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Let Kw
1 (ZG) be the K1-group of square matrices over ZG which are not nec-

essarily invertible but induce weak isomorphisms after passing to Hilbert space
completions. Let D(G;Q) be the division closure of QG in the algebra U(G)
of operators affiliated to the group von Neumann algebra. Let C be the smallest
class of groups which contains all free groups and is closed under directed unions
and extensions with elementary amenable quotients. Let G be a torsionfree group
which belongs to C. Then we prove that Kw

1 (Z(G)) is isomorphic to K1(D(G;Q)).
Furthermore we show that D(G;Q) is a skew field and hence K1(D(G;Q)) is the
abelianization of the multiplicative group of units in D(G;Q).

0. Introduction

In [Friedl and Lück 2017] we introduced the universal L2-torsion ρ(2)u (X;N(G))
of an L2-acyclic finite G-CW-complex X and discussed its applications. It takes
values in a certain abelian group Whw(G), which is the quotient of the K1-group
Kw

1 (ZG) by the subgroup given by trivial units {±g | g ∈ G}. Elements [A] of
Kw

1 (ZG) are given by (n, n)-matrices A over ZG which are not necessarily invert-
ible but for which the operator r (2)A : L

2(G)n→ L2(G)n given by right multiplication
with A is a weak isomorphism, i.e., it is injective and has dense image. We require
for such square matrices A, B the following relations in Kw

1 (ZG):

[AB] = [A] · [B];
[(

A ∗
0 B

)]
= [A] · [B].

More details about Whw(G) and Kw
1 (ZG) will be given in Section 3.

Let D(G;Q)⊆U(G) be the smallest subring of the algebra U(G) of operators
L2(G)→ L2(G) affiliated to the group von Neumann algebra N(G) which contains
QG and is division closed, i.e., any element in D(G;Q) which is invertible in
U(G) is already invertible in D(G;Q). (These notions will be explained in detail
in Section 2A.)

The main result of this paper is:
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Theorem 0.1 (Kw
1 (G) and units in D(G;Q)). Let C be the smallest class of groups

which contains all free groups and is closed under directed unions and extensions
with elementary amenable quotients. Let G be a torsionfree group which belongs
to C. Then D(G;Q) is a skew field and there are isomorphisms

Kw
1 (ZG)

∼=
−→ K1(D(G;Q))

∼=
−→D(G;Q)×/[D(G;Q)×,D(G;Q)×].

In the special case that G = Z, the right side reduces to the multiplicative abelian
group of nontrivial elements in the field Q(z, z−1) of rational functions with ratio-
nal coefficients in one variable. This reflects the fact that in the case G = Z the
universal L2-torsion is closely related to Alexander polynomials.

1. Universal localization

1A. Review of universal localization. Let R be a (associative) ring (with unit)
and let 6 be a set of homomorphisms between finitely generated projective (left)
R-modules. A ring homomorphism f : R→ S is called 6-inverting if for every
element α : M → N of 6 the induced map S ⊗R α : S ⊗R M → S ⊗R N is an
isomorphism. A 6-inverting ring homomorphism i : R→ R6 is called universal
6-inverting if for any 6-inverting ring homomorphism f : R→ S there is precisely
one ring homomorphism f6 : R6→ S satisfying f6 ◦ i = f . If f : R→ R6 and
f ′ : R→ R′6 are two universal 6-inverting homomorphisms, then by the universal
property there is precisely one isomorphism g : R6→ R′6 with g ◦ f = f ′. This
shows the uniqueness of the universal 6-inverting homomorphism. The universal
6-inverting ring homomorphism exists; see [Schofield 1985, Section 4]. If 6 is a
set of matrices, a model for R6 is given by considering the free R-ring generated
by the set of symbols {āi, j | A = (ai, j ) ∈6} and dividing out the relations given in
matrix form by AA = AA = 1, where A stands for (āi, j ) for A = (ai, j ). The map
i : R→ R6 does not need to be injective and the functor R6 ⊗R − does not need
to be exact in general.

A special case of a universal localization is the Ore localization S−1 R of a ring R
for a multiplicative closed subset S ⊆ R which satisfies the Ore condition, namely
take 6 to be the set of R-homomorphisms rs : R → R, r 7→ rs, where s runs
through S. For the Ore localization the functor S−1 R⊗R − is exact and the kernel
of the canonical map R→ S−1 R is {r ∈ R | ∃s ∈ S with rs = 0}.

Let R be a ring and let 6 be a set of homomorphisms between finitely generated
projective R-modules. We call 6 saturated if for any two elements f0 : P0→ Q0

and f1 : P1→ Q1 of 6 and any R-homomorphism g0 : P0→ Q1 and g1 : P1→ Q0

the R-homomorphisms(
f0 0
g0 f1

)
: P0⊕ P1→ Q0⊕ Q1 and

(
f0 g1

0 f1

)
: P0⊕ P1→ Q0⊕ Q1
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belong to 6 and, for every R-homomorphism f0 : P0 → Q0 which becomes
invertible over R6 , there is an element f1 : P1 → Q1 in 6, finitely generated
projective R-modules X and Y , and R-isomorphisms u : P0⊕ X

∼=
−→ P1⊕ Y and

v : Q0⊕ X
∼=
−→ Q1⊕ Y satisfying ( f1⊕ idY ) ◦ u = v ◦ ( f0⊕ idX ). We can always

find for 6 another set 6′ with 6 ⊆6′ such that 6′ is saturated and the canonical
map R6 → R6′ is bijective. Moreover, in nearly all cases we will consider sets
6 which are already saturated. Indeed if 6′ denotes the set of all maps between
finitely generated projective (left) modules which become invertible over R6 , then
6 ⊆6′, 6′ is saturated, and the canonical map R6→ R6′ is an isomorphism; see
[Cohn 1985, Exercise 7.2.8 on page 394]. Therefore we can assume without harm
in the sequel that 6 is saturated.

1B. K1 of universal localizations. Let R be a ring and let 6 be a (saturated) set
of homomorphisms between finitely generated projective R-modules.

