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Algebraic K-theory and
a semifinite Fuglede–Kadison determinant

Peter Hochs, Jens Kaad and André Schemaitat

In this paper we apply algebraic K-theory techniques to construct a Fuglede–
Kadison type determinant for a semifinite von Neumann algebra equipped with
a fixed trace. Our construction is based on the approach to determinants for
Banach algebras developed by Skandalis and de la Harpe. This approach can be
extended to the semifinite case since the first topological K-group of the trace
ideal in a semifinite von Neumann algebra is trivial. Along the way we also
improve the methods of Skandalis and de la Harpe by considering relative K-
groups with respect to an ideal instead of the usual absolute K-groups. Our
construction recovers the determinant homomorphism introduced by Brown, but
all the relevant algebraic properties are automatic due to the algebraic K-theory
framework.

1. Introduction

One first encounters the relationship between algebraic K-theory and determinants
in the isomorphism between the first algebraic K-group of the complex numbers
and the complex multiplicative group. This isomorphism is implemented by the
determinant of an invertible matrix. In the present paper we will expand on this
relationship in the context of Banach algebras and, in particular, we will see how to
recover the Fuglede–Kadison determinant for semifinite von Neumann algebras as
introduced by Brown [Brown 1986; Fuglede and Kadison 1952]. Brown based his
construction on ideas of Grothendieck [1956] and Fack [1982; 1983], who defined
a determinant function as an analogue of the product of the eigenvalues up to a
given cutoff.

The main advantage of applying an algebraic K-theory approach to determinants
is that all the algebraic properties of determinants follow as a direct consequence
of the definitions. Moreover, when determinants are interpreted as invariants of
algebraic K-theory, they can be used to detect nontrivial elements in these generally
rather complicated abelian groups. On the other hand, basing the construction of
determinants purely on functional analytic methods requires a substantial amount
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of work for proving the main algebraic properties, and the more conceptual frame-
work provided by algebraic K-theory is entirely lost.

The key property that we investigate in this text is the relationship between the
operator trace, the logarithm and the determinant as expressed by the identity

log(det(g))= Tr(log(g)).

In order to expand on this basic relationship in a K-theoretic context one considers
a unital Banach algebra A together with the homomorphism

GL(A)→ GLtop(A),

where GL(A) denotes the general linear group (over A) equipped with the discrete
topology, and GLtop(A) is the same algebraic group but with the topology coming
from the unital Banach algebra A. Passing to classifying spaces and applying
Quillen’s plus construction [1973], one obtains a continuous map

BGL(A)+→ BGLtop(A)

(which is unique up to homotopy). By taking homotopy fibres and homotopy
groups this gives rise to a long exact sequence of abelian groups,

K top
∗+1(A)

∂
// K rel
∗
(A) ∂

// K alg
∗ (A) // K top

∗ (A),

which is related to the SBI -sequence in continuous cyclic homology by means of
Chern characters, resulting in the commutative diagram

K top
∗+1(A)

∂
//

chtop

��

K rel
∗
(A) //

chrel

��

K alg
∗ (A) //

chalg

��

K top
∗ (A)

chtop

��

HP∗+1(A)
S
// HC∗−1(A)

B
// HN∗(A)

I
// HP∗(A)

(1.1)

of abelian groups; see [Karoubi 1987; Connes and Karoubi 1988].
In this paper we focus on the low degree (and more explicit) version of this

commutative diagram. More precisely, supposing that the unital Banach algebra
A comes equipped with a tracial functional τ : A→ C, one obtains an invariant
of the continuous cyclic homology group HC0(A), and hence by precomposition
with the relative Chern character we obtain a homomorphism

τ ◦ chrel
: K rel

1 (A)→ C.

Supposing furthermore that K top
1 (A) = {0}, it follows from the commutative di-

agram in (1.1) combined with Bott-periodicity in topological K-theory that the



ALGEBRAIC K-THEORY AND A SEMIFINITE FUGLEDE–KADISON DETERMINANT 195

character τ ◦ chrel induces a homomorphism

detτ : K
alg
1 (A)→ C/(2π i · Im(τ )),

where τ : K top
0 (A)→ C is the character on even topological K-theory induced by

our tracial functional. In this way we recover the determinant defined by Skandalis
and de la Harpe [de la Harpe and Skandalis 1984; de la Harpe 2013].

We extend this framework for defining determinants by incorporating that the
tracial functional τ might only be defined on an ideal J sitting inside the unital
Banach algebra A (where J is not required to be closed in the norm-topology
of A). In this context, we assume that τ : J → C is a hypertrace in the sense
that τ( ja) = τ(aj) for all a ∈ A, j ∈ J . The correct K-groups to consider are
then relative versions of relative K-theory and algebraic K-theory, and similarly
one considers relative versions of the cyclic homology groups appearing in the
SBI -sequence (we do not use relative topological K-theory because of excision).
The idea of applying relative K-groups in relation to determinant-type invariants
of algebraic K-theory was (among other things) developed in the Ph.D. thesis of
the second author [Kaad 2009].

