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Hochschild homology,
lax codescent, and duplicial structure

Richard Garner, Stephen Lack and Paul Slevin

We study the duplicial objects of Dwyer and Kan, which generalize the cyclic
objects of Connes. We describe duplicial objects in terms of the decalage comon-
ads, and we give a conceptual account of the construction of duplicial objects due
to Böhm and Ştefan. This is done in terms of a 2-categorical generalization of
Hochschild homology. We also study duplicial structure on nerves of categories,
bicategories, and monoidal categories.

1. Introduction

The cyclic category 3 was introduced by Connes [1983] as part of his program to
study noncommutative geometry. Cyclic objects, given by functors with domain 3,
have been studied by too many authors to list here, but many of these can be found
in the reference list of the classic book [Loday 1992].

Various generalizations of cyclic structure have been considered; in particular
the notion of duplicial object was studied in [Dwyer and Kan 1985]. These are
given by functors with domain K op, for a certain category K of which 3 is a
quotient. Like cyclic objects, duplicial objects are simplicial objects equipped
with extra structure. In both cases, the extra structure involves an endomorphism
tn : Xn→ Xn of the object of n-simplices, for each n, subject to various conditions
relating it to the simplicial structure. The difference between the two notions is
that in the case of cyclic structure, the map tn is an automorphism of order n+ 1,
so that tn+1

n = 1.
There is also an intermediate notion, in which the tn are required to be invertible

but the condition that tn+1
n = 1 is dropped. This was called paracyclic structure

in [Getzler and Jones 1993], and also studied in [Elmendorf 1993], where the
indexing category was called the “linear category”. Somewhat confusingly, the
name paracyclic has also been used by some authors to refer to what is called
duplicial by Dwyer and Kan.
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In this paper we provide a new perspective on duplicial structure, and analyze
ways in which it arises. As explained, for example, in [Mac Lane 1971], a comonad
on a category gives rise to simplicial structure on each object of that category, and
this is the starting point for many homology theories. Just as simplicial structure
can be used to define homology, cyclic (or duplicial or paracyclic) structure can
be used to define cyclic homology. In a series of papers, Böhm and Ştefan [2008;
2009; 2012] looked at what further structure than a comonad is needed to equip
the induced simplicial object with duplicial structure; the main extra ingredient
turned out to be a second comonad with a distributive law [Beck 1969] between the
two. They also showed that their machinery could be used to construct the cyclic
homology of bialgebroids. This was further studied in the papers [Krähmer and
Slevin 2016; Kowalzig et al. 2015] by the third of us, along with various coauthors.

In the case of comonads and simplicial structure, there is a universal nature to
the construction, once again explained in [Mac Lane 1971], and also in Section 2
below. There is no analogue given in the analysis of Böhm–Ştefan, and our first
goal is to provide one.

As well as the construction of simplicial structure from comonads, we also con-
sider a second way that simplicial structure arises, namely as nerves of categories or
other (possibly higher) categorical structures. Our second main goal is to analyze
when the simplicial sets arising as nerves can be given duplicial structure.

The third main achievement of the paper actually arose as a byproduct of our
investigations towards the first goal. It is a connection between duplicial structure,
especially as arising via the Böhm–Ştefan construction, and Hochschild homology
and cohomology. We present this first. We consider some very simple aspects of
Hochschild homology and cohomology, only involving the zeroth homology and
cohomology, and we generalize it to a 2-categorical context in a “lax” way. The
resulting theory allows us to recapture the Böhm–Ştefan construction as a sort of
cap product in a very special case.

We end this introduction by remarking briefly on the two roles of 2-categories in
this paper. On the one hand, 2-categories appear at a fairly accessible point in the
ever-expanding zoo of higher categorical structures: in what is now becoming com-
mon terminology they are the “(2,2)-categories”, where an (m, n)-category has no
nontrivial morphisms above dimension m, and no noninvertible morphisms above
dimension n. This is relevant to the lax version of Hochschild theory we begin
to develop here. On the other hand, 2-categories have a key organizational role.
Collections of categories naturally form themselves into 2-categories, and higher
dimensional categories can also often usefully be formed into 2-categories, as seen
for example in Joyal’s approach to quasicategory theory. It is this organizational
role which is most important in the current paper, and lies behind our analysis of
comonads, distributive laws, duplicial structure, and so on.
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2. Simplicial structure, comonads, and decalage

In this section we recall some ideas related to simplicial structure, most of which are
well-known, although the notation used varies. The one new result is Proposition 2.4,
which reformulates the notion of duplicial structure in terms of decalage comonads.

2A. Simplicial structure arising from comonads. Let M be the strict monoidal
category of finite ordinals and order-preserving maps, with tensor product given
by ordinal sum and the empty ordinal serving as the unit. This is sometimes known
as the “algebraists’ 1”, and is denoted by 1 in [Mac Lane 1971] and 1+ in many
other sources, such as [Verity 2008].

The full subcategory of M consisting of the nonempty finite ordinals is isomor-
phic to the usual 1 (the “topologists’ 1”). A contravariant functor defined on
1 is a simplicial object, while a contravariant functor defined on (the underlying
category of) M is an augmented simplicial object.

M is the “universal monoidal category containing a monoid”, in the sense that for
any strict monoidal category C, there is a bijection between monoids in C and strict
monoidal functors from M to C. (Similarly, if C is a general monoidal category
then to give a monoid in C is equivalent, in a suitable sense, to giving a strong
monoidal functor from M to C.)

Dually, there is a bijection between comonoids in C and strict monoidal functors
from Mop to C, and so any comonoid in C determines an augmented simplicial ob-
ject in C. In particular, we could take C to be the strict monoidal category [X, X ] of
endofunctors of a category X , so that a comonoid in C is just a comonad on X . Then
any comonad g on X determines a unique strict monoidal functor Mop

→ [X, X ].
We may now transpose this so as to obtain a functor X→ [Mop, X ] sending each
object of X to an augmented simplicial object in X called its bar resolution with
respect to g.

When, in the introduction, we referred to the “universal nature” of the construc-
tion of simplicial objects from comonads, it was precisely this analysis, using the
universal property of M, which we had in mind, and which we shall extend so as
to explain the Böhm–Ştefan construction.

Remark 2.1. There is an automorphism of M which arises from the fact that the
opposite of the ordinal

n = {0< · · ·< n− 1}

is isomorphic to n itself. The automorphism fixes the objects, and sends an order-
preserving map f : m→ n to f rev, where f rev(i) = m − 1− f (n − 1− i). This
automorphism reverses the monoidal structure, in the sense that n+ n′ = n′+ n on
objects, while for morphisms f : m→ n and f ′ : m′→ n′ we have

( f + f ′)rev
= ( f ′)rev

+ f rev.
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2B. The decalage comonads. The monoidal structure on M extends, via Day con-
volution [Day 1970], to a monoidal structure on the category [Mop,Set] of aug-
mented simplicial sets. The resulting structure is nonsymmetric, but closed on
both sides, so that there is both a left and a right internal hom.

Since the ordinal 1 is a monoid in M, the representable M( – , 1) is a monoid
in [Mop,Set], and so the internal hom out of M( – , 1) becomes a comonad; or
rather, there are two such comonads depending on whether one uses the left or right
internal hom. These are called the decalage comonads, and they both restrict to
give comonads, also called decalage, on the category [1op,Set] of simplicial sets.

As well as this abstract description, there is also a straightforward explicit de-
scription, which we now give for the case of augmented simplicial sets.

Given an augmented simplicial set X as in the diagram

· · · X2

d0 //

d1 //

d2 //

X1s1oo

s0oo d0 //

d1 //
X0s0oo d0 // X−1

the right decalage Decr(X) of X is the augmented simplicial set

· · · X3

d0 //

d1 //

d2 //

X2s1oo

s0oo d0 //

d1 //
X1s0oo d0 // X0

obtained by discarding X−1 and the last face and degeneracy map in each degree.
There is a canonical map ε :Decr(X)→ X defined using the discarded face maps, so
that εn :Decr(X)n→ Xn is dn+1; and a canonical map δ :Decr(X)→Decr(Decr(X))
defined via the discarded degeneracy maps, so that δn :Decr(X)n→Decr(Decr(X))n
is sn+1. These maps δ and ε define the comultiplication and counit of the comonad.