Definition 1.1. Let K1(R, 6) be the abelian group defined in terms of genera-
tors and relations as follows: Generators [ f ] are (conjugacy classes of) R-endo-
morphisms f : P → P of finitely generated projective R-modules P such that
idR6 ⊗R f : R6 ⊗R P → R6 ⊗R P is an isomorphism. If f, g : P → P are R-
endomorphisms of the same finitely generated projective R-module P such that
idR6 ⊗R f and idR6 ⊗Rg are bijective, then we require the relation

[g ◦ f ] = [g] + [ f ].

If we have a commutative diagram of finitely generated projective R-modules with
exact rows

0 // P0
i
//

f0
��

P1
p
//

f1
��

P2 //

f2
��

0

0 // P0
i
// P1

p
// P2 // 0

such that idR6 ⊗R f0, idR6 ⊗R f2 (and hence idR6 ⊗R f1) are bijective, then we
require the relation

[ f1] = [ f0] + [ f2].

If the set 6 consists of all isomorphisms Rn ∼=
−→ Rn for all n ≥ 0, then for an

R-endomorphism f : P→ P of a finitely generated projective R-module P , the
induced map idR6 ⊗ f is bijective if and only if f itself is already bijective and
hence K1(R, 6) is just the classical first K -group K1(R).

The main result of this section is:

Theorem 1.2 (K1(R, 6) and K1(R6)). Suppose that every element in 6 is given
by an endomorphism of a finitely generated projective R-module and that the
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canonical map i : R→ R6 is injective. Then the homomorphism

α : K1(R, 6)
∼=
−→K1(R6), [ f : P→ P] 7→ [idR6 ⊗R f : R6⊗R P→ R6⊗R P],

is bijective.

Proof. We construct an inverse

β : K1(R6)→ K1(R, 6) (1.3)

as follows: Consider an element x in K1(R6). Then we can choose a finitely gen-
erated projective R-module Q (actually, we could choose it to be finitely generated
free) and an R6-automorphism

a : R6 ⊗R Q
∼=
−→ R6 ⊗R Q

such that x = [a]. Now the key ingredient is Cramer’s rule; see [Schofield 1985,
Theorem 4.3 on page 53]. It implies the existence of a finitely generated projec-
tive R-module P , two R-homomorphisms b, b′ : P ⊕ Q → P ⊕ Q and an R6-
homomorphism a′ : R6⊗R Q→ R6⊗R P such that idR6 ⊗Rb is bijective, and for
the R6-homomorphism

A =
(

idR6⊗R P a′

0 a

)
: R6 ⊗R P ⊕ R6 ⊗R Q→ R6 ⊗R P ⊕ R6 ⊗R Q

the composite

R6 ⊕ (P ⊕ Q)
i
−→ R6 ⊗R P ⊕ R6 ⊗R Q

A
−→ R6 ⊗R P ⊕ R6 ⊗R Q

i−1

−→ R6 ⊕ (P ⊕ Q)
idR6 ⊗Rb
−−−−−→ R6 ⊕ (P ⊕ Q)

agrees with idR6 ⊗Rb′, where i is the canonical R6-isomorphism. Then also
idR6 ⊗Rb is bijective. We want to define

β(x) := [b′] − [b]. (1.4)

The main problem is to show that this is independent of the various choices. Given
a finitely generated projective R-module P and an R6-automorphism

a : R6 ⊗R Q
∼=
−→ R6 ⊗R Q

and two such choices (P, b, b′, a′) and (P, b̄, b̄′, ā′), we next show

[b] − [b] := [b̄] − [b̄′]. (1.5)
We can write

b =
(

bP,P bQ,P

bP,Q bQ,Q

)
, b′ =

(
b′P,P bQ,P

b′P,Q b′Q,Q

)
,

b̄ =
(

b̄P,P b̄Q,P
b̄P,Q b̄Q,Q

)
, b̄′ =

(
b̄′

P,P
b̄Q,P

b̄′
P,Q

b̄′Q,Q

)
,
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for R-homomorphisms bP,P : P→ P , bP,Q : P→ Q, bQ,P : Q→ P and bQ,Q :

Q→ Q, and analogously for b′, b̄ and b̄′. Then the relation between b and b′ and
b̄ and b̄′ becomes(

idR6⊗RbP,P idR6⊗RbQ,P

idR6⊗RbP,Q idR6⊗RbQ,Q

)
◦

(
idR6⊗R P a′

0 a

)
=

(
idR6⊗Rb′P,P idR6⊗Rb′Q,P
idR6⊗Rb′P,Q idR6⊗Rb′Q,Q

)
,

and analogously for b̄ and b̄′. This implies idR6 ⊗RbP,P = idR6 ⊗Rb′P,P and
hence bP,P = b′P,P because of the injectivity of i : R → R6 . Analogously we
get bP,Q = b′P,Q , b̄P,P = b̄′

P,P
and b̄P,Q = b̄′P,Q .

The argument in [Schofield 1985, page 64–65] based on Malcolmson’s criterion
[ibid., Theorem 4.2 on page 53] implies that there exist finitely generated projective
R-modules X0 and X1, and R-homomorphisms

d1 : X1→ X1, d2 : X2→ X2,

e1 : X1→ Q, e2 : X2→ P,

µ : P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2⊕ Q→ P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2⊕ Q,

ν : P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2→ P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2,

τ : P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2→ Q,

such that idR6 ⊗Rd1, idR6 ⊗Rd2, idR6 ⊗Rµ and idR6 ⊗Rν are R6-isomorphisms
and, for the four R-homomorphisms

P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2⊕ Q→ P ⊕ Q⊕ P ⊕ Q⊕ X1⊕ X2⊕ Q

given by

α =



bP,P bQ,P 0 0 0 0 0
bP,Q bQ,Q 0 0 0 0 0

0 b̄Q,P b̄′
P,P

b̄Q,P 0 0 b̄′
Q,P

0 b̄Q,Q b̄′
P,Q

b̄Q,Q 0 0 b̄′Q,Q
0 0 0 0 d1 0 0
0 0 0 0 0 d2 0
0 0 0 idQ e1 0 0


, α′ =



b′P,P bQ,P 0 0 0 0 −b′Q,P
b′P,Q bQ,Q 0 0 0 0 −b′Q,Q

0 b̄Q,P b̄P,P b̄Q,P 0 0 0
0 b̄Q,Q b̄P,Q b̄Q,Q 0 0 0
0 0 0 0 d1 0 0
0 0 0 0 0 d2 −e2

0 0 0 idQ e1 0 0


,

γ =

(
ν 0
0 idQ

)
and γ ′ =

(
ν 0
τ idQ

)
we get equations of maps of R-modules

µ ◦ γ = α, µ ◦ γ ′ = α′.

