parametrizing variables in Z(G). Since, by Corollary 3.61, neither of these
reparametrizations changes the underlying cycle, the map Z is one-to-one.

Explicitly, define a map

G : (A×1L)
•

?→ G1L
•

?

that is a left inverse of Z . For any cycle parametrized in a P1
k-linear form,

G(Alt[φsgn1
1 , . . . , φ

sgnn
n ])
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is a graph constructed as follows: Write each φi as 1− x/(ai y). If φi is a constant,
write it as 1− 1/(ai ). Each independent variable in Alt[φ1, . . . , φn] corresponds
to a vertex. For each φi , draw an oriented edge of G, oriented from the numerator
variable to the denominator variable, labeled by ai . In this scheme, constant coor-
dinates correspond to one edge loops. The term ω is defined by the ordering and
signs of the φi . �

4. Elements of H0(B(G1L))

In the previous section, we establish an isomorphism between the DGA of P1
k-

linear cycles, (A×1L)
•

?, and the DGA of admissible graphs G1L
•

?. We use this to
establish that everything that needs to be done for (A×1L)

•

? cycles can be done on
the algebra of graphs G1L

•

?. For the rest of this paper, we restrict our attention to
the DGA of graphs.

In particular, to define the category of motives, we are interested in studying the
Hopf algebra

H0(B(G1L))' H0(B(A×1L)).

We maintain the definition of the bar construction B(G1L) as in Definition 2.1,
with A = G1L . Following convention, we indicate the tensor product in the bar
construction by |.

As in Definition 2.1, write the degree and tensor graded components of B(G1L)

as
B(G1L)

n
m =

⊕
∑n

1(wi−1)=m

[G1L
•

w1
| · · · |G1L

•

wn
]. (4.1)

Note that, as in Definition 2.1, the degree of a graph in the bar construction is shifted
from the degree of a graph in the algebra. That is, if G ∈G1L

•

j , then G ∈ B(G1L)
1
j−1.

Definition 4.2. Due to the multiple degrees assigned to graphs in an algebraic and
bar construction context, we write degB (as opposed to simply deg) for the shifted
degree of a graph as it contributes to the total degree in the bar construction.

Explicitly, if G ∈ G1L
•

j , deg(G)= j then degB(G)= j − 1.
To set notation, we define differentials that make the bar complex (B(G1L), ∂+µ)

a bicomplex. Write ∂G and µG for the derivatives and product on the graphs. Then
∂ and µ are the degree-one operators on B(G1L) induced by ∂G and µG, calculated
by the degree of graphs in the bar construction under the Leibnitz rule. Let ∂ j be the
differential operator that acts by (−1)degB Gi id on the first j−1 tensor components,
by ∂G on the j -th tensor component, and by id on the remaining tensor components.
Then for [G1 | · · · |Gn] ∈ B(G1L)

n
m , write
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∂[G1 | · · · |Gn] :=
∑
j=1

∂ j [G1 | · · · |Gn]

=

n∑
j=1

(−1)
∑ j−1

k=1 degB(Gk)[G1 | · · · | ∂G(G j ) | · · · |Gn], (4.3)

is a degree-one differential operator ∂ : B(G1L)
n
m→ B(G1L)

n
m+1. Similarly, let µ j

be the differential operator that acts by (−1)degB Gi id on the first j − 1 tensor
components, by (−1)degB G jµ on the j-th and ( j+1)-st components, and as id on
the remaining components. Then

µ[G1 | · · · |Gn] :=
∑
j=1

µ j [G1 | · · · |Gn]

=

n−1∑
j=1

(−1)
∑ j

i=1 deg Gi [G1 | · · · |G j ·G j+1 | · · · |Gn]. (4.4)

This is a degree-one differential operator, as [G1 | G2] ∈ B(G1L)
2
m1+m2−2 while

µ[G1 |G2] = [G1G2] ∈ B(G1L)
1
m1+m2−1 for Gi ∈ G1L

ri
mi

.
In order to study elements of H i (B(G1L)), identify elements in the kernel of

D+µ :
⊕
n≥1

B(G1L)
n
i →

⊕
n≥1

B(G1L)
n
i+1.

By Definition 2.8, we see that elements of this kernel are exactly the elements
with completely decomposable boundaries.

Remark 4.5. Very few generators of G1L
•

? as an algebra have a decomposable
boundary. The completely decomposable objects in B(G1L) correspond to linear
combinations of tensor products of graphs.

In this paper, we wish to study H 0(B(G1L)). Therefore, we study completely
decomposable elements of

⊕
i≥1 B(G1L)

i
0 defined by completely decomposable

elements of B(G1L)
1
0. From Definition 2.8, a completely decomposable element,

ε, of B(G1L)
1
0 defines a trivial cycle in H 0(B(G1L)) if it can be written as the

coboundary of another sum of graphs
∑

i Gi ∈ G1L
•

2,

∂
∑

i

Gi = ε,

or if it can be written as the sum of a product of graphs,

µ
∑

i

[G1,i |G2,i ] = ε.

In this section, we first give a result that greatly reduces the number of algebraic
cycles in A×1L

•

1 one needs to construct H 0(B(G1L)).
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Theorem 4.6. If ε ∈ A×1L
•

i is a completely decomposable algebraic cycle which
can be written as Z(

∑
G j ), where each G j ∈ G1L

•

i , and some G j have valence-
two vertices, then ε defines a coboundary element of B(A×1L).

In particular, taking i = 1, we see that sums of graphs involving valence-two
vertices have trivial motivic contributions. This is a major calculational aid in that
it identifies a large class of cycles that we need not consider for motivic content.
The proof of this theorem is the subject of Section 4A. See Theorem 4.16 for the
graphical version of this statement. In Section 4B1 we give examples of some
completely decomposable graphs.

Since we are only interested in the zeroth cohomology henceforth, for the re-
mainder of this paper we only consider graphs in G1L

•

1, that is, cycles in A×1L
•

1.

4A. Valence-two vertices. In this section we show that there is a large class of
graphs in G1L that correspond to the trivial cycles in H i (B(G1L)). Namely, we
show that completely decomposable sums of graphs with two valent vertices can
be written as the coboundary of an element of G1L

•

i−1. We start by studying the
properties of decomposable graphs in G1L with two valent vertices.

Definition 4.7. A handle of length n > 1 is a linear subgraph h ∈ G defined by n
edges and n+1 vertices {v0, . . . , vn} labeled as follows: The vertex vi has valence 2
if 1≤ i < n. The vertex v0 and vn have valence 1 in the handle h, but strictly greater
than 2 in G. Write E(h)={e1, . . . , en

}, with ei the edge in h connecting vi−1 and vi .
Write H(G) to the be set of handles of a graph G. Further, write Hodd(G) for the
set of handles of odd lengths and Heven(G) for the set of handles of even length.

Minimally decomposable sums of graphs can be classified by the number of
handles they have.

Lemma 4.8. Consider G ∈ G1L , a connected graph with handles, H(G) 6= 0. Then∑
e∈E(h)

(−1)ω(e)−1∂eG =
{

0 if h ∈ Heven(G),
(− 1)ω(e

1)−1∂e1 G if h ∈ Hodd(G).

Proof. The essence of this proof comes from showing the relation

(−1)ω(e
i )∂ei G =−(−1)ω(e

i+1)∂ei+1 G. (4.9)

To see this, choose a representation of G such that the edges of h are labeled by
ones.

Write c(ei , ei+1) ∈ S|E(G)| as the cyclic element of order |ω(ei+1) − ω(ei )|.
Write this as

c(ei , ei+1) := (ω(ei ))(ω(ei )+ 1) . . . (ω(ei+1)− 1)(ω(ei+1)).
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The sign of this permutation is given by sgn(c(ei , ei+1))= (−1)ω(e
i+1)−ω(ei )+1. In

this notation, the orderings of the contracted graphs can be related by

ω̂ei+1 =

{
c(ei , ei+1)ω̂ei if ω(ei ) < ω(ei+1),

c(ei , ei+1)−1ω̂ei if ω(ei ) > ω(ei+1).

Since the underlying contracted graphs, G/ei
= G/ei+1, are the same, we have, by

Lemma 3.8,
(−1)ω(e

i+1)−ω(ei )+1∂ei+1(G)= ∂ei G,

which is equivalent to (4.9).
Summing over all edges in a fixed handle h gives∑

e∈E(h)

(−1)ω(e)∂e(G)=
{

0 if n even,
(−1)ω(e

1)∂e1(G) if n odd. �

Call edges of G that are not handles, interior edges of G.

Definition 4.10. By abuse of notation, write G̊ to indicate the interior graph of G.
This is the graph G with all its handles removed (not contracted). More precisely,

G̊ = G \ {e | e ∈ E(h), h ∈ H(G)}.

In this section, we write

∂|H (ω,G)=
∑

e∈H(G)

(−1)ω(e)−1∂e(G), (4.11)

∂|G̊(G)=
∑
e∈G̊

(−1)ω(e)−1∂e(G), (4.12)

so that ∂ = ∂|H + ∂|G̊ . This allows for a neat reorganizing of the terms in the
derivative ∂G by interior edges and edges with valence-two endpoints.

Corollary 4.13. The derivative is

∂(G)=
∑

e∈E(G̊)

(−1)ω(e)−1∂e(G)+
∑

e∈h, h∈Hodd(G)

(−1)ω(e1(h))−1∂e1(h)(G).

As a direct corollary, we see that graphs with valence-two vertices form a sep-
arate class of graphs in themselves. If ε ∈ B(G1L) is a minimally decomposable
sum of graphs, then either all the summands involve a valence-two vertex, or none
of them do. In fact, one can be more specific than this.

Corollary 4.14. Consider a minimally decomposable sum of graphs ε =
∑

j G j

in G1L
•

i of fixed degree. The summand graph G j has a valence-two vertex if and
only if the graphs in each of the summand have the same number of handles:

|H(G j )| = |H(G j ′)| for all j 6= j ′.
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Proof. If ∂e(G j ) is not decomposable, then it must cancel with a sum of another
derivative ∂e′(G j ′). By Lemma 4.8 and Corollary 4.13, applying ∂ does not change
the number of handles on a graph. Since ε has a minimally completely decompos-
able boundary, there are no summands that do not contribute to the cancellation of
the terms in ∂e. Therefore, G j and G ′j must have the same number of handles. �

Finally, we show that sums of graphs with decomposable boundaries and valence-
two vertices characterize trivial classes in H 0(B(G1L)). In the proof of this theo-
rem, we work up to products of graphs. For this, we establish some notation.

Definition 4.15. For G a connected graph in G1L , if ∂eG is decomposable, we
write

∂eG .
= 0.

In general, we write ∂G .
= G ′, where G ′ is a linear sum of connected graphs,

that is, G ′ is the sum of graphs corresponding to edge differentials that do not split
the graph into two connected components.

Theorem 4.16. Let ε =
∑

j (G j ) ∈ G1L
•

i be a sum of graphs with minimally com-
pletely decomposable boundary, such that each graph has bivalent vertices. Then
there exists a sum of graphs η ∈ G1L

•

i−1 such that [∂η] = [ε]. In other words, [ε] is
exact.

Translated into the language of algebraic cycles, instead of graphs, this theorem
gives Theorem 4.6.

Proof. Let ε be a minimal completely decomposable sum of graphs. Write ε =∑
G∈S G, where S is the set of summands (not including multiplicity). By Corollary

4.14, each G ∈ S has the same number of total handles. That is, H(G)= m for all
G ∈ S. It suffices to work with sums of connected graphs.

We can partition the underlying set of graphs S by the number of odd handles
they have. Write εi =

∑
G∈Si

G, where Si = {G ∈ S | Hodd(G) = i}. In this way,
we may write

ε =

n∑
i= j

εi .

In other words, while every graph in S has m handles, they all have between j and
n handles of odd length. From equations (4.11) and (4.12), write the differential
operator as ∂ = ∂|H + ∂|G̊ . Then the sum ∂(ε) decomposes into n− j + 1 sums
that evaluate to 0, up to decomposable elements. By collecting terms according to
the number of odd handles are present in the graph:

∂|G̊εn
.
= 0,

∂|Hεn + ∂|G̊εn−1
.
= 0,...

∂|Hε j
.
= 0,

(4.17)
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with j ≥ 0.
In order to better understand the cancellations represented by the equations

in (4.17), further classify the handles with odd length of the graphs G ∈ Si . Write

HR(G)= {h ∈ Hodd(G) | ∂|h(G)+∂|h′(G ′)= 0 for some G ′ ∈ Si , h′ ∈ Hodd(G ′)}.

This is the set of handles that cancel with other handles of other graphs in Si . Notice
that G and G ′ must be different graphs, otherwise G would be a torsion element
and thus 0. Similarly, write

HI (G)={h∈Hodd(G)|∂|h(G)+(−1)ω(e)−1∂e(G ′)=0 for some G ′∈ Si−1, e∈G̊ ′}.

This is the set of handles that cancel with interior edges of graphs in Si−1. Thus
defined, Hodd(G)= HR(G)∪ HI G.

By construction, no graph in S has fewer than j handles of odd length. Since
∂|Hε j

.
= 0, for every G ∈ S j we have HR(G)= Hodd(G).

We define the η =
∑n

i= j ηi+1 desired in the theorem by extending specific even
handles, h ∈ Heven(G), of summands of ε (G ∈ S). The specifics of which handles
are extended is described below.

The construction proceeds by induction on the number of odd handles. For j > 0,
Hodd= HR(G) 6=∅ for all G ∈ S j . For every graph handle pair, (G, h) and (G ′, h′),
for G,G ′ ∈ S j and h ∈ HR(G), h′ ∈ HR(G ′) such that ∂|h(G)+∂|h′(G ′)= 0, there
is a G̃ ∈ S̃ j+1 with odd handles corresponding both to h and h′. Namely, this is the
graph constructed by extending the even handle of G correspond to the odd handle
h′ ∈ Hodd(G ′) to an odd handle. Order the edges of h and h′ ∈ Hodd(G̃) so that
∂|h(G̃)= (−1) j G and ∂|h′(G̃)= (−1) j G ′.

Write
η j+1 =

∑
G̃∈S̃ j+1

G̃

with S̃ j+1 the set of summands of η j+1. This is a minimal set of the G̃s constructed
above to satisfy ∂|Hη j+1 = ε j .

If j = n, this concludes the proof, as, by construction,

∂|G̊ηn+1
.
= 0.

Therefore, ∂ηn+1 = εn , as desired.
If j = 0, then HR(G) = ∅ for all G ∈ S0, and ∂|Hε0 = 0. Therefore, we may

construct η1 by extending an arbitrary even handle per graph. This construction
is not unique. However, there is a restriction on the choice of edge to extend, as
outlined towards the end of this proof. As above, ∂|Hη1 = ε0.

To understand ∂|G̊η j+1 for n > j ≥ 0, note that

∂|H∂|G̊η j+1 =−∂|G̊∂|Hη j+1 =−∂|G̊ε j
.
= ∂|Hε j+1.
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The first equality comes from the anticommuting of derivatives (as argued in the
proof of Theorem 3.35, the second from the construction of ∂|Hη j+1 and the last
from (4.17). This implies that

∂|H∂|G̊η j+1 =
∑

G̃∈S̃ j+1

∑
h∈HI (G̃)

∂|h∂| ˚̃G
G̃ .
=

∑
G∈S j+1

∑
h∈HI (G)

∂|hG = ∂|Hε j+1.

By the middle equality, we may divide the summands of ∂|G̊η j+1 in two groups:
those that correspond to elements of S j+1 (ε j+1(1)) (the G ∈ S j+1 such that
HI (G) 6= ∅), and those that differ from elements of S j+1 by the position of one
handle of odd length R j+1. Write

∂|G̊η j+1
.
= R j+1+ ε j+1(1),

where R j+1 is a sum of terms that differ from summands of ε j by the placement of
one odd handle, and ε j (1) are the summands of ∂|G̊η j+1 that are also summands
of ε j .

We continue constructing ηi by induction on i .
Define εi (2)= εi − εi (1) to be the difference between εi and the quantity εi (1)

defined in the previous inductive step. Consider the sum of graphs −Ri + εi (2),
with Ri as defined in the previous inductive step. Let Ti be the underlying set of
graphs in the sum −Ri +εi (2). By construction each summand in Ri differs from a
summand of εi (2) by the placement of one odd handle. The remaining summands
of εi (2) (those that do not have a corresponding summand in Ri ) are precisely the
G ∈ Si such that HI (G) = ∅. Construct ηi+1 as before, comparing graphs in Ti

instead of S j .
As above, we have

∂|H∂|G̊ηi =−∂|G̊∂|Hηi =−∂|G̊(−Ri−1+εi−1(2))

=−∂|G̊
(
−(Ri−1+εi−1(1))+εi−1

) .
=−∂|G̊(−∂|G̊ηi−1+εi−1)

.
= ∂|Hεi .

Therefore, we may write
∂|G̊ηi

.
= Ri + εi (1).

For n > i > 1, Ri cannot be 0. If Ri = 0, then ε(1)= εi , as every graph G ∈ Si

is such that HR(G) 6=∅. In this case, ∂ηi = εi+1+ εi (2)− Ri . Therefore, we may
write ∂

∑i
j+1 ηk

.
=
∑i

j εk , which contradict that ε is a minimal sum. However, for
n> i = 1, one must be careful to extend even handles of ε0 so that R1 6= 0, otherwise
the induction can’t continue. This choice can always be made by comparing ε0

to ε1.
Finally, if i = n+ 1, note that

∂|G̊ηn+1
.
= 0.

Therefore, the process terminates. �
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So far we have shown a class of minimally decomposable sums of graphs (al-
gebraic cycles) that give rise to trivial motives. We have said nothing about how
to find such minimally decomposable sums. There is as yet a short yet significant
selection of literature on trying to understand this structure [Gangl et al. 2007;
2009; Soudères 2015; 2016a]. In the next section we give some examples of min-
imally decomposable sums in degree 4, only one of which has been previously
studied [Gangl et al. 2009]. As of yet, we do not claim to add to the existing
knowledge about the structure of, and relations between, minimally decomposable
sums, other than identifying further examples. In future work, we hope to return
to this larger class of example to better understand which sums of graphs define
classes in H 0(B(G1L)).

4B. Examples. In this section, we give several examples of classes of H 0(B(G1L)).
Generally speaking, it is nontrivial to find linear combinations of graphs which
define classes in H 0(B(G1L)). Individual graphs do not have decomposable bound-
aries. It is only when summed with appropriate graphs with whom the boundaries
cancel does one find classes in H 0(B(G1L)).

In the following subsection, we give examples of several sums in weight four.

Remark 4.18. In all of these examples in this section, we write only a sum of
graphs in G1L

4
1, and not the full representative in B(G1L). We can do this since the

indecomposable graphs in a completely decomposable sum of graphs determines
its class in B(G1L) (see Remark 2.10).

After giving examples in weight 4, we turn our attention to an particularly nice
infinite family of graphs for which we compute the Hodge realization functor in
Section 5.

4B1. Some minimally decomposable examples in degree 4. In this section we give
several examples of minimally decomposable sums of graphs in weight four. One
of these, Example 4.19, corresponds exactly to the decomposable cycles identi-
fied in [Gangl et al. 2009] that correspond with Li1,1,1,1

( b
a ,

c
b ,

d
c ,

1
d

)
. We also

find a different minimally decomposable sum of graphs that involves the same
unoriented graphs, but with different coefficients and orientations on the edges. In
Example 4.22 we give two minimally decomposable sums that involve a different
underlying graph, though closely related to the underlying graph of the previous
example. Example 4.23 gives the degree-four example of the family of graphs
studied in detail in Section 4B2. (In Section 5C we calculate the Hodge realiza-
tion of these graphs.) Finally, Example 4.24 gives a more complicated minimally
decomposable sum in degree four involving several distinct underlying graphs.

The reader is encouraged to play with these examples and construct others.
There seems to be a lot of variety as to the type and number of underlying graphs
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in a sum that is decomposable. It would be very interesting to understand this
structure better.

Example 4.19. Gangl et al. [2009] define a family of five binary graphs that corre-
spond to Li1,1,1,1

( b
a ,

c
b ,

d
c ,

1
d

)
. In the notation developed here, we depict this same

minimally decomposable sum of trees as

• •

• •

//1

��1 __
1

�� c �� d

//
b
//

a

+

• •

• •

//1

OO1 ��
b

�� c �� d

oo

1
//

a

+

• •

• •

//1

OO1 ��

d
�� c �� b

oo
1
//

a

+

• •

• •

oo 1

��1 ��
a

OO1 �� d

//
b
//

c

+

• •

• •

oo 1

��1 ��
c

OO1 �� d

//
b
//

a

Example 4.20. There is another decomposable sum of graphs involving the same
underlying unoriented graphs:

• •

• •

//1

��1 __
1

�� c OOd

oo

b
//

a

+

• •

• •

oo1

��1 ��
c

OO d OO1

oo

b
//

a

+

• •

• •

oo1

��1 __
b

OO1 OO d

//
a
//

c

+

• •

• •

oo1

��1 __
1

OO d OO b

//
c
//

a

+

• •

• •

//1

��1 __
b

�� c OO d

//
a
oo

1

+

• •

• •

oo1

��1 ��
c

OO d OO b

//
a
oo

1

Remark 4.21. For G ∈ G1L
•

? a connected graph, and β = {L1, . . . , L•} a loop
basis of H1(G), let β index the system of polynomial equations fL i that define the
admissible cycle Z(G) in Theorem 3.19. Namely, fL is the equation

1=
∏

e∈E(L)

ae(1−φw(e))ε(e,L).
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Then reversing the orientation of an edge e in graph G without changing its label
replaces every factor of ae(1 − φw(e)) with (ae(1 − φw(e)))−1. In other words,
such graphs represent closely related algebraic cycles. For instance, in the above
example, the first graph in Example 4.19 and the first graph in Example 4.20 differ
by changing the orientations of the edge labeled b and the edge labeled d. This
is also true of the last graph in the first sum and the second graph in the second
sum. The second graph in the first sum and the fifth graph in the second sum differ
by the orientation of the edges labeled b and d, along with the orientation of two
of the edges labeled 1. Presumably these two sums of graphs give rise to closely
related sums of algebraic cycles.