Similarly, the left decalage Decl(X) of X is the augmented simplicial set

· · · X3

d1 //

d2 //

d3 //

X2s2oo

s1oo d1 //

d2 //
X1s1oo d1 // X0

obtained by discarding X−1 and the first face and degeneracy map in each degree.
We have described the decalage comonads for simplicial and augmented simpli-

cial sets, but in much the same way, there are decalage comonads Decr and Decl

on the categories [1op, P] and [Mop, P] of simplicial and augmented simplicial
objects in P for any category P , although in general there will no longer be a
monoidal structure with respect to which decalage is given by an internal hom.

2C. Duplicial structure. Here we recall the definition of duplicial structure, and
give a reformulation using the decalage comonads. As stated already in the intro-
duction, a duplicial object in a category is a simplicial object X , equipped with a
map tn : Xn → Xn for each n > 0, subject to various conditions which we now
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state explicitly:

di tn+1 =

{
tndi−1 if 1≤ i ≤ n+ 1,
dn+1 if i = 0;

(2.2)

si tn =
{

tn+1si−1 if 1≤ i ≤ n,
t2
n+1sn if i = 0.

(2.3)

There is also a formulation of this structure which uses an “extra degeneracy map”
s−1 : Xn→ Xn+1 in each degree instead of the tn; this s−1 may be constructed as
the composite tn+1sn . As in the introduction, X is called paracyclic if each tn is
invertible, and cyclic if additionally tn+1

n = 1.
The indexing category for cyclic structure is Connes’ cyclic category 3, which is

a sort of wreath product of 1 and the cyclic groups. This is explained for example
in [Loday 1992, Chapter 6], where the more general notion of crossed simplicial
group can also be found. This involves replacing the cyclic groups by some other
family of groups indexed by the natural numbers, and equipped with suitable ac-
tions of 1 which allow the formation of the wreath product. The indexing category
for paracyclic structure can be obtained in this way on taking all the groups to be Z

[Loday 1992, Proposition 6.3.4(c)]. Using the presentation for duplicial structure
given above, it is straightforward to modify this argument to see that the indexing
category K for duplicial structure is once again a wreath product, but this time by
a “crossed simplicial monoid”, involving the monoid N in each degree.

Proposition 2.4. Giving duplicial structure to a simplicial object X is equivalent
to giving a simplicial map t : Decr X → Decl X making the following diagrams
commute:

Decr X t
//

ε
%%

Decl X

ε

��

X

Decr X t
//

δ
��

Decl X δ
// Decl

2 X

Decr
2 X

Decr t
// Decr Decl X Decl Decr X

Decl t

OO

Proof. The data of a simplicial map t : Decr X→ Decl X comprises a sequence of
maps tn : Xn→ Xn for each n > 0 satisfying certain conditions. Compatibility of
t with face maps gives the cases where i > 0 of (2.2), while those where i = 0 are
the compatibility condition with ε. Likewise, compatibility of t with degeneracy
maps yields the cases i, n > 0 of (2.3), while the cases where n > 0 but i = 0 are
the compatibility condition with δ.

The one thing which remains is to see that a map t0 : X0→ X0 satisfying (2.3)
for n = 0 can be uniquely recovered from the remaining data and axioms. In order
to have s0t0 = t2

1 s0, we must have t0 = d0s0t0 = d0t2
1 s0 = d1t1s0. So we just need

to check that, defining t0 in this way, it satisfies the required relations; but this is
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indeed the case as the following calculations show:

(d1t1s0)d0 = d1t1d0s1 = d1d1t2s1 = d1d2t2s1 = d1t1d1s1 = d1t1 and

s0(d1t1s0)= d2s0t1s0 = d2t2
2 s1s0 = t1d1t2s1s0 = t2

1 d0s1s0 = t2
1 d0s0s0 = t2

1 s0 . �

2D. The Böhm–Ştefan construction. We now describe the construction in [Böhm
and S, tefan 2008; 2009]. The original formulation involves monads and coduplicial
structure, but we work dually with comonads so as to obtain duplicial structure. Let
A and P be categories, and suppose that we have a comonad (g, δ, ε) on A and
a functor f : A→ P . As explained in Section 2A, we obtain from g a functor
A → [Mop, A] sending each object to its bar resolution with respect to g, and
postcomposing with f yields a functor f g

: A→ [Mop, P]. Explicitly, f g takes
x in A to the augmented simplicial object f g(x) with f g(x)n = f gn+1x and with
face and degeneracy maps:

di = f giεgn−i x : f g(x)n→ f g(x)n−1 and

s j = f g jδgn− j x : f g(x)n→ f g(x)n+1 .

The basic construction of [Böhm and S, tefan 2008] uses additional data to equip
objects of the form f g(x) with duplicial structure. We suppose given another
comonad h on A, and a distributive law [Beck 1969] λ : gh → hg — a natural
transformation satisfying four axioms relating it to the comonad structures. We
suppose moreover that the functor f : A→ P is equipped with a natural transfor-
mation ϕ : f h→ f g rendering commutative the diagrams

f h
ϕ

//

f δ ��

f g
f δ��

f h
ϕ

//

f ε ""

f g.

f ε||

f h2
ϕh
// f gh

f λ
// f hg

ϕg
// f g2 f

(2.5)

This was called left λ-coalgebra structure on f in [Kowalzig et al. 2015], and
the totality (A, P, g, h, f, λ, ϕ) of the structure considered so far was called an
admissible septuple in [Böhm and S, tefan 2008]. Finally, we assume given an object
x ∈ A equipped with a map ξ : gx→ hx rendering commutative the diagrams

gx
ξ

//

δx ��

hx
δx��

gx
ξ

//

εx !!

hx .

εx||
g2x

gξ
// ghx

λx
// hgx

hξ
// h2x x

(2.6)

This was called right λ-coalgebra structure in [Krähmer and Slevin 2016], and a
“transposition map” in [Böhm and S, tefan 2008], though the notion itself goes back
to [Burroni 1973]. Under these assumptions, it was shown in [Böhm and S, tefan
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2008] that the simplicial object f g(x) admits a duplicial structure. The duplicial
operator tn : f g(x)n→ f g(x)n is given by the composite

f gn+1x
f gnξ x

// f gnhx
f λn x

// f hgnx
ϕgn x

// f gn+1x,

where the natural transformation λn
: gnh→ hgn denotes the composite

gnh
gn−1λ

// gn−1hg
gn−2λg

// gn−2hg2 // · · · // ghgn−1 λgn−1
// hgn.

In [Böhm and S, tefan 2008], this construction was used to obtain, among other
things, the cyclic cohomology and homology of bialgebroids.

There is an automorphism 8 : [Mop, P] → [Mop, P], induced by the automor-
phism in Remark 2.1, that maps a simplicial object X to the simplicial object
associated to X , obtained by reversing the order of all face and degeneracy maps.
In [Kowalzig et al. 2015] it is explained that 8 f h(x) is duplicial, and that there are
two duplicial maps

f g(x) R
// 8 f h(x), 8 f h(x) L

// f g(x),

defined by iteration of ϕ and ξ , respectively, which are mutual inverses if and only
if both objects are cyclic.

2E. Zeroth Hochschild homology and cohomology. Let A be a ring, and X a
bimodule over A. There is an induced simplicial abelian group, part of which
looks like

· · · A⊗ A⊗ X
d0 //

d1 //

d2 //
A⊗ X

d0 //

d1 //
Xs0oo

with the maps given as follows:

d0(a⊗ x)= xa, d0(a⊗ b⊗ x)= b⊗ xa,

d1(a⊗ x)= ax, d1(a⊗ b⊗ x)= ab⊗ x,

s0(x)= 1⊗ x, d2(a⊗ b⊗ x)= a⊗ bx,

and which is defined analogously in higher degrees. We call this simplicial object
the Hochschild complex of X , although often that name refers to the corresponding
(normalized or otherwise) chain complex.

The zeroth homology of A with coefficients in X is the colimit H0(A, X) of
this diagram, which can more simply be computed as the coequalizer of the two
maps A⊗ X ⇒ X ; more explicitly still, this is the quotient of X by the subgroup
generated by all elements of the form ax − xa.

Dually there is a cosimplicial object, part of which looks like

X
δ0 //

δ1 //
[A, X ]σ0oo

δ0 //

δ1 //

δ2 //
[A⊗ A, X ] · · ·
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with the maps given as follows:

δ0(x)(a)= xa, δ0( f )(a⊗ b)= f (a)b,

δ1(x)(a)= ax, δ1( f )(a⊗ b)= f (ab),

σ0( f )= f (1), δ2( f )(a⊗ b)= a f (b),

and now the zeroth Hochschild cohomology of A with coefficients in X is the limit
H 0(A, X) (really an equalizer) of this diagram, given explicitly by the subgroup
of X consisting of those x for which xa = ax for all a ∈ A.