Since idR6 ⊗Rµ, idR6 ⊗Rγ and idR6 ⊗Rγ
′ are isomorphisms, also idR6 ⊗Rα and

idR6 ⊗Rα
′ are isomorphisms. Hence we get well-defined elements [µ], [ν], [ν ′],
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[α] and [α′] in K1(R, 6) satisfying

[µ] = [γ ] + [α], [µ] = [γ ′] + [α′], [γ ] = [γ ′].

This implies

[α] = [α′]. (1.6)

If we interchange in the matrix defining α the fourth and the last column, we get a
matrix in a suitable block form, which allows us to deduce

[α] = −





bP,P bQ,P 0 0 0 0 0
bP,Q bQ,Q 0 0 0 0 0

0 b̄Q,P b̄′
P,P

b̄′
Q,P

0 0 b̄Q,P

0 b̄Q,Q b̄′
P,Q

b̄′Q,Q 0 0 b̄Q,Q

0 0 0 0 d1 0 0
0 0 0 0 0 d2 0
0 0 0 0 e1 0 idQ





=−




bP,P bQ,P 0 0
bP,Q bQ,Q 0 0

0 b̄Q,P b̄′
P,P

b̄′
Q,P

0 b̄Q,Q b̄′
P,Q

b̄′Q,Q


−

d1 0 0
0 d2 0
e1 0 idQ



=−

[(
bP,P bQ,P

bP,Q bQ,Q

)]
−

[(
b̄′

P,P
b̄′

Q,P
b̄′

P,Q
b̄′Q,Q

)]
− [d1] − [d2] − [idQ]

= −[b] − [b̄′] − [d1] − [d2]. (1.7)

Similarly we get from the matrix describing α′ after interchanging the second and
the last column, multiplying the second column with −1, interchanging the fourth
and the last column and finally subtracting appropriate multiples of the last row
from the third row to ensure that in the last column all entries except the one in the
right lower corner is a trivial matrix in a suitable block form, which allows us to
deduce

[α′] =





b′P,P b′Q,P 0 0 0 0 bQ,P

b′P,Q b′Q,Q 0 0 0 0 bQ,Q

0 0 b̄P,P b̄Q,P 0 0 b̄Q,P
0 b̄P,Q b̄Q,Q 0 0 b̄Q,Q

0 0 0 0 d1 0 0
0 e2 0 0 0 d2 −e2

0 0 0 idQ e1 0 0
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=





b′P,P b′Q,P 0 bQ,P 0 0 0
b′P,Q b′Q,Q 0 bQ,Q 0 0 0

0 0 b̄P,P b̄Q,P 0 0 b̄Q,P
0 b̄P,Q b̄Q,Q 0 0 b̄Q,Q

0 0 0 0 d1 0 0
0 e2 0 0 0 d2 0
0 0 0 0 e1 0 idQ





=−





b′P,P b′Q,P 0 bQ,P 0 0 0
b′P,Q b′Q,Q 0 bQ,Q 0 0 0

0 0 b̄P,P b̄Q,P −b̄Q,P ◦ e1 0 0
0 b̄P,Q b̄Q,Q −b̄Q,Q ◦ e1 0 0
0 0 0 0 d1 0 0
0 e2 0 0 0 d2 0
0 0 0 0 e1 0 idQ





=−




b′P,P b′Q,P 0 bQ,P 0
b′P,Q b′Q,Q 0 bQ,Q 0

0 0 b̄P,P b̄Q,P −b̄Q,P ◦ e1

0 b̄P,Q b̄Q,Q −b̄Q,Q ◦ e1

0 0 0 0 d1



−
[(

d2 −e2

0 idQ

)]

=−




b′P,P b′Q,P 0 bQ,P

b′P,Q b′Q,Q 0 bQ,Q

0 0 b̄P,P b̄Q,P
0 b̄P,Q b̄Q,Q


− [d1] − [d2] − [idQ]

= −

[(
b′P,P b′Q,P
b′P,Q b′Q,Q

)]
−

[(
b̄P,P b̄Q,P
b̄P,Q b̄Q,Q

)]
− [d1] − [d2]

= −[b′] − [b̄] − [d1] − [d2]. (1.8)

Now (1.5) follows from equations (1.6), (1.7), and (1.8).
We conclude from (1.8) that we can assign to a finitely generated projective R-

module P and an R6-automorphism a : R6 ⊗R Q
∼=
−→ R6 ⊗R Q a well-defined

element

[a] ∈ K1(R, 6). (1.9)

If we have an isomorphism u : Q
∼=
−→Q′ of finitely generated projective R-modules,

then one easily checks

[(idR6 ⊗Ru) ◦ a ◦ (idR6 ⊗Ru)−1
] = [a]. (1.10)
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Given two finitely generated projective R-modules Q and Q and R6-automorphisms
a : R6 ⊗R Q

∼=
−→ R6 ⊗R Q and ā : R6 ⊗R Q

∼=
−→ R6 ⊗R Q, one easily checks

[a⊕ ā] = [a] + [ā]. (1.11)

Obviously we get, for any finitely generated projective R-module Q,

[(idR6 ⊗R idQ)] = 0. (1.12)

Consider a finitely generated projective R-module Q and two R6-isomorphisms
a, ā : R6 ⊗R Q

∼=
−→ R6 ⊗R Q. Next we want to show

[ā ◦ a] = [ā] + [a]. (1.13)

Make the choices (P, b, b′, a′) and (P, b̄, b̄′, ā′) for a and ā as we did above in
the definition of [a] and [ā]. Consider the R6-automorphism

