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An explicit basis for the rational higher Chow groups
of abelian number fields

Matt Kerr and Yu Yang

We review and simplify A. Beilinson’s construction of a basis for the motivic
cohomology of a point over a cyclotomic field, then promote the basis elements
to higher Chow cycles and evaluate the KLM regulator map on them.

1. Introduction

Let ¢y € C* be a primitive N-th root of 1 (N > 2). The seminal article [Beflinson
1984] concludes with a construction of elements E; (for b € (Z/NZ)*) in motivic
cohomology

H},(Spec(Q(¢n)), Q) = K (Q(¢n) ® Q

mapping to Lln(g“N) =2 k=1 g“ bikn e C/(Zm)"[RE under his regulator. Since by
Borel’s theorem [1974], we have rk K2n 1(@(4“1\1))@ = 2(;5(N) (for N > 3), an
immediate consequence is that the {E,} span K2n 1(Q(¢N))q; indeed, Beilinson’s
results anticipated the eventual proofs [Rapoport 1988; Burgos Gil 2002] of the
equality (for number fields) of his regulator with that of Borel [1977]. An ex-
panded account of his construction was written up by Neukirch (with Rapoport and
Schneider) in [Neukirch 1988], up to a “crucial lemma” [op. cit., Part II, Lemma
2.4] required for the regulator computation, which was subsequently proved by
Esnault [1989].

The intervening years have seen some improvements in technology, especially
Bloch'’s introduction of higher Chow groups [Bloch 1986], which yield an integral
definition of motivic cohomology for smooth schemes X. In particular, we have!

H,(Spec(Q(¢n)), Z(n)) = CH"(Q(¢Ly), 2n — 1)
1= Hop—1{Z"(Q(¢N), *), 0},

MSC2010: 14C25, 14C30, 19E15.
Keywords: higher Chow group, Abel-Jacobi map, polylogarithms, Beilinson regulator, Borel’s
theorem.

1We use the shorthand CH*(F, %) (Z*(F, %), etc.) for CH™*(Spec(F), *) (F a field).
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and can ask for explicit cycles in ker(d) C Z"(Q(¢n), 2n — 1) representing (mul-
tiples of) Beilinson’s elements E;. Another relevant development was the explicit
realization of Beilinson’s regulator in [Kerr et al. 2006; Kerr and Lewis 2007]
as a morphism Al of complexes, from a rationally quasi-isomorphic subcomplex
Zp(X, ) of Z"(X, ) to a complex computing the absolute Hodge cohomology
of X. Here this “KLM morphism” yields an Abel-Jacobi mapping

AJ:CH"(Q(N),2n—1)®Q — C/2ri)"Q, (1.1
and in the present note we shall construct (for all n) higher Chow cycles

%, € ker(d) C ZR(QEN), 2n — 1) @ Q
satisfying

(n—3)N""'%, € ZL(Q(¢y),2n — 1)) and  AJ(Z) =Li,(Z5).

(See Theorems 3.3, 3.8, and 4.2, with 7 = (—1)”,@?/N”_] .) This is entirely more
explicit than the constructions in [Beilinson 1984; Neukirch 1988], and yields
a brief and transparent evaluation of the regulator, which moreover allows us to
dispense with some of the hypotheses of [Neukirch 1988, Part I, Lemma 2.4] or
[Esnault 1989, Theorem 3.9] and thus avoid the more complicated construction of
[Neukirch 1988, Part II, Lemma 3.1]. Furthermore, in concert with the anticipated
extension of AJ to the entire complex Z" (X, ¢) (making (1.1) integral), we expect
that our cycles will be useful for studying the torsion in CH" (Q(¢w), 2n — 1), as
begun in [Petras 2008; 2009]; see Remark 4.1 and Section 4E.

2. Beilinson’s construction

In this section we show that (the graph of) the n-tuple of functions

N N
{l_é‘NZ]Zn—]v( 4 ) ’...’(Zl’l—_l) }

completes to a relative motivic cohomology class on ([1*~!, 300"~!). Most of the
work that follows is to show that its image under a residue map vanishes; see (2.12).
It also serves to establish notation for Section 3, where we recast this class as a
higher Chow cycle and compute its regulator.

2A. Notation. Let N > 2, and ¢ € C be a primitive N-th root of unity; i.e.,
¢ = e?4/N where a is coprime to N. Denoting by ®y (x) the N-th cyclotomic
polynomial, each such a yields an embedding o of F := Q[w]/(P y (w)) into C (by
sending wr> ¢). Mf N=2,thenF=Qandw=¢ =-1.)

Working over any subfield of C containing ¢, write

O = P\ {1)" D (P"\{0, 1})" = T",
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with coordinates (zy, ..., z,). We have isomorphisms from T" to G”, (with co-

m

ordinates (#1,...,1,)), given by #; := z;/(z; — 1). Define a function f,(z) :=
1— {btl -« +t, on T" (with b coprime to N), and normal crossing subschemes

§":={zeT"|some z; =00} C §" U|(fn)ol =: ST

(Alternatively, we may view these schemes as defined over F by replacing ¢”
with w?.)
Now consider the morphism

L T T (oo ty) B>ty ey by, (01 1) 7).
Lemma 2.1. The morphism 1, sends T"~ isomorphically onto |( f,)o|, with
(S = (fdol N S".

We also remark that the Zariski closure of 7, (T"~1) in " is just z, (T 1.

2B. Results for Betti cohomology. The construction just described has quite pleas-
ant cohomological properties, as we shall now see.

Lemma 2.2. As a Q-MHS,

Horn, sy = | B a=n
07 q 7& n.
Proof. Apply the Kiinneth formula to (1", §*) = (G, {1})". O

Lemma 2.3. As a Q-MHS,

QOeQ-D)e---&Q(—n), g=n,
0, q #n.

Proof. This is clear for (T', §1) = (G, {1, ¢}). Now consider the exact sequence

H(T", §") = {

H*fl(‘[l—n, Sn) ll> H*fl(-l]—nfl’ §n71) i}

H*('l]'n, En) - H*(—l]—n, Sn) li> H*(-l]—n—l’ S;n—l)

of @-MHS, associated to the inclusion (T"~!, §"‘1) S (T, 8™). (This is just the
relative cohomology sequence, once one notes that ((T”, S"), 1, (T §”_1)) =
(T", 8" U1, (T" 1)) = (T", §”) by Lemma 2.1.) If % # n, then the underlined
terms are O via Lemma 2.2 and induction. If * = n, then the end terms are O via
Lemma 2.2 and induction, and

0— H"N (1, S S g, $ — BT, S") — 0 2.4

is a short-exact sequence.
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Now observe that:
o H'(T", §"; C) = F"H"(T", §"; C) is generated by the holomorphic form

1 dt dt,
1 Qri)" 1 t,

o« H,_ (T 1, :S:"_]; Q) is generated by images e(U;) of the cells

Ju=oam [T x=e-2),
i=0 (=1

where e : [0, 11" — T" is defined by (xi, ..., x,) > (271, ..., e¥i¥n) =
(tl, ey n)s

)
o/ n:/dxlA---Adxné@.
e(Ui) Ui

(Writing ! for the unit circle, ((.% Hr (#hHrn §”) is a deformation retract of
(a, §"). The e(U;) visibly yield all the relative cycles in the former, justifying the
second observation.) Together these immediately imply that (2.4) is split, complet-
ing the proof. (]

2C. Results for Deligne cohomology. Recall that Beilinson’s absolute Hodge co-
homology [1986] of an analytic scheme Y over C sits in an exact sequence

0 — Extys (Q(0), H (Y, A(p))) — Hp(Y, A(p))
— Homyys (Q(0), H (Y, A(p))) — 0.

(Here we use a subscript “D” since the construction after all is a “weight-corrected”
version of Deligne cohomology; the subscript “MHS” of course means “A-MHS”.)
We shall not have any use for details of its construction here, and refer the reader
to [Kerr and Lewis 2007, §2].

Lemma 2.5. The map i* : HA(T", $"; A(n)) — HA(T"1, 571 A(n)) is zero
A=0QorR).

Proof. Consider the exact sequence
o HB (T, 8" ©(n) > Hp (T, 571 @(n))gHﬁH(T", §" QM) —> -
It suffices to show that §p is injective. Now
Homyps (Q(0), H"(T"~!, $"~"; @) = {0},
Homys (Q(0), ™! (T", §"; @(n))) = {0},

by Lemma 2.3, and so ép is given by

Extlyg (@(0), H™ 1 (T"1, 5771 Q(n))) 22> Extlys(Q(0), H'(T", §"; Q(n))).
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Since (2.4) is split, the corresponding sequence of Ext'-groups is exact, and 8p is
injective. U

2D. Results for motivic cohomology. Let X be any smooth simplicial scheme (of
finite type), defined over a subfield of C. We have Deligne class maps

cpat Hjy (X, Q(p)) - Hp(XE, A(p))

(for A=Q or R). The case of particular interest here is when » = 1, X is a point, and

1

cpa(Z) = W

| R e a0, 26)
za

where, interpreting log(z) as the O-current with branch cut along 7, :=z ' (R_),

2p—1
Rypy:= Y Qi) 'Ry
k=1
2p—1
=) @ri)log(a)

k=1

dZi+1 dzap—1
+ A A P

Zk+1 2p—1

-0, NNy, 2.7
is the regulator current of [Kerr et al. 2006; Kerr and Lewis 2007] belonging to
D?P=2((P1y*2r=D) Here it is essential that the representative higher Chow cycle
Z belong to the quasi-isomorphic subcomplex Zﬁ (pt., ©)g C Z?(pt., »)g compris-
ing cycles in good position with respect to certain real analytic chains; see [Kerr
and Lewis 2007, §8] or Remark 3.4 below.

Now take a number field K, [K : Q] =d = r; + 2r», and set

r+rn-—1, m=1,
dn =dp(K) := {11 +12, m > 1 odd,

r, m > 0 even.

For X defined over K, write )/(\fg‘ = s etomx.c) ("X and

CD.R

H (X, Q(p)) H" (X2, R(p))

Hp(XE, R(p)*

for the map Z +— (cp,r(°Z))., which factors through the invariants under de Rham
conjugation. If X = Spec(K), then we have Hll)(X““, R(p)) = R(p — 1)®? and
HLH(X2, R(p)T ZR(p — 1)®. Write H},,(X, R(p)) = Hy (X, Q(p)) Qa R.
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Lemma 2.8. For X = Spec(K), G}, (T%, S}, or (T, Sp),
Gh @R Hy (X, R(p) — Hp(XZ, R(p)T

is an isomorphism (Nr, p).

Proof. By [Burgos Gil 2002], the composition

= b 2/@riyr!
K2, 1(0g) ® @ = H),(Spec(K), Q(p)) —= R(p — 1)®% Y@,

is exactly the Borel regulator (and the groups are zero for r # 1). The lemma
follows for X = Spec(K).

Let Y be a smooth quasiprojective variety, defined over K, and pick p € G, (K).
Write ¥ <> Gm.y < A}, &5 Y for the Cartesian products with Y of the morphisms

Spec(K) S Gm.x N A}{ PAN Spec(K).
Then by the homotopy property,
2 Hi G,y R(p) — Hi (Y. R(p) = Hi(Ay, R(p))

splits the localization sequence

S HEAL R(DY) D HE Gy, R(p) = HIVY R(p— 1)) &> -

for K = M, D (in particular, k, = 0). It follows that
HL Gy, R(p)) = HE(Y, R(p) @ H (Y, R(p — 1)),

compatibly with cp g; applying this iteratively gives the lemma for G:J’K.

Finally, both (T", S%) and (T%, §}) may be regarded as (co)simplicial normal
crossing schemes X*°. (That is, writing Sno— U Y;, we take X0 = T%, X! = 1LY,
X’ = ]_L‘<j Y;NY;, etc.) We have spectral sequences

i i 2 : : 2p+i+j .
EY = BV (X R(p) = B (X R(p)),

compatible with ¢p g, and all X I are disjoint unions of powers of G, k. The lemma
is proved. ([

Lemma 2.9. The map i : HlL(T", S"; A(n)) — H7L,(T"~', §*=1; A(n)) is zero
(for A =Q or R).

Proof. Form the obvious commutative square and use the results of Lemmas 2.5
and 2.8. (]
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2E. The Beilinson elements. To each I C {1,...,n} and € : I — {0, oo} we
associate a face map p¢ : 0"Vl < [0, with z; = €(i) (for all i € I) on the
image, and degeneracy maps §; : (0" — [0"~! killing the i-th coordinate. For any
smooth quasiprojective variety X (say, over a field K O @), let ¢”(X, n) denote
the free abelian group on subvarieties (of codimension p) of X x [1" meeting all
faces X x pf(D""”) properly, and d” (X, n) =) im(idx x§}) C c¢”(X, n). Then
ZP(X,e):=cP(X,e)/dP (X, e) defines a complex with differential

=Y (=" ((dx xp)* — (idx xp*)*),
i=1

whose r-th homology defines Bloch’s higher Chow group
CHP(X,r) = H' ™ (X, Z(p)). (2.10)

This isomorphism does not apply for singular varieties (e.g., our simplicial schemes
above), and for our purposes in this paper it is the right-hand side of (2.10) that
provides the correct generalization. In particular, we have

Hj (X x (0, 00%, Q(p)) = H)( (X, Q(p)),

where [ 17 := Uie{l,...,a}, £{0.00) pf(D“‘l). We note here that the (rational) motivic
cohomology of a cosimplicial normal-crossing scheme X* can be computed via (the
simple complex associated to) a double complex:

ELP .= 7P (X9, —b)t = HZT (X0, Q(p)), @2.11)

where # denotes cycles meeting all components of all X47¢ x 8;D_b properly.?
Continuing to write #; for z; /(z; — 1), we now consider

b
f@Q=fa1z1, .. cszp—) =1—0't1 - 1
as a regular function on Dﬁ_l, and

Z:={z f@. ), ...t ) ze TN\l

as an element of
ker{Z"(T""\|(f)ol. MG

3@2(/’}8)* Zn(Dn_l\|(f)0|v n— 1) P @LSZ”(D”Q\!(fIZ,:s)O

1))
and hence of

HEL (TN (Fol, 30"N\aI(f)ol; Q(n))

2See [Levine 1994, §3] and [Kerr and Lewis 2007, §8.2] for the relevant moving lemmas (and for
detailed discussion of differentials, etc.).
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(where 9|(f)o] := o 1n [(fol = Ui’g |(f1z=¢)ol, and # indicates cycles meeting
faces of 901"~ 1\d|(f)o| properly). The powers tl.N are unnecessary at this stage but
will be crucial later. For simplicity, we write the class of Z in this group as a
symbol {f,—1, ), ...tV 1.

Using Lemma 2.1, we have a (vertical) localization exact sequence

H (D1, 001, Q(n)) «+———— CH"(F, 2n — 1)g
H (O N\ [(ol, 30"\ [(Nol: Q) 2.12)
Res(f)

HIT (T2, 3072, Qn — 1)) = HI (1, 871 Qn — 1)

in which evidently
Res|(pygl{ fumts s o os t y =1 (e, oot
Proposition 2.13. Z lifts to a class & € CH"(F, 2n — 1)q.
Proof. Apply (2.12) and Lemma 2.9. U

This is essentially Beilinson’s construction; we normalize the class by

=D

= .

—
Nn—l

O

3. The higher Chow cycles

3A. Representing Beilinson’s elements. We first describe (2.11) more explicitly
in the relevant cases. As above, write 9 : Z" (", S)E - Z"(O, s — 1)?:5 for the
higher Chow differential, and

§: 2", )~ P zr @ o
i,e
for the cosimplicial differential  /_; (— 1)~ ((p? x id)* — (0 x ids)*). A
complex of cocycles for the top motivic cohomology group in (2.12) is given by

n—1

Lk =2 (O e Y. be= @ z'CFat+bh, 6D
a=0 (l,e),|l|=a
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with differential D := 3 + (—1)"~“~18. These are, of course, the simple complex
and total differential associated to the natural double complex

E¢'= P zvoe! b,
(1€), |I|=a

Analogously, one defines

3t 06 == ZR, ((OFN\I(ol, 905 N\DI( oD, k)
T = Zi @ S, e,

so that ?‘ 1(o) N 35() — 3’5\ P (e) are morphisms of (homological) complexes.
Now define
0:345k)—Z"(F,n+k—1)q

by simply adding up the cycles (with no signs) on the right-hand side of (3.1).
(Use the natural maps (1" ~¢~! x 04tk — [0"*%~1 obtained by concatenating coor-
dinates.) Then we have:

Lemma 3.2. The map 6 is a quasi-isomorphism of complexes.

Proof. Checking that 8 is a morphism of complexes is easy and left to the reader.
Thea=n—-1,{,e)=({1,...,n—1},0) term of (3.1) is a copy of Z"(F, n+k—1)
in 3¢,(k), which leads to a morphism ¥ : Z"(F, n+¢—1) — 3{,(e) with § o =id.
Moreover, it is elementary that v is a quasi-isomorphism: taking dyp = 9 gives

EY= @ cH'(O T —ba = CHF, —n)® (),
1,€), |I|=a

SO E;*b = 0 except for Eg‘_l’b = CH"(F, —b), which is exactly the image of
¥ (ker d).3 O

In particular, we may view 6 as yielding the isomorphism in the top row of (2.10).
By the moving lemmas of Bloch [1994] and Levine [1994], we have another
quasi-isomorphism "
360
L3571
which enables us to replace any Vo, € ker(D) C SE\ #(n) by a homologous
Vb, s arising as the restriction of some Y € 3f(n) with DY = 1.(Y}) and
Vi €ker(D) € B?_I(n —1). This gives an “explicit” prescription for computing
Res|(f)0| in (210)
Now we come to our central point: the cycle Z={f,,_1, th e tflv_ 1} of Section 2E
already belongs to (Z"( Dg_l, ”)E ©)34(n), without “moving” it by a boundary.
Its restriction to 3%\]’ (n) is clearly D-closed, and DZ = z*{th, R t,]lv_l} =:11,7T.

i 3%\]” (),

3This is true for any field, but specifically for our F = Q(w), the only nonzero term is E; —Ln,
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By Proposition 2.13, the class of 7 in homology of 3’}-‘1 (o) is trivial, and so there
exists 7' € 3" (n) with DT’ = —T. Defining

W=1T, Z=Z+W,

we now have DZ = 0. This allows us to make a rather precise statement about the
lift in Proposition 2.13. Denote the projection (zy, ..., 22p—1) — (21, ..., Zn—i) by
pi |:|2n—1 — Dn—i.

Theorem 3.3. E has a representative in Z" (F, 2n — 1)g of the form
F=L+W =L +W+ Wt -+ W,

where & = 0(Z2) (i.e., Z interpreted as an element of Z"(F,2n — 1)q) and #; is
supported on p;”'|(fu—i)ol.

Proof. Viewing (|(fu—1)ol, 81(fa—1)ol) = (172, §"~2) as a simplicial subscheme X*
of (0"~ !, 300"~ 1) =: X*, the subscheme ¥ ~! ¢ X'~ comprises 2/~! (’::11) copies
of |(fu—i)ol € O*~'. We may decompose

n n—1
we@ @ w27 G-dolin+i-Dhc@ETTT

i=1 (Le), |I|=i—1 i=1

into its constituent pieces W; € E(i)fl’*"*"“, and define #; :=0(W;) and # :=0 (V).
Clearly supp(%#;) C pfl |(fu_i)ol, and 2 :=0(2) is d-closed, giving the desired
representation. ([

Remark 3.4. In fact, 0 (2) € Z(Spec(C), 2n — 1)g for any o € Hom(F, C): the
intersections T, N---NT,, N(p})*o (Z) are empty excepting T, N---NT, No (%)
fork <n—1and T, N---N Ty N(p%)*0(Z) for k < n — 2, which are both
of the expected real codimension. A trivial modification of the above argument
then shows that the #; may be chosen so that the o (#;) (and hence a(fz::; )) are in
Zp(Spec(C), 2n — 1)q as well. We shall henceforth assume that this has been done.

3B. Computing the KLM map. We begin by simplifying the formula (2.6) for the
regulator map.

Lemma 3.5. Let K C C and suppose Z € ker(d) C Zp(Spec(K), 2n —1)q satisfies

T,N---NT, NZ&"=2. (3.6)

Then
dzpy1 dzon-1

cna2)= [ tog(e) 2 A
Z¥NT, NN, Zn+1 22n-1

in C/Q(n).
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Proof. We have

n—1
coo@ =3 i [ R+ [ R+ S anit [ rgh
Zan — ZC
(n+k)
Rzz 1
= . So only the middle term remams. O

The terms |, zn R( ) _ | are zero by type, since dim¢ Z¢ =n — 1, and the |, Zin
are integrals over Z anrT,N---NT,

Zn+k—1

Lemma 3.7. For any 0 € Hom(F, C), T;, N---NT; N 0(@) =

Proof. From Theorem 3.3, o (%) is supported over pl._1 (|(fu=i)oD); that is, on o (#;)
we have z; - - - z,_; =¢”, and s0 T,N---NT, ,No(#;)=«,since b ¢ (=D Ry.
On o (%), zpn = fu1(@is. . zn-1) =1 =Pt -+ 1,1 (where t; = z;/(z;i — 1)),
and on 77, #; € [0, 1]. It follows that on T, N---NT;, N o (%), z, belongs to
R_ N (1 —¢*[0, 17), which is empty. O

We may now compute the regulator on the cycle of Theorem 3.3, independently
of the choice of the %;.

Theorem 3.8. cp.a(o(8)) =Li,(¢?) e C/Q(n).
Proof. By Lemmas 3.5 and 3.7, we obtain

dznt1 dzon-1
A A

cp.a(o(F) = / log(2,)

o (2)¥ENT;, N--NTy, n+1 2n-1

—1

n—1
dZn+l dZZn—l

+Z/ log(z,) A A ,
1 JoENT NN, Zn+1 Z2n—1

i= 1

in which (by the proof of Lemma 3.7) o (#))8' N T, N---NT;,_ = < for all i. The
remaining (first) term becomes

dty dt™
log(fu-1@)—F A" AN —x
zeRX" 7Y h Ly

dt dt,_
= Ny / log(1 = %11ty ) A
1€[0,11<(=D n Ih—1

= (=N)"~ 1// [log(l—ul)—/\ Ad””‘l
Up—1

= (—D)"N""'Li, (¢,

b
where uy—1 = ty1, Un—2 =0ty oty_1, oo, w1 =01t O

To write the image of our cycles under the Borel regulator, we refine notation
by writing o, (for o : @ — e2mia/Ny, focip=1— oPty -1, Ep, fg,, %5, etc.
So Theorem 3.8 reads cp g(0,(Ep)) = Li, (€?7iab/NYy "and one has the following
corollary.
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Corollary 3.9. Let N > 3 and set
A:={aeN|(@ N)y=land1<a<|5]};
then for any b € A,
& 2 (Bp) = (1, Lin (€M) s € R(n — 1B,

where m, : C — R(n — 1) is iIlm for n even, and Re for n odd. If N = 2, then
53[@ =0 for n even and Eg’R(El) =¢(n) e R(n—1) forn odd.

As an immediate consequence, we get a (rational) basis for the higher Chow
cycles on a point over any abelian extension of Q.

Corollary 3.10. The {Ep}pca span CH" (F, 2n — 1)g. Moreover, for any subfield
E CF, with ' = Gal(F/E), there exists a subset B C A (with |B| = d,(E)) such that
the {3, cr? Ep},p span CH"(E, 2n — 1)q.

Proof. In view of Lemma 2.8, for the first statement we need only check the linear
independence of the vectors v® in Corollary 3.9. Let x be one of the %qﬁ(N )
Dirichlet characters modulo N with x (—1) = (—1)""!; and let p, : C!4l — Cl4!
be the permutation operator defined by w(v); = vy.;, where @ € (Z/NZ)* is a
generator. Then the linear combinations

N
vX = Z X(b)y(h) — (% ; x(b)nn(Lin(ezm'“”/N)))

beA acA

are independent (over C) provided they are nonzero, since their eigenvalues y ()
under p, are distinct. By the computation in [Zagier 1991, pp. 420-422], if x is
induced from a primitive character yo modulo Ny = N /M, then (with u being the
Mobius function and 7( - ) the Gauss sum)

1
v = a1 {% w(d)xo(d)d" ! }I(XO)L(K), n),

the last two factors of which are nonzero by primitivity of xo; the bracketed term
5 T1 =1 prime, pia (1 = x0(p) " "), hence also nonzero.

The second statement follows at once, since the composition of Zyer with
CH"(E,2n —1)g < CH"(F, 2n — 1)g is a multiple of the identity. O

4. Explicit representatives

We finally turn to the construction of the cycles described by Theorem 3.3. Here
the benefit of using tl.N (at least, if one is happy to work rationally) comes to the
fore: it allows us to obtain uniform formulas for all NV, and to use as few terms
as possible. In fact, it turns out that for all n it is possible to take #3 = --- =
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#,—1 = 0. (While it is easy to argue abstractly that #,_; can always be taken to be
zero, this stronger statement surprised us.) For brevity, we shall use the notation
(fl(!» ua v)’ ccc fm(!a uv v)) for

(it u,0), oy oty 0) 1w, v € Py OT

all precycles are defined over F = Q(w), and we write £ := o”.

4A. Kicase (n=2). Let = (t/(t —1), 1 —&t,t"), as dictated by Theorem 3.3;
then all 97 2 = 0. In particular,

Nz =0 —¢&t,t")i/g-1=0=(1,0)=0

0, & -~NY_(_1 _
82‘%0_<%__1_1v§ )—<q,1)—0

So we may take # = 0 and T =
In contrast, if we took 2 = (¢/(t — 1), 1 —&t, 1), then 852 = (1/(1 — &), €71
and a nonzero #/-term is required.

and

4B. Ks case (n =3). Of course & = (t1/(t1 — 1), o/ (ta — 1), 1 —&t1t, 1], £)V).

Taking N
1( f 1 w—tHw—1" u)

W=_ 9 3 9 s T AT
o\ -1 1=¢q u—1)? v

we note that z, = 1/(1 — £¢y) implies to = (1 — &)1 /(1 —&1;) "' = 1) = 1 /&1y,
which in turn implies f>(¢(, ) = 0. Now we have

I 15 1 1 1
97 — 0% — <_ _,tN,tN) _ (_ L _)
3 tl—l tz—l ! 2 1—&£111=0 4] -1 l_gtl ! [{V
and ] ; ! 1
oM = -0 =—-2- = —1,—,tN,— =—0%.
: 37 2(1‘1—1 I=&1" 1" N

Therefore % = % + #1 is closed.

Remark 4.1. See [Petras 2008, §3.1] for a detailed discussion of the properties of
these cycles, especially the (integral!) distribution relations of [loc. cit., Proposition
3.1.26].

In particular, we can specialize to N = 2 to obtain

-2

~ f f 5 5 f 1 w—tHw—t>) , u

2F =2 —— = 1+nn, 12t , , U, —
(r1—1 n_1 Thizd 2)+(r1—1 1+, (u—1)?2 1

in Z[%(@, 5), spanning CH?(Q, 5)g = K5(Q)q, with
cp.0(2%) = —8Li3(—1) = 6£(3) € C/QQ3).
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4C. K7 case (n =4). Set

3] 1) 13 N .N .N
sz ) 9 71_ t1t2t39t 7t ’t )
<t1—1 Hh—1 -1 d P»2-9

1
W=+ ),
! n—1"n-1"1=&nt" w—D@—tNe) N 1) u)
yo_ (1 t 1 w—tNw—6)y N o u
D\ =U =1 1=nt" u—1D)u—1tVeN) u’ u’ VeV
1 2 1 (u—Du—1t't u u o 't
gy L[ 1 =ty —utyN)
T2\ 11— w—uDHw—-1

N -N N
(w—1")Yu—vt;") vy vou
(u — v)? o tNu v

Direct computation shows
07 = -0 7 = —a5°m\V = —a5em?,
41 = =303, + 305 — 0P + 3,
ons = -0 = LoD + Losew®,

which sum to zero.
Alternately, we can take

f t 1 w—tMHw—tdy tV  u
%= _1’ _1’1_ ) _ _NN s T 9 T N.N
3} 5) Enty u—Dw—1"ty) u u 't
f 1 (u—vth)(u—vth) vth v ou
%: ’ 9 ) ’ ,_7'-)_1 .
th—1 1—51‘1 (u—v)2 u t{vu v
Writing

1 5] 1 N .N 1
y: 9 9 9t 7t ’_ 9
! (t1—1 e N
’ f 1 w—tMHu—-" V1
= 9 9 7_7_7M 9
T\ -1 1-¢1 u—1) u’ tVu

one has 02 = —¥1, 0| = — >+ 1, 0#> = ¥5; so again % is a closed cycle.
We present the general n construction next, but include the n = 5 case as an
appendix (as the authors only saw the pattern after working out this case).
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4D. General n construction (n > 4). To state the final result, we define

4] Ih—1 N N
= =&ttty ),
(l‘l—l th—1—1 §h 4 " 1)
Wim
1-—n_3 1
=Dy fn—2 1
T on=3 \n—-1""""ty =1 1—Et-tyo
=t =1ty oY N, u )
w—tN otV =13 T w7
1 n—1
. _q1yi—Tag (D)
Wai=—= 3 (=Y,

i=1

where for 1 <i <n -2,

N N
W(l) - ( I3 th—3 1 (u - t] v) e (u - tn_3v)
=T s = U L=ty =t N o) — o)t
vth v Ut,iv_3 u
—_—— e =, s w v v—1],
u u u (SRR S

(with v/u occurring in the (n +i — 1)-st entry4) and

(n—1)
7/2 =
( n h—3 1 (u _thv) e (u _t,/,V,3v)
n—1""""ty =1 1=ty 3 =17Vt o)~ — v)n2’

N N

v vl 3 v u |

T g e ey 5 N N , —y U — .
u Uoout] et v

Theorem 4.2. & = % + #| + #5 yields a closed cycle, with the properties de-
scribed in Theorem 3.3. (In particular, this recovers the second K7 construction
and the Ky construction above, forn =4 and 5.)

Proof. Writing

s ooy s ---,t_’
f—1 ha—1 1=801- -1, nztfv---t,iv_z

n th—2 1 1
%::a,?%:( z 1, N |
P=09_#y" (i=1,....n—1),and 2; ;= 927," (j=1,....,n—2), one
computes that 32 = (—1)" 1%,
4That is, either before (i = 1), after (¢ = n — 2), or in the middle of the sequence
vtfv/u, vtév/u, ey vt’]lv_3/u.
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n—1 n—1
N = (=" A+ Y (DN =(=D)"(n =%+ Y _(-D'%,
i=1 i=1

and a%@ =% + Z?;f(—l)j%’j. We have, therefore,

—1n=2
(=D, (4.3)

and for each i > j, the reader may verify that .2; ; = 2 ; 1, so that the terms on
the right-hand side of (4.3) cancel in pairs. U

4E. Expected implications for torsion. One of the anticipated applications of the
explicit AJ maps of [Kerr et al. 2006; Kerr and Lewis 2007] has been the detec-
tion of torsion in higher Chow groups. While they provide an explicit map of
complexes from Zﬁ (X, *) to the integral Deligne cohomology complex, the fact
that Z[{é(X ,®) C ZP(X, o) is only a rational quasi-isomorphism leaves open the
possibility that a given cycle with (nontrivial) torsion KLM-image is bounded by
a precycle in the larger complex. So far, therefore, any conclusions we can try
to draw about torsion are speculative, as they depend on the (so far) conjectural
extension of the KLM map to an integrally quasi-isomorphic subcomplex.

Let us describe what the existence of such an extension, together with the cycles
just constructed, would yield. Let f : Z/NZ — Z be a function which is zero
off (Z/NZ)*, with f(—b) = (—1)" f(b), and write

Then (fixing o (w) = ¢y = e2m/NYy the cycle

N-1

ZH(N) =8, ) [(b)o(Z}) € Z5(Q(Ln), 2n — 1)
b=0

is integral. Working up to sign, we compute (in C/Z) by Theorem 3.8

. te N N—1 é.kb
TH(N) = ———cp(Z}H(N) = ——— Y f(b)) L
)= G ey 2 L
ienN” 1 +e, N" b
= Soni Zf( ) Z =—!Zf(b>Bn<N>,
keZ\{ 0} b=0
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which is evidently a rational number.> This (nonconjecturally) establishes that

Z?.(N ) is torsion. Under our working (conjectural!) hypothesis, if ‘E? (N) =
j:A'}(N )/ C;’(N ) in lowest form, we may additionally conclude that the order of
Z?(N) is a multiple of C;(N).

For example, taking N =5, n = 2, and f(l) =f@ =1, f2)=f3) =0,
we obtain Z2 (5) € Z3 (@2(\/_) 3) with ‘L’f(5) 120 This checks out with what is
known (cf. Proposmon 6.9 and Remark 6.10 of [Petras 2009]), and would make

f(S) a generator of CH2(Q(+/5), 3).

For N =2, f(1)=1,and n =2m (i.e., CH*"(Q, 4m—1)), the above computation

simplifies to

+¢ 22m—2 1

2m 2m

1= ()

77" )] amn B3
_+2m-3)2*" 1)

2m s

2(2m)!
which yields » 54 1440 440, 2031160, 486338540 form =1, 2, 3, 4, respectively. It is known that
CH?*(Q, 3) = 7 /247 [Petras 2009], but the other orders seem unexpectedly large

and should warrant further investigation.

Appendix: Koy case (n =5)

Begin by writing

2 2 & I4 N N N N
Z = , , , A =énnn, ', 6,15, 1, |,
<t1—1 Hh—1 t35—1 t4—1 12722300

t t t 1
%=l ! ) 2 ) 3 ) b}
2 h—1 6—-1 t3—1 1=E&t1t3
u—rpu—t)—r) 1’ 1’ ti )
w—1D2u—tdtd) " u’u’u tfvtévtév

7%”:( o b L @=qv)u—1'v) v v v . 1)

2 n—1"n—1"1-tnn" w—tNtdv)w—v) u” u " u vthtéV’
7/(2)—( o h L @="v)u=tv) v v v . 1)

2 n—1"n—1"1-énn" u—tNtdv)w—v)" u "u’ u vthtZ{V’
"/%3):( noon L @=v)=v) v v v u v—l)

2 n—1"n—1"1-tnt" @—tNtVv)w—v)" w = w "u veNel’ '

5Bn (x)= J -0 (")B n=J is the n-th Bernoulli polynomial (and {B } the Bernoulli numbers).



