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Suslin’s moving lemma with modulus

Wataru Kai and Hiroyasu Miyazaki

The moving lemma of Suslin (also known as the generic equidimensionality
theorem) states that a cycle on X ×An meeting all faces properly can be moved
so that it becomes equidimensional over An . This leads to an isomorphism of
motivic Borel–Moore homology and higher Chow groups.

In this short paper we formulate and prove a variant of this. It leads to a
modulus version of the isomorphism, in an appropriate pro setting.

1. Introduction

Suslin [2000] proved that, roughly speaking, a cycle on X ×An meeting all faces
properly can be moved so that it becomes equidimensional over An. Here X is an
affine variety over a base field k. As a consequence he shows that the inclusion

zequi
r (X, • ) ↪→ zr (X, • ) (1.1)

of the cycle complex of equidimensional cycles into Bloch’s cycle complex is a
quasi-isomorphism for r ≥ 0. This result is significant in incorporating Bloch’s
higher Chow groups into the Voevodsky–Suslin–Friedlander theory of mixed mo-
tives. Namely, for smooth schemes X over a field, we have an inclusion of com-
plexes

C∗
(
zequi(A

i , 0)(X)
)
↪→ zi (X, • ).

The left side is a sheaf of complexes defining the Voevodsky–Suslin–Friedlander
motivic cohomology (at least over perfect fields, see [Mazza et al. 2006, Theo-
rem 16.7]). The inclusion is a quasi-isomorphism by Suslin’s moving lemma when
X is the spectrum of a field. Voevodsky’s injectivity theorem [Mazza et al. 2006,
Corollary 11.2] for homotopy invariant sheaves with transfers then implies that the
inclusion is a quasi-isomorphism locally on an arbitrary smooth X .
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Recently the context has been extended to cycles with modulus. Binda and Saito
[2014] introduced the cycle complex with modulus zr (X |Y, • ) for r ≥ 0 and a pair
(X , Y ) of a finite-type k-scheme X and an effective Cartier divisor Y on it. We
usually write X := X \ Y . This generalizes Bloch’s cycle complex in the sense
that zr (X |∅, • )= zr (X , • ). The homology group CHr (X |Y, n) := Hn(zr (X |Y, • ))
is called the higher Chow group with modulus. Moreover, we can construct a
generalization of the inclusion (1.1):

zequi
r (X |Y, • ) ↪→ zr (X |Y, • ).

The reader will find all the definitions of these objects in Section 2.
Our future aim is to extend the comparison between the higher Chow group

and motivic cohomology group to the modulus setting. For this, we need to gen-
eralize (i) Suslin’s moving lemma, and (ii) Voevodsky’s injectivity theorem. The
generalization of (ii) is expected to be done by the developing theory of motives
with modulus, which was introduced by Kahn, Saito and Yamazaki [2015] as a
generalization of Voevodsky’s theory of motives.

In this paper, we generalize (i). In other words, we prove a variant of Suslin’s
moving lemma which takes the modulus condition into account (Theorem 3.11
below). Suslin’s moving method does not preserve the so-called modulus condition
on cycles, but instead we can show that the moved cycle satisfies the modulus
condition to a lesser extent, and we have explicit control of the loss. It leads to the
following:

Theorem 1.2 (Theorem 4.1). Suppose X is affine and X is an open set of X such
that X \ X is the support of an effective Cartier divisor Y . Let r ≥ 0. Then the
inclusions for m ≥ 0,

zequi
r (X |mY, • ) ↪→ zr (X |mY, • ),

induce an isomorphism of inverse limits of their homology groups:

lim
←−−

m
Hn(zequi

r (X |mY, • ))∼= lim
←−−

m
CHr (X |mY, n).

Note that it is quite natural and might be even necessary that inverse limits
appear in the isomorphism. Indeed, we have several comparison isomorphisms in
the theory of modulus which hold after taking inverse limits. A typical example is
[Kerz and Saito 2016, Theorem III] which describes π ab

1 (X)
◦ as the inverse limit

lim
←−−Y CH0(X |Y )◦, where X is a proper normal compactification of a smooth variety
X over a finite field and the limit runs over effective Cartier divisors Y such that
X \ Y = X , and the superscript (−)◦ means the degree zero part. This is a higher
dimensional analogue of the class field theory. Another example is [Rülling and
Saito 2016, Theorem 2], a comparison isomorphism between the inverse limits
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of the Chow group with modulus and the relative motivic cohomology group of
certain degree. This would be the first part of an isomorphism we aim to prove
in the future. Moreover, Krishna and Park [2015, Theorem 1.0.7] prove a descrip-
tion of the crystalline cohomology group in terms of additive higher Chow groups,
hypercohomology and inverse limits. Here, the additive higher Chow group is a
special case of the higher Chow group with modulus, which can be obtained by
taking a special pair of the form (X ×A1,m(X ×{0})), m ≥ 1 in our setting. Also,
see Morrow’s article [2016, §4] — the relative cohomology groups we consider in
Section 4C echo his proposal for the definition of compact support K-groups.

