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of abelian number fields
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We review and simplify A. Beı̆linson’s construction of a basis for the motivic
cohomology of a point over a cyclotomic field, then promote the basis elements
to higher Chow cycles and evaluate the KLM regulator map on them.

1. Introduction

Let ζN ∈ C∗ be a primitive N -th root of 1 (N ≥ 2). The seminal article [Beı̆linson
1984] concludes with a construction of elements 4b (for b ∈ (Z/NZ)∗) in motivic
cohomology

H 1
M(Spec(Q(ζN )),Q(n))∼= K (n)

2n−1(Q(ζN ))⊗Q

mapping to Lin(ζ b
N )=

∑
k≥1 ζ

kb
N /k

n
∈ C/(2π i)nR under his regulator. Since by

Borel’s theorem [1974], we have rk K (n)
2n−1(Q(ζN ))Q =

1
2φ(N ) (for N ≥ 3), an

immediate consequence is that the {4b} span K (n)
2n−1(Q(ζN ))Q; indeed, Beı̆linson’s

results anticipated the eventual proofs [Rapoport 1988; Burgos Gil 2002] of the
equality (for number fields) of his regulator with that of Borel [1977]. An ex-
panded account of his construction was written up by Neukirch (with Rapoport and
Schneider) in [Neukirch 1988], up to a “crucial lemma” [op. cit., Part II, Lemma
2.4] required for the regulator computation, which was subsequently proved by
Esnault [1989].

The intervening years have seen some improvements in technology, especially
Bloch’s introduction of higher Chow groups [Bloch 1986], which yield an integral
definition of motivic cohomology for smooth schemes X . In particular, we have1

H 1
M(Spec(Q(ζN )),Z(n))∼= CH n(Q(ζN ), 2n− 1)

:= H2n−1{Zn(Q(ζN ), •), ∂},

MSC2010: 14C25, 14C30, 19E15.
Keywords: higher Chow group, Abel–Jacobi map, polylogarithms, Beı̆linson regulator, Borel’s

theorem.
1We use the shorthand CH∗(F, ∗) (Z∗(F, ∗), etc.) for CH∗(Spec(F), ∗) (F a field).
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and can ask for explicit cycles in ker(∂)⊂ Zn(Q(ζN ), 2n− 1) representing (mul-
tiples of) Beı̆linson’s elements 4b. Another relevant development was the explicit
realization of Beı̆linson’s regulator in [Kerr et al. 2006; Kerr and Lewis 2007]
as a morphism ÃJ of complexes, from a rationally quasi-isomorphic subcomplex
Zn

R(X, •) of Zn(X, •) to a complex computing the absolute Hodge cohomology
of X . Here this “KLM morphism” yields an Abel–Jacobi mapping

AJ : CH n(Q(ζN ), 2n− 1)⊗Q→ C/(2π i)nQ, (1.1)

and in the present note we shall construct (for all n) higher Chow cycles

Ẑb ∈ ker(∂)⊂ Zn
R(Q(ζN ), 2n− 1)⊗Q

satisfying

(n− 3)N n−1Ẑb ∈ Zn
R(Q(ζN ), 2n− 1)) and AJ(Ẑb)= Lin(ζ b

N ).

(See Theorems 3.3, 3.8, and 4.2, with Ẑ = (−1)nZ̃ /N n−1.) This is entirely more
explicit than the constructions in [Beı̆linson 1984; Neukirch 1988], and yields
a brief and transparent evaluation of the regulator, which moreover allows us to
dispense with some of the hypotheses of [Neukirch 1988, Part II, Lemma 2.4] or
[Esnault 1989, Theorem 3.9] and thus avoid the more complicated construction of
[Neukirch 1988, Part II, Lemma 3.1]. Furthermore, in concert with the anticipated
extension of ÃJ to the entire complex Zn(X, •) (making (1.1) integral), we expect
that our cycles will be useful for studying the torsion in CH n(Q(ζN ), 2n− 1), as
begun in [Petras 2008; 2009]; see Remark 4.1 and Section 4E.

2. Beı̆linson’s construction

In this section we show that (the graph of) the n-tuple of functions{
1− ζN z1 · · · zn−1,

( z1
z1−1

)N
, . . . ,

( zn−1
zn−1−1

)N}
completes to a relative motivic cohomology class on (�n−1, ∂�n−1). Most of the
work that follows is to show that its image under a residue map vanishes; see (2.12).
It also serves to establish notation for Section 3, where we recast this class as a
higher Chow cycle and compute its regulator.

2A. Notation. Let N ≥ 2, and ζ ∈ C be a primitive N -th root of unity; i.e.,
ζ = e2π ia/N , where a is coprime to N . Denoting by 8N (x) the N -th cyclotomic
polynomial, each such a yields an embedding σ of F :=Q[ω]/(8N (ω)) into C (by
sending ω 7→ ζ ). (If N = 2, then F=Q and ω = ζ =−1.)

Working over any subfield of C containing ζ , write

�n
:= (P1

\{1})n ⊃ (P1
\{0, 1})n =: Tn,
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with coordinates (z1, . . . , zn). We have isomorphisms from Tn to Gn
m (with co-

ordinates (t1, . . . , tn)), given by ti := zi/(zi − 1). Define a function fn(z) :=
1− ζ bt1 · · · tn on Tn (with b coprime to N ), and normal crossing subschemes

Sn
:= {z ∈ Tn

| some zi =∞} ⊂ Sn
∪ |( fn)0| =: S̃n

⊂ Tn.

(Alternatively, we may view these schemes as defined over F by replacing ζ b

with ωb.)
Now consider the morphism

ın : T
n−1
→ Tn, (t1, . . . , tn−1) 7→ (t1, . . . , tn−1, (ζ

bt1 · · · tn−1)
−1).