2F. Universality of zeroth Hochschild homology and cohomology. There are uni-
versal characterizations for both H 0(A, X) and H0(A, X). For any A-bimodule X
and any abelian group P , there is an induced bimodule structure on [X, P] given
by (a f )(x) = f (xa) and ( f a)(x) = f (ax), and this construction gives a functor
[X, – ] : Ab→ A-Mod-A. In particular, we may take X = A with its regular left
and right actions.

Proposition 2.7. The functor [A, – ] : Ab→ A-Mod-A has a left adjoint sending
an A-bimodule X to H0(A, X).

Similarly, there is for any A-bimodule X and abelian group P an induced bi-
module structure on X ⊗ P given by a(x ⊗ p)= ax ⊗ p and (x ⊗ p)a = xa⊗ p,
and this gives a functor X ⊗ ( – ) : Ab→ A-Mod-A. Considering again the case
X = A, we have:

Proposition 2.8. The functor A⊗(–) :Ab→ A-Mod-A has a right adjoint sending
an A-bimodule X to H 0(A, X).

3. Bimodules

We described above the Hochschild complex of a ring A with coefficients in an
A-bimodule. A ring is the same thing as a monoid in the monoidal category Ab of
abelian groups, and more generally the Hochschild complex and the zeroth homol-
ogy and cohomology can be constructed if A is a monoid in a suitable symmetric
monoidal closed category V . In particular, we could do this for the cartesian closed
category Cat. But Cat is in fact a 2-category, which opens the way to consider lax
variants of the theory, and it is such a variant that we now present. While it would
be possible to develop this theory in the context of a general symmetric monoidal
closed bicategory V , it is only the case V = Cat which we need, and so we restrict
ourselves to that.

The first step, carried out in this section, is to describe in detail the notion of
bimodule that will play the role of coefficient object for our lax homology and
cohomology. We describe a certain 2-category A-Mod-A of bimodules, which
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involves a combination of strict and lax notions. The precise choice of what should
be strict and what should be lax might at first seem arbitrary; we have made these
choices so that our cohomology H 0(A, – ) and homology H0(A, – ) can be defined
via universal properties.

3A. Monoids. A monoid in Cat is precisely a strict monoidal category. It is not
particularly difficult to adapt the theory that follows to deal with nonstrict monoidal
categories, but we do not need this extra generality, and feel that the complications
that it causes might distract from the story we wish to tell. It is probably also
possible to extend the theory to deal with skew monoidal categories [Szlachányi
2012; Lack and Street 2012], although we have not checked this in detail.

We shall therefore consider a strict monoidal category (A,m, i). We shall write
a⊗ b or sometimes just ab for the image under the tensor functor m : A× A→ A
of a pair (a, b).

3B. Modules. Next we need a notion of module over our monoid (strict monoidal
category) A. There is a well-developed (pseudo) notion of an action of a monoidal
category on a category, sometimes called an actegory. Here, however, we deal
only with the strict case, which does not use the 2-category structure of Cat; once
again it would not be difficult to extend our theory to deal with pseudo (or possibly
skew) actions, but this is not needed for our applications so we have not done so.
Giving a strict left action of A on a category X is equivalent to giving a strict
monoidal functor from A to the strict monoidal category End(X) of endofunctors
of X . The image under the corresponding functor α : A× X → X of an object
(a, x) is written ax . Similarly there are (strict) right actions involving functors
β : X × A→ X : (x, a) 7→ xa satisfying strict associativity and unit conditions.

In fact, we also make use of a slightly more general notion. It is possible to
consider actions of monoids not just on sets, but also on objects of other categories;
in the same way, it is possible to consider actions of monoidal categories on objects
of other 2-categories. If X is an object of a 2-category K, then an action of A on
X is a strict monoidal functor from A to the strict monoidal category K(X, X) of
endomorphisms of X .

If the 2-category K admits copowers, then there is an equivalent formulation as
follows. Recall that the copower of an object X by a category P is an object P · X
equipped with isomorphisms of categories

K(P · X, Y )∼= Cat(P,K(X, Y ))

2-natural in the variable Y ∈ K. If K has all copowers, then there are 2-natural
isomorphisms (P×Q)·X∼= P ·(Q ·X) and 1·X∼= X . In this case, a strict (left) action
of A on X is equivalently a morphism α : A · X→ X in K for which the diagrams
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(A× A) · X m·1
//

��

A · X

α

��

1 · X i ·1
//

##

A · X

α

��

A · (A · X)
1·α
// A · X

α
// X X

commute, where the unnamed maps are the isomorphisms just described. (There are
also still more general notions of action of A; see [Kelly and Lack 1997, Section 2].)

Note that the 2-category Cat admits copowers, with A · X given by the cartesian
product A × X , so that in this case our more general notion of action of A on
X ∈ Cat reduces to the initial one.

Example 3.1. Our running example throughout this section and the next takes A to
be the strict monoidal category Mop; it is this example which will be used to explain
the Böhm–Ştefan construction. Since a strict monoidal functor Mop

→ K(X, X)
is precisely a comonoid in K(X, X), a left Mop-module is a comonad in the 2-
category K, in the sense of [Street 1972]. On the other hand, a right Mop-module
is also just a comonad in K, as follows from Remark 2.1.

In the case K = Cat, a comonad in Cat is a category X equipped with a
comonad g. For an object n of Mop and an object x ∈ X , the value nx of the
corresponding left Mop-action is given by gnx .

3C. Morphisms of modules. When it comes to morphisms of modules, once again
there is a question of how lax they should be, and this time we deviate from the
completely strict situation. If X and Y are (strict, as ever) left A-modules in Cat,
we define a lax A-morphism to be a functor p : X → Y , equipped with a natural
transformation

A× X
1×p

//

α

��

A× Y

α

��

X p
// Y

%

��

whose components have the form

a.p(x)
%a,x

// p(ax)

for a ∈ A and x ∈ X , and which satisfy two coherence conditions. The first asks
that %i,x : p(x)= i.p(x)→ p(ix)= p(x) is the identity. The second asks that the
composite

ab.p(x)
a%b,x

// a.p(bx)
%a,bx

// p(abx)

be equal to %ab,x . Often we omit the subscripts and simply write % for %a,x . When
% is an identity, we say that the A-morphism is strict.
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For actions on objects of a general 2-category K given by strict monoidal func-
tors A→K(X, X) and A→K(Y, Y ), a lax A-morphism is a morphism p : X→ Y
in K together with a natural transformation

A //

��

K(X, X)

K(X,p)
��

K(Y, Y )
K(p,Y )

// K(X, Y )

KS

satisfying an associativity and a unit axiom generalizing those above. If K ad-
mits copowers, then the natural transformation displayed above determines and is
determined by a 2-cell

A · X
1·p
//

α

��

A · Y

α

��

X p
// Y

%

��

in K, satisfying associativity and unit conditions.
If (p, %) and (p′, %′) are lax A-morphisms from X to Y , an A-transformation

from (p, %) to (p′, %′) is a 2-cell τ : p→ p′ satisfying the evident compatibility
condition; in the case K = Cat, this says that the diagram

a.px

%a,x

��

1.τ
// a.p′x

%′a,x
��

p(ax)
τ
// p′(ax)

commutes for all objects a ∈ A and x ∈ X .
There is a 2-category A-Mod whose objects are the A-modules (in Cat), whose

morphisms are the lax A-morphisms, and whose 2-cells are the A-transformations.
This 2-category admits copowers, with B · X given by the category X× B equipped
with the action α× 1 : A× X × B→ X × B, where α : A× X→ X is the action
on X .

Example 3.2. In the case A = Mop, we saw that an A-module was precisely a
category X equipped with a comonad g. A lax A-morphism is what was called a
comonad opfunctor in [Street 1972], and indeed Mop-Mod is the 2-category called
Mnd∗

∗
(Cat∗

∗
) in that paper.

3D. Bimodules. As usual, a bimodule is an object which is both a left and right
module with suitable compatibility between the two actions. Although our notion
of action is strict, the compatibility between the actions is not. There is clearly a
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notion of (A, B)-bimodule for different A and B, but we only need the case where
A = B. A succinct definition of A-bimodule is an object of A-Mod equipped with
a right A-module structure, but we can also spell out what this means.