We remark that the isomorphism in Theorem 1.2 actually comes from an isomor-
phism of pro-abelian groups. We can also give an explicit “pro bound” to annihilate
the levelwise kernel and cokernel of the map (see Remark 4.2 (1)).

2. Definitions

We set �n
:= (P1

\{∞})n = Spec(k[y1, . . . , yn]) in this paper, unlike some authors
who prefer 1 as the point at infinity. With this convention our computations look
simpler. We set a divisor on (P1)n:

Fn =

n∑
i=1

(P1)i−1
×{∞}× (P1)n−i .

The faces of �n are {yi = 0}, {yi = 1} and their intersections.

Definition 2.1 [Binda and Saito 2014; Kahn et al. 2015]. (1) Let zr (X |Y, n) be
the group of (r+n)-dimensional cycles on X ×�n whose components V meet all
faces of �n properly, and have modulus Y , i.e.:

Let V N be the normalization of V ⊂ X × (P1)n , the closure of V . Let
ϕV : V N

→ X × (P1)n be the natural map. Then the inequality of Cartier
divisors

ϕ−1
V (Y × (P1)n)≤ ϕ−1

V (X × Fn)

holds. (When n = 0 the condition reads: the closure V ⊂ X of V is
contained in X i.e., V = V .)

Let ∂i,ε :�n−1 ↪→�n , where i ∈ {1, . . . , n} and ε ∈ {0, 1}, be the embedding of
the face {yi = ε}:

∂i,ε : (y1, . . . , yn−1) 7→ (y1, . . . ,
i
ε̌, yi , . . . , yn−1).

The groups zr (X |Y, n) form a complex with the differentials

n∑
i=1

(−1)i (∂∗i,1− ∂
∗

i,0) : zr (X |Y, n)→ zr (X |Y, n− 1).
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(2) Let zequi
r (X |Y, n) be the subgroup of zr (X |Y, n) consisting of cycles that are

equidimensional over �n , necessarily of relative dimension r . They define a sub-
complex zequi

r (X |Y, • ) of zr (X |Y, • ).

Remark 2.2. The condition that V has modulus Y makes sense for any closed
subset V of X ×�n . In that setting, normalization of a closed subset means the
disjoint union of the normalizations of its reduced irreducible components.

Definition 2.3. We define the degenerate part zr (X |Y, n)degn ⊂ zr (X |Y, n) as the
subgroup generated by the cycles of the form

(idX × pri )
∗(V ), where V ∈ zr (X |Y, n− 1)

and

pri :�
n
→�n−1, (y1, . . . , yn) 7→ (y1, . . . , yi−1, yi+1, . . . , yn)

for some i = 1, . . . , n. We also define the degenerate part zequi
r (X |Y, n)degn ⊂

zequi
r (X |Y, n) in a similar way. We set

zr (X |Y, n) := zr (X |Y, n)/zr (X |Y, n)degn,

zequi
r (X |Y, n) := zequi

r (X |Y, n)/zequi
r (X |Y, n)degn.

Noting that the differentials ∂i,ε preserve degenerate parts, we can see that zr (X |Y, n)
and zequi

r (X |Y, n) also form complexes. We define the higher Chow group with
modulus by

CHr (X |Y, n) := Hn(zr (X |Y, • )).

We also consider the homology groups of the latter:

Hn(zequi
r (X |Y, • )).

Voevodsky–Suslin–Friedlander give no particular name to its counterpart without
modulus. In this paper, we would like to call it the Suslin homology group with
compact support with modulus. The term “with compact support” reflects the fact
that we are using zequi instead of cequi, where the latter is used to define the usual
Suslin homology.