190 MATT KERR AND YU YANG

7/(4)— I3 15 1
2 l‘l—l’l‘z—l’l—gtll‘z’

(u — t{vv)(u — tévv) vth Utév v u 1)
s T s T y =, U — )
w—vt; VN w—v)3 w T ou u) ) v

1
Wy = 5(%(1) _ 7/2(2) + %(3) _ %(4))'

To compute the boundaries, introduce

| 4 13 N N N )
%]z 9 ) ) t 9t 7t sy TN NN
(r1—1 h—1 =1 1—&nne’ ' 72737 (NN
1 w—tNu-0) 11 ' u )
t1—1 z2—1 L—énty” u—tNeyu—10"u" w’ u’ N )’
1 u—tV)w—1d) ﬂ lﬂ u )
t1—1 t2—1 L—ent’ w—tNeyw—1)" w’w’ uw’ (NeV )

( 1 =M= f ' 1 u

Hh—1 t2—1 L—énty” u—tNeyu—1" u’ w’ u” Vel
([ n L === oV g1 .
n—1’ t2—1 1-£n1y’ (u—1)> Culu )
» 81 1 (u—thv)(u—tl_Nv) v thv v ou |
= 9 9 7_’ 7_’_’v_ 9
R P R s (u —v)2 wou v
» 1 1 (u—thv)(u—thv) vth vV v u |
= ) ) y T Ty TN s > U )
T\ -1 1—gq (1 —v)? wul N
» 1 1 (u—thv)(u—tl_Nv) vth vovou 1
= ) ) sy T s T AT , U—
S PR =) (1 — )2 w uth w v

Then 3% = %, Wi = U + S(= W + U — Us + U5), V5" =~ + %,
NP =~V + U, 00, = — V5 + Uy, and dW,Y = Us — 11 + 5 — ¥5; and s0
% is closed.

As for n = 3, we obtain a generator for CH>(Q, 9)g = Ko(Q)q by setting N =2
and £ = —1; the integral cycle 22 has cp.o(27) = 15¢(5).
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Algebraic K-theory and
a semifinite Fuglede—-Kadison determinant

Peter Hochs, Jens Kaad and André Schemaitat

In this paper we apply algebraic K-theory techniques to construct a Fuglede—
Kadison type determinant for a semifinite von Neumann algebra equipped with
a fixed trace. Our construction is based on the approach to determinants for
Banach algebras developed by Skandalis and de la Harpe. This approach can be
extended to the semifinite case since the first topological K-group of the trace
ideal in a semifinite von Neumann algebra is trivial. Along the way we also
improve the methods of Skandalis and de la Harpe by considering relative K-
groups with respect to an ideal instead of the usual absolute K-groups. Our
construction recovers the determinant homomorphism introduced by Brown, but
all the relevant algebraic properties are automatic due to the algebraic K-theory
framework.

1. Introduction

One first encounters the relationship between algebraic K-theory and determinants
in the isomorphism between the first algebraic K-group of the complex numbers
and the complex multiplicative group. This isomorphism is implemented by the
determinant of an invertible matrix. In the present paper we will expand on this
relationship in the context of Banach algebras and, in particular, we will see how to
recover the Fuglede—Kadison determinant for semifinite von Neumann algebras as
introduced by Brown [Brown 1986; Fuglede and Kadison 1952]. Brown based his
construction on ideas of Grothendieck [1956] and Fack [1982; 1983], who defined
a determinant function as an analogue of the product of the eigenvalues up to a
given cutoff.

The main advantage of applying an algebraic K-theory approach to determinants
is that all the algebraic properties of determinants follow as a direct consequence
of the definitions. Moreover, when determinants are interpreted as invariants of
algebraic K-theory, they can be used to detect nontrivial elements in these generally
rather complicated abelian groups. On the other hand, basing the construction of
determinants purely on functional analytic methods requires a substantial amount

MSC2010: 46L80.
Keywords: algebraic K-theory, semifinite von Neumann algebras, determinants.
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of work for proving the main algebraic properties, and the more conceptual frame-
work provided by algebraic K-theory is entirely lost.

The key property that we investigate in this text is the relationship between the
operator trace, the logarithm and the determinant as expressed by the identity

log(det(g)) = Tr(log(g)).

In order to expand on this basic relationship in a K-theoretic context one considers
a unital Banach algebra A together with the homomorphism

GL(A) — GL'P(A),

where GL(A) denotes the general linear group (over A) equipped with the discrete
topology, and GL'P(A) is the same algebraic group but with the topology coming
from the unital Banach algebra A. Passing to classifying spaces and applying
Quillen’s plus construction [1973], one obtains a continuous map

BGL(A)" — BGL"P(A)

(which is unique up to homotopy). By taking homotopy fibres and homotopy
groups this gives rise to a long exact sequence of abelian groups,

K\ (4) — = KIFI(A) —— K1*(4) — KLP(4),
which is related to the SBI-sequence in continuous cyclic homology by means of
Chern characters, resulting in the commutative diagram

K (A) —— K(A) —— K%(4) — KiP(A)

ch“’pl ch™ l chalgl ch'p l (1.1)

HP, .1 (A) —— HC,_(A) —2— HN,(A) —— HP,(A)

of abelian groups; see [Karoubi 1987; Connes and Karoubi 1988].

In this paper we focus on the low degree (and more explicit) version of this
commutative diagram. More precisely, supposing that the unital Banach algebra
A comes equipped with a tracial functional 7 : A — C, one obtains an invariant
of the continuous cyclic homology group HCy(A), and hence by precomposition
with the relative Chern character we obtain a homomorphism

Toch™: K{el(A) — C.

Supposing furthermore that K {OP(A) = {0}, it follows from the commutative di-
agram in (1.1) combined with Bott-periodicity in topological K-theory that the
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character 7 o ch™ induces a homomorphism
det, : K"(A) — C/ @i -Im(2)),

where 7 : K(EOP(A) — C is the character on even topological K-theory induced by
our tracial functional. In this way we recover the determinant defined by Skandalis
and de la Harpe [de la Harpe and Skandalis 1984; de la Harpe 2013].

We extend this framework for defining determinants by incorporating that the
tracial functional T might only be defined on an ideal J sitting inside the unital
Banach algebra A (where J is not required to be closed in the norm-topology
of A). In this context, we assume that 7 : J/ — C is a hypertrace in the sense
that t(ja) = t(aj) for all a € A, j € J. The correct K-groups to consider are
then relative versions of relative K-theory and algebraic K-theory, and similarly
one considers relative versions of the cyclic homology groups appearing in the
SBI-sequence (we do not use relative topological K-theory because of excision).
The idea of applying relative K-groups in relation to determinant-type invariants
of algebraic K-theory was (among other things) developed in the Ph.D. thesis of
the second author [Kaad 2009].

In the setting of a semifinite von Neumann algebra N equipped with a fixed
normal, faithful and semifinite trace t : N; — [0, oc], it is relevant to look at the

trace ideal |
Z (N):={xeN:t(x|) <oo}

sitting inside the von Neumann algebra N. Using the facts that K ;Op (,,iﬂfl (N)) = {0}
and Im(z : K(t)()p(.,iﬂr1 (N)) — C) C R, we obtain an algebraic K-theory invariant!

det, : K"8(Z£(N), N) - C/iR,

which recovers the Fuglede—Kadison determinant in the context of semifinite von
Neumann algebras; see [Brown 1986; Fuglede and Kadison 1952]. We emphasize
one more time that all the relevant algebraic properties of this determinant follow
immediately from its construction. Moreover, we show that det; is given by the
explicit formula

det; (g) = t(log(Ig)) +iR (g €GL,(N), g—1, € My (L (N)).  (1.2)

Here, 7 is extended to M, (N) in the obvious way by taking the sum over the
diagonal.

Recently, the Fuglede—Kadison determinant was generalized in another direction
by Dykema, Sukochev and Zanin to operator bimodules over II;-factors [Dykema
et al. 2017]. They define this determinant using functional analytic methods via an

n the main text, we denote this map by dgfr, and use Ehe notation det; for the composition with
the isomorphism C/iR = (0, o) given by z + iR —> ¢(@+2)/2,
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expression analogous to (1.2). It then requires an elaborate argument to prove that
this determinant is multiplicative [Dykema et al. 2017, Theorem 1.3].

The present paper is organized as follows. In Section 2 we introduce the relevant
K-groups and in Section 3 we develop the low degree version of the long exact
sequence which compares relative algebraic K-theory to topological K-theory. In
Section 4 we introduce the low degree version of the relative Chern character in
the presence of an ideal J/ € A. In Section 5 we present our relative approach
to the construction of Skandalis—de la Harpe determinants. In Section 6 we show
that the first topological K-group of the trace ideal in a semifinite von Neumann
algebra is trivial, and in Section 7 we apply this fact to construct the semifinite
Fuglede—Kadison determinant.

2. K-theory for relative pairs of Banach algebras

2.1. Definition. Let (A, || -4||) be a unital Banach algebra and J C A be a (not
necessarily closed) ideal. We call (J, A) a relative pair of Banach algebras when
the following hold:

(1) J is a Banach algebra in its own right. Thus, J is endowed with a norm
Il : J — [0, co) such that (J, ||-|| ;) is a Banach algebra.

(2) Forall a,b € A and j € J we have

lajbll; < llalialjll; 164 and il <1jll;-

2.2. For a relative pair of Banach algebras (J, A) we obtain for all n € N a relative
pair of Banach algebras (M, (J), M,,(A)), where the n x n matrices in M, (J) are
equipped with the norm || [l sy := ¢ =1 ljxtll s, and similarly for M, (A).

2.3. The rest of this section is a reminder on various K-groups for relative pairs
of Banach algebras. A standard reference for topological K-theory is [Blackadar
1998]. Very good treatments of algebraic K-theory can be found in [Rosenberg
1994; Weibel 2013]. The probably less common relative K-theory of Banach alge-
bras has been introduced in [Karoubi 1987; Connes and Karoubi 1988].

2.4. Definition. Let A be a Banach algebra. If A has a unit, we denote the group
of invertible elements in M, (A) by GL,(A). If A has no unit, we define for all
n € N the group

GL,(A) :={g € GL,(A") : g — 1, € M, (A)} C GL,(AT),

where AT is the unitization of A and 1, the unit of GL,,(A™). The group GL,(A)
becomes a topological group when equipped with the topology coming from the
metric d(g, h) := |lg — hllp, (a)-



ALGEBRAIC K-THEORY AND A SEMIFINITE FUGLEDE-KADISON DETERMINANT 197

2.5. Definition. The fopological K-groups of the pair (J, A) can be defined to be
the usual topological K-groups of J, i.e.,

KP(J, ) :=K>"J)  (=0,1).

This is due to the fact that topological K-theory satisfies excision [Blackadar 1998,
Theorem 5.4.2]. For our purposes, it will be useful to know another realization of
K(t)OP(J ), namely K;OP(J ), which may be defined by

Ky"(J) = lim m1(GL,(J). 1,) = lim {[y] € C¥(S', GLy(/))/ ~ : (1) = 1,

where the equivalence relation ~ is given by smooth basepoint preserving homo-
topies and the group operation is given by the pointwise product of invertible ma-
trices; see [Blackadar 1998, Section 9.1].

The fact that K(t)OP(J ) and K;OP(J ) are isomorphic is known as Bott periodicity,
[Blackadar 1998, Theorem 9.2.1]. An explicit isomorphism is given by

Br: KyT()) > Ky (D), lel=[f1m [vey; '],

where e, f € M, (JT) are idempotents with e — f € M, (J). The so-called idem-
potent loops y, are defined by y,.(z) :=ze+1, —e forz € S'.

2.6. Definition. The first algebraic K-theory of the pair (J, A) is defined by
K1®(J. A) = lim (GLy())/IGL, (), GLy(A)]),
where
[GL,,(J), GL,(A)] := (ghg~'h™" : g € GL,(J), h € GL,(A))
is a normal subgroup of GL,(J).

2.7. Definition. Let A be a Banach algebra. For all n € N, we let R,(A) denote
the group of smooth paths o : [0, 1] = GL,(A) such that o (0) = 1,. The group
operation is given by pointwise multiplication.

Now, let (J, A) be a relative pair of Banach algebras. From the compatibility of
the norms on J and A (see Definition 2.1) it follows that

oro lt7 e R, (J) (0 € Ry(J), T € Ry(A)).
We thus have the normal subgroup
[Ru(J), Ru(A)]:=(ot0~'t7" |0 € Ry(J), T € Ry(A))

of R,(J). On R, (J) we may consider the equivalence relation ~ of being homo-
topic with fixed endpoints through a smooth homotopy. Denote the quotient map
by g : R,(J) > R,(J)/~. We define

KI(J, 4) = lim ((Ru())/ ~)/q([Ra(]). Ru(A)))).
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3. The comparison sequence

3.1. Definition. We define the following group homomorphisms:

3:KyP(J) — K, A), [yl [t > y (1),
6:K*(J, A) — K;“g(J, A), 0] [o(D)71,
P K, A) = K1), [g] [g].

3.2. Lemma. The sequence
Ky —2 K, A) —2 KM, A) L5 KIP() —— 0

is exact.

Proof. The only nontrivial thing to check is exactness at K {el(J , A). It is clear that
6 0 3 = 0. On the other hand, let o € R, (J) and suppose that [0 (1)~ 1] is trivial in
Kflg(J, A). Then there are g; € GL,,(J) and h; € GL,,(A) such that

o) =] [lgi hl.
i=1

By Whitehead’s lemma [Rosenberg 1994, Theorem 2.5.3], we may assume that g;
and /; lie in the connected component of the identity. Thus, there are smooth paths
o; € R, (J) connecting 1,, and g;, and B; € R,;,(A) connecting 1,, and &;. Then

n

v :=[[les, Bil € [Ru(J), Ru(A)]
i=1
is a path from 1,, to o(1)~!. Hence y := o - t~! is a smooth loop at 1,, and

a([y]) = [o] since [71] is trivial in K{el(J, A). O

4. The relative Chern character

4.1. Let (J, A) be a relative pair of Banach algebras. By J ®, A we denote the
projective tensor product of J and A. The compatibility of the norms on J and A
ensures that the multiplication operator

m:JQrA—J, j®ar> ja

1s bounded.

4.2. Definition. We define the Hochschild boundary map

b:J @ A—J, j®ar ja—aj
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and the zeroth relative continuous cyclic homology of the pair (J, A) by
HCy(J, A) := J/Im(b).

Since Im(b) C J might not be closed we regard HCy(J, A) simply as a vector space
without further topological structure.

4.3. Definition. Recall from 2.2 that (M,,(J), M,(A)) is a relative pair of Banach
algebras for all n € N. We thus have for each n € N the relative continuous cyclic
homology groups HCy(M,,(J), M,,(A)), and we may consider the direct limit of

vector spaces
lim HCy(M,,(J), M, (A)).
n—>oo

This direct limit is linked to HCy(J, A) via the linear map

TR : lim HCy(M,(J), M,(A)) — HCy(J, A),
n—oo

which is induced by the “trace” TR : M, (J) — J mapping a matrix to the sum
of its diagonal entries. To verify that TR is indeed well-defined at the level of
relative continuous cyclic homology, one may translate the proof of [Loday 1998,
Corollary 1.2.3] to our current setting.

4.4. Our next task is to construct the relative Chern character. This will be a group

homomorphism
ch™: KI¥1(J, A) — HCy(J, A)

induced by 1
d
R,(J)>0 > TR(/ 49 51 dt) el
0 dt

We shall express ch™ as the composition of two homomorphisms: a generalized

logarithm
log : Kfel(J, A) — lim HCy(M,(J), M,(A))
n—oo

and the generalized trace as defined in Definition 4.3. We now introduce the gen-
eralized logarithm:

4.5. Proposition. There is a well-defined homomorphism
rel : ! do —1
log: K" (J,A) = lim HCy(M,(J), M,(A)), [o]— —o dt].
n— 00 o dt
Proof. Suppose first that og, 01 € R, (J) are homotopic through a smooth homotopy
H :[0, 1] x [0, 1] — GL, (J) with fixed endpoints. So, H(t, j) =0o;(t) for j =0, 1.

We will show that

1 1

d d

ﬂal—ldt—/ 0657 dt € Im(b),
o dt o dt



200 PETER HOCHS, JENS KAAD AND ANDRE SCHEMAITAT

where b : M, (J) ®, M, (A) - M, (J) is the Hochschild boundary map associated
to the relative pair (M,,(J), M,,(A)).
Define

L(H):= /f—H ® H Vdt ds.

We consider L(H) as an element of M,,(J) @, M,(A) (in fact we even end up in
M, (J) ®, M, (J), which we may then map to M,(J) ®, M, (A) via the inclusion
M,(J) - M,(A)). Applying the Hochschild boundary b, we see that

b(L(H)) = — /f 1 2y aras

An easy calculation shows that

O s OH ] _OHOH oy
[BtH ’BsH T 9t as | 9s ot

() (3
_Bt(asH) 8s<8tH )

By the fundamental theorem of calculus, we conclude

1 pl
b(L(H)):f/ 9 aa d dt—// . dtds

_/ (3H(z DH(, 1) ——(t 0)H (1,0)~ )
0

_/ (22 50,97 = 20,59 H0,597) ds
0 s

1
_ [ doy -1, [ dog -1
= A T o, dt fo_dt (o dt.

The second term in the next to last line of our computation vanishes, since our
homotopy has fixed endpoints.
We have thus proved that the assignment
1 do 3
o dt
descends to a well-defined map log : (R,(J)/~) — HCy(M,,(J), M,,(A)). Further-
more, since log is compatible with direct limits, we obtain a well-defined map

log: R,(J) = M,(J), o Lt

log: lim (R,(J)/~) — lim HCo(M,(J), Mu(A)).

We now show that log([og - 01]) = log([oo]) + log([o1]) for all oy, o1 € R,(J).
Choose a smooth function ¢ : R — [0, 1] such that

¢((—00,0) = {0} and ¢([3.00))={1}.
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Define the smooth function ¥ : R — [0, 1] by ¥/(¢) := ¢(¢ — 1). We then have that
opo1 ~ (opo ) - (01 09),

and it thus suffices to verify that log((cg o ) - (o1 0 ¢)) = log(og) + log(o;). But

this identity follows by a change of variables:

log ((c00¥) - (o1 0¢))
B /1/2 d(oy 0 p)
N 0 dt
=log(op) + log(oy).

1
(alo¢>—1dr+f d000Y) (i oy ar

1/2 dt

To finish the proof of the proposition we only need to show that log([cto~']) =
log([t]) whenever o € R,,(A) and 7 € R, (J). To this end, we consider the smooth
homotopy with fixed endpoints

H(s,t):=0(f(s,t)t()a(f(s, t))_l, fG,t)y:=ts+1—s=s@—1)+1

between oto ! and o (1)to(1)~'. This proves that

log([oto ') = log([o ()To (1)~']) = log([z]),

where we have used the fact that o (1)xo (1)~! and x determine the same element
in HCo(M,,(J), M, (A)) for all x € M,,(J). O

4.6. Definition. By the relative Chern character ch™ : K {el(J ,A) —> HCy(J, A),
we understand the homomorphism obtained as the composition

1
ch™ : K{#(J, A) —= lim HCo(M, (J), Ma(A)) —— HCo(J, A)
of the generalized logarithm and the generalized trace.

5. The relative Skandalis—de la Harpe determinant

5.1. Analogous to the determinant of Skandalis and de la Harpe, we are now in
a position to define such a determinant purely by means of K-theory for relative
pairs of Banach algebras. In particular, we are able to deal with the presence of a
not necessarily closed ideal J inside a unital Banach algebra A.

5.2. Definition. Let (J, A) be a relative pair of Banach algebras. In this section we
assume 7 : J — C to be a continuous linear functional which additionally satisfies

t(ja) =t(aj) (aeA,jel).

The latter property means that t is a hypertrace. For such a trace there is a well-
defined map (also denoted by 7):

T :HCy(J, A) — C, j+Im®) — t(j).
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Furthermore, we let
F:=—toch™: Kfel(J, A) — C,

with ch™ as in Definition 4.6. Note that 7 is a homomorphism into the additive
group C.

5.3. Recall (Lemma 3.2) that there is an exact sequence in relative K-theory:
K1) —2 K, A) —2 K™, A) L K1) — 0.
This allows us to define the relative Skandalis—de la Harpe determinant

det, : Ker(p) — C/Im(% 0 d)
by —
det; ([g]) :=T([0]) +Im(T 0 d),

where [0] € KIl(J, A) satisfies 0([0]) = [o(1)"'] =[g] > Kflg(J, A). Such a lift
always exists since Ker(p) = Im(6). Furthermore, this assignment is well-defined
since if [0g] and [o] are lifts of the same element [g] then

[o0][o1]7" € Ker(9) = Im(9).

It follows that T ([og]) = T([o1]) modulo Im(T o 9).
Compare this with the definition on page 245 of [de la Harpe and Skandalis
1984], where absolute K-theory is used rather than relative K-theory.

5.4. Lemma. We have the following equality of subgroups of (C, +):
2mi -Tm(z : KyP(J) — C) =Im(F 03 : KyP(J) — C).

Byt: K(SOP(J ) — C we understand the map induced by t.

Proof. The claim follows from commutativity of the following diagram:
KyP(J) —>i’ KyP(J)

\ & (55)
—2mi-t

C

By B; we mean the Bott isomorphism map, as in Definition 2.5.
To prove commutativity of (5.5), we note that for an idempotent f € M,,(J 1),

1
ch™ (@ ([y]) = TR(Zm‘/ T (e 411, — f) dt) = 27i TR(f).
0
If now e, f € M, (J ") are idempotents satisfying e — f € M, (J), then
T(d(Bs([e]l = [f])) = f(a([)/e)/f_l])) = —2ni-1(TR(e — f)).

So (5.5) indeed commutes. U
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5.6. Together with Lemma 5.4 we see that the following diagram commutes:

KSP() —2 s K®(J, A) — s Kerp —2—— 0

- ks

2mi - Im(1) C C/Q@mi-Im(z))

In the next section this will be applied to the case that the kernel of p is all of
K f‘lg(J , A). In that case we get a determinant

det, : KM8(J, A) — C/(27i - Im (2)).

6. Topological K-theory of trace ideals

6.1. In the following, N C .£(H) always denotes a semifinite von Neumann alge-
bra equipped with a fixed normal, faithful and semifinite trace t : Ny — [0, oco]. A
good reference for traces on von Neumann algebras is [Dixmier 1981, 1.6.1, 1.6.10].

6.2. Welet |- || : N — [0, oo) denote the operator norm on N and we let
ZYN):={xeN:z(x]) <00} CN

denote the trace ideal in N. We recall that £} (N) C N is indeed a *-ideal and
that .2 (N) becomes a Banach x-algebra in its own right when equipped with the
norm

Xl 00 := Il +7(x)  (x € ZH(N)).
Moreover, it holds that (.i”tl(N ), N) is a relative pair of Banach algebras in the
sense of Definition 2.1.

6.3. For each n € N we have that M,(N) C Z(H®") is a semifinite von Neu-
mann algebra. Indeed, we may define the normal, faithful and semifinite trace
T, : M,(N)+ — [0, 00] by 1,(x) := 2?21 7(x;;). The inclusion Mn(.iﬂr1 (N)) —>
M,,(N) then induces an isomorphism

M, (L} (N)) = 2} (M (N))

of Banach x-algebras. This isomorphism is, however, not an isometry since (by
convention) M, (.frl (N)) is equipped with the norm defined as in 2.2.

6.4. Lemma. The group GL, (£} (N)) is path connected for all n € N. In particu-
lar, it holds that ©p, 1

K7 (Z (N)) ={0}.
Proof. Since M, (frl (N) = frln (M,(N)) by 6.3, it suffices to verify the lemma
for n = 1. Thus, let g € GL;(.Z}(N)). Using polar decomposition we may suppose
that g*g =1 = gg™ or that g = |g|. In the first case we may find an x € .ZTI(N)
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with x = —x™ such that g = ¢*. In the second case we may find an x € .Zrl (N)
with x = x* such that g = ¢*. In both cases we obtain the smooth path ¢ > ¢'*
connecting 1 and g. ([

7. The semifinite Fuglede—-Kadison determinant

7.1. We are now going to use K-theory for relative pairs of Banach algebras to
define our determinant. From 6.2 we know that (.fr] (N), N) is a relative pair of
Banach algebras and that 7 : ,Zfl (N) — C is continuous with respect to || - ||| oo-
Since 7 : .,%Tl (N) — C is moreover a hypertrace, we get (as defined in 5.6) a

determinant ~ "
det; : K} 8(Z}(N), N) — C/(@2xi - Im(1)).

Note that our determinant is defined on all of K ‘flg (.fr] (N), N) by Lemma 6.4.
7.2. Lemma. We have
Im(z: Ky "(Z}(N)) = C) C R,

Proof. Since M, (.ftl (N)*) C M,(N) is closed under holomorphic functional cal-
culus for all n € N, every idempotent in M, (.i”rl (N)™) is similar to a projection
in M, (.,?Tl (N)™); see [Blackadar 1998, Proposition 4.6.2]. And for projections
P, q € M,(ZH(N)T) with p — g € M, (Z}(N)) we see that

([pl—I[g)) =t (TR(p —q)) € R,

where we have used that all the diagonal entries (p — q) ;; are self-adjoint. (]

7.3. We thus have a well-defined homomorphism
det, : K8 (L (N), N) > C/iR,  det; : [g] > F(lo]) +iR,

where [o] € K{el(frl (N), N) is any lift of [g], by which we mean that 8([c]) =
[oc(D)~'1=1g].

Note that there is an isomorphism of abelian groups
C/iR— (0,00),  z+iRr> "D,
where 91(z) denotes the real part of z € C. This gives rise to the following definition:
7.4. Definition. We define the semifinite Fuglede—Kadison determinant
det, : K"8(Z (N), N) - (0, 00)

by B
det: ([g]) := em(detr([g])) )

More explicitly, we have
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1
det; ([g]) =exp((NRoT)[o]) = exp(—(%ﬁ oToO TR)( ‘ji—(tro_l dt)),
0
where [o] € Kfel(.frl (N), N) is any lift of [g] € Kflg(.frl (N), N), meaning that
[o(D)~ 1] =gl.
7.5. Proposition. The semifinite Fuglede—Kadison determinant det; has the fol-
lowing properties:

(1) det, ([gh]) = det, ([g])det, ([h]) for all g, h € GL,(ZL}(N)).
(2) det,([hgh~']) = det,([g]) for all g € GL,(Z}(N)) and h € GL,(N).
(3) det;([e*]) = (expoN ot o TR)(x) for x € M, (.ZTI (N)).
These B{gperties follow directly from the definition of the determinant and the
fact that det; is a homomorphism.

In [Brown 1986, Section 1], the equality in the following proposition is the
definition of the determinant.

7.6. Proposition. The following explicit formula holds:
det; ([g]) = "™, (g € GLi(Z (V).

Proof. Let g € GL1(.§€Il (N)). Using the polar decomposition g = u|g|, we may

compute
det; ([g]) = det; ([u])det. ([|g])-

Since u € GL; (.fr] (N)) is unitary in the ambient von Neumann algebra, we may
write u = e'* for some x € frl (N) with x =x™*. Moreover, we have log|g| € fr] (N).
By Proposition 7.5(3) we thus have that

det; ([g]) = @) | rdoglgl) _ ,vlloglgh 0
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Algebraic K-theory of quotient stacks

Amalendu Krishna and Charanya Ravi

We prove some fundamental results like localization, excision, Nisnevich de-
scent, and the regular blow-up formula for the algebraic K-theory of certain
stack quotients of schemes with affine group scheme actions. We show that the
homotopy K-theory of such stacks is homotopy invariant. This implies a similar
homotopy invariance property of the algebraic K-theory with coefficients.

1. Introduction

The higher algebraic K-theories of Quillen and Thomason—Trobaugh are among the
most celebrated discoveries in mathematics. Fundamental results like localization,
excision, Nisnevich descent, and the blow-up formula have played pivotal roles in
almost every recent breakthrough in the K-theory of schemes; see, e.g., [Cortifias
2006; Cortifas et al. 2008; Schlichting 2010]. The generalization of these results
to equivariant K-theory is the theme of this paper.

The significance of equivariant K-theory [Thomason 1987a] in the study of the
ordinary (nonequivariant) K-theory is essentially based on two principles. First, it
often turns out that the presence of a group action allows one to exploit representation-
theoretic tools to study equivariant K-theory. Second, there are results (see, for
instance, [Merkurjev 2005, Theorem 32]) which directly connect equivariant alge-
braic K-theory with the ordinary K-theory of schemes with group action. These
principles have been effectively used in the past to study both equivariant and
ordinary algebraic K-theory; see, for instance, [Joshua and Krishna 2015; Vezzosi
and Vistoli 2003]. In addition, equivariant K-theory often allows one to understand
various other cohomology theories of moduli stacks and moduli spaces from the
K-theoretic point of view.

However, any serious progress towards the applicability of equivariant K-theory
(of vector bundles) requires analogues for quotient stacks of the fundamental results
of Thomason—Trobaugh. The goal of this paper is to establish these results, so that
a very crucial gap in the study of the K-theory of quotient stacks can be filled.
Special cases of these results were earlier proven in [Krishna 2009; Krishna and

MSC2010: primary 19E08; secondary 14L30.
Keywords: algebraic K-theory, singular schemes, groups actions, stacks.
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Dstveer 2012; Heller et al. 2015]. Here is a summary of our main results. The
precise statements and the underlying notation can be found in the body of the text.
We fix a field k.

Theorem 1.1. Let X be a nice quotient stack over k with the resolution property.
Let K denote the (nonconnective) K-theory presheaf on the 2-category of nice quo-
tient stacks. Let Z < X be a closed substack with open complement U. Then the
following hold.

(1) There is a homotopy fibration sequence of S'-spectra
K(X on 2) - K(X) - KU).

(2) The presheaf X — K(X) satisfies excision.
(3) The presheaf X — K(X) satisfies Nisnevich descent.
(4) The presheaf X — K(X) satisfies descent for regular blow-ups.

Theorem 1.2. The nonconnective homotopy K-theory presheaf KH on the 2-cate-
gory of nice quotient stacks with resolution property satisfies the following.

(1) It is invariant under every vector bundle morphism (Thom isomorphism for
stacks).

(2) It satisfies localization, excision, Nisnevich descent, and descent for regular
blow-ups.

(3) If X is the stack quotient of a scheme by a finite nice group, then KH (X) is
invariant under infinitesimal extensions.

The following result shows that K-theory with coefficients for quotient stacks is
homotopy invariant, i.e., it satisfies the Thom isomorphism. No case of this result
was yet known for stacks which are not schemes.

Theorem 1.3. Let X be a nice quotient stack over k with the resolution property
and let f : £ — X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f*:K(X; Z/n) — K(E; Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map f* : K(X; Z[1/n]) — K(E; Z[1/n))
is a homotopy equivalence.

In the above results, a nice quotient stack means a stack of the form [X/G],
where G is an affine group scheme over k acting on a k-scheme X such that G is
nice, i.e., it is either linearly reductive over k or char(k) = 0. Group schemes of
multiplicative type (e.g., diagonalizable group schemes) are notable examples of
this in positive characteristic. We refer to Section 2B for more details.
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Applications. Similar to the case of schemes, one expects the above results to be
of central importance in the study of the K-theory of quotient stacks. Already
by now, there have been two immediate major applications: (1) the cdh-descent
and, (2) Weibel’s conjecture for negative KH -theory of stacks. In a sense, these
applications motivated the results of this paper.

Hoyois [2017] has constructed a variant of KH -theory for nice quotient stacks
and has used the main results of this paper to prove the cdh-descent for this variant.
The results of this paper (and their generalizations) have also been used recently
by Hoyois and the first author [Hoyois and Krishna 2017] to prove cdh-descent
for the KH -theory (as defined in Section 5) of nice stacks, and to prove Weibel’s
conjecture for the vanishing of negative KH -theory of such stacks.

Another application of the above results is related to a rigidity type theorem for
the K-theory of semilocal rings. Let A be a normal semilocal ring with isolated
singularity with an action of a finite group G, and let A denote its completion
along the Jacobson radical. The rigidity question asks if the map K (G, A) —
K. (G, A) is injective. If G is trivial, this was proven for Kj(G, A) by Kamoi and
Kurano [2002] for certain type of isolated singularities. They apply this result to
characterize certain semilocal rings. The main tool of [Kamoi and Kurano 2002]
is Theorem 1.1 for the ordinary K-theory of singular rings. We hope that the
localization theorem for the K-theory of quotient stacks can now be used to prove
the equivariant version of this rigidity theorem.

2. Perfect complexes on quotient stacks

Throughout this text, we work over a fixed base field k of arbitrary characteristic. In
this section, we fix notations, recall basic definitions and prove some preliminary
results. We conclude the section with the proof of an excision property for the
derived category of perfect complexes on stacks.

2A. Notations and definitions. Let Schy denote the category of separated schemes
of finite type over k. A scheme in this paper will mean an object of Schy. A group
scheme G will mean an affine group scheme over k. Recall that a stack X’ (of finite
type) over the big fppf site of k is said to be an algebraic stack over k if the diagonal
of X is representable by algebraic spaces and X admits a smooth, representable
and surjective morphism U — X from a scheme U. Throughout this text a “stack”
will always refer to an algebraic stack. We shall say that X is a quotient stack if it
is a stack of the form [X/G] (see, for instance, [Laumon and Moret-Bailly 2000,
§2.4.2]), where G is an affine group scheme acting on a scheme X.

2B. Nice stacks. Given a group scheme G, let Mod® (k) denote the category of
k-modules with G-action. Recall that G is said to be linearly reductive if the
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“functor of G-invariants” (-)% : Med® (k) — Mod(k), given by the submodule of
G-invariant elements, is exact. If char(k) = 0, it is well known that G is linearly
reductive if and only if it is reductive. In general, it follows from [Abramovich et al.
2008, Propositions 2.5, 2.7, Theorem 2.16] that G is linearly reductive if there is
an extension

1-G,—->G— Gy — 1, 2.1
where each of G| and G, is either finite over k of degree prime to the exponen-
tial characteristic of k, or is of multiplicative type (étale locally diagonalizable)
over k. One knows that linearly reductive group schemes in positive characteristic
are closed under the operations of taking closed subgroups and base change.

Definition 2.2. We shall say that a group scheme G is nice if either it is linearly
reductive or char(k) = 0. If G is nice and it acts on a scheme X, we shall say that
the resulting quotient stack [X/G] is nice.