A =


idRσ⊗R P 0 0 a′

0 idRσ⊗R Q 0 a
0 0 idRσ⊗R P ā′a
0 0 0 āa


of (R6⊗R P)⊕(R6⊗R Q)⊕(R6⊗R P)⊕(R6⊗R Q), and the R-endomorphisms
of P ⊕ Q⊕ P ⊕ Q

B =


bP,P bQ,P 0 0
bP,Q bQ,Q 0 0

0 −b̄′
Q,P

b̄P,P b̄Q,P

0 −b̄′Q,Q b̄P,Q b̄Q,Q

 and B ′ =


b′P,P bQ,P 0 b′Q,P
b′P,Q bQ,Q 0 b′Q,Q

0 −b̄′Q,P b̄P,P 0
0 −b̄′Q,Q b̄P,Q 0

 .
From the block structure of B one concludes that (idR6 ⊗B) is an isomorphism
and we get, in K1(R, 6),

[B] =
[(

bP,PbQ,P

bP,QbQ,Q

)]
+

[(
b̄P,P b̄Q,P

b̄P,Q b̄Q,Q

)]
= [b] + [b̄]. (1.14)

If we interchange in B ′′ the second and last column and multiply the last col-
umn with −1, we conclude from the block structure of the resulting matrix that
(idR6 ⊗B ′) is an isomorphism and we get, in K1(R, 6),

[B ′] =




b′P,P b′Q,P 0 bQ,P

b′P,Q b′Q,Q 0 bQ,Q

0 0 b̄P,P b̄′
Q,P

0 0 b̄P,Q b̄′Q,Q




=

[(
b′P,P b′Q,P
b′P,Q b′Q,Q

)]
+

[(
b̄P,P b̄′Q,P
b̄P,Q b̄′Q,Q

)]
= [b′] + [b̄′]. (1.15)
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Since (idR6⊗B) and (idR6⊗B ′) are isomorphisms and (idR6⊗B)◦A= (idR6⊗B ′),
we get, directly from the definitions,

[āa] = [B ′] − [B]. (1.16)

Now (1.13) follows from equations (1.14), (1.15) and (1.16). Now one easily
checks that equations (1.10), (1.11), (1.12) and (1.13) imply that the homomor-
phism β announced in (1.3) is well-defined. One easily checks that β is an inverse
to the homomorphism α appearing in the statement of Theorem 1.2. This finishes
the proof of Theorem 1.2. �

1C. Schofield’s localization sequence. The proofs of this paper are motivated by
Schofield’s construction of a localization sequence

K1(R)→ K1(R6)→ K1(T)→ K0(R)→ K0(R6),

where T is the full subcategory of the category of the finitely presented R-modules
whose objects are cokernels of elements in 6; see [Schofield 1985, Theorem 5.12
on page 60]. Under certain conditions this sequence has been extended to the left
in [Neeman 2007; Neeman and Ranicki 2004]. Notice that in connection with
potential proofs of the Atiyah conjecture it is important to figure out under which
condition K0(FG)→ K0(D(G; F)) is surjective for a torsionfree group G and a
subfield F ⊆ C; see [Lück 2002, Theorem 10.38 on page 387]. In this connection
the question becomes interesting whether G has property (UL) — see Section 2C —
and how to continue the sequence above to the right.

2. Groups with property (ULA)

Throughout this section let F be a field with Q⊆ F ⊆ C.

2A. Review of division and rational closure. Let R be a subring of the ring S. The
division closure D(R ⊆ S)⊆ S is the smallest subring of S which contains R and is
division closed, i.e., any element x ∈ D(R ⊆ S) which is invertible in S is already
invertible in D(R ⊆ S). The rational closure R(R ⊆ S)⊆ S is the smallest subring
of S which contains R and is rationally closed, i.e., for every natural number n
and matrix A ∈ Mn,n(D(R ⊆ S)) which is invertible in S, the matrix A is already
invertible over R(R ⊆ S). The division closure and the rational closure always
exist. Obviously R ⊆ D(R ⊆ S)⊆R(R ⊆ S)⊆ S.

Consider an inclusion of rings R⊆ S. Let6(R⊆ S) the set of all square matrices
over R which become invertible over S. Then there is a canonical epimorphism of
rings from the universal localization of R with respect to 6(R ⊆ S) to the rational
closure of R in S — see [Reich 2006, Proposition 4.10(iii)] —

λ : R6(R⊆S)→R(R ⊆ S). (2.1)
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Recall that we have inclusions R ⊆ D(R ⊆ S)→R(R ⊆ S)⊆ S.
Consider a group G. Let N(G) be the group von Neumann algebra, which can be

identified with the algebra B(L2(G), L2(G))G of bounded G-equivariant operators
L2(G)→ L2(G). Denote by U(G) the algebra of operators which are affiliated to
the group von Neumann algebra. This is the same as the Ore localization of N(G)
with respect to the multiplicatively closed subset of nonzero divisors in N(G); see
[Lück 2002, Chapter 8]. By the right regular representation we can embed CG and
hence also FG as a subring in N(G). We will denote by R(G; F) and D(G; F) the
division and the rational closure of FG in U(G). So we get a commutative diagram
of inclusions of rings

FG //

��

N(G)

��

D(G; F)

��

R(G; F) // U(G)

2B. Review of the Atiyah conjecture for torsionfree groups. Recall that there is
a dimension function dimN(G) defined for all (algebraic) N(G)-modules; see [Lück
2002, Section 6.1].

Definition 2.2 (Atiyah conjecture with coefficients in F). We say that a torsionfree
group G satisfies the Atiyah conjecture with coefficients in F if for any matrix
A ∈ Mm,n(FG) the von Neumann dimension dimN(G)(ker(rA)) of the kernel of the
N(G)-homomorphism rA :N(G)m→N(G)n given by right multiplication with A
is an integer.

Theorem 2.3 (status of the Atiyah conjecture). (1) If the torsionfree group G
satisfies the Atiyah conjecture with coefficients in F , then also each of its
subgroups satisfy the Atiyah conjecture with coefficients in F.