In the setting of a semifinite von Neumann algebra N equipped with a fixed
normal, faithful and semifinite trace τ : N+→ [0,∞], it is relevant to look at the
trace ideal

L 1
τ (N ) := {x ∈ N : τ(|x |) <∞}

sitting inside the von Neumann algebra N . Using the facts that K top
1 (L 1

τ (N ))= {0}
and Im(τ : K top

0 (L 1
τ (N ))→ C)⊆ R, we obtain an algebraic K-theory invariant1

detτ : K
alg
1 (L 1

τ (N ), N )→ C/ iR,

which recovers the Fuglede–Kadison determinant in the context of semifinite von
Neumann algebras; see [Brown 1986; Fuglede and Kadison 1952]. We emphasize
one more time that all the relevant algebraic properties of this determinant follow
immediately from its construction. Moreover, we show that detτ is given by the
explicit formula

detτ (g)= τ(log(|g|))+ iR (g ∈ GLn(N ), g−1n ∈ Mn(L
1
τ (N )). (1.2)

Here, τ is extended to Mn(N ) in the obvious way by taking the sum over the
diagonal.

Recently, the Fuglede–Kadison determinant was generalized in another direction
by Dykema, Sukochev and Zanin to operator bimodules over II1-factors [Dykema
et al. 2017]. They define this determinant using functional analytic methods via an

1In the main text, we denote this map by d̃etτ , and use the notation detτ for the composition with
the isomorphism C/ iR∼= (0,∞) given by z+ iR 7→ e(z+z̄)/2.
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expression analogous to (1.2). It then requires an elaborate argument to prove that
this determinant is multiplicative [Dykema et al. 2017, Theorem 1.3].

The present paper is organized as follows. In Section 2 we introduce the relevant
K-groups and in Section 3 we develop the low degree version of the long exact
sequence which compares relative algebraic K-theory to topological K-theory. In
Section 4 we introduce the low degree version of the relative Chern character in
the presence of an ideal J ⊆ A. In Section 5 we present our relative approach
to the construction of Skandalis–de la Harpe determinants. In Section 6 we show
that the first topological K-group of the trace ideal in a semifinite von Neumann
algebra is trivial, and in Section 7 we apply this fact to construct the semifinite
Fuglede–Kadison determinant.

2. K-theory for relative pairs of Banach algebras

2.1. Definition. Let (A, ‖ ·A‖) be a unital Banach algebra and J ⊂ A be a (not
necessarily closed) ideal. We call (J, A) a relative pair of Banach algebras when
the following hold:

(1) J is a Banach algebra in its own right. Thus, J is endowed with a norm
‖·‖J : J → [0,∞) such that (J, ‖·‖J ) is a Banach algebra.

(2) For all a, b ∈ A and j ∈ J we have

‖ajb‖J ≤ ‖a‖A ‖ j‖J ‖b‖A and ‖ j‖A ≤ ‖ j‖J .

2.2. For a relative pair of Banach algebras (J, A) we obtain for all n ∈N a relative
pair of Banach algebras (Mn(J ),Mn(A)), where the n× n matrices in Mn(J ) are
equipped with the norm ‖ j‖Mn(J ) :=

∑n
k,l=1 ‖ jkl‖J , and similarly for Mn(A).

2.3. The rest of this section is a reminder on various K-groups for relative pairs
of Banach algebras. A standard reference for topological K-theory is [Blackadar
1998]. Very good treatments of algebraic K-theory can be found in [Rosenberg
1994; Weibel 2013]. The probably less common relative K-theory of Banach alge-
bras has been introduced in [Karoubi 1987; Connes and Karoubi 1988].

2.4. Definition. Let A be a Banach algebra. If A has a unit, we denote the group
of invertible elements in Mn(A) by GLn(A). If A has no unit, we define for all
n ∈ N the group

GLn(A) := {g ∈ GLn(A+) : g− 1n ∈ Mn(A)} ⊂ GLn(A+),

where A+ is the unitization of A and 1n the unit of GLn(A+). The group GLn(A)
becomes a topological group when equipped with the topology coming from the
metric d(g, h) := ‖g− h‖Mn(A).
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2.5. Definition. The topological K-groups of the pair (J, A) can be defined to be
the usual topological K-groups of J , i.e.,

K top
i (J, A) := K top

i (J ) (i = 0, 1).

This is due to the fact that topological K-theory satisfies excision [Blackadar 1998,
Theorem 5.4.2]. For our purposes, it will be useful to know another realization of
K top

0 (J ), namely K top
2 (J ), which may be defined by

K top
2 (J )= lim

n→∞
π1(GLn(J ),1n)= lim

n→∞
{[γ ] ∈ C∞(S1,GLn(J ))/∼ : γ (1)= 1n},

where the equivalence relation ∼ is given by smooth basepoint preserving homo-
topies and the group operation is given by the pointwise product of invertible ma-
trices; see [Blackadar 1998, Section 9.1].