While the motive associated to the first sum has been studied (see [Gangl et al.
2009], for example) the other appears to be new. We suspect that they define
dependent classes in H 0(B(G1L)). It would be interesting to use the Hodge real-
ization techniques developed in Section 5 and/or other graphical tools to analyze
the motives they represent.

There is a related family of graphs, defined by changing the labelings and ori-
entations of

• •

• •

OO1 OO1

//a
oob

}}1

//
c
oo

d
Example 4.22. The following sum of six diagrams is minimally decomposable:

• •

• •

OO1 OO1

//a
oob

}}1

//
c
oo

d

+

• •

• •

OO1 OO1

//a
oob

==c

oo

1oo
d

+

• •

• •

OO1 OO1

//a
oo1

}}b

//
c
oo

d

+

• •

• •

OO1 OO1

//c
//a

}}b

oo

d
oo

1

+

• •

• •

OO1 OO1

//a
oo1

==c

oo

d
oo

b

+

• •

• •

OO1 OO1

//a
//c

}}1

oo

d
oo

b
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as is this sum of five related diagrams:

• •

• •

//a
oo1

��1 ??d OO1

//
c
//

b

+

• •

• •

//a
oo1

��1 ??b OO1

//
c
//

d

+

• •

• •

//a
//b

OO1 ��1 OO1

//
c
//

d

+

• •

• •

//a
//b

OO1 ??c ��1

oo

1//
d

+

• •

• •

//c
//b

OO1 ??a �� 1

oo

1//
d

Next we present the weight-four example of the necklace graphs that are the
subject of (4.26).

Example 4.23. The following sum of graphs is minimally decomposable:

• •

• •

//a

OO1 �� bOO 1��c

//1
oo

d

−

• •

• •

oo

1/a

OO1 �� bOO 1��c

//1
oo

d

Example 4.24. We end this section with a complicated minimally decomposable
sum that, unlike the previous examples, involves several different types of unori-
ented graphs:

• •

• •

oo c

OO1��1

//

1

��a

__
b

��d

+

• •

• •

oo1

OO1��c

//

1

__a
��

b

��d

+

• •

• •

//

1

ood

��
c

OO1

//b
oo

1

ooa

+

• •

• •

//

1
ood

��
1

OO1

oob
oo

c

//a
+

• •

• •

oo
c
ood

OO1��
1

oob
//
1

//a
+

• •

• •

//

1
//

d/c

��
1

OO1

oob
oo

c

//a

It is highly likely that the classes defined by all of the above examples are related.
It would be very interesting to work out the precise dependencies.
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These examples illustrate that, even in the vastly simplified case of A×1L , there is
a richness and complexity amongst the minimally decomposable classes of B(G1L).
By further studying these minimally decomposable sums of graphs, we hope to gain
a better understanding of the structure of (our subcategory of) mixed Tate motives.

4B2. The n-beaded necklace graph. In this section, we introduce an infinite family
of terms in H 0(B(G1L)), which we refer to as necklace diagrams. In Section 5, we
show that these correspond to trivial classes.

Definition 4.25. The necklace graph with n beads is the graph of the form

G∗(a0, . . . , an)=

• •

• •

∗
a0

��a1 OO 1 ��1 OO an (4.26)

with ∗ ∈ {L , R} (left, right) to indicate the orientation of the marked edge. The
ordering is given as follows: each edge labeled ai is in the (2i+1)-st position;
for i > 0 the “parallel edge” labeled 1 (which shares vertices with that labeled ai )
is in the 2i-th position. The signs associated to the edges are all positive.

When n = 0, we write

G(a)= G R(a)= GL(a)=
•

ooa
(4.27)

We consider the following linear combination of n-beaded necklace graphs:

εn(a0, . . . , an)= GL(a0, a1, . . . , an)−G R
( 1

a0
, a1, . . . , an

)

=

• •

• •

oo
a0

��a1 OO 1 ��1 OO an −

• •

• •

//
1/a0

��a1 OO 1 ��1 OO an (4.28)

To avoid extreme notational complexity in keeping track of labels of graphs, we
introduce some notation.

Definition 4.29. Define a set n = {1, . . . , n}. We define an to be the n-tuple
(a1, . . . , an). For any S ⊂ n, an\S = (a1, . . . , âS, . . . , an) is the n−|S|-tuple with
the elements labeled by s ∈ S removed.

Lemma 4.30. The sum of graphs εn(a0, an) is completely decomposable.

Proof. By direct calculation,

∂εn(a0, an)=

n∑
i=1

(
εn−1(a0, an\i )− ε

n−1(a0ai , an\i )
)
·G(ai ).

The proof follows by induction. �
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We explicitly write the entire minimally decomposable element of B(G1L) de-
fined by εn(a0, an).

Recall that
[a1 | · · · | an]X [b1 | · · · | bm]

is the shuffle product of the ordered sets (a1, . . . , an) and (b1, . . . , bm).
In particular, for a, b ∈ G1L 1,

a X b = [a | b] + [b | a].

The shuffle product a X b is in kerµ. That is

µ(a X b)= 0. (4.31)

Lemma 4.32. The element

εn(a0, an)=
∑
S⊂n

(−1)|S|
∑
J⊆S

(−1)|J |
[
εn−|S|

(
a0
∏
j∈J

a j , an\S

) ∣∣∣X
s∈S

G(as)

]
is in H 0(B(G1L)).

Proof. Recall that, since εn
∈ G1L

n+1
1 , it defines an element of degree 0 in B(G1L).

Consider the component of εn(a0, an) in B(G1L)
0
k+1. We compute ∂ +µ on this

term. By Lemma 4.30,

∂
∑
|S|=k
J⊆S

(−1)|J |
[
εn−k

(
a0
∏
j∈J

a j , an\S

) ∣∣∣X
s∈S

G(as)

]

=

∑
|S|=k
i∈n\S
J⊆S

(−1)|J |
[(
εn−k−1

(
a0
∏
j∈J

a j , an\(S∪i)

)

− εn−k−1
((

a0
∏
j∈J

a j

)
ai , an\(S∪i)

))
·G(ai )

∣∣∣X
s∈S

G(as)

]
.

Collecting terms, the right-hand side becomes∑
|S|=k
i∈n\S
J⊆S∪i

(−1)|J |
[
εn−k−1

(
a0
∏
j∈J

a j , an\(S∪i)

)
·G(ai )

∣∣∣X
s∈S

G(as)

]
.

However, by (4.31), this is

µ
∑
|S|=k+1

J⊆S

(−1)|J |
[
εn−k−1

(
a0
∏
j∈J

a j , an\(S∪i)

) ∣∣∣ G(ai )

∣∣∣X
s∈S

G(as)

]
.

Therefore,
(∂ +µ)(εn(a0, an))= 0. �
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Therefore, εn(a0, an) defines a class in H 0(B(G1L)), as stated in Remark 2.10.

Definition 4.33. Let [εn(a0, an)] ∈ H 0(B(G1L)) be the class defined by εn(a0, an).

This choice of notation emphasizes that this is the class in H 0(B(G1L)) associ-
ated to an element in G1L

•

1 with completely decomposable boundary.

5. Hodge realization

In this section we describe the Hodge realization for a number field k for our
category and compute some examples. We follow the approach to constructing a
Hodge realization described in [Bloch and Kriz 1994, Sections 7 and 8; Kimura
2013]. Namely, we first note that the Hodge realization as constructed in Section 7
of [Bloch and Kriz 1994] can be defined independently of choice. However, as
noted at the beginning of [ibid., Section 8], this construction is not very amenable
to computation, and a second description of the Hodge realization functor is given.
Here we restrict to this second description of the Hodge realization. Namely, we
explicitly construct a comodule J of HT = H 0(B(G1L)) and construct a natural
mixed Tate Hodge structure on J . This, as in [Gangl et al. 2009], provides the
Hodge realization for our graphical structure as J associates a natural mixed Tate
Hodge structure on any graded comodule M of HT .

In the context of the graphs, the Q mixed Tate Hodge structure is given by the
rational lattice

HQ = H 0(B(Ttwist
1L ,G1L)),

where Ttwist
1L is a right G1L module, and B(Ttwist

1L ,G1L) is the corresponding cyclic
bar construction. Both filtrations are induced from the weights of graphs (or the
codimension of the corresponding cycles), as defined in Section 3A. These are
introduced in detail in Section 5A.

5A. Topologically augmented admissible graphs. As in [Bloch and Kriz 1994],
in order to create the construction outlined above, one must define a set of topolog-
ically supported cycles in �n .

Definition 5.1. Let Z•top(1•,�
2•−?) be the free abelian group (vector space) gen-

erated by admissible algebraic cycles supported on the image of a smooth map
σ :1•→ Pk(C)

2•−? of codimension • and algebraic degree ?. Then define a vector
space Ztop =

⊕
•,? Alt Z•top(1•,�

2•−?).

These topological cycles define a means of passing from the algebraic cycles to
integrals by considering the supports. In particular, given a completely decompos-
able element ε ∈ B(A×1L), with [ε] ∈ H 0(B(A×1L)), one considers the element 1⊗ ε
in the circular bar construction, B(Ztop,A×1L). This does not define a cohomology
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class. Namely, it is not completely decomposable. The task then is to find an
element ξ ∈ B(Ztop,A×1L) such that 1⊗ ε+ ξ is completely decomposable, that is,

[1⊗ ε+ ξ ] ∈ H 0(B(Ztop,A×1L)).

It is worth noting that, while the cohomology class thus defined is unique, the
element ξ need not be. In particular, in the example worked out in Section 5C2,
the given ξ is by no means the only possible construction.

In the context of graphs, we parallel this construction by defining topologically
augmented admissible graphs, which, under a natural extension of the homomor-
phism Z defined in Section 3B, correspond to elements of Z•top(1•,�

2•−?). These
topologically augmented graphs generate a G1L module, which we develop in this
section. First we establish some notation.

Let 1n ⊂ Rn be the standard real n-simplex. Let C∞(n,m) be the set of smooth
maps from 1n to (Pk(C)

1)N of dimension m. Here N is an arbitrary integer N ≥ n.

Definition 5.2. We say that m is the simplicial dimension of maps in C∞(n,m).

Note that σ need not be injective, that is, m may be less than n. In particular,
C∞(n, 0) consists of all constant maps from 1n . We view C∞(n,m) as a chain
complex, C(n)m .

We parametrize 1n by an ordered set as usual, 0≤ t1 ≤ · · · ≤ tn ≤ 1, sometimes
writing 0 = t0 and 1 = tn+1. Then any σ ∈ C(n)m is a continuous function of
{t1, . . . , tn}.

Definition 5.3. Given the standard face maps si and degeneracy maps di on 1n , for
any subset I ∈ {t0, . . . , tn} of size |I | = p we write dI for the standard codimension-
p degeneracy map.

Let n= {1, . . . , n} as before. Any continuous map σ ∈ C(n)m can be written in
terms of codimension-n−m face maps. That is, there is a set I ∈ n with |I | = m
and σ ′ ∈ C(n)n such that

σ = dI∗σ
′. (5.4)

The degeneracy maps define a differential on the chain complex C(n)m . In partic-
ular, we write

δi : C(m)m→ C(m)m−1, σ 7→ di∗si∗σ,

with δ =
∑m

i=0(−1)iδi . More generally, for σ ∈ C(n)m , where σ = dI∗σ
′, write

δi : C(n)m→ C(n)m−1, σ 7→ δi dI∗σ
′. (5.5)

Therefore, we have shown:

Lemma 5.6. For a fixed n, (C(n)∗, δ) is a chain complex.
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Remark 5.7. As in the prequel, the symbol • will always correspond to the codi-
mension of a cycle (loop number of a graph). The symbol ? will always correspond
to the algebraic degree, and the symbol ∗ always the simplicial dimension of the
graph.

Given this notation, we define the right module of topologically augmented ad-
missible graphs. Generators of this algebra are given by the pair σ ∈ C(n)∗ and
an admissible graph G ∈ G1L

n
i . In particular, the topologically augmented graph

(G, σ ) has edges labeled, not by elements of k× as usual, but by the image of σ .
For t ∈ 1n , write σ(t) as the (2n−i)-tuple σ(t) = (σ1(t), . . . , σ2n−i (t)). The
coordinate σi (t) labels the edge e ∈ E(G) that is in the i-th position, that is, such
that ω(e)= i . There is a natural extension of the vector space homomorphism Z
defined in Section 3B to the topologically augmented admissible graphs such that
each graph maps to a topologically supported cycle in Ztop.

For each G ∈ G1L
•

?, σ ∈ C(•)∗ and t ∈ 1• such that σω(e)(t) 6= 0, ∞ for
any e ∈ E(G), the pair (G, σ (t)) defines a graph in Q[G]/(∼ord,∼ori,∼v). If
σω(e)(t) = 0, ∞, we say that (G, σ (t)) is the trivial graph. As we show below,
in Lemma 5.15, graphs with such labels correspond to algebraic cycles with 1 in
the appropriate coordinate. In particular, for a general σ , the labels σ(t) need
not correspond to an admissible labeling of the underlying graph G. We wish to
consider pairs (G, σ (t)) which evaluate to admissible graphs almost everywhere
on 1n . Such σ ∈ C(•)∗ are called admissible simplices for G.

Definition 5.8. A map σ ∈ C(•)∗ is admissible for a graph G if the following hold:

(1) Let δJ (σ ) indicate the degeneracy map onto the face opposite that defined by
J in 1•. For all J , each loop of the augmented graph (G, δJσ) does not have
loop coefficient 1 almost everywhere on 1•.

(2) For all e ∈ E(G), if there exists a t ∈1• such that σω(e)(t)= 0, there exists an
e′ ∈ E(G) such that σω(e′)(t)=∞. Therefore, the cycle Z(G, σ (t)) is trivial.

(3) Writing δσ =
∑
•

i=0(−1)iδiσ , there is some i for which no coordinate of δiσ

is∞.

We are now ready to define the vector space of admissible topologically aug-
mented graphs.

Definition 5.9. Let T1L
•

2•−∗ be the vector space of topologically augmented graphs
(G, σ ), with h1(G)= • and σ ∈ C(•)∗ an admissible labeling.

Example 5.10. Consider the necklace graph GL(a0, . . . , an) ∈ G1L
n+1
1

GL(a0, . . . , an)=

• •

• •

oo
a0

��a1 OO 1 ��1 OO an
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There is a constant map σ ∈C(n+1)0 of the form σ(1n+1)= (a0, 1, a1, . . . , 1, an).
As this has 0-dimensional topological support, this is the constant map. The
pair (GL , σ ) ∈ T1L

n+1
2n+2 is a trivially topologically augmented graph. That is,

(GL , σ )= GL
∈ G1L

n+1
1 .

Consider a different map, σ ′ ∈ C(n+ 1)2, of the form

σ ′(1n+1)=

(
a0

tn+1
, 1, a1, . . . , 1,

tn+1an

tn

)
.

Then the pair

(GL , σ ′)=

• •

• •

oo

a0
tn+1

��a1 OO 1 ��1 OO an tn+1
tn

is an element of T1L
n+1
2n .

Note that T1L
•

2•−∗ is not an algebra. In particular, there is no natural product
structure on C(n)∗. For general (G, σ ) ∈ T1L

n
2n−∗ and (G ′, σ ′) ∈ T1L

n′
2n′−∗′ , the

product is given by the graph (GG ′, σ×σ ′). As in (5.4), write σ and σ ′ as degenera-
cies dI∗σ̄ and dI∗σ̄

′ for some σ̄ ∈ C(n)n and σ̄ ′ ∈ C(n′)n′ . However, dI∗σ̄ × dI∗σ̄
′

does not correspond to a smooth map restricted to some face of 1n×n′ . Therefore,
we consider T1L

•

2•−∗ as a G1L
•

? module.
There is an inclusion of the algebra of admissible nonaugmented graphs into T1L :

Example 5.11. There is an inclusion G1L
•

? ↪→ T1L
•

2•. Any graph G ∈ G1L
•

? can be
written as (G, dI∗σ0) via the constant map

σ0(1•)= (a1, . . . , a|E(G)|),

where aω(e) is the label of edge e ∈ E(G).

Proposition 5.12. The vector space T1L is a G1L module.

Proof. As done in Example 5.11, write G ∈G1L
•

?, as (G, σ )∈T1L
•

2• with σ ∈C(•)0.
Further consider (G ′, σ ′) ∈ T1L

•
′

2•′−m with σ ′ ∈ C(•′)m .
In general, we cannot write (G, σ )(G ′, σ ′)= (GG ′, σ×σ ′) as an element in T1L .

However, since σ ∈ C(•)0, we can rewrite this as (GG ′, d(I ′′)∗σm), where I ′′ is the
appropriate face in 1•+•′ .

Therefore, the product of a non-topologically augmented graph G ∈ G1L
•

? with
an augmented one (G ′, σ ′) ∈ T1L

•
′

2•′−m is

(G, σ0) · (G ′, σ ′)= (G ·G ′, (σ0, σ
′)) ∈ T1L

•+•
′

2(•+•′)−m .

This gives the module structure. �

The vector space T1L
•

2•−∗ is a bigraded vector space. We may write

T1L =
⊕
0≤•,∗

T1L
•

2•−∗.
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Finally, we consider T1L
•

2•−∗ as a complex. The module has two natural dif-
ferential structures on it, induced by the topological differential δ on 1n and the
algebraic differential ∂ on G1L . Before defining these explicitly and the associated
bicomplex structure on augmented graphs, it is necessary to introduce a shifted
vector space, Ttwist

1L .

Definition 5.13. For (G, σ ) ∈ T1L we define a twisted module Ttwist
1L , where the

grading of each element is shifted from that of T1L by the dimension of the
range of σ , i.e, the number of edges of the graph G. That is, for G ∈ G1L

•

? and
(G, σ ) ∈ T1L

•

2•−∗, the same element is in (Ttwist
1L )•?t

:= T1L
•

2•−∗−n for n = 2 •−?.
Henceforth define a topologically twisted degree ?t := ?−∗ to be the difference
between the algebraic degree and topological dimension. Write

Ttwist
1L =

⊕
•,?t

(Ttwist
1L )•?t

.

For σm ∈ C(n)m , write σm = dI∗σ
′ for some σ ′ ∈ C(m)m . The topological

differential, δ is induced by the differential on the chain C(n)m defined in (5.5):

δ : (Ttwist
1L )•?t

→ (Ttwist
1L )•?t+1, (G, σm) 7→

m∑
i=0

(−1)i (G, δiσm). (5.14)

This is a degree-one differential operator on (Ttwist
1L ).

The algebraic differential ∂ is induced from the differential ∂ on G1L . On Ttwist
1L ,

vertex rescaling is a direct generalization of rescaling on G1L , allowing one to
rescale by functions σ ∈C∞(|E(G)|, |E(G)|). For se and te the source and terminal
vertices of e ∈ G, write

(∂eσ)ω(e′) =


1 if e = e′,
σω(e′) if se is not a vertex of e′,
σω(e′)σω(e) if se = te′,
σω(e′)/σω(e) if se = se′,

as one expects from vertex rescaling and Definition 3.38. Then

∂ : (Ttwist
1L )•?t

→ (Ttwist
1L )•?t+1, (G, σm) 7→

∑
e∈E(G)

(−1)ω(e)−1(∂eG, ∂eσ),

which is a degree-one differential operator on Ttwist
1L .

The topologically augmented graphs correspond to the vector space of topolog-
ically supported admissible algebraic cycles Z•top(1∗,�

2•−?).

Lemma 5.15. The map Z defined in Section 3B extends to a module homomor-
phism

Z : (Ttwist
1L )→ Ztop,

as defined in Definition 5.1.
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Proof. Each edge of the augmented graph (G, σm) defines a coordinate φω(e) =
1− xe/(σm,ω(e)ye), where xe and ye are the variables associated to the source and
the target vertices of the edge e as usual. Then φ = (φ1, . . . , φn) parametrizes an
algebraic cycle supported on an m-simplex in �n .