Remark 2.4. In this remark, we explain that we can use another complex to define
the higher Chow group with modulus. This is a general fact on cubical objects (see,
for example, [Levine 2009, §1.2]). The subgroups

zr (X |Y, n)0 :=
n⋂

i=1

ker(∂∗i,0)⊂ zr (X |Y, n)

form a subcomplex. One checks that the composite

zr (X |Y, • )0→ zr (X |Y, • )→ zr (X |Y, • )
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is an isomorphism, where the first map is the natural inclusion and the latter is the
quotient map. This implies that we have a direct sum decomposition

zr (X |Y, • )= zr (X |Y, • )⊕ zr (X |Y, • )degn

of a complex, and that CHr (X |Y, n)∼= Hn(zr (X |Y, • )0). We have a similar decom-
position of zequi

r (X |Y, • ), and the inclusion zequi
r (X |Y, • ) ↪→ zr (X |Y, • ) is compat-

ible with the decompositions.

3. Equidimensionality theorem

Let k be an infinite base field. We will formulate and prove a variant of Suslin’s
equidimensionality Theorem 3.11 for modulus pairs (X , Y ), i.e., a k-scheme X of
finite type equipped with an effective Cartier divisor Y , for which X is affine.

Recall a face of �n
= Spec(k[y1, . . . , yn]) is a closed subscheme of the form

{yi = 0}, {yi = 1} or an intersection of them. Define a Cartier divisor ∂�n
=∑

∂i,ε(�n−1), where the sum is over all 1 ≤ i ≤ n and ε = 0, 1. Recall the map
∂i,ε :�n−1 ↪→�n denotes the embedding corresponding to the equation yi = ε for
each i, ε. The divisor ∂�n is defined by the equation

h(y)= y1(1− y1) · · · yn(1− yn). (3.1)

We need the following version of Suslin’s moving lemma where we control the
degrees of the map 8n .

Theorem 3.2. Let X =Spec(R) be an affine k-scheme of finite type and V ⊂ X×�n

be a closed subset of dimension n+ t for some t ≥ 0. Suppose an X-morphism

8′ : X × ∂�n
→ X ×�n

is given and there is an integer d ≥ 2 such that for any codimension 1 face

∂l,ε :�
n−1 ↪→�n,

the composite 8′ ◦ (idX × ∂l,ε) is defined by polynomials 8′i,l,ε ∈ R[y1, . . . , yn−1]

(1≤ i ≤ n) whose degrees with respect to yj are at most d for each j .
Then we can find an X-map

8n
: X ×�n

→ X ×�n

extending 8′ such that (8n)−1(V ) ⊂ X ×�n has fibers of dimension ≤ t over
�n
\ ∂�n , and moreover, the functions 8n

i ∈ R[y1, . . . , yn] defining 8n (1≤ i ≤ n)
have degrees ≤ d with respect to each yj .

Proof. The map 8′ is determined by R-coefficient polynomials fi (y1, . . . , yn)

mod h(y) (1≤ i ≤ n). If we substitute yj = 0 or yj = 1 to fi we get a polynomial
which has degree ≤ d with respect to each yk by the hypothesis.
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Lemma 3.3. Let d ≥ 1 be an integer. Suppose given a polynomial f (y1, . . . , yn) ∈

R[y1, . . . , yn] such that for each j , if we substitute any of yj = 0 or yj = 1, the
resulting polynomial has degree ≤ d with respect to each yk . Then f mod h(y)
has a (unique) representative which has degree ≤ d with respect to each yj (where
we keep the notation h(y)= y1(1− y1) · · · yn(1− yn) introduced in (3.1)).

Proof. For each i denote by yi (−|yi=1) the operator which sends a polynomial f
to yi · ( f |yi=1) and define (1− yi )(−|yi=0) similarly. Note that for different i and
j the operators yi (−|yi=1) and yj (−|yj=1) commute (and similarly for other pairs).
Put αi := 1− yi (−|yi=1)− (1− yi )(−|yi=0). Then one can see the polynomial

f − (α1 · · ·αn f )

is the desired representative. �

By the previous lemma, we take representatives fi (y) having degrees ≤ d with
respect to each yj .

Take a finite set {x1, . . . , xm} of generators of the k-algebra R. We are going to
define the asserted map 8n by setting its components (1≤ i ≤ n) to be

8n
i (y) := fi (y)+ h(y)Fi (x),

where Fi (t1, . . . , tm) ∈ k[t1, . . . , tm] are homogeneous polynomials in variables
t1, . . . , tm of some uniform degree N . From this form, the functions 8n

i have
degrees ≤ d with respect to each yj .

Now, in his proof of the generic equidimensionality theorem, Suslin [2000,
Theorem 1.1] actually introduces the following specific statement in the first two
paragraphs and proves it in [loc. cit., §§(1.2)–(1.8)].