The fact that K top
0 (J ) and K top

2 (J ) are isomorphic is known as Bott periodicity,
[Blackadar 1998, Theorem 9.2.1]. An explicit isomorphism is given by

βJ : K
top
0 (J )→ K top

2 (J ), [e] − [ f ] 7→ [γeγ
−1
f ],

where e, f ∈ Mn(J+) are idempotents with e− f ∈ Mn(J ). The so-called idem-
potent loops γe are defined by γe(z) := ze+ 1n − e for z ∈ S1.

2.6. Definition. The first algebraic K-theory of the pair (J, A) is defined by

K alg
1 (J, A) := lim

n→∞
(GLn(J )/[GLn(J ),GLn(A)]),

where

[GLn(J ),GLn(A)] := 〈ghg−1h−1
: g ∈ GLn(J ), h ∈ GLn(A)〉

is a normal subgroup of GLn(J ).

2.7. Definition. Let A be a Banach algebra. For all n ∈ N, we let Rn(A) denote
the group of smooth paths σ : [0, 1] → GLn(A) such that σ(0) = 1n . The group
operation is given by pointwise multiplication.

Now, let (J, A) be a relative pair of Banach algebras. From the compatibility of
the norms on J and A (see Definition 2.1) it follows that

στσ−1τ−1
∈ Rn(J ) (σ ∈ Rn(J ), τ ∈ Rn(A)).

We thus have the normal subgroup

[Rn(J ), Rn(A)] := 〈στσ−1τ−1
| σ ∈ Rn(J ), τ ∈ Rn(A)〉

of Rn(J ). On Rn(J ) we may consider the equivalence relation ∼ of being homo-
topic with fixed endpoints through a smooth homotopy. Denote the quotient map
by q : Rn(J )→ Rn(J )/∼. We define

K rel
1 (J, A) := lim

n→∞

(
(Rn(J )/∼)/q

(
[Rn(J ), Rn(A)]

))
.



198 PETER HOCHS, JENS KAAD AND ANDRÉ SCHEMAITAT

3. The comparison sequence

3.1. Definition. We define the following group homomorphisms:

∂ : K top
2 (J )→ K rel

1 (J, A), [γ ] 7→ [t 7→ γ (e2π i t)],

θ : K rel
1 (J, A)→ K alg

1 (J, A), [σ ] 7→ [σ(1)−1
],

p : K alg
1 (J, A)→ K top

1 (J ), [g] 7→ [g].

3.2. Lemma. The sequence

K top
2 (J ) ∂

// K rel
1 (J, A) θ

// K alg
1 (J, A)

p
// K top

1 (J ) // 0

is exact.

Proof. The only nontrivial thing to check is exactness at K rel
1 (J, A). It is clear that

θ ◦ ∂ = 0. On the other hand, let σ ∈ Rn(J ) and suppose that [σ(1)−1
] is trivial in

K alg
1 (J, A). Then there are gi ∈ GLm(J ) and hi ∈ GLm(A) such that

σ(1)−1
=

n∏
i=1

[gi , hi ].

By Whitehead’s lemma [Rosenberg 1994, Theorem 2.5.3], we may assume that gi

and hi lie in the connected component of the identity. Thus, there are smooth paths
αi ∈ Rm(J ) connecting 1m and gi , and βi ∈ Rm(A) connecting 1m and hi . Then

τ :=

n∏
i=1

[αi , βi ] ∈ [Rm(J ), Rm(A)]

is a path from 1m to σ(1)−1. Hence γ := σ · τ−1 is a smooth loop at 1m and
∂([γ ])= [σ ] since [τ−1

] is trivial in K rel
1 (J, A). �

4. The relative Chern character

4.1. Let (J, A) be a relative pair of Banach algebras. By J ⊗π A we denote the
projective tensor product of J and A. The compatibility of the norms on J and A
ensures that the multiplication operator

m : J ⊗π A→ J, j ⊗ a 7→ ja

is bounded.

4.2. Definition. We define the Hochschild boundary map

b : J ⊗π A→ J, j ⊗ a 7→ ja− aj
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and the zeroth relative continuous cyclic homology of the pair (J, A) by

HC0(J, A) := J/ Im(b).

Since Im(b)⊂ J might not be closed we regard HC0(J, A) simply as a vector space
without further topological structure.

4.3. Definition. Recall from 2.2 that (Mn(J ),Mn(A)) is a relative pair of Banach
algebras for all n ∈ N. We thus have for each n ∈ N the relative continuous cyclic
homology groups HC0(Mn(J ),Mn(A)), and we may consider the direct limit of
vector spaces

lim
n→∞

HC0(Mn(J ),Mn(A)).

This direct limit is linked to HC0(J, A) via the linear map

TR : lim
n→∞

HC0(Mn(J ),Mn(A))→ HC0(J, A),

which is induced by the “trace” TR : Mn(J )→ J mapping a matrix to the sum
of its diagonal entries. To verify that TR is indeed well-defined at the level of
relative continuous cyclic homology, one may translate the proof of [Loday 1998,
Corollary 1.2.3] to our current setting.

4.4. Our next task is to construct the relative Chern character. This will be a group
homomorphism

chrel
: K rel

1 (J, A)→ HC0(J, A)

induced by

Rn(J ) 3 σ 7→ TR
(∫ 1

0

dσ
dt
σ−1 dt

)
∈ J.