It remains to check that Z(G, σm) is an admissible topologically supported cy-
cle. By Definition 5.8, the loop number of any loop in (G, σm) is not 1 almost
everywhere in 1m or on any of its faces. If σω(e)(t) = 0 for some t ∈ σm , then
the cycle Z(G, σm(t)) is trivial, as the corresponding coordinate is 1. Therefore,
by condition (2) of Definition 5.8, if there is some t ∈ σm and an edge e ∈ E(G),
Z(G, σm(t)) is trivial. Therefore, by Theorem 3.59, Z(G, σm) is admissible almost
everywhere on 1m . �

The third condition in Definition 5.8 gives rise to the following statement:

Lemma 5.16. The image of Ttwist
1L under Z is an acyclic chain complex under δ.

Proof. Equation (5.14) shows that Ttwist
1L is a chain complex under δ. In particular,

δ : (Ttwist
1L )•?t

→ (Ttwist
1L )•?t+1.

The third condition of Definition 5.8 imposes acyclicity. By Lemma 5.15, if δiσ

has a coordinate set at∞, then Z(G, δiσ) is a trivial cycle. Requiring that there is
some face of1• such that (δiσ)ω(e) 6=∞ for all e∈ E(G) implies that δZ(G, σ ) 6=0.
In other words, the image of Z(Ttwist

1L ) is an acyclic chain complex under δ. �

Example 5.17. In this example, we augment the sum of graphs εn(a0, . . . , an)

defined in (4.28) by a 2-dimensional support, as in Example 5.10. First, recall
notation from Definition 4.29. Writing n = {1, . . . , n}, define an n-tuple an =

(a1, . . . , an). Similarly, for any S ⊂ n, write an\S = (a1, . . . , âS, . . . , an) for the
same n-tuple with the elements {as | s ∈ S} removed. Then write the augmented
sum of graphs

(εn, σ (a0, an)2)=

• •

• •

oo

a0/tn+1

��a1 OO 1 ��1 OO an tn+1/tn
−

• •

• •

//

1/a0tn+1

��a1 OO 1 ��1 OO an tn+1/tn

Here, σ(a0, an\S)2 ∈ C(n−|S|+ 1)2 is a labeling on the decomposable sum of the
n−|S|-beaded necklace.

Then the topological differential is

δ(εn, σ (a0, an)2)= (−1)0


• •

• •

oo

a0/tn+1

��a1 OO 1 ��1 OO an tn+1
0
−

• •

• •

//

1/a0tn+1

��a1 OO 1 ��1 OO an tn+1
0


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+ (−1)1


• •

• •

oo

a0/tn+1

��a1 OO 1 ��1 OO an −

• •

• •

//

1/a0tn+1

��a1 OO 1 ��1 OO an



+ (−1)2

 • •

• •

oo
a0

��a1 OO 1 ��1 OO an/tn
−

• •

• •

oo
1/a0

��a1 OO 1 ��1 OO an/tn


The first two terms in this sum correspond to trivial graphs.

Recall from (4.27) that G(a) is the graph with a single edge and a single loop
labeled by a.

The algebraic differential on this graph is

∂(εn, σ (a0, an)2)=

n−1∑
i=1

(
(εn−1, σ (a0, an\i )2)− (ε

n−1, σ (a0ai , an\i )2)
)

G(ai )

+

 • •

• •

oo

a0/tn

��a1 OO 1 ��1 OO an−1−

• •

• •

//
1/a0tn

��a1 OO 1 ��1 OO an−1

−

• •

• •

oo

a0an/tn

��a1 OO 1 ��1 OO an−1+

• •

• •

//
1/a0an tn

��a1 OO 1 ��1 OO an−1

G(an).

Due to the form of the augmentation σ(n+ 1)2 chosen in this example, we may
write the second and third lines above as(

(εn−1, δn−1σ(a0, an−1)2)− (ε
n−1, δn−1(a0an, an−1)2)

)
·G(an).

5B. A comodule and Hodge structure. We are now ready to define the Hodge
comodule J .

First we build the circular bar construction B(Ttwist
1L ,G1L ,Q). In the sequel, we

take the last entry as given, and simply write B(Ttwist
1L ,G1L). As in [Bloch and Kriz

1994; Kriz and May 1995] and references therein, we define the B(Ttwist
1L ,G1L) on

the tensor algebra Ttwist
1L ⊗ T (G1L )/D(G1L ) as in Definition 2.1.

Consider (G0, σ )⊗G1⊗· · ·⊗Gk ∈ B(Ttwist
1L ,G1L)

k
w with Gi ∈G1L

ri
wi

for 0≤ i≤k,
and σ ∈C(r0)m . The total degree of this bar element is w=

∑k
i=0wi−(k+1)−m.

We define the bicomplex structure on it by extending the differentials from (4.3)
and (4.4) for the bar construction (B(G1L), µ, ∂).

As before, for j > 0 write ∂ j to indicate the operator on B(Ttwist
1L ,G1L) that

acts as ∂ on the j-th tensor component of T (G1L ), as (−1)degB Gi id on Ttwist
1L and
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the first j − 1 tensor components of T (G1L ), and as id on the rest. As before,
degB Gi refers to the graphical bar degree of the component, excluding any topo-
logical considerations. Hence, for (G0, σ ) ∈ (T

twist
1L )•?t

with σ ∈ C(•)∗, we have
degB(G0, σ ) = ?t +∗− 1 = ?− 1. Define ∂0 as ∂ + δ on Ttwist

1L and the identity
on the other tensor components of the bar element. In this shifted notation, ∂0 is a
degree-one operator on Ttwist

1L .
For the product, with (G0, σ ) as above, define µ j as the degree-one operator on

B(Ttwist
1L ,G1L) that acts as (−1)degB G0−m id on the zeroth tensor component and as

(−1)degB Gi id on the next j − 1 tensor components of T (G1L ), as (−1)degB G jµ on
the j-th and ( j+1)-st components, and as the identity on the remaining elements.

Then, in parallel to (4.4), for σ ∈ C(•)m write
µ[(G0, σ ) |G1 | · · · |Gn]

:=

∑
j=0

µ j [(G0, σ ) |G1 | · · · |Gn]

=

n−1∑
j=0

(−1)(
∑ j

i=0 degB Gi )−m
[(G0, σ ) |G1 | · · · |G j ·G j+1 | · · · |Gn]. (5.18)

Similarly, in parallel to (4.3), write
∂[(G0, σ ) |G1 | · · · |Gn]

:=

∑
j=0

∂ j [(G0, σ ) |G1 | · · · |Gn]

=

n−1∑
j=0

(−1)
∑ j−1

i=0 degB Gi [(G0, σ ) |G1 | · · · | ∂G j | · · · |Gn]. (5.19)

In parallel to (2.2), we explicitly draw a few terms of (B(Ttwist
1L ,G1L), µ, ∂)

(recall that
⊕

n(T
twist
1L )ni = B(Ttwist

1L ,G1L)
0
i ):

...
...

...
...

· · ·
µ
// B(Ttwist

1L ,G1L)
3
0

µ
//

∂

OO

B(Ttwist
1L ,G1L)

2
1

µ
//

∂

OO

B(Ttwist
1L ,G1L)

1
2

µ
//

∂

OO

⊕
n
(Ttwist

1L )n3

∂

OO

· · ·
µ
// B(Ttwist

1L ,G1L)
3
−1

µ
//

∂

OO

B(Ttwist
1L ,G1L)

2
0

µ
//

∂

OO

B(Ttwist
1L ,G1L)

1
1

µ
//

∂

OO

⊕
n
(Ttwist

1L )n2

∂

OO

· · ·
µ
// B(Ttwist

1L ,G1L)
3
−2

µ
//

∂

OO

B(Ttwist
1L ,G1L)

2
−1

µ
//

∂

OO

B(Ttwist
1L ,G1L)

1
0

µ
//

∂

OO

⊕
n
(Ttwist

1L )n1

∂

OO

· · ·
µ
// B(Ttwist

1L ,G1L)
3
−3

µ
//

∂

OO

B(Ttwist
1L ,G1L)

2
−2

µ
//

∂

OO

B(Ttwist
1L ,G1L)

1
−1

µ
//

∂

OO

⊕
n
(Ttwist

1L )n0

∂

OO

...

∂

OO

...

∂

OO

...

∂

OO

...

∂

OO
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Definition 5.20. We may now define the comodule J = H 0(B(Ttwist
1L ,G1L)) and

JC = J ⊗C.

Following [Kimura 2013, Proposition 3.3], the weight filtration W2r =W2r−1 is
induced by the algebraic weight (codimension) filtration on B(Ttwist

1L ,G1L). Write

B(Ttwist
1L ,G1L)(r)=Ttwist

1L ⊗ B(G1L)(r)=Ttwist
1L ⊗

⊕
k≥1

⊕
∑k

i=1 ri=r

G1L
r1
? ⊗· · ·⊗G1L

rk
? .

Here, B(G1L)(r) is the tensor product of unaugmented graphs with total codimen-
sion r . That is, we may write

Wr (B(Ttwist
1L ,G1L))=

⊕
q≤r

B(Ttwist
1L ,G1L)(q).

This induces the weight filtration on J in the usual way, grW
2r J = grW

2r−1 J =
H 0(B(Ttwist

1L ,G1L)(r)). Similarly, grW
2r JC = grW

2r−1 JC = H 0(B(Ttwist
1L ,G1L)(r)).

Definition 5.21. Let

�n =
1

(2π i)n
dz1

z1
∧ · · · ∧

dzn

zn

be the logarithmic n-form on �n .

Definition 5.22. For (G, σ ) ∈ (Ttwist
1L )•?t

and σ ∈ C(•)∗, we define an evaluation
map

I : T1L → C, (G, σ ) 7→
∫
(G,σ )

�2•−?.

This integral is only well-defined if ∗ = 2 •−?. That is, σ ∈ C(•)2•−?. However,
since ∗ ≤ •≤ 2 •−?, this implies that ∗ = •= ?.

Explicitly,∫
(G,σ )

�n =

∫
1n

σ∗(�m)=
1

(2π i)m

∫
1m

d(1− 1/σ1)

1− 1/σ1
∧ · · · ∧

d(1− 1/σm)

1− 1/σm
,

where the ordering of the coordinates of σ are given by the ordering of the edges
of G.

We call I(G, σm) the period associated to (G, σm). The evaluation map induces
a quasiisomorphism between B(Ttwist

1L ,G1L)⊗C and B(G1L)⊗C:

I⊗ id : B(Ttwist
1L ,G1L)⊗C→ C⊗ B(G1L),

[(G0, σ ) |G1 | · · · |Gn] 7→ I(G0, σ )[G1 | · · · |Gn].
(5.23)

Thus (again following [Kimura 2013]) we can define the Hodge filtration by

FkJC =

⊕
r≥k

H 0(B(G1L ))(r)⊗C.
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Remark 5.24. The realization functor appears to depend on choices of simplices.
However, it is in fact well-defined and independent of choice, as our complex is
isomorphic to a subcomplex (via the equivalence with algebraic cycles) of the full
realization map on the category of mixed Tate motives as defined in Section 7 of
[Bloch and Kriz 1994].

5C. Hodge realization for necklace diagrams. For the remainder of this paper,
we study the Hodge realization of the specific class [εn(a0, an)] ∈ H 0(B(G1L)).
This is defined in Definition 4.33 by the sum of graphs

εn(a0, an)=

• •

• •

oo
a0

��a1 OO 1 ��1 OO an −

• •

• •

//
1/a0

��a1 OO 1 ��1 OO an

As always, an is the n-tuple (a1, . . . , an) that labels the beads of the completely
decomposable sum of necklace graphs. Section 5C calculates the period of the class
[εn(a0, an)] ∈ H 0(B(G1L)) defined by this graph. In Section 5C1, we construct an
element [ξn(a0, an)+1⊗ εn(a0, an)] ∈ H 0(B(Ttwist

1L ,G1L)) that defines the period.
For ease of notation, we drop the arguments (a0, an) whenever possible.

The current state of art for Hodge realization functor calculates the periods as-
sociated to elements of H 0(B(A1L)) that can be represented by binary trees. See
[Bloch and Kriz 1994; Kimura 2013] for cycles that map to classical polyloga-
rithms, and [Gangl et al. 2007; 2009] for cycles that map to multiple polylogarithms.
In this section, we compute the period associated to an algebraic cycle that is not
in this small family of P1

k linear cycles.

5C1. Corresponding element of B(Ttwist
1L ,G1L). By Lemma 4.30, the sum of graphs

εn is completely decomposable. Therefore, by Lemma 4.32, the sum

εn
=

∑
S⊂n

(−1)|S|
∑
J⊆S

(−1)|J |
[
εn−|S|

(
a0
∏
j∈J

a j , an\S

) ∣∣∣X
s∈S

G(as)

]
is a representative element defining the class [εn(a0, an)] ∈ H 0(B(G1L)).

In this section, we define an element ξn
∈
⊕n+1

i=1 B(Ttwist
1L ,G1L)

i
0 such that

ξn
+ 1⊗ εn defines a class in H 0(B(Ttwist

1L ,G1L)). Since (µ+ ∂)εn
= 0 in B(G1L),

we see that (µ+ ∂)1⊗ εn
= εn, seen as an element in

⊕n
i=1 B(Ttwist

1L ,G1L)
i
1. Here,

as in Example 5.11, we write

εn
= (εn, σ (a0, an)0) ∈ Ttwist

1L (n)1.

It is sufficient to identify an element ξn
∈
⊕n+1

i=1 B(Ttwist
1L ,G1L)

i
0 such that

(∂ +µ)ξn
=−εn. (5.25)



508 SUSAMA AGARWALA AND OWEN PATASHNICK

The remainder of this section is devoted to identifying ξn, which is a compli-
cated sum of elements in the circular bar construction. We introduce it in stages,
starting with the easiest to state, then breaking each sum into component pieces
in order to demonstrate the appropriate properties. We state what criteria these
summands need to satisfy, and provide proofs along the way.

Write ξn
=
∑n

k=0(−1)kξ n−k , with ξ n−k
∈ B(Ttwist

1L ,G1L)
k
0 defined as

ξ n−k
=

∑
S⊂n
|S|=k

ξ n−k
top (a0, an\S)⊗X

i∈S
G(ai ).

Here ξ n−k
top (a0, an\S) is a topologically augmented graph in (Ttwist

1L )n−k+1
0 such that

(∂ + δ)∂ξ n−k
top (a0, an\S)+µ

( ∑
i∈n\S

ξ n−k−1
top (a0, an\S∪i )⊗G(ai )

)
=−εn−k(a0, an\S). (5.26)

This is the key condition that we prove explicitly in Theorem 5.30.
In order to define ξ n

top, we begin with a family of disconnected sums of unaug-
mented graphs

ξ n
m(a0, an)= ε

n−m(a0, an−m)G(an−m+1) · · ·G(an).

Each graph ξ n
m ∈ G1L

n+1
m+1 consists of m+ 1 connected components, with graphical

degree m+1. We impose upon this family of graphs two topological augmentations
σ(a0, an) and ρ(a0, an) ∈ C(n+ 1)m+1 of the form

(ξ n
m, σ (a0, an))

=


• •

• •

oo

a0
tn−m+1

��a1 OO 1 ��1 OO tn−m+1an−m
tn−m

−

• •

• •

//

1
a0tn−m+1

��a1 OO 1 ��1 OO tn−m+1an−m
tn−m

 •

oo

an−m+1tn−m+2
tn−m+1

· · ·

•

oo

an/tn

and

(ξ n
m, ρ(a0, an))

=


• •

• •

oo

a0
tn−m+1

��a1 OO 1 ��1 OO an−m −

• •

• •

//

1
a0tn−m+1

��a1 OO 1 ��1 OO an−m

 •

oo

an−m+1tn−i+2
tn−m

•

oo

an−m+2tn−m+3
tn−m+2

· · ·
•

oo

an/tn
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Note that the only difference between the labeling σ(a0, an)m and ρ(a0, an)m

is the label on the last bead of the first connected component, εn−m(a0, an−m),
and that of the second connected component. This distinction is necessary for the
appropriate cancellations between algebraic and topological differentials needed to
satisfy condition (5.26). Before writing down the expression for ξ n−k

top , we introduce
some further notation to simplify the expression.

We define two new terms as sums of ξ n
m with variants of σ and ρ:

λn
m(a0, an)=

∑
J⊂{n−m+1,...,n}

(−1)|J |
(
ξ n

m, σ

(
a0
∏
j∈J

a j , an

))
, (5.27)

χn
m(a0, an)=

∑
I⊂{n−m+2,...,n}

(−1)|I |
(
ξ n

m, ρ

(
a0
∏
i∈I

ai , an

))
. (5.28)

Under this notation, we write

ξ n
top =

n∑
m=0

λn
m −

n∑
m=1

χn
m .

Note that sum for χn
m starts at m = 1 whilst the sum for λn

m starts at m = 0.
Furthermore, the sets I and J differ. Namely, the first argument for ρ, augment-
ing χn

m , never contains an−m+1, while this label appears in the first argument of σ
summands of λn

m . The terms λn
m , χn

m and ξ n
top are constructed so that the summands

of the differentials of λn
m cancel with terms in the differentials of χn

m+1 and terms of
the form

∑
i∈n ξ

n−1
top (a0, an\i ) leaving the term εn . This is how ξ n−k

top satisfies (5.26).
We show this cancellation explicitly in Theorem 5.30.

The unaugmented graphs ξ n
m are in G1L

n+1
m+1. Therefore the augmented graphs

λn
m and χm

n are in Ttwist
1L (n + 1)0. Furthermore, ξ n

top is a sum of admissible aug-
mented graphs. If tn−m+k = 0, then tn−m+i = 0 for all i < k. Therefore, the
edges labeled a0/tn−m+1 and 1/(a0tn−m+1) are labeled by∞, making the graphs
(ξ n

m, σ (n+1)m+1)(a0, . . . , an) and (ξ n
m, ρ(n+1)m+1)(a0, . . . , an) trivial at this point.

Remark 5.29. Recall that, as shown in Lemma 5.15, the labels on the edges of
these graphs correspond to the coefficients of the coordinates of the cycles. That
is, the augmented cycle is parametrized φ2n+1 = 1− xa0tn−m+1/y. Therefore, if
tn−m+1 = 0, then φ2n+1 = 1.

It remains to check that ξn defined above satisfies the necessary conditions.

Theorem 5.30. The element ξn
+ 1⊗ εn

∈
⊕n+1

i=1 B(Ttwist
1L ,G1L)

i
0 defines a class

in H 0(B(Ttwist
1L ,G1L)).

Proof. By the arguments presented in this section, it is sufficient to check that ξ n
top

satisfies (5.26). It is enough to show this for k = 0.
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We proceed by computing the four terms of (δ+ ∂)(λn
m −χ

n
m) to show that

(δ+ ∂)ξ n
top =−ε

n
−µ

(∑
i∈n

ξ n−1
top (a0, an\i )⊗G(ai )

)
,

as required.
When m = 0, the graph (ξ n

0 , σ (a0, an))= λ
n
0 is augmented by a 1-simplex with

topological boundary
δλn

0 =−δ
1λn

0 =−ε
n.

For more general m, the algebraic boundary of the augmented sum of graphs λn
m

is

∂λn
m =−µ

( n−m−1∑
i=1

λn−1
m (a0, an\i )− λ

n−1
m (a0ai , an\i )⊗G(ai )

)
+ δ2χn

m+1(a0, an)− δ
1χn

m+1(a0an−m, an). (5.31)

The algebraic boundary of the augmented sum of graphs χn
m is

−∂χn
m = µ

( n−m∑
i=1

χn−1
m (a0, an\i )−χ

n−1
m (a0ai , an\i )⊗G(ai )

)
. (5.32)

For m ≥ 1, the topological boundary of the augmented sum of graphs λn
m is

δλn
m =−δ

1χn
m(a0, an)+ δ

1χn
m(a0an−m+1, an)

−µ

( n∑
i=n−m+1

λn−1
m−1(a0, an\i )⊗G(ai )

)
. (5.33)

The topological boundary of the augmented sum of graphs χn
m is

− δχn
m = δ

1χn
m(a0, an)− δ

2χn
m+1(a0, an)

+µ

( n∑
i=n−m+1

χn−1
m−1(a0, an\i )⊗G(ai )

)
. (5.34)

Adding up equations (5.31), (5.32), (5.33) and (5.34), we see that

(δ+ ∂)ξ n
top =−εn −µ

(∑
i∈n

ξ n−1
top (a0, an\i )⊗G(ai )

)
,

which matches (5.26). �

5C2. Integrals associated to necklace diagrams. This section is devoted to calcu-
lating the period associated to εn. We show that this is 0 for n ≥ 1.

By abuse of notation, in this section we write the augmented graphs λn
m and

χn
m as
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λn
m=ε

n−m
(

a0

tn−m+1
, an−m−1, an−m

tn−m+1

tn−m

)
G
(

an−m+1
tn−m+2

tn−m+1

)
· · ·G

(
an

tn

)
,

χn
m=ε

n−m
(

a0

tn−m+1
,an−m

)
G
(

an−m+1
tn−m+2

tn−m

)
G
(

an−m+2
tn−m+3

tn−m+2

)
· · ·G

(
an

tn

)
.

Theorem 5.35. The period associated to ξn
+ 1⊗ εn is 0 for all n. Therefore,

[εn(a0, an)] ∈ H 0(B(G1L)) defines a trivial cohomology class.

