Vol. 3, No. 1, 2018

Download this article
Download this article For screen
For printing
Recent Issues
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the Journal
Subscriptions
Editorial Board
Ethics Statement
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
Author Index
To Appear
Contacts
ISSN: 2379-1691 (e-only)
ISSN: 2379-1683 (print)
Other MSP Journals
Cohomologie non ramifiée de degré 3 : variétés cellulaires et surfaces de del Pezzo de degré au moins 5

Yang Cao

Vol. 3 (2018), No. 1, 157–171
Abstract

Dans cet article, où le corps de base est un corps de caractéristique zéro quelconque, pour X une variété géométriquement cellulaire, on étudie le quotient du troisième groupe de cohomologie non ramifiée Hnr3(X, (2)) par sa partie constante. Pour X une compactification lisse d’un torseur universel sur une surface géométriquement rationnelle, on montre que ce quotient est fini. Pour X une surface de del Pezzo de degré 5, on montre que ce quotient est trivial, sauf si X est une surface de del Pezzo de degré 8 d’un type particulier.

We consider geometrically cellular varieties X over an arbitrary field of characteristic zero. We study the quotient of the third unramified cohomology group Hnr3(X, (2)) by its constant part. For X a smooth compactification of a universal torsor over a geometrically rational surface, we show that this quotient is finite. For X a del Pezzo surface of degree 5, we show that this quotient is zero, unless X is a del Pezzo surface of degree 8 of a special type.

Keywords
del Pezzo surface, unramified cohomology
Mathematical Subject Classification 2010
Primary: 14E08, 19E15
Milestones
Received: 25 August 2016
Revised: 15 March 2017
Accepted: 2 April 2017
Published: 7 September 2017
Authors
Yang Cao
Laboratoire de Mathématiques d’Orsay
Univ. Paris-Sud, CNRS
Univ. Paris-Saclay
91405 Orsay
France