2C. Perfect complexes on stacks. Given a stack X, let Sh(X') denote the abelian
category of sheaves of abelian groups, Mod(X’) the abelian category of sheaves
of Ox-modules, and QC(X) the abelian category of quasicoherent sheaves, each
on the smooth-étale site Lis-Et(X) of X'. Let Chg(X) denote the category of
all (possibly unbounded) chain complexes over Mod(X) whose cohomology lie
in QC(X), and Ch(QC(X)) the category of all chain complexes over QC(X). Let
Dy (X) and D(QC(X)) denote the corresponding derived categories. Let D(X)
denote the unbounded derived category of Mod(X). If Z < X is a closed substack

with open complement j : U/ — X, we let
R q. iso.
Chye, z(X) = {F € Chye(X) | j*(F) — 0}.
The derived category of Chge z(X) will be denoted by Dgc z(&). Recall that a
stack X is said to have the resolution property if every coherent sheaf on & is a
quotient of a vector bundle.

Lemma 2.3. Let X be the stack quotient of a scheme X with an action of a group
scheme G. Then the following hold.

(1) Every quasicoherent sheaf on X is the direct limit of its coherent subsheaves.

(2) X has the resolution property if X has an ample family of G-equivariant line
bundles. In particular, X has the resolution property if X is normal with an
ample family of (nonequivariant) line bundles.

(3) X has the resolution property if X is quasi-affine.
Proof. Part (1) is [Thomason 1987b, Lemma 1.4]. For (2), note that [Spec(k)/G]
has the resolution property [Thomason 1987b, Lemma 2.4]. Therefore, if X has

an ample family of G-equivariant line bundles, it follows from [Thomason 1987b,
Lemma 2.6] that A" has the resolution property. If X is normal with an ample family
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of (nonequivariant) line bundles, it follows from [Thomason 1987b, Lemmas 2.10,
2.14] that X has the resolution property. Part (3) is well known and follows, for
example, from [Hall and Rydh 2017, Lemma 7.1]. (I

Recall from [SGA 6 1971, Definition 1.4.2] that a complex of Ox-modules on a
Noetherian scheme is perfect if it is Zariski locally quasi-isomorphic to a bounded
complex of locally free sheaves.

Definition 2.4. Let X" be a stack over k. A chain complex P € Chyc(X) is called
perfect if for any affine scheme U = Spec(A) with a smooth morphism s : U — X,
the complex of A-modules s*(P) € Ch(Mod(A)) is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules.

We shall denote the category of perfect complexes on X by Perf(X) and its
derived category by DP(.X). For a quotient stack with the resolution property,
we can characterize perfect complexes in terms of their pull-backs to the total
space of the quotient map.

Lemma 2.5. Let f : X' — X be a faithfully flat map of Noetherian schemes. Let
P be a chain complex of quasicoherent sheaves on X such that f*(P) is perfect
on X'. Then P is a perfect complex on X.

Proof. By [Thomason and Trobaugh 1990, Proposition 2.2.12], a complex of qua-
sicoherent sheaves is perfect if and only if it is cohomologically bounded above,
its cohomology sheaves are coherent, and it has locally finite Tor-amplitude. But
all these properties are known to descend from a faithfully flat cover. O

Proposition 2.6. Let X be the stack quotient of a scheme X with an action of a
group scheme G and let u : X — X be the quotient map. Assume that X has the
resolution property. Let P be a chain complex of quasicoherent O x-modules. Then
the following are equivalent.

(1) P is perfect.
(2) u*(P) is perfect.
(3) u*(P) is quasi-isomorphic to a bounded complex of G-equivariant vector bun-

dles in Ch(QCG(X ), where QCG(X ) denotes the category of G-equivariant
quasicoherent sheaves on X.

Proof. (1) = (2). We let Q = u*(P). Consider an open cover of X by affine open
subsets {Spec(A;)}. Let s : U — [X/G] be an atlas and s; : U; — Spec(A;) its base
change to Spec(A;), where U, are algebraic spaces. Take étale covers t; : V; — U;
of U;, where the V; are schemes. Let f; : V; — U and g; : V; = Spec(A;) denote the
obvious composite maps. It follows from (1) that L g (Q|spec(a;)) = L f;*(s*(P)) is
a perfect complex on V;. Therefore, by Lemma 2.5, Q|spec(a;) is a perfect complex
in Ch(Mod(A;)). Equivalently, Q is perfect.
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(2) = (3). We want to apply the inductive construction lemma [Thomason and
Trobaugh 1990, Lemma 1.9.5] with A being QCY(X), D the category of G-equi-
variant vector bundles on X and C the category of complexes in Ch(QCY(X))
satisfying (2). It is enough to verify that the hypothesis [loc. cit., 1.9.5.1] holds.

Suppose C € C such that H(C) =0 fori >n, and ¢ : F — H"~'(C) in QCY(X).
By [Thomason and Trobaugh 1990, Proposition 2.2.3], G = H n=1(C) is a coherent
Ox-module. Therefore, G is a coherent G-module. By Lemma 2.3(1), we can
write F = lim F,,, where F, are coherent G-submodules of . Under the forgetful
functor, this gives an epimorphism ¢ : lim 7, — G in QC(X), where F,, G are
coherent modules.

Now, as G is coherent and X is Noetherian, we can find an « such that the
composite map F, — F L Gis surjective. By the resolution property, there exists
& € D such that £ — F,. Hence the composite £ — F, — F 4, Gis also surjec-
tive. Applying the conclusion of [Thomason and Trobaugh 1990, Lemma 1.9.5] to
C*®* = P and D*®* =0, we get a bounded above complex E of G-vector bundles and
a quasi-isomorphism ¢ : E = Pin Ch(QCY(X)). Therefore, E € C.

Since X is Noetherian, E has globally finite Tor-amplitude. To show that Q is
quasi-isomorphic to a bounded complex over D, it suffices to prove that the good
truncation T=?(E) is a bounded complex of G-equivariant vector bundles and the
map E — t=%(E) is a quasi-isomorphism. It is enough to prove this claim by
forgetting the G-action. But this follows exactly along the lines of the proof of
[Thomason and Trobaugh 1990, Proposition 2.2.12].

(3) = (1) is clear. |

2D. Perfect complexes and compact objects of Dyc(X). Recall thatif 7 is a trian-
gulated category which is closed under small coproducts, then an object E € Obj(7)
is called compact if the functor Homy(E, —) on 7 commutes with small coprod-
ucts. The full triangulated subcategory of compact objects in 7 is denoted by 7.
If X is a scheme, one of the main results of [Thomason and Trobaugh 1990] is that
a chain complex P € Chyc(X) is perfect if and only if it is a compact object of
D (X). For quotient stacks, this is a consequence of the results of [Neeman 1996;
Hall and Rydh 2015]:

Proposition 2.7. Let X be a nice quotient stack. Then a chain complex P € Chgc (X))
is perfect if and only if it is a compact object of Dy (X).
Proof. Suppose P is compact. We need to show that s*(P) is perfect on U =Spec(A)
for every smooth map s : U — X. Since the compact objects of Dy (U) are perfect,
it suffices to show that s*(P) is compact. We deduce this using [Neeman 1996,
Theorem 5.1].

The push-forward functor Rs, : Dgc(U) — Dgc(X) is a right adjoint to the pull-
back Ls* : Dyc(X) — Dgc(U). As Rs, and Ls* both preserve small coproducts
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(see the proof of Lemma 2.8 below), it follows from [Neeman 1996, Theorem 5.1]
that s*(P) is compact.

If P is perfect, then it is a compact object of Dy.(X) by our assumption on X
and [Hall and Rydh 2015, Theorem C]. O

Lemma 2.8. Let X be a nice quotient stack and let Z C X be a closed sub-

stack. Then the compact objects of Dy, z(X) are exactly those which are perfect
in Chgc(X).

Proof. 1t follows from Proposition 2.7 that D%erf(é\’ ) C Dgc’ 2(X). To prove the
other inclusion, let K € Dflc’ 2(X). We need to show that K is a perfect complex
in Dyc(X). Lets : V =Spec(A) — X be any smooth morphism and set 7' = sT1H(2).
Consider a set of objects { F,} in Dy, 7(V). Since X is a quotient stack, there exists
a smooth atlas u : X — X, where X € Schy. This gives a 2-Cartesian square of

stacks 5
W—>X

l l (2.9)

The maps u and s are Tor-independent because they are smooth. Since A y is rep-
resentable and V is affine, it follows that s is representable. We conclude from [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] that u* Rs, (F) = Rs,u™(Fy). It
follows that Rs,(Fy) € Dy, z(X). Using adjointness [Krishna 2009, Lemma 3.3],
we get

Homp, ,v)(s*(K), @y Fa) ~ Homp, ,(x)(K, Rss (P, Fu))
~1 HomeC,Z(X)(K, Dy Rs:(F))
~* @, Homp,, . (x)(K, Rs.(Fy))
~ P, Homp,, ,(v)(s*(K), Fo),

where ~! follows from the fact that Rs, preserves small coproducts [Hall and Rydh
2017, Lemmas 2.5(3), 2.6(3)], and ~? follows since K € DSC’Z(X). This shows

that s*(K) € DSC,T(V). Since V is affine, this implies that s*(K) is perfect.  [J

2E. Excision for derived category. We now prove an excision property for the
derived category of perfect complexes on stacks using the technique of Cartan—
Eilenberg resolutions.

Let A be a Grothendieck category and let D(A) denote the unbounded derived
category of A. Let Ch(.A) denote the category of all chain complexes over .A. An
object A € Ch(A) is said to be K-injective if for every acyclic complex J € Ch(A),
the complex Hom*(J, A) is acyclic. Since A has enough injectives, a complex over
A has a Cartan—Filenberg resolution; see [EGAIII; 1961, Chapitre 0, (11.4.2)].
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It is known that a Cartan—Eilenberg resolution of an unbounded complex over .4
need not, in general, be a K-injective resolution. However, when X is a scheme or
a Noetherian and separated Deligne—-Mumford stack over a fixed Noetherian base
scheme, it has been shown that for a complex J of Oxy-modules with quasicoherent
cohomology, the total complex of a Cartan—FEilenberg resolution does give a K-
injective resolution of J; see [Keller 1998; Krishna 2009, Proposition 2.2]. Our
first objective is to extend these results to all algebraic stacks. We follow the
techniques of [Krishna 2009] closely. Given a double complex J**, let Tot"(J)
denote the (product) total complex.

Proposition 2.10. Let X be a stack and let K € Chg(X). Let E S 1% be a
Cartan—Eilenberg resolution of E in Ch(X). Then E N Tot™(I) is a K-injective
resolution of E.

Proof. Since Mod(X) is a Grothendieck category and /** is a Cartan—FEilenberg
resolution, Tot"(/) is a K-injective complex by [Weibel 1996, A.3]. We only need
to show that E < Tot"(I) is a quasi-isomorphism. Let

t=P(E):=0— E?/BPE — EPTl - ...

denote the good truncation of E. Then {t=?(E)},cz gives an inverse system of
bounded below complexes with surjective maps such that £ =N lim » =P (E). Let
=P (I) denote the double complex whose i-th row is the good truncation of the
i-th row of /** as above.

Let L%® = Ker(z="(I) — t=P*!(I)). Then I** — t=P(I) - t=PT!(I) and
1** = lim t2P(I). Therefore, Tot"(I) = lim Tot"(z=P([)). Moreover, since
=P (1) is a Cartan—Eilenberg resolution of the bounded below complex t=7(E),
it is known that for each p € Z, =7 (E) i Tot" (=P (1)) is a quasi-isomorphism.

Furthermore, the standard properties of Cartan—Eilenberg resolutions imply that
BPE — BPI** is an injective resolution and hence, the inclusions B [* < %!
are all split. In particular, the maps =7 (I) — t=PT1(I) are termwise split surjec-
tive. Since t="(I) are upper half plane complexes with bounded below rows, we
conclude that the sequences

0 — Tot (L ,) — Tot"(z=P(I)) — Tot"(z ="' (1)) = 0 2.11)

are exact and are split in each degree.

Hence, we see that Tot™(I) — lim  Tot*(t =P ([)), where each Tot"(t=?(I)) is a
bounded below complex of injective O y-modules, and € is induced by a compatible
system of quasi-isomorphisms €. Furthermore, Tot™ (2P (1)) — Tot"(zZP+1(I))
is degreewise split surjective with kernel Tot"(L ), which is a bounded below
complex of injective O y-modules. Since H;(E) € QC(X) and QC(X) € Mod(X)
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satisfies [Laszlo and Olsson 2008, Assumption 2.1.2], the proposition now follows
from [Laszlo and Olsson 2008, Proposition 2.1.4]. (I

Corollary 2.12. Let f : Y — X be a morphism of stacks and let E € Dqc(Y). Then
the natural map R f,(E) — lim, R f,(t="(E)) is an isomorphism in Dy (X).

Proof. This is easily checked by replacing E by a Cartan—Eilenberg resolution and
using properties of Cartan—Eilenberg resolutions and good truncation. U

Recall that a morphism f : Y — X of stacks is representable if for every alge-
braic space T and a morphism 7" — X, the fiber product T x y ) is represented by
an algebraic space. If T x y ) is represented by a scheme whenever T is a scheme,
we say that f : ) — X is strongly representable.

Proposition 2.13. Let f : Y — X be a strongly representable étale morphism of
stacks. Let Z <> X be a closed substack such that f:ZxxY — Zinduces an iso-
morphism of the associated reduced stacks. Then f* : Dqc z(X) — Dgc zx 3 (Y)
is an equivalence.

Proof. We set W = Z x» ). Let us first assume that E € D(;FC’Z(X). We claim
that the adjunction map £ — R f, o f*(E) is an isomorphism. The proof of this
claim is identical to that of [Krishna and @stveer 2012, Proposition 3.4] which
considers the case of schemes and Deligne-Mumford stacks. We take a smooth
atlas s : U — X with U € Schy, and note that U x v ) — U is an étale morphism in
Schy, because f is strongly representable. As in the proof of [Krishna and @stveer
2012, Proposition 3.4], an application of [Hall and Rydh 2017, Corollary 4.13] now
reduces the problem to the case of schemes. By similar arguments, if '€ D ,,()),
the co-adjunction map f* o R f,.(F) — F is an isomorphism (see the proof of
[Krishna and @stvaer 2012, Theorem 3.5] for details).

To prove the proposition, we need to show that f* is fully faithful and essentially
surjective on objects. To prove the first assertion, let E € Dy z(X). Since f*
is exact, it commutes with good truncation. Applying this to the isomorphism
E>S lim, t="(E), we conclude from Corollary 2.12 and what we showed above
for the bounded below complexes that the adjunction map E — R f, o f*(E) is an
isomorphism. If E’ € Dy, z(X) is now another object, then

Homp, . (x)(E, E") = Homp, (x)(E, R fyo f*(E"))
~ Hompx)(E, R fi o f*(E"))
~1 Homp, ) (f*(E), FH(E")
~ Homp,,,, ) (f*(E), f*(E")),

where ~! follows from the adjointness of (f*, R f,) [Krishna 2009, Lemma 3.3].
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To prove the essential surjectivity of f*, let F € Dgc (). If F € Dq—c,w(y),
then we have shown above that the map f* o R f,.(F) — F is an isomorphism.
The general case follows from the bounded above case using the isomorphism
lim, t="(F) — F. O

3. Algebraic K-theory of nice quotient stacks

In this section, we prove Theorem 1.1. Let X be a stack. We begin with the
definition and some preliminary results on the K-theory spectrum for stacks.

3A. K-theory spectrum. The algebraic K-theory spectrum K (X)) of X is defined
to be the K-theory spectrum of the complicial bi-Waldhausen category of perfect
complexes in Chyc(X) in the sense of [Thomason and Trobaugh 1990, §1.5.2].
Here, the complicial bi-Waldhausen category structure is given with respect to the
degreewise split monomorphisms as cofibrations and quasi-isomorphisms as weak
equivalences. The homotopy groups of the spectrum K (&X") are defined to be the
K-groups of the stack X" and are denoted by K, (X"). Note that these groups are 0 if
n < 0; see [Thomason and Trobaugh 1990, §1.5.3]. We shall extend this definition
to negative integers later in this section. For a closed substack Z of X', K (X on 2)
is the K-theory spectrum of the complicial bi-Waldhausen category of those perfect
complexes on X which are acyclic on &'\ Z.

Lemma 3.1. For a stack X with affine diagonal, the inclusion of the complicial
bi-Waldhausen category of perfect complexes of quasicoherent O y-modules into
the category of perfect complexes in Chyc(X) induces a homotopy equivalence of
their K-theory spectra.

Similarly, for a closed substack Z — X, K (X on Z) is homotopy equivalent
to the K-theory spectra of the complicial bi-Waldhausen category of perfect com-
plexes of quasicoherent O x-modules which are acyclic on X\ Z.

Proof. For a stack X with affine diagonal, by [Lurie 2005, Theorem 3.8] the inclu-
sion functors @ : Ch(QC(X)) — Chge(X) and @z : Chz(QC(X)) — Chge, z(X)
induce equivalences of their left bounded derived categories. Therefore, they re-
strict to the equivalences of the derived homotopy categories of the bi-Waldhausen
categories of perfect complexes of quasicoherent O y-modules and that of perfect
complexes in Chgc(X'), both with support in Z in the case of ®z. By [Thomason
and Trobaugh 1990, Theorem 1.9.8], these inclusions therefore induce homotopy
equivalence of their K-theory spectra. ([

Lemma 3.2. Let X be a quotient stack with the resolution property. Consider the
following list of complicial bi-Waldhausen categories:

(1) bounded complexes of vector bundles on X,
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(2) perfect complexes in Ch(QC(X)),
(3) perfect complexes in Chgc(X).

Then the obvious inclusion functors induce homotopy equivalences of all their K-
theory spectra. Furthermore, K (X) is homotopy equivalent to the algebraic K-
theory spectrum of the exact category of vector bundles on X.

Proof. The inclusion of (1) in (2) induces a homotopy equivalence of K-theory
spectra by Proposition 2.6 and [Thomason and Trobaugh 1990, Theorem 1.9.8].
The inclusion of (2) in (3) induces homotopy equivalence of K-theory spectra by
Lemma 3.1. The last assertion follows from [Thomason and Trobaugh 1990, The-
orem 1.11.7]. (|

3B. The localization and excision for K-theory. We now establish the localiza-
tion sequence and excision for the K-theory of nice quotient stacks. We begin with
the following localization at the level of Dgc(X).

Proposition 3.3. Let X be a nice quotient stack and let Z — X be a closed sub-

stack with open complement j : U — X. Assume that X has the resolution property.
Then the following hold.

(1) Dge(X), Dy, z(X) and Dy (U) are compactly generated.

(2) The functor L Dyel)

Dees)  Pael)

is an equivalence of triangulated categories.

Proof. The stack U has the resolution property by our assumption and [Gross
2017, Theorem A]. It follows from Proposition 2.7 that every perfect complex in
Dy (X) is compact, i.e., X is concentrated. Since X and U have affine diagonal
with resolution property, it follows from [Hall and Rydh 2017, Proposition 8.4]
that Dy (&), Dge, z(X) and Dqc(U) are compactly generated.

The second statement is an easy consequence of adjointness of the functors
(j*, Rj,) and works exactly like the case of schemes. One checks easily that j*
is fully faithful and j* o R j, is the identity on Dgc(UA). ]

Theorem 3.4 (localization sequence). Let X be a nice quotient stack and let Z — X
be a closed substack with open complement j : U — X. Assume that X has the
resolution property. Then the morphism of spectra K(X on Z) — K(X) — K(U)
induce a long exact sequence

-+ = Ki(X on Z) > K;(X) — K;(U) - K;_1(X on Z)
— .= Ko(X on 2) — Ko(X) = KoU).
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Proof. Tt follows from Proposition 2.7, Lemma 2.8 and Proposition 3.3 that there
is a commutative diagram of triangulated categories

DY) — DPM(X) — DPeT ()
(3.5)
Dyc,z(X) —— Dge(X) —— Dqgc(U)

where the bottom row is a localization sequence of triangulated categories and
the top row is the sequence of full subcategories of compact objects of the corre-
sponding categories in the bottom row. Moreover, each triangulated category in
the bottom row is generated by its compact objects in the top row. We can thus
apply [Neeman 1992, Theorem 2.1] to conclude that the functor

Dperf(X)
-

— D) (3.6)
DZ"(X)

is fully faithful, and an equivalence up to direct factors.

Let ¥ be the category whose objects are perfect complexes in Chgc (&), and
where a map x — y is a weak equivalence if the restriction x|;; — y|y is a quasi-
isomorphism in Chyc(U/). The cofibrations in ¥ are degreewise split monomor-
phisms. Then it is easy to see that ¥ is a complicial bi-Waldhausen model for
the quotient category DP(Xx)/ D%erf(X ). Thus, by the Waldhausen localization
theorem [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8], there is a homo-
topy fibration of spectra K (X on Z) — K(X) — K(X). It follows from (3.6) and
[Neeman 1992, Lemma 0.6] that K (X) — K (U{) is a covering map of spectra. In
particular, K; (%) = K;WU) fori >1and Ko(X) — KoUf). U

Theorem 3.7 (excision). Let X be a nice quotient stack and let Z — X be a
closed substack. Let f : Y — X be a strongly representable étale morphism
of stacks such that f : Z Xy Y — Z induces an isomorphism of the associated
reduced stacks. Assume that X, ) have the resolution property. Then f* induces a
homotopy equivalence

f*:K(XonZ)i K(QYon Zxx)Y).

Proof. We observe that since f is strongly representable, ) is also a nice quotient
stack. The theorem now follows directly from Lemma 2.8 and Proposition 2.13. [J

3C. Projective bundle formula. In order to define the nonconnective K-theory of
stacks, we need the projective bundle formula for their K-theory. This formula
for the equivariant K-theory was proven in [Thomason 1993a, Theorem 3.1]. We
adapt the argument of Thomason to extend it to the K-theory of all stacks. Though
this formula is used in this text only for quotient stacks, its most general form plays
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a crucial role in [Hoyois and Krishna 2017]. For details on the projective bundles
over algebraic stacks, see [Laumon and Moret-Bailly 2000, Chapter 14].

Theorem 3.8. Let X be a stack, £ a vector bundle of rank d and p : PE — X the
projective bundle associated to it. Let Opg (1) be the fundamental invertible sheaf
on PE and Opg (i) its i-th power in the group of invertible sheaves over X.

Then the morphism of K-theory spectra induced by the exact functor that sends
a sequence of d perfect complexes in Chy.(X), (Eo, ..., Eq_1) to the perfect com-

plex
P'Ey®Ope(—1) Q@ p*'E @+ - D Ops(1—d)Q p*Eq_;

induces a homotopy equivalence

®:[[K(X) = K(PE).
d

Similarly, for each closed substack Z, the exact functor restricts to the subcategory
of complexes acyclic on X \ Z to give a homotopy equivalence

@ :[]K(X on Z) = K(PE on P(£| 2)).
d

We need the following steps to prove this theorem.

Lemma 3.9. Under the hypothesis of Theorem 3.8, let F be a perfect complex in
Chye(X) or in general a complex with quasicoherent and bounded cohomology.
Then the canonical adjunction morphism (3.10) is a quasi-isomorphism:

n:F — Rp.p*F = Rp.(Ope ® p*F). (3.10)
In addition, for j =1,2,...,d — 1, we have as a result of cancellation
Rp.(Ope(—j) ® p*F) ~=0. (3.11)

Proof. The assertion of the lemma is fppf local on X. Let u : U — X be a smooth
atlas for X', where U is a scheme. Since p : P€ — X is strongly representable, we
can apply [Hall and Rydh 2017, Lemma 2.5(3), Corollary 4.13] to reduce to the
case when X' € Schy. In this latter case, the lemma is proven in [Thomason 1993a,
Lemma 3]. O

Lemma 3.12. Under the hypothesis of Theorem 3.8, if E is a perfect complex in
Chyc(PE), then the following hold.

(1) Rp.(E) is a perfect complex in Chgc(X).

2) If Rp,(E ® Ope(i)) is acyclicon X fori =0,1,...,d — 1, then E is acyclic
on PE.
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Proof. Since the assertion is fppf local on X’ and the perfectness is checked by
base change of X by smooth morphisms from affine schemes, we can use [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] again to replace X by a scheme.
Part (1) then follows from [Thomason 1993a, Lemma 4] and (2) follows from
[Thomason 1993a, Lemma 5]. O

Proof of Theorem 3.8. The proof follows exactly along the lines of the proof of
[Thomason 1993a, Theorem 1], using Lemmas 3.9 and 3.12, which generalize
[Thomason 1993a, Lemmas 3, 4, 5] to stacks. O

3D. K-theory of regular blow-ups of stacks. A closed immersion ) — X of
stacks over k is defined to be a regular immersion of codimension d if there
exists a smooth atlas U — X of & such that Y xy U — U is a regular immer-
sion of schemes of codimension d. This is well defined as U is Noetherian and
regular immersions behave well under flat base change and satisfy fpqc descent.
For a closed immersion i : ) — X, the blow-up of X along ) is defined to be
p: X = Proj (@nzo IS’,) — X. See [Laumon and Moret-Bailly 2000, Chapter 14]
for relative proj construction on stacks. Note that in the case of a regular immersion,
XxyY—Yisa projective bundle over ), similar to schemes.

Theorem 3.13. Leti : Y — X be a regular immersion of codimension d of stacks.
Let p: X' — X be the blow-up of X along Y and j: Y =Y xx X' > X', q: YV > Y
be the maps obtained by base change. Then the square

K(X) —5 k)

p*l lq* (3.14)

KX') —— KO
j
is homotopy Cartesian.

Proof. This is proved in [Cortifias et al. 2008, Proposition 1.5] in the case of
schemes and an identical proof works for the case of stacks, in the presence of the
results of Section 3C and Lemma 3.16. We give some details on the strategy of the
proof. Forr =0, ...,d—1, let D} e“c(X ")y € DPT(x”) be the full triangulated subcat-
egory generated by Lp*F and Rj,Lg*G 0Oy (—I) for F € DP(X), G € DP* ()
and/ =1,...,r. Let Dferf(y’) c DPf()') be the full triangulated subcategory
generated by Lg*G ® Oy (—I) for G € D**()) and [ =0, ..., r. By Lemmas 3.9
and 3.16(1), Lp* : DP™(X) — DF*"(X') and Lg* : D* (V) — DF* (') are
equivalences. Exactly as in [Cortifias et al. 2008, Lemma 1.2], one shows that
DP*" (') = DP(X") and DB ()) = DPrT()) using Lemmas 3.12 and 3.16.

To prove the theorem, it is sufficient to show that L;j* is compatible with the
filtrations on DP(Xx") and DP()):
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L *
Dpel‘f(X) _f> Dgeﬁ(X/)(_> D[l)erf(X/)(_> RGN deirfl (X/) — Dperf(X/)

lu* le* le* lLJ‘* (3.15)

Dperf(y) LTKI: Dgerf(y/)(_> l)g’erf(y/)(_> RGN Dge_fﬁ (y/) — Dperf(y/)

and that for r =0, ...,d — 2, Lj* induces equivalences on quotient triangulated
categories:

Lj*: DITY(X)/ DE (X" = DPY(V)/ DR (V).

Given this, it follows from [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8]
that every square in (3.15) induces a homotopy Cartesian square of K-theory spectra.

To prove the compatibility of Lj*, it is enough to check on generators and in
this case, it can be reduced to the case of schemes using [Hall and Rydh 2017,
Corollary 4.13]. To prove that Lj* induces equivalence on quotients, we first note
that the composition

Lj*o[Ox/(—r — 1) ® Rj,Lg*] : D*"(Y) — D" (x")/DP*(x")

r+l1
— DX/ DR (Y

agrees with Oy (—r — 1) ® Lg* : D" () — Df_e:f (y/)/DEeff(y’), up to a natural
equivalence. This follows as in the proof of [Cortifias et al. 2008, Lemma 1.4] using
[Hall and Rydh 2017, Corollary 4.13]. Therefore, it is enough to show that the
functors Oy (—r — 1) ® Rj.Lg* and Oy (—r — 1) ® Lg* are equivalences. But the
proof of this is exactly the same as the one in [Cortifias et al. 2008, Proposition 1.5]

for schemes. U
Lemma 3.16. Under the hypotheses of Theorem 3.13, the following hold.
(1) Let F be a perfect complex on X. Then the canonical adjunction morphism
(3.17) is a quasi-isomorphism:
n:F = Rp,Lp*F = Rp.(Ox Q Lp*F). (3.17)

(2) Let r be an integer such that 1 <r <d — 1. Let A, denote the full triangulated
subcategory of DP™(X") of those complexes E for which Rp,(E® Ox(i)) ~0
for 0 <i < r. Then there exists a natural transformation 0 of functors from
Al to DPT(X):

9 : (RjsLg"Rq.(E ®0,, Oy (r —1) @ Ox/(—=r))[-1] - E. (3.18)

Moreover, Rp,(0 @ Ox(i)) is a quasi-isomorphism for 0 <i <r + 1.

(3) Suppose E € DP™(X") is such that Rp.(E @ Ox(i)) is acyclic on X for
i=0,...,d—1. Then E is acyclic on X’.



222 AMALENDU KRISHNA AND CHARANYA RAVI

Proof. Statements (1) and (3) are proved in [Thomason 1993b] for schemes. The
general case can be deduced from this exactly as in Lemmas 3.9 and 3.12. For (2),
the existence of 0 follows from [Thomason 1993b, Lemma 2.4(a)] as the construc-
tion of 0 given there is natural in X for schemes. To check that Rp, (0 @ O/ (i)) is
a quasi-isomorphism for 0 <i < r + 1, we may again assume that X’ is a scheme,
and this case follows from [loc. cit., Lemma 2.4(a)]. O

3E. Negative K-theory of stacks. Let U — X be an open immersion of stacks
over k. As Ko(X) — Ko(U) is not always surjective in the localization theorem, we
want to introduce a nonconnective spectrum K (—) with K (—) as its (—1)-connective
cover, so that K(X on Z) — K(X) — K(U{) is a homotopy fiber sequence for any
closed substack Z of X with complement /. We define K only in the absolute case
below. The construction of (X on Z) follows similarly, as shown in [Thomason
and Trobaugh 1990]. We shall use the following version of the Bass fundamental
theorem for stacks to define IK(X’). The homotopy groups of lKK(X) will be denoted
by K,‘ (X )

Theorem 3.19 (Bass fundamental theorem). Let X’ be a nice quotient stack with
the resolution property and let X|[T] = X x Spec(k[T]). Then the following hold.
(1) Forn > 1, there is an exact sequence
(p)lkv_P;) 1
0— Ky(X) — Ku(X[TD & Kn(X[T'])
GUr-J3)
L Ky (YT T 25 Kymi(X) = 0.
Here p7, p5 are induced by the projections X[T| — X, etc., and j{, j; are
induced by the open immersions X[T* = X[T, T~ = X[T), etc. The
sum of these exact sequences forn = 1,2, ... is an exact sequence of graded
K. (X)-modules.

(2) Forn >0, 97 : K,,H(X[Til]) — K, (X) is naturally split by a map ht of
K. (X)-modules. Indeed, the cup product with T € K (k[T*']) splits 37 up
to a natural automorphism of K, (X).

(3) There is an exact sequence for n = 0:

0— K (1) 2 K, (T @ K (XT ') 2225 K, [T+,
Proof. Tt follows from [Thomason 1987b, Lemma 2.6] that IP; and X[T] are nice
quotient stacks with the resolution property. It follows from Theorem 3.8 that
there is an isomorphism K*(Plv) ~ K.(X) & K.(X), where the two summands
are K,(X)[O] and K, (X)[O(—1)] with respect to the external product K (X’) A
K(P}) — K(P.) and with [0], [O(—=1)] € Ko(P}). As for schemes, (1) now
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follows directly from Theorems 3.4 and 3.7; see also [Thomason and Trobaugh
1990, Theorem 6.1].
For (2), it suffices to show that the composite map

Or (T U p*(=)) : Kn(X) = Kpy1 (X[TH']) = K, (X)

is an automorphism of K, (X) for n > 0. By naturality and the fact that 07 is a map
of K, (X)-modules, this reduces to showing that 97 : K (K[T*']) — Ko(k) sends
T to 1. But this is well known and (3) follows from (2) using the analogue of
[Thomason and Trobaugh 1990, (6.1.5)] for stacks. O

Theorem 3.20. For a nice quotient stack X with the resolution property, there is
a spectrum K(X) together with a natural map of spectra K (X) — K(X) which
induces isomorphism K;(X) = K; (X) fori = 0.

Let Y be a nice quotient stack with the resolution property and let f : Y — X
be a strongly representable étale map. Let Z — X be a closed substack such
that Zx xY — Z induces an isomorphism of the associated reduced stacks. Let
7w P(E) — X be the projective bundle associated to a vector bundle £ on X of
rank r. Then the following hold.

(1) There is a homotopy fiber sequence of spectra
K(X on Z2) —» K(X) - KX\ 2).

(2) The map f* :IK(X on Z) — K(Y on Zx x)) is a homotopy equivalence.
(3) The map [Ty K(X) — K(P(E)), (ap, - ... a—1) = Y; Ol—il @ w*(a), is

a homotopy equivalence.

Proof. The construction of the spectrum K(X) follows directly from Theorem 3.19
by the formalism given in (6.2)—(6.4) of [Thomason and Trobaugh 1990]. Like
for schemes, the proof of (1), (2) and (3) is a standard deduction from Theo-
rems 3.4, 3.7 and 3.8, using the inductive construction of K(X). O

3F. Schlichting’s negative K-theory. Schlichting [2006] defined negative K-theory
of complicial bi-Waldhausen categories. Let X’ be a nice quotient stack. Schlicht-
ing’s negative K-theory spectrum K3¢/(X) is the K-theory spectrum of the Frobe-
nius pair associated to the category Chyc(X). It follows from [Schlichting 2006,
Theorem 8] that KZ.SCI(X ) = K;(X) for i > 0. The following result shows that
Kl.SCI(X) agrees with I§; (X) fori < 0.

Theorem 3.21. Let X be a nice quotient stack with the resolution property. Then
there are natural isomorphisms between K I.SCI(X ) and KK; (X)) fori <O.

Proof. Let p: [P’},( — X be the projection map. Then we can prove as in Theorem 3.8
that the functors p*: DP(x) — DPU(PL) and O(—1)® p*: DP(X) — DPi(PL),
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which are induced by maps of their Frobenius models, induce isomorphisms
(P*, 0= ® p*) : KF(X) @ K3 (X) > K (Ph)

for i <0. It follows from the proof of Bass’ fundamental theorem in [Thomason
and Trobaugh 1990, Theorem 6.6(b)] that there is an exact sequence of abelian
groups

0— KP(X) = KX XTDO K (XT ™' ) — KX XIT, T~ — K5 (X) =0

fori <0. As Kgd (V) = Ko(Y) for any stack Y, the negative K-groups coincide. []

4. Nisnevich descent for K-theory of quotient stacks

In this section, we prove Nisnevich descent in a 2-category of stacks whose objects
are all quotients of schemes by action of a fixed group scheme. So let G be a
group scheme over k. Let Scth denote the category of separated schemes of finite
type over k with G-action. The equivariant Nisnevich topology on Sch,? and the
homotopy theory of simplicial sheaves in this topology was defined and studied in
detail in [Heller et al. 2015]. As an application of Theorem 3.20, we shall show in
this section that the K-theory of quotient stacks for G-actions satisfies descent in
the equivariant Nisnevich topology on Scth.