Specific statement 3.4 [Suslin 2000, proof of Theorem 1.1]. Let R be a k-algebra
of finite type and let x1, . . . , xm ∈ R be a finite set of generators over k. Let H(y) ∈
k[y1, . . . , yn] and fi (y) ∈ R[y1, . . . , yn], 1 ≤ i ≤ n, be polynomials in variables
y1, . . . , yn . Let V be a closed subset in An

R = Spec(R[y1, . . . , yn]) of dimension
≤ n+ t for some nonnegative integer t .

Consider R-morphisms 8 : An
R→ An

R defined by polynomials of the form

8i (y)= fi (y)+ H(y)Fi (x), 1≤ i ≤ n,

where Fi (t) ∈ k[t1, . . . , tm] are homogeneous polynomials in variables t1, . . . , tm
of some uniform degree N.

Then if N is large enough, for almost all tuples (Fi )
n
i=1, the fibers of the projec-

tion 8−1(V )⊂ An
R→ An

k have dimensions ≤ t over An
k \ {H(y)= 0}.

(For a fixed N , the tuples of polynomials (Fi )i are parametrized by the rational
points of an affine space of dimension

(N+m−1
m−1

)
n. The statement means that the



SUSLIN’S MOVING LEMMA WITH MODULUS 61

set of tuples (Fi )i where the stated condition fails is contained in a proper closed
subset of the affine space.)

Thus if N is large enough, a general choice of (Fi )
n
i=1 makes our assertion on

fiber dimension true. This completes the proof of Theorem 3.2. �

Now, to understand the Suslin moving lemma in the context of modulus, first
recall the following:

Lemma 3.5 (containment lemma [Krishna and Park 2012, Proposition 2.4]). Let
V ⊂ X ×�n be a closed subset which has modulus Y and V ′ ⊂ V be a smaller
closed subset. Then V ′ also has modulus Y .

Proposition 3.6. Let (X , Y ) be a modulus pair with X = Spec(R) affine. Let d
be a positive integer and V ⊂ X ×�n be a closed subset having modulus nd · Y .
Suppose

8 : X ×�n′
→ X ×�n

is an X-morphism defined by polynomials 8 j ∈ R[y1, . . . , yn′] (1≤ j ≤ n) having
degrees ≤ d with respect to each yi . Then the closed subset 8−1(V ) of X ×�n′

has modulus Y .

Proof. Since the assertion is local on X , we may assume Y is principal and defined
by u ∈ R. Let V ′ denote any one of the irreducible components of 8−1(V ) and let
V ′N be the normalization of its closure V ′ in X × (P1)n

′

;

V ′N

��

V ′ V ′? _oo � � // 8−1(V )

��

� � // X ×�n′

8

��

V �
�

// X ×�n

Thanks to the containment lemma (Lemma 3.5), the closure of 8(V ′) in V has
modulus ndY . By replacing V by the closure of 8(V ′) in V , we may assume the
map V ′→ V is dominant.

Claim 3.7. Let V ′N◦ be the domain of definition of the rational map

V ′N → X × (P1)n
′ 8
99K X × (P1)n.

Then the complement of V ′N◦ in V ′N has codimension ≥ 2.
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Proof. Let v be a point of V ′N of codimension 1. Since the generic point η of V ′N

lands in X ×�n′ we have a commutative diagram

η
_�

��

// X ×�n′ 8
// X × (P1)n

��

SpecOv // X

The assertion follows from the valuative criterion of properness applied to the pro-
jective morphism X × (P1)n→ X . �

By Claim 3.7, we find that a Cartier divisor on V ′N is effective if and only if its
restriction to V ′N◦ is effective, since V ′N is normal.

Write pr j : X × (P1)n → P1 for the projection to the j-th P1 and 8 j for the
composite rational map

X × (P1)n
′ 8
99K X × (P1)n

pr j
−→ P1,

also seen as a rational function on X × (P1)n
′

. We will denote the pull-backs of
8 and 8 j to V ′N◦ by 8V and 8V

j . By definition of V ′N◦ they are well-defined
morphisms from V ′N◦ to X × (P1)n and to P1 respectively. There is a uniquely
induced morphism V ′N◦→ V N because now we are assuming V ′→ V is dominant.

For any given point of V ′N◦, we can find an affine open set Spec(A)⊂ V N and
an affine neighborhood Spec(B)⊂ V ′N◦ of the point over which 8V restricts to a
morphism 8V

: Spec(B)→ Spec(A).