First of all, there is a category X with a strict left action α : A× X → X . The
right action involves a functor β : X × A→ X defining a strict right action, but this
should be not just a functor, but a lax A-module morphism A · X → X . This lax
A-morphism structure consists of maps

a(xb)
λa,x,b

// (ax)b

natural in the variables a ∈ A, x ∈ X, b ∈ A, and making each diagram

aa′(xb)
1λa′,x,b

//

λaa′,x,b &&

a((a′x)b)

λa,a′x,b
��

i(xb)

λi,x,b $$

xb

((aa′)x)b (ix)b

commute. Finally, the associative and unit laws required for the right action defined
by β : X × A → X should hold not just as equations between functors, but as
equations between lax A-morphisms. Explicitly, this means that each diagram

a(xbb′)
λa,xb,b′

//

λa,x,bb′ &&

(a(xb))b′

λa,x,b1
��

a(xi)

λa,x,i $$

ax

(ax)(bb′) (ax)i

should commute.

Example 3.3. Returning to our running example A =Mop, we have already seen
that the 2-category A-Mod is just Street’s 2-category Mnd∗

∗
(Cat∗

∗
) of comonads

and comonad opfunctors, and that a right Mop-action in a 2-category is a comonad
in that 2-category. So an A-bimodule will be a comonad in Mnd∗

∗
(Cat∗

∗
), which

as explained in [Street 1972] amounts to a category X equipped with comonads g
and h and a distributive law λ : gh→ hg between them.

3E. Morphisms of bimodules. While our morphisms of left modules are lax, we
shall consider only strict morphisms of right modules, but these should again be
defined relative to the 2-category A-Mod. The reason for these choices will become
clear in Theorem 4.5 below. This means that a morphism (X, α, β)→ (Y, α, β)
of bimodules will be a lax A-morphism (p, %) : (X, α)→ (Y, α) of the underlying
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left modules, for which the diagram

X × A
p×1
//

β

��

Y × A

β

��

X p
// Y

of categories and functors commutes, and for which moreover the diagram

a.(px .b)
λa,px,b

// (a.px).b
%a,x .1

))

a.p(xb)

%a,xb ))

p(ax).b

p(a(xb))
p(λa,x,b)

// p((ax)b)

(3.4)

commutes for all a, b ∈ A and x ∈ X .
The bimodules and their morphisms constitute the objects and morphisms of a 2-

category A-Mod-A; a 2-cell (p, %)→ (p′, %′) is a natural transformation τ : p→ p′

which is a 2-cell relative to both the left and right actions.

Example 3.5. For an A-bimodule X and an arbitrary category P , the functor
category [X, P] has left and right actions of A, given by (a f )(x) = f (xa) and
( f a)(x) = f (ax), and these define a bimodule structure on [X, P]. This forms
the object part of a 2-functor [X, – ] : Cat→ A-Mod-A. We shall be particularly
interested in the case where X is A with its standard bimodule structure; in this
case, since the left and right actions on A are strictly compatible, so too are those
on [A, P].

Example 3.6. Dually, for an A-bimodule X and an arbitrary category P , the prod-
uct category P × X has left and right actions inherited from X , and this forms the
object part of a 2-functor ( – )× X : Cat→ A-Mod-A.

4. Lax cohomology and homology

4A. The Hochschild complex. Let A be a strict monoidal category and X a bi-
module over A, in the sense of the previous section. Then we can define maps

· · · A× A× X
d0 //

d1 //

d2 //
A× X

d0 //

d1 //
Xs0oo (4.1)

exactly as in Section 2E, except that, because of the lax compatibility between the
actions, the simplicial identity d1d0 = d0d2 no longer holds; instead, there is a
natural transformation λ : d1d0→ d0d2 whose component at an object (b, a, x) in
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A× A× X is the map λa,x,b : a(xb)→ (ax)b. Similarly, each simplicial identity
involving a first face map and a last face map is replaced by a natural transformation.
The various coherence conditions on λ appearing in the definition of A-bimodule
imply various coherence conditions on these natural transformations; the entire
structure determines a Cat-valued presheaf on a 2-category which is obtained by
a “blowing up” of the category 1, similar in nature to that in [Lack 2000].

Similarly, there are maps

X
δ0 //

δ1 //
[A, X ]σ0oo

δ0 //

δ1 //

δ2 //
[A× A, X ] · · · (4.2)

defined as in Section 2E once again; this time the cosimplicial identity δ2δ0 = δ1δ0

becomes a natural transformation δ2δ0→ δ1δ0, whose components are once again
induced by the lax compatibilities λa,x,b.

4B. Cohomology. In Section 2E, we defined the zeroth Hochschild cohomology
group H 0(A, X) of a bimodule over a ring as the equalizer of the pair of maps
δ0, δ1 : X ⇒ [A, X ]. In the case of the lax cohomology of a bimodule over a strict
monoidal category A, we define the zeroth Hochschild cohomology H 0(A, X) by
taking a “lax version” of an equalizer, involving all of the data displayed in (4.2),
called a lax descent object; this is a mild variant from [Lack 2002] of a notion
introduced in [Street 1987]. Interpreting this for (4.2) yields that H 0(A, X) is the
universal category Y equipped with a functor y : Y → X and a natural transforma-
tion ξ : δ1 y→ δ0 y such that σ0 ξ : x = σ0δ1 y→ σ0δ0 y = y is the identity and the
diagram

δ2δ0 y
λy
// δ0δ1 y

δ0ξ

&&

δ2δ1 y

δ2ξ 88

δ0δ0 y

δ1δ1 y
δ1ξ
// δ1δ0 y

commutes. Explicitly, an object of H 0(A, X) is an object x ∈ X equipped with
maps ξa : ax→ xa natural in a ∈ A, and satisfying ξi = 1 as well as the cocycle
condition asserting that the diagram

a(xb) λx
// (ax)b

ξb
''

a(bx)

aξ 77

''

(xa)b

(ab)x
ξ
// x(ab)

77

commutes for all a, b ∈ A.
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Example 4.3. In the case of classical Hochschild cohomology, for a ring A the
zeroth cohomology group H 0(A, A) is the centre of the ring; similarly, for a strict
monoidal category A, the lax cohomology H 0(A, A) is the lax centre of A in the
sense of [Day et al. 2007], originally introduced in [Schauenburg 2000] with the
name weak centre.

Example 4.4. Consider our running example of A =Mop, so that an A-bimodule
X is a category equipped with comonads g and h and a distributive law λ : gh→ hg.
Explicit calculation shows that an object of H 0(A, X) is an object x ∈ X equipped
with a map ξ : gx→ hx making the diagrams (2.6) commute, so we recover the
notion of right λ-coalgebra of Section 2D.

The next result justifies the definition of the lax cohomology H 0(A, X) analo-
gously to Proposition 2.8 for the usual Hochschild cohomology.

Theorem 4.5. The 2-functor (–)×A :Cat→ A-Mod-A has a right adjoint sending
an A-bimodule X to H 0(A, X).

Proof. Let X be an A-bimodule and P a category. Giving a (strict) right A-module
morphism p : P × A → X is equivalent to giving a functor f : P → X ; here
f (y) = p(y, 1) and p(y, a) = f (y)a. (It is here that the strictness of the right
action is necessary.) To enrich such a morphism of modules into a morphism
(p, %) of bimodules, we should give suitably natural and coherent maps

%a,y,b : a.p(y, b)→ p(y, ab)

for all a ∈ A and (y, b) ∈ P × A. By the compatibility condition (3.4), the map
%a,y,b can be constructed as

ap(y, b)= a(p(y, 1)b)
λa,p(y,1),b

// (ap(y, 1))b
%a,y,11

// p(y, a)b = p(y, ab)

and so the general % is determined by those of the form %a,y,1, and these have the
form ξa,y : a f (y)→ f (y)a. The unit condition asserting that each %1,y,b is the
identity says that ξ1,y is the identity. The cocycle condition on the % is equivalent
to the cocycle condition asserting that ξa,y makes each f (y) into an object of
H 0(A, X). Naturality of ξa,y in y implies that for each morphism ψ : y→ y′ in P ,
the map f (ψ) defines a morphism ( f (y), ξa,y)→ ( f (y′), ξa,y′) in H 0(A, X).