(2) If the torsionfree group G satisfies the Atiyah conjecture with coefficients in C,
then G satisfies the Atiyah conjecture with coefficients in F.

(3) The torsionfree group G satisfies the Atiyah conjecture with coefficients in F
if and only if D(G; F) is a skew field.

If the torsionfree group G satisfies the Atiyah conjecture with coefficients
in F , then the rational closure R(G; F) agrees with the division closure
D(G; F).

(4) Let C be the smallest class of groups which contains all free groups and is
closed under directed unions and extensions with elementary amenable quo-
tients. Suppose that G is a torsionfree group which belongs to C.

Then G satisfies the Atiyah conjecture with coefficients in C.



LOCALIZATION, WHITEHEAD GROUPS AND THE ATIYAH CONJECTURE 43

(5) Let G be an infinite group which is the fundamental group of a compact con-
nected orientable irreducible 3-manifold M with empty or toroidal boundary.
Suppose that one of the following conditions is satisfied:
• M is not a closed graph manifold.
• M is a closed graph manifold which admits a Riemannian metric of non-

positive sectional curvature.

Then G is torsionfree and belongs to C. In particular G satisfies the Atiyah
conjecture with coefficients in C.

(6) Let D be the smallest class of groups such that:
• The trivial group belongs to D.
• If p : G→ A is an epimorphism of a torsionfree group G onto an elemen-

tary amenable group A and if p−1(B) ∈ D for every finite group B ⊂ A,
then G ∈ D.

• D is closed under taking subgroups.
• D is closed under colimits and inverse limits over directed systems.

If the group G belongs to D, then G is torsionfree and the Atiyah conjecture
with coefficients in Q holds for G.

The class D is closed under direct sums, direct products and free products.
Every residually torsionfree elementary amenable group belongs to D.

Proof. (1) This follows from [Lück 2002, Theorem 6.29(2) on page 253].

(2) This is obvious.

(3) This is proved in the case F = C in [Lück 2002, Lemma 10.39 on page 388].
The proof goes through for an arbitrary field F with Q⊆ F ⊆ C without modifica-
tions.

(4) This is due to Linnell; see for instance [Linnell 1993] or [Lück 2002, Theo-
rem 10.19 on page 378].

(5) It suffices to show that G = π1(M) belongs to the class C appearing in as-
sertion (4). As explained in [Dubois et al. 2016, Section 10], we conclude from
combining [Agol 2008; 2013; Liu 2013; Przytycki and Wise 2012; 2014; Wise
2012a; 2012b] that there exists a finite normal covering p : M → M and a fiber
bundle S→ M→ S1 for some compact connected orientable surface S. Hence it
suffices to show that π1(S) belongs to C. If S has nonempty boundary, this follows
from the fact that π1(S) is free. If S is closed, the commutator subgroup of π1(S)
is free and hence π1(S) belongs to C. Now assertion (5) follows from assertion (4).

(6) This result is due to Schick for Q (see for instance [Schick 2001] or [Lück
2002, Theorem 10.22 on page 379]) and for Q due to Dodziuk, Linnell, Mathai,
Schick and Yates [Dodziuk et al. 2003, Theorem 1.4] �
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For more information and further explanations about the Atiyah conjecture we
refer for instance to [Lück 2002, Chapter 10].

2C. The property (UL).

Definition 2.4 (property (UL)). We say that a group G has the property (UL) with
respect to F if the canonical epimorphism

λ : FG6(FG⊆U(G,F))→R(G; F)

defined in (2.1) is bijective.

Next we investigate which groups G are known to have property (UL).
Let A denote the class of groups consisting of the finitely generated free groups

and the amenable groups. If Y and Z are classes of groups, define

L(Y)= {G | every finite subset of G is contained in a Y-group},

YZ= {G | there exists H CG such that H ∈ Y and G/H ∈ Z}.

Now define X to be the smallest class of groups which contains A and is closed
under directed unions and group extension. Next, for each ordinal a, define a class
of groups Xa as follows:

• X0 = {1}.

• Xa = L(Xa−1A) if a is a successor ordinal.

• Xa =
⋃

b<a Xb if a is a limit ordinal.

Lemma 2.5. (1) Each Xa is subgroup closed.

(2) X=
⋃

a≥0 Xa .

(3) X is subgroup closed.

Proof. (1) This is easily proved by induction on a.

(2) Set Y =
⋃

a≥0 Xa . Obviously X ⊇ Y. We prove the reverse inclusion by
showing that Y is closed under directed unions and group extension. The former
is obvious, because if the group G is the directed union of subgroups Gi and ai is
the least ordinal such that Gi ∈ Xai , we set a = supi ai and then G ∈ Xa+1. For the
latter, we show that XaXb ⊆ Xa+b by induction on b, the case b = 0 being obvious.
If b is a successor ordinal, write b = c+ 1. Then

XaXb = Xa(L(Xc)A)⊆ L(XaXc)A

⊆ L(Xa+c)A by induction

⊆ Xa+c+1 = Xa+b.
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On the other hand, if b is a limit ordinal, then

XaXb = Xa

(⋃
c<b

Xc

)
=

⋃
c<b

XaXc

⊆

⋃
c<b

Xa+c by induction

⊆ Xa+b,

as required.

(3) This follows from assertions (1) and (2). �

Lemma 2.6. Let G =
⋃

i∈I Gi be groups such that, given i, j ∈ I , there exists l ∈ I
such that Gi ,G j ⊆ Gl . Write 6 = 6(FG ⊆ U(G)) and 6i = 6(FGi ⊆ U(Gi ))

for i ∈ I . Suppose the identity map on FGi extends to an isomorphism λi :

(FGi )6i →R(Gi ; F) for all i ∈ I .
Then the identity map on FG extends to an isomorphism λ : FG6→R(G; F).