Spec(B) �
�

// V ′N◦ //

8V

��

X × (P1)n
′

8

��

Spec(A) �
�

// V N // X × (P1)n

By shrinking Spec(A) if necessary, we may assume yj or 1/yj is regular on Spec(A)
for each j . Denote by J ⊂ {1, . . . , n} the set of j’s for which 1/yj is regular.
The divisor Fn is defined by the equation 1/

∏
j∈J yj = 0 on Spec(A). Since V

has modulus ndY , the rational function
(
1/
∏

j∈J yj
)
/und on Spec(A) is regular.

Pulling it back by 8V , we find that the rational function
1∏

j∈J 8
V
j

/
und (3.8)

on Spec(B) is regular.
Shrinking Spec(B) if necessary, we may assume yi or 1/yi is regular on Spec(B)

for each i . Let I ⊂{1, . . . , n′} be the set of i’s for which 1/yi is regular on Spec(B);
the divisor Fn′ is defined by 1/

∏
i∈I yi = 0 on Spec(B).
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Claim 3.9. The rational function 8V
j /
∏

i∈I yd
i on Spec(B) is regular for each j ∈

{1, . . . , n}, i.e., it is a morphism from Spec(B) into A1
⊂ P1.

Proof. The function is the restriction of the meromorphic function 8 j/
∏

i∈I yd
i on

X× (P1)n
′

. It is written as an R-coefficient polynomial in the variables 1/yi (i ∈ I )
and yi (i ∈ I c) by the assumption on 8. So it is regular around the (image of the)
considered point on X × (P1)n

′

. �

By the regularity of the function (3.8) and Claim 3.9, the function(
1∏

j∈J 8
V
j

/
und

)
·

∏
j∈J

8V
j∏

i∈I yd
i
=

1∏
i∈I yd·#J

i

/
und

is regular on Spec(B). This shows a relation of Cartier divisors on Spec(B):

nd
(∏

i∈I

1
yi

)
− nd(u)≥ 0,

which implies the relation

(pullback of Fn′)− (pullback of Y )≥ 0

on Spec(B), hence on V ′N◦, which is valid on V ′N as well by Claim 3.7. This
completes the proof of Proposition 3.6. �

Remark 3.10. Under the hypotheses of Proposition 3.6, we can prove that the
morphism 8 is admissible [Kahn et al. 2015, Definition 1.1] for the pair

((P1
R)

n′, nd Fn′), ((P1
R)

n, Fn).

Here, for pairs (X, D), (Y, E) of schemes and effective Cartier divisors, a mor-
phism f : X \ D → Y \ E is said to be admissible if the following holds: Let
0 f be the closure of the graph of f in X × Y and 0N

f be its normalization. Let
ϕ : 0N

f → X × Y be the natural map. Then the inequality of Cartier divisors
ϕ−1(D× Y )≥ ϕ−1(X × E) on 0N

f holds.
It gives an alternative proof of Proposition 3.6 thanks to [Krishna and Park 2012,

Lemma 2.2]. Here we sketch the proof of the admissibility. We use the fact that
admissibility can be checked after replacing the source by an open cover (for a
trivial reason), and after blowing up (P1)n

′

by a closed subset outside �n′ (by
[Krishna and Park 2012, Lemma 2.2] again). Set ηi = 1/yi . The scheme (P1)n

′

is covered by open subsets UI = Spec(R[ηi , yi ′ i∈I,i ′ /∈I]), where I runs though the
subsets of {1, . . . , n′}. On the region UI , the rational function 8(I )j defined by the
next equation is regular, by the assumption on 8 j :

8 j =
8
(I )
j (ηi , yi ′)∏

i∈I η
d
i
.
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We blow up UI by the ideal
(
8
(I )
j ,
∏

i∈I η
d
i

)
. We perform this blow up for all

j ∈ {1, . . . , n}. The resulting scheme is covered by the 2n open subsets

UIJ = Spec
(

R
[
ηi , yi ′ i∈I,i ′ /∈I,

∏
i∈I η

d
i

8
(I )
j (ηi , yi ′)

,
8
(I )
j ′ (ηi , yi ′)∏

i∈I η
d
i

j∈J, j ′ /∈J

])
,

where J runs through the subsets of {1, . . . , n}. The morphism 8 naturally extends
to a morphism 8 :UIJ →UJ ⊂ (P

1)n .
On UIJ , the pull-back of Fn by 8 is represented by the function∏

j∈J

∏
i∈I η

d
i

8
(I )
j (ηi , yi ′)

.

The divisor nd Fn′ is represented by
∏

i∈I η
nd
i . Hence the difference nd Fn′|UIJ −

8∗
|UIJ

Fn is defined by the function∏
i

η
(n−#J )d
i ·

∏
j∈J

8
(I )
j ,

which is a regular function on UIJ . This proves the admissibility.