This gives the desired bijection between bimodule morphisms P × A→ X and
functors P → H 0(A, X); it is straightforward to check that this carries over to
2-cells, and so defines an isomorphism of categories

A-Mod-A(P × A, X)∼= Cat(P, H 0(A, X))

exhibiting H 0(A, X) as the value at X of a right adjoint to ( – )× A. �
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4C. Homology. In Section 2E, the zeroth Hochschild homology group was de-
fined as the coequalizer of the maps d0, d1 : A⊗ X ⇒ X . For lax homology, we
define H0(A, X) of an A-bimodule X to be the lax codescent object of the data
displayed in (4.1). Lax codescent objects are the colimit notion corresponding to
the lax descent objects used to define lax cohomology.

Spelling this out, H0(A, X) is the universal category Y equipped with a functor
f : X→ Y and a natural transformation ϕ : f d0→ f d1 satisfying the normalization
condition ϕs0 = 1 and the cocycle condition

f d1d0
f λ
// f d0 d2

ϕd2
((

f d0 d0

ϕd0 66

f d1d2.

f d0 d1
ϕd1

// f d1d1

Explicitly, H0(A, X) is obtained from X by adjoining morphisms xa→ ax satisfy-
ing naturality conditions in both variables, with xi→ i x required to be the identity,
and obeying the cocycle condition which requires the diagram

b(xa) λ
// (bx)a

ϕbx,a

''

(xa)b
''

ϕxa,b 77

a(bx)

x(ab)
ϕx,ab
// (ab)x

77

to commute.

Example 4.6. Let A =Mop, and let X have A-bimodule structure corresponding
to comonads g and h and a distributive law λ : gh→ hg. By the defining universal
property of the category H0(A, X), giving a functor H0(A, X)→ P is the same
as giving a functor f : A→ P and natural transformation ϕ : f h→ f g making
the diagrams (2.5) commute, so we recover the notion of left λ-coalgebra from
Section 2D.

Example 4.7. Again with A =Mop, the “regular” A-bimodule structure on A cor-
responds to the two decalage comonads equipped with the identity distributive law
between them. The full subcategory of Mop given by the nonempty finite ordinals
is a sub-bimodule; since it is also isomorphic to 1op, there is an induced bimodule
structure on 1op. By the preceding example and the description of duplicial struc-
ture given in Proposition 2.4, a functor H0(M

op,1op)→ P is precisely a duplicial
object in P , so that H0(M

op,1op) itself is the category K op indexing duplicial
structure. Similarly, a functor H0(M

op,Mop)→ P is an augmented duplicial object
in P , and H0(M

op,Mop) is the category indexing augmented duplicial structure.
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Just as before, the lax zeroth Hochschild homology has a universal characteri-
zation paralleling Proposition 2.7.

Theorem 4.8. The 2-functor [A, – ] : Cat→ A-Mod-A has a left adjoint sending
an A-bimodule X to H0(A, X).

Proof. Let X be an A-bimodule and P a category. Just as in the classical case,
giving a (strict) morphism of right A-modules p : X → [A, P] is equivalent to
giving a morphism f : X → P with f (x) = p(x)(1) and p(x)(a) = f (xa). In
order to enrich such a p into a morphism (p, %) : X → [A, P] of bimodules, we
should give a suitably coherent map %a,x : a.p(x)→ p(ax) in [A, P] for all a ∈ A
and x ∈ X . Thus for b ∈ A we should give

f (x(ba))= p(x)(ba)= (a.p(x))b
%a,x (b)
−−−−→ p(ax)(b)= f ((ax)b).

Commutativity of (3.4) means that the general %a,x(b) is equal to the composite

a.p(xb)
%a,xb(1)
−−−−→ p(a(xb))

pλa,x,b
−−−−→ p((ax)b)= p(ax)b.

Thus % is determined by the maps %a,x(1) : f (xa)→ f (ax), which we can regard
as defining a natural transformation ϕ : f d0→ f d1. The normalization condition
asserting that %1,x is an identity now says that

f = f d0 s0
ϕs0

// f d1s0 = f

is an identity. The cocycle condition on % is equivalent to the cocycle condition
on ϕ, and so we have a bijection between bimodule morphisms X→ [A, P] and
functors H0(A, X)→ P . It is straightforward to extend this to 2-cells, and so to
obtain an isomorphism of categories

A-Mod-A(X, [A, P])∼= Cat(H0(A, X), P)

exhibiting H0(A, X) as the value at X of a left adjoint to [A, – ]. �

4D. The universal coefficient theorem and the cap product. In this section we
develop a few very simple ingredients of classical Hochschild theory in our lax
context. The first of these is the universal coefficient theorem. In its more general
forms this involves short exact sequences connecting homology and cohomology,
but in degree zero it is particularly simple.

Proposition 4.9 (universal coefficient theorem). For any bimodule X and category
P there is an isomorphism of categories

Cat(H0(A, X), P)∼= H 0(A, [X, P])

natural in X and P.
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Proof. By the universal property of H0(A, X) as a lax codescent object, an object
of the left-hand side amounts to a functor f : X → P equipped with a natural
transformation ϕ : f d0→ f d1 satisfying the normalization and cocycle conditions.
But the functor f can be seen as an object of [X, P], while δ0( f ) : A→[X, P] and
δ1( f ) correspond under the adjunction – × A a Cat(A, – ) to f d0 : A× X→ P
and f d1, so that giving ϕ : f d0→ f d1 is equivalent to giving ξ : δ0( f )→ δ1( f ).
A straightforward calculation shows that the normalization and cocycle conditions
for ϕ to make f into a functor H0(A, X)→ P are equivalent to the normalization
and cocycle conditions for ξ to make f into an object of H 0(A, [X, P]).

This proves that we have a bijection on objects; the case of morphisms is similar
but easier, and is left to the reader. �

Construction 4.10 (cap product). Given any bimodule X , the unit of the adjunc-
tion H0(A, – ) a [A, – ] of Theorem 4.8 has the form χ : X → [A, H0(A, X)].
Applying the cohomology 2-functor H 0(A, – ), we obtain a functor

H 0(A, X)
H0(A,χ)

// H 0(A, [A, H0(A, X)]),

and composing with the “universal coefficient” isomorphism H 0(A, [A, P]) ∼=
Cat(H0(A, A), P) of Proposition 4.9, we obtain a functor

H 0(A, X) // Cat(H0(A, A), H0(A, X))

whose adjoint transpose

H 0(A, X)× H0(A, A) // H0(A, X)

can be seen as a special case of the cap product for our lax homology and coho-
mology. But we choose instead to transpose again to obtain a functor

H0(A, A) BS
// Cat(H 0(A, X), H0(A, X)),

which we call the Böhm–Ştefan map.

Example 4.11. We now analyze this Böhm–Ştefan map in the case of our running
example. Suppose then that A =Mop, and X is an A-bimodule, with the bimodule
structure corresponding to comonads g and h and a distributive law λ : gh→ hg.
Let p : H0(A, X) → P be an arbitrary functor, and let y ∈ H 0(A, X). As in
Example 4.6, giving p is equivalent to giving a functor f : X → P equipped
with left λ-coalgebra structure ϕ : f h→ f g, while as in Example 4.4, giving y
is equivalent to giving an object x ∈ X equipped with right λ-coalgebra structure
ξ : gx→ hx . There is now an induced functor

H0(A, A) BS
// Cat(H 0(A, X), H0(A, X))

evy
// H0(A, X)

p
// P
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which by Example 4.7 picks out an augmented duplicial object in P . This object is
precisely the one constructed in [Böhm and S, tefan 2008] as recalled in Section 2D
above. This construction was generalized slightly in [Böhm and S, tefan 2012] to
include right λ-coalgebra structures on arbitrary functors Y → X , rather than just
objects of X ; in this case y becomes a functor Y → H 0(A, X) and the composite

H0(A, A) BS
// Cat(H 0(A, X), H0(A, X))

Cat(y,p)
// Cat(Y, P)

defines an augmented duplicial object in Cat(Y, P).

5. Duplicial structure on nerves

In this section we turn to our second main goal, which is to analyze duplicial struc-
ture on nerves of various sorts of categorical structures; specifically, on categories,
on monoidal categories, and on bicategories.

A monoidal category can of course be seen as a one-object bicategory, and a
category can be seen as a bicategory with no nonidentity 2-cells, so in principle we
could pass straight to the case of bicategories, and then merely read off the results
for the other two cases, but instead we have chosen to do the case of categories
first, as a sort of warm-up.

5A. Duplicial structure on categories. The nerve functor from Cat to [1op,Set]
is of course fully faithful, so that we may identify (small) categories with certain
simplicial sets. It therefore makes sense to speak of duplicial structure borne by
a category. The decalage comonads on [1op,Set] restrict to Cat, and so we may
analyze duplicial structure on categories using Proposition 2.4.