Definition 4.1 [Heller et al. 2015, Definition 2.1]. A distinguished equivariant
Nisnevich square is a Cartesian square

B——Y

l ,- lp 4.2)

A—— X
in SchkG such that
(1) j is an open immersion,
(2) p is étale, and

(3) the induced map (Y \ B)req = (X \ A)req of schemes (without reference to the
G-action) is an isomorphism.

Remark 4.3. We remark here that given a Cartesian square of the type (4.2) in Sch,?,
the closed subscheme (X \ A)eq (or (Y \ B)req) may not in general be G-invariant,
unless G is smooth. However, it follows from [Thomason 1987a, Lemma 2.5] that
we can always find a G-invariant closed subscheme Z C X such that Z,.g = X \ A.
This closed subscheme can be assumed to be reduced if G is smooth. Using the
elementary fact that a morphism of schemes is étale if and only if the induced
map of the associated reduced schemes is étale, it follows immediately that the
condition (3) in Definition 4.1 is equivalent to
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(3) there is a G-invariant closed subscheme Z C X with support X \ A such that
themap Z xx Y — Z in Scth is an isomorphism.

The collection of distinguished equivariant Nisnevich squares forms a cd-structure
in the sense of [Voevodsky 2010]. The associated Grothendieck topology is called
the equivariant Nisnevich topology. It is also called the eN-topology. It follows
from [Heller et al. 2015, Theorem 2.3] that the equivariant Nisnevich cd-structure
on Schf is complete, regular, and bounded. We refer to [Voevodsky 2010, §2] for
the definition of a complete, regular, and bounded cd-structure.

Let Schg/ Nis denote the category of G-schemes X, such that X admits a family of
G-equivariant ample line bundles, equipped with the equivariant Nisnevich topol-
ogy. Note that all objects of Sch,?/ Nis have the resolution property by Lemma 2.3.
It follows from [Heller et al. 2015, Corollary 2.11] that for a sheaf F of abelian
groups on Scth/ Nis> We have Hé;/ Nis (X F) =0 for i > dim(X).

Definition 4.4. An equivariant morphism ¥ — X in Sch,? splits if there is a filtra-
tion of X by G-invariant closed subschemes

F=X41CX,C---CXo=X, 4.5)

such that for each j, the map (X;\ X;41) xx ¥ — X; \ X4 has a G-equivariant
section. If f is étale and surjective, the morphism is called an equivariant split
étale cover of X.

4A. Equivariant Nisnevich covers. In [Heller et al. 2015, Proposition 2.15], it
is shown that an equivariant étale morphism ¥ — X in Sch,? is an equivariant
Nisnevich cover if and only if it splits. Further, when G is a finite constant group
scheme, it is shown that an equivariant étale map f : Y — X in Sch,? is an equivari-
ant Nisnevich cover if and only if for any point x € X, there is a point y € Y such
that f(y) = x and f induces isomorphisms k(x) >~ k(y) and S, >~ S,. Here, for a
point x € X, the set-theoretic stabilizer S, C G is defined by Sy ={g € G | g.x = x}
[Heller et al. 2015, Proposition 2.17].

Let G° denote the connected component of the identity element in G. Suppose
that G is of the form G =] [}_, 2iG°, where {e = g9, g1, ..., g/} are points in G (k)
which represent the left cosets of G°. In the next proposition, we give an explicit
description of the equivariant Nisnevich covers of reduced schemes X € Schf. For
xeX,letEC::{g,- |0<i<r, g.x=x}

Proposition 4.6. Let G be a smooth affine group scheme over k as above. A mor-
phism f:Y — X in Scth is an equivariant split étale cover of a reduced scheme

X if and only if for any point x € X, there is a pomt y €Y such that f(y) =x and
f induces isomorphisms k(x) >~ k(y) and Sy ~ S
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Proof. 1t is clear that a split étale G-equivariant family of morphisms satisfies the
given conditions. The heart of the proof is to show the converse.

Suppose Y J, X is such that for any point x € X, there is a point y € Y such
that f(y) = x and f induces isomorphisms k(x) >~ k(y) and S} ~ 5‘; Let W be
the regular locus of X. Then W is a G-invariant dense open subscheme of X. Set
U =Y xx W. Notice that W is a disjoint union of its irreducible components, and
each fy being étale, it follows that U is regular and hence a disjoint union of its
irreducible components.

Let x € W be a generic point of W. Then the closure W, = {x} in W is an
irreducible component of W. By our assumption, there is a point y € U such that

f=x,  ke>ky, and S, > . 4.7)

Then the closure Uy = {y}in U is an irreducible component of U. Since U vy — W,
is étale and generically an isomorphism, it must be an open immersion. Thus f
maps Uy isomorphically onto an open subset of W,. We replace W, by this open
subset f(Uy) and call it our new W,.

Let GU, be the image of the action morphism u : G x U, — U. Notice that pu is
a smooth map and hence open. This in particular implies that GU, is a G-invariant
open subscheme of U as Uy, is one of the disjoint irreducible components of U and
hence open. By the same reason, GW, is a G-invariant open subscheme of W.

Since the identity component G is connected, it keeps U, invariant. Therefore,
y € U is fixed by G° and hence G acts on this point via its quotient G = G/G°.
Since each g; G takes U , onto an irreducible component of U and since U has only
finitely many irreducible components which are all disjoint, we see that GU, =
U U, U---1UU, is a disjoint union of some irreducible components of U with
Uo = Uy. In particular, for each U, we have U; = g, G°U, = g;, U, for some j;.

Since f maps U, isomorphically onto Wy, we conclude from the above that
f maps each U; isomorphically onto one and only one W; such that GW, =
f(GUy) =WoIW; - .-IW, (withm < n)is a disjoint union of open subsets of
some irreducible components of W with Wy = W,.. The morphism f will map the
open subscheme GU, isomorphically onto the open subscheme G W, if and only
if no two components of GU,, are mapped onto one component of GW,. This is
ensured by using the condition (4.7).

If two distinct components of GU,, are mapped onto one component of GW,,
we can (using the equivariance of f) apply automorphisms by the g;, and assume
that one of these components is U,. In particular, we can find j > 1 such that

Wy = f(U,y) = fU)) = f(gUy) =g f(Uy) = gj; Wx. (4.8)

But this implies that g;, € S’; and g;, ¢ S~y This violates the condition in (4.7)
that S, and S, are isomorphic. We have thus shown that the morphism f has a
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G-equivariant splitting over a nonempty G-invariant open subset GW,. Letting
X be the complement of this open subset in X with reduced scheme structure, we
see that X is a proper G-invariant closed subscheme of X, and by restricting our
cover to X, we get a cover for X satisfying the given conditions. The proof of
the proposition is now completed by the Noetherian induction. (Il

4B. Equivariant Nisnevich descent. It is shown in [Heller et al. 2015, §3] that
the category of presheaves of S!-spectra on Scth/ Nis (denoted by Pres(Sch,f/ Nis))
is equipped with the global and local injective model structures. A morphism
f & — &' of presheaves of spectra is called a global weak equivalence if the map
E(X) — &£'(X) is a weak equivalence of S'-spectra for every object X € Schlf/ Nis-
It is a global injective cofibration if £(X) — £'(X) is a cofibration of S!-spectra
for every object X € Sch,?/ Nis- The map f is called a local weak equivalence
if it induces an isomorphism on the sheaves of stable homotopy groups of the
presheaves of spectra in the eN-topology. A local (injective) cofibration is the
same as a global injective cofibration.

A presheaf of spectra £ on Sch,?/ Nis 18 said to satisfy the equivariant Nisnevich
descent (eN-descent) if the fibrant replacement map £ — £’ in the local injective
model structure of Pres(SchE/ Nis) 18 a global weak equivalence. Let KC denote
the presheaf of spectra on Sch,? which associates the spectrum K([X/G]) to any
X e Sch,?. As a consequence of Theorem 3.20, we obtain the following.

Theorem 4.9. Let G be a nice group scheme over k. Then the presheaf of spectra
KS on Sch,?/ Nis Satisfies the equivariant Nisnevich descent.

Proof. Since the eN-topology is regular, complete and bounded by [Heller et al.
2015, Theorem 2.3], it suffices to show using [Voevodsky 2010, Proposition 3.8]
that KO takes a square of the type (4.2) to a homotopy Cartesian square of spectra.
In other words, we need to show that the square

K(LX/G) —— K(A/G))

P*l lp’* (4.10)

K{AY/GD — K(B/GD

is homotopy Cartesian. But this is an immediate consequence of Theorem 3.20. [J

Corollary 4.11. Let G be a nice group scheme over k and let X € Sch,?/ Nis- Then
there is a strongly convergent spectral sequence

EPY = HD\(X, KO) = K, _p(IX/G)).

Proof. This is immediate from Theorem 4.9 and [Heller et al. 2015, Theorem 2.3,
Corollary 2.11]. O
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5. Homotopy invariance of K-theory with coefficients for quotient stacks

It is known that with finite coefficients, the ordinary algebraic K-theory of schemes
satisfies the homotopy invariance property (see [Weibel 1989, Theorem 1.2, Propo-
sition 1.6] for affine schemes and [Thomason and Trobaugh 1990, Theorem 9.5]
for the general case). This is a hard result which was achieved by first defining a
homotopy invariant version of algebraic K-theory [Weibel 1989] and then showing
that with finite coefficients, this homotopy (invariant) K-theory coincides with the
algebraic K-theory.

However, the proof of the agreement between algebraic K-theory and homotopy
K-theory with finite coefficients requires the knowledge of a spectral sequence
relating NK -theory and homotopy K-theory; see [Weibel 1989, Remark 1.3.1].
Recall here that NK (X) denotes the homotopy fiber of the pull-back map ¢*, where
t: X — A,ﬁ x X denotes the 0-section embedding into the trivial line bundle over
a scheme X. The existence of homotopy K-theory for quotient stacks is not yet
known and one does not know if the above spectral sequence would exist for the
homotopy K-theory of quotient stacks. In this section, we adopt a different strategy
to extend the results of Weibel and Thomason—Trobaugh to the K-theory of nice
quotient stacks (see Theorem 5.5).

5A. Homotopy K-theory of stacks. For n € N, let
Ay = Spec(klto, ...t/ (3t — 1)).
1

Recall that A, = {A,},>0 forms a simplicial scheme whose face and degeneracy
maps are given by the formulas

tj if j <r, tj if j <r,
8r(tj)= 0 ifj=r, 8r(tj)= ti+tjq1 ifj=r,
Ii—1 if j>r, fi+1 if j>r.

Definition 5.1. For a nice quotient stack X with the resolution property, the homo-
topy K-theory is defined to be the spectrum

KH (X) = hocolim,, K(X x A,).

It is clear from the definition that KH (X) is contravariant with respect to mor-
phisms of stacks. Furthermore, there is a natural map of spectra K(X) — KH (X).
It is well known that IK(X") is not a homotopy invariant functor. Our first result on
KH (X) is the following.

Theorem 5.2. Let X be a nice quotient stack with the resolution property, and
let f : & — X be a vector bundle morphism. Then the associated pull-back map
f*: KH(X) — KH(&) is a homotopy equivalence.
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Proof. We first show that the map KH (X) — KH(X x A,) is a homotopy equiva-
lence for every n > 0. But this is essentially a direct consequence of the definition
of KH-theory. By identifying A, with A}’ and using induction, one needs to show
that the map KH (X) — KH (X[T]) is a homotopy equivalence. Proof of this is
identical to the case of the KH -theory of schemes [Weibel 1989, Theorem 1.2].

To prove the general case, we write X = [X/G], where G is a group scheme
over k acting on a k-scheme X. We let £ = u*(£), where u : X — X’ is the quotient
map. Then E is a G-equivariant vector bundle on X such that [E/G] >~ &.

We consider the standard fiberwise contraction map H : A,l x E — E. Explicitly,
for an open affine U = Spec(A) € X over which f is trivial (without G-action), H |y
is induced by the k-algebra homomorphism A[X1, ..., X,] = A[X1,..., Xy, T]
given by X; > TX;. It is then clear that this defines a unique map H as above
which is G-equivariant for the trivial G-action on A,ﬁ. We have the commutative
diagram

(1} x E

id ) hy
1

E«l A xEZSE (5.3)

N AT

(0} x E

where hj = H oij for j =0, 1 and p is the projection map.

Let ¢ : X < E denote the O-section embedding, so that f ot =1idx. So we only
need to show that f*o:* is the identity on KH ([E/G]). Since hg =to f, it suffices
to show that A is the identity.

It follows from the weaker version of homotopy invariance shown above (applied
to E) that p* is an isomorphism on the KH-theory of the stack quotients. In
particular, i = (pH~ ! = ii. Since hy =idg, we get if o H* = id, which in turn
yields H* = (i;‘)_1 = p* and hence hj =ij o H* =ijo p* =id. This finishes the
proof. O

5B. Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct consequence
of the definition of KH (X) and similar results for the K-theory. Part (1) of the
theorem is Theorem 5.2. Part (2) follows directly from Theorems 3.20 and 3.13
because the homotopy colimit preserves homotopy fiber sequences.

We now prove (3). Let G be a finite group acting on a scheme X such that
X admits an ample family of line bundles. Then X is covered by G-invariant
affine open subschemes. By Theorem 4.9, it suffices to prove the theorem when
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X = Spec(A) is affine. In this case, K([X/G]) is homotopy equivalent to the K-
theory of the exact category P¢(A) of finitely generated G-equivariant projective
A-modules (see Lemma 3.2).

Since G is also assumed to be nice, it follows from [Levine and Serpé 2008,
Lemma 1.3] that P¢(A) is equivalent to the exact category P(A™[G]) of finitely
generated projective A™[G]-modules. Recall here that A™Y[G] = P 2eG Aeg and
the product is defined by (rg - e5) (rp, - ep) =rg - (1 *g_l)egh, where * indicates the
G-action on A.

If I is a nilpotent ideal of A with quotient B = A/, it follows from Lemma 5.4
that the map A™[G] — B"™[G] is surjective and its kernel is a nilpotent ideal
of AW[G]. We now apply [Weibel 1989, Theorem 2.3] to conclude that the map
KH(AY[G]) — KH((A/)™[G]) is a homotopy equivalence. Since G acts triv-
ially on A,, there is a canonical isomorphism (A[A,])™V[G] ~ (AY[G])[A.]. We
conclude that the map KH ([Spec(A)/G]) — KH ([Spec(B)/G]) is a homotopy
equivalence. This finishes the proof. (]

Lemma 5.4. Let G be a finite group acting on commutative unital rings A and B.
Let A — B be a G-equivariant surjective ring homomorphism whose kernel is
nilpotent. Then the induced map A™[G) — B“[G] is surjective and its kernel is
nilpotent.

Proof. Let I denote the kernel of f : A — B. By hypothesis, there exists an integer
n such that /" = 0. Since the induced map A" [G] — B™W[G] is a G-graded
homomorphism induced by f on each graded piece, it is a surjection and its kernel
is given by I'"V[G] = @gec leg. Since I is a G-invariant ideal of A, each element
of (I™[G])" is of the form (ay.eq, +---+apm.e,,), where g; € G and a; € I".
Therefore, (I'"[G])" = 0. O

5C. K-theory of stacks with coefficients. For an integer n € N, let

K(X; Z[1/n]) := hocolim(K(X) > K(X) > ---),
K(X;Z/n) :=K(X)AS/n,

where S/n is the mod-n Moore spectrum. Our final result is the homotopy invari-
ance property of KK-theory with coefficients.

The proof of Theorem 5.5 uses the notion of K-theory of dg-categories. We
briefly recall its definition and refer to [Keller 2006, §5.2] for further details. Let
A be a small dg-category. The category D(A) is the localization of the category
of dg A-modules with respect to quasi-isomorphisms. The category of perfect
objects Per(A) is the smallest triangulated subcategory of D(A) containing the
representable objects and closed under shifts, extensions and direct factors. The
algebraic K-theory of A is defined to be the K-theory spectrum of the Waldhausen
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category Per(A), where the cofibrations are the degreewise split monomorphisms
and the weak equivalences are the quasi-isomorphisms.

Theorem 5.5. Let X be a nice quotient stack over k with the resolution property
and let f : £ — X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f* :WK(X;Z/n) — K(E;Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map * : K(X; Z[1/n]) — K(&; Z[1/n])
is a homotopy equivalence.

Proof. The category Perf(X') has a natural dg enhancement [Cisinski and Tabuada
2012, Example 5.5] whose algebraic K-theory (in the sense of K-theory of dg-
categories) coincides with K(X') by [Keller 2006, Theorem 5.1]. It follows from
Proposition 2.7 and [Hall and Rydh 2017, Proposition 8.4] that Dg(X) is com-
pactly generated and every perfect complex on X is compact. We conclude from
[Tabuada 2017, Theorem 1.2] that the theorem holds when f is the projection map
X[T] — X. To prove the general case, we use (5.3) and repeat the argument of
Theorem 5.2 verbatim. ]

Corollary 5.6. Let X be as in Theorem 5.5. Then the following hold.
(1) For any integer n invertible in k, the natural map K(X; Z/n) — KH(X; Z/n)

is a homotopy equivalence.
(2) For any integer n nilpotent in k, the natural map K(X;Z[1/n])— KH (X;Z[1/n])
is a homotopy equivalence.
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A fixed point theorem on noncompact manifolds

Peter Hochs and Hang Wang

We generalise the Atiyah—Segal-Singer fixed point theorem to noncompact man-
ifolds. Using KK-theory, we extend the equivariant index to the noncompact
setting, and obtain a fixed point formula for it. The fixed point formula is the
explicit cohomological expression from Atiyah—Segal-Singer’s result. In the
noncompact case, however, we show in examples that this expression yields
characters of infinite-dimensional representations. In one example, we realise
characters of discrete series representations on the regular elements of a max-
imal torus, in terms of the index we define. Further results are a fixed point
formula for the index pairing between equivariant K-theory and K-homology,
and a nonlocalised expression for the index we use, in terms of deformations of
principal symbols. The latter result is one of several links we find to indices of
deformed symbols and operators studied by various authors.
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1. Introduction

In the second part of the Index of elliptic operators series, Atiyah and Segal [1968]
proved a fixed point formula for compact groups and manifolds. This allows one
to compute the equivariant index of an elliptic operator (or an elliptic complex)
in terms of data on the fixed point sets of the group elements. In [Atiyah and
Singer 1968b], a cohomological version of this formula was obtained, which we
call the Atiyah—Segal-Singer fixed point theorem. It has applications, for example,
in representation theory. Indeed, Atiyah and Bott [1968] used a fixed point formula
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Keywords: equivariant index, fixed point formula, noncompact manifold, K K -theory.
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(which equals the Atiyah—Segal-Singer theorem in the case considered) to prove
the Weyl character formula.

Our goals in this paper are to generalise the Atiyah—Segal-Singer theorem to
noncompact manifolds, and to apply this generalisation in relevant situations.

The main result and some applications. We define an index on possibly noncom-
pact manifolds, which generalises the equivariant index for compact groups and
manifolds (see Definition 2.7). Assuming the fixed point set of a group element g
is compact, we show that this index is given by exactly the same cohomologi-
cal expression as in the Atiyah—Segal-Singer theorem. This is our main result,
Theorem 2.16. We also obtain a fixed point formula for the index pairing between
equivariant K-theory and K-homology in Theorem 2.18. In the nonequivariant
setting, very general expressions for this pairing were given in [Carey et al. 2014];
Theorem 2.18 is an equivariant version of these results for the operators considered
here.

While the cohomological expression for the index is the same as in the compact
case, in noncompact examples we see that it gives rise to characters of infinite-
dimensional representations. These can never occur as indices of elliptic operators
on compact manifolds, so that the theory really gives us something new. For ex-
ample, we use the fixed point theorem in Section 6E to express the character of a
representation in the discrete series of a semisimple Lie group in terms of our index,
on the regular elements of a maximal torus. Other examples and applications are:

¢ a holomorphic linearisation theorem, related to [Guillemin et al. 2002, Chap-
ter 4] and [Braverman 2002, Theorem 7.2];

« explicit computations for actions by the circle on the plane and the two-sphere;

« arelation with kernels of Fredholm operators, in particular Callias-type Dirac
operators [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias 1978;
Kucerovsky 2001];

« arelation with Braverman’s index of deformed Dirac operators [Braverman
2002];

« arelative index theorem, in the spirit of [Gromov and Lawson 1983, Theo-
rem 4.18];

» some geometric consequences in the cases of the Hodge—Dirac and Spin-Dirac
operators.

In all cases we consider, we find that the index can be expressed explicitly in
terms of the kernel of a deformation of the operator in question. (In the discrete
series example, the operator does not even have to be deformed.) On noncompact
manifolds, one can often obtain a well-defined index of a Dirac operator by ap-
plying a deformation, with suitable growth behaviour. See, for example, [Anghel
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1993; Braverman 2002; 2015; Bunke 1995; Callias 1978; Hochs and Mathai 2015;
Hochs and Song 2017a; Kucerovsky 2001; Ma and Zhang 2014; Paradan 2011].
This index then depends on the deformation used. While we do not use a defor-
mation to define our index, we see in examples that it equals an index defined
via a deformation. One could speculate that this means that the index we use
implicitly includes a canonical choice of such a deformation. For the Callias-type
operators studied in [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias
1978; Kucerovsky 2001], their equivariant indices can be expressed as the index
we define, plus a term representing the dependence on the deformation used, in
terms of its behaviour “at infinity”. (Previously, Callias-type operators were not
studied in combination with group actions, so only nonequivariant indices were
computed.)

The relation to index theory of deformed Dirac operators is strengthened in the
last section of this paper, which is independent of the fixed point formula. There
we give an expression for the index of elliptic operators involving deformations of
their principal symbols.

Other generalised fixed point theorems include [Berline and Vergne 1996a, Main
Theorem 1; 1996b, Theorem 20] (for transversally elliptic operators), [Braverman
2002, Theorem 7.5] (for deformed Dirac operators on noncompact manifolds), the
results in [Dell’ Ambrogio et al. 2014] (for correspondences, generalising self-maps
on manifolds), [Emerson 2011, Theorem 2.7] (for groupoids) and [Wang and Wang
2016, Theorem 6.1] (for orbifolds).

Idea of the proof. Let us sketch some technical steps involved in defining the index
and proving the fixed point formula. We consider a Riemannian manifold M, and
an elliptic operator D on a vector bundle £ — M. Let G be a compact Lie group
acting on E, preserving D. Under assumptions about grading and self-adjointness,
we have a class [ D] in the equivariant K-homology group KOG (M)of M. Let g € G.
Then we may replace G by the compact Abelian group generated by g, and still
retain all information about the action by the element g. A localisation theorem in
K-homology allows us to construct the g-index map

index, : K(?(M) — C.

This localisation theorem is closely related to a localisation theorem in KK-theory:
Theorem 3.2 in [Rosenberg 1999]. The g-index of the operator D is defined as the
g-index of its class [D] in K(? (M). If M is compact, this is the usual equivariant
index of D, evaluated at g.

If M is compact, the principal symbol op of D defines a class in the equivariant
topological K-theory group K g(TM ). In our setting, M may be noncompact. Then

we have a class
lop]l € KKg(M, TM)
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in the equivariant KK-theory of the pair (Co(M), Co(TM)). The Dolbeault-Dirac
operator on TM defines a class

[Drm] € KKG(TM, pt).

An index theorem by Kasparov implies that, with respect to the Kasparov product
&7y over Co(TM), we have

[D]=[op] ®7m [Dru] € KKG(M, pt) = K§ (M).

This generalises the Atiyah—Singer index theorem.

The proof of the fixed point formula for the g-index of D is a KK-theoretic
generalisation of the proof by Atiyah and Segal [1968] for the compact case. This
generalisation involves Kasparov’s index theorem, localisation theorems in KK-
theory, and KK-theoretic versions of the Gysin wrong-way maps in K-theory. An-
other ingredient is a class b 0
o, € KG(TM), (1.1)
associated to op, in the equivariant topological K-theory of TM, localised (in the
algebraic sense) at g. Using these techniques, and keeping track of what happens
in both entries in KK-theory, allows us to obtain an expression for the g-index of
D in terms of data on the fixed point set of g. While all constructions in the proof
are KK-theoretic in nature, the end result is a purely cohomological expression.
An explicit description of the class (1.1) in terms of a deformation of the symbol
op allows us to prove a nonlocalised expression for the g-index, independent of
the fixed point formula.

Outline. The g-index is introduced in Section 2. It allows us to state the fixed
point formula in Theorem 2.16.

In Section 3, we prove the localisation results, which imply that the g-index is
well-defined. In Section 4, we review an index theorem by Kasparov. This result,
and related techniques, are used in the proof of the fixed point theorem in Section 5.

The applications and examples mentioned above are discussed in Section 6. In
Section 7, we obtain a nonlocalised expression for the g-index of an elliptic oper-
ator.

Notation. If A is a subset of a set B, then we denote the inclusion map A < B
by j f . We denote the one-point set by pt. For any set A, we write p4 for the map
from A to pt.

If U is an open subset of a locally compact Hausdorff space X, then we denote
by kl}]( the inclusion map Co(U) — Co(X) defined by extending functions by zero
outside U. If Y is another locally compact Hausdorff space, we write

KK(X,Y):= KK(Co(X), Co(Y)),
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and similarly for equivariant KK-theory. The Kasparov product ®c,x) over Co(X)
will also be denoted by ®x. If X has a Borel measure, and £ — X is a Hermitian
vector bundle, then the *-homomorphism 7y : Co(X) — B(L*(E)) is given by
the pointwise multiplication on L?-sections of E. If H is a locally compact group
acting on X, and H' < H is a subgroup, we write H x ' X for the quotient of
H x X by the action by H' given by

W (h,x) = (hh'~', h'x),

forh e H,he H and x € X.

Throughout this paper, G will be a compact Abelian group containing an element
g whose powers are dense in G. The only exception is Section 6E, where G denotes
a semisimple Lie group. There, a compact Cartan subgroup 7T < G will play the
role that G plays in the rest of this paper.

If M is a manifold, its tangent bundle projection TM — M is denoted by 7.
If a Riemannian metric is given, we will often tacitly use it to identify the tangent
bundle of M with the cotangent bundle. The complexification of a vector space or
vector bundle is denoted by a subscript C.

2. The fixed point formula

Our goal in this paper is to generalise the Atiyah—Segal-Singer fixed point theo-
rem ([Atiyah and Singer 1968b, Theorem 3.9], based on [Atiyah and Segal 1968,
Theorem 2.12]) to noncompact manifolds, and to find interesting applications of
this generalisation. This leads us to define the g-index in Section 2B. The key
to defining the g-index is a localisation theorem, which is stated in Section 2A.
The main result of this paper is the fixed point formula in Theorem 2.16, stated
in Section 2D. This formula is entirely cohomological, and does not involve KK-
theory. Some properties of the g-index are given in Section 2C.

Throughout this paper, M will be a Riemannian manifold. We consider an iso-
metric diffeomorphism g from M to itself. Suppose the closure of the powers of
g in the isometry group (with respect to the compact-open topology) is a compact
group G. Equivalently, suppose g is an element of a compact group H acting
isometrically on M, and let G < H be the closed subgroup generated by g. In any
case, G is Abelian. Let M# be the fixed point set of g.

Let E=E" @ E~— M be a Z,-graded, Hermitian vector bundle. Let D be an
odd, essentially self-adjoint, elliptic differential operator, with principal symbol op.
(For example, D can be a Dirac-type operator on a complete manifold.) We will
also write D for the self-adjoint closure of D. Then we have the element

[y2 D
(D] := [L (E), NG nM] 2.1



240 PETER HOCHS AND HANG WANG

of the equivariant K-homology group KKg(M, pt) := KKg(Co(M), C). Here
7y Co(M) — B(LA(E)) is given by pointwise multiplication. For background
material on KK-theory, see [Blackadar 1998, Chapter VIII].

2A. Localisation. Let R(G)g := R(G) 1, be the localisation of the representation
ring R(G) at the prime ideal

I;:={x € R(G): x(g) =0}.

For any module M over R(G), we write M, := M, for the corresponding lo-
calised module over R(G),. Similarly, if m € M, and ¢ : M — M’ is a module
homomorphism to another such module, we write m, € M, and

gog:Mg—>M;,

for the corresponding localised versions.

For any two G-C*-algebras A and B, the group KK (A, B) is a module over the
ring R(G) = KK (C, C), via the exterior Kasparov product. Fix a G-C*-algebra A.
The inclusion map

Jofe M8 —> M
induces
(M):: KKG(A, Co(M))g — KK (A, Co(M®)).

Theorem 2.2. If A is separable, the map (j A%)Z, is an isomorphism of Abelian
groups. This is still true if M \ M8 is a manifold, rather than all of M.

Remark 2.3. If A = C, then this reduces to [Atiyah and Segal 1968, Theorem 1.1].
We need this more general statement, because in the noncompact case, princi-
pal symbols define classes in KKg(Co(M), Co(TM)) as in (4.4), rather than in
KKg(C, Co(TM)) when M is compact.

We will also use an analogue of Theorem 2.2 for the first entry in KK-theory.
Its formulation is slightly more subtle.

Theorem 2.4. Suppose that M8 is compact and that A is o-unital. Let U,V C M
be two G-invariant, relatively compact open neighbourhoods of M8, such that
U C V. Then the map

((g)w)g : KKG(Co(U), A)g = KK (Co(V), A)g

is an isomorphism of Abelian groups. This is still true if M is only a locally
compact Hausdorff topological space rather than a manifold, as long as the open
subset M\ M8 is a manifold.

Theorems 2.2 and 2.4 will be proved in Section 3 for graded KK-theory, i.e.,
the combination of even and odd KK-theory. We will only apply the even versions,
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however. The cases where only M \ M$ is a manifold were included because we will
also apply Theorem 2.4 to one-point compactifications of manifolds. Theorems 2.2
and 2.4 are similar to Theorem 3.2 in [Rosenberg 1999].

2B. The g-index. Suppose the fixed point set M# is compact. Let U, V be as
in Theorem 2.4. Consider the proper map pY : U — pt, and the inclusion map
k{‘f : Co(V) = Co(M) given by extending function by zero outside V. Let A be a
o-unital G-C*-algebra. By Theorem 2.4, we have the maps

kM*

*;
KKG(Co(M), A)g —> KK (Co(V), A)g

G5! (PY)q

KKG(C(U), A)y — KKG(C, A),. (2.5)
Lemma 2.6. The composition (2.5) is independent of the sets U and V.

Proof. To prove independence of U, let U’ be a G-invariant, relatively compact
neighbourhood of M# such that U’ C U. Then we have the commutative diagram

KKg(CU), A)

G2 _ v
v lug,)* &
KKg(Co(V), A) T KKG(C(U), A) — KKg(C, A)

Commutativity of this diagram implies that

PVg0 (i7" = (pD)g 0 (G "

So (2.5) is indeed independent of U.
To prove independence of V, let V' be a G-invariant, relatively compact open
subset of M containing V. Then the following diagram commutes:

KKg(Co(V'), A)

kM) / Gy s
kY

KK (Co(M), A) W KKG(Co(V), A) T KKg(C(U), A)
1% Jg )*

Therefore, we have
(G20 o s = (G0 o ki,
so that (2.5) is independent of V. |

To define the g-index, we only need the case of Lemma 2.6 where A = C. Later
we will also use the general case, however.
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Let
ev,: R(G) - C

be defined by evaluating characters at g, i.e., evg(x) := x(g), for x € R(G). In
view of Lemma 2.6, we obtain a well-defined index as follows.

Definition 2.7. The g-index is the map

index, : KKg(M, pt) — C
defined as the composition
KKg(M,pt) — KKg(M, pt),

(PD)go(())g o) (Vo)

KKg(pt, pt)g = R(G), —=> C. (2.8)

We will write
index, (D) := index,[ D],

where [D] € KK (M, pt) is the class (2.1).

Note that (ké’l );[D] ¢ 1s simply the localisation at g of the K-homology class of
the restriction of D to V.

Remark 2.9. The g-index of D could also have been called the D-Lefschetz num-
ber of g.

2C. Properties of the g-index. If M is compact, then we may take U =V =M
in Definition 2.7. Furthermore, the map p™ : M — pt is proper. In that case, the
composition (2.5) simply equals the map

(Pi")g 1 KKG(Co(M), A)g = KKG(C, A)y.
If A =C, then it follows that for compact M, the g-index of D equals
index, (D) = indexg (D)(g), (2.10)

the usual equivariant index of D evaluated at g. Note that on the right-hand side
of (2.10), G can be any compact Lie group acting isometrically on M if the action
lifts to E, commutes with D, and contains g.

In general, however, the g-indices on noncompact manifolds give us something
more general than the equivariant index in the compact case. In the examples
in Section 6, we will see that the g-index can be used to describe characters of
infinite-dimensional representations. These cannot be realised as indices on com-
pact manifolds. And even on compact manifolds, an equivariant index can be
decomposed into g-indices which individually correspond to infinite-dimensional
representations. See Section 6D.

The g-index has an excision property.
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Lemma 2.11. Let V be a G-invariant, relatively compact, open neighbourhood
of M8. Suppose there is a G- eqmvarlant open embedding V — M into a G-
manifold M. Suppose the action by G on M has no ﬁxed points outside V. Suppose
there is a Hermitian, Z,-graded G-vector bundle E — M and an odd, self-adjoint,
elliptic differential operator D on E such that EIV =E|y and 5|V = Dl|y. Then

index, (D) = index, (D).
Proof. By Proposition 10.8.8 in [Higson and Roe 2000], we have
k) [D] = ()*[D] € KKG(V, po).
This implies the claim. |

Example 2.12. Suppose M has a G-equivariant Spin-structure, and let D be the
Spin-Dirac operator. Let M — M be a G-equivariant open embedding into a
compact G-manifold M with a G-equivariant Spin-structure. If G is connected
and index, (D) # 0, then g must have a fixed point in M \ M. Indeed, Atiyah
and Hirzebruch [1970] showed that the g-index of the Spin-Dirac operator on M
is zero in this case. So the claim follows by Lemma 2.11.

Another property of the g-index is multiplicativity. Let D{ and D, be operators
like D on manifolds M and M>, respectively, and consider the product operator

DixDyy:=D1®1+1Q D,

on M x M, (where graded tensor products are used). Then functoriality of the
Kasparov product implies that

indexg (D x Dy) = indexg (D) index, (D).