From Theorem 3.2 and Proposition 3.6, we get:

Theorem 3.11. Let (X , Y ) be a modulus pair with X affine, and V ⊂ X × �n

be a purely (n+t)-dimensional closed subset for some t ≥ 0. Suppose V has
modulus 2n · Y . Then there is a series of maps

8• : X ×�•→ X ×�•

compatible with face maps, i.e., for any codimension 1 face ∂i,ε :�m ↪→�m+1, the
following diagram commutes:

X ×�m 8m
//

� _

∂i,ε
��

X ×�m
� _

∂i,ε
��

X ×�m+1 8m+1
// X ×�m+1

such that the closed subset

(8n)−1(V )⊂ X ×�n

is equidimensional over �n of relative dimension t , and has modulus Y . Moreover,
the defining polynomials 8m

i can be taken to have degree ≤ 2 for each variable yj .

It is proved by induction on m, starting with 80
= id which has degree 0 and

with V replaced by its restrictions to faces. Note that given a series of maps with
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the indicated compatibility and a cycle α on X ×�m , the following equality of
cycles on X ×�m−1 holds whenever the relevant cycles are well-defined:

d((8m)∗α)= (8m−1)∗(dα). (3.12)

4. Suslin homology with compact support with modulus and higher Chow
groups with modulus

In this section, let X be an affine finite-type scheme over an arbitrary field k and
X be an open subset such that X \ X is the support of an effective Cartier divisor.
The letter Y will denote effective Cartier divisors with support X \ X . The aim of
this section is to prove the following theorem.

Theorem 4.1. Let r ≥ 0. The inclusions

zequi
r (X |Y, • )⊂ zr (X |Y, • )

induce isomorphisms on the homology pro-groups for each n:

{
Hn(zequi

r (X |Y, • ))
}

Y

∼=
−→
{
Hn(zr (X |Y, • ))

}
Y ,

where Y runs through effective Cartier divisors with support X \ X.

Remark 4.2. (1) An explicit pro bound to annihilate the levelwise kernel and cok-
ernel of the map will be indicated in Lemma 4.5. Theorem 4.1 implies Theorem 1.2
in the introduction, in light of Remark 2.4.

(2) In the terminology of [Fausk and Isaksen 2007, §6], the above theorem can be
expressed as: the map {zequi

r (X |Y, • )}Y → {zr (X |Y, • )}Y is a weak equivalence in
the H∗-model category of pro-complexes of abelian groups.

4A. Construction of weak homotopy. Temporarily assume k is an infinite field,
so that we can use the results in Section 3.

Fix an effective Cartier divisor Y with support X \ X . Suppose we are given a
cycle V ∈ zr (X |2nY, n). Apply Theorem 3.11 to |V | and get a series of X -maps
8• : X ×�•→ X ×�•.

Repeated application of Theorem 3.2 gives another series of X -maps

8̃• : X ×�•×A1
→ X ×�•×A1

satisfying:



66 WATARU KAI AND HIROYASU MIYAZAKI

(1) The following diagrams commute:

X ×�n

i0
��

id
// X ×�n

i0
��

X ×�n
×A1 8̃n

// X ×�n
×A1

X ×�n

i1
��

8n
// X ×�n

i1
��

X ×�n
×A1 8̃n

// X ×�n
×A1

X ×�n−1
×A1

1X×∂ j,ε×1
A1
��

8̃n−1
// X ×�n−1

×A1

1X×∂ j,ε×1
A1

��

X ×�n
×A1 8̃n

// X ×�n
×A1

(2) The dimensions of the fibers of the map

(8̃n)−1(|V | ×A1) ↪→ X ×�n
×A1

→�n
×A1

are ≤ r over �n
× (A1

\ {0}). (Consequently if V happens to be in zequi
r , then

(8̃n)−1(|V | ×A1) is equidimensional over �n
×A1.)

(3) The map 8̃n is defined by n+ 1 polynomials belonging to O(X)[y1, . . . , yn, t]
having degrees ≤ 2 in each variable, where t is the coordinate of A1.

We explain a little more about the construction of 8̃n . It is done by induction
on n. Suppose we have constructed 8̃n−1, with |V | in condition (2) replaced by
the union of its restrictions to the faces.