Proof. By definition, the identity map on FG extends to an epimorphism λ :

FG6 → R(G; F). We need to show that λ is injective, and here we follow the
proof of [Linnell 1998, Lemma 13.5]. Clearly 6i ⊆ 6 for all i ∈ I and thus the
inclusion map FGi ↪→FG extends to a map µi : (FGi )6i→FG6 for all i ∈ I . Since
λi is an isomorphism, we may define νi =µi ◦λ

−1
i :R(Gi ; F)→ FG6 for all i ∈ I .

If Gi ⊆ G j , then R(Gi ; F)⊆R(G j ; F) and we let ψi j :R(Gi ; F)→R(G j ; F)
denote the natural inclusion. Observe that µi (x)= µ jλ

−1
j ψi jλi (x) for all x in the

image of FGi in (FGi )6i and therefore, by the universal property, µi =µ jλ
−1
j ψi jλi

and hence µiλ
−1
i = µ jλ

−1
j ψi j . Thus νi = ν jψi j and the νi fit together to give a

map ν :
⋃

i∈I R(Gi ; F)→ FG6 . It is easily checked that ν ◦ λ : FG6→ FG6 is a
map which is the identity on the image of FG in FG6 and hence by the universal
property of localization, ν ◦ λ is the identity. This proves that λ is injective, as
required. �

If G is a group and α is an automorphism of G, then α extends to an automor-
phism of U(G), which we shall also denote by α. This is not only an algebraic
automorphism, but is also a homeomorphism with respect to the various topologies
on U(G).

Lemma 2.7. If α is an automorphism of G, then α(D(G; F))= D(G; F).

Proof. This is clear, because α(FG)= FG. �

Lemma 2.8. Let HCG be groups and let D(H ;F)G denote the subring of D(G;F)
generated by D(H ; F) and G.

Then, for a suitable crossed product, D(H ; F)G ∼= D(H ; F) ∗G/H by a map
which extends the identity on D(H ; F) and, for g ∈ G, sends D(H ; F) · g to
D(H ; F) ∗ Hg.
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Proof. Let T be a transversal for H in G. Since h 7→ tht−1 is an automorphism
of H , we see that t · D(H ; F) · t−1

= D(H ; F) for all t ∈ T by Lemma 2.7
and so D(H ; F)G =

∑
t∈T D(H ; F)G · t . This sum is direct because the sum∑

t∈T U(H) · t is direct, and the result is established. �

In the sequel recall that R(G; F)= D(G; F) holds if D(G; F) is a skew field.

Lemma 2.9. Let H C G be groups such that G/H is finite and H is torsion-
free. Assume that D(H ; F) is a skew field. Set 6 = 6(FG ⊆ U(G)) and 8 =
6(FH ⊆ U(H)), and let µ : FH8→ D(H ; F) and λ : FG6 → D(G; F) denote
the corresponding localization maps.

Then D(G; F) is a semisimple artinian ring and agrees with R(G; F). Further-
more, if µ is an isomorphism, then so is λ.

Proof. Let D(H ; F)G denote the subring of D(G; F) generated by D(H ; F)
and G. Then Lemma 2.8 shows, that for a suitable crossed product, there is an
isomorphism θ : D(H ; F) ∗G/H → D(H ; F)G which extends the identity map
on D(H ; F). This ring has dimension |G/H | over the skew field D(H ; F) and is
therefore artinian. Since every matrix over an artinian ring is either a zero-divisor
or invertible (in particular every element is either a zero-divisor or invertible), we
see that R(G; F)=D(G; F)=D(H ; F)G. Furthermore, by Maschke’s theorem,
D(H ; F)G semisimple artinian. Now assume that µ is an isomorphism. We may
identify FG with the subring FH ∗G/H and then by [Linnell 1993, Lemma 4.5]
there is an isomorphism ψ : D(H ; F) ∗ G/H → FG8 which extends the iden-
tity map on FG. Also 8 ⊆ 6, so the identity map on FG extends to a map
ρ : FG8 → FG6 . Then ρ ◦ ψ ◦ θ−1

◦ λ : FG6 → FG6 is a map extending the
identity on FG, hence is the identity, and the result follows. �

Recall that the group G is locally indicable if for every nontrivial finitely gen-
erated subgroup H there exists N C H such that N/H is infinite cyclic. Also if R
is a subring of the skew field D such that D(R ⊆ D)= D, then we say that D is a
field of fractions for R (D will be noncommutative, i.e., a skew field in general).

Definition 2.10. Let K be a skew field, let G be a locally indicable group, let K ∗G
be a crossed product, and let D be a field of fractions for K ∗ G. Then we say
that D is a Hughes-free [Hughes 1970, §2; Lewin 1974, pp. 340, 342; Lück 2002,
Lemma 10.81; [Dicks et al. 2004, p. 1128]] field of fractions for K ∗G if whenever
NCH ≤G, H/N is infinite cyclic and t ∈H such that 〈Nt〉=H/N (i.e., t generates
H mod N ), then {t i

| i ∈ Z} is linearly independent over D(K ∗ N ⊆ D).

A key result here is that of Ian Hughes [1970, Theorem, page 182] (see also
[Dicks et al. 2004, Theorem 7.1]), which states:

Theorem 2.11 (Hughes’s theorem). Let K be a skew field, let G be a locally indi-
cable group, let K ∗G be a crossed product, and let D1 and D2 be Hughes-free
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field of fractions for K ∗G. Then there is an isomorphism D1→ D2 which is the
identity on K ∗G.

Recall that a ring R is called a fir (free ideal ring [Cohn 1995, §1.6]) if every
left ideal is a free left R-module of unique rank, and every right ideal is a free right
R-module of unique rank. Also, R is called a semifir if the above condition is only
satisfied for all finitely generated left and right ideals. It is easy to see that if K
is a skew field, G is the infinite cyclic group and K ∗G is a crossed product, then
every nonzero left or right ideal is free of rank one and hence K ∗G is a fir. We
can now apply [Cohn 1995, Theorem 5.3.9] (a result essentially due to Bergman
[1974]) to deduce that if G is a free group and K ∗G is a crossed product, then
K ∗G is a fir.