We shall express chrel as the composition of two homomorphisms: a generalized
logarithm

log : K rel
1 (J, A)→ lim

n→∞
HC0(Mn(J ),Mn(A))

and the generalized trace as defined in Definition 4.3. We now introduce the gen-
eralized logarithm:

4.5. Proposition. There is a well-defined homomorphism

log : K rel
1 (J, A)→ lim

n→∞
HC0(Mn(J ),Mn(A)), [σ ] 7→

[∫ 1

0

dσ
dt
σ−1 dt

]
.

Proof. Suppose first that σ0, σ1 ∈ Rn(J ) are homotopic through a smooth homotopy
H : [0, 1]×[0, 1]→GLn(J ) with fixed endpoints. So, H(t, j)= σ j (t) for j = 0, 1.

We will show that∫ 1

0

dσ1

dt
σ−1

1 dt −
∫ 1

0

dσ0

dt
σ−1

0 dt ∈ Im(b),
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where b : Mn(J )⊗π Mn(A)→ Mn(J ) is the Hochschild boundary map associated
to the relative pair (Mn(J ),Mn(A)).

Define
L(H) := −

∫ 1

0

∫ 1

0

∂H
∂t

H−1
⊗
∂H
∂s

H−1 dt ds.

We consider L(H) as an element of Mn(J )⊗π Mn(A) (in fact we even end up in
Mn(J )⊗π Mn(J ), which we may then map to Mn(J )⊗π Mn(A) via the inclusion
Mn(J )→ Mn(A)). Applying the Hochschild boundary b, we see that

b(L(H))=−
∫ 1

0

∫ 1

0

[
∂H
∂t

H−1,
∂H
∂s

H−1
]

dt ds.

An easy calculation shows that[
∂H
∂t

H−1,
∂H
∂s

H−1
]
=−

∂H
∂t
∂H−1

∂s
+
∂H
∂s

∂H−1

∂t

=
∂

∂t

(
∂H
∂s

H−1
)
−
∂

∂s

(
∂H
∂t

H−1
)
.

By the fundamental theorem of calculus, we conclude

b(L(H))=
∫ 1

0

∫ 1

0

∂

∂s

(
∂H
∂t

H−1
)

ds dt −
∫ 1

0

∫ 1

0

∂

∂t

(
∂H
∂s

H−1
)

dt ds

=

∫ 1

0

(
∂H
∂t
(t, 1)H(t, 1)−1

−
∂H
∂s
(t, 0)H(t, 0)−1

)
dt

−

∫ 1

0

(
∂H
∂s
(1, s)H(1, s)−1

−
∂H
∂s
(0, s)H(0, s)−1

)
ds

=

∫ 1

0

dσ1
dt
σ−1

1 dt −
∫ 1

0

dσ0
dt
σ−1

0 dt.

The second term in the next to last line of our computation vanishes, since our
homotopy has fixed endpoints.

We have thus proved that the assignment

log : Rn(J )→ Mn(J ), σ 7→

∫ 1

0

dσ
dt
σ−1 dt

descends to a well-defined map log : (Rn(J )/∼)→HC0(Mn(J ),Mn(A)). Further-
more, since log is compatible with direct limits, we obtain a well-defined map

log : lim
n→∞

(Rn(J )/∼)→ lim
n→∞

HC0(Mn(J ),Mn(A)).

We now show that log([σ0 · σ1]) = log([σ0])+ log([σ1]) for all σ0, σ1 ∈ Rn(J ).
Choose a smooth function φ : R→ [0, 1] such that

φ((−∞, 0])= {0} and φ
([1

2 ,∞
))
= {1}.
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Define the smooth function ψ : R→[0, 1] by ψ(t) := φ
(
t − 1

2

)
. We then have that

σ0σ1 ∼ (σ0 ◦ψ) · (σ1 ◦φ),

and it thus suffices to verify that log((σ0 ◦ψ) · (σ1 ◦φ))= log(σ0)+ log(σ1). But
this identity follows by a change of variables:

log
(
(σ0 ◦ψ) · (σ1 ◦φ)

)
=

∫ 1/2

0

d(σ1 ◦φ)

dt
(σ1 ◦φ)

−1 dt +
∫ 1

1/2

d(σ0 ◦ψ)

dt
(σ0 ◦ψ)

−1 dt

= log(σ0)+ log(σ1).

To finish the proof of the proposition we only need to show that log([στσ−1
])=

log([τ ]) whenever σ ∈ Rn(A) and τ ∈ Rn(J ). To this end, we consider the smooth
homotopy with fixed endpoints

H(s, t) := σ( f (s, t))τ (t)σ ( f (s, t))−1, f (s, t) := ts+ 1− s = s(t − 1)+ 1

between στσ−1 and σ(1)τσ (1)−1. This proves that

log([στσ−1
])= log([σ(1)τσ (1)−1

])= log([τ ]),

where we have used the fact that σ(1)xσ(1)−1 and x determine the same element
in HC0(Mn(J ),Mn(A)) for all x ∈ Mn(J ). �

4.6. Definition. By the relative Chern character chrel
: K rel

1 (J, A)→ HC0(J, A),
we understand the homomorphism obtained as the composition

chrel
: K rel

1 (J, A)
log
// lim
n→∞

HC0(Mn(J ),Mn(A))
TR
// HC0(J, A)

of the generalized logarithm and the generalized trace.