Proof. We apply the map I⊗ id from (5.23) to the element ξn
+ 1⊗ εn. This

integral is only well defined when m, the simplicial dimension of the augmented
graph, is equal to n, the loop number of the graph. Therefore,

Iξ n
=

n∑
k=0

(−1)k
∑
S⊂n
|S|=k

I⊗ id
(
λn−k

n−k(a0, an\S)−χ
n−k
n−k (a0, an\S)

)[
X
s∈S

G(as)
]
.

Since I(1)= 0, the evaluation map is (I⊗ id)(1⊗ εn)= 0.
Recall that ε0(a0) = G(a0)− G(1/a0). Therefore, from equations (5.27) and

(5.28), we have

λn
n(a0, an)=

∑
J⊂{1,...,n}

(−1)|J |ε0

(
a0
∏
j∈J

a j
1
t0

)
G
(

a1
t2
t1

)
· · ·G

(
an

1
tn

)
,

χn
n (a0, an)=

∑
I⊂{2,...,n}

(−1)|I |ε0

(
a0
∏
i∈I

ai
1
t1

)
G
(

a1
t2
t0

)
· · ·G

(
an

1
tn

)
.

Collecting like terms, we write

λn
n −χ

n
n =

( ∑
J⊂{1,...,n}

(−1)|J |ε0

(
a0
∏
j∈J

a j
1
t0

)
G
(

a1
t2
t1

)
−

∑
I⊂{2,...,n}

(−1)|I |ε0

(
a0
∏
i∈I

ai
1
t1

)
G
(

a1
t2
t0

))

×G
(

a2
t3
t2

)
· · ·G

(
an

1
tn

)
. (5.36)

To evaluate this integral, we recall a few facts about the iterated integrals asso-
ciated to multiple polylogarithms. First of all, for a constant cycle supported on a
1-simplex,

I(G(a/t))=
∫ 1

0

d(1− t/a)
1− t/a

=−

∫ 1

0

dt
a−t
=−Li

(1
a

)
.

Inverting the label of the edge gives

I(G(t/a))=
∫ 1

0

d(1− a/t)
1− a/t

=

∫ 1

0

a dt
t2− at

=−

∫ 1

0

dt
t
−

∫ 1

0

dt
a−t

.
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Subtracting the second expression from the first gives I(ε0(a/t)) =
∫ 1

0 (1/t) dt .
We may write this as Li1(1) = 0, by standard renormalization of polylogarithms
[Goncharov 2001b].

Similarly, for the cycle supported on a two-simplex,

I(G(a/t0)G(b/t1))=−
∫ 1

0

1
b− t1

(∫ t1

0

dt0
t0

)
dt1 = Li2

(1
b

)
.

The last equality in this equation comes from the shuffle product on iterated inte-
grals:(∫ z

0

dt
b−t

)(∫ z

0

ds
s

)
=

∫ z

0

1
b−t

(∫ t

0

ds
s

)
dt +

∫ z

0

1
s

(∫ s

0

dt
b−t

)
ds.

By the standard regularization arguments above, the left-hand side is 0. Therefore,∫ z

0

1
t−b

(∫ t

0

ds
s

)
dt = Li2

(1
b

)
. (5.37)

This does not depend on the first argument, a. Therefore, the alternating signs in
the sums for λ1

1 and χ1
1 force I(λ1

1(a, b))= I(χ1
1 (a, b))= 0.

For cycles supported on a three-simplex, there are two terms to check:

I(λ2
2(a, b, c))=(−1)2

∫ 1

0

1
c−t2

(∫ t2

0

1
bt2−t1

(∫ t1

0

dt0
t0

)
dt1

)
dt2=Li1

(1
c

)
Li2
(1

b

)
and

I(χ2
2 (a, b, c))= (−1)2

∫ 1

0

1
c−t2

(∫ t2

0

1
t1

(∫ t1

0

dt0
bt2− t0

)
dt1

)
dt2=Li1

(1
c

)
Li2
(1

b

)
.

As before, since neither integral depends on a, the alternating signs in the sums for
λ2

2 and χ2
2 force both I(λ2

2(a, b, c))= I(χ2
2 (a, b, c))= 0.

For a general n+1-simplex, we have

I(ξ n
n , σ (a0, an)n+1)= (−1)n

n∏
i=2

Li1
( 1

ai

)
Li2
( 1

a1

)
.

Similarly,

I(ξ n
n , ρ(a0, an)n+1)= (−1)n

n∏
i=2

Li1
( 1

ai

)
Li2
( 1

a1

)
.

Since neither of these expressions depend on a0 we have that I(λn
n)(a0, an) =

I(χn
n )(a0, an)= 0. Therefore, I(ξ

top
n )= 0 for all n. This is the period associated

to εn .
This implies that

I⊗ id(ξ n
+ 1⊗ εn)= 0

for all n. Therefore this defines a trivial class in H 0(B(G1L)). �
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6. Outlook and future work

This paper is a first step in a program to understand the cohomology of (part of) the
Bloch–Kriz cycle complex, and by extension to understand the motives associated
to these cycles. By introducing a graphical representation of certain cycles, we
pave the way for graph-theoretic methods to be added to the list of tools used to
tackle the problem of understanding mixed Tate motives, the algebra of multiple
zeta values, and the relations between such values.

Some topics for future study include:

(1) We have not yet dealt systematically with relations between closely related
minimally decomposable sums. In particular, we expect the examples listed in
Section 4B1 to all be related. A further analysis of these classes, their Hodge real-
izations, and generalizations of these classes, should give insight into constructing
relations among motives and hopefully corresponding relations among the associ-
ated periods.

(2) We excluded graphs with edges labeled by 0, i.e., precisely the graphs needed
to correspond to the classical polylogarithms. There is an unwritten conjecture of
Brown and Gangl that only the multiple logarithms are necessary to generate the
entire space of multiple polylogarithms (including the standard polylogarithms). If
one assumes this conjecture, then our inability to label our edges with 0 is not a
significant setback. However, in future work, we hope to devise a way of encoding
edges labeled by 0s, possibly by including colored, unoriented edges, so that all
the results of this paper hold in the new general setting.

(3) The graphs we study lend themselves easily to study via the language of ma-
troids. Roughly speaking, a matroid is a combinatorial way of encoding the inde-
pendence data of a matrix or graph (in this case, the subtrees of a graph). While
simple to define, this is a powerful tool when it comes to studying boundaries of
geometric objects. We hope that this will lead to some insight for an algorithm for
finding, or a classification of, sums of algebraic cycles that lead to elements with
completely decomposable boundary.

(4) The Hodge realization functor is admittedly difficult to compute explicitly. The
computation of the Hodge realization in the section above, though comparable to
previous computations using algebraic cycles, does not really use the graphical
machinery developed earlier. We hope in future work to give a simpler and more
graphically intuitive description of the Hodge realization.
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Stable operations and cooperations
in derived Witt theory with rational coefficients

Alexey Ananyevskiy

The algebras of stable operations and cooperations in derived Witt theory with
rational coefficients are computed and an additive description of cooperations
in derived Witt theory is given. The answer is parallel to the well-known case
of K-theory of real vector bundles in topology. In particular, we show that sta-
ble operations in derived Witt theory with rational coefficients are given by the
values on the powers of the Bott element.

1. Introduction

Derived Witt theory, introduced by Balmer [1999] (see also [Balmer 2005] for
an extensive survey), immerses Witt groups of (commutative, unital) rings and,
more generally, Witt groups of schemes, into the realm of generalized cohomology
theories, producing for a smooth variety X a sequence of groups W[n](X). This
sequence is 4-periodic in n with W[0](X) and W[2](X) being canonically identified
with the Witt group of symmetric vector bundles and the Witt group of symplec-
tic vector bundles, respectively. The latter groups were introduced by Knebusch
[1977]. All the groups W[n](X) are presented by generators and relations: roughly
speaking, one should repeat the classic definition of the Witt group of a field in the
setting of derived categories of coherent sheaves (or perfect complexes), carefully
treating the notion of metabolic objects. The above-mentioned periodicity yields
that in a certain sense we do not have “higher” derived Witt groups, in contrast to
the case of algebraic K-theory.

Another approach to derived Witt theory is given by higher Grothendieck–Witt
groups GW[n]i (X) (also known under the name of hermitian K-theory) defined for
schemes by Schlichting [2010b]; see also [Schlichting 2010a; 2017]. For an affine
scheme these groups coincide with hermitian K-groups introduced by Karoubi. It
turns out [Schlichting 2017, Proposition 6.3] that negative higher Grothendieck–
Witt groups coincide with the derived Witt groups defined by Balmer:

GW[n]i (X)∼=W[n−i](X) for i < 0.
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If the characteristic of the base field is not 2, then higher Grothendieck–Witt
groups of smooth varieties are representable in the stable motivic homotopy cat-
egory; see [Hornbostel 2005] or [Schlichting and Tripathi 2015] for a geometric
model. It is well-known that derived Witt theory can be obtained from higher
Grothendieck–Witt groups inverting the Hopf element η; see, e.g., [Ananyevskiy
2016, Theorem 6.5]. The Hopf element η is the element in the motivic stable homo-
topy group π1,1(k) corresponding to the projection A2

−{0}→P1, (x, y) 7→ [x : y]
(see Definition 7.1). Thus derived Witt theory is represented in the stable motivic
homotopy category by a spectrum representing higher Grothendieck–Witt groups
with η inverted. We denote the latter spectrum KW. This spectrum is not only
(1, 1)-periodic via η but also (8, 4)-periodic with the periodicity realized by cup
product with a Bott element β ∈ KW−8,−4(pt). In this paper we compute the alge-
bras of operations and cooperations in derived Witt theory with rational coefficients,
that is, KW∗,∗

Q
(KWQ) and (KWQ)∗,∗(KWQ), and give an additive description of

the cooperations in derived Witt theory, KW∗,∗(KW) (see Definition 2.12 for the
notation). The answer is as follows (see Theorems 9.4, 10.2 and 10.4).

Theorem 1.1. Let k be a field of characteristic not 2. Then the homomorphism of
left KW0,0

Q
(Spec k)∼=WQ(k)-modules

Ev : KW0,0
Q
(KWQ)→

∏
m∈Z

WQ(k)

given by

Ev(φ)= (. . . , β2φ(β−2), βφ(β−1), φ(1), β−1φ(β), β−2φ(β2), . . .)

is an isomorphism of algebras. Here the product on the left is given by composition
and the product on the right is the componentwise one.

Moreover, KW p,q
Q
(KWQ)= 0 when 4 - p−q and the above isomorphism induces

an isomorphism of left KW∗,∗
Q
(Spec k)∼=WQ(k)[η±1, β±1

]-modules

KW∗,∗
Q
(KWQ)∼=

⊕
r,s∈Z

βrηs
∏
m∈Z

WQ(k)

with degβ = (−8,−4), deg η = (−1,−1).

Theorem 1.2. Let k be a field of characteristic not 2. Then the homomorphism of
WQ(k)[η±1

] ∼=
⊕
n∈Z

KWn,n
Q
(Spec k)-algebras

WQ(k)[η±1
][β±1

l , β±1
r ] → (KWQ)∗,∗(KWQ)

given by

βl 7→68,4β ∧ uKWQ
, βr 7→ uKWQ

∧68,4β
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is an isomorphism of rings. Here uKWQ
: S→ KWQ is the unit map and

68,4β ∧ uKWQ
, uKWQ

∧68,4β

∈ (KWQ)8,4(KWQ)= HomSH(k)(S∧S8,4,KWQ ∧KWQ).

Theorem 1.3. Suppose that k is a field of characteristic not 2 and let M be the
abelian subgroup of Q[v, v−1

] generated by polynomials

f j,n =
v−n ∏ j−1

i=0 (v− (2i + 1)2)
4 j (2 j)!

,

j ≥ 0, n ∈Z. Then there are canonical isomorphisms of left KW0,0(Spec k)∼=W(k)-
modules

KWp,q(KW)∼=

{
W(k)⊗Z M, 4 | p− q,
0, otherwise.

These theorems show that the algebras of stable operations and cooperations
in derived Witt theory with rational coefficients have structure similar to the well-
known case of (topological) K-theory of real vector bundles KOtop. This is not an
accidental coincidence; these theories have quite a lot in common. KOtop is built
out of real vector bundles and every real vector bundle over a compact space admits
a scalar product providing an isomorphism with the dual bundle. Derived Witt
theory, roughly speaking, is built out of vector bundles with a fixed isomorphism
with the dual bundle. In the motivic setting the element η is invertible in derived
Witt theory. Real points of the Hopf map give a double cover of S1, i.e., real points
of η correspond to 2 ∈ Z∼= π st

0 . Thus KOtop
1/2 (K-theory of real vector bundles with

inverted 2) should be a nice approximation to derived Witt groups. It is well-known
that (KOtop

1/2)
n is 4-periodic in n with

(KOtop
1/2)

0(pt)= Z
[ 1

2

]
, (KOtop

1/2)
n(pt)= 0, n = 1, 2, 3.

The same holds for derived Witt theory: W[n] is 4-periodic in n with

W[0](pt)=W(k), W[n](pt)= 0, n = 1, 2, 3.

In fact, over the real numbers one can show that the (real) realization functor takes
the motivic spectrum KW to the spectrum KOtop

1/2 and there are deep theorems
comparing W[n](X) to (KOtop)n(X (R)) for an algebraic variety X over the field
of real numbers; see [Brumfiel 1984; Karoubi et al. 2016]. Moreover, in a private
communication Oliver Röndigs outlined to me a strategy for obtaining a description
of
(
KW⊗ Z

[ 1
2

])
∗,∗

(
KW⊗ Z

[1
2

])
and KW∗,∗

Q
(KWQ) over a base field of charac-

teristic zero applying Brumfiel’s theory [1984] to the well-known computation of
cooperations and rational operations in topology [Adams et al. 1971].
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The algebras of stable operations and cooperations in KOtop
Q

can be described as
follows. Denote by β top

∈ (KOtop
Q
)−4(pt) the element inducing periodicity

(KOtop
Q
)n+4 ∼= (KOtop

Q
)n.

Every stable operation is uniquely determined by its values on the powers of β top,
yielding an isomorphism

(KOtop
Q
)∗(KOtop

Q
)∼=

⊕
n∈Z

(β top)n
∏
m∈Z

Q,

while for the cooperations one has

(KOtop
Q
)∗(KOtop

Q
)∼=Q[β±1

l , β±1
r ],

where βr and βl are similar to the ones from Theorem 1.2.
Computations of (KOtop

Q
)∗(KOtop

Q
) and (KOtop

Q
)∗(KOtop

Q
) could be carried out

quite easily using Serre’s theorem about finiteness of stable homotopy groups of
spheres. In the motivic setting the analogous result on stable homotopy groups is
not completely settled; moreover, our motivation is just the opposite one. It was
pointed out to me by Marc Levine that the above computations of stable operations
and cooperations in KWQ combined with the technique developed by Cisinski and
Déglise [2012] could possibly yield the motivic version of Serre’s finiteness. This
problem is addressed in a forthcoming paper [Ananyevskiy et al. 2017].

Our approach to the computation of stable operations and cooperations in KWQ

and cooperations in KW is straightforward. The spectrum KW is obtained by
localization from the spectrum KO representing higher Grothendieck–Witt groups,
hence

KW∗,∗
Q
(KWQ)= KW∗,∗

Q
(KO),

(KWQ)∗,∗(KWQ)= (KWQ)∗,∗(KO),

KW∗,∗(KW)= KW∗,∗(KO).

The odd spaces in the spectrum KO are all the same and coincide with the infinite
quaternionic Grassmannian HGr. Derived Witt theory of HGr is known to be given
by power series in characteristic classes [Panin and Walter 2010a, Theorem 9.1].
The pullbacks along the structure maps of KO can be described explicitly using the
following computation of characteristic classes of triple tensor products of rank 2
symplectic bundles (Lemma 8.2).

Lemma 1.4. Let E1, E2 and E3 be rank 2 symplectic bundles over a smooth variety
X. Put ξi = bKW

1 (Ei ) ∈ KW4,2(X) and denote by ξ(n1, n2, n3) the sum of all the
monomials lying in the orbit of ξ n1

1 ξ
n2
2 ξ

n3
3 under the action of S3. Then
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bKW
1 (E1⊗ E2⊗ E3)= βξ(1, 1, 1),

bKW
2 (E1⊗ E2⊗ E3)= βξ(2, 2, 0)− 2ξ(2, 0, 0),

bKW
3 (E1⊗ E2⊗ E3)= βξ(3, 1, 1)− 8ξ(1, 1, 1),

bKW
4 (E1⊗ E2⊗ E3)= βξ(2, 2, 2)+ ξ(4, 0, 0)− 2ξ(2, 2, 0).

This computation is a derived Witt analogue of the equality

cK
1 (L1⊗ L2)= cK

1 (L1)+ cK
1 (L2)− cK

1 (L1)cK
1 (L2)

in K-theory, i.e., an analogue of a formal group law. It turns out that the inverse
limit lim

←−−
KW∗+8n+4,∗+4n+2

Q
(HGr) can be easily computed yielding the desired an-

swer, while the lim
←−−

1 term vanishes. For the cooperations we employ a strategy
similar to the one used for operations, the main difference being that in place of the
result by Panin and Walter on the derived Witt theory of HGr we use Theorem 5.10,
which provides the following description of derived Witt homology of HGr (see
Definitions 5.8 and 5.9 for the details).

Theorem 1.5. Let k be a field of characteristic not 2. Then there is a canonical
isomorphism of KW∗,∗(Spec k)∼=W(k)[η±1, β±1

]-algebras

KW∗,∗(HGr+)∼=W(k)[η±1, β±1
][x1, x2, . . . ].

The paper is organized in the following way. In Section 2 we recall the well-
known definitions and constructions in generalized (co)homology theories repre-
sentable in the stable motivic homotopy category introduced by Morel and Voevod-
sky. The next section deals with the definitions and basic properties of cup and cap
products in the motivic setting. In Section 4 we recall the theory of symplectic ori-
entation in generalized motivic cohomology developed by Panin and Walter [2010a;
2010c]. Section 5 is dual to Section 4 and deals with symplectically oriented
homology theories. In Sections 6 and 7 we recall various representability prop-
erties of higher Grothendieck–Witt groups and derived Witt theory. In Section 8
we compute characteristic classes of triple tensor products of rank 2 symplectic
bundles. In the last two sections we compute the algebras of stable operations and
cooperations in KWQ and give an additive description of cooperations in KW.

2. Recollection on generalized motivic (co)homology

In this section we recall some basic definitions and constructions in the unstable
and stable motivic homotopy categories H•(k) and SH(k). We refer the reader
to the foundational papers [Morel and Voevodsky 1999; Voevodsky 1998] for an
introduction to the subject. We use the version of stable motivic homotopy category
based on HP1-spectra introduced in [Panin and Walter 2010b].

Throughout this paper k is a field of characteristic different from 2.
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Definition 2.1. Let Sm/k be the category of smooth varieties over k. A motivic
space over k is a simplicial presheaf on Sm/k. Each X ∈ Sm/k defines an un-
pointed motivic space HomSm/k( – , X) constant in the simplicial direction. We
often write pt for Spec k regarded as a motivic space. Inverting all the weak motivic
equivalences in the category of the pointed motivic spaces, we obtain the pointed
motivic unstable homotopy category H•(k).

Definition 2.2. Define S1,1
= (A1

−{0}, 1), S1,0
= S1

s =1
1/∂(11) and

Sp+q,q
= (S1,1)∧q

∧ (S1,0)∧p

for the integers p, q ≥ 0. Let T= A1/(A1
−{0}) be the Morel–Voevodsky object,

which is canonically isomorphic to S2,1 in H•(k) [Morel and Voevodsky 1999,
Lemma 3.2.15].

Definition 2.3. Let V = (k⊕4, φ), φ(x, y) = x1 y2 − x2 y1 + x3 y4 − x4 y3, be the
standard symplectic vector space over k of dimension 4. The quaternionic pro-
jective line HP1 is the variety of symplectic planes in V . Alternatively, it can be
described as HP1

= Sp4/Sp2×Sp2. Write ∗ = 〈e1, e2〉 ∈ HP1(k) for the standard
basis e1, e2, e3, e4 of V . If not otherwise specified we consider HP1 as a pointed
motivic space (HP1, ∗). Let HP1 be the pushout of

A1 0
←− pt

∗
−→ HP1.

There is an obvious isomorphism HP1 '
−→ HP1 in H•(k) given by a contraction of

A1 and we usually identify these two objects in H•(k).

Remark 2.4. The only reason that we need HP1 is Definition 6.7, since the mor-
phisms that we use there do no exist for HP1.

Lemma 2.5 [Panin and Walter 2010b, Theorem 9.8]. There exists a canonical
isomorphism HP1 ∼= T∧T in H•(k).

Corollary 2.6. There exists a canonical isomorphism HP1 ∼= S4,2 in H•(k).