Lemma 2.1. The morphism ın sends Tn−1 isomorphically onto |( fn)0|, with

ın(S̃n−1)= |( fn)0| ∩ Sn.

We also remark that the Zariski closure of ın(T
n−1) in �n is just ın(T

n−1).

2B. Results for Betti cohomology. The construction just described has quite pleas-
ant cohomological properties, as we shall now see.

Lemma 2.2. As a Q-MHS,

Hq(Tn, Sn)∼=

{
Q(−n), q = n,

0, q 6= n.

Proof. Apply the Künneth formula to (Tn, Sn)∼= (Gm, {1})n . �

Lemma 2.3. As a Q-MHS,

Hq(Tn, S̃n)∼=

{
Q(0)⊕Q(−1)⊕ · · ·⊕Q(−n), q = n,

0, q 6= n.

Proof. This is clear for (T1, S̃1)∼= (Gm, {1, ζ̄ }). Now consider the exact sequence

H∗−1(Tn, Sn)
ı∗n
−→ H∗−1(Tn−1, S̃n−1)

δ
−→

H∗(Tn, S̃n)→ H∗(Tn, Sn)
ı∗n
−→ H∗(Tn−1, S̃n−1)

of Q-MHS, associated to the inclusion (Tn−1, S̃n−1)
ın
↪→ (Tn, Sn). (This is just the

relative cohomology sequence, once one notes that ((Tn, Sn), ın(T
n−1, S̃n−1)) =

(Tn, Sn
∪ ın(T

n−1)) = (Tn, S̃n) by Lemma 2.1.) If ∗ 6= n, then the underlined
terms are 0 via Lemma 2.2 and induction. If ∗ = n, then the end terms are 0 via
Lemma 2.2 and induction, and

0→ H n−1(Tn−1, S̃n−1)
δ
−→ H n(Tn, S̃n)→ H n(Tn, Sn)→ 0 (2.4)

is a short-exact sequence.
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Now observe that:

• H n(Tn, Sn
;C)= Fn H n(Tn, Sn

;C) is generated by the holomorphic form

η :=
1

(2π i)n
dt1
t1
∧ · · · ∧

dtn
tn
;

• Hn−1(T
n−1, S̃n−1

;Q) is generated by images e(Ui ) of the cells
n⋃

i=0

Ui = [0, 1]n \
n⋃
`=1

{∑
xi = `−

a
N

}
,

where e : [0, 1]n → Tn is defined by (x1, . . . , xn) 7→ (e2π ix1, . . . , e2π ixn ) =

(t1, . . . , tn);

•

∫
e(Ui )

η =

∫
Ui

dx1 ∧ · · · ∧ dxn ∈Q.

(Writing S 1 for the unit circle, ((S 1)n, (S 1)n ∩ S̃n) is a deformation retract of
(Tn, S̃n). The e(Ui ) visibly yield all the relative cycles in the former, justifying the
second observation.) Together these immediately imply that (2.4) is split, complet-
ing the proof. �

2C. Results for Deligne cohomology. Recall that Beı̆linson’s absolute Hodge co-
homology [1986] of an analytic scheme Y over C sits in an exact sequence

0→ Ext1MHS(Q(0), H r−1(Y,A(p)))→ H r
D(Y,A(p))

→ HomMHS(Q(0), H r (Y,A(p)))→ 0.

(Here we use a subscript “D” since the construction after all is a “weight-corrected”
version of Deligne cohomology; the subscript “MHS” of course means “A-MHS”.)
We shall not have any use for details of its construction here, and refer the reader
to [Kerr and Lewis 2007, §2].

Lemma 2.5. The map ı∗n : H n
D(T

n, Sn
;A(n)) → H n

D(T
n−1, S̃n−1

;A(n)) is zero
(A =Q or R).

Proof. Consider the exact sequence

· · ·→H n
D(T

n, Sn
;Q(n))

ı∗n
−→H n

D(T
n−1, S̃n−1

;Q(n))
δD
−→H n+1

D (Tn, S̃n
;Q(n))→· · · .

It suffices to show that δD is injective. Now

HomMHS(Q(0), H n(Tn−1, S̃n−1
;Q(n)))= {0},

HomMHS(Q(0), H n+1(Tn, S̃n
;Q(n)))= {0},

by Lemma 2.3, and so δD is given by

Ext1MHS(Q(0), H n−1(Tn−1, S̃n−1
;Q(n)))

δD
−→ Ext1MHS(Q(0), H n(Tn, S̃n

;Q(n))).
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Since (2.4) is split, the corresponding sequence of Ext1-groups is exact, and δD is
injective. �

2D. Results for motivic cohomology. Let X be any smooth simplicial scheme (of
finite type), defined over a subfield of C. We have Deligne class maps

cD,A : H r
M(X,Q(p))→ H r

D(X
an
C ,A(p))

(for A=Q or R). The case of particular interest here is when r = 1, X is a point, and

cD,A(Z)=
1

(2π i)p−1

∫
Zan

C

R2p−1 ∈ C/A(p), (2.6)

where, interpreting log(z) as the 0-current with branch cut along Tz := z−1(R−),

R2p−1 :=

2p−1∑
k=1

(2π i)k−1 R(k)2p−1

:=

2p−1∑
k=1

(2π i)k−1 log(zk)
dzk+1

zk+1
∧ · · · ∧

dz2p−1

z2p−1
· δTz1∩···∩Tzk−1

(2.7)

is the regulator current of [Kerr et al. 2006; Kerr and Lewis 2007] belonging to
D2p−2((P1)×(2p−1)). Here it is essential that the representative higher Chow cycle
Z belong to the quasi-isomorphic subcomplex Z p

R(pt., •)Q ⊂ Z p(pt., •)Q compris-
ing cycles in good position with respect to certain real analytic chains; see [Kerr
and Lewis 2007, §8] or Remark 3.4 below.