The right decalage comonad sends a category C to the coproduct
∑

x C/x
over all objects x ∈ C of the corresponding slice categories. The counit is the
functor induced by the domain functors C/x → C , while the comultiplication∑

x C/x →
∑

f :w→x C/w sends the x-component to the 1x -component via the
identity functor C/x→ C/x . Dually, the left decalage comonad sends a category
C to the coproduct

∑
x x/C , with similar descriptions available for the counit and

comultiplication.
Since both C/x and x/C are connected categories, a functor

∑
x C/x→

∑
x x/C

is necessarily given by an assignment c 7→ tc on objects together with a functor
t : C/x→ tx/C for each x . Compatibility with the counit (on objects) means that
the image under t of an object f : a→ x of C/x should have the form t f : tx→ a.
Functoriality, together with counit compatibility on morphisms means that if fg= h
then g.th = t f . Compatibility with the comultiplication requires a slightly more
complicated calculation.

An object of the right decalage Decr(C) has the form f : a→ x , and the co-
multiplication Decr(C)→ Decr(Decr(C)) sends it to the composable pair (1x , f ).
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Now Decr(t) : Decr(Decr(C)) → Decr(Decl(C)) sends this to the composable
pair ( f, t f ), which, as we have seen, must have composite t1x . This composable
pair can equally be seen as lying in Decl(Decr(C)), and finally applying Decl(t)
gives the composable pair (t f, t21x). Compatibility with comultiplication says that
this should be equal to the composable pair (t f, 1tx), and this clearly says that
t2(1x)= 1tx for all objects x . We have only checked compatibility with the comul-
tiplication on objects, but in fact no further condition is needed for compatibility
on morphisms. We summarize this calculation as follows.

Proposition 5.1. Giving duplicial structure to a small category C is equivalent to
giving

• for each object x an object tx ,

• for each morphism f : a→ x a morphism t f : tx→ a,

subject to the conditions that

• t2(1x)= 1tx for all objects x ,

• f.t (g f )= tg for any composable pair (g, f ),

which we call the identity and functoriality conditions, respectively.

The next result gives a cleaner reformulation of these conditions. In its statement,
recall that the inclusion 2-functor Gpd ↪→Cat has a left 2-adjoint51, whose counit
at a small category C is the functor p :C→51(C) which freely adjoins an inverse
for every arrow of C . The 2-dimensional aspect of the universal property means
that, for any category D, the functor [51(C), D)→ [C, D] given by composition
with p is fully faithful.

Theorem 5.2. Giving duplicial structure to a small category C is equivalent to
giving a left adjoint in Cat for the functor p : C→51(C).

Proof. First suppose that p has a left adjoint i :51(C)→ C with counit ε : i p→ 1
and unit η : 1→ pi ; since 51(C) is a groupoid, η is invertible, and therefore i is
fully faithful. For each object y ∈ C , define t y to be i py, and for each morphism
f : x→ y, define t f : ipy→ x to be the composite

i py
i(p f )−1

// i px
εx

// x .

Then t (1x)= εx and so using the triangle identities twice yields

t2(1x)= t (εx)= εtx .i(pεx)
−1
= εi px .iηpx = 1i px ,

while for a composable pair (g, f ) we have

f.t (g f )= f.εx .i(p(g f )−1)= εy .i p( f ).i(p f )−1.i(pg)−1
= εy .i(pg)−1

= t (g);

so this defines duplicial structure on C .
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Conversely, if C is equipped with duplicial structure there is an induced functor
G :C→C sending an object x to tx and a morphism f : x→ y to t2 f : tx→ t y. This
preserves identity morphisms because t2(1x)= 1tx by assumption, and preserves
composition by three applications of the fact that if h = g f then f.th = tg. (The
functor G can be seen as a simplicial endomorphism of the nerve of C ; as such it
is the “curious natural transformation” of [Dwyer and Kan 1985].) For each x ∈ C ,
write εx for the morphism t (1x) : tx→ x . Now f.t f = t (1y) by the functoriality
condition, since 1y f = f ; and replacing f by t f we also have t f.t2 f = t (1x).
Combining these, εy .G f = t1y .t2 f = f.t f.t2 f = f.t1x = f.εx and so the εx are
indeed natural. Furthermore, Gεx = t2(εx)= t3(1x)= t (1tx)= εGx and so (G, ε)
is a well-copointed endofunctor in the sense of [Kelly 1980].

Next we show that for any f : x→ y, the morphism G f := t2 f is invertible, with
inverse t ( f.εx). First observe that εx .t ( f.εx) = t f by the functoriality condition
once again. Consequently, we have

t ( f.εx).t2( f )= t ( f.εx).t (εx .t ( f.εx))= t (εx)= t2(1x)= 1tx ,

using the functoriality condition again at the second step; this gives one of the
inverse laws. By naturality of ε and the functoriality condition yet again, we have

t2 f.t ( f.εx)= t2 f.t (εy .t2( f ))= t (εy)= t2(1y)= 1t y,

giving the other. Thus each G f is invertible. By the universal property of 51(C),
therefore, there is a unique functor i : 51(C) → C with i p = G. By the 2-
dimensional aspect of the universal property of 51(C), there is a unique natural
transformation η : 1→ pi with ηp : p→ pip equal to (pε)−1, and so satisfying the
triangle equation pε.ηp = 1. By the 2-dimensional aspect of the universal property
once again, the other triangle equation εi.iη = 1 holds if and only if εi p.iηp = 1
does, but by the calculation

εi p.iηp = εi p.(i pε)−1
= i pε.(i pε)−1

= 1

this is indeed the case, and so p does have a left adjoint.
It remains to show that these two processes are mutually inverse. First sup-

pose that C has duplicial structure t , and then construct a left adjoint i a p as
above. The duplicial structure that this induces sends an object x to i px = i x = tx ,
and a morphism f : x → y to εx .i(p f )−1, where i(p f )−1

= t ( f.εx). But now
εx .i(p f )−1

= εx .t ( f.εx)= t f by the functoriality condition, and so we have recov-
ered the original duplicial structure.

For the other direction, suppose first that p has a left adjoint i with counit ε.
Construct the induced duplicial structure t , and the left adjoint i ′ and counit ε′

induced by that. By the universal property of 51(C) once again it suffices to show
that i p = i ′ p and ε = ε′. For an object x , we have ε′x = t (1x)= εx .i(p1x)

−1
= εx ,
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and so ε = ε′; this includes the fact that ip and i ′ p agree on objects, and so it
remains only to show that they agree on morphisms. To see this, let f : x → y
be a morphism, so that i ′ p f : i ′ px → i ′ py is given by t2( f ) : tx → t y. Now
t f = εx .i(p f )−1, so

i p(t f )−1
= i pip f.i(pεx)

−1
= i pip f.iηpx = iηpy.i p f,

and so finally i ′ p f = t2 f = εi py .iηpy.i p f = i p f . �

Example 5.3. If C is a groupoid, then p : C → 51(C) is invertible, and so has
a canonical left adjoint p−1

: 51(C)→ C . So every groupoid has a canonical
duplicial structure.

Example 5.4. Suppose that there is a groupoid G and a functor i : G→ C with
a right adjoint r : C→ G. By the universal property of 51(C), there is a unique
induced functor q : 51(C) → G with qp = r . By [Gabriel and Zisman 1967,
Proposition 1.3], this q is an equivalence. Thus p also has a left adjoint, and so C
has a duplicial structure.

Remark 5.5. We have seen that a category C has duplicial structure just when
p : C→51(C) has a left adjoint. This is paracyclic just when each tn is invertible,
or equivalently just when each tn+1

n is invertible. Now the tn+1
n define the functor

i p : C→ C ; since p is bijective on objects and i is fully faithful, the composite i p
is invertible if and only if i and p are both invertible, and this can happen only if
C is a groupoid.

For a groupoid, giving duplicial structure is equivalent to giving a left adjoint to
the invertible p :C→51(C); of course such a left adjoint is necessarily isomorphic
to p−1 and so in particular an equivalence. The duplicial structure is paracyclic
just when this left adjoint is in fact an invertible functor, and cyclic just when it is
p−1 as above. Thus, for a category C , the existence of paracyclic structure implies
the existence of cyclic structure, but this does not mean that paracyclic structure on
a category is necessarily cyclic. Furthermore, a groupoid can admit multiple cyclic
structures, since there can be multiple choices of unit and counit for an adjunction
p−1
a p; in fact such choices correspond to choices of a natural isomorphism

1G ∼= 1G .