5. The relative Skandalis–de la Harpe determinant

5.1. Analogous to the determinant of Skandalis and de la Harpe, we are now in
a position to define such a determinant purely by means of K-theory for relative
pairs of Banach algebras. In particular, we are able to deal with the presence of a
not necessarily closed ideal J inside a unital Banach algebra A.

5.2. Definition. Let (J, A) be a relative pair of Banach algebras. In this section we
assume τ : J → C to be a continuous linear functional which additionally satisfies

τ( ja)= τ(aj) (a ∈ A, j ∈ J ).

The latter property means that τ is a hypertrace. For such a trace there is a well-
defined map (also denoted by τ ):

τ : HC0(J, A)→ C, j + Im(b) 7→ τ( j).
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Furthermore, we let

τ̃ := −τ ◦ chrel
: K rel

1 (J, A)→ C,

with chrel as in Definition 4.6. Note that τ̃ is a homomorphism into the additive
group C.

5.3. Recall (Lemma 3.2) that there is an exact sequence in relative K-theory:

K top
2 (J ) ∂

// K rel
1 (J, A) θ

// K alg
1 (J, A)

p
// K top

1 (J ) // 0 .

This allows us to define the relative Skandalis–de la Harpe determinant

d̃etτ : Ker(p)→ C/ Im(τ̃ ◦ ∂)
by

d̃etτ ([g]) := τ̃ ([σ ])+ Im(τ̃ ◦ ∂),

where [σ ] ∈ K rel
1 (J, A) satisfies θ([σ ])= [σ(1)−1

] = [g] 3 K alg
1 (J, A). Such a lift

always exists since Ker(p)= Im(θ). Furthermore, this assignment is well-defined
since if [σ0] and [σ1] are lifts of the same element [g] then

[σ0][σ1]
−1
∈ Ker(θ)= Im(∂).

It follows that τ̃ ([σ0])= τ̃ ([σ1]) modulo Im(τ̃ ◦ ∂).
Compare this with the definition on page 245 of [de la Harpe and Skandalis

1984], where absolute K-theory is used rather than relative K-theory.

5.4. Lemma. We have the following equality of subgroups of (C,+):

2π i · Im(τ : K top
0 (J )→ C)= Im(τ̃ ◦ ∂ : K top

2 (J )→ C).

By τ : K top
0 (J )→ C we understand the map induced by τ .

Proof. The claim follows from commutativity of the following diagram:

K top
0 (J )

βJ

∼=

//

−2π i ·τ
%%

K top
2 (J )

τ̃◦∂

��

C

(5.5)

By βJ we mean the Bott isomorphism map, as in Definition 2.5.
To prove commutativity of (5.5), we note that for an idempotent f ∈ Mn(J+),

chrel(∂([γ f ]))= TR
(

2π i
∫ 1

0
e2π i t f (e−2π i t f +1n − f ) dt

)
= 2π i TR( f ).

If now e, f ∈ Mn(J+) are idempotents satisfying e− f ∈ Mn(J ), then

τ̃
(
∂(βJ ([e] − [ f ]))

)
= τ̃ (∂([γeγ

−1
f ]))=−2π i · τ(TR(e− f )).

So (5.5) indeed commutes. �
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5.6. Together with Lemma 5.4 we see that the following diagram commutes:

K top
2 (J ) ∂

//

τ̃◦∂

��

K rel
1 (J, A) θ

// //

τ̃

��

Ker p

d̃etτ
��

p
// 0

2π i · Im(τ ) // // C // // C/(2π i · Im(τ ))

In the next section this will be applied to the case that the kernel of p is all of
K alg

1 (J, A). In that case we get a determinant

d̃etτ : K
alg
1 (J, A)→ C/(2π i · Im (τ )).

6. Topological K-theory of trace ideals

6.1. In the following, N ⊂L (H) always denotes a semifinite von Neumann alge-
bra equipped with a fixed normal, faithful and semifinite trace τ : N+→ [0,∞]. A
good reference for traces on von Neumann algebras is [Dixmier 1981, I.6.1, I.6.10].

6.2. We let ‖ · ‖ : N → [0,∞) denote the operator norm on N and we let

L 1
τ (N ) := {x ∈ N : τ(|x |) <∞} ⊂ N

denote the trace ideal in N . We recall that L 1
τ (N ) ⊂ N is indeed a ∗-ideal and

that L 1
τ (N ) becomes a Banach ∗-algebra in its own right when equipped with the

norm
‖x‖1,∞ := ‖x‖+ τ(|x |) (x ∈L 1

τ (N )).

Moreover, it holds that (L 1
τ (N ), N ) is a relative pair of Banach algebras in the

sense of Definition 2.1.