Now take a number field K , [K :Q] = d = r1+ 2r2, and set

dm = dm(K ) :=


r1+ r2− 1, m = 1,
r1+ r2, m > 1 odd,
r2, m > 0 even.

For X defined over K , write X̃ an
C
:=
∐
σ∈Hom(K ,C)(

σX)an
C

and

H r
M(X,Q(p))

c̃+D,R ((

c̃D,R
// H r (X̃ an

C
,R(p))

H r
D(X̃

an
C
,R(p))+

) 	

66

for the map Z 7→ (cD,R(σZ))σ , which factors through the invariants under de Rham
conjugation. If X = Spec(K ), then we have H 1

D(X̃
an
C
,R(p)) ∼= R(p − 1)⊕d and

H 1
D(X̃

an
C
,R(p))+ ∼= R(p− 1)⊕dp . Write H r

M(X,R(p))= H r
M(X,Q(p))⊗Q R.
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Lemma 2.8. For X = Spec(K ), G×n
m,K , (Tn

K , Sn
K ), or (Tn

K , S̃n
K ),

c̃+D,R⊗R : H r
M(X,R(p))→ H r

D(X̃
an
C
,R(p))+

is an isomorphism (∀r, p).

Proof. By [Burgos Gil 2002], the composition

K2p−1(OK )⊗Q
∼=
−→ H 1

M(Spec(K ),Q(p))
c̃+D,R
−−→ R(p− 1)⊕dp

· 2/(2π i)p−1

−−−−−−→ Rdp

is exactly the Borel regulator (and the groups are zero for r 6= 1). The lemma
follows for X = Spec(K ).

Let Y be a smooth quasiprojective variety, defined over K , and pick p ∈Gm(K ).
Write Y

ı
↪→Gm,Y


↪→A1

Y
κ
←↩ Y for the Cartesian products with Y of the morphisms

Spec(K )
ı p
↪→ Gm,K


↪→ A1

K
ı0
←↩ Spec(K ).

Then by the homotopy property,

ı∗ : H r
K(Gm,Y ,R(p))→ H r

K(Y,R(p))∼= H r
K(A

1
Y ,R(p))

splits the localization sequence

· · ·
κ∗
−→ H r

K(A
1
Y ,R(p))

∗

−→ H r
K(Gm,Y ,R(p))

Res
−−→ H r−1

K (Y,R(p− 1))
κ∗
−→ · · ·

for K =M,D (in particular, κ∗ = 0). It follows that

H r
K(Gm,Y ,R(p))∼= H r

K(Y,R(p))⊕ H r−1
K (Y,R(p− 1)),

compatibly with cD,R; applying this iteratively gives the lemma for G×n
m,K .

Finally, both (Tn, Sn
K ) and (Tn

K , S̃n
K ) may be regarded as (co)simplicial normal

crossing schemes X •. (That is, writing S̃n
K =

⋃
Yi , we take X0

= Tn
K , X1

=
∐

i Yi ,
X2
=
∐

i< j Yi ∩ Y j , etc.) We have spectral sequences

E i, j
1 = H 2p+ j

K (X i ,R(p))=⇒ H 2p+i+ j
K (X •,R(p)),

compatible with cD,R, and all X i are disjoint unions of powers of Gm,K . The lemma
is proved. �

Lemma 2.9. The map ı∗n : H n
M(T

n, Sn
;A(n))→ H n

M(T
n−1, S̃n−1

;A(n)) is zero
( for A =Q or R).

Proof. Form the obvious commutative square and use the results of Lemmas 2.5
and 2.8. �
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2E. The Beı̆linson elements. To each I ⊂ {1, . . . , n} and ε : I → {0,∞} we
associate a face map ρεI : �

n−|I | ↪→ �n , with zi = ε(i) (for all i ∈ I ) on the
image, and degeneracy maps δi :�n ��n−1 killing the i-th coordinate. For any
smooth quasiprojective variety X (say, over a field K ⊇ Q), let cp(X, n) denote
the free abelian group on subvarieties (of codimension p) of X ×�n meeting all
faces X × ρεI (�

n−|I |) properly, and d p(X, n)=
∑

im(idX ×δ
∗

i )⊂ cp(X, n). Then
Z p(X, •) := cp(X, •)/d p(X, •) defines a complex with differential

∂ =

n∑
i=1

(−1)i−1((idX ×ρ
0
i )
∗
− (idX ×ρ

∞

i )
∗
)
,

whose r -th homology defines Bloch’s higher Chow group

CH p(X, r)∼= H 2p−r
M (X,Z(p)). (2.10)

This isomorphism does not apply for singular varieties (e.g., our simplicial schemes
above), and for our purposes in this paper it is the right-hand side of (2.10) that
provides the correct generalization. In particular, we have

H r
M(X × (�

a, ∂�a),Q(p))∼= H r−a
M (X,Q(p)),

where ∂�a
:=
⋃

i∈{1,...,a}, ε∈{0,∞} ρ
ε
i (�

a−1). We note here that the (rational) motivic
cohomology of a cosimplicial normal-crossing scheme X • can be computed via (the
simple complex associated to) a double complex:

Ea,b
0 := Z p(Xa,−b)#Q =⇒ H 2p+a+b

M (X •,Q(p)), (2.11)

where # denotes cycles meeting all components of all Xq>a
× ∂εI �

−b properly.2

Continuing to write ti for zi/(zi − 1), we now consider

f (z)= fn−1(z1, . . . , zn−1) := 1−ωbt1 · · · tn−1

as a regular function on �n−1
F , and

Z := {(z; f (z), t N
1 , . . . , t N

n−1) | z ∈�
n−1
\|( f )0|}

as an element of

ker
{

Zn(�n−1
\|( f )0|, n)#Q

∂⊕
∑
(ρεi )