In the index theory of deformed Dirac operators developed in [Braverman 2002],
the deformation used means that an analogous multiplicativity property is highly
nontrivial; see [Hochs and Song 2017b; Ma and Zhang 2014; Paradan 2011].

2D. Fixed points. Having defined the g-index, we can state the main result of this
paper. We will use the fact that the connected components of the fixed point set M$
are smooth submanifolds of M, possibly of different dimensions.

Since M$ is compact, the restriction to TM¢ of the principal symbol op of D

defines a class
loplrme] € KK (pt, TM$). (2.13)

Let N — M be the union of the normal bundles to each of the components of M$.
Consider the topological K-theory class

[ANc] = [, N'N&C]-[®,; N\ N®C] e KKg(pt. M®).  (2.14)
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For any trivial G-space X, we have
KK¢(pt, X) = KK (pt, X) ® R(G).

We can evaluate the factor in R(G) of any class @ € KK (pt, X) at g, to obtain
a(g) € KK(pt, X) ® C. In this way, evaluating the classes (2.13) and (2.14) at g
gives the classes

loplrme](g) € KK(pt, TM®) ® C
and

[ANc](e) € KK (pt. M*) @ C, (2.15)
respectively.
Consider the Chern characters
ch: KK(pt, TM®) — H*(TM?),
ch: KK(pt, M8) — H*(M$¥),

defined on each smooth component of M¢$ separately. By [Atiyah and Segal 1968,
Lemma 2.7], the K-theory class (2.15) is invertible; hence so is its Chern character.
An explicit expression for the inverse

1
ch([ANc](2)
of this element is given in [Atiyah and Singer 1968b, (3.8)]. The cohomology
group H*(M?3) acts on H*(TM?¥) via the pullback along the tangent bundle projec-
tion Ty¢. Let Todd(TM ¢ ® C) be the cohomology class on M# obtained by putting

together the Todd-classes of the complexified tangent bundles to all components
of M8,

e H*(M®)®C

Theorem 2.16 (fixed point formula). The g-index of D equals

. ch([oplrms1(g)) Todd(TM?® ® C)
index, (D) =
™S ch([ANc](®))
The integral in this expression is the sum of the integrals over all connected
components of TM¢& of the integrand corresponding to each component.
If M is compact, then (2.10) implies that Theorem 2.16 reduces to the Atiyah—
Segal-Singer fixed point formula [Atiyah and Singer 1968b, Theorem 3.9].

(2.17)

2E. The index pairing. In the course of the proof of Theorem 2.16, we will also
find a fixed point formula for the index pairing (i.e., the Kasparov product)

KKq(pt, M) x KKg(M, pt) — KKg(pt, pt).

Note that any element of the equivariant topological K-theory group KK (pt, M)
can be represented by a formal difference [Fy] — [F1], for two G-equivariant vec-
tor bundles Fy, F; — M that are equal outside a compact set. We will write
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F := Fy & F, with the Z,-grading where Fj is the even part and F; the odd
part, and [F] := [Fy] — [F1] € KK (pt, M).

Theorem 2.18 (fixed point formula for the index pairing). We have

ch([F|m<1(g)) ch(lop|rms](g)) Todd(TM& ® C)
Fl®@u[D :/ .
([F1®um [D](g) . ([ ANC](®)

Recall that M8 was assumed to be compact, and that we use the action by the
cohomology of M¢ on the cohomology of TM$ via the pullback along 7js.

Theorem 3.33 in [Carey et al. 2014] is a nonequivariant index formula for the
index pairing in a more general context. Theorem 2.18 is an equivariant version of
this result, for operators like D.

The proof of Theorem 2.18 is simpler than that of Theorem 2.16, because it does
not involve localisation in the first entry of KK-theory. Theorem 2.16 is needed for
the examples and applications in Section 6, such as the relation with characters of
discrete series representations. The reason for this is that Theorem 2.16 provides

an expression for an index of the operator D itself, without the need to twist it by
a K-theory class.

3. Localisation

We now turn to a proof of Theorems 2.2 and 2.4. This involves certain module
structures discussed in Section 3A, which are used to prove vanishing results in
Section 3B. In this section, we consider graded KK-theory, i.e., the direct sum of
even and odd KK-theory.

3A. Module structures. Let H be a locally compact group, and let H' < H be a
compact subgroup.

Proposition 3.1. Let Y be a locally compact, Hausdorff, proper H-space for
which there is an equivariant, continuous map Y — H/H'. Then for any H-C*-
algebra A, the groups

KKy (A, Co(Y)) and KKg(Co(Y), A)
have structures of unital R(H')-modules.

Proposition 3.1 follows from the fact that vector bundles, even on noncompact
spaces, define classes in KK-theory in the following way. This is probably well-
known, but we include a proof for completeness’ sake.

Let X be a locally compact Hausdorff space on which H acts properly. Let
E — X be a Hermitian H-vector bundle. The space ['g(E£) of continuous sec-
tions of E vanishing at infinity is a right Hilbert Co(X)-module by pointwise
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multiplication and inner products. Let wyx : Co(X) — B(['g(E)) be given by
pointwise multiplication.

Lemma 3.2. The triple
(Fo(E), 0, wx) (3.3)

is an H-equivariant Kasparov (Co(X), Co(X))-cycle.

For compact spaces X, this fact is noted for example in (3.1) in [Rosenberg
1999]. In general, we will denote the class in KKy (X, X) defined by (3.3) by [E].

Proof. We show that for all f € Cy(X), the operator mwx (f) on I'g(E) is compact.
This implies the claim.
Let U C X be a relatively compact open subset admitting an orthonormal frame

{ei,...,e } of E|y. Lets € ['o(E). Then
r
sly = Z(C/,S)Eé’j-
j=1

Here (—, —)g is the metric on E. So if f € Co(X) is supported inside U, then

r r
wx(f)s = Z(ej, fsej= Z(f_ej, s)ej.
j=1 j=1
By extending the sections e; outside U to elements of I'g(E), we find that x ()

is a finite-rank operator.

For a general f € C.(X), there is a finite open cover {Uj}’}:l of supp(f) such
that every set U; admits a local orthonormal frame for E. Let {¢ j};?: | be functions
such that supp(¢;) C U;, and Z;l-zl @; equals one on supp(f). Then, by the
preceding argument, "
mx(f) =Y _ 7x(@;f)

j=1
is a finite-rank operator. Hence, for all f € Cy(X), the operator wx (f) on ['g(E)
is indeed compact. ([

Now consider the situation of Proposition 3.1. Let p : Y — H/H' be an equi-
variant, continuous map. Let V be a finite-dimensional representation space of H'.
We have the H-vector bundles

HxypV—H/H
and
Ey:=p*(HxyV)—Y.

By Lemma 3.2, this vector bundle defines a class

[Ev] e KKg(Y,Y).
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Lemma 3.4. The map from R(H') to KKy (Y, Y) given by
[Vl [EV],

with [ Ev] defined as above, is a ring homomorphism.

Proof. This follows from the fact that in the setting of Lemma 3.2, for any two
Hermitian H-vector bundles E, E’ — X, one has

[E]1®x [E'1=[EQE']. 0

The ring homomorphism of Lemma 3.4 defines the module structures sought in
Proposition 3.1, which has therefore been proved. If A = C and Y is compact, the
R(H’)-module structure on KKy (C, Co(Y)) defined in this way is the one used in
[Atiyah and Segal 1968].

3B. Vanishing results. We will prove Theorems 2.2 and 2.4 by generalising Atiyah
and Segal’s proof of [Atiyah and Segal 1968, Theorem 1.1]. An important step is
the following generalisation of [Atiyah and Segal 1968, Corollary 1.4].

Proposition 3.5. Let H < G be a closed subgroup such that g ¢ H. Let Y be
a compact G-space for which there is an equivariant map Y — G/H, and A a
G-C*-algebra. Then

KKG(A,Co(Y))g = KKg(Co(Y), A)g =0.

Proof. By [Atiyah and Segal 1968, Corollary 1.3], we have R(H), = 0. As
Atiyah and Segal argued below that corollary, it is therefore enough to show that
KKg(A, Co(Y)) and KKG(Co(Y), A) are unital R(H)-modules. Hence, the claim
follows from Proposition 3.1. (I

We will deduce Theorems 2.2 and 2.4 from the following special cases.

Proposition 3.6. In the setting of Theorem 2.2, suppose g has no fixed points in M.
Then, if A is separable, we have

KKg(A, Co(M))g =0. (3.7
If A is o -unital, then for all G-invariant, relatively compact open subsets U C M,
KKg(Co(U), A)g =0. 3.8)

If A =C, then (3.7) is precisely [Atiyah and Segal 1968, Proposition 1.5]. By
a generalisation of the arguments in [Atiyah and Segal 1968, Section 1], we will
deduce Proposition 3.6 from Proposition 3.5.

By Palais’ slice theorem [1961, Proposition 2.2.2], there is an open cover {U; };?":1
of M by G-invariant open sets such that for all j,

ITJ';GXH/'S_J'
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(via the action map), for the stabiliser H; < G of a point in U}, and an H j-invariant
submanifold §; C M. Suppose that g has no fixed points. Then it does not lie in
any of the stabilisers H;. Therefore, Proposition 3.5 implies that

KKG(A, Co(U)))g = KKG(Co(U;), A)g =0.

Let X C M be any G-invariant, compact subset. The proof of Proposition 3.6
is based on the following fact.

Lemma 3.9. If A is separable, then

KKG(A, Co(X)), =0. (3.10)

If A is o -unital, then
KKg(Co(X), A)g =0. (3.11)

Proof. We use an induction argument based on exact sequences in KK-theory. We
work out the details for (3.10). Then (3.11) can be proved in the same way, with
exact sequences in the second entry in KK-theory replaced by the corresponding
exact sequences in the first entry. The conditions that A is separable or o -unital
imply that these exact sequences exist.

For j,n € N, write X; := ITjﬂX, and Y, ==X, U---UX,. Fixn e N, and
consider the exact sequence of C*-algebras

0— Co(Xnt1\ Yn) > Co(Xnt1) > Co(Xny1NY,) — 0.
It induces the exact triangle
KKg(A, Co(Xnt1)) —— KKG(A, Co(Xp1NYy))
la
KKG(A, Co(Xnt1\Yn))
(See, e.g., [Blackadar 1998, Theorem 19.5.7].) By Proposition 3.5, we have
KKG(A, Co(Xnt1))g = KK (A, Co(Xnp1NYy))g =0.
Since localisation at g preserves exactness, we find that
KKG(A, Co(Xnt1\Yn))g =0. (3.12)
Using the exact sequence
0— Co(Ynt1\Yn) > Co(Ynt1) = Co(¥n) > 0

in a similar way, we obtain the exact triangle
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KKg(A, Co(Ypt1))g — KKG(A, Co(Yn)),
\ la
KKG(A, Co(Yni1\ Yn))g
Since Y41\ Yy = Xpn41 \ Ya, the vanishing of (3.12) implies that
KKg(A, Co(Yni1))g = KKG(A, Co(Yy))g.
Because Y| = X, Proposition 3.5 implies that
KKg(A, Co(Y1))g =0.

Since X is compact, it can be covered by finitely many of the sets X ;. Hence, the
claim follows by induction on 7. ]

Proof of Proposition 3.6. Let U C M be a G-invariant, relatively compact open
subset. Consider the exact sequence

0— Co(U) = Co(U) = Co(3U) — 0.

If A is o-unital, this induces the localised exact triangle

KKG(Co(U), Ay +—— KKG(Co(dU), A),
]a
KKg(Co(U), A)g
Lemma 3.9 implies that
KKG(Co(U), A)g = KKG(Co(dU), A)g =0.

So we find that KK (Co(U), A)g = 0.
Similarly, if A is separable, we have the exact triangle

KKG(A, Co(U))g — KKG(A, Co(dU)),

T |

KK (A, Co(U))g

Applying Lemma 3.9 in the same way, we find that KK (A, Co(U))g = 0. The
equality (3.7) follows, because M is the direct limit of sets U as above, and because
KK-theory commutes with direct limits in the second entry. ]

Remark 3.13. The reason why (3.8) does not hold if U is replaced by M, and
hence why Theorem 2.4 has to be stated more subtly than Theorem 2.2, is that
KK-theory does not commute with direct limits in the first entry. For example, the
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domain of the analytic assembly map in the Baum—Connes conjecture [Baum et al.
1994] is the representable K-homology group

RK(X):= lim  KKy(Co(Y),O),
YCX; Y/H cpt

for a locally compact Hausdorff space X on which a locally compact group H acts
properly. This does not equal the usual K-homology group KKz (Co(X), C) in
general.

3C. Proofs of localisation results.

Proof of Theorem 2.2. Consider the exact sequence

UM
0— Co(M\ M8) — Co(M) —— Co(M¥) — 0.

It induces the exact triangle

M

KK (A, Co(M)) —— KK (A, Co(M*#))
|
KKg(A, Co(M\ M#))

After localisation at g, the first part of Proposition 3.6 yields the exact triangle

iMook

Upe)e
KKG(A, Co(M))y — 2 KK (A, Co(M#)),
0 O

Proof of Theorem 2.4. Let U and V be as in Theorem 2.4. Similarly to the proof
of Theorem 2.2, we have an exact triangle

((jX)*)g _
KKG(Co(V), A)y ———— KKG(Co(U), A)g

T

KKG(Co(V\U), A)g

Because V \ U is a relatively compact subset of M \ M#, the second part of
Proposition 3.6 implies that the bottom localised KK-group in this triangle equals
ZEeT0. (]
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4. Kasparov’s index theorem

In the proof of the Atiyah—Segal-Singer fixed point theorem, the Atiyah—Singer
index theorem is used to relate topological and analytical indices to each other. In
the noncompact case discussed in this paper, a roughly similar role is played by
an index theorem of Kasparov. We state Kasparov’s index theorem in Section 4A.
In Section 4B, we discuss the fibrewise Bott element for the normal bundle of
a submanifold in KK-theory, which is dual to the class of the Dolbeault—Dirac
operator in a sense. This Bott element will play an important role in the proof
of Theorem 2.16. In Section 4D, we show how the Bott element can be used to
deduce the Atiyah—Singer index theorem from Kasparov’s index theorem in the
compact case. (The main step in the argument used there will be used in the proof
of Theorem 2.16.)

Most of the material in this section is based on [Atiyah and Singer 1968b; Kas-
parov 2016] and explanations to the authors by Kasparov. Although the results
here are not ours, we found it worthwhile to include the details, because they have
not appeared in print yet.

4A. The index theorem. To state the theorem, we recall the definition of the Dol-

beault operator class
[Drm] € KKG(TM, pt) 4.1

in [Kasparov 2016, Definition 2.8]. The tangent bundle 7' (TM) of TM has a natural
almost complex structure J. For m € M and v € T,, M, we have

T,(TM) = TyM & Ty(TyM) = Ty M & Ty M.

With respect to this decomposition, the almost complex structure J is given by the
matrix [_(1) (1)] Let 3 + 8* be the Dolbeault-Dirac operator on smooth sections of
the vector bundle /\0’* T*(TM) — TM, for this almost complex structure. We will
identify this vector bundle with 7, A\TMc — TM. The class (4.1) is the class of
this operator, as in (2.1). In our arguments however, it will be more convenient
to use the Spin“-Dirac operator D7y, on the same vector bundle. This defines the

same K-homology class as 9 + 9*.
Definition 4.2. The topological index is the map

index; : KKg(M, TM) — KKg(M, pt)
given by the Kasparov product with [ Dyy,].

Consider the principal symbol 6p :=op/V 012) + 1 of the operator D/+/ D? + 1.
For f € Co(M), we have forallm e M and v € T,, M,

Fm)(1 =Gp)?) = f(m)(op)*+ 1)~
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Since the operator D is elliptic and of positive order, this expression tends to zero
as m or v tends to infinity. It therefore defines a compact operator on the Hilbert
Co(TM)-module I'g (7}, E), analogously to the proof of Lemma 3.2. Therefore, the

triple _
(To(tyE), 6p, Trm 0 Tyy) (4.3)

is a G-equivariant Kasparov (Co(M), Co(TM))-cycle. Here, wry : Cp(TM) —
B(To(ty; E)) is given by pointwise multiplication. Denote by

l[opl e KKg(M,TM) 4.4)

the class of (4.3). In view of the following lemma, this symbol class is a natural
generalisation of the K-theory symbol class defined in [Atiyah and Singer 1968a]
when M is compact.

Lemma 4.5. If M is compact, consider the map p™ from M to a point. The image

pXopl € KE(TM)
is the usual symbol class.
Proof. Since o T}y o (pM)*
multiplication, we have

is the representation of C in I'g(t), E) by scalar

py'lop]l = [To(ty;E). 6p) € KK (pt, TM).
This corresponds to the class
lop+ Tl ET — T}y E"]1 € K&(TM)

in the sense of [Lawson and Michelsohn 1989, Chapter 111, (1.7)], where TM is
identified with the open unit ball bundle BM over M. (Restricting op+ to BM and
then identifying BM = TM has the same effect as normalising op+.) The lemma
is then proved. U

We conclude this subsection by stating Kasparov’s index theorem, which will
be used to obtain a cohomological formula for the g-index.

Theorem 4.6 (Kasparov’s index theorem [2016, Theorem 4.2]). The K-homology
class of the elliptic operator in (2.1) is equal to the topological index of its symbol

class (4.4), i.e.,
[D] = index;[op] € KKg(M, C). “4.7)

Remark 4.8. In [Kasparov 2016, Theorem 4.2], the operator in question is as-
sumed to be properly supported, which is not true for the operator D/+/1+ D? in
general. However, let {x j}?.;l be a sequence of G-invariant, compactly supported
functions, such that { Xf}?" | 1s a partition of unity. (This exists since G is compact.)
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Then the operator

o
D

is properly supported, and also satisfies the other assumptions of [Kasparov 2016,
Theorem 4.2]. Since this operator defines the same K-homology class as D/+/1+D?2,
we can apply [Kasparov 2016, Theorem 4.2] to the class of the latter operator in
this way.

4B. The Bott element. If S is a closed (as a topological subspace, i.e., not neces-
sarily compact), G-invariant submanifold of M, then the Dolbeault operator classes
on TS and on a tubular neighbourhood of 7S in TM are related by a (fibrewise) Bott
element. This is a technical tool that will be used several times in the paper. The
material here is analogous to Definition 2.6 and Theorem 2.7 in [Kasparov 2016].
Consider the tangent bundle projections

t5: TS —> S,

v : TN — N.
Denote by w : N — § the normal bundle of S in M. Let Tmw : TN — TS be

the tangent map of m. It again defines a vector bundle. The following diagram

commutes: o
TN —— N

lﬁ l 4.9)

5
TS —— S

This defines a vector bundle TN — S. Consider the vector bundle
ANc = Tn*(ti AN ® C) — TN.
Lets € S. Then
(TN); =T ' (z5'(s)) = 75y (Ny) = T, S x Ny x Nj.

Let w € (TN)y, and let (n, £) € N, x N, be the projection of w according to this
decomposition. Note that

(ANe), = \N; ®C.
We define the vector bundle endomorphism B of /\]VC by

By, =ext(¢ +v/—=1n) —int(¢ +v~1n),

for all s, w, n and ¢ as above. Here ext denotes the wedge product, and int denotes
contraction. With respect to the grading of /\ N¢ by even and odd exterior powers,
the operator B is odd.
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As B is fibrewise selfadjoint, we have the bounded operator B(1 + B?)~!/? on
To(TN, /\ﬁ@). The space T'o(7N, /\ﬁc) is a right Hilbert Co(TN)-module in the
usual way, with respect to pointwise multiplication by functions and the pointwise
inner product. Consider the representation

firs i=mpy o Te* : Co(TS) — B(To(TN, ANc)),

where wpy is given by pointwise multiplication by functions in C,(TN).
Lemma 4.10. The triple

(To(TN, ANc), B+ B2, 75) 4.11)
is a G-equivariant Kasparov (Co(TS), Co(TN))-cycle.
Proof. Let f € Co(TS). Since B(1 + B%)~1/2 is a vector bundle endomorphism, it
commutes with 7775(f). Moreover, we have for all w € (TN); as above,

()

SRS UIEER T E

with v := T (w) € T;S. This defines a function in Cy(TN), and hence acts on the
Hilbert Co(TN)-module FO(TN , /\N@) as a compact operator. As G preserves the
metric on TN, the operator B(1 + B?)~!/2 is G-equivariant. ]

(Frs(H)(1 =B+ BH)™H?)

Definition 4.12. The (fibrewise) Bott element of the normal bundle N — S is the

class
By € KKg (TS, TN)

of the cycle (4.11).

4C. The Bott element and Dolbeault classes. The Bott element is useful to us
because of the following property. This was used in [Kasparov 2016, second para-
graph on p. 1326]; we work out some details of the proof in this subsection.

Proposition 4.13. Under the Kasparov product

KKg(TS,TN) x KKg(TN, pt) = KK (TS, pt),

one has
Bn @7~ [Dry] = [Drs].

To prove this proposition, one can use the part D of the Spin®-Dirac operator
Dy acting in the fibre directions of TN — TS. For s € S and v € TS, we
have T~ (v) = N, ® T,N. Let a be the rank of N, and let {fi,..., fa} be a
local orthonormal frame of N — S. This defines coordinate functions «; and A ;
on the parts Ny and T, N of the fibres T ~!(v) of TN — TS, respectively. For
j=1,...,a, consider the vector bundle endomorphisms

ej:=ext(f;) —int(f;) and €; :=ext(f;)+int(f;)
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of AN ®C — §, pulled back along (4.9) to endomorphisms of /\ﬁ@ — TN. Then
D, is the operator

a
L a — 0
j=1

on FOO(TN , /\ﬁ@). This can be viewed as a family of operators on the fibres
of TN — T8S.

It defines a class in KK-theory as follows. Le~t FC(TN , /\ﬁ@) be the space of
continuous compactly supported sections of /\ N¢. Let £y be the completion of
this space into a Hilbert Cy(7'S)-module with respect to the Cy(7S)-valued inner
product

(f. h)(v) ::/T » )JTt)h(t) dt (4.14)

for f,h e FC(TN , /\ﬁ@) and v € TS. The operator D gives rise to the class
[D1]:=[€0, Di(1+ D))", nry] € KKG(TN, TS). (4.15)
Lemma 4.16. We have
[D11®rs [D1s] = [Drn] € KKG(TN, pt).

Proof. Regarding N as an open subset of M, we identify their tangent bundles
when restricted to S, i.e., TN|s = TM|s. Therefore, as vector bundles over TN,
we have

ANc ® Tr*ti N\TSc = Tr*ti ANe ® Tr*ti NTSc
=Tt A\(N @ TS)c = Tn*ti A\(TM|5)c
=Tn*tg A(TN|s)c = 75 /\TNc.

The last equality follows from commutativity of (4.9). Thus, as Hilbert spaces with
representations of Co(TN),

€0 ®cy(rs) L* (TS, ©§ NTSc) = L*(TN, ti; ATNc). (4.17)
Under this identification, we have
DI ®14+1Q Dys = Dyy.

(Here we use graded tensor products.) Consider the bounded operator

. Di®1+1®Dry
V1+D?®1+1® D

F: (4.18)
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on €y ®cy(rs) L*(TS, t& \TSc). Write
D, Drg

—, Frgi=——.
V1+ D? V14 D

We can verify that F is an 1® Frs-connection, and the graded commutator [ F1®1, F]
is positive modulo compact operators. Thus, by [Blackadar 1998, Definition 18.4.1],
the Kasparov product [D1] ®7s [ Drs] is represented by the operator F on the space
L*(TN, t}, \TN¢). The lemma is then proved. O

F] =

Lemma 4.19. The product
By ®rn [D1]

is the identity element of the ring KK (TS, TS).

Proof. The idea is that in this product, we pair fibrewise Bott classes and Dolbeault
classes, and thus obtain the trivial line bundle over T'S. To see this, observe first
the isomorphism

To(TN, ANc) ®c.ow) Te(TN, ANc) =T (TN, ANc ® ANc)  (4.20)

as C.(TS)-modules. Denote by & the completion of the right-hand side under the

Co(TS)-valued inner product defined in a similar way as (4.14). It can be checked

that _ B®I1+1®D
VI+B2@1+1® D2

isal®D;/vV1+ D%-connection, and that for all a in Cy(TS), the operator

Fy: (4.21)

#rs(@[B(1+B»)™'2 @1, Fylars(a)*

is positive modulo compact operators on £'. Hence, the Kasparov product of By,
given by (4.11), and the class [ D], given by (4.15), is equal to

(&, Fy, irs] € KK (TS, TS). (4.22)

As in the proof of [Kasparov 2016, Theorem 2.7(2)], we apply the rotation homo-

to
by . (B +sin()D) ® 1 + 1 ®cos(t) Dy
t =

V14 (B +5in(0)? DY) @ | + 1 @ cos(1)2D?

fort e [0, %] Then the operator Fj in the cycle (4.22) is transformed into F o =
F'®1, where

F':=(B+Dy)(1+ B>+ D)~ 1/2,

In summary, Sy and [ D] are families of operators indexed by 7'S whose Kasparov
product is represented by F'. Atevery v € TS, the square of B+ D is the harmonic
oscillator operator
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a
2,,2_ 0 3*
Z(Kj +)uj — W — W) +2deg—a
j=1 J J
on T~ (v) = N, x N;. (Here deg is the degree in /\N.) It has a one-dimensional
kernel, concentrated in degree zero, generated by
. ¢) > e~ IIPHIEI/2 ¢ Co (N, x N,). (4.23)

Thus, over each fibre, F’ is a Fredholm operator with index 1, and S8y ®7y [D1] is
equal to the exterior product of this Fredholm operator in KK (C, C) and the class
[Co(TS), 0, mrs] € KK (TS, TS), both representing the respective ring identities.
Hence the claim follows. ]

Proof of Proposition 4.13. Using Lemmas 4.16 and 4.19, and associativity of the
Kasparov product, we find that

Bn ®rn [Drn] = (By ®7n [D1]) ®75 [Drs] = [Drs].
This finishes the proof. U

We will later need the restriction of the Bott element to 7'S. Consider the class
[ZiANC] = [B; N/tiN®C] - [D; N/T'7iN ®C] € KKG(TS, TS).
defined as in Lemma 3.2.
Lemma 4.24. We have
(irs )*Bn = [t5/\Ncl € KKG(TS, TS).

Proof. The Hilbert Co(TS)-module in (j7&)*By is T'o(TS, t& ANc). Because B|rs
is the zero operator, the claim follows. U

4D. The Atiyah—Singer index theorem. Suppose for now that M is compact and
G is trivial. Then Kasparov’s index theorem reduces to the Atiyah—Singer index
theorem; see [Kasparov 2016, Remark 4.5]. We provide the details of this impli-
cation here, because these will be used in the proof of Theorem 2.16.

Consider the Atiyah—Singer topological index map

indexfS :KK(pt, TM) — Z,
which maps a class o € KK (pt, TM) to

/ ch(o') Todd(TM ® C). (4.25)
™

Note that we do not have the factor (—1)4™M in (4.25) as in [Atiyah and Singer
1968b, Theorem 2.12], because we use a different almost complex structure on TM
than in [Atiyah and Singer 1968b, p. 554], giving the opposite orientation.
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Lemma 4.26. As a map KK (pt, TM) — KK (pt, pt), right multiplication by [ D]
is the Atiyah—Singer topological index.

Because of Lemma 4.26, Theorem 4.6 implies the Atiyah—Singer index theorem.
Indeed, since M is compact, the map p™ : M — pt is proper. By functoriality of
the Kasparov product, Lemma 4.26 implies that the following diagram commutes:

index,
KK(M,TM) ———— KK(M, pt)

lpf lpf
indexS

KK(pt, TM) —  Z = KK (pt, pt)

By Lemma 4.5, applying the map p to both sides of (4.7), and using commuta-
tivity of the above diagram, one obtains the Atiyah—Singer index theorem.

Proof of Lemma 4.26. The proof is a reformulation of the arguments in [Atiyah
and Singer 1968b], using KK-theory. There are embeddings M < R" with normal
bundle N of rank a, and TM — TR" = C" with normal bundle TN. As N is
homeomorphic to a tubular neighbourhood of M in R", we can identify TN with
an open neighbourhood of TM in C". (Note that here, the submanifold S of M in
Section 4B is replaced by the submanifold M of R".)

Denote by
By € KK(TM,TN)

the fibrewise Bott element over TM in TN, in the sense of Definition 4.12. Then

by Proposition 4.13,
[Drym] = By & [Drn]. (4.27)

The Chern character is compatible with the pairing of K-theory and K-homology.
The Chern character of the Bott generator 8 of K O(R?)isa generator of H 2(R?). As
the Dolbeault class [ Dg2] of R2 is dual to B, its Chern character is the Poincaré dual
of ch(B). So ch[ Dg:] is the fundamental class [R?] of R?. Similarly, working with
the exterior Kasparov product of n copies of 8, we conclude that ch[ D2 ] = [R*"].
Noting that TR" = R?", by functoriality of the Chern character we have

ch[Dry]=ch((kjy ), [Drwe]) = (kfx ), ch[Drge]
= (kfx ) [TR"]=[TN]. (4.28)
Thus, the Chern character of [ Dyy] is the fundamental class [TN] € Hp,(TN). Let
o € KK(pt, TM) be given. Then (4.27) and (4.28) imply that

o @yt (D] = /T ch(a) Ach(By) (4.29)
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The Thom isomorphism {7y : H*(TM) — H*(TN) (mapping between compactly
supported cohomologies) is an isomorphism of H*(TM)-modules. So we can
rewrite the integral (4.29) as

/ ch(@) A ch(By) = f ¥ (ch(@) A ch(By))
TN ™
_ f ch(0) A Y5k (ch(By)). 430)
™

To calculate u := 1//T_]$ (ch(B7n)), we make use of the following diagram:

. U, U™
K*(TM) 2 k*(TN) - K*(TM)

chJ( chl chl
Yrv Gtap)*
H*(TM) —— H*(TN) —— H*(TM)

Note that in the second line, the composition is equal to the exterior product by the
Euler class e(TN). In the above diagram, we have

Gia)*

By —— 3 (=DINTN

chl chI
YN AN

( T,
w2 ch(By) —M 4 e(TN)

by Lemma 4.24. As the above square commutes by functoriality of the Chern
character, and since TN = 7;; Nc and N¢c @ (TM ® C) = M x C", we obtain

ch(X;(=1)) N'TN) . ( e(TM)
u= = :
e(TN) M\eh (X (~DINTM))
Therefore, together with (4.29) and (4.30) one has

) = 15,(Todd(TM ® C)).

oy Q[Dry] = / ch(o) Todd(TM ® C),
™

and the lemma is proved. (I

5. Proof of the fixed point formula

After proving Theorems 2.2 and 2.4 and discussing Kasparov’s index theorem, we
are ready to prove Theorem 2.16.

We start in Section 5A, by generalising Gysin maps, or wrong-way functoriality
maps in K-theory, that play a key role in [Atiyah and Singer 1968a]. We use these
generalised Gysin maps in Section 5B to set up the commutative diagrams we need.
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We discuss a map defined by evaluating characters at g in Section 5C. Then we
introduce a class in the topological K-theory of TM, localised at g, defined by the
principal symbol of D. The properties of that class allow us to finish the proof of
Theorem 2.16.

SA. Gysin maps. Let S C M be a G-invariant submanifold, with inclusion map
j §VI 1S < M. (In the applications of what follows, § will be a connected component
of the fixed point set M8.) Let N — S be the normal bundle of S in M. The

inclusion map ]TTév : TS < TN induces a map
(jrs)* : Co(TN) — Co(TS)

by restriction. We identify TN with an open neighbourhood of 7S in TM, via a
G-equivariant embedding 7N < TM. In this way, we have the injective map

kiM: Co(TN) = Co(TM),
defined by extending functions by zero.
Definition 5.1. Let A be any G-C*-algebra. The map
(izs)i: KKG(A, Co(TS)) — KK (A, Co(TM))

is the composition

—Qcy (15BN (kI

KKg(A, Co(TS)) ———— KKg(A, Co(TN)) —— KK (A, Co(TM)).
Here Sy € KK (TS, TN) is the Bott element, as in Definition 4.12.

We also have the usual map

(js)* : KKG(A, Co(TM)) — KKG(A, Co(TS)).
Lemma 5.2. The map
Gizs)* o (izg i : KKG(A, Co(TS)) — KK (A, Co(TS))
is given by the Kasparov product from the right with
(irs)* B € KKG(Co(TS), Co(TS)).

Proof. For all x € KKg (A, Co(TS)), functoriality of the Kasparov product implies
that
Girs ) o (s @) = (s o (kin )« (x ®cy(rs) Bn)
= x ®cyrs) ((rs )" o tkgy )Bn).

Since (M) o (kIN). = (jI¥)*, the claim follows. O
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Lemma 5.3. For any G-invariant closed subset X C M, and any G-invariant
neighbourhood V of X, the following diagram commutes:

KK (X, TS) —2881 | pk o (X, po)

l(j% )i

KKg(V,TS) Gx )

l(eréw)!
—®rm[Drm]

KKg(V, TM) — 2270 KK G(V, pb)

Proof. For all a € KK (X, TS), functoriality and associativity of the Kasparov
product imply that

(GEY 0 ()« (@) @1am [Drm] = RFNY (G (@) @15 Bn) @7 [Dra]
= (jy)«(@) ®15 (kTN (BN) ®TM [D1ar])-

Now (k7y)*[Drm] = [Drn], so
ki)« (Bn) ®7u [Dri] = By @1 (ki ) [Drm] = By ®7nv [Drn] = [ D15,
where the last equality was proved in Proposition 4.13. O

5B. Localisation and Gysin maps. Let U and V be as in Theorem 2.4. Consider
the following diagram:

index,

KKG(M,TM) ——— KK (M, pt)

(kMy* (kyH*
KKe(V, TM) —2MP gk (v, po)
(M )*
KKg(V, TM®) | GGl (54
—®rme (e )* By G
KK (V, TM®)
(g
KKg(T, TM®) —20 2l e (@, po)

The top part of this diagram commutes because of functoriality of the Kasparov
product. The part with the product with ( jTTAA,;’g)* By in it commutes by Lemma 5.2,
applied with A = Cy(V), and S running over the connected components of M.
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The remaining part of the diagram commutes by Lemma 5.3, applied in a similar
way with S a connected component of M8, and X = U.
Diagram (5.4) can be extended as follows:
KKo(M, TM)— KK (M, pt)
(kM (kM

v
®Tm[Drym]

U _ ()« —
KK (pt, TM) 2 KK (U, TM)—"— KK (V, TM)—""™M L KK 6 (V, pt)

(jTMg)* (]TMS)* (J;gg)*

U ] 7)

KK (pt, TMg)<—KKg(U TMg)—)KKg(V T™MS) | GIMo), (5.5)

—®@rus Ging) By ~®ru8 (fpe) BN —@rmg Giag) BN
_ v

% s ()%
KK (pt, TM®) <2 KK (U, TM$)—— KK (V, TM#)

—®rmg [Prysg]l —®rmePrysl

KK (pt, pt)«———KK (U, pt)
U
Px

The right-hand part of this diagram is diagram (5.4), and hence commutes. The
other parts commute by functoriality of KK-theory and the Kasparov product.