5B. Duplicial structure on bicategories. We next consider what it means to give
duplicial structure on the nerve of a bicategory B [Street 1996]. Recall that this
nerve is the simplicial set NB, in which

• the 0-simplices are the objects of B;

• the 1-simplices are the arrows f : x→ y of B;
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• the 2-simplices are the 2-cells in B of the form

y
g

��
α��

x

f
@@

h
// z ;

• the 3-simplices are the commuting diagrams of 2-cells of the form

(hg) f
∼=
//

α f
��

h(g f )
hβ

// hk

γ

��
` f

δ
// m

in which the unnamed isomorphism is the relevant associativity constraint
of B.

The face and degeneracy maps are as expected, and the higher simplices are de-
termined by 3-coskeletality. The assignment B 7→ NB is the object part of a fully
faithful functor N :NLax→[1op,Set], where NLax is the category of bicategories
and normal lax functors between them — ones preserving identities on the nose, but
binary composition only up to noninvertible 2-cells Fg.F f ⇒ F(g f ). The first
appearance in print we could find of the fact that this nerve functor is fully faithful
was in [Bullejos et al. 2005].

Once again, the decalage comonads on [1op,Set] restrict to the full subcategory
NLax, and so it makes sense to speak of duplicial structure on a bicategory. Indeed
the description of these restricted comonads is similar to the case of Cat, except
that rather than slice categories now we use “lax slices”. For an object x of a bicat-
egory B, we write B/x for the bicategory whose objects are morphisms f : a→ x
with codomain x , whose morphisms from f : a→ x to g : b→ x have the form

a s
//

f
��

b

g
��

x

σ
ks

and whose 2-cells are defined in the evident way. Similarly the “lax coslice” x/B
has objects of the form f : x→ a, and morphisms from f : x→ a to g : x→ b of
the form

x
g

��

f

��
a s

// b.
σ
+3
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We now define Decr(B)=
∑

x B/x and Decl(B)=
∑

x x/B, with the actions on
normal lax functors, and the counits and comultiplications given by a straightfor-
ward generalization of the corresponding definitions for Cat.

Before giving our characterization result, let us recall that a 2-cell in a bicategory
as on the left in

a
g

��

f

��

b
h

// c

α +3

a
g

��

k

��

b
h

// c

β +3

is said to exhibit f as a right lifting of g through h [Street and Walters 1978] if
every 2-cell as on the right above factors as α.hβ̄ for a unique 2-cell β̄ : k⇒ f .

Theorem 5.6. Equipping a bicategory B with duplicial structure is equivalent to
giving

(a) for each object x ∈ B an object tx ∈ B and a morphism εx : tx→ x ;

(b) for each morphism f : a→ x in B a morphism t f : tx→ a and a 2-cell

tx
εx

  

t f

~~
a

f
// x

ε f +3

exhibiting t f as a right lifting of εx through f ;

all subject to the conditions that

(c) t1x = εx ;

(d) t21x = 1tx ;

(e) ε1x is the left identity isomorphism 1x .t1x → t1x ;

(f) εt1x is the right identity isomorphism t1x .1tx → t1x .

In the case where B is a category, (a) and (c) correspond to giving tx and
t1x : tx→ x for each x , while (b) says that for each f : a→ x there is a unique map
t f with f.t f = t1x ; condition (d) now follows from the uniqueness, and conditions
(e) and (f) are automatic. It is now not hard to see that this is equivalent to the
conditions in Proposition 5.1.

Proof. By redefining the composition with identity 1-cells, any bicategory may be
made isomorphic in NLax to one in which identities are strict. Thus without loss
of generality we may suppose that B has strict identities; then the conditions in (e)
and (f) become ε1x = 1εx and εt1x = 1t (1x ).
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Duplicial structure consists of a normal lax functor t :Decr(B)→Decl(B) which
is compatible with the counit and comultiplication maps. As in the case of Cat,
since each B/x and x/B is connected, t must be given by an assignment x 7→ tx
on objects and normal lax functors B/x→ tx/B.

To give t on objects compatibly with the counits is to give, for each f : a→ x ,
a morphism t f : tx→ a. To give t on morphisms compatibly with the counits is
to give, for each triangle as on the left below, a triangle as on the right:

a s
//

f
��

b

g
��

tx
t f

��

tg

��

x a s
// b

σ
ks ts(σ ) +3

The action of t on 2-cells is unique if it exists, given the counit condition; it exists
just when, for all σ : gs→ f and τ : s ′→ s, the diagram on the left commutes,
where σ ′ is defined as in the diagram on the right:

s ′.t f
τ.t f

//

ts′ (σ
′)

##

s.t f

ts(σ )
��

tg

g.s ′
g.τ
//

σ ′
""

g.s

σ

��

f

or, more compactly:

ts′(σ ◦ (g.τ ))= ts(σ ) ◦ (τ.t f ). (5.7)

Since the components Decr(B)→ B and Decl(B)→ B of the counit are strict
morphisms of bicategories, it follows that t : Decr(B)→ Decl(B) is also strict,
which amounts to the requirements

t1a (1 f )= 1t f and ts′(σ ′) ◦ (s ′.ts(σ ))= ts′s(σ ◦ σ ′s) (5.8)

for all σ : gs→ f and σ ′ : hs ′→ g.
It remains to see what the comultiplication axiom imposes. As in the case for

Cat, the only new condition appears at the level of objects of Decr(B), where it
says that for any f : a→ x , we have

t21x = 1tx and (tt f (t f (1 f )) : t f.t t1x → t f )= 1t f . (5.9)

So duplicial structure on a bicategory B amounts to the assignments x 7→ tx ,
( f : a→ x) 7→ (t f : tx→ a), and (s, σ : gs→ f ) 7→ (tsσ : s.t f → tg), subject to the
conditions expressed in (5.7), (5.8), and (5.9). We now relate this to the structure
in the statement of the theorem.

For any x ∈ B, we define εx = t (1x) : tx → x , and for any f : a → x in B,
we define ε f = t f (1 f ) : f.t f → t1x = εx . Now in the conditions appearing in



26 RICHARD GARNER, STEPHEN LACK AND PAUL SLEVIN

the theorem, (c) holds by construction, (d) holds by the first half of (5.9), while
(e) holds by taking f = 1x in the first half of (5.8). For (f), take f = 1x in the
definition of ε f , the second half of (5.9), and the first half of (5.8), to deduce that
εt1x = tt1x (1t1x )= tt1x (t1x (11x ))= 1t1x .

Thus, in order to show that a duplicial bicategory has all of the structure in the
theorem, it remains only to show that t f (1 f ) exhibits t f as a right lifting of t1x

through f ; in other words, that for any g : tx→ a and any ϕ : f g→ t1x , there is a
unique ψ : g→ t f which gives ϕ when pasted with ε f . But we may consider the
pair (g, ϕ) as a morphism in B/x from t1x to f , and so obtain tg(ϕ) : g.t21x→ t f ,
and since t21x = 1tx , this gives our ψ : g→ t f . Pasting it with ε f gives

ε f ◦ fψ = t f (1 f ) ◦ ( f.tg(ϕ))

= t f g(ϕ) (by (5.8))

= t f g(1t1x ◦ (1x .ϕ))

= tt1x (1t1x ) ◦ (ϕ.t
21x) (by (5.7))

= tt1x (1t1x ) ◦ϕ (by (5.9))

= ϕ, (by (f))

which proves the existence of ψ . As for uniqueness, suppose that ψ : g → t f
satisfies ε f ◦ fψ = ϕ; that is, t f (1 f ) ◦ ( f.ψ)= ϕ. Then

tg(ϕ)= tg(t f (1 f ) ◦ ( f.ψ))

= tt f (t f (1 f )) ◦ (ψ.t21x) (by (5.7))

= ψ.t21x (by (5.9))

= ψ, (by (5.9))

giving uniqueness as required.
Thus, a duplicial bicategory satisfies the conditions in the theorem. For the

converse, suppose that B is equipped with structure as in the theorem; then we are
given the assignments x 7→ tx and ( f : a→ x) 7→ (t f : tx → a), as well as the
2-cells t f (1 f ) : f.t f → εx satisfying the universal property of (b) and the conditions
(c), (d), (e), and (f). Given σ : gs→ f , if we are to have (5.8) and then (5.7), then

εg ◦ (g.ts(σ ))= tg(1g) ◦ (g.ts(σ ))= tgs(σ )= ε f ◦ (σ.t f ),

and so ts(σ ) is uniquely determined using the universal property of the right lifting
2-cell εg. It remains to check that if we define ts(σ ) in this way, then (5.7), (5.8),
and (5.9) do indeed hold.