∗

−−−−−−→ Zn(�n−1
\|( f )0|, n− 1)⊕

⊕
i,εZn(�n−2

\
∣∣( f |zi=ε)0

∣∣, n
)

Q

}
,

and hence of
H n

M(�
n−1
F \|( f )0|, ∂�n−1

\∂|( f )0|;Q(n))

2See [Levine 1994, §3] and [Kerr and Lewis 2007, §8.2] for the relevant moving lemmas (and for
detailed discussion of differentials, etc.).
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(where ∂|( f )0| := ∂�n−1
∩|( f )0|=

⋃
i,ε |( f |zi=ε)0|, and # indicates cycles meeting

faces of ∂�n−1
\∂|( f )0| properly). The powers t N

i are unnecessary at this stage but
will be crucial later. For simplicity, we write the class of Z in this group as a
symbol { fn−1, t N

1 , . . . , t N
n−1}.

Using Lemma 2.1, we have a (vertical) localization exact sequence

��

H n
M(�

n−1, ∂�n−1
;Q(n)) oo

∼=
//

��

CH n(F, 2n− 1)Q

H n
M(�

n−1
\|( f )0|, ∂�n−1

\|( f )0|;Q(n))

Res|( f )0|
��

H n−1
M (Tn−2, S̃n−2

;Q(n− 1))

��

H n−1
M (Tn−1, Sn−1

;Q(n− 1))
ı∗n−1
oo

(2.12)

in which evidently

Res|( f )0|{ fn−1, t N
1 , . . . , t N

n−1} = ı∗n−1{t
N
1 , . . . , t N

n−1}.

Proposition 2.13. Z lifts to a class 4̃ ∈ CH n(F, 2n− 1)Q.

Proof. Apply (2.12) and Lemma 2.9. �

This is essentially Beı̆linson’s construction; we normalize the class by

4 :=
(−1)n

N n−1 4̃.

3. The higher Chow cycles

3A. Representing Beı̆linson’s elements. We first describe (2.11) more explicitly
in the relevant cases. As above, write ∂ : Zn(�r , s)#

Q
→ Zn(�r , s − 1)#

Q
for the

higher Chow differential, and

δ : Zn(�r , s)#Q→
⊕
i,ε

Zn(�r−1, s)#Q

for the cosimplicial differential
∑r

i=1(−1)i−1((ρ0
i × id�s )∗ − (ρ∞i × id�s )∗). A

complex of cocycles for the top motivic cohomology group in (2.12) is given by

Zn
�(k) := Zn

M((�
n−1
F , ∂�n−1

F ), k)Q :=
n−1⊕
a=0

⊕
(I,ε), |I |=a

Zn(�n−a−1
F , a+ k)#Q (3.1)
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with differential D := ∂ + (−1)n−a−1δ. These are, of course, the simple complex
and total differential associated to the natural double complex

Ea,b
0 =

⊕
(I,ε), |I |=a

Zn(�n−a−1
F ,−b)#Q.

Analogously, one defines

Zn
�\ f (k) := Zn

M
(
(�n−1

F \|( f )0|, ∂�n−1
F \∂|( f )0|), k

)
Q
,

Zn−1
f (k) := Zn−1

M ((Tn−2, S̃n−2), k)Q,

so that Zn−1
f (•)

ı∗
−→ Zn

�(•)→ Zn
�\ f (•) are morphisms of (homological) complexes.

Now define
θ : Zn

�(k)→ Zn(F, n+ k− 1)Q

by simply adding up the cycles (with no signs) on the right-hand side of (3.1).
(Use the natural maps �n−a−1

×�a+k
→�n+k−1 obtained by concatenating coor-

dinates.) Then we have:

Lemma 3.2. The map θ is a quasi-isomorphism of complexes.

Proof. Checking that θ is a morphism of complexes is easy and left to the reader.
The a= n−1, (I, ε)= ({1, . . . , n−1}, 0) term of (3.1) is a copy of Zn(F, n+k−1)
in Zn

�(k), which leads to a morphism ψ : Zn(F, n+ •−1)→ Zn
�(•) with θ ◦ψ = id.

Moreover, it is elementary that ψ is a quasi-isomorphism: taking d0 = ∂ gives

Ea,b
1 =

⊕
(I,ε), |I |=a

CH n(�n−a−1
F ,−b)Q ∼= CH n(F,−b)⊕2a(n−1

a ),

so Ea,b
2 = 0 except for En−1,b

2
∼= CH n(F,−b), which is exactly the image of

ψ(ker ∂).3 �

In particular, we may view θ as yielding the isomorphism in the top row of (2.10).
By the moving lemmas of Bloch [1994] and Levine [1994], we have another

quasi-isomorphism
Zn
�(•)

ı∗Zn−1
f (•)

'
−→ Zn

�\ f (•),

which enables us to replace any Y�\ f ∈ ker(D) ⊂ Zn
�\ f (n) by a homologous

Y ′�\ f arising as the restriction of some Y ′� ∈ Zn
�(n) with DY ′� = ı∗(Y ′′f ) and

Y ′′f ∈ ker(D) ∈ Zn−1
f (n− 1). This gives an “explicit” prescription for computing

Res|( f )0| in (2.10).
Now we come to our central point: the cycle Z={ fn−1, t N

1 , . . . , t
N
n−1} of Section 2E

already belongs to (Zn(�n−1
F , n)#

Q
⊆)Zn

�(n), without “moving” it by a boundary.
Its restriction to Zn

�\ f (n) is clearly D-closed, and DZ = ı∗{t N
1 , . . . , t N

n−1} =: ı∗T .