Theorem 2.4 implies that the maps ( jﬁv)* become invertible after localisation
at g. We will also use inverses of the localised classes

(Gtape)*Bn)g € KKG(TMS, TM®),. (5.6)
Lemma 5.7. The element (5.6) is invertible.

Proof. By Lemma 4.24, we have

TM&’) Bn = [TMg/\NC]

Atiyah and Segal [1968, Lemma 2.7] showed that [ /\ N¢] is invertible in K& (M#),.
The map
it K&(M®) — KKG(TM$, TM?)

sending a class [E] € K g (M$) to [t E] is a unital ring homomorphism. Hence,
so is its localisation at g. Therefore, the class

[7is ANc], = (t37)¢ [ ANc], € KK (TM®, TM¥),
is invertible. U
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5C. Evaluation. Let X and Y be locally compact Hausdorff spaces with trivial
actions by a compact group G. Then the exterior Kasparov product

KK(X,Y) x KKg(pt, pt) > KKg(X,Y)
defines an isomorphism
KK(X,Y)Q R(G) ZKKg(X,Y). (5.8)

If X is a point, this is a classical fact. We will also apply this isomorphism to
the class [Drys] € KK (TMSE, pt). There it is trivial, since G acts trivially on the
Hilbert space in question. In the only other case where we will use the isomorphism
(5.8), we will have X =Y, and this space has finitely many connected components.
(To be precise, we will have X =Y = TM&.) Let us work out the isomorphism
explicitly in that case, for the cycles we will apply it to. These are G-equivariant
Kasparov (Cyp(X), Co(X))-cycles of the form (I'g(E), F, ), where E — X is
a vector bundle (of finite rank). Let a € KK (X, X) be the class of a cycle of
this form, and let b € KK (X, X) be the class defined by the same cycle, where the
group action is ignored. As G acts trivially on X, each fibre of E is a representation
space of G. Suppose for simplicity that X is connected; the general case follows by
applying the arguments to its connected components. (This works since there are
finitely many of them.) Since X is connected, the representations by G on all fibres
of E are equivalent. Let V be any one of these fibres, viewed as a representation
space of G. Denote by 14 the ring identity of R(G), i.e., the trivial representation
of G. Let Ej := X x V — X be the trivial bundle with fibre V. Consider the
representations X

my 1 Co(X) = B(Co(X)),
7y : Co(X) = B(o(Eo)),
defined by pointwise multiplication. Then

([CoX), 0, 75| ®[V]) + (b ® 15)
= ([To(E0). 0, 73°] ® 1) +a € KKg(X, X). (5.9)

In fact, both sides of (5.9) are represented by the cycle
(To(Ee® E), 08 F, 1" &), (5.10)

but, initially, with different G-actions. Namely, for the left-hand side of (5.9), G
acts on the first summand Eg in (5.10), while for the right-hand side of (5.9), G
acts on the second summand E in (5.10). As G acts trivially on X, representations
of G commute with those of Cy(X). Since, in addition, F is G-invariant, these
two actions by G can be connected by a rotation homotopy, so (5.9) follows. In
that equality, a is represented as an element of KK(X, Y) ® R(G).
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In general, using (5.8), one can apply the evaluation evy = 1 ® ev, as a map
eve : KKg(X,Y) > KK(X,Y)®C. (5.11)

This map is compatible with localisation at g, in the sense that the following dia-
gram commutes:

KKG(X,Y) — s KK(X,Y)®C

KKG(X,Y),
Ifa e KKg(X,Y), we will also write
a(g) :=evg(a) e KK(X,Y)Q®C.

The evaluation map (5.11) is compatible with Kasparov products. This follows
from the facts that the isomorphism (5.8) is compatible with the product, that Kas-
parov products in R(G) coincide with tensor products of representations, and that
the character of the tensor product of two finite-dimensional representations is the
product of the characters of the individual representations.

Hence, we can attach the following commutative diagram to the lower left-hand
side of (5.5):

KK(pt, TM®) ® C +—— KK (pt, TM?)
(—®7ms (gare)*Br (8))®1 —®rme (igays) By
KK(pt, TM®) ® C +—— KK (pt, TM?) (5.12)

(—®rms [DrysD®1 —®7ms [Drme]

C (T KKG (pt, pt)

Here, [Drys] € KK(TMS$, pt) is identified with [ D7y ]®1 € KK(TMS, pt) Q R(G),
so that evy([Drume]) = [Drme] ® 1. In particular, when M#é = pt, the vertical map
on the lower left corner is the identity.

By Lemma 4.26 and compactness of M$, the map

— ®rme[Drye] : KK (pt, TM®) — KK (pt, pt)

is the Atiyah—Singer topological index map indexfs. We will use the same notation
for its extension to a map KK (pt, TM8) ® C — C.

Using commutativity of (5.5) and (5.12), and invertibility of the localised maps
(( jg )x)g and classes (5.6), we obtain the commutative diagram
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(index;)g

KKG(M, TM), KKg (M, pt),

PD)go(G)0g ok
KKq(pt, TM),

(M, )* (G5 o) (5.13)

Vg)

(e
KK (pt, TM#) @ C+—————— KK (pt, TM*),

indexS (=@ rpre (Ugae)*BVTH@) | ~®pae (GIN ) Bn)g ' ®7are [Drags g

C KK (pt, pt) KK (U, pt),

(evg)g ),

5D. The g-symbol class. Recall that in (4.4) we defined the class
[opl € KKg(M, TM).

The last ingredient of the proof of Theorem 2.16 is a class defined by op in the
topological K-theory of TM, localised at g. In Section 7, we will describe this
class more explicitly, and use it to obtain another expression for the g-index.

Definition 5.14. The g-symbol class of D is the class o;’ in the localised topolog-
ical K-theory of TM defined by

ol = (pY)g 0 ()07 " o k¥)iloply € KKG(pt, TM),. (5.15)

The g-symbol class generalises the usual symbol class in the compact case.

D

¢ 1 the localisation at g of the usual class

Lemma 5.16. If M is compact, then o
of op in KK (pt, TM).

Proof. If M is compact, then we can choose U = V = M. Then, since the map
pM : M — pt is proper, we have

oy = (pYlop)s,
which is the usual symbol class by Lemma 4.5. O

We now prove some properties of the g-symbol class that will be used in the
proof of Theorem 2.16. As before, we write 6p :=op /v UL% + 1.

Lemma 5.17. The class
(ky)ilopls € KKG(V, TM),

is the localisation at g of the class

loplvlrm :=[Co(ty (Elv)), 6plrv. nv] € KKg(V, TM).
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Here, the Co(TM)-valued inner product on T'o(E|y) is defined by the natural
Co(TV)-valued inner product, composed with the inclusion k?“,’l

Proof. The class
(k¥ *lopl € KKG(V, TM)

is represented by the Kasparov cycle
(To(ty E), 6p, (ki) ma) = (To(ry (Elv)), 6plrv, Tv)
® (Co(tpn v (Elm\v)), Gplrmnty, 0).

The second summand on the right-hand side is a degenerate cycle, so the claim
follows. (]

Consider the class
gloplrus] = [Co(tiss (Elue)), 6plrme, (i), 7, ] € KK (U, TM®).
Lemma 5.18. We have
(i2), (wloplrme1) = Gizage) *lonlvirm € KKG(V, TM?).
Proof. By definition,
i) loplvirm = [To(zy (Elv)) ®mm Co(TM?®),6ply ® 1,y ®1].

The map
Lo(ty (Elv)) ® v Co(TM?®) — To(ty15 (Elpe))

that maps s ® ¢ to @s|rye, for s € To(ry(Ely)) and ¢ € Co(TM?®), is an iso-
morphism of Hilbert Co(TM¢#)-modules. It intertwines the operators 6ply & 1
and op|rums, and the representations 7y ® 1 and

(j[t‘//[g)*nMg = (]UV)*(]AI,]H)*JTM;;
The lemma is then proved. ([

Proposition 5.19. The class

(JTMg) E KKG(pL TMg)g

is the localisation at g of the usual class [op|ry«] in the equivariant topological
K-theory of TMS.

Proof. By commutativity of (the top left part of) diagram (5.5), we have
Gtneyod = (pY) 0 ((G¥).); o Giate)s o (i3lonl,.

By Lemma 5.17, we have

(ky)iloplg = (loplvirm)g-
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By Lemma 5.18 we have

((U),), o GTmoiUonlvinme =g [oplrmel;.

By Lemma 4.5, we have

P ( loplmme]) = loplrme] € KK (pt, TM®).
So the claim follows. ]
We have now finished all preparation needed to prove Theorem 2.16.

Proof of Theorem 2.16. Using Kasparov’s index theorem, Theorem 4.6, and com-
mutativity of (5.13), we find that

index (D) = (eve)g o (pY) 0 ((i)),), o k31D
= (evo)go (pY), 0 ((7Y),), " o (k¥ o (index,)glopl
= index;* (((iare) *o00)(8) ®7me ((ifpye)* BN) ™' (8))-

By Lemma 4.24 and Proposition 5.19, the latter expression equals

index ([op|7a¢1(8) @7 [/\N@]_l (8)-

Furthermore,

[oplrae1(8) ®7me [T ANe] ™' (&) = [0l el (@) - [ANe] ' (9),

where the dot means the right K g (M$)-module structure of K g(TM 8). We con-
clude that

index, (D) = index?*S ([op|7ar<1(8) - [ANe] ' (9)).

Theorem 2.16 now follows from the definition of the topological index map (4.25),
and multiplicativity of the Chern character. ]

SE. The index pairing. The arguments used to prove Theorem 2.16 also imply
Theorem 2.18 about the index pairing. In fact, the parts of the proof of Theorem 2.16
about localisation in the first entry of KK-theory are not needed in the proof of
Theorem 2.18.

The key step is a localisation property of the K-homology class of D, localised
at g.

Proposition 5.20. We have

-1
[Dlg = (e elople ®Tme [T/T,;g/\Ncﬁ]g ®rme [Drmslg € KKG(M, pt)g.
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Proof. Lemmas 5.2 and 5.3 imply that the following diagram commutes:

— D
KKo (M, TM) Onlbril g (M, pt)
Gt
(]TTAA/}]g)* T—@TMX [Drpe]
KKg(M, TM®) KKo(M, TM®)

—®@rme (iENe)* By
Therefore, the claim follows from Lemmas 4.24 and 5.7, and Theorem 4.6. |

Proof of Theorem 2.18. Let [F] € KKg(pt, M) be as in Section 2E. By compat-
ibility of the Kasparov product with localisation and evaluation, Proposition 5.20
implies that

([F1®um[DD(g)
= ([Flg ®m [Dlg)(8)

= ([Fly ®um (iaie) 31001 (&) @ras [Thre ANc] () ™" @rme [Draae1(9).
Now

([F1g®m (o) 5lople) (&) =[The (Flue) (@) ®loplms1(g) € KK (pt, TM#)®C,

where on the right-hand side, the tensor product denotes the ring structure on the
topological K-theory of TM$. Therefore, and because [ Drys](g) = [Dry] ® 1 is
in KK(TM$8, pt) ® C, the claim follows from Lemma 4.26. O

6. Examples and applications

The g-index was defined in terms of KK-theory, but Theorem 2.16 allows us to
express it entirely in cohomological terms. Using this theorem, we can compute
the g-index explicitly in examples, and show how it is related to other indices.
For finite fixed point sets, Theorem 2.16 has a simpler form, as discussed in
Section 6A. In Section 6B, we give a linearisation theorem for the g-index of a
twisted Dolbeault—Dirac operator on a complex manifold, in the case of a finite
fixed point set. We then work out the example of the Dolbeault—Dirac operator
on the complex plane, acted on by the circle, in Section 6C. An illustration of the
linearisation theorem is given in Section 6D, where we apply it to the two-sphere,
to decompose the usual equivariant index. In Section 6E, we realise characters
of discrete series representations of semisimple Lie groups on regular points of a
maximal torus, in terms of the g-index. For Fredholm operators, and in particular
Callias-type deformations of Dirac operators, we describe the relation between the
g-index and the character of the action by g on the kernel of such an operator,
in Section 6F. We then give a relation with an index studied by Braverman in
Section 6G, and a relative index theorem along the lines of work by Gromov and
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Lawson in Section 6H. In Section 61, we mention some geometric consequences
of the vanishing or nonvanishing of the g-index of a Hodge—Dirac or Spin-Dirac
operator.

6A. Finite fixed point sets. If the fixed point set M$ is zero-dimensional, then
TM& = M8, Ty is the identity map, Todd(TMé ® C) is trivial and

ch(loplrms1(8)) = Tr(glg+) — Tr(g|e-).

Furthermore, since M¢ only consists of isolated points, we have
K'M*) = @ 7=H*M*),
meMs$

and the Chern character is the identity map. So we now have, at a fixed point
me M8,

ch([ANc](®)),, = ch([ATMclus](g)),, = detr(1 — |z, u1)-

The last equality is obtained by evaluating the virtual character of AT, Mc at g,
so one obtains
Tre(glpen 1, mc) — Tre(gl g gy )-

Therefore, Theorem 2.16 implies the following generalisation of Atiyah and Bott’s
fixed point theorem [1968, Theorem A] to noncompact manifolds, but for com-
pact G.

Corollary 6.1. When M2& is a finite set of points,

Tr(glg:) —Tr(glg)
detr(l — g~ '|7,m)

index, (D) = Z (6.2)

meMs
Remark 6.3. In the statement of the Atiyah—Bott fixed point theorem, the denom-
inator is |detr(1 — g|1, m)|. In our case, g is contained in a compact group G, so
the real eigenvalues of g are 1 or —1. Thus detr(1 — g~ '|7, ») is always positive.
See also page 186 in [Berline et al. 1992]. Also, the fact that g acts orthogonally
on T, M implies that detg(1 — g~ |7, »1) = detr(1 — g|7, ).

Now suppose that M is a complex manifold, and g is holomorphic. Let F — M
be a holomorphic vector bundle, and consider the Dolbeault-Dirac operator 3 + 5;
on M, coupled to F.

Corollary 6.4. If M8 is a finite set of points, then

Tre(glF,)
detc(1 — g~ Yzm)

index, (9r +05) = Y (6.5)

meM$
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For equivalent expressions, note that

dete (1 — g*1|T”11.oM) = detc(1 — g7, m) = detc(1 — glro1y)
in (6.5).

Proof. In Theorem 4.12 of [Atiyah and Bott 1968], it is shown that in this situation,
the right-hand side of (6.2) equals the right-hand side of (6.5). The key observation
is that the supertrace of g| A« 0.1 1s cancelled by the second factor in

detr(l — g "r,m) = detc(1 = g~ 10y )dete(1 =g~ |701,,).
(See also [Berline et al. 1992, Corollary 6.8].) O

6B. A holomorphic linearisation theorem. A tool used in some index problems
is a linearisation theorem, relating an index to indices on vector spaces. See for
example Chapter 4 of [Guillemin et al. 2002] and Theorem 7.2 in [Braverman
2002]. A version for Callias-type operators can be deduced from Theorem 2.16 in
[Braverman and Shi 2016]. In those references, cobordism arguments are used to
prove linearisation theorems. We will use the excision property of the g-index to
obtain an analogous result. (So we do not use Theorem 2.16 here.) We will state
and prove this result in the setting of Corollary 6.4, where M is a complex manifold,
D is the Dolbeault-Dirac operator coupled to a holomorphic vector bundle F — M,
and M$ is finite. A more general statement, where M¢ is not finite or D is not a
Dolbeault—Dirac operator, is possible, but would be less explicit.

Under these assumptions, for any m € M#, let 37" be the Dolbeault operator
on the complex vector space T,, M.

Corollary 6.6 (holomorphic linearisation theorem). We have

indexg(E_)F + 5}‘?) = Z Tre(glr,) indexg(é_)TmM + (3T My,

meMs8

Proof. By Lemma 2.11, the g-index of 95 + 5;‘; equals the g-index of the Dolbeault—
Dirac operator on the union over m € M¢# of the tangent spaces 7, M, coupled to
the vector bundle which on every space T,, M is trivial with fibre F),. It follows
directly from the definition that the g-index is additive with respect to disjoint
unions. Hence

indexy (9r +85) = Y index, (3" @ 1, + @™")*® 1F,)
meMs

= Y Trc(gls,) index, (87" + (3M)*). O

meM$

An example on computing and explicitly realising an index of the form

index (8"mM + (@ My*),
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as in Corollary 6.6, is given in the next subsection. An example showing that the
linearisation theorem gives a natural result if M is compact is given in Section 6D.

6C. The circle acting on the plane. Consider the usual action by the circle T' =
U(1) on the complex plane C, and the (untwisted) Dolbeault-Dirac operator 9+ o*
on C. We will compute the distribution ® on T! given by the function

g > index, (3 + 8%). (6.7)

This function is defined on the set of elements g € T! with dense powers, i.e., the
elements of the form g = eV~ where o € R \ 27 Q. So the function is defined
almost everywhere.

By Corollary 6.4, we have for such g

1
1—g~ 1"

index, (3 + 8*) =

So the function (6.7) is given by g — 1/(1 — g~!) almost everywhere. One can
deduce that the sum of functions

D e—g™ 6.8)
k=0

converges as a distribution on T! to ®.

This allows us to describe the g-index of 34 3* in terms of its kernel. Indeed, con-
sider the Euclidean density dz = dx dy on C, and the corresponding space L?(C).
Let O(C) be the space of holomorphic functions on C. Let v € C*°(C) be a
positive, T!-invariant function. Let L?(C, 1) be the completion of C () toa
Hilbert space with respect to the inner product

(f1, 2y = W f1, ¥ D)) (6.9)
Let 7 be the representation of T! in L2(C, v) given by
@@ NH@ = f(g 2,

forall g e T!, f € L?(C, ) and z € C.

Set
0,2(C, ¥) := O(C) N L*(C, ).

For k € Z>, let ek € O(C) be the function z — zF. Then for all k € Zsoand z € C,
n(g)ed = gFek. (6.10)

Suppose ¥ was chosen so that ek € L?(C, v) for all k. For example, one can take
() =e k2,
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Let Q(ZZ* (C) be the Hilbert space of square-integrable forms of type (0, ). Let
Q(Zz* (C, ¥) be the analogous Hilbert space with the inner product weighted by
as in (6.9). Set

ker2 (3 +9%)* :=ker(d + )T N Q)Y(C, ¥).

We can realise the distribution © given by the g-indices of 8 4+ 3* in terms of the
representation of T! in this space.

Proposition 6.11. The restriction of the representation  of T' to ker;: @+9%)*
has a distributional character x*, and we have
O=xt—x"eD(Th.
Proof. First note that L
ker(d +9*)" = O(C),
ker(d +9*)~ =0.
So we only need to consider the even part of ker; > ,, (8 + 8*), which equals

kerz2 4 (9 +9%)" =02(C, ¥). (6.12)

The functions {e* }k>0 form an orthogonal basis of O;2(C, ¥). By (6.10), the char-
acter of the representation 7w on the space (6.12) equals the series (6.8), which
converges to ©. ([

Remark 6.13. The L*(C, ¥)-kernel of 3 + 3* can be identified as the L>-kernel
of a deformed operator. For example, let ¥ (z) = e~I1"/2, Recall that § + * is an
operator on Q%*(C), given by

9

0z’

where now ¢(dz) = \/LE ext(dz) and c(dz) = —% int(dz). (See [Berline et al. 1992,
Section 3.6].) Set

9+0* = c(dz)aa—Z +c(d?)

b= %ZC(dZ).
Then b* = —%Zc(dz). We have the deformed operator

d4+b= c(dZ)(a% + %) : Q%00 - %),

(G +b)* = c(@(@% _ %) . Q"1(C) — Q*0C).

The operator U : Q¥*(C) — Q%*(C, ¥) given by U(a) = ¢ '« is a unitary
isomorphism. We have

un=dw ' n=v"(0+5)r=u((3+%)r).
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Similarly, U intertwines 8* and (3 + b)*. It then follows that
ker;2(d 4+ b) = kerLz’w(E_i),
ker;2(3 +b)* = kery2 ,(3%) = 0.

6D. The circle acting on the two-sphere. As in Section 6C, we consider the circle
group T', this time acting by rotations on the two-sphere S2. In this compact setting,
the usual index theory, and the Atiyah—Segal-Singer theorem apply. But we can
use the g-index to decompose indices in this case.

We embed T! = SO(2) into SO(3) in the top-left corner. Then S = SO(3)/T!.
Identifying this space with P!(C), we obtain a complex structure on it. Fix n € Z.
Let C, be the space of complex numbers, on which T! acts by

g-z2=g8"z,
for g € T! and z € C,,. We have the line bundle
L, :=S0@3) x1 C, — S

Let 9, + 5;: be the Dolbeault—Dirac operator on S2, coupled to L,. Since S is
compact, we have the equivariant index

indexso@3) (9, + 05) € R(SO(3)).

By the Borel-Weil-Bott theorem, this index is the irreducible representation V), of
SO(3) with highest weight n (with respect to the positive root corresponding to the
identification of §* with P!(C)).
Fix an element g € T! with dense powers. By the Atiyah-Segal-Singer theorem,
or Corollary 6.4, the character of V,, evaluated at g equals
: 57 g" g"
indexy1(9, +9;)(g) = — 4+ . (6.14)
l—g!' 1-—g

The two terms on the right-hand side correspond to the two fixed points of the

action by T'. This expression can be rewritten as the finite sum

2n

j—n
> 8™
Jj=0

This is the usual decomposition of V, |11 into irreducible representations of T!.

So far, we have done nothing new in this example. But let 8¢ 4 (3©)* be the
Dolbeault-Dirac operator on C. Then the linearisation theorem, Corollary 6.6,
implies that

indexr1 (3, + 0;)(g) = index, (3" + (3%)*)g" + index,1 (3 + (%)) g™".
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As we saw in Section 6C, Corollary 6.4 implies that

- - 1
: C Cy*xy _
lndCXg (8 + (8 ) ) = 1——g*1’
and likewise with g replaced by g ~!. This agrees with (6.14). Using Proposition 6.11,
we can realise the latter index as the character of the representation of T! in

kerz2 (3 +9)%,
with ¥ as in Section 6C.

6E. Discrete series characters. In this subsection only, we use the letter G to
denote a connected, semisimple Lie group. Let T < G be a maximal torus, and
suppose it is a Cartan subgroup of G, i.e., G has discrete series representations.
(The torus T plays the role that the group G plays in the rest of this paper; we have
changed notation because this is standard in the current setting.) Let K < G be a
maximal compact subgroup containing 7. We denote the normalisers of 7 in G
and K by Ng(T) and Nk (T), respectively.

Lemma 6.15. The fixed point set of the action by T on G/ T is Nx(T)/T, the Weyl
group W of (tc, tc).
Proof. Since .

(G/T)" =Ng(D)/T,

it is enough to show that
Ng(T) = Nk(T).

To prove this, let g = p @ £ be the Cartan decomposition of g. Suppose X € p, such
that exp(¢X) € Ng(T) for all ¢t € R. Then for all H € t,

exp(tX) exp(H) exp(—tX) =exp(Ad(exp(tX))H) € T.

So[X, H]et. Because X epand H et C ¢, we have [ X, H] €p. Hence [X, H]=0.
Since t is maximal commutative, we find that X € t, so that X = 0. Therefore, an
element Y € g such that exp(tY) € Ng(T) for all t+ € R must lie in £. Since G is
connected, the claim follows. O

Example 6.16. If G = SL(2, R), then a strongly elliptic coadjoint orbit of G is
equivariantly diffeomorphic to G/T. This is now a hyperbolic plane, on which T
acts by rotations. This action has one fixed point, corresponding to the trivial Weyl
groupof K =T.

Let X € it* be regular (in the sense that (o, 1) # 0 for all roots «, for a Weyl group
invariant inner product). Fix a set R of positive roots for (g¢, tc) by defining a
root « to be positive if (o, A) > 0. Let p be half the sum of the positive roots.
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The choice of positive roots determines a G-invariant complex structure on the
manifold G/T, defined by

T (G/T) = (9/0"" = P (90) - (6.17)

a€RT

Suppose A + p is an integral weight. Then A — p is integral as well, and we have
the holomorphic line bundle

kap:::(; X]‘Cd,p-—>(;/7t
where T acts on C;_, := C via the weight ¢* . Let
SLA—p'+'ézx_p

be the Dolbeault-Dirac operator on G/ T, coupled to Ljy_,.
Let ©;, be the distributional character of the discrete series representation of G
with infinitesimal character A.

Proposition 6.18. Let g € T be such that the powers of g are dense in T. (Then in
particular, g is a regular element.) One has

index, 3z, , + 05, ) = (=100, (g).

Proof. The proof is analogous to Atiyah and Bott’s derivation of the Weyl character
formula from their fixed point theorem in [Atiyah and Bott 1968, Section 5]. By
Corollary 6.4 and Lemma 6.15, we have

et (a""ga)
det(1 — AdY(a~'ga))’

indexg (dr, , +07, )= (6.19)

aTeNg(T)/T

Here Adg’/lt : T — GL((g/t)%"!) is induced by the adjoint representation. Because
of (6.17), we have

det(1 - Ad)(a™'ga)) = [] 1 —e™(a " ga)).
aeRt

Since in the identification Ng (T)/T = W,, the normaliser Ng (T') acts on it*
via the coadjoint action, we find that (6.19) equals

eW(A—p)

wew, Haerr (1=

(8)- (6.20)

Consider the Weyl denominator

A=e’ [Ta-e™.

aeRt
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One has, for all w € W,
w-A=e"? l_[ (I—e")=¢e(w)A,
a€RT
where ¢(w) = det w is the sign of w. Hence we find that (6.20) equals
2 wew, Ew)e”*
A

(This expression still makes sense if p is not an integral weight.) By Harish-
Chandra’s character formula for the discrete series (see [Harish-Chandra 1966,
Theorem 16] or [Knapp 2001, Theorem 12.7]), this is (—1)4m(©/5/2@, (g). O

Note that Proposition 6.18 only relates the value of the character ®, at g to
the g-index of éLx—p + E_)ZHJ if g is a regular element of some maximal torus.
Such elements form an open subset of G, and characters are not determined by
their restrictions to this set. However, we can still use Proposition 6.18 to give a
description of the g-index in terms of the kernel of 9., , + 5;_9

Proposition 6.21. Suppose G is a linear group. Then the representation of G in
the L*-kernel of Or,_, + E)zx_p)jE has a distributional character ®F that can be
evaluated at g, and one has

index, (9, , + E_)ZHJ) =07 (g) —O07(g).

Proof. This follows from Proposition 6.18 and Schmid’s realisation of the discrete
series in the L?-Dolbeault cohomology of G/ T with values in L;_ p» in [Schmid
1976, Theorem 1.5]. Schmid’s result implies that the space

ker;2(dr,_, + 5Zx,p)i

equals zero if & = —(—1)4m(G/K)/2 ‘and the representation of G in this space is the
discrete series representation with infinitesimal character A if + = (— 1)dim(G/K)/2,
(The integer k in Schmid’s result now equals dim(G/K)/2, and his A is our A — p.)

Hence, _
®+ _ @— — (_l)dlm(G/K)/Z(a)“

So the claim follows from Proposition 6.18. ([

Paradan [2003] gave a realisation of restrictions of discrete series representa-
tions to maximal compact subgroups, as an equivariant index of a deformation of
the operator 9y, , T 537/). That realisation allowed him to apply the quantisation
commutes with reduction principle to find a geometric formula for multiplicities of
K-types.

In the paper [Hochs and Wang 2017], we further explore the relation between
index theory and characters of the discrete series.
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6F. Fredholm operators. We return to the notation used in the rest of this paper
except for Section 6E, where G is a compact Abelian group generated topologically
by an element g € G.

For Fredholm operators, it is a natural question how the g-index of such an
operator is related to the traces of g acting on even and odd parts of its kernel. This
depends on the behaviour of the operator “towards infinity”. To make this more
explicit, let M be the one-point compactification of M. The point at infinity is
fixed by g. Let U, V C M be as in Section 2B. Let U’, V' C M™ be g-invariant
neighbourhoods of the point at infinity, such that U’ C V’, and V NV’ = @. Then
U LU’ and V LV’ are neighbourhoods of (M ™) as in (2.5). Lemma 2.6 therefore
implies that for any o -unital G-C* algebra A, the following diagram commutes:

KKG(C(M™), A)y ————— KKG(Co(V), A)g @ KKG(Co(V'), A),

(AT TADY:
(GAONRE (AR
(M) KKG(C(U), A)g @ KKG(C(U"), A), (6.22)
D@V,
KK (C, A), ki KKG(C, A)y @ KKG(C, A),

Indeed, since M is compact, one can apply Lemma 2.6 to the pairs of neighbour-
hoods ULU' Cc VUV and Mt C M of (M™)8.

Now suppose that (D? 4+ 1)~! is a compact operator. Then F := D/+/D?+ 1 is
Fredholm, so ker;2(D) is finite-dimensional. Let the representation

mp+ 1 C(MT) — B(L*(E))
be defined for f € Co(M) and z € C by
au+(f+2) =mu(f)+z. (6.23)
Then the triple (L2(E), F, my+) is a Kasparov (C(M*), C)-module. Let
u+[D] € KKg(M™, pt) (6.24)

be its class. In this case, we will write indexgO (D) for a version of the g-index of
D that captures the behaviour of D at infinity:

. i v \—1 *
index;>(D) = (evg) o (pY), 0 ((i0),), © (kMY (r+[D]y). (6.25)
Proposition 6.26. If (D> + 1)~ is compact, then

Tr(g on ker;2(D")) —Tr(g on ker;2(D7)) = indexg (D) + indexzo(D). (6.27)
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Proof. By commutativity of (6.22), with A = C, we have

(evg)g 0 (pM")4[D] = index, (D) + index (D). (6.28)
Now )
pM [D]=[L*(E), F] = [ker F, 0] € KKg(pt, pt),
so the left-hand sides of (6.27) and (6.28) are equal. O

In concrete situations, knowledge of indexgo(D) then allows one to use the fixed
point formula in Theorem 2.16 to compute the left-hand side of (6.27).

This can be made more explicit in a situation relevant to the treatment of Callias-
type deformations of Dirac operators in the context of KK-theory in [Bunke 1995;
Kucerovsky 2001]. Suppose that & € End(E)? is an odd, self-adjoint vector bundle
endomorphism. Suppose that ®> — 1 tends to zero at infinity, so that it is a
compact operator on I'g(E). Then (I'g(E), ®, my+) is an equivariant Kasparov
(C(M™), Co(M))-cycle. Let [®] € KKg(M™, M) be its class. Now we do not
assume that (D2 + 1)~ ! itself is compact, but that

[Do] :=[®]®u [D] € KKG(M™, pt)

is the class of an elliptic operator D¢ as in (6.24). Then (DCZD +D7 s compact.
(The idea is that Dy = D + & if D® + O D is sufficiently small; compare this
with [Bunke 1995, Proposition 2.18].) By functoriality of the Kasparov product,
we have for U’, V' C M as above,

index3” (Do) = (eve) (P70 ((i).)

This expression has the advantage that ® is a vector bundle endomorphism, which
makes (6.29) easier to evaluate than (6.25). In particular, if ®2=1gonV'NM,
then (k"‘,”,+)*[d>] = 0. In that case, Theorem 2.16 and Proposition 6.26 imply that

L o (M )zI),) ®u [Dly).  (6.29)

Tr(g on ker;2(Dg)) — Tr(g on ker;2(Dg))
_ f ch([op, |rme1(g)) Todd(TM$ @ C)
T™E ch([ANc](®))
Example 6.31. Let M = C", and let g be the diagonal action by » nontrivial ele-
ments of U(1). Then M¢ = {0}, and N = C". Let Sc» € KK (pt, C*") be the Bott

element as in Definition 4.12. Now the class [D;] € KK(C?*", pt) as in (4.15) is
the Dolbeault class of C". The Kasparov product

(6.30)

Bor ®can [D1] € KK (pt, pt)

is represented by the elliptic operator D := B® 1 +1® D; as in (4.21). Hence
(D% +1)~! is a compact operator. In the proof of Lemma 4.19, we saw that the
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L?kernel of D is spanned by the g-invariant function (4.23). So
Tr(g on ker;» (Dg)) —Tr(g on ker;2(Dg)) = 1. (6.32)

On the other hand, let b € C°°(R) be an odd function, with values in [—1, 1], such
that b(x) = 1 for all x > 1. If we replace B(1+ B?)~/2 by b(B) in (4.11), then the
resulting class in KK ¢ (pt, C?") is the same class Bcr. But with this normalisation
function, we have b(B)?> = 1 outside the unit ball in C". So

indexgo(DB) =0. (6.33)
Finally, by Corollary 6.4, with F = AN¢ = AC?", we have

index,(Dp) = 1. (6.34)
The equalities (6.32), (6.33) and (6.34) illustrate Proposition 6.26 in this case.

Example 6.35. In the setting of Theorem 2.18, the index pairing [F] ®ys [D] in
KK (pt, pt) is represented by a Fredholm operator Dr. Analogously to (6.29),
we have indexgo(DF) = 0, so that Proposition 6.26 and Theorem 2.16 yield an
expression for Tr(g on kerLz(D;f)) —Tr(g on ker;2(Dy)). But in this setting, the
same expression follows directly from Theorem 2.18.

See Remark 7.10 for the construction of a Fredholm operator D 7, as a deforma-
tion of any elliptic operator D, with index;’o(D f0)=0.

6G. Braverman’s index. Suppose X € g such that g = exp X. Let X¥ be the
vector field on M defined by X. Suppose D is a Dirac-type operator, and consider
the deformed operator

D] := D+ /=1 fe(x™).

Here f € C®°(M)®, and ¢ : TM — End(E) is a given Clifford action, used to
define the Dirac operator D. Braverman [2002, Theorem 7.5] obtained a fixed
point theorem for such operators. This implies that the g-index equals Braverman’s
index in this case.

Corollary 6.36. If f is admissible [Braverman 2002, Definition 2.6], then the rep-
resentation of G in kf:rLz(Dgg)jE
and one has

has a character x* that can be evaluated at g,

index, (D) = x " (g) — x ().