Set a Cartier divisor Z := (�n
× 0)+ (�n

× 1)+ (∂�n
×A1) on �n

×A1. Via
the isomorphism �n

×A1 ∼=�n+1, we have Z ∼= ∂�n+1. Condition (1) for 8̃n−1

implies that there exists a unique X -map

X × Z→ X ×�n
×A1

whose restrictions to the faces isomorphic to X ×�n are the maps already defined:
either id, 8n or 8̃n−1. This existence follows from the next elementary fact proved
by induction and the snake lemma: Let R be a commutative ring with unit and let
x1, . . . , xn be elements of R which form a regular sequence, no matter how they
are ordered. Then the set of elements x1, . . . , xn−2, xn−1xn has the same property,
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and we have an isomorphism

R/x1 · · · xn R −→∼ lim
←−−

[∏
i

R/xi R⇒
∏
i< j

R/(xi , x j )R
]
.

By the induction hypothesis and the choice of 8•, the maps id,8n, 8̃n−1 are de-
fined by polynomials whose degrees are ≤ 2 in each variable. Then by Theorem 3.2,
we obtain 8̃n having degrees ≤ 2 and satisfying (1)–(2).

We note a compatibility property satisfied by the pull-back operation (8̃n)∗.
Suppose we are given a cycle α on X ×�m . We can consider its differential d(α)
on X ×�m−1 if it is well-defined. On the other hand, suppose we are given a cycle
β on X ×�m

×A1. Via the isomorphism X ×�m
×A1 ∼= X ×�m+1 we view it as

a cycle on the latter, and consider its differential which is a cycle on X ×�m . We
denote it by d̃β.

Thanks to condition (1) on 8̃•, the following equality of cycles on X×�m holds
whenever the relevant cycles are all well-defined:

d̃((8̃m)∗(α×A1))= (8̃m−1)∗(d(α)×A1)+ (−1)m+1((8m)∗α−α). (4.3)

This applies in particular to α = V : all terms are indeed well-defined, for example,
by the choice of 8• and 8̃•, the irreducible components of (8̃n)−1(|V | ×A1) have
dimensions at most r + n + 1, which is the lowest possible due to the fact that
8̃n is an X -endomorphism of a smooth X -scheme. So the term (8̃n)∗(V ×A1) is
well-defined. Similarly for other terms.

4B. Proof of the comparison theorem. Finally we can prove Theorem 4.1. Let
f Y
: zequi

r (X |Y, • )→ zr (X |Y, • ) denote the natural inclusion. It suffices to prove
that {

Hnzequi
r (X |Y, • )

}
Y
{Hn f Y

}Y
−−−−−→

{
Hnzr (X |Y, • )

}
Y

is an isomorphism in the category of pro-abelian groups pro-Ab. Its kernel and
cokernel are {Ker(Hn f Y )}Y and {Coker(Hn f Y )}Y [Artin and Mazur 1969, Appen-
dix, Proposition 4.1]. We prove that they are zero objects in pro-Ab. Now we
recall the following elementary lemma:

Lemma 4.4. An object A = {Aγ }γ∈0 ∈ pro-Ab is the zero object if and only if for
any γ ∈ 0 there exists γ ′ > γ such that the projection map pγ

′

γ : Aγ
′

→ Aγ is the
zero map.

Therefore, the problem is reduced to showing the following:

Lemma 4.5. For any effective Cartier divisor Y and n ≥ 0, the projections

Ker(Hn f 2(n+1)Y )→ Ker(Hn f Y ) and Coker(Hn f 2nY )→ Coker(Hn f Y )
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are the zero maps.

Proof. Assume first k is infinite. We first prove that Coker(Hn f 2nY )→Coker(Hn f Y )

is the zero map for any n ≥ 0. Take any element W ∈Hn(zr (X |2nY, • )). Apply the
construction in Section 4A to W and get a cycle (8̃n)∗W ∈ zequi

r (X |Y, n). Thanks
to Equation (3.12), it is annihilated by the differential. Equation (4.3) now reads

d̃((8̃n)∗(W ×A1))= (−1)n+1((8n)∗W −W )

in zr (X |Y, n), hence we have W = (8n)∗W in Hn(zr (X |Y, • )). This proves the
assertion for the cokernel.

Next we prove that Ker(Hn f (2n+2)Y )→ Ker(Hn f Y ) is the zero map. Take any
cycle V representing an element in Ker(Hn f (2n+2)Y ). Then, there exists W ∈
zr (X |(2n+ 2)Y, n+ 1) such that V = dW as cycles.