3This is true for any field, but specifically for our F=Q(ω), the only nonzero term is En−1,n
2 .
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By Proposition 2.13, the class of T in homology of Zn−1
f (•) is trivial, and so there

exists T ′ ∈ Zn−1
f (n) with DT ′ =−T . Defining

W := ı∗T ′, Z̃ := Z +W,

we now have DZ̃ = 0. This allows us to make a rather precise statement about the
lift in Proposition 2.13. Denote the projection (z1, . . . , z2n−1) 7→ (z1, . . . , zn−i ) by
pi :�2n−1 ��n−i .

Theorem 3.3. 4̃ has a representative in Zn(F, 2n− 1)Q of the form

Z̃ =Z +W =Z +W1+W2+ · · ·+Wn−1,

where Z = θ(Z) (i.e., Z interpreted as an element of Zn(F, 2n− 1)Q) and Wi is
supported on p−1

i |( fn−i )0|.

Proof. Viewing (|( fn−1)0|, ∂|( fn−1)0|)∼= (T
n−2, S̃n−2) as a simplicial subschemeX•

of (�n−1, ∂�n−1)=: X •, the subscheme Xi−1
⊂ X i−1 comprises 2i−1

(n−1
i−1

)
copies

of |( fn−i )0| ⊂�n−1. We may decompose

W ∈
n⊕

i=1

⊕
(I,ε), |I |=i−1

ı∗Zn−1(|( fn−i )0|, n+ i − 1)#Q ⊂
n−1⊕
i=1

E i−1,−n−i+1
0

into its constituent pieces Wi ∈E i−1,−n−i+1
0 , and define Wi :=θ(Wi ) and W :=θ(W).

Clearly supp(Wi )⊂ p−1
i |( fn−i )0|, and Z̃ := θ(Z̃) is ∂-closed, giving the desired

representation. �

Remark 3.4. In fact, σ(Z ) ∈ Zn
R(Spec(C), 2n− 1)Q for any σ ∈ Hom(F,C): the

intersections Tz1∩· · ·∩Tzk ∩(ρ
ε
I )
∗σ(Z ) are empty excepting Tz1∩· · ·∩Tzk ∩σ(Z )

for k ≤ n − 1 and Tz1 ∩ · · · ∩ Tzk ∩ (ρ
0
n)
∗σ(Z ) for k ≤ n − 2, which are both

of the expected real codimension. A trivial modification of the above argument
then shows that the Wi may be chosen so that the σ(Wi ) (and hence σ(Z̃ )) are in
Zn

R(Spec(C), 2n−1)Q as well. We shall henceforth assume that this has been done.

3B. Computing the KLM map. We begin by simplifying the formula (2.6) for the
regulator map.

Lemma 3.5. Let K ⊂C and suppose Z ∈ ker(∂)⊂ Zn
R(Spec(K ), 2n−1)Q satisfies

Tz1 ∩ · · · ∩ Tzn ∩ Z an
C =∅. (3.6)

Then

cD,Q(Z)=
∫

Z an
C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1

in C/Q(n).
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Proof. We have

cD,Q(Z)=
n−1∑
k=1

(2π i)k−n
∫

Z an
C

R(k)2n−1+

∫
Z an

C

R(n)2n−1+

n−1∑
k=1

(2π i)k
∫

Z an
C

R(n+k)
2n−1 .

The terms
∫

Z an
C

R(k)2n−1 are zero by type, since dimC ZC = n− 1, and the
∫

Z an
C

R(n+k)
2n−1

are integrals over Z an
C
∩Tz1∩· · ·∩Tzn+k−1 =∅. So only the middle term remains. �

Lemma 3.7. For any σ ∈ Hom(F,C), Tz1 ∩ · · · ∩ Tzn ∩ σ(Z̃ )=∅.

Proof. From Theorem 3.3, σ(Wi ) is supported over p−1
i (|( fn−i )0|); that is, on σ(Wi )

we have z1 · · · zn−i = ζ̄
b, and so Tz1∩· · ·∩Tzn−i∩σ(Wi )=∅, since ζ̄ b /∈ (−1)n−i R+.

On σ(Z ), zn = fn−1(z1, . . . , zn−1) = 1− ζ bt1 · · · tn−1 (where ti = zi/(zi − 1)),
and on Tzi , ti ∈ [0, 1]. It follows that on Tz1 ∩ · · · ∩ Tzn ∩ σ(Z ), zn belongs to
R− ∩ (1− ζ b

[0, 1]), which is empty. �

We may now compute the regulator on the cycle of Theorem 3.3, independently
of the choice of the Wi .

Theorem 3.8. cD,Q(σ (4))= Lin(ζ b) ∈ C/Q(n).

Proof. By Lemmas 3.5 and 3.7, we obtain

cD,Q(σ (Z̃ ))=

∫
σ(Z )an

C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1

+

n−1∑
i=1

∫
σ(Wi )

an
C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1
,

in which (by the proof of Lemma 3.7) σ(Wi )
an
C
∩Tz1 ∩· · ·∩Tzn−1 =∅ for all i . The

remaining (first) term becomes∫
z∈R

×(n−1)
−

log( fn−1(z))
dt N

1

t N
1
∧ · · · ∧

dt N
n−1

t N
n−1

= (−N )n−1
∫

t∈[0,1]×(n−1)
log(1− ζ bt1 · · · tn−1)

dt1
t1
∧ · · · ∧

dtn−1

tn−1

= (−N )n−1
∫ ζ b

0

∫ un−1

0
· · ·

∫ u2

0
log(1− u1)

du1

u1
∧ · · · ∧

dun−1

un−1

= (−1)n N n−1 Lin(ζ b),

where un−1 = ζ
btn−1, un−2 = ζ

btn−2tn−1, . . . , u1 = ζ
bt1 · · · tn−1. �

To write the image of our cycles under the Borel regulator, we refine notation
by writing σa (for σ : ω 7→ e2π ia/N ), fn−1,b = 1−ωbt1 · · · tn−1, 4b, Z̃b, Zb, etc.
So Theorem 3.8 reads cD,Q(σa(4b)) = Lin(e2π iab/N ), and one has the following
corollary.
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Corollary 3.9. Let N ≥ 3 and set

A :=
{
a ∈ N | (a, N )= 1 and 1≤ a ≤

⌊ N
2

⌋}
;

then for any b ∈ A,

c̃+D,R(4b)= (πn(Lin(e2π iab/N ))a∈A ∈ R(n− 1)⊕
1
2φ(N ),

where πn : C→ R(n − 1) is iIm for n even, and Re for n odd. If N = 2, then
c̃+D,R = 0 for n even and c̃+D,R(41)= ζ(n) ∈ R(n− 1) for n odd.