Proof. The fixed point formula for index, (D) in Theorem 2.16 is precisely the
evaluation at g of the right-hand side of the formula in [Braverman 2002, Theorem
7.5]. (This equality also shows that ker;» (D 5’;) has a character that can be evaluated
at g.) [l
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Remark 6.37. In the above construction, the element X € g, which represents the
taming map used in [Braverman 2002], depends on the group element g. So the g-
index of D is not the character of the Braverman index of D deformed by a single
taming map, but the taming map depends on g.

6H. A relative index theorem. Gromov and Lawson [1983, Theorem 4.18] obtain
a relative index formula for pairs of elliptic operators that coincide outside compact
sets. (See Theorem 2.18 in [Braverman and Shi 2016] for a version for Callias-type
operators.) There is an analogue of this result for the g-index.

For j =0, 1, let M; be a manifold with the same structure and properties as M.
Let E; — M; be a vector bundle like £ — M, and let D; be an operator on
E; like D on E. Suppose there are relatively compact neighbourhoods U; of M f
outside of which M;, E; and D; can be identified. As on page 38 of [Gromov and
Lawson 1983], we compactify M; to a manifold M j» by taking a neighbourhood
V; of Uj, and attaching a compact manifold X to it. Since Mo\ Vo = M\ Vi, the
same manifold X can be used for j =0, 1. Extend the vector bundles E; and the
operators D; to vector bundles E — M and elhptlc operators D on E Suppose
the map g extends to M and E s commutmg with D ;5 this extends to continuous
actions by G on M and E; ;j preserving D

Proposition 6.38 (relative index theorem). We have
index, (D) — index, (Do) = indexg (D1)(g) — index (Do) (g).

Since the manifolds M ; are compact, the indices on the right-hand side of this
equality are given by the usual equivariant index.

Proof. By the Atiyah—Segal-Singer fixed point theorem (or Theorem 2.16), we
have, for j =0, 1,

ch([o, |TM‘§](8)) Todd(TM§ ® C)

indexc (D)) () = [
™}

ch([AWN)ec](@)
/ ch([op,|7x1(8)) Todd(TX$ ® C)
TX?8 Ch([/\(NX)C](g))
Here N; — M;.' and Nx — X¢ are normal bundles to fixed point sets. Since
op,lTxs = o5, |7x¢, Theorem 2.16 implies the claim. O

61. Some geometric consequences. The g-index of a G-equivariant elliptic opera-
tor is a topological invariant of the group action that can be used to detect geometric
properties of the action. We illustrate this in the cases of the Hodge—de Rham and
Spin-Dirac operators.
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Let D =d +d*: QE"(M) — Q?Cdd(M) be the Hodge—de Rham operator
on M, acting on complex differential forms. The symbol class of this operator
is [}, A\TM¢], whose restriction to TM# equals

[op|me] = [T37e A\Ne] ® [ ANTME]. (6.39)

Let Dyss be the componentwise defined Hodge—de Rham operator on M€. Then
Theorem 2.16 and (6.39) imply that

index,(d+d*) = f ch(op,,,) Todd(TM® ®C) =index (D) = x (M?), (6.40)
TMs

the Euler characteristic of M$. (See also [Lawson and Michelsohn 1989, p. 262].)

Corollary 6.41. If indexg(d + d*) # 0, then every g-invariant vector field on M
has a zero on M5.

Proof. A g-invariant vector field on M restricts to a vector field on M. If it does
not vanish there, then x (M#) = 0. So the claim follows from (6.40). O

Next, suppose that M is a Spin manifold, and that g lifts to the spinor bundle.
Let D be the Spin-Dirac operator.

Corollary 6.42. If G is connected, M is noncompact, and index, (D) = 0, then the
one-point compactification M™ of M is not a G-equivariant Spin manifold.

Proof. If M is a G-equivariant Spin manifold with Dirac operator Dj;+, then the
vanishing result of Atiyah and Hirzebruch [1970] and Theorem 2.16 imply that

0 =indexy(Dy+) = indexg (D) + deo.

Here a, is the contribution to the right-hand side of (2.17) of the fixed point at
infinity, which is nonzero by [Atiyah and Bott 1968, Theorem 8.35]. (I

7. A nonlocalised index formula

In the compact case, the Kirillov formula is a nonlocalised expression for the
equivariant index of an elliptic operator; see [Berline et al. 1992, Theorem 8.2].
This can be deduced from the fixed point formula in the compact case. In the
case of noncompact manifolds, there is also a nonlocalised expression for the g-
index, Proposition 7.8 below. This follows from Kasparov’s index theorem and
the properties of the g-symbol class introduced in Section 5D, rather than from
Theorem 2.16.

A potentially interesting feature of this nonlocalised formula is that it involves
the same kind of deformed symbols as the ones used for Dirac operators on sym-
plectic manifolds in [Paradan 2011]. Those deformed symbols are transversally
elliptic rather than elliptic. Berline and Vergne obtained a generalisation of the
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Atiyah—Segal-Singer fixed point formula to transversally elliptic operators or sym-
bols; see [Berline and Vergne 1996a, Main Theorem 1; 1996b, Theorem 20]. This
formula involves a distribution on the group. It was pointed out to the authors by
Vergne that this formula implies that for the deformed symbols we will consider,
at points g where this distribution is given by a function, it is given by the g-index.

The index of such a deformed symbol was shown to equal the index of a de-
formed Dirac operator in Theorem 5.5 in [Braverman 2002]. In Theorem 1.5 in
[Ma and Zhang 2014], this index is proved to be equal to another index of deformed
Dirac operators, defined using the Atiyah—Patodi—Singer index on manifolds with
boundary. In contrast to [Braverman 2002; Ma and Zhang 2014; Paradan 2011],
the expression for the g-index in terms of deformed symbols is independent of the
choices made in this deformation. Furthermore, it applies to more general elliptic
operators than Dirac operators.

We shall describe the g-symbol class O’gD of Definition 5.14 more explicitly,
using a deformed symbol. Let v be a G-invariant vector field on M that does not
vanish outside V.

Example 7.1. If X € g such that g = exp(X), one can take the vector field v
induced by X. This vector field obviously depends on g.

Example 7.2. If H is a compact Lie group acting on M, containing G, then it
can be possible to choose a single vector field v that works for all elements of H.
Indeed, suppose there is an H-equivariant map v : M — b, and consider the Kirwan
vector field v, defined by

vy =4 ey m) -,

for m € M. Suppose this vector field is nonzero outside a compact set. Then
is a taming map as in Definition 2.4 in [Braverman 2002]. In this case, the vector
field v can be used for any element of H.

Let f : V — Rs>o be a G-invariant continuous function, such that f(m) =0
when m € U and lim,,_,,y f(m) = o0 if m" € 3V. Consider the deformed symbol
op, fv € End(t}; (El|y)), given by

op,fo(u) :=opu+ f(m)vm) (7.3)

formeVandu e T,,M. Set
oD, fv

Gp.fo 1= LY
' O_12),fv+1

This defines an odd, self-adjoint, bounded operator on the Hilbert Co(7V)-module
Co(zy (Ely)). Furthermore, we have for every vector field u on M, and every
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m' €dV, L
mh%ngf oD, fv (m) = Sgn(aD(vm’))-

We extend 6p, ¢, to a continuous vector bundle endomorphism of 75, E by setting

op, fo(u) :=sgn(op(vm))

forall u € T,,M, where m € M \ V. (Since v,, # 0 if m € M \ V, this operator is
invertible outside V.)

Note that _ )
op, o) "—1—20 (7.4)

asu — oo in TM. Indeed, let m € M and u € T,, M be given. If m ¢ V, then v,, 0
and 6p, f,(u)?> = 1. And if m € V, then

6p. o) =1 = (opu+ fm)v,)*+1)7".

Since D is elliptic and has first order, this goes to zero as u — oo in TV. We
therefore find that (I'g(7; E), op, ry) is a Kasparov (C, Co(TM))-cycle. Let

pt[UD,fv] € KKg(pt, TM)
be its class, which will be called the deformed symbol class.

D .

Lemma 7.5. The localisation of the deformed symbol class at g is o, , i.e.,

g
ptlop, fulg = GgD € KK (pt, TM),.

Proof. As in Section 6F, let M™* be the one-point compactification of M. Let
U,V,U’, V' C M7 be as in that subsection. Consider the class

m+lop, pol = Doty E), 6p. fv, Tm+] € KKG(M™, TM),

where 1)+ is as in (6.23). Then by commutativity of (6.22), for A = Co(TM), we
have )
wlop. role = (pi") (a+ LoD po)

=(p7),0((31).); o (K ) stuslop, ruly)
+ (D)0 ((G5),), o () Gurlop pule).  (7.6)
Now since f =0 on V, we have
(k") lop, 1) = (k) Ton].
So the first term in (7.6) equals O'gD . Furthermore,
(k¥2) " (a+ o, o)) = [T®(Ely), sgn(op(v)), 7y ] =0,

since this class is represented by a degenerate cycle. U
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Remark 7.7. Instead of (7.3), we could have used a more general deformed symbol

of the form
op,fo(u) :=op(u)+ f(m)®,,

form e M, u € T,, M and a G-equivariant, fibrewise self-adjoint, odd vector bundle
endomorphism & of E, which is invertible outside V. We have used the natural
choice ® = op(v).

The realisation of the g-symbol class in Lemma 7.5 leads to the following non-
local formula for the g-index.

Proposition 7.8 (nonlocalised formula for the g-index). The g-index of D is cal-
culated by

index (D) = (pilop, fol @M [DTm 1) (8)- (7.9)

Proof. It follows from Definitions (2.8) and 5.14, and Theorem 4.6, that

index, (D) = (0, @1y [D1y1e)(8).-
The claim therefore follows from Lemma 7.5. O

Remark 7.10. Recall that when M is noncompact, indexg (D) is defined using
KK-functorial maps. In Proposition 7.8, the class

ptlop, fol v [Drm] € KK (pt, pt)

is represented by a Fredholm operator Dz, defined in terms of the deformed sym-
bol op, r, and the Dolbeault-Dirac operator Dry,. Proposition 7.8 states that

indexg (D) = Tr(g on kerLz(D}rv)) — Tr(g on kerLz(D]?v)). (7.11)

Then Theorem 2.16 yields a cohomological expression for the right-hand side
of (7.11). (Note the analogy with (6.30); we now have indexgo(va) =0.)
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Connectedness of cup products for
polynomial representations of GL, and applications

Antoine Touzé

We find conditions such that cup products induce isomorphisms in low degrees
for extensions between stable polynomial representations of the general linear
group. We apply this result to prove generalizations and variants of the Steinberg
tensor product theorem. Our connectedness bounds for cup product maps depend
on numerical invariants which seem also relevant to other problems, such as the
cohomological behavior of the Schur functor.

1. Introduction

Let K be a field of positive characteristic p, and let G be an algebraic group over k.
The category of rational representations of G (as in [Jantzen 2003]) is equipped
with a tensor product, which induces a cup product on extension groups:

Exti,(M, N) @ Ext};(P, Q) > Exto(M® P, N ® Q).

Of course the cup product is injective (but usually not surjective) in cohomological
degree zero, and in general it is neither injective nor surjective in higher degrees. If
G =GL,(k), it was observed in [Touzé 2010] that the cup product is injective in all
degrees when M, N, P, Q are stable polynomial representations, i.e., when M, N,
P, Q are polynomial representations in the usual sense [Green 2007; Martin 1993]
and furthermore when #n is big enough with respect to their degrees. This surprising
fact is easily proved by using the description of stable polynomial representations
in terms of the strict polynomial functors of Friedlander and Suslin [1997].

The first main result of this article is Theorem 3.6, which establishes conditions
under which cup products are not only injective, but also surjective in low degrees.
Theorem 3.6 actually applies to the case where N and Q are representations twisted
r times by the Frobenius morphism, i.e., for cup products of the form

Exts, (M, N) ® Ext; (P, ) = Exti,(M ® PO, N ® Q).

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).

MSC2010: primary 20G10; secondary 18G15.

Keywords: cup products, strict polynomial functors, Steinberg’s tensor product theorem, Schur
functor.
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As for injectivity in [Touzé 2010], the natural home for stating and proving this
connectedness property of cup products is the category of strict polynomial func-
tors. We note that already in degrees O and 1, our theorem looks much stronger
than what was previously known for the behavior of cup products; see Remark 4.7.

We then give concrete applications of Theorem 3.6 to the representation theory
of GL, (k). Namely, we prove the following two new generalizations of Steinberg’s
tensor product theorem.

o We call tensor products of Steinberg type the stable polynomial representa-
tions of the form M ® N, where all the composition factors of M have
p’-restricted highest weights. Representations of this form appear naturally,
e.g., in the theory of good p-filtrations [Andersen 2001].

In Theorem 5.8, we describe the structure of the abelian subcategory gen-
erated by these tensor products of Steinberg type (with r and deg M fixed). In
particular, we prove that the GL,, (K)-module M ® N has the same structure
as the GL, (k) x GL, (k)-module M ® N. This is interesting because the
latter is much easier to study. (The classical Steinberg tensor product theorem
corresponds to the very special case where M and N are simple. Indeed, in
that case M ® N is simple as a GL, (k) x GL, (k)-module, and thus by our
theorem the GL,, (K)-module M @ N is simple too).

* As made explicit in [Krause 2013], stable polynomial representations are
equipped with an internal tensor product (Day convolution product), dual to
the internal Hom used in Ext-computations, e.g., in [Touzé 2013b; 2014]. In
Theorem 6.2 we explain how to reduce the computation of internal tensor
products of simples to the case of simples with p-restricted highest weights.
Thus, Theorem 6.2 plays the same role for understanding internal tensor prod-
ucts of simples as the classical Steinberg tensor product theorem does for
understanding ordinary tensor products of simples.

In Appendix B we show that Theorem 3.6 can also be used to derive new proofs
of two well-known fundamental theorems for simple representations of GL, (K):
Steinberg’s tensor product theorem and Clausen and James’ theorem. We note that
another functor technology proof of Steinberg’s tensor product theorem is given in
[Kuhn 2002]. The proof given here seems quite different; see Remark B.11.

The bounds for connectedness given in Theorem 3.6 depend on some cohomo-
logical constants p(M, r) and i(N, r). To be more specific, a projective stable
polynomial module is p"-bounded if its socle is a direct sum of simples with p’-
restricted highest weights; see Corollary 4.2. The integer p(M, r) is characterized
by:

p(M,r) > k if and only if there exists a resolution P of M in which the
first k terms Py, ..., Pr_1 are p"-bounded projectives.
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The integer i (N, r) is defined dually; see Definition 3.4. Although we use this
definition for stable polynomial representations, it makes sense for unstable poly-
nomial representations as well. We are not aware of previous occurrences of these
constants in the literature. We study their basic properties and give characteriza-
tions of these constants, as well as elementary computation rules and examples. In
most examples, we limit ourselves to giving estimates for these constants rather
than exact values, and leave the following challenging problem open.

Problem. Compute (or obtain a reasonable understanding of) the exact value of
p(M,r) and i (M, r) for the most important GL, (k)-modules (simple modules,
standard or costandard modules).

One further motivation for this problem is that the constants p(M, r) and i (M, r)
seem to be related to other problems of interest. Let us give two examples.

o In Theorem 8.2, we prove that the constants p(M, 1) and i (M, 1) govern the
connectedness of the Schur functor on the level of extensions. The cohomo-
logical behavior of the Schur functor was already studied in a series of papers
[Doty et al. 2004; Kleshchev and Nakano 2001; Kleshchev and Sheth 1999].
Our Theorem 8.2 gives a simpler and effective approach to this problem. For
example, with our first computations of i (¥, 1) and p(F, 1), we recover and
generalize many results from [Kleshchev and Nakano 2001].

« It seems that the values of p(L, r) capture some interesting concrete proper-
ties of simple functors L. Clausen and James’ theorem [Clausen 1980; James
1980] says that p(L, 1) > 0 if and only if the highest weight of L is p-restricted.
Reischuk [2016] has proved that p(L, 1) > 1 if and only if Q¢ ® L is simple,
where Q¢ is the simple head of S¢ (see Section 6 and in particular Theorem 6.2
and Corollaries 6.6 and 6.9 to understand why this particular internal tensor
product is interesting). It would be interesting to understand if higher inequal-
ities p(L, 1) > k (of cohomological nature) are directly connected to some
nonhomological representation-theoretic properties of L.

We finish by explaining a wider perspective behind the work presented here.
Functor category techniques have proved useful for studying representations and
cohomology of many variants of classical matrix groups. See, e.g., [Touzé 2010]
for symplectic and orthogonal group schemes, [Axtell 2013; Drupieski 2016] for
super Schur algebras, [Hong and Yacobi 2017] for quantum GL,,, [Franjou et al.
1999; Djament and Vespa 2010] for finite classical groups or more generally [Dja-
ment 2012] for discrete unitary groups. In these examples, the functor categories in
play share many properties with the category of strict polynomial functors used here.
So we expect that the techniques and results developed in this article can be adapted
to these cases. For example, we prove in [Touzé 2017a] an analogue of Theorem 3.6
for polynomial representations of orthogonal and symplectic group schemes.
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This article has been written in such a way that the main thread of ideas and
proofs is self-contained. In particular, only very basic facts of the representation
theory of general linear groups are used (the highest weight category structure
is used only for the results of Section 7B) and no combinatorics of the symmetric
group is used (except a result of Bessenrodt and Kleshchev [2000] in Corollary 6.6).
These basic facts are recalled in Section 2. In the same spirit, we have also added
an appendix on representations of tensor products of finite dimensional algebras,
whose results are used in Section 5.

2. Background

2A. Strict polynomial functors and Schur algebras. In this article K is a field
of positive characteristic p, and P4k denotes the category of homogeneous strict
polynomial functors of degree d over k (with possibly infinite dimensional values).
We refer, e.g., to [Friedlander 2003], [Friedlander and Suslin 1997] or [Krause
2013] for an introduction to strict polynomial functors. If one considers an infinite
ground field Kk, strict polynomial functors have a nice description like the one in
[Macdonald 1995] (where they are simply called “polynomial functors”). Namely,
strict polynomial functors are functors from finite dimensional k-vector spaces to
k-vector spaces, such that for all pairs of finite dimensional vector spaces (V, W),
the map

Homy(V, W) — Homy(F(V), F(W)),
fr=F(f)

is given by a homogeneous polynomial of degree d (that is, given by an element
of S¢(Homy(V, W)*) ® Homk(F (V), F(W))).

For example, the category P i is equivalent to the category of constant functors,
which is equivalent to the category of K-vector spaces. Typical examples of homo-
geneous functors of higher degree d are the tensor product functors @7 : V +— V&9,
the symmetric power functors S¢ : V > (V®9)g, and the divided power functors
'Y : V> (V®)S¢, (Here the symmetric group Sy acts on V¢ by permuting the
factors of the tensor product). Note that S° = ®° =T"=k and ! =®! =T, but
for d > p the functor §¢ is not isomorphic to I'¢.

We denote by Pk the category of strict polynomial functors (of bounded degree),
that is, Px = - Pa.k- Thus, objects of Py decompose as finite direct sums of ho-
mogeneous functors, and there are no nonzero morphisms between homogeneous
functors of different degrees. All functors of vector spaces considered in this article
will actually be strict polynomial functors of bounded degree, and hence we will
always omit the terms “of bounded degree”, and we will often omit the terms “strict
polynomial”.
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By evaluating a strict polynomial functor F on k", one obtains a polynomial
GL,, (K)-module F (k™). Restricting to homogeneous strict polynomial functors of
degree d, one obtains a functor

Pd,k wi) PO]d,GL,,(k) ~ S(I’l, d)-MOd,

where Poly g1, (k) denotes the category of homogeneous polynomial representa-
tions of GL,, (K) of degree d, and S(n, d)-Mod the equivalent category of modules
over the Schur algebra S(n, d) (which is finite dimensional). It is an equivalence
of categories, provided n > d. (Friedlander and Sulin [1997] proved it for functors
with finite dimensional values, but their proof actually works in the general case;
see also [Krause 2013].) In particular, Pk has nice properties similar to those of
modules over a finite dimensional algebra. We shall use the following ones in the
sequel.

(1) Simple functors are homogeneous functors, and their values are finite dimen-
sional vector spaces. A functor has a finite composition series if and only if
it has finite dimensional values; such functors are called finite. Finally, every
functor is the union of its finite subfunctors.

(2) Arbitrary direct sums of injective functors are injective, and every functor can
be embedded into a direct sum of finite injectives.

(3) Any nonzero strict polynomial functor has a nonzero socle, a nonzero head
and a finite Loewy length.

2B. Frobenius twists. let K be a field of positive characteristic p. For all r > 0, we
denote by 7 the r-th Frobenius twist functor. The functor I/ =7 =8'=T"'=A!
is the identity functor. More generally, for all » > 0 the functor 1" is the unique
simple additive functor of degree p” (up to isomorphism).

Notation 2.1. We use the traditional notation F") = F o I, We also denote by
F ® G the tensor product of F and G, i.e., Frobenius twists have a priority
higher than tensor products in our notations.

The effect on Ext* of precomposition by Frobenius twist is now well understood
in all degrees [Touzé 2013a; Chatupnik 2015]. In particular, in degrees i = 0 or
i = 1, the k-linear morphism

Extly (F, G) — Extp, (F", G")

induced by precomposition by 77 is an isomorphism. This description of the
effect of precomposition by Frobenius twists in degrees 0 and 1 can be proved by
very elementary means; see, e.g., [Breen et al. 2016, Appendix A]. We will not
need to know about higher degrees, except in the proof of Proposition 7.3.
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2C. Elementary facts regarding simple functors. Traditionally, simple polyno-
mial GL, (k)-modules are classified by examining the action of a maximal torus on
GL,, (k)-modules, that is, using the concept of highest weights; see, e.g., [Martin
1993, Chapter 1]. In the sequel of the article, we shall use the following conse-
quences of this classification.

(1) Isomorphism classes of simple functors are in bijective correspondence with
partitions. For each partition A = (A1, ..., Ax) we fix a simple functor L, in the
corresponding isomorphism class. Then L; is homogeneous of degree ) A;.
We call A the highest weight of L. Indeed, by evaluating on k”, we obtain
a simple polynomial module L, (k") with highest weight A. For example, the
only simple functor of degree 0 is L) =K.

(2) Simple functors are self-dual. To be more specific, each simple functor L is
isomorphic to its dual L?, defined by L*(V) := L(V*)*.

(3) Simple functors have endomorphism rings of dimension 1.

(4) For all partitions A and w and all » > 0, L4, is a composition factor of
(r)
L,®L.

Remark 2.2. Actually, one needs the fact that K is algebraically closed to obtain
easily (by Schur’s lemma) that the endomorphism ring of a simple functor has
dimension one. When K is not algebraically closed, this can be proved using the
fact that Schur algebras are quasihereditary; see, e.g., [Martin 1993, Chapter 3].

2D. Bifunctors and sum-diagonal adjunction. We will need strict polynomial
functors with several variables for intermediate computations, as well as in the
study of tensor products of Steinberg type in Section 5. Definitions and basic
properties of strict polynomial functors extend without problem to the case of
functors with several variables, and we refer to [Suslin et al. 1997, Section 2],
[Touzé 2010, Section 2] or [Touzé 2017b, Section 3] for details. We recall here the
main features of the theory in the context of bifunctors, and leave to the reader the
obvious formulas with three variables or more.

Given two nonnegative integers d; and dp, we denote by Py, 4, k the category
of homogeneous strict polynomial bifunctors of bidegree (d;, d>) (with possibly
infinite dimensional values). Typical examples of objects of this category are the
bifunctors of separable type, which are the bifunctors of the form

FXG:(V, W)= F(V)®G(W),

where F and G are homogeneous strict polynomial functors of degree d; and d»,
respectively. Just as in the one variable case, evaluating bifunctors on a pair of
vector spaces (k”, k™) yields a functor

Pay.dr .k —> S(n, dy) ® S(m, dr)-Mod,
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where S(m, d;) and S(m, dp) are Schur algebras (which are finite dimensional).
Moreover, this functor is an equivalence of categories if n > d; and m > dp. In
particular Py, 4, k satisfies the three properties mentioned at the end of Section 2A.
We have a Kiinneth morphism

Exth,  (F1,G1) @ Exth, | (F2, G2) = Exty,  (FIKF>, GIKGy),

which is an isomorphism if the quadruple (1, G, F>, G,) satisfies the following
condition.

Condition 2.3 (Kiinneth condition). In the quadruple (Fi, G1, F>, G»), F and F;
are both finite functors, or /7 and G are both finite functors.

We also denote by P, k(2) the category of homogeneous strict polynomial bi-
functors of total degree d, and by Pk (2) the category of strict polynomial functors
of bounded degree, with possibly infinite dimensional values. We have decompo-
sitions

P2 =P Pik@.  Pak@ = P Paark.

d=0 dy+dr=d

In particular, each bifunctor B decomposes uniquely as a direct sum B =@ B4,
where B@-®) is a homogeneous strict polynomial bifunctor of bidegree (d;, d»).
We shall refer to B“@1-%) as the homogeneous component of bidegree (dy, d») of B.
A typical example of (degree d homogeneous) bifunctor is the bifunctor

Fg:(V, W)~ F(VeWw),

where F' is a (degree d homogeneous) strict polynomial functor of degree d. Con-
versely, from a (degree d homogeneous) bifunctor B of total degree d one can
construct a (degree d homogeneous) strict polynomial functor with one variable
by diagonal evaluation:

BAa:V i B(V,V).

These two constructions are exact and adjoint to each other on both sides. Hence
we have graded isomorphisms

Exth, o) (B, Fin) = Exts, (Ba, F),

These two isomorphisms were first used in the context of strict polynomial functors
in [Franjou et al. 1999]. In this article, they will be the key tool for Theorem 3.6.
As in [Franjou et al. 1999], we will often use them when B is of separable type
B =GX H, and hence when BA =G Q H.
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2E. The internal tensor product. The category P,k is endowed with a closed
symmetric monoidal structure. We denote this internal tensor product by ®, and
by Hom the associated internal hom. We refer the reader to [Krause 2013] for a
presentation of this internal tensor product. We study the internal tensor product
of simple functors in Section 6. For this purpose, we will use the following facts.

(1) If F is a functor, we denote by FV the parametrized functor
W +— FHomg(V, W)).
Then the internal Hom is the functor given by
Hom(F, G)(V) = Homp,  (F", G).

(2) The study of internal tensor products can be reduced to the study of internal
Hom by using the isomorphism natural with respect to F, G:

(F ® G)* ~ Hom(F, G%).

Here * is the duality defined by F (V) = F(V*)*, where * is the K-linear
duality of vector spaces.

Remark 2.4. Schur algebras do not have a Hopf algebra structure in general. (In-
deed, Schur algebras have finite global dimension, and a Hopf algebra structure
would make them self-injective in addition, and hence semisimple.) Thus the in-
ternal tensor product on Py k is an example of a monoidal product which does not
come from a Hopf algebra structure.

2F. Connection with representations of symmetric groups. The Schur functors
relate strict polynomial functors to representations of the symmetric groups G,.
We will use these Schur functors in Sections 6 and 8. Let d be a positive integer.
Consider the right action of the symmetric group &, on ®“ given by permuting
the factors of the tensor product. The Schur functor is the functor

fai= Hompd_k(®d, -) : Pax = k&,4-Mod.

Since ®¢ is projective, the Schur functor f; is exact. It has adjoints on both sides.
To be more specific, the left adjoint £, is defined by £4(M) = (®%) Qs . M, while
the right adjoint r; is defined by ry(M) = ((®%) ® M)®4. The unit and counit of
adjunction induce natural isomorphisms

M5 fi(ta(M)),  fa(ra(M)) > M.

In particular, the Schur functor f; is a quotient functor.
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3. Exts in low degrees between tensor products

3A. Definition of i(F, r) and p(F, r). Forall tuples A =(Aq,..., A,) of nonneg-
ative integers, we let

M=r"@...@r* and S*:=S"®...@S*.

Let 7 denote the set of all tuples of nonnegative integers. Then the family (I'*); 7
forms a projective generator of P, while the family (5);c7 forms an injective
cogenerator of Py.

Definition 3.1. Let r be a nonnegative integer. A tuple of nonnegative integers
A=(A1, ..., Ay) 18 p"-bounded if A < p” for all k. A basic p"-bounded projective
(resp. injective) is a functor of the form I'* (resp. S*), where A is p”-bounded. A
strict polynomial functor F is left p"-bounded if it is a quotient of a direct sum of
basic p”-bounded projectives. Similarly, F' is right p"-bounded if it embeds in a
product of basic p”-bounded injectives.

Remark 3.2. If r = 0, the tuple (0, ..., 0) is the only p”-bounded tuple. Since
'’ = §O =k, a functor is p’-bounded if and only if it is constant.

The following lemma collects elementary facts on p”-bounded functors.

Lemma 3.3. (1) The following statements are equivalent:
(1) F isright p"-bounded,
(ii) Soc(F) is right p"-bounded,
(i) F embeds into a direct sum of basic p”-bounded injectives.

(2) The following statements are equivalent:
(i") F is left p"-bounded,
(ii") Head(F) is left p"-bounded,
(iii") F is the union of finite left p”"-bounded subfunctors.

Proof. (1) It is clear that (iii)=(i)=(ii). If (ii) holds, then each simple summand of
Soc(F) embeds into a basic p"-bounded injective. Thus Soc(F') embeds into a di-
rect sum of basic p”-bounded injectives J. Since J is injective, the monomorphism
Soc(F) — J extends to amap ¢ : F — J. But Soc(ker ¢) C ker¢p NSoc(F) =0
so ¢ is injective. This proves (iii).

(2) It is clear that (i")=(ii"). The proof of (ii")=>(i") is dual to the one of (ii)=>(iii).
Let us prove (i')<>(ii"). If F is left p”-bounded, there is a map 7 : €, ., ' — F.
Thus F is the union of the images of the n(@ke B FA), where B is a finite subset
of A. Conversely, if F is the union of a family of finite left p”-bounded functors Fy,
then F is a quotient of @ F,,. Hence F is left p"-bounded. U

Definition 3.4. Let » be a nonnegative integer, and let F be a strict polynomial
functor.
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(1) We define p(F,r) € [0, +o00] as the supremum of all the integers n > 0
such that F' admits a projective resolution P in which the first n objects
Py, ..., P,_; are left p"-bounded.

(2) Wedefinei(F, r) € [0, +00] as the supremum of all the integers n > 0 such that
F admits an injective resolution J in which the first n objects J°, ..., J"~!
are right p”-bounded.

Remark 3.5. (i) By definition p(F,r) > 0 if and only if F is left p"-bounded,
and i (F, r) > 0 if and only if F is right p"-bounded.

(i1) If p" > deg F, then all projectives or injectives appearing in any resolution of
F are p"-bounded, so p(F,r) =i(F,r) =+o0. In particular, if F is constant,
it is homogeneous of degree O and i (F, r) = p(F, r) = oo for all » > 0.

(iii) In the definition, p(F, r) and i (F, r) belong to [0, +o0]. However, the cat-
egory Py k has finite global dimension gldim(d, K), which is explicitly com-
puted in [Totaro 1997]. If F is homogeneous of degree d, then p(F, r) and
i (F, r) actually belong to [0, ..., gldim(d, K)] U {4-00}.

3B. Application to the connectedness of cup products. The tensor product on Py,
® : Pk X Pk — Pk, induces a cup product on extension groups in the usual way;
see, e.g., [Benson 1998, Section 3.2]. The purpose of this section is to prove the
following result.

Theorem 3.6. Let (F, G, X, Y) be a quadruple of homogeneous strict polynomial
functors satisfying the Kiinneth condition (Condition 2.3), and let r > 0. The cup
product induces a graded injective map

Ext}, (F, G) @ Exty (X", Y")) — Ext}, (F® X", GoY").

Moreover, this graded injective map is an isomorphism in degree k in the following
situations:

(1) whendeg F <deg G, and k <i(G,r);

(2) whendeg F > deg G, and k < p(F,r);

(3) whendeg F =degG,and k < p(F,r)+i(G,r).

Remark 3.7. If deg F' # deg G then the domain of the cup product is zero, as there
is no nonzero Ext between homogeneous functors of different degrees. Thus, in

cases (1) and (2), Theorem 3.6 merely says that the codomain of the cup product
is zero in low degrees.

The remainder of Section 3 is devoted to the proof of Theorem 3.6. Observe
that we have a factorization of cup products
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Exth, (F, G) @ Exth, (X0, Y")) — = Ext}, (F® X", G Y")

l K /
—A
Exth, o,(FR X", GRY ")
In particular, Theorem 3.6 is a consequence of the following slightly more general

statement, in which the Kiinneth condition is removed.

Theorem 3.8. Let F, G, X, Y be homogeneous functors, and let r > 0. Diagonal
evaluation induces a graded injective map

Exth, o) (FRX", GRY") — Exth (FRX",GRY").
Moreover, this graded injective map is an isomorphism in degree k in the situations
listed in Theorem 3.6.

The proof of Theorem 3.8 relies on a series of lemmas. The proofs of these lem-
mas are all based upon the sum-diagonal adjunction technique recalled in Section 2D.

Lemma 3.9. Let F, G, F', G’ be homogeneous functors satisfying deg F = deg G
and deg F' = deg G'. Diagonal evaluation yields an injective map

Exth, o) (FEF',GRG') < Exth (F®F,G®G')

whose cokernel is isomorphic to the following direct sum, indexed by the tuples of
nonnegative integers (dy, d, ey, ep) such that d, > 0 and e; > 0:

D Exth, o (FRF', (Ga) "™ @ (Gp) ).

0<ds,e;
0=dy,ez

This cokernel is also isomorphic to the direct sum

P Exth, o) ((Fa) " & ()", GRG').

0<d>,e;
0<di,e>

Proof. We recall the proof of injectivity from [Touzé 2010] and prove the first
description of the cokernel. The proof of the second description is similar. The
map given by diagonal evaluation is equal to the composite of the map

Mt Extlp, ) (F X F,GRG)— Extp, o) (F X F', (G®GHm)

induced by the canonical map n: GK G’ — (G ® G)m, together with the adjunction
isomorphism

Exth, o) (FE F', (G ® G')p) ~Exth (FOF,G®G).
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Thus, to prove Lemma 3.9, it suffices to prove that 7, is injective and to identify

its cokernel. But
(G®GHm=Gg® Gy,

and there is a decomposition

GR®G)a=GRG'® P Gu)"™ Gy .

dry>0ore;>0

The map 7 identifies with the inclusion of G X G’ into the right-hand side, and
since the decomposition is a direct sum, it follows that 7, admits a section, and the
cokernel of 5, is isomorphic to

P Exth o (FRF, (Ga) "™ & (Gip) ).

dr>0ore;>0

This is almost the description of the cokernel given in Lemma 3.9, but the sum-
mation index is different. Since there are no nonzero extensions between ho-
mogeneous bifunctors of different degrees, all the terms in the direct sum are
zero, except the ones satisfying d; + e; = deg F and d) + ¢, = deg F’. Since
di +d, =deg G =deg F, the nonzero terms in the direct sum satisfy e; = d>. Thus
we can replace the summation index “d, > 0 or ¢; > 0” by “e; > 0 and d, > 0”
and we are done. U

The proof of the next lemma is omitted since it is very similar to the proof of
Lemma 3.9.