Proof. This follows from the lemma by applying the canonical isomorphism T∼=S2,1

[Morel and Voevodsky 1999, Lemma 3.2.15]. �

Definition 2.7. An HP1-spectrum A is a sequence of pointed motivic spaces

(A0, A1, A2, . . . )

equipped with structural maps σn :HP1
∧ An→ An+1. A morphism of HP1-spectra

is a sequence of morphisms of pointed motivic spaces compatible with the struc-
tural maps. Inverting the stable motivic weak equivalences as in [Jardine 2000], we
obtain the motivic stable homotopy category SH(k)= SHHP1(k). This category
has a canonical symmetric monoidal structure. From now on, by a spectrum we
mean an HP1-spectrum.
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Lemma 2.8 [Panin and Walter 2010b, Theorem 12.1]. The stable homotopy cate-
gories of T-spectra and of HP1-spectra are equivalent.

Definition 2.9. Every pointed motivic space Y gives rise to a suspension spectrum

6∞HP1Y = (Y,HP1
∧ Y, (HP1)∧2

∧ Y, . . . ).

Put S=6∞HP1pt+ for the sphere spectrum.

Definition 2.10. Let A = (A0, A1, . . . ) be an HP1-spectrum and m be an integer.
Denote by A{m} = (A{m}0, A{m}1, . . . ) the spectrum given by

A{m}n =
{

Am+n, m+ n ≥ 0,
pt, m+ n < 0,

with the structure maps induced by the structure maps of A.

Definition 2.11. It follows from Corollary 2.6 that in SH(k) there is a canonical
isomorphism (A∧S4,2){−1} ∼= A. The suspension functors – ∧Sp+q,q , p, q ≥ 0,
become invertible in SH(k), so we extend the notation to arbitrary integers p, q in
an obvious way.

Definition 2.12. For A, B ∈ SH(k) put

Ai, j (B)= HomSH(k)(B, A∧Si, j ), A∗,∗(B)=
⊕
i, j∈Z

Ai, j (B),

Ai, j (B)= HomSH(k)(S∧Si, j, A∧ B), A∗,∗(B)=
⊕
i, j∈Z

Ai, j (B).

Let f : B→ B ′ be a morphism in SH(k). Denote by

f A
: A∗,∗(B ′)→ A∗,∗(B), f A : A∗,∗(B)→ A∗,∗(B ′)

the natural morphisms given by composition with f .

Remark 2.13. Using suspension spectra we may treat every pointed motivic space
as a spectrum; in particular, we may treat a smooth variety X as a suspension
spectrum 6∞HP1(X+,+). Thus all the definitions involving A∗,∗(B) and A∗,∗(B)
are applicable to the case of B being a pointed motivic space or a smooth variety.

Definition 2.14. For A, B ∈ SH(k) we have suspension isomorphisms

6 p,q
: A∗,∗(B)

'
−→ A∗+p,∗+q(B ∧Sp,q),

6 p,q
: A∗,∗(B)

'
−→ A∗+p,∗+q(B ∧Sp,q),
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given by smash product – ∧ idSp,q . The isomorphisms from [Morel and Voevodsky
1999, Lemma 3.2.15] and Corollary 2.6 induce suspension isomorphisms

6T : A∗,∗(B)
'
−→ A∗+2,∗+1(B∧T), 6T : A∗,∗(B)

'
−→ A∗+2,∗+1(B∧T),

6HP1 : A∗,∗(B)
'
−→ A∗+4,∗+2(B∧HP1), 6HP1 : A∗,∗(B)

'
−→ A∗+4,∗+2(B∧HP1),

6HP1 : A∗,∗(B)
'
−→ A∗+4,∗+2(B∧HP1), 6HP1 : A∗,∗(B)

'
−→ A∗+4,∗+2(B∧HP1).

We write 6n
T, 6n

HP1 and 6n
HP1 for the n-fold composition of the respective suspen-

sion isomorphisms.

Definition 2.15. Let A = (A0, A1, . . . ) be an HP1-spectrum. Denote Trn A the
spectrum given by

(Trn A)m =
{

Am, m ≤ n,
(HP1)∧m−n

∧ Am, m > n,

with the structure maps induced by the structure maps of A.

Remark 2.16. The obvious map 6∞HP1 An{−n} → Trn A clearly becomes an iso-
morphism in SH(k).

Lemma 2.17. Consider A ∈ SH(k) and let B = (B0, B1, . . .) be an HP1-spectrum
with structure maps σn :HP1

∧ Bn→ Bn+1. Then:

(1) The canonical homomorphism

lim
−−→

A∗+4n,∗+2n(Bn)→ A∗,∗(B)

is an isomorphism, where the limit is taken with respect to the morphisms

(σn)A ◦6HP1 : A∗+4n,∗+2n(Bn)→ A∗+4(n+1),∗+2(n+1)(Bn+1).

(2) There is a short exact sequence

0→ lim
←−−

1 A∗+4n−1,∗+2n(Bn)→ A∗,∗(B)→ lim
←−−

A∗+4n,∗+2n(Bn)→ 0,

where the limit is taken with respect to the morphisms

6−1
HP1 ◦ σ

A
n : A∗+4(n+1),∗+2(n+1)(Bn+1)→ A∗+4n,∗+2n(Bn).

Proof. Straightforward, using B = lim
−−→

Trn B and a mapping telescope. In the
motivic setting see, for example, [Panin et al. 2009, Lemma A.34]. �

3. Cup and cap product on generalized motivic (co)homology

In this section we recall the well-known constructions of cup and cap product
in generalized (co)homology. A classic reference for this theme in (nonmotivic)
stable homotopy theory is [Adams 1974, III.9].
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Definition 3.1. A commutative ring spectrum A is a commutative monoid

(A,m A : A∧ A→ A, u A : S→ A)

in (SH(k),∧,S).

Definition 3.2. Let (A,mA,uA) be a commutative ring spectrum and f : B→C∧D
a morphism in SH(k). The cup product

∪ f : Ap,q(C)× Ai, j (D)→ Ap+i,q+ j (B)

is given by a ∪ f b = (m A ∧ σ) ◦ (idA∧τSp,q,A∧ idSi, j ) ◦ (a ∧ b) ◦ f ,

a ∪ f b =


B

f // C ∧ D a∧b // A∧Sp,q
∧ A∧Si, j

idA∧τSp,q ,A∧idSi, j

ss
A∧ A∧Sp,q

∧Si, j m A∧σ // A∧Sp+i,q+ j

 ,
where τSp,q,A : Sp,q

∧ A
'
−→ A∧Sp,q and σ : Sp,q

∧Si, j '
−→ Sp+i,q+ j are permutation

isomorphisms. We usually omit the subscript f from the notation when the mor-
phism is clear from the context. The cup product is clearly bilinear and associative.
We are going to use this product in the following special cases:

(1) Let U1,U2 ⊂ X be open subsets of a smooth variety X and

f : X/(U1 ∪U2)→ X/U1 ∧ X/U2

be the morphism induced by the diagonal embedding. Then the above con-
struction gives a cup product

∪ : Ap,q(X/U1)× Ai, j (X/U2)→ Ap+i,q+ j (X/(U1 ∪U2)).

In particular, for U1 =U2 =∅ we obtain a product

∪ : Ap,q(X)× Ai, j (X)→ Ap+i,q+ j (X)

endowing A∗,∗(X) with a ring structure.

(2) Consider B ∈ SH(k) and let

f1 = id : B→ B ∧S, f2 = id : B→ S∧ B

be the identity maps. Then we obtain cup products

∪ : Ap,q(B)× Ai, j (pt)→ Ap+i,q+ j (B),

∪ : Ap,q(pt)× Ai, j (B)→ Ap+i,q+ j (B)

endowing A∗,∗(B) with the structure of an A∗,∗(pt)-bimodule.
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Definition 3.3. Let τS2,1,S2,1 : S2,1
∧S2,1 '

−→ S2,1
∧S2,1 be the permutation isomor-

phism and let (A,m A, u A) be a commutative ring spectrum. Put

ε =6−4,−2τ A
S2,1,S2,16

4,2u A ∈ A0,0(pt).

Note that ε2
= 1.

Lemma 3.4. Let (A,m A, u A) be a commutative ring spectrum and f : B→C ∧D
a morphism in SH(k). Write f τ = τ ◦ f : B→ D ∧C with τ : C ∧ D

'
−→ D∧C

being the permutation isomorphism. Then

a ∪ f b = (−1)piεq j b∪ f τ a ∈ Ap+i,q+ j (B)

for every a ∈ Ap,q(C) and b ∈ Ai, j (D).

Proof. Examining the definition one notices that

a ∪ f b = (6−p−i,−q− jτSp,q,Si, j )∪ b∪ f σ a,

where τSp,q,Si, j : Sp,q
∧Si, j '

−→ Si, j
∧Sp,q is the permutation isomorphism. By clas-

sical homotopy theory one has 6−2,0(τS1,0,S1,0)=−1, so the claim follows. �

Definition 3.5. Let (A,mA,uA) be a commutative ring spectrum and f : B→C∧D
be a morphism in SH(k). The cap product

∩ f : Ap,q(C)× Ai, j (B)→ Ai−p, j−q(D)

is given by a ∩ f x =6−p,−q((m A ∧ τSp,q ,D) ◦ (idA∧a ∧ idD) ◦ (idA ∧ f ) ◦ x),

a ∩ f x =6−p,−q


S∧Si, j x // A∧ B

idA ∧ f // A∧C ∧ D

idA∧a∧idD

ss
A∧ A∧Sp,q

∧ D
m A∧τSp,q ,D // A∧ D∧Sp,q

 ,
where τSp,q ,D : Sp,q

∧D
'
−→ D∧Sp,q is the permutation isomorphism. The subscript

f is usually omitted from the notation when the morphism is clear from the context.
We are going to use this product in the following special cases:

(1) Let Y be a pointed motivic space and let f =1 : Y → Y ∧ Y be the diagonal
embedding. Then we obtain the cap product

∩ : Ap,q(Y )× Ai, j (Y )→ Ai−p, j−q(Y ).

One can easily check that (a ∪ a′)∩ x = a ∩ (a′ ∩ x). This product endows
A∗,∗(Y ) with a left A∗,∗(Y )-module structure.
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(2) Let U be an open subset of a smooth variety X and f : X/U → (X/U )∧ X+
the morphism induced by the diagonal embedding. Then we obtain the cap
product

∩ : Ap,q(X/U )× Ai, j (X/U )→ Ai−p, j−q(X).

(3) Consider B ∈ SH(k) and let f = id : B→ B ∧S be the identity morphism.
Then we obtain the Kronecker pairing

〈 – , – 〉 : Ap,q(B)× Ai, j (B)→ Ai−p, j−q(pt)∼= Ap−i,q− j (pt).

(4) Consider B ∈ SH(k) and let f = id : B→ S∧ B be the identity morphism.
Then we obtain a cap product

∩ : Ap,q(pt)× Ai, j (B)→ Ai−p, j−q(B)

endowing A∗,∗(B) with a left A∗,∗(pt)-module structure.

Lemma 3.6. Let A be a commutative ring spectrum. Then for a commutative
square

C ∧ D r∧s // C ′ ∧ D′

B

f

OO

t // B ′
f ′

OO

in SH(k) and a ∈ A∗,∗(C ′), x ∈ A∗,∗(B) we have

sA(r A(a)∩ x)= a ∩ tA(x).

Proof. Straightforward. �

Definition 3.7. Let A be a commutative ring spectrum and let p : X → Y be a
morphism of pointed motivic spaces. Then the pairing

pA ◦ ( – ∩ – ) : A∗,∗(X)× A∗,∗(X)→ A∗,∗(Y )

is A∗,∗(Y )-bilinear. Denote by

Dp : A∗,∗(X)→ HomA∗,∗(Y )(A∗,∗(X), A∗,∗(Y ))

the adjoint homomorphism of left A∗,∗(X)-modules.

Definition 3.8. Let (A,m A, u A) and (B,m B, u B) be commutative ring spectra.
The product

– ? – : Ap,q(B)× Ai, j (B)→ Ai+p, j+q(B)
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is given by x ? y = (m A ∧m B) ◦ (idA ∧τB,A ∧ idB) ◦ (y ∧ x) ◦ σ ,

x ? y =


S∧Si+p, j+q σ // S∧Si, j

∧S∧Sp,q y∧x // A∧ B ∧ A∧ B
idA ∧τB,A∧idB

rr
A∧ A∧ B ∧ B

m A∧m B // A∧ B

 ,
where σ : Si+p, j+q '

−→ Si, j
∧ Sp,q and τB,A : B ∧ A

'
−→ A∧ B are the permutation

isomorphisms. This product endows A∗,∗(B) with a ring structure. Moreover, one
immediately checks that it agrees with the cap product introduced in the end of
Definition 3.5 under the homomorphism

A−p,−q(pt)' Ap,q(pt)
(u B)A
−−−→ Ap,q(B).

4. Symplectically oriented cohomology theories

In this section we provide a list of results from the theory of symplectic orientation
in generalized motivic cohomology developed in [Panin and Walter 2010c].

Definition 4.1. We adopt the following notation dealing with Grassmannians and
flags of symplectic spaces (see [Panin and Walter 2010c]).

• H− =
(
k⊕2,

( 0
−1

1
0

))
is the standard symplectic plane.

• HGr(2r, 2n)= Sp2n /Sp2r ×Sp2n−2r is the quaternionic Grassmannian. Alter-
natively, it can be described as the open subscheme of Gr(2r,H⊕n

− ) parametriz-
ing subspaces on which the standard symplectic form is nondegenerate.

• U s
2r,2n is the tautological rank 2r symplectic vector bundle over HGr(2r, 2n).

• HPn
= HGr(2, 2n+ 2) is the quaternionic projective space.

• H(1)= U s
2,n+2 is the tautological rank 2 symplectic vector bundle over HPn .

• HFlag(2r , 2n) = Sp2n /(Sp2 × · · · × Sp2 × Sp2n−2r ) is the quaternionic flag
variety. Alternatively, it can be described as the variety of flags V2 ≤ V4 ≤

· · · ≤ V2r ≤ H⊕n
− such that dim V2i = 2i and the restriction of the symplectic

form is nondegenerate on V2i for every i .

• HGr(2r, E),HP(E),HFlag(2r , E) are the relative versions of the above vari-
eties defined for a rank 2n symplectic bundle E over a smooth variety X .

Definition 4.2 [Panin and Walter 2010c, Definition 14.2; 2010a, Definition 12.1].
A symplectic orientation of a commutative ring spectrum A is a rule which assigns
to each rank 2n symplectic bundle E over a smooth variety X an element

th(E)= thA(E) ∈ A4n,2n(E/(E − X))

with the following properties:
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(1) For an isomorphism u : E
'
−→ E ′, one has th(E)= u A th(E ′).

(2) For a morphism of varieties f : X → Y , symplectic bundle E over Y and
pullback morphism fE : f ∗E→ E , one has f A

E th(E)= th( f ∗E).

(3) The homomorphisms – ∪ th(E) : A∗,∗(X)→ A∗+4n,∗+2n(E/(E − X)) are
isomorphisms.

(4) We have th(E ⊕ E ′)= q A
1 th(E)∪ q A

2 th(E ′), where q1, q2 are the projections
from E ⊕ E ′ to its factors.

We refer to the classes th(E) as Thom classes. A commutative ring spectrum A
with a chosen symplectic orientation is called a symplectically oriented spectrum.

Lemma 4.3. Let A be a symplectically oriented spectrum, X be a smooth variety
and let p : X→ pt be the projection. Identify H⊕r

− /(H
⊕r
− −{0})∼= T∧2r . Then

th(p∗H⊕r
−
)= a62r

T 1X

for some invertible element a ∈ A0,0(pt).

Proof. We have the following isomorphisms:

A0,0(pt)
–∪62r

T 1pt
−−−−−→ A4r,2r (T∧2r )∼= A4r,2r (H⊕r

−
/(H⊕r
−
−{0}))

–∪th(H⊕r
− )

←−−−−−− A0,0(pt),

and thus th(H⊕r
− ) = a62r

T 1pt for some invertible a ∈ A0,0(pt). The claim follows
from the functoriality of Thom classes. �

Remark 4.4. There is a canonical bijection between the sets of symplectic orien-
tations satisfying the additional condition of normalization (th(H−) = 62

T1) and
homomorphisms of monoids MSp→ A. See [Panin and Walter 2010a, Theorems
12.2 and 13.2] for the details.

Remark 4.5. The main example of a symplectically oriented cohomology theory
that we are interested in is that of higher Grothendieck–Witt groups (hermitian
K-theory). See Definition 6.7 and Theorems 6.8 and 6.10 for the details.

Definition 4.6 [Panin and Walter 2010c, Definition 14.1]. A theory of Borel classes
on a commutative ring spectrum A is a rule assigning to every symplectic bundle E
over a smooth variety X a sequence of elements bi (E)= bA

i (E) ∈ A4i,2i (X), i ≥ 1,
satisfying:

(1) For E ∼= E ′ we have bi (E)= bi (E ′) for all i .

(2) For a morphism of varieties f : X→ Y and symplectic bundle E over Y we
have f Abi (E)= bi ( f ∗E) for all i .

(3) For every variety X the homomorphism

A∗,∗(X)⊕ A∗−4,∗−2(X)→ A∗,∗(HP1
× X)
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given by a + a′ 7→ pA(a) + pA(a′) ∪ b1(H(1)) is an isomorphism. Here
p : HP1

× X→ X is the canonical projection.

(4) b1(H−)= 0 ∈ A4,2(pt).

(5) For E of rank 2r we have bi (E)= 0 for i > r .

(6) For symplectic bundles E, E ′ over X we have bt(E)bt(E ′) = bt(E ⊕ E ′),
where

bt(E)= 1+ b1(E)t + b2(E)t2
+ · · · ∈ A∗,∗(X)[t].

We refer to bi (E) as Borel classes of E and bt(E) is the total Borel class.

Remark 4.7. In [Panin and Walter 2010c] the above classes were called Pontryagin
classes, but as I learned from I. Panin, it was noted by V. Buchstaber that these
classes act much more like symplectic Borel classes than Pontryagin classes in
topology, so we prefer to adopt this new notation. See also [Ananyevskiy 2015,
Definition 7].

Theorem 4.8 [Panin and Walter 2010c, Theorem 14.4]. Let A be a commutative
ring spectrum. Then there is a canonical bijection between the set of symplectic
orientations of A and the set of Borel class theories on A.

Proof. We give a sketch of the definition of a Borel class theory on a symplectically
oriented spectrum. First one defines b1(E) = z A th(E) for a rank 2 symplectic
bundle E over a smooth variety X and morphism z : X→ E/(E − X) induced by
the zero section. Then the higher Borel classes are introduced using Theorem 4.9
below. In particular, we have br (E)= z A th(E) for a rank 2r symplectic bundle E .
See [Panin and Walter 2010c] for the details, but note that we omit the minus sign
in front of b1(E). �

Theorem 4.9 [Panin and Walter 2010c, Theorem 8.2]. Let A be a symplectically
oriented spectrum and E a rank 2r symplectic bundle over a smooth variety X.
Denote by HP(E) the relative quaternionic projective space associated to E and
put ξ = b1(H(1))∈ A4,2(HP(E)). Then the homomorphism of left A∗,∗(X)-modules

r−1⊕
i=0

A∗−4i,∗−2i (X)→ A∗,∗(HP(E))

given by
∑r−1

i=0 ai 7→
∑r−1

i=0 ai ∪ ξ
i is an isomorphism.

Corollary 4.10. Let A be a symplectically oriented spectrum and let E be a rank
2r symplectic bundle over a smooth variety X. Denote by U1,U2, . . . ,Us the tauto-
logical rank 2 symplectic bundles over HFlag(2s, E) and put ξi = b1(Ui ). Then the
homomorphism of left A∗,∗(X)-modules
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0≤ni≤(r−i)

i=1···s

A∗−4(n1+···+ns),∗−2(n1+···+ns)(X)→ A∗,∗(HFlag(2s, E))

given by ∑
0≤ni≤(r−i)

i=1···s

an1n2···ns 7→

∑
0≤ni≤(r−i)

i=1···s

an1n2···ns ∪ ξ
n1
1 ξ

n2
2 · · · ξ

ns
s

is an isomorphism.

Proof. This follows from the theorem, since one can present HFlag(2s, E) as an
iterated quaternionic projective bundle

HFlag(2s, E)→ HFlag(2s−1, E)→ · · · → HFlag(2, E)= HP(E). �

Theorem 4.11 [Panin and Walter 2010c, Theorem 10.2]. Let A be a symplectically
oriented spectrum and E a rank 2r symplectic bundle over a smooth variety X.
Then there exists a canonical morphism of smooth varieties f : Y → X such that

(1) f A
: A∗,∗(X)→ A∗,∗(Y ) is injective,

(2) f ∗E ∼= E1⊕ E2⊕ · · · ⊕ Er for some canonically defined rank 2 symplectic
bundles Ei . In particular,

bi (E)= σi (b1(E1), b1(E2), . . . , b1(Er ))

for the elementary symmetric polynomials σi .

Definition 4.12. Let E be a rank 2r symplectic bundle over a smooth variety X .
In the notation of Theorem 4.11 we refer to {b1(E1), b1(E2), . . . , b1(Er )} as Borel
roots of E and denote ξi = ξi (E) = b1(Ei ). Write sn(E) for the power sums of
Borel roots of E ,

sn(E)= ξ n
1 + ξ

n
2 + · · ·+ ξ

n
r ∈ A4n,2n(X),

and let
st(E)= s1(E)t + s2(E)t2

+ · · · ∈ A∗,∗(X)[[t]].