As an immediate consequence, we get a (rational) basis for the higher Chow
cycles on a point over any abelian extension of Q.

Corollary 3.10. The {4b}b∈A span CH n(F, 2n− 1)Q. Moreover, for any subfield
E⊂ F, with 0 =Gal(F/E), there exists a subset B ⊂ A (with |B| = dn(E)) such that
the

{∑
γ∈0

γ4b
}

b∈B span CH n(E, 2n− 1)Q.

Proof. In view of Lemma 2.8, for the first statement we need only check the linear
independence of the vectors v(b) in Corollary 3.9. Let χ be one of the 1

2φ(N )
Dirichlet characters modulo N with χ(−1) = (−1)n−1; and let ρα : C|A|→ C|A|

be the permutation operator defined by µ(v) j = vα· j , where α ∈ (Z/NZ)∗ is a
generator. Then the linear combinations

vχ :=
∑
b∈A

χ(b)v(b) =
(

1
2

N∑
b=1

χ(b)πn(Lin(e2π iab/N ))

)
a∈A

are independent (over C) provided they are nonzero, since their eigenvalues χ(α)
under ρα are distinct. By the computation in [Zagier 1991, pp. 420–422], if χ is
induced from a primitive character χ0 modulo N0 = N/M , then (with µ being the
Möbius function and τ( · ) the Gauss sum)

v
χ

1 =
1

2Mn−1

{∑
d|M

µ(d)χ0(d)dn−1
}
τ(χ0)L(χ0, n),

the last two factors of which are nonzero by primitivity of χ0; the bracketed term
is
∏

p>1 prime, p|M(1−χ0(p)pn−1), hence also nonzero.
The second statement follows at once, since the composition of

∑
γ∈0 with

CH n(E, 2n− 1)Q ↪→ CH n(F, 2n− 1)Q is a multiple of the identity. �

4. Explicit representatives

We finally turn to the construction of the cycles described by Theorem 3.3. Here
the benefit of using t N

i (at least, if one is happy to work rationally) comes to the
fore: it allows us to obtain uniform formulas for all N , and to use as few terms
as possible. In fact, it turns out that for all n it is possible to take W3 = · · · =
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Wn−1 = 0. (While it is easy to argue abstractly that Wn−1 can always be taken to be
zero, this stronger statement surprised us.) For brevity, we shall use the notation
( f1(t, u, v), . . . , fm(t, u, v)) for

{( f1(t, u, v), . . . , fm(t, u, v)) | ti , u, v ∈ P1
} ∩�m

;

all precycles are defined over F=Q(ω), and we write ξ := ωb.

4A. K3 case (n= 2). Let Z = (t/(t−1), 1−ξ t, t N ), as dictated by Theorem 3.3;
then all ∂εi Z = 0. In particular,

∂0
1 Z = (1− ξ t, t N )|t/(t−1)=0 = (1, 0)= 0

and
∂0

2 Z =

(
ξ−1

ξ−1− 1
, ξ−N

)
=

(
1

1−ξ
, 1
)
= 0.

So we may take W = 0 and Z̃ =Z .
In contrast, if we took Z = (t/(t − 1), 1− ξ t, t), then ∂0

2 Z = (1/(1− ξ), ξ−1)

and a nonzero W -term is required.

4B. K5 case (n = 3). Of course Z = (t1/(t1− 1), t2/(t2− 1), 1− ξ t1t2, t N
1 , t N

2 ).
Taking

W1 =
1
2

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 )(u− t−N
1 )

(u− 1)2
, t N

1 u,
u
t N
1

)
,

we note that z2 = 1/(1− ξ t1) implies t2 = (1− ξ t1)−1/((1− ξ t1)−1
− 1)= 1/ξ t1,

which in turn implies f2(t1, t2)= 0. Now we have

∂Z = ∂0
3 Z =

(
t1

t1− 1
,

t2
t2− 1

, t N
1 , t N

2

)∣∣∣∣
1−ξ t1t2=0

=

(
t1

t1− 1
,

1
1− ξ t1

, t N
1 ,

1
t N
1

)
and

∂W1 =−∂
∞

3 W1 =−2 · 1
2

(
t1

t1− 1
,

1
1−ξ t1

, t N
1 ,

1
t N
1

)
=−∂Z .

Therefore Z̃ =Z +W1 is closed.

Remark 4.1. See [Petras 2008, §3.1] for a detailed discussion of the properties of
these cycles, especially the (integral!) distribution relations of [loc. cit., Proposition
3.1.26].

In particular, we can specialize to N = 2 to obtain

2Z̃ = 2
(

t1
t1−1

,
t2

t2−1
, 1+t1t2, t2

1 , t2
2

)
+

(
t1

t1−1
,

1
1+t1

,
(u−t2

1 )(u−t−2
1 )

(u−1)2
, t2

1 u,
u
t2
1

)
in Z3

R(Q, 5), spanning CH 3(Q, 5)Q ∼= K5(Q)Q, with

cD,Q(2Z̃ )=−8 Li3(−1)= 6ζ(3) ∈ C/Q(3).