We also need the concept of a universal field of fractions; this is described in
[Cohn 1985, §7.2; 1995, §4.5]. It is proven in [Cohn 1985, Corollary 7.5.11; 1995,
Corollary 4.5.9] that if R is a semifir, then it has a universal field of fractions D.
Furthermore the inclusion R ⊆ D is an honest map [Cohn 1985, p. 250; 1995,
p. 177], fully inverting [Cohn 1985, p. 415; 1995, p. 177], and the localization map
RD(R⊆D)→ D is an isomorphism. We can now state a crucial result of Jacques
Lewin [1974, Proposition 6].

Theorem 2.12 (Lewin’s theorem). Let K be a skew field, let G be a free group, let
K ∗G be a crossed product, and let D be the universal field of fractions for K ∗G.
Then D is Hughes-free.

Actually Lewin only proves the result for K a field and K ∗G the group algebra
KG over K . However, with the remarks above, in particular that K ∗ G is a fir,
we can follow Lemmas 1–6 and Theorem 1 of [Lewin 1974] verbatim to deduce
Theorem 2.12.

Lemma 2.13. Let H C G be groups and let G/H ∈ A. Assume that D(G; F)
is a skew field. Write 6 = 6(FG ⊆ U(G)) and 8 = 6(FH ⊆ U(H)). Let µ :
FH8→R(H ; F) and λ : FG6→R(G; F) be the localization maps which extend
the identity on FH and FG, respectively. Suppose that µ is an isomorphism.

Then D(G; F)=R(G; F), and λ is an isomorphism.

Proof. We already know that D(G; F)=R(G; F) because we are assuming that
D(G; F) is a skew field, and clearly λ is an epimorphism. We need to show that λ is
injective. Lemma 2.8 shows that D(H ; F)G ∼=D(H ; F)∗G/H and we will use the
corresponding isomorphism to identify these two rings without further comment.
Since we are assuming that D(G; F) is a skew field, D(H ; F) ∗G/H is a domain.
Furthermore, FG8

∼= (FH∗G/H)8∼=FH8∗G/H by Lemma 2.7 and [Linnell 1993,
Lemma 4.5], and we deduce that the localization map FG8→ D(H ; F) ∗G/H
is an isomorphism, because we are assuming that µ is an isomorphism. Let 9 =
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6(D(H ; F)G ⊆ D(G; F)). The proof of [Schofield 1985, Theorem 4.6] shows
that (FG8)9 ∼= FG6′ for a suitable set of matrices 6′ over FG (where we have
identified FG8 with D(H ; F)G by the above isomorphisms). All the matrices
in 6′ become invertible over R(G; F), so by [Cohn 1985, Exercise 7.2.8] we
may replace 6′ by its saturation. It remains to prove that the localization map
D(H ; F)G9→R(G; F) is injective.

We have two cases to consider, namely G/H amenable and G/H finitely gen-
erated free. For the former we apply [Dodziuk et al. 2003, Theorem 6.3] (es-
sentially a result of Tamari [1957]). We deduce that D(H ; F) ∗ G/H satisfies
the Ore condition for the multiplicatively closed subset of nonzero elements of
D(H ; F)∗G/H and it follows that the localization map D(H ; F)G9→R(G; F)
is an isomorphism.

For the latter case, let L CM be subgroups of G containing H such that M/L
is infinite cyclic and let t ∈ M be a generator for M mod L . Since the sum∑

i∈Z U(L)t i is direct, we see that the sum
∑

i∈Z D(L; F)t i is also direct and we
deduce that D(G; F) is a Hughes-free field of fractions for D(H ; F)∗G/H . It now
follows from Theorems 2.11 and 2.12 that D(G; F) is a universal field of fractions
for D(H ; L)G and, in particular, the localization map D(H ; F)G9→R(G; F) is
injective. This finishes the proof. �

Theorem 2.14. Let H CG be groups with H ∈ X, H torsionfree and G/H finite.
Let 6 =6(FG⊆U(G)). Assume that D(H ; F) is a skew field.

Then D(G; F)=R(G; F), and H has the property (UL) with respect to F , i.e.,
the localization map FG6→R(G; F) is an isomorphism.

Proof. We first consider the special case G = H (so G is torsionfree). We use the
description of the class of groups X given in Lemma 2.5(2) and prove the result
by transfinite induction. The result is obvious if G ∈ X0, because then G = 1.
The induction step is done as follows. Consider an ordinal b with b 6= 0 and a
group G ∈ Xb such that the claim is already known for all groups H ∈ Xa for all
ordinals a < b. We have to show the claim for G. If b is a limit ordinal, this is
obvious since G belongs to Xa for every ordinal a < b. It remains to treat the case
where b is not a limit ordinal. Then G ∈ L(XaA) for some ordinal a < b. By
Lemma 2.6, it is sufficient to consider the case G ∈ XaA. Now apply Lemma 2.13.

The general case, when G is not necessarily equal to H , now follows from
Lemma 2.9. �

There are many groups for which Theorem 2.14 can be applied, some of which
we now describe. Let N be either an Artin pure braid group, or a RAAG, or a
subgroup of finite index in a right-angled Coxeter group. Let Q denote the field of
all algebraic numbers. We can now state:
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Theorem 2.15. Let G be a group which contains N as a normal subgroup such
that G/N is elementary amenable, and let 6 = 6(FG ⊆ U(G)). Assume that G
contains a torsionfree subgroup of finite index and that F is a subfield of Q. Then
the localization map FG6 → R(G; F) is an isomorphism, i.e., G has property
(UL) with respect to F.

Proof. First we recall some group-theoretic results. An Artin pure braid group is
polyfree (see [Rolfsen 2010, §2.4], for example) and RAAGs are polyfree by [Her-
miller and Šunić 2007, Theorem A]. Finally right-angled Coxeter groups have a
characteristic subgroup of index a power of 2 which is isomorphic to a subgroup of
a right-angled Artin group [Linnell et al. 2012, Proposition 5(2)] and therefore this
subgroup is polyfree. This shows that in all cases G ∈ X and hence any subgroup
of G is in X, because X is subgroup closed by Lemma 2.5 (3).