It follows from the standard relations between power sums and elementary sym-
metric polynomials that

st(E)=−t d
dt

ln b−t(E).

Theorem 4.13 [Panin and Walter 2010c, Theorem 11.2]. Let A be a symplectically
oriented spectrum. Then the homomorphism of A∗,∗(pt)-algebras

A∗,∗(pt)[b1, b2, . . . , br ]/(hn−r+1, . . . , hn)→ A∗,∗(HGr(2r, 2n))

induced by bi 7→ bi (U s
2r,2n) is an isomorphism. Here h j = h j (b1, b2, . . . , br ) is the

polynomial representing the j-th complete symmetric polynomial in r variables via
elementary symmetric polynomials.
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Definition 4.14. We have the following ind-objects considered as pointed motivic
spaces:

• HGr(2r)= lim
−−→

n
(HGr(2r, 2n), ∗),

• HGr= lim
−−→
r,n
(HGr(2r, 2n), ∗),

where ∗ = HGr(2, 2) ∈ HGr(2r, 2n).

Definition 4.15. We have the following classes over the infinite Grassmannians:

• bi (U s
2r ) ∈ A4i,2i (HGr(2r)) satisfying bi (U s

2r )|HGr(2r,2n) = bi (U s
2r,2n),

• bi (τ
s) ∈ A4i,2i (HGr) satisfying bi (τ

s)|HGr(2r,2n) = bi (U s
2r,2n).

The next theorem yields that these elements are uniquely defined by the given
restrictions.

Definition 4.16. Let R be a graded ring and let bi be variables of degree di ∈ N.
We denote by R[[b1, b2, . . .]]h the ring of homogeneous power series.

Theorem 4.17 [Panin and Walter 2010a, Theorem 9.1]. Let A be a symplectically
oriented spectrum. Then the following homomorphisms of A∗,∗(pt)-algebras are
isomorphisms:

(1) A∗,∗(pt)[[b1, b2, . . . , br ]]h→ A∗,∗(HGr(2r)+), induced by bi 7→ bi (U s
2r ),

(2) A∗,∗(pt)[[b1, b2, . . .]]h→ A∗,∗(HGr+), induced by bi 7→ bi (τ
s).

5. Symplectically oriented homology theories

The results of this section are dual to the results of the previous one: we compute
symplectically oriented homology of quaternionic Grassmannians and flag vari-
eties. Throughout this section A denotes a symplectically oriented commutative
ring spectrum in the sense of Definition 4.2.

Lemma 5.1. Let E be a rank 2r symplectic bundle over a smooth variety X. Then

th(E)∩− : A∗,∗(E/(E − X))→ A∗−4r,∗−2r (X)

is an isomorphism.

Proof. Using a standard Mayer–Vietoris argument we may assume that E is a
trivial bundle, i.e., E = p∗H⊕r

− for the projection p : X → pt. By Lemma 4.3
th(E)= a62r

T 1X , and thus th(E)∩ – coincides up to an invertible scalar with the
suspension isomorphism 6−2r

T . �
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Definition 5.2. Let i : Y → X be a codimension 2r closed embedding of smooth
varieties. Suppose that the normal bundle Ni is equipped with a symplectic form.
The transfer map in homology i !A is given by composition

i !A : A∗,∗(X)
pA
−→ A∗,∗(X/(X−Y ))

dA
−→ A∗,∗(Ni/(Ni−Y ))

th(Ni )∩ –
−−−−−→ A∗−4r,∗−2r (Y ).

Here

• X
p
−→ X/(X − Y ) is the canonical quotient morphism,

• d : X/(X − Y )
'
−→ Ni/(Ni − Y ) is the deformation to the normal bundle iso-

morphism [Morel and Voevodsky 1999, Theorem 3.2.23].

With this notation the localization sequence in homology could be rewritten as

· · ·
∂
−→ A∗,∗(X − Y )

jA
−→ A∗,∗(X)

i !A
−→ A∗−4r,∗−2r (Y )

∂
−→ · · · .

Lemma 5.3. Let i : Y → X be a codimension 2r closed embedding of smooth
varieties. Suppose that the normal bundle Ni is equipped with a symplectic form.
Then the transfer map i !A is a homomorphism of A∗,∗(X)-modules, i.e.,

i !A(a ∩ x)= i A(a)∩ i !A(x)

for every x ∈ A∗,∗(X) and a ∈ A∗,∗(X).

Proof. The morphisms pA and dA are homomorphisms of A∗,∗(X)-modules by
Lemma 3.6, while cap product with the Thom class induces a homomorphism of
A∗,∗(X)-modules by Lemma 3.4. �

Lemma 5.4 (cf. [Panin and Walter 2010c, Proposition 7.6]). Let E be a rank 2r
symplectic bundle over a smooth variety X and let s : X→ E be a section meeting
the zero section z : X → E transversally in Y . Let i : Y → X be the closed em-
bedding. Equip the normal bundle Ni with a symplectic form using the canonical
isomorphism i∗E ∼= Ni . Then for every x ∈ A∗,∗(X) we have

i Ai !A(x)= br (E)∩ x .

Proof. Consider the following diagram:
A∗,∗(Ni/(Ni − Y ))

th(Ni )∩ –

��

jA

~~

A∗,∗(X)
pA //

sA

��

z A

��

A∗,∗(X/(X − Y ))

sA

��

dA

66

A∗−4r,∗−2r (Y )

i A

��
A∗,∗(E)

πA

]]

qA // A∗,∗(E/(E − z(X)))
th(E)∩ – // A∗−4r,∗−2r (X)
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Here

• the morphisms pA and qA are induced by the quotient maps,

• dA is induced by the deformation to the normal bundle isomorphism,

• πA is induced by the canonical projection π : E→ X ,

• jA is induced by the isomorphism i∗E ∼= Ni .

In the left side of the diagram, sA and z A are homomorphisms inverse to an isomor-
phism πA, so sA = z A and the left square commutes. The middle triangle commutes
by the functoriality of the deformation to the normal bundle isomorphism. The
right side commutes by the functoriality of Thom classes. Hence

i Ai !A(x)= i A(th(Ni )∩ dA pA(x))= th(E)∩ (qAz A(x)).

By Lemma 3.6 we have

th(E)∩ (qAz A(x))= z Aq A(th(E))∩ x = br (E)∩ x . �

Theorem 5.5. Let E be a symplectic bundle of rank 2r+2 over a smooth variety X.
Denote by p : HP(E)→ X the canonical projection and set ξ = b1(H(1)). Then
the homomorphism of left A∗,∗(X)-modules

A∗,∗(HP(E))→
r⊕

n=0

A∗−4n,∗−2n(X)

given by x 7→ pA(x)+ pA(ξ ∩ x)+ · · ·+ pA(ξ
r
∩ x) is an isomorphism.

Proof. A usual Mayer–Vietoris argument yields that it is sufficient to treat the case
of a trivial symplectic bundle E , i.e., HP(E)=HPr

×X . The proof does not depend
on the base X , so we omit it from the notation.

By [Panin and Walter 2010c, Theorems 3.1, 3.2 and 3.4] there is a closed sub-
variety Y ⊂ HPr satisfying

• Y is a transversal intersection of a section s :HPr
→H(1) and the zero section

z : HPr
→H(1),

• HPr
− Y is A1-homotopy equivalent to a point,

• there is a morphism π :Y→HPr−1 which is an A2-bundle such that π∗H(1)∼=
i∗H(1), where i : Y → HPr is the closed embedding.

Equip the normal bundle Ni with the symplectic form induced by the isomorphism
i∗H(1)∼= Ni . Identifying A∗,∗(HPr

− Y )∼= A∗,∗(pt) and A∗,∗(Y )∼= A∗,∗(HPr−1),
we obtain a long exact sequence in homology

· · ·
∂
−→ A∗,∗(pt)

jA
−→ A∗,∗(HPr )

i !A
−→ A∗−4,∗−2(HPr−1)

∂
−→ · · · .
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Here j is the composition pt∼= HPr
− Y → HPr . The projection HPr

→ pt splits
the first morphism, thus i !A is surjective. Denote by q : HPr−1

→ pt the canonical
projection and consider the following diagram:

A∗,∗(pt)
jA //

=

��

A∗,∗(HPr )
i !A //

r∑
n=0

pA(ξ
n
∩ – )

��

A∗−4,∗−2(HPr−1)

r−1∑
n=0

qA(ξ
n
∩ – )

��
A∗,∗(pt) u //

r⊕
n=0

A∗−4n,∗−2n(pt) v //
r−1⊕
n=1

A∗−4n,∗−2n(pt)

Here u is the injection on the zeroth summand and v is the projection forgetting
about the zeroth summand. The left square commutes by Lemma 3.6:

ξ n
∩ jA(x)= jA( j A(ξ n)∩ x)=

{
jA(x), n = 0,
jA(0∩ a)= 0, n > 0.

The right square commutes by Lemmas 3.6 and 5.4:

qA(ξ
n
∩ i !Ax)= pAi A(ξ

n
∩ i !Ax)= pA(ξ

n
∩ i Ai !Ax)= pA(ξ

n+1
∩ x).

The claim follows by induction. �

Corollary 5.6. Let E be a symplectic bundle of rank 2r over a smooth variety X
and U1,U2, . . . ,Us the tautological rank 2 symplectic bundles over HFlag(2s, E).
Set ξi = b1(Ui ) and let p : HFlag(2s, E)→ X be the canonical projection. Then
the homomorphism of A∗,∗(X)-modules

A∗,∗(HFlag(2s, E)) →
⊕

0≤ni≤(r−i)
i=1···s

A∗−4(n1+n2+···+ns),∗−2(n1+n2+···+ns)(X)

given by
x 7→

∑
0≤ni≤(r−i)

i=1···s

pA((ξ
n1
1 ξ

n2
2 · · · ξ

ns
s )∩ x)

is an isomorphism.

Proof. This follows from Theorem 5.5, since one can present HFlag(2s, E) as an
iterated quaternionic projective bundle

HFlag(2s, E)→ HFlag(2s−1, E)→ · · · → HFlag(2, E)=HP(E). �

Theorem 5.7. Let E be a symplectic bundle of rank 2r over a smooth variety X.
Denote by p : HFlag(2s, E)→ X and q : HGr(2s, E)→ X the canonical pro-
jections. Then the following duality homomorphisms, given by Definition 3.7, are
isomorphisms:

Dp : A∗,∗(HFlag(2s, E))→ HomA∗,∗(X)(A∗,∗(HFlag(2s, E)), A∗,∗(X)),

Dq : A∗,∗(HGr(2s, E))→ HomA∗,∗(X)(A∗,∗(HGr(2s, E)), A∗,∗(X)).
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Proof. The first morphism is an isomorphism by Corollaries 4.10 and 5.6.
Denote by p′ : HFlag(2s, E)→ HGr(2s, E) the canonical projection and abbre-

viate HF= HFlag(2s, E), HG= HGr(2s, E). Recall that HF is a quaternionic flag
bundle over HG. Thus,

Dp′ : A∗,∗(HF)→ HomA∗,∗(HG)(A∗,∗(HF), A∗,∗(HG))

is an isomorphism by the above. Since A∗,∗(HF) is a free A∗,∗(HG)-module by
Corollary 4.10, it is sufficient to check that the composition

A∗,∗(HF)

(Dq )∗◦Dp′ ++

Dp′

'

// HomA∗,∗(HG)(A∗,∗(HF), A∗,∗(HG))

(Dq )∗
��

HomA∗,∗(HG)
(

A∗,∗(HF),HomA∗,∗(X)(A∗,∗(HG), A∗,∗(X))
)

is an isomorphism. The claim follows from the commutativity of the following
diagram, which is straightforward.

HomA∗,∗(HG)
(

A∗,∗(HF),HomA∗,∗(X)(A∗,∗(HG), A∗,∗(X))
)

A∗,∗(HF)

(Dq )∗◦Dp′

33

Dp

'

++

HomA∗,∗(X)(A∗,∗(HF)⊗A∗,∗(HG) A∗,∗(HG), A∗,∗(X))

∼=

OO

HomA∗,∗(X)(A∗,∗(HF), A∗,∗(X))

∼=

OO

�

Definition 5.8. The operation of orthogonal sum of symplectic bundles yields a
morphism HGr+ ∧HGr+→ HGr+ endowing A∗,∗(HGr+) with a ring structure

A∗,∗(HGr+)× A∗,∗(HGr+)→ A∗,∗(HGr+).

Definition 5.9. For n ≥ 0 denote by χn ∈ A4n,2n(HP∞
+
) the unique collection of

elements satisfying
〈ξm, χn〉 =

{
1, m = n,
0, m 6= n,

for ξ = b1(H(1)). The existence and uniqueness of these elements is guaranteed by
Theorem 5.7 (consider s = 1). Also, by the same theorem we know that A∗,∗(HP∞

+
)

is a free A∗,∗(pt)-module with a basis given by {1, χ1, χ2, . . . }. Abusing the nota-
tion, we denote by the same letters the elements χn = i A(χn) ∈ A4n,2n(HGr+) for
the canonical embedding i : HP∞

+
→ HGr+.

Theorem 5.10. Identify

A∗,∗(HGr+)∼= A∗,∗(pt)[[b1, b2, . . .]]h ∼= A∗,∗(pt)[[ξ1, ξ2, . . .]]
S∞
h
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by Theorems 4.11 and 4.17 via bi (τ
s)↔ bi ↔ σi (ξ1, ξ2, . . .). Given a partition

λ= {λ1 ≥ λ2 ≥ · · · ≥ λk > 0} denote by ξ(λ) ∈ A∗,∗(pt)[[ξ1, ξ2, . . .]]
S∞
h the sum of

all the elements in the orbit of ξλ1
1 ξ

λ2
2 · · · ξ

λk
k . Then

(1) 〈ξ(λ), χ l1
1 χ

l2
2 · · ·χ

lr
r 〉 =

{
1, l j = #{λi = j} for all j ≥ 1,
0, otherwise,

(2) the homomorphism of A∗,∗(pt)-algebras

A∗,∗(pt)[x1, x2, . . . ] → A∗,∗(HGr+)

induced by xi 7→ χi is an isomorphism.

Proof. Put |l| = l1+ l2+ · · ·+ lr and consider the canonical embedding

i : (HP∞×HP∞× · · ·×HP∞︸ ︷︷ ︸
|l|

)+→ HGr+

given by orthogonal sum. Identify

A∗,∗((HP∞×HP∞× · · ·×HP∞)+)=
⊕
i j≥0

A∗,∗(pt)ξ i1 ⊗ ξ i2 ⊗ · · ·⊗ ξ il ,

A∗,∗((HP∞×HP∞× · · ·×HP∞)+)=
⊕
i j≥0

A∗,∗(pt)χi1 ⊗χi2 ⊗ · · ·⊗χil .

Put

χ l
= χ

l1
1 χ

l2
2 · · ·χ

lr
r , χ l

⊗
= χ1⊗ . . .⊗χ1︸ ︷︷ ︸

l1

⊗χ2⊗ · · ·⊗χ2︸ ︷︷ ︸
l2

⊗ · · ·⊗χr ⊗ · · ·⊗χr︸ ︷︷ ︸
lr

,

and denote by ξ⊗(λ) the sum of all the elements in the orbit of ξλ1⊗ξλ2⊗· · ·⊗ξλl

under the action of Sl . Here λ j = 0 for j > k.
We have i A(χ

l
⊗
)= χ l and

i A(ξ(λ))=

{
0, k > |l|,
ξ⊗(λ), k ≤ |l|.

By Lemma 3.6 we have 〈ξ(λ), χ l
〉 = 〈i A(ξ(λ)), χ l

⊗
〉.

If k > |l| then i A(ξ(λ))= 0 and 〈ξ(λ), χ l
〉 = 0 by the above.

If k ≤ |l| then we have

〈ξ(λ), χ l
〉 = 〈ξ⊗(λ), χ

l
⊗
〉

=

∑
(λ′1,...,λ

′

l )

=(λσ(1),...,λσ(l))
for some σ ∈ Sl

〈ξλ
′

1, χ1〉 · · · 〈ξ
λ′l1, χ1〉〈ξ

λ′l1+1, χ2〉 · · · 〈ξ
λ′l1+l2, χ2〉 · · · 〈ξ

λ′l, χr 〉.

This expression equals 1 if l j = #{λi = j} for every j ≥ 1 and equals zero otherwise,
so the first claim follows.
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Lemma 2.17 together with Theorem 5.7 yield

A∗,∗(HGr+)= lim
−−→

A∗,∗(HGr(2r, 2n))

= lim
−−→

HomA∗,∗(pt)(A∗,∗(HGr(2r, 2n)), A∗,∗(pt)).

We have an explicit computation of A∗,∗(HGr(2r, 2n)) given by Theorem 4.13, so
the second claim follows from the first one. �

6. Preliminaries on KO

In this section we gather the representability results for higher Grothendieck–Witt
groups (also known as hermitian K-theory) and fix a symplectic orientation on it.
Recall that the characteristic of the base field is assumed to be different from 2.

Definition 6.1. Let X be a smooth variety and U ⊂ X an open subset. For n, i ∈ Z

denote by GW[n]i (X,U ) higher Grothendieck–Witt groups defined by Schlicht-
ing [2010b, Definition 8]; see also [Schlichting 2010a; 2017]. Recall that by
[Schlichting 2017, Proposition 6.3] (cf. [Walter 2003, Theorem 2.4]) for i < 0
there is a canonical identification GW[n]i (X,U )∼=W[n−i](X,U ), where the latter
groups are derived Witt groups defined by Balmer [1999]. Moreover, GW[0]0 (X)
and GW[2]0 (X) coincide with the Grothendieck–Witt group of X introduced by
Knebusch [1977] and its symplectic version respectively.

For an orthogonal (resp. symplectic) bundle E over a smooth variety X we
denote by

• 〈E〉 ∈ GW[0]0 (X) (resp. 〈E〉 ∈ GW[2]0 (X)) the corresponding element in the
Grothendieck–Witt group,

• [E] ∈W[0](X) (resp. [E] ∈W[2](X)) the corresponding element in the Witt
group.

Definition 6.2. We need the following notation complementary to the one intro-
duced in Definition 4.1 (see [Panin and Walter 2010b]).

• H+ =
(
k⊕2,

( 0
1

1
0

))
is the standard hyperbolic plane.

• RGr(2r, 2n) = O2n /(O2r × O2n−2r ) is the real Grassmannian. Here the
orthogonal groups are taken with respect to the hyperbolic quadratic form
x1x2+x3x4+· · ·+x2n−1x2n . Similarly to the quaternionic case, the real Grass-
mannian could be described as the open subscheme of Gr(2r,H⊕n

+ ) parametriz-
ing subspaces on which the standard hyperbolic quadratic form is nondegen-
erate.

• Uo
2r,2n is the tautological rank 2r orthogonal vector bundle over RGr(2r, 2n).

• RGr= lim
−−→r,n(RGr(2r, 2n), ∗) is the infinite real Grassmannian considered as

a pointed motivic space. Here ∗ = RGr(2, 2) ∈ RGr(2r, 2n).
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Theorem 6.3 ([Schlichting and Tripathi 2015, Theorem 1.1]; see also [Panin and
Walter 2010b, Theorem 8.2]). Let X be a smooth variety and U an open subset
of X. Denote by Z the sheaf associated to the presheaf Z. Then there are natural
isomorphisms

HomH•(k)(X/U,Z×RGr)∼= GW[0]0 (X,U ),

HomH•(k)(X/U,Z×HGr)∼= GW[2]0 (X,U ).

Under these isomorphisms the tautological morphisms

RGr(2r, 2n)→ {m}×RGr,

HGr(2r, 2n)→ {m}×HGr
correspond to

〈Uo
2r,2n〉+ (m− r)〈H+〉 ∈ GW[0]0 (RGr(2r, 2n)),

〈U s
2r,2n〉+ (m− r)〈H−〉 ∈ GW[2]0 (HGr(2r, 2n)),

respectively.

Remark 6.4. Let A be a symplectically oriented spectrum. Then this theorem via
the Yoneda lemma allows us to interpret characteristic classes, i.e., elements of
A∗,∗(HGr), as natural transformations GW[2]0 (X)→ A∗,∗(X).

Definition 6.5. Let Y be a pointed motivic space. Put

GW[0]0 (Y )= HomH•(k)(Y,Z×RGr),

GW[2]0 (Y )= HomH•(k)(Y,Z×HGr).

For a family of pointed smooth varieties (X1, x1), (X2, x2), . . . , (Xm, xm) and n=0
or 2, we identify GW[n]0 ((X1, x1)∧ (X2, x2)∧ · · · ∧ (Xm, xm)) with the subgroup
of GW[n]0 (X1× X2× · · ·× Xm) consisting of all the elements α satisfying

α|X1×···×X j−1×{x j }×X j+1×···×Xm = 0
for all j .

Definition 6.6. Let τ s
∈ GW[2]0 (HGr) and τ o

∈ GW[0]0 (RGr) be the tautologi-
cal elements over the infinite Grassmannians represented by identity morphisms
HGr→ {0}×HGr and RGr→ {0}×RGr and satisfying

τ s
|HGr(2r,2n) = 〈U s

2r,2n〉− r〈H−〉, τ o
|RGr(2r,2n) = 〈Uo

2r,2n〉− r〈H+〉.