Lemma 3.10. Let F, F', G, G' be homogeneous functors. If deg F > deg G, then
Extp, (F ® F', G ® G') is isomorphic to the following direct sum, indexed by the
tuples of nonnegative integers (dy, da, ey, e3) such that e; > O:

P Exth, (FRF, (Ga) " @ (Ggp) ).

O<e;
0<d,,d>,e>

If deg F < deg G, then it is isomorphic to
P Exth, (Fa)“® @ (Fg)“, GRG).

O<ey
0=<d,d2,e2

The next two vanishing lemmas are analogues of the key vanishing result (i.e.,
Pirashvili’s vanishing) of [Friedlander and Suslin 1997, Theorem 2.13].

Lemma 3.11. Let F and G be homogeneous functors with deg G > 0 and let A be
a p"-bounded tuple. Then

Homp, (F ® G, §*) = 0 = Homp (I'", F® G").
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Proof. We prove the first equality. The proof of the second one is similar. We will
use the fact that for all homogeneous G of positive degree and for all p"-bounded
tuples v,

Homp, (G", §¥) =0. (%)
This is proved when G has finite dimensional values in [Touzé 2012, Lemma 2.3],
and it holds for an arbitrary G because any functor is the colimit of its finite
subfunctors. (Alternatively, one could also prove this vanishing by sum-diagonal
adjunction.) To reduce the equality of Lemma 3.11 to formula (%), we proceed as
follows. First, sum-diagonal adjunction yields an isomorphism:

Homyp, (F ® G, §*) ~ Homp, (F R G, (§")m).

We observe that (S*)g decomposes as a direct sum of tensor products of the form
SHIXSY such that u and v are p”-bounded. Thus Lemma 3.11 will be proved if we
can prove that Homp, (F' X G, S* K §") is zero when p and v are p’-bounded.
Solet¢: FXIG") — S*[XS" be a morphism. By freezing the first variable of the
bifunctors, we obtain for all V a morphism of functors

¢y F(V)®GT (=) = SH(V)® 8" ().
By formula (%), ¢y must be zero for all V. In particular, ¢ must be zero. O

Lemma 3.12. Let r be a positive integer, let J be a be a right p"-bounded injective
functor, let P be a left p"-bounded projective functor, let Z be a homogeneous
functor and let B and C be two homogeneous bifunctors. If deg C = (e, ep) with
e1 > 0, and C") denotes the bifunctor (V, W) C(V(’), W(’)), then

Ext”;;k(z)(B QCP, JRZ)=0= Ext’;)k(Z)(P XZ,B®C").

Proof. We prove the first equality. The proof of the second one is similar. If Jz is
an injective resolution of the functor Z, then J X Jz is an injective resolution of
the bifunctor J X Z. Thus, it is sufficient to do the proof in degree zero (i.e., for
Hom) and when Z is injective, the general case will follow by taking resolutions.
So let us take a morphism of bifunctors ¢ : B® C) — J X Z. Then by freezing
the first variable of the bifunctors, we obtain for all V' a morphism of functors:

¢v :B(V,-)@CT(V,=) > J(V)® Z(-).
But by Lemma 3.11, ¢y is zero for all V. In particular, ¢ must be zero. (I

Proof of Theorem 3.8. By Lemma 3.9, diagonal evaluation yields an injective mor-
phism on the Ext-level (if deg ' # deg G or deg X # deg Y, the source of the cup
product morphism is zero for degree reasons, so that injectivity is trivial). Hence,
it remains to prove the cancellation in low degrees of the cokernel, described in
Lemmas 3.9 and 3.10.
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Assume that deg F' > deg G. Take a finite resolution of F of the form:
0— F—) Fp(F,r)—] —> s> F0—> F—0

where the functors Fj with k < p(F, r) are left p"-bounded projective functors.
Take B and C as in Lemma 3.12. By using long exact sequences, we obtain that
for all k € Z (with the convention that Ext are zero in nonpositive degrees):

*—p(F,r)

oy (FRXD, BRCT). (¥

Exth, o) (FR X", B®C") ~Ext

In particular the Ext on the left-hand side is (p(F, r) — 1)-connected, i.e., zero in
degrees x < p(F, r). By Lemmas 3.9 and 3.10, the case where B = (Fg)@-®) and
Cc" = (YEg))(e' 2) with e; > 0 implies that the cup product induces an isomorphism
in degrees less than p(F,r). A similar argument shows that the cup product is
an isomorphism in degrees less than i (G, r) if deg F' < deg G. Assume now that
deg F =deg G. By Lemma 3.9 and isomorphism (x), the statement of Theorem 3.8
is equivalent to showing that

Exth, o) (FE X", (Ga) ™ & (v) )

is (i(G,r) — 1)-connected for d» > 0 and e; > 0. By Lemma 3.9 again, this is
equivalent to showing that the cup product

Exth, (F, G) @ Exth, (X, ¥") > Ext}, (F® X", GRY")

is an isomorphism in degrees less than i (G, r). But we have already proved that
the latter holds, since deg F < deg G. ]

4. An equivalent definition of p(F, r) and i (F, r)

The next proposition gives an equivalent definition of p(F, r) and i (F, r). While
the proof of Theorem 3.6 really relies on Definition 3.1, this new definition is useful
for applying Theorem 3.6 in concrete situations. In particular, the translation of
Theorem 3.6 in low degrees given in Corollary 4.4 will be used in Sections 5 and 6.

Recall that a partition A = (A1, ..., A,) is p"-restricted (for some nonnegative
integer r) if A,, < p” and fori <n, A; —X;4+1 < p”. By convention, the partition (0)
is p"-restricted for all » > 0. Using euclidean division, one sees that any partition
X can be written in a unique way as a sum A = A° + p”A!, where A" is p”-restricted.
A simple indexed by a p”-restricted partition will be loosely called a p"-restricted
simple. The proof of Proposition 4.1 relies on two classical fundamental results on
simple polynomial representations in positive characteristic. We state them here
with references to the literature, but we prove in Appendix B that both of them can
actually be derived from Theorem 3.6.
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(1) Steinberg’s tensor product theorem [Jantzen 2003, 11.3.17]. If A is p"-restricted
and w is an arbitrary partition, then L) ® Lff) is isomorphic to Ly pr ..

(2) Clausen and James’ theorem [Clausen 1980; James 1980]. A partition X of d
is p-restricted if and only if Homp (L, ®%) = Homp(®?, L,) is nonzero.

Proposition 4.1. Let r be a nonnegative integer, and let F be a functor.

(1) The integer p(F,r) is the supremum of all n > 0 such that F admits a projec-
tive resolution P, in which the first n objects Py, ..., P,_ are direct sums of
projective covers of p"-restricted simples.

(2) The integer i (F,r) is the supremum of all n > 0 such that F admits an injec-
tive resolution J, in which the first n objects J°, ..., J"~! are direct sums of
injective envelopes of p-restricted simples.

Proof. We restrict ourselves to proving the second statement; the proof of the first
one is similar. Let us denote by J,, the injective envelope of L,. We have to prove
that

(i) for all p"-restricted partitions (, there is a p"-bounded tuple A such that J, is
a direct summand of $*, and

(i) for all p"-bounded tuples A, the indecomposable direct summands of S* are
all isomorphic to J,, with p p”-restricted.

Write u = Y 1, p' i’ for p-restricted partitions u'. By Steinberg’s tensor prod-
uct theorem, L, is isomorphic to

) (n)
Luo ® QL.

By Clausen and James’ theorem, L, is a subfunctor of (I(O>)®|“0‘ ® -® (I("))®|“n|.
Since 1V C SP', we obtain that L, is a subfunctor of @, _;,(SP)EW | If p is
p’-restricted then n < r, so L, (hence also J,,) is a subfunctor of $* with A p’-
bounded. This proves (i). Let A be a p"-bounded tuple, and let ;& be a partition
such that p is not p"-restricted. By Steinberg’s tensor product theorem, L, is
isomorphic to L,y ® Lg,? for a p’-restricted partition p’ and a nonzero partition p”.
So by Lemma 3.11, Homp (L, S*) is zero, and hence J), 1s not a direct summand
of §*. This proves (ii). U

Corollary 4.2. Forall F,i(F,r) > 0 if and only if Soc(F) is a direct sum of p"-
restricted simples. Likewise, p(F,r) > 0 if and only if Head(F') is a direct sum of
p’-restricted simples.

If (do, . ... dy) is a tuple of nonnegative integers, we let
7 osedi) — (®d0) ® (®d1)(1) R ® (®dk)(k).

Corollary 4.3. Let L be a simple functor. The following are equivalent:
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@ p(L,r)>0,
Gii) i(L,r) >0,
(i) L is p"-restricted,
(iv) there exists a tuple (dy, . .., d._1) such that L is a quotient of T @041 and

(V) there exists a tuple (dy, ..., dr_1) such that L embeds into T o>~

Proof. We have (1)< (i) < (iii) by Corollary 4.2, (iv) < (v) by Kuhn duality
(both L and T @o--dr—1) are self-dual) and (iii) = (iv) by Steinberg’s tensor product
theorem and Clausen and James’ theorem (as used in the proof of Proposition 4.1).
Finally, the functor T @@ is a quotient of (I')®% & ... ® (I'?")®4, 5o that
p(T @& 'y 5 0. Hence (iv)=(iii) by Corollary 4.2. O

The next corollary is a translation of Theorem 3.6 in low degrees in terms of
p’-restricted weights. It will be used in Sections 5 and 6.

Corollary 4.4. Let (F, G, X, Y) be a quadruple of homogeneous strict polynomial
functors satisfying the Kiinneth condition (Condition 2.3), and let r > 0. Precom-
posing by I and taking cup products induces injective morphisms

Homyp, (F, G) ® Homp (X, Y) < Homp (F® X", GQY"), (4.5)

Homp, (F, G) @ Extp, (X, Y)

— BExtp (FRXV, GoY"). (46
& Exth, (F. G) @ Homp (X, ¥) Pl ® YY), 4o

If one of the conditions (C1) or (C2) below holds, morphism (4.5) is an isomor-
phism. If both (C1) and (C2) hold, then morphism (4.6) is also an isomorphism.

(C1) deg F <deg G and Head(G) is a direct sum of p"-restricted simples.
(C2) deg F > deg G and Soc(F) is a direct sum of p"-restricted simples.

Proof. Recall from Section 2B that precomposing by 1 yields a k-linear iso-
morphism on the level of Hom and Ext'. Thus the statement of Corollary 4.4
is equivalent to the statement where X and Y are replaced by X and Y at the
source of the cup product maps. By Corollary 4.2, (C1) means that i (G, r) > 0, and
(C2) that i (F, r) > 0. Thus Corollary 4.2 follows directly from Theorem 3.6. [J

Remark 4.7. In Sections 5 and 6 we will use Corollary 4.4 for quite general
functors F and G. However, this result is already interesting in the very special
case where F and G are p"-restricted simples. Indeed the isomorphism given
by Corollary 4.4 is then a stronger form, albeit valid only for stable polynomial
representations of GL,, of formulas of Donkin [1982] and Andersen [1984]; see
also [Jantzen 2003, 11.10.16, I1.10.17]. For example, Corollary 4.4 implies that if
A # A are partitions of d and G = GL,, with n big enough, then the number of L,
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in the socle of the tensor product Extlcr(L,\, L) ® L;L is zero, unless = u’,
in which case it equals the dimension of ExtIG (L, Ly).

5. Tensor products of Steinberg type

Recall that a simple functor L is a composition factor of an arbitrary functor F if
L is a subquotient of F. Equivalently, if 0 = F~! ¢ FO C --. C F is an exhaustive
filtration of F whose successive quotients are semisimple (e.g., the Loewy filtration
of F), then L appears as a direct summand in one of these successive quotients.

Definition 5.1. A tensor product of Steinberg type is a strict polynomial functor
isomorphic to a tensor product F ® G, where r is a nonnegative integer and F
is a functor whose composition factors are all p”-restricted.

The purpose of the present section is to explore the structure of these tensor prod-
ucts of Steinberg type. Note that by Steinberg’s tensor product theorem (applied
to the tensor product of the socle filtration of F by the socle filtration of G), all
composition factors of F ® G are of the form L, ® L', with L; a composition
factor of F and L, a composition factor of G. This observation motivates the
following definition.

Definition 5.2. Let e, d, r be nonnegative integers. We let St (d, e, r) be the full
subcategory of Py, k supported by the strict polynomial functors whose com-
position factors are all of the form L; ® L,(f) for p”-restricted partition A of d and
partitions u of e.

Lemma 5.3. The category St(d, e, r) contains all the tensor products of Steinberg
type F @ G, where F is homogeneous of degree d and G is homogeneous of
degree e. Moreover, it is localizing and colocalizing, i.e., it is closed under sums,
products, subobjects, quotients and extensions.

Proof. Everything is straightforward from the definition of St(d, e, r) except
maybe that St(d, e, r) is closed under arbitrary products. Let L be a composition
factor of a product [ ] X,. Then there is a nonzero map Py, — [] Xy, where Py
denotes the projective cover of L. Thus there is an o such that Homp, (P, X,) #0,
sothat L=L; ® L,(f) with A p"-restricted. O

The next lemma makes critical use of Corollary 4.4.
Lemma 5.4. In the category St(d, e, r), any object X has a presentation Py —
Py — X — 0in which the P; are direct sums of tensor products of Steinberg type

FQG" with F and G finite. Similarly, X has a copresentation 0 — X — Q% — Q!
in which the Q' are products of such tensor products.

Proof. 1t suffices to prove that all the objects of St(d, e, r) are quotients of direct
sums of tensor products of Steinberg type with values in finite dimensional spaces
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(then using the duality ¥, they will also embed into products of such functors).
Let X be an object of St(d, e, r), and let X’ denote the i-th term of the socle
filtration of X. Assume that X'~! is a quotient of P/~!, where P/~ has the required
form. Then X'’ /X i=1 is a direct sum of L; ® L,(f), and each of these functors is a
homomorphic quotient of P ® P(r), where P, and P, are projective functors, and
Py, is left p"-bounded. Using Corollary 4.4 and the projectivity of P, and Py, we
obtain Ext%;k(P,\ ® P(r), X'~y = 0. Hence the map P, ® P,([) — X'/ X1 lifts
to f:PA® Plﬁr) — X'. The functor P; has a unique largest quotient P; whose
composition factors are p”-restricted. Let K, be the kernel of the quotient map
P, — P/. By Corollary 4.4, Homp,(K; ® P(r), X") = 0. Therefore, f induces
amap P, ® P\” — X'. In particular, if we define P := PI"' & P P, @ P\,
then P’ is a direct sum of tensor products of Steinberg type with values in finite
dimensional vector spaces, and X' is a quotient of P’. Since homogeneous strict
polynomial functors have finite socle filtrations, this proves the lemma. (]

We will prove that the categories St (d, e, r) have an alternative description in
terms of bifunctors. To be more specific, we denote by

D :Pyek(2) = Pagprek

the functor such that ®(B)(V) = B(V, V")), We observe that ® is exact, but it
is not an equivalence of categories. For example, if d = p” and e = 1, the bifunc-
tor 1) T is simple, while its image ®>"” is not (A2 is a proper subfunctor).
However, ® behaves better if we suitably restrict its source and target categories.

Definition 5.5. Let ¢, d, r be nonnegative integers. We denote by St'(d, e, r) the
full subcategory of P . k(2) supported by the strict polynomial bifunctors whose
composition factors are all of the form L, X L, where A is a p”-restricted partition
of weight d and u is a partition of weight e.

We have the following analogues of Lemmas 5.3 and 5.4.

Lemma 5.6. The subcategory St'(d, e, r) contains all the separable functors FXG,
where F is homogeneous of degree d with p”-restricted composition factors and G
is homogeneous of degree e. Moreover, St'(d, e, r) is closed under sums, products,
subobjects, quotients and extensions.

Lemma 5.7. In the category St'(d, e, r), any object B has a presentation Py —
Py — X — 0 in which the P; are direct sums of tensor products of separable type
FX G, where F and G are finite and the composition factors of F are p”-restricted.
Similarly, B has a copresentation 0 — X — Q¥ — Q' in which the Q' are products
of such tensor products.

We can now state the central theorem of this section.



CONNECTEDNESS OF CUP PRODUCTS AND APPLICATIONS 305

Theorem 5.8. The functor ® restricts to an equivalence of categories:
®:St'(d, e, r) = St(d,e,r).

Proof. We first prove that @ is fully faithful. Let 7 be the full subcategory of
St'(d, e, r) supported by the bifunctors of separable type F X G with F and G
finite. By Lemma 5.7 and exactness of ®, it suffices to prove that the restriction
of & to 7 is fully faithful. This follows from Corollary 4.4. To prove that ¢
is essentially surjective, we consider the functor W : Py yepr k — Pu,ek(2) which
sends a functor F to the bifunctor

(WF)(V, W) = Homp r+V e @e"y", F).

d+pre,k(

If F® G is a tensor product of Steinberg type, by Corollary 4.2 F is right p’-
bounded, so that Corollary 4.4 and [Friedlander and Suslin 1997, Theorem 2.10]
yield isomorphisms of strict polynomial functors:

(@v(Fre® G(r)))(V) = Homdek(]"dy, F)® HOmPe_k(Fe’Vm, G)
~F(V)®@GWV").

Thus @ o W is the identity functor on the tensor products of Steinberg type. By
Lemma 5.4, all the functors of St(d, e, r) are kernels of products of tensor products
of Steinberg type. Thus by left exactness of ® o W, the restriction of ® o ¥ to
the whole category St(d, e, r) is isomorphic to the identity functor. Hence & is
essentially surjective (and W is the inverse of ®). (I

Theorem 5.8 generalizes the Steinberg tensor product theorem. Indeed, exter-
nal tensor products L, X L, of simple functors are simple bifunctors, so that
Theorem 5.8 and the stability of St(d, e, r) by subobjects imply that the functors
O, XL, =L\® Lff) are simple. More generally, Theorem 5.8 can be used to
convert any question about the structure of the tensor products of Steinberg type
(socle length, submodule lattices, or even Ext! issues) into similar questions about
the structure of bifunctors of separable type which are much easier to study. To
illustrate this, we give new properties of tensor products of Steinberg type, obtained
by translating some general properties of representations of tensor products of finite
dimensional algebras given in Appendix A (recall that the category Py . k(2) is
equivalent to the category of S(d, d) ® S(e, e)-modules).

Remark 5.9. In the following corollaries, we do not assume that F' and G are
homogeneous. In each case, the proof reduces easily to the homogeneous case by
additivity of tensor products. We also observe that each of these corollaries is a
stronger statement than the classical Steinberg tensor product theorem.
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Corollary 5.10 (socle series). If the composition factors of F are p"-restricted,
then for all G, the socle filtration of F ® G is the tensor product of the socle
filtration of F by the socle filtration of G, precomposed by 1.

Corollary 5.11 (subfunctors). Assume that the composition factors of F are p'-
restricted. Let G be any functor. Assume that F or G is multiplicity free. Then the
subfunctors S C F @ G are of the form

S=Y Fa®GY

for some families of subfunctors F, C F and G, C G.

Corollary 5.12 (diagrams). Assume that F and G are multiplicity-free and the
composition factors of F are p’-restricted. Then the diagram associated to F ® G
as defined in [Alperin 1980] has the functors L) ® L,(f) as vertices, where L, is a
composition factor of F and L, is a composition factor of G, and there is an edge
L, ® Lff) - L ® L;L(r) if and only if one of the following two conditions holds:

() Ly =L} and there is an edge L, — L), in the diagram of G,
(i) Ly, =L}, and there is an edge L, — L; in the diagram of F.
The next statement follows from Proposition A.8. It uses the fact that all simple

strict polynomial functors satisfy Ext%;k(L, L) = 0, which follows from the fact
that the Schur algebras are quasihereditary.

Corollary 5.13 (tensor products on the left). Let A be a p"-restricted partition.
Let L) ® 77'(:) denote the full subcategory of Pk whose objects are the functors
isomorphic to tensor products of the form L, ® F"). Then

(1) the subcategory L) & Pl((r) is localizing and colocalizing,

(2) precomposing by I and tensoring by L, yields an equivalence of categories
Pk>~L,® Pl(<r)‘

6. Application to internal tensor products

The purpose of this section is to study the internal tensor product of simple functors.
In particular, Theorem 6.2 plays a role for internal tensor products similar to the
role of the Steinberg theorem for ordinary tensor products.

6A. Internal tensor products of simple functors. Let F| and G| be two homoge-
neous functors of degree d, and F, and G, homogeneous functors of degree e. The
internal tensor product is equipped with a coproduct

(F1®F)Q(G1®G2) - (F18G))® (F2QG2).
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To be more specific, this coproduct coincides on the standard projectives with the
following composite (where the first map is the canonical inclusion and the second
one is the canonical projection):

(Fd,T ® FE,U) @ (Fd,V ® Fe,W) N (Fd-‘re,T@U @ Fd+€,V€BW)
_ pdteTaU)RVEW)

s Fd’T®V ® Fe,U@W

— (Fd,T ® Fd,V) ® (Fe,U ® Fe,W).

The following proposition is a consequence of Corollary 4.4.

Proposition 6.1. Let F, G, X, Y be homogeneous strict polynomial functors, and
letr > 0. If deg F < deg G and G is left p"-bounded, or if deg F > deg G and F
is left p"-bounded, then

(FRXM®GY")=0.

If deg F =deg G and F or G is left p"-bounded, then the coproduct induces an
isomorphism

FOXNQGRY)~(FRG®(X®Y)".

Proof. In this proof, we assume that deg F' > deg G and F is p"-bounded (the
proof is similar if deg F < deg G and G is p"-bounded). Since the internal tensor
product is right exact and commutes with arbitrary direct sums, it suffices to prove
Proposition 6.1 when G and Y are finite.

Since F is left p"-bounded, the parametrized functor FV also is. Hence, if
deg F > deg G, Corollary 4.4 implies that

Hom(F ® X, G* @ (yH ) =0. (%)

Since G and Y are finite, G* ® (Y*)") is isomorphic to (G ® Y )?. Hence the
equality (x) can be reinterpreted as

(FRXM)®(GRYM))f =0.

This proves the asserted cancellation. Assume now that deg F = deg G. Then by
Corollary 4.4 the cup product induces an isomorphism

Hom(F, G) @ Hom(X, Y)"’ ~Hom(F @ X, Y @ Y). (%)

But the coproduct is dual to the cup product; that is, for all functors F, G, H and
K there is a commutative diagram in which the horizontal isomorphisms are the
canonical isomorphisms recalled in Section 2E:
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(F® H)*® (G ® K)* — Hom(F, H*) ® Hom(G, K*)

(F®H)® (G QK))* Hom(F @ H, G* ® K¥)

l coproduct? l can

(F® H)®(G®K))* —— Hom(F ® H, (G ® K)?)

]

If the functors G and K are finite, so is G ® K and the canonical maps denoted “can’
in the diagram above are isomorphisms. Thus, the isomorphism of Proposition 6.1
can be deduced from the diagram above with H = X) and K = Y, and from
the isomorphism (). U

The following theorem reduces the study of internal tensor products of simple
functors to the case of p-restricted simple functors. In other terms, it plays the same
role for internal tensor products as the classical Steinberg tensor product theorem
does for ordinary tensor products.

Theorem 6.2. Let A0, ..., A" and 1i°, ..., u° be p-restricted partitions, and let
A=Y p'Aandpu=73 p'u'.
(1) Ifr =s and ' and ) have the same weight for all i, then L; ® L,, is nonzero
and there is an isomorphism

Ly®Ly~(Lyp®Lu)Q (L ® Lul)(l) Q- Q(Ly® Lu«’)(r)'
(2) Otherwise, L, @ L, is zero.
Proof. The classical Steinberg tensor product theorem shows that
Ly=Lp® - ®L)) and L,=Lop® L,

where the L,: and the L,,; are p-restricted, hence right p-bounded by Corollary 4.2.
Thus the result follows by applying Proposition 6.1. U

6B. The case of p-restricted simple functors. To investigate internal tensor prod-
ucts of p-restricted simple functors, we rely on the Schur functor.

Lemma 6.3. For all strict polynomial functors F, there are isomorphisms of func-
tors, natural with respect to F:

F®®' ~Hom(®", F) ~®'® fi(F).

Moreover, if we consider the action of &4 on the left-hand side induced by the
left action of Sq on ®, the action on the middle term induced by the right action
of &4 on ®“, and the diagonal action of Sy on the right-hand side, then these
isomorphisms are G j-equivariant.
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Proof. We have isomorphisms of strict polynomial functors, natural with respect
to V and F:

Hom(I'"V, F)~ Fy ~ F®T%. (%)
Take V = k? and let the torus (G,,)*? act on k? by (A1, ..., g) - (X1, ..., xq) =
(AMx1, ..., Agxg). Then the summand of weight (1, ..., 1) of the right-hand side

of isomorphism (%) is F ® ®?, and it is isomorphic to the summand of weight
(1,..., 1) of the left-hand side, which is Hom(®“, F). Moreover, Hom(®¢, F) is
isomorphic to the functor U — Hompk((®d)U, F). Since (@)Y is isomorphic to
(U*)® ® ®7, we get an isomorphism of strict polynomial functors with variable U':

Hom(®", F) 2 Homp, (U ® ®“, F) 2 U™ ® fu(F).
Finally, one easily checks that these explicit constructions of the isomorphisms of
Lemma 6.3 yield & -equivariant isomorphisms. O

Proposition 6.4. For all functors F, G, there is an isomorphism of KS ;-modules

Ja(F®G) = fa(F) ® fa(G),

where the tensor product on the right is the Kronecker product of f;(F) and f;(G)
(i.e., &4 acts diagonally).

Proof. Lemma 6.3 yields a chain of isomorphisms:
FRGCR®E) = FR®'® f4(G) = (FQ®")® f1(G) = &' ® fa(F)® fu(G).

Thus the evaluation of FF @ (G ® ®4) at k is isomorphic to fz(F) ® f4(G). On the
other hand, F ® (G ® ®4) is isomorphic to (F ® G) ® ®“ and Lemma 6.3 shows
that the evaluation of the latter at K is isomorphic to f;(F ® G). (Il

The following corollary shows that in the first case of Theorem 6.2, the internal
tensor product is always nonzero.

Corollary 6.5. Let L and L' be two p-restricted simples. Then L ® L' is nonzero.

Proof. By Clausen and James’ theorem, f;(L) and f;(L’) are nonzero. Hence, by
Proposition 6.4, f;(L ® L') is nonzero. Thus L ® L’ is nonzero. O

Given two p-restricted simples L and L’, a natural question is to determine if
the analogue of Theorem B.12 holds, i.e., if the nonzero functor L ® L' is simple.
In fact, Bessenrodt and Kleshchev [2000] have proved that the Kronecker product
of two simple representations of symmetric groups is almost never simple. In
particular, Proposition 6.4 has the following consequence in odd characteristic.

Corollary 6.6. Assume that p is odd. Let L and L' be two p-restricted simples
such that f4(L) and fq(L") both have dimension at least two. Then L @ L’ is not
simple.



310 ANTOINE TOUZE

Proof. Since the right adjoint of f; satisfies f; ory = Id, f;(L) sends simple
functors either to simple K& 4-modules or to zero. But f;(LQ L)~ f4(L)® f4(L")
is a Kronecker product of two simple K& -modules, so is not simple by [Bessenrodt
and Kleshchev 2000, Theorem 2]. Thus L ® L’ cannot be simple. O

Remark 6.7. Corollary 6.6 uses [Bessenrodt and Kleshchev 2000, Theorem 2],
which is a nontrivial result on symmetric groups. It would be interesting to find a
more elementary proof of Corollary 6.6, in the spirit of the proof of Theorem B.12.

To solve completely (in odd characteristic) the problem of knowing if an internal
tensor product L ® L’ can be simple, it remains to study the case where f;(L’)
has dimension 1. The remainder of the section is devoted to this study. In our
discussion below, we show in Corollary 6.10 that when f;(L’) has dimension one,
L ® L’ may sometimes be simple and sometimes not, and in Corollary 6.9 we show
that it suffices to study the case L’ = Q7. The latter case is studied in [Reischuk
2016], where the simplicity of L ® Q% is shown to be equivalent to p(L, 1) > 1.

There are two k& -modules of dimension 1, namely the signature module k't
and the trivial module k. The signature module is the image by the Schur functor of
Al = L,....1). Since Hompdvk(®d, S9) has dimension 1 and since S¢ is a quotient
of ®, the head of S¢ is a p-restricted simple functor. This functor is known under
the name of truncated symmetric powers, and we denote it by Q¢ as in [Breen et al.
2016]. Then f;(Q9) is the trivial K&,-module. Thus, to solve completely (in odd
characteristic) the problem of knowing if an internal tensor product L ® L’ can be
simple, it remains to investigate the internal tensor products L ® Q% and L ) A4
for p-restricted simples L.

Proposition 6.8. Let F' be a homogeneous functor of degree d. Consider the right
action of &4 on ®? given by permuting the factors of the tensor product. If p # 2
then d d alt
FQA >~ (@) ®s, (K" ® fa(F)).
If Head(F) is a direct sum of p-restricted simples (and p arbitrary), then
F® 0!~ (®") ®e, fa(F).

Proof. Lemma 6.3 yields an &4-equivariant isomorphism F ® ®? >~ @4 ® f,(F).
Taking the coinvariants under the signed action of &, and using right exactness of
internal tensor products, we obtain the first isomorphism. For the second, let RY be
the radical of S¢. Since fd(Sd) = fd(Qd) and the Schur functor is exact, we have
fd(Rd) = 0. Hence, by Lemma 6.3, R4 ® ®7 is zero. But if P is left p-bounded
projective, it is a direct summand in a direct sum of copies of ®“, and hence RY ® P
is zero. Now F is left p-bounded by Corollary 4.2, s0 R® F = F ® RY =0. By
right exactness of tensor products we thus obtain an isomorphism F ® Si~F ® 0.
Then the computation of F ® S¢ is done in the same fashion as that of F ® A4. [J
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If M is a simple G;-module, then M ® ki is also simple. Let L, be the
simple p-restricted functor such that f;(L,) = M. We denote by m(u) the p-
restricted partition such that f; (L) =M ® k2. The involution w — m(u) (or
rather u' — m(u") where ' stands for the conjugate partition of () is known as
the Mullineux correspondence [Martin 1993, Section 4.2], and its combinatorial
description has been proved by Ford and Kleshchev [1997]; see also the work of
Brundan and Kujawa [2003] for a more recent and different proof. Proposition 6.8
has the following consequence.

Corollary 6.9. Let pu be a p-restricted partition. Then
Ly ® A~ Ly ® Q°.

As another consequence of Proposition 6.8, we obtain that the internal tensor
product of two simple functors may sometimes be simple and sometimes not. The
problem of knowing exactly for which p-restricted partitions p the functor L, ® Al
is simple is studied in [Reischuk 2016].

Corollary 6.10. Assume that p is odd. Then Q ® A? is isomorphic to A?, and
A ® A4 is isomorphic to 9.

7. Estimates for p(F,r) and i (F, r)

7A. Basic properties of p(F,r) and i(F,r). Let r be a positive integer. We
introduce the following two homogeneous functors of degree d, where 7 - =
(@) ® (@)D ® - @ (®%)® as in Corollary 4.3:

Ldn= @ L. Tdn= @ 1@

A not p”-restricted Y o<ier Pdi<d
and |A| =d 27 id.—d
0<i P di=

These functors are defined so that they contain all the simples of degree d, or all
the twisted tensor powers of degree d, which have at least one factor precomposed
by 1 with s > r. Hence they are nonzero if and only if d > p”. By Corollary 4.3,
L(d,r) is a quotient of T'(d, r). Since these two functors are self-dual, it follows
that L(d, r) is also a subfunctor of T'(d, r).

Proposition 7.1. Let F be a homogeneous functor of degree d, and let G(d, r)
be equal to either L(d,r) or T(d,r). Then p(F,r) is the lowest (possibly +00)
degree k such that the vector space Ext’;k(F ,G(d,r)) is nonzero, and i (F,r) is
the lowest k such that Ext];k(G(d , 1), F) is nonzero.

Proof. Let P be a degree d homogeneous p"-bounded projective. Then Theorem 3.6
implies that Ext;‘;k(P, G(d,r)) is zero. Take a projective resolution Q of F whose
first p(F, r)-terms (i.e., up to index p(F, r) — 1) are left p"-bounded projectives,
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and let K be the kernel of Q,r -1 — Qp(F,r—2. By definition of p(F,r), K
is not p"-bounded. By Corollary 4.2, this means that there exists a nonzero map
K — L(d, r), and hence also a nonzero map K — T (d, r). By dimension shifting,

0 ifi < p(F,r),

Extp, (F, Gd. 1)) = !Hompk(K, Gd,r)£0 ifi=p(F,r).

The proof for i (F, r) is similar. O

Since T'(d, r) is a self-dual functor, Ext?;k(T(d ,r), F?) is always isomorphic to
Ext”;;k(F , T(d, r)). Thus we obtain the following corollary.

Corollary 7.2. For all functors F, we have i (F*,r) = p(F, r).

We now indicate how i (F, r) behaves with respect to some usual operations
on strict polynomial functors. There are similar statements for p(F, r) which can
be deduced from the formula p(F, r) = i(F*, r) or by repeating the proofs with
projective resolutions. We leave this to the reader.

Proposition 7.3. Let F and G be two functors. The following hold:
(@) i(Fy,r)=i(F,r).

(b) i(F,r)=i(F®,r+s).

©) iI(F®G,r)=min{i(F,r),i(G,r)}.

(d) i(F®G,r)=min{i(F,r),i(G,r)}.

(e) i(F,r)>=min{i(S,r) : S is finite and S C F}.

Proof. Statement (d) is straightforward from the characterization of i (F, r) in terms
of Ext* provided by Proposition 7.1, and implies that for the remaining statements,
we can assume that ' and G are homogeneous. We let d :=deg F and g :=degG.
Statement (e) follows from the interpretation of i (F, r) given in Proposition 7.1
and the fact that Ext*(T'(d, r), —) commutes with directed colimits. To prove (a),
observe that F is a direc