Now let H be a torsionfree normal subgroup of finite index in G. We need to
show that H satisfies the Atiyah conjecture with coefficients in F . We may assume
that F =Q. For the case N is an Artin pure braid group, this follows from [Linnell
and Schick 2007, Corollary 5.41]. For the case N is a RAAG, this follows from
[Linnell et al. 2012, Theorem 2]. Finally if N is a subgroup of finite index in a
right-angled Coxeter group, this follows from [Linnell et al. 2012, Theorem 2 and
Proposition 5(2)] and [Schreve 2014, Theorem 1.1]. �

2D. The property (ULA).

Definition 2.16 (property (ULA)). We say that a torsionfree group G has the prop-
erty (ULA) with respect to the subfield F ⊆ C if the canonical epimorphism

λ : R6(FG⊆R(G;F))→R(G; F)

is bijective and D(G; F) is a skew field.

Given a torsionfree group G, recall from Theorem 2.3(3) that D(G; F) is a skew
field if and only G satisfies the Atiyah conjecture with coefficients in F and that
we have D(G; F)=R(G; F) provided that D(G; F) is a skew field. So G satisfies
condition (ULA) with respect to F if and only if G satisfies both condition (UL)
with respect to F and the Atiyah conjecture with coefficients in F .

Theorem 2.17 (groups in C have property (ULA)). Let C be the smallest class
of groups which contains all free groups and is closed under directed unions and
extensions with elementary amenable quotients. Suppose that G is a torsionfree
group which belongs to C.

Then G has property (ULA).

Proof. This follows from Theorem 2.3(3)–(4) and Theorem 2.14 since obviously
C⊆ X. �
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3. Proof of the main theorem

Next we explain why we are interested in group with properties (ULA) by prov-
ing our main theorem, Theorem 0.1, which will be a direct consequence of Theo-
rems 2.17 and 3.5.

Definition 3.1. Let G be a group, let R be a ring with Z⊆ R ⊆ C, and denote by
F ⊆ C its quotient field. Let

Kw
1 (RG)

be the abelian group defined in terms of generators and relations as follows: Gen-
erators [ f ] are given by (conjugacy classes of) RG-endomorphisms f : P → P
of finitely generated projective RG-modules P such that ω∗ f : ω∗P→ ω∗P is a
D(G; F)-isomorphism for the inclusion ω : RG→ D(G; F). If f, g : P→ P are
RG-endomorphisms of the same finitely generated projective RG-module P such
that ω∗ f and ω∗g are bijective, then we require the relation

[g ◦ f ] = [g] + [ f ].

If we have a commutative diagram of finitely generated projective RG-modules
with exact rows

0 // P0
i
//

f0
��

P1
p
//

f1
��

P2 //

f2
��

0

0 // P0
i
// P1

p
// P2 // 0

such that ω∗ f0, ω∗ f1 and ω∗ f2 are bijective, then we require the relation

[ f1] = [ f0] + [ f2].

Furthermore, define

K̃w
1 (RG) := coker

(
{±1}

∼=
−→ K1(Z)→ K1(ZG)→ Kw

1 (RG)
)
;

Whw(G; R)= coker
(
{±g | g ∈ G} → K1(ZG)→ Kw

1 (RG)
)
;

Whw(G)= Whw(G;Z);

K̃1(R(G; F)) := coker
(
{±1}

∼=
−→ K1(Z)→ K1(ZG)→ K1(R(G; F))

)
;

Wh(R(G; F))= coker
(
{±g | g ∈ G} → K1(ZG)→ K1(R(G; F))

)
.

Remark 3.2. Let A be a square matrix over RG. Then the square matrix ω(A)
over D(G; F) is invertible if and only if the operator r (2)A : L

2(G)n→ L2(G)n given
by right multiplication with A is a weak isomorphism, i.e., it is injective and has
dense image. This follows from the conclusion of [Lück 2002, Theorem 6.24 on
page 249 and Theorem 8.22(5) on page 327] that r (2)A is a weak isomorphisms if
and only if it becomes invertible in U(G).



LOCALIZATION, WHITEHEAD GROUPS AND THE ATIYAH CONJECTURE 51

There is a Dieudonné determinant for invertible matrices over a skew field D
which takes values in the abelianization of the group of units D×/[D×, D×] and
induces an isomorphism — see [Silvester 1981, Corollary 43 on page 133] —

detD : K1(D)
∼=
−→ D×/[D×, D×]. (3.3)

The inverse
JD : D×/[D×, D×]

∼=
−→ K1(D) (3.4)

sends the class of a unit in D to the class of the corresponding (1, 1)-matrix.

Theorem 3.5 (Kw
1 (FG) for groups with property (ULA) with respect to F). Let R

be a ring with Z ⊆ R ⊆ C. Denote by F ⊆ C the quotient field of R. Let G be a
torsionfree group with the property (ULA) with respect to F.

Then the canonical maps sending [ f ] to [ω∗ f ],

ω∗ : Kw
1 (RG)

∼=
−→ K1(D(G; F)),

ω∗ : K̃w
1 (RG)

∼=
−→ K̃1(D(G; F)),

ω∗ :Whw(G; R)
∼=
−→Wh(D(G; F)),

are bijective. Moreover, D(G; F) is a skew field and the Dieudonné determinant
induces an isomorphism

detD : K1(D(G; F))
∼=
−→D(G; F)×/[D(G; F)×,D(G; F)×].

Proof. This follows directly from Theorem 1.2. �

Finally we can give the proof of Theorem 0.1.

Proof of Theorem 0.1. Because of Theorem 2.17 the group G has property (ULA)
and we can apply Theorem 1.2. It remains to explain why in the special case
R = Z the group Kw

1 (ZG) appearing in Theorem 1.2, namely as introduced in
Definition 3.1, agrees with the group Kw

1 (ZG) appearing in the introduction. This
boils down to explaining why, for a (n, n)-matrix A over ZG, the operator r (2)A :

L2(G)n→ L2(G)n is a weak isomorphism if and only if A becomes invertible in
D(G;Q). By definition A is invertible in D(G;Q) if and only if it is invertible
in U(G). Now apply [Lück 2002, Theorem 6.24 on page 249 and Theorem 8.22(5)
on page 327]. �
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