Definition 6.7. The periodic HP1-spectrum KO is given by the spaces

KO= (RGr,HGr,RGr,HGr, . . . )

and structure maps

σ o
KO :HP1

∧RGr→ HGr, σ s
KO :HP1

∧HGr→ RGr
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satisfying

(σ o
KO)

GW(τ s)|HP1∧RGr(2r,2n) = (〈H(1)〉− 〈H−〉)� τ
o
|RGr(2r,2n),

(σ s
KO)

GW(τ o)|HP1∧HGr(2r,2n) = (〈H(1)〉− 〈H−〉)� τ
s
|HGr(2r,2n).

Here � is induced by the external tensor product of vector bundles,

E1 � E2 = p∗1 E ⊗ p∗2 E2

for vector bundles E1 over X1 and E2 over X2 with projections pi : X1× X2→ X i .
Note that an (external) tensor product of two symplectic vector bundles has a canon-
ical orthogonal structure, while an (external) tensor product of a symplectic and an
orthogonal bundle is symplectic.

The above morphisms σ o
KO and σ s

KO exist as morphisms of pointed sheaves by
[Panin and Walter 2010b, Proposition 12.4, Lemmas 12.5 and 12.6]. This defined
spectrum is canonically isomorphic in SH(k) to the spectra BOgeom and BO con-
structed in [Panin and Walter 2010b].

Theorem 6.8 [Panin and Walter 2010b, Theorems 1.3 and 1.5]. The spectrum KO
can be endowed with the structure of a commutative ring spectrum (KO,mKO, uKO).
Moreover, this commutative ring spectrum represents higher Grothendieck–Witt
groups, i.e., for every smooth variety X and an open subset U ⊂ X there exist
canonical functorial isomorphisms

2 : KOi, j (X/U )
'
−→ GW[ j]2 j−i (X,U )

satisfying

(1) 2 commutes with the connecting homomorphisms ∂ in localization sequences,

(2) the ∪-product on KO∗,∗( – ) induced by the monoid structure of KO agrees
with the Gille–Nenashev right pairing (see [Gille and Nenashev 2003, Theo-
rem 2.9]) lifted to GW[∗]0 ( – ) (as in [Panin and Walter 2010b, §4]),

(3) 2(1)= 1, 2(ε)= 〈−1〉.

Remark 6.9. In view of the above theorem we identify KO0,0(X) ∼= GW[0]0 (X)
and KO4,2(X)∼= GW[2]0 (X).

Theorem 6.10. The rule which assigns to a rank 2 symplectic bundle E over a
smooth variety X class bKO

1 (E)=〈E〉−〈H−〉 ∈KO4,2(X) can be uniquely extended
to a Borel class theory and by Theorem 4.8 induces a symplectic orientation of KO.

Proof. Existence of the Borel class theory follows from [Panin and Walter 2010b,
Theorem 5.1], while uniqueness follows from [Panin and Walter 2010c, Theo-
rem 14.4b] �

The next two lemmas follow immediately from the construction of 2.
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Lemma 6.11. Let X be a smooth variety. Then the following diagram commutes:

HomH•(k)(X+,HGr)

i
��

6∞
HP1 // HomSH(k)(6

∞

HP1 X+, 6∞HP1HGr)

∼= φ

��
HomH•(k)(X+,Z×HGr)

∼=f

��

HomSH(k)(6
∞

HP1 X+,Tr1KO∧HP1)

j
��

HomSH(k)(6
∞

HP1 X+,KO∧HP1)

=

��
GW[2]0 (X) KO4,2(X)2

∼=

oo

Here

• i is induced by the identity morphism HGr→ {0}×HGr,

• φ is induced by the canonical isomorphisms

6∞HP1HGr
'
←−6∞HP1HGr{−1} ∧HP1 '

−→ Tr1KO∧HP1,

• j is induced by the canonical morphism Tr1KO→ KO,

• f and 2 are given by Theorems 6.3 and 6.8, respectively.

Lemma 6.12. The following diagram commutes:

6∞HP1HP1
{−1}

φ

'

//

u′KO **

S

uKO

��
KO

Here

• uKO is the unit morphism,

• φ is an isomorphism which is identity starting from the first space,

• u′KO = ( f0, f1, f2, . . .) with fn : (HP1)∧n
→ KOn satisfying

f GW
2m−1(τ

s)= (〈H(1)〉− 〈H−〉)� · · ·� (〈H(1)〉− 〈H−〉)︸ ︷︷ ︸
2m−1

,

f GW
2m (τ o)= (〈H(1)〉− 〈H−〉)� · · ·� (〈H(1)〉− 〈H−〉)︸ ︷︷ ︸

2m

for n ≥ 1.



542 ALEXEY ANANYEVSKIY

Corollary 6.13. Let H(1) be the tautological rank 2 symplectic bundle over HP1.
Then

(1) 6HP11= bKO
1 (H(1)) ∈ KO4,2(HP1),

(2) 6HP11= χ1 ∈ KO4,2(HP1).

Proof. With our definition bKO
1 (H(1))= 〈H(1)〉− 〈H−〉, the first claim is straight-

forward from the above two lemmas. The second claim follows from the first one
since 〈61

HP11, 61
HP11〉 = 1 for the Kronecker product. �

Definition 6.14. The cohomology theory KO∗,∗( – ) is (8, 4)-periodic with the pe-
riodicity isomorphism induced by

KO∧S8,4 ∼= KO∧ (HP1)∧2 '
−→ KO{2} ∼= KO.

Here the first isomorphism is given by Corollary 2.6, the second isomorphism is
the canonical one identifying double HP1-suspension with shift by 2 and the third
isomorphism is given by the identity map.

One may identify these periodicity isomorphisms with

KO∧S8,4 –∪68,4β
−−−−−→ KO,

where β ∈ KO−8,−4(pt) is the element corresponding to 1 ∈ KO0,0(pt) under the
categorical periodicity isomorphism

KO0,0(pt)∼= GW[0]0 (pt)∼= GW[−4]
0 (pt)∼= KO−8,−4(pt),

i.e., β is the unique element satisfying

62
HP1β = (〈H(1)〉− 〈H−〉)� (〈H(1)〉− 〈H−〉) ∈ KO0,0(HP1

∧HP1).

We refer to β as the Bott element.

Remark 6.15. For a spectrum K representing algebraic K-theory there exists a
morphism KO

F
−→ K that induces forgetful maps

F : GW[0]0 (X)∼= KO0,0(X)→ K0,0(X)∼= K0(X).

Recall that K is (2, 1)-periodic with the periodicity realized by cup product with
the element βK ∈ K−2,−1(pt) satisfying

6P1βK = [O(−1)] − 1 ∈ K0,0(P1,∞).

One can show that F(β)= β4
K.

Remark 6.16. Let E1, E2 be symplectic bundles over a smooth variety X . Then

β ∪ 〈E1〉 ∪ 〈E2〉 = 〈E1⊗ E2〉.
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Here, on the left side we consider E1, E2 as elements of KO4,2(X) and on the right
side we consider them as symplectic bundles, so E1⊗ E2 is an orthogonal bundle
which we treat as an element of KO0,0(X).

7. Hopf element and KW

In this section we recall the definition of the Hopf element and identify KO[η−1
]

as a spectrum representing derived Witt groups.

Definition 7.1. The Hopf map is the projection

H : A2
−{0} → P1

given by H(x, y)= [x, y]. Pointing A2
−{0} by (1, 1) and P1 by [1 : 1] and taking

the suspension spectra we obtain a morphism

6∞HP1 H ∈ HomSH(k)
(
6∞HP1(A

2
−{0}, (1, 1)),6∞HP1(P

1, [1 : 1])
)
.

The Hopf element η =6−3,−26∞HP1 H ∈ S−1,−1(pt) is the element corresponding
to 6∞HP1 H under the suspension isomorphism and canonical isomorphisms

(P1, [1 : 1])∼= S2,1, (A2
−{0}, (1, 1))∼= S3,2

given by [Morel and Voevodsky 1999, Lemma 3.2.15, Corollary 3.2.18 and Exam-
ple 3.2.20].

Definition 7.2. Define

S[η−1
] = hocolim

(
S
∪η
−→ S∧S−1,−1 ∪η

−→ S∧S−2,−2 ∪η
−→ · · ·

)
,

KW= KO∧S[η−1
].

This spectrum inherits the structure of an (8, 4)-periodic symplectically oriented
commutative ring spectrum from KO.

Remark 7.3. We clearly have

KW∗,∗(KW)= KW∗,∗(KO), KW∗,∗(KW)= KW∗,∗(KO).

It is well-known that the spectrum KW represents derived Witt groups defined
by Balmer [1999] (see, for example, [Ananyevskiy 2016, Theorem 6.5]).

Theorem 7.4. For every smooth variety X there exists an isomorphism functorial
in X , 2W : KWi, j (X) '−→W[i− j](X), such that the square

KO2n,n(X) 2

'

//

��

GW[n]0 (X)

��
KW2n,n(X)

2W

'

// W[n](X)
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commutes for all n. Here the left vertical morphism is the canonical one arising
from localization and the right vertical morphism is given by killing metabolic
elements.

Remark 7.5. With the above theorem in mind we identify KW0,0(X) with W[0](X)
and KW4,2(X) with W[2](X). In particular, we have bKW

1 (E)= [E] ∈ KW4,2(X)
for a rank 2 symplectic bundle E over X .

8. Borel classes of triple tensor products in KW

In this section, in Lemma 8.2 we compute characteristic classes of a triple tensor
product of rank 2 symplectic bundles. This computation is a derived Witt analogue
of the equality

cK
1 (L1⊗ L2)= cK

1 (L1)+ cK
1 (L2)− cK

1 (L1)cK
1 (L2)

in K-theory, where L i are line bundles and cK
1 (L i ) = 1− [L∨i ] is the first Chern

class in K-theory. As an intermediate step we show how to express Borel classes
in derived Witt groups using external powers.

Lemma 8.1. Let E be a symplectic bundle of rank 8 over a smooth variety X. Then

bKW
1 (E)= [E], βbKW

3 (E)= [33 E] − 3[E],

βbKW
2 (E)= [32 E] − 4, β2bKW

4 (E)= [34 E] − 2[32 E] + 2.

Proof. Using Theorem 4.11 we may assume that E = E1⊕ E2⊕ E3⊕ E4 for rank
2 symplectic bundles Ei . Then β[n/2]bKW

n (E)= σn(E1, E2, E3, E4).
Expanding

3 j (E1⊕ E2⊕ E3⊕ E4) =
⊕

i1+i2+i3+i4= j

3i1 E1⊗3
i2 E2⊗3

i3 E3⊗3
i4 E4

and using the given trivializations 32 Ei = 1X , we obtain

31 E = σ1(E1, E2, E3, E4),

32 E = σ2(E1, E2, E3, E4)+ 4,

33 E = σ3(E1, E2, E3, E4)+ 3σ1(E1, E2, E3, E4),

34 E = σ4(E1, E2, E3, E4)+ 2σ2(E1, E2, E3, E4)+ 6.

The claim follows. �

Lemma 8.2. Let E1, E2 and E3 be rank 2 symplectic bundles over a smooth variety
X. Put ξi = bKW

1 (Ei ) ∈ KW4,2(X) and denote by ξ(n1, n2, n3) the sum of all the
monomials lying in the orbit of ξ n1

1 ξ
n2
2 ξ

n3
3 under the action of S3. Then
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bKW
1 (E1⊗ E2⊗ E3)= βξ(1, 1, 1),

bKW
2 (E1⊗ E2⊗ E3)= βξ(2, 2, 0)− 2ξ(2, 0, 0),

bKW
3 (E1⊗ E2⊗ E3)= βξ(3, 1, 1)− 8ξ(1, 1, 1),

bKW
4 (E1⊗ E2⊗ E3)= βξ(2, 2, 2)+ ξ(4, 0, 0)− 2ξ(2, 2, 0).

Proof. Consider the representation ring

Rep(Sp2×Sp2×Sp2)
∼= Z[χ±1

1 , χ±1
2 , χ±1

3 ]
Z/2×Z/2×Z/2

= Z[χ1+χ
−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ]

with the action of the i-th copy of Z/2 given by χi ↔ χ−1
i . The exterior powers of

representations give rise to the operations

3m
:Z[χ1+χ

−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ]→Z[χ1+χ

−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ], m∈N0,

which are compatible with the operations

3m
: Z[χ±1

1 , χ±1
2 , χ±1

3 ] → Z[χ±1
1 , χ±1

2 , χ±1
3 ], m ∈ N0,

characterized by the following properties:

(1) 3m(0)= 0,

(2) 3m(χ
i1
1 χ

i2
2 χ

i3
3 )=


1, m = 0,
χ

i1
1 χ

i2
2 χ

i3
3 , m = 1,

0, otherwise,
(3) 3m( f + g)=

⊕
m1+m2=m(3

m1 f )(3m2 g).

Set ei = χi +χ
−1
i . A straightforward computation in Z[χ±1

1 , χ±1
2 , χ±1

3 ] shows that

31(e1e2e3)= e1e2e3,

32(e1e2e3)= e2
1e2

2+ e2
1e2

3+ e2
2e2

3− 2(e2
1+ e2

2+ e2
3)+ 4,

33(e1e2e3)= e3
1e2e3+ e1e3

2e3+ e1e2e3
3− 5e1e2e3,

34(e1e2e3)= e4
1+ e4

2+ e4
3+ e2

1e2
2e2

3− 4(e2
1+ e2

2+ e2
3)+ 6.

Thus

31(E1⊗ E2⊗ E3)= E1⊗ E2⊗ E3,

32(E1⊗ E2⊗ E3)= E2
1 ⊗ E2

2 + E2
1 ⊗ E2

3 + E2
2 ⊗ E2

3 − 2(E2
1 + E2

2 + E2
3)+ 4,

33(E1⊗ E2⊗ E3)= E3
1 ⊗ E2⊗ E3+ E1⊗ E3

2 ⊗ E3

+ E1⊗ E2⊗ E3
3 − 5E1⊗ E2⊗ E3,

34(E1⊗ E2⊗ E3)= E4
1 + E4

2 + E4
3 + E2

1 ⊗ E2
2 ⊗ E2

3 − 4(E2
1 + E2

2 + E2
3)+ 6.

The claim of the lemma follows by Lemma 8.1. �
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9. Stable operations in KWQ

In this section, we compute the algebra of stable operations in KWQ, that is,
KW∗,∗

Q
(KWQ). The computation is straightforward and based on Lemma 2.17

combined with Theorem 4.17.

Lemma 9.1. Let B ∈ HomH•(k)(HP1
∧HP1

∧HGr,HGr) be the morphism charac-
terized by the property

BGW(τ s)=
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
� τ s .

Then
BKW(sKW

i (τ s))= [H(1)�H(1)] ∪ (ai sKW
i (τ s)+ ci sKW

i−2 (τ
s))

for

a2 j+1 = (2 j + 1)2, c2 j+1 =−β
−18 j (2 j + 1), a2 j = c2 j = 0.

Proof. As noted in Remark 6.4, we may interpret sKW
i as a natural transformation

GW[2]0 → KW4n,2n , whence

BKW(sKW
i (τ s))= sKW

i (BGW(τ s)).

Thus we need to compute sKW
i

((
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
� τ s

)
. The

classes sKW
i are additive and sKW

i (〈H−〉)= 0, so it is sufficient to show that

sKW
i
((
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

))
= [H(1)�H(1)] ∪

(
ai sKW

i (〈H(1)〉)+ ci sKW
i−2 (〈H(1)〉)

)
for(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
∈ GW[2]0 (HP1

∧HP1
∧HP∞).

Define

x = bKW
1 (H(1)�1�1), y = bKW

1 (1�H(1)�1), ξ = bKW
1 (1�1�H(1)),

bt(x, y, ξ)= bKW
t (H(1)�H(1)�H(1)),

st(x, y, ξ)= sKW
t (H(1)�H(1)�H(1)).

In this notation the claim is equivalent to

st(x, y, ξ)− st(0, y, ξ)− st(x, 0, ξ)− st(x, y, 0)

+ st(0, 0, ξ)+ st(0, y, 0)+ st(x, 0, 0)− st(0, 0, 0)= βxy
∑
i≥1

(aiξ
i
+ ciξ

i−2)t i .

The main summand on the left side is st(x, y, ξ) and the other summands just
cancel from st(x, y, ξ) all the terms that do not contain xyξ . Since x2

= y2
= 0,
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Lemma 8.2 yields

bt(x, y, ξ)= 1+βxyξ t − 2ξ 2t2
+ (βxyξ 3

− 8xyξ)t3
+ ξ 4t4.

Thus
st(x, y, ξ)= − t d

dt
ln b−t(x, y, ξ)

= − t
d
dt

(
(1− ξ 2t2)2− xyξ(βt + (βξ 2

− 8)t3)
)

(1− ξ 2t2)2− xyξ(βt + (βξ 2− 8)t3)
.

Put
A(ξ, t)= (1− ξ 2t2)2, B(ξ, t)= ξ(βt + (βξ 2

− 8)t3).

Recall that x2
= y2
= 0, whence (xy)2 = 0 and

st(x, y, ξ)= − t
d
dt (A(ξ, t)− xy B(ξ, t))

A(ξ, t)− xy B(ξ, t)

= − t

( d
dt (A(ξ, t)− xy B(ξ, t))

)
(A(ξ, t)+ xy B(ξ, t))

A(ξ, t)2
.

Expanding the numerator, applying x2 y2
= 0 and omitting all the terms that do

not contain xyξ we obtain

st(x, y, ξ)= − t

( d
dt A(ξ, t)

)
xy B(ξ, t)− A(ξ, t) d

dt (xy B(ξ, t))
A(ξ, t)2

= xyt d
dt

(
B(ξ, t)
A(ξ, t)

)
= βxyt d

dt

(
ξ t + (ξ 3

− 8β−1ξ)t3

(1− ξ 2t2)2

)
= βxyt d

dt

(
(ξ t + (ξ 3

− 8β−1ξ)t3)

(∑
j≥0

( j + 1)ξ 2 j t2 j
))

= βxyt d
dt

(∑
j≥0

((2 j + 1)ξ 2 j+1
− 8β−1 jξ 2 j−1)t2 j+1

)
= βxy

∑
j≥0

((2 j + 1)2ξ 2 j+1
− 8β−1 j (2 j + 1)ξ 2 j−1)t2 j+1. �

Lemma 9.2. The following diagram commutes:

KW∗,∗
Q
(KO)

R
��

// lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)

T
��

KW∗+8,∗+4
Q

(KO) // lim
←−−

KW∗+8(n+1)+4,∗+4(n+1)+2
Q

(HGr)

Here the horizontal homomorphisms are the canonical ones given by Lemma 2.17,
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T is induced by the shift∏
n≥0

KWQ
∗+8n+4,∗+4n+2(HGr)→

∏
n≥0

KWQ
∗+8(n+1)+4,∗+4(n+1)+2(HGr),

(t1, t3, t5, . . .) 7→ (t3, t5, . . .)

and R is given by R(γ )= (68,4γ ) ◦ ( – ∪β−1).

Proof. Straightforward from the commutativity of the diagram

Tr2n+1KO

i
��

= // (Tr2(n+1)+1KO){2}

i
��

KO
–∪β−1

// KO∧S8,4 ' // KO{2} �

Lemma 9.3. Let γ ∈ KW0,0
Q
(KO) be a stable operation such that

γ 7→ (γ1, γ3, . . .) ∈ lim
←−−

KW8n+4,4n+2
Q

(HGr)

under the canonical morphism given by Lemma 2.17. Let X be a pointed motivic
space and let

f = ( f0, f1, f2, . . .) :6
∞

HP1 X{−1} → KO

be a morphism of spectra. Then

γ ( f )=6−1
HP1γ1( f1),

where f1 ∈ HomH•(k)(X,HGr) is treated as an element of GW[2]0 (X) and γ1 is
treated as an operation GW[2]0 → KW4,2

Q
.

Proof. This follows from Lemma 6.11. �

Theorem 9.4. The homomorphism of left KW0,0
Q
(pt)∼=WQ(k)-modules

Ev : KW0,0
Q
(KWQ)→

∏
m∈Z

WQ(k)

given by

Ev(φ)=
(
. . . , β2φ(β−2), βφ(β−1), φ(1), β−1φ(β), β−2φ(β2), . . .

)
is an isomorphism of algebras. Here the product on the left is given by composition
and the product on the right is the componentwise one.

Moreover, KW p,q
Q
(KWQ)= 0 when 4 - p−q and the above isomorphism induces

an isomorphism of left KW∗,∗
Q
(pt)∼=WQ(k)[η±1, β±1

]-modules

KW∗,∗
Q
(KWQ)∼=

⊕
r,s∈Z

βrηs
∏
m∈Z

WQ(k)

with degβ = (−8,−4), deg η = (−1,−1).
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Proof. Having in mind the canonical identifications

KW∗,∗
Q
(KWQ)= KW∗,∗

Q
(KOQ)= KW∗,∗

Q
(KO),

we focus on the computation of KW∗,∗
Q
(KO).