6.3. For each n ∈ N we have that Mn(N ) ⊂ L (H⊕n) is a semifinite von Neu-
mann algebra. Indeed, we may define the normal, faithful and semifinite trace
τn : Mn(N )+→ [0,∞] by τn(x) :=

∑n
i=1 τ(xi i ). The inclusion Mn(L

1
τ (N ))→

Mn(N ) then induces an isomorphism

Mn(L
1
τ (N ))∼=L 1

τn
(Mn(N ))

of Banach ∗-algebras. This isomorphism is, however, not an isometry since (by
convention) Mn(L

1
τ (N )) is equipped with the norm defined as in 2.2.

6.4. Lemma. The group GLn(L
1
τ (N )) is path connected for all n ∈ N. In particu-

lar, it holds that
K top

1 (L 1
τ (N ))= {0}.

Proof. Since Mn(L
1
τ (N ))∼=L 1

τn
(Mn(N )) by 6.3, it suffices to verify the lemma

for n = 1. Thus, let g ∈GL1(L
1
τ (N )). Using polar decomposition we may suppose

that g∗g = 1 = gg∗ or that g = |g|. In the first case we may find an x ∈ L 1
τ (N )
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with x = −x∗ such that g = ex . In the second case we may find an x ∈ L 1
τ (N )

with x = x∗ such that g = ex . In both cases we obtain the smooth path t 7→ et x

connecting 1 and g. �

7. The semifinite Fuglede–Kadison determinant

7.1. We are now going to use K-theory for relative pairs of Banach algebras to
define our determinant. From 6.2 we know that (L 1

τ (N ), N ) is a relative pair of
Banach algebras and that τ : L 1

τ (N )→ C is continuous with respect to ‖ · ‖1,∞.
Since τ : L 1

τ (N ) → C is moreover a hypertrace, we get (as defined in 5.6) a
determinant

d̃etτ : K
alg
1 (L 1

τ (N ), N )→ C/(2π i · Im(τ )).

Note that our determinant is defined on all of K alg
1 (L 1

τ (N ), N ) by Lemma 6.4.

7.2. Lemma. We have

Im
(
τ : K top

0 (L 1
τ (N ))→ C

)
⊂ R.

Proof. Since Mn(L
1
τ (N )

+)⊂ Mn(N ) is closed under holomorphic functional cal-
culus for all n ∈ N, every idempotent in Mn(L

1
τ (N )

+) is similar to a projection
in Mn(L

1
τ (N )

+); see [Blackadar 1998, Proposition 4.6.2]. And for projections
p, q ∈ Mn(L

1
τ (N )

+) with p− q ∈ Mn(L
1
τ (N )) we see that

τ([p] − [q])= τ(TR(p− q)) ∈ R,

where we have used that all the diagonal entries (p− q) j j are self-adjoint. �

7.3. We thus have a well-defined homomorphism

d̃etτ : K
alg
1 (L 1

τ (N ), N )→ C/ iR, d̃etτ : [g] 7→ τ̃ ([σ ])+ iR,

where [σ ] ∈ K rel
1 (L

1
τ (N ), N ) is any lift of [g], by which we mean that θ([σ ]) =

[σ(1)−1
] = [g].

Note that there is an isomorphism of abelian groups

C/ iR→ (0,∞), z+ iR 7→ e<(z),

where <(z) denotes the real part of z ∈C. This gives rise to the following definition:

7.4. Definition. We define the semifinite Fuglede–Kadison determinant

detτ : K
alg
1 (L 1

τ (N ), N )→ (0,∞)
by

detτ ([g]) := e<(d̃etτ ([g])).

More explicitly, we have
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detτ ([g])= exp((<◦ τ̃ )[σ ])= exp
(
−(<◦ τ ◦TR)

(∫ 1

0

dσ
dt
σ−1 dt

))
,

where [σ ] ∈ K rel
1 (L

1
τ (N ), N ) is any lift of [g] ∈ K alg

1 (L 1
τ (N ), N ), meaning that

[σ(1)−1
] = [g].

7.5. Proposition. The semifinite Fuglede–Kadison determinant detτ has the fol-
lowing properties:

(1) detτ ([gh])= detτ ([g])detτ ([h]) for all g, h ∈ GLn(L
1
τ (N )).

(2) detτ ([hgh−1
])= detτ ([g]) for all g ∈ GLn(L

1
τ (N )) and h ∈ GLn(N ).

(3) detτ ([ex
])= (exp ◦<◦ τ ◦TR)(x) for x ∈ Mn(L

1
τ (N )).

These properties follow directly from the definition of the determinant and the
fact that d̃etτ is a homomorphism.

In [Brown 1986, Section 1], the equality in the following proposition is the
definition of the determinant.

7.6. Proposition. The following explicit formula holds:

detτ ([g])= eτ(log|g|), (g ∈ GL1(L
1
τ (N ))).

Proof. Let g ∈ GL1(L
1
τ (N )). Using the polar decomposition g = u|g|, we may

compute
detτ ([g])= detτ ([u])detτ ([|g|]).