Since εg◦(g.ts(σ ))◦(g.τ.t f )= ε f ◦(σ.t f )◦(g.τ.t f ), the composite ts(σ )◦(τ.t f )
satisfies the defining property of ts′(σ ◦ (g.τ )), and so (5.7) holds. Similarly,
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εh ◦ (h.ts′(σ ′)) ◦ (h.s ′.ts(σ ))= εg ◦ (σ
′.tg) ◦ (h.s ′.ts(σ ))

= εg ◦ (g.ts(σ )) ◦ (σ ′.s.t f )

= ε f ◦ (σ.t f ) ◦ (σ ′.s.t f ),

and so ts′(σ ′) ◦ (s ′.ts(σ )) satisfies the defining property of ts′s(σ ◦ σ ′s), while 1t f

clearly satisfies the defining property of t1a (1 f ). Thus (5.8) holds.
The first half of (5.9) is just (d); as for the second half, it says that tt f (ε f )= 1t f ,

and the defining property of tt f (ε f ) is that ε f ◦ ( f.tt f (ε f )) = εt1x ◦ (ε f .t21x); but
t21x = 1tx by (d), and εt1x = 1t1x by (e). Thus the right-hand side becomes ε f , and
clearly ε f ◦ 1t f = ε f , whence the result. �

5C. Duplicial structure on monoidal categories. A monoidal category can be
thought of as a one-object bicategory, and as such it has a nerve: there is a unique
0-simplex, the 1-simplices are the objects of the monoidal category, the 2-simplices
consist of three objects X, Y, Z and a morphism f : X⊗Y→ Z , and so on. Thus the
monoidal categories determine a full subcategory of [1op,Set], with the morphisms
being the (lax) monoidal functors which are strict with respect to the unit. It is not
the case that the decalage comonads restrict to this full subcategory: the decalage
of a one-object bicategory will generally have many objects, indeed an object of
the decalage will be a morphism of the monoidal category. Nonetheless, we can
ask what it is to have duplicial structure on a monoidal category, thought of as a
one-object bicategory.

Reading off directly from Theorem 5.6, we see that, for a monoidal category C
with tensor product ⊗ and unit i , duplicial structure on C consists of the following:

(a) an object d (corresponding to εx for the unique object x of the bicategory);

(b) for each object x , a right internal hom [x, d], by which we mean an object
equipped with a morphism εx : x ⊗[x, d] → d inducing a bijection

C(x ⊗−, d)∼= C( – , [x, d])

subject to conditions which we now enumerate. First of all, we require that the
internal hom [i, d] be d itself. This is not a restriction in practice, since in any
monoidal category and any object x the internal hom [i, x] exists and may be taken
to be x . The more serious requirement is that the (chosen) hom [d, d] is i , with
counit d ⊗ i→ d given by the unit isomorphism of the monoidal category. In fact
the real condition here is that the map i→ [d, d] induced by the unit isomorphism
d ⊗ i → d is invertible; when this is the case we may always redefine [d, d] as
required.

One formulation of the notion of (not necessarily symmetric) ∗-autonomous
category [Barr 1995, Definition 2.3] is a monoidal category C equipped with an
equivalence ( – )∗ : C→ Cop and natural isomorphism C(x, y∗)∼= C(i, (x ⊗ y)∗),
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with i the unit. Using the natural isomorphism, we may construct further isomor-
phisms C(x, y∗)∼=C(i, (x⊗y)∗)∼=C(i, (x⊗y⊗i)∗)∼=C(x⊗y, i∗), and so y∗ must
in fact be given by [y, i∗]. Conversely, if C is a monoidal category with all (right)
internal homs [x, d] for a given object d, then there is a functor ( – )∗ : C→ Cop

sending x to [x, d], and a natural isomorphism C(x, y∗)∼= C(i, (x ⊗ y)∗); thus C
will be ∗-autonomous when this functor ( – )∗ is an equivalence.

A compact closed category is a symmetric monoidal category C in which every
object has a monoidal dual. In this case, the functor C→ Cop sending each object
to its monoidal dual is an equivalence. Thus, every compact closed category is
∗-autonomous; the dualizing object d is the unit object i in this case. In a general
∗-autonomous category, x∗ need not be the monoidal dual of x .

Both duplicial structure and ∗-autonomous structure on a monoidal category C
involve an object d for which the right internal homs [x, d] exist. The difference
is that ∗-autonomous categories require the functor [ – , d] to be an equivalence,
while duplicial monoidal categories require the canonical map i → [d, d] to be
invertible. But in fact, for a ∗-autonomous category the canonical map i→ [d, d]
is always invertible [Barr 1995, Section 6] and so any ∗-autonomous category has
duplicial structure.

Theorem 5.10. Any monoidal category with paracyclic structure possesses a ∗-
autonomous structure. Conversely, any monoidal category with ∗-autonomous
structure is monoidally equivalent to one with paracyclic structure.

Proof. If C is a monoidal category with paracyclic structure, then there is an object
d for which the right internal homs [– , d] exist, and the resulting functor C→Cop

is not just an equivalence but an isomorphism. This gives C a ∗-autonomous struc-
ture.

For the converse, let C be a ∗-autonomous monoidal category with dualizing
object d . We shall construct another ∗-autonomous monoidal category C̃ which is
monoidally equivalent to C , for which the induced duality functor C̃→ C̃op can
be chosen to be an isomorphism.

An object x of C̃ is a Z-indexed family (xn)n∈Z of objects of C , together with
an isomorphism θn : xn ∼= x∗n+1 for each n. A morphism x→ y is just a morphism
f : x0→ y0 in C . There is an evident equivalence of categories C̃→ C sending x
to x0.

We may transport the monoidal structure across this equivalence to obtain a
monoidal structure on C̃ . The resulting C̃ is clearly still ∗-autonomous, but now
we may define the functor C̃ → C̃op in such a way that it is an isomorphism of
categories, by setting (x∗)n = xn−1. In order to make this functorial, observe that for
any morphism f : x0→ y0, we may use the θn to define morphisms f2n : x2n→ y2n

and f2n+1 : y2n+1→ x2n+1 which are compatible in the evident sense. �



HOCHSCHILD HOMOLOGY, LAX CODESCENT, AND DUPLICIAL STRUCTURE 29

It turns out that if C is ∗-autonomous, then the pseudoinverse Cop
→ C to

( – )∗ gives rise to a left internal hom d(–), characterized by a natural isomorphism
C(a, db)∼= C(b⊗ a, d). If the monoidal category C actually has cyclic structure,
then applying [ – , d] twice gives the identity, and so in particular the left and right
homs db and [b, d] are isomorphic; in other words, [ – , d] is also a left internal
hom. In this case, d is said to be a cyclic dualizing object.

Conversely, if C is ∗-autonomous with cyclic dualizing object d , then applying
[– , d] twice is isomorphic to the identity. Once again, though, for a cyclic structure
we need it to be equal to the identity.

Theorem 5.11. A monoidal category with cyclic structure has a ∗-autonomous
structure with cyclic dualizing object. Conversely, any ∗-autonomous monoidal
category with cyclic dualizing object is monoidally equivalent to one with cyclic
structure.

Proof. The first half follows from the discussion before the theorem. For the
second, let C be a ∗-autonomous monoidal category with cyclic dualizing object d .
As in the previous proposition, we construct another ∗-autonomous monoidal cat-
egory C which is monoidally equivalent to C . An object x of C consists of a pair
(x+, x−) of objects of C equipped with an isomorphism θ : x+ ∼= x∗

−
. A morphism

f : x→ y consists of a morphism f+ : x+→ y+; once again, there is an associated
f− : y−→ x− suitably compatible with the θ . There is again an evident equivalence
C→ C sending x to x+, and we may transport the monoidal structure across this
equivalence.

Since d is a cyclic dualizing object, any isomorphism θ : x+ ∼= x∗
−

has a corre-
sponding θ ′ : x− ∼= ∗x+ ∼= x∗

+
. Thus we may define C→ Cop to send (x+, x−, θ)

to (x−, x+, θ ′), and applying this twice clearly gives the identity. �
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