Lemma 2.17 yields the short exact sequence

0→ lim
←−−

1 KW∗+8n+3,∗+4n+2
Q

(HGr)→ KW∗,∗
Q
(KO)

→ lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)→ 0

with the limit taken with respect to the morphisms

6−2
HP1 ◦ BKW

: KW∗+8n+12,∗+4n+6
Q

(HGr)→ KW∗+8n+4,∗+4n+2
Q

(HGr),

where B = σ o
KO ◦ (idHP1 ∧σ s

KO) is the same morphism as in Lemma 9.1 up to the
canonical identification HP1 ∼= HP1.

Consider the following diagram:

KW∗+8n+12,∗+4n+6
Q

(HGr) π //

BKW

��

IQ∗+8n+12,∗+4n+6
Q

(HGr)

SQ

��

S′
Q

tt

KW∗+8n+12,∗+4n+6
Q

(HP1
∧HP1

∧HGr)

6−2
HP1
��

KW∗+8n+4,∗+4n+2
Q

(HGr) π // IQ∗+8n+4,∗+4n+2
Q

(HGr)

Here

• IQ∗,∗
Q
(HGr)= lim

←−−m,n IQ(KW∗,∗
Q
(HGr(2m, 2n), ∗)) is the indecomposable quo-

tient (i.e., the ring modulo the reducible elements) of KW∗,∗
Q
(HGr). The New-

ton identities yield

(−1)i+1ibKW
i (τ s)= sKW

i (τ s)

in the indecomposable quotient, and thus Theorem 4.17 allows us to identify

IQ∗,∗
Q
(HGr)=

(∏
i≥1

KW∗−4i,∗−2i
Q

(pt)bKW
i (τ s)

)
h
=

(∏
i≥1

KW∗−4i,∗−2i
Q

(pt)si

)
h

for si = sKW
i (τ s).

• π is the canonical projection.

• S′
Q

is given by S′
Q
(si )= βai si + ci si−2 with

a2 j = c2 j = 0, a2 j+1 = (2 j + 1)2, c2 j+1 =−8 j (2 j + 1).

• SQ = π ◦ S′
Q

.
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The ring KW∗,∗
Q
(HP1

∧HP1
∧HGr) has trivial multiplication by Theorem 4.13

(since bKW
1 (H(1))2 = 0 on HP1). Thus BKW factors through the indecomposable

quotient and Lemma 9.1 yields commutativity of the diagram. It follows that the
canonical homomorphisms

π : lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)
'
−→ lim
←−−

IQ∗+8n+4,∗+4n+2
Q

(HGr),

π1
: lim
←−−

1 KW∗+8n+3,∗+4n+2
Q

(HGr)
'
−→ lim
←−−

1 IQ∗+8n+3,∗+4n+2
Q

(HGr)

are isomorphisms.
The morphism

SQ :

(∏
i≥1

KW∗+8n−4i+12,∗+4n−2i+6
Q

(pt)si

)
h
→

(∏
i≥1

KW∗+8n−4i+4,∗+4n−2i+2
Q

(pt)si

)
h

is given by the matrix 

βa1 0 c3 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 βa3 0 c5 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 βa5 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .


,

where a2 j+1 and c2 j+1 are invertible. Clearly we have

Im(SQ ◦ SQ)= Im(SQ)=

(∏
j≥0

KW∗+8(n− j),∗+4(n− j)
Q

(pt)s2 j+1

)
h
,

so the lim
←−−

1 term vanishes. For 4 - p− q we have

KW p+8(n− j),q+4(n− j)
Q

(pt)∼=W[p−q+4(n− j)]
Q

(k)= 0,

whence the limit is trivial and KW p,q
Q
(KWQ)= 0. In view of the periodicities

given by η and β, from now on we deal with KW0,0
Q
(KWQ). Moreover, it is suffi-

cient to show that the homomorphism Ev from the statement of the theorem is an
isomorphism, since it clearly agrees with the products.

In order to compute the above limit for SQ we may drop all the terms involving
s2 j and consider

SQ :

∏
j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1→
∏
j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1.
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For every j ≥ 0, choose

ρ2 j+1 =
∑
l≥ j

α2 j+1,2l+1s2l+1 ∈
∏
j≥0

KW−8 j,−4 j
Q

(pt)s2 j+1

such that

(1) SQ(ρ1)= 0,

(2) SQ(ρ2 j+1)= βρ2 j−1,

(3) α1,1 = 1.

The kernel of SQ is a free module of rank 1. Thus (1) and (3) uniquely determine ρ1.
Item (2) together with the condition that the sum for ρ2 j+1 does not contain s1

uniquely determines ρ2 j+1. One can easily see that α2 j+1,2 j+1 is invertible for
every j , whence∏

j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1 =
∏
j≥0

KW∗+8n,∗+4n
Q

(pt)ρ2 j+1.

In the new basis consisting of the ρ2 j+1, the morphism SQ is just a shift multiplied
by β. Thus we can easily compute the inverse limit, obtaining

lim
←−−

KW8n+4,4n+2
Q

(HGr)= lim
←−−

IQ8n+4,4n+2
Q

(HGr)=
∏
m∈Z

KW0,0
Q
(pt)ρst

m ,

where deg ρst
m = (0, 0) and the structure morphisms∏

m∈Z

KW0,0
Q
(pt)ρst

m → KW8n+4,4n+2
Q

(HGr)

are given by

ρst
m 7→

{
β−nρ2(m+n)+1, m+ n ≥ 0,
0, m+ n < 0,

for ρ2(m+n)+1 =
∑

l≥m+n α2(m+n)+1,2l+1s2l+1 ∈ KW4,2
Q
(HGr).

In order to obtain the claim of the theorem it is sufficient to check that

β−nρst
m (β

n)=

{
1, n = m,
0, n 6= m.

It follows from Lemma 9.2 that ρst
m (β

n)= βnρst
m−n(1), so it is sufficient to check

that

ρst
m (1)=

{
1, m = 0,
0, m 6= 0.

Lemma 9.3 yields

ρst
m (1)=6

−1
HP1ρ2m+1

(
〈H(1)〉− 〈H−〉

)
.
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By the definition of ρ2m+1 we have

ρ2m+1
(
〈H(1)〉− 〈H−〉

)
=

{∑
l≥m α2m+1,2l+1sKW

2l+1

(
〈H(1)〉− 〈H−〉

)
, m ≥ 0,

0, m < 0.

All the higher characteristic classes of 〈H(1)〉− 〈H−〉 vanish while

sKW
1
(
〈H(1)〉− 〈H−〉

)
= [H(1)].

Thus

ρ2m+1
(
〈H(1)〉− 〈H−〉

)
=

{
[H(1)] =61

HP11, m = 0,
0, m 6= 0,

and the claim follows. �

Remark 9.5. One can restate Theorem 9.4 as follows. Let

B = (68m,4mβm)m∈Z :

⊕
m∈Z

S∧S8m,4m
→ KWQ

be the morphism induced by 68m,4mβm
: S∧S8m,4m

→ KWQ. Then the pullback
homomorphism

BKWQ : KW∗,∗
Q
(KWQ)→ KW∗,∗

Q

(⊕
m∈Z

S∧S8m,4m
)

is an isomorphism.

10. Stable cooperations in KWQ and KW

In this section we compute the algebra of cooperations in KWQ and give an additive
description of the cooperations in KW. The approach is dual to the one used in the
proof of Theorem 9.4 and based on Lemma 2.17 and Theorem 5.10.

Lemma 10.1. The following diagram commutes:

lim
−−→
(KWQ)∗+8n+4,∗+4n+2(HGr)

∼= //

T
��

(KWQ)∗,∗(KO)

– ?βr

��
lim
−−→
(KWQ)∗+8(n+1)+4,∗+4(n+1)+2(HGr)

∼= // (KWQ)∗+8,∗+4(KO)

Here the horizontal isomorphisms are the canonical ones given by Lemma 2.17, T
is induced by the shift⊕

n≥0

(KWQ)∗+8n+4,∗+4n+2(HGr)→
⊕
n≥0

(KWQ)∗+8(n+1)+4,∗+4(n+1)+2(HGr),

(t1, t3, t5, . . .) 7→ (t3, t5, . . .),

βr = uKWQ
∧68,4β ∈ (KWQ)8,4(KO) and – ? βr is given by Definition 3.8.
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Proof. This follows from the commutativity of the diagram

Tr2n+1KO

i
��

= // (Tr2(n+1)+1KO){−2}

i
��

KO
–∪β // KO∧S−8,−4 ' // KO{−2} �

Theorem 10.2. Let uKWQ
: S→ KWQ be the unit map. Then the homomorphism

of WQ(k)[η±1
] ∼=

⊕
n∈Z KWn,n

Q
(pt)-algebras

WQ(k)[η±1
][β±1

l , β±1
r ] → (KWQ)∗,∗(KWQ)

given by
βl 7→68,4β ∧ uKWQ

, βr 7→ uKWQ
∧68,4β

is an isomorphism. Here the product on the right is given by Definition 3.8.

Proof. Abusing the notation, put

βl =6
8,4β ∧ uKWQ

, βr = uKWQ
∧68,4β.

We need to show that

(KWQ)∗,∗(KWQ) =
⊕

n,p,q∈Z

KWn,n
Q
(pt)β p

l ? β
q
r .

Identifying (KWQ)∗,∗(KWQ)= (KWQ)∗,∗(KO) and applying the reasoning dual
to the one used in the proof of Theorem 9.4 we obtain that

(KWQ)∗,∗(KWQ)= lim
−−→
(PEQ)∗+8n+4,∗+4n+2(HGr),

where
(PEQ)∗,∗(HGr)=

⊕
i≥1

(KWQ)∗−4i,∗−2i (pt)s∨i

is the subspace of (KWQ)∗,∗(HGr) dual to IQ∗,∗
Q
(HGr) (see Theorem 5.10). Here

s∨i ∈ PE4i,2i (HGr) satisfies 〈si , s∨i 〉 = 1 and 〈sl, s∨i 〉 = 0 for l 6= i . The limit is taken
with respect to the morphisms

S∨Q :
⊕
i≥1

(KWQ)∗+8n−4i+4,∗+4n−2i+2(pt)s∨i
→

⊕
i≥1

(KWQ)∗+8n−4i+12,∗+4n−2i+6(pt)s∨i

given by S∨
Q
(s∨i )= βai s∨i + ci+2s∨i+2 for

a2 j = c2 j = 0, a2 j+1 = (2 j + 1)2, c2 j+1 =−8 j (2 j + 1)
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just as in the proof of Theorem 9.4. The matrix of S∨
Q

is

βa1 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

c3 0 βa3 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 c5 0 βa5 0 . . .

0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


.

We can drop all the terms involving s∨2 j , obtaining

(KWQ)∗,∗(KWQ)= lim
−−→

n

⊕
j≥0

(KWQ)∗+8(n− j),∗+4(n− j)(pt)s∨2 j+1.

For 4 - p− q the group (KWQ)p,q(KWQ) vanishes, and in view of the periodicity
realized by cap product with η and cap product with β (that coincides with multi-
plication by βl ; see Definition 3.8) from now on we deal with (KWQ)0,0(KWQ).

Let τ1 = s∨1 and τ2 j+1 = β
−1S∨

Q
(τ2 j−1). One can easily check that⊕

j≥0

(KWQ)8(n− j),4(n− j)(pt)s∨2 j+1 =
⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1.

In this basis S∨
Q

is a shift composed with multiplication by β, so the limit is easily
computed:

lim
−−→

n

⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1 =
⊕
m∈Z

(KWQ)0,0(pt)τ st
m

with the structure morphisms⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1→
⊕
m∈Z

(KWQ)0,0(pt)τ st
m

given by τ2 j+1 7→ β−nτ st
j−n . Lemma 10.1 yields that

τ st
m = β

−1
l ? τ st

m−1 ? βr ,

whence τ st
m = β

−m
l ? τ st

0 ? βm
r and

(KWQ)0,0(KWQ)=
⊕
m∈Z

(KWQ)0,0(pt)β−m
l ? τ st

0 ? βm
r .

In order to check that τ st
0 = uKWQ

∧ uKWQ
(whence β−m

l ? τ st
0 ? β

m
r = β

−m
l ? βm

r )
recall that s∨1 = χ1 and consider the following diagram:



STABLE OPERATIONS AND COOPERATIONS IN DERIVED WITT THEORY 555

KWQ ∧ (6
∞

HP1HP1
{−1})

idKWQ
∧i
//

∼=

��

KWQ ∧ (6
∞

HP1HGr{−1})

∼=

��
S

uKWQ
∧idS

//

uKWQ
∧6−1

HP1χ1
55

τ st
0 ))

KWQ ∧S

idKWQ
∧uKO

��

KWQ ∧Tr1KO

idKWQ
∧ jss

KWQ ∧KO

Here

• i is induced by the canonical embedding HP1
→ HGr,

• j is the canonical morphism Tr1KO→ KO.

The right half of the diagram commutes by Lemma 6.12, the upper triangle com-
mutes by Corollary 6.13 and the outer contour commutes by the definition of τ st

0 .
Thus the lower triangle commutes as well and the claim follows. �

Remark 10.3. One can restate Theorem 10.2 as follows. Let

B = (68m,4mβm)m∈Z :

⊕
m∈Z

S∧S8m,4m
→ KWQ

be the morphism given by 68m,4mβm
: S ∧ S8m,4m

→ KWQ. Then the induced
homomorphism in homology

BKWQ
: (KWQ)∗,∗

(⊕
m∈Z

S∧S8m,4m
)
→ (KWQ)∗,∗(KWQ)

is an isomorphism.

Now we turn to the description of integral cooperations.

Theorem 10.4. Let M be the abelian subgroup of Q[v, v−1
] generated by polyno-

mials

f j,n =
v−n ∏ j−1

i=0 (v− (2i + 1)2)
4 j (2 j)!

, j ≥ 0, n ∈ Z.

Then there are canonical isomorphisms of left KW0,0(pt)∼=W(k)-modules

KWp,q(KW)∼=

{
W(k)⊗Z M, 4 | p− q,
0, otherwise.

Rationally WQ(k)⊗Z M∼= (KWQ)r,r−4t(KW) is given by

vm
7→ ηr−8tβ t−m

l ? βm
r

in the notation of Theorem 10.2.
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Proof. Applying the reasoning dual to the one used in the beginning of the proof
of Theorem 9.4, we obtain that

KW∗,∗(KW)= lim
−−→

⊕
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)b∨i .

Here b∨i belongs to the submodule of KW∗,∗(HGr) dual to the indecomposable
quotient IQ∗,∗(HGr) and satisfies 〈bi , b∨i 〉 = 1, 〈bl, b∨i 〉 = 0 for l 6= i . The limit
is computed along the morphisms S∨ dual to the corresponding morphisms S be-
tween indecomposable quotients. Recall that S is induced by a desuspension of an
appropriate morphism HP1

∧HP1
∧HGr→ HGr.

It follows from Lemma 8.2 that S(bi ) is a Z[β, β−1
]-linear combination of prod-

ucts of Borel classes b j (cf. Lemma 9.1), thus there exists a linear map

SZ :

∏
i≥1

Z[β, β−1
]bi →

∏
i≥1

Z[β, β−1
]bi

inducing

S :
∏
i≥1

KW∗+8n−4i+12,∗+4n−2i+6(pt)bi →
∏
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)bi .

Moreover, SZ gives rise to the dual map

S∨Z :
⊕
i≥1

Z[β, β−1
]b∨i →

⊕
i≥1

Z[β, β−1
]b∨i .

and

S∨ :
⊕
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)b∨i →
⊕
i≥1

KW∗+8n−4i+12,∗+4n−2i+6(pt)b∨i

is given by S∨ = idKW∗,∗(pt)⊗Z[β,β−1]S∨Z .
The proof of Lemma 9.1 yields

SZ(s2 j )= 0, SZ(s2 j+1)= β(2 j + 1)2s2 j+1− 8 j (2 j + 1)s2 j−1.

From the Newton identities we have 〈si , b∨i 〉 = (−1)i+1i and 〈sl, b∨i 〉 = 0 for l 6= i .
Combining this with the above, we obtain

〈s2 j , S∨Z (b
∨

i )〉 = 〈SZ(s2 j ), b∨i 〉 = 0,

〈s2 j+1, S∨Z (b
∨

i )〉 = 〈SZ(s2 j+1), b∨i 〉 =


β−1(2 j + 1)3, i = 2 j + 1,
−8 j (2 j − 1)(2 j + 1), i = 2 j − 1,
0, otherwise.

Hence S∨Z (b
∨

2 j ) = 0 and S∨Z (b
∨

2 j+1) = (2 j + 1)2βb∨2 j+1 − 8( j + 1)(2 j + 1)b∨2 j+3.
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We may therefore drop all of the b∨2 j , obtaining

KW∗,∗(KW)= lim
−−→

⊕
j≥0

KW∗+8(n− j),∗+4(n− j)(pt)b∨2 j+1.

Specifying to the degree (p, q), 4 - p− q, we obtain KWp,q(KW)= 0 since

KWp+8(n− j),q+4(n− j)(pt)∼=W[q−p−4(n− j)](k)= 0.

In view of the periodicities given by cap-product with η and β, from now on we
deal with KW0,0(KW).

We have

KW0,0(KW)= lim
−−→

n

⊕
j≥0

KW8(n− j),4(n− j)(pt)b∨2 j+1 = lim
−−→

n

⊕
j≥0

W(k)βn− j b∨2 j+1,

where the colimit is computed with respect to the morphism

S∨ :
⊕
j≥0

W(k)βn− j b∨2 j+1→
⊕
j≥0

W(k)βn+1− j b∨2 j+1

given by

S∨(βn− j b∨2 j+1)= (2 j + 1)2βn+1− j b∨2 j+1− 8( j + 1)(2 j + 1)βn− j b∨2 j+3.

Colimit commutes with tensor product, so

KW0,0(KW)=W(k)⊗Z

(
lim
−−→

n

⊕
j≥0

Zβn− j b∨2 j+1

)
with the morphisms

S∨Z :
⊕
j≥0

Zβn− j b∨2 j+1→
⊕
j≥0

Zβn+1− j b∨2 j+1

in the bases {βn− j b∨2 j+1} j≥0 and {βn+1− j b∨2 j+1} j≥0 given by
a1 0 0 0 · · ·
c′3 a3 0 0 · · ·
0 c′5 a5 0 · · ·
0 0 c′7 a7 · · ·
...

...
...

...
. . .

 ,

where a2 j+1 = (2 j + 1)2 and c′2 j+1 =−8 j (2 j − 1).
The terms in the last colimit are torsion-free, so the canonical morphism

lim
−−→

n

⊕
j≥0

Zβn− j b∨2 j+1→ lim
−−→

n

⊕
j≥0

Qβn− j b∨2 j+1
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is injective. One computes the right-hand side colimit as in the proof Theorem 10.2.
Let

T∨Z = (β
−1
∩ – ) ◦ S∨Z :

⊕
j≥0

Zβn− j b∨2 j+1→
⊕
j≥0

Zβn− j b∨2 j+1

and choose a basis of
⊕

j≥0 Qβn− j b∨2 j+1 to be

{βnb∨1 , T∨Q (β
nb∨1 ), (T

∨

Q )
2(βnb∨1 ), . . . }.

In these bases S∨
Q

is a shift, so

lim
−−→

n

⊕
j≥0

Qβn− j b∨2 j+1 =
⊕
m∈Z

Q · [β−m
l ? βm

r ]

with the canonical morphisms⊕
j≥0

Qβn− j b∨2 j+1→
⊕
m∈Z

Qβ−m
l ? βm

r

given by (T∨
Q
)m(βnb∨1 ) 7→ β−m

l ? βm
r (the notation is consistent with the one used

in the proof of Theorem 10.2). The limit lim
−−→

n

⊕
j≥0 Zβn− j b∨2 j+1 is the union of the

images for the canonical morphisms

φn :
⊕
j≥0

Zβn− j b∨2 j+1→
⊕
m∈Z

Qβ−m
l ? βm

r .

We claim that these morphisms are given by

φn(β
n− j b∨2 j+1)=

(β−m
l ? βm

r )
∏ j−1

i=0 (β
−1
l ? βr − a2i+1)∏ j

i=1 c′2i+1

,

where the multiplication on the right-hand side is componentwise, i.e.,

(β−n
l ? βn

r )(β
−m
l ? βm

r )= β
−n−m
l ? βn+m

r .

Indeed, for j = 0 we have φn(β
nb∨1 ) = β

n
l ? β

−n
r . The general case follows from

the equalities

φn+1(a2 j−1β
n+1− j b∨2 j−1+ c′2 j+1β

n− j b∨2 j+1)

= φn+1(S∨Z (β
n− j+1b∨2 j−1))= φn(β

n− j+1b∨2 j−1).

The claim of the theorem follows. �

Remark 10.5. It follows from the above theorem applied to k = R (or any other
field satisfying W(k) = Z) that M is an algebra for the usual multiplication of
polynomials, i.e., that products f j1,n1 f j2,n2 can be expressed as linear combinations
of the f j,n . For example we have

f 2
1,0 = 9 f1,−1+ 198 f2,−1+ 720 f3,−1.
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