Since u ∈ GL1(L
1
τ (N )) is unitary in the ambient von Neumann algebra, we may

write u= ei x for some x ∈L 1
τ (N ) with x = x∗. Moreover, we have log|g| ∈L 1

τ (N ).
By Proposition 7.5(3) we thus have that

detτ ([g])= e<(τ (i x))
· eτ(log|g|)

= eτ(log|g|). �

Acknowledgements

The authors thank Fedor Sukochev and Ken Dykema for pointing out some relevant
literature. Hochs was supported by the European Union through Marie Curie Fel-
lowship PIOF-GA-2011-299300. Kaad was supported by the Radboud Excellence
Initiative and by the Villum Foundation (grant 7423).

References

[Blackadar 1998] B. Blackadar, K -theory for operator algebras, 2nd ed., Mathematical Sciences
Research Institute Publications 5, Cambridge University Press, 1998. MR Zbl

[Brown 1986] L. G. Brown, “Lidskiı̆’s theorem in the type II case”, pp. 1–35 in Geometric methods
in operator algebras (Kyoto, 1983), edited by H. Araki and E. G. Effros, Pitman Research Notes in
Math. Series 123, Longman Scientific & Technical, Harlow, England, 1986. MR Zbl

http://msp.org/idx/mr/1656031
http://msp.org/idx/zbl/0913.46054
http://msp.org/idx/mr/866489
http://msp.org/idx/zbl/0646.46058


206 PETER HOCHS, JENS KAAD AND ANDRÉ SCHEMAITAT

[Connes and Karoubi 1988] A. Connes and M. Karoubi, “Caractère multiplicatif d’un module de
Fredholm”, K -Theory 2:3 (1988), 431–463. MR Zbl

[Dixmier 1981] J. Dixmier, von Neumann algebras, North-Holland Mathematical Library 27, North-
Holland Publishing Co., Amsterdam, 1981. MR Zbl

[Dykema et al. 2017] K. Dykema, F. Sukochev, and D. Zanin, “Determinants associated to traces on
operator bimodules”, J. Operator Theory 78:1 (2017), 119–134. MR Zbl

[Fack 1982] T. Fack, “Sur la notion de valeur caractéristique”, J. Operator Theory 7:2 (1982), 307–
333. MR Zbl

[Fack 1983] T. Fack, “Proof of the conjecture of A. Grothendieck on the Fuglede–Kadison determi-
nant”, J. Funct. Anal. 50:2 (1983), 215–228. MR Zbl

[Fuglede and Kadison 1952] B. Fuglede and R. V. Kadison, “Determinant theory in finite factors”,
Ann. of Math. (2) 55 (1952), 520–530. MR Zbl

[Grothendieck 1956] A. Grothendieck, “Réarrangements de fonctions et inégalités de convexité dans
les algèbres de von Neumann munies d’une trace”, exposé 113 in Séminaire Bourbaki, 1954–1956,
W. A. Benjamin, Amsterdam, 1956. Reprinted as pp. 127–139 in Séminaire Bourbaki 3, Société
Mathématique de France, Paris, 1995. MR Zbl

[de la Harpe 2013] P. de la Harpe, “Fuglede–Kadison determinant: theme and variations”, Proc.
Natl. Acad. Sci. USA 110:40 (2013), 15864–15877. MR

[de la Harpe and Skandalis 1984] P. de la Harpe and G. Skandalis, “Déterminant associé à une trace
sur une algébre de Banach”, Ann. Inst. Fourier (Grenoble) 34:1 (1984), 241–260. MR

[Kaad 2009] J. Kaad, A calculation of the multiplicative character on higher algebraic K -theory,
Ph.D. thesis, University of Copenhagen, 2009, http://www.math.ku.dk/noter/filer/phd09jk.pdf.

[Karoubi 1987] M. Karoubi, Homologie cyclique et K -théorie, Astérisque 149, Société Mathéma-
tique de France, Paris, 1987. MR Zbl

[Loday 1998] J.-L. Loday, Cyclic homology, 2nd ed., Grundlehren der Math. Wissenschaften 301,
Springer, 1998. MR Zbl

[Quillen 1973] D. Quillen, “Higher algebraic K -theory, I”, pp. 85–147 in Algebraic K -theory, I:
Higher K -theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973.
MR Zbl

[Rosenberg 1994] J. Rosenberg, Algebraic K -theory and its applications, Graduate Texts in Math.
147, Springer, 1994. MR Zbl

[Weibel 2013] C. A. Weibel, The K -book: An introduction to algebraic K -theory, Graduate Studies
in Math. 145, American Mathematical Society, Providence, RI, 2013. MR Zbl

Received 30 Aug 2016. Revised 23 May 2017. Accepted 7 Jun 2017.