186 MATT KERR AND YU YANG

4C. K7 case (n= 4). Set

Z =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
, 1− ξ t1t2t3, t N

1 , t N
2 , t N

3

)
,

W1 =
1
2
(W

(1)
1 +W

(2)
1 ),

W
(1)

1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

u
t N
1
,

u
t N
2
,

1
u

)
,

W
(2)

1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

W2 =−
1
2

(
t1

t1− 1
,

1
1− ξ t1

,
(v− t N

1 u)(v− ut−N
1 )

(v− u2)(v− 1)
,

(u− t N
1 )(u− vt−N

1 )

(u− v)2
,
vt N

1

u
,
v

t N
1 u

,
u
v

)
.

Direct computation shows

∂Z =−∂0
4 Z =−∂∞4 W

(1)
1 =−∂∞4 W

(2)
1 ,

∂W1 =−
1
2∂
∞

3 W
(1)

1 +
1
2∂
∞

4 W
(1)

1 −
1
2∂
∞

3 W
(2)

1 +
1
2∂
∞

4 W
(2)

1 ,

∂W2 =−∂
∞

3 W2 =
1
2∂
∞

3 W
(1)

1 +
1
2∂
∞

3 W
(2)

1 ,

which sum to zero.
Alternately, we can take

W1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

W2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− vt N

1 )(u− vt−N
1 )

(u− v)2
,
vt N

1

u
,
v

t N
1 u

,
u
v
, v− 1

)
.

Writing

V1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
, t N

1 , t N
2 ,

1
t N
1 t N

2

)
,

V2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 )(u− t−N
1 )

(u− 1)2
,

t N
1

u
,

1
t N
1 u

, u
)
,

one has ∂Z =−V1, ∂W1 =−V2+V1, ∂W2 = V2; so again Z̃ is a closed cycle.
We present the general n construction next, but include the n = 5 case as an

appendix (as the authors only saw the pattern after working out this case).
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4D. General n construction (n ≥ 4). To state the final result, we define

Z :=

(
t1

t1− 1
, . . . ,

tn−1

tn−1− 1
, 1− ξ t1 · · · tn−1, t N

1 , . . . , t N
n−1

)
,

W1 :=
1

n− 3
W̃1

:=
(−1)n−1

n− 3

(
t1

t1− 1
, . . . ,

tn−2

tn−2− 1
,

1
1− ξ t1 · · · tn−2

,

(u− t N
1 ) · · · (u− t N

n−2)

(u− t N
1 · · · t

N
n−2)(u− 1)n−3

,
t N
1

u
, . . . ,

t N
n−2

u
,

u
t N
1 · · · t

N
n−2

)
,

W2 :=
1

n−3

n−1∑
i=1

(−1)i−1W
(i)

2 ,

where for 1≤ i ≤ n− 2,

W
(i)

2 :=

(
t1

t1− 1
, . . . ,

tn−3

tn−3− 1
,

1
1− ξ t1 · · · tn−3

,
(u− t N

1 v) · · · (u− t N
n−3v)

(u− t N
1 · · · t

N
n−3v)(u− v)

n−4
,

vt N
1

u
, . . . ,

v

u
, . . . ,

vt N
n−3

u
,

u
vt N

1 · · · t
N
n−3

, v− 1
)
,

(with v/u occurring in the (n+ i − 1)-st entry4) and

W
(n−1)

2 :=(
t1

t1− 1
, . . . ,

tn−3

tn−3− 1
,

1
1− ξ t1 · · · tn−3

,
(u− t N

1 v) · · · (u− t N
n−3v)

(u− t−N
1 · · · t−N

n−3v)
−1(u− v)n−2

,

vt N
1

u
, . . . ,

vt N
n−3

u
,

v

ut N
1 · · · t

N
n−3

,
u
v
, v− 1

)
.

Theorem 4.2. Z̃ = Z +W1 +W2 yields a closed cycle, with the properties de-
scribed in Theorem 3.3. (In particular, this recovers the second K7 construction
and the K9 construction above, for n = 4 and 5.)

Proof. Writing

Y0 := ∂
0
n Z =

(
t1

t1− 1
, . . . ,

tn−2

tn−2− 1
,

1
1− ξ t1 · · · tn−2

, t N
1 , . . . , t N

n−2,
1

t N
1 · · · t

N
n−2

)
,

Yi := ∂
0
2n−1W

(i)
2 (i = 1, . . . , n− 1), and Xi, j := ∂

∞

j W
(i)

2 ( j = 1, . . . , n− 2), one
computes that ∂Z = (−1)n−1Y0,

4That is, either before (i = 1), after (i = n − 2), or in the middle of the sequence
vt N

1 /u, vt N
2 /u, . . . , vt N

n−3/u.
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∂W̃1 = (−1)n∂∞n W̃1+

n−1∑
i=1

(−1)i∂∞i W̃1 = (−1)n(n− 3)Y0+

n−1∑
i=1

(−1)iYi ,

and ∂W (i)
2 = Yi +

∑n−2
j=1(−1) jXi, j . We have, therefore,

∂Z̃ =
1

n−3

n−1∑
i=1

n−2∑
j=1

(−1)i+ j−1Xi, j , (4.3)

and for each i > j , the reader may verify that Xi, j =X j,i−1, so that the terms on
the right-hand side of (4.3) cancel in pairs. �

4E. Expected implications for torsion. One of the anticipated applications of the
explicit AJ maps of [Kerr et al. 2006; Kerr and Lewis 2007] has been the detec-
tion of torsion in higher Chow groups. While they provide an explicit map of
complexes from Z p

R(X, •) to the integral Deligne cohomology complex, the fact
that Z p

R(X, •) ⊂ Z p(X, •) is only a rational quasi-isomorphism leaves open the
possibility that a given cycle with (nontrivial) torsion KLM-image is bounded by
a precycle in the larger complex. So far, therefore, any conclusions we can try
to draw about torsion are speculative, as they depend on the (so far) conjectural
extension of the KLM map to an integrally quasi-isomorphic subcomplex.