Apply the construction in Section 4A to W (n replaced with n+ 1) and get a
cycle (8n+1)∗W ∈ zequi

r (X |Y, n+1) and (8̃n+1)∗(W×A1)∈ zr (X |Y, n+2) whose
modulus condition follows from Proposition 3.6. Equation (4.3) for α =W reads

d̃((8̃n+1)∗(W ×A1))= (8̃n)∗(V ×A1)+ (−1)n((8n+1)∗W −W ).

Differentiate it to get 0= d(8̃n)∗(V ×A1)+ (−1)n(d(8n+1)∗W − V ). Hence

V = d(8n+1)∗W + (−1)nd(8̃n)∗(V ×A1).

Thanks to the choice of 8̃• and the fact that V is equidimensional, both (8n+1)∗W
and (8̃n)∗(V ×A1) are equidimensional cycles. So V is zero in Hn(z

equi
r (X |Y, • )).

This proves the assertion for the kernel, hence completes the proof for infinite
fields.

Finally, suppose that k is finite. This case is settled by a trace (norm) ar-
gument. Let l ∈ {2, 3} and kl be an infinite pro-l extension of k. Given any
V ∈ Coker(Hn f 2nY ), its image in Coker(Hn f Y )kl is zero by the infinite field case
(the subscript means the group is computed after the scalar extension kl/k). Since
the latter group is the direct limit of Coker(Hn f Y )k′l , where k ′l runs through the
finite subextensions of kl/k, the element V vanishes in some Coker(Hn f Y )k′l . The
finite push-forward map Coker(Hn f Y )k′l → Coker(Hn f Y ) has the property that its
composite with the scalar extension map

Coker(Hn f Y )→ Coker(Hn f Y )k′l → Coker(Hn f Y )

is the multiplication by [k ′l : k]. Therefore the image of V in Coker(Hn f Y ) is
annihilated by [k ′l : k], which is a power of l. Since [k ′2 : k] and [k ′3 : k] are relatively
prime, the image of V itself is zero. The proof for {Ker(Hn f Y )}Y is the same. �
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4C. A consequence on the relative motivic cohomologies. In this final subsec-
tion X can be any algebraic scheme. Let X be an open set of X such that the
complement X \ X is the support of an effective Cartier divisor Y .

Consider the presheaf of complexes on the small Zariski site XZar,

zr (X |Y, • )Zar : (U ⊂ X) 7→ zr (U |Y ∩U , • ),

which turns out to be a sheaf, as well as zequi
r (X |Y, • )Zar similarly defined. We

have a natural inclusion of sheaves zequi
r (X |Y, • )Zar ⊂ zr (X |Y, • )Zar. The induced

maps on homology sheaves{
Hn(zequi

r (X |Y, • )Zar)
}

Y

{ f Y
n }Y
−−−→

{
CHr (X |Y, n)Zar

}
Y (4.6)

are pro-isomorphisms of Zariski sheaves for all n. Indeed, by Lemma 4.5, the maps
of sheaves

Coker( f 2nY
n )→ Coker( f Y

n ), Ker( f (2n+2)Y
n )→ Ker( f Y

n )

are zero.
As a general fact on pro-categories, the functors Hn

Zar(X ,−) extend to functors

pro-sheaves→ pro-abelian groups, {Fi }i 7→ {Hn
Zar(X , Fi )}i . (4.7)

We have hypercohomology spectral sequences in the abelian category of pro-abelian
groups:

E pq
2 =

{
Hp

Zar(X ,H−q(zequi
r (X |Y, • )Zar))

}
Y ⇒

{
Hp+q

Zar (X , zequi
r (X |Y, • )Zar)

}
Y

′E pq
2 =

{
Hp

Zar(X ,CHr (X |Y,−q)Zar))
}

Y ⇒
{
Hp+q

Zar (X , zr (X |Y, • )Zar)
}

Y

which are bounded to the range 0≤ p ≤ dim X and q ≤ 0. Since the natural map
E → ′E of spectral sequences induces isomorphisms on E2-terms by equations
(4.6) and (4.7), we get isomorphisms{

Hn
Zar(X , zequi

r (X |Y, • )Zar)
}

Y →
{
Hn

Zar(X , zr (X |Y, • )Zar)
}

Y .

So we have proved:

Theorem 4.8. Let r ≥ 0 and n ∈ Z. For any algebraic scheme X and an effective
Cartier divisor Y0 on X , the natural map of pro-abelian groups{

Hn
Zar(X , zequi

r (X |Y, • )Zar)
}

Y →
{
Hn

Zar(X , zr (X |Y, • )Zar)
}

Y

are isomorphisms, where Y runs through effective Cartier divisors with support |Y0|.
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