PETER HOCHS: peter.hochs@adelaide.edu.au
School of Mathematical Sciences, North Terrace Campus, The University of Adelaide,
Adelaide, SA, Australia

JENS KAAD: jenskaad@hotmail.com
Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

ANDRÉ SCHEMAITAT: a.schemaitat@uni-muenster.de
University of Münster, Münster, Germany

msp

http://dx.doi.org/10.1007/BF00533391
http://dx.doi.org/10.1007/BF00533391
http://msp.org/idx/mr/972606
http://msp.org/idx/zbl/0671.46034
http://msp.org/idx/mr/641217
http://msp.org/idx/zbl/0473.46040
http://dx.doi.org/10.7900/jot.2016may31.2123
http://dx.doi.org/10.7900/jot.2016may31.2123
http://msp.org/idx/mr/3679608
http://msp.org/idx/zbl/06761941
http://msp.org/idx/mr/658616
http://msp.org/idx/zbl/0493.46052
http://dx.doi.org/10.1016/0022-1236(83)90068-X
http://dx.doi.org/10.1016/0022-1236(83)90068-X
http://msp.org/idx/mr/693229
http://msp.org/idx/zbl/0507.46051
http://dx.doi.org/10.2307/1969645
http://msp.org/idx/mr/0052696
http://msp.org/idx/zbl/0046.33604
https://eudml.org/doc/109497
https://eudml.org/doc/109497
http://msp.org/idx/mr/1608788
http://msp.org/idx/zbl/0161.33603
http://dx.doi.org/10.1073/pnas.1202059110
http://msp.org/idx/mr/3363445
http://dx.doi.org/10.5802/aif.958
http://dx.doi.org/10.5802/aif.958
http://msp.org/idx/mr/743629
http://www.math.ku.dk/noter/filer/phd09jk.pdf
http://msp.org/idx/mr/913964
http://msp.org/idx/zbl/0648.18008
http://dx.doi.org/10.1007/978-3-662-11389-9
http://msp.org/idx/mr/1600246
http://msp.org/idx/zbl/0885.18007
http://msp.org/idx/mr/0338129
http://msp.org/idx/zbl/0292.18004
http://dx.doi.org/10.1007/978-1-4612-4314-4
http://msp.org/idx/mr/1282290
http://msp.org/idx/zbl/0801.19001
http://msp.org/idx/mr/3076731
http://msp.org/idx/zbl/1273.19001
mailto:peter.hochs@adelaide.edu.au
mailto:jenskaad@hotmail.com
mailto:a.schemaitat@uni-muenster.de
http://msp.org


ANNALS OF K-THEORY
msp.org/akt

EDITORIAL BOARD

Paul Balmer University of California, Los Angeles, USA
balmer@math.ucla.edu

Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina
gcorti@dm.uba.ar

Hélène Esnault Freie Universität Berlin, Germany
liveesnault@math.fu-berlin.de

Eric Friedlander University of Southern California, USA
ericmf@usc.edu

Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France
max.karoubi@imj-prg.fr

Huaxin Lin University of Oregon, USA
livehlin@uoregon.edu

Alexander Merkurjev University of California, Los Angeles, USA
merkurev@math.ucla.edu

Amnon Neeman Australian National University
amnon.neeman@anu.edu.au

Birgit Richter Universität Hamburg, Germany
birgit.richter@uni-hamburg.de

Jonathan Rosenberg (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu

Marco Schlichting University of Warwick, UK
schlichting@warwick.ac.uk

Andrei Suslin Northwestern University, USA
suslin@math.northwestern.edu

Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu

Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $535/year (+$30, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2018 Mathematical Sciences Publishers

http://msp.org/akt/
mailto:balmer@math.ucla.edu
mailto:gcorti@dm.uba.ar
mailto:ericmf@usc.edu
mailto:max.karoubi@imj-prg.fr
mailto:merkurev@math.ucla.edu
mailto:amnon.neeman@anu.edu.au
mailto:birgit.richter@uni-hamburg.de
mailto:jmr@math.umd.edu
mailto:schlichting@warwick.ac.uk
mailto:suslin@math.northwestern.edu
mailto:weibel@math.rutgers.edu
mailto:guoliangyu@math.tamu.edu
mailto:production@msp.org
http://www.ktheoryfoundation.org
http://www.ktheoryfoundation.org
http://www.compositio.nl/
http://dx.doi.org/10.2140/akt
http://msp.org/
http://msp.org/


ANNALS OF K-THEORY
2018 vol. 3 no. 2

173An explicit basis for the rational higher Chow groups of abelian number fields
Matt Kerr and Yu Yang

193Algebraic K-theory and a semifinite Fuglede–Kadison determinant
Peter Hochs, Jens Kaad and André Schemaitat

207Algebraic K-theory of quotient stacks
Amalendu Krishna and Charanya Ravi

235A fixed point theorem on noncompact manifolds
Peter Hochs and Hang Wang

287Connectedness of cup products for polynomial representations of GLn and applications
Antoine Touzé

331Stable A1-connectivity over Dedekind schemes
Johannes Schmidt and Florian Strunk

A
N
N
A
LS

O
F
K-TH

EO
RY

no.2
vol.3

2018


	1. Introduction
	2. K-theory for relative pairs of Banach algebras
	3. The comparison sequence
	4. The relative Chern character
	5. The relative Skandalis–de la Harpe determinant
	6. Topological K-theory of trace ideals
	7. The semifinite Fuglede–Kadison determinant
	Acknowledgements
	References
	
	