Let us describe what the existence of such an extension, together with the cycles
just constructed, would yield. Let f : Z/NZ→ Z be a function which is zero
off (Z/NZ)∗, with f (−b)= (−1)n f (b), and write

εn :=


1, n = 2,
2, n = 3,
n− 3, n ≥ 4.

Then (fixing σ(ω)= ζN = e2π i/N ) the cycle

Zn
f (N ) := εn

N−1∑
b=0

f (b)σ (Z̃b) ∈ Zn
R(Q(ζN ), 2n− 1)

is integral. Working up to sign, we compute (in C/Z) by Theorem 3.8

τ n
f (N ) :=

±1
(2π i)n

cD(Zn
f (N ))=

±εn N n−1

(2π i)n

N−1∑
b=0

f (b)
∑
k≥1

ζ kb
N

kn

=
±εn N n−1

2(2π i)n

N−1∑
b=0

f (b)
∑

k∈Z\{0}

ζ kb
N

kn =
±εn N n−1

2 · n!

N−1∑
b=0

f (b)Bn(
b
N
),
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which is evidently a rational number.5 This (nonconjecturally) establishes that
Zn

f (N ) is torsion. Under our working (conjectural!) hypothesis, if τ n
f (N ) =

±An
f (N )/C

n
f (N ) in lowest form, we may additionally conclude that the order of

Zn
f (N ) is a multiple of Cn

f (N ).
For example, taking N = 5, n = 2, and f (1) = f (4) = 1, f (2) = f (3) = 0,

we obtain Z2
f (5) ∈ Z2

R(Q(
√

5), 3) with τ 2
f (5)=

±1
120 . This checks out with what is

known (cf. Proposition 6.9 and Remark 6.10 of [Petras 2009]), and would make
Z2

f (5) a generator of CH 2(Q(
√

5), 3).
For N =2, f (1)=1, and n=2m (i.e., CH 2m(Q, 4m−1)), the above computation

simplifies to

|τ 2m
f (2)| =

±ε2m22m−2

(2m)!
B2m

(1
2

)
=
±(2m− 3)(22m−1

− 1)
2(2m)!

B2m,

which yields 1
24 , 7

1440 , 31
20160 , 635

483840 for m = 1, 2, 3, 4, respectively. It is known that
CH 2(Q, 3)∼= Z/24Z [Petras 2009], but the other orders seem unexpectedly large
and should warrant further investigation.

Appendix: K9 case (n= 5)

Begin by writing

Z =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

t4
t4− 1

, 1− ξ t1t2t3t4, t N
1 , t N

2 , t N
3 , t N

4

)
,

W1 =
1
2

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

1
1− ξ t1t2t3

,

(u− t l
1)(u− t l

2)(u− t l
3)

(u− 1)2(u− t l
1t l

2t l
3)

,
t N
1

u
,

t N
2

u
,

t N
3

u
,

u
t N
1 t N

2 t N
3

)
,

W
(1)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
v

u
,

t N
1 v

u
,

t N
2 v

u
,

u
vt N

1 t N
2
,v−1

)
,

W
(2)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
vt N

1

u
,
v

u
,

t N
2 v

u
,

u
vt N

1 t N
2
,v−1

)
,

W
(3)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
vt N

1

u
,
vt N

2

u
,
v

u
,

u
vt N

1 t N
2
,v−1

)
,

5 Bn(x)=
∑n

j=0
(n

j
)
B j xn− j is the n-th Bernoulli polynomial (and {B j } the Bernoulli numbers).



190 MATT KERR AND YU YANG

W
(4)

2 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,

(u− t N
1 v)(u− t N

2 v)

(u− vt−N
1 t−N

2 )−1(u− v)3
,
vt N

1

u
,
vt N

2

u
,

v

ut N
1 t N

2
,

u
v
, v− 1

)
,

W2 =
1
2
(W

(1)
2 −W

(2)
2 +W

(3)
2 −W

(4)
2 ).

To compute the boundaries, introduce

U1 =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

1
1− ξ t1t2t3

, t N
1 , t N

2 , t N
3 ,

1
t N
1 t N

2 t N
3

)
,

U2 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

1
u
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

U3 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

t N
1

u
,

1
u
,

t N
3

u
,

u
t N
1 t N

2

)
,

U4 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

t N
1

u
,

t N
2

u
,

1
u
,

u
t N
1 t N

2

)
,

U5 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 )(u−t N
2 )(u−t−N

1 t−N
2 )

(u−1)3
,

t N
1

u
,

t N
2

u
,

1
ut N

1 t N
2
,u
)
,

and

V1 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
v

u
,

t N
1 v

u
,
v

ut N
1
,

u
v
, v− 1

)
,

V2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
vt N

1

u
,
v

u
,
v

t N
1 u

,
u
v
, v− 1

)
,

V3 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
vt N

1

u
,
v

ut N
1
,
v

u
,

u
v
, v− 1

)
.

Then ∂Z = U1, ∂W1 = −U1 +
1
2(−U2 + U3 − U4 + U5), ∂W

(1)
2 = −V1 + U2,

∂W
(2)

2 = −V2+U3, ∂W (3)
2 = −V3+U4, and ∂W (4)

2 = U5− V1+ V2− V3; and so
Z̃ is closed.

As for n= 3, we obtain a generator for CH 5(Q, 9)Q∼= K9(Q)Q by setting N = 2
and ξ =−1; the integral cycle 2Z̃ has cD,Q(2Z̃ )= 15ζ(5).
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